forked from xtekky/gpt4free
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_provider.py
139 lines (122 loc) · 3.28 KB
/
base_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import annotations
from asyncio import AbstractEventLoop
from concurrent.futures import ThreadPoolExecutor
from abc import ABC, abstractmethod
from .helper import get_event_loop, get_cookies, format_prompt
from ..typing import CreateResult, AsyncResult, Messages
class BaseProvider(ABC):
url: str
working: bool = False
needs_auth: bool = False
supports_stream: bool = False
supports_gpt_35_turbo: bool = False
supports_gpt_4: bool = False
supports_message_history: bool = False
@staticmethod
@abstractmethod
def create_completion(
model: str,
messages: Messages,
stream: bool,
**kwargs
) -> CreateResult:
raise NotImplementedError()
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
*,
loop: AbstractEventLoop = None,
executor: ThreadPoolExecutor = None,
**kwargs
) -> str:
if not loop:
loop = get_event_loop()
def create_func() -> str:
return "".join(cls.create_completion(
model,
messages,
False,
**kwargs
))
return await loop.run_in_executor(
executor,
create_func
)
@classmethod
@property
def params(cls) -> str:
params = [
("model", "str"),
("messages", "list[dict[str, str]]"),
("stream", "bool"),
]
param = ", ".join([": ".join(p) for p in params])
return f"g4f.provider.{cls.__name__} supports: ({param})"
class AsyncProvider(BaseProvider):
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = False,
**kwargs
) -> CreateResult:
loop = get_event_loop()
coro = cls.create_async(model, messages, **kwargs)
yield loop.run_until_complete(coro)
@staticmethod
@abstractmethod
async def create_async(
model: str,
messages: Messages,
**kwargs
) -> str:
raise NotImplementedError()
class AsyncGeneratorProvider(AsyncProvider):
supports_stream = True
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> CreateResult:
loop = get_event_loop()
generator = cls.create_async_generator(
model,
messages,
stream=stream,
**kwargs
)
gen = generator.__aiter__()
while True:
try:
yield loop.run_until_complete(gen.__anext__())
except StopAsyncIteration:
break
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
**kwargs
) -> str:
return "".join([
chunk async for chunk in cls.create_async_generator(
model,
messages,
stream=False,
**kwargs
)
])
@staticmethod
@abstractmethod
def create_async_generator(
model: str,
messages: Messages,
**kwargs
) -> AsyncResult:
raise NotImplementedError()