-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmodel.py
162 lines (148 loc) · 7.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from layer import *
class Model:
def __init__(self, x, mask, local_x, global_completion, local_completion, is_training, batch_size):
self.batch_size = batch_size
self.imitation = self.generator(x * (1 - mask), is_training)
self.completion = self.imitation * mask + x * (1 - mask)
self.real = self.discriminator(x, local_x, reuse=False)
self.fake = self.discriminator(global_completion, local_completion, reuse=True)
self.g_loss = self.calc_g_loss(x, self.completion)
self.d_loss = self.calc_d_loss(self.real, self.fake)
self.g_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
self.d_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
def generator(self, x, is_training):
with tf.variable_scope('generator'):
with tf.variable_scope('conv1'):
x = conv_layer(x, [5, 5, 3, 64], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv2'):
x = conv_layer(x, [3, 3, 64, 128], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv3'):
x = conv_layer(x, [3, 3, 128, 128], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv4'):
x = conv_layer(x, [3, 3, 128, 256], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv5'):
x = conv_layer(x, [3, 3, 256, 256], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv6'):
x = conv_layer(x, [3, 3, 256, 256], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('dilated1'):
x = dilated_conv_layer(x, [3, 3, 256, 256], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('dilated2'):
x = dilated_conv_layer(x, [3, 3, 256, 256], 4)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('dilated3'):
x = dilated_conv_layer(x, [3, 3, 256, 256], 8)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('dilated4'):
x = dilated_conv_layer(x, [3, 3, 256, 256], 16)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv7'):
x = conv_layer(x, [3, 3, 256, 256], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv8'):
x = conv_layer(x, [3, 3, 256, 256], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('deconv1'):
x = deconv_layer(x, [4, 4, 128, 256], [self.batch_size, 64, 64, 128], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv9'):
x = conv_layer(x, [3, 3, 128, 128], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('deconv2'):
x = deconv_layer(x, [4, 4, 64, 128], [self.batch_size, 128, 128, 64], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv10'):
x = conv_layer(x, [3, 3, 64, 32], 1)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv11'):
x = conv_layer(x, [3, 3, 32, 3], 1)
x = tf.nn.tanh(x)
return x
def discriminator(self, global_x, local_x, reuse):
def global_discriminator(x):
is_training = tf.constant(True)
with tf.variable_scope('global'):
with tf.variable_scope('conv1'):
x = conv_layer(x, [5, 5, 3, 64], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv2'):
x = conv_layer(x, [5, 5, 64, 128], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv3'):
x = conv_layer(x, [5, 5, 128, 256], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv4'):
x = conv_layer(x, [5, 5, 256, 512], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv5'):
x = conv_layer(x, [5, 5, 512, 512], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('fc'):
x = flatten_layer(x)
x = full_connection_layer(x, 1024)
return x
def local_discriminator(x):
is_training = tf.constant(True)
with tf.variable_scope('local'):
with tf.variable_scope('conv1'):
x = conv_layer(x, [5, 5, 3, 64], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv2'):
x = conv_layer(x, [5, 5, 64, 128], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv3'):
x = conv_layer(x, [5, 5, 128, 256], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('conv4'):
x = conv_layer(x, [5, 5, 256, 512], 2)
x = batch_normalize(x, is_training)
x = tf.nn.relu(x)
with tf.variable_scope('fc'):
x = flatten_layer(x)
x = full_connection_layer(x, 1024)
return x
with tf.variable_scope('discriminator', reuse=reuse):
global_output = global_discriminator(global_x)
local_output = local_discriminator(local_x)
with tf.variable_scope('concatenation'):
output = tf.concat((global_output, local_output), 1)
output = full_connection_layer(output, 1)
return output
def calc_g_loss(self, x, completion):
loss = tf.nn.l2_loss(x - completion)
return tf.reduce_mean(loss)
def calc_d_loss(self, real, fake):
alpha = 4e-4
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real, labels=tf.ones_like(real)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake, labels=tf.zeros_like(fake)))
return tf.add(d_loss_real, d_loss_fake) * alpha