-
Notifications
You must be signed in to change notification settings - Fork 46
/
mycroft_talknet.py
114 lines (95 loc) · 3.42 KB
/
mycroft_talknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
from flask import Flask, request, send_file
import sys
import torch
import numpy as np
from scipy.io import wavfile
import io
from nemo.collections.tts.models import TalkNetSpectModel
from nemo.collections.tts.models import TalkNetPitchModel
from nemo.collections.tts.models import TalkNetDursModel
import json
sys.path.append("hifi-gan")
from env import AttrDict
from meldataset import MAX_WAV_VALUE
from models import Generator
from denoiser import Denoiser
app = Flask(__name__)
RUN_PATH = os.path.dirname(os.path.realpath(__file__))
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def load_hifigan(model_name, conf_name):
# Load HiFi-GAN
conf = os.path.join("hifi-gan", conf_name + ".json")
with open(conf) as f:
json_config = json.loads(f.read())
h = AttrDict(json_config)
torch.manual_seed(h.seed)
hifigan = Generator(h).to(torch.device(DEVICE))
state_dict_g = torch.load(model_name, map_location=torch.device(DEVICE))
hifigan.load_state_dict(state_dict_g["generator"])
hifigan.eval()
hifigan.remove_weight_norm()
denoiser = Denoiser(hifigan, mode="normal")
return hifigan, h, denoiser
def generate_json(input, outpath):
output = ""
sample_rate = 22050
lpath = input.split("|")[0].strip()
size = os.stat(lpath).st_size
x = {
"audio_filepath": lpath,
"duration": size / (sample_rate * 2),
"text": input.split("|")[1].strip(),
}
output += json.dumps(x) + "\n"
with open(outpath, "w", encoding="utf8") as w:
w.write(output)
def load_talknet(talknet_path):
with torch.no_grad():
tnmodel = TalkNetSpectModel.restore_from(talknet_path)
durs_path = os.path.join(os.path.dirname(talknet_path), "TalkNetDurs.nemo")
tndurs = TalkNetDursModel.restore_from(durs_path)
tnmodel.add_module("_durs_model", tndurs)
pitch_path = os.path.join(os.path.dirname(talknet_path), "TalkNetPitch.nemo")
tnpitch = TalkNetPitchModel.restore_from(pitch_path)
tnmodel.add_module("_pitch_model", tnpitch)
tnmodel.eval()
return tnmodel
def generate_audio(transcript, tnmodel, hifigan, denoiser):
with torch.no_grad():
tokens = tnmodel.parse(text=transcript.strip())
spect = tnmodel.generate_spectrogram(tokens=tokens)
y_g_hat = hifigan(spect.float())
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
audio_denoised = denoiser(audio.view(1, -1), strength=35)[:, 0]
audio_np = audio_denoised.detach().cpu().numpy().reshape(-1).astype(np.int16)
buffer = io.BytesIO()
wavfile.write(buffer, 22050, audio_np)
return buffer
@app.route("/", methods=["GET"])
def get_check():
return "TalkNet server online"
@app.route("/api/tts", methods=["GET"])
def get_tts():
if "text" not in request.args:
return ""
transcript = request.args.get("text")
return send_file(
generate_audio(transcript, tnmodel, hifigan, denoiser),
attachment_filename="audio.wav",
mimetype="audio/x-wav",
)
if __name__ == "__main__":
hifigan, h, denoiser = load_hifigan(
os.path.join(
RUN_PATH, "models", "1QnOliOAmerMUNuo2wXoH-YoainoSjZen", "hifiganmodel"
),
"config_v1",
)
tnmodel = load_talknet(
os.path.join(
RUN_PATH, "models", "1QnOliOAmerMUNuo2wXoH-YoainoSjZen", "TalkNetSpect.nemo"
)
)
app.run(debug=False)