Skip to content

Latest commit

 

History

History
101 lines (80 loc) · 3.93 KB

README.md

File metadata and controls

101 lines (80 loc) · 3.93 KB

Auditory AudioInceptionNeXt

This repository implements the model proposed in the paper:

Kin Wai Lau, Yasar Abbas Ur Rehman, Yuyang Xie, Lan Ma, AudioInceptionNeXt: TCL AI LAB Submission to EPIC-SOUND Audio-Based-Interaction-Recognition Challenge 2023

[arXiv paper]

The implementation code is based on the Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021. For more information, please refer to the link.

Citing

When using this code, kindly reference:

@article{lau2023audioinceptionnext,
  title={AudioInceptionNeXt: TCL AI LAB Submission to EPIC-SOUND Audio-Based-Interaction-Recognition Challenge 2023},
  author={Lau, Kin Wai and Rehman, Yasar Abbas Ur and Xie, Yuyang and Ma, Lan},
  journal={arXiv preprint arXiv:2307.07265},
  year={2023}
}

Pretrained models

You can download our pretrained models on VGG-Sound and EPIC-Sounds:

  • AudioInceptionNeXt (VGG-Sound) link
  • AudioInceptionNeXt (EPIC-Sound) link

Preparation

  • Requirements:
    • PyTorch 1.7.1
    • librosa: conda install -c conda-forge librosa
    • h5py: conda install h5py
    • wandb: pip install wandb
    • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
    • simplejson: pip install simplejson
    • psutil: pip install psutil
    • tensorboard: pip install tensorboard
  • Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/auditory-slow-fast/slowfast:$PYTHONPATH
  • VGG-Sound: See the instruction in Auditory Slow-Fast repository link
  • EPIC-KITCHENS: See the instruction in Auditory Slow-Fast repository link
  • EPIC-Sounds See the instruction in Epic-Sounds annotations repository link and link

Training/validation on VGG-Sound

To train the model run:

python tools/run_net.py --cfg configs/VGG-Sound/AudioInceptionNeXt.yaml --init_method tcp://localhost:9996 \
NUM_GPUS num_gpus \
OUTPUT_DIR /path/to/output_dir \
VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations 

To validate the model run:

python tools/run_net.py --cfg configs/VGG-Sound/AudioInceptionNeXt.yaml --init_method tcp://localhost:9998 \
NUM_GPUS num_gpus \
OUTPUT_DIR /path/to/experiment_dir \
VGGSOUND.AUDIO_DATA_DIR /path/to/dataset \
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations \
TRAIN.ENABLE False \
TEST.ENABLE True \
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

Fine Tune/validation on EPIC-Sounds

To fine-tuning from VGG-Sound pretrained model:

python tools/run_net.py --cfg configs/EPIC-SOUND-416x128/AudioInceptionNeXt.yaml --init_method tcp://localhost:9996 \
NUM_GPUS num_gpus \
OUTPUT_DIR /path/to/output_dir \
EPICSOUND.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 \
EPICSOUND.ANNOTATIONS_DIR /path/to/annotations \
TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To validate the model run:

python tools/run_net.py --cfg configs/EPIC-SOUND-416x128/AudioInceptionNeXt.yaml --init_method tcp://localhost:9997 \
NUM_GPUS num_gpus \
OUTPUT_DIR /path/to/experiment_dir \
EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 \
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations \
TRAIN.ENABLE False \
TEST.ENABLE True \
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth