-
Notifications
You must be signed in to change notification settings - Fork 0
/
lycoris.py
789 lines (628 loc) · 28.6 KB
/
lycoris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
from typing import *
import os, sys
import re
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import shared, devices, sd_models, errors
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_unet_conv_in = re.compile(r"lora_unet_conv_in(.+)")
re_unet_conv_out = re.compile(r"lora_unet_conv_out(.+)")
re_unet_time_embed = re.compile(r"lora_unet_time_embedding_linear_(\d+)(.+)")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key, is_sd2):
# I don't know why but some state dict has this kind of thing
key = key.replace('text_model_text_model', 'text_model')
def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, re_unet_conv_in):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, re_unet_conv_out):
return f'diffusion_model_out_2{m[0]}'
if match(m, re_unet_time_embed):
return f"diffusion_model_time_embed_{m[0]*2-2}{m[1]}"
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_down_blocks_res):
block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_mid_blocks_res):
block = f"diffusion_model_middle_block_{m[0]*2}_"
if m[1].startswith('conv1'):
return f"{block}in_layers_2{m[1][len('conv1'):]}"
elif m[1].startswith('conv2'):
return f"{block}out_layers_3{m[1][len('conv2'):]}"
elif m[1].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
elif m[1].startswith('conv_shortcut'):
return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"
if match(m, re_unet_up_blocks_res):
block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_downsample):
return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"
if match(m, re_unet_upsample):
return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
def assign_lyco_names_to_compvis_modules(sd_model):
lyco_layer_mapping = {}
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
lyco_name = name.replace(".", "_")
lyco_layer_mapping[lyco_name] = module
module.lyco_layer_name = lyco_name
for name, module in shared.sd_model.model.named_modules():
lyco_name = name.replace(".", "_")
lyco_layer_mapping[lyco_name] = module
module.lyco_layer_name = lyco_name
sd_model.lyco_layer_mapping = lyco_layer_mapping
class LycoOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
_, ext = os.path.splitext(filename)
if ext.lower() == ".safetensors":
try:
self.metadata = sd_models.read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
class LycoModule:
def __init__(self, name):
self.name = name
self.te_multiplier = 1.0
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
self.mtime = None
class FullModule:
def __init__(self):
self.weight = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
class LycoUpDownModule:
def __init__(self):
self.up_model = None
self.mid_model = None
self.down_model = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
def make_weight_cp(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
class LycoHadaModule:
def __init__(self):
self.t1 = None
self.w1a = None
self.w1b = None
self.t2 = None
self.w2a = None
self.w2b = None
self.alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
class IA3Module:
def __init__(self):
self.w = None
self.alpha = None
self.scale = None
self.dim = None
self.on_input = None
def make_kron(orig_shape, w1, w2):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
return torch.kron(w1, w2).reshape(orig_shape)
class LycoKronModule:
def __init__(self):
self.w1 = None
self.w1a = None
self.w1b = None
self.w2 = None
self.t2 = None
self.w2a = None
self.w2b = None
self._alpha = None
self.scale = None
self.dim = None
self.shape = None
self.bias = None
@property
def alpha(self):
if self.w1a is None and self.w2a is None:
return None
else:
return self._alpha
@alpha.setter
def alpha(self, x):
self._alpha = x
CON_KEY = {
"lora_up.weight", "dyn_up",
"lora_down.weight", "dyn_down",
"lora_mid.weight"
}
HADA_KEY = {
"hada_t1",
"hada_w1_a",
"hada_w1_b",
"hada_t2",
"hada_w2_a",
"hada_w2_b",
}
IA3_KEY = {
"weight",
"on_input"
}
KRON_KEY = {
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_t2",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
}
def load_lyco(name, filename):
lyco = LycoModule(name)
lyco.mtime = os.path.getmtime(filename)
sd = sd_models.read_state_dict(filename)
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lyco_layer_mapping
keys_failed_to_match = []
for key_diffusers, weight in sd.items():
fullkey = convert_diffusers_name_to_compvis(key_diffusers, is_sd2)
key, lyco_key = fullkey.split(".", 1)
sd_module = shared.sd_model.lyco_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.lyco_layer_mapping.get(m.group(1), None)
if sd_module is None:
print(key)
keys_failed_to_match.append(key_diffusers)
continue
lyco_module = lyco.modules.get(key, None)
if lyco_module is None:
lyco_module = LycoUpDownModule()
lyco.modules[key] = lyco_module
if lyco_key == "alpha":
lyco_module.alpha = weight.item()
continue
if lyco_key == "scale":
lyco_module.scale = weight.item()
continue
if lyco_key == "diff":
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
lyco_module = FullModule()
lyco.modules[key] = lyco_module
lyco_module.weight = weight
continue
if 'bias_' in lyco_key:
if lyco_module.bias is None:
lyco_module.bias = [None, None, None]
if 'bias_indices' == lyco_key:
lyco_module.bias[0] = weight
elif 'bias_values' == lyco_key:
lyco_module.bias[1] = weight
elif 'bias_size' == lyco_key:
lyco_module.bias[2] = weight
if all((i is not None) for i in lyco_module.bias):
print('build bias')
lyco_module.bias = torch.sparse_coo_tensor(
lyco_module.bias[0],
lyco_module.bias[1],
tuple(lyco_module.bias[2]),
).to(device=devices.cpu, dtype=devices.dtype)
lyco_module.bias.requires_grad_(False)
continue
if lyco_key in CON_KEY:
if (type(sd_module) == torch.nn.Linear
or type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear
or type(sd_module) == torch.nn.MultiheadAttention):
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
if lyco_key == "lora_down.weight" or lyco_key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif lyco_key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
elif lyco_key == "lora_up.weight" or lyco_key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
assert False, f'Lyco layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.requires_grad_(False)
if lyco_key == "lora_up.weight" or lyco_key == "dyn_up":
lyco_module.up_model = module
elif lyco_key == "lora_mid.weight":
lyco_module.mid_model = module
elif lyco_key == "lora_down.weight" or lyco_key == "dyn_down":
lyco_module.down_model = module
lyco_module.dim = weight.shape[0]
else:
print(lyco_key)
elif lyco_key in HADA_KEY:
if type(lyco_module) != LycoHadaModule:
alpha = lyco_module.alpha
bias = lyco_module.bias
lyco_module = LycoHadaModule()
lyco_module.alpha = alpha
lyco_module.bias = bias
lyco.modules[key] = lyco_module
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
if lyco_key == 'hada_w1_a':
lyco_module.w1a = weight
elif lyco_key == 'hada_w1_b':
lyco_module.w1b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'hada_w2_a':
lyco_module.w2a = weight
elif lyco_key == 'hada_w2_b':
lyco_module.w2b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'hada_t1':
lyco_module.t1 = weight
elif lyco_key == 'hada_t2':
lyco_module.t2 = weight
elif lyco_key in IA3_KEY:
if type(lyco_module) != IA3Module:
lyco_module = IA3Module()
lyco.modules[key] = lyco_module
if lyco_key == "weight":
lyco_module.w = weight.to(devices.device, dtype=devices.dtype)
elif lyco_key == "on_input":
lyco_module.on_input = weight
elif lyco_key in KRON_KEY:
if not isinstance(lyco_module, LycoKronModule):
alpha = lyco_module.alpha
bias = lyco_module.bias
lyco_module = LycoKronModule()
lyco_module.alpha = alpha
lyco_module.bias = bias
lyco.modules[key] = lyco_module
if hasattr(sd_module, 'weight'):
lyco_module.shape = sd_module.weight.shape
weight = weight.to(device=devices.cpu, dtype=devices.dtype)
weight.requires_grad_(False)
if lyco_key == 'lokr_w1':
lyco_module.w1 = weight
elif lyco_key == 'lokr_w1_a':
lyco_module.w1a = weight
elif lyco_key == 'lokr_w1_b':
lyco_module.w1b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'lokr_w2':
lyco_module.w2 = weight
elif lyco_key == 'lokr_w2_a':
lyco_module.w2a = weight
elif lyco_key == 'lokr_w2_b':
lyco_module.w2b = weight
lyco_module.dim = weight.shape[0]
elif lyco_key == 'lokr_t2':
lyco_module.t2 = weight
else:
assert False, f'Bad Lyco layer name: {key_diffusers} - must end in lyco_up.weight, lyco_down.weight or alpha'
if len(keys_failed_to_match) > 0:
print(shared.sd_model.lyco_layer_mapping)
print(f"Failed to match keys when loading Lyco {filename}: {keys_failed_to_match}")
return lyco
def load_lycos(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
for lyco in loaded_lycos:
if lyco.name in names:
already_loaded[lyco.name] = lyco
loaded_lycos.clear()
lycos_on_disk = [available_lycos.get(name, None) for name in names]
if any([x is None for x in lycos_on_disk]):
list_available_lycos()
lycos_on_disk = [available_lycos.get(name, None) for name in names]
for i, name in enumerate(names):
lyco = already_loaded.get(name, None)
lyco_on_disk = lycos_on_disk[i]
if lyco_on_disk is not None:
if lyco is None or os.path.getmtime(lyco_on_disk.filename) > lyco.mtime:
lyco = load_lyco(name, lyco_on_disk.filename)
if lyco is None:
print(f"Couldn't find Lora with name {name}")
continue
lyco.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
lyco.unet_multiplier = unet_multipliers[i] if unet_multipliers else lyco.te_multiplier
lyco.dyn_dim = dyn_dims[i] if dyn_dims else None
loaded_lycos.append(lyco)
def _rebuild_conventional(up, down, shape, dyn_dim=None):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
if dyn_dim is not None:
up = up[:, :dyn_dim]
down = down[:dyn_dim, :]
return (up @ down).reshape(shape)
def _rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
def rebuild_weight(module, orig_weight: torch.Tensor, dyn_dim: int=None) -> torch.Tensor:
output_shape: Sized
if module.__class__.__name__ == 'LycoUpDownModule':
up = module.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = module.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [up.size(0), down.size(1)]
if (mid:=module.mid_model) is not None:
# cp-decomposition
mid = mid.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = _rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = _rebuild_conventional(up, down, output_shape, dyn_dim)
elif module.__class__.__name__ == 'LycoHadaModule':
w1a = module.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = module.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w1a.size(0), w1b.size(1)]
if module.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = module.t1.to(orig_weight.device, dtype=orig_weight.dtype)
updown1 = make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
if len(w1b.shape) == 4:
output_shape += w1b.shape[2:]
updown1 = _rebuild_conventional(w1a, w1b, output_shape)
if module.t2 is not None:
t2 = module.t2.to(orig_weight.device, dtype=orig_weight.dtype)
updown2 = make_weight_cp(t2, w2a, w2b)
else:
updown2 = _rebuild_conventional(w2a, w2b, output_shape)
updown = updown1 * updown2
elif module.__class__.__name__ == 'FullModule':
output_shape = module.weight.shape
updown = module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
elif module.__class__.__name__ == 'IA3Module':
output_shape = [module.w.size(0), orig_weight.size(1)]
if module.on_input:
output_shape.reverse()
else:
module.w = module.w.reshape(-1, 1)
updown = orig_weight * module.w
elif module.__class__.__name__ == 'LycoKronModule':
if module.w1 is not None:
w1 = module.w1.to(orig_weight.device, dtype=orig_weight.dtype)
else:
w1a = module.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = module.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w1 = w1a @ w1b
if module.w2 is not None:
w2 = module.w2.to(orig_weight.device, dtype=orig_weight.dtype)
elif module.t2 is None:
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = w2a @ w2b
else:
t2 = module.t2.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = module.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = module.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0)*w2.size(0), w1.size(1)*w2.size(1)]
if len(orig_weight.shape) == 4:
output_shape = orig_weight.shape
updown = make_kron(
output_shape, w1, w2
)
else:
raise NotImplementedError(
f"Unknown module type: {module.__class__.__name__}\n"
"If the type is one of "
"'LycoUpDownModule', 'LycoHadaModule', 'FullModule', 'IA3Module', 'LycoKronModule'"
"You may have other lyco extension that conflict with locon extension."
)
if hasattr(module, 'bias') and module.bias != None:
updown = updown.reshape(module.bias.shape)
updown += module.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
# print(torch.sum(updown))
return updown
def lyco_calc_updown(lyco, module, target):
with torch.no_grad():
updown = rebuild_weight(module, target, lyco.dyn_dim)
if lyco.dyn_dim and module.dim:
dim = min(lyco.dyn_dim, module.dim)
elif lyco.dyn_dim:
dim = lyco.dyn_dim
elif module.dim:
dim = module.dim
else:
dim = None
scale = (
module.scale if module.scale is not None
else module.alpha / dim if dim is not None and module.alpha is not None
else 1.0
)
# print(scale, module.alpha, module.dim, lyco.dyn_dim)
updown = updown * scale
return updown
def lyco_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Lycos to the weights of torch layer self.
If weights already have this particular set of lycos applied, does nothing.
If not, restores orginal weights from backup and alters weights according to lycos.
"""
lyco_layer_name = getattr(self, 'lyco_layer_name', None)
if lyco_layer_name is None:
return
current_names = getattr(self, "lyco_current_names", ())
lora_prev_names = getattr(self, "lora_prev_names", ())
lora_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_lycos)
weights_backup = getattr(self, "lyco_weights_backup", None)
lora_weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None and len(loaded_lycos):
# print('lyco save weight')
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (
self.in_proj_weight.to(devices.cpu, copy=True),
self.out_proj.weight.to(devices.cpu, copy=True)
)
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lyco_weights_backup = weights_backup
elif lora_prev_names != lora_names:
# print('lyco remove weight')
self.lyco_weights_backup = None
lora_weights_backup = None
elif len(loaded_lycos) == 0:
self.lyco_weights_backup = None
if current_names != wanted_names or lora_prev_names != lora_names:
if weights_backup is not None and lora_names == lora_prev_names:
# print('lyco restore weight')
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
elif lora_weights_backup is not None and lora_names == ():
# print('lora restore weight')
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(lora_weights_backup[0])
self.out_proj.weight.copy_(lora_weights_backup[1])
else:
self.weight.copy_(lora_weights_backup)
for lyco in loaded_lycos:
module = lyco.modules.get(lyco_layer_name, None)
multiplier = (
lyco.te_multiplier if 'transformer' in lyco_layer_name[:20]
else lyco.unet_multiplier
)
if module is not None and hasattr(self, 'weight'):
# print(lyco_layer_name, multiplier)
self.weight += lyco_calc_updown(lyco, module, self.weight) * multiplier
continue
module_q = lyco.modules.get(lyco_layer_name + "_q_proj", None)
module_k = lyco.modules.get(lyco_layer_name + "_k_proj", None)
module_v = lyco.modules.get(lyco_layer_name + "_v_proj", None)
module_out = lyco.modules.get(lyco_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lyco_calc_updown(lyco, module_q, self.in_proj_weight)
updown_k = lyco_calc_updown(lyco, module_k, self.in_proj_weight)
updown_v = lyco_calc_updown(lyco, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lyco_calc_updown(lyco, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(3, f'failed to calculate lyco weights for layer {lyco_layer_name}')
# print(lyco_his, lyco.name not in lyco_his)
setattr(self, "lora_prev_names", lora_names)
setattr(self, "lyco_current_names", wanted_names)
def lyco_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
setattr(self, "lyco_current_names", ())
setattr(self, "lyco_weights_backup", None)
def lyco_Linear_forward(self, input):
lyco_apply_weights(self)
return torch.nn.Linear_forward_before_lyco(self, input)
def lyco_Linear_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lyco(self, *args, **kwargs)
def lyco_Conv2d_forward(self, input):
lyco_apply_weights(self)
return torch.nn.Conv2d_forward_before_lyco(self, input)
def lyco_Conv2d_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lyco(self, *args, **kwargs)
def lyco_MultiheadAttention_forward(self, *args, **kwargs):
lyco_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lyco(self, *args, **kwargs)
def lyco_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lyco_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lyco(self, *args, **kwargs)
def list_available_lycos():
available_lycos.clear()
os.makedirs(shared.cmd_opts.lyco_dir, exist_ok=True)
candidates = \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.pt'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lyco_dir, '**/*.ckpt'), recursive=True)
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
available_lycos[name] = LycoOnDisk(name, filename)
available_lycos: Dict[str, LycoOnDisk] = {}
loaded_lycos: List[LycoModule] = []
list_available_lycos()