Skip to content

Latest commit

 

History

History
174 lines (124 loc) · 8.25 KB

README.md

File metadata and controls

174 lines (124 loc) · 8.25 KB

StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal

Chongjie Ye*, Lingteng Qiu*, Xiaodong Gu, Qi Zuo, Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang Xiu#, Xiaoguang Han#

* Equal contribution
# Corresponding Author

SIGGRAPH Asia 2024 (Journal Track)

Website Paper ModelScope Hugging Face Space Hugging Face Model License

We propose StableNormal, which tailors the diffusion priors for monocular normal estimation. Unlike prior diffusion-based works, we focus on enhancing estimation stability by reducing the inherent stochasticity of diffusion models ( i.e. , Stable Diffusion). This enables “Stable-and-Sharp” normal estimation, which outperforms multiple baselines (try Compare), and improves various real-world applications (try Demo).

teaser

News

  • StableNormal-turbo (10 times faster) is now avaliable on ModelScope . We invite you to explore its features! 🔥🔥🔥 (10.11, 2024 UTC)
  • StableNormal is accepted by SIGGRAPH Asia 2024. (Journal Track)) (09.11, 2024 UTC)
  • Release StableDelight 🔥🔥🔥 (09.07, 2024 UTC)
  • Release StableNormal 🔥🔥🔥 (08.27, 2024 UTC)

Installation:

Please run following commands to build package:

git clone https://github.com/Stable-X/StableNormal.git
cd StableNormal
pip install -r requirements.txt

or directly build package:

pip install git+https://github.com/Stable-X/StableNormal.git

Usage

To use the StableNormal pipeline, you can instantiate the model and apply it to an image as follows:

import torch
from PIL import Image

# Load an image
input_image = Image.open("path/to/your/image.jpg")

# Create predictor instance
predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal", trust_repo=True)

# Apply the model to the image
normal_image = predictor(input_image)

# Save or display the result
normal_image.save("output/normal_map.png")

Additional Options:

  • If you need faster inference(10 times faster), use StableNormal_turbo:
predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal_turbo", trust_repo=True)
  • If Hugging Face is not available from terminal, you could download the pretrained weights to weights dir:
predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal", trust_repo=True, local_cache_dir='./weights')

Compute Metrics:

This section provides guidance on evaluating your normal predictor using the DIODE dataset.

Step 1: Prepare Your Results Folder

First, make sure you have generated a normal map and structured your results folder as shown below:

├── YOUR-FOLDER-NAME 
│   ├── scan_00183_00019_00183_indoors_000_010_gt.png
│   ├── scan_00183_00019_00183_indoors_000_010_init.png
│   ├── scan_00183_00019_00183_indoors_000_010_ref.png
│   ├── scan_00183_00019_00183_indoors_000_010_step0.png
│   ├── scan_00183_00019_00183_indoors_000_010_step1.png
│   ├── scan_00183_00019_00183_indoors_000_010_step2.png
│   ├── scan_00183_00019_00183_indoors_000_010_step3.png

Step 2: Compute Metric Values

Once your results folder is set up, you can compute the metrics for your normal predictions by running the following scripts:

# compute metrics
python ./stablenormal/metrics/compute_metric.py -i ${YOUR-FOLDER-NAME}

# compute variance
python ./stablenormal/metrics/compute_variance.py -i ${YOUR-FOLDER-NAME}

Replace ${YOUR-FOLDER-NAME}; with the actual name of your results folder. Following these steps will allow you to effectively evaluate your normal predictor's performance on the DIODE dataset.

Metrics

On DIODE-indoor

Mean Error Median Error <11.25 <22.5 <30
GeoWizard 19.371 15.408 30.551 75.426 86.357
Marigold Normal 16.671 12.084 45.776 82.076 89.879
GenPercept 18.348 13.367 39.178 79.819 88.551
DSINE 18.453 13.871 36.274 77.527 86.976
StableNormal-turbo 16.748 13.573 35.806 84.585 91.335
StableNormal 13.701 9.460 63.447 86.309 92.107

On IBims-1

Mean Error Median Error < 11.25 < 22.5 < 30
GeoWizard 19.748 9.702 58.427 77.616 81.575
Marigold Normal 18.463 8.442 64.727 79.559 83.199
GenPercept 18.600 8.293 64.697 79.329 82.978
DSINE 18.773 8.258 64.131 78.570 82.160
StableNormal-turbo 17.433 8.145 65.683 80.909 84.527
StableNormal 17.248 8.057 66.655 81.134 84.632

On Scannet

Mean Error Median Error < 11.25 < 22.5 < 30
GeoWizard 21.439 13.390 37.080 71.653 79.712
Marigold Normal 21.284 12.268 45.649 72.666 79.045
GenPercept 20.652 10.502 53.017 74.470 80.364
DSINE 18.610 9.885 56.132 76.944 82.606
StableNormal-turbo 17.432 9.644 58.643 79.177 84.717
StableNormal 18.098 10.097 56.007 78.776 84.115

On NYUv2

Mean Error Median Error < 11.25 < 22.5 < 30
GeoWizard 20.363 11.898 46.954 73.787 80.804
Marigold Normal 20.864 11.134 50.457 73.003 79.332
GenPercept 20.896 11.516 50.712 73.037 79.216
DSINE - - - - -
StableNormal-turbo 18.788 10.381 53.741 76.713 82.884
StableNormal 19.707 10.527 53.042 75.889 81.723

Citation

@article{ye2024stablenormal,
  title={StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal},
  author={Ye, Chongjie and Qiu, Lingteng and Gu, Xiaodong and Zuo, Qi and Wu, Yushuang and Dong, Zilong and Bo, Liefeng and Xiu, Yuliang and Han, Xiaoguang},
  journal={ACM Transactions on Graphics (TOG)},
  year={2024},
  publisher={ACM New York, NY, USA}
}