diff --git a/models/CenterNet/.gitignore b/models/CenterNet/.gitignore
new file mode 100644
index 0000000..cc1dded
--- /dev/null
+++ b/models/CenterNet/.gitignore
@@ -0,0 +1,111 @@
+legacy/*
+.DS_Store
+debug/*
+*.DS_Store
+*.json
+*.mat
+src/.vscode/*
+preds/*
+*.h5
+*.pth
+*.checkpoint
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv
+venv/
+ENV/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
diff --git a/models/CenterNet/.travis.yml b/models/CenterNet/.travis.yml
new file mode 100644
index 0000000..3dbd32f
--- /dev/null
+++ b/models/CenterNet/.travis.yml
@@ -0,0 +1,20 @@
+group: travis_latest
+dist: xenial # ubuntu-16.04
+language: python
+cache: pip
+python:
+ - 3.6
+ - 3.7
+install:
+ - pip install flake8
+ - pip install -r requirements.txt
+before_script:
+ # stop the build if there are Python syntax errors or undefined names
+ - flake8 . --count --select=E9,F63,F72,F82 --show-source --statistics
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
+ - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
+script:
+ - true # add other tests here
+notifications:
+ on_success: change
+ on_failure: change # `always` will be the setting once code changes slow down
diff --git a/models/CenterNet/LICENSE b/models/CenterNet/LICENSE
new file mode 100644
index 0000000..248f1ce
--- /dev/null
+++ b/models/CenterNet/LICENSE
@@ -0,0 +1,23 @@
+MIT License
+
+Copyright (c) 2019 Xingyi Zhou
+All rights reserved.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
diff --git a/models/CenterNet/NOTICE b/models/CenterNet/NOTICE
new file mode 100644
index 0000000..41e0904
--- /dev/null
+++ b/models/CenterNet/NOTICE
@@ -0,0 +1,161 @@
+Portions of this software are derived from tf-faster-rcnn.
+
+==============================================================================
+tf-faster-rcnn licence
+==============================================================================
+
+MIT License
+
+Copyright (c) 2017 Xinlei Chen
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+
+Portions of this software are derived from human-pose-estimation.pytorch.
+
+==============================================================================
+human-pose-estimation.pytorch licence
+==============================================================================
+ MIT License
+
+ Copyright (c) Microsoft Corporation. All rights reserved.
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in all
+ copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ SOFTWARE
+
+Portions of this software are derived from CornerNet.
+
+==============================================================================
+CornerNet licence
+==============================================================================
+
+BSD 3-Clause License
+
+Copyright (c) 2018, University of Michigan
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+* Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+* Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+* Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+
+
+Portions of this software are derived from DCNv2.
+
+==============================================================================
+DCNv2 licence
+==============================================================================
+
+BSD 3-Clause License
+
+Copyright (c) 2019, Charles Shang
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+==============================================================================
+DLA licence
+==============================================================================
+
+BSD 3-Clause License
+
+Copyright (c) 2018, Fisher Yu
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+* Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+* Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+* Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\ No newline at end of file
diff --git a/models/CenterNet/README.md b/models/CenterNet/README.md
new file mode 100644
index 0000000..9abee66
--- /dev/null
+++ b/models/CenterNet/README.md
@@ -0,0 +1,23 @@
+# Centernet training pipeline
+
+This is clone of original repo: https://github.com/xingyizhou/CenterNet
+
+Original README:
+https://github.com/SoftServeSAG/Drone_small_object_detection/blob/centernet/models/CenterNet/README_original.md
+
+# Short isntruction:
+Put your annotations and images for training/validation in folder:
+```
+/data/coco/
+```
+IMPORTANT - preserve file namings
+
+Run training:
+```
+python3 main.py ctdet --arch mobilenet --batch_size 16 --gpus 0 --resume --num_epochs 2000
+```
+
+You can find training results and logs in directory:
+```
+/exp/ctdet/default
+```
diff --git a/models/CenterNet/README_original.md b/models/CenterNet/README_original.md
new file mode 100644
index 0000000..51ae202
--- /dev/null
+++ b/models/CenterNet/README_original.md
@@ -0,0 +1,142 @@
+# Objects as Points
+Object detection, 3D detection, and pose estimation using center point detection:
+![](readme/fig2.png)
+> [**Objects as Points**](http://arxiv.org/abs/1904.07850),
+> Xingyi Zhou, Dequan Wang, Philipp Krähenbühl,
+> *arXiv technical report ([arXiv 1904.07850](http://arxiv.org/abs/1904.07850))*
+
+
+Contact: [zhouxy@cs.utexas.edu](mailto:zhouxy@cs.utexas.edu). Any questions or discussions are welcomed!
+
+## Abstract
+
+Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point -- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.
+
+## Highlights
+
+- **Simple:** One-sentence method summary: use keypoint detection technic to detect the bounding box center point and regress to all other object properties like bounding box size, 3d information, and pose.
+
+- **Versatile:** The same framework works for object detection, 3d bounding box estimation, and multi-person pose estimation with minor modification.
+
+- **Fast:** The whole process in a single network feedforward. No NMS post processing is needed. Our DLA-34 model runs at *52* FPS with *37.4* COCO AP.
+
+- **Strong**: Our best single model achieves *45.1*AP on COCO test-dev.
+
+- **Easy to use:** We provide user friendly testing API and webcam demos.
+
+## Main results
+
+### Object Detection on COCO validation
+
+| Backbone | AP / FPS | Flip AP / FPS| Multi-scale AP / FPS |
+|--------------|-----------|--------------|-----------------------|
+|Hourglass-104 | 40.3 / 14 | 42.2 / 7.8 | 45.1 / 1.4 |
+|DLA-34 | 37.4 / 52 | 39.2 / 28 | 41.7 / 4 |
+|ResNet-101 | 34.6 / 45 | 36.2 / 25 | 39.3 / 4 |
+|ResNet-18 | 28.1 / 142| 30.0 / 71 | 33.2 / 12 |
+
+### Keypoint detection on COCO validation
+
+| Backbone | AP | FPS |
+|--------------|-----------|--------------|
+|Hourglass-104 | 64.0 | 6.6 |
+|DLA-34 | 58.9 | 23 |
+
+### 3D bounding box detection on KITTI validation
+
+|Backbone|FPS|AP-E|AP-M|AP-H|AOS-E|AOS-M|AOS-H|BEV-E|BEV-M|BEV-H|
+|--------|---|----|----|----|-----|-----|-----|-----|-----|-----|
+|DLA-34 |32 |96.9|87.8|79.2|93.9 |84.3 |75.7 |34.0 |30.5 |26.8 |
+
+
+All models and details are available in our [Model zoo](readme/MODEL_ZOO.md).
+
+## Installation
+
+Please refer to [INSTALL.md](readme/INSTALL.md) for installation instructions.
+
+## Use CenterNet
+
+We support demo for image/ image folder, video, and webcam.
+
+First, download the models (By default, [ctdet_coco_dla_2x](https://drive.google.com/open?id=1pl_-ael8wERdUREEnaIfqOV_VF2bEVRT) for detection and
+[multi_pose_dla_3x](https://drive.google.com/open?id=1PO1Ax_GDtjiemEmDVD7oPWwqQkUu28PI) for human pose estimation)
+from the [Model zoo](readme/MODEL_ZOO.md) and put them in `CenterNet_ROOT/models/`.
+
+For object detection on images/ video, run:
+
+~~~
+python demo.py ctdet --demo /path/to/image/or/folder/or/video --load_model ../models/ctdet_coco_dla_2x.pth
+~~~
+We provide example images in `CenterNet_ROOT/images/` (from [Detectron](https://github.com/facebookresearch/Detectron/tree/master/demo)). If set up correctly, the output should look like
+
+
+
+For webcam demo, run
+
+~~~
+python demo.py ctdet --demo webcam --load_model ../models/ctdet_coco_dla_2x.pth
+~~~
+
+Similarly, for human pose estimation, run:
+
+~~~
+python demo.py multi_pose --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/multi_pose_dla_3x.pth
+~~~
+The result for the example images should look like:
+
+
+
+You can add `--debug 2` to visualize the heatmap outputs.
+You can add `--flip_test` for flip test.
+
+To use this CenterNet in your own project, you can
+
+~~~
+import sys
+CENTERNET_PATH = /path/to/CenterNet/src/lib/
+sys.path.insert(0, CENTERNET_PATH)
+
+from detectors.detector_factory import detector_factory
+from opts import opts
+
+MODEL_PATH = /path/to/model
+TASK = 'ctdet' # or 'multi_pose' for human pose estimation
+opt = opts().init('{} --load_model {}'.format(TASK, MODEL_PATH).split(' '))
+detector = detector_factory[opt.task](opt)
+
+img = image/or/path/to/your/image/
+ret = detector.run(img)['results']
+~~~
+`ret` will be a python dict: `{category_id : [[x1, y1, x2, y2, score], ...], }`
+
+## Benchmark Evaluation and Training
+
+After [installation](readme/INSTALL.md), follow the instructions in [DATA.md](readme/DATA.md) to setup the datasets. Then check [GETTING_STARTED.md](readme/GETTING_STARTED.md) to reproduce the results in the paper.
+We provide scripts for all the experiments in the [experiments](experiments) folder.
+
+## Develop
+
+If you are interested in training CenterNet in a new dataset, use CenterNet in a new task, or use a new network architecture for CenterNet, please refer to [DEVELOP.md](readme/DEVELOP.md). Also feel free to send us emails for discussions or suggestions.
+
+## Third-party resources
+
+- Keras Implementation: [keras-centernet](https://github.com/see--/keras-centernet) from [see--](https://github.com/see--) and [keras-CenterNet](https://github.com/xuannianz/keras-CenterNet) from [xuannianz](https://github.com/xuannianz).
+- CenterNet + DeepSORT tracking implementation: [centerNet-deep-sort](https://github.com/kimyoon-young/centerNet-deep-sort) from [kimyoon-young](https://github.com/kimyoon-young).
+- Blogs on training CenterNet on custom datasets (in Chinese): [ships](https://blog.csdn.net/weixin_42634342/article/details/97756458) from [Rhett Chen](https://blog.csdn.net/weixin_42634342) and [faces](https://blog.csdn.net/weixin_41765699/article/details/100118353) from [linbior](https://me.csdn.net/weixin_41765699).
+
+## License
+
+CenterNet itself is released under the MIT License (refer to the LICENSE file for details).
+Portions of the code are borrowed from [human-pose-estimation.pytorch](https://github.com/Microsoft/human-pose-estimation.pytorch) (image transform, resnet), [CornerNet](https://github.com/princeton-vl/CornerNet) (hourglassnet, loss functions), [dla](https://github.com/ucbdrive/dla) (DLA network), [DCNv2](https://github.com/CharlesShang/DCNv2)(deformable convolutions), [tf-faster-rcnn](https://github.com/endernewton/tf-faster-rcnn)(Pascal VOC evaluation) and [kitti_eval](https://github.com/prclibo/kitti_eval) (KITTI dataset evaluation). Please refer to the original License of these projects (See [NOTICE](NOTICE)).
+
+## Citation
+
+If you find this project useful for your research, please use the following BibTeX entry.
+
+ @inproceedings{zhou2019objects,
+ title={Objects as Points},
+ author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
+ booktitle={arXiv preprint arXiv:1904.07850},
+ year={2019}
+ }
diff --git a/models/CenterNet/data/coco/test2017/.placeholder b/models/CenterNet/data/coco/test2017/.placeholder
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/data/coco/train2017/.placeholder b/models/CenterNet/data/coco/train2017/.placeholder
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/data/coco/val2017/.placeholder b/models/CenterNet/data/coco/val2017/.placeholder
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/exp/ctdet/default/.placeholder b/models/CenterNet/exp/ctdet/default/.placeholder
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/images/16004479832_a748d55f21_k.jpg b/models/CenterNet/images/16004479832_a748d55f21_k.jpg
new file mode 100644
index 0000000..5ef0680
Binary files /dev/null and b/models/CenterNet/images/16004479832_a748d55f21_k.jpg differ
diff --git a/models/CenterNet/images/17790319373_bd19b24cfc_k.jpg b/models/CenterNet/images/17790319373_bd19b24cfc_k.jpg
new file mode 100644
index 0000000..8d7ce5e
Binary files /dev/null and b/models/CenterNet/images/17790319373_bd19b24cfc_k.jpg differ
diff --git a/models/CenterNet/images/18124840932_e42b3e377c_k.jpg b/models/CenterNet/images/18124840932_e42b3e377c_k.jpg
new file mode 100644
index 0000000..0e20882
Binary files /dev/null and b/models/CenterNet/images/18124840932_e42b3e377c_k.jpg differ
diff --git a/models/CenterNet/images/19064748793_bb942deea1_k.jpg b/models/CenterNet/images/19064748793_bb942deea1_k.jpg
new file mode 100644
index 0000000..6269382
Binary files /dev/null and b/models/CenterNet/images/19064748793_bb942deea1_k.jpg differ
diff --git a/models/CenterNet/images/24274813513_0cfd2ce6d0_k.jpg b/models/CenterNet/images/24274813513_0cfd2ce6d0_k.jpg
new file mode 100644
index 0000000..2f3271a
Binary files /dev/null and b/models/CenterNet/images/24274813513_0cfd2ce6d0_k.jpg differ
diff --git a/models/CenterNet/images/33823288584_1d21cf0a26_k.jpg b/models/CenterNet/images/33823288584_1d21cf0a26_k.jpg
new file mode 100644
index 0000000..c218118
Binary files /dev/null and b/models/CenterNet/images/33823288584_1d21cf0a26_k.jpg differ
diff --git a/models/CenterNet/images/33887522274_eebd074106_k.jpg b/models/CenterNet/images/33887522274_eebd074106_k.jpg
new file mode 100644
index 0000000..3173f58
Binary files /dev/null and b/models/CenterNet/images/33887522274_eebd074106_k.jpg differ
diff --git a/models/CenterNet/images/34501842524_3c858b3080_k.jpg b/models/CenterNet/images/34501842524_3c858b3080_k.jpg
new file mode 100644
index 0000000..26398dc
Binary files /dev/null and b/models/CenterNet/images/34501842524_3c858b3080_k.jpg differ
diff --git a/models/CenterNet/images/NOTICE b/models/CenterNet/images/NOTICE
new file mode 100644
index 0000000..506f76e
--- /dev/null
+++ b/models/CenterNet/images/NOTICE
@@ -0,0 +1,32 @@
+The demo images are licensed as United States government work:
+https://www.usa.gov/government-works
+
+The image files were obtained on Jan 13, 2018 from the following
+URLs.
+
+16004479832_a748d55f21_k.jpg
+https://www.flickr.com/photos/archivesnews/16004479832
+
+18124840932_e42b3e377c_k.jpg
+https://www.flickr.com/photos/usnavy/18124840932
+
+33887522274_eebd074106_k.jpg
+https://www.flickr.com/photos/usaid_pakistan/33887522274
+
+15673749081_767a7fa63a_k.jpg
+https://www.flickr.com/photos/usnavy/15673749081
+
+34501842524_3c858b3080_k.jpg
+https://www.flickr.com/photos/departmentofenergy/34501842524
+
+24274813513_0cfd2ce6d0_k.jpg
+https://www.flickr.com/photos/dhsgov/24274813513
+
+19064748793_bb942deea1_k.jpg
+https://www.flickr.com/photos/statephotos/19064748793
+
+33823288584_1d21cf0a26_k.jpg
+https://www.flickr.com/photos/cbpphotos/33823288584
+
+17790319373_bd19b24cfc_k.jpg
+https://www.flickr.com/photos/secdef/17790319373
diff --git a/models/CenterNet/models/.gitignore b/models/CenterNet/models/.gitignore
new file mode 100644
index 0000000..d6b7ef3
--- /dev/null
+++ b/models/CenterNet/models/.gitignore
@@ -0,0 +1,2 @@
+*
+!.gitignore
diff --git a/models/CenterNet/readme/DATA.md b/models/CenterNet/readme/DATA.md
new file mode 100644
index 0000000..c455f94
--- /dev/null
+++ b/models/CenterNet/readme/DATA.md
@@ -0,0 +1,115 @@
+# Dataset preparation
+
+If you want to reproduce the results in the paper for benchmark evaluation and training, you will need to setup dataset.
+
+
+### COCO
+- Download the images (2017 Train, 2017 Val, 2017 Test) from [coco website](http://cocodataset.org/#download).
+- Download annotation files (2017 train/val and test image info) from [coco website](http://cocodataset.org/#download).
+- Place the data (or create symlinks) to make the data folder like:
+
+ ~~~
+ ${CenterNet_ROOT}
+ |-- data
+ `-- |-- coco
+ `-- |-- annotations
+ | |-- instances_train2017.json
+ | |-- instances_val2017.json
+ | |-- person_keypoints_train2017.json
+ | |-- person_keypoints_val2017.json
+ | |-- image_info_test-dev2017.json
+ |---|-- train2017
+ |---|-- val2017
+ `---|-- test2017
+ ~~~
+
+- [Optional] If you want to train ExtremeNet, generate extreme point annotation from segmentation:
+
+ ~~~
+ cd $CenterNet_ROOT/tools/
+ python gen_coco_extreme_points.py
+ ~~~
+ It generates `instances_extreme_train2017.json` and `instances_extreme_val2017.json` in `data/coco/annotations/`.
+
+### Pascal VOC
+
+- Run
+
+ ~~~
+ cd $CenterNet_ROOT/tools/
+ bash get_pascal_voc.sh
+ ~~~
+- The above script includes:
+ - Download, unzip, and move Pascal VOC images from the [VOC website](http://host.robots.ox.ac.uk/pascal/VOC/).
+ - [Download](https://storage.googleapis.com/coco-dataset/external/PASCAL_VOC.zip) Pascal VOC annotation in COCO format (from [Detectron](https://github.com/facebookresearch/Detectron/tree/master/detectron/datasets/data)).
+ - Combine train/val 2007/2012 annotation files into a single json.
+
+
+- Move the created `voc` folder to `data` (or create symlinks) to make the data folder like:
+
+ ~~~
+ ${CenterNet_ROOT}
+ |-- data
+ `-- |-- voc
+ `-- |-- annotations
+ | |-- pascal_trainval0712.json
+ | |-- pascal_test2017.json
+ |-- images
+ | |-- 000001.jpg
+ | ......
+ `-- VOCdevkit
+
+ ~~~
+ The `VOCdevkit` folder is needed to run the evaluation script from [faster rcnn](https://github.com/rbgirshick/py-faster-rcnn/blob/master/tools/reval.py).
+
+### KITTI
+
+- Download [images](http://www.cvlibs.net/download.php?file=data_object_image_2.zip), [annotations](http://www.cvlibs.net/download.php?file=data_object_label_2.zip), and [calibrations](http://www.cvlibs.net/download.php?file=data_object_calib.zip) from [KITTI website](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and unzip.
+
+- Download the train-val split of [3DOP](https://xiaozhichen.github.io/files/mv3d/imagesets.tar.gz) and [SubCNN](https://github.com/tanshen/SubCNN/tree/master/fast-rcnn/data/KITTI) and place the data as below
+
+ ~~~
+ ${CenterNet_ROOT}
+ |-- data
+ `-- |-- kitti
+ `-- |-- training
+ | |-- image_2
+ | |-- label_2
+ | |-- calib
+ |-- ImageSets_3dop
+ | |-- test.txt
+ | |-- train.txt
+ | |-- val.txt
+ | |-- trainval.txt
+ `-- ImageSets_subcnn
+ |-- test.txt
+ |-- train.txt
+ |-- val.txt
+ |-- trainval.txt
+ ~~~
+
+- Run `python convert_kitti_to_coco.py` in `tools` to convert the annotation into COCO format. You can set `DEBUG=True` in `line 5` to visualize the annotation.
+
+- Link image folder
+
+ ~~~
+ cd ${CenterNet_ROOT}/data/kitti/
+ mkdir images
+ ln -s training/image_2 images/trainval
+ ~~~
+
+- The data structure should look like:
+
+ ~~~
+ ${CenterNet_ROOT}
+ |-- data
+ `-- |-- kitti
+ `-- |-- annotations
+ | |-- kitti_3dop_train.json
+ | |-- kitti_3dop_val.json
+ | |-- kitti_subcnn_train.json
+ | |-- kitti_subcnn_val.json
+ `-- images
+ |-- trainval
+ |-- test
+ ~~~
diff --git a/models/CenterNet/readme/DEVELOP.md b/models/CenterNet/readme/DEVELOP.md
new file mode 100644
index 0000000..183a294
--- /dev/null
+++ b/models/CenterNet/readme/DEVELOP.md
@@ -0,0 +1,19 @@
+# Develop
+
+This document provides tutorials to develop CenterNet. `lib/src/opts` lists a few more options that the current version supports.
+
+## New dataset
+Basically there are three steps:
+
+- Convert the dataset annotation to [COCO format](http://cocodataset.org/#format-data). Please refer to [src/tools/convert_kitti_to_coco.py](../src/tools/convert_kitti_to_coco.py) for an example to convert kitti format to coco format.
+- Create a dataset intilization file in `src/lib/datasets/dataset`. In most cases you can just copy `src/lib/datasets/dataset/coco.py` to your dataset name and change the category information, and annotation path.
+- Import your dataset at `src/lib/datasets/dataset_factory`.
+
+## New task
+
+You will need to add files to `src/lib/datasets/sample/`, `src/lib/datasets/trains/`, and `src/lib/datasets/detectors/`, which specify the data generation during training, the training targets, and the testing, respectively.
+
+## New architecture
+
+- Add your model file to `src/lib/models/networks/`. The model should accept a dict `heads` of `{name: channels}`, which specify the name of each network output and its number of channels. Make sure your model returns a list (for multiple stages. Single stage model should return a list containing a single element.). The element of the list is a dict contraining the same keys with `heads`.
+- Add your model in `model_factory` of `src/lib/models/model.py`.
diff --git a/models/CenterNet/readme/GETTING_STARTED.md b/models/CenterNet/readme/GETTING_STARTED.md
new file mode 100644
index 0000000..b059855
--- /dev/null
+++ b/models/CenterNet/readme/GETTING_STARTED.md
@@ -0,0 +1,89 @@
+# Getting Started
+
+This document provides tutorials to train and evaluate CenterNet. Before getting started, make sure you have finished [installation](INSTALL.md) and [dataset setup](DATA.md).
+
+## Benchmark evaluation
+
+First, download the models you want to evaluate from our [model zoo](MODEL_ZOO.md) and put them in `CenterNet_ROOT/models/`.
+
+### COCO
+
+To evaluate COCO object detection with DLA
+run
+
+~~~
+python test.py ctdet --exp_id coco_dla --keep_res --load_model ../models/ctdet_coco_dla_2x.pth
+~~~
+
+This will give an AP of `37.4` if setup correctly. `--keep_res` is for keep the original image resolution. Without `--keep_res` it will resize the images to `512 x 512`. You can add `--flip_test` and `--flip_test --test_scales 0.5,0.75,1,1.25,1.5` to the above commend, for flip test and multi_scale test, respectively. The expected APs are `39.2` and `41.7`, respectively.
+
+To test with hourglass net, run
+
+~~~
+python test.py ctdet --exp_id coco_hg --arch hourglass --fix_res --load_model ../models/ctdet_coco_hg.pth
+~~~
+
+Similarly, to evaluate human pose estimation, run the following command for dla
+
+~~~
+python test.py multi_pose --exp_id dla --keep_res --load_model ../models/multi_pose_dla_3x.pth --flip_test
+~~~
+
+and the following for hourglass
+
+~~~
+python test.py multi_pose --exp_id hg --arch hourglass --keep_res --load_model ../models/multi_pose_dla_3x.pth --flip_test
+~~~
+
+The expected results can be found in the model zoo.
+
+### Pascal
+
+To evaluate object detection on Pascal VOC (test2007), run
+
+~~~
+python test.py ctdet --exp_id dla --dataset pascal --load_model ../models/ctdet_pascal_dla.pth --flip_test
+~~~
+
+Note that we fix the resolution during testing.
+And you can change to other network architectures and resolutions by specifying `--arch` and `--input_res 512`.
+
+### KITTI
+
+To evaluate the kitti dataset, first compile the evaluation tool (from [here](https://github.com/prclibo/kitti_eval)):
+
+~~~
+cd CenterNet_ROOT/src/tools/kitti_eval
+g++ -o evaluate_object_3d_offline evaluate_object_3d_offline.cpp -O3
+~~~
+
+Then run the evaluation with pretrained model:
+
+~~~
+python test.py ddd --exp_id 3dop --dataset kitti --kitti_split 3dop --load_model ../models/ddd_3dop.pth
+~~~
+
+to evaluate the 3DOP split. For the subcnn split, change `--kitti_split` to `subcnn` and load the corresponding models.
+Note that test time augmentation is not trivially applicable for 3D orientation.
+
+## Training
+
+We have packed all the training scripts in the [experiments](../experiments) folder.
+The experiment names are correspond to the model name in the [model zoo](MODEL_ZOO.md).
+The number of GPUs for each experiments can be found in the scripts and the model zoo.
+In the case that you don't have 8 GPUs, you can follow the [linear learning rate rule](https://arxiv.org/abs/1706.02677) to scale the learning rate as batch size.
+For example, to train COCO object detection with dla on 2 GPUs, run
+
+~~~
+python main.py ctdet --exp_id coco_dla --batch_size 32 --master_batch 15 --lr 1.25e-4 --gpus 0,1
+~~~
+
+The default learning rate is `1.25e-4` for batch size `32` (on 2 GPUs).
+By default, pytorch evenly splits the total batch size to each GPUs.
+`--master_batch` allows using different batchsize for the master GPU, which usually costs more memory than other GPUs.
+If it encounters GPU memory out, using slightly less batch size (e.g., `112` of `128`) with the same learning is fine.
+
+If the training is terminated before finishing, you can use the same commond with `--resume` to resume training. It will found the lastest model with the same `exp_id`.
+
+Our HourglassNet model is finetuned from the pretrained [ExtremeNet model](https://drive.google.com/file/d/1omiOUjWCrFbTJREypuZaODu0bOlF_7Fg/view?usp=sharing) (from the [ExtremeNet repo](https://github.com/xingyizhou/ExtremeNet)).
+You will need to download the model, run `python convert_hourglass_weight.py` to convert the model format, and load the model for training (see the [script](../experiments/ctdet_coco_hg.sh)).
diff --git a/models/CenterNet/readme/INSTALL.md b/models/CenterNet/readme/INSTALL.md
new file mode 100644
index 0000000..8798cde
--- /dev/null
+++ b/models/CenterNet/readme/INSTALL.md
@@ -0,0 +1,74 @@
+# Installation
+
+
+The code was tested on Ubuntu 16.04, with [Anaconda](https://www.anaconda.com/download) Python 3.6 and [PyTorch]((http://pytorch.org/)) v0.4.1. NVIDIA GPUs are needed for both training and testing.
+After install Anaconda:
+
+0. [Optional but recommended] create a new conda environment.
+
+ ~~~
+ conda create --name CenterNet python=3.6
+ ~~~
+ And activate the environment.
+
+ ~~~
+ conda activate CenterNet
+ ~~~
+
+1. Install pytorch0.4.1:
+
+ ~~~
+ conda install pytorch=0.4.1 torchvision -c pytorch
+ ~~~
+
+ And disable cudnn batch normalization(Due to [this issue](https://github.com/xingyizhou/pytorch-pose-hg-3d/issues/16)).
+
+ ~~~
+ # PYTORCH=/path/to/pytorch # usually ~/anaconda3/envs/CenterNet/lib/python3.6/site-packages/
+ # for pytorch v0.4.0
+ sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
+ # for pytorch v0.4.1
+ sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
+ ~~~
+
+ For other pytorch version, you can manually open `torch/nn/functional.py` and find the line with `torch.batch_norm` and replace the `torch.backends.cudnn.enabled` with `False`. We observed slight worse training results without doing so.
+
+2. Install [COCOAPI](https://github.com/cocodataset/cocoapi):
+
+ ~~~
+ # COCOAPI=/path/to/clone/cocoapi
+ git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
+ cd $COCOAPI/PythonAPI
+ make
+ python setup.py install --user
+ ~~~
+
+3. Clone this repo:
+
+ ~~~
+ CenterNet_ROOT=/path/to/clone/CenterNet
+ git clone https://github.com/xingyizhou/CenterNet $CenterNet_ROOT
+ ~~~
+
+
+4. Install the requirements
+
+ ~~~
+ pip install -r requirements.txt
+ ~~~
+
+
+5. Compile deformable convolutional (from [DCNv2](https://github.com/CharlesShang/DCNv2/tree/pytorch_0.4)).
+
+ ~~~
+ cd $CenterNet_ROOT/src/lib/models/networks/DCNv2
+ ./make.sh
+ ~~~
+6. [Optional, only required if you are using extremenet or multi-scale testing] Compile NMS if your want to use multi-scale testing or test ExtremeNet.
+
+ ~~~
+ cd $CenterNet_ROOT/src/lib/external
+ make
+ ~~~
+
+7. Download pertained models for [detection]() or [pose estimation]() and move them to `$CenterNet_ROOT/models/`. More models can be found in [Model zoo](MODEL_ZOO.md).
diff --git a/models/CenterNet/readme/MODEL_ZOO.md b/models/CenterNet/readme/MODEL_ZOO.md
new file mode 100644
index 0000000..b290d0f
--- /dev/null
+++ b/models/CenterNet/readme/MODEL_ZOO.md
@@ -0,0 +1,89 @@
+# MODEL ZOO
+
+### Common settings and notes
+
+- The experiments are run with pytorch 0.4.1, CUDA 9.0, and CUDNN 7.1.
+- Training times are measured on our servers with 8 TITAN V GPUs (12 GB Memeory).
+- Testing times are measured on our local machine with TITAN Xp GPU.
+- The models can be downloaded directly from [Google drive](https://drive.google.com/open?id=1px-Xg7jXSC79QqgsD1AAGJQkuf5m0zh_).
+
+## Object Detection
+
+
+### COCO
+
+| Model | GPUs |Train time(h)| Test time (ms) | AP | Download |
+|--------------------------|------|-------------|----------------|--------------------|-----------|
+|[ctdet\_coco\_hg](../experiments/ctdet_coco_hg.sh) | 5 |109 | 71 / 129 / 674 | 40.3 / 42.2 / 45.1 | [model](https://drive.google.com/open?id=1cNyDmyorOduMRsgXoUnuyUiF6tZNFxaG) |
+|[ctdet\_coco\_dla\_1x](../experiments/ctdet_coco_dla_1x.sh) | 8 | 57 | 19 / 36 / 248 | 36.3 / 38.2 / 40.7 | [model](https://drive.google.com/open?id=1r89_KNXyDyvUp8NggduG9uKQTMU2DsK_) |
+|[ctdet\_coco\_dla\_2x](../experiments/ctdet_coco_dla_2x.sh) | 8 | 92 | 19 / 36 / 248 | 37.4 / 39.2 / 41.7 | [model](https://drive.google.com/open?id=1pl_-ael8wERdUREEnaIfqOV_VF2bEVRT) |
+|[ctdet\_coco\_resdcn101](../experiments/ctdet_coco_resdcn101.sh)| 8 | 65 | 22 / 40 / 259 | 34.6 / 36.2 / 39.3 | [model](https://drive.google.com/open?id=1bTJCbAc1szA9lWU-fvVw52lqR3U2TTry) |
+|[ctdet\_coco\_resdcn18](../experiments/ctdet_coco_resdcn18.sh) | 4 | 28 | 7 / 14 / 81 | 28.1 / 30.0 / 33.2 | [model](https://drive.google.com/open?id=1b-_sjq1Pe_dVxt5SeFmoadMfiPTPZqpz) |
+|[exdet\_coco\_hg](../experiments/exdet_coco_hg.sh) | 5 |215 | 134 / 246/1340 | 35.8 / 39.8 / 42.4 | [model](https://drive.google.com/open?id=1-5bT5ZF8bXriJ-wAvOjJFrBLvZV2-mlV) |
+|[exdet\_coco\_dla](../experiments/exdet_coco_dla.sh) | 8 |133 | 51 / 90 / 481 | 33.0 / 36.5 / 38.5 | [model](https://drive.google.com/open?id=1PFcEqN0KjFuq9XaqzB7TkVD3pvXZx04e) |
+
+#### Notes
+
+- All models are trained on COCO train 2017 and evaluated on val 2017.
+- We show test time and AP with no augmentation / flip augmentation / multi scale (0.5, 0.75, 1, 1.25, 1.5) augmentation.
+- Results on COCO test-dev can be found in the paper or add `--trainval` for `test.py`.
+- exdet is our re-implementation of [ExtremeNet](https://github.com/xingyizhou/ExtremeNet). The testing does not include edge aggregation.
+- For dla and resnets, `1x` means the training schedule that train 140 epochs with learning rate dropped 10 times at the 90 and 120 epoch (following [SimpleBaseline](https://github.com/Microsoft/human-pose-estimation.pytorch)). `2x` means train 230 epochs with learning rate dropped 10 times at the 180 and 210 epoch. The training schedules are **not** carefully investigated.
+- The hourglass trained schedule follows [ExtremeNet](https://github.com/xingyizhou/ExtremeNet): trains 50 epochs (approximately 250000 iterations in batch size 24) and drops learning rate at the 40 epoch.
+- Testing time include network forwarding time, decoding time, and nms time (for ExtremeNet).
+- We observed up to 0.4 AP performance jitter due to randomness in training.
+
+### Pascal VOC
+
+| Model |GPUs| Train time (h)| Test time (ms) | mAP | Download |
+|---------------------------------|----|---------------|----------------|------|-----------|
+|[ctdet\_pascal\_dla\_384](../experiments/ctdet_pascal_dla_384.sh) | 1 |15 | 20 | 79.3 | [model](https://drive.google.com/open?id=1IC3FZkxAQHm2rxoIGmS4YluYpZxwYkJf) |
+|[ctdet\_pascal\_dla\_512](../experiments/ctdet_pascal_dla_512.sh) | 2 |15 | 30 | 80.7 | [model](https://drive.google.com/open?id=1jIfK9EyqzNcupxGsp3YRnEiewrIG4_Ma) |
+|[ctdet\_pascal\_resdcn18\_384](../experiments/ctdet_pascal_resdcn18_384.sh) | 1 |3 | 7 | 72.6 | [model](https://drive.google.com/open?id=1Kq27D1uoPZK42j2alDWmCGyqRU2ob1BX) |
+|[ctdet\_pascal\_resdcn18\_512](../experiments/ctdet_pascal_resdcn18_512.sh) | 1 |5 | 10 | 75.7 | [model](https://drive.google.com/open?id=1MRUJTTJ4-ZDN0Y-zQOqQBqjrQMcXFzet) |
+|[ctdet\_pascal\_resdcn101\_384](../experiments/ctdet_pascal_resdcn101_384.sh)| 2 |7 | 22 | 77.1 | [model](https://drive.google.com/open?id=11YXE04zILuXA5-kaYQEEg0ljNKBe6GPO) |
+|[ctdet\_pascal\_resdcn101\_512](../experiments/ctdet_pascal_resdcn101_512.sh)| 4 |7 | 33 | 78.7 | [model](https://drive.google.com/open?id=1xhEf-a_y2Di6YdyPpCIj0-kVFjQvDf9N) |
+
+#### Notes
+- All models are trained on trainval 07+12 and tested on test 2007.
+- Flip test is used by default.
+- Training schedule: train for 70 epochs with learning rate dropped 10 times at the 45 and 60 epoch.
+- We observed up to 1 mAP performance jitter due to randomness in training.
+
+## Human pose estimation
+
+### COCO
+
+| Model | GPUs |Train time(h)| Test time (ms) | AP | Download |
+|--------------------------|------|-------------|----------------|-------------|-----------|
+|[multi\_pose\_hg_1x](../experiments/multi_pose_hg_1x.sh) | 5 |62 | 151 | 58.7 | [model](https://drive.google.com/open?id=1HBB5KRaSj-m-vtpGESm7_3evNP5Y84RS) |
+|[multi\_pose\_hg_3x](../experiments/multi_pose_hg_3x.sh) | 5 |188 | 151 | 64.0 | [model](https://drive.google.com/open?id=1n6EvwhTbz7LglVXXlL9irJia7YuakHdB) |
+|[multi\_pose\_dla_1x](../experiments/multi_pose_dla_1x.sh) | 8 |30 | 44 | 54.7 | [model](https://drive.google.com/open?id=1VeiRtuXfCbmhQNGV-XWL6elUzpuWN-4K) |
+|[multi\_pose\_dla_3x](../experiments/multi_pose_dla_3x.sh) | 8 |70 | 44 | 58.9 | [model](https://drive.google.com/open?id=1PO1Ax_GDtjiemEmDVD7oPWwqQkUu28PI) |
+
+#### Notes
+- All models are trained on keypoint train 2017 images which contains at least one human with keypoint annotations (64115 images).
+- The evaluation is done on COCO keypoint val 2017 (5000 images).
+- Flip test is used by default.
+- The models are fine-tuned from the corresponding center point detection models.
+- Dla training schedule: `1x`: train for 140 epochs with learning rate dropped 10 times at the 90 and 120 epoch.`3x`: train for 320 epochs with learning rate dropped 10 times at the 270 and 300 epoch.
+- Hourglass training schedule: `1x`: train for 50 epochs with learning rate dropped 10 times at the 40 epoch.`3x`: train for 150 epochs with learning rate dropped 10 times at the 130 epoch.
+
+## 3D bounding box detection
+
+#### Notes
+- The 3dop split is from [3DOP](https://papers.nips.cc/paper/5644-3d-object-proposals-for-accurate-object-class-detection) and the suborn split is from [SubCNN](https://github.com/tanshen/SubCNN).
+- No augmentation is used in testing.
+- The models are trained for 70 epochs with learning rate dropped at the 45 and 60 epoch.
+
+### KITTI 3DOP split
+
+|Model |GPUs|Train time|Test time|AP-E|AP-M|AP-H|AOS-E|AOS-M|AOS-H|BEV-E|BEV-M|BEV-H| Download |
+|------------|----|----------|---------|----|----|----|-----|-----|-----|-----|-----|-----|----------|
+|[ddd_3dop](../experiments/ddd_3dop.sh)|2 | 7h | 31ms |96.9|87.8|79.2|93.9 |84.3 |75.7 |34.0 |30.5 |26.8 | [model](https://drive.google.com/open?id=1znsM6E-aVTkATreDuUVxoU0ajL1az8rz)|
+
+### KITTI SubCNN split
+
+|Model |GPUs|Train time|Test time|AP-E|AP-M|AP-H|AOS-E|AOS-M|AOS-H|BEV-E|BEV-M|BEV-H| Download |
+|------------|----|----------|---------|----|----|----|-----|-----|-----|-----|-----|-----|----------|
+|[ddd_sub](../experiments/ddd_sub.sh) |2 | 7h | 31ms |89.6|79.8|70.3|85.7 |75.2 |65.9 |34.9 |27.7 |26.4 | [model](https://drive.google.com/open?id=15XuJxTxCBnA8O37M_ghjppnWmVnjC0Hp)|
\ No newline at end of file
diff --git a/models/CenterNet/readme/det1.png b/models/CenterNet/readme/det1.png
new file mode 100644
index 0000000..f85faab
Binary files /dev/null and b/models/CenterNet/readme/det1.png differ
diff --git a/models/CenterNet/readme/det2.png b/models/CenterNet/readme/det2.png
new file mode 100644
index 0000000..d88445e
Binary files /dev/null and b/models/CenterNet/readme/det2.png differ
diff --git a/models/CenterNet/readme/fig2.png b/models/CenterNet/readme/fig2.png
new file mode 100644
index 0000000..6e0eb64
Binary files /dev/null and b/models/CenterNet/readme/fig2.png differ
diff --git a/models/CenterNet/readme/pose1.png b/models/CenterNet/readme/pose1.png
new file mode 100644
index 0000000..f9f832b
Binary files /dev/null and b/models/CenterNet/readme/pose1.png differ
diff --git a/models/CenterNet/readme/pose2.png b/models/CenterNet/readme/pose2.png
new file mode 100644
index 0000000..386def3
Binary files /dev/null and b/models/CenterNet/readme/pose2.png differ
diff --git a/models/CenterNet/readme/pose3.png b/models/CenterNet/readme/pose3.png
new file mode 100644
index 0000000..97280ef
Binary files /dev/null and b/models/CenterNet/readme/pose3.png differ
diff --git a/models/CenterNet/requirements.txt b/models/CenterNet/requirements.txt
new file mode 100644
index 0000000..d18aef0
--- /dev/null
+++ b/models/CenterNet/requirements.txt
@@ -0,0 +1,7 @@
+opencv-python
+Cython
+numba
+progress
+matplotlib
+easydict
+scipy
diff --git a/models/CenterNet/src/_init_paths.py b/models/CenterNet/src/_init_paths.py
new file mode 100644
index 0000000..db11e08
--- /dev/null
+++ b/models/CenterNet/src/_init_paths.py
@@ -0,0 +1,12 @@
+import os.path as osp
+import sys
+
+def add_path(path):
+ if path not in sys.path:
+ sys.path.insert(0, path)
+
+this_dir = osp.dirname(__file__)
+
+# Add lib to PYTHONPATH
+lib_path = osp.join(this_dir, 'lib')
+add_path(lib_path)
diff --git a/models/CenterNet/src/demo.py b/models/CenterNet/src/demo.py
new file mode 100644
index 0000000..02accbc
--- /dev/null
+++ b/models/CenterNet/src/demo.py
@@ -0,0 +1,58 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import _init_paths
+
+import os
+import cv2
+
+from opts import opts
+from detectors.detector_factory import detector_factory
+
+image_ext = ['jpg', 'jpeg', 'png', 'webp']
+video_ext = ['mp4', 'mov', 'avi', 'mkv']
+time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
+
+def demo(opt):
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
+ opt.debug = max(opt.debug, 1)
+ Detector = detector_factory[opt.task]
+ detector = Detector(opt)
+
+ if opt.demo == 'webcam' or \
+ opt.demo[opt.demo.rfind('.') + 1:].lower() in video_ext:
+ cam = cv2.VideoCapture(0 if opt.demo == 'webcam' else opt.demo)
+ detector.pause = False
+ while True:
+ _, img = cam.read()
+ cv2.imshow('input', img)
+ ret = detector.run(img)
+ time_str = ''
+ for stat in time_stats:
+ time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat])
+ print(time_str)
+ if cv2.waitKey(1) == 27:
+ return # esc to quit
+ else:
+ if os.path.isdir(opt.demo):
+ image_names = []
+ ls = os.listdir(opt.demo)
+ for file_name in sorted(ls):
+ ext = file_name[file_name.rfind('.') + 1:].lower()
+ if ext in image_ext:
+ image_names.append(os.path.join(opt.demo, file_name))
+ else:
+ image_names = [opt.demo]
+
+ for (image_name) in image_names:
+ ret = detector.run(image_name)
+ time_str = ''
+ for stat in time_stats:
+ time_str = time_str + '{} {:.3f}s |'.format(stat, ret[stat])
+ print(time_str)
+if __name__ == '__main__':
+ opt = opts().init()
+ print(opt)
+
+ demo(opt)
diff --git a/models/CenterNet/src/main.py b/models/CenterNet/src/main.py
new file mode 100755
index 0000000..9749bd1
--- /dev/null
+++ b/models/CenterNet/src/main.py
@@ -0,0 +1,103 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import _init_paths
+
+import os
+
+import torch
+import torch.utils.data
+from opts import opts
+from models.model import create_model, load_model, save_model
+from models.data_parallel import DataParallel
+from logger import Logger
+from datasets.dataset_factory import get_dataset
+from trains.train_factory import train_factory
+
+
+def main(opt):
+ torch.manual_seed(opt.seed)
+ torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test
+ Dataset = get_dataset(opt.dataset, opt.task)
+ opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
+
+ logger = Logger(opt)
+
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
+ opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')
+
+ print('Creating model...')
+ model = create_model(opt.arch, opt.heads, opt.head_conv)
+ optimizer = torch.optim.Adam(model.parameters(), opt.lr)
+ start_epoch = 0
+ if opt.load_model != '':
+ model, optimizer, start_epoch = load_model(
+ model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step)
+
+ Trainer = train_factory[opt.task]
+ trainer = Trainer(opt, model, optimizer)
+ trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device)
+
+ print('Setting up data...')
+ val_loader = torch.utils.data.DataLoader(
+ Dataset(opt, 'val'),
+ batch_size=1,
+ shuffle=False,
+ num_workers=1,
+ pin_memory=True
+ )
+
+ if opt.test:
+ _, preds = trainer.val(0, val_loader)
+ val_loader.dataset.run_eval(preds, opt.save_dir)
+ return
+
+ train_loader = torch.utils.data.DataLoader(
+ Dataset(opt, 'train'),
+ batch_size=opt.batch_size,
+ shuffle=True,
+ num_workers=opt.num_workers,
+ pin_memory=True,
+ drop_last=True
+ )
+
+ print('Starting training...')
+ best = 1e10
+ for epoch in range(start_epoch + 1, opt.num_epochs + 1):
+ mark = epoch if opt.save_all else 'last'
+ log_dict_train, _ = trainer.train(epoch, train_loader)
+ logger.write('epoch: {} |'.format(epoch))
+ for k, v in log_dict_train.items():
+ logger.scalar_summary('train_{}'.format(k), v, epoch)
+ logger.write('{} {:8f} | '.format(k, v))
+ if opt.val_intervals > 0 and epoch % opt.val_intervals == 0:
+ print("Saved model to: ", os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)))
+ save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)),
+ epoch, model, optimizer)
+ with torch.no_grad():
+ log_dict_val, preds = trainer.val(epoch, val_loader)
+ for k, v in log_dict_val.items():
+ logger.scalar_summary('val_{}'.format(k), v, epoch)
+ logger.write('{} {:8f} | '.format(k, v))
+ if log_dict_val[opt.metric] < best:
+ best = log_dict_val[opt.metric]
+ print("Saved model to: ", os.path.join(opt.save_dir, f'model_best_e-{epoch}.pth'))
+ save_model(os.path.join(opt.save_dir, f'model_best_e-{epoch}.pth'),
+ epoch, model)
+ else:
+ save_model(os.path.join(opt.save_dir, 'model_last.pth'),
+ epoch, model, optimizer)
+ logger.write('\n')
+ if epoch in opt.lr_step:
+ save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
+ epoch, model, optimizer)
+ lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
+ print('Drop LR to', lr)
+ for param_group in optimizer.param_groups:
+ param_group['lr'] = lr
+ logger.close()
+
+if __name__ == '__main__':
+ opt = opts().parse()
+ main(opt)
\ No newline at end of file
diff --git a/models/CenterNet/src/test.py b/models/CenterNet/src/test.py
new file mode 100755
index 0000000..1d08044
--- /dev/null
+++ b/models/CenterNet/src/test.py
@@ -0,0 +1,126 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import _init_paths
+
+import os
+import json
+import cv2
+import numpy as np
+import time
+from progress.bar import Bar
+import torch
+
+from external.nms import soft_nms
+from opts import opts
+from logger import Logger
+from utils.utils import AverageMeter
+from datasets.dataset_factory import dataset_factory
+from detectors.detector_factory import detector_factory
+
+class PrefetchDataset(torch.utils.data.Dataset):
+ def __init__(self, opt, dataset, pre_process_func):
+ self.images = dataset.images
+ self.load_image_func = dataset.coco.loadImgs
+ self.img_dir = dataset.img_dir
+ self.pre_process_func = pre_process_func
+ self.opt = opt
+
+ def __getitem__(self, index):
+ img_id = self.images[index]
+ img_info = self.load_image_func(ids=[img_id])[0]
+ img_path = os.path.join(self.img_dir, img_info['file_name'])
+ image = cv2.imread(img_path)
+ images, meta = {}, {}
+ for scale in opt.test_scales:
+ if opt.task == 'ddd':
+ images[scale], meta[scale] = self.pre_process_func(
+ image, scale, img_info['calib'])
+ else:
+ images[scale], meta[scale] = self.pre_process_func(image, scale)
+ return img_id, {'images': images, 'image': image, 'meta': meta}
+
+ def __len__(self):
+ return len(self.images)
+
+def prefetch_test(opt):
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
+
+ Dataset = dataset_factory[opt.dataset]
+ opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
+ print(opt)
+ Logger(opt)
+ Detector = detector_factory[opt.task]
+
+ split = 'val' if not opt.trainval else 'test'
+ dataset = Dataset(opt, split)
+ detector = Detector(opt)
+
+ data_loader = torch.utils.data.DataLoader(
+ PrefetchDataset(opt, dataset, detector.pre_process),
+ batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
+
+ results = {}
+ num_iters = len(dataset)
+ bar = Bar('{}'.format(opt.exp_id), max=num_iters)
+ time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
+ avg_time_stats = {t: AverageMeter() for t in time_stats}
+ for ind, (img_id, pre_processed_images) in enumerate(data_loader):
+ ret = detector.run(pre_processed_images)
+ results[img_id.numpy().astype(np.int32)[0]] = ret['results']
+ Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
+ ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
+ for t in avg_time_stats:
+ avg_time_stats[t].update(ret[t])
+ Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format(
+ t, tm = avg_time_stats[t])
+ bar.next()
+ bar.finish()
+ dataset.run_eval(results, opt.save_dir)
+
+def test(opt):
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
+
+ Dataset = dataset_factory[opt.dataset]
+ opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
+ print(opt)
+ Logger(opt)
+ Detector = detector_factory[opt.task]
+
+ split = 'val' if not opt.trainval else 'test'
+ dataset = Dataset(opt, split)
+ detector = Detector(opt)
+
+ results = {}
+ num_iters = len(dataset)
+ bar = Bar('{}'.format(opt.exp_id), max=num_iters)
+ time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
+ avg_time_stats = {t: AverageMeter() for t in time_stats}
+ for ind in range(num_iters):
+ img_id = dataset.images[ind]
+ img_info = dataset.coco.loadImgs(ids=[img_id])[0]
+ img_path = os.path.join(dataset.img_dir, img_info['file_name'])
+
+ if opt.task == 'ddd':
+ ret = detector.run(img_path, img_info['calib'])
+ else:
+ ret = detector.run(img_path)
+
+ results[img_id] = ret['results']
+
+ Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
+ ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
+ for t in avg_time_stats:
+ avg_time_stats[t].update(ret[t])
+ Bar.suffix = Bar.suffix + '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
+ bar.next()
+ bar.finish()
+ dataset.run_eval(results, opt.save_dir)
+
+if __name__ == '__main__':
+ opt = opts().parse()
+ if opt.not_prefetch_test:
+ test(opt)
+ else:
+ prefetch_test(opt)
\ No newline at end of file
diff --git a/models/CenterNet/src/tools/_init_paths.py b/models/CenterNet/src/tools/_init_paths.py
new file mode 100644
index 0000000..aca4fdb
--- /dev/null
+++ b/models/CenterNet/src/tools/_init_paths.py
@@ -0,0 +1,12 @@
+import os.path as osp
+import sys
+
+def add_path(path):
+ if path not in sys.path:
+ sys.path.insert(0, path)
+
+this_dir = osp.dirname(__file__)
+
+# Add lib to PYTHONPATH
+lib_path = osp.join(this_dir, '../lib')
+add_path(lib_path)
diff --git a/models/CenterNet/src/tools/calc_coco_overlap.py b/models/CenterNet/src/tools/calc_coco_overlap.py
new file mode 100644
index 0000000..a8411e5
--- /dev/null
+++ b/models/CenterNet/src/tools/calc_coco_overlap.py
@@ -0,0 +1,322 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import pycocotools.coco as COCO
+import cv2
+import numpy as np
+from pycocotools import mask as maskUtils
+ANN_PATH = '../../data/coco/annotations/'
+IMG_PATH = '../../data/coco/'
+ANN_FILES = {'train': 'instances_train2017.json',
+ 'val': 'instances_val2017.json'}
+DEBUG = False
+RESIZE = True
+
+class_name = [
+ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
+ 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
+ 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
+ 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
+ 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
+ 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
+ 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass',
+ 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
+ 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
+ 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
+ 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
+ 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
+ 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
+]
+
+def iou(box1, box2):
+ area1 = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1)
+ area2 = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1)
+ inter = max(min(box1[2], box2[2]) - max(box1[0], box2[0]) + 1, 0) * \
+ max(min(box1[3], box2[3]) - max(box1[1], box2[1]) + 1, 0)
+ iou = 1.0 * inter / (area1 + area2 - inter)
+ return iou
+
+def generate_anchors(
+ stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)
+):
+ """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
+ are centered on stride / 2, have (approximate) sqrt areas of the specified
+ sizes, and aspect ratios as given.
+ """
+ return _generate_anchors(
+ stride,
+ np.array(sizes, dtype=np.float) / stride,
+ np.array(aspect_ratios, dtype=np.float)
+ )
+
+
+def _generate_anchors(base_size, scales, aspect_ratios):
+ """Generate anchor (reference) windows by enumerating aspect ratios X
+ scales wrt a reference (0, 0, base_size - 1, base_size - 1) window.
+ """
+ anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1
+ anchors = _ratio_enum(anchor, aspect_ratios)
+ anchors = np.vstack(
+ [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])]
+ )
+ return anchors
+
+
+def _whctrs(anchor):
+ """Return width, height, x center, and y center for an anchor (window)."""
+ w = anchor[2] - anchor[0] + 1
+ h = anchor[3] - anchor[1] + 1
+ x_ctr = anchor[0] + 0.5 * (w - 1)
+ y_ctr = anchor[1] + 0.5 * (h - 1)
+ return w, h, x_ctr, y_ctr
+
+
+def _mkanchors(ws, hs, x_ctr, y_ctr):
+ """Given a vector of widths (ws) and heights (hs) around a center
+ (x_ctr, y_ctr), output a set of anchors (windows).
+ """
+ ws = ws[:, np.newaxis]
+ hs = hs[:, np.newaxis]
+ anchors = np.hstack(
+ (
+ x_ctr - 0.5 * (ws - 1),
+ y_ctr - 0.5 * (hs - 1),
+ x_ctr + 0.5 * (ws - 1),
+ y_ctr + 0.5 * (hs - 1)
+ )
+ )
+ return anchors
+
+
+def _ratio_enum(anchor, ratios):
+ """Enumerate a set of anchors for each aspect ratio wrt an anchor."""
+ w, h, x_ctr, y_ctr = _whctrs(anchor)
+ size = w * h
+ size_ratios = size / ratios
+ ws = np.round(np.sqrt(size_ratios))
+ hs = np.round(ws * ratios)
+ anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
+ return anchors
+
+
+def _scale_enum(anchor, scales):
+ """Enumerate a set of anchors for each scale wrt an anchor."""
+ w, h, x_ctr, y_ctr = _whctrs(anchor)
+ ws = w * scales
+ hs = h * scales
+ anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
+ return anchors
+
+
+def _coco_box_to_bbox(box):
+ bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]],
+ dtype=np.float32)
+ return bbox
+
+def count_agnostic(split):
+ coco = COCO.COCO(ANN_PATH + ANN_FILES[split])
+ images = coco.getImgIds()
+ cnt = 0
+ for img_id in images:
+ ann_ids = coco.getAnnIds(imgIds=[img_id])
+ anns = coco.loadAnns(ids=ann_ids)
+ centers = []
+ for ann in anns:
+ bbox = ann['bbox']
+ center = ((bbox[0] + bbox[2] / 2) // 4, (bbox[1] + bbox[3] / 2) // 4)
+ for c in centers:
+ if center[0] == c[0] and center[1] == c[1]:
+ cnt += 1
+ centers.append(center)
+ print('find {} collisions!'.format(cnt))
+
+
+def count(split):
+ coco = COCO.COCO(ANN_PATH + ANN_FILES[split])
+ images = coco.getImgIds()
+ cnt = 0
+ obj = 0
+ for img_id in images:
+ ann_ids = coco.getAnnIds(imgIds=[img_id])
+ anns = coco.loadAnns(ids=ann_ids)
+ centers = []
+ obj += len(anns)
+ for ann in anns:
+ if ann['iscrowd'] > 0:
+ continue
+ bbox = ann['bbox']
+ center = ((bbox[0] + bbox[2] / 2) // 4, (bbox[1] + bbox[3] / 2) // 4, ann['category_id'], bbox)
+ for c in centers:
+ if center[0] == c[0] and center[1] == c[1] and center[2] == c[2] and \
+ iou(_coco_box_to_bbox(bbox), _coco_box_to_bbox(c[3])) < 2:# 0.5:
+ cnt += 1
+ if DEBUG:
+ file_name = coco.loadImgs(ids=[img_id])[0]['file_name']
+ img = cv2.imread('{}/{}2017/{}'.format(IMG_PATH, split, file_name))
+ x1, y1 = int(c[3][0]), int(c[3][1]),
+ x2, y2 = int(c[3][0] + c[3][2]), int(c[3][1] + c[3][3])
+ cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2, cv2.LINE_AA)
+ x1, y1 = int(center[3][0]), int(center[3][1]),
+ x2, y2 = int(center[3][0] + center[3][2]), int(center[3][1] + center[3][3])
+ cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2, cv2.LINE_AA)
+ cv2.imshow('img', img)
+ cv2.waitKey()
+ centers.append(center)
+ print('find {} collisions of {} objects!'.format(cnt, obj))
+
+def count_iou(split):
+ coco = COCO.COCO(ANN_PATH + ANN_FILES[split])
+ images = coco.getImgIds()
+ cnt = 0
+ obj = 0
+ for img_id in images:
+ ann_ids = coco.getAnnIds(imgIds=[img_id])
+ anns = coco.loadAnns(ids=ann_ids)
+ bboxes = []
+ obj += len(anns)
+ for ann in anns:
+ if ann['iscrowd'] > 0:
+ continue
+ bbox = _coco_box_to_bbox(ann['bbox']).tolist() + [ann['category_id']]
+ for b in bboxes:
+ if iou(b, bbox) > 0.5 and b[4] == bbox[4]:
+ cnt += 1
+ if DEBUG:
+ file_name = coco.loadImgs(ids=[img_id])[0]['file_name']
+ img = cv2.imread('{}/{}2017/{}'.format(IMG_PATH, split, file_name))
+ x1, y1 = int(b[0]), int(b[1]),
+ x2, y2 = int(b[2]), int(b[3])
+ cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2, cv2.LINE_AA)
+ x1, y1 = int(bbox[0]), int(bbox[1]),
+ x2, y2 = int(bbox[2]), int(bbox[3])
+ cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2, cv2.LINE_AA)
+ cv2.imshow('img', img)
+ print('cats', class_name[b[4]], class_name[bbox[4]])
+ cv2.waitKey()
+ bboxes.append(bbox)
+ print('find {} collisions of {} objects!'.format(cnt, obj))
+
+
+def count_anchor(split):
+ coco = COCO.COCO(ANN_PATH + ANN_FILES[split])
+ images = coco.getImgIds()
+ cnt = 0
+ obj = 0
+ stride = 16
+ anchor = generate_anchors().reshape(15, 2, 2)
+ miss_s, miss_m, miss_l = 0, 0, 0
+ N = len(images)
+ print(N, 'images')
+ for ind, img_id in enumerate(images):
+ if ind % 1000 == 0:
+ print(ind, N)
+ anchors = []
+ ann_ids = coco.getAnnIds(imgIds=[img_id])
+ anns = coco.loadAnns(ids=ann_ids)
+ obj += len(anns)
+ img_info = coco.loadImgs(ids=[img_id])[0]
+ h, w = img_info['height'], img_info['width']
+ if RESIZE:
+ if h > w:
+ for i in range(len(anns)):
+ anns[i]['bbox'][0] *= 800 / w
+ anns[i]['bbox'][1] *= 800 / w
+ anns[i]['bbox'][2] *= 800 / w
+ anns[i]['bbox'][3] *= 800 / w
+ h = h * 800 // w
+ w = 800
+ else:
+ for i in range(len(anns)):
+ anns[i]['bbox'][0] *= 800 / h
+ anns[i]['bbox'][1] *= 800 / h
+ anns[i]['bbox'][2] *= 800 / h
+ anns[i]['bbox'][3] *= 800 / h
+ w = w * 800 // h
+ h = 800
+ for i in range(w // stride):
+ for j in range(h // stride):
+ ct = np.array([i * stride, j * stride], dtype=np.float32).reshape(1, 1, 2)
+ anchors.append(anchor + ct)
+ anchors = np.concatenate(anchors, axis=0).reshape(-1, 4)
+ anchors[:, 2:4] = anchors[:, 2:4] - anchors[:, 0:2]
+ anchors = anchors.tolist()
+ # import pdb; pdb.set_trace()
+ g = [g['bbox'] for g in anns]
+ iscrowd = [int(o['iscrowd']) for o in anns]
+ ious = maskUtils.iou(anchors,g,iscrowd)
+ for t in range(len(g)):
+ if ious[:, t].max() < 0.5:
+ s = anns[t]['area']
+ if s < 32 ** 2:
+ miss_s += 1
+ elif s < 96 ** 2:
+ miss_m += 1
+ else:
+ miss_l += 1
+ if DEBUG:
+ file_name = coco.loadImgs(ids=[img_id])[0]['file_name']
+ img = cv2.imread('{}/{}2017/{}'.format(IMG_PATH, split, file_name))
+ if RESIZE:
+ img = cv2.resize(img, (w, h))
+ for t, gt in enumerate(g):
+ if anns[t]['iscrowd'] > 0:
+ continue
+ x1, y1, x2, y2 = _coco_box_to_bbox(gt)
+ cl = (0, 0, 255) if ious[:, t].max() < 0.5 else (0, 255, 0)
+ cv2.rectangle(img, (x1, y1), (x2, y2), cl, 2, cv2.LINE_AA)
+ for k in range(len(anchors)):
+ if ious[k, t] > 0.5:
+ x1, y1, x2, y2 = _coco_box_to_bbox(anchors[k])
+ cl = (np.array([255, 0, 0]) * ious[k, t]).astype(np.int32).tolist()
+ cv2.rectangle(img, (x1, y1), (x2, y2), cl, 1, cv2.LINE_AA)
+ cv2.imshow('img', img)
+ cv2.waitKey()
+ miss = 0
+ if len(ious) > 0:
+ miss = (ious.max(axis=0) < 0.5).sum()
+ cnt += miss
+ print('cnt, obj, ratio ', cnt, obj, cnt / obj)
+ print('s, m, l ', miss_s, miss_m, miss_l)
+ # import pdb; pdb.set_trace()
+
+
+def count_size(split):
+ coco = COCO.COCO(ANN_PATH + ANN_FILES[split])
+ images = coco.getImgIds()
+ cnt = 0
+ obj = 0
+ stride = 16
+ anchor = generate_anchors().reshape(15, 2, 2)
+ cnt_s, cnt_m, cnt_l = 0, 0, 0
+ N = len(images)
+ print(N, 'images')
+ for ind, img_id in enumerate(images):
+ anchors = []
+ ann_ids = coco.getAnnIds(imgIds=[img_id])
+ anns = coco.loadAnns(ids=ann_ids)
+ obj += len(anns)
+ img_info = coco.loadImgs(ids=[img_id])[0]
+ for t in range(len(anns)):
+ if 1:
+ s = anns[t]['area']
+ if s < 32 ** 2:
+ cnt_s += 1
+ elif s < 96 ** 2:
+ cnt_m += 1
+ else:
+ cnt_l += 1
+ cnt += 1
+ print('cnt', cnt)
+ print('s, m, l ', cnt_s, cnt_m, cnt_l)
+
+
+# count_iou('train')
+# count_anchor('train')
+# count('train')
+count_size('train')
+
+
+
+
+
diff --git a/models/CenterNet/src/tools/convert_hourglass_weight.py b/models/CenterNet/src/tools/convert_hourglass_weight.py
new file mode 100644
index 0000000..9f001b6
--- /dev/null
+++ b/models/CenterNet/src/tools/convert_hourglass_weight.py
@@ -0,0 +1,30 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+MODEL_PATH = '../../models/ExtremeNet_500000.pkl'
+OUT_PATH = '../../models/ExtremeNet_500000.pth'
+
+import torch
+state_dict = torch.load(MODEL_PATH)
+key_map = {'t_heats': 'hm_t', 'l_heats': 'hm_l', 'b_heats': 'hm_b', \
+ 'r_heats': 'hm_r', 'ct_heats': 'hm_c', \
+ 't_regrs': 'reg_t', 'l_regrs': 'reg_l', \
+ 'b_regrs': 'reg_b', 'r_regrs': 'reg_r'}
+
+out = {}
+for k in state_dict.keys():
+ changed = False
+ for m in key_map.keys():
+ if m in k:
+ if 'ct_heats' in k and m == 't_heats':
+ continue
+ new_k = k.replace(m, key_map[m])
+ out[new_k] = state_dict[k]
+ changed = True
+ print('replace {} to {}'.format(k, new_k))
+ if not changed:
+ out[k] = state_dict[k]
+data = {'epoch': 0,
+ 'state_dict': out}
+torch.save(data, OUT_PATH)
diff --git a/models/CenterNet/src/tools/convert_kitti_to_coco.py b/models/CenterNet/src/tools/convert_kitti_to_coco.py
new file mode 100644
index 0000000..6ad4dff
--- /dev/null
+++ b/models/CenterNet/src/tools/convert_kitti_to_coco.py
@@ -0,0 +1,152 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import pickle
+import json
+import numpy as np
+import cv2
+DATA_PATH = '../../data/kitti/'
+DEBUG = False
+# VAL_PATH = DATA_PATH + 'training/label_val/'
+import os
+SPLITS = ['3dop', 'subcnn']
+import _init_paths
+from utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y
+from utils.ddd_utils import draw_box_3d, unproject_2d_to_3d
+
+'''
+#Values Name Description
+----------------------------------------------------------------------------
+ 1 type Describes the type of object: 'Car', 'Van', 'Truck',
+ 'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
+ 'Misc' or 'DontCare'
+ 1 truncated Float from 0 (non-truncated) to 1 (truncated), where
+ truncated refers to the object leaving image boundaries
+ 1 occluded Integer (0,1,2,3) indicating occlusion state:
+ 0 = fully visible, 1 = partly occluded
+ 2 = largely occluded, 3 = unknown
+ 1 alpha Observation angle of object, ranging [-pi..pi]
+ 4 bbox 2D bounding box of object in the image (0-based index):
+ contains left, top, right, bottom pixel coordinates
+ 3 dimensions 3D object dimensions: height, width, length (in meters)
+ 3 location 3D object location x,y,z in camera coordinates (in meters)
+ 1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
+ 1 score Only for results: Float, indicating confidence in
+ detection, needed for p/r curves, higher is better.
+'''
+
+def _bbox_to_coco_bbox(bbox):
+ return [(bbox[0]), (bbox[1]),
+ (bbox[2] - bbox[0]), (bbox[3] - bbox[1])]
+
+def read_clib(calib_path):
+ f = open(calib_path, 'r')
+ for i, line in enumerate(f):
+ if i == 2:
+ calib = np.array(line[:-1].split(' ')[1:], dtype=np.float32)
+ calib = calib.reshape(3, 4)
+ return calib
+
+cats = ['Pedestrian', 'Car', 'Cyclist', 'Van', 'Truck', 'Person_sitting',
+ 'Tram', 'Misc', 'DontCare']
+cat_ids = {cat: i + 1 for i, cat in enumerate(cats)}
+# cat_info = [{"name": "pedestrian", "id": 1}, {"name": "vehicle", "id": 2}]
+F = 721
+H = 384 # 375
+W = 1248 # 1242
+EXT = [45.75, -0.34, 0.005]
+CALIB = np.array([[F, 0, W / 2, EXT[0]], [0, F, H / 2, EXT[1]],
+ [0, 0, 1, EXT[2]]], dtype=np.float32)
+
+cat_info = []
+for i, cat in enumerate(cats):
+ cat_info.append({'name': cat, 'id': i + 1})
+
+for SPLIT in SPLITS:
+ image_set_path = DATA_PATH + 'ImageSets_{}/'.format(SPLIT)
+ ann_dir = DATA_PATH + 'training/label_2/'
+ calib_dir = DATA_PATH + '{}/calib/'
+ splits = ['train', 'val']
+ # splits = ['trainval', 'test']
+ calib_type = {'train': 'training', 'val': 'training', 'trainval': 'training',
+ 'test': 'testing'}
+
+ for split in splits:
+ ret = {'images': [], 'annotations': [], "categories": cat_info}
+ image_set = open(image_set_path + '{}.txt'.format(split), 'r')
+ image_to_id = {}
+ for line in image_set:
+ if line[-1] == '\n':
+ line = line[:-1]
+ image_id = int(line)
+ calib_path = calib_dir.format(calib_type[split]) + '{}.txt'.format(line)
+ calib = read_clib(calib_path)
+ image_info = {'file_name': '{}.png'.format(line),
+ 'id': int(image_id),
+ 'calib': calib.tolist()}
+ ret['images'].append(image_info)
+ if split == 'test':
+ continue
+ ann_path = ann_dir + '{}.txt'.format(line)
+ # if split == 'val':
+ # os.system('cp {} {}/'.format(ann_path, VAL_PATH))
+ anns = open(ann_path, 'r')
+
+ if DEBUG:
+ image = cv2.imread(
+ DATA_PATH + 'images/trainval/' + image_info['file_name'])
+
+ for ann_ind, txt in enumerate(anns):
+ tmp = txt[:-1].split(' ')
+ cat_id = cat_ids[tmp[0]]
+ truncated = int(float(tmp[1]))
+ occluded = int(tmp[2])
+ alpha = float(tmp[3])
+ bbox = [float(tmp[4]), float(tmp[5]), float(tmp[6]), float(tmp[7])]
+ dim = [float(tmp[8]), float(tmp[9]), float(tmp[10])]
+ location = [float(tmp[11]), float(tmp[12]), float(tmp[13])]
+ rotation_y = float(tmp[14])
+
+ ann = {'image_id': image_id,
+ 'id': int(len(ret['annotations']) + 1),
+ 'category_id': cat_id,
+ 'dim': dim,
+ 'bbox': _bbox_to_coco_bbox(bbox),
+ 'depth': location[2],
+ 'alpha': alpha,
+ 'truncated': truncated,
+ 'occluded': occluded,
+ 'location': location,
+ 'rotation_y': rotation_y}
+ ret['annotations'].append(ann)
+ if DEBUG and tmp[0] != 'DontCare':
+ box_3d = compute_box_3d(dim, location, rotation_y)
+ box_2d = project_to_image(box_3d, calib)
+ # print('box_2d', box_2d)
+ image = draw_box_3d(image, box_2d)
+ x = (bbox[0] + bbox[2]) / 2
+ '''
+ print('rot_y, alpha2rot_y, dlt', tmp[0],
+ rotation_y, alpha2rot_y(alpha, x, calib[0, 2], calib[0, 0]),
+ np.cos(
+ rotation_y - alpha2rot_y(alpha, x, calib[0, 2], calib[0, 0])))
+ '''
+ depth = np.array([location[2]], dtype=np.float32)
+ pt_2d = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
+ dtype=np.float32)
+ pt_3d = unproject_2d_to_3d(pt_2d, depth, calib)
+ pt_3d[1] += dim[0] / 2
+ print('pt_3d', pt_3d)
+ print('location', location)
+ if DEBUG:
+ cv2.imshow('image', image)
+ cv2.waitKey()
+
+
+ print("# images: ", len(ret['images']))
+ print("# annotations: ", len(ret['annotations']))
+ # import pdb; pdb.set_trace()
+ out_path = '{}/annotations/kitti_{}_{}.json'.format(DATA_PATH, SPLIT, split)
+ json.dump(ret, open(out_path, 'w'))
+
diff --git a/models/CenterNet/src/tools/eval_coco.py b/models/CenterNet/src/tools/eval_coco.py
new file mode 100644
index 0000000..4a7266b
--- /dev/null
+++ b/models/CenterNet/src/tools/eval_coco.py
@@ -0,0 +1,27 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import pycocotools.coco as coco
+from pycocotools.cocoeval import COCOeval
+import sys
+import cv2
+import numpy as np
+import pickle
+import os
+
+this_dir = os.path.dirname(__file__)
+ANN_PATH = this_dir + '../../data/coco/annotations/instances_val2017.json'
+print(ANN_PATH)
+if __name__ == '__main__':
+ pred_path = sys.argv[1]
+ coco = coco.COCO(ANN_PATH)
+ dets = coco.loadRes(pred_path)
+ img_ids = coco.getImgIds()
+ num_images = len(img_ids)
+ coco_eval = COCOeval(coco, dets, "bbox")
+ coco_eval.evaluate()
+ coco_eval.accumulate()
+ coco_eval.summarize()
+
+
diff --git a/models/CenterNet/src/tools/eval_coco_hp.py b/models/CenterNet/src/tools/eval_coco_hp.py
new file mode 100644
index 0000000..3711e04
--- /dev/null
+++ b/models/CenterNet/src/tools/eval_coco_hp.py
@@ -0,0 +1,30 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import pycocotools.coco as coco
+from pycocotools.cocoeval import COCOeval
+import sys
+import cv2
+import numpy as np
+import pickle
+import os
+
+this_dir = os.path.dirname(__file__)
+ANN_PATH = this_dir + '../../data/coco/annotations/person_keypoints_val2017.json'
+print(ANN_PATH)
+if __name__ == '__main__':
+ pred_path = sys.argv[1]
+ coco = coco.COCO(ANN_PATH)
+ dets = coco.loadRes(pred_path)
+ img_ids = coco.getImgIds()
+ num_images = len(img_ids)
+ coco_eval = COCOeval(coco, dets, "keypoints")
+ coco_eval.evaluate()
+ coco_eval.accumulate()
+ coco_eval.summarize()
+ coco_eval = COCOeval(coco, dets, "bbox")
+ coco_eval.evaluate()
+ coco_eval.accumulate()
+ coco_eval.summarize()
+
diff --git a/models/CenterNet/src/tools/get_kitti.sh b/models/CenterNet/src/tools/get_kitti.sh
new file mode 100644
index 0000000..8497173
--- /dev/null
+++ b/models/CenterNet/src/tools/get_kitti.sh
@@ -0,0 +1,9 @@
+mkdir kitti
+cd kitti
+wget http://www.cvlibs.net/download.php?file=data_object_image_2.zip
+wget http://www.cvlibs.net/download.php?file=data_object_label_2.zip
+wget http://www.cvlibs.net/download.php?file=data_object_calib.zip
+unzip data_object_image_2.zip
+unzip data_object_label_2.zip
+unzip data_object_calib.zip
+
diff --git a/models/CenterNet/src/tools/get_pascal_voc.sh b/models/CenterNet/src/tools/get_pascal_voc.sh
new file mode 100644
index 0000000..02d9b3c
--- /dev/null
+++ b/models/CenterNet/src/tools/get_pascal_voc.sh
@@ -0,0 +1,26 @@
+mkdir voc
+cd voc
+wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
+wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
+wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
+wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
+wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar
+tar xvf VOCtrainval_06-Nov-2007.tar
+tar xvf VOCtest_06-Nov-2007.tar
+tar xvf VOCdevkit_08-Jun-2007.tar
+tar xvf VOCtrainval_11-May-2012.tar
+tar xvf VOCdevkit_18-May-2011.tar
+rm VOCtrainval_06-Nov-2007.tar
+rm VOCtest_06-Nov-2007.tar
+rm VOCdevkit_08-Jun-2007.tar
+rm VOCtrainval_11-May-2012.tar
+rm VOCdevkit_18-May-2011.tar
+mkdir images
+cp VOCdevkit/VOC2007/JPEGImages/* images/
+cp VOCdevkit/VOC2012/JPEGImages/* images/
+wget https://storage.googleapis.com/coco-dataset/external/PASCAL_VOC.zip
+unzip PASCAL_VOC.zip
+rm PASCAL_VOC.zip
+mv PASCAL_VOC annotations/
+cd ..
+python merge_pascal_json.py
diff --git a/models/CenterNet/src/tools/kitti_eval/README.md b/models/CenterNet/src/tools/kitti_eval/README.md
new file mode 100644
index 0000000..ee07b65
--- /dev/null
+++ b/models/CenterNet/src/tools/kitti_eval/README.md
@@ -0,0 +1,22 @@
+# kitti_eval
+
+`evaluate_object_3d_offline.cpp`evaluates your KITTI detection locally on your own computer using your validation data selected from KITTI training dataset, with the following metrics:
+
+- overlap on image (AP)
+- oriented overlap on image (AOS)
+- overlap on ground-plane (AP)
+- overlap in 3D (AP)
+
+Compile `evaluate_object_3d_offline.cpp` with dependency of Boost and Linux `dirent.h` (You should already have it under most Linux).
+
+Run the evalutaion by:
+
+ ./evaluate_object_3d_offline groundtruth_dir result_dir
+
+Note that you don't have to detect over all KITTI training data. The evaluator only evaluates samples whose result files exist.
+
+
+### Updates
+
+- June, 2017:
+ * Fixed the bug of detection box filtering based on min height according to KITTI's note on 25.04.2017.
diff --git a/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d.cpp b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d.cpp
new file mode 100644
index 0000000..aa990dd
--- /dev/null
+++ b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d.cpp
@@ -0,0 +1,921 @@
+// from https://github.com/prclibo/kitti_eval
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#include
+
+#include
+#include
+
+#include
+#include
+#include
+#include
+
+#include "mail.h"
+
+BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
+
+typedef boost::geometry::model::polygon > Polygon;
+
+
+using namespace std;
+
+/*=======================================================================
+STATIC EVALUATION PARAMETERS
+=======================================================================*/
+
+// holds the number of test images on the server
+const int32_t N_TESTIMAGES = 7518;
+
+// easy, moderate and hard evaluation level
+enum DIFFICULTY{EASY=0, MODERATE=1, HARD=2};
+
+// evaluation metrics: image, ground or 3D
+enum METRIC{IMAGE=0, GROUND=1, BOX3D=2};
+
+// evaluation parameter
+const int32_t MIN_HEIGHT[3] = {40, 25, 25}; // minimum height for evaluated groundtruth/detections
+const int32_t MAX_OCCLUSION[3] = {0, 1, 2}; // maximum occlusion level of the groundtruth used for evaluation
+const double MAX_TRUNCATION[3] = {0.15, 0.3, 0.5}; // maximum truncation level of the groundtruth used for evaluation
+
+// evaluated object classes
+enum CLASSES{CAR=0, PEDESTRIAN=1, CYCLIST=2};
+const int NUM_CLASS = 3;
+
+// parameters varying per class
+vector CLASS_NAMES;
+// the minimum overlap required for 2D evaluation on the image/ground plane and 3D evaluation
+const double MIN_OVERLAP[3][3] = {{0.7, 0.5, 0.5}, {0.5, 0.25, 0.25}, {0.5, 0.25, 0.25}};
+
+// no. of recall steps that should be evaluated (discretized)
+const double N_SAMPLE_PTS = 41;
+
+
+// initialize class names
+void initGlobals () {
+ CLASS_NAMES.push_back("car");
+ CLASS_NAMES.push_back("pedestrian");
+ CLASS_NAMES.push_back("cyclist");
+}
+
+/*=======================================================================
+DATA TYPES FOR EVALUATION
+=======================================================================*/
+
+// holding data needed for precision-recall and precision-aos
+struct tPrData {
+ vector v; // detection score for computing score thresholds
+ double similarity; // orientation similarity
+ int32_t tp; // true positives
+ int32_t fp; // false positives
+ int32_t fn; // false negatives
+ tPrData () :
+ similarity(0), tp(0), fp(0), fn(0) {}
+};
+
+// holding bounding boxes for ground truth and detections
+struct tBox {
+ string type; // object type as car, pedestrian or cyclist,...
+ double x1; // left corner
+ double y1; // top corner
+ double x2; // right corner
+ double y2; // bottom corner
+ double alpha; // image orientation
+ tBox (string type, double x1,double y1,double x2,double y2,double alpha) :
+ type(type),x1(x1),y1(y1),x2(x2),y2(y2),alpha(alpha) {}
+};
+
+// holding ground truth data
+struct tGroundtruth {
+ tBox box; // object type, box, orientation
+ double truncation; // truncation 0..1
+ int32_t occlusion; // occlusion 0,1,2 (non, partly, fully)
+ double ry;
+ double t1, t2, t3;
+ double h, w, l;
+ tGroundtruth () :
+ box(tBox("invalild",-1,-1,-1,-1,-10)),truncation(-1),occlusion(-1) {}
+ tGroundtruth (tBox box,double truncation,int32_t occlusion) :
+ box(box),truncation(truncation),occlusion(occlusion) {}
+ tGroundtruth (string type,double x1,double y1,double x2,double y2,double alpha,double truncation,int32_t occlusion) :
+ box(tBox(type,x1,y1,x2,y2,alpha)),truncation(truncation),occlusion(occlusion) {}
+};
+
+// holding detection data
+struct tDetection {
+ tBox box; // object type, box, orientation
+ double thresh; // detection score
+ double ry;
+ double t1, t2, t3;
+ double h, w, l;
+ tDetection ():
+ box(tBox("invalid",-1,-1,-1,-1,-10)),thresh(-1000) {}
+ tDetection (tBox box,double thresh) :
+ box(box),thresh(thresh) {}
+ tDetection (string type,double x1,double y1,double x2,double y2,double alpha,double thresh) :
+ box(tBox(type,x1,y1,x2,y2,alpha)),thresh(thresh) {}
+};
+
+
+/*=======================================================================
+FUNCTIONS TO LOAD DETECTION AND GROUND TRUTH DATA ONCE, SAVE RESULTS
+=======================================================================*/
+vector indices;
+
+vector loadDetections(string file_name, bool &compute_aos,
+ vector &eval_image, vector &eval_ground,
+ vector &eval_3d, bool &success) {
+
+ // holds all detections (ignored detections are indicated by an index vector
+ vector detections;
+ FILE *fp = fopen(file_name.c_str(),"r");
+ if (!fp) {
+ success = false;
+ return detections;
+ }
+ while (!feof(fp)) {
+ tDetection d;
+ double trash;
+ char str[255];
+ if (fscanf(fp, "%s %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
+ str, &trash, &trash, &d.box.alpha, &d.box.x1, &d.box.y1,
+ &d.box.x2, &d.box.y2, &d.h, &d.w, &d.l, &d.t1, &d.t2, &d.t3,
+ &d.ry, &d.thresh)==16) {
+
+ // d.thresh = 1;
+ d.box.type = str;
+ detections.push_back(d);
+
+ // orientation=-10 is invalid, AOS is not evaluated if at least one orientation is invalid
+ if(d.box.alpha == -10)
+ compute_aos = false;
+
+ // a class is only evaluated if it is detected at least once
+ for (int c = 0; c < NUM_CLASS; c++) {
+ if (!strcasecmp(d.box.type.c_str(), CLASS_NAMES[c].c_str())) {
+ if (!eval_image[c] && d.box.x1 >= 0)
+ eval_image[c] = true;
+ if (!eval_ground[c] && d.t1 != -1000)
+ eval_ground[c] = true;
+ if (!eval_3d[c] && d.t2 != -1000)
+ eval_3d[c] = true;
+ break;
+ }
+ }
+ }
+ }
+ fclose(fp);
+ success = true;
+ return detections;
+}
+
+vector loadGroundtruth(string file_name,bool &success) {
+
+ // holds all ground truth (ignored ground truth is indicated by an index vector
+ vector groundtruth;
+ FILE *fp = fopen(file_name.c_str(),"r");
+ if (!fp) {
+ success = false;
+ return groundtruth;
+ }
+ while (!feof(fp)) {
+ tGroundtruth g;
+ char str[255];
+ if (fscanf(fp, "%s %lf %d %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
+ str, &g.truncation, &g.occlusion, &g.box.alpha,
+ &g.box.x1, &g.box.y1, &g.box.x2, &g.box.y2,
+ &g.h, &g.w, &g.l, &g.t1,
+ &g.t2, &g.t3, &g.ry )==15) {
+ g.box.type = str;
+ groundtruth.push_back(g);
+ }
+ }
+ fclose(fp);
+ success = true;
+ return groundtruth;
+}
+
+void saveStats (const vector &precision, const vector &aos, FILE *fp_det, FILE *fp_ori) {
+
+ // save precision to file
+ if(precision.empty())
+ return;
+ for (int32_t i=0; i
+Polygon toPolygon(const T& g) {
+ using namespace boost::numeric::ublas;
+ using namespace boost::geometry;
+ matrix mref(2, 2);
+ mref(0, 0) = cos(g.ry); mref(0, 1) = sin(g.ry);
+ mref(1, 0) = -sin(g.ry); mref(1, 1) = cos(g.ry);
+
+ static int count = 0;
+ matrix corners(2, 4);
+ double data[] = {g.l / 2, g.l / 2, -g.l / 2, -g.l / 2,
+ g.w / 2, -g.w / 2, -g.w / 2, g.w / 2};
+ std::copy(data, data + 8, corners.data().begin());
+ matrix gc = prod(mref, corners);
+ for (int i = 0; i < 4; ++i) {
+ gc(0, i) += g.t1;
+ gc(1, i) += g.t3;
+ }
+
+ double points[][2] = {{gc(0, 0), gc(1, 0)},{gc(0, 1), gc(1, 1)},{gc(0, 2), gc(1, 2)},{gc(0, 3), gc(1, 3)},{gc(0, 0), gc(1, 0)}};
+ Polygon poly;
+ append(poly, points);
+ return poly;
+}
+
+// measure overlap between bird's eye view bounding boxes, parametrized by (ry, l, w, tx, tz)
+inline double groundBoxOverlap(tDetection d, tGroundtruth g, int32_t criterion = -1) {
+ using namespace boost::geometry;
+ Polygon gp = toPolygon(g);
+ Polygon dp = toPolygon(d);
+
+ std::vector in, un;
+ intersection(gp, dp, in);
+ union_(gp, dp, un);
+
+ double inter_area = in.empty() ? 0 : area(in.front());
+ double union_area = area(un.front());
+ double o;
+ if(criterion==-1) // union
+ o = inter_area / union_area;
+ else if(criterion==0) // bbox_a
+ o = inter_area / area(dp);
+ else if(criterion==1) // bbox_b
+ o = inter_area / area(gp);
+
+ return o;
+}
+
+// measure overlap between 3D bounding boxes, parametrized by (ry, h, w, l, tx, ty, tz)
+inline double box3DOverlap(tDetection d, tGroundtruth g, int32_t criterion = -1) {
+ using namespace boost::geometry;
+ Polygon gp = toPolygon(g);
+ Polygon dp = toPolygon(d);
+
+ std::vector in, un;
+ intersection(gp, dp, in);
+ union_(gp, dp, un);
+
+ double ymax = min(d.t2, g.t2);
+ double ymin = max(d.t2 - d.h, g.t2 - g.h);
+
+ double inter_area = in.empty() ? 0 : area(in.front());
+ double inter_vol = inter_area * max(0.0, ymax - ymin);
+
+ double det_vol = d.h * d.l * d.w;
+ double gt_vol = g.h * g.l * g.w;
+
+ double o;
+ if(criterion==-1) // union
+ o = inter_vol / (det_vol + gt_vol - inter_vol);
+ else if(criterion==0) // bbox_a
+ o = inter_vol / det_vol;
+ else if(criterion==1) // bbox_b
+ o = inter_vol / gt_vol;
+
+ return o;
+}
+
+vector getThresholds(vector &v, double n_groundtruth){
+
+ // holds scores needed to compute N_SAMPLE_PTS recall values
+ vector t;
+
+ // sort scores in descending order
+ // (highest score is assumed to give best/most confident detections)
+ sort(v.begin(), v.end(), greater());
+
+ // get scores for linearly spaced recall
+ double current_recall = 0;
+ for(int32_t i=0; i >, const vector &det, vector &ignored_gt, vector &dc, vector &ignored_det, int32_t &n_gt, DIFFICULTY difficulty){
+
+ // extract ground truth bounding boxes for current evaluation class
+ for(int32_t i=0;iMAX_OCCLUSION[difficulty] || gt[i].truncation>MAX_TRUNCATION[difficulty] || height >,
+ const vector &det, const vector &dc,
+ const vector &ignored_gt, const vector &ignored_det,
+ bool compute_fp, double (*boxoverlap)(tDetection, tGroundtruth, int32_t),
+ METRIC metric, bool compute_aos=false, double thresh=0, bool debug=false){
+
+ tPrData stat = tPrData();
+ const double NO_DETECTION = -10000000;
+ vector delta; // holds angular difference for TPs (needed for AOS evaluation)
+ vector assigned_detection; // holds wether a detection was assigned to a valid or ignored ground truth
+ assigned_detection.assign(det.size(), false);
+ vector ignored_threshold;
+ ignored_threshold.assign(det.size(), false); // holds detections with a threshold lower than thresh if FP are computed
+
+ // detections with a low score are ignored for computing precision (needs FP)
+ if(compute_fp)
+ for(int32_t i=0; i 0.5) (logical len(det))
+ =======================================================================*/
+ int32_t det_idx = -1;
+ double valid_detection = NO_DETECTION;
+ double max_overlap = 0;
+
+ // search for a possible detection
+ bool assigned_ignored_det = false;
+ for(int32_t j=0; jMIN_OVERLAP[metric][current_class] && det[j].thresh>valid_detection){
+ det_idx = j;
+ valid_detection = det[j].thresh;
+ }
+
+ // for computing pr curve values, the candidate with the greatest overlap is considered
+ // if the greatest overlap is an ignored detection (min_height), the overlapping detection is used
+ else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && (overlap>max_overlap || assigned_ignored_det) && ignored_det[j]==0){
+ max_overlap = overlap;
+ det_idx = j;
+ valid_detection = 1;
+ assigned_ignored_det = false;
+ }
+ else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && valid_detection==NO_DETECTION && ignored_det[j]==1){
+ det_idx = j;
+ valid_detection = 1;
+ assigned_ignored_det = true;
+ }
+ }
+
+ /*=======================================================================
+ compute TP, FP and FN
+ =======================================================================*/
+
+ // nothing was assigned to this valid ground truth
+ if(valid_detection==NO_DETECTION && ignored_gt[i]==0) {
+ stat.fn++;
+ }
+
+ // only evaluate valid ground truth <=> detection assignments (considering difficulty level)
+ else if(valid_detection!=NO_DETECTION && (ignored_gt[i]==1 || ignored_det[det_idx]==1))
+ assigned_detection[det_idx] = true;
+
+ // found a valid true positive
+ else if(valid_detection!=NO_DETECTION){
+
+ // write highest score to threshold vector
+ stat.tp++;
+ stat.v.push_back(det[det_idx].thresh);
+
+ // compute angular difference of detection and ground truth if valid detection orientation was provided
+ if(compute_aos)
+ delta.push_back(gt[i].box.alpha - det[det_idx].box.alpha);
+
+ // clean up
+ assigned_detection[det_idx] = true;
+ }
+ }
+
+ // if FP are requested, consider stuff area
+ if(compute_fp){
+
+ // count fp
+ for(int32_t i=0; iMIN_OVERLAP[metric][current_class]){
+ assigned_detection[j] = true;
+ nstuff++;
+ }
+ }
+ }
+
+ // FP = no. of all not to ground truth assigned detections - detections assigned to stuff areas
+ stat.fp -= nstuff;
+
+ // if all orientation values are valid, the AOS is computed
+ if(compute_aos){
+ vector tmp;
+
+ // FP have a similarity of 0, for all TP compute AOS
+ tmp.assign(stat.fp, 0);
+ for(int32_t i=0; i0 || stat.fp>0)
+ stat.similarity = accumulate(tmp.begin(), tmp.end(), 0.0);
+
+ // there was neither a FP nor a TP, so the similarity is ignored in the evaluation
+ else
+ stat.similarity = -1;
+ }
+ }
+ return stat;
+}
+
+/*=======================================================================
+EVALUATE CLASS-WISE
+=======================================================================*/
+
+bool eval_class (FILE *fp_det, FILE *fp_ori, CLASSES current_class,
+ const vector< vector > &groundtruth,
+ const vector< vector > &detections, bool compute_aos,
+ double (*boxoverlap)(tDetection, tGroundtruth, int32_t),
+ vector &precision, vector &aos,
+ DIFFICULTY difficulty, METRIC metric) {
+ assert(groundtruth.size() == detections.size());
+
+ // init
+ int32_t n_gt=0; // total no. of gt (denominator of recall)
+ vector v, thresholds; // detection scores, evaluated for recall discretization
+ vector< vector > ignored_gt, ignored_det; // index of ignored gt detection for current class/difficulty
+ vector< vector > dontcare; // index of dontcare areas, included in ground truth
+
+ // for all test images do
+ for (int32_t i=0; i i_gt, i_det;
+ vector dc;
+
+ // only evaluate objects of current class and ignore occluded, truncated objects
+ cleanData(current_class, groundtruth[i], detections[i], i_gt, dc, i_det, n_gt, difficulty);
+ ignored_gt.push_back(i_gt);
+ ignored_det.push_back(i_det);
+ dontcare.push_back(dc);
+
+ // compute statistics to get recall values
+ tPrData pr_tmp = tPrData();
+ pr_tmp = computeStatistics(current_class, groundtruth[i], detections[i], dc, i_gt, i_det, false, boxoverlap, metric);
+
+ // add detection scores to vector over all images
+ for(int32_t j=0; j pr;
+ pr.assign(thresholds.size(),tPrData());
+ for (int32_t i=0; i recall;
+ precision.assign(N_SAMPLE_PTS, 0);
+ if(compute_aos)
+ aos.assign(N_SAMPLE_PTS, 0);
+ double r=0;
+ for (int32_t i=0; i vals[],bool is_aos){
+
+ char command[1024];
+
+ // save plot data to file
+ FILE *fp = fopen((dir_name + "/" + file_name + ".txt").c_str(),"w");
+ printf("save %s\n", (dir_name + "/" + file_name + ".txt").c_str());
+ for (int32_t i=0; i<(int)N_SAMPLE_PTS; i++)
+ fprintf(fp,"%f %f %f %f\n",(double)i/(N_SAMPLE_PTS-1.0),vals[0][i],vals[1][i],vals[2][i]);
+ fclose(fp);
+
+ // create png + eps
+ for (int32_t j=0; j<2; j++) {
+
+ // open file
+ FILE *fp = fopen((dir_name + "/" + file_name + ".gp").c_str(),"w");
+
+ // save gnuplot instructions
+ if (j==0) {
+ fprintf(fp,"set term png size 450,315 font \"Helvetica\" 11\n");
+ fprintf(fp,"set output \"%s.png\"\n",file_name.c_str());
+ } else {
+ fprintf(fp,"set term postscript eps enhanced color font \"Helvetica\" 20\n");
+ fprintf(fp,"set output \"%s.eps\"\n",file_name.c_str());
+ }
+
+ // set labels and ranges
+ fprintf(fp,"set size ratio 0.7\n");
+ fprintf(fp,"set xrange [0:1]\n");
+ fprintf(fp,"set yrange [0:1]\n");
+ fprintf(fp,"set xlabel \"Recall\"\n");
+ if (!is_aos) fprintf(fp,"set ylabel \"Precision\"\n");
+ else fprintf(fp,"set ylabel \"Orientation Similarity\"\n");
+ obj_type[0] = toupper(obj_type[0]);
+ fprintf(fp,"set title \"%s\"\n",obj_type.c_str());
+
+ // line width
+ int32_t lw = 5;
+ if (j==0) lw = 3;
+
+ // plot error curve
+ fprintf(fp,"plot ");
+ fprintf(fp,"\"%s.txt\" using 1:2 title 'Easy' with lines ls 1 lw %d,",file_name.c_str(),lw);
+ fprintf(fp,"\"%s.txt\" using 1:3 title 'Moderate' with lines ls 2 lw %d,",file_name.c_str(),lw);
+ fprintf(fp,"\"%s.txt\" using 1:4 title 'Hard' with lines ls 3 lw %d",file_name.c_str(),lw);
+
+ // close file
+ fclose(fp);
+
+ // run gnuplot => create png + eps
+ sprintf(command,"cd %s; gnuplot %s",dir_name.c_str(),(file_name + ".gp").c_str());
+ system(command);
+ }
+
+ // create pdf and crop
+ sprintf(command,"cd %s; ps2pdf %s.eps %s_large.pdf",dir_name.c_str(),file_name.c_str(),file_name.c_str());
+ system(command);
+ sprintf(command,"cd %s; pdfcrop %s_large.pdf %s.pdf",dir_name.c_str(),file_name.c_str(),file_name.c_str());
+ system(command);
+ sprintf(command,"cd %s; rm %s_large.pdf",dir_name.c_str(),file_name.c_str());
+ system(command);
+}
+
+bool eval(string result_sha,Mail* mail){
+
+ // set some global parameters
+ initGlobals();
+
+ // ground truth and result directories
+ string gt_dir = "data/object/label_2";
+ string result_dir = "results/" + result_sha;
+ string plot_dir = result_dir + "/plot";
+
+ // create output directories
+ system(("mkdir " + plot_dir).c_str());
+
+ // hold detections and ground truth in memory
+ vector< vector > groundtruth;
+ vector< vector > detections;
+
+ // holds wether orientation similarity shall be computed (might be set to false while loading detections)
+ // and which labels where provided by this submission
+ bool compute_aos=true;
+ vector eval_image(NUM_CLASS, false);
+ vector eval_ground(NUM_CLASS, false);
+ vector eval_3d(NUM_CLASS, false);
+
+ // for all images read groundtruth and detections
+ mail->msg("Loading detections...");
+ for (int32_t i=0; i gt = loadGroundtruth(gt_dir + "/" + file_name,gt_success);
+ vector det = loadDetections(result_dir + "/data/" + file_name,
+ compute_aos, eval_image, eval_ground, eval_3d, det_success);
+ groundtruth.push_back(gt);
+ detections.push_back(det);
+
+ // check for errors
+ if (!gt_success) {
+ mail->msg("ERROR: Couldn't read: %s of ground truth. Please write me an email!", file_name);
+ return false;
+ }
+ if (!det_success) {
+ mail->msg("ERROR: Couldn't read: %s", file_name);
+ return false;
+ }
+ }
+ mail->msg(" done.");
+
+ // holds pointers for result files
+ FILE *fp_det=0, *fp_ori=0;
+
+ // eval image 2D bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_image[c]) {
+ fp_det = fopen((result_dir + "/stats_" + CLASS_NAMES[c] + "_detection.txt").c_str(), "w");
+ if(compute_aos)
+ fp_ori = fopen((result_dir + "/stats_" + CLASS_NAMES[c] + "_orientation.txt").c_str(),"w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[0], aos[0], EASY, IMAGE)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[1], aos[1], MODERATE, IMAGE)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[2], aos[2], HARD, IMAGE)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection", CLASS_NAMES[c], precision, 0);
+ if(compute_aos){
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_orientation", CLASS_NAMES[c], aos, 1);
+ fclose(fp_ori);
+ }
+ }
+ }
+
+ // don't evaluate AOS for birdview boxes and 3D boxes
+ compute_aos = false;
+
+ // eval bird's eye view bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_ground[c]) {
+ fp_det = fopen((result_dir + "/stats_" + CLASS_NAMES[c] + "_detection_ground.txt").c_str(), "w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[0], aos[0], EASY, GROUND)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[1], aos[1], MODERATE, GROUND)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[2], aos[2], HARD, GROUND)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection_ground", CLASS_NAMES[c], precision, 0);
+ }
+ }
+
+ // eval 3D bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_3d[c]) {
+ fp_det = fopen((result_dir + "/stats_" + CLASS_NAMES[c] + "_detection_3d.txt").c_str(), "w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[0], aos[0], EASY, BOX3D)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[1], aos[1], MODERATE, BOX3D)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[2], aos[2], HARD, BOX3D)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection_3d", CLASS_NAMES[c], precision, 0);
+ }
+ }
+
+ // success
+ return true;
+}
+
+int32_t main (int32_t argc,char *argv[]) {
+
+ // we need 2 or 4 arguments!
+ if (argc!=2 && argc!=4) {
+ cout << "Usage: ./eval_detection result_sha [user_sha email]" << endl;
+ return 1;
+ }
+
+ // read arguments
+ string result_sha = argv[1];
+
+ // init notification mail
+ Mail *mail;
+ if (argc==4) mail = new Mail(argv[3]);
+ else mail = new Mail();
+ mail->msg("Thank you for participating in our evaluation!");
+
+ // run evaluation
+ if (eval(result_sha,mail)) {
+ mail->msg("Your evaluation results are available at:");
+ mail->msg("http://www.cvlibs.net/datasets/kitti/user_submit_check_login.php?benchmark=object&user=%s&result=%s",argv[2], result_sha.c_str());
+ } else {
+ system(("rm -r results/" + result_sha).c_str());
+ mail->msg("An error occured while processing your results.");
+ mail->msg("Please make sure that the data in your zip archive has the right format!");
+ }
+
+ // send mail and exit
+ delete mail;
+
+ return 0;
+}
+
+
diff --git a/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline
new file mode 100755
index 0000000..c7b42d6
Binary files /dev/null and b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline differ
diff --git a/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline.cpp b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline.cpp
new file mode 100644
index 0000000..72e4f80
--- /dev/null
+++ b/models/CenterNet/src/tools/kitti_eval/evaluate_object_3d_offline.cpp
@@ -0,0 +1,948 @@
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#include
+
+#include
+#include
+
+#include
+#include
+#include
+#include
+
+#include "mail.h"
+
+BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
+
+typedef boost::geometry::model::polygon > Polygon;
+
+
+using namespace std;
+
+/*=======================================================================
+STATIC EVALUATION PARAMETERS
+=======================================================================*/
+
+// holds the number of test images on the server
+const int32_t N_TESTIMAGES = 7518;
+
+// easy, moderate and hard evaluation level
+enum DIFFICULTY{EASY=0, MODERATE=1, HARD=2};
+
+// evaluation metrics: image, ground or 3D
+enum METRIC{IMAGE=0, GROUND=1, BOX3D=2};
+
+// evaluation parameter
+const int32_t MIN_HEIGHT[3] = {40, 25, 25}; // minimum height for evaluated groundtruth/detections
+const int32_t MAX_OCCLUSION[3] = {0, 1, 2}; // maximum occlusion level of the groundtruth used for evaluation
+const double MAX_TRUNCATION[3] = {0.15, 0.3, 0.5}; // maximum truncation level of the groundtruth used for evaluation
+
+// evaluated object classes
+enum CLASSES{CAR=0, PEDESTRIAN=1, CYCLIST=2};
+const int NUM_CLASS = 3;
+
+// parameters varying per class
+vector CLASS_NAMES;
+// the minimum overlap required for 2D evaluation on the image/ground plane and 3D evaluation
+const double MIN_OVERLAP[3][3] = {{0.7, 0.5, 0.5}, {0.5, 0.25, 0.25}, {0.5, 0.25, 0.25}};
+// const double MIN_OVERLAP[3][3] = {{0.7, 0.5, 0.5}, {0.7, 0.5, 0.5}, {0.7, 0.5, 0.5}};
+
+// no. of recall steps that should be evaluated (discretized)
+const double N_SAMPLE_PTS = 41;
+
+
+// initialize class names
+void initGlobals () {
+ CLASS_NAMES.push_back("car");
+ CLASS_NAMES.push_back("pedestrian");
+ CLASS_NAMES.push_back("cyclist");
+}
+
+/*=======================================================================
+DATA TYPES FOR EVALUATION
+=======================================================================*/
+
+// holding data needed for precision-recall and precision-aos
+struct tPrData {
+ vector v; // detection score for computing score thresholds
+ double similarity; // orientation similarity
+ int32_t tp; // true positives
+ int32_t fp; // false positives
+ int32_t fn; // false negatives
+ tPrData () :
+ similarity(0), tp(0), fp(0), fn(0) {}
+};
+
+// holding bounding boxes for ground truth and detections
+struct tBox {
+ string type; // object type as car, pedestrian or cyclist,...
+ double x1; // left corner
+ double y1; // top corner
+ double x2; // right corner
+ double y2; // bottom corner
+ double alpha; // image orientation
+ tBox (string type, double x1,double y1,double x2,double y2,double alpha) :
+ type(type),x1(x1),y1(y1),x2(x2),y2(y2),alpha(alpha) {}
+};
+
+// holding ground truth data
+struct tGroundtruth {
+ tBox box; // object type, box, orientation
+ double truncation; // truncation 0..1
+ int32_t occlusion; // occlusion 0,1,2 (non, partly, fully)
+ double ry;
+ double t1, t2, t3;
+ double h, w, l;
+ tGroundtruth () :
+ box(tBox("invalild",-1,-1,-1,-1,-10)),truncation(-1),occlusion(-1) {}
+ tGroundtruth (tBox box,double truncation,int32_t occlusion) :
+ box(box),truncation(truncation),occlusion(occlusion) {}
+ tGroundtruth (string type,double x1,double y1,double x2,double y2,double alpha,double truncation,int32_t occlusion) :
+ box(tBox(type,x1,y1,x2,y2,alpha)),truncation(truncation),occlusion(occlusion) {}
+};
+
+// holding detection data
+struct tDetection {
+ tBox box; // object type, box, orientation
+ double thresh; // detection score
+ double ry;
+ double t1, t2, t3;
+ double h, w, l;
+ tDetection ():
+ box(tBox("invalid",-1,-1,-1,-1,-10)),thresh(-1000) {}
+ tDetection (tBox box,double thresh) :
+ box(box),thresh(thresh) {}
+ tDetection (string type,double x1,double y1,double x2,double y2,double alpha,double thresh) :
+ box(tBox(type,x1,y1,x2,y2,alpha)),thresh(thresh) {}
+};
+
+
+/*=======================================================================
+FUNCTIONS TO LOAD DETECTION AND GROUND TRUTH DATA ONCE, SAVE RESULTS
+=======================================================================*/
+vector indices;
+
+vector loadDetections(string file_name, bool &compute_aos,
+ vector &eval_image, vector &eval_ground,
+ vector &eval_3d, bool &success) {
+
+ // holds all detections (ignored detections are indicated by an index vector
+ vector detections;
+ FILE *fp = fopen(file_name.c_str(),"r");
+ if (!fp) {
+ success = false;
+ return detections;
+ }
+ while (!feof(fp)) {
+ tDetection d;
+ double trash;
+ char str[255];
+ if (fscanf(fp, "%s %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
+ str, &trash, &trash, &d.box.alpha, &d.box.x1, &d.box.y1,
+ &d.box.x2, &d.box.y2, &d.h, &d.w, &d.l, &d.t1, &d.t2, &d.t3,
+ &d.ry, &d.thresh)==16) {
+
+ // d.thresh = 1;
+ d.box.type = str;
+ detections.push_back(d);
+
+ // orientation=-10 is invalid, AOS is not evaluated if at least one orientation is invalid
+ if(d.box.alpha == -10)
+ compute_aos = false;
+
+ // a class is only evaluated if it is detected at least once
+ for (int c = 0; c < NUM_CLASS; c++) {
+ if (!strcasecmp(d.box.type.c_str(), CLASS_NAMES[c].c_str())) {
+ if (!eval_image[c] && d.box.x1 >= 0)
+ eval_image[c] = true;
+ if (!eval_ground[c] && d.t1 != -1000)
+ eval_ground[c] = true;
+ if (!eval_3d[c] && d.t2 != -1000)
+ eval_3d[c] = true;
+ break;
+ }
+ }
+ }
+ }
+ fclose(fp);
+ success = true;
+ return detections;
+}
+
+vector loadGroundtruth(string file_name,bool &success) {
+
+ // holds all ground truth (ignored ground truth is indicated by an index vector
+ vector groundtruth;
+ FILE *fp = fopen(file_name.c_str(),"r");
+ if (!fp) {
+ success = false;
+ return groundtruth;
+ }
+ while (!feof(fp)) {
+ tGroundtruth g;
+ char str[255];
+ if (fscanf(fp, "%s %lf %d %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
+ str, &g.truncation, &g.occlusion, &g.box.alpha,
+ &g.box.x1, &g.box.y1, &g.box.x2, &g.box.y2,
+ &g.h, &g.w, &g.l, &g.t1,
+ &g.t2, &g.t3, &g.ry )==15) {
+ g.box.type = str;
+ groundtruth.push_back(g);
+ }
+ }
+ fclose(fp);
+ success = true;
+ return groundtruth;
+}
+
+void saveStats (const vector &precision, const vector &aos, FILE *fp_det, FILE *fp_ori) {
+
+ // save precision to file
+ if(precision.empty())
+ return;
+ for (int32_t i=0; i
+Polygon toPolygon(const T& g) {
+ using namespace boost::numeric::ublas;
+ using namespace boost::geometry;
+ matrix mref(2, 2);
+ mref(0, 0) = cos(g.ry); mref(0, 1) = sin(g.ry);
+ mref(1, 0) = -sin(g.ry); mref(1, 1) = cos(g.ry);
+
+ static int count = 0;
+ matrix corners(2, 4);
+ double data[] = {g.l / 2, g.l / 2, -g.l / 2, -g.l / 2,
+ g.w / 2, -g.w / 2, -g.w / 2, g.w / 2};
+ std::copy(data, data + 8, corners.data().begin());
+ matrix gc = prod(mref, corners);
+ for (int i = 0; i < 4; ++i) {
+ gc(0, i) += g.t1;
+ gc(1, i) += g.t3;
+ }
+
+ double points[][2] = {{gc(0, 0), gc(1, 0)},{gc(0, 1), gc(1, 1)},{gc(0, 2), gc(1, 2)},{gc(0, 3), gc(1, 3)},{gc(0, 0), gc(1, 0)}};
+ Polygon poly;
+ append(poly, points);
+ return poly;
+}
+
+// measure overlap between bird's eye view bounding boxes, parametrized by (ry, l, w, tx, tz)
+inline double groundBoxOverlap(tDetection d, tGroundtruth g, int32_t criterion = -1) {
+ using namespace boost::geometry;
+ Polygon gp = toPolygon(g);
+ Polygon dp = toPolygon(d);
+
+ std::vector in, un;
+ intersection(gp, dp, in);
+ union_(gp, dp, un);
+
+ double inter_area = in.empty() ? 0 : area(in.front());
+ double union_area = area(un.front());
+ double o;
+ if(criterion==-1) // union
+ o = inter_area / union_area;
+ else if(criterion==0) // bbox_a
+ o = inter_area / area(dp);
+ else if(criterion==1) // bbox_b
+ o = inter_area / area(gp);
+
+ return o;
+}
+
+// measure overlap between 3D bounding boxes, parametrized by (ry, h, w, l, tx, ty, tz)
+inline double box3DOverlap(tDetection d, tGroundtruth g, int32_t criterion = -1) {
+ using namespace boost::geometry;
+ Polygon gp = toPolygon(g);
+ Polygon dp = toPolygon(d);
+
+ std::vector in, un;
+ intersection(gp, dp, in);
+ union_(gp, dp, un);
+
+ double ymax = min(d.t2, g.t2);
+ double ymin = max(d.t2 - d.h, g.t2 - g.h);
+
+ double inter_area = in.empty() ? 0 : area(in.front());
+ double inter_vol = inter_area * max(0.0, ymax - ymin);
+
+ double det_vol = d.h * d.l * d.w;
+ double gt_vol = g.h * g.l * g.w;
+
+ double o;
+ if(criterion==-1) // union
+ o = inter_vol / (det_vol + gt_vol - inter_vol);
+ else if(criterion==0) // bbox_a
+ o = inter_vol / det_vol;
+ else if(criterion==1) // bbox_b
+ o = inter_vol / gt_vol;
+
+ return o;
+}
+
+vector getThresholds(vector &v, double n_groundtruth){
+
+ // holds scores needed to compute N_SAMPLE_PTS recall values
+ vector t;
+
+ // sort scores in descending order
+ // (highest score is assumed to give best/most confident detections)
+ sort(v.begin(), v.end(), greater());
+
+ // get scores for linearly spaced recall
+ double current_recall = 0;
+ for(int32_t i=0; i >, const vector &det, vector &ignored_gt, vector &dc, vector &ignored_det, int32_t &n_gt, DIFFICULTY difficulty){
+
+ // extract ground truth bounding boxes for current evaluation class
+ for(int32_t i=0;iMAX_OCCLUSION[difficulty] || gt[i].truncation>MAX_TRUNCATION[difficulty] || height >,
+ const vector &det, const vector &dc,
+ const vector &ignored_gt, const vector &ignored_det,
+ bool compute_fp, double (*boxoverlap)(tDetection, tGroundtruth, int32_t),
+ METRIC metric, bool compute_aos=false, double thresh=0, bool debug=false){
+
+ tPrData stat = tPrData();
+ const double NO_DETECTION = -10000000;
+ vector delta; // holds angular difference for TPs (needed for AOS evaluation)
+ vector assigned_detection; // holds wether a detection was assigned to a valid or ignored ground truth
+ assigned_detection.assign(det.size(), false);
+ vector ignored_threshold;
+ ignored_threshold.assign(det.size(), false); // holds detections with a threshold lower than thresh if FP are computed
+
+ // detections with a low score are ignored for computing precision (needs FP)
+ if(compute_fp)
+ for(int32_t i=0; i 0.5) (logical len(det))
+ =======================================================================*/
+ int32_t det_idx = -1;
+ double valid_detection = NO_DETECTION;
+ double max_overlap = 0;
+
+ // search for a possible detection
+ bool assigned_ignored_det = false;
+ for(int32_t j=0; jMIN_OVERLAP[metric][current_class] && det[j].thresh>valid_detection){
+ det_idx = j;
+ valid_detection = det[j].thresh;
+ }
+
+ // for computing pr curve values, the candidate with the greatest overlap is considered
+ // if the greatest overlap is an ignored detection (min_height), the overlapping detection is used
+ else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && (overlap>max_overlap || assigned_ignored_det) && ignored_det[j]==0){
+ max_overlap = overlap;
+ det_idx = j;
+ valid_detection = 1;
+ assigned_ignored_det = false;
+ }
+ else if(compute_fp && overlap>MIN_OVERLAP[metric][current_class] && valid_detection==NO_DETECTION && ignored_det[j]==1){
+ det_idx = j;
+ valid_detection = 1;
+ assigned_ignored_det = true;
+ }
+ }
+
+ /*=======================================================================
+ compute TP, FP and FN
+ =======================================================================*/
+
+ // nothing was assigned to this valid ground truth
+ if(valid_detection==NO_DETECTION && ignored_gt[i]==0) {
+ stat.fn++;
+ }
+
+ // only evaluate valid ground truth <=> detection assignments (considering difficulty level)
+ else if(valid_detection!=NO_DETECTION && (ignored_gt[i]==1 || ignored_det[det_idx]==1))
+ assigned_detection[det_idx] = true;
+
+ // found a valid true positive
+ else if(valid_detection!=NO_DETECTION){
+
+ // write highest score to threshold vector
+ stat.tp++;
+ stat.v.push_back(det[det_idx].thresh);
+
+ // compute angular difference of detection and ground truth if valid detection orientation was provided
+ if(compute_aos)
+ delta.push_back(gt[i].box.alpha - det[det_idx].box.alpha);
+
+ // clean up
+ assigned_detection[det_idx] = true;
+ }
+ }
+
+ // if FP are requested, consider stuff area
+ if(compute_fp){
+
+ // count fp
+ for(int32_t i=0; iMIN_OVERLAP[metric][current_class]){
+ assigned_detection[j] = true;
+ nstuff++;
+ }
+ }
+ }
+
+ // FP = no. of all not to ground truth assigned detections - detections assigned to stuff areas
+ stat.fp -= nstuff;
+
+ // if all orientation values are valid, the AOS is computed
+ if(compute_aos){
+ vector tmp;
+
+ // FP have a similarity of 0, for all TP compute AOS
+ tmp.assign(stat.fp, 0);
+ for(int32_t i=0; i0 || stat.fp>0)
+ stat.similarity = accumulate(tmp.begin(), tmp.end(), 0.0);
+
+ // there was neither a FP nor a TP, so the similarity is ignored in the evaluation
+ else
+ stat.similarity = -1;
+ }
+ }
+ return stat;
+}
+
+/*=======================================================================
+EVALUATE CLASS-WISE
+=======================================================================*/
+
+bool eval_class (FILE *fp_det, FILE *fp_ori, CLASSES current_class,
+ const vector< vector > &groundtruth,
+ const vector< vector > &detections, bool compute_aos,
+ double (*boxoverlap)(tDetection, tGroundtruth, int32_t),
+ vector &precision, vector &aos,
+ DIFFICULTY difficulty, METRIC metric) {
+ assert(groundtruth.size() == detections.size());
+
+ // init
+ int32_t n_gt=0; // total no. of gt (denominator of recall)
+ vector v, thresholds; // detection scores, evaluated for recall discretization
+ vector< vector > ignored_gt, ignored_det; // index of ignored gt detection for current class/difficulty
+ vector< vector > dontcare; // index of dontcare areas, included in ground truth
+
+ // for all test images do
+ for (int32_t i=0; i i_gt, i_det;
+ vector dc;
+
+ // only evaluate objects of current class and ignore occluded, truncated objects
+ cleanData(current_class, groundtruth[i], detections[i], i_gt, dc, i_det, n_gt, difficulty);
+ ignored_gt.push_back(i_gt);
+ ignored_det.push_back(i_det);
+ dontcare.push_back(dc);
+
+ // compute statistics to get recall values
+ tPrData pr_tmp = tPrData();
+ pr_tmp = computeStatistics(current_class, groundtruth[i], detections[i], dc, i_gt, i_det, false, boxoverlap, metric);
+
+ // add detection scores to vector over all images
+ for(int32_t j=0; j pr;
+ pr.assign(thresholds.size(),tPrData());
+ for (int32_t i=0; i recall;
+ precision.assign(N_SAMPLE_PTS, 0);
+ if(compute_aos)
+ aos.assign(N_SAMPLE_PTS, 0);
+ double r=0;
+ for (int32_t i=0; i vals[],bool is_aos){
+
+ char command[1024];
+
+ // save plot data to file
+ FILE *fp = fopen((dir_name + "/" + file_name + ".txt").c_str(),"w");
+ printf("save %s\n", (dir_name + "/" + file_name + ".txt").c_str());
+ for (int32_t i=0; i<(int)N_SAMPLE_PTS; i++)
+ fprintf(fp,"%f %f %f %f\n",(double)i/(N_SAMPLE_PTS-1.0),vals[0][i],vals[1][i],vals[2][i]);
+ fclose(fp);
+
+ float sum[3] = {0, 0, 0};
+ for (int v = 0; v < 3; ++v)
+ for (int i = 0; i < vals[v].size(); i = i + 4)
+ sum[v] += vals[v][i];
+ printf("%s AP: %f %f %f\n", file_name.c_str(), sum[0] / 11 * 100, sum[1] / 11 * 100, sum[2] / 11 * 100);
+
+
+ // create png + eps
+ for (int32_t j=0; j<2; j++) {
+
+ // open file
+ FILE *fp = fopen((dir_name + "/" + file_name + ".gp").c_str(),"w");
+
+ // save gnuplot instructions
+ if (j==0) {
+ fprintf(fp,"set term png size 450,315 font \"Helvetica\" 11\n");
+ fprintf(fp,"set output \"%s.png\"\n",file_name.c_str());
+ } else {
+ fprintf(fp,"set term postscript eps enhanced color font \"Helvetica\" 20\n");
+ fprintf(fp,"set output \"%s.eps\"\n",file_name.c_str());
+ }
+
+ // set labels and ranges
+ fprintf(fp,"set size ratio 0.7\n");
+ fprintf(fp,"set xrange [0:1]\n");
+ fprintf(fp,"set yrange [0:1]\n");
+ fprintf(fp,"set xlabel \"Recall\"\n");
+ if (!is_aos) fprintf(fp,"set ylabel \"Precision\"\n");
+ else fprintf(fp,"set ylabel \"Orientation Similarity\"\n");
+ obj_type[0] = toupper(obj_type[0]);
+ fprintf(fp,"set title \"%s\"\n",obj_type.c_str());
+
+ // line width
+ int32_t lw = 5;
+ if (j==0) lw = 3;
+
+ // plot error curve
+ fprintf(fp,"plot ");
+ fprintf(fp,"\"%s.txt\" using 1:2 title 'Easy' with lines ls 1 lw %d,",file_name.c_str(),lw);
+ fprintf(fp,"\"%s.txt\" using 1:3 title 'Moderate' with lines ls 2 lw %d,",file_name.c_str(),lw);
+ fprintf(fp,"\"%s.txt\" using 1:4 title 'Hard' with lines ls 3 lw %d",file_name.c_str(),lw);
+
+ // close file
+ fclose(fp);
+
+ // run gnuplot => create png + eps
+ sprintf(command,"cd %s; gnuplot %s",dir_name.c_str(),(file_name + ".gp").c_str());
+ system(command);
+ }
+
+ // create pdf and crop
+ sprintf(command,"cd %s; ps2pdf %s.eps %s_large.pdf",dir_name.c_str(),file_name.c_str(),file_name.c_str());
+ system(command);
+ sprintf(command,"cd %s; pdfcrop %s_large.pdf %s.pdf",dir_name.c_str(),file_name.c_str(),file_name.c_str());
+ system(command);
+ sprintf(command,"cd %s; rm %s_large.pdf",dir_name.c_str(),file_name.c_str());
+ system(command);
+}
+
+vector getEvalIndices(const string& result_dir) {
+
+ DIR* dir;
+ dirent* entity;
+ dir = opendir(result_dir.c_str());
+ if (dir) {
+ while (entity = readdir(dir)) {
+ string path(entity->d_name);
+ int32_t len = path.size();
+ if (len < 10) continue;
+ int32_t index = atoi(path.substr(len - 10, 10).c_str());
+ indices.push_back(index);
+ }
+ }
+ return indices;
+}
+
+bool eval(string gt_dir, string result_dir, Mail* mail){
+
+ // set some global parameters
+ initGlobals();
+
+ // ground truth and result directories
+ // string gt_dir = "data/object/label_2";
+ // string result_dir = "results/" + result_sha;
+ string plot_dir = result_dir + "/../plot";
+
+ // create output directories
+ system(("mkdir " + plot_dir).c_str());
+
+ // hold detections and ground truth in memory
+ vector< vector > groundtruth;
+ vector< vector > detections;
+
+ // holds wether orientation similarity shall be computed (might be set to false while loading detections)
+ // and which labels where provided by this submission
+ bool compute_aos=true;
+ vector eval_image(NUM_CLASS, false);
+ vector eval_ground(NUM_CLASS, false);
+ vector eval_3d(NUM_CLASS, false);
+
+ // for all images read groundtruth and detections
+ mail->msg("Loading detections...");
+ std::vector indices = getEvalIndices(result_dir);
+ printf("number of files for evaluation: %d\n", (int)indices.size());
+
+ for (int32_t i=0; i gt = loadGroundtruth(gt_dir + "/" + file_name,gt_success);
+ vector det = loadDetections(result_dir + file_name,
+ compute_aos, eval_image, eval_ground, eval_3d, det_success);
+ groundtruth.push_back(gt);
+ detections.push_back(det);
+
+ // check for errors
+ if (!gt_success) {
+ mail->msg("ERROR: Couldn't read: %s of ground truth. Please write me an email!", file_name);
+ return false;
+ }
+ if (!det_success) {
+ mail->msg("ERROR: Couldn't read: %s", file_name);
+ return false;
+ }
+ }
+ mail->msg(" done.");
+
+ // holds pointers for result files
+ FILE *fp_det=0, *fp_ori=0;
+
+ // eval image 2D bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_image[c]) {
+ fp_det = fopen((result_dir + "/../stats_" + CLASS_NAMES[c] + "_detection.txt").c_str(), "w");
+ if(compute_aos)
+ fp_ori = fopen((result_dir + "/../stats_" + CLASS_NAMES[c] + "_orientation.txt").c_str(),"w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[0], aos[0], EASY, IMAGE)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[1], aos[1], MODERATE, IMAGE)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, imageBoxOverlap, precision[2], aos[2], HARD, IMAGE)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection", CLASS_NAMES[c], precision, 0);
+ if(compute_aos){
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_orientation", CLASS_NAMES[c], aos, 1);
+ fclose(fp_ori);
+ }
+ }
+ }
+
+ // don't evaluate AOS for birdview boxes and 3D boxes
+ compute_aos = false;
+
+ // eval bird's eye view bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_ground[c]) {
+ fp_det = fopen((result_dir + "/../stats_" + CLASS_NAMES[c] + "_detection_ground.txt").c_str(), "w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[0], aos[0], EASY, GROUND)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[1], aos[1], MODERATE, GROUND)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, groundBoxOverlap, precision[2], aos[2], HARD, GROUND)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection_ground", CLASS_NAMES[c], precision, 0);
+ }
+ }
+
+ // eval 3D bounding boxes
+ for (int c = 0; c < NUM_CLASS; c++) {
+ CLASSES cls = (CLASSES)c;
+ if (eval_3d[c]) {
+ fp_det = fopen((result_dir + "/../stats_" + CLASS_NAMES[c] + "_detection_3d.txt").c_str(), "w");
+ vector precision[3], aos[3];
+ if( !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[0], aos[0], EASY, BOX3D)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[1], aos[1], MODERATE, BOX3D)
+ || !eval_class(fp_det, fp_ori, cls, groundtruth, detections, compute_aos, box3DOverlap, precision[2], aos[2], HARD, BOX3D)) {
+ mail->msg("%s evaluation failed.", CLASS_NAMES[c].c_str());
+ return false;
+ }
+ fclose(fp_det);
+ saveAndPlotPlots(plot_dir, CLASS_NAMES[c] + "_detection_3d", CLASS_NAMES[c], precision, 0);
+ }
+ }
+
+ // success
+ return true;
+}
+
+int32_t main (int32_t argc,char *argv[]) {
+
+ // we need 2 or 4 arguments!
+ if (argc!=3) {
+ cout << "Usage: ./eval_detection_3d_offline gt_dir result_dir" << endl;
+ return 1;
+ }
+
+ // read arguments
+ string gt_dir = argv[1];
+ string result_dir = argv[2];
+
+ // init notification mail
+ Mail *mail;
+ mail = new Mail();
+ mail->msg("Thank you for participating in our evaluation!");
+
+ // run evaluation
+ if (eval(gt_dir, result_dir, mail)) {
+ mail->msg("Your evaluation results are available at:");
+ mail->msg(result_dir.c_str());
+ } else {
+ system(("rm -r " + result_dir + "/../plot").c_str());
+ mail->msg("An error occured while processing your results.");
+ }
+
+ // send mail and exit
+ delete mail;
+
+ return 0;
+}
+
+
diff --git a/models/CenterNet/src/tools/kitti_eval/mail.h b/models/CenterNet/src/tools/kitti_eval/mail.h
new file mode 100644
index 0000000..20fa986
--- /dev/null
+++ b/models/CenterNet/src/tools/kitti_eval/mail.h
@@ -0,0 +1,48 @@
+#ifndef MAIL_H
+#define MAIL_H
+
+#include
+#include
+#include
+
+class Mail {
+
+public:
+
+ Mail (std::string email = "") {
+ if (email.compare("")) {
+ mail = popen("/usr/lib/sendmail -t -f noreply@cvlibs.net","w");
+ fprintf(mail,"To: %s\n", email.c_str());
+ fprintf(mail,"From: noreply@cvlibs.net\n");
+ fprintf(mail,"Subject: KITTI Evaluation Benchmark\n");
+ fprintf(mail,"\n\n");
+ } else {
+ mail = 0;
+ }
+ }
+
+ ~Mail() {
+ if (mail) {
+ pclose(mail);
+ }
+ }
+
+ void msg (const char *format, ...) {
+ va_list args;
+ va_start(args,format);
+ if (mail) {
+ vfprintf(mail,format,args);
+ fprintf(mail,"\n");
+ }
+ vprintf(format,args);
+ printf("\n");
+ va_end(args);
+ }
+
+private:
+
+ FILE *mail;
+
+};
+
+#endif
diff --git a/models/CenterNet/src/tools/merge_pascal_json.py b/models/CenterNet/src/tools/merge_pascal_json.py
new file mode 100644
index 0000000..80765d3
--- /dev/null
+++ b/models/CenterNet/src/tools/merge_pascal_json.py
@@ -0,0 +1,30 @@
+import json
+
+# ANNOT_PATH = '/home/zxy/Datasets/VOC/annotations/'
+ANNOT_PATH = 'voc/annotations/'
+OUT_PATH = ANNOT_PATH
+INPUT_FILES = ['pascal_train2012.json', 'pascal_val2012.json',
+ 'pascal_train2007.json', 'pascal_val2007.json']
+OUTPUT_FILE = 'pascal_trainval0712.json'
+KEYS = ['images', 'type', 'annotations', 'categories']
+MERGE_KEYS = ['images', 'annotations']
+
+out = {}
+tot_anns = 0
+for i, file_name in enumerate(INPUT_FILES):
+ data = json.load(open(ANNOT_PATH + file_name, 'r'))
+ print('keys', data.keys())
+ if i == 0:
+ for key in KEYS:
+ out[key] = data[key]
+ print(file_name, key, len(data[key]))
+ else:
+ out['images'] += data['images']
+ for j in range(len(data['annotations'])):
+ data['annotations'][j]['id'] += tot_anns
+ out['annotations'] += data['annotations']
+ print(file_name, 'images', len(data['images']))
+ print(file_name, 'annotations', len(data['annotations']))
+ tot_anns = len(out['annotations'])
+print('tot', len(out['annotations']))
+json.dump(out, open(OUT_PATH + OUTPUT_FILE, 'w'))
diff --git a/models/CenterNet/src/tools/reval.py b/models/CenterNet/src/tools/reval.py
new file mode 100755
index 0000000..c2d881c
--- /dev/null
+++ b/models/CenterNet/src/tools/reval.py
@@ -0,0 +1,78 @@
+#!/usr/bin/env python
+
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# Modified by Xingyi Zhou
+# --------------------------------------------------------
+
+# Reval = re-eval. Re-evaluate saved detections.
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import sys
+import os.path as osp
+sys.path.insert(0, osp.join(osp.dirname(__file__), 'voc_eval_lib'))
+
+from model.test import apply_nms
+from datasets.pascal_voc import pascal_voc
+import pickle
+import os, argparse
+import numpy as np
+import json
+
+def parse_args():
+ """
+ Parse input arguments
+ """
+ parser = argparse.ArgumentParser(description='Re-evaluate results')
+ parser.add_argument('detection_file', type=str)
+ parser.add_argument('--output_dir', help='results directory', type=str)
+ parser.add_argument('--imdb', dest='imdb_name',
+ help='dataset to re-evaluate',
+ default='voc_2007_test', type=str)
+ parser.add_argument('--matlab', dest='matlab_eval',
+ help='use matlab for evaluation',
+ action='store_true')
+ parser.add_argument('--comp', dest='comp_mode', help='competition mode',
+ action='store_true')
+ parser.add_argument('--nms', dest='apply_nms', help='apply nms',
+ action='store_true')
+
+ if len(sys.argv) == 1:
+ parser.print_help()
+ sys.exit(1)
+
+ args = parser.parse_args()
+ return args
+
+
+def from_dets(imdb_name, detection_file, args):
+ imdb = pascal_voc('test', '2007')
+ imdb.competition_mode(args.comp_mode)
+ imdb.config['matlab_eval'] = args.matlab_eval
+ with open(os.path.join(detection_file), 'rb') as f:
+ if 'json' in detection_file:
+ dets = json.load(f)
+ else:
+ dets = pickle.load(f, encoding='latin1')
+ # import pdb; pdb.set_trace()
+ if args.apply_nms:
+ print('Applying NMS to all detections')
+ test_nms = 0.3
+ nms_dets = apply_nms(dets, test_nms)
+ else:
+ nms_dets = dets
+
+ print('Evaluating detections')
+ imdb.evaluate_detections(nms_dets)
+
+
+if __name__ == '__main__':
+ args = parse_args()
+
+ imdb_name = args.imdb_name
+ from_dets(imdb_name, args.detection_file, args)
diff --git a/models/CenterNet/src/tools/vis_pred.py b/models/CenterNet/src/tools/vis_pred.py
new file mode 100644
index 0000000..832e13a
--- /dev/null
+++ b/models/CenterNet/src/tools/vis_pred.py
@@ -0,0 +1,104 @@
+import pycocotools.coco as coco
+from pycocotools.cocoeval import COCOeval
+import sys
+import cv2
+import numpy as np
+import pickle
+IMG_PATH = '../../data/coco/val2017/'
+ANN_PATH = '../../data/coco/annotations/instances_val2017.json'
+DEBUG = True
+
+def _coco_box_to_bbox(box):
+ bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]],
+ dtype=np.int32)
+ return bbox
+
+_cat_ids = [
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
+ 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 27, 28, 31, 32, 33, 34, 35, 36,
+ 37, 38, 39, 40, 41, 42, 43, 44, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61, 62, 63, 64, 65, 67, 70,
+ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
+ 82, 84, 85, 86, 87, 88, 89, 90
+]
+num_classes = 80
+_classes = {
+ ind + 1: cat_id for ind, cat_id in enumerate(_cat_ids)
+}
+_to_order = {cat_id: ind for ind, cat_id in enumerate(_cat_ids)}
+coco = coco.COCO(ANN_PATH)
+CAT_NAMES = [coco.loadCats([_classes[i + 1]])[0]['name'] \
+ for i in range(num_classes)]
+COLORS = [((np.random.random((3, )) * 0.6 + 0.4)*255).astype(np.uint8) \
+ for _ in range(num_classes)]
+
+
+def add_box(image, bbox, sc, cat_id):
+ cat_id = _to_order[cat_id]
+ cat_name = CAT_NAMES[cat_id]
+ cat_size = cv2.getTextSize(cat_name + '0', cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)[0]
+ color = np.array(COLORS[cat_id]).astype(np.int32).tolist()
+ txt = '{}{:.0f}'.format(cat_name, sc * 10)
+ if bbox[1] - cat_size[1] - 2 < 0:
+ cv2.rectangle(image,
+ (bbox[0], bbox[1] + 2),
+ (bbox[0] + cat_size[0], bbox[1] + cat_size[1] + 2),
+ color, -1)
+ cv2.putText(image, txt,
+ (bbox[0], bbox[1] + cat_size[1] + 2),
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), thickness=1)
+ else:
+ cv2.rectangle(image,
+ (bbox[0], bbox[1] - cat_size[1] - 2),
+ (bbox[0] + cat_size[0], bbox[1] - 2),
+ color, -1)
+ cv2.putText(image, txt,
+ (bbox[0], bbox[1] - 2),
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), thickness=1)
+ cv2.rectangle(image,
+ (bbox[0], bbox[1]),
+ (bbox[2], bbox[3]),
+ color, 2)
+ return image
+
+if __name__ == '__main__':
+ dets = []
+ img_ids = coco.getImgIds()
+ num_images = len(img_ids)
+ for k in range(1, len(sys.argv)):
+ pred_path = sys.argv[k]
+ dets.append(coco.loadRes(pred_path))
+ # import pdb; pdb.set_trace()
+ for i, img_id in enumerate(img_ids):
+ img_info = coco.loadImgs(ids=[img_id])[0]
+ img_path = IMG_PATH + img_info['file_name']
+ img = cv2.imread(img_path)
+ gt_ids = coco.getAnnIds(imgIds=[img_id])
+ gts = coco.loadAnns(gt_ids)
+ gt_img = img.copy()
+ for j, pred in enumerate(gts):
+ bbox = _coco_box_to_bbox(pred['bbox'])
+ cat_id = pred['category_id']
+ gt_img = add_box(gt_img, bbox, 0, cat_id)
+ for k in range(len(dets)):
+ pred_ids = dets[k].getAnnIds(imgIds=[img_id])
+ preds = dets[k].loadAnns(pred_ids)
+ pred_img = img.copy()
+ for j, pred in enumerate(preds):
+ bbox = _coco_box_to_bbox(pred['bbox'])
+ sc = pred['score']
+ cat_id = pred['category_id']
+ if sc > 0.2:
+ pred_img = add_box(pred_img, bbox, sc, cat_id)
+ cv2.imshow('pred{}'.format(k), pred_img)
+ # cv2.imwrite('vis/{}_pred{}.png'.format(i, k), pred_img)
+ cv2.imshow('gt', gt_img)
+ # cv2.imwrite('vis/{}_gt.png'.format(i), gt_img)
+ cv2.waitKey()
+ # coco_eval.evaluate()
+ # coco_eval.accumulate()
+ # coco_eval.summarize()
+
+
diff --git a/models/CenterNet/src/tools/voc_eval_lib/LICENSE b/models/CenterNet/src/tools/voc_eval_lib/LICENSE
new file mode 100644
index 0000000..f68854d
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2017 Xinlei Chen
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/models/CenterNet/src/tools/voc_eval_lib/Makefile b/models/CenterNet/src/tools/voc_eval_lib/Makefile
new file mode 100644
index 0000000..1e9e686
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/Makefile
@@ -0,0 +1,6 @@
+all:
+ python setup.py build_ext --inplace
+ rm -rf build
+clean:
+ rm -rf */*.pyc
+ rm -rf */*.so
diff --git a/models/CenterNet/src/tools/voc_eval_lib/__init__.py b/models/CenterNet/src/tools/voc_eval_lib/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/__init__.py b/models/CenterNet/src/tools/voc_eval_lib/datasets/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/bbox.pyx b/models/CenterNet/src/tools/voc_eval_lib/datasets/bbox.pyx
new file mode 100644
index 0000000..0f9c696
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/datasets/bbox.pyx
@@ -0,0 +1,56 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Sergey Karayev
+# --------------------------------------------------------
+
+cimport cython
+import numpy as np
+cimport numpy as np
+
+DTYPE = np.float
+ctypedef np.float_t DTYPE_t
+
+def bbox_overlaps(
+ np.ndarray[DTYPE_t, ndim=2] boxes,
+ np.ndarray[DTYPE_t, ndim=2] query_boxes):
+ """
+ Parameters
+ ----------
+ boxes: (N, 4) ndarray of float
+ query_boxes: (K, 4) ndarray of float
+ Returns
+ -------
+ overlaps: (N, K) ndarray of overlap between boxes and query_boxes
+ """
+ cdef unsigned int N = boxes.shape[0]
+ cdef unsigned int K = query_boxes.shape[0]
+ cdef np.ndarray[DTYPE_t, ndim=2] overlaps = np.zeros((N, K), dtype=DTYPE)
+ cdef DTYPE_t iw, ih, box_area
+ cdef DTYPE_t ua
+ cdef unsigned int k, n
+ for k in range(K):
+ box_area = (
+ (query_boxes[k, 2] - query_boxes[k, 0] + 1) *
+ (query_boxes[k, 3] - query_boxes[k, 1] + 1)
+ )
+ for n in range(N):
+ iw = (
+ min(boxes[n, 2], query_boxes[k, 2]) -
+ max(boxes[n, 0], query_boxes[k, 0]) + 1
+ )
+ if iw > 0:
+ ih = (
+ min(boxes[n, 3], query_boxes[k, 3]) -
+ max(boxes[n, 1], query_boxes[k, 1]) + 1
+ )
+ if ih > 0:
+ ua = float(
+ (boxes[n, 2] - boxes[n, 0] + 1) *
+ (boxes[n, 3] - boxes[n, 1] + 1) +
+ box_area - iw * ih
+ )
+ overlaps[n, k] = iw * ih / ua
+ return overlaps
+
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/ds_utils.py b/models/CenterNet/src/tools/voc_eval_lib/datasets/ds_utils.py
new file mode 100644
index 0000000..fd5ca4b
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/datasets/ds_utils.py
@@ -0,0 +1,49 @@
+# --------------------------------------------------------
+# Fast/er R-CNN
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+
+
+def unique_boxes(boxes, scale=1.0):
+ """Return indices of unique boxes."""
+ v = np.array([1, 1e3, 1e6, 1e9])
+ hashes = np.round(boxes * scale).dot(v)
+ _, index = np.unique(hashes, return_index=True)
+ return np.sort(index)
+
+
+def xywh_to_xyxy(boxes):
+ """Convert [x y w h] box format to [x1 y1 x2 y2] format."""
+ return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))
+
+
+def xyxy_to_xywh(boxes):
+ """Convert [x1 y1 x2 y2] box format to [x y w h] format."""
+ return np.hstack((boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1))
+
+
+def validate_boxes(boxes, width=0, height=0):
+ """Check that a set of boxes are valid."""
+ x1 = boxes[:, 0]
+ y1 = boxes[:, 1]
+ x2 = boxes[:, 2]
+ y2 = boxes[:, 3]
+ assert (x1 >= 0).all()
+ assert (y1 >= 0).all()
+ assert (x2 >= x1).all()
+ assert (y2 >= y1).all()
+ assert (x2 < width).all()
+ assert (y2 < height).all()
+
+
+def filter_small_boxes(boxes, min_size):
+ w = boxes[:, 2] - boxes[:, 0]
+ h = boxes[:, 3] - boxes[:, 1]
+ keep = np.where((w >= min_size) & (h > min_size))[0]
+ return keep
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/imdb.py b/models/CenterNet/src/tools/voc_eval_lib/datasets/imdb.py
new file mode 100644
index 0000000..86709f0
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/datasets/imdb.py
@@ -0,0 +1,268 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick and Xinlei Chen
+# Modified by Xingyi Zhou
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+import os.path as osp
+import PIL
+# from utils.cython_bbox import bbox_overlaps
+import numpy as np
+import scipy.sparse
+from model.config import cfg
+
+def bbox_overlaps(box1, box2):
+ area1 = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1)
+ area2 = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1)
+ inter = max(min(box1[2], box2[2]) - max(box1[0], box2[0]) + 1, 0) * \
+ max(min(box1[3], box2[3]) - max(box1[1], box2[1]) + 1, 0)
+ iou = 1.0 * inter / (area1 + area2 - inter)
+ return iou
+
+class imdb(object):
+ """Image database."""
+
+ def __init__(self, name, classes=None):
+ self._name = name
+ self._num_classes = 0
+ if not classes:
+ self._classes = []
+ else:
+ self._classes = classes
+ self._image_index = []
+ self._obj_proposer = 'gt'
+ self._roidb = None
+ self._roidb_handler = self.default_roidb
+ # Use this dict for storing dataset specific config options
+ self.config = {}
+
+ @property
+ def name(self):
+ return self._name
+
+ @property
+ def num_classes(self):
+ return len(self._classes)
+
+ @property
+ def classes(self):
+ return self._classes
+
+ @property
+ def image_index(self):
+ return self._image_index
+
+ @property
+ def roidb_handler(self):
+ return self._roidb_handler
+
+ @roidb_handler.setter
+ def roidb_handler(self, val):
+ self._roidb_handler = val
+
+ def set_proposal_method(self, method):
+ method = eval('self.' + method + '_roidb')
+ self.roidb_handler = method
+
+ @property
+ def roidb(self):
+ # A roidb is a list of dictionaries, each with the following keys:
+ # boxes
+ # gt_overlaps
+ # gt_classes
+ # flipped
+ if self._roidb is not None:
+ return self._roidb
+ self._roidb = self.roidb_handler()
+ return self._roidb
+
+ @property
+ def cache_path(self):
+ cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
+ if not os.path.exists(cache_path):
+ os.makedirs(cache_path)
+ return cache_path
+
+ @property
+ def num_images(self):
+ return len(self.image_index)
+
+ def image_path_at(self, i):
+ raise NotImplementedError
+
+ def default_roidb(self):
+ raise NotImplementedError
+
+ def evaluate_detections(self, all_boxes, output_dir=None):
+ """
+ all_boxes is a list of length number-of-classes.
+ Each list element is a list of length number-of-images.
+ Each of those list elements is either an empty list []
+ or a numpy array of detection.
+
+ all_boxes[class][image] = [] or np.array of shape #dets x 5
+ """
+ raise NotImplementedError
+
+ def _get_widths(self):
+ return [PIL.Image.open(self.image_path_at(i)).size[0]
+ for i in range(self.num_images)]
+
+ def append_flipped_images(self):
+ num_images = self.num_images
+ widths = self._get_widths()
+ for i in range(num_images):
+ boxes = self.roidb[i]['boxes'].copy()
+ oldx1 = boxes[:, 0].copy()
+ oldx2 = boxes[:, 2].copy()
+ boxes[:, 0] = widths[i] - oldx2 - 1
+ boxes[:, 2] = widths[i] - oldx1 - 1
+ assert (boxes[:, 2] >= boxes[:, 0]).all()
+ entry = {'boxes': boxes,
+ 'gt_overlaps': self.roidb[i]['gt_overlaps'],
+ 'gt_classes': self.roidb[i]['gt_classes'],
+ 'flipped': True}
+ self.roidb.append(entry)
+ self._image_index = self._image_index * 2
+
+ def evaluate_recall(self, candidate_boxes=None, thresholds=None,
+ area='all', limit=None):
+ """Evaluate detection proposal recall metrics.
+
+ Returns:
+ results: dictionary of results with keys
+ 'ar': average recall
+ 'recalls': vector recalls at each IoU overlap threshold
+ 'thresholds': vector of IoU overlap thresholds
+ 'gt_overlaps': vector of all ground-truth overlaps
+ """
+ # Record max overlap value for each gt box
+ # Return vector of overlap values
+ areas = {'all': 0, 'small': 1, 'medium': 2, 'large': 3,
+ '96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7}
+ area_ranges = [[0 ** 2, 1e5 ** 2], # all
+ [0 ** 2, 32 ** 2], # small
+ [32 ** 2, 96 ** 2], # medium
+ [96 ** 2, 1e5 ** 2], # large
+ [96 ** 2, 128 ** 2], # 96-128
+ [128 ** 2, 256 ** 2], # 128-256
+ [256 ** 2, 512 ** 2], # 256-512
+ [512 ** 2, 1e5 ** 2], # 512-inf
+ ]
+ assert area in areas, 'unknown area range: {}'.format(area)
+ area_range = area_ranges[areas[area]]
+ gt_overlaps = np.zeros(0)
+ num_pos = 0
+ for i in range(self.num_images):
+ # Checking for max_overlaps == 1 avoids including crowd annotations
+ # (...pretty hacking :/)
+ max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1)
+ gt_inds = np.where((self.roidb[i]['gt_classes'] > 0) &
+ (max_gt_overlaps == 1))[0]
+ gt_boxes = self.roidb[i]['boxes'][gt_inds, :]
+ gt_areas = self.roidb[i]['seg_areas'][gt_inds]
+ valid_gt_inds = np.where((gt_areas >= area_range[0]) &
+ (gt_areas <= area_range[1]))[0]
+ gt_boxes = gt_boxes[valid_gt_inds, :]
+ num_pos += len(valid_gt_inds)
+
+ if candidate_boxes is None:
+ # If candidate_boxes is not supplied, the default is to use the
+ # non-ground-truth boxes from this roidb
+ non_gt_inds = np.where(self.roidb[i]['gt_classes'] == 0)[0]
+ boxes = self.roidb[i]['boxes'][non_gt_inds, :]
+ else:
+ boxes = candidate_boxes[i]
+ if boxes.shape[0] == 0:
+ continue
+ if limit is not None and boxes.shape[0] > limit:
+ boxes = boxes[:limit, :]
+
+ overlaps = bbox_overlaps(boxes.astype(np.float),
+ gt_boxes.astype(np.float))
+
+ _gt_overlaps = np.zeros((gt_boxes.shape[0]))
+ for j in range(gt_boxes.shape[0]):
+ # find which proposal box maximally covers each gt box
+ argmax_overlaps = overlaps.argmax(axis=0)
+ # and get the iou amount of coverage for each gt box
+ max_overlaps = overlaps.max(axis=0)
+ # find which gt box is 'best' covered (i.e. 'best' = most iou)
+ gt_ind = max_overlaps.argmax()
+ gt_ovr = max_overlaps.max()
+ assert (gt_ovr >= 0)
+ # find the proposal box that covers the best covered gt box
+ box_ind = argmax_overlaps[gt_ind]
+ # record the iou coverage of this gt box
+ _gt_overlaps[j] = overlaps[box_ind, gt_ind]
+ assert (_gt_overlaps[j] == gt_ovr)
+ # mark the proposal box and the gt box as used
+ overlaps[box_ind, :] = -1
+ overlaps[:, gt_ind] = -1
+ # append recorded iou coverage level
+ gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
+
+ gt_overlaps = np.sort(gt_overlaps)
+ if thresholds is None:
+ step = 0.05
+ thresholds = np.arange(0.5, 0.95 + 1e-5, step)
+ recalls = np.zeros_like(thresholds)
+ # compute recall for each iou threshold
+ for i, t in enumerate(thresholds):
+ recalls[i] = (gt_overlaps >= t).sum() / float(num_pos)
+ # ar = 2 * np.trapz(recalls, thresholds)
+ ar = recalls.mean()
+ return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds,
+ 'gt_overlaps': gt_overlaps}
+
+ def create_roidb_from_box_list(self, box_list, gt_roidb):
+ assert len(box_list) == self.num_images, \
+ 'Number of boxes must match number of ground-truth images'
+ roidb = []
+ for i in range(self.num_images):
+ boxes = box_list[i]
+ num_boxes = boxes.shape[0]
+ overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
+
+ if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
+ gt_boxes = gt_roidb[i]['boxes']
+ gt_classes = gt_roidb[i]['gt_classes']
+ gt_overlaps = bbox_overlaps(boxes.astype(np.float),
+ gt_boxes.astype(np.float))
+ argmaxes = gt_overlaps.argmax(axis=1)
+ maxes = gt_overlaps.max(axis=1)
+ I = np.where(maxes > 0)[0]
+ overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
+
+ overlaps = scipy.sparse.csr_matrix(overlaps)
+ roidb.append({
+ 'boxes': boxes,
+ 'gt_classes': np.zeros((num_boxes,), dtype=np.int32),
+ 'gt_overlaps': overlaps,
+ 'flipped': False,
+ 'seg_areas': np.zeros((num_boxes,), dtype=np.float32),
+ })
+ return roidb
+
+ @staticmethod
+ def merge_roidbs(a, b):
+ assert len(a) == len(b)
+ for i in range(len(a)):
+ a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes']))
+ a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'],
+ b[i]['gt_classes']))
+ a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'],
+ b[i]['gt_overlaps']])
+ a[i]['seg_areas'] = np.hstack((a[i]['seg_areas'],
+ b[i]['seg_areas']))
+ return a
+
+ def competition_mode(self, on):
+ """Turn competition mode on or off."""
+ pass
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/pascal_voc.py b/models/CenterNet/src/tools/voc_eval_lib/datasets/pascal_voc.py
new file mode 100644
index 0000000..6852c06
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/datasets/pascal_voc.py
@@ -0,0 +1,313 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick and Xinlei Chen
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+from datasets.imdb import imdb
+import datasets.ds_utils as ds_utils
+import xml.etree.ElementTree as ET
+import numpy as np
+import scipy.sparse
+import scipy.io as sio
+# import utils.cython_bbox
+import pickle
+import subprocess
+import uuid
+from .voc_eval import voc_eval
+from model.config import cfg
+
+
+class pascal_voc(imdb):
+ def __init__(self, image_set, year, use_diff=False):
+ name = 'voc_' + year + '_' + image_set
+ if use_diff:
+ name += '_diff'
+ imdb.__init__(self, name)
+ self._year = year
+ self._image_set = image_set
+ self._devkit_path = self._get_default_path()
+ self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
+ self._classes = ('__background__', # always index 0
+ 'aeroplane', 'bicycle', 'bird', 'boat',
+ 'bottle', 'bus', 'car', 'cat', 'chair',
+ 'cow', 'diningtable', 'dog', 'horse',
+ 'motorbike', 'person', 'pottedplant',
+ 'sheep', 'sofa', 'train', 'tvmonitor')
+ self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
+ self._image_ext = '.jpg'
+ self._image_index = self._load_image_set_index()
+ # Default to roidb handler
+ self._roidb_handler = self.gt_roidb
+ self._salt = str(uuid.uuid4())
+ self._comp_id = 'comp4'
+
+ # PASCAL specific config options
+ self.config = {'cleanup': True,
+ 'use_salt': True,
+ 'use_diff': use_diff,
+ 'matlab_eval': False,
+ 'rpn_file': None}
+
+ assert os.path.exists(self._devkit_path), \
+ 'VOCdevkit path does not exist: {}'.format(self._devkit_path)
+ assert os.path.exists(self._data_path), \
+ 'Path does not exist: {}'.format(self._data_path)
+
+ def image_path_at(self, i):
+ """
+ Return the absolute path to image i in the image sequence.
+ """
+ return self.image_path_from_index(self._image_index[i])
+
+ def image_path_from_index(self, index):
+ """
+ Construct an image path from the image's "index" identifier.
+ """
+ image_path = os.path.join(self._data_path, 'JPEGImages',
+ index + self._image_ext)
+ assert os.path.exists(image_path), \
+ 'Path does not exist: {}'.format(image_path)
+ return image_path
+
+ def _load_image_set_index(self):
+ """
+ Load the indexes listed in this dataset's image set file.
+ """
+ # Example path to image set file:
+ # self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
+ image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
+ self._image_set + '.txt')
+ assert os.path.exists(image_set_file), \
+ 'Path does not exist: {}'.format(image_set_file)
+ with open(image_set_file) as f:
+ image_index = [x.strip() for x in f.readlines()]
+ return image_index
+
+ def _get_default_path(self):
+ """
+ Return the default path where PASCAL VOC is expected to be installed.
+ """
+ return os.path.join(cfg.DATA_DIR, 'voc', 'VOCdevkit')
+
+ def gt_roidb(self):
+ """
+ Return the database of ground-truth regions of interest.
+
+ This function loads/saves from/to a cache file to speed up future calls.
+ """
+ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
+ if os.path.exists(cache_file):
+ with open(cache_file, 'rb') as fid:
+ try:
+ roidb = pickle.load(fid)
+ except:
+ roidb = pickle.load(fid, encoding='bytes')
+ print('{} gt roidb loaded from {}'.format(self.name, cache_file))
+ return roidb
+
+ gt_roidb = [self._load_pascal_annotation(index)
+ for index in self.image_index]
+ with open(cache_file, 'wb') as fid:
+ pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
+ print('wrote gt roidb to {}'.format(cache_file))
+
+ return gt_roidb
+
+ def rpn_roidb(self):
+ if int(self._year) == 2007 or self._image_set != 'test':
+ gt_roidb = self.gt_roidb()
+ rpn_roidb = self._load_rpn_roidb(gt_roidb)
+ roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb)
+ else:
+ roidb = self._load_rpn_roidb(None)
+
+ return roidb
+
+ def _load_rpn_roidb(self, gt_roidb):
+ filename = self.config['rpn_file']
+ print('loading {}'.format(filename))
+ assert os.path.exists(filename), \
+ 'rpn data not found at: {}'.format(filename)
+ with open(filename, 'rb') as f:
+ box_list = pickle.load(f)
+ return self.create_roidb_from_box_list(box_list, gt_roidb)
+
+ def _load_pascal_annotation(self, index):
+ """
+ Load image and bounding boxes info from XML file in the PASCAL VOC
+ format.
+ """
+ filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
+ tree = ET.parse(filename)
+ objs = tree.findall('object')
+ if not self.config['use_diff']:
+ # Exclude the samples labeled as difficult
+ non_diff_objs = [
+ obj for obj in objs if int(obj.find('difficult').text) == 0]
+ # if len(non_diff_objs) != len(objs):
+ # print 'Removed {} difficult objects'.format(
+ # len(objs) - len(non_diff_objs))
+ objs = non_diff_objs
+ num_objs = len(objs)
+
+ boxes = np.zeros((num_objs, 4), dtype=np.uint16)
+ gt_classes = np.zeros((num_objs), dtype=np.int32)
+ overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
+ # "Seg" area for pascal is just the box area
+ seg_areas = np.zeros((num_objs), dtype=np.float32)
+
+ # Load object bounding boxes into a data frame.
+ for ix, obj in enumerate(objs):
+ bbox = obj.find('bndbox')
+ # Make pixel indexes 0-based
+ x1 = float(bbox.find('xmin').text) - 1
+ y1 = float(bbox.find('ymin').text) - 1
+ x2 = float(bbox.find('xmax').text) - 1
+ y2 = float(bbox.find('ymax').text) - 1
+ cls = self._class_to_ind[obj.find('name').text.lower().strip()]
+ boxes[ix, :] = [x1, y1, x2, y2]
+ gt_classes[ix] = cls
+ overlaps[ix, cls] = 1.0
+ seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)
+
+ overlaps = scipy.sparse.csr_matrix(overlaps)
+
+ return {'boxes': boxes,
+ 'gt_classes': gt_classes,
+ 'gt_overlaps': overlaps,
+ 'flipped': False,
+ 'seg_areas': seg_areas}
+
+ def _get_comp_id(self):
+ comp_id = (self._comp_id + '_' + self._salt if self.config['use_salt']
+ else self._comp_id)
+ return comp_id
+
+ def _get_voc_results_file_template(self):
+ # VOCdevkit/results/VOC2007/Main/_det_test_aeroplane.txt
+ filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt'
+ path = os.path.join(
+ self._devkit_path,
+ 'results',
+ 'VOC' + self._year,
+ 'Main',
+ filename)
+ return path
+
+ def _write_voc_results_file(self, all_boxes):
+ for cls_ind, cls in enumerate(self.classes):
+ if cls == '__background__':
+ continue
+ # print('Writing {} VOC results file'.format(cls))
+ filename = self._get_voc_results_file_template().format(cls)
+ # print(filename)
+ with open(filename, 'wt') as f:
+ for im_ind, index in enumerate(self.image_index):
+ dets = np.array(all_boxes[cls_ind][im_ind])
+ if len(dets) == 0:
+ continue
+ # the VOCdevkit expects 1-based indices
+ for k in range(dets.shape[0]):
+ f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
+ format(index, dets[k, -1],
+ dets[k, 0] + 1, dets[k, 1] + 1,
+ dets[k, 2] + 1, dets[k, 3] + 1))
+
+ def _do_python_eval(self, output_dir=None):
+ annopath = os.path.join(
+ self._devkit_path,
+ 'VOC' + self._year,
+ 'Annotations',
+ '{:s}.xml')
+ imagesetfile = os.path.join(
+ self._devkit_path,
+ 'VOC' + self._year,
+ 'ImageSets',
+ 'Main',
+ self._image_set + '.txt')
+ cachedir = os.path.join(self._devkit_path, 'annotations_cache')
+ aps = []
+ # The PASCAL VOC metric changed in 2010
+ use_07_metric = True if int(self._year) < 2010 else False
+ print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
+ if output_dir is not None and not os.path.isdir(output_dir):
+ os.mkdir(output_dir)
+ for i, cls in enumerate(self._classes):
+ if cls == '__background__':
+ continue
+ filename = self._get_voc_results_file_template().format(cls)
+ rec, prec, ap = voc_eval(
+ filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
+ use_07_metric=use_07_metric, use_diff=self.config['use_diff'])
+ aps += [ap]
+ print(('AP for {} = {:.4f}'.format(cls, ap)))
+ if output_dir is not None:
+ with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
+ pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
+ print(('Mean AP = {:.4f}'.format(np.mean(aps))))
+ print('~~~~~~~~')
+ '''
+ print('Results:')
+ for ap in aps:
+ print(('{:.3f}'.format(ap)))
+ print(('{:.3f}'.format(np.mean(aps))))
+ print('~~~~~~~~')
+ print('')
+ print('--------------------------------------------------------------')
+ print('Results computed with the **unofficial** Python eval code.')
+ print('Results should be very close to the official MATLAB eval code.')
+ print('Recompute with `./tools/reval.py --matlab ...` for your paper.')
+ print('-- Thanks, The Management')
+ print('--------------------------------------------------------------')
+ '''
+
+ def _do_matlab_eval(self, output_dir='output'):
+ print('-----------------------------------------------------')
+ print('Computing results with the official MATLAB eval code.')
+ print('-----------------------------------------------------')
+ path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
+ 'VOCdevkit-matlab-wrapper')
+ cmd = 'cd {} && '.format(path)
+ cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
+ cmd += '-r "dbstop if error; '
+ cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
+ .format(self._devkit_path, self._get_comp_id(),
+ self._image_set, output_dir)
+ print(('Running:\n{}'.format(cmd)))
+ status = subprocess.call(cmd, shell=True)
+
+ def evaluate_detections(self, all_boxes, output_dir=None):
+ self._write_voc_results_file(all_boxes)
+ self._do_python_eval(output_dir)
+ if self.config['matlab_eval']:
+ self._do_matlab_eval(output_dir)
+ if self.config['cleanup']:
+ for cls in self._classes:
+ if cls == '__background__':
+ continue
+ filename = self._get_voc_results_file_template().format(cls)
+ os.remove(filename)
+
+ def competition_mode(self, on):
+ if on:
+ self.config['use_salt'] = False
+ self.config['cleanup'] = False
+ else:
+ self.config['use_salt'] = True
+ self.config['cleanup'] = True
+
+
+if __name__ == '__main__':
+ from datasets.pascal_voc import pascal_voc
+
+ d = pascal_voc('trainval', '2007')
+ res = d.roidb
+ from IPython import embed;
+
+ embed()
diff --git a/models/CenterNet/src/tools/voc_eval_lib/datasets/voc_eval.py b/models/CenterNet/src/tools/voc_eval_lib/datasets/voc_eval.py
new file mode 100644
index 0000000..5a49b43
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/datasets/voc_eval.py
@@ -0,0 +1,215 @@
+# --------------------------------------------------------
+# Fast/er R-CNN
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Bharath Hariharan
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import xml.etree.ElementTree as ET
+import os
+import pickle
+import numpy as np
+
+def parse_rec(filename):
+ """ Parse a PASCAL VOC xml file """
+ tree = ET.parse(filename)
+ objects = []
+ for obj in tree.findall('object'):
+ obj_struct = {}
+ obj_struct['name'] = obj.find('name').text
+ obj_struct['pose'] = obj.find('pose').text
+ obj_struct['truncated'] = int(obj.find('truncated').text)
+ obj_struct['difficult'] = int(obj.find('difficult').text)
+ bbox = obj.find('bndbox')
+ obj_struct['bbox'] = [int(bbox.find('xmin').text),
+ int(bbox.find('ymin').text),
+ int(bbox.find('xmax').text),
+ int(bbox.find('ymax').text)]
+ objects.append(obj_struct)
+
+ return objects
+
+
+def voc_ap(rec, prec, use_07_metric=False):
+ """ ap = voc_ap(rec, prec, [use_07_metric])
+ Compute VOC AP given precision and recall.
+ If use_07_metric is true, uses the
+ VOC 07 11 point method (default:False).
+ """
+ if use_07_metric:
+ # 11 point metric
+ ap = 0.
+ for t in np.arange(0., 1.1, 0.1):
+ if np.sum(rec >= t) == 0:
+ p = 0
+ else:
+ p = np.max(prec[rec >= t])
+ # print(t, p)
+ ap = ap + p / 11.
+ else:
+ # correct AP calculation
+ # first append sentinel values at the end
+ mrec = np.concatenate(([0.], rec, [1.]))
+ mpre = np.concatenate(([0.], prec, [0.]))
+
+ # compute the precision envelope
+ for i in range(mpre.size - 1, 0, -1):
+ mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
+
+ # to calculate area under PR curve, look for points
+ # where X axis (recall) changes value
+ i = np.where(mrec[1:] != mrec[:-1])[0]
+
+ # and sum (\Delta recall) * prec
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
+ return ap
+
+
+def voc_eval(detpath,
+ annopath,
+ imagesetfile,
+ classname,
+ cachedir,
+ ovthresh=0.5,
+ use_07_metric=False,
+ use_diff=False):
+ """rec, prec, ap = voc_eval(detpath,
+ annopath,
+ imagesetfile,
+ classname,
+ [ovthresh],
+ [use_07_metric])
+
+ Top level function that does the PASCAL VOC evaluation.
+
+ detpath: Path to detections
+ detpath.format(classname) should produce the detection results file.
+ annopath: Path to annotations
+ annopath.format(imagename) should be the xml annotations file.
+ imagesetfile: Text file containing the list of images, one image per line.
+ classname: Category name (duh)
+ cachedir: Directory for caching the annotations
+ [ovthresh]: Overlap threshold (default = 0.5)
+ [use_07_metric]: Whether to use VOC07's 11 point AP computation
+ (default False)
+ """
+ # assumes detections are in detpath.format(classname)
+ # assumes annotations are in annopath.format(imagename)
+ # assumes imagesetfile is a text file with each line an image name
+ # cachedir caches the annotations in a pickle file
+
+ # first load gt
+ if not os.path.isdir(cachedir):
+ os.mkdir(cachedir)
+ cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile)
+ # read list of images
+ with open(imagesetfile, 'r') as f:
+ lines = f.readlines()
+ imagenames = [x.strip() for x in lines]
+
+ if not os.path.isfile(cachefile):
+ # load annotations
+ recs = {}
+ for i, imagename in enumerate(imagenames):
+ recs[imagename] = parse_rec(annopath.format(imagename))
+ if i % 100 == 0:
+ print('Reading annotation for {:d}/{:d}'.format(
+ i + 1, len(imagenames)))
+ # save
+ print('Saving cached annotations to {:s}'.format(cachefile))
+ with open(cachefile, 'wb') as f:
+ pickle.dump(recs, f)
+ else:
+ # load
+ with open(cachefile, 'rb') as f:
+ try:
+ recs = pickle.load(f)
+ except:
+ recs = pickle.load(f, encoding='bytes')
+
+ # extract gt objects for this class
+ class_recs = {}
+ npos = 0
+ for imagename in imagenames:
+ R = [obj for obj in recs[imagename] if obj['name'] == classname]
+ bbox = np.array([x['bbox'] for x in R])
+ if use_diff:
+ difficult = np.array([False for x in R]).astype(np.bool)
+ else:
+ difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
+ det = [False] * len(R)
+ npos = npos + sum(~difficult)
+ class_recs[imagename] = {'bbox': bbox,
+ 'difficult': difficult,
+ 'det': det}
+
+ # read dets
+ detfile = detpath.format(classname)
+ with open(detfile, 'r') as f:
+ lines = f.readlines()
+
+ splitlines = [x.strip().split(' ') for x in lines]
+ image_ids = [x[0] for x in splitlines]
+ confidence = np.array([float(x[1]) for x in splitlines])
+ BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
+
+ nd = len(image_ids)
+ tp = np.zeros(nd)
+ fp = np.zeros(nd)
+
+ if BB.shape[0] > 0:
+ # sort by confidence
+ sorted_ind = np.argsort(-confidence)
+ sorted_scores = np.sort(-confidence)
+ BB = BB[sorted_ind, :]
+ image_ids = [image_ids[x] for x in sorted_ind]
+
+ # go down dets and mark TPs and FPs
+ for d in range(nd):
+ R = class_recs[image_ids[d]]
+ bb = BB[d, :].astype(float)
+ ovmax = -np.inf
+ BBGT = R['bbox'].astype(float)
+
+ if BBGT.size > 0:
+ # compute overlaps
+ # intersection
+ ixmin = np.maximum(BBGT[:, 0], bb[0])
+ iymin = np.maximum(BBGT[:, 1], bb[1])
+ ixmax = np.minimum(BBGT[:, 2], bb[2])
+ iymax = np.minimum(BBGT[:, 3], bb[3])
+ iw = np.maximum(ixmax - ixmin + 1., 0.)
+ ih = np.maximum(iymax - iymin + 1., 0.)
+ inters = iw * ih
+
+ # union
+ uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
+ (BBGT[:, 2] - BBGT[:, 0] + 1.) *
+ (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
+
+ overlaps = inters / uni
+ ovmax = np.max(overlaps)
+ jmax = np.argmax(overlaps)
+
+ if ovmax > ovthresh:
+ if not R['difficult'][jmax]:
+ if not R['det'][jmax]:
+ tp[d] = 1.
+ R['det'][jmax] = 1
+ else:
+ fp[d] = 1.
+ else:
+ fp[d] = 1.
+
+ # compute precision recall
+ fp = np.cumsum(fp)
+ tp = np.cumsum(tp)
+ rec = tp / float(npos)
+ # avoid divide by zero in case the first detection matches a difficult
+ # ground truth
+ prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
+ ap = voc_ap(rec, prec, use_07_metric)
+
+ return rec, prec, ap
diff --git a/models/CenterNet/src/tools/voc_eval_lib/model/__init__.py b/models/CenterNet/src/tools/voc_eval_lib/model/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/src/tools/voc_eval_lib/model/bbox_transform.py b/models/CenterNet/src/tools/voc_eval_lib/model/bbox_transform.py
new file mode 100644
index 0000000..5e617f2
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/model/bbox_transform.py
@@ -0,0 +1,85 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+
+def bbox_transform(ex_rois, gt_rois):
+ ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
+ ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
+ ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
+ ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights
+
+ gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0
+ gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0
+ gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
+ gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights
+
+ targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
+ targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
+ targets_dw = np.log(gt_widths / ex_widths)
+ targets_dh = np.log(gt_heights / ex_heights)
+
+ targets = np.vstack(
+ (targets_dx, targets_dy, targets_dw, targets_dh)).transpose()
+ return targets
+
+
+def bbox_transform_inv(boxes, deltas):
+ if boxes.shape[0] == 0:
+ return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)
+
+ boxes = boxes.astype(deltas.dtype, copy=False)
+ widths = boxes[:, 2] - boxes[:, 0] + 1.0
+ heights = boxes[:, 3] - boxes[:, 1] + 1.0
+ ctr_x = boxes[:, 0] + 0.5 * widths
+ ctr_y = boxes[:, 1] + 0.5 * heights
+
+ dx = deltas[:, 0::4]
+ dy = deltas[:, 1::4]
+ dw = deltas[:, 2::4]
+ dh = deltas[:, 3::4]
+
+ pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
+ pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
+ pred_w = np.exp(dw) * widths[:, np.newaxis]
+ pred_h = np.exp(dh) * heights[:, np.newaxis]
+
+ pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
+ # x1
+ pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
+ # y1
+ pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
+ # x2
+ pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
+ # y2
+ pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
+
+ return pred_boxes
+
+
+def clip_boxes(boxes, im_shape):
+ """
+ Clip boxes to image boundaries.
+ """
+
+ # x1 >= 0
+ boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
+ # y1 >= 0
+ boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
+ # x2 < im_shape[1]
+ boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
+ # y2 < im_shape[0]
+ boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
+ return boxes
+
+
+
+
+
diff --git a/models/CenterNet/src/tools/voc_eval_lib/model/config.py b/models/CenterNet/src/tools/voc_eval_lib/model/config.py
new file mode 100644
index 0000000..4dfd99c
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/model/config.py
@@ -0,0 +1,387 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import os
+import os.path as osp
+import numpy as np
+# `pip install easydict` if you don't have it
+from easydict import EasyDict as edict
+
+__C = edict()
+# Consumers can get config by:
+# from fast_rcnn_config import cfg
+cfg = __C
+
+#
+# Training options
+#
+__C.TRAIN = edict()
+
+# Initial learning rate
+__C.TRAIN.LEARNING_RATE = 0.001
+
+# Momentum
+__C.TRAIN.MOMENTUM = 0.9
+
+# Weight decay, for regularization
+__C.TRAIN.WEIGHT_DECAY = 0.0001
+
+# Factor for reducing the learning rate
+__C.TRAIN.GAMMA = 0.1
+
+# Step size for reducing the learning rate, currently only support one step
+__C.TRAIN.STEPSIZE = [30000]
+
+# Iteration intervals for showing the loss during training, on command line interface
+__C.TRAIN.DISPLAY = 10
+
+# Whether to double the learning rate for bias
+__C.TRAIN.DOUBLE_BIAS = True
+
+# Whether to initialize the weights with truncated normal distribution
+__C.TRAIN.TRUNCATED = False
+
+# Whether to have weight decay on bias as well
+__C.TRAIN.BIAS_DECAY = False
+
+# Whether to add ground truth boxes to the pool when sampling regions
+__C.TRAIN.USE_GT = False
+
+# Whether to use aspect-ratio grouping of training images, introduced merely for saving
+# GPU memory
+__C.TRAIN.ASPECT_GROUPING = False
+
+# The number of snapshots kept, older ones are deleted to save space
+__C.TRAIN.SNAPSHOT_KEPT = 3
+
+# The time interval for saving tensorflow summaries
+__C.TRAIN.SUMMARY_INTERVAL = 180
+
+# Scale to use during training (can list multiple scales)
+# The scale is the pixel size of an image's shortest side
+__C.TRAIN.SCALES = (600,)
+
+# Max pixel size of the longest side of a scaled input image
+__C.TRAIN.MAX_SIZE = 1000
+
+# Images to use per minibatch
+__C.TRAIN.IMS_PER_BATCH = 1
+
+# Minibatch size (number of regions of interest [ROIs])
+__C.TRAIN.BATCH_SIZE = 128
+
+# Fraction of minibatch that is labeled foreground (i.e. class > 0)
+__C.TRAIN.FG_FRACTION = 0.25
+
+# Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH)
+__C.TRAIN.FG_THRESH = 0.5
+
+# Overlap threshold for a ROI to be considered background (class = 0 if
+# overlap in [LO, HI))
+__C.TRAIN.BG_THRESH_HI = 0.5
+__C.TRAIN.BG_THRESH_LO = 0.1
+
+# Use horizontally-flipped images during training?
+__C.TRAIN.USE_FLIPPED = True
+
+# Train bounding-box regressors
+__C.TRAIN.BBOX_REG = True
+
+# Overlap required between a ROI and ground-truth box in order for that ROI to
+# be used as a bounding-box regression training example
+__C.TRAIN.BBOX_THRESH = 0.5
+
+# Iterations between snapshots
+__C.TRAIN.SNAPSHOT_ITERS = 5000
+
+# solver.prototxt specifies the snapshot path prefix, this adds an optional
+# infix to yield the path: [_]_iters_XYZ.caffemodel
+__C.TRAIN.SNAPSHOT_PREFIX = 'res101_faster_rcnn'
+
+# Normalize the targets (subtract empirical mean, divide by empirical stddev)
+__C.TRAIN.BBOX_NORMALIZE_TARGETS = True
+
+# Deprecated (inside weights)
+__C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
+
+# Normalize the targets using "precomputed" (or made up) means and stdevs
+# (BBOX_NORMALIZE_TARGETS must also be True)
+__C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = True
+
+__C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0)
+
+__C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2)
+
+# Train using these proposals
+__C.TRAIN.PROPOSAL_METHOD = 'gt'
+
+# Make minibatches from images that have similar aspect ratios (i.e. both
+# tall and thin or both short and wide) in order to avoid wasting computation
+# on zero-padding.
+
+# Use RPN to detect objects
+__C.TRAIN.HAS_RPN = True
+
+# IOU >= thresh: positive example
+__C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7
+
+# IOU < thresh: negative example
+__C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3
+
+# If an anchor satisfied by positive and negative conditions set to negative
+__C.TRAIN.RPN_CLOBBER_POSITIVES = False
+
+# Max number of foreground examples
+__C.TRAIN.RPN_FG_FRACTION = 0.5
+
+# Total number of examples
+__C.TRAIN.RPN_BATCHSIZE = 256
+
+# NMS threshold used on RPN proposals
+__C.TRAIN.RPN_NMS_THRESH = 0.7
+
+# Number of top scoring boxes to keep before apply NMS to RPN proposals
+__C.TRAIN.RPN_PRE_NMS_TOP_N = 12000
+
+# Number of top scoring boxes to keep after applying NMS to RPN proposals
+__C.TRAIN.RPN_POST_NMS_TOP_N = 2000
+
+# Deprecated (outside weights)
+__C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0)
+
+# Give the positive RPN examples weight of p * 1 / {num positives}
+# and give negatives a weight of (1 - p)
+# Set to -1.0 to use uniform example weighting
+__C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0
+
+# Whether to use all ground truth bounding boxes for training,
+# For COCO, setting USE_ALL_GT to False will exclude boxes that are flagged as ''iscrowd''
+__C.TRAIN.USE_ALL_GT = True
+
+#
+# Testing options
+#
+__C.TEST = edict()
+
+# Scale to use during testing (can NOT list multiple scales)
+# The scale is the pixel size of an image's shortest side
+__C.TEST.SCALES = (600,)
+
+# Max pixel size of the longest side of a scaled input image
+__C.TEST.MAX_SIZE = 1000
+
+# Overlap threshold used for non-maximum suppression (suppress boxes with
+# IoU >= this threshold)
+__C.TEST.NMS = 0.3
+
+# Experimental: treat the (K+1) units in the cls_score layer as linear
+# predictors (trained, eg, with one-vs-rest SVMs).
+__C.TEST.SVM = False
+
+# Test using bounding-box regressors
+__C.TEST.BBOX_REG = True
+
+# Propose boxes
+__C.TEST.HAS_RPN = False
+
+# Test using these proposals
+__C.TEST.PROPOSAL_METHOD = 'gt'
+
+## NMS threshold used on RPN proposals
+__C.TEST.RPN_NMS_THRESH = 0.7
+
+# Number of top scoring boxes to keep before apply NMS to RPN proposals
+__C.TEST.RPN_PRE_NMS_TOP_N = 6000
+
+# Number of top scoring boxes to keep after applying NMS to RPN proposals
+__C.TEST.RPN_POST_NMS_TOP_N = 300
+
+# Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale)
+# __C.TEST.RPN_MIN_SIZE = 16
+
+# Testing mode, default to be 'nms', 'top' is slower but better
+# See report for details
+__C.TEST.MODE = 'nms'
+
+# Only useful when TEST.MODE is 'top', specifies the number of top proposals to select
+__C.TEST.RPN_TOP_N = 5000
+
+#
+# ResNet options
+#
+
+__C.RESNET = edict()
+
+# Option to set if max-pooling is appended after crop_and_resize.
+# if true, the region will be resized to a square of 2xPOOLING_SIZE,
+# then 2x2 max-pooling is applied; otherwise the region will be directly
+# resized to a square of POOLING_SIZE
+__C.RESNET.MAX_POOL = False
+
+# Number of fixed blocks during training, by default the first of all 4 blocks is fixed
+# Range: 0 (none) to 3 (all)
+__C.RESNET.FIXED_BLOCKS = 1
+
+#
+# MobileNet options
+#
+
+__C.MOBILENET = edict()
+
+# Whether to regularize the depth-wise filters during training
+__C.MOBILENET.REGU_DEPTH = False
+
+# Number of fixed layers during training, by default the bottom 5 of 14 layers is fixed
+# Range: 0 (none) to 12 (all)
+__C.MOBILENET.FIXED_LAYERS = 5
+
+# Weight decay for the mobilenet weights
+__C.MOBILENET.WEIGHT_DECAY = 0.00004
+
+# Depth multiplier
+__C.MOBILENET.DEPTH_MULTIPLIER = 1.
+
+#
+# MISC
+#
+
+# Pixel mean values (BGR order) as a (1, 1, 3) array
+# We use the same pixel mean for all networks even though it's not exactly what
+# they were trained with
+__C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
+
+# For reproducibility
+__C.RNG_SEED = 3
+
+# Root directory of project
+__C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..', '..', '..'))
+
+# Data directory
+__C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data'))
+
+# Name (or path to) the matlab executable
+__C.MATLAB = 'matlab'
+
+# Place outputs under an experiments directory
+__C.EXP_DIR = 'default'
+
+# Use GPU implementation of non-maximum suppression
+__C.USE_GPU_NMS = True
+
+# Use an end-to-end tensorflow model.
+# Note: models in E2E tensorflow mode have only been tested in feed-forward mode,
+# but these models are exportable to other tensorflow instances as GraphDef files.
+__C.USE_E2E_TF = True
+
+# Default pooling mode, only 'crop' is available
+__C.POOLING_MODE = 'crop'
+
+# Size of the pooled region after RoI pooling
+__C.POOLING_SIZE = 7
+
+# Anchor scales for RPN
+__C.ANCHOR_SCALES = [8,16,32]
+
+# Anchor ratios for RPN
+__C.ANCHOR_RATIOS = [0.5,1,2]
+
+# Number of filters for the RPN layer
+__C.RPN_CHANNELS = 512
+
+
+def get_output_dir(imdb, weights_filename):
+ """Return the directory where experimental artifacts are placed.
+ If the directory does not exist, it is created.
+
+ A canonical path is built using the name from an imdb and a network
+ (if not None).
+ """
+ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name))
+ if weights_filename is None:
+ weights_filename = 'default'
+ outdir = osp.join(outdir, weights_filename)
+ if not os.path.exists(outdir):
+ os.makedirs(outdir)
+ return outdir
+
+
+def get_output_tb_dir(imdb, weights_filename):
+ """Return the directory where tensorflow summaries are placed.
+ If the directory does not exist, it is created.
+
+ A canonical path is built using the name from an imdb and a network
+ (if not None).
+ """
+ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'tensorboard', __C.EXP_DIR, imdb.name))
+ if weights_filename is None:
+ weights_filename = 'default'
+ outdir = osp.join(outdir, weights_filename)
+ if not os.path.exists(outdir):
+ os.makedirs(outdir)
+ return outdir
+
+
+def _merge_a_into_b(a, b):
+ """Merge config dictionary a into config dictionary b, clobbering the
+ options in b whenever they are also specified in a.
+ """
+ if type(a) is not edict:
+ return
+
+ for k, v in a.items():
+ # a must specify keys that are in b
+ if k not in b:
+ raise KeyError('{} is not a valid config key'.format(k))
+
+ # the types must match, too
+ old_type = type(b[k])
+ if old_type is not type(v):
+ if isinstance(b[k], np.ndarray):
+ v = np.array(v, dtype=b[k].dtype)
+ else:
+ raise ValueError(('Type mismatch ({} vs. {}) '
+ 'for config key: {}').format(type(b[k]),
+ type(v), k))
+
+ # recursively merge dicts
+ if type(v) is edict:
+ try:
+ _merge_a_into_b(a[k], b[k])
+ except:
+ print(('Error under config key: {}'.format(k)))
+ raise
+ else:
+ b[k] = v
+
+
+def cfg_from_file(filename):
+ """Load a config file and merge it into the default options."""
+ import yaml
+ with open(filename, 'r') as f:
+ yaml_cfg = edict(yaml.load(f))
+
+ _merge_a_into_b(yaml_cfg, __C)
+
+
+def cfg_from_list(cfg_list):
+ """Set config keys via list (e.g., from command line)."""
+ from ast import literal_eval
+ assert len(cfg_list) % 2 == 0
+ for k, v in zip(cfg_list[0::2], cfg_list[1::2]):
+ key_list = k.split('.')
+ d = __C
+ for subkey in key_list[:-1]:
+ assert subkey in d
+ d = d[subkey]
+ subkey = key_list[-1]
+ assert subkey in d
+ try:
+ value = literal_eval(v)
+ except:
+ # handle the case when v is a string literal
+ value = v
+ assert type(value) == type(d[subkey]), \
+ 'type {} does not match original type {}'.format(
+ type(value), type(d[subkey]))
+ d[subkey] = value
diff --git a/models/CenterNet/src/tools/voc_eval_lib/model/nms_wrapper.py b/models/CenterNet/src/tools/voc_eval_lib/model/nms_wrapper.py
new file mode 100644
index 0000000..f594922
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/model/nms_wrapper.py
@@ -0,0 +1,23 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from model.config import cfg
+from nms.gpu_nms import gpu_nms
+from nms.cpu_nms import cpu_nms
+
+def nms(dets, thresh, force_cpu=False):
+ """Dispatch to either CPU or GPU NMS implementations."""
+
+ if dets.shape[0] == 0:
+ return []
+ if cfg.USE_GPU_NMS and not force_cpu:
+ return gpu_nms(dets, thresh, device_id=0)
+ else:
+ return cpu_nms(dets, thresh)
diff --git a/models/CenterNet/src/tools/voc_eval_lib/model/test.py b/models/CenterNet/src/tools/voc_eval_lib/model/test.py
new file mode 100644
index 0000000..4d4bf15
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/model/test.py
@@ -0,0 +1,193 @@
+# --------------------------------------------------------
+# Tensorflow Faster R-CNN
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xinlei Chen
+# --------------------------------------------------------
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import cv2
+import numpy as np
+try:
+ import cPickle as pickle
+except ImportError:
+ import pickle
+import os
+import math
+
+from utils.timer import Timer
+from utils.blob import im_list_to_blob
+
+from model.config import cfg, get_output_dir
+from model.bbox_transform import clip_boxes, bbox_transform_inv
+# from model.nms_wrapper import nms # need to compile cython nms before import nms
+nms = None # not needed in pascal evaluation
+
+def _get_image_blob(im):
+ """Converts an image into a network input.
+ Arguments:
+ im (ndarray): a color image in BGR order
+ Returns:
+ blob (ndarray): a data blob holding an image pyramid
+ im_scale_factors (list): list of image scales (relative to im) used
+ in the image pyramid
+ """
+ im_orig = im.astype(np.float32, copy=True)
+ im_orig -= cfg.PIXEL_MEANS
+
+ im_shape = im_orig.shape
+ im_size_min = np.min(im_shape[0:2])
+ im_size_max = np.max(im_shape[0:2])
+
+ processed_ims = []
+ im_scale_factors = []
+
+ for target_size in cfg.TEST.SCALES:
+ im_scale = float(target_size) / float(im_size_min)
+ # Prevent the biggest axis from being more than MAX_SIZE
+ if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
+ im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
+ im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
+ interpolation=cv2.INTER_LINEAR)
+ im_scale_factors.append(im_scale)
+ processed_ims.append(im)
+
+ # Create a blob to hold the input images
+ blob = im_list_to_blob(processed_ims)
+
+ return blob, np.array(im_scale_factors)
+
+def _get_blobs(im):
+ """Convert an image and RoIs within that image into network inputs."""
+ blobs = {}
+ blobs['data'], im_scale_factors = _get_image_blob(im)
+
+ return blobs, im_scale_factors
+
+def _clip_boxes(boxes, im_shape):
+ """Clip boxes to image boundaries."""
+ # x1 >= 0
+ boxes[:, 0::4] = np.maximum(boxes[:, 0::4], 0)
+ # y1 >= 0
+ boxes[:, 1::4] = np.maximum(boxes[:, 1::4], 0)
+ # x2 < im_shape[1]
+ boxes[:, 2::4] = np.minimum(boxes[:, 2::4], im_shape[1] - 1)
+ # y2 < im_shape[0]
+ boxes[:, 3::4] = np.minimum(boxes[:, 3::4], im_shape[0] - 1)
+ return boxes
+
+def _rescale_boxes(boxes, inds, scales):
+ """Rescale boxes according to image rescaling."""
+ for i in range(boxes.shape[0]):
+ boxes[i,:] = boxes[i,:] / scales[int(inds[i])]
+
+ return boxes
+
+def im_detect(sess, net, im):
+ blobs, im_scales = _get_blobs(im)
+ assert len(im_scales) == 1, "Only single-image batch implemented"
+
+ im_blob = blobs['data']
+ blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)
+
+ _, scores, bbox_pred, rois = net.test_image(sess, blobs['data'], blobs['im_info'])
+
+ boxes = rois[:, 1:5] / im_scales[0]
+ scores = np.reshape(scores, [scores.shape[0], -1])
+ bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
+ if cfg.TEST.BBOX_REG:
+ # Apply bounding-box regression deltas
+ box_deltas = bbox_pred
+ pred_boxes = bbox_transform_inv(boxes, box_deltas)
+ pred_boxes = _clip_boxes(pred_boxes, im.shape)
+ else:
+ # Simply repeat the boxes, once for each class
+ pred_boxes = np.tile(boxes, (1, scores.shape[1]))
+
+ return scores, pred_boxes
+
+def apply_nms(all_boxes, thresh):
+ """Apply non-maximum suppression to all predicted boxes output by the
+ test_net method.
+ """
+ num_classes = len(all_boxes)
+ num_images = len(all_boxes[0])
+ nms_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]
+ for cls_ind in range(num_classes):
+ for im_ind in range(num_images):
+ dets = np.array(all_boxes[cls_ind][im_ind], dtype=np.float32)
+ if len(dets) == 0:
+ continue
+ #print('dets', dets)
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+ scores = dets[:, 4]
+ inds = np.where((x2 > x1) & (y2 > y1))[0]
+ dets = dets[inds,:]
+ if dets == []:
+ continue
+
+ keep = nms(dets, thresh)
+ if len(keep) == 0:
+ continue
+ nms_boxes[cls_ind][im_ind] = dets[keep, :].copy()
+ return nms_boxes
+
+def test_net(sess, net, imdb, weights_filename, max_per_image=100, thresh=0.):
+ np.random.seed(cfg.RNG_SEED)
+ """Test a Fast R-CNN network on an image database."""
+ num_images = len(imdb.image_index)
+ # all detections are collected into:
+ # all_boxes[cls][image] = N x 5 array of detections in
+ # (x1, y1, x2, y2, score)
+ all_boxes = [[[] for _ in range(num_images)]
+ for _ in range(imdb.num_classes)]
+
+ output_dir = get_output_dir(imdb, weights_filename)
+ # timers
+ _t = {'im_detect' : Timer(), 'misc' : Timer()}
+
+ for i in range(num_images):
+ im = cv2.imread(imdb.image_path_at(i))
+
+ _t['im_detect'].tic()
+ scores, boxes = im_detect(sess, net, im)
+ _t['im_detect'].toc()
+
+ _t['misc'].tic()
+
+ # skip j = 0, because it's the background class
+ for j in range(1, imdb.num_classes):
+ inds = np.where(scores[:, j] > thresh)[0]
+ cls_scores = scores[inds, j]
+ cls_boxes = boxes[inds, j*4:(j+1)*4]
+ cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
+ .astype(np.float32, copy=False)
+ keep = nms(cls_dets, cfg.TEST.NMS)
+ cls_dets = cls_dets[keep, :]
+ all_boxes[j][i] = cls_dets
+
+ # Limit to max_per_image detections *over all classes*
+ if max_per_image > 0:
+ image_scores = np.hstack([all_boxes[j][i][:, -1]
+ for j in range(1, imdb.num_classes)])
+ if len(image_scores) > max_per_image:
+ image_thresh = np.sort(image_scores)[-max_per_image]
+ for j in range(1, imdb.num_classes):
+ keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
+ all_boxes[j][i] = all_boxes[j][i][keep, :]
+ _t['misc'].toc()
+
+ print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
+ .format(i + 1, num_images, _t['im_detect'].average_time,
+ _t['misc'].average_time))
+
+ det_file = os.path.join(output_dir, 'detections.pkl')
+ with open(det_file, 'wb') as f:
+ pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
+
+ print('Evaluating detections')
+ imdb.evaluate_detections(all_boxes, output_dir)
diff --git a/models/CenterNet/src/tools/voc_eval_lib/nms/.gitignore b/models/CenterNet/src/tools/voc_eval_lib/nms/.gitignore
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/src/tools/voc_eval_lib/nms/__init__.py b/models/CenterNet/src/tools/voc_eval_lib/nms/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/models/CenterNet/src/tools/voc_eval_lib/nms/cpu_nms.c b/models/CenterNet/src/tools/voc_eval_lib/nms/cpu_nms.c
new file mode 100644
index 0000000..96f7ec4
--- /dev/null
+++ b/models/CenterNet/src/tools/voc_eval_lib/nms/cpu_nms.c
@@ -0,0 +1,6869 @@
+/* Generated by Cython 0.20.1 on Wed Oct 5 13:15:30 2016 */
+
+#define PY_SSIZE_T_CLEAN
+#ifndef CYTHON_USE_PYLONG_INTERNALS
+#ifdef PYLONG_BITS_IN_DIGIT
+#define CYTHON_USE_PYLONG_INTERNALS 0
+#else
+#include "pyconfig.h"
+#ifdef PYLONG_BITS_IN_DIGIT
+#define CYTHON_USE_PYLONG_INTERNALS 1
+#else
+#define CYTHON_USE_PYLONG_INTERNALS 0
+#endif
+#endif
+#endif
+#include "Python.h"
+#ifndef Py_PYTHON_H
+ #error Python headers needed to compile C extensions, please install development version of Python.
+#elif PY_VERSION_HEX < 0x02040000
+ #error Cython requires Python 2.4+.
+#else
+#define CYTHON_ABI "0_20_1"
+#include /* For offsetof */
+#ifndef offsetof
+#define offsetof(type, member) ( (size_t) & ((type*)0) -> member )
+#endif
+#if !defined(WIN32) && !defined(MS_WINDOWS)
+ #ifndef __stdcall
+ #define __stdcall
+ #endif
+ #ifndef __cdecl
+ #define __cdecl
+ #endif
+ #ifndef __fastcall
+ #define __fastcall
+ #endif
+#endif
+#ifndef DL_IMPORT
+ #define DL_IMPORT(t) t
+#endif
+#ifndef DL_EXPORT
+ #define DL_EXPORT(t) t
+#endif
+#ifndef PY_LONG_LONG
+ #define PY_LONG_LONG LONG_LONG
+#endif
+#ifndef Py_HUGE_VAL
+ #define Py_HUGE_VAL HUGE_VAL
+#endif
+#ifdef PYPY_VERSION
+#define CYTHON_COMPILING_IN_PYPY 1
+#define CYTHON_COMPILING_IN_CPYTHON 0
+#else
+#define CYTHON_COMPILING_IN_PYPY 0
+#define CYTHON_COMPILING_IN_CPYTHON 1
+#endif
+#if CYTHON_COMPILING_IN_PYPY
+#define Py_OptimizeFlag 0
+#endif
+#if PY_VERSION_HEX < 0x02050000
+ typedef int Py_ssize_t;
+ #define PY_SSIZE_T_MAX INT_MAX
+ #define PY_SSIZE_T_MIN INT_MIN
+ #define PY_FORMAT_SIZE_T ""
+ #define CYTHON_FORMAT_SSIZE_T ""
+ #define PyInt_FromSsize_t(z) PyInt_FromLong(z)
+ #define PyInt_AsSsize_t(o) __Pyx_PyInt_As_int(o)
+ #define PyNumber_Index(o) ((PyNumber_Check(o) && !PyFloat_Check(o)) ? PyNumber_Int(o) : \
+ (PyErr_Format(PyExc_TypeError, \
+ "expected index value, got %.200s", Py_TYPE(o)->tp_name), \
+ (PyObject*)0))
+ #define __Pyx_PyIndex_Check(o) (PyNumber_Check(o) && !PyFloat_Check(o) && \
+ !PyComplex_Check(o))
+ #define PyIndex_Check __Pyx_PyIndex_Check
+ #define PyErr_WarnEx(category, message, stacklevel) PyErr_Warn(category, message)
+ #define __PYX_BUILD_PY_SSIZE_T "i"
+#else
+ #define __PYX_BUILD_PY_SSIZE_T "n"
+ #define CYTHON_FORMAT_SSIZE_T "z"
+ #define __Pyx_PyIndex_Check PyIndex_Check
+#endif
+#if PY_VERSION_HEX < 0x02060000
+ #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
+ #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
+ #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size)
+ #define PyVarObject_HEAD_INIT(type, size) \
+ PyObject_HEAD_INIT(type) size,
+ #define PyType_Modified(t)
+ typedef struct {
+ void *buf;
+ PyObject *obj;
+ Py_ssize_t len;
+ Py_ssize_t itemsize;
+ int readonly;
+ int ndim;
+ char *format;
+ Py_ssize_t *shape;
+ Py_ssize_t *strides;
+ Py_ssize_t *suboffsets;
+ void *internal;
+ } Py_buffer;
+ #define PyBUF_SIMPLE 0
+ #define PyBUF_WRITABLE 0x0001
+ #define PyBUF_FORMAT 0x0004
+ #define PyBUF_ND 0x0008
+ #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
+ #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
+ #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
+ #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
+ #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
+ #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_FORMAT | PyBUF_WRITABLE)
+ #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_FORMAT | PyBUF_WRITABLE)
+ typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
+ typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
+#endif
+#if PY_MAJOR_VERSION < 3
+ #define __Pyx_BUILTIN_MODULE_NAME "__builtin__"
+ #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \
+ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
+ #define __Pyx_DefaultClassType PyClass_Type
+#else
+ #define __Pyx_BUILTIN_MODULE_NAME "builtins"
+ #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \
+ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
+ #define __Pyx_DefaultClassType PyType_Type
+#endif
+#if PY_VERSION_HEX < 0x02060000
+ #define PyUnicode_FromString(s) PyUnicode_Decode(s, strlen(s), "UTF-8", "strict")
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define Py_TPFLAGS_CHECKTYPES 0
+ #define Py_TPFLAGS_HAVE_INDEX 0
+#endif
+#if (PY_VERSION_HEX < 0x02060000) || (PY_MAJOR_VERSION >= 3)
+ #define Py_TPFLAGS_HAVE_NEWBUFFER 0
+#endif
+#if PY_VERSION_HEX < 0x02060000
+ #define Py_TPFLAGS_HAVE_VERSION_TAG 0
+#endif
+#if PY_VERSION_HEX < 0x02060000 && !defined(Py_TPFLAGS_IS_ABSTRACT)
+ #define Py_TPFLAGS_IS_ABSTRACT 0
+#endif
+#if PY_VERSION_HEX < 0x030400a1 && !defined(Py_TPFLAGS_HAVE_FINALIZE)
+ #define Py_TPFLAGS_HAVE_FINALIZE 0
+#endif
+#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND)
+ #define CYTHON_PEP393_ENABLED 1
+ #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ? \
+ 0 : _PyUnicode_Ready((PyObject *)(op)))
+ #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u)
+ #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i)
+ #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u)
+ #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u)
+ #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i)
+#else
+ #define CYTHON_PEP393_ENABLED 0
+ #define __Pyx_PyUnicode_READY(op) (0)
+ #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u)
+ #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i]))
+ #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE))
+ #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u))
+ #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i]))
+#endif
+#if CYTHON_COMPILING_IN_PYPY
+ #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b)
+ #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b)
+#else
+ #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b)
+ #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ? \
+ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b))
+#endif
+#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b))
+#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b))
+#if PY_MAJOR_VERSION >= 3
+ #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b)
+#else
+ #define __Pyx_PyString_Format(a, b) PyString_Format(a, b)
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyBaseString_Type PyUnicode_Type
+ #define PyStringObject PyUnicodeObject
+ #define PyString_Type PyUnicode_Type
+ #define PyString_Check PyUnicode_Check
+ #define PyString_CheckExact PyUnicode_CheckExact
+#endif
+#if PY_VERSION_HEX < 0x02060000
+ #define PyBytesObject PyStringObject
+ #define PyBytes_Type PyString_Type
+ #define PyBytes_Check PyString_Check
+ #define PyBytes_CheckExact PyString_CheckExact
+ #define PyBytes_FromString PyString_FromString
+ #define PyBytes_FromStringAndSize PyString_FromStringAndSize
+ #define PyBytes_FromFormat PyString_FromFormat
+ #define PyBytes_DecodeEscape PyString_DecodeEscape
+ #define PyBytes_AsString PyString_AsString
+ #define PyBytes_AsStringAndSize PyString_AsStringAndSize
+ #define PyBytes_Size PyString_Size
+ #define PyBytes_AS_STRING PyString_AS_STRING
+ #define PyBytes_GET_SIZE PyString_GET_SIZE
+ #define PyBytes_Repr PyString_Repr
+ #define PyBytes_Concat PyString_Concat
+ #define PyBytes_ConcatAndDel PyString_ConcatAndDel
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj)
+ #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj)
+#else
+ #define __Pyx_PyBaseString_Check(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj) || \
+ PyString_Check(obj) || PyUnicode_Check(obj))
+ #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj))
+#endif
+#if PY_VERSION_HEX < 0x02060000
+ #define PySet_Check(obj) PyObject_TypeCheck(obj, &PySet_Type)
+ #define PyFrozenSet_Check(obj) PyObject_TypeCheck(obj, &PyFrozenSet_Type)
+#endif
+#ifndef PySet_CheckExact
+ #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type)
+#endif
+#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type)
+#if PY_MAJOR_VERSION >= 3
+ #define PyIntObject PyLongObject
+ #define PyInt_Type PyLong_Type
+ #define PyInt_Check(op) PyLong_Check(op)
+ #define PyInt_CheckExact(op) PyLong_CheckExact(op)
+ #define PyInt_FromString PyLong_FromString
+ #define PyInt_FromUnicode PyLong_FromUnicode
+ #define PyInt_FromLong PyLong_FromLong
+ #define PyInt_FromSize_t PyLong_FromSize_t
+ #define PyInt_FromSsize_t PyLong_FromSsize_t
+ #define PyInt_AsLong PyLong_AsLong
+ #define PyInt_AS_LONG PyLong_AS_LONG
+ #define PyInt_AsSsize_t PyLong_AsSsize_t
+ #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask
+ #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask
+ #define PyNumber_Int PyNumber_Long
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyBoolObject PyLongObject
+#endif
+#if PY_VERSION_HEX < 0x030200A4
+ typedef long Py_hash_t;
+ #define __Pyx_PyInt_FromHash_t PyInt_FromLong
+ #define __Pyx_PyInt_AsHash_t PyInt_AsLong
+#else
+ #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t
+ #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t
+#endif
+#if (PY_MAJOR_VERSION < 3) || (PY_VERSION_HEX >= 0x03010300)
+ #define __Pyx_PySequence_GetSlice(obj, a, b) PySequence_GetSlice(obj, a, b)
+ #define __Pyx_PySequence_SetSlice(obj, a, b, value) PySequence_SetSlice(obj, a, b, value)
+ #define __Pyx_PySequence_DelSlice(obj, a, b) PySequence_DelSlice(obj, a, b)
+#else
+ #define __Pyx_PySequence_GetSlice(obj, a, b) (unlikely(!(obj)) ? \
+ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), (PyObject*)0) : \
+ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_GetSlice(obj, a, b)) : \
+ (PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", (obj)->ob_type->tp_name), (PyObject*)0)))
+ #define __Pyx_PySequence_SetSlice(obj, a, b, value) (unlikely(!(obj)) ? \
+ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \
+ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_SetSlice(obj, a, b, value)) : \
+ (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice assignment", (obj)->ob_type->tp_name), -1)))
+ #define __Pyx_PySequence_DelSlice(obj, a, b) (unlikely(!(obj)) ? \
+ (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \
+ (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_DelSlice(obj, a, b)) : \
+ (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice deletion", (obj)->ob_type->tp_name), -1)))
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func))
+#endif
+#if PY_VERSION_HEX < 0x02050000
+ #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),((char *)(n)))
+ #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),((char *)(n)),(a))
+ #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),((char *)(n)))
+#else
+ #define __Pyx_GetAttrString(o,n) PyObject_GetAttrString((o),(n))
+ #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),(n),(a))
+ #define __Pyx_DelAttrString(o,n) PyObject_DelAttrString((o),(n))
+#endif
+#if PY_VERSION_HEX < 0x02050000
+ #define __Pyx_NAMESTR(n) ((char *)(n))
+ #define __Pyx_DOCSTR(n) ((char *)(n))
+#else
+ #define __Pyx_NAMESTR(n) (n)
+ #define __Pyx_DOCSTR(n) (n)
+#endif
+#ifndef CYTHON_INLINE
+ #if defined(__GNUC__)
+ #define CYTHON_INLINE __inline__
+ #elif defined(_MSC_VER)
+ #define CYTHON_INLINE __inline
+ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+ #define CYTHON_INLINE inline
+ #else
+ #define CYTHON_INLINE
+ #endif
+#endif
+#ifndef CYTHON_RESTRICT
+ #if defined(__GNUC__)
+ #define CYTHON_RESTRICT __restrict__
+ #elif defined(_MSC_VER) && _MSC_VER >= 1400
+ #define CYTHON_RESTRICT __restrict
+ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+ #define CYTHON_RESTRICT restrict
+ #else
+ #define CYTHON_RESTRICT
+ #endif
+#endif
+#ifdef NAN
+#define __PYX_NAN() ((float) NAN)
+#else
+static CYTHON_INLINE float __PYX_NAN() {
+ /* Initialize NaN. The sign is irrelevant, an exponent with all bits 1 and
+ a nonzero mantissa means NaN. If the first bit in the mantissa is 1, it is
+ a quiet NaN. */
+ float value;
+ memset(&value, 0xFF, sizeof(value));
+ return value;
+}
+#endif
+
+
+#if PY_MAJOR_VERSION >= 3
+ #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y)
+ #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y)
+#else
+ #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y)
+ #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y)
+#endif
+
+#ifndef __PYX_EXTERN_C
+ #ifdef __cplusplus
+ #define __PYX_EXTERN_C extern "C"
+ #else
+ #define __PYX_EXTERN_C extern
+ #endif
+#endif
+
+#if defined(WIN32) || defined(MS_WINDOWS)
+#define _USE_MATH_DEFINES
+#endif
+#include
+#define __PYX_HAVE__nms__cpu_nms
+#define __PYX_HAVE_API__nms__cpu_nms
+#include "string.h"
+#include "stdio.h"
+#include "stdlib.h"
+#include "numpy/arrayobject.h"
+#include "numpy/ufuncobject.h"
+#ifdef _OPENMP
+#include
+#endif /* _OPENMP */
+
+#ifdef PYREX_WITHOUT_ASSERTIONS
+#define CYTHON_WITHOUT_ASSERTIONS
+#endif
+
+#ifndef CYTHON_UNUSED
+# if defined(__GNUC__)
+# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
+# define CYTHON_UNUSED __attribute__ ((__unused__))
+# else
+# define CYTHON_UNUSED
+# endif
+# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER))
+# define CYTHON_UNUSED __attribute__ ((__unused__))
+# else
+# define CYTHON_UNUSED
+# endif
+#endif
+typedef struct {PyObject **p; char *s; const Py_ssize_t n; const char* encoding;
+ const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; /*proto*/
+
+#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0
+#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT 0
+#define __PYX_DEFAULT_STRING_ENCODING ""
+#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString
+#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize
+#define __Pyx_fits_Py_ssize_t(v, type, is_signed) ( \
+ (sizeof(type) < sizeof(Py_ssize_t)) || \
+ (sizeof(type) > sizeof(Py_ssize_t) && \
+ likely(v < (type)PY_SSIZE_T_MAX || \
+ v == (type)PY_SSIZE_T_MAX) && \
+ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN || \
+ v == (type)PY_SSIZE_T_MIN))) || \
+ (sizeof(type) == sizeof(Py_ssize_t) && \
+ (is_signed || likely(v < (type)PY_SSIZE_T_MAX || \
+ v == (type)PY_SSIZE_T_MAX))) )
+static CYTHON_INLINE char* __Pyx_PyObject_AsString(PyObject*);
+static CYTHON_INLINE char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length);
+#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s))
+#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l)
+#define __Pyx_PyBytes_FromString PyBytes_FromString
+#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize
+static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(char*);
+#if PY_MAJOR_VERSION < 3
+ #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString
+ #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize
+#else
+ #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString
+ #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize
+#endif
+#define __Pyx_PyObject_AsSString(s) ((signed char*) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_AsUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_FromUString(s) __Pyx_PyObject_FromString((char*)s)
+#define __Pyx_PyBytes_FromUString(s) __Pyx_PyBytes_FromString((char*)s)
+#define __Pyx_PyByteArray_FromUString(s) __Pyx_PyByteArray_FromString((char*)s)
+#define __Pyx_PyStr_FromUString(s) __Pyx_PyStr_FromString((char*)s)
+#define __Pyx_PyUnicode_FromUString(s) __Pyx_PyUnicode_FromString((char*)s)
+#if PY_MAJOR_VERSION < 3
+static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u)
+{
+ const Py_UNICODE *u_end = u;
+ while (*u_end++) ;
+ return u_end - u - 1;
+}
+#else
+#define __Pyx_Py_UNICODE_strlen Py_UNICODE_strlen
+#endif
+#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u))
+#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode
+#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode
+#define __Pyx_Owned_Py_None(b) (Py_INCREF(Py_None), Py_None)
+#define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False))
+static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*);
+static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x);
+static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*);
+static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t);
+#if CYTHON_COMPILING_IN_CPYTHON
+#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x))
+#else
+#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x)
+#endif
+#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x))
+#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII
+static int __Pyx_sys_getdefaultencoding_not_ascii;
+static int __Pyx_init_sys_getdefaultencoding_params(void) {
+ PyObject* sys = NULL;
+ PyObject* default_encoding = NULL;
+ PyObject* ascii_chars_u = NULL;
+ PyObject* ascii_chars_b = NULL;
+ sys = PyImport_ImportModule("sys");
+ if (sys == NULL) goto bad;
+ default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL);
+ if (default_encoding == NULL) goto bad;
+ if (strcmp(PyBytes_AsString(default_encoding), "ascii") == 0) {
+ __Pyx_sys_getdefaultencoding_not_ascii = 0;
+ } else {
+ const char* default_encoding_c = PyBytes_AS_STRING(default_encoding);
+ char ascii_chars[128];
+ int c;
+ for (c = 0; c < 128; c++) {
+ ascii_chars[c] = c;
+ }
+ __Pyx_sys_getdefaultencoding_not_ascii = 1;
+ ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL);
+ if (ascii_chars_u == NULL) goto bad;
+ ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL);
+ if (ascii_chars_b == NULL || strncmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) {
+ PyErr_Format(
+ PyExc_ValueError,
+ "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.",
+ default_encoding_c);
+ goto bad;
+ }
+ }
+ Py_XDECREF(sys);
+ Py_XDECREF(default_encoding);
+ Py_XDECREF(ascii_chars_u);
+ Py_XDECREF(ascii_chars_b);
+ return 0;
+bad:
+ Py_XDECREF(sys);
+ Py_XDECREF(default_encoding);
+ Py_XDECREF(ascii_chars_u);
+ Py_XDECREF(ascii_chars_b);
+ return -1;
+}
+#endif
+#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3
+#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL)
+#else
+#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL)
+#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT
+static char* __PYX_DEFAULT_STRING_ENCODING;
+static int __Pyx_init_sys_getdefaultencoding_params(void) {
+ PyObject* sys = NULL;
+ PyObject* default_encoding = NULL;
+ char* default_encoding_c;
+ sys = PyImport_ImportModule("sys");
+ if (sys == NULL) goto bad;
+ default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL);
+ if (default_encoding == NULL) goto bad;
+ default_encoding_c = PyBytes_AS_STRING(default_encoding);
+ __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c));
+ strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c);
+ Py_DECREF(sys);
+ Py_DECREF(default_encoding);
+ return 0;
+bad:
+ Py_XDECREF(sys);
+ Py_XDECREF(default_encoding);
+ return -1;
+}
+#endif
+#endif
+
+
+#ifdef __GNUC__
+ /* Test for GCC > 2.95 */
+ #if __GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))
+ #define likely(x) __builtin_expect(!!(x), 1)
+ #define unlikely(x) __builtin_expect(!!(x), 0)
+ #else /* __GNUC__ > 2 ... */
+ #define likely(x) (x)
+ #define unlikely(x) (x)
+ #endif /* __GNUC__ > 2 ... */
+#else /* __GNUC__ */
+ #define likely(x) (x)
+ #define unlikely(x) (x)
+#endif /* __GNUC__ */
+
+static PyObject *__pyx_m;
+static PyObject *__pyx_d;
+static PyObject *__pyx_b;
+static PyObject *__pyx_empty_tuple;
+static PyObject *__pyx_empty_bytes;
+static int __pyx_lineno;
+static int __pyx_clineno = 0;
+static const char * __pyx_cfilenm= __FILE__;
+static const char *__pyx_filename;
+
+#if !defined(CYTHON_CCOMPLEX)
+ #if defined(__cplusplus)
+ #define CYTHON_CCOMPLEX 1
+ #elif defined(_Complex_I)
+ #define CYTHON_CCOMPLEX 1
+ #else
+ #define CYTHON_CCOMPLEX 0
+ #endif
+#endif
+#if CYTHON_CCOMPLEX
+ #ifdef __cplusplus
+ #include
+ #else
+ #include
+ #endif
+#endif
+#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
+ #undef _Complex_I
+ #define _Complex_I 1.0fj
+#endif
+
+
+static const char *__pyx_f[] = {
+ "cpu_nms.pyx",
+ "__init__.pxd",
+ "type.pxd",
+};
+#define IS_UNSIGNED(type) (((type) -1) > 0)
+struct __Pyx_StructField_;
+#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0)
+typedef struct {
+ const char* name; /* for error messages only */
+ struct __Pyx_StructField_* fields;
+ size_t size; /* sizeof(type) */
+ size_t arraysize[8]; /* length of array in each dimension */
+ int ndim;
+ char typegroup; /* _R_eal, _C_omplex, Signed _I_nt, _U_nsigned int, _S_truct, _P_ointer, _O_bject, c_H_ar */
+ char is_unsigned;
+ int flags;
+} __Pyx_TypeInfo;
+typedef struct __Pyx_StructField_ {
+ __Pyx_TypeInfo* type;
+ const char* name;
+ size_t offset;
+} __Pyx_StructField;
+typedef struct {
+ __Pyx_StructField* field;
+ size_t parent_offset;
+} __Pyx_BufFmt_StackElem;
+typedef struct {
+ __Pyx_StructField root;
+ __Pyx_BufFmt_StackElem* head;
+ size_t fmt_offset;
+ size_t new_count, enc_count;
+ size_t struct_alignment;
+ int is_complex;
+ char enc_type;
+ char new_packmode;
+ char enc_packmode;
+ char is_valid_array;
+} __Pyx_BufFmt_Context;
+
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":723
+ * # in Cython to enable them only on the right systems.
+ *
+ * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<<
+ * ctypedef npy_int16 int16_t
+ * ctypedef npy_int32 int32_t
+ */
+typedef npy_int8 __pyx_t_5numpy_int8_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":724
+ *
+ * ctypedef npy_int8 int8_t
+ * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<<
+ * ctypedef npy_int32 int32_t
+ * ctypedef npy_int64 int64_t
+ */
+typedef npy_int16 __pyx_t_5numpy_int16_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":725
+ * ctypedef npy_int8 int8_t
+ * ctypedef npy_int16 int16_t
+ * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<<
+ * ctypedef npy_int64 int64_t
+ * #ctypedef npy_int96 int96_t
+ */
+typedef npy_int32 __pyx_t_5numpy_int32_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":726
+ * ctypedef npy_int16 int16_t
+ * ctypedef npy_int32 int32_t
+ * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<<
+ * #ctypedef npy_int96 int96_t
+ * #ctypedef npy_int128 int128_t
+ */
+typedef npy_int64 __pyx_t_5numpy_int64_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":730
+ * #ctypedef npy_int128 int128_t
+ *
+ * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<<
+ * ctypedef npy_uint16 uint16_t
+ * ctypedef npy_uint32 uint32_t
+ */
+typedef npy_uint8 __pyx_t_5numpy_uint8_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":731
+ *
+ * ctypedef npy_uint8 uint8_t
+ * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<<
+ * ctypedef npy_uint32 uint32_t
+ * ctypedef npy_uint64 uint64_t
+ */
+typedef npy_uint16 __pyx_t_5numpy_uint16_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":732
+ * ctypedef npy_uint8 uint8_t
+ * ctypedef npy_uint16 uint16_t
+ * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<<
+ * ctypedef npy_uint64 uint64_t
+ * #ctypedef npy_uint96 uint96_t
+ */
+typedef npy_uint32 __pyx_t_5numpy_uint32_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":733
+ * ctypedef npy_uint16 uint16_t
+ * ctypedef npy_uint32 uint32_t
+ * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<<
+ * #ctypedef npy_uint96 uint96_t
+ * #ctypedef npy_uint128 uint128_t
+ */
+typedef npy_uint64 __pyx_t_5numpy_uint64_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":737
+ * #ctypedef npy_uint128 uint128_t
+ *
+ * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<<
+ * ctypedef npy_float64 float64_t
+ * #ctypedef npy_float80 float80_t
+ */
+typedef npy_float32 __pyx_t_5numpy_float32_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":738
+ *
+ * ctypedef npy_float32 float32_t
+ * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<<
+ * #ctypedef npy_float80 float80_t
+ * #ctypedef npy_float128 float128_t
+ */
+typedef npy_float64 __pyx_t_5numpy_float64_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":747
+ * # The int types are mapped a bit surprising --
+ * # numpy.int corresponds to 'l' and numpy.long to 'q'
+ * ctypedef npy_long int_t # <<<<<<<<<<<<<<
+ * ctypedef npy_longlong long_t
+ * ctypedef npy_longlong longlong_t
+ */
+typedef npy_long __pyx_t_5numpy_int_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":748
+ * # numpy.int corresponds to 'l' and numpy.long to 'q'
+ * ctypedef npy_long int_t
+ * ctypedef npy_longlong long_t # <<<<<<<<<<<<<<
+ * ctypedef npy_longlong longlong_t
+ *
+ */
+typedef npy_longlong __pyx_t_5numpy_long_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":749
+ * ctypedef npy_long int_t
+ * ctypedef npy_longlong long_t
+ * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<<
+ *
+ * ctypedef npy_ulong uint_t
+ */
+typedef npy_longlong __pyx_t_5numpy_longlong_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":751
+ * ctypedef npy_longlong longlong_t
+ *
+ * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<<
+ * ctypedef npy_ulonglong ulong_t
+ * ctypedef npy_ulonglong ulonglong_t
+ */
+typedef npy_ulong __pyx_t_5numpy_uint_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":752
+ *
+ * ctypedef npy_ulong uint_t
+ * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<<
+ * ctypedef npy_ulonglong ulonglong_t
+ *
+ */
+typedef npy_ulonglong __pyx_t_5numpy_ulong_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":753
+ * ctypedef npy_ulong uint_t
+ * ctypedef npy_ulonglong ulong_t
+ * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<<
+ *
+ * ctypedef npy_intp intp_t
+ */
+typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":755
+ * ctypedef npy_ulonglong ulonglong_t
+ *
+ * ctypedef npy_intp intp_t # <<<<<<<<<<<<<<
+ * ctypedef npy_uintp uintp_t
+ *
+ */
+typedef npy_intp __pyx_t_5numpy_intp_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":756
+ *
+ * ctypedef npy_intp intp_t
+ * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<<
+ *
+ * ctypedef npy_double float_t
+ */
+typedef npy_uintp __pyx_t_5numpy_uintp_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":758
+ * ctypedef npy_uintp uintp_t
+ *
+ * ctypedef npy_double float_t # <<<<<<<<<<<<<<
+ * ctypedef npy_double double_t
+ * ctypedef npy_longdouble longdouble_t
+ */
+typedef npy_double __pyx_t_5numpy_float_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":759
+ *
+ * ctypedef npy_double float_t
+ * ctypedef npy_double double_t # <<<<<<<<<<<<<<
+ * ctypedef npy_longdouble longdouble_t
+ *
+ */
+typedef npy_double __pyx_t_5numpy_double_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":760
+ * ctypedef npy_double float_t
+ * ctypedef npy_double double_t
+ * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<<
+ *
+ * ctypedef npy_cfloat cfloat_t
+ */
+typedef npy_longdouble __pyx_t_5numpy_longdouble_t;
+#if CYTHON_CCOMPLEX
+ #ifdef __cplusplus
+ typedef ::std::complex< float > __pyx_t_float_complex;
+ #else
+ typedef float _Complex __pyx_t_float_complex;
+ #endif
+#else
+ typedef struct { float real, imag; } __pyx_t_float_complex;
+#endif
+
+#if CYTHON_CCOMPLEX
+ #ifdef __cplusplus
+ typedef ::std::complex< double > __pyx_t_double_complex;
+ #else
+ typedef double _Complex __pyx_t_double_complex;
+ #endif
+#else
+ typedef struct { double real, imag; } __pyx_t_double_complex;
+#endif
+
+
+/*--- Type declarations ---*/
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":762
+ * ctypedef npy_longdouble longdouble_t
+ *
+ * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<<
+ * ctypedef npy_cdouble cdouble_t
+ * ctypedef npy_clongdouble clongdouble_t
+ */
+typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":763
+ *
+ * ctypedef npy_cfloat cfloat_t
+ * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<<
+ * ctypedef npy_clongdouble clongdouble_t
+ *
+ */
+typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":764
+ * ctypedef npy_cfloat cfloat_t
+ * ctypedef npy_cdouble cdouble_t
+ * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<<
+ *
+ * ctypedef npy_cdouble complex_t
+ */
+typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":766
+ * ctypedef npy_clongdouble clongdouble_t
+ *
+ * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<<
+ *
+ * cdef inline object PyArray_MultiIterNew1(a):
+ */
+typedef npy_cdouble __pyx_t_5numpy_complex_t;
+#ifndef CYTHON_REFNANNY
+ #define CYTHON_REFNANNY 0
+#endif
+#if CYTHON_REFNANNY
+ typedef struct {
+ void (*INCREF)(void*, PyObject*, int);
+ void (*DECREF)(void*, PyObject*, int);
+ void (*GOTREF)(void*, PyObject*, int);
+ void (*GIVEREF)(void*, PyObject*, int);
+ void* (*SetupContext)(const char*, int, const char*);
+ void (*FinishContext)(void**);
+ } __Pyx_RefNannyAPIStruct;
+ static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL;
+ static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); /*proto*/
+ #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL;
+#ifdef WITH_THREAD
+ #define __Pyx_RefNannySetupContext(name, acquire_gil) \
+ if (acquire_gil) { \
+ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); \
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \
+ PyGILState_Release(__pyx_gilstate_save); \
+ } else { \
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \
+ }
+#else
+ #define __Pyx_RefNannySetupContext(name, acquire_gil) \
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__)
+#endif
+ #define __Pyx_RefNannyFinishContext() \
+ __Pyx_RefNanny->FinishContext(&__pyx_refnanny)
+ #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
+ #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
+ #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
+ #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
+ #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0)
+ #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0)
+ #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0)
+ #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0)
+#else
+ #define __Pyx_RefNannyDeclarations
+ #define __Pyx_RefNannySetupContext(name, acquire_gil)
+ #define __Pyx_RefNannyFinishContext()
+ #define __Pyx_INCREF(r) Py_INCREF(r)
+ #define __Pyx_DECREF(r) Py_DECREF(r)
+ #define __Pyx_GOTREF(r)
+ #define __Pyx_GIVEREF(r)
+ #define __Pyx_XINCREF(r) Py_XINCREF(r)
+ #define __Pyx_XDECREF(r) Py_XDECREF(r)
+ #define __Pyx_XGOTREF(r)
+ #define __Pyx_XGIVEREF(r)
+#endif /* CYTHON_REFNANNY */
+#define __Pyx_XDECREF_SET(r, v) do { \
+ PyObject *tmp = (PyObject *) r; \
+ r = v; __Pyx_XDECREF(tmp); \
+ } while (0)
+#define __Pyx_DECREF_SET(r, v) do { \
+ PyObject *tmp = (PyObject *) r; \
+ r = v; __Pyx_DECREF(tmp); \
+ } while (0)
+#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0)
+#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0)
+
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) {
+ PyTypeObject* tp = Py_TYPE(obj);
+ if (likely(tp->tp_getattro))
+ return tp->tp_getattro(obj, attr_name);
+#if PY_MAJOR_VERSION < 3
+ if (likely(tp->tp_getattr))
+ return tp->tp_getattr(obj, PyString_AS_STRING(attr_name));
+#endif
+ return PyObject_GetAttr(obj, attr_name);
+}
+#else
+#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n)
+#endif
+
+static PyObject *__Pyx_GetBuiltinName(PyObject *name); /*proto*/
+
+static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact,
+ Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /*proto*/
+
+static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /*proto*/
+
+static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[], \
+ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, \
+ const char* function_name); /*proto*/
+
+static CYTHON_INLINE int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed,
+ const char *name, int exact); /*proto*/
+
+static CYTHON_INLINE int __Pyx_GetBufferAndValidate(Py_buffer* buf, PyObject* obj,
+ __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack);
+static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info);
+
+static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/
+
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); /*proto*/
+#else
+#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw)
+#endif
+
+static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); /*proto*/
+
+static void __Pyx_RaiseBufferIndexError(int axis); /*proto*/
+
+#define __Pyx_BufPtrStrided1d(type, buf, i0, s0) (type)((char*)buf + i0 * s0)
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) {
+ PyListObject* L = (PyListObject*) list;
+ Py_ssize_t len = Py_SIZE(list);
+ if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) {
+ Py_INCREF(x);
+ PyList_SET_ITEM(list, len, x);
+ Py_SIZE(list) = len+1;
+ return 0;
+ }
+ return PyList_Append(list, x);
+}
+#else
+#define __Pyx_PyList_Append(L,x) PyList_Append(L,x)
+#endif
+
+#ifndef __PYX_FORCE_INIT_THREADS
+ #define __PYX_FORCE_INIT_THREADS 0
+#endif
+
+static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb); /*proto*/
+static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
+
+static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /*proto*/
+
+static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected);
+
+static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index);
+
+static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void);
+
+typedef struct {
+ Py_ssize_t shape, strides, suboffsets;
+} __Pyx_Buf_DimInfo;
+typedef struct {
+ size_t refcount;
+ Py_buffer pybuffer;
+} __Pyx_Buffer;
+typedef struct {
+ __Pyx_Buffer *rcbuffer;
+ char *data;
+ __Pyx_Buf_DimInfo diminfo[8];
+} __Pyx_LocalBuf_ND;
+
+#if PY_MAJOR_VERSION < 3
+ static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags);
+ static void __Pyx_ReleaseBuffer(Py_buffer *view);
+#else
+ #define __Pyx_GetBuffer PyObject_GetBuffer
+ #define __Pyx_ReleaseBuffer PyBuffer_Release
+#endif
+
+
+static Py_ssize_t __Pyx_zeros[] = {0, 0, 0, 0, 0, 0, 0, 0};
+static Py_ssize_t __Pyx_minusones[] = {-1, -1, -1, -1, -1, -1, -1, -1};
+
+static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /*proto*/
+
+static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value);
+
+static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *);
+
+static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value);
+
+#if CYTHON_CCOMPLEX
+ #ifdef __cplusplus
+ #define __Pyx_CREAL(z) ((z).real())
+ #define __Pyx_CIMAG(z) ((z).imag())
+ #else
+ #define __Pyx_CREAL(z) (__real__(z))
+ #define __Pyx_CIMAG(z) (__imag__(z))
+ #endif
+#else
+ #define __Pyx_CREAL(z) ((z).real)
+ #define __Pyx_CIMAG(z) ((z).imag)
+#endif
+#if (defined(_WIN32) || defined(__clang__)) && defined(__cplusplus) && CYTHON_CCOMPLEX
+ #define __Pyx_SET_CREAL(z,x) ((z).real(x))
+ #define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
+#else
+ #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
+ #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
+#endif
+
+static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float);
+
+#if CYTHON_CCOMPLEX
+ #define __Pyx_c_eqf(a, b) ((a)==(b))
+ #define __Pyx_c_sumf(a, b) ((a)+(b))
+ #define __Pyx_c_difff(a, b) ((a)-(b))
+ #define __Pyx_c_prodf(a, b) ((a)*(b))
+ #define __Pyx_c_quotf(a, b) ((a)/(b))
+ #define __Pyx_c_negf(a) (-(a))
+ #ifdef __cplusplus
+ #define __Pyx_c_is_zerof(z) ((z)==(float)0)
+ #define __Pyx_c_conjf(z) (::std::conj(z))
+ #if 1
+ #define __Pyx_c_absf(z) (::std::abs(z))
+ #define __Pyx_c_powf(a, b) (::std::pow(a, b))
+ #endif
+ #else
+ #define __Pyx_c_is_zerof(z) ((z)==0)
+ #define __Pyx_c_conjf(z) (conjf(z))
+ #if 1
+ #define __Pyx_c_absf(z) (cabsf(z))
+ #define __Pyx_c_powf(a, b) (cpowf(a, b))
+ #endif
+ #endif
+#else
+ static CYTHON_INLINE int __Pyx_c_eqf(__pyx_t_float_complex, __pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sumf(__pyx_t_float_complex, __pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_difff(__pyx_t_float_complex, __pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prodf(__pyx_t_float_complex, __pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quotf(__pyx_t_float_complex, __pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_negf(__pyx_t_float_complex);
+ static CYTHON_INLINE int __Pyx_c_is_zerof(__pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conjf(__pyx_t_float_complex);
+ #if 1
+ static CYTHON_INLINE float __Pyx_c_absf(__pyx_t_float_complex);
+ static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_powf(__pyx_t_float_complex, __pyx_t_float_complex);
+ #endif
+#endif
+
+static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double);
+
+#if CYTHON_CCOMPLEX
+ #define __Pyx_c_eq(a, b) ((a)==(b))
+ #define __Pyx_c_sum(a, b) ((a)+(b))
+ #define __Pyx_c_diff(a, b) ((a)-(b))
+ #define __Pyx_c_prod(a, b) ((a)*(b))
+ #define __Pyx_c_quot(a, b) ((a)/(b))
+ #define __Pyx_c_neg(a) (-(a))
+ #ifdef __cplusplus
+ #define __Pyx_c_is_zero(z) ((z)==(double)0)
+ #define __Pyx_c_conj(z) (::std::conj(z))
+ #if 1
+ #define __Pyx_c_abs(z) (::std::abs(z))
+ #define __Pyx_c_pow(a, b) (::std::pow(a, b))
+ #endif
+ #else
+ #define __Pyx_c_is_zero(z) ((z)==0)
+ #define __Pyx_c_conj(z) (conj(z))
+ #if 1
+ #define __Pyx_c_abs(z) (cabs(z))
+ #define __Pyx_c_pow(a, b) (cpow(a, b))
+ #endif
+ #endif
+#else
+ static CYTHON_INLINE int __Pyx_c_eq(__pyx_t_double_complex, __pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum(__pyx_t_double_complex, __pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff(__pyx_t_double_complex, __pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod(__pyx_t_double_complex, __pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot(__pyx_t_double_complex, __pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg(__pyx_t_double_complex);
+ static CYTHON_INLINE int __Pyx_c_is_zero(__pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj(__pyx_t_double_complex);
+ #if 1
+ static CYTHON_INLINE double __Pyx_c_abs(__pyx_t_double_complex);
+ static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow(__pyx_t_double_complex, __pyx_t_double_complex);
+ #endif
+#endif
+
+static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *);
+
+static int __Pyx_check_binary_version(void);
+
+#if !defined(__Pyx_PyIdentifier_FromString)
+#if PY_MAJOR_VERSION < 3
+ #define __Pyx_PyIdentifier_FromString(s) PyString_FromString(s)
+#else
+ #define __Pyx_PyIdentifier_FromString(s) PyUnicode_FromString(s)
+#endif
+#endif
+
+static PyObject *__Pyx_ImportModule(const char *name); /*proto*/
+
+static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict); /*proto*/
+
+typedef struct {
+ int code_line;
+ PyCodeObject* code_object;
+} __Pyx_CodeObjectCacheEntry;
+struct __Pyx_CodeObjectCache {
+ int count;
+ int max_count;
+ __Pyx_CodeObjectCacheEntry* entries;
+};
+static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL};
+static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line);
+static PyCodeObject *__pyx_find_code_object(int code_line);
+static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object);
+
+static void __Pyx_AddTraceback(const char *funcname, int c_line,
+ int py_line, const char *filename); /*proto*/
+
+static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/
+
+
+/* Module declarations from 'cpython.buffer' */
+
+/* Module declarations from 'cpython.ref' */
+
+/* Module declarations from 'libc.string' */
+
+/* Module declarations from 'libc.stdio' */
+
+/* Module declarations from 'cpython.object' */
+
+/* Module declarations from '__builtin__' */
+
+/* Module declarations from 'cpython.type' */
+static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0;
+
+/* Module declarations from 'libc.stdlib' */
+
+/* Module declarations from 'numpy' */
+
+/* Module declarations from 'numpy' */
+static PyTypeObject *__pyx_ptype_5numpy_dtype = 0;
+static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0;
+static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0;
+static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0;
+static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0;
+static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/
+
+/* Module declarations from 'nms.cpu_nms' */
+static CYTHON_INLINE __pyx_t_5numpy_float32_t __pyx_f_3nms_7cpu_nms_max(__pyx_t_5numpy_float32_t, __pyx_t_5numpy_float32_t); /*proto*/
+static CYTHON_INLINE __pyx_t_5numpy_float32_t __pyx_f_3nms_7cpu_nms_min(__pyx_t_5numpy_float32_t, __pyx_t_5numpy_float32_t); /*proto*/
+static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t = { "float32_t", NULL, sizeof(__pyx_t_5numpy_float32_t), { 0 }, 0, 'R', 0, 0 };
+static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_5numpy_int_t = { "int_t", NULL, sizeof(__pyx_t_5numpy_int_t), { 0 }, 0, IS_UNSIGNED(__pyx_t_5numpy_int_t) ? 'U' : 'I', IS_UNSIGNED(__pyx_t_5numpy_int_t), 0 };
+#define __Pyx_MODULE_NAME "nms.cpu_nms"
+int __pyx_module_is_main_nms__cpu_nms = 0;
+
+/* Implementation of 'nms.cpu_nms' */
+static PyObject *__pyx_builtin_range;
+static PyObject *__pyx_builtin_ValueError;
+static PyObject *__pyx_builtin_RuntimeError;
+static PyObject *__pyx_pf_3nms_7cpu_nms_cpu_nms(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_dets, PyObject *__pyx_v_thresh); /* proto */
+static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */
+static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */
+static char __pyx_k_B[] = "B";
+static char __pyx_k_H[] = "H";
+static char __pyx_k_I[] = "I";
+static char __pyx_k_L[] = "L";
+static char __pyx_k_O[] = "O";
+static char __pyx_k_Q[] = "Q";
+static char __pyx_k_b[] = "b";
+static char __pyx_k_d[] = "d";
+static char __pyx_k_f[] = "f";
+static char __pyx_k_g[] = "g";
+static char __pyx_k_h[] = "h";
+static char __pyx_k_i[] = "i";
+static char __pyx_k_j[] = "_j";
+static char __pyx_k_l[] = "l";
+static char __pyx_k_q[] = "q";
+static char __pyx_k_w[] = "w";
+static char __pyx_k_Zd[] = "Zd";
+static char __pyx_k_Zf[] = "Zf";
+static char __pyx_k_Zg[] = "Zg";
+static char __pyx_k_np[] = "np";
+static char __pyx_k_x1[] = "x1";
+static char __pyx_k_x2[] = "x2";
+static char __pyx_k_y1[] = "y1";
+static char __pyx_k_y2[] = "y2";
+static char __pyx_k_i_2[] = "_i";
+static char __pyx_k_int[] = "int";
+static char __pyx_k_ix1[] = "ix1";
+static char __pyx_k_ix2[] = "ix2";
+static char __pyx_k_iy1[] = "iy1";
+static char __pyx_k_iy2[] = "iy2";
+static char __pyx_k_j_2[] = "j";
+static char __pyx_k_ovr[] = "ovr";
+static char __pyx_k_xx1[] = "xx1";
+static char __pyx_k_xx2[] = "xx2";
+static char __pyx_k_yy1[] = "yy1";
+static char __pyx_k_yy2[] = "yy2";
+static char __pyx_k_dets[] = "dets";
+static char __pyx_k_keep[] = "keep";
+static char __pyx_k_main[] = "__main__";
+static char __pyx_k_test[] = "__test__";
+static char __pyx_k_areas[] = "areas";
+static char __pyx_k_dtype[] = "dtype";
+static char __pyx_k_iarea[] = "iarea";
+static char __pyx_k_inter[] = "inter";
+static char __pyx_k_ndets[] = "ndets";
+static char __pyx_k_numpy[] = "numpy";
+static char __pyx_k_order[] = "order";
+static char __pyx_k_range[] = "range";
+static char __pyx_k_zeros[] = "zeros";
+static char __pyx_k_import[] = "__import__";
+static char __pyx_k_scores[] = "scores";
+static char __pyx_k_thresh[] = "thresh";
+static char __pyx_k_argsort[] = "argsort";
+static char __pyx_k_cpu_nms[] = "cpu_nms";
+static char __pyx_k_ValueError[] = "ValueError";
+static char __pyx_k_suppressed[] = "suppressed";
+static char __pyx_k_nms_cpu_nms[] = "nms.cpu_nms";
+static char __pyx_k_RuntimeError[] = "RuntimeError";
+static char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer";
+static char __pyx_k_pyx_releasebuffer[] = "__pyx_releasebuffer";
+static char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous";
+static char __pyx_k_nfs_yoda_xinleic_Inf_Code_Faste[] = "/nfs.yoda/xinleic/Inf/Code/Faster-RCNN_TF/lib/nms/cpu_nms.pyx";
+static char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)";
+static char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd";
+static char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported";
+static char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous";
+static char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short.";
+static PyObject *__pyx_kp_u_Format_string_allocated_too_shor;
+static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2;
+static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor;
+static PyObject *__pyx_n_s_RuntimeError;
+static PyObject *__pyx_n_s_ValueError;
+static PyObject *__pyx_n_s_areas;
+static PyObject *__pyx_n_s_argsort;
+static PyObject *__pyx_n_s_cpu_nms;
+static PyObject *__pyx_n_s_dets;
+static PyObject *__pyx_n_s_dtype;
+static PyObject *__pyx_n_s_h;
+static PyObject *__pyx_n_s_i;
+static PyObject *__pyx_n_s_i_2;
+static PyObject *__pyx_n_s_iarea;
+static PyObject *__pyx_n_s_import;
+static PyObject *__pyx_n_s_int;
+static PyObject *__pyx_n_s_inter;
+static PyObject *__pyx_n_s_ix1;
+static PyObject *__pyx_n_s_ix2;
+static PyObject *__pyx_n_s_iy1;
+static PyObject *__pyx_n_s_iy2;
+static PyObject *__pyx_n_s_j;
+static PyObject *__pyx_n_s_j_2;
+static PyObject *__pyx_n_s_keep;
+static PyObject *__pyx_n_s_main;
+static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous;
+static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou;
+static PyObject *__pyx_n_s_ndets;
+static PyObject *__pyx_kp_s_nfs_yoda_xinleic_Inf_Code_Faste;
+static PyObject *__pyx_n_s_nms_cpu_nms;
+static PyObject *__pyx_n_s_np;
+static PyObject *__pyx_n_s_numpy;
+static PyObject *__pyx_n_s_order;
+static PyObject *__pyx_n_s_ovr;
+static PyObject *__pyx_n_s_pyx_getbuffer;
+static PyObject *__pyx_n_s_pyx_releasebuffer;
+static PyObject *__pyx_n_s_range;
+static PyObject *__pyx_n_s_scores;
+static PyObject *__pyx_n_s_suppressed;
+static PyObject *__pyx_n_s_test;
+static PyObject *__pyx_n_s_thresh;
+static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd;
+static PyObject *__pyx_n_s_w;
+static PyObject *__pyx_n_s_x1;
+static PyObject *__pyx_n_s_x2;
+static PyObject *__pyx_n_s_xx1;
+static PyObject *__pyx_n_s_xx2;
+static PyObject *__pyx_n_s_y1;
+static PyObject *__pyx_n_s_y2;
+static PyObject *__pyx_n_s_yy1;
+static PyObject *__pyx_n_s_yy2;
+static PyObject *__pyx_n_s_zeros;
+static PyObject *__pyx_int_0;
+static PyObject *__pyx_int_1;
+static PyObject *__pyx_int_2;
+static PyObject *__pyx_int_3;
+static PyObject *__pyx_int_4;
+static PyObject *__pyx_int_neg_1;
+static PyObject *__pyx_slice_;
+static PyObject *__pyx_slice__3;
+static PyObject *__pyx_slice__5;
+static PyObject *__pyx_slice__7;
+static PyObject *__pyx_slice__9;
+static PyObject *__pyx_tuple__2;
+static PyObject *__pyx_tuple__4;
+static PyObject *__pyx_tuple__6;
+static PyObject *__pyx_tuple__8;
+static PyObject *__pyx_slice__11;
+static PyObject *__pyx_tuple__10;
+static PyObject *__pyx_tuple__12;
+static PyObject *__pyx_tuple__13;
+static PyObject *__pyx_tuple__14;
+static PyObject *__pyx_tuple__15;
+static PyObject *__pyx_tuple__16;
+static PyObject *__pyx_tuple__17;
+static PyObject *__pyx_tuple__18;
+static PyObject *__pyx_codeobj__19;
+
+/* "nms/cpu_nms.pyx":11
+ * cimport numpy as np
+ *
+ * cdef inline np.float32_t max(np.float32_t a, np.float32_t b): # <<<<<<<<<<<<<<
+ * return a if a >= b else b
+ *
+ */
+
+static CYTHON_INLINE __pyx_t_5numpy_float32_t __pyx_f_3nms_7cpu_nms_max(__pyx_t_5numpy_float32_t __pyx_v_a, __pyx_t_5numpy_float32_t __pyx_v_b) {
+ __pyx_t_5numpy_float32_t __pyx_r;
+ __Pyx_RefNannyDeclarations
+ __pyx_t_5numpy_float32_t __pyx_t_1;
+ __Pyx_RefNannySetupContext("max", 0);
+
+ /* "nms/cpu_nms.pyx":12
+ *
+ * cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
+ * return a if a >= b else b # <<<<<<<<<<<<<<
+ *
+ * cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
+ */
+ if (((__pyx_v_a >= __pyx_v_b) != 0)) {
+ __pyx_t_1 = __pyx_v_a;
+ } else {
+ __pyx_t_1 = __pyx_v_b;
+ }
+ __pyx_r = __pyx_t_1;
+ goto __pyx_L0;
+
+ /* "nms/cpu_nms.pyx":11
+ * cimport numpy as np
+ *
+ * cdef inline np.float32_t max(np.float32_t a, np.float32_t b): # <<<<<<<<<<<<<<
+ * return a if a >= b else b
+ *
+ */
+
+ /* function exit code */
+ __pyx_L0:;
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "nms/cpu_nms.pyx":14
+ * return a if a >= b else b
+ *
+ * cdef inline np.float32_t min(np.float32_t a, np.float32_t b): # <<<<<<<<<<<<<<
+ * return a if a <= b else b
+ *
+ */
+
+static CYTHON_INLINE __pyx_t_5numpy_float32_t __pyx_f_3nms_7cpu_nms_min(__pyx_t_5numpy_float32_t __pyx_v_a, __pyx_t_5numpy_float32_t __pyx_v_b) {
+ __pyx_t_5numpy_float32_t __pyx_r;
+ __Pyx_RefNannyDeclarations
+ __pyx_t_5numpy_float32_t __pyx_t_1;
+ __Pyx_RefNannySetupContext("min", 0);
+
+ /* "nms/cpu_nms.pyx":15
+ *
+ * cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
+ * return a if a <= b else b # <<<<<<<<<<<<<<
+ *
+ * def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
+ */
+ if (((__pyx_v_a <= __pyx_v_b) != 0)) {
+ __pyx_t_1 = __pyx_v_a;
+ } else {
+ __pyx_t_1 = __pyx_v_b;
+ }
+ __pyx_r = __pyx_t_1;
+ goto __pyx_L0;
+
+ /* "nms/cpu_nms.pyx":14
+ * return a if a >= b else b
+ *
+ * cdef inline np.float32_t min(np.float32_t a, np.float32_t b): # <<<<<<<<<<<<<<
+ * return a if a <= b else b
+ *
+ */
+
+ /* function exit code */
+ __pyx_L0:;
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "nms/cpu_nms.pyx":17
+ * return a if a <= b else b
+ *
+ * def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh): # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_3nms_7cpu_nms_1cpu_nms(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
+static PyMethodDef __pyx_mdef_3nms_7cpu_nms_1cpu_nms = {__Pyx_NAMESTR("cpu_nms"), (PyCFunction)__pyx_pw_3nms_7cpu_nms_1cpu_nms, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)};
+static PyObject *__pyx_pw_3nms_7cpu_nms_1cpu_nms(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
+ PyArrayObject *__pyx_v_dets = 0;
+ PyObject *__pyx_v_thresh = 0;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("cpu_nms (wrapper)", 0);
+ {
+ static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_dets,&__pyx_n_s_thresh,0};
+ PyObject* values[2] = {0,0};
+ if (unlikely(__pyx_kwds)) {
+ Py_ssize_t kw_args;
+ const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
+ switch (pos_args) {
+ case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
+ case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = PyDict_Size(__pyx_kwds);
+ switch (pos_args) {
+ case 0:
+ if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_dets)) != 0)) kw_args--;
+ else goto __pyx_L5_argtuple_error;
+ case 1:
+ if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_thresh)) != 0)) kw_args--;
+ else {
+ __Pyx_RaiseArgtupleInvalid("cpu_nms", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "cpu_nms") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
+ }
+ } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
+ values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
+ }
+ __pyx_v_dets = ((PyArrayObject *)values[0]);
+ __pyx_v_thresh = ((PyObject*)values[1]);
+ }
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("cpu_nms", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
+ __pyx_L3_error:;
+ __Pyx_AddTraceback("nms.cpu_nms.cpu_nms", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_dets), __pyx_ptype_5numpy_ndarray, 1, "dets", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_thresh), (&PyFloat_Type), 1, "thresh", 1))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_r = __pyx_pf_3nms_7cpu_nms_cpu_nms(__pyx_self, __pyx_v_dets, __pyx_v_thresh);
+
+ /* function exit code */
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_3nms_7cpu_nms_cpu_nms(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_dets, PyObject *__pyx_v_thresh) {
+ PyArrayObject *__pyx_v_x1 = 0;
+ PyArrayObject *__pyx_v_y1 = 0;
+ PyArrayObject *__pyx_v_x2 = 0;
+ PyArrayObject *__pyx_v_y2 = 0;
+ PyArrayObject *__pyx_v_scores = 0;
+ PyArrayObject *__pyx_v_areas = 0;
+ PyArrayObject *__pyx_v_order = 0;
+ int __pyx_v_ndets;
+ PyArrayObject *__pyx_v_suppressed = 0;
+ int __pyx_v__i;
+ int __pyx_v__j;
+ int __pyx_v_i;
+ int __pyx_v_j;
+ __pyx_t_5numpy_float32_t __pyx_v_ix1;
+ __pyx_t_5numpy_float32_t __pyx_v_iy1;
+ __pyx_t_5numpy_float32_t __pyx_v_ix2;
+ __pyx_t_5numpy_float32_t __pyx_v_iy2;
+ __pyx_t_5numpy_float32_t __pyx_v_iarea;
+ __pyx_t_5numpy_float32_t __pyx_v_xx1;
+ __pyx_t_5numpy_float32_t __pyx_v_yy1;
+ __pyx_t_5numpy_float32_t __pyx_v_xx2;
+ __pyx_t_5numpy_float32_t __pyx_v_yy2;
+ __pyx_t_5numpy_float32_t __pyx_v_w;
+ __pyx_t_5numpy_float32_t __pyx_v_h;
+ __pyx_t_5numpy_float32_t __pyx_v_inter;
+ __pyx_t_5numpy_float32_t __pyx_v_ovr;
+ PyObject *__pyx_v_keep = NULL;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_areas;
+ __Pyx_Buffer __pyx_pybuffer_areas;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_dets;
+ __Pyx_Buffer __pyx_pybuffer_dets;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_order;
+ __Pyx_Buffer __pyx_pybuffer_order;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_scores;
+ __Pyx_Buffer __pyx_pybuffer_scores;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_suppressed;
+ __Pyx_Buffer __pyx_pybuffer_suppressed;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_x1;
+ __Pyx_Buffer __pyx_pybuffer_x1;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_x2;
+ __Pyx_Buffer __pyx_pybuffer_x2;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_y1;
+ __Pyx_Buffer __pyx_pybuffer_y1;
+ __Pyx_LocalBuf_ND __pyx_pybuffernd_y2;
+ __Pyx_Buffer __pyx_pybuffer_y2;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyArrayObject *__pyx_t_2 = NULL;
+ PyArrayObject *__pyx_t_3 = NULL;
+ PyArrayObject *__pyx_t_4 = NULL;
+ PyArrayObject *__pyx_t_5 = NULL;
+ PyArrayObject *__pyx_t_6 = NULL;
+ PyObject *__pyx_t_7 = NULL;
+ PyObject *__pyx_t_8 = NULL;
+ PyArrayObject *__pyx_t_9 = NULL;
+ PyArrayObject *__pyx_t_10 = NULL;
+ PyObject *__pyx_t_11 = NULL;
+ PyObject *__pyx_t_12 = NULL;
+ PyArrayObject *__pyx_t_13 = NULL;
+ int __pyx_t_14;
+ int __pyx_t_15;
+ int __pyx_t_16;
+ int __pyx_t_17;
+ int __pyx_t_18;
+ int __pyx_t_19;
+ int __pyx_t_20;
+ int __pyx_t_21;
+ int __pyx_t_22;
+ int __pyx_t_23;
+ int __pyx_t_24;
+ int __pyx_t_25;
+ int __pyx_t_26;
+ int __pyx_t_27;
+ int __pyx_t_28;
+ int __pyx_t_29;
+ int __pyx_t_30;
+ int __pyx_t_31;
+ int __pyx_t_32;
+ int __pyx_t_33;
+ int __pyx_t_34;
+ __pyx_t_5numpy_float32_t __pyx_t_35;
+ int __pyx_t_36;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("cpu_nms", 0);
+ __pyx_pybuffer_x1.pybuffer.buf = NULL;
+ __pyx_pybuffer_x1.refcount = 0;
+ __pyx_pybuffernd_x1.data = NULL;
+ __pyx_pybuffernd_x1.rcbuffer = &__pyx_pybuffer_x1;
+ __pyx_pybuffer_y1.pybuffer.buf = NULL;
+ __pyx_pybuffer_y1.refcount = 0;
+ __pyx_pybuffernd_y1.data = NULL;
+ __pyx_pybuffernd_y1.rcbuffer = &__pyx_pybuffer_y1;
+ __pyx_pybuffer_x2.pybuffer.buf = NULL;
+ __pyx_pybuffer_x2.refcount = 0;
+ __pyx_pybuffernd_x2.data = NULL;
+ __pyx_pybuffernd_x2.rcbuffer = &__pyx_pybuffer_x2;
+ __pyx_pybuffer_y2.pybuffer.buf = NULL;
+ __pyx_pybuffer_y2.refcount = 0;
+ __pyx_pybuffernd_y2.data = NULL;
+ __pyx_pybuffernd_y2.rcbuffer = &__pyx_pybuffer_y2;
+ __pyx_pybuffer_scores.pybuffer.buf = NULL;
+ __pyx_pybuffer_scores.refcount = 0;
+ __pyx_pybuffernd_scores.data = NULL;
+ __pyx_pybuffernd_scores.rcbuffer = &__pyx_pybuffer_scores;
+ __pyx_pybuffer_areas.pybuffer.buf = NULL;
+ __pyx_pybuffer_areas.refcount = 0;
+ __pyx_pybuffernd_areas.data = NULL;
+ __pyx_pybuffernd_areas.rcbuffer = &__pyx_pybuffer_areas;
+ __pyx_pybuffer_order.pybuffer.buf = NULL;
+ __pyx_pybuffer_order.refcount = 0;
+ __pyx_pybuffernd_order.data = NULL;
+ __pyx_pybuffernd_order.rcbuffer = &__pyx_pybuffer_order;
+ __pyx_pybuffer_suppressed.pybuffer.buf = NULL;
+ __pyx_pybuffer_suppressed.refcount = 0;
+ __pyx_pybuffernd_suppressed.data = NULL;
+ __pyx_pybuffernd_suppressed.rcbuffer = &__pyx_pybuffer_suppressed;
+ __pyx_pybuffer_dets.pybuffer.buf = NULL;
+ __pyx_pybuffer_dets.refcount = 0;
+ __pyx_pybuffernd_dets.data = NULL;
+ __pyx_pybuffernd_dets.rcbuffer = &__pyx_pybuffer_dets;
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_dets.rcbuffer->pybuffer, (PyObject*)__pyx_v_dets, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_pybuffernd_dets.diminfo[0].strides = __pyx_pybuffernd_dets.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_dets.diminfo[0].shape = __pyx_pybuffernd_dets.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_dets.diminfo[1].strides = __pyx_pybuffernd_dets.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_dets.diminfo[1].shape = __pyx_pybuffernd_dets.rcbuffer->pybuffer.shape[1];
+
+ /* "nms/cpu_nms.pyx":18
+ *
+ * def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
+ * cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0] # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+ * cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+ */
+ __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_dets), __pyx_tuple__2); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 18; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 18; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_2 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_x1.rcbuffer->pybuffer, (PyObject*)__pyx_t_2, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_x1 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_x1.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 18; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_x1.diminfo[0].strides = __pyx_pybuffernd_x1.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_x1.diminfo[0].shape = __pyx_pybuffernd_x1.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_2 = 0;
+ __pyx_v_x1 = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":19
+ * def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
+ * cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1] # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+ * cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
+ */
+ __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_dets), __pyx_tuple__4); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 19; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 19; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_y1.rcbuffer->pybuffer, (PyObject*)__pyx_t_3, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_y1 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_y1.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 19; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_y1.diminfo[0].strides = __pyx_pybuffernd_y1.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_y1.diminfo[0].shape = __pyx_pybuffernd_y1.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_3 = 0;
+ __pyx_v_y1 = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":20
+ * cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+ * cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2] # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
+ * cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
+ */
+ __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_dets), __pyx_tuple__6); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 20; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 20; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_x2.rcbuffer->pybuffer, (PyObject*)__pyx_t_4, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_x2 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_x2.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 20; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_x2.diminfo[0].strides = __pyx_pybuffernd_x2.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_x2.diminfo[0].shape = __pyx_pybuffernd_x2.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_4 = 0;
+ __pyx_v_x2 = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":21
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+ * cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+ * cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3] # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
+ *
+ */
+ __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_dets), __pyx_tuple__8); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 21; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 21; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_y2.rcbuffer->pybuffer, (PyObject*)__pyx_t_5, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_y2 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_y2.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 21; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_y2.diminfo[0].strides = __pyx_pybuffernd_y2.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_y2.diminfo[0].shape = __pyx_pybuffernd_y2.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_5 = 0;
+ __pyx_v_y2 = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":22
+ * cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+ * cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
+ * cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] # <<<<<<<<<<<<<<
+ *
+ * cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ */
+ __pyx_t_1 = PyObject_GetItem(((PyObject *)__pyx_v_dets), __pyx_tuple__10); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 22; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 22; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_scores.rcbuffer->pybuffer, (PyObject*)__pyx_t_6, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_scores = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_scores.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 22; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_scores.diminfo[0].strides = __pyx_pybuffernd_scores.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_scores.diminfo[0].shape = __pyx_pybuffernd_scores.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_6 = 0;
+ __pyx_v_scores = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":24
+ * cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
+ *
+ * cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1) # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
+ *
+ */
+ __pyx_t_1 = PyNumber_Subtract(((PyObject *)__pyx_v_x2), ((PyObject *)__pyx_v_x1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_7 = PyNumber_Add(__pyx_t_1, __pyx_int_1); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_7);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyNumber_Subtract(((PyObject *)__pyx_v_y2), ((PyObject *)__pyx_v_y1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_8 = PyNumber_Add(__pyx_t_1, __pyx_int_1); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyNumber_Multiply(__pyx_t_7, __pyx_t_8); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_9 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_areas.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_areas = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_areas.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 24; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_areas.diminfo[0].strides = __pyx_pybuffernd_areas.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_areas.diminfo[0].shape = __pyx_pybuffernd_areas.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_9 = 0;
+ __pyx_v_areas = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":25
+ *
+ * cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ * cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1] # <<<<<<<<<<<<<<
+ *
+ * cdef int ndets = dets.shape[0]
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_scores), __pyx_n_s_argsort); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyObject_GetItem(__pyx_t_8, __pyx_slice__11); if (unlikely(__pyx_t_1 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_10 = ((PyArrayObject *)__pyx_t_1);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_order.rcbuffer->pybuffer, (PyObject*)__pyx_t_10, &__Pyx_TypeInfo_nn___pyx_t_5numpy_int_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_order = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_order.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 25; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_order.diminfo[0].strides = __pyx_pybuffernd_order.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_order.diminfo[0].shape = __pyx_pybuffernd_order.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_10 = 0;
+ __pyx_v_order = ((PyArrayObject *)__pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "nms/cpu_nms.pyx":27
+ * cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
+ *
+ * cdef int ndets = dets.shape[0] # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.int_t, ndim=1] suppressed = \
+ * np.zeros((ndets), dtype=np.int)
+ */
+ __pyx_v_ndets = (__pyx_v_dets->dimensions[0]);
+
+ /* "nms/cpu_nms.pyx":29
+ * cdef int ndets = dets.shape[0]
+ * cdef np.ndarray[np.int_t, ndim=1] suppressed = \
+ * np.zeros((ndets), dtype=np.int) # <<<<<<<<<<<<<<
+ *
+ * # nominal indices
+ */
+ __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_ndets); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_7 = PyTuple_New(1); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_7);
+ PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_1);
+ __pyx_t_1 = 0;
+ __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_11 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_11)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_11);
+ __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_int); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_12);
+ __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0;
+ if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_12) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0;
+ __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_7, __pyx_t_1); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_12);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (!(likely(((__pyx_t_12) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_12, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 29; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_13 = ((PyArrayObject *)__pyx_t_12);
+ {
+ __Pyx_BufFmt_StackElem __pyx_stack[1];
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_suppressed.rcbuffer->pybuffer, (PyObject*)__pyx_t_13, &__Pyx_TypeInfo_nn___pyx_t_5numpy_int_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) {
+ __pyx_v_suppressed = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.buf = NULL;
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 28; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ } else {__pyx_pybuffernd_suppressed.diminfo[0].strides = __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_suppressed.diminfo[0].shape = __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.shape[0];
+ }
+ }
+ __pyx_t_13 = 0;
+ __pyx_v_suppressed = ((PyArrayObject *)__pyx_t_12);
+ __pyx_t_12 = 0;
+
+ /* "nms/cpu_nms.pyx":42
+ * cdef np.float32_t inter, ovr
+ *
+ * keep = [] # <<<<<<<<<<<<<<
+ * for _i in range(ndets):
+ * i = order[_i]
+ */
+ __pyx_t_12 = PyList_New(0); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 42; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_12);
+ __pyx_v_keep = ((PyObject*)__pyx_t_12);
+ __pyx_t_12 = 0;
+
+ /* "nms/cpu_nms.pyx":43
+ *
+ * keep = []
+ * for _i in range(ndets): # <<<<<<<<<<<<<<
+ * i = order[_i]
+ * if suppressed[i] == 1:
+ */
+ __pyx_t_14 = __pyx_v_ndets;
+ for (__pyx_t_15 = 0; __pyx_t_15 < __pyx_t_14; __pyx_t_15+=1) {
+ __pyx_v__i = __pyx_t_15;
+
+ /* "nms/cpu_nms.pyx":44
+ * keep = []
+ * for _i in range(ndets):
+ * i = order[_i] # <<<<<<<<<<<<<<
+ * if suppressed[i] == 1:
+ * continue
+ */
+ __pyx_t_16 = __pyx_v__i;
+ __pyx_t_17 = -1;
+ if (__pyx_t_16 < 0) {
+ __pyx_t_16 += __pyx_pybuffernd_order.diminfo[0].shape;
+ if (unlikely(__pyx_t_16 < 0)) __pyx_t_17 = 0;
+ } else if (unlikely(__pyx_t_16 >= __pyx_pybuffernd_order.diminfo[0].shape)) __pyx_t_17 = 0;
+ if (unlikely(__pyx_t_17 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_17);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 44; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_i = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int_t *, __pyx_pybuffernd_order.rcbuffer->pybuffer.buf, __pyx_t_16, __pyx_pybuffernd_order.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":45
+ * for _i in range(ndets):
+ * i = order[_i]
+ * if suppressed[i] == 1: # <<<<<<<<<<<<<<
+ * continue
+ * keep.append(i)
+ */
+ __pyx_t_17 = __pyx_v_i;
+ __pyx_t_18 = -1;
+ if (__pyx_t_17 < 0) {
+ __pyx_t_17 += __pyx_pybuffernd_suppressed.diminfo[0].shape;
+ if (unlikely(__pyx_t_17 < 0)) __pyx_t_18 = 0;
+ } else if (unlikely(__pyx_t_17 >= __pyx_pybuffernd_suppressed.diminfo[0].shape)) __pyx_t_18 = 0;
+ if (unlikely(__pyx_t_18 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_18);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 45; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_t_19 = (((*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int_t *, __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.buf, __pyx_t_17, __pyx_pybuffernd_suppressed.diminfo[0].strides)) == 1) != 0);
+ if (__pyx_t_19) {
+
+ /* "nms/cpu_nms.pyx":46
+ * i = order[_i]
+ * if suppressed[i] == 1:
+ * continue # <<<<<<<<<<<<<<
+ * keep.append(i)
+ * ix1 = x1[i]
+ */
+ goto __pyx_L3_continue;
+ }
+
+ /* "nms/cpu_nms.pyx":47
+ * if suppressed[i] == 1:
+ * continue
+ * keep.append(i) # <<<<<<<<<<<<<<
+ * ix1 = x1[i]
+ * iy1 = y1[i]
+ */
+ __pyx_t_12 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 47; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_12);
+ __pyx_t_20 = __Pyx_PyList_Append(__pyx_v_keep, __pyx_t_12); if (unlikely(__pyx_t_20 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 47; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0;
+
+ /* "nms/cpu_nms.pyx":48
+ * continue
+ * keep.append(i)
+ * ix1 = x1[i] # <<<<<<<<<<<<<<
+ * iy1 = y1[i]
+ * ix2 = x2[i]
+ */
+ __pyx_t_18 = __pyx_v_i;
+ __pyx_t_21 = -1;
+ if (__pyx_t_18 < 0) {
+ __pyx_t_18 += __pyx_pybuffernd_x1.diminfo[0].shape;
+ if (unlikely(__pyx_t_18 < 0)) __pyx_t_21 = 0;
+ } else if (unlikely(__pyx_t_18 >= __pyx_pybuffernd_x1.diminfo[0].shape)) __pyx_t_21 = 0;
+ if (unlikely(__pyx_t_21 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_21);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 48; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_ix1 = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_x1.rcbuffer->pybuffer.buf, __pyx_t_18, __pyx_pybuffernd_x1.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":49
+ * keep.append(i)
+ * ix1 = x1[i]
+ * iy1 = y1[i] # <<<<<<<<<<<<<<
+ * ix2 = x2[i]
+ * iy2 = y2[i]
+ */
+ __pyx_t_21 = __pyx_v_i;
+ __pyx_t_22 = -1;
+ if (__pyx_t_21 < 0) {
+ __pyx_t_21 += __pyx_pybuffernd_y1.diminfo[0].shape;
+ if (unlikely(__pyx_t_21 < 0)) __pyx_t_22 = 0;
+ } else if (unlikely(__pyx_t_21 >= __pyx_pybuffernd_y1.diminfo[0].shape)) __pyx_t_22 = 0;
+ if (unlikely(__pyx_t_22 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_22);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_iy1 = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_y1.rcbuffer->pybuffer.buf, __pyx_t_21, __pyx_pybuffernd_y1.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":50
+ * ix1 = x1[i]
+ * iy1 = y1[i]
+ * ix2 = x2[i] # <<<<<<<<<<<<<<
+ * iy2 = y2[i]
+ * iarea = areas[i]
+ */
+ __pyx_t_22 = __pyx_v_i;
+ __pyx_t_23 = -1;
+ if (__pyx_t_22 < 0) {
+ __pyx_t_22 += __pyx_pybuffernd_x2.diminfo[0].shape;
+ if (unlikely(__pyx_t_22 < 0)) __pyx_t_23 = 0;
+ } else if (unlikely(__pyx_t_22 >= __pyx_pybuffernd_x2.diminfo[0].shape)) __pyx_t_23 = 0;
+ if (unlikely(__pyx_t_23 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_23);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 50; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_ix2 = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_x2.rcbuffer->pybuffer.buf, __pyx_t_22, __pyx_pybuffernd_x2.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":51
+ * iy1 = y1[i]
+ * ix2 = x2[i]
+ * iy2 = y2[i] # <<<<<<<<<<<<<<
+ * iarea = areas[i]
+ * for _j in range(_i + 1, ndets):
+ */
+ __pyx_t_23 = __pyx_v_i;
+ __pyx_t_24 = -1;
+ if (__pyx_t_23 < 0) {
+ __pyx_t_23 += __pyx_pybuffernd_y2.diminfo[0].shape;
+ if (unlikely(__pyx_t_23 < 0)) __pyx_t_24 = 0;
+ } else if (unlikely(__pyx_t_23 >= __pyx_pybuffernd_y2.diminfo[0].shape)) __pyx_t_24 = 0;
+ if (unlikely(__pyx_t_24 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_24);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 51; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_iy2 = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_y2.rcbuffer->pybuffer.buf, __pyx_t_23, __pyx_pybuffernd_y2.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":52
+ * ix2 = x2[i]
+ * iy2 = y2[i]
+ * iarea = areas[i] # <<<<<<<<<<<<<<
+ * for _j in range(_i + 1, ndets):
+ * j = order[_j]
+ */
+ __pyx_t_24 = __pyx_v_i;
+ __pyx_t_25 = -1;
+ if (__pyx_t_24 < 0) {
+ __pyx_t_24 += __pyx_pybuffernd_areas.diminfo[0].shape;
+ if (unlikely(__pyx_t_24 < 0)) __pyx_t_25 = 0;
+ } else if (unlikely(__pyx_t_24 >= __pyx_pybuffernd_areas.diminfo[0].shape)) __pyx_t_25 = 0;
+ if (unlikely(__pyx_t_25 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_25);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 52; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_iarea = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_areas.rcbuffer->pybuffer.buf, __pyx_t_24, __pyx_pybuffernd_areas.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":53
+ * iy2 = y2[i]
+ * iarea = areas[i]
+ * for _j in range(_i + 1, ndets): # <<<<<<<<<<<<<<
+ * j = order[_j]
+ * if suppressed[j] == 1:
+ */
+ __pyx_t_25 = __pyx_v_ndets;
+ for (__pyx_t_26 = (__pyx_v__i + 1); __pyx_t_26 < __pyx_t_25; __pyx_t_26+=1) {
+ __pyx_v__j = __pyx_t_26;
+
+ /* "nms/cpu_nms.pyx":54
+ * iarea = areas[i]
+ * for _j in range(_i + 1, ndets):
+ * j = order[_j] # <<<<<<<<<<<<<<
+ * if suppressed[j] == 1:
+ * continue
+ */
+ __pyx_t_27 = __pyx_v__j;
+ __pyx_t_28 = -1;
+ if (__pyx_t_27 < 0) {
+ __pyx_t_27 += __pyx_pybuffernd_order.diminfo[0].shape;
+ if (unlikely(__pyx_t_27 < 0)) __pyx_t_28 = 0;
+ } else if (unlikely(__pyx_t_27 >= __pyx_pybuffernd_order.diminfo[0].shape)) __pyx_t_28 = 0;
+ if (unlikely(__pyx_t_28 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_28);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 54; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_j = (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int_t *, __pyx_pybuffernd_order.rcbuffer->pybuffer.buf, __pyx_t_27, __pyx_pybuffernd_order.diminfo[0].strides));
+
+ /* "nms/cpu_nms.pyx":55
+ * for _j in range(_i + 1, ndets):
+ * j = order[_j]
+ * if suppressed[j] == 1: # <<<<<<<<<<<<<<
+ * continue
+ * xx1 = max(ix1, x1[j])
+ */
+ __pyx_t_28 = __pyx_v_j;
+ __pyx_t_29 = -1;
+ if (__pyx_t_28 < 0) {
+ __pyx_t_28 += __pyx_pybuffernd_suppressed.diminfo[0].shape;
+ if (unlikely(__pyx_t_28 < 0)) __pyx_t_29 = 0;
+ } else if (unlikely(__pyx_t_28 >= __pyx_pybuffernd_suppressed.diminfo[0].shape)) __pyx_t_29 = 0;
+ if (unlikely(__pyx_t_29 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_29);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 55; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_t_19 = (((*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int_t *, __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.buf, __pyx_t_28, __pyx_pybuffernd_suppressed.diminfo[0].strides)) == 1) != 0);
+ if (__pyx_t_19) {
+
+ /* "nms/cpu_nms.pyx":56
+ * j = order[_j]
+ * if suppressed[j] == 1:
+ * continue # <<<<<<<<<<<<<<
+ * xx1 = max(ix1, x1[j])
+ * yy1 = max(iy1, y1[j])
+ */
+ goto __pyx_L6_continue;
+ }
+
+ /* "nms/cpu_nms.pyx":57
+ * if suppressed[j] == 1:
+ * continue
+ * xx1 = max(ix1, x1[j]) # <<<<<<<<<<<<<<
+ * yy1 = max(iy1, y1[j])
+ * xx2 = min(ix2, x2[j])
+ */
+ __pyx_t_29 = __pyx_v_j;
+ __pyx_t_30 = -1;
+ if (__pyx_t_29 < 0) {
+ __pyx_t_29 += __pyx_pybuffernd_x1.diminfo[0].shape;
+ if (unlikely(__pyx_t_29 < 0)) __pyx_t_30 = 0;
+ } else if (unlikely(__pyx_t_29 >= __pyx_pybuffernd_x1.diminfo[0].shape)) __pyx_t_30 = 0;
+ if (unlikely(__pyx_t_30 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_30);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 57; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_xx1 = __pyx_f_3nms_7cpu_nms_max(__pyx_v_ix1, (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_x1.rcbuffer->pybuffer.buf, __pyx_t_29, __pyx_pybuffernd_x1.diminfo[0].strides)));
+
+ /* "nms/cpu_nms.pyx":58
+ * continue
+ * xx1 = max(ix1, x1[j])
+ * yy1 = max(iy1, y1[j]) # <<<<<<<<<<<<<<
+ * xx2 = min(ix2, x2[j])
+ * yy2 = min(iy2, y2[j])
+ */
+ __pyx_t_30 = __pyx_v_j;
+ __pyx_t_31 = -1;
+ if (__pyx_t_30 < 0) {
+ __pyx_t_30 += __pyx_pybuffernd_y1.diminfo[0].shape;
+ if (unlikely(__pyx_t_30 < 0)) __pyx_t_31 = 0;
+ } else if (unlikely(__pyx_t_30 >= __pyx_pybuffernd_y1.diminfo[0].shape)) __pyx_t_31 = 0;
+ if (unlikely(__pyx_t_31 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_31);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_yy1 = __pyx_f_3nms_7cpu_nms_max(__pyx_v_iy1, (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_y1.rcbuffer->pybuffer.buf, __pyx_t_30, __pyx_pybuffernd_y1.diminfo[0].strides)));
+
+ /* "nms/cpu_nms.pyx":59
+ * xx1 = max(ix1, x1[j])
+ * yy1 = max(iy1, y1[j])
+ * xx2 = min(ix2, x2[j]) # <<<<<<<<<<<<<<
+ * yy2 = min(iy2, y2[j])
+ * w = max(0.0, xx2 - xx1 + 1)
+ */
+ __pyx_t_31 = __pyx_v_j;
+ __pyx_t_32 = -1;
+ if (__pyx_t_31 < 0) {
+ __pyx_t_31 += __pyx_pybuffernd_x2.diminfo[0].shape;
+ if (unlikely(__pyx_t_31 < 0)) __pyx_t_32 = 0;
+ } else if (unlikely(__pyx_t_31 >= __pyx_pybuffernd_x2.diminfo[0].shape)) __pyx_t_32 = 0;
+ if (unlikely(__pyx_t_32 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_32);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_xx2 = __pyx_f_3nms_7cpu_nms_min(__pyx_v_ix2, (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_x2.rcbuffer->pybuffer.buf, __pyx_t_31, __pyx_pybuffernd_x2.diminfo[0].strides)));
+
+ /* "nms/cpu_nms.pyx":60
+ * yy1 = max(iy1, y1[j])
+ * xx2 = min(ix2, x2[j])
+ * yy2 = min(iy2, y2[j]) # <<<<<<<<<<<<<<
+ * w = max(0.0, xx2 - xx1 + 1)
+ * h = max(0.0, yy2 - yy1 + 1)
+ */
+ __pyx_t_32 = __pyx_v_j;
+ __pyx_t_33 = -1;
+ if (__pyx_t_32 < 0) {
+ __pyx_t_32 += __pyx_pybuffernd_y2.diminfo[0].shape;
+ if (unlikely(__pyx_t_32 < 0)) __pyx_t_33 = 0;
+ } else if (unlikely(__pyx_t_32 >= __pyx_pybuffernd_y2.diminfo[0].shape)) __pyx_t_33 = 0;
+ if (unlikely(__pyx_t_33 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_33);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_yy2 = __pyx_f_3nms_7cpu_nms_min(__pyx_v_iy2, (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_y2.rcbuffer->pybuffer.buf, __pyx_t_32, __pyx_pybuffernd_y2.diminfo[0].strides)));
+
+ /* "nms/cpu_nms.pyx":61
+ * xx2 = min(ix2, x2[j])
+ * yy2 = min(iy2, y2[j])
+ * w = max(0.0, xx2 - xx1 + 1) # <<<<<<<<<<<<<<
+ * h = max(0.0, yy2 - yy1 + 1)
+ * inter = w * h
+ */
+ __pyx_v_w = __pyx_f_3nms_7cpu_nms_max(0.0, ((__pyx_v_xx2 - __pyx_v_xx1) + 1.0));
+
+ /* "nms/cpu_nms.pyx":62
+ * yy2 = min(iy2, y2[j])
+ * w = max(0.0, xx2 - xx1 + 1)
+ * h = max(0.0, yy2 - yy1 + 1) # <<<<<<<<<<<<<<
+ * inter = w * h
+ * ovr = inter / (iarea + areas[j] - inter)
+ */
+ __pyx_v_h = __pyx_f_3nms_7cpu_nms_max(0.0, ((__pyx_v_yy2 - __pyx_v_yy1) + 1.0));
+
+ /* "nms/cpu_nms.pyx":63
+ * w = max(0.0, xx2 - xx1 + 1)
+ * h = max(0.0, yy2 - yy1 + 1)
+ * inter = w * h # <<<<<<<<<<<<<<
+ * ovr = inter / (iarea + areas[j] - inter)
+ * if ovr >= thresh:
+ */
+ __pyx_v_inter = (__pyx_v_w * __pyx_v_h);
+
+ /* "nms/cpu_nms.pyx":64
+ * h = max(0.0, yy2 - yy1 + 1)
+ * inter = w * h
+ * ovr = inter / (iarea + areas[j] - inter) # <<<<<<<<<<<<<<
+ * if ovr >= thresh:
+ * suppressed[j] = 1
+ */
+ __pyx_t_33 = __pyx_v_j;
+ __pyx_t_34 = -1;
+ if (__pyx_t_33 < 0) {
+ __pyx_t_33 += __pyx_pybuffernd_areas.diminfo[0].shape;
+ if (unlikely(__pyx_t_33 < 0)) __pyx_t_34 = 0;
+ } else if (unlikely(__pyx_t_33 >= __pyx_pybuffernd_areas.diminfo[0].shape)) __pyx_t_34 = 0;
+ if (unlikely(__pyx_t_34 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_34);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_t_35 = ((__pyx_v_iarea + (*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_areas.rcbuffer->pybuffer.buf, __pyx_t_33, __pyx_pybuffernd_areas.diminfo[0].strides))) - __pyx_v_inter);
+ if (unlikely(__pyx_t_35 == 0)) {
+ #ifdef WITH_THREAD
+ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();
+ #endif
+ PyErr_SetString(PyExc_ZeroDivisionError, "float division");
+ #ifdef WITH_THREAD
+ PyGILState_Release(__pyx_gilstate_save);
+ #endif
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_v_ovr = (__pyx_v_inter / __pyx_t_35);
+
+ /* "nms/cpu_nms.pyx":65
+ * inter = w * h
+ * ovr = inter / (iarea + areas[j] - inter)
+ * if ovr >= thresh: # <<<<<<<<<<<<<<
+ * suppressed[j] = 1
+ *
+ */
+ __pyx_t_12 = PyFloat_FromDouble(__pyx_v_ovr); if (unlikely(!__pyx_t_12)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_12);
+ __pyx_t_1 = PyObject_RichCompare(__pyx_t_12, __pyx_v_thresh, Py_GE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0;
+ __pyx_t_19 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_19 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__pyx_t_19) {
+
+ /* "nms/cpu_nms.pyx":66
+ * ovr = inter / (iarea + areas[j] - inter)
+ * if ovr >= thresh:
+ * suppressed[j] = 1 # <<<<<<<<<<<<<<
+ *
+ * return keep
+ */
+ __pyx_t_34 = __pyx_v_j;
+ __pyx_t_36 = -1;
+ if (__pyx_t_34 < 0) {
+ __pyx_t_34 += __pyx_pybuffernd_suppressed.diminfo[0].shape;
+ if (unlikely(__pyx_t_34 < 0)) __pyx_t_36 = 0;
+ } else if (unlikely(__pyx_t_34 >= __pyx_pybuffernd_suppressed.diminfo[0].shape)) __pyx_t_36 = 0;
+ if (unlikely(__pyx_t_36 != -1)) {
+ __Pyx_RaiseBufferIndexError(__pyx_t_36);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ *__Pyx_BufPtrStrided1d(__pyx_t_5numpy_int_t *, __pyx_pybuffernd_suppressed.rcbuffer->pybuffer.buf, __pyx_t_34, __pyx_pybuffernd_suppressed.diminfo[0].strides) = 1;
+ goto __pyx_L9;
+ }
+ __pyx_L9:;
+ __pyx_L6_continue:;
+ }
+ __pyx_L3_continue:;
+ }
+
+ /* "nms/cpu_nms.pyx":68
+ * suppressed[j] = 1
+ *
+ * return keep # <<<<<<<<<<<<<<
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_INCREF(__pyx_v_keep);
+ __pyx_r = __pyx_v_keep;
+ goto __pyx_L0;
+
+ /* "nms/cpu_nms.pyx":17
+ * return a if a <= b else b
+ *
+ * def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh): # <<<<<<<<<<<<<<
+ * cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+ * cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_7);
+ __Pyx_XDECREF(__pyx_t_8);
+ __Pyx_XDECREF(__pyx_t_11);
+ __Pyx_XDECREF(__pyx_t_12);
+ { PyObject *__pyx_type, *__pyx_value, *__pyx_tb;
+ __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_areas.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_dets.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_order.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_scores.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_suppressed.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_x1.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_x2.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_y1.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_y2.rcbuffer->pybuffer);
+ __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}
+ __Pyx_AddTraceback("nms.cpu_nms.cpu_nms", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ goto __pyx_L2;
+ __pyx_L0:;
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_areas.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_dets.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_order.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_scores.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_suppressed.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_x1.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_x2.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_y1.rcbuffer->pybuffer);
+ __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_y2.rcbuffer->pybuffer);
+ __pyx_L2:;
+ __Pyx_XDECREF((PyObject *)__pyx_v_x1);
+ __Pyx_XDECREF((PyObject *)__pyx_v_y1);
+ __Pyx_XDECREF((PyObject *)__pyx_v_x2);
+ __Pyx_XDECREF((PyObject *)__pyx_v_y2);
+ __Pyx_XDECREF((PyObject *)__pyx_v_scores);
+ __Pyx_XDECREF((PyObject *)__pyx_v_areas);
+ __Pyx_XDECREF((PyObject *)__pyx_v_order);
+ __Pyx_XDECREF((PyObject *)__pyx_v_suppressed);
+ __Pyx_XDECREF(__pyx_v_keep);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":194
+ * # experimental exception made for __getbuffer__ and __releasebuffer__
+ * # -- the details of this may change.
+ * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<<
+ * # This implementation of getbuffer is geared towards Cython
+ * # requirements, and does not yet fullfill the PEP.
+ */
+
+/* Python wrapper */
+static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/
+static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) {
+ int __pyx_r;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0);
+ __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags));
+
+ /* function exit code */
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) {
+ int __pyx_v_copy_shape;
+ int __pyx_v_i;
+ int __pyx_v_ndim;
+ int __pyx_v_endian_detector;
+ int __pyx_v_little_endian;
+ int __pyx_v_t;
+ char *__pyx_v_f;
+ PyArray_Descr *__pyx_v_descr = 0;
+ int __pyx_v_offset;
+ int __pyx_v_hasfields;
+ int __pyx_r;
+ __Pyx_RefNannyDeclarations
+ int __pyx_t_1;
+ int __pyx_t_2;
+ int __pyx_t_3;
+ PyObject *__pyx_t_4 = NULL;
+ int __pyx_t_5;
+ int __pyx_t_6;
+ int __pyx_t_7;
+ PyObject *__pyx_t_8 = NULL;
+ char *__pyx_t_9;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__getbuffer__", 0);
+ if (__pyx_v_info != NULL) {
+ __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None);
+ __Pyx_GIVEREF(__pyx_v_info->obj);
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":200
+ * # of flags
+ *
+ * if info == NULL: return # <<<<<<<<<<<<<<
+ *
+ * cdef int copy_shape, i, ndim
+ */
+ __pyx_t_1 = ((__pyx_v_info == NULL) != 0);
+ if (__pyx_t_1) {
+ __pyx_r = 0;
+ goto __pyx_L0;
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":203
+ *
+ * cdef int copy_shape, i, ndim
+ * cdef int endian_detector = 1 # <<<<<<<<<<<<<<
+ * cdef bint little_endian = ((&endian_detector)[0] != 0)
+ *
+ */
+ __pyx_v_endian_detector = 1;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":204
+ * cdef int copy_shape, i, ndim
+ * cdef int endian_detector = 1
+ * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<<
+ *
+ * ndim = PyArray_NDIM(self)
+ */
+ __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":206
+ * cdef bint little_endian = ((&endian_detector)[0] != 0)
+ *
+ * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<<
+ *
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t):
+ */
+ __pyx_v_ndim = PyArray_NDIM(__pyx_v_self);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":208
+ * ndim = PyArray_NDIM(self)
+ *
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<<
+ * copy_shape = 1
+ * else:
+ */
+ __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0);
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":209
+ *
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t):
+ * copy_shape = 1 # <<<<<<<<<<<<<<
+ * else:
+ * copy_shape = 0
+ */
+ __pyx_v_copy_shape = 1;
+ goto __pyx_L4;
+ }
+ /*else*/ {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":211
+ * copy_shape = 1
+ * else:
+ * copy_shape = 0 # <<<<<<<<<<<<<<
+ *
+ * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
+ */
+ __pyx_v_copy_shape = 0;
+ }
+ __pyx_L4:;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":213
+ * copy_shape = 0
+ *
+ * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<<
+ * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
+ * raise ValueError(u"ndarray is not C contiguous")
+ */
+ __pyx_t_1 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0);
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":214
+ *
+ * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
+ * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): # <<<<<<<<<<<<<<
+ * raise ValueError(u"ndarray is not C contiguous")
+ *
+ */
+ __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_C_CONTIGUOUS) != 0)) != 0);
+ __pyx_t_3 = __pyx_t_2;
+ } else {
+ __pyx_t_3 = __pyx_t_1;
+ }
+ if (__pyx_t_3) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":215
+ * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
+ * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
+ * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<<
+ *
+ * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
+ */
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_Raise(__pyx_t_4, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":217
+ * raise ValueError(u"ndarray is not C contiguous")
+ *
+ * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<<
+ * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
+ * raise ValueError(u"ndarray is not Fortran contiguous")
+ */
+ __pyx_t_3 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0);
+ if (__pyx_t_3) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":218
+ *
+ * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
+ * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): # <<<<<<<<<<<<<<
+ * raise ValueError(u"ndarray is not Fortran contiguous")
+ *
+ */
+ __pyx_t_1 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_F_CONTIGUOUS) != 0)) != 0);
+ __pyx_t_2 = __pyx_t_1;
+ } else {
+ __pyx_t_2 = __pyx_t_3;
+ }
+ if (__pyx_t_2) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":219
+ * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
+ * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
+ * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<<
+ *
+ * info.buf = PyArray_DATA(self)
+ */
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_Raise(__pyx_t_4, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":221
+ * raise ValueError(u"ndarray is not Fortran contiguous")
+ *
+ * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<<
+ * info.ndim = ndim
+ * if copy_shape:
+ */
+ __pyx_v_info->buf = PyArray_DATA(__pyx_v_self);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":222
+ *
+ * info.buf = PyArray_DATA(self)
+ * info.ndim = ndim # <<<<<<<<<<<<<<
+ * if copy_shape:
+ * # Allocate new buffer for strides and shape info.
+ */
+ __pyx_v_info->ndim = __pyx_v_ndim;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":223
+ * info.buf = PyArray_DATA(self)
+ * info.ndim = ndim
+ * if copy_shape: # <<<<<<<<<<<<<<
+ * # Allocate new buffer for strides and shape info.
+ * # This is allocated as one block, strides first.
+ */
+ __pyx_t_2 = (__pyx_v_copy_shape != 0);
+ if (__pyx_t_2) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":226
+ * # Allocate new buffer for strides and shape info.
+ * # This is allocated as one block, strides first.
+ * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2) # <<<<<<<<<<<<<<
+ * info.shape = info.strides + ndim
+ * for i in range(ndim):
+ */
+ __pyx_v_info->strides = ((Py_ssize_t *)malloc((((sizeof(Py_ssize_t)) * ((size_t)__pyx_v_ndim)) * 2)));
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":227
+ * # This is allocated as one block, strides first.
+ * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2)
+ * info.shape = info.strides + ndim # <<<<<<<<<<<<<<
+ * for i in range(ndim):
+ * info.strides[i] = PyArray_STRIDES(self)[i]
+ */
+ __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":228
+ * info.strides = stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2)
+ * info.shape = info.strides + ndim
+ * for i in range(ndim): # <<<<<<<<<<<<<<
+ * info.strides[i] = PyArray_STRIDES(self)[i]
+ * info.shape[i] = PyArray_DIMS(self)[i]
+ */
+ __pyx_t_5 = __pyx_v_ndim;
+ for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) {
+ __pyx_v_i = __pyx_t_6;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":229
+ * info.shape = info.strides + ndim
+ * for i in range(ndim):
+ * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<<
+ * info.shape[i] = PyArray_DIMS(self)[i]
+ * else:
+ */
+ (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":230
+ * for i in range(ndim):
+ * info.strides[i] = PyArray_STRIDES(self)[i]
+ * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<<
+ * else:
+ * info.strides = PyArray_STRIDES(self)
+ */
+ (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]);
+ }
+ goto __pyx_L7;
+ }
+ /*else*/ {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":232
+ * info.shape[i] = PyArray_DIMS(self)[i]
+ * else:
+ * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<<
+ * info.shape = PyArray_DIMS(self)
+ * info.suboffsets = NULL
+ */
+ __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self));
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":233
+ * else:
+ * info.strides = PyArray_STRIDES(self)
+ * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<<
+ * info.suboffsets = NULL
+ * info.itemsize = PyArray_ITEMSIZE(self)
+ */
+ __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self));
+ }
+ __pyx_L7:;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":234
+ * info.strides = PyArray_STRIDES(self)
+ * info.shape = PyArray_DIMS(self)
+ * info.suboffsets = NULL # <<<<<<<<<<<<<<
+ * info.itemsize = PyArray_ITEMSIZE(self)
+ * info.readonly = not PyArray_ISWRITEABLE(self)
+ */
+ __pyx_v_info->suboffsets = NULL;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":235
+ * info.shape = PyArray_DIMS(self)
+ * info.suboffsets = NULL
+ * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<<
+ * info.readonly = not PyArray_ISWRITEABLE(self)
+ *
+ */
+ __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":236
+ * info.suboffsets = NULL
+ * info.itemsize = PyArray_ITEMSIZE(self)
+ * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<<
+ *
+ * cdef int t
+ */
+ __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0));
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":239
+ *
+ * cdef int t
+ * cdef char* f = NULL # <<<<<<<<<<<<<<
+ * cdef dtype descr = self.descr
+ * cdef list stack
+ */
+ __pyx_v_f = NULL;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":240
+ * cdef int t
+ * cdef char* f = NULL
+ * cdef dtype descr = self.descr # <<<<<<<<<<<<<<
+ * cdef list stack
+ * cdef int offset
+ */
+ __pyx_t_4 = ((PyObject *)__pyx_v_self->descr);
+ __Pyx_INCREF(__pyx_t_4);
+ __pyx_v_descr = ((PyArray_Descr *)__pyx_t_4);
+ __pyx_t_4 = 0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":244
+ * cdef int offset
+ *
+ * cdef bint hasfields = PyDataType_HASFIELDS(descr) # <<<<<<<<<<<<<<
+ *
+ * if not hasfields and not copy_shape:
+ */
+ __pyx_v_hasfields = PyDataType_HASFIELDS(__pyx_v_descr);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":246
+ * cdef bint hasfields = PyDataType_HASFIELDS(descr)
+ *
+ * if not hasfields and not copy_shape: # <<<<<<<<<<<<<<
+ * # do not call releasebuffer
+ * info.obj = None
+ */
+ __pyx_t_2 = ((!(__pyx_v_hasfields != 0)) != 0);
+ if (__pyx_t_2) {
+ __pyx_t_3 = ((!(__pyx_v_copy_shape != 0)) != 0);
+ __pyx_t_1 = __pyx_t_3;
+ } else {
+ __pyx_t_1 = __pyx_t_2;
+ }
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":248
+ * if not hasfields and not copy_shape:
+ * # do not call releasebuffer
+ * info.obj = None # <<<<<<<<<<<<<<
+ * else:
+ * # need to call releasebuffer
+ */
+ __Pyx_INCREF(Py_None);
+ __Pyx_GIVEREF(Py_None);
+ __Pyx_GOTREF(__pyx_v_info->obj);
+ __Pyx_DECREF(__pyx_v_info->obj);
+ __pyx_v_info->obj = Py_None;
+ goto __pyx_L10;
+ }
+ /*else*/ {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":251
+ * else:
+ * # need to call releasebuffer
+ * info.obj = self # <<<<<<<<<<<<<<
+ *
+ * if not hasfields:
+ */
+ __Pyx_INCREF(((PyObject *)__pyx_v_self));
+ __Pyx_GIVEREF(((PyObject *)__pyx_v_self));
+ __Pyx_GOTREF(__pyx_v_info->obj);
+ __Pyx_DECREF(__pyx_v_info->obj);
+ __pyx_v_info->obj = ((PyObject *)__pyx_v_self);
+ }
+ __pyx_L10:;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":253
+ * info.obj = self
+ *
+ * if not hasfields: # <<<<<<<<<<<<<<
+ * t = descr.type_num
+ * if ((descr.byteorder == c'>' and little_endian) or
+ */
+ __pyx_t_1 = ((!(__pyx_v_hasfields != 0)) != 0);
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":254
+ *
+ * if not hasfields:
+ * t = descr.type_num # <<<<<<<<<<<<<<
+ * if ((descr.byteorder == c'>' and little_endian) or
+ * (descr.byteorder == c'<' and not little_endian)):
+ */
+ __pyx_t_5 = __pyx_v_descr->type_num;
+ __pyx_v_t = __pyx_t_5;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":255
+ * if not hasfields:
+ * t = descr.type_num
+ * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<<
+ * (descr.byteorder == c'<' and not little_endian)):
+ * raise ValueError(u"Non-native byte order not supported")
+ */
+ __pyx_t_1 = ((__pyx_v_descr->byteorder == '>') != 0);
+ if (__pyx_t_1) {
+ __pyx_t_2 = (__pyx_v_little_endian != 0);
+ } else {
+ __pyx_t_2 = __pyx_t_1;
+ }
+ if (!__pyx_t_2) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":256
+ * t = descr.type_num
+ * if ((descr.byteorder == c'>' and little_endian) or
+ * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<<
+ * raise ValueError(u"Non-native byte order not supported")
+ * if t == NPY_BYTE: f = "b"
+ */
+ __pyx_t_1 = ((__pyx_v_descr->byteorder == '<') != 0);
+ if (__pyx_t_1) {
+ __pyx_t_3 = ((!(__pyx_v_little_endian != 0)) != 0);
+ __pyx_t_7 = __pyx_t_3;
+ } else {
+ __pyx_t_7 = __pyx_t_1;
+ }
+ __pyx_t_1 = __pyx_t_7;
+ } else {
+ __pyx_t_1 = __pyx_t_2;
+ }
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":257
+ * if ((descr.byteorder == c'>' and little_endian) or
+ * (descr.byteorder == c'<' and not little_endian)):
+ * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<<
+ * if t == NPY_BYTE: f = "b"
+ * elif t == NPY_UBYTE: f = "B"
+ */
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_Raise(__pyx_t_4, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":274
+ * elif t == NPY_CDOUBLE: f = "Zd"
+ * elif t == NPY_CLONGDOUBLE: f = "Zg"
+ * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<<
+ * else:
+ * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
+ */
+ switch (__pyx_v_t) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":258
+ * (descr.byteorder == c'<' and not little_endian)):
+ * raise ValueError(u"Non-native byte order not supported")
+ * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<<
+ * elif t == NPY_UBYTE: f = "B"
+ * elif t == NPY_SHORT: f = "h"
+ */
+ case NPY_BYTE:
+ __pyx_v_f = __pyx_k_b;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":259
+ * raise ValueError(u"Non-native byte order not supported")
+ * if t == NPY_BYTE: f = "b"
+ * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<<
+ * elif t == NPY_SHORT: f = "h"
+ * elif t == NPY_USHORT: f = "H"
+ */
+ case NPY_UBYTE:
+ __pyx_v_f = __pyx_k_B;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":260
+ * if t == NPY_BYTE: f = "b"
+ * elif t == NPY_UBYTE: f = "B"
+ * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<<
+ * elif t == NPY_USHORT: f = "H"
+ * elif t == NPY_INT: f = "i"
+ */
+ case NPY_SHORT:
+ __pyx_v_f = __pyx_k_h;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":261
+ * elif t == NPY_UBYTE: f = "B"
+ * elif t == NPY_SHORT: f = "h"
+ * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<<
+ * elif t == NPY_INT: f = "i"
+ * elif t == NPY_UINT: f = "I"
+ */
+ case NPY_USHORT:
+ __pyx_v_f = __pyx_k_H;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":262
+ * elif t == NPY_SHORT: f = "h"
+ * elif t == NPY_USHORT: f = "H"
+ * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<<
+ * elif t == NPY_UINT: f = "I"
+ * elif t == NPY_LONG: f = "l"
+ */
+ case NPY_INT:
+ __pyx_v_f = __pyx_k_i;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":263
+ * elif t == NPY_USHORT: f = "H"
+ * elif t == NPY_INT: f = "i"
+ * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<<
+ * elif t == NPY_LONG: f = "l"
+ * elif t == NPY_ULONG: f = "L"
+ */
+ case NPY_UINT:
+ __pyx_v_f = __pyx_k_I;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":264
+ * elif t == NPY_INT: f = "i"
+ * elif t == NPY_UINT: f = "I"
+ * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<<
+ * elif t == NPY_ULONG: f = "L"
+ * elif t == NPY_LONGLONG: f = "q"
+ */
+ case NPY_LONG:
+ __pyx_v_f = __pyx_k_l;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":265
+ * elif t == NPY_UINT: f = "I"
+ * elif t == NPY_LONG: f = "l"
+ * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<<
+ * elif t == NPY_LONGLONG: f = "q"
+ * elif t == NPY_ULONGLONG: f = "Q"
+ */
+ case NPY_ULONG:
+ __pyx_v_f = __pyx_k_L;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":266
+ * elif t == NPY_LONG: f = "l"
+ * elif t == NPY_ULONG: f = "L"
+ * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<<
+ * elif t == NPY_ULONGLONG: f = "Q"
+ * elif t == NPY_FLOAT: f = "f"
+ */
+ case NPY_LONGLONG:
+ __pyx_v_f = __pyx_k_q;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":267
+ * elif t == NPY_ULONG: f = "L"
+ * elif t == NPY_LONGLONG: f = "q"
+ * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<<
+ * elif t == NPY_FLOAT: f = "f"
+ * elif t == NPY_DOUBLE: f = "d"
+ */
+ case NPY_ULONGLONG:
+ __pyx_v_f = __pyx_k_Q;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":268
+ * elif t == NPY_LONGLONG: f = "q"
+ * elif t == NPY_ULONGLONG: f = "Q"
+ * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<<
+ * elif t == NPY_DOUBLE: f = "d"
+ * elif t == NPY_LONGDOUBLE: f = "g"
+ */
+ case NPY_FLOAT:
+ __pyx_v_f = __pyx_k_f;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":269
+ * elif t == NPY_ULONGLONG: f = "Q"
+ * elif t == NPY_FLOAT: f = "f"
+ * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<<
+ * elif t == NPY_LONGDOUBLE: f = "g"
+ * elif t == NPY_CFLOAT: f = "Zf"
+ */
+ case NPY_DOUBLE:
+ __pyx_v_f = __pyx_k_d;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":270
+ * elif t == NPY_FLOAT: f = "f"
+ * elif t == NPY_DOUBLE: f = "d"
+ * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<<
+ * elif t == NPY_CFLOAT: f = "Zf"
+ * elif t == NPY_CDOUBLE: f = "Zd"
+ */
+ case NPY_LONGDOUBLE:
+ __pyx_v_f = __pyx_k_g;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":271
+ * elif t == NPY_DOUBLE: f = "d"
+ * elif t == NPY_LONGDOUBLE: f = "g"
+ * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<<
+ * elif t == NPY_CDOUBLE: f = "Zd"
+ * elif t == NPY_CLONGDOUBLE: f = "Zg"
+ */
+ case NPY_CFLOAT:
+ __pyx_v_f = __pyx_k_Zf;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":272
+ * elif t == NPY_LONGDOUBLE: f = "g"
+ * elif t == NPY_CFLOAT: f = "Zf"
+ * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<<
+ * elif t == NPY_CLONGDOUBLE: f = "Zg"
+ * elif t == NPY_OBJECT: f = "O"
+ */
+ case NPY_CDOUBLE:
+ __pyx_v_f = __pyx_k_Zd;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":273
+ * elif t == NPY_CFLOAT: f = "Zf"
+ * elif t == NPY_CDOUBLE: f = "Zd"
+ * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<<
+ * elif t == NPY_OBJECT: f = "O"
+ * else:
+ */
+ case NPY_CLONGDOUBLE:
+ __pyx_v_f = __pyx_k_Zg;
+ break;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":274
+ * elif t == NPY_CDOUBLE: f = "Zd"
+ * elif t == NPY_CLONGDOUBLE: f = "Zg"
+ * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<<
+ * else:
+ * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
+ */
+ case NPY_OBJECT:
+ __pyx_v_f = __pyx_k_O;
+ break;
+ default:
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":276
+ * elif t == NPY_OBJECT: f = "O"
+ * else:
+ * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<<
+ * info.format = f
+ * return
+ */
+ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_8 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_4); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_8);
+ __Pyx_GIVEREF(__pyx_t_8);
+ __pyx_t_8 = 0;
+ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_Raise(__pyx_t_8, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ break;
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":277
+ * else:
+ * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
+ * info.format = f # <<<<<<<<<<<<<<
+ * return
+ * else:
+ */
+ __pyx_v_info->format = __pyx_v_f;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":278
+ * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
+ * info.format = f
+ * return # <<<<<<<<<<<<<<
+ * else:
+ * info.format = stdlib.malloc(_buffer_format_string_len)
+ */
+ __pyx_r = 0;
+ goto __pyx_L0;
+ }
+ /*else*/ {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":280
+ * return
+ * else:
+ * info.format = stdlib.malloc(_buffer_format_string_len) # <<<<<<<<<<<<<<
+ * info.format[0] = c'^' # Native data types, manual alignment
+ * offset = 0
+ */
+ __pyx_v_info->format = ((char *)malloc(255));
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":281
+ * else:
+ * info.format = stdlib.malloc(_buffer_format_string_len)
+ * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<<
+ * offset = 0
+ * f = _util_dtypestring(descr, info.format + 1,
+ */
+ (__pyx_v_info->format[0]) = '^';
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":282
+ * info.format = stdlib.malloc(_buffer_format_string_len)
+ * info.format[0] = c'^' # Native data types, manual alignment
+ * offset = 0 # <<<<<<<<<<<<<<
+ * f = _util_dtypestring(descr, info.format + 1,
+ * info.format + _buffer_format_string_len,
+ */
+ __pyx_v_offset = 0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":283
+ * info.format[0] = c'^' # Native data types, manual alignment
+ * offset = 0
+ * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<<
+ * info.format + _buffer_format_string_len,
+ * &offset)
+ */
+ __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 255), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 283; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_v_f = __pyx_t_9;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":286
+ * info.format + _buffer_format_string_len,
+ * &offset)
+ * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<<
+ *
+ * def __releasebuffer__(ndarray self, Py_buffer* info):
+ */
+ (__pyx_v_f[0]) = '\x00';
+ }
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":194
+ * # experimental exception made for __getbuffer__ and __releasebuffer__
+ * # -- the details of this may change.
+ * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<<
+ * # This implementation of getbuffer is geared towards Cython
+ * # requirements, and does not yet fullfill the PEP.
+ */
+
+ /* function exit code */
+ __pyx_r = 0;
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_8);
+ __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = -1;
+ if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) {
+ __Pyx_GOTREF(__pyx_v_info->obj);
+ __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL;
+ }
+ goto __pyx_L2;
+ __pyx_L0:;
+ if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) {
+ __Pyx_GOTREF(Py_None);
+ __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL;
+ }
+ __pyx_L2:;
+ __Pyx_XDECREF((PyObject *)__pyx_v_descr);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":288
+ * f[0] = c'\0' # Terminate format string
+ *
+ * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<<
+ * if PyArray_HASFIELDS(self):
+ * stdlib.free(info.format)
+ */
+
+/* Python wrapper */
+static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/
+static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0);
+ __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info));
+
+ /* function exit code */
+ __Pyx_RefNannyFinishContext();
+}
+
+static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) {
+ __Pyx_RefNannyDeclarations
+ int __pyx_t_1;
+ __Pyx_RefNannySetupContext("__releasebuffer__", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":289
+ *
+ * def __releasebuffer__(ndarray self, Py_buffer* info):
+ * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<<
+ * stdlib.free(info.format)
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t):
+ */
+ __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0);
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":290
+ * def __releasebuffer__(ndarray self, Py_buffer* info):
+ * if PyArray_HASFIELDS(self):
+ * stdlib.free(info.format) # <<<<<<<<<<<<<<
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t):
+ * stdlib.free(info.strides)
+ */
+ free(__pyx_v_info->format);
+ goto __pyx_L3;
+ }
+ __pyx_L3:;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":291
+ * if PyArray_HASFIELDS(self):
+ * stdlib.free(info.format)
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<<
+ * stdlib.free(info.strides)
+ * # info.shape was stored after info.strides in the same block
+ */
+ __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0);
+ if (__pyx_t_1) {
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":292
+ * stdlib.free(info.format)
+ * if sizeof(npy_intp) != sizeof(Py_ssize_t):
+ * stdlib.free(info.strides) # <<<<<<<<<<<<<<
+ * # info.shape was stored after info.strides in the same block
+ *
+ */
+ free(__pyx_v_info->strides);
+ goto __pyx_L4;
+ }
+ __pyx_L4:;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":288
+ * f[0] = c'\0' # Terminate format string
+ *
+ * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<<
+ * if PyArray_HASFIELDS(self):
+ * stdlib.free(info.format)
+ */
+
+ /* function exit code */
+ __Pyx_RefNannyFinishContext();
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":768
+ * ctypedef npy_cdouble complex_t
+ *
+ * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(1, a)
+ *
+ */
+
+static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":769
+ *
+ * cdef inline object PyArray_MultiIterNew1(a):
+ * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<<
+ *
+ * cdef inline object PyArray_MultiIterNew2(a, b):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 769; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":768
+ * ctypedef npy_cdouble complex_t
+ *
+ * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(1, a)
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = 0;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":771
+ * return PyArray_MultiIterNew(1, a)
+ *
+ * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(2, a, b)
+ *
+ */
+
+static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":772
+ *
+ * cdef inline object PyArray_MultiIterNew2(a, b):
+ * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<<
+ *
+ * cdef inline object PyArray_MultiIterNew3(a, b, c):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 772; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":771
+ * return PyArray_MultiIterNew(1, a)
+ *
+ * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(2, a, b)
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = 0;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":774
+ * return PyArray_MultiIterNew(2, a, b)
+ *
+ * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(3, a, b, c)
+ *
+ */
+
+static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":775
+ *
+ * cdef inline object PyArray_MultiIterNew3(a, b, c):
+ * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<<
+ *
+ * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 775; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":774
+ * return PyArray_MultiIterNew(2, a, b)
+ *
+ * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(3, a, b, c)
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = 0;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":777
+ * return PyArray_MultiIterNew(3, a, b, c)
+ *
+ * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(4, a, b, c, d)
+ *
+ */
+
+static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":778
+ *
+ * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
+ * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<<
+ *
+ * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 778; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":777
+ * return PyArray_MultiIterNew(3, a, b, c)
+ *
+ * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(4, a, b, c, d)
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = 0;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":780
+ * return PyArray_MultiIterNew(4, a, b, c, d)
+ *
+ * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(5, a, b, c, d, e)
+ *
+ */
+
+static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0);
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":781
+ *
+ * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
+ * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<<
+ *
+ * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL:
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 781; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "/home/xinleic/anaconda/lib/python2.7/site-packages/Cython/Includes/numpy/__init__.pxd":780
+ * return PyArray_MultiIterNew(4, a, b, c, d)
+ *
+ * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
+ * return PyArray_MultiIterNew(5, a,