-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreclor_trainer_vanilla.py
457 lines (373 loc) · 19.5 KB
/
reclor_trainer_vanilla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# coding=utf-8
#
# Copyright 2020 Heinrich Heine University Duesseldorf
#
# Part of this code is based on the source code of BERT-DST
# (arXiv:1907.03040)
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import json
import logging
import os
import sys
from typing import Dict, Union
import hydra
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from torch import distributed as dist
from torch.optim import AdamW
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (get_linear_schedule_with_warmup, AutoTokenizer, PreTrainedTokenizer)
from general_util.logger import setting_logger
from general_util.training_utils import batch_to_device, unwrap_model, set_seed
try:
from tensorboardX import SummaryWriter
except ImportError:
from torch.utils.tensorboard import SummaryWriter
logger: logging.Logger
def save_model(model: Union[torch.nn.Module], cfg: DictConfig, output_dir: str, tokenizer: PreTrainedTokenizer = None):
# Save model checkpoint.
# if cfg.local_rank != -1:
# state_dict = model.state_dict()
# if cfg.local_rank == 0:
# unwrap_model(model).save_pretrained(output_dir, state_dict=state_dict)
# else:
# model.save_pretrained(output_dir)
# Save tokenizer and training args.
if cfg.local_rank in [-1, 0]:
if tokenizer is not None:
tokenizer.save_pretrained(output_dir)
model.save_pretrained(output_dir)
OmegaConf.save(cfg, os.path.join(output_dir, "training_config.yaml"))
logger.info("Saving model checkpoint to %s", output_dir)
def forward_step(model, inputs: Dict[str, torch.Tensor], cfg, scaler):
if cfg.fp16:
with torch.cuda.amp.autocast():
outputs = model(**inputs)
loss = outputs["loss"] # model outputs are always tuple in transformers (see doc)
else:
outputs = model(**inputs)
loss = outputs["loss"] # model outputs are always tuple in pytorch-transformers (see doc)
if cfg.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if cfg.gradient_accumulation_steps > 1:
loss = loss / cfg.gradient_accumulation_steps
if cfg.fp16:
scaler.scale(loss).backward()
else:
loss.backward()
return loss.item()
def train(cfg, train_dataset, model, tokenizer, continue_from_global_step=0):
""" Train the model """
if cfg.local_rank in [-1, 0]:
_dir_splits = cfg.output_dir.split('/')
_log_dir = '/'.join([_dir_splits[0], 'runs'] + _dir_splits[1:])
tb_writer = SummaryWriter(log_dir=_log_dir)
else:
tb_writer = None
cfg.train_batch_size = cfg.per_gpu_train_batch_size * max(1, cfg.n_gpu)
train_sampler = RandomSampler(train_dataset) if cfg.local_rank == -1 else DistributedSampler(train_dataset)
train_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
train_dataloader = DataLoader(dataset=train_dataset, sampler=train_sampler, batch_size=cfg.train_batch_size,
collate_fn=train_collator, num_workers=cfg.num_workers, pin_memory=True,
prefetch_factor=cfg.prefetch_factor)
if "extended_vocab" in cfg and cfg.extended_vocab:
model.resize_token_embeddings(hydra.utils.call(cfg.extended_vocab))
if cfg.max_steps > 0:
t_total = cfg.max_steps
cfg.num_train_epochs = cfg.max_steps // (len(train_dataloader) // cfg.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // cfg.gradient_accumulation_steps * cfg.num_train_epochs
num_warmup_steps = int(t_total * cfg.warmup_proportion) if cfg.warmup_proportion else cfg.warmup_steps
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight', 'layer_norm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': cfg.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
if cfg.fp16:
from torch.cuda.amp.grad_scaler import GradScaler
scaler = GradScaler()
else:
scaler = None
# multi-gpu training (should be after apex fp16 initialization)
model_single_gpu = model
if cfg.n_gpu > 1:
model = torch.nn.DataParallel(model_single_gpu)
# Distributed training (should be after apex fp16 initialization)
if cfg.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[cfg.local_rank], output_device=cfg.local_rank, find_unused_parameters=True
)
from torch.distributed.optim import ZeroRedundancyOptimizer
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=AdamW,
parameters_as_bucket_view=True,
lr=cfg.learning_rate,
eps=cfg.adam_epsilon,
betas=eval(cfg.adam_betas)
)
optimizer.add_param_group(optimizer_grouped_parameters[0])
optimizer.add_param_group(optimizer_grouped_parameters[1])
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)
else:
optimizer = AdamW(optimizer_grouped_parameters, lr=cfg.learning_rate, eps=cfg.adam_epsilon, betas=eval(cfg.adam_betas))
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)
logger.info(optimizer)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", cfg.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", cfg.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
cfg.train_batch_size * cfg.gradient_accumulation_steps * (dist.get_world_size() if cfg.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", cfg.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Warmup steps = %d", num_warmup_steps)
if continue_from_global_step > 0:
logger.info("Fast forwarding to global step %d to resume training from latest checkpoint...", continue_from_global_step)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(cfg.num_train_epochs), desc="Epoch", disable=cfg.local_rank not in [-1, 0])
set_seed(cfg) # Added here for reproducibility (even between python 2 and 3)
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True)
if cfg.local_rank != -1:
train_dataloader.sampler.set_epoch(epoch)
for step, batch in enumerate(epoch_iterator):
# If training is continued from a checkpoint, fast forward
# to the state of that checkpoint.
if global_step < continue_from_global_step:
if (step + 1) % cfg.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
global_step += 1
continue
model.train()
batch = batch_to_device(batch, cfg.device)
if (step + 1) % cfg.gradient_accumulation_steps != 0 and cfg.local_rank != -1:
# Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
with model.no_sync():
loss = forward_step(model, batch, cfg, scaler)
else:
loss = forward_step(model, batch, cfg, scaler)
tr_loss += loss
if (step + 1) % cfg.gradient_accumulation_steps == 0:
if cfg.fp16:
scaler.unscale_(optimizer)
if cfg.max_grad_norm:
if hasattr(optimizer, "clip_grad_norm"):
optimizer.clip_grad_norm(cfg.max_grad_norm)
elif hasattr(model, "clip_grad_norm_"):
model.clip_grad_norm_(cfg.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.max_grad_norm)
if cfg.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# Log metrics
if cfg.local_rank in [-1, 0] and cfg.logging_steps > 0 and global_step % cfg.logging_steps == 0:
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss) / cfg.logging_steps, global_step)
logging_loss = tr_loss
# Save model checkpoint
if cfg.save_steps > 0 and global_step % cfg.save_steps == 0:
output_dir = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step))
if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir):
os.makedirs(output_dir)
save_model(model, cfg, output_dir, tokenizer)
# Evaluation
if cfg.evaluate_during_training and cfg.eval_steps > 0 and global_step % cfg.eval_steps == 0:
if cfg.local_rank in [-1, 0]:
results = evaluate(cfg, model, tokenizer, prefix=str(global_step), _split="dev")
for key, value in results.items():
tb_writer.add_scalar(f"eval/{key}", value, global_step)
if 0 < cfg.max_steps < global_step:
epoch_iterator.close()
break
if 0 < cfg.max_steps < global_step:
train_iterator.close()
break
if cfg.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(cfg, model, tokenizer: PreTrainedTokenizer, prefix="", _split="dev"):
dataset, features = load_and_cache_examples(cfg, tokenizer, _split=_split)
if not os.path.exists(os.path.join(cfg.output_dir, prefix)):
os.makedirs(os.path.join(cfg.output_dir, prefix))
cfg.eval_batch_size = cfg.per_gpu_eval_batch_size
eval_sampler = SequentialSampler(dataset) # Note that DistributedSampler samples randomly
eval_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=cfg.eval_batch_size,
collate_fn=eval_collator)
single_model_gpu = unwrap_model(model)
single_model_gpu.get_eval_log(reset=True)
# Eval!
logger.info("***** Running evaluation {}.{} *****".format(_split, prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", cfg.eval_batch_size)
# Seems FSDP does not need to unwrap the model for evaluating.
model.eval()
pred_list = []
prob_list = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = batch_to_device(batch, cfg.device)
with torch.no_grad():
outputs = model(**batch)
# logits = outputs["logits"].detach().cpu()
probs = outputs["logits"].softmax(dim=-1).detach().cpu()
prob, pred = probs.max(dim=-1)
pred_list.extend(pred.tolist())
prob_list.extend(prob.tolist())
metric_log, results = single_model_gpu.get_eval_log(reset=True)
logger.info("****** Evaluation Results ******")
logger.info(f"Global Steps: {prefix}")
logger.info(metric_log)
prediction_file = os.path.join(cfg.output_dir, prefix, "eval_predictions.npy")
np.save(prediction_file, pred_list)
json.dump(prob_list, open(os.path.join(cfg.output_dir, prefix, "eval_probs.json"), "w"))
return results
def load_and_cache_examples(cfg, tokenizer: PreTrainedTokenizer, _split="train"):
if cfg.local_rank not in [-1, 0] and _split == "train":
dist.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
if _split == "train":
input_file = cfg.train_file
elif _split == "dev":
input_file = cfg.dev_file
elif _split == "test":
input_file = cfg.test_file
else:
raise RuntimeError(_split)
examples, features, tensors = hydra.utils.call(cfg.read_tensor, file_path=input_file, tokenizer=tokenizer)
if cfg.local_rank == 0 and _split == "train":
dist.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
dataset = TensorDataset(*tensors)
return dataset, features
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
if cfg.local_rank == -1 or cfg.no_cuda:
device = str(torch.device("cuda" if torch.cuda.is_available() and not cfg.no_cuda else "cpu"))
cfg.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(cfg.local_rank)
device = str(torch.device("cuda", cfg.local_rank))
dist.init_process_group(backend='nccl')
cfg.n_gpu = 1
cfg.world_size = dist.get_world_size()
cfg.device = device
global logger
logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
cfg.local_rank, device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16)
# Set seed
set_seed(cfg)
# Load pre-trained model and tokenizer
if cfg.local_rank not in [-1, 0]:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
if cfg.pretrain:
pretrain_state_dict = torch.load(cfg.pretrain, map_location='cpu')
else:
pretrain_state_dict = None
tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path)
model = hydra.utils.call(cfg.model, cfg.model_name_or_path, state_dict=pretrain_state_dict)
if cfg.local_rank == 0:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
# if cfg.local_rank == -1: # For FullyShardedDDP, place the model on cpu first.
model.to(cfg.device)
# logger.info("Training/evaluation parameters %s", OmegaConf.to_yaml(cfg))
if cfg.local_rank in [-1, 0] and cfg.do_train:
if not os.path.exists(cfg.output_dir):
os.makedirs(cfg.output_dir)
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml"))
# Training
if cfg.do_train:
# TODO: Add option for continuously training from checkpoint.
# The operation should be introduced in ``train`` method since both the state dict
# of schedule and optimizer (and scaler, if any) should be loaded.
# If output files already exists, assume to continue training from latest checkpoint (unless overwrite_output_dir is set)
continue_from_global_step = 0 # If set to 0, start training from the beginning
# if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
# checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/*/' + WEIGHTS_NAME, recursive=True)))
# if len(checkpoints) > 0:
# checkpoint = checkpoints[-1]
# logger.info("Resuming training from the latest checkpoint: %s", checkpoint)
# continue_from_global_step = int(checkpoint.split('-')[-1])
# model = model_class.from_pretrained(checkpoint)
# model.to(args.device)
train_dataset, _ = load_and_cache_examples(cfg, tokenizer, _split="train")
global_step, tr_loss = train(cfg, train_dataset, model, tokenizer, continue_from_global_step)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if cfg.do_train:
# Create output directory if needed
if not os.path.exists(cfg.output_dir) and cfg.local_rank in [-1, 0]:
os.makedirs(cfg.output_dir)
logger.info("Saving model checkpoint to %s", cfg.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
# model_to_save.save_pretrained(cfg.output_dir)
save_model(model, cfg, cfg.output_dir)
if cfg.local_rank == -1 or dist.get_rank() == 0:
tokenizer.save_pretrained(cfg.output_dir)
# Good practice: save your training arguments together with the trained model
# torch.save(cfg, os.path.join(cfg.output_dir, 'training_args.bin'))
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_args.yaml"))
# Test
results = {}
if cfg.do_eval and cfg.local_rank in [-1, 0]:
checkpoints = [cfg.output_dir]
if cfg.eval_sub_path:
checkpoints = list(
os.path.dirname(c) for c in
sorted(glob.glob(cfg.output_dir + f"/{cfg.eval_sub_path}/" + "pytorch_model.bin", recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info(" the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
split = "dev"
model = hydra.utils.call(cfg.model, checkpoint)
model.to(device)
if cfg.test_file:
prefix = 'test-' + prefix
split = "test"
result = evaluate(cfg, model, tokenizer, prefix=prefix, _split=split)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
main()