-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
232 lines (178 loc) · 7.98 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Implementation from https://github.com/dmlc/dgl/blob/master/examples/pytorch/tree_lstm/tree_lstm.py
import sys
import os
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl
#in_dim =
#h_dim =
# num_layers = 1
# tree LSTM cell for binary trees
class BinaryTreeLSTMCell(nn.Module):
def __init__(self, in_dim, h_dim):
super().__init__()
self.iou_x = nn.Linear(in_dim, h_dim * 3) # i, o, u matrices for x (cell state)
self.iou_hl = nn.Linear(h_dim, h_dim * 3) # i, o, u matrices for left h (hidden state)
self.iou_hr = nn.Linear(h_dim, h_dim * 3) # i, o, u matrices for right h (hidden state)
self.f_x = nn.Linear(in_dim, h_dim) # forget for x
# forget for hidden state
self.f_h = nn.ModuleList([[nn.Linear(h_dim, h_dim), nn.Linear(h_dim, h_dim)],
[nn.Linear(h_dim, h_dim), nn.Linear(h_dim, h_dim)]])
# takes in input, cell states, and hidden states
def forward(self, x, hl, hr, cl, cr):
# i, o, u, gates
self.iou = self.iou_x(x) + self.iou_hl(hl) + self.iou_hr(hr)
# split
i, o, u = th.split(iou, iou.size(1) // 3, dim=1)
# apply activation functions
i = F.sigmoid(i)
o = F.sigmoid(o)
u = F.tanh(u)
# forget for left and right
fl = F.sigmoid(self.f_x(x) + self.f_h[0][0](hr) + self.f_h[0][1](hl))
fr = F.sigmoid(self.f_x(x) + self.f_h[1][0](hr) + self.f_h[1][1](hl))
# calculate hidden state and cell state
c = i * u + fl * cl + fr * cr
h = o * F.tanh(c)
# return hidden state and cell state
return h, c
# TreeLSTM encoder
class Encoder(nn.Module):
def __init__(self, in_dim, h_dim, embedding_size):
super().__init__()
self.initial_h = 0
self.initial_c = 0
self.in_dim = in_dim
self.h_dim = h_dim
# Dropout Layer (may be useful) (TODO:tune hyperparameters)
self.drop = nn.Dropout(p=0.5, inplace=False)
# Binary LSTM cell and embedding layer
self.tree_cell = BinaryTreeLSTMCell(in_dim, h_dim)
self.embed = nn.Embedding(in_dim, embedding_size)
# compute embeddings for source tree and subtrees
def forward(self, batch):
#
binary_cell = BinaryTreeLSTMCell(in_dim, h_dim)
# iterate through each tree in batch
for tree in batch:
# hidden state
hr = 0
hl = 0
# cell state
cr = 0
cl = 0
# iterate postorder over the tree, passing each layer to the lstm cell
current = 0
nodes_stack = []
while(True):
# while root is not empty
while (tree.successors(current).size() != 0):
nodes_stack.append(tree.successors(current[1]))
nodes_stack.append(current)
current = tree.successors(current)[0]
current = nodes_stack.pop()
if (tree.successors.size() != 1 and tree.successors(current)[1] in nodes_stack):
nodes_stack.pop()
nodes_stack.append(current)
current = tree.successors(current)[1]
else:
# run binary lstm for node
x = tree[current].ndata['info']
h, c = binary_cell.forward(x, hl, hr, cl, cr)
tree[current].ndata['e'] = self.embed(x)
tree[current].ndata['h'] = h
tree[current].ndata['c'] = c
# stack is empty
if (len(nodes_stack) == 0):
break
'''
# base case (LOOK AT SYNTAX)
if (tree[0].successors(0).ndata['info'][0]== None):
return
# compute embeddings
else:
x = tree[node_initial].ndata['info']
hl, cl = binary_cell.forward()
hr, cr = binary_cell.forward()
binary_cell.forward(x, hl, hr, cl, cr)'''
# Attention class to locate the source sub-tree
class Attention(nn.Module):
def __init__(self, h_dim):
# Weights matrices of size d * d (d is the embedding dimension)
self.h_dim = h_dim
W_0 = nn.Linear(h_dim, h_dim)
W_1 = nn.Linear(h_dim, h_dim)
W_2 = nn.Linear(h_dim, h_dim)
# get the source tree
def forward(self, tree, h_t):
# calculate probability while doing post-order traversal through tree
current = 0
nodes_stack = []
while(True):
# expectation
e_s = th.zeros(h_dim)
# while root is not empty
while (tree.successors(current).size() != 0):
nodes_stack.append(tree.successors(current[1]))
nodes_stack.append(current)
current = tree.successors(current)[0]
current = nodes_stack.pop()
if (tree.successors.size() != 1 and tree.successors(current)[1] in nodes_stack):
nodes_stack.pop()
nodes_stack.append(current)
current = tree.successors(current)[1]
else:
# calculate probability
p = th.exp(tree[current].ndata['h'].transpose() * self.W_0(h_t))
# compute expectation of h_t to be throughout all the nodes in the tree
e_s += tree[current].ndata['h'] * p
if (len(nodes_stack) == 0):
break
# compute e_t by combining W_1, W_2, e_s, and h_t and pass through activation function tanh
e_t = F.tanh(self.W_1(e_s) + self.W_2(h_t))
return e_t
# Decoder generates the target tree starting from a single root node
class Decoder(nn.Module):
def __init__(self, e_t, h_dim, vocab_size):
super().__init__()
# trainable matrix of vocab size of outputs and embedding dimension
self.W_tt = nn.Linear(h_dim, vocab_size)
self.B_t = nn.Linear(h_dim, vocab_size)
# attention mechanism
self.attention = Attention(h_dim)
# generate target tree from source tree
def forward(self, batch):
for tree in batch:
# make tree with one node
target_tree = dgl.DGLGraph(1)
# copy LSTM state from encoder of root of source tree and attach to root of target tree until empty list
target_tree[0].ndata['h'] = tree[0].ndata['h']
# initialize expanding node queue
nodes_queue = [0]
current = 0
# stop if there are no nodes left to expand
while (nodes_queue):
# current node is the first one in queue
current = nodes_queue.pop(0)
# compute e_t
e_t = attention.forward(tree, target_tree[current].ndata['h'])
# feed it into softmax regression network to get our token
t_t = th.max(F.softmax(W_tt(e_t)))
# if t_t isn't EOS, make two children nodes
if (t_t != "EOS"):
# make two children
target_tree.add_nodes(2)
target_tree([current, current], [len(target_tree) - 1, len(target_tree) - 2])
# add children to queue
nodes_queue.append(target_tree[current].successors()[0])
nodes_queue.append(target_tree[current].successors()[1])
class TreeToTreeLSTM(nn.Module):
def __init__(self, encoder, decoder):
super().__init__()
self.encoder = Encoder
self.decoder = Decoder
def forward(self, batch):
encoder.forward(batch)
decoder.forward(batch)