-
Notifications
You must be signed in to change notification settings - Fork 0
/
facetrain.py
42 lines (30 loc) · 1.11 KB
/
facetrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import cv2 as cv
import numpy as np
people = ['ben_afflek','elton_john','jerry_seinfeld','madonna','mindy_kaling']
DIR = r'D:\OpenCv\train'
haar_cascade = cv.CascadeClassifier('haar_face.xml')
features = []
labels = []
def create_train():
for person in people:
path = os.path.join(DIR, person)
label = people.index(person)
for img in os.listdir(path):
img_path = os.path.join(path,img)
img_array = cv.imread(img_path)
gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 4)
for (x,y,w,h) in faces_rect:
faces_roi = gray[y:y+h, x:x+w]
features.append(faces_roi)
labels.append(label)
create_train()
print("Training done ---------")
features = np.array(features, dtype='object')
labels = np.array(labels)
face_recognizer = cv.face.LBPHFaceRecognizer_create()
face_recognizer.train(features,labels)
face_recognizer.save('face_trained.yml')
np.save('features.npy',features)
np.save('labels.npy',labels)