diff --git a/.graphics/gillespy2-UML-class-diagram.png b/.graphics/gillespy2-UML-class-diagram.png index 182602595..6163e3084 100644 Binary files a/.graphics/gillespy2-UML-class-diagram.png and b/.graphics/gillespy2-UML-class-diagram.png differ diff --git a/UML_CLASS_DIAGRAM.md b/UML_CLASS_DIAGRAM.md index c5fb578bb..6038c3ad5 100644 --- a/UML_CLASS_DIAGRAM.md +++ b/UML_CLASS_DIAGRAM.md @@ -10,8 +10,8 @@ This diagram was built from a [UML class model](gillespy2-UML-class-model.pyns) -GillesPySolver: a mathematical algorithm for running a Model object, creating a Results object containing simulation data. --Results: a dictionary containing data from a simulation trajectory generated by running a Model via a solver. +-Trajectory: a dictionary containing data from a simulation trajectory generated by running a Model via a solver. --EnsembleResults: a list of data dictionaries from multiple trajectories generated by running the same Model over multiple instances. +-Results: a list of data dictionaries from one or more trajectories generated by running the same Model over multiple instances. ![gillespy2-UML-class-diagram](.graphics/gillespy2-UML-class-diagram.png) diff --git a/docs/build/html/.buildinfo b/docs/build/html/.buildinfo index e8b00d4b6..201930fad 100644 --- a/docs/build/html/.buildinfo +++ b/docs/build/html/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 90a763d479747475ebce9163f6d985c4 +config: 80c92b260bd66298b23222542d9d1bb0 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/build/html/.doctrees/classes/gillespy2.core.doctree b/docs/build/html/.doctrees/classes/gillespy2.core.doctree index f539b8fed..d2db46e56 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.core.doctree and b/docs/build/html/.doctrees/classes/gillespy2.core.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.doctree b/docs/build/html/.doctrees/classes/gillespy2.doctree index 7a24c419e..880fedb5b 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.doctree and b/docs/build/html/.doctrees/classes/gillespy2.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.sbml.doctree b/docs/build/html/.doctrees/classes/gillespy2.sbml.doctree index 9ba81555b..547878e3f 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.sbml.doctree and b/docs/build/html/.doctrees/classes/gillespy2.sbml.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.auto.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.auto.doctree index 3a9f49b50..a1dbfab53 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.auto.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.auto.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.cpp.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.cpp.doctree index 189200c05..9e6b8b931 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.cpp.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.cpp.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.cython.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.cython.doctree index fdddc59a1..7b80e5415 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.cython.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.cython.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.doctree index d382e68e8..4c4e9ddd7 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.numpy.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.numpy.doctree index 173787471..b5ca910e8 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.numpy.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.numpy.doctree differ diff --git a/docs/build/html/.doctrees/classes/gillespy2.solvers.stochkit.doctree b/docs/build/html/.doctrees/classes/gillespy2.solvers.stochkit.doctree index 8dbc43e58..911122ace 100644 Binary files a/docs/build/html/.doctrees/classes/gillespy2.solvers.stochkit.doctree and b/docs/build/html/.doctrees/classes/gillespy2.solvers.stochkit.doctree differ diff --git a/docs/build/html/.doctrees/environment.pickle b/docs/build/html/.doctrees/environment.pickle index da304d6b5..7b95137eb 100644 Binary files a/docs/build/html/.doctrees/environment.pickle and b/docs/build/html/.doctrees/environment.pickle differ diff --git a/docs/build/html/.doctrees/getting_started/basic_usage/basic_usage.doctree b/docs/build/html/.doctrees/getting_started/basic_usage/basic_usage.doctree index 1af77fac6..fcaf38d37 100644 Binary files a/docs/build/html/.doctrees/getting_started/basic_usage/basic_usage.doctree and b/docs/build/html/.doctrees/getting_started/basic_usage/basic_usage.doctree differ diff --git a/docs/build/html/.doctrees/getting_started/installation/installation.doctree b/docs/build/html/.doctrees/getting_started/installation/installation.doctree index 42acca564..dee01a5da 100644 Binary files a/docs/build/html/.doctrees/getting_started/installation/installation.doctree and b/docs/build/html/.doctrees/getting_started/installation/installation.doctree differ diff --git a/docs/build/html/.doctrees/index.doctree b/docs/build/html/.doctrees/index.doctree index 54cc1c7c0..ef80a1848 100644 Binary files a/docs/build/html/.doctrees/index.doctree and b/docs/build/html/.doctrees/index.doctree differ diff --git a/docs/build/html/.doctrees/tutorials/tut_michaelis_menten/tut_michaelis_menten.doctree b/docs/build/html/.doctrees/tutorials/tut_michaelis_menten/tut_michaelis_menten.doctree index 9141b6a0a..727967474 100644 Binary files a/docs/build/html/.doctrees/tutorials/tut_michaelis_menten/tut_michaelis_menten.doctree and b/docs/build/html/.doctrees/tutorials/tut_michaelis_menten/tut_michaelis_menten.doctree differ diff --git a/docs/build/html/.doctrees/tutorials/tut_sbml/tut_sbml.doctree b/docs/build/html/.doctrees/tutorials/tut_sbml/tut_sbml.doctree index c65b5af04..496686735 100644 Binary files a/docs/build/html/.doctrees/tutorials/tut_sbml/tut_sbml.doctree and b/docs/build/html/.doctrees/tutorials/tut_sbml/tut_sbml.doctree differ diff --git a/docs/build/html/.doctrees/tutorials/tut_toggle_switch/tut_toggle_switch.doctree b/docs/build/html/.doctrees/tutorials/tut_toggle_switch/tut_toggle_switch.doctree index 65769bfbf..1ac78ea8e 100644 Binary files a/docs/build/html/.doctrees/tutorials/tut_toggle_switch/tut_toggle_switch.doctree and b/docs/build/html/.doctrees/tutorials/tut_toggle_switch/tut_toggle_switch.doctree differ diff --git a/docs/build/html/_modules/collections.html b/docs/build/html/_modules/collections.html new file mode 100644 index 000000000..c77c83a55 --- /dev/null +++ b/docs/build/html/_modules/collections.html @@ -0,0 +1,1379 @@ + + + + + + + collections — GillesPy2 1.4.0 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + +
+ +

Source code for collections

+'''This module implements specialized container datatypes providing
+alternatives to Python's general purpose built-in containers, dict,
+list, set, and tuple.
+
+* namedtuple   factory function for creating tuple subclasses with named fields
+* deque        list-like container with fast appends and pops on either end
+* ChainMap     dict-like class for creating a single view of multiple mappings
+* Counter      dict subclass for counting hashable objects
+* OrderedDict  dict subclass that remembers the order entries were added
+* defaultdict  dict subclass that calls a factory function to supply missing values
+* UserDict     wrapper around dictionary objects for easier dict subclassing
+* UserList     wrapper around list objects for easier list subclassing
+* UserString   wrapper around string objects for easier string subclassing
+
+'''
+
+__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
+            'UserString', 'Counter', 'OrderedDict', 'ChainMap']
+
+# For backwards compatibility, continue to make the collections ABCs
+# available through the collections module.
+from _collections_abc import *
+import _collections_abc
+__all__ += _collections_abc.__all__
+
+from operator import itemgetter as _itemgetter, eq as _eq
+from keyword import iskeyword as _iskeyword
+import sys as _sys
+import heapq as _heapq
+from _weakref import proxy as _proxy
+from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
+from reprlib import recursive_repr as _recursive_repr
+
+try:
+    from _collections import deque
+except ImportError:
+    pass
+else:
+    MutableSequence.register(deque)
+
+try:
+    from _collections import defaultdict
+except ImportError:
+    pass
+
+
+################################################################################
+### OrderedDict
+################################################################################
+
+class _OrderedDictKeysView(KeysView):
+
+    def __reversed__(self):
+        yield from reversed(self._mapping)
+
+class _OrderedDictItemsView(ItemsView):
+
+    def __reversed__(self):
+        for key in reversed(self._mapping):
+            yield (key, self._mapping[key])
+
+class _OrderedDictValuesView(ValuesView):
+
+    def __reversed__(self):
+        for key in reversed(self._mapping):
+            yield self._mapping[key]
+
+class _Link(object):
+    __slots__ = 'prev', 'next', 'key', '__weakref__'
+
+
[docs]class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries. Keyword argument order is preserved. + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''Remove and return a (key, value) pair from the dictionary. + + Pairs are returned in LIFO order if last is true or FIFO order if false. + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + soft_link = link_next.prev + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + root.prev = soft_link + last.next = link + else: + first = root.next + link.prev = root + link.next = first + first.prev = soft_link + root.next = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other)
+ + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) is not str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython), or where the user has + # specified a particular module. + if module is None: + try: + module = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + if module is not None: + result.__module__ = module + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) +
+ +
+ + +
+
+
+
+ + + + + Fork me on GitHub + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/contextlib.html b/docs/build/html/_modules/contextlib.html new file mode 100644 index 000000000..c9e674600 --- /dev/null +++ b/docs/build/html/_modules/contextlib.html @@ -0,0 +1,519 @@ + + + + + + + contextlib — GillesPy2 1.4.0 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + +
+ +

Source code for contextlib

+"""Utilities for with-statement contexts.  See PEP 343."""
+import abc
+import sys
+import _collections_abc
+from collections import deque
+from functools import wraps
+
+__all__ = ["contextmanager", "closing", "AbstractContextManager",
+           "ContextDecorator", "ExitStack", "redirect_stdout",
+           "redirect_stderr", "suppress"]
+
+
+class AbstractContextManager(abc.ABC):
+
+    """An abstract base class for context managers."""
+
+    def __enter__(self):
+        """Return `self` upon entering the runtime context."""
+        return self
+
+    @abc.abstractmethod
+    def __exit__(self, exc_type, exc_value, traceback):
+        """Raise any exception triggered within the runtime context."""
+        return None
+
+    @classmethod
+    def __subclasshook__(cls, C):
+        if cls is AbstractContextManager:
+            return _collections_abc._check_methods(C, "__enter__", "__exit__")
+        return NotImplemented
+
+
+class ContextDecorator(object):
+    "A base class or mixin that enables context managers to work as decorators."
+
+    def _recreate_cm(self):
+        """Return a recreated instance of self.
+
+        Allows an otherwise one-shot context manager like
+        _GeneratorContextManager to support use as
+        a decorator via implicit recreation.
+
+        This is a private interface just for _GeneratorContextManager.
+        See issue #11647 for details.
+        """
+        return self
+
+    def __call__(self, func):
+        @wraps(func)
+        def inner(*args, **kwds):
+            with self._recreate_cm():
+                return func(*args, **kwds)
+        return inner
+
+
+class _GeneratorContextManager(ContextDecorator, AbstractContextManager):
+    """Helper for @contextmanager decorator."""
+
+    def __init__(self, func, args, kwds):
+        self.gen = func(*args, **kwds)
+        self.func, self.args, self.kwds = func, args, kwds
+        # Issue 19330: ensure context manager instances have good docstrings
+        doc = getattr(func, "__doc__", None)
+        if doc is None:
+            doc = type(self).__doc__
+        self.__doc__ = doc
+        # Unfortunately, this still doesn't provide good help output when
+        # inspecting the created context manager instances, since pydoc
+        # currently bypasses the instance docstring and shows the docstring
+        # for the class instead.
+        # See http://bugs.python.org/issue19404 for more details.
+
+    def _recreate_cm(self):
+        # _GCM instances are one-shot context managers, so the
+        # CM must be recreated each time a decorated function is
+        # called
+        return self.__class__(self.func, self.args, self.kwds)
+
+    def __enter__(self):
+        try:
+            return next(self.gen)
+        except StopIteration:
+            raise RuntimeError("generator didn't yield") from None
+
+    def __exit__(self, type, value, traceback):
+        if type is None:
+            try:
+                next(self.gen)
+            except StopIteration:
+                return False
+            else:
+                raise RuntimeError("generator didn't stop")
+        else:
+            if value is None:
+                # Need to force instantiation so we can reliably
+                # tell if we get the same exception back
+                value = type()
+            try:
+                self.gen.throw(type, value, traceback)
+            except StopIteration as exc:
+                # Suppress StopIteration *unless* it's the same exception that
+                # was passed to throw().  This prevents a StopIteration
+                # raised inside the "with" statement from being suppressed.
+                return exc is not value
+            except RuntimeError as exc:
+                # Don't re-raise the passed in exception. (issue27122)
+                if exc is value:
+                    return False
+                # Likewise, avoid suppressing if a StopIteration exception
+                # was passed to throw() and later wrapped into a RuntimeError
+                # (see PEP 479).
+                if type is StopIteration and exc.__cause__ is value:
+                    return False
+                raise
+            except:
+                # only re-raise if it's *not* the exception that was
+                # passed to throw(), because __exit__() must not raise
+                # an exception unless __exit__() itself failed.  But throw()
+                # has to raise the exception to signal propagation, so this
+                # fixes the impedance mismatch between the throw() protocol
+                # and the __exit__() protocol.
+                #
+                if sys.exc_info()[1] is value:
+                    return False
+                raise
+            raise RuntimeError("generator didn't stop after throw()")
+
+
+
[docs]def contextmanager(func): + """@contextmanager decorator. + + Typical usage: + + @contextmanager + def some_generator(<arguments>): + <setup> + try: + yield <value> + finally: + <cleanup> + + This makes this: + + with some_generator(<arguments>) as <variable>: + <body> + + equivalent to this: + + <setup> + try: + <variable> = <value> + <body> + finally: + <cleanup> + + """ + @wraps(func) + def helper(*args, **kwds): + return _GeneratorContextManager(func, args, kwds) + return helper
+ + +class closing(AbstractContextManager): + """Context to automatically close something at the end of a block. + + Code like this: + + with closing(<module>.open(<arguments>)) as f: + <block> + + is equivalent to this: + + f = <module>.open(<arguments>) + try: + <block> + finally: + f.close() + + """ + def __init__(self, thing): + self.thing = thing + def __enter__(self): + return self.thing + def __exit__(self, *exc_info): + self.thing.close() + + +class _RedirectStream(AbstractContextManager): + + _stream = None + + def __init__(self, new_target): + self._new_target = new_target + # We use a list of old targets to make this CM re-entrant + self._old_targets = [] + + def __enter__(self): + self._old_targets.append(getattr(sys, self._stream)) + setattr(sys, self._stream, self._new_target) + return self._new_target + + def __exit__(self, exctype, excinst, exctb): + setattr(sys, self._stream, self._old_targets.pop()) + + +class redirect_stdout(_RedirectStream): + """Context manager for temporarily redirecting stdout to another file. + + # How to send help() to stderr + with redirect_stdout(sys.stderr): + help(dir) + + # How to write help() to a file + with open('help.txt', 'w') as f: + with redirect_stdout(f): + help(pow) + """ + + _stream = "stdout" + + +class redirect_stderr(_RedirectStream): + """Context manager for temporarily redirecting stderr to another file.""" + + _stream = "stderr" + + +class suppress(AbstractContextManager): + """Context manager to suppress specified exceptions + + After the exception is suppressed, execution proceeds with the next + statement following the with statement. + + with suppress(FileNotFoundError): + os.remove(somefile) + # Execution still resumes here if the file was already removed + """ + + def __init__(self, *exceptions): + self._exceptions = exceptions + + def __enter__(self): + pass + + def __exit__(self, exctype, excinst, exctb): + # Unlike isinstance and issubclass, CPython exception handling + # currently only looks at the concrete type hierarchy (ignoring + # the instance and subclass checking hooks). While Guido considers + # that a bug rather than a feature, it's a fairly hard one to fix + # due to various internal implementation details. suppress provides + # the simpler issubclass based semantics, rather than trying to + # exactly reproduce the limitations of the CPython interpreter. + # + # See http://bugs.python.org/issue12029 for more details + return exctype is not None and issubclass(exctype, self._exceptions) + + +# Inspired by discussions on http://bugs.python.org/issue13585 +class ExitStack(AbstractContextManager): + """Context manager for dynamic management of a stack of exit callbacks + + For example: + + with ExitStack() as stack: + files = [stack.enter_context(open(fname)) for fname in filenames] + # All opened files will automatically be closed at the end of + # the with statement, even if attempts to open files later + # in the list raise an exception + + """ + def __init__(self): + self._exit_callbacks = deque() + + def pop_all(self): + """Preserve the context stack by transferring it to a new instance""" + new_stack = type(self)() + new_stack._exit_callbacks = self._exit_callbacks + self._exit_callbacks = deque() + return new_stack + + def _push_cm_exit(self, cm, cm_exit): + """Helper to correctly register callbacks to __exit__ methods""" + def _exit_wrapper(*exc_details): + return cm_exit(cm, *exc_details) + _exit_wrapper.__self__ = cm + self.push(_exit_wrapper) + + def push(self, exit): + """Registers a callback with the standard __exit__ method signature + + Can suppress exceptions the same way __exit__ methods can. + + Also accepts any object with an __exit__ method (registering a call + to the method instead of the object itself) + """ + # We use an unbound method rather than a bound method to follow + # the standard lookup behaviour for special methods + _cb_type = type(exit) + try: + exit_method = _cb_type.__exit__ + except AttributeError: + # Not a context manager, so assume its a callable + self._exit_callbacks.append(exit) + else: + self._push_cm_exit(exit, exit_method) + return exit # Allow use as a decorator + + def callback(self, callback, *args, **kwds): + """Registers an arbitrary callback and arguments. + + Cannot suppress exceptions. + """ + def _exit_wrapper(exc_type, exc, tb): + callback(*args, **kwds) + # We changed the signature, so using @wraps is not appropriate, but + # setting __wrapped__ may still help with introspection + _exit_wrapper.__wrapped__ = callback + self.push(_exit_wrapper) + return callback # Allow use as a decorator + + def enter_context(self, cm): + """Enters the supplied context manager + + If successful, also pushes its __exit__ method as a callback and + returns the result of the __enter__ method. + """ + # We look up the special methods on the type to match the with statement + _cm_type = type(cm) + _exit = _cm_type.__exit__ + result = _cm_type.__enter__(cm) + self._push_cm_exit(cm, _exit) + return result + + def close(self): + """Immediately unwind the context stack""" + self.__exit__(None, None, None) + + def __exit__(self, *exc_details): + received_exc = exc_details[0] is not None + + # We manipulate the exception state so it behaves as though + # we were actually nesting multiple with statements + frame_exc = sys.exc_info()[1] + def _fix_exception_context(new_exc, old_exc): + # Context may not be correct, so find the end of the chain + while 1: + exc_context = new_exc.__context__ + if exc_context is old_exc: + # Context is already set correctly (see issue 20317) + return + if exc_context is None or exc_context is frame_exc: + break + new_exc = exc_context + # Change the end of the chain to point to the exception + # we expect it to reference + new_exc.__context__ = old_exc + + # Callbacks are invoked in LIFO order to match the behaviour of + # nested context managers + suppressed_exc = False + pending_raise = False + while self._exit_callbacks: + cb = self._exit_callbacks.pop() + try: + if cb(*exc_details): + suppressed_exc = True + pending_raise = False + exc_details = (None, None, None) + except: + new_exc_details = sys.exc_info() + # simulate the stack of exceptions by setting the context + _fix_exception_context(new_exc_details[1], exc_details[1]) + pending_raise = True + exc_details = new_exc_details + if pending_raise: + try: + # bare "raise exc_details[1]" replaces our carefully + # set-up context + fixed_ctx = exc_details[1].__context__ + raise exc_details[1] + except BaseException: + exc_details[1].__context__ = fixed_ctx + raise + return received_exc and suppressed_exc +
+ +
+ + +
+
+
+
+ + + + + Fork me on GitHub + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/gillespy2/core/events.html b/docs/build/html/_modules/gillespy2/core/events.html new file mode 100644 index 000000000..46b174f02 --- /dev/null +++ b/docs/build/html/_modules/gillespy2/core/events.html @@ -0,0 +1,343 @@ + + + + + + + gillespy2.core.events — GillesPy2 1.4.0 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + +
+ +

Source code for gillespy2.core.events

+from collections import OrderedDict
+from gillespy2.core.gillespyError import *
+from gillespy2.core.gillespy2 import *
+
+
[docs]class EventAssignment: + """ + An EventAssignment describes a change to be performed to the current model + simulation. This is assignment can either be fired at the time its + associated trigger changes from false to true, or after a specified delay, + depending on how the Event to which it is assigned is configured. + + Attributes + ---------- + variable : gillespy2.Species, gillespy2.Parameter + Target model component to be modified by the EventAssignment + expression. Valid target variables include gillespy2 Species, + Parameters, and Compartments. + expression : str + String to be evaluated when the event is fired. This expression must + be evaluable within the model namespace, and the results of it's + evaluation will be assigned to the EventAssignment variable. + """ + + def __init__(self, variable=None, expression=None): + + self.variable = variable + self.expression = expression + + if expression is not None: + self.expression = str(expression) + + + from gillespy2.core.gillespy2 import Species, Parameter + #TODO: ADD Compartment to valid variable types once implemented + valid_variable_types = [Species, Parameter, str] + + if not type(variable) in valid_variable_types: + print(variable) + print(type(variable)) + raise EventError( + 'GillesPy2 Event Assignment variable must be a valid gillespy2 species') + if not isinstance(self.expression, str): + raise EventError( + 'GillesPy2 Event Assignment expression requires a ' + 'valid string expression') + def __str__(self): + return self.variable.name + ': ' + self.expression
+ + +
[docs]class EventTrigger: + """ + Trigger detects changes in model/environment conditions in order to fire an + event. A Trigger contains an expression, a mathematical function which can + be evaluated to a boolean value within a model's namespace. Upon + transitioning from 'false' to 'true', this trigger will cause the immediate + execution of an event's list of assignments if no delay is present, otherwise, + the delay evaluation will be initialized. + + Attributes + ---------- + expression : str + String for a function calculating EventTrigger values. Should be evaluable + in namespace of Model. + value : bool + Value of EventTrigger at simulation start, with time t=0 + persistent : bool + Determines of trigger condition is persistent or not. + """ + + def __init__(self, expression=None, initial_value = False, persistent = False): + + if isinstance(expression, str): + self.expression = expression + else: + raise EventError('EventTrigger expression must be a string') + + if isinstance(initial_value, bool): + self.value = initial_value + else: + raise EventError('EventTrigger initial_value must be bool') + + if isinstance(persistent, bool): + self.persistent = persistent + else: + raise EventError('EventTrigger.persistent must be bool') + def __str__(self): + return self.expression +
[docs] def sanitized_expression(self, species_mappings, parameter_mappings): + names = sorted(list(species_mappings.keys()) + list(parameter_mappings.keys()), key = lambda x: len(x), reverse=True) + replacements = [parameter_mappings[name] if name in parameter_mappings else species_mappings[name] + for name in names] + sanitized_expression = self.expression + for id, name in enumerate(names): + sanitized_expression = sanitized_expression.replace(name, "{"+str(id)+"}") + return sanitized_expression.format(*replacements)
+ +
[docs]class Event: + """ + An Event can be given as an assignment_expression (function) or directly + as a value (scalar). If given an assignment_expression, it should be + understood as evaluable in the namespace of a parent Model. + + Attributes + ---------- + name : str + The name by which this Event is called or referenced in reactions. + assignments : list + List of EventAssignments to be executed at trigger or delay + trigger : EventTrigger + contains math expression which can be evaluated to + a boolean result. Upon the transition from 'False' to 'True', + event assignments may be executed immediately, or after a + designated delay. + delay : string + contains math expression evaluable within model namespace. + This expression designates a delay between the trigger of + an event and the execution of its assignments. + priority : string + contains math expression evaluable within model namespace. + TODO: MORE INFO + use_values_from_trigger_time: boolean + """ + + def __init__(self, name="", delay = None, assignments = [], priority="0", + trigger = None, use_values_from_trigger_time = False): + + # Events can contain any number of assignments + self.assignments = [] + + # Name + if isinstance(name, str): + self.name = name + else: + raise EventError( + 'name must be a valid string') + + # Trigger + if hasattr(trigger, 'expression'): + self.trigger = trigger + else: + raise EventError( + 'trigger must be set to a valid EventTrigger') + + # Delay + if delay is None or isinstance(delay, str): + self.delay = delay + else: + raise EventError( + 'delay must be a valid string or None') + + # Priority + self.priority = priority + + # Assignments + if isinstance(assignments, list): + for assign in assignments: + if hasattr(assign, 'variable'): + self.assignments.append(assign) + else: + raise EventError('assignment list contains an item ' + 'is not an EventAssignment.') + elif hasattr(assignments, 'variable'): + self.assignments.append(assignments) + else: + raise EventError( + 'assignments must contain only EventAssignments ' + 'or a list of EventAssignments') + # Use Values from Trigger Time + if isinstance(use_values_from_trigger_time, bool): + self.use_values_from_trigger_time = use_values_from_trigger_time + else: + raise EventError( + 'use_values_from_trigger_time requires bool') + def __str__(self): + print_string = self.name + print_string += '\n\tTrigger: ' + str(self.trigger) + if len(self.assignments): + print_string += '\n\tAssignments:' + for a in self.assignments: + print_string += '\n\t\t' + a.variable.name + ': ' + a.expression + return print_string + +
[docs] def add_assignment(self, assignment): + """ + Adds an eventAssignment or a list of eventAssignments. + + Attributes + ---------- + assignment : EventAssignment or a list of EventAssignments + The event or list of events to be added to this event. + """ + + if hasattr(assignment, 'variable'): + self.assignments.append(assignment) + elif isinstance(assignment, list): + for assign in assignment: + if hasattr(assign, 'variable'): + self.assignments.append(assign) + else: + raise EventError('add_assignment failed to add EventAssignment. ' + 'Assignment to be added must be of type EventAssignment ' + 'or list of EventAssignment objects.') + else: + raise ModelError("Unexpected parameter for add_assignment. Parameter must be EventAssignment or list of EventAssignments") + return obj
+ + + +
+ +
+ + +
+
+
+
+ + + + + Fork me on GitHub + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/gillespy2/core/gillespy2.html b/docs/build/html/_modules/gillespy2/core/gillespy2.html index 686571a6b..c47aef66e 100644 --- a/docs/build/html/_modules/gillespy2/core/gillespy2.html +++ b/docs/build/html/_modules/gillespy2/core/gillespy2.html @@ -4,7 +4,7 @@ - gillespy2.core.gillespy2 — GillesPy2 1.3.0 documentation + gillespy2.core.gillespy2 — GillesPy2 1.4.0 documentation @@ -106,11 +106,13 @@

Source code for gillespy2.core.gillespy2

 
 """
 from __future__ import division
+import ast
 import signal, os
 import numpy as np
+import uuid
 from contextlib import contextmanager
 from collections import OrderedDict
-from gillespy2.core.results import Results,EnsembleResults
+from gillespy2.core.results import Trajectory,Results
 from gillespy2.core.events import *
 from gillespy2.core.gillespySolver import GillesPySolver
 from gillespy2.core.gillespyError import *
@@ -154,8 +156,7 @@ 

Source code for gillespy2.core.gillespy2

     """Base class for GillesPy2 objects that are sortable."""
 
     def __eq__(self, other):
-        return (isinstance(other, self.__class__)
-                and ordered(self) == ordered(other))
+        return str(self)==str(other)
 
     def __ne__(self, other):
         return not self.__eq__(other)
@@ -290,27 +291,27 @@ 

Source code for gillespy2.core.gillespy2

         print_string = self.name
         if len(self.listOfSpecies):
             print_string += decorate('Species')
-            for s in self.listOfSpecies.values():
+            for s in sorted(self.listOfSpecies.values()):
                 print_string += '\n' + str(s)
         if len(self.listOfParameters):
             print_string += decorate('Parameters')
-            for p in self.listOfParameters.values():
+            for p in sorted(self.listOfParameters.values()):
                 print_string += '\n' + str(p)
         if len(self.listOfReactions):
             print_string += decorate('Reactions')
-            for r in self.listOfReactions.values():
+            for r in sorted(self.listOfReactions.values()):
                 print_string += '\n' + str(r)
         if len(self.listOfEvents):
             print_string += decorate('Events')
-            for e in self.listOfEvents.values():
+            for e in sorted(self.listOfEvents.values()):
                 print_string += '\n' + str(e)
         if len(self.listOfAssignmentRules):
             print_string += decorate('Assignment Rules')
-            for ar in self.listOfAssignmentRules.values():
+            for ar in sorted(self.listOfAssignmentRules.values()):
                 print_string += '\n' + str(ar)
         if len(self.listOfRateRules):
             print_string += decorate('Rate Rules')
-            for rr in self.listOfRateRules.values():
+            for rr in sorted(self.listOfRateRules.values()):
                 print_string += '\n' + str(rr)
         return print_string
 
@@ -378,17 +379,18 @@ 

Source code for gillespy2.core.gillespy2

             The species or list of species to be added to the model object.
         """
 
-        if isinstance(obj, Species):
-            problem = self.problem_with_name(obj.name)
-            if problem is not None:
-                raise problem
-            self.listOfSpecies[obj.name] = obj
-            self._listOfSpecies[obj.name] = 'S{}'.format(len(self._listOfSpecies))
-        elif isinstance(obj, list):
+        if isinstance(obj, list):
             for S in sorted(obj):
                 self.add_species(S)
         else:
-            raise ModelError("Unexpected parameter for add_species. Parameter must be Species or list of Species.")
+            try:
+                problem = self.problem_with_name(obj.name)
+                if problem is not None:
+                    raise problem
+                self.listOfSpecies[obj.name] = obj
+                self._listOfSpecies[obj.name] = 'S{}'.format(len(self._listOfSpecies))
+            except Exception as e:
+                raise ParameterError("Error using {} as a Species. Reason given: {}".format(obj, e))
         return obj
[docs] def delete_species(self, obj): @@ -472,14 +474,14 @@

Source code for gillespy2.core.gillespy2

             for p in sorted(params):
                 self.add_parameter(p)
         else:
-            if isinstance(params, Parameter):
+            try:
                 problem = self.problem_with_name(params.name)
                 if problem is not None:
                     raise problem
                 self.listOfParameters[params.name] = params
                 self._listOfParameters[params.name]='P{}'.format(len(self._listOfParameters))
-            else:
-                raise ParameterError("Could not resolve Parameter expression {} to a scalar value.".format(params))
+            except Exception as e:
+                raise ParameterError("Error using {} as a Parameter. Reason given: {}".format(params, e))
         return params
[docs] def delete_parameter(self, obj): @@ -556,20 +558,21 @@

Source code for gillespy2.core.gillespy2

         if isinstance(reactions,list):
             for r in sorted(reactions):
                 self.add_reaction(r)
-        elif isinstance(reactions,Reaction):
-            reactions.verify()
-            self.validate_reactants_and_products(reactions)
-            if reactions.name in self.listOfReactions:
-                raise ModelError("Duplicate name of reaction: {0}".format(reactions.name))
-            self.listOfReactions[reactions.name] = reactions
-            # Build Sanitized reaction as well
-            sanitized_reaction = Reaction(name='R{}'.format(len(self._listOfReactions)))
-            sanitized_reaction.reactants={self._listOfSpecies[species.name]:reactions.reactants[species] for species in reactions.reactants}
-            sanitized_reaction.products={self._listOfSpecies[species.name]:reactions.products[species] for species in reactions.products}
-            sanitized_reaction.propensity_function = reactions.sanitized_propensity_function(self._listOfSpecies, self._listOfParameters)
-            self._listOfReactions[reactions.name] = sanitized_reaction
         else:
-            raise ModelError("Unexpected parameter for add_reaction. Parameter must be Reaction or list of Reactions.")
+            try:
+                reactions.verify()
+                self.validate_reactants_and_products(reactions)
+                if reactions.name in self.listOfReactions:
+                    raise ModelError("Duplicate name of reaction: {0}".format(reactions.name))
+                self.listOfReactions[reactions.name] = reactions
+                # Build Sanitized reaction as well
+                sanitized_reaction = Reaction(name='R{}'.format(len(self._listOfReactions)))
+                sanitized_reaction.reactants={self._listOfSpecies[species.name]:reactions.reactants[species] for species in reactions.reactants}
+                sanitized_reaction.products={self._listOfSpecies[species.name]:reactions.products[species] for species in reactions.products}
+                sanitized_reaction.propensity_function = reactions.sanitized_propensity_function(self._listOfSpecies, self._listOfParameters)
+                self._listOfReactions[reactions.name] = sanitized_reaction
+            except Exception as e:
+                raise ParameterError("Error using {} as a Reaction. Reason given: {}".format(reactions, e))
         return reactions
[docs] def add_rate_rule(self, rate_rules): @@ -586,17 +589,30 @@

Source code for gillespy2.core.gillespy2

         if isinstance(rate_rules, list):
             for rr in sorted(rate_rules):
                 self.add_rate_rule(rr)
-        elif isinstance(rate_rules, RateRule):
-            if rate_rules.formula == '': raise ModelError('Invalid Rate Rule. Expression must be a non-empty string value')
-            if rate_rules.variable == None:
-                raise ModelError('A GillesPy2 Rate Rule must be associated with a valid variable')
-            self.listOfRateRules[rate_rules.variable] = rate_rules
-            sanitized_rate_rule = RateRule(name = 'RR{}'.format(len(self._listOfRateRules)))
-            sanitized_rate_rule.formula = rate_rules.sanitized_formula(self._listOfSpecies,
-                                                    self._listOfParameters)
-            self._listOfRateRules[rate_rules.variable] = sanitized_rate_rule
         else:
-            raise ParameterError("Add_rate_rule accepts a RateRule object or a List of RateRule Objects")
+            try:
+                if len(self.listOfAssignmentRules) != 0:
+                    for i in self.listOfAssignmentRules.values():
+                        if rate_rules.variable == i.variable:
+                            raise ModelError("Duplicate variable in rate_rules AND assignment_rules: {0}".
+                                            format(rate_rules.variable))
+                for i in self.listOfRateRules.values():
+                    if rate_rules.variable == i.variable:
+                        raise ModelError("Duplicate variable in rate_rules: {0}".format(rate_rules.variable))
+                if rate_rules.name in self.listOfRateRules:
+                    raise ModelError("Duplicate name of rate_rule: {0}".format(rate_rules.name))
+                if rate_rules.formula == '':
+                    raise ModelError('Invalid Rate Rule. Expression must be a non-empty string value')
+                if rate_rules.variable == None:
+                    raise ModelError('A GillesPy2 Rate Rule must be associated with a valid variable')
+
+                self.listOfRateRules[rate_rules.name] = rate_rules
+                sanitized_rate_rule = RateRule(name = 'RR{}'.format(len(self._listOfRateRules)))
+                sanitized_rate_rule.formula = rate_rules.sanitized_formula(self._listOfSpecies,
+                                                        self._listOfParameters)
+                self._listOfRateRules[rate_rules.name] = sanitized_rate_rule
+            except Exception as e:
+                raise ParameterError("Error using {} as a Rate Rule. Reason given: {}".format(rate_rules, e))
         return rate_rules
[docs] def add_event(self, event): @@ -613,20 +629,20 @@

Source code for gillespy2.core.gillespy2

         if isinstance(event, list):
             for e in event:
                 self.add_event(e)
-        elif isinstance(event, Event):
-            if event.trigger is None or not isinstance(event.trigger, EventTrigger): 
-                raise ModelError(
-                'An Event must contain a valid trigger.')
-            for a in event.assignments:
-                if isinstance(a.variable, str):
-                    if a.variable in self.listOfSpecies:
-                        a.variable = self.listOfSpecies[a.variable]
-                    else:
-                        raise ModelError('{0} not a valid Species'.format(a.variable))
-            self.listOfEvents[event.name] = event
         else:
-            raise ParameterError("add_events accepts an Event object or a"
-            " List of Event Objects")
+            try:
+                if event.trigger is None or not hasattr(event.trigger, 'expression'): 
+                    raise ModelError(
+                    'An Event must contain a valid trigger.')
+                for a in event.assignments:
+                    if isinstance(a.variable, str):
+                        if a.variable in self.listOfSpecies:
+                            a.variable = self.listOfSpecies[a.variable]
+                        else:
+                            raise ModelError('{0} not a valid Species'.format(a.variable))
+                self.listOfEvents[event.name] = event
+            except Exception as e:
+                raise ParameterError("Error using {} as Event. Reason given: {}".format(event, e))
         return event
@@ -634,15 +650,39 @@

Source code for gillespy2.core.gillespy2

         if isinstance(function_definitions, list):
             for fd in function_definitions:
                 self.add_function_definition(fd)
-        elif isinstance(function_definitions, FunctionDefinition):
-            self.listOfFunctionDefinitions[function_definitions.name] = function_definitions
+ else: + try: + self.listOfFunctionDefinitions[function_definitions.name] = function_definitions + except Exception as e: + raise ParameterError("Error using {} as a Function Definition. Reason given: ".format(function_definitions, e))
+
[docs] def add_assignment_rule(self, assignment_rules): if isinstance(assignment_rules, list): for ar in assignment_rules: self.add_assignment_rule(ar) - elif isinstance(assignment_rules, AssignmentRule): - self.listOfAssignmentRules[assignment_rules.variable] = assignment_rules
+ else: + try: + if len(self.listOfRateRules) != 0: + for i in self.listOfRateRules.values(): + if assignment_rules.variable == i.variable: + raise ModelError("Duplicate variable in rate_rules AND assignment_rules: {0}". + format(assignment_rules.variable)) + for i in self.listOfAssignmentRules.values(): + if assignment_rules.variable == i.variable: + raise ModelError("Duplicate variable in assignment_rules: {0}" + .format(assignment_rules.variable)) + if assignment_rules.name in self.listOfAssignmentRules: + raise ModelError("Duplicate name in assignment_rules: {0}".format(assignment_rules.name)) + if assignment_rules.formula == '': + raise ModelError('Invalid Assignment Rule. Expression must be a non-empty string value') + if assignment_rules.variable == None: + raise ModelError('A GillesPy2 Rate Rule must be associated with a valid variable') + + + self.listOfAssignmentRules[assignment_rules.name] = assignment_rules + except Exception as e: + raise ParameterError("Error using {} as a Assignment Rule. Reason given: ".format(assignment_rules, e))
[docs] def timespan(self, time_span): @@ -665,19 +705,167 @@

Source code for gillespy2.core.gillespy2

             raise InvalidModelError("StochKit only supports uniform timespans")
[docs] def get_reaction(self, rname): + """ + + :param rname: name of reaction to return + :return: Reaction object + """ return self.listOfReactions[rname]
[docs] def get_all_reactions(self): + """ + :return: dict of all Reaction objects + """ return self.listOfReactions
[docs] def delete_reaction(self, obj): + """ + :param obj: Name of Reaction to be removed + """ self.listOfReactions.pop(obj) self._listOfReactions.pop(obj)
[docs] def delete_all_reactions(self): + """ + Clears all reactions in model + """ self.listOfReactions.clear() self._listOfReactions.clear()
+
[docs] def get_event(self,ename): + """ + :param ename: Name of Event to get + :return: Event object + """ + return self.listOfEvents[ename]
+ +
[docs] def get_all_events(self): + """ + :return: dict of all Event objects + """ + return self.listOfEvents
+ +
[docs] def delete_event(self,ename): + """ + Removes specified Event from model + :param ename: Name of Event to be removed + """ + self.listOfEvents.pop(ename) + self._listOfEvents.pop(ename)
+ +
[docs] def delete_all_events(self): + """ + Clears models events + """ + self.listOfEvents.clear() + self._listOfEvents.clear()
+ +
[docs] def get_rate_rule(self,rname): + """ + :param rname: Name of Rate Rule to get + :return: RateRule object + """ + return self.listOfRateRules[rname]
+ +
[docs] def get_all_rate_rules(self): + """ + :return: dict of all Rate Rule objects + """ + return self.listOfRateRules
+ +
[docs] def delete_rate_rule(self,rname): + """ + Removes specified Rate Rule from model + :param rname: Name of Rate Rule to be removed + """ + self.listOfRateRules.pop(rname) + self._listOfRateRules.pop(rname)
+ +
[docs] def delete_all_rate_rules(self): + """ + Clears all of models Rate Rules + """ + self.listOfRateRules.clear() + self._listOfRateRules.clear()
+ +
[docs] def get_assignment_rule(self,aname): + """ + :param aname: Name of Assignment Rule to get + :return: Assignment Rule object + """ + return self.listOfAssignmentRules[aname]
+ +
[docs] def get_all_assignment_rules(self): + """ + :return: dict of models Assignment Rules + """ + return self.listOfAssignmentRules
+ +
[docs] def delete_assignment_rule(self,aname): + """ + Removes an assignment rule from a model + :param aname: Name of AssignmentRule object to be removed from model + """ + self.listOfAssignmentRules.pop(aname) + self._listOfAssignmentRules.pop(aname)
+ +
[docs] def delete_all_assignment_rules(self): + """ + Clears all assignment rules from model + """ + self.listOfAssignmentRules.clear() + self._listOfAssignmentRules.clear()
+ +
[docs] def get_function_definition(self,fname): + """ + :param fname: name of Function to get + :return: FunctionDefinition object + """ + return self.listOfFunctionDefinitions[fname]
+ +
[docs] def get_all_function_definitions(self): + """ + :return: Dict of models function definitions + """ + return self.listOfFunctionDefinitions
+ +
[docs] def delete_function_definition(self,fname): + """ + Removes specified Function Definition from model + :param fname: Name of Function Definition to be removed + """ + self.listOfFunctionDefinitions.pop(fname) + self._listOfFunctionDefinitions.pop(fname)
+ +
[docs] def delete_all_function_definitions(self): + """ + Clears all Function Definitions from a model + """ + self.listOfFunctionDefinitions.clear() + self._listOfFunctionDefinitions.clear()
+ +
[docs] def get_element(self, ename): + """ + get element specified by name + :param ename: name of element to search for + :return:value of element, or 'element not found' + """ + if ename in self.listOfReactions: + return self.get_reaction(ename) + if ename in self.listOfSpecies: + return self.get_species(ename) + if ename in self.listOfParameters: + return self.get_parameter(ename) + if ename in self.listOfEvents: + return self.get_event(ename) + if ename in self.listOfRateRules: + return self.get_rate_rule(ename) + if ename in self.listOfAssignmentRules: + return self.get_assignment_rule(ename) + if ename in self.listOfFunctionDefinitions: + return self.get_function_definition(ename) + return 'Element not found!'
+
[docs] def run(self, solver=None, timeout=0, **solver_args): """ Function calling simulation of the model. There are a number of @@ -686,10 +874,9 @@

Source code for gillespy2.core.gillespy2

         Return
         ----------
 
-        If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is True and
-        number_of_trajectories is 1, returns a results object that inherits UserDict and supports plotting functions.
-        If show_labels is False and number_of_trajectories is greater than 1, returns an ensemble_results object that
-        inherits UserList and contains results objects and supports ensemble graphing.
+        If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is 
+        True,returns a Results object that inherits UserList and contains one or more Trajectory objects that 
+        inherit UserDict. Results object supports graphing and csv export.
 
         Attributes
         ----------
@@ -703,75 +890,42 @@ 

Source code for gillespy2.core.gillespy2

             solver-specific arguments to be passed to solver.run()
         """
 
-        if os.name == 'nt' and timeout > 0:
-            from gillespy2.core import log
-            log.warning('Timeouts are not currently supported in Windows.')
-        @contextmanager
-        def time_out(time):
-            # Register a function to raise a TimeoutError on the signal.
-            signal.signal(signal.SIGALRM, raise_time_out)
-            # Schedule the signal to be sent after ``time``.
-            signal.alarm(time)
-
+        if solver is not None:
             try:
-                yield
-            except TimeoutError:
-                print('GillesPy2 solver simulation exceeded timeout')
-                pass
-            finally:
-                # Unregister the signal so it won't be triggered
-                # if the time_out is not reached.
-                signal.signal(signal.SIGALRM, signal.SIG_IGN)
+                solver_results, rc = solver.run(model=self, t=self.tspan[-1],
+                            increment=self.tspan[-1] - self.tspan[-2], timeout=timeout, **solver_args)
+            except Exception as e:
+                raise SimulationError(
+                    "argument 'solver={}' to run() failed.  Reason Given: {}".format(solver, e))
+        else:
+            from gillespy2.solvers.auto import SSASolver
+            solver = SSASolver
+            solver_results, rc = SSASolver.run(model=self, t=self.tspan[-1],
+                                      increment=self.tspan[-1] -
+                                      self.tspan[-2], timeout=timeout, **solver_args)
 
-        def raise_time_out(signum, frame):
+        if rc == 33:
             from gillespy2.core import log
-            import sys
-            def excepthook(type, value, traceback):
-                pass
-            sys.excepthook = excepthook
             log.warning('GillesPy2 simulation exceeded timeout.')
-            raise SimulationTimeoutError()
-
-
-        with time_out(timeout):
-            if solver is not None:
-                if ((isinstance(solver, type)
-                        and issubclass(solver, GillesPySolver))) or issubclass(type(solver), GillesPySolver):
-                    if solver.name == 'SSACSolver':
-                        signal.signal(signal.SIGALRM, signal.SIG_IGN)
-                        solver_args['timeout'] = timeout
-                    solver_results, rc = solver.run(model=self, t=self.tspan[-1], increment=self.tspan[-1] - self.tspan[-2], **solver_args)
-                else:
-                    raise SimulationError(
-                        "argument 'solver' to run() must be a subclass of GillesPySolver")
-            else:
-                from gillespy2.solvers.auto import SSASolver
-                solver = SSASolver
-                if solver.name == 'SSACSolver':
-                    signal.signal(signal.SIGALRM, signal.SIG_IGN)
-                    solver_args['timeout'] = timeout
-                solver_results, rc = SSASolver.run(model=self, t=self.tspan[-1],
-                                          increment=self.tspan[-1] - self.tspan[-2], **solver_args)
-           
-            if rc == 33:
-                from gillespy2.core import log
-                log.warning('GillesPy2 simulation exceeded timeout.')
-
-            if isinstance(solver_results[0], (np.ndarray)):
-                return solver_results
-
-            if len(solver_results) is 1:
-                return Results(data=solver_results[0], model=self,
-                    solver_name=solver.name, rc=rc)
-
-            if len(solver_results) > 1:
-                results_list = []
-                for i in range(0,solver_args.get('number_of_trajectories')):
-                    results_list.append(Results(data=solver_results[i],model=self,solver_name=solver.name,
-                        rc=rc))
-                return EnsembleResults(results_list)
-            else:
-                raise ValueError("number_of_trajectories must be non-negative and non-zero")
+ + if hasattr(solver_results[0], 'shape'): + return solver_results + if len(solver_results) is 1: + results_list = [] + results_list.append(Trajectory(data=solver_results[0], model=self, + solver_name=solver.name, rc=rc)) + return Results(results_list) + + if len(solver_results) > 1: + results_list = [] + for i in range(0,solver_args.get('number_of_trajectories')): + results_list.append(Trajectory(data=solver_results[i],model=self,solver_name=solver.name, + rc=rc)) + return Results(results_list) + + + else: + raise ValueError("number_of_trajectories must be non-negative and non-zero")
[docs]class Species(SortableObject): @@ -836,7 +990,8 @@

Source code for gillespy2.core.gillespy2

         if mode == 'continuous':
             self.initial_value = np.float(initial_value)
         else:
-            if not isinstance(initial_value, int): raise ValueError('Discrete values must be of type int.')
+            if np.int(initial_value) != initial_value:
+                raise ValueError("'initial_value' for Species with mode='discrete' must be an integer value. Change to mode='continuous' to use floating point values.")
             self.initial_value = np.int(initial_value)
         if not allow_negative_populations:
             if self.initial_value < 0: raise ValueError('A species initial value must be \
@@ -1013,7 +1168,10 @@ 

Source code for gillespy2.core.gillespy2

         self.variable = variable
         self.name = name
     def __str__(self):
-        return self.name + ': Var: ' + self.variable + ': ' + self.formula
+        try:
+            return self.name + ': Var: ' + self.variable + ': ' + self.formula
+        except: 
+            return 'Rate Rule: {} contains an invalid variable or formula'.format(self.name)
 
[docs] def sanitized_formula(self, species_mappings, parameter_mappings): names = sorted(list(species_mappings.keys()) + list(parameter_mappings.keys()), key = lambda x: len(x), reverse=True) replacements = [parameter_mappings[name] if name in parameter_mappings else species_mappings[name] @@ -1034,7 +1192,7 @@

Source code for gillespy2.core.gillespy2

     Attributes
     ----------
     name : str
-        The name by which the reaction is called.
+        The name by which the reaction is called (optional).
     reactants : dict
         The reactants that are consumed in the reaction, with stoichiometry. An
         example would be {R1 : 1, R2 : 2} if the reaction consumes two of R1 and
@@ -1070,7 +1228,10 @@ 

Source code for gillespy2.core.gillespy2

         """
 
         # Metadata
-        self.name = name
+        if name == "" or name is None:
+            self.name = 'rxn' + str(uuid.uuid4()).replace('-', '_')
+        else:
+            self.name = name
         self.annotation = ""
 
         # We might use this flag in the future to automatically generate
@@ -1115,16 +1276,107 @@ 

Source code for gillespy2.core.gillespy2

         else:
             self.type = "customized"
 
+            def __customPropParser():
+                pow_func = ast.parse("pow", mode="eval").body
+                class ExpressionParser(ast.NodeTransformer):
+                    def visit_BinOp(self, node):
+                        node.left = self.visit(node.left)
+                        node.right = self.visit(node.right)
+                        if isinstance(node.op, (ast.BitXor, ast.Pow)):
+                            # ast.Call calls defined function, args include which nodes
+                            # are effected by function call
+                            call = ast.Call(func=pow_func,
+                                            args=[node.left, node.right],
+                                            keywords=[])
+                            # Copy_location copies lineno and coloffset attributes
+                            # from old node to new node. ast.copy_location(new_node,old_node)
+                            call = ast.copy_location(call, node)
+                            # Return changed node
+                            return call
+                        # No modification to node, classes extending NodeTransformer methods
+                        # Always return node or value
+                        else:
+                            return node
+                    def visit_Name(self, node):
+                        #Visits Name nodes, if the name nodes "id" value is 'e', replace with numerical constant
+                        if node.id == 'e':
+                            nameToConstant = ast.copy_location(ast.Num(float(np.e), ctx=node.ctx), node)
+                            return nameToConstant
+                        return node
+
+                expr = self.propensity_function
+                expr = expr.replace('^', '**')
+                expr = ast.parse(expr, mode='eval')
+                expr = ExpressionParser().visit(expr)
+
+                class ToString(ast.NodeVisitor):
+                    def __init__(self):
+                        self.string = ''
+                    def _string_changer(self, addition):
+                        self.string += addition
+                    def visit_BinOp(self, node):
+                        self._string_changer('(')
+                        self.visit(node.left)
+                        self.visit(node.op)
+                        self.visit(node.right)
+                        self._string_changer(')')
+                    def visit_Name(self, node):
+                        self._string_changer(node.id)
+                        self.generic_visit(node)
+                    def visit_Num(self, node):
+                        self._string_changer(str(node.n))
+                        self.generic_visit(node)
+                    def visit_Call(self, node):
+                        self._string_changer(node.func.id + '(')
+                        counter = 0
+                        for arg in node.args:
+                            self.visit(arg)
+                            if counter == 0:
+                                self._string_changer(',')
+                                counter += 1
+                        self._string_changer(')')
+                    def visit_Add(self, node):
+                        self._string_changer('+')
+                        self.generic_visit(node)
+                    def visit_Div(self, node):
+                        self._string_changer('/')
+                        self.generic_visit(node)
+                    def visit_Mult(self, node):
+                        self._string_changer('*')
+                        self.generic_visit(node)
+                    def visit_UnaryOp(self, node):
+                        self._string_changer('(')
+                        self.visit_Usub(node)
+                        self._string_changer(')')
+                    def visit_Sub(self, node):
+                        self._string_changer('-')
+                        self.generic_visit(node)
+                    def visit_Usub(self, node):
+                        self._string_changer('-')
+                        self.generic_visit(node)
+
+                newFunc = ToString()
+                newFunc.visit(expr)
+                return newFunc.string
+
+            self.propensity_function = __customPropParser()
+
     def __str__(self):
         print_string = self.name
         if len(self.reactants):
             print_string += '\n\tReactants'
             for r, stoich in self.reactants.items():
-                print_string += '\n\t\t' + r.name + ': ' + str(stoich)
+                try:
+                    print_string += '\n\t\t' + r.name + ': ' + str(stoich)
+                except Exception as e:
+                    print_string += '\n\t\t' + r + ': ' + 'INVALID - ' + str(e)
         if len(self.products):
             print_string += '\n\tProducts'
             for p, stoich in self.products.items():
-                print_string += '\n\t\t' + p.name + ': ' + str(stoich)
+                try:
+                    print_string += '\n\t\t' + p.name + ': ' + str(stoich)
+                except Exception as e:
+                    print_string += '\n\t\t' + p + ': ' + 'INVALID - ' + str(e)
         print_string += '\n\tPropensity Function: ' + self.propensity_function
         return print_string
 
@@ -1353,7 +1605,7 @@ 

Source code for gillespy2.core.gillespy2

         root = self.document
 
         # Try to set name from document
-        if model.name is "":
+        if model.name == "":
             name = root.find('Name')
             if name.text is None:
                 raise NameError("The Name cannot be none")
diff --git a/docs/build/html/_modules/gillespy2/core/gillespyError.html b/docs/build/html/_modules/gillespy2/core/gillespyError.html
index dd64ad7bb..06328d138 100644
--- a/docs/build/html/_modules/gillespy2/core/gillespyError.html
+++ b/docs/build/html/_modules/gillespy2/core/gillespyError.html
@@ -4,7 +4,7 @@
 
   
     
-    gillespy2.core.gillespyError — GillesPy2 1.3.0 documentation
+    gillespy2.core.gillespyError — GillesPy2 1.4.0 documentation
     
     
     
@@ -154,6 +154,13 @@ 

Source code for gillespy2.core.gillespyError

[docs]class EventError(ModelError):
     pass
+ +#Results errors +
[docs]class ResultsError(Exception): + pass
+ +
[docs]class ValidationError(ResultsError): + pass
diff --git a/docs/build/html/_modules/gillespy2/core/gillespySolver.html b/docs/build/html/_modules/gillespy2/core/gillespySolver.html index 659aa4adf..64bd8ee08 100644 --- a/docs/build/html/_modules/gillespy2/core/gillespySolver.html +++ b/docs/build/html/_modules/gillespy2/core/gillespySolver.html @@ -4,7 +4,7 @@ - gillespy2.core.gillespySolver — GillesPy2 1.3.0 documentation + gillespy2.core.gillespySolver — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/_modules/gillespy2/core/results.html b/docs/build/html/_modules/gillespy2/core/results.html index 6adab6070..51e340c2a 100644 --- a/docs/build/html/_modules/gillespy2/core/results.html +++ b/docs/build/html/_modules/gillespy2/core/results.html @@ -4,7 +4,7 @@ - gillespy2.core.results — GillesPy2 1.3.0 documentation + gillespy2.core.results — GillesPy2 1.4.0 documentation @@ -101,13 +101,13 @@

Quick search

Source code for gillespy2.core.results

 import warnings
-import csv
-import os
 from datetime import datetime
+from gillespy2.core.gillespyError import *
+import pickle
 
 from collections import UserDict,UserList
 
-# List of 50 hex color values used for ploting graphs
+# List of 50 hex color values used for plotting graphs
 common_rgb_values = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
                          '#bcbd22', '#17becf', '#ff0000', '#00ff00', '#0000ff', '#ffff00', '#00ffff', '#ff00ff',
                          '#800000', '#808000', '#008000', '#800080', '#008080', '#000080', '#ff9999', '#ffcc99',
@@ -118,9 +118,8 @@ 

Source code for gillespy2.core.results

 
 def _plot_iterate(self, show_labels = True, included_species_list = []):
     import matplotlib.pyplot as plt
-
     for i,species in enumerate(self.data):
-        if species is not 'time':
+        if species != 'time':
 
             if species not in included_species_list and included_species_list:
                 continue
@@ -134,9 +133,9 @@ 

Source code for gillespy2.core.results

 
             plt.plot(self.data['time'], self.data[species], label=label,color = line_color)
 
-def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict= None, included_species_list= []):
+def _plotplotly_iterate(trajectory, show_labels = True, trace_list = None, line_dict= None, included_species_list= []):
     '''
-    Helper method for Results and Ensemble .plotplotly() method
+    Helper method for Results .plotplotly() method
     '''
 
     if trace_list is None:
@@ -144,8 +143,8 @@ 

Source code for gillespy2.core.results

 
     import plotly.graph_objs as go
 
-    for i,species in enumerate(result.data):
-        if species is not 'time':
+    for i,species in enumerate(trajectory.data):
+        if species != 'time':
 
             if species not in included_species_list and included_species_list:
                 continue
@@ -159,8 +158,8 @@ 

Source code for gillespy2.core.results

             if show_labels:
                 trace_list.append(
                     go.Scatter(
-                        x=result.data['time'],
-                        y=result.data[species],
+                        x=trajectory.data['time'],
+                        y=trajectory.data[species],
                         mode='lines',
                         name=species,
                         line = line_dict
@@ -169,8 +168,8 @@ 

Source code for gillespy2.core.results

             else:
                 trace_list.append(
                     go.Scatter(
-                        x=result.data['time'],
-                        y=result.data[species],
+                        x=trajectory.data['time'],
+                        y=trajectory.data[species],
                         mode='lines',
                         name=species,
                         line=line_dict,
@@ -180,13 +179,21 @@ 

Source code for gillespy2.core.results

 
     return trace_list
 
-
[docs]class Results(UserDict): - """ Results Dict created by a gillespy2 solver with single trajectory, extends the UserDict object. +
[docs]class Trajectory(UserDict): + """ Trajectory Dict created by a gillespy2 solver containing single trajectory, extends the UserDict object. Attributes ---------- - data : UserList - A list of Results that are created by solvers with multiple trajectories + data : UserDict + A dictionary of trajectory values created by a solver + model : string + The name of the model used to create the trajectory + solver_name : string + The name of the solver used to create the trajectory + rc : int + The solver's status return code. + status : string + The solver status (e.g. 'Success', 'Timed Out') """ def __init__(self,data,model = None,solver_name = "Undefined solver name", rc=0): @@ -199,167 +206,99 @@

Source code for gillespy2.core.results

         status_list = {0: 'Success', 33: 'Timed Out'}
         self.status = status_list[rc]
 
-
     def __getitem__(self, key):
-        if type(key) is type(1):
-            warnings.warn("Results is of type dictionary. Use results['species'] instead of results[0]['species'] ")
+        if type(key) is int:
+            warnings.warn("Trajectory is of type dictionary. Use trajectory['species'] instead of trajectory[0]['species'] ")
             return self
         if key in self.data:
             return self.data[key]
         if hasattr(self.__class__, "__missing__"):
             return self.__class__.__missing__(self, key)
-        raise KeyError(key)
+        raise KeyError(key)
-
[docs] def to_csv(self, path=None, nametag=None, stamp=None): - """ outputs the Results to one or more .csv files in a new directory. - Attributes - ---------- - nametag: allows the user to optionally "tag" the directory and included files. Defaults to the model name. - path: path to the location for the new directory and included files. Defaults to model location. - stamp: allows the user to optionally identify the directory (not included files). Defaults to timestamp. - """ - if stamp is None: - now = datetime.now() - stamp=datetime.timestamp(now) - if nametag is None: - identifier = (self.model.name + " - " + self.solver_name) - else: - identifier = nametag - if isinstance(self.data,dict): #if only one trajectory - if path is None: - directory = os.path.join(".",str(identifier)+str(stamp)) - else: - directory = os.path.join(path,str(identifier)+str(stamp)) - os.mkdir(directory) - filename = os.path.join(directory,identifier+".csv") - field_names = [] - for species in self.data: #build the header - field_names.append(species) - with open(filename, 'w', newline = '') as csv_file: - csv_writer = csv.writer(csv_file) - csv_writer.writerow(field_names) #write the header - for n,time in enumerate(self.data['time']):#write all lines of the CSV file - this_line=[] - for species in self.data: #build one line of the CSV file - this_line.append(self.data[species][n]) - csv_writer.writerow(this_line) #write one line of the CSV file
- - - -
[docs] def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", title = None, style="default", - show_legend=True, included_species_list=[],save_png=False,figsize = (18,10)): - """ Plots the Results using matplotlib. +
[docs]class Results(UserList): + """ List of Trajectory objects created by a gillespy2 solver, extends the UserList object. - Attributes + Attributes ---------- - xaxis_label : str - the label for the x-axis - yaxis_label : str - the label for the y-axis - title : str - the title of the graph - show_legend : bool - whether or not to display a legend which lists species - included_species_list : list - A list of strings describing which species to include. By default displays all species. - save_png : bool or str - Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file - is named after that string. - figsize : tuple - the size of the graph. A tuple of the form (width,height). Is (18,10) by default. - + data : UserList + A list of Trajectory objects """ - import matplotlib.pyplot as plt - - try: - plt.style.use(style) - except: - warnings.warn("Invalid matplotlib style. Try using one of the following {}".format(plt.style.available)) - plt.style.use("default") - - if title is None: - title = (self.model.name + " - " + self.solver_name) - - plt.figure(figsize=figsize) - plt.title(title,fontsize=18) - plt.xlabel(xaxis_label) - plt.ylabel(yaxis_label) - - _plot_iterate(self, included_species_list=included_species_list) - - plt.plot([0], [11]) - - if show_legend: - plt.legend(loc='best') - - if isinstance(save_png, str): - plt.savefig(save_png) - - elif save_png: - plt.savefig(title)
+ def __init__(self,data): + self.data = data -
[docs] def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, - included_species_list=[], return_plotly_figure = False): - """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook. + def __getattribute__(self,key): + if key == 'model' or key == 'solver_name' or key == 'rc'or key == 'status': + if len(self.data)>1: + warnings.warn("Results is of type list. Use results[i]['model'] instead of results['model'] ") + return(getattr(Results.__getattribute__(self,key='data')[0],key)) + else: + return UserList.__getattribute__(self,key) - Attributes - ---------- - xaxis_label : str - the label for the x-axis - yaxis_label : str - the label for the y-axis - title : str - the title of the graph - show_legend : bool - whether or not to display a legend which lists species - included_species_list : list - A list of strings describing which species to include. By default displays all species. - return_plotly_figure : bool - whether or not to return a figure dictionary of data(graph object traces) and layout options - which may be edited by the user. + def __getitem__(self, key): + if key == 'data': + return UserList.__getitem__(self,key) + if type(key) is str and key != 'data': + if len(self.data)>1: + warnings.warn("Results is of type list. Use results[i]['model'] instead of results['model'] ") + return self.data[0][key] + else: + return(UserList.__getitem__(self,key)) + raise KeyError(key) - """ + def __add__(self, other): + combined_data = Results(data=(self.data + other.data)) + consistent_solver = combined_data._validate_solver() + consistent_model = combined_data._validate_model() - from plotly.offline import init_notebook_mode, iplot - import plotly.graph_objs as go + if consistent_solver is False: + warnings.warn("Results objects contain Trajectory objects from multiple solvers.") - init_notebook_mode(connected=True) + consistent_model = combined_data._validate_model() - if title is None: - title = (self.model.name + " - " + self.solver_name) + if consistent_model is False: + raise ValidationError('Results objects contain Trajectory objects from multiple models.') - trace_list = _plotplotly_iterate(self, included_species_list = included_species_list,show_labels=True) + combined_data = self.data + other.data + return Results(data=combined_data) - layout = go.Layout( - showlegend=show_legend, - title= title, - xaxis=dict( - title=xaxis_label), - yaxis=dict( - title=yaxis_label) - ) - fig = dict(data = trace_list,layout=layout) - - if return_plotly_figure: - return fig + def _validate_model(self, reference = None): + is_valid = True + if reference is not None: + reference_model = reference else: - iplot(fig)
- -
[docs]class EnsembleResults(UserList): - """ List of Results Dicts created by a gillespy2 solver with multiple trajectories, extends the UserList object. - - Attributes - ---------- - data : UserList - A list of Results - """ - - def __init__(self,data): - self.data = data + reference_model = self.data[0].model + for trajectory in self.data: + if trajectory.model != reference_model: + is_valid = False + return is_valid + + def _validate_solver(self, reference = None): + is_valid = True + if reference is not None: + reference_solver = reference + else: + reference_solver = self.data[0].solver_name + for trajectory in self.data: + if trajectory.solver_name != reference_solver: + is_valid = False + return is_valid + + def _validate_title(self): + if self._validate_model(): + title_model = self.data[0].model.name + else: + title_model = 'Multiple Models' + if self._validate_solver(): + title_solver = self.data[0].solver_name + else: + title_solver = 'Multiple Solvers' + title = (title_model + " - " + title_solver) + return title -
[docs] def to_csv(self, path=None, nametag=None, stamp=None): +
[docs] def to_csv(self, path=None, nametag=None, stamp=None): """ outputs the Results to one or more .csv files in a new directory. Attributes @@ -368,11 +307,14 @@

Source code for gillespy2.core.results

             path: the location for the new directory and included files. Defaults to model location.
             stamp: Allows the user to optionally "tag" the directory (not included files). Default is timestamp.
             """
+        import csv
+        import os
+
         if stamp is None:
             now = datetime.now()
             stamp=datetime.timestamp(now)
         if nametag is None:
-            identifier = (self[0].model.name + " - " + self[0].solver_name)
+            identifier = self._validate_title()
         else:
             identifier = nametag
         if path is None:
@@ -396,12 +338,13 @@ 

Source code for gillespy2.core.results

                             this_line.append(trajectory[species][n])
                         csv_writer.writerow(this_line) #write one line of the CSV file
-
[docs] def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", style="default", title = None, +
[docs] def plot(self, index = None, xaxis_label ="Time (s)", yaxis_label ="Species Population", style="default", title = None, show_legend=True, multiple_graphs = False, included_species_list=[],save_png=False,figsize = (18,10)): """ Plots the Results using matplotlib. Attributes ---------- + index : if not none, the index of the Trajectory to be plotted xaxis_label : str the label for the x-axis yaxis_label : str @@ -423,20 +366,26 @@

Source code for gillespy2.core.results

 
             """
         import matplotlib.pyplot as plt
-        results_list = self.data
+        from collections import Iterable
+        trajectory_list = []
+        if isinstance(index,Iterable):
+            for i in index:
+                trajectory_list.append(self.data[i])
+        elif isinstance(index,int):
+                trajectory_list.append(self.data[index])
+        else:
+            trajectory_list = self.data
 
         if title is None:
-            if isinstance(self[0].model.name, str):
-                title = (self[0].model.name + " - " + self[0].solver_name)
-            else: title=''
+            title=self._validate_title()
 
-        if len(results_list) < 2:
+        if len(trajectory_list) < 2:
                 multiple_graphs = False
 
         if multiple_graphs:
 
-            for i,result in enumerate(results_list):
-
+            for i,trajectory in enumerate(trajectory_list):
+                result = Results(data=[trajectory])
                 if isinstance(save_png, str):
                     result.plot(xaxis_label=xaxis_label, yaxis_label=yaxis_label, title=title + " " + str(i + 1), style=style,
                                                  included_species_list=included_species_list,save_png=save_png + str(i + 1),figsize=figsize)
@@ -456,12 +405,12 @@ 

Source code for gillespy2.core.results

             plt.xlabel(xaxis_label)
             plt.ylabel(yaxis_label)
 
-            for i,result in enumerate(results_list):
+            for i,trajectory in enumerate(trajectory_list):
 
                 if i > 0:
-                    _plot_iterate(result, included_species_list=included_species_list,show_labels=False)
+                    _plot_iterate(trajectory, included_species_list=included_species_list,show_labels=False)
                 else:
-                    _plot_iterate(result, included_species_list=included_species_list)
+                    _plot_iterate(trajectory, included_species_list=included_species_list)
 
             if show_legend:
                 plt.legend(loc='best')
@@ -473,12 +422,13 @@ 

Source code for gillespy2.core.results

             elif save_png:
                 plt.savefig(title)
-
[docs] def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, +
[docs] def plotplotly(self, index = None, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, multiple_graphs = False, included_species_list=[],return_plotly_figure=False): """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook. Attributes ---------- + index : if not none, the index of the Trajectory to be plotted xaxis_label : str the label for the x-axis yaxis_label : str @@ -499,15 +449,24 @@

Source code for gillespy2.core.results

 
         init_notebook_mode(connected=True)
 
-        results_list = self.data
-        number_of_trajectories =len(results_list)
+        from collections import Iterable
+        trajectory_list = []
+        if isinstance(index,Iterable):
+            for i in index:
+                trajectory_list.append(self.data[i])
+        elif isinstance(index,int):
+                trajectory_list.append(self.data[index])
+        else:
+            trajectory_list = self.data
+
+        number_of_trajectories =len(trajectory_list)
 
         if title is None:
-            title = (self[0].model.name + " - " + self[0].solver_name)
+            title=self._validate_title()
 
         fig = dict(data=[], layout=[])
 
-        if len(results_list) < 2:
+        if len(trajectory_list) < 2:
             multiple_graphs = False
 
         if multiple_graphs:
@@ -517,12 +476,12 @@ 

Source code for gillespy2.core.results

             fig = tools.make_subplots(print_grid=False,rows=int(number_of_trajectories/2) + int(number_of_trajectories%2),
                                       cols = 2)
 
-            for i, result in enumerate(results_list):
+            for i, trajectory in enumerate(trajectory_list):
                 if i > 0:
-                    trace_list = _plotplotly_iterate(result, trace_list=[], included_species_list= included_species_list,
+                    trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list= included_species_list,
                                                      show_labels=False)
                 else:
-                    trace_list = _plotplotly_iterate(result, trace_list=[], included_species_list=included_species_list)
+                    trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list=included_species_list)
 
                 for k in range(0,len(trace_list)):
                     if i%2 == 0:
@@ -531,19 +490,19 @@ 

Source code for gillespy2.core.results

                         fig.append_trace(trace_list[k], int(i/2) + 1, 2)
 
                 fig['layout'].update(autosize=True,
-                                     height=400*len(results_list),
+                                     height=400*len(trajectory_list),
                                      showlegend=show_legend,title =title)
 
             
 
         else:
             trace_list = []
-            for i,result in enumerate(results_list):
+            for i,trajectory in enumerate(trajectory_list):
                 if i > 0:
-                    trace_list = _plotplotly_iterate(result, trace_list=trace_list,included_species_list= included_species_list,
+                    trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list,included_species_list= included_species_list,
                                                      show_labels = False)
                 else:
-                    trace_list = _plotplotly_iterate(result, trace_list=trace_list,included_species_list= included_species_list)
+                    trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list,included_species_list= included_species_list)
 
             layout = go.Layout(
                 showlegend=show_legend,
@@ -563,42 +522,44 @@ 

Source code for gillespy2.core.results

             iplot(fig)
-
[docs] def average_ensemble(self): +
[docs] def average_ensemble(self): """ - Generate a single Results dictionary that is made of the means of all trajectories' outputs - :return: the Results dictionary + Generate a single Results object with a Trajectory that is made of the means of all trajectories' outputs + :return: the Results object """ - results_list = self.data - number_of_trajectories = len(results_list) + trajectory_list = self.data + number_of_trajectories = len(trajectory_list) - output = Results(data={},model=results_list[0].model,solver_name=results_list[0].solver_name) + output_trajectory = Trajectory(data={},model=trajectory_list[0].model,solver_name=trajectory_list[0].solver_name) - for species in results_list[0]: #Initialize the output to be the same size as the inputs - output[species] = [0]*len(results_list[0][species]) + for species in trajectory_list[0]: #Initialize the output to be the same size as the inputs + output_trajectory[species] = [0]*len(trajectory_list[0][species]) - output['time'] = results_list[0]['time'] + output_trajectory['time'] = trajectory_list[0]['time'] - for i in range(0,number_of_trajectories): #Add every value of every Results Dict into one output Results - results_dict = results_list[i] - for species in results_dict: - if species is 'time': + for i in range(0,number_of_trajectories): #Add every value of every Trajectory Dict into one output Trajectory + trajectory_dict = trajectory_list[i] + for species in trajectory_dict: + if species == 'time': continue - for k in range(0,len(output[species])): - output[species][k] += results_dict[species][k] + for k in range(0,len(output_trajectory[species])): + output_trajectory[species][k] += trajectory_dict[species][k] - for species in output: #Divide for mean of every value in output Results - if species is 'time': + for species in output_trajectory: #Divide for mean of every value in output Trajectory + if species == 'time': continue - for i in range(0,len(output[species])): - output[species][i] /= number_of_trajectories + for i in range(0,len(output_trajectory[species])): + output_trajectory[species][i] /= number_of_trajectories + + output_results = Results(data=[output_trajectory]) #package output_trajectory in a Results object - return output
+ return output_results
-
[docs] def stddev_ensemble(self,ddof = 0): +
[docs] def stddev_ensemble(self,ddof = 0): """ - Generate a single Results dictionary that is made of the sample standard deviations of all trajectories' - outputs. + Generate a single Results object with a Trajectory that is made of the sample standard deviations of all + trajectories' outputs. Attributes ---------- @@ -607,49 +568,50 @@

Source code for gillespy2.core.results

                     the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population
                     standard deviation where ddof is 0.
 
-                :return: the Results dictionary
+                :return: the Results object
                 """
 
         from math import sqrt
 
-        results_list = self.data
-        number_of_trajectories = len(results_list)
+        trajectory_list = self.data
+        number_of_trajectories = len(trajectory_list)
 
         if ddof == number_of_trajectories:
             warnings.warn("ddof must be less than the number of trajectories. Using ddof of 0")
             ddof = 0
 
-        average_list = self.average_ensemble()
+        average_list = self.average_ensemble().data[0]
 
-        output = Results(data={}, model=results_list[0].model, solver_name=results_list[0].solver_name)
+        output_trajectory = Trajectory(data={}, model=trajectory_list[0].model, solver_name=trajectory_list[0].solver_name)
 
-        for species in results_list[0]: #Initialize the output to be the same size as the inputs
-            output[species] = [0]*len(results_list[0][species])
+        for species in trajectory_list[0]: #Initialize the output to be the same size as the inputs
+            output_trajectory[species] = [0]*len(trajectory_list[0][species])
 
-        output['time'] = results_list[0]['time']
+        output_trajectory['time'] = trajectory_list[0]['time']
 
         for i in range(0,number_of_trajectories):
-            results_dict = results_list[i]
-            for species in results_dict:
-                if species is 'time':
+            trajectory_dict = trajectory_list[i]
+            for species in trajectory_dict:
+                if species == 'time':
                     continue
-                for k in range(0,len(output[species])):
-                    output[species][k] += (results_dict[species][k] - average_list[species][k])\
-                                          *(results_dict[species][k] - average_list[species][k])
+                for k in range(0,len(output_trajectory['time'])):
+                    output_trajectory[species][k] += (trajectory_dict[species][k] - average_list[species][k])\
+                                          *(trajectory_dict[species][k] - average_list[species][k])
 
-        for species in output:   #Divide for mean of every value in output Results
-            if species is 'time':
+        for species in output_trajectory:   #Divide for mean of every value in output Trajectory
+            if species == 'time':
                 continue
-            for i in range(0,len(output[species])):
-                output[species][i] /= (number_of_trajectories - ddof)
-                output[species][i] = sqrt(output[species][i])
+            for i in range(0,len(output_trajectory[species])):
+                output_trajectory[species][i] /= (number_of_trajectories - ddof)
+                output_trajectory[species][i] = sqrt(output_trajectory[species][i])
 
-        return output
+ output_results = Results(data=[output_trajectory]) #package output_trajectory in a Results object + return output_results
-
[docs] def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, +
[docs] def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, included_species_list = [],return_plotly_figure=False,ddof = 0): """ - Plot a plotly graph depicting standard deviation and the mean graph of an ensemble_results object + Plot a plotly graph depicting standard deviation and the mean graph of a results object Attributes ---------- @@ -673,8 +635,8 @@

Source code for gillespy2.core.results

 
         """
 
-        average_result = self.average_ensemble()
-        stddev_result = self.stddev_ensemble(ddof= ddof)
+        average_trajectory = self.average_ensemble().data[0]
+        stddev_trajectory = self.stddev_ensemble(ddof= ddof).data[0]
 
         from plotly.offline import init_notebook_mode, iplot
         import plotly.graph_objs as go
@@ -682,23 +644,23 @@ 

Source code for gillespy2.core.results

         init_notebook_mode(connected=True)
 
         if title is None:
-            title = (average_result.model.name + " - " + average_result.solver_name + " - Standard Deviation Range")
+            title = (self._validate_title() + " - Standard Deviation Range")
 
         trace_list=[]
-        for species in average_result:
-            if species is not 'time':
+        for species in average_trajectory:
+            if species != 'time':
 
                 if species not in included_species_list and included_species_list:
                     continue
 
                 upper_bound = []
-                for i in range(0, len(average_result[species])):
-                    upper_bound.append(average_result[species][i] + stddev_result[species][i])
+                for i in range(0, len(average_trajectory[species])):
+                    upper_bound.append(average_trajectory[species][i] + stddev_trajectory[species][i])
 
                 trace_list.append(
                     go.Scatter(
                         name=species+ ' Upper Bound',
-                        x=average_result['time'],
+                        x=average_trajectory['time'],
                         y = upper_bound,
                         mode='lines',
                         marker=dict(color="#444"),
@@ -709,8 +671,8 @@ 

Source code for gillespy2.core.results

                 )
                 trace_list.append(
                     go.Scatter(
-                        x=average_result['time'],
-                        y=average_result[species],
+                        x=average_trajectory['time'],
+                        y=average_trajectory[species],
                         name=species,
                         fillcolor='rgba(68, 68, 68, 0.2)',
                         fill='tonexty'
@@ -718,13 +680,13 @@ 

Source code for gillespy2.core.results

                 )
 
                 lower_bound = []
-                for i in range(0, len(average_result[species])):
-                    lower_bound.append(average_result[species][i] - stddev_result[species][i])
+                for i in range(0, len(average_trajectory[species])):
+                    lower_bound.append(average_trajectory[species][i] - stddev_trajectory[species][i])
 
                 trace_list.append(
                     go.Scatter(
                         name=species + ' Lower Bound',
-                        x=average_result['time'],
+                        x=average_trajectory['time'],
                         y= lower_bound,
                         mode='lines',
                         marker=dict(color="#444"),
@@ -750,10 +712,10 @@ 

Source code for gillespy2.core.results

         else:
             iplot(fig)
-
[docs] def plot_std_dev_range(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", title = None, +
[docs] def plot_std_dev_range(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", title = None, style="default", show_legend=True, included_species_list=[],ddof=0,save_png = False,figsize = (18,10)): """ - Plot a matplotlib graph depicting standard deviation and the mean graph of an ensemble_results object + Plot a matplotlib graph depicting standard deviation and the mean graph of a results object Attributes ---------- @@ -779,8 +741,8 @@

Source code for gillespy2.core.results

 
         """
 
-        average_result = self.average_ensemble()
-        stddev_result = self.stddev_ensemble(ddof=ddof)
+        average_result = self.average_ensemble().data[0]
+        stddev_trajectory = self.stddev_ensemble(ddof=ddof).data[0]
 
         import matplotlib.pyplot as plt
 
@@ -793,21 +755,21 @@ 

Source code for gillespy2.core.results

         plt.figure(figsize=figsize)
 
         for species in average_result:
-            if species is 'time':
+            if species == 'time':
                 continue
 
             if species not in included_species_list and included_species_list:
                 continue
 
-            lowerBound = [a-b for a,b in zip(average_result[species], stddev_result[species])]
-            upperBound = [a+b for a,b in zip(average_result[species], stddev_result[species])]
+            lowerBound = [a-b for a,b in zip(average_result[species], stddev_trajectory[species])]
+            upperBound = [a+b for a,b in zip(average_result[species], stddev_trajectory[species])]
 
             plt.fill_between(average_result['time'], lowerBound, upperBound,color='whitesmoke')
             plt.plot(average_result['time'],lowerBound,upperBound,color='grey',linestyle='dashed')
             plt.plot(average_result['time'],average_result[species],label=species)
 
         if title is None:
-            title = (average_result.model.name + " - " + average_result.solver_name + " - Standard Deviation Range")
+            title = (self._validate_title() + " - Standard Deviation Range")
 
         plt.title(title, fontsize=18)
         plt.xlabel(xaxis_label)
diff --git a/docs/build/html/_modules/gillespy2/example_models.html b/docs/build/html/_modules/gillespy2/example_models.html
deleted file mode 100644
index 34ee0af46..000000000
--- a/docs/build/html/_modules/gillespy2/example_models.html
+++ /dev/null
@@ -1,468 +0,0 @@
-
-
-
-
-  
-    
-    gillespy2.example_models — GillesPy2 1.3.0 documentation
-    
-    
-    
-    
-    
-    
-    
-    
-    
-    
-   
-  
-  
-    
-  
-  
-  
-
-  
-  
- - -
-
- - -
- -

Source code for gillespy2.example_models

-from gillespy2.core import Model, Species, Reaction, Parameter
-import numpy as np
-
-
-
[docs]class Trichloroethylene(Model): - """ - UNCA iGEM 2017 Metabolic Channel. - """ - - def __init__(self, parameter_values=None): - # initialize Model - Model.__init__(self, name="Trichloroethylene") - - # Species - A = Species(name='TCE', initial_value=300) - B = Species(name='Epoxide', initial_value=120) - C = Species(name='Dichloracatate', initial_value=0) - D = Species(name='LossOfOneCL', initial_value=0) - E = Species(name='Glyoxylate', initial_value=0) - F = Species(name='Output', initial_value=0) - self.add_species([A, B, C, D, E, F]) - - # Parameters - K1 = Parameter(name='K1', expression=0.00045 * 0.000025) - K2 = Parameter(name='K2', expression=14) - K3 = Parameter(name='K3', expression=0.033) - K4 = Parameter(name='K4', expression=500 * 0.0001) - K5 = Parameter(name='K5', expression=500 * 0.0001) - self.add_parameter([K1, K2, K3, K4, K5]) - - # Reactions - J1 = Reaction(name="J1", reactants={A: 1}, products={B: 1}, rate=K2) - - J2 = Reaction(name="J2", reactants={B: 1}, products={C: 1}, rate=K3) - - J3 = Reaction(name="J3", reactants={C: 1}, products={D: 1}, rate=K4) - - J4 = Reaction(name="J4", reactants={D: 1}, products={E: 1}, rate=K4) - - J5 = Reaction(name="J5", reactants={E: 1}, products={F: 1}, rate=K5) - self.add_reaction([J1, J2, J3, J4, J5]) - self.timespan(np.linspace(0, 10000, 100))
- - -
[docs]class LacOperon(Model): - """ - Heath LS, Cao Y. Problem Solving Handbook in Computational Biology and Bioinformatics. Springer; 2014. - """ - - def __init__(self, parameter_values=None): - # initialize Model - Model.__init__(self, name="LacOperon") - - # Species - s1 = Species(name='MR', initial_value=0) - s2 = Species(name='R', initial_value=0) - s3 = Species(name='R2', initial_value=0) - s4 = Species(name='O', initial_value=1) - s5 = Species(name='R2O', initial_value=0) - s6 = Species(name='I', initial_value=0) - s7 = Species(name='Iex', initial_value=0) - s8 = Species(name='I2R2', initial_value=0) - s9 = Species(name='MY', initial_value=0) - s10 = Species(name='Y', initial_value=0) - s11 = Species(name='YIex', initial_value=0) - s12 = Species(name='Ytot', initial_value=0) - - self.add_species( - [s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12]) - - # Parameters - k1 = Parameter(name='k1', expression=0.111) - k2 = Parameter(name='k2', expression=15.0) - k3 = Parameter(name='k3', expression=103.8) - k4 = Parameter(name='k4', expression=0.001) - k5 = Parameter(name='k5', expression=1992.7) - k6 = Parameter(name='k6', expression=2.40) - k7 = Parameter(name='k7', expression=1.293e-6) - k8 = Parameter(name='k8', expression=12.0) - k9 = Parameter(name='k9', expression=1.293e-6) - k10 = Parameter(name='k10', expression=9963.2) - k11 = Parameter(name='k11', expression=0.50) - k12 = Parameter(name='k12', expression=0.010) - k13 = Parameter(name='k13', expression=30) - k14 = Parameter(name='k14', expression=0.249) - k15 = Parameter(name='k15', expression=0.10) - k16 = Parameter(name='k16', expression=60000) - k17 = Parameter(name='k17', expression=0.920) - k18 = Parameter(name='k18', expression=0.920) - k19 = Parameter(name='k19', expression=0.462) - k20 = Parameter(name='k20', expression=0.462) - k21 = Parameter(name='k21', expression=0.20) - k22 = Parameter(name='k22', expression=0.20) - k23 = Parameter(name='k23', expression=0.20) - k24 = Parameter(name='k24', expression=0.20) - k25 = Parameter(name='k25', expression=0.20) - self.add_parameter( - [k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25]) - - # Reactions - j1 = Reaction(name="j1", reactants={s12: 1}, products={s1: 1}, rate=k1) - j2 = Reaction(name="j2", reactants={s1: 1}, products={s1: 1, s2: 1}, rate=k2) - j3 = Reaction(name="j3", reactants={s2: 2}, products={s3: 1}, rate=k3) - j4 = Reaction(name="j4", reactants={s3: 1}, products={s2: 2}, rate=k4) - j5 = Reaction(name="j5", reactants={s3: 1, s4: 1}, products={s5: 1}, rate=k5) - j6 = Reaction(name="j6", reactants={s5: 1}, products={s3: 1, s4: 1}, rate=k6) - j7 = Reaction(name="j7", reactants={s6: 2, s3: 1}, products={s8: 1}, propensity_function='((3e-7)/((8e-16)*(6.0221367e14))**(2))*(R2)*(I)*(I-1)') - j8 = Reaction(name="j8", reactants={s8: 1}, products={s6: 2, s3: 1}, rate=k8) - j9 = Reaction(name="j9", reactants={s6: 2, s5: 1}, products={s8: 1, s4: 1}, propensity_function='((3e-7)/((8e-16)*(6.0221367e14))**(2))*(R2O)*(I)*(I-1)') - j10 = Reaction(name="j10", reactants={s8: 1, s4: 1}, products={s6: 2, s5: 1}, rate=k10) - j11 = Reaction(name="j11", reactants={s4: 1}, products={s4: 1, s9: 1}, rate=k11) - j12 = Reaction(name="j12", reactants={s5: 1}, products={s5: 1, s9: 1}, rate=k12) - j13 = Reaction(name="j13", reactants={s9: 1}, products={s9: 1, s10: 1}, rate=k13) - j14 = Reaction(name="j14", reactants={s10: 1, s7: 1}, products={s11: 1}, rate=k14) - j15 = Reaction(name="j15", reactants={s11: 1}, products={s10: 1, s7: 1}, rate=k15) - j16 = Reaction(name="j16", reactants={s11: 1}, products={s10: 1, s6: 1}, rate=k16) - j17 = Reaction(name="j17", reactants={s7: 1}, products={s6: 1}, rate=k17) - j18 = Reaction(name="j18", reactants={s6: 1}, products={s7: 1}, rate=k18) - j19 = Reaction(name="j19", reactants={s1: 1}, products={s12: 1}, rate=k19) - j20 = Reaction(name="j20", reactants={s9: 1}, products={s12: 1}, rate=k20) - j21 = Reaction(name="j21", reactants={s2: 1}, products={s12: 1}, rate=k21) - j22 = Reaction(name="j22", reactants={s3: 1}, products={s12: 1}, rate=k22) - j23 = Reaction(name="j23", reactants={s10: 1}, products={s12: 1}, rate=k23) - j24 = Reaction(name="j24", reactants={s11: 1}, products={s6: 1}, rate=k24) - j25 = Reaction(name="j25", reactants={s8: 1}, products={s6: 2}, rate=k25) - self.add_reaction( - [j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15, j16, j17, j18, j19, j20, j21, j22, j23, j24, j25]) - self.timespan(np.linspace(0, 100, 10))
- - -
[docs]class Schlogl(Model): - """ - Schlogl F. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift for Physik. - 1972;253: 147–161. doi:10.1007/bf01379769 - """ - - def __init__(self, parameter_values=None): - # initialize Model - Model.__init__(self, name="Schlogl") - - # Species - s1 = Species(name='A', initial_value=300) - s2 = Species(name='B', initial_value=300) - s3 = Species(name='C', initial_value=300) - s4 = Species(name='X', initial_value=300) - - self.add_species([s1, s2, s3, s4]) - - k1 = Parameter(name='k1', expression=1) - k2 = Parameter(name='k2', expression=1) - - self.add_parameter([k1, k2]) - - j1 = Reaction(name="j1", reactants={s1: 1, s4: 1}, products={s4: 2.0}, rate=k1) - j2 = Reaction(name="j2", reactants={s2: 1, s4: 1}, products={s3: 1}, rate=k2) - - self.add_reaction([j1, j2]) - self.timespan(np.linspace(0, 100000, 100))
- - -
[docs]class MichaelisMenten(Model): - def __init__(self, parameter_values=None): - # initialize Model - Model.__init__(self, name="Michaelis_Menten") - - # parameters - rate1 = Parameter(name='rate1', expression=0.0017) - rate2 = Parameter(name='rate2', expression=0.5) - rate3 = Parameter(name='rate3', expression=0.1) - self.add_parameter([rate1, rate2, rate3]) - - # Species - A = Species(name='A', initial_value=301) - B = Species(name='B', initial_value=120) - C = Species(name='C', initial_value=0) - D = Species(name='D', initial_value=0) - self.add_species([A, B, C, D]) - - # reactions - r1 = Reaction(name="r1", reactants={A: 1, B: 1}, products={C: 1}, rate=rate1) - - r2 = Reaction(name="r2", reactants={C: 1}, products={A: 1, B: 1}, rate=rate2) - - r3 = Reaction(name="r3", reactants={C: 1}, products={B: 1, D: 1}, rate=rate3) - self.add_reaction([r1, r2, r3]) - self.timespan(np.linspace(0, 100, 101))
- - -
[docs]class ToggleSwitch(Model): - """ - Gardner et al. Nature (1999)Construction of a genetic toggle switch in Escherichia coli - (Transcription from - """ - - def __init__(self, parameter_values=None): - # Initialize the model. - Model.__init__(self, name="Toggle_Switch") - # Species - A = Species(name='A', initial_value=10) - B = Species(name='B', initial_value=10) - self.add_species([A, B]) - # Parameters - alpha1 = Parameter(name='alpha1', expression=10) - alpha2 = Parameter(name='alpha2', expression=10) - beta = Parameter(name='beta', expression=2) - gamma = Parameter(name='gamma', expression=2) - mu = Parameter(name='mu', expression=1) - self.add_parameter([alpha1, alpha2, beta, gamma, mu]) - # Reactions - self.add_reaction(Reaction(name="cu", reactants={}, products={'A': 1}, propensity_function="alpha1/(1+pow(B, beta))")) - self.add_reaction(Reaction(name="cv", reactants={}, products={'B': 1}, propensity_function="alpha2/(1+pow(A, gamma))")) - self.add_reaction(Reaction(name="du", reactants={'A': 1}, products={}, rate=self.listOfParameters["mu"])) - self.add_reaction(Reaction(name="dv", reactants={'B': 1}, products={}, rate=self.listOfParameters["mu"])) - self.timespan(np.linspace(0, 250, 251))
- - -
[docs]class Example(Model): - """ - This is a simple example for mass-action degradation of species S. - """ - - def __init__(self, parameter_values=None): - # Initialize the model. - Model.__init__(self, name="Example") - # Species - S = Species(name='Sp', initial_value=100) - self.add_species([S]) - # Parameters - k1 = Parameter(name='k1', expression=3.0) - self.add_parameter([k1]) - # Reactions - rxn1 = Reaction(name='S degradation', reactants={S: 1}, products={}, rate=k1) - self.add_reaction([rxn1]) - self.timespan(np.linspace(0, 20, 101))
- - -
[docs]class Tyson2StateOscillator(Model): - """ - Here, as a test case, we run a simple two-state oscillator (Novak & Tyson - 2008) as an example of a stochastic reaction system. - """ - - def __init__(self, parameter_values=None): - Model.__init__(self, name="tyson-2-state", volume=300.0) - - # Species - X = Species(name='X', initial_value=int(0.65609071 * 300.0)) - Y = Species(name='Y', initial_value=int(0.85088331 * 300.0)) - self.add_species([X, Y]) - - P = Parameter(name='p', expression=2.0) - kt = Parameter(name='kt', expression=20.0) - kd = Parameter(name='kd', expression=1.0) - a0 = Parameter(name='a0', expression=0.005) - a1 = Parameter(name='a1', expression=0.05) - a2 = Parameter(name='a2', expression=0.1) - kdx = Parameter(name='kdx', expression=1.0) - self.add_parameter([P, kt, kd, a0, a1, a2, kdx]) - - # creation of X: - rxn1 = Reaction(name='X production', reactants={}, products={X: 1}, - propensity_function='300.0 * 1.0 / (1.0 + (Y * Y / (300.0 * 300.0)))') - - # degradadation of X: - rxn2 = Reaction(name='X degradation', reactants={X: 1}, products={}, rate=kdx) - - # creation of Y: - rxn3 = Reaction(name='Y production', reactants={X: 1}, products={X: 1, Y: 1}, rate=kt) - - # degradation of Y: - rxn4 = Reaction(name='Y degradation', reactants={Y: 1}, products={}, rate=kd) - - # nonlinear Y term: - rxn5 = Reaction(name='Y nonlin', reactants={Y: 1}, products={}, - propensity_function='Y / a0 + a1 * (Y / 300) + a2 * Y * Y / (300 * 300)') - - self.add_reaction([rxn1, rxn2, rxn3, rxn4, rxn5]) - self.timespan(np.linspace(0, 100, 101))
- -# Oregonator system -# http://www.scholarpedia.org/article/Oregonator -
[docs]class Oregonator(Model): - - def __init__(self, parameter_values = None): - - # Superclass initialization - Model.__init__(self, name = "Oregonator") - - # Species - F = Species(name = "F", initial_value = 2) - A = Species(name = "A", initial_value = 250) - B = Species(name = "B", initial_value = 500) - C = Species(name = "C", initial_value = 1000) - P = Species(name = "P", initial_value = 0) - self.add_species([F, A, B, C, P]) - - # Parameters (rates) - k1 = Parameter(name = "k1", expression = 2.0) - k2 = Parameter(name = "k2", expression = 0.1) - k3 = Parameter(name = "k3", expression = 104) - k4 = Parameter(name = "k4", expression = 4e-7) - k5 = Parameter(name = "k5", expression = 26.0) - self.add_parameter([k1, k2, k3, k4, k5]) - - # Reactions - reaction1 = Reaction(name = "reaction1", - reactants = {B: 1, F: 1}, - products = {A: 1, F: 1}, - rate = k1) - reaction2 = Reaction(name = "reaction2", - reactants = {A: 1, B: 1}, - products = {P: 1}, - rate = k2) - reaction3 = Reaction(name = "reaction3", - reactants = {A: 1, F: 1}, - products = {A: 2, C: 1, F: 1}, - rate = k3) - reaction4 = Reaction(name = "reaction4", - reactants = {A: 2}, - products = {P: 1}, - rate = k4) - reaction5 = Reaction(name = "reaction5", - reactants = {C: 1, F: 1}, - products = {B: 1, F: 1}, - rate = k5) - self.add_reaction([reaction1, reaction2, reaction3, reaction4, reaction5]) - - # Set timespan of model - self.timespan(np.linspace(0, 5, 501))
- - -__all__ = ['Trichloroethylene', 'LacOperon', 'Schlogl', 'MichaelisMenten', - 'ToggleSwitch', 'Example', 'Tyson2StateOscillator', 'Oregonator'] -
- -
- - -
-
-
-
- - - - - Fork me on GitHub - - - - - - \ No newline at end of file diff --git a/docs/build/html/_modules/gillespy2/sbml/SBMLimport.html b/docs/build/html/_modules/gillespy2/sbml/SBMLimport.html index 39d917304..2e7c88d80 100644 --- a/docs/build/html/_modules/gillespy2/sbml/SBMLimport.html +++ b/docs/build/html/_modules/gillespy2/sbml/SBMLimport.html @@ -4,7 +4,7 @@ - gillespy2.sbml.SBMLimport — GillesPy2 1.3.0 documentation + gillespy2.sbml.SBMLimport — GillesPy2 1.4.0 documentation @@ -449,6 +449,8 @@

Source code for gillespy2.sbml.SBMLimport

 
[docs]def convert(filename, model_name=None, gillespy_model=None): sbml_model, errors = __read_sbml_model(filename) + if sbml_model is None: + return None, errors if model_name is None: model_name = sbml_model.getName() if gillespy_model is None: diff --git a/docs/build/html/_modules/gillespy2/solvers/cpp/example_models.html b/docs/build/html/_modules/gillespy2/solvers/cpp/example_models.html new file mode 100644 index 000000000..39bb32dc6 --- /dev/null +++ b/docs/build/html/_modules/gillespy2/solvers/cpp/example_models.html @@ -0,0 +1,161 @@ + + + + + + + gillespy2.solvers.cpp.example_models — GillesPy2 1.4.0 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + +
+ +

Source code for gillespy2.solvers.cpp.example_models

+from gillespy2.core import Model, Species, Reaction, Parameter
+import numpy as np
+
+
+
[docs]class Example(Model): + """ + This is a simple example for mass-action degradation of species S. + """ + + def __init__(self, parameter_values=None): + # Initialize the model. + Model.__init__(self, name="Example") + # Species + S = Species(name='Sp', initial_value=100) + self.add_species([S]) + # Parameters + k1 = Parameter(name='k1', expression=3.0) + self.add_parameter([k1]) + # Reactions + rxn1 = Reaction(name='S degradation', reactants={S: 1}, products={}, rate=k1) + self.add_reaction([rxn1]) + self.timespan(np.linspace(0, 20, 101))
+ + +__all__ = ['Trichloroethylene', 'LacOperon', 'Schlogl', 'MichaelisMenten', + 'ToggleSwitch', 'Example', 'Tyson2StateOscillator', 'Oregonator'] +
+ +
+ + +
+
+
+
+ + + + + Fork me on GitHub + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/gillespy2/solvers/cpp/ssa_c_solver.html b/docs/build/html/_modules/gillespy2/solvers/cpp/ssa_c_solver.html index 2c4fbd43f..9233dab76 100644 --- a/docs/build/html/_modules/gillespy2/solvers/cpp/ssa_c_solver.html +++ b/docs/build/html/_modules/gillespy2/solvers/cpp/ssa_c_solver.html @@ -4,7 +4,7 @@ - gillespy2.solvers.cpp.ssa_c_solver — GillesPy2 1.3.0 documentation + gillespy2.solvers.cpp.ssa_c_solver — GillesPy2 1.4.0 documentation @@ -194,7 +194,7 @@

Source code for gillespy2.solvers.cpp.ssa_c_solver

return trajectory_base -class SSACSolver(GillesPySolver): +
[docs]class SSACSolver(GillesPySolver): name = "SSACSolver" """TODO""" def __init__(self, model=None, output_directory=None, delete_directory=True): @@ -263,7 +263,7 @@

Source code for gillespy2.solvers.cpp.ssa_c_solver

else: raise gillespyError.BuildError("Error encountered while compiling file:\nReturn code: {0}.\nError:\n{1}\n{2}\n".format(built.returncode, built.stdout.decode('utf-8'),built.stderr.decode('utf-8'))) - def run(self=None, model=None, t=20, number_of_trajectories=1, timeout=0, +
[docs] def run(self=None, model=None, t=20, number_of_trajectories=1, timeout=0, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, **kwargs): if self is None or self.model is None: @@ -333,7 +333,7 @@

Source code for gillespy2.solvers.cpp.ssa_c_solver

self.simulation_data = trajectory_base else: raise gillespyError.ExecutionError("Error encountered while running simulation C++ file:\nReturn code: {0}.\nError:\n{1}\n".format(simulation.returncode, simulation.stderr)) - return self.simulation_data, return_code + return self.simulation_data, return_code
diff --git a/docs/build/html/_modules/gillespy2/solvers/cpp/variable_ssa_c_solver.html b/docs/build/html/_modules/gillespy2/solvers/cpp/variable_ssa_c_solver.html new file mode 100644 index 000000000..006d1c586 --- /dev/null +++ b/docs/build/html/_modules/gillespy2/solvers/cpp/variable_ssa_c_solver.html @@ -0,0 +1,420 @@ + + + + + + + gillespy2.solvers.cpp.variable_ssa_c_solver — GillesPy2 1.4.0 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+
+ + +
+ +

Source code for gillespy2.solvers.cpp.variable_ssa_c_solver

+import gillespy2
+from gillespy2.core import Model, Reaction, gillespyError, GillesPySolver, log
+import signal, time #for solver timeout implementation
+import os #for getting directories for C++ files
+import shutil #for deleting/copying files
+import subprocess #For calling make and executing c solver
+import inspect #for finding the Gillespy2 module path
+import tempfile #for temporary directories
+import numpy as np
+
+GILLESPY_PATH = os.path.dirname(inspect.getfile(gillespy2))
+GILLESPY_C_DIRECTORY = os.path.join(GILLESPY_PATH, 'solvers/cpp/c_base')
+
+
+def _copy_files(destination):
+    src_files = os.listdir(GILLESPY_C_DIRECTORY)
+    for src_file in src_files:
+        src_file = os.path.join(GILLESPY_C_DIRECTORY, src_file)
+        if os.path.isfile(src_file):
+            shutil.copy(src_file, destination)
+
+
+def _write_variables(outfile, model, reactions, species, parameters, parameter_mappings):
+    outfile.write("double V = {};\n".format(model.volume))
+    outfile.write("std :: string s_names[] = {");
+    if len(species) > 0:
+        #Write model species names.
+        for i in range(len(species)-1):
+            outfile.write('"{}", '.format(species[i]))
+        outfile.write('"{}"'.format(species[-1]))
+        outfile.write("};\nunsigned int populations[] = {")
+        #Write initial populations.
+        for i in range(len(species)-1):
+            outfile.write('{}, '.format(int(model.listOfSpecies[species[i]].initial_value)))
+        outfile.write('{}'.format(int(model.listOfSpecies[species[-1]].initial_value)))
+        outfile.write("};\n")
+    if len(reactions) > 0:
+        #Write reaction names
+        outfile.write("std :: string r_names[] = {")
+        for i in range(len(reactions)-1):
+            outfile.write('"{}", '.format(reactions[i]))
+        outfile.write('"{}"'.format(reactions[-1]))
+        outfile.write("};\n")
+    for param in parameters:
+        if param != 'vol':
+            outfile.write("double {0} = {1};\n".format(parameter_mappings[param], model.listOfParameters[param].value))
+
+def _update_parameters(outfile, model, parameters, parameter_mappings):
+    for param in parameters:
+        if param != 'vol':
+            outfile.write('       arg_stream >> {};\n'.format(parameter_mappings[param]))
+        else:
+            outfile.write('       arg_stream >> V;\n')
+
+def _write_propensity(outfile, model, species_mappings, parameter_mappings, reactions):
+    for i in range(len(reactions)):
+        # Write switch statement case for reaction
+        outfile.write("""
+        case {0}:
+            return {1};
+        """.format(i, model.listOfReactions[reactions[i]].sanitized_propensity_function(species_mappings, parameter_mappings)))
+
+
+def _write_reactions(outfile, model, reactions, species):
+    for i in range(len(reactions)):
+        reaction = model.listOfReactions[reactions[i]]
+        for j in range(len(species)):
+            change = (reaction.products.get(model.listOfSpecies[species[j]], 0)) - (reaction.reactants.get(model.listOfSpecies[species[j]], 0))
+            if change != 0:
+                outfile.write("model.reactions[{0}].species_change[{1}] = {2};\n".format(i, j, change))
+
+
+def _parse_output(results, number_of_trajectories, number_timesteps, number_species):
+    trajectory_base = np.empty((number_of_trajectories, number_timesteps, number_species+1))
+    for timestep in range(number_timesteps):
+        values = results[timestep].split(" ")
+        trajectory_base[:, timestep, 0] = float(values[0])
+        index = 1
+        for trajectory in range(number_of_trajectories):
+            for species in range(number_species):
+                trajectory_base[trajectory, timestep, 1 + species] = float(values[index+species])
+            index += number_species
+    return trajectory_base
+
+
+def _parse_binary_output(results_buffer, number_of_trajectories, number_timesteps, number_species):
+    trajectory_base = np.empty((number_of_trajectories, number_timesteps, number_species+1))
+    step_size = number_species * number_of_trajectories + 1 #1 for timestep
+    data = np.frombuffer(results_buffer, dtype=np.float64)
+    assert(len(data) == (number_of_trajectories*number_timesteps*number_species + number_timesteps))
+    for timestep in range(number_timesteps):
+        index = step_size * timestep
+        trajectory_base[:, timestep, 0] = data[index]
+        index += 1
+        for trajectory in range(number_of_trajectories):
+            for species in range(number_species):
+                trajectory_base[trajectory, timestep, 1 + species] = data[index + species]
+            index += number_species
+    return trajectory_base
+
+
+
[docs]class VariableSSACSolver(GillesPySolver): + name = "VariableSSACSolver" + def __init__(self, model=None, output_directory=None, delete_directory=True): + super(VariableSSACSolver, self).__init__() + self.__compiled = False + self.delete_directory = False + self.model = model + if self.model is not None: + # Create constant, ordered lists for reactions/species/ + self.species_mappings = self.model.sanitized_species_names() + self.species = list(self.species_mappings.keys()) + self.parameter_mappings = self.model.sanitized_parameter_names() + self.parameters = list(self.parameter_mappings.keys()) + self.reactions = list(self.model.listOfReactions.keys()) + + if isinstance(output_directory, str): + output_directory = os.path.abspath(output_directory) + + if isinstance(output_directory, str): + if not os.path.isfile(output_directory): + self.output_directory = output_directory + self.delete_directory = delete_directory + if not os.path.isdir(output_directory): + os.makedirs(self.output_directory) + else: + raise gillespyError.DirectoryError("File exists with the same path as directory.") + else: + self.temporary_directory = tempfile.TemporaryDirectory() + self.output_directory = self.temporary_directory.name + + if not os.path.isdir(self.output_directory): + raise gillespyError.DirectoryError("Errors encountered while setting up directory for Solver C++ files.") + _copy_files(self.output_directory) + self.__write_template() + self.__compile() + + def __del__(self): + if self.delete_directory and os.path.isdir(self.output_directory): + shutil.rmtree(self.output_directory) + + def __write_template(self, template_file='VariableSimulationTemplate.cpp'): + # Open up template file for reading. + with open(os.path.join(self.output_directory, template_file), 'r') as template: + # Write simulation C++ file. + template_keyword = "__DEFINE_" + # Use same lists of model's species and reactions to maintain order + with open(os.path.join(self.output_directory, 'UserSimulation.cpp'), 'w') as outfile: + for line in template: + if line.startswith(template_keyword): + line = line[len(template_keyword):] + if line.startswith("VARIABLES"): + _write_variables(outfile, self.model, self.reactions, self.species, self.parameters, self.parameter_mappings) + if line.startswith("PROPENSITY"): + _write_propensity(outfile, self.model, self.species_mappings, self.parameter_mappings, self.reactions) + if line.startswith("REACTIONS"): + _write_reactions(outfile, self.model, self.reactions, self.species) + if line.startswith("PARAMETER_UPDATES"): + _update_parameters(outfile, self.model, self.parameters, self.parameter_mappings) + else: + outfile.write(line) + + def __compile(self): + # Use makefile. + cleaned = subprocess.run(["make", "-C", self.output_directory, 'cleanSimulation'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + built = subprocess.run(["make", "-C", self.output_directory, 'UserSimulation'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + if built.returncode == 0: + self.__compiled = True + else: + raise gillespyError.BuildError("Error encountered while compiling file:\nReturn code: {0}.\nError:\n{1}\n{2}\n".format(built.returncode, built.stdout.decode('utf-8'),built.stderr.decode('utf-8'))) + +
[docs] def run(self=None, model=None, t=20, number_of_trajectories=1, timeout=0, + increment=0.05, seed=None, debug=False, profile=False, show_labels=True, + variables={}, **kwargs): + + if self is None or self.model is None: + self = VariableSSACSolver(model) + if len(kwargs) > 0: + for key in kwargs: + log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) + + unsupported_sbml_features = { + 'Rate Rules': len(model.listOfRateRules), + 'Assignment Rules': len(model.listOfAssignmentRules), + 'Events': len(model.listOfEvents), + 'Function Definitions': len(model.listOfFunctionDefinitions) + } + detected_features = [] + for feature, count in unsupported_sbml_features.items(): + if count: + detected_features.append(feature) + + if len(detected_features): + raise gillespyError.ModelError( + 'Could not run Model. SBML Feature: {} not supported by SSACSolver.'.format(detected_features)) + + if not isinstance(variables, dict): + raise gillespyError.SimulationError( + 'argument to variables must be a dictionary.') + for v in variables.keys(): + if v not in self.species+self.parameters: + raise gillespyError.SimulationError('Argument to variable "{}" \ +is not a valid variable. Variables must be model species or parameters.'.format(v)) + + if self.__compiled: + populations = '' + parameter_values = '' + # Update Species Initial Values + for i in range(len(self.species)-1): + if self.species[i] in variables: + populations += '{} '.format(int(variables[self.species[i]])) + else: + populations += '{} '.format(int(model.listOfSpecies[self.species[i]].initial_value)) + if self.species[-1] in variables: + populations += '{}'.format(int(variables[self.species[-1]])) + else: + populations += '{}'.format(int(model.listOfSpecies[self.species[-1]].initial_value)) + # Update Parameter Values + for i in range(len(self.parameters)-1): + if self.parameters[i] in variables: + parameter_values += '{} '.format(variables[self.parameters[i]]) + else: + if self.parameters[i] == 'vol': + parameter_values +='{} '.format(model.volume) + else: + parameter_values +='{} '.format(model.listOfParameters[self.parameters[i]].expression) + if self.parameters[-1] in variables: + parameter_values += '{}'.format(variables[self.parameters[-1]]) + else: + if self.parameters[i] == 'vol': + parameter_values += '{}'.format(model.volume) + else: + parameter_values += '{}'.format(model.listOfParameters[self.parameters[-1]].expression) + self.simulation_data = None + number_timesteps = int(round(t/increment + 1)) + # Execute simulation. + args = [os.path.join(self.output_directory, 'UserSimulation'), + '-trajectories', str(number_of_trajectories), + '-timesteps', str(number_timesteps), + '-end', str(t), + '-initial_values', populations, + '-parameters', parameter_values] + if seed is not None: + if isinstance(seed, int): + args.append('-seed') + args.append(str(seed)) + else: + seed_int = int(seed) + if seed_int > 0: + args.append('-seed') + args.append(str(seed_int)) + else: + raise ModelError("seed must be a positive integer") + + #begin subprocess c simulation with timeout (default timeout=0 will not timeout) + with subprocess.Popen(args, stdout=subprocess.PIPE, preexec_fn=os.setsid) as simulation: + return_code = 0 + try: + if timeout > 0: + stdout, stderr = simulation.communicate(timeout=timeout) + else: + stdout, stderr = simulation.communicate() + return_code = simulation.wait() + except subprocess.TimeoutExpired: + os.killpg(simulation.pid, signal.SIGINT) #send signal to the process group + stdout, stderr = simulation.communicate() + return_code = 33 + + # Parse/return results. + if return_code in [0, 33]: + trajectory_base = _parse_binary_output(stdout, number_of_trajectories, number_timesteps, len(self.species)) + # Format results + if show_labels: + self.simulation_data = [] + for trajectory in range(number_of_trajectories): + data = {'time': trajectory_base[trajectory, :, 0]} + for i in range(len(self.species)): + data[self.species[i]] = trajectory_base[trajectory, :, i+1] + self.simulation_data.append(data) + else: + self.simulation_data = trajectory_base + else: + raise gillespyError.ExecutionError("Error encountered while running simulation C++ file:\nReturn code: {0}.\nError:\n{1}\n".format(simulation.returncode, simulation.stderr)) + return self.simulation_data, return_code
+ +
+ +
+ + +
+
+
+
+ + + + + Fork me on GitHub + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/gillespy2/solvers/numpy/Tau.html b/docs/build/html/_modules/gillespy2/solvers/numpy/Tau.html index 6d86eee6f..70ce08992 100644 --- a/docs/build/html/_modules/gillespy2/solvers/numpy/Tau.html +++ b/docs/build/html/_modules/gillespy2/solvers/numpy/Tau.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy.Tau — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy.Tau — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_ode_solver.html b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_ode_solver.html index d088fd982..05b129f34 100644 --- a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_ode_solver.html +++ b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_ode_solver.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy.basic_ode_solver — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy.basic_ode_solver — GillesPy2 1.4.0 documentation @@ -102,7 +102,7 @@

Quick search

Source code for gillespy2.solvers.numpy.basic_ode_solver

 """GillesPy2 Solver for ODE solutions."""
 
-import signal
+from threading import Thread, Event
 from scipy.integrate import ode
 from scipy.integrate import odeint
 from collections import OrderedDict
@@ -115,13 +115,15 @@ 

Source code for gillespy2.solvers.numpy.basic_ode_solver

This Solver produces the deterministic continuous solution via ODE. """ name = "BasicODESolver" - interrupted = False rc = 0 + stop_event = None + result = None def __init__(self): name = "BasicODESolver" - interrupted = False rc = 0 + stop_event = None + result = None @staticmethod def __f(t, y, curr_state, model, c_prop): @@ -151,7 +153,8 @@

Source code for gillespy2.solvers.numpy.basic_ode_solver

[docs] @classmethod def run(self, model, t=20, number_of_trajectories=1, increment=0.05, - show_labels=True, integrator='lsoda', integrator_options={}, **kwargs): + show_labels=True, integrator='lsoda', integrator_options={}, + timeout=None, **kwargs): """ :param model: gillespy2.model class object @@ -166,20 +169,45 @@

Source code for gillespy2.solvers.numpy.basic_ode_solver

:param kwargs: :return: """ - if not isinstance(self, BasicODESolver): + if isinstance(self, type): self = BasicODESolver() + self.stop_event = Event() + if timeout is not None and timeout <=0: timeout = None if len(kwargs) > 0: for key in kwargs: log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) if number_of_trajectories > 1: log.warning("Generating duplicate trajectories for model with ODE Solver. Consider running with only 1 trajectory.") + sim_thread = Thread(target=self.___run, args=(model,), kwargs={'t':t, + 'number_of_trajectories':number_of_trajectories, + 'increment':increment, 'show_labels':show_labels, + 'timeout':timeout, + 'integrator':integrator, + 'integrator_options':integrator_options}) + try: + sim_thread.start() + sim_thread.join(timeout=timeout) + self.stop_event.set() + while self.result is None: pass + except: + pass + if hasattr(self, 'has_raised_exception'): + raise self.has_raised_exception + return self.result, self.rc
+ + def ___run(self, model, t=20, number_of_trajectories=1, increment=0.05, timeout=None, + show_labels=True, integrator='lsoda', integrator_options={}, **kwargs): + try: + self.__run(model, t, number_of_trajectories, increment, timeout, + show_labels, integrator, integrator_options, **kwargs) + except Exception as e: + self.has_raised_exception = e + self.result = [] + return [], -1 + + def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, timeout=None, + show_labels=True, integrator='lsoda', integrator_options={}, **kwargs): - - def timed_out(signum, frame): - self.rc = 33 - self.interrupted = True - - signal.signal(signal.SIGALRM, timed_out) start_state = [model.listOfSpecies[species].initial_value for species in model.listOfSpecies] # create mapping of species dictionary to array indices @@ -221,7 +249,9 @@

Source code for gillespy2.solvers.numpy.basic_ode_solver

rhs.set_initial_value(y0, curr_time).set_f_params(curr_state, model, c_prop) while entry_count < timeline.size - 1: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break int_time = curr_time + increment entry_count += 1 y0 = rhs.integrate(int_time) @@ -239,8 +269,8 @@

Source code for gillespy2.solvers.numpy.basic_ode_solver

results = [results_as_dict] * number_of_trajectories else: results = np.stack([result] * number_of_trajectories, axis=0) - - return results, self.rc
+ self.result = results + return results, self.rc
diff --git a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_hybrid_solver.html b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_hybrid_solver.html index 2fd1d5bfb..12594fee7 100644 --- a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_hybrid_solver.html +++ b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_hybrid_solver.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy.basic_tau_hybrid_solver — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy.basic_tau_hybrid_solver — GillesPy2 1.4.0 documentation @@ -105,7 +105,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

from scipy.integrate import ode, solve_ivp import heapq import numpy as np -import signal +import threading import gillespy2 from gillespy2.solvers.numpy import Tau from gillespy2.core import GillesPySolver, log @@ -148,12 +148,12 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

interchangeably or simultaneously. """ name = "BasicTauHybridSolver" - interrupted = False rc = 0 + result = None + stop_event = None def __init__(self): name = 'BasicTauHybridSolver' - interrupted = False rc = 0 def __toggle_reactions(self, model, all_compiled, deterministic_reactions, dependencies, curr_state, det_spec): @@ -277,14 +277,14 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

model.listOfSpecies.items() if value.mode == 'dynamic'} for r, rxn in model.listOfReactions.items(): - for reactant in rxn.reactants: - if reactant.mode == 'dynamic': - mn[reactant.name] -= (tau_step * propensities[r] * rxn.reactants[reactant]) - sd[reactant.name] += (tau_step * propensities[r] * rxn.reactants[reactant]**2) - for product in rxn.products: - if product.mode == 'dynamic': - mn[product.name] += (tau_step * propensities[r] * rxn.products[product]) - sd[product.name] += (tau_step * propensities[r] * rxn.products[product]**2) + for reactant in rxn.reactants: + if reactant.mode == 'dynamic': + mn[reactant.name] -= (tau_step * propensities[r] * rxn.reactants[reactant]) + sd[reactant.name] += (tau_step * propensities[r] * rxn.reactants[reactant]**2) + for product in rxn.products: + if product.mode == 'dynamic': + mn[product.name] += (tau_step * propensities[r] * rxn.products[product]) + sd[product.name] += (tau_step * propensities[r] * rxn.products[product]**2) # Get coefficient of variance for each dynamic species for species in mn: @@ -298,7 +298,6 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

det_spec[species] = CV[species] < sref.switch_tol else: det_spec[species] = mn[species] > sref.switch_min - return sd, CV @staticmethod @@ -313,19 +312,19 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

curr_state['time'] = t for item, index in y_map.items(): if item in assignment_rules: - curr_state[item] = eval(assignment_rules[item].formula, {**curr_state, **eval_globals}) + curr_state[item] = eval(assignment_rules[item].formula, {**eval_globals, **curr_state}) else: curr_state[item] = y[index] for rr in compiled_rate_rules: try: - state_change[y_map[rr]] += eval(compiled_rate_rules[rr], {**curr_state, **eval_globals}) + state_change[y_map[rr]] += eval(compiled_rate_rules[rr], {**eval_globals, **curr_state}) except ValueError: pass for i, r in enumerate(compiled_reactions): - propensities[r] = eval(compiled_reactions[r],{**curr_state, **eval_globals}) + propensities[r] = eval(compiled_reactions[r],{**eval_globals, **curr_state}) state_change[y_map[r]] += propensities[r] for event in events: - triggered = eval(event.trigger.expression, {**curr_state, **eval_globals}) + triggered = eval(event.trigger.expression, {**eval_globals, **curr_state}) if triggered: state_change[y_map[event]] = 1 @@ -469,7 +468,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

else: curr_state['t'] = curr_time curr_state['time'] = curr_time - execution_time = curr_time + eval(event.delay,eval_globals, curr_state) + execution_time = curr_time + eval(event.delay, {**eval_globals,**curr_state}) curr_state[event.name] = True heapq.heappush(delayed_events, (execution_time, event.name)) if event.use_values_from_trigger_time: @@ -487,14 +486,14 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

t0_delayed_events = {} for e in model.listOfEvents.values(): if not e.trigger.value: - t0_firing = eval(e.trigger.expression, eval_globals, initial_state) + t0_firing = eval(e.trigger.expression, {**eval_globals,**initial_state}) if t0_firing: if e.delay is None: for a in e.assignments: - initial_state[a.variable.name] = eval(a.expression, eval_globals, initial_state) + initial_state[a.variable.name] = eval(a.expression,{**eval_globals, **initial_state}) species_modified_by_events.append(a.variable.name) else: - execution_time = eval(e.delay,eval_globals, initial_state) + execution_time = eval(e.delay,{**eval_globals,**initial_state}) t0_delayed_events[e.name] = execution_time return t0_delayed_events, species_modified_by_events @@ -505,7 +504,6 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

rxn_count = OrderedDict() species_modified = OrderedDict() # Update stochastic reactions - for rxn in compiled_reactions: rxn_count[rxn] = 0 while curr_state[rxn] > 0: @@ -556,6 +554,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

curr_state['time'] = curr_time # Integrate until end or tau is reached + # TODO: Need a way to exit solve_ivp when timeout is triggered sol = solve_ivp(rhs, [curr_time, model.tspan[-1]], y0, method=integrator, dense_output=True, events=tau_event, **integrator_options) @@ -705,7 +704,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

assignment_state[species[s]] = sol.sol(time)[s] assignment_state['t'] = time for spec, ar in model.listOfAssignmentRules.items(): - assignment_value = eval(ar.formula, eval_globals, assignment_state) + assignment_value = eval(ar.formula, {**eval_globals,**assignment_state}) assignment_state[spec] = assignment_value trajectory[trajectory_index][species.index(spec)+1] = assignment_value num_saves += 1 @@ -719,7 +718,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

while event_cycle: event_cycle = False for i, e in enumerate(model.listOfEvents.values()): - triggered = eval(e.trigger.expression, eval_globals, curr_state) + triggered = eval(e.trigger.expression, {**eval_globals,**curr_state}) if triggered and not curr_state[e.name]: curr_state[e.name] = True self.__handle_event(e, curr_state, curr_time, @@ -807,7 +806,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

y0 = [0] * (len(species) + len(parameters) + len(compiled_reactions) + len(events)) for i, spec in enumerate(species): if isinstance(curr_state[spec], str): - y0[i] = eval(curr_state[spec], eval_globals, curr_state) + y0[i] = eval(curr_state[spec], {**eval_globals, **curr_state}) else: y0[i] = curr_state[spec] y_map[spec] = i @@ -826,7 +825,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

def run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', - integrator_options={}, **kwargs): + integrator_options={}, timeout=None, **kwargs): """ Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects and will inherit those parameters which are passed with the model as the arguments this run function. @@ -870,19 +869,56 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

Example use: {max_step : 0, rtol : .01} """ - def timed_out(signum, frame): - self.interrupted = True - self.rc = 33 - - signal.signal(signal.SIGALRM, timed_out) - - if not isinstance(self, BasicTauHybridSolver): + if isinstance(self, type): self = BasicTauHybridSolver() + self.stop_event = threading.Event() + if len(kwargs) > 0: for key in kwargs: log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) + if timeout is not None and timeout <= 0: timeout = None + + sim_thread = threading.Thread(target=self.___run, args=(model,), kwargs={'t':t, + 'number_of_trajectories':number_of_trajectories, + 'increment':increment, 'seed':seed, + 'debug':debug, 'profile':profile,'show_labels':show_labels, + 'timeout':timeout, 'tau_tol':tau_tol, + 'event_sensitivity':event_sensitivity, + 'integrator':integrator, + 'integrator_options':integrator_options}) + try: + sim_thread.start() + sim_thread.join(timeout=timeout) + self.stop_event.set() + while self.result is None: pass + except: + pass + if hasattr(self,'has_raised_exception'): + raise self.has_raised_exception + return self.result, self.rc
+ + + + def ___run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, + debug=False, profile=False, show_labels=True, + tau_tol=0.03, event_sensitivity=100, integrator='LSODA', + integrator_options={}, **kwargs): + try: + self.__run(model,t,number_of_trajectories, increment, seed, debug, + profile,show_labels, tau_tol, event_sensitivity, integrator, + integrator_options, **kwargs) + except Exception as e: + self.has_raised_exception = e + self.result = [] + return [], -1 + + def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, + debug=False, profile=False, show_labels=True, + tau_tol=0.03, event_sensitivity=100, integrator='LSODA', + integrator_options={}, **kwargs): + if debug: print("t = ", t) print("increment = ", increment) @@ -955,7 +991,10 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

# Main trajectory loop for trajectory_num in range(number_of_trajectories): - if self.interrupted: break + if self.stop_event.is_set(): + print('exiting') + self.rc = 33 + break trajectory = trajectory_base[trajectory_num] # NumPy array containing this simulation's results propensities = OrderedDict() # Propensities evaluated at current state @@ -974,7 +1013,6 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

# One-time compilations to reduce time spent with eval compiled_reactions, compiled_rate_rules, compiled_inactive_reactions, compiled_propensities = self.__compile_all(model) - all_compiled = OrderedDict() all_compiled['rxns'] = compiled_reactions all_compiled['inactive_rxns'] = compiled_inactive_reactions @@ -999,12 +1037,14 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

# Each save step while curr_time < model.tspan[-1]: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break # Get current propensities if not pure_ode: for i, r in enumerate(model.listOfReactions): try: - propensities[r] = eval(compiled_propensities[r], eval_globals, curr_state) + propensities[r] = eval(compiled_propensities[r],{**eval_globals, **curr_state}) except Exception as e: raise SimulationError('Error calculation propensity for {0}.\nReason: {1}'.format(r, e)) @@ -1014,16 +1054,16 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

model, propensities, curr_state, curr_time, save_times[0]] tau_step = save_times[-1]-curr_time if pure_ode else Tau.select(*tau_args) + # Process switching if used + if not pure_stochastic and not pure_ode: + switch_args = [model, propensities, curr_state, tau_step, det_spec] + sd, CV = self.__calculate_statistics(*switch_args) + # Calculate sd and CV for hybrid switching and flag deterministic reactions if pure_stochastic: deterministic_reactions = frozenset() # Empty if non-det else: deterministic_reactions = self.__flag_det_reactions(model, det_spec, det_rxn, dependencies) - - # Process switching if used - if not pure_stochastic and not pure_ode: - switch_args = [model, propensities, curr_state, tau_step, det_spec] - sd, CV = self.__calculate_statistics(*switch_args) if debug: print('mean: {0}'.format(mu_i)) @@ -1064,7 +1104,8 @@

Source code for gillespy2.solvers.numpy.basic_tau_hybrid_solver

print("Total Steps Taken: ", len(steps_taken)) print("Total Steps Rejected: ", steps_rejected) - return simulation_data, self.rc
+ self.result = simulation_data + return simulation_data, self.rc
diff --git a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_leaping_solver.html b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_leaping_solver.html index cdef4fb6e..099584ed9 100644 --- a/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_leaping_solver.html +++ b/docs/build/html/_modules/gillespy2/solvers/numpy/basic_tau_leaping_solver.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy.basic_tau_leaping_solver — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy.basic_tau_leaping_solver — GillesPy2 1.4.0 documentation @@ -104,7 +104,7 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

import random, math, sys, warnings -import signal +from threading import Thread, Event import numpy as np from gillespy2.solvers.numpy import Tau from gillespy2.core import GillesPySolver, log @@ -112,8 +112,9 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

[docs]class BasicTauLeapingSolver(GillesPySolver): name = 'BasicTauLeapingSolver' - interrupted = False rc = 0 + stop_event = None + result = None """ A Basic Tau Leaping Solver for GillesPy2 models. This solver uses an algorithm calculates multiple reactions in a single step over a given tau step size. The change in propensities @@ -124,8 +125,9 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

def __init__(self, debug=False, profile=False): name = "BasicTauLeapingSolver" - interrupted = False rc = 0 + stop_event = None + result = None self.debug = debug self.profile = profile @@ -161,7 +163,8 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

[docs] @classmethod def run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, - debug=False, profile=False, show_labels=True, tau_tol=0.03, **kwargs): + debug=False, profile=False, show_labels=True, + timeout=None, tau_tol=0.03, **kwargs): """ Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects @@ -191,19 +194,48 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

show_labels : bool (True) Use names of species as index of result object rather than position numbers. """ - def timed_out(signum, frame): - self.rc = 33 - self.interrupted = True - signal.signal(signal.SIGALRM, timed_out) - - - if not isinstance(self, BasicTauLeapingSolver): + if isinstance(self, type): self = BasicTauLeapingSolver(debug=debug, profile=profile) + self.stop_event = Event() + if timeout is not None and timeout <= 0: timeout = None if len(kwargs) > 0: for key in kwargs: log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) + + sim_thread = Thread(target=self.___run, args=(model,), kwargs={'t':t, + 'number_of_trajectories':number_of_trajectories, + 'increment':increment, 'seed':seed, + 'debug':debug, 'show_labels':show_labels, + 'timeout':timeout, 'tau_tol':tau_tol}) + try: + sim_thread.start() + sim_thread.join(timeout=timeout) + self.stop_event.set() + while self.result is None: pass + except: + pass + if hasattr(self, 'has_raised_exception'): + raise self.has_raised_exception + return self.result, self.rc
+ + def ___run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, + debug=False, profile=False, show_labels=True, + timeout=None, tau_tol=0.03, **kwargs): + try: + self.__run(model, t, number_of_trajectories, increment, seed, + debug, profile, show_labels, timeout, tau_tol, **kwargs) + except Exception as e: + self.has_raised_exception = e + self.result = [] + return [], -1 + + + def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, + debug=False, profile=False, show_labels=True, + timeout=None, tau_tol=0.03, **kwargs): + if debug: print("t = ", t) print("increment = ", increment) @@ -240,7 +272,9 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

simulation_data = [] for trajectory_num in range(number_of_trajectories): - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break start_state = [0] * (len(model.listOfReactions) + len(model.listOfRateRules)) propensities = {} curr_state = {} @@ -278,11 +312,15 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

#Each save step while entry_count < timeline.size: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break #Until save step reached while curr_time < save_time: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break propensity_sum = 0 for i, r in enumerate(model.listOfReactions): @@ -364,8 +402,8 @@

Source code for gillespy2.solvers.numpy.basic_tau_leaping_solver

print(steps_taken) print("Total Steps Taken: ", len(steps_taken)) print("Total Steps Rejected: ", steps_rejected) - - return simulation_data, self.rc
+ self.result = simulation_data + return simulation_data, self.rc
diff --git a/docs/build/html/_modules/gillespy2/solvers/numpy/ssa_solver.html b/docs/build/html/_modules/gillespy2/solvers/numpy/ssa_solver.html index 9f237e081..cb43bba1a 100644 --- a/docs/build/html/_modules/gillespy2/solvers/numpy/ssa_solver.html +++ b/docs/build/html/_modules/gillespy2/solvers/numpy/ssa_solver.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy.ssa_solver — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy.ssa_solver — GillesPy2 1.4.0 documentation @@ -100,7 +100,7 @@

Quick search

Source code for gillespy2.solvers.numpy.ssa_solver

-import signal
+from threading import Thread, Event
 from gillespy2.core import GillesPySolver, Model, Reaction, log
 import random
 import math
@@ -109,16 +109,19 @@ 

Source code for gillespy2.solvers.numpy.ssa_solver

[docs]class NumPySSASolver(GillesPySolver): name = "NumPySSASolver" - interrupted = False rc = 0 + stop_event = None + result = None def __init__(self): name = 'NumPySSASolver' - interrupted = False rc = 0 + stop_event = None + result = None
[docs] @classmethod - def run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, show_labels=True, **kwargs): + def run(self, model, t=20, number_of_trajectories=1, increment=0.05, + seed=None, debug=False, show_labels=True, timeout=None, **kwargs): """ Run the SSA algorithm using a NumPy for storing the data in arrays and generating the timeline. :param model: The model on which the solver will operate. @@ -132,20 +135,46 @@

Source code for gillespy2.solvers.numpy.ssa_solver

:param show_labels: Use names of species as index of result object rather than position numbers. :return: a list of each trajectory simulated. """ - def timed_out(signum, frame): - self.rc = 33 - self.interrupted = True - signal.signal(signal.SIGALRM, timed_out) - - - if not isinstance(self, NumPySSASolver): + if isinstance(self, type): self = NumPySSASolver() + self.stop_event = Event() + if timeout is not None and timeout <= 0: timeout = None + if len(kwargs) > 0: for key in kwargs: log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) + sim_thread = Thread(target=self.___run, args=(model,), kwargs={'t':t, + 'number_of_trajectories':number_of_trajectories, + 'increment':increment, 'seed':seed, + 'debug':debug, 'show_labels':show_labels, + 'timeout':timeout}) + try: + sim_thread.start() + sim_thread.join(timeout=timeout) + self.stop_event.set() + while self.result is None: pass + except: + pass + if hasattr(self, 'has_raised_exception'): + raise self.has_raised_exception + return self.result, self.rc
+ + def ___run(self, model, t=20, number_of_trajectories=1, increment=0.05, + seed=None, debug=False, show_labels=True, timeout=None): + try: + self.__run(model, t, number_of_trajectories, increment, seed, + debug, show_labels, timeout) + except Exception as e: + self.has_raised_exception = e + self.result = [] + return [], -1 + + def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, + seed=None, debug=False, show_labels=True, timeout=None): + random.seed(seed) # create mapping of species dictionary to array indices species_mappings = model.sanitized_species_names() @@ -189,7 +218,9 @@

Source code for gillespy2.solvers.numpy.ssa_solver

# begin simulating each trajectory simulation_data = [] for trajectory_num in range(number_of_trajectories): - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break # copy initial state data trajectory = trajectory_base[trajectory_num] entry_count = 1 @@ -198,7 +229,9 @@

Source code for gillespy2.solvers.numpy.ssa_solver

propensity_sums = np.zeros(number_reactions) # calculate initial propensity sums while entry_count < timeline.size: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break # determine next reaction for i in range(number_reactions): propensity_sums[i] = propensity_functions[i](current_state) @@ -220,7 +253,9 @@

Source code for gillespy2.solvers.numpy.ssa_solver

print('current_time: ', current_time) # determine time passed in this reaction while entry_count < timeline.size and timeline[entry_count] <= current_time: - if self.interrupted: break + if self.stop_event.is_set(): + self.rc = 33 + break trajectory[entry_count, 1:] = current_state entry_count += 1 for potential_reaction in range(number_reactions): @@ -248,7 +283,8 @@

Source code for gillespy2.solvers.numpy.ssa_solver

simulation_data.append(data) else: simulation_data = trajectory_base - return simulation_data, self.rc
+ self.result = simulation_data + return self.result, self.rc
diff --git a/docs/build/html/_modules/gillespy2/solvers/stochkit/stochkit_solvers.html b/docs/build/html/_modules/gillespy2/solvers/stochkit/stochkit_solvers.html index 10dd85c27..42ea4f47a 100644 --- a/docs/build/html/_modules/gillespy2/solvers/stochkit/stochkit_solvers.html +++ b/docs/build/html/_modules/gillespy2/solvers/stochkit/stochkit_solvers.html @@ -4,7 +4,7 @@ - gillespy2.solvers.stochkit.stochkit_solvers — GillesPy2 1.3.0 documentation + gillespy2.solvers.stochkit.stochkit_solvers — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/_modules/index.html b/docs/build/html/_modules/index.html index b251da1fd..5a9a8e728 100644 --- a/docs/build/html/_modules/index.html +++ b/docs/build/html/_modules/index.html @@ -4,7 +4,7 @@ - Overview: module code — GillesPy2 1.3.0 documentation + Overview: module code — GillesPy2 1.4.0 documentation @@ -105,17 +105,16 @@

All modules for which code is available

  • gillespy2.core.gillespyError
  • gillespy2.core.gillespySolver
  • gillespy2.core.results
  • -
  • gillespy2.example_models
  • gillespy2.sbml.SBMLimport
  • gillespy2.solvers.auto.ssa_solver
  • +
  • gillespy2.solvers.cpp.example_models
  • gillespy2.solvers.cpp.ssa_c_solver
  • +
  • gillespy2.solvers.cpp.variable_ssa_c_solver
  • gillespy2.solvers.cython.cython_ssa_solver
  • gillespy2.solvers.numpy.Tau
  • gillespy2.solvers.numpy.basic_ode_solver
  • gillespy2.solvers.numpy.basic_tau_hybrid_solver
  • -
  • gillespy2.solvers.numpy.basic_tau_hybrid_v2
  • gillespy2.solvers.numpy.basic_tau_leaping_solver
  • -
  • gillespy2.solvers.numpy.just_in_cases
  • gillespy2.solvers.numpy.ssa_solver
  • gillespy2.solvers.stochkit.stochkit_solvers
  • diff --git a/docs/build/html/_sources/classes/gillespy2.core.rst.txt b/docs/build/html/_sources/classes/gillespy2.core.rst.txt index 894f60090..94a946131 100644 --- a/docs/build/html/_sources/classes/gillespy2.core.rst.txt +++ b/docs/build/html/_sources/classes/gillespy2.core.rst.txt @@ -15,14 +15,6 @@ gillespy2.core.events module gillespy2.core.gillespy2 module ------------------------------- -.. automodule:: gillespy2.core.gillespy2 - :members: - :undoc-members: - :show-inheritance: - -gillespy2.core.gillespy2 module -------------------------------- - .. automodule:: gillespy2.core.gillespy2 :members: :undoc-members: diff --git a/docs/build/html/_sources/classes/gillespy2.rst.txt b/docs/build/html/_sources/classes/gillespy2.rst.txt index 30482e4fa..75085fe06 100644 --- a/docs/build/html/_sources/classes/gillespy2.rst.txt +++ b/docs/build/html/_sources/classes/gillespy2.rst.txt @@ -10,18 +10,6 @@ Subpackages gillespy2.sbml gillespy2.solvers -Submodules ----------- - -gillespy2.example\_models module --------------------------------- - -.. automodule:: gillespy2.example_models - :members: - :undoc-members: - :show-inheritance: - - Module contents --------------- diff --git a/docs/build/html/_sources/classes/gillespy2.solvers.cpp.rst.txt b/docs/build/html/_sources/classes/gillespy2.solvers.cpp.rst.txt index d7fcc3f96..eb15db814 100644 --- a/docs/build/html/_sources/classes/gillespy2.solvers.cpp.rst.txt +++ b/docs/build/html/_sources/classes/gillespy2.solvers.cpp.rst.txt @@ -4,6 +4,14 @@ gillespy2.solvers.cpp package Submodules ---------- +gillespy2.solvers.cpp.example\_models module +-------------------------------------------- + +.. automodule:: gillespy2.solvers.cpp.example_models + :members: + :undoc-members: + :show-inheritance: + gillespy2.solvers.cpp.ssa\_c\_solver module ------------------------------------------- @@ -12,6 +20,14 @@ gillespy2.solvers.cpp.ssa\_c\_solver module :undoc-members: :show-inheritance: +gillespy2.solvers.cpp.variable\_ssa\_c\_solver module +----------------------------------------------------- + +.. automodule:: gillespy2.solvers.cpp.variable_ssa_c_solver + :members: + :undoc-members: + :show-inheritance: + Module contents --------------- diff --git a/docs/build/html/_sources/classes/gillespy2.solvers.numpy.rst.txt b/docs/build/html/_sources/classes/gillespy2.solvers.numpy.rst.txt index 08c6ae707..0acba2418 100644 --- a/docs/build/html/_sources/classes/gillespy2.solvers.numpy.rst.txt +++ b/docs/build/html/_sources/classes/gillespy2.solvers.numpy.rst.txt @@ -28,14 +28,6 @@ gillespy2.solvers.numpy.basic\_tau\_hybrid\_solver module :undoc-members: :show-inheritance: -gillespy2.solvers.numpy.basic\_tau\_hybrid\_v2 module ------------------------------------------------------ - -.. automodule:: gillespy2.solvers.numpy.basic_tau_hybrid_v2 - :members: - :undoc-members: - :show-inheritance: - gillespy2.solvers.numpy.basic\_tau\_leaping\_solver module ---------------------------------------------------------- @@ -44,14 +36,6 @@ gillespy2.solvers.numpy.basic\_tau\_leaping\_solver module :undoc-members: :show-inheritance: -gillespy2.solvers.numpy.just\_in\_cases module ----------------------------------------------- - -.. automodule:: gillespy2.solvers.numpy.just_in_cases - :members: - :undoc-members: - :show-inheritance: - gillespy2.solvers.numpy.ssa\_solver module ------------------------------------------ diff --git a/docs/build/html/_static/documentation_options.js b/docs/build/html/_static/documentation_options.js index 3bd505b84..59b464e62 100644 --- a/docs/build/html/_static/documentation_options.js +++ b/docs/build/html/_static/documentation_options.js @@ -1,6 +1,6 @@ var DOCUMENTATION_OPTIONS = { URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '1.3.0', + VERSION: '1.4.0', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/docs/build/html/classes/gillespy2.core.html b/docs/build/html/classes/gillespy2.core.html index f4f7795ef..d7277cd71 100644 --- a/docs/build/html/classes/gillespy2.core.html +++ b/docs/build/html/classes/gillespy2.core.html @@ -4,7 +4,7 @@ - gillespy2.core package — GillesPy2 1.3.0 documentation + gillespy2.core package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • @@ -504,16 +502,41 @@

    Submodules +
    +delete_all_assignment_rules()[source]
    +

    Clears all assignment rules from model

    +
    + +
    +
    +delete_all_events()[source]
    +

    Clears models events

    +
    + +
    +
    +delete_all_function_definitions()[source]
    +

    Clears all Function Definitions from a model

    +
    +
    delete_all_parameters()[source]

    Deletes all parameters from model.

    +
    +
    +delete_all_rate_rules()[source]
    +

    Clears all of models Rate Rules

    +
    +
    delete_all_reactions()[source]
    -
    +

    Clears all reactions in model

    +
    @@ -521,6 +544,27 @@

    Submodules +
    +delete_assignment_rule(aname)[source]
    +

    Removes an assignment rule from a model +:param aname: Name of AssignmentRule object to be removed from model

    +

    + +
    +
    +delete_event(ename)[source]
    +

    Removes specified Event from model +:param ename: Name of Event to be removed

    +
    + +
    +
    +delete_function_definition(fname)[source]
    +

    Removes specified Function Definition from model +:param fname: Name of Function Definition to be removed

    +
    +
    delete_parameter(obj)[source]
    @@ -538,10 +582,22 @@

    Submodules +
    +delete_rate_rule(rname)[source]
    +

    Removes specified Rate Rule from model +:param rname: Name of Rate Rule to be removed

    +

    +
    delete_reaction(obj)[source]
    -
    +
    +
    Parameters
    +

    obj – Name of Reaction to be removed

    +
    +
    +
    @@ -560,6 +616,36 @@

    Submodules +
    +get_all_assignment_rules()[source]
    +
    +
    Returns
    +

    dict of models Assignment Rules

    +
    +
    +

    + +
    +
    +get_all_events()[source]
    +
    +
    Returns
    +

    dict of all Event objects

    +
    +
    +
    + +
    +
    +get_all_function_definitions()[source]
    +
    +
    Returns
    +

    Dict of models function definitions

    +
    +
    +
    +
    get_all_parameters()[source]
    @@ -567,10 +653,25 @@

    Submodules +
    +get_all_rate_rules()[source]
    +
    +
    Returns
    +

    dict of all Rate Rule objects

    +
    +
    +

    +
    get_all_reactions()[source]
    -
    +
    +
    Returns
    +

    dict of all Reaction objects

    +
    +
    +
    @@ -579,6 +680,53 @@

    Submodules +
    +get_assignment_rule(aname)[source]
    +
    +
    Parameters
    +

    aname – Name of Assignment Rule to get

    +
    +
    Returns
    +

    Assignment Rule object

    +
    +
    +

    + +
    +
    +get_element(ename)[source]
    +

    get element specified by name +:param ename: name of element to search for +:return:value of element, or ‘element not found’

    +
    + +
    +
    +get_event(ename)[source]
    +
    +
    Parameters
    +

    ename – Name of Event to get

    +
    +
    Returns
    +

    Event object

    +
    +
    +
    + +
    +
    +get_function_definition(fname)[source]
    +
    +
    Parameters
    +

    fname – name of Function to get

    +
    +
    Returns
    +

    FunctionDefinition object

    +
    +
    +
    +
    get_parameter(p_name)[source]
    @@ -596,10 +744,31 @@

    Submodules +
    +get_rate_rule(rname)[source]
    +
    +
    Parameters
    +

    rname – Name of Rate Rule to get

    +
    +
    Returns
    +

    RateRule object

    +
    +
    +

    +
    get_reaction(rname)[source]
    -
    +
    +
    Parameters
    +

    rname – name of reaction to return

    +
    +
    Returns
    +

    Reaction object

    +
    +
    +
    @@ -644,10 +813,9 @@

    Submodules
    Returns

      -
    • If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is True and

    • -
    • number_of_trajectories is 1, returns a results object that inherits UserDict and supports plotting functions.

    • -
    • If show_labels is False and number_of_trajectories is greater than 1, returns an ensemble_results object that

    • -
    • inherits UserList and contains results objects and supports ensemble graphing.

    • +
    • If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is

    • +
    • True,returns a Results object that inherits UserList and contains one or more Trajectory objects that

    • +
    • inherit UserDict. Results object supports graphing and csv export.

    @@ -970,7 +1138,7 @@

    Submodules
    name
    -

    The name by which the reaction is called.

    +

    The name by which the reaction is called (optional).

    Type

    str

    @@ -1371,1691 +1539,218 @@

    Submodules -

    gillespy2.core.gillespy2 module

    -

    A simple toolkit for creating and simulating discrete stochastic models in -python.

    +
    +

    gillespy2.core.gillespyError module

    +
    +
    +exception gillespy2.core.gillespyError.BuildError[source]
    +

    Bases: gillespy2.core.gillespyError.SolverError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.DirectoryError[source]
    +

    Bases: gillespy2.core.gillespyError.SolverError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.EventError[source]
    +

    Bases: gillespy2.core.gillespyError.ModelError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ExecutionError[source]
    +

    Bases: gillespy2.core.gillespyError.SolverError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.InvalidModelError[source]
    +

    Bases: gillespy2.core.gillespyError.SimulationError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.InvalidStochMLError[source]
    +

    Bases: gillespy2.core.gillespyError.SimulationError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ModelError[source]
    +

    Bases: Exception

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ParameterError[source]
    +

    Bases: gillespy2.core.gillespyError.ModelError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ReactionError[source]
    +

    Bases: gillespy2.core.gillespyError.ModelError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ResultsError[source]
    +

    Bases: Exception

    +
    + +
    +
    +exception gillespy2.core.gillespyError.SimulationError[source]
    +

    Bases: Exception

    +
    + +
    +
    +exception gillespy2.core.gillespyError.SimulationTimeoutError[source]
    +

    Bases: gillespy2.core.gillespyError.SimulationError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.SolverError[source]
    +

    Bases: Exception

    +
    + +
    +
    +exception gillespy2.core.gillespyError.SpeciesError[source]
    +

    Bases: gillespy2.core.gillespyError.ModelError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.StochMLImportError[source]
    +

    Bases: gillespy2.core.gillespyError.SimulationError

    +
    + +
    +
    +exception gillespy2.core.gillespyError.ValidationError[source]
    +

    Bases: gillespy2.core.gillespyError.ResultsError

    +
    + +
    +
    +

    gillespy2.core.gillespySolver module

    -
    -class gillespy2.core.gillespy2.AssignmentRule(variable=None, formula=None, name=None)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    An AssignmentRule is used to express equations that set the values of -variables. This would correspond to a function in the form of x = f(V)

    +
    +class gillespy2.core.gillespySolver.GillesPySolver[source]
    +

    Bases: object

    -
    -name
    -

    Name of the Rule

    +
    +name = 'GillesPySolver'
    +

    Abstract class for a solver. This is generally called from within a +gillespy Model through the Model.run function. Returns simulation +trajectories.

    +
    +
    +model
    +

    The model on which the solver will operate.

    Type
    -

    str

    +

    gillespy.Model

    -
    -variable
    -

    Target Species/Parameter to be modified by rule

    +
    +t
    +

    The end time of the solver.

    Type
    -

    str

    +

    float

    -
    -formula
    -

    String representation of formula to be evaluated

    +
    +number_of_trajectories
    +

    The number of times to sample the chemical master equation. Each +trajectory will be returned at the end of the simulation.

    Type
    -

    str

    +

    int

    -
    -
    -sanitized_formula(species_mappings, parameter_mappings)[source]
    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.FunctionDefinition(name='', function=None, args=[])[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    Object representation defining an evaluable function to be used during -simulation of a GillesPy2 model

    -
    -name
    -

    Name of the function to be made and called.

    +
    +increment
    +

    The time step of the solution.

    Type
    -

    str

    +

    float

    -
    -function
    -

    Defined function body of operation to be performed.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -variables
    -

    String names of Variables to be used as arguments to function.

    -
    -
    Type
    -

    list

    -
    -
    -
    - -
    -
    -sanitized_function(species_mappings, parameter_mappings)[source]
    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.Model(name='', population=True, volume=1.0, tspan=None, annotation='model')[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -
    -
    -add_assignment_rule(assignment_rules)[source]
    -
    - -
    -
    -add_event(event)[source]
    -

    Adds an event, or list of events to the model.

    -
    -
    -event
    -

    The event or list of event objects to be added to the model -object.

    -
    -
    Type
    -

    Event, or list of Events

    -
    -
    -
    - -
    - -
    -
    -add_function_definition(function_definitions)[source]
    -
    - -
    -
    -add_parameter(params)[source]
    -

    Adds a parameter, or list of parameters to the model.

    -
    -
    -obj
    -

    The parameter or list of parameters to be added to the model object.

    -
    -
    Type
    -

    Parameter, or list of Parameters

    -
    -
    -
    - -
    - -
    -
    -add_rate_rule(rate_rules)[source]
    -

    Adds a rate rule, or list of rate rules to the model.

    -
    -
    -obj
    -

    The rate rule or list of rate rule objects to be added to the model -object.

    -
    -
    Type
    -

    RateRule, or list of RateRules

    -
    -
    -
    - -
    - -
    -
    -add_reaction(reactions)[source]
    -

    Adds a reaction, or list of reactions to the model.

    -
    -
    -obj
    -

    The reaction or list of reaction objects to be added to the model -object.

    -
    -
    Type
    -

    Reaction, or list of Reactions

    -
    -
    -
    - -
    - -
    -
    -add_species(obj)[source]
    -

    Adds a species, or list of species to the model.

    -
    -
    -obj
    -

    The species or list of species to be added to the model object.

    -
    -
    Type
    -

    Species, or list of Species

    -
    -
    -
    - -
    - -
    -
    -delete_all_parameters()[source]
    -

    Deletes all parameters from model.

    -
    - -
    -
    -delete_all_reactions()[source]
    -
    - -
    -
    -delete_all_species()[source]
    -

    Removes all species from the model object.

    -
    - -
    -
    -delete_parameter(obj)[source]
    -

    Removes a parameter object by name.

    -
    -
    -obj
    -

    Name of the parameter object to be removed.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -delete_reaction(obj)[source]
    -
    - -
    -
    -delete_species(obj)[source]
    -

    Removes a species object by name.

    -
    -
    -obj
    -

    Name of the species object to be removed.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -get_all_parameters()[source]
    -

    Returns a dict of all parameters in the model, of the form: -{name : parameter object}

    -
    - -
    -
    -get_all_reactions()[source]
    -
    - -
    -
    -get_all_species()[source]
    -

    Returns a dict of all species in the model, of the form: -{name : species object}

    -
    - -
    -
    -get_parameter(p_name)[source]
    -

    Returns a parameter object by name.

    -
    -
    -p_name
    -

    Name of the parameter object to be returned.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -get_reaction(rname)[source]
    -
    - -
    -
    -get_species(s_name)[source]
    -

    Returns a species object by name.

    -
    -
    -s_name
    -

    Name of the species object to be returned.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -problem_with_name(name)[source]
    -
    - -
    -
    -reserved_names = ['vol']
    -
    - -
    -
    -resolve_parameters()[source]
    -

    Internal function: -attempt to resolve all parameter expressions to scalar floats. -This methods must be called before exporting the model.

    -
    - -
    -
    -run(solver=None, timeout=0, **solver_args)[source]
    -

    Function calling simulation of the model. There are a number of -parameters to be set here.

    -
    -
    Returns
    -

      -
    • If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is True and

    • -
    • number_of_trajectories is 1, returns a results object that inherits UserDict and supports plotting functions.

    • -
    • If show_labels is False and number_of_trajectories is greater than 1, returns an ensemble_results object that

    • -
    • inherits UserList and contains results objects and supports ensemble graphing.

    • -
    -

    -
    -
    -
    -
    -solver
    -

    The solver by which to simulate the model. This solver object may -be initialized separately to specify an algorithm. Optional, -defaults to ssa solver.

    -
    -
    Type
    -

    gillespy.GillesPySolver

    -
    -
    -
    - -
    -
    -timeout
    -

    Allows a time_out value in seconds to be sent to a signal handler, restricting simulation run-time

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -solver_args
    -

    solver-specific arguments to be passed to solver.run()

    -
    - -
    - -
    -
    -sanitized_parameter_names()[source]
    -

    Generate a dictionary mapping user chosen parameter names to simplified formats which will be used -later on by GillesPySolvers evaluating reaction propensity functions. -:return: the dictionary mapping user parameter names to their internal GillesPy notation.

    -
    - -
    -
    -sanitized_species_names()[source]
    -

    Generate a dictionary mapping user chosen species names to simplified formats which will be used -later on by GillesPySolvers evaluating reaction propensity functions. -:return: the dictionary mapping user species names to their internal GillesPy notation.

    -
    - -
    -
    -serialize()[source]
    -

    Serializes the Model object to valid StochML.

    -
    - -
    -
    -set_parameter(p_name, expression)[source]
    -

    Set the value of an existing paramter “pname” to “expression”.

    -
    -
    -p_name
    -

    Name of the parameter whose value will be set.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -expression
    -

    String that may be executed in C, describing the value of the -parameter. May reference other parameters by name. (e.g. “k1*4”)

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -set_units(units)[source]
    -

    Sets the units of the model to either “population” or “concentration”

    -
    -
    -units
    -

    Either “population” or “concentration”

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -special_characters = ['[', ']', '+', '-', '*', '/', '.', '^']
    -

    Representation of a well mixed biochemical model. Contains reactions, -parameters, species.

    -
    -
    -name
    -

    The name of the model, or an annotation describing it.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -population
    -

    The type of model being described. A discrete stochastic model is a -population model (True), a deterministic model is a concentration model -(False). Automatic conversion from population to concentration models -may be used, by setting the volume parameter.

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -volume
    -

    The volume of the system matters when converting to from population to -concentration form. This will also set a parameter “vol” for use in -custom (i.e. non-mass-action) propensity functions.

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -tspan
    -

    The timepoints at which the model should be simulated. If None, a -default timespan is added. May be set later, see Model.timespan

    -
    -
    Type
    -

    numpy ndarray

    -
    -
    -
    - -
    -
    -annotation
    -

    Optional further description of model

    -
    -
    Type
    -

    str (optional)

    -
    -
    -
    - -
    - -
    -
    -timespan(time_span)[source]
    -

    Set the time span of simulation. StochKit does not support non-uniform -timespans.

    -
    -
    tspannumpy ndarray

    Evenly-spaced list of times at which to sample the species -populations during the simulation.

    -
    -
    -
    - -
    -
    -update_namespace()[source]
    -

    Create a dict with flattened parameter and species objects.

    -
    - -
    -
    -validate_reactants_and_products(reactions)[source]
    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.Parameter(name='', expression=None, value=None)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    A parameter can be given as an expression (function) or directly -as a value (scalar). If given an expression, it should be -understood as evaluable in the namespace of a parent Model.

    -
    -
    -name
    -

    The name by which this parameter is called or referenced in reactions.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -expression
    -

    String for a function calculating parameter values. Should be evaluable -in namespace of Model.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -value
    -

    Value of a parameter if it is not dependent on other Model entities.

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -evaluate(namespace={})[source]
    -

    Evaluate the expression and return the (scalar) value in the given -namespace.

    -
    -
    -namespace
    -

    The namespace in which to test evaluation of the parameter, if it -involves other parameters, etc.

    -
    -
    Type
    -

    dict (optional)

    -
    -
    -
    - -
    - -
    -
    -set_expression(expression)[source]
    -

    Sets the expression for a parameter.

    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.RateRule(variable=None, formula='', name=None)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    A RateRule is used to express equations that determine the rates of change -of variables. This would correspond to a function in the form of dx/dt=f(W)

    -
    -
    -name
    -

    Name of Rule

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -variable
    -

    Target Species/Parameter to be modified by rule

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -formula
    -

    String representation of formula to be evaluated

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -sanitized_formula(species_mappings, parameter_mappings)[source]
    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.Reaction(name='', reactants={}, products={}, propensity_function=None, massaction=False, rate=None, annotation=None)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    Models a single reaction. A reaction has its own dicts of species -(reactants and products) and parameters. The reaction’s propensity -function needs to be evaluable (and result in a non-negative scalar -value) in the namespace defined by the union of those dicts.

    -
    -
    -name
    -

    The name by which the reaction is called.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -reactants
    -

    The reactants that are consumed in the reaction, with stoichiometry. An -example would be {R1 : 1, R2 : 2} if the reaction consumes two of R1 and -one of R2, where R1 and R2 are Species objects.

    -
    -
    Type
    -

    dict

    -
    -
    -
    - -
    -
    -products
    -

    The species that are created by the reaction event, with stoichiometry. -Same format as reactants.

    -
    -
    Type
    -

    dict

    -
    -
    -
    - -
    -
    -propensity_function
    -

    The custom propensity fcn for the reaction. Must be evaluable in the -namespace of the reaction using C operations.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -massaction
    -

    The switch to use a mass-action reaction. If set to True, a rate value -is required.

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -rate
    -

    The rate of the mass-action reaction. Take care to note the units…

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -annotation
    -

    An optional note about the reaction.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -

    Notes

    -

    For a species that is NOT consumed in the reaction but is part of a mass -action reaction, add it as both a reactant and a product.

    -

    Mass-action reactions must also have a rate term added. Note that the input -rate represents the mass-action constant rate independent of volume.

    -
    -
    -Annotate(annotation)[source]
    -

    Adds a note to the reaction

    -
    -
    -annotation
    -

    An optional note about the reaction.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -addProduct(S, stoichiometry)[source]
    -

    Adds a product to the reaction (species that is created)

    -
    -
    -S
    -

    Product to add to this reaction.

    -
    -
    Type
    -

    gillespy.Species

    -
    -
    -
    - -
    -
    -stoichiometry
    -

    The stoichiometry of the given product.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    - -
    -
    -addReactant(S, stoichiometry)[source]
    -

    Adds a reactant to the reaction (species that is consumed)

    -
    -
    -S
    -

    Reactant to add to this reaction.

    -
    -
    Type
    -

    gillespy.Species

    -
    -
    -
    - -
    -
    -stoichiometry
    -

    The stoichiometry of the given reactant.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    - -
    -
    -sanitized_propensity_function(species_mappings, parameter_mappings)[source]
    -
    - -
    -
    -setType(rxntype)[source]
    -

    Sets reaction type to either “mass-action” or “customized”

    -
    -
    -rxntype
    -

    Either “mass-action” or “customized”

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    - -
    -
    -verify()[source]
    -

    Check if the reaction is properly formatted. -Does nothing on sucesss, raises and error on failure.

    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.SortableObject[source]
    -

    Bases: object

    -

    Base class for GillesPy2 objects that are sortable.

    -
    - -
    -
    -class gillespy2.core.gillespy2.Species(name='', initial_value=0, constant=False, boundary_condition=False, mode='dynamic', allow_negative_populations=False, switch_min=0, switch_tol=0.03)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    Chemical species. Can be added to Model object to interact with other -species or time.

    -
    -
    -name
    -

    The name by which this species will be called in reactions and within -the model.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -initial_value
    -

    Initial population of this species. If this is not provided as an int, -the type will be changed when it is added by numpy.int

    -
    -
    Type
    -

    int >= 0

    -
    -
    -
    - -
    -
    -constant
    -

    If true, the value of the species cannot be changed. -(currently BasicTauHybridSolver only)

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -boundary_condition
    -

    If true, species can be changed by events and rate rules, but not by -reactions. (currently BasicTauHybridOnly)

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -mode
    -

    *FOR USE WITH BasicTauHybridSolver ONLY* -Sets the mode of representation of this species for the TauHybridSolver, -can be discrete, continuous, or dynamic. -mode=’dynamic’ - Default, allows a species to be represented as

    -
    -

    either discrete or continuous

    -
    -

    mode=’continuous’ - Species will only be represented as continuous -mode=’discrete’ - Species will only be represented as discrete

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -allow_negative_populations
    -

    If true, population can be reduced below 0

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -switch_tol
    -

    *FOR USE WITH BasicTauHybridSolver ONLY* -Tolerance level for considering a dynamic species deterministically, -value is compared to an estimated sd/mean population of a species after a -given time step. This value will be used if a switch_min is not -provided. The default value is 0.03

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -switch_min
    -

    *FOR USE WITH BasicTauHybridSolver ONLY* -Minimum population value at which species will be represented as -continuous. If a value is given, switch_min will be used instead of -switch_tol

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    - -
    -
    -class gillespy2.core.gillespy2.StochMLDocument[source]
    -

    Bases: object

    -

    Serializiation and deserialization of a Model to/from -the native StochKit2 XML format.

    -
    -
    -classmethod from_file(filepath)[source]
    -

    Intializes the document from an exisiting native StochKit XML -file read from disk.

    -
    - -
    -
    -classmethod from_model(model)[source]
    -

    Creates an StochKit XML document from an exisiting Mdoel object. -This method assumes that all the parameters in the model are already -resolved to scalar floats (see Model.resolveParamters).

    -

    Note, this method is intended to be used interanally by the models -‘serialization’ function, which performs additional operations and -tests on the model prior to writing out the XML file. You should NOT do:

    -

    document = StochMLDocument.fromModel(model) -print document.toString()

    -

    You SHOULD do

    -

    print model.serialize()

    -
    - -
    -
    -classmethod from_string(string)[source]
    -

    Intializes the document from an exisiting native StochKit XML -file read from disk.

    -
    - -
    -
    -to_model(name)[source]
    -

    Instantiates a Model object from a StochMLDocument.

    -
    - -
    -
    -to_string()[source]
    -

    Returns the document as a string.

    -
    - -
    - -
    -
    -gillespy2.core.gillespy2.import_SBML(filename, name=None, gillespy_model=None)[source]
    -

    SBML to GillesPy model converter. NOTE: non-mass-action rates -in terms of concentrations may not be converted for population -simulation. Use caution when importing SBML.

    -
    -
    -gillespy2.core.gillespy2.filename
    -

    Path to the SBML file for conversion.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -gillespy2.core.gillespy2.name
    -

    Name of the resulting model.

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -gillespy2.core.gillespy2.gillespy_model
    -

    If desired, the SBML model may be added to an existing GillesPy model.

    -
    -
    Type
    -

    gillespy.Model

    -
    -
    -
    - -
    - -
    -
    -

    gillespy2.core.gillespyError module

    -
    -
    -exception gillespy2.core.gillespyError.BuildError[source]
    -

    Bases: gillespy2.core.gillespyError.SolverError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.DirectoryError[source]
    -

    Bases: gillespy2.core.gillespyError.SolverError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.EventError[source]
    -

    Bases: gillespy2.core.gillespyError.ModelError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.ExecutionError[source]
    -

    Bases: gillespy2.core.gillespyError.SolverError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.InvalidModelError[source]
    -

    Bases: gillespy2.core.gillespyError.SimulationError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.InvalidStochMLError[source]
    -

    Bases: gillespy2.core.gillespyError.SimulationError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.ModelError[source]
    -

    Bases: Exception

    -
    - -
    -
    -exception gillespy2.core.gillespyError.ParameterError[source]
    -

    Bases: gillespy2.core.gillespyError.ModelError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.ReactionError[source]
    -

    Bases: gillespy2.core.gillespyError.ModelError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.SimulationError[source]
    -

    Bases: Exception

    -
    - -
    -
    -exception gillespy2.core.gillespyError.SimulationTimeoutError[source]
    -

    Bases: gillespy2.core.gillespyError.SimulationError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.SolverError[source]
    -

    Bases: Exception

    -
    - -
    -
    -exception gillespy2.core.gillespyError.SpeciesError[source]
    -

    Bases: gillespy2.core.gillespyError.ModelError

    -
    - -
    -
    -exception gillespy2.core.gillespyError.StochMLImportError[source]
    -

    Bases: gillespy2.core.gillespyError.SimulationError

    -
    - -
    -
    -

    gillespy2.core.gillespySolver module

    -
    -
    -class gillespy2.core.gillespySolver.GillesPySolver[source]
    -

    Bases: object

    -
    -
    -name = 'GillesPySolver'
    -

    Abstract class for a solver. This is generally called from within a -gillespy Model through the Model.run function. Returns simulation -trajectories.

    -
    -
    -model
    -

    The model on which the solver will operate.

    -
    -
    Type
    -

    gillespy.Model

    -
    -
    -
    - -
    -
    -t
    -

    The end time of the solver.

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -number_of_trajectories
    -

    The number of times to sample the chemical master equation. Each -trajectory will be returned at the end of the simulation.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -increment
    -

    The time step of the solution.

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -seed
    -

    The random seed for the simulation. Defaults to None.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -debug
    -

    Set to True to provide additional debug information about the -simulation.

    -
    -
    Type
    -

    bool (False)

    -
    -
    -
    - -
    -
    -show_labels
    -

    Use names of species as index of result object rather than position numbers.

    -
    -
    Type
    -

    bool (True)

    -
    -
    -
    - -
    - -
    -
    -run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=False, **kwargs)[source]
    -

    Call out and run the solver. Collect the results.

    -
    - -
    - -
    -
    -

    gillespy2.core.results module

    -
    -
    -class gillespy2.core.results.EnsembleResults(data)[source]
    -

    Bases: collections.UserList

    -

    List of Results Dicts created by a gillespy2 solver with multiple trajectories, extends the UserList object.

    -
    -
    -data
    -

    A list of Results

    -
    -
    Type
    -

    UserList

    -
    -
    -
    - -
    -
    -average_ensemble()[source]
    -

    Generate a single Results dictionary that is made of the means of all trajectories’ outputs -:return: the Results dictionary

    -
    - -
    -
    -plot(xaxis_label='Time (s)', yaxis_label='Species Population', style='default', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], save_png=False, figsize=(18, 10))[source]
    -

    Plots the Results using matplotlib.

    -
    -
    -xaxis_label
    -

    the label for the x-axis

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -yaxis_label
    -

    the label for the y-axis -style : str -the matplotlib style to be used for the graph or graphs

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -title
    -

    the title of the graph

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -multiple_graphs
    -

    if each trajectory should have its own graph or if they should overlap

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -included_species_list
    -

    A list of strings describing which species to include. By default displays all species.

    -
    -
    Type
    -

    list

    -
    -
    -
    - -
    -
    -save_png
    -

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file -is named after that string.

    -
    -
    Type
    -

    bool or str

    -
    -
    -
    - -
    -
    -figsize
    -

    the size of the graph. A tuple of the form (width,height). Is (18,10) by default.

    -
    -
    Type
    -

    tuple

    -
    -
    -
    - -
    - -
    -
    -plot_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], ddof=0, save_png=False, figsize=(18, 10))[source]
    -
    -
    -

    Plot a matplotlib graph depicting standard deviation and the mean graph of an ensemble_results object

    -
    -

    Attributes

    -
    -
    -
    xaxis_labelstr

    the label for the x-axis

    -
    -
    yaxis_labelstr

    the label for the y-axis

    -
    -
    titlestr

    the title of the graph

    -
    -
    show_legendbool

    whether or not to display a legend which lists species

    -
    -
    included_species_listlist

    A list of strings describing which species to include. By default displays all species.

    -
    -
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents -the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population -standard deviation where ddof is 0.

    -
    -
    save_pngbool or str

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file -is named after that string.

    -
    -
    figsizetuple

    the size of the graph. A tuple of the form (width,height). Is (18,10) by default.

    -
    -
    -
    - -
    -
    -plotplotly(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], return_plotly_figure=False)[source]
    -

    Plots the Results using plotly. Can only be viewed in a Jupyter Notebook.

    -
    -
    -xaxis_label
    -

    the label for the x-axis

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -yaxis_label
    -

    the label for the y-axis

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -title
    -

    the title of the graph

    -
    -
    Type
    -

    str

    -
    -
    -
    - -
    -
    -multiple_graphs
    -

    if each trajectory should have its own graph or if they should overlap

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    -
    -included_species_list
    -

    A list of strings describing which species to include. By default displays all species.

    -
    -
    Type
    -

    list

    -
    -
    -
    - -
    -
    -return_plotly_figure
    -

    whether or not to return a figure dictionary of data(graph object traces) and layout options -which may be edited by the user.

    -
    -
    Type
    -

    bool

    -
    -
    -
    - -
    - -
    -
    -plotplotly_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False, ddof=0)[source]
    -
    -
    -

    Plot a plotly graph depicting standard deviation and the mean graph of an ensemble_results object

    -
    -

    Attributes

    -
    -
    -
    xaxis_labelstr

    the label for the x-axis

    -
    -
    yaxis_labelstr

    the label for the y-axis

    -
    -
    titlestr

    the title of the graph

    -
    -
    show_legendbool

    whether or not to display a legend which lists species

    -
    -
    included_species_listlist

    A list of strings describing which species to include. By default displays all species.

    -
    -
    return_plotly_figurebool

    whether or not to return a figure dictionary of data(graph object traces) and layout options -which may be edited by the user.

    -
    -
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents -the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population -standard deviation where ddof is 0.

    -
    -
    -
    - -
    -
    -stddev_ensemble(ddof=0)[source]
    -

    Generate a single Results dictionary that is made of the sample standard deviations of all trajectories’ -outputs.

    -
    -

    Attributes

    -
    -
    -
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents -the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population -standard deviation where ddof is 0.

    -
    -
    -
    -
    Returns
    -

    the Results dictionary

    -
    -
    -
    - -
    -
    -to_csv(path=None, nametag=None, stamp=None)[source]
    -

    outputs the Results to one or more .csv files in a new directory.

    -
    -

    Attributes

    -
    -

    nametag: allows the user to optionally “tag” the directory and included files. Defaults to the model name. -path: the location for the new directory and included files. Defaults to model location. -stamp: Allows the user to optionally “tag” the directory (not included files). Default is timestamp.

    -
    - -
    - -
    -
    -class gillespy2.core.results.Results(data, model=None, solver_name='Undefined solver name', rc=0)[source]
    -

    Bases: collections.UserDict

    -

    Results Dict created by a gillespy2 solver with single trajectory, extends the UserDict object.

    -
    -
    -data
    -

    A list of Results that are created by solvers with multiple trajectories

    -
    -
    Type
    -

    UserList

    -
    -
    -
    - -
    -
    -plot(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], save_png=False, figsize=(18, 10))[source]
    -

    Plots the Results using matplotlib.

    -
    -

    Attributes

    -
    -
    -
    xaxis_labelstr

    the label for the x-axis

    -
    -
    yaxis_labelstr

    the label for the y-axis

    -
    -
    titlestr

    the title of the graph

    -
    -
    show_legendbool

    whether or not to display a legend which lists species

    -
    -
    included_species_listlist

    A list of strings describing which species to include. By default displays all species.

    -
    -
    save_pngbool or str

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file -is named after that string.

    -
    -
    figsizetuple

    the size of the graph. A tuple of the form (width,height). Is (18,10) by default.

    -
    -
    -
    - -
    -
    -plotplotly(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False)[source]
    -

    Plots the Results using plotly. Can only be viewed in a Jupyter Notebook.

    -
    -

    Attributes

    -
    -
    -
    xaxis_labelstr

    the label for the x-axis

    -
    -
    yaxis_labelstr

    the label for the y-axis

    -
    -
    titlestr

    the title of the graph

    -
    -
    show_legendbool

    whether or not to display a legend which lists species

    -
    -
    included_species_listlist

    A list of strings describing which species to include. By default displays all species.

    -
    -
    return_plotly_figurebool

    whether or not to return a figure dictionary of data(graph object traces) and layout options -which may be edited by the user.

    -
    -
    -
    - -
    -
    -to_csv(path=None, nametag=None, stamp=None)[source]
    -

    outputs the Results to one or more .csv files in a new directory.

    -
    -

    Attributes

    -
    -

    nametag: allows the user to optionally “tag” the directory and included files. Defaults to the model name. -path: path to the location for the new directory and included files. Defaults to model location. -stamp: allows the user to optionally identify the directory (not included files). Defaults to timestamp.

    -
    - -
    - -
    -
    -

    Module contents

    -
    -
    -class gillespy2.core.AssignmentRule(variable=None, formula=None, name=None)[source]
    -

    Bases: gillespy2.core.gillespy2.SortableObject

    -

    An AssignmentRule is used to express equations that set the values of -variables. This would correspond to a function in the form of x = f(V)

    -
    -
    -name
    -

    Name of the Rule

    +
    +seed
    +

    The random seed for the simulation. Defaults to None.

    Type
    -

    str

    +

    int

    -
    -variable
    -

    Target Species/Parameter to be modified by rule

    +
    +debug
    +

    Set to True to provide additional debug information about the +simulation.

    Type
    -

    str

    +

    bool (False)

    -
    -formula
    -

    String representation of formula to be evaluated

    +
    +show_labels
    +

    Use names of species as index of result object rather than position numbers.

    Type
    -

    str

    +

    bool (True)

    -
    -
    -sanitized_formula(species_mappings, parameter_mappings)[source]
    -
    -
    -
    -
    -exception gillespy2.core.BuildError[source]
    -

    Bases: gillespy2.core.gillespyError.SolverError

    +
    +
    +run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=False, **kwargs)[source]
    +

    Call out and run the solver. Collect the results.

    -
    -
    -exception gillespy2.core.DirectoryError[source]
    -

    Bases: gillespy2.core.gillespyError.SolverError

    +
    +
    +

    gillespy2.core.results module

    -
    -class gillespy2.core.EnsembleResults(data)[source]
    +
    +class gillespy2.core.results.Results(data)[source]

    Bases: collections.UserList

    -

    List of Results Dicts created by a gillespy2 solver with multiple trajectories, extends the UserList object.

    +

    List of Trajectory objects created by a gillespy2 solver, extends the UserList object.

    -
    -data
    -

    A list of Results

    +
    +data
    +

    A list of Trajectory objects

    Type

    UserList

    @@ -3064,19 +1759,29 @@

    gillespy2.core.gillespy2 module -
    -average_ensemble()[source]
    -

    Generate a single Results dictionary that is made of the means of all trajectories’ outputs -:return: the Results dictionary

    +
    +average_ensemble()[source]
    +

    Generate a single Results object with a Trajectory that is made of the means of all trajectories’ outputs +:return: the Results object

    -
    -plot(xaxis_label='Time (s)', yaxis_label='Species Population', style='default', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], save_png=False, figsize=(18, 10))[source]
    +
    +plot(index=None, xaxis_label='Time (s)', yaxis_label='Species Population', style='default', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], save_png=False, figsize=(18, 10))[source]

    Plots the Results using matplotlib.

    -
    -xaxis_label
    +
    +index
    +
    +
    Type
    +

    if not none, the index of the Trajectory to be plotted

    +
    +
    +
    + +
    +
    +xaxis_label

    the label for the x-axis

    Type
    @@ -3086,8 +1791,8 @@

    gillespy2.core.gillespy2 module -
    -yaxis_label
    +
    +yaxis_label

    the label for the y-axis style : str the matplotlib style to be used for the graph or graphs

    @@ -3099,8 +1804,8 @@

    gillespy2.core.gillespy2 module -
    -title
    +
    +title

    the title of the graph

    Type
    @@ -3110,8 +1815,8 @@

    gillespy2.core.gillespy2 module -
    -multiple_graphs
    +
    +multiple_graphs

    if each trajectory should have its own graph or if they should overlap

    Type
    @@ -3121,8 +1826,8 @@

    gillespy2.core.gillespy2 module -
    -included_species_list
    +
    +included_species_list

    A list of strings describing which species to include. By default displays all species.

    Type
    @@ -3132,8 +1837,8 @@

    gillespy2.core.gillespy2 module -
    -save_png
    +
    +save_png

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file is named after that string.

    @@ -3144,8 +1849,8 @@

    gillespy2.core.gillespy2 module -
    -figsize
    +
    +figsize

    the size of the graph. A tuple of the form (width,height). Is (18,10) by default.

    Type
    @@ -3157,11 +1862,11 @@

    gillespy2.core.gillespy2 module -
    -plot_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], ddof=0, save_png=False, figsize=(18, 10))[source]
    +
    +plot_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], ddof=0, save_png=False, figsize=(18, 10))[source]
    -

    Plot a matplotlib graph depicting standard deviation and the mean graph of an ensemble_results object

    +

    Plot a matplotlib graph depicting standard deviation and the mean graph of a results object

    Attributes

    @@ -3189,9 +1894,19 @@

    gillespy2.core.gillespy2 module -
    -plotplotly(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], return_plotly_figure=False)[source]
    +
    +plotplotly(index=None, xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], return_plotly_figure=False)[source]

    Plots the Results using plotly. Can only be viewed in a Jupyter Notebook.

    +
    +
    +index
    +
    +
    Type
    +

    if not none, the index of the Trajectory to be plotted

    +
    +
    +
    +
    xaxis_label
    @@ -3248,8 +1963,8 @@

    gillespy2.core.gillespy2 module -
    -return_plotly_figure
    +
    +return_plotly_figure

    whether or not to return a figure dictionary of data(graph object traces) and layout options which may be edited by the user.

    @@ -3262,11 +1977,11 @@

    gillespy2.core.gillespy2 module -
    -plotplotly_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False, ddof=0)[source]
    +
    +plotplotly_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False, ddof=0)[source]
    -

    Plot a plotly graph depicting standard deviation and the mean graph of an ensemble_results object

    +

    Plot a plotly graph depicting standard deviation and the mean graph of a results object

    Attributes

    @@ -3292,10 +2007,10 @@

    gillespy2.core.gillespy2 module -
    -stddev_ensemble(ddof=0)[source]
    -

    Generate a single Results dictionary that is made of the sample standard deviations of all trajectories’ -outputs.

    +
    +stddev_ensemble(ddof=0)[source]
    +

    Generate a single Results object with a Trajectory that is made of the sample standard deviations of all +trajectories’ outputs.

    Attributes

    @@ -3307,14 +2022,14 @@

    gillespy2.core.gillespy2 module
    Returns
    -

    the Results dictionary

    +

    the Results object

    -
    -to_csv(path=None, nametag=None, stamp=None)[source]
    +
    +to_csv(path=None, nametag=None, stamp=None)[source]

    outputs the Results to one or more .csv files in a new directory.

    Attributes

    @@ -3326,6 +2041,129 @@

    gillespy2.core.gillespy2 module +
    +class gillespy2.core.results.Trajectory(data, model=None, solver_name='Undefined solver name', rc=0)[source]
    +

    Bases: collections.UserDict

    +

    Trajectory Dict created by a gillespy2 solver containing single trajectory, extends the UserDict object.

    +
    +
    +data
    +

    A dictionary of trajectory values created by a solver

    +
    +
    Type
    +

    UserDict

    +
    +
    +
    + +
    +
    +model
    +

    The name of the model used to create the trajectory

    +
    +
    Type
    +

    string

    +
    +
    +
    + +
    +
    +solver_name
    +

    The name of the solver used to create the trajectory

    +
    +
    Type
    +

    string

    +
    +
    +
    + +
    +
    +rc
    +

    The solver’s status return code.

    +
    +
    Type
    +

    int

    +
    +
    +
    + +
    +
    +status
    +

    The solver status (e.g. ‘Success’, ‘Timed Out’)

    +
    +
    Type
    +

    string

    +
    +
    +
    + +

    + +

    +
    +

    Module contents

    +
    +
    +class gillespy2.core.AssignmentRule(variable=None, formula=None, name=None)[source]
    +

    Bases: gillespy2.core.gillespy2.SortableObject

    +

    An AssignmentRule is used to express equations that set the values of +variables. This would correspond to a function in the form of x = f(V)

    +
    +
    +name
    +

    Name of the Rule

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +variable
    +

    Target Species/Parameter to be modified by rule

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +formula
    +

    String representation of formula to be evaluated

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +sanitized_formula(species_mappings, parameter_mappings)[source]
    +
    + +
    + +
    +
    +exception gillespy2.core.BuildError[source]
    +

    Bases: gillespy2.core.gillespyError.SolverError

    +
    + +
    +
    +exception gillespy2.core.DirectoryError[source]
    +

    Bases: gillespy2.core.gillespyError.SolverError

    +
    +
    class gillespy2.core.Event(name='', delay=None, assignments=[], priority='0', trigger=None, use_values_from_trigger_time=False)[source]
    @@ -3781,16 +2619,41 @@

    gillespy2.core.gillespy2 module +
    +delete_all_assignment_rules()[source]
    +

    Clears all assignment rules from model

    +

    + +
    +
    +delete_all_events()[source]
    +

    Clears models events

    +
    + +
    +
    +delete_all_function_definitions()[source]
    +

    Clears all Function Definitions from a model

    +
    +
    delete_all_parameters()[source]

    Deletes all parameters from model.

    +
    +
    +delete_all_rate_rules()[source]
    +

    Clears all of models Rate Rules

    +
    +
    delete_all_reactions()[source]
    -
    +

    Clears all reactions in model

    +

    @@ -3798,6 +2661,27 @@

    gillespy2.core.gillespy2 module +
    +delete_assignment_rule(aname)[source]
    +

    Removes an assignment rule from a model +:param aname: Name of AssignmentRule object to be removed from model

    +

    + +
    +
    +delete_event(ename)[source]
    +

    Removes specified Event from model +:param ename: Name of Event to be removed

    +
    + +
    +
    +delete_function_definition(fname)[source]
    +

    Removes specified Function Definition from model +:param fname: Name of Function Definition to be removed

    +
    +
    delete_parameter(obj)[source]
    @@ -3815,10 +2699,22 @@

    gillespy2.core.gillespy2 module +
    +delete_rate_rule(rname)[source]
    +

    Removes specified Rate Rule from model +:param rname: Name of Rate Rule to be removed

    +

    +
    delete_reaction(obj)[source]
    -
    +
    +
    Parameters
    +

    obj – Name of Reaction to be removed

    +
    +
    +

    @@ -3837,6 +2733,36 @@

    gillespy2.core.gillespy2 module +
    +get_all_assignment_rules()[source]
    +
    +
    Returns
    +

    dict of models Assignment Rules

    +
    +
    +

    + +
    +
    +get_all_events()[source]
    +
    +
    Returns
    +

    dict of all Event objects

    +
    +
    +
    + +
    +
    +get_all_function_definitions()[source]
    +
    +
    Returns
    +

    Dict of models function definitions

    +
    +
    +
    +
    get_all_parameters()[source]
    @@ -3844,10 +2770,25 @@

    gillespy2.core.gillespy2 module +
    +get_all_rate_rules()[source]
    +
    +
    Returns
    +

    dict of all Rate Rule objects

    +
    +
    +

    +
    get_all_reactions()[source]
    -
    +
    +
    Returns
    +

    dict of all Reaction objects

    +
    +
    +
    @@ -3856,6 +2797,53 @@

    gillespy2.core.gillespy2 module +
    +get_assignment_rule(aname)[source]
    +
    +
    Parameters
    +

    aname – Name of Assignment Rule to get

    +
    +
    Returns
    +

    Assignment Rule object

    +
    +
    +

    + +
    +
    +get_element(ename)[source]
    +

    get element specified by name +:param ename: name of element to search for +:return:value of element, or ‘element not found’

    +
    + +
    +
    +get_event(ename)[source]
    +
    +
    Parameters
    +

    ename – Name of Event to get

    +
    +
    Returns
    +

    Event object

    +
    +
    +
    + +
    +
    +get_function_definition(fname)[source]
    +
    +
    Parameters
    +

    fname – name of Function to get

    +
    +
    Returns
    +

    FunctionDefinition object

    +
    +
    +
    +
    get_parameter(p_name)[source]
    @@ -3873,10 +2861,31 @@

    gillespy2.core.gillespy2 module +
    +get_rate_rule(rname)[source]
    +
    +
    Parameters
    +

    rname – Name of Rate Rule to get

    +
    +
    Returns
    +

    RateRule object

    +
    +
    +

    +
    get_reaction(rname)[source]
    -
    +
    +
    Parameters
    +

    rname – name of reaction to return

    +
    +
    Returns
    +

    Reaction object

    +
    +
    +
    @@ -3921,10 +2930,9 @@

    gillespy2.core.gillespy2 module
    Returns

      -
    • If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is True and

    • -
    • number_of_trajectories is 1, returns a results object that inherits UserDict and supports plotting functions.

    • -
    • If show_labels is False and number_of_trajectories is greater than 1, returns an ensemble_results object that

    • -
    • inherits UserList and contains results objects and supports ensemble graphing.

    • +
    • If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is

    • +
    • True,returns a Results object that inherits UserList and contains one or more Trajectory objects that

    • +
    • inherit UserDict. Results object supports graphing and csv export.

    @@ -4332,7 +3340,7 @@

    gillespy2.core.gillespy2 module
    name
    -

    The name by which the reaction is called.

    +

    The name by which the reaction is called (optional).

    Type

    str

    @@ -4528,13 +3536,13 @@

    gillespy2.core.gillespy2 module
    -class gillespy2.core.Results(data, model=None, solver_name='Undefined solver name', rc=0)[source]
    -

    Bases: collections.UserDict

    -

    Results Dict created by a gillespy2 solver with single trajectory, extends the UserDict object.

    +class gillespy2.core.Results(data)[source]

    +

    Bases: collections.UserList

    +

    List of Trajectory objects created by a gillespy2 solver, extends the UserList object.

    data
    -

    A list of Results that are created by solvers with multiple trajectories

    +

    A list of Trajectory objects

    Type

    UserList

    @@ -4542,12 +3550,117 @@

    gillespy2.core.gillespy2 module +
    +average_ensemble()[source]
    +

    Generate a single Results object with a Trajectory that is made of the means of all trajectories’ outputs +:return: the Results object

    +

    +
    -plot(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], save_png=False, figsize=(18, 10))[source]
    +plot(index=None, xaxis_label='Time (s)', yaxis_label='Species Population', style='default', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], save_png=False, figsize=(18, 10))[source]

    Plots the Results using matplotlib.

    -
    -

    Attributes

    +
    +
    +index
    +
    +
    Type
    +

    if not none, the index of the Trajectory to be plotted

    +
    +
    +
    + +
    +
    +xaxis_label
    +

    the label for the x-axis

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +yaxis_label
    +

    the label for the y-axis +style : str +the matplotlib style to be used for the graph or graphs

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +title
    +

    the title of the graph

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +multiple_graphs
    +

    if each trajectory should have its own graph or if they should overlap

    +
    +
    Type
    +

    bool

    +
    +
    +
    + +
    +
    +included_species_list
    +

    A list of strings describing which species to include. By default displays all species.

    +
    +
    Type
    +

    list

    +
    +
    +
    + +
    +
    +save_png
    +

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file +is named after that string.

    +
    +
    Type
    +

    bool or str

    +
    +
    +
    + +
    +
    +figsize
    +

    the size of the graph. A tuple of the form (width,height). Is (18,10) by default.

    +
    +
    Type
    +

    tuple

    +
    +
    +
    + +
    + +
    +
    +plot_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, style='default', show_legend=True, included_species_list=[], ddof=0, save_png=False, figsize=(18, 10))[source]
    +
    +
    +

    Plot a matplotlib graph depicting standard deviation and the mean graph of a results object

    +
    +

    Attributes

    xaxis_labelstr

    the label for the x-axis

    @@ -4560,6 +3673,10 @@

    gillespy2.core.gillespy2 modulelist

    A list of strings describing which species to include. By default displays all species.

    +
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents +the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population +standard deviation where ddof is 0.

    +
    save_pngbool or str

    Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file is named after that string.

    @@ -4570,10 +3687,95 @@

    gillespy2.core.gillespy2 module
    -plotplotly(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False)[source]
    +plotplotly(index=None, xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, multiple_graphs=False, included_species_list=[], return_plotly_figure=False)[source]

    Plots the Results using plotly. Can only be viewed in a Jupyter Notebook.

    -
    -

    Attributes

    +
    +
    +index
    +
    +
    Type
    +

    if not none, the index of the Trajectory to be plotted

    +
    +
    +
    + +
    +
    +xaxis_label
    +

    the label for the x-axis

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +yaxis_label
    +

    the label for the y-axis

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +title
    +

    the title of the graph

    +
    +
    Type
    +

    str

    +
    +
    +
    + +
    +
    +multiple_graphs
    +

    if each trajectory should have its own graph or if they should overlap

    +
    +
    Type
    +

    bool

    +
    +
    +
    + +
    +
    +included_species_list
    +

    A list of strings describing which species to include. By default displays all species.

    +
    +
    Type
    +

    list

    +
    +
    +
    + +
    +
    +return_plotly_figure
    +

    whether or not to return a figure dictionary of data(graph object traces) and layout options +which may be edited by the user.

    +
    +
    Type
    +

    bool

    +
    +
    +
    + +

    + +
    +
    +plotplotly_std_dev_range(xaxis_label='Time (s)', yaxis_label='Species Population', title=None, show_legend=True, included_species_list=[], return_plotly_figure=False, ddof=0)[source]
    +
    +
    +

    Plot a plotly graph depicting standard deviation and the mean graph of a results object

    +
    +

    Attributes

    xaxis_labelstr

    the label for the x-axis

    @@ -4589,6 +3791,31 @@

    gillespy2.core.gillespy2 modulebool

    whether or not to return a figure dictionary of data(graph object traces) and layout options which may be edited by the user.

    +
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents +the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population +standard deviation where ddof is 0.

    +
    +

    +
    + +
    +
    +stddev_ensemble(ddof=0)[source]
    +

    Generate a single Results object with a Trajectory that is made of the sample standard deviations of all +trajectories’ outputs.

    +
    +

    Attributes

    +
    +
    +
    ddofint

    Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents +the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population +standard deviation where ddof is 0.

    +
    +
    +
    +
    Returns
    +

    the Results object

    +
    @@ -4600,10 +3827,16 @@

    gillespy2.core.gillespy2 module +
    +exception gillespy2.core.ResultsError[source]
    +

    Bases: Exception

    @@ -4800,6 +4033,74 @@

    gillespy2.core.gillespy2 modulegillespy2.core.gillespyError.SimulationError

    +
    +
    +class gillespy2.core.Trajectory(data, model=None, solver_name='Undefined solver name', rc=0)[source]
    +

    Bases: collections.UserDict

    +

    Trajectory Dict created by a gillespy2 solver containing single trajectory, extends the UserDict object.

    +
    +
    +data
    +

    A dictionary of trajectory values created by a solver

    +
    +
    Type
    +

    UserDict

    +
    +
    +
    + +
    +
    +model
    +

    The name of the model used to create the trajectory

    +
    +
    Type
    +

    string

    +
    +
    +
    + +
    +
    +solver_name
    +

    The name of the solver used to create the trajectory

    +
    +
    Type
    +

    string

    +
    +
    +
    + +
    +
    +rc
    +

    The solver’s status return code.

    +
    +
    Type
    +

    int

    +
    +
    +
    + +
    +
    +status
    +

    The solver status (e.g. ‘Success’, ‘Timed Out’)

    +
    +
    Type
    +

    string

    +
    +
    +
    + +
    + +
    +
    +exception gillespy2.core.ValidationError[source]
    +

    Bases: gillespy2.core.gillespyError.ResultsError

    +
    +
    gillespy2.core.contextmanager(func)[source]
    diff --git a/docs/build/html/classes/gillespy2.html b/docs/build/html/classes/gillespy2.html index 403a941d6..a274b58e9 100644 --- a/docs/build/html/classes/gillespy2.html +++ b/docs/build/html/classes/gillespy2.html @@ -4,7 +4,7 @@ - gillespy2 package — GillesPy2 1.3.0 documentation + gillespy2 package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • @@ -122,7 +120,6 @@

    SubpackagesSubmodules
  • gillespy2.core.events module
  • gillespy2.core.gillespy2 module
  • -
  • gillespy2.core.gillespy2 module
  • gillespy2.core.gillespyError module
  • gillespy2.core.gillespySolver module
  • gillespy2.core.results module
  • @@ -145,7 +142,9 @@

    Subpackagesgillespy2.solvers.cpp package @@ -160,9 +159,7 @@

    Subpackagesgillespy2.solvers.numpy.Tau module
  • gillespy2.solvers.numpy.basic_ode_solver module
  • gillespy2.solvers.numpy.basic_tau_hybrid_solver module
  • -
  • gillespy2.solvers.numpy.basic_tau_hybrid_v2 module
  • gillespy2.solvers.numpy.basic_tau_leaping_solver module
  • -
  • gillespy2.solvers.numpy.just_in_cases module
  • gillespy2.solvers.numpy.ssa_solver module
  • Module contents
  • @@ -180,69 +177,6 @@

    Subpackages -

    Submodules

    -

    -
    -

    gillespy2.example_models module

    -
    -
    -class gillespy2.example_models.Trichloroethylene(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    UNCA iGEM 2017 Metabolic Channel.

    -
    - -
    -
    -class gillespy2.example_models.LacOperon(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    Heath LS, Cao Y. Problem Solving Handbook in Computational Biology and Bioinformatics. Springer; 2014.

    -
    - -
    -
    -class gillespy2.example_models.Schlogl(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    Schlogl F. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift for Physik. -1972;253: 147–161. doi:10.1007/bf01379769

    -
    - -
    -
    -class gillespy2.example_models.MichaelisMenten(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -
    - -
    -
    -class gillespy2.example_models.ToggleSwitch(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    Gardner et al. Nature (1999)Construction of a genetic toggle switch in Escherichia coli -(Transcription from

    -
    - -
    -
    -class gillespy2.example_models.Example(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    This is a simple example for mass-action degradation of species S.

    -
    - -
    -
    -class gillespy2.example_models.Tyson2StateOscillator(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -

    Here, as a test case, we run a simple two-state oscillator (Novak & Tyson -2008) as an example of a stochastic reaction system.

    -
    - -
    -
    -class gillespy2.example_models.Oregonator(parameter_values=None)[source]
    -

    Bases: gillespy2.core.gillespy2.Model

    -
    -

    Module contents

    diff --git a/docs/build/html/classes/gillespy2.sbml.html b/docs/build/html/classes/gillespy2.sbml.html index 022c8bdab..9260c3c7e 100644 --- a/docs/build/html/classes/gillespy2.sbml.html +++ b/docs/build/html/classes/gillespy2.sbml.html @@ -4,7 +4,7 @@ - gillespy2.sbml package — GillesPy2 1.3.0 documentation + gillespy2.sbml package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • diff --git a/docs/build/html/classes/gillespy2.solvers.auto.html b/docs/build/html/classes/gillespy2.solvers.auto.html index 906e6e3f7..cc9b5159b 100644 --- a/docs/build/html/classes/gillespy2.solvers.auto.html +++ b/docs/build/html/classes/gillespy2.solvers.auto.html @@ -4,7 +4,7 @@ - gillespy2.solvers.auto package — GillesPy2 1.3.0 documentation + gillespy2.solvers.auto package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • diff --git a/docs/build/html/classes/gillespy2.solvers.cpp.html b/docs/build/html/classes/gillespy2.solvers.cpp.html index d5c70c0c2..dabdbcc94 100644 --- a/docs/build/html/classes/gillespy2.solvers.cpp.html +++ b/docs/build/html/classes/gillespy2.solvers.cpp.html @@ -4,7 +4,7 @@ - gillespy2.solvers.cpp package — GillesPy2 1.3.0 documentation + gillespy2.solvers.cpp package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • @@ -120,6 +118,16 @@

    Quick search

    gillespy2.solvers.cpp package

    Submodules

    +
    +
    +

    gillespy2.solvers.cpp.example_models module

    +
    +
    +class gillespy2.solvers.cpp.example_models.Example(parameter_values=None)[source]
    +

    Bases: gillespy2.core.gillespy2.Model

    +

    This is a simple example for mass-action degradation of species S.

    +
    +

    gillespy2.solvers.cpp.ssa_c_solver module

    @@ -141,6 +149,26 @@

    Submodules +

    gillespy2.solvers.cpp.variable_ssa_c_solver module

    +
    +
    +class gillespy2.solvers.cpp.variable_ssa_c_solver.VariableSSACSolver(model=None, output_directory=None, delete_directory=True)[source]
    +

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    +
    +
    +name = 'VariableSSACSolver'
    +
    + +
    +
    +run(model=None, t=20, number_of_trajectories=1, timeout=0, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, variables={}, **kwargs)[source]
    +

    Call out and run the solver. Collect the results.

    +
    + +
    +

    Module contents

    diff --git a/docs/build/html/classes/gillespy2.solvers.cython.html b/docs/build/html/classes/gillespy2.solvers.cython.html index 6cbe60f04..76f4e5da8 100644 --- a/docs/build/html/classes/gillespy2.solvers.cython.html +++ b/docs/build/html/classes/gillespy2.solvers.cython.html @@ -4,7 +4,7 @@ - gillespy2.solvers.cython package — GillesPy2 1.3.0 documentation + gillespy2.solvers.cython package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • diff --git a/docs/build/html/classes/gillespy2.solvers.html b/docs/build/html/classes/gillespy2.solvers.html index 62465178d..761b56ed9 100644 --- a/docs/build/html/classes/gillespy2.solvers.html +++ b/docs/build/html/classes/gillespy2.solvers.html @@ -4,7 +4,7 @@ - gillespy2.solvers package — GillesPy2 1.3.0 documentation + gillespy2.solvers package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • @@ -128,7 +126,9 @@

    Subpackagesgillespy2.solvers.cpp package @@ -143,9 +143,7 @@

    Subpackagesgillespy2.solvers.numpy.Tau module
  • gillespy2.solvers.numpy.basic_ode_solver module
  • gillespy2.solvers.numpy.basic_tau_hybrid_solver module
  • -
  • gillespy2.solvers.numpy.basic_tau_hybrid_v2 module
  • gillespy2.solvers.numpy.basic_tau_leaping_solver module
  • -
  • gillespy2.solvers.numpy.just_in_cases module
  • gillespy2.solvers.numpy.ssa_solver module
  • Module contents
  • diff --git a/docs/build/html/classes/gillespy2.solvers.numpy.html b/docs/build/html/classes/gillespy2.solvers.numpy.html index 1b0e5ab6c..3ec4c6dc1 100644 --- a/docs/build/html/classes/gillespy2.solvers.numpy.html +++ b/docs/build/html/classes/gillespy2.solvers.numpy.html @@ -4,7 +4,7 @@ - gillespy2.solvers.numpy package — GillesPy2 1.3.0 documentation + gillespy2.solvers.numpy package — GillesPy2 1.4.0 documentation @@ -70,8 +70,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • @@ -147,11 +145,6 @@

    Submodulesclass gillespy2.solvers.numpy.basic_ode_solver.BasicODESolver[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    This Solver produces the deterministic continuous solution via ODE.

    -
    -
    -interrupted = False
    -
    -
    name = 'BasicODESolver'
    @@ -162,9 +155,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, show_labels=True, integrator='lsoda', integrator_options={}, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, show_labels=True, integrator='lsoda', integrator_options={}, timeout=None, **kwargs)[source]
    Parameters
    +

    @@ -198,11 +201,6 @@

    Submodules -
    -interrupted = False
    -
    -
    name = 'BasicTauHybridSolver'
    @@ -213,9 +211,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, timeout=None, **kwargs)[source]

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects and will inherit those parameters which are passed with the model as the arguments this run function.

    @@ -362,170 +365,11 @@

    Submodules -

    gillespy2.solvers.numpy.basic_tau_hybrid_v2 module

    -
    -
    -class gillespy2.solvers.numpy.basic_tau_hybrid_v2.BasicTauHybridSolver[source]
    -

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -

    This Solver uses a root-finding interpretation of the direct SSA method, -along with ODE solvers to simulate ODE and Stochastic systems -interchangeably or simultaneously.

    -
    -
    -interrupted = False
    -
    -
    -
    -name = 'BasicTauHybridSolver'
    +
    +stop_event = None
    -
    -
    -rc = 0
    -
    - -
    -
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, tau_step_size=None, **kwargs)[source]
    -

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model -objects and will inherit those parameters which are passed with the model as the arguments this run function.

    -
    -
    -model
    -

    GillesPy2 model object to simulate

    -
    -
    Type
    -

    GillesPy2.Model

    -
    -
    -
    - -
    -
    -t
    -

    Simulation run time

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -number_of_trajectories
    -

    The number of times to sample the chemical master equation. Each -trajectory will be returned at the end of the simulation. -Optional, defaults to 1.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -increment
    -

    Save point increment for recording data

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -seed
    -

    The random seed for the simulation. Optional, defaults to None.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -debug
    -

    Set to True to provide additional debug information about the -simulation.

    -
    -
    Type
    -

    bool (False)

    -
    -
    -
    - -
    -
    -profile
    -

    Set to True to provide information about step size (tau) taken at each step.

    -
    -
    Type
    -

    bool (Fasle)

    -
    -
    -
    - -
    -
    -show_labels
    -

    If true, simulation returns a list of trajectories, where each list entry is a dictionary containing key value pairs of species : trajectory. If false, returns a numpy array with shape [traj_no, time, species]

    -
    -
    Type
    -

    bool (True)

    -
    -
    -
    - -
    -
    -event_sensitivity
    -

    Number of data points to be inspected between integration -steps/save points for event detection

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -integrator
    -

    integrator method to be used form scipy.integrate.solve_ivp. Options -include ‘RK45’, ‘RK23’, ‘Radau’, ‘BDF’, and ‘LSODA’. -For more details, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

    -
    -
    Type
    -

    String

    -
    -
    -
    - -
    -
    -integrator_options
    -

    contains options to the scipy integrator. by default, this includes -rtol=1e-9 and atol=1e-12. for a list of options, -see https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html. -Example use: {max_step : 0, rtol : .01}

    -
    -
    Type
    -

    dictionary

    -
    -
    -
    - -
    -

    @@ -536,11 +380,6 @@

    Submodules class gillespy2.solvers.numpy.basic_tau_leaping_solver.BasicTauLeapingSolver(debug=False, profile=False)[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -
    -
    -interrupted = False
    -
    -
    name = 'BasicTauLeapingSolver'
    @@ -549,6 +388,11 @@

    Submodules
    rc = 0
    +

    + +
    +
    +result = None

    A Basic Tau Leaping Solver for GillesPy2 models. This solver uses an algorithm calculates multiple reactions in a single step over a given tau step size. The change in propensities over this step are bounded by bounding the relative change in state, yielding greatly improved @@ -557,7 +401,7 @@

    Submodules
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, timeout=None, tau_tol=0.03, **kwargs)[source]

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects and will inherit those parameters which are passed with the model @@ -587,188 +431,11 @@

    Submodules -

    gillespy2.solvers.numpy.just_in_cases module

    -
    -
    -class gillespy2.solvers.numpy.just_in_cases.BasicTauHybridSolver[source]
    -

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -

    This Solver uses a root-finding interpretation of the direct SSA method, -along with ODE solvers to simulate ODE and Stochastic systems -interchangeably or simultaneously.

    -
    -
    -find_event_time(sol, model, start, end, index, depth)[source]
    -

    Helper method providing binary search implementation for locating -precise event times.

    -
    - -
    -
    -interrupted = False
    -
    -
    -
    -name = 'BasicTauHybridSolver'
    +
    +stop_event = None
    -
    -
    -rc = 0
    -
    - -
    -
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, switch_tol=0.03, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, **kwargs)[source]
    -

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model -objects and will inherit those parameters which are passed with the model as the arguments this run function.

    -
    -
    -model
    -

    GillesPy2 model object to simulate

    -
    -
    Type
    -

    GillesPy2.Model

    -
    -
    -
    - -
    -
    -t
    -

    Simulation run time

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -number_of_trajectories
    -

    The number of times to sample the chemical master equation. Each -trajectory will be returned at the end of the simulation. -Optional, defaults to 1.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -increment
    -

    Save point increment for recording data

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -seed
    -

    The random seed for the simulation. Optional, defaults to None.

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -debug
    -

    Set to True to provide additional debug information about the -simulation.

    -
    -
    Type
    -

    bool (False)

    -
    -
    -
    - -
    -
    -profile
    -

    Set to True to provide information about step size (tau) taken at each step.

    -
    -
    Type
    -

    bool (Fasle)

    -
    -
    -
    - -
    -
    -show_labels
    -

    If true, simulation returns a list of trajectories, where each list entry is a dictionary containing key value pairs of species : trajectory. If false, returns a numpy array with shape [traj_no, time, species]

    -
    -
    Type
    -

    bool (True)

    -
    -
    -
    - -
    -
    -switch_tol
    -

    Relative error tolerance value for deterministic/stochastic switching condition between 0.0 and 1.0

    -
    -
    Type
    -

    float

    -
    -
    -
    - -
    -
    -event_sensitivity
    -

    Number of data points to be inspected between integration -steps/save points for event detection

    -
    -
    Type
    -

    int

    -
    -
    -
    - -
    -
    -integrator
    -

    integrator method to be used form scipy.integrate.solve_ivp. Options -include ‘RK45’, ‘RK23’, ‘Radau’, ‘BDF’, and ‘LSODA’. -For more details, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

    -
    -
    Type
    -

    String

    -
    -
    -
    - -
    -
    -integrator_options
    -

    contains options to the scipy integrator. by default, this includes -rtol=1e-9 and atol=1e-12. for a list of options, -see https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html. -Example use: {max_step : 0, rtol : .01}

    -
    -
    Type
    -

    dictionary

    -
    -
    -
    - -
    -

    @@ -778,11 +445,6 @@

    Submodules class gillespy2.solvers.numpy.ssa_solver.NumPySSASolver[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -
    -
    -interrupted = False
    -
    -
    name = 'NumPySSASolver'
    @@ -793,9 +455,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, show_labels=True, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, show_labels=True, timeout=None, **kwargs)[source]

    Run the SSA algorithm using a NumPy for storing the data in arrays and generating the timeline. :param model: The model on which the solver will operate. :param t: The end time of the solver. @@ -809,6 +476,11 @@

    Submodules +
    +stop_event = None
    +

    +

    @@ -818,11 +490,6 @@

    Submodules class gillespy2.solvers.numpy.NumPySSASolver[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -
    -
    -interrupted = False
    -
    -
    name = 'NumPySSASolver'
    @@ -833,9 +500,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, show_labels=True, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, show_labels=True, timeout=None, **kwargs)[source]

    Run the SSA algorithm using a NumPy for storing the data in arrays and generating the timeline. :param model: The model on which the solver will operate. :param t: The end time of the solver. @@ -849,6 +521,11 @@

    Submodules +
    +stop_event = None
    +

    +
    @@ -856,11 +533,6 @@

    Submodulesclass gillespy2.solvers.numpy.BasicODESolver[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    This Solver produces the deterministic continuous solution via ODE.

    -
    -
    -interrupted = False
    -
    -
    name = 'BasicODESolver'
    @@ -871,9 +543,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, show_labels=True, integrator='lsoda', integrator_options={}, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, show_labels=True, integrator='lsoda', integrator_options={}, timeout=None, **kwargs)[source]
    Parameters
    +
    class gillespy2.solvers.numpy.BasicTauLeapingSolver(debug=False, profile=False)[source]

    Bases: gillespy2.core.gillespySolver.GillesPySolver

    -
    -
    -interrupted = False
    -
    -
    name = 'BasicTauLeapingSolver'
    @@ -914,6 +591,11 @@

    Submodules
    rc = 0
    +

    + +
    +
    +result = None

    A Basic Tau Leaping Solver for GillesPy2 models. This solver uses an algorithm calculates multiple reactions in a single step over a given tau step size. The change in propensities over this step are bounded by bounding the relative change in state, yielding greatly improved @@ -922,7 +604,7 @@

    Submodules
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, timeout=None, tau_tol=0.03, **kwargs)[source]

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects and will inherit those parameters which are passed with the model @@ -952,6 +634,11 @@

    Submodules +
    +stop_event = None
    +

    +
    @@ -961,11 +648,6 @@

    Submodules -
    -interrupted = False
    -

    -
    name = 'BasicTauHybridSolver'
    @@ -976,9 +658,14 @@

    Submodulesrc = 0

    +
    +
    +result = None
    +
    +
    -classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, **kwargs)[source]
    +classmethod run(model, t=20, number_of_trajectories=1, increment=0.05, seed=None, debug=False, profile=False, show_labels=True, tau_tol=0.03, event_sensitivity=100, integrator='LSODA', integrator_options={}, timeout=None, **kwargs)[source]

    Function calling simulation of the model. This is typically called by the run function in GillesPy2 model objects and will inherit those parameters which are passed with the model as the arguments this run function.

    @@ -1125,6 +812,11 @@

    Submodules +
    +stop_event = None
    +

    +

    diff --git a/docs/build/html/classes/gillespy2.solvers.stochkit.html b/docs/build/html/classes/gillespy2.solvers.stochkit.html index c598c27bb..a0c323b9f 100644 --- a/docs/build/html/classes/gillespy2.solvers.stochkit.html +++ b/docs/build/html/classes/gillespy2.solvers.stochkit.html @@ -4,7 +4,7 @@ - gillespy2.solvers.stochkit package — GillesPy2 1.3.0 documentation + gillespy2.solvers.stochkit package — GillesPy2 1.4.0 documentation @@ -69,8 +69,6 @@

    Navigation

  • gillespy2.solvers package
  • -
  • Submodules
  • -
  • gillespy2.example_models module
  • Module contents
  • diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html index f6d9486b4..d31e87183 100644 --- a/docs/build/html/genindex.html +++ b/docs/build/html/genindex.html @@ -5,7 +5,7 @@ - Index — GillesPy2 1.3.0 documentation + Index — GillesPy2 1.4.0 documentation @@ -135,55 +135,55 @@

    A

  • (gillespy2.core.events.Event method)
  • -
  • add_assignment_rule() (gillespy2.core.gillespy2.Model method), [1] +
  • add_assignment_rule() (gillespy2.core.gillespy2.Model method)
  • -
  • add_event() (gillespy2.core.gillespy2.Model method), [1] +
  • add_event() (gillespy2.core.gillespy2.Model method)
  • -
  • add_function_definition() (gillespy2.core.gillespy2.Model method), [1] +
  • add_function_definition() (gillespy2.core.gillespy2.Model method)
  • -
  • add_parameter() (gillespy2.core.gillespy2.Model method), [1] +
  • add_parameter() (gillespy2.core.gillespy2.Model method)
  • -
  • add_rate_rule() (gillespy2.core.gillespy2.Model method), [1] +
  • add_rate_rule() (gillespy2.core.gillespy2.Model method)
  • -
  • add_reaction() (gillespy2.core.gillespy2.Model method), [1] +
  • add_reaction() (gillespy2.core.gillespy2.Model method)
  • -
  • add_species() (gillespy2.core.gillespy2.Model method), [1] +
  • add_species() (gillespy2.core.gillespy2.Model method)
  • -
  • addProduct() (gillespy2.core.gillespy2.Reaction method), [1] +
  • addProduct() (gillespy2.core.gillespy2.Reaction method)
  • -
  • addReactant() (gillespy2.core.gillespy2.Reaction method), [1] +
  • addReactant() (gillespy2.core.gillespy2.Reaction method)
  • -
  • allow_negative_populations (gillespy2.core.gillespy2.Species attribute), [1] +
  • allow_negative_populations (gillespy2.core.gillespy2.Species attribute)
  • -
  • Annotate() (gillespy2.core.gillespy2.Reaction method), [1] +
  • Annotate() (gillespy2.core.gillespy2.Reaction method)
  • -
  • annotation (gillespy2.core.gillespy2.Model attribute), [1] +
  • annotation (gillespy2.core.gillespy2.Model attribute)
  • -
  • average_ensemble() (gillespy2.core.EnsembleResults method) +
  • average_ensemble() (gillespy2.core.Results method)
  • @@ -265,10 +265,6 @@

    B

    @@ -279,7 +275,7 @@

    B

  • (class in gillespy2.solvers.numpy.basic_tau_leaping_solver)
  • -
  • boundary_condition (gillespy2.core.gillespy2.Species attribute), [1] +
  • boundary_condition (gillespy2.core.gillespy2.Species attribute)
    • (gillespy2.core.Species attribute) @@ -295,7 +291,7 @@

      C

      • clear() (gillespy2.core.OrderedDict method)
      • -
      • constant (gillespy2.core.gillespy2.Species attribute), [1] +
      • constant (gillespy2.core.gillespy2.Species attribute)
        • (gillespy2.core.Species attribute) @@ -323,14 +319,14 @@

          C

          D

          - +
          -
            +
          • delete_all_rate_rules() (gillespy2.core.gillespy2.Model method) + +
          • +
          • delete_all_reactions() (gillespy2.core.gillespy2.Model method)
          • -
          • delete_all_species() (gillespy2.core.gillespy2.Model method), [1] +
          • delete_all_species() (gillespy2.core.gillespy2.Model method)
          • -
          • delete_parameter() (gillespy2.core.gillespy2.Model method), [1] +
          • delete_assignment_rule() (gillespy2.core.gillespy2.Model method) + +
          • +
          • delete_event() (gillespy2.core.gillespy2.Model method) + +
          • +
          • delete_function_definition() (gillespy2.core.gillespy2.Model method) + +
          • +
          • delete_parameter() (gillespy2.core.gillespy2.Model method)
          • -
          • delete_reaction() (gillespy2.core.gillespy2.Model method), [1] +
          • delete_rate_rule() (gillespy2.core.gillespy2.Model method) + +
          • +
          • delete_reaction() (gillespy2.core.gillespy2.Model method)
          • -
          • delete_species() (gillespy2.core.gillespy2.Model method), [1] +
          • delete_species() (gillespy2.core.gillespy2.Model method)
            • (gillespy2.core.Model method) @@ -409,13 +449,7 @@

              D

              E

              - +
              -
            • Example (class in gillespy2.example_models) +
              • +
              • Example (class in gillespy2.solvers.cpp.example_models)
              • ExecutionError, [1]
              • @@ -472,9 +502,9 @@

                E

              • (gillespy2.core.EventTrigger attribute)
              • -
              • (gillespy2.core.gillespy2.Model attribute), [1] +
              • (gillespy2.core.gillespy2.Model attribute)
              • -
              • (gillespy2.core.gillespy2.Parameter attribute), [1] +
              • (gillespy2.core.gillespy2.Parameter attribute)
              • (gillespy2.core.Model attribute)
              • @@ -489,31 +519,29 @@

                E

                F

                @@ -553,22 +581,52 @@

                F

                G

                + - + - @@ -823,7 +875,7 @@

                L

                M

                -
              • get_parameter() (gillespy2.core.gillespy2.Model method), [1] +
              • get_element() (gillespy2.core.gillespy2.Model method) + +
              • +
              • get_event() (gillespy2.core.gillespy2.Model method) + +
              • +
              • get_function_definition() (gillespy2.core.gillespy2.Model method) + +
              • +
              • get_parameter() (gillespy2.core.gillespy2.Model method)
              • -
              • get_reaction() (gillespy2.core.gillespy2.Model method), [1] +
              • get_rate_rule() (gillespy2.core.gillespy2.Model method) + +
              • +
              • get_reaction() (gillespy2.core.gillespy2.Model method)
              • -
              • get_species() (gillespy2.core.gillespy2.Model method), [1] +
              • get_species() (gillespy2.core.gillespy2.Model method)
              • +
                -
              • initial_value (gillespy2.core.gillespy2.Species attribute), [1] +
              • @@ -900,19 +950,19 @@

                N

              • (gillespy2.core.FunctionDefinition attribute)
              • -
              • (gillespy2.core.gillespy2.AssignmentRule attribute), [1] +
              • (gillespy2.core.gillespy2.AssignmentRule attribute)
              • -
              • (gillespy2.core.gillespy2.FunctionDefinition attribute), [1] +
              • (gillespy2.core.gillespy2.FunctionDefinition attribute)
              • -
              • (gillespy2.core.gillespy2.Model attribute), [1] +
              • (gillespy2.core.gillespy2.Model attribute)
              • -
              • (gillespy2.core.gillespy2.Parameter attribute), [1] +
              • (gillespy2.core.gillespy2.Parameter attribute)
              • -
              • (gillespy2.core.gillespy2.RateRule attribute), [1] +
              • (gillespy2.core.gillespy2.RateRule attribute)
              • -
              • (gillespy2.core.gillespy2.Reaction attribute), [1] +
              • (gillespy2.core.gillespy2.Reaction attribute)
              • -
              • (gillespy2.core.gillespy2.Species attribute), [1] +
              • (gillespy2.core.gillespy2.Species attribute)
              • (gillespy2.core.GillesPySolver attribute)
              • @@ -931,6 +981,8 @@

                N

              • (gillespy2.solvers.cpp.ssa_c_solver.SSACSolver attribute)
              • (gillespy2.solvers.cpp.SSACSolver attribute) +
              • +
              • (gillespy2.solvers.cpp.variable_ssa_c_solver.VariableSSACSolver attribute)
              • (gillespy2.solvers.cython.cython_ssa_solver.CythonSSASolver attribute)
              • @@ -939,8 +991,6 @@

                N

              • (gillespy2.solvers.numpy.basic_ode_solver.BasicODESolver attribute)
              • (gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver attribute) -
              • -
              • (gillespy2.solvers.numpy.basic_tau_hybrid_v2.BasicTauHybridSolver attribute)
              • (gillespy2.solvers.numpy.basic_tau_leaping_solver.BasicTauLeapingSolver attribute)
              • @@ -949,8 +999,6 @@

                N

              • (gillespy2.solvers.numpy.BasicTauHybridSolver attribute)
              • (gillespy2.solvers.numpy.BasicTauLeapingSolver attribute) -
              • -
              • (gillespy2.solvers.numpy.just_in_cases.BasicTauHybridSolver attribute)
              • (gillespy2.solvers.numpy.NumPySSASolver attribute)
              • @@ -968,12 +1016,12 @@

                N

              • (in module gillespy2.core)
              • -
              • (in module gillespy2.core.gillespy2), [1] +
              • (in module gillespy2.core.gillespy2)
                • -
                • namespace (gillespy2.core.gillespy2.Parameter attribute), [1] +
                • namespace (gillespy2.core.gillespy2.Parameter attribute)
                  • (gillespy2.core.Parameter attribute) @@ -985,12 +1033,8 @@

                    N

                  • (gillespy2.core.gillespySolver.GillesPySolver attribute)
                  • (gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver attribute) -
                  • -
                  • (gillespy2.solvers.numpy.basic_tau_hybrid_v2.BasicTauHybridSolver attribute)
                  • (gillespy2.solvers.numpy.BasicTauHybridSolver attribute) -
                  • -
                  • (gillespy2.solvers.numpy.just_in_cases.BasicTauHybridSolver attribute)
                  • (gillespy2.solvers.stochkit.stochkit_solvers.StochKitBaseSolver attribute)
                  • @@ -1015,7 +1059,7 @@

                    N

                    O

                    @@ -1033,7 +1075,7 @@

                    O

                    P

                    - +
                    • pop() (gillespy2.core.OrderedDict method)
                    • popitem() (gillespy2.core.OrderedDict method)
                    • -
                    • population (gillespy2.core.gillespy2.Model attribute), [1] +
                    • population (gillespy2.core.gillespy2.Model attribute)
                    • -
                    • problem_with_name() (gillespy2.core.gillespy2.Model method), [1] +
                    • problem_with_name() (gillespy2.core.gillespy2.Model method)
                    • process_seed() (gillespy2.solvers.stochkit.stochkit_solvers.StochKitBaseSolver static method)
                    • -
                    • products (gillespy2.core.gillespy2.Reaction attribute), [1] +
                    • products (gillespy2.core.gillespy2.Reaction attribute)
                      • (gillespy2.core.Reaction attribute) @@ -1122,14 +1156,10 @@

                        P

                      • profile (gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver attribute)
                      • -
                      • propensity_function (gillespy2.core.gillespy2.Reaction attribute), [1] +
                      • propensity_function (gillespy2.core.gillespy2.Reaction attribute)
                        • (gillespy2.core.Reaction attribute) @@ -1141,7 +1171,7 @@

                          P

                          R

                            -
                          • return_plotly_figure (gillespy2.core.EnsembleResults attribute) +
                          • Results (class in gillespy2.core)
                          • -
                          • run() (gillespy2.core.gillespy2.Model method), [1] +
                          • ResultsError, [1] +
                          • +
                          • return_plotly_figure (gillespy2.core.Results attribute) + +
                          • +
                          • run() (gillespy2.core.gillespy2.Model method)
                          • -
                          • rxntype (gillespy2.core.gillespy2.Reaction attribute), [1] +
                          • rxntype (gillespy2.core.gillespy2.Reaction attribute)
                            • (gillespy2.core.Reaction attribute) @@ -1279,13 +1327,13 @@

                              R

                              S

                              - + @@ -1533,12 +1599,8 @@

                              T

                            • (gillespy2.core.gillespySolver.GillesPySolver attribute)
                            • (gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver attribute) -
                            • -
                            • (gillespy2.solvers.numpy.basic_tau_hybrid_v2.BasicTauHybridSolver attribute)
                            • (gillespy2.solvers.numpy.BasicTauHybridSolver attribute) -
                            • -
                            • (gillespy2.solvers.numpy.just_in_cases.BasicTauHybridSolver attribute)
                            • (gillespy2.solvers.stochkit.stochkit_solvers.StochKitBaseSolver attribute)
                            • @@ -1557,13 +1619,13 @@

                              T

                            • (gillespy2.solvers.numpy.BasicTauHybridSolver attribute)
                            • -
                            • timeout (gillespy2.core.gillespy2.Model attribute), [1] +
                            • timeout (gillespy2.core.gillespy2.Model attribute)
                            • -
                            • timespan() (gillespy2.core.gillespy2.Model method), [1] +
                            • timespan() (gillespy2.core.gillespy2.Model method)
                            • -
                            • tspan (gillespy2.core.gillespy2.Model attribute), [1] +
                            • tspan (gillespy2.core.gillespy2.Model attribute)
                            • -
                            • Tyson2StateOscillator (class in gillespy2.example_models) -
                            • U

                                -
                              • update_namespace() (gillespy2.core.gillespy2.Model method), [1] +
                              • update_namespace() (gillespy2.core.gillespy2.Model method)
                                • (gillespy2.core.Model method) @@ -1653,18 +1711,20 @@

                                  U

                                  V

                                    -
                                  • validate_reactants_and_products() (gillespy2.core.gillespy2.Model method), [1] +
                                  • validate_reactants_and_products() (gillespy2.core.gillespy2.Model method)
                                  • +
                                  • ValidationError, [1] +
                                  • value (gillespy2.core.events.EventTrigger attribute)
                                    • (gillespy2.core.EventTrigger attribute)
                                    • -
                                    • (gillespy2.core.gillespy2.Parameter attribute), [1] +
                                    • (gillespy2.core.gillespy2.Parameter attribute)
                                    • (gillespy2.core.Parameter attribute)
                                    • @@ -1678,9 +1738,9 @@

                                      V

                                    • (gillespy2.core.events.EventAssignment attribute)
                                    • -
                                    • (gillespy2.core.gillespy2.AssignmentRule attribute), [1] +
                                    • (gillespy2.core.gillespy2.AssignmentRule attribute)
                                    • -
                                    • (gillespy2.core.gillespy2.RateRule attribute), [1] +
                                    • (gillespy2.core.gillespy2.RateRule attribute)
                                    • (gillespy2.core.RateRule attribute)
                                    • @@ -1690,16 +1750,18 @@

                                      V

                                    • variables (gillespy2.core.FunctionDefinition attribute)
                                    • -
                                    • verify() (gillespy2.core.gillespy2.Reaction method), [1] +
                                    • VariableSSACSolver (class in gillespy2.solvers.cpp.variable_ssa_c_solver) +
                                    • +
                                    • verify() (gillespy2.core.gillespy2.Reaction method)
                                    • -
                                    • volume (gillespy2.core.gillespy2.Model attribute), [1] +
                                    • volume (gillespy2.core.gillespy2.Model attribute)
                                      • (gillespy2.core.Model attribute) @@ -1711,10 +1773,10 @@

                                        V

                                        X

                                        @@ -1723,10 +1785,10 @@

                                        X

                                        Y

                                        diff --git a/docs/build/html/getting_started/basic_usage/basic_usage.html b/docs/build/html/getting_started/basic_usage/basic_usage.html index d9e3401c2..ea41b0034 100644 --- a/docs/build/html/getting_started/basic_usage/basic_usage.html +++ b/docs/build/html/getting_started/basic_usage/basic_usage.html @@ -4,7 +4,7 @@ - Basic usage — GillesPy2 1.3.0 documentation + Basic usage — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/getting_started/installation/installation.html b/docs/build/html/getting_started/installation/installation.html index 8ac97ddb7..30a5c9678 100644 --- a/docs/build/html/getting_started/installation/installation.html +++ b/docs/build/html/getting_started/installation/installation.html @@ -4,7 +4,7 @@ - Installation — GillesPy2 1.3.0 documentation + Installation — GillesPy2 1.4.0 documentation @@ -16,7 +16,7 @@ - + @@ -70,7 +70,7 @@

                                        Navigation

                                        Related Topics

                                        @@ -134,7 +134,7 @@

                                        Alternative methods: using the code repositoryDocumentation for GillesPy2 1.3.0 + Documentation for GillesPy2 1.4.0
                                      • Basic usage diff --git a/docs/build/html/index.html b/docs/build/html/index.html index 2d5da8bfc..d4e30104c 100644 --- a/docs/build/html/index.html +++ b/docs/build/html/index.html @@ -4,7 +4,7 @@ - Documentation for GillesPy2 1.3.0 — GillesPy2 1.3.0 documentation + Documentation for GillesPy2 1.4.0 — GillesPy2 1.4.0 documentation @@ -100,7 +100,7 @@

                                        Quick search

                                        -

                                        Documentation for GillesPy2 1.3.0

                                        +

                                        Documentation for GillesPy2 1.4.0

                                        GillesPy2 is an open-source Python package for stochastic simulation of biochemical systems. It offers an object-oriented approach for creating mathematical models of biological systems, as well as a variety of methods for performing time simulation of those models. The methods include the Gillespie direct method (SSA), several variant stochastic simulation methods including tau leaping, and numerical integration of ODEs. The solvers support a variety of user environments, with optimized code for C++, Cython, and NumPy. Models can also be read from files in SBML format.

                                        Getting a copy of GillesPy2

                                        @@ -135,8 +135,6 @@

                                        Documentationgillespy2.solvers package

                                      • -
                                      • Submodules
                                      • -
                                      • gillespy2.example_models module
                                      • Module contents
                                      • diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv index ae24e9b65..825ce9229 100644 Binary files a/docs/build/html/objects.inv and b/docs/build/html/objects.inv differ diff --git a/docs/build/html/py-modindex.html b/docs/build/html/py-modindex.html index 65176425f..ce8a01f6c 100644 --- a/docs/build/html/py-modindex.html +++ b/docs/build/html/py-modindex.html @@ -4,7 +4,7 @@ - Python Module Index — GillesPy2 1.3.0 documentation + Python Module Index — GillesPy2 1.4.0 documentation @@ -147,11 +147,6 @@

                                        Python Module Index

                                        - - - diff --git a/docs/build/html/search.html b/docs/build/html/search.html index cf29bac2e..4e305a7b2 100644 --- a/docs/build/html/search.html +++ b/docs/build/html/search.html @@ -4,7 +4,7 @@ - Search — GillesPy2 1.3.0 documentation + Search — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js index a417461a4..0ba312659 100644 --- a/docs/build/html/searchindex.js +++ b/docs/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["classes/gillespy2","classes/gillespy2.core","classes/gillespy2.sbml","classes/gillespy2.solvers","classes/gillespy2.solvers.auto","classes/gillespy2.solvers.cpp","classes/gillespy2.solvers.cython","classes/gillespy2.solvers.numpy","classes/gillespy2.solvers.stochkit","getting_started/basic_usage/basic_usage","getting_started/installation/installation","index","tutorials/tut_michaelis_menten/tut_michaelis_menten","tutorials/tut_sbml/tut_sbml","tutorials/tut_toggle_switch/tut_toggle_switch"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["classes/gillespy2.rst","classes/gillespy2.core.rst","classes/gillespy2.sbml.rst","classes/gillespy2.solvers.rst","classes/gillespy2.solvers.auto.rst","classes/gillespy2.solvers.cpp.rst","classes/gillespy2.solvers.cython.rst","classes/gillespy2.solvers.numpy.rst","classes/gillespy2.solvers.stochkit.rst","getting_started/basic_usage/basic_usage.rst","getting_started/installation/installation.rst","index.rst","tutorials/tut_michaelis_menten/tut_michaelis_menten.rst","tutorials/tut_sbml/tut_sbml.rst","tutorials/tut_toggle_switch/tut_toggle_switch.rst"],objects:{"":{gillespy2:[0,0,0,"-"]},"gillespy2.core":{AssignmentRule:[1,1,1,""],BuildError:[1,4,1,""],DirectoryError:[1,4,1,""],EnsembleResults:[1,1,1,""],Event:[1,1,1,""],EventAssignment:[1,1,1,""],EventError:[1,4,1,""],EventTrigger:[1,1,1,""],ExecutionError:[1,4,1,""],FunctionDefinition:[1,1,1,""],GillesPySolver:[1,1,1,""],InvalidModelError:[1,4,1,""],InvalidStochMLError:[1,4,1,""],Model:[1,1,1,""],ModelError:[1,4,1,""],OrderedDict:[1,1,1,""],Parameter:[1,1,1,""],ParameterError:[1,4,1,""],RateRule:[1,1,1,""],Reaction:[1,1,1,""],ReactionError:[1,4,1,""],Results:[1,1,1,""],SimulationError:[1,4,1,""],SimulationTimeoutError:[1,4,1,""],SolverError:[1,4,1,""],Species:[1,1,1,""],SpeciesError:[1,4,1,""],StochMLDocument:[1,1,1,""],StochMLImportError:[1,4,1,""],contextmanager:[1,5,1,""],events:[1,0,0,"-"],filename:[1,2,1,""],gillespy2:[1,0,0,"-"],gillespyError:[1,0,0,"-"],gillespySolver:[1,0,0,"-"],gillespy_model:[1,2,1,""],import_SBML:[1,5,1,""],name:[1,2,1,""],results:[1,0,0,"-"]},"gillespy2.core.AssignmentRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.EnsembleResults":{average_ensemble:[1,3,1,""],data:[1,2,1,""],figsize:[1,2,1,""],included_species_list:[1,2,1,""],multiple_graphs:[1,2,1,""],plot:[1,3,1,""],plot_std_dev_range:[1,3,1,""],plotplotly:[1,3,1,""],plotplotly_std_dev_range:[1,3,1,""],return_plotly_figure:[1,2,1,""],save_png:[1,2,1,""],stddev_ensemble:[1,3,1,""],title:[1,2,1,""],to_csv:[1,3,1,""],xaxis_label:[1,2,1,""],yaxis_label:[1,2,1,""]},"gillespy2.core.Event":{add_assignment:[1,3,1,""],assignment:[1,2,1,""],assignments:[1,2,1,""],delay:[1,2,1,""],name:[1,2,1,""],priority:[1,2,1,""],trigger:[1,2,1,""],use_values_from_trigger_time:[1,2,1,""]},"gillespy2.core.EventAssignment":{expression:[1,2,1,""],variable:[1,2,1,""]},"gillespy2.core.EventTrigger":{expression:[1,2,1,""],persistent:[1,2,1,""],sanitized_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.FunctionDefinition":{"function":[1,2,1,""],name:[1,2,1,""],sanitized_function:[1,3,1,""],variables:[1,2,1,""]},"gillespy2.core.GillesPySolver":{debug:[1,2,1,""],increment:[1,2,1,""],model:[1,2,1,""],name:[1,2,1,""],number_of_trajectories:[1,2,1,""],run:[1,3,1,""],seed:[1,2,1,""],show_labels:[1,2,1,""],t:[1,2,1,""]},"gillespy2.core.Model":{add_assignment_rule:[1,3,1,""],add_event:[1,3,1,""],add_function_definition:[1,3,1,""],add_parameter:[1,3,1,""],add_rate_rule:[1,3,1,""],add_reaction:[1,3,1,""],add_species:[1,3,1,""],annotation:[1,2,1,""],delete_all_parameters:[1,3,1,""],delete_all_reactions:[1,3,1,""],delete_all_species:[1,3,1,""],delete_parameter:[1,3,1,""],delete_reaction:[1,3,1,""],delete_species:[1,3,1,""],event:[1,2,1,""],expression:[1,2,1,""],get_all_parameters:[1,3,1,""],get_all_reactions:[1,3,1,""],get_all_species:[1,3,1,""],get_parameter:[1,3,1,""],get_reaction:[1,3,1,""],get_species:[1,3,1,""],name:[1,2,1,""],obj:[1,2,1,""],p_name:[1,2,1,""],population:[1,2,1,""],problem_with_name:[1,3,1,""],reserved_names:[1,2,1,""],resolve_parameters:[1,3,1,""],run:[1,3,1,""],s_name:[1,2,1,""],sanitized_parameter_names:[1,3,1,""],sanitized_species_names:[1,3,1,""],serialize:[1,3,1,""],set_parameter:[1,3,1,""],set_units:[1,3,1,""],solver:[1,2,1,""],solver_args:[1,2,1,""],special_characters:[1,2,1,""],timeout:[1,2,1,""],timespan:[1,3,1,""],tspan:[1,2,1,""],units:[1,2,1,""],update_namespace:[1,3,1,""],validate_reactants_and_products:[1,3,1,""],volume:[1,2,1,""]},"gillespy2.core.OrderedDict":{clear:[1,3,1,""],copy:[1,3,1,""],fromkeys:[1,3,1,""],items:[1,3,1,""],keys:[1,3,1,""],move_to_end:[1,3,1,""],pop:[1,3,1,""],popitem:[1,3,1,""],setdefault:[1,3,1,""],update:[1,3,1,""],values:[1,3,1,""]},"gillespy2.core.Parameter":{evaluate:[1,3,1,""],expression:[1,2,1,""],name:[1,2,1,""],namespace:[1,2,1,""],set_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.RateRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.Reaction":{Annotate:[1,3,1,""],S:[1,2,1,""],addProduct:[1,3,1,""],addReactant:[1,3,1,""],annotation:[1,2,1,""],massaction:[1,2,1,""],name:[1,2,1,""],products:[1,2,1,""],propensity_function:[1,2,1,""],rate:[1,2,1,""],reactants:[1,2,1,""],rxntype:[1,2,1,""],sanitized_propensity_function:[1,3,1,""],setType:[1,3,1,""],stoichiometry:[1,2,1,""],verify:[1,3,1,""]},"gillespy2.core.Results":{data:[1,2,1,""],plot:[1,3,1,""],plotplotly:[1,3,1,""],to_csv:[1,3,1,""]},"gillespy2.core.Species":{allow_negative_populations:[1,2,1,""],boundary_condition:[1,2,1,""],constant:[1,2,1,""],initial_value:[1,2,1,""],mode:[1,2,1,""],name:[1,2,1,""],switch_min:[1,2,1,""],switch_tol:[1,2,1,""]},"gillespy2.core.StochMLDocument":{from_file:[1,3,1,""],from_model:[1,3,1,""],from_string:[1,3,1,""],to_model:[1,3,1,""],to_string:[1,3,1,""]},"gillespy2.core.events":{Event:[1,1,1,""],EventAssignment:[1,1,1,""],EventTrigger:[1,1,1,""]},"gillespy2.core.events.Event":{add_assignment:[1,3,1,""],assignment:[1,2,1,""],assignments:[1,2,1,""],delay:[1,2,1,""],name:[1,2,1,""],priority:[1,2,1,""],trigger:[1,2,1,""],use_values_from_trigger_time:[1,2,1,""]},"gillespy2.core.events.EventAssignment":{expression:[1,2,1,""],variable:[1,2,1,""]},"gillespy2.core.events.EventTrigger":{expression:[1,2,1,""],persistent:[1,2,1,""],sanitized_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.gillespy2":{AssignmentRule:[1,1,1,""],FunctionDefinition:[1,1,1,""],Model:[1,1,1,""],Parameter:[1,1,1,""],RateRule:[1,1,1,""],Reaction:[1,1,1,""],SortableObject:[1,1,1,""],Species:[1,1,1,""],StochMLDocument:[1,1,1,""],filename:[1,2,1,""],gillespy_model:[1,2,1,""],import_SBML:[1,5,1,""],name:[1,2,1,""]},"gillespy2.core.gillespy2.AssignmentRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.gillespy2.FunctionDefinition":{"function":[1,2,1,""],name:[1,2,1,""],sanitized_function:[1,3,1,""],variables:[1,2,1,""]},"gillespy2.core.gillespy2.Model":{add_assignment_rule:[1,3,1,""],add_event:[1,3,1,""],add_function_definition:[1,3,1,""],add_parameter:[1,3,1,""],add_rate_rule:[1,3,1,""],add_reaction:[1,3,1,""],add_species:[1,3,1,""],annotation:[1,2,1,""],delete_all_parameters:[1,3,1,""],delete_all_reactions:[1,3,1,""],delete_all_species:[1,3,1,""],delete_parameter:[1,3,1,""],delete_reaction:[1,3,1,""],delete_species:[1,3,1,""],event:[1,2,1,""],expression:[1,2,1,""],get_all_parameters:[1,3,1,""],get_all_reactions:[1,3,1,""],get_all_species:[1,3,1,""],get_parameter:[1,3,1,""],get_reaction:[1,3,1,""],get_species:[1,3,1,""],name:[1,2,1,""],obj:[1,2,1,""],p_name:[1,2,1,""],population:[1,2,1,""],problem_with_name:[1,3,1,""],reserved_names:[1,2,1,""],resolve_parameters:[1,3,1,""],run:[1,3,1,""],s_name:[1,2,1,""],sanitized_parameter_names:[1,3,1,""],sanitized_species_names:[1,3,1,""],serialize:[1,3,1,""],set_parameter:[1,3,1,""],set_units:[1,3,1,""],solver:[1,2,1,""],solver_args:[1,2,1,""],special_characters:[1,2,1,""],timeout:[1,2,1,""],timespan:[1,3,1,""],tspan:[1,2,1,""],units:[1,2,1,""],update_namespace:[1,3,1,""],validate_reactants_and_products:[1,3,1,""],volume:[1,2,1,""]},"gillespy2.core.gillespy2.Parameter":{evaluate:[1,3,1,""],expression:[1,2,1,""],name:[1,2,1,""],namespace:[1,2,1,""],set_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.gillespy2.RateRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.gillespy2.Reaction":{Annotate:[1,3,1,""],S:[1,2,1,""],addProduct:[1,3,1,""],addReactant:[1,3,1,""],annotation:[1,2,1,""],massaction:[1,2,1,""],name:[1,2,1,""],products:[1,2,1,""],propensity_function:[1,2,1,""],rate:[1,2,1,""],reactants:[1,2,1,""],rxntype:[1,2,1,""],sanitized_propensity_function:[1,3,1,""],setType:[1,3,1,""],stoichiometry:[1,2,1,""],verify:[1,3,1,""]},"gillespy2.core.gillespy2.Species":{allow_negative_populations:[1,2,1,""],boundary_condition:[1,2,1,""],constant:[1,2,1,""],initial_value:[1,2,1,""],mode:[1,2,1,""],name:[1,2,1,""],switch_min:[1,2,1,""],switch_tol:[1,2,1,""]},"gillespy2.core.gillespy2.StochMLDocument":{from_file:[1,3,1,""],from_model:[1,3,1,""],from_string:[1,3,1,""],to_model:[1,3,1,""],to_string:[1,3,1,""]},"gillespy2.core.gillespyError":{BuildError:[1,4,1,""],DirectoryError:[1,4,1,""],EventError:[1,4,1,""],ExecutionError:[1,4,1,""],InvalidModelError:[1,4,1,""],InvalidStochMLError:[1,4,1,""],ModelError:[1,4,1,""],ParameterError:[1,4,1,""],ReactionError:[1,4,1,""],SimulationError:[1,4,1,""],SimulationTimeoutError:[1,4,1,""],SolverError:[1,4,1,""],SpeciesError:[1,4,1,""],StochMLImportError:[1,4,1,""]},"gillespy2.core.gillespySolver":{GillesPySolver:[1,1,1,""]},"gillespy2.core.gillespySolver.GillesPySolver":{debug:[1,2,1,""],increment:[1,2,1,""],model:[1,2,1,""],name:[1,2,1,""],number_of_trajectories:[1,2,1,""],run:[1,3,1,""],seed:[1,2,1,""],show_labels:[1,2,1,""],t:[1,2,1,""]},"gillespy2.core.results":{EnsembleResults:[1,1,1,""],Results:[1,1,1,""]},"gillespy2.core.results.EnsembleResults":{average_ensemble:[1,3,1,""],data:[1,2,1,""],figsize:[1,2,1,""],included_species_list:[1,2,1,""],multiple_graphs:[1,2,1,""],plot:[1,3,1,""],plot_std_dev_range:[1,3,1,""],plotplotly:[1,3,1,""],plotplotly_std_dev_range:[1,3,1,""],return_plotly_figure:[1,2,1,""],save_png:[1,2,1,""],stddev_ensemble:[1,3,1,""],title:[1,2,1,""],to_csv:[1,3,1,""],xaxis_label:[1,2,1,""],yaxis_label:[1,2,1,""]},"gillespy2.core.results.Results":{data:[1,2,1,""],plot:[1,3,1,""],plotplotly:[1,3,1,""],to_csv:[1,3,1,""]},"gillespy2.example_models":{Example:[0,1,1,""],LacOperon:[0,1,1,""],MichaelisMenten:[0,1,1,""],Oregonator:[0,1,1,""],Schlogl:[0,1,1,""],ToggleSwitch:[0,1,1,""],Trichloroethylene:[0,1,1,""],Tyson2StateOscillator:[0,1,1,""]},"gillespy2.sbml":{SBMLimport:[2,0,0,"-"]},"gillespy2.sbml.SBMLimport":{convert:[2,5,1,""],piecewise:[2,5,1,""],traverse_math:[2,5,1,""]},"gillespy2.solvers":{auto:[4,0,0,"-"],cpp:[5,0,0,"-"],cython:[6,0,0,"-"],numpy:[7,0,0,"-"],stochkit:[8,0,0,"-"]},"gillespy2.solvers.auto":{SSASolver:[4,2,1,""],get_best_ssa_solver:[4,5,1,""],ssa_solver:[4,0,0,"-"]},"gillespy2.solvers.auto.ssa_solver":{SSASolver:[4,2,1,""],get_best_ssa_solver:[4,5,1,""]},"gillespy2.solvers.cpp":{SSACSolver:[5,1,1,""],ssa_c_solver:[5,0,0,"-"]},"gillespy2.solvers.cpp.SSACSolver":{name:[5,2,1,""],run:[5,3,1,""]},"gillespy2.solvers.cpp.ssa_c_solver":{SSACSolver:[5,1,1,""]},"gillespy2.solvers.cpp.ssa_c_solver.SSACSolver":{name:[5,2,1,""],run:[5,3,1,""]},"gillespy2.solvers.cython":{CythonSSASolver:[6,1,1,""],cython_ssa_solver:[6,0,0,"-"]},"gillespy2.solvers.cython.CythonSSASolver":{interrupted:[6,2,1,""],name:[6,2,1,""],rc:[6,2,1,""],run:[6,3,1,""]},"gillespy2.solvers.cython.cython_ssa_solver":{CythonSSASolver:[6,1,1,""],convert_infix_prefix:[6,5,1,""]},"gillespy2.solvers.cython.cython_ssa_solver.CythonSSASolver":{interrupted:[6,2,1,""],name:[6,2,1,""],rc:[6,2,1,""],run:[6,3,1,""]},"gillespy2.solvers.numpy":{BasicODESolver:[7,1,1,""],BasicTauHybridSolver:[7,1,1,""],BasicTauLeapingSolver:[7,1,1,""],NumPySSASolver:[7,1,1,""],Tau:[7,0,0,"-"],basic_ode_solver:[7,0,0,"-"],basic_tau_hybrid_solver:[7,0,0,"-"],basic_tau_hybrid_v2:[7,0,0,"-"],basic_tau_leaping_solver:[7,0,0,"-"],just_in_cases:[7,0,0,"-"],ssa_solver:[7,0,0,"-"]},"gillespy2.solvers.numpy.BasicODESolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.numpy.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],interrupted:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],t:[7,2,1,""],tau_tol:[7,2,1,""]},"gillespy2.solvers.numpy.BasicTauLeapingSolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.numpy.NumPySSASolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.numpy.Tau":{initialize:[7,5,1,""],select:[7,5,1,""]},"gillespy2.solvers.numpy.basic_ode_solver":{BasicODESolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_ode_solver.BasicODESolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_solver":{BasicTauHybridSolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],interrupted:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],t:[7,2,1,""],tau_tol:[7,2,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_v2":{BasicTauHybridSolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_v2.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],interrupted:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],t:[7,2,1,""]},"gillespy2.solvers.numpy.basic_tau_leaping_solver":{BasicTauLeapingSolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_tau_leaping_solver.BasicTauLeapingSolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.numpy.just_in_cases":{BasicTauHybridSolver:[7,1,1,""]},"gillespy2.solvers.numpy.just_in_cases.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],find_event_time:[7,3,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],interrupted:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],switch_tol:[7,2,1,""],t:[7,2,1,""]},"gillespy2.solvers.numpy.ssa_solver":{NumPySSASolver:[7,1,1,""]},"gillespy2.solvers.numpy.ssa_solver.NumPySSASolver":{interrupted:[7,2,1,""],name:[7,2,1,""],rc:[7,2,1,""],run:[7,3,1,""]},"gillespy2.solvers.stochkit":{StochKitODESolver:[8,1,1,""],StochKitSolver:[8,1,1,""],stochkit_solvers:[8,0,0,"-"]},"gillespy2.solvers.stochkit.StochKitODESolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.StochKitSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],method:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers":{StochKitBaseSolver:[8,1,1,""],StochKitODESolver:[8,1,1,""],StochKitSolver:[8,1,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitBaseSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],extra_args:[8,2,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],label_trajectories:[8,3,1,""],locate_executable:[8,3,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],process_seed:[8,3,1,""],run:[8,3,1,""],seed:[8,2,1,""],show_labels:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitODESolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],method:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},gillespy2:{core:[1,0,0,"-"],example_models:[0,0,0,"-"],sbml:[2,0,0,"-"],solvers:[3,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","attribute","Python attribute"],"3":["py","method","Python method"],"4":["py","exception","Python exception"],"5":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:attribute","3":"py:method","4":"py:exception","5":"py:function"},terms:{"124d4109c":7,"2006jchph":7,"2r01eb014877":11,"abstract":[1,8,9],"boolean":1,"break":9,"case":[0,1],"class":[0,1,5,6,7,8,9,14],"default":[1,7,8],"export":1,"final":[1,10],"float":[1,7,8],"function":[1,7,8],"import":[1,9,14],"int":[1,7,8],"new":[1,9],"public":[11,14],"return":[1,7,8,9],"short":[9,11],"static":8,"super":9,"switch":[0,1,7,9,14],"true":[1,4,5,6,7,8],"try":1,And:14,FOR:1,For:[1,7,9],NOT:[1,8],ODE:[7,11],ODEs:11,The:[1,7,8,9,11,14],There:[1,9],USE:1,Use:[1,7,8],Using:10,WITH:1,With:9,__init__:[9,14],abl:10,about:[1,7,8],abov:[9,14],accur:14,accuraci:[7,9],achiev:9,act:1,action:[0,1],add:1,add_assign:1,add_assignment_rul:1,add_ev:1,add_function_definit:1,add_paramet:[1,9,14],add_rate_rul:1,add_react:[1,9,14],add_speci:[1,9,14],added:1,addit:[1,7,8,9],addproduct:1,addreact:1,after:1,again:14,algorithm:[1,7,8,9],alia:4,all:[1,9,14],allow:[1,14],allow_negative_popul:1,along:7,alpha1:14,alpha2:14,alreadi:[1,8],also:[1,9,11],altern:9,alwai:7,ani:[8,11,14],annot:1,anoth:9,apart:9,api:11,approach:11,appropri:14,arg:[1,2],argument:[1,7,8,9,14],arrai:[1,7,9],assign:1,assignment_express:1,assignment_rul:1,assignmentrul:1,associ:1,assum:[1,14],atol:7,attempt:1,attribut:1,author:11,auto:[0,3],automat:[1,8,9],automaticswitchexampl:9,avail:[8,11],average_ensembl:1,axi:1,back:9,base:[0,1,5,6,7,8,14],basic:[7,11,14],basic_ode_solv:[0,3,14],basic_tau_hybrid:7,basic_tau_hybrid_solv:[0,3,9],basic_tau_hybrid_v2:[0,3],basic_tau_leaping_solv:[0,3],basicodesolv:[7,14],basictauhybridonli:1,basictauhybridsolv:[1,7,9],basictauleapingsolv:7,bdf:7,becaus:14,befor:1,begin:[1,14],being:1,below:1,best:[9,14],beta:14,between:[1,7,9],bf01379769:0,bibcod:7,binari:7,biochem:[0,1,9,11,14],bioinformat:0,biolog:11,biologi:0,biomolecul:14,bodi:1,bool:[1,7,8],both:[1,14],bound:7,boundary_condit:1,brian:11,builderror:1,calcul:[1,7],call:[1,5,6,7,8,9],can:[1,9,10,11,14],cannot:1,cao:[0,7],captur:14,care:1,caus:1,caution:1,cellular:14,chang:[1,7],channel:0,characterist:[9,14],check:1,chemic:[0,1,7,8],choos:8,chosen:[1,8],classmethod:[1,6,7,8],cleanup:1,clear:1,clone:10,code:[9,11,14],coli:[0,14],collect:[1,5,6,8],com:10,combin:9,come:9,command:[9,10],compar:[1,14],compart:1,compon:[1,9,14],comput:[0,10],concentr:[1,14],condit:[1,7],configur:1,consid:1,constant:[1,9],construct:0,consum:1,contact:11,contain:[1,7,9],content:11,contextmanag:1,continu:[1,7,9,11,14],convers:1,convert:[1,2],convert_infix_prefix:6,copi:[1,10],core:[0,5,6,7,8,11],correspond:1,cpp:[0,3,4],creat:[1,9,11],creation:9,csv:1,current:[1,9],custom:[1,9],cython:[0,3,11],cython_ssa_solv:[0,3],cythonssasolv:6,d_result:14,data:[1,7,9],ddof:1,debug:[1,5,6,7,8],decai:9,decor:1,def:[1,9,14],defin:[1,9,14],definit:[9,14],degrad:0,degre:1,delai:1,delet:1,delete_all_paramet:1,delete_all_react:1,delete_all_speci:1,delete_directori:5,delete_paramet:1,delete_react:1,delete_speci:1,delta:1,demonstr:[9,14],depend:1,depict:1,deprec:6,depth:7,deriv:8,describ:[1,7],descript:1,deseri:1,design:[1,9],desir:[1,8],detail:[7,8],detect:[1,7],determin:1,determinist:[1,7,9,14],develop:11,deviat:1,dict:1,dictionari:[1,7,9],differ:10,differenti:14,dimer:9,direct:[7,11],directli:[1,10,11],directori:[1,9],directoryerror:1,discret:1,disk:1,displai:1,dissoci:9,divisor:1,doc:7,document:[1,8],doe:1,doi:[0,7],dop835:7,dopri5:7,drawert:11,dure:1,dynam:[1,9,14],each:[1,7,8,9],edit:1,effici:[7,9],either:1,element:1,end:[1,7,8,9],ensembl:1,ensemble_result:1,ensembleresult:1,entiti:1,entri:7,environ:[1,11],epsilon:7,equat:[1,7,8,9,14],equilibrium:0,equival:1,error:[1,7],escherichia:[0,14],estim:1,etc:1,evalu:1,evenli:1,event:[0,7],event_sensit:7,eventassign:1,eventerror:1,eventtrigg:1,exampl:[0,1,7],example_model:11,except:1,execut:[1,9],executionerror:1,exisit:1,exist:1,express:[1,9,14],extend:1,extra:8,extra_arg:8,facil:[9,14],fail:14,failur:1,fals:[1,4,5,6,7,8,14],fasl:7,fast:1,fcn:1,few:9,fifo:1,figsiz:[1,9],figur:[1,9],file:[1,9,11],filenam:[1,2],filepath:1,fill:11,find:[7,11],find_event_tim:7,fire:1,first:[9,10,14],flatten:1,follow:[1,9,10,14],form:[1,7,9,11],format:[1,9,11],formul:14,formula:1,forthcom:[12,13],found:[1,11],freedom:1,from:[0,1,8,9,10,11,14],from_fil:1,from_model:1,from_str:1,fromkei:1,frommodel:1,func:1,function_definit:1,functiondefinit:1,fund:11,further:1,gamma:14,gardner:[0,14],gener:[1,7,8,11],genet:[0,14],get:[1,10],get_all_paramet:1,get_all_react:1,get_all_speci:1,get_best_ssa_solv:4,get_paramet:1,get_react:1,get_speci:1,get_trajectori:8,gillespi:[1,7,8,11],gillespy2:[10,14],gillespy_model:[1,2],gillespyerror:0,gillespysolv:[0,5,6,7,8],git:10,github:[10,11],given:[1,7,8,9,14],gnu:11,grant:11,graph:1,graphic:9,greater:[1,9],greatli:7,handbook:0,handler:1,has:[1,9,11],have:[1,7,9,14],heath:0,height:1,helper:7,here:[0,1,14],high:[9,14],homogen:14,how:1,html:7,http:[7,10],hybrid:9,identifi:1,igem:0,immedi:1,implement:7,import_sbml:1,improv:[7,9],includ:[1,7,11,14],included_species_list:1,increment:[1,5,6,7,8],independ:1,index:[1,7,8,9,11],info:1,inform:[1,7,8],inherit:[1,7],initail:7,initi:[1,7,9,14],initial_valu:[1,9,14],input:1,insert:1,inspect:7,instal:[8,11],instanc:9,instanti:[1,9,14],instead:1,instruct:10,integr:[7,11],integrator_opt:7,intend:1,interact:1,interan:1,interchang:7,intern:1,interpret:[7,10],interrupt:[6,7],intial:1,invalidmodelerror:1,invalidstochmlerror:1,invok:[9,14],involv:1,issu:11,item:1,iter:1,its:1,job_id:8,journal:7,jupyt:1,just_in_cas:[0,3],k_c:9,k_d:9,kei:[1,7,9],keyerror:1,keyword:[9,14],known:9,kwarg:[1,5,6,7,8],label:[1,8,9,14],label_trajectori:8,lack:1,lacoperon:0,larger:7,last:1,later:1,latest:11,layout:1,leap:[7,11],legend:[1,9,14],let:[9,14],level:[1,7],licens:11,lifo:1,like:[1,9],limit:14,linspac:[9,14],linux:10,list:[1,7,9],littl:7,loc:[9,14],locat:[1,7],locate_execut:8,look:9,low:9,lower:9,lsoda:7,maco:10,made:[1,7],mai:[1,8],main:11,make:[1,14],manag:10,mani:9,map:1,mass:[0,1],massact:1,master:[1,7,8],math:1,mathemat:[1,11],matplotlib:[1,9,14],matter:1,max_step:7,mdoel:1,mean:[1,9],metabol:0,method:[1,7,8,9,11,14],michaelismenten:0,minimum:1,mix:1,mode:1,model:[0,1,5,6,7,8,9,11,14],model_nam:2,modelerror:1,modifi:1,modul:11,molecul:9,molecular:[9,14],monom:9,more:[1,7,9],move:1,move_to_end:1,multipl:[1,7],multiple_graph:1,must:1,name:[1,5,6,7,8,9,14],namespac:1,nametag:1,nativ:1,natur:[0,14],nbsp:9,ndarrai:1,ndash:9,need:[1,11,14],neg:1,nevertheless:14,new_id:2,next:14,nih:11,node:2,non:[0,1],none:[0,1,2,5,6,7,8,9,14],notat:1,note:1,notebook:1,noth:1,novak:0,now:14,number:[1,7,8,9],number_of_trajectori:[1,5,6,7,8,9],numer:11,numpi:[0,1,3,9,11,14],numpyssasolv:7,obj:1,object:[1,7,8,9,11,14],ode:7,off:7,offer:[9,11],often:14,old_id:2,omit_cpp:4,omit_cython:4,omit_numpi:4,one:[1,9],onli:[1,7],open:11,oper:[1,7,8,10],optim:11,option:[1,7,8],order:1,ordereddict:1,ordinari:14,oregon:0,org:7,orient:[9,11],oscil:0,other:1,otherwis:1,our:[9,11,14],out:[1,5,6,8,11],out_dir:8,output:1,output_directori:5,over:[7,9],overal:9,overlap:1,overwritten:8,own:1,p_name:1,packag:[10,11,14],page:11,pair:[1,7],param:[1,7],paramet:[1,7,9,14],parameter_map:1,parameter_valu:[0,9,14],parametererror:1,paramt:1,parent:[1,9,14],part:1,pass:[1,7,9],path:[1,8],pdf:7,perform:[1,7,11,14],persist:1,petzold:7,phase:0,physic:7,physik:0,piecewis:2,pip:10,pleas:11,plot:[1,7,9,14],plot_std_dev_rang:1,plotli:1,plotplotli:1,plotplotly_std_dev_rang:1,plt:[9,14],pmid:7,pname:1,png:1,point:[7,9],pop:1,popitem:1,popul:[1,9],posit:[1,7,8],pow:14,precis:7,present:1,print:1,prior:1,prioriti:1,problem:[0,11],problem_with_nam:1,process:[8,9,14],process_se:8,produc:[7,9],product:[1,9,14],profil:[1,5,6,7,8],project:11,propens:[1,7],propensity_funct:[1,14],properli:1,prove:11,provid:[1,7,8,9],pypi:11,pyplot:[9,14],python3:10,python:[1,7,9,10,11,14],question:11,r_c:9,r_creation:9,r_d:9,r_dissoci:9,radau:7,rais:1,random:[1,7,8,9],rang:9,rate:[1,9,14],rate_rul:1,raterul:1,rather:[1,7,8],react:9,reactant:[1,9,14],reaction:[0,1,7,9,14],reactionerror:1,read:[1,11],record:7,recurs:10,reduc:1,refer:[1,7,9,11],referenc:1,regist:11,registr:11,rel:7,releas:6,rememb:1,remov:1,report:11,repres:[1,9,14],represent:[1,9],requir:1,reserved_nam:1,resolv:1,resolve_paramet:1,resolveparamt:1,respect:9,rest:14,restrict:1,result:[0,5,6,7,8,9,14],return_plotly_figur:1,revers:9,rk23:7,rk45:7,rname:1,root:[7,9],rtol:7,rule:1,run:[0,1,5,6,7,8,9,14],rxntype:1,s_name:1,s_result:14,same:[1,7,9,14],sampl:[1,7,8,9],sanitized_express:1,sanitized_formula:1,sanitized_funct:1,sanitized_parameter_nam:1,sanitized_propensity_funct:1,sanitized_species_nam:1,save:[1,7],save_png:1,sbml:[0,1,9,11],sbmlimport:0,scalar:1,schlogl:0,scipi:7,script:14,search:[7,11],second:1,see:[1,7,8],seed:[1,5,6,7,8,9],select:7,self:[1,9,14],sent:1,separ:1,serial:1,serializi:1,set:[1,7,8,9],set_express:1,set_paramet:1,set_unit:1,setdefault:1,settyp:1,setup:1,sever:11,shallow:1,shape:7,shell:10,should:[1,7,10],show_label:[1,5,6,7,8,14],show_legend:1,signal:1,simpl:[0,1],simplifi:1,simul:[0,1,7,8,9,11,14],simulationerror:1,simulationtimeouterror:1,simultan:7,singl:[1,7],situat:[9,14],size:[1,7],sol:7,sole:9,solut:[1,7,8],solv:[0,9],solve_ivp:7,solver:[0,1,11,14],solver_arg:1,solver_nam:1,solvererror:1,some:[9,14],some_gener:1,sortabl:1,sortableobject:1,sourc:[0,1,2,4,5,7,8,10,11],space:1,span:[1,9,14],spatial:14,speci:[0,1,7,8,9,14],special_charact:1,species_map:1,specieserror:1,specif:[1,8],specifi:1,springer:0,ssa:[1,7,8,11],ssa_c_solv:[0,3,4],ssa_solv:[0,3],ssacsolv:[4,5],ssasolv:4,stamp:1,standard:1,start:[1,7,11],state:[0,7],stddev_ensembl:1,step:[1,7,8,9],stochast:[0,1,7,9,11,14],stochkit2:[1,8],stochkit:[0,1,3],stochkit_hom:8,stochkit_od:8,stochkit_solv:[0,3],stochkitbasesolv:8,stochkitodesolv:8,stochkitsolv:8,stochml:1,stochmldocu:1,stochmlimporterror:1,stoichiometri:[1,9],store:7,str:[1,8],string:[1,7],structur:9,style:1,subarrai:9,subclass:[9,14],submodul:[3,11],subpackag:11,sucesss:1,suggest:11,suppli:9,support:[1,11],switch_min:1,switch_tol:[1,7],system:[0,1,7,9,10,11],tag:1,take:1,taken:7,target:1,tau:[0,3,11],tau_arg:7,tau_leap:8,tau_step_s:7,tau_tol:7,tauhybridsolv:1,term:[1,9],test:[0,1],than:[1,7,8],thei:1,thi:[0,1,6,7,8,9,11,14],those:[1,7,11],through:[1,8],thu:[9,14],time:[1,7,8,9,11,14],time_out:1,time_span:1,timelin:7,timeout:[1,5],timepoint:1,timespan:[1,9,14],timestamp:1,titl:[1,9,14],to_csv:1,to_model:1,to_str:1,todo:[1,5],togeth:9,toggl:[0,14],toggle_switch:14,toggleswitch:[0,14],toler:[1,7],toolkit:[0,1],tostr:1,trace:1,tracker:11,trade:7,traj_no:7,trajectori:[1,7,8,9],transcript:0,transit:[0,1],traverse_math:2,tree:10,trichloroethylen:0,trigger:1,tspan:1,tupl:1,tutori:11,two:[0,1,9,14],type:[1,7,8,9,10],typic:[1,7],tyson2stateoscil:0,tyson:0,uml_class_diagram:9,unca:0,undefin:1,under:11,understood:1,uniform:1,union:1,unit:1,updat:1,update_namespac:1,upgrad:10,upon:[1,8],usag:[1,11],use:[1,7,9,10,14],use_values_from_trigger_tim:1,used:[1,7,8],useful:14,user:[1,10,11],userdict:1,userlist:1,uses:[1,7,14],using:[1,7,11,14],usual:8,valid:1,validate_reactants_and_product:1,valu:[1,7,9,14],variabl:[1,9],variant:11,varieti:11,veri:7,verifi:1,version:[1,6,11],via:7,view:1,visual:9,vode:7,vol:1,volum:1,wai:9,well:[1,11,14],when:[1,9],where:[1,7,9],whether:1,which:[1,7,8,9],whose:1,width:1,window:10,within:[1,8,9,14],without:14,would:1,write:1,xaxis_label:1,xml:1,yaxis_label:1,yet:8,yield:[1,7],you:[1,10,11,14],your:10,zeitschrift:0,zvode:7},titles:["gillespy2 package","gillespy2.core package","gillespy2.sbml package","gillespy2.solvers package","gillespy2.solvers.auto package","gillespy2.solvers.cpp package","gillespy2.solvers.cython package","gillespy2.solvers.numpy package","gillespy2.solvers.stochkit package","Basic usage","Installation","Documentation for GillesPy2 1.3.0","Tutorial: using solvers","Tutorial: using SBML","Tutorial: ODE vs. SSA"],titleterms:{ODE:14,altern:10,auto:4,basic:9,basic_ode_solv:7,basic_tau_hybrid_solv:7,basic_tau_hybrid_v2:7,basic_tau_leaping_solv:7,code:10,content:[0,1,2,3,4,5,6,7,8],copi:11,core:1,cpp:5,cython:6,cython_ssa_solv:6,differ:9,document:11,event:1,exampl:9,example_model:0,get:11,gillespy2:[0,1,2,3,4,5,6,7,8,9,11],gillespyerror:1,gillespysolv:1,help:11,indic:11,instal:10,just_in_cas:7,method:10,modul:[0,1,2,3,4,5,6,7,8],numpi:7,packag:[0,1,2,3,4,5,6,7,8],prefer:10,pypi:10,repositori:10,result:1,sbml:[2,13],sbmlimport:2,select:9,simpl:9,solver:[3,4,5,6,7,8,9,12],ssa:14,ssa_c_solv:5,ssa_solv:[4,7],stochkit:8,stochkit_solv:8,submodul:[0,1,2,4,5,6,7,8],subpackag:[0,3],tabl:11,tau:7,tutori:[12,13,14],usag:9,using:[9,10,12,13]}}) \ No newline at end of file +Search.setIndex({docnames:["classes/gillespy2","classes/gillespy2.core","classes/gillespy2.sbml","classes/gillespy2.solvers","classes/gillespy2.solvers.auto","classes/gillespy2.solvers.cpp","classes/gillespy2.solvers.cython","classes/gillespy2.solvers.numpy","classes/gillespy2.solvers.stochkit","getting_started/basic_usage/basic_usage","getting_started/installation/installation","index","tutorials/tut_michaelis_menten/tut_michaelis_menten","tutorials/tut_sbml/tut_sbml","tutorials/tut_toggle_switch/tut_toggle_switch"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["classes/gillespy2.rst","classes/gillespy2.core.rst","classes/gillespy2.sbml.rst","classes/gillespy2.solvers.rst","classes/gillespy2.solvers.auto.rst","classes/gillespy2.solvers.cpp.rst","classes/gillespy2.solvers.cython.rst","classes/gillespy2.solvers.numpy.rst","classes/gillespy2.solvers.stochkit.rst","getting_started/basic_usage/basic_usage.rst","getting_started/installation/installation.rst","index.rst","tutorials/tut_michaelis_menten/tut_michaelis_menten.rst","tutorials/tut_sbml/tut_sbml.rst","tutorials/tut_toggle_switch/tut_toggle_switch.rst"],objects:{"":{gillespy2:[0,0,0,"-"]},"gillespy2.core":{AssignmentRule:[1,1,1,""],BuildError:[1,4,1,""],DirectoryError:[1,4,1,""],Event:[1,1,1,""],EventAssignment:[1,1,1,""],EventError:[1,4,1,""],EventTrigger:[1,1,1,""],ExecutionError:[1,4,1,""],FunctionDefinition:[1,1,1,""],GillesPySolver:[1,1,1,""],InvalidModelError:[1,4,1,""],InvalidStochMLError:[1,4,1,""],Model:[1,1,1,""],ModelError:[1,4,1,""],OrderedDict:[1,1,1,""],Parameter:[1,1,1,""],ParameterError:[1,4,1,""],RateRule:[1,1,1,""],Reaction:[1,1,1,""],ReactionError:[1,4,1,""],Results:[1,1,1,""],ResultsError:[1,4,1,""],SimulationError:[1,4,1,""],SimulationTimeoutError:[1,4,1,""],SolverError:[1,4,1,""],Species:[1,1,1,""],SpeciesError:[1,4,1,""],StochMLDocument:[1,1,1,""],StochMLImportError:[1,4,1,""],Trajectory:[1,1,1,""],ValidationError:[1,4,1,""],contextmanager:[1,5,1,""],events:[1,0,0,"-"],filename:[1,2,1,""],gillespy2:[1,0,0,"-"],gillespyError:[1,0,0,"-"],gillespySolver:[1,0,0,"-"],gillespy_model:[1,2,1,""],import_SBML:[1,5,1,""],name:[1,2,1,""],results:[1,0,0,"-"]},"gillespy2.core.AssignmentRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.Event":{add_assignment:[1,3,1,""],assignment:[1,2,1,""],assignments:[1,2,1,""],delay:[1,2,1,""],name:[1,2,1,""],priority:[1,2,1,""],trigger:[1,2,1,""],use_values_from_trigger_time:[1,2,1,""]},"gillespy2.core.EventAssignment":{expression:[1,2,1,""],variable:[1,2,1,""]},"gillespy2.core.EventTrigger":{expression:[1,2,1,""],persistent:[1,2,1,""],sanitized_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.FunctionDefinition":{"function":[1,2,1,""],name:[1,2,1,""],sanitized_function:[1,3,1,""],variables:[1,2,1,""]},"gillespy2.core.GillesPySolver":{debug:[1,2,1,""],increment:[1,2,1,""],model:[1,2,1,""],name:[1,2,1,""],number_of_trajectories:[1,2,1,""],run:[1,3,1,""],seed:[1,2,1,""],show_labels:[1,2,1,""],t:[1,2,1,""]},"gillespy2.core.Model":{add_assignment_rule:[1,3,1,""],add_event:[1,3,1,""],add_function_definition:[1,3,1,""],add_parameter:[1,3,1,""],add_rate_rule:[1,3,1,""],add_reaction:[1,3,1,""],add_species:[1,3,1,""],annotation:[1,2,1,""],delete_all_assignment_rules:[1,3,1,""],delete_all_events:[1,3,1,""],delete_all_function_definitions:[1,3,1,""],delete_all_parameters:[1,3,1,""],delete_all_rate_rules:[1,3,1,""],delete_all_reactions:[1,3,1,""],delete_all_species:[1,3,1,""],delete_assignment_rule:[1,3,1,""],delete_event:[1,3,1,""],delete_function_definition:[1,3,1,""],delete_parameter:[1,3,1,""],delete_rate_rule:[1,3,1,""],delete_reaction:[1,3,1,""],delete_species:[1,3,1,""],event:[1,2,1,""],expression:[1,2,1,""],get_all_assignment_rules:[1,3,1,""],get_all_events:[1,3,1,""],get_all_function_definitions:[1,3,1,""],get_all_parameters:[1,3,1,""],get_all_rate_rules:[1,3,1,""],get_all_reactions:[1,3,1,""],get_all_species:[1,3,1,""],get_assignment_rule:[1,3,1,""],get_element:[1,3,1,""],get_event:[1,3,1,""],get_function_definition:[1,3,1,""],get_parameter:[1,3,1,""],get_rate_rule:[1,3,1,""],get_reaction:[1,3,1,""],get_species:[1,3,1,""],name:[1,2,1,""],obj:[1,2,1,""],p_name:[1,2,1,""],population:[1,2,1,""],problem_with_name:[1,3,1,""],reserved_names:[1,2,1,""],resolve_parameters:[1,3,1,""],run:[1,3,1,""],s_name:[1,2,1,""],sanitized_parameter_names:[1,3,1,""],sanitized_species_names:[1,3,1,""],serialize:[1,3,1,""],set_parameter:[1,3,1,""],set_units:[1,3,1,""],solver:[1,2,1,""],solver_args:[1,2,1,""],special_characters:[1,2,1,""],timeout:[1,2,1,""],timespan:[1,3,1,""],tspan:[1,2,1,""],units:[1,2,1,""],update_namespace:[1,3,1,""],validate_reactants_and_products:[1,3,1,""],volume:[1,2,1,""]},"gillespy2.core.OrderedDict":{clear:[1,3,1,""],copy:[1,3,1,""],fromkeys:[1,3,1,""],items:[1,3,1,""],keys:[1,3,1,""],move_to_end:[1,3,1,""],pop:[1,3,1,""],popitem:[1,3,1,""],setdefault:[1,3,1,""],update:[1,3,1,""],values:[1,3,1,""]},"gillespy2.core.Parameter":{evaluate:[1,3,1,""],expression:[1,2,1,""],name:[1,2,1,""],namespace:[1,2,1,""],set_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.RateRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.Reaction":{Annotate:[1,3,1,""],S:[1,2,1,""],addProduct:[1,3,1,""],addReactant:[1,3,1,""],annotation:[1,2,1,""],massaction:[1,2,1,""],name:[1,2,1,""],products:[1,2,1,""],propensity_function:[1,2,1,""],rate:[1,2,1,""],reactants:[1,2,1,""],rxntype:[1,2,1,""],sanitized_propensity_function:[1,3,1,""],setType:[1,3,1,""],stoichiometry:[1,2,1,""],verify:[1,3,1,""]},"gillespy2.core.Results":{average_ensemble:[1,3,1,""],data:[1,2,1,""],figsize:[1,2,1,""],included_species_list:[1,2,1,""],index:[1,2,1,""],multiple_graphs:[1,2,1,""],plot:[1,3,1,""],plot_std_dev_range:[1,3,1,""],plotplotly:[1,3,1,""],plotplotly_std_dev_range:[1,3,1,""],return_plotly_figure:[1,2,1,""],save_png:[1,2,1,""],stddev_ensemble:[1,3,1,""],title:[1,2,1,""],to_csv:[1,3,1,""],xaxis_label:[1,2,1,""],yaxis_label:[1,2,1,""]},"gillespy2.core.Species":{allow_negative_populations:[1,2,1,""],boundary_condition:[1,2,1,""],constant:[1,2,1,""],initial_value:[1,2,1,""],mode:[1,2,1,""],name:[1,2,1,""],switch_min:[1,2,1,""],switch_tol:[1,2,1,""]},"gillespy2.core.StochMLDocument":{from_file:[1,3,1,""],from_model:[1,3,1,""],from_string:[1,3,1,""],to_model:[1,3,1,""],to_string:[1,3,1,""]},"gillespy2.core.Trajectory":{data:[1,2,1,""],model:[1,2,1,""],rc:[1,2,1,""],solver_name:[1,2,1,""],status:[1,2,1,""]},"gillespy2.core.events":{Event:[1,1,1,""],EventAssignment:[1,1,1,""],EventTrigger:[1,1,1,""]},"gillespy2.core.events.Event":{add_assignment:[1,3,1,""],assignment:[1,2,1,""],assignments:[1,2,1,""],delay:[1,2,1,""],name:[1,2,1,""],priority:[1,2,1,""],trigger:[1,2,1,""],use_values_from_trigger_time:[1,2,1,""]},"gillespy2.core.events.EventAssignment":{expression:[1,2,1,""],variable:[1,2,1,""]},"gillespy2.core.events.EventTrigger":{expression:[1,2,1,""],persistent:[1,2,1,""],sanitized_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.gillespy2":{AssignmentRule:[1,1,1,""],FunctionDefinition:[1,1,1,""],Model:[1,1,1,""],Parameter:[1,1,1,""],RateRule:[1,1,1,""],Reaction:[1,1,1,""],SortableObject:[1,1,1,""],Species:[1,1,1,""],StochMLDocument:[1,1,1,""],filename:[1,2,1,""],gillespy_model:[1,2,1,""],import_SBML:[1,5,1,""],name:[1,2,1,""]},"gillespy2.core.gillespy2.AssignmentRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.gillespy2.FunctionDefinition":{"function":[1,2,1,""],name:[1,2,1,""],sanitized_function:[1,3,1,""],variables:[1,2,1,""]},"gillespy2.core.gillespy2.Model":{add_assignment_rule:[1,3,1,""],add_event:[1,3,1,""],add_function_definition:[1,3,1,""],add_parameter:[1,3,1,""],add_rate_rule:[1,3,1,""],add_reaction:[1,3,1,""],add_species:[1,3,1,""],annotation:[1,2,1,""],delete_all_assignment_rules:[1,3,1,""],delete_all_events:[1,3,1,""],delete_all_function_definitions:[1,3,1,""],delete_all_parameters:[1,3,1,""],delete_all_rate_rules:[1,3,1,""],delete_all_reactions:[1,3,1,""],delete_all_species:[1,3,1,""],delete_assignment_rule:[1,3,1,""],delete_event:[1,3,1,""],delete_function_definition:[1,3,1,""],delete_parameter:[1,3,1,""],delete_rate_rule:[1,3,1,""],delete_reaction:[1,3,1,""],delete_species:[1,3,1,""],event:[1,2,1,""],expression:[1,2,1,""],get_all_assignment_rules:[1,3,1,""],get_all_events:[1,3,1,""],get_all_function_definitions:[1,3,1,""],get_all_parameters:[1,3,1,""],get_all_rate_rules:[1,3,1,""],get_all_reactions:[1,3,1,""],get_all_species:[1,3,1,""],get_assignment_rule:[1,3,1,""],get_element:[1,3,1,""],get_event:[1,3,1,""],get_function_definition:[1,3,1,""],get_parameter:[1,3,1,""],get_rate_rule:[1,3,1,""],get_reaction:[1,3,1,""],get_species:[1,3,1,""],name:[1,2,1,""],obj:[1,2,1,""],p_name:[1,2,1,""],population:[1,2,1,""],problem_with_name:[1,3,1,""],reserved_names:[1,2,1,""],resolve_parameters:[1,3,1,""],run:[1,3,1,""],s_name:[1,2,1,""],sanitized_parameter_names:[1,3,1,""],sanitized_species_names:[1,3,1,""],serialize:[1,3,1,""],set_parameter:[1,3,1,""],set_units:[1,3,1,""],solver:[1,2,1,""],solver_args:[1,2,1,""],special_characters:[1,2,1,""],timeout:[1,2,1,""],timespan:[1,3,1,""],tspan:[1,2,1,""],units:[1,2,1,""],update_namespace:[1,3,1,""],validate_reactants_and_products:[1,3,1,""],volume:[1,2,1,""]},"gillespy2.core.gillespy2.Parameter":{evaluate:[1,3,1,""],expression:[1,2,1,""],name:[1,2,1,""],namespace:[1,2,1,""],set_expression:[1,3,1,""],value:[1,2,1,""]},"gillespy2.core.gillespy2.RateRule":{formula:[1,2,1,""],name:[1,2,1,""],sanitized_formula:[1,3,1,""],variable:[1,2,1,""]},"gillespy2.core.gillespy2.Reaction":{Annotate:[1,3,1,""],S:[1,2,1,""],addProduct:[1,3,1,""],addReactant:[1,3,1,""],annotation:[1,2,1,""],massaction:[1,2,1,""],name:[1,2,1,""],products:[1,2,1,""],propensity_function:[1,2,1,""],rate:[1,2,1,""],reactants:[1,2,1,""],rxntype:[1,2,1,""],sanitized_propensity_function:[1,3,1,""],setType:[1,3,1,""],stoichiometry:[1,2,1,""],verify:[1,3,1,""]},"gillespy2.core.gillespy2.Species":{allow_negative_populations:[1,2,1,""],boundary_condition:[1,2,1,""],constant:[1,2,1,""],initial_value:[1,2,1,""],mode:[1,2,1,""],name:[1,2,1,""],switch_min:[1,2,1,""],switch_tol:[1,2,1,""]},"gillespy2.core.gillespy2.StochMLDocument":{from_file:[1,3,1,""],from_model:[1,3,1,""],from_string:[1,3,1,""],to_model:[1,3,1,""],to_string:[1,3,1,""]},"gillespy2.core.gillespyError":{BuildError:[1,4,1,""],DirectoryError:[1,4,1,""],EventError:[1,4,1,""],ExecutionError:[1,4,1,""],InvalidModelError:[1,4,1,""],InvalidStochMLError:[1,4,1,""],ModelError:[1,4,1,""],ParameterError:[1,4,1,""],ReactionError:[1,4,1,""],ResultsError:[1,4,1,""],SimulationError:[1,4,1,""],SimulationTimeoutError:[1,4,1,""],SolverError:[1,4,1,""],SpeciesError:[1,4,1,""],StochMLImportError:[1,4,1,""],ValidationError:[1,4,1,""]},"gillespy2.core.gillespySolver":{GillesPySolver:[1,1,1,""]},"gillespy2.core.gillespySolver.GillesPySolver":{debug:[1,2,1,""],increment:[1,2,1,""],model:[1,2,1,""],name:[1,2,1,""],number_of_trajectories:[1,2,1,""],run:[1,3,1,""],seed:[1,2,1,""],show_labels:[1,2,1,""],t:[1,2,1,""]},"gillespy2.core.results":{Results:[1,1,1,""],Trajectory:[1,1,1,""]},"gillespy2.core.results.Results":{average_ensemble:[1,3,1,""],data:[1,2,1,""],figsize:[1,2,1,""],included_species_list:[1,2,1,""],index:[1,2,1,""],multiple_graphs:[1,2,1,""],plot:[1,3,1,""],plot_std_dev_range:[1,3,1,""],plotplotly:[1,3,1,""],plotplotly_std_dev_range:[1,3,1,""],return_plotly_figure:[1,2,1,""],save_png:[1,2,1,""],stddev_ensemble:[1,3,1,""],title:[1,2,1,""],to_csv:[1,3,1,""],xaxis_label:[1,2,1,""],yaxis_label:[1,2,1,""]},"gillespy2.core.results.Trajectory":{data:[1,2,1,""],model:[1,2,1,""],rc:[1,2,1,""],solver_name:[1,2,1,""],status:[1,2,1,""]},"gillespy2.sbml":{SBMLimport:[2,0,0,"-"]},"gillespy2.sbml.SBMLimport":{convert:[2,5,1,""],piecewise:[2,5,1,""],traverse_math:[2,5,1,""]},"gillespy2.solvers":{auto:[4,0,0,"-"],cpp:[5,0,0,"-"],cython:[6,0,0,"-"],numpy:[7,0,0,"-"],stochkit:[8,0,0,"-"]},"gillespy2.solvers.auto":{SSASolver:[4,2,1,""],get_best_ssa_solver:[4,5,1,""],ssa_solver:[4,0,0,"-"]},"gillespy2.solvers.auto.ssa_solver":{SSASolver:[4,2,1,""],get_best_ssa_solver:[4,5,1,""]},"gillespy2.solvers.cpp":{SSACSolver:[5,1,1,""],example_models:[5,0,0,"-"],ssa_c_solver:[5,0,0,"-"],variable_ssa_c_solver:[5,0,0,"-"]},"gillespy2.solvers.cpp.SSACSolver":{name:[5,2,1,""],run:[5,3,1,""]},"gillespy2.solvers.cpp.example_models":{Example:[5,1,1,""]},"gillespy2.solvers.cpp.ssa_c_solver":{SSACSolver:[5,1,1,""]},"gillespy2.solvers.cpp.ssa_c_solver.SSACSolver":{name:[5,2,1,""],run:[5,3,1,""]},"gillespy2.solvers.cpp.variable_ssa_c_solver":{VariableSSACSolver:[5,1,1,""]},"gillespy2.solvers.cpp.variable_ssa_c_solver.VariableSSACSolver":{name:[5,2,1,""],run:[5,3,1,""]},"gillespy2.solvers.cython":{CythonSSASolver:[6,1,1,""],cython_ssa_solver:[6,0,0,"-"]},"gillespy2.solvers.cython.CythonSSASolver":{interrupted:[6,2,1,""],name:[6,2,1,""],rc:[6,2,1,""],run:[6,3,1,""]},"gillespy2.solvers.cython.cython_ssa_solver":{CythonSSASolver:[6,1,1,""],convert_infix_prefix:[6,5,1,""]},"gillespy2.solvers.cython.cython_ssa_solver.CythonSSASolver":{interrupted:[6,2,1,""],name:[6,2,1,""],rc:[6,2,1,""],run:[6,3,1,""]},"gillespy2.solvers.numpy":{BasicODESolver:[7,1,1,""],BasicTauHybridSolver:[7,1,1,""],BasicTauLeapingSolver:[7,1,1,""],NumPySSASolver:[7,1,1,""],Tau:[7,0,0,"-"],basic_ode_solver:[7,0,0,"-"],basic_tau_hybrid_solver:[7,0,0,"-"],basic_tau_leaping_solver:[7,0,0,"-"],ssa_solver:[7,0,0,"-"]},"gillespy2.solvers.numpy.BasicODESolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.numpy.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],stop_event:[7,2,1,""],t:[7,2,1,""],tau_tol:[7,2,1,""]},"gillespy2.solvers.numpy.BasicTauLeapingSolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.numpy.NumPySSASolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.numpy.Tau":{initialize:[7,5,1,""],select:[7,5,1,""]},"gillespy2.solvers.numpy.basic_ode_solver":{BasicODESolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_ode_solver.BasicODESolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_solver":{BasicTauHybridSolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_tau_hybrid_solver.BasicTauHybridSolver":{debug:[7,2,1,""],event_sensitivity:[7,2,1,""],increment:[7,2,1,""],integrator:[7,2,1,""],integrator_options:[7,2,1,""],model:[7,2,1,""],name:[7,2,1,""],number_of_trajectories:[7,2,1,""],profile:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],seed:[7,2,1,""],show_labels:[7,2,1,""],stop_event:[7,2,1,""],t:[7,2,1,""],tau_tol:[7,2,1,""]},"gillespy2.solvers.numpy.basic_tau_leaping_solver":{BasicTauLeapingSolver:[7,1,1,""]},"gillespy2.solvers.numpy.basic_tau_leaping_solver.BasicTauLeapingSolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.numpy.ssa_solver":{NumPySSASolver:[7,1,1,""]},"gillespy2.solvers.numpy.ssa_solver.NumPySSASolver":{name:[7,2,1,""],rc:[7,2,1,""],result:[7,2,1,""],run:[7,3,1,""],stop_event:[7,2,1,""]},"gillespy2.solvers.stochkit":{StochKitODESolver:[8,1,1,""],StochKitSolver:[8,1,1,""],stochkit_solvers:[8,0,0,"-"]},"gillespy2.solvers.stochkit.StochKitODESolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.StochKitSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],method:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers":{StochKitBaseSolver:[8,1,1,""],StochKitODESolver:[8,1,1,""],StochKitSolver:[8,1,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitBaseSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],extra_args:[8,2,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],label_trajectories:[8,3,1,""],locate_executable:[8,3,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],process_seed:[8,3,1,""],run:[8,3,1,""],seed:[8,2,1,""],show_labels:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitODESolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},"gillespy2.solvers.stochkit.stochkit_solvers.StochKitSolver":{algorithm:[8,2,1,""],debug:[8,2,1,""],get_trajectories:[8,3,1,""],increment:[8,2,1,""],job_id:[8,2,1,""],method:[8,2,1,""],model:[8,2,1,""],name:[8,2,1,""],number_of_trajectories:[8,2,1,""],run:[8,3,1,""],seed:[8,2,1,""],stochkit_home:[8,2,1,""],t:[8,2,1,""]},gillespy2:{core:[1,0,0,"-"],sbml:[2,0,0,"-"],solvers:[3,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","attribute","Python attribute"],"3":["py","method","Python method"],"4":["py","exception","Python exception"],"5":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:attribute","3":"py:method","4":"py:exception","5":"py:function"},terms:{"124d4109c":7,"2006jchph":7,"2r01eb014877":11,"abstract":[1,8,9],"boolean":1,"break":9,"case":1,"class":[1,5,6,7,8,9,14],"default":[1,7,8],"export":1,"final":[1,10],"float":[1,7,8],"function":[1,7,8],"import":[1,9,14],"int":[1,7,8],"new":[1,9],"public":[11,14],"return":[1,7,8,9],"short":[9,11],"static":8,"super":9,"switch":[1,9,14],"true":[1,4,5,6,7,8],"try":1,And:14,FOR:1,For:[1,7,9],NOT:[1,8],ODE:[7,11],ODEs:11,The:[1,7,8,9,11,14],There:[1,9],USE:1,Use:[1,7,8],Using:10,WITH:1,With:9,__init__:[9,14],abl:10,about:[1,7,8],abov:[9,14],accur:14,accuraci:[7,9],achiev:9,act:1,action:[1,5],add:1,add_assign:1,add_assignment_rul:1,add_ev:1,add_function_definit:1,add_paramet:[1,9,14],add_rate_rul:1,add_react:[1,9,14],add_speci:[1,9,14],added:1,addit:[1,7,8,9],addproduct:1,addreact:1,after:1,again:14,algorithm:[1,7,8,9],alia:4,all:[1,9,14],allow:[1,14],allow_negative_popul:1,along:7,alpha1:14,alpha2:14,alreadi:[1,8],also:[1,9,11],altern:9,alwai:7,anam:1,ani:[8,11,14],annot:1,anoth:9,apart:9,api:11,approach:11,appropri:14,arg:[1,2],argument:[1,7,8,9,14],arrai:[1,7,9],assign:1,assignment_express:1,assignment_rul:1,assignmentrul:1,associ:1,assum:[1,14],atol:7,attempt:1,attribut:1,author:11,auto:[0,3],automat:[1,8,9],automaticswitchexampl:9,avail:[8,11],average_ensembl:1,axi:1,back:9,base:[1,5,6,7,8,14],basic:[7,11,14],basic_ode_solv:[0,3,14],basic_tau_hybrid:7,basic_tau_hybrid_solv:[0,3,9],basic_tau_leaping_solv:[0,3],basicodesolv:[7,14],basictauhybridonli:1,basictauhybridsolv:[1,7,9],basictauleapingsolv:7,bdf:7,becaus:14,befor:1,begin:[1,14],being:1,below:1,best:[9,14],beta:14,between:[1,7,9],bibcod:7,biochem:[0,1,9,11,14],biolog:11,biomolecul:14,bodi:1,bool:[1,7,8],both:[1,14],bound:7,boundary_condit:1,brian:11,builderror:1,calcul:[1,7],call:[1,5,6,7,8,9],can:[1,9,10,11,14],cannot:1,cao:7,captur:14,care:1,caus:1,caution:1,cellular:14,chang:[1,7],characterist:[9,14],check:1,chemic:[1,7,8],choos:8,chosen:[1,8],classmethod:[1,6,7,8],cleanup:1,clear:1,clone:10,code:[1,9,11,14],coli:14,collect:[1,5,6,8],com:10,combin:9,come:9,command:[9,10],compar:[1,14],compart:1,compon:[1,9,14],comput:10,concentr:[1,14],condit:1,configur:1,consid:1,constant:[1,9],consum:1,contact:11,contain:[1,7,9],content:11,contextmanag:1,continu:[1,7,9,11,14],convers:1,convert:[1,2],convert_infix_prefix:6,copi:[1,10],core:[0,5,6,7,8,11],correspond:1,cpp:[0,3,4],creat:[1,9,11],creation:9,csv:1,current:[1,9],custom:[1,9],cython:[0,3,11],cython_ssa_solv:[0,3],cythonssasolv:6,d_result:14,data:[1,7,9],ddof:1,debug:[1,5,6,7,8],decai:9,decor:1,def:[1,9,14],defin:[1,9,14],definit:[1,9,14],degrad:5,degre:1,delai:1,delet:1,delete_all_assignment_rul:1,delete_all_ev:1,delete_all_function_definit:1,delete_all_paramet:1,delete_all_rate_rul:1,delete_all_react:1,delete_all_speci:1,delete_assignment_rul:1,delete_directori:5,delete_ev:1,delete_function_definit:1,delete_paramet:1,delete_rate_rul:1,delete_react:1,delete_speci:1,delta:1,demonstr:[9,14],depend:1,depict:1,deprec:6,deriv:8,describ:[1,7],descript:1,deseri:1,design:[1,9],desir:[1,8],detail:[7,8],detect:[1,7],determin:1,determinist:[1,7,9,14],develop:11,deviat:1,dict:1,dictionari:[1,7,9],differ:10,differenti:14,dimer:9,direct:[7,11],directli:[1,10,11],directori:[1,9],directoryerror:1,discret:1,disk:1,displai:1,dissoci:9,divisor:1,doc:7,document:[1,8],doe:1,doi:7,dop835:7,dopri5:7,drawert:11,dure:1,dynam:[1,9,14],each:[1,7,8,9],edit:1,effici:[7,9],either:1,element:1,enam:1,end:[1,7,8,9],entiti:1,entri:7,environ:[1,11],epsilon:7,equat:[1,7,8,9,14],equival:1,error:1,escherichia:14,estim:1,etc:1,evalu:1,evenli:1,event:[0,7],event_sensit:7,eventassign:1,eventerror:1,eventtrigg:1,exampl:[1,5,7],example_model:[0,3],except:1,execut:[1,9],executionerror:1,exisit:1,exist:1,express:[1,9,14],extend:1,extra:8,extra_arg:8,facil:[9,14],fail:14,failur:1,fals:[1,4,5,6,7,8,14],fasl:7,fast:1,fcn:1,few:9,fifo:1,figsiz:[1,9],figur:[1,9],file:[1,9,11],filenam:[1,2],filepath:1,fill:11,find:[7,11],fire:1,first:[9,10,14],flatten:1,fname:1,follow:[1,9,10,14],form:[1,7,9,11],format:[1,9,11],formul:14,formula:1,forthcom:[12,13],found:[1,11],freedom:1,from:[1,8,9,10,11,14],from_fil:1,from_model:1,from_str:1,fromkei:1,frommodel:1,func:1,function_definit:1,functiondefinit:1,fund:11,further:1,gamma:14,gardner:14,gener:[1,7,8,11],genet:14,get:[1,10],get_all_assignment_rul:1,get_all_ev:1,get_all_function_definit:1,get_all_paramet:1,get_all_rate_rul:1,get_all_react:1,get_all_speci:1,get_assignment_rul:1,get_best_ssa_solv:4,get_el:1,get_ev:1,get_function_definit:1,get_paramet:1,get_rate_rul:1,get_react:1,get_speci:1,get_trajectori:8,gillespi:[1,7,8,11],gillespy2:[10,14],gillespy_model:[1,2],gillespyerror:0,gillespysolv:[0,5,6,7,8],git:10,github:[10,11],given:[1,7,8,9,14],gnu:11,grant:11,graph:1,graphic:9,greater:9,greatli:7,handler:1,has:[1,9,11],have:[1,7,9,14],height:1,here:[1,14],high:[9,14],homogen:14,how:1,html:7,http:[7,10],hybrid:9,immedi:1,import_sbml:1,improv:[7,9],includ:[1,7,11,14],included_species_list:1,increment:[1,5,6,7,8],independ:1,index:[1,7,8,9,11],info:1,inform:[1,7,8],inherit:[1,7],initail:7,initi:[1,7,9,14],initial_valu:[1,9,14],input:1,insert:1,inspect:7,instal:[8,11],instanc:9,instanti:[1,9,14],instead:1,instruct:10,integr:[7,11],integrator_opt:7,intend:1,interact:1,interan:1,interchang:7,intern:1,interpret:[7,10],interrupt:6,intial:1,invalidmodelerror:1,invalidstochmlerror:1,invok:[9,14],involv:1,issu:11,item:1,iter:1,its:1,job_id:8,journal:7,jupyt:1,k_c:9,k_d:9,kei:[1,7,9],keyerror:1,keyword:[9,14],known:9,kwarg:[1,5,6,7,8],label:[1,8,9,14],label_trajectori:8,lack:1,larger:7,last:1,later:1,latest:11,layout:1,leap:[7,11],legend:[1,9,14],let:[9,14],level:[1,7],licens:11,lifo:1,like:[1,9],limit:14,linspac:[9,14],linux:10,list:[1,7,9],littl:7,loc:[9,14],locat:1,locate_execut:8,look:9,low:9,lower:9,lsoda:7,maco:10,made:[1,7],mai:[1,8],main:11,make:[1,14],manag:10,mani:9,map:1,mass:[1,5],massact:1,master:[1,7,8],math:1,mathemat:[1,11],matplotlib:[1,9,14],matter:1,max_step:7,mdoel:1,mean:[1,9],method:[1,7,8,9,11,14],minimum:1,mix:1,mode:1,model:[0,1,5,6,7,8,9,11,14],model_nam:2,modelerror:1,modifi:1,modul:11,molecul:9,molecular:[9,14],monom:9,more:[1,7,9],move:1,move_to_end:1,multipl:7,multiple_graph:1,must:1,name:[1,5,6,7,8,9,14],namespac:1,nametag:1,nativ:1,natur:14,nbsp:9,ndarrai:1,ndash:9,need:[1,11,14],neg:1,nevertheless:14,new_id:2,next:14,nih:11,node:2,non:1,none:[1,2,5,6,7,8,9,14],notat:1,note:1,notebook:1,noth:1,now:14,number:[1,7,8,9],number_of_trajectori:[1,5,6,7,8,9],numer:11,numpi:[0,1,3,9,11,14],numpyssasolv:7,obj:1,object:[1,7,8,9,11,14],ode:7,off:7,offer:[9,11],often:14,old_id:2,omit_cpp:4,omit_cython:4,omit_numpi:4,one:[1,9],onli:[1,7],open:11,oper:[1,7,8,10],optim:11,option:[1,7,8],order:1,ordereddict:1,ordinari:14,org:7,orient:[9,11],other:1,otherwis:1,our:[9,11,14],out:[1,5,6,8,11],out_dir:8,output:1,output_directori:5,over:[7,9],overal:9,overlap:1,overwritten:8,own:1,p_name:1,packag:[10,11,14],page:11,pair:[1,7],param:[1,7],paramet:[1,7,9,14],parameter_map:1,parameter_valu:[5,9,14],parametererror:1,paramt:1,parent:[1,9,14],part:1,pass:[1,7,9],path:[1,8],pdf:7,perform:[1,7,11,14],persist:1,petzold:7,physic:7,piecewis:2,pip:10,pleas:11,plot:[1,7,9,14],plot_std_dev_rang:1,plotli:1,plotplotli:1,plotplotly_std_dev_rang:1,plt:[9,14],pmid:7,pname:1,png:1,point:[7,9],pop:1,popitem:1,popul:[1,9],posit:[1,7,8],pow:14,present:1,print:1,prior:1,prioriti:1,problem:11,problem_with_nam:1,process:[8,9,14],process_se:8,produc:[7,9],product:[1,9,14],profil:[1,5,6,7,8],project:11,propens:[1,7],propensity_funct:[1,14],properli:1,prove:11,provid:[1,7,8,9],pypi:11,pyplot:[9,14],python3:10,python:[1,7,9,10,11,14],question:11,r_c:9,r_creation:9,r_d:9,r_dissoci:9,radau:7,rais:1,random:[1,7,8,9],rang:9,rate:[1,9,14],rate_rul:1,raterul:1,rather:[1,7,8],react:9,reactant:[1,9,14],reaction:[1,7,9,14],reactionerror:1,read:[1,11],record:7,recurs:10,reduc:1,refer:[1,7,9,11],referenc:1,regist:11,registr:11,rel:7,releas:6,rememb:1,remov:1,report:11,repres:[1,9,14],represent:[1,9],requir:1,reserved_nam:1,resolv:1,resolve_paramet:1,resolveparamt:1,respect:9,rest:14,restrict:1,result:[0,5,6,7,8,9,14],resultserror:1,return_plotly_figur:1,revers:9,rk23:7,rk45:7,rname:1,root:[7,9],rtol:7,rule:1,run:[1,5,6,7,8,9,14],rxntype:1,s_name:1,s_result:14,same:[1,7,9,14],sampl:[1,7,8,9],sanitized_express:1,sanitized_formula:1,sanitized_funct:1,sanitized_parameter_nam:1,sanitized_propensity_funct:1,sanitized_species_nam:1,save:[1,7],save_png:1,sbml:[0,1,9,11],sbmlimport:0,scalar:1,scipi:7,script:14,search:[1,11],second:1,see:[1,7,8],seed:[1,5,6,7,8,9],select:7,self:[1,9,14],sent:1,separ:1,serial:1,serializi:1,set:[1,7,8,9],set_express:1,set_paramet:1,set_unit:1,setdefault:1,settyp:1,setup:1,sever:11,shallow:1,shape:7,shell:10,should:[1,7,10],show_label:[1,5,6,7,8,14],show_legend:1,signal:1,simpl:[1,5],simplifi:1,simul:[0,1,7,8,9,11,14],simulationerror:1,simulationtimeouterror:1,simultan:7,singl:[1,7],situat:[9,14],size:[1,7],sole:9,solut:[1,7,8],solv:9,solve_ivp:7,solver:[0,1,11,14],solver_arg:1,solver_nam:1,solvererror:1,some:[9,14],some_gener:1,sortabl:1,sortableobject:1,sourc:[1,2,4,5,7,8,10,11],space:1,span:[1,9,14],spatial:14,speci:[1,5,7,8,9,14],special_charact:1,species_map:1,specieserror:1,specif:[1,8],specifi:1,ssa:[1,7,8,11],ssa_c_solv:[0,3,4],ssa_solv:[0,3],ssacsolv:[4,5],ssasolv:4,stamp:1,standard:1,start:[1,11],state:7,statu:1,stddev_ensembl:1,step:[1,7,8,9],stochast:[1,7,9,11,14],stochkit2:[1,8],stochkit:[0,1,3],stochkit_hom:8,stochkit_od:8,stochkit_solv:[0,3],stochkitbasesolv:8,stochkitodesolv:8,stochkitsolv:8,stochml:1,stochmldocu:1,stochmlimporterror:1,stoichiometri:[1,9],stop_ev:7,store:7,str:[1,8],string:[1,7],structur:9,style:1,subarrai:9,subclass:[9,14],submodul:[0,3],subpackag:11,success:1,sucesss:1,suggest:11,suppli:9,support:[1,11],switch_min:1,switch_tol:1,system:[1,7,9,10,11],tag:1,take:1,taken:7,target:1,tau:[0,3,11],tau_arg:7,tau_leap:8,tau_tol:7,tauhybridsolv:1,term:[1,9],test:1,than:[1,7,8],thei:1,thi:[1,5,6,7,8,9,11,14],those:[1,7,11],through:[1,8],thu:[9,14],time:[1,7,8,9,11,14],time_out:1,time_span:1,timelin:7,timeout:[1,5,7],timepoint:1,timespan:[1,9,14],timestamp:1,titl:[1,9,14],to_csv:1,to_model:1,to_str:1,todo:[1,5],togeth:9,toggl:14,toggle_switch:14,toggleswitch:14,toler:[1,7],toolkit:[0,1],tostr:1,trace:1,tracker:11,trade:7,traj_no:7,trajectori:[1,7,8,9],transit:1,traverse_math:2,tree:10,trigger:1,tspan:1,tupl:1,tutori:11,two:[1,9,14],type:[1,7,8,9,10],typic:[1,7],uml_class_diagram:9,undefin:1,under:11,understood:1,uniform:1,union:1,unit:1,updat:1,update_namespac:1,upgrad:10,upon:[1,8],usag:[1,11],use:[1,7,9,10,14],use_values_from_trigger_tim:1,used:[1,7,8],useful:14,user:[1,10,11],userdict:1,userlist:1,uses:[1,7,14],using:[1,7,11,14],usual:8,valid:1,validate_reactants_and_product:1,validationerror:1,valu:[1,7,9,14],variabl:[1,5,9],variable_ssa_c_solv:[0,3],variablessacsolv:5,variant:11,varieti:11,veri:7,verifi:1,version:[1,6,11],via:7,view:1,visual:9,vode:7,vol:1,volum:1,wai:9,well:[1,11,14],when:[1,9],where:[1,7,9],whether:1,which:[1,7,8,9],whose:1,width:1,window:10,within:[1,8,9,14],without:14,would:1,write:1,xaxis_label:1,xml:1,yaxis_label:1,yet:8,yield:[1,7],you:[1,10,11,14],your:10,zvode:7},titles:["gillespy2 package","gillespy2.core package","gillespy2.sbml package","gillespy2.solvers package","gillespy2.solvers.auto package","gillespy2.solvers.cpp package","gillespy2.solvers.cython package","gillespy2.solvers.numpy package","gillespy2.solvers.stochkit package","Basic usage","Installation","Documentation for GillesPy2 1.4.0","Tutorial: using solvers","Tutorial: using SBML","Tutorial: ODE vs. SSA"],titleterms:{ODE:14,altern:10,auto:4,basic:9,basic_ode_solv:7,basic_tau_hybrid_solv:7,basic_tau_leaping_solv:7,code:10,content:[0,1,2,3,4,5,6,7,8],copi:11,core:1,cpp:5,cython:6,cython_ssa_solv:6,differ:9,document:11,event:1,exampl:9,example_model:5,get:11,gillespy2:[0,1,2,3,4,5,6,7,8,9,11],gillespyerror:1,gillespysolv:1,help:11,indic:11,instal:10,method:10,modul:[0,1,2,3,4,5,6,7,8],numpi:7,packag:[0,1,2,3,4,5,6,7,8],prefer:10,pypi:10,repositori:10,result:1,sbml:[2,13],sbmlimport:2,select:9,simpl:9,solver:[3,4,5,6,7,8,9,12],ssa:14,ssa_c_solv:5,ssa_solv:[4,7],stochkit:8,stochkit_solv:8,submodul:[1,2,4,5,6,7,8],subpackag:[0,3],tabl:11,tau:7,tutori:[12,13,14],usag:9,using:[9,10,12,13],variable_ssa_c_solv:5}}) \ No newline at end of file diff --git a/docs/build/html/tutorials/tut_michaelis_menten/tut_michaelis_menten.html b/docs/build/html/tutorials/tut_michaelis_menten/tut_michaelis_menten.html index 4bc7640d4..df98090c2 100644 --- a/docs/build/html/tutorials/tut_michaelis_menten/tut_michaelis_menten.html +++ b/docs/build/html/tutorials/tut_michaelis_menten/tut_michaelis_menten.html @@ -4,7 +4,7 @@ - Tutorial: using solvers — GillesPy2 1.3.0 documentation + Tutorial: using solvers — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/tutorials/tut_sbml/tut_sbml.html b/docs/build/html/tutorials/tut_sbml/tut_sbml.html index 9611bb203..d268ce921 100644 --- a/docs/build/html/tutorials/tut_sbml/tut_sbml.html +++ b/docs/build/html/tutorials/tut_sbml/tut_sbml.html @@ -4,7 +4,7 @@ - Tutorial: using SBML — GillesPy2 1.3.0 documentation + Tutorial: using SBML — GillesPy2 1.4.0 documentation diff --git a/docs/build/html/tutorials/tut_toggle_switch/tut_toggle_switch.html b/docs/build/html/tutorials/tut_toggle_switch/tut_toggle_switch.html index 4ea1aada4..95e2eda06 100644 --- a/docs/build/html/tutorials/tut_toggle_switch/tut_toggle_switch.html +++ b/docs/build/html/tutorials/tut_toggle_switch/tut_toggle_switch.html @@ -4,7 +4,7 @@ - Tutorial: ODE vs. SSA — GillesPy2 1.3.0 documentation + Tutorial: ODE vs. SSA — GillesPy2 1.4.0 documentation diff --git a/docs/classes/gillespy2.core.rst b/docs/classes/gillespy2.core.rst index 894f60090..94a946131 100644 --- a/docs/classes/gillespy2.core.rst +++ b/docs/classes/gillespy2.core.rst @@ -15,14 +15,6 @@ gillespy2.core.events module gillespy2.core.gillespy2 module ------------------------------- -.. automodule:: gillespy2.core.gillespy2 - :members: - :undoc-members: - :show-inheritance: - -gillespy2.core.gillespy2 module -------------------------------- - .. automodule:: gillespy2.core.gillespy2 :members: :undoc-members: diff --git a/docs/classes/gillespy2.rst b/docs/classes/gillespy2.rst index 30482e4fa..75085fe06 100644 --- a/docs/classes/gillespy2.rst +++ b/docs/classes/gillespy2.rst @@ -10,18 +10,6 @@ Subpackages gillespy2.sbml gillespy2.solvers -Submodules ----------- - -gillespy2.example\_models module --------------------------------- - -.. automodule:: gillespy2.example_models - :members: - :undoc-members: - :show-inheritance: - - Module contents --------------- diff --git a/docs/classes/gillespy2.solvers.cpp.rst b/docs/classes/gillespy2.solvers.cpp.rst index d7fcc3f96..eb15db814 100644 --- a/docs/classes/gillespy2.solvers.cpp.rst +++ b/docs/classes/gillespy2.solvers.cpp.rst @@ -4,6 +4,14 @@ gillespy2.solvers.cpp package Submodules ---------- +gillespy2.solvers.cpp.example\_models module +-------------------------------------------- + +.. automodule:: gillespy2.solvers.cpp.example_models + :members: + :undoc-members: + :show-inheritance: + gillespy2.solvers.cpp.ssa\_c\_solver module ------------------------------------------- @@ -12,6 +20,14 @@ gillespy2.solvers.cpp.ssa\_c\_solver module :undoc-members: :show-inheritance: +gillespy2.solvers.cpp.variable\_ssa\_c\_solver module +----------------------------------------------------- + +.. automodule:: gillespy2.solvers.cpp.variable_ssa_c_solver + :members: + :undoc-members: + :show-inheritance: + Module contents --------------- diff --git a/docs/classes/gillespy2.solvers.numpy.rst b/docs/classes/gillespy2.solvers.numpy.rst index 08c6ae707..0acba2418 100644 --- a/docs/classes/gillespy2.solvers.numpy.rst +++ b/docs/classes/gillespy2.solvers.numpy.rst @@ -28,14 +28,6 @@ gillespy2.solvers.numpy.basic\_tau\_hybrid\_solver module :undoc-members: :show-inheritance: -gillespy2.solvers.numpy.basic\_tau\_hybrid\_v2 module ------------------------------------------------------ - -.. automodule:: gillespy2.solvers.numpy.basic_tau_hybrid_v2 - :members: - :undoc-members: - :show-inheritance: - gillespy2.solvers.numpy.basic\_tau\_leaping\_solver module ---------------------------------------------------------- @@ -44,14 +36,6 @@ gillespy2.solvers.numpy.basic\_tau\_leaping\_solver module :undoc-members: :show-inheritance: -gillespy2.solvers.numpy.just\_in\_cases module ----------------------------------------------- - -.. automodule:: gillespy2.solvers.numpy.just_in_cases - :members: - :undoc-members: - :show-inheritance: - gillespy2.solvers.numpy.ssa\_solver module ------------------------------------------ diff --git a/examples/AdvancedFeatures/Variable SSA C Example.ipynb b/examples/AdvancedFeatures/Variable SSA C Example.ipynb new file mode 100644 index 000000000..60ec622b5 --- /dev/null +++ b/examples/AdvancedFeatures/Variable SSA C Example.ipynb @@ -0,0 +1,429 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Variable SSA C Solver" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Variable SSA C Solver provides optimization for running multiple simulations of a model with variable parameter values and/or Species initial values. This is ideal for parameter sweeps, or model exploration." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../../GillesPy2')\n", + "import numpy as np\n", + "import libsbml\n", + "from gillespy2.core import Model, Species, Reaction, Parameter\n", + "import gillespy2\n", + "from gillespy2.core.events import *\n", + "from gillespy2.solvers.cpp.variable_ssa_c_solver import VariableSSACSolver" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Model Definition\n", + "class HISRD(Model): \n", + " \n", + " def __init__(self, start_time = 0,\n", + " dt = 1.0,\n", + " end_time = 42.0): \n", + " \n", + " # Initialize the model. \n", + " Model.__init__(self, name=\"Example\") \n", + "\n", + " # Species \n", + " healthy = Species(name='healthy', initial_value=10000)\n", + " infected = Species(name='infected', initial_value=1)\n", + " symptomatic = Species(name='symptomatic', initial_value=0)\n", + " dead = Species(name='dead', initial_value=0)\n", + " recovered = Species(name='recovered', initial_value=0)\n", + " self.add_species([healthy, infected, symptomatic, dead, recovered])\n", + " \n", + " \n", + " # Parameters \n", + " infect = Parameter(name='infect', expression=np.exp(np.log(0.0002)))\n", + " progress = Parameter(name='progress', expression=np.exp(np.log(0.071)))\n", + " recovery = Parameter(name='recovery', expression=np.exp(np.log(0.8)))\n", + " death = Parameter(name='death', expression=np.exp(np.log(0.2)))\n", + " self.add_parameter([infect, progress, recovery, death])\n", + " \n", + " #Reactions\n", + " r2 = Reaction(name='r2', reactants={healthy:1, infected:1}, products={infected:2}, rate=infect)\n", + " r3 = Reaction(name='r3', reactants={healthy:1, symptomatic:1}, products={infected:1, symptomatic:1}, rate=infect)\n", + " r4 = Reaction(name='r4', reactants={infected:1}, products={symptomatic:1}, rate=progress)\n", + " r5 = Reaction(name='r5', reactants={symptomatic:1}, products={dead:1}, rate=death)\n", + " r6 = Reaction(name='r6', reactants={symptomatic:1}, products={recovered:1}, rate=recovery)\n", + " self.add_reaction([r2, r3, r4, r5, r6])\n", + "\n", + "\n", + " self.timespan(np.arange(start_time, end_time + dt, dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### In order to maximize the benefits of the variable ssa solver, we must first instantiate our model and solver. This will pre-compile the simulation, allowing multiple simulations to run very quickly" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "model = HISRD()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 5.49 ms, sys: 8.56 ms, total: 14 ms\n", + "Wall time: 2.47 s\n" + ] + } + ], + "source": [ + "%time solver = VariableSSACSolver(model=model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Variable SSA C Solver allows you to change *species initial values* or *parameter values* without having to recompile each time. To do this, just pass a dictionary of the species/parameter names and desired values to the \"variables\" keyword argument when calling the model's run function." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 0 ns, sys: 21.6 ms, total: 21.6 ms\n", + "Wall time: 73.2 ms\n" + ] + } + ], + "source": [ + "# Here, a species initial value is modified over multiple simulations.\n", + "\n", + "results = []\n", + "# Here we will iterate over multiple species initial values\n", + "def iterate_species():\n", + " for i in range(5, 11):\n", + " # Call model.run with keyword argument variables\n", + " results.append(model.run(solver=solver, timeout=1, variables={'healthy': i*1000}))\n", + " # This will update the value of the \"healthy\" species for this simulation only\n", + "%time iterate_species()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gUVd/G8e+m94Sa0EKRYuChK00FBDQIIkXgoUiRoqJ0UVREQBRsKCI+SJMiRUAFC10EpasgiHTyBqmhkxBIz3n/iDtmSSGhLeX+XNdcbObMmfnN7GwuvffkjM0YYxARERERERERERERuYu4OLsAEREREREREREREZGbTeG4iIiIiIiIiIiIiNx1FI6LiIiIiIiIiIiIyF1H4biIiIiIiIiIiIiI3HUUjouIiIiIiIiIiIjIXUfhuIiIiIiIiIiIiIjcdRSOi4iIiIiIiIiIiMhdR+G4iIiIiIiIiIiIiNx1FI6LiIiIiIiIiIiIyF1H4biIiIiI3HDDhw/HZrNRv359Z5dyR1u2bBk2mw0vL6/rut89e/Zgs9mw2WxERUXd9P5ya/vss8+w2Wzce++9zi5FREREJFcUjouIiIikYw9xc7rInSsuLo7AwEBsNhu9e/fOcb+1a9da98c333xzAysUu4SEBCZNmkR4eDiFCxfG09OTwMBAypYtS4MGDRgyZAjLly8nISEh0/4xMTF8+OGHPPzwwxQsWBAPDw/y5s1LWFgYjRs3ZuTIkaxZs4bU1NQr1vLRRx9Z73/Dhg1zfS7nz59n7NixNG3alNDQUHx8fPD29qZYsWI0bdqUjz/+mJMnT2bZf8mSJbRr14577rkHHx8ffHx8KFmyJLVr16Z3797MmzePM2fO5LouERERkTuRm7MLEBEREblVBQcHO7sEcSJvb2/at2/PxIkTmTNnDmPGjMHT0/OK/T7//HMAChQoQLNmzW50mQ78/PwoV65cjuq8U0RGRtKkSRP27NljrfPw8MDV1ZWIiAj279/P6tWrGTVqFBs3bqRWrVoO/bds2cITTzzBsWPHrHXe3t6kpqayd+9e9uzZw/LlywE4fvw4ISEh2dYzdepU6/Xq1auJjIykZMmSOTqXCRMm8OqrrxIdHW2t8/HxwcPDgyNHjnDkyBGWLFnCq6++yogRI3jppZes7eLi4mjfvj3ffvuttc7FxYWgoCCOHj3KwYMH2bRpE59++imjR4/mlVdeyVFNIiIiIncyjRwXERERyUJUVNQVF7mzde/eHYBz586xaNGiK24fGxvLggULAOjUqRPu7u43tL7LPfjgg+zZs4ft27ff1OM6S1JSEs2aNWPPnj34+fkxatQojhw5Qnx8PGfPnuXixYts3LiRoUOHZhpQnzt3jqZNm3Ls2DGCg4MZP348p06d4tKlS5w/f56YmBhWr17Niy++mKMvyzZv3szOnTsJDg6mbdu2GGOYNm1ajs7lxRdf5Pnnnyc6OpqKFSsya9YsTp06xcWLFzl//jwXL15kyZIltG/fnoSEBL7++muH/v369bOC8WeeeYYdO3aQmJjImTNniI+PZ9euXXz88cfUqlVLf/UiIiIi8g+F4yIiIiIiWbj//vupWLEi8O+I8OzMnz+fixcvAv8G63LjLFu2jJ07dwLwxRdf8Oqrr1KkSBEr/PXy8qJWrVq8+eabHDhwgKpVqzr0nzVrFidOnLD29cILL5A/f36r3c/Pj/r16/PBBx9w+PBhChQokG099lHj7du3p1u3bgBMnz79itOxzJgxgw8//BCAp556ii1bttCxY0eHWnx8fHjssceYM2cOv//+O+XKlbPazp49a4Xw/fr1Y+LEifznP//B1dUVSBtBHhYWRt++fdm4cSN9+/bNth4RERGRu4XCcREREZHrpFevXthsNoKCgjh48GCm20yYMAGbzYabmxu//PKLQ9tff/3F8OHDadCgAffccw/e3t4EBARQtWpVXn/9dU6fPp3lsUuUKIHNZmP69OlcunSJ4cOHExYWho+PD4ULF6ZTp05ERkZa258+fZrBgwdTtmxZvL29CQkJoUePHlZQeLnLH6g5f/586tWrR968efH19aV69eqMHz+elJSU3F20dE6dOsXrr79O1apVCQwMxMvLi1KlStG9e3crAHUGe8j9448/cvjw4Wy3tQfotWrVonz58g5tBw4cYPTo0YSHh1OmTBl8fX3x8/OjQoUKDBw4kCNHjmS5X/to33feeYeEhATeffddqlWrZs2JvmnTJiD7B3KmpqaycuVKevfuTc2aNSlSpAgeHh7kz5+fhx9+mMmTJ5OcnJyja7J79246depEkSJF8PT0pHjx4rzwwgvX9NcUKSkpzJgxg8aNG1vzfhcoUIDGjRszf/58jDEZ+mzbtg0Am812xSlsXFxcMkw3Y+8fGhpKlSpVsu3v7u5uhc2ZuXjxIl9++SUAXbp0oVGjRhQuXJjDhw+zcuXKLPvFx8czePBgAKpUqcLUqVOv+BcHVatWdRiRvnPnTuu9a968ebZ9IW3amKysXLmSVq1aUahQIev+eOSRR/jiiy9yNOd6euXKlcNms/Haa69lu92SJUus34uZ3UMRERH06dOHsLAw/Pz88PHxISwsLNvPzeUPCV2xYgXNmjUjJCQEV1dXnnvuuVydi4iIiNyhjIiIiIhYhg0bZgBzNf+ZdOnSJVOhQgUDmNq1a5ukpCSH9h07dhgvLy8DmDfeeCND/+LFi1vH9vLyMnnz5jU2m81aV6RIEbNnz55Mj23vO3bsWFOxYkVrH97e3lb/QoUKmcjISBMREWFKlixpAOPj42M8PDysbcqUKWOio6OzvC716tUzL7/8sgGMzWYzefLkMS4uLlb/8PBwEx8fn23/zKxcudIEBQVZ+3F3dze+vr7Wzx4eHmbGjBk5eBeuv9OnT1vXaOTIkVlut2/fPqveSZMmZWivWbOmw/nkzZvX4drlzZvXbN68OdN92/sOHTrU3H///QYwbm5u1jXbuHGjMcaYpUuXGsB4enpm2Mfu3butYwHG39/fBAQEOKxr0KBBpu9f+r4LFiyw3ht/f3/rngZMgQIFzJ9//plt/+PHj2doP3nypKldu7ZDLYGBgQ4/t27dOsNn6s0337TaDx06lPkbk41u3boZwHh7e5uEhIRc909v2rRpBjAVK1a01tk/K23atMmy38yZMx2u7dX45ZdfrH3MnDnzqvaRmppqnn/+eWs/9s+3q6urw+c7NjY2Q98JEyYYwJQrV85h/ciRIw1gQkNDTWpqapbHbteunQFM48aNM7RNnTrVuLu7O/xuTH/PBQUFmdWrV2db07vvvuuwvbu7u3n22Wdzf5FERETkjqNwXERERCSdawnHjUkLwO2B9GuvvWatTx+cP/DAAyY5OTlD386dO5vp06ebv//+21qXkJBgfvzxR1OjRg0DmGrVqmV6XHs4HhQUZEqUKGFWrFhhUlJSTHJyslmxYoUpUKCAAUzbtm1NjRo1TJUqVaxANTEx0cybN8/4+PgYwAwZMiTL62IPLHv37m1OnjxpjDEmOjrajBw50gryBwwYkGX/zMLxP//807pmPXv2NLt27bKuz99//20Fdm5ubua3337L5urfOG3btjWAueeee7IM+V555RUDGF9fXxMTE5Oh/YUXXjCfffaZOXDggLWPpKQks2HDBtOwYUMDmOLFi2ca0trDcT8/PxMYGGi++OILExcXZ4xJC5bPnTtnjMk+HD9w4IDp3LmzWbx4sTl79qy1Pjo62kyZMsUEBwcbwLz66qsZ+qYPtwMDA021atXM77//bowxJiUlxSxZssQULlzYukYXL17Msv/l4XhSUpIVjN93331m6dKl5tKlS8YYYy5cuGCmTJli8ufPbwDzyiuvOPRdtmyZQ3CbWfCenc8++8zq36VLF+s6Xo0HH3zQAOb999+31u3cudP6MuT06dOZ9uvSpYv1hZD9vHMrOjraeHp6GsCUKFHCbN26Ndf7eP/9961r0bt3b3PixAljTNp78N5771kheZcuXTL0zSocP3jwoPV7IbMA2xhjYmJirM//nDlzHNq+//57Y7PZjIeHhxkyZIj5+++/TWpqqklJSTE7d+40LVq0MIDJkyePOXbsWKY1+fj4GBcXF9OzZ09z5MgRY0zaPRcREZHrayQiIiJ3HoXjIiIiIumkD8eDg4OzXfr27ZvpPuyhjIuLi/npp5+MMcY8++yzVnidPvzOqQsXLljh5dq1azO028Nxb29vs3///gztU6dOdTivzIK6oUOHWuHm5dJfl06dOmVa4+uvv26F2EePHs20f2bheIMGDbIMZe369u1rANO8efMst7mRli9fbp1/ZiFfcnKyFQ537do11/tPSkoy9957b5ajh9OPOl+xYkWW+8kuHL+StWvXWuH35SO004fbwcHB5syZMxn6b9u2zbi5uRnAjBs3Lsv+lwfYkyZNMoCpVKmSuXDhQqa1bdiwwbq/0wf7qamppm7duta+3dzczAMPPGAGDhxoZs+ebQ4cOJDtOV+8eNGUK1fO6u/p6WkaNmxoXnnlFbNgwQIrTL2SPXv2GMC4urpmCGmrV69uIO2vOjJz3333ZRhxfjXsn1/7UqFCBdOzZ0/z2Wefma1bt2b6hZxdTEyM9VcETz/9dKbbvPfee9a+d+zY4dCWVThujDH16tXLdr+ff/659VcI6b8cSEpKsn6vZfVXI6mpqSY8PNwAZvDgwZnWBJgOHTpkee4iIiJyd1M4LiIiIpJO+hD4SktmIyjtWrVqZQBTuHBhM3HixGueNsGYf0cvjx49OkObPUR66qmnMu175MgRq4ahQ4dmus26deusbS6fOiH9dcksfDcmbfSqfQTo5eFoVuF4ZGSkFWpmFrja/f7779ao7OxCvhslJSXFhIaGGsB07tw5Q/vixYut6/PLL79c1THsXwD069cvQ5s9HK9evXq2+7iWcNwYY/1lwB9//OGwPn24nd3UMvb7vk6dOln2vzwct5/bxIkTs62tdOnSBjCLFi1yWB8TE2N69uxpBfOXLyVLljQjR47MMniPiooyrVq1cpjC6PKQ+ZNPPsl22hX79CmZTQsybty4bMNv+xRHWU05lFOpqanmgw8+cJieKP0SFBRknn32WXPw4MEMfefNm2cgbSqVzNqNSfsrFvsI/vR/FWNM9uH4lClTDGACAgIyHRn/8MMPZxqe2+/lIkWKZDsly6xZswxgqlSpkmlNmYX5IiIiInZ6IKeIiIhIFkzaQIIsl+nTp2fZd8qUKYSGhnLs2DGeffZZAHr06EHr1q2zPeYPP/zAf//7X0qVKoWvry82m81a5s+fD5Dtgxtr1KiR6frg4GDr9f3333/Fbc6fP5/pNsWKFaN06dKZtgUEBFC9enUAfv/99yxrTG/9+vVA2sMiy5cvT0hISKZL48aNgbSHHp45cyZH+76eXFxc6Nq1KwBfffUVFy5ccGi3P4izbNmyPPTQQ1nuZ82aNXTq1Ily5crh5+fn8P6OGzcOyP79feCBB67pPOLj4/n000955JFHKFSoEJ6eng41REdHX7GGBg0aXLFty5YtmT5AM7N6tmzZAsCrr76a5fsfEhLC33//DWD9a+fv78+kSZM4fPgwEyZMoGPHjtx77724uKT9r05kZCRDhw6lWrVqGfpC2n3/9ddfExERwYcffkjr1q0pVaoUNpsNSHvYZZ8+fXjooYcy/VwkJyczc+ZMADp37pyhvX379ri7u7Njxw5+++23K16Tq2Wz2XjxxRc5evQo8+fPp1evXtx3333Ww1nPnz/PxIkTqVixIitWrHDoa/+8li5dmuLFi2e6fw8PD+rVq+ewfU60adMGb29vYmJi+Pbbbx3aDh8+zJo1a4CM187+u+HUqVMUKlQoy/uiT58+QMb7wi4wMJD//Oc/Oa5XRERE7i4Kx0VERERugDx58vDpp59aP5cqVYqPP/44y+1TU1Pp0KEDzZo1Y/78+URGRpKYmEiePHkIDg4mODjYCrkuXryY5X78/f0zXe/m5parbZKSkjLdpkiRIlkeO337yZMns93O7tixY0Da+Z84cSLL5fTp01afS5cu5WjfGzZsyDJQmzdvXo72kd7TTz+NzWbj0qVLfPnll9b606dP8/333wPQrVu3LPv369ePhx9+mFmzZrFv3z7i4+Md3l9fX18g+/e3YMGCua7b7vjx41StWpXevXvz448/EhUVhaurK/nz57dqsAfK2dWQ3T1gb0tISCAmJuaKNZ06dYrk5GQAzp49m+09YL8ns3r/Q0JCeO6555g1axa7d+/m/PnzfPPNN9SqVQuA/fv389RTT2VZS8mSJRkwYAALFiwgIiKCU6dOMXPmTMLCwgD49ddf6d27d4Z+S5YsISoqioCAAFq0aJGhPX/+/DRt2hT490uU9PLly2ed//Xg4+NDmzZt+N///sdvv/1GTEwMv/zyCx06dADgwoULtG3b1uFLJvvn9Uqf76JFizpsnxMBAQE0b94cgC+++MKhbfbs2RhjKF68uBW829l/NyQmJmZ7X5w7dw7I+r4oUKBAjmsVERGRu4/CcREREZEbZPLkydbro0ePcuDAgSy3nTp1KnPnzsXV1ZU33niD/fv3k5CQwNmzZ4mKiiIqKsoadZ6TEbm3i5SUFCBt9O6VRurblxIlSuRo39mFanFxcbmutUSJEjRs2BCAadOmWetnz55NYmIirq6umY4cBvj++++tkeH9+vVj586dGd7fXr16Adm/v66urrmu2653797s2bOHggULMnPmTE6cOMGlS5c4deqUVUPevHmvWMP1ZH//AVavXp2j9/+VV17J0b79/f1p2bIl69ato06dOgCsW7eOPXv25Kh/vnz56NSpE5s3b+aee+4BYN68eRn+amDq1KkAxMTE4OPj4zAS374sWrQIgLlz52a49ypUqADAnj17iI+Pz1FtueHu7s5DDz3E7NmzefnllwGIjo5mwYIF1/1YWbF/LlasWMGJEyes9fawvGPHjtZIfTv7vVGvXr0c3RdZXbtr+cyIiIjInU/huIiIiMgNMH78eL777jtcXV0pX748CQkJtGvXLsvRjfaRyD169GDEiBGULl3aGsVrFxUVdcPrvpKjR4/mqD2nI5xDQkKAtNHX2Y1Wvhr169fPMkizT5GSW927dwdg48aNVshqD8qbNGlCoUKFMu1nf3+bN2/O2LFjKV++fIbQ7ka+v5cuXbJGt0+cOJFOnTpleI8SEhKynE4nvezuAXubp6cnAQEBV9xXwYIFrVA0q2kxrpWrq6v1vgHs3bs3V/39/f2tUdfJycn83//9n9UWFRXFkiVLcryv6OhovvrqK4d19i9ckpKS+OGHH3JVW27Zp3gCx+tgvxeym04nfXtu/4Lh0UcfJTg4mOTkZObOnQvA1q1b2bVrF5D5dDT23w036r4QERERAYXjIiIiItfdjh07eOmllwB44403WLJkCUFBQezevZsBAwZk2ufw4cMAVK1aNdP22NhYNm/efGMKzoXDhw8TERGRaduFCxes+aPvu+++HO3PPod2SkoKS5cuvT5F3kAtW7a0Rld//vnnbNmyhe3btwM4BLCXu9L7m5KSYs29fCNERUVZ05JkVcOaNWusKU6ys3r16iu2Va9ePcNI4Mz4+PhY9djD+xvBz8/Peu3p6Xnd+s+YMYPk5GSKFi3KhQsXsl3swfTlU6u0bt3amu//7bffznJKo8ulpqZet/Owf14jIiKyDKOTkpL4+eefgayfW5AVV1dX6wsG+2hx+781atSgXLlyGfrYfzccPHiQv/76K1fHExEREckpheMiIiIi11FcXBzt2rUjPj6eBx98kCFDhlC8eHEmTZoEwKRJk/j6668z9AsMDASwgtbLjRw5MsN0Ds4ycuTITNePGTOGuLg43NzcePLJJ3O0rzJlylC/fn0AhgwZYj0QMivXa17mq+Xp6UnHjh2BtHDPPnVOcHCwNa90Zq70/o4bN+6Ko3avhf34WdWQmJjI0KFDc7Sv8ePHW/M8p7djxw7rgYv//e9/c1zbM888A8DChQv58ccfs9328vd/+/btVxxxb4yxHpjp4uJClSpVrLZNmzZd8Z5LSkqyRjsHBgZSqlQpq80edLdu3Ro/P79sl3bt2gHw888/O3zB5O3tzejRowHYtm0b3bp1u2JA/ueffzrMbx8VFZXlvZXejBkzrNfVqlWzXjdp0oSAgACMMYwYMSLTvp988ok197/9XHLDPjp869at/Pnnn9Y1zWoqovDwcEJDQwHo37//Fb+4cfbvBhEREbk9KRwXERERuY4GDBjArl27CAoKYvbs2dbUGW3atLFGFvfs2dMaSWzXuHFjIG2e8kmTJpGYmAikhV4DBgzgvffesx7c50yBgYHMmDGDfv36WUHZhQsXGDVqFG+++SYAL7zwAoULF87xPj/55BP8/PzYt28ftWrV4ttvv3WYP/jo0aN88cUXNGzYkMGDB1/fE7oK9vcxKirKCsc7d+7s8EDTy9nf34ULF/Luu+9a0+ucPXuWESNGMGjQoBv6/ubLl88aHdy3b19++eUXa17xbdu2ER4ezs6dO/H29r7ivuLi4nj00Uf5448/gLQRzMuWLaNJkyYkJydTqlSpbEfRX65bt27UrVuX1NRUmjVrxjvvvOMQeMfGxrJq1SqeffZZ6+GYditXrqREiRK0b9+eb775xqFffHw8P//8M02bNmXx4sUAdOjQwZquA2DWrFmEhobSs2dPlixZ4hCwXrx4kR9++IG6deuybds2APr06YOHhwcAa9euZd++fQC0bdv2iudZt25da279y0ePP/300/Tt29eqqXr16syZM8fhoZlxcXGsXLmSzp07U61aNYe5048cOUKVKlVo0KABkydPZv/+/db7m5yczK5du+jTp481X3vp0qV54oknrP5+fn7WlyPTpk2jT58+nDp1yroOY8aMseYr79KlC//5z3+ueL6Xq1KlitWve/funDhxAnd39yyDdg8PDz777DNcXFxYtWoVDz/8cIa/bjhw4ACffvop1apVy/RhpyIiIiJXZERERETEMmzYMAMYwAQHB19xWb9+vdX366+/tvouWLAgw74vXrxo7r33XgOYhx56yCQnJ1tt586ds9oA4+LiYoKCgozNZjOAefbZZ02XLl0MYLp06ZJh38WLFzeAmTZtWpbnZt/36tWrM22PjIy0tomMjMz0utSrV8+8/PLLBjA2m83kyZPHuLq6Wv0aNWpk4uLisryu9erVy/TY69atMyEhIdZ+XF1dTb58+Yy3t7e1DjA9evTI8vxupurVqzvUtXv37my3j4+PNzVr1rS2t187+/vbsmVL89JLLxnAhIeHZ+hv7zt69Ohsj7N06VIDGE9PzwxtGzZscLieXl5exs/PzwDG3d3dzJs3zwQHBxvAzJ0716Hv7t27He5tX19fAxh/f3+HfebLl89s27Ytw7HT9z9+/HiG9rNnz5rw8HCHaxoYGGgCAwOtawQYPz8/h35jx4516AMYb29vkydPngzrmzZtamJjYx369+/fP8N2vr6+JiAgIMP67t27m6SkJKuv/fNYrFgxk5qamu37Yvf8888bwBQpUsTh8283bty4DMf29fU1gYGBDuv8/PzM2LFjrX5//PFHhnrd3d1N3rx5jYuLi8P6smXLmn379mU4dmpqqlVfVp/vRx99NMM1NMaYCRMmGMCUK1cu2/N/7733HGpp3rz5Fa/ZvHnzrPvNfl758uUzHh4eDvv64IMPrqomERERubtp5LiIiIhIFk6cOHHFxT7C+/Dhw/To0QNIGxXZunXrDPvz8fFh7ty5eHp6snbtWt566y2rLSgoiA0bNtC/f39KlCiBq6srbm5u1K9fn7lz5/LZZ5/dnJPOgXfffZcvv/ySBx98EGMMHh4eVKlShY8//phly5bh5eWV630+8MAD7Nu3jw8++IC6desSFBTE+fPncXV1JSwsjKeeeorZs2czduzYG3BGuZd+ZHSdOnW49957s93e09OTn376iSFDhlC6dGlrlHmdOnWYPHkyX3/9dYYHsF5vtWvXZvPmzTz55JPky5ePlJQUAgMDad++PZs2bcrR6GeABx98kN9++42OHTvi7+9PSkoKxYoVo1evXuzYsYPKlSvnurY8efKwdOlSvv/+e1q3bk2xYsWIj48nPj6eokWL0rhxY95991127Njh0K9fv35s3bqV0aNH06xZM0qXLo3NZiMmJoaAgAAqVKhA165dWb58OT/88AO+vr4O/ceMGcP69esZNmwY4eHhFC9enJSUFC5evEhQUBBVq1bl+eefZ9OmTUyZMsV63y5cuMCCBQuAtClVcjK/Ovw7wvzo0aMsX748Q3ufPn04ePAgY8aMoXHjxhQtWpTU1FTrOjRt2pTx48fz999/069fP6tflSpVOHToEBMmTKBDhw5UrFgRb29voqOj8fLyomTJkrRo0YJp06axY8cOypQpk+HYNpuNTz/9lOXLl9OiRQsKFixIbGwsgYGBNGzYkBkzZrB06dIM1zA3Onbs6PAg2qymVEmvbdu2HDhwgKFDh3Lffffh6+vL+fPn8fb2pkqVKjz77LN899131sh7ERERkdywGfPP39uJiIiIiGRh+PDhjBgxgnr16t3QB0eKiIiIiIjcLBo5LiIiIiIiIiIiIiJ3HYXjIiIiIiIiIiIiInLXUTguIiIiIiIiIiIiIncdheMiIiIiIiIiIiIictfRAzlFRERERERERERE5K6jkeMiIiIiIiIiIiIictdxc3YBt4PU1FSOHTuGv78/NpvN2eWIiIiIiIiIiIiISCaMMVy4cIHChQvj4pL92HCF4zlw7NgxihUr5uwyRERERERERERERCQHDh8+TNGiRbPdRuF4Dvj7+wNpFzQgIMDJ1YiIiIiIiIiIiIhIZmJiYihWrJiV6WZH4XgO2KdSCQgIUDguIiIiIiIiIiIicovLyfTYeiCniIiIiIiIiIiIiNx1FI6LiIiIiIiIiIiIyF1H4biIiIiIiIiIiIiI3HU057iIiIiIiIiIiIjcElJSUkhKSnJ2GXKLc3d3x9XV9Zr3o3BcREREREREREREnC42NpYjR45gjHF2KXKLs9lsFC1aFD8/vzy78LEAACAASURBVGvaj8JxERERERERERERcaqUlBSOHDmCj48PBQoUwGazObskuUUZYzh16hRHjhyhTJky1zSCXOG4iIiIiIiIiIiIOFVSUhLGGAoUKIC3t7ezy5FbXIECBTh48CBJSUnXFI7rgZwiIiIiIiIiIiJyS9CIccmJ63WfKBwXERERERERERERkbuOwnERERERERERERERuesoHBcRERERERERERG5jurXr0///v1v+2Pc6RSOi4iIiIiIiIiIiMhdR+G4iIiIiIiIiIiIiNx1FI6LiIiIiIiIiIjILcUYw6XEZKcsxphc1Xrx4kU6d+6Mn58fhQoVYsyYMQ7tCQkJDBo0iCJFiuDr60vNmjVZs2aN1X7mzBnat29PkSJF8PHxoWLFisydOzdXx5Cr4+bsAkRERERERERERETSi0tKofwby51y7F1vhuPjkfPY9KWXXuLnn3/m22+/pWDBgrz22mts3bqVKlWqANC7d2927drFl19+SeHChVm4cCGNGzdmx44dlClThvj4eKpXr87gwYMJCAhg8eLFdOrUiXvuuYcaNWrk6BhydRSOi4iIiIiIiIiIiFyF2NhYpk6dyqxZs2jYsCEAM2bMoGjRogAcOnSIadOmcejQIQoXLgzAoEGDWLZsGdOmTWPUqFEUKVKEQYMGWfvs06cPy5cvZ/78+dSoUeOKx5Crp3BcREREREREREREbine7q7sejPcacfOqYiICBITE6lZs6a1Lm/evJQrVw6AHTt2kJKSQtmyZR36JSQkkC9fPgBSUlIYNWoU8+fP5+jRoyQmJpKQkICPj0+OjiFXT+G4iIiIiIiIiIiI3FJsNluupja5VcXGxuLq6sqWLVtwdXUM3f38/AB4//33+fjjjxk7diwVK1bE19eX/v37k5iY6IyS7yp6IKeIiIiIiIiIiIjIVbjnnntwd3dn8+bN1rpz586xb98+AKpWrUpKSgonT56kdOnSDktISAgA69evp3nz5jz11FNUrlyZUqVKWf1zcgy5erf/1y8iIiIiIiIiIiIiTuDn50f37t156aWXyJcvHwULFmTIkCG4uKSNSS5btiwdO3akc+fOjBkzhqpVq3Lq1ClWrVpFpUqVaNq0KWXKlOGrr75iw4YN5MmThw8//JATJ05Qvnz5HB1Drp7CcREREREREREREZGr9P777xMbG0uzZs3w9/fnxRdfJDo62mqfNm0ab731Fi+++CJHjx4lf/781KpVi8cffxyA119/nf/7v/8jPDwcHx8fnnnmGVq0aOGwjysdQ66OzRhjnF3ErS4mJobAwECio6MJCAhwdjkiIiIiIiIiIiJ3lPj4eCIjIylZsiReXl7OLkducdndL7nJcjX2XkRERERERERERETuOgrHRUREREREREREROSuo3BcRERERERERERERO46CsdFRERERERERERE5K6jcFxERERERERERERE7joKx0VERERERERERETkruPUcHz48OHYbDaH5d5777Xa4+PjeeGFF8iXLx9+fn48+eSTnDhxwmEfhw4domnTpvj4+FCwYEFeeuklkpOTHbZZs2YN1apVw9PTk9KlSzN9+vSbcXoiIiIiIiIiIiIicoty+sjxChUqcPz4cWtZt26d1TZgwAC+//57FixYwM8//8yxY8do1aqV1Z6SkkLTpk1JTExkw4YNzJgxg+nTp/PGG29Y20RGRtK0aVMefvhhtm3bRv/+/enRowfLly+/qecpIiIiIiIiIiIiIrcON6cX4OZGSEhIhvXR0dFMnTqVOXPm0KBBAwCmTZtGWFgYmzZtolatWqxYsYJdu3bx448/EhwcTJUqVRg5ciSDBw9m+PDheHh48Nlnn1GyZEnGjBkDQFhYGOvWreOjjz4iPDz8pp7rbenSWTi4FmwuYHP9518XcHHJZF2615mus7+2Zb7eJV27fZ2rB7h5OPsqiIiIiIiIiIiIyB3G6eH4/v37KVy4MF5eXtSuXZvRo0cTGhrKli1bSEpKolGjRta29957L6GhoWzcuJFatWqxceNGKlasSHBwsLVNeHg4vXr1YufOnVStWpWNGzc67MO+Tf/+/bOsKSEhgYSEBOvnmJiY63jGt5nT+2B+Z+fW4OIG7r7g7g0ePrl87QvuPpe99vlnG5+0da7uzj0/ERERERERERG5LdWvX58qVaowduzYG3aMEiVK0L9//2zzzOHDh7No0SK2bdt2w+q4Ezk1HK9ZsybTp0+nXLlyHD9+nBEjRvDQQw/x119/ERUVhYeHB0FBQQ59goODiYqKAiAqKsohGLe329uy2yYmJoa4uDi8vb0z1DV69GhGjBhx3c7ztubhB6F1wKSASYXUf/69fLHW2/81l22b7nVqZutSAJN5DanJkBCdttwI9vDd458Q3d0XPP3BNz/4FQTfAv8u6X/29E8b5S4iIiIiIiIiInKT2Gw2Fi5cSIsWLZxdym3PqeH4Y489Zr2uVKkSNWvWpHjx4syfPz/T0PpmefXVVxk4cKD1c0xMDMWKFXNaPU4V8h/otvTmHMuYf5Z0QXxKIiRdgsRLaf8mXYLEi5AUl+71pUy2ucLrxItpx4GrD9/dvP4JyvOD7z+huV+By17/87NP3rRpY0REREREREREROSW4PRpVdILCgqibNmyHDhwgEceeYTExETOnz/vMHr8xIkT1hzlISEh/Prrrw77OHHihNVm/9e+Lv02AQEBWQbwnp6eeHp6Xrfzkhyy2f4ZiZ3+ObE+4B2UVY9rk5wISf8E7YmX0r2+CPHRcPE0XDwFF0+mvY49+e/rxFhIjofow2nLFc/NBXzyZTIK/bJg3b9Q2qIR6SIiIiIiIiJyNzMmbYCjM7j75CqbSU1N5eWXX2bKlCl4eHjw3HPPMXz4cADOnz/PoEGD+Pbbb0lISOC+++7jo48+onLlygBEREQwcOBANm3axMWLFwkLC2P06NEZpom2K1GiBAAtW7YEoHjx4hw8eNBq/+KLLxg6dCjnzp3jscceY/Lkyfj7+zNz5kwGDBjAsWPHHHLPFi1a4O/vzxdffJGLC3TnuKXC8djYWCIiIujUqRPVq1fH3d2dVatW8eSTTwKwd+9eDh06RO3atQGoXbs2b7/9NidPnqRgwYIArFy5koCAAMqXL29ts2TJEofjrFy50tqH3MXc/nnYp3ee3PdNvPRPcP7Pkj44jz3puD7ubNpIePu6K/EKgpCKUKgyhFRKe52/LLjeUh9XEREREREREZEbJ+kSjCrsnGO/diztOXU5NGPGDAYOHMjmzZvZuHEjXbt25YEHHuCRRx6hTZs2eHt7s3TpUgIDA5k4cSINGzZk37595M2bl9jYWJo0acLbb7+Np6cnM2fOpFmzZuzdu5fQ0NAMx/rtt98oWLAg06ZNo3Hjxri6/jtTQUREBIsWLeKHH37g3LlztG3blnfeeYe3336bNm3a0LdvX7777jvatGkDwMmTJ1m8eDErVqy49mt2m3Jq2jZo0CCaNWtG8eLFOXbsGMOGDcPV1ZX27dsTGBhI9+7dGThwIHnz5iUgIIA+ffpQu3ZtatWqBcCjjz5K+fLl6dSpE++99x5RUVG8/vrrvPDCC9Y3IM899xzjx4/n5Zdfplu3bvz000/Mnz+fxYsXO/PU5Xbn4QMexSFP8Stvm5IMl06nC9FP/xOkn4LYU46vY09A/Hk4uDZtsXPzgoLl/wnNK0FIZQgun6tf1CIiIiIiIiIicv1VqlSJYcOGAVCmTBnGjx/PqlWr8Pb25tdff+XkyZNWVvnBBx+waNEivvrqK5555hkqV65sjSIHGDlyJAsXLuS7776jd+/eGY5VoEABIG0GDvvMGXapqalMnz4df39/ADp16sSqVat4++238fb2pkOHDkybNs0Kx2fNmkVoaCj169e/7tfkduHUcPzIkSO0b9+eM2fOUKBAAR588EE2bdpkvckfffQRLi4uPPnkkyQkJBAeHs7//vc/q7+rqys//PADvXr1onbt2vj6+tKlSxfefPNNa5uSJUuyePFiBgwYwMcff0zRokWZMmUK4eHhN/185S7l6gb+IWnLlSQnwMndELUDov78598dadO4HNuattjZXCBf6X9Hl9tDc998N+5cRERERERERERuBneftBHczjp2LlSqVMnh50KFCnHy5Em2b99ObGws+fI5ZjVxcXFEREQAaTNpDB8+nMWLF3P8+HGSk5OJi4vj0KFDuS67RIkSVjCevg67nj17cv/993P06FGKFCnC9OnT6dq1K7a7eHpfp4bjX375ZbbtXl5efPrpp3z66adZblO8ePEM06Zcrn79+vzxxx9XVaPITeXmCYWrpC12qalwLjItLD/+57+heewJOL0vbfnrq3+39y/8T1Be6Z9/K0JQcc1jLiIiIiIiIiK3D5vttvmLeXd3d4efbTYbqampxMbGUqhQIdasWZOhj/0Zi4MGDWLlypV88MEHlC5dGm9vb1q3bk1iYuJ1q8OuatWqVK5cmZkzZ/Loo4+yc+fOu352DU1iLHKrc3GBfPekLRVa/rv+wol/gnJ7aL4DzkbAhWNpy75l/27rFfjvCHN7aJ6/LLi6ZzyeiIiIiIiIiIhcs2rVqhEVFYWbm5v1IM3LrV+/nq5du1oP2IyNjXV4wGZm3N3dSUlJuaqaevTowdixYzl69CiNGjWiWLFiV7WfO4XCcZHblX8w+D8CZR75d13CBYj665/pWLanheYnd0N8dMZ5zF09oWBYWlBeqDJUaAU+eW/+eYiIiIiIiIiI3IEaNWpE7dq1adGiBe+99x5ly5bl2LFjLF68mJYtW3LfffdRpkwZvvnmG5o1a4bNZmPo0KEOo70zU6JECVatWsUDDzyAp6cnefLkyXFNHTp0YNCgQUyePJmZM2de6yne9hSOi9xJPP2heO20xS45EU7v/Xd0uX1aloQYOL4tbQH45QNoNQlK1nVO7SIiIiIiIiIidxCbzcaSJUsYMmQITz/9NKdOnSIkJIS6desSHBwMwIcffki3bt2oU6cO+fPnZ/DgwcTExGS73zFjxjBw4EAmT55MkSJFrjjSPL3AwECefPJJFi9eTIsWLa7l9O4INmOMcXYRt7qYmBgCAwOJjo4mICDA2eWIXLvUVDj/979B+c6FcOYAYIMHB8DDr2nKFRERERERERG5aeLj44mMjKRkyZJ4eXk5u5w7WsOGDalQoQLjxo1zdilXLbv7JTdZrsuNLFJEblEuLpC3JJRvDg1eh2d/gWqdAQPrPoTPG8PZSGdXKSIiIiIiIiIi18m5c+dYuHAha9as4YUXXnB2ObcEheMikvb05yc+gTYz0h7eefR3+Owh+HO+sysTEREREREREZHroGrVqnTt2pV3332XcuXKObucW4LmHBeRf1VoAUWqwdc94fAm+KYnRPwETd5Pm89cRERERERERERuS7mZm/xuoZHjIuIoKBS6LoZ6r4DNBbbPhYl14egWZ1cmIiIiIiIiIiJy3SgcF5GMXN3g4VfTQvKAonD2/2Dqo7BubNrDPEVERERERERERG5zCsdFJGvF60CvdWkP7kxNhh+HwayWcCHK2ZWJiIiIiIiIiIhcE4XjIpI97zxpD+psNg7cvOH/1sCEOrB3mbMrExERERERERERuWoKx0Xkymw2qN4Fnv0ZgivCpTMw97+wdDAkxTu7OhERERERERERkVxTOC4iOVegHPT4EWr2Svt582cwpRGc2uvcukRERERERERERHJJ4biI5I67Fzz2DnRYAD754cQOmFgPtkwHY5xdnYiIiIiIiIjITVO/fn369++f4+337NlDrVq18PLyokqVKjewsqtjs9lYtGiRs8u4aRSOi8jVKfso9FoPpR6G5Dj4vh/M7wxx55xdmYiIiIiIiIjITfHNN98wcuTIHG8/bNgwfH192bt3L6tWrbouNdxtgfb1pHBcRK6efwg89Q08MhJc3GD3dzDhQfh7g7MrExERERERERG54fLmzYu/v3+Ot4+IiODBBx+kePHi5MuX7wZWJjmhcFxEro2LCzzQF7qvhLylIOYITG8Kq0dBSrKzqxMRERERERGR25AxhktJl5yymFxMG5t+WpUSJUowatQounXrhr+/P6GhoUyaNMna1mazsWXLFt58801sNhvDhw8H4PDhw7Rt25agoCDy5s1L8+bNOXjwoMNxPv/8cypUqICnpyeFChWid+/e1jEBWrZsic1ms34G+Pbbb6lWrRpeXl6UKlWKESNGkJz8b1azf/9+6tati5eXF+XLl2flypW5eIfuDG7OLkBE7hBFqsGzv8CSl2H7HPj5Xfi/n+HJyRAU6uzqREREREREROQ2EpccR805NZ1y7M0dNuPj7nNVfceMGcPIkSN57bXX+Oqrr+jVqxf16tWjXLlyHD9+nEaNGtG4cWMGDRqEn58fSUlJhIeHU7t2bdauXYubmxtvvfUWjRs35s8//8TDw4MJEyYwcOBA3nnnHR577DGio6NZv349AL/99hsFCxZk2rRpNG7cGFdXVwDWrl1L586dGTduHA899BARERE888wzQNrULqmpqbRq1Yrg4GA2b95MdHR0ruZOv1No5LiIXD+e/tByArSaAh7+cHhT2jQrf33j7MpERERERERERG64Jk2a8Pzzz1O6dGkGDx5M/vz5Wb16NQAhISG4ubnh5+dHSEgIfn5+zJs3j9TUVKZMmULFihUJCwtj2rRpHDp0iDVr1gDw1ltv8eKLL9KvXz/Kli3L/fffbwXZBQoUACAoKIiQkBDr5xEjRvDKK6/QpUsXSpUqxSOPPMLIkSOZOHEiAD/++CN79uxh5syZVK5cmbp16zJq1KibfLWcTyPHReT6q9QGit4HX/eAo7/DV09DxE/w2Lvg4evs6kRERERERETkFuft5s3mDpudduyrValSJeu1zWYjJCSEkydPZrn99u3bOXDgQIZ5y+Pj44mIiODkyZMcO3aMhg0b5qqO7du3s379et5++21rXUpKCvHx8Vy6dIndu3dTrFgxChcubLXXrl07V8e4EygcF5EbI29J6LYM1oyGtR/CH1/AoU3QeioUquzs6kRERERERETkFmaz2a56ahNncnd3d/jZZrORmpqa5faxsbFUr16d2bNnZ2grUKAALi5XN/FHbGwsI0aMoFWrVhnavLy8rmqfdyKF4yJy47i6Q8M3oFR9+OYZOLMfpjSCRiOgVi+w2ZxdoYiIiIiIiIiI01SrVo158+ZRsGBBAgICMt2mRIkSrFq1iocffjjTdnd3d1JSUjLsd+/evZQuXTrTPmFhYRw+fJjjx49TqFAhADZt2nQNZ3J70pzjInLjlawLvTZAuaaQkgjLX4XZbSD2lLMrExERERERERFxmo4dO5I/f36aN2/O2rVriYyMZM2aNfTt25cjR44AMHz4cMaMGcO4cePYv38/W7du5ZNPPrH2YQ/Po6KiOHfuHABvvPEGM2fOZMSIEezcuZPdu3fz5Zdf8vrrrwPQqFEjypYtS5cuXdi+fTtr165lyJAhN/8COJnCcRG5OXzyQrvZ0OQDcPOCAythQh2IXOvsykREREREREREnMLHx4dffvmF0NBQWrVqRVhYGN27dyc+Pt4aSd6lSxfGjh3L//73PypUqMDjjz/O/v37rX2MGTOGlStXUqxYMapWrQpAeHg4P/zwAytWrOD++++nVq1afPTRRxQvXhwAFxcXFi5cSFxcHDVq1KBHjx4O85PfLWzGGOPsIm51MTExBAYGEh0dneWfN4hILpzYBV91g1O7wSsQnt8MAYWcXZWIiIiIiIiIOEl8fDyRkZGULFlSc2LLFWV3v+Qmy9XIcRG5+YLLwzOroXBViI+GxQNB39OJiIiIiIiIiMhNpHBcRJzD3Rua/w9c3GHvEtjxlbMrEhERERERERGRu4jCcRFxnuDyUO/ltNdLX4LYk86tR0RERERERERE7hoKx0XEuR4cAMEVIe4cLH7R2dWIiIiIiIiIiMhdQuG4iDiXqzu0+BRc3GD3d7BzobMrEhERERERERGRu4DCcRFxvkKV00aQAyweBBfPOLceERERERERERG54ykcF5FbQ92XoEAYXDoNS192djUiIiIiIiIiInKHUzguIrcGN8+06VVsLvDXV7BnsbMrEhERERERERGRO5jCcRG5dRSpDnX6pr3+YQBcOuvcekRERERERERE5I6lcFxEbi31X4X8ZSH2BCx/zdnViIiIiIiIiIhINqZPn05QUJCzy7gqCsdF5Nbi7gXNPwVssH0u7Fvu7IpEREREREREROQOpHBcRG49xWpArefTXn/fH+KjnVuPiIiIiIiIiEgOJCYmOruEq3K71n2tFI6LyK2pweuQtxRcOAYrXnd2NSIiIiIiIiJyExljSL10ySmLMSbHddavX5/evXvTv39/8ufPT3h4OOfPn6dHjx4UKFCAgIAAGjRowPbt2x36ff/999x///14eXmRP39+WrZsabWdO3eOzp07kydPHnx8fHjsscfYv38/ADExMXh7e7N06VKH/S1cuBB/f38uXboEwOHDh2nbti1BQUHkzZuX5s2bc/DgQWv7rl270qJFC95++20KFy5MuXLlAEhISGDQoEEUKVIEX19fatasyZo1axyONX36dEJDQ/Hx8aFly5acOXMmx9frVuPm7AJERDLl4QNPjIfpTWDrTKjQEu5p4OyqREREREREROQmMHFx7K1W3SnHLrd1CzYfnxxvP2PGDHr16sX69esBaNOmjRVgBwYGMnHiRBo2bMi+ffvImzcvixcvpmXLlgwZMoSZM2eSmJjIkiVLrP117dqV/fv389133xEQEMDgwYNp0qQJu3btIiAggMcff5w5c+bw2GOPWX1mz55NixYt8PHxISkpifDwcGrXrs3atWtxc3PjrbfeonHjxvz55594eHgAsGrVKgICAli5cqW1n969e7Nr1y6+/PJLChcuzMKFC2ncuDE7duygTJkybN68me7duzN69GhatGjBsmXLGDZs2LVecqexmdx8FXKXiomJITAwkOjoaAICApxdjsjdZclL8OskCCwGz28ET39nVyQiIiIiIiIi11l8fDyRkZGULFkSLy8vUi9dcmo47pLDcLx+/frExMSwdetWANatW0fTpk05efIknp6e1nalS5fm5Zdf5plnnqFOnTqUKlWKWbNmZdjf/v37KVu2LOvXr6dOnToAnDlzhmLFijFjxgzatGnDokWL6NSpEydOnMDHx4eYmBiCg4OtIHvWrFm89dZb7N69G5vNBqRNmxIUFMSiRYt49NFH6dq1K8uWLePQoUNWWH7o0CFKlSrFoUOHKFy4sFVTo0aNqFGjBqNGjaJDhw5ER0ezePFiq71du3YsW7aM8+fP5/JKX73L75f0cpPlauS4iNzaGg5Leyjn+b9h5TB4/ENnVyQiIiIiIiIiN5jN25tyW7c47di5Ub36vyH+9u3biY2NJV++fA7bxMXFERERAcC2bdvo2bNnpvvavXs3bm5u1KxZ01qXL18+ypUrx+7duwFo0qQJ7u7ufPfdd7Rr146vv/6agIAAGjVqZNVw4MAB/P0dBxjGx8dbNQBUrFjRCsYBduzYQUpKCmXLlnXol5CQYJ3P7t27HaaAAahduzbLli3L5grduhSOi8itzdMPnvgEZj4Bv0+FCi2gZF1nVyUiIiIiIiIiN5DNZsvV1CbO5Ovra72OjY2lUKFCGebpBggKCgLAO5fh++U8PDxo3bo1c+bMoV27dsyZM4f//ve/uLm5WTVUr16d2bNnZ+hboECBTOu293N1dWXLli24uro6tPn5+V1TzbcqheMicusrVQ+qPw1bpsF3faDXBvDwvXI/EREREREREZGbqFq1akRFReHm5kaJEiUy3aZSpUqsWrWKp59+OkNbWFgYycnJbN682WFalb1791K+fHlru44dO/LII4+wc+dOfvrpJ9566y2HGubNm0fBggVzNUV01apVSUlJ4eTJkzz00EOZbhMWFsbmzZsd1m3atCnHx7jVuDi7ABGRHHnkTQgoCucOwqo3nV2NiIiIiIiIiEgGjRo1onbt2rRo0YIVK1Zw8OBBNmzYwJAhQ/j9998BGDZsGHPnzmXYsGHs3r2bHTt28O677wJQpkwZmjdvTs+ePVm3bh3bt2/nqaeeokiRIjRv3tw6Tt26dQkJCaFjx46ULFnSYRqWjh07kj9/fpo3b87atWuJjIxkzZo19O3blyNHjmRZe9myZenYsSOdO3fmm2++ITIykl9//ZXRo0dbc4z37duXZcuW8cEHH7B//37Gjx9/206pAgrHReR24RUAT3yc9nrzRPh7o3PrERERERERERG5jM1mY8mSJdStW5enn36asmXL0q5dO/7++2+Cg4OBtId4LliwgO+++44qVarQoEEDfv31V2sf06ZNo3r16jz++OPUrl0bYwxLlizB3d3d4Tjt27dn+/btdOzY0aEGHx8ffvnlF0JDQ2nVqhVhYWF0796d+Pj4K44knzZtGp07d+bFF1+kXLlytGjRgt9++43Q0FAAatWqxeTJk/n444+pXLkyK1as4PXXX79el++msxljjLOLuNXl5gmnInKDLXoBts2CfKXhuXXgfm3zdImIiIiIiIiI88XHxxMZGUnJkiXx8vJydjlyi8vufslNlquR4yJyewl/G/wLwZkDsPptZ1cjIiIiIiIi8v/s3XlYlXX+//HX2eGAoLiAKMrmgjsuKVmpaVkuOVbfctprmq6aFq0sp8Zp303L1qnvzNcWK/tZVi6ZY6VoCqYmpYaogCIuuIPsHM75/XGEpMhcgPsceD6ui+u+5dz3Oa+jlPryw/sDwE9RjgPwL4HNpTEve89TXpdy1xmbBwAAAAAAAH6JchyA/+lyidTrasnjlj7/m1RRanQiAAAAAAAA+BnKcQD+6ZLnpKA20sEMKfl5o9MAAAAAAADAz1COA/BPzjBp9HTv+aqZGIso+AAAIABJREFU0p4NxuYBAAAAAACAX6EcB+C/ul0mdR8veSqlz++UXOVGJwIAAAAAAICfoBwH4N9GvSg5W0r7N0srpxudBgAAAAAAAH6CchyAfwtqJY2a5j1f+aK0b6OxeQAAAAAAAOAXKMcB+L/ul0tdx0hul/T536TKCqMTAQAAAAAAwMdRjgPwfyaTNHqGFNhC2veTtOploxMBAAAAAADgJN555x01b97c0AyU4wAah2bh0iXPe8+TX5D2pxubBwAAAAAAwCAmk0mff/650TGqRUdH6+WXay5mvPrqq7V161aDEnlRjgNoPHpdJXUaKVWWHx+v4jI6EQAAAAAAAGoRGBioNm3aGJqBchxA42EySWNflhyh0p4fpJTXjE4EAAAAAADOgMfjUUVZpSEfHo/ntLJ+8skn6tmzpwIDA9WyZUuNGDFCycnJstls2rdvX41rJ02apPPPP1/SL2NFFi5cqC5dusjpdOrKK69UcXGx3n33XUVHR6tFixa65557VFlZWf0c0dHRevLJJ/XnP/9ZQUFBateunV5//fUaj0vS+PHjZTKZqn8sSW+++abi4uJkt9vVpUsXvf/++zXymUwmvfXWWxozZoycTqcSEhKUkpKi7du3a+jQoQoKCtK5556rzMzM6nsyMzM1btw4hYeHKzg4WAMGDNDXX39d/fjQoUO1c+dO3XvvvTKZTDKZTDXe/4kWLFigAQMGKCAgQK1atdL48eNP69fidFnr9dkBoKGFREojn5bm3yUte0bqOlpq1cnoVAAAAAAA4DS4yt16e2KyIa9928whsjksp3Tt3r179ec//1kvvPCCxo8fr2PHjmnlypXq16+fYmNj9f777+uBBx6QJFVUVOiDDz7QCy+8UH1/cXGxXnnlFc2ZM0fHjh3T5ZdfrvHjx6t58+b68ssvlZWVpSuuuEKDBw/W1VdfXX3ftGnT9PDDD+vxxx/XkiVLNHHiRHXu3FkXXXSR1q5dqzZt2mjWrFm65JJLZLF438tnn32miRMn6uWXX9aIESO0cOFC3XzzzWrfvr2GDRtW/dxPPvmkZsyYoRkzZmjKlCm65pprFBsbq4ceekgdOnTQLbfcorvuukuLFy+WJBUWFmrUqFF6+umn5XA49N5772ns2LHKyMhQhw4dNG/ePPXu3Vu33Xab/vrXv/7uz+WiRYs0fvx4/eMf/9B7772n8vJyffnll6f+C3cGKMcBND6J10mbP5Myv5G+uFO6ebFkPrXf1AAAAAAAAE7V3r175XK5dPnll6tjx46SpJ49e0qS/vKXv2jWrFnV5fiCBQtUWlqqq666qvr+ioqK6tXcknTllVfq/fffV15enoKDg9WtWzcNGzZMy5Ytq1GODx48WH//+98lSZ07d9aqVav00ksv6aKLLlLr1q0lSc2bN1dERET1PS+++KJuuukm/e1vf5Mk3XfffUpNTdWLL75Yoxy/+eabqzNOmTJFSUlJ+uc//6mRI0dKkiZOnKibb765+vrevXurd+/e1T9+8skn9dlnn2n+/Pm66667FBYWJovFombNmtXI82tPP/20JkyYoMcff7zGc9cnynEAjY/JJI2dKb2RJO1aI615S0r6m9GpAAAAAADAKbLazbpt5hDDXvtU9e7dW8OHD1fPnj01cuRIXXzxxbryyivVokUL3XTTTZo6dapSU1M1aNAgvfPOO7rqqqsUFBRUfb/T6awuxiUpPDxc0dHRCg4OrvG5/fv313jdpKSk3/z41xte/lp6erpuu+22Gp8bPHiwZs6cWeNzvXr1qvHa0i+Ff9XnSktLVVBQoJCQEBUWFuqxxx7TokWLqv+xoKSkRDk5OSfN82tpaWknXVleH5g5DqBxah4lXfyE9/ybJ6RDmSe/HgAAAAAA+AyTySSbw2LIR9VM7FNhsVi0dOlSLV68WN26ddOrr76qLl26KDs7W23atNHYsWM1a9Ys5eXlafHixbrllltq3G+z2X77vmv5nNvtPvOfzNN04utX/VzU9rmqTJMnT9Znn32mZ555RitXrlRaWpp69uyp8vLy03rdwMDAs41+2ijHATRe/W6WYi6QXCXS/LulBvyNBAAAAAAANA0mk0mDBw/W448/rg0bNshut+uzzz6TJN166636+OOP9fbbbysuLk6DBw+uk9dMTU39zY8TEhKqf2yz2Wps4ilJCQkJWrVqVY3PrVq1St26dTurLKtWrdJNN92k8ePHq2fPnoqIiNCOHTtqXGO323+T59d69eqlb7755qyynC7KcQCNl8kkjX1Fsjmlnaukdf8xOhEAAAAAAGhE1qxZo2eeeUbr1q1TTk6O5s2bpwMHDlQX1SNHjlRISIieeuqpGnO6z9aqVav0wgsvaOvWrXr99dc1d+5cTZw4sfrx6OhoffPNN9q3b5+OHDkiSXrggQf0zjvv6M0339S2bds0Y8YMzZs3T5MnTz6rLJ06ddK8efOUlpamH3/8Uddcc81vVrpHR0drxYoV2r17tw4ePFjr8zz66KP66KOP9Oijjyo9PV0bN27U888/f1bZ/gjlOIDGLSxGGvGY93zpo9KRHQaGAQAAAAAAjUlISIhWrFihUaNGqXPnzpo6daqmT5+uSy+9VJJkNpt10003qbKyUjfccEOdve7999+vdevWKTExUU899ZRmzJhRvWGmJE2fPl1Lly5VVFSUEhMTJUl/+tOfNHPmTL344ovq3r273nrrLc2aNUtDhw49qywzZsxQixYtdO6552rs2LEaOXKk+vbtW+OaJ554Qjt27FBcXFz1hqG/NnToUM2dO1fz589Xnz59dOGFF+r7778/q2x/xOTxeDz1+gqNQEFBgUJDQ5Wfn6+QkBCj4wA4XW639M5oKWe1FDNEuuEL76pyAAAAAADgE0pLS5Wdna2YmBgFBAQYHadO/eUvf9GBAwc0f/78Onm+6OhoTZo0SZMmTaqT5/NHJ/t6OZ0ul5XjABo/s1ka95pkDZCyk6Uf3jU6EQAAAAAAaOTy8/P13Xff6cMPP9Tdd99tdBzUgnIcQNPQMk668J/e8yVTpfxcY/MAAAAAAIBGbdy4cbr44ot1++2366KLLjI6DmphNToAADSYQXdIP38h5X4vLbxXunau0YkAAAAAAEAjtXz58np53h07dtTL8zZFrBwH0HSYLdK41yWzVdr2X+lAhtGJAAAAAAAAYBDKcQBNS+vOUtxw7/mmT43NAgAAAAAAavB4PEZHgB+oq68TynEATU/PK73HjZ9I/KYLAAAAAIDhLBaLJKm8vNzgJPAHVV8nVV83Z4qZ4wCani6XStYA6XCmtPdHKbKP0YkAAAAAAGjSrFarnE6nDhw4IJvNJrOZNb2ondvt1oEDB+R0OmW1nl29TTkOoOlxNJM6XyL9/Lm06RPKcQAAAAAADGYymdS2bVtlZ2dr586dRseBjzObzerQoYNMJtNZPQ/lOICmqccVx8vxz6QRT0j8izQAAAAAAIay2+3q1KkTo1Xwh+x2e518dwHlOICmqdPFkiNEKsiVdq2ROiYZnQgAAAAAgCbPbDYrICDA6BhoIlgqCaBpsgVIXcd4zzd9YmwWAAAAAAAANDjKcQBNV48rvMfNn0uVLmOzAAAAAAAAoEFRjgNoumKHSM6WUvFBKTvZ6DQAAAAAAABoQJTjAJoui03q9ifv+aZPjc0CAAAAAACABkU5DqBpqxqtkr5AcpUZmwUAAAAAAAANhnIcQNPWIUlqFimVFUjblhqdBgAAAAAAAA2EchxA02Y2Sz0u954zWgUAAAAAAKDJoBwHgKrRKhmLpbJCY7MAAAAAAACgQVCOA0BkohQWK7lKvAU5AAAAAAAAGj3KcQAwmX5ZPc5oFQAAAAAAgCaBchwAJKnHld7j9q+l4sPGZgEAAAAAAEC9oxwHAElq01UK7yG5K6T0BUanAQAAAAAAQD2jHAeAKj0u9x4ZrQIAAAAAANDoUY4DQJWqueM7VkrH8ozNAgAAAAAAgHpFOQ4AVVpES+36Sx63tPkzo9MAAAAAAACgHlGOA8CJeh7fmJPRKgAAAAAAAI0a5TgAnKj7eEkmKfd76chOo9MAAAAAAACgnlCOA8CJmkVI0ed5zzfPMzYLAAAAAAAA6g3lOAD8WtVolY2MVgEAAAAAAGisKMcB4NcSLpPMVilvo3Qgw+g0AAAAAAAAqAeU4wDwa84wKW6495yNOQEAAAAAABolynEAqE31aJVPJI/H2CwAAAAAAACoc5TjAFCbLpdK1gDpcKa0N83oNAAAAAAAAKhjlOMAUBtHM6nzJd5zRqsAAAAAAAA0OpTjAPB7qkarbJonud3GZgEAAAAAAECdohwHgN8Tf5HkCJEKdku71hidBgAAAAAAAHWIchwAfo8tQOo6xnu+6RNjswAAAAAAAKBOUY4DwMn0vMJ73Py5VOkyNgsAAAAAAADqDOU4AJxMzBDJ2VIqPihlJxudBgAAAAAAAHWEchwATsZik7r9yXu+6VNjswAAAAAAAKDOUI4DwB/pcXy0SvoCqaLU2CwAAAAAAACoE5TjAPBHOiRJIe2ksgJp+9dGpwEAAAAAAEAdoBwHgD9iNkvdx3vPN31ibBYAAAAAAADUCcpxADgVVaNVMr6SygqNzQIAAAAAAICzRjkOAKciMlEKi5VcJVLGYqPTAAAAAAAA4CxRjgPAqTCZpB5Xes8ZrQIAAAAAAOD3KMcB4FRVjVbZ/o1UfNjYLAAAAAAAADgrlOMAcKradJXCe0juCil9gdFpAAAAAAAAcBYoxwHgdPS43HtktAoAAAAAAIBfoxwHgNNRNVole6V0bJ+xWQAAAAAAAHDGKMcB4HS0iJbaD5DkkTZ/bnQaAAAAAAAAnCHKcQA4XVWrxzd9amwOAAAAAAAAnDHKcQA4Xd3HSyazlPu9dGSn0WkAAAAAAABwBijHAeB0NYuQos/znrN6HAAAAAAAwC9RjgPAmagerTLP2BwAAAAAAAA4I5TjAHAmEi6TzFYpb6N0IMPoNAAAAAAAADhNlOMAcCacYVLccO/5xk+MzQIAAAAAAIDTRjkOAGeq55Xe46ZPJY/H2CwAAAAAAAA4LZTjAHCmuoySrIHS4Uxpb5rRaQAAAAAAAHAaKMcB4Ew5gqXOI73nmz41NgsAAAAAAABOC+U4AJyN6tEq8yS329gsAAAAAAAAOGWU4wBwNuIvkhwhUsFuaVeq0WkAAAAAAABwinymHH/uuedkMpk0adKk6s+VlpbqzjvvVMuWLRUcHKwrrrhCeXl5Ne7LycnR6NGj5XQ61aZNGz3wwANyuVw1rlm+fLn69u0rh8Oh+Ph4vfPOOw3xlgA0BbYAqesY7zmjVQAAAAAAAPyGT5Tja9eu1VtvvaVevXrV+Py9996rBQsWaO7cuUpOTtaePXt0+eWXVz9eWVmp0aNHq7y8XKtXr9a7776rd955R4888kj1NdnZ2Ro9erSGDRumtLQ0TZo0SbfeequWLFnSYO8PQCPX8wrvcfPnUqXr5NcCAAAAAADAJ5g8Ho/HyACFhYXq27ev3njjDT311FPq06ePXn75ZeXn56t169b68MMPdeWV3pm+W7ZsUUJCglJSUjRo0CAtXrxYY8aM0Z49exQeHi5J+te//qUpU6bowIEDstvtmjJlihYtWqRNmzZVv+aECRN09OhRffXVV6eUsaCgQKGhocrPz1dISEjd/yQA8G+VFdL0LlLxIem6T6X4EUYnAgAAAAAAaJJOp8s1fOX4nXfeqdGjR2vEiJpl0vr161VRUVHj8127dlWHDh2UkpIiSUpJSVHPnj2ri3FJGjlypAoKCrR58+bqa3793CNHjqx+jtqUlZWpoKCgxgcA/C6LTer2J+/5pnnGZgEAAAAAAMApMbQcnzNnjn744Qc9++yzv3ls3759stvtat68eY3Ph4eHa9++fdXXnFiMVz1e9djJrikoKFBJSUmtuZ599lmFhoZWf0RFRZ3ZGwTQdPT0foeL0hdIFaXGZgEAAAAAAMAfMqwc37VrlyZOnKgPPvhAAQEBRsWo1UMPPaT8/Pzqj127dhkdCYCvixokhbSTygqk7V8bnQYAAAAAAAB/wLByfP369dq/f7/69u0rq9Uqq9Wq5ORkvfLKK7JarQoPD1d5ebmOHj1a4768vDxFRERIkiIiIpSXl/ebx6seO9k1ISEhCgwMrDWbw+FQSEhIjQ8AOCmzWeo+3nu+6RNjswAAAAAAAOAPGVaODx8+XBs3blRaWlr1R//+/XXttddWn9tsNn3zzTfV92RkZCgnJ0dJSUmSpKSkJG3cuFH79++vvmbp0qUKCQlRt27dqq858Tmqrql6DgCoM1WjVTK+ksoKjc0CAAAAAACAk7Ia9cLNmjVTjx49anwuKChILVu2rP78X/7yF913330KCwtTSEiI7r77biUlJWnQoEGSpIsvvljdunXT9ddfrxdeeEH79u3T1KlTdeedd8rhcEiSbr/9dr322mt68MEHdcstt+jbb7/V//t//0+LFi1q2DcMoPFr20cKi5UOZ0kZi6Ve/2N0IgAAAAAAAPwOQzfk/CMvvfSSxowZoyuuuEIXXHCBIiIiNG/evOrHLRaLFi5cKIvFoqSkJF133XW64YYb9MQTT1RfExMTo0WLFmnp0qXq3bu3pk+frn//+98aOXKkEW8JQGNmMkk9jq8eZ7QKAAAAAACATzN5PB6P0SF8XUFBgUJDQ5Wfn8/8cQAnt3+L9MZAyWyTJm+VnGFGJwIAAAAAAGgyTqfL9emV4wDgd9p0lcJ7SO4KKX2B0WkAAAAAAADwOyjHAaCu9bjCe2S0CgAAAAAAgM+iHAeAutbjcu8xe6V0bJ+xWQAAAAAAAFArynEAqGstoqX2AyR5pM2fG50GAAAAAAAAtaAcB4D60ONK75HRKgAAAAAAAD6JchwA6kP3P0kms5S7Vjqyw+g0AAAAAAAA+BXKcQCoD80ipOjzvOeb5hmbBQAAAAAAAL9BOQ4A9aXHFd7jpk+NzQEAAAAAAIDfoBwHgPqScJlktkl5m6T9W4xOAwAAAAAAgBNQjgNAfXGGSfHDveesHgcAAAAAAPAplOMAUJ+qR6t8Ink8xmYBAAAAAABANcpxAKhPXUZJ1kDpcJa0N83oNAAAAAAAADiOchwA6pMjWOo80nu+8RNjswAAAAAAAKAa5TgA1LeeV3qPmz+T3G5jswAAAAAAAEAS5TgA1L/4iyRHiFSwW9qVanQaAAAAAAAAiHIcAOqfLUDqOsZ7zmgVAAAAAAAAn0A5DgANoecV3uPPn0uVLmOzAAAAAAAAgHIcABpEzFDJ2VIqPiTlrjU6DQAAAAAAQJNHOQ4ADcFilaIGec/3bDA2CwAAAAAAACjHAaDBRCZ6j5TjAAAAAAAAhqMcB4CGQjkOAAAAAADgMyjHAaChRPbxHg9tk0oLjM0CAAAAAADQxFGOA0BDCWolhXbwnu/90dgsAAAAAAAATRzlOAA0pKrV44xWAQAAAAAAMJTV6AAA0KREJkrp8ynHG6Gso1l6cMWDKnGV6IL2F2hI1BD1C+8nm9lmdDQAAAAAAFALynEAaEhsytkofZvzrR7+7mEVVRRJkmanz9bs9NlqZmumwe0Ga0jUEJ3f7nyFOkINTgoAAAAAAKpQjgNAQ6oaq3IkWyo5IgW2MDYPzorb49ZbP76lN358Q5LUP7y/ru56tVbtXqUVuSt0uPSwvtrxlb7a8ZUsJov6tOmjoe2HakjUEMWExhicHgAAAACAps3k8Xg8RofwdQUFBQoNDVV+fr5CQkKMjgPA383sLR3ZId3whRQ71OAwOFNFFUV6eOXD+nbXt5Kka7peo8kDJlePUXF73Np4cKOSdyVree5ybTuyrcb90SHRGtJ+iIZEDVFim0RZzfx7NQAAAAAAZ+t0ulzK8VNAOQ6gTs29Sdr8mTTiMem8ew0OgzORU5Cje769R5n5mbKZbfrnoH9qfKfxJ71nd+FuLd+1XMm7krU2b61cblf1YyH2EJ3X7jwNjRqqwe0GK8TO7zUAAAAAAJwJyvE6RjkOoE6tmiktfUTqNk666j2j0+A0fbf7Oz244kEdKz+m1oGt9dKwl9S7de/Teo7C8kKt3rNaybnJWpG7QkfLjlY/ZjVZ1S+8n4ZEDdHQ9kMVFRJV128BAAAAAIBGi3K8jlGOA6hT2Sukd8dKzTtIkzYanQanyOPxaNbmWZr5w0y5PW71bt1bLw19Sa2drc/qeSvdlfrxwI9anutdVZ6Vn1Xj8djQ2OqivHfr3rKYLWf1egAAAAAANGaU43WMchxAnSrNl57r4D1/IEsKamlsHvyhEleJHl39qBZnL5YkXdHpCj088GHZLfY6f61dBbuqi/L1eevl8vwyfqW5o7nOb3e+hkYN1bmR5yrYHlznrw8AAAAAgD+jHK9jlOMA6tyr/aRD26XrPpXiRxidBiexp3CPJi6bqC2Ht8hqsmrKOVN0dZerZTKZ6v21C8oLtGr3Ki3ftVzf7f5OBeUF1Y9ZzVYNCB/gXVUeNVTtgtvVex4AAAAAAHwd5XgdoxwHUOc+vVXaOFe6cKp0wQNGp8HvWLtvre5ffr+OlB1RWECYpg+Zrv4R/Q3J4nK7tGH/BiXvSlZybrJ2FOyo8XjPVj311HlPKTY01pB8AAAAAAD4AsrxOkY5DqDOpbwuLXlY6jpGmvCB0WnwKx6PRx9u+VDT1k5TpadSCWEJmjlsptoGtzU6WrXs/Gwl70rW8tzl2rB/g9wet4JsQXr2vGc1rMMwo+MBAAAAAGCI0+lyzQ2UCQBwoshE73HPBmNz4DfKKsv0yOpH9Nz3z6nSU6nRsaP13qXv+VQxLkkxoTG6qcdNeueSd7T0yqXq26aviiqKdM+ye/RG2htye9xGRwQAAAAAwKdRjgOAESJ6STJJBbulY3lGp8FxeUV5uvmrm/X59s9lNpk1uf9kPXveswqwBhgd7aTaONvo3yP/rWu6XiNJevPHN3XPt/foWPkxg5MBAAAAAOC7KMcBwAiOYKl1F+/53jRjs0CSlLY/TRMWTdDGgxsVYg/RmyPe1I3db2yQjTfrgs1s00MDH9JTg5+S3WxXcm6yrll0jTKPZhodDQAAAAAAn0Q5DgBGYbSKz/h066e6ecnNOlhyUPHN4zVnzBydG3mu0bHOyLj4cXrv0vcUERShHQU7dM2ia/TNzm+MjgUAAAAAgM+hHAcAo1COG66iskJPpT6lx1Iek8vt0kUdL9IHoz5QVLMoo6Odle6tumvO6DnqH95fxa5iTVo+Sa9ueFWV7kqjowEAAAAA4DMoxwHAKCeW4x6PsVmaoIMlB3Xrf2/VxxkfyyST7k68W9OHTJfT5jQ6Wp1oGdhSb1/8tq5LuE6S9PZPb+vub+9WQXmBwckAAAAAAPANlOMAYJTwHpLJIhXmScf2Gp2mSdl8aLMmLJygH/b/oGBbsF698FXd1us2v5kvfqpsZpumnDNFz5z3jBwWh1buXqk/L/yzth3ZZnQ0AAAAAAAMRzkOAEaxO6U2Cd5zRqs0mAWZC3Tj4huVV5yn6JBofTD6Aw2JGmJ0rHo1Nm6s3rv0PUUGRSrnWI6u/fJa/XfHf42OBQAAAACAoSjHAcBIkX28R8rxeudyuzRt7TQ9/N3DKqss0wXtL9CHoz9UbGis0dEaRLeW3TRnzBwNjBioEleJ7k++Xy+vf5k55AAAAACAJotyHACM1LaqHE8zNkcjd7T0qO74+g699/N7kqS/9vyrXr3wVTWzNzM4WcNqEdBC/7roX7qx242SpP9s+o/u/OZO5ZflG5wMAAAAAICGRzkOAEaK7Os9silnvdl6ZKsmLJqg1L2pCrQGavqQ6bqn7z0ym5rmb4FWs1WTB0zW8+c/rwBLgFbtWaUJCyco43CG0dEAAAAAAGhQTbMZAABfEd5dMlul4oNSfq7RaRqd/+74r6778jrtLtytdsHtNHvUbF0cfbHRsXzCqNhRmj1qttoFt1NuYa6uX3y9vsr+yuhYAAAAAAA0GMpxADCSLUBq0817ztzxOuP2uPXKD6/o/uT7VeIq0aC2gzRn9Bx1btHZ6Gg+pUtYF80ZPUdJbZNU4irRAyse0Ix1M+Ryu4yOBgAAAABAvaMcBwCjRSZ6j5TjdaKiskL3fHuP/nfj/0qSbux2o94c8aaaBzQ3OJlvah7QXG+MeEM397hZkjRr8yzd8fUdOlp61OBkAAAAAADUL8pxADAa5XidWpi1UMm5yXJYHHrmvGc0ecBkWc1Wo2P5NKvZqvv63adpQ6Yp0Bqo1L2pmrBogrYc3mJ0NAAAAAAA6g3lOAAY7cRynE05z9oXmV9Ikm7vfbvGxo01OI1/uST6Es0eNVvtg9trd+FuXf/l9VqUtcjoWAAAAACAU+SprFT5zp069vXXOjz7A6Pj+DyW0gGA0dp0kyx2qfSodGSHFBZjdCK/lXssV+vz1sskk8bEjjE6jl/q3KKz5oyZoykrpmjVnlX6+8q/6+dDP+vefveyAh8AAAAAfITH45ErL09l27apbOs273HbNpVlZspTWuq9yGxW8yuvkDkgwNiwPoy/5QKA0ax2KbyHtOcH7+pxyvEztiBzgSRpYNuBigiKMDiN/wp1hOr14a/rtbTX9O+N/9Z7P7+njMMZemHICwoLCDM6HgAAAAA0Ka7Dh70F+Pbtv5Tg27bJfexYrdebHA454uLk6NRJ7uJiyvGToBwHAF8QmfhLOd7jcqPT+CWPx6P5mfMlSZfFXWZwGv9nMVs0se9EJYQlaOqqqVqzb40mLJygl4e9rG4tuxkdDwAAAAAancrCwhPK71+K8MpDh2q/wWqVPbqjHJ06VX8EdOokW1SUTBZLw4b3U5TjAOAL2JTzrP2w/wflFubKaXVqeIfhRsdpNC6OvlixobGauGyico7l6IbFN+jRpEeZ5w4AAAAAZ8hdWqryrKzq8rv0+NG1Z2/tN5hMskVFHS/A438pw6OjZbLbGzatQWkeAAAgAElEQVR8I0M5DgC+oKoc3/uj5HZLZvZLPl1Vq8Yvjr5YTpvT4DSNS3yLeH005iP9fcXftXL3Sj383cP6+dDPuq//fbKZbUbHAwAAAACf5CkvV3lOTo1RKGVbt6l81y7v3/1rYQ0Pr7ES3NGpkxxxsTI7+XtufaAcBwBf0LqrZA2Qygqkw1lSq3ijE/mVEleJluxYIkkaFzfO4DSNU4g9RK8Nf01vpL2ht356S7PTZ2vL4S16cciLahnY0uh4AAAAAGAYd0mJyrOzVZaZqbLMTJVnZqosM0vlO3dKlZW13mNp3lyOzp3liI+Xo/PxEjw+XpbQ0AZO37RRjgOAL7BYpYheUu733tEqlOOn5ducb1VUUaR2we3UN7yv0XEaLbPJrLsS71JCWIIe/u5hrctbp6sXXq3pQ6erd+veRscDAAAAgHpVeezY8eLbW36XZW5XeWaWKnbvljyeWu8xBwXVLMCPf1hatpTJZGrgd4BfoxwHAF8RmfhLOd7rf4xO41dO3IjTbGIkTX0b3nG4Pgr9SBOXTdSOgh26afFNuq//fbou4Tr+cAcAAADA77kOH1bZ9u3eueDbM1Welamy7Zly7d//u/dYmjeXPT5Ojrh4OeJiZY+LkyMuTtbwcP6e5MMoxwHAV7Ap5xnJK8pT6t5USWKTyAYU2zxWH43+SI+uflT/3flfvbD2Ba3PW68nBj+hEHuI0fEAAAAA4KQ8Ho9ceXk1yu+yrEyVb89U5dGjv3ufNTz8ePntLcEdcXGyx8XJGhbWgOlRVyjHAcBX1NiUs1IyW4zN4ycWZi2U2+NW3zZ9FdUsyug4TUqwPVgvDnlRH235SNPWTdM3Od9oy+Etmj50urq37G50PAAAAACQp7JSFbt315gFXnXuLiqq/SaTSbZ27aqLb0dcXPVqcEuzZg37BlCvKMcBwFe06iTZgqSKIunQdql1F6MT+TyPx1M9UmVcPBtxGsFkMumahGvUq3UvTU6erN2Fu3X9l9frwQEP6uouV/PtgwAAAAAahKe8XOU5OTVmgZdlZqo8O1uesrLab7JaZe/Q4XgJHvvLSJSYGJkDAxv2DcAQlOMA4CvMFqltLyknxTtahXL8D20+tFlZ+VkKsATo4o4XGx2nSevRqoc+HvOx/rnqn1q2a5meXvO01uet16NJjyrYHmx0PAAAAACNhLukROXZ2b8twXNyJJer1ntMDofsMTG/LcE7dJDJbm/gdwBfQjkOAL4kMvGXcrz3BKPT+Lwvtn8hSbqww4UUsD4g1BGqmcNm6r2f39PL61/WVzu+UvrhdE0fMl1dwvjHHgAAAACnrrKw0DsG5YRZ4GWZmarYvVvyeGq9x+x0yh4fL0dsrBzxcbLHxskRHydbu3YyWRhdit+iHAcAX8KmnKesvLJci3csliSNi2Okiq8wmUy6sfuN6t26tyYnT9bOgp269str9dA5D+nyTpczZgUAAABADa7Dh4/PAvfOAy/P3K6yzCy58vJ+9x5LaKi3BI+Lq1GCW8PD+TsHTgvlOAD4kupNOX+SKl2Shf9N/54VuSuUX5avNs42Gth2oNFx8Ct92vTR3LFz9fB3D+u73d/psZTHtD5vvaYOmiqnzWl0PAAAAAANyOPxyLV/v8q2/zIGpWokSuWRI797n7V1a9nj434Zg3J8c0xLWBglOOoErQsA+JKwOMneTCo/Jh3MkMK7G53IZ32R6R2pMiZ2jCxmvj3OF7UIaKHXh7+u/9v0f3ptw2takLVAmw9t1vQh0xXfIt7oeAAAAADqmKeyUhV79nhL8KysGiNR3EVFv3ufrV07bwkeW7USPNZbgoeENGB6NEWU4wDgS8xmKbKPtGOld7QK5XitDpUc0ne530lipIqvM5vMurXnrerTuo8eXPGgsvKzdM2X12jqoKm6LO4yo+MBAAAAOAOeigqV5+SobHumyrOq5oJnqTwrS56ystpvslhk79Ch5oaYcXFyxMTI7OS7S2EMynEA8DUnluOJ1xmdxid9mf2lXB6XerTsodjmsUbHwSnoH9Ffc8fO1d9X/l2pe1P1j+/+ofV56/XQOQ8pwBpgdDwAAAAAtXCXlqo8O1tlmVnVY1DKMjNVvnOn5HLVeo/JZju+8vuXMSiOuDjZOnaU2W5v4HcAnBzlOAD4Gjbl/EPzM+dLki6LZ+WxP2kZ2FL/GvEvvb3xbb2Z9qbmbZunjQc3avqQ6YoJjTE6HgAAANBkVRYWHt8Us2YJXpGbK3k8td5jcjrlOD7+xH58Y0xHbKxs7dvLZKVyhH/gKxUAfE1VOb5vk+Qql6z8y/qJMg5naMvhLbKarbo0+lKj4+A0WcwW3dH7DiW2SdSUFVO07cg2TVg4QY+d+5gujeHXEwAAAKgvHo9HlYcOHR9/kl09C7wsM1OuvLzfvc8cGlq9+vvEkSjWiAiZzOYGfAdA3aMcBwBf0yJGCgiVSvOlA+lS295GJ/IpVavGh7YfquYBzQ1OgzM1qO0gfTL2E01ZOUVr963Vgyse1Pq89XpgwANyWBxGxwMAAAD8lsflUsXu3SrLzFJ5dpb3mJWlsuxsufPzf/c+a+vW1WNQTizBLS1bymQyNeA7ABoO5TgA+BqTybt6PGu5d7QK5Xg1l9ulRVmLJInNHBuB1s7Wevuit/Xmj2/q7Z/e1scZH+unAz9p+pDpigqJMjoeAAAA4NPcxcUqy872Ft/HV4OXZ2WqfMdOeSoqar/JZJKtfXvZY2PkiImVIz5O9tg4bwkeGtqwbwDwAZTjAOCLTizH+91kdBqfsXrPah0qPaSwgDCd1/48o+OgDljNVt2deLcS2yTqoZUPKf1wuq5aeJWeHPykRnQcYXQ8AAAAwFAej0eVBw+qLCv7V6vAs+Tas/d37zM5HLLHxMgRG+vdHDM2Rva4ONk7dpQ5IKAB3wHg2yjHAcAXsSlnrb7Y/oUkaVTMKNnMNoPToC6d1+48zR07Vw+ueFAb9m/Qvcvv1XUJ1+m+fvfJZuHXGgAAAI2bx+VSRW7u8RXgWd4yPDPTOwqloOB377OEhXlXgcfGHT/Gyh4bJ1tkW+aBA6eAchwAfFFVOZ73s1RRKtn4l/38snwt27VMEiNVGquIoAj9Z+R/9OqGVzVr0yzNTp+tHw/8qGlDpqldcDuj4wEAAAB1wnXwoErT01X6c7pKt6SrfPv2k49CMZtla99ejpgY7yrwOO9qcHtMjKwtWjRseKCRoRwHAF8UGiU5W0rFh6T9m6V2/YxOZLglO5aowl2hTi06qWtYV6PjoJ7YzDbd1+8+9WvTTw9/97A2HtyoqxZcpafPe1pDo4YaHQ8AAAA4ZR63WxW7dnmL8PQtKk3/WaXp6ao8cLDW600BAdWzwO2xMd6NMWNiZY/uKLODTeuB+kA5DgC+qGpTzu1fe0erUI7ri0zvSJVxcePYKb0JGBI1RHPHztXk5MnaeHCj7v72bt3c/Wbd3fduRuoAAADA53jKy1W2ffsJRXi6yrZskbuo6LcXm0yyx8QooGtXBXRLkKNLFzliY2VtyygUoKFRjgOAr2rb53g5nmZ0EsNl52frpwM/yWKyaHTsaKPjoIFEBkfq3Uve1Yz1MzQ7fbZmbZ6lDfs3aNqQaYoIijA6HgAAAJqoysJClZ1Qgpemp6ssM1OqZSyKyW6Xo3NnBSQkeIvwrl0V0KWLzE6nAckB/BrlOAD4qupNOSnHF2QukCSdG3muWgW2MjgNGpLNYtOUc6aoX3g/PbLqEaUdSNP/LPgfPXv+szqv3XlGxwMAAEAj5vF45Np/QGVb0k+YEb5FFTk5tV5vDgnxluAJCQpI6CpHQoIcsbEyWanfAF/Ff50A4KuqyvH9P0sVJZIt0Ng8BnF73FqQ5S3HL4tnI86makTHEerSoovuT75f6YfTdcfXd+iO3nfo9t63y2ziW08BAABwdjxut8p37jy+IvyXVeGVhw7Ver21bVtvCX58NEpAQoKskZGMgAT8DOU4APiqkEgpqI1UtF/at0mKGmB0IkN8v+977Svap2b2ZhoWNczoODBQVEiU3h/1vqatnaaPMz7Wmz++qYzDGXrm/GcUZAsyOh4AAAD8iLu8XKWbNql47ToVr1unkg0b5C4s/O2FZrPssTEK6JpQYzSKtUWLhg8NoM5RjgOAr6ralHPbEu+mnE20HJ+/fb4k6ZLoS+SwsEN7U+ewODR10FT1aNVDT6Q8oW93favrvrxOrwx7RVEhUUbHAwAAgI9yFxWp5McfVbxunYrXrlPJTz/JU1ZW4xqTwyFHly7VY1ECEhLk6NxZ5sCm+V28QFNAOQ4AvuzEcrwJKqoo0tc5X0uSLotjpAp+8af4Pyk2NFaTlk3S9qPbNWHRBE0bMk3nRp5rdDQAAAD4gMqjR1X8ww8qXrdexevWqXTzZqmyssY1lrAwOfv1k3NAfzn795ejc2fmgwNNDP/FA4Avq96Us2mW40t3LlWJq0QdQzqqd+veRseBj+nVupfmjJmje5fdq58O/qQ7vr5D9/e7X9d3u55ZjwAAAE1MRd5+laxfV12Gl23d+ptrrG3beovwfv3lHNBf9pgY/twINHGU4wDgyyL7eI8HM6SyQskRbGyeBjY/0ztS5bK4y/hDK2rVxtlG/3fJ/+nJlCf1ReYXmrZumjKOZOiRpEcYwwMAANBIeTweVeTmVs8LL16/ThU7c35znT0mRs7+/eXs30/O/v1la9fOgLQAfBnlOAD4smYRUrNI6dgead9GqWOS0YkazO7C3Vq7b61MMmls7Fij48CHOSwOPTn4SSW0TNC0tdM0P3O+so5m6eVhLys8KNzoeAAAADhLHrdb5ZmZ1fPCi9evlysvr+ZFJpMcXbt6y/B+/eTs30/WVq2MCQzAb1COA4Cvi0yUMvZ4R6s0oXJ8QeYCSdI5bc9R2+C2BqeBrzOZTLo24VrFN4/X/cn3a9OhTZqwaIJeGvqS+rTpY3Q8AAAAnAaPy6XS9C3eMnzdOpWsW6fK/PyaF1mtCuzRo3peeGBioiwhIcYEBuC3KMcBwNdFJkoZi5rU3HGPx1Ndjo+LG2dwGviTgW0H6qPRH2nisonadmSbbllyi6YOmqrLO11udDQAAADUwlNRobKsbJVtzVBZRoZKf05XSVqa3MXFNa4zBQQosE+f42NS+iuwdy+ZAwMNSg2gsaAcBwBf1wQ35Uw7kKacYzlyWp0a3mG40XHgZ6KaRWn2pbM1ddVULd25VI+uflRbDm/RAwMekM1sMzoeAABAk+U6eFClGRkq25Khsq0ZKs3YqrLMTKmi4jfXmps1qx6P4uzfXwHduslktxuQGkBjRjkOAL6ualPOQ9uk0gIpoPF/q+AX27+QJF3U8SI5bU6D08AfOW1OvTjkRb3909t6Pe11fbTlI20/ul0vDnlRYQFhRscDAABo1Nzl5SrPylLpli0qy9jqXRGekaHKQ4dqvd4cFCRHly5ydOmsgC5dFNinjxydOslksTRwcgBNDeU4APi6oFZSaAcpP0fa+6MUc77RiepVqatUS3YskSSNi2ekCs6c2WTW7b1vV+cWnfXQyoe0dt9a/XnhnzXzwpnqGtbV6HgAAAB+z+PxyHXggMoyjo9Eydiqsi1bVJadLblcv73BZJK9Qwc5unatLsIdXbrI1q6dTCZTw78BAE0e5TgA+IPIPt5yfM+GRl+OL9u1TIUVhYoMilS/8H5Gx0EjcGGHC/XBqA80cdlE5RzL0Q2Lb9CTg5/UyOiRRkcDAADwG+6yMpVt315jJXhZRoYqjxyp9XpzSIgCOnf+ZUV4165yxMfL7OQ7QwH4DspxAPAHkYlS+vwmMXf8i0zvSJWxcWNlNpkNToPGIr5FvD4c/aEeXPGgVu9ZrcnJk5VxOEN3Jd7F1xkAAMCvVBYUqGTDhuqV4KVbM1SevUOqrPztxWaz7NHRx1eC/7Ii3Nq2LavBAfg8ynEA8AdVm3LuTTM2Rz3bX7xfKXtSJEmXxV1mcBo0NqGOUL0+/HXN/GGm3tn8jv534/9q65Gtevb8Z9XM3szoeAAAAIZxl5WpZMMGFa1OUVFqqko3bZLc7t9cZwkN/dVIlK5yxMfJHBBgQGoAOHuU4wDgD9r29h4PZ0klR6TAFsbmqSeLshbJ7XErsU2iOoR0MDoOGiGr2ar7+9+vzi0667HVjyk5N1nXfnmtXhn2iqJDo42OBwAA0CA8lZUqTd+iopTVKk5JUfH6H+QpK6txjT06WgHdu8vRtUv1bHBrmzasBgfQqFCOA4A/cIZJLaKlIzu8m3LGDjU2Tz3weDz6Yrt3pAqrxlHfxsaNVWxorCYum6js/Gxds+gaPX/B8zq/feOe6Q8AAJomj8ejip07VZSa6l0dvmaN3Pn5Na6xtm6toHOT5ByUpKCkQbJFRBiUFgAaDuU4APiLyERvOb5nQ6Msx38+9LMy8zPlsDjYKBENonur7pozZo7uXXav0g6k6c5v7tSkfpN0c/ebWREFAAD8nuvgQRWlpKooNUVFKSly7dlb43FzUJCcAwcqKMlbhtvj4vgzEIAmh3IcAPxFZKK0+bNGuyln1UacF0ZdyPxnNJhWga30n5H/0TNrntGn2z7VS+tf0pbDW/T4uY8r0BpodDwAAIBTVllYpOJ1a1WckqKilFSVbd1a8wKbTc7ERAUlDVJQUpICevSQyUotBKBp4/+CAOAvqjblbITleEVlhRZnL5YkXRbPSBU0LLvFrkeTHlVCWIKe+/45Lc5erB35OzRz2Ey1DW5rdDwAAIBaecrLVfLTT97V4SkpKvnpJ8nlqnGNo1uCd2X4oCQ5+/WV2ek0KC0A+CbKcQDwF1Wbch7NkYoOSUEtjc1Th1bkrtDRsqNqHdhaSW2TjI6DJshkMunqrlcrtnms7l9+v9IPp2vCogmaMXSG+oX3MzoeAACAPG63yrZt884MT01R8dp18hQX17jGFhXlLcPPTZJz4EBZW7QwKC0A+AfKcQDwFwGhUst46dB2ae8GKX6E0YnqTNVIlTGxY2QxWwxOg6ZsQMQAzRkzRxOXTdSWw1t065Jb9dDAh3RVl6uMjgYAAJqg8tzdKk5Nqd5Es/LQoRqPW8LCFDRooJxJSQpKSpK9fXuDkgKAf6IcBwB/EpnoLcf3NJ5y/HDpYa3MXSlJuiyOkSowXmRwpN695F09svoRLdmxRE+mPqkth7fooXMeks1iMzoeAABoxFwHD6oodY2K16SqKCVVFbm5NR43BQbKOaC/ggZ5V4c7OneWyWw2KC0A+D/KcQDwJ5GJ0sa50p40o5PUmcXZi+XyuNStZTfFt4g3Og4gSXLanJp2wTR1DeuqV354RXO3zlXm0UxNHzpdrQJbGR0PAAA0EpUFBSpeu9ZbiKemqGzb9poXWK0K7NnTOyolaZACe/eWyW43JiwANEKU4wDgTxrhppxfbPeOVGHVOHyNyWTSrT1vVecWnTVlxRT9sP8HTVg4Qa9c+Iq6texmdDwAAOCH3CUlKv7hBxWnrlFRaqpKN2+W3O4a1zgSEhQ0aJCCBg1UYL/+sgQHGZQWABo/ynEA8CcRvSSZpILd0rE8qVm40YnOyrYj25R+OF1Ws1WjYkYZHQeo1QXtL9AHoz/QxG8nakfBDt2y5Ba9euGrGhAxwOhoAADAx3kqKlSycaOKUlJUnLpGJWlp8lRU1LjGHh0tZ9IgBQ0cJOfAc9hEEwAaEOU4APgTR7DUuot0YIu0N01qNtLoRGdlfuZ8SdIF7S5QiwD+EgDfFRsaqw9Gf6BJyyZp7b61uuPrOzRj6Axd0P4Co6MBAAAf4nG7VbZli4pSUlW0JlXF69bLU1xc4xprRIR3ZXjSIDkHDpQtIsKgtAAAynEA8DeRid5yfM8GqbP/luMut0sLsxZKki6LZ6QKfF+IPURvDH9Dk5MnKzk3WRO/nahnz39Wl8RcYnQ0AABgEI/Ho/LsHSpK9a4ML16zRpX5+TWusbRoIefAgdWjUmwdO8pkMhmUGABwIspxAPA3kYnSjx/5/dzxlD0pOlhyUM0dzXVBO1bfwj8EWAP00rCX9I+V/9DiHYv14IoHVVRRpCs6X2F0NAAA0EAq9u5VUUqqitekqih1jVx5eTUeNzudcg4Y4B2VMmiQHJ07y2Q2G5QWAHAylOMA4G9O3JTT45H8dNVJ1UiVUTGjZLPYDE4DnDqb2aZnz39WQfYgfbL1Ez2W8pgKKwp1Y/cbjY4GAADqQeWxYypanaKi1atVlJqiip05NR432e0KTEysHpMS2KOHTDb+fAsA/oByHAD8TXgPyWSRCvOkY3ulkEijE522gvICfZvzrSRGqsA/WcwWPTLoETWzNdOszbP04roXVVhRqL/1/hvfJg0AgJ/zeDwqz8pS4fJkFa5YoeL16yWX65cLLBYF9ugh5/G54YF9+sgcEGBcYADAGaMcBwB/Y3dKbRKkvE3SnjS/LMeX7Fiicne54pvHq1tYN6PjAGfEZDLp3n73KtgerFc3vKp//fgvFZYX6oEBD8hs4lunAQDwJ+6yMhWvWaPC5BUqTE5WRW5ujcftMTEKOv88BQ1KknNAf1maNTMoKQCgLlGOA4A/atvneDm+Qeo6yug0p23+du9IlcviLmOVLfyayWTSbb1uU5AtSM99/5xmp89WYUWhHkt6TBazxeh4AADgJCr27FHhihUqXJ6sotRUeUpLqx8z2WxynnOOgocMUfCQC2Tv2NHApACA+kI5DgD+KLKPlDbbLzfl3FmwU2kH0mQ2mTUmdozRcYA6cW3CtQq2BeuR1Y/o8+2fq6iiSM+f/zzz9AEA8CEel0slaWkqTE5WYfIKlW3dWuNxa3i4twwfOkRBgwbJ7HQalBQA0FAoxwHAH0X29R79cFPOqo04kyKT1NrZ2uA0QN0ZFz9OQbYgPbDiAS3duVTFrmK9NPQlBVoDjY4GAECT5TpyREUrVnjHpaxaJXd+/i8Pms0K7NOnenW4o0sXvqsRAJoYynEA8Efh3SWzVSo+KOXnSs2jjE50StwetxZkLpAkjYsbZ3Ca/8/efQZGVaZtHP/PTCY9mSQkIQm9qBC6AoJK74hUdy20FRBBVNAVWMuurisCVhBUigUVsIMoVUJTAUWE0EXpLSGN9DqZeT8E4vJaloGZnIRcvy8hz5mcufhCkovn3I+I+3Wt1ZXXOr/G+A3j2Xx6M2PWjmF2l9kEeWsuqYiISFlwOp3k799fUohv3ETe7t0lm0nOs9hsBLRvT2D79gTccjNeoaEGphUREaOpHBcRqYisvhAZC4m7S3aPV5ByfHvidhJyEgiyBtGpRiej44h4xE3VbmJe93ncH3c/O5J2MHLNSOZ2m0uor375FhER8YTi7Bxytm4he9MmcjZ9jT05+aLrPg0bEti+PYEdOuDXrCkmi84FERGREirHRUQqqpgWv5bjsX2NTnNJlh1eBkCPOj3w9fI1OI2I57SIbMHbPd7mvrX3cSDtAH9b/TfmdZtH1YCqRkcTERG5KhQcPXp+dvgmcrf/CEVFpddM/v4EtG1LYIeSQtxaVd9/RUTk96kcFxGpqGJawI53K8yhnLlFuaw9vhbQSBWpHBpWaciCXgu496t7OZJxhOGrhzO/+3xqBFWMJz1ERETKE6fdTu6OHWSvW0fWxo0UHT9x0XVrrZrnZ4d3wL9VK8ze3gYlFRGRikTluIhIRRXTouRjBTmUM+5EHHn2PGoF16JZRDOj44iUibq2urzX6z3u/epeTmadZPiq4czrNo/6ofWNjiYiIlLuOfLzydmylay4OLLXr6c4Pf3Xi1YrAa1aEtihAwHt2+NTp45xQUVEpMJSOS4iUlFFxoLFG/LT4dwxCCvfvxB8cegLAG6rexumcl7ki7hTtcBqvNvzXUavHc2h9EPcs+Ye5nSdQ6PwRkZHExERKXeKMzPJ3rSJrLVxZH/7Lc7c3NJrFpuNwM6dCezciYC2N2EJDDAwqYiIXA1UjouIVFRe3lC1MZzZUbJ7vByX4wnZCWxL3AbAbfVuMziNSNmL8I9gQc8FjI0by56UPYz8aiSzO8+mZVRLo6OJiIgYruhsEtnr15G1No6cbdvAbi+95hUdTVCXLgR17Yp/yxsweanGEBER99F3FRGRiiymxa/leOOBRqf5Q18e+RInTlpHtSYmMMboOCKGsPnYmN99Pg+uf5AfEn9gTNwYXu74Mu2rtzc6moiISJkrOHq0ZFxK3Drydu266JrPNfUJ7NKFoK7d8G0Uq6cORUTEY1SOi4hUZP89d7yccjqdfHG4ZKRK33p9DU4jYqwAawCvd3mdRzc9yqZTmxi/fjxT20+lZ+2eRkcTERHxKKfTSf7efWTFxZG1Lo7CQ4cvuu7XrBlB3boS1LUr3rVrGxNSREQqHZXjIiIV2YVyPGEXOBxgNhub53fsSt7F8czj+Hn50a1WN6PjiBjO18uXVzq9whPfPMGqY6uY/PVkcotyGXhN+X36Q0RE5HI47XZyt28na20cWevWYU9M/PWilxcBN95IULeuBHbqjLVqpHFBRUSk0lI5LiJSkUU0AC9fKMiEtCMQXt/oRL9xYdd4t1rd8Lf6G5xGpHywmq1MbTeVAO8APv35U57a8hTZhdkMazTM6GgiIiJXxJGXR87mzWTFrSN7wwaKMzJKr5n8/Qls146grl0J7NAeS3CwgUlFRERUjouIVGwWL4hqCqe2lYxWKWfleL49n9VHVwMaqSLy/1nMFv7V5l8EWYN4Z987vLD9BbKLshnbbKxmq4qISIVSnJ5O9qZNJTPEv92MMy+v9JolNJTAzp0I6tqVgLZtMfv6GphURETkYirHRUQqupgWv5bjTf9idJqLbDy5kayiLKIDomkV1croOCLljslk4uEbHibQO5BZO2fxxq43yCrMYlKrSSrIRUSkXCtKTCRr3Tqy4uLI3fYDFBeXXrPGxBDYtQtBXbvif/31mLxUPYiISPmk71AiIhVd6dzxeGNz/I5lh5cB0KduH8ym8jcPXaQ8MF7enGcAACAASURBVJlMjG46mgBrANO2TWPhgYXkFOXwVNunsJgtRscTEREBwH7uHLnfbyPn++/I/X4bhUeOXHTd59prCTpfiPs0bKj/5BURkQrB0KbijTfeoGnTpgQHBxMcHEzbtm1ZtWpV6fX8/HzGjRtHlSpVCAwMZNCgQZw9e/aie5w4cYJbb70Vf39/IiMjmThxIna7/aLXbNy4keuvvx4fHx/q16/PggULyuKvJyJSNmKal3xM2AWO4j9/bRlKzk1my5ktgEaqiFyKwQ0HM+WWKZhNZpYeWsqkrydRVFxkdCwREamkijMyyIqLI3HKcxzp249f2t7E6QkTSP/gw5Ji3GTCr0ULIidOpN6a1dT9YhkRDz2Eb2ysinEREakwDN05Xr16daZNm8Y111yD0+nk3XffpV+/fuzcuZNGjRrx8MMPs2LFCj755BNsNhsPPPAAAwcOZPPmzQAUFxdz6623EhUVxZYtW0hISGDYsGFYrVaee+45AI4ePcqtt97KmDFjWLRoEevWrWPUqFFER0fTo0cPI//6IiLuEX4tWP2hMBtSD0HEdUYnAuCr41/hcDpoFtGM2rbaRscRqRD61utLgFcAE7+eyFfHvyLXnsvLHV/Gz8vP6GgiInKVK87OJnf7dnK/30bu99+Tf+AAOJ0Xvcbn2mvxv/FGAm5sjX/LllhCQgxKKyIi4h4mp/P/fbczWFhYGC+88AK33347ERERLF68mNtvvx2An376iYYNG7J161batGnDqlWr6NOnD2fOnKFq1aoAzJkzh8mTJ5OcnIy3tzeTJ09mxYoV7N27t/Q97rzzTtLT01m9evUlZcrMzMRms5GRkUGwTtMWkfLo7Z5wYisMmAvN7jQ6DQCPbHyEtcfXMv768YxqMsroOCIVypYzW5iwYQJ59jyuj7ye17q8RqB3oNGxRETkKuLIyyN3xw5yv/uenG3fk79330VzwwG869bF/8bWBNx4I/6tW+MVFmZQWhERkUvnSpdbbmaOFxcX88knn5CTk0Pbtm358ccfKSoqomvXrqWvadCgATVr1iwtx7du3UqTJk1Ki3GAHj16MHbsWPbt20eLFi3YunXrRfe48JoJEyb8YZaCggIKCgpKP8/MzHTj31RExANiWpSU42d2loty3Ol0sitpFwDNI5obnEak4rkp5ibmdpvLuLhx7EjawcivRjKn6xxCfUONjiYiIhWUo6CAvPhd5H7/HTnfbyNv924ounh8l7VmzZJd4a1LynBr1UiD0oqIiJQNw8vxPXv20LZtW/Lz8wkMDGTp0qXExsYSHx+Pt7c3If/vMa2qVauSmJgIQGJi4kXF+IXrF6792WsyMzPJy8vDz++3jylPnTqVf//73277O4qIeNyFQznP7DQ2x3kJOQkk5SXhZfKiUXgjo+OIVEgtIlvwVo+3GBM3hv2p+/nb6r8xt9tcogKijI4mIiIVgLOwkLy9e8n5ruQAzbydO3EWFl70Gq/o6JJd4edHpVhjYgxKKyIiYgzDy/HrrruO+Ph4MjIy+PTTTxk+fDibNm0yNNNjjz3GI488Uvp5ZmYmNWrUMDCRiMj/cKEcT9gNxXawGPvP+67kkl3j14Zdq1nJIlegYZWGvNPzHUZ/NZojGUcYvmo487rPo1ZwLaOjiYhIOeO028nfv5+c778n97vvyd2xA2de3kWvsUSEE3Bjm9JRKdYaNXR4poiIVGqGl+Pe3t7Ur18fgBtuuIEffviBmTNncscdd1BYWEh6evpFu8fPnj1LVFTJjqmoqCi2bdt20f3Onj1beu3Cxwtr//2a4ODg3901DuDj44OPj497/oIiImUhrB54B0FhFqQchKrG7ta+UI5rpIrIlatrq8v7vd5n9NrRHMs8xrBVw5jbbS4NwhoYHU1ERAxWdPo0mV+tJfe778j98Ucc2dkXXbeEhv56gOaNN+Jdp47KcBERkf9ieDn+/zkcDgoKCrjhhhuwWq2sW7eOQYMGAXDw4EFOnDhB27ZtAWjbti1TpkwhKSmJyMiSWWhr164lODiY2NjY0tesXLnyovdYu3Zt6T1ERK4KZjPENIdj35SMVjG4HI9PigegWUQzQ3OIXC2iA6NZ0HMBY+PGciDtAPesvofZXWZzQ9UbjI4mIiJlzJGbS9bataQv/Zzc77676Jo5OBj/Vq1KR6X4XFMfk9lsUFIREZHyz9By/LHHHqNXr17UrFmTrKwsFi9ezMaNG1mzZg02m42RI0fyyCOPEBYWRnBwMA8++CBt27alTZs2AHTv3p3Y2FiGDh3K888/T2JiIk8++STjxo0r3fk9ZswYZs+ezaRJkxgxYgTr16/n448/ZsWKFUb+1UVE3O+/y/EWQwyLkW/P52DaQQCaRaocF3GXKn5VeKvHWzy4/kF+PPsj9629j5c7vkz76u2NjiYiIh7mdDrJ27GD9KVLyVq1GkdOTuk1/xtvJLBDB/xvbI1vgwaYLBYDk4qIiFQshpbjSUlJDBs2jISEBGw2G02bNmXNmjV069YNgFdeeQWz2cygQYMoKCigR48evP7666Vfb7FYWL58OWPHjqVt27YEBAQwfPhwnnnmmdLX1KlThxUrVvDwww8zc+ZMqlevzptvvkmPHj3K/O8rIuJR5eRQzn2p+7A77UT4RRAToEOdRNwpyDuIOV3n8OimR9l0ahPj14/nP7f8hz51+xgdTUREPKDozBkyli0j/fPPKTp+onTdWqMGtgH9CenXD2u1agYmFBERqdhMTqfTeTlfWFhYSFJSEg6H46L1mjVruiVYeZKZmYnNZiMjI4Pg4GCj44iI/L60I/BqC7D4wGOnwMvbkBhv7XmLGTtm0LVmV17p9IohGUSudkWOIv61+V8sP7IcgMdaP8bdDe82OJWIiLiDIy+PrLg4MpYuJWfrd3D+V3aTvz/BPXsSMnAAfjfcoNnhIiIif8CVLtflneO//PILI0aMYMuWLRetO51OTCYTxcXFrt5SRETcIbQO+NogPwOSD0C0MSNNLhzGqXnjIp5jNVuZcssUgr2DWfzTYqZum0pGYQZjmo5RWSIiUgE5nU7ydu4kY+lSMleu+s3YFNuA/gR364Y5IMDAlCIiIlcfl8vxv/3tb3h5ebF8+XKio6P1C5iISHlhMpWMVjmysWS0igHluNPpLC3Hm0c2L/P3F6lMzCYz/2j9D0J8Qnh91+u8Hv86GQUZTGo1CbNJh6+JiFQERQkJZCxbRsbSzyk8frx03Vq9OrYB/bH16493dY1NERER8RSXy/H4+Hh+/PFHGjRo4Ik8IiJyJf67HL/hb2X+9qeyTpGWn4aX2YuGVRqW+fuLVDYmk4mxzccS7BPMtG3TWHRgEZkFmfz75n9jNVuNjiciIr+jZGzKuvNjU7ZePDalRw9sA/rj37IlJrP+o1NERMTTXC7HY2NjSUlJ8UQWERG5UgYfyhmfHA9AbJVYfCw+hmQQqYwGNxxMsHcw/9z8T7488iVZhVm80OEFfL18jY4mIiJcGJsSXzI2ZdUqHNnZpdf8W7fGNmAAwd01NkVERKSsuVyOT58+nUmTJvHcc8/RpEkTrNaLdyXpwEoREQNdKMfP7gd7AXiVbUGteeMixrmt3m0EeQfx6KZH2XhqI2PjxjKr8ywCvQONjiYiUmkVJSaS8fkyMpYuvXhsSrVq2Pr3xzagP97VqxuYUEREpHJzuRzv2rUrAF26dLloXQdyioiUA7Ya4BcGeWlwdh9Uu75M317luIixOtboyJyuc3hw/YNsP7udEWtGMKfbHMJ8w4yOJiJSaTjy838dm7Jly69jU/z8zo9NGYB/K41NERERKQ9cLsc3bNjgiRwiIuIOFw7lPLyuZLRKGZbjuUW5/HzuZ0DluIiRWka15K0ebzE2biwH0g4wfNVw5nWbR3RgtNHRRESuWk6nk7z4eDKWfk7mypUXj01p1QrbgAEEde+OJVBjU0RERMoTl8vxDh06eCKHiIi4y3+X42Vob8peHE4HUQFRRAVElel7i8jFYqvE8m7Pdxm9djTHMo8xdNVQ5nWfR11bXaOjiYhcVRz5+WR8+SXn3l9Iwc8/l65bY2JKxqb074d3zZoGJhQREZE/43I5DpCens5bb73FgQMHAGjUqBEjRozAZrO5NZyIiFyG0kM548v0bS8cxqld4yLlQ21bbd7r9R6j147maMZR/rbqb7zR7Q0aVWlkdDQRkQqv6GwS5z5YTPqHH1Gcng6cH5vSvXvJ2JTWrTQ2RUREpAJw+bv19u3bqVevHq+88gppaWmkpaXx8ssvU69ePXbs2OGJjCIi4ooL5XjSfijKK7O3vTBvvHlE8zJ7TxH5c1EBUbzb810aVWnEuYJzjFwzkh8SfzA6lohIhZW3ezenH53IoS5dSJ0zl+L0dKwxMUROnMg1GzcQM30aAW1uVDEuIiJSQZiczvOng1yidu3aUb9+febPn4+XV8nGc7vdzqhRozhy5Ahff/21R4IaKTMzE5vNRkZGBsHBwUbHERH5c04nvHgt5CTByDio0aoM3tJJu4/akVGQweLei2kS0cTj7ykily6nKIeH1j/EtsRteJu9eaHDC3Su2dnoWCIiFYLTbidr7VrS3n2PvPhfn8zza3kDYUOHEdSlMyavy3ooW0RERDzAlS73snaOT548ubQYB/Dy8mLSpEls377d9bQiIuJeFw7lhDKbO34s8xgZBRn4WHxoENagTN5TRC5dgDWA17u+TqcanSh0FPLIxkdYdmiZ0bFERMq14vR0UubP51DXbpx++JGSYtxqxdavH7U/+5TaCxcS3KO7inEREZEKzOXv4sHBwZw4cYIGDS4uP06ePElQUJDbgomIyBWIaQG/rCmzcvzCSJVGVRphtVjL5D1FxDU+Fh9e7vgyT295mmWHl/Hk5ifJLMxkaOxQo6OJiJQrBYcOkfb+QjKWLcOZnw+ApUoVQu+8k9A778ArIsLghCIiIuIuLpfjd9xxByNHjuTFF1/kpptuAmDz5s1MnDiRu+66y+0BRUTkMpTxzvEL5bgO4xQp37zMXjxz8zME+wTz/v73ef6H50kvSOeB5g9gMpmMjiciYhinw0HOt9+S9u575GzeXLru07AhYUOHEnxrb8w+PgYmFBEREU9wuRx/8cUXMZlMDBs2DLvdDoDVamXs2LFMmzbN7QFFROQyxJw/FDPlIBRkg0+gR98uPqlk/qbKcZHyz2wyM7HlREJ8Qpi1cxbzds8joyCDx298HLNJB8iJSOXiyMkhfdkyzr2/kMKjR0sWTSaCunYhdOhQ/Fu10n8eioiIXMVcPpDzgtzcXA4fPgxAvXr18Pf3d2uw8kQHcopIhfRSQ8g6A/eshlptPfY2WYVZ3PzBzThxsuGvGwj3C/fYe4mIe33000dM+X4KTpz0qtOLKbdMwWrWaCQRufoVnT5N2qLFpH/yCY6sLADMgYGE3H47oUMG4129usEJRURE5HK50uVe9skh/v7+NGnS5HK/XEREPC2mBRw8UzJaxYPl+J6UPThxUi2wmopxkQrmjgZ3EOQdxBPfPsGqo6vILszmpY4v4eflZ3Q0ERG3czqd5O3YQdq775EVFwcOBwDWWjUJGzIU24ABWAIDDE4pIiIiZemSyvGBAweyYMECgoODGThw4J++dsmSJW4JJiIiVyimBRxc4fG547uSNG9cpCLrXbc3gd6B/H3j3/nm9DeMWTuGWV1mEeytp+VE5OrgLCwkc9Uq0t57n/x9+0rXA25qS+jQoQR26IDJrLFSIiIildElleM2m610zlpwcLBmromIVARldCjnhcM4m0c29+j7iIjntK/enrnd5vLAugfYkbSDEatHMKfbHD0NIiIVmj01lXMffsi5Dz+kODkFAJOPD7a+fQkdOgTfa681OKGIiIgY7bJnjlcmmjkuIhVSTgq8UK/kz/84Cb7u//fL4XRwywe3kFWUxUd9PiK2Sqzb30NEys7BtIPct/Y+UvNTqRlUk3nd51EtsJrRsUREXJJ/4ABp771P5vLlOIuKAPCKjCT07rsJueOveIWGGpxQREREPMmVLtflZ8c6d+5Menr6775p586dXb2diIh4SkA42GqW/Dlhl0fe4kj6EbKKsvDz8uPaUO2+Eqnorgu7jvd6vUe1wGqcyDrBsJXDOJx+2OhYIiL/kyM3l/Sln3NsyBCODhhIxtKlOIuK8G3alJgXX6T+ujjCx9ynYlxEREQu4vKBnBs3bqSwsPA36/n5+XzzzTduCSUiIm4S0xwyTpSMVqnTzu23vzBSpXF4Y7zMl33Gs4iUIzWDa/Juz3e5b+19HM44zPDVw5nVeRYtIlsYHU1E5CJOp5P8XbtI/2wJmStX4sjJKblgsRDcowdhw4bi11xj30REROSPXXKTsXv37tI/79+/n8TExNLPi4uLWb16NdWq6bFbEZFyJaY5HPgCEuI9cvsL5bgO4xS5ulQNqMqCngsYt24cu1N2M2rNKKa2m0r32t2NjiYigj01lYxlX5C+5DMKD/36dIu1Zk1CBg7ENqA/1qpVDUwoIiIiFcUll+PNmzfHZDJhMpl+d3yKn58fs2bNcms4ERG5Qh4+lDM+uaR0VzkucvUJ8Q1hfvf5TP5mMhtPbuTRTY/y95y/Myx2mA5nF5Ey57Tbyf72WzI++4ysDRvBbgfA5OtLcI8e2AYNxL9VK/37JCIiIi655HL86NGjOJ1O6taty7Zt24iIiCi95u3tTWRkJBaLxSMhRUTkMkWff5Q47QjknQM/983ZzCjI4GjGUUDluMjVyt/qz4yOM5i2bRofHvyQF7e/SEJOAhNbTsRi1s99IuJ5hceOkb5kKRmff449Kal03bdpU0IGDiT41t5YgoIMTCgiIiIV2SWX47Vq1QLA4XB4LIyIiLiZfxiE1oZzx0oO5azb0W233p1cMm6rVnAtQn11uJXI1cpitvD4jY9TPag6L25/kUUHFpGQncC09tPw8/IzOp6IXIUcublkrvmKjM8+I3f79tJ1S2gotr59sQ0aiO+1OghcRERErtxln562f/9+Tpw48ZvDOfv27XvFoURExI1iWpSU42d2urUc10gVkcrDZDIxvNFwqgZU5fFvHmf9yfWMWjOKWV1mEeYbZnQ8EbkKOJ1O8nfvJv3Tzy4+XNNsJuCWmwkZdDtBnTpi8vY2NqiIiIhcVVwux48cOcKAAQPYs2cPJpMJp9MJUDrbrbi42L0JRUTkykQ1hX1LIXGPW2+rwzhFKp+etXsS4RfBQ+sfYnfKboasHMIbXd+gVnAto6OJSAVlT00l44svSf/s04sP16xRg5BBA7H17481KsrAhCIiInI1M7v6BePHj6dOnTokJSXh7+/Pvn37+Prrr2nZsiUbN270QEQREbkiUU1LPrqxHC92FLMnueR+KsdFKpcbqt7A+73fp1pgNU5mnWTIyiHEJ8UbHUtEKhCn3U7Wxo2cevAhfunQkaTp0yk8dBiTry+2fn2p+e671FuzmvAxY1SMi4iIiEe5vHN869atrF+/nvDwcMxmM2azmVtuuYWpU6fy0EMPsXPnTk/kFBGRyxXVpORjyi9QmAPeAVd8y0Pph8i15xJgDaB+SP0rvp+IVCx1bXVZ2HshD6x7gH2p+xj11SimtZtG11pdjY4mIuVY4fHjpH+25LeHazZpQsigQTpcU0RERMqcyzvHi4uLCTr/A0t4eDhnzpwBSg7sPHjwoHvTiYjIlQuqCoFVASec3e+WW14YqdIkvAkWs8Ut9xSRiiXcL5y3e7xNh+odKCgu4JGNj7Bw/0KjY4lIOePIzSX98885PmQoh3v0JHXePOxJSVhCQggbPow6y5ZR55OPCb3zDhXjIiIiUuZc3jneuHFjdu3aRZ06dbjxxht5/vnn8fb2Zt68edStW9cTGUVE5EpFNYFDZyFxN9RodcW307xxEQHwt/ozo9MMpm2bxkcHP2L6D9M5nX2aia0mYja5vAdDRK4SpYdrfraEzBUrfj1c02Qi4JZbCBk0iMDOnTDrcE0RERExmMvl+JNPPknO+R9unnnmGfr06UO7du2oUqUKH330kdsDioiIG0Q1hUNxJeW4G1yYL6xyXES8zF48ceMTxATG8MqPr7DwwELO5p7luVuew9fL1+h4IlKGik6fJuPLL8n4fBmFx46VrlurV//1cM3oaOMCioiIiPw/LpfjPXr0KP1z/fr1+emnn0hLSyM0NBSTyeTWcCIi4iYX5o674VDOtPw0TmSdAKBpRNMrvp+IVHwmk4kRjUcQ5R/Fk5ufZO3xtSTnJvNq51cJ9Q01Op6IeFBxdjZZa9aQsewLcrdtK103+foS1K0bIYMG4d+6FSazniYRERGR8sflcvz3hIWFueM2IiLiKdHnd3if3QfFdrBc/j//u5NLdp/XtdXF5mNzRzoRuUr0rtubSP9IHtrwEPHJ8QxdNZQ3urxBjeAaRkcTETdy2u3kbN1KxufLyIqLw1lQUHLBZMK/dWts/foR1L07lsArPwRcRERExJMuqR0ZOHDgJd9wyZIllx1GREQ8JLQOeAdCYTakHoLIBpd9K41UEZE/0zKqJQt7LWRs3FiOZx5n8MrBzO4yW0+aiFwF8n/6iYzPl5GxfDnFKSml695162Lr1w/bbX2wxsQYmFBERETENZdUjtts2hkoIlKhmc1QtTGc/K5ktMoVlOMXDuNsHtncXelE5CpTN6Qui25dxP1x93Mg7QAj14xkWvtpdKnZxehoIuKiorNJZC5fTsYXX1Bw8GDpuiUkhOA+fbD164tv48YasSkiIiIV0iWV4++8846nc4iIiKdFNTlfju+Cpn+5rFsUOYrYl7oP0M5xEflz4X7hLOi5gEc3Pco3p7/h4Q0PM7n1ZAY3HGx0NBH5Hxx5eWTFrSNj2TJytmwBhwMAk9VKYKdO2Pr3I/CWWzB5exucVEREROTKuGXmuIiIVABuOJTz53M/k2fPI8g7iDq2Om4KJiJXK3+rP692fpUp30/h058/Zdq2aSRkJ/BIy0cwm3Q4n0h54nQ4yN32AxnLlpG1Zg2O3NzSa34tWmDr14/gXj2x6KliERERuYq4XI7XqVPnTx+ZO3LkyBUFEhERD4k+P+83YTc4nXAZjz/vSioZqdI0oqmKLRG5JF5mL/7V5l9UC6zGzB0zeXf/uyTkJPBcu+fwsfgYHU+k0is4coSMZV+Q8eUX2M8klK5bq1fH1rcvtn598a5Vy8CEIiIiIp7jcjk+YcKEiz4vKipi586drF69mokTJ7otmIiIuFlEQzBZIC8NMs+ArZrLt7gwb1wjVUTEFSaTiVFNRhEdEM2Tm5/kq+NfkZyXzKudXiXEN8ToeCKVjv3cOTJXrCRj2TLy9/z6RJk5KIjgnj2x9e+H3/XXa464iIiIXPVcLsfHjx//u+uvvfYa27dvv+JAIiLiIVZfiGgASfsgcbfKcREpc7fWvZVI/0jGrx/PzqSdDF01lNe7vk6NoBpGRxO56jkKC8nesJGML74ge9MmsNtLLlgsBLZrVzJHvFMnzD56okNEREQqD7c9E9+rVy8+++wzd91OREQ84QrmjqfkpXA6+zQmTDQNb+rmYCJSWbSKasV7vd4jOiCaY5nHGLJyCHtT9hodS+SqlRcfT8LTT/NLu/acHj+e7HXrwG7Ht1Ejqj7+GNd8vYkac94guGdPFeMiIiJS6bjtQM5PP/2UsLAwd91OREQ8Ibop7P6wZOe4iy7MG68fWp9A70B3JxORSqR+aH0W9l7IA+se4EDaAUasGcH0dtPpVLOT0dFErhq5O3aQPGMmudu2la55Va2Kre9t2Pr2xeeaawxMJyIiIlI+uFyOt2jR4qLZc06nk8TERJKTk3n99dfdGk5ERNzsws7xBNfL8fjkeEAjVUTEPSL9I3mn5zv8fdPf2Xx6MxM2TuCx1o9xZ4M7jY4mUqHl7dlL8quvkvPNNwCYrFaCe/fC1r8//q1bY7JYDE4oIiIiUn64XI7379//os/NZjMRERF07NiRBg0auC2YiIh4QNXGJR/Tj0NeOvhd+kF4F+aNN49o7olkIlIJBVgDmNV5FlO+m8Jnv3zGlO+ncCbnDBOun4DZ5LbpfyKVQv7BgyS/OqtkbAqAlxchAwcSPuY+rDExxoYTERERKadcLsefeuopT+QQEZGy4B8GtpqQcQLO7oXat1zSlxUVF7EvZR+gneMi4l5Ws5Wn2j5FtcBqvLrzVd7Z+w4J2Qk8e8uz+Fg0/1jkfyk4coSU2bPJXLmqZMFsxnbbbYSPux/vmjWNDSciIiJSzl3WzPHi4mKWLl3KgQMHAIiNjaVfv354eblthLmIiHhKVJOScjxxzyWX4wfSDlDoKCTEJ4RawbU8HFBEKhuTycS9Te8lKiCKf235F6uPrSYpN4mZnWYS4nvpT7iIVCaFJ0+SMvs1Mr78EhwOAIJ69STigQfwqVfP4HQiIiIiFYPLbfa+ffu47bbbOHv2LNdddx0A06dPJyIigi+//JLGjRu7PaSIiLhRdFM4uMKlueMXRqo0i2h20bkTIiLudFu924j0j2TChgnsSNrBkFVDmN15NrVttY2OJlJuFCUkkPLGHNKXLAG7HYDALl2IePABfDXmUkRERMQlLg9zHDVqFI0bN+bUqVPs2LGDHTt2cPLkSZo2bcro0aM9kVFERNzpwqGciXsu+Uv+uxwXEfGkG6Nv5P1e71MtsBrHM48zeOVgvk/43uhYIoYrSkoi8dkpHO7eg/SPPwa7nYB27aj9ycfUeG22inERERGRy+DyzvH4+Hi2b99OaGho6VpoaChTpkyhVatWbg0nIiIeENW05GPyAbAXgNf/nukbnxQPqBwXkbJRP7Q+i3ovYvyG8exK3sWYtWN4ss2TDLp2kNHRRMqc/dw5Ut98k3OLFuPMzwfAv1UrIiaMx/+GGwxOJyIiIlKxubxz/Nprr+Xs2bO/WU9KSqJ+/fpuCSUiIh5kqw6+IeCwQ/JP//PliTmJnM09QEF1FAAAIABJREFUi8VkoXG4RmeJSNmo4leFt3q8Re86vbE77Ty99Wle/OFFih3FRkcTKRPFmZkkzZzJ4S5dSXvrbZz5+fg1a0bNd96m5nvvqhgXERERcQOXd45PnTqVhx56iKeffpo2bdoA8N133/HMM88wffp0MjMzS18bHBzsvqQiIuIeJlPJ3PGjX5eMVon+893gF0aqXBt6Lf5W/7JIKCICgI/Fh2ntplHHVofX4l/j3f3vcjzzONPbT9e/R3LVKs7O4dzC90l9+x0c53+38oltSOT48QS0b6+zP0RERETcyOVyvE+fPgD89a9/Lf3BzOl0AnDbbbeVfm4ymSgu1s4eEZFyKep8OZ6wG1r8+UsvlONNI5qWQTARkYuZTCbGNBtD7eDaPLn5STae2siwVcOY3WU2UQFRRscTcRtHXh7nFn9A6ptvUnzuHAA+19Qn/MEHCerWTaW4iIiIiAe4XI5v2LDBEzlERKQsuXAo566kknK8eWRzTyYSEflTPev0JCYwhofWP8TBcwe5a8VdvNrpVZpENDE6msgVcRQWkv7xJ6TMnUNxcgoA3rVqEf7ggwT36onJYjE4oYiIiMjVy+VyvEOHDp7IISIiZenCoZyJe8DhAPPvH0FRUFzA/rT9gA7jFBHjNY1oyge3fsAD6x/g53M/c8+ae3j2lmfpWbun0dFEXOYsKiJ96VJS3piDPSEBAGtMDOHjxmHr1xeTl8u/qomIiIiIiy7rJ6709HTeeustDhw4AECjRo0YMWIENpvNreFERMRDwq8Biw8UZkH6MQir+7svO5B6ALvDTphvGNUDq5dtRhGR3xEdGM17vd5j8teT2XRqExM3TeR4xnFGNx2tsRNSITiLi8lcvpzk2a9RdPIkAF6RkYSPHUPIoEGYvL0NTigiIiJSefz+VsE/sX37durVq8crr7xCWloaaWlpvPzyy9SrV48dO3Z4IqOIiLibxQpVY0v+nLD7D18WnxQPQPOI5iqdRKTcCLAGMLPTTIbGDgVgdvxsHvv2MQqKCwxOJvLHnA4HmatWceS2vpyZ/A+KTp7EUqUKVR/7B/W+WkPoXXepGBcREREpYy7vHH/44Yfp27cv8+fPx+v8o352u51Ro0YxYcIEvv76a7eHFBERD4hqAmd2loxWadT/d19y4TDOZpEaqSIi5YvFbGFSq0nUsdXhue+eY8WRFZzOOs2MTjOo4lfF6HgipZyFhWSu+YrUN9+k4OBBAMw2G1VGjSRs8GDM/v4GJxQRERGpvFwux7dv335RMQ7g5eXFpEmTaNmypVvDiYiIB/333PHf4XQ6iU8u2TmueeMiUl795dq/UCOoBo9sfIT45HgGrxzM7M6zqR9a3+hoUsnZU1I49/HHpH/wIfbkZADMgYGE/e1vhA0fhiUoyOCEIiIiIuLyWJXg4GBOnDjxm/WTJ08SpB/wREQqjtJy/PfHqpzJOUNKXgpeJi8aVWlUhsFERFzTJroNC3svpEZQDU5nn2bIqiF8e/pbo2NJJZW3bx9n/vEYhzp1JuXVWdiTk7FEhBP+4APUW/sVEQ+MUzEuIiIiUk64XI7fcccdjBw5ko8++oiTJ09y8uRJPvzwQ0aNGsVdd93liYwiIuIJVRsBJshKgOzk31zelVQyUqVBWAN8vXzLOJyIiGvq2uqyuPdibqh6AzlFOYxbN47FBxYbHUsqCafdTubq1RwbPIRjg24n4/PPcRYV4du0KTEvvMA169YRMW4cXqGhRkcVERERkf/i8liVF198EZPJxLBhw7Db7QBYrVbGjh3LtGnT3B5QREQ8xCcQqtSD1EMlu8frd7nosuaNi0hFE+Ibwvxu83nmu2f4/NDnTN02laMZR5ncejJeZpd/7BX5n+znzpH+yaecW7wYe2JiyaKXF8E9exI2dAh+zfQ9VERERKQ8c/m3BG9vb2bOnMnUqVM5fPgwAPXq1cNfB8mIiFQ8UU3Ol+N7flOOX5g33jyiuRHJREQui9Vi5ZmbnqGOrQ4zfpzBhwc/5ETWCV7s8CJB3hplIe6Rf/Agae+/T+aXy3EWFABgCQsj9M47CLnjTqxVIw1OKCIiIiKXwqVy/NixY6xdu5bCwkI6duxIkyZNPJVLRETKQlRT2Lf0N3PH8+x5/Jz2M6DDOEWk4jGZTIxoPIJaQbV47NvH2HJmC0NXDmVWl1nUCKphdDypoJzFxWRv2EDae++Tu21b6bpvbCyhw4YS3KsXZh8fAxOKiIiIiKsuuRzfsGEDffr0IS8vr+QLvbx4++23GTJkiMfCiYiIh5UeyrnnouV9KfuwO+1E+kUSFRBlQDARkSvXpVYXFgQu4MF1D3I44zCDVwxmRqcZXF/1eqOjSQVSnJFB+qefcW7xYopOny5ZtFgI6taNsGFD8WvRApPJZGxIEREREbksl3wg5z//+U+6devG6dOnSU1N5d5772XSpEmezCYiIp4Wfb4cT/kFCnNKly+MVGkW2Uy/8ItIhRZbJZbFty6mYVhDzhWcY9RXo/jy8JdGx5IKoODwYRKefppfOnYi6YUXKDp9GovNRpV776V+3Fqqz3gF/+uv1/dJERERkQrskneO7927ly1bthAdHQ3ACy+8wNy5c0lNTaVKlSoeCygiIh4UGAmBVSH7LJzdDzVaAf91GKdGqojIVaBqQFUW9FzAE98+QdyJOB7/9nGOZhzlgRYPYDZd8l4RqQScDgfZmzZx7v2F5GzZUrruc+21hA0bSnCfPph9fQ1MKCIiIiLudMnleGZmJuHh4aWf+/v74+fnR0ZGhspxEZGKLKopHFpbMne8RiucTie7k0tmkKscF5Grhb/Vn5c6vsSsnbN4c8+bzN8zn2OZx5hyyxT8vPyMjicGK87OJmPJEtIWLqLoxImSRbOZoC6dCR0yFP/WrbRDXEREROQq5NKBnGvWrMFms5V+7nA4WLduHXv37i1d69u3r/vSiYiI50U1+bUcB05mnSQtPw2r2UpslViDw4mIuI/ZZGb89eOpHVybp7c+zdrjazmTfYZZnWcR4R9hdDwxQMHRo5xbtJiMJUtw5OYCYA4OJuT22wm9+268q1czOKGIiIiIeJJL5fjw4cN/s3bfffeV/tlkMlFcXHzlqUREpOxENSn5eP5QzgsjVWKrxOJt8TYqlYiIx/Sr349qgdV4eOPD7Evdx10r7mJ2l9k0CGtgdDQpA06Hg5zNW0hb+D45m74uXfeuV4+woUOw9e2L2d/fwIQiIiIiUlYuuRx3OByezCEiIkaJPj865ew+KLZr3riIVAoto1qyuPdixq0fx9GMowxbNYzp7abTqWYno6OJhzgdDjKXLydlzlwKjxwpWTSZCOzQgdChQwi46SaNThERERGpZHQCkYhIZRdaB7wDwZ4PqYeIT4oHoHlkc4ODiYh4Vo3gGizsvZA20W3Is+cxfsN4FuxdgNPpNDqauFnenj0cv+tuzkyaTOGRI5gDAggdNpR6q1dRY84bBN58s4pxERERkUpI5biISGVnNkPVxgDknP6BX9J/AbRzXEQqh2DvYF7v+jp/ufYvOHHy0o8v8fTWpykqLjI6mriBPSWFM088wbG/3kHerl2Y/f2JeOQR6m/aRNTjj+Ndq5bREUVERETEQCrHRUSkdO743lPf4nA6iA6IJtI/0uBQIiJlw2q28s82/2Ryq8mYTWaW/LKE++LuI6Mgw+hocpmcRUWkLljA4Z69yPhsCTid2Pr1pe6qVYSPvhdLYIDREUVERESkHFA5LiIiEN0UgPi0AwA0j9BIFRGpXEwmE0NihzCr8yz8vfz5IfEHBq8czLGMY0ZHExdlf7uZI/36kzRtOo7sbHwbNaLWB4uJmT4da1X9x6+IiIiI/ErluIiIlO4c35WfDECzSI1UEZHKqX319rzf+31iAmI4nnmcwSsHsy1hm9Gx5BIUnjjByfvHcXLUKAqPHMESFkb0lGep/cnH+LdoYXQ8ERERESmHXC7HT548yalTp0o/37ZtGxMmTGDevHluDSYiImUooiEOk4Xd1pLDyDRvXEQqs2tDr2XRrYtoGtGUzMJM7lt7H5/9/JnRseQPOHJySHplBkdu7UP2+vXg5UXY8OHUW72KkEGDMJm1H0hEREREfp/LPynefffdbNiwAYDExES6devGtm3beOKJJ3jmmWfcHlBERMqA1ZdjkdeQYbHga7ZyXdh1RicSETFUuF84b3V/i161e2F32nl669O8+MOLFDuKjY4m5zmdTjK+/JLDvXqTOncuzqIiAm6+mbrLPqfqY//AEhxsdEQRERERKedcLsf37t1L69atAfj4449p3LgxW7ZsYdGiRSxYsMDd+UREpIzsCosGINYaitVsNTiNiIjxfL18md5+Ovc3ux+Ad/e/y4SNE8gtyjU4meTt28fxwUM4M3ES9qQkrDVqUP212dR4cz4+9eoZHU9EREREKgiXy/GioiJ8fHwAiIuLo2/fvgA0aNCAhIQE96YTEZEys8vHG4BmdqfBSUREyg+TycTY5mN5vv3zeJu92XhyI8NWDSMxJ9HoaJWSPS2NhH/+i2O3/4W8HTsw+fkR8fDD1F3+JUFdumAymYyOKCIiIiIViMvleKNGjZgzZw7ffPMNa9eupWfPngCcOXOGKlWquD2giIiUjV1F6QA0z0g2OImISPnTq04v3u75NmG+YRw8d5C7VtzFnuQ9RseqNJxFRaS99x6He/Qk/ZNPwOkkuE8f6q1aSfh9ozGf37wjIiIiIuIKl8vx6dOnM3fuXDp27Mhdd91Fs2Ylh7Z98cUXpeNWRESkYskqzOJwbskuyGappyAv3eBEIiLlT7OIZnxw6wdcE3oNKXkp3LPmHtYcW2N0rKtezpYtHBkwgLPPTcWRlYVPbENqLVpItRdfwBoVZXQ8EREREanAvFz9go4dO5KSkkJmZiahoaGl66NHj8bf39+t4UREpGzsSd6DEyfVi6GKwwFn90LtW4yOJSJS7sQExvBez/eY9PUkvjn9DY9uepRjGccY3XS0Rnq4WeGpUyRNn07W2jgALKGhRDw8gZBBgzBZLAanExEREZGrgcs7x6HkZPgff/yRuXPnkpWVBYC3t7fKcRGRCio+OR6A5taQkoVEjQoQEfkjgd6BzOo8iyENhwAwO342j3/7OIXFhQYnuzo4cnNJmjmTI71vLSnGLRZChw6l3upVhP71ryrGRURERMRtXN45fvz4cXr27MmJEycoKCigW7duBAUFMX36dAoKCpgzZ44ncoqIiAftSt4FQLOQa4DdkLDb2EAiIuWcxWxhcuvJ1LHV4bnvn2P5keWczj7NjE4zCPMNMzpeheR0OslcuZKkF17Enlgy6su/bRuiHn8cn2uuMTidiIiIiFyNXN45Pn78eFq2bMm5c+fw8/MrXR8wYADr1q1zazgREfE8h9PB7uSSMrxZTJuSRe0cFxG5JH+97q+80fUNgqxB7Ezayd0r7ubQuUNGx6pw8g8c4PjQoZz5+6PYExOxVqtGtVmvUvPtt1WMi4iIiIjHuFyOf/PNNzz55JN4e3tftF67dm1Onz7ttmAiIlI2DqcfJrsoGz8vP66p071kMfkA2AuMDSYiUkG0jWnLwlsXUiOoBqezTzN01VA2n95sdKwKwX7uHAlPP83RQbeTt/1HTL6+RIx/iLorlhPcrZvmuIuIiIiIR7lcjjscDoqLi3+zfurUKYKCgtwSSkREys6FkSpNwpvgFVoLfEPAYYfknwxOJiJScdS11WVR70VcH3k92UXZ3L/ufhYfWGx0rHLLabeTtnARh3v2Iv3Dj8DhILh3b+qtWkn42LGYfX2NjigiIiIilYDL5Xj37t2ZMWNG6ecmk4ns7Gyeeuopevfu7dZwIiLieaXzxiOagckE0U1LLmjuuIiIS0J9Q5nffT796vXD4XQwddtUpnw3BbvDbnS0csNpt5Px5Zcc6duPs88+iyMjA58GDaj1/ntUe/klrNHRRkcUERERkUrE5QM5X3rpJXr06EFsbCz5+fncfffd/PLLL4SHh/PBBx94IqOIiHhQfFI8AM0jm5csRDWFo19r7riIyGXwtnjzn5v/Qx1bHWbsmMGHBz/kZNZJXujwAkHelfcpS2dRERnLV5A6Zw6Fx48DYLHZiHh4AiF/+Qsmi8XghCIiIiJSGblcjlevXp1du3bx4Ycfsnv3brKzsxk5ciSDBw++6IBOEREp/zIKMjiWeQyApuHnd4xHnf+oclxE5LKYTCZGNhlJ7eDaPPbtY2w+s5mhK4cyu8tsqgdVNzpemXIWFpK+bBmpc+dRdOoUAJaQEMLuuYfQwXdjCQw0OKGIiIiIVGYul+MAXl5eDBkyxN1ZRESkjF0YqVI7uDYhviEli1FNSj4m7gGHA8wuT+ASERGgS60uLAhcwIPrHuRwxmHuXnE3MzvPpEVkC6OjeZyjsJCMJUtImTcP+5kEACxhYVQZOYLQO+/EHBBgcEIRERERkUssx7/44gt69eqF1Wrliy+++NPX9u3b1y3BRETE8y6MVGkW0ezXxfBrwOIDhVmQfgzC6hoTTkTkKhBbJZbFty7mwfUPciDtACPXjOTfN/2b2+rdZnQ0j3Dk55P+yaekvvkm9rNnAbBEhFNl5EhC77gDs540FREREZFy5JLK8f79+5OYmEhkZCT9+/f/w9eZTCaKi4vdFk5ERDxrd3LJoZvNIv+rHLdYoWosnNlZciinynERkStSNaAqC3ou4IlvnyDuRByPf/s4xzKPMa75OMymq+PpHEdeHuc++ojUt96iODkFAK+qValy772E3D4Is6+vwQlFRERERH7rkspxh8Pxu38WEZGKy+6wsyelZK74RTvHoWS0ypmdJaNVGv3xf4qKiMil8bf681LHl3h1x6u8tfct5u2ex7GMYzx7y7P4eVXc3dSOnBzOffABqe8soDg1FQCvmGjCR4/GNnAgZm9vgxOKiIiIiPyxy5o5LiIiFd+h9EPk2nMJtAZSz1bv4oulh3LuLvtgIiJXKbPJzIQbJlDbVpt/b/03Xx3/ijPZZ3i186tE+EcYHc8lxdnZnFu4iLQFCyhOTwfAWr064WPuw9a3LyaV4iIiIiJSAbj8HOdDDz3Eq6+++pv12bNnM2HCBLeEEhERz9uVVHIYZ5PwJljMlosvlpbje8o4lYjI1a9//f7M7zYfm4+Nval7uWvFXfyU9pPRsS5JcWYmya+9xqHOXUieMYPi9HS8a9UieupU6q1aScjtt6sYFxEREZEKw+Vy/LPPPuPmm2/+zfpNN93Ep59+6pZQIiLiebuSS8rxi+aNX1C1EWCCrATITi7bYCIilUDLqJZ80PsD6tjqcDb3LMNWDSPueJzRsf6Q/dw5kmbO5FDnLqTMmo0jMxPvunWJeeF56q5YTsiA/pisVqNjioiIiIi4xOVyPDU1FZvN9pv14OBgUlJS3BJKREQ8Lz45HoDmEc1/e9EnEKqcH7Wi0SoiIh5RI7gGC3svpE10G/LseTy88WGe/e5Z8u35RkcrZU9LI+mllzncpSupb8zBkZ2NzzXXUO2Vl6n75RfYbrsNk5cmNYqIiIhIxeRyOV6/fn1Wr179m/VVq1ZRt25dt4QSERHPSs1L5WTWSQCaRDT5/RdptIqIiMcFewfzetfXuafRPQB8dPAj7lpxF4fOHTI0lz05mbPTn+dQl66kzp+PIzcXn4YNqfbqTOos+5zgXr0wWSz/+0YiIiIiIuWYy9s8HnnkER544AGSk5Pp3LkzAOvWreOll15ixowZbg8oIiLutzu5ZDd4PVs9gr2Df/9FUU1g3xLtHBcR8TCr2cojLR+hTXQbHv/2cQ6lH+KuFXcxqfUkbr/mdkwmU5llKTqbROpbb5L+0cc4CwoA8G3cmPD77yewU8cyzSIiIiIi4mkul+MjRoygoKCAKVOm8J///AeA2rVr88YbbzBs2DC3BxQREfcrHakS+TsjVS7QznERkTJ1U7Wb+LTvpzz57ZNsPrOZZ7Y+w9YzW3mq7VPYfH471tCdis6cIfXNN0n/9DOchYUA+DVrRvi4+wlo106luIiIiIhclS5rQODYsWMZO3YsycnJ+Pn5ERgY6O5cIiLiQaWHcUb8zmGcF0SfL8dTfoHCHPAOKINkIiKVW7hfOK93fZ3397/PjB0zWHt8LXtT9jK9/XRaRLZw+/sVnjpN6rx5pC9dCkVFAPjdcAMR4+7Hv21bleIiIiIiclVzeeY4gN1uJy4ujiVLluB0OgE4c+YM2dnZbg0nIiLuV+QoYl/KPuB/lOOBkRBYFXDC2f1lE05ERDCbzAxvNJyFvRZSM6gmCTkJ/B979x1Wdd3/cfx5zuGwBQUEEQegOXM0zJGW/W5HKoo7V2Zm5ei+LXO275bZ3mU2rNwTHLnuSrMcdVfOnAEuRFEQkM05398fBHfddZco8D3A63FdXOcIX8/3RdeVwssP7/eo9aN4d/e7OJyOUrmHYRikzJ9PXK9eXFiyBPLz8W7blnoff0z9eZ/i06GDinERERERqfRKXI4fO3aMFi1aEB0dzYQJE0hOTgZg1qxZTJ48udQDiohI6TqccpgcRw5+7n6E+4f/+cXFo1V2l3kuERH5reZBzVnSewlRkVE4DSdv7XqLMRvHkJSZdEWvW3D+PCfHjuPMU09j5ObifcMN1J/3KfU/notP2xtUiouIiIhIlVHicnzixIlcf/31pKam4uXlVfz+fv368fnnn5dqOBERKX1F88Zb1myJ1fIXfw3UalH4qLnjIiKm8LH7MLPTTJ7t+Czebt78+8y/Gbh6IF8c/+KyXu/i1q3ERffl4pYtWNzdCXn4Yep9PBfv668v5eQiIiIiIq6vxDPHt27dyrZt23B3d//N+8PDwzl16lSpBRMRkbJxSfPGi4RqKaeIiCvo3aA3LWu2ZOpXU/np/E9M/HIiQ5sM5cHrH8TD5vGXv9+Zm8vZl14i9ZNPAfC46ipqv/gino0blXV0ERERERGXVeKT406nE4fj97MOT548SbVq1UollIiIlJ3dZwvL8dbBrf/64qKxKmf2g6OgDFOJiMhfqe9Xn3k95nFHszsAWHhwIUPXDuXnCz//6e/LOXyYhEGDi4vxGrffTvjSJSrGRURERKTKK3E53q1bN1599dXiX1ssFi5evMjjjz9Oz549SzWciIiUruSsZBIzE7FarLQIavHXv6FGBLj7QkEOnD9a9gFFRORP2W12JreZzDtd3iHAM4AjqUcYsmYIyw4vwzCM31xrGAYp8+aTMHAQuYcPYwsMpO57s6n18ENYPT1N+gxERERERFxHicvxl156iW+++YZmzZqRk5PDsGHDikeqzJo1qywyiohIKSkaqdKwekN87D5//RusVgi5uvB50p4yTCYiIiXRMawjy/ssp31oe3IcOfxz+z+ZvGUy6XnpQOHSzRNjx3Lm6acx8vLwufkmImNj8L3pJpOTi4iIiIi4jhLPHK9Tpw67d+9m0aJF7Nmzh4sXL3LXXXcxfPjw3yzoFBER17PrbOEyztY1L2GkSpFaLeDEjsJyvOXgMkomIiIlFeQVxLtd3+Xj/R/z+g+vs/HYRvad28cL7kPxnPU+jvPnsbi7EzxlCjVGDMdisZgdWURERETEpZS4HAdwc3NjxIgRpZ1FRETKWPEyzuBLWMZZpGgp52mdHBcRcTVWi5U7r76T60Ou56HPJ9M55gT2f8/CAbhfdRVhL72IZyPNFhcRERER+SOXVY4fOnSIN954gwMHDgDQtGlT7rvvPpo0aVKq4UREpPTkOfL46fxPALSqWYJyvNYvs8mT9oJhgE4eioi4nKtSPXhlvjv5Rwrnjn92vYVDQwJ5KswfTRcXEREREfljJZ45vnz5cq6++mq+//57WrVqRatWrfjhhx9o0aIFy5cvL4uMIiJSCg6kHCDPmUcNjxrUq1bv0n9jzaZgdYPsFEhPLLuAIiJSYr9eupl/5Ci2wEBOPnEni3v4sv38vxm4eiCbT2w2O6aIiIiIiEsq8cnxqVOnMmPGDJ588snfvP/xxx9n6tSpDBgwoNTCiYhI6dl99peRKjVblWzurN0TghrD2f2Fc8f9w8oooYiIlETB+fMkPvQQmVu+AsDn5puo/cwzNAoK4qq0wUz9aioHUg7w9y/+zrAmw5h0/SQ8bB4mpxYRERERcR0lPjl++vRpRo4c+bv3jxgxgtOnT5dKKBERKX2XNW+8SNHc8aS9pZhIREQu18WvviKuTzSZW77C4u5OyCOPUPfdd3ELCgIg3D+ceT3nMbJZ4dftCw4uYPja4cSlxZkZW0RERETEpZS4HO/cuTNbt2793fu//vprOnXqVCqhRESk9BWX4yWZN16kaO746d2lmEhERErKmZtL0jPPcuKee3GcP4/HVVcRvmwpASOG/+6ngtxt7kxpM4W3/vYWAZ4BHEo9xJA1Q1hxZAWGYZj0GYiIiIiIuI4Sj1Xp06cP06ZN4/vvv6ddu3YA7Nixg6VLl/LPf/6TVatW/eZaERExX1JmEmeyzmCz2Gge2LzkL/DrpZwiImKKnMOHSXxwMrlHjgBQ4/bbCZ78IFaPPx+VclOdm1jWexkzvp7BztM7eXzb42xP3M6j7R/Fz92vPKKLiIiIiLgki1HCYyNW66UdNrdYLDgcjssK5WrS09Px9/cnLS0NPz99AyEiFc/6hPVM2TKFpgFNWdJ7SclfIDsVZoUXPp92DLyql2o+ERH53wzDIHXefM6+8AJGXh62wEBqz3wW35tuKtHrOA0nH+37iDd/fJMCo4Aw3zCe6/QcrYNbl1FyEREREZHyV5Iut8RjVZxO5yW9VZZiXESkMihaxnnZBYhXDfCvV/j8zL5SSiUiIn+l4Nw5Towdy5lnnsHIy8Pn5puIXBVb4mIcwGqxcleLu/i4x8eE+YZx6uIpRq0fxTu73iGnIKcM0ouIiIiIuLYSl+MiIlLxXNG88SJFSzlP7ymFRCIi8lcubtlCXHTf3y/dDAy8otfwAab+AAAgAElEQVRtWbMlS3svpUdEDxyGg7d3v03vmN6sjVurWeQiIiIiUqVccjm+fft21qxZ85v3ffLJJ0RERBAcHMw999xDbm5uqQcUEZErk+vI5UDKAeAKy3HNHRcRKRfO3FySnn6GE/eOLVy62ajR/1y6ebmquVdjVqdZPH/T89TyqUVSZhLTt05nxGcj2HV2V6ncQ0RERETE1V1yOf7kk0+yf//+4l/v3buXu+66iy5dujB9+nRWr17NzJkzyySkiIhcvp/O/0SBs4AgryDCfMMu/4Vq/XJyXOW4iEiZyTl8mISBg0idNw+AGiNvJ3zpEjwbNSr1e1ksFnpE9GBV31Xc1/o+vNy82HNuD7evu52pW6aSeDGx1O8pIiIiIuJKLrkc37VrF3/729+Kf71o0SLatm3LnDlzmDRpEq+//jpLllzGkjcRESlTRScAW9VsdWUnDotOjicfgAL9pJCISGkyDIOUT+eRMHAQuUeOYAsKou57s6n10ENYPTzK9N5ebl7c2+pe1vZbS7+G/bBgYV3COnqv7M1rP7xGZn5mmd5fRERERMQsl1yOp6amEhISUvzrLVu20KNHj+Jft2nThhMnTpRuOhERuWKlMm8cwL8OeFYHZwEkHyyFZCIiAlCQmvr7pZuxMZe1dPNK1PSuyZM3PsniqMW0qdWGPGce7+99n14rerH88HIcTke55hERERERKWuXXI6HhIQQHx8PQF5eHj/88APt2rUr/nhGRgZ2u730E4qIyGUzDKO4HG8d3PrKXsxi0VJOEZFSlr1/PwkDBpb60s0r0TSwKR90+4BXb3mVetXqcT7nPE9sf4Lb1tzGztM7TcslIiIiIlLaLrkc79mzJ9OnT2fr1q3MmDEDb29vOnXqVPzxPXv20KBBgzIJKSIil+fUxVOcyz6Hm9WNZoHNrvwFNXdcRKTUXIiJ4diw4eQnJmKvX4/wpaW7dPNKWCwW/lbvb8RExzDl+ilUc6/GodRDjNk4hr9/8XcS0hLMjigiIiIicsUuuRx/6qmncHNz4+abb2bOnDnMmTMHd3f34o9/+OGHdOvWrUxCiojI5Sk6Nd40oCketlKYWVtcjuvkuIjI5TLy8kh68ilOT5+BkZuL7803E7F0KZ6NS3/p5pWy2+yMbD6Stf3WMrTJUGwWG5tPbKZfbD9mfTuLtNw0syOKiIiIiFy2Sy7Hg4KC+Oqrr0hNTSU1NZV+/fr95uNLly7l8ccfL9HNZ86cSZs2bahWrRrBwcH07duXQ4cO/eaanJwcJkyYQGBgIL6+vgwYMIAzZ8785prjx4/Tq1cvvL29CQ4OZsqUKRQUFPzmms2bN3Pttdfi4eFBw4YNmTt3bomyiohURKU2b7xI0VLOpH3gdJbOa4qIVCEFyckcu3M0qQsWABA0YQJ13nkbm5+fycn+XA3PGjzU9iFW9FlBp7BOFBgFzDswj14rezH/wHzynflmRxQRERERKbFLLseL+Pv7Y7PZfvf+gICA35wkvxRbtmxhwoQJ7Nixg02bNpGfn0+3bt3IzMwsvuaBBx5g9erVLF26lC1btpCYmEj//v2LP+5wOOjVqxd5eXls27aNjz/+mLlz5/LYY48VXxMfH0+vXr245ZZb2LVrF/fffz9jxoxhw4YNJf30RUQqlOJyPLiUyvGgRmDzgLwMuJBQOq8pIlJFZP34I/EDBpL9/fdYfX2p8/bb1Pz7fVisJf6S3DSR1SN5u8vbzO4ym4bVG5KWm8Zz3z5H/9j+bDmxBcMwzI4oIiIiInLJLIYLfQWbnJxMcHAwW7Zs4aabbiItLY2aNWuyYMECBg4cCMDBgwdp2rQp27dvp127dqxbt46oqCgSExMJCQkB4N1332XatGkkJyfj7u7OtGnTWLt2Lfv27Su+15AhQ7hw4QLr16//y1zp6en4+/uTlpaGn4uf6hERKZKVn0WHhR1wGA42DdxELZ9apfPC73WGxB9h0MfQvG/pvKaISCVmGAYXFi8h6ZlnID8f94YNqPPGG3hERJgd7YoUOAtYcWQFb+16i5ScFADahbZj8vWTaRzQ2OR0IiIiIlJVlaTLdaljKmlphTMLAwICAPj+++/Jz8+nS5cuxdc0adKEevXqsX37dgC2b99OixYtiotxgO7du5Oens7+/fuLr/n1axRdU/Qa/y03N5f09PTfvImIVDT7z+/HYTgI9g4uvWIctJRTRKQEnLm5nH70UZKeeALy86nWvTvhixZX+GIcwM3qxuDGg1nTbw13Xn0ndqudHad3MHjNYJ7Y9gTnss+ZHVFERERE5E+5TDnudDq5//77ufHGG7n66qsBSEpKwt3dnerVq//m2pCQEJKSkoqv+XUxXvTxoo/92TXp6elkZ2f/LsvMmTPx9/cvfqtbt27pfJIiIuWo1OeNFymeO66lnCIifyb/9GmOjbidtGXLwWql5oOTCHv1FWy+PmZHK1XV3Ksx6bpJxPaNpWv9rjgNJ8uPLCdqZRTv732fXEeu2RFFRERERP6Qy5TjEyZMYN++fSxatMjsKMyYMYO0tLTitxMnTpgdSUSkxMquHNfJcRGRv5K581viBwwkZ+9ebP7+1J3zHkF3343FYjE7WpmpW60uL3d+mY9v/Zjmgc3JzM/ktR9eo8/KPqyPX6955CIiIiLiclyiHL/vvvtYs2YNX375JXXq1Cl+f61atcjLy+PChQu/uf7MmTPUqlWr+JozZ8787uNFH/uza/z8/PDy8vpdHg8PD/z8/H7zJiJSkRiGwZ7kwpPdrYNbl+6LhzQHLJBxGi4ml+5ri4hUcIZhcH7uXI6PHo0jJQWPpk0JX74M3xtvNDtaubk25FoW9FrAsx2fJdg7mMTMRKZ8NYWR60ayN1n/sCoiIiIirsPUctwwDO677z5WrlzJF198QcR/zV687rrrsNvtfP7558XvO3ToEMePH6d9+/YAtG/fnr1793L27NniazZt2oSfnx/NmjUrvubXr1F0TdFriIhUNicyTpCSk4LdaqdpQNPSfXEPXwhsUPhco1VERIo5s7NJnDKVs8/NAocDvz69CV8wH/dfHf6oKqwWK70b9GZ139WMbzUeLzcvdiXvYthnw5i+dTpJmUlmRxQRERERMbccnzBhAvPmzWPBggVUq1aNpKQkkpKSiueA+/v7c9dddzFp0iS+/PJLvv/+e+68807at29Pu3btAOjWrRvNmjXj9ttvZ/fu3WzYsIFHHnmECRMm4OHhAcDYsWOJi4tj6tSpHDx4kLfffpslS5bwwAMPmPa5i4iUpaKRKs0Cm+Fucy/9GxSPVlE5LiICkHfiBAlDhpK+Zg3YbIQ89BC1Z83C+gc/pViVeNu9Gdd6HKv7rqZPgz4ArI1bS9TKKN788U2y8rNMTigiIiIiVZmp5fg777xDWloanTt3JjQ0tPht8eLFxde88sorREVFMWDAAG666SZq1arFihUrij9us9lYs2YNNpuN9u3bM2LECEaOHMmTTz5ZfE1ERARr165l06ZNtGrVipdeeon333+f7t27l+vnKyJSXsps3niR4qWc+vF4EZGLW78mfuAgcg8dwhYYSP25HxEw8vZKPV+8pEJ8Qnim4zMsilrEtcHXkuvIZfae2fSJ6cO6+HWaRy4iIiIiprAY+kr0L6Wnp+Pv709aWprmj4tIhTBo9SAOphzkpZtfolt4t9K/wdF/wbwBENQI7vuu9F9fRKQCMAyD8+/NIfnVV8Ew8GzVkjqvvYb9l7038scMw2DTsU289O+XSMxMBODa4GuZ0XYGTQKamJxORERERCq6knS5LrGQU0RESk9WfhaHUw8DZbCMs0jRWJVzRyAvs2zuISLiwhwXMzn1j3+Q/MorYBhUHzSI+p9+qmL8ElgsFrqFdyO2bywTWk/A0+bJD2d/4LY1t/HU9qdIzUk1O6KIiIiIVBEqx0VEKpm95/biNJyE+oQS7B1cNjfxDQbfEMCAMz+VzT1ERFxUblw8CYMHk7HpX1jsdmo9+U9Cn3oSq3sZ7HioxDzdPBnbaiyr+q6ie3h3nIaTJYeX0GtlLxYcWECBs8DsiCIiIiJSyakcFxGpZMp83niR4qWcu8v2PiIiLiTj889JGDSIvLg43EJCqP/pJ9QYPNjsWBVaqG8oL978Ih92/5BGNRqRkZfBzG9nMmj1IHae3ml2PBERERGpxFSOi4hUMuVXjmspp4hUHYbDwdnXXuPkhPtwZmbidf11RCxfhlfrMhpfVQW1qdWGxVGLeaTtI/h7+HP0wlHGbBzDpM2TSLyYaHY8EREREamEVI6LiFQihmEUl+NlNm+8SOgvJ8dP7ynb+4iImMyRlsaJceM4/867ANS4/Xbqf/QRbkFBJierfNysbtzW5DbW9lvLkMZDsFqsbDq2iT4xfXh719tkF2SbHVFEREREKhGV4yIilUhCegJpuWl42DxoXKNx2d6saKzK2Z/AobmwIlI55Rw6TPygwWR+tRWLhwe1n59FrYcfwmK3mx2tUvP38Ofhdg+zJGoJbWq1IdeRyzu73yE6JpoNCRswDMPsiCIiIiJSCagcFxGpRIpOjTcPbI7dVsbFTY0IcPeFghw4f7Rs7yUiYoL0zz4jYcgQ8o8fxx4WRvjCBfj36WN2rCqlcUBjPuj2AS/d/BKhPqGczjzN5C2TGb1hNIdSDpkdT0REREQqOJXjIiKVSLnNGwewWiHk6sLnSRqtIiKVh1FQwJlZz3Nq0oMY2dn4dOhA+LKleDZrZna0KslisdAtvBuxfWMZ12ocHjYP/n3m3wxeM5indzzNhZwLZkcUERERkQpK5biISCVSruU4/GfuuMpxEakkClJSOD7mblI++giAwLvHUHfOe7jVqGFyMvFy82J86/Gs6ruKrvW74jScLD60mKiYKBYfXIzD6TA7ooiIiIhUMCrHRUQqiYt5FzmaWjjepFVwOZXjtVoUPmopp4hUAtm7dhE/cCBZO3Zg8fYm7NVXCX7wQSw2m9nR5Fdq+9bm5c4v80G3D2hYvSFpuWk8vfNpBq8ZzHdJ35kdT0REREQqEJXjIiKVxJ5zezAwCPMNI8grqHxuWlSOJ+0FLUcTkQrKyM8n+fU3SBg+goLE07jXr0/E4kX43drd7GjyJ24IvYGlvZfyUNuH8HP343DqYUZvGM3kLZM5ffG02fFEREREpAJQOS4iUkmU+0gVgJpNweoG2SmQfqr87isiUkpy4+NJGDacc2+/DQ4HflFRhC9bisdVV5kdTS6Bm9WNoU2GsqbfGm5rfBtWi5UNCRvoE9OHd3a/Q05BjtkRRURERMSFqRwXEakkTCnH7Z4Q1LjwedLe8ruviMgVMgyD1EWLie8/gJy9e7H6+VH7pRcJe/EFbNWqmR1PSqiGZw0eafcIi6MWc13IdeQ4cnh719tEx0Sz6dgmDP10k4iIiIj8AZXjIiKVgNNwsie5cO536+DW5Xvz4qWcKsdFpGIoOHeOk+PGk/TEExjZ2Xi3a0dkbAz+vXqZHU2uUJOAJnzU/SNeuOkFQrxDSMxMZNLmSdy98W6OpB4xO56IiIiIuBiV4yIilUBCWgIZeRl4uXnRqEaj8r158VLO3eV7XxGRy5DxxRfE9Ynm4ubNWOx2gqdPo96HH2APDTU7mpQSi8XCrRG3sqrvKu5teS/uVnd2Ju1k0OpBzNw5k7TcNLMjioiIiIiLUDkuIlIJ7EreBUDzwOa4Wd3K9+a1dHJcRFyfMzOT048+xsnxE3CkpODRqBHhy5YROGoUFqu+JK6MvO3e3HfNfcT2jaVLvS44DAcLDi6g98rerP55tUatiIiIiIjKcRGRysCUeeNFal1d+HjhGGRfKP/7i4j8hexdu4jr358LS5eCxULA6NGEL1uKZ+Ny/kkbMUWdanV45ZZXmNNtDg2rNyQ1N5WHvn6ICZ9PICkzyex4IiIiImIileMiIpXA7rMmluNeNcC/XuHzM/vK//4iIv+DkZ9P8htvkjB8BPnHjuMWGkq9uXMJmToFq7u72fGknLULbceS3kv4xzX/wG61s/XUVqJjoll8cDFOw2l2PBERERExgcpxEZEKLj0vnZ/TfgagVbAJ5Tj8Zynn6T3m3F9E5L/kJSSQMHwE5956CxwO/KKiiIyNwaftDWZHExPZrXbubnk3y/oso3XN1mQVZPH0zqe5c/2dJKQlmB1PRERERMqZynERkQpuT3JhIV2vWj0CPAPMCVG0lFNzx0XEZIZhkLpoMXH9+pOzZw9WPz9qv/QiYS++gM3Pz+x44iIi/SP5uMfHTL9hOl5uXvxw9gcGrh7Ih/s+pMBZYHY8ERERESknKsdFRCo4U+eNFyleyqmT4yJinoJz5zg5bjxJTzyBkZ2Nd7t2RMbG4N+rl9nRxAVZLVaGNx3OyuiVdKjdgVxHLq98/wrD1g7jUMohs+OJiIiISDlQOS4iUsGZOm+8SNHJ8eSDUJBrXg4RqbIyvviSuD7RXNy8GYvdTvD0adT78APsoaFmRxMXF+Ybxrtd3uXpG5/Gz92PAykHGLJmCK//8Dq5Dv2dJiIiIlKZqRwXEanAnIaTvecKR5mYNm8cwL9O4WJOZ0FhQS4iUk6cmZmcfvQxTo4fjyMlBY9GjQhftozAUaOwWPWlrlwai8VCdMNoYvvG0rV+VwqMAubsncOg1YPYdXaX2fFEREREpIzoOwYRkQrs5ws/czH/It5u3jSs3tC8IBbLf06PaymniJST7F27iOvfnwtLl4LFQsDo0YQvW4pn40ZmR5MKKsgriJc7v8wrnV8h0DOQ+LR4Rq4bycydM8nKzzI7noiIiIiUMpXjIiIV2K7kwtNsLYJa4GZ1MzdM8dxxLeUUkbJl5OeT/MabJAwfQf6x47iFhlJv7lxCpk7B6u5udjypBLrU70Js31j6NuyLgcGCgwvoF9uPbae2mR1NREREREqRynERkQqsaN54y5otTU6ClnKKSLnIS0ggYfgIzr31Fjgc+EVFERkbg0/bG8yOJpWMv4c/T934FLO7zCbMN4zEzETu/de9PPL1I6TlppkdT0RERERKgcpxEZEKbHdyYTneOri1yUn4z1iVpH3gdJqbRUQqHcMwSF28hLh+/cnZswernx+1X3qRsBdfwObnZ3Y8qcQ6hHVgRZ8VDG86HAsWYn+OJTommk3HNpkdTURERESukMpxEZEK6kLOBRLSEwBoGeQCJ8eDGoHNA/IyIDXe7DQiUokUnDvHyXHjSXr8cYzsbLzbtSMyNgb/Xr3MjiZVhLfdm+k3TOeTHp8Q4R/B+ZzzTNo8iUmbJ3Eu+5zZ8URERETkMqkcFxGpoPacKxxfEu4XTnXP6ianAWxuENKs8LnmjotIKcn44kvi+kRzcfNmLHY7wdOnUe/DD7CHhpodTaqg1sGtWdZ7Gfe0vAc3ixubjm2iT0wfYo7GYBiG2fFEREREpIRUjouIVFC7zhYu42xVs5XJSX5FSzlFpJQ4MzM5/ehjnBw/HkdKCh6NGhG+bBmBo0ZhsepLWDGPu82dv1/zdxZFLaJZYDMy8jJ49JtHuXfTvZy6eMrseCIiIiJSAvrOQkSkgtqTXHhyvFWwK5XjRXPHtZRTRC5f9q5dxPXvz4WlS8FiIWD0aMKXLcWzcSOzo4kUaxzQmPk95zPpukl42DzYfno7/WL7Mf/AfBxOh9nxREREROQSqBwXEamAHE4He88Vns52qZPjob9k0clxEbkMzuxszjw3i4Shw8g/dhy30FDqzZ1LyNQpWN3dzY4n8jtuVjfuvPpOlvVexnUh15FdkM1z3z7HqPWjiLsQZ3Y8EREREfkLKsdFRCqgoxeOklWQha/dlwb+DcyO8x/BzQALZJyGi8lmpxGRCiTru++I69uXlLlzwTDwj44mMjYGn7Y3mB1N5C+F+4fzYfcPebTdo/jYfdiVvIuBqwfy3p73yHfmmx1PRERERP4HleMiIhVQ0bzxFkEtsFltJqf5FQ9fCPylrNdoFRG5BM7MTJKeeppjt48sPC1eqxZ1Z79L7VnPYfPzMzueyCWzWqwMbjyYmOgYOoV1It+Zzxs/vsGQNUPYf36/2fFERERE5A+oHBcRqYB2J+8GXGzeeJHipZwqx0Xkz2Vu20Zcn2hS588HoPqgQUSuXoXvzTebnEzk8tXyqcVbf3uLmZ1mUt2jOodTDzN87XBe/v5lsguyzY4nIiIiIr+iclxEpAIqLsddad54keKlnJo7LiJ/zJGRwelHH+P46LvIP3UKe1gY9T78gNCnnsRWrZrZ8USumMViISoyipjoGHqE98BhOPho30f0WtGLpYeXUuAsMDuiiIiIiKByXESkwknJSeF4xnGgcKyKywn95eT4aZ0cF5Hfu/jVV8T17sOFpUsBqDFsGJGrYvHp0MHkZCKlL9ArkOdvfp7Xb3mdMN8wkrOTeXL7k/SL7cemY5swDMPsiCIiIiJVmpvZAUREpGT2JBeWzg38G+Dv4W9ymj9QNFbl/FHIywR3H3PziIhLcKSlcWbmc6TFxABgr1eP2s88jXebNiYnEyl7t9S7hY5hHVlyeAmzd88mIT2BSZsn0SKoBQ9c9wBtaun/AxEREREz6OS4iEgFU7SM0yXnjQP4BoNvLcCAMz+ZnUZEXEDG55/zc1RUYTFusRAwahSRsTEqxqVKsdvsDG86nM/6f8bYVmPxcvNi77m9jN4wmnH/GsehlENmRxQRERGpclSOi4hUMC49b7xI8dzx3ebmEBFTFaSmcmrSg5yccB+O5HO4R0ZSf8F8QqZPw+rlZXY8EVP4uvsyofUEPuv/GUMaD8HN4sbXp75m0OpBzNg6g1MXT5kdUURERKTKUDkuIlKBFDgL2H9+P1BRynEt5RSpigzDIH3dOuJ6RZH+2WdgsxF4991ErFyB9zXXmB1PxCUEeQXxcLuHie0by63ht2JgsCZuDb1X9mbWt7NIzUk1O6KIiIhIpadyXESkAjmcepjsgmyquVcjwj/C7Dj/m5ZyilRZBcnJnPrHRE49MAlHSgoejRoRvmgRwQ9OwurhYXY8EZdTz68eL9z8AouiFtE2tC35znzmHZhHjxU9mL17Nln5WWZHFBEREam0VI6LiFQgRfPGW9ZsidXiwn+EFy3lPPsTOArMzSIi5cIwDNJWrSIuqjcZmzaBmxtB48cTsWwpXi2uNjueiMtrHtic97u9z+yus2ka0JTM/Eze3PUmvVb2YsmhJeQ7882OKCIiIlLpuHCzIiIi/61CzBsHqBEB7r5QkAPnj5idRkTKWP6ZM5wcN57EqdNwpKXh0awpEcuWUvMff8fi7m52PJEKpUPtDiyKWsTzNz1PHd86nMs+x1M7nqJfbD82JGzAMAyzI4qIiIhUGirHRUQqkApTjlutEPLLSVHNHReptAzD4MLy5cRF9ebi5s1Y7HZq3n8/EYsX49mkidnxRCosq8VKj4gerOq7ihk3zCDAM4Bj6ceYvGUyw9YO49vT35odUURERKRSUDkuIlJBnMs+x6mLp7BgoWVQS7Pj/LXiueO7zc0hImUi/9QpToy5m9MPP4IzIwPPli2JWLGcoLH3YrHbzY4nUinYbXaGNR3GZ/0/Y3yr8Xi7ebPv/D7u2ngXYzeN5WDKQbMjioiIiFRoKsdFRCqIolPjDWs0xNfd1+Q0lyDs+sLHhK/NzSEipcpwOklduJC43n3I/OYbLB4eBE+ZQvjCBXhcdZXZ8UQqJR+7D+Naj+Oz/p8xrMkw3KxufJP4DYNWD2L61umczDhpdkQRERGRCknluIhIBbH7bAUZqVIksnPh4+ndkJViZhIRKSV5x49zfNSdJP3zSZxZWXhddx0RMSsJvGs0FpvN7HgilV6gVyAz2s5gVfQqekT0AGBt3Fp6x/TmuW+fIyVHf9+KiIiIlITKcRGRCqLCzBsvUi0EgpsBBsRvMTuNiFwBw+Eg5ZNPiIvuS9a332Lx8iLk4Yep/+kneEREmB1PpMqp61eX5296nsVRi+lQuwMFzgLmH5hPzxU9eXf3u2TlZ5kdUURERKRCUDkuIlIB5Dvy2X9+P1CBynGAyFsKH3/+0twcInLZcuPiOTbids48OxMjOxvvtm2JXBVLwO0jsFj1paSImZoFNmN219m81/U9mgU2IzM/k7d2vUXPFT1ZdHAR+c58syOKiIiIuDR9RyMiUgEcSj1EriMXfw9/wv3CzY5z6SI7Fz7GfQmGYWYSESkhwzA4P3cu8X37kv3jj1h9fKj1xBPU++hD3OvWNTueiPxK+9rtWdhrIS/c9AJ1q9XlfM55ntn5DH1j+rI+fj1Ow2l2RBERERGXpHJcRKQC2HV2F1B4atxisZicpgTCbwSrHS4ch9R4s9OIyCVyZmeTOHkKZ5+bhZGXh0/HjkSuXkWNIbfptLiIi7JarNwacSux0bE83PZhAjwDOJ5xnClfTWHAqgGs/nm1TpKLiIiI/Bd9dyMiUgFUuHnjRdx9oG7bwucarSJSIeSfOkXCsOGkr10Lbm6EPPIIdee8h712bbOjicglsNvsDGkyhHX91zGh9QR87D4cvXCUh75+iJ4revLpT59qJrmIiIjIL1SOi4hUABW2HIdfjVbZbGIIEbkUmTu/JX7gIHIPHMAWEED9jz4kYMTwivUTKyICgLfdm7GtxrJx4EYmXjuRQM9AkjKTeP675+m6rCtv/vgm57PPmx1TRERExFQqx0VEXNzZrLOczjyN1WKlRVALs+OUXINflnLGfwVOh7lZROQPGYZByqfzOD56NI7UVDybNSNi2VK827QxO5qIXCE/dz/GtBjDhoEbeKz9Y9SrVo/0vHRm75lN9+XdeXrH05zIOGF2TBERERFTqBwXEXFxRafGG9VohLfd2+Q0lyG0NXj4Q84FSNxldhoR+S/O3FxOP/wIZ555BhwO/Hr3pv6C+RqjIlLJeNg8GNRoEKv6ruLlzi9zdeDV5DpyWXxoMVEro5iyZQoHzh8wO6aIiIhIuVI5LiLi4n69jLNCsrlBRKfC5w1r6xkAACAASURBVHGaOy7iSvLPnOHYyJGkrVgBVivBU6dS+/lZWD09zY4mImXEZrXRtX5XFvRawAfdPuDG2jfiNJysT1jP4DWDuWfjPWxP3I5hGGZHFRERESlzKsdFRFxchZ43XiSyc+Gj5o6LuIysH34kfuBAcnbvwervT9057xE4+k7NFxepIiwWCzeE3sC7Xd9lWe9l9Izoic1iY/vp7dyz6R6GrB3C+oT1ODQSTURERCoxleMiIi4sz5HHT+d/Aip4Od7g/wofT+yEvExzs4gIqUuXcuyOO3Akn8PjqquIWLYU3xtvNDuWiJikcUBjZt00i7X91zKsyTA8bZ78dP4npmyZQtTKKBYfXExOQY7ZMUVERERKncpxEREXdiDlAPnOfGp41KButbpmx7l8AZHgXw8ceXBsu9lpRKosIy+PpCefJOnRxyA/n2rduhG+aCHudSvwny8iUmrCfMOY0XYGGwduZFyrcfh7+HPy4kme3vk03Zd3Z/bu2aTlppkdU0RERKTUqBwXEXFhxfPGg1tV7FEHFgtE3lz4XHPHRUxRcO4cx0aPJnXBQrBYqHn/RMJeexWrj4/Z0UTExdTwrMH41uPZOGAj02+YTm2f2qTkpPDmrjfpuqwrz3/3PEmZSWbHFBEREbliKsdFRFxYpZg3XqTBLYWPmjsuUu6y9+0nfuAgsv/9PVZfX+q8/RZBY8dW7H90E5Ey5233ZnjT4azpv4aZnWbSqEYjsguy+fSnT+mxvAcPf/0wR1OPmh1TRERE5LKpHBcRcWGVqhyP+OXk+Jl9cPGsuVlEqpC01as5Nnw4BUlJuEdEEL5kMdVuucXsWCJSgditdqIio1jWexnvdHmHNrXaUGAUsOrnVfRb1Y/7Pr+P7898j2EYZkcVERERKRGV4yIiLiopM4mzWWexWWw0D2xudpwr5xMEtVoWPo/bYm4WkSrAKCjgzHOzSJwyFSM3F9+bbyZ8yWI8IiPNjiYiFZTFYqFjWEc+7P4hC3ouoGv9rliwsOXkFkatH8Xt627ni+Nf4DScZkcVERERuSQqx0VEXNSu5MJ5440DGuNt9zY5TSkpHq2iueMiZakgNZUT99xDyty5AASOvZc677yNrVo1c4OJSKXRomYLXu78Mqv6rmJgo4HYrXZ2J+9m4pcT6Rvbl5VHVpLnyDM7poiIiMifUjkuIuKidp+tRCNVikR2LnyM2wz60WuRMpFz6DAJgwaTuW07Fm9vwl59leD778di1Zd9IlL6wv3Debz942wcuJG7rr6LavZqxKfF89i2x7h1+a18sPcD0vPSzY4pIiIi8of0XZKIiIuqVPPGi9RrDzYPSD8F546YnUak0klfv4GEoUPJP3kSe506hC9ciN+t3c2OJSJVQJBXEPdfdz8bB27kweseJNgrmOTsZF794VW6Lu3KrG9nkXgx0eyYIiIiIr+hclxExAXlOnI5kHIAqGTluN0L6rUrfK7RKiKlxnA6OfvKq5y6/36MrCx8OrQnYtlSPBs3MjuaiFQxvu6+jLp6FOsHrOfpG5+mYfWGZBVkMe/APHqu6MnUr6by0/mfzI4pIiIiAqgcFxFxST+d/4kCZwGBnoGE+YaZHad0Fc8d32xqDJHKwpGRwclx4zk/ezYAAXfeSd333sNWvbrJyUSkKrPb7EQ3jGZFnxW80+Ud2oa2xWE4WBe/jtvW3MaYDWPYenIrhsasiYiIiInczA4gIiK/VzRvvHVwaywWi8lpSllk58LH+K3gyAeb3cw0IhVablwcJyfcR158PBYPD0KfehL/Pn3MjiUiUsxisdAxrCMdwzpy4PwBPv7pY9bHr2dn0k52Ju2kYfWG3NH8DnpG9MTd5m52XBEREalidHJcRMQF7UreBVSykSpFarUCrwDIy4BTP5idRqTCyvjySxIG30ZefDxuoaHUnz9fxbiIuLSmgU15rtNzrOu/jpHNRuLt5s3RC0d59JtHuXX5rby/930t7xQREZFypXJcRMTFGIZROZdxFrFaIfLmwueaOy5SYoZhcO6ddzg5fgLOixfxuv46IpYtxevq5mZHExG5JKG+oUxpM4VNgzbxwHUPFC/vfO2H17S8U0RERMqVynEREReTmJnIuexzuFncaBbYzOw4ZSOyc+HjzyrHRUrCmZnJqYn3k/za62AY1Bg2lPoffohbYKDZ0URESszP3Y/RV49m/YD1PNPxGa6qcZWWd4qIiEi50sxxEREXUzRvvElAEzzdPE1OU0Yif1nKefI7yEkHTz9z84hUAHnHj3Nywn3kHjkCdju1HnuUGoMGmR1LROSK2W12+jToQ+/I3mxL3Mbc/XPZcXoH6+LXsS5+HTfUuoFRzUfRMaxj5dvFIiIiIqZSOS4i4mKK5o23Dm5tcpIyVKM+1IiA1Hg49g007mF2IhGXdvGbbzg16UGcaWnYagZR5/XX8b7mGrNjiYiUKovFwo1hN3Jj2I0cTDnIx/sLl3d+m/Qt3yZ9S8PqDRnZbCS9IntpeaeIiIiUCo1VERFxMZV63vivNfjl9HjcZlNjiLgyZ14eZ198kRNj7saZloZny5ZELFumYlxEKr0mAU2Y2Wkm6was445md+Bj9+HohaM8tu2x4uWdablpZscUERGRCk7luIiIC8kuyOZwymGgCpTjRaNVNHdc5A/lHjlCwuDbOP/+B2AYVB80iPqffoI9JMTsaCIi5aaWTy0mt5nMpoGbmHTdJIK9f7W8c5mWd4qIiMiVUTkuIuJC9p/bT4FRQLBXMLV8apkdp2xFdAKLFc4dgrRTZqcRcRmG00nKJ58QP2AguQcPYqtRgzpvvkHoU09i9fAwO56IiCmquVfjzqvvZH3/9Tzb8VmuqnEV2QXZ/1neuWUq+8/vNzumiIiIVDAqx0VEXEjxSJXgVpV/4ZRXDaj9y2iI+C3mZhFxEflnznBizN2ceXYmRl4ePjd1InJVLNW6dDE7moiIS7Db7PRu0JvlvZczu8ts2oe2x2E4WJewjiFrhnDXhrvYenIrhmGYHVVEREQqAC3kFBFxIUXLOCv9SJUikZ3h1PeFo1VaDzM7jYip0tet4/QT/8SZlobF05PgqVOoMXRo5f+HMhGRy2CxWOgQ1oEOYR3+cHlnk4AmjGkxhi71umCz2syOKyIiIi5KJ8dFRFyEYRjsSd4DVKVy/FdLOXXCS6ooR0YGidOmceqBSYVLN6++mogVKwgYNkzFuIjIJfjv5Z3ebt4cTDnI5C2T6Rvbl5VHVpLvzDc7poiIiLggleMiIi7iZMZJUnJSsFvtNAtsZnac8lH3BrB7Q+ZZOPuT2WlEyl3Wd98RH92XtNhVYLUSOG4s4QsX4BEZYXY0EZEKp2h558aBGxnfajx+7n4kpCfw2LbH6LWiFwsOLCCnIMfsmCIiIuJCVI6LiLiIopEqTQOb4m5zNzlNOXHzgPodCp///KW5WUTKkTMvj7MvvsixkXeQn5iIvW5d6s+bR/DEiVjsdrPjiYhUaP4e/oxrPY6NAzfy4HUPEuQVxOnM08z8dibdl3fn/b3vk5GXYXZMERERcQEqx0VEXETRMs7WNVubnKSc/Xq0ikgVkHvkCAm3DeH8+x+AYeA/oD8RK1fife01ZkcTEalUfOw+jLp6FOsHrOfRdo8S5htGSk4Kr/3wGt2XdeeNH98gNSfV7JgiIiJiIpXjIiIuoqgcrzLzxotEdi58PPYNFOSamUSkTBlOJymffEL8gIHkHjiArXp16rz5BrWfeQabr4/Z8UREKi0PmweDGw9mdb/VPNvxWSL9I8nIz+C9Pe/RfXl3Zn07i6TMJLNjioiIiAlUjouIuICs/CwOpx4GqmA5HtIcfGpCfhac/M7sNCJlIv/MGU6MuZszz87EyMvD56ZORKyKpVqXLmZHExGpMuxWO70b9GZl9Epe7fwqzQKbkV2QzbwD8+ixogdPbHuC4+nHzY4pIiIi5UjluIiIC9h3bh9Ow0ktn1qE+ISYHad8WSz/OT2uueNSCaWvX09cn2gyt23D4ulJyGOPUnf2bOzBwWZHExGpkqwWK3+r/zcW9VrE7C6zuT7kegqcBSw/spzeMb2Z+tXU4kMLIiIiUrmpHBcRcQFVdt54Ec0dl0rIkZFB4rRpnLr/AZxpaXg2b07EihUEDBuGxWIxO56ISJVnsVjoENaBj279iE96fEKnsE44DSfr4tcxYNUA/v7F39mTvMfsmCIiIlKGVI6LiLiAXcm7gCo4UqVIZOfCx8QfIFuLsaTiy/ruO+Kj+5IWuwqsVgLHjSV80UI8IiPMjiYiIn/gmuBreLvL2yztvZTu4d2xYGHzic0M/2w4YzaMYcfpHRiGYXZMERERKWUqx0VETGYYRvGppCpbjvuHQVAjMJwQv9XsNCKXzcjL4+xLL3Fs5B3kJyZir1OH+vPmETxxIha73ex4IiLyF5oENOHFm18ktm8sfRv2xc3ixs6kndy98W5GfDaCL49/idNwmh1TRERESonKcRERkx1LP8aF3At42DxoEtDE7Djm0WgVqeByjxwh/rYhnJ/zPhgG/gP6ExETg/e115gdTURESijCP4KnbnyKz/p/xrAmw/CwebDn3B7+8eU/GLBqAJ/FfUaBs8DsmCIiInKFVI6LiJisaN54s8Bm2G1V+GRpZOfCxzgt5ZSKxXA6SfnkE+IHDCT3wAFs1asT9sbr1H7mGWy+PmbHExGRKxDqG8qMtjPYMGADY1qMwdfuy9ELR5m2dRp9Yvqw7PAy8hx5ZscUERGRy6RyXETEZFV+GWeR8I5gsUFKHKQeMzuNyCXJP3OGE2Pu5syzMzHy8vDp1ImIVbH4de1qdjQRESlFgV6BTLx2IhsGbuDv1/ydGh41OJFxgn9u/yc9VvTg058+JSs/y+yYIiIiUkIqx0VETFbll3EW8fSDOtcXPtdoFakA0tevJ65PNJnbtmHx9CTksUep+95s7MHBZkcTEZEy4ufuxz0t72H9gPVMazONYO9gzmad5fnvnqf78u688v0rJF5MNDumiIiIXCKV4yIiJrqYd5GjqUcBaBVcxctx+NXccY1WEdflyMggcdo0Tt3/AM60NDybNydixXIChg3DYrGYHU9ERMqBt92bEc1GsK7/Op5o/wR1q9XlQu4FPtz3IT1W9GDiFxPZcXoHhmGYHVVERET+hMpxERET7T23FwODMN8wgryCzI5jvgZF5fgWcDrNzSLyB7K++4746L6kxa4Cq5XAsfcSvmghHpGRZkcTERETuNvcGdBoAKv7rua1W16jXWg7nIaTL058wd0b7yY6NpqFBxeSmZ9pdlQRERH5AyrHRURMVDRvvGXNliYncRFh14F7NchOgaQ9ZqcR+Y2U+fM5NvIO8hMTsdepQ/15nxJ8//1Y7FV4ka6IiABgs9r4v3r/x5xuc4iNjmVok6F4u3kTnxbPszuf5W9L/8azO58lLi3O7KgiIiLyKyrHRURMVDRvvMov4yxisxcu5gTNHReXYRgGZ195lTNPPQ2GgX90HyJiYvC+9lqzo4mIiAuKrB7JQ20f4vNBn/NQ24eI8I8gMz+ThQcXEh0Tzd0b7+aL41/gcDrMjioiIlLlqRwXETGJ03CyJ7nwdLTmjf9KZOfCR80dFxdg5OdzesZDnJ89G4CaE/9B6HPPYfP1MTmZiIi4Ol93X4Y2GUpsdCxzus3h/+r+H1aLlR2ndzDxy4n0XNGTD/Z+QGpOqtlRRUREqiw3swOIiFRVCWkJZORl4GnzpFGNRmbHcR1Fc8ePbYf8bLB7mZtHqixnZiYn73+AzK1bwWYj9J9PUH3gQLNjiYhIBWOxWGgX2o52oe1IvJjIkkNLWH5kOYmZibz6w6u8vettekT0YGjToTQPbG52XBERkSpFJ8dFRExSNG+8eVBz7FbNLC4W1Aiq1QZHLhzfYXYaqaIKzp/n2B2jyNy6FYunJ3XeelPFuIiIXLHavrW5/7r7+degf/H0jU/TLLAZec48Yn+OZciaIQz/bDhr4taQ58gzO6qIiEiVoHJcRMQkReW45o3/F4tFo1XEVHnHj5MwdBg5+/Zhq16d+h/PpVrnzmbHEhGRSsTD5kF0w2gW9VrE/J7ziYqMws3qxp7kPczYOoOuy7ryxo9vkJSZZHZUERGRSk3luIiISXadLVzG2aqm5o3/TtFoFS3llHKWvXcfCUOGkn/8OPawMOovXIBXK/0/KiIiZcNisdCyZktmdprJpoGbuK/1fQR7B5OSk8J7e97j1uW3MmnzJL5L+g7DMMyOKyIiUulYDP0N+5fS09Px9/cnLS0NPz8/s+OISCWQnpfOjQtvBGDz4M0EegWanMjFZJyBlxoBFpjyM/jov4+UvYtbv+bkxIkYWVl4NGtKvdmzcatZ0+xYIiJSxeQ789l8YjMLDy7ku6Tvit/fsHpDhjYZSlRkFN52bxMTioiIuLaSdLk6OS4iYoK9yXsBqFutrorxP1ItBIKbAwbEbzY7jVQBF2JiODFuHEZWFj4d2lP/k09UjIuIiCnsVjtd63flw+4fsrzPcgY1GoSXmxdHLxzlqR1P0WVpF2Z9O4tj6cfMjioiIlLhqRwXETFB0bxxjVT5E5GdCx81WkXKkGEYnHtvDqenz4CCAvyioqj77rvYfH3NjiYiIkKjGo14rP1j/GvQv5jaZir1qtUjIz+DeQfmEbUyirH/GstXJ7/C4XSYHVVERKRCcjM7gIhIVVQ0b1zLOP9Eg1tgx1vw82YwjMJFnSKlyHA4OPPsTFLnzwcgYPRogic/iMWqswMiIuJa/Nz9uL3Z7QxvOpxtidtYeHAhW09u5ZtT3/DNqW8I9g6md2RvohtGE+EfYXZcERGRCkPluIhIOXMaTvaeKxyr0ipYJ8f/p/odwGqHtOOQEgeBDcxOJJWIMzeXxKnTyNiwAYCQGdMJuOMOk1OJiIj8OavFSsewjnQM68iJ9BMsPrSYmJ9jOJt1lg/2fcAH+z6gVc1WRDeMpnt4d/zctTNLRETkz2gh5yXQQk4RKU1HUo/Qf1V/vNy82DZ0G25W/Tvl//RRLzj2NfR6CdqMMTuNVBKO9HROjp9A1r//jcVup/as5/Dr2dPsWCIiIpclz5HHlpNbiD0ay9envsZhFI5Y8bB58H/1/o++DfrSNrQtNqvN5KQiIiLloyRdrhoZEZFyVjRvvEVQCxXjf6VB58JyPG6zynEpFflJSZy4+x5yjxzB6utLnTffxKddW7NjiYiIXDZ3mztd63ela/2unMs+x9q4tcQcjeHohaOsi1/Huvh1hHiH0KdBH/o06EO4f7jZkUVERFyGhmqKiJQzLeMsgchbCh/jvwItmpIrlHvkCAlDhpJ75AhuNWtSf/48FeMiIlKpBHkFcUfzO1jRZwWLei1iSOMh+Ln7cSbrDHP2zqF3TG9u/+x2lh1eRkZehtlxRURETKcjiyIi5ax4GWewlnH+pdrXgKc/5KT9P3t3Hh5Vfff//zl7Jttk3xMgBBAkgIC4guKGVVuwVtvb2lq1WpdavVtbtd52tXdbbW3Faq3etvbb1v60VcGFulRBUSmrArJJCEsWspFkss0+5/fHJEMioAEDJ8vrcV1znTPnnJl5z9WqM6+85/2B2vegaKbZFckQ1bV2LVU33Ei0rQ1naSkljz2Ko7DQ7LJERESOCovFwvFZx3N81vF898TvsqxqGYt3xMauvN/4Pu83vs8vVv2Cs0vOZn7ZfE7K09gVEREZmRSOi4gcQ96Al11tuwCYkjXF3GKGAqsNxsyBLS9A5VKF43JE2l59ldrbvosRDOI+4QSKHn4Ie3q62WWJiIgcE06bk/NGn8d5o8+jsauRFytfZHHFYnZ4d7Bk5xKW7FyisSsiIjJiaayKiMgx1DNSZXTqaNIS0kyuZogoPTO23bHMxCJkqGp+8klqbrkVIxgk+eyzKfnTHxWMi4jIiJWdmM1Vk6/iufnP8fcL/84XJ3yRFGdKn7ErX/3XV3nmw2foCHaYXa6IiMhRp85xEZFjqCccn5KtrvF+65k7XrUSgp3gTDK3HhkSDMOg8bcPsO8PfwAg7YtfJO/u/8Fi10cfERERi8XC5KzJTM6aHB+7sqhiEe/Wvst7De/xXsN7sbEro85m/tj5nJR/ElaLeutERGT40TdEEZFjaH1DLBzXvPHDkFEKnhLw7oHd78K4c82uSAY5IxRi7w9+iPe55wDI+tbNZN1wAxaLxeTKREREBh+XzcW80fOYN3oeDV0N8bErld5KXqp8iZcqXyIvKY/Pln6WBWULKEktMbtkERGRAaM//YqIHCORaISNTRsBmJo91eRqhhCLBcaeGdvfsdTUUmTwi3Z2UnXTTbFg3GYj76c/IfvGGxWMi4iI9ENOYg5XT76aRfMX8eQFT8bHrtR11vHYxse48LkLufJfV/Ls9mc1dkVERIYFi2EYhtlFDHZtbW14PB68Xi+pqalmlyMiQ9S25m184YUvkORI4p0vvYPNajO7pKHjg2fgn1dDzvFw47tmVyODVHjfPqq+cT3+Dz7AkpBA4W/uJ2XuXLPLEhERGdICkQBL9yxl0Y5FrKhdQdSIApBgS+DcUedy8biLmZk7U3+IFhGRQeNwslyNVREROUZ65o2XZ5UrGD9cY84ELNCwCdrrISXX7IpkkAnu2cOea68ltHsPtrQ0ih/5Pe5pGl8kIiLyablsLs4fcz7njzmf+s56Xqx8kUUVi9jVtosXKl/ghcoXKE4p5uKyi/nc2M+Rm6TPaSIiMnRorIqIyDHSE45rpMoRSMqE/O5FTHe+aW4tMuj4PtjErv+6nNDuPTgKCxn15JMKxkVERI6C3KRcrim/hucXPM9fPvMXLhl3CYn2RKraq1j43kLOe+Y8bvz3jby2+zVCkZDZ5YqIiHwidY6LiBwDUSPK6rrVgMLxI1Z6JuxdH5s7PuUys6uRQaJj+dtU33ILRlcXrokTKf7DIzhycswuS0REZFizWCxMy5nGtJxpfO/E7/Hq7ld5bvtzrGtYx/Ka5SyvWU66K52Lxl7E58s+T1l6mdkli4iIHJRmjveDZo6LyKe1um41V79yNcmOZN647A3cdrfZJQ09O5bCXxZASj58e0tsoU4Z0byLF1N71/9AOEzSqadQuHAhtuRks8sSEREZsXZ5d7GoYhHP73ieRl9j/Hh5VjkXj7uY80efT4ozxcQKRURkJDicLFdjVUREjoFFFYsAmDd6noLxI1VyMthc0L4Xmj40uxoxkWEYND32GLW33wHhMKkXXUTxI48oGBcRETHZaM9obp1xK69+4VV+d9bvOKv4LOwWOxubNvKTFT/hrKfP4q6372J13WrUpyciIoOBxqqIiBxlnaFOXtv9GgALyhaYXM0Q5nDDqFOgclmsizx7gtkViQmMUIi6//1fWv/+/wGQcfXV5Nz2HSxW/b1fRERksLBb7ZxRfAZnFJ9Bk6+Jlypf4tntz1LpreT5Hc/z/I7nKUkpYUHZAi3iKSIiptI3SRGRo+zVXa/iC/sYnTpa88Y/rdK5sW3lMlPLEHNE2tqo+sb1sWDcYiH3zjvI/d53FYyLiIgMYlnuLK48/koWzV/EXy/4a3wRzz3te/os4vnv3f/WIp4iInLMqXNcROQo6xmpMr9sPhbNyf50Ss+MbXe9DZEQ2BxmViPHUHDPHqquv4FgZSWWxEQKf3UfKWedZXZZIiIi0k8Wi4Wp2VOZmj31kIt4ZiRkcFHpRXx+3OcZmzbW7JJFRGQE0IKc/aAFOUXkSO1p28OFz12I1WLl1Ute1U9GP61oFO4bC75muOrl2JgVGfa61qyh+ps3E2ltxZ6XR/HvHyZh4kSzyxIREZEBcKhFPKdkTYkv4pns1LoiIiLSf1qQU0RkkFi8YzEApxScomB8IFitUHpGbF+jVUaE1ucWsfuqq4m0tpIweTKjn35KwbiIiMgwcqhFPDc0beDHK37MWf+ILeK5pm6NFvEUEZEBp7EqIiJHSdSI8vyO5wFYMFYLcQ6Y0rmw6TmoXApz7zS7GjlKjGiUxt8+wL5HHwUgZd48Cn7xc6xut8mViYiIyNHw0UU8X9zxIs9WPMtO784+i3hePO5iLiq9iLykPLNLFhGRYcDUzvG33nqLz372sxQUFGCxWFi0aFGf84Zh8IMf/ID8/HzcbjfnnHMO27dv73NNc3MzX/7yl0lNTSUtLY1rrrmGjo6OPtds2LCB2bNnk5CQQHFxMffee+9Rf28iIiv3rqSus44UZwpzS+aaXc7wUXpmbFu9BvxtZlYiR0m0q4uaW26NB+OZN1xP4W/uVzAuIiIyQmS5s/ja5K+xeP5i/vKZv/RZxPOBdQ9w7j/P5bIXLuPh9x9my74t6igXEZEjZmo43tnZydSpU3nooYcOev7ee+9l4cKFPPLII6xcuZKkpCTmzZuH3++PX/PlL3+ZTZs28dprr/Hiiy/y1ltvcd1118XPt7W1cd555zFq1CjWrl3Lfffdx49+9CMe7f7CLSJytPSMVLlgzAW4bC6TqxlG0kdBRikYkdjCnDKshOob2P2Vr9L+2mtYHA4KfvkLcm65BYtVk+BERERGGovFwrScafzo1B+x9LKl/PS0nzIjdwZWi5UtzVv4/frfc9mLl3HuP8/lnv/cw7s17xKKhMwuW0REhpBBsyCnxWLhueeeY8GC2OgBwzAoKCjgO9/5DrfddhsAXq+X3NxcnnjiCb70pS+xZcsWJk2axOrVq5k5cyYAL7/8MhdccAHV1dUUFBTw+9//nrvuuou6ujqcTicAd9xxB4sWLWLr1q39qk0LcorI4WoPtjP36bkEIgH+fuHfmZw12eyShpcXvw1rHodZ34AL9Gug4cK3aRPVN95EuL4eW3o6RQ/9jsTp080uS0RERAaZZn8zb1W/xbKqZbxb+y6+sC9+LsmRxOmFp3Nm8ZnMLpyNx+UxsVIRETHDsFiQc+fOndTV1XHOOefEj3k8Hk466SRWrFgBwIoVK0hLS4sH4wDnnHMOTIghQgAAIABJREFUVquVlStXxq+ZM2dOPBgHmDdvHtu2baOlpeWgrx0IBGhra+tzExE5HK/seoVAJMBYz1iOzzze7HKGn9IzY9vKpWZWIQOo/d//ZvcVXyFcX4+zbCyjn35KwbiIiIgcVEZCBgvKFvDbub9l+ZeW89DZD/GF8V8gy51FZ6iTV3a9wp3L7+SMp87g6leu5i+b/0JVe5XZZYuIyCA0aBfkrKurAyA3N7fP8dzc3Pi5uro6cnJy+py32+1kZGT0uWbMmDEHPEfPufT09ANe++c//zk//vGPB+aNiMiItKgitobCgrIFWCwWk6sZhsbMBosVmj4Ebw14Cs2uSI6QYRg0P/44Db++HwyDpNNOo/C3v8GWkmJ2aSIiIjIEuGwu5hTNYU7RHO4++W42NW1iadVSllYtpaK1gtV1q1ldt5p7V99LWVoZc4vncmbxmUzOmozVMmj7BUVE5BgZtOG4me68806+/e1vx++3tbVRXFxsYkUiMpTs9O5kfeN6bBYbF429yOxyhid3OhScADVroXIZnPBlsyuSI2AEg+z90Y/xPvssAOmXX07u9+/EYtfHExERETl8VouV8uxyyrPL+db0b1HVXsWbVW+ytGopa+vXUtFaQUVrBY9tfIwsdxZnFJ3B3OK5nJR/Egn2BLPLFxEREwzab595eXkA1NfXk5+fHz9eX1/PtGnT4tc0NDT0eVw4HKa5uTn++Ly8POrr6/tc03O/55qPcrlcuFxaPE9EjsziithCnKcXnk6WO8vkaoax0rnd4fhSheNDULilhZqbv0XXmjVgtZL7/e+TcYX+dxQREZGBU5xSzBWTruCKSVfgDXh5u+ZtllYt5e2at2nyNfHM9md4ZvszuO1uTsk/hTOLz+SM4jPISMgwu3QRETlGBm04PmbMGPLy8nj99dfjYXhbWxsrV67khhtuAOCUU06htbWVtWvXMmPGDADeeOMNotEoJ510Uvyau+66i1AohMPhAOC1115jwoQJBx2pIiLyaUSiEV7Y8QIA88vmm1zNMDd2Liz/Vaxz3DBA42uGjEBlJVXX30Bozx6syckU/uZ+kmfPNrssERERGcY8Lg8Xll7IhaUXEoqEWF23mqVVS1lWvYy6zjreqHqDN6rewIKFaTnTOLP4TOYWz2WMZ8wnP7mIiAxZFsMwDLNevKOjg4qKCgBOOOEE7r//fubOnUtGRgYlJSX88pe/5Be/+AV//vOfGTNmDHfffTcbNmxg8+bNJCTEfvL0mc98hvr6eh555BFCoRBXXXUVM2fO5MknnwTA6/UyYcIEzjvvPG6//XY++OADrr76an7zm99w3XXX9avOw1nhVERGtrdr3uaGf99AmiuNNy59A4fNYXZJw1c4AL8cDaEuuP4dyJtsdkXSD50rVlB9y61E29pwFBZS/MjvcY0bZ3ZZIiIiMkIZhsHW5q0sq1rG0qqlbGne0uf86NTR8aB8avZUbFabSZWKiEh/HU6Wa2o4vmzZMubOnXvA8SuvvJInnngCwzD44Q9/yKOPPkprayunn346Dz/8MOPHj49f29zczDe/+U1eeOEFrFYrl1xyCQsXLiQ5OTl+zYYNG7jppptYvXo1WVlZ3Hzzzdx+++39rlPhuIj0121v3sYru17h8uMu586T7jS7nOHvr1+AitfgvHvg1JvNrkY+QctTT1P3k59AJIL7hBMo+t2D2DMzzS5LREREJK6usy4elK+qW0U4Go6fS3GmcGLuiczKn8WJeSdSllamRT1FRAahIROODxUKx0WkP7wBL3OfnksoGuLpi55mYuZEs0sa/t79Hbx6F5SdA1c8Y3Y1cghGJELDvffR/Oc/A5D6uc+S/9OfYtX6HiIiIjKIdQQ7eKf2HZZWLeWt6rdoD7b3OZ+RkMHM3JnMypvFifknMiZ1DBaN+hMRMd3hZLmDdua4iMhQ86+d/yIUDTE+fTzHZRxndjkjw9juXx/teic2ZsWusHWwiXR0Uvud79Dx5psAZN/yLTKvv15fHEVERGTQS3YmM2/0POaNnkc4Gmbzvs2sqlvF6rrVrKtfR7O/mVd3v8qru18FINudzYl5JzIrbxaz8mZRlFKkzzwiIoOcwnERkQGyuGIxAAvKFuhD8LGSMwmScqCzAapWwRgt6jiYhGpqqLrhRgIffojF5aLgFz8n9TOfMbssERERkcNmt9qZkj2FKdlT+Hr51wlFQmxs2hgPy99veJ9GXyNLdi5hyc4lAOQn5fcJy/OT801+FyIi8lEaq9IPGqsiIp+koqWCi5+/GLvFzuuXvU5GQobZJY0cz1wLG5+G2d+Bs39gdjXSzbd+PVU3fZNIUxO2rCyKH34I95QpZpclIiIiclQEIgHWN6yPh+UbGjcQNsJ9rilOKY6NYOkOzLMTs02qVkRkeNNYFRGRY2zxjljX+JyiOQrGj7Wxc2Ph+I6lCscHibYlS6i9406MYBDXccdR/PBDOAoKzC5LRERE5Khx2VzMyp/FrPxZAHSFuni/4X1W1a1iVd0qNu3bRFV7FVXtVTyzPbZWzhjPmHhYfmLeifoeISIDyjAMIlEDm9WiX7d/DIXjIiKfUiga4oUdLwCxkSpyjJWeGdvWvge+FnCnm1nNiGYYBk0PP0zTg78DIHnuXAp/dR/WpCSTKxMRERE5thIdiZxaeCqnFp4KxBb3XNewjlV7Y2H51uat7PTuZKd3J09tewqAcenj4mH5zNyZeFweM9+CiBymcCRKVyhCVyBCZzAc3/qCEQLhCMGIQSgcJRSJ3YIRg3Cv/VAkGj8fv99zPhy7H45GCYUNgr3OhSIGwfBH7nfvGwZ8eM9ncNoVjh+KwnERkU/p3Zp32effR0ZCBqcXnW52OSNPagFkTYCmbbDzLZg03+yKRqRoIMDe799F20svAZBx1VXk3PYdLDabyZWJiIiImC/ZmcycojnMKZoDgDfgZU39GlbXrWbl3pVUtFawvWU721u287ctf8OCheMyjovNK8+fxfSc6SQ7k01+FyLDg2EYBMJROgNhuoKxALszEKGr9zYYwfeR+12B7m2v413BSOw5AmEC4ajZb+2gwtEoTqxmlzFoKRwXEfmUFlUsAuCi0otwWB0mVzNClZ4ZC8crlykcN0G4qYnqb96M7/33wW4n7wd3k37ZZWaXJSIiIjJoeVwezi45m7NLzgag2d/M6rrV8bB8V9sutjRvYUvzFv68+c/YLDaOzzw+Nq88fxYn5JyA2+42+V2IHL5wJEpnTyd1OBq7RaIEQrFtz7FAuO/9YDgSO9br+EeviT/nIZ4nEI7i6w63o0dxBUab1UKi00aS006iy0ai04bLbsNhs+CwWXHarDhsVhx2Kw6bZf99mxWH/SP3bRac9o/c7/14q6X7eQ5yrvu+26GGpY+jBTn7QQtyisihtPhbOOsfZxGOhnnmc88wPn282SWNTNv+BX//EqSPgVveN7uaEcX/4YdUX38DodparKmpFC18gKSTTza7LBEREZEhraGrgdV1q2Mzy/euorqjus95u9XOlKwpsTnnebOYkj0Fl81lUrUyUhiGQVcwQrs/TJs/RLs/RJs/TJsv1OvY/vs959v9Idp8sW1nMGL22+jD7bCR5LKR6LST6IwF2Ukue59wO8lp338+fr/XdS579/PYu4Nwq2Z8m0wLcoqIHCNLdi4hHA0zKXOSgnEzjT4dLDZo2QktuyB9tNkVjQgdy9+m5tZbiXZ24hw1iqJHfo9rzBizyxIREREZ8nISc7iw9EIuLL0QgL0de+OLe66qW0VdZx3rGtaxrmEdj6x/BJfNxbTsafHO8smZk3HY9KtW6SsSNeJBtdcXos0f6hNsfzTI7gm7ewffkQFqubZYwGmz4rRbcdmt8f34zWbFZbf1OeayfeS8w4rTduhrXL2u7TmWFA+5Y4G2zaoQe6RTOC4i8iksrlgMwPyxGuVhKlcKFJ0IVf+JjVaZ8TWzKxr22pYsoeZ7t0M4TOKsWRQtfABbWprZZYmIiIgMS/nJ+cwvm8/8svkYhkF1ezWr6laxsm4lq+tW0+RrYmXdSlbWrYT3wW13Mz1neiwsz5vFxMyJ2K2KgIYDfygSD7W9vv1Bd2w/FA+9vR853+YL0R4ID0gNNquFlAQ7qQmOPtuUBAep7u5t9/H993uusZOcYMdpU3e1DA76N6OIyBHa1ryNLc1bcFgdXDDmArPLkbFzY+H4jqUKx4+ylqeepu5HPwLDIPWCCyj4xc+xOJ1mlyUiIiIyIlgsFopTiylOLeaS8ZdgGAY723ayeu9qVtatZE3dGloCLbxT+w7v1L4DQLIjmRm5Mzgx70ROyj+J8enjsVq0QN+xFo0a8cUfOwJhOrtvbT2d2x8JuWNBd9/weyAWfXQ7bKS6e8LrvgH3we6nxu/HjiU6bQq2ZdhQOC4icoR6FuI8s/hM0hLUMWu60jNh2c9h55sQjYJVH/aPhqbHHqPx1/cDkPalL5J3991YbFrgRURERMQsFouFUk8ppZ5SvnjcF4kaUSpaK1i1NzaCZU39GtqD7bxZ/SZvVr8JxBYEnZk7k1l5sZnlY9PGKuw8CMMwCISj8SA7to302u91LBjuE3h39DrXc7xrgOZtWyzEu7I9bgced6wz2+OOhd0929QEe59jnu7g22XX53eRHgrHRUSOQCgS4qXKlwBYULbA5GoEgMIZ4EwBXwvUrYeCE8yuaFgxDIPGX/+aff/3OACZ3/gG2bfeoi9RIiIiIoOM1WJlfPp4xqeP54pJVxCJRtjWsi0elq+tX4s34OX1Pa/z+p7XAchIyIiPYJmVN4tRqaOG7Oe8cCQaC6SD4T4hdmw/cshjPeF2h7/X44KRAZux3ZvNaiHJaSPZZSfJFRs18tEQe3/Ybd8feCc48CQ6SHbasWpWtsiAUDguInIE3qp+i5ZAC9nubE4tONXscgTA5ogtzPnhv2JzxxWODxgjEqHuxz+h9emnAcj57nfJvOZqk6sSERERkf6wWW1MypzEpMxJfG3y1whHw2zetzm2uOfeVbzX8B7N/mZe2fUKr+x6BYgtCDorbxanFZ7GaQWnkZ6QflRrDEWi3Qs/xmZkx8PrYO8O7chBurIPPD4QY0cOJtFpI8ll7w60bSQ57fFwO3Z8//nk+LGe87Y+x1x2zdsWGSwUjouIHIFFO2IjVS4ae5EWthlMxs6NheM7lsLp/212NcOCEQxSc/vttP/rZbBayfvxj0i/9FKzyxIRERGRI2S32pmSPYUp2VP4evnXCUaCbGzayKq6VayuW836hvU0dDXwYuWLvFj5IhYslGeVc3rh6cwums2kzEl95pUbhkFnMBJb8LF7dnZPyN3uD8Xnabf7wx+5Zv99X2hgxo305rBZDhJSd4fYzr7He4Ltgx1LdtlJdNqxqVNbZFiyGIYx8L8PGWba2trweDx4vV5SU1PNLkdETNbka+Kcf5xDxIiweP5iStNKzS5JejR+CA+dCDYX3LEbHG6zKxrSoj4f1d+6hc7ly8HhoPC++0g9f57ZZYmIiIjIpxSJGnQFY6G0LxihKxiJ77f6u/iw9QO2tq7lw/bVNAV39nmszUjBFZqI0TURn3csnT4nAzV5JNFpIyWhb/d1n25tl51k58d3Zfcc01xtkZHrcLJctTuKiBymlypfImJEmJI1RcH4YJM1DlIKoL0W9qyAsWeZXdGQFWlro+r6G/CtW4fF7aZo4UKSZ59udlkiIiIiI0YkasQ7sLtCscUc/d1BdleoZz/caz923BfsDrxDEXzdAXhX97Ge/WC/Ro9MB6ZjsbdhS9qGPXkb9qTtRGztdDlXgXMVhsdCgq+EcMd4jK6JJFtLSE1wkpoQW/gxvu1eCDIlIbZIZEr3YpKpCY74NckJdhw26ydWJSIykBSOi4gcBsMwWFQRG6kyv2y+ydXIASyW2GiV9/8WG62icPyIhJua2PP1awls3Yo1NZXiRx4hcbpmuIuIiIgcCX8oNnKk1ReitStEa1cQry+Et+e+L0hrV6jvsa4gbf7wUa/NYgG3w0ai04bbacPtsOF22kl0xO7HguxRpLpPICXBQZLLQnPkQ3Z1rmFr2yqqO3diS9yNLXE38Bpp7ixOKziN2UWzOaXgFFKd+vW9iAxuCsdFRA7D5ubNVLRW4LQ6OX/M+WaXIwdTemYsHN/yApzzI7Dq55SHI1RTw+6rrya0ew+2rCxKHv8/EiZMMLssEREREVMZhkFHIBwPsePbXsF2T+jd+5pWXxB/6NMtEJnoPHR47XbaPrJvx+20HvKa2PPY44H4kS0MWQrEvgvVddaxvGY5b1e/zX/2/ocmXxOLdyxm8Y7F2Cw2pmZPZXbRbGYXzmZ8+ngtQikig47CcRGRw7Boe6xr/OySs9UFMVhN+Ay406FlJ2x6Dsq/YHZFQ0Zgxw72XH0N4fp6HAUFlPzpjzhHjTK7LBEREZGjpjMQprE9QGNHgKbubWN77NbUZz9IMHLkIbfVAmmJTtLcDlLdDtISHaS5HaQlOvG4HXh6jiU68Lid3dvYbTCPGslLyuPS8Zdy6fhLCUVCrGtYx/Lq5SyvWU6lt5J1DetY17COB9Y9QI47h9OLTmd24WxOzj+ZZGey2eWLiGhBzv7QgpwiAhCMBJn79Fzagm384Zw/cGrhqWaXJIfy5r2w9GeQMwmufwesg/cLxWDh+2ATVddeS6SlBefYsZT88XEcublmlyUiIiJy2PyhSDzYbuoIHhh2d+y/3xWMHNZzJzispLm7A+14wH2QkLt3wJ3oINlpx2odWV3TNR01vF39Nm/XvM3KupX4wr74ObvFzgm5J3B6YSwsL0srU1e5iAyYw8lyFY73g8JxEQF4Zdcr3PbmbeQm5vLKJa9g07iOwcvXCr8th0AbfPGvMPGzZlc0qHWuXEX1jTcS7ewkobyc4kf/gD093eyyRERERAAIhqO0+0O0+8O0+UPs6wwe0Nndu/v7cGd1JzltZKe4yEp2kZ3i6rvfvc1KcZGZ5CTBoe8ARyIQCbC2bm1sBEvN2+xq29XnfF5SXjwoPzn/ZBIdieYUKiLDgsLxAaZwXEQAbvz3jSyvWc615dfyrenfMrsc+SSv/xSW/wryp8J1b8ZWG5IDtL+xlJpbb8UIBkk86SSKHnoIW3KS2WWJiIjIMBGNGnQEw7T7w7T7Q7T5urc9YbevJ/QOf+RYiLbuxxzJzG6n3Up2cizUzo4H3c54+N0TgGclu0hyaeLssVbVVsXymtj4ldV1qwlEAvFzdqudSRmTKM8uZ3LWZKZkTaE4pVid5SLSbwrHB5jCcRFp6Grg3H+eS9SI8sKCFxjtGW12SfJJOvfFusdDnXD5P2D8eWZXNOh4X3iB2jvuhEiE5LPOovA392N1ucwuS0RERAYpfyhCbauPmlYfe1v9tPqCvcLu/dv9gXeIjkCYgUodkl12UhLsZCQ5D97d3avzOzXBrjB1iPCH/ayuWx0Ly6uXU91RfcA1HpcnHpRPzppMeVY56Qn6paOIHNzhZLn686iISD+8WPkiUSPKCTknKBgfKpIy4cSr4d0H4a17Ydy56h7vpflvf6P+p/cA4Jn/OfJ/9jMsdn0sEBERGakMw6DNF6amO/yuaenqtR/bNnUEj/j5nTYrqW47qQkOUhLspCQ4SHXbSXF1bxMcpMaP91wTuz41wUFygh3bCJvZPVIk2BOYXTSb2UWzMWYZVHdUs6FxAxubNrKxaSNb923FG/DyTs07vFPzTvxxxSnF8cC8PLuc4zKOw2VTo4eIHB59CxYR+QSGYbCoYhEA88fON7kaOSyn3AwrH4Xq1bDzLSg9w+yKTGcYBvseeYTGBxYCkH7FFeR+/04sWrRURERkWItGDRo7AlS3+OLd3z2hd8+2I/DJs7qTnDYK093ke9xkJjljAXZ3mB0Lvh0HOWbXrG7pF4vFQnFKMcUpxVxYeiEAoUiIbS3bYmF5Yyww39W2i6r2Kqraq/jXzn8BsXEsE9InxALz7CmUZ5UzKnUUVos+54rIoWmsSj9orIrIyLahcQNfXvJlEmwJLL1sKcnOZLNLksOx5Luw6lEYPRu+9qLZ1ZjKMAwafnkvzU88AUDWTTeR9c2b9JNjERGRYSAYjrLXGwu6q1u7A/Ce8Lt7DEow8smzuzOTnBSmuylMc1OQFtv23C9Kd+NxO/TZQUznDXjZ1LQp3l2+sWkjzf7mA65LcaYwOXNyn8A8051pQsUicixprIqIyADq6Ro/Z9Q5CsaHotNugTV/gl3LYfcKGHWK2RWZwgiH2fuDH+J99lkAcr9/Jxlf/arJVYmIiMjBRKIG7f4QrV0hWn0hvL4QrV3B7m3s5vWF8PqC7OsMUtvqo6E98Imzva0WyPf0BN8J3aF3Yjz8Lkxz43aqw1sGP4/Lw6mFp3Jq4alArAmktrM23lm+sWkjm/dtpj3Yzoq9K1ixd0X8sQVJBZRnl1OeFbtNzJyI2+42662IiMkUjouIfAx/2M/LO18GYEHZApOrkSPiKYJpl8O6P8PyX8GoZ8yu6JiLBoPUfuc22l97DaxW8n/2M9Iu1v+fRUREjrZAOIK3O+DuCbT7hNy+IF5f+CPBd5D2I1zE0mW39gm6e3d9F6a7yUtNwG7TiAkZfiwWC4XJhRQmF3L+mPMBCEVDVLRU7O8ub9xIpbeS2s5aajtreWXXKwDYLDbGpY+jPKucaTnTmJE7g4KkAv1CQmSE0FiVftBYFZGRa0nlEm5ffjsFSQX865J/aV7dUNW8Ex6cAUYErn0DCmeYXdExE+3spPrmm+l8dwUWh4PC39xPyjnnmF2WiIjIkBKKROPBdUtXiJauYN/9zljQvT8Aj219ocinet0kp420RCcet4O0REevrZO0RAdp3ffzPbHwOzPJqUBP5GN0BDvYtG9Tn/nljb7GA67LTcxlRu4MZuTOYGbuTMZ4xuifLZEhRGNVREQGSM9Ilc+VfU7B+FCWMQamXAbr/w5v/Rr+60mzKzomIq2t7PnGN/Cv34AlMZHih35H0ikjc6yMiIgIxEYvdAYjtHTGguyWrmB30B3qs22JB+Gx4Lu9HwtVHorVQneoHQu5ewLuNLcDT6Iztu051iv4Tk1w4LTr86fIQEp2JnNS/kmclH8SEPt3Qn1XPRubNrKhcQPrGtaxuWkz9V31LNm5hCU7lwCQ7kpneu50ZuTOYHrudCakT8BuVaQmMhyoc7wf1DkuMjLVddZx3j/Pw8BgyeeXUJxSbHZJ8mk0fggPzQIMuP4dyJtsdkVHVaihgaprvk5g+3ZsHg/Fjz2Ke8oUs8sSEREZUJGowb7OAI3tAZo6gjS2B9jXEegTbrf06vj2doX6tSjlwVgskJrgID0xFnSnJzpIT3TG99O6j8eC7+6A2+0gxWXHalXHqchQ0RXqYmPTRtbWr2Vt/Vo2NG7AH/H3uSbJkcS0nGnMzJ3J9JzpTM6ajNPmNKliEfkodY6LiAyA53c8j4HBzNyZCsaHg+zxcPwC2PRcbPb4pU+YXdFRE6yqYs/V1xCqqsKenU3x4/9HwvjxZpclIiLSL4Zh0NoVorEjQFN7gMaOWPjd+JH9po4AzZ1BokfQ7uW0W3uF231D7t7H0pN6gvBY17dNIbfIsJfoSOzTXR6KhNi0bxNr69eyrmEd79W/R3uonXdq3uGdmncAcFqdTMmeEu8un5Y9jURHoplvQ0T6SZ3j/aDOcZGRxzAMLnruIva07+Ge0+5hftl8s0uSgVD3ATxyGmCBm1bFAvNhxv/hh1Rd83XCjY04iosp+dMfcRYVmV2WiIiMcIZh0BEI9+nwbmz379/v2B94N3UECEX6/zXVaoGMJBfZKbFbZlKvcDtxf7idluggPSl2zO2waX6wiByRSDTC9tbt8c7ytfVrafY397nGZrExKXMS03P2j2LxuDwmVSwy8hxOlqtwvB8UjouMPOvq13Hly1fitrtZdtky/dV/OPn75bDtJZj6X3DxI2ZXM6B869ez57pvEPV6cY0bR/Hj/4cjJ8fsskREZBgLR6Ls6wzS0Bagod1PQ3sgvt8Tejd1B9/+0OGNM0lLdJCd7CIreX/wnZ3S6373NiPJqY5uETGNYRjsatvFuvp18bC8trP2gOvK0sriC3xOz51OTqI+p4scLRqrIiLyKS3esRiAeaPnKRgfbubcFgvHNzwNZ9weW6xzGOhcsYKqm76J0dWFe+pUiv/wCLa0NLPLEhGRIcofitDY3h14twVioXef/Vjn977OIIfTbpXsspOV7Nwfdh8i/M5MduKy247eGxQRGSAWi4UxnjGM8YzhkvGXALC3Yy9rG/Z3lu/07qSitYKK1gqe2vYUAMUpxczInREfw1KSWoLVokV4RY41dY73gzrHRUaWrlAXc5+eS1e4iz/N+xMz82aaXZIMtL9eAhX/hulXwucWml3Np9b+739T89/fxgiFSDr1VIoeXIg1KcnsskREZJAxDIP2QLhPZ/ehOr7b/OF+P6/NaokH3jkpCeSkuMhJcZGdmtDd3e0kOzmBrBQniU71Z4nIyLPPt4/3Gt6Lh+XbWrYRNfr+mibJkcSE9AlMypzExMyJTMyYyBjPGOxW/XtT5HBprMoAUzguMrK8sOMFvv/29ylKLmLJ55doHuVwtOc/8Md5YHXALe+DZ+jO5Pa+8CK1d9wBkQgp555Lwa9/hdXpNLssERExQTgSZa/Xz57mLnbv62JPcxdVzV3Ut/njnd+HM9rEabfGg+6clARyUvfvZ/fa11gTEZHD0x5s5/2G9+Nh+ZbmLQQigQOuc9lcjE8fz8SMibHAPHMi49LG4bTp877Ix9FYFRGRT2FRxSIA5pfNVzA+XJWcDKNnw67l8M4DcMF9Zld0RFr/+U/23v0DMAw8CxaQf89Psdj1n3YRkeGs3R+Kh949AXjPrabFRzj6yb1PKS57n3A7J8XVHXzv389OTiDVbddnIRGRoyDFmcLsotnMLpoNQDgaZqd3J1ubt7J532a2NG8CyahvAAAgAElEQVRha/NWOkOdbGzayMamjfHH2i12ytLLOC7jOCZmTGRS5iTGp4/XOFCRI6TO8X5Q57jIyFHTUcP5z5yPBQuvXPIK+cn5ZpckR0vlm/D/Pgc2F9y6EVJyza7osDT/5a/U/+xnAKT915fIu/tuLFbNKBQRGeqiUYO6tlj3955e4ffu7kC8uTP4sY932q0Up7spyUhkVGYSRelu8j3uPl3fbqdmeYuIDHZRI0pVexVb9m1hc/NmtuzbwpbmLXgD3gOutRCbe94zjmVixkSOyzyOVKcyLBmZ1DkuInKEnq94HoBZ+bMUjA93Y+ZA0SyoXgUrHoTz7jG7on5reuwxGn99PwAZV11Fzve+q84+EZEhxBeM7A+993VS1SsAr272EYx8/OiTzCQnxRmJ3QF4IsUZiYzKSKQkM5HclASsGnEiIjLkWS1WRqWOYlTqKM4fcz4QWzuirrOuT1i+Zd8WGn2NVHorqfRW8lLlS/HnKEouYmJmrLt8YsZEjss4jkx3pllvSWRQUud4P6hzXGRkiBpRLnj2Amo6avj57J9zUelFZpckR9v21+BvXwBHUqx7PGlwf1A0DIOmB39H08MPA5B14w1k3XyzgnERkUHGMAwaOwLxzu/d+7r6BOCN7QfOle3NbrVQlO6Ohd6ZsRA8dkuiOMNNSoLjGL0TEREZChq7GuOjWHpC85qOmoNem5OYw6SM/Yt+TsycSG5irr5TyLCiznERkSOwtn4tNR01JDuSObvkbLPLkWOh7BzInwp718N/Hoaz7za7okMyDIOG+35F8x//CED2t79N1nXXmlyViMjIFQhHqG7x9QnAe2aB72nuwheKfOzjPW7H/tC7OwAflRHrAs/3JGC3aVSWiIj0T3ZiNtmJ2cwpmhM/5g14453lPYH57rbdNHQ10NDVwLLqZfFrMxIy4jPMJ2ZOZFLGJIpSihSYy4igcFxEpFvPQpzzRs/DbXebXI0cExYLzPkuPHUFrHoUTr0Z3GlmV3UAIxql/p57aHny7wDkfv/7ZHz1KyZXJSIyvBmGQUtXqM/ok94B+N42Px/3G1yrBQrS3PHRJ0Xpse2ojCRKMhLxJKr7W0REjh6Py8PJ+Sdzcv7J8WOdoU62NW9jS/MWNu/bzOZ9m9np3Umzv5l3a9/l3dp349emOFI4LvO4+DiWSZmTGJ06GptV61bI8KJwXESE2IeE13a/BsCCsgUmVyPH1IQLIWcSNGyOBeRnfM/sivowIhH2/s/deJ97DiwW8n7yY9IvvdTsskREhoVQJEptq6/P6JPeAXh7IPyxj09y2ijJTKIkw82ozKT9s78zEilIc+O0q/tbREQGjyRHEtNzpzM9d3r8mD/sZ3vL9liXeXen+YctH9Ieamd13WpW162OX+u2uxmfPp6JGd1zzDMnMtYzFodNf/CVoUvhuIgI8OquV/GFfYxOHc3U7KlmlyPHktUKs78Dz1wTG61y8g3gSjG7KgCMUIja22+nbcm/wGaj4Bc/x/PZz5pdlojIkNDT+V3f5qe+zU9DW4D6Nj+1Xn8sBG/upLbVTyT68Usw5aUm9Bl7UtJrAcyMJKd+ci4iIkNagj2B8uxyyrPL48dC0RCVrZX7x7J0zzP3hX2sb1zP+sb18WsdVgdlaWXxRT8nZk5kfPp4EuwJZrwdkcOmcFxEhP0jVeaXzdeX3JHo+Ith2c9hXwWsfhxOv9XsiogGg9T897fpeP11cDgo/NWvSJ13ntlliYiYzjAM2gNhGtr81HcH3j3bhvZe+20BgpHoJz6fy26Njz4p7hWAl2QkUZTuJsGhn4+LiMjI4rA6mJAxgQkZE+K/rI5EI+xu382WffsX/tzcvJn2YHu867yHzWJjjGcMkzInxWeZH5dxHMnOZLPeksghWQzj4yblCRzeCqciMvTsadvDhc9diNVi5dVLXiU3KdfsksQM7z8Ji26ApGy4ZQM4E00rJerzUX3zt+h8+20sTidFDy4k+YwzTKtHRORY8QUj8U7v+vZAdwDeO/yObbuCH7/YZW+ZSU5yUhPITXWRl5pAbmpCfBHMURmJZKe49IdxERGRI2AYBjUdNX06zDfv20yzv/mg149KHRXvLp+cOZnjs44nyZF0jKuWkeBwslx1jovIiLd4x2IATsk/RcH4SFZ+aax7vHUPrPt/cPL1ppQR6eik+sYb6Vq1CovbTfHDD5F0yimm1CIiMlAMw8DrC1HT6qO21c9er4+93r7jTura/LT7P37Gd2+pCXZyu8PunFQXuakJ3eG3qzsMTyA72aW53yIiIkeJxWKhKKWIopQizh11LhD7b36jrzHeWd7Tab63cy+723azu203L+96OfZ4LIxNG0t5VmysS3lWOWVpZditiivl2FHneD+oc1xk+IpEI5z/7PnUddZx35z7OH/M+WaXJGZa80d48b8hpQBueR/srmP68pG2NqquvQ7f+vVYk5IofvQPJM6YcUxrEBE5Ev5QhL1eP7Wtvu5b9753/31fqH/d3m6HjTxPAjkpru7w29UdgPcKv1MScDs17kRERGSoaPG3xDvMN+3bxAdNH7C3c+8B17ntbiZmTIwH5lOyppCXlKdfeclhOZwsV+F4PygcFxm+VtSu4LrXriPFmcLSy5bish3bMFQGmXAAHpgG7bVw0W9g5tXH7qVbWthzzTUENm/B6vFQ8n+P4S4v/+QHiogcZdGoQWNH4JCh916vj6aOYL+eKyvZSUGam3xPAvked5/wu2c/2WXXF2AREZERoMnXxMbGjWxs2siGpg1satpER6jjgOsyEzLjneXlWeVMzppMijPFhIplqNBYFRGRfupZiPOCMRcoGJdYp/hpt8DLt8Pbv4ETvgI2x1F/2VBDA1XXXENgewW2zExK/vg4CRMmHPXXFREBaPOH2Nsdete0+tjrjYXePft1Xj+hyCf30yQ6bfHguzDNfcB+nidBi1uKiIhIXJY7i7klc5lbMheAqBFll3cXG5u6A/PGDWxv2c4+/z6WVS1jWdWy+GPHeMbEw/Ly7HLGp43HcQy+u8nwo87xflDnuMjw1B5sZ+7TcwlEAjx5wZOUZ6tLV4CQD35bDp2NMP9hOOHLR/fl9u5lz9euIrh7N/acHEqe+BOu0tKj+poiMvIEwhF27+uisrGDHY2dVDZ2UtnUQWVjJ15f6BMfb7NayEtNIN+TQEF32F2QlkCBZ/++x+1Qx7eIiIgMKH/Yz9bmrbHAvDHWYV7TUXPAdU6rk4mZE/sE5kXJRfpsMkKpc1xEpB9e3vUygUiAsZ6xTM6abHY5Mlg43HDqzfDaD2D5r2Hql8B6dDodg1VV7Lnya4Rqa3EUFFDyxJ9wlpQcldcSkeHPMAwa2wOx8Ls7+O4Jw6tbuoh+TEtMeqKD/O6guzAtgfy0XvseNzkpLuw2LWwpIiIix1aCPYFpOdOYljMtfqzZ38wHTR+woXEDHzR9wMamjbQF21jfuJ71jevj16W70pmcNbnPSBaPy2PG25BBTOG4iIxYiysWAzC/bL7+mix9zbw6NlaleQdseg7KvzDgLxGorGTP164i3NCAc9QoSp74E478/AF/HREZfvyhCDubOuPhd2VT97axk/ZA+JCPS3HZKc1OojQ7mbHd29LsJEoyEkl06muBiIiIDA0ZCRnMKZrDnKI5QKxBYE/7HjY0bmBj00Y+aPqArc1baQm0sLxmOctrlscfO9Yzlpl5M5mZO5OZeTPJcmeZ9TZkkNBYlX7QWBWR4afSW8n8RfOxWWy89oXXyE7MNrskGWzevA+W3gPZE+GGd8E6cB2T/m3b2HPV1USam3GNK6Pkj3/Enq3/D4rIfoZhUNfm79P9XdnUyY6GDmq9Pg71Cd5qgeKMREqzekLw5O5APInsZJf+GCwiIiIjQjASZFvzNjY07Q/Md7ftPuC60amjmZE7gxm5Mzgx70TykvJMqFYGmsaqiIh8gucrngfgtMLTFIzLwc26Ft5dCI1bYNtLMPGzA/K0vo0fsOfrXyfq9eKaNJGSxx/Hnp4+IM8tIkNPVzDcPf97f/d3z0iUrmDkkI/zuB2x0DsrFn6P7e4GL8lMxGXXopciIiIysjltztg4lV5ri7X4W1hXv4419WtYU7+Gbc3b2NW2i11tu3hm+zMAFCYXxrvKZ+bOpDC5UM0Fw5w6x/tBneMiw0skGuG8f55Hg6+B+8+8n3NHnWt2STJYvf5TWP4ryJ8K170Jn/JDUde6dVRd9w2iHR24p06l+LFHsem/KyLDXjRqUOv1fWQMSmy/1us/5ONsVgujMhLjo1D2d4MnkZHk1Bc1ERERkU/BG/DyXsN7rKmLheVbmrcQNaJ9rslLyouF5bkzmZE7g1Gpo/QZbAg4nCxX4Xg/KBwXGV7ernmbG/59A2muNN649A0cNofZJclg1bkPflsOoU64/B8w/rwjf6r//IeqG27E8PlInDWLoocfxpacNIDFiojZOgLh/d3fjR3s6A7BdzZ14A9FD/m4jCRnd/DdNwQvyUjEadcimCIiIiLHQkewg/cb34+H5ZuaNhE2+q7nku3OZkbujHh3eamnVGH5IKSxKiIiH2NRxSIALhhzgYJx+XhJmXDi1fDug/DWvTDu3CPqHu94802qb/4WRjBI0umnU/TgQqxu91EoWESOtkjUoLbVR0WvELxnFEp9W+CQj3PYLIzKTIoH37FRKLGxKOlJzmP4DkRERETkYJKdyZxeeDqnF54OQFeoi/WN62NjWOrWsLFpI42+Rl7e9TIv73oZiC0O2jOzfGbuTMalj8NqUXPDUKLO8X5Q57jI8FHpreQLz3+BUDTE0xc9zcTMiWaXJINdez08MAXCfvjq81B6xmE9vO2VV6m57TYIhUg++2wKf3M/VqeCMJHBrs0f6rUYZk8Q3snOfZ0Ew4fuAs9KdlKalczYnP3zwEuzkylOd2O36YuSiIiIyFDlD/vZ2LSRNfVrWFu3lvWN6/FH+o7I87g8TM+ZHhvDkjeD49KPw2bVejDHmsaqDDCF4yLDQzAS5MtLvszW5q2cWnAqj5zziH7+JP2z5Huw6g8wejZ87cV+P8z7wgvU3nEnRCKkXnABBb/8BRaHfq0gMlgYhkF9W4CKhg62N7RT0dBBRUMHOxo7aeo4dBe402ZldFbiQUNwj1v/jIuIiIiMBKFIiA/2fRAfw/Jew3v4wr4+1yQ7kjkh5wQmZ01mbNpYytLKKEktwWHVZ8ajSeH4AFM4LjI8/HrNr3li0xOkudJ45nPPkJOYY3ZJMlR4q+GBaRANwVUvw6hTPvEhLf/4B3U/+CEYBp7Pf578n/4Ei00dAyJmiEYNqlt8VDS2s72+ozsM72BHQwftgfAhH5eT4uozB3xsTjJjs5IpTHdjs+qPqyIiIiKyXygaYsu+LfExLO81vEdHqOOA6+wWO6NSRzE2bWz8ptB8YCkcH2AKx0WGvhW1K7jutesAWDh3IXNL5ppckQw5z38L1v0Zys6BK5752Eub/99fqP/f/wUg/fL/Ivd//geLVeMURI62UCTK7n2dsfC7voOKxti28mMWxLRZLYzKSKQsJzl+G9s9EzwlQV9OREREROTIRKIRtrVsY239Wj5s+ZDK1koqWivoCncd9PreoXlZWlk8OFdofvgUjg8wheMiQ1uLv4VLnr+ERl8jl42/jLtPudvskmQoat4JD84AIwLXvgGFMw56WdOjj9F4//0AZFx9NTnfvU3je0QGmD8UobKxs88olO0NHexq6iQcPfhHW6fNSml2UjwAH5eTQllOMqOzEnHZ9asOERERETn6DMOgrrOOitYKKr2xsHxH6w52tO44dGhutTM6dTSlntJ4aF6WVkZxarFC80NQOD7AFI6LDF2GYXDL0ltYWrWUMZ4xPHXRU7jtbrPLkqHqueth/d9hwoXwX0/2OWUYBo0LF7Lv948AkHXTTWR98yYF4yKfQrs/xI7GTrbXt1PR2EFFdzf4nuYuDvUJNtFp69MF3hOCa0FMERERERmseofmO1p3sMO7o9+h+di0sYz1jFVo3ovC8QGmcFxk6Hp629P89D8/xW618+QFTzIxc6LZJclQ1rQdfnciYMD170DeZACiwSB1d/8A7+LFAOTc9h0yv/51EwsVGXqaOgJsrPayvrqVjdVeNu9tY6/Xf8jrPW4H43qF4GU5yYzLTSE/NQGr5oGLiIiIyDDwqUPztLFcftzleFyeY1y5uRSODzCF4yJDU2VrJV988Yv4I35um3kbVx5/pdklyXDwj6tg07Nw/MVw6ROEW1qovvlmfGvWgs1G3t13k/6lL5pdpcig1toVZGONlw3VXjZ0h+G1hwjCs1Nc8RB8XE4yY7u7wbOSnfplhoiIiIiMSIZhsLdzbzwo7xnTcrDQ/D+X/4ckR5JJlZrjcLJc+zGqSUTkmApGgty+/Hb8ET+n5J/CVyZ9xeySZLiYc1ssHN+0iEDpG1Td+UtCe/ZgTU6m8IHfknzaaWZXKDKotPtDfFDTxsaa1u4w3Mue5gO7XCwWKM1KYmpRGuVFHiYXehifk4IncWT/JFRERERE5KMsFgsFyQUUJBcwu2h2/HjUiO6fad5aSYOvYcQF44dL4biIDEsPvvcgW5u3kuZK457T78Fq0ZxZGSC5x8NxF9H55qtUX3MLUX8YR1ERxY/8HldZmdnViZjKF4ywqTYWgMc6w1upbOo86HzwUZmJTClKY0qhh/IiD8cXpJKSoCBcRERERORIWS3WeGg+p2iO2eUMCQrHRWTYWVG7gic2PQHAT079CTmJOeYWJMNOS9t06patBSOMu3wiRX/4P+wZGWaXJXJMBcIRtu5tZ0N1azwM/7C+nehBgvDCNDflhR6mFHuYUpjG5MJU0hKdx75oERERERGRXhSOi8iw0uJv4a637wLgsvGXMbdkrskVyXBiRKM0/PrXND/+R8BC6qgu8r+Uj1XBuAxzoUiUD+vbuxfM9LKxppVtde2EIgcm4dkpLqYWeSgvTGNKsYfyQg9ZyS4TqhYREREREfl4CsdFZNgwDIMfvvtDGn2NjPGM4bYTbzO7JBlGol1d1Hzve3T8+3UAsr6ygKzgw1g2PQVn3wFpxSZXKDIwDMNg174u3q9qYX2Vl/XVrWyubSMQjh5wbXqiIzYapSgWgk8tTiM3NcGEqkVERERERA6fwnERGTb+8eE/WFq1FLvVzi9n/xK33W12STJMhOrrqb7hRvybN2NxOsn/3//Fc9GF8MRG2LUc3l0IF9xndpkiR2RfR4D11a28v6eV96u9rK9qxesLHXBdSoK9OwSPheFTijwUprmxWCwmVC0iIiIiIvLpKRwXkWGh0lvJfatj4eSt029lYuZEkyuS4cK3aRPVN9xIuKEBW0YGRb/7HYnTT4idnPPdWDi+9s8w+zZIyTW3WJFP4A/FFsx8b08r66u9vF/VQlWz74DrnHYrkwtSmVacztRiD1OK0hiVkYjVqiBcRERERESGD4XjIjLkBSNB7njrDvwRP/8/e3ceH0d1oP3+V1W9qVtSa7Vk2fICeA1ggzG2gZCEkJCZJBPCMkxgCMlkMpO5wIQ4JC9cEsAJDCHMvGFYQuZ97x2cBa55kwyTT5KBTIZ9BxsMDBhjsLFlbNlaW1LvXVX3j+purV6R1ZL7+eZTOadOneo+LYmS/PTpU6umr+LSxZeWekhylOh/5BHev/pbuMkkgeOOpfUnPyEwc+Zgh7lnQusKaHvBmz1+zs2lG6zICI7jsrVzIB+E97KxrZe3dveTG+OOmcc2RljaWsvS1ihLW2tZ0FxFwGeWYNQiIiIiIiITR+G4iEx5d75yJ5u6N1ETrOGmM27CNBToyAfjui7d965l7223gesSOf10Ztz+I6yqquEdDcObPX7fBbD+X+GM1RCpL82gpezt7U95S6O0eWH4a20x+tO5Uf0aKoMsba0pBuEntkapDvlLMGIREREREZHSUjguIlPac7ueY+0bawFYc9oapoWnlXZAMuW52Szt3/s+vb/8JQA1X/gLmq+7DsO3j1+Zx50N05fC7o3w/I/h49+dwNFKuUpkcry+M1YMwjfu6GVXLDWqX4Xfyt8o0wvCl86qoSUa0jrhIiIiIiIiKBwXkSmsJ9XDdU9fB8CF8y/krFlnlXhEMtXZsRg7r7qKxHPPg2HQdO011F566f6DxMLs8QcugRf/F5x2JVTUTNyg5aiXsx3e6RhgY355lFd29PL2nn5Gro5iGDB/WhVLW2tY0lrD0tYa5jdV4rP0aRoREREREZGxKBwXkSnJdV1uePYGOpIdzI3O5VvLv1XqIckUl9mxg7a//RqZbdswwmFm/NM/UvWxjx3cyQv+FKYthr1vegH5R759ZAcrRy3XdWnrTrJxZy+v5WeF//f7fSSz9qi+zdWhYUH4CTOjVAb1p52IiIiIiMjB0r+gRGRK+uXbv+SxtsfwmT5u/fCtVPgqSj0kmcIS69ez84orsXt78TU30/qTewgtXHjwD2CacObV8Ku/gmf+GWafBnPOOHIDlqPG3v4Ur7XFeG1nLxt3xnh9Zy89ieyofpVBH8fPqM7fNNMLw5ujoRKMWERERERE5OihcFxEppytsa3c9tJtAFx18lUsql9U4hHJVBb7zW/Y/Z3v4mazhI4/npk/vhv/tMNYu37xuTD3p7DtCfj5eXDhWlj4p+M+Xpm6+lNZXt8Z49WdXhj+atvY64QHLJNF06tY0lrDiTNrWDIzyjGNlVim1gkXEREREREZTwrHRWRKydgZrnnyGlJ2ipXTV3Lp4ktLPSSZolzHoeOOO+j6yb8AUPWJT9Dyw1sxKw7zUwimBRf/H2/2+ObfwwN/CZ+7C5ZePI6jlqkinbPZtLufV/NLo7za1svWzjjuGOuEH9dYyZJWLwQ/cWYNC6dXEfRZpRm4iIiIiIhIGVE4LiJTyp2v3Mmm7k3UBGu4+YybMQ3daE4OnZNKsevaa+l/6GEA6r/6VRq/cRWG+QF/nvwh+POfwW//HjbeB//+d5DohtOuGIdRy2RlOy7vdgywsa03PyM8xlvtfWRtd1TfGTUVLGmNsmSmNytc64SLiIiIiIiUjv41JiJTxnO7nmPtG2sBWHPaGqaFD2PpCyl7uc5O2i6/nNSrr4Hfz/Qbb6Tm/PPG7wksH/zZXVBRC8/dBf95HSS74azvetOEZUpzXZedPUle3dnLaztjbGzr5Y33Y8Qzo2+YWRcJcOJMLwhf0urNCm+oDJZg1CIiIiIiIjIWheMiMiX0pHq47unrALhw/oWcNeusEo9IpqLU5rdp+7uvkdu1GzMaZeaddxA59dTxfyLThE/eBOF6eGQNPPVPkOiCT/9Pb/kVmTJiiSwbd/ayccfg8ihd8cyofuGAxfEzoixtrSkG4jNrKzD0hoiIiIiIiMikpXBcRCY913W54dkb6Eh2MDc6l28t/1aphyRT0MCTT/L+N1bjxOMEZs9m5k/uITh37pF7QsOAD6/2ZpD/7huwYS0ke+G8/wU+zR6ejArrhG/c0cOr+Vnh2zrjo/r5LYOFzdXF2eBLZtZw3DTdMFNERERERGSqUTguIpPer7b8isfaHsNn+rj1w7dS4TvMGyZK2er++S/Yc8st4DiEly9n5p13YNXUTMyTn/JlLyD/t6/Cm/8OqRhc9AsIVk7M88uYXNflva4EG9t6eLUtxittvWza1UfGdkb1nVMfZmlrjXfTzNYaFk+vJuTXJwBERERERESmOoXjIjKpbY1t5Ycv/hCAq06+ikX1i0o8IplK3FyOPbf8gJ777gMget55TL/xBoxAYGIH8qFzIRSFdZfA1sfgZ38Gl/wKwnUTO44y1jWQ5tWdvWxs82aEv9rWSyyZHdWvNuwvBuFLW71Z4bWRCf55ERERERERkQmhcFxEJq2MneGaJ68hZadYOX0lly6+tNRDkinEHhjg/dWriT/5FACNq1dT/9W/Lt0a0Md+DC77Ldx3Pry/Af71U3DpgxCdUZrxHMVSWZs3dsWGBeE7uhOj+gV8Jse3VBeD8KWtNcyqC2udcBERERERkTKhcFxEJq07X7mTTd2bqAnWcPMZN2MaZqmHJFNE9v33afva35HesgUjFKLl1lupPueTpR4WzFwGf/UH+Nm50LkZ/vUcuPTfoeG4Uo9synIcl62dA/kgvIeNbb28tbufnOOO6ntsY4QlrTWc1FrD0tZaFjRXEfDpuiIiIiIiIlKuFI6LyKT03K7nWPvGWgDWnLaGaeFppR2QTAmu69L/h/+k/fvfx+7qwmpsoPXH91BxwvGlHtqgxgXwlT/Azz8PXe94Aflf/hpalpZ6ZJOe47hs706waXcfb+yK8WpbjFd39tKfyo3q21AZKM4GX9paywkzo0Qr/CUYtYiIiIiIiExWCsdFZNLpSfVw3dPXAXDh/As5a9ZZJR6RTAWZne/T/v3vEX/iSQCCCxfSes+P8U+fXuKRjaFmljeD/Bfnwe5XYe1n4Av/H8z9cKlHNmkkMjk2t/fz5u4+Nu3u481dfbzV3k8iY4/qG/KbnDAjWgzCl7RGmVFToeVRREREREREZL8UjovIpOK6Ljc8ewMdyQ7mRufyreXfKvWQZJJzs1m6f/pTOu66GzeVAr+f+r/+Cg1/+7eYoVCph7dvkQa47Hew7mJ47yn4xflw4b2w8NOlHtmEcl2XPX1pLwDPb5t297GtM447emUUgj6TBc1VLGr21gpf0hplQVMVPkvLo4iIiIiIiMihUTguIpPKr7b8isfaHsNn+rj1w7dS4aso9ZBkEku8/ArtN95I+u23AQgvX07zjTcQPPbYEo/sIIWq4ZJfwa+/Am/9Dh74S/izu+CkS0o9siMiazu82zHAm7v6imH4pt39dMczY/ZvrAqyaHo1i6ZXsXh6NYunVzO3IaIgXERERERERMaFwnERmTS2xrbywxd/CMDXT/o6i+oXlXhEMlnZsRh7/+l/0vt//g8AVk0N0/7H/yB67uem3lIa/hBc+FP47a8AwOkAACAASURBVNdh4y/gN/8XJLtxVlxOLuuQyzjkMna+PqTMOOSy+TLj4DouhgmmaWDkt0LdtAwMI18W272+hWOGNaT/fs9n2HHTZ2Kao7/msUR2cEmUfLllzwAZ2xnV1zINjmmIsLilmkX5EHzR9Goaq4IT8R0QERERERGRMqVwXEQmhYyd4ZonryFlp1g5fSVf/NAXSz0kmYRc16Xvd79jzw9uxe7qAiB6/nlMu/pqfLW1pRuX4zLQm6Z3T4LUQJZsxsbOOsWyGGYXw+2hwXah7RJy/Z8hl8mR+1kA52ePl+z1HCpf0IKgScaEAdehO2fTlc2RMl2ShkvSgJThUmu4WCEfs6dXMX9GFYtnRFk0vZr5TVWE/FapX4aIiIiIiIiUGYXjIjIp3PnKnWzq3kRNsIabz7gZ09CyCTJc5r33aP/e94g/+xwAgWOPZfqNNxBevnzixpDKEdubpGdPnN72BD17EvTmt1xm9IzoQxfMb8NZfhNfwMTnt/D5TXwBy9svtAVMTMvEdVwcx8WxXVzXxbW9/UK7V3phfqGPY488PrTEK4f0GUsubUPaxgSq89ucff2JMQB0pjDfTJOIxHij0s+7ET+hiJ9QxEeo0k+wuO8nVDmkHvFhakkVERERERERGScKx0Wk5J7b9Rxr31gLwJrT1jAtPK20A5JJxclk6Prf/5uuf/lfuJkMRjBIw9/9HfV/9WWMQGDcn891XPq7U/TuGQy/e9q9Mt6b3ud5pmlQ3VhBJBrwwut8iG0FTPz+fBkwsfxWsfQCbq/0Bywsf75869f4H/2/sUjhW/wnGOf/b/CVbomRvlSWZ9/p5Im3O3lycwe7e5OYgAH4XKgyLRbUhjmmuoKZkSDTAn6iPh9u2iY9kCUVz28DWVLxHHbOwbFdEn0ZEn1jrze+L4EKH6GIj4qqALXTIzS2VtE4q4qGmZX4g5p9LiIiIiIiIgdP4biIlFRvqpfrnr4OgAvnX8hZs84q8YhkMok//wLta9aQ2bYNgMjpp9N8w/UEZs36wI+dSeaGzfwuBOC9exPY2X3PAg9V+qltClPTHKamKezVm8JUN1Zgjdes5qZLobEafv3XsOk3cH8MLroPgpXj8/gH4Dgur78f48m3O3hySwcv7+jFHjJrPOAzWT63ljPnNXLGvAYWNFUd9E0yXdcll3GGhOXZ0fV4ltRArlhPx7OkEznA+75lkjn6OlPs2dbHW+z2HtiA2qYwjbO8sLyxtYqG1kqCYf+4f31ERERERETk6GC4rjv2Z6SlqK+vj2g0SiwWo7q6utTDETlquK7LVY9dxaNtjzKneg4PfOYBwv5wqYclk0Cuu5u9t/6Q2G9+A4DV0EDTtddQ/ad/ekg33HQcl/6u5GDwXQjC9yRIxPY9Y9m0DKKNFV743RzJl14IHopMYNj67mOw7hLIxmHGMrj4lxCpPyJPtbcvxZNbOnny7Q6efqeT7vjwr88xDRHOnN/IR+Y3suKYOsKBiX1/3bEd0olcMUiPxzJ0vT9AR1s/HTv69/n9rG4IjQjMqwhXj/8nDkRERERERGRyOJQsV+H4QVA4LnJk/PLtX/K9576Hz/Rx/5/ez6L6RaUekpSY6zjE/u3f2HvbP2LHYmAY1PzFRUz7xjewDuL629+dou3Nbtre6qZ7V5zY3iR2bt+zwCuqA8WZ34Xwu6YpTHV9aPKsbb1zA9x3ASS7oWEBXPogRGd84IdN52w2vNfDE1s6ePLtTjbt7ht2vDLo4/Tj6jlzfiNnzmuktW5yv3EVj6Xp2NFPZ1s/HW0DdOzop78rNWbfytogDa1VNLZWFoPzSE3wkN54mUjZjE1qIIthGIQiPnwBLR8jIiIiIiKyLwrHx5nCcZHx5bouv9/2e9Y8u4aUneKby77Jl47/UqmHJSWW3rKF3TeuIblhAwDBhQuZvuZGKpYs2ec5uYzNri297Hijmx1vdtHTnhjVx/KZRKdVjAjBI9Q0VUydJTc6NsPPPw9970O01QvIG+Yd0kO4rst7XQmefLuDJ97u4PmtXSQydvG4YcAJM6KcOa+RM+c3ctKsGvyT5Q2Cw5SKZ4szyzt3eKF5794EjPGXT0WV35tZnp9h3jiriuqG0LgG5o7jkknkxl5KZj/Lyoxc5sfym4TCPoIRP8Gwj1AkfxPTfNtg6ScYGTweCFoY5uR8A0BERERERGS8KBwfZwrHRcZPZ7KT7z/3fR5texSAM2acwd0fvxvTmNohnBw+J5mk856f0PWv/wq5HEZFBY1XXkndFy/F8A1fusN1Xbp3x2l7s5sdb3aza0vvsODQMKBpbjWti+tpmlNNbXOYyroQ5tEQCPa2eQF51xYI18Nf/hpaTtrvKf2pLM++21VcO7ytOznseENlkDPnN/CR+Y2ccVwD9ZWlu+nnRMmkcnTuHBgSmPfTvTuB64z+cyhQ4aOxtXJYYF7TFMY0DXIZe9SNRscOuQfr6URuzGD+YJiWgesy5jgPlmFAcGhgHh4arvsIhf2EIr58n8G6L2DiOi6u4wX8ruMOlrY7us1xcW0X1/WOjzzPGXqs2GfoY1A8hgGG938U3qcwjKH7xmB7/r/z/fYzKL7hUdwvPr7XbpoGoSo/kWiAcDSIXzP1RURERESmFIXj40zhuMj4eHjbw9z8ws30pnvxmT6+duLX+KsT/gq/OUVm78q4G3jqKdrXfI/szp0AVJ51Fs3fuQ5/S0uxTyqeZedbPex4s4u2N7sZ6EkPe4zK2iCti+uYtbiemQtrJ3ZN8IkW74RfnA+7N0KgCr5wP8w9s3jYcVze2NXHk1u82eEvb+8hNyRM9VsGp8yuK64dvmh61aRdSmQi5TI2Xe/HvVnmbV5o3vn+AE5u9J9IPr/3Rl5uPzdtPZBAyCJU6ScU8Q/O+h6yH6r0Ddbzx/xBL6DNpmxSiSzpeG6wjGdJj9mWI53wgvlc5vDHW+4CIYtwNFgMy8PRAJHqfJlvi0QDBCp8+u9JRERERGQSUDg+zhSOi3ww3alubn7+Zv5z+38CsKB2ATefcTML6haUeGRSKtm9e9lzyy30P/QwAL7mZpq/cx1VZ5+N47jsfa+PHW920/ZmF3u29TH0N5XlN2mZV8OsfCBeOz1cXoFUqg/WXQzvPYVrBWj/xD08Za3g2Xc7eWpLJ10jbqQ5pz5cDMNXHlNPJDixN9KcqmzboWd3nI78ciydO/rp2DlALj24FI1pGgSLobavGGQPDbVHhtzBiA+rBMvV5LK2F5YXA3Rvtns6kS3e6DQdz5JK5IaV6eTo2e6maWCYBoZlYBp4Zb5tVGkZGEah9GbAj+o3rE++NAdncuN6nxopXgdc1xtSvh2X4ftelxH9vEqx3WWwX/4B3Pz5ju2S7M+QiGUO6U0Qy296YXl1PjCvHhKmDykrKv1a3kZERERE5AhSOD7OFI6LHL7/2v5ffP/579Od6sYyLL564lf5mxP+Br91FM/ulX1ybZuedevo+NHtOAMDYJrUXXopoUv/hve3p9jxRjc73+r2lp8YonZ6JB+G19Eyr6Zsb0iYzNi8urOXjdvaOXXDtzg58Qy2a3BN7qv80v4oAJGAxWnHNXiB+LxGZtVP7htpTiWO49LXmfSW3Yj48Yeso/6NGcdxsXMO5pBAu1y4rksmZZOIpYnHMiRiaRJ9mWJ9aNvIa9b+GKZBuMo/ejZ6NEhVfYhoYwVV9aGSvIkiIiIiInI0UDg+zhSOixy63lQv//DiP/DQtocAOK7mOG4+42YW1y8u8cikVFKbNrH7hhtJvfYatukjsfQTJD/y5+zaY9C9Kz6sbzDsY+bCWmYtrqd1cR1VdaESjbq0dseSbNjeU9ze3NVXXCbFwuYffP8vF/keB+DJ1r8jeObfc9LcZgI+hWoiEymXsccMzuN9w0P1ZH/moNadN0yDqrog0Wlhog0VRKdVUJ0vow0VZfsGoYiIiIjIwVA4Ps4Ujoscmsd2PMaa59bQlerCNEy+cvxX+NqSrxGwAqUempSAE4+z94672Pnr/6S7ZgHdjSfQWzsf2xmcgWoYMG1ONa2L65j9oXqmza7CLLNZk1nb4a3d/azf3s2G7T28vL2HXbHUqH5N1UFOmV3HybNrOWVWDcdv+ies5+70DobrYenFcPKXoOG4iX0BInJAju2Q7M8Sj6VJxDJemQ/O471p+ruSxPYmD7icS6QmSLSxwtumVRBtDBNtrKC6sYJghZZOEhEREZHypnB8nCkcFzk4sXSMW1+8ld9u/S0Ax0SP4abTb+KExhNKPDIphWw6x+Z1T/DOQ6/QGZpDOlQ37HgkGmDWh7yZ4a2L6o7uG2mOoTeR4ZUdvcUw/NW2GMmsPayPZRosml5VDMOXza6lJRoavZTHS/8PPPlP0L9rsG3Oh2HZl2DRZ8EXPPIvSETGheu6JGIZYh1JYh2JfOmF5rGOJJnk/pdwCVX6B0Pzhgpv9nk+SA9V+o/6pYBERERERBSOjzOF4yIH9uTOJ1nz7Br2JvdiGiaXfegyLl96OUFLoVw5cVJptv7+RTY/s5O2/hrsId9/04QZC2ppXVzPrMV11LVEyiakcV2XdzvivFxYImVHD+/sHRjVrzrkY1k+BD95di1LZtYc/A007Ry880fYsBa2/Ce4+ZmnFXXebPJlX4KGeeP2mkRk4rmuSzqeo7cjQd+I0DzWkSDZn93v+YGQRXXj4Exzb9Z5BeHqAL6AhT9g4QuaWD6zbK7PIiIiInL0UTg+zhSOi+xbf6af2166jQffeRCA2dWzuen0m1g6bWmJRyYTxY7FeP8/nmLzMzvZEW8gFRycIR5KddPabDPvzz/MzOOb8JfJOrmFG2cWlkfZsKOH3sTo0OqYxgjLZtUWA/FjGysxx+OGh7Gd8Mov4OWfQd/7g+2zzxicTe4vz3XcRY5mmVSuGJj3dSaJ7R2ceT7Qkz7oxzEM8AUsfEELf8D0gvOghS9g5gN0qxim+4Pe8bH6DD9X4buIiIiITAyF4+NM4bjI2J59/1muf/Z69iT2YGDwl4v/kitPupIKX0WphyZHWKatja4/PM7bz+5kR6qJvuo5xWM+O8XMSDcLTmth7mdWYYWP/p+H3kSGF7d18/zWbjZs7+aNITfOLAj6TJa01rBsdi2nzK7lpFm11EWO8Dr8jg3v/Jc3m/zth4fMJq+FJRfDssugccGRHYOITAq5rE1fZyofng/OPO/tSJKOZ8llHOzc/tc6Hy+F8D0Y9hGuDhCOBglHA0Ty9Uh0sKyoDmBNsXtQOLZDKp4j2e/dhDU5kCXZnyGTtKmo8lNZG6KyNkhlbZBAhU9vFIiIiIiMM4Xj40zhuMhw8Wycf1z/j/zq7V8B0FrVyvdP/z7LmpaVeGRypLiOQ+q//5vePz7Gtuffo81ppav+eFzTW/LDcB2aKwdYcFoL8z99Ev7Q0b1+eCyR5YVtXTy/tZvnt3axqb2Pkb9Nm6tDLJtTW5wZvmh6NQFfCQOe2PtDZpPvHGyfdZo3m3zxn4H/6H8jQ0T2zbEdchmHbMYml7HJph2vzNjk0nbxWDbtHc9lHLJpu9g/lx56rne8UM9mbJzcYfyzw4CKSj/h6uEBejgaIFIsvbYj9emkscPubLGe6s+Q6M+QyrenElk4yJfqD1rFoDxSCM1rglTWhYplIGQpQBcRERE5BArHx5nCcZFBL+x+geufuZ5dce/GfxcvvJivn/x1wv5wiUcm481JpYg//zz9//UoO1/cwq7gAvZMO5mcv7LYpzaSYcGqFhZ9ciHh6iM8C7qEYoksL77nBeHPb+3izd2jw/DjplWy8pg6ls+p45Q5dcyomaRBs2PDO48MmU2evwloqAaWfMELyqctLOUIReQoNTJ8T8VzJGJp4rGMV/ZlSOTriXzdcQ7+nyqBkDVs5nk4GiBcPSREzwfsgZA1GHbnZ3Un+7MkB7wyNaL9UMLuIgNCYT8VVX4qqgJUVPrxV/hI9mcY6E4z0JsiHd//zVULFKCLiIiIHBqF4+NM4bgIJLIJfrThR6zbvA6AGZUz+P7p32d58/ISj0zGU667m4HHn6D/0UfofGkTu2tOpL3pVJLhpmKfiqDDgpXTWXjmbOpnVO7n0aauQwnDVx5Tz6lz65hWNQXX8O7bBa/cBy//FGJtg+2tK+GUL8Piz2k2uYiUjOu4pOLZwfA8liHRNximJ2IZ4vkylz3CS8KMEXaHqgLefmVgWHtFVYBQxId5gOVgsmmbeG+agZ4UAz3p/JZioDf9gQL0ytoQkdogVfmysiaI5S/NJ5cMw8C0hm7mYN00FOiLiIjIEaFwfJwpHJdyt759Pd995rvsHPCWYvjz+X/O6lNWE/FHSjwyGQ/prdsYeOxR+h99jP7XNrG3fgntzSvorZlX7OOz4JiTGll42gxmLKwdn5tGTiIHE4Yf2xhh5TH1rDymnhXHTNEwfF8cG959DDbcC5sfGjKbPOrNJj/5MmhaXNoxiojsg+u6ZFN2MSiP9xWC88ywmemJvgzpxGDYHIp4YXeo0k+4KuCF3flw2wu9C/WDC7uPhEKA3t+TIt4zMkj39oe+pqnGMI1hYflYAfqw/ZEh+77O8Xk3frV8Rr40sfzmkPqQ9qGbf8g5Q/v7jJJ8/0VEROTwKBwfZwrHpVwlc0nuePkO7tt0Hy4uzZFm1py2htNaTiv10OQDcG2b5MaN9D/6KAOPPEpq+w66axfR3nQqnQ0n4liDy6PMXFDLglXNHLO0kUDIV8JRj69YMstL2/Jh+LYu3thVZmH4/vS359cm/yn07hhsb12RX5v8XAhoGSURmZoKa6AHw6UJu4+EbNouzjgfK0CP96ax7Ym52epIruPi2N421RkGIwLzEWG6zxwWyhdCe8uXD+stE9NnjFkO9vFK0xrZbzCg31dJKeYtuN6bU67rfa9d18V1GFGOOF6sj3V8RNtYxx0XXPAFTSoqA4QqvTe4jtQ9B0REZGpSOD7OFI5LOXpl7yt895nvsr1vOwDnzzufq0+5msrA0bmMxtHOSSQYeOYZBh59jIHHHyfX08NA5Uzam05lT9NyMoHBa1ttc5iFq6Yz/9QmKmuPjkD4YMLwY4aE4Svn1jGt+uh47YfNcWDro97a5JsfAic/MzEYhSUXeUF504dKOUIREZlCHMfFsZ1iWD64Oflj3uY6LvaQfq49Yj//OPaw/cE+ruNi5xzsXL7MOvn9Qt1rd/JtuaHHc67Xnm/Tv5SnDl/AJFTpHwzMI4VPf/gJVQaK+6Ehm3WUvEEmIiKjKRwfZwrHpZykcinueuUufvbmz3BxmRaexprT1nDGjDNKPTQ5BPZAnOTGjSRf3kBi/QaSGzfiZjKkA1Ham5azp2UlAxXTi/1DlX7mL29iwcpmGmdVTfk1QGOJLC+9pzB83PS3w8b7YMNPoXf7YPvM5XDSpTD7NKg7Fkz9I1NERI4ejp0P04cF6IWg3R0RunubY7v7LAuP5+Ty4f6YpYNTCPbzbcXwPze6nIwMw1tv3jANDAMwDUyD/L6BYXqdCm0YeEv2GV7/ofXCYwxrMwyyaZvkQIbUQPawP5kQDPsIRfz5UN0/PFwvtgWKx4IVPm+8IiIy6SkcH2cKx6VcvNbxGt955jtsi20D4HPHfo5vn/ptqgP6uZ/sch0dJDa8TOLlDSTXbyD11lvgOLhAJhClp3Y+e2afSVd4LoXP3Zo+g7knNrJgZTOzPlQ3pWbPuK5LdzzDe10JdnTHea8zwfauONu7E2zvStAdz4w655iGCCuOqWfVsQrDD5vjwLbHvdnkb/1+cDY5QKAKpp8I05dCy1KvrD9OgbmIiMgR4rquN+u+hCH50AC7EIhPpMI9B5IDWVID2WJgXthPDWS8ejxLsj/flsjCYXzJDNMgFMkH6hE/wXyw7u0PBu2F44W65dPfQiIiE03h+DhTOC5Hu4yd4ccbf8y9b9yL4zo0VDRw46ob+UjrR0o9NBmD67pkt28nsWGDF4hvWE92+w5yVoh4ZDoDkRkMVLaQqJ3LQGQ6Wdc/7Pzpx0ZZsLKZY0+eRiji38ezlJ7juOzpT7G9ywu+3+tKsKMrwXtdcbZ3JRhI7/8GZHMbCjPD61h5TD1NCsPH18Beb23yzQ9B++uQS47uE6iE5hMHw/KWQmCudUFFRESkNBzHJZ3IDobo/flQPT40VM+S7B9sy6bsw34+f9AaEpYPCdfHCNIL9UDImvKf5BQRKSWF4+NM4bgcbbJ2lm1929jSs4UtPVt4rO0xtsa2AvCZYz7DNadeQzQYLfEopcDN5Ui9tZnkhvUkNrzMwMsb6U9YxCtbGIi0EI94ZaqiYczzDdOgtjnMsSdPY8GKJqKNk+dmijnbYVdvKh94e6F3YTb49q4E6dy+byBmGDC9OsTs+ghzGsLMqoswpz7MrPows+sjVAaPnhuITnp2Djrfht0bYdcrsGvjAQLzE/Jh+UkKzEVERGTSs7NOcQZ6Kp4P0OODW3rYfu4DzVAHbxmZ4JDZ6MGwF5j7Qz4CQQt/yCIQ8uEPWfiDg/VAyMIf9BGosAgEfVj+yTFr3XVcsvkbIhe2XHr4/rAtYxMI+YYsdzNkiZuIf9K8LhGZvBSOjzOF4zJVua5Le7ydLb1beLvnbS8M793Cttg2cs7wWbd1oTquX3U9H5/18RKNVgqcZJLkq68RX7+enpc30bmth35fPQOVXhAeDzfhmmPP+I5EA9TPqKRuRiUNMyLUzaiktjmMz1+64DGVtdnZk/CWPulOFEPw7V1xdvYkyTn7/jXkMw1m1lYwuz7C7HzoPac+zOz6MDNrw4RK+LrkAIYF5hu9sv11yCZG9/VHRi/J0jBPgbmIiIhMWa7jkk7mRgXpg/vDj6Xzx3LZfU8OOVSmZXiheXBIeD4kYB8ZtheOF87xBUxyGYdsOrfvIHvklhoMuIcG4ePJH7JGrQlfCNFHrxvvvblgar14kbKicHycKRyXqaAv08c7Pe+wpScfhPdu4Z2ed+jP9o/Zv9Jfybzaecyrmcf82vmcM+ccakI1EzxqAcj19BB74WXaX9hMxzt76Y0ZDISnE4+0kPOPPcvbH7Soz4ff9S2V1M+IUD+jsmTLpORsh509SbZ1xtnaGWdb5wDbOr21wHfFkqNuhjlU0Gcyu35w5vfshgiz68LMqY/QUhPCN4XWQpcDcGwvMC+E5bs2Qvtr+w7Mm08YviRLw3wF5iIiInJUy2XsEUF6jnQiSyZlk03lyBQC6Hw9k/SC68LxbMoe14B9XBngD3iz3f2FgD44ZMsfswIW2VRuyFry3vrxqXgOdz8Ta/b5tAYEI4NheSgyZDZ61dC2QMlmpRsGWD4Ty28OKQ0sn6kldqYAx3bIZRxyWYdcxs7Xh5fF7/HQ77PPxPIbg/X8ZvoMfd8/IIXj40zhuEwmWTvL1thWtvRuKS6LsqV3C+3x9jH7+wwfc6JzmFfrheDzauYxr3Ye0yPTdbEtgVzOpvO17bS/sImOLR30dOXoM2pIh+rG7G/gEq3z0zC3lvoZVdTPrKS+JUJVfWjCv3+u67K3P83WjjjbhgTgWzvj7OhK7HcGeFXQx+yGMLPrCjPAC7PAI0yrCmomRzlzbOjcMnyG+e7XIBsf3dcfHlySZfoSqJkF1S1Q1QyByMSPXURERGQScmxnSGBuk0nn8oH6YD2TD9K9sH14vXBeLmvj848RYuc335B6oFj3jTpWCMJ9/g8W9A6djZ8cesPVQogez5LqH9IWz5JO7P8+RVOBaRkjQlVjdMDqG9lnePhqDtn3+QfPMcc4x+f3wtnhjzH5w3rXdXEdF9t2cXIOju1i51wc28Eu7jtjBtfeZg+G20ND7oyNnXXIFksHO2t7Zb6Pcxhv2hxI8fvqLwTmg983n39okD48ZPf5TMwRPxtLPz6r7JYjUjg+zhSOSym4rsvu+O5i+F1YFuW92Hvk3LF/wTdHmoszwefVeiH43Oq5+K3Je9PFo4ljOwzsidH33l763u+mf08/8e4k8f4siQQkc34ShHGNsWe+Vpgpaut9NBzXSOOCZhpmVlLbFJnwX2KxZHYw/O4ozAT3tkRm3x+JDPlN5tRHOKYxwtyGCHMbKpnb4M0Ar4sEJu0fUTIJOTZ0vTN6hnlmYN/nBKu9kLyqGaqmjyhbBo/5ghP3OkRERESkpGzbIR3PeTdd7c8Orh0/JFgfLDM4udJEZI7jBbd2zinZGA7WqOB8rLDeP+LYiKDdtAwvrLa91+uVzpAw28WxRwfbxTI38lyvPNx1/seTz29iBUz8AQvLb+ILeG8MuS75sXuvyc56rzOXc3CyRyZgL/jbOz6CL1Ben8A9lCxXdysTKRHHdYilY/Ske+hN9dKT7mFvYm9xNvg7ve8wkB07CKryVxXD78JM8ONqj6M6oDdvjgTXdUl39tC3bQ99O7vo39PHQFeCeCxLIuGSyFik3ArSVhiMoUG2D6ga3M1nw1YuSTUxamtNGo5rpHn5fBoXNE/okiiprM32rgTbOge88LtjMADvimf2eZ5lGrTWVgyG340RjmnwwvDm6pBmgMv4MC1oXOBtSy7y2hwbut4dDMv3vA59u6F/txeap/u8rfPt/T92Rd0Y4Xm+Xj3dKyPTwNKfSCIiIiJTnWWZhKsDhKsDpR7KQXNd1wt7CyFqfstlncH27NBjY7UNhq/D9/dzTnbEsX2E9U7OxcnZZBnfteSPBNPKz44fUg4NrH0BC1/AxOfPl8X2EW1D9/dznvUBPh3hOu5hfX+K7dnRPzOFvqavvGaNHyrNHD8ImjkuB+K6Lolcgp5Uj7ele+hN99KTGiyL9XwYHsvEcNz9rwXnM33Mjc4tBuDza+czv3Y+TeEmzcIdB65tk+vqYmDHXvp3dtK3O8ZAV5x4b4ZEPB96O0FSViU5X8VBPabh2ASzMUJugpCVJRxyiFRaRGpCVE2rJDpnGg0rT8CKjM8SEK7rks45JDM2iaxNMuNtiUyOZLZQt4kls7zX5YXfWzviB1wHvLk6xJyGVLTmmQAAFjNJREFUMHMbKovh99zGCK21YQL6xSqTTbof+tu9oHxfZd9usNMH+YAGVE7bxyz06RCKgr/CWxc9EB6s+6bOP7pERERERA6Gt1RJPmg9yADeyYf5o4P2fIhrO1jW4PIthaVjRpU+w+s3KuQecmw/j6HcpHxpWZV9uPvuu7nttttob29nyZIl3HnnnZx66qkHPE/hePnJ2JlhYfawcHto4D1k1nfWyR7Wc1UFqqgL1VETrKEuVMexNccWw/A51XO0JMoQruviZjI4iQT2QJxsf5xsf4JMX4JMf4rMQIpMPE0mkSGbzHpr56W9NcCyWYdsFnK2Qc42SDt+UmaEdDCKax7c19iy04ScASrMDBVBh0ilSaQmSGVDhKrpNVS31lM1uxmrugrDMHBdl6ztksrZpLMO6ZxNKmuTzDgkMjkSWZtUPrweXs+N2V4Mu7M5khmHZD4AP9xPX1WHfBzTODz8ntvgrQMeCWrWrBxlXBeSPQcI0dthoB2cw1yb0vR566L7w/nQ/FDqkXzIXqiP0Ufhu4iIiIiIyAFpWZUxPPDAA6xevZqf/OQnrFixgttvv51zzjmHzZs3M23atFIPTw6R7dgkc0mSuSSpXIpELjFsv1i3vXoimyjWR/XJ1xO5RLF+uEF3ha+CmmANNcEaakO13hasLe4X24O11IRqiAaj+A8ymC0V17ZxbRuyWdxcLr/ZkBu+7+aykN+3Mzly6SxOJpe/iYWNncnhZL0bW9hZ29tyTv7GMPkgO2OTzbjksi65XD7IdixyrkkOH7bhx7YC2FYQ2wqOWLvbACry2z5Y+W0MfjuO303hs7KYAQeCJnbET7qygkR1hL6aahJ+P6l8yJ3OOoOhd9IhtTlD+o33Sed2kM45pLI26Zyz39nZ4y1gmVQELMIBiwq/VayH/BbVIT+z68PMbSisCV5Jbdivd9KlfBgGhOu8rWnxvvs5DiQ69z8LPd0PmQRkk96NQwthupMbXN7liLwGE6yAt5m+wbrlH1EeqD6y/wHOMyzv61cKhuUts2P6Bsv9thXax2gzCsf06RcREREREfGUzczxFStWsHz5cu666y4AHMehtbWVK6+8kmuuuWa/55bzzPHXX3+dJ3/9e8DFdcHFwS3e4cD1/ucCOLj5Flx3sJ7v6+aPe8dcyD/WkEfx6sXj3rk2Do5rYzs5bHJe3c0Vzz2SDNciYIbwGSECZhC/GcJnBPGbQfxGAJ8RxGcE8BkB/EYQy/RjYhXDUNc18mXxy4XLPtq8LwmGC7gOuC6G43gdHAfD9TZc1ysdB1wHw3G9Mt82Vmk4tlcvnmMPHrNtr812cDBwMXEwcbFwjHxpWjiGD9f045i+wc0o1P24w/Z9I9bdPvIMJ4vhZMHJglv4ObGxscnhksMlY7hkDIO0YZAyDfp9Fnv8AXYHQ/RbJs4E5D5Bn0nInw+v8wG2V/dR4TcJB3wj2gfr3nm+IfXhIXiF38JnKfARKYlcBrIJb8skhtTj+QB9aD0+PFgf1n+MeiYO7uRfz3FqMcYOzIeG6obh9TOM4XUM73fcftvYT798+5htlO5NiJI6iK/PsK8nh/C9GNo2xnPJBDnY7/G+2vbXv3Bs5PMc7M/GITznmG1jnFu4yYyIiMhksfDT3t+/ZUQzx0fIZDJs2LCBa6+9tthmmiZnn302zz333Kj+6XSadHpwXdK+viM0A2wKeOvZV6HdW3pGf+oNcoBMfpt0CvnoZLnuuQ64NoZrewGPa4Nje29wuPk3P7CxccnhkAXShkvaLATZJknLJGlaxC2LActP3OcjZRpkDcgCbuEfRATy29j8loHPNPFbBgGfRchv0uAzmZGvB30WQb9JKF8WwuygL3+ssD/WMf+IPj7Te6x8PWAd/o05RGSS8wW8raLmyDx+LuMF6bkM2IUtO6I8QN05xP5Dy8NdZuaDct387wzHG4OTy+/nBtv2ub+/MbsH0UdERERE5ChxXTuYB3cftXJUFuF4Z2cntm3T1NQ0rL2pqYm33nprVP9bbrmFNWvWTNTwJrVofT29yfdGtY+O+A419DvY/iP75fddr35ko8b8rGwA8rO2C7PhD1TPz3wfrOcfZ1jdmxluuIUZ9l7dMU1cw8QxLVzD8OqG11bYvH0DN9/XxcgfM3AMEwwTJz/DxTEMwCw+llcaxXMo1E0D2/RKp7BZJo7llbZp4vgsb3yWgWsCpgH5c4r7lgEmuJZRPG4a3vfKyE/sMQwjXzfwWwZ+y/Q2n0HINKnK1wOFdqsQaI/Yt0z8vhH7xbbR5yucFpEpqRC+y6EZFZh7b84O38+N3Vb4SFf+b4HC7/XB8kBth3puvr0c7fNrcRBt8AG+PzIxRn7PDva/Cw7w38q+2tjPc+zvXMZxnCIiIpPMBH+6f6opi3D8UF177bWsXr26uN/X10dra2sJR1Q6n7zgT+CCUo9CRERE5BCZJph6U0FERERERPatLMLxhoYGLMtiz549w9r37NlDc3PzqP7BYJBgMDhRwxMRERERERERERGRCVYW8+oDgQDLli3jkUceKbY5jsMjjzzCqlWrSjgyERERERERERERESmFspg5DrB69Wouu+wyTjnlFE499VRuv/124vE4X/7yl0s9NBERERERERERERGZYGUTjl900UV0dHRw/fXX097eztKlS3n44YdH3aRTRERERERERERERI5+huvqltoH0tfXRzQaJRaLUV1dXerhiIiIiIiIiIiIiMgYDiXLLYs1x0VEREREREREREREhlI4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjouIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdX6kHMBW4rgtAX19fiUciIiIiIiIiIiIiIvtSyHALme7+KBw/CP39/QC0traWeCQiIiIiIiIiIiIiciD9/f1Eo9H99jHcg4nQy5zjOOzatYuqqioMwyj1cCZcX18fra2ttLW1UV1dXerhiIgckK5bIjLV6LolIlONrlsiMtXoulU+XNelv7+flpYWTHP/q4pr5vhBME2TmTNnlnoYJVddXa2Lh4hMKbpuichUo+uWiEw1um6JyFSj61Z5ONCM8QLdkFNEREREREREREREyo7CcREREREREREREREpO9aNN954Y6kHIZOfZVl89KMfxefTSjwiMjXouiUiU42uWyIy1ei6JSJTja5bMpJuyCkiIiIiIiIiIiIiZUfLqoiIiIiIiIiIiIhI2VE4LiIiIiIiIiIiIiJlR+G4iIiIiIiIiIiIiJQdheMiIiIiIiIiIiIiUnYUjst+3X333cyZM4dQKMSKFSt48cUXSz0kEZGiJ598ks9+9rO0tLRgGAb//u//Puy467pcf/31TJ8+nYqKCs4++2y2bNlSotGKSLm75ZZbWL58OVVVVUybNo1zzz2XzZs3D+uTSqW4/PLLqa+vp7KykvPPP589e/aUaMQiUu7uueceTjzxRKqrq6murmbVqlU89NBDxeO6ZonIZPeDH/wAwzC46qqrim26dslQCsdlnx544AFWr17NDTfcwMsvv8ySJUs455xz2Lt3b6mHJiICQDweZ8mSJdx9991jHv/hD3/IHXfcwU9+8hNeeOEFIpEI55xzDqlUaoJHKiICTzzxBJdffjnPP/88f/zjH8lms3zyk58kHo8X+3zjG9/gt7/9Lb/85S954okn2LVrF+edd14JRy0i5WzmzJn84Ac/YMOGDaxfv56zzjqLz33uc7zxxhuArlkiMrm99NJL/Mu//AsnnnjisHZdu2Qow3Vdt9SDkMlpxYoVLF++nLvuugsAx3FobW3lyiuv5Jprrinx6EREhjMMgwcffJBzzz0X8GaNt7S08M1vfpOrr74agFgsRlNTE2vXruUv/uIvSjlcERE6OjqYNm0aTzzxBGeeeSaxWIzGxkbuv/9+LrjgAgDeeustFi1axHPPPcfKlStLPGIREairq+O2227jggsu0DVLRCatgYEBTj75ZH784x9z0003sXTpUm6//Xb9vSWjaOa4jCmTybBhwwbOPvvsYptpmpx99tk899xzJRyZiMjB2bZtG+3t7cOuY9FolBUrVug6JiKTQiwWA7ygCWDDhg1ks9lh162FCxcya9YsXbdEpORs22bdunXE43FWrVqla5aITGqXX345n/70p4ddo0B/b8lovlIPQCanzs5ObNumqalpWHtTUxNvvfVWiUYlInLw2tvbAca8jhWOiYiUiuM4XHXVVZx++ukcf/zxgHfdCgQC1NTUDOur65aIlNLrr7/OqlWrSKVSVFZW8uCDD7J48WI2btyoa5aITErr1q3j5Zdf5qWXXhp1TH9vyUgKx0VEREREJtjll1/Of//3f/P000+XeigiIvu1YMECNm7cSCwW41e/+hWXXXYZTzzxRKmHJSIypra2Nr7+9a/zxz/+kVAoVOrhyBSgZVVkTA0NDViWNepuvXv27KG5ublEoxIROXiFa5WuYyIy2VxxxRX87ne/47HHHmPmzJnF9ubmZjKZDL29vcP667olIqUUCAQ47rjjWLZsGbfccgtLlizhn//5n3XNEpFJacOGDezdu5eTTz4Zn8+Hz+fjiSee4I477sDn89HU1KRrlwyjcFzGFAgEWLZsGY888kixzXEcHnnkEVatWlXCkYmIHJy5c+fS3Nw87DrW19fHCy+8oOuYiJSE67pcccUVPPjggzz66KPMnTt32PFly5bh9/uHXbc2b97Mjh07dN0SkUnDcRzS6bSuWSIyKX384x/n9ddfZ+PGjcXtlFNO4ZJLLinWde2SobSsiuzT6tWrueyyyzjllFM49dRTuf3224nH43z5y18u9dBERADvDuTvvPNOcX/btm1s3LiRuro6Zs2axVVXXcVNN93EvHnzmDt3Lt/97ndpaWnh3HPPLeGoRaRcXX755dx///385je/oaqqqriuZTQapaKigmg0yle+8hVWr15NXV0d1dXVXHnllaxatYqVK1eWePQiUo6uvfZa/uRP/oRZs2bR39/P/fffz+OPP84f/vAHXbNEZFKqqqoq3s+lIBKJUF9fX2zXtUuGUjgu+3TRRRfR0dHB9ddfT3t7O0uXLuXhhx8edXM7EZFSWb9+PR/72MeK+6tXrwbgsssuY+3atXz7298mHo/zN3/zN/T29nLGGWfw8MMPa+05ESmJe+65B4CPfvSjw9rvvfdevvSlLwHwox/9CNM0Of/880mn05xzzjn8+Mc/nuCRioh49u7dyxe/+EV2795NNBrlxBNP5A9/+AOf+MQnAF2zRGRq0rVLhjJc13VLPQgRERERERERERERkYmkNcdFREREREREREREpOwoHBcRERERERERERGRsqNwXERERERERERERETKjsJxERERERERERERESk7CsdFREREREREREREpOwoHBcRERERERERERGRsqNwXERERERERERERETKjsJxERERERERERERESk7CsdFRERERKaYxx9/HMMw6O3tLcnzP/LIIyxatAjbtg/Y9+GHH2bp0qU4jjMBIxMREREROXgKx0VEREREJhHDMPa73XjjjZx22mns3r2baDRakjF++9vf5jvf+Q6WZR2w76c+9Sn8fj/33XffBIxMREREROTgGa7ruqUehIiIiIiIeNrb24v1Bx54gOuvv57NmzcX2yorK6msrCzF0AB4+umn+cxnPkN7ezuhUOigzrn77rtZu3YtL7300hEenYiIiIjIwdPMcRERERGRSaS5ubm4RaNRDMMY1lZZWTlqWZW1a9dSU1PD7373OxYsWEA4HOaCCy4gkUjw05/+lDlz5lBbW8vf//3fD1sKJZ1Oc/XVVzNjxgwikQgrVqzg8ccf3+/41q1bxyc+8Ylhwfirr77Kxz72MaqqqqiurmbZsmWsX7++ePyzn/0s69ev59133x3fL5aIiIiIyAfgK/UARERERETkg0skEtxxxx2sW7eO/v5+zjvvPD7/+c9TU1PDf/zHf7B161bOP/98Tj/9dC666CIArrjiCt58803WrVtHS0sLDz74IJ/61Kd4/fXXmTdv3pjP89RTT3HxxRcPa7vkkks46aSTuOeee7Asi40bN+L3+4vHZ82aRVNTE0899RTHHnvskfsiiIiIiIgcAoXjIiIiIiJHgWw2yz333FMMny+44AJ+/vOfs2fPHiorK1m8eDEf+9jHeOyxx7jooovYsWMH9957Lzt27KClpQWAq6++mocffph7772Xf/iHfxjzebZv317sX7Bjxw6+9a1vsXDhQoAxg/WWlha2b98+ni9ZREREROQDUTguIiIiInIUCIfDw2ZlNzU1MWfOnGHrkzc1NbF3714AXn/9dWzbZv78+cMeJ51OU19fv8/nSSaTo9YaX716NX/913/Nz3/+c84++2wuvPDCUTPEKyoqSCQSh/36RERERETGm8JxEREREZGjwNBlTAAMwxizzXEcAAYGBrAsiw0bNmBZ1rB++7vhZ0NDAz09PcPabrzxRi6++GJ+//vf89BDD3HDDTewbt06Pv/5zxf7dHd309jYeFivTURERETkSFA4LiIiIiJShk466SRs22bv3r18+MMfPqTz3nzzzVHt8+fPZ/78+XzjG9/gC1/4Avfee28xHE+lUrz77rucdNJJ4zZ+EREREZEPyiz1AEREREREZOLNnz+fSy65hC9+8Yv827/9G9u2bePFF1/klltu4fe///0+zzvnnHN4+umni/vJZJIrrriCxx9/nO3bt/PMM8/w0ksvsWjRomKf559/nmAwyKpVq47oaxIRERERORQKx0VEREREytS9997LF7/4Rb75zW+yYMECzj33XF76/9u7exsHgSAAo3MicxFGJKYWGiBZiS6IiNyEJVfgYkxKQEYBOHEDXObsfL7g/rTvxbvSbPpppL1eY7/ff3gnpRTTNMU8zxERURRF3G636LouDodDtG0bTdPE8Xh83LlcLpFSit1u9+1vAgCAV71t27b99hAAAMD/0fd93O/3OJ/Pn55d1zXquo5xHKOqqh+YDgAAXmNzHAAA+JJhGKIsy8fnns8syxKn00kYBwDgz7E5DgAAAABAdmyOAwAAAACQHXEcAAAAAIDsiOMAAAAAAGRHHAcAAAAAIDviOAAAAAAA2RHHAQAAAADIjjgOAAAAAEB2xHEAAAAAALIjjgMAAAAAkJ13aWtuKzyK8ksAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3RU1drH8e+k94RQEoKUIBDBiwZCV4qCBkEuoMClSBEErxqKghVRmiAqiqiXokiRIqCCKEUQQZAmwgWRTgzdAFISAklI2e8feefcDCkkCA6Q32ets5g5++x9nlMmS5/Z8xybMcYgIiIiIiIiIiIiIlKEuDg7ABERERERERERERGRv5uS4yIiIiIiIiIiIiJS5Cg5LiIiIiIiIiIiIiJFjpLjIiIiIiIiIiIiIlLkKDkuIiIiIiIiIiIiIkWOkuMiIiIiIiIiIiIiUuQoOS4iIiIiIiIiIiIiRY6S4yIiIiIiIiIiIiJS5Cg5LiIiIiIiIiIiIiJFjpLjIiIiInLdDR06FJvNRpMmTZwdyi1t2bJl2Gw2vLy8rum4e/bswWazYbPZiI+P/9v7y41t4sSJ2Gw27rjjDmeHIiIiIlIoSo6LiIiIZGNP4hZ0kVtXcnIygYGB2Gw2YmJiCtxv7dq11v3x1VdfXccIxS41NZXJkycTHR1NWFgYnp6eBAYGUqVKFe6//34GDx7Md999R2pqaq79ExMTeffdd7nvvvsoVaoUHh4eBAcHU7VqVZo3b86IESNYvXo1mZmZV4zlvffes65/06ZNC30s586dY9y4cbRs2ZJy5crh4+ODt7c3ZcuWpWXLlrz//vucPHkyz/5LliyhY8eO3H777fj4+ODj40N4eDj169cnJiaGuXPncvr06ULHJSIiInIrcnN2ACIiIiI3qpCQEGeHIE7k7e1Np06dmDRpErNnz2bs2LF4enpesd+nn34KQMmSJWnVqtX1DtOBn58fERERBYrzVhEXF0eLFi3Ys2ePtc7DwwNXV1diY2PZv38/q1atYtSoUWzYsIF69eo59N+yZQv//Oc/OX78uLXO29ubzMxM9u7dy549e/juu+8A+OOPPwgNDc03nilTplivV61aRVxcHOHh4QU6lgkTJvDyyy+TkJBgrfPx8cHDw4OjR49y9OhRlixZwssvv8ywYcN4/vnnre2Sk5Pp1KkTX3/9tbXOxcWFoKAgjh07xsGDB9m4cSMfffQRo0eP5qWXXipQTCIiIiK3Ms0cFxEREclDfHz8FRe5tfXq1QuAs2fPsnDhwitun5SUxPz58wHo2rUr7u7u1zW+y917773s2bOH7du3/637dZa0tDRatWrFnj178PPzY9SoURw9epSUlBTOnDnDhQsX2LBhA0OGDMk1QX327FlatmzJ8ePHCQkJ4cMPP+TUqVNcvHiRc+fOkZiYyKpVqxg4cGCBvizbtGkTO3fuJCQkhA4dOmCMYerUqQU6loEDB/L000+TkJBA9erVmTlzJqdOneLChQucO3eOCxcusGTJEjp16kRqaipffvmlQ//+/ftbifE+ffqwY8cOLl26xOnTp0lJSWHXrl28//771KtXT796EREREfl/So6LiIiIiOShdu3aVK9eHfjfjPD8zJs3jwsXLgD/S6zL9bNs2TJ27twJwGeffcbLL79MmTJlrOSvl5cX9erVY/jw4Rw4cIAaNWo49J85cyYnTpywxnrmmWcoUaKE1e7n50eTJk145513OHLkCCVLlsw3Hvus8U6dOtGzZ08Apk2bdsVyLNOnT+fdd98F4LHHHmPLli106dLFIRYfHx8eeughZs+ezS+//EJERITVdubMGSsJ379/fyZNmsQ//vEPXF1dgawZ5FWrVqVfv35s2LCBfv365RuPiIiISFGh5LiIiIjINfLUU09hs9kICgri4MGDuW4zYcIEbDYbbm5urFmzxqHtt99+Y+jQodx///3cfvvteHt7ExAQQI0aNXj11Vf5888/89x3hQoVsNlsTJs2jYsXLzJ06FCqVq2Kj48PYWFhdO3albi4OGv7P//8kxdffJEqVarg7e1NaGgoTzzxhJUovNzlD9ScN28ejRs3Jjg4GF9fX6Kiovjwww/JyMgo3EnL5tSpU7z66qvUqFGDwMBAvLy8qFixIr169bISoM5gT3J///33HDlyJN9t7Qn0evXqUa1aNYe2AwcOMHr0aKKjo6lcuTK+vr74+flx55138txzz3H06NE8x7XP9n3zzTdJTU1lzJgx1KxZ06qJvnHjRiD/B3JmZmayYsUKYmJiqFu3LmXKlMHDw4MSJUpw33338fHHH5Oenl6gc7J79266du1KmTJl8PT0pHz58jzzzDN/6dcUGRkZTJ8+nebNm1t1v0uWLEnz5s2ZN28expgcfbZt2waAzWa7YgkbFxeXHOVm7P3LlStHZGRkvv3d3d2tZHNuLly4wOeffw5A9+7dadasGWFhYRw5coQVK1bk2S8lJYUXX3wRgMjISKZMmXLFXxzUqFHDYUb6zp07rWvXunXrfPtCVtmYvKxYsYJHHnmE0qVLW/fHAw88wGeffVagmuvZRUREYLPZeOWVV/LdbsmSJdbfxdzuodjYWPr27UvVqlXx8/PDx8eHqlWr5vu5ufwhocuXL6dVq1aEhobi6urKv//970Idi4iIiNyijIiIiIhYXn/9dQOYq/nPpIsXL5o777zTAKZ+/fomLS3NoX3Hjh3Gy8vLAOa1117L0b98+fLWvr28vExwcLCx2WzWujJlypg9e/bkum9733Hjxpnq1atbY3h7e1v9S5cubeLi4kxsbKwJDw83gPHx8TEeHh7WNpUrVzYJCQl5npfGjRubF154wQDGZrOZYsWKGRcXF6t/dHS0SUlJybd/blasWGGCgoKscdzd3Y2vr6/13sPDw0yfPr0AV+Ha+/PPP61zNGLEiDy327dvnxXv5MmTc7TXrVvX4XiCg4Mdzl1wcLDZtGlTrmPb+w4ZMsTUrl3bAMbNzc06Zxs2bDDGGLN06VIDGE9Pzxxj7N6929oXYPz9/U1AQIDDuvvvvz/X65e97/z5861r4+/vb93TgClZsqT59ddf8+3/xx9/5Gg/efKkqV+/vkMsgYGBDu/btWuX4zM1fPhwq/3w4cO5X5h89OzZ0wDG29vbpKamFrp/dlOnTjWAqV69urXO/llp3759nv1mzJjhcG6vxpo1a6wxZsyYcVVjZGZmmqefftoax/75dnV1dfh8JyUl5eg7YcIEA5iIiAiH9SNGjDCAKVeunMnMzMxz3x07djSAad68eY62KVOmGHd3d4e/jdnvuaCgILNq1ap8YxozZozD9u7u7ubJJ58s/EkSERGRW46S4yIiIiLZ/JXkuDFZCXB7QvqVV16x1mdPnN9zzz0mPT09R99u3bqZadOmmUOHDlnrUlNTzffff2/q1KljAFOzZs1c92tPjgcFBZkKFSqY5cuXm4yMDJOenm6WL19uSpYsaQDToUMHU6dOHRMZGWklVC9dumTmzp1rfHx8DGAGDx6c53mxJyxjYmLMyZMnjTHGJCQkmBEjRliJ/GeffTbP/rklx3/99VfrnPXu3dvs2rXLOj+HDh2yEnZubm5m8+bN+Zz966dDhw4GMLfffnueSb6XXnrJAMbX19ckJibmaH/mmWfMxIkTzYEDB6wx0tLSzPr1603Tpk0NYMqXL59rktaeHPfz8zOBgYHms88+M8nJycaYrMTy2bNnjTH5J8cPHDhgunXrZhYvXmzOnDljrU9ISDCffPKJCQkJMYB5+eWXc/TNntwODAw0NWvWNL/88osxxpiMjAyzZMkSExYWZp2jCxcu5Nn/8uR4WlqalRivVauWWbp0qbl48aIxxpjz58+bTz75xJQoUcIA5qWXXnLou2zZMofEbW6J9/xMnDjR6t+9e3frPF6Ne++91wDm7bffttbt3LnT+jLkzz//zLVf9+7drS+E7MddWAkJCcbT09MApkKFCmbr1q2FHuPtt9+2zkVMTIw5ceKEMSbrGrz11ltWkrx79+45+uaVHD948KD1dyG3BLYxxiQmJlqf/9mzZzu0ffPNN8ZmsxkPDw8zePBgc+jQIZOZmWkyMjLMzp07TZs2bQxgihUrZo4fP55rTD4+PsbFxcX07t3bHD161BiTdc/FxsYW+hyJiIjIrUfJcREREZFssifHQ0JC8l369euX6xj2pIyLi4v54YcfjDHGPPnkk1byOnvyu6DOnz9vJS/Xrl2bo92eHPf29jb79+/P0T5lyhSH48otUTdkyBAruXm57Oela9euucb46quvWknsY8eO5do/t+T4/fffn2dS1q5fv34GMK1bt85zm+vpu+++s44/tyRfenq6lRzu0aNHocdPS0szd9xxR56zh7PPOl++fHme4+SXHL+StWvXWsnvy2doZ09uh4SEmNOnT+fov23bNuPm5mYAM378+Dz7X57Anjx5sgHMXXfdZc6fP59rbOvXr7fu7+yJ/czMTNOoUSNrbDc3N3PPPfeY5557zsyaNcscOHAg32O+cOGCiYiIsPp7enqapk2bmpdeesnMnz/fSqZeyZ49ewxgXF1dcyRpo6KiDGT9qiM3tWrVyjHj/GrYP7/25c477zS9e/c2EydONFu3bs31Czm7xMRE61cEjz/+eK7bvPXWW9bYO3bscGjLKzlujDGNGzfOd9xPP/3U+hVC9i8H0tLSrL9ref1qJDMz00RHRxvAvPjii7nGBJjOnTvneewiIiJStCk5LiIiIpJN9iTwlZbcZlDaPfLIIwYwYWFhZtKkSX+5bIIx/5u9PHr06Bxt9iTSY489lmvfo0ePWjEMGTIk121++ukna5vLSydkPy+5Jd+NyZq9ap8BenlyNK/keFxcnJXUzC3havfLL79Ys7LzS/JdLxkZGaZcuXIGMN26dcvRvnjxYuv8rFmz5qr2Yf8CoH///jna7MnxqKiofMf4K8lxY4z1y4D//ve/DuuzJ7fzKy1jv+8bNGiQZ//Lk+P2Y5s0aVK+sVWqVMkAZuHChQ7rExMTTe/eva3E/OVLeHi4GTFiRJ6J9/j4ePPII484lDC6PMn8wQcf5Ft2xV4+JbeyIOPHj883+W0vcZRXyaGCyszMNO+8845DeaLsS1BQkHnyySfNwYMHc/SdO3eugaxSKrm1G5P1Kxb7DP7sv4oxJv/k+CeffGIAExAQkOvM+Pvuuy/X5Ln9Xi5Tpky+JVlmzpxpABMZGZlrTLkl80VERETs9EBOERERkTyYrIkEeS7Tpk3Ls+8nn3xCuXLlOH78OE8++SQATzzxBO3atct3n99++y3/+te/qFixIr6+vthsNmuZN28eQL4PbqxTp06u60NCQqzXtWvXvuI2586dy3WbsmXLUqlSpVzbAgICiIqKAuCXX37JM8bs1q1bB2Q9LLJatWqEhobmujRv3hzIeujh6dOnCzT2teTi4kKPHj0A+OKLLzh//rxDu/1BnFWqVKFhw4Z5jrN69Wq6du1KREQEfn5+Dtd3/PjxQP7X95577vlLx5GSksJHH33EAw88QOnSpfH09HSIISEh4Yox3H///Vds27JlS64P0Mwtni1btgDw8ssv53n9Q0NDOXToEID1r52/vz+TJ0/myJEjTJgwgS5dunDHHXfg4pL1vzpxcXEMGTKEmjVr5ugLWff9l19+SWxsLO+++y7t2rWjYsWK2Gw2IOthl3379qVhw4a5fi7S09OZMWMGAN26dcvR3qlTJ9zd3dmxYwebN2++4jm5WjabjYEDB3Ls2DHmzZvHU089Ra1atayHs547d45JkyZRvXp1li9f7tDX/nmtVKkS5cuXz3V8Dw8PGjdu7LB9QbRv3x5vb28SExP5+uuvHdqOHDnC6tWrgZznzv634dSpU5QuXTrP+6Jv375AzvvCLjAwkH/84x8FjldERESKFiXHRURERK6DYsWK8dFHH1nvK1asyPvvv5/n9pmZmXTu3JlWrVoxb9484uLiuHTpEsWKFSMkJISQkBAryXXhwoU8x/H39891vZubW6G2SUtLy3WbMmXK5Lnv7O0nT57Mdzu748ePA1nHf+LEiTyXP//80+pz8eLFAo29fv36PBNqc+fOLdAY2T3++OPYbDYuXrzI559/bq3/888/+eabbwDo2bNnnv379+/Pfffdx8yZM9m3bx8pKSkO19fX1xfI//qWKlWq0HHb/fHHH9SoUYOYmBi+//574uPjcXV1pUSJElYM9oRyfjHkdw/Y21JTU0lMTLxiTKdOnSI9PR2AM2fO5HsP2O/JvK5/aGgo//73v5k5cya7d+/m3LlzfPXVV9SrVw+A/fv389hjj+UZS3h4OM8++yzz588nNjaWU6dOMWPGDKpWrQrAzz//TExMTI5+S5YsIT4+noCAANq0aZOjvUSJErRs2RL435co2RUvXtw6/mvBx8eH9u3b85///IfNmzeTmJjImjVr6Ny5MwDnz5+nQ4cODl8y2T+vV/p833bbbQ7bF0RAQACtW7cG4LPPPnNomzVrFsYYypcvbyXe7ex/Gy5dupTvfXH27Fkg7/uiZMmSBY5VREREih4lx0VERESuk48//th6fezYMQ4cOJDntlOmTGHOnDm4urry2muvsX//flJTUzlz5gzx8fHEx8dbs84LMiP3ZpGRkQFkzd690kx9+1KhQoUCjZ1fUi05ObnQsVaoUIGmTZsCMHXqVGv9rFmzuHTpEq6urrnOHAb45ptvrJnh/fv3Z+fOnTmu71NPPQXkf31dXV0LHbddTEwMe/bsoVSpUsyYMYMTJ05w8eJFTp06ZcUQHBx8xRiuJfv1B1i1alWBrv9LL71UoLH9/f1p27YtP/30Ew0aNADgp59+Ys+ePQXqX7x4cbp27cqmTZu4/fbbAZg7d26OXw1MmTIFgMTERHx8fBxm4tuXhQsXAjBnzpwc996dd94JwJ49e0hJSSlQbIXh7u5Ow4YNmTVrFi+88AIACQkJzJ8//5rvKy/2z8Xy5cs5ceKEtd6eLO/SpYs1U9/Ofm80bty4QPdFXufur3xmRERE5Nan5LiIiIjIdfDhhx+yaNEiXF1dqVatGqmpqXTs2DHP2Y32mchPPPEEw4YNo1KlStYsXrv4+PjrHveVHDt2rEDtBZ3hHBoaCmTNvs5vtvLVaNKkSZ6JNHuJlMLq1asXABs2bLCSrPZEeYsWLShdunSu/ezXt3Xr1owbN45q1arlSNpdz+t78eJFa3b7pEmT6Nq1a45rlJqammc5nezyuwfsbZ6engQEBFxxrFKlSllJ0bzKYvxVrq6u1nUD2Lt3b6H6+/v7W7Ou09PT+f333622+Ph4lixZUuCxEhIS+OKLLxzW2b9wSUtL49tvvy1UbIVlL/EEjufBfi/kV04ne3thf8Hw4IMPEhISQnp6OnPmzAFg69at7Nq1C8i9HI39b8P1ui9EREREQMlxERERkWtux44dPP/88wC89tprLFmyhKCgIHbv3s2zzz6ba58jR44AUKNGjVzbk5KS2LRp0/UJuBCOHDlCbGxsrm3nz5+36kfXqlWrQOPZa2hnZGSwdOnSaxPkddS2bVtrdvWnn37Kli1b2L59O4BDAvZyV7q+GRkZVu3l6yE+Pt4qS5JXDKtXr7ZKnORn1apVV2yLiorKMRM4Nz4+PlY89uT99eDn52e99vT0vGb9p0+fTnp6Orfddhvnz5/Pd7Enpi8vrdKuXTur3v8bb7yRZ0mjy2VmZl6z47B/XmNjY/NMRqelpfHjjz8CeT+3IC+urq7WFwz22eL2f+vUqUNERESOPva/DQcPHuS3334r1P5ERERECkrJcREREZFrKDk5mY4dO5KSksK9997L4MGDKV++PJMnTwZg8uTJfPnllzn6BQYGAliJ1suNGDEiRzkHZxkxYkSu68eOHUtycjJubm48+uijBRqrcuXKNGnSBIDBgwdbD4TMy7Wqy3y1PD096dKlC5CV3LOXzgkJCbHqSufmStd3/PjxV5y1+1fY959XDJcuXWLIkCEFGuvDDz+06jxnt2PHDuuBi//6178KHFufPn0AWLBgAd9//32+215+/bdv337FGffGGOuBmS4uLkRGRlptGzduvOI9l5aWZs12DgwMpGLFilabPdHdrl07/Pz88l06duwIwI8//ujwBZO3tzejR48GYNu2bfTs2fOKCfJff/3Vob59fHx8nvdWdtOnT7de16xZ03rdokULAgICMMYwbNiwXPt+8MEHVu1/+7EUhn12+NatW/n111+tc5pXKaLo6GjKlSsHwIABA674xY2z/zaIiIjIzUnJcREREZFr6Nlnn2XXrl0EBQUxa9Ysq3RG+/btrZnFvXv3tmYS2zVv3hzIqlM+efJkLl26BGQlvZ599lneeust68F9zhQYGMj06dPp37+/lSg7f/48o0aNYvjw4QA888wzhIWFFXjMDz74AD8/P/bt20e9evX4+uuvHeoHHzt2jM8++4ymTZvy4osvXtsDugr26xgfH28lx7t16+bwQNPL2a/vggULGDNmjFVe58yZMwwbNoxBgwZd1+tbvHhxa3Zwv379WLNmjVVXfNu2bURHR7Nz5068vb2vOFZycjIPPvgg//3vf4GsGczLli2jRYsWpKenU7FixXxn0V+uZ8+eNGrUiMzMTFq1asWbb77pkPBOSkpi5cqVPPnkk9bDMe1WrFhBhQoV6NSpE1999ZVDv5SUFH788UdatmzJ4sWLAejcubNVrgNg5syZlCtXjt69e7NkyRKHBOuFCxf49ttvadSoEdu2bQOgb9++eHh4ALB27Vr27dsHQIcOHa54nI0aNbJq618+e/zxxx+nX79+VkxRUVHMnj3b4aGZycnJrFixgm7dulGzZk2H2ulHjx4lMjKS+++/n48//pj9+/db1zc9PZ1du3bRt29fq157pUqV+Oc//2n19/Pzs74cmTp1Kn379uXUqVPWeRg7dqxVr7x79+784x//uOLxXi4yMtLq16tXL06cOIG7u3ueiXYPDw8mTpyIi4sLK1eu5L777svx64YDBw7w0UcfUbNmzVwfdioiIiJyRUZERERELK+//roBDGBCQkKuuKxbt87q++WXX1p958+fn2PsCxcumDvuuMMApmHDhiY9Pd1qO3v2rNUGGBcXFxMUFGRsNpsBzJNPPmm6d+9uANO9e/ccY5cvX94AZurUqXkem33sVatW5doeFxdnbRMXF5freWncuLF54YUXDGBsNpspVqyYcXV1tfo1a9bMJCcn53leGzdunOu+f/rpJxMaGmqN4+rqaooXL268vb2tdYB54okn8jy+v1NUVJRDXLt37853+5SUFFO3bl1re/u5s1/ftm3bmueff94AJjo6Okd/e9/Ro0fnu5+lS5cawHh6euZoW79+vcP59PLyMn5+fgYw7u7uZu7cuSYkJMQAZs6cOQ59d+/e7XBv+/r6GsD4+/s7jFm8eHGzbdu2HPvO3v+PP/7I0X7mzBkTHR3tcE4DAwNNYGCgdY4A4+fn59Bv3LhxDn0A4+3tbYoVK5ZjfcuWLU1SUpJD/wEDBuTYztfX1wQEBORY36tXL5OWlmb1tX8ey5YtazIzM/O9LnZPP/20AUyZMmUcPv9248ePz7FvX19fExgY6LDOz8/PjBs3zur33//+N0e87u7uJjg42Li4uDisr1Klitm3b1+OfWdmZlrx5fX5fvDBB3OcQ2OMmTBhggFMREREvsf/1ltvOcTSunXrK56zuXPnWveb/biKFy9uPDw8HMZ65513riomERERKdo0c1xEREQkDydOnLjiYp/hfeTIEZ544gkga1Zku3btcozn4+PDnDlz8PT0ZO3atYwcOdJqCwoKYv369QwYMIAKFSrg6uqKm5sbTZo0Yc6cOUycOPHvOegCGDNmDJ9//jn33nsvxhg8PDyIjIzk/fffZ9myZXh5eRV6zHvuuYd9+/bxzjvv0KhRI4KCgjh37hyurq5UrVqVxx57jFmzZjFu3LjrcESFl31mdIMGDbjjjjvy3d7T05MffviBwYMHU6lSJWuWeYMGDfj444/58ssvczyA9VqrX78+mzZt4tFHH6V48eJkZGQQGBhIp06d2LhxY4FmPwPce++9bN68mS5duuDv709GRgZly5blqaeeYseOHdx9992Fjq1YsWIsXbqUb775hnbt2lG2bFlSUlJISUnhtttuo3nz5owZM4YdO3Y49Ovfvz9bt25l9OjRtGrVikqVKmGz2UhMTCQgIIA777yTHj168N133/Htt9/i6+vr0H/s2LGsW7eO119/nejoaMqXL09GRgYXLlwgKCiIGjVq8PTTT7Nx40Y++eQT67qdP3+e+fPnA1klVQpSXx3+N8P82LFjfPfddzna+/bty8GDBxk7dizNmzfntttuIzMz0zoPLVu25MMPP+TQoUP079/f6hcZGcnhw4eZMGECnTt3pnr16nh7e5OQkICXlxfh4eG0adOGqVOnsmPHDipXrpxj3zabjY8++ojvvvuONm3aUKpUKZKSkggMDKRp06ZMnz6dpUuX5jiHhdGlSxeHB9HmVVIluw4dOnDgwAGGDBlCrVq18PX15dy5c3h7exMZGcmTTz7JokWLrJn3IiIiIoVhM+b/f28nIiIiIpKHoUOHMmzYMBo3bnxdHxwpIiIiIiLyd9HMcREREREREREREREpcpQcFxEREREREREREZEiR8lxERERERERERERESlylBwXERERERERERERkSJHD+QUERERERERERERkSJHM8dFREREREREREREpMhxc3YAN4PMzEyOHz+Ov78/NpvN2eGIiIiIiIiIiIiISC6MMZw/f56wsDBcXPKfG67keAEcP36csmXLOjsMERERERERERERESmAI0eOcNttt+W7jZLjBeDv7w9kndCAgAAnRyMiIiIiIiIiIiIiuUlMTKRs2bJWTjc/So4XgL2USkBAgJLjIiIiIiIiIiIiIje4gpTH1gM5RURERERERERERKTIUXJcRERERERERERERIocJcdFREREREREREREpMhRzXERERERERERERG5IWRkZJCWlubsMOQG5+7ujqur618eR8lxERERERERERERcbqkpCSOHj2KMcbZocgNzmazcc0Y4qIAACAASURBVNttt+Hn5/eXxlFyXERERERERERERJwqIyODo0eP4uPjQ8mSJbHZbM4OSW5QxhhOnTrF0aNHqVy58l+aQa7kuIiIiIiIiIiIiDhVWloaxhhKliyJt7e3s8ORG1zJkiU5ePAgaWlpfyk5rgdyioiIiIiIiIiIyA1BM8alIK7VfaLkuIiIiIiIiIiIiIgUOUqOi4iIiIiIiIiIiEiRo+S4iIiIiIiIiIiIyDXUpEkTBgwYcNPv41an5LiIiIiIiIiIiIiIFDlKjouIiIiIiIiIiIhIkaPkuIiIiIiIiIiIiNxQjDFcvJTulMUYU6hYL1y4QLdu3fDz86N06dKMHTvWoT01NZVBgwZRpkwZfH19qVu3LqtXr7baT58+TadOnShTpgw+Pj5Ur16dOXPmFGofcnXcnB2AiIiIiIiIiIiISHbJaRlUe+07p+x71/BofDwKnjZ9/vnn+fHHH/n6668pVaoUr7zyClu3biUyMhKAmJgYdu3axeeff05YWBgLFiygefPm7Nixg8qVK5OSkkJUVBQvvvgiAQEBLF68mK5du3L77bdTp06dAu1Dro6S4yIiIiIiIiIiIiJXISkpiSlTpjBz5kyaNm0KwPTp07ntttsAOHz4MFOnTuXw4cOEhYUBMGjQIJYtW8bUqVMZNWoUZcqUYdCgQdaYffv25bvvvmPevHnUqVPnivuQq6fkuIiIiIiIiIiIiNxQvN1d2TU82mn7LqjY2FguXbpE3bp1rXXBwcFEREQAsGPHDjIyMqhSpYpDv9TUVIoXLw5ARkYGo0aNYt68eRw7doxLly6RmpqKj49PgfYhV0/JcREREREREREREbmh2Gy2QpU2uVElJSXh6urKli1bcHV1TLr7+fkB8Pbbb/P+++8zbtw4qlevjq+vLwMGDODSpUvOCLlI0QM5RURERERERERERK7C7bffjru7O5s2bbLWnT17ln379gFQo0YNMjIyOHnyJJUqVXJYQkNDAVi3bh2tW7fmscce4+6776ZixYpW/4LsQ67ezf/1i4iIiIiIiIiIiIgT+Pn50atXL55//nmKFy9OqVKlGDx4MC4uWXOSq1SpQpcuXejWrRtjx46lRo0anDp1ipUrV3LXXXfRsmVLKleuzBdffMH69espVqwY7777LidOnKBatWoF2odcPSXHRURERERERERERK7S22+/TVJSEq1atcLf35+BAweSkJBgtU+dOpWRI0cycOBAjh07RokSJahXrx4PP/wwAK+++iq///470dHR+Pj40KdPH9q0aeMwxpX2IVfHZowxzg7iRpeYmEhgYCAJCQkEBAQ4OxwREREREREREZFbSkpKCnFxcYSHh+Pl5eXscOQGl9/9Uphcrubei4iIiIiIiIiIiEiRo+S4iIiIiIiIiIiIiBQ5So6LiIiIiIiIiIiISJGj5LiIiIiIiIiIiIiIFDlKjouIiIiIiIiIiIhIkaPkuIiIiIiIiIiIiIgUOU5Pjh87dozHHnuM4sWL4+3tTfXq1fnll1+sdmMMr732GqVLl8bb25tmzZqxf/9+hzHOnDlDly5dCAgIICgoiF69epGUlOSwza+//krDhg3x8vKibNmyvPXWW3/L8YmIiIiIiIiIiIjIjcepyfGzZ89yzz334O7uztKlS9m1axdjx46lWLFi1jZvvfUW48ePZ+LEiWzatAlfX1+io6NJSUmxtunSpQs7d+5kxYoVfPvtt6xZs4Y+ffpY7YmJiTz44IOUL1+eLVu28PbbbzN06FAmT578tx6viIiIiIiIiIiIiNwYbMYY46ydv/TSS6xbt461a9fm2m6MISwsjIEDBzJo0CAAEhISCAkJYdq0aXTs2JHdu3dTrVo1Nm/eTK1atQBYtmwZLVq04OjRo4SFhTFhwgQGDx5MfHw8Hh4e1r4XLlzInj17rhhnYmIigYGBJCQkEBAQcI2O/iZx8QzErQEXV7C5ZvvX5bL3+a13yWW7K6y32Zx95CIiIiIiIiIi8jdJSUkhLi6O8PBwvLy8nB2O3ODyu18Kk8t1u55BXsmiRYuIjo6mffv2/Pjjj5QpU4ann36a3r17AxAXF0d8fDzNmjWz+gQGBlK3bl02bNhAx44d2bBhA0FBQVZiHKBZs2a4uLiwadMm2rZty4YNG2jUqJGVGAeIjo5mzJgxnD171mGmOkBqaiqpqanW+8TExOt1Cm58f+6D+d2dsGNbVqLczQs8fP+3uGd77eGXx+vLl8u2c3V3wvGIiIiIiIiIiMitpkmTJkRGRjJu3Ljrto8KFSowYMAABgwYkOc2Q4cOZeHChWzbtu26xXErcmpy/Pfff2fChAk899xzvPLKK2zevJl+/frh4eFB9+7diY+PByAkJMShX0hIiNUWHx9PqVKlHNrd3NwIDg522CY8PDzHGPa2y5Pjo0ePZtiwYdfuQG9mHn5QrgGYDMjMyPZv5mXvMyAzM5ft8ljPlX6wYCAzHS4lZS3Xkot7Hgn1bO+9gyD4dih+OxSvBH4hms0uIiIiIiIiIiJOZ7PZWLBgAW3atHF2KDc9pybHMzMzqVWrFqNGjQKgRo0a/Pbbb0ycOJHu3Z0xWznLyy+/zHPPPWe9T0xMpGzZsk6Lx6lC/wE9l177cY3JJYmeS9I9IxUuXchlScr9fdrFvNsyLmXtOzMNUs5lLQXl4QfBFbMS5faEuT157hN87c+PiIiIiIiIiIiIXFdOTY6XLl2aatWqOayrWrUqX375JQChoaEAnDhxgtKlS1vbnDhxgsjISGubkydPOoyRnp7OmTNnrP6hoaGcOHHCYRv7e/s22Xl6euLp6flXDk2uxGYDVzf+1lswIy2fBHu212kXIOkUnImF0wfg3OGs9vhfs5bLeRf7/6R5toR58duzXnv6/X3HJyIiIiIiIiJyqzAmaxKkM7j7FKqCQGZmJi+88AKffPIJHh4e/Pvf/2bo0KEAnDt3jkGDBvH111+TmppKrVq1eO+997j77rsBiI2N5bnnnmPjxo1cuHCBqlWrMnr0aIcy09lVqFABgLZt2wJQvnx5Dh48aLV/9tlnDBkyhLNnz/LQQw/x8ccf4+/vz4wZM3j22Wc5fvy4Q96zTZs2+Pv789lnnxXiBN06nJocv+eee9i7d6/Dun379lG+fHkAwsPDCQ0NZeXKlVYyPDExkU2bNvHUU08BUL9+fc6dO8eWLVuIiooC4IcffiAzM5O6deta2wwePJi0tDTc3bPqTa9YsYKIiIgcJVXkFubqnlUuxTuocP3SU+HsoaxEuT1hfjo2azl/HJLPwtHNWcvl/Es7JsztCfTgcHDTFzAiIiIiIiIiIrlKuwijwpyz71eOZ5XdLaDp06fz3HPPsWnTJjZs2ECPHj245557eOCBB2jfvj3e3t4sXbqUwMBAJk2aRNOmTdm3bx/BwcEkJSXRokUL3njjDTw9PZkxYwatWrVi7969lCtXLse+Nm/eTKlSpZg6dSrNmzfH1dXVaouNjWXhwoV8++23nD17lg4dOvDmm2/yxhtv0L59e/r168eiRYto3749ACdPnmTx4sUsX778r5+zm5RTk+PPPvssDRo0YNSoUXTo0IGff/6ZyZMnM3nyZCCrfs6AAQMYOXIklStXJjw8nCFDhhAWFmbV1KlatSrNmzend+/eTJw4kbS0NGJiYujYsSNhYVkfoM6dOzNs2DB69erFiy++yG+//cb777/Pe++957Rjl5uImyeUrJK1XO7SBTjzu2PC3J5Av3gazv+RtRz6ybGfzQUCy15WoqUSlIyAoCJawkdERERERERE5CZ011138frrrwNQuXJlPvzwQ1auXIm3tzc///wzJ0+etGZrv/POOyxcuJAvvviCPn36cPfdd1uzyAFGjBjBggULWLRoETExMTn2VbJkSQCCgoJyVMTIzMxk2rRp+Pv7A9C1a1dWrlzJG2+8gbe3N507d2bq1KlWcnzmzJmUK1eOJk2aXPNzcrNwanK8du3aLFiwgJdffpnhw4cTHh7OuHHj6NKli7XNCy+8wIULF+jTpw/nzp3j3nvvZdmyZXh5eVnbzJo1i5iYGJo2bYqLiwuPPvoo48ePt9oDAwNZvnw5zzzzDFFRUZQoUYLXXnuNPn36/K3HK7cgD18IrZ61XC75LJz+/bIZ5wey1l06D+cOZS2xPzj2i2gJTV+DUnf8PccgIiIiIiIiInKjcffJmsHtrH0Xwl133eXwvnTp0pw8eZLt27eTlJRE8eLFHdqTk5OJjY0FICkpiaFDh7J48WL++OMP0tPTSU5O5vDhw4UOu0KFClZiPHscdr1796Z27docO3aMMmXKMG3aNHr06IGtECVkbjVOTY4DPPzwwzz88MN5tttsNoYPH87w4cPz3CY4OJjZs2fnu5+77rqLtWvXXnWcIoXmXQxui8pasjMGkk5eVqLl///9cy/sXQz7lkJkZ2jyCgSWcU78IiIiIiIiIiLOYrMVqrSJM9nLONvZbDYyMzNJSkqidOnSrF69OkefoKCssr+DBg1ixYoVvPPOO1SqVAlvb2/atWvHpUuXrlkcdjVq1ODuu+9mxowZPPjgg+zcuZPFixcXej+3Eqcnx0WKHJsN/EOylvINHNtO7YWVw2HPt/DfmbDjC6jTB+59FnyCnROviIiIiIiIiIgUWs2aNYmPj8fNzc16kObl1q1bR48ePawHbCYlJTk8YDM37u7uZGRkXFVMTzzxBOPGjePYsWM0a9aMsmWLdnlfF2cHICLZlIyAjrOg1woo1wDSU2D9eBgfCT+9B2nJzo5QREREREREREQKoFmzZtSvX582bdqwfPlyDh48yPr16xk8eDC//PILkFWj/KuvvmLbtm1s376dzp07O8z2zk2FChVYuXIl8fHxnD17tlAxde7cmaNHj/Lxxx/Ts2fPqz62W4WS4yI3orJ14PEl0HkelKoGKQnw/VAYXxO2TIeMdGdHKCIiIiIiIiIi+bDZbCxZsoRGjRrx+OOPU6VKFTp27MihQ4cICQkB4N1336VYsWI0aNCAVq1aER0dTc2aNfMdd+zYsaxYsYKyZctSo0aNQsUUGBjIo48+ip+fH23atLnqY7tV2IwxxtlB3OgSExMJDAwkISGBgIAAZ4cjRU1mBvw6D1a9AQlHstaVqJL10M47Hs4q0yIiIiIiIiIichNLSUkhLi6O8PBwvLy8nB3OLa1p06bceeedjB8/3tmhXLX87pfC5HI1c1zkRufiCpGdIOYXiB4F3sHw5z6Y+xhMeQAOrnN2hCIiIiIiIiIicoM7e/YsCxYsYPXq1TzzzDPODueGoOS4yM3C3QvqPwP9t0HDQeDmDUc3w7QWMKsDnNjp7AhFREREREREROQGVaNGDXr06MGYMWOIiIhwdjg3BDdnByAiheQVCE2HQJ3e8OOYrBrk+7+D/cvh7o5w3ysQVM7ZUYqIiIiIiIiIyA3k4MGDzg7hhqOZ4yI3K/9QePg9eOZnqNYGMLB9DnwQBctegQunnR2hiIiIiIiIiIjIDUvJcZGbXYlK0GE69P4BKjSEjEuw8SMYHwlr3oZLF5wdoYiIiIiIiIiIyA1HyXGRW0WZKOj+DTz2JYRWh9RE+GEkjK8Bm6dARpqzIxQREREREREREblhKDkuciux2aBSM+izBh6dAkHlIekELH4OPqoLv30Fxjg7ShEREREREREREadTclzkVuTiAtXbQcwv8NBb4FMCzsTCF4/Dx/fB7z86O0IRERERERERERGnUnJc5Fbm5gF1n4T+26DxS+DhB8f/CzP+CZ+1hT+2OztCERERERERERERp1ByXKQo8PSH+16GftugzpPg4g6xP8CkRvBFLzjzu7MjFBERERERERG56TRp0oQBAwYUePs9e/ZQr149vLy8iIyMvI6RXR2bzcbChQudHcbfRslxkaLEryS0eAtifoZ/tMta99sX8GFt+O8s58YmIiIiIiIiInKT+eqrrxgxYkSBt3/99dfx9fVl7969rFy58prEUNQS2teSkuMiRVFwRWg3BZ5cAxXvg8x0WDwQTsc6OzIRERERERERkZtGcHAw/v7+Bd4+NjaWe++9l/Lly1O8ePHrGJkUhJLjIkVZ6bvhsa+gQkNIT4ZFfSEz09lRiYiIiIiIiEgRZ4zhYtpFpyzGmALHmb2sSoUKFRg1ahQ9e/bE39+fcuXKMXnyZGtbm83Gli1bGD58ODabjaFDhwJw5MgROnToQFBQEMHBwbRu3ZqDBw867OfTTz/lzjvvxNPTk9KlSxMTE2PtE6Bt27bYbDbrPcDXX39NzZo18fLyomLFigwbNoz09HSrff/+/TRq1AgvLy+qVavGihUrCnGFbg1uzg5ARJzMxQVafwj/aQCH1sHPk6Hev50dlYiIiIiIiIgUYcnpydSdXdcp+97UeRM+7j5X1Xfs2LGMGDGCV155hS+++IKnnnqKxo0bExERwR9//EGzZs1o3rw5gwYNws/Pj7S0NKKjo6lfvz5r167Fzc2NkSNH0rx5c3799Vc8PDyYMGECzz33HG+++SYPPfQQCQkJrFu3DoDNmzdTqlQppk6dSvPmzXF1dQVg7dq1dOvWjfHjx9OwYUNiY2Pp06cPkFXaJTMzk0ceeYSQkBA2bdpEQkJCoWqn3yo0c1xEoFgFeGBY1uvvh6q8ioiIiIiIiIjIVWjRogVPP/00lSpV4sUXX6REiRKsWrUKgNDQUNzc3PDz8yM0NBQ/Pz/mzp1LZmYmn3zyCdWrV6dq1apMnTqVw4cPs3r1agBGjhzJwIED6d+/P1WqVKF27dpWIrtkyZIABAUFERoaar0fNmwYL730Et27d6dixYo88MADjBgxgkmTJgHw/fffs2fPHmbMmMHdd99No0aNGDVq1N98tpxPM8dFJEutXrDrazi4Fr6OgR6Ls2aVi4iIiIiIiIj8zbzdvNnUeZPT9n217rrrLuu1zWYjNDSUkydP5rn99u3bOXDgQI665SkpKcTGxnLy5EmOHz9O06ZNCxXH9u3bWbduHW+88Ya1LiMjg5SUFC5evMju3bspW7YsYWFhVnv9+vULtY9bgZLjIpIle3mVw+tVXkVEREREREREnMZms111aRNncnd3d3hvs9nIzOf5bklJSURFRTFr1qwcbSVLlsTlKicuJiUlMWzYMB555JEcbV5eXlc15q1IyXER+R97eZUlg7LKq1R+AIrf7uyoRERERERERERuSTVr1mTu3LmUKlWKgICAXLepUKECK1eu5L777su13d3dnYyMjBzj7t27l0qVKuXap2rVqhw5coQ//viD0qVLA7Bx48a/cCQ3J9VMEBFHtXpBhYaQnpxVXiWfbzdFREREREREROTqdenShRIlStC6dWvWrl1LXFwcq1evpl+/fhw9ehSAoUOHMnbsWMaPH8/+/fvZunUrH3zwgTWGPXkeHx/P2bNnAXjttdeYMWMGw4YNY+fOnezevZvPP/+cV199FYBmzZpRpUoVunfvzvbt21m7di2DBw/++0+Akyk5LiKO7OVV3H3/V15FRERERERERESuOR8fH9asWUO5cuV45JFHqFq1Kr169SIlJcWaSd69e3fGjRvHf/7zH+68804efvhh9u/fb40xduxYVqxYQdmyZalRowYA0dHRfPvttyxfvpzatWtTr1493nvvPcqXLw+Ai4sLCxYsIDk5mTp16vDEE0841CcvKmzGGOPsIG50iYmJBAYGkpCQkOfPG0RuOZs/gcUDwc0bnlqn8ioiIiIiIiIict2kpKQQFxdHeHi4amLLFeV3vxQml6uZ4yKSu6ieKq8iIiIiIiIiIiK3LCXHRSR3OcqrTHJ2RCIiIiIiIiIiIteMkuMikrdiFeDB4Vmvvx8Gp2OdGo6IiIiIiIiIiMi1ouS4iOQvqieEN1J5FRERERERERERuaUoOS4i+XNxgX+qvIqIiIiIiIiIiNxalBwXkSsrVl7lVURERERERERE5Jai5LiIFIxDeZVnVF5FRERERERERERuakqOi0jB2MurePjB4Q0qryIiIiIiIiIiIjc1JcdFpOCKlYcHVF5FRERERERERERufkqOi0jhRD2u8ioiIiIiIiIiIgLAtGnTCAoKcnYYV0XJcREpHJVXERERERERERGRW4CS4yJSeCqvIiIiIiIiIiKSw6VLl5wdwlW5WeP+q5QcF5GrU6unyquIiIiIiIiIyHVhjCHz4kWnLMaYAsfZpEkTYmJiGDBgACVKlCA6Oppz587xxBNPULJkSQICArj//vvZvn27Q79vvvmG2rVr4+XlRYkSJWjbtq3VdvbsWbp160axYsXw8fHhoYceYv/+/QAkJibi7e3N0qVLHcZbsGAB/v7+XLx4EYAjR47QoUMHgoKCCA4OpnXr1hw8eNDavkePHrRp04Y33niDsLAwIiIiAEhNTWXQoEGUKVMGX19f6taty+rVqx32NW3aNMqVK4ePjw9t27bl9OnTBT5fNxo3ZwcgIjcpmy2rvMqEBlnlVTZNhPpPOzsqEREREREREbkFmORk9taMcsq+I7ZuwebjU+Dtp0+fzlNPPcW6desAaN++vZXADgwMZNKkSTRt2pR9+/YRHBzM4sWLadu2LYMHD2bGjBlcunSJJUuWWOP16NGD/fv3s2jRIgICAnjxxRdp0aIFu3btIiAggIcffpjZs2fz0EMPWX1mzZpFmzZt8PHxIS0tjejoaOrXr8/atWtxc3Nj5MiRNG/enF9//RUPDw8AVq5cSUBAACtWrLDGiYmJYdeuXXz++eeEhYWxYMECmjdvzo4dO6hcuTKbNm2iV69ejB49mjZt2rBs2TJef/31v3rKncZmCvNVSBGVmJhIYGAgCQkJBAQEODsckRvL5imw+Dlw84an1kHx250dkYiIiIiIiIjcZFJSUoiLiyM8PBwvLy8yL150anLcpYDJ8SZNmpCYmMjWrVsB+Omnn2jZsiUnT57E09PT2q5SpUq88MIL9OnThwYNGlCxYkVmzpyZY7z9+/dTpUoV1q1bR4MGDQA4ffo0ZcuWZfr06bRv356FCxfStWtXTpw4gY+PD4mJiYSEhFiJ7JkzZzJy5Eh2796NzWYDssqmBAUFsXDhQh588EF69OjBsmXLOHz4sJUsP3z4MBUrVuTw4cOEhYVZMTVr1ow6deowatQoOnfuTEJCAosXL7baO3bsyLJlyzh37lwhz/TVu/x+ya4wuVzNHBeRv6ZWT9j1NcT9mFVepceSrId2ioiIiIiIiIhcJZu3NxFbtzht34URFfW/JP727dtJSkqiePHiDtskJycTG5v1zLZt27bRu3fvXMfavXs3bm5u1K1b11pXvHhxIiIi2L17NwAtWrTA3d2dRYsW0bFjR7788ksCAgJo1qyZFcOBAwfw9/d3GDslJcWKAaB69epWYhxgx44dZGRkUKVKFYd+qamp1vHs3r3boQQMQP369Vm2bFk+Z+jGpeS4iPw1Nhu0/hD+U1/lVURERERERETkmrDZbIUqbeJMvr6+1uukpCRKly6do043QFBQEADehUy+X87Dw4N27doxe/ZsOnbsyOzZs/nXv/6Fm5ubFUNUVBSzZs3K0bdkyZK5xm3v5+rqypYtW3B1dXVo8/Pz+0sx36iUHBeRvy6oHDw4Ar59FlYOhyrRKq8iIiIiIiIiIkVOzZo1iY+Px83NjQoVKuS6zV133cXKlSt5/PHHc7RVrVqV9PR0Nm3a5FBWZe/evVSrVs3arkuXLjzwwAPs3LmTH374gZEjRzrEMHfuXEqVKlWoEtE1atQgIyODkydP0rBhw1y3qVq1Kps2bXJYt3HjxgLv40aj2gcicm1EPQ7hjSE9GRY+DZkZzo5IRERERERERORv1axZM+rXr0+bNm1Yvnw5Bw8eZP369QwePJhffvkFgNdff505c+bw+uuvs3v3bnbs2MGYMWMAqFy5Mq1bt6Z379789NNPbN++nccee4wyZcrQunVraz+NGjUiNDSULl26EB4e7lCGpUuXLpQoUYLWrVuzdu1a4uLiWL16Nf369ePo0aN5xl6lShW6dOlCt27d+Oqrr4iLi+Pnn39m9OjRVo3xfv36sWzZMt555x3279/Phx9+eNOWVAElx0XkWrGXV/HwgyMbYdMkZ0ckIiIiIiIiIvK3stlsLFmyhEaNGvH4449TpUoVOnbsyKFDhwgJCQGyHuI5f/58Fi1aRGRkJPfffz8///yzNcbUqVOJiori4Ycfpn79+hhjWLJkCe7u7g776dSpE9u3b6dLly4OMfj4+LBmzRrKlSvHI488QtWqVenVqxcpKSlXnEk+depUunXrxsCBA4mIiKBNmzZs3ryZcuXKAVCvXj0+/vhj3n//fe6++26WL1/Oq6++eq1O39/OZowxzg7iRleYJ5yKFHm/fJpVXsXNG55ap/IqIiIiIiIiInJFKSkpxMXFER4ejpeXl7PDkRtcfvdLYXK5mjkuItdW1ONQsYnKq4iIiIiIiIiIyA1NyXERubZsNvjnByqvIiIiIiIiIiIiNzQlx0Xk2gsqBw+OyHq9cjicjnVuPCIiIiIiIiIiIpdRclxErg+VVxERERERERERkRuYkuMicn3kKK8y0dkRiYiIiIiIiIiIWJQcF5HrR+VVRERERERERETkBqXkuIhcX1Z5lRSVVxERERERERERkRuGkuP/x96dx1VV538cf9+dTUBZFVQUVEDNtExNKncr20ynZRpNsynLpsUWp7KmxaaZyvYsZyotfzXTMtVU2oKmlai5ZaOGqLgQIosbKOu93Pv74wKJu4mce+H1fDx4nMO95x7eN30kvP36+QI4verGq7RgvAoAAAAAAAB8BuU4gNPv0PEquzYbmwcAAAAAAADNHuU4gMZx1rhfx6v8dxLjVQAAAAAAAJqx2bNnKzw83NAMlOMAGgfjVQAAAAAAABqFyWTSJ598YnSMOgkJCXr++efrPXb11Vdr48aNBiXyohwH0HgYombjkQAAIABJREFUrwIAAAAAAABJgYGBio6ONjQD5TiAxnXWOKnjwJrxKrcyXgUAAAAAABzG4/HIWVltyIfH4zmprB9++KG6d++uwMBARUREaMiQIfr2229ls9mUn59f79o777xT5513nqRfx4p8/vnn6tKli4KCgjR69GiVlZXprbfeUkJCglq2bKnbb79d1dW/9icJCQl6/PHHde211yo4OFhxcXF65ZVX6j0vSSNHjpTJZKr7XJJeffVVJSYmym63q0uXLpozZ069fCaTSTNnztQll1yioKAgpaSkaOnSpdq8ebMGDBig4OBgnXvuucrOzq57TXZ2ti6//HLFxMQoJCREvXv31vz58+ueHzBggLZv36677rpLJpNJJpOp3vs/2GeffabevXsrICBAkZGRGjly5En9Wpws62m9OwAcqna8yox+0i8/eMer9JtkdCoAAAAAAOBDXFVu/eOObw352je9cIFsDssJXbtz505de+21euqppzRy5Ejt379f33//vc466yx17NhRc+bM0b333itJcjqdeuedd/TUU0/Vvb6srEwvvvii/v3vf2v//v268sorNXLkSIWHh2vevHnasmWLRo0apf79++vqq6+ue93TTz+tBx54QI8++qi++uor3XHHHercubOGDh2qFStWKDo6WrNmzdKFF14oi8X7Xj7++GPdcccdev755zVkyBB9/vnnGj9+vOLj4zVw4MC6ez/++ON69tln9eyzz2rKlCn6/e9/r44dO+r+++9Xu3btdMMNN+i2227TF198IUk6cOCALr74Yj3xxBNyOBx6++23demllyorK0vt2rXTRx99pB49euimm27SH//4x6P+t5w7d65GjhypBx98UG+//baqqqo0b968E/+F+w0oxwE0vvC20rDHpM/vkjJelPre6i3NAQAAAAAA/MjOnTvlcrl05ZVXqn379pKk7t27S5ImTJigWbNm1ZXjn332mSoqKnTVVVfVvd7pdNat5pak0aNHa86cOSooKFBISIhSU1M1cOBALVy4sF453r9/f/35z3+WJHXu3FkZGRl67rnnNHToUEVFRUmSwsPDFRsbW/eaZ555RuPGjdOtt94qSZo8ebKWLVumZ555pl45Pn78+LqMU6ZMUb9+/fTQQw9p+PDhkqQ77rhD48ePr7u+R48e6tGjR93njz/+uD7++GN9+umnuu2229SqVStZLBa1aNGiXp5DPfHEE7rmmmv06KOP1rv36UQ5DsAYZ14nffWgdCBfyl8rtT7D6EQAAAAAAMBHWO1m3fTCBYZ97RPVo0cPDR48WN27d9fw4cM1bNgwjR49Wi1bttS4ceM0depULVu2TH379tXs2bN11VVXKTg4uO71QUFBdcW4JMXExCghIUEhISH1HissLKz3dfv163fY54dueHmozMxM3XTTTfUe69+/v1544YV6j51xxq8dTUxMjKRfC//axyoqKlRSUqLQ0FAdOHBAjzzyiObOnVv3lwXl5eXKyck5Zp5DrVmz5pgry08HynEAxrA6pA7nSxu/lDZ9TTkOAAAAAADqmEymEx5tYiSLxaL09HQtWbJEX3/9tV566SU9+OCD+uGHH9ShQwddeumlmjVrljp06KAvvvhCixYtqvd6m81W73OTyXTEx9xu9+l+K0fMVDsf/EiP1Wa65557lJ6ermeeeUZJSUkKDAzU6NGjVVVVdVJfNzAw8FSjnzQ25ARgnE5DvcfN8499HQAAAAAAgI8ymUzq37+/Hn30Uf3444+y2+36+OOPJUk33nij3nvvPf3jH/9QYmKi+vfv3yBfc9myZYd9npKSUve5zWart4mnJKWkpCgjI6PeYxkZGUpNTT2lLBkZGRo3bpxGjhyp7t27KzY2Vtu2bat3jd1uPyzPoc444wwtWLDglLKcLFaOAzBOUk05/styqXyfFBh+7OsBAAAAAAB8yA8//KAFCxZo2LBhio6O1g8//KCioqK6onr48OEKDQ3VtGnT9NhjjzXY183IyNBTTz2lK664Qunp6frggw80d+7cuucTEhK0YMEC9e/fXw6HQy1bttS9996rq666Sj179tSQIUP02Wef6aOPPtL8+ae2aLFTp0766KOPdOmll8pkMumhhx46bKV7QkKCvvvuO11zzTVyOByKjIw87D5/+ctfNHjwYCUmJuqaa66Ry+XSvHnzNGXKlFPKdyysHAdgnJbtpcjOkqda2rLQ6DQAAAAAAAAnJTQ0VN99950uvvhide7cWVOnTtX06dN10UUXSZLMZrPGjRun6upqjR07tsG+7t13362VK1eqZ8+emjZtmp599tm6DTMlafr06UpPT1fbtm3Vs2dPSdIVV1yhF154Qc8884y6du2qmTNnatasWRowYMApZXn22WfVsmVLnXvuubr00ks1fPhw9erVq941jz32mLZt26bExMS6DUMPNWDAAH3wwQf69NNPdeaZZ2rQoEFavnz5KWU7HpPH4/Gc1q/QBJSUlCgsLEzFxcUKDQ01Og7QtHz1oLT0Ze8GnVfMMDoNAAAAAAAwQEVFhbZu3aoOHTooICDA6DgNasKECSoqKtKnn37aIPdLSEjQnXfeqTvvvLNB7uePjvX75WS6XFaOAzBW0hDvcfN8qRE3lwAAAAAAADidiouLtXjxYr377rv605/+ZHQcHAHlOABjtT9XsgVLBwqkgrVGpwEAAAAAAGgQl19+uYYNG6aJEydq6NChRsfBEbAhJwBjWR1Sh/OljV9Im76WWvcwOhEAAAAAAMApW7Ro0Wm577Zt207LfZsjVo4DMF6nmr893XRquyMDAAAAAAAAJ4pyHIDxasvx3OVS+V5jswAAAAAAAMN4PB6jI8APNNTvE8pxAMYLbydFdpE8bil7odFpAAAAAABAI7NYLJKkqqoqg5PAH9T+Pqn9ffNbMXMcgG/oNFTalSVtSpe6XWl0GgAAAAAA0IisVquCgoJUVFQkm80ms5k1vTgyt9utoqIiBQUFyWo9tXqbchyAb+g0VFr6srR5vuR2S/whCAAAAABAs2EymdS6dWtt3bpV27dvNzoOfJzZbFa7du1kMplO6T6U4wB8Q7t+ki1YKi2U8v8ntTnT6EQAAAAAAKAR2e12derUidEqOC673d4g/7qAchyAb7A6pI4XSFnzvKNVKMcBAAAAAGh2zGazAgICjI6BZoK5BQB8R6eh3uPmdGNzAAAAAAAAoMmjHAfgO5JqyvHcFVLZHmOzAAAAAAAAoEmjHAfgO8LbSlHJksctbVlodBoAAAAAAAA0YZTjAHxL7WiVTYxWAQAAAAAAwOlDOQ7At9SOVtk8X3K7jc0CAAAAAACAJotyHIBvaddPsodIpUVS/k9GpwEAAAAAAEATRTkOwLdY7VKHC7znjFYBAAAAAADAaUI5DsD3MHccAAAAAAAApxnlOADfU1uO71gple0xNgsAAAAAAACaJMpxAL4nLF6KSpE8bin7G6PTAAAAAAAAoAmiHAfgmxitAgAAAAAAgNOIchyAb6otxzfPl9xuY7MAAAAAAACgyaEcB+Cb2vaV7CFS2S5p5xqj0wAAAAAAAKCJoRwH4JusdqnjAO85o1UAAAAAAADQwCjHAfiuutEqlOMAAAAAAABoWJTjAHxXUk05nrtSKttjbBYAAAAAAAA0KZTjAHxXWJwUnSrJI2V/Y3QaAAAAAAAANCGU4wB8W+1olU1fG5sDAAAAAAAATQrlOADfVjtaZfMCye02NgsAAAAAAACaDMpxAL6tXV/J3kIq2yXt/NHoNAAAAAAAAGgiKMcB+DaLTUoc4D3flG5oFAAAAAAAADQdlOMAfF/taBXKcQAAAAAAADQQynEAvi9piPe4Y5VUutvYLAAAAAAAAGgSKMcB+L6wOCm6qySPlP2N0WkAAAAAAADQBFCOA/APnWpHq3xtbA4AAAAAAAA0CZTjAPxDbTmevUByu43NAgAAAAAAAL9HOQ7AP7TtIzlCpbLdUt6PRqcBAAAAAACAn6McB+AfLDap4wDv+eZ0I5MAAAAAAACgCTC0HH/kkUdkMpnqfSQnJ9c9X1FRoUmTJikiIkIhISEaNWqUCgoK6t0jJydHI0aMUFBQkKKjo3XvvffK5XLVu2bRokXq1auXHA6HkpKSNHv27MZ4ewAaGnPHAQAAAAAA0EAMXznetWtX7dy5s+5j8eLFdc/ddddd+uyzz/TBBx/o22+/VV5enq688sq656urqzVixAhVVVVpyZIleuuttzR79mw9/PDDddds3bpVI0aM0MCBA7VmzRrdeeeduvHGG/XVV1816vsE0ACShniPO1ZLpbuMzQIAAAAAAAC/ZvJ4PB6jvvgjjzyiTz75RGvWrDnsueLiYkVFRendd9/V6NGjJUkbNmxQSkqKli5dqr59++qLL77QJZdcory8PMXExEiSXnvtNU2ZMkVFRUWy2+2aMmWK5s6dq3Xr1tXd+5prrtG+ffv05ZdfnlDOkpIShYWFqbi4WKGhoQ3wzgH8Zq/2lwrWSVf+UzrjKqPTAAAAAAAAwIecTJdr+MrxTZs2qU2bNurYsaOuu+465eTkSJJWrVolp9OpIUOG1F2bnJysdu3aaenSpZKkpUuXqnv37nXFuCQNHz5cJSUlWr9+fd01B9+j9praexxJZWWlSkpK6n0A8BGMVgEAAAAAAEADMLQc79Onj2bPnq0vv/xSr776qrZu3arzzjtP+/fvV35+vux2u8LDw+u9JiYmRvn5+ZKk/Pz8esV47fO1zx3rmpKSEpWXlx8x15NPPqmwsLC6j7Zt2zbI+wXQAJJqyvHNCyR3tbFZAAAAAAAA4LesRn7xiy66qO78jDPOUJ8+fdS+fXu9//77CgwMNCzX/fffr8mTJ9d9XlJSQkEO+Iq250iOUKl8j5T3oxR/ttGJAAAAAAAA4IcMH6tysPDwcHXu3FmbN29WbGysqqqqtG/fvnrXFBQUKDY2VpIUGxurgoKCw56vfe5Y14SGhh61gHc4HAoNDa33AcBHWGxS4kDv+aZ0Y7MAAAAAAADAb/lUOX7gwAFlZ2erdevWOuuss2Sz2bRgwYK657OyspSTk6N+/fpJkvr166e1a9eqsLCw7pr09HSFhoYqNTW17pqD71F7Te09APihJOaOAwAAAAAA4NQYWo7fc889+vbbb7Vt2zYtWbJEI0eOlMVi0bXXXquwsDBNmDBBkydP1sKFC7Vq1SqNHz9e/fr1U9++fSVJw4YNU2pqqsaMGaOffvpJX331laZOnapJkybJ4XBIkiZOnKgtW7bovvvu04YNGzRjxgy9//77uuuuu4x86wBORVLNJrt5P0qlu4zNAgAAAAAAAL9kaDmem5ura6+9Vl26dNFVV12liIgILVu2TFFRUZKk5557TpdccolGjRql888/X7Gxsfroo4/qXm+xWPT555/LYrGoX79++sMf/qCxY8fqscceq7umQ4cOmjt3rtLT09WjRw9Nnz5dr7/+uoYPH97o7xdAAwltLcV0l+TxbswJAAAAAAAAnCSTx+PxGB3C15WUlCgsLEzFxcXMHwd8xfxHpcXPSt1GS6PfMDoNAAAAAAAAfMDJdLk+NXMcAE5Yp5q549kLJHe1sVkAAAAAAADgdyjHAfin+HMkR5hUvlfasdroNAAAAAAAAPAzlOMA/JPFKiUO9J5vTjc2CwAAAAAAAPwO5TgA/1U7WmXT18bmAAAAAAAAgN+hHAfgv5KGeI95P0oHiozNAgAAAAAAAL9COQ7Af7WIlWK7e8+zFxibBQAAAAAAAH6FchyAf+s0zHtktAoAAAAAAABOAuU4AP+WVDN3PPsbyV1tbBYAAAAAAAD4DcpxAP4tvrcUECaV75V2rDI6DQAAAAAAAPwE5TgA/2axSomDvOeb0o3NAgAAAAAAAL9BOQ7A/9WOVmHuOAAAAAAAAE4Q5TgA/5c0xHvcuUY6UGhsFgAAAAAAAPgFynEA/q9FjBR7hvd88wJjswAAAAAAAMAvUI4DaBo6DfMeGa0CAAAAAACAE0A5DqBp6FQzdzz7G6naZWwWAAAAAAAA+DzKcQBNQ9zZUkCYVLFP2rHK6DQAAAAAAADwcZTjAJoGi1VKHOw935xubBYAAAAAAAD4PMpxAE1H7WgV5o4DAAAAAADgOCjHATQdSUO8x50/SfsLjM0CAAAAAAAAn0Y5DqDpCImWWp/pPc9eYGwWAAAAAAAA+DTKcQBNC6NVAAAAAAAAcAIoxwE0LUk15Xj2N1K1y9gsAAAAAAAA8FmU4wCalvizpYBwqaJY2rHS6DQAAAAAAADwUZTjAJoWs0VKGuw935RubBYAAAAAAAD4LMpxAE1PEnPHAQAAAAAAcGyU4wCantqV4/n/k/YXGJsFAAAAAAAAPolyHEDTExIttenpPd8839gsAAAAAAAA8EmU4wCaptrRKpuZOw4AAAAAAIDDUY4DaJo61ZTj2d9I1S5jswAAAAAAAMDnUI4DaJrizpICW0oVxVLuCqPTAAAAAAAAwMdQjgNomswWKbFmY05GqwAAAAAAAOAQlOMAmq7a0SqbvjY2BwAAAAAAAHwO5TiApqt25Xj+Wml/vrFZAAAAAAAA4FMoxwE0XSFRUpte3vPN843NAgAAAAAAAJ9iNToAAJxWnYZKeaulTelSzz8YnQYNyOPxaF/lPu04sEO5+3OVeyC37lhYVqhzYs/RHb3uUAt7C6OjAgAAAAAAH0Q5DqBpSxoqfft3KXuhVO2SLPxvz59UVlfWld91JXjt+YFclTpLj/rarcVbtfCXhfpLv7/o/PjzGzE1AAAAAADwB7REAJq2uF5SYCupfI+Uu1xqf67RiXAQt8etorIi5R44Qvm9P1eF5YXHvUd0YLTiWsQpPiRe8S3iFRcSJ4fVoZdWv6Sc/TmatGCSLul4iab0nqLwgPBGeFcAAAAAAMAfUI4DaNrMFilpsLT2A+9oFcrxRneg6sARR5/k7s9V3oE8Vbmrjvn6IGuQ4lvE1yu/az9vE9JGAdaAI77ugvgLNGPNDL3989v6fMvnWpq3VFP7TtWQ9kNOx9sEAAAAAAB+xuTxeDxGh/B1JSUlCgsLU3FxsUJDQ42OA+Bk/fSe9PFNUkx36ZbFRqdpNlYXrNY9396jovKiY15nMVkUGxxbrwCPD/m1BA93hMtkMv3mHP8r+p8eznhY2cXZkqRh7YfpgT4PKCIw4jffEwAAAAAA+KaT6XIpx08A5Tjg50p3SU8nSfJIkzdIoa2NTtQsjP1irH4s/FGS1NLR8rBV37WjUGKDY2U1n95/yFRVXaWZ/5upN9a+oWpPtcId4frzOX/WxR0uPqXiHQAAAAAA+BbK8QZGOQ40Af8cJO1YJV32stRrjNFpmrzVBat1/ZfXy2a26bORnykuJM7oSJKkzN2ZeijjIWXtzZIkDYgfoKl9pyomOMbgZAAAAAAAoCGcTJdrbqRMAGCspKHe4+Z0Y3M0E2+ue1OSdFniZT5TjEtSSkSK/nXJv3TbmbfJarZqUe4ijfzvSH286WPxd8UAAAAAADQvlOMAmodONeV49kKp2mlsliZu496N+jb3W5lk0vhu442Ocxib2aabe9ys9y95X90iumm/c78eXvKwJs6fqLwDeUbHAwAAAAAAjYRyHEDz0KanFNhKqiyRflludJombda6WZKkoe2Hqn1oe4PTHF2nlp005+I5mnzWZNnNdi3JW6KR/x2p9za8J7fHbXQ8AAAAAABwmlGOA2gezBYpaYj3nNEqp82OAzv0xdYvJEk3dL/B4DTHZzVbNb7beH142YfqGd1TZa4yTfthmiZ8NUE5JTlGxwMAAAAAAKcR5TiA5qN2tMomyvHT5a31b6naU61+rfupa0RXo+OcsA5hHTT7wtn68zl/VqA1UCsLVmrUp6P09vq3Ve2uNjoeAAAAAAA4DSjHATQfiYMlmaSCdVIJs6Ub2p6KPfp408eS/GPV+KHMJrOuS7lO/7nsP+oT20cV1RV6euXTuv7L67WleIvR8QAAAAAAQAOjHAfQfARHSHFnec83zzc2SxP0bua7qqiuUNeIruoT28foOL9Z2xZt9c9h/9TD/R5WsC1YPxX9pN99+ju9vvZ1udwuo+MBAAAAAIAGQjkOoHlhtMppUeos1b82/EuSNKH7BJlMJoMTnRqTyaTfdf6dPrn8E6XFpanKXaUXVr+g6+Zdp6w9WUbHAwAAAAAADYByHEDzklRTjm9ZJDFLusF8uPFDlVSVKCE0QYPaDjI6ToOJDY7VjMEz9ETaE2phb6Gfd/+saz6/RjPWzJCz2ml0PAAAAAAAcAooxwE0L23OlKwBUmWJtHeb0WmahKrqKr29/m1J0vhu42UxWwxO1LBMJpMuS7xM/738vxrUdpBcHpde/elVXT33aq3ftd7oeAAAAAAA4DeiHAfQvJgtUmQn73nRBmOzNBFzt8xVYXmhogOjdUnHS4yOc9pEBUXp+YHP6+nzn1ZLR0tt2rtJv5/3ez236jlVVlcaHQ8AAAAAAJwkynEAzU9UivdIOX7K3B633lz3piRpTOoY2S12gxOdXiaTSRd2uFCfXPGJLkq4qO79j/50tNYUrjE6HgAAAAAAOAmU4wCan6gu3mMh5fipWpizUNtKtqmFvYVGdx5tdJxG0yqglZ664Ck9P/B5RQZGalvJNo39Yqz+vvzvKnOWGR0PAAAAAACcAMpxAM1PNCvHG4LH49Eb696QJF3T5RqF2EMMTtT4BrcbrE8u/0SXJV4mjzz6v8z/0zVzr9GOAzuMjgYAAAAAAI6DchxA8xOV7D3u2ii5q43N4sdW5K/Q2l1r5bA4dF3KdUbHMUyYI0xPpD2hGYNnKDooWluLt2rMvDHK2pNldDQAAAAAAHAMlOMAmp+WCZLFIbkqpH3bjU7jt2pXjV+RdIUiAiMMTmO88+LP07sXv6uk8CQVlRdp/JfjtSJ/hdGxAAAAAADAUVCOA2h+zBYpsrP3nLnjv0nm7kwtyVsii8micV3HGR3HZ8QEx2j2hbPVK7qX9jv3a2L6RM3fPt/oWAAAAAAA4AgoxwE0T9E1o1WYO/6bvLnuTUnS8IThim8Rb3Aa3xLmCNPMoTM1qO0gVbmrdPe3d+v9rPeNjgUAAAAAAA5BOQ6geYrq4j1Sjp+0nJIcfb39a0nSDd1uMDiNbwqwBmj6gOka3Xm03B63Hl/2uF5d86o8Ho/R0QAAAAAAQA3KcQDNU1SK90g5ftJmr58tt8et8+LOU5dWXYyO47OsZqse7vuwJvaYKEma8dMMPb7scVWzCSwAAAAAAD6BchxA8xRVO1Zlo+R2G5vFj+wq36X/bv6vJFaNnwiTyaRJZ07S1D5TZZJJH2z8QHd/e7cqqyuNjgYAAAAAQLNHOQ6geWqZIFkckqtc2rfd6DR+4/9+/j9VuavUI6qHzoo5y+g4fuPq5Ks1fcB02cw2LchZoJu+vkklVSVGxwIAAAAAoFmjHAfQPFmsUmQn7zmjVU7I/qr9ei/rPUnShG4TZDKZDE7kX4a2H6qZQ2cqxBai1YWrNe7LcSosKzQ6FgAAAAAAzRblOIDmq260CuX4iXg/630dcB5QYliiLmh7gdFx/FLv2N6afeFsRQZGatPeTRozb4y2Fm81OhYAAAAAAM0S5TiA5qu2HC+kHD+eyupKzfl5jiTphu43yGzij4/fqkurLppz0Ry1D22vvNI8jf1irP5X9D+jYwEAAAAA0OzQbgBovqJZOX6i/rv5v9pdsVuxwbG6qMNFRsfxe/Et4vX2RW+rW0Q37avcpxu/vlHf535vdCwAAAAAAJoVynEAzVftyvFdGyW329gsPqzaXa3Z62dLkq5PvV42s83YQE1Eq4BWemP4G+rfpr/KXeW6/Zvb9Wn2p0bHAgAAAACg2aAcB9B8tewgWeySs0wqzjE6jc9Kz0nXL/t/UZgjTFd2utLoOE1KkC1ILw16SZd0vEQuj0sPLn5Qs9fNNjoWAAAAAKAJ8Hg8RkfweVajAwCAYSxWKaKTVLjeO3e8ZYLRiXyOx+PRm2vflCRdl3ydgmxBBidqemwWm55Ie0IRARF66+e3NH3VdBWVF+nus+9mtjsAAAAA4Kg8Ho+qd+2Sc8cOVe3YIWdenpw7dsi5I0/OvDxV79mjTksyZDKZjI7qsyjHATRv0cnecrxog9TlQqPT+JyleUuVuSdTgdZAXZt8rdFxmiyzyax7et+jqKAoPbPyGb3989vaVb5L0/pPk83CGBsAAAAAaI48brdcRUW/Ft47dng/akvwvDx5qqqOeY/qPXtkjYhopMT+h3IcQPMWxaacx/LGujckSaM6jVJ4QLjBaZq+67ter1YBrfRwxsOat3We9lXu07MDnlWwLdjoaAAAAACABuaprparoKCu7D5s9ffOnZLTeeybmM2yxsTI1qaNbHFtZIuLk61NG9nj4mSLi5MlnJ/lj4VyHEDzRjl+VGuL1mp5/nJZTVaNTR1rdJxm49LES9UyoKUmL5qsJXlLNOGrCXpl8CuKCORv+gEAAADAn3hcLjnzCw5f8V17np8vuVzHvonFIltsbE35HVdXfnvP28gWEyOT3d44b6gJohwH0LzVleNZktstmZnxXOvNdd5Z4xd3vFitQ1obnKZ5SYtL0xvD3tCkBZO0fvd6jf1irGYOnan4FvFGRwMAAAAA1Kgbe5KbK2durnfld25N+Z2b6y2/q6uPfRObTbbWrX9d+V1TfNtrSnBrTIxMVirc04X/sgCat1YdJbNNcpZJxb9ILdsbncgnbCneogU5CyRJN3S7weA0zVP3qO56+6K3dXP6zcrZn6MxX4zRq0NeVXKrZKOjAQAAAECz4PF4VL1nj7fo3rFDVbk76s6dubnemd/HGXtistnqr/qOq78C3BoVJZPF0kjvCIeiHAfQvFmsUmQnqfBn72gVynFJ0ux1s+WRRwPbDlRieKLRcZqthLAEzbl4jm6Zf4s27t2o8V+O14uDXlTv2N5O2UKmAAAgAElEQVRGRwMAAACAJqG6uLim+M6tt+q7akeunDvy5CkvP/YNLBbvyu+4ONni42SPj685j5ctLl7WqEiZ+FfqPotyHACikn8txzsPNzqN4fJL8/XZls8ksWrcF0QHRWvWhbN0xzd3aGXBSt2cfrP+dt7fNCxhmNHRAAAAAMDnuUtLDxt3Ult8O3Nz5d6//9g3MJlkjY6WLT5e9vja1d/xNeV3nGyxjD3xZ/zKAUDt3PFCNuWUpDk/z5HL7dJZMWfpzOgzjY4DSaH2UL029DXd//39St+ernu+vUcPVDyga5KvMToaAAAAABjKXVnpLbp3/DrupOqgIrx6797j3sMSEeFd9X1I8W2Pj5O1TRuZ2fCyyaIcB4Do2k05KceLK4v14cYPJUkTuk0wOA0O5rA49PT5T+vJ5U/qvaz39MQPT6iovEi3nXmbTCaT0fEAAAAA4LTwOJ1y5ucfNPe7/vgTV1HRce9hDguTLa6N7Aev+K4dgdKmjcxBQY3wTuCLKMcBoHbleFGW5HZLzXgW2L83/FtlrjJ1btlZaXFpRsfBISxmix7s86AiAyP1yppX9I///UO7y3drat+pspr5Ix0AAACA//FUV8tVWFgz7qRm/EltEb4jV678Au/P6sdgDgo6qPQ+aPxJzWOWFi0a6d3A3/CTNAC06iiZbZKzVCrJlcLbGZ3IEOWucr2T+Y4k76pxViP7JpPJpIk9JioiMELTlk3Tfzb9R7srduvp859WgDXA6HgAAAAAUI/H5fKW3zt3ypmXV28ESlXuDjl37pSczmPew+Rw1Mz6PmTTy7h42eLjZAkP52dY/CaU4wBgsUkRSVJRpnfueDMtxz/e9LH2Vu5VXEgcmz36gd91/p1aBbTSfd/ep0W/LNLN6TfrlcGvKMQeYnQ0AAAAAM2Iu7zcW3zvyJNzZ563AK/5cOXtlLOgQKquPvZNrFbZ2rTxjj6Jj/eW3jVFuC0uTtbISJma8b/yxulDOQ4AknfueFGmd+545+ZXDDvdTr21/i1J0riu4xjR4ScGtxusmUNn6vZvbtfqwtW6dcGtem3IawqyMS8PAAAAwKnzeDyq3revrvh21RXfO+sK8BPZ8FI2m2yxsbK1bu0twQ/a8NIWHy9rdLRMFsvpf0PAIWg/AEA6aO5489yU86ttXymvNE+tAlrpiqQrjI6Dk3B27Nl6ffjruvHrG/Vj4Y+atGCSZgyZoUBroNHRAAAAAPi4upEnRyi9nXl5cu7cKU95+XHvYw4O9pbeNau/rbUleM2HNTKS8hs+iXIcAKRmXY57PB69sfYNSdIfUv7A3Go/lBqRqn8M/Yf++PUftbJgpW7/5na9NOglfi0BAAAAeFd/79mjys3ZqtqSrcrN2arckq2q7dvlKig8/sgTSZaoSG/R3brNQaX3rwW4JTS0Ed4J0PAoxwFAOqgcz5I8HqkZbeTx/Y7vtXnfZgXbgnV18tVGx8Fv1C2ym14d8qpuTr9Zy3Yu052L7tSLA1+U3WI3OhoAAACARuDxeOTKzz+kBN+iqs2bVV1cfPQX2mzecSf1Vnv/em6NjZXZ4Wi8NwI0IspxAJCkiETJbJWqDkjFuVJ4W6MTNZraVeNXdb5KoXb+tt+fnRl9pl4Z/IpuXXCrMnZk6O5Fd+vZAc/KZrEZHQ0AAABAA/FUV8uZm6vK7GxVZmerqrYEz86Wu6zsyC8ymWSLj5cjMVH2xI5yJCbJnpDg3ewyis0u0XxRjgOAJFlsUkSSd6xK0YZmU46vLlit1YWrZTPb9IfUPxgdBw3g7Niz9dKglzRpwSQtyl2ke7+7V09f8LRsZgpyAAAAwJ94qqpUtX27KrO3qDJ7s6qys1WZvUVVW7fKU1V15BdZrbK3by9Hx46yJyXK0TFRjqRE2Tt0kDmAsYvAoSjHAaBWVPKv5XinoUanaRRvrntTknRZ4mWKDoo2OA0aSp/WffTiwBd12ze3aUHOAj3w/QN68rwnZTXzxz4AAADga9zl5d6V31u21BuJUpWTc9R54CaHQ/YOHeqtBHckJcretq1MdkYrAieKn5IBoFbt3PHC5rEp56a9m/Rt7rcyyaRxXccZHQcN7Ny4c/X8wOd1x8I79OW2L2U1WzWt/zRZzOwQDwAAADQ2j8sl544dqtq2TVXbt3uP27apatt2OXfu9O59dQTm4GDZExPlSEyUI7Fj3bktLk4mC9/bA6eKchwAakXXbsrZPMrxWetmSZKGtB+ihLAEY8PgtDg//nxNv2C67l50tz7f8rmsZqsePfdRmU3MEwQAAAAamsftlqug4NcCfOtBRXhuruRyHfW1lvDw+mNQao7WmBiZTKZGfBdA80I5DgC1aleOF2V5/9a+CX8DkncgT/O2zpMkTeg2weA0OJ0GtRukv5//d9333X36ZPMnspqterjvw3yDDQAAAPwGHo9H1Xv2/Fp+H7wSPCdHnoqKo77W5HDI3q6d7AkJNR/t686tERGN+C4A1KIcB4BarRIls1Wq2i+V7JDC4o1OdNq8tf4tVXuq1ad1H3WN7Gp0HJxmwxKGyel26oHFD+jDjR/KZrbp/nPupyAHAAAAjqJ6/35Vbdt++BiU7dvl3r//6C+0WmWPj5e9ffv6BXj79rLGxspk5l9xAr6EchwAalnt3oJ8V5Z37ngTLcf3VOzRR5s+ksSq8eZkRMcRcrldeijjIf1rw79kNVt179n3UpADAACgWXPt3q2KzA2q3JCpyi1b64rw6t27j/4ik0m21q3rFd+1R1tcnEw2W+O9AQCnhHIcAA4Wnewtx4s2SJ2GGJ3mtPjXhn+porpCqRGp6tu6r9Fx0IguT7pcLrdLjyx9RHN+niOb2aY7e91JQQ4AAIAmz+N2y5mbq4qfM1WxIVMVmZmqzNwgV2HhUV9jiYqsV3zXHdu1kzkgoBHTAzhdKMcB4GBRyZL+KxVlGp3ktChzlundzHcleVeNU4o2P6M6j5LL7dK0H6bpzXVvym6xa9KZk4yOBQAAADQYT1WVKjdvVkXmBlVkesvwyswNcpeWHn6xySR7+/ZypCTLkZRUU4B7x6FYQkIaPzyARkU5DgAHO3hTzibow40fqqSqRO1D22twu8FGx4FBrk6+Wk63U39f8Xe99tNrspqsurnHzUbHAgAAAE5a9f79qtxQU4LXlOGV2dmS03nYtSa7XY7OnRWQkixHcrICUlIV0KWzzMHBBiQH4AsoxwHgYAeX4x6P1IRWVjurnXrr57ckSeO6jpPFbDE4EYz0h9Q/yOV2afqq6Xp5zcuyWWy6odsNRscCAAAAjsjj8chVUFBTgntXgldkZsqZm3vE681hYQpITlZASoq3DE9JkaNDB+aBA6iHchwADhaRJJksUmWJVJInhcUZnajBfL7lcxWWFSoqMEqXJV5mdBz4gHHdxsnpdurFH1/Uc6uek81s05jUMUbHAgAAQDPnqa5W1bZtdfPBK2tWhVfv3XvE661tWntXgScnKyA1RQHJybK2acMYSQDHRTkOAAez2qWIRGnXRu/c8SZSjrs9bs1aP0uSNCZ1jOwWu8GJ4Cv+eMYf5XQ79epPr+qpFU/Jarbq2uRrjY4FAACAZsJTXa2qLVtUvnadKtatU/n6darM2ihPRcXhF1sscnTsKEdKzUiUlGQFJCfLEh7e+MEBNAmU4wBwqKjkmnI8S0oaYnSaBrHwl4XaWrxVLWwt9LvOvzM6DnzMLT1ukdPt1OtrX9dff/irbGabRncebXQsAAAANDEet1vOnJx6RXjFz5nylJUddq0pKEgBXbrUjUQJSE6Ro1OSzAEBBiQH0FRRjgPAoaKSpcxPpcJMo5M0CI/HozfWviFJuib5GoXY2XEd9ZlMJt3e8/a6ufSPLX1MVrNVVyRdYXQ0AAAA+CmPxyNXXp63CF+/TuXr1qli3Xq59+8/7FpTUJACU1MV0L27Arp2VUDXVNnbtZPJwj5JAE4vynEAOFT0QZtyNgErC1Zq7a61spvt+n3K742OAx9lMpl099l3y+Vx6Z3Md/RwxsOymq26pOMlRkcDAACAH3AWFqpiXc2K8JoivHrPnsOuM9nt3k0yu3VTQPduCuzWTfYOHSjCARiCchwADhVVW45vkDweyc83cfkg6wNJ0hVJVygyMNLgNPBlJpNJU3pPkcvt0ntZ7+nBxQ/KZrZpeMJwo6MBAADAh7j27lXFuvWqWLdW5evWq2LtWrkKCw+/0GpVQOfO9YpwR1KSTDZb44cGgCOgHAeAQ0UkSSaLVFki7d8phbYxOtEp+anoJ0nSsIRhBieBPzCZTHqgzwNyup36aNNHmvLdFFlNVg1uP9joaAAAADBA9f79qlj/c70i3Lljx+EXms1yJCZ6i/BuXRXYvbscXbrI7HA0fmgAOEGU4wBwKKtDatVR2r3JO3fcj8vxPRV7lFeaJ0lKjUg1OA38hdlk1l/6/UUut0ufZn+qe767R88PeF4XtL3A6GgAAAA4jdxlZarYsEEVa38twqu2bTvitfb27b0zwmuK8IDkZJmDgxs3MACcIrPRAWr97W9/k8lk0p133ln3WEVFhSZNmqSIiAiFhIRo1KhRKigoqPe6nJwcjRgxQkFBQYqOjta9994rl8tV75pFixapV69ecjgcSkpK0uzZsxvjLQHwZ01k7vj6XeslSQmhCWphb2FwGvgTs8msx859TBd1uEgut0t3LbpLGTsyjI4FAACABuKuqlL52rXa8+67ynvgQW257HJlnd1b239/nQqe/JtKPvusrhi3tWmjFsOHK+ruyWo36011Xv6DEr/6UnHPPK2IceMUdNZZFOMA/JJPrBxfsWKFZs6cqTPOOKPe43fddZfmzp2rDz74QGFhYbrtttt05ZVXKiPD+8N5dXW1RowYodjYWC1ZskQ7d+7U2LFjZbPZ9Ne//lWStHXrVo0YMUITJ07UO++8owULFujGG29U69atNXw4M1QBHEVUspT5mVSUaXSSU7Ju9zpJUrfIbgYngT+ymC36a9pf5XK7lL49XXcsvEMvD35ZfVv3NToaAAAAToLH6VRldrZ3s8y13k0zKzZulJzOw661REUqsNtBK8K7dZO1VSsDUgPA6Wd4OX7gwAFdd911+uc//6lp06bVPV5cXKw33nhD7777rgYNGiRJmjVrllJSUrRs2TL17dtXX3/9tX7++WfNnz9fMTExOvPMM/X4449rypQpeuSRR2S32/Xaa6+pQ4cOmj59uiQpJSVFixcv1nPPPUc5DuDooprWynHKcfxWVrNVfz//73ItcmnhLwv1pwV/0owhM9Q7trfR0QAAAHAEHrdbVVu31i/CMzPlqaw87FpLeHi9zTIDunWTLSbGgNQAYAzDy/FJkyZpxIgRGjJkSL1yfNWqVXI6nRoyZEjdY8nJyWrXrp2WLl2qvn37aunSperevbtiDvof9/Dhw3XLLbdo/fr16tmzp5YuXVrvHrXXHDy+5VCVlZWqPOgPjZKSkoZ4qwD8SW05XrhB8ngkk8nYPL+Bx+PRul3eleNdI7oanAb+zGa26ZkLntGdC+/U9zu+16QFkzRz6Ez1jO5pdDQAAIBmzePxyPnLL/WL8PXr5S4rO+xac0iIArp2VWD3bjWbZnaXLa6NTH74sw4ANBRDy/F///vfWr16tVasWHHYc/n5+bLb7QoPD6/3eExMjPLz8+uuiTnkbzRrPz/eNSUlJSovL1dgYOBhX/vJJ5/Uo48++tvfGAD/F9lJMpmlymJpf74U2troRCetoKxAuyt2y2KyqEurLkbHgZ+zW+x6buBz+tOCP2npzqW6Zf4t+ufQf6p7VHejowEAADQLHo9Hrvx8la9bp4qazTLL16+Xu7j4sGtNAQEKSE39tQjv2k32hPYymX1m6zkA8AmGleO//PKL7rjjDqWnpysgIMCoGEd0//33a/LkyXWfl5SUqG3btgYmAtDorA6pVUdp92bv3HE/LMdrV40nhScp0Hr4XwQCJ8thceiFQS/otgW3aXn+ct2cfrNeH/66UiNSjY4GAADQ5LirqlS+erXKVq6qK8Krd+067DqTzSZHcrJ3Rng374xwR2JHmayGDwsAAJ9n2P8pV61apcLCQvXq1avuserqan333Xd6+eWX9dVXX6mqqkr79u2rt3q8oKBAsbGxkqTY2FgtX7683n0LCgrqnqs91j528DWhoaFHXDUuSQ6HQw6H49TfJAD/FpVcU45nSYmDjE5z0mrLceaNoyEFWgP10qCXdMv8W7S6cLX++PUfNevCWercsrPR0QAAAPyax+ORc/t2HVicodLFi1W6fLk8h45HsVjk6NSpXhEe0LmTTHa7MaEBwM8ZVo4PHjxYa9eurffY+PHjlZycrClTpqht27ay2WxasGCBRo0aJUnKyspSTk6O+vXrJ0nq16+fnnjiCRUWFio6OlqSlJ6ertDQUKWmptZdM2/evHpfJz09ve4eAHBUUcnShs+lwkyjk/wm63d7N+PsGsm8cTSsIFuQZgyZoZvTb9ZPRT/plvRbNOfiOWoT0sboaAAAAH6l+kCpyn5YpgOLF6v0+8Vy5ubWe94SGangvn0V2KOHArp1VUByssxHWegHADh5hpXjLVq0ULdu9VczBgcHKyIiou7xCRMmaPLkyWrVqpVCQ0P1pz/9Sf369VPfvn0lScOGDVNqaqrGjBmjp556Svn5+Zo6daomTZpUt/J74sSJevnll3Xffffphhtu0DfffKP3339fc+fObdw3DMD/RKd4j0VZxub4DTweT1053i2CleNoeMG2YL0y+BWN+3KcNu/brJvTb9bbF72tlgEtjY4GAADgszxutyoyM1X6/WKVLl6ssjVrJJfr1wtsNgX16qXgtP4KSUuTo0sX5oQDwGnk0wOonnvuOZnNZo0aNUqVlZUaPny4ZsyYUfe8xWLR559/rltuuUX9+vVTcHCwrr/+ej322GN113To0EFz587VXXfdpRdeeEHx8fF6/fXXNXz4cCPeEgB/ElWziWVRpuTxSH60i3vO/hztr9ovh8WhpJZJRsdBExXmCNNrQ17TmC/GaFvJNk1aMEmvD3tdQbYgo6MBAAD4DNeuXSrNyPCOS8nIUPWePfWet7Vvp5D+aQpOS1Nwn3NkDg42KCkAND8mj8fjMTqEryspKVFYWJiKi4sVGhpqdBwAjcVZIf21teRxS3dnSS1ijU50wuZumas/f/9nnRF1ht65+B2j46CJ21K8RWO/GKviymKlxaXpxUEvyma2GR0LAADAEJ6qKpX9uEalixfrQMZiVf5cf0yjOShIQX371q0Ot7drZ1BSAGiaTqbL9emV4wBgKFuA1LKDtCfbO3fcj8rxus04GamCRtAxrKNeGfyKbvzqRi3esVh/yfiLpqVNk9nEPwEGAADNQ1VOjndu+OIMlS1bJvchG2k6UlPqVocH9TyTDTQBwEdQjgPAsUSneMvxoiwpcaDRaU4Ym3GisfWI6qHpA6br9m9u12dbPlNkYKQmnz3Z6FgAAACnhbu0VKU/LPeuDl+8WM6cnHrPW1q1UnD//go5L03B554ra2SkQUkBAMdCOQ4AxxLVRdrwuXfuuJ9wuV3K3O3Ny8pxNKbz48/Xo+c+qqkZUzVr/SxFBEbo+q7XGx0LAADglHncblVmZelA7UaaP/4oOZ2/XmC1KqhnT+/c8LT+CkhJYSNNAPADlOMAcCxRKd5jUZaxOU5C9r5sVVRXKNgWrISwBKPjoJm5POly7a7YredWPadnVj6jiMAIXdLxEqNjAQAAnDTXnj0qzciomR2+RNW7dtV73hYfr+Dz0hSSlqagPn1kCQkxKCkA4LeiHAeAY4nq4j0WZkoej2QyGZvnBNSOVEmNSGXmMwwxvut47SrfpTk/z9FDix9SS0dL9Y/rb3QsAACAY/I4nSpfs0YHFnsL8Yr16+s9bwoKUvA55yg4LU0haf1la99eJj/4+QAAcHSU4wBwLJGdJJNZqtgnHSiUWsQYnei41u/yfhPPSBUYxWQy6Z6z79Hu8t2at3We7lp0l94c/qa6RfJ7EgAA+Jaq3Ny6ueFlS5fJXVpa73lHcrJC0vorOC1Ngb16ycxGmgDQpFCOA8Cx2AKllgnSni3eueN+UI6v271OEptxwlhmk1nT+k/T3oq9WrpzqW6df6vevuhtRv0AAABDucvKVLp8uUprZodXbd9e73lLy5YK7t9fwWn9FdK/v6xRUQYlBQA0BspxADieqJSacjxL6jjA6DTHVFVdpY17N0oSq3RhOJvFpucGPqcJX03Q+t3rNXH+RM25aI6igvghEwAANA6Px6PKrKya1eEZKl+1Sp6DN9K0WBTY80yFpKUpuH+aArqmspEmADQjlOMAcDxRXaSsud654z4ua0+WXG6XWjpaqk1wG6PjAAq2BeuVwa9o7BdjlbM/RxPnT9TsC2erhb2F0dEAAEAT5dq7V6UZS1S6eLFKMzLkKiqq97wtLk7BaWkKTuuv4L59ZWnB9yUA0FxRjgPA8USneI9FWcbmOAG1I1VSI1PZHAg+IyIwQjOHztSYL8Zo496Nuv2b2/Xa0NfksDiMjgYAAJoAj8ul8p9+0oHFi1X6fc1Gmh5P3fOmwEAFndNbIf3TFHxemuwJCXyvDACQRDkOAMcX1cV7LMr0fpPtw99Ir9vlLcfZjBO+Jr5FvF4d8qrGfzleKwtW6s/f/VnPXPCMLGaL0dEAAIAfcu7YoQOLM1S6+HuVLl0m94ED9Z53dO6s4PPSFJKWpsCzzmIjTQDAEVGOA8DxRHaWZJLK90qlRVJItNGJjmr9rvWSmDcO35TcKlkvDnpRN6ffrPk58/XXH/6qqX2nsnILAAAcl2vvXpWtWKGy5StUmpGhqq1b6z1vCQ9X8Lnnesel9O8vW4zvfs8OAPAdlOMAcDy2QKllgrR3q3fuuI+W46XOUm0p3iKJchy+q3dsb/3tvL/pnm/v0fsb31dkUKRu6XGL0bEAAICPce3apbKVK1W2fIXKVixX5abN9S+wWBTYo4eC0/orJC1NAV27ymThX6QBAE4O5TgAnIjoFG85XpQldbzA6DRHlLk7Ux55FBMUo8jASKPjAEc1LGGYHqx4UNN+mKYZa2YoIiBCV3W5yuhYAADAQM7CQu/K8JrV4VVbthx2jaNTkoJ691ZQn74K7tdXltBQA5ICAJoSynEAOBFRXaSsed654z5q/W5GqsB/XJ18tYrKizTzfzP1xA9PKCIgQoPbDzY6FgAAaCTO/Py6IrxsxQpVbdt22DWOLl28ZXjv3grqfbasrVo1flAAQJNGOQ4AJyIqxXssyjI2xzHUbcZJOQ4/MenMSdpVvkv/2fQf3ffdfZo5dKbOjj3b6FgAAOA0cOblqXT58prV4SvlzMmpf4HJJEdysoLP8ZbhgWedJWvLlsaEBQA0G5TjAHAiorp4j4WZkscj+eAGgrXleNeIrgYnAU6MyWTS/7N33+FRlXkbx78zyaRnQjq9S4CACKJSVLoQguhixwUUEEUUEMW+tkWRXbCsdAQBF3dXWN1FICCEIgIuRVAITZEOIb33ybx/TDLKa8uECScJ9+e6vA4558yZG/8g4eaZ3/NilxdJL0hn4+mNjN84nsUxi2kV3MroaCIiInIJ7HY7xWfPOlaFlxXixWfPXnyT2YxPmzaOVeHXX4/ftZ3wCAoyJrCIiFyxVI6LiFREWCvABPlpkJsCAeFGJ7pIRkEGZ3LOANA2tK3BaUQqztPsybSbp/Hw+of5OulrHln/CB8O/JAGAQ2MjiYiIiIVZLfbKT51yjkzPHfnLkrOn7/4Jg8PfKKj8buus6MQv/ZaPAIDjQksIiJSRuW4iEhFePlBcBNIP+GYO17NyvHyeeONAxsT5K0VN1Kz+Hj68Lfef+OBtQ/wfcb3PLL+EZbGLCXYRx+lFhERqY7sdjvFJ0+S+7+dzkK85MKFi2/y9MS3XbuyleHX4duxEx4B/sYEFhER+RUqx0VEKiq8TVk5fgSa3Wx0mos4R6qEaaSK1ExB3kHM7TuXYXHDOJF1gnHx43j/lvfxs/gZHU1EREQAe0kJ+Xv3kr1xEzkbN1J08uTFN1gs+LZvj1/ZzHC/jh0x++n7uIiIVG8qx0VEKio8Co7GOeaOVzMHUss24wzVZpxSc0X6RzK331xGxI1gf8p+Jm2ZxHu938NithgdTURE5Ipky8kld9s2cjZuJGfLFmwZGT9etFjw69DBUYZffz2+HTpg9vU1LqyIiEglqBwXEamoiDaOY/IRY3P8goQUx1iVdmEqx6Vmax7UnFl9ZjH689FsO7uNl7a9xOs3vo7ZZDY6moiIyBWhODGRnE2byN64ibyvvsJeXOy85hEUREDPHgT06o3/jd3xCAgwMKmIiMilUzkuIlJR4VGOY3L1WjmelJdEcn4yZpOZ1iGtjY4jcsmuDr+aGT1m8PjGx1n1wyrCfMN4svOTRscSERGplex2O4WHD5O9cSM5GzdRkJBw0XVL48YE9u5NQO9e+HXqhMlTNYKIiNQe+q4mIlJRYVGACfJSITcF/MOMTgT8OG+8RZ0Wms8stcZNDW/ite6v8cKXL7A4YTFhvmGMiB5hdCwREZFawV5URO7OXeRs3Ej2pk2UnD//40WTCd8OHQjo05vA3r3xat4ck8lkXFgREZEqpHJcRKSivPwguIljU86kQ9DsJqMTAT+W45o3LrXN4BaDSc1P5a09bzF993RCfEK4tcWtRscSERGpkWwZGeRs3Up2/EZyt26lNDfXec3k44N/9+4E9u5FQI8eeIZVj0UgIiIiVU3luIiIK8JbO8rx5MPVphxPSNW8cam9Hoh+gOT8ZD48+CEvbXuJYJ9gbmxwo9GxREREaoSiU6ec41Ly9uwBm815zSM8jMCevQjo3Qv/rl0x+/gYmFRERMQYKsdFRFwR3hqOrnWU49WA3W53luPRodEGpxFxP5PJxFOdnyI1P5U1x9cwafMkFt6ykPbh7Y2OJiIiUu3YS/kliVQAACAASURBVEsp+PZbsjduIntjPEXfH7vouvdVVxHQuzeBfXrj064dJrM2vBYRkSubynEREVeEl214mXzE2BxlzmSfIbMwE4vZQqvgVkbHEakSZpOZKd2nkFGYwfZz2xkXP44lMUtoFtTM6GgiIiKGK83PJ3fHDscK8c1bsKWk/HjRwwO/665zjEvp1QuvRo2MCyoiIlINqRwXEXFFRFk5nnTI2BxlDqQ65o1HBUdh8bAYnEak6lg8LLzd821GrhtJQmoCj6x/hKUxS4n0jzQ6moiIyGVXkppKzubNjvnh27djLyhwXjMHBBBw800E9O5DwE034hEUZGBSERGR6k3luIiIK8LKVmfnpUBuCvgbu1lR+Wac0WEaqSK1n5/Fj1l9ZjFi7QhOZp1kxNoRzO83n8bWxkZHExERqXJFJ06QHR9PdvxG8vfuBbvdec1Sv75jXErvXvh17ozJy8vApCIiIjWHynEREVd4+UOdJpBx0jF33N/YjQG1GadcaUJ9Q5nXbx4Pff4Qp7NPMyxuGHP6zqFtaFujo4mIiLiVc354/EayN26k6NjF88N92rYloE9vAvv0wTsqCpPJZFBSERGRmkvluIiIq8Jb/1iONzWuHLeV2jiYehCAdqEqx+XK0SCgAUtjljJ2w1gOpx1m5LqRvNvrXW6od4PR0URERC5JaWEhuTt2kBO/kezNm7Al/2R+uKcn/tdfR0DvPgT27oWlfn3jgoqIiNQSKsdFRFwV0Rq+WwdJhw2NcTzzOPkl+fh6+mpjQrnihPmGsaj/IiZsmsCuxF2M3TCWaTdPo1+TfkZHExERcYktI4OcLVvI3hBPzrZt2PPynNcumh9+8014WK0GJhUREal9VI6LiLgqvGxTzmRjy/HyzTjbhrbFw+xhaBYRIwR6BTKn7xye/eJZNpzawJObn+TFLi9yd9TdRkcTERH5TUVnzpBTNj88b88esNmc1zwjIwns05uA3n3wv/46zQ8XERGpQirHRURcVV3K8fLNOEO1Gadcubw9vJneYzpT/jeFFUdX8Oev/kxqQSqPXP2IZq+KiEi1YbfbKUg4SM7GeLI3xFN49OhF171btXLMD+/dB5920foeJiIicpmoHBcRcVVYK8cxNxlyU8E/1JAYCSnajFMEwMPswUtdXiLUJ5R5385j9r7ZpOWn8ez1z+pTFSIiYhh7URG5O3c5CvGNmyhJTPzxoocHftdeW7ZCvDdejRoZF1REROQKpnJcRMRV3gFQpzFknHKsHvfvftkjFNuKOZJ+BNBmnCIAJpOJxzo+RohPCG/ufJN/Hvkn6YXpvHHjG3h56OPoIiJyediys8n54gty4uPJ+WIrpTk5zmsmPz8CuncnoE9vAnr0wDM42MCkIiIiAirHRUQqJ7z1j+V408tfjh9NP0pxaTFB3kE0DGx42d9fpLoa2mYowT7BPP/l86w7sY7Mwkze6fUO/hZ/o6OJiEgtZcvIIGvd52SvW0furl1QXOy85hEWRmCvXgT06Y1/166Yvb0NTCoiIiL/n8pxEZHKCG8N331u2NzxhFTHSJXoUM2kFPn/YprFEOQdxMRNE/nq/FeMWjeK2X1nE+ITYnQ0ERGpJUrz8sjetImsVavJ+fLLiwpxr+bNneNSfDt0wGQ2G5hUREREfovKcRGRyjB4U05txiny27rV78ai/ot4dMOjJKQmMDxuOPP6zaNBQAOjo4mISA1lLy4md/t2MletJjs+HntenvOad+vWWAcOJLBfX7ybNTMwpYiIiLhC5biISGVElJXjSQaV46mOclybcYr8unZh7VgSs4SH1z/MyayTDFszjLn95tIquJXR0UREpIawl5aSv3cvmatWkR23FltGhvOapWFDrINiCYqNxfuqqwxMKSIiIpWlclxEpDLCohzH3CTISwO/yzeuIa84j2MZxwCV4yK/p1lQMz6M+ZBHNjzC9xnf88DaB5jZeyadIjsZHU1ERKqxgiNHyFq1iszVqyk5d9553iM0FGtMDEGDYvHp0EHj7URERGo4leMiIpXhHQBBjSGzbFPOJt0u21sfTjtMqb2UcN9wIvwiLtv7itRUkf6RLB6wmMfiH2Nf8j7GrB/D9B7T6dmop9HRRESkGik6c4as1WvIWrWKwu++c543+/sT2K8f1kGD8O9yAyZP/TVaRESkttB3dRGRygqPMqQcd84bD9O8cZGKCvIOYv4t85m8ZTJbzmxh4qaJvNz1Zf5w1R+MjiYiIgYqSU0la+1aslatJn/vXud5k8VCQM8eWGMHEdCzB2YfHwNTioiISFVROS4iUlkRreH79Zd97rhz3nioRqqIuMLX05e3e73NK9tfYeWxlby0/SXSC9MZ2W6k0dFEROQysuXkkhO/gcxVq8ndvh1sNscFkwm/LjcQNGgQgf364WG1GhtUREREqpzKcRGRygov25Qz+fKW4wkpCYDmjYtUhsVsYUr3KYT6hPJBwge8vedt0vLTmNR5EmaT2eh4IiJSRUqLisjdupXMVavI2bgJe2Gh85pP+/YEDYolMCYGS4RG1omIiFxJKl2OFxUVkZSURGlp6UXnGzdufMmhRERqhPA2juNlLMczCzM5lX0KgOhQjVURqQyTycSkzpMI8Qlhxp4ZLDm4hLSCNF7t/ioWs8XoeCIi4iZ2m428XbvJWr2KrHWfU5qV5bzm1awZ1kGxBMXG4tW0qXEhRURExFAul+PfffcdI0eOZPv27Redt9vtmEwmbOUfSRMRqe3CWzmOORcgLw38Qqr8LQ+mHgSgYUBD6vjUqfL3E6nNHmj3ACG+Iby07SU+++EzMgozmN5jOn4WP6OjiYhIJdntdgoSDpK1ahVZa9ZQkpTkvOYZGYl14ECsg2LxadsWk8lkYFIRERGpDlwuxx944AE8PT1ZtWoV9erV0w8UInLl8g6EoEaQeRqSj0CTrlX+lgmpGqki4k6DWwymjncdntz8JFvPbmXM+jHM6jOLIO8go6OJiIgLCn/4gaxVq8las4aiEyec581BQVhvuQXroEH4XdcZk1kjtERERORHLpfj+/btY8+ePbRu3boq8oiI1CzhUWXl+OHLUo4fSCnbjFPluIjb3NzwZhbcsoBH4x/lm+RvGBE3grn95lLXv67R0URE5DcUnztH1po1ZK5eQ+GhQ87zJh8fAnv3wjpoEP433ojZy8vAlCIiIlKduVyOt23blpSUlKrIIiJS84S3hu83XLa54+XluOaNi7jXNRHXsGTAEh5Z/wjHMo8xLG4Y8/rNo3lQc6OjiYjIT5SkppK1di1Zq9eQ//XXP17w9CSge3esg2IJ6NUbjwB/40KKiIhIjeFyOT5t2jSefvpp3njjDdq3b4/FcvHGVVar1W3hRESqvfCyT9FchnI8JT+FC3kXMGGiTWibKn8/kSvNVcFX8eHAD3l4/cOcyDrBiLgRzO4zm/bh7Y2OJiJyRbNlZ5O9fgNZq1eT+9VXUL7PlcmE33XXYY2NJfCWfngGBxsbVERERGocl8vxvn37AtCnT5+LzmtDThG5IkWUldRJVV+Ol68abx7UHH+LVkOJVIX6AfVZGrOURzc8yoHUA4z6fBTv9HyHbg26GR1NROSKUlpQQM7mzWStXk3Oli+wFxU5r/m0b481diDWmBgskZEGphQREZGazuVyfNOmTVWRQ0SkZgpr5TjmJEJ+OvhW3Yol50iVMI1UEalKwT7BLOy/kImbJrLj/A7GxY/j9RtfZ2DzgUZHExGp1ezFxeRu307m6tXkbIinNC/Pec2rRQussQMJio3Fq0kTA1OKiIhIbeJyOd6jR4+qyCEiUjP5WMHaELLOQPIRaNylyt7qQKo24xS5XPwsfszqM4sXvnyBuBNxPLP1GdIL07m/zf1GRxMRqVXspaXk7d5N1uo1ZK9bhy0jw3nNUr++Y4V4bCzeUVGYTCYDk4qIiEht5HI5DpCRkcHChQs5VLYjeHR0NCNHjiQoKMit4UREaoTwqLJy/HCVleN2u52DKQcBaBeqclzkcrB4WHjz5jcJ9gnmo8Mf8ebON0nNT+Xxjo+roBERuQR2u52CAwlkrV5NVlwcJRcuOK95hIZiHTAAa2wsvh2v0Z+3IiIiUqVcLsd3795N//798fX15frrrwfgrbfe4vXXX+fzzz+nU6dObg8pIlKtRbSBY/FVOnf8XO450gvT8TR7EhUSVWXvIyIXM5vMPHv9s4T6hvLe3vdYsH8BqQWpvNjlRSxmy+8/QEREnAqPHXMU4qvXUHTypPO8OTCQwH79sMYOxP+GGzB5VmoNl4iIiIjLXP6p44knnmDw4MEsWLAAz7IfWkpKShg9ejQTJ07kiy++cHtIEZFqLbysrE6uunK8fN54q+BWeHl4Vdn7iMjPmUwmxlw9hhCfEP781Z/55LtPuJB7gRk9Z2hzXBGR31F89iyZa9aQtXoNhYd//FnJ5ONDQK+eBMXG4n/zzZi99PONiIiIXH6VWjn+02IcwNPTk6effprOnTu7NZyISI0Q3sZxrMJyPCElAdBIFREj3dnqTsJ8w3j6i6fZdm4bI+JGMKvPLCL9I42OJiJSrZQkJ5O17nOyVq8mf+/eHy94ehLQvTvWQbEE9OqNR4D+gVFERESM5XI5brVaOXXqFK1bt77o/OnTpwkMDHRbMBGRGiO8leOYfR7yM8C3jtvfonwzzuiwaLc/W0QqrmejnnzQ/wMejX+UI+lHuH/N/czuO5tWwa2MjiYiYqiSlBSy168nK24tebt2gd3uuGAy4XfddVhjYwm8pR+ewcHGBhURERH5CZfL8XvuuYdRo0Yxffp0unXrBsC2bduYPHky9913n9sDiohUez5BYG0AWWch+Qg0vsGtjy+1l3Iw1bEZZ3SoynERo0WHRbNs4DIejX+U45nHGRE3grd7vU2XelWzIa+ISHVVkpZG9ufryVq7lrydO6G01HnNp8PVWAfEYB0YgyVSn7ARERGR6snlcnz69OmYTCaGDx9OSUkJABaLhbFjx/Lmm2+6PaCISI0QHlVWjh92ezl+IvMEucW5+Hj40KJOC7c+W0Qqp2FgQz6M+ZAJmyaw58Iexq4fyyvdXuG2lrcZHU1EpEqVpKeTvX492WvXkvu/nWCzOa/5tG+PdcAAAvv3x6thAwNTioiIiFSMy+W4l5cX7777LlOnTuXYsWMAtGjRAj8/P7eHExGpMcLbwLGNVTJ3vHykSpvQNniaXf5jW0SqSJB3EPP7zefFbS8SdzyOF7e9yLmcczzS4RFMJpPR8URE3MaWkUH2hg1kxa0l96uvLi7Eo6OxxgwgcMAAvBo2NDCliIiIiOsq3bL4+fnRvn17d2YREam5wqMcx6oox1PK5o1rpIpItePl4cWbN71Jg4AGvL//fWZ/M5uzOWd5uevLWDwsRscTEak0W2Ym2fEbyYqLI3fHDij71DCAd9s2jpEpA/rj1bixgSlFRERELk2FyvEhQ4awePFirFYrQ4YM+c17P/nkE7cEExGpUSLaOI5J7i/HE1ITAGgX1s7tzxaRS2c2mZnQaQL1/Ovx+v9e57/H/suFvAu81fMtAr20WbmI1By2rCyyN24kO24tOdu3Q3Gx85p369ZYBwxwFOJNmxoXUkRERMSNKlSOBwUFOT8ebLVa9VFhEZH/L6yV45h9DgoyHZt0ukFxaTFH0o4AKsdFqru7o+6mrn9dntryFF+d/4oRa0cwu89s6vrXNTqaiMivsuXkkLNxo2NkypdfYv9pIX7VVQTGDMA6YADezZsbmFJERESkapjsdrvd6BDVXVZWFkFBQWRmZmK1Wo2OIyLV1Yw2jnJ81HpodL1bHnko9RB3r7qbQEsg2+7bpn+cFKkBDqYeZFz8OFLyU4jwjWB239lEhUQZHUtExMmWk0vOpk1krV1L7tat2IuKnNe8WrTAGuMYmeLdsqWBKUVEREQqx5Uu1+zqw3v37k1GRsYvvmnv3r1dfZyISO1RBXPHyzfjbBvWVsW4SA3RNrQtywYuo0VQC5LykxixdgTbzm4zOpaIXOFKc3PJXL2aM48/znfdunFu8mRy4uOxFxXh1awZYY8+SvPPVtJi9SrCHxunYlxERESuCC5vyLl582aKfrKyoFxBQQFbt251SygRkRopog38sMmtc8cTUsrmjYdqpIpITVI/oD5LBy7liU1PsDNxJ+Pix/FS15cYctVv790iIuJO9pISsjfEkxUXR86WLdgLCpzXvJo0IXBgDNYBMXi3ukr/CC8iIiJXpAqX499++63z1wcPHiQxMdH5tc1mY+3atTRo0MC96UREapKqWDme4lg5rnnjIjWP1cvK3L5zeWn7S6z6YRUvb3+Zszlneeyax1RCiUiVspeUkPnZKlLmzKH41CnneUvjxo6RKTED8I6K0p9FIiIicsWrcDl+zTXXYDKZMJlMvzg+xdfXl/fee8+t4UREapTwNo6jm8rx/JJ8vs/4HlA5LlJTWTwsvHHjG9QPqM/8b+cz/9v5nM85z6vdXsXiYTE6nojUMvaSEjJXfkbK3LnOUtwjOJg6d96BNSYG7zZtVIiLiIiI/ESFy/Hjx49jt9tp3rw5O3fuJDw83HnNy8uLiIgIPDw8qiSkiEiNUL5yPOssFGSBz6Vt4Hsk7Qg2u41Qn1Ai/SLdEFBEjGAymXi84+M0CGjAazte47MfPuNC3gXe7vU2Vi9t9C0il85eXPxjKX76NOAoxUNHjyL43nsx+/sbnFBERESkeqpwOd6kSRMASktLqyyMiEiN5lsHAutB9nlIPgKNrrukxyWkls0bD2unVV4itcCQq4YQ6RfJpM2T2Jm4kxFxI5jdZzb1AuoZHU1EaihHKb6SlDlzKT5zBgCPkBBCR40i+L57Mfv5GZxQREREpHpzeUPOcgcPHuTUqVM/25xz8ODBlxxKRKTGCo8qK8cPX3I5Xj5vPDos2h3JRKQa6N6gO0tiljBuwzi+z/ieoWuGMqvPLNqGtjU6mojUIPbiYjL/+19S5s77sRQPDSV05EiV4iIiIiIucLkc/+GHH/jDH/7A/v37MZlM2O12AOeqRpvN5t6EIiI1SXgb+GGzW+aOOzfjDNW8cZHapHVIa5bFLmPshrF8n/E9D6x9gOk9pnNzw5uNjiYi1ZyzFJ8zl+KzZ4GyUnzUKILvvUeluIiIiIiLzK6+YMKECTRr1oykpCT8/PxISEjgiy++oHPnzmzevLkKIoqI1CDlc8cvsRzPLsrmRNYJQCvHRWqjuv51WRqzlC71upBfks/4jeNZfnS50bFEpJqyFxWRvnw5xwbEcP7FP1F89iweoaFEPPMMLTesJ3TkgyrGRURERCrB5ZXjO3bsYOPGjYSFhWE2mzGbzdx4441MnTqV8ePHs3fv3qrIKSJSM0S0cRyTLq0cP5h6EID6/vUJ8Qm51FQiUg0FegUyu89sXtnxCiuPreS1Ha9xLuccj3d8HLPJ5fULIlIL2YuKyPjPf0idO4/ic+cA8AgLc2y0ec89mH19DU4oIiIiUrO5XI7bbDYCAwMBCAsL49y5c0RFRdGkSROOHDni9oAiIjVK+crxrDNQkAU+1ko9RvPGRa4MFg8LU7pPoWFAQ2Z/M5v397/P2ZyzTOk+BS8PL6PjiYhB7EVFZHz6H1LmzaXk3HkAPMLDCBs9mjp3361SXERERMRNXC7H27VrxzfffEOzZs244YYb+Mtf/oKXlxfz58+nefPmVZFRRKTm8A2GgLqQkwgpR6Fh50o9JiE1AYB2YZo3LlLbmUwmxl4zlnoB9Xh1+6vEHY8jKS+Jd3u9S5B3kNHxROQyshcVkfHJp6TMn3dxKf7QQ45S3MfH4IQiIiIitYvL5fiLL75Ibm4uAK+99hqDBg3ipptuIjQ0lH/9619uDygiUuOERznK8eTDlS7HtRmnyJXn9pa3E+kXyRObn2DPhT0MixvG7D6zaRjY0OhoIlLFfqkU9wwPJ/Sh0SrFRURERKqQy+V4//79nb9u2bIlhw8fJi0tjeDgYEwmk1vDiYjUSBFt4PgWSDpUqZen5qdyPvc8Jky0DW3r5nAiUp11rd+VJQOW8Gj8oxzPPM79a+5ndp/ZGrEkUkuVFhWR+cknpMybT8n5n5biD1Hn7rtUiouIiIhUMbfs9hQSEqJiXESkXPnc8eTK7cNQPlKlaVBTArwC3JVKRGqIqJAolg1cRqvgVqQVpPHgugfZfHqz0bFExI1Ki4pI/8c/OHZLfxJfeZWS8+fxDA8n8oUXaLFhPSHDh6kYFxEREbkMKrRyfMiQIRV+4CeffFLpMCIitUJ4G8cx+XClXp6QUjZvXCNVRK5Ydf3rsmTAEp7c8iTbz21nwqYJPHf9c9zb+l6jo4nIJSgtKiJjxQpS5y+gJDERAM+ICELHjKHOXXdi9vY2OKGIiIjIlaVC5XhQkDaDEhGpsPKV45mnoTAbvANdevmBVMe8cY1RELmyBXgFMLPPTKZ8NYVPvvuE1//3OqezTzPp2kl4mD2MjiciLigtLHSU4gve/7EUj4wkdMxD1LlTpbiIiIiIUSpUjn/wwQdVnUNEpPbwC4GASMi5AMlHoeG1FX6p3W53bsYZHapyXORKZzFbeKXrKzQIaMB7e99j6cGlnM4+zZs3vYmfxc/oeCLyO0rS00n/xz9IX/YRttRUoKwUf3gMde64Q6W4iIiIiMFc3pBTREQqIDyqrBw/7FI5npibSFpBGp4mT1qHtK7CgCJSU5hMJsZcPYZGgY148csX2XR6Ew+ue5CZvWcS7hdudDwR+QVFp0+TtngJGZ98gj0/HwDP+vUIHT3asVLcy8vghCIiIiIClSjHmzVr9pubb/7www+XFEhEpFYIbwPHv4DkQy69rHykSsvglvh4aiMuEflRTLMY6vrXZcLGCRxMPcjQNUOZ2XsmUSFRRkcTkTL5+/eTunAR2Z9/DqWlAHi3bUPoyFFY+9+CyWIxOKGIiIiI/JTL5fjEiRMv+rq4uJi9e/eydu1aJk+e7LZgIiI1Wvnc8eQjLr1MI1VE5Ld0jOjIsoHLeDT+UU5knWDE2hFM7zGdGxvcaHQ0kSuWvbSUnC1bSFv0AXm7djnP+990E6EjH8SvS5ffXFwkIiIiIsZxuRyfMGHCL56fNWsWu3fvvuRAIiK1QkQbxzHpsEsvS0hJAKBdWDt3JxKRWqKRtRF/H/h3ntj8BLsSd/FY/GM8d/1z3NP6HqOjiVxRSouKyPrsM1IXfUDRsWOOk56eBMXGEjJyJD5RrYwNKCIiIiK/y+yuB8XExPDvf//bXY8TEanZwsvmhWeegsKcCr2k1F7KwdSDgMpxEfltQd5BzOs7j8EtBmOz25jyvyn8dddfsZXajI4mUuvZMjNJmTef7/v04fwLL1J07BjmgABCRo2k5Yb11J/2popxERERkRrCbRtyrlixgpCQEHc9TkSkZvMLAf8IyE2ClCPQ4Pc35TyVdYrs4my8PbxpUafFZQgpIjWZxcPClO5TaBzYmJn7ZrL04FLOZJ9h6k1T8bP4GR1PpNYpPnuWtKVLSV++AnteHgCekZGEDB9OnbvvwiMw0OCEIiIiIuIql8vxjh07XjQzz263k5iYSHJyMrNnz3ZrOBGRGi08ylGOJ1esHC/fjLN1SGssZm3YJSK/z2Qy8XCHh2kU2IgXt73IxtMbeXDdg8zsPZNwv3Cj44nUCgUHD5K6cBFZa9eCzfHpDO9WrQgdNRJrTAwmLy+DE4qIiIhIZblcjt9+++0XfW02mwkPD6dnz560bt3abcFERGq8iDZwYiskHarQ7eXzxrUZp4i4amDzgdQLqMf4jeM5mHqQoWuGMqvPLFoFa7SDSGXY7XZyv/yS1EWLyNvxlfO8f7euhDw4Ev8bu2uTTREREZFawOVy/OWXX66KHCIitU94lOOYfKRCtx9Icawc17xxEamMjhEdWTZwGePix3Ei6wTD44Yzo8cMujfobnQ0kRrDXlRE5po1pC36gMKjRx0nPTywxsQQOvJBfNq2NTagiIiIiLhVpWaO22w2Pv30Uw4dcqyGbNu2Lbfddhuenm4bYS4iUvOFt3Eck39/5XhJaQmH0w4DEB2mleMiUjmNrY35+8C/M3HTRHZf2M24+HE8f8Pz3B11t9HRRKo1W3Y2GR9/TNrSDym5cAEAs58fde66i5ARw7HUr29wQhERERGpCi632QkJCdx6661cuHCBqCjHqshp06YRHh7OZ599Rrt2WvEoIgJAeNmoqYxTUJQLXv6/euuxjGMU2AoIsATQ1Nr08uQTkVopyDuI+f3m88qOV1h5bCV//urPnMo6xaTOkzCbzEbHE6lWihMTSVuylIyPP6Y0NxcAz/BwgocNI/ieu/EICjI4oYiIiIhUJZfL8dGjR9OuXTv27NlDcHAwAOnp6TzwwAOMGTOG7du3uz2kiEiN5B8K/uGQm1y2KWenX721fKRK29C2Kq9E5JJZPCxM6T6FRoGNmLVvFksOLuFMzhmm3jQVX09fo+OJGK7gyBHSFi0ic/UaKCkBwKtlC0IfHIn11kGYtcmmiIiIyBXB5XJ837597N6921mMAwQHB/P6669z3XXXuTWciEiNF966QuV4QmrZZpwaqSIibmIymXikwyM0CmzEn7b9ifhT8Ty49kFm9plJmG+Y0fFELju73U7ejh2kLlxE7rZtzvN+119PyMgHCbj5Zkxm/QO1iIiIyJXE5Z/+WrVqxYWyOXw/lZSURMuWLd0SSkSk1igfrfI7c8edm3GGajSViLhXbPNY3r/lfep41yEhNYGhq4fyXfp3RscSuWzsJSVkrl7N8Tvu4NTIUY5i3GwmMGYATZcvp8nSJQT27KliXEREROQK5PJPgFOnTmX8+PGsWLGCM2fOcObMGVasWMHEiROZNm0aWVlZzv9ERK544Y69GUg+8qu3FNoKnUVVuzCV4yLifp0iO7Fs4DKaWJtwPvc8w+KGse3stt9/oUgNVpqXR9qHf+dY/wGce/IpCg8ewuTjOHMj6AAAIABJREFUQ/D999Ni3Voavv02vu31fVdERETkSmay2+12V15g/smKCpPJBDg+ovj/vzaZTNhsNnflNFRWVhZBQUFkZmZitVqNjiMiNcmJL2FxLNRpAhO//cVbvk3+lvvX3E+wdzBb7tni/LNURMTdMgoymLh5Insu7MHD5MELXV7grlZ3GR1LxK1K0tJI//sy0pctw5aZCYBHcDDBf7yf4KFD8fzJeEgRERERqX1c6XJdnjm+adOmSgcTEbnilI9VyTgFRbng5f+zW8pHqkSHRasYF5EqVcenDvP7zefl7S+z6odVvLbjNU5lneKJa5/QZsBS4xWdOkXqBx+Q+cmn2AsLAbA0akToyAcJuv12zL7ajFZERERELuZyOd6jR4+qyCEiUjv5h4FfGOSlQMpRqN/xZ7eUb8apkSoicjl4eXjxxo1v0NjamNn7ZrM4YTFnss/wxk1v4Oup8lBqnvz9+0lduIjszz+H0lIAfNq3J3TUKAL79cXk4WFwQhERERGprlwuxwEyMjJYuHAhhw45NpiLjo5m5MiRBAUFuTWciEitEN4aTn7pmDv+C+W4NuMUkcvNZDIxtsNYGgU24qVtL7Hh1AYS1ybyXp/3CPMNMzqeyO+y2+3kbt1K6vsLydu503nev8fNhI4chd/11+nTWCIiIiLyu1z+/Ozu3btp0aIFb7/9NmlpaaSlpfHWW2/RokULvv7666rIKCJSs0WUjVZJOvSzS7nFuRzPPA44xqqIiFxOg5oPYsEtCwjyDuJA6gGGrh7q3CBYpDqyFxWR8Z//cHzwbZwe87CjGPf0JOi222j23//SeN48/G+4XsW4iIiIiFSIyyvHn3jiCQYPHsyCBQvw9HS8vKSkhNGjRzNx4kS++OILt4cUEanRyueOJx/52aWDqQexY6euf12t1hQRQ1wbeS3LBi5jXPw4TmadZHjccGb0nEG3+t2MjibiZMvJJWP5ctKWLKEkMREAs58fde65h5Dhw7DUq2dwQhERERGpiSq1cvyZZ55xFuMAnp6ePP300+zevdulZ82ZM4err74aq9WK1Wqla9euxMXFOa8XFBQwbtw4QkNDCQgI4I477uDChQsXPePUqVPExsbi5+dHREQEkydPpqSk5KJ7Nm/eTKdOnfD29qZly5YsXrzY1d+2iEjlOcvxn68cT0gpmzeukSoiYqAm1ib8PebvdIroRE5xDo9ueJQVR1cYHUuE4qQkkma8xfe9epE0bRoliYl4hIcRPmkSLTdvIvKZp1WMi4iIiEiluVyOW61WTp069bPzp0+fJjAw0KVnNWzYkDfffJM9e/awe/duevfuzW233UZCgqMseuKJJ/jss89Yvnw5W7Zs4dy5cwwZMsT5epvNRmxsLEVFRWzfvp0lS5awePFiXnrpJec9x48fJzY2ll69erFv3z4mTpzI6NGjWbdunau/dRGRyikvx9NPQlHeRZcOpDrmjWukiogYrY5PHRbcsoBBzQdhs9t4dcervLX7LUrtpUZHkytQ4Q8/cO7FFznWpy+pCxZQmp2NV7Nm1JvyZ1rGxxM25iE8rFajY4qIiIhIDWey2+12V14wfvx4Pv30U6ZPn063bo6P227bto3Jkydzxx138M4771xSoJCQEP76179y5513Eh4ezkcffcSdd94JwOHDh2nTpg07duygS5cuxMXFMWjQIM6dO0dkZCQAc+fO5ZlnniE5ORkvLy+eeeYZVq9ezYEDB5zvce+995KRkcHatWsrlCkrK4ugoCAyMzOx6odwEamMvzSHvFQYswXqX+M8PeDfAzibc5b5/ebTtX5XAwOKiDjY7XbmfjOX2d/MBqBv475MuXEK/hZ/g5PJlSDv672kLlxITny885xvp06EjhpJQK9emMwur+0RERERkSuMK12uyzPHp0+fjslkYvjw4c7xJRaLhbFjx/Lmm29WLjGOVeDLly8nNzeXrl27smfPHoqLi+nbt6/zntatW9O4cWNnOb5jxw7at2/vLMYB+vfvz9ixY0lISKBjx47s2LHjomeU3zNx4sRfzVJYWEhhYaHz66ysrEr/vkREAMfq8ZPbHHPHy8rx9IJ0zuacBbRyXESqD5PJxNhrxtIwsCEvb3+ZDac28P2q75neYzpRIVFGx5NayF5aSs6mTaQuXET+1187zwf06UPoqJH4depkYDoRERERqc1cLse9vLx49913mTp1KseOHQOgRYsW+Pn5VSrA/v376dq1KwUFBQQEBPDpp5/Stm1b9u3bh5eXF3Xq1Lno/sjISBLLNuFJTEy8qBgvv15+7bfuycrKIj8/H19f359lmjp1Kq+++mqlfj8iIr/IWY7/OHc8IdUxQqqJtQlWL30qRUSql1tb3EqjwEY8teUpTmSd4P419/Pc9c8x5KohmEwmo+NJLVBaVETWypWkLlxE0fHjAJgsFoJuv42QBx/Eu3lzgxOKiIiISG3nUjl+4sQJ1q9fT1FRET179qR9+/aXHCAqKop9+/aRmZnJihUrGDFiBFu2bLnk516K5557jkmTJjm/zsrKolGjRgYmEpEaz7kp5xHnqQMpZfPGQ7VqXESqp2sirmH5rct5/svn+fLsl7yy4xV2X9jNn7r8CT9L5RZGiNhycsn45z9IXbIEW3IKAObAQILvvZfgYX/EEhFhcEIRERERuVJUuBzftGkTgwYNIj8/3/FCT08WLVrEH//4x0sK4OXlRcuWLQG49tpr2bVrF++++y733HMPRUVFZGRkXLR6/MKFC9StWxeAunXrsnPnzoued+HCBee18mP5uZ/eY7Vaf3HVOIC3tzfe3t6X9PsSEblIRFk5nvSTleMpjpXj7cLaGZFIRKRCgn2CmdVnFosOLGLm3pms+mEVCakJzOgxg6uCrzI6ntQgtqws0j78kLSlH1KamQmAZ926hIwYQZ277sIjQHPtRUREROTyqvCONn/605/o168fZ8+eJTU1lYceeoinn37a7YFKS0spLCzk2muvxWKxEP+TzXiOHDnCqVOn6NrVsWld165d2b9/P0lJSc571q9fj9VqpW3bts57fvqM8nvKnyEiclmUrxxPPwHF+djtdg6kOlaOqxwXkerObDIzuv1oFvZfSIRvBMczjzN09VD+8/1/jI4mNUBJejpJb7/D9737kPLeTEozM/Fq1ox6U6fS8vN1hD74gIpxERERETGEyW632ytyY506ddi+fbuzdM7Ly8NqtXLhwgVCQ0Mr9ebPPfccMTExNG7cmOzsbD766COmTZvGunXr6NevH2PHjmXNmjUsXrwYq9XK448/DsD27dsBxyae11xzDfXr1+cvf/kLiYmJDBs2jNGjR/PGG28AcPz4cdq1a8e4ceMYOXIkGzduZPz48axevZr+/ftXKKcrO5yKiPwiux3+0hzy02DMFi4E1aPvir54mDzYMXQHvp6//EkWEZHqJjU/lee/fJ7t5xw/jw1uMZgXbnhBY1bkZ0qSk0n9YDHp//wn9rw8ALyvuoqwsY8Q2L8/Jg8PgxOKiIiISG3kSpdb4bEqWVlZhIWFOb/28/PD19eXzMzMSpfjSUlJDB8+nPPnzxMUFMTVV1/tLMYB3n77bcxmM3fccQeFhYX079+f2bNnO1/v4eHBqlWrGDt2LF27dsXf358RI0bw2muvOe9p1qwZq1ev5oknnuDdd9+lYcOGvP/++xUuxkVE3MJkgog2ZZtyHuZASSoALeq0UDEuIjVKqG8oc/rO4f397zNr3yxWHltJQkoCM3rOoEWdFkbHk2qgODGR1PcXkrF8OfbCQgB82rYldOwjBPbpg8lc4Q+vioiIiIhUqQqvHDebzSxZsoSgoCDnufvuu4933nmHyMhI57nBgwe7P6XBtHJcRNxi9VOwawF0n8DfQsNYsH8BQ64awqvdXjU6mYhIpexK3MXTXzxNSn4Kvp6+/KnLn7i1xa1GxxKDFJ05Q+r8BWR8+ikUFwPg26EDYY+Oxf/mmzGZTAYnFBEREZErQZWsHAcYMWLEz849/PDDzl+bTCZsNpsrjxQRuXJEtHEcLxzkgD0EgOjQaAMDiYhcmuvqXsfyW5fz7NZn+d/5//H8l8+z+8Junrv+OXw8fYyOJ5dJ4fHjpM5fQObKlVD2dwG/664j7NGx+HXpolJcRERERKqtCpfjpaWlVZlDRKT2i3Ds2WBPOkSCRx0AosNUjotIzRbmG8a8vvOY/+185nwzh0+++4T9KfuZ0WMGzYKaGR1PqlDB0aOkzptPVlwclP1dwb97d8LGPoJf584GpxMRERER+X0urRwXEZFLULZy/HReIllFZixmC63qtDI4lIjIpfMwezD2mrF0jOzIM188w3fp33HPqnt4uevLxDaPNTqeuFnBwYOkzJlL9vr1znMBvXoRNvYRfK++2sBkIiIiIiKuUTkuInK5+NYBawMO2NIBaB3SGouHxeBQIiLu06VeF1bcuoJntj7DrsRdPLv1WXZf2M2z1z+Lt4e30fHkEuV/8w0ps+eQs2WL44TJROAttxD2yMP4tGljbDgRERERkUrQVvEiIpdTRBsOeHsBmjcuIrVTuF84C/ot4OGrH8aEiRVHV3D/6vs5mXXS6GhSSXm7dnFq5EhO3HOvoxg3m7HeeivNP1tJw3ffUTEuIiIiIjWWynERkcspoi0JZeV4u7B2BocREakaHmYPHuv4GHP7ziXEJ4Qj6Ue4Z9U9rD2x1uhoUkF2u52cbds48cc/cnLYcHK37wBPT4LuGEKLNatp8Ne/4N2ypdExRUREREQuicaqiIhcRrbw1hw6q3JcRK4M3Rp0Y/mty5m8ZTJfJ33N5C2T2Z24m8nXTdaYlWrKbreTs2ULKXPmUPDNtwCYLBaC7hhC6OiH8GrYwOCEIiIiIiLu43I5fvr0aUwmEw0bNgRg586dfPTRR7Rt25YxY8a4PaCISG3yg7+VfLMZv1I7TQObGB1HRKTKRfhFsLD/Qmbtm8X7+9/nX0f+xbfJ3zKjxwwaWRsZHU/K2EtLyd6wgZS5cyk8eAgAk7c3de65m9BRo7BERhqcUERERETE/VweqzJ06FA2bdoEQGJiIv369WPnzp288MILvPbaa24PKCJSmxwozQegTWEhHnkpBqcREbk8PM2eTOg0gdl9ZlPHuw6H0g5x96q7WX9yvdHRrnh2m43MVas5ftttnB0/gcKDhzD5+REyaiQt4zdQ9/nnVYyLiIiISK3lcjl+4MABrr/+egA+/vhj2rVrx/bt21m2bBmLFy92dz4RkVolIeMoAO2KiiDpoMFpREQur5sa3sTyW5fTMaIjOcU5TNo8iTd3vkmRrcjoaFccu91O9qZN/DDoVs499RSF332POSCA0LGP0DJ+A5GTJ+MZFmZ0TBERERGRKuVyOV5cXIy3t2NG5IYNGxg8eDAArVu35vz58+5NJyJSyxxIOQBAu8IiSDpkcBoRkcuvrn9dFvZfyIPtHgRg2aFljIgbwZnsMwYnu3IUHDnK6VGjODP2UYqOH8cjKIjwCeNpuTGeiAkT8AwONjqiiIiIiMhl4XI5Hh0dzdy5c9m6dSvr169nwIABAJw7d47Q0FC3BxQRqS2KbEUcST8CQHRhIVzQynERuTJZzBYmXTuJmb1nEuQdxIHUA9y96m42ntpodLRarSQ1lfMvv8LxP/yB3O07MFkshD40mhbxGwgbOxYPq9XoiCIiIiIil5XL5fi0adOYN28ePXv25L777qNDhw4ArFy50jluRUREfu5o+lFKSkuo4+lHwxKbxqqIyBWvR6MeLB+0nKvDrya7KJsJmybwl11/odhWbHS0WqW0qIjU99/nWP8BZPzrX1BaSuCAATSPW0PEk0/iERBgdEQREREREUN4uvqCnj17kpKSQlZWFsE/+cjlmDFj8PPzc2s4EZHapHykSnRwK0wchuTDUFoKZpf/nVJEpNaoF1CPxf0X887X77D04FI+PPgh3yR9w197/JX6AfWNjlej2e12sj9fT9L06RSfPg2AT3Q0kc89i1/nzganExERERExXqUaGbvdzp49e5g3bx7Z2dkAeHl5qRwXEfkNCakJAERHdgYPbyjOg4wTxoYSEakGLB4WJl83mXd7vUugVyDfpnzLXZ/dxRdnvjA6Wo2Vn5DAqWHDOTthAsWnT+MZEUG9qVNpuvxjFeMiIiIiImVcLsdPnjxJ+/btue222xg3bhzJycmAY9zKU0895faAIiK1hXMzzvCrIbyV46Q25RQRcerduDfLb11O+7D2ZBVlMS5+HDP3zsRWajM6Wo1RfCGJc889z4k77yJv925M3t6EPfooLdbGUecPt2PSp5VERERERJxc/ul4woQJdO7cmfT0dHx9fZ3n//CHPxAfH+/WcCIitUWhrZDjmccBaBPaBiKiHRc0d1xE5CINAhqweMBi7o26F4B5385j7IaxpBekG5yseistKCBlzhyOxcSQ+emnYLdjvfVWWqyNI3z845j1CU8RERERkZ9xeeb41q1b2b59O15eXhedb9q0KWfPnnVbMBGR2uSHjB+w2W1YvaxE+kVCRBvHhQsqx0VE/j8vDy9e6PIC10Rcw6s7XmXH+R3c9dldzOg5gw7hHYyOV63Y7XayVq8hacYMSs6fB8C3Qwcin38O3w76fyUiIiIi8ltcXjleWlqKzfbzj7aeOXOGwMBAt4QSEaltjqQfASAqJAqTyQQRbR0XNFZFRORXxTaP5aOBH9HU2pQLeRd4YO0D/OPwP7Db7UZHqxby9+3j5L33ce6ppyg5fx7PevWoP2M6Tf75DxXjIiIiIiIV4HI5fsstt/DOO+84vzaZTOTk5PDyyy8zcOBAt4YTEaktjqSVlePBUY4TkWXleOp3UFJkUCoRkeqvZXBL/hH7D/o16UdJaQlv/O8Nnt36LHnFeUZHM0zx+fOcfWoyJ+69j/xvvsHk50f4hPG0iFtDUGys4x9hRURERETkd7lcjs+YMYNt27bRtm1bCgoKGDp0qHOkyrRp06oio4hIjfdd+ncAtAou24jT2gC8rVBa4ijIRUTkVwV4BTCjxwwmd56Mh8mDNcfXMHT1UH7I/MHoaJdVaW4uyX/7G8cGxJC1ahWYTAQNGUKLuDjCxo7F7ONjdEQRERERkRrF5ZnjDRs25JtvvuGf//wn3377LTk5OYwaNYr777//og06RUTEwW63O8eqtAopK8dNJsfc8dP/c4xWiYw2MKGISPVnMpkYHj2cdmHteGrLUxzLPMZ9q+7jte6v0b9pf6PjVSl7aSmZ//kvyW+/TUlyMgB+nTsT8dyz+Ebr+4eIiIiISGW5XI4DeHp68sc//tHdWUREaqWkvCQyCjMwm8y0rNPyxwsRbcvKcW3KKSJSUZ0iO/HxrR/z9BdPsytxF09teYpvkr/hiWufwGK2GB3P7fJ27+bC1DcpSEgAwNKwIRGTJxN4Sz+NTxERERERuUQVKsdXrlxJTEwMFouFlStX/ua9gwcPdkswEZHaonzVeFNrU7w9vH+8UL4p5wWV4yIirgjzDWN+v/m8t/c9Fh1YxIcHP+RAygGm95hOhF+E0fHcoujMGZL+Op3sdesAMPv7E/boWIKHDcPs5WVwOhERERGR2qFC5fjtt99OYmIiERER3H777b96n8lkwmazuS2ciEhtcDT9KPCTzTjLRbRxHLVyXETEZZ5mT5649gmuDr+aF798kb1Je7nrs7uY3mM619W9zuh4lWbLySF17lzSlizFXlwMZjN17ryT8PGP4xkWZnQ8EREREZFapUIbcpaWlhIREeH89a/9p2JcROTnjqY5ynHnvPFy5SvHM05CYc5lTiUiUjv0adyHfw36F62CW5FWkMboz0ezcP9C7Ha70dFcYrfZSP/XxxzrP4DU9xdiLy7Gv1tXmn36KfVee1XFuIiIiIhIFahQOS4iIpVXPlblZyvH/UMhINLx6+TDlzmViEjt0djamL8P/DuDWwym1F7KO1+/w4RNE8gqyjI62u+y2+3kbP2S40PuIPHll7GlpuLVtCkN58ym0cKF+ES1+v2HiIiIiIhIpbhcjo8fP56//e1vPzs/c+ZMJk6c6JZQIiK1RaGtkBNZJwBoFfwLBYdGq4iIuIWvpy9Tuk/hpa4vYTFb2HR6E/euupcjaUeMjvar8vcf4NSDIzn90EMUHjmC2Wol8rlnab7yvwT26qUNN0VEREREqpjL5fi///1vunfv/rPz3bp1Y8WKFW4JJSJSW3yf8T2l9lLqeNf55U3iIqIdR23KKSJyyUwmE3e1uosPYz6kvn99Tmef5v419/Of7/9jdLSLFJ08ydlJkzhx113kffUVJouFkBEjaLFuLSEjRmDShpsiIiIiIpeFy+V4amoqQUFBPztvtVpJSUlxSygRkdqifN54VHDUL68A1MpxERG3iw6L5uNbP+bGBjdSaCvkT9v+xCvbX6HQVmhorpLUVBL/PIVjsYPIWhMHJhNBtw2meVwckc89i2dwsKH5RERERESuNC6X4y1btmTt2rU/Ox8XF0fz5s3dEkpEpLY4mu4ox68KvuqXbyjflDPp0GVKJCJyZQjyDmJWn1mMu2YcJkz8+7t/M2zNMM5kn7nsWUpzc0meNYtj/W4hfdkyKCnB/6abaPbpJ9SfNg2vhg0ueyYREREREQFPV18wadIkHnvsMZKTk+nduzcA8fHxzJgxg3feecftAUVEajLnZpwhUb98Q0RrxzE3CXJTwD/sMiUTEan9zCYzj3R4hKvDruaZrc9wKO0Q96y6h6k3TeXmhjdX+fvbi4vJWLGC5FmzsZV9wtInOpqIyU/h36VLlb+/iIiIiIj8NpfL8ZEjR1JYWMjrr7/On//8ZwCaNm3KnDlzGD58uNsDiojUVHa73bkRXFTwr5TjXv4Q3BTSTzhGqzSr+rJGRORK061BNz4e9DFPbnmS/Sn7GRc/joevfpixHcbiYfZw+/vZ7fb/Y+++47Ks9z+Ov+4bbvYQREBRRFTc2Vbb/cytKGrlyjJLT46GpWXjVFpaeTTbw6Zp7glqrtLsaJ5S04ZiDkREAWXL5r5+f+DNsdMSBS7G+/l48LgQLu7r7R8pvf3y+ZC1fj3Jr75K4bF4AGyhoQQ+/BDe3btjsZb5hzdFRERERKQCWAzDMC72i1NSUnB3d8fLy6s8M1U5mZmZ+Pr6kpGRgY+Pj9lxRKSaOHX2FF2WdsHJ4sTOoTtxdXL94xsXDIHYNdDjFegwunJDiojUIgXFBcz4bgYLYxcC0Kl+J1666SX83fzL7Rlnd/6H5Jkzydu3DwAnf38Cxo7B7/bbtWhTRERERKQSlKXLvahjK0VFRWzatInly5fj6NYTExPJzs6+mJcTEamRHPPGm/g2+fNiHP67lDPp50pIJSJSe7k4ufBUx6eYfuN03J3d2XFyB3dE38HelL2X/Np5sQeJHz2a+LvvJm/fPiweHgSMGUPTDRvwHzpUxbiIiIiISBVU5rEqx44do3v37sTHx5Ofn0+XLl3w9vbm5ZdfJj8/n3fffbcicoqIVDuOkSoRfhF/faOjHNdSThGRStE7vDct/FowYcsE4jLjuOeLe5h0zSQGtRiExWIp02sVJiaS8vobZKxaBYYBzs743XE7AQ88gHO9ehX0OxARERERkfJQ5pPjDz30EFdffTVpaWm4u7uXfjwqKorNmzeXazgRkerMcXL8T5dxOgS1Kbkm7y8pVkREpMI192vOgl4L6NK4C0X2IqbtnMYT254gpzDngr6+OD2dpFdmcLh7DzJWrgTDwLt7d5rGRBP8z3+qGBcRERERqQbKfHJ827ZtbN++HZf/+dHQsLAwTpw4UW7BRESqu9i0Czw57t8UrDYoyIKM41AntBLSiYiIl4sXM2+eyWe/fMasXbNYe3QtsamxzLp1FuG+4X/4Nfa8PNLmzeP0+3OwZ2YC4HHNNQROfAz3yy6rzPgiIiIiInKJynxy3G63U1xc/LuPJyQk4O3tXS6hRESqu7yiPI5lHgOghd/fnBx3doGA5iXva7SKiEilslgsDG8znA+7fUg993oczjjMoJhBrD68+jf3GcXFpC9bzuHuPUj+10zsmZm4Nm9Oo/feJXTupyrGRURERESqoTKX4127dmX27Nmlv7ZYLGRnZ/Pss8/Ss2fPcg0nIlJdHUo/hN2w4+/mT4B7wN9/QWDrkmvyLxUbTERE/tBVQVexuM9iOgR3ILcol6e+eYqnv3maswVnyfryK47268fJp56i6NQpnOvXp/706TRZuQKvm28u85xyERERERGpGso8VmXmzJl069aN1q1bk5eXx5AhQ/j1118JCAhgwYIFFZFRRKTaccwbb+7X/MJKE8dSziSV4yIiZglwD+C9Lu/x/o/v8+7ed/nl65VsfWEtTeJyAbD6+hIwahR+w4ZidXU1Oa2IiIiIiFyqMpfjDRs2ZO/evSxcuJB9+/aRnZ3NyJEjGTp06G8WdIqI1GaxqSXzxv92pIpD6clxjVURETGTk9WJe727c8M323H++nsglwInyOp3Ex0nvoxznTpmRxQRERERkXJS5nIcwNnZmWHDhpV3FhGRGsOxjLOF/wWW40HnyvHTsVBcBE4X9ceziIhcgqK0NFJmv0b60qU4FxeD1cpP19bjratOc8ZnO71/fJlnOj6Dh83D7KgiIiIiIlIOyjxzHCA2NpZx48bRuXNnOnfuzLhx4zhw4EB5ZxMRqZYMwygdqxLhF3FhX+QbCjZPKC6A1MMVmE5ERP5I1ubNHOndh/RFi6C4GK9bb6XJyhUM+PhLht78EFaLlZgjMdwZc2fpTweJiIiIiEj1VuZyfNmyZbRt25Zdu3bRvn172rdvz+7du2nXrh3Lli2riIwiItXKqbOnyCrIwtniTLhv+IV9kdUKgS1L3tdSThGRSlOcmUni40+QMHYcxWfO4Nq8GY0/m0ujd97GLSICq8XK/Zfdz0fdPiLQI5C4zDiGrBnCkoNLMAzD7PgiIiIiInIJylyOT5r2VBVeAAAgAElEQVQ0icmTJ7Njxw5mzZrFrFmz2L59O08++SSTJk2qiIwiItWKY6RKkzpNcHFyufAv1NxxEZFKlf3NvzkS2ZeMVavAYqHufSMJW7oUj2uu+d29VwVdxdI+S7kh5AYK7AVM2TGFx79+nOyCbBOSi4iIiIhIeShzOX7y5EmGDx/+u48PGzaMkydPlksoEZHqrMwjVRwc5XjSz+WcSEREzmc/e5aTzz/P8fvuo+jUKWyNQ2k8fz6Bjz2G1dX1T7/Oz82Ptzq/xYSrJuBkcWJd3DrujLmT/Wf0j5oiIiIiItVRmcvxW265hW3btv3u49988w033nhjuYQSEanOHLNoW/hd4DJOh8BWJVedHBcRqTA533/PkX5RpC9YCIDf0KGEr1iBx5VXXNDXWy1WRrQdwSfdPyHYM5j4rHiGrh3KggMLNGZFRERERKSacS7rF0RGRvL444+za9cuOnbsCMC3337LkiVLeP7551m9evVv7hURqW0cJ8fLXI4HtSm5ph6BwlywuZdzMhGR2suen0/K7NdI/eQTMAyc69enwbQX8ezU6aJe7/LAy1naZylPf/M0WxK2MG3nNL479R3PX/c83i7e5RteREREREQqhMUo4xEXq/XCDptbLBaKi4svKlRVk5mZia+vLxkZGfj4+JgdR0SqsNyiXDrM74CBwVd3fEWAe8CFf7FhwIymkHMGRm2BBhd2ilFERP5a7o8/kfjEExQcPgyA74D+BD3xBE7el15iG4bBZ798xqu7X6XIXkSIVwgzb55Jm4A2l/zaIiIiIiJSdmXpcss8VsVut1/QW00pxkVEyuJQ2iEMDPzd/MtWjANYLFrKKSJSjoyCAlJef524QYMoOHwYp3oBNHznbRq8+GK5FONQciBkeJvhzO0+lxCvEE5kn2DYumHM+2WexqyIiIiIiFRxZS7HRUTkz8WmXeS8cQct5RQRKRd5sQc5OmgQp99+B4qL8enZk/DVq/G+9dYKeV67eu1Y3GcxnUM7U2Qv4uXvXubhrx4mIz+jQp4nIiIiIiKX7oLL8R07dhATE/Obj82dO5cmTZoQGBjIqFGjyM/PL/eAIiLVSem8cf+LLce1lFNE5FIYxcWcnjOHuIEDyf9lP0516hDy6ixCZs3E2c+vQp/t4+LDq7e8yuRrJ2Oz2vjy+JfcEX0H+1L2VehzRURERETk4lxwOT5lyhR+/vm/Jxl//PFHRo4cyW233cYTTzxBdHQ006dPr5CQIiLVRWxqycnxCL+Ii3sBjVUREblo+UePcmzIUFJmzsIoLMTr1lsJj16NT48elZbBYrEwpNUQPuv5GY28G5F4NpG7193Npz9/qjErIiIiIiJVzAWX4z/88AOdO3cu/fXChQvp0KEDc+bMYcKECbz++ussXry4QkKKiFQHhmHwa9qvwKWU4+dOjmclQm5aOSUTEanZDLud1M/mcTSqP7l792L18qL+tGk0fPstnOvVMyVTm7ptWNR7Ed3CulFkFPGv7//F+C/Hk56XbkoeERERERH5vQsux9PS0ggKCir99datW+lx3imca665huPHj5dvOhGRaiTxbCJZhVk4W50J9w2/uBdx8wHfRiXv6/S4iMjfKjxxgvgR95L04osYeXl4dOpI+OpV1OkfhcViMTWbt4s3M26awTMdn8HF6sLWhK0MjB7InuQ9puYSEREREZESF1yOBwUFcfToUQAKCgrYvXs3HTt2LP18VlYWNput/BOKiFQTB1NL5o2H+4Zjc7qEPw9LR6v8Ug6pRERqJsMwSF+6lCORfcnZuROLuztB/3yG0A8/xNaggdnxSlksFu5ocQfze82nsU9jknKSGPHFCD748QPsht3seCIiIiIitdoFl+M9e/bkiSeeYNu2bUyePBkPDw9uvPHG0s/v27ePpk2bVkhIEZHqIDatZN54C7+LXMbp4BitkqRyXETkjxQmJXP8H//g5NPPYD97FvcrryR85Qr8hwzBYr3gb28rVUv/lizqvYieTXpSbBTz2u7XGLN5DKl5qWZHExERERGptS74/x6mTp2Ks7MzN998M3PmzGHOnDm4uLiUfv6jjz6ia9euFRJSRKQ6OJhWcnK8hf+lluNayiki8kcMwyBjzRqOREZyduvXWGw2AidOpPFnc3Fp3NjseH/L0+bJSze+xHOdnsPVyZV/n/g3t6++ne9PfW92NBERERGRWsn5Qm8MCAjg66+/JiMjAy8vL5ycnH7z+SVLluDl5VXuAUVEqgtHOX7Ryzgdgs4bq2IYYPLMXBGRqqAoLY1Tz08h64svAHBr3ZoGL7+Ea/PmJicrG4vFwoCIAbSr147Htj7G0YyjjNwwkjHtx3Bfu/twsjr9/YuIiIiIiEi5KPPPnfr6+v6uGAfw9/f/zUlyEZHaJKcwh/jMeKAcyvG6zcHiBHnpkHWyHNKJiFRvWV9+yZHefUqKcWdnAsaNI2zRwmpXjJ8vwi+Chb0WEtk0Erth580f3mT4uuH8kPyD2dFERERERGqNqjmUUUSkmvk1/VcMDALcA6jrXvfSXszmBnXP7XDQUk4RqcWKMzNJfGIyCWPGUnzmDK7NmxG2cCH1xo3FUgMWwXvYPHjxhhd54foXcHd2Z9/pfdy17i4e2/oYCVkJZscTEREREanxVI6LiJSD0nnjl7qM00Fzx0Wklsv+9785EtmXjJUrwWKh7n0jCVu6FPe2bcyOVu76NutLTFQMUc2isGBhfdx6IldGMuv7WWQWZJodT0RERESkxlI5LiJSDmJTY4FyGKni4CjHk3RyXERql+LsbE4++xzHR95H0alT2BqH0nj+fAIfewyrq6vZ8SpMoEcgU66fwpI+S+hQvwOF9kI+/vljei3vxYIDCyi0F5odUURERESkxlE5LiJSDkqXcfqXVznequSqsSoiUotkbdnCkV69SV+0CAC/oUMJX7ECjyuvMDlZ5Wnh34I5XebwVue3aOLbhPT8dKbtnEb/Vf3ZenwrhmGYHVFEREREpMZwNjuAiEh1ZxhG+Y9VCTo3NiAlFuzFYP39ImQRkZqiKDWVpGnTyYyJAcDWOJT6U6bi2eFak5OZw2KxcFPDm+jUoBPLDi7j7R/eJi4zjnFfjqND/Q5MvHoiLfzL6e8bEREREZFaTCfHRUQu0YnsE5wtPIvNaiPMN6x8XtQvDJzdoCgX0uLK5zVFRKoYwzDIiFnDkV69S4pxqxX/kfcSvnJlrS3Gz2ez2hjUchBr+q/h3rb3YrPa2HlyJ7dH384z/36G5JxksyOKiIiIiFRrKsdFRC5RbFrJvPGmdZpis9rK50WtTlDv3KlAjVYRkRqo8NQpEh4YQ+Jjj1GcloZrRARhixYRNHEiVnd3s+NVKd4u3jxy1SNER0XTI6wHBgYrD62k94revPPDO+QU5pgdUURERESkWlI5LiJyiQ6mnps3Xl7LOB0Cz41WSd5fvq8rImIiw24nbdFijvTuQ/aWLWCzEfDgeJosXYJ7u7Zmx6vSQrxCeOXmV5jXcx7t67UntyiXt/e+TZ8VfVh5aCV2w252RBERERGRakXluIjIJSpdxlnu5fi5pZxJP5fv64qImKTg2DHi7xnBqWefxZ6djXv79oSvWE69MWOwuLiYHa/aaF+vPZ/1+IwZN88gxCuE5Nxknvn3M9wZcyc7T+40O56IiIiISLWhclxE5BI5xqqU+3K0wNYlV50cF5Fqzigq4syHH3Eksi85//kPFnd3gp6cTOPP5+ParJnZ8aoli8VC97DurO63mkevehRvmzcHUg9w34b7GL95PEczjpodUURERESkylM5LiJyCc4WnuV41nEAWviVczkedK4cP3MIivLL97VFRCpJXmwscYMGkzxjBkZ+Pp7XdSI8ejX+w4djcXIyO1615+Lkwj1t72FN/zUMbjkYJ4sTWxK20H9Vf6btnEZaXprZEUVEREREqiyV4yIil+DXtF8BCHQPxM/Nr3xf3Ls+uPmCUQynD5bva4uIVDB7QQEpr7/B0QEDyfvpJ6ze3tR/8QUaffghLg0bmh2vxvFz8+PJDk+yvO9ybml4C0VGEQsOLKDX8l588tMnFBQXmB1RRERERKTKUTkuInIJHPPGm/s3L/8Xt1g0WkVEqqXcH37gaP/+nH77bSgqwuu2zoTHxFBnwAAsFovZ8Wq0cN9w3uj8Bh90/YCW/i3JKsxi5q6ZRK6MZH3cegzDMDuiiIiIiEiVoXJcROQSxKaemzde3iNVHBzluJZyikg1YM/JIWn6dOIGD6Hg0GGc6tYlZPZsGr7xBragQLPj1Sod6ndgYa+FTL1+KvXc63Ei+wSPbX2M4euGszdlr9nxRERERESqBJXjIiKXwHFyvOLK8VYlV50cF5Eq7uz27RyJ7Evqp3PBMPDt25fwmGh8unfTaXGTOFmd6NesHzFRMYxpPwZ3Z3d+SPmBYWuHMWnrJE5knzA7ooiIiIiIqVSOi4hcJLthLy3HI/wiKuYhQW1KrirHRaSKKs7MJPGpp4i/dySFCQk4N6hPoznv0+Dll3D2K+ddDHJRPGwePHD5A8RExdCvWT8sWFgXt47IFZG8uutVsgqyzI4oIiIiImIKleMiIhfpRNYJcopycLG6EOYbVjEPqdey5JoRD3mZFfMMEZGLlLVpE0d69SZj2XIA/IYOJXx1NF433mhyMvkjgR6BTL1+Kov7LKZDcAcK7AV89NNH9F7Rm0UHFlFkLzI7ooiIiIhIpVI5LiJykRynxpvWaYqz1bliHuLhD971S95POVAxzxARKaOi06dJePgREsaNpyglBZcmTWg8fx7BzzyNk5en2fHkb7T0b8mcrnN48//epIlvE1LzUnlh5wsMWD2ArxO+1tJOEREREak1VI6LiFyk2LSSZZwVNlLFwbGUM/mXin2OiMjfMAyD9JUrOdyrN1lffAFOTtQdNYomK1fgcdVVZseTMrBYLNzc6GaWRS7jyQ5P4ufqx5GMI4zdPJZRG0eVLpwWEREREanJVI6LiFwkR3HQwr+ClnE6OJZyJqkcFxHzFJ44wfFRozn5xGTsGRm4tmpFkyWLCZzwCFZXV7PjyUWyWW0MbjmYmP4xjGgzApvVxrcnv+X26Nt5dvuzpOSkmB1RRERERKTCqBwXEblIjrEqLfwquhzXyXERMY9ht5M6fz5H+kRydts2LC4u1JswgSaLF+HWurXZ8aSc+Lj4MOHqCazut5ruYd0xMFj+63J6rejFu3vfJbco1+yIIiIiIiLlTuW4iMhFyC7IJiE7AaiEsSpBjnJ8f8U+R0Tkf+QfOcqxu4aTNPUF7Dk5uF91FU1WriRg1P1YbDaz40kFaOjdkBk3z+CzHp9xWb3LyC3K5a0f3qL3it6sPrwau2E3O6KIiIiISLlROS4ichF+Tf8VgECPQOq41anYhwW0ACyQcxqykyv2WSIinDstPvczjkZFkbtrF1YPD4KeeZrGn83FNbyJ2fGkElweeDnzesxjxk0zCPEKITknmae+eYpBMYP47tR3ZscTERERESkXKsdFRC5C6bzxih6pAuDiAf7nyiiNVhGRClZ46hTH77uPpGnTMPLz8bzuOsKjV+M/dCgWq751rE0sFgvdm3RnVb9VTLhqAl42L/an7ufe9ffy4JcPEpcRZ3ZEEREREZFLov/DERG5CKXzxit6GadDoEariEjFMgyDjOgYjkT25ez2HVjc3Aj65zM0+vADbCEhZscTE7k6uTKi7QjW9F/DoBaDcLI48dXxr4haFcVL/3mJ9Lx0syOKiIiIiFwUleMiIhchNq3k5HiFzxt3cJTjST9XzvNEpFYpTk/nxIQJJE6ciD0zE7fLLqPJ8uX4DxmCxWIxO55UEf5u/jzV8SmWRy7n5oY3U2QUMX//fHqu6MmnP39KQXGB2RFFRERERMpE5biISBnZDTu/ppXMHK+UsSoAga1Krjo5LiLlLHvbNo70iSRr3Rfg5ETA+HGEfT5fs8XlT4XXCefNzm8yp+scWvi1IKsgi399/y/6ruzLhrgNGIZhdkQRERERkQuiclxEpIwSshLILcrF1cmVUJ/QynloUJuSa8oBsNsr55kiUqPZc3I4+fzzHL9/FEUpKbiEhxO2cCH1xo7F4uxsdjypBjrW78ii3ouYct0U6rnXIyE7gUe3PsrdX9zNjyk/mh1PRERERORvqRwXESkjx0iVpnWa4mytpALJPxycXKAgGzLiK+eZIlJj5e7dy9Go/qQvWAiA31130WT5MtzbtTU5mVQ3TlYnoppHERMVwwPtH8Dd2Z09yXsYsnYIj3/9OInZiWZHFBERERH5UyrHRUTKKDa1pByvtJEqAE42CDg331yjVUTkIhmFhSS/9hpxg4dQcOwYzsHBhH70IcFPPYnVzc3seFKNedg8GHP5GKL7RdO3aV8sWFh7dC19VvRh9q7ZZBdkmx1RREREROR3VI6LiJTRwbSDALTwr8RyHP67lDP5l8p9rojUCPmHDhF35yDOvPMu2O349O5N+KqVeF53ndnRpAYJ8gzihRteYFHvRVwbfC0F9gI+/OlDeq3oxeLYxRTZi8yOKCIiIiJSSuW4iEgZOcrxCL+Iyn2wYylnkspxEblwht1O6qefcrT/APJ++QWrry8hr84i5F8zcPL1NTue1FCt6rbig64f8PqtrxPmE0ZqXipTv53KwNUD2ZawTUs7RURERKRKUDkuIlIGWQVZnMg+AZhRjjtOjmusiohcmMLEROLvHUnS9JcwCgrwvOEGwlevxqdHD7OjSS1gsVi4NfRWlvddzuRrJ1PHtQ6HMw4zZvMYRm8cXfqPzSIiIiIiZlE5LiJSBr+m/QpAsGcwvq6VfOIy6Fw5fvogFBdW7rNFpFoxDIOM1as50rcfOd9+i8XdneBn/0mjOe9jCwo0O57UMjarjSGthrCm/xruaXMPNquNHSd3cHv07bz8n5c1j1xERERETKNyXESkDGLTTFjG6eDbCFy8wF4IZw5V/vNFpFooSkvjxMOPkDjpcexZWbi1v4zwFcvxGzwYi8VidjypxXxcfHj06kdZ1W8VXRp3wW7Ymbd/HpErI/ni6BcatSIiIiIilU7luIhIGcSmlpTjlT5SBcBi+e/ccS3lFJE/kP311xyJjCRr/XpwdqbeQw8SNn8+LmFhZkcTKdXIuxGzbpnFe7e9R6h3KCm5KUz8eiKjN44mLiPO7HgiIiIiUouoHBcRKQPHWJUIfxPKcfjv3HEt5RSR89jPnuXks89xfNRoilNO49K0KWELFxLwwANYnJ3Njifyh64LuY7lfZcz5vIxuFhd2HFyB/1X9+fNPW+SV5RndjwRERERqQVUjouIXKBiezG/ppeU46aMVQEt5RSR38nZs4cjUf1JX7QIAP+7h9Nk2VLc27YxOZnI33N1cuWB9g+wsu9Krg+5nkJ7Ie/te4+oVVFsS9hmdjwRERERqeFUjouIXKDjWcfJLcrFzcmNUO9Qc0I4lnJqrIpIrWcUFJA8ezbHhg6jMD4e5/r1Cf3kY4ImT8bq5mZ2PJEyaeTTiHc6v8OsW2YR6BFIQnYCYzaP4ZGvHuHU2VNmxxMRERGRGkrluIjIBXIs42xWpxlOVidzQjhOjqfFQcFZczKIiOnyDx3i6KBBnHn3PbDb8YnsQ/iqlXh27Gh2NJGLZrFY6NK4C6v7rebu1nfjZHFiU/wmIldG8vFPH1NoLzQ7ooiIiIjUMCrHRUQu0MG0gwC08DdppAqAZwB41gMMSDlgXg4RMYVht3Pmk0842n8A+b/sx8nXl5DZswl55RWcfHzMjidSLjxtnjx2zWMs7rOYKwKvILcol1m7ZnFH9B3sStpldjwRERERqUFUjouIXKCDqSXleHO/5uYG0dxxkVqpMDGR+BH3kvzSyxgFBXjedCNNolfj072b2dFEKkSEXwSfdP+EqddPxc/Vj0Pph7jni3t46punOJN7xux4IiIiIlIDqBwXEblAjrEqpi3jdHCU40maOy5SW2SsXs2RyL7k7NyJxd2d4Oeeo9F772ELDDQ7mkiFslqs9GvWj9X9VjMwYiAAqw+vJnJlJItjF2M37CYnFBEREZHqTOW4iMgFyCzI5OTZkwBE+EeYGyawVclVSzlFajyjsJBTU6aSOOlx7NnZuF9+OeErV+A36E4sFovZ8UQqTR23Ojzb6Vnm9ZxHS/+WZBZkMvXbqQxbO4xfzujvQxERERG5OKaW49OnT+eaa67B29ubwMBA+vXrR2xs7G/uycvLY+zYsdStWxcvLy8GDBhAUlLSb+6Jj4+nV69eeHh4EBgYyMSJEykqKvrNPVu2bOHKK6/E1dWVZs2a8cknn1T0b09EahDHSJUGng3wcTF5rm9Qm5KrxqqI1GhFqanE3zuStM8/ByBg3Dgaz/sMl8aNTU4mYp729dqzoNcCnrj2CTxtnvx4+kcGrxnM9J3TySrIMjueiIiIiFQzppbjW7duZezYsXz77bds3LiRwsJCunbtytmzZ0vveeSRR4iOjmbJkiVs3bqVxMRE+vfvX/r54uJievXqRUFBAdu3b+fTTz/lk08+4Z///GfpPUePHqVXr17ceuut/PDDDzz88MPcd999rF+/vlJ/vyJSfTlGqkT4mXxqHKDeubEu2acgJ9XcLCJSIfL27ydu4O3kfPcdVk9PGr79FvXGjcXi7Gx2NBHTOVudGdpqKNH9oukR1gO7YefzA5/TZ0Uf1hxZg2EYZkcUERERkWrCYlSh7x5TUlIIDAxk69at3HTTTWRkZFCvXj0+//xzBg4smTF44MABWrVqxY4dO+jYsSPr1q2jd+/eJCYmEhQUBMC7777L448/TkpKCi4uLjz++OOsWbOGn376qfRZgwYNIj09nS+++OJvc2VmZuLr60tGRgY+PiafGBURUzy3/TmW/bqMUZeNYvwV482OA7PbQXo83LMGwm4wO42IlKPMdetInPwkRl4etsahNHrrLVybNTM7lkiVtSNxB9N2TiMuMw6ADsEdeLLjk4T7hpsbTERERERMUZYut0rNHM/IyADA398fgF27dlFYWMhtt91Wek/Lli0JDQ1lx44dAOzYsYN27dqVFuMA3bp1IzMzk59//rn0nvNfw3GP4zX+V35+PpmZmb95E5HaLTa1iizjdAjUaBWRmsYoLiZ51quceGQCRl4enjfcQJPFi1WMi/yNTg06sSxyGeOvGI+rkys7T+1kwOoBvL77dXKLcs2OJyIiIiJVWJUpx+12Ow8//DDXX389bdu2BeDUqVO4uLhQp06d39wbFBTEqVOnSu85vxh3fN7xub+6JzMzk9zc33/DPH36dHx9fUvfGjVqVD6/SRGplortxRxKPwRUkbEq8N+lnEk/m5tDRMpFcVYWCWPGcub99wHwH3kvjd57FydfX5OTiVQPLk4ujLpsFCv6ruDGkBspshcx58c5RK2KYuvxrWbHExEREZEqqsqU42PHjuWnn35i4cKFZkdh8uTJZGRklL4dP37c7EgiYqL4rHjyivNwd3ankXcV+ceywNYlV50cF6n28o8cJe6OO8neuhWLqysNZrxC0MSJWJyczI4mUu008m7EW53fYvatswn2DOZE9gnGfTmOB798kMTsRLPjiYiIiEgVUyXK8XHjxhETE8NXX31Fw4YNSz8eHBxMQUEB6enpv7k/KSmJ4ODg0nuSkpJ+93nH5/7qHh8fH9zd3X+Xx9XVFR8fn9+8iUjt5VjG2bxOc5ysVaSsCjqvHK86qyNEpIyyv/6auDvvpODoUZyDg2k8fz6+ffqYHUukWrNYLHQO7cyqvqsY0XYEzhZnvjr+Ff1W9ePDHz+ksLjQ7IgiIiIiUkWYWo4bhsG4ceNYsWIFX375JU2aNPnN56+66ipsNhubN28u/VhsbCzx8fF06tQJgE6dOvHjjz+SnJxces/GjRvx8fGhdevWpfec/xqOexyvISLyVw6mHgSguV9zk5Ocp25zsDpDfgZknjA7jYiUkWEYnJ4zh+Oj/4E9Kwv3K6+kydIluLdtY3Y0kRrDw+bBhKsmsKTPEq4Kuorcolxm757NwOiBbE/cbnY8EREREakCTC3Hx44dy7x58/j888/x9vbm1KlTnDp1qnQOuK+vLyNHjmTChAl89dVX7Nq1ixEjRtCpUyc6duwIQNeuXWndujV33XUXe/fuZf369Tz99NOMHTsWV1dXAP7xj39w5MgRJk2axIEDB3j77bdZvHgxjzzyiGm/dxGpPhwnx1v4V5FlnADOLlD33JI+jVYRqVbsubkkPvoYKTNngWFQ5447aPzJxzgHBJgdTaRGaubXjI+7fcyLN7yIv5s/RzKOMHrjaMZ/OZ5jmcfMjiciIiIiJjK1HH/nnXfIyMjglltuoX79+qVvixYtKr3n1VdfpXfv3gwYMICbbrqJ4OBgli9fXvp5JycnYmJicHJyolOnTgwbNozhw4czZcqU0nuaNGnCmjVr2LhxI+3bt2fmzJl88MEHdOvWrVJ/vyJSPR1MKzk53sKvCpXjcN7c8V/MzSEiF6wwMZG4oUPJXLsWnJ0Jfu5Z6k95HouLi9nRRGo0i8VCZNNIVvdbzbBWw3C2OLPl+Bb6rerHzO9nklWQZXZEERERETGBxTA0rPbvZGZm4uvrS0ZGhuaPi9QyGfkZ3LDwBgC2D96Ot4u3yYnOs3UGfPUCXDYI+r9ndhoR+Rs5331HwkMPU5yaipO/Pw1fm43HNdeYHUukVjqSfoRXvn+Ff5/4NwD+bv48eMWD9GvWr+rsFxERERGRi1KWLrdKLOQUEamqHKfGQ7xCqlYxDhDYquSqk+MiVV7aggUcG3EvxampuLZuRZOlS1SMi5govE447972Lm91foswnzBS81J5bsdzDF4zmO9PfW92PBERERGpJCrHRUT+gqMcj/CLMDnJHwg6N1YlJRaKi8zNIiJ/yCgo4OQ/n+XU81OgqAifnj0Jmz8fW4MGZkcTEeCmhjexPHI5E6+eiLfNm/2p+xmxfg94pVAAACAASURBVASPbnmUE9laeC0iIiJS06kcFxH5C7GpVXAZp0OdMHB2h+J8SDtqdhoR+R9Fp09z7J4RpC9eDBYL9R6dQIOZ/8Lq7m52NBE5j83JxvA2w4npH8MdEXdgtVjZcGwDkSsieWPPG+QU5pgdUUREREQqiMpxEZG/EJtWUo5XyZPjVisEtix5X6NVRKqU3B9/4ujA28ndvRurtzeN3n2HgPvvx2KxmB1NRP6Ev5s/z3R6hsW9F3Nt8LUU2At4f9/79FnRh+jD0dgNu9kRRURERKScqRwXEfkTRfYiDqcfBqCFXxU8OQ4Q2KbkmqRyXKSqyIiO5tiwYRSdOoVLkyaELVqE1803mx1LRC5QC/8WfND1A1695VVCvEJIzk3myW+e5K61d7EvZZ/Z8URERESkHKkcFxH5E/GZ8eQX5+Pu7E5D74Zmx/ljWsopUmUYxcUkvTKDxImTMPLz8br5ZsIWL8I1vInZ0USkjCwWC7c1vo1V/Vbx0JUP4eHswb7T+xi6dihPbnuSpLNJZkcUERERkXKgclxE5E84Rqo092uO1VJF/7h0LOVM3m9uDpFarjgjg+Oj/0HqRx8BUHf0aBq+/RZO3t4mJxORS+Hq5Mp97e4jJiqGvk37AhB9JJo+K/vw/r73ySvKMzmhiIiIiFyKKtr2iIiY72DaQaAKj1QBCDxXjqcehsJcc7OI1FL5hw5x9I47OPvNN1jc3AiZNZPARx7G4uRkdjQRKSf1POrxwg0vsLDXQi6vdzm5Rbm8secN+q7sy/q49RiGYXZEEREREbkIKsdFRP5EbGrJyfEqXY57BYG7Hxh2OH3Q7DQitU7Wl18Rd+cgCo/FY2vQgLAFn+PTs6fZsUSkgrQJaMPcHnN5+caXCfIIIvFsIo9tfYwR60dwIPWA2fFEREREpIxUjouI/AnHWJUI/wiTk/wFi+W/Szk1WkWk0hiGwel33iFh7FjsZ8/icc01hC1dglurVmZHE5EKZrFY6Bnek+ioaB5o/wBuTm7sStrFHdF38Nz25ziTe8bsiCIiIiJygVSOi4j8gfS8dJJzkgGI8KvC5Tj8dyln0s/m5hCpJexnz3LioYdJee11MAz8hgwh9KMPcfb3NzuaiFQid2d3xlw+huioaHo06YGBwbJfl9F7RW8++ekTCosLzY4oIiIiIn9D5biIyB9wzBtv6NUQT5unyWn+hqMc18lxkQpXkJBA3OAhZG3YADYbwVOnEPzPZ7DYbGZHExGTBHsG88pNrzC3x1xa121NdmE2M3fNJGp1FFuOb9E8chEREZEqTOW4iMgfcIxUaeFfheeNOwRprIpIZcjZtYu4gbeTf/AgTgEBNP70E/xuv93sWCJSRVwReAULei1gynVTCHAP4FjmMcZ/OZ7RG0dzKO2Q2fFERERE5A+oHBcR+QOOZZxVfqQKQL2WJdfMBMhNNzeLSA2V+cUXxI+4l+L0dNzatqXJ0iV4XHml2bFEpIqxWqxENY8iJiqGkW1HYrPa2HFyBwOjBzJt5zRSclLMjigiIiIi51E5LiLyBxxjVVr4VYOT4+51wCek5P2UA+ZmEalhDMPgzEcfc+LhRzAKCvDq3JnGn83FFhxsdjQRqcI8bZ48fNXDrOq3is6hnSk2illwYAFdl3Vl8rbJ/HxGe0JEREREqgKV4yIi/6PIXsTh9MMARPhXg5PjAIGtS67Jv5ibQ6QGMYqLSXpxGsmvvAKA39ChNHz9Nazu7iYnE5HqopF3I2bfOpsPun7AFYFXUGQvIuZIDINiBnH3urvZELeBInuR2TFFREREai1nswOIiFQ1cRlxFNgL8HD2IMQrxOw4FyawFRzaCEkqx0XKgz03lxMTJ5K9aTMAgZMm4T/iHiwWi8nJRKQ66lC/Ax3qd+Dn0z8zb/88vjj6BbuTd7M7eTf1PeszpOUQoppH4evqa3ZUERERkVpFJ8dFRP6HY6RKhF8EVks1+WOy9OS4lnKKXKqi1FSO3XMP2Zs2Y7HZCHl1FnXvHaFiXEQuWZuANky/cTrrB65n1GWj8HP14+TZk8zcNZMuS7vwwrcvcDTjqNkxRURERGqNatL6iIhUnti0kmWcLfyrwbxxh6DzxqoYhrlZRKqxgrg44gYNJm/vPqy+voR+/BE+PXqYHUtEaphAj0DGXzGeDQM3MOW6KTT3a05uUS6LYhcRuTKSMZvGsD1xO4b+ThcRERGpUBqrIiLyPxzleIRfNZk3DhAQARYr5KZCdhJ4a1mgSFnl7NlDwgNjKE5PxxYSQqM57+MaHm52LBGpwdyc3YhqHkW/Zv34z6n/MO+XeWxN2Mq2E9vYdmIbTX2bMrT1UHqH98bdWfsORERERMqbTo6LiPyPX1N/BapZOW5zB/9zJZ6WcoqUWebGjcTfM4Li9HTc2rYlbNFCFeMiUmksFgsd6nfgjc5vEBMVw9BWQ/Fw9uBwxmGm7JhCl6VdeG33a5w6e8rsqCIiIiI1ispxEZHzpOWlkZybDFSzchw0d1zkIqXO/YwTDz6EkZ+P1y230HjupzgHBJgdS0RqqVCfUJ649gk23b6JiVdPJMQrhIz8DD748QN6LOvBpK2T2Jeyz+yYIiIiIjWCynERkfM4Rqo08m6Eh83D5DRl5CjHk3RyXORCGHY7SdNfImnaNDAM6gy6k4ZvvoHVo5r9ty8iNZK3izfD2wxnTdQaZt86m6uDrqbIKGJd3DqGrh3K0LVDWXd0HYX2QrOjioiIiFRbmjkuInKeg6kHAWjhV42WcToEtiq5aqyKyN+y5+WROOlxsjZsAKDeoxOoe999WCwWk5OJiPyWk9WJzqGd6RzamQOpB5j3yzzWHl3LvpR9TEqZRKBHIINbDmZg84HUcatjdlwRERGRakUnx0VEzlO6jNO/mo1UAQhqU3JNOQB2u7lZRKqworQ04kfcS9aGDVhsNhr8618E3H+/inERqfJa+rfkhRteYMPADYxpPwZ/N3+Sc5J5bfdrdFnahSk7pnA4/bDZMUVERESqDZXjIiLnOZhWjU+O+zUBJ1cozIH0OLPTiFRJBfHxHBs0mNw9e7D6+NDoww/w7d3L7FgiImUS4B7AA5c/wMaBG3nxhhdp6d+SvOI8lhxcQr9V/Ri9cTTbErZhN/SP5SIiIiJ/ReW4iMg5hfbC0tNW1W4ZJ4CTM9Q7V+prKafI7+Tu20fcoMEUHDuGc4P6hM2fh+e115odS0Tkork4uRDZNJLFvRfzcbeP6RzaGavFyvbE7YzZPIa+K/uy8MBCcgpzzI4qIiIiUiWpHBcROScuI45CeyFeNi9CvELMjnNxtJRT5A9lffklx4bfTXFqKq6tWxG2YCGuzZubHUtEpFxYLBauDr6a2bfOZk3UGoa3Ho6XzYu4zDhe3PkiXZZ24bXdr5Gck2x2VBEREZEqReW4iMg5pfPG/SKq7+xhLeUU+Z3Uzz8nYdx4jLw8PG+8kcZzP8MWFGh2LBGRCtHQuyETr5nIpts38cS1T9DIuxGZBZl88OMHdFvWjae+eYrY1FizY4qIiIhUCSrHRUTOOZhaMm+8uV81Pk3qWMqpsSoiGHY7yf/6F0lTpoLdTp3bB9Lo7bdw8vI0O5qISIXztHkytNVQovtFM/vW2VwZeCVF9iJWH17NwOiB3L/hfrYlbMMwDLOjioiIiJjG2ewAIiJVRekyTv9quIzTwXFy/MyvUFQAzi7m5hExiT0/n5OTJ5O5dh0A9R5+iLqjR1ffnwoREblITlYnOod2pnNoZ35M+ZG5v8xl47GNfHvyW749+S1NfZsyvM1weoX3wtXJ1ey4IiIiIpVKJ8dFRM5xjFVp4VeNy3GfEHD1BXtRSUEuUgsVp6dzfOR9JcW4szMNXn6JgH/8Q8W4iNR67eq1Y8bNM1jTfw13tb4LT5snhzMO8+z2Z+m6tCvv7H2HtLw0s2OKiIiIVBqV4yIiwJncM5zOPY0FC83qNDM7zsWzWM6bO67RKlL7FCScIG7IUHK+/x6rlxehc97Ht29fs2OJiFQpIV4hTLpmEhsHbuSxqx8j2DOY1LxU3v7hbbos7cKUHVM4mnHU7JgiIiIiFU7luIgI/x2pEuoTiofNw+Q0l8hRjif9bG4OkUqW+9PPxA0aRMGRIzgHB9N4/nw8O3UyO5aISJXl7eLN3W3uZm3/tbx848u0rtua/OJ8lhxcQuTKSMZvHs93p77TXHIRERGpsTRzXESE/5bjEX4RJicpB4GtS646OS61SPbWrSQ8/AhGbi6uLVrQ6L13sQUHmx1LRKRasFlt9AzvSY8mPdiVtItPf/mUrce3siVhC1sSttDKvxXD2wynW1g3bFab2XFFREREyo1OjouIALGpNWDeuEOQoxz/xdwcIpUkbdFijo8Zi5Gbi+d119F4/jwV4yIiF8FisXB18NW88X9vsLrfau6IuAM3Jzf2p+5n8rbJ9FjWg49/+pjMgkyzo4qIiIiUC5XjIiLUsJPj9c6NVUk/BvlZ5mYRqUCGYZD86mxOPfssFBfjGxVFo/fexcnLy+xoIiLVXphvGM90eoYNAzcw7vJx1HWrS1JOErN2zaLLki68/J+XOZF9wuyYIiIiIpdE5biI1HqFxYUczjgMQAv/GnBy3LMueAWVvJ8Sa24WkQpiFBSQOOlxzrz3HgABY8dSf9qLWGz6cX8RkfLk5+bH6PajWT9wPVOum0KzOs3IKcph3v559Fzek0e3PMq+lH1mxxQRERG5KCrHRaTWO5JxhCJ7Ed42b+p71jc7TvkI1GgVqbmKs7KIv38UmdHR4OxM/RdfpN74cVgsFrOjiYjUWK5OrkQ1j2J55HLeve1dOtXvhN2ws+HYBoauHcrwdcPZdGwTxfZis6OKiIiIXDAt5BSRWs8xUqW5X/OaU64FtoYjX0GSynGpWYpSU4kfeR/5+/dj9fAg5PXX8brherNjiYjUGhaLhetDruf6kOs5mHaQuT/PZc3RNexJ3sOe5D008m7EsFbD6NesHx42D7PjioiIiPwlnRwXkVrPUY7XiJEqDoHn5o7r5LjUIIVJSRwbdhf5+/fjVLcujefPUzEuImKiCL8IXrjhBTYM2MD97e7Hx8WH41nHmf6f6XRZ2oVXd71KYnai2TFFRERE/pTKcRGp9WJTS+Zyt/CrQeV4kGOsyn5zc4iUk4Ljxzk2dBgFR47gHBxM488+w61VK7NjiYgIUM+jHg9e+SAbB27kqQ5PEeodSmZBJh/99BE9lvfg4a8eZufJnRiGYXZUERERkd9QOS4itV5sWkk5HuEXYXKSclSvZcn1bDKcPW1uFpFLlH/oEMeGDqMwIQFbaChh8+fhGt7E7FgiIvI/PGweDGo5iNX9VvPara/RoX4H7IadzfGbuW/DffRf3Z/FsYvJKcwxO6qIiIgIoHJcRGq507mnSc1LxWqx0syvmdlxyo+LJ/iFlbyv0SpSjeX+/DPH7hpOUXIyrs2b0XjeZ9hCQsyOJSIif8HJ6sT/hf4fH3T9gJV9V3Jniztxd3bnUPohpn47lduW3MbL/3mZ+Mx4s6OKiIhILadyXERqtYOpJfPGQ71DcXd2NzlNOQtsU3LVUk6ppnJ27yb+7nsoTkvDrW1bQufOxRYYaHYsEREpg6Z1mvJ0x6fZfPtmHr/mcUK9Q8kqzGLe/nn0XtGbMZvG8M2Jb7AbdrOjioiISC2kclxEarUaOVLFQUs5pRrL/ve/iR95H/bsbNyvvorQTz7G2c/P7FgiInKRvF28GdZ6GNFR0bzd+W1uCLkBA4NtJ7bxwKYHiFwZyfz988kqyDI7qoiIiNQiKsdFpFY7mFZycryFfw1axulQWo5rKadUL1mbN5PwjwcwcnPxvOEGQufMwcnLy+xYIiJSDqwWKzc2vJF3bnuHmKgYhrUahpfNi2OZx3jpPy9x25LbeOHbFziSfsTsqCIiIlILqBwXkVrNcXK8hV8NLMeDzo1VSd4PhmFuFpELlBEdTcKDD2EUFuLdtSsN334Lq3sNG3kkIiIANPZpzOPXPs7m2zfzdIenaerblJyiHBbFLqLvqr7cv+F+vor/imJ7sdlRRUREpIZyNjuAiIhZCooLOJp+FKihJ8frNgOrDQqyIOM41Ak1O5HIX0pbuIhTzz8PhoFv377Uf/EFLM76VkVEpKbzsHlwZ8s7uaPFHew8tZPP93/O1oStfHvyW749+S0hXiHc2eJO+jfvj6+rr9lxRUREpAbRyXERqbWOZhylyCjC28WbII8gs+OUPycbBJybpa7RKlLFnfnwI0499xwYBn5DhlB/+jQV4yIitYzFYqFj/Y68/n+vs7b/Wka0HYGvqy8nsk8wa9csbltyG89tf47Y1Fizo4qIiEgNoXJcRGqt80eqWCwWk9NUEMfc8aSfzc0h8icMwyDl9ddJnjEDgLr330/QM09jsepbFBGR2izEK4QJV01g08BNPH/d87Twa0FecR7Lfl3GwOiB3L3ubtbHrafQXmh2VBEREanGdCRLRGotx6mjGjlSxUFLOaUKMwyD5JdeIvXTuQDUe+QRAkaPMjmViIhUJW7ObvRv3p+oZlHsSd7D5wc+Z9OxTexO3s3u5N0EegRyZ4s7GdB8AHXd65odV0RERKoZleMiUmsdTDsIQIRfhMlJKtD5SzlFqhCjuJiTzz5LxtJlAAQ9/TT+w4aanEpERKoqi8XClUFXcmXQlSSdTWLxwcUsPbiU5Jxk3tjzBu/ufZceTXowuOVg2ga0NTuuiIiIVBP6mWURqZUMwygtx1v41YKT46djoVg/dixVg1FYSOLEiSXFuNVK/enTVYyLiMgFC/IMYvwV49k4cCPTbphGu4B2FNoLWX14NYPXDGbo2qFsPLaRYnux2VFFRESkilM5LiK10unc06TmpWK1WGlap6nZcSqObyjYPKG4AFKPmJ1GBHteHgnjHyRz7Tqw2QiZNYs6Uf3MjiUiItWQi5MLfZr24fNen/N5z8/pHd4bZ6sz+1L2MWHLBPqs7MPCAwvJLco1O6qIiIhUUSrHRaRWcpwab+zTGDdnN5PTVCCrVUs5pcqwnz3L8dH/IHvLFiyurjR66018unczO5aIiNQA7eq1Y/qN09k4cCOjLhuFr6svx7OO8+LOF+m2tBtv//A2qXmpZscUERGRKkbluIjUSrFp55Zx1uSRKg4Nrii5xm0zN4fUasUZGcTfO5KcnTuxenrSaM77eN10k9mxRESkhglwD2D8FePZMGADT1z7BCFeIaTlp/HO3nfourQrU3dMJT4z3uyYIiIiUkWoHBeRWik29Vw57l8LyvHmXUuuB9eDYZibRWqlotOnOTb8bnL37sXq60voJx/jee21ZscSEZEazMPmwdBWQ4mJimHGzTNoU7cN+cX5LD64mN4revPIV4+wN2Wv2TFFRETEZCrHRaRWcoxVifCLMDlJJWhyIzi7Q+YJjVaRSld48iTHht1FfmwsTgEBNJ47F/d27cyOJSIitYSz1ZnuYd1Z0GsBH3X7iJsa3oSBwab4TQxbO4zh64bzZfyX2A272VFFRETEBM5mBxARqWwFxQUczTgK1JJy3OYO4TfDwS/g1/UQ3NbsRFJLFBw7RvyIeylMTMS5QX0af/QRLmFhZscSEZFayGKxcE3wNVwTfA2H0g7x6S+fEnMkhj3Je9iTvIcwnzDubnM3fZr2wdXJ1ey4IiIiUkl0clxEap3D6YcpNorxdfUlyCPI7DiV4/zRKiKVIO/gQeKGDaMwMRGXxo0JmzdPxbiIiFQJzfyaMfX6qawfsJ6RbUfibfMmLjOO53c8T9elXXlv73uk56WbHVNEREQqgcpxEal1zl/GabFYTE5TSRzleMJ3kJNqbhap8XJ//In4u4ZTnHIa14gIGs+fh61BA7NjiYiI/EagRyAPX/UwG2/fyMSrJxLsGUxqXipv/vAmXZd1ZdrOaSRkJZgdU0RERCqQynERqXVq1bxxhzqNIKgtGHY4tMnsNFKD5Xz/PfH33ENxRgZu7S+j8dxPcQ4IMDuWiIjIn/K0eTK8zXDW9l/LSze+REv/luQW5bLgwAJ6rejFY1sf4+fT2tsiIiJSE6kcF5Fa52BqLSzH/5+9O4+PqrD3//+afTKZZLLvCQQICCiKuFYBpSrbVXulWr9dvnWttmo3bW1v621tq72trb3WftW6VW/7621tbevCphQBrRuLyqoESEgC2ZeZbLOf3x+TDImggkBOlvfz8ZjHOXO2fI4LIe985nNgwGiVFebWIaNW18svU3Pd9cS7u/GccQZljz2OLSPD7LJEREQOi8PqYPGExTz1b0/xyEWPcE7ROcSNOCurV3Ll0iu5esXVrKtbp4d3ioiIjCIKx0VkTDEM48BYlawpJlczxCbPTyx3rYJY1NxaZNQJrHyB2q/chBEMkjp3DqUP/xabN9XsskRERI6YxWLhrMKzeOjCh/jrxX/l4gkXY7fY2dC4gZv+eROXPXMZf6/8O+FY2OxSRURE5CgpHBeRMaU6UE1HqAO71c7EjIlmlzO0Sk6HlEwI+qHuTbOrkVGk4x//YN83vgGRCGkLFlB6//1Y3W6zyxIRETlqU7KmcPfsu1m+ZDlXTb+KVEcqu/27+c9X/5MFTy/g0S2PEggHzC5TREREPiaF4yIyprxU+xIAZxScgcvmMrmaIWa1waQLE+s7V5pbi4wabX/8I/Xf+S7E4/iWXEbxL3+Bxek0uywREZFjqiC1gFtPu5UXP/0i35z1TfI8eTT3NnPfpvu48C8X8vP1P2d/136zyxQREZEjpHBcRMaUl2oS4fj5peebXIlJ+kerKByXo2QYBs0PPEDjj34MQOYXvkDhj3+MxWYzuTIREZHjJ82ZxtUnXs2Ky1Zw17l3UZFZQU+0h99v/z0L/7aQG1+8kWV7lhGMBs0uVURERA6D3ewCRESGSktvC+80vwPAeaXnmVuMWSbOA4sVmndARw1klJldkYxA8VCI+u/fQeC55wDI/vKN5H71q1gsFpMrExERGRoOm4NLJl7CxRMu5tX9r/K7bb/jjfo3+Nf+f/Gv/f/C6/Ayf/x8Lpl4CTPzZup7pIiIyDClcFxExox1deswMJiWPY2C1AKzyzGHJwtKz4KaVxPd42dcb3ZFMsJEW1qou+lmet95B+x2Cr7/fTKv/IzZZYmIiJjCYrFwTvE5nFN8DjWBGp7d/SzP7X6O/d37ebryaZ6ufJrStFIunngxl0y8hGJvsdkli4iIyAAaqyIiY0b/vPExO1Kl3+SLEkuNVpEjFHzvPaquuILed97B6vNR9ugjCsZFRET6lKWXcfPMm1m+ZDmPz3+cSydeSoo9hdrOWh54+wEWPL2Aq1dczd8r/053pNvsckVERASwGIZhmF3EcBcIBPD5fPj9ftLT080uR0Q+ht5oL3P+NIdgLMhfL/4rU7KmmF2SeRq3w4Nng90N364Cp8fsimQE6Fz9Evtuuw2jpwfn+PGUPPgArvJys8sSEREZ1noiPfyz5p88s/sZ3qx/E4PEj98p9hQ+WfZJLpl4CWcUnIHNqmd2iIiIHCtHkuVqrIqIjAmv7X+NYCxIsbeYyZmTzS7HXHlTwVcK/lqoWgdTFphdkQxjhmHQ9vjvaPrFL8Aw8Jx1FiX3/Tc2n8/s0kRERIY9j8PDxRMv5uKJF9PQ3cBzu5/j2d3PUh2o5vk9z/P8nufJ9+Qnx66U+/SLZxERkaGksSoiMiYMHKky5h+IZLHA5PmJ9UqNVpEPZoTD1H//+zTdcw8YBhmf+QxljzysYFxERORjKEgt4PoZ1/Psp57lD4v+wBWTryDNmUZjTyOPbnmUS/5xCZ9b+jn+/O6f8Yf8ZpcrIiIyJmisymHQWBWRkS0WjzHvL/NoC7bx2EWPcUbhGWaXZL6dL8AfL4f0YvjGtkRgLjJAtL2dfbd8lZ4NG8BqJf873yHzC5/XL5dERESOoVAsxJraNTy7+1n+te9fxIwYAA6rg/NKz+PSiZfyieJP4LA6TK5URERk5NBYFRGRAd5pfoe2YBvpznROzT/V7HKGh/LZYE+BwD5o3AYFJ5pdkQwjod27qb3xy0Rqa7GmplL8q3vxzpljdlkiIiKjjsvmYv74+cwfP5+W3haW7VnGs7uf5b3293hx74u8uPdFstxZLJ6wmEsmXsIJWSeYXbKIiMioorEqIjLq9Y9UmVMyB7tVvxMEwJECE+Ym1jVaRQboevkVqj9zJZHaWhwlJYz/0/8qGBcRERkCOSk5/N/p/5e/XvJX/nrxX/nCtC+Q5c6iLdjG77f/nsufu5wlzy7hyW1P0tLbYna5IiIio4LCcREZ1QzDSIbj55WeZ24xw03FRYnlToXjktD2h/+P2htuIN7VRcqsWYx/6s+4KirMLktERGTMmZI1hW+f/m1WXb6K38z7DReOuxCH1cHO9p38YsMvuOAvF3DTP29iZfVKQrGQ2eWKiIiMWGqhFJFRrcpfxd7AXhxWB+cWn2t2OcNLfzhetx562sCTZW49YhojEqHxpz+l/Y//C4DvU5+i4Ed3YnU6Ta5MRERkbHNYHcwtncvc0rn4Q35WVK3g2d3PsrllM+vq1rGubh1pzjQuGncRiycsZlb+LKwW9cCJiIgcLoXjIjKqra5dDcAZhWeQ6kg1uZphJqMU8qZD0zbYtQpmXGF2RWKCmN/Pvm98g+5XXwOLhbxbv0nWtdfqwZsiIiLDjM/l4zMnfIbPnPAZ9vj38Nzu53hu93M09jTydOXTPF35NAWpBSwqX8TiCYuZnDnZ7JJFRESGPf1KWURGtf6RKvNK55lcyTA1eX5iqdEqY1K4uprqK/8P3a++hsXjoeQ395N93XUKxkVERIa5Cb4JfO3Ur7FyyUoevehR/n3Sv+N1eGnobuDxrY+z5NklXPbsZTy25THqu+rNLldERGTYshiGYZhdxHAXCATw+Xz4/X7S09PNLkdEDlNLbwvznpqHgcE/L/8neZ48s0safmpeh8fng9sH39oDNn2gaKzoA6ynlgAAIABJREFUfv0N6r72NeJ+P/bCQkof+H+4p041uywRERH5mEKxEOvq1rF0z1LW1a0jEo8k983Kn8XiCYu5aNxF+Fw+E6sUERE5/o4ky1UKIiKj1praNRgYnJh9ooLxD1JyOqRkQm871L0J4z5hdkUyBNqfeoqGH/0YolHcJ8+g9De/wZ6ba3ZZIiIichRcNhcXjruQC8ddiD/kZ9XeVSytWsqGhg1sbNzIxsaN3P3G3ZxbfC6LJyzmvJLzcNvdZpctIiJiKoXjIjJq9Y9UOb/sfJMrGcasNph0IWx5KjFaReH4qGbEYjT9/B7annwSgPTFiym86ydY3frBWEREZDTxuXwsmbyEJZOX0NDdwPKq5Szds5T32t9jTe0a1tSuIdWRyifLPsniCYs5s+BMbFab2WWLiIgMOY1VOQwaqyIy8vREepj9p9mE42H+dsnfqMisMLuk4WvLX+HpayF3Ktz0utnVyHES6+pi36230r12HQA5t9xMzle+ovniIiIiY8iu9l0srVrKsj3L2N+9P7k9JyWHheULWTxhMdOypunvByIiMqIdSZarcPwwKBwXGXlW7V3FN9Z8gxJvCcsuW6a/4H+Ynja4ZyIYcfj6FsgoM7siOcbCdfuo+/KXCVVWYnG5KPqvn5K+cKHZZYmIiIhJ4kact5veZumepazcuxJ/yJ/cNz59PIsnLGZx+WJK00tNrFJEROTjOZIs1zpENYmIDKmBI1UUjH8ETxaUnpVY37nS3FrkmOvZtInqK64gVFmJPTeXcX/4vYJxERGRMc5qsXJq/qnccfYdvHT5S9w/734WjF+Ay+aiOlDN/3v7/7Ho74v43LLP8ccdf6S1t9XskkVERI4LzRwXkVEnGo+ytm4tAOeXat74YZl8EdS8CpUvwBnXm12NHCP+Z56h/vt3YEQiuKZNpfSBB3AUFJhdloiIiAwjDpuD80rP47zS8+iOdPPPmn+ydM9SXq9/nc3Nm9ncvJmfr/85ZxedzeIJi5lXOg+Pw2N22SIiIseExqocBo1VERlZ1jes55qV1+Bz+VhzxRrsVv0e8CM1bocHzwa7G75dBU79wDOSGfE4zf99H60PPwxA2oUXUvSz/8Lq0b9XEREROTwtvS2sqFrB0j1L2dq6Nbk9xZ7C+aXns3jCYs4uOhuH1WFilSIiIgc7kixXiZGIjDr9I1XmlsxVMH648qaCrxT8tVC1DqYsMLsi+ZjiPT3sv/12Ol9cBUD2DTeQ+7WvYrFqkpqIiIgcvpyUHD4/7fN8ftrnqfZXs6xqGUv3LKWms4ZlVctYVrWMDFcGF467kIXlCzk171RsVpvZZYuIiBwRdY4fBnWOi4wchmGw6G+LqOuq41fn/YoLxl1gdkkjx9JbYf2jcNo18G+/Mrsa+RgiDQ3UfvkrhHbswOJwUPiTH+O79FKzyxIREZFRwjAMtrZsZWnVUpZXLact2Jbcl5uSy/zx81lQvoAZOTP03B8RETHNkWS5CscPg8JxkZGjsr2Sy569DKfVyctXvqx5iEdi5wvwx8shvRi+sQ30A82I0rt5M7U33USsuQVbVhYlv7kfz6mnml2WiIiIjFLReJQNjRtYUbWCF/e+SCAcSO4rSi1iQfkCFpYvZErmFAXlIiIypDRWRUTGrP6RKmcVnaVg/EiVzwZ7CgT2QeM2KDjR7IrkMAVWrGD/7d/BCIVwVVRQ8uCDOEuKzS5LRERERjG71c5ZhWdxVuFZfO/M7/Fa/Wssr1rO6prV7O/ez+NbH+fxrY8zPn08C8sXsqB8ARN8E8wuW0REZBCF4yIyqrxUkwjHzy893+RKRiBHCkyYCztXQOVKheMjRPuf/kTDnT8Cw8A7dy5Fv/wFNq/X7LJERERkDHHYHMwpmcOckjkEo0Fe3vcyy6uWs65uHdWBah5850EefOdBpmROYUH5AhaMX0BJWonZZYuIiGisyuHQWBWRkaGpp4lP/uWTWLCw+orV5KTkmF3SyLP+MVj6TSg9C65daXY18hFaHn6E5nvvBSDjys9QcMcdWGx6EJaIiIgMD92Rbl6qfYnlVct5dd+rRI1oct+MnBksKF/A/PHzyfPkmViliIiMNhqrIiJj0praNQCclHuSgvGPq+KixLLuTehpA0+WufXIIRmGQfO999L6yKMAZH/pS+R+4+ua5ykiIiLDSqojlX+b8G/824R/wx/ys2rvKlZUr+DNhjfZ3LKZzS2buWf9PczKn8XC8oVcMO4Cstz6+6eIjA2GYRCKxvteMcL965HE++S+SGzQcaFInHDs/cfF+t4P2Na3/6kbzsZus5p9u8OWwnERGTVW164GNFLlqGSUQt50aNoGu1bBjCvMrkjex4jFaPjRj+n4858ByPvWbWRfe63JVYmIiIh8OJ/Lx5LJS1gyeQktvS28UP0CK6pX8FbTW2xo3MCGxg3c/cbdnFV4FgvKF/DJsk+S5kwzu2wRGWKGYRCLG8T6ltG4QSzWt4wbROPxA9vjBtHYobfH4gPOj8cPcfz7tg/af4jt/dePfcD2910/Zgz4GjFjQJh9ILwOR+ND8s80HIsrHP8QGqtyGDRWRWT46450M/tPs4nEIzxz6TNMyNDDfj62VXfCK/fCiZ+GTz9mdjUygBEOs/873yGwbDlYLBTc+UMyr9AvMERERGTkqu+qZ2X1SpZXL2d76/bkdofVwezi2SwsX8ickjl4HB4TqxQZvQyjL7h9X8dy+EO6lt/fnRyOfXDX8qHODUfjHxhOx+JjM6a0WMBlt+Ky2xJLR2LdaetfH7ivb9m/rW+/c+AxA46bd0IejjEWjh9Jlqtw/DAoHBcZ/lZWr+S2tbcxLn0cz33qOY2XOBo1r8Pj88Htg2/tAZs+ZDQcxHt7qfv61+leuw4cDop//jPSFy40uywRERGRY2ZvYC8rqlawvGo5u/27k9tT7CmcV3IeC8oXcG7xuThtThOrFBka8Xhi5EZvJJZ4hWMED7Ee7HvfG4m/733iFRpwTm8kPmh/sC/4HikcNgs2qwW71dq3tBxY2izYLO/bb7MMOq5/X/I8mwXbwPeDltaDzk9ut1qwHrT9g69ns1oODr2T4XbivcNmUY5xDGnmuIiMOS/VvgQkRqroG8pRKjkdUjKhtz0xe3zcJ8yuaMyLdXZS++Uv07thIxa3m5Jf34d3zhyzyxIRERE5psalj+OGk2/ghpNvoLK9kuVVy1lRvYLazlqWVy9nefVy0hxpzCubx6IJizij4AzsVsUaMjzE4gbd4ShdwShdoSidfcvuUGJbZ6h/X4SuUJSuUIyuYKTvmPeF3ZEYwYg5ofX7u44HdicnupgP3bX8/vD3QCfzoY+z2w4jbB4Qglut+jlfjg99FxGRES8Sj7Cubh2geePHhNUGky6ELU/BzpUKx00WbWuj9rrrCW7fjtXrpfShB/GcdprZZYmIiIgcVxWZFVRkVnDLzFvY3ro9GZQ39jTyzO5neGb3M2S7s1lQvoBF5Ys4KeckNcnIEet/IGJXaHCo3R3qWx8YaAf7Au3+cHtA4N0ditIdjh23Op12KykOW+LltOF22EhxWPuWNtxO2yH2J47pf+8esD/F0b/tfWM5bFb9fyRjjsaqHAaNVREZ3t6of4PrXriOLHcWqy9fjc1qM7ukkW/LX+HpayFvGnzlNbOrGbMi9fXUXHsd4T17sGVlUfrIw6RMn252WSIiIiKmiBtx3mp6i+VVy1lZvZKOUEdyX4m3hEUTFrG4fLGePzQGHKpLuz/QPrhLO9a3PTKoo7u/qzsSO7axmMNmweuy43Xb8bocpCXX7aS67KT1rfcfk+ayk+K04XHa+0LrvtB7QIhtU9e0yBHRWBURGVP6R6rMKZmjYPxYmTgPLFZo2g4dNZBRZnZFY064upq911xDdH899sJCyh57DNeEcrPLEhERETGN1WJlVv4sZuXP4vYzbue1/a+xrGoZq2tWU9dVx8ObH+bhzQ9zQtYJLCpfxMLyhRSkFphdtgwQ7wu1O4P9rwidoQHrfcvuUKwvxB66Lm2P03YguHYnQu1Uly0RcLvtAwLvweG2d2Dg7bbjsutnUpGRROG4iIxohmHwUs2BeeNyjHiyoPRMqHktMVrljOvNrmhMCb77LjXXXU+spQXnuHGU/e5xHEVFZpclIiIiMmw4rA7mlMxhTskceiI9rK1by7I9y3hl3yu82/Yu77a9y70b72VW/iwWT1jMhWUXkuHOMLvsES0WN+gKRgkMCLE7g1E6+0aOBIIHh9z9IXhXKHFeVyjKsZxfYLdaEsH0gC7tVJcNr9sxOLR+X5jd37HtdSe6uVOddnVni4xRGqtyGDRWRWT4eq/tPT793Kdx29ysu3IdKfYUs0saPV75Faz6IVRcBJ/7i9nVjBk9m96i9sYbiQcCuE44gbJHH8Gek2N2WSIiIiIjQkewgxdrXmTZnmVsaNyQ3G632jm36FwWTVjE3JK5eBweE6s0TzQWx98boaM3QkdPBH9vOPG+p/99pO99mI7ewSF3zzHs1u4PtdPcjr5l37rrwHp/cJ12iC7t1L5tLrtmZIvIwTRWRUTGjNW1qwE4q+gsBePHWsX8RDhetQ7CPeAcmz9ADKWuV/5F3S23YPT2knLqqZQ+9CA2/VJWRERE5LBluDO4fPLlXD75chq6G1hRtYJlVcvY0baDNXVrWFO3hhR7CvPK5rGofBFnF52Nw+owu+wjYhgGwUicjt7wgFB7QMjdtwz0Rt53TKJz+2i57FbS3A7S+0LtRBe246CwO70v4D7UdoXaIjJcmBqOr1u3jnvuuYeNGzdSX1/P3//+dz71qU8l9xuGwQ9+8AMeeeQROjo6OOecc3jwwQepqKhIHtPW1sYtt9zCc889h9VqZcmSJdx33314vd7kMZs3b+amm25i/fr15Obmcsstt/Dtb397SO9VRI6P/pEq80rnmVzJKJQ3FXyl4K9NBORTFphd0agWWPkC+267DSIRUs89l5Jf34fVo19IiIiIiHxcBakFXHXiVVx14lXs6djDsqplLKtaRm1nLUv3LGXpnqVkuDKYP34+i8oXcUreKVgt1iGrLx436AxGDwTYfV3b/p7woJD7/cG3vydCOBY/qq+d5raT4XGQkeIkw+MgPcVBRoojuc3nceBLcSTD7LRk17YDp33o/hmJiBxvpobj3d3dnHzyyVxzzTVcdtllB+3/+c9/zq9//WuefPJJysvLueOOO5g/fz7bt2/H7XYD8LnPfY76+npefPFFIpEIV199NV/60pf44x//CCTa6C+66CIuuOACHnroIbZs2cI111xDRkYGX/rSl4b0fkXk2GrobmBH2w4sWJhTMsfsckYfiwUmz4f1j0LlSoXjx1HH03+j/o47IB4nbf58iu/5ORan0+yyREREREaNCRkTuHnmzdx0yk1sbdnKsqplLK9aTmuwlT+/92f+/N6fKUwtZGH5QhaVL2Jy5uTD7mwORWN9oXbkfd3b4QFjSvqD7fCBzu5g5Kjmb9utFjL6QuwMj5OMlMS6b0DoPTj4ThyT5rZjtyngFhGBYTRz3GKxDOocNwyDoqIibr31Vm677TYA/H4/+fn5PPHEE1x55ZXs2LGDadOmsX79ek477TQAVqxYwaJFi6irq6OoqIgHH3yQ733vezQ0NODsCxq+853v8I9//IN33333sGrTzHGR4el/3/1f7n7jbmbmzeR/Fv6P2eWMTjtfgD9eDukl8I2ticBcjqnWJ56g6b9+BoDv00sovPNOLDY94V5ERETkeIvGo6xvWM+yqmWs2ruKrkhXcl+RZzwzMs5joudciObQ3hPG39Mfcofx90aTQffRzuL2OG2JYHtAwJ3hORBy+1IcZHoGBN99x3mcNo0mERE5hFExc7yqqoqGhgYuuOCC5Dafz8eZZ57Ja6+9xpVXXslrr71GRkZGMhgHuOCCC7Barbzxxhv8+7//O6+99hpz5sxJBuMA8+fP52c/+xnt7e1kZmYe9LVDoRChUCj5PhAIHKe7FJGj0T9S5fzS802uZBQrnw32FAjUQeM2KDjR7IpGDcMwaLn/floeeBCArKuvJu/b39IPOCIiIiJHqX9cSXtPmPZkp3aY9u6+5YDO7vaeKO3d5xPoPYOQcxv29Lexe99jf081+3ueAJ4g1lNGJHAy0cAMjFjaIb+mxUIi1E52bzsHjClJvPcNHF3iceDrC741pkRExDzDNhxvaGgAID8/f9D2/Pz85L6Ghgby8vIG7bfb7WRlZQ06pry8/KBr9O87VDj+05/+lDvvvPPY3IiIHBed4U7WN64HFI4fV44UmDAXdq5IjFZROH5MGPE4jXf/lPY//AGA3K9/jewbblAwLiIiInIIwUiMpkCIps4gzZ0hWrvDdPTN5W7v6Q+5w4PGmcSP+DPyVgidRKzrJNyeKCkZO4ilbqTX+h42Tw02Tw0UPE+hezLTM87itLxzmJ59ApmpTjJSnKS57Vit+ruciMhIM2zDcTN997vf5Zvf/GbyfSAQoLS01MSKROT9Xtn3CtF4lHJfOeN9480uZ3SruCgRju98AWbfanY1I54RjVL/ve/jf+YZAPLv+D5Zn/ucyVWJiIiIDC3DMPD3RmjqDNHcmQi+EwH4gPedIZoDITpD0Y/1NVKdtsQIEo+DTM+BGdyJdSeZfeu+vmWmx0G629EXcl8KQHNPMyurV7KsahlbWrZQH3yP+ob3WNXwJPmefOaUzOG80vM4o+AM3Fb3MfwnJCIiQ2HYhuMFBQUANDY2UlhYmNze2NjIKaeckjymqalp0HnRaJS2trbk+QUFBTQ2Ng46pv99/zHv53K5cLlcx+ZGROS40EiVIVRxUWJZ9yb0tIEny9x6RrB4KMS+W2+la9U/wWaj6O678F16qdlliYiIiBwz0Viclq5wssu7qTNEUyBEc9fg8Lu5M0Q4Fj/s67odVvLS3OSmuchOdR4Ucg8MwTP75nW77Ef/HJdcTy6fn/Z5Pj/t8zT1NPFy3cusrVvL6/Wv09jTyF92/oW/7PwLbpubMwvPZE7JHOaUzKEg9dB5g4iIDC/DNhwvLy+noKCAf/7zn8kwPBAI8MYbb/DlL38ZgLPPPpuOjg42btzIrFmzAFi9ejXxeJwzzzwzecz3vvc9IpEIDocDgBdffJEpU6YccqSKiAx/kViEl/e9DCgcHxIZpZA3HZq2wa5VMOMKsysakWJd3dTdfDM9r7+Oxemk+Ff3kvbJT5pdloiIiMhhiccNWrvD1Pt72d8RpMHfmwi+kwF4kJauxMgT4whGmmR4HOR6XeSlu8hLc5OX5iK379Ufhuelu0hz2U0fQZfnyWPJ5CUsmbyEUCzEm/VvsrZuLevq1lHfXc/aurWsrVsLwAlZJzC3ZC5zS+YyPWc6VovmiouIDEemhuNdXV3s2rUr+b6qqoq3336brKwsysrK+PrXv85PfvITKioqKC8v54477qCoqIhPfepTAEydOpUFCxZw/fXX89BDDxGJRLj55pu58sorKSoqAuCzn/0sd955J9deey233347W7du5b777uNXv/qVKfcsIkdvfeN6uiJdZLmzOCnnJLPLGRsmz0+E4ztXKhz/GGIdHdTccAPBdzZj9XgoeeABUs860+yyRERERIDEiJO27jD1/iD7O3ppCATZ3xGk3t9LvT+xbPQffqe3zWohx+tMht156S5yvS5y0w+E3/3LY9HdbQaXzcXsktnMLpmNYRhUdlSyrm4da2rXsLl5M++2vcu7be/y282/JcudxZySOcwtmcvZRWeT6kg1u3wREeljMYwj+Z3usbVmzRrOP//grs8vfvGLPPHEExiGwQ9+8AMefvhhOjo6OPfcc3nggQeYPHly8ti2tjZuvvlmnnvuOaxWK0uWLOHXv/41Xq83eczmzZu56aabWL9+PTk5Odxyyy3cfvvth11nIBDA5/Ph9/tJT08/upsWkaN21+t38af3/sRlFZdx5yf08NwhUfM6PD4f3Bnwrd1gG7YfPBp2Ik1N1F57HaHKSmw+H6WPPEzKjBlmlyUiIiJjhGEYdPRE2O/vpb4jSH0gSH3HgdA7sQwSjn508G2xQF6ai0JfCoU+N/np7kFBd16am7x0F1ke55h+OGVbsI1X9r3C2tq1vLr/VboiXcl9dqud0/NPZ27pXOaUzKE0Tc83ExE51o4kyzU1HB8pFI6LDB+GYXDR0xfR0N3A/fPu57zS88wuaWyIx+CeidDbDlcvh3GfMLuiESFcV0fN1dcQqa3FnptL6WOP4h7wC14RERGRo2EYBoHeKPv9vTT4gwcCcP/gru9g5PCC7xyviyKfm0JfCgU+N0UZ7mQQXpiRQl6aC4dN40GORCQWYVPTpsTIldq11HTWDNo/0TeROaWJrvKTc0/GblUTiojI0VI4fowpHBcZPna07uCK568gxZ7Cus+sw23XE+GHzNPXw5an4Jyvw4Xq2P8oocpKaq65lmhzM46SEsp+9zjOUnUGiYiIyEfrCUeTD61s6TrwAMvmrnDfMkRL3/JwOr4BcrzOA6F3X9hd6HMP6gJ32hV8H0+GYVAdqGZd3TrW1q1lU+MmYkYsuT/dmc65xecyt2Qu5xSfg8/lM7FaEZGR60iyXP1KUkRGlJdqXwLg7MKzFYwPtcnzE+F45QsKxz9C75Yt1F53PTG/H1fFJEoffQxHfp7ZZYmIiIiJQtEYLX3hdn+wfVAA3hd6d4djH33BAbJSnX1Bd1/YnXFgvciXQr5v5M72Hk0sFgvlvnLKfeV8cfoXCYQDvLrvVdbUreGVfa/gD/lZVrWMZVXLsFlszMybydySucwumc0E3wTTH0gqIjIaKRwXkRGlPxw/v+zg5xXIcTZxHlis0LQdOmogo8zsioal7tffoO4rXyHe04N7xgxKf/sQ9sxMs8sSERGR4yAYidHaHaatK0xr94GAOxF4h2nuDCbX/b2RI7q222ElLy0x0zvH6yQ3zUWuN/F+4LYcrwu3Q8H3SJTuTGdB+QIWlC8gGo+yuXkza+vWsq5uHbs6drGhcQMbGjfwy42/JNOVycy8mZyafyoz82YyNXsqDqvD7FsQERnxNFblMGisisjwsL9rP/Ofno/VYmXNFWvIdCtwHHKPL4Ca12DRL+CM682uZtjpXP0S+77+dYxwGM9ZZ1Hym99g86aaXZaIiIgcBsMwCASjtHWHaesO0dYdoa07lAy/23rCffvCtHYllr2RI+vwdtgs5Hpd5KS5yPW6BgTdB9b796c6beoUHsPqOuuS41c2Nm4kFAsN2u+2uZmROyMZmJ+cezKpDv29U0QENFZFREap/q7xU3JPUTBulsnzE+F45QsKx98nsHw5+277FsRieD/5SYrv/SVWl8vsskRERMasaCxOe08kGWj3h96tg973hd3dYdq7w0TjR9475rBZyPQ4yUp1kpfuHtDl7Rq8THPhS3Eo8JbDUpJWwmenfpbPTv0s4ViY7a3beavpLTY1buKt5rfwh/y82fAmbza8CYDVYmVK5hRm5c9KBuY5KTkm34WIyPCncFxERoz+cHxe2TyTKxnDKubDqh9C1ToI94DTY3ZFw4L/2WfZ/53vQjxO+sUXU3T3XVgc+piriIjIsRKPGwSCiaC7vSdCe3eik7t/2dEdOfC+f1vPkY0x6ZfqtJGZ6iQ7NRF4Z6W6yEp1kJXqSm5L7vc6SXPZFXjLceW0OTkl7xROyTuFq0+8mrgRp8pfxcbGjbzV9BZvNb3Fvq597GjbwY62Hfxhxx8AKEsrY2bezGRgPi59nP5bFRF5H4XjIjIiBMIBNjZsBOD8Us0bN03eVPCVgr82EZBPWWB2RabrePpv1H//+2AY+C67jMIf/wiLTXM/RUREPkj/+JJBAXd3Iswe+L6950AQ3t4T5mM0dQOQ4XGQNSjsPhB6Zw8Muvtemt8tw53VYmVixkQmZkzkiilXANDQ3ZDsLN/UtInK9kpqOmuo6azhmd3PAJDlzuLUvFOTneUnZJ2A3apYSETGNv0pKCIjwst1LxM1okz0TaQsXQ+CNI3Fkhitsv5RqFw55sPx9j/9mYYf/hCAjCs/Q8F//icWq9XcokREREwQisZoCoRoDARpCARpDIRo7QolAu4BXd39gXfsYybdXpedzFQHWZ5EqJ3pcfaNNHEMep/tTQTdGSkO7DZ9b5bRryC1gIXlC1lYvhBINBe90/QOm5o2salxE1tbttIWbGNVzSpW1awCIMWewozcGczKm8XM/JnMyJmBx6FPhorI2KJwXERGhP6RKueXqWvcdBV94fjOF8AwEoH5GNT2+z/QeNddAGR+4Qvk/8d39TFVEREZdQzDoK073Bd4J0LvBn//epCGvkC8rTt8xNfuH1+Sleokw+Mky5MIuAcF36mJru8sT+IYp11Bt8jhSHemM7tkNrNLZgMQjoXZ1rotMbO8bxRLIBzgjfo3eKP+DQBsFhtTs6YyM39mssM8OyXbzNsQETnuFI6LyLAXjoV5Zd8rgEaqDAvls8GeAoE6aNwGBSeaXdGQa33scZruuQeArGuvIe+22xSMi4jIiNMbjg0IvYM0+BNd302BEA1975s7Q4Rj8cO6ntNuJT/dRUG6m7x0N7leV2I+9/tC70QY7sBl1/gSkaHitDmZmTeTmXkzAYgbcXZ37E6MYunrLq/vrmdr61a2tm7l99t/D0C5r5zT80/ntILTOC3/NHI9uWbehojIMadwXESGvfUN6+mOdJObksuJOWMviB12HClQPicxVqVy5ZgLx1seeojm/74PgOwv30juV7+qYFxERIaVeNygtTtMgz9Ivb/3QMf3gBC8MRAkEIwe9jVzvE7y093J4Lsg3U2Bz3VgPd1Nhseh74kiI4TVYqUis4KKzIrk3PL6rvoDYXnTJna176LKX0WVv4qndj4FwLj0cZyWf1oyLC9ILTDzNkREjprCcREZ9vpHqswtnYvVoo/SDguT5yeC8Z0vwOxbza5mSBiGQcv9v6HLSg0CAAAgAElEQVTlgQcAyPnqLeR+5SsmVyUiImNNJBanqTNEg7+XBn+Ien9vIgQPBGn0B6n3B2nqDBKJHd5Mb4/T1hd4Jzq+832JoDu/71XgS3SAa5yJyOhX6C2k0FvIogmLAPCH/Gxs3MiGxg1saNjAu23vsjewl72BvTxd+TQAJd4STi840Fle5C0y8xZERI6YwnERGdYMwzgwb1wjVYaPiosSy7o3oacNPFnm1nOcGYZB87330vrIowDk3XYr2dddZ3JVIiIy2vSPOenv9q7394066Rt3Uu8P0tIVwjiM3Ntigbw0VzLoLvANCLwHdH2nuezq9haRQ/K5fMwrm8e8snlA4iGfbzW+xYbGDaxvWM+Oth3UddVRt6uOv+/6OwDF3mJm5c/itPzTOL3gdIq9xfozRkSGNYXjIjKsbW/dTlNPEyn2FM4sPNPscqRfRinkTYembbBrFcy4wuyKjhvDMGj6r/+i7cn/ASD/u98h64tfNLkqEREZSQzDIBCMJkPuBn8v9X2jTeoHhN8dPZHDup7DZiE/3U2hz02BL4XCvuA78T4RfuemuXDY1O0tIsdOujOduaVzmVs6F4CucBdvNb3F+sb1bGzYyLbWbezr2se+rn08u/tZAApSCxJjWPrC8tK0UoXlIjKsKBwXkWFtde1qAM4tPheXzWVyNTLI5PmJcHznylEbjhvxOI0/+Qntf/xfAAp+8J9k/p//Y3JVIiIyXMTiBq1dIZo6QzR3hmjqTDzMsrkrRFMg8b5/PRQ9vIdaepw2Cnx9QXd6CgU+VyIA7+v+LvC5yfI4sVoVLomIubxOL7NLZjO7ZDYA3ZFu3m56OzmGZWvLVhq6G3h+z/M8v+d5APJS8phVMCsxiiX/NManj1dYLiKmUjguIsOaRqoMY5Pnwyv3JjrHY1Gwja5vKUY8TsMPfkDHX/4KFguFP/4RGZ/+tNlliYjIEAhGYoPC7kHhd3I9RGtXiPjhjfYGIMPjoGBAx3fBwG7vvpfGnIjISJXqSOWc4nM4p/gcAHoiPbzT/E4yLN/SsoWm3iaWVy1nedVyAHJScpiVP4vT8xNzyyf4JujPQBEZUqMryRCRUaWus47K9kpsFhtzSuaYXY68X8npkJIJve2J2ePjPmF2RceMEYtR/x/fw//MM2C1UvTTu/FdeqnZZYmIyFEKRmLUtvXQ1Bd0N3eGkuF38n1niM5g9LCvabVAttdFXlr/KzHSJC898T53wDa3w3Yc705EZHjxODycXXQ2ZxedDUAwGmRz8+bkzPLNzZtp6W1hZfVKVlavBCDLncWs/FnMyJnB9JzpTM2aitfpNfM2RGSUUzguIsNWf9f4qfmn4nP5TK5GDmK1waQLYctTidEqoyQcN6JR9t/+HQJLl4LNRtHPf4Zv8WKzyxIRkSPQGYywq6lr0KuyqYva9p7DepglgMtu7Qu43QNC7gNBd38Anp3qwqYRJyIiH8ltd3NG4RmcUXgGAKFYiC3NW5Izy99ufpu2YBsv7n2RF/e+mDxvfPp4pmZPZXr2dKZlT1NgLiLHlMJxERm2NFJlBJg8PxGOV74AF95pdjVHzQiH2Xfbt+h84QWw2yn+5S9Jn3+R2WWJiMgHaOsO9wXfnYOC8Hp/8APPSXPbkw+szEtzkZd+IPzu7/LOS3dpvImIyHHmsrk4reA0Tis4DU6GcCzM1patbGraxLaWbWxr3UZ9dz3VgWqqA9XJUSwWLIxLH8e07GkHAvPsqaQ6Uk2+IxEZiRSOi8iw5A/52dS4CVA4PqxNnAcWKzRth44ayCgzu6KPLR4Os+9rX6frpZewOBwU33cfafP0356IiNkMw6CpM0RlYxe7mjqpHBCCt3aHP/C8vDQXFfleJuV6mZSfxqRcLxX5XrJTnQq9RUSGIafNyan5p3Jq/qnJbW3BNra3bmd763a2tWxje9t2GrobkoH5sqplQCIwH+8bPzgwz5qKx+Ex63ZEZIRQOC4iw9K6unXEjBgVmRWUpJWYXY58EE8WlJ4JNa8lRquccb3ZFX0s8WCQulu+SvfLL2NxuSj5zf14Z882uywRkTElHjfY19Gb7ASvbOxiV3MXuxq76Ax98AzwkswUJuV5qcjzMinPy6S8NCblefGlOIawehEROR6y3FmcW3wu5xafm9zW2tt6IDBv3cb21u009jRS5a+iyl/F0j1LgURgXu4rHxSYn5B1ggJzERlE4biIDEsaqTKCTJ6fCMcrXxiR4Xi8p4fam26i57XXsbjdlD74AKlnn212WSIio1b/QzF3N3ezq28cSmVTF7ubuwhG4oc8x2a1MC7LkwjB8719YXgaE3JT8Tj1I42IyFiSnZLN7JLZzC450MzS0ttyUGDe1NPEHv8e9vj38Pye5wGwWqyUp5czPWd6MjSfkjWFFHuKWbcjIiazGMbhPpJm7AoEAvh8Pvx+P+np6WaXIzLqhWIhZv9pNr3RXv60+E9Mz5ludknyYRq3w4Nng90N364C58jpxIh1dVN34430bNiA1eOh9LcP4Tn9dLPLEhEZ8foD8OrWHqpbuqlu7Xu19LDf3/uBD8V02qxMyE3t6wBPBOCT8ryMz/HgstuG9iZERGRE6w/Mt7VsSwbnTb1NBx1ntViZ4JuQ7CyflDGJiswKclJyTKhaRI6FI8ly1WYhIsPOG/Vv0BvtJc+Tx7TsaWaXIx8lbyr4SsFfC1XrYMoCsys6LLHOTmqv/xK9b7+N1eul9JGH8cycaXZZIiIjxscNwAG8LjvlOamJUSh9c8Er8tMozUzBbrMO3U2IiMiolZOSw5ySOcwpmZPc1tzTPKi7fFvrNlp6W9jVsYtdHbt4dvezyWOz3FlMypiUDMv7l3rwp8joonBcRIadgSNV9MCsEcBiSYxWWf8oVK4cEeF4zO+n5rrrCW7ZgjU9nbLHHiXlpJPMLktEZNg52gB8fI6H8dmpiVdOKuOzPYzPSdVDMUVExBS5nlzmeuYyt3RucltTT1PyYZ+V7ZVUtldS21lLW7CNNxve5M2GNwddoyi1iIrMikGBeXl6OQ6bnnUhMhIpHBeRYSVuxFlTuwbQvPERpaIvHN/5AhhGIjAfpqLt7dRccy2hHTuwZWRQ9rvHcU+danZZIiKmUQAuIiJjWZ4nj7yyPM4vO/DzZ2+0lz0de6jsqEwG5rs6dtHc28z+7v3s797P2rq1yePtFjvjfeMP6jIv9hZjtegTUSLDmcJxERlWtrZspaW3hVRHKqcXaPbziFE+G+wpEKiDxm1QcKLZFR1StKWFmquvIVRZiS07OxGMT55sdlkiIsddNBanrr2Xqpbug14KwEVERAZLsacwPWf6Qc+/6gh2UNmRCMr7A/PK9kq6Il3J0SwrqlcMus6hRrNku7P1/VNkmFA4LiLDSv9IlXOLz8Vpc5pcjRw2RwqUz0mMValcOSzD8UhTEzVXXU14zx7submUPfkErgkTzC5LROSYiccNGgJBqlu62dMXfFf3LWvaeojGPzgB7w/Ax2WnUq4AXERE5JAy3BmcXnD6oEYuwzBo6G5Idpn3B+Z7/HvojfaypWULW1q2DLpOpitzUFg+KWMS49PHk+HOGOpbEhnzFI6LyLDyUs2BeeMywkyenwjGd74As281u5pBIg0N1HzxKsJ792IvKGDcE7/DOX682WWJiBwxwzBo7Q4nA/DqAR3g1a3dBCPxDzzX7bAyPjuV8pxE+F2ek8qEnFTGZaeS41UALiIi8nFYLBYKvYUUegsHPfwzGo9SE6g5KDSv7aylPdR+yHnmma5Myn3ljPeNpzy9b+krp9hbjN2qCE/keND/WSIybNQEatjt343dYmd2yWyzy5EjVXFRYln3JvS0gSfL3Hr6hOv2UXPVVUTq6nAUF1P25BM4S0rMLktE5EMFgpFBwXd/F/ielm46g9EPPM9utVCW5RkUgPe/CtLdWK0KwEVERIaC3WpnQsYEJmRMYP74+cnth5pnXhWooqG7gfZQO+1N7Wxq2nTQtcrSyhLBefr4AwG6r5x0Z/pQ35rIqKJwXESGjf6RKrMKZukb/EiUUQp506FpG+xaBTOuMLsiwjU17L3qKqL763GUlTHuid/hKCoyuywREQBicYOath52NXWxq6mLqpauZBDe0hX+wPMsFijypQwKvvtfJZkp2G168JeIiMhw9UHzzHsiPVQHqqn2V1MVqEos/VXsDewlGAuyx7+HPf49B10v252dDMr7g/Py9HKKvEXYrLahui2REUvhuIgMG6trVgMaqTKiTZ6fCMd3rjQ9HA/tqaLmqquINjXhLC+n7IkncOTnmVqTiIxN4Wic6tZuKhsTIXhlUye7mrrY09JNOPrBY1By01yUv38MSm4qZVke3A79sCsiIjKaeBwepmVPY1r2tEHb40achu4GqvxVVAcSgXl/cN7U20RrsJXWYCsbGzcOOs9pdVKWPrjbvH/d6/QO5a2JDGsKx0VkWGgPtvN289uAwvERbfJ8eOXeROd4LAo2c77NhCor2Xv1NcRaWnBVTKLsd7/DnpNjSi0iMnb0hKPsae5Oht+VjV3sau5ib2sPsQ94GKbLbmVSnpdJeV4m5Hgpz+1/IKaHNLdjiO9AREREhhurxUqRt4gibxHnFJ8zaF9XuIu9gb1UBaqo8lclA/S9/r2E42F2dexiV8eug66Zm5J7yBEthamFWC36BJqMLQrHRWRYWFu3lrgRZ0rmFIq8GnsxYpWcDimZ0NuemD0+7hNDXkJw+3Zqrr2OWHs7rhNOoOzxx7BnDY/55yIyOvh7I32jUPpC8L6xKHXtvR94TprLzsQ8LxV9QXhFvpeKvDSKM1I0B1xEREQ+Fq/Te8gRLbF4jPru+kHd5v3rLb0tNPc209zbfNADQV02F+PSxx0cnKeX43F4hvLWRIaMwnERGRZeqknMGz+/TF3jI5rVBpMugC1/SYxWGeJwvGfTJmpvuJF4Zyfu6dMpe+xRbBkZQ1qDiIwOhmHQ2h1Odn/vauxkV3OiG7ypM/SB52WnOgeH4HlpTMrzkp/uwmJRCC4iIiLHn81qoySthJK0EmYze9C+znBncq55/4iW6kA1ewN7CcVC7Gzfyc72nQddM8+Td9CIlvL0cvJT89VtLiOawnERMV0wGuS1+tcAjVQZFSYvSITjlS/AhXcO2ZftevkV6m65BSMYJOW0WZQ++CC2tLQh+/oiMjJ1BiPsbe2htq2HvW097G3tTnaDd/REPvC8Qp87OQ5lYAieleocwupFREREjkyaM42Tck/ipNyTBm2PxqPs79o/qNO8v9u8LdhGU08TTT1NvFH/xqDzUuwpiW7z9PJBDwYdlz5O3eYyIigcFxHTvV7/Or3RXgpSC5iaNdXscuRoTZwHFis0bYeOGsgoO+5fMrDyBfbddhtEIqTOmU3JffdhTUk57l9XRIa/eNygsTNITWsi/K5p7aGmrX+9m/YPCcAtFijN9CS6wPO9TMr1UpGfxsTcVM0DFxERkVHFbrVTll5GWXoZc0rmDNrnD/kPehhodaCamkANvdFe3m17l3fb3j3omgWpBZSnlw+aaz4+fTz5nnx9ok6GDYXjImK6l2oTI1XOKzlP3yBHA08WlJ4JNa8lRquccf1x/XIdT/+N+jvugHictIULKP7Zz7A41bkpMpYEIzFq2/pC777wu6avC7y2vZdwNP6h5+d4nZRmeRiX5aEsy8PEvm7wible3A7bEN2FiIiIyPDkc/k4OfdkTs49edD2SDzCvs59B4LzAQF6e6idhu4GGrobkp8U7+exezgh6wSmZU9javZUpmVNY7xvPHarYkoZevqvTkRMFYvHWFO7BtC88VFl8vxEOF75wnENx9v+539ovPunAGRc/mkKfvhDLDYFWSKjjWEYtPdE2NvanQi+39cF3hAIfuj5dquF4swUyvrC73HZHsqyUhPvsz14XforsYiIiMiRclgdjPeNZ7xvPOeVnjdoX0ew48CIlgHzzWs7a+mJ9rCpaRObmjYlj3fb3EzJmsLUrKlMy57GtOxpTMiYgMOqT+vJ8aWfBETEVFtattAWbMPr8HJ6/ulmlyPHSsV8WPVDqFoH4R5wHttZc4Zh0PLAA7Tc/xsAsq66irzbv61PHoiMYOFonH0dvckO8Nr3dYF3haIfen6ay05ZticZeI/rC7/HZXso9Lmx2/SgKBEREZGhkuHO4BT3KZySd8qg7ZF4hL3+vexo28H21u1sb93Ou23v0hPt4Z3md3in+Z3ksU6rk8mZkxPd5X1d5hUZFTht+qSwHDsKx0XEVKtrVwMwu3g2Dpt+Izxq5E0FXyn4axMB+ZQFx+zShmHQ9F8/o+3JJwHI/dpXyb7xRgXjIsOcYRg0d4Wobeuhtq03GYDXtPVQ195Lvb+XuPHh1yj0uZPjT8ZlexLr2amMy/KQ4XHozwERERGRYc5hdTApcxKTMidx8cSLAYgbcfYG9rKjNRGY72jbwY7WHXRGOtnaupWtrVuT59utdioyKhJheV+XeUVmBW6726xbkhFO4biImOqlmsS8cY1UGWUslsRolfWPwpsPJ9aPQWhlxGLU/+AH+P/6NAD5//EfZP3fLxz1dUXk2OgORaltHxx+JzvB23sIRj589neKw0ZZlofSrBRKMhMBeP8IlJLMFM3/FhERERmFrBYr5b7EgzsXTVgEJBor6jrr2N6W6C7f0bqD7W3b8Yf8ifC8bUfyfJvFxsSMiUzNmsrU7KlMz57O5MzJeBzH9hPMMjpZDMP4iB4dCQQC+Hw+/H4/6enpZpcjMmpU+au45B+XYLfaWfeZdaQ508wuSY6lph3w27kQC8FFd8Enbj6qyxnhMPu+fTudK1aA1UrhXXeR8e+fOkbFisjhiMbi1PuDfQF4//iT3r7u7x5ausIfer7VAoW+FEqzEvO/SzMTI1BK+9ZzvE51f4uIiIjIIRmGQX13fXIcy/a2RGjeFmw76FirxUp5evmBkSx9wXmqI9WEymWoHUmWq85xETHNS7WJrvHT809XMD4a5U2FBT+Fpd+EVT+AsrOhZNbHulS8t5e6r36N7pdfxuJwUPTLX5B+0UXHuGAR6ReKxti+P8DbtR3sbOxKBuH7O3qJfsTskwyPIxF6Z3koyTrwEMzSTA9FGSk47Zr9LSIiIiJHzmKxUOQtoshbxAXjLgASgXljTyM7Wnck55jvaN1BU28Tu/272e3fzfN7nk9eIzcll2JvMUXeIoq9xZSklSTXC1IL9ADQMUjhuIiYZk3tGkAjVUa1066BqrWw/Rn469Vw48vg9h3RJWKdndTe+GV6N27EkpJCyW/ux3vOOcepYJGxxzAMatt6eau2nbdrO3irpoPt+wOEY4cegeK0WSnJTEl0ew8Iv0syEx3gvhT9QCEiIiIiQ8NisVCQWkBBasGgbKGltyXZYd4/kqWhu4Hm3maae5t5u/ntg65ltVjJ9+Qnw/MSbwnFacUUpRZRklZCbkouNqvG/I02GqtyGDRWReTYa+ltYd5T8zAwePHTL1KQWmB2SXK89HbAb2dDRw1MuxQuf/Kw549H29qoue46Qtt3YE1Lo/S3v8Vz6szjXLDI6BYIRthc6+ft2nbequng7doOWrsPHoeS6XEwsyyT6UXpjMtOpTQzhbJsD/lpbqxWjT4RERERkZHFH/JT11nHvq59B732d+0nFAt96Pl2q53C1EKKvcXJ18AO9Gx3tkYEDhMaqyIiw5phGNz1+l0YGMzImaFgfLRLyYBPPwGPX5ToIN/wOJx+7UeeFmlooOaaawnv2YMtO5uyRx/BPXXq8a9XZBSJxuLsbOzq6whPdIbvau7i/a0RDpuFaUU+ZpZmMLMsg1NKMyjL8ugv9yIiIiIyavhcPnwuH9Nzph+0zzAMWoOt1HXWsb9r/0HheX1XPdF4lNrOWmo7aw95fZfNlRz7UuItGdSBXpJWgs91ZJ+ilqGhzvHDoM5xkWPr6Z1P88PXfojdaucPi/7A9OyDvzHJKPTq/fDC98HmgutXQ8GJH3hoeO9eaq6+hsj+/dgLCyl7/DFc5eVDWKzIyNQYCPJWTUdiREpNB1v2+ekJxw46rjQrhVNKM5lZmsEpZRlMK0zH7dBHREVEREREDiUWj9Hc25zsPN/ftZ+6rgPrjT2NxI1DjyXsl+5MpyytjP+fvTuPj6u67///uvfOqm202JItW/ICtsEYL4AxZktIIZCmJKwlgRQCackCpMQhEJoESJqELL80hLCFJsH9paWmoeWbhCTQlLJ/DV6IF2ywWWzLlizJ2tfZ7r3fP+5oNGPJG8gaSfN+PjKPe+fcc++cMXlcSe858zk1xTXUlNRQU1xDbXEttSW1mnU+wo4ky1U4fhgUjouMnB2dO7jiySvoT/az4uQVXLvg2lwPSUaL48C/XwFv/TdMmgt/9ywEi4Z0i27bTt1nPoPd0kJgxgxqH/kl/urqHAxYZGzrj9u83tDJhowwvKEzOqRfUdDHopoIS2rKWJwKwycVBXMwYhERERGRiSlhJ2jsbaS+t5767qFlW1r6Ww56ftgX9kLzVGCeGZ5XFVSp1vkRUjg+whSOi4yMuB3nU3/4FG+0vcGyqct4+LyHMQ0z18OS0dTbCg+dAd17YdGVcPGDWYf7N26k7vrP4nR2EjzuOGp//s/4Jk3K0WBFxg7HcdnR2jsYhO/u4I293dhO9q9xpgFzq4pZUluWLpFyzOQi1QgXEREREcmhvkQfe3r2sLtrN3Xddezu9rZ7uvewt3fvQWed+00/04qmUVtSmx2gF9cwrWgafss/iu9kfFA4PsIUjouMjB+t+xErt6ykNFjK4xc+TlVhVa6HJLmw8yX4lwvBdeDin8GiTwDQ+8or7P7CDbh9fYQXL6bmZw9hRVSTTfJPPOnwdnMPWxo62bq3i60NXWzd20V3NDmkb2VxMFUjvIwltaWcOC1CYVBLyoiIiIiIjBdxO059T326nnldV116f0/PHpLO0L8DBpiGydTCqVmB+cCs85riGsK+8Ci+k7FD4fgIUzgu8v6tbljN9X+6HoCfnPMTPlT7oRyPSHLque/Dc98FfyF89nm6N+2m/uYv4cbjFJ6+nOk//SlmYWGuRyly1HVHE7yxt5utDZ1sSYXgbzX1ELeHzhwJ+kwWTo+wuKaUJbVeiZSpkZBqE4qIiIiITFC2Y9PY15gVmA/MOt/dtZuoPbSsYqbKcCWPXfgYk8L59Y3sI8lyNbVIRI66tmgbX3vpawD89dy/VjAucPYtsPNF2Pkinf94JQ3/0w+2TfF551L9ox9hBgK5HqHIiHJdl+buGFsbutIzwrc0dLGrtW/Y/iUhH/OrS5g/NcIJ1SXMry7h2Moi/JZKUYmIiIiI5AvLtJhWNI1pRdNYzvKsY67r0tLfMlimJSNAr+uuozveTVusjbJgWY5GPz4oHBeRo8p1Xe58+U729e9jdmQ2tyy9JddDkrHAtOCSf6bt78+maXU3YBC56CKmfvsfMXz60STjm+247GjpTZdE2dLQyRt7u2jpiQ/bvzoSYn51hPnVJV4QPrWE6WVhzQgXEREREZEDMgyDyQWTmVwwmZOrTh5yvDPWyd7evVrM8xCUQIjIUfUf2/6D5/Y8h9/08/2zv5+39a5kqJZVT7JvtfdjqGxOD1WfOlXBuIw70YTNtsbuVEkUrzTKm3u76U/YQ/papsExkwuZP7WEE1Jh+PypJZQV6psSIiIiIiIysiLBCJGg1vE6FKUQInLUvN3+Nj9c90MAbj7pZo4rPy7HI5KxwHVd9v3TP9H6zz8HYNIFxzMp8gzG7/4epi2Bspm5HaDIAXT0xb0QPKM0yjv7erGdocu3hP0Wx08tTs0GjzB/agnzphQT8mvWhoiIiIiIyFihcFxEjoqYHeO2F28jZsc4o/oMPjX/U7kekowBruPQ+K1v0bHqMQAqb72Vims+BY98BPashcc/A9c9BZY/xyOVfDZQH/z1em8m+MC2vqN/2P4VhYHBEDxVGmVmRSGWqbIoIiIiIiIiY5nCcRE5Ku5Zfw/b27dTHirn22d+G9PQInL5zk0kaLj9H+h68kkwDKZ865uUXX65d/CyX8JDZ0L9OnjmW/Dhf8ztYCVvuK5LXVsfr9d7s8Ffb+hia0PnAeuDz6goSNcFHwjDK4uDqg8uIiIiIiIyDikcF5ER9+KeF/nXN/4VgH884x+ZFJ6U4xFJrjmxGPU3f4meZ58Fn49pP/g+JX/5l4MdSmvhY/fBf/wN/N97YdbZMOe83A1YJqSk7fDOvt70TPAtDZ1sbeiiO5Yc0tc0YE5lMSdUl3DCtIgXiFeXUBLStxpEREREREQmCoXjIjKiWvpb+PrLXwfgyuOu5OzpZ+d4RJJrdk8ve264gb5XX8UIBpl+708o+sAHhnac/zFY+new9p/hic/C516CkurRH7BMCAMLZb7eMBCEd/Hm3i5iSWdI34DP5LgpxZxQ7YXgC6ZFOE71wUVERERERCY8heMiMmJc1+UbL3+Dtmgbx5Yey4pTVuR6SJJjyfZ2dl//WaKbN2MWFlLz0IMULF164BM+/G3Y/Qo0bob/uh6u/g2YCijl4LqjidQimV28npoN/lZzz7ALZRYFfV5JlGkl6TD82Moi/JZKP4mIiIiIiOQbheMiMmIeffNRXqp/iYAZ4Adn/4CgFcz1kCSHEnv3svv6zxJ76y2s0lJqfv5zwgtOOPhJ/hBcthJ+djbsfBFe+CF88KujMl4ZH3piSTbt7mDDng62pOqE72ztG7ZveWHAK4tSHWFBKgyfUV6AqYUyRUREREREBIXjIjJCtrVt45/W/RMAXz7ly8wpm5PjEUku9bzwAg233obd0YGvspLaX/6C4LHHHt7Jk46Fv/oxPHE9PP99mHEGzDrr6A5YxiTbcXmruZsNdR38ua6DDbs72N7cjTt0QjjVkRDzM0LwBdNKmFIS0kKZIiIiIiIickAKx0XkfYsmo9z2wm3EnThnTz+bTx73yVwPSXLETSbZd8vCXsQAACAASURBVO9PaX34YQBCJ5zAtJ/8hMD0aUd2oUVXwI4XYMO/wn/+LXz+ZSjUwq4TXXN31AvCd3ewoa6DTXs66I3bQ/pNKw2zuKaUBdMGw/DywkAORiwiIiIiIiLjmcJxEXnffrTuR7zT+Q4VoQq+dfq3NFMzTyWamqj/8pfpX7cegLKrrqLytlsxA+8xtPzLH8CetdCyDZ74HFz5H2CqLvREEU3YbGno5M8ZYXh9R/+QfgUBi0XTS1lcW8rimlKW1JRSWRLKwYhFRERERERkolE4LiLvy3O7n2PVtlUAfOfM71ARrsjxiCQXel56mYZbb8Vua8MsLGTqd75NyQUXvL+LBgrh8kfgnz8Eb/8JVt8HZ3xxZAYso8p1XXa29rFhd3u6PMrWhi6S+y2YaRgwt7KYxTVeGL6ktpQ5lcVYqhEuIiIiIiIiR4HCcRF5z/b17eOOl+8A4G/m/w1nTDsjxyOS0ebaNvvuu4/Wh34Grkvw+OOZ/uN/IjBz5si8QNUJcMHd8OSX4JlvQu1yqFk6MteWo6azL8GGPR38ua6dDbu9MLyjLzGk36SiAItrylhS680IP3F6hOKQPwcjFhERERERkXykcFxE3hPHdfjaS1+jPdbOvLJ53HzSzbkekoyyRHMzDbd8hb41awAo/cQVVN1+O2YwOLIvdPK1Xv3xLU/Af14Hn30RwqUj+xryniVsh22N3fy5rt0rj7K7g3f39Q7pF/CZLKguSYfhi2tKmV4WVhkmERERERERyRmF4yLynvxq669YvXc1ISvED87+AQFLi+Hlk97Vq6m/5SvYra2YBQVM+da3iPzVR4/OixkGXPgTaPgztO+E394Ef/3/e+0y6uJJh017Olj9Tiur323ltbp2oglnSL+ZFQVejfDaMhbXlHL81BICPtWMFxERERERkbFD4biIHLE3Wt/gntfuAeArS7/C7NLZOR6RjBbXtml58CFa7r/fK6Mydy7T7rmH4OxZR/eFQxG47Jfwi/Phjd/C2p/DqX93dF9TAEjaDq83dKXD8LU72uhP2Fl9SkI+FqdC8CU1pSyqKaW8UB+YiYiIiIiIyNimcFxEjkhfoo/bXryNpJPknJpzuHzu5bkekoySZEsL9V/5Cn2rXwGg9PLLqPra1zBDodEZwLST4bxvwtP/AE9/DWqWwdSFo/PaecRxXLbu7eKVd1tZ/U4ra3a00R1LZvUpLwxw2uxylh8zieWzy5k9qQhTi2aKiIiIiIjIOKNwXESOyA/X/ZAdnTuoDFfyzdO/qXrBeaL31TXU3/Jl7H0tGOEwU795F5GPfWz0B3LaF7z649ufgsevheufh2DR6I9jAnFdl+1NPax+p4XV77byyrttdPZnL55ZEvKxbHYFy2dXcPqxFcytLFYYLiIiIiIiIuOewnEROWzP7HqGx7c/joHBd876DmWhslwPSY4y13Fo/dnP2PfT+8BxCM451iujcswxuRmQYcDHH4CHzoTWt+EPt8DFDw3p5jhuurs+wMnmui7vtvSmy6S88k4rrb3xrD5FQR9LZ5ax/JgKTj9mEsdPLcFSGC4iIiIiIiITjMJxETksTb1N3Ln6TgA+veDTnDb1tByPSI62ZFsbDV+5ld6XXwYgcsklTPnG1zHD4SO6juu4JBMOdsIhmbBJxh2SqX07Yz8ZH+iTOpZwUn1t7/yM/WT8QezWrSSf8WO/+t8kzaKsfgPhOIBpGhiWgWkamJaBYR5kP9XvsPYHrmkaGJaZsW9gmgzzOubhv05m22GOG8BOOji2i5N0sW3H2yZtGtujbKnv4M36LrY3dtPTl8R0wQJqgTmmnxllYWpLC5geCVFREAAb7Pok+3Y10GjX4yQdbNvN3iZdXNf1xm2ZWL5htj4TyzIxfYa3tYyM4wPPM44P2e5/jrf1+U1CRX59+CEiIiIiIiLvmcJxETkk27H5h5f+gc5YJ/Mr5nPT4ptyPSQ5yvrWraN+xZdJNjdjhEJMufNOSi++6LDO7e2MsWtzKzs2tVC/rZ1EzD70Se/Jcd6mAyB6wF6O44LjcrRGMZ5UA9WYwDCLZfYmYE8ne+hkz2gP7D3yBUwikwuIVIYprQxn7BdQEAkoOBcREREREZGDUjguIoe0cstK1jSuIewL8/2zvo/f8ud6SHKUuI5D6z//nH333gu2TeCYY5h+z48Jzplz4HNcl7a9vezY2MLOTS007eg6YF/TMvD5TSy/ic9v4Qtk73vHBvd9fgsr3Z7dz+czsF74R3zNr+GrmI7vsgewwgVeH78JBji2i+u4OI47uG97z7P3nfT+sOcc8vzUfmZ/x8XNPP5+rp1xreH3HVwXXAOSQML1PgywDRcHcAwIBiwKwz5KCgKUFPrx+63BWdvWwAzvA21TM7kzZ3pb3sxuw/Q+gMiere79e3pbb4Z5ejvcDHTbHdovq7+Tff3UNhl3aK3vobW+Z8j/1xSci4iIiIiIyKEoHBeRg9rSsoX7/nwfALefejszIzNzOyA5apLt7TTcdhu9L7wIQOTjH2PKHXdgFhYO6WvbDnvf7mTnxhZ2bNpHV0v2zO3KGcXMWjSJGQsmUVQWTAXbJqZljuyg53wdHjwDurfA5u/AX/14ZK8/Brmuyzv7elm7s421O9tYt7Odurb+rD6mASdOL2X57ArOOqaCU2aWURCYWD/ybduhuyVKR3Mfnfv66Wzup7O5j459/XS3RhWci4iIiIiIyCFNrL+URWRE9SX6uO3F20i6Sc6bcR4XHXt4ZTVk/Ol77TWvjEpjI0YwyJRvfJ3IpZdmhYSx/iR1W1rZsbGFui2txPqS6WOWz2T68WXMWjiJmSdOorA0ODoDL54ClzwM/3oJrPslzDobTrh4dF57lCRsh9frO1m3s501O9tYv6udtv0W0DQNOH5qCctnV7D8mAqWziqnJDSxv+FhWSalVQWUVhUMOabgXERERERERA6HwnEROaDvrfkeu7p2MaVwCncuv1Oh0ATkOg5tv/wlzT++xyujMnMm035yD6F58wDoau1n56ZWdm7aR/32Dhx7cKHLUJGfmSdWMGvhZKYfX0YglKMfKcf+BZz5JXjpx/DbL8LUxVA+KzdjGQE9sSSv7Wpn3c421u5s58+724kmnKw+QZ/J4ppSTp1Vzikzy1lSWzrhw/AjcdDgPOnQ3ZoKzpv7U+H5kQXnxRUh71Ge8agIES7WAqEiIiIiIiLjicJxERnW0zuf5om3n8DA4LtnfpdIMJLrIckIS7a3s/ert9Pz/PMAlHz0o1TddRdtbQ4bf/suOza10LonOyAsrSpg1qJJzFo4iarZEUxzjASB53wNdr4Me9bA49fBdU+Db5hFJ8eg5u4o63a2p8ukbG3ownGz+5QW+DllRjlLZ5axdFY5C6ojBHwjXKImT1i+oxOcD1y7qDyYDsszw/Oi8pBXYkj/3URERERERMYMw3Vd99Dd8ltXVxeRSITOzk5KSkpyPRyRo25vz14u/d2ldMe7+bsT/44vnvTFXA9JRlj/hg3sWbGCZMNe3GAY97PfYF/keHZubqW3I5buZxgw5ZgIsxZOZubCCsqmDK0/PmZ01MFDZ0G0A5bfCOd/J9cjGsJ1XXa0DNQL92aH72ztG9JvelmYpTPLU48yjplcNHY+iMhTmcF5d2uUnvYo3a1RuttidLdF6e2MwaF+ozKgMBKkeL8AvShj9nnOvoEhIiIiIiIyQRxJlqtw/DAoHJd8Yjs21z19Ha81v8bCSQtZ+ZGV+E2Va5goXNelbeW/sOcnD9EamUdb7Wm0lR5HIjH4o8AXtJgxv5yZiyYxY0EF4aLxMQMbgDeehMeu8vYv/QUsuNRL+HMkYTtsbejKWjyzdb964YYBx00pYenMMk5JheFTI+EcjVjeKzvp0NsRSwXmGY/WKD3tXoBu71ceZzjBAt9gWJ4RmheVBykoDuAPWQSCPiy/ZqCLiIiIiIgMR+H4CFM4Lvnk4U0P89M//5QCXwGPX/g4NSU1uR6SjJDWt5vY9KNV1LeH6YzMBmMwXCuMBJi5aDKzFk1i2txSfH4rhyN9n/5wK6z5mbdfsww+cCsc8xejEpL3xJJsqOvwgvBdbfy5roO+uJ3VJ+AzWTy9lKWzvDD8pNoyImF9ADXRua5Lf3ciHZh3t0XpacsO0mO9yUNfKMW0jHRQ7g9Z+IMWgZCFP+QjEPS2/qDl9QlZ+IO+1PGM/aBFIOSdr3IvIiIiIiIyUSgcH2EKxyVfbNy3kWv+eA22a/OdM7/Dx475WK6HJO9Te2Mv29c08db/3U1nR3ZIO2l6ETNT9cMn1xZPnIUEkzH4n2/Cul9AMuq1VZ8EH7gN5p4/YiF5c3eUrQ1dbGnoYuveLrY2dLGztZf9f6pGwn5OmeEF4afOKmPBtAhB3zj+8EGOmng0mQrNY9kzz1P70d4EyfihZ5+/F6bP8MLyVNieGbT7Ahamz8CyzOytz8S0BrYmls/I2qaPDXduxjWy2iwDIw9LCLmOSzLp4PObE+deLCIiIiKSIwrHR5jCcckHPfEeLv/d5ezp2cNHZn2E75/1ff2BPk71dsR4a10T29c0sa+uO91uOEnKo3XMuWARcy84keLyUA5HOQq6G+H//hTW/gKS/V7blIXeTPJ5HwXz8GbKOo7LrrY+tjR0ZoXh+7pjw/afVhrmlJll6ZrhcypVL1xGjuO4JGI2iWiSeNQmEbWJx5IkonZ2e8wmHvXaB54nYgPnJFPH7cMq9TLaDNPAsgwsv4nPb+ILWKmHObj1W/gzn2ds/Zlt/qF9/APX85uHHcS7rouTdEnEvX/LZHrrkIjbJGP24Da2X1vca0vud67Xx2tPpv47BEIWpVUFlE0pTG29xWMjleHx/Y0eEREREZFRpHB8hCkcl3zwDy/+A79793dUF1bz+McepzhQnOshyRGI9Sd598/NbF/TRP229vTsZcOxKW/fSlXTOmYuqqT2u3dhFefZf9uefbD6p7Dm55Do9doqT4Czb4H5HwdzMHCKJmzeaurxgvC9XhD+xt6uIaVRwJuAPntSIfOrI5xQXcL8qSXMry5hUlFwtN6ZyPvm2E46KM8K2jP34zaO7eIkHewDbZMujj24dWwXOznMdr9z7aRz6IVMjyLLb2YF5gOBfDr0TofcDq6Tu4EaBhRXhLJCcy84LyRc7NeH2SIiIiIiGRSOjzCF4zLR/f7d3/PVF7+KaZisvGAlSyqX5HpIchjshMOuLa1sX9PIzk2tXsiUEul8h6qmtVTue43IifOo+Mx1FH3oQ/kdoPS2wisPwJqHIdYFQF/kWF6dfh1P2qexpbGXt5t7SA4TgAV9JsdN9QLwE6q9EPy4KcUUBHyj/S5EJhzHGT5oTyYc7ERqZvVAWJ3w9rPa4g523CaR0Tc5MGM7vl9b6prvh2l5JWh8ASu1TYXrwdSs9WD284E+A/2H6+sPenXfe9pjtDf10t7YR0dTX3ob7z9wPfpggc8LzKsKKJ1SQFlVIaVTCohMDquWvIiIiIjkJYXjI0zhuExkaxvX8sX//SI9iR6+sOgLfH7x53M9JDkI13HZ+04H215t4p3Xmon1DQYmRck2Kuteoqp5HeFYG8Xnnkv5dddSsCS/P+xwXZeGzoH64J3s3F3PgvpVXJ74LRGjD4B3nSncn7yI3zinU1QQ5oTqEk6ojqTD8FmTCvFZCplEJgLHcdOheyKeHbYn4zZ20sHy7xd4Byz8QRNf0MIa5XuB67r0dcWzwnJv20tXa/SAM+8N06BkUigVmhcOhudTCggXBUb1PYiIiIiIjCaF4yNM4bhMRK81vcYDGx7g1cZXAVg8eTGPXPAIPlMzYceilj09bF/TyFtrm+hpH6x1HQ7YVDWtY/I7/0tRzx7MYJDIJRdTcc01BGbOzN2Ac2hvZz9rdrTxen1nuj54R19iSL8i+vhi8bNcaf+WIserzZ4sqcX6wC0Yiz4JPoVHIjK2JRM2nc396bC8vamPjsY+2pv6SESHloMaECz0pWeYl1UVUFQeJFTgJ1joJ1jgI1ToJxD2ab0EERERERmXFI6PMIXjMpFsaN7AAxseYPXe1QD4TB+XzrmUGxffSGmoNMejk0zdbVG2r2lk+5om2hp60+2BoEl1qIXydf9FpH4DBi5WaSllV11F2VVX4isvz+GoR9+e9j5efbeNV95t5dUdbdS19Q3p4zMNjq0s8maDV3uzwY+fWkIk7IdYD6z7Bbx8L/S1eCdEauDMm2HJ34BPNcRFZHxxXZe+zjjtjb1DZpx3tx94tnkWA4JhH8FCP6GC/bapED1Y4CdU6MsK1UMFfiy/vmkjIiIiIrmjcHyEKRyXiWDzvs3cv/F+Xq5/GQCf4eOiORdx/YnXM7Voao5HJwOivQneXt/M9jWN7H27M91u+gxqZoWZ0rSG8NP/ghnzAmB/bS0V136ayEUXYYbDuRr2qHFdl91t/byyozUdiNd39Gf1MQ1YMC3CkprSdBg+p6qIoM86wFVT4n2w/hF4+SfQ0+S1FVfDGX8PJ18D/on/7ysiE18ibtPZnB2Y93XFifUliPYmiPUmScQOPOv8cPgC5n4Bup9goS81O32wzR+0MEyvBIxpGBjmwANM08AwhntOut3M6G8Y+z3PuOaBuK6L67hevfshi8sOt6Csi21nbp30udnHh1+8FtclMrmA8upCyqsLKZkU1ux8ERERkaNA4fgIUzgu49mW1i08sOEBXtjzAgCWYfHxYz/O9QuvZ1rRtByPTgCScZsdm1rYvqaJui2tOHbqtmxA9ZxSZlXFKH7pMeLPPp0+J7RoIRXXfYbic/8CwzpE6DuOua7Lrta+9KzwV99tpaEzmtXHMg0WTo+wbFYFy2aXc8qMMopD/vf+ool+eO1X8PI90FXvtRVWwhlfhFOug0Dh+3hHIiJjn510iPUlU4F5klhvgmifF5ynt70JYn0JYn3JdKge60swFv+ySAfsA2G5QTrIPqxZ9EeJ5Tcpn1roPaoHH8XlofxeQFtERETkfVI4PsIUjst49EbrGzyw8QGe2/0cAKZhcuHsC/nsws9SU1KT28EJjuNS/2Y729c08s6GfVm1YSumFzH3lEqmRrcT+/df0r9xY/pY0Yc+RMVnriN80kkT8g9n13V5t6XXC8PfbePVHa00dcWy+vgtg4XTSzltdjnLZlVw8owyCoNHoVZ+MgYb/g1e/DF01nltBRVw+k2w9G8hWDzyrykiMo65jks8mswKzL0wPUG0L5m97U2QjDs4jjd723VcXJfs546L43LQ5yP9l4xpGpg+A8tnYlr7b00snzG49ZlYVsbWMr1z99+mruE60NHUR2tDD+2NfdgJZ9gx+EPWYGA+tZCK6iLKqwspiAQm5M9+ERERkZGmcHyEKRyX8WR7+3Ye3PAg/1P3P4AXin901kf57KLPMqNkRo5Hl99c12VfXTfb1zTx1tom+rri6WPF5SHmnFrFnIWlWK/+N60rV5LY5QWyRiBA5OMfp/zaTxOcPTtXwz8qXNfl7eYeXtnRlg7EW3qyw/CAZbK4JhWGz67gpNoywoFRnC1vJ2DjKnjx/4P2nV5buAxOuwGWXQ+hyOiNRUREsriuF5Cnw3NnmOfOYAkVx3HB9WZtZ4Xflrc9WBmWkeQ4Ll37+mnb20tbQw9tDb20Nng14tPfINtPsMCXml1elArNvQA9XKwFpEVEREQyKRwfYQrHZTx4u/1tHtz4IP+9678BMDD4yKyP8LlFn2NWZFaOR5e/EjGb+m3t7NrSyq7XW+luHSwJEiz0cezJVcw9tYrJpTYd//7vtD/6KHZ7OwBmJELZJz9B+ac+hW/SpFy9hRHlOC7bm7vT9cLX7GijtTee1SfgMzmptpRlsyo4bXYFS2pLCfnHQOkYOwmvPw4v/BBa3/baghE47XOw7HNQkF8LoYqIyMizbYfOJi80b02F5m0NvXQ29x1wlny42D9saB4seB8lxvKI66TqxmfWkz9Unfms+vSDW9dxsfwmPr+J5TexfBn7A+2+gX0r1cf7kEbfChARERk5CsdHmMJxGcve7XiXhzY+xFM7n8JNFc68YOYFfG7R5zim9Jgcjy7/uK5LR1Mfu15vpW5LK/VvdeAkB2+zlt9k1qJJzD11CrXzy7Hrd9O6ciWd//UEbsybMe2fNo3yT3+a0ksuxiwc3/WtHcfljcaudImUNTvaaO9LZPUJ+U1OnlHm1QyfVc6imjEShh+IY8OWJ7yQfN+bXlugGE79O1h+IxRW5HZ8IiIy4SQTtleSpb43Ndvcm3He1RI94DmFpUEvNJ9SiD9kpcvQpGfbuy442c/T7RnPGeY81wGGOW+wfeRL3hwJ13GHCa+HX2TVccbGn8MDobnlN/H5hgbqWSF7xvGBY4Gwz1sEN+wnUOAjGPal2wIhC9Myc/0WRURERo3C8RGmcFzGop2dO3lo00P84d0/pEPx82acx+cWfY65ZXNzPLr8crDZ4QDFFSFmnFBB7YIKps8rwx+06N+wgdZf/JLu//kfBv56DJ1wAhWfuY7iD38Yw3cUamgfZa7rsrczyqY9nWza08Hm+k427u6gK5rM6hf2W5wys4zTZnth+MLppQR84/APNseBN37rheRNr3tt/kJYeDnM/iDMOBOKJudyhCIiMsElYjbtjb0Zobk327ynPXbok2V4RiqotvarK58qwXOwWvSGCXbCC+LthENy//39no8mf8jKCsyDYZ8XoodS27DfC9LDGccGwvWwD2s8/q4mIiJ5S+H4CFM4LmNJXVcdP9v0M55890kc1/ul+kM1H+ILi7/AvPJ5OR5dfth/dnjDW53YycE/cEyfwbQ5pdSeUMGMBRWUVhVgGAau49Dz7LO0/vIR+tevT/cv/MDZVFz3GQpOXTquvlLb0hNj056OVBjuPfavFw5QGLA4ZWa5F4bPLufEaRH8E2n2kuPA9j/C89+HvRuzj00+DmaeBTPP9B6FE6M8joiIjG2x/iTte3tpre+hvakPJ+liGHi/Z5jeduC5YeDVWjf2a0/1O1C7YQAZ52dej/Q2N+/fMLID7MGFVPcPuIcurmqOUt15102VczlUiJ7a2gk73W9In7hDrD9JPPWI9XsL48b6kyRj9qEHcxh8fnO/wNxPMGxhWOPnd9eRYFom/qBFIGjhD1kEQj5vG/S2/pDlHQ/5UlvN2hcRyQWF4yNM4biMBbu7d/Pwpof53Tu/w3a9X3I/OP2DfH7x55lfMT/Ho5v4MmeH121pHfI15uFmh9sdHfRv2kT/xk3edtMmnM5O7wS/n8iFF1Jx7acJzpmTg3d0ZDr7Emyq7xicFb6nk4bOoV/ltkyDeVXFLJwe4cTpERZNL+W4KcX48uGPAteFd/4X3vpv2PnS4GzyTJXzB4PyGWeqBIuIiIgcVbbtDIbmqcA8PrAdpi3WlyDebxPrTxDvSxKPjky4ns8sv0kgFZr7Q750sO4PeiVv0iF7Kkwf6JcVugct/AELX8ArpzOeJtSIiOSCwvERpnBccqmhp4GHNz3Mb97+DUnXK09x1rSz+MLiL7Bg0oIcj27iGpgdXreljV1bWmnY3jFkdnj1saXMWODNDo+U+Yhtf4v+TRuJbtpE/4aNxHftGnJds7iYsk9cQdmn/gZ/VeVovqXD1hNL8np9J5v3dLKp3gvDd7X2DelnGHDM5CIWTo+wcFqEhTWlzJ9aMrbrhY+m3lbY9bIXlO98EZq3Du1TecJgWD7zTC3qKSIiImOK47hZM9IHQ3SvLd/iBDvpkIjaxGM2iWiSRNQmEbOJR20SMe/DBO94MmvdoRFleDP5famw3AvNrVTbQLuV3ventpbfTAfsmX3Sbf7MY6YWihWRcU3h+AhTOC650NjbyMObHuaJt58g6Xih+BnVZ/D5xZ9n0eRFOR7dxHTYs8NPKKeqJEryzdfp37CR/k2biG7dml5QM1Ng5kzCixYSWriQ8KLFhObNxfD7R+stHVI0YbN1bxebdnekgvBO3tnXM+wiWjMqClg4vdQLwqdHOGFahKLg+KuNnjO9LYNh+Y4XYd8bQ/tULUgF5WfBjNMVlouIiIiMU3bSSQXnmSG6tx9PPc8M1BPR5GDoPhC4p4L2RMw+emH7gaRCeNPyyg0ZluFtTTDNgTr7RmrfGLqf7n+A/dT2QPs+v4U/aOIbmDWfMXveH/TC/YEZ9abPUJAvIlkUjo8wheMympp6m/j55p/zn2/9JwknAcBpU0/jhsU3sLhycY5HN7Ec7uzwmjnFVFn7COzcTHTzJvo3bcTe1zLkemYkQnjhQsKLFhFetJDwiSdilZaO5ls6qHjSYXtTNxtTZVE27ulke1M3tjP0x0B1JMSJ0yNeGD49wonTIpQWBHIw6gmsZ18qLH/RC8z3vblfB8MLy2elapbPOB3CZTkZqoiIiIjkluO4JOM2ybgzuE3YJOM2icy2rGMOiaz2jP2EM+y5jj3+IiLDNNIz5AdCdH/QTAfo6Rn0+wXt/qCFL2imgnjvYaUW4LX8xuD+wKK8CuFFxg2F4yNM4bgcTUknyd7evezu2s0L9S/w622/Ju7EAVg6ZSlfWPQFTplySo5HOf65rku0J0FXa5Suln72vtXBruFmh5cHmVbjo9LdS2nDBhKb/kzs7be9RRcz+XyE5s1LB+GhhQsJzJyZ81+W+uJJ6tv7qe9IPdr7aejoZ0dLL280dhNPOkPOmVQUSIfgXhBeyuTiYA5Gn+d6mr2wfEcqLG/Ztl8HA6acOLjA54zTITx2PnwRERERkfHPth3sVKhuJxwc28VxXFzHHX4/tc3ed3AdcOxU31T/wfOcg17PHvggIDYQ4Hsz7ZNxJ7X1nuciyDd9+4fmqQV+93tu+Yf2yQzZs66RKonjzwjt07Xmg75UwK8yN5lc18VOOsT7M76R0e99+yLen/S+iTHQFvX6xPu9b2F4C0mb7+kbDcN+S+Jg35A41LWHvZ55wHPSi2vLISkcH2EKx+X9itkx6rvrqeuuo66r/l+gCAAAGMNJREFUjt3du9OPhp6GdC3xASdVnsQNi2/g1Kmn5mjE41Oszwu/u1uidLX2p/a9bVdrlGRs6IJCpmVQVeFQ6TZQunsdvk0v4fYNra/tq57qBeELFxFetIjQ/OMxQ6HReFtpruvS2hunIRV6Zwbg9R1eCN7elzjoNSJhf3om+EAgPjUS0g/YsaineXBW+c6XoGX7fh0MmLpwMCyfvhTC5WDmweKnIiIiIpL3bNvxZrzHUmVq4ra3nwrWE/HBIN3bOuk+A7PmM8P2gRn1dtLBTro4CQdnmG/Z5oTBYHAe9Ga/B4KDz9OP/UP1oJneH66vZWX/7eC6Lnj/A9dNbUm1ZR5jcM2BzP4D/1yZ/d2Ma6eOOY6bKjGUTAXXmWWHBgPtRFa4nSpFlOo7Hr/lMBIOFK4bBwneL7nlJHyB/FobTOH4CFM4LoejN9HL7u7dWeF3Xbe339TbROrHyrCCVpDpRdOZFZnFX8/7a06beprCymEkYjZdrf2p8Duasd9Pd2uUWF/ykNcIBx0KfTGKY02U7lpD8buv4LOza4WbBQWETjzRK5GyeBHhhQvxTZ58tN5WWsJ2aOyMDgm8B0Lwho5+oomhM7/3VxzyMa007D3KwlSXhqkpK2DBtBJqywv0/63xqrspOyxvfWtoH9MHhZVQlPmo8h6Fkwf3iyohWOytqioiIiIiIsNyHW+Gsm272Ong3Hs4ydSxrHY343j2czsxtE+6PZGqUR+zB8P+1ONoMozBsHu88gctAiGLQNiHP+RL7weCFv5w6nnI5x0PegHxIb/V4HCQb0g4Q78tMdz19ts/4LclhnudEQ7+P/vTD+DzKxw/EK2kJnKYXNelM9bpzf5Ohd67uwZD8LZo20HPL/QXUltcS01xDTXFNdSWDO5XFlRiGprtaSccutu8siddrVG6U7O/u1q8/f7ug8+KBggYcQqcbsKxVoLdTQQ76gn17SMcbSMUbcPcb5Y+hkFwzhxCixamZ4YHjz0Gwxq5HxwJ26E/YRON23T0J6hv72fPQPCdEYI3dUU51MQEw4DK4iDVGeH3/kF4SWjsLPgpI6i4Ck68zHsAdDemgvIXvVIsbe+Ak4TuBu9xKL7QAcLzzFC90gvbAwVH972JiIiIiIxBhml4tcwBwqP/+q7jkkwF54nU4qyJmJOxb6cXfD30Y/CcgQVeR3W6rAEGgOEt7BoI+giErQME2pmhtjcTPhBOPQ8N7vuDFoY5MSf8pAP2Q4XwwwbuTuq4N0t//28ISLa8mjl+//3388Mf/pDGxkYWLVrET3/6U0499dBlKzRzfOJLOAn6En30J/vpS/bR1t82ZPb37q7ddCe6D3qdsmAZNSU1WSH4QBBeFizLmxm7rut9qj5Y42uw3lciltHWb9PTkSqD0tJPb2f8kNf2OVHC0VZCvc2Eom3efrSVUH8r4WgrljPMNUwTq6Ic36TJ+CZPwjd5MoHaGQQWLMCddzyxYJho3CGatOmP2/Qn7HSYPbDfH7eJJmyiCeegx/sz+gwcTx7BV/ECPpNppWGqS0OpbXYIPiUSIujLr0985TAl49C7D3qaBrc9TV55lvQjdSzWdWTXDhRnB+aZAXrBJPCHvYcv5D38IfCFB7eWX7PURURERETGCNv2ytEkU99MHsgqDINUiD2QZA+0Galgm8H+6bA7o39mAD5wTH8HSA6orMowHnvsMa6++moeeughli1bxj333MOvf/1rtm3bRmVl5UHPVTg+driumw6w+xPeti/ZR1/C2/Yn+9P7+2/7E/3pc9PHUvsJ59AzkgdUFlSmw+/M2d81xTUUB4qP4rs/+ry6XwdeuCLenyTelyDeFyfWGyfelxjsH/U+wY7HHRKJ9/4JtGXHCPW3ZATfLalZ314I7k/2p/vaPj/9xaX0FnmP7oIIXQURugpKaA9HaA8W0xospj1QSNQxiCcd4rZDPOkQS9okRrlGmWlAccifDrynlw2E4AWpWd8hJhUGMSfoJ98yhsT7oHe/0DwzPM8M1pPRQ1/vUAwzOyz3BQfD9PQ2M1AP7XdsuG0QTL9XSsb0gWll7B/Oc5/qs4uIiIiIiExACseHsWzZMpYuXcp9990HgOM41NTUcNNNN/HVr371oOfmczi++fXXeek//4CLm1qYwcXBxcX7dDHdjpNao2HguZuqse319xZyyD42UIPbdZ10uzPQnurvYGM7NrabxHGT2By6pvT7YWBiGT78RoCQWUSBr5CQWUTYKiJsFhAyCzENK3NFiazFJ1L/KKQbMxeoyCzkldVn4FKpfw/H6+s4g4tXuK6R2qau4+KV3xhox0j1NVKXTD3HwHW9j29dBrfpNmOgzcQxfLjGCJfjcB0sO4YvGcVnR7GS/d421WbZUYKxTkLRVsJRLxD3J3ro8YdpDxXTFiymPVRCW6gkY7849byEXn9oRGajGgaE/RZhv0XIbxHym4QDg8/Dfiv7ecAi5LMIB8ystvQ19j/XbxEKmAQsrTAu44zrQqw7IzjfP0xvhr4WSEQh2T90O+YZRxioW97DsLzAP+thHEbbcH2O4Dg5vn8YWdOH3seW93n+SI3jENcREREREZkIjvuo93dMHlHN8f3E43HWr1/P7bffnm4zTZNzzz2X1atXD+kfi8WIxQYX6OvqOsKvn08gb7y8AWfvKVlt+TbPzgX6Uo9xxdhvewRMJ4GVFWjH0s+9ULsfXzKKacdwnQSum8B1kjgksZ0ktrdHEpeE5SNu+ulLbeOWj4Tlw/YFsIM++koj9BTW0ltUSn9RKdHiUoxQiIBlEvClHqn9Mp/JlIzn3jELv88gYJkEfdnt+58/cNyf6lsQ8ALsoE+htciwDANCJd5j0rFHdq7rgh2HRL83+/ywt1Fve8i+Ma/GupMEx87YH+a5e6CFjFxwEt5DRERERERkIvpaI5g5KJo/TuRFON7S0oJt21RVVWW1V1VV8eabbw7pf/fdd/PNb35ztIY3pkUqyuns3znsMeMgzw7svfZLPXe9/dGLMff/YsWBn7t4o3SP4Jw0w8uRvMl03vx5Y6CvMTi93DDcwWsY3nPXMDBS/dI1wDInvhmA6dX5MlL7DNQHS7VjGph+EyNkYQb9mOEgRjCIGSzCCEzCDAWwQkHMYBBfKIgVCGKFg/gDAXymgc8y8VsGPjO1tUx8poHfMvFZBn7T2w7sq2yISB4wDK/0iS+Y65Gkvo4zTIDuHiJUH/J84DznAA/3IMfeZx/nQAH/qP0jDn51KfPbU0Paj2Q73HWPdPt+x3Gg80VEREREJggj36a5Hpm8CMeP1O23386KFSvSz7u6uqipqcnhiHLn/Mv+Ei7L9ShERETeB8MAy+c9RERERERERFLy4q/ESZMmYVkWTU1NWe1NTU1MmTJlSP9gMEgwOAZmuomIiIiIiIiIiIjIUZEX8+oDgQAnn3wyzzzzTLrNcRyeeeYZli9fnsORiYiIiIiIiIiIiEgu5MXMcYAVK1ZwzTXXcMopp3Dqqadyzz330Nvby7XXXpvroYmIiIiIiIiIiIjIKMubcPyKK65g37593HHHHTQ2NrJ48WKeeuqpIYt0ioiIiIiIiIiIiMjEZ7iu6+Z6EGNdV1cXkUiEzs5OSkpKcj0cERERERERERERERnGkWS5eVFzXEREREREREREREQkk8JxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO/4cj2A8cB1XQC6urpyPBIREREREREREREROZCBDHcg0z0YheOHobu7G4Campocj0REREREREREREREDqW7u5tIJHLQPoZ7OBF6nnMch4aGBoqLizEMI9fDGXVdXV3U1NSwe/duSkpKcj0cEZFD0n1LRMYb3bdEZLzRfUtExhvdt/KH67p0d3dTXV2NaR68qrhmjh8G0zSZPn16roeRcyUlJbp5iMi4ovuWiIw3um+JyHij+5aIjDe6b+WHQ80YH6AFOUVEREREREREREQk7ygcFxEREREREREREZG8Y91111135XoQMvZZlsUHP/hBfD5V4hGR8UH3LREZb3TfEpHxRvctERlvdN+S/WlBThERERERERERERHJOyqrIiIiIiIiIiIiIiJ5R+G4iIiIiIiIiIiIiOQdheMiIiIiIiIiIiIikncUjouIiIiIiIiIiIhI3lE4Lgd1//33M3PmTEKhEMuWLWPNmjW5HpKISNoLL7zAhRdeSHV1NYZh8H/+z//JOu66LnfccQdTp04lHA5z7rnn8tZbb+VotCKS7+6++26WLl1KcXExlZWVXHTRRWzbti2rTzQa5YYbbqCiooKioiIuvfRSmpqacjRiEcl3Dz74IAsXLqSkpISSkhKWL1/OH//4x/Rx3bNEZKz73ve+h2EY3Hzzzek23bskk8JxOaDHHnuMFStWcOedd/Laa6+xaNEizj//fJqbm3M9NBERAHp7e1m0aBH333//sMd/8IMfcO+99/LQQw/x6quvUlhYyPnnn080Gh3lkYqIwPPPP88NN9zAK6+8wp/+9CcSiQQf/vCH6e3tTff50pe+xO9+9zt+/etf8/zzz9PQ0MAll1ySw1GLSD6bPn063/ve91i/fj3r1q3jQx/6EB//+MfZsmULoHuWiIxta9eu5Wc/+xkLFy7Mate9SzIZruu6uR6EjE3Lli1j6dKl3HfffQA4jkNNTQ033XQTX/3qV3M8OhGRbIZh8MQTT3DRRRcB3qzx6upqvvzlL3PLLbcA0NnZSVVVFStXruQTn/hELocrIsK+ffuorKzk+eef5+yzz6azs5PJkyfz6KOPctlllwHw5ptvcvzxx7N69WpOO+20HI9YRATKy8v54Q9/yGWXXaZ7loiMWT09PZx00kk88MADfPvb32bx4sXcc889+n1LhtDMcRlWPB5n/fr1nHvuuek20zQ599xzWb16dQ5HJiJyeHbs2EFjY2PWfSwSibBs2TLdx0RkTOjs7AS8oAlg/fr1JBKJrPvWcccdR21tre5bIpJztm2zatUqent7Wb58ue5ZIjKm3XDDDXz0ox/NukeBft+SoXy5HoCMTS0tLdi2TVVVVVZ7VVUVb775Zo5GJSJy+BobGwGGvY8NHBMRyRXHcbj55ps544wzWLBgAeDdtwKBAKWlpVl9dd8SkVzavHkzy5cvJxqNUlRUxBNPPMH8+fPZsGGD7lkiMiatWrWK1157jbVr1w45pt+3ZH8Kx0VERERERtkNN9zA66+/zksvvZTroYiIHNS8efPYsGEDnZ2dPP7441xzzTU8//zzuR6WiMiwdu/ezd///d/zpz/9iVAolOvhyDigsioyrEmTJmFZ1pDVepuampgyZUqORiUicvgG7lW6j4nIWHPjjTfy5JNP8uyzzzJ9+vR0+5QpU4jH43R0dGT1131LRHIpEAhw7LHHcvLJJ3P33XezaNEifvKTn+ieJSJj0vr162lubuakk07C5/Ph8/l4/vnnuffee/H5fFRVVeneJVkUjsuwAoEAJ598Ms8880y6zXEcnnnmGZYvX57DkYmIHJ5Zs2YxZcqUrPtYV1cXr776qu5jIpITruty44038sQTT/C///u/zJo1K+v4ySefjN/vz7pvbdu2jbq6Ot23RGTMcByHWCyme5aIjEl/8Rd/webNm9mwYUP6ccopp3DVVVel93XvkkwqqyIHtGLFCq655hpOOeUUTj31VO655x56e3u59tprcz00ERHAW4H87bffTj/fsWMHGzZsoLy8nNraWm6++Wa+/e1vM2fOHGbNmsU3vvENqqurueiii3I4ahHJVzfccAOPPvoov/nNbyguLk7XtYxEIoTDYSKRCJ/5zGdYsWIF5eXllJSUcNNNN7F8+XJOO+20HI9eRPLR7bffzkc+8hFqa2vp7u7m0Ucf5bnnnuPpp5/WPUtExqTi4uL0ei4DCgsLqaioSLfr3iWZFI7LAV1xxRXs27ePO+64g8bGRhYvXsxTTz01ZHE7EZFcWbduHeecc076+YoVKwC45pprWLlyJbfeeiu9vb1cf/31dHR0cOaZZ/LUU0+p9pyI5MSDDz4IwAc/+MGs9kceeYRPf/rTAPz4xz/GNE0uvfRSYrEY559/Pg888MAoj1RExNPc3MzVV1/N3r17iUQiLFy4kKeffprzzjsP0D1LRMYn3bskk+G6rpvrQYiIiIiIiIiIiIiIjCbVHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERGWeee+45DMOgo6MjJ6//zDPPcPzxx2Pb9iH7PvXUUyxevBjHcUZhZCIiIiIih0/huIiIiIjIGGIYxkEfd911F6effjp79+4lEonkZIy33norX//617Es65B9L7jgAvx+P//2b/82CiMTERERETl8huu6bq4HISIiIiIinsbGxvT+Y489xh133MG2bdvSbUVFRRQVFeViaAC89NJL/NVf/RWNjY2EQqHDOuf+++9n5cqVrF279iiPTkRERETk8GnmuIiIiIjIGDJlypT0IxKJYBhGVltRUdGQsiorV66ktLSUJ598knnz5lFQUMBll11GX18f//Iv/8LMmTMpKyvji1/8YlYplFgsxi233MK0adMoLCxk2bJlPPfccwcd36pVqzjvvPOygvGNGzdyzjnnUFxcTElJCSeffDLr1q1LH7/wwgtZt24d77zzzsj+Y4mIiIiIvA++XA9ARERERETev76+Pu69915WrVpFd3c3l1xyCRdffDGlpaX84Q9/4N133+XSSy/ljDPO4IorrgDgxhtvZOvWraxatYrq6mqeeOIJLrjgAjZv3sycOXOGfZ0XX3yRK6+8MqvtqquuYsmSJTz44INYlsWGDRvw+/3p47W1tVRVVfHiiy9yzDHHHL1/BBERERGRI6BwXERERERkAkgkEjz44IPp8Pmyyy7jV7/6FU1NTRQVFTF//nzOOeccnn32Wa644grq6up45JFHqKuro7q6GoBbbrmFp556ikceeYTvfve7w77Orl270v0H1NXV8ZWvfIXjjjsOYNhgvbq6ml27do3kWxYREREReV8UjouIiIiITAAFBQVZs7KrqqqYOXNmVn3yqqoqmpubAdi8eTO2bTN37tys68RiMSoqKg74Ov39/UNqja9YsYK//du/5Ve/+hXnnnsul19++ZAZ4uFwmL6+vvf8/kRERERERprCcRERERGRCSCzjAmAYRjDtjmOA0BPTw+WZbF+/Xosy8rqd7AFPydNmkR7e3tW21133cWVV17J73//e/74xz9y5513smrVKi6++OJ0n7a2NiZPnvye3puIiIiIyNGgcFxEREREJA8tWbIE27Zpbm7mrLPOOqLztm7dOqR97ty5zJ07ly996Ut88pOf5JFHHkmH49FolHfeeYclS5aM2PhFRERERN4vM9cDEBERERGR0Td37lyuuuoqrr76av7rv/6LHTt2sGbNGu6++25+//vfH/C8888/n5deein9vL+/nxtvvJHnnnuOXbt28fLLL7N27VqOP/74dJ9XXnmFYDDI8uXLj+p7EhERERE5EgrHRURERETy1COPPMLVV1/Nl7/8ZebNm8dFF13E2rX/r737t20QiAI4/CJ3DAFyY8/CAm5O8hZUVCyBxAQME1oKdwwAjRcgnbskTpF/uu+r76R37U9Putcoy/LdOymlmOc5brdbREQcDofYti2u12ucTqe4XC5R13V0Xfe4M45jpJSiKIpvfxMAADzrZd/3/beHAAAA/o+maeJ+v8cwDJ+eXdc1zudzTNMUx+PxB6YDAIDn2BwHAAC+pG3bqKrq8bnnR5Zlib7vhXEAAP4cm+MAAAAAAGTH5jgAAAAAANkRxwEAAAAAyI44DgAAAABAdsRxAAAAAACyI44DAAAAAJAdcRwAAAAAgOyI4wAAAAAAZEccBwAAAAAgO+I4AAAAAADZeQNwKkPTy8ziggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxO5f/H8dc9+z5jGTP2IUtDypZQIdSIfA0hS5YsleylVFKkaKEkfYto7EIh2SVKkkQkS5jf2A0KM4bZ5/r9Md/75DaLGdGNeT8fj/Nwzznnus7nnPvc86j3fc11bMYYg4iIiIiIiIiIiIhIAeLi7AJERERERERERERERP5tCsdFREREREREREREpMBROC4iIiIiIiIiIiIiBY7CcREREREREREREREpcBSOi4iIiIiIiIiIiEiBo3BcRERERERERERERAocheMiIiIiIiIiIiIiUuAoHBcRERERERERERGRAkfhuIiIiIiIiIiIiIgUOArHRUREROS6GzFiBDabjUaNGjm7lFvaypUrsdlseHl5XdN+9+7di81mw2azERsb+6+3lxvbJ598gs1m4/bbb3d2KSIiIiL5onBcRERE5BL2EDevi9y6EhMTCQwMxGaz0a9fvzy327Bhg3V/LFy48DpWKHbJyclMnjyZiIgISpQogaenJ4GBgVSqVInGjRszbNgwVq1aRXJycrbt4+Pjee+993jggQcoVqwYHh4eFC5cmPDwcJo1a8aoUaNYv349GRkZV6zl/ffft97/Jk2a5Ptczp07x/jx42nRogVlypTBx8cHb29vSpcuTYsWLfjggw84depUju2XL19Ohw4duO222/Dx8cHHx4dy5cpRr149+vXrx7x58/jrr7/yXZeIiIjIrcjN2QWIiIiI3KhCQkKcXYI4kbe3Nx07dmTSpEnMmTOHcePG4enpecV2n332GQDBwcG0bNnyepfpwM/Pj8qVK+epzltFTEwMzZs3Z+/evdY6Dw8PXF1diY6OZv/+/axbt47Ro0ezadMm6tat69B+69at/Oc//+H48ePWOm9vbzIyMvjjjz/Yu3cvq1atAuDEiROEhobmWs/UqVOt1+vWrSMmJoZy5crl6Vw+/vhjXnrpJeLi4qx1Pj4+eHh4cPToUY4ePcry5ct56aWXGDlyJM8//7y1X2JiIh07duSrr76y1rm4uBAUFMSxY8c4ePAgP/30Ex999BFjxozhxRdfzFNNIiIiIrcyjRwXERERyUFsbOwVF7m19ezZE4CzZ8+yePHiK+6fkJDAggULAOjSpQvu7u7Xtb7L3Xfffezdu5cdO3b8q8d1ltTUVFq2bMnevXvx8/Nj9OjRHD16lKSkJM6cOcOFCxfYtGkTw4cPzzagPnv2LC1atOD48eOEhIQwceJETp8+zcWLFzl37hzx8fGsW7eO5557Lk9flm3evJldu3YREhJC+/btMcYQFRWVp3N57rnneOaZZ4iLi6NatWrMmjWL06dPc+HCBc6dO8eFCxdYvnw5HTt2JDk5mS+//NKh/cCBA61g/Mknn2Tnzp2kpKTw119/kZSUxO7du/nggw+oW7eu/upFRERE5H8UjouIiIiI5ODuu++mWrVqwN8jwnMzf/58Lly4APwdrMv1s3LlSnbt2gXAzJkzeemllyhZsqQV/np5eVG3bl1ef/11Dhw4QI0aNRzaz5o1i5MnT1p99e3bl6JFi1rb/fz8aNSoEWPHjuXIkSMEBwfnWo991HjHjh3p0aMHANOmTbvidCzTp0/nvffeA+Dxxx9n69atdO7c2aEWHx8fHn74YebMmcMvv/xC5cqVrW1nzpyxQviBAwcyadIk7rjjDlxdXYHMEeTh4eEMGDCATZs2MWDAgFzrERERESkoFI6LiIiIXCN9+vTBZrMRFBTEwYMHs93n448/xmaz4ebmxvfff++w7ffff2fEiBE0btyY2267DW9vbwICAqhRowavvPIKf/75Z47HDgsLw2azMW3aNC5evMiIESMIDw/Hx8eHEiVK0KVLF2JiYqz9//zzT4YOHUqlSpXw9vYmNDSUXr16WUHh5S5/oOb8+fNp2LAhhQsXxtfXl1q1ajFx4kTS09Pzd9Eucfr0aV555RVq1KhBYGAgXl5elC9fnp49e1oBqDPYQ+5vvvmGI0eO5LqvPUCvW7cuVapUcdh24MABxowZQ0REBBUrVsTX1xc/Pz+qVq3Ks88+y9GjR3Ps1z7a96233iI5OZm3336bmjVrWnOi//TTT0DuD+TMyMhgzZo19OvXj3vuuYeSJUvi4eFB0aJFeeCBB/j0009JS0vL0zXZs2cPXbp0oWTJknh6elK2bFn69u37j/6aIj09nenTp9OsWTNr3u/g4GCaNWvG/PnzMcZkabN9+3YAbDbbFaewcXFxyTLdjL19mTJlqF69eq7t3d3drbA5OxcuXODzzz8HoFu3bjRt2pQSJUpw5MgR1qxZk2O7pKQkhg4dCkD16tWZOnXqFf/ioEaNGg4j0nft2mW9d61atcq1LWROG5OTNWvW0KZNG4oXL27dHw8++CAzZ87M05zrl6pcuTI2m42XX3451/2WL19u/V7M7h6Kjo6mf//+hIeH4+fnh4+PD+Hh4bl+bi5/SOjq1atp2bIloaGhuLq68vTTT+frXEREROQWZURERETE8tprrxnAXM1/Jl28eNFUrVrVAKZevXomNTXVYfvOnTuNl5eXAcyrr76apX3ZsmWtY3t5eZnChQsbm81mrStZsqTZu3dvtse2tx0/frypVq2a1Ye3t7fVvnjx4iYmJsZER0ebcuXKGcD4+PgYDw8Pa5+KFSuauLi4HK9Lw4YNzQsvvGAAY7PZTKFChYyLi4vVPiIiwiQlJeXaPjtr1qwxQUFBVj/u7u7G19fX+tnDw8NMnz49D+/Ctffnn39a12jUqFE57rdv3z6r3smTJ2fZfs899zicT+HChR2uXeHChc3mzZuz7dvedvjw4ebuu+82gHFzc7Ou2aZNm4wxxqxYscIAxtPTM0sfe/bssY4FGH9/fxMQEOCwrnHjxtm+f5e2XbBggfXe+Pv7W/c0YIKDg81vv/2Wa/sTJ05k2X7q1ClTr149h1oCAwMdfm7btm2Wz9Trr79ubT98+HD2b0wuevToYQDj7e1tkpOT893+UlFRUQYw1apVs9bZPyvt2rXLsd2MGTMcru3V+P77760+ZsyYcVV9ZGRkmGeeecbqx/75dnV1dfh8JyQkZGn78ccfG8BUrlzZYf2oUaMMYMqUKWMyMjJyPHaHDh0MYJo1a5Zl29SpU427u7vD78ZL77mgoCCzbt26XGt6++23HfZ3d3c3Tz31VP4vkoiIiNxyFI6LiIiIXOKfhOPGZAbg9kD65ZdfttZfGpzfe++9Ji0tLUvbrl27mmnTpplDhw5Z65KTk80333xj6tSpYwBTs2bNbI9rD8eDgoJMWFiYWb16tUlPTzdpaWlm9erVJjg42ACmffv2pk6dOqZ69epWoJqSkmLmzZtnfHx8DGCGDRuW43WxB5b9+vUzp06dMsYYExcXZ0aNGmUF+YMHD86xfXbh+G+//WZds969e5vdu3db1+fQoUNWYOfm5ma2bNmSy9W/ftq3b28Ac9ttt+UY8r344osGML6+viY+Pj7L9r59+5pPPvnEHDhwwOojNTXV/Pjjj6ZJkyYGMGXLls02pLWH435+fiYwMNDMnDnTJCYmGmMyg+WzZ88aY3IPxw8cOGC6du1qli1bZs6cOWOtj4uLM1OmTDEhISEGMC+99FKWtpeG24GBgaZmzZrml19+McYYk56ebpYvX25KlChhXaMLFy7k2P7ycDw1NdUKxmvXrm1WrFhhLl68aIwx5vz582bKlCmmaNGiBjAvvviiQ9uVK1c6BLfZBe+5+eSTT6z23bp1s67j1bjvvvsMYN59911r3a5du6wvQ/78889s23Xr1s36Qsh+3vkVFxdnPD09DWDCwsLMtm3b8t3Hu+++a12Lfv36mZMnTxpjMt+Dd955xwrJu3XrlqVtTuH4wYMHrd8L2QXYxhgTHx9vff7nzJnjsO3rr782NpvNeHh4mGHDhplDhw6ZjIwMk56ebnbt2mUiIyMNYAoVKmSOHz+ebU0+Pj7GxcXF9O7d2xw9etQYk3nPRUdH5/saiYiIyK1H4biIiIjIJS4Nx0NCQnJdBgwYkG0f9lDGxcXFfPvtt8YYY5566ikrvL40/M6r8+fPW+Hlhg0bsmy3h+Pe3t5m//79WbZPnTrV4byyC+qGDx9uhZuXu/S6dOnSJdsaX3nlFSvEPnbsWLbtswvHGzdunGMoazdgwAADmFatWuW4z/W0atUq6/yzC/nS0tKscLh79+757j81NdXcfvvtOY4evnTU+erVq3PsJ7dw/Eo2bNhghd+Xj9C+NNwOCQkxf/31V5b227dvN25ubgYwEyZMyLH95QH25MmTDWDuvPNOc/78+Wxr+/HHH637+9JgPyMjwzRo0MDq283Nzdx7773m2WefNbNnzzYHDhzI9ZwvXLhgKleubLX39PQ0TZo0MS+++KJZsGCBFaZeyd69ew1gXF1ds4S0tWrVMpD5Vx3ZqV27dpYR51fD/vm1L1WrVjW9e/c2n3zyidm2bVu2X8jZxcfHW39F8MQTT2S7zzvvvGP1vXPnTodtOYXjxhjTsGHDXPv97LPPrL9CuPTLgdTUVOv3Wk5/NZKRkWEiIiIMYIYOHZptTYDp1KlTjucuIiIiBZvCcREREZFLXBoCX2nJbgSlXZs2bQxgSpQoYSZNmvSPp00w5u/Ry2PGjMmyzR4iPf7449m2PXr0qFXD8OHDs93nhx9+sPa5fOqES69LduG7MZmjV+0jQC8PR3MKx2NiYqxQM7vA1e6XX36xRmXnFvJdL+np6aZMmTIGMF27ds2yfdmyZdb1+f7776/qGPYvAAYOHJhlmz0cr1WrVq59/JNw3Bhj/WXAr7/+6rD+0nA7t6ll7Pd9/fr1c2x/eThuP7dJkyblWluFChUMYBYvXuywPj4+3vTu3dsK5i9fypUrZ0aNGpVj8B4bG2vatGnjMIXR5SHzhx9+mOu0K/bpU7KbFmTChAm5ht/2KY5ymnIorzIyMszYsWMdpie6dAkKCjJPPfWUOXjwYJa28+bNM5A5lUp2243J/CsW+wj+S/8qxpjcw/EpU6YYwAQEBGQ7Mv6BBx7INjy338slS5bMdUqWWbNmGcBUr14925qyC/NFRERE7PRAThEREZEcmMyBBDku06ZNy7HtlClTKFOmDMePH+epp54CoFevXrRt2zbXYy5dupTHHnuM8uXL4+vri81ms5b58+cD5Prgxjp16mS7PiQkxHp99913X3Gfc+fOZbtP6dKlqVChQrbbAgICqFWrFgC//PJLjjVeauPGjUDmwyKrVKlCaGhotkuzZs2AzIce/vXXX3nq+1pycXGhe/fuAHzxxRecP3/eYbv9QZyVKlXi/vvvz7Gf9evX06VLFypXroyfn5/D+zthwgQg9/f33nvv/UfnkZSUxEcffcSDDz5I8eLF8fT0dKghLi7uijU0btz4itu2bt2a7QM0s6tn69atALz00ks5vv+hoaEcOnQIwPrXzt/fn8mTJ3PkyBE+/vhjOnfuzO23346LS+b/6sTExDB8+HBq1qyZpS1k3vdffvkl0dHRvPfee7Rt25by5ctjs9mAzIdd9u/fn/vvvz/bz0VaWhozZswAoGvXrlm2d+zYEXd3d3bu3MmWLVuueE2uls1m47nnnuPYsWPMnz+fPn36ULt2bevhrOfOnWPSpElUq1aN1atXO7S1f14rVKhA2bJls+3fw8ODhg0bOuyfF+3atcPb25v4+Hi++uorh21Hjhxh/fr1QNZrZ//dcPr0aYoXL57jfdG/f38g631hFxgYyB133JHnekVERKRgUTguIiIich0UKlSIjz76yPq5fPnyfPDBBznun5GRQadOnWjZsiXz588nJiaGlJQUChUqREhICCEhIVbIdeHChRz78ff3z3a9m5tbvvZJTU3Ndp+SJUvmeOxLt586dSrX/eyOHz8OZJ7/yZMnc1z+/PNPq83Fixfz1PePP/6YY6A2b968PPVxqSeeeAKbzcbFixf5/PPPrfV//vknX3/9NQA9evTIsf3AgQN54IEHmDVrFvv27SMpKcnh/fX19QVyf3+LFSuW77rtTpw4QY0aNejXrx/ffPMNsbGxuLq6UrRoUasGe6CcWw253QP2bcnJycTHx1+xptOnT5OWlgbAmTNncr0H7PdkTu9/aGgoTz/9NLNmzWLPnj2cO3eOhQsXUrduXQD279/P448/nmMt5cqVY/DgwSxYsIDo6GhOnz7NjBkzCA8PB+Dnn3+mX79+WdotX76c2NhYAgICiIyMzLK9aNGitGjRAvj7S5RLFSlSxDr/a8HHx4d27drx3//+ly1bthAfH8/3339Pp06dADh//jzt27d3+JLJ/nm90ue7VKlSDvvnRUBAAK1atQJg5syZDttmz56NMYayZctawbud/XdDSkpKrvfF2bNngZzvi+Dg4DzXKiIiIgWPwnERERGR6+TTTz+1Xh87dowDBw7kuO/UqVOZO3curq6uvPrqq+zfv5/k5GTOnDlDbGwssbGx1qjzvIzIvVmkp6cDmaN3rzRS376EhYXlqe/cQrXExMR81xoWFkaTJk0AiIqKstbPnj2blJQUXF1dsx05DPD1119bI8MHDhzIrl27sry/ffr0AXJ/f11dXfNdt12/fv3Yu3cvxYoVY8aMGZw8eZKLFy9y+vRpq4bChQtfsYZryf7+A6xbty5P7/+LL76Yp779/f1p3bo1P/zwA/Xr1wfghx9+YO/evXlqX6RIEbp06cLmzZu57bbbAJg3b16WvxqYOnUqAPHx8fj4+DiMxLcvixcvBmDu3LlZ7r2qVasCsHfvXpKSkvJUW364u7tz//33M3v2bF544QUA4uLiWLBgwTU/Vk7sn4vVq1dz8uRJa709LO/cubM1Ut/Ofm80bNgwT/dFTtfun3xmRERE5NancFxERETkOpg4cSJLlizB1dWVKlWqkJycTIcOHXIc3WgfidyrVy9GjhxJhQoVrFG8drGxsde97is5duxYnrbndYRzaGgokDn6OrfRylejUaNGOQZp9ilS8qtnz54AbNq0yQpZ7UF58+bNKV68eLbt7O9vq1atGD9+PFWqVMkS2l3P9/fixYvW6PZJkybRpUuXLO9RcnJyjtPpXCq3e8C+zdPTk4CAgCv2VaxYMSsUzWlajH/K1dXVet8A/vjjj3y19/f3t0Zdp6Wl8X//93/WttjYWJYvX57nvuLi4vjiiy8c1tm/cElNTWXp0qX5qi2/7FM8geN1sN8LuU2nc+n2/P4Fw0MPPURISAhpaWnMnTsXgG3btrF7924g++lo7L8brtd9ISIiIgIKx0VERESuuZ07d/L8888D8Oqrr7J8+XKCgoLYs2cPgwcPzrbNkSNHAKhRo0a22xMSEti8efP1KTgfjhw5QnR0dLbbzp8/b80fXbt27Tz1Z59DOz09nRUrVlybIq+j1q1bW6OrP/vsM7Zu3cqOHTsAHALYy13p/U1PT7fmXr4eYmNjrWlJcqph/fr11hQnuVm3bt0Vt9WqVSvLSODs+Pj4WPXYw/vrwc/Pz3rt6el5zdpPnz6dtLQ0SpUqxfnz53Nd7MH05VOrtG3b1prv/80338xxSqPLZWRkXLPzsH9eo6OjcwyjU1NT+e6774Ccn1uQE1dXV+sLBvtocfu/derUoXLlylna2H83HDx4kN9//z1fxxMRERHJK4XjIiIiItdQYmIiHTp0ICkpifvuu49hw4ZRtmxZJk+eDMDkyZP58ssvs7QLDAwEsILWy40aNSrLdA7OMmrUqGzXjxs3jsTERNzc3Hj00Ufz1FfFihVp1KgRAMOGDbMeCJmTazUv89Xy9PSkc+fOQGa4Z586JyQkxJpXOjtXen8nTJhwxVG7/4T9+DnVkJKSwvDhw/PU18SJE615ni+1c+dO64GLjz32WJ5re/LJJwFYtGgR33zzTa77Xv7+79ix44oj7o0x1gMzXVxcqF69urXtp59+uuI9l5qaao12DgwMpHz58tY2e9Ddtm1b/Pz8cl06dOgAwHfffefwBZO3tzdjxowBYPv27fTo0eOKAflvv/3mML99bGxsjvfWpaZPn269rlmzpvW6efPmBAQEYIxh5MiR2bb98MMPrbn/7eeSH/bR4du2beO3336zrmlOUxFFRERQpkwZAAYNGnTFL26c/btBREREbk4Kx0VERESuocGDB7N7926CgoKYPXu2NXVGu3btrJHFvXv3tkYS2zVr1gzInKd88uTJpKSkAJmh1+DBg3nnnXesB/c5U2BgINOnT2fgwIFWUHb+/HlGjx7N66+/DkDfvn0pUaJEnvv88MMP8fPzY9++fdStW5evvvrKYf7gY8eOMXPmTJo0acLQoUOv7QldBfv7GBsba4XjXbt2dXig6eXs7++iRYt4++23rel1zpw5w8iRIxkyZMh1fX+LFClijQ4eMGAA33//vTWv+Pbt24mIiGDXrl14e3tfsa/ExEQeeughfv31VyBzBPPKlStp3rw5aWlplC9fPtdR9Jfr0aMHDRo0ICMjg5YtW/LWW285BN4JCQmsXbuWp556yno4pt2aNWsICwujY8eOLFy40KFdUlIS3333HS1atGDZsmUAdOrUyZquA2DWrFmUKVOG3r17s3z5coeA9cKFCyxdupQGDRqwfft2APr374+HhwcAGzZsYN++fQC0b9/+iufZoEEDa279y0ePP/HEEwwYMMCqqVatWsyZM8fhoZmJiYmsWbOGrl27UrNmTYe5048ePUr16tVp3Lgxn376Kfv377fe37S0NHbv3k3//v2t+dorVKjAf/7zH6u9n5+f9eVIVFQU/fv35/Tp09Z1GDdunDVfebdu3bjjjjuueL6Xq169utWuZ8+enDx5End39xyDdg8PDz755BNcXFxYu3YtDzzwQJa/bjhw4AAfffQRNWvWzPZhpyIiIiJXZERERETE8tprrxnAACYkJOSKy8aNG622X375pdV2wYIFWfq+cOGCuf322w1g7r//fpOWlmZtO3v2rLUNMC4uLiYoKMjYbDYDmKeeesp069bNAKZbt25Z+i5btqwBTFRUVI7nZu973bp12W6PiYmx9omJicn2ujRs2NC88MILBjA2m80UKlTIuLq6Wu2aNm1qEhMTc7yuDRs2zPbYP/zwgwkNDbX6cXV1NUWKFDHe3t7WOsD06tUrx/P7N9WqVcuhrj179uS6f1JSkrnnnnus/e3Xzv7+tm7d2jz//PMGMBEREVna29uOGTMm1+OsWLHCAMbT0zPLth9//NHhenp5eRk/Pz8DGHd3dzNv3jwTEhJiADN37lyHtnv27HG4t319fQ1g/P39HfosUqSI2b59e5ZjX9r+xIkTWbafOXPGREREOFzTwMBAExgYaF0jwPj5+Tm0Gz9+vEMbwHh7e5tChQplWd+iRQuTkJDg0H7QoEFZ9vP19TUBAQFZ1vfs2dOkpqZabe2fx9KlS5uMjIxc3xe7Z555xgCmZMmSDp9/uwkTJmQ5tq+vrwkMDHRY5+fnZ8aPH2+1+/XXX7PU6+7ubgoXLmxcXFwc1leqVMns27cvy7EzMjKs+nL6fD/00ENZrqExxnz88ccGMJUrV871/N955x2HWlq1anXFazZv3jzrfrOfV5EiRYyHh4dDX2PHjr2qmkRERKRg08hxERERkRycPHnyiot9hPeRI0fo1asXkDkqsm3btln68/HxYe7cuXh6erJhwwbeeOMNa1tQUBA//vgjgwYNIiwsDFdXV9zc3GjUqBFz587lk08++XdOOg/efvttPv/8c+677z6MMXh4eFC9enU++OADVq5ciZeXV777vPfee9m3bx9jx46lQYMGBAUFce7cOVxdXQkPD+fxxx9n9uzZjB8//jqcUf5dOjK6fv363H777bnu7+npybfffsuwYcOoUKGCNcq8fv36fPrpp3z55ZdZHsB6rdWrV4/Nmzfz6KOPUqRIEdLT0wkMDKRjx4789NNPeRr9DHDfffexZcsWOnfujL+/P+np6ZQuXZo+ffqwc+dO7rrrrnzXVqhQIVasWMHXX39N27ZtKV26NElJSSQlJVGqVCmaNWvG22+/zc6dOx3aDRw4kG3btjFmzBhatmxJhQoVsNlsxMfHExAQQNWqVenevTurVq1i6dKl+Pr6OrQfN24cGzdu5LXXXiMiIoKyZcuSnp7OhQsXCAoKokaNGjzzzDP89NNPTJkyxXrfzp8/z4IFC4DMKVXyMr86/D3C/NixY6xatSrL9v79+3Pw4EHGjRtHs2bNKFWqFBkZGdZ1aNGiBRMnTuTQoUMMHDjQale9enUOHz7Mxx9/TKdOnahWrRre3t7ExcXh5eVFuXLliIyMJCoqip07d1KxYsUsx7bZbHz00UesWrWKyMhIihUrRkJCAoGBgTRp0oTp06ezYsWKLNcwPzp37uzwINqcplS5VPv27Tlw4ADDhw+ndu3a+Pr6cu7cOby9valevTpPPfUUS5YssUbei4iIiOSHzZj//b2diIiIiEgORowYwciRI2nYsOF1fXCkiIiIiIjIv0Ujx0VERERERERERESkwFE4LiIiIiIiIiIiIiIFjsJxERERERERERERESlwFI6LiIiIiIiIiIiISIGjB3KKiIiIiIiIiIiISIGjkeMiIiIiIiIiIiIiUuC4ObuAm0FGRgbHjx/H398fm83m7HJEREREREREREREJBvGGM6fP0+JEiVwccl9bLjC8Tw4fvw4pUuXdnYZIiIiIiIiIiIiIpIHR44coVSpUrnuo3A8D/z9/YHMCxoQEODkakREREREREREREQkO/Hx8ZQuXdrKdHOjcDwP7FOpBAQEKBwXERERERERERERucHlZXpsPZBTRERERERERERERAocheMiIiIiIiIiIiIiUuAoHBcRERERERERERGRAkdzjouIiIiIiIiIiMgNIT09ndTUVGeXITc4d3d3XF1d/3E/CsdFRERERERERETE6RISEjh69CjGGGeXIjc4m81GqVKl8F5ROeoAACAASURBVPPz+0f9KBwXERERERERERERp0pPT+fo0aP4+PgQHByMzWZzdklygzLGcPr0aY4ePUrFihX/0QhyheMiIiIiIiIiIiLiVKmpqRhjCA4Oxtvb29nlyA0uODiYgwcPkpqa+o/CcT2QU0RERERERERERG4IGjEueXGt7hOF4yIiIiIiIiIiIiJS4CgcFxEREREREREREZECR+G4iIiIiIiIiIiIyDXUqFEjBg0adNMf41ancFxEREREREREREREChyF4yIiIiIiIiIiIiJS4CgcFxERERERERERkRuKMYaLKWlOWYwx+ar1woULdO3aFT8/P4oXL864ceMcticnJzNkyBBKliyJr68v99xzD+vXr7e2//XXX3Ts2JGSJUvi4+NDtWrVmDt3br6OIVfHzdkFiIiIiIiIiIiIiFwqMTWdKq+ucsqxd78egY9H3mPT559/nu+++46vvvqKYsWK8fLLL7Nt2zaqV68OQL9+/di9ezeff/45JUqUYNGiRTRr1oydO3dSsWJFkpKSqFWrFkOHDiUgIIBly5bRpUsXbrvtNurUqZOnY8jVUTguIiIiIiIiIiIichUSEhKYOnUqs2bNokmTJgBMnz6dUqVKAXD48GGioqI4fPgwJUqUAGDIkCGsXLmSqKgoRo8eTcmSJRkyZIjVZ//+/Vm1ahXz58+nTp06VzyGXD2F4yIiIiIiIiIiInJD8XZ3ZffrEU47dl5FR0eTkpLCPffcY60rXLgwlStXBmDnzp2kp6dTqVIlh3bJyckUKVIEgPT0dEaPHs38+fM5duwYKSkpJCcn4+Pjk6djyNVTOC4iIiIiIiIiIiI3FJvNlq+pTW5UCQkJuLq6snXrVlxdHUN3Pz8/AN59910++OADxo8fT7Vq1fD19WXQoEGkpKQ4o+QCRQ/kFBEREREREREREbkKt912G+7u7mzevNlad/bsWfbt2wdAjRo1SE9P59SpU1SoUMFhCQ0NBWDjxo20atWKxx9/nLvuuovy5ctb7fNyDLl6N//XLyIiIiIiIiIiIiJO4OfnR8+ePXn++ecpUqQIxYoVY9iwYbi4ZI5JrlSpEp07d6Zr166MGzeOGjVqcPr0adauXcudd95JixYtqFixIl988QU//vgjhQoV4r333uPkyZNUqVIlT8eQq6dwXEREREREREREROQqvfvuuyQkJNCyZUv8/f157rnniIuLs7ZHRUXxxhtv8Nxzz3Hs2DGKFi1K3bp1eeSRRwB45ZVX+L//+z8iIiLw8fHhySefJDIy0qGPKx1Dro7NGGOcXcSNLj4+nsDAQOLi4ggICHB2OSIiIiIiIiIiIreUpKQkYmJiKFeuHF5eXs4uR25wud0v+clyNfZeRERERERERERERAocheMiIiIiIiIiIiIiUuAoHBcRERERERERERGRAkfhuIiIiIiIiIiIiIgUOArHRURERERERERERKTAUTguIiIiIiIiIiIiIgWOU8PxsLAwbDZblqVv374AJCUl0bdvX4oUKYKfnx+PPvooJ0+edOjj8OHDtGjRAh8fH4oVK8bzzz9PWlqawz7r16+nZs2aeHp6UqFCBaZNm/ZvnaKIiIiIiIiIiIiI3ICcGo5v2bKFEydOWMuaNWsAaNeuHQCDBw/m66+/ZsGCBXz33XccP36cNm3aWO3T09Np0aIFKSkp/Pjjj0yfPp1p06bx6quvWvvExMTQokULHnjgAbZv386gQYPo1asXq1at+ndPVkRERERERERERERuGDZjjHF2EXaDBg1i6dKl7N+/n/j4eIKDg5kzZw5t27YFYO/evYSHh7Np0ybq1q3LihUreOSRRzh+/DghISEAfPLJJwwdOpTTp0/j4eHB0KFDWbZsGb///rt1nA4dOnDu3DlWrlyZp7ri4+MJDAwkLi6OgICAa3/iN7KLZyDme3B1Bxc3cHH937/2ny9Zl+M+rn/v6+oONhew2Zx9ZiIiIiIiIiIicoNISkoiJiaGcuXK4eXl5exy5AaX2/2SnyzX7XoWmR8pKSnMmjWLZ599FpvNxtatW0lNTaVp06bWPrfffjtlypSxwvFNmzZRrVo1KxgHiIiIoE+fPuzatYsaNWqwadMmhz7s+wwaNCjHWpKTk0lOTrZ+jo+Pv4ZnepP5cz8s6Hbt+7WCdXfH8NzFDVwvee3uDV6B2SxB/1uy2eburfBdRERERERERESuu0aNGlG9enXGjx9/3Y4RFhbGoEGDcs0zR4wYweLFi9m+fft1q+NWdMOE44sXL+bcuXN0794dgNjYWDw8PAgKCnLYLyQkhNjYWGufS4Nx+3b7ttz2iY+PJzExEW9v7yy1jBkzhpEjR16T87rpefhAmfqQkZbzkn7pz+mQkfr3zyYj+37t20m69jW7uGeG5N45hOdXCtjd9e2kiIiIiIiIiIjcmGw2G4sWLSIyMtLZpdz0bphwfOrUqTz88MOUKFHC2aXw0ksv8eyzz1o/x8fHU7p0aSdW5ESh1aDHiqtvn5EBJh3SU3MO0DOy256WuU9qIiTFZS6J5yDp3N8/Z7eY//V98c/M5Wq4eoJfCJSoDiVrQanaULw6ePpd/XUQERERERERERGRG8oNEY4fOnSIb775hoULF1rrQkNDSUlJ4dy5cw6jx0+ePEloaKi1z88//+zQ18mTJ61t9n/t6y7dJyAgINtR4wCenp54enr+8xMTcHEBXDLnGr/ejIGUhNzD80R7uJ5DyI6B9GSIO5y57FmS2bfNBYJvzwzL7UuxKplTwIiIiIiIiIiIyLVlDKRedM6x3X3yNWVvRkYGL7zwAlOmTMHDw4Onn36aESNGAHDu3DmGDBnCV199RXJyMrVr1+b999/nrrvuAiA6Oppnn32Wn376iQsXLhAeHs6YMWOyTBNtFxYWBkDr1q0BKFu2LAcPHrS2z5w5k+HDh3P27FkefvhhPv30U/z9/ZkxYwaDBw/m+PHjDrlnZGQk/v7+zJw5Mx8X6NZxQyR7UVFRFCtWjBYtWljratWqhbu7O2vXruXRRx8F4I8//uDw4cPUq1cPgHr16vHmm29y6tQpihUrBsCaNWsICAigSpUq1j7Lly93ON6aNWusPuQWYrOBp3/mElgq/+0zMv4Xrp+Ds4fg2Nb/Ldsg/iic2p25/Pq/XxZu3n+PLi9ZE0rWhqAymu9cREREREREROSfSr0Io500w8TLx8HDN8+7T58+nWeffZbNmzezadMmunfvzr333suDDz5Iu3bt8Pb2ZsWKFQQGBjJp0iSaNGnCvn37KFy4MAkJCTRv3pw333wTT09PZsyYQcuWLfnjjz8oU6ZMlmNt2bKFYsWKERUVRbNmzXB1dbW2RUdHs3jxYpYuXcrZs2dp3749b731Fm+++Sbt2rVjwIABLFmyhHbt2gFw6tQpli1bxurVq//5NbtJOT0cz8jIICoqim7duuHm9nc5gYGB9OzZk2effZbChQsTEBBA//79qVevHnXr1gXgoYceokqVKnTp0oV33nmH2NhYXnnlFfr27Wt9A/L0008zceJEXnjhBXr06MG3337L/PnzWbZsmVPOV25gLi7gFZC5BJWBcvf/ve187CVh+f8C8+R4OLwpc7HzKfr3yPJStaBETfAp/O+fi4iIiIiIiIiI/CvuvPNOXnvtNQAqVqzIxIkTWbt2Ld7e3vz888+cOnXKyirHjh3L4sWL+eKLL3jyySe56667rFHkAKNGjWLRokUsWbKEfv36ZTlWcHAwAEFBQdbMGXYZGRlMmzYNf39/ALp06cLatWt588038fb2plOnTkRFRVnh+KxZsyhTpgyNGjW65tfkZuH0cPybb77h8OHD9OjRI8u2999/HxcXFx599FGSk5OJiIjgv//9r7Xd1dWVpUuX0qdPH+rVq4evry/dunXj9ddft/YpV64cy5YtY/DgwXzwwQeUKlWKKVOmEBER8a+cn9wi/EPh9haZC2SOMv/rwCVh+S8Q+3vmPOf7V2UudoXLZ44qt4fmodX00E8RERERERERkdy4+2SO4HbWsfPhzjvvdPi5ePHinDp1ih07dpCQkECRIkUcticmJhIdHQ1AQkICI0aMYNmyZZw4cYK0tDQSExM5fPhwvssOCwuzgvFL67Dr3bs3d999N8eOHaNkyZJMmzaN7t27YyvAsyA4PRx/6KGHMMZku83Ly4uPPvqIjz76KMf2ZcuWzTJtyuUaNWrEr7/++o/qFHHg4gLBlTKX6h0z16UmwcnfM8Pyo79k/nsmGs78X+ayc/7/2rpD6B2O85cXqfi/+dlFRERERERERASbLV9TmziTu7vjs/ZsNhsZGRkkJCRQvHhx1q9fn6WN/RmLQ4YMYc2aNYwdO5YKFSrg7e1N27ZtSUlJuWZ12NWoUYO77rqLGTNm8NBDD7Fr164CP7uG08NxkVuGuxeUqp253PNU5rqLZ+D4r3+PMD/6S+bo8uO/Zi5bpmTu5xkAJWpA2fpQ95nMqV1EREREREREROSmVbNmTWJjY3Fzc7MepHm5jRs30r17d+sBmwkJCQ4P2MyOu7s76enpV1VTr169GD9+PMeOHaNp06aULl36qvq5VSgcF7mefApDhSaZC2Q+aTnuyN8jy49tgxPbM+cvj/kuc4n+Fh5fCJ5+zq1dRERERERERESuWtOmTalXrx6RkZG88847VKpUiePHj7Ns2TJat25N7dq1qVixIgsXLqRly5bYbDaGDx/uMNo7O2FhYaxdu5Z7770XT09PChUqlOeaOnXqxJAhQ/j000+ZMWPGPz3Fm57mcRD5N9lsmQ/7vKMNRLwJPVbAi0fg6R+gxXvgFQhHNsPnHTOnaRERERERERERkZuSzWZj+fLlNGjQgCeeeIJKlSrRoUMHDh06REhICADvvfcehQoVon79+rRs2ZKIiAhq1qyZa7/jxo1jzZo1lC5dmho1auSrpsDAQB599FH8/PyIjIy86nO7VdhMThN+iyU+Pp7AwEDi4uIICNB0F3IdHf0FZrSClASoGAGPzQI3D2dXJSIiIiIiIiJyXSUlJRETE0O5cuXw8vJydjm3tCZNmlC1alUmTJjg7FKuWm73S36yXI0cF7mRlKoNneaBmxfsXwWLnoSMq5tDSkRERERERERExO7s2bMsWrSI9evX07dvX2eXc0PQnOMiN5qw++Cx2TC3A+xaBO4+8J+J4KLvskRERERERERE5OrUqFGDs2fP8vbbb1O5cmVnl3NDUDguciOq2BTafgYLusP22eDhCw+/kzlnuYiIiIiIiIiISD4dPHjQ2SXccDQUVeRGVeU/EPkxYIOfJ8M3I0CPCBAREREREREREbkmFI6L3MjuegweeS/z9cbxsGGsc+sRERERERERERG5RSgcF7nR1e4BD72Z+frbN2DTf51bj4iIiIiIiIiIyC1A4bjIzaB+P2j0cubrVS/B1unOrUdEREREREREROQmp3Bc5GbR8AWoPyDz9dcDYecXzq1HRERERERERETkJqZwXORmYbPBg69D7Z6AgYVPwt5lzq5KRERERERERETkpqRwXORmYrNB87FwZwcw6bCgOxxY6+yqREREREREREQKpEaNGjFo0KA87793717q1q2Ll5cX1atXv46VXR2bzcbixYudXca/xs3ZBYhIPrm4QKuPIPUi7FkCn3eGLguhbH1nVyYiIiIiIiIiUqAsXLgQd3f3PO//2muv4evryx9//IGfn981qcFms7Fo0SIiIyOvSX8FiUaOi9yMXN3g0alQ4UFIS4TZ7eHYVmdXJSIiIiIiIiJSoBQuXBh/f/887x8dHc19991H2bJlKVKkyHWsTPJC4bjIzcrNAx6bCWH3Q8p5mPUonNzl7KpERERERERERP4xYwwXUy86ZTHG5LnOS6dVCQsLY/To0fTo0QN/f3/KlCnD5MmTrX1tNhtbt27l9ddfx2azMWLECACOHDlC+/btCQoKonDhwrRq1YqDBw86HOezzz6jatWqeHp6Urx4cfr162cdE6B169bYbDbrZ4CvvvqKmjVr4uXlRfny5Rk5ciRpaWnW9v3799OgQQO8vLyoUqUKa9asycc7dGvQtCoiNzN3b+g4F2ZEwrFfMv99YgUUreDsykRERERERERErlpiWiL3zLnHKcfe3GkzPu4+V9V23LhxjBo1ipdffpkvvviCPn360LBhQypXrsyJEydo2rQpzZo1Y8iQIfj5+ZGamkpERAT16tVjw4YNuLm58cYbb9CsWTN+++03PDw8+Pjjj3n22Wd56623ePjhh4mLi2Pjxo0AbNmyhWLFihEVFUWzZs1wdXUFYMOGDXTt2pUJEyZw//33Ex0dzZNPPglkTu2SkZFBmzZtCAkJYfPmzcTFxeVr7vRbhUaOi9zsPP3h8S8gpBpcOAUz/gNnDzm7KhERERERERGRAqd58+Y888wzVKhQgaFDh1K0aFHWrVsHQGhoKG5ubvj5+REaGoqfnx/z5s0jIyODKVOmUK1aNcLDw4mKiuLw4cOsX78egDfeeIPnnnuOgQMHUqlSJe6++24ryA4ODgYgKCiI0NBQ6+eRI0fy4osv0q1bN8qXL8+DDz7IqFGjmDRpEgDffPMNe/fuZcaMGdx11100aNCA0aNH/8tXy/k0clzkVuBdCLosgmnN4c99MKNV5gjygOLOrkxEREREREREJN+83bzZ3Gmz0459te68807rtc1mIzQ0lFOnTuW4/44dOzhw4ECWecuTkpKIjo7m1KlTHD9+nCZNmuSrjh07drBx40befPNNa116ejpJSUlcvHiRPXv2ULp0aUqUKGFtr1evXr6OcStQOC5yq/ALhq5fwWfN4GwMzIyE7svAt6izKxMRERERERERyRebzXbVU5s4k7u7u8PPNpuNjIyMHPdPSEigVq1azJ49O8u24OBgXFyubuKPhIQERo4cSZs2bbJs8/Lyuqo+b0UKx0VuJQEloNsS+OxhOL0XZraGbl+Dd5CzKxMRERERERERkcvUrFmTefPmUaxYMQICArLdJywsjLVr1/LAAw9ku93d3Z309PQs/f7xxx9UqJD9c+nCw8M5cuQIJ06coHjxzJkHfvrpp39wJjcnzTkucqspFJYZkPsGQ+xvMKc9JCc4uyoREREREREREblM586dKVq0KK1atWLDhg3ExMSwfv16BgwYwNGjRwEYMWIE48aNY8KECezfv59t27bx4YcfWn3Yw/PY2FjOnj0LwKuvvsqMGTMYOXIku3btYs+ePXz++ee88sorADRt2pRKlSrRrVs3duzYwYYNGxg2bNi/fwGcTOG4yK2oaMXMOci9AuHIZvi8I6QmObsqERERERERERG5hI+PD99//z1lypShTZs2hIeH07NnT5KSkqyR5N26dWP8+PH897//pWrVqjzyyCPs37/f6mPcuHGsWbOG0qVLU6NGDQAiIiJYunQpq1ev5u6776Zu3bq8//77lC1bFgAXFxcWLVpEYmIiderUoVevXg7zkxcUNmOMcXYRN7r4+HgCAwOJi4vL8c8bRG5IR3/JfDhnSgJUjIDHZoGbh7OrEhERERERERFxkJSURExMDOXKldOc2HJFud0v+clyNXJc5FZWqjZ0mgduXrB/FSzsDRnpV24nIiIiIiIiIiJyi1M4LnKrC7sPHpsNLu6wezEs6Q+5PCVZRERERERERESkIFA4LlIQVGwK7aLA5grbZ8OKF0AzKomIiIiIiIiISAGmcFykoAhvCZEfAzbY8il8M0IBuYiIiIiIiIiIFFgKx0UKkrseg0fez3y9cTxsGOvcekRERERERERERJxE4bhIQVP7CXjozczX374Bm/7r3HpEREREREREREScQOG4SEFUvx80ejnz9aqXYOs0p5YjIiIiIiIiIiLyb1M4LlJQNXwB6g/IfP31INi7zLn1iIiIiIiIiIiI/IsUjosUVDYbPPg61OwGGNjwnrMrEhERERERERER+dcoHBcpyGw2eGAYYINjv8DZQ86uSEREREREREREbiLTpk0jKCjI2WVcFYXjIgWdfwiE3Zf5evdXzq1FRERERERERETkX6JwXESgamTmv7sWObcOEREREREREZGbWEpKirNLuCo3a93/lMJxEYHw/4DNBY5vg7MHnV2NiIiIiIiIiBRwxhgyLl50ymKMyXOdjRo1ol+/fgwaNIiiRYsSERHBuXPn6NWrF8HBwQQEBNC4cWN27Njh0O7rr7/m7rvvxsvLi6JFi9K6dWtr29mzZ+natSuFChXCx8eHhx9+mP379wMQHx+Pt7c3K1ascOhv0aJF+Pv7c/HiRQCOHDlC+/btCQoKonDhwrRq1YqDBw9a+3fv3p3IyEjefPNNSpQoQeXKlQFITk5myJAhlCxZEl9fX+655x7Wr1/vcKxp06ZRpkwZfHx8aN26NX/99Veer9eNxs3ZBYjIDcCvWObUKjHfw67FcN8gZ1ckIiIiIiIiIgWYSUzkj5q1nHLsytu2YvPxyfP+06dPp0+fPmzcuBGAdu3aWQF2YGAgkyZNokmTJuzbt4/ChQuzbNkyWrduzbBhw5gxYwYpKSksX77c6q979+7s37+fJUuWEBAQwNChQ2nevDm7d+8mICCARx55hDlz5vDwww9bbWbPnk1kZCQ+Pj6kpqYSERFBvXr12LBhA25ubrzxxhs0a9aM3377DQ8PDwDWrl1LQEAAa9assfrp168fu3fv5vPPP6dEiRIsWrSIZs2asXPnTipWrMjmzZvp2bMnY8aMITIykpUrV/Laa6/900vuNDaTn69CCqj4+HgCAwOJi4sjICDA2eWIXB+/fAZLB0Px6vDUd86uRkREREREREQKkKSkJGJiYihXrhxeXl5kXLzo1HDcJY/heKNGjYiPj2fbtm0A/PDDD7Ro0YJTp07h6elp7VehQgVeeOEFnnzySerXr0/58uWZNWtWlv72799PpUqV2LhxI/Xr1wfgr7/+onTp0kyfPp127dqxePFiunTpwsmTJ/Hx8SE+Pp6QkBAryJ41axZvvPEGe/bswWazAZnTpgQFBbF48WIeeughunfvzsqVKzl8+LAVlh8+fJjy5ctz+PBhSpQoYdXUtGlT6tSpw+jRo+nUqRNxcXEsW7bM2t6hQwdWrlzJuXPn8nmlr97l98ul8pPlauS4iGQK/w8sGwIntsNf0VDkNmdXJCIiIiIiIiIFlM3bm8rbtjrt2PlRq9bfIf6OHTtISEigSJEiDvskJiYSHR0NwPbt2+ndu3e2fe3Zswc3Nzfuuecea12RIkWoXLkye/bsAaB58+a4u7uzZMkSOnTowJdffklAQABNmza1ajhw4AD+/v4OfSclJVk1AFSrVs0KxgF27txJeno6lSpVcmiXnJxsnc+ePXscpoABqFevHitXrszlCt24FI6LSCbfolCuAfzfOti9GO5/ztkViYiIiIiIiEgBZbPZ8jW1iTP5+vparxMSEihevHiWeboBgoKCAPDOZ/h+OQ8PD9q2bcucOXPo0KEDc+bM4bHHHsPNzc2qoVatWsyePTtL2+Dg4GzrtrdzdXVl69atuLq6Omzz8/P7RzXfqBSOi8jfqrbODMd3LVI4LiIiIiIiIiKSTzVr1iQ2NhY3NzfCwsKy3efOO+9k7dq1PPHEE1m2hYeHk5aWxubNmx2mVfnjjz+oUqWKtV/nzp158MEH2bVrF99++y1vvPGGQw3z5s2jWLFi+ZoiukaNGqSnp3Pq1Cnuv//+bPcJDw9n8+bNDut++umnPB/jRuPi7AJE5AYS3hJsrhC7E/484OxqRERERERERERuKk2bNqVevXpERkayevVqDh48yI8//siwYcP45ZdfAHjttdeYO3cur732Gnv27GHnzp28/fbbAFSsWJFWrVrRu3dvfvjhB3bs2MHjjz9OyZIladWqlXWcBg0aEBoaSufOnSlXrpzDNCydO3emaNGitGrVig0bNhATE8P69esZMGAAR48ezbH2SpUq0blzZ7p27crChQuJiYnh559/ZsyYMdYc4wMGDGDlypWMHTuW/fv3M3HixJt2ShVQOC4il/IpDOUbZb7evciZlYiIiIiIiIiI3HRsNhvLly+nQYMGPPHEE1SqVIkOHTpw6NAhQkJCgMyHeC5YsIAlS5ZQvXp1GjduzM8//2z1ERUVRa1atXjkkUeoV68exhiWL1+Ou7u7w3E6duzIjh076Ny5s0MNPj4+fP/995QpU4Y2bdoQHh5Oz549SUpKuuJI8qioKLp27cpzzz1H5cqViYyMZMuWLZQpUwaAunXr8umnn/LBBx9w1113sXr1al555ZVrdfn+dTZjjHF2ETe6/DzhVOSmt20mLOkHIXdAn43OrkZERERERERECoCkpCRiYmIoV64cXl5ezi5HbnC53S/5yXI1clxEHN3eAlzc4OTvcHqfs6sRERERERERERG5LhSOi4gjn8JQ/oHM17sXO7cWERERERERERGR60ThuIhkVbV15r+7NO+4iIiIiIiIiIjcmhSOi0hWtzcHF3c4tRtO7XV2NSIiIiIiIiIiItecwnERycq7ENzWOPO1plYREREREREREZFbkMJxEcmeplYREREREREREZFbmMJxEcne7c3B1QNO74WTu51djYiIiIiIiIiIyDWlcFxEsucVCBWaZr7W6HEREREREREREbnF/D979x4WdZ2/f/yeIwwooKCCB0ABxWOimZpllges3basvm2tW2mm1VqpZVtttasdd93S7GQHN62u9tdhv9m3UstDWq2pmXZUUVARD6CCCiqnGWZ+fwyMkpqaynsGno/rmuszh/fM3FOeuHnz+lCOAzi+I0er+HxmswAAAAAAAABnEOU4gONrP1SyhUlF2dKutabTAAAAAAAAoJ6YPXu2YmJijGagHAdwfOFRUtpg/3VGqwAAAAAAAIQEi8WiDz74wHSMgOTkZD3zzDO17vv973+vjRs3GkrkRzkO4JcxWgUAAAAAAABnmMvlVtVfUQAAIABJREFUUvPmzY1moBwH8MvaZ0r2cGnvJqngR9NpAAAAAABAA+Dz+eSuqDJy8Z3i5sD//Oc/6tq1q1wul2JjYzVo0CB9/vnncjgcKigoqLV2/PjxuvDCCyUdHivy8ccfq0OHDoqIiNA111yj0tJSvf7660pOTlaTJk101113qaqqKvAaycnJevTRR3X99dcrMjJSrVq10gsvvFDrcUkaNmyYLBZL4LYkzZgxQykpKXI6nerQoYPefPPNWvksFotefvll/fa3v1VERIQ6duyo5cuXKycnRwMGDFBkZKTOP/98bdq0KfCcTZs26YorrlCLFi3UqFEj9erVS4sWLQo8PmDAAG3dulUTJkyQxWKRxWKp9fmP9NFHH6lXr14KDw9XXFychg0bdkr/L06V/ay+OoDQF9bYP1pl/Uf+3eMJ3UwnAgAAAAAA9Zyn0qtXxn1u5L3HTL9IjjDbSa3Nz8/X9ddfrylTpmjYsGE6cOCAvvzyS/Xs2VPt2rXTm2++qXvvvVeS5Ha79dZbb2nKlCmB55eWlurZZ5/V22+/rQMHDuiqq67SsGHDFBMTo3nz5mnz5s26+uqr1a9fP/3+978PPO+f//yn/vKXv2jy5Mn69NNPNW7cOLVv316DBw/WqlWr1Lx5c82aNUtDhw6Vzeb/LHPmzNG4ceP0zDPPaNCgQfr44481cuRItW7dWhdffHHgtR999FFNnTpVU6dO1X333ac//OEPateunR544AElJibq5ptv1h133KH58+dLkg4ePKjLLrtMjz/+uMLCwvTGG2/o8ssv14YNG5SYmKj3339f55xzjsaMGaPRo0cf97/l3LlzNWzYMD344IN64403VFlZqXnz5p38/7hfgXIcwIl1Hna4HB/4V6n6O3wAAAAAAAANWX5+vjwej6666iolJSVJkrp27SpJGjVqlGbNmhUoxz/66COVl5fr2muvDTzf7XYHdnNL0jXXXKM333xTu3btUqNGjdSpUyddfPHFWrJkSa1yvF+/frr//vslSe3bt9eyZcs0bdo0DR48WM2aNZMkxcTEKD4+PvCcp556SiNGjNCf/vQnSdLdd9+tFStW6KmnnqpVjo8cOTKQ8b777lPfvn318MMPKzMzU5I0btw4jRw5MrD+nHPO0TnnnBO4/eijj2rOnDn68MMPdccdd6hp06ay2Wxq3LhxrTw/9/jjj+u6667T5MmTa7322UQ5DuDE0jIlu0vat0XK/15q2d10IgAAAAAAUI/ZnVaNmX6Rsfc+Weecc44GDhyorl27KjMzU0OGDNE111yjJk2aaMSIEXrooYe0YsUK9enTR7Nnz9a1116ryMjIwPMjIiICxbgktWjRQsnJyWrUqFGt+3bv3l3rffv27XvU7Z+f8PLn1q9frzFjxtS6r1+/fpo+fXqt+7p1Ozw1oEWLFpIOF/4195WXl6ukpERRUVE6ePCgJk2apLlz5wa+WVBWVqa8vLxfzPNz33333S/uLD8bKMcBnFhYI6n9EGnd//l3j1OOAwAAAACAs8hisZz0aBOTbDabFi5cqK+++koLFizQc889pwcffFArV65U27Ztdfnll2vWrFlq27at5s+fr6VLl9Z6vsPhqHXbYrEc8z6v13u2P8oxM9XMBz/WfTWZJk6cqIULF+qpp55SamqqXC6XrrnmGlVWVp7S+7pcrtONfso4ISeAk9O5+gQIa+dIp3hiCgAAAAAAgPrKYrGoX79+mjx5sr799ls5nU7NmTNHknTLLbfonXfe0SuvvKKUlBT169fvjLznihUrjrrdsWPHwG2Hw1HrJJ6S1LFjRy1btqzWfcuWLVOnTp1OK8uyZcs0YsQIDRs2TF27dlV8fLxyc3NrrXE6nUfl+blu3bpp8eLFp5XlVLFzHMDJSRsiOSKk/Vulnd9KrXqYTgQAAAAAAGDUypUrtXjxYg0ZMkTNmzfXypUrtWfPnkBRnZmZqaioKD322GN65JFHztj7Llu2TFOmTNGVV16phQsX6r333tPcuXMDjycnJ2vx4sXq16+fwsLC1KRJE91777269tprlZGRoUGDBumjjz7S+++/r0WLFp1WlrS0NL3//vu6/PLLZbFY9PDDDx+10z05OVlffPGFrrvuOoWFhSkuLu6o1/nb3/6mgQMHKiUlRdddd508Ho/mzZun++6777Ty/RJ2jgM4Oc5Iqf1Q//W175vNAgAAAAAAEASioqL0xRdf6LLLLlP79u310EMP6emnn9all14qSbJarRoxYoSqqqp04403nrH3veeee/TNN98oIyNDjz32mKZOnRo4YaYkPf3001q4cKHatGmjjIwMSdKVV16p6dOn66mnnlLnzp318ssva9asWRowYMBpZZk6daqaNGmi888/X5dffrkyMzPVo0ftTZWPPPKIcnNzlZKSEjhh6M8NGDBA7733nj788EN1795dl1xyib7++uvTynYiFp+P+QgnUlJSoujoaBUXFysqKsp0HMCcdR9K794gRbeRxv8oVc+YAgAAAAAAOB3l5eXasmWL2rZtq/DwcNNxzqhRo0Zpz549+vDDD8/I6yUnJ2v8+PEaP378GXm9UPRLv15OpctlrAqAk5c2WHJESsXbpB2rpdbnmk4EAAAAAAAQlIqLi/Xjjz/q3//+9xkrxnFmMVYFwMlzuKQO/h8L0to5ZrMAAAAAAAAEsSuuuEJDhgzRbbfdpsGDB5uOg2Ng5ziAU9N5mPTTf6S1H0iDH5WsfI8NAAAAAADg55YuXXpWXjc3N/esvG5DRKsF4NSkDpKcjaSS7dKOb0ynAQAAAAAAAH4VynEAp8YRLnW4zH+d0SoAAAAAAOAM8vl8piMgBJypXyeU4wBOXedh/uPaDySv12wWAAAAAAAQ8mw2mySpsrLScBKEgppfJzW/bn4tZo4DOHUpl0hhUdKBndL2r6XEPqYTAQAAAACAEGa32xUREaE9e/bI4XDIyjnOcBxer1d79uxRRESE7PbTq7cpxwGcuprRKj+87R+tQjkOAAAAAABOg8ViUUJCgrZs2aKtW7eajoMgZ7ValZiYKIvFclqvQzkO4NfpPKy6HP9AynxS4ju6AAAAAADgNDidTqWlpTFaBSfkdDrPyE8XUI4D+HVSLpbCoqWDBdK2FVLS+aYTAQAAAACAEGe1WhUeHm46BhoItnoC+HXsYVLH3/qvr51jNgsAAAAAAABwiijHAfx6nYf5j+v+T/JWmc0CAAAAAAAAnALKcQC/XtuLpPAY6eAuaetXptMAAAAAAAAAJ41yHMCvZ3cyWgUAAAAAAAAhiXIcwOmpGa2y/kOpymM2CwAAAAAAAHCSKMcBnJ62F0muJtKhPdLWZabTAAAAAAAAACeFchzA6bE5pI6X+68zWgUAAAAAAAAhgnIcwOljtAoAAAAAAABCDOU4gNOX3F9yNZVKi6TcL02nAQAAAAAAAE6IchzA6bPZpU6/819ntAoAAAAAAABCAOU4gDMjMFrlI6nKbTYLAAAAAAAAcAKU4wDOjKQLpIg4qWyvtOUL02kAAAAAAACAX2S8HN+xY4f++Mc/KjY2Vi6XS127dtU333wTeNzn8+mvf/2rEhIS5HK5NGjQIGVnZ9d6jb1792r48OGKiopSTEyMRo0apYMHD9Za88MPP+jCCy9UeHi42rRpoylTptTJ5wMaDJtd6nSF/zqjVQAAAAAAABDkjJbj+/btU79+/eRwODR//nytW7dOTz/9tJo0aRJYM2XKFD377LN66aWXtHLlSkVGRiozM1Pl5eWBNcOHD9fatWu1cOFCffzxx/riiy80ZsyYwOMlJSUaMmSIkpKStHr1av3zn//UpEmT9Morr9Tp5wXqvSNHq3gqzWYBAAAAAAAAfoHF5/P5TL35/fffr2XLlunLL7885uM+n08tW7bUPffco4kTJ0qSiouL1aJFC82ePVvXXXed1q9fr06dOmnVqlU699xzJUmffPKJLrvsMm3fvl0tW7bUjBkz9OCDD6qgoEBOpzPw3h988IGysrJOmLOkpETR0dEqLi5WVFTUGfr0QD3krZKeTpcO7ZaG/0dKG2w6EQAAAAAAABqQU+lyje4c//DDD3Xuuefqf/7nf9S8eXNlZGTo1VdfDTy+ZcsWFRQUaNCgQYH7oqOj1bt3by1fvlyStHz5csXExASKcUkaNGiQrFarVq5cGVjTv3//QDEuSZmZmdqwYYP27dt3VK6KigqVlJTUugA4CVYbo1UAAAAAAAAQEoyW45s3b9aMGTOUlpamTz/9VLfffrvuuusuvf7665KkgoICSVKLFi1qPa9FixaBxwoKCtS8efNaj9vtdjVt2rTWmmO9xpHvcaQnn3xS0dHRgUubNm3OwKcFGojAaJWPGa0CAAAAAACAoGW0HPd6verRo4eeeOIJZWRkaMyYMRo9erReeuklk7H0wAMPqLi4OHDZtm2b0TxASEnsIzWKlyqKpc1LTKcBAAAAAAAAjsloOZ6QkKBOnTrVuq9jx47Ky8uTJMXHx0uSdu3aVWvNrl27Ao/Fx8dr9+7dtR73eDzau3dvrTXHeo0j3+NIYWFhioqKqnUBcJIYrQIAAAAAAIAQYLQc79evnzZs2FDrvo0bNyopKUmS1LZtW8XHx2vx4sWBx0tKSrRy5Ur17dtXktS3b1/t379fq1evDqz57LPP5PV61bt378CaL774Qm63O7Bm4cKF6tChg5o0aXLWPh/QYNWMVsmaK3kqzGYBAAAAAAAAjsFoOT5hwgStWLFCTzzxhHJycvTvf/9br7zyisaOHStJslgsGj9+vB577DF9+OGH+vHHH3XjjTeqZcuWuvLKKyX5d5oPHTpUo0eP1tdff61ly5bpjjvu0HXXXaeWLVtKkv7whz/I6XRq1KhRWrt2rd555x1Nnz5dd999t7HPDtRrbXpLjROkihJp02em0wAAAAAAAABHMVqO9+rVS3PmzNH/+3//T126dNGjjz6qZ555RsOHDw+s+fOf/6w777xTY8aMUa9evXTw4EF98sknCg8PD6x56623lJ6eroEDB+qyyy7TBRdcoFdeeSXweHR0tBYsWKAtW7aoZ8+euueee/TXv/5VY8aMqdPPCzQYVqvUyf8NLEarAAAAAAAAIBhZfD6fz3SIYFdSUqLo6GgVFxczfxw4WXkrpdeGSM7G0r05kiP8xM8BAAAAAAAATsOpdLlGd44DqMda95KiWkmVB6RNi0+8HgAAAAAAAKhDlOMAzg5GqwAAAAAAACCIUY4DOHu6XOU/bpgvucvMZgEAAAAAAACOQDkO4Oxp1VOKbiNVHpSyF5pOAwAAAAAAAARQjgM4eywWqTOjVQAAAAAAABB8KMcBnF2dh/mPGz+RKkvNZgEAAAAAAACqUY4DOLta9pBiEiV3qZS9wHQaAAAAAAAAQBLlOICzzWI5vHuc0SoAAAAAAAAIEpTjAM6+wGiVT6XKQ2azAAAAAAAAAKIcB1AXErpLTZIlT5m/IAcAAAAAAAAMoxwHcPYxWgUAAAAAAABBhnIcQN2oKcezF0gVB81mAQAAAAAAQINHOQ6gbsR3k5q2kzzl0sZPTKcBAAAAAABAA0c5DqBuMFoFAAAAAAAAQYRyHEDd6XyV/5i9UKo4YDYLAAAAAAAAGjTKcQB1p0VnKTZNqqqQNsw3nQYAAAAAAAANGOU4gLrDaBUAAAAAAAAECcpxAHWrphzPWSSVF5vNAgAAAAAAgAaLchxA3WreUYrrIFVVMloFAAAAAAAAxlCOA6hbjFYBAAAAAABAEKAcB1D3Ol/pP+Yslsr2m80CAAAAAACABolyHEDda95RatZR8rqlDfNMpwEAAAAAAEADRDkOwAxGqwAAAAAAAMAgynEAZqQN8h93rDGbAwAAAAAAAA0S5TgAM+La+4+lhVLZPrNZAAAAAAAA0OBQjgMwI6yx1DjBf70wx2wWAAAAAAAANDiU4wDMiUvzH4uyzeYAAAAAAABAg0M5DsCc2OpyvJByHAAAAAAAAHWLchyAOTU7xws3ms0BAAAAAACABodyHIA5NTvHi5g5DgAAAAAAgLpFOQ7AnLhU/3HvZslbZTYLAAAAAAAAGhTKcQDmRLeRbGFSVaW0f6vpNAAAAAAAAGhAKMcBmGO1SbEp/uuFjFYBAAAAAABA3aEcB2BWbPVolaJsszkAAAAAAADQoFCOAzArrr3/WEg5DgAAAAAAgLpDOQ7ArLg0/5FyHAAAAAAAAHWIchyAWbHV5ThjVQAAAAAAAFCH7KYDAGjg4qpnjh/cJZWXSOFRZvPUQ6XuUq0qWCWLxSK71S6n1Smnrfpidcphdchhcxy+bXPIaXXKYrGYjg4AAAAAAHDWUI4DMCs8WopsLh3a7d893qqn6UT1zsPLHtaCrQtO+XlHFukOq6PW8cgSveZ4rHWNHI10ReoVatmo5Vn4ZAAAAAAAAL8e5TgA8+LS/OV4YQ7l+Bm2af+mQDHeKbaT3F633FVuVVZVyu11q9Jb6b9e5ZbH56n1XI/XI4/Xo1JP6WlleHvD23r+kufVtVnX03odAAAAAACAM4lyHIB5sanS1mXMHT8LXvvpNUnSwMSBeubiZ35xrdfn9RfmVZWHy/MjjoEivaZgr74duO+I51Z6/fct27FMG/dt1M2f3qwp/afo4sSL6+JjAwAAAAAAnBDlOADz4tr7j4WU42fSzoM7NW/zPEnSLV1vOeF6q8WqMFuYwmxhZyzDrd1u1T1L79Gyncs0ful4PXDeA7ou/boz9voAAAAAAAC/ltV0AABQXJr/WJRjNkc9M3vtbHl8HvVJ6KMucV2MZIh0ROq5gc/pqrSr5PV59fjKxzV19VR5fV4jeQAAAAAAAGpQjgMwLzbVfyzKkbyUpmdCYVmh3s9+X9LJ7Ro/mxxWhyb1naQ7ut8hSZr10yzd/8X9qqyqNJoLAAAAAAA0bJTjAMyLSZKsDslTLhVvM52mXnhr/VuqqKpQt7huOi/+PNNxZLFYdOs5t+rxCx6X3WLX/Nz5GrNwjIorik1HAwAAAAAADRTlOADzbHapaTv/dU7KedoOVB7Q21lvS5JGdR0li8ViONFhv0v5nV4c9KIiHZFavWu1bpx/o3Ye3Gk6FgAAAAAAaIAoxwEEh5q544XMHT9d72x4RwfdB5USnaIBbQaYjnOUvi376vWhr6t5RHNtLt6s4fOGa13ROtOxAAAAAABAA0M5DiA4BOaOs3P8dJR7yvXmujcl+XeNWy3B+cd8h6Yd9NZlbymtSZoKywo14pMR+nL7l6ZjAQAAAACABiQ4WxMADU9ce/+xkHL8dMzJmaO95XvVqlErXdr2UtNxflF8ZLxeH/q6eif0VpmnTHd+dqf+s/E/pmMBAAAAAIAGgnIcQHCoGatSxFiVX8vtdWvWT7MkSSM6j5Ddajec6MQaOxtrxsAZ+l3K71Tlq9Lk5ZP13LfPyefzmY4GAAAAAADqOcpxAMGhZqxKyQ6p4qDZLCFq/pb5yj+Ur9jwWF2ZeqXpOCfNYXPosX6P6bZzbpMkvfLDK3rwvw/KXeU2nAwAAAAAANRnlOMAgkNEUyki1n+d3eOnzOvz6l8//kuSdEOnGxRuDzec6NRYLBaN7T5Wk8+fLJvFpo82f6TbF9+uA5UHTEcDAAAAAAD1FOU4gOARy2iVX2tJ3hJtLt6sxo7G+n2H35uO86tdlXaVnh/4vCLsEVqZv1I3zr9RBYcKTMcCAAAAAAD1EOU4gOARVz1ahZNynhKfz6eZP86UJF2Xfp0aORsZTnR6Lmh1gWYPna04V5xy9udo+Lzh2rB3g+lYAAAAAACgnqEcBxA8AjvHKcdPxcqClfqp6CeF28L1x05/NB3njOgY21FvXfaWUqJTtLt0t2765CZ9tfMr07EAAAAAAEA9QjkOIHjEVZfj7Bw/JTN/8O8av7r91Woa3tRwmjOnZaOWev3S13Vui3N1yH1IYxeN1Qc5H5iOBQAAAAAA6gnKcQDBI669/1iUI3m9ZrOEiB/2/KCVBStlt9h1U6ebTMc546LDovXy4Jd1adtL5fF59PCyhzXj+xny+XymowEAAAAAgBBHOQ4geDRJlqx2yV0qHdhpOk1IqJk1/pt2v1FCowTDac4Op82pv1/4d43qMkqS9OJ3L+pvX/1Nbq/bcDIAAAAAABDKKMcBBA+bw1+QS4xWOQk5+3K0ZNsSWWTRzV1vNh3nrLJarBrfc7we7vOwrBar5uTM0Z2L79Qh9yHT0QAAAAAAQIiiHAcQXAIn5cwxmyMEvPbTa5KkQUmD1C66neE0dePaDtfq2Yuflcvu0rKdyzTikxHaXbrbdCwAAAAAABCCKMcBBJe4VP+RneO/aPuB7Zq3ZZ4kaVTXUYbT1K2L2lyk1zJfU9Pwpsram6Xh84YrZx/fTAEAAAAAAKeGchxAcAnsHKcc/yWz185Wla9K57c8X51jO5uOU+e6xHXRW5e9peSoZBUcKtCN82/U1/lfm44FAAAAAABCCOU4gOASV12OF7IT+HgKywo1J3uOJOmWrrcYTmNO68at9ealb6pH8x464D6gWxfdqrmb55qOBQAAAAAAQgTlOIDgEtfefyzeJrnLzGYJUm+ue1OV3kp1a9ZN57Y413Qco2LCY/TKkFc0JGmIPF6P7v/yfs38caZ8Pp/paAAAAAAAIMhRjgMILhGxUniMJJ9UtMl0mqBTUlmidza8I0ka3XW0LBaL4UTmhdnC9M+L/qmbOt0kSZq+ZroeW/GYPF6P4WQAAAAAACCYUY4DCC4WyxGjVTaazRKE3sl6R4fch5Qak6r+rfubjhM0rBarJvaaqPvPu18WWfTuxnc18fOJcnvdpqMBAAAAAIAgRTkOIPgETsrJ3PEjlXnK9Oa6NyVJo7qOktXCH+E/N7zjcE27eJqcVqcW5y3WQ/99SFXeKtOxAAAAAABAEKJZARB84lL9x8JsszmCzPvZ72tfxT61atRKQ5OHmo4TtAYmDtS0i6fJbrFr3pZ5enTFo8wgBwAAAAAAR6EcBxB8AjvHKcdruKvcmr12tiTp5i43y261mw0U5Pq37q8n+z8pq8Wq/83+Xz31zVMU5AAAAAAAoBbKcQDBJzBzPEei0JQkzd0yVwWHChTnitMVqVeYjhMShiYP1aS+kyRJb6x7QzO+n2E2EAAAAAAACCqU4wCCT9N2ksUqVR6QDu4yncY4r8+r1356TZJ0Y6cbFWYLM5wodAxLG6b7z7tfkjTj+xl6fe3rhhMBAAAAAIBgQTkOIPjYw6SYJP915o7rs7zPtKV4ixo7G+vaDteajhNyhnccrrsy7pIkPfXNU3p3w7uGEwEAAAAAgGBAOQ4gOAVGq2w0m8Mwn8+nV398VZJ0ffr1inREGk4UmkZ3G61RXUZJkh5b8Zg+2vSR4UQAAAAAAMA0ynEAwSlwUs4cszkMW56/XOuK1slld+mPHf9oOk5IG9djnK5Pv14++fTwsoe1eOti05EAAAAAAIBBlOMAglNcqv/YwMeqzPxxpiTp6rSr1SS8ieE0oc1isej+8+7XFSlXqMpXpXu/uFdf7fjKdCwAAAAAAGAI5TiA4BTYOd5wy/Hv93yvVQWrZLfadVPnm0zHqResFqsmnT9Jg5MGy+11a9yScVq9a7XpWAAAAAAAwADKcQDBqWbm+P48yVNhNoshNbvGL293ueIj4w2nqT/sVrv+ceE/dGGrC1VeVa6xi8dqbeFa07EAAAAAAEAdoxwHEJwatZDCoiSfV9q72XSaOpe9L1tLty2VRRaN7DLSdJx6x2FzaOqAqeoV30uH3Id066Jblb2v4f6UAgAAAAAADRHlOIDgZLFIsQ137vi/fvqXJGlQ0iC1jW5rOE39FG4P13OXPKducd1UXFGsMQvHaGvJVtOxAAAAAABAHaEcBxC8akarFG40m6OObTuwTZ9s+USSdEvXWwynqd8iHZF6cdCLat+kvQrLCjV6wWjlH8w3HQsAAAAAANQBynEAwStwUs4csznq2OyfZqvKV6V+LfupU2wn03HqveiwaL08+GUlRyUr/1C+bllwiwrLCk3HAgAAAADglPncbrl371Z5VpYOrVhpOk7Qs5sOAADHFdfwxqoUlhXqg5wPJLFrvC7FueL06pBXddP8m5R3IE+jF4zWrMxZigmPMR0NAAAAANCA+Xw+eQ8ckKeoSFV799Y+Fu2VZ+9eVRUW+o9FRaoqLq71/PSffpTFTgV8PPyXARC8AjvHsyWfzz+HvJ57Y90bqvRWqnuz7urZoqfpOA1KfGS8Zg6ZqZs+uUk5+3N026LbNHPITDVyNjIdDQAAAABQj3grKlRVVCRP0V5V7T320bP3cPktt/vU3sBqla1pU9mbNpX34EHZYtj4dTyU4wCCV2yKJItUXiwdKpQaNTOd6KwqrijWO1nvSPLvGrc0gG8GBJs2UW306pBXNfKTkVpbtFZjF4/VS4NfksvuMh0NAAAAABDkfJWVcu/eLffOnfLk58udXyB3fr48RYXVRbe/8PYePHjKr21t1Ei22KayN431H2PjZI9tKlvT2NrH2FjZoqNlsTJN+2RQjgMIXg6XFN1GKs7z7x6v5+X421lvq9RTqvZN2qt/6/6m4zRYKTEpemnwSxr16Sit2b1GE5ZM0LOXPCunzWk6GgAAAADAEJ/Pp6q9e+XemS93Qb6//N6ZL3d+9e2d+fIUFvp/8v0kWBwO2WJjZW/atPbxWIV306ayhoWd5U/YMFGOAwhucWn+crwwW0o633Sas6bUXaq31r8lSRrVZRS7xg3rFNtJMwbN0JiFY7Rs5zL9+Ys/66mLnpLdyl+bAAAAAFAfeQ8dkrugoHq3d+2d3/7bBfJVVp7wdSxhYXLEx8veMkGOhJb+682bV+/2PlyCWxs14mv/IMBX+QCCW1yatGmxVLjRdJKz6v3s97WvYp9aN2qtIclDTMeBpO7Nu2v6xdM1dvFYLc5brL8u+6seu+AxWS38aBoAAAAAhBKf1yuaohONAAAgAElEQVTPrl3+onvn4bLbX3z7d4H//ESWx2SxyN6smRwJCbInJMhRfbEnxPuL8JYJsjVpQukdQijHAQS32FT/sSjHbI6zyF3l1uy1syVJN3e9md3JQaRvy756+qKnNWHpBH20+SO57C491Och/qEDAAAAAEHG5/XKk5+vyrw8VW7dqsqt1ce8rXLnbTupXd/Wxo2P2PVdvfM7Ib66AG8pR/NmsjgZuVmf0MAACG5xaf5jYbbZHGfRx5s/1q7SXWrmaqYrUq4wHQc/c3HixXrigid0/5f3692N7yrSEakJPSdQkAMAAABAHfNVVflHneRt9ZfguVsDZbh72wkKcLtdjvj42ju9ExLkaJkge/X9tsaN6+7DICgYLccnTZqkyZMn17qvQ4cOysrKkiSVl5frnnvu0dtvv62KigplZmbqxRdfVIsWLQLr8/LydPvtt2vJkiVq1KiRbrrpJj355JOy2w9/tKVLl+ruu+/W2rVr1aZNGz300EMaMWJEnXxGAKcptroc35creSole/36Dm2Vt0qv/fSaJOnGTjdy0scgdVm7y1TmKdOk5ZM0a+0sRTgidNs5t5mOBQAAAAD1Tk0BXrk1V+5jFeBu9/Gf7HDI2bq1nImJciYnyZGYKGdSspxJiXIkJMhiZ58wajP+K6Jz585atGhR4PaRpfaECRM0d+5cvffee4qOjtYdd9yhq666SsuWLZMkVVVV6Te/+Y3i4+P11VdfKT8/XzfeeKMcDoeeeOIJSdKWLVv0m9/8RrfddpveeustLV68WLfccosSEhKUmZlZtx8WwKmLaik5IiX3IX9B3qy96URn1OK8xcotyVWUM0r/0+F/TMfBL7i6/dUq9ZRqyqopeuG7FxTpiNQNnW4wHQsAAAAAQo6/AM+vLr63yh0YgZJ3wgLc4nDI0aaNvwBPSpIjyX90JiX5C3CbrQ4/CUKd8XLcbrcrPj7+qPuLi4v1r3/9S//+9791ySWXSJJmzZqljh07asWKFerTp48WLFigdevWadGiRWrRooW6d++uRx99VPfdd58mTZokp9Opl156SW3bttXTTz8tSerYsaP++9//atq0aZTjQCiwWKTYFKngB6kou16V4z6fTzN/nClJ+kPHPyjSEWk4EU7khk436JD7kF747gVNWTVFEfYIXd3+atOxAAAAACAo+Xw+eQoKVL4+SxUbsvzH7GxVbt8unagAT0wMFODO6gLckZgkR0I8BTjOGOPleHZ2tlq2bKnw8HD17dtXTz75pBITE7V69Wq53W4NGjQosDY9PV2JiYlavny5+vTpo+XLl6tr1661xqxkZmbq9ttv19q1a5WRkaHly5fXeo2aNePHjz9upoqKClVUVARul5SUnMFPDOCUxbX3l+P1bO74Vzu/0vq96+WyuzQ8fbjpODhJt3a7VaXuUs1aO0uTl0+Wy+7SZe0uMx0LAAAAAIzyVVaqYtMmlWdtUEXWepVnbVB5Vpa8xcXHXG9xOuVIbCNnYlKtAtyZmCh7PAU46obRcrx3796aPXu2OnTooPz8fE2ePFkXXnihfvrpJxUUFMjpdComJqbWc1q0aKGCggJJUkFBQa1ivObxmsd+aU1JSYnKysrkcrmOyvXkk08eNQsdgEE1J+Usql/leM2u8WvaX6OY8JgTrEawsFgsmtBzgko9pXpnwzv6y3//onB7uC5JvMR0NAAAAACoE559+1SRlVVdhGepPCtLFZs3H3s3uN2usHbtFN4xXWEd0hXWob3C2rb1F+BWa92HB45gtBy/9NJLA9e7deum3r17KykpSe++++4xS+u68sADD+juu+8O3C4pKVGbNm2M5QEavNhU/7Ee7Rz/bvd3+mbXN7Jb7bqx042m4+AUWSwW/aX3X1TqLtVHmz/SxM8n6vmBz+v8luebjgYAAAAAZ4zP61Xl1q2q2LDBPxKlugj37Np1zPXWqCiFp6crLL2DwtM7Kjy9g5ypqbI6nXWcHDg5xseqHCkmJkbt27dXTk6OBg8erMrKSu3fv7/W7vFdu3YFZpTHx8fr66+/rvUau6p/cx65ZtfPfsPu2rVLUVFRxy3gw8LCFBYWdsY+F4DTVLNzvB6V4zW7xn+X8jvFRx593gUEP6vFqkf6PaIyT5kW5S3S+CXj9dKgl9SjRQ/T0QAAAADglHlLS1WxcaPKa3aCr89SeXa2fKWlx1zvSExUeIcOCuuYrvB0/8WekCCLxVLHyYFfL6jK8YMHD2rTpk264YYb1LNnTzkcDi1evFhXX+0/2dmGDRuUl5envn37SpL69u2rxx9/XLt371bz5s0lSQsXLlRUVJQ6deoUWDNv3rxa77Nw4cLAawAIATU7x8v2SqV7pYimZvOcpg17N+jz7Z/LarHq5i43m46D02C32vWP/v/QXUvu0rIdyzR28VjNzJypzrGdTUcDAAAAgGPyVlbKk5+vii1bVFE9F7wiK0uVW7dKPt9R6y1hYQrr0KFWER7Wvr1sjRoZSA+cWUbL8YkTJ+ryyy9XUlKSdu7cqb/97W+y2Wy6/vrrFR0drVGjRunuu+9W06ZNFRUVpTvvvFN9+/ZVnz59JElDhgxRp06ddMMNN2jKlCkqKCjQQw89pLFjxwZ2ft922216/vnn9ec//1k333yzPvvsM7377ruaO3euyY8O4FQ4I6WoVlLJDv/u8cTephOdln/99C9J0uCkwUqKSjKcBqfLaXNq2oBpun3R7Vq9a7VuW3ibZmXOUmqTVNPRAAAAADRA3tJSuXfuPHzZsUPuHYeve/bsOe5z7c2aKax6F3hYegeFd+woZ1ISJ8dEvWW0HN++fbuuv/56FRUVqVmzZrrgggu0YsUKNWvWTJI0bdo0Wa1WXX311aqoqFBmZqZefPHFwPNtNps+/vhj3X777erbt68iIyN100036ZFHHgmsadu2rebOnasJEyZo+vTpat26tWbOnKnMzMw6/7wATkNsqr8cLwrtcnxbyTZ9mvupJGlUl1GG0+BMcdldev6S5zV6wWj9VPSTRi8crdeHvq7EqETT0QAAAADUM1UlJYeL7+07apfgO3eqat++E76GxeWSs3Xr6iK8Q6AQt8fG1sEnAIKHxec7xs9LoJaSkhJFR0eruLhYUVFRpuMADdPcidKqV6V+46XBk02n+dUeWf6I3tv4ni5odYFmDJphOg7OsOKKYo38dKSy92UrITJBrw99XQmNEkzHAgAAABAifD6fqvbtq7XT++flt/fAgRO+jrVxYzlatpSjVSv/8cjrrVvJFhPDbHDUW6fS5QbVzHEAOK6ak3IW5ZjNcRp2l+7WBzkfSJJu6XqL4TQ4G6LDovXK4Fc08pORyi3J1eiFozV76GzFueJMRwMAAAAQJLyVlXJv26bK3Fz/Zdu2w2X4zp3ylZWd8DVsTZocXX63PnzdxuZO4KRQjgMIDTUn5SzcaDbHaXhz3Ztye93KaJ6hni16mo6DsyTOFadXh7yqm+bfpK0lWzV6wWjNypylmPAY09EAAAAA1BGf1ytPQYEqc3NVUVOC5+aqMner3Nu3S17vLz7f3qzZ4fK7VcujinBrREQdfRKgfqMcBxAaanaO790iVXkkW+j98TVvyzxJ0sjOIw0nwdkWHxmvmUNm6qZPblLO/hzduuhWzRwyU42djU1HAwAAAHAGVe3f7y/AtxxZgOeqcutW+crLj/s8a0SEnMnJciYny5HYRo5WreSsLr/tCQmyhoXV4acAGq7Qa5cANExRrSW7S/KUSfu3SrEpphOdkpLKEu0u3S1J6hXfy3Aa1IU2UW306pBXNfKTkVpXtE53LL5DMwbNUISDHR4AAABAKPGWl6tya56/9N6ypVYJXrV///GfaLfL2aZNoAR3tk0OXLc3a8bMbyAIUI4DCA1Wq78Q3/WTVJgdcuX45v2bJUktIlqokbOR4TSoKykxKXp58Msa9ekordm9RuOXjNdzA59TmI1dIAAAAEAw8VVVyb1zZ3UBnqvK3C2BkSienfm/+Fx7fHx16Z0kZ3Kywtq29e8Ib9VKFjvVGxDM+B0KIHTEpvrL8aJsSUNNpzklm4v95XhKTGiV+jh9HWM76sVBL2rMwjFanr9cEz+fqKkDpsphdZiOBgAAADRIVQcOqGLDBpVnbVB51npVZG1QRXa2fBUVx32ONSpKzrbJCktOPmIneFs5ExOZ/w2EMMpxAKEjrr3/WJhtNsevkLM/R5LULrqd4SQwoXvz7nr+kuf1p8V/0tJtS/Xgfx/Ukxc8KZvVZjoaAAAAUG/5fD65d+xUxYYsla/PChzd27cfc73F6ZQzKelw+V1TgLdNli0mhjEoQD1EOQ4gdNSclLMox2yOX6FmrAo7xxuu8xLO09QBUzVuyTjN3zJfLrtLf+v7N1ktVtPRAAAAgJDnrahQRU6OKrKyVJ61QRXr16t8wwZ5Dxw45np7QoLCO3RQWMd0hXdIV3h6BznatJHFxgYWoCGhHAcQOmJT/cfCjWZz/AqbijdJklJjUg0ngUn9W/fXPy78h+794l69n/2+XHaX7ut1HztQAAAAgFPgKSpSeVbW4SI8K0sVmzdLVVVHL3Y4FJaSovD0dIWld1B4ekeFp3eQLSam7oMDCDqU4wBCR005fmiPVLZfcoXGP2YOVh5UwaECSVLb6LaG08C0IclDVOYp00PLHtJb699ShD1Cd/W4y3QsAAAAIOj4qqpUuXWrytf754LXFOKePXuOud4WE6Ow9PTDRXjHjgpr21YWp7OOkwMIFZTjAEJHeJTUKF46WOAfrdL6XNOJTsqW4i2SpGauZooOizacBsHgitQrVOYp0+MrH9erP76qCEeEbul6i+lYAAAAgDGefftUkZ3tv2RtUPmGDarYuFG+8vKjF1ssciYmKqyjfxd4TSFub9GCn8oEcEooxwGElrg0fzlemB0y5XjgZJwxnIwTh12Xfp3KPGWaunqqpq+ZLpfdpeEdh5uOBQAAAJxVVSUl/tngG7P9x+pLVWHhMddbXC6Ft2/vL8A7piusQweFt28va2RkHScHUB9RjgMILbGpUu6XUlG26SQnbXNx9ck4ozkZJ2ob2WWkSj2leun7l/T3r/+uCHuEhqUNMx0LAAAAOG1VBw+qsqb8zs5WRbb/umf37uM+x9GqlcJSU6t3gvt3hDsTEzlJJoCzhnIcQGiJS/MfC0OnHN+0338yzpQYynEc7U/n/Eml7lK9se4NTVo+SS67S0PbDjUdCwAAADgp3tJSVWzaFCi/K3L8RbgnP/+4z7EnJPhL8NRUhaWlKSwtVWHt2rEbHECdoxwHEFri2vuPRTlmc5yCwM5xynEcg8Vi0cRzJ6rMU6b3Nr6nB758QOH2cA1oM8B0NAAAACDAW16uys2bj9oJ7t6+/bjPsTdvXl2Ap8qZmqrwtDQ5U1Nla9SoDpMDwPFRjgMILbGp/mPRJslbJVmD+8frSt2l2nFwhyTGquD4LBaLHurzkMo8Zfp488e6Z+k9en7g8+rbsq/paAAAAGiA3Dt2qPS77/wleHUZ7t62XfJ6j7neFht7eBd4dRkelpoqW3R0HScHgFNDOQ4gtMQkSrYwqapC2p8nNW1rOtEv2lKyRZLUNLypYsJjDKdBMLNarHq036Mq85Rpcd5ijVsyTi8PflkZzTNMRwMAAEA9V7l9h0q//tp/WbVK7h07jrnOFhOjsNRUOdOOLMLTZG/SpI4TA8CZQTkOILRYbVLTdtKe9f7RKkFejjNvHKfCbrVrSv8puuuzu7Rs5zL9adGfNDNzpjrHdjYdDQAAAPWEz+eTe/v26jJ8lQ6t+lqenT+bD26zKbxzZ4Wnpx/eCZ6WJltsrCwWi5ngAHAWUI4DCD1xqf5yvDBbShtsOs0vqinH20W3M5wEocJpc2raxdN0+6LbtXrXat228DbNypyl1CappqMBAAAgBPl8Prnz8lS6apUOVRfinoKC2ovsdrm6dlVEr16KOO88RWR05+SYABoEynEAoSc2zX8syjab4yRs3s/JOHHqXHaXXhj4gkYvGK0fC3/U6IWj9frQ15UYlWg6GgAAAIKcz+eTe+vWQBFeumqVPLt21V7kcPjL8PN6KfK88+Tq3l3WiAgzgQHAIMpxAKEnrrocLwz+cnxTsX/neGoMu35xaiIdkZoxaIZu/vRmbdy3UbcsuEWvD31dCY0STEcDAABAEPH5fKrckhuYF1769dfy7NlTa43F4VD4Od0Ued55iujVy1+Gu1yGEgNA8KAcBxB64tr7j0U5ZnOcQLmnXNsPbJfEWBX8OtFh0Xp58Msa+clI5Zbk6pYFt2j20NlqFtHMdDQAAAAY4vP5VLl5c6AIP7Rqlar2FNZaY3E45OrePTAmxdX9HFnDww0lBoDgRTkOIPTEVu/CPpAvVRyQwhqbzXMcuSW58smnmLAYNQ1vajoOQlScK06vDnlVIz4ZobwDeRqzcIxmZc5STHiM6WgAAACoAz6fT5WbNtUak1JVVFRrjcXp9JfhNTvDz+lGGQ4AJ4FyHEDoccVIkc2kQ3v8o1Va9TCd6Jhy9vt3treLbscZ3XFa4iPj/QX5/BHK2Z+jWxfdqplDZqqxMzi/MQQAAIBfz+fxqHx9lkpXf6Oy1WtUunq1qvburbXGEhYmV0aGf2Z4r14K79ZN1rAwQ4kBIHRRjgMITbFp/nK8KCdoy3FOxokzqU3jNoEd5OuK1mns4rF6adBLinBw4iQAAIBQ5j10SGXff6/S1WtUuma1yr7/Qb7S0lprLOHhiuiRERiTEt61q6xOp6HEAFB/UI4DCE1xqVLeV0F9Us5N+/0n46Qcx5nSLqadXhnyim7+9GZ9u/tbjVsyTs8PfF5hNnYJAQAAhApPYaFKV69R2ZrVKl29RuXr10tVVbXWWKOjFZGRIVfPHoro2VOuLl1koQwHgDOOchxAaIpN8x+Lgrcc31zMznGceelN0zVj0AyNXjBaK/JXaOLnEzV1wFQ5rA7T0QAAAPAzPp9Plbm5Kluzxr8zfPU3cm/NO2qdo2VLuXr2VETPnoro2UPOlBRZrFYDiQGgYaEcBxCa4qrL8cIcszmOo7KqUnkH/P/oTYmmHMeZdU6zc/TCwBd0+6LbtXTbUj345YN68sInZbPaTEcDAABo0Hxut8qzslS6erXKVvt3hv98XrgsFoW1b+/fEd6zhyJ69JAjIcFMYABo4CjHAYSmuPb+Y1GO5PVKQbarIrckV16fV42djRXnijMdB/VQr/hemjpgqsYtGaf5ufMVbg/XpPMnyWoJrt8LAAAA9Zn30CGVfved/8SZa9ao7Pvv5Ssrq7XG4nQqvFtXRfQ8VxE9e8jVvbtsUVGGEgMAjkQ5DiA0xSRJVofkKZNKdkgxbUwnqiUwbzw6RRaLxXAa1Ff9W/fXlP5TNPHziZqTM0dWi1V/7ftXCnIAAICzxLNnz+ETZ65eo/KsrGPPC+/Rw1+E9+ip8C6dOXkmAAQpynEAoclml5q2lQo3+i/BWo4zbxxn2eCkwXr8gsf14H8f1P9m/6+8Pi87yAEAAM4An9eryk2bVPrttypb861Kv11z7HnhrVpVj0dhXjgAhBrKcQChKzbNX4wX5UipA02nqYWTcaIu/bbdb2WRRX/57180J2eOvD6vJp8/mRnkAAAAp8BbWqqyH35U2Xff+kekfPe9vCUltRdZLArr0EERPXr4C/GePeWIjzcTGABw2ijHAYSuuFRpg6TCbNNJjnLkWBWgLvym3W9ks9h0/5f36/82/Z988umR8x+hIAcAADgOd0GBytasUem336lszbFHpFhcLrm6dZOrR4YiMjLkysiQrXFjQ4kBAGca5TiA0BWb5j8WBVc57q5yK6/E/+OW7WLaGU6DhmRo26GyWCy674v79OGmD+X1efVYv8coyAEAQIPn83hUvmGDytZ8q7Jvv1Xpt9/Kk59/1Dp7fLwiemTIldFDrowMhad3kMVOdQIA9RV/wgMIXXHV5XhhjtkcP5N3IE8en0eRjki1iGhhOg4amMzkTFktVv358z/r480fy+vz6vELHpfdyl/5AACg4agqKVHZ99/7x6N8+53KfvhBvtLS2otsNoWnp8uVkVFdiGfIkZBgJjAAwAi+UgYQump2jpdslyoPSc5Is3mq5ez3l/Up0SmyWCyG06AhGpw0WE9d9JQmfj5R87bMk8/n0xMXPkFBDgAA6iWfzyd3Xl7gxJll336ripwcyeertc7auLFcGd2rx6P0kKtrF1kjg+NrCACAGXyVDCB0RcZKrqZS2V6paJOU0M10IknS5v3+k3EyUgUmDUwaqKcHPK17Pr9H83Pnq8pXpb/3/7scVofpaAAAAKfFW1mp8p/WVo9H8e8MryoqOmqdIylREdXjUSJ6ZMiZkiKL1WogMQAgWFGOAwhtcWnStpVS4cagKcc3FftPxpkak2o4CRq6SxIv0bQB0zRh6QQt2LpAvi98+kf/f1CQAwCAkOKtrFTZd9+pdMVKHVq5UuU//CCf211rjcXhUHiXLrVGpNhjYw0lBgCECspxAKEttrocLwqeueOb9vvL8XbR7ByHeQPaDNAzA57RhKUTtHDrQnk/9+qf/f8ph42CHAAABCefx6PytWt1aMVKla5codLVa+SrqKi1xta0qVw9MgIjUsI7d5I1LMxQYgBAqKIcBxDa4qp3Zxdmm81RzeP1KLckV5KUEpNiNgxQ7aI2F+mZi5/RhCUTtDhvse75/B49fdHTFOQAACAo+LxeVWRnq3TFCh1avkKlq1bJe+hQrTW2ZnGK7N1HkX16K+Lcc+VISuL8PgCA00Y5DiC01ZyUsyg4yvFtB7bJ4/XIZXcpPjLedBwgoH/r/pp+yXSN+2yclmxboruX3q2nBzwtp81pOhoAAGhgfD6fKnNzVbpyZfXu8JWq2rev1hprdLQiz+uliN59FNm3j5zt2lGGAwDOOMpxAKEtrqYc3+Q/G73hfzAfOVLFauFkPwguF7S6QM9d8pzuWnKXlm5fqglLJ2jagGkU5AAA4Kxz5+f7i/AVy3VoxUp5du2q9bglIkIR5/ZUZO8+iujTW+Hp6bLYbIbSAgAaCspxAKGtSVvJYpMqD0oH8qWolkbj1JTjjFRBsDq/1fl67pLndOdnd+qL7V9o/JLxmnbxNIXZmNEJAADOHE9RUWBn+KGVK+TemlfrcYvD4T95Zp/eiuzTV66uXWRxMPINAFC3KMcBhDa7U2qSLO3d5J87brocL6YcR/Dr27KvXhj4gu5YfIe+3PGlxi0Zp+kXT6cgBwAAv1pVSYlKv/lGh1asUOnyFarI/tnYQ5tNri5dFNHHPzfclZEha3i4mbAAAFSjHAcQ+uLSqsvxjVK7i4xG2bx/syQpJZpyHMGtd0JvvTjoRY1dPFbLdizTXZ/dpekXT1e4nS9SAQDAiXlLS1W65luVrlyhQytWqnztWsnrrbUmLD1dkb17K6JPb0X06iVbo0aG0gIAcGyU4wBCX2yq/1iUYzRGlbdKW4q3SJLaxbQzmgU4Gb3ie+mFgS9o7OKx+mrnV7rzszv17CXPymV3mY4GAP+fvfsOj6rO2z/+nkkmPTNpJFQhBUSa2AVcQFqAAK7421XXgtKkqCC74u7q6i4+VrCg0qX4WFZdXR+lhN6krAjYQYGEXhLSZtLbzO+PIaOsjYGZnJT7dV1cSc6ZOef2D2Hmznc+XxGpgyoOHaJo0yaKNm2m5NNPcVVWnnU+KDHRPSblmmsJu+ZqAqOjDUoqIiJyblSOi0j9V7MpZ87+X36cnx0vOk6Fs4KQgBCahxs73kXkXF3V9Crm9JvD+LXj+c/J/3Dfuvt4ue/LKshFREQEZ0UFJZ9+eqYQ3/SjueGBzZoRfmZMSti112JJSDAoqYiIyPlROS4i9V/smXI819hy/ECBe+V6oi2RAHOAoVlEvHFFwhXM6z+PcWvG8cmpT5i4biKv9HmFMEuY0dFERESkllWeOkXRps0Ubd5M8fbtuEpKvj9psRB25RVE9OxFRK+eBCUmYjKZjAsrIiJygVSOi0j9V7NyvOAoVJaCxZgVr5l297xxjVSR+uiy+MvcBfnacXx66lMmrJvA7L6zVZCLiIg0cK7qakq/+IKijZso2ryZ8m+/Pet8YJMmhPfqSUSvXoR366a54SIi0qCoHBeR+i+8CQTboNwOeZmQ0NGQGBkFGQCkRKUYcn+RC9U1vqtnBfmurF2MXzue2f1mE24JNzqaiIiI+FBVfj7FW7ZQtHETxVu2UG23f3/SZCL00kuJOFOIB19yiVaHi4hIg6VyXETqP5PJvXr8+E733HGDy/Ekm1aOS/11aZNLmd9/PvesuYfd2bsZv3Y8c/rNUUEuIiJSj7lcLsr37vVspln6xRfgcnnOm202Iq67johePQn/zW+0kaaIiDQaKsdFpGGoKccNmjvudDk5aD8IQHJUsiEZRHylc5POLBiwgDFrxvBZ9mfcs+Ye5vabS0SQPkYtIiJSX1QXFVO8fRtFmzZRvGkzVadPn3U+uH17Inr2JKJ3L0K7dMEUqHpAREQaH/3rJyINQ+yZUSY5xpTjx4uOU1ZdRpA5iBYRLQzJIOJLHeM6smDAAsauHssXp7/gnrXugjwyKNLoaCIiIvITXC4XFQcPUbR5E0WbNlGycxdUVnrOm8LCCO/WzV2I9+qJpWlTA9OKiIjUDSrHRaRhqNmU06ByPLPAvRlnG1sbAs36q1Uaho6xHXl1wKuMWTOGL09/6V5B3n8u1iCr0dFEREQEcJaVUfLpToo2b6Zo0yYqjxw567yl9UVE9OpFRK9ehF11FeagIIOSioiI1E1qcESkYYg9U47nHnDPT6zlTYMy7O5548k2jVSRhuWS2EvcBfnqMXyV8xVjV49lXv952IJtRkcTERFpdFxOJ+X79lG8dSvFW7dRsmsXrvJyz3mTxULYVVd5NtMMatPGuLAiIiL1gMpxEWkYYpIAE5Q7oCgbIhNq9fY1m3Fq3rg0RO1j2nsK8qHaq5cAACAASURBVG9yv2HsmrHM7z9fBbmIiEgtqMzKpnjbNs+f6tzcs84HJiR4RqWEd+uGOVybaIuIiJwrleMi0jBYQiDqIig47N6Us5bL8ZqxKirHpaG6OOZiXk11F+R7cvcwZvUYFgxYoIJcRETEx5ylpZTs3Enxlq0Ub9tK+f4DZ503hYURftVVhPfoTniPHgQlJWGq5U9NioiINBQqx0Wk4Yhr5y7Hc/ZDm+tq7bYul8szViUpKqnW7itS29pFt2PhgIWMWj2KvXl7Gb16NAv6LyAqJMroaCIiIvWWy+mkbO9eire6V4aX7tqF6wcbaWIyEdKpE+HduxPeozthXbti0uxwERERn1A5LiINR1xbOLDGPXe8Fp0sPklpVSmB5kBaRbaq1XuL1LaU6BQWpS5i1KpRfJv3LaNWj+LVAa8SHRJtdDQREZF6o/LkSfeYlK3bKN6+ner8/LPOBzZvRkSPHoT36EHYNdcQGK1/Z0VERPxB5biINByxKe6vOftq9bY188bbWNtgMVtq9d4iRkiOSmbRQHdBvi9/n6cgjwmJMTqaiIhIneQsLqZ4xw6Kt22neOtWKjIzzzpvDg8n7Jpr3KNSuncnqE0bjUoRERGpBSrHRaThiGvr/pqzv1Zvm2l3v7lJsmmkijQeSbYkzwry/fn7GbXKXZDHhsYaHU1ERMRwrupqyr75xr06fMtWSr74An44KsVsJrRzZ8J79CC8R3dCu3TBZNEiCxERkdqmclxEGo7YM+V4wWGoKofA4Fq5bc3K8ZSolFq5n0hdkWhL9BTkBwoOuAvy1FeJC40zOpqIiEitqzh2nOJtW92jUv7zH5x2+1nnLa1aeVaGh197LQFWq0FJRUREpIbKcRFpOCKbQlAEVBRB3kGIb18rt9VmnNKYtbG1YdHARYxcNZIMewYjV41k4YCFNAlrYnQ0ERERv6s8dQrH8uXYly6j/Ntvzzpnjowk/Nprvx+VctFFBqUUERGRn6NyXEQaDpPJPXf85OeQu79WynGXy0VmgXusSrIt2e/3E6mLWltbsyR1CSNXj+Sg/aC7IE9dSHxYvNHRREREfK66sJDC1auxf7SUkh07wOVynwgIILRrV8K7dyOiRw9COnXCFKi33CIiInWZ/qUWkYYlrq27HK+lueNZJVkUVRYRYAqgtbV1rdxTpC5qZW3lGbFyyHHIs4I8ITzB6GgiIiIXzFVRQdHHH2P/aClFGzbgqqjwnAu98gpsQ4dhTR1AQFSUgSlFRETEWyrHRaRhiWvn/pp7oFZuV7Nq/CLrRVgCtImSNG6tIr8vyA87DntWkDcNb2p0NBEREa+5nE5KP/sM+0dLcaxcedYM8aCUZGxDh2EbkoalRQsDU4qIiMiFUDkuIg1L7JlNMXP21crtauaNazNOEbeWkS1ZNNBdkB8pPMLIVSNZlLpIBbmIiNQb5QcOYF+6DMfSpVSeOOE5HhgfjzUtDduwoQS3b4/JZDIwpYiIiPiCynERaVji2rq/5ux3z3/085uWjIIzm3HatBmnSI0WES1YnLqYu1fdzdHCo9y18i4WpS6ieURzo6OJiIj8pMqsbPfGmsuWUr5nr+e4OTycyNRUbEOHEHb11ZgCAgxMKSIiIr6mclxEGpaYM5tilhVASS6Ex/n1dpn2M5txRmkzTpEfahbRjCUDlzBy1UiOFh71jFhpEaGPnouISN1QXVRE4eo1OJYtpXj7f77fWDMwkIiePbENHULE9ddjDgkxNqiIiIj4jcpxEWlYgsLA1grsR92rx/1YjrtcLq0cF/kFTcObemaQHyk8wsiV7oK8ZWRLo6OJiEgj5aqooGjLVuxLP6Jo/QZc5eWec6GXX45t2FAiU1MJjI42MKWIiIjUFpXjItLwxKa4y/Hc/dC6m99uk1Oag6PCgdlkpo2tjd/uI1Kf1RTko1eP5pDjkGcFeavIVkZHExGRRsLlclH62efYl35EYfpKqgsKPOeCkpKwDRuKdcgQglrql7ciIiKNjcpxEWl44tpC5gb3ynE/qtmMs1VkK4IDgv16L5H6LCE8gYWpCxm1ahSHHIe4e+XdLE5dTCurCnIREfGf8sxM7EuX4li6jMpjxzzHA5rEYRuchnXYUEI6dNDGmiIiIo2YynERaXji2rm/5h7w621qRqok2zRvXOTXxIfFu0esrB7FQftB7lrl3qSztbW10dFERKQBqczOpjA9HftHSyn75hvPcXNYGJEDBmAdOoTwa6/VxpoiIiICqBwXkYYoNsX9NWefX2+TWaDNOEW80SSsiXvEyqrRZNgzPDPINZZIREQuRFVuLoWrV+NYkU7Jzp1nb6x53XXYhg11b6wZGmpsUBEREalzVI6LSMMT19b9Nf8QVFdCgMUvt6kZq5IUpc04Rc5VXGgcC1MXMnr1aA4UHGDkqpG8mvqqNrUVERGvVOXnU7h6DY6V6ZR8sgOcTs+50K5dsQ4binXQIG2sKSIiIr9I5biINDyRzcESBpUl7oK8piz3Mc/KcY1VEfFKbGispyDfn7+fkStHsih1kX7RJCIiv6i6oIDCdetwpK+kePt2qK72nAvp3BnroEFYUwdgadHCwJQiIiJSn6gcF5GGx2yG2GQ49ZV7U04/lOO5pbnkl+djwqSRECLnISYkhoUD3AX5vvx93L3qbhalLtKYIhEROUt1YSGFa9fhWJlO8bbtUFnpORfSoQORgwZiHTSIoJYtDUwpIiIi9ZXKcRFpmGLbusvx3P1+uXym3b1qvEVEC0IDNb9S5HxEh0SzcMBCxqwZw7d537pHrAx4lbbR/vm0h4iI1A/VRUUUbdiAY0U6xVu24PpBIR7cvj3WgQOxDkwlqE0b40KKiIhIg6ByXEQapprV4jn+KcczCtzzxlOiUvxyfZHGIiokilcHvMqY1WPYm7eXUatG8Wrqq7SLbmd0NBERqUXO4mIKN26kcOVKijZtxlVR4TkX3DaFyIHuFeLBSRrBJSIiIr5z3uV4RUUF2dnZOH+w8QnARRdddMGhREQuWNyZYi33gF8uX1OOa0ayyIWzBdtYMGABY9eMZU/uHndBPuBVLo652OhoIiLiR87SUoo2bcaRnk7Rpk24yso854ISE90zxAcNJLitPlEkIiIi/uF1Ob5//35GjhzJtm3bzjrucrkwmUxU/2BTFBERw8SeWdHtp5XjNWNVNB9ZxDdswTbm95/PuDXj+Dr3a0atdhfk7WPaGx1NRER8yFleTtHmzRSmr6Rw40ZcJSWec5bWF50pxAcR3K4dJpPJwKQiIiLSGHhdjt91110EBgaybNkymjVrphcsIlI31ZTjJTlQkgdhMT69fM3K8WSbynERX7EF25g3YB7j1ozjq5yvGLVqFAsGLKBDbAejo4mIyAVwVlRQvGWre4X4+vU4i4s95ywtWmAdfKYQv+QSvb8UERGRWuV1Of7555+za9cu2rfXSi4RqcOCIyCyORSecI9WCbvaZ5cuKCsgtywXgERbos+uKyJgDbIyr/88xq0dx5env2T06tEsGLCAjrEdjY4mIiJecFVUULx9O470lRSuW4ezsNBzLrBZM/emmoMHEdKpkwpxERERMYzX5XiHDh3IycnxRxYREd+KS3GX4zn7oZXvyvEMu3vVePPw5oRZwnx2XRFxiwyKZF4/d0H+xekvGLNqDPMHzKdTXCejo4mIyC9wOZ2U7NyJY9lyHKtW4bTbPecCExKwDkzFOmgQIV26YDKbDUwqIiIi4uZ1Of7MM88wdepUnnzySTp37ozFYjnrvNVq9Vk4EZELEtsWDm6GXN/OHfeMVNG8cRG/iQiKYF7/eYxfO57Psj9jzOoxzOs/jy5NuhgdTUREfsDlclG2Z4+7EF+xgqqsLM+5gCZxWFMHYh00kNDLLlMhLiIiInWO1+V4v379AOjbt+9Zx7Uhp4jUOXFt3V99vCmnNuMUqR3hlnDm9JvDhLUT2J29m3vW3MOcfnPoGt/V6GgiIo1exaFD2Jcvx7FsORUHD3qOm61WIgf0xzZkCGFXXYUpIMDAlCIiIiK/zOtyfMOGDf7IISLiezXleO4Bn162ZuV4ki3Jp9cVkR/zFOTrJrAraxfj1o5jbr+5KshFRAxQmZWNI30FjuUrKPvqK89xU3AwEX2uxzZkCOG/+Q3moCADU4qIiIicO6/L8V69evkjh4iI78WeKcfzMqG6CgK8/ivvJ2msikjtCrOEMbvvbO5dfy+fnvrUs4L88oTLjY4mItLgVdvtFK5Zg33Zcko++QRcLveJgADCu3fHNiSNiL79CIgINzaoiIiIyHk4r6aooKCAhQsXsnfvXgA6duzIyJEjsdlsPg0nInJBbK0gMASqyqDgMMReeJltL7dzuvQ0oJXjIrUpzBLGrL6zuG/dfXxy6hPGrR3HrL6zuKrpVUZHExFpcJylpRRt3Ih9+XKKN23GVVnpORd6+eVY0wZjHTiQwNhYA1OKiIiIXDivd0TZuXMnycnJvPDCC+Tl5ZGXl8fzzz9PcnIyu3fvPu8gTz/9NCaTicmTJ3uOlZWVMXHiRGJjY4mIiOCmm24i6wcbvAAcOXKEtLQ0wsLCiI+P58EHH6Sqquqsx2zcuJHLL7+c4OBgUlJSWLJkyXnnFJF6xGyGmDOFuI9Gqxy0u2dqJoQlEBEU4ZNrisi5CQ0M5eW+L3Nts2sprSpl3JpxrDuyzuhYIiINgquqiqKPP+bEQw+xv8d1HH9gCkVr1+GqrCS4XTuaTJlC8tq1tHnrTWJuu03FuIiIiDQIXq8cf+CBBxg2bBgLFiwgMND99KqqKkaPHs3kyZPZvHmz1yE+/fRT5s2bR5cuXX50r+XLl/Ovf/0Lm83Gvffey/Dhw9m6dSsA1dXVpKWl0bRpU7Zt28bJkye58847sVgsPPnkkwAcPHiQtLQ0xo0bx5tvvsm6desYPXo0zZo1IzU11eusIlLPxKVA9jfuTTnbXfj/8zUjVVKiUi74WiLivdDAUF7u8zJTN09lw9ENTNk4hce6PcbwtsONjiYiUu+4XC5KP/scx7JlOFaupDovz3PO0rw51iFDsKalEXJxOwNTioiIiPiP1+X4zp07zyrGAQIDA5k6dSpXXnml1wGKioq47bbbWLBgAf/zP//jOW6321m4cCFvvfUWffr0AWDx4sVccskl/Oc//+Haa69l9erV7Nmzh7Vr15KQkEDXrl15/PHHeeihh/j73/9OUFAQc+fOJTExkeeeew6ASy65hC1btvDCCy+oHBdpDGrmjufu98nlMuxnNuOM0kgVEaOEBIbwfO/nmbZ9Gh8c+IDHtj1GXlkeozqNwmQyGR1PRKTOK/tun7sQX76cyhMnPMcDYmKwDhqEdUgaoV276u9UERERafC8HqtitVo5cuTIj44fPXqUyMhIrwNMnDiRtLQ0+vXrd9bxXbt2UVlZedbx9u3bc9FFF7F9+3YAtm/fTufOnUlISPA8JjU1FYfDwTfffON5zH9fOzU11XONn1JeXo7D4Tjrj4jUU3FnyvEc34xVySzIBCDZps04RYwUaA7kH93/wahOowCYuXsm03dOx+lyGpxMRKRuqjh2nJx588kcOoyDN9xA7oIFVJ44gTksDNsNN9BqwQLabt5E0789Qthll6kYFxERkUbB65XjN998M6NGjWLGjBl0794dgK1bt/Lggw9y6623enWtt99+m927d/Ppp5/+6NypU6cICgoiKirqrOMJCQmcOnXK85gfFuM152vO/dJjHA4HpaWlhIaG/ujeTz31FP/4xz+8+m8RkTrKxyvHDxS4S/bkKJXjIkYzmUxMvmIy0SHRzNg5g9f3vE5+WT7TekzDYrYYHU9ExHBVubk4Vq7EsWw5pZ995jlusliI6N0La1oaEb17Yw4JMTCliIiIiHG8LsdnzJiByWTizjvv9Gx8abFYGD9+PE8//fQ5X+fo0aNMmjSJNWvWEFLHXoz95S9/YcqUKZ6fHQ4HrVq1MjCRiJy3uDOzwYuyoMwOIbbzvlRRRRFZJe5NgRNtib5IJyI+MKLjCGJCYvjb1r+xLHMZBeUFPNfrOcIsYUZHExGpddVFRRSuXYtj2XKKt2+H6mr3CZOJsGuvwTZkCJH9+xNgtRobVERERKQO8LocDwoKYubMmTz11FNkZLhn7yYnJxMW5t0b0F27dpGdnc3ll1/uOVZdXc3mzZt55ZVXWLVqFRUVFRQUFJy1ejwrK4umTZsC0LRpU3bs2HHWdbOysjznar7WHPvhY6xW60+uGgcIDg4mODjYq/8eEamjQmwQkeAux3MOQMsrzvtSmXb3SJUmoU2wBZ9/yS4ivjc0eSi2YBt/3PhHthzfwtg1Y5nVd5b+XxWRRsFZUUHx5s3Yly2naMMGXOXlnnMhnTtjTRuMddBgLAnxBqYUERERqXu8LsdrhIWF0blz5/O+cd++ffnqq6/OOnb33XfTvn17HnroIVq1aoXFYmHdunXcdNNNAHz33XccOXKEbt26AdCtWzeeeOIJsrOziY93v9Bbs2YNVquVDh06eB6zYsWKs+6zZs0azzVEpBGIbesux3P3X1A5nlFw5heCGqkiUif1bNmTBQMWMGHdBL44/QUj0kcwt/9cmoY3NTqaiIjPuaqrKdmxA/vy5RSuWo2zsNBzLigxEeuQNGxpaQS1aWNcSBEREZE67pzK8eHDh7NkyRKsVivDhw//xcf++9//PqcbR0ZG0qlTp7OOhYeHExsb6zk+atQopkyZQkxMDFarlfvuu49u3bpx7bXXAjBgwAA6dOjAHXfcwbPPPsupU6d45JFHmDhxomfl97hx43jllVeYOnUqI0eOZP369bz77rssX778nHKKSAMQlwKHt0DOhc0dr1k5rnJcpO7qGt+V1wa+xrg148iwZ3Bn+p3M6z9Po5BEpEFwuVyUff01jmXLcKxIp+r0ac+5wIQErGlp2IakEXzJJdpQU0REROQcnFM5brPZPC+urFZrrb3QeuGFFzCbzdx0002Ul5eTmprK7NmzPecDAgJYtmwZ48ePp1u3boSHhzNixAimTZvmeUxiYiLLly/ngQceYObMmbRs2ZJXX32V1NTUWvlvEJE6wEebctasHE+yJV1oIhHxo7bRbXl98Ovcs+YeDjkOMSJ9BLP7zaZTXKdff7KISB1UnpmJY9ly7MuXUXn4iOe42WbDmpqKdUgaYVdeiclsNjCliIiISP1jcrlcLqND1HUOhwObzYbdbseqjWtE6p99q+Ct30N8R5iw7bwvk/peKieKT7Bk4BKuSDj/8SwiUjvyyvKYsHYC3+R+Q2hgKC9e/yLdm3c3OpaIyDmpPHUKx/IV2Jcvo3zPXs9xU2gokX36YB2SRkSPHpiCggxMKSIiIlL3eNPler20oE+fPhQUFPzkTfv06ePt5URE/C82xf01LwOczvO6REllCSeKTwCQbNNYFZH6ICYkhoWpC7mm2TWUVpUycd1EVh5caXQsEZGfVV1QQP4773L4jjs5cH0fsqdPdxfjgYFE9OpF8+nTabflY1o8N4PI669XMS4iIiJygbzekHPjxo1UVFT86HhZWRkff/yxT0KJiPhUVGsICIKqMrAfhejWXl/ioP0gALEhsUSFRPk6oYj4SbglnNl9Z/OXj//C6sOrmbp5Kvnl+dza/lajo4mIAOAsKaFwwwYcy5ZTtGULVFZ6zoVeeQW2IUOITE0lMDrawJQiIiIiDdM5l+Nffvml5/s9e/Zw6tQpz8/V1dWsXLmSFi1a+DadiIgvBARCTBKc/tY9d/w8yvEMu3veuDbjFKl/ggKCeLbns0TviOad797hyU+edI9cuXSCNqwTEUO4Kisp2roVx7LlFK5fj6ukxHMu+JJLsA1JwzpoEJbmzQ1MKSIiItLwnXM53rVrV0wmEyaT6SfHp4SGhvLyyy/7NJyIiM/EprjL8Zz9kNLP66drM06R+i3AHMDD1zxMTEgMc76Yw9wv5pJfls9frv4LAeYAo+OJSCPgcjop3b0b+7JlFK5cRfUPRlVaWrXCOiQNW1oawSkpBqYUERERaVzOuRw/ePAgLpeLpKQkduzYQZMmTTzngoKCiI+PJyBAby5FpI6Ka+v+mrP/vJ6eWZAJaOW4SH1mMpmY0HUCMSExPPnJk7zz3Tvkl+Xz1G+eIihAc3tFxPdcLhdlX3+DIz0dR3o6VSdPes4FxMVhHTQI25A0Qrp00SdZRERERAxwzuV469buMQTO89zMTkTEULFnyvHc8yvHDxQcAFSOizQEt7S/haiQKM8ccnuFnZnXzyTcEm50NBFpAFwuF+X79uFY4S7EK48c8ZwzR0QQOWAAtiFphF19NaZAr7eAEhEREREfOu9XY3v27OHIkSM/2pxz2LBhFxxKRMTnPCvHD3j91NKqUo4XHQc0VkWkoRjYZiC2IBuTNkzik5OfMHLVSOb0m0NMSIzR0USknirPzHQX4itWUJGZ6TluCg0loncvrIMGEdGrF+bgYANTioiIiMgPeV2OZ2ZmcuONN/LVV19hMplwuVwAno8BVldX+zahiIgvxJ6Z31l4AsqLIDjinJ96yH4IFy6ig6OJDY31U0ARqW3dmndjUeoiJqydwJ7cPYxIH8Hc/nNpEaENxkXk3FQcOeJZIV7+3Xee46agIMJ7/gbb4MFE9O6NOSzMwJQiIiIi8nPM3j5h0qRJJCYmkp2dTVhYGN988w2bN2/myiuvZOPGjX6IKCLiA2ExEBbn/j7Xu9XjGfYzm3FGadW4SEPTKa4Trw16jWbhzTjkOMSdK+5kf/75jV8Skcah8sQJchcu4uD/+x0ZA1I5/eKL7mI8MJDwXj1p/szTtN22lVavvIJ18GAV4yIiIiJ1mNcrx7dv38769euJi4vDbDZjNpu57rrreOqpp7j//vv57LPP/JFTROTCxbWFIznucrx513N+mmczTpvmjYs0RIm2RF4f9Drj1o7jQMEBRqwcway+s7gs/jKjo4lIHVGZnU3hylU40tMp/eH7HbOZ8GuvwTp4MJH9+hEQFWVcSBERERHxmtfleHV1NZGRkQDExcVx4sQJLr74Ylq3bs13P/gooYhInRObAke2Q84+r56WUaCV4yINXUJ4AksGLmHiuol8cfoLxq4ey3O9n6Nny55GRxMRg1Tl5VG4ejWOFemUfPopnBkniclE2BVXYE0bTOSAAQTGauSaiIiISH3ldTneqVMnvvjiCxITE7nmmmt49tlnCQoKYv78+SQlqTgSkTrMsymndyMTasaqJEdp5bhIQ2YLtrFgwAL+uPGPfHz8Y+5ffz/TekxjWLI2GxdpLKrtdgrXrsWxIp3i//wHfrCfUuill7oL8dRULAkJBqYUEREREV/xuhx/5JFHKC4uBmDatGkMGTKE3/zmN8TGxvLOO+/4PKCIiM/EninHc8+9HC+vLudo4VFAY1VEGoPQwFBm9pnJo1sfZVnmMh7e8jD5ZfmM6DjC6Ggi4ifVRUUUrV+PY0U6RVu3QmWl51xIhw5Y0wZjHTgQSwtt1isiIiLS0Hhdjqempnq+T0lJ4dtvvyUvL4/o6GhMJpNPw4mI+FTNyvHcDHA6wfzrexIfsh/C6XJiDbISFxrn54AiUhdYzBaeuO4JokOieX3P68zYOYO8sjwmXz5Zr3VEGghnSQlFmza5C/FNm3BVVHjOBbdt6ynEg9q0MS6kiIiIiPid1+X4T4mJifHFZURE/Cu6DZgDobIECk+AreWvPiXTfmYzzqhklWIijYjZZObBKx8kNiSWF3e/yKKvF5Ffls+j3R4l0OyTl08iUstcLhcln+yg4N13KdywAVdpqedcUJs2WAcPxjp4EMEpKQamFBEREZHadE7v7oYPH37OF/z3v/993mFERPwqwALRie6xKjn7z6kc92zGadOeCiKNjclkYlTnUUSHRPOP7f/ggwMfkF+ez/Se0wkJDDE6noicI5fLRfHWbeTMnk3p7t2e45YWLb4vxNu31y/BRURERBqhcyrHbTabv3OIiNSOuLbucjz3ACRf/6sP/+HKcRFpnIa3HY4t2MbUTVPZeHQjo1aP4sXeL9IkrInR0UTkF7hcLoo2bSJn9hzKvvwSAJPFgu2m4UQNH05I584qxEVEREQauXMqxxcvXuzvHCIitSP2zEelc/ad08MPFBwAtBmnSGPX96K+zO0/l0kbJvHl6S+5ednNvHD9C1za5FKjo4nIf3E5nRStX+8uxffsAcAUHEz0LTcTM3IUloR4gxOKiIiISF3x67vRiYg0JDWbcubs/9WHVlZXcsRxBICkKI1VEWnsrmp6Ff9M+yfJtmROl57m7pV388H+D4yOJSJnuKqrcaSnc/C3N3Ls3vso27MHU1gYMaNGkrJuLQl/+YuKcRERERE5i9c7SiUmJv7ixw8zMzMvKJCIiF/FninHcw/86kMPOw5T7aomwhJBQliCn4OJSH3Q2tqaN9Pe5K8f/5X1R9fz6LZH2ZO7h6lXT8VithgdT6RRclVX41iRTs7cuVRkuPcKMYeHE3377cTcNYLA6GiDE4qIiIhIXeV1OT558uSzfq6srOSzzz5j5cqVPPjggz4LJiLiFzUrx+1HoaIEgsJ+9qEZ9jObcUYlaSapiHiEW8J54foXmP/lfGZ9Pou3v3ubffn7eL7388SGxhodT6TRcFVWYl+2nNy5c6k4fBgAc2QkMXfeScwdtxMQFWVwQhERERGp67wuxydNmvSTx2fNmsXOnTsvOJCIiF+FxUKwDcrtkH8IEjr87EMzC85sxql54yLyX8wmM+MuHUf7mPb8+eM/szt7Nzcvu5mZfWbSMbaj0fFEGjRXRQUFH35I7rz5VB47BkCAzUbM3XcRfdttBERGGpxQREREROoLn80cHzRoEO+//76vLici4h8mE8SemR+el/GLD61ZOZ4cpXJcRH5a71a9eSvtLdpY25BVksWI9BEszVhqdCyRBslZUUH+P//JgYEDOfW3R6k8doyAmBji//RHktetI27cOBXjSnBSFQAAIABJREFUIiIiIuIVr1eO/5z33nuPmJgYX11ORMR/YpLhxGeQ98t7JGQUnBmrYtNmnCLy85JsSbyV9hZ//vjPbD62mb9u+St78/Yy5YopBJp99lJLpNFylpVR8O6/yH31VaqyswEIaBJH7KhRRP/+95jDfn5EmoiIiIjIL/H6Hdtll1121uxdl8vFqVOnOH36NLNnz/ZpOBERv4g5U3bn/vzK8UpnJYcchwCtHBeRXxcZFMnLfV5m1uezmP/lfF7f8zr78vYxvdd0okO0GaDI+XCWlJD/9jvkLlpEdU4OAIFNmxI7ejRR/+8mzCEhBicUERERkfrO63L8t7/97Vk/m81mmjRpQu/evWnfvr3PgomI+E3smbL7F1aOHy08SpWzirDAMJqFN6ulYCJSn5lNZu677D7ax7Tn4S0P88mpT7h1+a3MvH4mF8dcbHQ8kXqjuqiY/LfeIm/xYqrz8wGwNG9O7Nix2IbfiDkoyOCEIiIiItJQeF2OP/bYY/7IISJSe2pWjv9COV6zGWeSLemsT8uIiPya/q3708bahvvX38+xomPcvuJ2Hu/xOAMTBxodTaROq3Y4yHvjDfJe+1+cdjsAlosuIu6esdiGDcNksRicUEREREQamvMahFldXc0HH3zA3r17AejQoQM33HADgYGaqyki9UDMmZXjjuNQUQJBP55V6pk3HqV54yLivbbRbXl7yNtM3TyVbSe28eDmB9mbt5f7L7ufAHOA0fFE6pTqggLy/vd/yfvf13EWFQEQlJhI3Lh7sKalYdJ7DBERERHxE69faX7zzTcMHTqUrKwsLr7Y/RHhZ555hiZNmrB06VI6derk85AiIj4VFgPBNii3Q/4hSOjwo4fUlOOaNy4i58sWbGN239nM/Gwmi79ezKKvF/Fd3nc80/MZbME2o+OJGK4qL4+8xUvIf/NNnCUlAAS3TSF23DisAwdiCtAvkkRERETEv8zePmH06NF06tSJY8eOsXv3bnbv3s3Ro0fp0qULY8eO9UdGERHfMpkgtma0yk9vyplhP1OO21SOi8j5CzAHMOWKKTzb81lCAkLYemIrty6/lQP5B4yOJmKYqtxcsp6dzoG+/chdsABnSQnB7dvTYuZMEj/8EFtamopxEREREakVXq8c//zzz9m5cyfR0dGeY9HR0TzxxBNcddVVPg0nIuI3Mclw4rOfnDte5azikP0QoJXjIuIbgxIHkWhLZNL6SRwtPMptK27jyeuepG/rvkZHE6k1Vfn55C1aRN4bb+IqLQUgpFMn4iZMIOL63trjQ0RERERqndcrx9u1a0dWVtaPjmdnZ5OSkuKTUCIiflezKWfuj1eOHy86ToWzgpCAEJpHNK/lYCLSULWPac/bQ97m6qZXU1JVwuSNk5n1+SycLqfR0UT8qrqggOwXXiSjbz9yF7yKq7SUkM6daTV/Hm3+9S6Rfa5XMS4iIiIihvC6HH/qqae4//77ee+99zh27BjHjh3jvffeY/LkyTzzzDM4HA7PHxGROiv2zIrwn1g5XjNvPNGWiNnk9V+TIiI/Kzokmnn953H7JbcDMPeLuUxaP4nCikKDk4n4XrXDwemXXnaPT5k3zz0+pcMltJwzmzbvvkNEz54qxUVERETEUF6PVRkyZAgAv//97z0vZl0uFwBDhw71/GwymaiurvZVThER36pZOf4T5Xim3X1MI1VExB8CzYE8dPVDXBJ7Cf/Y9g82HtvIH5b/gZf6vESiLdHoeCIXrLqwkLz//V/ylryGs9D9i5/g9u1pct+9RPTpo0JcREREROoMr8vxDRs2+COHiEjtijlTfDuOQ0UJBIV5Th0ocG+Up3JcRPxpWPIwkm3JTNowiUOOQ/xh+R94+jdP06tVL6OjiZyX6qJi8t94ndzFS3Da7QAEt00h7t77iOzfD5NZn8YSERERkbrF63K8Vy+9YRORBiAsBkJsUGaH/EOQ0MFzKrPAvXI8yZZkUDgRaSw6xnXk7SFv88eNf2R39m7uW38fE7tOZEyXMRrrJPWGs7iYvLfeIm/hIqoLCgAISk6myb0TiUxNVSkuIiIiInWW1+U4QEFBAQsXLmTv3r0AdOzYkZEjR2Kz2XwaTkTEb0wm92iVE59BXoanHK92VnvGqqREaZNhEfG/uNA4Xh3wKs9++ixvf/c2r3z+Ct/mfcv/XPc/hFvCjY4n8rOcpaXkv/VPchcupDovD4CgNm2ImzgR6+BBmAICDE4oIiIiIvLLvF7GsXPnTpKTk3nhhRfIy8sjLy+P559/nuTkZHbv3u2PjCIi/hHz4005TxSfoLy6nCBzEC0iWhgUTEQaG0uAhYevfZi/d/s7FrOFtUfWcvuK2znqOGp0NJEfcZaVkbtkCQf6DyB7+nSq8/KwXHQRzZ95mqRlS7ENHaJiXERERETqBa9Xjj/wwAMMGzaMBQsWEBjofnpVVRWjR49m8uTJbN682echRUT8omZTztwMz6GakSqJtkQCzHpjLyK166Z2N5EclcyUjVM4UHCAm5ffzPSe0+nRoofR0URwlpdT8O6/yJ0/n6rTpwGwtGhB3IQJ2G4YhinwvD6UKiIiIiJimPNaOf7QQw95inGAwMBApk6dys6dO30aTkTEr2J/vHI8w+4uypOiNG9cRIzRNb4rbw95my5NulBYUciEdRNY/PViXC6X0dGkkXJWVJD31ltkDEgl64knqDp9msDmzWj6+DSSV6YTddNwFeMiIiIiUi95XY5brVaOHDnyo+NHjx4lMjLSJ6FERGpFzcrxH5bjBe5yPNmWbEQiEREA4sPiWZy6mOFth+N0OXl+1/M89PFDlFeXGx1NGhFXRQX577xLRupAsqY9TlVWFoFNm9L074+RsnIl0b/7HSaLxeiYIiIiIiLnzeslHjfffDOjRo1ixowZdO/eHYCtW7fy4IMPcuutt/o8oIiI39TMHHcch4oSCAr7vhyPUjkuIsYKCgji793+ToeYDjy942nSD6aTXZLNzOtnYgvWJujiP67KSuwffkjOnLlUHj8OQGB8PLH3jCXqd7/DHBRkcEIREREREd/wuhyfMWMGJpOJO++8k6qqKgAsFgvjx4/n6aef9nlAERG/CYuBEBuU2SH/EM749mTa3avIVY6LSF1gMpm4uf3NtLG1YfKGyezK2sUd6Xcwp98cbRosPueqqsK+dBk5s2dTedS9GWxAXBxxY8cQ9fvfYw4JMTihiIiIiIhvmVznOcCypKSEjIwzKyyTkwkLC/NpsLrE4XBgs9mw2+1YrVaj44iIL83vDSc+g5vf4ESrK0h9P5VAcyCf3vYpgWbNTxWRumN//n7Grx1PVkkWcaFxvNL3FTrGdjQ6ljQArupqHMuXkzNrNhWHDwMQEBND7JgxRN9yM+bQUIMTioiIiIicO2+6XK+an0OHDrFmzRoqKiro3bs3nTt3vqCgIiKGi0l2l+N5mWRERgHQxtpGxbiI1Dlto9vy5uA3mbBuAvvy93H3yruZ0WsGPVv2NDqa1FMupxNHerq7FM90f3IqICqK2NGjiP7DHzA34MUvIiIiIiLgRTm+YcMGhgwZQmlpqfuJgYEsWrSI22+/3W/hRET8rmZTztwMMqPc5bhGqohIXZUQnsBrA19jysYpbD+5nfvX38/D1z7M79r9zuhoUo+4XC6K1q/n9MyXKN+3DwCzzUbsyJFE33YbARHhBicUEREREakd5nN94N/+9jf69+/P8ePHyc3NZcyYMUydOtWf2URE/C/2TBGel8mBggMAJNtUjotI3RURFMGsfrO4IfkGql3VTNs+jZd2v8R5TsqTRsTlclG0dSuHbr6FYxPvpXzfPswREcTddy8p69YSd89YFeMiIiIi0qic88rxr7/+mm3bttGsWTMApk+fzrx588jNzSU2NtZvAUVE/Crm+3I8s8AGQFJUkoGBRER+ncVs4fEej9M8ojlzvpjDgq8WcLL4JNO6T8MSYDE6ntRBJbt3c/qFFyn59FMATKGhxNx+O7GjRhJw5pNTIiIiIiKNzTmX4w6Hg7i4OM/PYWFhhIaGYrfbVY6LSP11ZqyKy3GcjIJIAFKiUoxMJCJyTkwmExO6TqBZeDOmbZ/GssxlZJdk88L1L2AN0gbi4la2Zw/ZM2dSvGkzACaLhahbbiFu7BgCmzQxOJ2IiIiIiLG82nFu1apV2Gw2z89Op5N169bx9ddfe44NGzbMd+lERPwtLAZCbGRVFlFcVUKgKZCLIi8yOpWIyDm7se2NJIQl8MDGB9hxagcj0kcwp98cmoY3NTqaGKg8I4PTL71M4apV7gMBAUQNv5G48eOxNG9ubDgRERERkTrC5DrHAZVm86+PJzeZTFRXV19wqLrG4XBgs9mw2+1YrVqJJdLgzO/Ntvy93NM0niRbEh/+9kOjE4mIeO3bvG+ZsHYCp0tPEx8az6x+s2gf097oWFLLKo4eJeeVWdiXLgWnE0wmrGlpNLl3IkFt2hgdT0RERETE77zpcs95Q06n0/mrfxpiMS4ijUBMMhkW94ze5Chtxiki9VP7mPa8OfhNUqJSyC7N5q6Vd7Ht+DajY0ktqczK4uTf/07GoMHYP/wQnE4i+vUl8f/+jxYzpqsYFxERERH5CedcjouINFgxSWQEucvxJJs24xSR+qtZRDNeG/QaVze9muLKYiaum8gH+z8wOpb4UVV+PlnPPEvGgFQK3n4HqqoI796dNu++Q6tXXiHk4nZGRxQRERERqbO8mjkuItIgxWrluIg0HNYgK3P7zeVv2/7G8szlPLrtUU4Wn2T8peMxmUxGxxMfqS4sJG/xYvKWvIazpASA0Msvp8nkSYRffbXB6URERERE6geV4yLS6Lmik1SOi0iDYgmw8NR1T9E8vDkLvlrAnC/mcLL4JI92exSL2WJ0PLkAzpIS8t54k9yFC3Ha7QCEdOjgLsV/8xv9AkRERERExAsqx0Wk0csJi6IwwIzZ5aJNSLzRcUREfMJkMnH/5ffTLKIZT/znCf7vwP+RVZzF872fJyIowuh44iVnRQUFb79Dzvz5VOfkABCUnEyT++8nckB/leIiIiIiIudB5biINHoZFbkAXFRZRZDjBIRGGZxIRMR3ftfudySEJfCnTX9i+8nt3LXyLmb1nUVCeILR0eQcuKqqsP/f/3F69myqTpwEwNKqFU3unYh1yBBMAQEGJxQRERERqb+83pDz6NGjHDt2zPPzjh07mDx5MvPnz/dpMBGR2pJhzwQgqbIS8jIMTiMi4ns9W/Zk8cDFxIbE8l3+d9y24jb25e8zOpb8ApfTiX3ZcjLThnDykb9RdeIkgfHxNP3730lesRzbDTeoGBcRERERuUBel+N/+MMf2LBhAwCnTp2if//+7Nixg4cffphp06b5PKCIiL9lFLgL8eTKSshVOS4iDVPH2I68MfgNEm2JZJVkMSJ9BJ+c/MToWPJfXC4XhevWcfC3N3LiT3+i4vBhAqKjiX/oIZJXryL6lpsxWTQ3XkRERETEF7wux7/++muuvvpqAN599106derEtm3bePPNN1myZImv84mI+F1NOZ5UUQl5mQanERHxn5aRLXl90OtcHn85RZVFjFs7jqUZS42OJbhL8aKtWzl08y0cm3gv5fv2YY6MpMmk+0les4bYu+/CHBJidEwRERERkQbF65njlZWVBAcHA7B27VqGDRsGQPv27Tl58qRv04mI+JnL5SLD7i7HUypVjotIw2cLtjF/wHwe3vIwqw6t4q9b/srJ4pOM6TxGmzoapPSrr8mePp2SHTsAMIWGEnPHHcSOvJuAKO2DISIiIiLiL16X4x07dmTu3LmkpaWxZs0aHn/8cQBOnDhBbGyszwOKiPhTXlke9nI7Jky0qaxSOS4ijUJwQDDP9nyW5uHNWfzNYl7+7GVOFJ3gkWsfIdCs/dprS2VWFqeffwH7hx8CYLJYiLr1FuLGjiUwLs7gdCIiIiIiDZ/X736eeeYZbrzxRqZPn86IESO49NJLAfjoo48841ZEROqLzDObcbYMb0aI6zA4jkNFCQSFGZxMRMS/zCYzU66cQrOIZjy942ne3/8+2SXZzOg1gzCL/g70J2dJCbmLFpO7cCGu0lIArMOGEj95MpbmzQ1OJyIiIiLSeHhdjvfu3ZucnBwcDgfR0dGe42PHjiUsTG+kRKR+OVBwAIDk6LYQshfK7JB/CBI6GBtMRKSW3Nr+VhLCEnho80N8fPxj7lp5F7P7zSYuVCuXfc3ldOJYupTs51+gKisLgNDLLyfhzw8R2qWLwelERERERBofrzfkBPeM3l27djFv3jwKCwsBCAoKUjkuIvWOZzPOqGSISXIfzMswMJGISO3rc1EfFqYuJCYkhr15e7lt+W1kFmjMlC+V7NrFod/fzImH/kxVVhaWFi1o8cLztH7zDRXjIiIiIiIG8bocP3z4MJ07d+aGG25g4sSJnD59GnCPW/nTn/7k84AiIv5UM1YlJSoFYpLdB3NVjotI49OlSRfeGPQGra2tOVF8gtvTb2fnqZ1Gx6r3Ko4d49jkBzh82+2Uff015vBwmkyZQtKK5VgHDdImqCIiIiIiBvK6HJ80aRJXXnkl+fn5hIaGeo7feOONrFu3zqfhRET87fuV40kQe6Yc16acItJItbK24vVBr3Npk0sprChk7JqxpB9MNzpWvVRdVET2c8+ROWgwhStXgtlM1O9/T/KqlcSNHYM5ONjoiCIiIiIijZ7XM8c//vhjtm3bRlBQ0FnH27Rpw/Hjx30WTETE3/LL8skrywMg0Zr4g7EqKsdFpPGKDonm1QGv8peP/8LaI2uZunkqn5z8hAevepBwS7jR8eo8V3U1Be+9z+mXXqI6NxeA8O7diH/oIUIuvtjgdCIiIiIi8kNerxx3Op1UV1f/6PixY8eIjIz0SSgRkdpQM1KlRUQLwixh349VUTkuIo1cSGAIM3rN4O5OdwPw/v73uemjm9iVtcvgZHVb8bZtHLxxOKcee4zq3FyC2rSh5ZzZtFq4UMW4iIiIiEgd5HU5PmDAAF588UXPzyaTiaKiIh577DEGDx7s03AiIv7kGaliO7NivGbluOM4VJQYlEpEpG4IMAcw5YopLBywkGbhzThedJy7V97Nczufo7y63Oh4dUp55kGOjhvPkZGjKN+3D7PNRsJf/0rS0o+IvP56zRUXEREREamjvC7Hn3vuObZu3UqHDh0oKyvjD3/4g2ekyjPPPOOPjCIiflFTjidHnVkxHhYDITb39/kHDUolIlK3XN3sav497N/cmHIjLlws+WYJtyy7hT25e4yOZrjqggJOPfEkmcOGUbRxIwQGEn3nHaSsWknMnXdgsliMjigiIiIiIr/A65njLVu25IsvvuDtt9/myy+/pKioiFGjRnHbbbedtUGniEhdl2H/r3LcZHKPVjmx2z1aJaGjgelEROqOiKAIpvWYRp+L+vDYtsc4UHCA25bfxrhLxzGq8ygCzV6/pKzXXJWV5P/zn5yeNRun3Q5AxPXXE//ggwQnJRqcTkREREREztV5vZMJDAzk9ttv93UWEZFalVngni2ebEv+/mBMkrscz80wKJWISN3Vu1VvPrjhAx7f/jhrj6zllc9fYdOxTTxx3RMk2hp+KexyuSjasJHsZ5+l4tAhAILbtSPhzw8R3r27seFERERERMRr51SOf/TRRwwaNAiLxcJHH330i48dNmyYT4KJiPiTvdzO6dLTACRFJX1/IlabcoqI/JKYkBie7/08yzKX8dQnT/FVzlf8bunveOCKB7i1/a2YTV5P7asXyr77jqynn6Zk+38ACIiNpcmk+4m66SZMAQEGpxMRERERkfNxTuX4b3/7W06dOkV8fDy//e1vf/ZxJpOJ6upqn4UTEfGXg3b3TPGm4U0Jt4R/f6JmU06V4yIiP8tkMjE0eShXNb2KR7c+yvaT23l6x9NsOLKBx3s8TrOIZkZH9JmqnBxOz3yJgvffB6cTU1AQMSNGEHvPWAIiIoyOJyIiIiIiF+CclvY4nU7i4+M93//cHxXjIlJfHCg4APzXSBVwzxwHleMiIuegaXhT5vWfx8PXPExoYCifnPqE4R8N58MDH+JyuYyOd0Gc5eXkzF9ARupACv71L3A6iRw4kKQVy4n/4xQV4yIiIiIiDUDD/NyriMivyChwzxQ/a6QKfL9y3HEcKkpqOZWISP1jMpm4pf0t/Gvov7i0yaUUVRbxyNZHmLRhErmluUbH85rL5cKRnk7m4DROP/88zuJiQjp1ovWbb9DyxRcIatnS6IgiIiIiIuIjXpfj999/Py+99NKPjr/yyitMnjzZJ6FERPwt0+5eGZ4SlXL2ibAYCLG5v88/WMupRETqr9bW1rw28DUmXT6JQHMgG45uYPhHw1l3eJ3R0c5Z6Zdfcvi22zn+wBQqjx8nMCGB5s88TZt33yHsiiuMjiciIiIiIj7mdTn+/vvv06NHjx8d7969O++9955PQomI+Jtn5bjtv1aOm0warSIicp4CzAGM7jyat9Pepl10O/LK8pi8cTIPb3kYR4XD6Hg/q+LYcY5P+SOHfn8zpbt3YwoNJe7ee0lOX4HthhswmfVhSxERERGRhsjrV/q5ubnYbLYfHbdareTk5PgklIiIPxVVFJFVkgX8xFgV+H60Sm5GLaYSEWk4Lo65mH+m/ZNRnUZhNpn5KOMjhn84nO0nthsd7SzVDgdZ06eTOWgQjhUrwGTCduONJK9Mp8m9EzGHhRkdUURERERE/MjrcjwlJYWVK1f+6Hh6ejpJST9RMomI1DE1I1XiQ+OxBll//IBYrRwXEblQQQFBTL5iMq8NfI1Wka3IKsli7JqxPPnJk5RWlRqazVVZSd7rb5AxIJW8hYtwVVYS1u1aEv/9Ps2fehJLQoKh+UREREREpHYEevuEKVOmcO+993L69Gn69OkDwLp163juued48cUXfR5QRMTXfnYzzho1K8dVjouIXLCu8V15b+h7PL/red757h3++e0/2X5iO09c9wRdmnSp1Swul4uidevInj6DisOHAQhKTiZh6oOE9+yJyWSq1TwiIiIiImIsr8vxkSNHUl5ezhNPPMHjjz8OQJs2bZgzZw533nmnzwOKiPhaTTmeHJX80w+omTmusSoiIj4RZgnjkWsfoU+rPvxt29845DjEHel3MKrTKMZfOh5LgMXvGUq/+orsZ56lZOdOAAJiY2ly331E/b+bMAV6/ZJYREREREQagPPaXWj8+P/P3n0HR1mvbRz/7qYXsiGUhJ4CIgjqAVGwYwEpCYQiSFVRAcEjcKSdo2JBEXvDhgVQkRY60g4ooiBKFVEQUyCkAumFlN19/wgb5fWoBJI8u8n1mcm4ZJ88e+2MwyQXd+7fWE6cOEFaWho5OTnExcWpGBcRlxGb/TfluGOtSm4yFBdUUyoRkZrv2ibXsjxqOb3De2Oz25h7cC5DPh/CL5m/VNlrliQlkfTIZBIG3knB7t2YvLyoN2Y0ERs3UHfwIBXjIiIiIiK12AWV46Wlpfz3v/9l+fLl2O12AJKTk8nLy6vUcCIiVSEuq2xdSoTlT8pxn7rgffbg4cz4akolIlI7WLwszLphFi/f/DKBXoEczjjM4LWD+ejHj7DarJX2OtbcXNJffJHYHj3JWbu27LX79CFiw3oaTpiAm79/pb2WiIiIiIi4pgqX48eOHaN9+/b06dOHcePGcfLkSQBmz57NI488UukBRUQqU0FJAcn5yQCEW/5k57jJ9NtqFe0dFxGpEre3uJ0VfVZwc9ObKbGV8PKel7l3470k5iRe1H3tJSVkfPIpsd26c/r9D7AXF+N79dWExiyj8ezn8GjUqJLegYiIiIiIuLoKl+MPP/wwV111FZmZmfj4+JR/Pjo6mi1btlRqOBGRyhafXTYJXs+7HoHegX9+oeNQTu0dFxGpMvV96vP6La/z1LVP4efhx970vfRf058lR5aU/3bi+bLb7eRu2UJcZBRpM2dizczEMzycpm+/RfP58/C57LIqehciIiIiIuKqKrxkcfv27ezYsQNPT89zPh8aGkpSUlKlBRMRqQp/u2/coZ4mx0VEqoPJZCK6VTRXN7qaR79+lN1pu3n626fZmriVmdfNpL5P/b+9R+HBH0l//nkKvv8eALegIBo8NJ7AgQO1U1xERERERP5UhSfHbTYbVusf90GeOHGCOnXqVEooEZGqEptVVo7/6UoVB61VERGpVk38m/BB9w+Y0mkKXm5efJP0DQNWD2Bn8s4//ZqS5GSSpkwhYeBACr7/vuywzQceIGLTRuredZeKcRERERER+UsVLse7devGq6++Wv5nk8lEXl4eM2bMoGfPnhW619tvv83ll19OQEAAAQEBdOnShfXr15c/f+bMGcaNG0e9evXw9/enf//+pKWlnXOP48eP06tXL3x9fWnYsCGTJ0+mtLT0nGu+/PJLOnTogJeXFy1btmTevHkVfdsiUkM4yvG/nRzXWhURkWpnNpkZ3nY4S3ovoVXdVpw+c5rRm0fz+t7XKbX99v2dNS+P9JdeJvaOHuSsXgNAQFQkEes/p+GkiTpsU0REREREzkuFy/GXXnqJb775hrZt23LmzBmGDBlSvlJl9uzZFbpX06ZNee6559izZw+7d+/mlltuoU+fPhw6dAiAiRMnsmbNGpYuXcq2bdtITk6mX79+5V9vtVrp1asXxcXF7Nixg/nz5zNv3jwef/zx8mvi4+Pp1asXXbt2Zf/+/UyYMIH77ruPjRs3VvSti0gNcN7luGOtSm4yFBdUcSoREfm98MBwFvZcyMBLBmLHztyDcxm1cRQpWSfIWLiw7LDNuXPLDtvs1InQZcto8vzzeDRubHR0ERERERFxISZ7RU87AkpLS1m0aBE//PADeXl5dOjQgaFDh55zQOeFCgoK4oUXXmDAgAE0aNCAhQsXMmDAAAAOHz5MmzZt2LlzJ507d2b9+vX07t2b5ORkgoODAXjnnXd66k0GAAAgAElEQVSYOnUqJ0+exNPTk6lTp7Ju3Tp+/PHH8tcYPHgwWVlZbNiw4bwy5eTkYLFYyM7OJiAg4KLfo4gYo7C0kGs+vQY7drYN2kaQd9CfX2y3w+wWcCYbxu6AYB3kJiJihA3xG3hixwwu/TmPEV+aaHSqbL2fZ2goDadMxr9rV0wmk8EpRURERETEWVSky72gRYzu7u4MGzbsgsL9GavVytKlS8nPz6dLly7s2bOHkpISbrvttvJrLr30Upo3b15eju/cuZP27duXF+MA3bt3Z+zYsRw6dIh//OMf7Ny585x7OK6ZMGHCn2YpKiqiqKio/M85OTmV+E5FxCgJ2QnYsVPXq+5fF+MAJlPZ3vHkvWV7x1WOi4gY4qaCZiz4PAzrngMA5PjA8YFd6DPpTTy9fQ1OJyIiIiIirqzCa1UAjhw5wvjx47n11lu59dZbGT9+PIcPH76gAAcPHsTf3x8vLy/GjBnDihUraNu2LampqXh6ehIYGHjO9cHBwaSmpgKQmpp6TjHueN7x3F9dk5OTQ2Fh4f/MNGvWLCwWS/lHs2bNLui9iYhzic0+exhn4N8cxumgveMiIoYpSUkheepUEvoPwLrnACZPT472asdDY9x4qsn33L3lPk7knjA6poiIiIiIuLAKl+MxMTG0a9eOPXv2cMUVV3DFFVewd+9e2rdvT0xMTIUDtG7dmv3797Nr1y7Gjh3LyJEj+emnnyp8n8o0ffp0srOzyz8SExMNzSMilSMuKw6ACMvf7Bt3cOwdz4irokQiIvL/2YuLOTlnDrF39CB71WoAAnr3Jvzzz4l6aSnP9XidAM8ADp46yJ1r7mTzsc0GJxYREREREVdV4bUqU6ZMYfr06Tz11FPnfH7GjBlMmTKF/v37V+h+np6etGzZEoCOHTvy/fff89prrzFo0CCKi4vJyso6Z3o8LS2NkJAQAEJCQvjuu+/OuV9aWlr5c47/Oj73+2sCAgL+dEe6l5cXXl5eFXofIuL8HIdxnv/kuMpxEZHqVLBvH6mPP07R0V8B8LmqI8FTp+LTvn35Nbc0v4U2QW2Y/NVkDpw8wKQvJzG49WAe6fQIXm76/k1ERERERM5fhSfHU1JSGDFixB8+P2zYMFJSUi46kM1mo6ioiI4dO+Lh4cGWLVvKnzty5AjHjx+nS5cuAHTp0oWDBw+Snp5efs3mzZsJCAigbdu25df8/h6Oaxz3EJHaIy777OR44HlOjmutiohItbDl55M68xmODRlK0dFfcQsKovGLL9Li44/PKcYdGvk34qM7PmJUu1EALDqyiGGfDyMhO6Gak4uIiIiIiCurcDl+8803s3379j98/uuvv+aGG26o0L2mT5/OV199RUJCAgcPHmT69Ol8+eWXDB06FIvFwqhRo5g0aRJffPEFe/bs4Z577qFLly507twZgG7dutG2bVuGDx/OgQMH2LhxI48++ijjxo0rn/weM2YMcXFxTJkyhcOHD/PWW2+xZMkSJk6cWNG3LiIurNhazPHc48AFrFXJTYbigipKJiJSu+V99RWxkZFkfvIJ2O1Y+vQhfN1aLL17YTKZ/vTrPMweTOg4gbdve5sg7yAOZxzmzrV3sjZubTWmFxERERERV1bhtSpRUVFMnTqVPXv2lJfU3377LUuXLuXJJ59k9erV51z7V9LT0xkxYgQpKSlYLBYuv/xyNm7cyO233w7AK6+8gtlspn///hQVFdG9e3feeuut8q93c3Nj7dq1jB07li5duuDn58fIkSPPWfkSFhbGunXrmDhxIq+99hpNmzbl/fffp3v37hV96yLiwhJyErDZbdTxrEN9n/rn90U+dcHbAmeyITMegi+r2pAiIrVIaUYGabOeI2fNGgA8mjQh5Mkn8b/+ugrd5/om17M0cinTtk/j+9Tvmb59Ot+lfMe0q6fh6+FbFdFFRERERKSGMNntdntFvsBsPr9hc5PJhNVqvaBQziYnJweLxUJ2djYBAQFGxxGRC7AhfgOTv5rMlQ2u5OOeH5//F77XFZL3wqBPoE1k1QUUEakl7HY7OWvXkvbsLKyZmWA2EzR8OA3++RBmP78Lvq/VZuW9H97j7QNvY8dOhCWCF296kZZ1W1ZiehERERERcXYV6XIrvFbFZrOd10dNKcZFpGaIzS7bG37e+8YdHKtVtHdcROSilSQlkTh6NMmTp2DNzMSrVStCF31G8PRpF1WMA7iZ3Rh75Vje7/Y+DXwaEJsdy13r7mL50eVUcBZERERERERqiQqX4yIirig2q6zcDreEV+wLHYdyZqgcFxG5UHarlYwFHxMbGUX+V9sxeXjQYMLDhMUsw+fyyyv1ta5udDVLI5dyXePrOGM9w4wdM5i2fRr5JfmV+joiIiIiIuL6zrsc37lzJ2vXnnvA0YIFCwgLC6Nhw4Y88MADFBUVVXpAEZHK4CjHKzw5HnT2+oz4Sk4kIlI7FB09yrEhQ0l79lnsBQX4dOxI2KqV1B8zBpOnZ5W8Zj2ferx121tM6DABN5Mbn8d/zp1r7uTn0z9XyeuJiIiIiIhrOu9y/KmnnuLQoUPlfz548CCjRo3itttuY9q0aaxZs4ZZs2ZVSUgRkYtRYi3heM5x4ELK8bOT41qrIiJSIbbiYk6+8SZx/fpTeOAAZj8/QmY8TouPF+AVXsHf4rkAZpOZUe1HMe+OeYT4hXA89zhDPx/Kwp8Xas2KiIiIiIgAFSjH9+/fz6233lr+50WLFnHNNdcwd+5cJk2axOuvv86SJUuqJKSIyMU4nnucUnspfh5+BPsGV+yLHTvHc5OhuKDyw4mI1EAF+/YR368fp+bMgZIS/Lt2JXzdWuredRem8zzcvbJc2fBKlkUu4+ZmN1NiK2HWd7OY+OVEsouyqzWHiIiIiIg4n/P+6SQzM5Pg4N9KpW3bttGjR4/yP3fq1InExMTKTSciUgnKV6pYIjCZTBX7Yp+64G0pe5yp1SoiIn/FmpdP6tMzOTZkKMW/xuJWrx5NXnmZpm/NwSMkxLBcFi8Lr3d9namdpuJudmfL8S3cueZODpw8YFgmEREREREx3nmX48HBwcTHlxVDxcXF7N27l86dO5c/n5ubi4eHR+UnFBG5SLHZZw/jDLyAX+M3mX63dzyuElOJiNQsedu2ERcZSeann4LdjiU6mvC1awjo0aPi/zBZBUwmE8PaDuOTHp/Q1L8pyfnJ3L3+bub9OA+b3WZ0PBERERERMcB5l+M9e/Zk2rRpbN++nenTp+Pr68sNN9xQ/vwPP/xAREQFd/mKiFSDuKyyUjvCcoF/RzlWq2jvuIjIH5RmZJD0yGQSR4+hNCUFj6ZNafbB+zSe9SzudesaHe8PLqt/GUsil9A9tDul9lJe2vMS47eMJ/NMptHRRERERESkmp13Of7000/j7u7OTTfdxNy5c5k7dy6enp7lz3/44Yd069atSkKKiFyMi5och98O5cxQOS4i4mC328levZq4nr3IWbsWzGaC7r6b8NWr8L/uOqPj/aU6nnV44cYXeKzzY3iaPdmetJ0BqwewO3W30dFERERERKQauZ/vhfXr1+err74iOzsbf39/3Nzcznl+6dKl+Pv7V3pAEZGLUWorJSE7AYCIwAucHC9fq6Kd4yIiACVJSaTMeIL8r78GwKt1axrNfBqf9u0NTnb+TCYTd7a+kysaXMEj2x4hISeBUZtGMfaKsdzf/n7czG5/fxMREREREXFp5z057mCxWP5QjAMEBQWdM0kuIuIMTuSeoMRWgo+7D438Gl3YTRyT41qrIiK1nN1qJWPBAmIjo8j/+mtMnp40mDCBsGVLXaoY/73WQa1Z3HsxURFR2Ow25uyfwz0b7+FYzjGjo4mIiIiISBWrcDkuIuJKHCtVwixhmE0X+FeeY+d4bjIUF1RSMhER13Lml19IGDKEtGdnYS8owOeqjoStXEn9MaMxufih7L4evjxz/TPMvG4mvu6+7Evfx4DVA/j4p491WKeIiIiISA2mclxEarSLPowTwDcIvAPLHmdqtYqI1C624mJOvv468f0HcObAD5j9/Ql54glaLFiAV3iY0fEqVZ+WfVjRZwXXNLqGM9YzPP/989yz4R6O5xw3OpqIiIiIiFQBleMiUqNd9GGcDlqtIiK1UMG+fcT3jebUW29DSQn+t9xC+Lq11B08CJO5Zn4b2di/MXNvn8tjnR/Dx92Hvel76b+6P5/+/KmmyEVEREREapia+VONiMhZsVllZfZFTY7Db6tVMuIuMpGIiPOzl5SQ/tprHBs6jOK4ONzq1aPJq6/QdM6beAQHGx2vyjkO61zRZwXXhJRNkT/33XPcu/FeEnMSjY4nIiIiIiKVROW4iNRYVpuV+OyyNSgRgRdZjjsmxzM0OS4iNVvxsWMkDB3G6bffAZsNS58oItatJeCOOzCZTEbHq1ZN/JvwXrf3+M81/8HH3Yc9aXvov6Y/C39eqClyEREREZEaQOW4iNRYyXnJFFmL8HLzool/k4u7WZBjclw7x0WkZrLb7WTFxBAX3Y8zP/yAOSCAJi+/ROPZs3ELDDQ6nmHMJjODLx3M8qjldArpRGFpIbO+m8V9m+4jMVdT5CIiIiIirkzluIjUWI5942GWMNzMbhd3M+0cF5EarDQzk6R/PkzKfx7FXlCAb6dOhK9aSUDPnkZHcxpN6zTl/W7vM/3q6fi4+/B96vf0X92fzw5/pilyEREREREXpXJcRGosx77xcMtFHsYJv+0cz02G4oKLv5+IiJPI37GD+D59yd28GdzdafCvSTSf9xEejRoZHc3pmE1mhrQZQkxkDB2DO1JYWsizu57l/k33k5SXZHQ8ERERERGpIJXjIlJjxWWXHZ550fvGAXyDwPvsWoFMrVYREddnKy4mbfbzHL93FKXp6XiGhRG6aBH1778fk9tF/rZNDdcsoBkfdv+QaVdPw9vNm+9SvyN6VTSLDy/WFLmIiIiIiAtROS4iNZZjcjzCUgnlOGi1iojUGEVHj5Jw5yAyPvoIgMDBgwhbHoNPu8sMTuY6zCYzQ9sMJSYqhg4NO1BYWsjMXTN5YPMDJOclGx1PRERERETOg8pxEamRbHZb+eR4eGAlrFWB31arZMRVzv1ERKqZ3W4n45NPiR8wkKLDh3GrW5emb71FoyeewOzjY3Q8l9Q8oDkf3fERUztNxdvNm10pu4heFc2SI0uw2+1GxxMRERERkb+gclxEaqTU/FQKSwtxN7vTrE6zyrmpY3I8Q5PjIuJ6Sk+eJHH0aNJmzsReVITfDTcQvnoVdW7panQ0l2c2mRnWdhjLopbRoWEHCkoLePrbpxm9eTQpeSlGxxMRERERkT+hclxEaiTHSpXQgFDcze6Vc9Mgx+S4do6LiGvJ/eIL4vr0Jf+r7Zg8PQn+z39o9t67uDdoYHS0GqVFQAs+7P4hUzpNwcvNi50pO4leHc2yX5ZpilxERERExAmpHBeRGqlSD+N0cKxV0c5xEXERtsJCUp58khNjH8SakYFX69aELltK0PBhmEwmo+PVSG5mN4a3Hc6yyGVc2eBK8kvyeXLnk4z971hS81ONjiciIiIiIr+jclxEaqRKP4wTflurkpsMxQWVd18RkSpQeOgQ8f0HkPXZIgCC7r6b0KVL8L7kEoOT1Q6hllDm3TGPR656BC83L75J/oboVdEsP7pcU+QiIiIiIk5C5biI1Eix2WXleKUdxgngGwTegWWPM7VaRUSck91m4/T775Mw+C6K4+Jwb9CAZh+8T/C0qZg9PY2OV6u4md0YedlIlkYu5YoGV5BXkseMHTMYu0VT5CIiIiIizkDluIjUOHa7nbiss2tVKnNyHH6bHtdqFRFxQiUpKRy/517SX3wJSkqoc/tthK1ehf911xkdrVYLs4Qx/475/Kvjv/A0e/JN0jf0W9WPFUdXaIpcRERERMRAKsdFpMZJK0gjryQPd5M7LQJaVO7NHXvHM+Iq974iIhcpZ/164vr0pWDXLkw+PjSa+TRNXn8d97p1jY4mlE2R393ubpZGLeXy+peTW5LL4zseZ9yWcaTlpxkdT0RERESkVlI5LiI1jmNqvHlAczzcPCr35o7J8QxNjouIc7Dm5ZE8bTpJEydhy8nBu317wlcsJ3DAAB266YTCLeEs6LGAiR0n4mn2ZHvSdqJXRbPq11WaIhcRERERqWYqx0WkxnHsG48IrOSVKgBBjslx7RwXEeMV7NtHfN9osleuBLOZemPHELrwUzxDQ42OJn/BzezGve3uZWnkUtrXb09uSS6PfvMoD219iFOFp4yOJyIiIiJSa6gcF5EaJzbr7GGclko8jNPBsVZFO8dFxED20lJOvvEmx4YNp+TECTwaN6bFxwto+PDDmDwq+TdmpMqEB5ZNkU/oMAEPswfbTmwjelU0mxI2GR1NRERERKRWUDkuIjVOXPbZwzirZHL8bOGemwzFBZV/fxGRv1GcmMixYcM5NWcOWK0EREYStmolvh07Gh1NLoC72Z1R7UexuPdi2gS1Iasoi39t+xdTv5pKdlG20fFERERERGo0leMiUqPY7faqnRz3DQLvwLLHmVqtIiLVx263k7ViJfF9+lK4fz9mf38av/ACTV54Hrc6dYyOJxepVd1WfNrzUx64/AHcTG58Hv85/Vb3Y0fSDqOjiYiIiIjUWCrHRaRGOX3mNDnFOZhNZkItoVXzIo7pca1WEZFqYs3KImniJFKmT8dWUIDPVR0JX7USS2Rvo6NJJfJw8+ChfzzEgh4LCA0IJb0gndH/Hc3Mb2dSUKLfVhIRERERqWwqx0WkRnFMjTer0wwvN6+qeRHH3vGMuKq5v4jI7xTs3Utc32hyN2wAd3caTJhAi/nz8WjSxOhoUkUub3A5SyKXMOTSIQAsPrKYAWsGsD99v8HJRERERERqFpXjIlKjVOlKFYcgRzmuyXERqTp2m41T777HseEjKE1NxbNFC0I/+4z6Y0ZjcnMzOp5UMR93H6ZfM5253eYS4hdCYm4iIzeM5JU9r1BsLTY6noiIiIhIjaByXERqlCo9jNPBsVYlQzvHRaRqlJ4+TeL9D3DylVfKD90MjYnBp307o6NJNevcqDPLo5YTFRGFzW7jwx8/ZPC6wRzJOGJ0NBERERERl6dyXERqlGqZHHesVdHOcRGpAvm7viO+bzT533yDydubRs/MpPHzs3Hz9zM6mhikjmcdnrn+GV7t+ipB3kEczTzK4HWDef/g+5TaSo2OJyIiIiLislSOi0iN4ijHq2VyPDcZinVAmohUDrvVysk5czh+zz2UnjyJZ0QEYUuXENi/PyaTyeh44gRubX4ry6OWc0uzWyi1lfLa3tcYuWEkx3KOGR1NRERERMQlqRwXkRoj40wGmUWZmDARZgmruhfyDQLvwLLHmVqtIiIXr/TkSY6Puo9Tb7wJNhuWfv0IW7oEr1atjI4mTqaeTz1e7foqz1z/DP4e/vxw8gcGrhnIosOLsNvtRscTEREREXEpKsdFpMZwTI039m+Mj7tP1b6YY3pcq1VE5CLl79hBXHQ/Cr79FpOPD41nP0fjZ5/B7OtrdDRxUiaTiaiIKJZHLeeaRtdQWFrIM7ueYfTm0aTmpxodT0RERETEZagcF5EaIy6r7DDOloEtq/7FHHvHM+Kq/rVEpEayl5aS/tprHB91H9ZTp/C65BLCYpZh6dPH6GjiIhr5N+K9299j2tXT8HbzZmfKTvqt6sea2DWaIhcREREROQ8qx0WkxojNPnsYZ2AVHsbpEOQoxzU5LiIVV5KWxvG77+H02++A3U7gwIGELlmMV3g1/P0lNYrZZGZom6EsiVxC+/rtyS3J5d9f/5tJX04i40yG0fFERERERJyaynERqTEck+MRlio8jNOhfK2KJsdFpGLytm8nvm80Bbt3Y/b1pfGLL9Lo6acwe3sbHU1cWJgljAU9FjD+yvG4m9z57/H/Er0qmi+Of2F0NBERERERp6VyXERqDMfkeERgNZTjWqsiIhVkLykh/aWXSLz/AayZmXi1aUPY8hgsvXsZHU1qCHezO6OvGM3CXgtpGdiSjDMZ/POLf/LYN4+RV5xndDwREREREaejclxEaoTsomxOFZ4Cyqbnqpxjcjw3GYoLqv71RMSllaSkcGzESE7PfR+AukPuInTRZ3iGhhobTGqkNvXasKj3Iu657B5MmFj560r6re7HdynfGR1NRERERMSpqBwXkRohLrtsgruRXyP8PPyq/gV9g8A7sOxxZnzVv56IuKzcrV8Q3zeawn37MPv70+TVVwl5/HHMXl5GR5MazMvNi0lXTeKjOz6iiX8TUvJTGLVpFLO/m82Z0jNGxxMRERERcQoqx0WkRojNqsbDOB0cq1VO61BOEfkje3Exac/N5sSDD2LNzsa7XTvCViwn4I7uRkeTWqRjcEdiomIYcMkAAD75+RPuXHsnP5760eBkIiIiIiLGUzkuIjWCoxyvlsM4HRyrVbR3XET+n+ITJ0gYNpyMefMACBo5ghYLP8WzWTNjg0mt5Ofhx4wuM5hz6xwa+DQgPjueYZ8PY87+OZTYSoyOJyIiIiJiGJXjIlIjONaqVMthnA5BjkM5NTkuIr/J2byZ+Oh+nPnhB8wBATSd8ybB06dj9vQ0OprUcjc2vZHlUcu5I/QOrHYr7xx4h6HrhvJr5q9GRxMRERERMYTKcRGpEcrXqliqca2KY3L8tCbHRQRsxcWkznyGpIf+iS03F58rriB8xXLq3Hqr0dFEygV6B/LCTS/w/I3PE+AZwM8ZPzNwzUBe2v0S+SX5RscTEREREalWKsdFxOXlFueSVpAGGLRzXGtVRGq94mPHODb4LjI/+QSAoHvvpcUnH+PRpInByUT+tx5hPVjRZwU3N7uZUnsp8w7NI2pFFJ/HfY7dbjc6noiIiIhItVA5LiIuz7FSpaFPQwI8A6rvhR2T47nJUFxQfa8rIk4lZ/164vv158xPP+EWGEjTd94meMpkTB4eRkcT+UsNfRvyxi1vMOfWOTT1b0p6YTpTt0/l3o33cjTzqNHxRERERESqnMpxEXF5cVkG7BsH8A0C78Cyx5nx1fvaImI425kzpDzxBEkTJ2HLz8enQwfCVq6gzs03Gx1NpEJubHojK/uuZPyV4/F282Z32m4GrhnI7O9mk1uca3Q8EREREZEqo3JcRFyeY994tZfj8NtqldM6lFOkNimKiydh0GCyFi0GoN4DD9BiwXw8QkIMTiZyYbzcvBh9xWhW9V3Frc1vxWq38snPnxC5IpLVsaux2W1GRxQRERERqXQqx0XE5cVmnz2Mszr3jTs4VqtkqBwXqS2y16whfsAAio4cwS0oiGZz59Jw0kRM7u5GRxO5aI39G/Nq11d557Z3CA0I5fSZ0/zn6/8wcv1IDmccNjqeiIiIiEilUjkuIi6vfK2KxYDJ8SAdyilSW9gKCkh+9FGSJ0/BXlCA79VXE7ZiBf43XG90NJFKd12T64iJimFChwn4uPuw/+R+Bq0dxDPfPkN2UbbR8UREREREKoXKcRFxaQUlBSTnJwMQbjFwcvy0ynGRmuzMTz8R338A2ctiwGSi/oMP0vyjD/EIbmh0NJEq4+nmyaj2o1jddzXdQ7tjs9tYdGQRkSsiWX50uVatiIiIiIjLUzkuIi4tPrvsIMx63vUIdByOWZ3qaXJcpCaz22ycnjePhEGDKY6Px71BA5p/9CEN/vkQJjc3o+OJVIsQvxBevOlF3u/2PhGWCDKLMpmxYwbDPh/GoVOHjI4nIiIiInLBVI6LiEtz7Bs35DBO+G1yPDcZiguMySAiVaL05EkSHxhN+nOzsZeU4H/rrYStXoVf585GRxMxxDWNrmFp1FIeueoR/Dz8OHjqIHetu4sndz5J5plMo+OJiIiIiFSYynERcWmxWWcP4zRipQqAbxA4JtYz443JICKVLm/bNuL69CX/668xeXkR8sQMmr75Bu516xodTcRQHmYPRl42kjV919A7vDd27Cz7ZRmRKyNZcmQJVpvV6IgiIiIiIudN5biIuLTywziNmhyH31arnI41LoOIVApbURGpzzxL4ugxWDMy8GrdmrCYZdQdPBiTyWR0PBGn0cC3AbNumMW8O+bRqm4rsouyefrbp7lr3V0cOHnA6HgiIiIiIudF5biIuDTD16rAb6tVMlSOi7iyoqNHSRh4J5kffwxA3RHDCV2yGK+WLQ1OJuK8OgZ3ZEnvJUy7ehp1POrwc8bPDPt8GI998xinC08bHU9ERERE5C+pHBcRl1VYWsiJ3BOAgWtVAIJ0KKeIK7Pb7WR+9hnxAwZS9MsvuAUF0ezddwj5978xe3kZHU/E6bmb3RnaZiiro1fTJ6IPACt/XUnkikg+/flTSm2lBicUEREREfnfVI6LiMtKyE7Ajp1Ar0CCvIOMC+KYHD+tclzE1ZRmZnJi3HhSn3wKe1ERfjfcQPiqlfjfdJPR0URcTn2f+sy8fiYf9/iYNkFtyC3J5bnvnmPQ2kHsSdtjdDwRERERkT9QOS4iLsuxUiXcEm7sLuB6mhwXcUX5O3cSH9WHvK1bMXl4EDx9Gs3efQf3Bg2Mjibi0q5seCWf9fqMxzo/RoBnAL9k/sLdG+5m+vbpnCw4aXQ8EREREZFyKsdFxGU5DuNsGWjwPmDH5HhuMhQXGJtFRP6WvbiY9Bdf5Pi9oyg9eRLP8HBClywmaORITGZ9ayRSGdzMbtzZ+k7WRq9lwCUDMGFibdxaIldGMv/QfEpsJUZHFBERERFROS4iris26+zkeKCB+8YBfIPAO7DscWa8sVlE5C8VxceTcNcQTr//AdjtBA4aRFjMMrzbtDE6mkiNVNe7LjO6zGBhr4W0r9+e/JJ8Xtz9IgNXD2Rn8k7sdrvREUVERESkFlM5LiIuKy67bHI8IjDC4CT8tlrldKyxOUTkf7Lb7WTFLCe+/wDOHDqEm8VCkzdep9GTT2D28TE6nkiN165+Oz7p+QlPdP42/BMAACAASURBVHmCQK9AYrNjeWDzAwxZN4QN8Rt0aKeIiIiIGELluIi4pGJrMcdzjwMQYXGCctyxWiVD5biIs7Hm5JA0aRIp//kP9oICfK+5hrDVqwi4/Xajo4nUKmaTmf6X9Gdt9FqGXDoELzcvfjz9I5O/mkyv5b34+KePyS/JNzqmiIiIiNQiKsdFxCUl5CRgs9uo41mH+j71jY4DQTqUU8QZFezZQ1zfvuSu3wDu7jSYNInmH36AR3Cw0dFEai2Ll4Xp10xn04BNPHjFgwR5B5Gcn8zz3z/P7Utv5+XdL5Oan2p0TBERERGpBVSOi4hLchzGGWGJwGQyGZyG361VUTku4gzspaWcfP0Njg0fQWlyCh7NmxO68FPqP3A/Jjc3o+OJCBDkHcTYK8eysf9GHu/yOKEBoeSW5PLRoY/oEdOD6dunczjjsNExRURERKQGUzkuIi4pNrtsfYlT7BuH361VUTkuYrTiEyc4NnwEp956C2w2LH37ErZ8OT6XX250NBH5H7zdvRl4yUBW9V3Fm7e8yVXBV1FqL2Vt3FoGrhnIfRvvY/uJ7Tq8U0REREQqnbvRAURELkRsVlk5Hm4JNzjJWY5yPDcZigvA09fYPCK1VPbadaQ+8QS2vDzM/v6EPPkEll69jI4lIufBbDJzU7ObuKnZTRw6dYj5P81nU8ImdqXuYlfqLiIsEYy4bAS9wnvh5eZldFwRERERqQE0OS4iLql8rYqzTI77BoF3YNljTY+LVDtrXj7JU6eR/Mgj2PLy8PnHPwhbuVLFuIiLuqz+ZTx/4/Os77eeEW1H4OfhR2x2LDN2zKDbsm68c+AdMs9kGh1TRERERFycynERcTklthKO5RwDnKgch9/2jqscF6lWhT/8QHy/fmSvWgVmM/XHjaPFxwvwbNrE6GgicpEa+TdicqfJbB6wmX91/BfBvsFknMlgzv45dFvWjZnfziz/nkBEREREpKJUjouIyzmec5xSeym+7r4E+wYbHec3QY5yPNbYHCK1hN1q5dS775EwZCglx4/j3rgRLT5eQIOHxmNy1+Y4kZqkjmcd7m53N+v7r+e5G56jTVAbzljPsPjIYiJXRPLw1ofZm7ZXe8lFREREpEL0k6OIuBzHvvGIwAhMJpPBaX5Hh3KKVJuS1FSSp06jYNcuAAJ69iDkiSdwCwgwOJmIVCUPswe9wnvRM6wn36d+z/yf5vPVia/YmriVrYlbaV+/PSMuG8FtzW/D3awfdURERETkr+k7RhFxObHZv5XjTsWxVuW0ynGRqpS3/WuSH3kEa3Y2Jl9fQh57DEvfPs71j2UiUqVMJhNXN7qaqxtdTVxWHAt+WsCa2DUcPHWQydsm08S/CcPaDCO6VTR+Hn5GxxURERERJ6W1KiLicsoP47Q4WTmuyXGRKpfx6ackjh6NNTsb73btCF8eQ2B0XxXjIrVYeGA4T1z7BBsHbGTMFWOo61WXpLwkZn8/m9uX3s4re14hLT/N6JgiIiIi4oRUjouIy3FMjocHhhuc5P9xlOO5yVBcYGwWkRrGXlpK6sxnSHt6JthsWPr1I3Thp3iGhhodTUScRH2f+oy7chybBmzisc6P0SKgBbkluXz444fcEXMH/97+b45kHDE6poiIiIg4EZXjIuJSSm2lJGQnAE64VsU3CLwDyx5relyk0ljz8kh88EEyP/kEgAaTJtHomZmYPD0NTiYizsjb3Zs7W9/J6r6reb3r63QM7kipvZQ1cWsYsGYA92+6n2+SvtHhnSIiIiKineMi4lpO5J6gxFaCj7sPjfwaGR3nj+pFQNKesnI8pJ3RaURcXklSEoljxlJ09Cgmb28az55NQPduRscSERdgNpnp2rwrXZt35cdTPzL/0Hw2H9vMtynf8m3Kt7Sq24qRbUfSM6wnHm4eRscVEREREQNoclxEXIpjpUqYJQyzyQn/Cgs6O82eEWtsDpEaoPDAAeIHDabo6FHcGtSnxccfqxgXkQvSrn47XrjpBdb1W8ewNsPwcffhaOZRHv3mUe6IuYMPf/yQnOIco2OKiIiISDVzwmZJROTPOe1hnA46lFOkUuSsX8+xESOxnjqF16WXErZkCT7t9dsYInJxmvg3YerVU9k8YDMTOkyggU8D0gvTeWXPK9y+9Hae//55kvOSjY4pIiIiItVE5biIuBSnPYzTod7Z0v60ynGRC2G32zn19tskTZyEvagI/5tvJvTTT/Bo5IRrlETEZVm8LIxqP4qN/Tcy87qZtAxsSUFpAR//9DE9l/dkyldT+On0T0bHFBEREZEqpnJcRFyK60yOa62KSEXZiotJmTaNk6+9DkDQyJE0nfMmZj8/g5OJSE3l4eZBn5Z9WB61nLdve5trGl2D1W5lffx6Bq0dxH0b72P7ie06vFNERESkhtKBnCLiMqw2K3HZZ8vxQCcvx3NToDgfPFXqiZyP0sxMTox/iMI9e8DNjZDHHqPu4EFGxxKRWsJkMnF9k+u5vsn1/Hz6Z+b/NJ8N8RvYlbqLXam7aBnYkhFtR9ArvBeebp5GxxURERGRSmLo5PisWbPo1KkTderUoWHDhvTt25cjR46cc82ZM2cYN24c9erVw9/fn/79+5OWlnbONcePH6dXr174+vrSsGFDJk+eTGlp6TnXfPnll3To0AEvLy9atmzJvHnzqvrtiUglS85PpshahKfZkyb+TYyO87/5BoFP3bLHGfHGZhFxEUVxcSTcOYjCPXsw16lDs/feVTEuIoZpU68Nz93wHOv7rWdE2xH4uvvya9avPL7jce6IuYP3D75PdlG20TFFREREpBIYWo5v27aNcePG8e2337J582ZKSkro1q0b+fn55ddMnDiRNWvWsHTpUrZt20ZycjL9+vUrf95qtdKrVy+Ki4vZsWMH8+fPZ968eTz++OPl18THx9OrVy+6du3K/v37mTBhAvfddx8bN26s1vcrIhcnNqtsVUmYJQw3s5vBaf6CDuUUOW/5O3eSMGgwJYmJeDRtSuiiz/C/7jqjY4mI0Mi/EZM7TWbzwM1M6jiJhr4NOVl4ktf2vsbty25n9nezScpLMjqmiIiIiFwEk92JFuidPHmShg0bsm3bNm688Uays7Np0KABCxcuZMCAAQAcPnyYNm3asHPnTjp37sz69evp3bs3ycnJBAcHA/DOO+8wdepUTp48iaenJ1OnTmXdunX8+OOP5a81ePBgsrKy2LBhw9/mysnJwWKxkJ2dTUBAQNW8eRH5Wx8c/IBX975Kj7AePH/j80bH+XMx98PBJXDbE3D9RKPTiDitzCVLSH3qaSgtxadDB5q++QbuQUFGxxIR+Z9KrCVsSNjAvEPz+CXzFwDMJjPdWnTj7svu5rL6lxmcUERERESgYl2uUx3ImZ1d9uuJQWd/MN6zZw8lJSXcdttt5ddceumlNG/enJ07dwKwc+dO2rdvX16MA3Tv3p2cnBwOHTpUfs3v7+G4xnGP/6+oqIicnJxzPkTEeI594y0DWxqc5G9oclzkL9mtVtJmP0/q4zOgtJSAqEiaz/tIxbiIODUPNw8iIyJZFrmMd297ly6NumCz29iQsIHB6wZzz4Z7+OrEV9jsNqOjioiIiMh5cpoDOW02GxMmTOC6666jXbt2AKSmpuLp6UlgYOA51wYHB5Oamlp+ze+Lccfzjuf+6pqcnBwKCwvx8fE557lZs2bx5JNPVt6bE5FK4VirEmFx0sM4HeqdzXda5bjI/2fLzydp8hTytm4FoP4/H6L+2LGYTCaDk4mInB+TycS1Ta7l2ibXciTjCPMPzWd9/Hp2p+1md9puwi3hjLxsJL3Ce+Hl5mV0XBERERH5C04zOT5u3Dh+/PFHFi1aZHQUpk+fTnZ2dvlHYmKi0ZFEaj2b3VY+OR4eGG5wmr9RPjkea2wOESdTkppKwrDh5G3disnTkyYvv0SDBx9UMS4iLqt1UGueveFZ1vdfzz2X3YO/hz9x2XHM2DGD7su6894P7+nwThEREREn5hTl+Pjx41m7di1ffPEFTZs2Lf98SEgIxcXFZGVlnXN9WloaISEh5dekpaX94XnHc391TUBAwB+mxgG8vLwICAg450NEjJWan0phaSHuZnea1WlmdJy/5ijHc1OgOP+vrxWpJQp/PETCnYMo+vln3OrVo8WC+QT07Gl0LBGRShHiF8KkqyaxacAmHrnqEYJ9gzl95jRv7HuD25fdzqxds0jM1cCNiIiIiLMxtBy32+2MHz+eFStWsHXrVsLCws55vmPHjnh4eLBly5byzx05coTjx4/TpUsXALp06cLBgwdJT08vv2bz5s0EBATQtm3b8mt+fw/HNY57iIjzc6xUCQ0Ixd3sNBuh/jffIPCpW/Y4I97YLCJOIGfzZo4NH05pejperVoRungxPldeaXQsEZFKV8ezDiMvG8n6/uuZdcMsWtdtTWFpIQsPL6T3it6M3zKebYnbsNqsRkcVEREREQzeOT5u3DgWLlzIqlWrqFOnTvmOcIvFgo+PDxaLhVGjRjFp0iSCgoIICAjgoYceokuXLnTu3BmAbt260bZtW4YPH87zzz9Pamoqjz76KOPGjcPLq2zH35gxY3jzzTeZMmUK9957L1u3bmXJkiWsW7fOsPcuIhXjWKkSEejk+8YdgsIhaU/ZoZwh7YxOI2IIu91OxgcfkP7Sy2C343fDDTR55WXc/P2NjiYiUqU8zB70Du9Nr7Be7ErdxbxD8/gm6Ru2ndjGthPbCPELoV/LfkS3iibEL8TouCIiIiK1lqHl+Ntvvw3AzTfffM7nP/roI+6++24AXnnlFcxmM/3796eoqIju3bvz1ltvlV/r5ubG2rVrGTt2LF26dMHPz4+RI0fy1FNPlV8TFhbGunXrmDhxIq+99hpNmzbl/fffp3v37lX+HkWkcrjMYZwOQRFny3HtHZfayV5cTMqTT5IdsxyAukOHEjx9GiZ3J//NDxGRSmQymejcqDOdG3UmPjueZb8sY1XsKlLzU3nrwFu888M73Nj0RgZeMpDrGl+Hm9nN6MgiIiIitYrJbrfbjQ7h7HJycrBYLGRnZ2v/uIhBhn4+lB9O/sCLN71I91AX+IetL2bBtuegwwiIesPoNCLVypqVxYmHJ1CwaxeYzQT/+98EDRtqdCwREadQZC3iv8f+y7JflrE7bXf550P8QujXqh/9WvYj2C/YwIQiIiIirq0iXa7Gt0TE6dntduKyzq5VcZXJ8Xpnc56OMzaHSDUrTkggccxYihMSMPv50eSVl/G/8UajY4mIOA0vNy96hfeiV3gv4rLjWPbLMlbHri6bJt//Fu8c0DS5iIiISHVROS4iTi+9IJ28kjzcTG60CGhhdJzzE3S2HNdaFalF8r/7jqSH/ok1OxuPxo1p+s7beF9yidGxREScVrglnCmdpvBwh4fZfGwzy35Zxp60PXyZ+CVfJn5JI79GZdPkrfrR0Leh0XFFREREahyz0QFERP6OY99484DmeLh5GJzmPAWFlf03NwWK843NIlINspav4Pio+7BmZ+N9xeWELlmsYlxE5Dx5uXnRO7w38+6Yx6o+qxjedjgWLwsp+SnM2T+Hbsu68fDWh9l+YjtWm9XouCIiIiI1hspxEXF6sdkudhgngG8Q+NQte5wRb2wWkSpkt9lIf+llUv79bygpIaBnD1rMn497/fpGRxMRcUnhgWXT5FsGbuHZ65+lQ8MOWO1WtiZu5cEtD9JzeU/ePfAu6QXpRkcVERERcXkqx0XE6TkmxyMCXagcBwgKL/tvhvaOS81kKywkacJETs+dC0D9B8fS+MUXMXt7G5xMRMT1ebl5ERkRyfwe81nZZyXD2gwjwDOA5Pxk3tz/Zvk0+ddJX2uaXEREROQCaee4iDi9uOyzh3G6XDkeAUl7tHdcaqTS06dJHPsgZ374AZOHB42emYklKsroWCIiNVJEYARTr556zm7yvel72Zq4la2JW2ns15j+l/QnumU0DXwbGB1XRERExGWoHBcRp2a328snx8Mt4QanqSDH5PhpleNSsxTFx5P4wGhKEhNxCwyk6Zw38e3Y0ehYIiI1nre7N5ERkURGRPJr5q/EHI1hVewqkvOTeWPfG7y1/y1ubnYzAy8ZSJfGXTCb9IvCIiIiIn9F5biIOLXTZ06TU5yD2WQm1BJqdJyKqXd20l07x6UGKdi7jxMPPog1KwuPZs1o9t67eIWFGR1LRKTWaVm3Zfk0+aZjm1j2yzL2pe9jy/EtbDm+hSb+Tejfqj/RraKp76NzIERERET+F40SiIhTc0yNN6vTDC83L4PTVFCQoxzX5LjUDDkbN3H8nnuwZmXhffnlhC76TMW4iIjBvN29iYqIYkGPBSyPWs7QNkOp41mHpLwkXt/3OrcvvZ0JX0zgqxNfUWorNTquiIiIiFPR5LiIODWXXakCEHS2NMxNgeJ88PQzNo/IRciYP5+052aD3Y7/LbfQ5KUXMfv4GB1LRER+p1XdVky7elr5bvKlR5ay/+T+8mnyhj4N6dOyD9Eto2kW0MzouCIiIiKGUzkuIk7NZQ/jBPANAp+6UJhZtlolpJ3RiUQqzG61kjZ7NpkLPgag7pAhBP/n35jc3AxOJiIif8bH3YeoiCiiIqL4NfNXlv+6nLWxa0kvTGfuwbnMPTiXq0OuJrpVNLc1vw1vd2+jI4uIiIgYQmtVRMSpufTkOPx2KGdGnLE5RC6A7cwZkiZMLC/GG06eTPBjj6oYFxFxIS3rtmRKpylsGbiFl256iesaX4cJE9+lfsf07dO5ZektzPx2Jj+d/snoqCIiIiLVTpPjIuLUXHpyHMr2jift0d5xcTmlmZmceHAchfv2YfLwoPHs5wjo2dPoWCIicoE83DzoFtqNbqHdSMlLYWXsSlYeXUlyfjKLjyxm8ZHFtAlqQ3SraHqG9cTiZTE6soiIiEiVUzkuIk4r40wGGWcyMGEizOKih/7VO1vqn1Y5Lq6j+PhxEu9/gOJjxzAHBNBszpv4dupkdCwREakkjfwbMfaKsYy+fDTfpnzLiqMr2HJ8Cz9n/MzPu37mpd0vcWvzW+nXqh+dQjphNukXjkVERKRmUjkuIk4rLqtsaryxf2N83F304L/ytSrxxuYQOU+FBw6QOPZBrBkZeDRuTLO57+EV4aK/uSEiIn/JbDJzbeNrubbxtWSdyWJd/DpijsZwNPMon8d/zufxn9PUvynRraLpE9GHYL9goyOLiIiIVCqNAIiI03LsG3fZlSpQtlYFtFZFXELuli0cG3k31owMvNu2pcWiz1SMi4jUEoHegQxtM5SYyBg+6/UZAy8ZiL+HPyfyTvDGvjfoFtONB//7IP899l9KrCVGxxURERGpFJocFxGnFZt9thy3uHA5F3R2HUxuChTng6efsXlE/kTGp5+S9syzYLPhd9ONNH35Zcx++v9VRKS2MZlMtKvfjnb12zG502Q2H9tMzC8x7E3fy/ak7WxP2k6QdxBREVFEt4p23UPTRURERFA5LiJOzLFWxaUnx32DwKcuFGaWrVYJaWd0IpFz2G020l96iYwPPgQgcOBAQmY8jsld3yKIiNR2Pu4+REVEERURRUJ2Ait+XcHq2NWcKjzFvEPzmHdoHlc2uJJ+rfrRPbQ7vh6+RkcWERERqRCtVRERp1U+Oe7K5Tj8bu+4VquIc7EVFZH8yCPlxXiDCRMIeepJFeMiIvIHoZZQJnacyKYBm3it62vc3PRm3Exu7D+5n8d3PE7XJV15YscTHDh5ALvdbnRcERERkfOin35FxCllF2VzqvAUAGGWMIPTXKSgCEjaAxlxRicRKWfNyuLE+Ico2L0bPDxo/MxMLFFRRscSEREn52H24Jbmt3BL81s4WXCSVbGrWHF0BcdzjxNzNIaYozFEWCKIbhVNZEQkQd5BRkcWERER+VOaHBcRpxSXXVYkN/JrhJ+Hi+89rnd28v20JsfFORSfSCJhyFAKdu/G7O9P87nvqRgXEZEKa+DbgPva38fa6LV82P1DIsMj8XbzJjY7lhd3v8itS2/lkW2PsDN5Jza7zei4IiIiIn+gyXERcUqxWWVFcnhgDTjkqXytSryxOUSAwh8PkThmDNZTp3APCaHZu+/i3foSo2OJiIgLM5lMdArpRKeQTky/Zjrr49cTczSGn07/xMaEjWxM2EgT/yb0a9WPvi370tC3odGRRURERABNjouIk3KU4xEWF983DmVrVUA7x8Vwedu2cWz4cKynTuHVujWhixepGBcRkUpVx7MOd7a+k8W9F7Ok9xIGtR6Ev4c/SXlJvLHvDbot68ZDWx9iW+I2Sm2lRscVERGRWk6T4yLilBxrVVz+ME6AoLM703NToDgfPF18TYy4pMzFS0h96imwWvG79lqavP4abv7+RscSEZEarE29Njxa71H+ddW/2JSwiZijMexL38eXiV/yZeKXNPRtSHTLaPq16kdj/8ZGxxUREZFaSJPjIuKUyteqWGrAWhXfIPCpW/ZYq1WkmtntdtJfeZXUGTPAasUSHU2zd99RMS4iItXGx92HPi37sKDHAlb2WcnwtsMJ9AokvSCdd394lzti7mDM5jFsSthEibXE6LgiIiJSi2hyXEScTl5xHmkFaUAN2TkOZatVknaXrVYJaWd0Gqkl7MXFJP/nUXLWrAGg/rhx1B8/DpPJZHAyERGprSICI5jSaQoTOkxgy/+xd+fhUdbn/sffsy/JZLLvCSQhhIgKLgdUliKyuB5rtVZLl6NWW6s9ta2126nW0335tbW11VPr1qpttdYFN0CtCriACy4IhBAISci+zWSb/ffHTIaAqCDLk+Xzuq65nnmWCfdjrcx8cs/93fkMD9Y8yCstr7B211rW7lpLpjOTcyvO5ROVn2Cyd7LR5YqIiMg4p3BcREad4ZEqua5c0uxpBldziGSWJ8LxOqMrkQki4vPR+JX/ZuCVV8BioeB/byT9/PONLktERAQAu8XOGWVncEbZGTT4GvhX7b94uPZhOgY7uHPjndy58U5OzDuR86eez+JJi3FYHEaXLCIiIuOQxqqIyKiTHKkyXrrGAbISs9M7tSinHH6h5mbqly1j4JVXMLvdlNx6q4JxEREZtUrSSvjq8V9l5QUr+e2pv2Ve0TzMJjOvtr7Kd1Z/h4X3L+Rn637G1u6tRpcqIiIi44w6x0Vk1BkOx8fFYpzDMhNBv2aOy2E2tGkTDV/8EuG2Nqw5OZT86f9wVlcbXZaIiMiHspltnFZ6GqeVnkZLfwsPbX2If9X+i5b+Fu7ddC/3brqXY3OO5fzK8zl98um4bW6jSxYREZExTp3jIjLqbOsdR4txDstMBP1d6hyXw6dv9Rrql32GcFsbjsopTP7H3xWMi4jImJSfks+VM6/kqU88xS2LbmFR6SKsJitvtb/FDS/ewMIHFnLjSzeysWMjsVjM6HJFRERkjFLnuIiMOnU98bncU9KnGFzJIZRZFt/6myHYD/YUY+uRcafnwX/RfP31EIngnjWL4pt/jyVtnMzsFxGRCctitjC3aC5zi+bSMdjBI7WP8K+t/2Knfyf/rPkn/6z5J9Myp3F+5fmcVX4WHrvH6JJFRERkDDHF9Gv2D+Xz+fB6vfT29pKmoEHksBoIDTD7vtkArP7UatKd6QZXdAj9fDIMdsMXX4CCGUZXI+NELBaj4+Y/0PGHPwCQdvbZFPzkx5jtdoMrExEROTyisSivtrzKP7f+k6frnyYUDQHgtDhZMnkJF0y9gJk5MzGZTAZXKiIiIkY4kCxXneMiMqps743P5M5yZo2vYByg6ASofRrqnlM4LodELBSi+Qc/oPfBfwGQdcUV5FzzVUxmTU0TEZHxy2wyM6tgFrMKZtEz1MPyuuU8WPMg23q38ei2R3l026NMSZ/CBVMv4Ozys/E6vEaXLCIiIqOUPj2LyKgyPG98XC3GOaxyaXxbs9LYOmRciPb30/Dlq+LBuNlM/g3Xk/v1rykYFxGRCSXdmc5nj/osD537EH894698fMrHcVqc1PbU8rN1P+O0B07je2u+x4a2DZpNLiIiIu+hT9AiMqps6xmHi3EOm7okvt35Egz2GFuLjGnh9nbqP/s5+levxuR0Unzz78m4+GKjyxIRETGMyWRiZu5Mfjjnhzx74bN8d/Z3qcyoJBAJ8Oi2R/nsk5/lE49+gns33Ysv6DO6XBERERklFI6LyKgyvBjnuOwcz5gM2VUQi8C2Z42uRsaoQN12dlx0MUPvvoslI4NJd9+FZ+FCo8sSEREZNTx2DxdPu5gHz3mQe868573d5Perm1xERETiFI6LyKgyrseqwO7u8a0arSIHbuD116m/+GJCTU3YSkuZ/Pe/4Zqh+fUiIiL7YjKZmJEzgx/O+SHPXPgM35n1HaakT2EoMpTsJj9/+fnct+k+dZOLiIhMUKaYflX+oQ5khVMR+eiGwkPMuncWMWI8d+FzZLmyjC7p0Nu+Gu4+G9zZcO1W0Hxo2U++lSvZ9c3riAUCOI89lpJb/og1axz+f0REROQwisVivNn+Jg/UPMCKHSsIRAIAOC1Olk5eyierPsmx2cdiMpkMrlREREQ+qgPJcpXKiMioscO3gxgx0h3pZDozjS7n8Cg9CRxeGOiAXa8bXY2MEV1/vYemr15DLBAgdcECJt11p4JxERGRj2B4NvmP5/6YZz75DN+e9e1kN/kj2x7hM098hguWX8DfNv8Nf9BvdLkiIiJymCkcF5FRY+RinOO2W8dig4pT489rVhhbi4x6sWiU1l/+ktYf/xhiMdI/9SmKb/49Zrfb6NJERETGPK/Dy7LqZfzrP//FX8/4K/9Z8Z84LA5qumv4ySs/YeH9C/n+2u/zVvtbmk0uIiIyTikcF5FRYzgcH7fzxodNXRrfblU4Lu8vGgyy69pv0nX7HQDkXHMN+T+4AZPVanBlIiIi48u+uskrvBUMRYZ4uPZhlj2xjE8u/yR/3/x3dZOLiIiMMwrHRWTUGFm0DAAAIABJREFUmDDh+JTFgAma3wR/i9HVyCgU8flo+MLl+J54AqxWCn72U7K/9MXx+40KERGRUWK4m/yhcx/iL2f8JdlNvqV7Cz9+5cec9sBpXL/2et5uf1vd5CIiIuOAwnERGTXqeuuACRCOp+ZA0fHx51tXGluLjDqh5mbqly1jYN06zCkplPzfraR//ONGlyUiIjKhmEwmjss97j3d5IPhQR6qfYhPP/FpLnzsQv6x+R/0BfuMLldEREQ+IoXjIjIqBCNBdvp3AlDhHefhOEBlYrSK5o7LCENbtrDjoosJbK3FmpPDpHv+SuqcOUaXJSIiMqHt3U1+Tvk52M12Nndt5kev/IiFDyzkhhdv0GxyERGRMcgU09/eH8rn8+H1eunt7SUtLc3ockTGpZruGs5/9Hw8dg9rL1o7/sdH7HoD/rQA7KlwXR1YHUZXJAbrf/llGq/+CtG+PuwVFZTe9idshYVGlyUiIiL70BvoZfm25TxQ80Dy248ARalFLJ60mMWTFnNM9jHj/z2tiIjIKHQgWa46x0VkVKjrSYxU8VZMjA8R+TMgNQ+CfVD/otHViMF6ly9n5+VXEO3rw33iiUy+714F4yIiIqOY1+HlM0d9hofPfZi7T7+bs8vPxmV10dTXxF0b72LZE8tY8uASfr7u57zR9gbRWNTokkVERGQfrEYXICICsK13gizGOcxshsrF8MY98bnjFacaXZEYIBaL0Xnbn2n/9a8B8JxxOoU/+xlmh75JICIiMhaYTCaOzzue4/OOZzA8yNqmtaysX8nzDc/T0t/CPZvu4Z5N95DjymHRpEUsnrSY43OPx2K2GF26iIiIoHBcREaJbT3xcLzcW25wJUdQ5dJ4OF6zAk7/qdHVyBEWi0Ro/fGP6b7vbwBk/td/kXvdNzGZ9aUuERGRschldbFo0iIWTVpEIBLgxaYXWVW/in83/Jv2wXb+tvlv/G3z38h0ZrKodBGLJy/mxLwTsZr1sVxERMQo+ltYREaF5FiVidI5DvFucbMNurZB5zbImkD3PsFFBwdpuvab9D3zDJhM5H37W2R+/vNGlyUiIiKHiMPi4NTSUzm19FSCkSAvN7/MqvpVPLvzWbqGuri/5n7ur7mfdEc6C0sXsnjSYmbnz8ZmsRlduoiIyISiBTn3gxbkFDm8QtEQs+6ZRTgWZtUFq8hPyTe6pCPn7v+E7c/D0p/CyV82uho5AsLd3TR+6UoG33wTk91O4S9+TtrppxtdloiIiBwBoWiI9c3rWVm/kmd3Pkt3oDt5zmP3cGrJqSyZtISTC0/GbrEbWKmIiMjYdSBZrsLx/aBwXOTwquup49xHzsVtdfPyp1+eGAtyDnvpD7Diu1C+AD73iNHVyGEW3LmThsuvIFhfj9nrpeQPN+M+8USjyxIREREDhKNhXm99nZX1K3m6/mk6hzqT51JtqXys5GMsnrSYOYVzcFqdBlYqIiIythxIlquxKiJiuJGLcU6oYBzic8dXfBd2rIWAHxweoyuSw2Tw7bdp+NKVRDo7sRUWUnLbn3BUaJSOiIjIRGU1W5lVMItZBbP4zqzvsKF9A6vqV7GqfhVtA208Xvc4j9c9jsvq4mPF8aB8btFc3Da30aWLiIiMGwrHRcRwE3IxzmFZFZBRBt3boe45qD7H6IrkMPA/9xxNX/s6scFBHEdVU3Lrrdhyc40uS0REREYJi9nCCXkncELeCVz3H9fxVvtbyaC8ub+Zp3Y8xVM7nsJpcTKveB6LJy1mfvF8UmwpRpcuIiIypikcFxHDDYfjE2oxzmEmE0xdCq/cCjUrFI6PQ90PPEDLD26ESISUOXMouukmLKn6ICsiIiL7ZjaZmZk7k5m5M7n2xGvZ2LmRlfUrWbVjFY19jcnQ3G62c0rRKSyZtISFpQsVlIuIiHwECsdFxHAjx6pMSJVL4uH41lUQi8UDcxnzYrEYHb+/mY4//hEA73nnUfC/N2Ky2QyuTERERMYKk8nE0dlHc3T20Xzt+K+xuWtzMhzf4dvBcw3P8VzDczgtThaWLuScinM4qeAkrGZ91BcREdkfWpBzP2hBTpHDJxwNM+veWYSiIZ46/ymKUouMLunICwfg52UQ6ocrnofCmUZXJAcpFgrRfP0N9D70EADZX76S7K98ZeLN1BcREZHDIhaLUdtTy6r6VTy5/Ul2+HYkz2W7sjmz7EzOqTiHqowqvf8QEZEJRwtyisiY0ehvJBQN4bK6KEgpMLocY1gdUL4AtjwOW1cqHB/jIn39NF1zDf1r1oDFQv4N15Nx4YVGlyUiIiLjiMlkojKjksqMSq6ccSXvdLzD8rrlPLX9KToGO/jLu3/hL+/+hSnpUzin4hzOKjuLvJQ8o8sWEREZdcxGFyAiE9vwSJUybxlm0wT+T9LUJfFtzQpj65CDEmpro/5zn6V/zRpMLhfFf7hZwbiIiIgcViaTiWNyjuG7s7/LMxc+w+8X/p7FkxZjN9up7anlN6/9hsX/XMzlKy/n0W2PMhAaMLpkERGRUUOd4yJiqLqeOgAqvBN03viwykQ43vQa9HdASrax9cgBC7W2Ur/sM4QaG7FkZlLyf7fiOuYYo8sSERGRCcRmtrGgZAELShbgC/pYuWMly7ct5/W213m5+WVebn6ZH1l/xMLShfxn+X8yu2A2FrPF6LJFROR9RKMxBkIRBgJh+oMR+gNhBoIRBoLx7fB+fzDMQCCSPNcfjL9mIBjh3i/MxmzWiK33o3BcRAw13Dlenl5ucCUGSyuE/GOg5e34wpwzLza6IjkAEZ+Phi9cTqixEVtpKaV/vg17aanRZYmIiMgElmZP44KpF3DB1Ato9DfyWN1jPFb3GPW+eh6ve5zH6x4nx5Wzez55ZpXRJYuIjCnhSJRAOP4IhqMEwpHENv58+FwgFGUotDvA7h8RbA8G99zfO+geDEUOus6hcAS3XRHw+9E/GRExlDrHR6hcmgjHVygcH0OiQ0M0fPnLBLZuxZqTQ+kdd2AvnoALy4qIiMioVewp5kszvsQXj/0ib3e8zfJty3lyx5O0D7Zz97t3c/e7dzM1YyrnlJ/DmeVnkuvONbpkEZH9FovFCISjDAYjDIQiDAaHu6sj8WOJburBUIRAKEowEiUQGhFevyfYjhIcDreHrw+PfG18Pxo7cvdoNkGK3YrLbiHFYcVtt5Bit+J2WHYft1twO6zxrd1KiiO+tahr/AOZYrHYEfyfcmw6kBVORWT/RaIRZt83m0AkwOPnPU5p2gTvtG1YB7cvBocXrtsGFpvRFcmHiEUiNF1zDf5VT2NOTWXSvffgrFLXlYiIiIx+oUiI1U2reazuMZ5reI5QNASA2WRmdv5szqk4h9NKT8NtcxtcqYiMB7FYjKFQNDkOZDC0u3N64ANC7cHQ3sd2v37ksSMZVO+L1WzCYTVjt5pxWC04bGbsFnNy67YnAm3H7q3LZkkG2MltIvBOht+Jax1WMyaTQu79dSBZrjrHRcQwu/p3EYgEsJvtFKWq05aiE8CdBQOd0PAKTJ5rdEXyAWKxGC03/i/+VU9jstsp/uMfFIyLiIjImGGz2FhYupCFpQvpDfSyYscKHqt7jDfa3uCl5pd4qfklXFYXi0oXcXbF2czO13xykfEuEo3FO6yT3db7Cqcju68JxY+9b8d2KDwi5I5wJNpz7RYzLns8XB7eum3W5HOnzTIixB4RZu/zuRmHzZIMuR3Dx/a63m41qzt7DFM4LiKGGR6pUuYt0xttALMFpiyCt/4BNSsUjo9yHTf/gZ777weTicJf/pKUWbOMLklERETkI/E6vFxYdSEXVl1Ig6+Bx+oeY3ndchr8DSyvW87yuuXkunI5q/wszq44m6kZU40uWWTCCkWiH9BFvY8gOxFQ9wf23YU9HGwPBONjRY4Epy3eSe2yJcLrZJCdCLFtw8ese5234LLtfcy6+7nNgtViPiL3IOOHwnERMYwW49yHyiXxcHzrSljyQ6OrkffR/fe/0/GHPwCQf8P1pC1dYnBFIiIiIodGSVoJV868ki/N+BJvtr/JY3WP8eT2J2kbbOPOjXdy58Y7qcqo4pyKc1g8aTGFqYVGlywy6gzPwB65wGJ/IDJi8cX4/sjtnoH27qB775nZocjhb782mcBt299w2rJH0P2ewHqvzm2XzYJZXdYyiigcFxHDbOuJh+NajHOEKaeByQLtm6G7HjImGV2R7MW3ciUtN/4vANlf/jIZF11kcEUiIiIih57JZGJm7kxm5s7kuv+4jtWNq1let5znG59nS/cWtry6hV+9+iumpE9hXtE85hXPY2buTGxmrZsjY0csFiMYiS/kONx9PRB4b4A93G2dDLtHhN7D1w/utX+4Z2BbzKZEgL2PLuu9Oq9TRjzfHWi/fxe25lvLRKJwXEQMkwzH0xWOJ7kyoGQ27Hwx3j0+63KjK5IR+tetY9e134RYjPQLLyT7K1cbXZKIiIjIYWe32Dlt0mmcNum05Hzyx+seZ0P7Bmp7aqntqeXOjXfisXk4ufBk5hfPZ27RXLJcWUaXLmPYcPf1yNnWQ6F4iD0cZu+9HQrtnn89NHxuxGsH9rpuMBQ57CF2cnSIY88FFpMLLjr27Lx27x1k20aMGxkRZNstCrBFDgWF4yJiiGgsSl1vfOa4wvG9TF2icHwUGtqyhcYvX0UsGCR10Wnk33C93oyKiIjIhDNyPnlvoJcXd73I6sbVrGlaQ3egm5X1K1lZvxITJqZnTWd+8XzmF8+nOqsas0mzgCeCUCRK31CYvkAY/1AY/1Bo9/NAmL69jw2F6QuEEtv4+eEQ+0iymk17BteOeGC9d5C9x3a423qv4DvFbsGdeL0WahQZ3Uyx2JFYK3Zs8/l8eL1eent7SUtLM7ockXFhV98ulj64FKvZyvpl67Ga9bu6pNZ34ZaTweqE67aD3W10RRNesLGJ+osvJtzejuvEEyj9858xO51GlyUiIiIyakSiEd7pfIfVjat5ofEFNnVt2uN8ljOLuUVzmVc8j1MKT8Fj9xhUqXyQcCRKz2CInoEgPQOhEWH27gDbnwy+dwfcfYng2z8UYih06Bd1tFvMuBLjQlx2C06bBZdt+Jg1sTXjsllwjhwrYktcO/za4ecj9oevt2khR5Fx40CyXKVRImKIN9reAKDMW6ZgfG+51eAtgd4G2LEapi41uqIJLdzdTcMXvkC4vR1HZSUlf/yjgnERERGRvVjMFmbkzGBGzgyuPu5q2gfaWdO0hhcaX+Cl5pfoHOrkkW2P8Mi2R7CarMzMnZnsKi/3lusbeYdYNBrDHwjTMxCkeyBE90CQ3sS2eyBE78jjg/FtT388DD9UnDYzqQ4baU4rqU4rHqeVVIeVVIcNT2I/fsyWPO9xxK9NsVuTobbTasaq4FpEDhMlUiJiiMfrHgfg1JJTDa5kFDKZoHIJvHo71KxQOG6g6MAADV/8EsEdO7AWFlDy59uw6BtEIiIiIh8qx53DeZXncV7leYQiIV5ve50XGl9gddNqtvdu59XWV3m19VV+/dqvKUotYm7RXOYXz2dW/iycVjUiDIvFYgyGInQP7O7m7k5sh4Pv3c+Dia7v+P7BzNL2OK2ku22kOW2kOoaD7N3PUxP7Hod1j2PD16c6rerEFpExQWNV9oPGqogcWl1DXSy8fyGRWIRHPv4I5d5yo0safWpWwH0XxjvIr3k7HpjLERULhWj48lX0r16NJT2dSffdi6Nc/66KiIiIHKwGf0MyKF/fvJ5gNJg857A4mJU/i/nF85lXPI+i1CIDKz1ww2F2XyBMfyBCfyAcfwR37/cF4jO1Rz7vG74uEKZ/r3ORg0i5XTYLGW4b6W476W4bGYnt7ud20l02MlJsyedel02d2iIypmmsioiMait3rCQSi1CdWa1g/P1MnhefOd7bAG2bIO8ooyuaUGLRKM3/8z/0r16Nyemk5NZbFIyLiIiIHCIlnhKWVS9jWfUyBkIDrGtZF59V3vQCLf0trG5azeqm1fAKVHgrkkH5zNyZ2My2Q1ZHLBYjEI7SnwihB4IR+oNhBgKJbSLQHrntSwTc8eeJwDs4HGzHnx+OFkSbxUS62x4Pul17B92J48nn8eNelw2nzXLoixERGUcUjovIETc8UuWs8rMMrmQUs7uhbD5sXQlbVygcP8La/t//o/eRR8Fiofim3+KaOdPokkRERETGJbfNzYKSBSwoWUAsFqO2pzbZVb6hbQPberexrXcbd268kxRbKifkzGZG9slUp/0HNpM3GVwPDgfbwUgy7E5ug8Ph94jgO7E9mNEjH8RkghS7lRSHJbHd+7mVVIcFtz0+luS95y2Ja+IPt92iuewiIoeBwnEROaIa/Y1saN+ACRNnlJ1hdDmjW+WSeDhesxLmfs3oaiaMzjvvouv2OwAo+NGPSP3YxwyuSERERGR8GB450jsYij8GQsnnvqFwfDsYonfwBMyDxzJ5sIeOyNv4zW8TcWyinz5e2PUML+x6BoDIYBHh/irCfVVEB0uAjz4KxGWz4LZbcCcCarc9Hk677fF9V2I/GXiPCLhHBt7DAbfLZsFsVpgtIjLaKRwXkSPqie1PADCrYBa57lyDqxnlpi6FJ66FhldgsBtcGUZXNO71Ll9O289/DkDutd8g/byPG1yRiIiIyOgSjcboC4bxD4UTQfaIgHuv/X2dC0UOtFW7KvGIYnY2YvNsxu6pAUcjFlcTFlcTjuxnscRSyLIcS4FtJqWu48h0Zr4n6HbZ99xPsVtwO+JBtkVBtojIhKRwXESOmFgstnukSplGqnyo9FLIqYb2TVD7DBxzgdEVjWt9q9ew6zvfBSDz858j87LLDK5IRERE5NCJxWLJhR/9Q2H8Q6Hk876hML7Eft9Q4lhg38f6AuGDrsVqNuFNLPyYltjGn1uTz/d13uuykeqwYjKZ6Bjs4MVdL7K6cTVrd63FH/TTFn2JtsBLvBUwcUz2MczNn8uJRfOpzqrGbNICkyIi8l6mWOxwLBUxvhzICqci8v42d23mk8s/id1s57lPPYfH7jG6pNFv1fWw9iY49lPwiT8ZXc24Nfj229R//r+IDQyQdtZZFP7yF5jM+gAlIiIio0c0GsM/FKZnMEj3QIiegSA9ie1wcO1Pht2h3cdGBOGHcr62zWLaZ3j9QcH28ONQz88OR8O81f4Wa5rWsLppNZu7Nu9xPtOZydyiucwrmsfJhSfjdXgP2Z8tIiKjz4FkueocF5EjZrhr/GMlH1Mwvr8ql8bD8a2rIBoBs1abP9QC27fTcMUXiQ0MkHLKKRT+9CcKxkVEROSwGZ673T0Qors/SO9giO6BeODdm9h2DwTpTWx7BkL0DMZD8EMRblvMJlIdVjxOa3Lrcdp2H3NaSUvs7/OYM37MYR0970utZivH5x3P8XnH89/H/zet/a2s3bWWNU1reHHXi3QNdfHotkd5dNujmE1mZuTMYF7RPOYVz6Mqo0oLXYqITGDqHN8P6hwXOXiRaIQlDy6hbaCN3y74LadNOs3oksaGSBh+WQ5DvXDZKiiZZXRF40qorY36iz9NqKkJ5/TplN59N5bUFKPLEhERkTEiFovhD4Rp9wfo8AeSIXa8s3v4+XDwnQi7B0MEw9GP/Ge67RYy3Ha8LhsZKTbSXfZEwG0l1WFLhtkeRyL0TpzzJIJtl+3Qdm2PdqFIiA3tG1jduJrVTaup7and43yOKyfeVV48j5MKTlITj4jIOHAgWa7C8f2gcFzk4K1rXsdlKy/DY/fw3IXPYbfYjS5p7HjgEtj4L5h3LZz2faOrGTcifj/1n/0cgc2bsU0qZfJ992HNyjK6LBERERkFItEYnX0B2vwB2hOPNv9Qcr9txLGh0EcLum0WE+luOxluG+luO+kuGxluO+mJwDt53B0/nuG24XXbRlXH9ljU3NfM6qZ4UP5K8ysMhgeT56wmK8flHZccwTIlfcqE+kWCiMh4obEqIjLqPL49PlJlyaQlCsYP1NSl8XB86wqF44dINBCg8aqrCWzejCU7m9I//1nBuIiIyAQwGIzQ5h96T8Dd5gvQ3hdIbjv7Agc0wsTjsJLtcbwn0E532UhPGRF8u23Jc4d67rbsn4LUAi6supALqy4kGAnyWutr8bC8cTU7fDtY37Ke9S3r+c1rvyE/JZ95RfOYWzSXkwpOwm1zG12+iIgcYuoc3w/qHBc5OIFIgFP/cSr+kJ/bl9zOrAKNBjkg/R3wyylADL6+CdIKja5oTItFIjR9/Rv4V6zAnJLCpL/+BedRRxldloiIiByEwWCEXb2DtPQO0dI7tEfw3T6i27svEN7vn2k2QVaqg1xP/JHjcZDrcSa2e+677OrmHg8a/A3xRT0bV7OuZR2BSCB5zma2cXze8cmwvNxbrl9uiIiMUhqrcogpHBc5OE/XP83Xnvsaue5cVl2wCrNJix0esD8vgsb1cM5NcMJ/GV3NmBWLxWj94Q/pvu9vmGw2Sm77EyknnWR0WSIiIvIBAuEILb1D7OoZorl3kObeIXb1xIPwXb3xYz0Dof3+eU6bmVyPMx56pznISXWQm+YkJ9VBTtru4DsrxYHFrPBzohoKD/Fq66usblzNC40v0NjXuMf5wpRC5hTNUVe5iMgopLEqIjKqPLH9CQDOLDtTwfhHVbk0Ho7XrFQ4fhA6b72V7vv+BiYThb/4uYJxERERg4UiUVp6h2ju3R18N/cMJkPv5p4hOvuD+/WzUh1WCrxO8r3xbu69O72HQ+9Uh1Udv/KhnFYnc4vmMrdoLt+e9W3qffWsaVrDmqY1rG9Zz67+XTxQ8wAP1DyA1WzlhNwTmFs0lzlFczSrXERkDFHn+H5Q57jIR+cP+lnwjwUEo0EeOOcBpmVOM7qksan5Tfi/+WBLgW9tB6vD6IrGnO7776fl+hsAyPuf/yHzM8sMrkhERGR8i0RjtPlHdHz3DCVHn+xKhODtfQH25xOp02am0OuiIN1JgddFoddJfmJ/+Hia03b4b0oEGAwPsr5lfTIsb/A37HE+PyWfOYVzmFc0j9kFs0m1pxpUqYjIxKTOcREZNZ6uf5pgNEiFt4KqjCqjyxm78o8FTwH4m2HHGphymtEVjSn+Z56h5Qc3ApD1pS8qGBcREdkPkWiMvqEwvqEQvqEQ/qFw4hHCN5jYDwzvh0dcE8I3FKarP0hkP1a1tFvNFHidiYcrvk2PB+AFXheF6U68Lps6cWXUcFldzC+ez/zi+QDJrvLVTat5teVVWvpbeHDrgzy49UGsJivH5R2X7EKvTK/Uv8siIqOIwnEROawer3scgLPKz9KbwINhMkHlYnj9L7B1pcLxAzDw2ms0ff0bEI3iveB8cr76VaNLEhEROSJCkSidfUF6BoPJ0No/FMY3GA+vRwbZ/hHB9vA1/cHIQddgNZvIS3NSmOj4Hu70zvfu7vjOSrHrfaKMaZPSJjEpbRLLqpcxFB5ifct61u5ay5qmNdT76lnfsp71Lev5zWu/IdedmwzKTyo4CY/dY3T5IiITmsaq7AeNVRH5aFr7W1n8z8XEiPHkJ56k2FNsdElj26bH4B/LIKMM/vuNeGAuH2iopob6z3yWqM9H6qmnUvz732Gy6vfCIiIytgXDUdr7ArT5hmj1BWj3x7dt/iHa/IHksc7+4H6NLPkwTpsZj9OGx2nF47SR5rSSltwf+dxGmmv38ZxUB1mpWtRSJrYGXwOrm1YnZ5UPRYaS56wmKzNyZzC3aC7ziuYxNWOqflEkInIIHEiWa2g4/sILL/DLX/6S1157jebmZh566CE+/vGPJ8/HYjFuuOEGbrvtNnp6epgzZw633HILlZWVyWu6urr4yle+wvLlyzGbzZx//vncdNNNpKbunun11ltvcdVVV7F+/XpycnL4yle+wnXXXbffdSocF/lo7t54N7969VfMzJnJX8/8q9HljH2BPvhFGUSCcPWrkF354a+ZwEK7drHj4k8Tbm3FddxxlN5xO2aXy+iyRERE3lcgHKF9RLidDLx9AVr98TC8zR+gaz8XqASwmE14XfFA2/OeQHvE/ohrRgbfHqcNu1ULqoscCkPhIV5rfS05q3yHb8ce53NducwpmhPvKi88iTS78gcRkY9izMwc7+/vZ8aMGVx66aV84hOfeM/5X/ziF/zud7/j7rvvpqysjO9///ssXbqUd999F6fTCcCyZctobm5m1apVhEIhLrnkEq644gruu+8+IP4PY8mSJSxatIhbb72Vt99+m0svvZT09HSuuOKKI3q/IhPNyJEqcgg4UmHSHKj7N9SsUDj+AcLd3ez8wuWEW1uxT6mg5JY/KhgXERHDDAYjdPSNCLp9uzu8h4+1+YfoHgjt98+0WUzkpDrITXOS63GQN2Kbk+Ygz+MkN81BptuOWZ3bIqOC0+pkTtEc5hTN4Vt8iwZ/QzIoX9e8jrbBNh6qfYiHah/CYrIwIyfeVT6naA5VGVVYzBajb0FEZNwZNWNVTCbTHp3jsViMwsJCvvGNb3DttdcC0NvbS15eHnfddRcXXXQRmzZt4qijjmL9+vWceOKJADz11FOceeaZNDY2UlhYyC233ML3vvc9WlpasNvtAHz729/m4YcfZvPmzftVmzrHRQ5cXW8d5z58LlaTlWcvfJYMZ4bRJY0PL98CT30byubD55cbXc2oFO3vZ+ellzH45ptY8/OZ/Lf7sBUUGF2WiIiMI7FYjL5AmI6+IB19ATr8ATr6g/Ft3/Bj97kDmd1tt5jJ8TjIHRFw56U5ydkrAE932RR6i4wjgUhgj67y7b3b9zifYkvh2OxjOS73OI7LO45js4/FbXMbVK2IyOg2ZjrHP8j27dtpaWlh0aJFyWNer5fZs2fz0ksvcdFFF/HSSy+Rnp6eDMYBFi1ahNls5pVXXuG8887jpZdeYv78+clgHGDp0qX8/Oc/p7u7m4yM9wZ2gUCAQCCQ3Pf5fIfpLkXGr+Gu8VOKTlEwfihVLomH4/UvwpAPnPqEU5vSAAAgAElEQVSF3UgRv5+GK77I4JtvYvZ6Kf3zbQrGRURkv8RiMXoHQ3T0BWj3B0eE3AE6/EE6+wO09+0OwAPh6AH9fLvV/N4O7732cz0O0t02zRwWmYAcFgenFJ7CKYWncN1/XEejv5G1TfFFPde3rqc/1M9LzS/xUvNLAFhMFqZmTOX4vOOZmTuT43KOIy8lz+C7EBEZe0ZtON7S0gJAXt6e/3HPy8tLnmtpaSE3N3eP81arlczMzD2uKSsre8/PGD63r3D8pz/9KTfeeOOhuRGRCSgWi/FE3RMAnFWmkSqHVFYFZFZA17b4eJWjzjW6olEj3N1NwxcuZ2jjRsxpaZTe9iccU6YYXZaIiBgsHInS5g/Q3DvIrp4hWn1DtCcC75EBeGdfkHD0wL5U67ZbyE51kJ1qj289DrJTHeQk9rOGz3kceBxWhd4ist+KPcV8atqn+NS0TxGJRqjtqeWNtjd4ve11NrRtoLm/mU1dm9jUtYl7N90LQFFqETNzZ3J8bjwwn5I+BbNJawaIiHyQURuOG+k73/kOX//615P7Pp+PkpISAysSGVvebH+Txr5GXFYXC0oWGF3O+DN1Kbz8R6hZqXA8IdzZyc5LLiVQU4MlI4PSO27HWV1tdFkiInKYRaIxOvoC7OoZpLl3iF09g7T0DsWf9w7S3DNEm3+IA8m805zWRODtINtj3/18RNCdk+ogK9WO266PUyJy+FnMFqoyq6jKrOKiaRcB0NLfwhttb/BG2xtsaNvAlu4tNPU10dTXlPwWr8fmYUbujPgoltzjODr7aFxWrcMjIjLSqH03l5+fD0BraysFI74S39raysyZM5PXtLW17fG6cDhMV1dX8vX5+fm0trbucc3w/vA1e3M4HDgcjkNzIyIT0PCbsYWlCzUH73CoXBIPx7euhGgUzBO7GyTU2sbOSy4hWFeHJSebSXfcgaNSi5WKiIx10WiMzv5gsuO7pTcRgPcO0ZwIw1t9Q/vV7W01m8hLc1KY7iTf60p2eufsFYBnpdpxWLXgnYiMfvkp+ZxRdgZnlJ0BQF+wj7c63koG5m+1v4U/5E/OMAewmqxUZ1Xv0V2e7co28jZERAw3asPxsrIy8vPzeeaZZ5JhuM/n45VXXuHKK68E4OSTT6anp4fXXnuNE044AYBnn32WaDTK7Nmzk9d873vfIxQKYbPZAFi1ahVVVVX7HKkiIgcnFA2xsn4loJEqh82kOWBPhf42aN4ARccbXZFhQk1N1F9yKaGdO7EWFDDpzjuwT55sdFkiIvIhYrEYPQOhZHd3c+/gHqF3c+8QLb1DBCMfPtfbbIK8NCcFXicF6S4KvfEAvHDEfnaqQ4tXisi4lmpPTc4sBwhHw2zp3sKGtg3xwLz1DdoG23i7423e7nibv777VwBKPaXxmeW5x3F87vFM9k7WKBYRmVAMDcf7+vqora1N7m/fvp0NGzaQmZlJaWkp11xzDT/60Y+orKykrKyM73//+xQWFvLxj38cgOrqak4//XQuv/xybr31VkKhEFdffTUXXXQRhYWFAHz605/mxhtv5LLLLuNb3/oW77zzDjfddBO/+c1vDLlnkfHu5V0v0zXURaYzk5MLTza6nPHJaofyBbD5sXj3+AQNx4P19dRfcgnhXc3Yiospvesu7MVFRpclIiIj+IdC7OgYoK6jj7r2frZ37H70BcIf+nqTCXJSHRSkuyhIc1KQ7qTQ66Ig3UmB10VhupOcVAdWi4IcEZGRrGYr07OmMz1rOsuqlxGLxdjVvysZlL/R/ga13bXs9O9kp38nj257FACvw8vMnJnJUSzVWdUaxSIi45qh4firr77KqaeemtwfnvP9+c9/nrvuuovrrruO/v5+rrjiCnp6epg7dy5PPfUUTqcz+Zp7772Xq6++mtNOOw2z2cz555/P7373u+R5r9fLypUrueqqqzjhhBPIzs7m+uuv54orrjhyNyoygTy+PT5SZenkpVjNo/bLKWPf1KXxcLxmBSz4ttHVHHGBbdvY+V+XEG5vxz55MqV33YntfUZliYjI4RUMR9nZNZAIveMheF0iAG/3Bz7wtdmpdvK9iaA70eldkNgv8DrJS3Nityr4FhE5WCaTiaLUIopSizi7/GwAfEEfb7a9GZ9b3r6Bt9vfpjfQy/ONz/N84/MAmE1mKtIrODrraKZnTefo7KOpzKjEbrEbeTsiIoeMKRaLHdiS7BOQz+fD6/XS29tLWlqa0eWIjFoDoQEW3L+AwfAg95x5DzNyZhhd0vjlb4H/VxV/fu1WSM01tp4jaGjLFnZecimRri4clZWU3nkH1mzNShQROZyi0RgtviG2dySC7/Z+6jr62N7RT0PXwAcueJmd6qA8O4Wy7BTKcuLb8uwUSjLdOG2a7y0iMlqEoiE2d27evdBn+wY6Bjvec53NbGNqxlSOzo4H5tOzp1PuLVdzlIiMGgeS5eq/XCJyyPy74d8MhgcpTi3m2OxjjS5nfPPkQ8EMaH4Ttq6C45YZXdERMfj2OzR84QtEentxHFVN6e23Y9X6ESIih0zPQDAZfg+PP9nW3seOzn6GQu8//zvFbkkE36nJ8Ls8J4XJ2SmkOW1H8A5EROSjspltHJNzDMfkHMPnpn8OgNb+VjZ2buSdjnd4t/Nd3ul8h95ALxs7N7Kxc2PytS6ri2mZ05Jh+fSs6UxKm6T55SIy6ikcF5FD5vG6+EiVM8vPxGTSoleHXeXSRDi+YkKE4wOvv0HDFVcQ7evDNWMGJbf9CYu+zSMicsCGQhF2dA53f+8Oweva++geCL3v66xmE6VZ7t1d4NmplOfEg/Acj0N/94uIjEN5KXnkpeSxsHQhEF9QuamviXc632FjRzwgf7fzXfpD/cmO82GptlSOyjoqGZYfnX00hSmF+vtCREYVheMickh0DXXx4q4XATir/CyDq5kgpi6FF34B2/4NkRBYxm9nXv8r62i48kpiAwO4TzyR4ltvxZKaYnRZIiKjViQao6l7MDn6ZHcA3s+u3kE+aLBigdeZCL/jj4qceDd4cYZLC1+KiExwJpOJYk8xxZ5iTp98OgDRWJQdvh3JsPydjnfY3LWZvlAf61rWsa5lXfL1GY4Mjso+ao8Z5jnuHKNuR0RE4biIHBord6wkEotQnVlNubfc6HImhsLjwZ0NAx2w82Uom2d0RYdF3+o1NF59NbFAgJRTTqH4DzdjdrmMLktExHCxWIyOvuDuhTBHjEOp7xwgGHn/MShpTivlOanJLvDyRAA+OduN266PCCIisv/MJjPl3nLKveWcU3EOAOFomG0923in451kYL61eyvdgW7WNq1lbdPa5OtzXbl7dJdPz5pOujPdqNsRkQlG73xF5JAYHqmirvEjyGyGysXw5t/io1XGYTjuf+YZmq75GrFQiNQFCyi66beYHQ6jyxIROaL6A+E9FsLcnugGr+voxz8Uft/X2a1myrJ2L4Q5PAe8LDuVDLdNX2sXEZHDxmq2UpVZRVVmFedzPgCBSICarpo9RrLU9dbRNthGW0Mb/274d/L1RalF8ZEsiRnm1ZnVeB1eo25HRMYxheMictAa/Y1saN+ACRNnlJ1hdDkTS+WSeDhesxKW/Mjoag4p35NP0vTN6yAcxrNkCUW/+iUmu93oskREDotQJEpD10By9Eldx+4QvNUXeN/XmUxQnOGKz/8eMQqlPCeFQq8Ls1kBuIiIjA4OiyO54OewgdAAm7o2sbFjI+90xhf9rPfV09TXRFNfE6vqVyWvLfGUxMPyrOkclXUU1VnVeOweI25FRMYRheMictCe2P4EALPyZ5HrzjW4mgmmYiGYLNCxBbp3QMZkoys6JHoefpjm734PolHSzjmHwp/+BJNVf2WJyNgXi8Vo9QXY1OJjc7OfLS0+Nrf4qW3rIxx9/0HgWSn2RNd3vPN7OAAvzXTjtFmO4B2IiIgcOm6bmxPyTuCEvBOSx3xBH5s6N7Gxc2Oyw7ypr4kGfwMN/gae2vFU8trJaZOpzqpOhubVWdWk2LQ2kYjsPyUNInJQYrGYRqoYyZUOpSdD/Zp49/jsK4yu6KB1//0ftPzgBwCkf/IC8n/wA0wWBT8iMvYMBMPUtPaxuTkegG9q9rGl1U/PQGif17tslmToXZ4YhVKWnUpZVgpe9/hddFlERGSkNHsaswtmM7tgdvJYz1AP73a9y7ud8cfGjo3s6t/FDt8Odvh28OT2JwEwYWKyd3IyLJ+ePZ2qjCrcNrdRtyMio5zCcRE5KFu6t1DXW4fdbGfRpEVGlzMxTV0SD8e3rhjz4XjXX/5C609+CkDGsmXkfe+7mMxmg6sSEflg0WiMnV0DbE50gW9u9rO5xUd91wCxfTSDW8wmyrNTmFaQxrR8D9PyPVTleyhKd2kOuIiIyD6kO9M5pfAUTik8JXmsa6hrj7B8Y+dGWgda2d67ne2923ms7jFg94KhR2UdlZxjXpVZhcvqMup2RGQUUTguIgdluGv8YyUf07w3o1QuhVXXw/bVEOwH+9j8GmHHn26j/de/BiDzskvJvfZahUQiMur0DAQTAXgiCG/xU9PqZyAY2ef12akOqgs8iRA8jWkFHipyUjUKRURE5CBlOjOZWzSXuUVzk8c6BjviYXnnRt7tiAfnbYNt1PbUUttTy6PbHgXAYrJQkV6xe9HPrOlMzZyKw+Iw6nZExCAKx0XkI4tEI8l542eVaaSKYXKqIL0UenbC9hegamwtihqLxej4/c10/PGPAGRfdRXZV1+lYFxEDBUMR6nr6GNLi59NiU7wzc1+WnxD+7zebjVTlRfvAJ+W76G6II2qfA/ZqfqQLSIicqRku7KZXzyf+cXzk8faBtp2d5gn5ph3DnVS011DTXcND9c+DIDVZKU8vZypGVOpyqhiauZUpmZMJduVbdTtiMgRoHBcRD6y11pfo22gDY/Nw7zieUaXM3GZTPHu8fW3Qc2KMRWOx2Ix2n71K7puvwOAnG98nezLLze4KhGZKCLRGC2+IRq6BuKP7kF2dvazucXPtvY+QpF9L5BZnOGKd4Hne5hWEO8In5zlxmrRGCgREZHRJtedS647lwUlC4DE4tgDrbvD8kSXeXegOxmYP8ZjyddnObOoyqxiakY8LK/KrKIsrQybReuBiIwHCsdF5CN7fHt8pMriyYuxW+wGVzPBTU2E41tXQiwWD8xHuVg0SuuPfkz3ffcBkPfd75L5uc8aXJWIjCexWIyu/iAN3YOJ8HuAhq5BGrvjYXhTz+D7BuAAqQ5rMgCvyk+jOt/D1HwPaU59GBYRERmrTCYT+Sn55Kfks7B0IRB/z9DS38KW7i1s6drClu4tbO3eSr2vns6hTl7c9SIv7nox+TOsZisV3opkWD4cnGe5soy6LRH5iBSOi8hHEogEWLVjFaCRKqPC5LlgdYGvCVo3Qv7RRlf0gWKRCM033EDvPx8Ek4n8H/yAjE9daHRZIjIG9QfCydB7ZADe0DVAY/cA/e8zC3yY1WyiMN1FSaaLkgw3JZlupubFR6MUZ2iBTBERkYnAZDJRkFpAQWpBssMcYCA0QG1PLTXdNWzp2pLsLO8L9cWD9O4tLK9bnrw+25UdH8mSMZWpmfHxLJO9k7GZ9Yt1kdFK4biIfCRrGtfgD/nJdedyYv6JRpcjNheUfwxqnoKtK0Z1OB4Lh9n1ne/iW74czGYKf/oTvOeea3RZIjJKBcNRdvUMsnNk8N09QGNiDEpXf/BDf0ZemiMZfJdkuCjOdCf2XeSnOTUORURERPbJbXNzbM6xHJtzbPJYLBZjV/+uPcLymu4advp20jHYQcdgB2t3rU1ebzPbqEiv2GMsS1VGFRnODCNuSUT2onBcRD6S4ZEqZ5adidmkUGFUqFwSD8drVsK8bxhdzT7FgkGarv0m/pUrwWql6Fe/JO30040uS0RGgZ6BIJtb/NS0+tnc4qe2rY/GrgGafUPE3n/yCQBel43STHey+7s4EYKXZLopSnfhtFmOzE2IiIjIuGcymShKLaIotSg5lgXiXeZbe7a+p8u8P9TP5q7NbO7avMfPyXHlJLvLKzMqmZI+hTJvGQ6LFvMWOZIUjovIAfMH/Tzf8DwAZ5VrpMqoUbkkvm1cBwNd4M40tp69RAMBmv77q/Q9/zwmm42im36LZ+HCD3+hiIwrQ6EItW19bGnxsyURhG9p8dHqC7zva5w28x6d3yWZbooTnd8lmW7NABcRERHDuW1uZuTMYEbOjOSxWCxGU18TW7oTYXlXDVu6t9Dgb6B9sJ32pnbWNu3uMjebzJR6SqlIr6AivYLK9Eoq0iuYnDZZC4CKHCYKx0XkgD1d/zTBaJAKbwVVGVVGlyPD0ksgdzq0bYTaZ+DYTxpdUVJ0YIDGq6+m/8WXMDkcFN98M6nz5hpdlogcRtFojIbugUT4HX9sbvGxo3OASHTfreBF6S6m5XuoyvcwNc9DaVZ8/El2ql2zv0VERGTMMZlMFHuKKfYUc1rpacnjA6GBPUaybO3eSm1PLb6gjx2+Hezw7eCZnc8kr7earJSmlTIlfQpT0qdQkV7BlPQplKSVaJ65yEFSOC4iB+zxusRIlfIzFVaMNlOXxMPxrStGTTge6eun4UtfZPDV1zC53ZTccgsps2cZXZaIHEIdfYFE+O2npsXP5lY/W1v9DLzPYpjpbhtViUUvp+YntnkePOoAFxERkQnAbXMzM3cmM3NnJo/FYjE6Bjuo7amltqeWbT3bktu+UB91vXXU9daxsn5l8jU2s43J3slM8SYC84x4eF6cWozFrLFyIvtD4biIHJDW/lbWtawD4vPGZZSpXAprfgO1T0M0Aga/IYr4fOy8/HKG3nwLc2oqJbf9Cfdxxxlak4h8dIPBCDWt/mQQvqXVx5YWPx19+14U0241U5mbSlUiAK/KT2Navodcj0O/XBUREREZwWQykePOIcedw8mFJyePx2IxWgda3xOY1/bUMhgeZGv3VrZ2b93jZzksDsq8ZckO8+Fu86LUIq0ZJrIXheMickCe2vEUMWLMzJlJsafY6HJkb8X/Ac50GOyGxvVQepJhpYS7u9l52WUE3t2Exeul5PbbcR093bB6RGT/RaIx6jv72dLiZ1NiJviWFj/1XQP7XBzTZILSTHeyG7wqP42qfA+Ts9xYLfoAJiIiIvJRmUwm8lPyyU/JZ27R7tGU0ViU5v7mPQLzrd1b2d67naHI0D4XAXVZXZR7y5OheWVGJdMyp5Htyj7StyUyaigcF5EDMjxSRQtxjlIWK0xZBO/8E2pWGBaOh1rb2HnZpQRrt2HJyqL0jttxVmk+vcho1NUfZHOLj83N8ZngwwtlDoWi+7w+O9VOVb6Hqry05FiUqXmpuO16WykiIiJypJhNZopSiyhKLWJ+8fzk8Ug0wq6+XcnxLMPB+fbe7QyGB9nYuZGNnRv3+Fm5rlyqs6qpzqrmqMyjqM6qJs+dp2/6yYRgisX21f8jI/l8PrxeL729vaSlpRldjohh6nrrOPfhc7GarDx74bNkODOMLkn25a374V+XQ97RcOXaD7/+EAs1NVF/yaWEdu7EmpdH6Z134CgvP+J1iMieguEo29r7kkH4cEd4qy+wz+udNjNVefHFMYfHoVTle8hOdRzhykVERETkYIWjYRr8DXt0mm/p3sKO3h3EeG80mOnMpDozHpgPb4tTixWYy5hwIFmuWnxEZL8Nd42fUnSKgvHRbMoiMJmh9R3obQTvkRt/E9i+nZ2XXEq4pQVbcTGld92JvVjjd0SOpFgsRotvKNEJ7k+G4dva+whH990TUZrpZlq+h2kF8RB8Wr6HSVkpWMz68CMiIiIyHljNVsq8ZZR5y1g0aVHy+EBogJruGt7tfJdNXZvY1LmJbT3b6BrqYu2utazdtbvhymPz7BGWV2dVM8kzSYt/ypimcFxE9kssFuOJuicALcQ56rkz47PHG16BrSvhxEuPyB87tGULOy+9jEhnJ/byckrvvANbXt4R+bNFJqqBYHj34pgtfjY1+9jc4qd3MLTP6z1OK9X5aUwr8DAtMRe8Kt9DqkNvCUVEREQmIrfNzczcmczMnZk8FogEqO2uZWPnxmRgXtNdgz/kZ13LOta1rEte67K6mJY5bY8u8/L0cmxmmxG3I3LA9ElIRPbLm+1v0tjXiMvq4tSSU40uRz5M5ZJ4OF5zZMLxwbfeYuflVxDt7cVRXU3p7X/Gmpl52P9ckYkiGo2xs2uAzS0+No2YDf5+C2RazCbKs1OSneDViTC8wOvUV2FFRERE5AM5LA6mZ09nevb05LFQNERdT90eHeZburcwGB7kjbY3eKPtjeS1drOdqRlT95hjPiVjCg6LxvPJ6KNwXET2y/BIlYWlC3Hb3AZXIx9q6lJ49oew/XkIDYHNedj+qP5162j80pVEBwZwzZhByW1/wqL1GUQOSu9giA0NPbxW380bO7t5Y2cPfYHwPq/N8TiSo1CmJbrCp+Sm4rDq660iIiIicmjYzDaqMquoyqziPM4D4ot/1vvqebfrXTZ1bkqG5n2hPt7pfId3Ot9Jvt5qslKRXkF1VjXTMqdRkV5BubecHFeOmjfEUArHReRDhaIhVtavBOCssrMMrkb2S97RkFYEvibYsQYqF334az6CvtWrabz6K8QCAdwnnUTJH27GnJJyWP4skfEqFotR19HP6/XdvL6zm9fqu9na1veejnCH1czUPE9yYczqgjQtkCkiIiIihrGYLZSnl1OeXs7Z5WcDEI1FafI37RGYv9v5Lj2BHrZ0b2FL95Y9fkaqLTU5C73cW57cFnuKsZoVW8rhp3/LRORDvbzrZf4/e3ceJ0dZ5w/8U0ff13TPfWUOcpAESCAhIQIBFYiCBwoKuipqAP0tskLWdcFVVl33hYq7IosIaNDV348FcUXXixBRE0EIIRg2IcckZCaZ++z77qr6/VHd1d0zk0lCJtMz05/369VU1fNU1TwzkGLy6ae/z1hiDD6rD+sa1pV6OHQyBAFYdCWw60fAoS1nJBwPPfssev/+c0A6Dedll6Hxge9AtDCkIzqRWCqD17qDePWY3wjE/bGJNcJbKu24YIEXF7R4sWqBF4trnZAlsQQjJiIiIiI6OaIgotndjGZ3Mza0bgCgTwYZjA0aJVkOjB1AZ7AT3eFuRNIR7BnZgz0je4ruYxJNaHG3TAjOW92t/DQ7TSuG40R0Qr/p1EuqbGjdwHdu55JFG/RwvGML8M5v6oH5NAn+8pfo+8I/AYoC1zvegcZvfgOC2Txt9yeaLzRNQ48/bgThu475sb8/DEUtnhZulkWsaPLgghavHogv8KLaxTebiIiIiGjuEwQBdY461Dnq8LYFbzPaU0oKx0LHcCR4BEeCR9AZ7DReCSWBw4HDOBw4POF+DY6GfGhe0Y42t771WbnuFZ06plxENKVYOoY/HPsDAODqtqtLPBo6Je2XAZIZCBwFRjqA6iXTclv/E09g4MtfAQB43v9+1P/LVyFIrG1MBADJjIK9vSE9CM/OCh8KJyecV+e2YlVLdlZ4ixfL6t0wy5wVTkRERETlwyyZsdC7EAu9C4vaVU3FQHRAD80DR9AZ6tS3wU74k370RfvQF+3DC30vFF1XYakwZpgXzjZvcDZAFPi7Nk2O4TgRTemP3X9EPBNHk7MJK6pXlHo4dCrMDqD1EuCNP+izx6chHB/d/BiG7rsPAOD9yEdQ+4W7IYj8JYPK11AogV0FQfje3hBSilp0jiwKWN7gNmaFr2rxoqHCVqIRExERERHNbqIgosHZgAZnAy5pvKSoz5/wozPYOWG2eW+kF4FkAK8OvYpXh14tusYqWdHqaUWbWw/NWz2taHW3osXdwhItxHCciKb2myN6SZWr26/mCtJz0aINejh+6Fng4r9707fRNA0j//EgRh56CABQeeutqL7zDv43QWUlmVFwcCCMvx4LGIF4byA+4bxKhxnnZ0PwVS1enNvogc3MT1cQEREREZ0ur9ULr9WLC2ovKGqPZ+LoCnZNCM6Pho4ioSRwYOwADowdmHC/WnutEZbnapq3elpR76jnbPMywXCciI5rLDGGv/T9BQBwTfs1JR4NvSmLrwKe+Ufg2ItAIghYPad8C03TMPT1b2DsP/8TAFB9552o+tSt0z1SolklnEhjf38Yr/cF8XpfCHt7gzg8FEFmXK1wQQCW1Lr0EinZQLyl0s43joiIiIiIZpBNtmFp5VIsrVxa1J5RM+iN9BqheVewC12hLnQFu+BP+jEYG8RgbBA7+ncUXWeRLFjgXqCH5eOCc5fZNZPfGp1hDMeJ6Lie7XoWiqZgqW8p2j3tpR4OvRm+dqByETB6CNjzFHDhzad0uaYoGPjKVxH46U8BALX/9E/wffQjZ2KkRCUzEkni9b6QEYS/3htE12hs0nM9NhNWNFdgVTYIX9HsgctqmuERExERERHRyZBFGS3uFrS4W3B58+VFfcFkEJ3BTiMsz22PhY8hqSRxyH8Ih/yHJtyz0lo56WzzRmcjZJFR61zDf2NEdFy5kiqcNT7HXfAxYOuXgC1fBJrXAnXnntRlWjqNvru/gNCvfw2IIur/5auouO66MzxYojNH0zT0+ON4vS+EfX1B7M0G4oOhiQtmAvqimec0urGswYPlDW4sb3CjscLGWeFERERERPOAx+LBypqVWFmzsqg9o2bQH+lHZ6gzH5png/Ph+DBGE6MYTYxi1+CuoutkUUazq9kIy9vcen3zFncLvBYv/x4xSwmapmknPq28hUIheDweBINBuN3uUg+HaEb0hHvwzp+/EwIEbL1+K2odtaUeEr1Zqgo8/kHg8FbA2wrc+ifA5p36klQKvXduQuS55wBZRuM3vwH31VfPxGiJpoWiajgyHDFmhO/tDWFffwjBeHrS89uqHNkAPB+EVzotMzxqIiIiIiKazSKpCI6GjhYH58Euo7b58bhMLjS5mtDsakazq7lov9ZeC0nkGkXT6VSyXM4cJ/aDMMgAACAASURBVKJJ/bbztwCANXVrGIzPdaIIvP9R4NHLAX8X8PNbgQ89qbdPQo3H0fOZ2xF94QUIZjMa778frre9dUaHTHQqEmkFHYPhoiD8wEAIibQ64VyTJGBRjcsIwJc3erC03g2nhb8SERERERHR1JxmJ5ZXLcfyquVF7aqmYjA6OCE07wp1oT/aj3A6jP1j+7F/bP+Ee8qijEZnox6YO4vD8yZXE2yybaa+vbLEvwkS0QSaprGkynxj9wE3/ATYfBVw6Flg2zeAt9494TQlEkH3pz+N+Cu7INjtaP7ug3CsW1eCARNNbiSSRMdAGAcG8mH4ZAtlAoDdLGFpvTsfhDd4sKjWCYvMWRlERERERDR9REFEvbMe9c56vKXhLUV98UwcveFedIe7jVdPpAc94R70RHqQUTM4GjqKo6Gjk9672lZdFJY3u5rR5NS3PquP5VpOE8uqnASWVaFyc2DsAD7wqw/ALJrxpxv+xJWY55Pd/wX84tP6/od/CizeYHRl/H5033IrEnv3QnS50PzII7BfcH6JBkrlLpxIo2MwjIMDkew2jI7BMEajqUnP99pNRkmUZQ1unNPoQWulA5LIXxSJiIiIiGh2UlQFg7FB9IR7JoTn3eFuhFPhKa+3y/YJZVpyM9DrnfVlu0Aoy6oQ0WnJzRq/rPkyBuPzzcoPAb2vADt/APz8Fr3+uK8dmeFhHPvkRiQPHYLk9aL5B9+HbfnyE92N6LQl0goOD2UD8MEwOgbC6BiMoDcQn/R8QQAW+OxYXOvCsuys8HMaPaj3WDljgoiIiIiI5hRJlNDgbECDswFr6tdM6A8mg3pYXhCe54LzweggYpkYDvoP4qD/4MR7CxLqHfX4ydU/QZWtaia+nTmJ4TgRFVFUxag3fk0bS6rMSxvuBfpfA3p2Ak9+DOmr/xNHb/1bpI8eg1xdjQU/fAyWhQtLPUqaZzKKiq7RKA4ORApC8DC6RqOYpCIKAKDObcXiOheW1DqxuNaFJXUuLKxxwm7mry9ERERERDT/eSweeCwenFN1zoS+pJJEb6TXCM4Ltz2RHiSVJAaiA6iwVJRg5HMH/3ZJREV2De7CUGwILpMLlzRdUurh0Jkgm4EP/hh4ZD1Sh/fh6A3XIRNIwtTQgAU/+iHMCxaUeoQ0h6mqht5AvGgm+MHBCN4YiiClTFwgEwAq7CYsyYbfuRB8cY0LHrtphkdPREREREQ0N1gkC9o97Wj3tE/oUzUVw7FhDMYGy7a0ysniT4eIivymUy+pcmXrlbBIlhKPhs4YdwMSF/4rjt3xJSiJJMz1Xix4/P/BVFdX6pHRHBKMp7GnJ1gQgodxaDCMaEqZ9Hy7WcKi2uKZ4EvqXKh2WlgShYiIiIiIaJqIgohaRy1qHbWlHsqsx3CciAxJJYmtXVsBsKTKfBffsxfd//htKAkJloo0FqzrgJw6CoDhOE1O0zT0+ON45egYXuny45UuPzqGwphsWW+TJOCsamd+Jng2CG+ssEHkAplEREREREQ0SzAcJyLD8z3PI5wOo8Zeg9V1q0s9HDpDYq+8gu5PfRpqNArreediwTVmSJ2/An76MeBT2wEX31kmvUb4/v4wdnaNYddRP145OobBUHLCeQt8diyt1wPwxXUunF3nQkulAyZJLMGoiYiIiIiIiE4ew3EiMuRKqlzddjVEgcHWfBR5/gX0fOYz0BIJ2NesQdNDD0EyacAPDgHDB4CnPg7c9D+AxFrP5SacSOOvxwJ45agfr3SNYXd3ALFx5VFkUcA5jR6sbvFidasPq1q8qHax/BIRERERERHNTQzHiQgAEE6Fsa17GwDgmnaWVJmPwr//PXrv3AQtnYZj/aVoeuABiFar3nnD/wUefStw7C/A1nuAd9xb2sHSGdcXiBtB+CtdfhwYCEEdVyLFZZWxqsWLC7NB+IqmCtjMUmkGTERERERERDTNGI4TEQDg90d/j5SaQrunHUu8S0o9HJpmwV/9Gn133QUoClxXXYXGb90HwWzOn1C1CHjfw8CTfwO89BDQuAo49/rSDZimlaJqODAQ0sujdOmBeF8wMeG8Zp8Nq1t8RiC+qMbJGuFEREREREQ0bzEcJyIAwG+O6CVVrmm/BoLAMGy+0DQN/h//GINf/wagafC8972o/9evQZAnefwvfRdwySbg+X8H/ud2oGYZULts5gdNpy2WymD3sQB2dum1wv96LIBIMlN0jiQKWFbvxupWL1a3+LC61Ytat7VEIyYiIiIiIiKaeQzHiQiD0UG8PPAyAL3eOM0PSiSK/i99EeHfPQMA8H74Q6j94hchiFPUk3/bF4G+V4EjfwKe/Ahw6x8Bq2dmBkxv2kAwYSya+UqXH/v6Q1DG1UhxWmScv6ACq1t8uLDVixXNFXBY+GsAERERERERlS/+rZiI8EzXM9CgYWX1SjS5mko9HJoGyUOH0PN3n0WqsxOQZdR+/h/g/ehHT/ypAFECrnsMePQyYOwN4OlPAzf8P2CqQP0M0jQNSlpFMp5BKp5BKq4gGU8jFVeQimeM9nx/BslYBumkArvbjMpGJyqbHKhscKKizg5JmvsLzYYTafxvTxC7uwN4rTuA13oCGAwlJ5zX4LFiVasehK9q8eLsOjcklkghIiIiIiIiMjAcJ6Kikio09wV/9Sv03/PP0OJxyLW1aLz/27Cff/7J38BRCXzwx8Bj7wAO/hZ4/t+A9f/wpsaiKKoRWKcmCbiPF26n4hmkEnq7mtFO/IWO4+jeUWNflAV46xyoanTqoXmjA5VNTtjd5llbSiiVUXFwIIzdPQHsPqYH4W8MR6CN+5FIooAltS6szgbhq1t9aKywlWbQRERERERERHMEw3GiMnckeAT7x/ZDFmRsaN1Q6uHQaVBTKQzeey8C//UEAMDxlnVo+Na3IPt8p36zxguAa76l1x7/w78CDecDC68wujVNQzKWQTSQRCSQRDT7KtyPBpKIh9PT880JgNkqw2yTYLGZslsZZptsbM02GRa7vjVZJETGEhjpjWK0J4LRvgjSCUXf74kU3drqNKGy0YmqRid8jQ5UNTnhq3dANkvTM/aTpGkajo7G8FpPALu79dfrfSGkMuqEc5u8NqxorsD5zRVY0VyB5Q1u2M38XzoRERERERHRqeDfpInKWDAZxF3b7wIAvKXxLfBavSUeEb1Z6d5e9NxxJxJ79gAAqv72/6DqttsgSKce8CqKilgwhWjFexGt70Pk8P8i+v0tiLS6EY3JRvCdSU8MbY9HthSG2dLkoba1IOy2y0Xht8kiQTiNkiCaqiE8lsBobwSjvRGM9EQx2htBcCiGRCSN3oN+9B70G+cLAuCpsednmDc6UdXkhMtnPa1xFBqNJLNBeNAojxKITXwzwWMzYUVzBVY2ebByQQXOa6pAldMyLWMgIiIiIiIiKmeCpo3/cDaNFwqF4PF4EAwG4Xa7Sz0comkRSARwy9ZbcGDsAHxWH3644Ydor2gv9bDoTYhs24bez/8j1GAQkseDhvu+Cef69ZOem4pnJp3pHfHn22LhFHCS/2ewOGQ4KyxwZF9F+14LHB4LLHYZ4iyt9Z1JKRjr14Py0Z4oRrLheSIy+Yx3k1VCZUM+MK9s0ku0WGxTv9ccTyl4vS9ozAh/rSeA7rH4hPPMsojlDW6saKrAyuys8NZK+6wt+0JEREREREQ025xKlstw/CQwHKf5xp/w4+Znb0aHvwM+qw+br9qMhd6FpR4WnSJNUTD84IMY/d7DAADrueei6f5vw9TYaJwz1hfFvuf7cGzfKCL+JNJJ5aTuLYoC7BVmPex2qHAcfRpOrReOtqVwXvFpOLLB90yXHpkJmqYhFkoZgflor16WZaw/etz65y6f1QjMbR4zRiIp9Phj6A7E0T0WR384AVXVoAn59x00ADVuC1oqHWitsqO1yoFGnx0mSYQgQA/Es1tBwLh9wTgndyybRTi9FlgdJobpREREREREVLYYjk8zhuM0n4wlxnDzszfjkP8QKq2VeGzDY5wxPgdlRkfR+7nPIfbiSwAA74c/jJq7/hGi2Yx0UsHhXUPY93wfBo4EJ1xrtsnZWd7m7Axv64SZ3zanqbh8yJE/AT95H6CpwLu+Daz+5Ax9p7OHoqgIDMbyoXmfXr884k+WemhFJJMIZ4UFTp/+79bpnbi12GUG6ERERERERDQvMRyfZgzHab4YjY/i5mdvxuHAYVTbqvGDDT9Au4fB+FwTe/Wv6L3zTmQGByHYbKj/6lfhefe7MHwsjH3P96Hj5QGkEvoMcUEU0HpuJc5eVw9fvQOOCgtMljc52/v5bwO//zIgmoBPPgM0rZ6+b2qO8UdT+PPhEWzvGMZLB4aBYBrVioBqRYRVEyCLAjxWGR6bCR6bCW6rCWZJgD51XIOmadA0QNOQPdZnrCO7nayv+HhiXzqROekFUGWLBJc3W/omG5i7CgN0nwVmK5clISIiIiIiormH4fg0YzhO88FIfAQ3b7kZbwTfQI2tBps3bEarp7XUw6JToGka/D/+MQbv+xaQycDc3o6a+76No6MO7Hu+D8PHwsa57iorll3SgLPX1cPhmabFGzUNePIjwIFfA+5G4NZtgLN6eu49y2UUFX/tDmB7xzC2dwzjf3uDKPy/p80k4aJ2H9YvrsZbzqrCwhonpGlauPOUxplWjBry+iuByJi+DfuTiPqTSERPLkA3WyU4fZPPPHd6LXD6rDDNw7I6RERERERENLcxHJ9mDMdprhuODWPjsxvRGexEjb0Gj214DC3ullIPi06BEomg/5++iPCWLdAAKBs+hMHz3oc3XhtFJqUCAERZwFkrq7HskgY0LvYWl0WZLokQ8P23AaOHgNZLgY/+ApDm5wzjHn8M2zv02eEvvDGCcCJT1H92nQvrF1dj/aJqrG71wmqaG0FxOqUg6k8iXBCcRwLJ/L4/iVQ8c+IbQV+Q1eGxQJQECIJQvBVRsC9AFIu3gohJ2safhyn6BABa/k2K7Db3a40+ux7QjI7J+3OdmtGv/6OgK39ddt/ps8JXb4e33gGb03wqP34iIiIiIiI6wxiOTzOG4zSXDcWGsHHLRnSFulBrr8VjGx7DAveCUg+LTkHiYAd6P/tZRHuGMNCwDkPnvBvBmMno99bZseySBiy5qG5mgrqhA3pAno4Cb/k74Kp/OfNfcwbEUwpe6hzF9o5hbOsYxpHhaFF/hd2ESxZW4bLF1Vi/uBq1bmuJRnrmpRIZPSwP6GF5ZCyRn4nuTyLsTyJzkou7znc2lwm+egd89Q54s1tfgwM2F0NzIiIiIiKiUmA4Ps0YjtNcNRgdxMZnN+Jo6CjqHHV47KrH0OxuLvWw6BQEfvFL7P/3n6C38kIMV58PVdRnacsmEQtX1WDZJQ2oO8sz84srvv408NTH9f0P/Cew/NqZ/frTQNM0dAxGsK1jCNs7RvBy1xhSGdXol0QB5zdX6LPDF1fj3EZPSUqlzEaapiEVzyDiTyIWSkFVNWiqBlXJ1lNXAVVVoanQ2yfrz+4bfaoGzWgDNEWDqmlF1+fb9OsFAYAAGP9Wsn8O8u3CuH69U0DBdbk/OwXHRf25c7LHmgaERuPw90cRGkkc92dkdY4Pze3wNThhc5m4GCoREREREdEZxHB8mjEcp7loIDqAjVs24lj4GBocDdi8YTOaXE2lHhadpMhwGK98/UkcGXYibq8x2quanVh2cQMWr6mFxW6a4g4z4NkvAn/5D8DsBG75A1C9pLTjOQn+aArPZxfS/POhEQyEisPNxgob1i+uwvpF1XjLwip4bCX+GdOslk4q8A9E4e+PYqw/irH+GMb6IgiNJgpKthSzOOTi0LxB37e7zQzNiYiIiIiIpgHD8WnGcJzmmoHoAD655ZPoDnej0dmIzRs2o9HZWOph0Qmoqobu/WPYu/UNHN0fhCboNaxlUcHitzRh+aWNqF7gmj0BmpIBfnIt0PVnoGqxHpBbXKUeVZGMouK1ngC2ZWuHv9YTKFpI02oSsbatEusXV+OyxVU4q9o5e36+NGelUwoCA7FsYB7FWJ8eoAdH4scPze1ycWmW7L6jgqE5ERERERHRqWA4Ps0YjtNc0h/pxye3fBI9kR40Ohvx2IbH0OBsKPWwaAoRfwL7/9KPfS/0ITKWNNo90WNY/vY2LL/xYpits3TRy8gw8Mh6INwHLH0P8MEf58tUlEhfII7tHcPYfmgYzx8aQWjcQpqLa51G3fALW31zZiFNmvsyKQX+wZgRlufC89BwHMf7bcxsk43FP+0us7E4qSBg3FZfqBRCwSKmk5yTWyh1/PnGdYXnZO9jskhwV1ln73OIiIiIiIioAMPxacZwnOaK3kgvNm7ZiN5IL5qcTXhsw2Ood9aXelg0CUVRcXTPKPa90Idje0eNYExOR1E3+DJaXSNY9u/3wFQ/B/79de8EfvhOQE0DV3wFuOSOGf3yibSCl46MYnvHCLYfGsbhoUhRv8dmwiWLqnDZompcurgK9R7bjI6P6EQyaQWBQX2mub9fD8/H+qMIDsehqbPn1zSr0wR3lQ2eKivcVTa4q236tsoKp9eqh+xEREREREQlxnB8mjEcp7mgJ9yDjVs2oi/ah2ZXMx7b8BjqHHWlHhaNExyOY98LfTjwYj9iwZTR7lMGUHfwGVSP/BVVH74RtZ//BwhmcwlHeop2bgZ+swkQROCjTwPtl5+xL6VpGg4NRbC9YxjbOobxcucYkgULaYoCsLJgIc0VTRVcSJPmJCWtIjCUL8+SimX0hUk1QNX/AVVDtk1fqFTLLmKqGe3ZrZpf7BTZhVCh6eWctBPcIxFLIxnNTDlWURLg8lmLAnNPVX6/5GskEBERERFR2WA4Ps0YjtNs1x3uxsYtG9Ef7UeLuwWbr9qMWkdtqYdFWYqiout/R/D69l507/cb7TaXCWe1CfD897/B0nsAgt2O+n/5KjzXXFPC0b5Jmgb84m+B1x4H7JXAp7YDnulbADYYSxsLaW4/NIz+YPFCmvUeK9YvqsZlS6px8VlV8DCII5pWyXgGoZF49pWYsK8qU/86abHL2aDcBk+11dh3V9ng9FkgSeK0jVXJqEglMkjFM0jFlfx+Qslus+3Gvt6XjGeQTmSQTiow22RYHSbYnCZYHSZYndlXdt/mNMHiMMHmNMPikKd1/EREREREdHoYjk8zhuM0m3WHuvHJZz+JgegAWt2t2LxhM2rsNaUeFgEIjyWw7/k+7HuhLz9LXAAWLPVh6cX1cP/1txj99r8BigLzwrPQ9J3vwHLWWaUd9OlIx4HNVwED/ws0rgI+8TtAtrypWymqhtd6AnoY3jGM3d0BFFaXsMgi1rT5cNnialy2uBoLa7iQJlGpqKqGaCBZFJgHh+PGcTycnvJ6QRTg8ln0sLwyP/vc7jYjnVTyYfb4kLsw6C7oU9LqlF/vTDDbZCM8LwrUC7Y2Z3HILskzF6jnPg2gKvqnBlSl+FiSRZhtEmSuwUBERERE8wDD8WnGcJxmq2OhY/jElk9gKDaENk8bNl+1GdX26lIPq6ypqobufWPYu70XR/eMGLXEbS4Tll3cgGWXNMBhyaD/C19AeOvvAQDud70L9V/5MkSHo4Qjnyb+LuCRy4BEAFj1ceDd3znpSweCCb1USnYhzWC8OFBbWJNfSHNtGxfSJJorUokMwqOJfHCeC9GH4wiNJs5YmC1bJJitEsxWGWabDLNVgsUmw5Td19tkvS17bLHJkM0iUvEM4pE0EpE0EtHsNrsfL2hLxqYuNzMVk1UqCtMtDhMEEdAKAmxV1YqPc23GsTrueHx//vhkiLIAi002fhaFW7NNhsUuGz9Pi72wX4LFZoLZJkHkLHoiIiIiKjGG49OM4TjNRl3BLmzcshFD8SG0e9qxecNmVNmqSj2sshULpbD/L314/c99CI/mS340LqnA8ksb0b6yGpIsInHgAHo++1mkjx6DYDKh9gt3o+LGG+fXrOfDvwf+7/UANOA9DwIXfHTS0xJpBTu7xoza4R2DxQtpuqwyLl1UhfWL9EC8oYILaRLNN5qqIRZKFQfmIwmERvUZ5yaLBLOtMOCWi4/H9xmh98yEtKqiIhnL5EPzwjB9km08kkYymsZs+e1bEAUIIqBmpm9AslksDtRtMsy5IH1csG53meGptcHltULg2hBERERENE0Yjk8zhuM023QGO7Fxy0YMx4exsGIhvn/V9xmMl4CmaejrCGDvn3tx5K/DRs1di13G2RfVY/n6Bnjr9NngSiiEwFM/w/ADD0BLJiE31KPpO9+B7dxzS/ktnDnb7gP++DVAsgDvexhY+h5oooQ3hqNGGL6jcxSJghmjggCsaNIX0rxscRVWNFVA5gxEIppnNFVDMp4pCs7jkTSSMT00F0UBoiRAyG5FSYAo6seSJELIHhvnSfl94zrjWDSuLbqXJEAUBCOQVlUN6UQGyXi+HnsyV7omtx/LIJkoaIsV7CcUZJLKm/6ZyCYRnho7Kmrt8Nbp24paO7y1dpht8nT96ImIiIioTDAcn2YMx2k2ORI4go3PbsRIfAQLKxbiB1f9AJW2ylIPq6wkomkcfGkAr/+5F/6BmNFe2+bGOesbsXBVDWSzBE3TkNi7F/4nnkDoN7+FltBnlDvWX4qGb3wDstdbqm/hzFNV4IkPAx2/AwD4TbV4QrsSj0YugR/552it22LMDL9kYRW8DnOpRkxERKdBUVSk48rEUH2SbS5cjwaSCA5PvaCr3W3Ww/I6PSzPBefuSitLuBARERHRpBiOTzOG4zRbvBF4Axu3bMRoYhSLvYvx/au+D5/VV+phlQVN0zDUFcbe7T049MqQUSNXtkhYsqYWyy9tRPUCFwBAjUYR/M1vEHjiSST27TPuYVm0CN6PfAQVH7gegjg//0IfjKWxs2sMOzpH8dqRXlw+9BPcKD4Hn6CXTElqJuxwvBXDy2/COasuw+JaLqRJRFTOVEVFaDSBwGAMgcEY/IMxBAb0/VgoddzrREmAp9o2bra5A95aO6xO0wx+B0REREQ02zAcn2YMx2k2OOQ/hJufvRljiTGc7Tsbj175KLzWeTzzeJZIJTI4tHMQe7f3YqQ7XxO7stGBc9Y3YvGaOuMj34mODgSeeBLB//kfqBH9XMFshusdG+C98UOwnb9y3gXBo5EkdnaN4aUjY9jROYYDA6EJtXSXVJnwfyp34+2hX8Dlfz3f0bQGWPspYOl7AJkzxomIqFgynjFC88BgDP5saB4Yik25kKvVYZp0trmn2gZJPvU3pzVVg6KoUDP6IqeKokLJ6Me59gnbjKqfm1GhKiqUjL4wqmzWF4o1WSSYsnXy9X0JZosMyTQ/3zwnIiIimkkMx6cZw3EqtQ5/B2559haMJcaw1LcUj175KCqsFaUe1rw22hvB3u29OLhjAOmEXkdVkkUsXFWDcy5rRG2bG4IgQE0mEX72Wfj/6wnEX33VuN7UsgDeG26E533XzqvyKUOhBHZ06jPDdxwZw6GhyIRz2qsdWNvmw9q2Sqxp8+UX0tQ0oGcn8PKjwOu/ANS03u6sBVZ9Alj1ccBdP3PfDBERzUmaqiHsz882DwxkZ5wPxhDxJ497nSAKcFda4fRZoamaEVofd5tRoSh6qD1TREmAKRuYm61ydivBZJGzAbqU7c8eT+gruMYqQZLFeffGPBEREdGJMByfZgzHqZQOjh3ELc/eAn/Sj2WVy/DolY/CY/GUeljzUiat4I1Xh7F3Wy8GjgSNdk+NDeesb8TZF9UbH9VOHT0K/5M/RfDnP4cSCOgnShJcb387vDfeAPtFF82L0im9gThezgbhOzrH0DkSnXDO4lon1rZVYm27D2vafKhxWU984/AAsOs/gVceAyIDepsoA8veC6y5FWheq6/QSUREdArSSQWBoUlmmw/GkD6NRUML5RY4lSQBoizmt7Kotx9nK4gCMikF6YSCVFJBOpFBOqkglVCmnAl/OkRRMEJyUdYXddXHqi/YOmE7/nsyvrfx54vGIq8T7l1wrZwN+c02CWabDIl14omIiGgGMByfZgzHqVQOjB3ALc/egkAygOWVy/HIlY8wGD8DAoMxvP7nXux/sR/JaAaA/pfJtpVVWL6+EU1LvBAEAVo6jfAf/4jAE08i+pe/GNfLdXWo+OAHUHHd9TDV1pTq2zhtmqbh2FjMCMJ3dI6ixx8vOkcQgGX1bqwpmBnuO51FNDMp4MCvgB2PAt0v5dvrztND8nOvB0y2N39/IiIi6P+PiwVT8A/GEA0kJ4TX40Pfoq0R/OrniOL0v3mrKqoRlKcTir6fzBj76URG70vmwvV8X6ogZM+dm0mdmbD9dEkmEWabXk7GYpON0jIWmwxTtl3vl7P9+nFuP3fNmfh3QERERPMHw/FpxnCcSmHf6D7cuvVWBJNBnFt1Lh6+8mG4zfzvb7ooioqu10awd3sveg74jXanz4LllzRi6cX1cHgsAIB0fz8CT/0MgaeeQmZ4WD9REOBYfym8N9wI5/pLIchyKb6N06JpGt4YjmJH5yhe7hzDjiNjGAglis6RRAHnNHqyZVJ8WN3qg8d2hhY6639NL7my52dAJjsOmxe44GPAhTcDFQvOzNclIiKaZ1RVM4L0dDIDJZMrGZMrF3PytdJVRS8vkz/vBOVoslsloyKTUpCKT39YL1skWHJBei5Ut8pGsG6yZY+z7SZrfga7yZKdyW6V31QNeiIiIpr9GI5PM4bjNNNeH30dtz57K0KpEM6rOg8PX/kwXGZXqYc156USGfS/EUTPAT86Xh5ALJjSOwSg5ZxKnHNpIxacUwlRFKCpKqLPPw//E08i8qc/Aar+lzqpshIV112Hig9+AOamptJ9M2+CqmroGApnZ4brgfhIJFV0jkkSsKKpIlsipRKrWrxwWmY4+I+NAa/+GNi5GQge09sEEVj8TmDtrUDbZSy5QkRENIeoiopUQg/K89tM8fFUfYkMUnEFSmZ6Q3ZRFowQ3VQQphcd27J1VntCCQAAHy1JREFU3Au25txxQfjOkjFERESzB8PxacZwnGbS3pG9uHXrrQinwlhRvQIPX/EwnGZnqYc1J6USGQwcCaL3YAC9HX4MHQ0XLaplc5mw7OIGLLukAe4qvXRHZnQUgf/+OQJPPol0b69xrn3NGnhvvAGuK66AYD6NMiIzQNM0jEVT6BqNoWskiqOjUewfCGNn1xgCsXTRuRZZxPkLKvSa4W0+nL/AC5tZKtHIx1EVoOMZYMcjQOe2fHvVEmDNLcCKDwEW/tkgIiIqF0pa1YPybFieimeQjGeMsjO5/WS8oBRNdpsqOD4TZWckkwiTWTJqsefqzItithxP0XH2JQoQpIK23HG2fE/+WCg6lox75e4LaCr0TwaoanarQctuJx6rJ+gvaDOO1XHHGjRNgygKkMwSZJMI2SRCMrbSuGMRskkad3wS55r1cke57YkWmNXUgnEXbcf1ZcefO879/Iw2RYOq5X8muXM0lCY+ESURNpcJdpcZdrcZ8mz5fZ2IaJZiOD7NGI7TTNkzvAef2vophNNhnF9zPr53xffgMDlKPaw5I51SMHA4iN4Ovx6Gd4WhqsWPOHeVFQ2LvWhZXom2FVWQZFGvQ7pzJwJPPInQ1q1AWg+QRbcbnmvfC++NN8LS3l6Kb+m4NE3DaDSFo6NRdI7Estsojo7G0DUaRTiRmfQ6m0nC6lavXialvRLnNXlgkefAL9fDB/WSK7v/C0hnFwW1uIGVHwYuvAWoWlja8REREdGcUVjjPRXP1myP50P09Lgw/Xgh+5lcTJUmlwvQARQF37kAu1yYrBJsLrMRltvcZthdpoL97NZthskinfBNBSKi+Ybh+DRjOE5nkj/hx/6x/dg3ug+b92xGJB3BBTUX4KErHmIwfgKZlIL+I0H0dQTQe9CPwa4QVKX4keb0WdC02IvGJV40LK6AuzK/uKMSDCL4y1/C/8STSB05YrRbV5wH7w03wv3Od0C0lW4xSE3TMBJJFQXfnaP6TPCjIzGEk5MH4DkNHitaqxxoqXTgrGoHVrV4cU6jB6a5/LHfRFAPyF9+FBh7I99+1tuBtZ8CFl4JiHP4+yMiIqI5RVFUPUyPZ5BOKfmZ1bnZybn9Ccdqfgb28WZrZ2d5j7/n+FnemqrpM8knm4VuzFQXJ8xcP/5MdnHqme1i7n4watVnUgoyaRVKWi3aZtLKhDYlPcm5KSV7H9XYZjIqlJSC6Uosct+vIBbu57eCiEnaCs9DyULmTFpFPJxCLJyCmjm1H4hsEmFzm/UwPRui54Jzoy27b7HLDNKJaF5gOD7NGI7TdBmODRtB+P7R/dg/th/90f6ic1bVrsJDb38IdpO9RKOcvTIpBQOdIfQe1GeGD3aFJvxy6PRa0LjEi8bFFWhc7DXKpQB62JwZGkLy0GGEfvtbhH77W2gJfeFHwW6H513vgvfGG2BdtmzGvidN0zAcSerBd7YESr4cSgyRKQJwQQAaPDa0VtnRUulAW6UDLZV2tFU50Oyzw2qaAzPC3yxVBY78AXj5+0DHFiD3EVdvqz6T/Py/0RfzJCIiIqI5TVFyAbpqBPHA5AH3VOH3fKBpGlLxDGKhFOLhdHabQiykB+fxUKqo7VRLCImyoM86N14mSLJYUC5I35cK9sVx+1P2Fd5LnPycwvMY1BPRm8VwfJoxHKdTpWka+qP92D+6H/vG8kH4SHxk0vNb3C1Y6luK86rPw/WLr4dNLt1s5dkkk1YwaIThAQx2hiYsxOSosKBxiR6E62G4FVo6jVRXF1KdXUh1HkHyyBGkjnQideQI1Fis6HrLokWo+NCN8LznPZCcZ6Z+dSKtYCCYQF8wjh5/3Ai+c2F4NPsL/mRyAXhbVT74bql0oLXSPv8D8JM1dkRfvPOvP9FnlgOAbANa1gGVi4CqRUDlQn3rauDMciIiIiIqC+mkUhygF+zHc4F6NmRPxaf+VGopiKIAUc6H5cVbEZIs5LeyqAfzuXMkUb92/PY49zDasp+QEAQUfcLiZD9tcNw3aiQBolC6N2o0TQO07JSibAyoQf80hDhP3jwiKsRwfJoxHKepqJqK7nD3hCA8mAxOOFcURLR72rHUtxRLK5diqW8plviWwGV2lWDks4+SVjHYFURvtkzKwJGJYbjdY0bjYi+alnhRWyvCGuxBqrPTCL+TnZ1I9/ToM4snI0kwNzfDtnIlKj74QdjOX3laMxJSGRWDoQT6AnH0ZwPwgWACfYEE+oN621g0NeU9BAForLChtdKB1iq7vs3uN/vsc6Mm+GyQigJ7ngJ2PAoMvT75OSY7UHlWQWi+SK9XXrkQsPDPIRERERGVp0xayc9GzwbniUgaSiZfAkhVJu4rhceFC7hmcn3Hu37ccRnVjDfCdUmAKOgBuiAI+oKv2R+Dpun/MH4qhcG2sZ/ryjYUnFN43cmMp3gBXKloIdyi9lNdVHeS9tw+Px1AZxLD8WnGcJxyMmoGXcGufGmUsf04MHYA0dwCgQVkUcaiikVGCL60cikWexdzVngBJaNisCuEvg4/eg4GMHAkOGFRI7vbjPomE6ptUVSmumHq7UC6Uw/CleDENyByRKcT5rPaYWlrh7mtDeb2Nlja22FuboZgNp/U+DKKisFwEgPBuBF2F4be/cEERiLJk6qDaDNJqK+wGiF44SzwZp+NAfh00jSg71VgYC8weggYOaxv/V2AOsWMGFd9foZ54YzzigWAyH8/RERERERniqYV1NXPBvJKRg/QFeO4YJvRoCiTtI/vz6h6SD/Z1rh//uvkavxrWn6h1/zirwU1/zVM3qeirBaHPS0CIGVn7+theXZf1sPzwln+uWMp9wmBwuPcNQXHojx5vyhnF/TVNP1NBC37fkPuTYdsW/G+ZpyjZeMKvS93zclfr1+LgjdBCtqQva7oTZKJ/YBmHOfuX9BV8P3l3xtZ8+42SHN57bE34VSyXHmGxkQ056SVNA4HDhcF4R1jHUgoiQnnWiQLlniXFAXhCysWwiydXAg7HyiKimQ0g0QkjUQ0hUQkg3gkhUQ0nW3Lb+PZbTKWmfBOttWsotoShC/aBVffbpheeA1COg0AiGdfBkGAqaEB5vZ2mNta9fC7rR2W9jZIVVVTvgutqBpGIsn8jO+APuM7N/u7P5DAUDiBk/m9xiyLqPdYUe+xosFjQ32FFfUeGxoqrKhz61uPzcR3xWeKIACNq/RXISWtB+Qjh7Kh+SFg9LC+jY0A4X791fXn4uskC+Brz84wHzfjnHXNiYiIiIhOmyDo9colCYB5bk9MyYWihcF5YXiuh+9aQRCfDV0F/a8yQMHirwVtgJDfF4oXiNV3s/3j75HrFwBB/0fBYPUFX5WMUrQgrpJdUHfiQrsT25TjLL57vAV4C7+2klGhZAAkjl9qlE7fhVe3AnP7j9UZVVbh+He/+13cd999GBgYwIoVK/Af//EfWLNmTamHRTMgpaQQToURToURSUeKthP2UxH0R/txKHAImUlmmdpkmxGAL6tchqW+pWjztEEW588fJyWj5sPsSD7MPl7InYik33SNOrMWhzf0BjyDe+ENdMAeG8T4CFmwWvXZ321tEBa0QGlqQbKhGbHqBvhFGdGkgmgyg2gqg2gyg8huP6LJYcRSGUSyfZFkBrFUBtGkgkgyA380hcxJJN8mSUCtOx961+UCcI8VDRX61ucwM/ieCySTHmxXLZrYF/fnZ5gb4flhYOwNQEkCw/v113j2quKa5pWLAHe9Xr7FZMtu7YBsZa1zIiIiIqIyIAjZkFoUmEeOo6n6jP5MKj/LX0mr2ZA821ZwrGS0fN+448J+9aTO1/cFwKj9LgiF+3qdeGNf0E8QhEn6RCD3ZoQgCnqGkW039oXC+2TfrMi/52G861H0xgVy+9mTBCG/X3idUPB1puzX7ztfFiU+U8qmrMqTTz6Jj33sY3j44Yexdu1a3H///Xjqqadw8OBB1NTUTHkty6qUVkbNIJKKIJzWg+tIOoJQKjTpfmHAXdiXUqeu+Xw8LrMLy3zLimaEt7hbIAqlCbk0TX9n2XjnNaXk39nNrtw+8Z3die/ijn9nN53IIBFJIhHJIBnLIJ1+k48FTYWcicGUjha8IjBlstt0FOZ0FHI6CnP22JQOG2F4zOXFWGU9hr116HfXottVg6OOavTILkRSKuLp6X03WRSAWrc+47u+woYGjz7ju/C4ymnhAiXlTFWAwLH8DPPCGefh/lO7l2wrCMxtgNk+LkTP9Tsmactd45jYZgTwFui/pWWnl/ANGyIiIiIiIipDrDk+ibVr1+LCCy/Egw8+CABQVRXNzc24/fbbcdddd015bTmH43v37sWf//sZACo0aNA0FaqmQYMKQDP2c30assfZ+ktGX64/e46qFbQf93wFiqZCRTYQ1YT8O2kA8p8FKmwVitox7gwJJkiCCbJggizq+5IgQxbM2a0JkmiCCWbYZRfMyNYHL6gThdxHngprPWkFtZ4Kj4HifqC4lpSmj66wT9UEaJoIVROgaiI0iFA1Sd9CmrnAS1PzAXdBuJ3fThZ+xyBk66TEJTPisgUxkxUx2YKYbEFczu6brIjLFsRlC4ZsXvS4qtHjrEbMdHL12CVRgMMswWmRYbfIcFhkOC0SHGZ932GR9Daz3u/MHhf2e+1m1LgskMus7hZNo2Q4G5of1re54Dw2CqRjQDoOZCaWYZo5uZBcLAjNs/tGuzBFX2H7uHuNv0aUAFHWZ+eLcv5YHHd8uv3GOdnjCZ8zISIiIiIioiJnX1N262ix5vg4qVQKu3btwt133220iaKIK664Ai+++OKE85PJJJLJpHEcCoVmZJyz0b4XdkPtv6CorTBKnI9/tJTsq5SR1gTHyX9EJQVRTRsvSc1AVFMQ1Uy2LwOpoL/oXKX42JSJQVOSyGgppDUVSUE1wu2QbEEsF2xbrIg7HIjJPsRkK+KmfF/cZIVisUGxWmEym2CWRJhkEWZJhFnOvqTibYVZQqNZxtuOE2I7LTLsZhnOgtDbIossY0KlZ3EBDefrr+NRVSAT14PyVFTf5oJzYz9W0DauLxWb5Pz4xGsmlVsdRj1OPxEREREREc17/zQAiCc3GbEclUU4PjIyAkVRUFtbW9ReW1uLAwcOTDj/3nvvxVe+8pWZGt6s5qn0IRjvxPh0dqqjE7efqK/4HKHosw35KdbFd9Am9OfvoBWfp+X3J+3PXS8gP+3b6DvefnZFYWPo2ZWBCwaf6y9uy3+Dxt1EvU0TNUAUoAkAJL1dE0VAErIvEYosQ5EkaJIEQZKgSTIgy4BkgSC5geyxIEuAJEGQZECSIcgyBFmEIMkQTDIESYZos8FsNRshtkkS4ZVE1I4PtScJuHP7kigwtCYqJIp6KRSzA3BUnZmvoWn6DPVMIrdUOvQHkFrwKjg2+sZvx/er+fsdt08FNEUvP6Nm8i8lU3w82etE50zZr+gLrBIREREREdHUSlQaeK4oi3D8VN19993YtGmTcRwKhdDc3FzCEZXOhuuvBq4v9SiIiOi4BCFfh5yIiIiIiIiITlpZhONVVVWQJAmDg4NF7YODg6irq5twvsVigcVimanhEREREREREREREdEMK4t59WazGatWrcJzzz1ntKmqiueeew7r1q0r4ciIiIiIiIiIiIiIqBTKYuY4AGzatAk33XQTVq9ejTVr1uD+++9HNBrFJz7xiVIPjYiIiIiIiIiIiIhmWNmE4zfccAOGh4dxzz33YGBgACtXrsQzzzwzYZFOIiIiIiIiIiIiIpr/BE3TtFIPYrYLhULweDwIBoNwu92lHg4RERERERERERERTeJUstyyqDlORERERERERERERFSI4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUdhiOExEREREREREREVHZYThORERERERERERERGWH4TgRERERERERERERlR2G40RERERERERERERUduRSD2Au0DQNABAKhUo8EiIiIiIiIiIiIiI6nlyGm8t0p8Jw/CSEw2EAQHNzc4lHQkREREREREREREQnEg6H4fF4pjxH0E4mQi9zqqqir68PLpcLgiCUejgzLhQKobm5Gd3d3XC73aUeDhHRCfG5RURzDZ9bRDTX8LlFRHMNn1vlQ9M0hMNhNDQ0QBSnrirOmeMnQRRFNDU1lXoYJed2u/nwIKI5hc8tIppr+NwiormGzy0immv43CoPJ5oxnsMFOYmIiIiIiIiIiIio7DAcJyIiIiIiIiIiIqKyI335y1/+cqkHQbOfJEm4/PLLIcusxENEcwOfW0Q01/C5RURzDZ9bRDTX8LlF43FBTiIiIiIiIiIiIiIqOyyrQkRERERERERERERlh+E4EREREREREREREZUdhuNEREREREREREREVHYYjhMRERERERERERFR2WE4TlP67ne/i9bWVlitVqxduxYvv/xyqYdERGTYvn073v3ud6OhoQGCIOAXv/hFUb+mabjnnntQX18Pm82GK664AocOHSrRaImo3N1777248MIL4XK5UFNTg2uvvRYHDx4sOieRSOC2225DZWUlnE4nrrvuOgwODpZoxERU7r73ve/hvPPOg9vthtvtxrp16/C73/3O6Oczi4hmu69//esQBAF33HGH0cZnFxViOE7H9eSTT2LTpk3453/+Z7z66qtYsWIFNmzYgKGhoVIPjYgIABCNRrFixQp897vfnbT/m9/8Jh544AE8/PDD2LFjBxwOBzZs2IBEIjHDIyUiArZt24bbbrsNL730ErZu3Yp0Oo2rrroK0WjUOOfOO+/Er371Kzz11FPYtm0b+vr68P73v7+EoyaictbU1ISvf/3r2LVrF1555RW87W1vw3vf+168/vrrAPjMIqLZbefOnXjkkUdw3nnnFbXz2UWFBE3TtFIPgmantWvX4sILL8SDDz4IAFBVFc3Nzbj99ttx1113lXh0RETFBEHA008/jWuvvRaAPmu8oaEBf//3f4/Pfe5zAIBgMIja2lr86Ec/wo033ljK4RIRYXh4GDU1Ndi2bRvWr1+PYDCI6upqPP7447j++usBAAcOHMDSpUvx4osv4qKLLirxiImIAJ/Ph/vuuw/XX389n1lENGtFIhFccMEFeOihh/C1r30NK1euxP3338/ft2gCzhynSaVSKezatQtXXHGF0SaKIq644gq8+OKLJRwZEdHJ6ezsxMDAQNFzzOPxYO3atXyOEdGsEAwGAehBEwDs2rUL6XS66Ll19tlnY8GCBXxuEVHJKYqCJ554AtFoFOvWreMzi4hmtdtuuw3XXHNN0TMK4O9bNJFc6gHQ7DQyMgJFUVBbW1vUXltbiwMHDpRoVEREJ29gYAAAJn2O5fqIiEpFVVXccccduPjii3HOOecA0J9bZrMZFRUVRefyuUVEpbRnzx6sW7cOiUQCTqcTTz/9NJYtW4bdu3fzmUVEs9ITTzyBV199FTt37pzQx9+3aDyG40REREREM+y2227D3r178fzzz5d6KEREU1qyZAl2796NYDCIn/3sZ7jpppuwbdu2Ug+LiGhS3d3d+OxnP4utW7fCarWWejg0B7CsCk2qqqoKkiRNWK13cHAQdXV1JRoVEdHJyz2r+BwjotnmM5/5DH7961/jj3/8I5qamoz2uro6pFIpBAKBovP53CKiUjKbzVi4cCFWrVqFe++9FytWrMB3vvMdPrOIaFbatWsXhoaGcMEFF0CWZciyjG3btuGBBx6ALMuora3ls4uKMBynSZnNZqxatQrPPfec0aaqKp577jmsW7euhCMjIjo5bW1tqKurK3qOhUIh7Nixg88xIioJTdPwmc98Bk8//TT+8Ic/oK2trah/1apVMJlMRc+tgwcP4tixY3xuEdGsoaoqkskkn1lENCu9/e1vx549e7B7927jtXr1avzN3/yNsc9nFxViWRU6rk2bNuGmm27C6tWrsWbNGtx///2IRqP4xCc+UeqhEREB0FcgP3z4sHHc2dmJ3bt3w+fzYcGCBbjjjjvwta99DYsWLUJbWxu+9KUvoaGhAddee20JR01E5eq2227D448/jl/+8pdwuVxGXUuPxwObzQaPx4ONGzdi06ZN8Pl8cLvduP3227Fu3TpcdNFFJR49EZWju+++G+985zuxYMEChMNhPP744/jTn/6ELVu28JlFRLOSy+Uy1nPJcTgcqKysNNr57KJCDMfpuG644QYMDw/jnnvuwcDAAFauXIlnnnlmwuJ2RESl8sorr+Ctb32rcbxp0yYAwE033YQf/ehH+PznP49oNIpbb70VgUAAl1xyCZ555hnWniOikvje974HALj88suL2n/4wx/i4x//OADg29/+NkRRxHXXXYdkMokNGzbgoYcemuGREhHphoaG8LGPfQz9/f3weDw477zzsGXLFlx55ZUA+MwiormJzy4qJGiappV6EEREREREREREREREM4k1x4mIiIiIiIiIiIio7DAcJyIiIiIiIiIiIqKyw3CciIiIiIiIiIiIiMoOw3EiIiIiIiIiIiIiKjsMx4mIiIiIiIiIiIio7DAcJyIiIiIiIiIiIqKyw3CciIiIiIiIiIiIiMoOw3EiIiIiIiIiIiIiKjsMx4n+f3v3ExJVF4dx/LnvfSUbp1RSRiYwI7qjrRxahIYLQdGgIMuSHJhVSwkybZOUbWwfpLQaRcRxo5ssN9GABtFMUEiCC6uZTSb9kYoxiXHexct7eQfNNP+MNd8PXJg595x7fucuHw7nAgAA/GZCoZAMw9D8/Hxa5n/48KHKysqUSCR+2ndsbEzl5eVaWlrahsoAAACAtSMcBwAAAHYQwzBWvTo7O1VZWam3b98qNzc3LTVevXpVHR0dMk3zp33r6+uVlZWlgYGBbagMAAAAWDsjmUwm010EAAAAgH/Nzs7av4eGhnT9+nVNT0/bbU6nU06nMx2lSZImJiZ08uRJzc7OKjs7e01j7ty5o97eXoXD4S2uDgAAAFg7do4DAAAAO0hRUZF95ebmyjCMlDan07nsWJXe3l7l5eXp3r178ng8cjgcamxsVDweV19fn0pKSpSfn69Lly6lHIWyuLiotrY27d+/Xzk5OTp27JhCodCq9QWDQdXW1qYE4y9evFB1dbX27NmjvXv36ujRo4pEIvb9U6dOKRKJaGZmZnNfFgAAALABf6e7AAAAAAAbF4/Hdfv2bQWDQX358kVnzpxRQ0OD8vLydP/+fb169Upnz57V8ePH1dTUJElqaWnR1NSUgsGg3G63RkZGVF9fr8nJSR0+fHjFecbHx9Xc3JzS5vP55PV61dPTI9M09fz5c2VlZdn3i4uL5XK5ND4+rkOHDm3dSwAAAADWgXAcAAAA+AN8//5dPT09dvjc2Nio/v5+vXv3Tk6nU0eOHFF1dbUePXqkpqYmxWIxBQIBxWIxud1uSVJbW5vGxsYUCATU1dW14jzRaNTu/59YLKb29naVlpZK0orButvtVjQa3cwlAwAAABtCOA4AAAD8ARwOR8qubJfLpZKSkpTzyV0ul+bm5iRJk5OTSiQSsiwr5TmLi4vat2/fD+dZWFhYdtZ4a2urLl68qP7+ftXU1OjcuXPLdojv3r1b8Xj8l9cHAAAAbDbCcQAAAOAP8P9jTCTJMIwV25aWliRJX79+lWmaevbsmUzTTOm32gc/CwoK9OnTp5S2zs5ONTc3a3R0VA8ePNCNGzcUDAbV0NBg9/n48aMKCwt/aW0AAADAViAcBwAAADKQ1+tVIpHQ3Nycqqqq1jVuampqWbtlWbIsS5cvX9aFCxcUCATscPzbt2+amZmR1+vdtPoBAACAjfor3QUAAAAA2H6WZcnn88nv92t4eFivX7/W06dPdevWLY2Ojv5wXF1dnSYmJuz/CwsLamlpUSgUUjQa1ePHjxUOh1VWVmb3efLkiXbt2qWKiootXRMAAACwHoTjAAAAQIYKBALy+/26cuWKPB6PTp8+rXA4rOLi4h+O8fl8evnypaanpyVJpmnqw4cP8vv9sixL58+f14kTJ3Tz5k17zODgoHw+nxwOx5avCQAAAFgrI5lMJtNdBAAAAIDfR3t7uz5//qy7d+/+tO/79+/l8XgUiUR08ODBbagOAAAAWBt2jgMAAABYl2vXrunAgQP2xz1X8+bNG3V3dxOMAwAAYMdh5zgAAAAAAAAAIOOwcxwAAAAAAAAAkHEIxwEAAAAAAAAAGYdwHAAAAAAAAACQcQjHAQAAAAAAAAAZh3AcAAAAAAAAAJBxCMcBAAAAAAAAABmHcBwAAAAAAAAAkHEIxwEAAAAAAAAAGYdwHAAAAAAAAACQcf4Bnw9ImPgsa6YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyO9f7H8dc9+z5jGDNGlhGm4ShL2SqEzEQOCmGylO1UQqVSErIdSkk6pJxBllDRYs8hsiUixxLmN7I1KGPGMDNm+f7+mHNfuc1iRnRb3s/H436457qu7/f6XMs9j3rf3/leNmOMQURERERERERERETkFuLi7AJERERERERERERERP5qCsdFRERERERERERE5JajcFxEREREREREREREbjkKx0VERERERERERETklqNwXERERERERERERERuOQrHRUREREREREREROSWo3BcRERERERERERERG45CsdFRERERERERERE5JajcFxEREREREREREREbjkKx0VERETkmhs+fDg2m40mTZo4u5Sb2vLly7HZbHh5eV3Vfvft24fNZsNms5GYmPiXt5fr29SpU7HZbNxxxx3OLkVERESkWBSOi4iIiFzEHuIW9SU3r7S0NAIDA7HZbPTr16/I7davX2/dH59//vk1rFDsMjIymDZtGtHR0YSHh+Pp6UlgYCBVq1aladOmDBkyhBUrVpCRkZFv+5SUFN5++20eeOABSpcujYeHB8HBwURFRRETE8PIkSNZu3YtOTk5l63lnXfesa5/s2bNin0sZ86cYeLEibRq1Yry5cvj4+ODt7c35cqVo1WrVrz77rucPHmywPZLly6lU6dO3H777fj4+ODj40NERAQNGjSgX79+zJ8/n99//73YdYmIiIjcjNycXYCIiIjI9So0NNTZJYgTeXt707lzZz744APmzp3LhAkT8PT0vGy7f//73wCEhITQunXra12mAz8/PyIjI4tU580iISGBli1bsm/fPmuZh4cHrq6uxMfHc+DAAdasWcOYMWPYtGkT9evXd2i/bds2/v73v3P8+HFrmbe3Nzk5Ofz888/s27ePFStWAPDrr78SFhZWaD3Tp0+33q9Zs4aEhAQiIiKKdCxTpkzhlVdeITk52Vrm4+ODh4cHR48e5ejRoyxdupRXXnmFESNG8OKLL1rbpaWl0blzZ7744gtrmYuLC0FBQRw7doxDhw6xefNm3n//fcaOHcvgwYOLVJOIiIjIzUwjx0VEREQKkJiYeNmX3Nx69uwJQFJSEosXL77s9qmpqSxcuBCArl274u7ufk3ru9R9993Hvn372Llz51+6X2fJzMykdevW7Nu3Dz8/P8aMGcPRo0dJT0/n9OnTnDt3jk2bNjF06NB8A+qkpCRatWrF8ePHCQ0NZfLkyZw6dYrz589z5swZUlJSWLNmDS+88EKRvizbsmULu3fvJjQ0lI4dO2KMIS4urkjH8sILL/D000+TnJxMjRo1mD17NqdOneLcuXOcOXOGc+fOsXTpUjp37kxGRgafffaZQ/sBAwZYwXifPn3YtWsXFy5c4Pfffyc9PZ09e/bw7rvvUr9+ff3Vi4iIiMj/KBwXERERESnAPffcQ40aNYA/RoQXZsGCBZw7dw74I1iXa2f58uXs3r0bgI8//phXXnmFsmXLWuGvl5cX9evX54033uDgwYPUqlXLof3s2bM5ceKE1dczzzxDqVKlrPV+fn40adKEt956iyNHjhASElJoPfZR4507d+bJJ58EYMaMGZedjmXmzJm8/fbbADz++ONs27aN2NhYh1p8fHx46KGHmDt3Lj/88AORkZHWutOnT1sh/IABA/jggw/429/+hqurK5A7gjwqKor+/fuzadMm+vfvX2g9IiIiIrcKheMiIiIiV8lTTz2FzWYjKCiIQ4cO5bvNlClTsNlsuLm5sW7dOod1//3vfxk+fDhNmzbl9ttvx9vbm4CAAGrVqsVrr73Gb7/9VuC+K1asiM1mY8aMGZw/f57hw4cTFRWFj48P4eHhdO3alYSEBGv73377jZdffpmqVavi7e1NWFgYvXr1soLCS136QM0FCxbQuHFjgoOD8fX1pU6dOkyePJns7OzinbSLnDp1itdee41atWoRGBiIl5cXlSpVomfPnlYA6gz2kPubb77hyJEjhW5rD9Dr169PtWrVHNYdPHiQsWPHEh0dTZUqVfD19cXPz4/q1avz/PPPc/To0QL7tY/2/ec//0lGRgbjxo2jdu3a1pzomzdvBgp/IGdOTg6rVq2iX79+1KtXj7Jly+Lh4UGpUqV44IEH+PDDD8nKyirSOdm7dy9du3albNmyeHp6UqFCBZ555pk/9dcU2dnZzJw5k5iYGGve75CQEGJiYliwYAHGmDxtduzYAYDNZrvsFDYuLi55ppuxty9fvjw1a9YstL27u7sVNufn3LlzfPLJJwB0796d5s2bEx4ezpEjR1i1alWB7dLT03n55ZcBqFmzJtOnT7/sXxzUqlXLYUT67t27rWvXpk2bQttC7rQxBVm1ahWPPPIIZcqUse6PBx98kI8//rhIc65fLDIyEpvNxquvvlrodkuXLrV+L+Z3D8XHx/Pss88SFRWFn58fPj4+REVFFfq5ufQhoStXrqR169aEhYXh6urKP/7xj2Idi4iIiNykjIiIiIhYhg0bZgBzJf+ZdP78eVO9enUDmAYNGpjMzEyH9bt27TJeXl4GMK+//nqe9hUqVLD27eXlZYKDg43NZrOWlS1b1uzbty/ffdvbTpw40dSoUcPqw9vb22pfpkwZk5CQYOLj401ERIQBjI+Pj/Hw8LC2qVKliklOTi7wvDRu3Ni89NJLBjA2m82UKFHCuLi4WO2jo6NNenp6oe3zs2rVKhMUFGT14+7ubnx9fa2fPTw8zMyZM4twFa6+3377zTpHI0eOLHC7/fv3W/VOmzYtz/p69eo5HE9wcLDDuQsODjZbtmzJt29726FDh5p77rnHAMbNzc06Z5s2bTLGGLNs2TIDGE9Pzzx97N2719oXYPz9/U1AQIDDsqZNm+Z7/S5uu3DhQuva+Pv7W/c0YEJCQsxPP/1UaPtff/01z/qTJ0+aBg0aONQSGBjo8HP79u3zfKbeeOMNa/3hw4fzvzCFePLJJw1gvL29TUZGRrHbXywuLs4ApkaNGtYy+2elQ4cOBbabNWuWw7m9EuvWrbP6mDVr1hX1kZOTY55++mmrH/vn29XV1eHznZqamqftlClTDGAiIyMdlo8cOdIApnz58iYnJ6fAfXfq1MkAJiYmJs+66dOnG3d3d4ffjRffc0FBQWbNmjWF1jRu3DiH7d3d3U3fvn2Lf5JERETkpqNwXEREROQifyYcNyY3ALcH0q+++qq1/OLg/N577zVZWVl52nbr1s3MmDHD/PLLL9ayjIwM880335i6desawNSuXTvf/drD8aCgIFOxYkWzcuVKk52dbbKysszKlStNSEiIAUzHjh1N3bp1Tc2aNa1A9cKFC2b+/PnGx8fHAGbIkCEFnhd7YNmvXz9z8uRJY4wxycnJZuTIkVaQ/9xzzxXYPr9w/KeffrLOWe/evc2ePXus8/PLL79YgZ2bm5vZunVrIWf/2unYsaMBzO23315gyDd48GADGF9fX5OSkpJn/TPPPGOmTp1qDh48aPWRmZlpNm7caJo1a2YAU6FChXxDWns47ufnZwIDA83HH39s0tLSjDG5wXJSUpIxpvBw/ODBg6Zbt25myZIl5vTp09by5ORk89FHH5nQ0FADmFdeeSVP24vD7cDAQFO7dm3zww8/GGOMyc7ONkuXLjXh4eHWOTp37lyB7S8NxzMzM61g/O677zbLli0z58+fN8YYc/bsWfPRRx+ZUqVKGcAMHjzYoe3y5csdgtv8gvfCTJ061WrfvXt36zxeifvuu88A5s0337SW7d692/oy5Lfffsu3Xffu3a0vhOzHXVzJycnG09PTAKZixYpm+/btxe7jzTfftM5Fv379zIkTJ4wxuddg/PjxVkjevXv3PG0LCscPHTpk/V7IL8A2xpiUlBTr8z937lyHdV999ZWx2WzGw8PDDBkyxPzyyy8mJyfHZGdnm927d5u2bdsawJQoUcIcP34835p8fHyMi4uL6d27tzl69KgxJveei4+PL/Y5EhERkZuPwnERERGRi1wcjoeGhhb66t+/f7592EMZFxcX85///McYY0zfvn2t8Pri8Luozp49a4WX69evz7PeHo57e3ubAwcO5Fk/ffp0h+PKL6gbOnSoFW5e6uLz0rVr13xrfO2116wQ+9ixY/m2zy8cb9q0aYGhrF3//v0NYNq0aVPgNtfSihUrrOPPL+TLysqywuEePXoUu//MzExzxx13FDh6+OJR5ytXriywn8LC8ctZv369FX5fOkL74nA7NDTU/P7773na79ixw7i5uRnATJo0qcD2lwbY06ZNM4C58847zdmzZ/OtbePGjdb9fXGwn5OTYxo1amT17ebmZu69917z/PPPmzlz5piDBw8Wesznzp0zkZGRVntPT0/TrFkzM3jwYLNw4UIrTL2cffv2GcC4urrmCWnr1KljIPevOvJz99135xlxfiXsn1/7q3r16qZ3795m6tSpZvv27fl+IWeXkpJi/RXBE088ke8248ePt/retWuXw7qCwnFjjGncuHGh/f773/+2/grh4i8HMjMzrd9rBf3VSE5OjomOjjaAefnll/OtCTBdunQp8NhFRETk1qZwXEREROQiF4fAl3vlN4LS7pFHHjGACQ8PNx988MGfnjbBmD9GL48dOzbPOnuI9Pjjj+fb9ujRo1YNQ4cOzXeb7777ztrm0qkTLj4v+YXvxuSOXrWPAL00HC0oHE9ISLBCzfwCV7sffvjBGpVdWMh3rWRnZ5vy5csbwHTr1i3P+iVLlljnZ926dVe0D/sXAAMGDMizzh6O16lTp9A+/kw4boyx/jLgxx9/dFh+cbhd2NQy9vu+YcOGBba/NBy3H9sHH3xQaG2VK1c2gFm8eLHD8pSUFNO7d28rmL/0FRERYUaOHFlg8J6YmGgeeeQRhymMLg2Z33vvvUKnXbFPn5LftCCTJk0qNPy2T3FU0JRDRZWTk2Peeusth+mJLn4FBQWZvn37mkOHDuVpO3/+fAO5U6nkt96Y3L9isY/gv/ivYowpPBz/6KOPDGACAgLyHRn/wAMP5Bue2+/lsmXLFjoly+zZsw1gatasmW9N+YX5IiIiInZ6IKeIiIhIAUzuQIICXzNmzCiw7UcffUT58uU5fvw4ffv2BaBXr160b9++0H1+/fXXPPbYY1SqVAlfX19sNpv1WrBgAUChD26sW7duvstDQ0Ot9/fcc89ltzlz5ky+25QrV47KlSvnuy4gIIA6deoA8MMPPxRY48U2bNgA5D4sslq1aoSFheX7iomJAXIfevj7778Xqe+rycXFhR49egDw6aefcvbsWYf19gdxVq1alfvvv7/AftauXUvXrl2JjIzEz8/P4fpOmjQJKPz63nvvvX/qONLT03n//fd58MEHKVOmDJ6eng41JCcnX7aGpk2bXnbdtm3b8n2AZn71bNu2DYBXXnmlwOsfFhbGL7/8AmD9a+fv78+0adM4cuQIU6ZMITY2ljvuuAMXl9z/1UlISGDo0KHUrl07T1vIve8/++wz4uPjefvtt2nfvj2VKlXCZrMBuQ+7fPbZZ7n//vvz/VxkZWUxa9YsALp165ZnfefOnXF3d2fXrl1s3br1sufkStlsNl544QWOHTvGggULeOqpp7j77ruth7OeOXOGDz74gBo1arBy5UqHtvbPa+XKlalQoUK+/Xt4eNC4cWOH7YuiQ4cOeHt7k5KSwhdffOGw7siRI6xduxbIe+7svxtOnTpFmTJlCrwvnn32WSDvfWEXGBjI3/72tyLXKyIiIrcWheMiIiIi10CJEiV4//33rZ8rVarEu+++W+D2OTk5dOnShdatW7NgwQISEhK4cOECJUqUIDQ0lNDQUCvkOnfuXIH9+Pv757vczc2tWNtkZmbmu03ZsmUL3PfF60+ePFnodnbHjx8Hco//xIkTBb5+++03q8358+eL1PfGjRsLDNTmz59fpD4u9sQTT2Cz2Th//jyffPKJtfy3337jq6++AuDJJ58ssP2AAQN44IEHmD17Nvv37yc9Pd3h+vr6+gKFX9/SpUsXu267X3/9lVq1atGvXz+++eYbEhMTcXV1pVSpUlYN9kC5sBoKuwfs6zIyMkhJSblsTadOnSIrKwuA06dPF3oP2O/Jgq5/WFgY//jHP5g9ezZ79+7lzJkzfP7559SvXx+AAwcO8PjjjxdYS0REBM899xwLFy4kPj6eU6dOMWvWLKKiogD4/vvv6devX552S5cuJTExkYCAANq2bZtnfalSpWjVqhXwx5coFytZsqR1/FeDj48PHTp04F//+hdbt24lJSWFdevW0aVLFwDOnj1Lx44dHb5ksn9eL/f5vu222xy2L4qAgADatGkDwMcff+ywbs6cORhjqFChghW829l/N1y4cKHQ+yIpKQko+L4ICQkpcq0iIiJy61E4LiIiInKNfPjhh9b7Y8eOcfDgwQK3nT59OvPmzcPV1ZXXX3+dAwcOkJGRwenTp0lMTCQxMdEadV6UEbk3iuzsbCB39O7lRurbXxUrVixS34WFamlpacWutWLFijRr1gyAuLg4a/mcOXO4cOECrq6u+Y4cBvjqq6+skeEDBgxg9+7dea7vU089BRR+fV1dXYtdt12/fv3Yt28fpUuXZtasWZw4cYLz589z6tQpq4bg4ODL1nA12a8/wJo1a4p0/QcPHlykvv39/WnXrh3fffcdDRs2BOC7775j3759RWpfsmRJunbtypYtW7j99tsBmD9/fp6/Gpg+fToAKSkp+Pj4OIzEt78WL14MwLx58/Lce9WrVwdg3759pKenF6m24nB3d+f+++9nzpw5vPTSSwAkJyezcOHCq76vgtg/FytXruTEiRPWcntYHhsba43Ut7PfG40bNy7SfVHQufsznxkRERG5+SkcFxEREbkGJk+ezJdffomrqyvVqlUjIyODTp06FTi60T4SuVevXowYMYLKlStbo3jtEhMTr3ndl3Ps2LEirS/qCOewsDAgd/R1YaOVr0STJk0KDNLsU6QUV8+ePQHYtGmTFbLag/KWLVtSpkyZfNvZr2+bNm2YOHEi1apVyxPaXcvre/78eWt0+wcffEDXrl3zXKOMjIwCp9O5WGH3gH2dp6cnAQEBl+2rdOnSViha0LQYf5arq6t13QB+/vnnYrX39/e3Rl1nZWXxf//3f9a6xMREli5dWuS+kpOT+fTTTx2W2b9wyczM5Ouvvy5WbcVln+IJHM+D/V4obDqdi9cX9y8YWrRoQWhoKFlZWcybNw+A7du3s2fPHiD/6Wjsvxuu1X0hIiIiAgrHRURERK66Xbt28eKLLwLw+uuvs3TpUoKCgti7dy/PPfdcvm2OHDkCQK1atfJdn5qaypYtW65NwcVw5MgR4uPj81139uxZa/7ou+++u0j92efQzs7OZtmyZVenyGuoXbt21ujqf//732zbto2dO3cCOASwl7rc9c3OzrbmXr4WEhMTrWlJCqph7dq11hQnhVmzZs1l19WpUyfPSOD8+Pj4WPXYw/trwc/Pz3rv6el51drPnDmTrKwsbrvtNs6ePVvoyx5MXzq1Svv27a35/kePHl3glEaXysnJuWrHYf+8xsfHFxhGZ2Zm8u233wIFP7egIK6urtYXDPbR4vZ/69atS2RkZJ429t8Nhw4d4r///W+x9iciIiJSVArHRURERK6itLQ0OnXqRHp6Ovfddx9DhgyhQoUKTJs2DYBp06bx2Wef5WkXGBgIYAWtlxo5cmSe6RycZeTIkfkunzBhAmlpabi5ufHoo48Wqa8qVarQpEkTAIYMGWI9ELIgV2te5ivl6elJbGwskBvu2afOCQ0NteaVzs/lru+kSZMuO2r3z7Dvv6AaLly4wNChQ4vU1+TJk615ni+2a9cu64GLjz32WJFr69OnDwCLFi3im2++KXTbS6//zp07Lzvi3hhjPTDTxcWFmjVrWus2b9582XsuMzPTGu0cGBhIpUqVrHX2oLt9+/b4+fkV+urUqRMA3377rcMXTN7e3owdOxaAHTt28OSTT142IP/pp58c5rdPTEws8N662MyZM633tWvXtt63bNmSgIAAjDGMGDEi37bvvfeeNfe//ViKwz46fPv27fz000/WOS1oKqLo6GjKly8PwMCBAy/7xY2zfzeIiIjIjUnhuIiIiMhV9Nxzz7Fnzx6CgoKYM2eONXVGhw4drJHFvXv3tkYS28XExAC585RPmzaNCxcuALmh13PPPcf48eOtB/c5U2BgIDNnzmTAgAFWUHb27FnGjBnDG2+8AcAzzzxDeHh4kft877338PPzY//+/dSvX58vvvjCYf7gY8eO8fHHH9OsWTNefvnlq3tAV8B+HRMTE61wvFu3bg4PNL2U/fouWrSIcePGWdPrnD59mhEjRjBo0KBren1LlixpjQ7u378/69ats+YV37FjB9HR0ezevRtvb+/L9pWWlkaLFi348ccfgdwRzMuXL6dly5ZkZWVRqVKlQkfRX+rJJ5+kUaNG5OTk0Lp1a/75z386BN6pqamsXr2avn37Wg/HtFu1ahUVK1akc+fOfP755w7t0tPT+fbbb2nVqhVLliwBoEuXLtZ0HQCzZ8+mfPny9O7dm6VLlzoErOfOnePrr7+mUaNG7NixA4Bnn30WDw8PANavX8/+/fsB6Nix42WPs1GjRtbc+peOHn/iiSfo37+/VVOdOnWYO3euw0Mz09LSWLVqFd26daN27doOc6cfPXqUmjVr0rRpUz788EMOHDhgXd+srCz27NnDs88+a83XXrlyZf7+979b7f38/KwvR+Li4nj22Wc5deqUdR4mTJhgzVfevXt3/va3v132eC9Vs2ZNq13Pnj05ceIE7u7uBQbtHh4eTJ06FRcXF1avXs0DDzyQ568bDh48yPvvv0/t2rXzfdipiIiIyGUZEREREbEMGzbMAAYwoaGhl31t2LDBavvZZ59ZbRcuXJin73Pnzpk77rjDAOb+++83WVlZ1rqkpCRrHWBcXFxMUFCQsdlsBjB9+/Y13bt3N4Dp3r17nr4rVKhgABMXF1fgsdn7XrNmTb7rExISrG0SEhLyPS+NGzc2L730kgGMzWYzJUqUMK6urla75s2bm7S0tALPa+PGjfPd93fffWfCwsKsflxdXU3JkiWNt7e3tQwwvXr1KvD4/kp16tRxqGvv3r2Fbp+enm7q1atnbW8/d/br265dO/Piiy8awERHR+dpb287duzYQvezbNkyAxhPT8886zZu3OhwPr28vIyfn58BjLu7u5k/f74JDQ01gJk3b55D27179zrc276+vgYw/v7+Dn2WLFnS7NixI8++L27/66+/5ll/+vRpEx0d7XBOAwMDTWBgoHWOAOPn5+fQbuLEiQ5tAOPt7W1KlCiRZ3mrVq1MamqqQ/uBAwfm2c7X19cEBATkWd6zZ0+TmZlptbV/HsuVK2dycnIKvS52Tz/9tAFM2bJlHT7/dpMmTcqzb19fXxMYGOiwzM/Pz0ycONFq9+OPP+ap193d3QQHBxsXFxeH5VWrVjX79+/Ps++cnByrvoI+3y1atMhzDo0xZsqUKQYwkZGRhR7/+PHjHWpp06bNZc/Z/PnzrfvNflwlS5Y0Hh4eDn299dZbV1STiIiI3No0clxERESkACdOnLjsyz7C+8iRI/Tq1QvIHRXZvn37PP35+Pgwb948PD09Wb9+PaNGjbLWBQUFsXHjRgYOHEjFihVxdXXFzc2NJk2aMG/ePKZOnfrXHHQRjBs3jk8++YT77rsPYwweHh7UrFmTd999l+XLl+Pl5VXsPu+9917279/PW2+9RaNGjQgKCuLMmTO4uroSFRXF448/zpw5c5g4ceI1OKLiu3hkdMOGDbnjjjsK3d7T05P//Oc/DBkyhMqVK1ujzBs2bMiHH37IZ599lucBrFdbgwYN2LJlC48++iglS5YkOzubwMBAOnfuzObNm4s0+hngvvvuY+vWrcTGxuLv7092djblypXjqaeeYteuXdx1113Frq1EiRIsW7aMr776ivbt21OuXDnS09NJT0/ntttuIyYmhnHjxrFr1y6HdgMGDGD79u2MHTuW1q1bU7lyZWw2GykpKQQEBFC9enV69OjBihUr+Prrr/H19XVoP2HCBDZs2MCwYcOIjo6mQoUKZGdnc+7cOYKCgqhVqxZPP/00mzdv5qOPPrKu29mzZ1m4cCGQO6VKUeZXhz9GmB87dowVK1bkWf/ss89y6NAhJkyYQExMDLfddhs5OTnWeWjVqhWTJ0/ml19+YcCAAVa7mjVrcvjwYaZMmUKXLl2oUaMG3t7eJCcn4+XlRUREBG3btiUuLo5du3ZRpUqVPPu22Wy8//77rFixgrZt21K6dGlSU1MJDAykWbNmzJw5k2XLluU5h8URGxvr8CDagqZUuVjHjh05ePAgQ4cO5e6778bX15czZ87g7e1NzZo16du3L19++aU18l5ERESkOGzG/O/v7URERERECjB8+HBGjBhB48aNr+mDI0VERERERP4qGjkuIiIiIiIiIiIiIrccheMiIiIiIiIiIiIicstROC4iIiIiIiIiIiIitxyF4yIiIiIiIiIiIiJyy9EDOUVERERERERERETklqOR4yIiIiIiIiIiIiJyy3FzdgE3gpycHI4fP46/vz82m83Z5YiIiIiIiIiIiIhIPowxnD17lvDwcFxcCh8brnC8CI4fP065cuWcXYaIiIiIiIiIiIiIFMGRI0e47bbbCt1G4XgR+Pv7A7knNCAgwMnViIiIiIiIiIiIiEh+UlJSKFeunJXpFkbheBHYp1IJCAhQOC4iIiIiIiIiIiJynSvK9Nh6IKeIiIiIiIiIiIiI3HIUjouIiIiIiIiIiIjILUfhuIiIiIiIiIiIiIjccjTnuIiIiIiIiIiIiFwXsrOzyczMdHYZcp1zd3fH1dX1T/ejcFxEREREREREREScLjU1laNHj2KMcXYpcllFViAAACAASURBVJ2z2Wzcdttt+Pn5/al+FI6LiIiIiIiIiIiIU2VnZ3P06FF8fHwICQnBZrM5uyS5ThljOHXqFEePHqVKlSp/agS5wnERERERERERERFxqszMTIwxhISE4O3t7exy5DoXEhLCoUOHyMzM/FPhuB7IKSIiIiIiIiIiItcFjRiXorha94nCcRERERERERERERG55SgcFxEREREREREREZFbjsJxERERERERERERkauoSZMmDBw48Ibfx81O4biIiIiIiIiIiIiI3HIUjouIiIiIiIiIiIjILUfhuIiIiIiIiIiIiFxXjDGcv5DllJcxpli1njt3jm7duuHn50eZMmWYMGGCw/qMjAwGDRpE2bJl8fX1pV69eqxdu9Za//vvv9O5c2fKli2Lj48PNWrUYN68ecXah1wZN2cXICIiIiIiIiIiInKxtMxsqr2+win73vNGND4eRY9NX3zxRb799lu++OILSpcuzauvvsr27dupWbMmAP369WPPnj188sknhIeHs2jRImJiYti1axdVqlQhPT2dOnXq8PLLLxMQEMCSJUvo2rUrt99+O3Xr1i3SPuTKKBwXERERERERERERuQKpqalMnz6d2bNn06xZMwBmzpzJbbfdBsDhw4eJi4vj8OHDhIeHAzBo0CCWL19OXFwcY8aMoWzZsgwaNMjq89lnn2XFihUsWLCAunXrXnYfcuUUjouIiIiIiIiIiMh1xdvdlT1vRDtt30UVHx/PhQsXqFevnrUsODiYyMhIAHbt2kV2djZVq1Z1aJeRkUHJkiUByM7OZsyYMSxYsIBjx45x4cIFMjIy8PHxKdI+5MopHBcREREREREREZHris1mK9bUJter1NRUXF1d2bZtG66ujqG7n58fAG+++SbvvvsuEydOpEaNGvj6+jJw4EAuXLjgjJJvKXogp4iIiIiIiIiIiMgVuP3223F3d2fLli3WsqSkJPbv3w9ArVq1yM7O5uTJk1SuXNnhFRYWBsCGDRto06YNjz/+OHfddReVKlWy2hdlH3LlbvyvX0REREREREREREScwM/Pj549e/Liiy9SsmRJSpcuzZAhQ3BxyR2TXLVqVWJjY+nWrRsTJkygVq1anDp1itWrV3PnnXfSqlUrqlSpwqeffsrGjRspUaIEb7/9NidOnKBatWpF2odcOYXjIiIiIiIiIiIiIlfozTffJDU1ldatW+Pv788LL7xAcnKytT4uLo5Ro0bxwgsvcOzYMUqVKkX9+vV5+OGHAXjttdf4v//7P6Kjo/Hx8aFPnz60bdvWoY/L7UOujM0YY5xdxPUuJSWFwMBAkpOTCQgIcHY5IiIiIiIiIiIiN5X09HQSEhKIiIjAy8vL2eXIda6w+6U4Wa7G3ouIiIiIiIiIiIjILUfhuIiIiIiIiIiIiIjcchSOi4iIiIiIiIiIiMgtR+G4iIiIiIiIiIiIiNxyFI6LiIiIiIiIiIiIyC1H4biIiIiIiIiIiIiI3HKcGo5nZ2czdOhQIiIi8Pb25vbbb2fkyJEYY6xtjDG8/vrrlClTBm9vb5o3b86BAwcc+jl9+jSxsbEEBAQQFBREz549SU1Nddjmp59+4v7778fLy4ty5coxfvz4v+QYRUREREREREREROT649RwfNy4cUyZMoXJkyezd+9exo0bx/jx43nvvfesbcaPH8+kSZOYOnUqW7ZswdfXl+joaNLT061tYmNj2b17N6tWreLrr79m3bp19OnTx1qfkpJCixYtqFChAtu2bePNN99k+PDhTJs27S89XhERERERERERERG5PtjMxcO0/2IPP/wwoaGhTJ8+3Vr26KOP4u3tzezZszHGEB4ezgsvvMCgQYMASE5OJjQ0lBkzZtCpUyf27t1LtWrV2Lp1K3fffTcAy5cvp2XLlhw9epTw8HCmTJnCkCFDSExMxMPDA4DBgwezePFi9u3bd9k6U1JSCAwMJDk5mYCAgGtwJq5j509DwjpwdQcXtz9el/5sLXMFF/f8f3Zxy/3ZZnP2UYmIiIiIiIiIyHUkPT2dhIQEIiIi8PLycnY5cp0r7H4pTpbrdi2LvJyGDRsybdo09u/fT9WqVdm5cyffffcdb7/9NgAJCQkkJibSvHlzq01gYCD16tVj06ZNdOrUiU2bNhEUFGQF4wDNmzfHxcWFLVu20K5dOzZt2kSjRo2sYBwgOjqacePGkZSURIkSJRzqysjIICMjw/o5JSXlWp2C699vB2Bh96vbp4vbRQG6m+PPLq6OwbuHL3gHg08J8Cn5v/fB//u35B/vvUvk9iUiIiIiIiIiIvIXadKkCTVr1mTixInXbB8VK1Zk4MCBDBw4sMBthg8fzuLFi9mxY8c1q+Nm5NQ0cfDgwaSkpHDHHXfg6upKdnY2o0ePJjY2FoDExEQAQkNDHdqFhoZa6xITEyldurTDejc3N4KDgx22iYiIyNOHfd2l4fjYsWMZMWLEVTrKG5yHD5RvCDmZkJOV+8r+3785mZCTDdmZ+f9ssvPv097P1eYV+Ed4fnGQboXpwXkDdnd9EykiIiIiIiIiIjcOm83GokWLaNu2rbNLueE5NRxfsGABc+bMYe7cuVSvXp0dO3YwcOBAwsPD6d79Ko9WLoZXXnmF559/3vo5JSWFcuXKOa0epwqrAU8uu7K2xlwUqF8Uruf3c57Q/X8/X0iF879D2mk4n/S/f3/Pne7F/j49OXd/6cm5r6SEotfo7vu/oLyE40j0EhXhzsfAL+TKjl1ERERERERERESua04Nx1988UUGDx5Mp06dAKhRowa//PILY8eOpXv37oSFhQFw4sQJypQpY7U7ceIENWvWBCAsLIyTJ0869JuVlcXp06et9mFhYZw4ccJhG/vP9m0u5unpiaen51U6yluYzZY7RYqrO7h7X7v9ZGdB+pncwNwK0k9fEqQnXRKqn84d2Z55DpLPQfKRvP2ufgNqtId6faHMXdeufhERERERERERcWQMZJ53zr7dfYr1zLycnBxeeuklPvroIzw8PPjHP/7B8OHDAThz5gyDBg3iiy++ICMjg7vvvpt33nmHu+7KzZri4+N5/vnn2bx5M+fOnSMqKoqxY8c6TDN9sYoVKwLQrl07ACpUqMChQ4es9R9//DFDhw4lKSmJhx56iA8//BB/f39mzZrFc889x/Hjxx1yz7Zt2+Lv78/HH39cjBN083BqOH7+/HlcXFwclrm6upKTkwNAREQEYWFhrF692grDU1JS2LJlC0899RQADRo04MyZM2zbto06deoA8J///IecnBzq1atnbTNkyBAyMzNxd3cHYNWqVURGRuaZUkVuQK5u4Fsq91VUxuSOMs9vRPr53+H/1sCxbbBjTu6rfMPckPyOhzW3uYiIiIiIiIjItZZ5HsaEO2ffrx7PfQ5eEc2cOZPnn3+eLVu2sGnTJnr06MG9997Lgw8+SIcOHfD29mbZsmUEBgbywQcf0KxZM/bv309wcDCpqam0bNmS0aNH4+npyaxZs2jdujU///wz5cuXz7OvrVu3Urp0aeLi4oiJicHV1dVaFx8fz+LFi/n6669JSkqiY8eO/POf/2T06NF06NCB/v378+WXX9KhQwcATp48yZIlS1i5cuWfP2c3KKemfK1bt2b06NGUL1+e6tWr8+OPP/L222/z5JNPArnz5wwcOJBRo0ZRpUoVIiIiGDp0KOHh4dacOlFRUcTExNC7d2+mTp1KZmYm/fr1o1OnToSH536AunTpwogRI+jZsycvv/wy//3vf3n33Xd55513nHbs4mQ2G3gH5b6C81nfbCgc/QE2T4E9i+HwxtxXwG1QtxfU7p47BYuIiIiIiIiIiNzS7rzzToYNGwZAlSpVmDx5MqtXr8bb25vvv/+ekydPWqO133rrLRYvXsynn35Knz59uOuuu6xR5AAjR45k0aJFfPnll/Tr1y/PvkJCcqcADgoKyjMjRk5ODjNmzMDf3x+Arl27snr1akaPHo23tzddunQhLi7OCsdnz55N+fLladKkyVU/JzcKp4bj7733HkOHDuXpp5/m5MmThIeH07dvX15//XVrm5deeolz587Rp08fzpw5w3333cfy5cvx8vrjQYpz5syhX79+NGvWDBcXFx599FEmTZpkrQ8MDGTlypU888wz1KlTh1KlSvH666/Tp0+fv/R45QZz293QfjqkjIIfpsMPcZByFL4ZDmvHwZ0dod4/ILSasysVEREREREREbm5uPvkjuB21r6L4c4773T4uUyZMpw8eZKdO3eSmppKyZIlHdanpaURHx8PQGpqKsOHD2fJkiX8+uuvZGVlkZaWxuHDh4tddsWKFa1g/OI67Hr37s0999zDsWPHKFu2LDNmzKBHjx7YijGFzM3GqeG4v78/EydOZOLEiQVuY7PZeOONN3jjjTcK3CY4OJi5c+cWuq8777yT9evXX3GtcgsLKANNX4P7B8F/P4MtUyBxF2yfmfuKaAT1noKq0eDievn+RERERERERESkcDZbsaY2cSb7NM52NpuNnJwcUlNTKVOmDGvXrs3TJigoCIBBgwaxatUq3nrrLSpXroy3tzft27fnwoULV60Ou1q1anHXXXcxa9YsWrRowe7du1myZEmx93Mz0eTJIkXl7gW1YqFmFzi8KXfKlX1fQ8K63FeJilC3D9R6HLwCnV2tiIiIiIiIiIg4Ue3atUlMTMTNzc16kOalNmzYQI8ePawHbKampjo8YDM/7u7uZGdnX1FNvXr1YuLEiRw7dozmzZtTrly5K+rnZuFy+U1ExIHNBhUawmMfw4CdcO8A8AqCpEOw4lWYEAVLBsFvB5xdqYiIiIiIiIiIOEnz5s1p0KABbdu2ZeXKlRw6dIiNGzcyZMgQfvjhByB3jvLPP/+cHTt2sHPnTrp06eIw2js/FStWZPXq1SQmJpKUlFSsmrp06cLRo0f58MMPrec+3soUjov8GUHl4cE34Pk98PBECImCzHOw9UOYfDfMfhQOfAOX+aUmIiIiIiIiIiI3F5vNxtKlS2nUqBFPPPEEVatWpVOnTvzyyy+EhoYC8Pbbb1OiRAkaNmxI69atiY6Opnbt2oX2O2HCBFatWkW5cuWoVatWsWoKDAzk0Ucfxc/Pj7Zt217xsd0sbMYY4+wirncpKSkEBgaSnJxMQECAs8uR65kxkPAtbJ4K+5cD//t4lawC9frCXZ3A07/QLkREREREREREbjXp6ekkJCQQERGBl5eXs8u5qTVr1ozq1aszadIkZ5dyxQq7X4qT5WrkuMjVZLNBpSbQ5RPovx3qPw2eAfD7AVg6CN6uBstfhdMJzq5URERERERERERuIUlJSSxatIi1a9fyzDPPOLuc64IeyClyrQRXgpix8MCrsGMebJkKp+Nh8/uw+V8Q+VDuaPKIxrmhuoiIiIiIiIiIyDVSq1YtkpKSGDduHJGRkc4u57qgcFzkWvP0h3p94J5eEL8aNk/J/ffnpbmvkKjckPzOx8DDx9nVioiIiIiIiIjITejQoUPOLuG6o2lVRP4qLi5Q5UHo+jk8szU3LHf3hVN74euB8HYUfDMcMtOdXamIiIiIiIiIiMhNT+G4iDOEVIVWE+D5PdBiNARVgPQz8N07uQG5iIiIiIiIiIiIXFMKx0WcyTsIGvaD/j/C3yfnLtv6IZza79y6REREREREREREbnIKx0WuBy6uULsrVI2BnCxY+ZqzKxIREREREREREbmpKRwXuZ60GA0ubnBgBRz8xtnViIiIiIiIiIiI3LQUjotcT0pVhrp9c9+vGALZWc6tR0RERERERERE5CalcFzketP4RfAOhlP7YFucs6sREREREREREZECNGnShIEDBxZ5+3379lG/fn28vLyoWbPmNazsythsNhYvXuzsMv4yCsdFrjfeJeCBV3PfrxkNaUnOrUdERERERERERPL1+eefM3LkyCJvP2zYMHx9ffn5559ZvXr1VanhVgu0ryaF4yLXozpPQEhUbjD+7XhnVyMiIiIiIiIiIvkIDg7G39+/yNvHx8dz3333UaFCBUqWLHkNK5OiUDgucj1ydYOYMbnvv58Gp/Y7tx4RERERERERkb+QMYbzmeed8jLGFLnOi6dVqVixImPGjOHJJ5/E39+f8uXLM23aNGtbm83Gtm3beOONN7DZbAwfPhyAI0eO0LFjR4KCgggODqZNmzYcOnTIYT///ve/qV69Op6enpQpU4Z+/fpZ+wRo164dNpvN+hngiy++oHbt2nh5eVGpUiVGjBhBVtYfz7c7cOAAjRo1wsvLi2rVqrFq1apiXKGbg5uzCxCRAtzeFKrGwP7lsPI1iF3g7IpERERERERERP4SaVlp1Jtbzyn73tJlCz7uPlfUdsKECYwcOZJXX32VTz/9lKeeeorGjRsTGRnJr7/+SvPmzYmJiWHQoEH4+fmRmZlJdHQ0DRo0YP369bi5uTFq1ChiYmL46aef8PDwYMqUKTz//PP885//5KGHHiI5OZkNGzYAsHXrVkqXLk1cXBwxMTG4uroCsH79erp168akSZO4//77iY+Pp0+fPkDu1C45OTk88sgjhIaGsmXLFpKTk4s1d/rNQuG4yPWsxSg4+A0cWJH7b+Xmzq5IREREREREREQK0LJlS55++mkAXn75Zd555x3WrFlDZGQkYWFhuLm54efnR1hYGACzZ88mJyeHjz76CJvNBkBcXBxBQUGsXbuWFi1aMGrUKF544QUGDBhg7eeee+4BICQkBICgoCCrT4ARI0YwePBgunfvDkClSpUYOXIkL730EsOGDeObb75h3759rFixgvDwcADGjBnDQw89dI3P0PVF4bjI9axUFajbFza/DyuGQEST3ClXRERERERERERuYt5u3mzpssVp+75Sd955p/XeZrMRFhbGyZMnC9x+586dHDx4MM+85enp6cTHx3Py5EmOHz9Os2bNilXHzp072bBhA6NHj7aWZWdnk56ezvnz59m7dy/lypWzgnGABg0aFGsfNwOlbCLXu8Yvws55cGofbIuDur2dXZGIiIiIiIiIyDVls9mueGoTZ3J3d3f42WazkZOTU+D2qamp1KlThzlz5uRZFxISgovLlT0yMjU1lREjRvDII4/kWefl5XVFfd6MFI6LXO+8S8ADr8LSQbBmNNRon7tMRERERERERERuaLVr12b+/PmULl2agICAfLepWLEiq1ev5oEHHsh3vbu7O9nZ2Xn6/fnnn6lcuXK+baKiojhy5Ai//vorZcqUAWDz5s1/4khuTFf21YOI/LXqPAEhUZCWBN+Od3Y1IiIiIiIiIiJyFcTGxlKqVCnatGnD+vXrSUhIYO3atfTv35+jR48CMHz4cCZMmMCkSZM4cOAA27dv57333rP6sIfniYmJJCUlAfD6668za9YsRowYwe7du9m7dy+ffPIJr732GgDNmzenatWqdO/enZ07d7J+/XqGDBny158AJ1M4LnIjcHWDmDG577+fBr8dcG49IiIiIiIiIiLyp/n4+LBu3TrKly/PI488QlRUFD179iQ9Pd0aSd69e3cmTpzIv/71L6pXr87DDz/MgQN/ZEMTJkxg1apVlCtXjlq1agEQHR3N119/zcqVK7nnnnuoX78+77zzDhUqVADAxcWFRYsWkZaWRt26denVq5fD/OS3Cpsxxji7iOtdSkoKgYGBJCcnF/jnDSJ/ibmPwf7lUCUaYhc4uxoRERERERERkasiPT2dhIQEIiIiNCe2XFZh90txslyNHBe5kbQYBS5ucGAFHPzG2dWIiIiIiIiIiIjcsBSOi9xISlWBun1z368YAtlZzq1HRERERERERETkBqVwXORG0/hF8A6GU/tgW5yzqxEREREREREREbkhKRwXudF4l4AHXs19v2YMpCU5tx4REREREREREZEbkMJxkRtRnScgJArSTsO3451djYiIiIiIiIiIyA1H4bjIjcjVDWLG5L7/fhr8dsC59YiIiIiIiIiIiNxgFI6L3KhubwpVYyAnC1a+5uxqREREREREREREbigKx0VuZC1GgYsb7F8OB1c7uxoREREREREREZEbhsJxkRtZqSpQt0/u+xWvQnaWc+sRERERERERERG5QSgcF7nRNX4JvIPh1D7YFufsakRERERERERE5BYyY8YMgoKCnF3GFVE4LnKj8y4BD7ya+37NGEhLcm49IiIiIiIiIiIiNwCF4yI3gzpPQEgUpJ2Gb8c7uxoRERERERERkVvShQsXnF3CFblR6/6zFI6L3Axc3SBmTO7776fBbwecW4+IiIiIiIiIyJ9gjCHn/HmnvIwxRa6zSZMm9OvXj4EDB1KqVCmio6M5c+YMvXr1IiQkhICAAJo2bcrOnTsd2n311Vfcc889eHl5UapUKdq1a2etS0pKolu3bpQoUQIfHx8eeughDhzIzXpSUlLw9vZm2bJlDv0tWrQIf39/zp8/D8CRI0fo2LEjQUFBBAcH06ZNGw4dOmRt36NHD9q2bcvo0aMJDw8nMjISgIyMDAYNGkTZsmXx9fWlXr16rF271mFfM2bMoHz58vj4+NCuXTt+//33Ip+v642bswsQkavk9qZQNQb2L4eVr0GX+c6uSERERERERETkipi0NH6uXccp+47cvg2bj0+Rt585cyZPPfUUGzZsAKBDhw5WgB0YGMgHH3xAs2bN2L9/P8HBwSxZsoR27doxZMgQZs2axYULF1i6dKnVX48ePThw4ABffvklAQEBvPzyy7Rs2ZI9e/YQEBDAww8/zNy5c3nooYesNnPmzKFt27b4+PiQmZlJdHQ0DRo0YP369bi5uTFq1ChiYmL46aef8PDwAGD16tUEBASwatUqq59+/fqxZ88ePvnkE8LDw1m0aBExMTHs2rWLKlWqsGXLFnr27MnYsWNp27Yty5cvZ9iwYX/2lDuNzRTnq5BbVEpKCoGBgSQnJxMQEODsckQK9tsB+Fd9yMmCxz+Hys2cXZGIiIiIiIiIyGWlp6eTkJBAREQEXl5e5Jw/79Rw3KWI4XiTJk1ISUlh+/btAHz33Xe0atWKkydP4unpaW1XuXJlXnrpJfr06UPDhg2pVKkSs2fPztPfgQMHqFq1Khs2bKBhw4YA/P7775QrV46ZM2fSoUMHFi9eTNeuXTlx4gQ+Pj6kpKQQGhpqBdmzZ89m1KhR7N27F5vNBuROmxIUFMTixYtp0aIFPXr0YPny5Rw+fNgKyw8fPkylSpU4fPgw4eHhVk3Nmzenbt26jBkzhi5dupCcnMySJUus9Z06dWL58uWcOXOmmGf6yl16v1ysOFmuRo6L3ExKVYG6fWDzv2DFEIhonDvlioiIiIiIiIjIDcTm7U3k9m1O23dx1KnzR4i/c+dOUlNTKVmypMM2aWlpxMfHA7Bjxw569+6db1979+7Fzc2NevXqWctKlixJZGQke/fuBaBly5a4u7vz5Zdf0qlTJz777DMCAgJo3ry5VcPBgwfx9/d36Ds9Pd2qAaBGjRpWMA6wa9cusrOzqVq1qkO7jIwM63j27t3rMAUMQIMGDVi+fHkhZ+j6pdRM5GbT+CXY+Qmc2gvb4qBu/r9sRURERERERESuVzabrVhTmziTr6+v9T41NZUyZcrkmacbICgoCADvYobvl/Lw8KB9+/bMnTuXTp06MXfuXB577DHc3NysGurUqcOcOXPytA0JCcm3bns7V1dXtm3bhqurq8M6Pz+/P1Xz9UrhuMjNxrsEPPAqLB0Ea8ZAjfa5y0RERERERERE5JqqXbs2iYmJuLm5UbFixXy3ufPOO1m9ejVPPPFEnnVRUVFkZWWxZcsWh2lVfv75Z6pVq2ZtFxsby4MPPsju3bv5z3/+w6hRoxxqmD9/PqVLly7WFNG1atUiOzubkydPcv/99+e7TVRUFFu2bHFYtnnz5iLv43rj4uwCROQaqPMEhNwBaafh2/HOrkZERERERERE5JbQvHlzGjRoQNu2bVm5ciWHDh1i48aNDBkyhB9++AGAYcOGMW/ePIYNG8bevXvZtWsX48aNA6BKlSq0adOG3r17891337Fz504ef/xxypYtS5s2baz9NGrUiLCwMGJjY4mIiHCYhiU2NpZSpUrRpk0b1q9fT0JCAmvXrqV///4cPXq0wNqrVq1KbGws3bp14/PPPychIYHvv/+esWPHWnOM9+/fn+XLl/PWW29x4MABJk+efMNOqQIKx0VuTq5uED0m9/3303If1CkiIiIiIiIiIteUzWZj6dKlNGrUiCeeeIKqVavSqVMnfvnlF0JDQ4Hch3guXLiQL7/8kpo1a9K0aVO+//57q4+4uDjq1KnDww8/TIMGDTDGsHTpUtzd3R3207lzZ3bu3ElsbKxDDT4+Pqxbt47y5cvzyCOPEBUVRc+ePUlPT7/sSPK4uDi6devGCy+8QGRkJG3btmXr1q2UL18egPr16/Phhx/y7rvvctddd7Fy5Upee+21q3X6/nI2Y4xxdhHXu+I84VTkujL3Mdi/HKrGQJf5zq5GRERERERERCRf6enpJCQkEBERgZeXl7PLketcYfdLcbJcjRwXuZm1GAUubrkB+cHVzq5GRERERERERETkuqFwXORmVqoK1O2T+37FEMjOcm49IiIiIiIi8v/s3Xd4VHX+/v97aipJCDCTBiR0AgihaUAQpSmuP2XXtuoqiKKwqBRX7A0VPxYUCyi6X2zr7n7cVT92BQRBujTpEFpIDy0hpEySmd8fk4xEaiCZk/J8XNdcZ5I5c849KxcsN++83gCAOoJyHGjoLnlACoqUcrdKa+YanQYAAAAAAACoEyjHgYYuqKl06cPe5wufk4oOG5sHAAAAAAAAqAMox4HGoNdoqUUnqeiQ9NOLRqcBAAAAAAAADEc5DjQGFqs0/Dnv81VvSwd2GpsHAAAAAAAAMBjlONBYtBssdbhccpdJPzxqdBoAAAAAAADAUJTjQGMy7BnJbJV2fCelLDA6zBpLRQAAIABJREFUDQAAAAAAAGAYynGgMWneXuo71vv8+0ek8jJj8wAAAAAAAAAGoRwHGptLHpCCIqXcrdKauUanAQAAAAAAQCP03nvvKSIiwtAMlONAYxPUVLr0Ye/zhc9JRYeNzQMAAAAAAIAaZTKZ9Pnnnxsdwyc+Pl6vvvpqle/dcMMN2rFjh0GJvCjHgcao12ipRSep6JD004tGpwEAAAAAAEAjExQUJIfDYWgGynGgMbJYpeHPeZ+vels6kGJsHgAAAAAAgON4PB6VlpQb8vB4PNXK+p///EfdunVTUFCQmjVrpiFDhuinn36SzWZTVlZWlXMnTpyoAQMGSPptrMhXX32ljh07Kjg4WNdee60KCwv1/vvvKz4+Xk2bNtW9996r8vJy3zXi4+M1bdo0/fnPf1ZISIhiY2P15ptvVnldkkaOHCmTyeT7WpJmz56ttm3bym63q2PHjvrwww+r5DOZTHr77bf1hz/8QcHBwercubOWL1+ulJQUDRo0SCEhIerXr5927drle8+uXbt09dVXy+l0KjQ0VH369NH8+fN9rw8aNEj79u3TpEmTZDKZZDKZqnz+43355Zfq06ePAgMD1bx5c40cObJa/y2qy1qrVwdQd7UbLLUfLu38XvrhEemmfxudCAAAAAAAQJJU5nJrzn0/GXLvsTMvkS3AclbnZmZm6s9//rNeeOEFjRw5UkePHtWSJUvUq1cvtWnTRh9++KH+9re/SZJKS0v1j3/8Qy+88ILv/YWFhXrttdf0r3/9S0ePHtUf//hHjRw5UhEREfrmm2+0e/du/elPf1L//v11ww03+N734osv6uGHH9ZTTz2l77//Xvfdd586dOigoUOHavXq1XI4HJo7d64uv/xyWSzez/LZZ5/pvvvu06uvvqohQ4boq6++0ujRoxUXF6dLL73Ud+1p06ZpxowZmjFjhqZOnaqbbrpJbdq00UMPPaRWrVrp9ttv14QJE/Ttt99KkgoKCjRixAg9++yzCggI0AcffKCrrrpK27dvV6tWrfTpp5+qe/fuGjt2rO68885T/m/59ddfa+TIkXrkkUf0wQcfyOVy6Ztvvjn7/3DngHIcaMyGPyvtWiDt+E5KWeAtzAEAAAAAAHBWMjMzVVZWpj/+8Y9q3bq1JKlbt26SpDFjxmju3Lm+cvzLL79UcXGxrr/+et/7S0tLfau5Jenaa6/Vhx9+qOzsbIWGhioxMVGXXnqpFi5cWKUc79+/vx588EFJUocOHbR06VK98sorGjp0qFq0aCFJioiIUFRUlO89L730kkaNGqXx48dLkiZPnqwVK1bopZdeqlKOjx492pdx6tSpSk5O1mOPPabhw4dLku677z6NHj3ad3737t3VvXt339fTpk3TZ599pi+++EITJkxQZGSkLBaLmjRpUiXP7z377LO68cYb9dRTT1W5dm2iHAcas+btpd5jvKNV1n5AOQ4AAAAAAOoEq92ssTMvMezeZ6t79+4aPHiwunXrpuHDh2vYsGG69tpr1bRpU40aNUqPPvqoVqxYoYsuukjvvfeerr/+eoWEhPjeHxwc7CvGJcnpdCo+Pl6hoaFVvpeTk1PlvsnJySd8/fsNL39v69atGjt2bJXv9e/fXzNnzqzyvQsuuKDKvaXfCv/K7xUXFys/P19hYWEqKCjQk08+qa+//tr3jwVFRUVKTU09bZ7fW79+/WlXltcGynGgseswzFuOZ282OgkAAAAAAIAk7+zrsx1tYiSLxaJ58+Zp2bJl+uGHH/T666/rkUce0cqVK5WQkKCrrrpKc+fOVUJCgr799lstWrSoyvttNluVr00m00m/53a7a/ujnDRT5Xzwk32vMtP999+vefPm6aWXXlK7du0UFBSka6+9Vi6Xq1r3DQoKOt/o1caGnEBj5+zqPR7aJZUWGZsFAAAAAACgnjGZTOrfv7+eeuoprVu3Tna7XZ999pkk6Y477tC///1vzZkzR23btlX//v1r5J4rVqw44evOnTv7vrbZbFU28ZSkzp07a+nSpVW+t3TpUiUmJp5XlqVLl2rUqFEaOXKkunXrpqioKO3du7fKOXa7/YQ8v3fBBRdowYIF55Wlulg5DjR2oU4pKFIqOiTlbpdiehidCAAAAAAAoF5YuXKlFixYoGHDhsnhcGjlypXKzc31FdXDhw9XWFiYnnnmGT399NM1dt+lS5fqhRde0DXXXKN58+bpk08+0ddff+17PT4+XgsWLFD//v0VEBCgpk2b6m9/+5uuv/56JSUlaciQIfryyy/16aefav78+eeVpX379vr000911VVXyWQy6bHHHjthpXt8fLwWL16sG2+8UQEBAWrevPkJ13niiSc0ePBgtW3bVjfeeKPKysr0zTffaOrUqeeV73RYOQ40diaT5OzifZ6zxdgsAAAAAAAA9UhYWJgWL16sESNGqEOHDnr00Uf18ssv64orrpAkmc1mjRo1SuXl5br11ltr7L5TpkzRL7/8oqSkJD3zzDOaMWOGb8NMSXr55Zc1b948tWzZUklJSZKka665RjNnztRLL72kLl266O2339bcuXM1aNCg88oyY8YMNW3aVP369dNVV12l4cOHq2fPnlXOefrpp7V37161bdvWt2Ho7w0aNEiffPKJvvjiC/Xo0UOXXXaZVq1adV7ZzsTk8Xg8tXqHBiA/P1/h4eHKy8tTWFiY0XGAmvfNA96548kTpOHPGp0GAAAAAAA0MsXFxdqzZ48SEhIUGBhodJwaNWbMGOXm5uqLL76okevFx8dr4sSJmjhxYo1crz463a+X6nS5jFUB8NvKcTblBAAAAAAAqBF5eXnauHGjPv744xorxlGzKMcBMFYFAAAAAACghl199dVatWqV7r77bg0dOtToODgJynEAUotO3mNBtnTsgBRy4qYIAAAAAAAAOHuLFi2qlevu3bu3Vq7bGLEhJwApIFRqmuB9zmgVAAAAAAAANAKU4wC8GK0CAAAAAAAM5vF4jI6AeqCmfp1QjgPwciR6j9mbjM0BAAAAAAAaHYvFIklyuVwGJ0F9UPnrpPLXzbli5jgAr8qV49msHAcAAAAAAP5ltVoVHBys3Nxc2Ww2mc2s6cXJud1u5ebmKjg4WFbr+dXblOMAvCrL8dxtktst8YcQAAAAAADwE5PJpOjoaO3Zs0f79u0zOg7qOLPZrFatWslkMp3XdSjHAXhFtpGsgVJpoXR4j9SsrdGJAAAAAABAI2K329W+fXtGq+CM7HZ7jfx0gaHleHx8/En/JWj8+PF68803VVxcrClTpuhf//qXSkpKNHz4cM2aNUtOp9N3bmpqqsaNG6eFCxcqNDRUt912m6ZPn15lSf2iRYs0efJkbd68WS1bttSjjz6qUaNG+eMjAvWH2SK16ChlbpCyN1OOAwAAAAAAvzObzQoMDDQ6BhoJQ+cmrF69WpmZmb7HvHnzJEnXXXedJGnSpEn68ssv9cknn+inn35SRkaG/vjHP/reX15eriuvvFIul0vLli3T+++/r/fee0+PP/6475w9e/boyiuv1KWXXqr169dr4sSJuuOOO/T999/798MC9YGzq/eYw9xxAAAAAAAANGwmj8fjMTpEpYkTJ+qrr77Szp07lZ+frxYtWujjjz/WtddeK0natm2bOnfurOXLl+uiiy7St99+qz/84Q/KyMjwrSZ/6623NHXqVOXm5sput2vq1Kn6+uuvtWnTJt99brzxRh05ckTffffdWeXKz89XeHi48vLyFBYWVvMfHKgrlr0h/fCI1Pn/k2740Og0AAAAAAAAQLVUp8utMzvuuVwuffTRR7r99ttlMpm0Zs0alZaWasiQIb5zOnXqpFatWmn58uWSpOXLl6tbt25VxqwMHz5c+fn52rx5s++c469ReU7lNU6mpKRE+fn5VR5Ao+BM9B6zNxubAwAAAAAAAKhldaYc//zzz3XkyBHfLPCsrCzZ7XZFRERUOc/pdCorK8t3zvHFeOXrla+d7pz8/HwVFRWdNMv06dMVHh7ue7Rs2fK8Px9QL1SOVTm0W3IVGpsFAAAAAAAAqEV1phz/+9//riuuuEIxMTFGR9FDDz2kvLw832P//v1GRwL8I9QhBTeX5JFytxmdBgAAAAAAAKg1daIc37dvn+bPn6877rjD972oqCi5XC4dOXKkyrnZ2dmKiorynZOdnX3C65Wvne6csLAwBQUFnTRPQECAwsLCqjyARoPRKgAAAAAAAGgE6kQ5PnfuXDkcDl155ZW+7/Xq1Us2m00LFizwfW/79u1KTU1VcnKyJCk5OVkbN25UTk6O75x58+YpLCxMiYmJvnOOv0blOZXXAPA7laNVcrYYmwMAAAAAAACoRYaX4263W3PnztVtt90mq9Xq+354eLjGjBmjyZMna+HChVqzZo1Gjx6t5ORkXXTRRZKkYcOGKTExUX/5y1+0YcMGff/993r00Uf117/+VQEBAZKku+++W7t379YDDzygbdu2adasWfrf//1fTZo0yZDPC9R5DlaOAwAAAAAAoOGznvmU2jV//nylpqbq9ttvP+G1V155RWazWX/6059UUlKi4cOHa9asWb7XLRaLvvrqK40bN07JyckKCQnRbbfdpqefftp3TkJCgr7++mtNmjRJM2fOVFxcnN59910NHz7cL58PqHcqx6qwchwAAAAAAAANmMnj8XiMDlHX5efnKzw8XHl5ecwfR8PnKpSei5Hkke7f6d2kEwAAAAAAAKgHqtPlGj5WBUAdYw+WItt4nzNaBQAAAAAAAA0U5TiAEzFaBQAAAAAAAA0c5TiAEzm6eI+sHAcAAAAAAEADRTkO4EROynEAAAAAAAA0bJTjAE5UWY7nbpPc5cZmAQAAAAAAAGoB5TiAEzWNl6xBUlmxdGi30WkAAAAAAACAGkc5DuBEZovk6Ox9zmgVAAAAAAAANECU4wBOzpnoPeZsMTYHAAAAAAAAUAsoxwGcnINNOQEAAAAAANBwUY4DOLnKleOU4wAAAAAAAGiAKMcBnJyzq/d4eK/kOmZoFAAAAAAAAKCmUY4DOLmQ5lKIQ5JHytlmdBoAAAAAAACgRlGOAzg132iVTcbmAAAAAAAAAGoY5TiAU6scrZKzxdgcAAAAAAAAQA2jHAdwag425QQAAAAAAEDDRDkO4NScx5XjHo+xWQAAAAAAAIAaRDkO4NRadJJMZqnokFSQbXQaAAAAAAAAoMZQjgM4NVuQFNnW+5zRKgAAAAAAAGhAKMcBnJ6TueMAAAAAAABoeCjHAZyeo4v3mLPF2BwAAAAAAABADaIcB3B6zopynJXjAAAAAAAAaEAoxwGcXuVYldztUnmZsVkAAAAAAACAGkI5DuD0IuIlW4hUXiId2mV0GgAAAAAAAKBGUI4DOD2zWXJ09j5ntAoAAAAAAAAaCMpxAGdWOVqFTTkBAAAAAADQQFCOAzgzB5tyAgAAAAAAoGGhHAdwZk7KcQAAAAAAADQslOMAzqyyHD+yTyo5amwWAAAAAAAAoAZQjgM4s+BIKTTK+zxnq7FZAAAAAAAAgBpAOQ7g7FRuysloFQAAAAAAADQAlOMAzk7laJWcLcbmAAAAAAAAAGoA5TiAs+Oo3JSTchwAAAAAAAD1H+U4gLPjG6uySfJ4jM0CAAAAAAAAnCfKcQBnp3lHyWSRio9IRzONToNq8Hg8Ki4rNjoGAAAAAABAnWI1OgCAesIWKDVrJx3Y7h2tEhZjdCKcgsfj0f6j+7Uqa5VWZ63W6qzVOlx8WH/r8zfd1Pkmo+MBAAAAAADUCZTjAM6eM7GiHN8ktR9idBpU8Hg8SitI8xXhq7JWKacw54Tzpq+argNFB3RP0j0ymUwGJAUAAAAAAKg7KMcBnD1nF2nzZ1IOm3IaLb0gXasyV+mX7F+0KmuVso5lVXndarbqguYXqG90X/Vx9tG6nHV6Y/0bemfjO8otytUTyU/IauaPAAAAAAAA0HjRjAA4e44u3mM25bi/ZRZkanX2al8hnl6QXuV1q9mqbs27qU9UH/WJ6qPuLboryBrke71vdF85gh16avlT+jzlcx0qPqQXB76oYFuwvz8KAAAAAABAnUA5DuDsORO9x9xtUnmpZLEZm6cByzqW5RuTsjprtdIK0qq8bjVZ1aV5F/WN6qveUb3Vo0WPMxbdI9uPVGRgpO7/6X4tTlusO3+4U28MfkNNA5vW5kcBAAAAAACok0wej8djdIi6Lj8/X+Hh4crLy1NYWJjRcQDjuN3S8y0lV4E0foXk6Gx0ogYjpzCnShmeejS1yusWk0VdmnVR76je6hvVV0mOpHNe9b0+Z70m/DhBeSV5ig+L19tD31ZMKBusAgAAAACA+q86XS4rxwGcPbNZciRKaauk7M2U4+fhQNGBKmX43vy9VV43m8xKjEz0jUlJciQp1B5aI/fu4eihDy7/QHfNv0t78/fqlm9u0ewhs9UxsmONXB8AAAAAAKA+oBwHUD3OinKcTTmrbevBrfrvzv9qVdYq7cnbU+U1k0zqFNlJfaP6qm+0d2V4E3uTWsvSJqKNPrriI909/26lHEnR6O9Ga+ZlM9Unqk+t3RMAAAAAAKAuoRwHUD2+TTk3G5ujnvF4PJq4cKIyjmVI8pbhHSM7eleGO/uoV1Qvhdn9O7bJGeLUe5e/p3t/vFdrc9bq7nl36/mBz2to66F+zQEAAAAAAGAEynEA1eOsLMdZOV4dOw7vUMaxDAVaAvX8wOfV29lb4QHhRsdSeEC43h76th5c8qAWpC7QlEVT9MiFj+iGTjcYHQ0AAAAAAKBWmY0OAKCecSZ6j3mpUnGesVnqkSXpSyRJF0ZfqMGtBteJYrxSoDVQL1/ysq7rcJ088uiZlc/o9XWvi/2aAQAAAABAQ0Y5DqB6gppKTWK8z3O2GpulHlmctliSNDBuoMFJTs5ituixix7T+B7jJUlzfp2jp5Y/pTJ3mcHJAAAAAAAAagflOIDqczJ3vDqOFB/RhtwNkqQBsQMMTnNqJpNJ47qP0+PJj8tsMuu/O/+rSYsmqaisyOhoAAAAAAAANY5yHED1VY5WyWHu+NlYlrFMbo9b7SLaKTo02ug4Z3Rdh+s0Y9AMBVgCtGj/Io39YazyShihAwAAAAAAGhbKcQDV52DleHUsTq/bI1VOZnCrwZozdI6a2Jtofe563frtrco6lmV0LAAAAAAAgBpDOQ6g+ipXjmdvkdi08bTK3eVamr5UUv0qxyWpp7OnPrj8AzmDndqdt1s3f3OzUg6nGB0LAAAAAACgRlCOA6i+5h0ks1UqyZPy041OU6dtPLBRR0qOqIm9ibq36G50nGpr17SdPhrxkdqEt1FOYY5u/e5WrcleY3QsAAAAAACA80Y5DqD6rAFSs/be59nMHT+dxWnekSr9Y/rLarYanObcRIVE6YMrPlCPFj101HVUY38YqwWpC4yOBQAAAAAAcF4oxwGcG99olU3G5qjjfk7/WZI0IG6AwUnOT3hAuN4Z9o4GtRwkl9ulyYsm63+3/6/RsQAAAAAAAM4Z5TiAc+Os2JQzh5Xjp5JTmKOth7bKJJMujr3Y6DjnLdAaqFcGvaI/tf+T3B63pq2YplnrZ8nD3HkAAAAAAFAPUY4DODeOinKcsSqntCRtiSSpW/NuigyMNDhNzbCarXoi+Qnd3f1uSdLsDbP19IqnVe4uNzgZAAAAAABA9VCOAzg3lWNVDmyXylzGZqmjlqR7y/GL4+r/qvHjmUwm/bXHX/XYRY/JJJP+s+M/mrxosorLio2OBgAAAAAAcNYoxwGcm/CWUkCY5C6TDu40Ok2d4yp3aXnGcknSwLiBBqepHdd3vF4zBs2Q3WzXj/t/1F3z7lJeSZ7RsQAAAAAAAM4K5TiAc2MySY7KTTkZrfJ7a3PWqrCsUM0Cm6lzZGej49SaIa2H6O2hb6uJrYnW5qzVqO9GKetYltGxAAAAAAAAzohyHMC5qxytkr3J2Bx10OK0xZKkAXEDZDY17N9qe0f11ntXvCdHkEMpR1L0l2//ol1HdhkdCwAAAAAA4LQadmMDoHZVrhzPYeX471VuxtlQR6r8XoemHfThiA+VEJ6grGNZuvXbW7U+Z73RsQAAAAAAAE6JchzAuXN29R4Zq1JFan6q9ubvldVk1UXRFxkdx29iQmP0weUf6IIWFyjfla87frhDC1MXGh0LAAAAAADgpCjHAZw7R8Us7fw0qeiIsVnqkCXp3lXjPZ091cTexOA0/hURGKF3h72rS+IuUUl5iSYumqivdn9ldCwAAAAAAIATUI4DOHdBEVJYnPc5o1V8KkeqDIgdYHASYwRZg/Tqpa9qZLuRcnvceuznx7QsfZnRsQAAAAAAAKqgHAdwfpxdvMfszcbmqCMKSwu1Omu1pMYzb/xkrGarnuz3pEYkjFCZp0yTFk3S1oNbjY4FAAAAAADgQzkO4Pw42ZTzeCszV8rldik2NFYJ4QlGxzGU2WTWM/2f0YVRF6qwrFDjF4xX2tE0o2MBAAAAAABIohwHcL4crBw/XuW88QGxA2QymQxOYzybxaZXLn1FHZp20IGiAxo3f5wOFx82OhYAAAAAAADlOIDzVDlWJWer5PEYm8VgHo9Hi9MWS2rcI1V+r4m9iWYPma3okGjtzd+re368R0VlRUbHAgAAAAAAjRzlOIDz07y9ZLZJJflS3n6j0xhqx+Edyi7MVqAlUH2i+hgdp05xBDs0e8hsNbE30YbcDZq6eKrK3eVGxwIAAAAAAI0Y5TiA82OxSc07eJ838tEqlSNV+kb3VaA10OA0dU/biLZ6/bLXZTfbtXD/Qk1fNV2eRv7TBgAAAAAAwDiU4wDOX+WmnI29HE/zluMDYxmpciq9nL30/MDnZZJJ/97+b7278V2jIwEAAAAAgEaKchzA+fPNHd9ibA4D5ZXkaX3ueknSgLgBBqep24a2HqqpfadKkl5b95r+L+X/DE4EAAAAAAAaI8pxAOfPUVGOZzfecnxZxjK5PW61i2inmNAYo+PUeTd3vlmju46WJD257EktTV9qcCIAAAAAANDYUI4DOH+VY1UO7JDKSozNYpDFaYslsWq8Oib2nKgr21ypMk+ZJi2apC0HG+8/rgAAAAAAAP+jHAdw/sJipcBwyVPuLcgbmXJ3uW/l84BYyvGzZTaZNa3fNF0YfaGKyoo0fv54pR1NMzoWAAAAAABoJCjHAZw/k6lRj1bZdHCTDpccVhNbE/Vw9DA6Tr1is9j06qBX1bFpRx0sPqhx88fpcPFho2MBAAAAAIBGgHIcQM2oHK2SvcnYHAZYkrZEkpQckyyb2WZwmvon1B6qWUNmKTokWnvz92rCjxNUVFZkdCwAAAAAANDAUY4DqBnOipXjOY1v5XjlvPGBcQMNTlJ/OYIdemvIWwqzh+nX3F/1wOIHVOYuMzoWAAAAAABowAwvx9PT03XLLbeoWbNmCgoKUrdu3fTLL7/4Xvd4PHr88ccVHR2toKAgDRkyRDt37qxyjUOHDunmm29WWFiYIiIiNGbMGBUUFFQ559dff9WAAQMUGBioli1b6oUXXvDL5wMajUY6ViW3MFdbD22VJF0ce7HBaeq3NhFt9Pplr8tutmvR/kV6buVz8ng8RscCAAAAAAANlKHl+OHDh9W/f3/ZbDZ9++232rJli15++WU1bdrUd84LL7yg1157TW+99ZZWrlypkJAQDR8+XMXFxb5zbr75Zm3evFnz5s3TV199pcWLF2vs2LG+1/Pz8zVs2DC1bt1aa9as0Ysvvqgnn3xSc+bM8evnBRo0R2fv8WiGVHjI2Cx+9HP6z5Kkrs26qllQM4PT1H89nT31PwP/RyaZ9MmOT/TOxneMjgQAAAAAABook8fAZXkPPvigli5dqiVLlpz0dY/Ho5iYGE2ZMkX333+/JCkvL09Op1PvvfeebrzxRm3dulWJiYlavXq1evfuLUn67rvvNGLECKWlpSkmJkazZ8/WI488oqysLNntdt+9P//8c23btu2MOfPz8xUeHq68vDyFhYXV0KcHGqBXukl5qdKor6X4xrGKetLCSZqfOl/ju4/XuB7jjI7TYHy89WNNXzVdkjSt/zRd0+4agxMBAAAAAID6oDpdrqErx7/44gv17t1b1113nRwOh5KSkvTOO7+tEtyzZ4+ysrI0ZMgQ3/fCw8N14YUXavny5ZKk5cuXKyIiwleMS9KQIUNkNpu1cuVK3zkDBw70FeOSNHz4cG3fvl2HDx8+IVdJSYny8/OrPACcBWfjGq1SWl6q5Zne34sGxA0wOE3DclPnm3R719slSU8ue9K3Qh8AAAAAAKCmGFqO7969W7Nnz1b79u31/fffa9y4cbr33nv1/vvvS5KysrIkSU6ns8r7nE6n77WsrCw5HI4qr1utVkVGRlY552TXOP4ex5s+fbrCw8N9j5YtW9bApwUaAWei95i9ydgcfrI2Z62OlR5Ts8BmSmyWaHScBue+nvfpD23+oHJPuSYvmqzNBzcbHQkAAAAAADQghpbjbrdbPXv21HPPPaekpCSNHTtWd955p9566y0jY+mhhx5SXl6e77F//35D8wD1hqOiIM5pHCvHF6ctluTdiNNsMnx/4wbHbDLr6X5P66Loi1RUVqTx88dr/1F+PwYAAAAAADXD0DYnOjpaiYlVV1t27txZqampkqSoqChJUnZ2dpVzsrOzfa9FRUUpJyenyutlZWU6dOhQlXNOdo3j73G8gIAAhYWFVXkAOAvOrt5jzlbJ7TY2ix8sSfful8BIldpjs9j0yqBX1Cmykw4VH9K4+eN0uPjEcVgAAAAAAADVZWg53r9/f23fvr3K93bs2KHWrVtLkhISEhQVFaUFCxb4Xs/Pz9fKlSuVnJwsSUpOTtaRI0e0Zs0a3zk//vij3G63LrzwQt85ixcvVmlpqe+cefPmqWPHjmratGmtfT6g0WnWVrLYJVeBd2POBmz/0f3ak7dHFpNF/WL6GR2nQQtlMooMAAAgAElEQVS1h+rNwW8qJiRG+/L3acKCCSoqKzI6FgAAAAAAqOcMLccnTZqkFStW6LnnnlNKSoo+/vhjzZkzR3/9618lSSaTSRMnTtQzzzyjL774Qhs3btStt96qmJgYXXPNNZK8K80vv/xy3XnnnVq1apWWLl2qCRMm6MYbb1RMTIwk6aabbpLdbteYMWO0efNm/fvf/9bMmTM1efJkwz470CBZbFLzjt7n2Q17PnTlSJUkR5Ka2JsYnKbhcwQ7NHvobIUHhOvXA7/qgZ8eUJm7zOhYAAAAAACgHjO0HO/Tp48+++wz/fOf/1TXrl01bdo0vfrqq7r55pt95zzwwAO65557NHbsWPXp00cFBQX67rvvFBgY6DvnH//4hzp16qTBgwdrxIgRuvjiizVnzhzf6+Hh4frhhx+0Z88e9erVS1OmTNHjjz+usWPH+vXzAo2Cs4v3mN2w545XjlQZGDfQ4CSNR5vwNnr9stcVYAnQorRFenbls/J4PEbHAgAAAAAA9ZTJQ7NwRvn5+QoPD1deXh7zx4EzWTpTmve41GWkdN17RqepFYWlhRrwrwFyuV36/OrP1TairdGRGpUF+xZo0qJJ8sijCT0m6K7udxkdCQAAAAAA1BHV6XINXTkOoAFyVK4cb7hjVVZnrZbL7VJMSIzahLcxOk6jM7j1YD104UOSpDfWv6HPdn5mcCIAAAAAAFAfUY4DqFnORO/x4C6ptNjYLLWkct74gLgBMplMBqdpnP7c6c8a03WMJOmp5U9pSdoSgxMBAAAAAID6xmp0AAANTJNoKaipVHRYOrBdiu5udKIa5fF4tDjdW44zb9xY9/W8TzmFOfpy95ea8tMUzR0+V12adzE6FgAAAAAAfuMpL1fZgQMqy8xUaWamSjMyVZqVpdLMDJUfPqLWH33Iwr7ToBwHULNMJu9olX0/e0erNLByPOVIirKOZSnAEqA+UX2MjtOomUwmPdXvKR0oOqDlmcs1fsF4fXTFR2oZ1tLoaAAAAAAAnDePxyP30aPe0jszs6IAz6r4OkNlmVkqzc6WyspOeQ330aOysIfiKVGOA6h5zsTfyvEGpnKkSt+ovgqyBhmcBjaLTa9c+opGfTdK2w5t093z79aHIz5UZGCk0dEAAAAAADgtt8ulsqysisI746Tlt/vYsTNfyGKRzemUNTpatoqHNTpKtuhomQICav+D1GOU4wBqnrNitEXOFmNz1ILj542jbgixhWjW4Fm65ZtblHo0VRMWTNC7w95VsC3Y6GgAAAAAgEbK4/Go/NAhlWZkeEedVK70rhx/kpWp8twDZ3UtS9OmFWV3TEX5HVVRgFcU4S1ayGSx1PInapgoxwHUPEdFOZ7dsMrxvJI8bcjdIIl543VNi+AWmj10tm799lZtPLBRDyx+QK9e+qqsZv6YAwAAAADUPE95ucpycirK7wyVpqerND3jt68zM+UpLj7jdUwBAd7COyZa1qjo455XluFRMgfxk+u1hdYAQM1zdPIeC7KkYwelkGbG5qkhyzOWq9xTrrbhbRUbGmt0HPxOm/A2euOyN3THD3fop7Sf9OzKZ/X4RY+z8QgAAAAAoNrcLpd3zImv/D6uBM/IOOOsb0mSySRrixayxcScsPLbGh0tW0yMLBER/L3VQJTjAGpeQBOpabx0eK+Us1lKaBirrJekL5HESJW6rIejh/5n4P9o0sJJ+s+O/yguNE5juo0xOhYAAAAAoI5xHzv2W/H9+wI8I0NlubmSx3P6i1itskVFyRYT89sjtvIYK2tUlMx2u38+EM4J5TiA2uHo4i3Hs7c0iHLc7XHr5/SfJTFSpa4b3GqwpvadqudXPa9X176q2NBYXZ5wudGxAAAAAAB+5D52TK60dO9K77S0ihXfv40+KT9y5IzXMAUEHFd6x1Ytv2NiZHU4mPVdz1GOA6gdzkRp+9dS9iajk9SITQc26VDxIYXaQtXD0cPoODiDmzvfrLSjafpo60d65OdH5Ah2qKezp9GxAAAAAAA1xF1S4i2609N85bcr7bcivPzw4TNew9ykSdVV35UleEUBbomMZORJA0c5DqB2OBK9x5yGsSln5UiV5Jhk2cw2g9PgbNzf+35lFGTox/0/6t6F9+ofI/6h1mGtjY4FAAAAADgLntJSlWZlHVd8p6n0uJXgZbm5Z7yGOTxcttgY2WPjKkrv2Corvy1hYX74JKjLKMcB1A5nV+8xZ6vkdktms7F5ztPitMWSGKlSn1jMFj0/8Hnd/t3t2nRwk8bNH6ePRnykyMBIo6MBAAAAQKPnKS9XWU6OStPS5EpP9xbflUV4eprKsrK9fcJpmIKDZY+NlS0uzvuIjZHd9zxWliZN/PRpUF9RjgOoHZFtJEuAVFooHd4jNWtrdKJzdqDogLYc9K6Avzj2YoPToDqCrEF6ffDruuWbW7T/6H7d++O9enfYuwq0BhodDQAAAAAaNHdxsUozM1WWlaXSjEyVZmaqNCtTZRkZ3vEnmZlSaelpr2Gy272rvePiZIuL/a0Ij/V+bYmIYOwJzgvlOIDaYbFKLTpKWb96R6vU43J8SZp3pEqXZl3UPKi5wWlQXc2DmmvW4Fm65dtbtCF3gx75+RG9eMmLMpvq908zAAAAAIBRPOXlKjtwQGWZFaV3RqZ3BEpmhsoqnpcfOnTmC1mtvk0u7XGVo0+8xbctNlbW5s1lquc/iY66jXIcQO1xdvWW49lbpM5XGZ3mnFXOGx8QN8DgJDhXbSLaaOalMzV23lj9sO8Hxa6N1eRek42OBQAAAAB1jsfjkfvoUZVmVpTdmZkVzzMrvs5SaXa2VFZ2xmuZgoNli4mWLSpatuho2WKiZY2Klr2y/HY6ZbJY/PCpgJOjHAdQe5yVm3JuNjbHeSh1l2pZxjJJ0sBY5o3XZ32i+ujpfk/r4Z8f1txNcxUXGqfrO15vdCwAAAAA8CtPebnKsrIqRptkVBl7UpblXQXuPnbszBeyWGRzOmWNrii+o6NljY6qKMFjZIuKkjksjLEnqNMoxwHUHkdFOZ5df8vxddnrdKz0mCIDI9WleRej4+A8XdX2KqUXpOvN9W/q2ZXPKiokik1WAQAAADQ4HpfLu8nl/v1y7UuVKzVVpakVx7Q0ec4w61uSLBERssZEyxbtLbptMRUFeFTFCvAWLVj1jXqPchxA7XF29R4P7ZZKiyRbkLF5zsHitMWSvBtxMqO6YbjrgruUdjRN/7fr/3T/T/fr/cvfV+dmnY2OBQAAAADV4i4qkit1v0r3p3oL8P0VBfi+VO9ml273qd9ss8leMevbWmXkSZS3DI+Okjmo/v0dHqguynEAtSfUIQU3kwoPSrnbpJgkoxNVG/PGGx6TyaQnkp9QVmGWVmau1IQFE/SPK/+hqJAoo6MBAAAAQBXl+fneAjx1n1ypqXKl7pcrdZ9KU/erLCfntO81BQXJ3qqV7K1aytaqlewtW8neupXsrVrJGhXFqm9AlOMAapPJ5B2tsneJd7RKPSvH046maXfebllMFvWL6Wd0HNQgm8WmGYNm6LZvb1PKkRSNXzBeH1z+gULtoUZHAwAAANCIeDwelR88WKX0dqX+Ngal/MiR077fHBZWUYC3kq31bwW4rWVL79gT5n0Dp0U5DqB2ObtUlONbjE5SbZWrxns4eijMHmZwGtS0MHuY3hz8pm7+5mbtPLxTU36aojcGvyGb2WZ0NAAAAAANUHlenkp27FDxzp0q2bFDJTtTVLJzp9z5+ad9n6VFc2/p3aqVbK1ayt6qtXcFeMuWskRE+Ck90DBRjgOoXc6KTSxz6t+mnJXzxtmwseGKCY3RG5e9odHfj9ayjGV6dsWzeiL5CVZXAAAAADhn7uJilezapZIdlSW493jKMSgmk6zRUd7S+/gxKK28Bbg5JMS/HwBoRCjHAdQuR0U5nl2/yvGisiKtzlotSRoQy7zxhqxL8y56YeALum/hffrvzv8qrkmc7uh2h9GxAAAAANRxnrIyuVL3VynAS3bulCs19ZSbYdpiYhTQvr0COnRQQAfv0R4fL3NAgJ/TA5AoxwHUNkcnSSbpWK5UkCuFtjA60VlZnbVaJeUlig6JVruIdkbHQS0b1HKQpvaZqumrpmvm2pmKCYnRiDYjjI4FAAAAoA7weDwqy86uUoIX79wpV8oueVyuk77HEhFRUYB3qCjD2yugfXtZQtnnCKhLKMcB1C57iBSZIB3a7R2tEjrI6ERn5fiRKozYaBxu6nyT0grS9OGWD/Xo0kcVFRKlns6eRscCAAAA4EfleXkq2blTxb4ifOdp54KbgoIU0K6dr/wOrCjDLc2b83dJoB6gHAdQ+xyJ3nI8e4vUZpDRac7I4/FoSZp3M05GqjQuU3pNUUZBhhakLtC9C+/VR1d8pPjweKNjAQAAAKhBnvJylWZmyrVnr1x7f3uUpKSoLDv75G+yWGRPiPeV35Urwm1xcTKZzX7ND6DmUI4DqH3OLtK2r+rN3PFdR3Yp41iG7Ga7+kb3NToO/Mhitmj6gOka8/0YbTywUeMXjNdHIz5SZGCk0dEAAAAAVIPH41FZbq63+N63r6IA9x5LU1PlKS095XtPOhc8IUFmu92PnwCAP1COA6h9zopNOXPqRzm+ON07UqVPdB8FWYMMTgN/C7IG6bXLXtMt39yi/Uf3694f79W7w95VoDXQ6GgAAAAAfqc8P7/K6u/KAty1d6/chYWnfJ/Jbpe9dSvZ4+O9j9atZW/blrngQCNDOQ6g9jkqy/FtkrtcMluMzXMGlSNVBsYONDgJjNI8qLlmDZmlW765RRtyN+jhnx/WS5e8JLOJH5cEAAAA/M1dXCzXvtTfleDeFeHlhw6d+o1ms2xxcd7iOz5e9njvMSA+XtaoKJksdfvvpgBqH+U4gNoXmSBZg6SyIunQHql5O6MTnVK+K1/rctZJkgbEMW+8MWsT3kYzL52psfPGat6+eXp1zaua3Huy0bEAAACABqs0J0cl27bJtWePSo5bCV6WmXna91kdjt9Wf8fHy55QsRo8Lk4mRqEAOA3KcQC1z2yRWnSUMtd7R6vU4XJ8WcYylXvKlRCeoJZNWhodBwbrE9VH0/pP00NLHtLczXMVGxqrGzrdYHQsAAAAoF7zeDwqTU9X8ZYtxz22qvzAgVO+xxwWJnuCd9W3rXVrBVSMQ7G1ai1LaIj/wgNoUCjHAfiHs6u3HM/eIiVebXSaU2KkCn7vD23+oPSj6Xpj/Rt6btVzig6N1sA4fn0AAAAAZ8NTXi7Xvn0q3lxRgm/dquItW+TOzz/xZLNZ9jYJCmjb7oSV4JaICJlMJr/nB9CwUY4D8A9noveYvcnYHKfh9rj1c/rPkhipgqrGXjBWaQVp+jzlc93/0/16//L31blZZ6NjAQAAAHWKp7RUJbt2/VaEb9mi4u3b5TnZxpg2mwLbt1dAYmcFJiYqKDFRAR07yhwU5P/gABotynEA/uGoKMdzthib4zS2HNyiQ8WHFGILUU9HT6PjoA4xmUx6PPlxZR3L0orMFfrrgr/q4ys/VlRIlNHRAAAAAEO4i4tVsn27dyV4RRlesmOHPKWlJ5xrCgxUYKdOCkxMVGBFGR7Qrh3zwAEYjnIcgH84u3qPh/ZIrmOSve7NhFuctliS1C+mn2wWm8FpUNfYzDbNGDRDt357q1KOpGjc/HH64IoP1MTexOhoAAAAQK0qLyhQScU4lOIt3mPJ7t1SefkJ55qbNFFgZ28BHtglUYGJibLHx8tksRiQHABOj3IcgH+EtpBCWkjHcqXcbVJsL6MTnaCyHB8Qy0gVnFwTexPNGjxLN31zk1KOpGjKoil6c8ibspn5xxQAAADUfx63W6UZmSpJ2amSnTt9o1FK96We9HxLZKQCu3TxFuGdOyuwS6JscXHMBgdQb1COA/AfR6K05ycpe3OdK8cPFB3Q5oObJUkXx15scBrUZdGh0Xpz8Jsa9d0oLc9crmdWPKMnk5/kLwAAAACoNzwej8oyM1WSkqKSnSneY0qKSnbtOvl8cEnW6OgqY1ECExNldTj4/8EA6jXKcQD+4+xaUY7XvbnjlRtxdo7srBbBLQxOg7ousVmiXhz4ou5deK8+3fmp4kLjdOcFdxodCwAAAKjC4/GoLCenogDfqZKUFLkqynD3sWMnf5PNpoD4eAW0b6eAzscV4U2b+jc8APgB5TgA/3FWbsq52dgcJ7EkbYkkaWDcQIOToL64pOUleqjvQ3p25bN6bd1rigmN0ZVtrjQ6FgAAABohj8ejstxcuSpXgB+3Gtx99OjJ32S1yh7fWgHt2iugXTvvo3072Vu1ksnG2EAAjQPlOAD/cVSU49mbJY9HqiM/flfqLtWyjGWSKMdRPTd2ulFpR9P0/pb39djSx+QMdqp3VG+jYwEAAKCB8ng8Kj948MRxKCkpcuflnfxNFovsrVtXKcAD2rWTvXVrmex2/34AAKhjKMcB+E+LTpLJLBUelApypCZOoxNJktbnrFdBaYGaBjRVl2ZdjI6DemZy78nKOJahefvm6b6F9+mjER8pITzB6FgAAACo5zwul4q3blXRpk1VxqGUHzly8jeYzbK3auVd/V1ZhLdrL3tCvMyU4ABwUpTjAPzHHixFtpEOpnhHq9SRcrxypMrFsRfLYrYYnAb1jdlk1nMXP6fswmz9mvurxs0fp/cuf09RIVFGRwMAAEA9Unb4sIrWrVfRurUqXLdOxRs3yVNScuKJJpNsrVqeOA4lIUHmgAD/BweAeoxyHIB/ORK95Xj2ZqntZUankSQtTlssiZEqOHeB1kC9dulr+su3f9H+o/t1xw93aO7wuWzuCgAAgJPyeDxy7dmjorXeIrxo7Tq59uw54TxLRISCundXQIcOv41DadNG5sBAA1IDQMNDOQ7Av5xdpK1fSNlbjE4iSUovSNeuvF2ymCxKjkk2Og7qsWZBzfT3YX/XqO9GaV/+Pt35w536f5f/P0UGRhodDQAAAAZzFxereONGFa5br6K1a1W0bp3KTzIj3N62rYKSeig4qaeCkpJkT4iXqY7s1QQADRHlOAD/clbM9M7ZbGyOCpUjVbq36K7wgHCD06C+iw6N1rvD3tWo70dpV94ujf1hrP4+/O/82gIAAGhkSnNyvCNS1q5V4fp1Kt6yVSotrXKOKSBAQd26KahnTwUl9VBQjx6yNm1qUGIAaJwoxwH4lyPRe8zdLpWXSRZjfxuqHKkyIG6AoTnQcLQMa6l3h72r0d+N1vbD23XXvLv0zrB31MTexOhoAAAAqAWe8nKVpKRUGZFSmpZ2wnnWFi18RXhwz54K7NRJJjbKBABDUY4D8K+mCZItWCotlA7tllp0MCxKcVmxVmWtksS8cdSshPAEvTvsXd3+/e3afHCzxs0fp7eHvq0QW4jR0QAAAHCeyguOqfjXDSpcu05F69apaMMGuQsKqp5kMimgY0dfER6UlCRbbCwjUgCgjqEcB+BfZrPk6Cylr/GOVjGwHF+VtUol5SWKColS+4j2huVAw9SuaTvNGTZHt39/uzbkbtCEBRM0a8gsBVmDjI4GAACAaig7fFiFK1aocPUvKly3TiXbt0tud5VzzMHBCurRXUEVs8KDenSXJTTUoMQAgLNFOQ7A/xyJ3nI8e4vUZaRhMXwjVWIHsIIDtaJTZCfNGTpHd/5wp37J/kX3/niv3hj8hgIsAUZHAwAAwCm4i4tVuGaNji1bpmPLl6tky9YTzrHFxFQZkRLQvr1MVioWAKhv+J0bgP9VbsqZbdymnB6PRz+n/yyJkSqoXV2bd9XsIbM1dt5YrchcoUkLJ2nmpTNls9iMjgYAAAB5Z4YXb9nqK8OL1q6Vx+Wqck5Ahw4KvvBCBfeqGJHidBqUFgBQkyjHAfhfZTmeY1w5vjtvt9IL0mU329U3qq9hOdA49HD00JuD39T4+eO1JH2J/rb4b3rxkhdlM1OQAwAA+JvH41Hp/v3eMnzZch1buVLuvLwq51ijohSSnKyQfv0UctGFsrZoYVBaAEBtohwH4H+OinL88F6ppEAK8P8sviVpSyRJfaL6KNgW7Pf7o/HpE9VHMy+bqXsW3KMFqQv08JKH9fyA52UxW4yOBgAA0OCVHT6swuXLdWz5ch1btlyl6elVXjeHhir4wgsV0i9ZIcn9ZE+IZ/QiADQClOMA/C+kmRTqlAqypZytUss+fo+wOL1i3njcAL/fG41Xv5h+mjFohiYumqjv9n4nu8Wuaf2nyWwyGx0NAACgQXEXF6vwlzU6tvwUc8NtNgV3766Q/v0UkpyswK5dmRkOAI0Qv/MDMIYjsaIc3+z3cvyo66jWZa+TJA2MZd44/OuSlpfoxYEv6v6f7tcXu76QzWzT48mPU5ADAACcB+/c8C3eMSmnmRsekpyskP79FNyrl8whIQalBQDUFZTjAIzh7CLtXihlb/H7rZdnLFeZp0zxYfFqGdbS7/cHhrQeoukDpuvBJQ/qvzv/K7vFrof6PsSP7gIAAJwlj8ej0tRU35gU5oYDAM4F5TgAY1Ruypnt/005F6cxUgXGuyLhCrnKXXps6WP657Z/ym62a0rvKRTkAAAAp1CamanCNWtVuHIFc8MBADWCchyAMZp38B4P7/Hrbd0et35O/1mSNDCOkSow1tXtrpbL7dLTy5/W+1veV4A1QPck3WN0LAAAAMN5yspUvG27itauVdH6dSpcu05lWVlVT7LZFNyjR0UZztxwAED18acGAGOEV4wzOZoplZdKFptfbptTmKODxQdlNVnVy9HLL/cETue6DtfJVe7S86ue15xf58hutuuu7ncZHQsAAMCvyvPzVbRhgwrXrlXR2nUq+vVXeYqKqp5ksSiwUycF9+7N3HAAQI2gHAdgjJAWkiVAKi+R8jOkpq39ctu0o2mSpOjQaNn8VMgDZ3Jz55tVWl6ql9e8rDfWv6EAS4BGdR1ldCwAAIBaUTkvvHDdOm8Rvm6dSlJSJI+nynnmJk0UlNRDwUlJCkrqqaALuskcHGxQagBAQ0Q5DsAYZrMUHisd2i3l7fdfOV7gLcdjQ2P9cj/gbI3qOkol5SV6Y/0bennNy7Jb7Lqp801GxwIAADhvbpdLxZs3e4vw9etUuG69yg8cOOE8W+tWCu6RpKCePRXcM0n2tm1lMpsNSAwAaCwoxwEYJ7xlRTme5rdbphd4N+2JaxLnt3sCZ+uu7neppLxE72x8R9NXTZfNYtN1Ha4zOhYAAEC1lB06pKJ13hXhhWvXqXjTJnlcrirnmGw2BXbp4ivCg3r0kLV5c4MSAwAaK8pxAMapnDt+ZL/fbpl+1FuOs3IcddU9SffIVe7S+1ve17Tl02Q323V1u6uNjgUAAHBSHrdbrt27q4xIce3de8J5lshIBSUleYvwpCQFdukic0CA/wMDAHAcynEAxgmvWL2d579yvHKsSlwoK8dRN5lMJk3pPUUut0v/3PZPPb7scdktdl2RcIXR0QAAAORxu1W8eYuOLVumorVrVbh+vdx5eSecZ2/XVsFJPX2FuK11a5lMJgMSAwBwapTjAIwTUbFy3I/leOXKccaqoC4zmUx6sO+DcpW79N+d/9VDSx6S3WzX4NaDjY4GAAAaobLcXBUsXapjS37WsWXLVH74cJXXTYGBCrrggt9WhnfvLktEhEFpAQA4e5TjAIzjWznun5njJf8/e/cdHlWdtnH8Oy1lMskkIRBKQNouiICIjar0oCgqWBYLIIKAqBQFdXUtWBAXu9KR4hYV5d1VUUhCEwiIYEPARk2ABBJImSSkzMz7xyQDWRuBCSfl/lwXV8g5J5M7f6wb7jx5fu5CjhQcAbRWRao+s8nM450fp8hdxEd7PuLBzx7k1Z6vckXcFUZHExERkRrOW1RE/pdfkbdhPa4NGyn8/vty981hYdg7dyLssst8K1Jat8ZksxmUVkRE5MypHBcR45TtHM9OBa8XKvnXLA+5DgFgt9qJDNYki1R9ZpOZqV2nUuwpZsW+FUxcM5HXe79Ol4ZdjI4mIiIiNUzR/v241m8gb8MG8rZswZufX+5+yAUXENatG47u3Qi98EKV4SIiUiOoHBcR40SUTm8X50P+MQirU6mfLjXXN6HeKLyR9h1KtWE1W3mu+3MUuYtYnbKa8avHM7PPTC6tf6nR0URERKQac7vyyP98M64NG8jbsJHilPKrDi0xMTi6diGsW3fCunbBGh1tUFIREZHKo3JcRIxjCwFHLLjSfXvHK7kcP+gq3TeuwzilmrGZbfz9yr8zYc0E1h9cz7hV45jbdy4d6nUwOpqIiIhUE16PhxO7dpG3YSN5GzaQ/9VXUFJy8gGbDXvHjoR164qjWzeCW7XCZDYbF1hEROQcUDkuIsZyxp0sxxtWbtFXVo5r37hUR0GWIF7u+TL3rrqXzYc3MzZpLPP6zaNtTFujo4mIiEgVVZKZSd7Gjb51KcnJuDMzy923ndcER9duhHXrRtjll2EOCzMoqYiIiDFUjouIsZxxcHDbOTmU0z85Hq7Jcamegi3BvNbrNcYmjWVb+jZGJ45mQfwCWke3NjqaiIiIVAHeoiLyv/6avPUbcG3cQOHOXeXum+127J06+afDg5o0MSipiIhI1aByXESMVXYoZ1bK7z8XAP6d45ocl2os1BrKm73fZHTiaL45+g13J9zNW/Fv0TKqpdHRRERExABFKSm41q8nb8NG8jdvxvM/B2kGtznfPx1uv6gDpqAgg5KKiIhUPSrHRcRYZeV49jkox12+clw7x6W6C7OFMavPLEYljGJH5g5GJoxkUf9FNHU2NTqaiIiIVDJ3bi55mzeTl5xM3sZkig8cKHffEh1NWNeuOLp3I6xLF6wxMQYlFRERqfpUjouIsSLLyvHKXauSXZhNblEuAA0dDSv1c4mcC+FB4czpO4cRK0fw4/EfuSvhLhb1X0Tj8MZGRxMREZEA8paUUPDtdvI2biQvOZmCb78Ft/vkA1Yr9g4dCOvenZ9MfYkAACAASURBVLBuXQk5/3wdpCkiInKaVI6LiLGcpVPclTw5XrZvPDokGrvNXqmfS+RccQY7mddvHiNWjGB39m5GJYxicf/FxIbFGh1NREREzkLRgQP+Mjxv02Y8Lle5+0HNmhHWpQthXbtiv+wyLA4dpCkiInImVI6LiLHK1qrkHYXiArCFVsqn0WGcUlNFh0Qzt99chq8YTkpuCqMSR7EwfiF1QusYHU1EREROkzsnp/yqlJTygyMWpxN7586Ede2Co0sXbI10ho6IiEggGPq7Vk8++SQmk6ncn9atW/vvnzhxgnHjxlGnTh0cDgeDBw8mPT293GscOHCAAQMGYLfbqVevHpMnT6akpKTcM2vXrqVjx44EBwfTsmVLFi1adC6+PBE5HaFRYCuddMk+WGmf5mCu77V1GKfURPXs9Zjfbz6x9lj2Zu9lTNIYsguzjY4lIiIiv8FbUkL+l19y9PU32PeXIfzYqTMH7x9P1jvv+opxqxX7pZdSd8J4mi59jz8lbyTulZeJuukmFeMiIiIBZPjk+AUXXEBSUpL/fav1ZKSJEyeyfPlyli5ditPp5N5772XQoEFs3LgRALfbzYABA6hfvz7JyckcPnyYoUOHYrPZeO655wDYu3cvAwYMYMyYMfzzn/9k1apVjBw5kgYNGhAfH39uv1gR+SWTybdaJeMH32qVmJaV8ml0GKfUdA0dDZnfbz7DVgzj+2Pfc8+qe5jbdy5hNv2atYiIiNG8Xi/FBw6Ql5yMa+NG8jd//stVKc2bl65K6YL9Uq1KERERORcML8etViv169f/xfXs7GwWLFjAv/71L3r16gXAwoULOf/889m8eTOdOnUiISGBnTt3kpSURGxsLB06dODpp5/moYce4sknnyQoKIjZs2fTrFkzXnzxRQDOP/98NmzYwMsvv6xyXKSqiGx8shyvJGXluCbHpSZr6mzK3L5zGbFyBN8e/Zb7V9/Pm73fJMQaYnQ0ERGRWsednU3e5s9LV6VspDi1/AH0FqeTsK5dfIV4ly7YGurQeBERkXPN8HL8p59+omHDhoSEhNC5c2emTZtGkyZN2LZtG8XFxfTp08f/bOvWrWnSpAmbNm2iU6dObNq0iXbt2hEbe/Lgsfj4eMaOHcuOHTu46KKL2LRpU7nXKHtmwoQJv5mpsLCQwsJC//s5OTkB/IpF5Bf8h3Km/v5zZ6FsrYp2jktN1yq6FbP7zGZkwki2pG3hgXUP8EqPV7BZbEZHExERqdG8xcUUfPsteRt9ZXjB9u3g8Zx8wGbDftFF/oM0Q9qcj8liMS6wiIiIGFuOX3755SxatIhWrVpx+PBhnnrqKbp37853331HWloaQUFBREZGlvuY2NhY0tLSAEhLSytXjJfdL7v3e8/k5ORQUFBAaOgvD/+bNm0aTz31VMC+ThH5A2WHclZSOe7xejjkOgRoclxqh3Z12/Fm7zcZmzSWz1I/4+H1DzP9iulYzYb/TFxERKRGKcnMxLV2Ha61a8lLTsaTl1fuflCLFv5VKWGXXoo5TKtSREREqhJD/5V81VVX+f/evn17Lr/8cs477zzee++9Xy2tz5VHHnmESZMm+d/PycmhcePGhuURqfHKyvGsA5Xy8hkFGRR5irCYLNQP++UaJ5Ga6JL6l/BKz1e4d/W9JOxPIDQ5lKldp2I2GXoWt4iISLXm9Xop/OEHXGvWkLt2LSe+3Q5er/++JTKSsC6dCeva1bcqpUEDA9OKiIjIH6lSI2SRkZH8+c9/5ueff6Zv374UFRWRlZVVbno8PT3dv6O8fv36bNmypdxrpKen+++VvS27duozERERv1nABwcHExwcHLCvS0T+QGTlTo6n5vpet35YfU3OSq3StVFX/n7F33lw3YP8d/d/sdvsPHLZI5hMJqOjiYiIVBuewkLyN28md+1aXGvXUXL4cLn7IRdcgKNHDxw9riTkggswmfWDaBERkeqiSrVELpeL3bt3c8cdd3DxxRdjs9lYtWoVgwcPBuCHH37gwIEDdO7cGYDOnTvz7LPPcuTIEerVqwdAYmIiERERtGnTxv/MJ598Uu7zJCYm+l9DRKqAsp3jOQd9exkD/A+Kg67SfeMO7RuX2qfPeX14uuvTPLrhUf79/b+xW+1MuPi3z90QERERKD5yBFdpGZ63aRPeggL/PVNICGFduuDocSWOK3tgi61nYFIRERE5G4aW4w8++CDXXnst5513HocOHeKJJ57AYrEwZMgQnE4nd911F5MmTSI6OpqIiAjuu+8+OnfuTKdOnQDo168fbdq04Y477uCFF14gLS2Nxx57jHHjxvknv8eMGcMbb7zBlClTGDFiBKtXr+a9995j+fLlRn7pInKq8AZgMoO7CPKOQHhgV5+kunyT443CtW9caqdrW1xLQUkBT29+mgXfLSDMFsao9qOMjiUiIlJleL1eTuzY6SvE16zhxI4d5e5b69fH0eNKwnv2xH755ZhDQgxKKiIiIoFkaDmemprKkCFDyMzMpG7dunTr1o3NmzdTt25dAF5++WXMZjODBw+msLCQ+Ph4Zs6c6f94i8XCxx9/zNixY+ncuTNhYWEMGzaMqVOn+p9p1qwZy5cvZ+LEibz66qvExcUxf/584uPjz/nXKyK/wWKD8IaQkwpZKYEvx0vXqugwTqnNbm51M/nF+by47UVe++o17DY7t51/m9GxREREDOMpKCBv0yZca9biWreOkiNHTt40mQhp347wHj1w9OxJcKtWWksmIiJSA5m83lNOD5FflZOTg9PpJDs7m4iICKPjiNRMC+IhZTPcuBDaDgroSw9fMZxt6duY3n06Vze/OqCvLVLdzPx6JrO+mQXA1C5TueFPNxicSERE5NwpPnwY17p15K5ZQ/7mz/EWFvrvme12wrp29e0Pv/IKrDExBiYVERGRM1WRLrdK7RwXkVossrGvHK+EQznLdo5rrYoIjL1wLHnFeSzZuYQnkp8g1BpK/2b9jY4lIiJSKbweDye2b/cfplm4a1e5+7ZGjXD07ImjRw/sl12KOSjIoKQiIiJiBJXjIlI1lB3KmZ0S0JctdheTnpcOaK2KCIDJZOLBSx6koKSApT8u5ZH1jxBiDaFH4x5GRxMREQkIT14eruRk/7oUd2bmyZtmM6EdOuDo0YPwnj0IatlS61JERERqMZXjIlI1OBv73gZ4cvxQ3iG8eAm1hlInpE5AX1ukujKZTDzW6THyS/JZvmc5D6x9gDf7vEmnBp2MjiYiInJGSjIyyF21mtykJPI3b8ZbXOy/Z3Y4COvejfAePQi74gqsUVEGJhUREZGqROW4iFQNZeV4VmAnxw/mlq5UcTTSVJDIKcwmM890fYaC4gJWp6zm/tX3M7fvXDrU62B0NBERkdNSlHqQ3KREchOTKPjySzjlOC1bkyaE9/Qdpmnv2BGT1qWIiIjIr1A5LiJVQyWtVUl1+SbRtVJF5JesZit/v/Lv3Lf6PpIPJXNP0j3Mj59PmzptjI4mIiLyC16vl6Ldu8lNTCQnMZHCneX3h4e0a0d4376E9+lNULNmGowQERGRP6RyXESqhrJy/EQWFOZCcHhAXlbluMjvC7IE8UrPVxiTOIYvj3zJ6MTRLOq/iBaRLYyOJiIigtfr9R2omZhEbmIiRfv2nbxpNmO/5BJ/IW5r0MCwnCIiIlI9qRwXkaohJAJCnHAi27d3vN75AXnZU9eqiMivC7WG8mbvNxmZMJIdmTsYlTCKxf0X0ziisdHRRESkFvKWlJC/dRu5SUnkJiVRkpbmv2ey2Qjr2pXwvn1w9OyJNTrawKQiIiJS3akcF5Gqw9kETmwPbDnu8pXjceFxAXk9kZrKEeRgdp/Z3LnyTn7O+pmRCSNZfNVi6ofVNzqaiIjUAp7CQvKSk8lNTMK1ejXurCz/PbPdjqPHlYT36UPYFVdgcTgMTCoiIiI1icpxEak6nHGQvh2yDgTsJcvKcU2Oi/yxyJBI5vWbx/AVw9mfs59RCaNY2H8hMaExRkcTEZEayO3KI++zdeQkJpK37jM8+fn+e5bISBy9e/kK8S5dMAcHG5hUREREaiqV4yJSdUSWrnDITg3Iy7mKXGQV+qaONDkucnpiQmOY13cew1YMY1/OPkYnjuat+LdwBjuNjiYiIjVAybFjuFavJjcxibzkZLzFxf571vr1Ce/Th/C+fbFf3BGTVf9cFRERkcql7zZEpOooO5QzOyUgL1c2NR4VHEWYLSwgrylSGzRwNGB+v/kMWzGMH4//yNiksczrN0//OxIRkTNSfPiw70DNpCTyt24Fj8d/L6hpU9+Bmv36EtK2LSaTycCkIiIiUtuoHBeRqsNfjgdmcjzV5XsdrVQRqbgmEU2Y23cud668k+0Z27l31b3M7DOTUGuo0dFERKQaKNyzl9zERHKTkjixfXu5eyFt2hDery/hffoQ1KKFCnERERExjMpxEak6nE18b7MCNDmeW7pvPFzluMiZ+FPUn5jTdw4jV45ka/pWJq2dxGs9X8NmsRkdTUREqhiv10vhTz+RuzKB3IQECn/66eRNk4nQizsS0bcvjt59CIrT92YiIiJSNagcF5Gqo2xyPPcQuEvAcnb/idLkuMjZu6DOBbzZ+01GJ45mw8ENPLT+IV644gWsZn0LISJS23m9Xgq//56clSvJXZlA0d69J2/abIRdfrlvQrxXL6wxOtxZREREqh79y1ZEqg5HLJht4CmG3MMnD+g8Q2U7x3UYp8jZ6RjbkVd7vcq9q+4lcX8ij298nGe6PYPZZDY6moiInGNer5cT331HbkICOSsTKD5wwH/PFBREWLduvkK8Z08sTh3mLCIiIlWbynERqTrMZnA2guP7fIdynm05XrZWRZPjImetS8MuzLhyBpPWTuKjPR9ht9l59PJHtSdWRKQW8Ho8FHzzjX9lSvGhQ/57puBgHFdcQXh8PI4eV2JxOAxMKiIiIlIxKsdFpGpxNi4tx8/uUE6v13tyctyhyXGRQOjVpBfPdXuOh9c/zLs/vIvdamfixRNVkIuI1EBet5uCL78kZ2UCuYmJlKSn+++Z7HYcV15BRHw8ju7dMYeFGZhURERE5MydcTleVFTEkSNH8Hg85a43adLkrEOJSC3mLJ0Wzzrw+8/9gcwTmZxwn8CEiQZhDQIQTEQArm5+NQUlBTy56UkW7liI3WZnzIVjjI4lIiIB4C0pIX/rVt8O8cQk3BkZ/nvmsDAcvXoREd+PsG7dMIeEGJhUREREJDAqXI7/9NNPjBgxguTk5HLXvV4vJpMJt9sdsHAiUguVHcp5lpPjqbm+j68fVh+bxXa2qUTkFIP/PJj8knxe+OIF3vz6TTxeD2MvHKsJchGRashbXEze5s/JTUggNykJ9/Hj/nvmiAjCe/UiPL4fYV27Yg4KMjCpiIiISOBVuBwfPnw4VquVjz/+mAYNGugfwiISWGV7xrNTzuplylaqaN+4SOW4o80dFLoLefXLV5n1zSyOFhzl0csfxWrWxjYRkarOU1REXnKyb4f46tV4srP99yyRkYT37UN4v3jCLr8MkwpxERERqcEq/C/Yr7/+mm3bttG6devKyCMitV2AJ8dVjotUnpHtRhIRFMGznz/L+z++T2ZBJi9c8QIhVv2qvYhIVeM5cYK8DRvISUjAtXoNHpfLf89Spw7hffsQER+P/dJLMVn1g04RERGpHSr8XU+bNm3IOGX3nIhIQDlLzy3ITgWvF87wt1P8h3GG6zBOkcp0c6ubqRNShymfTWFNyhruTryb13u9jjPYaXQ0EZFaz1NUhGvNWnJXriB37Tq8+fn+e9Z69Qjv14+I+H6EduyIyWIxMKmIiIiIMSpcjk+fPp0pU6bw3HPP0a5dO2y28rt8IyIiAhZORGohZ+mkd5ELCo6DPfqMXkZrVUTOnd7n9WZuv7nct/o+vjryFcM+HcbsvrOpH1bf6GgiIrVS4e7dZL23lOz//hd3Vpb/urVBAyL69SM8Pp7QDhdiMpsNTCkiIiJivAqX43369AGgd+/e5a7rQE4RCQhbKITVhbyjvunxsyzHNTkucm5cHHsxi/svZkzSGHZn7+b2T25nTt85tIhsYXQ0EZFawVNQQM6KlWQtXUrBl1/6r1tjY4m4ZgAR8fGEtGunM6NERERETlHhcnzNmjWVkUNE5CRnXGk5ngIN2lf4w4s9xRzOOwxoclzkXPpT1J/4x1X/YHTSaPZm72Xop0N5o/cbXFTvIqOjiYjUWCd27iTr/ffJ/uhjPLm5vosWC44ePYi8cTCO7t21Q1xERETkN1T4u6Qrr7yyMnKIiJzkjINDX53xoZxpeWl4vB6CLcHEhMYEOJyI/J4GjgYs6b+Ee1ffyzdHv2FUwij+fsXf6dmkp9HRRERqDLfLRc7Hy8laupQTO3b4r9vi4oi88UacN9yALbaegQlFREREqoczGiHIyspiwYIF7Nq1C4ALLriAESNG4HTq8C0RCYCyQzmzDpzRh5etVGnoaIjZpF2aIudaZEgk8/rNY/K6yaxLXceEtRN4vNPjDP7zYKOjiYhUW16vlxPffMPxpUvJ+XTFycM1bTbC+/Qm6qabsHfqpD3iIiIiIhVQ4XJ869atxMfHExoaymWXXQbASy+9xLPPPktCQgIdO3YMeEgRqWWcpXvCz3ByPDXX93FaqSJinFBrKK/0fIWpm6byfz//H09uepKjBUcZ3X609t2KiFSAOyuL7A8/ImvpUgp/+sl/Pah5c9+U+PXXYY0+szNaRERERGq7CpfjEydOZODAgcybNw9r6e66kpISRo4cyYQJE/jss88CHlJEapnIxr63Z1iOl02OqxwXMZbVbOWpLk9R116Xud/O5c2v3ySjIINHLnsEi9lidDwRkSrL6/WSv+ULspYuJTchAW9REQCm4GAi+vcn8uabCO3YUT9sFBERETlLZzQ5fmoxDmC1WpkyZQqXXHJJQMOJSC3lnxxPOaMPP5jrK8cbhzcOVCIROUMmk4n7LrqPmNAYpn0+jXd/eJfMgkyev+J5gi3BRscTEalSSjIyyP7Pf8ha+j5F+/f7rwe3bk3kTTfivPZaLBERBiYUERERqVkqXI5HRERw4MABWrduXe56SkoK4eHhAQsmIrVY2c5xVzqUFIK1YgWaJsdFqp4hrYdQJ6QOD69/mKQDSYxOHM1rvV4jIkglj4jUbl63m7zkTb4p8dWroaQEALPdTsSAAUTefBMhbdtqSlxERESkElS4HL/lllu46667mDFjBl26dAFg48aNTJ48mSFDhgQ8oIjUQvZosIZCSYFvtUqdFhX68FSXdo6LVEX9mvYjKiSK+1ffz7b0bQz7dBiz+8wmNizW6GgiIudccVoaWR98QPYHyyg+dMh/PeTC9r5d4ldfjTkszMCEIiIiIjVfhcvxGTNmYDKZGDp0KCWlUw02m42xY8fy/PPPBzygiNRCJpNv73jGjxUux/OL8zl24hgAceFxlZVQRM7QpfUvZVH/RYxNGsvPWT9z+6e3M6fPHJpHNjc6mohIpfOWlOBat46s95biWr8ePB4AzBEROAcOJPKmGwlp1crglCIiIiK1R4XL8aCgIF599VWmTZvG7t27AWjRogV2uz3g4USkFnPGlZbjFds7XrZSJSIogvAgrXoSqYpaRbfi7avfZkziGPbl7GPoiqG80esNOtTrYHQ0EZFKUZSaStbS98letoySo0f91+2XXELkzTcR3q8f5pAQAxOKiIiI1E4VLsfL2O122rVrF8gsIiIn+Q/lTK3Qh2nfuEj10MjRiCVXLWHcqnFsz9jOqIRRzLhyBlc2vtLoaCIiAeEtLiZ39Rqy3nuPvI0b/dct0dE4r7+eyBtvJLh5MwMTioiIiMhpleODBg1i0aJFREREMGjQoN99dtmyZQEJJiK1XNmhnBWcHE/N9ZXpWqkiUvVFhUQxv998Hlj3ABsObmD8mvE80fkJbvjTDUZHExE5Y0WpqWS9t5SsZctwZ2T4r4d16ULkzTcT3qsnpqAgAxOKiIiISJnTKsedTqf/dPSIiAidlC4ila9scjzrzNaqxDlUjotUB3abndd6vcZTyU/x393/5fHkxzlacJRR7Ubp+w0RqTZ+c0o8JobIQYOIvOlGgho3NjChiIiIiPya0yrHFy5c6P/7okWLKiuLiMhJkaX/gKzgWpVUl+95rVURqT5sZhtPd32auva6zN8+n9e/ep2j+Ud5+LKHsZgtRscTEflNvzkl3rXrySlxm83AhCIiIiLyeyq8c7xXr14sW7aMyMjIctdzcnK4/vrrWb16dcDCiUgtdurOcY8HzObT+rCytSqNwlWOi1QnJpOJ8R3HExMaw/Qt03nnh3fIPJHJtO7TCLYEGx1PRMRPU+IiIiIiNUeFy/G1a9dSVFT0i+snTpxg/fr1AQklIkJEI8AE7kLIzwBHvT/8EK/XqwM5Raq5286/jTqhdfjr+r+SuD+RrMIsXu35KuFB4UZHE5FaTlPiIiIiIjXPaZfj3377rf/vO3fuJC0tzf++2+1mxYoVNGqkMkpEAsRig/AGkHvIt3f8NMrx44XHKSgpwISJho6G5yCkiFSG/k37ExUcxfg14/ki7QuGrxjOrD6zqGf/4/8OiIgEkqbERURERGq20y7HO3TogMlkwmQy0atXr1/cDw0N5fXXXw9oOBGp5ZxxvnI8OwXiLv7Dxw/m+qbG69rrag2DSDV3eYPLWdR/EWOTxvLj8R+545M7mN13Ns2czYyOJiK1QFFKCllL39eUuIiIiEgNd9rl+N69e/F6vTRv3pwtW7ZQt25d/72goCDq1auHxaJDs0QkgCIbQ+qW0z6Us+wwzjhHXGWmEpFzpHV0a96+6m3GJI1hf85+hn46lDd7v0n7uu2NjiYiNZCmxEVERERqn9Mux8877zwAPB5PpYURESnHfyhnymk9XrZvPC5c5bhITREXHseSq5YwLmkc32V+x8iEkcy4cgZXxF1hdDQRqSE0JS4iIiJSe1X4QM4yO3fu5MCBA784nHPgwIFnHUpEBABn6XTW6U6O5/qe02GcIjVLdEg0C+IXMGntJDYe2sj9q+/nyS5Pcn3L642OJiLVlKbERURERATOoBzfs2cPN9xwA9u3b8dkMuH1egEwmUyA73BOEZGAKCvHsw6c1uNlk+Mqx0VqHrvNzuu9X+eJjU/w0Z6P+NvGv3H8xHHubHun0dFEpBopPnyY4/9+59enxG+5mfCemhIXERERqU0qXI6PHz+eZs2asWrVKpo1a8aWLVvIzMzkgQceYMaMGZWRUURqq0hNjovISTazjWe6PUNMaAwLdyzkpW0v4Sp2cW+He/0/pBcR+TVFKSlkzp1L1n/+C8XFAFjqxhA5aLBvSjxOK9lEREREaqMKl+ObNm1i9erVxMTEYDabMZvNdOvWjWnTpnH//ffz1VdfVUZOEamNynaOFxyDojwICvvNR90eN2l5aYB2jovUZGaTmUmXTCIiOIJXv3yVud/OJa84jymXTsFsMhsdT0SqmMI9e8icM4fsj5dD6W+42i+7jKjbb9OUuIiIiIhUvBx3u92Eh4cDEBMTw6FDh2jVqhXnnXceP/zwQ8ADikgtFuKE4AgozPFNj9dt9ZuPpuenU+ItwWa2Uc9e7xyGFBEjjGw3EofNwbOfP8s/d/2TvOI8nuz8JBazxehoIlIFnPjhRzJmzyJ3xUooXQMZ1r07MWPHYO/Y0eB0IiIiIlJVVLgcb9u2Ld988w3NmjXj8ssv54UXXiAoKIi5c+fSvHnzysgoIrWZszEc2QHZKb9bjpetVGnoaKjpUZFa4i+t/4LdZudvG//Gf37+D/nF+Tzf/XlsFk2CitRWBd/tIGPWLFyrVvmvOXr3JmbMGELbtTUwmYiIiIhURRUuxx977DHy8vIAmDp1Ktdccw3du3enTp06vPvuuwEPKCK1nDPOV45npfzuYzqMU6R2GthiIHarncmfTSZhfwL5Jfm81OMlQq2hRkcTkXMo/8uvyJg9i7zP1vsumEyE948nZswYQlr99g/XRURERKR2q3A5Hh8f7/97y5Yt+f777zl27BhRUVE6DEtEAu80D+VMdfnuxzm0b1yktulzXh/e6PUGE9ZMYMPBDYxNGssbvd7AEeQwOpqIVCKv10v+li/ImDWL/M2bfRfNZiKuGUDM6NEEt2hhbEARERERqfICsnsgOjpaxbiIVI6yQzmzT3NyPFyT4yK1UddGXZnTdw4Om4Nt6dsYmTCSrBNZRscSkUrg9Xpxrd/A/tvv4MCwYb5i3GrFeeNgWnz6CY1eeEHFuIiIiIicltOaHB80aNBpv+CyZcvOOIyIyC84T3NyvHTnuNaqiNReHWM7siB+AaMTR7Mjcwd3rryTuX3nUtde1+hoIhIAXq8X15o1ZMyazYnt2wEw2WxE3nQjde66C1sjfQ8gIiIiIhVzWuW40+ms7BwiIr+urBw/zZ3jceFaqyJSm7Wp04ZF/Rdxd8Ld/Jz1M8NWDGNev3n6wZlINeb1eMhNSCBj9hwKv/8eAFNICFG33EL0iBHYYusZnFBEREREqqvTKscXLlxY2TlERH5d2VqVnIPgcYPZ8otHTpScIKMgA9DOcRGBFpEtWHTVIkYljCIlN4Vhn/oK8mbOZkZHE5EK8JaUkPPpp2TMnkPR7t0AmO12om67lejhw7HWqWNwQhERERGp7gKyc1xEpNKE1wezFbxuyE371UcOuQ4B4LA5iAiKOJfpRKSKahzemMX9F9Pc2Zz0/HSGrxjO98e+NzqWiJwGb1ERWR98wO4BAzg0eQpFu3djDg8n5p57aLEqiXoPPKBiXEREREQC4rQmx0/VrFmz3z18c8+ePWcVSESkHLMFIhpC1gHfoZzOX65GSHWd3Deuw4FFpExsWCwL+y9kTOIYdh3bxYiVI5jZeyYd6nUwOpqI/ApPYSHZy5aRMW8eJYcOA2CJjCR6+HCibrsVS3i4wQlFREREpKapXn+obAAAIABJREFUcDk+YcKEcu8XFxfz1VdfsWLFCiZPnhywYCIifs4mpeX4rx/KWXYYp/aNi8j/ig6JZkH8AsatGsdXR77i7sS7ea3Xa3Rq0MnoaCJSylNQQNZ775G54C1KjhwBwBITQ5077yTqL7dgDgszOKGIiIiI1FQVLsfHjx//q9fffPNNtm7detaBRER+oWzveNaBX71ddhinDtwTkV8THhTO7D6zmbh2IsmHkhmXNI4Xe7xIj8Y9jI4mUqu5XXlkvfNvMhcuwp2ZCYA1NpY6I0cSedONmENCDE4oIiIiIjVdwHaOX3XVVXzwwQeBejkRkZMiG/ve/sHkuMpxEfktdpud13u9Tu8mvSnyFDFhzQQ+2fOJ0bFEaqWSjAyOvv4Gu3v35siMF3FnZmJr1Ij6Tz1Fi8QEou+4XcW4iIiIiJwTFZ4c/y3vv/8+0dHRgXo5EZGTyibHs1N+9XbZ5LjWqojI7wmyBDHjyhk8vvFxPtrzEQ+vf5i8kjxu+vNNRkcTqRVO7NrFsSVvk/Pxx3iLiwEIOu886owejfPaazDZbAYnFBEREZHapsLl+EUXXVTuwDuv10taWhpHjx5l5syZAQ0nIgKcUo7/cnLc6/WeLMcdKsdF5PdZzVae6fYMdpudd394l6mbppJfnM+wC4YZHU2kRvK63bjWruXY4iXkb9nivx7Svj3Rw4YS0b8/JovFwIQiIiIiUptVuBy//vrry71vNpupW7cuPXr0oHXr1gELJiLi52zie/sr5XhOUQ6uYhcADR0Nz2UqEammzCYzj17+KA6bgwXfLWDG1hm4il3cc+E95QYAROTMuV0uspct49jb/6A4pfQ3vywWIuL7ET10KKEdOhgbUERERESEMyjHn3jiicrIISLy25ylu8QLc6AgC0Ij/bfK9o3HhMYQYtV+UhE5PSaTiQkXT8AR5ODVL19l9jezcRW5mHLpFBXkImehKCWF4//4B1nvf4AnLw8As9NJ1M03EXXrrdgaNDA4oYiIiIjISWe0c9ztdvN///d/7Nq1C4A2bdpw3XXXYbUGbIW5iMhJQWFgrwP5mb7p8VPLcZevHNdKFRE5EyPbjSTMFsZznz/HP3b9g/ySfB7v9DgWs9Y8iJwur9dL/hdfcGzJElyrVoPXC0BQs2ZEDxuKc+BAzHa7wSlFRERERH6pwm32jh07uPbaa0lPT6dVq1YATJ8+nbp16/LRRx/Rtm3bgIcUEcEZV1qOp0D9k/+dKds33ii8kVHJRKSaG9J6CHarnceTH2fZT8vIK85jWrdp2Cw6HFDk93iKishZ/gnHliyhsHRoBiCsWzeihw0lrGtXTGazgQlFRERERH5fhcvxkSNH0rZtW7Zt20ZUVBQAx48fZ/jw4dx9990kJycHPKSICM7GcPibX+wdP5hbWo47VI6LyJm7ruV12G12pnw2hZX7VpJfnM9LPV7SuiaRX1GSkcHxd97l+Dvv4M7IAMAUEoLzuuuIvuN2glu2NDihiIiIiMjpqXA5/vXXX7N161Z/MQ4QFRXFs88+y6WXXhrQcCIifs7GvrdZB8pd1loVEQmUvuf15Y1ebzBhzQTWH1zP2KSxvNH7DcJsYUZHE6kSTnz/PceWvE3ORx/hLS4GwBobS9RttxF5041YT/n3gYiIiIhIdVDh33P885//THp6+i+uHzlyhJaaEhGRyuIsLb//d3K8dK1KXLjKcRE5e10bdWV239k4bA62pm9lVMIosguzjY4lYhiv203u6tXsHzacvdffQPayZXiLiwlp356GL86gZVIiMXePUjEuIiIiItVShSfHp02bxv3338+TTz5Jp06dANi8eTNTp05l+vTp5OTk+J+NiIgIXFIRqd0iSyfHTynH3R43h1yHAK1VEZHAuTj2YubHz2dM4hi2Z2xn+IrhzOs3j5jQGKOjiZwzblce2cuWcewf/6D4QOlvbVksRMT3I3roUEI7dDA2oIiIiIhIAJi83tLj5E+T+ZRDdUwmE+A7of5/3zeZTLjd7kDlNFROTg5Op5Ps7GwV/iJGObgN5vWC8AbwwPcApOWl0ff9vlhNVrbevhWL2WJwSBGpSXZn7WZUwiiOFhylSXgT5vWbR0NHQ6NjiVSqotRUjr/9D7I++ACPywWA2ekk6uabiLr1VmwNGhicUERERETk91Wky63w5PiaNWvOOJiIyBlzNvG9zU2DkiKwBpGa65sirx9WX8W4iARci8gWLL5qMaMSRnEg9wDDVgxjXt95NHU2NTqaSEB5vV4Ktm7l2JIl5K5aDR4PAEHNmxM99A6cAwdittsNTikiIiIiEngVLsevvPLKysghIvL7wmLAGgIlJyDnIEQ3075xEal0jcMbs7j/YkYljmJv9l6GrRjG3L5zaRXdyuhoImfNW1JCziefkLloEYU7d/mvh3XrRvSwoYR17YrJXOEjikREREREqo0Kl+MAWVlZLFiwgF27fN9EX3DBBYwYMQKn0xnQcCIifiaT71DOzJ99e8dPKce1b1xEKlNsWCyL+i9iTOIYdh3bxZ0r72Rm75l0qKedy1I9eUtKyP74YzJmzaJ4v2+fuCkkBOd11xF9x+0Et2xpcEIRERERkXOjwqMgW7dupUWLFrz88sscO3aMY8eO8dJLL9GiRQu+/PLLysgoIuLjLJ0Qz04B8K9V0eS4iFS26JBo5sfP56J6F5FblMuohFFsPLjR6FgiFeItKSHrP/9h94ABHH74EYr3H8ASFUXdCRNouWY1DZ56UsW4iIiIiNQqFZ4cnzhxIgMHDmTevHlYrb4PLykpYeTIkUyYMIHPPvss4CFFRIBTynFfKe5fq+JQOS4ilS8iKII5fecwae0kNhzcwL2r72Va92n0b9rf6Ggiv8tbUkLO8uVkzJxF0f79AFiioqhz1wiihgzBHBZmcEIREREREWOc0eT4Qw895C/GAaxWK1OmTGHr1q1nHOT555/HZDIxYcIE/7UTJ04wbtw46tSpg8PhYPDgwaSnp5f7uAMHDjBgwADsdjv16tVj8uTJlJSUlHtm7dq1dOzYkeDgYFq2bMmiRYvOOKeIGKjsUM6yyXGXryTXWhUROVdCraG81vM1+jftT4mnhCnrpvD+j+8bHUvkV3lLSsj+8EP2XHMthx56mKL9+7FERlL3gUm0TEqkzsiRKsZFREREpFarcDkeERHBgQMHfnE9JSWF8PDwMwrxxRdfMGfOHNq3b1/u+sSJE/noo49YunQp69at49ChQwwaNMh/3+12M2DAAIqKikhOTmbx4sUsWrSIxx9/3P/M3r17GTBgAD179uTrr79mwoQJjBw5kpUrV55RVhExUNnkeFYKhe5CjuYfBaBRuMpxETl3bBYbz3d/npv/fDNevDy16SkWbF9gdCwRP6/bfbIUn/IQRfv2+UrxSZNouSqJmFGjVIqLiIiIiHAGa1VuueUW7rrrLmbMmEGXLl0A2LhxI5MnT2bIkCEVDuByubjtttuYN28ezzzzjP96dnY2CxYs4F//+he9evUCYOHChZx//vls3ryZTp06kZCQwM6dO0lKSiI2NpYOHTrw9NNP89BDD/Hkk08SFBTE7NmzadasGS+++CIA559/Phs2bODll18mPj6+wnlFxECRjX1vs1M55DqEFy+h1lCigqOMzSUitY7FbOGxTo8RERzB/O3zeeXLV8guymZix4mYTCaj40kt5XW7yfnkE9/6lL17AbA4nUTfdRdRt96KxaFCXERERETkVBWeHJ8xYwaDBg1i6NChNG3alKZNmzJ8+HBuvPFGpk+fXuEA48aNY8CAAfTp06fc9W3btlFcXFzueuvWrWnSpAmbNm0CYNOmTbRr147Y2Fj/M/Hx8eTk5LBjxw7/M//72vHx8f7X+DWFhYXk5OSU+yMiVcApO8cPnnIYp4ooETGCyWRifMfxPHDxAwAs/G4hT216CrfHbXAyqW28bjfZH33smxSfPIWivXuxOJ3UnTiRFqtWEXP3KBXjIiIiIiK/osKT40FBQbz66qtMmzaN3bt3A9CiRQvsdnuFP/k777zDl19+yRdffPGLe2lpaQQFBREZGVnuemxsLGlpaf5nTi3Gy+6X3fu9Z3JycigoKCA0NPQXn3vatGk89dRTFf56RKSSRTQCTFBSwMFjPwLaNy4ixhvedjgRwRE8tekpPvjpA3KLcnm++/PYLDajo0kN55sU/5SMmTPLT4rfeSdRt9+uQlxERERE5A9UqBzft28fiYmJFBUV0aNHD9q1a3fGnzglJYXx48eTmJhISEjIGb9OZXjkkUeYNGmS//2cnBwaN25sYCIRAcAaDI5YcKWReuwHAOIccQaHEhGBQX8ahMPm4KH1D5GwP4G84jxe6vESdlvFhwdE/ojX7Sbn0xW+UnzPHgDMTid17ryTqNtvw+JwGJxQRERERKR6OO1yfM2aNVxzzTUUFBT4PtBq5a233uL2228/o0+8bds2jhw5QseOHf3X3G43n332GW+88QYrV66kqKiIrKysctPj6enp1K9fH4D69euzZcuWcq+bnp7uv1f2tuzaqc9ERET86tQ4QHBwMMHBwWf0dYlIJXPGgSuNgzm+g4E1OS4iVUW/pv1wBDmYsGYCGw9tZHTiaN7o/QbOYKfR0aSG8Lrd5KxY4dspXvobnL5SfHjppLhKcRERERGRijjtneN/+9vf6Nu3LwcPHiQzM5NRo0YxZcqUM/7EvXv3Zvv27Xz99df+P5dccgm33Xab/+82m41Vq1b5P+aHH37gwIEDdO7cGYDOnTuzfft2jhw54n8mMTGRiIgI2rRp43/m1Ncoe6bsNUSkmik9lDM13/dDr7hwTY6LSNXRpWEX5vadS3hQOF8f/Zo7V95JRkGG0bGkmvO63WQvX86egddx6IEHKdq9G3NEBHXH30/LpERixoxRMS4iIiIicgZMXq/XezoPRkZGkpyc7C+d8/PziYiIID09nTp16gQkTI8ePejQoQOvvPIKAGPHjuWTTz5h0aJFREREcN999wGQnJwM+CbNO3ToQMOGDXnhhRdIS0vjjjvuYOTIkTz33HMA7N27l7Zt2zJu3DhGjBjB6tWruf/++1m+fDnx8fGnlSsnJwen00l2djYREREB+VpF5AwlPAbJr9O1eQtyvMUsG7iMP0X9yehUIiLl/Hj8R0YnjiajIIPG4Y2Z23eufpgnFeb1eMhdsYKjM2dS9HPppHhEBNHDhxF9xx1YwsMNTigiIiIiUvVUpMs97cnxnJwcYmJi/O/b7XZCQ0PJzs4+86R/4OWXX+aaa65h8ODBXHHFFdSvX59ly5b571ssFj7++GMsFgudO3fm9ttvZ+jQoUydOtX/TLNmzVi+fDmJiYlceOGFvPjii8yfP/+0i3ERqWKcTcgxm8jxFgNaqyIiVdOfo/7Mkv5LaORoREpuCsM+HcbPx382OpZUE16Ph5xPP2XPwIEcnPQART/7JsVj7r+PlquSqHvPPSrGRUREREQC4LQnx81mM4sXL8bpPLk3c8iQIbzyyivExsb6rw0cODDwKQ2myXGRKuT7T9i1bCg3N2pAdEg0625ZZ3QiEZHfdCT/CKMTR/Nz1s84g53M6j2LdnXP/EBzqdm8Hg+5K1eSMXMmhT/5fphiDg8/OSmu70NFRERERP5QRbrcCpXjf8RkMuF2u08vZTWiclykCknbTtKSvkyMrUv7mPb8c8A/jU4kIvK7sguzuSfpHr7N+JZQayiv9XqNTg06GR1LqhCv10vuygQy3nyjfCk+bBjRQ1WKi4iIiIhURKWsVfF4PH/4pyYW4yJSxTjjSLVaAWhkj/2Dh0VEjOcMdjKv3zw6NehEQUkB9yTdw6r9q/74A6VWKPhuB/tvvY2DEyZQ+NPPmB0OYsaN861PuXecinERERERkUp02uW4iEiVEBJJanAoAI1s2rcqItWD3Wbnzd5v0qdJH4o9xUxaN4n//Pwfo2OJgUoyMzn02GPsu+kmCr76ClNoKDH3jPWV4vfdq1JcREREROQcUDkuItWLycTBkDAA4kxBBocRETl9QZYg/n7l37m+5fV4vB7+tvFvvL3zbaNjyTnmLS4mc9Eidsf3J/v9D8DrJeKaa2jx6SfUvf9+LKec7yMiIiIiIpXLanQAEZGKOmi1AG4alWiVk4hUL1azlaldphIRFMGSnUt44YsXyC7MZlyHcZhMJqPjSSVzrd9A+rRpFO3ZA0BImzbEPvYo9o4dDU4mIiIiIlI7qRwXkWrF4/VwkBIAGhUWGJxGRKTiTCYTD17yIJHBkbz21WvM+XYOOUU5PHzZw5hN+qW+mqho/37Sn5+Oa80aACzR0dSdOIHIQYMwWSwGpxMRERERqb1UjotItZJRkEERHsxeL/VdmUbHERE5IyaTiVHtRxERFMGznz/Lv7//NzlFOTzd9WlsZpvR8SRA3K48MufM5tiixXiLi8FqJfq224gZd492iouIiIiIVAEVLsdTUlIwmUzExcUBsGXLFv71r3/Rpk0b7r777oAHFBE51UHXQQAalLix5RwyOI2IyNm5pfUthAeF8+iGR1m+Zzm5Rbm8eOWLhFhDjI4mZ8Hr8ZD94YccffElSo4eBSCsWzdiH3mY4BYtDE4nIiIiIiJlKvy7u7feeitrSn8lNC0tjb59+7JlyxYeffRRpk6dGvCAIiKnSs1NBaBRSQlkHTA4jYjI2bu6+dW82utVgi3BfJb6GWOSxpBblGt0LDlDBdu3s3/IrRx++BFKjh7F1qQJcTNn0njeXBXjIiIiIiJVTIXL8e+++47LLrsMgPfee4+2bduSnJzMP//5TxYtWhTofCIi5aS6TinHcw6BR4dyikj1d0XcFczpOweHzcG29G3ctfIujp04ZnQsqYCSo0c59NdH2XfTzRR88w0mu526kybR/OOPCO/VUweuioiIiIhUQRUux4uLiwkODgYgKSmJgQMHAtC6dWsOHz4c2HQiIv/jYK5vrUpciRs8xeA6YnAiEZHAuDj2Yt6Kf4vokGh2HdvFsE+Hcdil762qOm9REZkL3mJ3/6vIXrYMAOd1A2nx6afE3D0Kc1CQwQlFREREROS3VLgcv+CCC5g9ezbr168nMTGR/v37A3Do0CHq1KkT8IAiIqcq2zneyFZ6kFl2ioFpREQC6/w657O4/2Lqh9VnX84+hq4Yyt7svUbHkt/gWreOPQOv48jf/44nL4+Qtm0579//ouH06dhi6xkdT0RERERE/kCFy/Hp06czZ84cevTowZAhQ7jwwgsB+PDDD/3rVkREKot/rUpoaemgclxEapimzqa8fdXbNHM2Iy0vjWGfDmNn5k6jY8kpivbtI2X0GFJGj6Fo3z4sMTE0ePZZmr73LvaLLjI6noiIiIiInCZrRT+gR48eZGRkkJOTQ1RUlP/63Xffjd1uD2g4EZFTFbuLSc9LByAuvDGwDbJUjotIzVM/rD6L+i9ibNJYdmbuZMTKEbze63UurX+p0dFqNbfLRcasWRxb8jYUF4PVSvTQocTcMxaLw2F0PBERERERqaAKT44DeL1etm3bxpw5c8jNzQUgKChI5biIVKrDeYfx4iXEEkKdqOa+i9mpxoYSEakk0SHRLOi3gEtiLyGvOI9RCaOY9fUsij3FRkerdbweD1nL/o/d/a/i2IK3oLiYsCu60/zDD4mdMlnFuIiIiIhINVXhcnz//v20a9eO6667jnHjxnH06FHAt27lwQcfDHhAEZEy/pUqjkaYIhv7LmqtiojUYI4gB7P6zOKqZlfh9rqZ+c1M7vjkDvZk7zE6Wq1R8M037PvLEA7/9a+4MzIIOu884mbPosncuQQ3b2Z0PBEREREROQsVLsfHjx/PJZdcwvHjxwkNDfVfv+GGG1i1alVAw4mInCo1t7QcD28Ezia+i5ocF5EaLsQawgtXvMD07tMJDwpnR+YObv7oZv656594vB6j49VYxUeOcOihh9l3y1848e23mMPCqDf5QZp/9CHhPXoYHU9ERERERAKgwjvH169fT3JyMkFBQeWuN23alIMHDwYsmIjI/zro8v03ppGjETjjfBc1OS4itcTVza/m4tiLeTz5cZIPJfP8ludZk7KGZ7o+Q/2w+kbHqzE8RUUcX7KEjJmz8OTnA+C84QbqTZqItW5dg9OJiIiIiEggVXhy3OPx4Ha7f3E9NTWV8PDwgIQSEfk1ZeV4nCPuZDl+IhtO5BiYSkTk3IkNi2V2n9k8evmjhFhC+Pzw5wz67yA+2v0RXq/X6HjVmtfrJScxkT3XXsuRGS/iyc8n5ML2NH3vXRpOe07FuIiIiIhIDVThcrxfv3688sor/vdNJhMul4snnniCq6++OqDhREROdTC3dHI8vBEEOyA0yndDq1VEpBYxmUz8pfVfWHrtUtrHtCe3OJe/bvgrD6x7gOMnjhsdr1rK37aN/UNu5eB991O8/wCWujE0eH4aTf/9b0Lbtzc6noiIiIiIVJIKl+MvvvgiGzdupE2bNpw4cYJbb73Vv1Jl+vTplZFRRAQ4eSBnnKN0alyrVUSkFmvqbMriqxZzb4d7sZqsJO5P5Ib/3sBnqZ8ZHa3aKPz5Z1LuGcf+226n4OuvMYWGUmfsGFp8+imR11+PyVzhb5VFRERERKQaqfDO8bi4OL755hveeecdvv32W1wuF3fddRe33XZbuQM6RUQCKa84j6zCLKB05zj4DuVM265yXERqLavZyugLR9Mtrht/Xf9X9mTvYdyqcQz+02CmXDoFu81udMQqqTg9naOvv072sv8DjwcsFiIHDybm3nHY6tUzOp6IiIiIiJwjFS7HAaxWK7fffnugs4iI/KbUXN/UeGRwJI4gh+9i2eR4lspxEandLqhzAe9e8y6vf/U6b+98mw9++oDPD3/Os92epWNsR6PjVRnu3Fwy583n2JIleE+cACC8bx/qTpxIcPPmBqcTEREREZFz7bTK8Q8//JCrrroKm83Ghx9++LvPDhw4MCDBREROVbZSxT81DhDZ2PdWO8dFRAixhjD50sn0aNyDRzc8SqorleErhnNn2zsZ12EcQZYgoyMaxlNUxPF//YvMWbNxZ2cDENqxI/UefBB7x4sMTiciIiIiIkY5rXL8+uuvJy0tjXr16nH99df/5nMmkwm32x2wcCIiZfyHcZ5ajvt3jqscFxEpc2n9S/lg4AdM3zKd/+7+L2999xYbDm7guW7P0Sq6ldHxzimvx0PO8uUcfeVVig/6/n8kqEUL6j0wCUfPnphMJoMTioiIiIiIkU6rHPd4PL/6dxGRc+Wgy1dqxIXHnbzoLJsc11oVEZFThQeF80y3Z+jZuCdPbXrq/9m787Ao6/2N4++ZYd8GUAEFFfelrE62aPvimoprZmmlZqvaSX+lWZlli2UnMzOXNLPN3HBf81haJ7WOmqbmVoIoyKLCsMPAzO8PGtLTJsbwsNyv6+KaYeaZ57nnDxFuvny+HEk/wt1r72bEP0Zwf+v7sZgtRkd0u+z/fEPqm29ScPAgAB5hYdQeOYLg3r0xeVzUZEEREREREalmzEYHEBG5EK5y/PyV47+U41mnoNhuQCoRkcrt9oa3s6znMm6JugW7w85bu95iyMYhnMiqvr9UzDtwgIShQzkxbBgFBw9iDgigzqhRNNm4gZA771QxLiIiIiIipcpcjj/++ONMmzbtN49Pnz6dJ554olxCiYj8L9eGnFEB56wc968DFi9wOiAzyaBkIiKVW23f2ky7bRoTr5uIv6c/36d+T99VfVl6ZClOp9PoeOWm8MQJEv/vSeL79iNn23bw9CT0/vtosulzaj/8EGZfX6MjioiIiIhIJVPmcjw2Npbrr7/+N49fd911LF26tFxCiYicy+l0kpRTUn5HBp6zctxs1txxEZELYDKZ6N2sN7ExsbQNb0teUR4vbn+REV+M4HTeaaPj/S1FZ8+S/Mqr/HxHNzLXrgUgqEcPmqxfR/i4cXiEhBicUEREREREKqsyl+NnzpzBarX+5vGgoCBOn67aP1yJSOV0Jv8MeUV5mDBRz7/e+U+WluPVd0SAiEh5iQyIZF7neTx51ZN4mj356uRX9F7Zm03HNxkdrcwcubmcnjWLnzt2Iv3jj8Fux//662m0LJbINybjFRX11ycREREREZEarczleNOmTdmwYcNvHl+/fj2NGzcul1AiIudyzRsP9w/H0+J5/pPWBiW3KsdFRC6I2WTm/kvuZ1H3RbQMbUlGQQajt4zmma+fIbMw0+h4f8lZVET6osX83LkLaVPfxpGTg3frVjSY9z4N3p+LT+vWRkcUEREREZEqosw7Eo0ePZoRI0aQlpbGbbfdBsDmzZt58803mTp1arkHFBFxzRs/bzNOF9fK8QyV4yIiZdEspBkL7ljAzL0zeX//+6w+tprvkr/j5Rtepl3ddkbH+w2n00n25s2kTnmLwmPHAPCMjKTOE08Q1O0OTGbtMy8iIiIiImVT5nJ86NChFBQU8Morr/DSSy8BEB0dzcyZM7nvvvvKPaCIiGvl+Hmbcbpo5riIyEXztHjy+JWPc1PUTTz7n2dJyErgwc8fZGCrgTxx5RP4ePgYHRGA3N27SX3jX+R9/z0AluBgaj/2KMEDBmD28jI4nYiIiIiIVFUXtcTm0Ucf5eTJk6SkpJCZmcmxY8dUjIuI27jK8fM243QJrl9yq3JcROSiXRF2BUt6LOGuFncB8OnBT+m/pj/7T+83NFfBzz9zYvgIjt8zkLzvv8fk40Othx+myabPCb3vPhXjIiIiIiLyt1xUOV5UVMS///1vli1bhtPpBCApKYns7OxyDSciAr+OVfn9leOucvwE/PL1SEREys7P04/n2j3HzA4zqeNbhzhbHIPWDWLGnhnYi+0VmsWeksqp8eM51iOG7M2bwWwm+M47abJxI2GjnsASGFiheUREREREpHoq81iV48eP06VLFxISEigoKKBjx44EBgby+uuvU1BQwKxZs9yRU0RqsNKV479kRerSAAAgAElEQVQ3czzol8fsuZCXDn6hFZhMRKT6uSHyBpbFLOPlb19mY/xGZu6dyeaEzUy8biKX1L7Erdcuttk4M3cuZz/6GGdBAQABt99O2OhReDdp4tZri4iIiIhIzVPmleP//Oc/ueqqq0hPT8fX17f08d69e7N58+ZyDSciUuQoIjknGYCowN9ZOe7pA/5hJfczEiowmYhI9RXsE8y/bv4Xk2+aTIh3CEfSj3DPunuYsmsK+UX55X49R14ep+fM4aeOnTgzZy7OggJ8//EPGi74lPrvTlcxLiIiIiIiblHmleNff/0127Ztw+t/ZjxGR0eTmJhYbsFERACSc5IpdhbjZfaitm/t3z8ouD7kpJbMHa93RcUGFBGpxro26sq1da/ltW9fY338ej7Y/wFfJnzJC9e9QNvwtn/7/E67nYxlyzn97rsUpaYC4N2sGXVGjSLg1lswmUx/+xoiIiIiIiJ/pMwrxx0OB8XFxb95/OTJkwRq/qOIlLOT2SXzxusF1MNs+oMvWdZfVpTbTlRQKhGRmiPUJ5TJN09m2q3TqONbh/jMeAZvGMwrO14hx55zUed0Op1kbtjAsR4xJE+YQFFqKp716lH3tUk0WrGcwNtuVTEuIiIiIiJuV+ZyvFOnTkydOrX0c5PJRHZ2NhMmTOCOO+4o13AiIolZv8wbD/ydeeMupZtynqyARCIiNdOtDW5lRa8V9GnWB4CFhxfSe2Vvvkn8pkznydm2jfh+d5L4xCgK4+OxhIQQ/sw4Gm9YT3CvXpgsFnfEFxERERER+Y0yj1V588036dy5M61btyY/P5977rmHo0ePUrt2bT777DN3ZBSRGsy1GWdUwO/MG3cpLce1clxExJ2CvIJ48boX6RLdhRe3v0hidiKP/PsRYprEMObqMVi9rX/42rx9+0l7awo527YDYPbzI3TIEEKHDMES4F9Rb0FERERERKRUmcvxqKgo9u7dy8KFC/nhhx/Izs7mgQceYODAgedt0CkiUh5cY1X+vBz/5bkMleMiIhWhfb32LItZxjvfv8OnBz9l1c+r2Ja0jWevfZYODTucd2xBXBxpb08ja8OGkgc8PQkZMIDajzyMR61aBqQXEREREREpUeZyHMDDw4NBgwaVdxYRkd+4oLEqwRqrIiJS0fw8/Rh7zVg6R3dm/Dfjic+MZ9SWUXRs2JFnrn0Ga2Yxp9+dQUZsLBQXg8mENaYHtUc+jlfUn3xNFxERERERqSAXVY4fPnyYd955h4MHDwLQqlUrRowYQcuWLcs1nIjIha0c/6Ucz0kFez54+lRAMhERAbgi7AqWxixl9t7ZzNs/j22HPuejj7+k83+LMBcWARBwyy3UGTUKnxbNDU4rIiIiIiLyqzJvyBkbG8ull17Krl27uPzyy7n88svZvXs3bdq0ITY21h0ZRaSGyrXncjb/LPAXK8d9Q8Dzl3m1mYkVkExERM7lbfFmRKsH+Sz9TmbMdtL1m3zMhUUkNQ4icO406s+aqWJcREREREQqnTKvHB8zZgzjxo1j4sSJ5z0+YcIExowZQ9++fcstnIjUbK7NOAO9AgnyCvrjA02mkrnjpw9DRgLUalJBCUVExGm3k7FsOafffRdSU/EFcurXYmb7LL5rnIN/wnhGH06nX/N+mE1lXpchIiIiIiLiNmX+CeXUqVPcd999v3l80KBBnDp1qlxCiYjAr+X4n45UcXFtyqm54yIiFcLpdJK5YQPHesSQPGECRampeNarR73XX6Pthq08O3o5l4ddQY49h5d2vMQDGx8gITPB6NgiIiIiIiKlylyO33LLLXz99de/efw///kPN954Y7mEEhGBc8rxwAsox7Upp4hIhcnZto34fneS+MQoCuPjsYSGEv7MMzTesB5rz56YLBYaBzfmwy4fMvbqsfh6+LIzZSd9VvVh/v75FDuKjX4LIiIiIiIiZR+rEhMTw9ixY9m1axft2rUDYMeOHSxZsoQXX3yRVatWnXesiMjFOplVUnRHBvzJvHGX0pXjJ9yYSESkZsvbt5+0t6aQs207AGY/P0KHDiV08GAsAf6/Od5itjCo9SBurn8zL25/kW9Pfcubu95kY/xGJl4/kWYhzSr6LYiIiIiIiJQyOZ1OZ1leYDZf2GJzk8lEcXH1WBWUmZmJ1WrFZrMRFPQnc49FpFyN/GIkW05s4dlrn2VAywF/fvDeRbD8IWh0E9y/umICiojUEAVxcaS9PY2sDRtKHvD0JOTuAdR++GE8atW6oHM4nU6WHV3Gv3b+i2x7Nh5mDx5q8xDD2gzD0+LpxvQiIiIiIlKTlKXLLfPKcYfDcdHBRETKwjVWpUwrxzO0clxEpLzYU1I5/e67ZMTGQnExmExYY2KoPXIkXlEX8LX5HCaTib7N+3JD5A28vONltpzcwoy9M9iUsImJ103k0tqXuuldiIiIiIiI/L4yzxwXEakITqeTxKyLmDmemQj6JZ6IyN/idDqxrVrFse7dyVi8GIqLCbj1VhqtWEG9118rczF+rnD/cKbdNo3JN00mxDuEo+lHGbhuIFN2TiG/KL8c34WIiIiIiMifu+ByfPv27axZs+a8xz766CMaNWpEWFgYDz30EAUFBeUeUERqpoyCDHKLcgGoF1Dvr18QWBdMZiguhJxUN6cTEam+itLTSXxiFEljxuLIysKnTRsafvoJ9WfOwKdF83K5hslkomujrqzotYKujbricDr44MAH9F3Vl53JO8vlGiIiIiIiIn/lgsvxiRMncuDAgdLP9+3bxwMPPECHDh14+umnWb16NZMmTXJLSBGpeVybcYb5huFt8f7rF1g8SwpyANtJNyYTEam+sr/6imMxMWRt3AgeHtT55+NEf7YAv7Zt3XK9UJ9QJt80mWm3TiPMN4yErASGbBzCyzteJsee45ZrioiIiIiIuFxwOb5nzx5uv/320s8XLlzItddey5w5cxg9ejTTpk1j8eLFbgkpIjWPa974BY1UcbH+MlrFprnjIiJl4cjN5dQLL3DioYcpTjuNV5MmRC9cSO1HH8XkUeYtasrs1ga3srzXcvo26wvAosOL6LWyF98kfuP2a4uIiIiISM11weV4eno64eHhpZ9v3bqVrl27ln5+9dVXc+KECikRKR8ns0tWf1/QZpwu2pRTRKTM8vbs4Vjv3mQsXARA6P330Sh2Kb6XXlKhOYK8gnjhuheY02kOkQGRJOck88i/H2H8N+OxFdgqNIuIiIiIiNQMF1yOh4eHExcXB0BhYSG7d++mXbt2pc9nZWXh6elZ/glFpEZyjVWJDCxDOe7alFNjVURE/pKzsJDUqVOJv2cg9uMJeERE0OCDeYSPG4fZx8ewXO3qtmNZzDIGthqICRMrflpB75W9+TLhS8MyiYiIiIhI9XTB5fgdd9zB008/zddff824cePw8/PjxhtvLH3+hx9+oEmTJm4JKSI1j2usykWtHNdYFRGRP1Xw00/ED7ibM7Nmg8NBUEwPGq9aiX/79kZHA8DP04+nr3ma+V3mEx0UTVpeGo9/+ThjvxpLen660fFERERERKSauOBy/KWXXsLDw4Obb76ZOXPmMGfOHLy8vEqfnzdvHp06dXJLSBGpeUpnjgeUZeZ4g5JbleMiIr/L6XBw9sMPievTl/wff8RitRI59S0iJ0/GEhRkdLzfuDL8Spb0WMKQS4ZgNplZF7eOXit78Xn850ZHExERERGRasDkdDqdZXmBzWYjICAAi8Vy3uNnz54lICDgvMK8usjMzMRqtWKz2QiqhD84ilQ3xY5irvrkKoqcRWzqt4kI/4gLe2HKjzCzPfgEw9PH3RtSRKSKsSclkfTMs+Tu2AGA/403Uvfll/EMDzM42YXZl7aP8d+M52fbzwB0bNiRZ659htq+tQ1OJiIiIiIilUlZutwLXjnuYrVaf1OMA4SGhlbLYlxEKl5KbgpFziI8zB7U8a1z4S90jVXJz4CCLPeEExGpYpxOJ7ZVqzjWsxe5O3Zg8vUl4oUJ1H9vdpUpxgHa1GnD4h6Leeiyh7CYLGw6voleK3ux5tgayrjWQ0REREREBLiIclxExN1cI1Xq+dfDYv7tL+P+kE8Q+FhL7tsS3ZBMRKRqKUpPJ3HUaJLGjMWRlYXP5ZfRePkyQgYMwGQyGR2vzLwsXoz8x0g+6/YZLUJaYCuwMe7rcTz+xeOk5KQYHU9ERERERKoYleMiUumczDoJQFRgGeaNu1jrl9xq7riI1HDZX31FXExPsjZsAA8P6vzzcaI//RSv6Gijo/1trWq14rPunzHiihF4mD3YcnILvVf2ZvnR5VpFLiIiIiIiF0zluIhUOq6V45EBkWV/scpxEanhHLm5nHrhBU489DBFaWl4NW5M9MKF1H70UUweHkbHKzeeZk8evvxhFndfzKW1LiXLnsXz257nkX8/QlJ2ktHxRERERESkClA5LiKVzsnskpXjF1eO/7LaPEPluIjUPHl79hDXuw8ZCxcBEHLvvTRaFovvpZcYnMx9moU04+M7PmZU21F4mb3YlrSN3it7s+jQIhxOh9HxRERERESkElM5LiKVTmJWycrxixqrEuxaOX6yHBOJiFRuTrud1LffJv6egRQeP45HRAQN5r1PxLPPYPbxMTqe23mYPRh66VCWxizlijpXkFuUy8vfvsywz4dxIlO/LBURERERkd+nclxEKh3XWJWogIuZOf7LazRWRURqiIKffyb+rgGcmTkLHA6CevSg8aqV+F93ndHRKlwjayPmd5nP09c8ja+HL/9N/i99V/flkx8/odhRbHQ8ERERERGpZFSOi0ilkl+UT1peGnCxY1UalNxq5biIVHNOh4OzH31EXJ++5P/4I2arlci3phD5xmQsQUFGxzOMxWxhYKuBxPaI5eqIq8kryuP1/77O4A2DOWY7ZnQ8ERERERGpRFSOi0il4tpEzd/TH6u3tewncK0cz0yC4qJyTCYiUnnYT50i4YEHSHl1Es6CAvxvuIHGq1YR1LWr0dEqjfpB9ZnbaS7j243Hz8OPPWl7uHPVnby/732KHPr/QUREREREVI6LSCXj2owzKiAKk8lU9hMEhIPZE5zFkHWqnNOJiBjL6XRiW72aYzE9yd2+A5OPDxETnqf+nPfwDA8zOl6lYzaZ6d+iPyt6ruC6etdR6Chk6u6pDFo3iKPpR42OJyIiIiIiBlM5LiKVimve+EWNVAEwm8H6y2s1WkVEqpGi9HQSR40m6akxOLKy8LnsMhotX0bI3Xdf3C8Ta5C6AXWZ1WEWE6+bSKBnIAfOHKD/mv7M2jsLu8NudDwRERERETGIynERqVROZpUU2pGBF1mOA1jrl9xqU04RqSayv/6auJieZG3YAB4e1H58JNELPsW7USOjo1UZJpOJ3s16s6LXCm6JuoUiRxHv7nmXu9fczcEzB42OJyIiIiIiBlA5LiKVyt9eOQ4qx0Wk2nAUFpIy6TVOPPgQRWlpeDVuTPRnn1HnsccweXgYHa9KCvMLY9pt03jtxtewels5nH6Yu9fezbTd0ygsLjQ6noiIiIiIVCCV4yJSqbjK8fqB9S/+JK5NOTNUjotI1VUYH8/xAXdz9sMPAQgZOJBGy2LxbXOpwcmqPpPJRLfG3VjRcwUdG3ak2FnMnH1z6L+6Pz+k/WB0PBERERERqSAqx0Wk0nA6nb+OVfk7K8eDXSvHNXNcRKom28qVxPXpS/6PP2IJDiZqxgwixj+H2cfH6GjVSm3f2ky5ZQpv3vwmoT6h/Gz7mXvX38vr371Ojj3H6HgiIiIiIuJmKsdFpNLILMwk254NQL2Aehd/ItfKcZXjIlLFFGfnkDhmDEljn8aRm4vf1VfTaOUKAm+71eho1Vqn6E6s7LmSbo274XA6+OTgJ8SsiGHT8U04nU6j44mIiIiIiJsYWo7PnDmTyy67jKCgIIKCgmjfvj3r168vfT4/P5/hw4dTq1YtAgIC6Nu3LykpKeedIyEhgW7duuHn50dYWBhPPfUURUVF5x2zZcsWrrzySry9vWnatCnz58+viLcnImV0MrukzK7tWxtfD9+LP9G5M8dVaohIFZG3/wBxffuQuWo1mM3UfnwkDeZ/gGd4uNHRaoRgn2Beu/E1ZnWYRVRAFKm5qYzeMprhm4eX/lWTiIiIiIhUL4aW41FRUbz22mvs2rWLnTt3ctttt9GzZ08OHDgAwKhRo1i9ejVLlixh69atJCUl0adPn9LXFxcX061bNwoLC9m2bRsffvgh8+fP5/nnny89Ji4ujm7dunHrrbeyZ88ennjiCYYNG8bGjRsr/P2KyJ9LzCqHzTjh15XjhdmQn/E3U4mIuJfT4eDMB/OJv/tu7McT8Khbl4Yff1Sy6abFYnS8Guf6yOtZ3nM5D1/2MB5mD75O/JreK3szd99c7MV2o+OJiIiIiEg5Mjkr2d+KhoaG8sYbb9CvXz/q1KnDggUL6NevHwCHDh2iVatWbN++nXbt2rF+/Xq6d+9OUlIS4b+sqpo1axZjx44lLS0NLy8vxo4dy9q1a9m/f3/pNQYMGEBGRgYbNmy4oEyZmZlYrVZsNhtBQUHl/6ZFBIB5++fx1q63uKPRHbx+0+t/72STm0DuaXj4a6h7WfkEFBEpZ0VnzpD0zDPkbP0KgMCOHaj70ktYgoMNTiYAx2zHeGXHK3yX/B0Aja2NGd9uPFdFXGVwMhERERER+SNl6XIrzczx4uJiFi5cSE5ODu3bt2fXrl3Y7XY6dOhQekzLli1p0KAB27dvB2D79u20adOmtBgH6Ny5M5mZmaWrz7dv337eOVzHuM7xewoKCsjMzDzvQ0Tcr9xWjoM25RSRSi9n+3aO9epFztavMHl5ETHheSKnTVMxXok0tjZmbqe5vHrDq4T6hHLMdowhG4cw/pvxpOenGx1PRERERET+JsPL8X379hEQEIC3tzePPPIIy5cvp3Xr1iQnJ+Pl5UXw//yAGB4eTnJyMgDJycnnFeOu513P/dkxmZmZ5OXl/W6mSZMmYbVaSz/q169fLu9VRP5cYnZJOV4/sBz+zZVuynni759LRKQcOe12Uqe8RcLQByhOO41XkyZEL1lCyN13YzKZjI4n/8NkMtGjSQ9W9VrFnc3vBGDFTyvosaIHy44uw+F0GJxQREREREQuluHleIsWLdizZw/ffvstjz76KPfffz8//vijoZnGjRuHzWYr/ThxQuWaSEVwlePlsnLc2qDkVuW4iFQihScTOT7oXs689x44nQTfeSeNli7Bp0Vzo6PJX7B6W3m+/fN83PVjmoc0x1ZgY8K2CQzZMISj6UeNjiciIiIiIhfB8HLcy8uLpk2b0rZtWyZNmsTll1/O22+/TUREBIWFhWRknL+ZXkpKChEREQBERESQkpLym+ddz/3ZMUFBQfj6+v5uJm9vb4KCgs77EBH3cjgdv5bjgeVRjrtWjmusiohUDpkbNhDXuzd5e/diDgwkcupb1H1pIuY/+H5EKqcrwq5gUfdFPHnVk/h6+LI7dTf9V/fnrV1vkWvPNTqeiIiIiIiUgeHl+P9yOBwUFBTQtm1bPD092bx5c+lzhw8fJiEhgfbt2wPQvn179u3bR2pqaukxmzZtIigoiNatW5cec+45XMe4ziEilUNqbip2hx2LyUK4X/hfv+CvuMrxDK0cFxFjOfLyODX+eRKfGIUjKwvfyy+n0fLlBHXpYnQ0uUgeZg/uv+R+VvVaxe0NbqfIWcS8/fPovbI3W09sNTqeiIiIiIhcIA8jLz5u3Di6du1KgwYNyMrKYsGCBWzZsoWNGzditVp54IEHGD16NKGhoQQFBTFy5Ejat29Pu3btAOjUqROtW7fm3nvvZfLkySQnJ/Pcc88xfPhwvL29AXjkkUeYPn06Y8aMYejQoXzxxRcsXryYtWvXGvnWReR/uFaN1/Wvi4e5HL40aUNOEakE8g8fIfH/RlP4089gMlHrwQepM3IEJk9Po6NJOYjwj2DqrVPZcmILr377Kkk5SYz4YgS3N7idp695mgj/CKMjioiIiIjInzC0HE9NTeW+++7j1KlTWK1WLrvsMjZu3EjHjh0BeOuttzCbzfTt25eCggI6d+7MjBkzSl9vsVhYs2YNjz76KO3bt8ff35/777+fiRMnlh7TqFEj1q5dy6hRo3j77beJiopi7ty5dO7cucLfr4j8sXIdqQJg/aUcz06GogLw8C6f84qIXACn00nGwoWkvPY6zoICLHVqEzl5Mv76y7Vq6Zb6t3BNxDXM/mE2Hx34iM0Jm9mWtI3hVwxnYKuB5fNLXxERERERKXcmp9PpNDpEZZeZmYnVasVms2n+uIibzNgzg5l7Z9K3WV9euO6Fv39CpxNeqQtFefD49xDa+O+fU0TkAhRnZHBq/PNkbdoEgP9NN1Jv0iQ8atUyOJlUhKPpR3lpx0t8n/o9AC1CWjC+/Xgur3O5wclERERERGqGsnS5lW7muIjUTK6V41GBUeVzQpNJc8dFpMLl7trFsd59SopxT0/Cxo6l/qxZKsZrkGYhzZjfZT4Tr5uI1dvK4fTD3LvuXiZun4itwGZ0PBEREREROYfKcRGpFE5mlcwGjwwop7EqoLnjIlJhnMXFpM2YwfF776Po1Ck8GzYg+rPPqDVkMCazvt2qacwmM72b9WZ1r9X0atoLJ06WHFlCzIoYVv+8Gv3hpoiIiIhI5aCf1kSkUjiZ7YZy3LVyXOW4iLiRPSWFhCFDOT3tHXA4CIrpQaPYZfheeonR0cRgIT4hvHT9S3zQ+QMaWxtzNv8sz/znGYZ9Pow4W5zR8UREREREajyV4yJiuMLiQtJy04DyLsddK8cTyu+cIiLnyPriS+J69iL3u+8w+flR97VJRE6ejCXA3+hoUolcFXEVS3ss5Z9X/hMfiw/fJX9H31V9mf79dPKL8o2OJyIiIiJSY6kcFxHDJWUn4cSJr4cvoT6h5Xdiq8aqiIh7OAoKSH7lVU4+9hjFGRl4t25Fo9ilBPfqZXQ0qaQ8LZ4MazOM5T2Xc2Pkjdgddmb/MJs+q/qwLXGb0fFERERERGokleMiYjjXZpyRAZGYTKbyO7E25BQRNyg4Fkf8gLtJ//hjAELvv4/ohQvxbtTI4GRSFUQFRvHu7e/y1i1vEeYXxomsEzz874d5autTpOamGh1PRERERKRGUTkuIoZzbcYZFRBVvic+d0NObX4mIn+T0+kkY9ly4vr1o+DgQSwhIUTNmkn4uHGYvbyMjidViMlkokPDDqzqtYp7W9+L2WRmQ/wGYlbE8NGBj7A77EZHFBERERGpEVSOi4jhSleOB5bjvHGAwHqACYoLICetfM8tIjVKsc1G4ujRnHrmGZy5ufhdey2NVqwg8JZbjI4mVZi/pz9jrh7Dwm4Luaz2ZeTYc3hj5xv0X92f/yb/1+h4IiIiIiLVnspxETHcyWw3rRz38ILAuiX3bRqtIiIXJ2fHtxzr2Yus9RvAw4M6T/yTBvPexzM8zOhoUk20qtWKj+/4mBeve5EQ7xB+yviJoRuHMvarsRq1IiIiIiLiRirHRcRwrrEqkQHlvHIcfp07rk05RaSMHIWFpLzxBglDhlCUnIxXw4ZEf7aA2o88gsliMTqeVDNmk5k+zfqwuvdq7mpxFyZMrItbR8yKGD488KFGrYiIiIiIuIHKcRExnNvGqoA25RSRi1Lw88/E3zWAs+/PA6eT4DvvpNGyWHzbtDE6mlRzVm8rz7V7js+6f1Y6auVfO/+lUSsiIiIiIm6gclxEDJVVmEVmYSbghrEqcP6mnCIif8HpdHL200+J69O3ZNPN4GCipr9D3ZcmYvb3Nzqe1CCX1LpEo1ZERERERNxM5biIGMq1ajzUJxQ/T7/yv4DVVY5r5biI/Lmi06c58cgjpLz0Ms6CAvxvuIFGq1YS2KGD0dGkhvqjUSs9lvfQqBURERERkXKgclxEDOXWeeOgclxELkjWl19yLKYnOVu/wuTlRfgzz1D/vdl4hmnTTTHe/45ayS3K1agVEREREZFyoHJcRAxVOm/cbeW4Zo6LyB9z5OVx6oUXOPnoYxSfPYt3ixZEL11C6H33YjLr2ySpXP5o1MqYr8Zo1IqIiIiIyEXQT30iYijXyvGoQDfMG4dfZ47nnYXCHPdcQ0SqpLz9B4jr05eMhYsACB08mOjFi/Bp3tzgZCJ/7PdGrayPW69RKyIiIiIiF0HluIgYyu0rx32s4B1Uct+W6J5riEiV4iwu5vR7c4gfMIDCuDg8wsJoMO99wp8ei9nb2+h4IhdEo1ZERERERP4+leMiYqiT2W6eOQ6/jlaxJbjvGiJSJdiTkki4fzBpU6ZAURGBHTvSaOUK/K+7zuhoIhfFNWpl4nUTNWpFRERERKSMVI6LiGGcTidJ2UkARAW4aawKnLMp50n3XUNEKj3bmrUc69mL3J07Mfn5UfeVl4mc9jYeISFGRxP5W8wmM72b9daoFRERERGRMlI5LiKGOZ13moLiAswmMxEBEe67kDblFKnRirOySHxqDElPPokjKwufyy+j8fJlBPfti8lkMjqeSLn5o1Erd666U6NWRERERER+h8pxETGMa6RKhF8EnmZP910oWCvHRWqq3J07ievZi8zVq8Fspvbw4UR/8gleDRsaHU3Ebf531MrPtp81akVERERE5HeoHBcRw5zM+mXeeKAb543DOWNVtHJcpKZw2u2kvjWV4/fdjz0pCc/69Wn46SfUGTkCk6cbfxknUklo1IqIiIiIyF9TOS4ihknMTgTcPG8cVI6L1DAFcXHE330PZ2bPBocDa+/eNFq+HL9//MPoaCIVTqNWRERERET+mMpxETGMqxyPDHD3yvFfyvfMJHAUu/daImIYp9NJ+qLFxPXpS/7+/ZitViKnTqXepFexBPgbHU/EUBq1IiIiIiLyWyrHRcQwFTZWJTACzB7gKIKsZPdeS0QMUXT2LCdHjCR5wgSceXn4tWtH45UrCOrS2ehoIpXGH5pjoAkAACAASURBVI1a6b68O7P3zia/KN/oiCIiIiIiFUrluIgYpsLGqpgtEFSv5L425RSpdrK//ppjPXuSvXkzJk9PwsaMocG89/GMiDA6mkil5Bq1srD7Qi6vczl5RXlM3zOdHit6sO7YOpxOp9ERRUREREQqhMpxETGE3WEnJTcFgKhAN5fjoLnjItWQIz+f5Jdf4cSDD1Gcdhqvpk2IXrKYWkOHYDLrWxyRv9K6Vms+7voxr9/4OhH+ESTnJDP267EMWj+IvWl7jY4nIiIiIuJ2+slRRAyRnJ2Mw+nAx+JDLZ9a7r+gynGRaiX/0CHi77yT9E8+ASBk0CAaLV2KT8uWBicTqVpMJhN3NL6D1b1WM+KKEfh6+PJD2g8MWjeIsV+NJTlH48hEREREpPpSOS4ihjiedRwo2YzTZDK5/4KuTTkzVI6LVHUZsbHE39mfgqM/Yaldm/rvzSbiuWcx+/gYHU2kyvLx8OHhyx9mTe819GzSExMm1sWto/vy7kz/fjq59lyjI4qIiIiIlDuV4yJiiMNnDwPQLKRZxVww2LVyXDPHRaoqp8NB6pS3OPXsczjtdgJuvZXGq1YScNNNRkcTqTbC/MJ4+YaXWdh9IW3D21JQXMDsH2bTfXl3Vvy0AofTYXREEREREZFyo3JcRAxxOL2kHG8R2qJiLuhaOa5yXKRKchQUkPTkk5x57z0Aaj/2KFEz3sUjNNTgZCLVU+tarfmg8wdMuWUKkQGRpOWlMf6b8dy99m52pewyOp6IiIiISLlQOS4ihnCtHG8RUlHleIOSW80cF6lyitLTSRgylMx168HDg7qvvkqdxx+vmJFMIjWYyWSiY8OOrOy1klFtR+Hv6c+PZ35k8IbBjN4ympNZ+oWziIiIiFRtKsdFpMLlF+UTnxkPQMvQCto8zxpZcluQCfm2irmmiPxthfHxxA8YQN7u3ZgDA2kwdw7BfXobHUukRvG2eDP00qGs6b2Gfs37YTaZ2XR8EzErYpiyawrZhdlGRxQRERERuSgqx0Wkwv2U8RMOp4NQn1Bq+9aumIt6+YPvL+MXtCmnSJWQu2sX8XcNwH48Ac/ISKI/W4B/u3ZGxxKpsWr71mZC+wks6bGEdnXbYXfY+WD/B3Rb3o0lR5ZQ7Cg2OqKIiIiISJmoHBeRCnfo7CGgZKRKhY5F0KacIlWGbc1aEgYPodhmw6dNG6IXLcS7aVOjY4kI0DykOe91fI/pt00nOiias/lnmbh9Iv3X9GfHqR1GxxMRERERuWAqx0WkwpXOG6+ozThdrK5yXCvHRSorp9PJ6VmzSXrySZx2O4EdO9Dwow/xqF1Bf2UiIhfEZDJxc/2bWRazjDFXjyHQK5Aj6Ud48PMHGfnFSOJt8UZHFBERERH5SyrHRaTCHU5XOS4iv+W02zn13HOkTZ0KQOjgwUROnYrZ19fgZCLyRzwtntzb+l7W9V7HPS3vwWKysOXEFnqv7M3r372OrUD7fIiIiIhI5aVyXEQqlMPp4Ej6EaBkrEqFskaV3GqsikilU5yZScJDD2GLXQZmM+HPjyf86bGYLBajo4nIBQj2CWbcteNYFrOMGyNvpMhZxCcHP6Hb8m4sOLgAu8NudEQRERERkd9QOS4iFSoxK5Ecew5eZi+irdEVe3HXzHFtyClSqdgTEzk+cCC523dg8vMjasa7hN5zj9GxROQiNA5uzIwOM5jVYRZNrE2wFdiY9N0k+q7qy9cnvzY6noiIiIjIeVSOi0iFco1UaRrSFE+zZ8VeXCvHRSqdvH37iRswgIKjP+FRpw7Rn3xM4C23GB1LRP6m6yOvZ2nMUp679jmCvYOJs8Xx2ObHeGTTI/yU/pPR8UREREREAJXjIlLBDp09BBgwUgV+nTmedQqKCiv++iJynqzNmzl+330Up53Gu3lzohcvwqd1a6NjiUg58TB7cFfLu1jbZy33t74fD7MH3yR9Q7/V/Xh5x8uk56cbHVFEREREajiV4yJSoQ6fNWgzTgD/OmDxBpyQlVTx1xeRUmc/+oiTI0bizMvD/4YbaLjgUzzr1jU6loi4QZBXEE9e/SQre67ktvq3UewsZtHhRdyx7A6mfz9dm3aKiIiIiGFUjotIhXKNVTFk5bjJ9OtoFc0dFzGEs7iY5JdfIeXVSeB0Ety/P/VnzsASEGB0NBFxswZBDXj7trd5v9P7tAxtSbY9m9k/zKZLbBfe3fOuSnIRERERqXAqx0WkwtgKbJzKOQUYtHIcft2UU3PHRSqcIzeXkyNGkv7JJwCEPfUkES++gMmzgvcfEBFDXVP3GhZ1X8SbN79J0+CmZNuzmbV3Fl1juzJjzwwyCzONjigiIiIiNYTKcRGpMEfSjwAQGRBJoFegMSG0KaeIIeypqRwfdC/ZX36JycuLyKlvUeuBBzCZTEZHExEDmE1mOkV3IjYmtrQkz7JnMXPvTLos7cLMPTNVkouIiIiI26kcF5EKY+hmnC7WBiW3tgTjMojUMPmHjxB/1wDyf/wRS0gIDT6cT1CXLkbHEpFK4NyS/F83/6u0JJ+xdwZdYrswc+9MsgqzjI4pIiIiItWUynERqTCuzThbhrY0LoRWjotUqOz/fMPxgQMpOnUKr0aNiF60EL9//MPoWCJSyZhNZjpHdyY2JpY3bn6DJtYmZBVmMWPPDDrHdlZJLiIiIiJuoXJcRCqMazPO5qHNjQuhDTlFKkz6kiWcePhhHNnZ+F11FdGfLcCrQQOjY4lIJWY2mekS3YVlPZf9bkk+a+8sleQiIiIiUm5UjotIhbAX2/kp4yfA4JXj527I6XQal0OkGnM6HKROeYvk8c9DcTFBMT2oP+99LMHBRkcTkSrCVZLHxsTyxk1v0NjamKzCLN7d8y5dYrswe+9ssguzjY4pIiIiIlWcynERqRDHbMcochQR6BlIPf96xgWx1geLFxTlwdljxuUQqaYcBQUkPfkkZ957D4Dajz1Gvddfx+zlZXAyEamKLGYLXRp1YVnMMibfNJnG1sZkFmYyfc90Osd25r0f3lNJLiIiIiIXTeW4iFSIc0eqmEwm44JYPCHispL7ibuNyyFSDRWlp5MweAiZ69aDpyd1J02izuMjjf03LyLVgsVsoWujrqUleSNrIzILM3nn+3dUkouIiIjIRVM5LiIVwrUZZ4uQFgYnAaKuKrlN3GVsDpFqpDA+nvgBA8j7/nvMgYE0mDOH4N69jI4lItWMqyRfHrOc1298/bySvMuyLsz5YQ459hyjY4qIiIhIFaFyXEQqhKscN3TeuEtk25LbxJ3G5hCpJnJ37iT+rgHYjyfgGRlJ9MLP8G93rdGxRKQas5gt3NH4DpbHLOe1G18jOigaW4GNad9Po3NsZ+bum6uSXERERET+kspxEXE7p9NZOlalRWglWDnuKsdP/QBFhcZmEanibKvXkDBkKMU2Gz6XXUb0ooV4N2lidCwRqSEsZgvdGndjRc8V55Xkb+9+my6xXVSSi4iIiMifUjkuIm6XkptCRkEGFpOFJsGVoDQLbQy+IVBcACn7jU4jUiU5nU5Oz5xJ0lNP4bTbCezYgYYfzsejdm2jo4lIDXRuST7pxklEB0WTUZBxXkmea881OqaIiIiIVDIqx0XE7VwjVRpZG+Ft8TY4DWAynTNaRXPHRcrKUVBA0lNjSHt7GgChgwcTOXUqZl9fg5OJSE1nMVvo3rg7K3qu4NUbXqVhUMPSkrxzbGfe3/e+SnIRERERKaVyXETcrlKNVHFROS5yUYrS0jh+331krlkDHh5EvPAC4U+PxWSxGB1NRKSUxWyhR5MevynJp+6eSpfYLszcO5OM/AyjY4qIiIiIwVSOi4jbHTp7CICWIZVgM04XleMiZZZ/6BBx/e8if+8PmK1WGsydQ8iAu4yOJSLyhzzMHr8pydML0pmxZwadYjsx6dtJJGYnGh1TRERERAyiclxE3O5I+hGgkq4cP30E8m3GZhGpArK++IL4ewZSdOoUXtHRNFq0EP927YyOJSJyQc4tyd+4+Q1ahbYiryiPBYcW0G1ZN8Z8NYaDZw4aHVNEREREKpjKcRFxq1x7LgmZCUAlK8f9a0Nww5L7ibuNzSJSiTmdTs7MncvJ4SNw5ubi174d0YsW4hUdbXQ0EZEy8zB70CW6C4u6L2Jup7lcV+86ip3FrI9bT/81/Xno84fYnrQdp9NpdFQRERERqQAeRgcQkertSPoRnDgJ8w0j1CfU6Djni7oKMo6XjFZpcqvRaUQqHUdhIckTXsC2fDkAwXcPIOKZZzB5ehqcTETk7zGZTFxb91qurXsth84eYv6B+WyI28D2U9vZfmo7rUJbMfiSwXSK7oSHWT8yiYiIiFRXWjkuIm51+GzJZpzNQ5sbnOR3aO64yB8qOnuWhKFDS4pxs5nw556j7oQJKsZFpNppGdqS1258jXV91jGo1SB8PXw5ePYgY78eS/fl3VlwcAG59lyjY4qIiIiIG6gcFxG3OpT+y2acoZVoM06XyKtKbk/uBP35tEipgqNHie9/F3k7d2EOCKD+7NmEDhpodCwREbeqF1CPsdeM5fO+nzPiihGE+oSSmJ3IpO8m0Tm2M+/ueZez+WeNjikiIiIi5UjluIi41ZGzv2zGGVKJ5o271L0MzB6Qkwq2k0anEakUsr/6ivgBd2M/eRLP+vWJXrSQgBtvMDqWiEiFCfYJ5uHLH2Zj342Mbzee+oH1ySjIYNbeWXRa2omXd7zMicwTRscUERERkXKgclxE3KbYUcyR9F/K8cq0GaeLpy+EX1JyX6NVpIZzOp2c/egjTjzyKI6cHPyuuoroxYvwbtLE6GgiIobw8fChf4v+rO61mjdvfpNLa11KQXEBiw4vovuK7jy59UkOnDlgdEwRERER+RtUjouI2yRkJZBfnI+vhy8NAhsYHef3ae64CE67neQJL5Dy6iRwOLD27UODee/jERJidDQREcNZzBY6RXdiQbcFzOs8jxsib8DhdLAxfiMD1gxg2MZhfJP4DU6NaBMRERGpcrT1uoi4jWszzmbBzbCYLQan+QORbWHnPJXjUmMVZ2Rw8olR5O7YASYTYWPGEDr4fkwmk9HRREQqFZPJxNURV3N1xNUcPnuYDw98yPq49Xyb/C3fJn9L85DmDLl0CJ2jO+Np1ubFIiIiIlWBVo6LiNscOluyGWelHKni4tqUM+l7KC4yNotIBSs4Fkf8XQPI3bEDs58fUTPepdaQwSrGRUT+QovQFrx646us77ue+1rfh5+HH0fSjzDu63F0W9aNT378hFx7rtExRUREROQvqBwXEbc5nF6ycrxSbsbpUrsZeAWCPRfSDhmdRqTC5GzbRvyAARQeP45nvXo0/OwzAm+91ehYIiJVSoR/BE9d/RSf9/ucf175T2r51OJUzile/+/rdFzakXe+f4czeWeMjikiIiIif0DluIi4jWusSqVeOW62QOQ/Su5rtIrUEOkLF5Lw4EM4MjPx/cc/iF6yGJ8WzY2OJSJSZVm9rQxrM4yN/TYyof0EGgY1JLMwk/d+eI9OSzsxcftEjmceNzqmiIiIiPwPleMi4hZn8s6QlpeGCRPNQyp56Va6KedOY3OIuJmzqIjkl18h+YUXobgYa88YGsz/AI9atYyOJiJSLXhbvOnXvB8re65k6i1Tuaz2ZRQ6CllyZAk9lvdg9JbRHDh9wOiYIiIiIvILbcgpIm7hGqnSIKgBfp5+Bqf5C66544m7jc0h4kbFWVkkjhpNzn/+A0CdUaOo9dCDmi8uIuIGFrOF2xvezm0NbmN36m4+2P8BW09uZdPxTWw6volr617L0EuH0r5ue30dFhERETGQynERcYsjZ48AlXzeuItr5Xjqj1CQDd4BxuYRKWeFCQmcePQxCn/+GZOvL/Vef42gTp2MjiUiUu2ZTCbahrelbXhbjqYfZf6B+aw7to5vT33Lt6e+pVVoK4a2GUrHBh2xmC1GxxURERGpcTRWRUTc4lB6yeaWlXreuEtQXQisB04HnNprdBqRcpXz3XfE39mfwp9/xiMiguhPP1ExLiJigGYhzXjlhldY12cdg1oNwtfDl4NnD/LU1qeIWRHD4sOLKSguMDqmiIiISI2iclxE3MK1GWfL0JYGJ7lAUa6549qUU6qPjNhYEh4YRrHNhk+bNkQvXoRP69ZGxxIRqdHqBtRl7DVj+bzv5zx2+WMEeweTkJXASzteovPSzszdN5eswiyjY4qIiIjUCCrHRaTcFRQXEGeLA6j8m3G6aFNOqUacxcWkTH6DU88+B3Y7QXd0peHHH+EZFmZ0NBER+UWwTzCPXvEoG/tu5OlrnibCP4Iz+Wd4e/fbdFzakSm7ppCWm2Z0TBEREZFqTeW4iJS7nzJ+othZTLB3MOF+4UbHuTDalFOqieLsHE4OH8HZefMAqD1iBPXefBOzj4/ByURE5Pf4efoxsNVA1vVZx6s3vErT4Kbk2HP4YP8HdI7tzAvbXiDeFm90TBEREZFqydByfNKkSVx99dUEBgYSFhZGr169OHz48HnH5OfnM3z4cGrVqkVAQAB9+/YlJSXlvGMSEhLo1q0bfn5+hIWF8dRTT1FUVHTeMVu2bOHKK6/E29ubpk2bMn/+fHe/PZEa69zNOE0mk8FpLlC9KwAT2E5AVspfHi5SGdkTEzl+zz1kb9mCydubyClvUmfE8Krz71BEpAbzNHvSo0kPYmNimX7bdK4MuxK7w07s0VhiVsQwesto9p/eb3RMERERkWrF0HJ869atDB8+nB07drBp0ybsdjudOnUiJyen9JhRo0axevVqlixZwtatW0lKSqJPnz6lzxcXF9OtWzcKCwvZtm0bH374IfPnz+f5558vPSYuLo5u3bpx6623smfPHp544gmGDRvGxo0bK/T9itQUh85Woc04XbwDIaxVyX3NHZcqKHf398T1v4uCI0ew1KlNw48/IuiOO4yOJSIiZWQ2mbm5/s182PVDPur6EbdE3YITJ5uOb+LutXczbOMwtiVtw+l0Gh1VREREpMozOSvRd1VpaWmEhYWxdetWbrrpJmw2G3Xq1GHBggX069cPgEOHDtGqVSu2b99Ou3btWL9+Pd27dycpKYnw8JLxDbNmzWLs2LGkpaXh5eXF2LFjWbt2Lfv3/7rSYsCAAWRkZLBhw4a/zJWZmYnVasVmsxEUFOSeNy9SjQzeMJhdKbt49YZX6dGkh9FxLtzK4fD9J3Dj/8Htz//18SKVhG31ak498yxOux3v1q2oP2MGnhERRscSEZFycjT9KPMPzGfdsXUUOUv+QrZVaCuGXjqUjg07YjFbDE4oIiIiUnmUpcutVDPHbTYbAKGhoQDs2rULu91Ohw4dSo9p2bIlDRo0YPv27QBs376dNm3alBbjAJ07dyYzM5MDBw6UHnPuOVzHuM7xvwoKCsjMzDzvQ0QujNPp5PDZkvFIVWYzTpfSTTm1clyqjjPzPiDpqTE47XYCO3Yg+pNPVIyLiFQzzUKa8coNr7CuzzoGtRqEr4cvB88e5KmvnqLHih4sPryYguICo2OKiIiIVDmVphx3OBw88cQTXH/99Vx66aUAJCcn4+XlRXBw8HnHhoeHk5ycXHrMucW463nXc392TGZmJnl5eb/JMmnSJKxWa+lH/fr1y+dNitQAidmJZNuz8TR70tja2Og4ZVO6Kef34HAYm0XkLzidTlL/9S9SJ08GIHTwYCLffhuzn5/ByURExF3qBtRl7DVj+bzv5zx2+WMEewdzIusEL+14ic5LOzN331wyC7WwR0RERORCVZpyfPjw4ezfv5+FCxcaHYVx48Zhs9lKP06cOGF0JJEq43B6yarxJsFN8LR4GpymjMJag4cvFNjgzE9GpxH5Q86iIk49+xxn5r4PQNhTTxL+9FhM5krz37qIiLhRsE8wj17xKBv7buTpa54mwj+CM/lneHv323Ra2okpO6eQmptqdEwRERGRSq9S/BQ9YsQI1qxZw5dffklUVFTp4xERERQWFpKRkXHe8SkpKUT88ifjERERpKSk/OZ513N/dkxQUBC+vr6/yePt7U1QUNB5HyJyYVwjVVqEVKHNOF0sHlDvipL7Gq0ilZQjP5+TIx/HtmwZWCzUfeUVaj3wgNGxRETEAH6efgxsNZB1fdbx6g2v0jS4KTn2HD448AFdYrvwwrYXiLfFGx1TREREpNIytBx3Op2MGDGC5cuX88UXX9CoUaPznm/bti2enp5s3ry59LHDhw+TkJBA+/btAWjfvj379u0jNfXXlRGbNm0iKCiI1q1blx5z7jlcx7jOISLlx1WOtwxtaXCSi1Q6d3ynsTlEfkexzUbCA8PI/vJLTN7eRL0zjeC+fYyOJSIiBvM0e9KjSQ9iY2KZftt0rgy7ErvDTuzRWGJWxDDyi5FsT9qO0+k0OqqIiIhIpeJh5MWHDx/OggULWLlyJYGBgaUzwq1WK76+vlitVh544AFGjx5NaGgoQUFBjBw5kvbt29OuXTsAOnXqROvWrbn33nuZPHkyycnJPPfccwwfPhxvb28AHnnkEaZPn86YMWMYOnQoX3zxBYsXL2bt2rWGvXeR6so1VqVFaBVcOQ7alFMqLXtKKicefJCCI0cwBwZSf+YM/K76f/buPDzOgtz7+HfWJDNZJ/vedEtblrZ0YSll36zHAnoOsrzIohQRxCOC6wHU44Zy8CAIAgJyXoVXRJEiO0rBKqdbaKHQNN2SJmn2STLJJJn1ef+YzCTdW5r2yfL7XFeuZ+aZZ6b3/JMmv9xz3/PNLktEREYRq8XKmaVncmbpmbzX+h5PfPAEKxpWsKI+9lWRUcHllZdz8dSLcTvcZpcrIiIiYjqLYWL7gMVi2ef5J598kmuvvRaAgYEBvva1r/HMM88QCAS48MILeeihhxIjUwDq6uq46aabWLFiBW63m2uuuYaf/OQn2O1D2f+KFSv46le/ykcffURJSQl33nln4t84GJ/PR0ZGBt3d3RqxInIAvqCPRc8sAmDl5SvJSMowuaKPobMO7j8RrA74VgM4ks2uSITAjh3Uf+EGQo2N2HNzKf31YyRXjtE/QImIyDG1vWs7/2/z/+OFrS/QF+4DwO1ws3TKUi6fcfnYW6AuIiIichCHk+WaGo6PFQrHRQ7N2ua1XPfadRS6C3n9X183u5yPxzDgZ1Ohrx0+/yaULjC7Ipng+jd+SP2yZUS8Xpzl5ZQ+/mucw/ZziIiIHIreYC/Lty3nmepnqPXVJs6fWngqV8y4gjNKzsBmtZlXoIiIiMgIOZwsd1Qs5BSR8WHMj1QBsFigZHBUhUariMn8777Lzs99jojXS/KsWZQ//TsF4yIi8rGkOlO5cuaVLL9kOY+c/whnlZ6FBQvvNr3LrW/dyief/yRPbnySroEus0sVEREROWYUjovIiIkv46zMGsPhOGgpp4wKvldfpX7ZjUT7+nCdcgpl//MU9uxss8sSEZExzmKxcFrRaTxwzgO8/OmXue6460h3ptPY28h96+7jvOfO465/3MWmjk1mlyoiIiJy1CkcF5ERU+2tBmCGZ4bJlRwhLeUUk3U+8wyNX70NIxQi7cILKX30EWypqWaXJSIi40xJWgm3zb+NN//tTb5/2veZ4ZlBIBLg+a3Pc9lfLuNzr3yOV3a8QigSMrtUERERkaPCfvBLREQOLhQNsa1rGzDGx6oAFJ8UO3q3Q58XXB5z65EJwzAM2n/5EO0PPghA5uWfpeDOO7HYNANWRESOnhR7CpdOu5RLpl7ChrYNPL3pad6oe4P3Wt/jvdb3yE3J5d+m/xv/Ov1fyXXlml2uiIiIyIhROC4iI6K2u5ZgNIjb4aY4tdjsco5MShZkT4WOrdBYBdPOM7simQCMSISWH/6QzqefASDn5pvJueVmLBaLyZWJiMhEYbFYmJM3hzl5c2jra+O5mud4tuZZ2vrbeGjDQzz6/qOcX34+V868ktm5s/V/lIiIiIx5GqsiIiMisYwzqxKrZRx8a9HccTmGosEgjbffHgvGLRby7/wPcr98i0IHERExTa4rl5vm3MTrn3mdn57xU+bmzSVshHml9hWufuVqPvuXz/L8lucZCA+YXaqIiIjIxzYOEiwRGQ3iyzinZ003uZIRornjcoxEev3U33gjPa+8Cg4Hxff9F56rrjK7LBEREQAcNgefqPgE//OJ/+H3//J7Lp16KUm2JDZ5N3HXP+/ivOfO475199HY22h2qSIiIiKHTeG4iIyIcbOMM654fuzYsBYMw9xaZNwKe73svOYa+t79XywuF2WP/Ir0T3zC7LJERET2aVb2LL6/6Pu8+a9vctu82yhOLaY70M2TG59kyZ+WcOvfbuXdXe9i6GcnERERGSMUjovIETMMg5rOGmAcLOOMKzgebE7o90JnrdnVyDgUbGik7sqrGPjwQ2xZWZQ/9RTu004zuywREZGDykzO5Lrjr+OlS1/iF2f/glMLTyVqRHmr/i2WvbGMi1+4mGeqn6E32Gt2qSIiIiIHpHBcRI5YW38b3gEvVouVqZlTzS5nZNiToOCE2G2NVpERNrC5hrorryRYW4ujqIjyp39HygnHm12WiIjIYbFZbZxddjaPXvAoL1zyAlfMuAKX3cWO7h38aNWPOOvZs7j97dt5a+dbhCIhs8sVERER2YvCcRE5YvF54xXpFSTbk02uZgRp7rgcBX1VVdRdfTXh1laSpk2l/JmnSaqoMLssERGRIzI5YzLfPvnb/PXf/sq3T/42kzMmE4gEeK32NW5961bOevYsvvfu91jTvIaoETW7XBEREREA7GYXICJj3+bOwWWcnnGyjDOueD7wqMJxGTE9b71F479/FSMQIGXuXEoffghbZqbZZYmIiIyYVGcqV8y4gssrL2eTdxMvbX+JV3a8Qlt/G8/VPMdzNc+R78pnScUSPjn5k0zPmo7FYjG7bBEREZmgFI6LyBGLd46Pm2WccfHO8aYNEAmBzWFuPTKmdT3/Z5r+4z8gCiCK2gAAIABJREFUEiH1zDMp/u+fY01JMbssERGRo8JisTArexazsmdx27zbWNuylpd3vMwbtW/Q0tfCkx8+yZMfPsmUjCl8cvIn+UTFJyhJKzG7bBEREZlgLIZWiR+Uz+cjIyOD7u5u0tPTzS5HZNT51POfotZXy6/O+xWLiheZXc7IMQy4pxwGumHZ21A0x+yKZIzqePxxWn92LwAZl1xC4X9+H4tDf2wREZGJJxAJsLJhJS/teIm3698mGA0mHpuTO4clk5dw4aQL8SR7TKxSRERExrLDyXLVOS4iR6Qv1Eedrw6ASk+lydWMMIsl1j2+7W/QuFbhuBw2wzBo/dm9eJ94AgDP9deTd8ft+vi4iIhMWEm2JM4tP5dzy8+lJ9jDm3Vv8vKOl1ndvJr1betZ37aee1bfw6lFp/LJyZ/knNJzcDlcZpctIiIi45TCcRE5Ilu7tmJgkJ2cTU5KjtnljLxEOF4FC8wuRsYSIxSi6c676P7znwHIu+N2sj//eZOrEhERGT3SnGlcOu1SLp12KW19bbxa+yovbX+JDzs+ZGXjSlY2riTFnsJZpWfxyYpPclrRaTg05k5ERERGkMJxETki1d5qYBzOG48rnh87aimnHIZofz+NX72N3hUrwGaj8D//k8xPX2p2WSIiIqNWriuXq2ddzdWzrqa2u5aXd7zMS9tfYmfPTl7Z8Qqv7HiFzKRMLii/gCWTlzA3by5Wi9XsskVERGSMUzguIkekprMGGIcjVeLiSznbNsOAD5K1d0AOLNLdTf1NX6K/qgpLUhLFP/85aeecbXZZIiIiY8akjEl8ac6XuGn2TXzY8SEvbX+JV2tfpb2/nWdrnuXZmmcpdBeypGIJSyYvYXrWdLNLFhERkTFK4biIHJF453hl1jgNx1NzIbMMunbCrvdg8plmVySjWKilhfov3EBgyxas6emUPvwQrnnzzC5LRERkTLJYLByfczzH5xzP7fNvZ3Xzal7a/hJv7nyTJn8Tj298nMc3Ps60rGmxoLxiCUWpRWaXLSIiImOIxTAMw+wiRrvD2XAqMpFEjSinPH0K/eF+Xrj4BSZnTja7pKPjD9fCh8/DuXfB4q+ZXY2MUsG6OnZedz2hXbuw5+ZS+utfk1ypTjYREZGRNhAe4J2Gd3h5x8u80/AOoWgo8dhJeSfxiYpPcF75eeNzH46IiIgc1OFkueocF5GPrb6nnv5wP0m2JMrSy8wu5+gpnh8LxxurzK5ERqmBzTXs/MLnibS14ywvp/Txx3GWFJtdloiIyLiUbE/mgkkXcMGkC+gOdPPXnX/lpe0vsaZ5DVWtVVS1VvHj1T9mfv58Lii/gHPLz1VQLiIiIvukcFxEPrb4SJVpmdOwW8fxt5P43PGGtWAYYLGYW4+MKv3vv8/OG5YR7e4mqbKSssd/jT1Hv4CLiIgcCxlJGXx62qf59LRP0+Jv4dXaV3mt9jU+aP+A1c2rWd28mh+t/pGCchEREdmncZxmicjRttm7GRjHyzjjCmeDxQa9zeDbBRnqCJYY//+uouFLXyLa10fK7NmUPvoItowMs8sSERGZkPLd+Vxz3DVcc9w1NPY28kbtG7xe97qCchEREdkvheMi8rFt7pwg4bjTBfmzoPkDaFyncFwA6HnrLRq/8u8YwSCuU0+h9MEHsbrdZpclIiIiQHFqMdcefy3XHn+tgnIRERHZL4XjIvKxxTvHZ3hmmFzJMVA8bzAcXwuzlppdjZis+6WX2PWNb0I4TOo551D88/uwJiWZXZaIiIjsg4JyERER2R+LYRiG2UWMdoez4VRkougc6OSM358BwP9e+b+4HeO8Y7bq/8LyW2DSYrj2L2ZXIybq/P2zNH/3u2AYpH/qUxT96IdYHA6zyxIREZHDtGdQHme1WBWUi4iIjGGHk+Wqc1xEPpb4SJXStNLxH4zD0FLOXe9BNAJWm7n1iCk6Hn+C1p/9DIDMyz9LwV13YbFaTa5KREREPg51lIuIiIjCcRH5WBLLOLPG+bzxuNxKcKZCsBfaNsdmkMuEYRgG7Q88QPtDDwOQfcMXyL3tNiwWi8mViYiIyEhQUC4iIjIxKRwXkY8lEY6P92WccVYbFM2F2r/H5o4rHJ8wjGiUlh//hM7/+38ByL3tNnKW3WByVSIiInK0KCgXERGZOBSOi8jHEh+rMiGWccYVnzQYjq+Dkz5ndjVyDBjhME133kX3888DkH/XnXiuvNLkqkRERORYOdSgfF7+PC4sv5ALJ11IZnKm2WWLiIjIIdJCzkOghZwiuwtGgpz8u5MJG2Fe/8zrFKYWml3SsfHRcnj2asg/AW5aaXY1cpRFg0F23X4HPa+/DjYbRT/6IRkXX2x2WSIiIjIK7G+Zp91q56ySs1g6ZSmnl5yOw6ql3SIiIseaFnKKyFG1vXs7YSNMujOdAneB2eUcO/GlnK0fQdAPzgmwiHSCivb30/DlW/GvXInF4aDovv8i/fzzzS5LRERERol9dZS/tOMlqr3VvLnzTd7c+SaeZA9LKpawdMpSZnhmaFeJiIjIKKRwXEQOW7W3GojNG59QP+RnFENaIfQ0QdP7UH6q2RXJURDp6aH+izfRv24dlpQUSh58gNRFi8wuS0REREap4UH5Zu9mlm9bzkvbX6JjoIPfbvotv930W6ZlTePiKRfzycmf1HxyEZEJxDAMwlGDSDR2DEeig0eDcDQ6eBy6HYnueX7v50QSt4dfO/ya2HPi/+a3l8zEZp1A2c1hUjguIoctsYwza4Is4xyueB5U/yW2lFPh+LgT7uyk/vNfYOCjj7CmpVH6yCO4TpprdlkiIiIyRlR6KrnDcwdfnfdV/rnrn7yw9QXeqn+LLZ1buHftvfx83c85reg0lk5dytmlZ5NkSzK7ZBGRUS8aNQiEowTCkdgxFGUgHCEQGnYuHGEgfj8UHbp+t2ujg0F1lEgUItFoIriODAuwo4axW1AdMQavjQw+Fr92j/tDrxElGiV2HAXDrO+4sBKb1WZ2GaOWwnEROWzxZZyVnokcjq8zuxIZYaGWFnZe/3mC27Zh83goe/zXJM+caXZZIiIiMgbZrXbOKDmDM0rOoDvQzWu1r7F823I2tG3g741/5++NfyfNmcZFky5i6ZSlzM6dPbE+kSki40IoEqUvGKE/GKEvGI7dDkUGz4XxByL0hWK3h66LfQ2F2lECoQgDg8dgeO9gOxQZBQnzCLNbLdhtFuxWKzarBYfNgs0aux87v8dtm3Xw8dhte+L24HWDt23Dbsev1X8vB6ZwXEQOi2EYibEqMzwzTK7GBPG54w0Kx8eTYH09O6+7nlBDA/aCAsqeeJykyZPNLktERETGgYykDC6rvIzLKi+jtruW5duW8+L2F2n2N/OHmj/wh5o/UJ5ezqcmf4pPTfkURalFZpcsImNUNGoQjEQJRaIEw9HY7bBBMBILokMRI3Y+HLtmYDDI3l+A3Tf8XGj3x/uDEYKR6DF/j3arhSS7lSSHLXa0W0lO3LaR5LDucXvwMYeVJJsVh82KdTBYtlkticA5Hirv+Zhtn/et2KwMPccSD6Yte923WQbPDwu0bVaL/iA6ilgMwxh/f34ZYYez4VRkvGvqbeKCP16A3Wpn9ZWrcdgcZpd0bA344CdlgAG3b4HUPLMrkiMU2LKFndd/nnBbG47yMsqfeAJHcbHZZYmIiMg4FjWirGlew/Jty3mj7g36w/2JxxYWLGTplKWcX34+LofLxCpFZCQMhCL0DITpGQgNHsP0BkL4Bm/3DIToH+yYjofW8WA7GDYGj5G9gu1A/NrI0DmzOqxtVgsuh40Upw13kp0Uhw2XM3bf5bThctpjtx02XIOPJw8LrhPh9h5hdvKeAbfdit1mNeU9ythyOFmuOsdF5LDEu8YnZ0yeeME4QHI65FZCW3VstErlJ8yuSI5A/wcbqf/CF4h0d5M0bRplTzyOPTfX7LJERERknLNarJxceDInF57Md07+Dm/UvcHybctZ3bw68fXDVT/k/PLzWTplKQsKFmC1KBASOZYMw6AvOCzYDoT3CLmHwu7d7gdix97B82Z0V8c5bBYcNitOuxXnYNd0kj12P357fwG2a/B8LOi2J8Jud/w651AA7rRZ1QktY5bCcRE5LPF54xNypEpc8TyF4+NA35o11H/xJqJ+P8knnkjZo49gy8w0uywRERGZYFwOFxdPvZiLp17Mrt5dvLjtRZZvW87Onp0s37ac5duWU+gu5F8m/wtLpyxlUsYks0sWOaYiUWNwDvXwedTRvc7Fu633PHfA6+PnIrElj72BML2BeHd3mMgIblNMS7KTlmwnNdlOWrKDtGFHl8OWCKydgx3Su4Xag8fdztutOGyxESNOmw2H3YLTNhR8OwfHh4jIgSkcF5HDstkbC8enZ003uRITFc+D9b/TUs4xrPftt2m49SsYgQCuk0+m5Je/xJbqNrssERERmeCKUou4cfaNLDtxGRvaNvDCthd4bcdrNPmbeOyDx3jsg8eYnTubpVOWclHFRaQ7NfZTRl44Eh1cpBgeFiDvMcc6Mvx8fNzH4OiPyFD4nHhOfBRIZD/n93jd4QF2eAQD6o/DZrWQOhhsx8Ps9MHbe56PPebYKwRPddoVVIuMUgrHReSwTOhlnHHxpZyN6yAaBas+4jqW+F55hcY7vg7hMKlnnUXx/f+NNSnJ7LJEREREEiwWC3Py5jAnbw7fWPANVtSv4IVtL/DPXf9kQ9sGNrRt4J7V93B22dksnbKUUwtPnZgjDwXDMAiEo/QFI/gHu577gmF6AxH6Bu/7A2H8g4/3BSN7nYvdDuMPxO4HwuaNATkYq4XBzmpbosM63l2d5LCRZIvNqnYO68De5/V7nEsafA1Xkn238DstOTYfWyNDRMYvheMicsh6g7009DYAUJlVaXI1Jso/DuzJMNAN3u2QM9XsiuQQdf3xjzTdeRdEo6QvWULRPT/B4tAvkiIiIjJ6JduTuajiIi6quIi2vjZe2v4SL2x7ga1dW3mt9jVeq30Nt8PN6cWnc2bJmZxRcgYZSRlmly0HEY0a9AYPbYZ177AAOx56Dw+3j1Zntd1q2W0+tXNYED38uNdj+zxvGfYcG47B+wcaH7JnoK1ljCJyNCgcF5FDVtNZA0C+K5/M5Ak8m9nmgMLZUL8KGtcqHB8jvE89RcuPfwJA5mWXUXD3XVhsNpOrEhERETl0ua5crj3+Wq457ho2eTfx4rYXeWXHK3QMdCSCcpvFxty8uZxVehZnl55NWXqZ2WWPO+FINBFg+4YF2HuG3L79nI9fP9JSHDbcSTbcSXbcTvtet11OO6lJ9ti5JNvu1wx/jjN232lXEC0i45/CcRE5ZFrGOUzxvMFwfB3MvtzsauQADMOg/ZcP0f7ggwB4Pn89ebffro9GioiIyJhlsViYlT2LWdmzuGPBHWxs38iK+hWsaFjBls4trG1Zy9qWtdy79l4mZ0xOBOUn5JyAzTqxmgPCkSh9oQh9gQj+YDhx7A/ufr9v2NiRvmCsK7tvsDu7b/C6+KLG/lBkxOpz2q2JRY3D51bH51mnD86udicNBttOO64kG6lJ9mFhdyz4tmmmtYjIYVM4LiKHTMs4h4nPHW9Ya24dckCGYdD6k3vwPvUUALn//hWyb7xRwbiIiIiMG1aLlRNzT+TE3BO59aRbaehp4O2Gt3mr/i3WNa9je/d2tndv54mNT+BJ9rC4eDFnl57NqUWn4nK4zC4/IRiODgXWwQj98VA6FL8doT8eWg8LrofOxWZmDz/2BSNHdX52isO2W5gdX8a4ryWN+7udZJ9Yf6wQERltFI6LyCGLh+PqHGcoHG/+AMIBsGuh42hjRCI03X033c/9EYD873wHz9X/x+SqRERERI6ukrQSrpp5FVfNvApf0Mc/Gv/BW/VvsbJhJd4BLy9se4EXtr2A0+rk5MKTOav0LM4sOZN8d/4hvX40auAbCOH1B4dC6MEA2x+IdVX3DQuzh4LuoY7tvmBk8Lqhx4/W3Ow4m9WC2xkbIeIadnQ5B+8PdmTvdhy8LsU5NIIkfTDYTk2ya/61iMg4YDEM4+j+DzQO+Hw+MjIy6O7uJj093exyREwRjoY55elTCEQC/OXSv1CeXm52SeYyDPjZFOjrgC/8DUrmmV2RDGMEgzR+4xv0vPIqWK0U/vCHZF56idlliYiIiJgmFA1R1VLFivoVvFX/Fo29jbs9PiV9Bsdlnkp5ygKckRK8fSG8/gCd/hAd/gBefxCvP0hnX4jIUQyy7VbLbqF1itM2eLTjctj2CrbjI0USR6cNV1LsmDIs9HbarPr0oIjIBHE4Wa46x0XkkNT56ghEAqTYUyhNKzW7HPNZLLHu8S2vx5ZyKhwfNaIDAzR85Sv4334HHA6K772X9AsvMLssERERkWOiLxhOBNkd/iDe3iCdffHbKXT4zyXFv4jMQD1dvEck+UOsKfVs81WzzVcNPEk0lEm4Zybh3plE/JPZV3SQOjgDe58BdpItEV6nOOK3Y4+7E9fv/lyXI9ahrSWQIiJyLCkcF5FDEh+pUplVidWiH1gBKJ4/GI6vM7sSGRT1+6n/0s30rVqFJTmZkgceIHXx6WaXJSIiInJYDMOgLxihuz9EV1+I7v7Yl69/6Pbwr6EwPMBA6FBnbKcDZwJnYrX3kO7Zgj1tE0FHNVZHF07Pu7EvSwrT0+czL+90Fhcvpjwzlyy3Q7OyRURkXFA4LiKHpLqzGoBKT6XJlYwiWso5qkR6eqhfdiP9772H1e2m9JFf4Zo/3+yyREREZIIyDAP/YMDdfQgB956PHckMbqfNisftxON2kp3qJMs1eNvtxJPqxOMaeszjTiIjxYHNGhs50h/uZ1XTKlbUr+Dthrdp729nY/ff2dj9d3679afMzZvLWaVncVbpWRq1KCIiY57CcRE5JDXeGkDh+G6KT4odvdugzwsuj7n1TGDhzk7qv3ADAx9+iDU9nbJfP0bKiSeaXZaIiIiME/EllB2DHdrDvzp6g7HZ3H0jG3ADOGwWMlIcpKc4yNjPV3qKIxZ6u51ku5PIcjtITbJ/7PnaKfaURPgdNaJ82P4hb9W/xYqGFWzp3MLalrWsbVnLvWvvpTi1mIUFC1lYuJCFBQvJc+Ud0fsVERE51hSOi8ghqfYOdo5nKRxPcHnAMxm822FXFUw9z+yKJqRwRwc7r7ueQE0Ntqwsyp54nOSZM80uS0REREaxUCRKZ3wm9/Cg2x8c8SWUhxJw7/blGrqd4rCZukTSarFyQu4JnJB7AreedCsNPQ283fA2K+pXsLZ5LY29jTy/9Xme3/o8AJPSJ7GgYAELCxeyIH8B2SnZptUuIiJyKBSOi8hBtfe30zHQgdViZVrWNLPLGV2K58XC8UaF42YItbSw87rrCW7fjj03l7InnyBp6lSzyxIREZFjrC8YHuzg3nfY7fWHBo+xcz0D4Y/176Ql2WNjSdxDo0k8qbFxJZkuJ5mjMOAeSSVpJVw18yqumnkV/pCfqpYqVjevZnXzajZ1bKLWV0utr5Y/1PwBgKmZU2Od5QULmV8wn4ykDJPfgYiIyO4UjovIQcWXcZallZFiTzG5mlGmeD588Act5TRBqLGRumuvI1Rfj72okPInn8RZrrmXIiIiY118hMnuAfd+Qu/eIN6+4GEsoRxitZCYxZ0Vn8c9eMwaNqYkPrtbSyh353a4WVyymMUliwHoDnSzrmUda5rXsLp5NTWdNWzt2srWrq08Xf00FixUeioTYfm8/HmkOlNNfhciIjLRKRwXkYOKj1SZ4ZlhciWj0PClnIYB46QraLQL1tVRd+11hJuacJSWUv6bJ3EUF5tdloiIiOxDKBKls28w2O6NBdudfcHdOr07EqNMYo99nBEmey6hjN/2uIa6uz3uJDxux15LKOXIZSRlcE7ZOZxTdg4A3gEva5vXsrp5NWua17C9ezvV3mqqvdX8z0f/g9Vi5bjs42JjWAoWMjdvLi6Hy+R3ISIiE43CcRE5qM2dsc5xLePch4ITwOqAvnbo2glZ6lw+2gJbt7LzuusJt7XhnDyZsiefwJGfb3ZZIiIiE4phGHT1hWjtCdDiG6C1J0BrzwCtvgBtg+c6/EE6egP4PuYIk9Qk+1DY7R4Wdg8LwLNcg93dqU7czvEzvmQ88CR7uGDSBVww6QIA2vraEl3lq5tXU99TzwftH/BB+wc8sfEJ7FY7J+SckAjLZ+fOJtmebPK7EBGR8U7huIgcVHysipZx7oMjGQqOh13vQeNaheNH2cCmTey8/vNEOjtJqqyk7InHsWdr0ZOIiMhIiUYNOvzBWNDdE6DVFwu84+F3y2D43dYTIBg59FEmlmEjTIaPLtln6O1O0giTcSjXlcuSyUtYMnkJAM3+5lhQ3hQLy5v8TbzX+h7vtb7Ho+8/itPqZHbe7ERYfmLOiThsDpPfhYiIjDcKx0XkgAbCA9T6agGNVdmv4vmD4XgVHP8Zs6sZt/rff5+dX7iBqM9H8vHHU/brx7BlZppdloiIyJgQjkRp7w0muruHd3y3DQbhLb4B2nsPb6RJlstBXloyeelJw46x2zmp8fEmGmEieytwF7B0ylKWTlmKYRg09DawpnkNq5pWsaZ5DW39sU7zNc1reIiHSLGnMCd3DgsLF3Jq4anMzJ6J1WI1+22IiMgYp3BcRA5oa9dWokYUT7KHnJQcs8sZnYrnwZrHYnPH5ajoW7uW+hu/SNTvJ2XuXEoffQRbWprZZYmIiIwK0ahBuz9AY2c/u7oG2NXVT+Pg166uflp8ATr8AYxDzLwtFsh2D4bcg2F3fnoyeWlJ5A4G4PnpsfBb3d0yEiwWC6VppZSmlfLpaZ/GMAxqfbWJsHxty1q8A17ebXqXd5ve5X7ux5Ps4fTi0zm9+HROKzqNjKQMs9+GiIiMQQrHReSA4ss4K7MqNcNxf+JLOZs2QCQE+rjniPL/85/U33wLRn8/rpNPpvShX2J1u80uS0RE5JgZCEVo6h4YDL93D74bu/pp6ho4pBEnNquF3NShwDs3LZn8eMd3IgiPhd52mzpyxTwWi4WKjAoqMiq4rPIyDMNga9dWVjevZlXTKlY1rcI74GX5tuUs37Ycq8XKiTknsrhkMacXn84Mzwx1lYuIyCFROC4iB5SYN65lnPuXPRWSMiDQDa0fQeFssysaN3pWrKDx1q9gBIO4Fy+m5IFfYE3WYiYRERk/DMOgsy80FHoPC8BjxwHaewMHfR2rBfLTkynOTKEoM4XirMFjZvJg13cyHrdTo01kTLJYLEzLmsa0rGlcNfMqQpEQ77W+x98b/87KxpVs7drK+rb1rG9bzwPvPUBOSg6LihZxesnpnFp4qrrKRURkvxSOi8gBbe5UOH5QVisUz4XtK6BxncLxEeJ77XUab78dQiFSzzuX4vvuw+p0ml2WiIjIYQlFojR3DwyF3Z397OqOhd6NnX3s6hqgPxQ56OukOGwUZ6UMhd+ZybEAPCMWhOenJ+NQt7dMEA6bg4WFC1lYuJCvzf8aTb1NiaD8f5v+l/b+dl7Y9gIvbHsBm8XG7NzZia5yfSJWRESGUzguIvsVNaLUdNYAMCNLyzgPqHj+UDg+/3qzqxnzul98kV3f/BZEIqQvWULRPT/B4tC4GhERGX18A7Gu73jw3di1exDe0jNwSLO+c1KTBsPvoe7vWAge+8p0ORToiexHYWohl1VexmWVlxGMBKlqreLvDbGwfHv3dqpaq6hqreL+qvvJS8ljUfEiFpcs5pTCU0hzao+NiMhEpnBcRParsacRf8iP0+pkUsYks8sZ3eJzxxvWmVvHOND13HM03XkXGAYZl15K4Q/+E4tNy75EROTYi0QN2noCNHb10RhfdLnH3O+egfBBX8dps1I4GHoPH3sSv12YkUyyQ//XiYwEp83JKYWncErhKdyx4A4aextZ2bCSlY0rWdW8itb+Vp7f+jzPb30eu8XOnLw5icWe07Om649QIiITjMJxEdmv+EiVqVlTsVv17eKA4uF4WzUEeiBJHSgfh/e3v6PlBz8AIPOKyym4804sVn1EXEREjo7+YCTR5T088I6PPmnuHiAUOXjbd6bLMWzcScoec7+TyXEnYdWsbxFTFKcW89kZn+WzMz5LIBJgXcu6RFd5ra+WtS1rWduylv+u+m/yXHksLl7M4uLFnFx4MqnOVLPLFxGRo0xpl4jsV7W3GoDKLM0bP6i0fMgohe562PUeVJxhdkVjTsfjj9P6s3sB8Fx7LXnf+Lo6d0RE5GMzDIOuvhCNXf00dA6F3o1dsTnfjV39eP3Bg76OzWqhID15WKd3MsWZLooykynJSqEwIwV3kn6tEhkLkmxJnFZ0GqcVncY3+Ab1PfWsbIx1la9uWk1rXyt/3PJH/rjlj9gtdk7KPynRVT41c6p+NhURGYf0U5yI7Ndmr5ZxHpbik2LheOM6heOHwTAM2n/5EO0PPghA9k1fJPfWW/XLh4iIHFA0atDeG6B+j+C7cdh9f/Dgiy5Tk+xDoXfW3t3f+enJ2NT1LTIulaaVcsWMK7hixhUMhAdiXeWDiz3rfHWsbl7N6ubV3LfuPgrcBZxWdBrz8ucxN28uJakl+nlVRGQcUDguIvsVH6syw6NlnIekeD589AI0rDW7kjHDMAza/uu/6Pj14wDkfvWr5Ny4zOSqRERkNAhFojR3DySC7oZ4+J2Y+z1AMBI96OvEF12WDJvzXZwYeZJCerJdAZeIkGxPZlHxIhYVLwJgp29nIihf07yGZn8zf9ryJ/605U8A5KXkcVL+SbGvvJOYljUNq0XjAEVExhqF4yKyT92Bbpr8TQBMz5pucjVjRHzueGOVuXWMEUY0SssPf0Tn734HQP63v4Xnc58zuSoRETlWBkKRYR3f8QB8KPxu9g0QPci4b6sFCjOGwu7hx5LB8FuLLkXk4yhLL+Oq9Ku4auZVDIQHWNO8hjXNa1jXuo6P2j+itb+VV2tukVSDAAAgAElEQVRf5dXaVwFIc6YxN28uc/PmMi9/HsdlH4fT5jT5XYiIyMEoHBeRfarprAFiC2zSnFoueUiK5oDFCj27wLcL0ovMrmjUMiIRmr/7Xbr+8BxYLBR897tkffYys8sSEZEjEIkadPYF8fqDtPcG8PqDdPQG6egN0DF42+sP0u6PPdbVFzroazpt1sS4k5JM114BeEFGMg6bOjVF5OhKtiezuGQxi0sWA9Af7mdj+0bWtayjqqWK9W3r6Qn28E7DO7zT8A4Qm29+fM7xnJQX6y6fkztHCz5FREYhheMisk9axvkxON2QNwtaNsbmjisc3ycjHGbXt76N78UXwWql8Ec/JPOSS8wuS0RE9hCNGnT1h/D6A7QPBtt7Bd3xENwfpLMviHGQTu89uZ22PQJvFyVZKYkxKDmpSVg171tERpkUewoLChawoGABAOFomM3ezVS1VlHVUkVVaxXeAS/rWtaxrmUdfABWi5XKrMrEGJaT8k8iJyXH5HciIiIKx0Vkn+LLODVv/DAVzxsKx2d+yuxqRh0jGKTx9jvoef11sNspvvdnpF90kdlliYhMKOFIlKbuAXZ6+6j39tHaE0gE3fHQu8MfoLMvRORgc032IcvlwON2kp2aRLbbSXaqE487iZxUZ+y8O4nsVCe5qUlkuhya9y0iY57daue4nOM4Luc4rp51NYZhUOurTQTlVS1VNPQ2sMm7iU3eTfxuU2ysYHl6OXPz5nJS3knMy59HaVqpvieKiBxjCsdFZJ/iyzinezRv/LAUz4Oqp7SUcx+igQCNt36F3rffxuJwUHz/f5N2zjlmlyUiMu4YhkGHP5gIvxs6+9nZ0Ud9Zx87vX00dQ8cVuidkeIYFnIPC73dTjypSeS4nXhSY6F3lsuBXWNORGSCs1gsVGRUUJFRwWemfwaAFn8L77W+FxvF0lrFls4t1PnqqPPV8eetfwYgJyUn0VV+Ut5JTM+ajs2qvQkiIkeTwnER2UsoEmJr11ZAneOHLb6Uc9d6iEZAP8wCEO3ro+GWW/D/810sycmUPPggqacvMrssEZExyx8IU9/ZR723n3pvLPRuGAy/67399IciB3y+026lNCuFUo+LgvRkslOHOrqz3Ul43E5yUp1kuZ2a6S0iMgLy3flcVHERF1XEPjXpC/pY37o+0V2+sX0j7f3tvF73Oq/XvQ5AqiOV2XmzmZ8/n/n58zku5zgcVoeZb0NEZNxROC4ie9nevZ1wNEyaI40it+ZmH5a8meBwQ7AH2mti9ye4SG8v9V/8Iv1r12FxuSj91cO4Fy40uywRkVEtFInS1DUwGIAPht6d/bEQ3NtHhz94wOdbLFCYnkyJx0Vplosyj4tSTywML/O4yNUsbxERU6U70zmj5AzOKDkDgIHwABvbNybGsKxvW09vqJd/NP6DfzT+AwCX3cVJ+SexsGAhCwsWMsMzQ53lIiJHSOG4iOxl+EgVzbw7TFYbFM2Bun/E5o5P8HA80tXFzmU3MvD++1jT0ih99BFcc+eaXZaIyKgwEIpQ19HH9rZetrf7D3v0SUaKY7fQuzTLlQi/izKTSbIrMBERGSuS7cnML5jP/IL5AESiEWo6a6hqrWJt81rWtKyhO9DNysaVrGxcCUCaI415BfMSYfm0rGlYLfq0j4jI4TA1HH/nnXf42c9+xrp162hqauL555/nkksuSTxuGAZ33303jz32GF1dXSxatIiHH36YadOmJa7xer18+ctf5sUXX8RqtfKZz3yG+++/n9TU1MQ177//PjfffDNr1qwhNzeXL3/5y3z9618/pu9VZCzRMs4jVDxvKByf+3/MrsY04c5Odl53PYHqamyZmZQ+/mtSjjvO7LJERI4pwzBo6wmwrc3P9vZetrXGjtvb/DR09nGg/Hv46JOyRPg9GIR7XKQn66P1IiLjlc1qY2b2TGZmz+SqmVcRNaLUdNawumk1a5rXsLZlLT2hHlbUr2BF/QoAMpMyWVCwIBGWV2RUqNlJROQgTA3H/X4/s2fP5vrrr+fTn/70Xo//9Kc/5Re/+AVPPfUUFRUV3HnnnVx44YV89NFHJCcnA3DVVVfR1NTEG2+8QSgU4rrrrmPZsmU8/fTTAPh8Pi644ALOO+88fvWrX/HBBx9w/fXXk5mZybJly47p+xUZK+LheGVWpcmVjFHxueMTeClntK+P+mU3xoLxnBzKnnic5Ola7ioi49dAKEJth5/tbX62t/XGwvC2WAjeEwjv93lpyXYm56YyJcdNebabUk/KYDe4Rp+IiMgQq8XKDM8MZnhm8LnjPkc4GqbaW83q5tWsbl5NVUsVXYEu3qh7gzfq3gBiCz4X5C9gYWEsLC9NK1VYLiKyB4thGIe+qv4oslgsu3WOG4ZBUVERX/va17j99tsB6O7uJj8/n9/85jdcfvnlbNq0iVmzZrFmzRrmz4999OjVV19lyZIlNDQ0UFRUxMMPP8x3vvMdmpubcTqdAHzzm9/kz3/+M9XV1YdUm8/nIyMjg+7ubtLT04/CuxcZPQzD4Izfn0FXoIvf/8vvmZU9y+ySxp7uBvj5cWCxwbcbwZFidkXHlBEOU3/zzfjffgdbRgblT/+OpClTzC5LROSIGYZBa0+AbYOhd/y4vb2Xhs5+9vdTtdUCpR4Xk3PcsSA8N5XJuW4m57rJTU1SUCEiIkcsFA3xYfuHibB8fet6ApHAbtfku/I5ufDkRHd5Uar2S4nI+HQ4We6onTm+Y8cOmpubOe+88xLnMjIyOPnkk3n33Xe5/PLLeffdd8nMzEwE4wDnnXceVquVVatWcemll/Luu+9yxhlnJIJxgAsvvJB77rmHzs5OsrKy9vq3A4EAgcDQfyI+n+8ovUuR0aelr4WuQBc2i40pmQo0P5b0YkjNh94WaNoAZaeYXdExYxgGTXffjf/td7AkJ1Pyq4cVjIvImDMQirCjfXgXeGwm+PY2P70H6QKPB99TclOZkhsLw8uzXZr/LSIiR5XD6mBO3hzm5M1h2YnLCEaCbGjbwJrmNaxuXs2Gtg209LWwfNtylm9bDkBJagkLCxcmwvI8V57J70JE5NgbteF4c3MzAPn5+budz8/PTzzW3NxMXt7u37ztdjsej2e3ayoqKvZ6jfhj+wrHf/zjH/O9731vZN6IyBgTH6lSkVFBki3J5GrGKIslNlpl88uxueMTKBxvf+ABuv/4J7BaKb7vv7R8U0RGrd5AmLqO2BLMOm8fdR197PT6qW3vY1f3gbvAyzwuJuemMjnHzZS81ERHeE6qU13gIiIyKjhtThYULGBBwQK+xJfoD/ezvnV9Iizf2L6Rht4GGrY08KctfwJgUvokFhYsZEHhAhbkLyA7JdvkdyEicvSN2nDcTN/61re47bbbEvd9Ph+lpaUmViRy7Gzu1DLOEREPxyfQ3PHO//d72h96GICCu+8m7ZxzTK5IRCay+CLMRPDd4R8Wgvfh9QcP+Pz0ZPtg8L17J3iZusBFRGQMSrGncGrRqZxadCoA/pCfqpYq1jSvYVXzKqq91dT6aqn11fJszbMATM2cyqzsWcz0zEzMO091ppr5NkRERtyoDccLCgoAaGlpobCwMHG+paWFOXPmJK5pbW3d7XnhcBiv15t4fkFBAS0tLbtdE78fv2ZPSUlJJCWpY1YmpmpvbBa/lnEeofhSzsZ15tZxjPS8+SbN3/8+ADlf+hJZn73M5IpEZCIIhqM0dvXHOsAHg++6jj7qvbEAvD8UOeDzPW4nZR4X5dkuyj0uyrLdg13hbrLd6gIXEZHxy+1ws7hkMYtLFgPgC/pY17wuMbO8prOGrV1b2dq1NTGGBaA0rZQZnhmJwHxm9kxyUnLMehsiIkds1IbjFRUVFBQU8Ne//jURhvt8PlatWsVNN90EwKmnnkpXVxfr1q1j3rxYEPW3v/2NaDTKySefnLjmO9/5DqFQCIfDAcAbb7xBZWXlPkeqiEx0NZ01AFR6FI4fkeKTYseuOvC3g3v8/sDYV1VF49duh2iUzH/7V3K+fIvZJYnIONIzEEp0e8dHn8Rv7+rqJ3qA1fJWCxRlplCe7aLM406E4KWDgXhasuPYvREREZFRLN2ZztllZ3N22dkAdA50sr51PdXeajZ5N1HtrabJ30R9Tz31PfW8UfdG4rk5KTmJwLzSU8lMz0xK0kqwWqxmvR0RkUNmajje29vL1q1bE/d37NjB+vXr8Xg8lJWV8e///u/84Ac/YNq0aVRUVHDnnXdSVFTEJZdcAsDMmTO56KKLuOGGG/jVr35FKBTilltu4fLLL6eoKLZ1+corr+R73/sen//85/nGN77Bxo0buf/++/n5z39uynsWGc36Qn3s9O0EFI4fseQMyJkO7TWx7vHpF5pd0VER2LaN+pu+hBEIkHrWWRTcfbc6LUXksBiGQWtPYLDr20+9t++wxp+kOGyUeVyUDQbf5dlDHeDFmSk47frFXERE5HBlJWftFpYDdA10Ud1ZTXXHUGBe66ulvb+dlY0rWdm4MnFtqiOV6VnTmZk9MxGcT86cjMOqP0yLyOhiaji+du1azj576BttfM73Nddcw29+8xu+/vWv4/f7WbZsGV1dXZx++um8+uqrJCcnJ57zu9/9jltuuYVzzz0Xq9XKZz7zGX7xi18kHs/IyOD111/n5ptvZt68eeTk5HDXXXexbNmyY/dGRcaIms4aDAzyUvLwJHvMLmfsK54/rsPxUEsrO2+4gWh3N8mzT6T4vv/CYh+1H0gSERMFw1EaOmOhd/2w8SfxLvCBUPSAz892OxPhd1m2eygE97jITUvSH+VERESOgczkTE4pPIVTCk9JnOsP91PTWbNbYL6lcwu9oV6qWquoaq1KXOuwOpiaOXW3wHx61nRcDpcZb0dEBACLYRgH+DCqQGycS0ZGBt3d3aSnp5tdjshR8/vq3/ODVT/g9OLTefi8h80uZ+xb/Ri8fDtMOReu/pPZ1YyoSE8Pdf/nagKbN+OcNInyZ57GrlFVIhOabyDEzj3Gn8RD8KbuA48/sVktFGUmU+5xD4Xg8W7wbDepSfrDm4iIyFgRiobY0b0jNpKlIxaYb/ZupifUs9e1FiyUp5cnFn7O9MxkRvYMNWuJyBE5nCxXv2mISEJ1Z2wZ5wzPDJMrGSeGL+U0DBgnnY3RYJCGW75MYPNmbDk5lP76MQXjIhNANBobfxILv4ctwPT2sbPDT2df6IDPT3HYEt3e8dEn8RC8OCsFh03jT0RERMYDh9XB9KzpTM+aztIpS4HYGLWG3oZEYL65czPVHdW09rdS66ul1lfLq7WvJl4jz5XHDM8MKrMqY53mWTMoTivWHHMRGXEKx0UkocarZZwjKv94sCXBQBd4t0P2FLMrOmJGNErTN79J36pVWF0uyh59BGdJidllicgICkei7Gj381GTj4+afGxr7U3M/w6EDzz+JCfVORh+u4dC8MEO8NxUjT8RERGZqCwWC6VppZSmlXJ++fmJ8+397Wz2bk6MZKn2VlPnq6O1r5XWvlbeaXgnca3b4aYyqzLRZV7pqWRq5lScNqcZb0lExgmF4yICQCQaoaZzMBzPUjg+IuxOKDwRGtbEusfHQTjees9P8b38CtjtFD/wC5JnzTK7JBE5Ar6BENVNPWxq8vHRLh+bmn1sbu7Zbwhus1oozkzZvQPc46JscByKxp+IiIjI4chJySGnOIdFxYsS5/whf2yO+eA4lk3eTWzt3Io/5N9rjrndYqcis4KZnpmJ4LzSU0lGUoYZb0dExiD9BiMiAOzs2clAZIAUewplaWVmlzN+FM+PheMNa+HEy8yu5oh0PPEk3qeeAqDoxz8iddGigzxDREYLwzBo6OyPheBNvsSx3tu/z+vdThszCtOZVZjO9IK0xALMokyNPxEREZGjy+1wMzdvLnPz5ibOhaIhartrE93l8dDcF/SxpXMLWzq37PYaRe4iKj1DYfkMzwyK3EX6FJuI7EXhuIgAsNm7GYBpmdOwWW0mVzOODJ87PoZ1v/gXWn/6UwDy7ridjE99yuSKRGR/BkIRtrT0JgLweBjeMxDe5/VFGcnMKkpn5mAYPrMwnTKPC6tVvzyKiIjI6OCwOpiWNY1pWdP41JTY7yKGYdDS1xJb+tkZC8yrvdU09jayy7+LXf5dvFX/VuI10pxpiTnm8dEskzMn47A6zHpbIjIKKBwXEQCqvbFlnJo3PsJKBsPx5vchHIyNWhlj/O++y65vfxuArM9djef6602uSETi2nsDQyNR4jPC2/xEosZe1zpsFqblpe0RhKeR6Rp735dERERELBYLBe4CCtwFnF12duK8L+hjs3dzIiyv9lazrWsbPcEe1jSvYU3zmsS1DquDqZlTh7rMsyqZ7plOujPdjLckIiZQOC4iAGzujHWOz/DMMLmScSarAlI80O+Flg+GOsnHiIFNm2i45csQCpH2iYvI/+Y39VFEERNEokZiSebwMLy1J7DP67NcjlgIXpCeCMOn5KbitGskioiIiIxv6c50FhQsYEHBgsS5YCTI9u7tibA8PpqlN9TLJu8mNnk37fYahe7CRFA+PWs6lVmVlKaV6lPWIuOQwnERAYbGqkzPmm5yJeOMxRILxLe+AY1VYyocDzY0sHPZMqJ+P66FCym65x4sVgVrIkdbJGqwra2X9xu62djYzQeN3Xy0y0d/KLLXtRYLVGS7Y53gRbFO8FmFGeSnJ+kPWSIiIiKDnDZnYpRKnGEYNPY27haY13TW0ORvSnytaFiRuD7FnsK0zNhol0pPZSw8z5pOqjPVhHckIiNF4biI0NHfQVt/GxYsCsePhng43rAWFt5gdjWHJNzZSf0XbiDS1k7S9OmUPPgAVqdGL4iMtMMJwl1OGzMK0oYF4enMKEjD5dSPcyIiIiKHy2KxUJJWQklaCeeVn5c43x3opqazJvG12buZrV1b6Q/38377+7zf/v5ur1OcWhzrLh8WmJeklWC1qLFIZCzQb1MikhipUpZehsvhMrmacWiMLeWM9vfT8MWbCNbWYi8spPSxR7Gla+aeyJEKR6Jsa/PzQePBg3C308ZxxRmcMPh1fHEGFTlubFqSKSIiInJUZSRl7DWWJRwNs7NnJzXeGjZ3xuaZ13TW0NLXQmNvI429jbst/3TZXUzLmpYYyVLpqWRa1jTcDrcZb0lEDkDhuIhQ460BoDJLyziPing43rEF+jshJcvceg7ACIdpvO1r9G/YgDUjg7LHHsWRn292WSJjzpEG4ZNz3FgVhIuIiIiMCnarnckZk5mcMZmLKi5KnO8a6Ip1l3duTnSZb+vaRl+4jw1tG9jQtmG31ylJLRnqMB+cZ16cWqwucxETKRwXEao7qwGo9CgcPyrc2ZA1CTprYdd7MOUcsyvaJ8MwaP7e9+l96y0sSUmUPvRLkqZONbsskVFvX0H4h7u6GQhF97pWQbiIiIjI+JGZnMnCwoUsLFyYOBeOhqnz1bHZuznWZd65mS3eLbT2t9LQ20BDbwN/3fnXxPVuh5spGVMoSy+jLK1st2NGUoYZb0tkQlE4LiKJZZzDl5PICCueHwvHG9eN2nC8/ZcP0fWHP4DVStG9P8M1b+wsDxU5VhSEi4iIiMiB2K12pmROYUrmFJawJHHeO+BNdJfH55lv69qGP+Tf5yxziI14GR6Yl6aVUp5eTllaLDjXAnaRI6dwXGSCC0QC7OjeAWisylFVPA82PgcNo3PueOezz9L+4IMAFNz5H6Sff77JFYmYzzAMGjr72dDQxYb6LjbUx8JwjUYRERERkcPlSfZwSuEpnFJ4SuJcKBpiR/cOartr2dmzk52+nYljW38b3YFuPgh8wAftH+z1emnONMrTyilNL6UsrYzy9HJK00opSy8jKylLwbnIIVI4LjLBbe3aSsSIkJmUSZ4rz+xyxq+S+bFj4zowDBhFP6j0/O0tmr/7PQCyv3gjWVdcYXJFIubo6guyoaGbDfVdrK+PBeId/uBe1ykIFxEREZGR4LA6mJ4Vmz2+p75QH/U99YmwvL6nnjpfHTt7dtLa10pPsIeNHRvZ2LFxr+emOdISoXm86zwennuSPQrORYZROC4ywb3fFvvoVqWnUv9BHk0FJ4DVDv5W8G6H7ClmVwRA//r1NN52G0SjZFx6Kblf+YrZJYkcEwOhCB81+Vi/syvRGV7b0bfXdQ6bhZmF6cwuyWR2aSazSzKYkpuqIFxEREREjiqXwxVb3rmP3WD94X7qe+qp99VT11O3W3je0tdCT6iHjzo+4qOOj/Z6bqojNdFhXpZWRkVGBZPSJzEpYxJpzrRj8dZERhWF4yITWG+wl8fefwyARUWLTK5mnHOkQPki2PE2vHk3fPa3ZldEYPsO6r94E8bAAO4zFlP4/e/pDyQyLkWjBtvaemPd4A2x8SibmnyEo8Ze11bkuJldksGc0lgYPrMwnWSHzYSqRURERET2LcWest+O84HwAA09DdT11FHvq99tXEuzv5neUC+bvJvY5N2013NzUnISQXlFekXiWJRahM2qn4llfLIYhrH3b4ayG5/PR0ZGBt3d3aSnp5tdjsiIuWf1Pfx2028pTy/nj0v/SJItyeySxrfmjfDIGWBE4IrfQ+VFppUSam2l7oorCTU2knz88ZQ/9Rusbrdp9YiMpObugUQQvn5nFx80dtMbCO91XU6qMxaCD3aFn1iSQabLaULFIiIiIiJHXyASoKGnIRGW1/nqqPXVsqN7B+397ft9ntPqpCy9jEnpk2Kd5hmTEiF6ulM5mYw+h5PlqnNcZILa7N3M09VPA/Dthd9WMH4sFBwPp94M//wFvHw7VPx/9u49MK66zv//85wztySTmdyapGlSei+0QAulLchFhSKgoiwiuOCKft3VXQEXuoqyKqs/L6zr6iKK4Pe7X8XfKgK64q6s3ATlJpS2UCgUSlt6b9PcZ5JJ5nrO948zmcwkaZtCmkk6r4cO5/Y5Zz7p5TR5nc+8P2eDb+ID6UxfH7s//bek9u7Fe9xMWn58p4JxmbJ64yk27onwYrZG+Et7ejgQTYxoV+a1OGlwRHhzFUtawsyoKtOnJURERESkZPgtP3Or5jK3amSZz95kLzujO9ke2e5OEpoNzXdFd5G0k2zt2crWnq0jzqsN1LojzLPlWQaXTcEmPKZiR5n8NHJ8DDRyXI41tmNz9YNXs6F9A+857j18913fLXaXSkcyBrefDpFd8I7Pwnu+PqFv7yST7Pr0p+l/9jms2lpm/fJufDNnTmgfRN6qgaRbJ/yVvRFe3hPhpT09bGvvY/h3MpZpsKChkqUtYZY0V7F0ZhXzpgXxWGZxOi4iIiIiMkVl7Az7Y/tzgfmOyA62R7ezI7KD9oH2g57nNb3MrJxZEJwPjjgP+8MT+BVIKTqSLFfh+BgoHJdjzf1b7ufmP99Muaec/77kv2moaCh2l0rL5ofgl1eAYcGnn3An65wAjm2z78YvEH3gAYzyco772c8oO+nECXlvkSM1PAh/ZW+ELW29jFImnObqMpa2VOXqhC9uClHu0ygVEREREZGjqS/ZlxthngvPozvYGdlJ0k4e9LyaQA3Nlc3MCM6gOdg8tF7ZTEN5g0acy9umsioiclA98R6+t/57AHxm6WcUjBfDwgvhhA/Aa/8ND9wA/+sRMI/+iNa2f/0u0QceAI+H5u/fqmBcJo0jCcKnVfo5aUaYE2eEWdoS5uTmKuqCKgslIiIiIjLRgr4gJ9adyIl1hT9bDo42HwzOd0R25NbbB9rpinfRFe/i5faXR1zTY3horGhkRmVhcD4Ynlf7q1UaUcaVwnGREvP9F79PT6KHeVXzuPKEK4vdndJ10bdh2x9hz1pY/1NY/smj+nZdP/sZXT/5CQDTv/51gmeffVTfT+Rg3moQfvKMMCc1h2kIBSa+0yIiIiIiMmaWadFc6QbbZ804q+BYX7KPnb072du7lz19e9jbu5e9fe76vr59pOwUe/r2sKdvD2tYM+LaZZ6y0UedB5tpCjZR7i2fqC9TjhEqqzIGKqsix4qX21/mo7//KA4Od114F8salhW7S6XtuTvhoS+APwzXroXKozOKv+c397P/H/8RgGk33EDdpz91VN5HZDgF4SIiIiIiMla2Y9PW38ae3j25wDwXnvfuoW2g7bDXUMkWAZVVEZFRZOwM33juGzg4fGDuBxSMTwYr/gZe+iXs3wAP/yNc9n/H9fJOJkPbd7+XGzFefeWV1H7qb8b1PUQGKQgXEREREZG3wzRMGisaaaxo5DROG3E8kUmwr2/fUHieXQ6u96Z6x1SypbmymZbKFnd0ezZAb65sJuTTgNhSpJHjY6CR43IsuPu1u7nl+Vuo9FXyu0t+R21ZbbG7JAD7XoT/cy44Nnz0NzDvvHG5bCYSYe/qfyD2zDMA1H7600z7+89iTEBtczn2OY7D9o4Ya7Z3sX5nNxv3KAgXEREREZHiiiQio4bmg+spO3XI80O+0FBwnheaNwebaaxo1KjzKeRIslyF42OgcFymuo6BDj5w/wfoTfXy5ZVf5orjryh2lyTfg1+ANXdC9Sz4zHPgLXtbl0ts3crua64htXMXRlkZTd/6JqGLLhqfvkpJchyHrW19PLe9izVvdrJmexftvYkR7RSEi4iIiIjIZJRfsmVP357CZe8eOuOdhzzfMiymV0zXqPMpQuH4OFM4LlPdTU/dxANvPsDi2sX84r2/wDKtYndJ8sWjcPtK6N0HZ38OzvvKW75U72OPse/zN2L39+NtaqL59h8SOOGEceyslALbdth8oDcXhD+/vYvOWLKgjc9jckpLFStm17CkuUpBuIiIiIiITFn9qf6CsDw/QN/bu5eknTzk+Rp1PrkoHB9nCsdlKlvbupb/9fD/wsDg7vfdzYl1Jxa7SzKaTf8N9/0VmF74u2dg2sIjOt2xbTruvJOO234AQPny5cz4/q14amqORm/lGJOxHV7bH2XN9i6ee7OTtTu66Okv/EGpYkQAACAASURBVMhhwGty6sxqVs6uZeWcGpa2VBHw6kGbiIiIiIgc2w416nx372664l2HPN9jeJhWPo2G8gbqy+upL6+nsaKR+vL6gn0+yzdBX9GxTxNyiggAKTvFN5/7JgAfXvBhBeOT2QkXw4IL4Y2H4IEb4OP/A4YxplPtWIx9N/0jvY88AkD1VVfR8MUvYHi9R7PHMoWlMzav7ouyZnsna97s4vkdXfTG0wVtyn0Wy46r5vQ5taycXcPJzVX4PKpZLyIiIiIipeVwE4WOZdT5/th+9sf2H/J9agI1ubA8PzRvqGigodx9BX3Bo/VlliyF4yLHsJ9v+jnbItuoCdTw2VM/W+zuyKEYBrz3O7D9Sdj5DGz4BZzy0cOelty9mz3XXEvijTfA66Xx5q9Q/eEPT0CHZSpJZWxe3hPJheHrd3bTlygMwyv9Hk6bVc3KbBh+4owwXkthuIiIiIiIyKGUe8tZUL2ABdULRhwbHHV+oP8AB2IHhtbzttv620jaSbriXXTFu3it67WDv5ennIaKoQB98FVfXk99hbuvJlCDaehnubFSOC5yjGqNtXLHS3cAcMOyGwj7w0XukRxW1Ux41xfh0Zvhka/AgougovagzWPPPsve628gE4lg1dXRfNttlJ96ygR2WCarRDrDS7sjuZrh63d2M5DKFLQJBTysmF3L6XNqWDm7lkVNISxzbJ9WEBERERERkcPLH3XOtNHbOI5DT6Jn1OD8QP/QsjfZS3+6n+2R7WyPbD/oe3pMD/VlQ6POv3L6V5QJHYJqjo+Bao7LVLT6T6t5dOejnFp/Kj+98Kd6ajhVZFLw43dC26uw9Cq45EcjmjiOQ/d//JwD3/42ZDIETjyR5h/+AG9jYxE6LJNBPJXhxV09PPdmJ2u2d/Lirh4SabugTXW5lxWza3I1w49vVBguIiIiIiIyVfSn+kcE5sND9I6BDhwKo971H11fcvXMVXNcpMQ9vfdpHt35KJZh8aXTv6RgfCqxvHDxrfB/3+OWVlnylzD77NxhO5Gg9atfI3L//QCEP/gBGr/2NcxAoFg9liKI9KdYt9OtFb52excb90ZIZQq/AaoL+nJB+MrZtcyvD2IqDBcREREREZmSyr3lzArPYlZ41kHbpOwUnQOdueC8O95dcsH4kVI4LnKMSWQSfGvNtwC46oSrRq15JZNcywo47ROw7ifu5Jx/9wx4/KQOtLHns9cRf+llME3qb/w8NVdfjTHGiTtl6tofGeD57V2s29HN2h1dbD7Qy/DPfTWE/AVh+NxpFfqzISIiIiIiUkK8pvewZVykkMJxkWPMTzb+hN29u6kvq+czSz9T7O7IW3XeP8FrD0DnFnjm+wxUXcCea68j3d6OGQ4z43vfJXjmmcXupRwFjuOwrb2PtTu6WbvdHR2+p3tgRLs5dRUsn1XD8tk1rJhVQ0tNmcJwERERERERkSOgcFzkGLI7upt/3/jvAHx+xeep8FYUuUfylpVVwYW3wH9+kp6f/oDW9f+Bk0rjmzeXlttvx3fcccXuoYyTdMbm1X1R1u7ockeH7+ymK5YsaGMasLgpzPJZNayYXc2y42qYVukvUo9FREREREREjg0Kx0WOEY7j8M3nv0nSTnL69NO54LgLit0leZuc4z/IgW3fo3ttN5AmeN55NH3721hBPfSYygaSGV7c1e3WC9/RxYu7euhPZgra+D0mp8ysYsWsGk6bVcOpx1UT9OufbBEREREREZHxpJ+0RY4Rj+16jGf2PoPX9PKllV9SeYUpLt3dzd4bVtO/thuAusW91P3N2RgKxqec7liStdkgfO2Obl7ZGyFtFxYMD5d5WT6rmtNm1bB8Vg0nzQjj82giXREREREREZGjSeG4yDGgP9XPt9d+G4CPL/74IWculskvvvkN9lxzDak9ezDKy2n62OmEen4Oj34JFr4HyqqP+JqZjI1lKWydCHu6+1m3IzsyfHsXW9r6RrSZHg4U1AufXx/ENPVAS0RERERERGQiKRwXOQbc+fKdtMZamRGcwd+c/DfF7o68DdGHH2HfTTfh9PfjbW6m+fbbCcydBXeuhY7N8IevwsXfP+x1UokMe9/oZtemLnZv6qLnQD/+Cg+VNQGC1QEqq/0EawLudk2AYLWfirAPUwH6mDmOQ1tvgo17IryyL8Ire6O8sjdCazQ+ou28+mCuXvjyWTXMqNLkmSIiIiIiIiLFpnBcZIrb1rON/3j1PwC4acVNlHnKitwjeSsc26bjhz+k40d3AFB+xunM+N738FRnR4m//9/grvfC+rtgyZUwc2Xh+Y5D594YuzZ1sntTF/u29mCnC0t3JGJpErE+OnaPHMkMYJgGFVU+KqsD2eDcT3DYur/cU5KhruM47IvE2bgnwqv7IryyN8LGvVE6+hIj2lqmwYkzwqzIK5NSU+ErQq9FRERERERE5FAUjotMYY7j8I3nvkHaSfOulnfxzpZ3FrtL8hZk+vrYd+MX6Hv8cQBqrv4Y9Z//PIYn7xY960xY+lHY8HN44Hr49JPEB2D3a125QDwWSRZct7ImQMviGmYuqqFxdph4LEVvV5y+7kR2Gaevy12PdSewbYe+rgR9XQnYFhm1rx6/RWW1PzsCPW/0eXY9WO3H47WO2q/V0WBnbFJJm3QiQyqRIZVIs7djgK37o+w40Mfe9hgHuuMk4xm8gNcBn2Ow3AEvPqp8HkJeiwrTxGcYlJd5CRkBglGL4O447X1dxLMPFyqq/FiqJS4iIiIiIiIyKRiO4ziHb1baotEo4XCYSCRCKBQqdndEch548wFueuomAlaA317yW2YEZxS7S3KEkjt3svuaa0hu3Ybh89H4ta9R9ReXjNrWjnZw4N/+kl3RuewKvJ+2rnLIu4N7vCZNC6qZuaiGmYtrqGooH/Mob9t2GIgm6e2K5wL0vvz17jgDvakxXass5MuVbQlW+TGLEQY7DpmU7YbdyQyphE066Ybfg8vBY8NH2B9VBpRX+goeJgSr3eXgQ4bysF/1x0VERERERETeoiPJcjVyXGSKiiaj/OvafwXgUyd/SsH4FNT39DPsXb0aOxrFM20azT/8AWVLlhS06e2Ks+vVTnZt6mLP690kB25yD8TcRU1TBTMX1zJzUQ3T54Xf8qht0zSoqPJTUeWncU541DbpZMYddd4dpy9/BHreejppMxBNMhBN0raz9y31pVhsHFJAyoC04WD6LPwBi4pyL+FKH1WVfvxlHrx+C6/Pwuu38PgsvH4zu3T3pxIZ+rrj9GYfKsS6E/R2J4h1J8ikbfqjSfoP8etjmAYVYV+2pM1QeJ4fpJdX+jAUoIuIiIiIiIi8LQrHRaao21+8nc54J7NCs7h68dXF7o4cAcdx6PrpXbT967+CbVO2ZAkzbrsNb0M9qWSGfVt62PWqWyqlu7W/4Fx/hYeWwCvMTD1Ky/Fhgp/4KUxQDXCPz6KqoZyqhvJRjzuOQyKWzoXnvV0JYpEETmbiP6BkOw6RZJr2gSStsSR7egfYERkglrFJGZDCcZcGmB6DudMrWdQc4qTmKhY3hVnQUIlvnEe8O47DQG/KLWeTDc77uhK57d7uOLGeJI7tZI8n4M3Rr2V6DIJV+cF5gPKQD8tjYHpMrOzLtAwsb3Y7b920DHef18SyTEyPe8w0jZKsKS8iIiIiIiKlSeG4yBS0qXMT92y+B4Avnf4lfJYm+5sq7Hic/TffTPS/fwdA6C8uxf+3n+OVl3vZvelF9m2JkEnbufaGAQ2zw8xcXEPLohrqjwthdjbCHTfDrhRsugQWj16GZaIZhkEg6CUQ9DKtpXJC39txHN7siPHUG+08uaWD597spD+ZKWxkQpnfYlFTiJNmhFncFOKk5jDzpgXxWEe/9IthGJSHfJSHfNQfN3qbXHmbYcF5btkVJxZNYqcdoh1xoh3xce4kWJY5LGR3g/Th24Mhuy/gIVxfRs30CqqnVxCuL8OagF9PERERERERkbdL4bjIFGM7Nt987pvYjs1Fsy7i9OmnF7tLMkap1lb2XHsdva+/SVfDaQy883IOJGuI3fJiQbtgtZ+Zi2poWVRL8/HVBCq8hReatgDOugGe/Bd46Isw91wIlN58CJH+FM9s6+CpLe08+UYHe3sGCo4H/Z5cEH7ijBAnNoWZMy2INYnLkeSXt2H26G0yGZtYjzuyPDZY5qY7QbwvhZ22yeReTsF6/jE749Zkz6RtCmYecci2AciM3oExfA3h+jKqp1e4gXljOdXTK6huKMfjm1qTtYqIiIiIiMixTeG4yBTzmy2/4eWOl6nwVvC55Z8rdndkDJx0mvaf38tL9z1Pa/gComfOAsOENoAEltdkxvwqWhbVMHNxLdWNY5hI8+x/gFd+DV1vwuPfgPf+ywR8JcWVzti8tKeHJ9/o4Mkt7by0uwc7L9j1WSanzarmnAXTOHt+HSc0ho7JiS0tyyRUW0aotmxcrmfb2RA9NTI4tzN5xzLZwD1lY2eGQvdEf4ru1n6698foau0nnci42639vPli+9AbGRCqDWQDc3eUefX0cmoaK/CV6dsRERERERERmXj6aVRkCumOd3PrC7cCcM3Sa6gvry9yj+Rwep57gbU/+D3b/SeRmvnB3P7q6RXMXFTDzMU1NM2rOvIRtd4AvO978B+XwPP/G5Z8BGacOs69L77dXf08taWDJ99o55ltHfTG0wXH59UHOXt+HefMn8bKOTWU+/TP2pEyTQPT504m+nY5jlsvvXt/jO7Wfrr2x9zQfH+MRH86Vwpmx8bOgvMqqvzUTM+OMG/MjjifXk5ZUCWjRERERERE5OhRiiAyhdz6wq1EEhEWVC/gL4//y2J3Rw6hb/cB1nz3d2ztbSRd+Q4AKgIZTv3AQmYvraeyJvD232Tuu+Gky2HjffDA9fDXj4M1tW/rsUSa597s5Mk32nlqSwdvdsQKjofLvJw1r45zFtRx1vxpzKgan9HTMj4Mw6CyJkBlTYCZi2tz+wcnIx0MynPBeWuM/kiSWE+CWE+C3a91F1yvrNKbG2VeM708F5yXh31jmjjUcRx3ZHyqcBR8bn1Y+Rn7MNvuPoeJn2LWVVbpZVpzJXUtQcoq9eBARERERETk7ZraKYpICdnQtoHfbPkNAF8+/ct4TP31nYxiPQM8f/sf2LzDQ8aaA14IWjGWX3oCx79rDuZ4T1R4wTdhy8Ow/yV3BPkZnxnf6x9ltu2waX+UJ95o56kt7azf2U0qMxQ9WqbBKS1VuVIpJzdXTeqa4TK6/MlIZyysLjg2WJZlaJR5P92tMXo74wz0phjo7WHflp6Cc3wBi6qGcjAMt8TLaGVg0g6ZjE3RkuyjrCLso25mJXXNQeqygXm4rgxDfz9ERERERETGzHAc5xj9sXH8RKNRwuEwkUiEUKj0Jr2T4kvbaT7ywEfY3L2ZS+ZdwtfP/HqxuyTD9HXHWXv3C7z+ci+24U6gWZnqYNlFx3HCpSuObu3rdT91R477gnDN8xCecfTeaxy0ReM8ucWdSPPpLR10xpIFx1tqyjhn/jTOnj+Nd8yrJRTwHuRKcixLJTJ0txaWZ+lu7SfSPoBjv7VvXQwDLI+J5TUxLcNd95iYHhPLM7Q9uG7mbefWLWNMo9bHmwP0dsbp2NNLpG1g1DbegFUQltc1B6ltCmJ5x/mhnIiIiIiIyCR2JFmuhp6KTAH3vH4Pm7s3E/KFuGHZDcXujuSJtA+w/ndvsPn5dmxMMLyEYrtYujzI4s9ciumZgNvsqVfDS7+E3WvgwRvhI784+u95BOKpDGt3dOVqh7/e2ltwvMJnccZct1TKOfOncVztGCYklWOe129Rf1yI+uMKv5HJpGx62vqJdgyAYQwLtU1Mj4FluQG45cmG4IPrx8io6mQ8TeeePjr29NGxu5eOPX107o2RimfYvzXC/q2RXFvTNKieXj4UmLe4o80DFXroJCIiIiIiopHjY6CR41JM7f3tXPzbi4mlYnzl9K9w+cLLi90lAbpbY6x/cAdvPN+K47iBW1XPGyye0cviL34c77RpE9uhA6/Cj88BOw1/eQ8svGhi3z+P4zhsaevjyTfaeXJLB2ve7CSRtnPHDQNOmhHOjg6v49TjqvGOd7kZkRJjZ2y6W/sLAvP23b0kYulR2wdr/LnAfFo2MK+sDejBlIiIiIiITHkaOS5yDPnOuu8QS8U4qe4kPjT/Q8XuTsnr2NPH+gd3sHV9W3aPQU3XJubbm1h00ycpX7asOB1rWAxnXAvP3Aq//zzMPgd8FRP29t2xJE9v7chNpNkajRd2L+R3w/AF0zhrXh01FZpMUGQ8mZZJ7YwgtTOCLFzZCLgPqvq6EwWBecfuXqIdcfq6EvR1JdjxckfuGr4yD3XN2bC8JUhdS5Dqxgosjx5eiYiIiIjIsUkjx8dAI8elWNbsX8NfP/LXGBj88v2/ZHHt4mJ3qWQd2B5l3YM7CoKkuo6XmN32BPP++lKqr7wSYyJKqBxKsh9+tBJ6dsE7roP3fOOovVUqY/Pirp5sGN7Oy3sj5P9r4veYrJxTyznz6zhnwTTm1wc1IlVkkkj0p+jc20f77qHSLF37YtiZkd8SmpZBsCaAZRmYloFpmRim4dZeNwf3uftNc/g+A9McOmZaBkZu3+BxM7c+8txh541yvYLzBo/ltc0/T/cgEREREZHSoJHjIseAVCbFN9d8E4ArFl6hYLxI9m3pZt2DO9m9qcvd4djUt73ArF0P03TeMup/9L/x1tcXt5ODfOXw3u/C3R+GZ38EJ18BjSeN2+V3dsZypVKe3dZJX6KwXMPxjZWcnQ3Dl8+qIeC1xu29RWT8+Mu9NM2vpml+dW5fJm3T3RqjY3cfHbvdkiwde/pIDqSJto8+AehUY5jDgvnBYD23b2ii1oqwj2BNgMrsa3C9POw7ZmrXi4iIiIiIwnGRSetnm37G9sh2agI1XHfqdcXuTklxHIfdr3Wx7vc7chPbGY5NQ+sajtv1CDXNIRruuIWKFSuK3NNRLHgPLPogbPov+N318MlHwHxrIXU0nuLZbZ08taWdJ9/oYFdXf8HxmgofZ8+v4+xs7fCGUGA8vgIRKQLLY7o1yJsr4Qx3n+M49HbG6etJ4GQcbNvBzi1tdz3j4Nh5xzLZY3besUzheU7GIWM77jXzr5uxh9qPcr2Ca+X3Y/C98s4bjWO775sZvQx7gfaD7DdNg2CNn2B1NjivDRCs9lNZOxSie316MCgiIiIiMlUoHBeZhPb17ePHL/0YgM+d9jlCPpXzmQiO7bBjYwfrfr+Dtp29AJjYTN/3DDN3PUqFOUDdZ6+j5qNXYXi9Re7tIVz4bdj6OOxdB+t/Csv/ekynZWyHjXsjuVIpL+zqIWMPhUxey2DZcdWcPX8a71wwjUXTQxpBKXIMMwyDUF0ZobqyYnfliDiOg+MwMsAfFsSPGuBnbNIpm1hPgt6uOL1dbn32wYcEtu0Q7YgT7Ygf9P0DQW/eiHP/iNHnZZVelXgREREREZkkFI6LTELffv7bxDNxljUs4/1z3l/s7hzzbNth2wttrH9wB517YwBYpsOMA8/SsuUB/MkIofe+l/ovfAFvwyQpoXIooelw3lfgwRvhD/8fHH8xVDaM2nRfz4A7MnxLB89s7aCnP1VwfE5dRa5Uyso5tQT9+mdDRCY3wzAwDDBNC8bxOaZtO8R6EvRlQ/NccJ63nYpniPeliPelaN/VO+p1LK/phuXV/rzR5wEqa/z4yjxYXhOP18LjNbGyL4/HrfU+GTmOQyZtk0pkRr7ihdvpZOE+w4SKKj/BKj8V1QF3WeWnLOidtF+viIiIiBxblHKITDJP7nmSx3c/jsfw8KWVX9LosqMok7HZ8vwB1j+0k54DbskQr89gZu8Gpq+7G1+qD9+cOTTefCsVp59e5N4eoeV/DS/9Eva9CA/fBJf9BICBZIbntnfy1BsdPLmlna1tfQWnVQY8nDnXDcPPnl9HS015MXovIjLpmKaRGwU+fZTjjuOQHEhng/LsaPOuOL3d8dx6LJokk7LpOdCf+3dnzO9vGYWBudfC8gyumyPC9Fwb71Aby2Pi8WXbeYbOsTPOUHh9kGD7UC/HHr2UzVtlWgYVYT/Bajcsr6j254LzYHa7IuzH8pjj+r4iIiIiUnoUjotMIvF0nG+t+RYAf7Xor5hfPb/IPTo2ZVI2rz27nxce3klvp/vReH+ZxRzfDuoe+iHeRB9GeTnT/v4fqPnYxzB8viL3+C0wLXj/rTj/590Yr/wn/2Ody92d81i7vZtkxh5qZsDSlirOnj+NcxbUsaS5Co+lsEFE5EgZhoG/3Iu/3OvWbh9FJmXTly3ZUjgC3Q3UU4kMmZRNOm2TSWZw8jJnO+OQzGQgnpmgr+jIWV4Tr98a48tDJuOWsOnrThDrcV/9vUnsjJP7tTmUskovwerAUGhelReoZ9d9Af24IyIiIiIHp+8WRSaRf9/47+zt20tDeQN/u+Rvi92dY4qdsdm3pYet69vY9mI78T63fEhZpZfjZ8Souv9fMQ7sBaDywgtp+MKNeKePNjZw8tvT3c8zWzt4aovNGVzEVfwPJ774NTYnv0aSMDOqyjhnQR3nzJ/GO+bWES6fxPXTRUSOIZbXJDytjPC0sdVxH6yBnkkNLTPp/H2ZoWPpwna59oNhe37bvHPSSRvTMg4eYgcsPL7Cfb6AG24Pbnv8Fl6fiTkOD1czGZv+SDIXmPd1x91lz1CA3teTwE47DPSmGOg9eAkbAG/AGhmch90SNv4yD74yC1+ZB1/A4y7LPJpPQ0RERKSEKBwXmSS2dm/lJ6+4pS++sOILlHtVzuLtsm2H/blAvI2B3qF62hVVfk5aGqD6gR+Q+N0aAHyzZtHw5S8TPOvMYnX5LYn0p3j2zQ6eytYN39E59FH9P3Ip5/qf4zizjefLrmNg1nmUr/grjAVng6VQXERkMjMtE59lQqDYPZk4lmXmytccjOM4xPtSQwF6Xmge647T15Mk1h0nGXfLw3S39tPdOvYyNl7/YGBu5YXoQy9/mYU3ULh/eNCuki8iIiIiU4PCcZEish2bZ/c9y32b7+OJPU+QcTKc2XQmq2auKnbXpizbdmjd1sPWdW1sfbGdgWgyd8xf4WHuKfXMWRTC98jP6fn6/08ik8EIBKj7u7+j5hMfx5wCJVTiqQwv7Ozm6a1uGL5xb4T8cq+WaXBKSxVnzqvjrPl1TLPug4duxNy7nortD8P2h6G8Dk6+HJZeCY0nFe+LEREROUKGYVBW6aOs0se0maOXsAFIxtN5oflQiN4fTZIcSJMcSJPILpMDGTJpt+zYYC312Nvoo+U1h0LzbMjuK/PgO9iI/GGj8b2+wX3uS2G7iIiIyNFhOI4zvjPoHIOi0SjhcJhIJEIoFCp2d+QY0B3v5rdbf8uv3vgVu3t35/Yvb1zOt876Fo0VjUXs3dTj2A7734y4I8RfaKM/kheIl3uYs3QacxaHqDrwCrHH/0DfE09g97ofwa48fxUNX/wi3hkzitX9w7Jth037ozyztYOnt3awdkcX8ZRd0GZefZCz5tVx1rw6Vs6poTIwyqjwttdhwy/g5Xuh78DQ/saTYelVcNKHoaL2KH81IiIik1MmZZOM5wfmbmieGEiTjOfvS5MYyIzcF8+QThydmvCHLH2TV8d9MFAfXgonVyrGcF+5wjGG4a4buc28jexadnL43BzxucPGsPMonEjewJ0s1jf0AMDSvCYiIiIyAY4ky1U4PgYKx2U8OI7Di20vct8b9/HIjkdI2W6Jj6A3yAfmfoDLF17O3Kq5Re7l1OHYDgd2RNmy7gDbXmgn1pPIHfOVeZiztI7ZC8sJ715P/2N/IPbnP+Mkh0Jz73EzafzSlwiec04xun9Yu7v6c2H4n7d10hVLFhyvr/Rz1rw6zsy+GsNH8Jn7TBq2PeYG5ZsfhEz22qYXFl7oBuXzzgdLHy4SERE5EnbGJhnP5Ealp+LZID0boA+OSj/0a6idnT62flQzPUZhmO+38PrNwlHzo9S9944YZT90vsdrYqhOvIiIiORROD7OFI7L29GX7OOBNx/g3s33srVna27/otpFXLHwCi6cdaHqi4+R47iB+Nb1bWxb30Zfd14gHrCYvXQas2dZhHasof+xP9C/fj3YQyOsvTNnUrlqFZWrVlG2dAmGOXlGL/X0J3l2WydPZwPxnZ2FtVErfBanz6nNlUqZXx8sHJ31VvV3wcZfu0H5/g15b1jvll055aNQf8Lbfx8RERE5YpmMTXp4eB7PkEoO284/nszf5wbtTu7bIYf8n/4cZ/A/edu433Nlm+MwShsHHIbaFDRxskccyKRtUvEMtn0Uf+Q0GDlp7LCA3XOw0H0wlPcND96LX8rGcRzstEM6bZNOZkZMyFsw8W7GzquVn1fKJ2CNy0S5IiIiU43C8XGmcFzeitc6X+O+N+7jf978HwbSAwAErAAXzb6IKxZeweK6xUXu4dTgOA5tO3vZur6NresP0Nc1FIh7AxazT67juOlpQtv+zMDjfyC+aVPB+f5FJ7iB+Hmr8C+YPz6B8jjIrxv+dLZuuHOIuuFLW6rwHu0fbg68ChvudsuuxNqH9jed4o4mP/FDUF5zdPsgIiIix5xM2j54uJ9Ijwj4RzwQSGRIjnLsaDqSUjYenzv63fIYIwPs9MgwO52yyaQzI/cNC8DHg8dnuoF5Niz3FoTnhUF6bl/ZYLvsRLOaZFZERKYYhePjTOG4jFU8HefhHQ9z3+b7eLnj5dz+OeE5XL7wci6eezEhn/4MHY7jOLTvGgzE2+jtjOeOef0Ws06upaUmRviNp+h//FFSO3cNnWyalJ96KpXnryJ43ip8zZOjlnhfIs3r+6Oszwbiz2/vIpEu/KFnfn3QDcMPVTd8ImRSsOVRdzT5Gw+BnXb3Wz5Y+F53NPmcd6vsioiIiBSNYzukU3ZhKZp43sj55OFG1Y8sZZNO2LmJWSeVbP12y2vi8bhLPAboQAAAHWxJREFUy+uWlBksK5NODtbHz5AaSJMep3B9kOUxc6G5Py9otzwGpmlgWiaGZWBa2W0zu25lj5l5x/Lb5R8btt80jcJr5tZNTMtwfx08w9ZVYkdERFA4Pu4UjsvhbI9s51dv/Ir/2vpfRJNRADymh1UzV3H5wss5reG0STNiebJyHIeO3X25EeLRjqFA3OMzmXViDc3BHsKb/8TA438g3T40stnweql4xzvcQPzcc/HUFG90s+M47IvEeW1flE37o7y2310OL5MCb7Nu+ESJdcDGX8GLv4ADG4f2BxthyUfcEeXTFhSvfyIiIiLj6KClbAbD9dFK2WTD9UzayYXYhUG2mQ2yrVyI68nbn9/G8riTmOa3MS3jiH+WyGTckjbJbGCem0A27k40m4yn846nc7XyC9ofxUlmjxbDcIN8y2tiekwsyxjaHlz3mFieoXUzb9sc5fjgtpn9PfEGPG7pnrz6977s+rFU/95x3DJMhoF+lhWRKUfh+DhTOC6jSdkp/rjrj9y3+T7WtK7J7W+qaOLDCz/MJfMuoa6srog9nPwcx6Fzb4yt6w+wdX0bkbaB3DGP1+S4RVXM8LUR2vQY8Sf/iN3bmztuBoME3/lOKs9fRcVZZ2MFKya8/4l0hq1tfWzaF+W1/b1s2h/htf29RAZSo7ZvCPk5aUaYd8wd57rhE2X/y+5o8pfvg4Guof3Ny2HplbD4UiirKl7/RERERGRc2Rl3dP6o4flAGjvjDL1sG8d2yGQcnNy+oaWTsUfsGzzXse0R+4a23esW7M/YZNLOpBvp7/G54bnXb+UC8/zw3Btwy9Tk1773Zcvz5Ne99wXcfdYoZRVt28nVoU8lM6STdt66u51OZZdJt2Z9OmWPcmzY/lGOOw7uJxfyHjjkHvoMPkQYXM8+EBp8iJB7sOAd1i7vfI+3cDu/veO4nxBxHAfHztbht7PrtuP+mXCc7Lq7z85vX7Dt7rOz5w22Kdx2sG2wPEbu19+dw6Dw92dwW6WGRCY3hePjTOG45Nvft59fb/k1v9nyGzoGOgAwMDin+RwuX3g5ZzadiWVaRe7l5JIcSBPpGCDaMUC0PZ5b72ntp7draIS45TWZuTDEDGMvoY2PkPjzkzjJ5NDxujoqzz2XyvNXUb5yJabPN2FfQ1csyWuDI8Gzo8K3tvWRHmWCKY9pMK8+yAnTQyyaHuKE6SFOmF5JbdA/Yf09qtJJt9zKhrthyyPgZEcUeQJw/PvdoHzOu0B/D0RERETkKBoMTDMpGzsblg+9siF6tpZ7JuPk1u1Mtu1o25mh69jpoRDeTtukkjapeLqwHn48g3OUJp01PQY+vwfTY7i16ZOTtPRPCTI9xojw3BcYmougYHuUBx/D23u85tQaOCUyySkcH2cKxyVjZ/jzvj9z3+b7eHLvk9iO+w1JbaCWS+dfymULLqMp2FTkXhaPbTv0dceJdsSJdgwQaR8MwgeIdsSJx0YfSQ3uxx5b5pXTZO8k9OKDJNevAXvoGz5vS4s7oeb5qyhbsgTDOrqBq2077OiMDZVEyY4Kb43GR20fCnhY1BQqCMLnNwTxe0okGO49ABvvc8uutL82tD80wy27suRKqJ3rfh5TREREROQY4zhu6D4YlLuld9LuJLJxt+zO0P5hx7PruXOzx8cagOdK9vjciWE93uzyoNvuutfnlvjx+rL1632muy+7HDzX8phk8h8wpG0yKSc7oawzNIFs7tjw9aEHEoOT09p56wXt0kOT2NppGwzcuvOG4ZZ2MY3cy93PqNtmrp1bDsbMOy93jmFgmsOumT2W+708yO/f0Xw4YVpGrhzQQZfWUJmfg7czMQdLBVlDy9y5eUu3bFO2dE7B0h0EiAkGox03cj/iFZwzfP2gx43cpwfM7CcLBn+/RcaDwvFxpnC8dHUOdHL/1vv59Ru/Zm/f3tz+FY0ruHzh5Zzbci5eq0iTJk6w/NHfkWzoPRiA93bFsTOHvpWUBb1UVnsIljlUeOKU270EYm34XniMzKsvFbT1n3AClavOo3LV+fgXzD9q/0DGEmleb+3N1QV/bX+U1/f3MpAavbbicbXlnNAYGgrDm0I0hQP6BxzAcWDfi+5o8o2/gnjP0DFf0A3LwzOyy+a87WZ36Zv4sjgiIiIiIpPRYM14NzRPY6edkaF3djJWmVj5vzepeIZk/oTAgw8+Ch6G5D8oydb7z5079er6H035cwYcrNzOyJI9o7U3sg93Ri/nYxjkBm8Z2f8M/UhvDP4/16mCH/cHHxoUnDOsLn/u2ODDAXd34bwHhQ8wlCmMP4Xj40zheGlxHIf1B9Zz3+b7eHTXo6TtNACVvko+OPeDfHjhh5kTnlPkXo6/tzP6G9wKGsFyCPpSlNNHWbKbQOwA/q7d+A68CW37IHOQf/gNg7Jlp7ojxFetwtfcfMT9dxyHeMomMpDKvXr6k7n1aN7+yECKHZ397OiMMdod0O8xOX56iEXTK3Mjwhc2VlIZKI0HIW9bOgGbf+8G5Vv/AM4YRlcEqrKhedPI4DyUfXkn4YSlIiIiIiIib5FjO7na8YO19O3MUKmf3DLtkMnkL90SQLnSP5nR2uS1LbjuYN1+d9txgOwErDA0GevgvhHHbQeH/OMODGuXf5zBNnnnOpns/ARHqSTRVGPmTwJsDYX6g6P83UmFR5sw2CiYSDi3bplYXiN3jQUrGkquTv6RZLmeCerTpHD77bfzne98h9bWVpYsWcIPfvADVqxYUexuyVGSslNEE1GiySiRRCS3jCQiRJIRookokaS7nb/em+wl4wyFuCfVncTlCy/nglkXUOYpK+JXNDaO45CKZ4jHUiT60yT6B5dp4nnruf2xFPFYir7uxGFHf/s9aSqMAcozPQT62wn07MXXvoNAXyv+RASDw/zDZpp4amvxTJuGp74eT309gZNOpPLcc/HU1uYC7tZIfEwB99ArTXQgRTJz5B9xq6/050aBDwbhs+sqsDQK463z+GHxX7ivZD9E90F0D0T2QnQvRPZkl9ntRNQdaR7vgQOvHPy65XUjQ/P8UeiV06FEPskhIiIiIiJTn2G6E4D6SnQcUP7kurkSPKOV6kkdot1h2qcHy/lkj+UGyOWNlMt/MOCuDAX8w9u4xwYb5B0bfACQ+0/hNXJzG6RHPhSw0w52OkOKo/NJgnmn1VMihV/fkpIJx++9915Wr17NnXfeycqVK7n11lu54IIL2Lx5M/X19cXunhyE4zjEM/FcqB1NRguC7MGgu+BYdl8sFXvL71vmKeO9s9/L5QsvZ1HtonH8isbGcRyS8QyJsQTcfSkSsSTxfnfG+MRAZtTR0GNhkqHM7qMs3kEgup9A3wHK4h2UDXQQiHfiySQOeq4driJdXUuqupZEuIZ4uIb+ympildX0BqvoLa8i4g8yYBvE0xniqQzxlE1ve4rIXRvfVsCdzzINwmVewmVeQtml+/IQLvNSVeYjXOZlelWAE6aHqDtWJsmcrHzlUDfPfR1MPJoXlh8kRE8PQH+H+9r/0kEuZEBlY3akeRMEQu4koZYfPL7senbp8WX3B4Yd87uv/GOWv3C/WVpP3EVERERERI4Gt+45eP2lFd3a9uCo/7zQPzcRsDPqulv/f/ATBdn1wU8ADLtO4QTFTsmNGj9SJVNWZeXKlSxfvpwf/vCHANi2TUtLC9dddx1f/OIXD3luKZdVeeWVV3jmPx/GxsbBzn68xnHXs3tx3GX+/vx2tvuhGXcSy1xbGyf7Pxt3v9s+e8bguU4me9xw6zplX+6Y3sG/3NljjjG0nnfcY/jwGN6CpWX48JhePIYXK++V28aD4RjuEz47+1Ege+ijRe6XnX1SWPBRI4Y+TgR5HyEa3DaG9mNkL5Xdh4HjGGTwkjZ8YLy9m5dpp/Ck+vGk+/Gm3aUnNZBb96ZieccGCMQ7Rx393ecrpysQoiMQotMforMsRFcgRGcgnF2G6A5UkjbH71nb4QLuoZdvaL3cXVb4LNXrOtY4Dgx0HyRAz25H90EmOTH9Mb3DQvTB9WzIbnrIzgCULTA3OPuMmV03D7JtHOZ4/jZjuJ6Z995jef8jbJ/fdqgqn8j4y93Th/15y/9zWHB8LG3HcF0RERERkWPB8e9za+GWEJVVGSaZTLJ+/Xpuuumm3D7TNFm1ahXPPvvsiPaJRIJEYmiEbDQanZB+TkabntlAev8pBfvyf2Sc6n+1HCCdfRXF8J+9h22PCLhTeUF3uh9vQfg9gCfVj2MnwE6SwSFtekiZHlKWRcpwlwnTQ8z0kDItUqaHdMBD0qymZ1qLG3aXhegKhOkMuCF48iBlKvwek4DXIuA1afK4y4DXIuCx8A+uey0Cee38ee382WOVAQ+hwRHdCrhlNIYB5TXuq/Gk0dvYtjuqfHC0eXQfJPsgnYR03A3O03F3O5MYWh9+LLedcF+DbQveKwXJlHt9ERERERERkcnsS61gTv4ywcVSEuF4R0cHmUyGhoaGgv0NDQ28/vrrI9rfcsstfO1rX5uo7k1q4dpqIgPbs1uFYaUxytpIBzt2uOAz7+p5BZuM/CJP2SHZBkPHB4dqD41+dkd3G+QN6861y9tfsD10PWfYEiNvn5HXEyN/2wHDwM7OTuwYjtujvDa2mX1nw8DOjry0s8dtD2Qsg4zXxPF6cDweHK8Xx6rA8Va5614feLw4Xi94vRhed930eDBNE8s0sEwD0zCwTLAMA9M0hpZ56wEDKkyDxlFCbX821A54rFzAHfBa+CwTUzW5ZTIxTQjWu68Zp47vtR0HMqlhwfnBQvU42OnsJ0zsofMdm+xHTg6znfcxlCNua4/h3LFe287e3MbYb5GjJf8DjsM/jkXen+m3dPxQ54iIiIiIHCPeZmWCY11JhONH6qabbmL16tW57Wg0SktLSxF7VDwXXPY+uKzYvRARKSLDyNYl9xW7JyIiIiIiIiIyjkoiHK+rq8OyLA4cOFCw/8CBAzQ2No5o7/f78fs1SZ+IiIiIiIiIiIjIsaokxtX7fD6WLVvGY489lttn2zaPPfYYZ5xxRhF7JiIiIiIiIiIiIiLFUBIjxwFWr17N1VdfzWmnncaKFSu49dZbicVifOITnyh210RERERERERERERkgpVMOH7FFVfQ3t7OzTffTGtrK0uXLuWhhx4aMUmniIiIiIiIiIiIiBz7DMdxnGJ3YrKLRqOEw2EikQihUKjY3RERERERERERERGRURxJllsSNcdFRERERERERERERPIpHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjsJxERERERERERERESk5CsdFREREREREREREpOQoHBcRERERERERERGRkqNwXERERERERERERERKjqfYHZgKHMcBIBqNFrknIiIiIiIiIiIiInIwgxnuYKZ7KArHx6C3txeAlpaWIvdERERERERERERERA6nt7eXcDh8yDaGM5YIvcTZts2+ffuorKzEMIxid2fCRaNRWlpa2L17N6FQqNjdERE5LN23RGSq0X1LRKYa3bdEZKrRfat0OI5Db28vTU1NmOahq4pr5PgYmKZJc3NzsbtRdKFQSDcPEZlSdN8SkalG9y0RmWp03xKRqUb3rdJwuBHjgzQhp4iIiIiIiIiIiIiUHIXjIiIiIiIiIiIiIlJyrK9+9atfLXYnZPKzLIt3vetdeDyqxCMiU4PuWyIy1ei+JSJTje5bIjLV6L4lw2lCThEREREREREREREpOSqrIiIiIiIiIiIiIiIlR+G4iIiIiIiIiIiIiJQcheMiIiIiIiIiIiIiUnIUjouIiIiIiIiIiIhIyVE4Lod0++23M2vWLAKBACtXruT5558vdpdERHKefPJJLr74YpqamjAMg9/+9rcFxx3H4eabb2b69OmUlZWxatUqtmzZUqTeikipu+WWW1i+fDmVlZXU19dzySWXsHnz5oI28Xica665htraWoLBIB/60Ic4cOBAkXosIqXujjvu4OSTTyYUChEKhTjjjDN48MEHc8d1zxKRye6f//mfMQyD66+/PrdP9y7Jp3BcDuree+9l9erV/NM//RMvvPACS5Ys4YILLqCtra3YXRMRASAWi7FkyRJuv/32UY//y7/8C7fddht33nkna9asoaKiggsuuIB4PD7BPRURgSeeeIJrrrmG5557jkcffZRUKsV73vMeYrFYrs0NN9zA7373O371q1/xxBNPsG/fPi699NIi9lpESllzczP//M//zPr161m3bh3nnnsuH/zgB3n11VcB3bNEZHJbu3YtP/7xjzn55JML9uveJfkMx3GcYndCJqeVK1eyfPlyfvjDHwJg2zYtLS1cd911fPGLXyxy70REChmGwf33388ll1wCuKPGm5qa+Id/+Ac+97nPARCJRGhoaOCuu+7iIx/5SDG7KyJCe3s79fX1PPHEE5xzzjlEIhGmTZvG3XffzWWXXQbA66+/zgknnMCzzz7L6aefXuQei4hATU0N3/nOd7jssst0zxKRSauvr49TTz2VH/3oR3zjG99g6dKl3Hrrrfp+S0bQyHEZVTKZZP369axatSq3zzRNVq1axbPPPlvEnomIjM327dtpbW0tuI+Fw2FWrlyp+5iITAqRSARwgyaA9evXk0qlCu5bxx9/PDNnztR9S0SKLpPJcM899xCLxTjjjDN0zxKRSe2aa67hfe97X8E9CvT9lozkKXYHZHLq6Oggk8nQ0NBQsL+hoYHXX3+9SL0SERm71tZWgFHvY4PHRESKxbZtrr/+es4880xOPPFEwL1v+Xw+qqqqCtrqviUixbRx40bOOOMM4vE4wWCQ+++/n0WLFrFhwwbds0RkUrrnnnt44YUXWLt27Yhj+n5LhlM4LiIiIiIywa655hpeeeUVnn766WJ3RUTkkBYuXMiGDRuIRCL8+te/5uqrr+aJJ54odrdEREa1e/du/v7v/55HH32UQCBQ7O7IFKCyKjKquro6LMsaMVvvgQMHaGxsLFKvRETGbvBepfuYiEw21157LQ888AB//OMfaW5uzu1vbGwkmUzS09NT0F73LREpJp/Px7x581i2bBm33HILS5Ys4fvf/77uWSIyKa1fv562tjZOPfVUPB4PHo+HJ554gttuuw2Px0NDQ4PuXVJA4biMyufzsWzZMh577LHcPtu2eeyxxzjjjDOK2DMRkbGZPXs2jY2NBfexaDTKmjVrdB8TkaJwHIdrr72W+++/n8cff5zZs2cXHF+2bBler7fgvrV582Z27dql+5aITBq2bZNIJHTPEpFJ6bzzzmPjxo1s2LAh9zrttNO46qqrcuu6d0k+lVWRg1q9ejVXX301p512GitWrODWW28lFovxiU98othdExEB3BnIt27dmtvevn07GzZsoKamhpkzZ3L99dfzjW98g/nz5zN79my+8pWv0NTUxCWXXFLEXotIqbrmmmu4++67+a//+i8qKytzdS3D4TBlZWWEw2E++clPsnr1ampqagiFQlx33XWcccYZnH766UXuvYiUoptuuomLLrqImTNn0tvby913382f/vQnHn74Yd2zRGRSqqyszM3nMqiiooLa2trcft27JJ/CcTmoK664gvb2dm6++WZaW1tZunQpDz300IjJ7UREimXdunW8+93vzm2vXr0agKuvvpq77rqLG2+8kVgsxqc+9Sl6eno466yzeOihh1R7TkSK4o477gDgXe96V8H+n/70p3z84x8H4N/+7d8wTZMPfehDJBIJLrjgAn70ox9NcE9FRFxtbW187GMfY//+/YTDYU4++WQefvhhzj//fED3LBGZmnTvknyG4zhOsTshIiIiIiIiIiIiIjKRVHNcREREREREREREREqOwnERERERERERERERKTkKx0VERERERERERESk5CgcFxEREREREREREZGSo3BcREREREREREREREqOwnERERERERERERERKTkKx0VERERERERERESk5CgcFxEREREREREREZGSo3BcRERERGSK+dOf/oRhGPT09BTl/R977DFOOOEEMpnMYds+9NBDLF26FNu2J6BnIiIiIiJjp3BcRERERGQSMQzjkK+vfvWrvOMd72D//v2Ew+Gi9PHGG2/ky1/+MpZlHbbthRdeiNfr5Re/+MUE9ExEREREZOwMx3GcYndCRERERERcra2tufV7772Xm2++mc2bN+f2BYNBgsFgMboGwNNPP8373/9+WltbCQQCYzrn9ttv56677mLt2rVHuXciIiIiImOnkeMiIiIiIpNIY2Nj7hUOhzEMo2BfMBgcUVblrrvuoqqqigceeICFCxdSXl7OZZddRn9/Pz/72c+YNWsW1dXVfPazny0ohZJIJPjc5z7HjBkzqKioYOXKlfzpT386ZP/uuecezj///IJg/KWXXuLd7343lZWVhEIhli1bxrp163LHL774YtatW8e2bdvG9xdLRERERORt8BS7AyIiIiIi8vb19/dz2223cc8999Db28ull17KX/zFX1BVVcXvf/973nzzTT70oQ9x5plncsUVVwBw7bXXsmnTJu655x6ampq4//77ufDCC9m4cSPz588f9X2eeuoprrzyyoJ9V111Faeccgp33HEHlmWxYcMGvF5v7vjMmTNpaGjgqaeeYu7cuUfvF0FERERE5AgoHBcREREROQakUinuuOOOXPh82WWX8R//r72754lqi8IA/HKnIBI7MSQUis0B7SgtLEhMjJ0WQnCSqShpUKgohAb/gYnVFBRa2RHttNDE8FERTSyMzHQSwIQQBosBqzu5RPH67b3O83RnZ+1z9mrfrOwzP5+3b9/m+PHjOXfuXIaGhvL48eOMjIykXq+nWq2mXq+nt7c3STI5OZlHjx6lWq1mbm7uk9+p1Wqt+r/V6/VMTU1lYGAgST4ZrPf29qZWq/3IlgEA4LsIxwEA4A/Q1dV1aCq7p6cnfX19h+4n7+npyfr6epJkdXU1zWYzRVEces/79+9z4sSJI7/TaDQ+umv8xo0bGRsby/z8fC5evJhr1659NCF+7Nix7O7ufnN/AADwownHAQDgD/DPa0ySpKOj45Nr+/v7SZKdnZ2USqWsrKykVCodqvvcDz+7u7vz7t27Q2szMzO5fv16FhYW8vDhw9y6dSv379/P1atXWzVbW1s5efLkN/UGAAA/g3AcAADa0ODgYJrNZtbX13PhwoWv2vfy5cuP1ouiSFEUmZiYyOjoaKrVaisc39vby+vXrzM4OPjDzg8AAN/rr999AAAA4NcriiLlcjmVSiUPHjzImzdvsri4mNu3b2dhYeHIfZcuXcrTp09bz41GI+Pj43ny5ElqtVqePXuWpaWlnD17tlXz/PnzdHZ25vz58z+1JwAA+BrCcQAAaFPVajWVSiU3b95Mf39/rly5kqWlpZw6derIPeVyOS9evMirV6+SJKVSKZubm6lUKimKIsPDw7l8+XJmZ2dbe+7du5dyuZyurq6f3hMAAHypjoODg4PffQgAAOD/Y2pqKtvb27l79+6/1m5sbKS/vz/Ly8s5c+bMLzgdAAB8GZPjAADAV5mens7p06dbP/f8nLW1tdy5c0cwDgDAf47JcQAAAAAA2o7JcQAAAAAA2o5wHAAAAACAtiMcBwAAAACg7QjHAQAAAABoO8JxAAAAAADajnAcAAAAAIC2IxwHAAAAAKDtCMcBAAAAAGg7wnEAAAAAANrOB60Ya3UhES7fAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gU5d7G8e+m94QaaggIiYGDNEGKdDQR5FAEpEiRokdFwIqKCoiCDUWOHgTBUEVABZWOHBCkiXBAXjoxdAJISQghIeV5/4g7sqSQILiB3J/rmiu7M/PM/KYsl9777DM2Y4xBRERERERERERERKQQcXF2ASIiIiIiIiIiIiIifzeF4yIiIiIiIiIiIiJS6CgcFxEREREREREREZFCR+G4iIiIiIiIiIiIiBQ6CsdFREREREREREREpNBROC4iIiIiIiIiIiIihY7CcREREREREREREREpdBSOi4iIiIiIiIiIiEiho3BcRERERERERERERAodheMiIiIictONGDECm81Gs2bNnF3KbW3p0qXYbDa8vLxu6Hb37NmDzWbDZrMRFxf3t7eXgu3TTz/FZrNx5513OrsUERERkXxROC4iIiJyBXuIm9dJbl+XLl0iMDAQm83GwIED89xu7dq11v3xzTff3MQKxS4lJYVJkyYRGRlJmTJl8PT0JDAwkLCwMFq0aMGwYcNYtmwZKSkp2bZPSEjggw8+oHnz5pQsWRIPDw+KFi1KREQEUVFRjBo1itWrV5ORkXHNWj788EPr+rds2TLfx3L+/HnGjRtHmzZtCAkJwcfHB29vb8qXL0+bNm346KOPOHXqVI7tFy9eTNeuXbnjjjvw8fHBx8eHihUr0qBBAwYOHMicOXM4c+ZMvusSERERuR25ObsAERERkYIqODjY2SWIE3l7e9OtWzcmTpzIF198wdixY/H09Lxmu88//xyAEiVK0LZt25tdpgM/Pz/Cw8PzVOftIjY2ltatW7Nnzx5rnoeHB66ursTExLB//35WrVrF6NGj2bBhA/Xr13dov2XLFv75z39y/Phxa563tzcZGRns3buXPXv2sGzZMgBOnDhBqVKlcq1nypQp1utVq1YRGxtLxYoV83QsEyZM4OWXXyY+Pt6a5+Pjg4eHB0ePHuXo0aMsXryYl19+mZEjR/LCCy9Y6126dIlu3brx7bffWvNcXFwICgri2LFjHDx4kI0bN/LJJ58wZswYXnrppTzVJCIiInI7U89xERERkRzExcVdc5LbW79+/QA4d+4cCxYsuOb6iYmJzJs3D4CePXvi7u5+U+u72r333suePXvYvn3737pfZ0lNTaVt27bs2bMHPz8/Ro8ezdGjR0lOTubs2bNcvHiRDRs28Nprr2UbUJ87d442bdpw/PhxgoOD+fjjjzl9+jRJSUmcP3+ehIQEVq1axXPPPZenL8s2bdrEzp07CQ4OpkuXLhhjiI6OztOxPPfcczz55JPEx8dTvXp1Zs6cyenTp7l48SLnz5/n4sWLLF68mG7dupGSksLXX3/t0H7w4MFWMP7YY4+xY8cOLl++zJkzZ0hOTmbXrl189NFH1K9fX796EREREfmDwnERERERkRzUrVuX6tWrA3/2CM/N3LlzuXjxIvBnsC43z9KlS9m5cycAM2bM4OWXX6Zs2bJW+Ovl5UX9+vV54403OHDgALVq1XJoP3PmTE6ePGlt66mnnqJ48eLWcj8/P5o1a8b777/PkSNHKFGiRK712HuNd+vWjb59+wIwderUaw7HMm3aND744AMAHnnkEbZs2UKPHj0cavHx8eGBBx7giy++4JdffiE8PNxadvbsWSuEHzx4MBMnTuQf//gHrq6uQGYP8oiICAYNGsSGDRsYNGhQrvWIiIiIFBYKx0VERERukCeeeAKbzUZQUBAHDx7Mdp0JEyZgs9lwc3NjzZo1Dsv+7//+jxEjRtCiRQvuuOMOvL29CQgIoFatWrz66qv8/vvvOe47NDQUm83G1KlTSUpKYsSIEURERODj40OZMmXo2bMnsbGx1vq///47Q4cOJSwsDG9vb0qVKkX//v2toPBqVz9Qc+7cuTRt2pSiRYvi6+tLnTp1+Pjjj0lPT8/fSbvC6dOnefXVV6lVqxaBgYF4eXlRqVIl+vXrZwWgzmAPuX/44QeOHDmS67r2AL1+/fpUrVrVYdmBAwcYM2YMkZGRVKlSBV9fX/z8/KhWrRrPPvssR48ezXG79t6+b7/9NikpKbzzzjvUrl3bGhN948aNQO4P5MzIyGDFihUMHDiQe+65h7Jly+Lh4UHx4sVp3rw5n332GWlpaXk6J7t376Znz56ULVsWT09PKlSowFNPPfWXfk2Rnp7OtGnTiIqKssb9LlGiBFFRUcydOxdjTJY227ZtA8Bms11zCBsXF5csw83Y24eEhFCzZs1c27u7u1thc3YuXrzIl19+CUDv3r1p1aoVZcqU4ciRI6xYsSLHdsnJyQwdOhSAmjVrMmXKlGv+4qBWrVoOPdJ37txpXbt27drl2hYyh43JyYoVK+jYsSOlS5e27o/77ruPGTNm5GnM9SuFh4djs9l45ZVXcl1v8eLF1r+L2d1DMTExPP3000RERODn54ePjw8RERG5fm6ufkjo8uXLadu2LaVKlcLV1ZV//etf+ToWERERuU0ZEREREbEMHz7cAOZ6/jMpKSnJVKtWzQCmQYMGJjU11WH5jh07jJeXlwHM66+/nqV9hQoVrH17eXmZokWLGpvNZs0rW7as2bNnT7b7trcdN26cqV69urUNb29vq33p0qVNbGysiYmJMRUrVjSA8fHxMR4eHtY6VapUMfHx8Tmel6ZNm5oXX3zRAMZms5kiRYoYFxcXq31kZKRJTk7OtX12VqxYYYKCgqztuLu7G19fX+u9h4eHmTZtWh6uwo33+++/W+do1KhROa63b98+q95JkyZlWX7PPfc4HE/RokUdzl3RokXNpk2bst22ve1rr71m6tatawDj5uZmnbMNGzYYY4xZsmSJAYynp2eWbezevdvaF2D8/f1NQECAw7wWLVpke/2ubDtv3jzr2vj7+1v3NGBKlChhfv3111zbnzhxIsvyU6dOmQYNGjjUEhgY6PC+U6dOWT5Tb7zxhrX88OHD2V+YXPTt29cAxtvb26SkpOS7/ZWio6MNYKpXr27Ns39WOnfunGO76dOnO5zb67FmzRprG9OnT7+ubWRkZJgnn3zS2o798+3q6urw+U5MTMzSdsKECQYw4eHhDvNHjRplABMSEmIyMjJy3HfXrl0NYKKiorIsmzJlinF3d3f4t/HKey4oKMisWrUq15reeecdh/Xd3d3N448/nv+TJCIiIrcdheMiIiIiV/gr4bgxmQG4PZB+5ZVXrPlXBueNGjUyaWlpWdr26tXLTJ061Rw6dMial5KSYn744QdTr149A5jatWtnu197OB4UFGRCQ0PN8uXLTXp6uklLSzPLly83JUqUMIDp0qWLqVevnqlZs6YVqF6+fNnMmTPH+Pj4GMAMGzYsx/NiDywHDhxoTp06ZYwxJj4+3owaNcoK8p955pkc22cXjv/666/WORswYIDZtWuXdX4OHTpkBXZubm5m8+bNuZz9m6dLly4GMHfccUeOId9LL71kAOPr62sSEhKyLH/qqafMp59+ag4cOGBtIzU11axfv960bNnSAKZChQrZhrT2cNzPz88EBgaaGTNmmEuXLhljMoPlc+fOGWNyD8cPHDhgevXqZRYtWmTOnj1rzY+PjzeTJ082wcHBBjAvv/xylrZXhtuBgYGmdu3a5pdffjHGGJOenm4WL15sypQpY52jixcv5tj+6nA8NTXVCsbvvvtus2TJEpOUlGSMMebChQtm8uTJpnjx4gYwL730kkPbpUuXOgS32QXvufn000+t9r1797bO4/W49957DWDee+89a97OnTutL0N+//33bNv17t3b+kLIftz5FR8fbzw9PQ1gQkNDzdatW/O9jffee886FwMHDjQnT540xmReg3fffdcKyXv37p2lbU7h+MGDB61/F7ILsI0xJiEhwfr8f/HFFw7Lvv/+e2Oz2YyHh4cZNmyYOXTokMnIyDDp6elm586dpn379gYwRYoUMcePH8+2Jh8fH+Pi4mIGDBhgjh49aozJvOdiYmLyfY5ERETk9qNwXEREROQKV4bjwcHBuU6DBg3Kdhv2UMbFxcX897//NcYY8/jjj1vh9ZXhd15duHDBCi/Xrl2bZbk9HPf29jb79+/PsnzKlCkOx5VdUPfaa69Z4ebVrjwvPXv2zLbGV1991Qqxjx07lm377MLxFi1a5BjK2g0aNMgApl27djmuczMtW7bMOv7sQr60tDQrHO7Tp0++t5+ammruvPPOHHsPX9nrfPny5TluJ7dw/FrWrl1rhd9X99C+MtwODg42Z86cydJ+27Ztxs3NzQBm/PjxOba/OsCeNGmSAcxdd91lLly4kG1t69evt+7vK4P9jIwM06RJE2vbbm5uplGjRubZZ581s2bNMgcOHMj1mC9evGjCw8Ot9p6enqZly5bmpZdeMvPmzbPC1GvZs2ePAYyrq2uWkLZOnToGMn/VkZ277747S4/z62H//NqnatWqmQEDBphPP/3UbN26Ndsv5OwSEhKsXxE8+uij2a7z7rvvWtvesWOHw7KcwnFjjGnatGmu2/3888+tXyFc+eVAamqq9e9aTr8aycjIMJGRkQYwQ4cOzbYmwHTv3j3HYxcREZHCTeG4iIiIyBWuDIGvNWXXg9KuY8eOBjBlypQxEydO/MvDJhjzZ+/lMWPGZFlmD5EeeeSRbNsePXrUquG1117Ldp2ffvrJWufqoROuPC/Zhe/GZPZetfcAvToczSkcj42NtULN7AJXu19++cXqlZ1byHezpKenm5CQEAOYXr16ZVm+aNEi6/ysWbPmuvZh/wJg8ODBWZbZw/E6derkuo2/Eo4bY6xfBvzvf/9zmH9luJ3b0DL2+75hw4Y5tr86HLcf28SJE3OtrXLlygYwCxYscJifkJBgBgwYYAXzV08VK1Y0o0aNyjF4j4uLMx07dnQYwujqkPnf//53rsOu2IdPyW5YkPHjx+caftuHOMppyKG8ysjIMO+//77D8ERXTkFBQebxxx83Bw8ezNJ2zpw5BjKHUsluuTGZv2Kx9+C/8lcxxuQejk+ePNkAJiAgINue8c2bN882PLffy2XLls11SJaZM2cawNSsWTPbmrIL80VERETs9EBOERERkRyYzI4EOU5Tp07Nse3kyZMJCQnh+PHjPP744wD079+fTp065brPhQsX8vDDD1OpUiV8fX2x2WzWNHfuXIBcH9xYr169bOcHBwdbr+vWrXvNdc6fP5/tOuXLl6dy5crZLgsICKBOnToA/PLLLznWeKV169YBmQ+LrFq1KqVKlcp2ioqKAjIfenjmzJk8bftGcnFxoU+fPgB89dVXXLhwwWG5/UGcYWFhNG7cOMftrF69mp49exIeHo6fn5/D9R0/fjyQ+/Vt1KjRXzqO5ORkPvnkE+677z5Kly6Np6enQw3x8fHXrKFFixbXXLZly5ZsH6CZXT1btmwB4OWXX87x+pcqVYpDhw4BWH/t/P39mTRpEkeOHGHChAn06NGDO++8ExeXzP/ViY2N5bXXXqN27dpZ2kLmff/1118TExPDBx98QKdOnahUqRI2mw3IfNjl008/TePGjbP9XKSlpTF9+nQAevXqlWV5t27dcHd3Z8eOHWzevPma5+R62Ww2nnvuOY4dO8bcuXN54oknuPvuu62Hs54/f56JEydSvXp1li9f7tDW/nmtXLkyFSpUyHb7Hh4eNG3a1GH9vOjcuTPe3t4kJCTw7bffOiw7cuQIq1evBrKeO/u/DadPn6Z06dI53hdPP/00kPW+sAsMDOQf//hHnusVERGRwkXhuIiIiMhNUKRIET755BPrfaVKlfjoo49yXD8jI4Pu3bvTtm1b5s6dS2xsLJcvX6ZIkSIEBwcTHBxshVwXL17McTv+/v7Zzndzc8vXOqmpqdmuU7Zs2Rz3feXyU6dO5bqe3fHjx4HM4z958mSO0++//261SUpKytO2169fn2OgNmfOnDxt40qPPvooNpuNpKQkvvzyS2v+77//zvfffw9A3759c2w/ePBgmjdvzsyZM9m3bx/JyckO19fX1xfI/fqWLFky33XbnThxglq1ajFw4EB++OEH4uLicHV1pXjx4lYN9kA5txpyuwfsy1JSUkhISLhmTadPnyYtLQ2As2fP5noP2O/JnK5/qVKl+Ne//sXMmTPZvXs358+f55tvvqF+/foA7N+/n0ceeSTHWipWrMgzzzzDvHnziImJ4fTp00yfPp2IiAgAfv75ZwYOHJil3eLFi4mLiyMgIID27dtnWV68eHHatGkD/PklypWKFStmHf+N4OPjQ+fOnfnPf/7D5s2bSUhIYM2aNXTv3h2ACxcu0KVLF4cvmeyf12t9vsuVK+ewfl4EBATQrl07AGbMmOGwbNasWRhjqFChghW829n/bbh8+XKu98W5c+eAnO+LEiVK5LlWERERKXwUjouIiIjcJJ999pn1+tixYxw4cCDHdadMmcLs2bNxdXXl9ddfZ//+/aSkpHD27Fni4uKIi4uzep3npUfurSI9PR3I7L17rZ769ik0NDRP284tVLt06VK+aw0NDaVly5YAREdHW/NnzZrF5cuXcXV1zbbnMMD3339v9QwfPHgwO3fuzHJ9n3jiCSD36+vq6prvuu0GDhzInj17KFmyJNOnT+fkyZMkJSVx+vRpq4aiRYtes4YbyX79AVatWpWn6//SSy/ladv+/v506NCBn376iYYNGwLw008/sWfPnjy1L1asGD179mTTpk3ccccdAMyZMyfLrwamTJkCQEJCAj4+Pg498e3TggULAJg9e3aWe69atWoA7Nmzh+Tk5DzVlh/u7u40btyYWbNm8eKLLwIQHx/PvHnzbvi+cmL/XCxfvpyTJ09a8+1heY8ePaye+nb2e6Np06Z5ui9yOnd/5TMjIiIitz+F4yIiIiI3wccff8x3332Hq6srVatWJSUlha5du+bYu9HeE7l///6MHDmSypUrW7147eLi4m563ddy7NixPC3Paw/nUqVKAZm9r3PrrXw9mjVrlmOQZh8iJb/69esHwIYNG6yQ1R6Ut27dmtKlS2fbzn5927Vrx7hx46hatWqW0O5mXt+kpCSrd/vEiRPp2bNnlmuUkpKS43A6V8rtHrAv8/T0JCAg4JrbKlmypBWK5jQsxl/l6upqXTeAvXv35qu9v7+/1es6LS2N3377zVoWFxfH4sWL87yt+Ph4vvrqK4d59i9cUlNTWbhwYb5qyy/7EE/geB7s90Juw+lcuTy/v2C4//77CQ4OJi0tjdmzZwOwdetWdu3aBWQ/HI3934abdV+IiIiIgMJxERERkRtux44dvPDCCwC8/vrrLF68mKCgIHbv3s0zzzyTbZsjR44AUKtWrWyXJyYmsmnTpptTcD4cOXKEmJiYbJdduHDBGj/67rvvztP27GNop6ens2TJkhtT5E3UoUMHq3f1559/zpYtW9i+fTuAQwB7tWtd3/T0dGvs5ZshLi7OGpYkpxpWr15tDXGSm1WrVl1zWZ06dbL0BM6Oj4+PVY89vL8Z/Pz8rNeenp43rP20adNIS0ujXLlyXLhwIdfJHkxfPbRKp06drPH+33rrrRyHNLpaRkbGDTsO++c1JiYmxzA6NTWVH3/8Ecj5uQU5cXV1tb5gsPcWt/+tV68e4eHhWdrY/204ePAg//d//5ev/YmIiIjklcJxERERkRvo0qVLdO3aleTkZO69916GDRtGhQoVmDRpEgCTJk3i66+/ztIuMDAQwAparzZq1Kgswzk4y6hRo7KdP3bsWC5duoSbmxsPPfRQnrZVpUoVmjVrBsCwYcOsB0Lm5EaNy3y9PD096dGjB5AZ7tmHzgkODrbGlc7Ota7v+PHjr9lr96+w7z+nGi5fvsxrr72Wp219/PHH1jjPV9qxY4f1wMWHH344z7U99thjAMyfP58ffvgh13Wvvv7bt2+/Zo97Y4z1wEwXFxdq1qxpLdu4ceM177nU1FSrt3NgYCCVKlWyltmD7k6dOuHn55fr1LVrVwB+/PFHhy+YvL29GTNmDADbtm2jb9++1wzIf/31V4fx7ePi4nK8t640bdo063Xt2rWt161btyYgIABjDCNHjsy27b///W9r7H/7seSHvXf41q1b+fXXX61zmtNQRJGRkYSEhAAwZMiQa35x4+x/G0REROTWpHBcRERE5AZ65pln2LVrF0FBQcyaNcsaOqNz585Wz+IBAwZYPYntoqKigMxxyidNmsTly5eBzNDrmWee4d1337Ue3OdMgYGBTJs2jcGDB1tB2YULFxg9ejRvvPEGAE899RRlypTJ8zb//e9/4+fnx759+6hfvz7ffvutw/jBx44dY8aMGbRs2ZKhQ4fe2AO6DvbrGBcXZ4XjvXr1cnig6dXs13f+/Pm888471vA6Z8+eZeTIkTz//PM39foWK1bM6h08aNAg1qxZY40rvm3bNiIjI9m5cyfe3t7X3NalS5e4//77+d///gdk9mBeunQprVu3Ji0tjUqVKuXai/5qffv2pUmTJmRkZNC2bVvefvtth8A7MTGRlStX8vjjj1sPx7RbsWIFoaGhdOvWjW+++cahXXJyMj/++CNt2rRh0aJFAHTv3t0argNg5syZhISEMGDAABYvXuwQsF68eJGFCxfSpEkTtm3bBsDTTz+Nh4cHAGvXrmXfvn0AdOnS5ZrH2aRJE2ts/at7jz/66KMMGjTIqqlOnTp88cUXDg/NvHTpEitWrKBXr17Url3bYez0o0ePUrNmTVq0aMFnn33G/v37reublpbGrl27ePrpp63x2itXrsw///lPq72fn5/15Uh0dDRPP/00p0+fts7D2LFjrfHKe/fuzT/+8Y9rHu/VatasabXr168fJ0+exN3dPceg3cPDg08//RQXFxdWrlxJ8+bNs/y64cCBA3zyySfUrl0724edioiIiFyTERERERHL8OHDDWAAExwcfM1p3bp1Vtuvv/7aajtv3rws27548aK58847DWAaN25s0tLSrGXnzp2zlgHGxcXFBAUFGZvNZgDz+OOPm969exvA9O7dO8u2K1SoYAATHR2d47HZt71q1apsl8fGxlrrxMbGZntemjZtal588UUDGJvNZooUKWJcXV2tdq1atTKXLl3K8bw2bdo0233/9NNPplSpUtZ2XF1dTbFixYy3t7c1DzD9+/fP8fj+TnXq1HGoa/fu3bmun5ycbO655x5rffu5s1/fDh06mBdeeMEAJjIyMkt7e9sxY8bkup8lS5YYwHh6emZZtn79eofz6eXlZfz8/Axg3N3dzZw5c0xwcLABzOzZsx3a7t692+He9vX1NYDx9/d32GaxYsXMtm3bsuz7yvYnTpzIsvzs2bMmMjLS4ZwGBgaawMBA6xwBxs/Pz6HduHHjHNoAxtvb2xQpUiTL/DZt2pjExESH9kOGDMmynq+vrwkICMgyv1+/fiY1NdVqa/88li9f3mRkZOR6XeyefPJJA5iyZcs6fP7txo8fn2Xfvr6+JjAw0GGen5+fGTdunNXuf//7X5Z63d3dTdGiRY2Li4vD/LCwMLNv374s+87IyLDqy+nzff/992c5h8YYM2HCBAOY8PDwXI//3XffdailXbt21zxnc+bMse43+3EVK1bMeHh4OGzr/fffv66aREREpHBTz3ERERGRHJw8efKak72H95EjR+jfvz+Q2SuyU6dOWbbn4+PD7Nmz8fT0ZO3atbz55pvWsqCgINavX8+QIUMIDQ3F1dUVNzc3mjVrxuzZs/n000//noPOg3feeYcvv/ySe++9F2MMHh4e1KxZk48++oilS5fi5eWV7202atSIffv28f7779OkSROCgoI4f/48rq6uRERE8MgjjzBr1izGjRt3E44o/67sGd2wYUPuvPPOXNf39PTkv//9L8OGDaNy5cpWL/OGDRvy2Wef8fXXX2d5AOuN1qBBAzZt2sRDDz1EsWLFSE9PJzAwkG7durFx48Y89X4GuPfee9m8eTM9evTA39+f9PR0ypcvzxNPPMGOHTuoUaNGvmsrUqQIS5Ys4fvvv6dTp06UL1+e5ORkkpOTKVeuHFFRUbzzzjvs2LHDod3gwYPZunUrY8aMoW3btlSuXBmbzUZCQgIBAQFUq1aNPn36sGzZMhYuXIivr69D+7Fjx7Ju3TqGDx9OZGQkFSpUID09nYsXLxIUFEStWrV48skn2bhxI5MnT7au24ULF5g3bx6QOaRKXsZXhz97mB87doxly5ZlWf70009z8OBBxo4dS1RUFOXKlSMjI8M6D23atOHjjz/m0KFDDB482GpXs2ZNDh8+zIQJE+jevTvVq1fH29ub+Ph4vLy8qFixIu3btyc6OpodO3ZQpUqVLPu22Wx88sknLFu2jPbt21OyZEkSExMJDAykZcuWTJs2jSVLlmQ5h/nRo0cPhwfR5jSkypW6dOnCgQMHeO2117j77rvx9fXl/PnzeHt7U7NmTR5//HG+++47q+e9iIiISH7YjPnj93YiIiIiIjkYMWIEI0eOpGnTpjf1wZEiIiIiIiJ/F/UcFxEREREREREREZFCR+G4iIiIiIiIiIiIiBQ6CsdFREREREREREREpNBROC4iIiIiIiIiIiIihY4eyCkiIiIiIiIiIiIihY56jouIiIiIiIiIiIhIoePm7AJuBRkZGRw/fhx/f39sNpuzyxERERERERERERGRbBhjuHDhAmXKlMHFJfe+4QrH8+D48eOUL1/e2WWIiIiIiIiIiIiISB4cOXKEcuXK5bqOwvE88Pf3BzJPaEBAgJOrEREREREREREREZHsJCQkUL58eSvTzY3C8TywD6USEBCgcFxERERERERERESkgMvL8Nh6IKeIiIiIiIiIiIiIFDoKx0VERERERERERESk0FE4LiIiIiIiIiIiIiKFjsYcFxERERERERERkQIhPT2d1NRUZ5chBZy7uzuurq5/eTsKx0VERERERERERMTpEhMTOXr0KMYYZ5ciBet/CXcAACAASURBVJzNZqNcuXL4+fn9pe0oHBcRERERERERERGnSk9P5+jRo/j4+FCiRAlsNpuzS5ICyhjD6dOnOXr0KFWqVPlLPcgVjouIiIiIiIiIiIhTpaamYoyhRIkSeHt7O7scKeBKlCjBwYMHSU1N/UvhuB7IKSIiIiIiIiIiIgWCeoxLXtyo+0ThuIiIiIiIiIiIiIgUOgrHRURERERERERERKTQUTguIiIiIiIiIiIicgM1a9aMIUOG3PL7uN0pHBcRERERERERERGRQkfhuIiIiIiIiIiIiIgUOgrHRUREREREREREpEAxxpB0Oc0pkzEmX7VevHiRXr164efnR+nSpRk7dqzD8pSUFJ5//nnKli2Lr68v99xzD6tXr7aWnzlzhm7dulG2bFl8fHyoXr06s2fPztc+5Pq4ObsAERERERERERERkStdSk2n6uvLnLLvXW9E4uOR99j0hRde4Mcff+Tbb7+lZMmSvPLKK2zdupWaNWsCMHDgQHbt2sWXX35JmTJlmD9/PlFRUezYsYMqVaqQnJxMnTp1GDp0KAEBASxatIiePXtyxx13UK9evTztQ66PwnERERERERERERGR65CYmMiUKVOYOXMmLVu2BGDatGmUK1cOgMOHDxMdHc3hw4cpU6YMAM8//zxLly4lOjqa0aNHU7ZsWZ5//nlrm08//TTLli1j7ty51KtX75r7kOuncFxEREREREREREQKFG93V3a9Eem0fedVTEwMly9f5p577rHmFS1alPDwcAB27NhBeno6YWFhDu1SUlIoVqwYAOnp6YwePZq5c+dy7NgxLl++TEpKCj4+Pnnah1w/heMiIiIiIiIiIiJSoNhstnwNbVJQJSYm4urqypYtW3B1dQzd/fz8AHjvvff46KOPGDduHNWrV8fX15chQ4Zw+fJlZ5RcqOiBnCIiIiIiIiIiIiLX4Y477sDd3Z1NmzZZ886dO8e+ffsAqFWrFunp6Zw6dYrKlSs7TKVKlQJg3bp1tGvXjkceeYQaNWpQqVIlq31e9iHX79b/+kVERERERERERETECfz8/OjXrx8vvPACxYoVo2TJkgwbNgwXl8w+yWFhYfTo0YNevXoxduxYatWqxenTp1m5ciV33XUXbdq0oUqVKnz11VesX7+eIkWK8MEHH3Dy5EmqVq2ap33I9VM4LiIiIiIiIiIiInKd3nvvPRITE2nbti3+/v4899xzxMfHW8ujo6N58803ee655zh27BjFixenfv36PPjggwC8+uqr/Pbbb0RGRuLj48Njjz1G+/btHbZxrX3I9bEZY4yziyjoEhISCAwMJD4+noCAAGeXIyIiIiIiIiIicltJTk4mNjaWihUr4uXl5exypIDL7X7JT5arvvciIiIiIiIiIiIiUugoHBcRERERERERERGRQkfhuIiIiIiIiIiIiIgUOgrHRURERERERERERKTQUTguIiIiIiIiIiIiIoWOwnERERERERERERERKXQUjouIiIiIiIiIiIhIoaNwXEREREREREREREQKHTdnFyAFXNJZiF0Drh5/TO5/TB5X/M3htYs7uOj7FxERERERERERESl4FI5L7n7fD/N6X397F7fcg3RruUf2obunP/iXAv/Sf/z947V3EbDZbtxxioiIiIiIiIiI5FOzZs2oWbMm48aNu2n7CA0NZciQIQwZMiTHdUaMGMGCBQvYtm3bTavjdqRwXHLn4QMVGkH65T+m1Gxep/05z6Q7ts9Iy5xSb3Bdrh7gV+qKwLyUY4huX6YQXUREREREREREbiM2m4358+fTvn17Z5dyy1M4LrkrVR0eXZz39TPSrwjNswvSr3idkZr7OmkpkBwPF+LgwglIPJn5N+lM5jrxhzOn3Lh6gn9w1tDcv7TjfK8ghegiIiIiIiIiIiKFiMJxubFcXDMnd6+bt4+0y38E5X+E5hfiIDHO8f2FOLh0FtJT4PzhzCk3bl7gd0VYXrIqNHgKPP1u3nGIiIiIiIiIiEj2jIHUJOfs290nX50oMzIyePHFF5k8eTIeHh7861//YsSIEQCcP3+e559/nm+//ZaUlBTuvvtuPvzwQ2rUqAFATEwMzz77LBs3buTixYtEREQwZswYWrVqle2+QkNDAejQoQMAFSpU4ODBg9byGTNm8Nprr3Hu3DkeeOABPvvsM/z9/Zk+fTrPPPMMx48fx9PT01q/ffv2+Pv7M2PGjHycoNuHwnG59bh5QFD5zCk3qcl/hugO4fnJK0L0E5B8HtKS4fyhzAlg1wLYPhsemgzl7r75xyQiIiIiIiIiIn9KTYLRZZyz71eOg4dvnlefNm0azz77LJs2bWLDhg306dOHRo0acd9999G5c2e8vb1ZsmQJgYGBTJw4kZYtW7Jv3z6KFi1KYmIirVu35q233sLT05Pp06fTtm1b9u7dS0hISJZ9bd68mZIlSxIdHU1UVBSurq7WspiYGBYsWMDChQs5d+4cXbp04e233+att96ic+fODBo0iO+++47OnTsDcOrUKRYtWsTy5cv/+jm7RSkcl9uXuxcUqZA55Sb1kmNP9ITjsOE/cC4WptwPTYdC4+fAVR8XERERERERERFxdNdddzF8+HAAqlSpwscff8zKlSvx9vbm559/5tSpU1Zv7ffff58FCxbw1Vdf8dhjj1GjRg2rFznAqFGjmD9/Pt999x0DBw7Msq8SJUoAEBQURKlSpRyWZWRkMHXqVPz9/QHo2bMnK1eu5K233sLb25vu3bsTHR1theMzZ84kJCSEZs2a3fBzcqtQ2ifi7g1FQjMnu5o9YNFz8H9fwerRcOAH6DgJilZ0VpUiIiIiIiIiIoWHu09mD25n7Tsf7rrrLof3pUuX5tSpU2zfvp3ExESKFSvmsPzSpUvExMQAkJiYyIgRI1i0aBEnTpwgLS2NS5cucfjwNYYIzkZoaKgVjF9Zh92AAQOoW7cux44do2zZskydOpU+ffpgK8TP4VM4LpId7yDoNAXCIjND8qM/w6f3wgPvQs3ueniniIiIiIiIiMjNZLPla2gTZ3J3d3d4b7PZyMjIIDExkdKlS7N69eosbYKCggB4/vnnWbFiBe+//z6VK1fG29ubTp06cfny5RtWh12tWrWoUaMG06dP5/7772fnzp0sWrQo3/u5nSgcF8nNXV0gpD588zgcXg/fPgn7l8GD48CnqLOrExERERERERGRAqp27drExcXh5uZmPUjzauvWraNPnz7WAzYTExMdHrCZHXd3d9LT06+rpv79+zNu3DiOHTtGq1atKF/+Gs/0u825OLsAkQIvKAT6LISWw8HFDXZ9CxMaQswqZ1cmIiIiIiIiIiIFVKtWrWjQoAHt27dn+fLlHDx4kPXr1zNs2DB++eUXIHOM8m+++YZt27axfft2unfv7tDbOzuhoaGsXLmSuLg4zp07l6+aunfvztGjR/nss8/o27fvdR/b7ULhuEheuLhC42eh/w9QrErmgztntIdlwyA12dnViYiIiIiIiIhIAWOz2Vi8eDFNmjTh0UcfJSwsjK5du3Lo0CGCg4MB+OCDDyhSpAgNGzakbdu2REZGUrt27Vy3O3bsWFasWEH58uWpVatWvmoKDAzkoYcews/Pj/bt21/3sd0ubMYY4+wiCrqEhAQCAwOJj48nICDA2eWIs12+CMtfhV8+z3xfsho8NBmCqzq3LhERERERERGRW1RycjKxsbFUrFgRLy8vZ5dzW2vZsiXVqlVj/Pjxzi7luuV2v+Qny1XPcZH88vCFBz+EbnPApzic2gmTmsHGCXCNn72IiIiIiIiIiIg4w7lz55g/fz6rV6/mqaeecnY5BYLCcZHrFR4FT26AKvdDegosfQlmdoSEE86uTERERERERERExEGtWrXo06cP77zzDuHh4c4up0Bwc3YBIrc0v5LQfS5snpw51MpvqzIf1vnP8RDR1tnViYiIiIiIiIiIAHDw4EFnl1DgqOe4yF9ls0G9AfD4GihdAy6dhTmPwLdPQUqis6sTERERERERERGRbCgcF7lRSoRDvx/g3mcAG/xvJnx6LxzZ7OzKRERERERERERE5CoKx0VuJDcPaDUC+iyEgHJwLhY+j4TVb0N6mrOrExERERERERERkT8oHBe5GULvhSfWwT86gUmH1WMg+gE4+5uzKxMREREREREREREUjovcPN5B0GkKdJwMngFw9Gf4tHHmcCvGOLs6ERERERERERGRQk3huMjNdlfnzF7kFRrB5cTMB3XO7QVJZ51dmYiIiIiIiIiISKGlcFzk7xAUAr2/h5bDwcUNdn8HExpCzCpnVyYiIiIiIiIiItepWbNmDBkyJM/r79mzh/r16+Pl5UXNmjVvYmXXx2azsWDBAmeX8bdxc3YBIoWGiys0fhbuaA5fD4Az+2FGe6j/FLR8Hdy9nF2hiIiIiIiIiIjkwzfffIO7u3ue1x8+fDi+vr7s3bsXPz+/G1KDzWZj/vz5tG/f/oZsrzBRz3GRv1uZWvD4Gri7X+b7jZ/AZy3g5E7n1iUiIiIiIiIiIvlStGhR/P3987x+TEwM9957LxUqVKBYsWI3sTLJC4XjIs7g4QMPfgDd5oBPcTi1EyY1hw3/0cM6RURERERERKTQM8aQlJrklMnkI5u5cliV0NBQRo8eTd++ffH39yckJIRJkyZZ69psNrZs2cIbb7yBzWZjxIgRABw5coQuXboQFBRE0aJFadeuHQcPHnTYz+eff061atXw9PSkdOnSDBw40NonQIcOHbDZbNZ7gG+//ZbatWvj5eVFpUqVGDlyJGlpadby/fv306RJE7y8vKhatSorVqzIxxW6PWhYFRFnCo+CJzfAtwNh/zJY9jL4FIUaXZ1dmYiIiIiIiIiI01xKu8Q9X9zjlH1v6r4JH3ef62o7duxYRo0axSuvvMJXX33FE088QdOmTQkPD+fEiRO0atWKqKgonn/+efz8/EhNTSUyMpIGDRqwdu1a3NzcePPNN4mKiuLXX3/Fw8ODCRMm8Oyzz/L222/zwAMPEB8fz7p16wDYvHkzJUuWJDo6mqioKFxdXQFYu3YtvXr1Yvz48TRu3JiYmBgee+wxIHNol4yMDDp27EhwcDCbNm0iPj4+X2On3y7Uc1zE2fxKQvc5UP/JzPe/znVuPSIiIiIiIiIicl1at27Nk08+SeXKlRk6dCjFixdn1apVAJQqVQo3Nzf8/PwoVaoUfn5+zJkzh4yMDCZPnkz16tWJiIggOjqaw4cPs3r1agDefPNNnnvuOQYPHkxYWBh169a1guwSJUoAEBQURKlSpaz3I0eO5KWXXqJ3795UqlSJ++67j1GjRjFx4kQAfvjhB/bs2cP06dOpUaMGTZo0YfTo0X/z2XI+9RwXKQhsNri7L2z8D8SugeR48Ap0dlUiIiIiIiIiIk7h7ebNpu6bnLbv63XXXXdZr202G6VKleLUqVM5rr99+3YOHDiQZdzy5ORkYmJiOHXqFMePH6dly5b5qmP79u2sW7eOt956y5qXnp5OcnIySUlJ7N69m/Lly1OmTBlreYMGDfK1j9uBwnGRgqJ4FSgeDr/vhX3L4a7Ozq5IRERERERERMQpbDbbdQ9t4kzu7u4O7202GxkZGTmun5iYSJ06dZg1a1aWZSVKlMDF5foG/khMTGTkyJF07NgxyzIvL6/r2ubtSOG4SEFyZxv4aS/s+V7huIiIiIiIiIjIba527drMmTOHkiVLEhAQkO06oaGhrFy5kubNm2e73N3dnfT09Czb3bt3L5UrV862TUREBEeOHOHEiROULl0agI0bN/6FI7k1acxxkYIk4sHMv/t/gNRLzq1FRERERERERERuqh49elC8eHHatWvH2rVriY2NZfXq1QwaNIijR48CMGLECMaOHcv48ePZv38/W7du5d///re1DXt4HhcXx7lz5wB4/fXXmT59OiNHjmTnzp3s3r2bL7/8kldffRWAVq1aERYWRu/evdm+fTtr165l2LBhf/8JcDKF4yIFSZnaEFAWUi/Cbz86uxoREREREREREbmJfHx8WLNmDSEhIXTs2JGIiAj69etHcnKy1ZO8d+/ejBs3jv/85z9Uq1aNBx98kP3791vbGDt2LCtWrKB8+fLUqlULgMjISBYuXMjy5cupW7cu9evX58MPP6RChQoAuLi4MH/+fC5dukS9evXo37+/w/jkhYXNGGOcXURBl5CQQGBgIPHx8Tn+vEHkhln8Avw8CWo9Au0+cXY1IiIiIiIiIiI3XXJyMrGxsVSsWFFjYss15Xa/5CfLVc9xkYLmzj+GVtm7BNLTnFuLiIiIiIiIiIjIbUrhuEhBU6EheAVB0hk4UvgehCAiIiIiIiIiIvJ3UDguUtC4ukP4A5mvdy90bi0iIiIiIiIiIiK3KYXjIgWRfWiVPYtAjwUQERERERERERG54RSOixREd7QAN2+IPwxxvzq7GhERERERERERkduOwnGRgsjDByq3zHytoVVERERERERERERuOIXjIgWVNbSKwnEREREREREREZEbTeG4SEEVFgk2Vzi1C87EOLsaERERERERERGR24rCcZGCyqcohN6b+XrPIufWIiIiIiIiIiIicptROC5SkEW0zfyroVVERERERERERKQAmjp1KkFBQc4u47ooHBcpyMJbZ/498jNcOOncWkRERERERERERG4jCsdFCrLAslCmNmBgr4ZWEREREREREREpyC5fvuzsEq7LrVr3X6VwXKSgi3gw8+9uDa0iIiIiIiIiIoWDMYaMpCSnTMaYPNfZrFkzBg4cyJAhQyhevDiRkZGcP3+e/v37U6JECQICAmjRogXbt293aPf9999Tt25dvLy8KF68OB06dLCWnTt3jl69elGkSBF8fHx44IEH2L9/PwAJCQl4e3uzZMkSh+3Nnz8ff39/kpKSADhy5AhdunQhKCiIokWL0q5dOw4ePGit36dPH9q3b89bb71FmTJlCA8PByAlJYXnn3+esmXL4uvryz333MPq1asd9jV16lRCQkLw8fGhQ4cOnDlzJs/nq6Bxc3YBInINd7aFlW9A7BpIjgevQGdXJCIiIiIiIiJyU5lLl9hbu45T9h2+dQs2H588rz9t2jSeeOIJ1q1bB0Dnzp2tADswMJCJEyfSsmVL9u3bR9GiRVm0aBEdOnRg2LBhTJ8+ncuXL7N48WJre3369GH//v189913BAQEMHToUFq3bs2uXbsICAjgwQcf5IsvvuCBBx6w2syaNYv27dvj4+NDamoqkZGRNGjQgLVr1+Lm5sabb75JVFQUv/76Kx4eHgCsXLmSgIAAVqxYYW1n4MCB7Nq1iy+//JIyZcowf/58oqKi2LFjB1WqVGHTpk3069ePMWPG0L59e5YuXcrw4cP/6il3GpvJz1chhVRCQgKBgYHEx8cTEBDg7HKkMPq4Lvy+Dx6aAtU7ObsaEREREREREZEbKjk5mdjYWCpWrIiXlxcZSUlODcdd8hiON2vWjISEBLZu3QrATz/9RJs2bTh16hSenp7WepUrV+bFF1/kscceo2HDhlSqVImZM2dm2d7+/fsJCwtj3bp1NGzYEIAzZ85Qvnx5pk2bRufOnVmwYAE9e/bk5MmT+Pj4kJCQQHBwsBVkz5w5kzfffJPdu3djs9mAzGFTgoKCWLBgAffffz99+vRh6dKlHD582ArLDx8+TKVKlTh8+DBlypSxamrVqhX16tVj9OjRdO/enfj4eBYt+nP4365du7J06VLOnz+fzzN9/a6+X66UnyxXPcdFbgV3Pgg/fQC7v1c4LiIiIiIiIiK3PZu3N+Fbtzht3/lRp86fIf727dtJTEykWLFiDutcunSJmJgYALZt28aAAQOy3dbu3btxc3PjnnvuseYVK1aM8PBwdu/eDUDr1q1xd3fnu+++o2vXrnz99dcEBATQqlUrq4YDBw7g7+/vsO3k5GSrBoDq1atbwTjAjh07SE9PJywszKFdSkqKdTy7d+92GAIGoEGDBixdujSXM1RwKRwXuRXYw/EDP0BqMrh7XbuNiIiIiIiIiMgtymaz5WtoE2fy9fW1XicmJlK6dOks43QDBAUFAeCdz/D9ah4eHnTq1IkvvviCrl278sUXX/Dwww/j5uZm1VCnTh1mzZqVpW2JEiWyrdveztXVlS1btuDq6uqwzM/P7y/VXFApHBe5FZSpBf5l4MJx+G01hEc5uyIREREREREREblK7dq1iYuLw83NjdDQ0GzXueuuu1i5ciWPPvpolmURERGkpaWxadMmh2FV9u7dS9WqVa31evTowX333cfOnTv573//y5tvvulQw5w5cyhZsmS+hoiuVasW6enpnDp1isaNG2e7TkREBJs2bXKYt3Hjxjzvo6BxcXYBIpIHLi5wZ5vM13sWOrcWERERERERERHJVqtWrWjQoAHt27dn+fLlHDx4kPXr1zNs2DB++eUXAIYPH87s2bMZPnw4u3fvZseOHbzzzjsAVKlShXbt2jFgwAB++ukntm/fziOPPELZsmVp166dtZ8mTZpQqlQpevToQcWKFR2GYenRowfFixenXbt2rF27ltjYWFavXs2gQYM4evRojrWHhYXRo0cPevXqxTfffENsbCw///wzY8aMscYYHzRoEEuXLuX9999n//79fPzxx7fskCqgcFzk1hHxYObfvUsgI925tYiIiIiIiIiISBY2m43FixfTpEkTHn30UcLCwujatSuHDh0iODgYyHyI57x58/juu++oWbMmLVq04Oeff7a2ER0dTZ06dXjwwQdp0KABxhgWL16Mu7u7w366devG9u3b6dGjh0MNPj4+rFmzhpCQEDp27EhERAT9+vUjOTn5mj3Jo6Oj6dWrF8899xzh4eG0b9+ezZs3ExISAkD9+vX57LPP+Oijj6hRowbLly/n1VdfvVGn729nM8YYZxdR0OXnCaciN016KrxXGZLPQ5/FENrI2RWJiIiIiIiIiNwQycnJxMbGUrFiRby89Kw1yV1u90t+slz1HBe5Vbi6Q9gfY41raBUREREREREREZG/ROG4yK3EPrTK7oWgH32IiIiIiIiIiIhcN4XjIreSO1qCmzfEH4a4Hc6uRkRERERERERE5JalcFzkVuLhA5VbZr7W0CoiIiIiIiIiIiLXTeG4yK3mziuGVhEREREREREREZHronBc5FYTFgk2Vzi1E87+5uxqREREREREREREbkkKx0VuNT5FIbRR5mv1HhcREREREREREbkuCsdFbkV3ts38u2eRc+sQERERERERERG5RSkcF7kV3dkm8++RTZB4yrm1iIiIiIiIiIiI3IIUjovcigLLQpnagFHvcRERERERERERueVMnTqVoKAgp9agcFzkVmXvPb5H446LiIiIiIiIiMifbDYbCxYscHYZltDQUMaNG+cw7+GHH2bfvn1OqiiTwnGRW1XEH+OO//YjJMc7txYREREREREREZF88Pb2pmTJkk6tQeG4yK2qRDgUqwIZqbB/hbOrERERERERERG5YYwxpKakO2UyxuSr1q+++orq1avj7e1NsWLFaNWqFT/++CPu7u7ExcU5rDtkyBAaN24M/DmsyMKFCwkPD8fHx4dOnTqRlJTEtGnTCA0NpUiRIgwaNIj09HRrG6GhoYwaNYpu3brh6+tL2bJl+eSTTxyWA3To0AGbzWa9B5gwYQJ33HEHHh4ehIeHM2PGDIf6bDYbEydO5MEHH8THx4eIiAg2bNjAgQMHaNasGb6+vjRs2JCYmBirTUxMDO3atSM4OBg/Pz/q1q3LDz/8YC1v1qwZhw4d4plnnsFms2Gz2RyO/0rff/89devWxcvLi+LFi9OhQ4d8XYv8crupWxeRmyviQfjpw8yhVap3cnY1IiIiIiIiIiI3RNrlDCYN/tEp+37so6a4e7rmad0TJ07QrVs33n33XTp06MCFCxdYu3YtderUoVKlSsyYMYMXXngBgNTUVGbNmsW7775rtU9KSmL8+PF8+eWXXLhwgY4dO9KhQweCgoJYvHgxv/32Gw899BCNGjXi4Ycfttq99957vPLKK4wcOZJly5YxePBgwsLCuO+++9i8eTMlS5YkOjqaqKgoXF0zj2X+/PkMHjyYcePG0apVKxYuXMijjz5KuXLlaN68ubXtUaNG8cEHH/DBBx8wdOhQunfvTqVKlXj55ZcJCQmhb9++DBw4kCVLlgCQmJhI69ateeutt/D09GT69Om0bduWvXv3EhISwjfffEONGjV47LHHGDBgQI7nctGiRXTo0IFhw4Yxffp0Ll++zOLFi/N+4a6DwnGRW9mdbTPD8f0rIDUZ3L2cXZGIiIiIiIiISKFx4sQJ0tLS6NixIxUqVACgevXqAPTr14/o6GgrHP/+++9JTk6mS5cuVvvU1FSrNzdAp06dmDFjBidPnsTPz4+qVavSvHlzVq1a5RCON2rUiJdeegmAsLAw1q1bx4cffsh9991HiRIlAP6fvTsPj6q+3z5+z5qZJGQSCNkgkIgQQNlFVBQVogjWp7b28aGCu6IgIOKCiii4USiogALaxaVia/ur9ueGFQHFBZFVQEkAIRACWSAbIdtszx9DBkLCapKT5f26rlznJPnOOfcoCtx8+RxFRkYqLi4u+JrZs2frtttu09ixYyVJkyZN0nfffafZs2dXK8dvv/32YMbJkyfr4osv1tSpUzV06FBJ0v3336/bb789uL5Xr17q1atX8PNnnnlG77//vj744AONGzdOrVu3lsViUatWrarlOd5zzz2nESNGaPr06dWuXZ8ox4GmLKGP1CpeOrRf2vWl1GWo0YkAAAAAAAB+MavdrNFzLzfs3qerV69eGjJkiHr06KGhQ4fq6quv1u9+9ztFRUXptttu0xNPPKHvvvtOF110kd544w3deOONCgsLC74+NDQ0WIxLUmxsrJKSkhQeHl7ta7m5udXue/HFF9f4/PgHXh5v69atrYpwuQAAIABJREFUGj16dLWvDRw4UHPnzq32tZ49e1a7t3S08K/6Wnl5uYqLixUREaGSkhJNmzZNH3/8cfAPC8rKyrRnz56T5jnexo0bT7qzvD4wcxxoysxmqeu1gfOtHxqbBQAAAAAAoI6YTCbZQiyGfFTNxD4dFotFS5cu1ZIlS9S9e3fNnz9fKSkp2rVrl2JiYnTdddfp9ddfV05OjpYsWaI77rij2uttNlvN913L13w+39n/wzxDx96/6p9FbV+ryvTQQw/p/fff1/PPP6+vvvpKGzduVI8ePVRZWXlG93U6nb80+hmjHAeauq6/ChzTl0g+78nXAgAAAAAAoE6ZTCYNHDhQ06dP14YNG2S32/X+++9Lku666y69++67eu2119SpUycNHDiwTu753Xff1fi8W7duwc9tNlu1h3hKUrdu3fTNN99U+9o333yj7t27/6Is33zzjW677Tb95je/UY8ePRQXF6eMjIxqa+x2e408x+vZs6eWLVv2i7KcKcaqAE1d0qWSI1IqPSBlrpY6XmJ0IgAAAAAAgBZh9erVWrZsma6++mrFxMRo9erVysvLCxbVQ4cOVUREhJ599lk9/fTTdXbfb775RrNmzdL111+vpUuX6l//+pc+/vjj4PeTkpK0bNkyDRw4UCEhIYqKitLDDz+sG2+8UX369FFqaqo+/PBDvffee/r8889/UZbOnTvrvffe03XXXSeTyaSpU6fW2OmelJSklStXasSIEQoJCVF0dHSN6zz11FMaMmSIOnXqpBEjRsjj8eiTTz7R5MmTf1G+k2HnONDUWWxSl2sC51s/MjYLAAAAAABACxIREaGVK1dq+PDh6tKli5544gnNmTNHw4YNkySZzWbddttt8nq9uuWWW+rsvg8++KDWrl2rPn366Nlnn9ULL7wQfGCmJM2ZM0dLly5VYmKi+vTpI0m6/vrrNXfuXM2ePVvnnXeeXn31Vb3++uu64oorflGWF154QVFRUbrkkkt03XXXaejQoerbt2+1NU8//bQyMjLUqVOn4ANDj3fFFVfoX//6lz744AP17t1bgwcP1vfff/+Lsp2Kye/3++v1Ds1AcXGxXC6XioqKFBERYXQcoKafPpD+ebMU2UG6f5N0BrOxAAAAAAAAjFZeXq5du3YpOTlZDofD6Dh16s4771ReXp4++OCDOrleUlKSJk6cqIkTJ9bJ9Zqik/14OZMu19Cd416vV1OnTlVycrKcTqc6deqkZ555Rsf29X6/X08++aTi4+PldDqVmpqq7du3V7tOfn6+Ro4cqYiICEVGRurOO+9USUlJtTWbNm3SZZddJofDocTERM2aNatB3iPQIM4dIlkdUuEeKXuz0WkAAAAAAABavKKiIn399dd65513NH78eKPjoBaGluMzZ87UwoUL9fLLL2vr1q2aOXOmZs2apfnz5wfXzJo1S/PmzdOiRYu0evVqhYWFaejQoSovLw+uGTlypH788UctXbpUH330kVauXKnRo0cHv19cXKyrr75aHTt21Lp16/THP/5R06ZN02uvvdag7xeoN/YwqdOQwHkao1UAAAAAAACM9utf/1pXX3217r33Xl111VVGx0EtDB2r8qtf/UqxsbH6y1/+EvzaDTfcIKfTqbffflt+v18JCQl68MEH9dBDD0kK/IlLbGys3njjDY0YMUJbt25V9+7dtWbNGl1wwQWSpE8//VTDhw/X3r17lZCQoIULF2rKlCnKzs6W3W6XJD366KP6z3/+o7S0tBq5KioqVFFREfy8uLhYiYmJjFVB47bxHek/Y6TY86Ux35x6PQAAAAAAQCPRnMeqoO41i7Eql1xyiZYtW6Zt27ZJkn744Qd9/fXXwYH1u3btUnZ2tlJTU4OvcblcGjBggFatWiVJWrVqlSIjI4PFuCSlpqbKbDZr9erVwTWDBg0KFuNS4Emx6enpKigoqJFrxowZcrlcwY/ExMS6f/NAXetyjWSySDlbpPxdRqcBAAAAAAAAGjVDy/FHH31UI0aMUNeuXWWz2dSnTx9NnDhRI0eOlCRlZ2dLkmJjY6u9LjY2Nvi97OxsxcTEVPu+1WpV69atq62p7RrH3uNYjz32mIqKioIfmZmZdfBugXoW2lrqeEngnNEqAAAAAACgCTJwyAWakLr6cWJoOf7Pf/5Tixcv1jvvvKP169frzTff1OzZs/Xmm28aGUshISGKiIio9gE0Cd2uCxy3Uo4DAAAAAICmw2KxSJIqKysNToKmoOrHSdWPm7NlrYswZ+vhhx8O7h6XpB49emj37t2aMWOGbr31VsXFxUmScnJyFB8fH3xdTk6OevfuLUmKi4tTbm5utet6PB7l5+cHXx8XF6ecnJxqa6o+r1oDNAtdr5WWPCJlrpZKcqXwmFO/BgAAAAAAwGBWq1WhoaHKy8uTzWaT2Wzonl40Yj6fT3l5eQoNDZXV+svqbUPL8dLS0ho/0C0Wi3w+nyQpOTlZcXFxWrZsWbAMLy4u1urVqzVmzBhJ0sUXX6zCwkKtW7dO/fr1kyQtX75cPp9PAwYMCK6ZMmWK3G63bDabJGnp0qVKSUlRVFRUg7xXoEG42ksJfaR9G6T0T6R+txmdCAAAAAAA4JRMJpPi4+O1a9cu7d692+g4aOTMZrM6dOggk8n0i65jaDl+3XXX6bnnnlOHDh103nnnacOGDXrhhRd0xx13SAr8RzFx4kQ9++yz6ty5s5KTkzV16lQlJCTo+uuvlyR169ZN11xzje6++24tWrRIbrdb48aN04gRI5SQkCBJuummmzR9+nTdeeedmjx5srZs2aK5c+fqxRdfNOy9A/Wm67WBcnzrR5TjAAAAAACgybDb7ercuTOjVXBKdru9Tv52gclv4JT7Q4cOaerUqXr//feVm5urhIQE/f73v9eTTz4pu90uKTBc/amnntJrr72mwsJCXXrppVqwYIG6dOkSvE5+fr7GjRunDz/8UGazWTfccIPmzZun8PDw4JpNmzbpvvvu05o1axQdHa3x48dr8uTJp5WzuLhYLpdLRUVFzB9H45ebJi0YIFns0sM/Sw5+zAIAAAAAAKBlOJMu19ByvKmgHEeT4vdLL18gHdwh3fAXqcfvjE4EAAAAAAAANIgz6XKZbA80NyaT1PVXgfO0j4zNAgAAAAAAADRSlONAc9TtusBx+1LJU2FsFgAAAAAAAKARohwHmqOEvlJ4nFRZIu380ug0AAAAAAAAQKNDOQ40R2az1PXawHnah8ZmAQAAAAAAABohynGguepWNXf8E8nnNTYLAAAAAAAA0MhQjgPNVdJlksMllR6QMlcbnQYAAAAAAABoVCjHgebKYpO6XBM4T/vY2CwAAAAAAABAI0M5DjRnVXPHt34o+f3GZgEAAAAAAAAaEcpxoDk7N1WyOqTC3VLOFqPTAAAAAAAAAI0G5TjQnNnDpE6DA+dbPzI2CwAAAAAAANCIUI4DzV3XXwWOaZTjAAAAAAAAQBXKcaC5SxkmmcyBsSr5u4xOAwAAAAAAADQKlONAcxfaWuo4MHCe9rGxWQAAAAAAAIBGgnIcaAkYrQIAAAAAAABUQzkOtARdrw0c93wnleQamwUAAAAAAABoBCjHgZYgMlGK7y3JL6V/YnQaAAAAAAAAwHCU40BL0a1qtApzxwEAAAAAAADKcaClqJo7vvMLqbzY0CgAAAAAAACA0SjHgZaibVepdSfJWyntWGp0GgAAAAAAAMBQlONAS2EyHR2tsvUjY7MAAAAAAAAABqMcB1qSrtcFjtuXSp4KY7MAAAAAAAAABqIcB1qSdv2k8Dip8pC0a6XRaQAAAAAAAADDUI4DLYnZLHUdHjjf+qGxWQAAAAAAAAADUY4DLU3XI3PH0z+RfF5js7RAfr/f6AgAAAAAAAAQ5TjQ8iRdJoW4pMN5Uub3RqdpMSq9lZqwfIJS/ydV32Z9a3QcAAAAAACAFo9yHGhprHapy9DAedpHxmZpIXx+n574+gmtyFyh3NJcjVk2Rm9seYNd5AAAAAAAAAaiHAdaom5HRqukfSRR0Na7F9e9qCUZS2Q1WXVF+yvk8/s0Z90cPfrVoyrzlBkdDwAAAAAAoEWiHAdaok5DJEuIVJAh5fxodJpmbfHWxXrjxzckSdMHTte8wfM0ZcAUWU1WfbLrE9265FbtK9lnbEgAAAAAAIAWiHIcaIlCwqVOgwPnjFapN0t3L9XM72dKkib0maD/0+n/yGQyaUTXEXrt6tfU2tFaW/O3asRHI7Qme43BaQEAAAAAAFoWynGgpaoarbKVcrw+rM9Zr0dXPiq//Lqxy426q8dd1b7fP66//nHtP9StdTcVVBTo7s/u1jtb32EOOQAAAAAAQAOhHAdaqi7DJJNZytkcGK+COrOzcKfGLx+vSl+lrki8Qo8PeFwmk6nGuvjweL057E1de8618vq9mvH9DD317VOq8FYYkBoAAAAAAKBloRwHWqqwNlLHgYHztI+NzdKM5JXmacznY1RcWayebXtq1qBZspgtJ1zvtDo149IZeuiCh2Q2mfX+jvd1x6d3KOdwTgOmBgAAAAAAaHkox4GWrOu1gSOjVepESWWJxi4bq32H96ljREe9PPhlOa3OU77OZDLp1vNu1cLUhYqwR2jTgU0a8fEIbczd2ACpAQAAAAAAWibKcaAlqyrH96ySSvKMzdLEub1uTfpiktLy09Ta0VoLUxcqyhF1Rte4JOES/eNX/9C5kefqQNkB3f7f2/Xvbf+up8QAAAAAAAAtG+U40JJFdpDie0nyS+mfGJ2myfL7/Zq2appW7V8lp9WpBUMWKLFV4lldK7FVohYPX6yrOl4lj8+jaaum6dnvnpXb667j1AAAAAAAAC0b5TjQ0qUMDxwzvjI2RxM2f8N8ffDzB7KYLJp9+WydF33eL7peqC1Ucy6fo/F9xsskk95Nf1d3fXaXDpQdqKPEAAAAAAAAoBwHWrroLoFj0V5jczRR/0z/p/60+U+SpCcvflKD2g+qk+uaTCaN7jla8wfPV7gtXOtz12vERyP044Ef6+T6AAAAAAAALR3lONDSudoHjpTjZ2z5nuV6bvVzkqQxvcbot51/W+f3uDzxcr1z7TtKikhSTmmObv30Vn3484d1fh8AAAAAAICWhnIcaOmqyvHifZLPa2yWJuSHvB80eeVk+fw+/bbzbzWm15h6u1eyK1nvXPuOLm9/uSq8FXr868c1a80seXyeersnAAAAAABAc0c5DrR04bGS2Sr5vdKhbKPTNAm7i3dr/LLxKveW69J2l+qJi56QyWSq13u2srfSvMHzNLrnaEnS3376m+79/F4VlhfW630BAAAAAACaK8pxoKUzW6SIhMA5o1VO6UDZAd279F4VVBSoe5vumnP5HNnMtga5t9lk1vg+4/XCFS/IaXVq9f7VGvHxCKXnpzfI/QEAAAAAAJoTynEAkisxcCzKNDZHI1fqLtW4ZeO0t2Sv2oe31ytDXlGoLbTBc1zV8SotHr5Y7cPbK6skSzcvuVn/zfhvg+cAAAAAAABoyijHAUgR7QJHdo6fkMfn0UNfPqQfD/6oyJBILUxdqGhntGF5Okd11j9+9Q9dHH+xyjxleujLhzR3/Vx5mRsPAAAAAABwWijHARx9KCfleK38fr+e+e4ZfZX1lRwWh14e8rKSXElGx5IrxKUFqQt023m3SZL+vPnPGr98vIori40NBgAAAAAA0ARQjgM4Wo4XZxmbo5Fa9MMivbf9PZlNZs0aNEu92vYyOlKQ1WzVgxc8qD9c9geFWEL0VdZXuunjm7SzcKfR0QAAAAAAABo1ynEAzBw/ife2v6cFPyyQJE0ZMEVXdrjS4ES1u/aca/XWsLcUHxav3cW7ddMnN2nFnhVGxwIAAAAAAGi0KMcBMFblBFbuXamnVz0tSbqrx126MeVGgxOdXPc23fX3a/+uC2Iv0GH3YU1YMUELf1gon99ndDQAAAAAAIBGh3IcwNFyvKxAqigxNksj8eOBH/XQlw/J6/fqunOu04Q+E4yOdFraONvotatf0++7/l6StGDjAj2w4gEddh82OBkAAAAAAEDjQjkOQHJESCERgXPmjivzUKbGLhurMk+ZLoq/SNMvmS6TyWR0rNNmM9v0+IDH9fQlT8tmtml55nKN/Hiksg9nGx0NAAAAAACg0aAcBxDAaBVJUkF5gcZ8Pkb55fnq2rqrXrziRdksNqNjnZXfdP6NXr/mdbV1ttXPRT/r/hX3q8xTZnQsAAAAAACARoFyHEAA5bjKPGUat3ycdhfvVnxYvF4Z8orC7eFGx/pFerXtpb8N/5uiQqL008Gf9NQ3T8nv9xsdCwAAAAAAwHCU4wACWng57vV5NXnlZG3K26QIe4QWpS5STGiM0bHqRLvwdnrhihdkNVm1JGOJ/rLlL0ZHAgAAAAAAMBzlOICAFlyO+/1+zfh+hlZkrpDdbNf8wfN1TuQ5RseqUxfEXaDHBjwmSZq3fp6+yPzC2EAAAAAAAAAGoxwHEBBRVY5nGpvDAH/Z8he9m/6uTDLpD4P+oL6xfY2OVC9uTLlR/y/l/8kvvyavnKwdBTuMjgQAAAAAAGAYynEAAVU7x4uzjM3RwD78+UPNXT9XkjT5wsm6quNVBieqX5MvnKz+cf1V6inVhBUTVFRRZHQkAAAAAAAAQ1COAwgIjlXJknw+Y7M0kG/3fasnv3lSknTbebdpZLeRBieqfzazTXMun6N24e2UeShTD375oDw+j9GxAAAAAAAAGhzlOICAiARJJslbIZUeMDpNvUvLT9OkLybJ4/doWNIwPdDvAaMjNZgoR5TmDZ4np9Wp1ftXa/ba2UZHAgAAAAAAaHCU4wACLDapVXzgvJnPHd9Xsk9jPh+jw+7D6h/XX89e+qzMppb1v8MuUV0049IZkqTFWxfrve3vGZwIAAAAAACgYbWsNgjAybnaBY5Fe43NUY98fp/GLx+vA2UHdG7kuXrpypdkt9iNjmWIIR2H6L7e90mSnvnuGW3I3WBwIgAAAAAAgIZDOQ7gqGPnjjdTew/t1baCbbKb7VqYulAR9gijIxnqnp736KqOV8nj82jiionaX7Lf6EgAAAAAAAANgnIcwFHBcrz57hzfVbRLkpTsSlZcWJzBaYxnMpn07MBnlRKVovzyfN2/4n6VecqMjgUAAAAAAFDvKMcBHOVKDByb8czxY8txBITaQjVv8Dy1drTW1vytmvrNVPn9fqNjAQAAAAAA1CvKcQBHtYCd4xnFGZIox4+XEJ6gF654QVazVf/N+K/+tPlPRkcCAAAAAACoV5TjAI6KaP4P5KzaOZ4UkWRskEaoX2w/TRkwRZI0f8N8Ld+z3OBEAAAAAAAA9YdyHMBRVWNVDudKngpjs9QTxqqc3O+6/E6/7/p7SdJjXz2m7QXbDU4EAAAAAABQPyjHARwV2lqyOgPnxVnGZqkHBeUFKqgokCR1jOhocJrG6+H+D+vCuAtV6inV+OXjVVheaHQkAAAAAACAOkc5DuAok6lZzx2vmjceHxavUFuosWEaMZvZpjmXz1G78HbKKsnSg18+KLfPbXQsAAAAAACAOkU5DqC6ZlyOM1Ll9EU6IjV/8HyFWkP1ffb3mvX9LKMjAQAAAAAA1CnKcQDVuZrvQzkpx89M56jOmnHZDEnSP9L/oX9t+5fBiQAAAAAAAOoO5TiA6qoeytmcy/EIyvHTNbjDYI3vM16S9Px3z2tt9lqDEwEAAAAAANQNynEA1TFWBce5u8fduibpGnn8Hk36YpL2lewzOhIAAAAAAMAvRjkOoLpmWo5Xeiu1tyTwnijHz4zJZNLTA59Wt9bdVFBRoAnLJ6jUXWp0LAAAAAAAgF+EchxAdceOVfH7jc1ShzIPZcrn9yncFq5oZ7TRcZocp9WpuVfOVWtHa6UXpOuJb56Qz+8zOhYAAAAAAMBZoxwHUF1EQuDoPiyVFRibpQ4dO1LFZDIZnKZpig+P10tXviSr2aqlu5fq1U2vGh0JAAAAAADgrFGOA6jO5pRCj+ysLs4yNksdqirHkyKSjA3SxPWJ6aOpF02VJC3YuEDLdi8zOBEAAAAAAMDZoRwHUFMznDvOwzjrzm87/1Yju42UJD329WNKz083OBEAAAAAAMCZoxwHUBPlOE7hoQse0kXxF6nMU6b7V9yvgvLmM4IHAAAAAAC0DJTjAGoKPpQz09gcdcTv92tXMeV4XbKarZp9+WwltkpUVkmWJn0xSW6f2+hYAAAAAAAAp41yHEBNrnaBYzPZOZ5XlqfD7sOymCxKbJVodJxmwxXi0rwr5ynMFqa1OWs18/uZRkcCAAAAAAA4bZTjAGoKjlVpHg/krBqp0r5Ve9ktdoPTNC/nRp2rP1z2B5lk0rvp7+qf6f80OhIAAAAAAMBpoRwHUFNwrErz2DkenDcewUiV+nBF4hWa0HeCJGnG6hlak73G4EQAAAAAAACnRjkOoKaqneOH9klej7FZ6gAP46x/d55/p4YlDZPH79GkLyZp76Hm8QcrAAAAAACg+aIcB1BTWIxktkl+n3Rov9FpfrGM4gxJlOP1yWQyafrA6erWupsKKwo1YcUElbpLjY4FAAAAAABwQpTjAGoym6WIhMB5Mxitws7xhuG0OjVv8Dy1cbTR9oLtevzrx+Xz+4yOBQAAAAAAUCvKcQC1q5o7Xty0H8pZ6i7V/sOB3e9JEUnGhmkB4sLi9NKVL8lmtmnZnmVa9MMioyMBAAAAAADUinIcQO2q5o4XZRqb4xfaXbxbkhQVEqVIR6TBaVqG3jG9NfWiqZKkhT8s1KcZnxqcCAAAAAAAoCbKcQC1C5bjTXusCiNVjPGbzr/RqG6jJEmPf/W41mSvMTgRAAAAAABAdZTjAGrXXMrxYspxozx0wUMa0mGI3D63JiyfoPT8dKMjAQAAAAAABFGOA6hdcynH2TluGIvZopmDZqpvTF+VuEt07+f3Kqukac+wBwAAAAAAzQflOIDaUY6jDoRYQjR/yHx1juqsA2UHdO/Se5Vfnm90LAAAAAAAAMpxACcQ0S5wLC+UKg4Zm+UseX3e4AM5kyMox40SYY/QotRFig+LV0Zxhu77/D6VukuNjgUAAAAAAFo4ynEAtXNESA5X4LyoaY7C2H94vyq8FbKZbUoITzA6TosWExqjRVctUmRIpLYc3KJJX0yS2+c2OhYAAAAAAGjBKMcBnJgrMXBsoqNVMoozJEkdIzrKYrYYGwY6x3WOXh7yshwWh77Z942e+uYp+fw+o2MBAAAAAIAWinIcwIlVjVYpyjQ2x1li3njj06ttL825Yo4sJos+3PmhXlr3ktGRAAAAAABAC0U5DuDEmvhDOavK8aSIJGODoJpB7Qdp2iXTJEmv//i63vrxLWMDAQAAAACAFolyHMCJVZXjxU1z5jg7xxuv68+9XhP7TpQk/XHtH/Xxzo8NTgQAAAAAAFoaynEAJ9bEZ45XlePnuM4xOAlqc8f5d2hUt1GSpCe+eULf7vvW4EQAAAAAAKAloRwHcGLBsSpNb+Z4UUWRDpYflCQluZKMDYNamUwmPdz/YQ1LGiaPz6MHVjygHw/8aHQsAAAAAADQQlCOAzgxV9UDObMkn8/YLGcoozhDkhQTGqMwW5ixYXBCZpNZz176rAbED1Cpp1Rjl43V7uLdRscCAAAAAAAtAOU4gBNrFS+ZzJLPLR3ONTrNGWHeeNNht9j10hUvqVvrbsovz9c9S+/RgbIDRscCAAAAAKBJ8Hu98hQUqOLnn1W6dq2KP/tMBe/+Uwf//GejozV6VqMDAGjELLZAQV6cFdg93irO6ESnLViOR1CONwXh9nAtSF2gmz+5WXtL9mrM52P0+tDXFW4PNzoaAAAAAAANyldWJm9+vjwFhfIW5MtbUCBPfr68BYXy5ufLW1ggT0GBvPkF8hYUyFtYKPn9tV4r6uabZQ4JaeB30HRQjgM4OVf7I+V4ptS+n9FpThs7x5ueaGe0Xr3qVd285Gal5adp4oqJWpC6QHaL3ehoAAAAAACcFb/XK29RUaDEzs8/WmoXHld4FxTIUxj4nr+8/KzuZY6IkCUqUtao1rJERcnSOkp+t1uiHD8hynEAJ+dqL2Wulor2Gp3kjFTNHKccb1o6RHTQgtQFuuPTO7Q6e7Ue//pxzRo0S2YTU8AAAAAAAI2H3+uVNz9f7txcefLy5MnNlSc375jzIx8HD57Vc9xMNpssrQMlt7V1lCyRUUc+jzzytdZHvhYla1SULJGRMtls9fBOmzfKcQAnF1H1UM6mU467fW5lFmdKohxvis5rc55euvIljV02Vv/N+K+indGa3H+yTCaT0dEAAAAAAM2c3+cL7PA+UnK7q0ruvLxA+V11fuCA5PWe9nXNLlegxI46WnIHPj+mAK/6XmSUzGGh/D64AVCOAzg5V2LgWJRpbI4zsPfQXnn8HjmtTsWGxhodB2fh4oSL9fylz+uRlY9o8dbFinZG664edxkdCwAAAADQRPl9vsDokmN3duflHSm/jyu9PZ7Tu6jZLGubNrK2bStrTEzgI3je9ujnrVvLZKWGbYz4twLg5FztA8fiLGNznIGqeeNJEUn8KWsTNix5mA6UHdCsNbM0d/1cRTujdf251xsdCwAAAADQyPjKy+XJyZE7J0eenFx5co85z8mROzdHnrwDktt9ehc0mWSJDpTetrbHl97HfN6G0rup498egJOrKseb0FgVHsbZfNzc/WblleXp9S2va9q309Ta0VqD2g8yOhYAAAAAoAH4/f7Abu+cWsru7Jwj57nyFRWd3gVNJllatw7u7LYdX3pXnbdpQ+ndQvBvGcDJVZXjh/Mkd5lkcxqb5zRQjjcvD/R9QAfLDuqDnz/Qg188qD9d/Sf1jultdCwAAAAAwC/gq6gIjDKprfg+cu7JzZX/NHd7m5zOQNkdGytrbKxssTGyxhxzHhsra3Q0D61ENZTjAE7OGSXZQiV3qVS8T2rTyehEp7SELZBaAAAgAElEQVSrmHK8OTGZTJp2yTTll+fr66yvNW75OL11zVs6J/Ico6MBAAAAAGrh9/vlLSyUO2uf3FlZcu87cszKknv/fnmys+UtLDzt61natJE1Nka2I2W3NTZGtti4asW3uVUrRqvijFGOAzg5kymwe/zAtsBDORt5Oe73+9k53gzZzDbNuXyO7v7sbm06sEn3fH6P3h72tmLDeOAqAAAAADQ0v98v78GDR0vvI8fKrCx59u1TZdY++UtLT3kdU0hIoOA+fsd3bKysMUfO27aVyW5vgHeFlohyHMCpBcvxxv9QzoPlB3Wo8pBMMqljREej46AOhdpC9fKQl3XLkluUUZyhez+/V29c84ZcIS6jowEAAABAs+L3+eTJOyD3vqzA7u9jd37vC3zuLy8/5XUsbaNlT2gnW7t2srVLCBzj42WNi5MtNlZml4vd3jAU5TiAU2tCD+Ws2jXeLrydQiwhBqdBXYtyROnVq17VqE9GaUfhDk1YPkGvXvWqHFaH0dEAAAAAoMnwe73y5OVVL7yrzo+U4aec9W0yyRoTc6T4bidbQsLRAjwhQbaEBJlD+H05GjfKcQCn5koMHIsyjc1xGjKKMyQxUqU5SwhP0MLUhbr909u1Pne9Hv3qUc25fI4sZovR0QAAAADAcN6Sw/Lk5pz8QZcHDkg+38kvZDbLGhdbc+d3wpFjXBzjTtDkUY4DOLUmuHOccrx5S2mdormD5+repfdq2Z5lem71c5p60VT+Oh4AAACAZsvv9cpz8GCg4M6tXnx7cnPkzg4U4r7Dh0/vglarbHFxx+38PuYYGyOTzVa/bwowGOU4gFOLaBc4NqFyPMmVZGwQ1Lv+cf01c9BMTfpikv617V9q62yrMb3HGB0LAAAAAM6Yr7T0aNmde4Id33l5ktd7Wtczh4UdecBljGwxsUfPY2ODD760tmkjk4W/gYuWjXIcwKlV7RwvzpL8fqkR784N7hyPYOd4S5DaMVVPXPSEnvnuGS34YYHaONvoxpQbjY4FAAAAADX4/X55srNVsW2bKrZvV8X27Srfvl3uzL3yHTp0ehcxm2WNjj558R0TK0t4WP2+GaCZoBwHcGpVO8fdpVJZgRTa2tg8J1DuKde+kn2SGKvSktyYcqPyyvK06IdFem71c2rjaKMhHYcYHQsAAABAC+YpKFDFtu3VivCK7dvlKyk54WtMoaGyxcQcV3bHVS++27SRyUqdB9QV/msCcGo2hxQWIx3ODTyUs5GW47uLd8svvyLsEWrtaJwZUT/G9hqrA2UH9D/b/kePrHxEr171qi6Iu8DoWAAAAACaOW/JYVX+vEPl1UrwHfIeOFD7C6xWhSQnKaRz5+CHPSlJ1thYmcPDeY4S0MAoxwGcHlf7I+X4Xim+l9FparWr+OjDOPkFRctiMpk0ZcAUHSw7qBWZKzRh+QS9MewNdYnqYnQ0AAAAAM2Ar7JSlbt21dgN7s7KOuFrbImJ1UrwkM6dFZKcJJPd3nDBAZwU5TiA0+NqJ+1b36gfyhmcN85IlRbJarZq1qBZumfpPVqfu15jPh+jd4a/o9iwWKOjAQAAAGgi/F6v3JmZKq/aBb4tcKzMyDjhwzCtbdseLb+7HDl26iRzGHO/gcaOchzA6XElBo6U42jEHFaH5g2ep1uW3KKdRTs1bvk4vXHNGwqz8YtSAAAAANV5CwtVnpau8rStqkhLD+wI//ln+Ssqal1vbtVKIV26KKTzudV2g1ujoho4OYC6QjkO4PS42geOjbgczyjKkCQlR1COt2SuEJcWpC7QTR/fpLT8ND385cOaN3ierGZ+ygMAAABaIr/PF9gNvjVN5elpqtiapvL0dHn27691vSkkRCHnnltjN7g1NpYRnkAzQ1MA4PQ08nLc5/cpozhDEjvHIbULb6dXhryi2z+9XV9lfaU/fP8HTRkwhV/IAgAAAM2cr6xMFdu2Vd8Rnp4uX2lprett7dvL0a2rQlK6KqRLZzm6dJEtMVEmi6WBkwMwAuU4gNPTyMvx3NJclXnKZDVb1a5VO6PjoBE4P/p8/WHQH/TAigf0bvq7SmyVqFvPu9XoWAAAAADqgN/vlyc3TxXpaSrfmhY8Vu7eLfl8Ndab7PbASJSuKXJ07SZH1xSFpKTI0qqVAekBNBaU4wBOT8SRcvzQfsnrliw2Y/McZ2fRTklSYqtE2cyNKxuMM6TDED3c/2HNWjNLc9bOUUJ4gq7qeJXRsQAAAACcAb/brYqdu6oX4Wnp8ubn17re0qaNHF27BneEO7p1lT0pSSYrNRiA6vi/AoDTE9ZWstglb2WgII/sYHSiaoIP42TeOI4zqtsoZR7K1N/T/q7HvnpMMaEx6tW2l9GxAAAAANTCW1ys8rQ0VaSlBUejVG7fIb/bXXOx2Sx7crIcXbtW2xFubdu24YMDaJIoxwGcHrNZimgnFewKjFZprOU488ZxHJPJpMn9J2tfyT59ufdLTVg+QW8Pf1uJrRKNjgYAAAC0WH6fT+6sLJVvDcwFryrE3fv21breHBamkK5d5UhJUUi3roFCvHNnmR2OBk4OoDmhHAdw+lztj5bjjUxGUYYkynHUzmK2aNagWbrt09u0NX+rxn4+Vm8Pf1uuEJfR0QAAAIBmz1derort2wMF+NY0laenqyItTb7Dh2tdb0tICBThVTvCu3WTrV07mczmBk4OoLmjHAdw+lxHdtoWZRqboxbsHMephNpC9cqQV3TTJzcpozhDE1dM1KtXvSq7xW50NAAAAKDZ8OTlBcehVO0Ir9y1q/aHZNpssnc+9+gDMo/sDLe42MQCoGFQjgM4fa52gWMj2zleUlmi3LJcSVKSK8nYMGjU2oa21StDXtEtS27R2py1eurbp/T8pc/LZDIZHQ0AAABoUvwejyozMo4+IPPIjnDvgQO1rrdERVV7QGZISleFnJMsk83WwMkB4CjKcQCnz9U+cCzKMjbHcTKKMyRJ0c5oRdgjjA2DRq9LVBe9cMULuu/z+/TRzo/UvlV73df7PqNjAQAAAI2W99AhVaSnHynAA6NRKnbskL+iouZik0n2pKQaRbg1pi2bUgA0OpTjAE5fsBxvXDvHGamCM3VJwiWaevFUPfXtU1r0wyK1D2+vX5/7a6NjAQAAAIbylZaqcvduVWZkqOLnncHRKO69tf8e0BwaqpCUlMBc8KrRKJ07yxwa2sDJAeDsUI4DOH3BmeONtByPoBzH6ftt598q81Cm/rz5z5r27TTFhcVpQPwAo2MBAAAA9crv8ci9d68qMjJUWfWxK3D05OSc8HXW+PijD8g8UoTbEhN5SCaAJo1yHMDpizgyc7yiSCovkhyN4yEpVWNV2DmOMzW+z3hlHcrSkowlemDFA/rb8L+pU2Qno2MBAAAAv4jf75cnL69G+V2ZkaHKzEzJ4znhay1RUbInJQVGo3RNCYxG6ZoiS2RkA74DAGgYlOMATl9IuOSIlMoLA3PHG0k5zlgVnC2zyaxnLn1G2aXZ2pC7Qfctu09vD39b0c5oo6MBAAAAp+QtKalefB/z4Tt8+ISvMzkcwQLcntRR9qQkhSQny96xIyU4gBaFchzAmXElBsrx4iwptrvRaeTxebS7eLckKcmVZGwYNEkhlhDNvXKuRn0ySnsO7dH4ZeP112v+KqfVaXQ0AAAAQP7KSlXu3XvMDvBdqtyVoYrdGfLmHTjxC81m2dq3r15+HynErbGxjEMBAFGOAzhTrvZSzmapKNPoJJKkfSX75Pa5FWIJUXxYvNFx0ERFOaK0IHWBRn0ySlsObtGjKx/VC1e8IIvZYnQ0AAAAtCD+ykqVb9uu8i2bVbZps8o3b1bFzp2S13vC11iio2VP6lit/LYnJcmemCiT3d6A6QGg6aEcB3BmXO0Dx0byUM6qkSpJEUkym9j5gLPXMaKj5g2ep7v+e5eWZy7XnHVz9Ej/R4yOBQAAgGbK7/OpMiND5ZsDRXjZls2q2Jomf2VljbXm0NDqxXdykuxJybIndZSlVauGDw8AzQTlOIAz00jLceaNoy70iemj5y59Tg+vfFh/++lvah/eXjd1u8noWAAAAGji/H6/PNnZKtu8WeWbtwSOW7bIV1JSY63Z5ZLz/PPl6HG+nD17ytG9e2AMislkQHIAaN4oxwGcmcZWjhdTjqNuXZN8jfaW7NXc9XM1c81MtQtvp8sTLzc6FgAAAJoQb2GhyjZvCY5HKduyudb54CaHQ47u3eXscb4cPXrK2eN82Tp0oAgHgAZCOQ7gzDS2cpyd46gHd55/p/Ye2qt/b/+3Hl75sN645g11b2P8A2gBAADQ+PjKylT+00+B3eCbNqtsyxa59+ypudBiUUiXLoFd4T17yNmjh0LOPVcmK9UMABiF/wMDODNV5XjxPsnnlQx+YCHlOOqDyWTSlIumaP/h/fp237cat2ycFg9frPhwHvoKAADQkvndblVs315tV3jFjh21PjDT3rGjHD16yNmzhxzn95CjW1eZnU4DUgMAToRyHMCZCY+TTBbJ55ZKcqUI48rCgvICFVYUSgo8TBGoSzazTXMun6NbPr1F2wu2a+yysXpr2FtqZeeBRwAAAC2Br7RUFTt2qDw9XRVp6Sr/8UeVb90qf0VFjbXWtm3l6NlTzh49ArPCzz9fFpfLgNQAgDNBOQ7gzFisUkSCVJQZGK1iYDmeUZwhSUoIS5DTyg4M1L1we7gWDFmgmz6+STsKd+jBLx7UK6mvyGa2GR0NAAAAdcTv88m9b58q0tICRXj6NlWkp6tyzx7J76+x3tyqVWBG+PlHdoX36CFbbKwByQEAv5TZ6ABZWVkaNWqU2rRpI6fTqR49emjt2rXB7/v9fj355JOKj4+X0+lUamqqtm/fXu0a+fn5GjlypCIiIhQZGak777xTJcc98XnTpk267LLL5HA4lJiYqFmzZjXI+wOapYh2gWNRpqExGKmChhAXFqeXh7wsp9WpVftX6bnvnpO/lt8kAQAAoPHzlpSodP16Ffz979o/bZoyfn+TtvW/UD+nXqW948brwPyXdeizz1S5e7fk98vSNlphAweq9R13KOGPs3TOkk/UZfV36vDXvypm0gNqlZpKMQ4ATZihO8cLCgo0cOBAXXnllVqyZInatm2r7du3KyoqKrhm1qxZmjdvnt58800lJydr6tSpGjp0qH766Sc5HA5J0siRI7V//34tXbpUbrdbt99+u0aPHq133nlHklRcXKyrr75aqampWrRokTZv3qw77rhDkZGRGj16tCHvHWjSXO2lTEnFWYbGqCrHk1xJhuZA89e9TXfNvny2xi8fr39v/7fat2qvu3rcZXQsAAAAnIDf61Xlnj2BXeDb0lV+ZDe4e+/eWtebbDbZO58rR5cUhaSkyJHSRSEpKbK2adPAyQEADcnQcnzmzJlKTEzU66+/HvxacvLRHaB+v18vvfSSnnjiCf3617+WJL311luKjY3Vf/7zH40YMUJbt27Vp59+qjVr1uiCCy6QJM2fP1/Dhw/X7NmzlZCQoMWLF6uyslJ//etfZbfbdd5552njxo164YUXKMeBs1H1UM6i2n9h2VCCO8cj2DmO+jeo/SA9euGjen7185q7fq7ahbfTsORhRscCAABo8byFhSrftu1oEZ6Wrort2+UvL691vTUuTiEpXaoV4fakJJlsjM4DgJbG0HL8gw8+0NChQ/V//+//1Zdffql27dpp7NixuvvuuyVJu3btUnZ2tlJTU4OvcblcGjBggFatWqURI0Zo1apVioyMDBbjkpSamiqz2azVq1frN7/5jVatWqVBgwbJbrcH1wwdOlQzZ85UQUFBtZ3qklRRUaGKYx6wUVxcXF//CICmqbGV44xVQQP5fdffa++hvXrrp7c05espig2NVd/YvkbHAgAAaBH8fr8qd2WofOtPqkjfpvL0NFWkb5MnO7vW9SaHQyGdO9cowi2RkQ2cHADQWBlaju/cuVMLFy7UpEmT9Pjjj2vNmjWaMGGC7Ha7br31VmUf+Qku9rj5XbGxscHvZWdnKyYmptr3rVarWrduXW3NsTvSj71mdnZ2jXJ8xowZmj59et29UaC5cSUGjgbOHK/0VmpvSaCcpxxHQ3rwggeVVZKlZXuWacKKCVo8fLE6RnQ0OhYAAECz46+sVPlPP6l03XqVrl+vsnXr5C0srHWtrV07haSkBIrwlBSFdEmRvWMHmSyWBk4NAGhKDC3HfT6fLrjgAj3//POSpD59+mjLli1atGiRbr31VsNyPfbYY5o0aVLw8+LiYiUmJhqWB2h0XFUP5DRu5/ie4j3y+X0Kt4Ur2hltWA60PGaTWTMum6E7/3unNh/YrLGfj9Xbw99WlCPq1C8GAADACXkPHVLZxo0qXbdOZevWq2zTJvmP+VvdkmQKCZGja1eFdO16TBHeRZZWrQxKDQBoygwtx+Pj49W9e/dqX+vWrZv+/e9/S5Li4uIkSTk5OYqPjw+uycnJUe/evYNrcnNzq13D4/EoPz8/+Pq4uDjl5ORUW1P1edWaY4WEhCgkJOSXvDWgeasaq1J6UHKXSTZng0fYVXx0pIrJZGrw+6Nlc1qdmjd4nkZ9Mkp7Du3RhOUT9Oehf1aIhZ87AAAATpc7OztYhJeuX6+K9HTJ76+2xhIZKWe/fgrt21eh/frK0b27TMeMTAUA4JcwtBwfOHCg0tPTq31t27Zt6tgx8NfTk5OTFRcXp2XLlgXL8OLiYq1evVpjxoyRJF188cUqLCzUunXr1K9fP0nS8uXL5fP5NGDAgOCaKVOmyO12y3bkARtLly5VSkpKjZEqAE6DI1Kyh0uVJVJRlhR9boNHYN44jBbtjNaCIQs0askobczbqCe+fkIzB82U2WQ2OhoAAECj4/f5VLFjh8rWr1fpusCIFPe+fTXW2Tp0UGjfvnL266vQfv1kT2YzDACg/hhajj/wwAO65JJL9Pzzz+vGG2/U999/r9dee02vvfaaJMlkMmnixIl69tln1blzZyUnJ2vq1KlKSEjQ9ddfLymw0/yaa67R3XffrUWLFsntdmvcuHEaMWKEEhISJEk33XSTpk+frjvvvFOTJ0/Wli1bNHfuXL344ouGvXegSTOZArvH89ICc8cNKMczijIkUY7DWOdEnqOXrnhJ93x+jz7N+FTtW7XX/X3vNzoWAACA4XwVFSrfsiVYhJdu2CBfcXH1RWazHN26BYrwvv3k7NtHtuOeKQYAQH0ytBzv37+/3n//fT322GN6+umnlZycrJdeekkjR44MrnnkkUd0+PBhjR49WoWFhbr00kv16aefyuFwBNcsXrxY48aN05AhQ2Q2m3XDDTdo3rx5we+7XC599tlnuu+++9SvXz9FR0frySef1OjRoxv0/QLNSrAcN2bueHDneATlOIx1YfyFmn7JdE35eor+vPnPahfeTr/r8jujYwEAADQob2GhSjdsCO4ML9+8WX63u9oak9MpZ+9eCu3bLzAipWcvWcLDDEoMAIBk8vuPG+iFGoqLi+VyuVRUVKSIiAij4wCNwwcTpPVvSpc/Kl35WIPe2u/36+K/X6zD7sP631//r86JPKdB7w/UZsHGBVr4w0JZTBbNvXKuLk+83OhIAAAA9aZyb5bK1q8L7Axfv04V23fUWGNp00ah/QJFuLNvPzm6psh0ZNQpAAD15Uy6XEN3jgNowlyJgWNxw+8czyvL02H3YVlMFiW2Smzw+wO1GdNrjPaV7NP//vy/eujLh/Snq/+k3jG9jY4FAADwi/n9frkzM1X6/fcqXbNGh9eskWff/hrr7MnJwREpof36ytahA/PCAQCNGuU4gLPjah84GjBWpWqkSvtW7WWzsPMEjYPJZNJTlzylgooCrdy7Uvctu09vDXtLnSI7GR0NAADgjPj9flVmZKh0zRqVfr9GpWvWyJOTU32R1SrHed2DRbizTx9Z27QxJjAAAGeJchzA2WkE5TjzxtHY2Mw2zb58tu767C5tytuke5beo7eHv624sDijowEAAJyQ3+9X5c6d1cvwvLzqi2w2OXv0UGj//gq9sL9Ce/eWOYx54QCApo1yHMDZObYc9/ulBvzrksFy3EU5jsbHaXXqlcGv6JZPb9Guol26d+m9enPYm3KFuIyOBgAAIEny+3yq2LEjUIavWavSNWvkPXiw2hqTzSZnr16BIvzCC+Xs1Utmp9OgxAAA1A/KcQBnJyIhcPSUS6UHpbDoBrs15Tgau0hHpF5NfVWjlozSz0U/a/zy8Xr1qlfltPIbSgAA0PD8Pp8qtm0L7govXbtW3oKCamtMISFy9u4d2Bnev7+cvXrK7HAYlBgAgIZBOQ7g7FhDpPBYqSQnsHu8IcvxYspxNH7x4fFalLpIt356qzbkbtAjXz6iF698UVYzP/UCAID65fd6VZGersPff6/SNWtVtnatvEVF1daYHA6F9u0TLMMdPXvKbLcblBgAAGPwO3QAZ8/V/mg5ntC7QW5Z6i5V9uFsSVJSRFKD3BM4W52jOuvlwS9r9NLR+mLvF3p61dOafsl0mRpwDBEAAGj+/B6PyremHZkZ/r1K162T79ChamtMoaEK7dv36M7w88+TiTIcANDCUY4DOHuu9lLWugZ9KOfu4t2SpNaO1op0RDbYfYGz1Te2r/446I+a+MVEvb/jfUU7ozWh7wSjYwEAgCbMV1qqss1bVLZhg0rXr1PZuvXyHT5cbY05LEzOfn0VduGFgZ3h3bvLZLMZlBgAgMaJchzA2XMlBo5FmQ12y6p54+waR1NyZYcr9eRFT2raqmn60+Y/qY2zjUZ2G2l0LAAA0ES49+1T6YYNKtuwUWUbNqg8LU3yequtMbdqpdB+/QI7wy+8UI5uXWWy8lt+AABOhp8pAZy9iHaBYwPuHGfeOJqqG7rcoIPlBzV/w3zN/H6m2jja6Jrka4yOBQAAGhm/263ytLTArvAjhbgnO7vGOmtsrJx9+yj0yEM0Q1JSZLJYDEgMAEDTRTkO4Oy52geOxVkNdsuqneOU42iK7u5xt/JK8/SP9H/osa8fU6QjUhfFX2R0LAAAYCBPQUFwR3jZhg0q27JF/vLy6ossFjm6dZOzTx+F9uktZ58+ssXHGxMYAIBmhHIcwNmrKscbcuc45TiaMJPJpEcvfFT55fn6bPdnmrhiov469K/q3qa70dEAAEAD8Pt8qvz552ojUiozMmqss7hccvYOlODOvn3kPP98mUNDGz4wAADNHOU4gLNXNXP8ULbkqZSs9fu0e6/PG3wgZ3IE5TiaJovZohmXzVBRRZFWZ6/WmM/H6O1hbysxItHoaAAAoI55Sw6rfPOmo2X4xo3yHTpUY529Uyc5+/RWaJ8+cvbpI3tSkkxmswGJAQBoWSjHAZy9sGjJEiJ5K6RD+6SopHq93f7D+1XhrZDNbFNCeEK93guoT3aLXS9d+ZJu/+/tSstP0+ilo/W34X9TtDPa6GgAAOAs+f1+ubOyguNRSjdsVEV6uuTzVVtncjrl7NnzaBneq5cskZEGpQYAoGWjHAdw9kwmydVOyt8ZGK1Sz+V41UiVjhEdZTHzsCE0beH2cC1MXahRn4zS3pK9Gvv5WP116P9n786jmyzzNo5/kybdm3QDSik7KIIwoqDioJR9UxR0VARF2RxFBB1FnXHEZRTxVXDBhU3QAUYcgXEB2SmgoAgIqOAKhZal0JYm3ds0ef8IrTKo09CUp02vzzmc0PtJnl56jrW9eud3v0lkcKTR0URERKSSypxO8j/5hNyUFPK3bqXsROYZz7EmJnrHo3TsSFjHiwg9/3xMFv0oLiIiUhPo/8giUjX2pFPlePUfyql54xJo4sPimdV7Frd+fCv7svcxMWUir/V8jeCg6h1RJCIiImevJDWV3A0p5KWkULBjB7hcP1+0WgltewHhF/1chlsbNDAurIiIiPwuleMiUjXlc8cdadX+qQ44VY5L4Glia8JrvV5j5MqRfH70c/76yV957qrnMJs0Z1RERKQm8JSWUrDzS/JSUsjbsOGMAzSDW7YkMrkbkVd1I+wPHTCHhhoTVERERHymclxEqsae5H10pFf7p0p1pAIqxyXwtItrx/Tu0xm3bhyrUlcRFxrHw5c+jMlkMjqaiIhInVSWk0Pe5k/I27CBvE8+we10/nzRaiWicycik5OJTE4muEkT44KKiIhIlagcF5GqOYfluMaqSCC7IvEKnun6DJM2TWLRt4uoF16P0e1HGx1LRESkTvB4PJQcOOAtwzekUPDll1BWVnE9KCaGyKuuIrJ7dyK6/pGgSJ0RIiIiEghUjotI1ZyjctxR7CCrKAuA5jaV4xKY+jfvT1ZhFlO/mMpLO18iLjSOwa0HGx1LREQkIHlKSijYsYO8lBRyN6RQeujQaddDWrcmsnt3IpOTCftDB0xBOhBeREQk0KgcF5GqsZ0qx53VeyBnqjMVgPrh9Qm3hlfr5xIx0vC2w8kszGTu13N5YusTxITGkNw42ehYIiIiAcF18iT5mzaRuyGF/E8+wZ2XV3HNZLUSftllP49LSWpkYFIRERE5F1SOi0jV2E/90FDshCIHhNqr5dNopIrUJRMunkBWURb/+fE/PLDxAeb0mcNF9S8yOpaIiEit4/F4KPnxR3I3pJCXkkLhrl3gdldcD4qLI7JbNyK7JxPR5QqCIiMMTCsiIiLnmspxEama4AgIi4XCbO9oleouxzVSReoAk8nE5C6TyS7KZlP6JsatG8db/d6iVUwro6OJiIjUeO6SEgq2feGdH56SQunh09/hGNKmDZHdk4lKTia0fXtMZrNBSUVERMRoKsdFpOrsST+X4w3aVcun0M5xqWssZgvPd3ue0atHs+fEHv689s8sGLCAhIgEo6OJiIjUOK6sLPI2biJvwwbyP/0Ud0FBxTVTcDDhXS4n6tS4FGvDhgYmFRERkZpE5biIVJ29MRzbA460avsUKselLgqzhPFqj1cZsXIE+x37uXPNnbzd/23sIeXXSAIAACAASURBVNXzDg0REZHawuPxUPz9997d4RtSKNyzBzyeiutB9eK9ZXj37kRcfjnmcJ1ZIyIiImdSOS4iVVc+d9xRPYdylrpLSc9NB1SOS90THRrNG73eYPjHw9nv2M+4deOY3Wc2YZYwo6OJiIicU+7iYgo+/5y8lBRyU1JwHTl62vXQtm2J7N6dyORkQtu11bgUERER+Z9UjotI1dmTvI+O9Gq5fVpuGi6PizBLGA3CG1TL5xCpyRpGNmRmr5nctvI2dp/YzYMbH+TF7i9iMet/4yIiEthKjx8nb+NG8lI2kr9lC57CwoprptBQIrp0ITI5mcjkblgb6PtEERER8Y1+qhaRqqvmcjzVkQp4d42bTKZq+RwiNV2rmFa82vNVxqwew8b0jTyx9QmevOJJ/TchIiIBxePxULR3L3kpKeRtSKHo669Pu25p0MBbhndPJuKyyzCH6Z1UIiIicvZUjotI1dkbex+rqRzXvHERr471O/J/V/0fE1Mm8p8f/0N8WDwTLp5gdCwREZEqcRcWkv/ZZ+SlbCQvJQVXRsZp10PbtyeyezJRycmEXHCBfjEsIiIifqNyXESqrnznuPMwuMvAHOTX21eU4zaV4yLdm3RncpfJTN4ymTlfzSE+LJ5hFwwzOpaIiIhPSjMyyNuQQl5KCvmffYanqKjimiksjIg/XuE9ULNbNyz16hmYVERERAKZynERqbrIBmC2gNsFeRlgS/Tr7Q84veV4M3szv95XpLYa0noImYWZvPLlK0zdNpXY0Fj6N+9vdCwREZHf5HG7KfrmG/I2pJCbsoHivftOu25p2JCo7slEdu9O+KWXYg4JMSipiIiI1CUqx0Wk6sxBEJUIjkPe0Sp+LMc9Ho/Gqoj8ijHtx5BZmMm/vv0Xf/3kr0SHRNMlsYvRsURERCq4CwrI37qV3A0byNu4kbITmT9fNJkI69CByO7dieyeTMh552lcioiIiJxzKsdFxD/sSafK8TRofKnfbptVlEVuSS4mTDS1NfXbfUVqO5PJxEOdHyK7KJtVqauYuGEic/rMoX299kZHExGROqzM4SB37Tqcq1dRsPUzPCUlFdfM4eFEdO3qPVCz21VY4uIMTCoiIiKiclxE/KV87rifD+Us3zXeKLIRIUF6e63ILwWZg3im6zPkFOfw+dHPuXPtnczrO4/zY883OpqIiNQhZTk55K5bh3PlKvK3bgWXq+KatVGjit3h4Z07Yw4ONjCpiIiIyOlUjouIf1RzOa6RKiK/LjgomJe7v8zYNWPZfWI3Y9eMZV6/ebSwtzA6moiIBDDXyZPklRfin312WiEe0ro1Uf36EtW7NyGtW2tcioiIiNRYKsdFxD/sjbyPjsN+va3KcZH/Ldwazmu9XmP0qtHsy97HmNVjeKvfWyRFJRkdTUREAsjvFuLnnUdUv77Y+vUjpIV+QSsiIiK1g8pxEfEPe2PvoyPNr7c94FQ5LlIZtmAbM3vP5I6Vd/CT4ydGrx7NW/3eokFEA6OjiYhILeY6eZLctWvJLS/Ey8oqroWcfz62fn2J6tuPkBb6Xk1ERERqH5XjIuIf1TRWJdWRCqgcF6mMmNAYZvWZxe0rbyctN40xa8Ywr+884sJ04JmIiFSe6+RJctes8Rbin39+eiHeps2pQrwvIc31/ZmIiIjUbirHRcQ/ysvxwmwoyYfgiCrfsshVxJG8I4DKcZHKqh9enzl95jBi5QgOOA5w55o7mdt3LvYQu9HRRESkBnNlZ5O7Zi25q1aS//m20wvxCy7A1rcvUX37qBAXERGRgKJyXET8I9QOITYodnrnjtc7r8q3POg8iAcP9hA7MSExfggpUjckRiYyu/dsbl95O9+d/I671t7F7D6zibBW/ZdWIiISOFzZ2eSuXoNz1UoKtn1xeiHe9gJsffth69uH4GbNjAspIiIiUo1UjouI/9gawQmnd+64H8rxinnjtuaYTKYq30+kLmlmb8bsPrO5Y9UdfJX5FePWjeP1Xq8TZgkzOpqIiBjIlZVF7po1OFeuomDbNnC7K65VFOL9+hLctKmBKUVERETODZXjIuI/9iQ4sQ+ch/1yuwMObznezN7ML/cTqWtax7RmZu+ZjF41mh0ZO7gv5T5e7v4ywUHBRkcTEZFzyJWZ+XMh/sUXpxXioW3bEtXvVCHepImBKUVERETOPZXjIuI/fj6Us7wc17xxkbPXLq4dr/Z8lT+v/TOfHv6USZsm8Xy357GY9S2AiEggc+fn41y9Bsf775+xQzy0XTui+vXF1q8fwY0bG5hSRERExFj6yVhE/MfP5XiqIxXwjlURkbN3cYOLean7S4xbN451h9bx6KeP8kzXZzCbzEZHExERP/J4PBTu3EnOkqXkrlyJu6Cg4lrohRdi69eXqL59VYiLiIiInKJyXET8x37qBy1HWpVv5fa4SXWmAto5LuIPXRK7MC15GvdtuI/l+5cTZgnjscsf0zx/EZEAUHrsGI7//IecZcsoPXioYt3apAnRQwZju/pqgpOSDEwoIiIiUjOpHBcR/7E38j76Yed4Rn4Gha5CLGYLjaIaVfl+IgLJjZOZcuUUJm2axHvfv0doUCiTOk9SQS4iUgu5i4vJXbsWx9Jl5G/ZAh4PAKbwcGz9+hE9ZDBhl1yir/EiIiIiv+Osy/GSkhKOHz+O+xez6wCa6BAXkbqrYqzKYe8PaFX4Yax83niTqCZYzVZ/pBMRoF/zfhS6Cnlsy2Ms2LeACGsE93S8x+hYIiJSCR6Ph6KvvyZn6VKcy1fgdjorroV36oR9yBBsfftgjogwMKWIiIhI7eFzOf7DDz8wcuRItmzZctq6x+PBZDJRVlbmt3AiUstEJQImKCuG/EyIrHfWtzrg1GGcItVlcOvBFLoKmbJtCjP3zCTMEsao9qOMjiUiIr/BlZmJ44MPcSxbSvEPP1asWxo2xH7dtUQPHkywNimJiIiI+Mzncvz222/HYrHw0Ucf0bBhQ71NT0R+ZgmGqATIPeqdO16VctyhclykOt1ywS0Uugp5ceeLvLjzRcKt4QxtM9ToWCIicoqntJS8jRvJWbqMvE2bwOUCwBQSQlSvXtiHDCbi8ssxBQUZnFRERESk9vK5HN+1axc7duygTZs21ZFHRGo7e9KpcjwdGl181rdJdaQCKsdFqtOo9qMocBUwa88snvn8GcIsYVzX6jqjY4mI1GlF332PY+lSHB9+SFl2dsV6aIcO3sM1BwwgyGYzMKGIiIhI4PC5HG/bti2ZmZnVkUVEAoGtEfBFlQ/lrNg5blM5LlKd7rnoHgpKC1iwbwGTt0wmNCiUfs37GR1LRKROKcvJwbF8OY6lyyj65puK9aD4eOyDBhE9ZDAhrVoZmFBEREQkMPlcjk+dOpVJkybxzDPP0L59e6zW0w/Ks2kXg0jdVn4op/PwWd8irySP44XHAWhmb+aHUCLyW0wmE5M6T6LQVciSH5bwyOZHCLWEktw42ehoIiIBzVNWRv6nn5KzbBl5a9fhKS31XrBaiUpOxj5kMJFdu2Ky6mByERERkericzneq1cvAHr27Hnaug7kFBEA7I29j460s75FqjMVgPiweKKCo/wQSkR+j8lk4u+X/51CVyErDqzgLyl/YUbPGXRJ7GJ0NBGRgFN84ACOpctwvP8+ruPHK9ZD2rTxjk25+mossbEGJhQRERGpO3wuxzds2FAdOUQkUJTvHK/CWBUdxily7gWZg3i669MUlxWz7tA6JmyYwMzeM+lYv6PR0UREar2yvHxyV35MzpKlFH75ZcV6kN2O7ZpriB4ymNC2bQ1MKCIiIlI3+VyOd+vWrTpyiEig8Gc5rnnjIueUxWzhuaue49719/LpkU+5e+3dzOk7h3Zx7YyOJiJS63g8Hgp37iRnyVKcK1fiKSjwXjCbibiyK9GDhxDZozvm4GBjg4qIiIjUYT6X4wA5OTnMnTuXffv2AdCuXTtGjhyJ3W73azgRqYXKy/G8DHAVgyXE51to57iIcYKDgpnefTp3rb2LHRk7uHPNnczrO4/WMa2NjiYiUiu4TpzA8f775CxZSsmBAxXrwc2bYx8yGPuga7E2qG9gQhEREREpZ/b1Bdu3b6dly5ZMnz6d7OxssrOzmTZtGi1btmTnzp3VkVFEapPwOLCEev/uPHJWt1A5LmKsMEsYr/Z8lfbx7XEUOxizegwHnQeNjiUiUmN5XC5y128gbdw9/JDcnePPv0DJgQOYwsKwDxlC00ULabFiOfFjxqgYFxEREalBTB6Px+PLC6688kpatWrF7NmzsVi8G89dLhejR49m//79bNq0qVqCGsnpdGK323E4HNhsNqPjiNR8r1wCWT/CiI+g+ZU+vdTldnHpwkspdZey6vpVJEYmVlNIEflfHMUORq4ayfcnvychIoG3+r2l/yZFRH6hJDWVnCVLcfznP7hOnKhYD/vDH7DfcD22/gMIiowwMKGIiIhI3eNLl+vzWJXt27efVowDWCwWJk2aRKdOnXxPKyKBx57kLcfPYu74kbwjlLpLCQ0KJSEioRrCiUhl2UPszOw9kztW3kGqM5XRq0fzVr+3qBdez+hoIiKGcRcU4Fy1mpwl71G4fUfFelBsLPZrryX6+iGEtGplYEIRERERqSyfy3GbzcahQ4do06bNaetpaWlERUX5LZiI1GJVOJSzfKRKM3szzCafJz+JiJ/Fh8Uzu89sbl95O2m5aYxZPYZ5/eYRExpjdDQRkXPG4/FQ9NVX5Ly3BOfy5bjz870Xyg/XvP56opKTMelwTREREZFaxedy/KabbmLUqFE8//zzXHHFFQB8+umnPPjggwwdOtTvAUWkFrKVl+NpPr+0Yt64TfPGRWqKhIgE5vSZw4iVI/jJ8RN3rrmTOX3nYAvWqDERCWyukydxfvABOe8tofiHHyrWrY0bE339EOzXXYc1Qe90ExEREamtfC7Hn3/+eUwmE7fddhsulwsAq9XKXXfdxbPPPuv3gCJSC5XvHHce9vmlB5w/7xwXkZojKSqJ2X1mc8fKO9iXvY9xa8cxs/dMwq3hRkcTEfErT1kZ+Vu2kLNkKbnr1kFpKQCmkBCi+vQh+vrrCb+0Myaz3uEmIiIiUtv5XI4HBwfz0ksvMWXKFH766ScAWrZsSXi4fjgWkVP8MFaluV07x0Vqmhb2FszqPYs7Vt3BrhO7uHf9vczoOYNQS6jR0UREqqwkPR3H0qXkLPsPrqNHK9ZD27Uj+obrsQ0cSND/ONBJRERERGoXn8vxcuHh4bRv396fWUQkUNgbex8d6eDxgMlU6ZeqHBep2c6PPZ83er3BmNVj+PzY5/xl4194MflFrEFWo6OJiPjMXVxM7pq15Cx5j4Ktn1Wsm+127NdcQ/QN1xP6X2ctiYiIiEjgqFQ5PmTIEObPn4/NZmPIkCG/+9ylS5f6JZiI1GL2Rt7HkjwoyoGwyh3cd7LoJDnFOQA0tTWtrnQiUkUd6nVgRs8Z3LX2Ljalb2LsmrFMT55OdGi00dFERCqlaN8+ct5bguOjj3A7HBXrEVd0wX799UT16oU5JMTAhCIiIiJyLlSqHLfb7ZhO7fy02WwVfxcR+VXWMAiPg4Is7+7xSpbj5bvGEyMSCbOEVWdCEamizgmdeaXHK9yXch/bM7Yz/OPhzOgxQ+cFiEiN5S4uxvnhh5xc9C+K9u6tWLc0bEj04MHYhwwhOKmRgQlFRERE5FyrVDk+b968ir/Pnz+/urKISCCxJ50qxw9DQuVGMKU6UwGNVBGpLbokduGf/f/JPevu4aDzIMNWDOPF7i/SOaGz0dFERCq4Tp4kZ/FishcspCwzEwCT1Upkr55EX38DEV0uxxQUZHBKERERETGCz0es9+jRg5ycnDPWnU4nPXr08EsoEQkAFXPH0yr9Es0bF6l9Wse0ZuHAhXSI74CzxMnYNWNZ9sMyo2OJiFCSlsaxp/7Bjz16cuLFlyjLzMTSsCH1H3yQVps2kjR9OpFd/6hiXERERKQO8/lAzpSUFEpKSs5YLyoqYvPmzX4JJSIBwJ7kfXSkV/olKsdFaqf4sHjm9p3Lo58+yqrUVTy25TEO5R5ifMfxmE0+/x5eRKRKCnfvJuvNeeSuWQNuNwAhF1xA3MiR2Pr1xWTVAcIiIiIi4lXpcnzPnj0Vf9+7dy/Hjh2r+LisrIyVK1fSqJFm9InIKSrHReqUUEsoz131HE1tTZm1ZxZzvprDQedBnu76tM4QEJFq53G7yduwgaw351G4Y0fFesSVVxI3aiThl12mc5NERERE5AyVLscvuugiTCYTJpPpV8enhIWF8corr/g1nIjUYrZTvyyrZDleUlZCep73uSrHRWons8nM+I7jaWpryuQtk1lzcA1H847ySs9XiA+LNzqeiAQgd1ERjvc/IHvePEpSU72LViv2q68m9o7bCT3vPEPziYiIiEjNVuly/MCBA3g8Hlq0aMG2bduoV69exbXg4GDq169PkOb1iUi58pnjzsOVevoh5yHcHjeR1kjiQuOqMZiIVLdBLQeRGJHIxJSJfJ31Nbcsv4VXerzC+bHnGx1NRAKE6+RJTi5axMmFiyjLzgbAHBVFzM03EzN8ONYG9Q1OKCIiIiK1QaXL8aZNmwLgPjW3T0Tkd5WPVXEegTIXBP3+l5sDzp9HquhtzyK1X6eETiwasIhx68aR6kzlto9v4/+6/R9XJV1ldDQRqcVKUlPJeustHEuX4SkuBsCamEjs7SOwD7meoMgIgxOKiIiISG3i84Gc5fbu3cuhQ4fOOJxz0KBBVQ4lIgEgsgGYreAuhbxjP5flv0HzxkUCTxNbExYMWMD9Kfez7dg2xq8fz6TOkxh2wTCjo4lILVOw80uy571J7tp14PEAENquHXGjRhLVpw8my1n/WCMiIiIidZjP30Xu37+fwYMH89VXX2EymfCc+ua0fKdnWVmZfxOKSO1kNoMtEXIOeueOqxwXqZPsIXbe6PUGT332FMt+XMaz257loPMgkzpPwmJWmSUiv81TVkbuunVkvzmPwl27KtYjk5OJHXkH4Z07691mIiIiIlIlZl9fMGHCBJo3b87x48cJDw/nm2++YdOmTXTq1ImUlJRqiCgitVZ5IV6JQzkrynGbynGRQGMNsvLEFU8w8eKJAPzr238xfv148kryDE4mIjWRu7CQ7EWL+Kn/AA7fO4HCXbswWa1E/+kGWiz/iMZvvE7EpZeqGBcRERGRKvN5y9bWrVtZv3498fHxmM1mzGYzXbt2ZcqUKdx77718+eWX1ZFTRGqjSpbjHo+HVGcqoJ3jIoHKZDIxqv0omtia8NfNf+WTw59w68e38mrPV0mMTDQ6nojUAK7MTO8hm4v+RVlODgBmu52YoTcTO2wYlnr1DE4oIiIiIoHG53K8rKyMqKgoAOLj4zly5Ajnn38+TZs25bvvvvN7QBGpxSpZjp8oPEF+aT5BpiAaRzU+B8FExCi9m/YmMSKRe9bfw485P3LL8lt4ucfLdKjXwehoImKQ4v0HyJ43D8f77+M5dZ6RNSmJ2NtvJ3rIYMzh4QYnFBEREZFA5XM5fuGFF7J7926aN2/OZZddxnPPPUdwcDCzZs2iRYsW1ZFRRGqrSpbj5SNVGkc1xhpkre5UImKwdvHt+NfAfzFu3Ti+P/k9I1eN5OmuT9O3WV+jo4nIOeLxeCjcsYOsN+eRt359xXpohw7EjRxJVO9emIKCDEwoIiIiInWBz+X4o48+Sn5+PgBPPvkkV199NVdeeSVxcXEsXrzY7wFFpBazn9oFXslyvJm9WTUHEpGaIiEigbf7v82kTZPYlL6JBzY+QFpuGqMuHKU5wiIBzON2k7tuHVlz5lC0e4930WQiskcP4kbeQdjFF+trgIiIiIicMz6X4337/ryrq1WrVnz77bdkZ2cTExOjb2RF5HQVO8fTfvdpFYdxat64SJ0SYY3g5e4v8/z251mwbwEv7XyJA44DPN7lcb2LRCTAeEpKcHz4EVlz51Kyfz8ApuBg7IMHEztiBCEt9D2AiIiIiJx7PpfjvyY2NtYftxGRQGNr5H0syoHiPAiJ/NWnVZTjNv1gLFLXBJmDeOjSh2hqa8qz257lg58+4EjeEaYnTyc6NNroeCJSRe78fE7++99kz38L17FjAJijooi55RZibx2OJT7e4IQiIiIiUpdVqhwfMmRIpW+4dOnSsw4jIgEm1AYhdih2gPMw1Dv/V592wKmd4yJ13c1tbiYpKokHNj7A9oztDP94ODN6zNC4JZFaynXyJCf/uYDshQtxOxwABNWLJ+7224m+6SaCIn/9F+YiIiIiIudSpcpxu91e3TlEJFDZk+C4wzta5VfK8YLSAo7le3eSNbM1O8fhRKQm6dqoK//s/0/uWXcPB50HGbZiGC92f5HOCZ2NjiYilVR65AhZ8+eT8+/38BQWAhDctCmxo0Ziv/ZazCEhBicUEREREflZpcrxefPmVXcOEQlU9iQ4/s1vHsqZ6kwFIDY0ViMURITWMa1ZOHAhE9ZPYE/mHsauGctjlz/G4NaDjY4mIr+j+McfyZozF8dHH4HLBUBo27bEjR1LVO9emIKCDE4oIiIiInImv8wcFxH5TRWHcv56OV4+b1y7xkWkXHxYPHP7zuXRTx9lVeoqHtvyGIdyDzG+43jMJrPR8UTkFwp37SJz9hzy1q2rWAvvcjnxY8YQ3qULJpPJwHQiIiIiIr/P53K8efPmv/tN7v5Tp8+LiABgP3Uop+Pwr14u3zmueeMi8kuhllCeu+o5mtqaMmvPLOZ8NYeDzoM83fVpwixhRscTqdM8Hg/5n3xC1qzZFHzxhXfRZCKqVy/ixo4hrH17YwOKiIiIiFSSz+X4xIkTT/u4tLSUL7/8kpUrV/Lggw/6LZiIBAh7Y++jI+1XL5fvHFc5LiL/zWwyM77jeJramjJ5y2TWHFzD0byjvNLzFeLD4o2OJ1LneFwunCtXkTVnDsXffutdtFqxD7qGuFGjCGnRwtiAIiIiIiI+8rkcnzBhwq+uv/rqq2zfvr3KgUQkwFRyrIrKcRH5LYNaDiIxIpGJKRP5Outrbll+C6/0eIXzY8885FdE/M9dVIRj2TKy5r5Jabr3/+em8HBibryR2NtHYE1IMDihiIiIiMjZ8dvgzv79+7NkyRJ/3U5EAkV5Oe48DG73aZfK3GUcdB4EVI6LyO/rlNCJRQMW0czWjKP5R7nt49vYnL7Z6FgiAa3M6SRz5ix+7NmLY088SWl6OkHR0cTfO57W69fR4OGHVIyLiIiISK3mt3L8vffeIzY21l+3E5FAEdUQTGYoK4H8E6ddOpp/lOKyYoLNwSRGJBoUUERqiya2JiwYsIBLEy6lwFXAPevvYfG3i42OJRJwSo8f5/gLL/Bjj56cmD6dsqwsLIkNafC3v9Fq/Trq3X03QdHRRscUEREREakyn8eqdOzY8bQDOT0eD8eOHePEiRO89tprfg0nIgEgyAqRCZB7BJzpENWg4lL5SJUmtiYEmYOMSigitYg9xM4bvd7gia1P8P5P7/OPz//BodxD3H/J/fo6IlJFJQcPkvXmPBzLluEpKQEgpHUr4kaPxjZgACar1eCEIiIiIiL+5XM5ft111532sdlspl69eiQnJ9OmTRu/BRORAGJP8pbjjnRodEnFsuaNi8jZsAZZeeqPT9HU1pSXv3yZt/e+zeG8w0y5cgphljCj44nUOkV795I1Zw7OlasqRqCFXXQRcWPHEpncDZPZb282FRERERGpUXwuxydPnlwdOUQkkNmTIH3bGYdyHnCqHBeRs2MymRjTYQyNIhvx6KePsu7QOkauHMkrPV8hPize6HgitULBzp1kvvY6+Z98UrEW0e0q4seMIeySS057t6iIiIiISCDyuRwHKCsrY9myZezbtw+Atm3bcu2112KxnNXtRCTQlR/K+d/luHaOi0gVDWgxgISIBCZsmMDXWV9zy/JbeK3na7SKaWV0NJEaK3/bNjJfe52Czz7zLpjN2AYMIG70KEL1TlARERERqUN8brO/+eYbrrnmGjIyMjj//PMBmDp1KvXq1ePDDz/kwgsv9HtIEanl7I29j46005ZVjouIP1zc4GIWDljI3evu5qDzILd+fCvTkqfRJbGL0dFEagyPx0PBZ5+R+eprFGzf7l20WIgePJi4sWMIbtzY2IAiIiIiIgbweYDg6NGjufDCC0lPT2fnzp3s3LmTtLQ0OnTowNixY6sjo4jUdvZG3kfH4YolR7GD7KJsAJrbVI6LSNU0sTVhQf8FXFz/YvJK87h77d0s+X6J0bFEDOfxeMjb/AkHbxnGoTtGUrB9OyarleihN9Nq1UoaPvWkinERERERqbN83jm+a9cutm/fTkxMTMVaTEwMTz/9NJ07d/ZrOBEJEL8yViXVmQpA/fD6hFvDDQglIoEmOjSa2X1m89iWx1i+fzmPb32ctNw07r34XswmHSgodYvH4yFv40YyX3udoj17ADAFBxN9443EjR6FNSHB4IQiIiIiIsbzuRw/77zzyMjIoF27dqetHz9+nFatNN9TRH5F+ViV/ONQWgTWUNJzvUV5k6gmBgYTkUATHBTMlK5TaBLVhNd3v87cr+eSlpvG012fJtQSanQ8kWrn8XjIW7+ezFdfo2jvXgBMoaHE3HQTsaNGYq1f3+CEIiIiIiI1h8/l+JQpU7j33nt5/PHHufzyywH47LPPePLJJ5k6dSpOp7PiuTabzX9JRaT2CosBaziUFoDzMMS15Gj+UQASIxMNDicigcZkMnH3RXeTFJXE5C2TWX1wNRkFGbzc42ViQ2ONjidSLTxuN7lr1pL5+usUf/stAKbwcGKG3kzcHXdgiY83OKGIiIiISM3jczl+9dVXA3DjjTdiMpkA7w4VgGuuuabiY5PJRFlZmb9yikhtZjJ5R6tkfu8drRLXkiN5RwBoGNHQ4HAiEqgGtRxEw4iGTNgwgd0ndjNs+TBe7fUqe6tMMgAAIABJREFULewtjI4m4jeesjKcK1eS9cYbFP/wIwDmiAhihg8n9vYRWH4xClFERERERE7nczm+YcOG6sghIoHO1shbjju9h3IeyfeW440iGxmZSkQCXOeEziwYsIBxa8eRnpfO8BXDean7S3RO0DkpUrt5XC6cK1aQ+foblBw4AIA5KorYW28l9rZbCYqONjihiIiIiEjN53M53q1bt+rIISKB7r8O5azYOR6pneMiUr1a2FuwcOBC7l1/L7tP7GbsmrE8ccUTDGo5yOhoIj7zlJbi+PAjMme+QenBQwCY7XZiR9xG7PDhBGmsoYiIiIhIpflcjgPk5OQwd+5c9u3bB0C7du0YOXIkdrvdr+FEJICUH8rpSMPj8XA079TM8QjNHBeR6hcbGsucPnN49NNHWZW6ir998jfSctO4+w93V4yJE6nJPCUl5Lz/PlkzZ1Ga7v1Fc1B0NLF33EHMsFsIiow0OKGIiIiISO3jczm+fft2+vbtS1hYGJdeeikA06ZN4+mnn2b16tVcfPHFfg8pIgHgFzvHTxafpKisCBMmEiISjM0lInVGqCWU5656jsZRjZnz1Rze2P0GablpPHnFkwQHBRsdT+RXuUtKcCxdSuasWbiOeH+xHBQbS9yokcTcfDPmiAiDE4qIiIiI1F4+l+P33XcfgwYNYvbs2Vgs3pe7XC5Gjx7NxIkT2bRpk99DikgA+EU5Xj5SpV5YPRVSInJOmU1mJlw8gcZRjXlq61Ms37+co3lHean7S0SHakaz1Bzu4mJy/v0eWbNn48rIACCoXjxxo0YRc+ONmMPDDU4oIiIiIlL7ndXO8V8W4wAWi4VJkybRqVMnv4YTkQBSUY4f5kie91BOzRsXEaMMaT2EhhENuT/lfnYe38nwj4fzWs/XaGJrYnQ0qePchYXkvPsuWXPm4jpxAgBL/frEjRlD9J9uwBwaanBCEREREZHAYfb1BTabjUOHDp2xnpaWRlRUlF9CiUgAsp2aLV6az9GT+wFIjNS8cRExTpfELvyz/z9JjEjkoPMgw1YMY2fGTqNjSR3lzs8na+6b/NirNxlTnsV14gSWhg1JmPwYLdesJvbW4SrGRURERET8zOdy/KabbmLUqFEsXryYtLQ00tLSeOeddxg9ejRDhw6tjowiEgisYRBRD4AjOT8COoxTRIzXKqYVCwcu5MK4C8kpzmH06tGs2L/C6FhSh5Q5HGS+/jo/9urN8f/7P8qysrA2akTCk0/QatVKYoYOxRwSYnRMEREREZGA5PNYleeffx6TycRtt92Gy+UCwGq1ctddd/Hss8/6PaCIBBB7EuSf4IgzDdDOcRGpGeLD4nmz35s8svkR1h1ax0ObHyI9L50x7cdgMpmMjicBqjTjONlvvUXOO+/gLigAwNqkCfF33ol90DWYrFaDE4qIiIiIBD6Tx+PxnM0LCwoK+OmnnwBo2bIl4QF8KJDT6cRut+NwOLDZbEbHEam9Fg+HfR9yfZuOfF+cxWs9X+PKpCuNTiUiAkCZu4zpO6bz1t63ALi25bVM7jIZa5BKSvGfkoMHyZozF8d//oOntBSAkPPPJ27MGGz9+mKy+Lx3RUREREREfsGXLten775TU1NZs2YNJSUlJCcn0759+yoFFZE6xuY9lPNoiROARpGNjEwjInKaIHMQD3R+gMZRjXlm2zO8/9P7HMs/xrTu07AF65fjUjVFe/eSOXs2uatWg9sNQNgllxA3ZjSR3brpXQoiIiIiIgaodDm+YcMGrr76agoLC70vtFh48803GT58eLWFE5EAY0/CaTaR6/HulEuISDA4kIjImW5qcxOJkYk8sPEBPj/2ObeuuJVXe75KUlSS0dGklvF4PBR88QVZs+eQv3lzxXpkt27EjR1D+CWXGJhOREREREQqfSDn3//+d3r37s3hw4fJyspizJgxTJo0qTqziUigsSdx9NTbxWNCYgi3Bu44JhGp3a5MupK3+79N/fD67HfsZ9iKYew5scfoWFJLeNxuctdv4ODQWzh02whvMW42Yxs4kObv/4fGM99QMS4iIiIiUgNUeuZ4dHQ0W7ZsoW3btoB35rjNZiMjI4O4uLhqDWk0zRwX8ZP0HWxYNJB7G9SjXVw73rn6HaMTiYj8roz8DMavH8++7H2EBIUw5cop9G7a2+hYUkN5XC6cK1aQNXsOxT/8AIApOBj7kMHEjRpFcOPGBicUEREREQl8vnS5ld457nQ6iY+Pr/g4PDycsLAwHA7H2ScVkbrFnsQRSxAAiRqpIiK1QIOIBszvN59uSd0oLivm/pT7mb1nNm6P2+hoUoO4i4rIXrSIn/r248ikhyj+4QfMERHEjR5Fy7VraPj44yrGRURERERqIJ8O5Fy1ahV2u73iY7fbzbp16/j6668r1gYNGuS/dCISWCLqccQaDEBDq96FISK1Q7g1nJe6v8RzXzzHom8X8fKXL7Mncw9Pd31aB3XWcWW5uZxc9C+y336bsqwsAIJiY4m97TZibhlKkN5xKCIiIiJSo/lUjo8YMeKMtTvvvLPi7yaTibKysqqnEpHAZDZzNDQSgERTsMFhREQqL8gcxCOXPULrmNZM+XwKKWkp3PzRzUxLnkab2DZGx5NzzHXiBNlvv83Jf72DOy8PAGtiIrGjRhI9ZAjmsDCDE4qIiIiISGVUuhx3u/X2YRGpOu/O8RIS9SVFRGqhG867gQviLuAvKX8hLTeN4SuG8+jlj3Jdq+uMjibnQElaGllvvoljyVI8JSUAhLRuRdyYMdj698dktRqcUEREREREfOHTznERkao6YnaDBxKLi4yOIiJyVtrFtWPx1Yt5ZPMjbD68mb9/+nd2Hd/FI5c9QkhQiNHxpBoUffcdWbPn4FyxAk5tGAn7wx+Iu3MskcnJmMyVPsZHRERERERqEJXjInLOFJQWcNLjAqBhgQ7zFZHayx5iZ0bPGcz5ag4zvpzBkh+WsDdrL9OSp5EUlWR0PPGTgp07yZo5i7yNGyvWIrp2JW7sGMI7d8ZkMhmYTkREREREqkrluIicM8fyjwEQVebGlnfc4DQiIlVjNpkZ22EsF8ZfyMObHmZf9j5u/OhGnr3yWa5KusroeHKWPB4P+Zs2kTlrNoU7dngXTSai+vUlfswYQtu2NTagiIiIiIj4jd4DKiLnzOG8wwA0dLnAkW5wGhER/7gi8QreveZdOsR3ILckl3HrxvHKl69Q5tYh5bWJx+MhNyWFA4OHkHbnnyncsQOT1Ur0n/5Ey49XkDR9uopxEREREZEAo53jInLOHM0/CkCiywXONIPTiIj4T0JEAvP7zef57c+z6NtFzNoziz0n9jD1qqnEhsYaHU/+h6Lvv+f4s1PJ37IFAFN4ODE33UTs7SOwNmhgcDoREREREakuPu8cT0tLIz395x2f27ZtY+LEicyaNcuvwUQk8BzJOwJAQ1cZFDmgyGlwIhER/7EGWXnkskeYeuVUwixhfHb0M2788EZ2n9htdDT5Da6sLI5OfpwD1w0mf8sWTFYrcaNH0Xr9Oho8NEnFuIiIiIhIgPO5HL/lllvYsGEDAMeOHaN3795s27aNv/3tbzz55JN+DygigeNIvrccb2Syehechw1MIyJSPQa0GMCiAYtoZmtGRkEGt6+8nUX7FuHxeIyOJqe4S0rImjOHn/r2I2fxYnC7ierblxYrllP/gQcIio42OqKIiIiIiJwDPpfjX3/9NZdeeikA7777LhdeeCFbtmxh4cKFzJ8/39/5RCSAVOwcD4nxLjhUjotIYGoV04p3rn6HPk374HK7mLJtCg9teoiC0gKjo9VpHo8H58pV7B8wkOPPv4A7L4/Qdu1o+s+3SXrpRYIbNzY6ooiIiIiInEM+l+OlpaWEhIQAsHbtWgYNGgRAmzZtOHr0qH/TiUhAOZp3auZ4eIJ3waG54yISuCKsETzf7XkmdZ6ExWTh49SPGbp8KPsd+42OVicVfv0NB2+9lcMTJ1Kano6lfn0aTplCs3+/S3jnzkbHExERERERA/hcjrdr14433niDzZs3s2bNGvr16wfAkSNHiIuL83tAEQkMJWUlnCg8AUCival30ZH+O68QEan9TCYTt7a9lTf7vUn9sPrsd+xn6EdDWZm60uhodUZpRgZHHnqY1BtuoHD7DkyhocTffTctV35M9ODrMJl9/nZYREREREQChM8/DUydOpWZM2eSnJzM0KFD+cMf/gDABx98UDFuRUTkvx3LP4YHD6FBocREN/cuqhwXkTqiY/2OLL5mMZcmXEqBq4AHNz7I1G1TKXWXGh0tYLkLCzkx41V+6tcfx/vvA2AbdA0tP15BvXvHYw4PNzihiIiIiIgYzeLrC5KTk8nMzMTpdBITE1OxPnbsWML1Q4aI/IbywzgbRjbEFN3Eu6hyXETqkPiweGb2nsmML2cw9+u5LNi3gK8zv+b5bs/TIKKB0fEChsftxvnhhxyfNh1XRgYAYR070uCRhwnr0MHgdCIiIiIiUpOc1ftIPR4PO3bsYObMmeTm5gIQHBysclxEflPFvPGIRLA18i46VY6LSN1iMVuYeMlEXur+ElHWKHad2MWNH93I50c/NzpaQCjYuZPUm27myEMP48rIwJqYSKPp02i6aKGKcREREREROYPP5fjBgwdp37491157LePGjePECe8M4alTp/LAAw/4PaCIBIbyneOJkYlgT/IuOg6D221gKhERY/Ro0oPFVy/m/JjzyS7KZuyascz5ag5uj74mno2S9MOk33cfB28ZRtFXX2EOD6fefffR4uMV2Pr3x2QyGR1RRERERERqIJ/L8QkTJtCpUydOnjxJWFhYxfrgwYNZt26dX8OJSOA4kveLcjyqIZjM4C6F/OMGJxMRMUZjW2MWDFjAtS2vxe1x89LOl5iwYQLOEqfR0WqNsrw8jr8wjf0DBpD78UowmYj+0w20XLWS+DvHYg4JMTqiiIiIiIjUYD7PHN+8eTNbtmwhODj4tPVmzZpx+PBhvwUTkcBSXo43jGgIQRaISvSOVXGkQ1SCwelERIwRagnlqT8+Rcf6HXnm82dISUvhpg9vYnr36bSJbWN0vBrLU1ZGzpIlnHjpZcqysgAIv/xyGjz8EKFt9O9NREREREQqx+ed4263m7KysjPW09PTiYqK8ksoEQk8R/O9M8cbRZ6aN14xWiXNoEQiIjWDyWTi+vOu5+0Bb9MoshHpeekMXzGcZT8sMzpajZS/dSsHhlzPsccmU5aVRXDTpiS99ipN5r2pYlxERERERHzicznep08fXnzxxYqPTSYTeXl5TJ48mQEDBvg1nIgEBpfbxbH8Y8CpneMA9lMluUPvOBERAWgX147FVy/mqqSrKC4r5rEtj/H4lscpLis2OlqNUHzgAGl33c2hO0ZS/N13mG02GjzyMC0+/ICoHj00V1xERERERHzmczn+wgsv8Omnn9K2bVuKioq45ZZbKkaqTJ06tToyikgtd6LgBGWeMixmC/XC63kXK3aOpxsXTESkhrGH2HmlxyuM7zgeEyaW/LCEW1fcSlpu3X2XTVlODseeeYb91wwib8MGCAoiZvhwWq5aSeyIEZj+a9SfiIiIiIhIZfk8czwpKYndu3fzzjvvsGfPHvLy8hg1ahTDhg077YBOEZFyR/J/njduNp36nZy9sfdRY1VERE5jNpkZ22EsF8ZfyMObHmZf9j5u+ugmpnSdQrfG3YyOd854Sks5+c5iMmfMoMzhACCi21U0mDSJkJYtDU4nIiIiIiKBwOdyHMBisTB8+HB/ZxGRAFV+GGdiROLPi5o5LiLyu65IvIJ3r3mXv2z8C3tO7GH8+vGMu2gcYzqM+fkXjQEqb/NmMqY8S8n+/QCEtG5F/YceJrLrHw1OJiIiIiIigaRS5fgHH3xA//79sVqtfPDBB7/73EGDBvklmIgEjvJyvGFkw58Xo5t4H3MOGZBIRKR2SIhIYH7f+Uz9YiqLv1vMjF0z+Db7W/7R9R9EWCOMjud3pceOkfHMFHJXrwYgKCaGehPuJfqGGzBZzmpPh4iIiIiIyG+q1E8Z1113HceOHaN+/fpcd911v/k8k8lEWVmZ38KJSGA4mn8U+K+d49FNvY+FJ6EwB8KiDUgmIlLzWYOsPHr5o1wQewH/+PwfrD20ltQVqbzc/WUa2xobHc8vPKWlZP9zASdmzMBTUABBQcQOH0b8PfcQFBVldDwREREREQlQlXpPrtvtpn79+hV//60/KsZF5NdUjFWJ/EU5HhIJEd6vK5xMPfehRERqmevPu555fedRL6weP+b8yM3Lb2bL4S1Gx6qygh07OHD9DRx/7jk8BQWEXXQRzZe8R4NHHlExLiIiIiIi1SqwB1aKSI1QfiDnaeU4QEwz76PKcRGRSrmo/kW8c/U7dIjvgLPEyV3r7mL+1/PxeDxGR/OZKzubI3/9GweHDaf4++8Jsttp+I+naLpoIaFt2hgdT0RERERE6gCfy/F7772Xl19++Yz1GTNmMHHiRL+EEpHA4fa4OZrnHavSMKLh6RdVjouI+Kx+eH3m9ZvH4FaDcXvcvLDjBR7e/DCFrkKjo1WKx+3m5OJ3+an/ABxLlwIQ/acbaLHyY+9scbP2boiIiIiIyLnh808fS5Ys4Y9//OMZ61dccQXvvffeWQd59tlnMZlMpxXsRUVFjBs3jri4OCIjI7n++uvJyMg47XWHDh1i4MCBhIeHU79+fR588EFcLtdpz0lJSeHiiy8mJCSEVq1aMX/+/LPOKSK+yS7KpsRdgtlkpkFEg9MvVpTjB855LhGR2iw4KJgnrniCv172VywmCysOrGDExyMqxljVVEV795I6dCjHJk/G7XAQ0qYNTf+1iIZPPYUlJsboeCIiIiIiUsf4XI5nZWVht9vPWLfZbGRmZp5ViC+++IKZM2fSoUOH09bvu+8+PvzwQ/7973+zceNGjhw5wpAhQyqul5WVMXDgQEpKStiyZQtvvfUW8+fP57HHHqt4zoEDBxg4cCDdu3dn165dTJw4kdGjR7Nq1aqzyioivjmcdxjw7nS0mq2nX4xt7n3UznEREZ+ZTCaGthnKrD6ziAmJYV/2Pm7+6Ga+OPaF0dHOUJaXx7Gnn+HADX+iaPcezOHhNHjkYZq/92/CO3Y0Op6IiIiIiNRRPpfjrVq1YuXKlWesf/zxx7Ro0cLnAHl5eQwbNozZs2cT84sdQw6Hg7lz5zJt2jR69OjBJZdcwrx589iyZQufffYZAKtXr2bv3r0sWLCAiy66iP79+/PUU0/x6quvUlJSAsAbb7xB8+bNeeGFF7jgggu45557uOGGG5g+fbrPWUXEd+UjVRIjEs+8qLEqIiJV1jmhM4uvXswFsRdwsvgkY1aPYdG+RTViDrnH48GxfDn7+w/g5D//CW43tgH9afHxCmJHjMBksRgdUURERERE6jCfy/H777+fSZMmMXnyZDZu3MjGjRt57LHHePjhh7nvvvt8DjBu3DgGDhxIr169TlvfsWMHpaWlp623adOGJk2asHXrVgC2bt1K+/btadDg51ENffv2xel08s0331Q857/v3bdv34p7/Jri4mKcTudpf0Tk7JQfxtkwsuGZF8vL8Zw0KHOdeV1ERCqlYWRD3ur/FgOaD6DMU8aUbVOYvGUyxWXFhmUq3n+AQyNHcuQvD+A6cQJr0yY0njOHRtOmYW3Q4H/fQEREREREpJr5vF1n5MiRFBcX8/TTT/PUU08B0KxZM15//XVuu+02n+71zjvvsHPnTr744sy3/x47dozg4GCio6NPW2/QoAHHjh2reE6D//rhqvzj//Ucp9NJYWEhYWFhZ3zuKVOm8MQTT/j0zyIiv658/u2v7hyPTICgECgrBkfaz2NWRETEZ2GWMJ698lnaxrVl2o5pLPtxGT/l/MT07tOpH17/nOVwFxWROXMm2XPm4iktxRQcTNyf7yRu1CjMISHnLIeIiIiIiMj/4vPOcYC77rqL9PR0MjIycDqd7N+/3+diPC0tjQkTJrBw4UJCQ0PPJka1eeSRR3A4HBV/0tLSjI4kUmtVlOORv1KOm80arSIi4kcmk4kR7Ubwes/XsQXb2JO5h5s+uoldx3edk8+fm5LC/quvIev1N/CUlhJx1ZW0+OhD6t19t4pxERERERGpcc6qHHe5XKxdu5alS5dWzLM8cuQIeXl5lb7Hjh07OH78OBdffDEWiwWLxcLGjRt5+eWXsVgsNGjQgJKSEnJyck57XUZGBgkJCQAkJCSQkZFxxvXya7/3HJvN9qu7xgFCQkKw2Wyn/RGRs3M0/3dmjoPKcRGRanBFoyt4Z+A7tIpuRWZhJnesuoMl3y+pts9XeuQI6ePHk/7nuyhNT8eSkECjl1+i8cyZBDdpUm2fV0REREREpCp8LscPHjxI+/btufbaaxk3bhwnTpwAYOrUqTzwwAOVvk/Pnj356quv2LVrV8WfTp06MWzYsIq/W61W1q1bV/Ga7777jkOHDtGlSxcAunTpwldffcXx48crnrNmzRpsNhtt27ateM4v71H+nPJ7iEj18Xg8v79zHFSOi4hUk8a2xiwcsJBeTXrhcrt4fOvj/OOzf1BaVuq3z+EpLSVrzhx+Gng1uWvWgsVC7KiRtFz+EbY+fTCZTH77XCIiIiIiIv7m88zxCRMm0KlTJ3bv3k1cXFzF+uDBgxkzZkyl7xMVFcWFF1542lpERARxcXEV66NGjeL+++8nNjYWm83G+PHj6dKlC5dffjkAffr0oW3bttx6660899xzHDt2jEcffZRx48YRcuqtu3/+85+ZMWMGkyZNYuTIkaxfv553332X5cuX+/qPLiI+chQ7KHAVAL9xICf8ohw/cG5CiYjUIeHWcKYlT2P2V7OZ8eUMFn+3mB9O/sALyS/w/+zdeViU9f7G8XsGGPZVQBAUcE/zWHY8qaVZLuUuSGqZLafVpbRFzcoss33TNi09pzK3RMRdSy3NJY+dPJapaSmIAuKCgOwDM78/EMpfG+jAw/J+XZfXM8DwzO0fGdx8+HwD3QMv6d5533yjtGefVdHPhyVJ7lddpZCpT8utZUtHRAcAAACAKlfpcnzr1q3asWOHLBbLBe+PjIxUSkqKw4JJ0ptvvimz2awhQ4aosLBQN954o957773yjzs5OWn16tUaNWqUOnfuLE9PT91xxx2aNm1a+XOioqK0Zs0aPfzww5o5c6bCw8M1d+5c3XjjjQ7NCuC3UnNLp8YbuDWQq9Mf7JotO4STyXEAqBImk0n3/e0+tfRvqclbJ2v3yd0avnq4Zt4wU20btK30/YrPnNHJV15V1ooVkiQnf38FT5wo38GDmBQHAAAAUKtUuhy32WwqKSn5zfuPHz8ub2/vSwqzefPmC952c3PTu+++q3ffffcPPyciIkJr16790/t2795d//vf/y4pG4DKS8s5v2/8j1aqSKxVAYBq0r1xdy3ot0DjvhinpOwk3bHuDk3tPFUDmg2o0OfbS0qUuWSJTr45Q7bsbMlkkt/QoQp+eLyc/PyqOD0AAAAAOF6ld4737t1bM2bMKH/bZDIpJydHU6dOVd++fR0aDkDtVjY5/qfluF9E6bUgS8o/Ww2pAKD+aurbVAv7LVS38G4qLCnUE9ue0KvfvKpiW/Gffl7+D/uUNPwWnXh2mmzZ2XJtc5kiFy9S6LPPUIwDAAAAqLUqXY6//vrr2r59u9q0aaOCggLdeuut5StVXn755arICKCWKj+M0/NPynGLh+TVsPQx0+MAUOW8Ld56+4a3dW+70rNi5u2fpwc2PqDMgszfPLckO1snnpuupKFDVbB3r8xeXmr45JOKWrJE7u3bV3d0AAAAAHCoSq9VCQ8P13fffafFixfr+++/V05Oju6++26NGDFC7u7uVZERQC1VVo7/4WGcZfyjpJx0KSNRanRlNSQDgPrNbDLroQ4PqXVAaz21/Sn9J+0/Gr5muGZeP1OtAlrJbrfr3Gef68Tz01Vy6rQkyad/fwVPnCCX4GCD0wMAAACAY1S6HJckZ2dn3XbbbY7OAqCOScst3Tke5hX250/0j5SO7WRyHACqWe/I3or0jdS4L8bpeM5xjVw3Ui+0fFStPvxKOV98IUmyREYqZOrT8uzc2eC0AAAAAOBYF1WOHzx4UG+//bYOHDggSbrssss0duxYtW7d2qHhANRuKTkpkqRQz7+aHI8svVKOA0C1a+nfUov7L9bELx+T95od8n/5GeUUSXJ2VuB996rB/ffL7OpqdEwAAAAAcLhK7xyPj4/X5Zdfrm+//Vbt27dX+/bttXv3brVr107x8fFVkRFALZRrzVV2UbakvziQU6IcBwCDuR5N1+MfZuvuDTZ5FEkHw6QFkzrI9YE7KcYBAAAA1FmVnhyfOHGiJk+erGnTpl3w/qlTp2rixIkaMmSIw8IBqL3K9o37WHzk6eL5508OiCq9nk2s4lQAgF+zFRbq9OzZOjP3X5LVKrOnp9Jv76XnAz5XgW23vlszQjOvn6mmfk2NjgoAAAAADlfpyfG0tDTdfvvtv3n/bbfdprS0NIeEAlD7VXjfuPTL5HjWcanEWnWhAADl8r75RomDo3Vm1mzJapXXDTeo6ZrV6jbuRX3Ud55CPEOUlJ2kW9bcorhDcbLb7UZHBgAAAACHqnQ53r17d23duvU379+2bZu6du3qkFAAar8K7xuXJK+GkrObZLdJWceqOBkA1G8l2dlKm/K0jo68XUWJiXIKClTYzJkKf/cduYSESJLaNmirxf0Wq2NIR+UV52na19M0auMoncg9YXB6AAAAAHCcSq9VGThwoCZNmqRvv/1WnTp1kiTt3LlTcXFxevbZZ7Vy5coLngugfkrLKZ0c/8t945JkMpVOj5/6sXTveAC/vg8Ajma323Xus8914vnpKjl1WpLkN3Sogh97VE4+Pr95fgP3BprTa47mH5ivt3a/pe2p2xWzIkYT/zFRg5oNkslkqu6/AgBM3JpVAAAgAElEQVQAAAA4lMleyd+RNZsrNmxuMplUUlJyUaFqmuzsbPn6+iorK0s+v/PNI4DfemzLY/os6TNN7DhRI9uM/OtPWDhcOrRO6veG1PHuqg8IAPWINS1NJ56brpwvvpAkWaKiFDrtWXl07Fihzz+SdURPbXtKe0/vlSR1D++upzs/rSCPoCrLDAAAAAAXozJdbqXXqthstgr9qSvFOICLU3YgZyPPCkyOS7/sHT+bVCV5AKA+speUKGP+Ah3p17+0GHdxUeDoUYpanlDhYlySmvo21bw+8zSuwzi5mF20+fhmRa+M1toja9lFDgAAAKDWqnQ5DgAVUVaOh3pVYOe4RDkOAA5WcOiQjt46QunTp8uWlyf3K65Q02XxCnroIZldXSt9P2ezs+5pd48+7f+pLgu4TFmFWZq0dZIe3fKoMgoyquBvAAAAAABVq8Ll+Ndff63Vq1df8L558+YpKipKwcHBuu+++1RYWOjwgABqn4LiAp0pOCNJCvMKq9gnUY4DgEPYCgt1csYMJcYMUf5338ns6amGT09RxMIFcm3R4pLv38K/hRb0W6DR7UfL2eSsDUc3KHpFtDYc3eCA9AAAAABQfSpcjk+bNk379u0rf3vv3r26++671bNnTz3++ONatWqVXnzxxSoJCaB2ScstPYzTw9lDPpYK7un/dTnOr+gDwEXJ3bVLiYMG68zs96XiYnn16KGma1Yr4NZbZarguTEV4WJ20agrRmlBvwVq4d9CGQUZemTzI5r41URlFWY57HUAAAAAoCpV+LukPXv2qEePHuVvL168WFdffbXmzJmjRx55RG+99ZaWLFlSJSEB1C5pOaXleCOvRjKZTBX7JP+I0mthtpR/toqSAUDdVJKVpbQpU5R8+x0qSkqSU1CgwmbOVPg7b8slJKTKXrdNgzZa3G+x7m13r8wms9YlrtPgFYO15diWKntNAAAAAHCUCpfjZ8+eVcOGDcvf3rJli/r06VP+dseOHXXs2DHHpgNQK6Xmnt837lnBfeOS5OIueZ9//tnEKkgFAHWP3W5X9vr1OtyvvzLjlkqS/IYOVbM1a+RzY++K/4DyElicLHqow0Oa32e+onyjdDr/tMZ+MVZPbntS2UXZVf76AAAAAHCxKlyON2zYUImJpYVVUVGRdu/erU6dOpV//Ny5c3JxcXF8QgC1TtlhnI28GlXuE9k7DgAVZk1L0/HRY5Qy/mGVnD4tS1SUIj6Zp9Bpz8rJp4IrrRyoXVA7xQ2I051t75RJJq08vFIxK2K0PWV7tWcBAAAAgIqocDnet29fPf7449q6dasmT54sDw8Pde3atfzj33//vZo1a1YlIQHULmWT4xddjmcwOQ4Af8ReUqKM+Qt0pF9/5Xz5peTiosDRoxW1Yrk8OnY0NJurk6se/fuj+rjPx2ri3UTpeel6YOMDevbrZ5VrzTU0GwAAAAD8fxUux5977jk5Ozvruuuu05w5czRnzhxZLJbyj//73/9W7969qyQkgNqlfOe4Z2XL8ajSK5PjAPC7Cg4d0tFbRyh9+nTZ8vLkfsUVarosXkEPPSjzr74uM9qVwVcqbkCcRlw2QpK09NBSxayI0a60XQYnAwAAAIBfOFf0iYGBgfrqq6+UlZUlLy8vOTk5XfDxuLg4eXl5OTwggNrnkifHKccB4AK2wkKdnjVLZ+b+SyoultnTU0GPPiL/4cNlMld41qFaebh46PF/PK4eTXpoyvYpSslJ0d2f361bWt+i8R3Gy8PFw+iIAAAAAOq5Sn835evr+5tiXJICAgIumCQHUD9ZbVadzDsp6VLK8aOODQUAtVj+vn1KjI7RmdnvS8XF8urRQ03XrFbArbfW2GL81zqGdFT8wHgNbTlUkrTox0W6edXN2p2+2+BkAAAAAOq7mv8dFYBaJT03XTa7TRazRQFuAZX75LJyPPu4VFzk8GwAUJvYbTad+feHShp+i4qOHJFTUKDCZs5U+DtvyyUkxOh4leLp4qkpnafo/V7vq6FHQyWfS9ad6+/Uq9+8qoLiAqPjAQAAAKinKMcBOFRabum+8VCvUJlNlfwnxitYcvGQ7DYp61gVpAOA2qH41Ckdu/c+nXzlFclqlVfPHmq6cqV8buwtk8lkdLyL1qVRFyUMStDg5oNll13z9s/T0NVD9f2p742OBgAAAKAeohwH4FCpOef3jVf2ME5JMpl+tVol0XGhAKAWydmyRUcGDVbu9u0yubkp5JlnFP7223L29zc6mkN4W7z13DXP6Z0b3lGQe5ASsxI1ct1Izdw9U0Ul/NYQAAAAgOpDOQ7AocrL8cruGy/DoZwA6ilbYaFOvPCCjt3/gEoyMuTaqpWilsbJf/iwWj0t/keua3ydEgYlqF/TfrLZbZq7d66GrR6m/Wf2Gx0NAAAAQD1BOQ7AoVJzS8vxUM/Qi7tBWTmeweQ4gPqj8PBhJQ0brrPzPpEk+Y8cqcgln8q1eXODk1UtX1dfvdT1Jc3oPkMBbgH6OfNnjVgzQu/teU9Wm9XoeAAAAADqOMpxAA6VllO6c/ziJ8ejSq9MjgOoB+x2u85+ukSJQ2JV+OOPcgoIUPjsWQp58gmZXV2NjldtekT0UMKgBPWO6K1ie7FmfTdLI9aM0E9nfzI6GgAAAIA6jHIcgEOl5KRIcsRalaOOCQQANVRJZqZSHhqnE1Onyl5QIM8uXRS1PEHe3bsbHc0QAW4Ber3763q126vydfXVgYwDGrZ6mP79w79VYisxOh4AAACAOohyHIDD2Ow2ncg7IekiD+SULtw5brc7JBcA1DS5/9mlI4MG69yGDZKLi4InTlTjuXPkEhxsdDTD3RR1k5YPWq7u4d1ltVn15rdv6s71dyo5O9noaAAAAADqGMpxAA5zKu+Uim3FcjI5Kcgj6OJu4tdEkkkqOiflnXFoPgAwmt1q1ckZM5R8550qTk+XJSJCkYsWqcE/75LJzJdlZQLdA/XWDW9pWpdp8nTx1J5TexS7KlaLf1wsOz84BQAAAOAgfBcGwGHSckv3jYd4hsjZ7HxxN3Fxk3zOT52zdxxAHVJ07JiO3jZSZ2a/L9nt8h0So6hl8XK/vK3R0Wokk8mk6BbRWjZwmf4R8g/lF+fr+f88r/s33K8TuSeMjgcAAACgDqAcB+AwZfvGQz1DL+1Gv16tAgB1QNaq1UocHK38776T2dtbYW++oUbPPy+zp6fR0Wq8Rl6NNKf3HD3+j8fl5uSmr9O+VsyKGK08vJIpcgAAAACXhHIcgMOUTY5f9GGcZcrL8cRLuw8AGKwkJ1epkyYpdcIE2XJz5d6hg5ouT5BPnz5GR6tVzCazRlw2QnED4vS3wL/pnPWcntz2pMZ/OV5n8lnBBQAAAODiUI4DcJjUnFRJDizHM5Iu7T4AYKD8779XYkyMslaslMxmBY4dq4h5H8slLMzoaLVWpG+kPu7zscZ1GCdns7O+OPaFYlbGaNPRTUZHAwAAAFALUY4DcJjyctzzUsvxqNIra1UA1EJ2m02nP5ijpFtHyJqcLOdGoYr4ZJ6Cxo6Ryfkiz2NAOWezs+5pd48W91uslv4tlVGQofGbx2vy1snKLso2Oh4AAACAWoRyHIDDpOaWluOhXuwcB1A/WdNPKvmfd+vUG29IxcXyvukmNU1IkMdVVxkdrc5pFdBKi/ot0j3t7pHZZNbqI6sVvSJaO1J2GB0NAAAAQC1BOQ7AIex2u9Jyzu8cv+TJ8cjSa3aKVFx4afcCgGpy7osvlDhokPJ27pTJ3V2hz09X2JtvyMnX1+hodZbFyaJxHcZpXp95ivCJ0Mm8k7p/4/2avnO68qx5RscDAAAAUMNRjgNwiIyCDBWUFMgkk0I8Qy7tZp6BkounJLuUmeyQfABQVWwFBToxbZqOjx6jksxMubVpo6j4ePkNGSKTyWR0vHqhfVB7xQ2I062tb5UkfXrwU8WuitXu9N0GJwMAAABQk1GOA3CItNzSqfEg9yBZnCyXdjOTSQpg7ziAmq/g0CEl3TxUZxcukiQF3HWXIhYvkmvTKIOT1T/uzu6afPVkzek9RyGeITp27pjuXH+n3vjvGyos4beQAAAAAPwW5TgAhyg7jPOS942XYe84gBrMbrcrY8ECJcXerMKffpJTYKAaz52rhpMmymy5xB8Q4pJ0Cu2kZQOXaXDzwbLLrg/3fajhq4dr/5n9RkcDAAAAUMNQjgNwiLLJ8UZel7hvvAzlOIAaqvjsWR0fPUbpz02XvahIntd1U9MVy+V17TVGR8N53hZvPXfNc3rr+rfUwK2Bfs78WSPWjNCs72bJarMaHQ8AAABADUE5DsAhUnJSJDngMM4yZeV4RqJj7gcADpD79ddKHDhIOV9+KZOLixo+8YQaz54t5wYNjI6G33F9k+uVMChBvSJ6qdherPf2vKeRa0fqcOZho6MBAAAAqAEoxwE4RFqOoyfH2TkOoOawW606+cabSv7n3So+dUqWZs0UGbdEAbeP5NDNGs7fzV+vX/e6Xu76snwsPtp3Zp+Grhqqj/d9LJvdZnQ8AAAAAAaiHAfgEKm5pTvHq2Stit3umHsCwEUoOp6ioyNv15kPPpDsdvkNHaqopXFya93a6GioIJPJpL5N+yphUIKuDbtWRbYivfbf1/TPz/6pY+eOGR0PAAAAgEEoxwE4RNmBnA5bq+LXWJJJsuZKuacdc08AqKTszz5XYkyM8vfskdnbW2Ez3lTotGdldnc3OhouQrBHsN7r8Z6mdp4qD2cPfZv+rYasHKK4Q3Gy84NYAAAAoN6hHAdwybKLspVjzZEkhXiGOOamzq6ST1jp47PsHQdQvWwFBUp79lmljBsnW3a23Nr/TVEJy+Rz001GR8MlMplMim0Zq/iB8bqq4VXKL87XtK+nafSm0TqZd9LoeAAAAACqEeU4gEtWtm/c39VfHi4ejrtxAHvHAVS/wsOHlTR0mDIXLZYkNbj3XkXOny9LeLjByeBI4d7h+veN/9aEv0+QxWzRtpRtil4RrTVH1jBFDgAAANQTlOMALln5ShVH7Rsv4x9ReqUcB1AN7Ha7MpcuVeKQWBUeOiSnBg3UeO5cBT/6iEwuLkbHQxUwm8y6ve3tihsQp7YN2iq7KFuPb31cozaN0uHMw0bHAwAAAFDFKMcBXDKHH8ZZ5teHcgJAFSrJyVHqo48p7akpshcUyLNLFzVdniCva68xOhqqQVO/pvqk7ycafcVoOZudtT1lu4asHKIX//OisgqzjI4HAAAAoIpQjgO4ZGWT46GeoY69sf/5tSoZ7BwHUHXy9+5VYnSMsteulZycFPToI2o8d46cg4KMjoZq5GJ20aj2o7Ri0Ard0PgGldhLtPDHheq7rK8WHFggq81qdEQAAAAADkY5DuCSpeWW7hx3/OQ4O8cBVB27zaYz//5QSbfcKuuxY3Jp1EgR8z9R4L33ymTmS6T6qolPE828Yabm9p6rFv4tlF2UrZd2vaQhK4do6/GtRscDAAAA4EB85wfgkqXkpEiSGnlW0VqVc6mStcCx9wZQrxVnZOjYAw/o5CuvSMXF8u7dW1HLE+Rx5ZVGR0MNcXXo1YrrH6cpnabI39VfiVmJGr1ptEZtHKUjmUeMjgcAAADAASjHAVyytJwqmhz3CJAs3qWPM5Mde28A9Vbuzp1KHDRYuV9tlcnVVSHPPKOwmTPk5ONjdDTUME5mJw1tNVRrYtbojjZ3yNnsrG0p2xSzMkYv7XqJfeQAAABALUc5DuCS5FnzdLbwrCQp1MvBO8dNJg7lBOAw9uJinZw5U8l3/VPFp07J0qyZIpcskf/wYTKZTEbHQw3mbfHWYx0f0/JBy3V94+tVYi/RggML2EcOAAAA1HKU4wAuyYncE5Ikbxdv+ViqYOoyILL0epZDOQFcPGtqqo7efofOzJot2e3yuzlWUUvj5NaqpdHRUItE+ETorRve0pzec9Tcr3n5PvLYlbHalrLN6HgAAAAAKolyHMAlKds37vCp8TJMjgO4ROc2btSR6Bjl794ts6enGr3+mkKfe05md3ejo6GW6hTaSXEDftlHfiTriEZtHKXRG0frSBb7yAEAAIDagnIcwCVJyz2/b9zRh3GWoRwHcJFshYU68dx0HR/7oGxZWXJr105RyxPk26+f0dFQBzibnTW01VCtjlldvo98a8pWDVkxhH3kAAAAQC1BOQ7gkqTmpEqqgsM4y1COA7gIhUcSlTRsuM4uWCBJCrj7n4pcMF+Wxo0NToa6xsfiU76PvHvj7iq2F2vBgQXql9BPCw8sVLGt2OiIAAAAAP4A5TiAS1L15XhU6fVskmS3V81rAKgz7Ha7MhOWKzE2VoU//iingAA1nvOBGk6YIJPFYnQ81GERPhF6+4a39X6v99Xcr7myCrP04q4XFbsyVttTthsdDwAAAMDvoBwHcElSc0vL8VDPKto57ttYMpkla56Uc7JqXgNAnVCSk6vUSZOUNnmy7Hl58ujUSVHLE+TVtavR0VCPdGnU5YJ95IezDuuBjQ9o9MbRSszicGkAAACgJqEcB3BJ0nLO7xyvqslxZ4vkE176mNUqAP5A/g/7lDgkRtkrV0lOTgoaP15N/jVXLsHBRkdDPfTrfeS3t7ldzqbSfeQxK2L08q6X2UcOAAAA1BCU4wAuWlFJkU7ml05zV1k5Lkn+EaVXynEA/4/dblfGxx8r6ZZbZD2aLOfQUEV8Mk+BD9wvk5OT0fFQz/lYfDSh4wQlDEpQ9/DSfeTzD8xXv4R+WvTjIvaRAwAAAAajHAdw0U7knpAkuTm5yd/Vv+peKKBs7zi/jg7gF8Vnz+r4qNFKf/ElyWqVd6+eapqwTB4dOhgdDbhApG+k3u5x4T7yF/7zgmJXxmpHyg6j4wEAAAD1FuU4gItWvm/cK1Qmk6nqXsg/svTK5DiA83J37VLioMHK2bxZJotFDZ+eorC33pKTn5/R0YA/VLaP/Kmrn5Kfq58OZx3W/Rvv19hNY9lHDgAAABiAchzARavyfeNlKMcBnGe32XR69mwl33mXik+elCUqSpFLPlXArbdW7Q/pAAdxNjtrWOthWh29WiPbjJSzyVlbjm9RzIoYvfLNKzpXdM7oiAAAAEC9QTkO4KKl5KRIkhp5Uo4DqHolWVk6PnqMTs2YKdls8o2OVlT8Urm1bm10NKDSfF19NbHjRCUMStB14dep2F6sT/Z/ogEJA7T85+Wy2W1GRwQAAADqPMpxABctLbe6JsfP7xw/lyZZ86v2tQDUSAUHDigx9ubyNSqhz09XoxdfkNnDw+howCWJ9I3UOz3e0eyesxXpE6kzBWc0ZfsUjVw3UvtO7zM6HgAAAFCnUY4DuGipOed3jnuGVu0LuftLrr6lj88erdrXAlDjZCYsV9LwW2Q9dkwuYWGKWLRQfkOGGB0LcKhrwq7RsoHL9MhVj8jD2UPfn/pet6y5Rc/seEYZBRlGxwMAAADqJMpxABetrBwP8wqr2hcymST/iNLHrFYB6g1bUZHSpj6jtMmTZS8slOd13RQVv1TubdsaHQ2oEi5OLrrr8ru0KnqV+jftL7vsiv8pXv0T+mvBgQUqthUbHREAAACoUyjHAVyUYlux0vPSJVXD5LjE3nGgnrGmpuroiNuU+emnksmkwAfHqvGsWXLy8zM6GlDlgj2C9WLXFzWvzzy1Dmitc0Xn9NKulzR09VB9c+Ibo+MBAAAAdQblOICLcirvlErsJXI2OyvII6jqXzDg/N7xs4lV/1oADJWzfbsSY4aoYO9eOfn6qvEH7ytozBiZzHzZgvrlyuArtbjfYk3pNEW+rr766exP+udn/9SELRN0IveE0fEAAACAWo/vMgFclNTcX/aNm03V8E8Jk+NAnWe32XR69mwdu+delWRmyq1tW0XGx8ura1ejowGGcTI7aWiroVo9eLWGtRoms8ms9UnrNXD5QM35fo6KSoqMjggAAADUWpTjAC5K2b7xRp6NqucFKceBOq0kO1vHx4zVqRkzJbtdfjfHKmLhAlnCq/hMA6CW8HPz01OdntKn/T9Vh+AOyi/O11v/e0uDVwzWlmNbjI4HAAAA1EqU4wAuSlk5HupVDfvGpQvLcbu9el4TQLUo+PFHJQ6JVc6XX8pksSj0+ekKfe45mV1djY4G1DitA1rro5s+0otdX1SQe5COnTumsV+M1eiNo3U0+6jR8QAAAIBahXIcwEVJy02TJDXyqqbJcd/GkslJKi6QzrFnFagrMhOWK2nYcFmPHZNLWJgiFi2U35AhRscCajSTyaT+TftrVfQq3XX5XXI2O2trylZFr4jWjG9nKM+aZ3REAAAAoFagHAdwUVJyUiRV41oVJxfJN7z0MatVgFrPVlSktKnPKG3yZNkLC+XZraui4pfKvW1bo6MBtYani6ceueoRLRu4TNeEXSOrzap//fAvDVg+QGuPrJWd37QCAAAA/hTlOICLUu2T4xJ7x4E6wpqaqqMjblPmp59KJpMCx45V49mz5eTnZ3Q0oFaK8o3SrB6z9Nb1byncK1wn805q0tZJuuuzu3Qw46DR8QAAAIAai3IcQKXZ7Dal5ZSW46Ge1bRzXKIcB+qAnO3blRgzRAV798rs66vGH7yvoLFjZDLzJQlwKUwmk65vcr2WD16usVeMlZuTm75N/1ZDVw/V8zufV1ZhltERAQAAgBqH70QBVNqZ/DMqshXJbDKroWfD6nvh8nI8sfpeE4BD2G02nZ49W8fuuVclmZlya9NGUfHx8ura1ehoQJ3i6uSq+9vfr5WDV6p3RG/Z7DYtPrhY/RP6K+5QnEpsJUZHBAAAAGoMynEAlZaamypJCvYIlovZpfpeOCCq9MrkOFCrlGRn6/iYsTo1Y6Zkt8s3dogiFi2UJTzM6GhAnRXqFarXu7+uub3nqrlfc2UWZmra19N0y5pbtOfkHqPjAQAAADUC5TiASitbqVJth3GWYa0KUOsU/PijEofEKufLL2WyWBQ6/Tk1mj5dZldXo6MB9cLVoVdryYAlmtRxkrxdvHUg44BGrhupJ7c9qdP5p42OBwAAABiKchxApZVNjlfrYZzSL+V4TrpUlFe9rw2g0jKXL1fSsOGyHjsml7AwRSxcKL/YWKNjAfWOi9lFt7W5TauiVym6ebQkaeXhleqf0F8f7/tY1hKrwQkBAAAAY1COA6i01JzScrxaD+OUJHd/yc239DHT40CNZSsqUtozzyjt8cmyFxbKs1tXRcUvlfvlbY2OBtRrDdwbaNo107Sw70Jd3uBy5Vpz9dp/X1PMyhhtPLpRdrvd6IgAAABAtaIcB1BpZeV4tU+OS5I/e8eBmsyamqqjt41U5uJPJZNJgWPHqvHs2XLy8zM6GoDz2gW104J+CzStyzQFuAUoKTtJD29+WCPXjdTu9N1GxwMAAACqDeU4gEpLyzVo57jE3nGgBsvdsUOJMUNU8P33Mvv6qvEH7yto7BiZzHy5AdQ0ZpNZ0S2itSZ6je7/2/1yd3bXd6e+0x3r79BDXzykI5lHjI4IAAAAVDm+WwVQKXa7XSk5KZKMmhyPLL1SjgM1ht1m0+nZ7yv5nntVkpkptzZtFBUfL6+uXY2OBuAveFm8NPbKsVoTvUaxLWPlZHLSl8e+VPTKaD2z4xmdzDtpdEQAAACgylCOA6iUrMIs5RfnS5JCvap557j0q3I8sfpfG8BvlGRn6/iYsTo1Y4Zks8k3dogiFi2UJTzM6GgAKiHII0hTO0/VskHLdEPjG2Sz2xT/U7z6Leunt3a/pZyiHKMjAgAAAA5HOQ6gUlJzS/eNN3BrIFcn1+oPEMDOcaCmKDh4UImxNyvnyy9lslgUOv05NZo+XWZXA/5tAOAQTX2bauYNMzWvzzxdEXSFCkoKNGfvHPVd1lcLDiyQtcRqdEQAAADAYSjHAVRKWk7pvvEwL4OmQssnx49KNpsxGQDo3MaNSrrlVlmTk+USFqaIhQvlFxtrdCwADnJl8JWa12eeZlw/Q5E+kTpbeFYv7XpJA5cP1PrE9bLZ+X8wAAAAaj/KcQCVUrZv3JCVKpLkEy6ZnKSSQinnhDEZgHrMbrfr9Oz3dXzsg7Ln5cmjcydFLo2T++VtjY4GwMFMJpN6NOmhhEEJmtJpigLdA3U857gmfDVBt665VbvSdhkdEQAAALgklOMAKiUtt3RyvJGnAYdxSpKTs+TXuPRxBnvHgepkKyhQ6oSJpfvFJfmPGKEmH3wgZ39/g5MBqErOZmcNbTVUa6LXaMwVY+Th7KF9Z/bp7s/v1qiNo3To7CGjIwIAAAAXhXIcQKWk5pTuHDdsclyS/Nk7DlQ368mTOnr7HcpevVpydlbIM1MVMuUpmVxcjI4GoJp4uHjogfYPaG3MWt3S+hY5m5y1LWWbYlfG6sltT+pELr/RBQAAgNqFchxApZQdyGnYznHpV3vHk4zLANQj+T/sU9LNQ1Xw/fcy+/qqydy58h8+3OhYAAzSwL2Bnrj6Ca0YvEK9I3rLLrtWHl6pfsv66Y1v31BWYZbREQEAAIAKoRwHUCnlk+OeRk6OR5ZeKceBKpe9fr2O3nabitPTZWnWTFFLPpVnp6uNjgWgBmji00Svd39dC/su1N8b/l1FtiJ9+MOH6rusrz7e97EKSwqNjggAAAD8KcpxABWWa81VdlG2JKmRl0E7x6VflePsHAeqit1m06m331HK+IdlLyiQZ7euily8SJaICKOjAahh2gW1079v/Lfe7fGumvs1V3ZRtl7772sakDBAqw6vks1uMzoiAAAA8LsoxwFUWNnUuK+rrzxdPI0LEsDOcaAq2fLzlfLIozr97ruSpIA771TjWbPk5O1tcDIANZXJZFK38G5aOmCppnWZpmCPYKXlpumJbU9o6Kqh2pGyw+iIAAAAwG9QjgOosLJyvJGngVPj0i+T47mnpMIcQ6MAdY31xAkdHXGbzq1fL7m4KPT56Wr4+CSZnJyMjgagFnAyOym6RbTWRK/RuA7j5O3irYNnDyHFU44AACAASURBVOr+jffr3s/v1f4z+42OCAAAAJSjHAdQYWWHcRq6b1yS3Hwld//Sx5lHjc0C1CH5332nxJtvVsH+/XLy91fERx/Kb8gQo2MBqIXcnN10T7t7tDZmrUa2GSkXs4t2pu3UsNXDNPGriTp+7rjREQEAAADKcQAVl5aTJsngfeNlyqbHM9g7DjhC1qpVOjrydpWcOi3XFi0UGRcnj6uuMjoWgFrOz81PEztO1KroVerXtJ8kaV3iOg1YPkAv73pZp/NPG5wQAAAA9RnlOIAKS8lJkVRTynH2jgOOYLfZdPKNN5U6YaLsRUXyuuEGRSxaJEt4mNHRANQhYV5heqnrS1rSf4k6h3ZWsa1Y8w/MV5/4Pnrjv28ooyDD6IgAAACohyjHAVRYWu75yXGjd45Lv0yOU44DF82Wm6vjDz6kMx98IElqcO+9Cn/nbTl5GXjgLoA67bIGl+mD3h/o/V7v62+Bf1NBSYE+3Pehboq/STN3z1RmQabREQEAAFCPUI4DqLCyAzlDvQzeOS5RjgOXyJqSoqRbRyhn0yaZLBY1euVlBT/6iExmvjQAUPW6NOqi+X3n690e76pNgzbKL87X3L1zddOym/TO/95RVmGW0REBAABQD/AdMIAKKSgu0JmCM5JKfzXacOXlODvHgcrK271biTcPVeHBg3IKDFTEvI/lO3Cg0bEA1DMmk0ndwrtpcb/Feuv6t9TKv5Vyrbl6//v31Se+j2Z9N0vnis4ZHRMAAAB1GOU4gAopW6ni4ewhH4uPwWkkBZzfOZ6ZLNlKjM0C1CKZyxJ09I47VZKRIdc2lykqboncr7jC6FgA6jGTyaTrm1yvJQOW6M3ub6q5X3Ods57Te3ve003xN+mD7z9QrjXX6JgAAACogyjHAVRIWs75feNejWQymQxOI8knTDI7SyVF0rk0o9MANZ69pETpL7+itCeekKxWeffurcj58+USWgPWJAGAJLPJrJ4RPRU/MF6vXfeamvo2VXZRtt7+39u6Kf4m/Wvvv5RnzTM6JgAAAOoQynEAFZKaW7pvvJFXDTiMU5LMTpJfk9LH7B0H/lRJTo6OjR6tjA8/lCQFjh6tsBlvyuzhYXAyAPgts8msGyNv1LKBy/Ry15cV6ROpzMJMzdg9Q32W9dHH+z5WfnG+0TEBAABQB1COA6iQ8sM4PWvQlCmHcgJ/qSg5WUnDhyt3y1cyuboq7I3XFfTQgxy8CaDGczI7qW/TvkoYlKAXrn1Bjb0bK6MgQ6/99zX1ie+j+fvnq6C4wOiYAAAAqMX4zhhAhdS4yXFJ8j+/dzyDQzmB35P7n11Kunmoin4+LOfgYEXMny+fvn2NjgUAleJsdtaAZgO0cvBKTesyTWFeYTpTcEYvf/Oy+i3rp0U/LlJRSZHRMQEAAFALUY4DqJDyneOeNakcjyy9MjkO/MbZT5co+e67VZKVJbd27RQZFyf3dpcbHQsALpqz2VnRLaK1avAqTe08VSGeITqZf1Iv/OcF9V3WV0sOLpG1xGp0TAAAANQilOMAKiQlJ0VSTZscjyy9Uo4D5ezFxTox/XmdmDpVKi6WT79+ivhknlwaBhsdDQAcwsXJRbEtY7Umeo2euvopBXsEKz0vXc/tfE79E/or/lC8rDZKcgAAAPw1ynEAf8lqs+pU/ilJlONATVaSlaVj992vs/PnS5KCxo9To9deldnNzeBkAOB4FieLhrUeprUxa/X4Px5XoHugUnNT9czXz2hgwkAt/3m5im3FRscEAABADUY5DuAvpeemy2a3yWK2KMAtwOg4vygrx/NOS4XnDI0CGK0wMVFJw4Yrd8cOmdzdFfb2Wwp84AGZTCajowFAlXJ1ctWIy0ZoXcw6Tfj7BAW4Beh4znFN2T5Fg5YP0qrDq1RiKzE6JgAAAGogynEAfykt9/y+ca9GMptq0D8bbj6SR4PSx0yPox7L3bFDScOGqygpSc6hoYpcuEA+vXoZHQsAqpWbs5tub3u71sWs06NXPSp/V38ln0vWE9ueUPTKaK1LXEdJDgAAgAvUoJYLQE1Vtm881DPU4CS/g9UqqOfOfrpEyffeJ1t2ttyvuEJRcUvkdtllRscCAMN4uHjozsvv1Poh6zWuwzj5uvoqMStRE7+aqNhVsfos6TNKcgAAAEiiHAdQAWk5v0yO1ziU46in7CUlSn/5ldKDN0tK5DNwgJrM+1jOgYFGRwOAGsHDxUP3tLtH62PWa+wVY+Vt8dbPmT/rsS2PqX9Cfy04sEC51lyjYwIAAMBAlOMA/lJqbqqkmjo5HlV6zUg0NgdQjWx5eTr+0DhlfPihJClo3ENq9PLLMlssBicDgJrHy+Kl+9vfr/VD1mtU+1HysfjoeM5xvbTrJfWK66XX//t6+SAAAAAA6hfKcQB/KTWntBxnchwwnjX9pI7eNlI5mzbJZLGo0WuvKXDUKA7eBIC/4GPx0egrRmtD7AY9dfVTivSJ1DnrOX207yP1WdZHE7ZM0Penvjc6JgAAAKoR5TiAv0Q5DtQMBQcOKGnoUBXs3y8nf381+egj+fbvZ3QsAKhVPFw8NKz1MK0YvELv3PCOrg65WiX2Eq1PWq8Ra0do5NqR+jzpcxXbio2OCgAAgCrmbHQAADWbzW7TibwTkqRGnjW4HM9MlmwlktnJ0DhAVTm3ebNSHnlU9rw8WZo1U+PZs2Rp3NjoWABQa5lNZl3X+Dpd1/g6Hcw4qHn752lt4lrtObVHe7bsUZhXmG5tfatiWsTIy+JldFwAAABUASbHAfypU3mnVGwrlrPJWUEeQUbH+S2fRpKTRbJZpewUo9MADme325Ux7xMdHz1G9rw8eXTupMhFCynGAcCBWgW00vPXPq8NsRt0/9/ul5+rn1JyUvTqf19Vz6U99co3ryglh68zAAAA6hrKcQB/quwwzoaeDeVsroG/bGJ2kvyalD5mtQrqGHtxsdKfm670F16QbDb53RyrJh98ICcfH6OjAUCdFOgeqLFXjtWG2A2a2nmqmvo2Va41V5/s/0R9l/XVI5sf0Z6Te2S3242OCgAAAAegHAfwp8r2jYd6hhqc5E+wdxx1UElOjo6NHq2zCxdKJpOCJzymkGnTZHJxMToaANR5bs5uim0Zq4RBCZrVc5a6NOoim92mDUc3aOS6kbpt7W1an7ieveQAAAC1XA0cAwVQk6TlpkmqoYdxlqEcRx1jTU3VsQdGqfDQIZnc3NTo1Vfk06uX0bEAoN4xm8y6NuxaXRt2rX46+5PmH5iv1YdX6/vT32vCVxMU6hlaupe8ZYx8LPxWDwAAQG3D5DiAP1W2X7Nml+NRpdeMRGNzAA6Qv3evEocOU+GhQ3IKClTEJ59QjANADdDCv4We7fKsPo/9XKPbj1aAW4DSctP0+revq1dcL7206yUdyz5mdEwAAABUAuU4gD+VlnN+ctyzJpfjkaVXJsdRy2V/9rmOjrxdJadPy7VVK0UtWSL3dpcbHQsA8CsN3Bto1BWj9Hns55rWZZqa+zVXXnGeFhxYoH4J/TT+y/H6Nv1b9pIDAADUApTjAP5U2YGcoV7sHAeqit1u15m5c5UybpzsBQXy7NZVEQsWyCW0Bv93BwD1nKuTq6JbRGvZwGX6oNcHujbsWtll16bkTbpz/Z0avma41hxZI6vNanRUAAAA/AHKcQB/yG63l0+Oh3mGGZzmT/hHlF7zM6SCLGOzAJVkt1qVNmWKTr72uiTJ/7bb1Pi99+Tk5WlwMgBARZhMJnVu1Fmzes7SikErFNsyVq5Ortp/Zr8e3/q4boq/Sf/a+y9lFfI1CgAAQE1DOQ7gD2UUZKigpEAmmRTiGWJ0nD/m6i15BpU+ZnoctUhJVpaS771PWUvjJbNZDZ98UiFPPSmTM+dlA0Bt1NSvqaZ2nqoNsRv04JUPKtA9UCfzTmrG7hnqtbSXpu6Yqr2n9rJyBQAAoIagHAfwh9JyS6fGg9yD5OLkYnCav8BqFdQyRcnJShp+i/J27pTZw0Ph772rgJG3GR0LAOAA/m7+uu9v9+mzIZ/p+WufVyv/Vsovzteyn5bp1rW3KnZVrBb9uEjZRdlGRwUAAKjXKMcB/KHUnNJ94428avBhnGUox1GL5O3eraRhw1WUmCjnkBBFLFwg7+7djY4FAHAwi5NFA5sNVNyAOH1808ca2GygXJ1cdejsIb3wnxfUY0kPPbntSe05uYdpcgAAAAPwe9sA/lBZOV6jD+MsQzmOWiJr1WqlPfGE7Far3Nq2Vfis9+QSHGx0LABAFTKZTOrQsIM6NOygiR0navWR1Vp6aKl+zvxZKw+v1MrDK9XMt5liW8ZqQLMB8nX1NToyAABAvcDkOIA/lJp7fnLcszZMjkeVXjMSjc0B/AG73a5T77yr1AkTZLda5d2rpyI+mUcxDgD1jK+rr0ZcNkLLBi7T/L7zFd08Wu7O7jqcdVgvf/Oyblhygx7f+ri+OfEN0+QAAABVjMlxAH8oLad05zhrVYBLYysqUtqTTyl71SpJUsDd/1Two4/KZOZn1ABQX5lMJrUPaq/2Qe01oeMErUtcp7hDcfox40etObJGa46sUaRPpIa0GKKBzQcqwC3A6MgAAAB1DuU4gD+UkpsiqZaV41nHpJJiyYl/3lAzFJ89q+NjH1T+t99Kzs4KeXqK/IcONToWAKAG8bZ4a2irobq55c3af2a/lv60VGuPrFVSdpJe//Z1zfzfTPVo0kOxLWP1j5B/yGzih6sAAACOQHsE4A+VT47XhrUq3qGSk6tUUihlp0j+EUYnAlR45IiOPTBK1uRkmb29FT5zhjy7dDE6FgCghjKZTGob2FZtA9vqsb8/pnWJ6xR/KF4/nPlBnyV9ps+SPlNj78aKaRGjwc0HK9A90OjIAAAAtRojBwB+V3ZRtnKsOZKkEM8Qg9NUgNn8SyF+lr3jMF7uzp1KGn6LrMnJcgkPV+TiRRTjAIAK83TxVGzLWC3qv0hxA+I0rNUwebl46di5Y5q5e6Z6xfXSw18+rO0p22Wz24yOCwAAUCtRjgP4XWVT4wFuAfJw8TA4TQWxdxw1RGb8MiXfc69s2dlyv+IKRX66WK7NmhkdCwBQS7UOaK2nOj2lTTdv0rQu09Q+qL2K7cXamLxRD2x8QH3i++j9795Xem660VEBAABqFdaqAPhdKTml+8ZDPUMNTlIJlOMwmN1m06k3Z+jMnDmSJJ++fRX64gsyu7oanAwAUBd4uHgoukW0oltE66ezPyn+p3itPLxSqbmpemfPO3rvu/fULbybYlvE6tqwa+VkdjI6MgAAQI1GOQ7gd6Xlnt83XhsO4yxDOQ4D2YuKlDJxks6tXy9JChw9WoEPjpXJZDI4GQCgLmrh30KP/+Nxje8wXhuObtDSQ0u1++RubT62WZuPbVZDj4aKaRGj6ObRCvWqRcMOAAAA1YhyHMDvSs1JlVTbJsejSq8Z7BxH9bIVFSll3HjlfPml5OKiRtOfk++gQUbHAgDUA27ObhrQbIAGNBugI5lHyqfJ0/PSNeu7WZr93Wx1DOmonhE91aNJDwV7BBsdGQAAoMagHAfwu8rKcSbHgT9nKypSykPjlLN5s0yurgp/9115XXuN0bEAAPVQU7+mmtBxgsZ1GKdNyZu09NBS7Tqxq/zPi/95Ue2D2qtnRE/1iuhVu77OAwAAqAKU4wB+V2ru+XLcsxZ90+QfUXotyJTyz0ru/sbmQZ1nKypSyoMPKWfLFplcXdV41nvy7NLF6FgAgHrO4mRRn6g+6hPVR8fPHdem5E3acHSDvjv1nfac2qM9p/botf++pjYN2qhXRC/1bNJTkb6RRscGAACodpTjAH5XWk4t3Dlu8ZQ8g6Xck9LZo5TjqFK2wkIdf+gh5W75SiY3t9JivHNno2MBAHCBcO9w3dH2Dt3R9g6dyD2hTcmbtPHoRu0+uVv7z+zX/jP7NXP3TDX3a65eEb3UK6KXmvs158wMAABQL5iNfPEXX3xRHTt2lLe3t4KDgzV48GAdPHjwgucUFBRozJgxatCggby8vDRkyBClp6df8Jzk5GT169dPHh4eCg4O1oQJE1RcXHzBczZv3qwOHTrI1dVVzZs310cffVTVfz2g1sqz5uls4VlJqn0HOJWvVmHvOKqOrbBQxx988JdifPYsinEAQI0X4hmiEZeN0Ic3fagvbv5CT3d+Wl0adZGzyVk/Z/6sWd/NUszKGA1cPlAzd8/UvjP7ZLfbjY4NAABQZQwtx7ds2aIxY8Zo586d2rBhg6xWq3r37q3c3Nzy5zz88MNatWqV4uLitGXLFqWmpiomJqb84yUlJerXr5+Kioq0Y8cOffzxx/roo4/09NNPlz8nMTFR/fr10/XXX689e/Zo/Pjxuueee/TZZ59V698XqC3Sckunxr1dvOVj8TE4TSUFnD+Uk73jqCK2wkIdH/ugcr/aer4Yny3PTp2MjgUAQKU0cG+gm1verPd7va/NwzZr+jXT1T28uyxmi5KykzR371wNXz1cfZb10avfvKo9J/fIZrcZHRsAAMChTPYaNApw6tQpBQcHa8uWLerWrZuysrIUFBSkhQsXKjY2VpL0448/6rLLLtPXX3+tTp06ad26derfv79SU1PVsGFDSdLs2bM1adIknTp1ShaLRZMmTdKaNWv0ww8/lL/W8OHDlZmZqfXr1/9lruzsbPn6+iorK0s+PrWsKAQuwtbjWzV602i19G+p+IHxRsepnC9fkLa8LF11pzRgptFpUMfYCgt1fMxY5W7bJpO7e2kxfvU/jI4FAIDD5BTl6KvjX2lj8kZtS9mm/OL88o8FuwfrhiY3qFdEL3Vo2EHOZrZ0AgCAmqcyXa6hk+P/X1ZWliQpICBAkvTtt9/KarWqZ8+e5c9p3bq1mjRpoq+//lqS9PXXX6tdu3blxbgk3XjjjcrOzta+ffvKn/Pre5Q9p+we/19hYaGys7Mv+APUJ2WT47XqMM4y5WtVkoxMgTrIVlCg46PH/FKMv08xDgCoe7wsXurbtK/e6P6Gtgzboje7v6m+UX3l6eKpk/kntfjgYt39+d3qEddDz+x4RttTtstaYjU6NgAAwEWpMT/qt9lsGj9+vK655hpdfvnlkqQTJ07IYrHIz8/vguc2bNhQJ06cKH/Or4vxso+XfezPnpOdna38/Hy5u7tf8LEXX3xRzz77rOP+ckAtk5KTIqmWHcZZpqwcz2DnOBynvBjfsUMmDw81eX+2PDp2NDoWAABVyt3ZXT0jeqpnRE8VlRRpZ9pObTi6QV8e+1IZBRmK/yle8T/Fy9viresbX6+eTXqqS1gXuTq5Gh0dAACgQmpMOT5mzBj98MMP2rZtm9FRNHnyZD3yyCPlb2dnZ6tx48YGJgKqV1rO+cnxWlmOn985nnVcKrFKTi7G5kGtZ8vP1/ExY5S74+vSYvyD9+Xx978bHQsAgGplcbKoW3g3dQvvJqvNqv+e+K82Ht2oTcmbdKbgjFYeXqmVh1fKw9lD3cK7qWdET3UN6yoPFw+jowMAAPyhGlGOjx07VqtXr9ZXX32l8PDw8veHhISoqKhImZmZF0yPp6enKyQkpPw5u3btuuB+6enp5R8ru5a979fP8fHx+c3UuCS5urrK1ZVpB9RfqbmpkqRQz1CDk1wEr4aSs5tUXFBakJcd0AlcBFt+vo6NGq28nTtl9vBQ4zkfyOOqq4yOBQCAoVzMLurcqLM6N+qsJ65+QntO7dHGoxu14egGpeela33Seq1PWi8fi49ubnmzbml9ixp6NvzrGwMAAFQzQ3eO2+12jR07VgkJCfriiy8UFXVhiXXVVVfJxcVFmzZtKn/fwYMHlZycrM6dO0uSOnfurL179+rkyZPlz9mwYYN8fHzUpk2b8uf8+h5lzym7B4ALpeaUluNhXmEGJ7kIZrPkF1H6mL3juAS2vDwde2DUL8X43DkU4wAA/D9OZidd1fAqTfrHJG2I3aCFfRfqrrZ3KcwrTNlF2frXD//STfE3afLWydp/Zr/RcQEAAC5gstvtdqNefPTo0Vq4cKFWrFihVq1a/R97dx4d913f+/85uzQjzWizdkuW992OHSfEoYQS7PTSEtpCKfekiU0SEpbCLRQ4tFxuSy63pfRS4P7Y2oQkTpdLe1NoAwSwnYQkZHXsxPuWWPsujTSrZp/fH9+ZkWTJiZ3Y+mp5Pc6Z8535fj8z854DkaWX3np/Cud9Pl+ho/tjH/sYjz76KA8++CBer5dPfvKTADz77LMApNNpNm/eTH19PV/72tfo6+vj1ltv5c477+Sv/uqvAGhtbWX9+vV84hOf4Pbbb+fxxx/nU5/6FD/72c+46aab3rDOS9nhVGSuS6QTbP0nIwB88g+fpKKowuSK3oR//iCc/SX8zjfg6tvNrkbmoEIw/uKLWD0eFt97L+4tV5ldloiIyJyRzqR5sutJHjrxEAf7DxbOb6vdxm1rb+Mdje/AajG1V0tERETmqUvJck0dq/K9730PgHe+852Tzj/wwAPs3r0bgG984xtYrVbe//73E4/Huemmm/jud79bWGuz2fjpT3/Kxz72Ma677jo8Hg+7du3innvuKaxpaWnhZz/7GZ/+9Kf51re+RWNjI/fdd99FBeMiC01fxNjItshWRLmr3ORq3qT8KBV1jsubkIlG6bz7o0QPHDCC8fvuxX2VgnEREZFLYbPaeFfTu3hX07s4PnSch048xN62vRzoO8CBvgM0e5u5dc2t3Lz8ZortU0ddioiIiMwEUzvH5wp1jstC8nzv83xk70do8bXwyO8+YnY5b87z34NffAHWvg8++JDZ1cgckolEjGD8pZewlpTQdN+9FG/ebHZZIiIi80JfpI9/OfUvPHz6YULJEAA+l48PrvwgH1r9Iard1SZXKCIiIvPBpWS5+js2EZkkP2+8vqTe5EregvIlxlGd43IJMpEIHXffPR6M/+A+BeMiIiKXUa2nls9s/Qz7/2A/X7jmCzSWNBKIB7j36L3c9O838cVff5HT/tNmlykiIiILiMJxEZmkEI575kE47m8D/XGMXIR0OELHXXcz9tJBrKWlNN3/A4o3bTK7LBERkXnJ7XBzy5pb+Onv/ZRvvvObbKneQiqT4pHXHuEDP/kAd+69k6e6niKTzZhdqoiIiMxzps4cF5HZpzfSC8zxzvGyZuMYD8DYCLjn4KaiMmPS4Qidd93F2KFD48H4hg1mlyUiIjLv2aw2bmy+kRubb+To4FH+8cQ/srd9Ly/0vsALvS/Q4mvh1rW38t6l76XIXmR2uSIiIjIPqXNcRCbpDncDc7xz3OmGklrjvkaryOtIh8N0fuQjRjDu9dJ0//0KxkVEREywYdEGvnbD1/j57/+cXWt3UeIooTXQyj3P3cPOh3fy7Ze/zdDYkNllioiIyDyjcFxEJukNz4POcdDccXlD6XCYzjs/wtjLL08IxtebXZaIiMiCVldSx2e3fZZ9H9jH57d9noaSBkbiI/z9kb9n58M7+dIzX+LMyBmzyxQREZF5QuG4iBSkMin6o/0A1HnqTK7mLVI4Lq8jHQrRecedjL3yClafj6YH7qd4/TqzyxIREZGcEmcJt669lZ/+3k/5+g1fZ9OiTSQzSf7j1f/g/Y+8n7v23sUz3c+Q1f4yIiIi8hZo5riIFAxGB0ln09itdha5F5ldzltT0WIcR1rNrUNmnXQoRMeddxI7fMQIxu//AcXrFIyLiIjMRnarnZ1LdrJzyU5eGXiFfzzxj+zv2M9zvc/xXO9zLPMt47Z1t/HbS38bl81ldrkiIiIyx6hzXEQK8vPG6zx1WC1z/MuDOsdlGulgkI47jGDc5vPR/MD9CsZFRETmiM3Vm/n6O7/Oo7//KLeuvRWPw8Nrgdf4i2f/gp0P7+R7r3yP4bFhs8sUERGROWSOp18icjn1RnLzxufyZpx5CsflPIVg/IgRjDc9+ABFa9eaXZaIiIhcooaSBj6/7fPs+8A+Pnv1Z6nz1OGP+fnu4e+y8+GdfPHXX+TprqdJppNmlyoiIiKznMaqiEhBT7gHMDZCmvPy4XigC9JJsDlMLUfMlQ4EjGD82DFsZWVGML56tdlliYiIyFtQ6ixl17pd3LLmFva372fP8T0cGz7GI689wiOvPUKpo5R3Ln4nO5p3sL1hu8auiIiIyBQKx0WkoCdihOP1JfOgc7ykBuzFkBqD0Q6oXGZ2RWKSdCBAx+13EDt+HFt5uRGMr1pldlkiIiJymditdn6r5be4aclNHB48zE/P/ZTHOh5jaGyIn5z7CT859xPcdjc3LL6BHc07eHvD2ym2F5tdtoiIiMwCCsdFpCDfOT4vxqpYLEb3+OBJY7SKwvEFKT06agTjJ07kgvEHKVq10uyyRERE5AqwWCxsrt7M5urN/Nk1f8bhwcPsa9/HvvZ99Ef7+Xnrz/l5688pthfz9oa3s6N5B+9ofAceh8fs0kVERMQkCsdFpKAwc3w+dI7D5HBcFpz06Cjtt99O/MRJbBUVRsf4SgXjIiIiC4HNamNLzRa21Gzhc9s+x9Gho+xv38++9n10h7sLobnT6uT6huvZ0byDGxbfgNfpNbt0ERERmUEKx0UEgEw2Q294HobjoHB8AUqNjNBx+x3ETyoYFxERWeisFiubFm1i06JNfGbrZzjhP8H+9v3sbdtLR6iDJzqf4InOJ7Bb7VxXdx07mnfwrqZ34XP5zC5dRERErjCF4yICwPDYMIlMAqvFSrW72uxyLo+KFuM40mpuHTKjJgXjlZU0P/gArhUrzC5LREREZgGLxcK6ynWsq1zHp676FGdGzrC/Yz/72vbxWuA1nu5+mqe7n+ae5+5hW+02dizZwbsWv4vK4kqzSxcREZkincmSTGdIpjOk0lmSmdwxnSGZzpLKZFhVU4rFYjG71FlL4biIAOObcVa7q3FYHSZXc5moc3zBSY2M0PHh24mfOoWtqsoIxpcvN7ssERERmYUsFgurKlaxqmIVn9j8/ArvWQAAIABJREFUCV4bfY197fvY376f0yOnea73OZ7rfY6vPP8VttZsZUfzDm5sunH+NJKIiMgFZbNZEukMiZRxi+eO+XPxVLpwrnAtdz2eTE9YN34+lQurk7nwOh9ip6YE3FmSqQypzHjgnUyNPzeVC76TmQzZ7Bt/ljNf+S847QrHL0ThuIgAjI9UmQ+bceYVwvF2yGaNTTpl3kqNjNCx+8PET582gvE9D+Japo1YRURE5OIsK1vGsrJlfHTTR2kPtheC8uPDxznQd4ADfQf46xf+ms3Vm9nRvIMdzTuo9dSaXbaIyLyXD6pjiQxjybRxS6SJpdLEEunJ5wr3M8RS559LTxtynx+Ax3PX5iKLBRxWKw6bBbvNOKYyGZxYzS5t1lI4LiIAdIe7gXk0bxygrMk4xoMwNgLuCnPrkSsm5fcbwfiZM9gWVdG8Zw+upUvNLktERETmqGZvM3duuJM7N9xJd7jbmFHevpcjg0d4eeBlXh54ma8d+Bobqzayo3kH725+N42ljWaXLSIyI7LZLMl0llgqTTyZIZZME0+liSVzHdXJzPi1/PlkmlgqUziXD60LwXUyM23Qnb+euYgO6SvJYbPgtFlx2q247DacduO+02bF5bBOuuaa5prDbsVhzQfWufA699hps2K35e9bsFuNx47cWrvNYgTeduPaxODbcd5am1VNgZdK4biIANAbMTrH6zx1JldyGTmKobQeQj3gb1U4Pk+lhoeNYPzsWeyLFtG0Zw+upS1mlyUiIiLzRENJA7vW7WLXul30Rfp4rOMx9rbt5eWBlzkydIQjQ0f4+sGvs7piNW9veDvb67ezedFmHLZ5MqpQROaEbDZLPGUE1dHEeMA8ln+cSDOWTI3fz13LP2fKMRd0xyYc84F3PGVeWG2zWnA7bBQ5bRQ7bBQ5rLmjjeLcueILXC9yGMG1y2Ezgmt7PtC2nhd22yaE3cY5q0LneUvhuIgA0BM2Zo7Pq85xMEarhHqMTTkbt5pdjVxmRjC+m/jZVxWMi4iIyBVX66nlljW3cMuaWxgaG+Kx9sfY176PA/0HOOU/xSn/Ke47eh/F9mK21W7jurrr2F6/nRZfizZDExEAEqkM4XiKSDxFKJYy7idSjCUmhtopxhIZoskUscTksHu64NsIxFOmBdZFDqNjeuIxH0RPDKSL7DZcDiNwdhfC61ywPSHcnhJ0O6yFsNth03gQubwUjosIMM/D8Y5ntSnnPJQaGqJ9924Sr76Gvbqapj0P4mpRMC4iIiIzo6q4ij9c/Yf84eo/xB/z80z3Mzzb8yzP9TzHcGyYp7qe4qmupwCocdewvX472+u3c23dtZQXlZtcvYhcimw2SzSRJjwh0A7HUoTjSUIxI+gOx1OECucnHOPjj0Px1IzMsnbYLBQ7bLid9vGQ2WnD7TSC5/OD6XyIfTEh96SwOzcyRL/8k7lM4biIkM1m6YnkwvH5tCEnTNiUs83MKuQySw0O0r77wyReew17TQ3Nex7EuWSJ2WWJiIjIAlVRVMF7l72X9y57L5lshrMjZ3mu5zme7XmWg/0H6Y/28+NXf8yPX/0xFiysrVzL9vrtXFd/nUawiLyO/GzrZDqTu028nyGRGn+cyF9Pnfc4nSGVzpDIP7dwfeprjSXPD79zx0SK7GXuynY7bZS47JQU2XE7bbgd40G222mMBXGfd7/YaaPYaR9fMyHozq9Td7XIpVE4LiIE4gHGUmMA1JXMo5njABW5TmKF4/NGanCQ9l27SZw7h7221gjGm5vNLktEREQEAKvFyqqKVayqWMXu9buJpWIc6j/Esz3P8mzvs5wdOcvx4eMcHz7OvUfvpdhezDW113Bd/XVcV38dLV6NYJHZZeLmi9PNop606eIFNl88f6Z1fMLj2DSzrSeG4bOJzWoxAm2XndIieyHczp+b+Ni47sg9tk24b8fjtGFXgC0yKygcF5FC13hlUSUum8vkai4zdY7PK8mBATp2f3g8GH9oD86mJrPLEhEREbmgInsR2xu2s71hOwAD0QGe732+MILFH/PzZNeTPNn1JGDMNc93lb+t9m2UFZWZWb7MYvkNGPOzp8eS6VzYnGYskRk/N+H6WGLCmmSasWSmcG7i9fz6fLh9ubum34r8pokOmwWHzYojt3Gi3Zp7bLfinHDNuH7eY9v4WkfueXabFY/LNinkLp0QaJe47BQ5NEJEZL5ROC4ihXnjDSUNJldyBeTD8UAXpBJgd5pajrx5yYEBOnbtJtHair2uzugYVzAuIiIic0y1u5qbl93MzctuJpPNcGbkjNFV3vMsh/oP0Rfp40dnf8SPzv4ICxbWVa7junpjY89NizZpBMsclA+xI/EUkXiaSMKYUR1JpHPnpnmcv59IE42niKXywXVm0maMZni9OdTG0dh0sWiaY1FuM8Yix8Rz4zOsjWtWnDYbjgmBdj4Mt1ktCqdF5LJSOC4ihXB83o1UAfAsAocHkhEIdELlMrMrkjch2T9Ax65dJNrasNfX0bxnD87Fi80uS0REROQtsVqsrK5YzeqK1dy+/nbGUmMc7D9YmFf+6uirHBs+xrHhY9x79F7cdjfbarcVwvIl3iUKCi+zdCY7Hj7nAuhoImUcC8F2Prg+P9Q2jtGEMas6v4FjNJEmnbmyrddOmxEqF0/YaLGwEeOEjReLndbxcxPXTvuc8RA7vzmjNl8UkflG4biI0BvpBebhZpwAFovRPT5wHPytCsfnoGR/Px237SLR3o6jvp6mh/bgbGw0uywRERGRy67YXszbG97O2xveDkB/pL8wguX53uenjGCp89RxXf11bKvdxtU1V1PrqTWz/BmRTGeInhdcx5LpSefGErnHyYnr0ozlQ+7c6JDp1iRSmStav9tpw+00ZlAbRzselw23y06J0447N9Zj4hqPazzAni78LnLYsFkVWIuIvBkKx0WE7nA3APUl8zAch/FwfKTV7ErkEiX7+mjftYtke0cuGH8IZ+M8HP8jIiIiMo0aTw3vW/4+3rf8fWSyGU77TxdmlR8aOERvpLcwggVgcelirq65uhCWm/WXoelMlmjC6Jg2binGEmkiuYB64vl8qD3tuWSKaHzCayTTM7pBY7HDhttphM9GqG3DMyG49rjsxi0XYBvXJobb4+c9LjvFCrFFRGYdheMiMt45Pp/DcdCmnHNMsq+P9tt2kezowNHQQNOePQrGRUREZMGyWqysqVzDmso13LHhDqLJKAf7D/J87/O81P8Sp/yn6Ax10hnq5Mev/hgw9hS6uuZqrq69mqtrrqahpGHSSIyJIXYkPh5aRxKpwgiRaH7udW6cyFj+eu45+Y7raDxFdIa6rwFsVgvu3GgQt3NyV/XEQNs4b59+jdOGO3du/Dn2wkgRjQ8REZn/FI6LyPjMcc88nDkOCsfnoGRvL+27dheC8eaH9uBoUDAuIiIikslkCcaSDEcyFKXWscm9guUN/xV/eZDXQsdoixyhO3aMkVQr3eFuusPd/Odr/wmALV2ONbGcTLSFWKiF2FgZcOUCYKsFI2x22vA4x0Pq8ZtxzZ3vzHaNh9ju3IgRt2PCugnPc9i0MaOIiLx1CsdFFrhwIkwwEQTmced4RYtxVDg+JyR7eoxgvLMTR2OjEYzXz9P/b4qIiMiCl85kGY0m8EcSDEcmHMMJ/JE4Q4X7xvmRaOJ1Nnf0ANcZN2scW3EbNncrdvc5rMVdpG0jpIsPQPEBHJVgS3pJR5eSibbgSq3Eba3Fkw+lnXY8ucDakwukx8eKjIfUk4/5Lmzjscuu7msREZndFI6LLHA9EaNr3Ofy4XF4TK7mCpnYOZ7NGpt0yqyU7O42gvGuLhyLF9O850EF4yIiIjKnpNIZ/Lmw2x8+L/COxBmecM4fSTAaTXDBrPt1lLrsVJQ4KXc7KS3KBdcTgm3j8WbcLuO8zZagL3Ga1vARzgYO82rgBClHEKvvFfC9AoC7uIqtE2aWt/haFG6LiMi8pnBcZIHrDefmjXvmcQDpWwxYIBGG6DB4qsyuSKaR7O42Zox3d+NoajKC8bp5OupHRERE5oRsNks0kS4E2f6oEXiPRMfD7Ym34UiCwFjyTb2Xr9hBpcdJRe5WWeKk0uMq3C+c97go9zhw2W1v4l1agN8CYCw1xpHBIxzoO8BL/S9xZPAIQ2ND/KLtF/yi7RcAVBRVTJpZvqxsGVaL9U19PhERkdlI4bjIAtcZ6gTm8bxxAEcReOsh2G10jyscn3USXd107JoQjD+0B0dtrdlliYiIyDyTSmcYiSYZiSYYvkDIff61+JvYXNJigXL3xEB78rGixEWVx0lFLvQudztx2GY2dC62F3Nt3bVcW3ctALFUjKNDR3mp7yVe6n+Jw4OH8cf87G3fy972vQCUu8rZWrO1EJavKF+hsFxEROY0heMiC9xTXU8BsGHRBpMrucLKW4xw3N8KjVebXY1MkOjqpuO220j29OBobqL5oYdw1NSYXZaIiIjMctlslkgizUh+Fvc0x/x4k5G32NXttFupzIXYlblRJvnguzwXeuev5cNum3VujSMpshexrXYb22q3AZBIJyaF5a8MvMJIfIT9HfvZ37EfMEYzXj1hDIvCchERmWsUjossYCOxEV7sexGAm5pvMrmaK6x8CbT/WptyzjKJri7ab7uNVE8vzuZmmh7ao2BcRERkgcp3dU/q5J4wxqQQeE+4lngTXd0AZW6HEW5fIOSuKJl8ze20LbjZ206bk601W9las5W7uZtkOsnx4eO81P8SB/oO8PLAywTiAR7reIzHOh4DjLB8a/XWQsiusFxERGY7heMiC9jjHY+TzqZZU7GGxd7FZpdzZU3clFNmhURnJ+237SLV24tzyRKa9uzBUVNtdlkiIiJyGeS7uv3hfPd2HH8kWTgWursnjDV5s13drnxX94R53YXgu2RqAF5W7MA+wyNM5gOHzcHm6s1srt7MnRvuJJlJcmL4hDGzvO8lDg0cIhAP8Hjn4zze+TigsFxERGY/heMiC1h+duDOJTtNrmQGKByfVRIdHbTv2m0E4y0tND34oIJxERGRWSqdyRIYM+Z0j0YTjESS+PP3o8nCOeP6+DGRfnOzusuKHZNDbs/4qJLpzrud+rHWDA6rg02LNrFp0aZCWH5y+CQH+g5woP8Ah/qnhuVep7cwhkVhuYiIzAb6LkJkgRqNjfJC7wsA7GxeAOF4RYtxHGk1tw4h0d5uBON9fTiXLqXpwQdwVCsYFxERmQmxZJqRXJidD7dHJgTdI7lu7kLoHU0SjCXJZt/c+xU7bNOPLfE4qPC4phx9xY45N6tbDA6rg42LNrJx0Ubu2HDHtGF5MBFUWC4iIrOKwnGRBerxTmOkyuqK1TR5m8wu58rLd44HeyAZA0eRqeUsVIn2dmOUSn8/zqVLad7zIPZFi8wuS0REZE6LJdMMhuL0B2MM5I79wTgDucf+iBF++6MJYsk3N6MboLTITrnbSbnbQVmui7vM7Zh0rtydO5cba1LstF3GTypzyRuF5S/3v6ywXERETKdwXGSB2tuWG6myELrGAdyV4CyBRBgCnVC1wuyKFpxEW5sRjA8M4Fy2zAjGq6rMLktERGTWiqfSDATjDISMoLs/GKM/FM+dixVC8Eud1W23WnJBtmM8zHY7KfOMB93lbqPTOx96a063vFVvNizfWjM+s3xl+UqF5SIiclkpHBdZgALxQGGkyo7mHSZXM0MsFqN7vP+YMXdc4fiMire20rFrtxGML19G84MKxkVEZOFKpDIMhnOd3ud1e/cHY4Uu8JHoxYfeLruVGm8R1aUu4+h1FR7n53XnA/BSlx2LRaNLxFwXG5Y/0fkET3Q+AYyH5Vuqt7C+aj1rK9fidrhN/iQiIjKXKRwXWYAe73icVDbFyvKVLPEtMbucmZMPx/2aOz6T4uda6di1i9TgIK4Vy2l64AEF4yIiMm8k0xkCY0lGo0kCY8ZGlMb9JKNjSQLRBKNjSUaiyUljTi6W024tBN41XhfVpbngu7Ro0jlvsQJvmdvOD8tTmZQRlvcf4EDf+MzyiWG51WJlWdkyNlRtYH3VejZWbWRZ2TLsVkUdIiJycfQvhsgC9Mv2XwILaKRKXn7u+EibmVUsKPFz54yO8cFBXCtW0PTgA9grK80uS0REZJJsNks0kS6E3KNjCQLRXLh9XvA9/tjYsDKSSL+p93TYLFSXGuF2vsO72js58K7xGhtUKvSWhchutbNh0QY2LNrA7etvnxSWHx08ytGho/RH+zk7cpazI2f50dkfAVBkK2Jt5VrWV60vhOYNJQ3670hERKalcFxkgQnEA7zQY4xU2blE4bhcOfHXXqN9927Sg0O4Vq40gvGKCrPLEhGRBSKdyTIUjtMXiNEbiNEXGKMvN6t7uuA7mc6+6feyWMBb5MBX7KDMnT8ac7onnqvOBd81pUWUuRV6i1yKiWF53kB0gKNDRzk2dIyjQ0c5PnSccDLMoYFDHBo4VFhX7iqfFJavr1pPeVG5GR9DRERmGYXjIgtMfqTKivIVtPhazC5nZpXnPq/C8SsuduoUHbffQdrvVzAuIiKXXSKVoT8Yoy9oBN/9+QA8OEZfIEZfwNi4Mp25tMDbYbPgKzY2qCzLhdreYgdl+XO5kHti+F3mdlBa5MBmVdAtMtOq3dXc2HQjNzbdCEAmm6Et2GaE5YNGaH5q5BQj8RGe7n6ap7ufLjx3ceniQmC+oWoDqytWU2QvMuujiIiISRSOiywwe9v3AgtwpApAxYRwPJs12rzkshs7eoyOO+8kEwjgWruGph/8AHu5OnNEROTiRBOpXKd37haM0RsYoy8QL4TfQ+GLm9lttUB1aRG1viJqvcax2usyNqYsduBzjwffvmIHbqdN3dwic5jVYmWpbylLfUu5ednNACTSCU77T0/qMG8LttEZ6qQz1MnPW38OgM1iY2X5ykkd5kt9S7FZbWZ+JBERucIUjossIIF4gOd7nwcW4EgVAN9iwALJCEQGoaTa7IrmneihQ3TedTeZcJjiTZtYfO8/YPN6zS5LRERmgWw2y0g0aXR1n9/1HcyNPQnECMZSF/V6TpvVCL1zwXedb3IIXucrpqrEid1mvcKfTERmM6fNOWUcSyAe4Pjw8UJYfnTwKMOxYU76T3LSf5L/d+b/AeC2u1lXta4QmG+s2kiNp8asjyIiIleAwnGRBeSJzidIZVIsL1vOUt9Ss8uZeXYn+Boh0Gl0jyscv6wiz79A58c/TjYaxX311TR+//vYSjxmlyUiIjMgP+YkH3qPB+Dx3KzvGP3BOIlU5qJer8RlzwXcxgaV0wXf5ZrZLSJvks/lY3v9drbXbweMX971R/uNoDzXYX586DjRVJQDfQc40Heg8NyGkga21mxlS/UWttZspdnbrK9FIiJzmMJxkQVkb1tupMpC7BrPK18yHo4vvsbsauaN8NNP0/XHnyQbj+PZvp3G73wba3Gx2WWJiMhblM1mCYwlJwfegXgu7B4/Nxy5uDEnAJUeJzW5kLvWV0Sdt4iaXBCeD8NLixxX8FOJiExmsVio9dRS66llR/MOANKZNK2B1knjWE6PnKY73E13uJtHXnsEgIqiiklh+crylRrFIiIyhygcF1kggokgz/U+B8BNzTeZXI2JypdA29PgbzW7knkjtH8/XZ/+DCSTlPzmb9LwzW9gdbnMLktERN5AOpOlPz/aZELQ3Zub853vBI8lL67b22m3UuN1Uesd7/YuhOC5c9VeFy67QiMRmf1sVhvLy5ezvHw5v7fi9wCIJCMcHjjMS/0vcWjgEEcHj+KP+dnXvo997fsAKHGUsKl6E1fXXM2W6i2sr1qP0+Y086OIiMjrUDguskD8qvNX4yNVyhbgSJW88iXGcaTNzCrmjeCjj9L9uc9DOk3pTTfR8Ldfw+LUN/8iIrNBLJmmNxCje2SM7tEo3SNjdI2O5R4b871TmexFvVa52zEl6D7/vsaciMh853F42N6wne0NxjiWRDrBsaFjHBo4xMH+g7wy8ArhZJhnup/hme5nAHBajZnn+c7yzdWb8Tg0elBEZLZQOC6yQBRGqjQv4JEqoHD8Mhr98X/Q+8UvQiaD9+b3Uv9Xf4XFrn9WRERmSjCWNILuXNjdMzo5/B4Mxd/wNexWyzRBt8s4eo3Z3tVeF0UOdXuLiJzPaXOypWYLW2q2cOeGO0ln0pwZOVMIyw/2H8Qf8xfu33v0XqwWK6srVrOlegtX11zNVTVXUVFUYfZHERFZsJRiiCwAoUSIZ3ueBRb4vHGA8hbjqHD8LRn54Q/p+8svA1D2B39A7Zf/EovVanJVIiLzRzabZSicoLsQdkcLoXdX7hiKpd7wdYodNhrKi2koKy4cGyc8ri4twmZVt7eIyOVgs9pYU7mGNZVruGXNLWSzWdqD7RzsP1gIzLvD3ZwYPsGJ4RP808l/AqDF1zJpbnl9Sb3Jn0REZOFQOC6yAPyq81ckM0mW+ZaxrGyZ2eWYqyIXjod6INgDXn3jean8e/bQ/9dfBaD8j/6Imi/+uf6MXkTkEmWzWUajSdr9UTr8UTqGI4XQOx+Cx1NvPOu7zO0wgu4p4bebhvJijToRETGRxWJhiW8JS3xLeP/K9wPQF+njUP+hQlj+6uirtAZaaQ208vCZhwGo89QZHem57vIWX4u+louIXCEKx0UWgMJIlYXeNQ7groCm66DjOXj5n+GGz5ld0Zwy9P2/Z/Cb3wSg8s47WPSnf6pv1EVELiCTydIbjNE+HKFjOGoE4cNR2v0R2oejb9j5bbFAdakrF3y7CwF444Qg3OPSt/MiInNJraeW9yx9D+9Z+h4ARmOjvDzwcqG7/MTwCXojvfzs3M/42bmfAVDmKmND1QY2LtrIxqqNrF+0Hq/Ta+bHEBGZNyzZbPbiduFZwILBID6fj0AggNerf4BkbgklQtzwrzeQzCT50c0/YkX5CrNLMt/hH8KP7wZfE/y3w6BxIG8om80y+H/+D8Pf+z4AVX/8x1R94uMKxkVkwYsl03SNRGkfNm4d/ijtwxHa/VG6/GMk0q/f/V1d6qK50k1Thcfo+J4Qftf5inHa9W+UiMhCEk1GOTx4mEMDhzjUf4jDg4eJp6fuIdHiazEC86qNbFy0kRXlK7Bb9QtTERG4tCxXXzlF5rn8SJUWXwvLy5abXc7ssPZ98PPPQ6ADzj0Oy99tdkWzWjabZeBrf4v/gQcAqP7sn1J5550mVyUiMnNGowkj/M6NP2mf0AXeF4y97nMdNguN5W6aKty5ENxNc6WHpgrjfrFTG12KiMg4t8PNdfXXcV39dQAk00lO+U9xZOgIRwaPcHToKJ2hzsIolkdeewSAIlsRayvXsnHRxkKXea2n1syPIiIyJygcF5nn9rbnRqo071SXb56jGDZ+CF78ezi4R+H468hmMvR/5SuM/Mv/BaDmi1+k4tY/MrkqEZHLLxJPcaY/xNn+MG25zu+OYaMLPPgG409KXPbx8LvSTXOFpxCE15cVa8NLERF50xw2BxsWbWDDog3csuYWAPwxP8eGjnFk0AjMjw0dI5QMGd3mA4cKz60urmbDog2FwHxd5TrcDrdZH0VEZFbSWJWLoLEqMleFE2Fu+NcbSGQS/PvN/87K8pVmlzR79B+H720Hqx0+cxJKqs2uaNbJptP0ful/EPjRj8BiofbLf0n5Bz9odlkiIm9JOpOlfTjCqb6QcesNcro/RPtw9HWflx9/srhiQvhd6aa5wk2Fx6lfQIuIiGky2QxtwTajs3zwKEeGjnB25CzpbHrSOqvFyoqyFUZgnhvH0uJrwWrRCC8RmV80VkVEAPhV169IZBIs8S5hRZlmjU9Ssw4at0HXAXjln+Htnza7olklm0zS84U/I/izn4HVSv1X/xrfzTebXZaIyCUZDsc53RfiZF+I031BTvWFONMfIpacfg74olIXq2pKaanyTBqBsriiGLdT3zaLiMjsZLVYWepbylLfUn53+e8Cxuzyk/6ThVEshwcPMxAd4PTIaU6PnObhMw8DUOIoYX3VejZUbWDTok1sWLSBiqIKMz+OiMiM0nf5IvPY3rbcSJUlGqkyrS27jHD84B7Y/t+0MWdONpGg+0//lNC+/WC30/C//zfe37rJ7LJERC4olkzz6kCYUxNC8FN9IQZDUzcwAyhyWFlZU8rq2lJW1XpZU1vKqtpSKktcM1y5iIjIleF2uNlas5WtNVsL5/oj/RwdOmqMYxk6wonhE4STYZ7vfZ7ne58vrGsoaWDjoo1srNrI2sq1rK5YrXEsIjJvaazKRdBYFZmLJo5Uefi9D7OqYpXZJc0+iQj871WQCMFtj8DSG8yuyHSZeJyuT32KyJNPYXE4aPjWtyh912+aXZaICGBsENw1MlYIwY2O8BCtQxHSmanf0los0FThnhKCN1d6NAdcREQWvFQmxaujrxa6y48MHuFc4NyUdRYstPhaWFu5lrWVa1lTsYY1lWvwODwmVC0i8sY0VkVEeLLrycJIFc0avwCnBzb+Abx0Pxx8cMGH45lolM5PfILoc89jKSqi8TvfpuT6680uS0QWqMBYktPnheCn+0KE49NvjlnmdrC6tpTVtd5cGF7KyppSPC59uysiIjIdu9XO6orVrK5YzQdXGXsLBRNBjg0d4+jgUY4NHePE8AkGxgY4FzjHucA5fnrup4ARmDd7mwuBeb7DvNRZauZHEhG5ZPppQWSeyo9U2dG8QyNVXs/W3UY4fuqnEBkCT5XZFZkiHQ7TefdHGTt4EKvbTeP3v4fnmmvMLktEFoBQLMnZgTBn+0Oc6Q9zpj/EqwNhegOxadc7bVaWVZcUusBX1Zayps5LdalL/96JiIi8RV6nl+3129lev71wbmhsiBPDJybd+qP9tAXbaAu28Wjro4W1zd5m1lasZU3lGqPLvHINXqf+Al9EZi+NVbkIGqsic00kGeEdP3yHRqpcrH94J/S8DDu/Ats/aXY1My4YOeHXAAAgAElEQVQ9OkrHR+4idvQo1tJSmu79B4o3bza7LBGZZ8LxFGf7Q5zNBeBnBsK82h+i5wIhOEBDWXGhC3x1ndER3lLlwWHTHhEiIiJmGh4b5sTwCU76TxYC895I77RrF5cuZk3Fmkld5j6Xb4YrFpGFRGNVRBa4JzuNkSrN3maNVLkYW3YZ4fjBPXDdHxtDaheIlN9Px+13ED91CltZGYt/cB/F69aZXZaIzGGReIqzA0YAfrY/lOsKD9M9OnbB59R4XaysKWVFdSkra0pYUVPC8upSfMWOGaxcRERELlZlcSW/0fgb/EbjbxTO+WN+Tg6fnBSYd4e76Qx10hnqZG/73sLahpKG8bC8wjiWFZWZ8VFEZIFTOC4yD+W/6djZvFN/Yn4xNnwAfvlFGD4L7c/CkoUxZzs5MEDH7beTePU1bFVVNN3/A4pW6pcpInJxIvEUrw6Mj0E5kxuL8noheHVpLgSvKRkPwqtL8bkVgouIiMx1FUUVXN9wPdc3jP88NRob5YT/BCeHxwPzrnAX3eFuusPd7GvfV1hb56krBOarylexvHw59Z56/UwrIleUwnGReSaajPLr7l8DsHPJTpOrmSNcpbDh/XDoITi0Z0GE48meHto//GGS7R3Ya2poeuABXEtbzC5LRGahaCIfgoc5OzA+FqVr5MIh+KJSVyH4XlFTkusKL6HM7ZzBykVERMRsZUVlU2aYB+IBTvpPTgrMO0Id9EZ66Y308ljHY4W1HoeH5WXLWVG+ghVlK1hRvoKV5Ss1lkVELhuF4yLzzFNdTxFPx2kqbWJVuWaNX7Stu41w/Ph/wG99FdwVZld0xSQ6O+nYtZtkTw+OhgaaHnwA5+LFZpclIibJZrOMRJN0+KPGbTgy4X6U3mCMC+1QU1WSD8FLWFFTysoaoxtcIbiIiIhciM/l4211b+NtdW8rnAsmgpwaPlUYyXJm5AxtgTYiyQiHBw9zePDwpNdYVLxoUmC+onwFS31LKbIXzfTHEZE5TuG4yDxTGKmyRCNVLkn9FqjZAP1H4ci/wds+anZFV0T8XCsdu3eTGhjA2dxM04MP4KirM7ssEbnCEqkMPaNj46F3Lvju8Efp9EcJxVOv+/yqEifLq3Md4DWlrMzdL/coBBcREZG3zuv0ck3dNVxTd03hXDKdpC3YxtmRs5wdPWscR87SE+lhcGyQwbFBnu15trDearHSVNo0JTRvLGnEZrWZ8bFEZA5QOC4yj0STUZ7uehqAHc07TK5mjrFYYOsuePSzcPBBuPbuebcxZ+z0GTpuv5308DDO5ctouv9+HNXVZpclIpfJaDQxbfjd4Y/SMzpG5gLd33m13iKaKt00VUy4VbpprnBTWeKamQ8hIiIikuOwOQoB90ThRJhXR1+dFJifHT1LIB6gLdhGW7Bt0izzIlsRS8uWTgrMV5avpLKoUg1lIqJwXGQ+ear7KWLpGI0ljaypWGN2OXPPxg/C3i/B4EnoOgCLr3nj58wRY8eP03n7HaQDAVxr1tD0g/uwV8zf0TEi81EqnaE3EKN9Qujd4Y8UgvBg7PW7v4sc1lzo7ckdi3NhuIfG8mKKHOqoEhERkdmvxFnC5urNbK7eXDiXzWYZHBvk1REjND8zcoazI2c5FzhHLB0rzDafqNxVzvLy5ZNC8xVlK3A73DP9kUTERArHReaRvW0aqfKWFPlg/e/DK/9sdI/Pk3A8+vLLdN51N5lQiKKNG2m69x+w+bSBjchsFogmOd4T4FhPgKPdQY53B2j3R0m/Qft3dalrUtf3xPuLSlz6t0FERETmJYvFQrW7mmp3Ndsbxjf/TGfSdIQ6ODty1ug2z3WZdwQ7GImPcKDvAAf6DhTWWy1WWrwtrKlcw9rKtaytXMuaijUKzEXmMUs2e6EtliQvGAzi8/kIBAJ4vV6zyxGZVjQZ5YZ/vYFYOsYPf+eHrKtcZ3ZJc1PHC3D/TrAXw2dPG4H5HBZ5/gU6P/5xstEoxVdvZfH3v4+tpMTsskRkgqFwnGPdAY73BDnWbQTinf6xadc67dbJY08mhN+Ly90UO9X9LSIiIvJGxlJjnBs9x5mRM4XQ/MzIGYZjw1PWWrCwxLeENRWTA/MSp36uEpmtLiXLVee4yDzxdPfTxNIxGkoaWFux1uxy5q7F18CiNcZolSP/Btd8xOyK3rTwk0/S9an/RjYex7N9O43f/v+wutXxIGKWbDZLfzBeCMCPdRtheF8wNu36pgo36xu8rKv3sb7Bx8qaEmpKi7Ba1f0tIiIi8lYU24tZV7WOdVWTm8oGo4PGCBb/icIoloHoAK2BVloDrTza+mhh7RLveYF55RpKnaUz/VFE5C1SOC4yT2ikymWS35jzF1+Ag3tg251zcmPO4C9+SffnPgfJJCXvehcN3/g7rC5tqCcyU7LZLF0jY5OC8OM9AYbCiSlrLRZYWuVhfYOP9fU+1jV4WVfnw+d2mFC5iIiIyMK1yL2IG9w3cMPiGwrnhsaGODl8shCWn/CfoC/SV9j88+dtPy+sbSptmjKSxeea23+NLDLfaazKRdBYFZntxlJj3PCvNzCWGuOHv/3DKb/9lksU9cPXV0M6Dh95HBq2ml3RJRn9j/+g98+/CJkM3ve8h/q/+SoWh0I2kSslk8nSNhzhWI8xGzwfhgfGklPW2qwWVlSX5LrBvaxv8LGmzkuJS/0KIiIiInOFP+afFJif9J+kO9w97dqGkoZCWL62ci1rK9ZSVlQ2wxWLLCwaqyKywDzd9TRjqbHCP7ryFrkrYO374Oi/Gd3jcygcH/m//5e+L98DgO/9v0/dPfdgsWkGscjlkkpnODcUMTrCc2NRTvQGCcdTU9Y6bBZW1ZbmusF9bGjwsbq2lCKH/psUERERmcsqiiq4vuF6rm+4vnBuNDZaGMeSD867wl10h7vpDnezr31fYW29p35SYL6yfCVVxVX6K3AREygcF5kH9rbnRqo0a6TKZbN1txGOH30Ybvpf4Jr9s+OGf3A/A3/7twCU33orNX/2BSxWq8lVicxd6UyW1qEwR7oCHOkKcLQ7wPGeALFkZspal93KmjovGxp8hTnhK2tKcdr136CIiIjIQlBWVMb2+u1sr99eOBeIBzjpPzmpy7wj1EFPpIeeSA/7O/YX1rrtbpq8TTSVNtHsbabJmzuWNlFRVKGf9UWuEIXjInPcWGqMp7qeAox543KZNG+HyhUwfNYIyK/+sNkVXVA2m2Xo299h6DvfAaDyrrtY9Ok/0TdPIpcgm83SPhzlSHeAI52jHOkOcLw7QCSRnrLW47SxLjcbfH1us8xlizzYbQrCRURERGScz+XjbXVv4211byucCyaCnPaf5sTwCY4PH+fk8Ek6Qh1EU1FO+U9xyn9qyuuUOEqMsLzUCM0nhuhlrjL97CfyFigcF5njft3968JIlXWVmjV+2eQ35tz73+HQnlkbjmezWQa+9rf4H3gAgEV/8idUffRuk6sSmd3ym2Ue7c53hI9ytCtAMDZ1NEqxw8a6ei8bG8vY2GgE4UurPFit+gFERERERC6d1+llW+02ttVuK5xLppN0hbvoCHbQHmynI5Q7BjvojfQSToYLnefnK3WWFkLzQsd57rE2AxV5YwrHRea4vW3GSJUdzTv02+LLbdN/hf1fhp6Xofcw1G0yu6JJspkMfffcw+gP/xWAmj//cypuu9XkqkRml2w2S18wZoTgXQGOdAc42jXKSHTqZplOu5W1dV42NhrzwTc2lqkjXERERESuOIfNQYuvhRZfy5Rr8XScrlBXISxvD7UXQvT+aD+hRIhjw8c4NnxsynPLXGWTO84njGwpdc7+0aEiM0HhuMgcFkvFeLLrScCYNy6XmacK1rwXjv/I2Jjzd/7O7IoKsqkUvV/8IoH/fAQsFur+5z2UfeADZpclYrrBUJyj3aOTwvDBUHzKOofNwupaLxsafWxs8LGh0ZgR7lAQLiIiIiKziMvmYlnZMpaVLZtybSw1Rmeoc1LHeUfQuA2MDTAaH2V0cJQjg0emPLeiqIKm0qZpO849Ds9MfDSRWUHhuMgclh+pUu+pZ33VerPLmZ+27jLC8SP/Bjv/JzjN/yYhm0jQ/dnPEdq7F2w26v/mb/D9zm+bXZbIjPNHEhzNdYLnN8zsDcSmrLNZLayoLjE6whvL2NToY1VtKS67zYSqRUREREQuj2J7MSvLV7KyfOWUa9FklM5Q55QxLe3BdoZjw/hjfvwxP68MvjLluVXFVZOD81zH+eLSxbgd7pn4aCIzRuG4yBymkSozYMk7oLwFRlrh+I/hqj8ytZxMLEbXpz5F5KmnsTgcNHzzG5TeeKOpNYlcaelMlg5/lFO9QU72hTjZG+Rkb5CukbEpay0WWL6oZEJHeBlr67wUOxWEi4iIiMjC4Xa4WVWxilUVq6ZcCyfChS7z88PzkfgIQ2NDDI0NcWjg0JTnVhdXT+o2z4foTaVNFNmLZuKjiVxWCsdF5qhYKsavun4FwI4lO8wtZj6zWmHLbfDYl+Hgg6aG4+lwhK6Pf5zoiy9iKSqi8TvfpuT6602rR+RKCESTnOozwu9TfSFO9oU40xdiLJmedv3SKg8bJswIX1fvxePStzciIiIiIhdS4ixhbeVa1launXItmAgWRrPk55vn7wfiAQbGBhgYG+Cl/pemPLfGXTNlREuzt5nG0kZcNtdMfDSRS6afHkXmqGd6nmEsNUatp5aNVRvNLmd+23wLPPG/oOsA9B+HmnUzXkI6EKDjrruIHT6C1eNh8d9/H/fVV894HSKXSyqdoW04woneEKdyQfip3iA904xFAXDZrayqLWV1bSmra72sritlXb0PX7FjhisXEREREZm/vE4v66vWTzu6NRAP0B5sn9Jt3hHsIJQM0R/tpz/az4t9L056ngULtZ7aSaF5Y0kj9SX1NJQ24HV6Z+rjiUyhcFxkjtJIlRlUWgOr/guc/ImxMed7vjajb58aHqbjjjuJnzqFzedj8X33Urxhw4zWIPJW+CMJTvUGOZEPwfuCnOkPk0hlpl3fUFbMmrpS1tR5C0H4kkoPNqu+1omIiIiImMXn8rFx0UY2LprcoJfNZhmNj04737wj1EEkGaE30ktvpJcXel+Y8rqljlIjKC9pKBwn3i9xlszUR5QFSOG4yBwUT8d5sutJAHY27zS5mgVi624jHD/yQ9jxZXAUz8jbJvv76fjw7STOncNWVUXTD35A0aqpm62IzAaJVIZzQ2FjJEqvMRLlVG+QgVB82vVup41VtUYIvqa2lNV1XlbWlKobXERERERkDrFYLJQXlVNeVM7m6s2TrmWzWYZjw5PC8o5gB72RXrrD3fhjfkLJEKdHTnN65PS0r+9z+aj3TA3N8/e1Sai8FQrHReagZ7qfIZKMUOOumfIbW7lClr4LfE0Q6IAT/wmbPnTF3zLR1UXH7g+T7OrCXltL0wP342ppueLvK3IxYsk0R7oCvNwxYswG7w3y2mCYZDo77frmSjdrcl3gq2u9rKkrZXG5G6u6wUVERERE5i2LxUJVcRVVxVVsqdky5Xo0GS0E5d3hbnrCPZPuj8ZHCcQDBOIBTvpPTvse5a7yC3ad15fUa6NQeV0Kx0XmoL3t4yNVrBarydUsEPmNOZ/4ijFa5QqH4/FzrXR8+MOk+vtxNDXRdP/9OBsbruh7iryeUCzJwfYRDrT5ebHVz+HOAIn01LEopUX2SSH46rpSVtWUapNMERERERGZwu1ws6xsGcvKlk17PZwI0xPpmRKa5++HEiFG4iOMxEc4Nnxs2teoLKoshOYNpQ00ljQWjrWeWuxW/ayykOl/fZE5Jp6O86vOXwFw05KbzC1mobnqFvjVX0HHszB4GhatuiJvEzt9mo7b7yA9PIxz2TKa7r8fR031FXkvkQsZCsc50OrnxTY/B9r8nOgJkjmvKbyqxMW2JeWsqx+fDd5QVqx9EERERERE5LIocZaw0rmSleXTjxcNJoKFsLwnbIToXeGuwrlIMsJwbJjh2DBHho5Meb7NYqPWU0tjaSONJY2FY0NJA42ljZS5yvTzzTyncFxkjnm2+1kiyQjV7mqNVJlp3npY+Vtw+lE49BDc9L8u+1uMHTlCx0fuIhMI4Fq7hqb77sNeUXHZ30dkomw2S9fIWKEr/MU2P+cGI1PWNVW42bakgmtbKtjWUsGSSre+URQREREREdN4nV68FV5WV6yeci2bzRJMBCd1m3eFuugKdxmd56FuEplEoQv9BaZuFuq2u8cD81y3ef6xRrbMDwrHReaY/EiVnc07NVLFDFt3G+H4K/8CN/4PsLsu20tHDxyg8+6PkolGKd68mcX/8PfYvN7L9voieZlMllcHw7zY6i8E4r2B2JR1q2tL2bbECMKvWVJBrU/f+ImIiIiIyNxgsVjwuXz4XD7WVq6dcj2TzTAYHTRC83AXXaGuSQH6QHSAaCrKmZEznBk5M+17VBdXTxnV0lhqdJ5Xu6uV28wBCsdF5pBEOlEYqbJzyU5zi1molr8bvA0Q7IaTP4ENH7gsLxt++td0ffKTZGMx3Ndey+Lvfgerx3NZXlsklc5wvCfIgTY/L7T6eanNz0g0OWmN3WphfYPP6ApfUsHVS8opcztNqlhEREREROTKslqs1HhqqPHUTLtZaDwdL3SYd4W7Csd8eB5JRhgYG2BgbICXB16e8nyH1VGYc17vqafGbbxXrafWuO+uwe1wz8RHldehcFxkDnm251nCyTDV7mo2LdpkdjkLk9UGV90KT34VDj54WcLx0P79dH/6M2STSUpuuIGGb30Ta5E6dOXNiyXTvNwxyoHcvPCD7SNEE+lJa4ocVrY0lRfGpGxuKsPt1LcFIiIiIiIiAC6bi6W+pSz1LZ1yLZvNEogH6A530xnunNx1HuqiL9JHMpOkLdhGW7Dtgu/hdXqNgN49HpoXwnNPDbXuWgXoV5h+ChaZQ/a2GSNVdjTv0J/mmOmqP4In/wbanobh16By+l21L0bgJz+h5wt/Buk0pTfdRMPffg2LU926cmmCsSQH20Z4ITcm5UjXKMn05N0zvUV2rsl1hW9rqWB9vQ+nXV9HRERERERELpXFYqGsqIyyojLWVa2bcj2VSdEf7S90m/dF+uiL9NEf7ac/0k9ftI9IMkIwESSYCHJ25OwF36vUWTptaJ4/1noUoL8VCsdF5ohEOsETnU8AxrxxMVHZYlixA87uhUN7YMc9b+plRv7t3+j7i7+EbBbf7/4udV/5n1js+rIsb2wkkuCFVmNW+Autw5zoDZKdnIVT43VN2jxzZXUpVqs2zxQREREREbnS7Fa7MVKlpIFruGbaNeFEmP5o/5TQvD/SXzgfToYJJUKEEiFeHX31gu9X6igtjIipdU/uQN9auxWX7fLtlzbfKIURmSOe63nOGKlSXM3m6s1mlyNbdhnh+Cv/Ar/538F+ad3e/j176P/rrwJQ9l8/RO2XvoTFqi5emd5AKGYE4eeMQPx0f2jKmiWV7kJn+LUtlSyuKMZiURguIiIiIiIyG5U4SyhxlrCs7MJ/jZ4P0CcG5v3RCSF6pJ9QMmTcRqcP0H/9oV8rHH8dCsdF5oi97cZIlXc3v1sjVWaDlTdBSS2E++D0o7Dudy/qadlsluHvf5/Bb/0fACruuJ3qz35WIaZM0jM6xgutw4VA/NxQZMqaFdUlXLvUCMKvaamgxqs59SIiIiIiIvPJxQTokWRkUtf5xONobBSv0zuDFc89CsdF5oBEOsETHcZIlR3NO0yuRgCwOeCqW+DprxujVS4iHM9mswz+3d8xfO99AFR98o+p+vjHFYwvcNlslg5/lBdyQfgLrcN0jYxNWmOxwJpaby4MN7rDK0v0m38REREREZGFzuPwsLRsKUvLpm4cKm9M4bjIHPB87/OEkiGqiqu4qvoqs8uRvC23GeH4a4/DSBuUL7ng0mwqRd9XvsLoD/8VgOrPf57K2z88M3XKrJLNZnltMDKpM7wvGJu0xma1sL7ey7VLK7m2pYKrmyvwuR0mVSwiIiIiIiIyPykcF5kDftn2SwDe3fRubFabydVIQfkSWPqbcO4JOPSPcOOXpl2WDoXo/pNPE3nmGbBYqP2Lv6D8Q384s7WKaTKZLKf7Q4XNM19s9TMUTkxa47BZ2NRYxjUtFVy7tJKtzeWUuPRPtIiIiIiIiMiVpJ+8RWa5ZDrJE53GSJWdS3aaXI1MsXW3EY6//E/wzj8D2+Qvq4mODjo/9nESr72GpbiY+r/5Kt6d+t9xPkulM5zsDfFC6zAvtPo50OZnNJqctMZlt3JVUxnXtlRy7dIKrlpcTrFTv/gSERERERERmUkKx0Vmued6nyOUCFFZVMmW6i1mlyPnW/UecFcZG3Oe/SWs/u3CpeiBA3R98lOkR0ex19TQ+N3vULxunYnFypWQTGc41h3g+dy88JfaRgjHU5PWuJ02tjaXc22uM3xjow+XXWG4iIiIiIiIiJkUjovMcvva9wHw7maNVJmV7E5jY85nvgUHHyyE46P//iN6//IvIZmkaP16Gr/zHRw11aaWOpMSsRTBoRiR0TieMie+ajeOedIZnUhlONo9yvPn/Dx/bpiD7SNEE+lJa0qL7GxbYmyeeU1LBesbfDhsVpMqFhEREREREfn/27vzODnqet//76rqdaZnejJ7JpmQEEgAgQQCCTGioCj4UxQFReD8CD70d+7xAooRPXKUTb0H70F/IhLQe+8xIC5w8Mo597jgEgkCsiTBQAAJGEISksyWzPQsvVfV/aO6e7pny8IkPZN+PR+P8ltdS/e3J6ScvPvTn8JYCMeBKSzjZPTHHX+UJJ0/9/wyzwbjOn2lF47/7Q9y976hrh8+pH3/+kNJUs0FF6jttn+WGQ6XeZKTy7EdDfamFOtJqL87of69SfUXrScHM6POidQHNaOlSnUt1aprqfLWW6sUqQvKMI0yvIsDk8raen5nTM+87rVJ2bi9V4lMaRgeDfu1dF69zsrdQPPEmbWypvB7AgAAAAAAhOPAlPbMnmfUn+6npcpU1zBfmnu2nNee0K7P/H8afOFNSVLjf/2MGq+5RoY5/SqGXddVciij/u5c6L3XC75jPUkN7E1oYF9KruNO+Byhar+q6wIa7E0pFc9qcF9Kg/tS2vnX3pLjfH5T0eYqLzBv9cZ8eB4IH/n/m0pmbG3a2aenX9+rZ17fp+d29CqVdUqOqa8OaOncei071gvEF7bUyCQMBwAAAABgWiEcB6aw373xO0m0VJkOMnMu0s7vv6JU35syAgHN/G//TdELP1juaU0om7aHK7578uPweiZlT3i+5TNV2xhSTUNY0caQahrDijaGVdsUUm1DuBBsu66r5GBGvZ1x9XXG1dcRV1+Xtx7rSiibcbR316D27hoc9RpVtQEvLG+tUl1zrtq8pUq1jSGZk9SmJJG29ZcdvXp6m9cmZdPOPqVHhOEN1QGvKvzYei2b16DjmyOE4QAAAAAATHOE48AUlXEy+uNOr6XK+455X5lng4kknn9eO2+8V3afX1bQ1uyvf0ZVZQjGHcdVJmUrk8wqk7KVTtqFx8mhrPr3JjSQC75jPQnFY+n9Pmd1NKDaprBqG8OqbQgVrYdVHQ0cUDsUwzAUrgkoXBNQ23F1pXO2HfX3JNXXGR8Oz3Prif604rll92t9JeeZlqFoU7hQZV5o09JSpVDEL8MYf17xdFYbt/fqmdwNNDft7FPGLq2Cb6oJalmuTcpZx9ZrflNkwucEAAAAAADTD+E4MEU9u+dZxVIx1YfqtaRlSbmng3HEfvUr7fmnr8hNpRScWav2M16Tf+hPkv5hwvNc15WddZTJBdjFQXbJ41RWmaStdNG+0nOGt2UzzoSvORZ/yFJtruK7pjHkjQ0hRZu80ec/vN9YMC2zEG7PHbEvlch6VeadQ+rrSqi3Ixeed8VlZxz1dsTV2xEf9ZzBKp/qWqoUmRFUOBKQFbbUmc7ojcGkXt47qBd7BjUgRwlDcnN5d2ttqNAiZdm8es1rrCYMBwAAAADgKEc4DkxRv9uea6kyh5YqU5Hruuq5a7V6Vq+WJEXOOUdtN/wXWWveJb36iNS/R6qdKclrX7LthR69tr5T3TsGCmG2s5+e3YfKNA35Q5b8QUv+kE/+oKVg2FJNQ1i1jSGv8jsXiAerfVM2BA6GfWqZV6uWebUl213H1UBvslBl3tcxXHWe72/eua1fndtKny8k6XRJpyvoPY8kM2iqqiag2kBQ4ZhP4dfi6u7IaiDiV7jGr3AkUBhDNX5Zk9TKBQAAAAAAlB/hODAFZZyM1u5YK0l631xaqkw1TjKpPf/0T+r/9W8kSfWf/KSar/+CDMuS5iyXdjwl57kfa1fzp/Tqsx3auqlbmeT4/bt9frMkzA7k14M++UOWAsH8Pm9bYf8YjwNBn0yfMWUD78lgmIZqG7zWLnNOapDrutrWM6R1W7q1/q9denVrr2rSUrUrhR1DVa6hBp9PTQGfql1DZtpVJpGVIclNORpKJTXUkzyg1w5W+RSKFIfmfoVqAgpH/LnWMX75/JZcx5XrunIdyXHd3GOVbB9ed+U4KqyPOs515Tgj9+XGonXJazdj+kxvtAxZ1vC6aZmyfN445v4xz/PGkecdzf99AQAAAAAqB+E4MAWt37OelipTVKarS29ec62SL7wg+XyaecvNqrvkEkleiNnd/mm9+uIJeu2h4xS3NxXOq6kP6filLZp7SqNC1b5C8O0PWtzY8RAk0raefn2v1m3p0qNburVjX2l7lVnNYS06riF3E80GzaoLl+x3bEfJoawSA2klBjNKDKSVzI3e44ySg6X7XFdKxbNKxbOKdSWO5NudckzTKATlvoCl6rqgquuCitQFVT1jxFgXVCDErxsAAAAAgKmHf60CU1C+pcp75rxHPpO/plNF8q9/1c7P/FdlOzpkRaOadeedql62VLHuuF59tlOvPtupvs56SR+SJAVDro5bOlsLlqgMm7UAACAASURBVLZo5rHRA7p5Jca3rWdIj77SpXWvduvp1/cqnR3use63DJ05t17nLGzSOQubdXzzxDfQNC1TVbUBVdUGDui1XcdVMl4Umg9kCsF5YjCjZFGobmcdGYZX4W4YhgzTC5NlGDLN0u3eOOKx4R3vbc8dX7yeO8c0JJmGzNy5riTHdr0l6+TWvdEuXi/scwvHFO93sqXnuWO0/3Ecr5pdGSmdtBXvT6t7x8C4P79A2KdIUVheHJxHZoQUmRFUsGrqtvgBAAAAABydSN2AKaa4pcp7j3lvmWeDvIG1a7Xri1+SG48rMG+eGr/9PW3tDOjV/75Bndv6C8f5/KbmNu3SgvgPNWfRbFmX3VfGWU9vxdXh617t1va9pdXhbdGQ3rWwWecubNLbj2tUJHj4/i/NMA2vlUokIKn6sL3OVOTmgvDRwbq3nknZGupLabAv5Y29ydzobcskbaUTWe1LZLVv99C4r2P5TUXqgorMyIfmQVXXhUoeh2sCfNMCAAAAADBpCMeBKWZ9x3r1pfo0IzhDZ7aeWe7pVDzXdbXvX/9VXd/+/5U1Axp4x+XqOen9evOuHYWKWsOQZp9YrwVLW3Ts4iYFYlukezZIr22SBrukSHOZ38X04fUO79K6LV51eOotVIdjchimIcs0ZPkkf3DsmwM3zakZ9/x0IusF5735AD2pwd5UIVAf7E0pOZiRnXEU604o1j1+yxrTNFQVDRQC83AkoFDEr1C1X6Fqn4LV/sLjcMSvQJhqdAAAAADA+AjHgSnmd294LVXePefdtFQpMzed1q6bv6Ztj72izhNWqqf1dNmuJb3qVYo3H1OjBUtbddwZzaqOBodPDL1Nmn2m9OZ6adNPpHd8vkzvYOo70OrwcxY2acVhrg7H4REI+1Qf9ql+5vgV99mMraG+tBec5wLzoREBejyWkuO4XkV6b+qAXtswDYWqfbnw3F8Iz8NFIXqo2q9QJBes57ZbljlZbx8AAAAAMIWRMgBTSNbJ6o87/ihJet/c95V5NpXLdV3tev5Nbbrz/2i3zlTm1HfndkjRprAWLG3RgqWtqmupGv9JTl/pheMb75Pe/jnJJGzL2191+BnH1OvcE6gOryQ+v6VoU1jRpvC4xzi2o3h/RoN9SS84j6WUGMwoNZhRcshbEoX1rLIpW67jev3hBzIHNZ9AyCoJz0dWpEfqQ6prDqu2MSzLx99tAAAAAJiuCMeBKWR9x3r1pnpVF6zT0tal5Z5Oxdm3Z0ivPtuhV//8pgZithQ4UZIUCkkLls/WgqWtap5bc2Bh7ckflR65QerdJr3xuHTsuw7z7KeuZMbWU6/v1WNburVuS5feoDoch8C0TO+mnjOC0rz9H29nnEJonhwcGZ6XhurJoax3TDwjud5NRtNJW/09yQlfwzCkmoaQos1VqmsKK9pcpWhzWHXNVappDFGBDgAAAABTHAkEMIX8brvXUuU9c95DS5UjZLA3pdc2dOrVZzvUs3OwsN3KJtUSf02nfvLdmvfut8k82JArUC2d+jFpww+ljfdWVDgeS2T0/M4+Pb+zTxu2945bHX7OwiadewLV4Tg8LL+p6jqvN/mBchxX6Xh2VKieX0/kxv6ehGJdCWVSXoDe35PUzhHPZZiGahtCijZ7oXld0VhTHzr4awoAAAAAYNKRvgFTRNbJau32tZKk9x1DS5XDKZXIautzXXr12U7terVX8u6rKcNwVd/zolo716u93dIxd31Hvvr6Q3+hJVd54fgrv5SGeqTqxkmZ/1SSzjp6paNfm3b2FZbXu4dGHTczGtI5VIdjijNNw2ufEvHv91jXdRXvTyvWlVBfV1yxroRiXXH1dSUU644rmy66wehL+0pfxzJU2xj2qsybhqvNo81hRepDMs3yfljkOq6yWUd22lE2Y8swDYVrAmWfFwAAAABMNtIJYIrY0LlBvaleRYNRnTnzzHJP56iUHMpo0x926IVH31QmaRe2tx5bq9a9zyny6/+hQGZI0YsuUuvXbpUZCLy1F5y5SGo7Tdr9F+n5n0lvv/YtvoPycl1XO/cl9JedvdqUqwx/cXe/0kVV4Xlz6qu0uL1Oi9vrtOK4Ri1ooTocRxfDMFQdDao6GlTb8XUl+1zX1VBfOheWx4cD9FxYbmcc9XXG1dcZ13btLTnX9BmKNpa2aMmP/qAlO+MF1tm04y0ZW9mMF2Rn0nbp/oyjbDq/38493v9+e4y/04YhVdUGCtX41dHcWBcoeRys8vF3HQAAAMC0QTgOTAGv9b6m29ffLslrqeI391+1iAM3Vig+o7VKC5a1av6J1Rr42pc19Oc/S4ah5uu/oPpPfWrywp3TV3rh+Mb7pOXXeAnTNNEXT+v5N2PatKNPm3b26vk3Y9o3lB51XDTs16JcEH5ae50WtdepvvotfrAATGOGYRT6o89aOKNkn+u4GuxLDVeZF42xnoScrKvejrh6O+LjPPuRZfoMubYr15WGYmkNxdLS9oFxj7f8pqqj44TohfWg/AHrCL4LAAAAABgb4ThQRlknqzUvrtHdz9+trJNVTaBGf3fi35V7WkeN5GBGm9aWhuINsyNa+sF5mndqozI7d2jnZ65S+vXXZYTDmnX7v6jmvPMmdxKnXCL99ivS3tek7X+W5q6Y3OefJKmsrb/uGdDzRe1RtvWMbo/itwyd1BbV4tlRLZ5Tp8XtMzS3oYpKUeAAGaahmvqQaupDmn1C6T7HcTW4L1nSqqWv2xv7uxNyHFeGacgXMOXzm/L5LfkCpiy/KX/AkuU35QtY3r6At98acWx+f+Gc3HGFc4r2+wKWTNOQ47hKDKQ11Jfylljxem7sSys5lJGdcQp92CcSrPKpKhpUdTSgSF1QVbkg3Vv3toVrA9zUFAAAAMBhRTgOlMnWvq36yhNf0Ut7X5IkvWv2u3TT8pvUXNVc5plNf/sLxQ3T0NCzz2rXtZ+VHYvJ19qq9rtXK3TSSZM/mWCNdMrF0nM/kp67b0qE467ravveeEmf8Jd39yttj26lMLdhuD3KovY6ndRWq6CPik/gcDBNrxd5bWNY7SeV3u/AcVy5rluWsNg0h1vI6Jjxj8tmbMVzwflgX0rxWFqDuRA9HksV1rNpR6l4Vql4Vr17Rn8IV8wftBSs8ikQ9ikY9ilQ5Y359fz2YJW/ZH8g7FOwyifLR7gOAAAAYHyG67puuScx1fX39ysajSoWi6m2trbc08E0l3Wyuu+l+7R602plnIxq/DX68rIv68JjL6T69i1KDha1T0mNHYq7mYx6/+3f1PnN/y5lMgqdcopmr75L/ubD+KHEro3S/3y3ZAWlL7wiVb2Fm3wegsFUVuvf2KdNO/r0/Jter/DeeGbUcTOqhtujLG6v06LZdZpBexQAk8h1XaWT9oiqc6/yvPhxPJaW47z1X1F9fnNUYO6F6LkwPWyNGaznK+/zVfomFewAAADAtHEwWS6V48AR9Hrf6/rqk1/V5p7NkqSzZ52tm5ffrJbqljLPbHobKxRvbI/ozA8Mh+J2LKa+hx7Svh//RNmODklSzfsvUNttt8kMhQ7vBNtOl1pOkTo3Sy/8m3TWPxzWl3NdV691DerRV7q0bku3Nmzfp4xdGjIFLFMntdV6fcLneGH4nHraowA4vAzDKFR+18+sHvc413GVjGeUimeVTmSVSmSVjnvj2NsyJdvSuW8NZTOOsrG04rHR90s4GKZleO1mApb8AVPWGK1o8vt9Y7S3yYfs1oj2NqX7LZk+Q5bPlGkZXI8BAACAI4BwHDgCbMfWj17+ke76y11KO2lF/BH949J/1Ifnf5h//L4FE4biixplGIbSO3dq330/Ut8vfiE37t3gzmpsVMOnP6X6K6+UYR6BakDDkJaslH59vbTxXmnp30uT/LqDqaye/FuP1m3p1mNburQ7Vtrvt70+rDOOqS9UhZ84s1YB2g0AmKIM01A4ElA4cmjfXnEcV+nEBMF6PKN0wlYqMSKAzx2TzTiyM8OtphzbVdq2paStxGS9yf0wLUOmz5RVPFr58NyU5TOGx5HHFY2mZciyzJLgfdRz+A35fF7feisf9PtyS/5xfvGZMk1+dwEAAMDRgbYqB4C2KngrtsW26atPflUvdL8gSVoxa4VuWX6LWqtbyzyz6Wt/obgkJf7yF+1bc68G/vAHKXeZCy5YoPqrrlLtBz8gM3CE24UkY9K3FkrZhNS4UDp7lXTyJZJ1aJ9R5qvD123xqsPXv1FaHR70mTrr2Aads7BJ5yxs1rzG8Ss0AQCjuY6rbNaRnXaUzdjKloyOsmlv3c7Yucel++20rUxuzGZKz/HCd1uZ9PB+x54+v5KbllEaoudGn3+Mdb8pn8+rmh8+x5Dl8yrmA2GfAiFLgZDX0safXw95x1NEAAAAgIN1MFku4fgBIBzHobAdWz/+64/1vb98Tyk7pWp/tb505pf0keM+wj/0DtF+Q3Hb1sDvfqe9996n5AsvFM6rfufZarjqKlUtX17en/2mn0m/+UcpFfMez5grrbhOWny55Avu9/T9VYcf01ClcxZ4YfhZxzYoHODGmQAwXTi2F5Dbtisn68jOunJsR3Y2t714zLqy7aJx3P3O8PONGPPHFl4nF+DbWadQOW9nnNwHBLbK8S8G0zTkD+fDcq9HvD/ojfkA3QvXS0P1kpA97JM/aFHtDgAAUEEIxycZ4TgO1huxN3TjkzdqU/cmSdLymct169tv1czIzDLPbHpKDKa16Q87tXmcUNwZHFTfQz/Xvh/fr+zuPZIkIxBQ9MMfVv3KKxU87rhyTr9UMiat/1/SU6ul+F5vW02b9PZrpSVXSYGqwqH7qw4P+EwtpzocAHAEOPZweG6PF6JnSkP2wnrx46LjMilb6WTWGxNer/h0MqtMrmf8ZPIFrUKFuj9oyTANmaZyo1EyDq97+w3Da2ljmIZMQzIs0xtNQ4ZlyDRy+yxDRn77GM9rWoZC1X6Fa/xe26Aav4LVfoJ7AACASUY4PskIx3GgHNfRT/76E333ue8WqsWvP+N6XXz8xVSLH4L9heKZXbvUe//96nvo53Ly/cQbGjTj8ss04xOfkK+hoZzTn1h6SNp4n/TnO6UBL9BXVaPSZ/6DHp/xEa3dltBjW7q1q6+0uy3V4QCAo53ruLng3AvL08msMonh9XTCVibljd623JgYEbQnslO/XY0hLzCP+BWuCSgc8StUEygJ0PP7QhFv3bS4ZwgAAMBECMcnGeE4DsSO/h268ckb9VzXc5KkZTOX6Wtv/5raIm1lntn0s79QPLFpk/bde58Gfv97yfFumBY4br4arrpKtRdeKDO4/xYlU4WbSarriTUKP/M91SZ3SZL63Sqtsc/XmuwFivuiXu/wBU069wSqwwEAOBh2xikJ0DO5ddf1QnjHduW6rrfueKPrqLA+cizeN+45uedz7fy6d1NXx3aUHMooMZBRYiCtVDx7SO8pWOUrBOnhmoBC+QA9Mhyqh4rCdYsbcAMAgApDOD7JCMcxEcd19LNXfqY7Nt6hpJ1U2BfW9Wdcr48t+BjV4gdpolB87tvqNLj2j9q3Zo0Szz9fOKd6xQrVX3WVqt+xYtr8vIfyvcNf7S5Uh1uy9SHzz7ra9x86ztwtScr6quQu+aT87/isVMMNXAEAOJrYtqPkYEbJQS8sTwzmgvPBtJK5MR+kJwYzSg5lpEP4l1sgZHlheo1focjoqvRQUdAejvjlmybfSrNtR6mhrFLxjFLxbG7x1h3bLfSd94csBYKW/KHhm7/6QxYfGgAAcBQjHJ9khOMYz86BnbrxyRu1sXOjJGlZ6zLduuJWzYrMKvPMppeJQvE580Pq/8UvtO9H9yuzy6usNvx+1X7oQtWvXKnQggXlnPoB6RpI6qVd/dq8K6anX987Zu/wfHX4OQsaNK/7jzIe/5bUsdk7wApKp/+/0orPSXVzyvQuAABAOTmOq9TQcICeGMgoOVgaqpeE6YMZuc7B/1PPF7RUVRKkj65Gz4+hiN/r4X6IBQqO7RSC7WQh5M7kQu+ibUOjA/D874yHyvQZCgRLb+bqDxXd9DW3r3S/Lxe0WyU3gvUFzGlTpAEAQCUgHJ9khOMYyXEdPbjlQX1n43eUyCYU9oW1askqfXzhx2UaVKEcqIlC8dlNafX++Cfqe+ghOYODkiRrxgzNuOwyzbj8MvkaG8s59XF19ie1+c2YXtwd04u7Ytq8K6bO/tSo4+bUV+nchRP0Dndd6bXfS3+6XXrzWW+b6ZNO/YT0js9LjVPoJqMAAGDKcR1XqUR2OCwvDtBHBum58VB6tFt+c7jyvKSti1+uq1HBdrI44J6Em68Gwj4Fq/KLX6EqnwzLUCZZdMPXpK1M7mav2Yzzll9zJMOQ/LnqdJ/flC9gyvJb8udGX8DMbbdK9he25ff7LVkBc/i83LG+wnNYMn0GQTwAAPtBOD7JCMdR7M2BN3XTn2/S+o71kqQzWs7Q11Z8Te017WWe2dSWTdvqeXNQ3TsG1L1jQF07BtS7e0hOrqIpH4q3GrvVe9996v/t7yTb+wdT4NhjVX/VSkU/9CGZoVA530aB67rqKATh/YUgvHtgdBBuGNL8pohObqvV4vY6vXNBk+Y1Vh/YP2xcV3rjcelP35K2PZZ7QlM66SLp7C9IrSdP8jsDAACVyHVdpZO2EgPpEa1e0iPavQzvsycpaPaHLAWrfApV+wshd/EYqvIpWD1ym1+BKp9M8+CCYsd2vLA8le9DXzzmbvaatEdsLw3ZC2PKPqRWN2+JoUKQ7gt44brlN72K9pFLKL/uVbfnK+NHHZdbaDUDADhaEI5PMsJxSF61+ENbHtK3N367UC1+3enX6RMnfIJq8REyaVs9O/NBeL+6dwxo3574mF/tbWyP6Mz3H6OG7ufVe999Sjz3XGFf1fKz1HDVVao++2wZZvl+xq7ranfMC8Jf2u2F4C/uiqlnMD3qWNOQjmuO6OS2qE6eFdUps6M6aWatqoO+tz6Rneulx78lvfrI8LaF/4909vXS7CVv/fkBAAAOkOu6yqTsXJCer0bPB+leNbphGqVhd3W+urvocdgn05qev0u7rqts2imE6JmUrWzaq07PZhxvPe3IzuS2pZ2S/XbaVmbk/oxdGO2ic47Ev9pNyxgnYC8K1APFobsXzFu+3OI3ZfmMovXhxZd7bPoMWX5TpkkFPADg8CEcn2SE49g1uEs3P3mznul4RpJ0evPp+saKb6i9lmrxdDLrVYRvH1D3Tq8qvHfP0Ji/wIdr/GqaU6OmOTVqnlOr+gZL9qO/Uu+P71dm507vIL9f0Q98QPVXrVTohBOO7JuR94+cN3sThUrwfFX4vqHRQbhlGjq+OaK3tUV1yqxanTI7qhNn1qoqMAlB+EQ6NkuPf1t66d9VKFc69hzpnV+UjlnhlaoDAADgqOC6rhzbLQncR4bnmbQXzudD+v0v2cK6kz3ykYBhqBCimz5Tvv2E6yX7fKZMywvXDdOQYaqwbprek5umIRkqhPDFxxiGcqN3vGEao/eVHOeNZv41rKLFNAvr+X2WZcooOebIfRCQ/2/FzjreknFlZ+3cmN/mDK9nXdkZ2xtz27K5/U7WkW27Mgvv2fszyL9ny+dtG/55DK/n/4zy24rPM33ez8hbN8vycwJw9CMcn2SE45XLdV099OpD+vaGbyuejStkhXTdkut02QmXVWS1eDqZVc/OAXXlg/DtA+rtjI/5ddJwbUDNuSC8qS2sOrNPVucOpV//m9JbX1dq61alt22Tm/ZCZysaVd1ln9CMyy+Xv7n5iLwf13W1c19Cm3NBeL4qvC+eGXWszzR0fEuNTplVq5NneVXhJ7bWju4VfiR1vyo98R3phQclN9ezs/0s6Z3XS8edR0gOAACA/bKzTiEoz04YsucDdaewbmeGw9RCwFoSvuYfu4d0g9ijhRfcjwzWjVyIbsoqCte948ySYyWjEFhnx/n55h8f8VY/k6gkXPfle/F7H474/N43FXyB3IcpgaJthWNKj7N8ub7+heOHn6v4HMvPTXWBow3h+CQjHK9Mewb36OY/36yn9jwlSTqt+TR9fcXXdUztMWWe2ZGRSmTVk+sNnu8T3tc1dhBeHQ2oaU6NGtvCqvMPqjaxW9abf1P69a1K/W2r0jt2FPqHjxSYO9frJ/7hD8sMhyf9fWRtR10DKe2JJbS7L1kYX+sa0Iu7+hVLjB2EL2yt0SmzonrbrKhOmRXVCa01CvnLGIRPpPcN6cnvSn/5sWTnKtxnLvLarZzwQamMLWkAAAAASXKcEeF5cchbXNk8ZnWzU1LZ7NquXNeV6yg3unLc4XXX9W5KO9a64x0oxyk+vvS58uc4xefnt9mOHNsdXvLbHO/xVAqnTdOQWVR1P9zeprjdjTGiQt8sqdB3XFdOdvh92yPff67CvPTn4hQq2IuPLT53qn1YUgjKR/0sjOH1kp+PIctvTfDzM+TzD/+sLX/xNyS8FkPFr5f/lkK+wMko/I+nEN4bRZsNydDw9uLVsZ6HDwBQSQjHJxnheGVxXVf/+7X/rW9t+JaGMkMKWkF99rTP6ooTr5BlTtFw9C1wXVepeK4ivCgIj3Ulxjw+MiOoxrawZoRTima7FNn3uoztryj9t63K7N6t8RoimtXVCsyfr+D8+QrOP7aw7m9vP+T/k3YcV3uH0oXAe3dfwluPJbWnL6E9saS6BlKyJ/jFK2CZWthak6sGr9Ups6Ja2FqjoG8a/ln375Geukva8EMpE/e2NZ0gvWOVdPLFknWY270AAAAAFc5xXLlFQbDrjAjRi4Plkdtzx44833XdsQPY4gC3+HE+gD3IG9YeSfmfiz1OqG5nXa99UNpRNuvkxnwf/1wFfaaoh39RL//ix8XHlWw7Qr38pyxjOEQ3zFwLInO4vY1hGTLzLYVK2hjljhl5zohthdZFVlELI2u4PZFhFX2bYoxvSxjmcPudidoZFbf9GbPF0Rjf2JBhSK5b+ufv5ofCSsn+UdFpyX531H9Lrlv6QZnrDm9zRn5wV/ThXMmHd8X7itad/Po4H+oVfxCYX1/0nvYpfT04HAjHJxnh+NHBdV0NZgbVk+gpWboT3dqb2KvueLd6kj3qjnerL9UnSVrUtEhfX/F1zYvOK/PsD57rukoNZTUUSykeS2uoPzfGhsehWFrxWErZtDPmc0Tq/KqPOqozYqoZ2Kmq3S/K2Pqysl1d476uVVenwHHzFZx/XEkI7mtpOagQ3HVdxRKZ4WrvosB7d27siCWVtseee8mcTEOttSHNjIY0sy6stmhIcxurdcqsqBa01CjgO8oqq4f2Sk/fLT37P6RUv7etdpbUeLxU3SxVN0mRJm8cufhD5Z07AAAAABwBtp0L3TPDffxLvskwooVNNpPrxZ5rY1Pc4sbJ5EL8kd+EKPmGxNgtiBybWA6H13+5813ylbMlbBkcTJZbUWWEq1ev1u23366Ojg4tWrRI3/ve97R06dJyTwtvUcbJaF9in3qSPeqJDwfePYkeL/QuWk/ayQN6zqAV1LWnXau/O/Hvply1uOO4SgykRwXdhbF/eDyYm+tEqqUZwbhqUx2q7n5N4a0bZO3dXXJMcWMUX0tLLvz2QvDg/PkKzJ8vX339uK/huq5SWUfxtK2hVFaDqazX8qRvRPgdS2hPX1KJzNitWIoZhtQUCRZC75nRsNrqvHFmXUht0bCaaoKyKulT0uoG6T03Sis+Kz37P6WnVkv9u7xlf4K1RWF5oxRpLg3PC48bpVAdfc0BAAAATEuWZcoKmwpMfnfPg+K1BSqqNHZHVDCraHtJOXPRkNs+shp6v5XQRRXGhUrjfBVzrn1R/tsQblFF8/Cx+fXS7aX7hyufC8854psS432LYvRjb9vwNw+Kvp1xuFselbS0MUra2wy3tDFGtLcpOj53k+CSmwUX3SDYGHGD4OIbDI86rugmwvlq+NIbDI8+HuOrmMrxBx98UFdeeaW+//3va9myZbrjjjv00EMPacuWLWrez83/qBw/MlzXVdbNKmNnlHG8ZSA9MGGV997EXvUme4cv+Acg4o+oMdw44TIrMkuRQOQwvluP4xT1aMs6yqRtxfu94DteVNk9FEtrqDepeCylxFD2oL7+5VdKISehgD2oYKZfgWSfAoleBQZ75I/vUzAdUyDdL5+dGn2yYchqa5M591g57cco0z5X8ZmzNdA8W4P+sIZS2dxiK572wu542s6NWQ2mbMVzx+T3ZQ+yt1x9dcCr+C4KvQvhdzSkltrQ0Vf5PdnSQ9KOp6XBLmmoWxrqkoZ6ih73eKMzuv/6hEz/+FXokWYvQK9qlPxhyfRJll+yAt55li83BiTTImQHAAAAABw2+ZC/gD7tRzXaqoxh2bJlOvPMM3XXXXdJkhzHUXt7u6699lp9+ctfnvDcSg7HX3zxRT35i9/JdR25cuS43pJfLxnlyHWK1l1vsfPr+WPd4f0lo8Zoj+EW3WCiaN1why9QhgyZMuQzgwoYIQXNkPxGUAEzKL8Rkt/Mrwfkt4IyZY346DW/OvxXwfukNN+vycj1fVLupi2G5Ch3wxcjtxStyyhaN3OPc6NMOTIL22UcYqjrOgpkBhVI9SmY7lcgHVMwlRtzjwOpfgXT/TLd7H6fzjYt7Ys2a8+MVu2qadEbNS3aGm7U34INSvkChzbH/Qj5TVUHfGqMBDUzH3oXtT2ZWeeF31P2JphHG9eVkn3SYHcuMC9aSkL0XLCeb9cyWfJBeSE0zy3miHHMdd/YoXv+71fxLzRG8W9Ah2NdB3h87rhDXp/geSrRpP5ZHsRzAgAAAMBUd8IHvKK0CkJblRHS6bQ2btyoG264obDNNE2dd955euqpp0Ydn0qllEoNV9H2909yCDSNvPzkX5TdvbhkWz7OnQ5/rTK5JV7uiRxgjmI4GQXSA6MC70LonYrJtRPKOhmlfD4lrKCSvoCGfEHt9QWUtAJK1FQr6ZuhhBVUwuftT/iCSlqB200AuQAAEEtJREFUkvWEb3h/1pz4UmAaUnXQp+qAT9VBa9R6VcCnSNDKjT5VBS1vzB8T8HnnFJ1bUW1OpgPDkMIzvKVpwf6PzySGK85LQvSe0ur0oR7JTkl2VrLTXnW6O8YHYU7GWw6yeB0AAAAAAEzgKx2SWeb+QVNYRYTjPT09sm1bLS0tJdtbWlr0yiuvjDr+tttu06233nqkpjel1TbUK5bYlntUXK09ek3jbhsvBB2x3R3eNvqM8b7gcODb3aLnHb8NS/F2R4YcyXXkGq4M15ErV4YceYXrrvdMhisZXgMv15Bk5LcZ3ijJNVW0z5uIa0iuaQyPpiHXNBUPhmQHw8oEWuWE5skOhmUHQ3JCIbmBoAzLkmUYsnL9paxcDyrTMGSZ3uMaw1Cd6d1d2jQN75jccVZum5l7DtOQTMMYDrLHCMFDfpOvE6GUPyzVtXvLwXJsyc6F4XZGcnLB+ZjrmeFQvThgH7nu5I4rXne9v6PD3woZ1WhvjO2Tua6xtxdee7LWR76fSnM4/vx0YMcAAAAAwFR3qF0LKkRFhOMH64YbbtCqVasKj/v7+9XefggB0FHggks+IF1S7lkAOKqYVu4rXaFyzwQAAAAAAFSwigjHGxsbZVmWOjs7S7Z3dnaqtbV11PHBYFDBYPBITQ8AAAAAAAAAcIRVRF19IBDQkiVLtHbt2sI2x3G0du1aLV++vIwzAwAAAAAAAACUQ0VUjkvSqlWrtHLlSp1xxhlaunSp7rjjDg0NDemTn/xkuacGAAAAAAAAADjCKiYcv/TSS9Xd3a2bbrpJHR0dWrx4sR555JFRN+kEAAAAAAAAABz9DNd13XJPYqrr7+9XNBpVLBZTbW1tuacDAAAAAAAAABjDwWS5FdFzHAAAAAAAAACAYoTjAAAAAAAAAICKQzgOAAAAAAAAAKg4hOMAAAAAAAAAgIpDOA4AAAAAAAAAqDiE4wAAAAAAAACAikM4DgAAAAAAAACoOITjAAAAAAAAAICKQzgOAAAAAAAAAKg4hOMAAAAAAAAAgIpDOA4AAAAAAAAAqDiE4wAAAAAAAACAikM4DgAAAAAAAACoOITjAAAAAAAAAICKQzgOAAAAAAAAAKg4hOMAAAAAAAAAgIpDOA4AAAAAAAAAqDiE4wAAAAAAAACAikM4DgAAAAAAAACoOITjAAAAAAAAAICKQzgOAAAAAAAAAKg4hOMAAAAAAAAAgIpDOA4AAAAAAAAAqDiE4wAAAAAAAACAikM4DgAAAAAAAACoOITjAAAAAAAAAICKQzgOAAAAAAAAAKg4vnJPYDpwXVeS1N/fX+aZAAAAAAAAAADGk89w85nuRAjHD8DAwIAkqb29vcwzAQAAAAAAAADsz8DAgKLR6ITHGO6BROgVznEc7d69WzU1NTIMo9zTOeL6+/vV3t6unTt3qra2ttzTAYD94roFYLrhugVguuG6BWC64bpVOVzX1cDAgNra2mSaE3cVp3L8AJimqdmzZ5d7GmVXW1vLxQPAtMJ1C8B0w3ULwHTDdQvAdMN1qzLsr2I8jxtyAgAAAAAAAAAqDuE4AAAAAAAAAKDiWLfccsst5Z4Epj7LsnTOOefI56MTD4DpgesWgOmG6xaA6YbrFoDphusWRuKGnAAAAAAAAACAikNbFQAAAAAAAABAxSEcBwAAAAAAAABUHMJxAAAAAAAAAEDFIRwHAAAAAAAAAFQcwnFMaPXq1Zo7d65CoZCWLVumZ599ttxTAoCCP/3pT7rwwgvV1tYmwzD07//+7yX7XdfVTTfdpJkzZyocDuu8887Ta6+9VqbZAqh0t912m84880zV1NSoublZF110kbZs2VJyTDKZ1NVXX62GhgZFIhFdfPHF6uzsLNOMAVS6e+65R6eeeqpqa2tVW1ur5cuX6ze/+U1hP9csAFPdN7/5TRmGoeuuu66wjWsXihGOY1wPPvigVq1apZtvvlnPPfecFi1apPPPP19dXV3lnhoASJKGhoa0aNEirV69esz9//Iv/6I777xT3//+9/XMM8+ourpa559/vpLJ5BGeKQBIjz32mK6++mo9/fTT+v3vf69MJqP3ve99GhoaKhzz+c9/Xv/5n/+phx56SI899ph2796tj370o2WcNYBKNnv2bH3zm9/Uxo0btWHDBr373e/Whz/8Yb300kuSuGYBmNrWr1+vH/zgBzr11FNLtnPtQjHDdV233JPA1LRs2TKdeeaZuuuuuyRJjuOovb1d1157rb785S+XeXYAUMowDD388MO66KKLJHlV421tbfrCF76g66+/XpIUi8XU0tKie++9V5/4xCfKOV0AUHd3t5qbm/XYY4/pne98p2KxmJqamvTTn/5Ul1xyiSTplVde0YknnqinnnpKZ511VplnDABSfX29br/9dl1yySVcswBMWYODgzr99NN199136xvf+IYWL16sO+64g9+3MAqV4xhTOp3Wxo0bdd555xW2maap8847T0899VQZZwYAB2bbtm3q6OgouY5Fo1EtW7aM6xiAKSEWi0nygiZJ2rhxozKZTMl164QTTtCcOXO4bgEoO9u29cADD2hoaEjLly/nmgVgSrv66qv1gQ98oOQaJfH7FkbzlXsCmJp6enpk27ZaWlpKtre0tOiVV14p06wA4MB1dHRI0pjXsfw+ACgXx3F03XXXacWKFTr55JMledetQCCgurq6kmO5bgEop82bN2v58uVKJpOKRCJ6+OGHddJJJ2nTpk1cswBMSQ888ICee+45rV+/ftQ+ft/CSITjAAAAwBF29dVX68UXX9QTTzxR7qkAwIQWLlyoTZs2KRaL6ec//7lWrlypxx57rNzTAoAx7dy5U5/73Of0+9//XqFQqNzTwTRAWxWMqbGxUZZljbpbb2dnp1pbW8s0KwA4cPlrFdcxAFPNNddco1/+8pd69NFHNXv27ML21tZWpdNp9fX1lRzPdQtAOQUCAR133HFasmSJbrvtNi1atEjf/e53uWYBmJI2btyorq4unX766fL5fPL5fHrsscd05513yufzqaWlhWsXShCOY0yBQEBLlizR2rVrC9scx9HatWu1fPnyMs4MAA7MvHnz1NraWnId6+/v1zPPPMN1DEBZuK6ra665Rg8//LD++Mc/at68eSX7lyxZIr/fX3Ld2rJli3bs2MF1C8CU4TiOUqkU1ywAU9J73vMebd68WZs2bSosZ5xxhq644orCOtcuFKOtCsa1atUqrVy5UmeccYaWLl2qO+64Q0NDQ/rkJz9Z7qkBgCTvDuR/+9vfCo+3bdumTZs2qb6+XnPmzNF1112nb3zjGzr++OM1b9483XjjjWpra9NFF11UxlkDqFRXX321fvrTn+o//uM/VFNTU+hrGY1GFQ6HFY1G9alPfUqrVq1SfX29amtrde2112r58uU666yzyjx7AJXohhtu0Pvf/37NmTNHAwMD+ulPf6p169bpt7/9LdcsAFNSTU1N4X4uedXV1WpoaChs59qFYoTjGNell16q7u5u3XTTTero6NDixYv1yCOPjLq5HQCUy4YNG3TuuecWHq9atUqStHLlSt1777360pe+pKGhIf393/+9+vr69I53vEOPPPIIvecAlMU999wjSTrnnHNKtq9Zs0ZXXXWVJOk73/mOTNPUxRdfrFQqpfPPP1933333EZ4pAHi6urp05ZVXas+ePYpGozr11FP129/+Vu9973slcc0CMD1x7UIxw3Vdt9yTAAAAAAAAAADgSKLnOAAAAAAAAACg4hCOAwAAAAAAAAAqDuE4AAAAAAAAAKDiEI4DAAAAAAAAACoO4TgAAAAAAAAAoOIQjgMAAAAAAAAAKg7hOAAAAAAAAACg4hCOAwAAAAAAAAAqDuE4AAAAMM2sW7dOhmGor6+vLK+/du1anXjiibJte7/HPvLII1q8eLEcxzkCMwMAAAAOHOE4AAAAMIUYhjHhcsstt+jtb3+79uzZo2g0WpY5fulLX9JXv/pVWZa132MvuOAC+f1+/eQnPzkCMwMAAAAOnOG6rlvuSQAAAADwdHR0FNYffPBB3XTTTdqyZUthWyQSUSQSKcfUJElPPPGEPvjBD6qjo0OhUOiAzlm9erXuvfderV+//jDPDgAAADhwVI4DAAAAU0hra2thiUajMgyjZFskEhnVVuXee+9VXV2dfvnLX2rhwoWqqqrSJZdcong8rvvuu09z587VjBkz9NnPfrakFUoqldL111+vWbNmqbq6WsuWLdO6desmnN8DDzyg9773vSXB+PPPP69zzz1XNTU1qq2t1ZIlS7Rhw4bC/gsvvFAbNmzQ1q1bJ/eHBQAAALwFvnJPAAAAAMBbF4/Hdeedd+qBBx7QwMCAPvrRj+ojH/mI6urq9Otf/1qvv/66Lr74Yq1YsUKXXnqpJOmaa67Ryy+/rAceeEBtbW16+OGHdcEFF2jz5s06/vjjx3ydxx9/XJdffnnJtiuuuEKnnXaa7rnnHlmWpU2bNsnv9xf2z5kzRy0tLXr88cc1f/78w/dDAAAAAA4C4TgAAABwFMhkMrrnnnsK4fMll1yi+++/X52dnYpEIjrppJN07rnn6tFHH9Wll16qHTt2aM2aNdqxY4fa2tokSddff70eeeQRrVmzRv/8z/885uts3769cHzejh079MUvflEnnHCCJI0ZrLe1tWn79u2T+ZYBAACAt4RwHAAAADgKVFVVlVRlt7S0aO7cuSX9yVtaWtTV1SVJ2rx5s2zb1oIFC0qeJ5VKqaGhYdzXSSQSo3qNr1q1Sp/+9Kd1//3367zzztPHPvaxURXi4XBY8Xj8kN8fAAAAMNkIxwEAAICjQHEbE0kyDGPMbY7jSJIGBwdlWZY2btwoy7JKjpvohp+NjY3q7e0t2XbLLbfo8ssv169+9Sv95je/0c0336wHHnhAH/nIRwrH7Nu3T01NTYf03gAAAIDDgXAcAAAAqECnnXaabNtWV1eXzj777IM67+WXXx61fcGCBVqwYIE+//nP67LLLtOaNWsK4XgymdTWrVt12mmnTdr8AQAAgLfKLPcEAAAAABx5CxYs0BVXXKErr7xSv/jFL7Rt2zY9++yzuu222/SrX/1q3PPOP/98PfHEE4XHiURC11xzjdatW6ft27frySef1Pr163XiiScWjnn66acVDAa1fPnyw/qeAAAAgINBOA4AAABUqDVr1ujKK6/UF77wBS1cuFAXXXSR1q9frzlz5ox7zhVXXKGXXnpJW7ZskSRZlqW9e/fqyiuv1IIFC/Txj39c73//+3XrrbcWzvnZz36mK664QlVVVYf9PQEAAAAHynBd1y33JAAAAABMH1/84hfV39+vH/zgB/s9tqenRwsXLtSGDRs0b968IzA7AAAA4MBQOQ4AAADgoHzlK1/RMcccU7i550TeeOMN3X333QTjAAAAmHKoHAcAAAAAAAAAVBwqxwEAAAAAAAAAFYdwHAAAAAAAAABQcQjHAQAAAAAAAAAVh3AcAAAAAAAAAFBxCMcBAAAAAAAAABWHcBwAAAAAAAAAUHEIxwEAAAAAAAAAFYdwHAAAAAAAAABQcQjHAQAAAAAAAAAV5/8CyYr31Xp7xHEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyNdf/H8deZfZ8xlhkjywgTUoPKUiHUiNwohMlSlu7KVmmVENGm5K5faLFkCRWVXSJCkyWSJcw9doMyZsww+/f3x9znyjFnxozoGL2fj8d5OHN9r+91fa7lzKPe5zvfy2aMMYiIiIiIiIiIiIiIiAM3VxcgIiIiIiIiIiIiInI1UoAuIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIiIOKEAXURERERERERERETECQXoIiIiIiIiIiIiIiJOKEAXEREREREREREREXFCAbqIiIiIiIiIiIiIiBMK0EVEREREREREREREnFCALiIiIiJXhREjRmCz2WjWrJmrS7mmLV26FJvNho+Pz2Xd7u7du7HZbNhsNhITE//2/nJ1mzhxIjabjRtuuMHVpYiIiIgUiwJ0ERERkWKyB71Ffcm169y5cwQHB2Oz2ejfv3+R+61du9a6P7788ssrWKHYZWRkMHnyZGJiYoiIiMDb25vg4GBq1KhB8+bNGTp0KMuWLSMjI8Np/5SUFN5++23uuusuypUrh5eXF6GhodSsWZNWrVoxatQoVq9eTW5u7kVreeedd6zr36JFi2Ify+nTpxk/fjxt2rShUqVK+Pn54evrS8WKFWnTpg3vvvsuJ06cKLD/4sWL6dKlC9dffz1+fn74+fkRGRlJo0aN6N+/P3PmzOGPP/4odl0iIiIi1yIPVxcgIiIiUpKFhYW5ugRxIV9fX7p27cqkSZOYNWsW48aNw9vb+6L9PvnkEwDKli1L27Ztr3SZDgICAoiKiipSndeKhIQEWrduze7du61lXl5euLu7Ex8fz969e1m1ahVjxoxhw4YNNGzY0KH/5s2b+de//sXRo0etZb6+vuTm5vLbb7+xe/duli1bBsCxY8cIDw8vtJ6PP/7Yer9q1SoSEhKIjIws0rF88MEHvPDCCyQnJ1vL/Pz88PLy4vDhwxw+fJjFixfzwgsvMHLkSJ555hlrvXPnztG1a1e++uora5mbmxshISEcOXKE/fv38+OPP/L+++8zduxYnn/++SLVJCIiInIt0wh0ERERkb8gMTHxoi+5tvXu3RuApKQkFixYcNH1U1NTmTdvHgDdu3fH09PzitZ3oTvuuIPdu3ezbdu2v3W/rpKVlUXbtm3ZvXs3AQEBjBkzhsOHD5Oens6pU6dIS0tjw4YNDBs2zGmInZSURJs2bTh69ChhYWG89957nDx5krNnz3L69GlSUlJYtWoVTz/9dJG+UIuLi2PHjh2EhYXRuXNnjDFMmTKlSMfy9NNP8/jjj5OcnEydOnWYMWMGJ0+eJC0tjdOnT5OWlsbixYvp2rUrGRkZfPHFFw79Bw0aZIXn/fr1Y/v27WRmZvLHH3+Qnp7Ozp07effdd2nYsKH+ekZERETkfxSgi4iIiIj8Bbfeeit16tQB/hxZXpi5c+eSlpYG/Bm+y5WzdOlSduzYAcCnn37KCy+8QIUKFayA2MfHh4YNG/LKK6+wb98+6tat69B/xowZHD9+3NrWE088QZkyZaz2gIAAmjVrxltvvcWhQ4coW7ZsofXYR5937dqVRx55BICpU6dedOqXadOm8fbbbwPw0EMPsXnzZmJjYx1q8fPz495772XWrFls2rSJqKgoq+3UqVNWUD9o0CAmTZrEjTfeiLu7O5A3Er1mzZoMHDiQDRs2MHDgwELrEREREfmnUIAuIiIi8jd67LHHsNlshISEsH//fqfrfPDBB9hsNjw8PFizZo1D26+//sqIESNo3rw5119/Pb6+vgQFBVG3bl1eeuklfv/99wL3XaVKFWw2G1OnTuXs2bOMGDGCmjVr4ufnR0REBN27dychIcFa//fff+e5556jRo0a+Pr6Eh4eTp8+faww8UIXPgR07ty5NG3alNDQUPz9/alfvz7vvfceOTk5xTtp5zl58iQvvfQSdevWJTg4GB8fH6pWrUrv3r2tkNQV7EH4t99+y6FDhwpd1x6yN2zYkFq1ajm07du3j7FjxxITE0P16tXx9/cnICCA2rVr89RTT3H48OECt2sfNfzaa6+RkZHB66+/Tr169aw52n/88Ueg8IeI5ubmsmLFCvr370+DBg2oUKECXl5elClThrvuuosPP/yQ7OzsIp2TXbt20b17dypUqIC3tzeVK1fmiSee+Et/lZGTk8O0adNo1aqVNQ952bJladWqFXPnzsUYk6/P1q1bAbDZbBedLsfNzS3f1Db2/pUqVSI6OrrQ/p6enlYg7UxaWhqfffYZAD179qRly5ZERERw6NAhVqxYUWC/9PR0nnvuOQCio6P5+OOPL/qXC3Xr1nUY2b5jxw7r2rVr167QvpA3RU1BVqxYwf3330/58uWt++Puu+/m008/LdIc8OeLiorCZrPx4osvFrre4sWLrd+Lzu6h+Ph4BgwYQM2aNQkICMDPz4+aNWsW+rm58MGmy5cvp23btoSHh+Pu7s6///3vYh2LiIiIXKOMiIiIiBTL8OHDDWAu5T+lzp49a2rXrm0A06hRI5OVleXQvn37duPj42MA8/LLL+frX7lyZWvfPj4+JjQ01NhsNmtZhQoVzO7du53u2953/Pjxpk6dOtY2fH19rf7ly5c3CQkJJj4+3kRGRhrA+Pn5GS8vL2ud6tWrm+Tk5ALPS9OmTc2zzz5rAGOz2UypUqWMm5ub1T8mJsakp6cX2t+ZFStWmJCQEGs7np6ext/f3/rZy8vLTJs2rQhX4fL7/fffrXM0atSoAtfbs2ePVe/kyZPztTdo0MDheEJDQx3OXWhoqImLi3O6bXvfYcOGmVtvvdUAxsPDwzpnGzZsMMYYs2TJEgMYb2/vfNvYtWuXtS/ABAYGmqCgIIdlzZs3d3r9zu87b94869oEBgZa9zRgypYta3755ZdC+x87dixf+4kTJ0yjRo0cagkODnb4uWPHjvk+U6+88orVfvDgQecXphCPPPKIAYyvr6/JyMgodv/zTZkyxQCmTp061jL7Z6VTp04F9ps+fbrDub0Ua9assbYxffr0S9pGbm6uefzxx63t2D/f7u7uDp/v1NTUfH0/+OADA5ioqCiH5aNGjTKAqVSpksnNzS1w3126dDGAadWqVb62jz/+2Hh6ejr8bjz/ngsJCTGrVq0qtKbXX3/dYX1PT0/z6KOPFv8kiYiIyDVHAbqIiIhIMf2VAN2YvJDcHlq/+OKL1vLzw/Xbb7/dZGdn5+vbo0cPM3XqVHPgwAFrWUZGhvn222/NbbfdZgBTr149p/u1B+ghISGmSpUqZvny5SYnJ8dkZ2eb5cuXm7JlyxrAdO7c2dx2220mOjraCl0zMzPNnDlzjJ+fnwHM0KFDCzwv9lCzf//+5sSJE8YYY5KTk82oUaOssP/JJ58ssL+zAP2XX36xzlnfvn3Nzp07rfNz4MABK9Tz8PAwGzduLOTsXzmdO3c2gLn++usLDAKff/55Axh/f3+TkpKSr/2JJ54wEydONPv27bO2kZWVZdavX29atGhhAFO5cmWnQa49QA8ICDDBwcHm008/NefOnTPG5IXPSUlJxpjCA/R9+/aZHj16mEWLFplTp05Zy5OTk81HH31kwsLCDGBeeOGFfH3PD8CDg4NNvXr1zKZNm4wxxuTk5JjFixebiIgI6xylpaUV2P/CAD0rK8sKz2+55RazZMkSc/bsWWOMMWfOnDEfffSRKVOmjAHM888/79B36dKlDuGus3C+MBMnTrT69+zZ0zqPl+KOO+4wgHnzzTetZTt27LC+MPn999+d9uvZs6f1pZH9uIsrOTnZeHt7G8BUqVLFbNmypdjbePPNN61z0b9/f3P8+HFjTN41eOONN6wgvWfPnvn6FhSg79+/3/q94CzkNsaYlJQU6/M/a9Ysh7ZvvvnG2Gw24+XlZYYOHWoOHDhgcnNzTU5OjtmxY4dp3769AUypUqXM0aNHndbk5+dn3NzcTN++fc3hw4eNMXn3XHx8fLHPkYiIiFx7FKCLiIiIFNP5AXpYWFihr4EDBzrdhj24cXNzM999950xxphHH33UCrjPD8iL6syZM1bAuXbt2nzt9gDd19fX7N27N1/7xx9/7HBczsK8YcOGWQHohc4/L927d3da40svvWQF3UeOHHHa31mA3rx58wKDW7uBAwcawLRr167Ada6kZcuWWcfvLAjMzs62AuRevXoVe/tZWVnmhhtuKHAU8vmj15cvX17gdgoL0C9m7dq1VkB+4Ujv8wPwsLAw88cff+Trv3XrVuPh4WEAM2HChAL7XxhyT5482QDmpptuMmfOnHFa2/r16637+/zwPzc31zRp0sTatoeHh7n99tvNU089ZWbOnGn27dtX6DGnpaWZqKgoq7+3t7dp0aKFef755828efOswPVidu/ebQDj7u6eL8itX7++gby/DnHmlltuyTdy/VLYP7/2V+3atU3fvn3NxIkTzZYtW5x+aWeXkpJi/TXCww8/7HSdN954w9r29u3bHdoKCtCNMaZp06aFbveTTz6x/prh/C8QsrKyrN9rBf31SW5uromJiTGAee6555zWBJhu3boVeOwiIiLyz6YAXURERKSYzg+KL/ZyNhLT7v777zeAiYiIMJMmTfrLUzQY8+co6LFjx+ZrswdNDz30kNO+hw8ftmoYNmyY03V++OEHa50Lp2k4/7w4C+iNyRsFax9JemGAWlCAnpCQYAWfzkJZu02bNlmjuwsLAq+UnJwcU6lSJQOYHj165GtftGiRdX7WrFlzSfuwf0kwaNCgfG32AL1+/fqFbuOvBOjGGOsvDH7++WeH5ecH4IVNY2O/7xs3blxg/wsDdPuxTZo0qdDaqlWrZgCzYMECh+UpKSmmb9++Vnh/4SsyMtKMGjWqwHA+MTHR3H///Q7TJV0YRP/nP/8pdIoX+1QtzqYgmTBhQqEBuX06pYKmNyqq3Nxc89ZbbzlMhXT+KyQkxDz66KNm//79+frOmTPHQN60Lc7ajcn7axj7XwKc/9c1xhQeoH/00UcGMEFBQU5H2N91111OA3b7vVyhQoVCp3+ZMWOGAUx0dLTTmpwF/iIiIiJ2eoioiIiIyF9g8gYkFPiaOnVqgX0/+ugjKlWqxNGjR3n00UcB6NOnDx07dix0nwsXLuTBBx+katWq+Pv7Y7PZrNfcuXMBCn3Y5G233eZ0eVhYmPX+1ltvveg6p0+fdrpOxYoVqVatmtO2oKAg6tevD8CmTZsKrPF869atA/IecFmrVi3Cw8Odvlq1agXkPajxjz/+KNK2Lyc3Nzd69eoFwOeff86ZM2cc2u0PD61RowZ33nlngdtZvXo13bt3JyoqioCAAIfrO2HCBKDw63v77bf/peNIT0/n/fff5+6776Z8+fJ4e3s71JCcnHzRGpo3b37Rts2bNzt96KezejZv3gzACy+8UOD1Dw8P58CBAwDWv3aBgYFMnjyZQ4cO8cEHHxAbG8sNN9yAm1ve/w4lJCQwbNgw6tWrl68v5N33X3zxBfHx8bz99tt07NiRqlWrYrPZgLwHdA4YMIA777zT6eciOzub6dOnA9CjR4987V27dsXT05Pt27ezcePGi56TS2Wz2Xj66ac5cuQIc+fO5bHHHuOWW26xHih7+vRpJk2aRJ06dVi+fLlDX/vntVq1alSuXNnp9r28vGjatKnD+kXRqVMnfH19SUlJ4auvvnJoO3ToEKtXrwbynzv774aTJ09Svnz5Au+LAQMGAPnvC7vg4GBuvPHGItcrIiIi/ywK0EVERERcpFSpUrz//vvWz1WrVuXdd98tcP3c3Fy6detG27ZtmTt3LgkJCWRmZlKqVCnCwsIICwuzgrC0tLQCtxMYGOh0uYeHR7HWycrKcrpOhQoVCtz3+e0nTpwodD27o0ePAnnHf/z48QJfv//+u9Xn7NmzRdr2+vXrCwzd5syZU6RtnO/hhx/GZrNx9uxZPvvsM2v577//zjfffAPAI488UmD/QYMGcddddzFjxgz27NlDenq6w/X19/cHCr++5cqVK3bddseOHaNu3br079+fb7/9lsTERNzd3SlTpoxVgz10LqyGwu4Be1tGRgYpKSkXrenkyZNkZ2cDcOrUqULvAfs9WdD1Dw8P59///jczZsxg165dnD59mi+//JKGDRsCsHfvXh566KECa4mMjOTJJ59k3rx5xMfHc/LkSaZPn07NmjUB+Omnn+jfv3++fosXLyYxMZGgoCDat2+fr71MmTK0adMG+POLlvOVLl3aOv7Lwc/Pj06dOvF///d/bNy4kZSUFNasWUO3bt0AOHPmDJ07d3b4Isr+eb3Y5/u6665zWL8ogoKCaNeuHQCffvqpQ9vMmTMxxlC5cmUrnLez/27IzMws9L5ISkoCCr4vypYtW+RaRURE5J9HAbqIiIiIC3344YfW+yNHjrBv374C1/3444+ZPXs27u7uvPzyy+zdu5eMjAxOnTpFYmIiiYmJ1uj1oozsLSlycnKAvFHAFxvxb39VqVKlSNsuLHg7d+5csWutUqUKLVq0AGDKlCnW8pkzZ5KZmYm7u7vTEcgA33zzjTXCfNCgQezYsSPf9X3ssceAwq+vu7t7seu269+/P7t376ZcuXJMnz6d48ePc/bsWU6ePGnVEBoaetEaLif79QdYtWpVka7/888/X6RtBwYG0qFDB3744QcaN24MwA8//MDu3buL1L906dJ0796duLg4rr/+egDmzJmT768PPv74YwBSUlLw8/NzGNFvfy1YsACA2bNn57v3ateuDcDu3btJT08vUm3F4enpyZ133snMmTN59tlnAUhOTmbevHmXfV8FsX8uli9fzvHjx63l9kA9NjbWGvFvZ783mjZtWqT7oqBz91c+MyIiInLtU4AuIiIi4iLvvfceX3/9Ne7u7tSqVYuMjAy6dOlS4ChJ+4jmPn36MHLkSKpVq2aNBrZLTEy84nVfzJEjR4rUXtSR0uHh4UDeKO7CRj1fimbNmhUYttmnYymu3r17A7BhwwYriLWH6a1bt6Z8+fJO+9mvb7t27Rg/fjy1atXKF+xdyet79uxZa5T8pEmT6N69e75rlJGRUeDUPecr7B6wt3l7exMUFHTRbZUrV84KTguaguOvcnd3t64bwG+//Vas/oGBgdbo7ezsbP773/9abYmJiSxevLjI20pOTubzzz93WGb/UiYrK4uFCxcWq7bisk8nBY7nwX4vFDZ1z/ntxf1LiHvuuYewsDCys7OZPXs2AFu2bGHnzp2A86lv7L8brtR9ISIiIgIK0EVERERcYvv27TzzzDMAvPzyyyxevJiQkBB27drFk08+6bTPoUOHAKhbt67T9tTUVOLi4q5MwcVw6NAh4uPjnbadOXPGms/6lltuKdL27HN65+TksGTJkstT5BXUoUMHa5T2J598wubNm9m2bRuAQ0h7oYtd35ycHGsu6CshMTHRmgKloBpWr15tTadSmFWrVl20rX79+vlGFDvj5+dn1WMP+K+EgIAA6723t/dl6z9t2jSys7O57rrrOHPmTKEve3h94TQuHTt2tJ4/8OqrrxY4fdKFcnNzL9tx2D+v8fHxBQbWWVlZfP/990DBz1EoiLu7u/UlhH3Uuf3f2267jaioqHx97L8b9u/fz6+//lqs/YmIiIgUlQJ0ERERkb/ZuXPn6NKlC+np6dxxxx0MHTqUypUrM3nyZAAmT57MF198ka9fcHAwgBXGXmjUqFH5po5wlVGjRjldPm7cOM6dO4eHhwcPPPBAkbZVvXp1mjVrBsDQoUOth1gW5HLNE32pvL29iY2NBfICQPs0PWFhYdY8185c7PpOmDDhoqN//wr7/guqITMzk2HDhhVpW++995417/T5tm/fbj0k8sEHHyxybf369QNg/vz5fPvtt4Wue+H137Zt20VH7htjrId8urm5ER0dbbX9+OOPF73nsrKyrFHTwcHBVK1a1Wqzh+EdO3YkICCg0FeXLl0A+P777x2+hPL19WXs2LEAbN26lUceeeSiIfovv/ziMN9+YmJigffW+aZNm2a9r1evnvW+devWBAUFYYxh5MiRTvv+5z//sZ5FYD+W4rCPMt+yZQu//PKLdU4LmvYoJiaGSpUqATB48OCLfrnj6t8NIiIiUjIpQBcRERH5mz355JPs3LmTkJAQZs6caU3T0alTJ2uEct++fa0RyXatWrUC8uZNnzx5MpmZmUBeMPbkk0/yxhtvWA8bdKXg4GCmTZvGoEGDrDDtzJkzjBkzhldeeQWAJ554goiIiCJv8z//+Q8BAQHs2bOHhg0b8tVXXznMZ3zkyBE+/fRTWrRowXPPPXd5D+gS2K9jYmKiFaD36NHD4SGsF7Jf3/nz5/P6669bU/mcOnWKkSNHMmTIkCt6fUuXLm2NMh44cCBr1qyx5jnfunUrMTEx7NixA19f34tu69y5c9xzzz38/PPPQN5I6KVLl9K6dWuys7OpWrVqoaPxL/TII4/QpEkTcnNzadu2La+99ppDKJ6amsrKlSt59NFHrQd62q1YsYIqVarQtWtXvvzyS4d+6enpfP/997Rp04ZFixYB0K1bN2tqEIAZM2ZQqVIl+vbty+LFix1C2LS0NBYuXEiTJk3YunUrAAMGDMDLywuAtWvXsmfPHgA6d+580eNs0qSJNdf/haPQH374YQYOHGjVVL9+fWbNmuXwoM9z586xYsUKevToQb169Rzmcj98+DDR0dE0b96cDz/8kL1791rXNzs7m507dzJgwABr/vhq1arxr3/9y+ofEBBgfYEyZcoUBgwYwMmTJ63zMG7cOGv+9J49e3LjjTde9HgvFB0dbfXr3bs3x48fx9PTs8Aw3svLi4kTJ+Lm5sbKlSu566678v2VxL59+3j//fepV6+e0we0ioiIiFyUEREREZFiGT58uAEMYMLCwi76WrdundX3iy++sPrOmzcv37bT0tLMDTfcYABz5513muzsbKstKSnJagOMm5ubCQkJMTabzQDm0UcfNT179jSA6dmzZ75tV65c2QBmypQpBR6bfdurVq1y2p6QkGCtk5CQ4PS8NG3a1Dz77LMGMDabzZQqVcq4u7tb/Vq2bGnOnTtX4Hlt2rSp033/8MMPJjw83NqOu7u7KV26tPH19bWWAaZPnz4FHt/fqX79+g517dq1q9D109PTTYMGDaz17efOfn07dOhgnnnmGQOYmJiYfP3tfceOHVvofpYsWWIA4+3tna9t/fr1DufTx8fHBAQEGMB4enqaOXPmmLCwMAOY2bNnO/TdtWuXw73t7+9vABMYGOiwzdKlS5utW7fm2/f5/Y8dO5av/dSpUyYmJsbhnAYHB5vg4GDrHAEmICDAod/48eMd+gDG19fXlCpVKt/yNm3amNTUVIf+gwcPzreev7+/CQoKyre8d+/eJisry+pr/zxWrFjR5ObmFnpd7B5//HEDmAoVKjh8/u0mTJiQb9/+/v4mODjYYVlAQIAZP3681e/nn3/OV6+np6cJDQ01bm5uDstr1Khh9uzZk2/fubm5Vn0Ffb7vueeefOfQGGM++OADA5ioqKhCj/+NN95wqKVdu3YXPWdz5syx7jf7cZUuXdp4eXk5bOutt966pJpERETkn00j0EVERET+guPHj1/0ZR8pfujQIfr06QPkja7s2LFjvu35+fkxe/ZsvL29Wbt2LaNHj7baQkJCWL9+PYMHD6ZKlSq4u7vj4eFBs2bNmD17NhMnTvx7DroIXn/9dT777DPuuOMOjDF4eXkRHR3Nu+++y9KlS/Hx8Sn2Nm+//Xb27NnDW2+9RZMmTQgJCeH06dO4u7tTs2ZNHnroIWbOnMn48eOvwBEV3/kjrBs3bswNN9xQ6Pre3t589913DB06lGrVqlmj1Rs3bsyHH37IF198ke+hsZdbo0aNiIuL44EHHqB06dLk5OQQHBxM165d+fHHH4s0ihrgjjvuYOPGjcTGxhIYGEhOTg4VK1bkscceY/v27dx8883Frq1UqVIsWbKEb775ho4dO1KxYkXS09NJT0/nuuuuo1WrVrz++uts377dod+gQYPYsmULY8eOpW3btlSrVg2bzUZKSgpBQUHUrl2bXr16sWzZMhYuXIi/v79D/3HjxrFu3TqGDx9OTEwMlStXJicnh7S0NEJCQqhbty6PP/44P/74Ix999JF13c6cOcO8efOAvOlbijLfO/w5Uv3IkSMsW7YsX/uAAQPYv38/48aNo1WrVlx33XXk5uZa56FNmza89957HDhwgEGDBln9oqOjOXjwIB988AHdunWjTp06+Pr6kpycjI+PD5GRkbRv354pU6awfft2qlevnm/fNpuN999/n2XLltG+fXvKlStHamoqwcHBtGjRgmnTprFkyZJ857A4YmNjHR6eW9D0Lefr3Lkz+/btY9iwYdxyyy34+/tz+vRpfH19iY6O5tFHH+Xrr7+2RvCLiIiIFIfNmP/93Z6IiIiIyF8wYsQIRo4cSdOmTa/owy5FRERERET+LhqBLiIiIiIiIiIiIiLihAJ0EREREREREREREREnFKCLiIiIiIiIiIiIiDihAF1ERERERERERERExAk9RFRERERERERERERExAmNQBcRERERERERERERccLD1QVcK3Jzczl69CiBgYHYbDZXlyMiIiIiIiIiIiIiThhjOHPmDBEREbi5FT7GXAH6ZXL06FEqVqzo6jJEREREREREREREpAgOHTrEddddV+g6CtAvk8DAQCDvpAcFBbm4GhERERERERERERFxJiUlhYoVK1qZbmEUoF8m9mlbgoKCFKCLiIiIiIiIiIiIXOWKMhW3HiIqIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIiIOKE50EVERERERERERKREMMaQnZ1NTk6Oq0uRq5i7uzseHh5FmuP8YhSgi4iIiIiIiIiIyFUvMzOTY8eOcfbsWQTxV2cAACAASURBVFeXIiWAn58f5cuXx8vL6y9tRwG6iIiIiIiIiIiIXNVyc3NJSEjA3d2diIgIvLy8LsvoYrn2GGPIzMzk5MmTJCQkUL16ddzcLn0mcwXoIiIiIiIiIiIiclXLzMwkNzeXihUr4ufn5+py5Crn6+uLp6cnBw4cIDMzEx8fn0velh4iKiIiIiIiIiIiIiXCXxlJLP8sl+te0R0nIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIj8zZo1a8bgwYNL/D6udQrQRUREREREREREREScUIAuIiIiIiIiIiIiIuKEAnQREREREREREREpcYwxnM3MdsnLGFOsWtPS0ujRowcBAQGUL1+ecePGObRnZGQwZMgQKlSogL+/Pw0aNGD16tVW+x9//EHXrl2pUKECfn5+1KlTh9mzZxdrH3JpPFxdgIiIiIiIiIiIiEhxncvKodbLy1yy752vxODnVfRo9ZlnnuH777/nq6++oly5crz44ots2bKF6OhoAPr378/OnTv57LPPiIiIYP78+bRq1Yrt27dTvXp10tPTqV+/Ps899xxBQUEsWrSI7t27c/3113PbbbcVaR9yaRSgi4iIiIiIiIiIiFwhqampfPzxx8yYMYMWLVoAMG3aNK677joADh48yJQpUzh48CAREREADBkyhKVLlzJlyhTGjBlDhQoVGDJkiLXNAQMGsGzZMubOncttt9120X3IpVOALiIiIiIiIiIiIiWOr6c7O1+Jcdm+iyo+Pp7MzEwaNGhgLQsNDSUqKgqA7du3k5OTQ40aNRz6ZWRkULp0aQBycnIYM2YMc+fO5ciRI2RmZpKRkYGfn1+R9iGXTgG6iIiIiIiIiIiIlDg2m61Y06hcrVJTU3F3d2fz5s24uzsG8wEBAQC8+eabvPvuu4wfP546derg7+/P4MGDyczMdEXJ/yh6iKiIiIiIiIiIiIjIFXL99dfj6elJXFyctSwpKYk9e/YAULduXXJycjhx4gTVqlVzeIWHhwOwbt062rVrx0MPPcTNN99M1apVrf5F2YdcupL/FY2IiIiIiIiIiIjIVSogIIDevXvzzDPPULp0acqVK8fQoUNxc8sb21yjRg1iY2Pp0aMH48aNo27dupw8eZKVK1dy00030aZNG6pXr87nn3/O+vXrKVWqFG+//TbHjx+nVq1aRdqHXDoF6CIiIiIiIiIiIiJX0Jtvvklqaipt27YlMDCQp59+muTkZKt9ypQpjB49mqeffpojR45QpkwZGjZsyH333QfASy+9xH//+19iYmLw8/OjX79+tG/f3mEbF9uHXBqbMca4uohrQUpKCsHBwSQnJxMUFOTqckRERERERERERK4Z6enpJCQkEBkZiY+Pj6vLkRKgsHumOFmuxvCLiIiIiIiIiIiIiDihAF1ERERERERERERExAkF6CIiIiIiIiIiIiIiTihAFxERERERERERERFxQgG6iIiIiIiIiIiIiIgTCtBFRERERERERERERJxwaYC+Zs0a2rZtS0REBDabjQULFji0G2N4+eWXKV++PL6+vrRs2ZK9e/c6rHPq1CliY2MJCgoiJCSE3r17k5qa6rDOL7/8wp133omPjw8VK1bkjTfeyFfLvHnzuOGGG/Dx8aFOnTosXrz48h+wiIiIiIiIiIiIiJQYLg3Q09LSuPnmm3n//fedtr/xxhtMmDCBiRMnEhcXh7+/PzExMaSnp1vrxMbGsmPHDlasWMHChQtZs2YN/fr1s9pTUlK45557qFy5Mps3b+bNN99kxIgRTJ482Vpn/fr1dO3ald69e/Pzzz/Tvn172rdvz6+//nrlDl5ERERERERERERErmo2Y4xxdREANpuN+fPn0759eyBv9HlERARPP/00Q4YMASA5OZmwsDCmTp1Kly5d2LVrF7Vq1WLjxo3ccsstACxdupTWrVtz+PBhIiIi+OCDDxg6dCiJiYl4eXkB8Pzzz7NgwQJ2794NwIMPPkhaWhoLFy606mnYsCHR0dFMnDixSPWnpKQQHBxMcnIyQUFBl+28lAgn98DJXeDuDe6e4OEN7l5/vjz+t/zCdjcPsNlcXb2IiIiIiIiIiFzl0tPTSUhIIDIyEh8fH1eXIyVAYfdMcbJcjytZ5F+RkJBAYmIiLVu2tJYFBwfToEEDNmzYQJcuXdiwYQMhISFWeA7QsmVL3NzciIuLo0OHDmzYsIEmTZpY4TlATEwMr7/+OklJSZQqVYoNGzbw1FNPOew/JiYm35Qy58vIyCAjI8P6OSUl5XIcdsm06yv4bvQldLQVHrBbAbz9/fnt/1vfwxsCw6FUJIRWhdBI8PK/7IcoIiIiIiIiIiJyKZo1a0Z0dDTjx4+/YvuoUqUKgwcPZvDgwQWuM2LECBYsWMDWrVuvWB3Xoqs2QE9MTAQgLCzMYXlYWJjVlpiYSLly5RzaPTw8CA0NdVgnMjIy3zbsbaVKlSIxMbHQ/TgzduxYRo4ceQlHdg0KjIBKjSA7A3KyICcDcjIhOzPvX/srOwM4/w8ezP/WzShoy5cmICwvTD8/VA/933vfUpd3XyIiIiIiIiIiIleZC2f7kEt31QboV7sXXnjBYdR6SkoKFStWdGFFLlQ3Nu91McZAbk7hAbvDe3sYn+XYdn579jlIOQqn/gunEuDcKUg9nvc6uCF/DT4h/wvVq/4ZqtuD9oBymlJGRERERERERERELFdtgB4eHg7A8ePHKV++vLX8+PHjREdHW+ucOHHCoV92djanTp2y+oeHh3P8+HGHdew/X2wde7sz3t7eeHt7X8qh/XPZbODukffiCk2zci4pL0hPSvgzVD/1v/epiZB+Go5uyXtdyNP/z9Hq1uj1/wXtQRXAzf3K1CwiIiIiIiIiIsVnDGSddc2+Pf2KNRAzNzeXZ599lo8++ggvLy/+/e9/M2LECABOnz7NkCFD+Oqrr8jIyOCWW27hnXfe4eabbwYgPj6ep556ih9//JG0tDRq1qzJ2LFjHaa+Pl+VKlUA6NChAwCVK1dm//79Vvunn37KsGHDSEpK4t577+XDDz8kMDCQ6dOn8+STT3L06FGH3LN9+/YEBgby6aefFuMEXTuu2gA9MjKS8PBwVq5caQXmKSkpxMXF8dhjjwHQqFEjTp8+zebNm6lfvz4A3333Hbm5uTRo0MBaZ+jQoWRlZeHp6QnAihUriIqKolSpUtY6K1eudJgjaMWKFTRq1OhvO165THxLQYVSUKFe/rbMNEja/2egfuq/fwbtyYchKw2O/5r3upC7F4RUdgzVq7WE0tdf8UMSEREREREREREnss7CmAjX7PvFo8V6Dt+0adN46qmniIuLY8OGDfTq1Yvbb7+du+++m06dOuHr68uSJUsIDg5m0qRJtGjRgj179hAaGkpqaiqtW7fm1Vdfxdvbm+nTp9O2bVt+++03KlWqlG9fGzdupFy5ckyZMoVWrVrh7v7noND4+HgWLFjAwoULSUpKonPnzrz22mu8+uqrdOrUiYEDB/L111/TqVMnAE6cOMGiRYtYvnz5Xz9nJZRLA/TU1FT27dtn/ZyQkMDWrVsJDQ2lUqVKDB48mNGjR1O9enUiIyMZNmwYERER1tw9NWvWpFWrVvTt25eJEyeSlZVF//796dKlCxEReR+ebt26MXLkSHr37s1zzz3Hr7/+yrvvvss777xj7XfQoEE0bdqUcePG0aZNGz777DM2bdrE5MmT/94TIleWlz+E1c57XSg7E04fdAzV7UF70v68aWP+2Jv3svPwhYcXQYX6f9shiIiIiIiIiIhIyXPTTTcxfPhwAKpXr857773HypUr8fX15aeffuLEiRPWqO+33nqLBQsW8Pnnn9OvXz9uvvlmazQ6wKhRo5g/fz5ff/01/fv3z7evsmXLAhASEpJvho3c3FymTp1KYGAgAN27d2flypW8+uqr+Pr60q1bN6ZMmWIF6DNmzKBSpUo0a9bssp+TksKlAfqmTZu46667rJ/tc4r37NmTqVOn8uyzz5KWlka/fv04ffo0d9xxB0uXLsXHx8fqM3PmTPr370+LFi1wc3PjgQceYMKECVZ7cHAwy5cv54knnqB+/fqUKVOGl19+mX79+lnrNG7cmFmzZvHSSy/x4osvUr16dRYsWMCNN974N5wFuSp4eEGZanmvC+XmQMoRx1D9v6sh8ReY1QX6roSQ/N/2iYiIiIiIiIjIFeTplzcS3FX7LoabbrrJ4efy5ctz4sQJtm3bRmpqKqVLl3ZoP3fuHPHx8UDeIOQRI0awaNEijh07RnZ2NufOnePgwYPFLrtKlSpWeH5+HXZ9+/bl1ltv5ciRI1SoUIGpU6fSq1cvbP/g5wa6NEBv1qwZxpgC2202G6+88gqvvPJKgeuEhoYya9asQvdz0003sXbt2kLX6dSpk/XNiogDN/e8gDykElRtlrcsPQWm3Js33cvMztB7GfgEu7JKEREREREREZF/FputWNOouJJ9amk7m81Gbm4uqamplC9fntWrV+frExISAsCQIUNYsWIFb731FtWqVcPX15eOHTuSmZl52eqwq1u3LjfffDPTp0/nnnvuYceOHSxatKjY+7mWXLVzoItc1XyCoNsc+LAFnNwFc3tA7Ofg7nnxviIiIiIiIiIiIkC9evVITEzEw8PDevjnhdatW0evXr2sh4KmpqY6PBTUGU9PT3Jyci6ppj59+jB+/HiOHDlCy5YtqVix4iVt51rh5uoCREqs4OvyQnRP/7wpXRY+mff0ZxERERERERERkSJo2bIljRo1on379ixfvpz9+/ezfv16hg4dyqZNm4C8OdO//PJLtm7dyrZt2+jWrZvDqHFnqlSpwsqVK0lMTCQpKalYNXXr1o3Dhw/z4Ycf8sgjj1zysV0rFKCL/BUR0dDxE7C5wc+fwrrxrq5IRERERERERERKCJvNxuLFi2nSpAkPP/wwNWrUoEuXLhw4cICwsDAA3n77bUqVKkXjxo1p27YtMTEx1KtXr9Dtjhs3jhUrVlCxYkXq1q1brJqCg4N54IEHCAgIoH379pd8bNcKmylsEnIpspSUFIKDg0lOTiYoKMjV5cjfLW4SLHk2733HKXDj/a6tR0RERERERETkGpKenk5CQgKRkZH4+Pi4upxrXosWLahduzYTJkxwdSmXrLB7pjhZrkagi1wODR6FBo/lvZ//bzj0k2vrERERERERERERKaakpCTmz5/P6tWreeKJJ1xdzlVBDxEVuVxiXoXTB+C3xTC7C/T5FkKruroqERERERERERGRIqlbty5JSUm8/vrrREVFubqcq4ICdJHLxc0dHvgIptwLx7bBzM7Qezn4hbq6MhERERERERERkYvav3+/q0u46mgKF5HLycsfus6BoOvgj70wpztkZ7q6KhEREREREREREbkECtBFLreg8hA7F7wC4cAP8PUA0LN6RUREREREREREShwF6CJXQlht6DwVbO7wy2fw/RuurkhERERERERERESKSQG6yJVSrSW0GZf3fvUY2DbHtfWIiIiIiIiIiIhIsShAF7mSbnkYbh+U9/6rJ2D/OtfWIyIiIiIiIiIiIkWmAF3kSmsxAmr+C3Kz4LNu8PteV1ckIiIiIiIiIiIiRaAAXeRKc3OD+ydDhVsg/TTM7Ahpv7u6KhERERERERER+Rs0a9aMwYMHF3n93bt307BhQ3x8fIiOjr6ClV0am83GggULXF3G30YBusjfwdMXun4GIZUgaX/eSPSsdFdXJSIiIiIiIiIiV9iXX37JqFGjirz+8OHD8ff357fffmPlypWXpYZ/Wuh9OSlAF/m7BJSF2M/BJxgOxcGCxyA319VViYiIiIiIiIjIFRQaGkpgYGCR14+Pj+eOO+6gcuXKlC5d+gpWJkWhAF3k71Q2Ch6cAW4esONLWDXa1RWJiIiIiIiIiJRIxhjOZp11ycsYU+Q6z5/CpUqVKowZM4ZHHnmEwMBAKlWqxOTJk611bTYbmzdv5pVXXsFmszFixAgADh06ROfOnQkJCSE0NJR27dqxf/9+h/188skn1K5dG29vb8qXL0///v2tfQJ06NABm81m/Qzw1VdfUa9ePXx8fKhatSojR44kOzvbat+7dy9NmjTBx8eHWrVqsWLFimJcoWuDh6sLEPnHiWwCbSfAV4/D2nFQKhLqdXd1VSIiIiIiIiIiJcq57HM0mNXAJfuO6xaHn6ffJfUdN24co0aN4sUXX+Tzzz/nscceo2nTpkRFRXHs2DFatmxJq1atGDJkCAEBAWRlZRETE0OjRo1Yu3YtHh4ejB49mlatWvHLL7/g5eXFBx98wFNPPcVrr73GvffeS3JyMuvWrQNg48aNlCtXjilTptCqVSvc3d0BWLt2LT169GDChAnceeedxMfH069fPyBvGpnc3Fzuv/9+wsLCiIuLIzk5uVhzuV8rFKCLuELdWEhKgDVvwsLBEHwdXH+Xq6sSEREREREREZErrHXr1jz++OMAPPfcc7zzzjusWrWKqKgowsPD8fDwICAggPDwcABmzJhBbm4uH330ETabDYApU6YQEhLC6tWrueeeexg9ejRPP/00gwYNsvZz6623AlC2bFkAQkJCrG0CjBw5kueff56ePXsCULVqVUaNGsWzzz7L8OHD+fbbb9m9ezfLli0jIiICgDFjxnDvvfde4TN0dVGALuIqdw3Ne6Do9nkwtwf0Xg7larq6KhERERERERGREsHXw5e4bnEu2/eluummm6z3NpuN8PBwTpw4UeD627ZtY9++ffnmUU9PTyc+Pp4TJ05w9OhRWrRoUaw6tm3bxrp163j11VetZTk5OaSnp3P27Fl27dpFxYoVrfAcoFGjRsXax7VAAbqIq9hs0O59SD4MBzfAzM7Q51sIDHN1ZSIiIiIiIiIiVz2bzXbJ06i4kqenp8PPNpuN3NzcAtdPTU2lfv36zJw5M19b2bJlcXO7tMdcpqamMnLkSO6///58bT4+Ppe0zWuRAnQRV/Lwhi6z4KOWcCoeZneBXovAq+T98hcRERERERERkcuvXr16zJkzh3LlyhEUFOR0nSpVqrBy5Uruusv5FMGenp7k5OTk2+5vv/1GtWrVnPapWbMmhw4d4tixY5QvXx6AH3/88S8cScl0aV9PiMjl4xcKsfPAtxQc3QJf9oXcnIv3ExERERERERGRa15sbCxlypShXbt2rF27loSEBFavXs3AgQM5fPgwACNGjGDcuHFMmDCBvXv3smXLFv7zn/9Y27AH7ImJiSQlJQHw8ssvM336dEaOHMmOHTvYtWsXn332GS+99BIALVu2pEaNGvTs2ZNt27axdu1ahg4d+vefABdTgC5yNSh9PXSZDe5esHshrHjZ1RWJiIiIiIiIiMhVwM/PjzVr1lCpUiXuv/9+atasSe/evUlPT7dGpPfs2ZPx48fzf//3f9SuXZv77ruPvXv3WtsYN24cK1asoGLFitStWxeAmJgYFi5cyPLly7n11ltp2LAh77zzDpUrVwbAzc2N+fPnc+7cOW677Tb69OnjMF/6P4XNGGNcXcS1ICUlheDgYJKTkwv8UwqRi9r+OXzRO+99m3Fwax/X1iMiIiIiIiIichVIT08nISGByMhIzc8tRVLYPVOcLFcj0EWuJnU6wl15fybD4mdgz3LX1iMiIiIiIiIiIvIPpgBd5GrTZAhEx4LJhc8fhsTtrq5IRERERERERETkH0kBusjVxmaD+8ZDZBPITIWZnSHlqKurEhERERERERER+cdRgC5yNfLwgs6fQpkoOHMUZnWGjFRXVyUiIiIiIiIiIvKPogBd5GrlGwKxc8GvTN40Lp8/AjnZrq5KRERERERERETkH0MBusjVrFQV6DYHPHxg7zJY+jwY4+qqRERERERERERE/hEUoItc7a67Be6fnPd+44cQN9G19YiIiIiIiIiIiPxDKEAXKQlqtYO7X8l7v+xFOH3QtfWIiIiIiIiIiIj8AyhAFykpGg+E8tFgcuHwJldXIyIiIiIiIiIics1TgC5SUthsUP7mvPfHf3VtLSIiIiIiIiIiIkU0depUQkJCXF3GJVGALlKShNfJ+/f4DtfWISIiIiIiIiIi8g+gAF2kJAmrnfdvokagi4iIiIiIiIiURJmZma4u4ZKU1Lr/KgXoIiWJPUBPOQznklxbi4iIiIiIiIiICxljyD171iUvY0yR62zWrBn9+/dn8ODBlClThpiYGE6fPk2fPn0oW7YsQUFBNG/enG3btjn0++abb7j11lvx8fGhTJkydOjQwWpLSkqiR48elCpVCj8/P+6991727t0LQEpKCr6+vixZssRhe/PnzycwMJCzZ88CcOjQITp37kxISAihoaG0a9eO/fv3W+v36tWL9u3b8+qrrxIREUFUVBQAGRkZDBkyhAoVKuDv70+DBg1YvXq1w76mTp1KpUqV8PPzo0OHDvzxxx9FPl9XGw9XFyAixeATDMGVIPkgHN8JVW53dUUiIiIiIiIiIi5hzp3jt3r1XbLvqC2bsfn5FXn9adOm8dhjj7Fu3ToAOnXqZIXcwcHBTJo0iRYtWrBnzx5CQ0NZtGgRHTp0YOjQoUyfPp3MzEwWL15sba9Xr17s3buXr7/+mqCgIJ577jlat27Nzp07CQoK4r777mPWrFnce++9Vp+ZM2fSvn17/Pz8yMrKIiYmhkaNGrF27Vo8PDwYPXo0rVq14pdffsHLywuAlStXEhQUxIoVK6zt9O/fn507d/LZZ58RERHB/PnzadWqFdu3b6d69erExcXRu3dvxo4dS/v27Vm6dCnDhw//q6fcZWymOF+XSIFSUlIIDg4mOTmZoKAgV5cj17JZXWDPErj3DWjwqKurERERERERERG54tLT00lISCAyMhIfHx8Acs+edWmA7lbEAL1Zs2akpKSwZcsWAH744QfatGnDiRMn8Pb2ttarVq0azz77LP369aNx48ZUrVqVGTNm5Nve3r17qVGjBuvWraNx48YA/PHHH1SsWJFp06bRqVMnFixYQPfu3Tl+/Dh+fn6kpKQQFhZmhd0zZsxg9OjR7Nq1C5vNBuRN0RISEsKCBQu455576NWrF0uXLuXgwYNWoH7w4EGqVq3KwYMHiYiIsGpq2bIlt912G2PGjKFbt24kJyezaNEiq71Lly4sXbqU06dPF/NMXzpn94xdcbJcjUAXKWnCb8wL0I9rHnQRERERERER+eey+foStWWzy/ZdHPXr/xn0b9u2jdTUVEqXLu2wzrlz54iPjwdg69at9O3b1+m2du3ahYeHBw0aNLCWlS5dmqioKHbt2gVA69at8fT05Ouvv6ZLly588cUXBAUF0bJlS6uGffv2ERgY6LDt9PR0qwaAOnXqWOE5wPbt28nJyaFGjRoO/TIyMqzj2bVrl8N0MwCNGjVi6dKlhZyhq5cCdJGSxj4P+vEdrq1DRERERERERMSFbDZbsaZRcSV/f3/rfWpqKuXLl883bzhASEgIAL7FDOgv5OXlRceOHZk1axZdunRh1qxZPPjgg3h4eFg11K9fn5kzZ+brW7ZsWad12/u5u7uzefNm3N3dHdoCAgL+Us1XKwXoIiVN2I15/x7fCbk54OZe+PoiIiIiIiIiInLVqFevHomJiXh4eFClShWn69x0002sXLmShx9+OF9bzZo1yc7OJi4uzmEKl99++41atWpZ68XGxnL33XezY8cOvvvuO0aPHu1Qw5w5cyhXrlyxpqOuW7cuOTk5nDhxgjvvvNPpOjVr1iQuLs5h2Y8//ljkfVxt3FxdgIgUU2hV8PCF7HNwKsHV1YiIiIiIiIiISDG0bNmSRo0a0b59e5YvX87+/ftZv349Q4cOZdOmTQAMHz6c2bNnM3z4cHbt2sX27dt5/fXXAahevTrt2rWjb9++/PDDD2zbto2HHnqIChUq0K5dO2s/TZo0ITw8nNjYWCIjIx2mfImNjaVMmTK0a9eOtWvXkpCQwOrVqxk4cCCHDx8usPYaNWoQGxtLjx49+PLLL0lISOCnn35i7Nix1pznAwcOZOnSpbz11lvs3buX9957r8RO3wIK0EVKHjd3KFcz7/3x7a6tRUREREREREREisVms7F48WKaNGnCww8/TI0aNejSpQsHDhwgLCwMyHvw6Lx58/j666+Jjo6mefPm/PTTT9Y2pkyZQv369bnvvvto1KgRxhgWL16Mp6enw366du3Ktm3biI2NdajBz8+PNWvWUKlSJe6//35q1qxJ7969SU9Pv+iI9ClTptCjRw+efvppoqKiaN++PRs3bqRSpUoANGzYkA8//JB3332Xm2++meXLl/PSSy9drtP3t7MZY4yri7gWFOfJrSJ/2dcDYMt0aPIMNC+5v4BERERERERERIoiPT2dhIQEIiMj8fHxcXU5UgIUds8UJ8vVCHSRksiaB10PEhUREREREREREblSFKCLlERhtfP+TfzVtXWIiIiIiIiIiIhcwxSgi5RE9gA9+SCkJ7u2FhERERERERERkWuUAnSRksi3FARdl/de07iIiIiIiIiIiIhcEQrQRUoq+yh0BegiIiIiIiIiIiJXhAJ0kZIq3P4gUc2DLiIiIiIiIiIiciUoQBcpqfQgURERERER+X/27jw8yvpe//g9a/aVQDaBBIQQICCCRQgoCopaULEexXJ+rVblWIqKglXrimitFEHcl9Naa7WHLmpRcUEEgciOyiKgLCEs2SCQkHVmMs/vj0kGIlsiSZ7M5P26rlwzJM/M3KNcLHc+fL4AAKBFUaADgSoxy3db9K3k9ZqbBQAAAAAAAAhCFOhAoIrvJtlDJXeldGiX2WkAAAAAAACAoEOBDgQqm13q2Mt3nz3oAAAAAAAACCJ/+ctfFBsba3YMCnQgoPkPEt1sbg4AAAAAAAAEDIvFovfee8/sGH5paWl65plnGnzu+uuv13fffWdSoqPsZgcAcAYS6wp0DhIFGF9+8QAAIABJREFUAAAAAABAEAkLC1NYWJjZMZhABwJaYh/fLStcAAAAAABAO2MYhtw1taZ8GIbR6Jz/+te/lJWVpbCwMHXo0EGjRo3SF198IYfDoYKCggbXTpkyRcOHD5d0dIXJBx98oIyMDIWHh+vaa69VZWWl3njjDaWlpSkuLk533HGHamtr/c+RlpamGTNm6IYbblBERIRSU1P1wgsvNPi6JI0bN04Wi8X/Y0l66aWX1L17dzmdTmVkZOjNN99skM9iseiVV17RmDFjFB4erszMTK1YsULbt2/XiBEjFBERoaFDh2rHjh3+x+zYsUNXXXWVEhMTFRkZqfPOO0+fffaZ/+sjRozQ7t27ddddd8lischisTR4/8d6//33dd555yk0NFQJCQkaN25co/8//FhMoAOBrH4C/fBuqbpMCo02Nw8AAAAAAEAr8bi8evXOL0x57YlzL5QjxHba6/Lz83XDDTdo5syZGjdunI4cOaJly5Zp4MCB6tatm958803dc889kiS326233npLM2fO9D++srJSzz77rP7v//5PR44c0TXXXKNx48YpNjZWCxYs0M6dO/Wzn/1M2dnZuv766/2P++Mf/6jf/e53mj59uj755BPdeeed6tmzpy655BKtWbNGnTp10uuvv67LLrtMNpvvfbz77ru688479cwzz2jUqFH64IMPdNNNN+mss87SRRdd5H/uGTNmaPbs2Zo9e7buvfde/fznP1e3bt10//33q0uXLvrVr36lyZMn66OPPpIklZeX64orrtATTzyhkJAQ/fWvf9XYsWO1bds2denSRe+884769++viRMn6tZbbz3pf8sPP/xQ48aN0wMPPKC//vWvcrlcWrBgQdP+x/0IFOhAIAuPl6JSpCP7paJvpS7nm50IAAAAAAAAdfLz8+XxeHTNNdeoa9eukqSsrCxJ0s0336zXX3/dX6C///77qq6u1nXXXed/vNvt9k+FS9K1116rN998U4WFhYqMjFTv3r110UUXafHixQ0K9OzsbN13332SpJ49eyonJ0dz5szRJZdcoo4dO0qSYmNjlZSU5H/MrFmzdOONN2rSpEmSpLvvvlsrV67UrFmzGhToN910kz/jvffeqyFDhuihhx7S6NGjJUl33nmnbrrpJv/1/fv3V//+/f0/njFjht59913Nnz9fkydPVnx8vGw2m6Kiohrk+aEnnnhC48eP1/Tp0xs8d0ujQAcCXVJfX4FeuIkCHQAAAAAAtBt2p1UT515o2ms3Rv/+/TVy5EhlZWVp9OjRuvTSS3XttdcqLi5ON954ox588EGtXLlS559/vv7yl7/ouuuuU0REhP/x4eHh/vJckhITE5WWlqbIyMgGnysqKmrwukOGDDnuxz88pPOHtmzZookTJzb4XHZ2tubOndvgc/369Wvw2tLRbwrUf666ulplZWWKjo5WeXm5Hn30UX344Yf+byhUVVUpLy/vlHl+6Ouvvz7lhHpLoUAHAl1iH+n7T6XCzWYnAQAAAAAAaDUWi6VRa1TMZLPZtHDhQn355Zf69NNP9dxzz+mBBx7QqlWrlJ6errFjx+r1119Xenq6PvroIy1ZsqTB4x0OR4MfWyyWE37O6/W29Fs5Yab6feUn+lx9pmnTpmnhwoWaNWuWzj77bIWFhenaa6+Vy+Vq0uuadaAoh4gCga5+D3oBB4kCAAAAAAC0NRaLRdnZ2Zo+fbq++uorOZ1Ovfvuu5KkW265RfPmzdOrr76q7t27Kzs7u1lec+XKlcf9ODMz0/9jh8PR4OBRScrMzFROTk6Dz+Xk5Kh3795nlCUnJ0c33nijxo0bp6ysLCUlJSk3N7fBNU6n87g8P9SvXz8tWrTojLL8GEygA4GuvkAv+lbyeiUr3xcDAAAAAABoC1atWqVFixbp0ksvVadOnbRq1SoVFxf7y+zRo0crOjpajz/+uB577LFme92cnBzNnDlTV199tRYuXKh//vOf+vDDD/1fT0tL06JFi5Sdna2QkBDFxcXpnnvu0XXXXacBAwZo1KhRev/99/XOO+/os88+O6MsPXr00DvvvKOxY8fKYrHooYceOm5iPi0tTUuXLtX48eMVEhKihISE457nkUce0ciRI9W9e3eNHz9eHo9HCxYs0L333ntG+U6Hpg0IdB3OlmxOyVUuHc41Ow0AAAAAAADqREdHa+nSpbriiivUs2dPPfjgg3r66ad1+eWXS5KsVqtuvPFG1dbW6he/+EWzve7UqVO1du1aDRgwQI8//rhmz57tP+RTkp5++mktXLhQnTt31oABAyRJV199tebOnatZs2apT58+euWVV/T6669rxIgRZ5Rl9uzZiouL09ChQzV27FiNHj1a5557boNrHnvsMeXm5qp79+7+Q05/aMSIEfrnP/+p+fPn65xzztHFF1+s1atXn1G2xrAYhmG0+Ku0A2VlZYqJiVFpaamio6PNjoP25uXhUsEG6fq/SZljzU4DAAAAAADQrKqrq7Vr1y6lp6crNDTU7DjN6uabb1ZxcbHmz5/fLM+XlpamKVOmaMqUKc3yfIHqVD9nmtLlMoEOBIOkupOOOUgUAAAAAAAgIJSWlmr58uV6++23dfvtt5sdByfBDnQgGCT28d0WbDQ3BwAAAAAAABrlqquu0urVq3XbbbfpkksuMTsOToICHQgG9QeJMoEOAAAAAAAQEJYsWdIiz5ubm9siz9tescIFCAb1E+iHdkk15eZmAQAAAAAAAIIEBToQDCISpMgk3/2ib83NAgAAAAAA0EIMwzA7AgJEc/1coUAHgkVS/RqXTebmAAAAAAAAaGYOh0OSVFlZaXISBIr6nyv1P3d+LHagA8EisY+0/TOpgAIdAAAAAAAEF5vNptjYWBUVFUmSwsPDZbFYTE6FtsgwDFVWVqqoqEixsbGy2Wxn9HwU6ECwSMzy3XKQKAAAAAAACEJJSb71tfUlOnAqsbGx/p8zZ4ICHQgW9QeJFm6WDEPiu7AAAAAAACCIWCwWJScnq1OnTnK73WbHQRvmcDjOePK8HgU6ECwSekg2p+Q6Ih3eLcWlmZ0IAAAAAACg2dlstmYrR4HT4RBRIFjYHFLHDN991rgAAAAAAAAAZ4wCHQgmiX19txwkCgAAAAAAAJwxCnQgmPj3oFOgAwAAAAAAAGeKAh0IJvUT6KxwAQAAAAAAAM4YBToQTOoL9JKdkqvC3CwAAAAAAABAgKNAB4JJZEcpMlGSIRVtMTsNAAAAAAAAENAo0IFgwx50AAAAAAAAoFlQoAPBpr5AL6BABwAAAAAAAM4EBToQbBKzfLccJAoAAAAAAACcEQp0INj4V7hslgzD3CwAAAAAAABAAKNAB4JNQk/J6pBqSqXSPWanAQAAAAAAAAIWBToQbOxOqWOG7z5rXAAAAAAAAIAfjQIdCEYcJAoAAAAAAACcMQp0IBgl9vXdFlKgAwAAAAAAAD8WBToQjI49SBQAAAAAAADAj0KBDgSj+gn0kh2Sq9LcLAAAAAAAAECAokAHglFUohTRUTK8UvEWs9MAAAAAAAAAAYkCHQhWHCQKAAAAAAAAnBEKdCBY+Q8SZQ86AAAAAAAA8GNQoAPBigIdAAAAAAAAOCMU6ECwql/hUrhRMgxzswAAAAAAAAABiAIdCFYdMySrXaoulcr2mZ0GAAAAAAAACDgU6ECwsodICT199zlItEmqPFV6bMVjeu6r55Rbmmt2HAAAAAAAAJjEbnYAAC0osY9U9K1UuEnKuMzsNAHj/R3v65/f/VOS9OqGV9W/Y39d2f1KXZZ+maKd0SanAwAAAAAAQGthAh0IZhwk+qMs37dckpQamSqrxapvir/RjJUzdNG8izTti2launepPF6PySkBAAAAAADQ0phAB4KZv0BnhUtjuWvdWpW/SpI0e8RsdQzrqA93fqj/7PiPth/erk9yP9EnuZ+oQ2gH/bTbT3Vl9yuVEZ9hcmoAAAAAAAC0BIthGIbZIYJBWVmZYmJiVFpaquhoVjygjThSID2dIVms0u/2S44wsxO1eWsK1uhXn/xK8aHxWnzdYlktvn+oYxiGtpRs0fwd87Vg5wIdqjnkf0yv+F66svuVuiL9CnUI62BWdAAAAAAAADRCU7pcJtCBYBaZKIV3kCoPSsVbpZQBZidq8+rXt2SnZPvLc0myWCzq3aG3enforakDp2rZvmWav2O+vtj7hbaWbNXWkq2avXa2hqUO05VnX6kLz7pQTpvTrLcBAAAAAACAZkCBDgQzi8V3kOiupVLBJgr0RsjZlyNJyk7NPuk1DptDF3e5WBd3uViHqw9rwa4Fmr9jvjYf3Kwle5doyd4ligmJ0WVpl+mq7lepb0JfWSyW1noLAAAAAAAAaCYU6ECwS8zyFegcJHpaRZVF2nZomyyyaEjKkEY9JjY0Vj/P/Ll+nvlz7Ti8Q//Z8R99uONDFVUVad62eZq3bZ7SY9J1ZfcrNabbGCVFJLXwuwAAAAAAAEBzsZ7+EgABLbGP75aDRE+rfvq8T4c+ig+Nb/Lju8d2190D79an136qV0a9oivSr1CILUS7Sndp7vq5uvRfl2ripxP1wc4PVOWpau74AAAAAAAAaGZMoAPB7tgC3TB8a11wQjn7T7++pTFsVpuGpg7V0NShKneV69Pdn+o/2/+j9UXrtSJ/hVbkr1C4PVyXpl2qK7tfqYGJAxvsWwcAAAAAAEDbQIEOBLuOvSSLTao6JB3Jl6JTzE7UJnm8Hq3Yv0KSNCx1WLM9b6QzUtf0uEbX9LhGe47s0fs73tf8HfO1r3yf3tv+nt7b/p5SI1M1tvtYXdntSnWO7txsrw0AAAAAAIAzw8gjEOwcoVJCD9/9Ata4nMymA5tU5ipTtDNafRP6tshrdI7qrEnnTNKCaxbo9dGva9zZ4xThiNC+8n16+ZuXdcW7V+iXH/1SS/YsaZHXBwAAAAAAQNNQoAPtQWJdIcwe9JOqX98yJGWI7NaW/cc5VotVg5IG6bHsx7T4usV6cviTGpI8RBZZtL5ove74/A59nvd5i2YAAAAAAADA6VGgA+2Bfw/6ZnNztGH1B4hmp5zZ/vOmCrOHaUy3MXr10lf16bWfaky3MTJk6N6l92pj8cZWzQIAAAAAAICGKNCB9oAJ9FM6VH1Imw74/tuc6QGiZyIpIkkzsmdoeOpwVddWa/Lnk7XnyB7T8gAAAAAAALR3FOhAe5BUV6Af+F5yV5ubpQ1asX+FDBnqGddTncI7mZrFbrVr1oWzlBmfqZLqEk36bJIOVx82NRMAAAAAAEB7RYEOtAdRyVJYnGTUSsVbzU7T5tTvPzdz+vxY4Y5wPT/yeSVHJCu3LFd3Lr5TNbU1ZscCAAAAAABodyjQgfbAYjlmjQt70I/lNbz+/efDUoaZnOaoTuGd9OLIFxXliNL6ovV6YPkD8hpes2MBAAAAAAC0KxToQHtBgX5C20q26WD1QYXZwzSg0wCz4zRwdtzZmnPRHNmtdn2S+4meWf+M2ZEAAAAAAADaFQp0oL1I7OO7Ldxobo42pn59y+DkwXLYHCanOd7g5MF6bOhjkqTXN72ueVvnmZwIAAAAAACg/aBAB9qL+oNECzZJhmFuljZk+b7lktrW+pYfGtt9rCafM1mS9PvVv9cXe74wOREAAAAAAED7QIEOtBcde0kWq1RVIpUXmp2mTTjiOqJvir6RJA1NHWpymlOb2G+irulxjbyGV/csvUebD7CKBwAAAAAAoKVRoAPthSNM6nC2737BJnOztBGr81fLY3iUFp2mzlGdzY5zShaLRQ+e/6CGpgxVladKv1n0G+0r32d2LAAAAAAAgKBGgQ60J/6DRCnQJWn5ft/6luzUbJOTNI7D6tDTFz6tjLgMHaw+qEmfTVJpTanZsQAAAAAAAIIWBTrQnvgPEqVANwxDOft8B4hmpwRGgS5Jkc5IvTDyBSWGJ2pn6U5NWTxFrlqX2bEAAAAAAACCEgU60J74J9DZn72rdJfyK/LltDo1KGmQ2XGaJDEiUS+OelGRjkitLVyrh3Iektfwmh0LAAAAAAAg6FCgA+1JUl2BfuA7yVNjbhaTLd/nW98yKGmQwuxhJqdpup5xPTV7xGzZLXYt2LVAz3/1vNmRAAAAAAAAgg4FOtCeRKdKoTGS1yMVbzM7jaly9gfe+pYfGpIyRI8MfUSS9NrG1/TP7/5pciIAAAAAAIDgQoEOtCcWi5SY5bvfjte4VHmqtLZgrSRpWOowk9OcmavPvlq/7v9rSdITK5/Qsr3LTE4EAAAAAAAQPCjQgfaGg0S1tmCtXF6XkiOSlR6TbnacM/br/r/Wld2vVK1Rq6lfTNW3B781OxIAAAAAAEBQaNMFem1trR566CGlp6crLCxM3bt314wZM2QYhv8awzD08MMPKzk5WWFhYRo1apS+//77Bs9TUlKiCRMmKDo6WrGxsbr55ptVXl7e4JoNGzZo+PDhCg0NVefOnTVz5sxWeY9Aq6NAP7q+JTVbFovF5DRnzmKx6NEhj2pw8mBVear0m0W/UX55vtmxAAAAAAAAAl6bLtCfeuopvfTSS3r++ee1ZcsWPfXUU5o5c6aee+45/zUzZ87Us88+q5dfflmrVq1SRESERo8ererqav81EyZM0ObNm7Vw4UJ98MEHWrp0qSZOnOj/ellZmS699FJ17dpV69at0x//+Ec9+uijevXVV1v1/QKtov4g0Xa8wiVnn69AH5YS2OtbjuWwOTRnxBydHXu2DlQd0KRFk1TmKjM7FgAAAAAAQECzGMeOc7cxY8aMUWJiov70pz/5P/ezn/1MYWFh+tvf/ibDMJSSkqKpU6dq2rRpkqTS0lIlJibqL3/5i8aPH68tW7aod+/eWrNmjQYNGiRJ+vjjj3XFFVdo7969SklJ0UsvvaQHHnhABQUFcjqdkqT77rtP7733nrZu3dqorGVlZYqJiVFpaamio6Ob+b8E0IxcldLvUyQZ0tTvpKhEsxO1qj1H9uiKd66Q3WLX0vFLFeWMMjtSsyqoKNCEDyeoqKpIP0n6iV4e9bIcNofZsQAAAAAAANqMpnS5bXoCfejQoVq0aJG+++47SdI333yj5cuX6/LLL5ck7dq1SwUFBRo1apT/MTExMRo8eLBWrFghSVqxYoViY2P95bkkjRo1SlarVatWrfJfc8EFF/jLc0kaPXq0tm3bpkOHDp0wW01NjcrKyhp8AAHBGS516O673w7XuHy570tJUv9O/YOuPJekpIgkvTDqBYXbw7W6YLUe+fIRteHvkwIAAAAAALRpbbpAv++++zR+/Hj16tVLDodDAwYM0JQpUzRhwgRJUkFBgSQpMbHhBG1iYqL/awUFBerUqVODr9vtdsXHxze45kTPcexr/NCTTz6pmJgY/0fnzp3P8N0CrSix/a5xWb5/uSRpWGrwrG/5oV7xvTR7xGzZLDa9v/N9vfD1C2ZHAgAAAAAACEhtukD/xz/+obfeektvv/221q9frzfeeEOzZs3SG2+8YXY03X///SotLfV/7Nmzx+xIQOP5C/T2NYHurnVrVb7vX55kp2SbnKZlZadm6+EhD0uSXtnwit79/l2TEwEAAAAAAAQeu9kBTuWee+7xT6FLUlZWlnbv3q0nn3xSv/zlL5WUlCRJKiwsVHJysv9xhYWFOueccyRJSUlJKioqavC8Ho9HJSUl/scnJSWpsLCwwTX1P66/5odCQkIUEhLSDO8SMEE7PUh0fdF6VXmq1CG0gzLiM8yO0+Ku6XGN9pXv06sbXtX0FdOVGJ6ooalDzY4FAAAAAAAQMNr0BHplZaWs1oYRbTabvF6vJCk9PV1JSUlatGiR/+tlZWVatWqVhgwZIkkaMmSIDh8+rHXr1vmv+fzzz+X1ejV48GD/NUuXLpXb7fZfs3DhQmVkZCguLq7F3h9gmsQ+vtvibZLHZW6WVpSzL0eSbzrbamnTv/w1m8nnTNaYbmNUa9Tq7i/u1raSbWZHAgAAAAAACBhtukEaO3asnnjiCX344YfKzc3Vu+++q9mzZ2vcuHGSJIvFoilTpujxxx/X/PnztXHjRv3iF79QSkqKrr76aklSZmamLrvsMt16661avXq1cnJyNHnyZI0fP14pKSmSpJ///OdyOp26+eabtXnzZs2bN09z587V3Xffbdp7B1pUTGcpJEbyuqUD35mdptXU7z8P9vUtx7JYLHps6GP6SdJPVOGu0KRFk1RQceKzHQAAAAAAANBQmy7Qn3vuOV177bWaNGmSMjMzNW3aNP3P//yPZsyY4b/mt7/9rW6//XZNnDhR5513nsrLy/Xxxx8rNDTUf81bb72lXr16aeTIkbriiis0bNgwvfrqq/6vx8TE6NNPP9WuXbs0cOBATZ06VQ8//LAmTpzYqu8XaDUWy9Ep9HayxqWwolDfH/peFlk0JGWI2XFalcPm0JyL5qh7THcVVRZp0qJJOuI6YnYsAAAAAACANs9iGIZhdohgUFZWppiYGJWWlio6OtrsOMDpfThNWvOaNPR26dLHzU7T4t79/l09/OXDykrI0ts/fdvsOKbYX75fExZM0IGqAzo/+Xy9OOpFOawOs2MBAAAAAAC0qqZ0uW16Ah1AC2pnB4ku31e3viW1/axv+aGUyBS9MPIFhdnDtDJ/paZ/OV18DxUAAAAAAODkKNCB9iqx/RToHq9HK/JXSGpf+89PpHeH3pp14SxZLVb9Z8d/9PKGl82OBAAAAAAA0GZRoAPtVadMSRapvFAqLzY7TYvadGCTjriOKNoZrayELLPjmO6Csy7Qg+c/KEl68esX9Z/t/zE5EQAAAAAAQNtEgQ60V84IKb6b737hJnOztLD69S1DU4bKZrWZnKZt+K+e/6Wb+94sSXr0y0e1Mn+lyYkAAAAAAADaHgp0oD1L7OO7DfICPWdfjqT2vf/8RO449w5dnn65PIZHdy2+S98d+s7sSAAAAAAAAG0KBTrQnrWDPegl1SXafND3/tr7/vMfslqsejz7cQ1MHKhyd7kmfTZJB6oOmB0LAAAAAACgzaBAB9qzpPoCPXgn0FfsXyFDhjLiMtQxvKPZcdocp82puRfNVXpMugorC3XX4rvkqnWZHQsAAAAAAKBNoEAH2rP6FS7F26Rat7lZWgjrW04vJiRGz138nKKcUfq6+Gv9ftXvZRiG2bEAAAAAAABMR4EOtGexXSVnlFTrkg58b3aaZuc1vMrZ7yvQh6UOMzlN29Y1uqtmXjBTVotV//7+35q3bZ7ZkQAAAAAAAExHgQ60ZxbLMQeJBt8e9K0lW1VSXaJwe7jO6XiO2XHavGGpwzTl3CmSpKdWP6U1BWtMTgQAAAAAAGAuCnSgvfMX6BvNzdEC6te3DE4eLIfNYXKawHBjnxt1efrl8hgeTV0yVfvL95sdCQAAAAAAwDQU6EB75z9INPgm0JfvWy6J9S1NYbFYNH3odGXGZ+pQzSHdufhOVXmqzI4FAAAAAABgCgp0oL1LrCvQCzaZm6OZHXEd0TfF30iShqYMNTlNYAmzh2nuRXMVHxqvrSVb9XDOwxwqCgAAAAAA2iUKdKC965Tpuy0vkCoOmJulGa3KX6Vao1Zp0Wk6K+oss+MEnOTIZM0eMVt2i10f536sP2/6s9mRAAAAAAAAWh0FOtDehURJcem++0G0xoX1LWduYOJA3T/4fknS3PVztXTvUpMTAQAAAAAAtC4KdADHHCQaHGtcDMNQzn7fAaLZqdkmpwls12Vcp//q+V8yZOjepfdqV+kusyMBAAAAAAC0Ggp0AFJSlu82SCbQd5buVEFFgUJsIRqUOMjsOAHv/p/cr3M7natyd7nu+PwOHXEdMTsSAAAAAABAq6BAB3B0Ar1go7k5mkn9+pZBiYMUag81OU3gc9gcenrE00oMT1RuWa7uW3afar21ZscCAAAAAABocRToAI4W6MVbpVqPuVmaQc4+1rc0t4SwBM29eK5CbCFaunepXvj6BbMjAQAAAAAAtDgKdABSbJrkjJRqXdLB7WanOSOV7kqtLVwriQK9ufXp0EfTh06XJL228TV9nPuxyYkAAAAAAABaFgU6AMlqlTr19t0P8INE1xauldvrVkpEitKj082OE3R+2u2nuqnPTZKkh3Me1taSrSYnAgAAAAAAaDkU6AB86te4BHiBfuz6FovFYnKa4HTnuXcqOyVbVZ4q3fn5nSqpLjE7EgAAAAAAQIugQAfgk9TXd1u42dwcZyhnP/vPW5rNatNTFzylLlFdtL9iv6Z9MU1ur9vsWAAAAAAAAM2OAh2AT2JdgV4QuBPoe8r2aHfZbtktdg1OGmx2nKAWExKjZy9+VuH2cK0pWKM/rvmj2ZEAAAAAAACaHQU6AJ/6HehH9kuVgbmSY/n+5ZKkczqdo0hnpMlpgl/32O76w/A/SJL+vvXveuf7d0xOBAAAAAAA0Lwo0AH4hEZLsV199wN0D/qx+8/ROi7qcpEmnzNZkjRj5Qx9XfS1yYkAAAAAAACaDwU6gKMSA3cPuqvWpdUFqyVJw1KHmZymfZnYb6Iu6XqJPF6P7lpylworCs2OBAAAAAAA0Cwo0AEc5T9INPAm0NcXrVeVp0oJYQnKiMswO067YrFY9Hj24+oR10MHqg5oyuIpqqmtMTsWAAAAAADAGaNAB3BUYh/fbQAeJFq/vmVoylBZLBaT07Q/4Y5wPXvRs4oJidGmg5v02IrHZBiG2bEAAAAAAADOCAU6gKPqV7gUb5VqPeZmaaLl+3wHiLK+xTxnRZ2lWRfOks1i0/wd8/W3LX8zOxIAAAAAAMAZoUAHcFRcuuQIlzzVUslOs9M0WkFFgbYf3i6LLBqSPMTsOO3a+cnna9qgaZKkWWtnacX+FSYnAgAAAAAA+PEo0AEcZbVKnXr77hduNDdLE3y5/0tJUlZClmJDY01OgwmZE3RV96vkNbya9sU07SnbY3YkAAAAAACAH4UCHUBD/oNEN5ubownq17dkp2bz1KQKAAAgAElEQVSbnASS71DRh4Y8pKyELJW5ynTH4jtU4a4wOxYAAAAAAECTUaADaKh+D3qAHCTq8Xq0cv9KSRTobUmILUTPXPSMOoZ11PbD2/XA8gfkNbxmxwIAAAAAAGgSCnQADSX28d0GyAT6xgMbdcR9RNHOaPXt0NfsODhGp/BOmnPRHDmsDi3KW6RXNrxidiQAAAAAAIAmsZsdAEAbU1+gl+2Vqg5JYXHm5jmN+vUtQ1OGyma1mZwGP9S/Y389dP5DevjLh/Xi1y+qZ1xPjewy0uxYAAAAAAC0K97KSrkLCuTeny93/n558vPlzi+QIzlJHe+4w+x4bRoFOoCGQmOkmC5SaZ5vCj1tmNmJTilnX44k1re0ZeN6jNO2Q9v01pa39Ltlv9NbV7yls+PONjsWAAAAAABBwfB45Ckuljs/X+79+fIU5NcV5flyFxTIs3+/aktLT/jYkN6ZFOinQYEO4HhJfQOiQD9YdVCbD/pWzWSnUKC3ZVMHTdX3h77X6oLVumPxHfr7T/+umJAYs2MBAAAAANCmGYYhb2mprwzPL2gwPe77XL48RUVSbe1pn8saGSlHcrLsKclyJCXLkZwsZ3p6K7yLwEaBDuB4iX2kbQukwrZ9kOiK/BWSpF7xvdQxvKPJaXAqDqtDsy6cpRs+vEF7juzRPV/coxdHvSi7ld+GAAAAAADtk2EY8lZUqPbAgaPrVQryfQX5MRPkRmXl6Z/M4ZAjMdFXkCcnyZGcIkdyshzJSbIn+8pyW1RUy7+pIERzAeB49XvQC9p2ge5f38L0eUCIC43T3Ivm6v999P+0In+Fnln3jKadN83sWAAAAAAANBuvy6XagwflKSlRbUmJPAcPqvZgiTwlP7wtUe3BgzJcrkY9r61Dhx8U4ilyJCfVFebJsickyGK1tvC7a58o0AEcLzHLd1u0RfLWSm3wcE6v4dWX+7+UxP7zQJIRn6EZ2TM07YtpeuPbN5QRn6Gx3ceaHQsAAAAAgBMyamtVW1rqK8UPlqi2xHd7fCHuu/WWlzf5Nazh4bIn+cpwR4qvEHck+e47kpNlT0qSNSSkBd4dGoMCHcDx4tMle5jkqZJKdkoJPcxOdJwtJVtUUl2iCEeEzul4jtlx0ASj00ZrW8k2vbbxNT365aPqFtNNfRL6mB0LAAAAANBOGC6XPCUl8hw4KM+BYtUeOCDPgQPyHDjoL8j9t4cPS15v017Abpc9Pl62Dh3qbuNlj+/Q8Lb+a/HxsoaFtcwbRbOgQAdwPKtN6pQp7V/v24PeBgv0+vUtg5MGy2FzmJwGTTV5wGR9f+h7Ldm7RHcsvkPzxsxTQliC2bEAAAAAAAHKqK1V7eHDviK8+IBqDx7w3/ccOCDPwQO+orz4gK8UbyJbbOwxhfixxXi8bPEdZO9w9NYaHS2LxdIC7xJmoEAHcGJJfesK9M1Sn3FmpzmOf/8561sCktVi1ZPDn9SEBRO0s3Snpn0xTa9d+pocVr4ZAgAAAADwMQxD3rIyeQ4erCvCG06Le/z3i1VbckiqrW38k9tssnfoIFtCB9kTEmRP6OibCk/ocLQQry/KY2NlcfD31faKAh3AiSX29d22wYNEy1xl+qb4G0kU6IEs0hmpZy56Rjd8eIPWFa7TM+ue0T3n3WN2LAAAAABAK6ktr5B7377jPwoLfaV48QEZbnfjn9BikS0urq4Q7yDbscV4xwTZExLqPpfgK8U5dBONQIEO4MTqC/TCzebmOIFV+atUa9QqPSZdqZGpZsfBGUiPSdcT2U9oypIp+uu3f1VWxyxdlnaZ2bEAAAAAAM3gpAV53UdtaWmjnscaHV03HZ4ge8e6ErxDgv/H9oQE2TokyB4fx6Q4mh0FOoATS+ztuy3Nk6oOS2Gx5uY5hn99SwrT58FgZNeR+lXfX+nPm/6sh3Me1tkxZ+vsuLPNjgUAAAAAOI3a8gq599cX4vvl3ru3yQW5LTZWjtTUhh/JSXVT5L6y3BoS0grvBjgxCnQAJxYWJ0WfJZXtlYq+lboONTuRJN/+s+X7lkuShqUOMzkNmsvtA27X5oObtSp/le5acpf+/tO/K9IZaXYsAAAAAGjXjivIfzhB3ojDOG0xMccX5P6PFNki+bsf2jYKdAAnl9TXV6AXbm4zBfqOwztUWFmoEFuIBiYONDsOmondatfMC2bq+g+uV25Zrh7MeVBzRszh1HIAAAAAaGG1hw/LlZcn1+48ufJ2y52XJ1fubrny8lR76NBpH09BjmBHgQ7g5BL7SN99LBVsNDuJX85+3/qWQUmDFGoPNTkNmlN8aLxmXzhbv/z4l1qUt0h/3vRn3Zx1s9mxAAAAACCgGYbhK8lzc33l+O48X2GelyfX7t3ynmbNijUmRo7UFDlTU+VIPYuCHO0OBTqAk0vs47ttQweJ+te3pLC+JRhldczS/YPv12MrHtOzXz2rPgl9dH7y+WbHAgAAAIA2zTAM1R48eHSSfHfDstx75MgpH2/v1EnOLl3k6NpFzi5d5ezaRc6uXeU46yzZoqJa6V0AbRMFOoCTS8zy3RZ9K3m9ktVqapxKd6XWFa6TJGWncoBosLq2x7XaULxB721/T7/94reaN2aekiOTzY4FAAAAAKYyDEOeomK583YfU5T77rt375a3svKUj7cnJcnZxVeMO7t2kaP+fufOsoaHt9K7AAIPBTqAk4vvJtlDJXeldGiX1KG7qXHWFKyR2+tWamSq0qLTTM2ClmOxWPTA4Ae0rWSbtpRs0d1L7tYbl78hp81pdjQAAAAAaFGGxyN3fr6vFN+zR668PXLvyZMrb49ceXkyqqpO/mCLRY7k5KNT5F26yJnmu3V07ixrKGtQgR+DAh3AydnsUqdMaf9XUuEm0wv0+vUt2SnZHC4Z5ELtoZpz0Rxd/8H12nRwk55c/aQeGfKI2bEAAAAA4Ix5q6rk2rPn+IJ8T57c+/ZLHs/JH2y1ypGS0nCKvG7liqNzZ1mdDB4BzY0CHcCpJfbxFegFm6TeV5kapf4AUda3tA+pkal6avhT+vVnv9a/vvuX+iX007ge48yOBQAAAACnVH9opzvvmGI8b4+vNM/Lk6e4+JSPtzgccnTuLGfnzr6CvHPno2V5aqoslORAq6JAB3BqiX19tyYfJJpXlqc9R/bIbrFrcPJgU7Og9WSnZus35/xGz3/9vB5f+bgy4jPUu0Nvs2MBAAAAaOeM2lp5Cgrk2rOnwbqV+rLcW15+ysdbo6PrCvLOcnbuImeXznLU3doTE2Ux+QwyAEdRoAM4NX+BvsnUGPXrWwYkDlCEI8LULGhdt/a7VZsObNKSvUt01+K7NG/MPMWGxpodCwAAAECQM9xuufbu9U2S787zHdy5J0/u3Xly79snw+0+5ePtnTr5CvIuXesK8s6+veSdO8sWy99pgEBBgQ7g1BL7+G4P75aqy6TQaFNi+Ne3pLC+pb2xWqx6YvgTGv/BeO05skf3LbtPL4x8QTarzexoAAAAAAKc1+WSe+9euXJ3y5W3u0FZ7t6/X6qtPfmDHQ45U1L8a1Z8ZXndfQ7tBIIGBTqAUwuPl6JSpCP7paJvpS7nt3qEmtoarSlYI0kaljqs1V8f5ot2RmvOiDn67wX/rZz9OXrxmxd1+4DbzY4FAAAAIAB4q6vrVqzUleO768ry3Xly5+dLhnHSx1rCwnyleJcudQd1Hl234khOksXGYA8Q7CjQAZxeYm9fgV681ZQCfX3helV5qpQQlqCecT1b/fXRNmTEZ+iRoY/o/mX369UNryorIUsjOo8wOxYAAACANsBbWenbR7674RS5a/dueQoKTvlYa3i4HGld61at+IpyZ5cucnTtKnvHjrJYLK30LgC0RRToAE4vOsV3e6TQlJfP2Xd0fQt/cGnfxnQbo43FG/X21rf1u2W/0/+N+T91ie5idiwAAAAArcBbXe2bHt+V22CK3JWXJ09R0Skfa42MlLNrV98Uede6sryuKLd16MDfNQGcFAU6gNOLTPLdlp/6u/YtpX7/OetbIEnTBk3TlpIt+qroK01ZMkV/u/xvCneEmx0LAAAAQDMwDEOewkK5du1Szc6dvrJ81y65du067boVW0xMXTl+dOWKs2tXObp2lS02lpIcwI9CgQ7g9KISfbcmTKAXVBRo++HtslqsOj+59dfHoO1x2ByadeEsXf/B9fr+0PeavmK6/jD8D/xhGAAAAAgg3spKuXJzVbNrl1w7fQV5Te4uuXJ3y6isPOnjrDExcqZ1rZsm/8EkeWxsK74DAO0FBTqA0zNxAr1+fUvfhL6KDeUPQ/DpFN5Jsy6cpZs/uVkLdi1Qv479NCFzgtmxAAAAABzD8Hrlyc9XjX+KfKevMN+Ve+q95DabnJ07y5meXveRppD0dDm7dZMtLo7hGQCtigIdwOlF1RXoJkyg+9e3pLC+BQ0NTByoqYOmauaamZq1ZpZ6d+itAZ0GmB0LAAAAaHdqyyt8BXlu3SR53US5a/duGdXVJ32cLS6uYUFe/3HWWbI4na33BgDgFCjQAZxeZN0Kl/JC3765Vvpuv9vr1or9KyRJ2anZrfKaCCz/nfnf2lC8QR/nfqypS6bqH2P/oYSwBLNjAQAAAEHHP02+s26SvH4/+c6d8hQXn/yBDodvH3l6XUmednSq3B4X11rxAeBHo0AHcHr1BbrXLVWWSBEdWuVlNxZvVLm7XDEhMerToU+rvCYCi8Vi0fSh07X98HZtP7xdU5dM1f+O/l85rA6zowEAAAAByb+bvH6KfNdO3/3c3FNPkyckKCQtreHalW7d5EhNlcVO/QQgcPErGIDTszulsHipqsS3B72VCvQ1BWskSUOSh8hmtbXKayLwhDvCNWfEHN3w4Q1aX7Rec9bN0W/P+63ZsQAAAIA2yzAMeYqKj06S1x/iuWunPPvzT/5Ah0POrl0Ukt5Nzm7dGqxesUVHt1p+AGhNFOgAGicqyVegHymQEltnGnx/xX5JUrfYbq3yeghcaTFpemLYE7pz8Z1689s3lZWQpcvTLzc7FgAAAGAqb02NXLt3+wry3F0NynJvRcVJH2eLizumIO8mZ7d0pskBtFv8qgegcSITpaJvfXvQW0lhpe+1EsMTW+01Ebgu7nKxbsm6Rf+78X/1yJePqEdsD50dd7bZsQAAAIAWZRiGag8dkmvnD6fJd8m9d6/k9Z74gTabnGed5SvK6wry+vUr7CYHgKMo0AE0TlSS7/ZIQau9ZHGl7yCaTuGdWu01EdgmnzNZmw5s0sr8lZqyZIr+/tO/K8oZZXYsAAAAoNnUlpWpasNGVW/coKpvNqhq40bVHjx40uutkZFyduvmW7VybFneubMsTmcrJgeAwESBDqBx6g8SbcUJ9KLKIkkU6Gg8m9WmmRfM1PUfXK/dZbv1wPIH9MxFz8hqsZodDQAAAGgyw+VS9bZtqtqwQdUbNqhqw0a5du06/kKLRY6UFF9R3q3+EE/ffVtCgiwWS+uHB4AgQYEOoHFaeQK9prZGh2sOS2KFC5omLjROs0fM1i8++oUW71msP2/6s27JusXsWAAAAMApGYYhd16eqjZs9Bfm1Vu2yHC5jrvW0aWLwrKyFNa/n0KzshTaq5esYWEmpAaA4EeBDqBxWnkCvX76PMQWomgnp7mjafom9NUDgx/Qoyse1XNfPafeHXpraMpQs2MBAAAAfp5Dh1S9cWPdGpYNqt6wUbWHDx93nS0mRqH9+imsXz+F9ctSaL9+7CgHgFZEgQ6gcVp5Av3Y9S38c0P8GD/r+TNtOLBB73z/ju5deq/+MeYfSo5MNjsWAAAA2iFvTY1qtmzxT5dXbdggd17ecddZHA6F9M5UWL/+CuuXpbB+/eTo0oW/EwGAiSjQATTOsRPohiG18B/g2H+O5vC7wb/T1pKt+vbgt7pryV164/I3FGILMTsWAAAAgpjh9cqVu/voIZ8bNqh62zbJ7T7uWmdamm8NS92EeWhGBgd7AkAbQ4EOoHHqJ9DdlVLNESm0ZdeqUKCjOYTYQjRnxBxd/8H12nxws55c9aQeHfqo2bEAAAAQJAzDkHvvXlV/u0XVW75V9YaNqtq0Sd6ysuOutcXH+9aw9O+n0Kx+CsvqK1tMjAmpAQBNQYEOoHGcEZIzSnId8U2ht3CBXljp27XOAaI4UymRKXrqgqd028Lb9O/v/61+Hfvpmh7XmB0LAAAAAcZwu1WzY4evLN+6RTXfblH11q3ylpcfd60lJEShffocs7e8vxypKaxiAYAARIEOoPGiEqWDR3x70BN6tOhLMYGO5jQ0ZahuH3C7nv3qWT2x8gllxGWoT0Ifs2MBAACgjaotr1DNtq2q3rLVN1m+ZYtc32+XcYI1LBaHQyE9eyq0d6a/NA/p0UMWh8OE5ACA5kaBDqDxIpOkg9t9E+gtjAIdze3mrJu14cAGLdmzRHctuUvzxsxTXGic2bEAAABgMk9xsaq3bq1bw7JFNVu2yJWX5zv76QesUVEKzcxUaGamQjJ7KTSzt0K6pVOWA0AQo0AH0HhRdetUjhS0+EvVF+iscEFzsVqs+v2w32v8B+OVdyRP9y69Vy+Nekk2q83saAAAAGgFhtcr9549qt6yxb+GpXrLFtUWHzjh9fakJIX26qXQ3pkKqSvNHamprGEBgHaGAh1A40XWHSRa3rIFumEYTKCjRUQ5o/TMRc9owoIJWpG/QjPXzNR9P7mPvwQBAAAEGcPlUs327b6yfMtW32T51q3yVlQcf7HFImd6um+yvHemQnr1Umhmpuzx8a0fHADQ5lCgA2g8/wR6y65wOVRzSG6vb7dgx7COLfpaaH96xPXQY9mP6Z4v7tHbW99WlDNKkwdMNjsWAAAAfiTD7Vb1d9+peuMmVW/epKpNm1Wzfbt0on3lISG+feWZmQrN9BXlIT17yhoebkJyAEAgoEAH0HitNIFeP30eHxovh41dgmh+l6VdpkPVh/T7Vb/XKxteUYQjQjf1vcnsWAAAADgNo7ZWrl27VLVxk6o3blTV5k2q2bJVhst13LXWmBhfUV63hiU0M1PO9HRZ7FQhAIDG43cNAI3XShPo7D9Ha7ih1w2qcFdo7vq5mr1utiIcEbou4zqzYwEAAKCOYRhy793rK8o3bVb1xo2q3rxZ3srK4661RkcrrG8fhfbNUmhWX4X17i17Sgqr+gAAZ4wCHUDjtdIEemGlr6DvGM76FrSsW7JuUaW7Uq9tfE2Pr3xc4Y5wjek2xuxYAAAA7ZK7sMi3gmXjRt86lk2bVHv48HHXWcLCFNq7t8L69lVoVpbCsvrK0aULZTkAoEVQoANovPoJ9OpSyV0lOcJa5GU4QBSt6fYBt6vcXa6/b/27Hlz+oMLsYRrZZaTZsQAAAIJa7eHDvqnyTRv961g8RUXHX+hwKDQjwzdVXjddHtK9uyw2W+uHBgC0SxToABovNFayhUi1NVJ5oRSX1iIvQ4GO1mSxWHTfT+5ThbtC83fM1z1f3KPnRz6voSlDzY4GAAAQFLwVFar+9ltfUV5XmLv37Dn+QqtVId27+6fKQ/v2VUhGhqxOZ+uHBgCgDgU6gMazWHxT6IfzfHvQW6hAr1/hwg50tBarxarpQ6erylOlhbsXasriKXrlklc0oNMAs6MBAAAEFMMw5NqVq8q1a1S1/itVbdoo146dkmEcd62jaxffVHnfvr7CPDNT1ogIE1IDAHByFOgAmiYyyVegt+Ae9OLKYklMoKN12a12/WH4H1TpqVTOvhxN+myS/jT6T+rdobfZ0QAAANoso7ZWNd99p8o1a1W5dq0q161T7cGDx11nT0pSaN8+/jUsYX37yhYTY0JiAACahgIdQNNE1pXaRwpb7CVY4QKzOG1OzRkxR7ctvE3ri9brtoW36S+X/UXdYruZHQ0AAKBNMFwuVW3e7CvL165V1fqv5D1ypME1FqdTYf36KWzQQIX166/Qvn3k6MSf7QEAgYkCHUDTRCX5bstbpkCvqa3R4ZrDkljhAnOE2cP0wsgXdMunt2jzwc269dNb9cblb+isqLPMjgYAANDqvFVVqvrmG/+EedU338iorm5wjTUiQmHnnqvwgQMVft4ghWZlsbccABA0KNABNE1kfYHeMitc6qfPQ2whinZGt8hrAKcT6YzUy6Ne1k2f3KTth7frlk9v0RuXvaHECL6pAwAAglttaakq169X1bp1qlyzVlWbN0seT4NrbLGxCj9vkMIHDVLYwEEK7ZUhi516AQAQnPgdDkDTRNUViC20wuXY9S0Wi6VFXgNojNjQWL16yav65ce/1J4jezRx4US9ftnrig+NNzsaAABAs/EUF6ty3TpVrl2nyrVrVbNt23EHftqTkhQ+aFDdx0A5u3fnz+oAgHaDAh1A07TSBDr7z9EWdAzvqNcufU2//OiX2lm6U7ctvE1/Gv0nRTmjzI4GAADQZIZhyL1vvyrXrvGtY1m7Tq7c3OOuc3btqrDz6gvz8+RITaEwBwC0WxToAJqmFSfQgbYgNTJVr136mm78+EZtKdmi3yz6jV4e9bLCHeFmRwMAADgt1+7dqlix0nfo57p18uTnN7zAYlFIRoZ/f3n4wIGyd+xoTlgAANogCnQATVM/gV5RLNV6JFvz/jJSWOkr5jlAFG1Jeky6Xr3kVd30yU36qugrTVk8Rc+PfF5OG4djAQCAtsVbVaXK1atVvnSZypctkzsvr+EFdrvC+vRR2KCBvgnzc8+VLSbGnLAAAAQACnQATRORIFmskuH1lejRyc369Eygo63KiM/QS6Ne0q2f3qoV+St0zxf36OkRT8tu5bdSAABgLldursqXLlX50mWqXLNGRk3N0S86HAo/5xyF/+QnCh80UGH9+8sazr+kAwCgsfhbP4CmsdqkiE6+HejlBRToaFf6d+yv5y5+TpM+m6TP93yuh3Ie0hPDnpDVYjU7GgAAaEe8VVWqWLVKFUuXqXz58uOmzO3JyYocPlyRFwxX+PlDZIuMMCkpAACBjwIdQNNFJfrK8xbYg15foLPCBW3V4OTBenrE07pr8V36YOcHCreH68HzH+RgLQAA0GIMw5BrV64qlh0zZe5yHb3A4VD4wIH+0tx59tn82QQAgGZCgQ6g6SKTJH3jK9GbkWEYTKAjIIzoPEK/H/573bv0Xv3ju38owhGhuwbexV9UAQBAs/FWVvqmzJctU/nSZXLv3dvg6/aUZEUOv8A3ZT74fKbMAQBoIRToAJouqm46vJkn0A/VHJLb65YkdQzr2KzPDTS3y9MvV6W7Uo+ueFSvb35dkc5ITew30exYAAAgQNVPmZcv/UIVS5epcu3a46fMBw30l+bO7t355j0AAK2AAh1A00Um+W6beQK9fvo8PjReDpujWZ8baAk/6/kzVbgr9Me1f9RzXz2nCEeEJmROMDsWAAAIEN7KSlWsXKXyZUtVsWz5cVPmjpQURVwwXJEXXKCIwYNljWDKHACA1kaBDqDpWmgCnf3nCES/6PMLVbgr9OI3L+oPq/+gcHu4xvUYZ3YsAADQBhmGIdfOnSpfukwVy5aqcs1aGW63/+sWh0Ph5w1SRP2UebduTJkDAGAyCnQATddCE+iFlb5CvmM461sQWG7rf5sq3BV649s39OiKRxXuCNfotNFmxwIAACYzDEPuvXtVtX69KteuU8WXX8q9b1+Daxypqb4p8+EXKGLwT5gyBwCgjaFAB9B0UXUFegtNoHOAKAKNxWLR1EFTVe4u17+//7fuW3qfwuxhuuCsC8yOBgAAWpHh8ah62zZVrVuvyvXrVbVunTzFxQ2u8U2Zn+dfzeJMT2fKHACANowCHUDTRdatWCkvlAxDaqY/8FOgI5BZLBY9dP5DqvRU6qNdH+nuJXfrpVEv6byk88yOBgAAWoi3slJVGzaoct26/8/efYdHVadtHP9Okkkyk2TSG73ZQFSKshaKtAAiAu6KCohUCxZggV3buuJKURQUC1JVhF0L+C4iVaQpKE1ABBTpRZJAep9k5v1jyEgUVyZMOJnk/lyXl+R3TsabP8Dh5pnnkL9tO/k7duDIyyt7k9mMpUkTLC2aY23Z0rXL3Go1JrCIiIh4TAW6iHiutEB32CEvDUKivfKypStctANdfJW/nz8v3PIC+fZ81h5fyyOrH2FW51k0jW1qdDQRERHxguLTp89OlrsmzAv27IGSkjL3+IWFYWl2HdbmLbC2aE5w06b4BQcblFhEREQulgp0EfFcQCBYoiA/zbUH3UsFemqe6+OtmkAXX2b2MzO53WSGfz6cb059w4OfP8jcLnO5PPJyo6OJiIiIB5xOJ0WHD7v2l29zrWMpOnLkN/cF1EjE2rwFlubNsLZoQVCjRpj8/Q1ILCIiIhVBBbqIlE9YgqtAzz4F8U288pJa4SJVRZB/EK+1f42hq4ayK3UXw1YO492u71LXVtfoaCIiIvI7nEVFFOzdS9627eRt30b+9m8pSUsre5PJRNDll2Nt0RxL8xZYmzfDXKOGMYFFRETkklCBLiLlExoPKXtce9C9oLCkkIzCDEArXKRqsJqtvNnhTYasHMK+tH0MXTmUd7u8S2JootHRREREBCjJySH/2x2usnzbdvJ37cJZUFDmHlNgIJZrrsHSwrWOxXLddfjbbAYlFhERESOoQBeR8glLcP07+5RXXq50+jzIPwhboP5QIlVDeFA40ztO5/7l93M46zBDVw3lnS7vEGOJMTqaiIhItePIzydv82ZyvvyKvK1bKfzhB3A4ytzjHx7+S1nevDnBTZrgFxhoUGIRERGpDFSgi0j5lD5I1EsT6OeubzGZTF55TZHKINoSzczOMxmwbABHso4wbNUw5ibNJTwo3OhoIiIiVVrpDvPcDRvIWb+BvC1bcBYWlrnHXKcO1mbNsLRojrVFCwLr18fk52dQYhEREamMVKCLSPlU0AS69p9LVZQQksCszrMYsHwA+9P3M2zVMGZ0mqESXURExMsc+fnkfvMNues3kLNhA00ws7wAACAASURBVPZjx8pcD6iRSGjrNoTc+CcszZtjjtN7TxEREfnfVKCLSPlU4AS6SFVU21abGZ1mMGjFIPac2cPQlUOZ2XmmSnQREZGL4HQ6KTp0mNwN63+ZMi8q+uUGsxlryxaEtm5DaJvWBDZsqE87ioiIiEdUoItI+Xh5Aj05z1XE6wGiUpU1imzE7KTZDFk5hL1pe1Wii4iIlIMjL881ZX52NYv9+PEy10unzEPbtiGkVSv8QkIMSioiIiJVgQp0ESmfcyfQnU64yEkeTaBLdXFZ5GXM7jybwSsHszdtL0NWDmFmp5lEBEcYHU1ERKRSck2ZHyJn/Xpy128gb+vWMlPmJrMZi6bMRUREpIKoQBeR8imdQLfnQWE2BNsu6uVUoEt10iiyEXOS5jB4xWD2pe1zleidZxIZHGl0NBERkUrBkZdH7tffkLPBVZrbT5woc91cowYhbVoT2kZT5iIiIlKxVKCLSPkEhkBgGBRlu6bQvVSga4WLVBcNIxoyJ2kOg1YM4of0Hxi8cjCzOs8iKjjK6GgiIiKXnNPppOjgQXLWbyB3w3rytmzFabe7r5vMZqzXtySkdMq8QQNNmYuIiMgloQJdRMovLB7OZLv2oMdcVu6XcTqdmkCXaqlBRAPmdHFNou9P38/gFa4SPdoSbXQ0ERGRCufIzSX3m2/cq1nsJ0+WuW6uWdM1Zd66DSGtbtCUuYiIiBhCBbqIlF9oApz5yTWBfhHSC9OxO1wTRrGWWG8kE/EZDcIbuNe5/JTxE0NWDlGJLiIiVZLT6aTo8GFy168nZ9168rZsOc+U+fXu1SyB9etrylxEREQMpwJdRMov7Oy6lexTF/UypdPnUcFRmP3NF5tKxOfUD69fpkQfvGIws5JmEWOJMTqaiIjIRXEUFpK3eTM569aTs3499qNHy1w316pFaJvWhLRu7dplbrUalFRERETk/FSgi0j5hZ59kGiOdwp07T+X6qxeeD3mdHHtRD+QeYDBKwYzO2m2SnQREfE59hMnyDk7ZZ779dc4Cwp+uWg2Y23ZgtC2bTVlLiIiIj5BBbqIlJ97Av3iVrgk57m+P9aq9S1SvdW11WVu0lwGrRjEwcyDDFoxiNmdZ+vXhoiIVGpOu5287d+Ss34dOevWUfTTgTLXA+LjCW3ThtC2bbD+6Ub8Q7XLXERERHyHCnQRKT8vT6DrAaIiUMdWx1WirxzEocxDrhI9abZ+fYiISKViT0khd8MG15T5xo04cnJ+uejnh6VZM1dp3q4tQZdfrilzERER8Vkq0EWk/Lw0ga4CXaSs2rba7p3oh7MOuyfR40O05khERIzhLCkhf9cuctavJ3fdegr27Clz3T8qitDWrQlt24aQm2/GPzzcoKQiIiIi3qUCXUTKz0sT6KUrXLQDXeQXtcN+KdGPZB1xT6InhCQYHU1ERKqJ4vR0cr/8ylWab9hASUZGmevBTZu6V7MEX301Jj8/g5KKiIiIVBwV6CJSfqUT6AWZYM8Hs6VcL5OalwpoAl3k12qF1WJOF1eJfjT7KINWDGJO0hyV6CIiUiGcTicFe/aQe/YBoPm7doHD4b7uZ7MResvNhLRpQ+gttxAQowddi4iISNWnAl1Eyi84AvyDoKQQcpIhsl65XkYrXER+X83QmsxJmsOgFYM4ln2MgcsHMidpDomhiUZHExGRKsCRm0vOl1+Rs34dues3UJyaWuZ60BVXuKfMLdddhylAf4QUERGR6qXSf8buxIkT9OvXj+joaCwWC02bNmXr1q3u606nk3/84x8kJiZisVjo2LEj+/fvL/MaaWlp9O3bF5vNRkREBIMHDybn3IfcALt27aJ169YEBwdTu3ZtXnzxxUvy8xPxaSbTRe9BLywpJKPQ9XFgrXAROb8aoTWYmzSXWqG1OJ5znIErBnIy56TRsURExEc58vLIWr6c44+P4Mebb+HE44+TuXARxampmKxWQjt0IOG552i0dg0N/vt/xP11FNaWLVWei4iISLVUqd8Bpaenc/PNN3PrrbeybNkyYmNj2b9/P5GRke57XnzxRV577TXeffdd6tevzzPPPENSUhJ79uwhODgYgL59+/Lzzz+zatUq7HY7AwcOZNiwYSxYsACArKwsOnfuTMeOHZk+fTrfffcdgwYNIiIigmHDhhnycxfxGaEJkHG03HvQS6fPg/yDsAXavJlMpEpJDE1kbpe57kn00p3oNUNrGh1NRER8gCM/n5z1G8havoyctetw5ue7r5nr1CHs1ltdU+YtW+IXGGhgUhEREZHKpVIX6JMmTaJ27drMnTvXfVa/fn33j51OJ1OnTuXpp5/mjjvuAOC9994jPj6e//u//+Puu+9m7969LF++nC1bttCyZUsApk2bRrdu3Zg8eTI1atRg/vz5FBUVMWfOHAIDA2nSpAk7duzglVdeUYEu8kcucgL93PUtJpPJW6lEqqSEkAT3g0WPZh9l0PJBzOkyRyW6iIicl6OggJwNG8hetpzstWtx5uW5r5lr18bWpQu2rl0IuuoqvQ8TERER+R2VeoXL4sWLadmyJX/5y1+Ii4ujWbNmzJw503390KFDnDp1io4dO7rPwsPDadWqFZs2bQJg06ZNREREuMtzgI4dO+Ln58c333zjvqdNmzYEnjNpkZSUxA8//EB6evp5sxUWFpKVlVXmH5FqKfTswwwvcgJd+89FLkxpiV7XVpeTuScZuHwgx7OPGx1LREQqCUdhIdmrV3Ni9Bj233QzJx59jKylS3Hm5WGuWZPoIYOp9/HHNFy5gri/jiK4cWOV5yIiIiL/Q6WeQD948CBvvfUWo0aN4sknn2TLli089thjBAYGMmDAAE6dchV28fFl9ybHx8e7r506dYq4uLLFXEBAAFFRUWXuOXey/dzXPHXqVJmVMaUmTJjAc889552fqIgvK51Az7n4CXQRuTDxIfHuSfTDWYcZuML1YNHaYbWNjiYiIgZwFBWR++VXrvUsq7/AkZvrvhaQmOieNA9u2lRluYiIiIiHKnWB7nA4aNmyJePHjwegWbNm7N69m+nTpzNgwABDsz3xxBOMGjXK/XVWVha1a6u4kGqodAK9nCtckvNc36cHiIp4Js4ax5ykOQxaMchVoi8fyNykudS26f9FIiLVgbOoiJyNG13rWVavxpGT474WkJCALSnJVZpfe61KcxEREZGLUKkL9MTERBo3blzm7KqrrmLhwoUAJCS4irvk5GQSExPd9yQnJ3Pddde570lJSSnzGsXFxaSlpbm/PyEhgeTksuVf6del9/xaUFAQQUFB5f2piVQdYVrhImKUWGus+8GihzIPcf+K+5mbNJc6tjpGRxMRkQrgLCoi9+uvySotzc9ZIxkQF0dYlyRsXbpiue5aTH6VeluniIiIiM+o1O+qbr75Zn744YcyZz/++CN169YFXA8UTUhIYPXq1e7rWVlZfPPNN9x4440A3HjjjWRkZLBt2zb3PV988QUOh4NWrVq571m/fj12u919z6pVq7jiiivOu75FRM4Rerb49sJDREXEczGWGOYkzaFheENS8lIYuHwgR7KOGB1LRES8xGm3k7PhS04+9RQ/tm7DsWEPkPnJJziysvCPjSGyXz/qzn+fRmvXkPDkk1ibN1N5LiIiIuJFlXoCfeTIkdx0002MHz+eu+66i82bNzNjxgxmzJgBgMlkYsSIEfzrX//isssuo379+jzzzDPUqFGDnj17Aq6J9S5dujB06FCmT5+O3W7nkUce4e6776ZGjRoA3HvvvTz33HMMHjyYv/3tb+zevZtXX32VKVOmGPZzF/EZpStcclOhpBj8PfttpbRA1woXkfKLscQwK2kWQ1cO5aeMnxi4fCCzk2ZTP7z+H3+ziIhUOs7iYnK/+Ybs5cvJXrmKksxM9zX/6GhsSZ2xde2KpXlzTP7+BiYVERERqfoqdYF+/fXX88knn/DEE08wbtw46tevz9SpU+nbt6/7nrFjx5Kbm8uwYcPIyMjglltuYfny5QQHB7vvmT9/Po888ggdOnTAz8+PO++8k9dee819PTw8nJUrVzJ8+HBatGhBTEwM//jHPxg2bNgl/fmK+KSQGDD5gdPhKtFtiX/8PWc5nU5NoIt4SYwlhlmdZzFk5RB+yviJwSsGMytpFg3CGxgdTURELoCzpIS8LVtc61lWrqQkPd19zT8qirDOnbB16Yr1+pYqzUVEREQuIZPT6XSW5xuLiopISUnB4XCUOa9Tp3ruXc3KyiI8PJzMzExsNpvRcUQurclXuHagD1sLNZpd8LelFaTR9oO2AGzvtx2zv7li8olUI2kFaQxZOYT96fuJscQwu/NsGkSoRBcRqYycTicF331H5qdLyFq2jJLTp93X/CMiCOvcGVvXLlivvx5TQKWefRIRERHxKZ50uR6/C9u/fz+DBg1i48aNZc6dTicmk4mSkhJPX1JEfF1YvKtA93APeun0eVRwlMpzES+JCo5idufZDFk5hB/Tf2TQikHMTppNw4iGRkcTEZGzCg8eJGvJEjKXfIb96FH3uX94OGGdOxHWpQshN9yAyaz3RyIiIiJG87hAv//++wkICGDJkiUkJiZiMpkqIpeI+JLQBGCnq0T3gPafi1SMyOBIZneezdBVQ9mXts9VoneeTaPIRkZHExGptuzJyWR9tpTMJZ9SuGev+9xksRDWvj227rcRevPNmAIDDUwpIiIiIr/mcYG+Y8cOtm3bxpVXXlkReUTEF4WdLcA9nEBPznPdH2uN9XYikWovIjiCmZ1mMmzVMPam7WXwysHM6jyLyyIvMzqaiEi1UZKZSdaKFWQt+Yy8LVugdHumvz8ht9xMePfbCWt/K34hIcYGFREREZHf5XGB3rhxY06fs5tPRMQ1gU65J9D1AFGRihERHMHMzjMZunIoe9P2MmjFIKZ3mk6T6CZGRxMRqbIc+fnkrF1L5pLPyFm/Hux29zVLixaEd7+NsKQkAqKiDEwpIiIiIhfK4wJ90qRJjB07lvHjx9O0aVPMv9rLpwdoilRD5ZxAV4EuUvHCg8KZ2XkmD656kN1ndjNkxRBe7/A6LeJbGB1NRKTKcBYXk7vpa7KWLCF71SoceXnua0GXX46te3fCb+uGuWZNA1OKiIiISHl4XKB37NgRgA4dOpQ510NERaqxck6gl65w0Q50kYoVHhTOrKRZPLL6EbYmb+XBVQ8y5dYp3FLzFqOjiYj4LKfTSf6OHWQt+YysZcsoSUtzXzPXqIGte3dst91G8BWXG5hSRERERC6WxwX6mjVrKiKHiPiysLMFuocT6Kl5qYAm0EUuhRBzCG91fItRa0ex4cQGHv3iUV5s8yKd6nYyOpqIiE8p/OknMpcsIWvJZ9iPH3ef+0dGYuvaBVv37liaNcNkMhmYUkRERES8xeMCvW3bthWRQ0R8WejZCfKcZNfDsS7wD4xa4SJyaQUHBPPqra/yxJdPsOLwCkavG824m8ZxR6M7jI4mIlKp2X/+maylS8n8dAmF+/a5z01WK2EdOxDevTshN96I6VfrLUVERETE93lcoANkZGQwe/Zs9u7dC0CTJk0YNGgQ4eHhXg0nIj6itEB32CEvDUKi//BbCksKySjMALTCReRSMvubmdR6EiHmEBbtX8TTXz1Njj2Hvlf1NTqaiEilUpyeTvaKlWQtWULe1q2/XAgIILR1a2zdbyPs1lvxs1qNCykiIiIiFc7jAn3r1q0kJSVhsVi44YYbAHjllVd44YUXWLlyJc2bN/d6SBGp5AICwRIF+WmuPegXUKCXTp8H+QdhC9TDh0UuJX8/f/554z+xBlh5f+/7TNw8kTx7HkOaDtHKARGp1hyFheSsXk3mp0vI+fJLsNvd16wtW2K7/XbCOnciIDLSwJQiIiIicil5XKCPHDmSHj16MHPmTAICXN9eXFzMkCFDGDFiBOvXr/d6SBHxAWEJrgI9+xTEN/nD289d36LCTuTSM5lMjL1+LGGBYby18y1e+/Y1su3ZjGw+Ur8mRaTaKdizh4yFi8hcsgRHZqb7POiqqwjvfhu2bt0wJyYamFBEREREjFKuCfRzy3OAgIAAxo4dS8uWLb0aTkR8SGg8pOxx7UG/ANp/LmI8k8nEw9c9TIg5hMlbJzN391xyi3J56k9P4WfyMzqeiEiFKk5PJ2vJZ2QsWkTh2dWUAAEJCYTfcQfht3cnqFEjAxOKiIiISGXgcYFus9k4evQoV155ZZnzY8eOERYW5rVgIuJjwhJc/84+dUG3q0AXqTwGNBlAiDmEcZvG8eGPH5JbnMvzNz+P2U8PwxORqsVZUkLuxk1kLFpIzuercZ5d0WIymwnr1JHwXr0JuelGTP7+BicVERERkcrC4wK9T58+DB48mMmTJ3PTTTcB8NVXXzFmzBjuuecerwcUER9R+iDRC5xAT85z3acHiIpUDn++/M+EmEN4csOTfHbwM/LsebzU9iWC/IOMjiYictGKjh4lY9EiMv/vvxSf+uUv+4MaX0VE7zsJ734b/hERBiYUERERkcrK4wJ98uTJmEwm7rvvPoqLiwEwm8089NBDTJw40esBRcRHaAJdxOd1rd+VEHMII9eMZM2xNQxfPZzXbn0Nq9lqdDQREY858vLIWrmSzIWLyNuyxX3uFx5O+O23E9G7F8GNGxuYUERERER8gccFemBgIK+++ioTJkzgwIEDADRs2BCrVX+4FqnWPJxAV4EuUjm1qdWGtzq+xaNfPMo3P3/DsFXDeLPjm9gCbUZHExH5Q06nk4KdO8lYuIispUtx5Oa6LphMhNx8MxF39ia0fXv8gvTpGhERERG5MB4X6KWsVitNmzb1ZhYR8WXlnEDXCheRyueGxBuY2XkmD33+EDtTdzJo+SDe7vQ20ZZoo6OJiJxX8enTZP53MRmLFlF0dsgHwFy7NhG9exHesyfmxEQDE4qIiIiIr7qgAr13796888472Gw2evfu/T/vXbRokVeCiYiPOXcC3ekEk+l3b3U6nZpAF6nkrom9hrld5jJs5TB+SP+B+5ffz8zOM0kISTA6mogIAE67nZz168lYuIicdeugpAQAU3AwtqQkwu/sjbVlS0x+fgYnFRERERFfdkEFenh4OKazZZjNZnP/WETErXQC3Z4HhdkQ/PvrHtIL07E77ADEWmIvRToRKYfLIy/n3a7vMnTlUA5nHea+Zfcxq/Ms6tjqGB1NRKqxwgMHyFi4iMz//peSM2fc55ZrryX8zt7YunbFPyzMwIQiIiIiUpVcUIE+d+5c94/feeedisoiIr4sMAQCw6Ao2zWF/j8K9NLp86jgKMz+5kuVUETKoa6tLu92eZdhq4ZxOOswA5YPYEanGVwWeZnR0USkGinJySFr6VIyFy4if+dO97l/dDThd9xBRO9eBDVqZGBCEREREamqPP48Y/v27cnIyPjNeVZWFu3bt/dKKBHxUWFn17j8wR507T8X8S2JoYnM7TKXKyKv4HT+aQauGMh3qd8ZHUtEqjin00nu5s2c/Nvf2X9La07941lXee7vT2j79tR643UuW7uG+LFjVJ6LiIiISIXx+CGia9eupaio6DfnBQUFbNiwwSuhRMRHhSbAmZ9cE+j/Q3Ke63qsVetbRHxFjCWG2UmzeXj1w+xK3cWQlUN4vcPrXJ9wvdHRRKSKKcnJIXPRItLmz8d+5Kj7PLBBAyLu7E14jx4ExOo9hIiIiIhcGhdcoO/atcv94z179nDq1C8TpiUlJSxfvpyaNWt6N52I+BYPJ9D1AFER3xIeFM7MTjN57IvH+ObUNzz0+UO80u4V2tRqY3Q0EakCio4cIe39+WQuXIgjLw8Av5AQbN26EXFnb4KvvVbPYhIRERGRS+6CC/TrrrsOk8mEyWQ676oWi8XCtGnTvBpORHxM6NkHieaoQBepqqxmK290fIPR60az9thaHv/icSa0nkCX+l2MjiYiPsjpdJK7cSPp894nZ906cDoBCGzYkKj+/Qjv0QM/q9XglCIiIiJSnV1wgX7o0CGcTicNGjRg8+bNxJ7zscnAwEDi4uLw9/evkJAi4iPcE+gXtsJFO9BFfFOQfxCvtHuFp798mqWHljJ2/VjyivPofVlvo6OJiI9w5OeTufhT0ua9R9FPB9znIW3bENX/PkJuvknT5iIiIiJSKVxwgV63bl0AHA5HhYURER93gRPoqXmpgCbQRXyZ2c/M+FvGE2IO4aMfP+LZjc+Sa8+lf+P+RkcTkUrMfvIk6QsWkP7RxzgyMwEwWa1E9OpFZL++BNWvb3BCEREREZGyPH6IaKk9e/Zw9OjR3zxQtEePHhcdSkR81AVOoGuFi0jV4O/nzzN/eoZQcyhzv5/Li1teJKcohwevfVCToyLi5nQ6yd++nbT35pH9+edQUgKAuVYtIvv1JeLOO/EPCzM4pYiIiIjI+XlcoB88eJBevXrx3XffYTKZcJ7dU1j6B+WSs2+IRaQauoAJ9MKSQjIKMwCtcBGpCkwmEyNbjCQ0MJRp307jzZ1vkmPPYXTL0SrRRao5R1ERWUuXkj7vfQq+/959bm3Viqj7+hParh0mrYAUERERkUrO4wL98ccfp379+qxevZr69euzefNmzpw5w1//+lcmT55cERlFxFeUTqAXZII9H8yW39xSOn0e5B+ELdB2KdOJSAUxmUwMu2YYIeYQJm6eyHt73iPXnsszf3oGfz+VYyLVTXFqKun/+YD0Dz6g5PRpAEyBgdh63E5U//4EX3GFwQlFRERERC6cxwX6pk2b+OKLL4iJicHPzw8/Pz9uueUWJkyYwGOPPca3335bETlFxBcER4B/EJQUQk4yRNb7zS3nrm/RdKpI1dL3qr6EmEN4duOzLNy/kFx7LuNbj8fsZzY6mohcAvm7vyd93ntkLV2G024HICAujsh77yWiz10EREYanFBERERExHMeF+glJSWEnd1RGBMTw8mTJ7niiiuoW7cuP/zwg9cDiogPMZlcU+gZR1170P+gQBeRqqdno55YA6z8bcPfWH54OXnFebzc9mWCA4KNjiYiFcBZXEz255+T9t488rdvd59brr2WyPv6Y+vcGZNZf4kmIiIiIr7L4wL96quvZufOndSvX59WrVrx4osvEhgYyIwZM2jQoEFFZBQRXxKa4CrQf2cPugp0kaqvc73OWM1WRq4Zyfrj63l49cO8euurhAXqIYEiVUVJRgbpH31E+oJ/U/zzz67DgABsXboQdV9/LNdcY2xAEREREREv8bhAf/rpp8nNzQVg3LhxdO/endatWxMdHc0HH3zg9YAi4mNK96BnJ5/3cnKe61wPEBWp2m6peQvTO01n+OrhbDm1hfuX389bHd/SX56J+LjC/ftJm/c+mYsX4ywoAMA/MpKIu/sQefc9mOP1a1xEREREqhaPC/SkpCT3jxs1asS+fftIS0sjMjJS+4xFxDWBDppAFxFaxLdgbtJcHl79MD+m/0i/pf2Y3nE6DSL0iTURX+J0OMhZt470efPI3bjJfR505ZVE9e+Prftt+AUFGZhQRERERKTieFygn09UVJQ3XkZEqoLSCfSc80+gq0AXqV6uir6KeV3n8dDnD3E46zD9l/VnWvtpNI9vbnQ0EfkDJVlZZH7yCWkLFmA/ctR16OdHWIf2RPbvj/X66zVAIyIiIiJV3gUV6L17977gF1y0aFG5w4hIFVA6gf47K1xKC3StcBGpPmqF1eK9ru/x6BePsjN1J0NXDmVSm0l0rNvR6Ggich4F+/aRPn8BmUuW4MzPB8AvLIyIP/+ZyL59CaxV0+CEIiIiIiKXzgUV6OHh4RWdQ0SqirDfX+HidDo1gS5STUUGRzKz80z+tv5vrDm2hlFrR/H3G/7OvVfda3Q0EQGcdjvZq1aRtmAB+Vu3uc+DLruMyL73En777fiFhBiYUERERETEGBdUoM+dO7eic4hIVRH6+w8RTS9Mx+6wAxBrib2UqUSkErAEWJjSbgrjvxnPhz9+yITNE0jOS+bx5o/jZ/IzOp5ItWRPTiHjww/J+PBDilNTXYf+/oR16kTkvfdoTYuIiIiIVHte2YEuIuJWOoGemwolxeD/y28zpdPnUcFRmP3NRqQTEYP5+/nz9J+eJiEkgde+fY05u+eQkpfCuJvG6fcFkUvE6XSSv3UraQsWkL3qcyguBsA/NobIv9xFRJ+7MMdr1ZqIiIiICJSjQK9fv/7/nEI5ePDgRQUSER9njQGTPzhLXCW6LdF9SfvPRQTAZDIx9JqhxFpj+efGf7Lk4BJO559mSrsphAaGGh1PpMpy5OaS+ekS0hcsoPDHH93nlhYtiLz3HmydOmEKDDQwoYiIiIhI5eNxgT5ixIgyX9vtdr799luWL1/OmDFjvBZMRHyUnx+ExkH2z6496OcU6Ml5rrUu2n8uIgA9G/UkxhLDqLWj+Prnrxm4YiBvdniTWKtWPIl4U+GhQ6T/+99kfvJ/OLKzATBZLIR3705k33sJvvJKgxOKiIiIiFReHhfojz/++HnP33jjDbZu3XrRgUSkCigt0H+1B710Al3lmIiUuqXmLcztMpeHP3+YfWn76Le0H291eosG4Q2Mjibi05wlJeSsW0f6/AXkfvWV+9xctw6R99xDRK9e+IeHG5hQRERERMQ3eO2JXV27dmXhwoXeejkR8WWhZ/eg55wqc1xaoGsCXUTO1SS6Ce93e5+6trqczD3JfcvuY0fKDqNjifik4vR0Ts+cyYFOnTn+8HBXeW4yEdquHbVnzqDhsmVE33+/ynMRERERkQvktYeIfvzxx0RFRXnr5UTEl4Wd3XH+qwn00hUu2oEuIr9WO6w273V9j0dXP8qu07sYsnIIk9pMokOdDkZHE/EJ+d/tJn3+fLKWLsVZVASAf3g44X++k8h77iGwVi2DE4qIiIiI+CaPC/RmzZqVeYio0+nk1KlTpKam8uabb3o1nIj4qN+ZQE/NSwU0gS4i5xcVHMWspFmMWTeGdcfXV/YDkgAAIABJREFUMWrtKJ5q9RR3XXGX0dFEKiVHYSFZy5aRvuDfFOza5T4PbtyYyL59sd3WDb/gYAMTioiIiIj4Po8L9J49e5b52s/Pj9jYWNq1a8eVegCRiMDvTqBrhYuI/BFLgIWpt07lX1//i4X7F/L8189zKvcUjzZ7tMxf4ItUZ/YTJ0j/zwdkfPwxJenpAJjMZsK6diHq3nsJvvZa/XoREREREfESjwv0Z599tiJyiEhVcp4J9MKSQjIKMwCtcBGR/y3AL4Bnb3yWhJAE3tjxBjO/m0lyXjL/vOmfmP3MRscTMYTT6SRv0ybS5i8gZ80acDgACEhMJLJPHyL+8mcCoqMNTikiIiIiUvWUawd6SUkJn3zyCXv37gWgcePG3HHHHQQEeG2luoj4srCzBfo5E+il0+dB/kHYAm1GpBIRH2IymXjw2geJs8YxbtM4Fh9YzJn8M7zc7mVCzCFGxxO5ZJwlJWSvWsXp6W9TuG+f+9x645+I6tuX0HbtMOk9uIiIiIhIhfH43fb333/P7bffTnJyMldccQUAkyZNIjY2lk8//ZSrr77a6yFFxMeEnp0wz0kGpxNMpjLrW/SxchG5UL0v602MJYbR60bz1cmvGLh8IG92fJMYS4zR0UQqlNNuJ/Ozzzjz9gyKDh0CwM9qJbxXLyLvvYeghg0NTigiIiIiUj34efoNQ4YM4eqrr+b48eNs376d7du3c+zYMa655hqGDRtWERlFxNeUFugOO+SlAdp/LiLl16ZWG+YkzSEqOIq9aXvpt7QfhzMPGx1LpEI4iopI/88HHOjSlZ///gRFhw7hFx5OzPDhNPpiNQnPPK3yXERERETkEvJ4An3Hjh1s3bqVyMhI91lkZCQvvPAC119/vVfDiYiPCggESxTkp7n2oIdEq0AXkYtydczVzOs6jwc/f5Bj2cfov6w/r3d4nWtjrzU6mohXOPLySP/wQ9LmzKU4xfX/TP/oaKIH3k/E3ffgH6rVRSIiIiIiRvB4Av3yyy8nOTn5N+cpKSk0atTIK6FEpApw70F3PUg0Oc/1+4YeICoi5VXHVod5XefRJLoJGYUZDFkxhLXH1hodS+SilGRnc3r62/zUoSMpEydRnJJCQEIC8U89RaPPVxE9ZIjKcxERERERA3lcoE+YMIHHHnuMjz/+mOPHj3P8+HE+/vhjRowYwaRJk8jKynL/IyLV2Ll70NEKFxHxjmhLNHOS5tC6ZmsKSgp4fM3jfPTjR0bHEvFYcXo6Ka++yk/tO5A6dSol6emY69Qh4flxNFq5gqj+/fCzWIyOKSIiIiJS7Xm8wqV79+4A3HXXXe4HATqdTgBuv/1299cmk4mSkhJv5RQRX/OrCXQV6CLiLVazldfav8a4TeP45KdPGLdpHMm5yQy/brgeUiyVnj0lhbS575D+wQc48/IACGzUkJgHHsDWtSumAI/fnouIiIiISAXy+B36mjVrKiKHiFQ1vzOBrhUuIuINAX4BPHfTc8SHxDN953Te3vU2KXkpPHPjM5j9zEbHE/kN+4kTnJk9m4yPF+IsKgIguHFjoh98gLCOHTH5efzBUBERERERuQQ8LtDbtm1bETlEpKo5ZwLd6XRqAl1EvM5kMjH8uuHEW+N5/uvn+eSnT0jNT+Xlti9jNVuNjicCQOGhQ5yZOYvMxYuhuBgAS/PmxDz4ACGtW+tTEyIiIiIilVy5PiOakZHB7Nmz2bt3LwBNmjRh0KBBhIeHezWciPiwcybQ0wvTsTvsAMRaYg0MJSJV0Z8v/zMxlhjGrBvDlye+ZNCKQbzR4Q2iLdFGR5NqrOCHHzjz9ttkLV8BDgcAITfdSPSDD2K9/noV5yIiIiIiPsLjz4pu3bqVhg0bMmXKFNLS0khLS+OVV16hYcOGbN++vSIyiogvOmcCvXT6PCo4CrO/ViuIiPe1q92O2UmziQiK4Psz39N/WX+OZh01OpZUQ/m7dnHs4eEcuqMnWUuXgcNB6K23Uu+D/1BnzhxCbrhB5bmIiIiIiA/xeAJ95MiR9OjRg5kzZxJw9iFHxcXFDBkyhBEjRrB+/XqvhxQRH3TOBHpKrmsPuvafi0hFuib2GuZ1nceDnz/Isexj9F/Wn2ntp3FN7DVGR5NqIG/LFk6/NZ3cjRtdByYTYV2SiHngAYKvvNLYcCIiIiIiUm7lmkD/29/+5i7PAQICAhg7dixbt271ajgR8WGlE+j2PJLPToFq/7mIVLR64fV4v9v7NI5uTFpBGoNXDGb1kdVGx5Iqyul0krNhA4f79uNI//tc5bm/P+G9etHgs8+oNWWKynMRERERER/ncYFus9k4evS3H4k+duwYYWFhXgklIlVAYAgEun5PSMk8DECsVfvPRaTixVhimJs0lza12lBQUsDItSOZt2ee0bGkCnE6HGStWsXhP/+FY0OHkb9tGyazmYh77qbhihXUmDCeoAb1jY4pIiIiIiJe4PEKlz59+jB48GAmT57MTTfdBMBXX33FmDFjuOeee7weUER8WFg8nMkmJfs4oAl0Ebl0rGYrr976KhM3T+SDHz7gxS0vciLnBGNajsHfz9/oeOKjnE4n2StXcfr1aRTu/wkAk8VCZJ8+RA0ciDle/58TEREREalqPC7QJ0+ejMlk4r777qO4uBgAs9nMQw89xMSJE70eUER8WGgCnPmJ5LMPEdUOdBG5lAL8Aniq1VPUCq3Fy9teZv7e+ZzMOcnE1hOxmq1GxxMfk//996RMmEje2ZWFfqGhRPbrS9SAAQRERhqcTkREREREKorHBXpgYCCvvvoqEyZM4MCBAwA0bNgQq1V/EBWRXwlzFeapBWmAJtBF5NIzmUzcf/X9JIYm8uSGJ1lzbA2DVwxmWodpxFhijI4nPsCekkLqq6+SuegTcDoxBQcTPWggUfffj7/NZnQ8ERERERGpYB4V6IcPH2bVqlUUFRXRrl07mjZtWlG5RKQqCHU9SDTFngOoQBcR4yTVSyLOGsdjXzzG7jO76be0H292eJMGEQ2MjiaVlKOwkLR33uXM22/jyMsDwHb77cSNGok5MdHgdCIiIiIicqlccIG+Zs0aunfvTn5+vusbAwKYM2cO/fr1q7BwIuLjwuIpNEGGswjQChcRMVazuGa83+19Hv78YY5mH6Xfsn68euurXJ9wvdHRpBJxOp1kr1hByosvYT95EoDga68h4YknsFx3ncHpRERERETkUvO70BufeeYZOnXqxIkTJzhz5gxDhw5l7NixFZlNRHxdaAIp/q6H9QX5B2EL1EfdRcRYdW11eb/b+1wbey3ZRdkMWzWMJQeXGB1LKon83d9zpF9/TowYif3kSQISEqjx0kvU+/e/VZ6LiIiIiFRTF1yg7969m/Hjx5OYmEhkZCQvvfQSKSkpnDlzpiLziYgvC4snxd/1QZc4axwmk8ngQCIiEBkcyazOs+hctzPFjmKe2PAEM3bNwOl0Gh1NDGJPTuHkE09y+C9/IX/bNkwWCzGPPkLDZUsJv707Jr8LfsssIiIiIiJVzAWvcMnKyiIm5peHbVmtViwWC5mZmURHR1dIOBHxcaEJpAS4JtC1/1xEKpPggGBeavsSNbfVZO73c5n27TRO5Jzg6T89jdnPbHQ8uUQcBQWkvfMOp2fMxHl2z3n4HT2IHTkSc0KCwelERERERKQy8OghoitWrCA8PNz9tcPhYPXq1ezevdt91qNHD++lExHfFhbvXuESF6y/aBORysXP5MeolqOoEVqDCZsnsGj/In7O+ZlX2r1CaGCo0fGkAjmdTrKXLSN58mSKT/4MgOW664h/8gks11xjcDoREREREalMPCrQBwwY8JuzBx54wP1jk8lESUnJxacSkaohOIJkcyAA8QEhBocRETm/u6+8mxqhNRi9bjSbft7Efcvv480Ob5IQognkqij/u+9IHj+B/G+/BSAgMZG40X/F1q2bVo2JiIiIiMhvXPBCR4fD8Yf/qDwXkTJMJlKCXcV5nCnQ4DAiIr+vTa02zO0ylxhLDPvT99P3s77sS9tndCzxIntyMif/9ncO/+Uu8r/9FpPFQuzjj9Fw6WeE33abynMRERERETkvPRFJRCpUSoBrl3CcU8WEiFRuTaKbsKDbAhpFNCIlP4UBywbw5YkvjY4lF8mRn0/qm29yoEtXMv/7XwDCe/ak4fJlxDz0EH4Wi8EJRURERESkMlOBLiIVKsXfVZzH24sNTiIi8scSQxN5t+u7tEpoRV5xHo+sfoSPfvzI6FhSDk6nk8wln3Gg222cfm0azvx8LM2bU++jD6kxcQLm+HijI4qIiIiIiA9QgS4iFcbpdJLitAMQV5RncBoRkQtjC7TxVse36NGwByXOEsZtGsfUbVNxOB1GR5MLlL9zJ0fuuZeTo0dT/PPPmGvUoOaUV6g7/30sTZsaHU9ERERERHyIRw8RFRHxRHphOnacAMTmZRmcRkTkwpn9zfzr5n9RK6wWb+54k9m7Z3My5yTP3/I8Qf5BRseT32E/dYqUV14ha/GnAJisVmKGDSPq/gH4BQcbnE5ERERERHyRCnQRqTApeSkARJWUYM5NNTiNiIhnTCYTD137EDVDa/LsV8+y7PAykvOSefXWV4kIjjA6npzDkZ/PmdlzODNrFs6CAjCZCO/Vi9gRj2OOizM6noiIiIiI+DCPV7gcO3aM48ePu7/evHkzI0aMYMaMGV4NJiK+r7RAjy8ugZxTBqcRESmfHg17ML3TdMLMYWxP2U7/Zf05lnXM6FgCOB0OMj/9lANdu3H69ddxFhRgadmCeh99RI3xL6g8FxERERGRi+ZxgX7vvfeyZs0aAE6dOkWnTp3YvHkzTz31FOPGjfN6QBHxXcl5yQDElZRAdrLBaUREyq9VYive6/oeiSGJHM46TL9l/diZutPoWNVa/o4dHL7nHk6OGUvxqVOYa9ak5tSp1J03D8vVTYyOJyIiIiIiVYTHBfru3bu54YYbAPjwww+5+uqr2bhxI/Pnz+edd97xdj4R8WGlE+ixxcWQmwolxQYnEhEpv0aRjZjfbT5XRV1FWkEag1cMZvWR1UbHqnbsJ05w4q+jOXz3PRTs3IWf1UrsqFE0WPoZti5JmEwmoyOKiIiIiEgV4nGBbrfbCQpyPTzr888/p0ePHgBceeWV/Pzzz95NJyI+rbRAjytxAk5XiS4i4sNirbG80+Ud2tZqS2FJISPXjuS979/D6XQaHa3KK8nJJWXKVA50u42szz5z7Tm/szcNVywnZthQ/IL0cFcREREREfE+jwv0Jk2aMH36dDZs2MCqVavo0qULACdPniQ6OtrrAUXEd5WucIkPsLoOtAddRKoAq9nK1Fun0ueKPjhx8tLWl5i4eSIljhKjo1VJzpISMj7+mANdu3Dm7bdxFhZibdWK+osWUuOFFwiIjTU6ooiIiIiIVGEBnn7DpEmT6NWrFy+99BIDBgzg2muvBWDx4sXu1S4iIgCpea6J87igCOCk9qCLSJUR4BfAU62eonZYbSZvncyCfQs4mXuSSa0nYTVbjY5XZeR+/TXJEydRuG8fAOa6dYgfO5bQ9u21qkVERERERC4Jjwv0du3acfr0abKysoiMjHSfDxs2DKtVf2AUkV+4V7hY44A9mkAXkSrFZDIxoMkAEkMSefLLJ1l7bC2DVgzi9Q6vE2OJMTqeTys8dIiUlyaT88UXAPjZbMQ8/BBR996LKTDQ4HQiIiIiIlKdeLzCBcDpdLJt2zbefvttsrOzAQgMDFSBLiJuhSWFZBRmABAfUsN1qAl0EamCOtfrzKzOs4gMiuT7M9/Tb2k/9qfvNzqWTyrJyCB5wgQO3t7DVZ77+xPZrx8NVywn+v77VZ6LiIiIiMgl53GBfuTIEZo2bcodd9zB8OHDSU11rWiYNGkSo0eP9npAEfFNpdPnQf5B2Gy1XIeaQBeRKuq6uOt4v9v71LXV5UTOCfou7cvyw8uNjuUznHY7ae/N40BSF9LefQ+Kiwlt25YGny4m4emnCDjnU48iIiIiIiKXkscF+uOPP07Lli1JT0/HYrG4z3v16sXq1au9Gk5EfNe561tMYQmuQ02gi0gVVsdWh/e7vs+fEv9EfnE+Y9aNYfKWyRQ7io2OVmk5nU6y16zhYI87SB4/npLMTIIuu4zas2dR++3pBDVoYHREERERERGp5jzegb5hwwY2btxI4K8+QluvXj1OnDjhtWAi4tvK7D8PjXcdagJdRKq4iOAIpneczrRvpzF792ze3fMue9P28mKbF4m2RBsdr1Ip+OFHUiZNJHfjJgD8o6KIfewxIv58J6YAj9+iioiIiIiIVAiPJ9AdDgclJSW/OT9+/DhhYWFeCSUivq9Mga4JdBGpRvz9/BnRYgRT2k3BGmBl86nN9FnSh+9SvzM6WqVQfPo0P//jWQ716kXuxk2YzGaihw6h4coVRN7dR+W5iIiIiIhUKh4X6J07d2bq1Knur00mEzk5OTz77LN069bNq+FExHcl57nK8nhr/DkT6MngdBqYSkTk0ulYtyP/vu3f1A+vT3JeMgOWD+DjHz82OpZhHIWFnJ4xkwNJXcj48ENwOAjr0oUGy5YS99e/4h8aanREERERERGR3/C4QH/55Zf56quvaNy4MQUFBdx7773u9S2TJk2qiIwi4oPOu8LFYYe8NANTiYhcWg0iGrCg2wI61OmA3WHnuU3P8c+N/6SwpNDoaJeM0+kka9kyDna7jdRXXsGRm0vw1VdTd/771Jo6hcBatYyOKCIiIiIi8rs8/oxsrVq12LlzJ//5z3/YtWsXOTk5DB48mL59+5Z5qKiIVG9lCvSAQLBEQX6aaw96iPYAi0j1ERoYypR2U5i9ezbTvp3Gwv0L+SHtB6bcOoWEkASj41Wo/F27SJ4wkfxvvwUgID6euL+Owta9OyY/j+c4RERERERELrlyLZkMCAigX79+3s4iIlVIaYEebz07fR6W4CrQs09BfBMDk4mIXHomk4khTYfQOLoxY9ePZfeZ3fRZ0oeX2rzEDYk3GB3P6+w//0zKK1PI+vRTAEwWC9FDBhM9aBB+GrgQEREREREfckEF+uLFi+natStms5nFixf/z3t79OjhlWAi4rucTmfZCXRwrXFJ2ePagy4iUk3dVOMmPuj+ASPXjGRv2l6GrhrKyOYjGdBkACaTyeh4F82Rm8uZ2bM5M2cuzoICAMJ79iR25AjM8fEGpxMREREREfHcBRXoPXv25NSpU8TFxdGzZ8/fvc9kMlFSUuK1cCLim9IL07E77ADEWmJdh2Fn1xRknzIolYhI5VAztCbvdX2P579+nsUHFvPytpf57vR3PH/z81jNVqPjlYvT4SDzk/8jdepUilNTAbC2bEnc3/+O5Wp96khERERERHzXBRXoDofjvD8WETmf0unzqOAozP5m12Hpg0Q1gS4iQnBAMP+6+V9cE3MNE7dMZOWRlRzIOMDUW6dSL7ye0fE8krdlC6cmTKBwz14AzLVrEzdmNGGdOlWJqXoREREREane9PQmEfG63+w/B02gi4j8islkos+VfZibNJdYSywHMg9wz2f3sOboGqOjXZCSnFx+fvafHOl/H4V79uIXGkrcmDE0+GwJts6dVZ6LiIiIiEiV4HGB/thjj/Haa6/95vz1119nxIgRXgklIr4tOc81Ze7efw6aQBcR+R3XxV3Hh7d/SPO45uTYc3hszWNM+3YaJY7KuxYvd9MmDvXoQcYHHwAQ0acPDVeuIHrwIPwCAw1OJyIiIiIi4j0eF+gLFy7k5ptv/s35TTfdxMcff+yVUCLi20on0GOtsb8cagJdROR3xVhimJU0i75X9QVgxq4ZDP9iOJmFmQYnK8uRm8upceM4OnAQ9pMnMdesSZ133iHxuX8SEBVldDwRERERERGv87hAP3PmDOHh4b85t9lsnD592iuhRMS3lRbovzuB7nQakEpEpHIz+5n5+w1/Z0LrCQT7B/PVia/os6QP+9L2GR0NgNxvNnPwjp6kL/g3ABH33E2Dxf8l5E+tDE4mIiIiIiJScTwu0Bs1asTy5ct/c75s2TIaNGjglVAi4ttKV7icdwe6PQ8Ksw1IJSLiG7o36M773d6nVmgtTuScoP/S/nx64FPD8jjy8jj1/L84OmAA9uPHMdeoQZ25c0h89ln8QkIMyyUiIiIiInIpBHj6DaNGjeKRRx4hNTWV9u3bA7B69Wpefvllpk6d6vWAIuJ7UvNSgV9NoAeGQGAYFGW7ptCDbQalExGp/K6IuoL/dP8Pf9/wd7488SVPfvkku0/vZvT1ozH7mS9ZjrwtWzj55FPYjx0DXLvO48aMwT9UxbmIiIiIiFQPHhfogwYNorCwkBdeeIHnn38egHr16vHWW29x3333eT2giPie865wAQiLhzPZrj3oMZcZkExExHeEB4XzevvXeWvnW7y9620W7FvAvrR9TG47uewzJiqAIz+flClTSJ/3PjidBCQmkviv5wk9z3NwREREREREqjKPV7gAPPTQQxw/fpzk5GSysrI4ePCgynMRAaCwpJCMwgzgVytcAELPrnHJSb7EqUREfJO/nz+PNHuEae2nEWoOZXvKdvos6cOOlB0V9t/M27aNgz17kv7ePHA6ifjLn2nw6WKV5yIiIiIiUi2Vq0AvLi7m888/Z9GiRTjPPgzw5MmT5OTkeDWciPie0unzIP8gbIG/WtMSdrZQzz51iVOJiPi2drXb8Z/u/6FRRCNS81MZuHwg/973b/f7MG9w5OeTPGEiR/r1x37kKAEJCdSeOZPE55/HPzTUa/8dERERERERX+JxgX7kyBGaNm3KHXfcwfDhw0lNde06njRpEqNHj/Z6QBHxLeeubzGZTGUvuifQVaCLiHiqrq0u87vNJ6leEsXOYsZ/M56nv3qaguKCi37tvO3fcqhnL9LefRecTsLv7O2aOm99ixeSi4iIiIiI+C6PC/THH3+cli1bkp6ejsVicZ/36tWL1atXezWciPie391/DudMoGuFi4hIeVjNVl5q8xKjW47G3+TP4gOLuW/ZfRzPPl6u13MUFJD84ksc6duXoiNHCIiLo/bb06nxwgv4h4V5Ob2IiIiIiIjv8bhA37BhA08//TSBgYFlzuvVq8eJEye8FkxEfNP/LNA1gS4ictFMJhMDmgxgRqcZRAVHsTdtL3d/djcbT2z06HXyd+zgUK/epM2Z45o679nTNXXetm0FJRcREREREfE9HhfoDoeDkpKS35wfP36cME0qiVR7yXmu6fLfPEAUNIEuIuJFNyTewAfdP6BpTFMyCzN58PMHmb5zOiWO375PO5ejsJCUyZM5fG9fig4dIiA2llpvvUmNiRPwDw+/ROlFRERERER8g8cFeufOnZk6dar7a5PJRE5ODs8++yzdunXzajgR8T2aQBcRuXQSQhJ4p8s73HnZnThx8saON3hg1QOk5qWe9/78777jUO87OTNrNjgc/D979x1Xdd2/cfx1OOewh6AMJ+LWMltqdZcNUzMcIJoZZqZZlpWmaVaWpQ1vy7aVaWXTPYncpllWliMbbgEVZahs8HDgnN8fCHf+WqDAl3E9Hw8eHM85nO/FHwpevHl/fPv0plnMSnxuvLGSk4uIiIiIiFQPZS7QZ8yYwbfffku7du04c+YMd9xxR8n6lv/+978VkVFEqpFS7UA/kwH2vEpMJSJSc7maXXnmmmd4/trn8bB48EPSD/SP6c83id+UPMeRn0/KK68SP/B28g8dwhxYj0Zvz6Th9OmY69QxML2IiIiIiEjVZinrBzRq1Iiff/6Z+fPns3v3brKzsxk+fDjR0dHnHCoqIrVTcYH+lytc3OuA2Q0KbZCdDP5NKzeciEgN1qd5H9rXa8/4zePZl7aP+9ffz90X380I602kPvkUtgMHAfDt1YvgJ5/A4u9vcGIREREREZGqr8wFOoDFYmHw4MHlnUVEqjmn0/nPE+gmU9EUevqRoj3oKtBFRMpVmF8Yn4V/xss/vsyi3+eRO3MOR76fjYsDzHXrEvLMZHy7dTM6poiIiIiISLVxXgX6vn37ePPNN9mzZw8Abdu25cEHH6RNmzblGk5Eqpc0Wxp2hx2AQI/Av36Sd0hRga496CIiFcLN7MZYnwh6L9qINe44AD9cZKXR02Np1UHluYiIiIiISFmUeQf6kiVLuPjii9m+fTsdOnSgQ4cO7Nixg/bt27NkyZKKyCgi1UTx9HmAewBWs/Wvn1S8Bz0ruZJSiYjUHs78fFLfeJP4gbdjjTuOyb8Oi+9qxow+Th7ZNZmp303lTMEZo2OKiIiIiIhUG2WeQJ8wYQKPP/44U6ZMOef+yZMnM2HCBKKiosotnIhUL/+4/7yYd0jRe02gi4iUqzN79nD88Sew7d0LgM8ttxDy9FNMrOODz86ZvP/r+yzcv5Bdqbt4qctLNKvTzODEIiIiIiIiVV+ZJ9BPnDjBkCFD/nT/4MGDOXHiRLmEEpHqKTm3aKr8L/efF9MEuohIuXLYbKS89hpxA27Dtncv5jp1aPjqKzR67VUsAQFYXayMuWIMs26eRYB7APvT9nN77O0sO7AMp9NpdHwREREREZEqrcwF+g033MCWLVv+dP8333zDddddVy6hRKR6Kp5AD/T8m/3noAl0EZFylLNtG3F9Izj17iwoKMCnWzeafRGDb8+ef3ruNQ2vYUmfJVxV/yryCvJ4euvTPP7N4+TYcwxILiIiIiIiUj2UeYVLnz59eOyxx9i+fTtXXXUVAN9//z2LFi3i2WefZeXKlec8V0Rqj+IC/Z8n0IsLdE2gi4icr8LMTFJeepn0RYsAsAQGEvzUJHy7d//Hj6vnUY9Z3Wbx/i/vM3PXTGIPx/LryV95qctLtK3btjKii4iIiIiIVCsmZxl/d9fFpXRD6yaTicLCwvMKVR1lZmbi5+dHRkYGvr6+RscRMcTI9SP5NvFbnr3mWfq17PfXTzqxG2ZdB15BMP5A5QYUEak9yBk2AAAgAElEQVTmnE4nWWvWkvT8cxSmngSgzsCBBI0bi7mM33/sTNnJhK8nkJSThNXFyrgrx3FHmzswmUwVEV1ERERERKTKKEuXW+YVLg6Ho1Rvtak8F5EiqbmpQCkn0HNSobCgElKJiNQM9qQkjo16kMQxYyhMPYlrWBihn3xM/WefKXN5DnBZ0GUs7r2YGxvfiN1hZ9q2aYz+ajQZtowKSC8iIiIiIlI9lblAFxH5O6Va4eJZD0xmwFlUoouIyD9yOhyc/vxzDof3InvjRrBaqffA/YQtX4Znx44X9Np+bn68fuPrTOw0EauLla+OfkX/mP7sSN5RTulFRERERESqt1IX6N999x1ffPHFOfd9/PHHhIWFERQUxL333ovNZiv3gCJSPdgKbaTb0gEI9gz++ye6uID32YJdB4mKiPwj28GDJEQPJnnKVBw5OXh06EDYksUEPvwwLm5u5XINk8lEdNtoPrv1M0J9Q0nKSWLYmmG8t/s9Ch36jUIREREREandSl2gT5kyhd9++63kz7/88gvDhw/n5ptvZuLEicTExPDiiy9WSEgRqfqKp8/dzG74uv7LKgHvswV7lg4SFRH5K478fFLfeJPDkf3I27kTF09PgidNIvTzz3Bv1apCrtm2blsW9FpAr2a9KHQW8ubON7lv/X0l67lERERERERqo1IX6Lt27aJr164lf54/fz6dO3dm9uzZjB07ljfeeIOFCxdWSEgRqfr+uL7lXw+gK96Drgl0EZE/yd2+nbiISE6+/TbY7XjfeCPNYr8gYHA0JrO5Qq/tZfXihWtfYOp/puJh8eCHEz/QP6Y/3yZ+W6HXFRERERERqapKXaCnpaURHPy/tQybN2+mZ8+eJX/u2LEjR48eLd90IlJtlGr/eTFNoIuI/ElhVhYnnnmGhOjB5B8+jLlePRq+9iqN3p6JtX79SsthMpmIaBHB/F7zaeXfitNnTjNy/Uhe3f4qdoe90nKIiIiIiIhUBaUu0IODg4mLiwMgPz+fHTt2cNVVV5U8npWVhdVqLf+EIlItlKlA1wS6iMg5Mtet43B4L9LnLwDAr38UzWO/wPeWW/79t3oqSDO/Znx262cMbD0QgA9+/YChq4eSmJ1oSB4REREREREjlLpAv/XWW5k4cSJbtmzh8ccfx9PTk+uuu67k8d27d9O8efMKCSkiVV9ybtE0+T8eIFpME+giIgDYk1M49tBDJD70MAUpKbiGhtLko49o8NxzmP38jI6Hu8WdSVdN4pUbXsHH6sPu1N0MiBnA+oT1RkcTERERERGpFKUu0KdOnYrFYuH6669n9uzZzJ49G1dX15LHP/jgA7p3714hIUWk6tMEuohI6TkdDtLmz+dweDhZ69aDxULde+8lbMVyvDp3Mjren3QL7caiPou4pN4lZOVn8cimR3ju++ewFdqMjiYiIiIiIlKhSl2g16tXj6+//pq0tDTS0tKIjIw85/FFixYxefLkcg/4R9OmTcNkMjFmzJiS+86cOcOoUaOoW7cu3t7eREVFkZx87lTrkSNHCA8Px9PTk6CgIMaPH09BQcE5z9m0aROXX345bm5utGjRgrlz51bo5yJS05RtB/rZAl0T6CJSC9kOHybhziEkPfMsjuxs3Nu3J2zJYoLGPoKLu7vR8f5WQ++GzO05l2EXDwNgwb4F3BF7B4czDhucTEREREREpOKUukAv5ufnh9ls/tP9AQEB50ykl7cff/yRWbNmcckll5xz/yOPPEJMTAyLFi1i8+bNHD9+nH79+pU8XlhYSHh4OPn5+WzdupWPPvqIuXPn8vTTT5c8Jy4ujvDwcG688UZ27drFmDFjuOeee1izZk2FfT4iNU1xgV6qFS4+Z5+TnQxOZwWmEhGpOpz5+aTOnElc3wjytm/H5OlJ8BOP03T+PNxbtzY6XqlYXaw8csUjvHvzuwS4B7A/bT+3f3E7yw4sw6l/z0VEREREpAYqc4FuhOzsbKKjo5k9ezb+/v4l92dkZPD+++/zyiuvcNNNN3HFFVfw4YcfsnXrVr7//nsA1q5dy++//86nn37KpZdeSs+ePZk6dSozZ84kPz8fgHfffZewsDBmzJhB27ZtefDBB+nfvz+vvvqqIZ+vSHXjdDrLNoHudfY5Djvknq7AZCIiVUPuzp3ERUVx8s23cNrteHW5juYxKwkYMgTTXwwmVHX/afgfFvdeTOeQzuQV5PH01qd5+KuHOZl30uhoIiIiIiIi5apaFOijRo0iPDycm2+++Zz7t2/fjt1uP+f+Nm3a0KRJE7777jsAvvvuO9q3b09w8P+mYnv06EFmZia//fZbyXP+/2v36NGj5DX+is1mIzMz85w3kdoqzZaG3WEHINAj8N8/wOIKnnWLbmsPuojUYIXZ2SRNmUrCHdHYDhzEHBBAg5dfpvGsWVgbNjQ63gUJ9AxkVrdZjL58NBYXC5uObiJyRSRr49caHU1ERERERKTcVPkCff78+ezYsYMXX3zxT48lJSXh6upKnTp1zrk/ODiYpKSkkuf8sTwvfrz4sX96TmZmJnl5eX+Z68UXX8TPz6/krXHjxuf3CYrUAMXT5wHuAVjN1tJ9kPfZv3NZKtBFpGbK2riRw+G9SPv8c3A68YuMpFnsF/j1CsdkMhkdr1yYXczc0/4e5ofPp7V/a9Jt6YzbPI7Hvn6MDFuG0fFEREREREQuWJUu0I8ePcro0aP57LPPcK9ih2o9/vjjZGRklLwdPXrU6EgihinT/vNi3n/Ygy4iUoMUpKZybPQYjj0wioLkZKyNG9Pkg/dp8OILWP6wiq4maR3Qmnnh8xjRfgQuJhe+jPuSyBWRbDm2xehoIiIiIiIiF6RKF+jbt28nJSWFyy+/HIvFgsViYfPmzbzxxhtYLBaCg4PJz88nPT39nI9LTk4mJCQEgJCQEJKTk//0ePFj//QcX19fPDw8/jKbm5sbvr6+57yJ1FbJuUV/f0q1/7yYT9HfP02gi0hNkhETw6HwXmStWQNmM3XvGU6zlSvwuuYao6NVOKvZysOXP8wnPT+hqW9TUvNSeWDDAzyz9Rly7DlGxxMRERERETkvVbpA79q1K7/88gu7du0qebvyyiuJjo4uuW21WtmwYUPJx+zbt48jR45w9dVXA3D11Vfzyy+/kJKSUvKcdevW4evrS7t27Uqe88fXKH5O8WuIyD8r0wGixTSBLiI1SGF2Dscfe4zj4yfgyMzEvV07whYtJOjRR3H5mx/G11SXBF7Cot6LGNx2MABLDiwhamUUPyb9aHAyERERERGRsrMYHeCf+Pj4cPHFF59zn5eXF3Xr1i25f/jw4YwdO5aAgAB8fX156KGHuPrqq7nqqqsA6N69O+3atePOO+9k+vTpJCUlMWnSJEaNGoWbmxsAI0eO5K233mLChAkMGzaMjRs3snDhQmJjYyv3ExappooL9EDPUhwgWkwT6CJSQ+T98guJ4x7FfuQIuLhQ74EHqDfyPkyWKv1tVoVyt7jzWKfHuKnJTUz6ZhKJ2YkMWzOMwW0HM/ry0bhbqtZqPhERERERkb9TpSfQS+PVV1+lV69eREVF0aVLF0JCQli6dGnJ42azmS+++AKz2czVV1/N4MGDGTJkCFOmTCl5TlhYGLGxsaxbt44OHTowY8YM5syZQ48ePYz4lESqneIVLtqBLiK1idPh4OTs2cQPugP7kSNYGtQn9JOPCXxwVK0uz/+oY0hHlvZdSlTLKAA+3fMpA2IG8EvqLwYnExERERERKR2T0+l0Gh2iJsjMzMTPz4+MjAztQ5daJ2plFPvT9vPOze9wbcNrS/dBCVvhw57gHwajd1VsQBGRcmZPTuH4xMfI/e57AHx69KD+lGcx+/kZnKzq+vrY1zyz9RlS81Ixm8wMbz+ckZeMxGq2Gh1NRERERERqmbJ0udV+Al1EjHfBO9D1czwRqUayvvqKuIgIcr/7HpOHByFTp9DwtVdVnv+LLo26sKzvMnqG9aTQWch7u9/jji/vYH/afqOjiYiIiIiI/C0V6CJyQWyFNtJt6UAZV7gU70C354ItqwKSiYiUL4fNRtJzz3Ps/gcoTEvDrW1bwpYsxn/AAEwmk9HxqgU/Nz+md5nOy9e/TB23Ouw9vZeBXwxkzi9zKHQUGh1PRERERETkT1Sgi8gFKZ4+dzO74etahvVFrl7g6lN0W3vQRaSKsx08SPxtA0n79FMAAu4aQtMF83Fr1szgZNVTj6Y9WNZ3GTc0uoECRwGv73idIauHEJ8Rb3Q0ERERERGRc6hAF5EL8sf1LWWewPQ5O7GelVTOqUREyofT6SRtwULi+g/Atm8f5oAAGs96l+DHH8fF1dXoeNVaPY96vHHTG0z9z1S8rd7sTt3NgJgBfLbnMxxOh9HxREREREREABXoInKBzmv/eTHvs2tcNIEuIlVQYXo6iQ+PJmnyZJxnzuB1zTU0W7Ec7+uvNzpajWEymYhoEcHSPkvpXL8zZwrPMG3bNO5dey/Hs48bHU9EREREREQFuohcmAsq0DWBLiJVVO6PP3I4IpKsdevAaiVo/Hgaz5mNJTDQ6Gg1Un3v+rzX7T2e6PwE7mZ3fkj6gX4r+7HswDKcOmhaREREREQMpAJdRC5Icm7R9HiZDhAtVjKBrgJdRKoGZ0EBqW+8QcJdQylISsI1NJSm8+ZRd/gwTC76tqkiuZhcGNRmEIv7LKZDYAdy7Dk8vfVpHtr4ECfzThodT0REREREain9T1BELkj5TKBrhYuIGC//WCIJdw7h5NvvgMOBX2QkYUuX4HHxRUZHq1VCfUP56JaPGHP5GKwuVjYf20zEighWx682OpqIiIiIiNRCKtBF5IKUzw50TaCLiLEyV60iLjKSvJ07cfH2psGMl2nw4gu4eHkZHa1WMruYGd5+OPN7zadNQBsybBmM3zyeCZsnkH4m3eh4IiIiIiJSi6hAF5ELUlygn9cKF02gi4jBHLm5HH/ySRIfGYsjKwuPDh0IW74Mv/Bwo6MJ0Mq/FZ/f+jn3XXIfZpOZVfGriFwZydfHvjY6moiIiIiI1BIq0EXkvDmdTk2gi0i1lffbb8T1iyJjyVIwmag78j5CP/0E10aNjI4mf2A1W3nwsgf5pOcnhPmFcTLvJKM2jGLy1slk52cbHU9ERERERGo4Fegict7SbGnYHXYAAj0Cy/4CxRPoZzLAnleOyURE/p7T4eDU3LnE3z6I/Ph4LMHBNJk7l6AxYzBZrUbHk7/RPrA9C3stZEi7IZgwsfTAUiJXRrLhyAacTqfR8UREREREpIZSgS4i5614+jzAPQCr+TxKJ/c6YHYrup2tNS4iUvEKTp7k6H0jSZn2X7Db8b65K2HLl+HVuZPR0aQU3C3ujO84nvd7vE9D74Yk5SQx5qsxjNowiqOZR42OJyIiIiIiNZAKdBE5bxe0/xzAZNIedBGpNNlbvuFwRCQ5W7ZgcnMj5JnJNHrzTSz+/kZHkzLqGNKRpX2Wck/7e7C4WNiSuIWIFRG8s+sdbIU2o+OJiIiIiEgNogJdRM5bcm5R6X1e+8+LaQ+6iFQwR34+ydP+y9ERIyg8eRK3Vq0IW7wI/9tvx2QyGR1PzpOn1ZPRl49mSZ8ldK7fmXxHPm///DYRyyN0yKiIiIiIiJQbFegict4u6ADRYppAF5EKZIuLI+H2QZyeOxcA/+homi5cgFvLlsYGk3LTzK8Zs7vN5qXrXyLII4hj2ccYtWEUozeO5nj2caPjiYiIiIhINacCXUTOW3GBHuh5HgeIFtMEuohUAKfTSfqSpcRF9efM779jrlOHRm/PJOSpSbi4uxsdT8qZyWTilqa3sDJyJXe1uwuzyczGoxvpu7wvc36Zg73QbnREERERERGpplSgi8h5K17hct470EET6CJS7hy5uRyf8BgnnnwSZ24unlddRdiK5fjcdJPR0aSCeVm9eLTjoyzqvYgrgq/gTOEZXt/xOv1W9uP7E98bHU9ERERERKohFegict5Sc1MB7UAXkarDFhdH/MCBZMbEgNlM4NixNHl/DtbgC/hBn1Q7Lf1b8mGPD3nh2hcIcA8gPjOeEWtHMH7zeJJz9ANbEREREREpPRXoInLeymcHenGBrkJDRC5M5tq1xPcfgO3AQSyBgYR+/BH17h2ByWw2OpoYwGQy0bt5b2IiY7ijzR24mFxYHb+aPsv78NFvH2F3aK2LiIiIiIj8OxXoInJebIU20m3pwAWucPHWChcRuTDOggKSX3qJxIdH48jJwfPKKwlbugTPK64wOppUAb6uvjze+XHmh8/nksBLyC3I5eWfXua2mNvYnrzd6HgiIiIiIlLFqUAXkfNSPH3uZnbD19X3/F+oeAI9JxUKC8ohmYjUJgWpqRy5exin3/8AgIBhw2jy4QdYAi/gcGOpkdrWbcsnPT/h2WuepY5bHQ6mH2To6qE8+c2TnMw7aXQ8ERERERGpolSgi8h5+eP6FpPJdP4v5FkPTGbAWVSii4iUUu6OHcT1iyL3xx9x8fKi4euvEzxhPCar1ehoUkW5mFzo17IfMREx9G/VHxMmVh5aSZ9lfZi3dx6FjkKjI4qIiIiISBWjAl1Ezku57D8HcHEB77OvoYNERaQUnE4npz/+mIQhd1GQmopri+Y0XbQI3x7djY4m1UQd9zpMvnoyn936Ge3qtiPLnsULP7zAoNhB/Jz6s9HxRERERESkClGBLiLnpdwKdNAedBEpNUdODsfHjSP5hRehoADfW28lbMEC3JqFGR1NqqH2ge35/NbPmdR5Ej6uPuw5vYfBXw7mma3PkH4m3eh4IiIiIiJSBahAF5HzkpxbVHZf0AGixYr3oGsCXUT+ge3wYeIGDiTzy1VgsRD8xBM0mPEyLl5eRkeTaszsYmZgm4HERMTQt3lfAJYcWEKv5b1YvH8xDqfD4IQiIiIiImIkFegicl40gS4ilSlz9Rri+w8g/+AhLEFBhH78EQFD7rywMxhE/qCuR12eu/Y5PrrlI1r5tyLDlsGz3z3LnV/eye+nfjc6noiIiIiIGEQFuoicl3It0DWBLiJ/w2m3kzztvySOGYMjNxfPTp0IW7oEz8svNzqa1FCXB1/Ogl4LmNBxAl5WL3af3M2g2EE8//3zZOZnGh1PREREREQqmQp0ETkvxQV6uaxw0QS6iPwFe0oKCXffzem5cwGoe89wmnzwPpZ69YwNJjWexcXCne3uZGXESnqG9cThdDB/33x6L+vNykMrcTqdRkcUEREREZFKogJdRMrM6XRqAl1EKlTuTz8RFxVF3k/bcfHyouGbbxD06KOYLBajo0ktEuQZxPQu05nTfQ5hfmGcPnOaJ795kqGrh7I/bb/R8UREREREpBKoQBeRMkuzpWF32AEI9Ai88Bf0PlugawJdpNZzOp2c+nAuCXcNpTD1JG4tW9J08SJ8u3UzOprUYp3rd2ZJ7yU8csUjeFg82JGyg9tibmP6j9PJzs82Op6IiIiIiFQgFegiUmbF0+cB7gFYzdYLf0GfsytcspNBvxYvUmsVZueQ+MhYUv77XygsxLdXL5oumI9bWJjR0USwmq0Mu3gYKyNW0i20G4XOQj75/RN6L+9N7OFYrXUREREREamhVKCLSJmV6/5zAK+za2Acdsg9XT6vKSLViu3QIeJvu42s1avBaiX4qUk0eGk6Lp6eRkcTOUeIVwiv3PAKs26eRahvKCfzTjJxy0SGrx3OofRDRscTEREREZFypgJdRMosObdo1Uq57D8HsLiCZ92i29qDLlLrZK5aRdyA28g/fBhLcDChH39EQHQ0JpPJ6Ggif+uahtewtM9SHr7sYdzN7vyY9CP9V/Znxk8zyLHnGB1PRERERETKiQp0ESmzcj1AtFjJHnQV6CK1hdNuJ+mFF0h8ZCzO3Fw8r7qKsKVL8LzsMqOjiZSKq9mVEZeMYHnEcm5qfBMFzgLm/jaXPsv7sDp+tda6iIiIiIjUACrQRaTMigv0QM9yOEC02B/3oItIjWdPTiHhrqGkffwJAHVHjKDJnNlY6tY1OJlI2TX0bsjrN73OzK4zaezTmJTcFMZvHs+96+7lcMZho+OJiIiIiMgFUIEuImVWvMKl3HaggybQRWqRnG3biIuKIm/HDly8vWk08y2Cxo3FZLEYHU3kgnRp1IVlfZfxwKUP4GZ24/sT3xO1MorXtr9Grj3X6HgiIiIiInIeVKCLSJml5qYC5bzCRRPoIjWe0+nk1PsfcOTuYRSePIlbq1aELVmMT9euRkcTKTduZjfu73A/y/ou4/pG11PgKOD9X9+n74q+rEtYp7UuIiIiIiLVjAp0ESkz7UAXkbIqzM4m8eHRpLz0EhQW4te3D00XzMc1NNToaCIVorFPY97q+hZv3vQmDb0bkpSTxNhNY7l//f0kZCYYHU9EREREREpJBbqIlImt0Ea6LR0o7xUuZ8t4TaCL1Di2AweI7z+ArHXrwGolZPLT1J82DRcPD6OjiVS4GxrfwLK+y7jvkvuwulj59vi3RK6I5I0db5BXkGd0PBERERER+Rcq0EWkTIqnz93Mbvi6+pbfC/toAl2kJsqIjSXutoHkx8djCQmh6aef4D9oECaTyehoIpXGw+LBg5c9yPK+y/lPw/9gd9iZ/ctsIpZHsPHIRq11ERERERGpwlSgi0iZ/HF9S7kWYN5/2IGuIkGk2nM6HKS8/jrHxz2KMy8Pr2uuJmzpEjw6dDA6mohhmvg24Z2u7/DaDa9R36s+x3OOM/qr0YzaMIqjmUeNjiciIiIiIn9BBbqIlEmF7D+H/02g23PBllW+ry0ilcqRl0fiI2M59c67ANS9ZziNZ8/GEhBgcDIR45lMJrqGdmV53+WMaD8Ci4uFLYlbiFgRwdu73uZMwRmjI4qIiIiIyB+oQBeRMqmwAt3VC1x9im5rD7pItWVPTiHhziFkrVkDViv1X3iBoEcfxWQ2Gx1NpErxtHry8OUPs7TPUq6ufzX5jnze+fkdIlZEsPnoZqPjiYiIiIjIWSrQRaRMknOLyu1yPUC0mM/Z19QedJFqKe+334gfMIAzv/6KuU4dQj/8gDr9Io2OJVKlhfmFMavbLGZcP4MgzyASsxN5cOODPLTxIY5lHTM6noiIiIhIracCXUTKpMIm0AG8z65x0QS6SLWTuXYtCdGDKUhJwbVFc5ouWojnlVcaHUukWjCZTHRv2p2YiBjuvvhuLCYLm45uImJFBO/+/C62QpvREUVEREREai0V6CJSJhVaoGsCXaTacTqdnHx3FokPj8Z55gxe111H03nzcG3c2OhoItWOp9WTsVeMZUmfJXQK6YSt0MbMXTPpt6If3yR+Y3Q8EREREZFaSQW6iJRJcYFeIStcSibQVaCLVAcOm43jjz1G6muvAeB/5500fudtzD4+BicTqd6a1WnGnO5zmN5lOoEegRzJOsL96+9nzFdjiMuIMzqeiIiIiEitogJdRErN6XRW0gS6VriIVHUFp05xZOjdZK6MAbOZkGcmE/LkE5gsFqOjidQIJpOJnmE9WRmxkiHthmA2mdlwZAMRKyKY8PUEDqYdNDqiiIiIiEitoAJdREotzZaG3WEHINAjsPwvoAl0kWrhzL79xA+4jbydO3Hx9aXJ7Pfwv/12o2OJ1Ejert6M7zieRb0XcUPjG3A4HayKW0XkykjGbhrL3tN7jY4oIiIiIlKjqUAXkVIrnj4PcA/AaraW/wU0gS5S5WVt2kTCoEHYjx/HGtqEpvPn43XNNUbHEqnxWvq35M2b3mRR70V0C+0GwLqEdQyIGcBDGx7i15O/GpxQRERERKRmUoEuIqVWofvPQRPoIlWY0+nk1Ny5HHtgFI7cXDw7daLp/Pm4NQszOppIrdImoA2v3PAKS/sspWfTnpgwsenYJgbFDmLk+pHsStlldEQRERERkRpFBbqIlFpybtFkeIXsP4f/TaCfyQB7XsVcQ0TKzJmfT9LTk0mZ9l9wOKgzoD9N5szG4u9vdDSRWqulf0umXz+dFREr6NO8D2aTmW8Tv+XOVXdyz5p7+DHpR6MjioiIiIjUCCrQRaTUKvQAUQD3OmB2K7qdrTUuIlVBYXo6R+4ZQfqiRWAyETTxMUKmTMHk6mp0NBEBwvzCeP7a54mJiCGqZRQWk4Ufkn5g2Jph3LXqLrYe34rT6TQ6poiIiIhItaUCXURKrbhAD/SsgANEAUwm7UEXqUJsh+OIGziQ3G3bcPH0pNE7b1N36FBMJpPR0UTk/2ns25hnrnmG2H6xDGw9EKuLlR0pO7hv3X0M/nIwXx/7WkW6iIiIiMh5UIEuIqVWvMKlwnagg/agi1QROVu3En/77dgTjmBt0IDQefPwueEGo2OJyL9o4N2ASVdNYlW/VQxuOxg3sxu7T+5m1IZRDPxiIBuObMDhdBgdU0RERESk2lCBLiKllpqbClTgChfQBLpIFZA2fz5HRtyLIzMTj0svpemihbi3bmV0LBEpg2CvYB7r9Biro1Zz90V342HxYM/pPYz5agz9Y/qzOn41hY5Co2OKiIiIiFR5KtBFpNQqfAc6aAJdxEDOggKSnn+BpGeehcJCfHv3pslHc7HUrWt0NBE5T/U86jH2yrGsiVrDiPYj8LJ6cSDtAOM3jydyZSRfHP6CAkeB0TFFRERERKosFegiUiq2QhvptnSggle4aAJdxBCFWVkcvf8B0j75BIDAMWNoMP2/uLi5GZxMRMqDv7s/D1/+MGui1vBAhwfwcfUhLiOOx7c8Tt/lfVl2YBl2h93omCIiIiIiVY4KdBEpleLpczezG76uvhV3IU2gi1S6/KNHiR80iJwtWzC5u9Pw9depN/I+HRYqUgP5uflx/6X3szZqLQ9f9jB13OpwJOsIT299mt7LerNw30LyC/ONjikiIiIiUmWoQBeRUvnj+pYKLdV8zhbomkAXqRS5P/1E/G0DyT94CEtQEKGffopvj+5GxxKRCubt6s2IS0awJmoN464YR133uprwAIMAACAASURBVCRmJzL1+6ncuvRWPt/zObZCm9ExRUREREQMpwJdREqlUvafA3ifXeGSrQJdpKKlL1tOwt3DKExLw/2ii2i6aCEeF19kdCwRqUSeVk+GXjyU1VGrmdhpIkEeQSTnJvPithe5ZcktfPTbR+Tac42OKSIiIiJiGBXoIlIqlVagF0+g56RCoQ41E6kIToeDlBkzOPH442C349OjB6GffoI1uALPNxCRKs3d4k5022i+jPqSSZ0nUd+rPifzTvLyTy/Tc2lP3v35XU6fOW10TBERERGRSqcCXURKJTm3aCK8Qg8QBfCsByYz4Cwq0UWkXDlycjj28MOcmj0HgLr3j6Thq6/g4uFhcDIRqQrczG4MbDOQ2MhYnrn6GRp5N+L0mdPM3DWTbou6MXnrZPan7Tc6poiIiIhIpVGBLiKlUmkT6C4u4H32GjpIVKRc2U+cID56MNnrN2BydaXBS9MJGj0ak4u+HRCRc1nNVqJaRRETGcO066ZxUd2LyHfks/TAUqJWRnHP2nvYfHQzDqfD6KgiIiIiIhXKYnQAEakeKq1Ah6I96FkndJCoSDnK272bo6NGUZh6EnPdujR66008L7vM6FgiUsVZXCyENwvn1rBb+Tn1Zz75/RPWH1nPDyd+4IcTPxDqG0p022j6Nu+Lp9XT6LgiIiIiIuVOI2ciUirFBXqFr3CB/+1B1wS6SLnIXL2ahDuHUJh6ErdWrQhbuEDluYiUiclk4tKgS5lxwwxW9VvF0IuG4mP1ISEzgRd+eIGbF93MjJ9mcCL7hNFRRURERETKlQp0EflXTqez8ifQQRPoIhfI6XRyctZ7JI55BKfNhvf11xP6+edYGzY0OpqIVGMNvBsw7spxrB+wnic6P0GobyhZ9izm/jaXnkt7Mm7TOHal7MLpdBodVURERETkgmmFi4j8qzRbGnaHHYBAj8CKv6Am0EUumDM/nxPPPEvG0qUA+A+5k+DHHsNkNhucTERqCk+rJ4PaDGJg64F8k/gNH//+MT+c+IG1CWtZm7CWi+tezOB2g+ke2h2r2Wp0XBERERGR86IJdBH5V8XT5wHuAZXzH2BNoItckML0dI7cM6KoPHdxIfipSYQ88YTKcxGpEC4mF7o06sKc7nNY0mcJ/Vr2w9XFlV9P/crELRO5ZcktzN49m/Qz6UZHFREREREpMxXoIvKvKnX/OWgCXeQC5CckEH/7IHK3bcPF05PG775DQHS00bFEpJZo5d+KZ695lnUD1vHgpQ9Sz6MeKXkpvLHzDW5efDPPfvcsh9IPGR1TRERERKTUVKCLyL9Kzi2aBK+U/ecA3mcLdE2gi5RJ7vbtxA+8nfz4eCz16xM673O8u3QxOpaI1EIB7gHc1+E+1kat5YVrX6BtQFtshTYW719MxIoI7lt3H1uObcHhdBgdVURERETkH2kHuoj8q0o9QBTA5+yke3YyOJ1gMlXOdUWqsYyYGE488SROux339u1p/PZMLIGVcGaBiMg/sJqt9G7em17NerEjZQef/v4pG49uZOvxrWw9vpUwvzAGtx1Mr2a98LR6Gh1XRERERORPNIEuIv+quEAP9KykMs7rbFHvsEPu6cq5pkg15XQ6SX3zLY6Pn4DTbsene3dCP/5I5bmIVCkmk4krgq/g1RtfJTYyliHthuBt9SYuI46p30+l2+JuvLr9VZJytL5NRERERKoWFegi8q+OZx8HIMQzpHIuaHEFz7pFt7UHXeRvOWw2jj86npMzZwJQd8Q9NHztVVw8PAxOJiLy9xr5NGJ8x/GsH7CeiZ0m0tinMZn5mXzw6wfcsuQWxm8ez+7U3UbHFBEREREBVKCLyL9wOp3sT9sPQEv/lpV34ZI96CrQRf5KwenTHLl7GJmxsWCxEDJ1CkHjxmFy0Zd2EakevKxeRLeNJiYihjdufINOIZ0odBayOn410V9GE/1lNF8e/hJ7od3oqCIiIiJSi2kHuoj8o9S8VE6fOY3ZZKZFnRaVd2GfYEj5rWgPuoicw3b4MEfvG4n96FFcfHxo9MbreF19tdGxRETOi9nFzI1NbuTGJjey7/Q+Pt3zKbGHY9mdupvdqbuZ/uN0olpFMaDVAEK8Kum34UREREREztKYmoj8o72n9wIQ5heGu8W98i6sCXSRv5Tz/ffE3z4I+9GjWBs1oun8eSrPRaTGaB3Qmqn/mcra/mt54NIHCPQI5NSZU7y3+z1uWXILj3z1CN+f+B6n02l0VBERERGpJVSgi8g/Ki7QWwe0rtwL+wQXvdcEukiJ9CVLOHLPCByZmXhcdhlNFy7ArXlzo2OJiJS7eh71uL/D/azpv4aXr3+ZjiEdKXQWsv7IekasHUHfFX35bM9nZOVnGR1VRERERGo4Fegi8o+KC/Q2/m0q98KaQBcp4XQ4SJkxgxNPToKCAnzDw2ky90MsAQFGRxMRqVBWFys9mvbggx4fsKzPMga2HoinxZO4jDimbZtG10VdmfrdVA6kHTA6qoiIiIjUUCrQReQf7Tu9D9AEuohRHHl5JI55hFOz5wBQ74EHaPDyS7i4uRmcTESkcrXwb8GkqyaxYcAGnuj8BM39mpNXkMfC/Qvpt7IfQ1cPZXXcah06KiIiIiLlSoeIisjfyrHncCTrCABtAjSBLlLZClJTOTrqQc7s3o3JaqX+88/h16eP0bFERAzl7erNoDaDuL317fyU/BPz9s5j45GNbE/ezvbk7dTzqEf/Vv3p37I/wV7BRscVERERkWpOBbqI/K39afsBCPYMxt/dv3Iv/scJdKcTTKbKvb6Iwc7s38/RkSMpOH4Cc506NHrrTTyvvNLoWCIiVYbJZKJjSEc6hnQkOSeZxQcWs3j/Yk7mneTdn99l9u7Z3NTkJm5vfTsdQzpi0vcSIiIiInIetMJFRP7WnlN7AAOmz+F/E+j2XLDpgDCpXbK3fEPCoDsoOH4C16ZNabpgvspzEZF/EOwVzKhLR7E2ai0vdXmJK4KvoNBZyLqEdQxfO5zIFZHM2zuP7Pxso6OKiIiISDWjAl1E/ta+NIP2nwO4eoKbb9Ft7UGXWiRt3jyOjhyJIycHz06daDp/Hq6hoUbHEhGpFqxmK7eE3cLcW+aypM8Sbmt1Gx4WDw5lHOKFH16g66KuPPf9cxxMO2h0VBERERGpJlSgi8jf2nt6L2DQBDqAd1DRe+1Bl1rAWVhI8ovTSHp2ChQW4hcRQZM5szHXqWN0NBGRaqmVfyueuvopNgzYwMROEwnzCyO3IJcF+xYQuTKSYWuGsSZ+DXaHDh0VERERkb+nHegi8pfsDnvJdJZxBXoInDqoCXSp8Rw5OSQ+Op7sr74CIHDMGOred6/29YqIlAMfVx+i20ZzR5s72Ja0jfl75/PV0a/4MelHfkz6kSCPoKJDR1v1J9Az0Oi4IiIiIlLFqEAXkb8UlxFHviMfb6s3Db0bGhOi+CBRTaBLDWZPSuLo/Q9g27MHk5sbDaa9iG/PnkbHEhGpcUwmE53rd6Zz/c4k5SSxaP8iluxfQkpeCm///Dbv7X6PrqFdGdh6IFcGX6kfYoqIiIgIoBUuIvI39p0u2n/eyr8VLiaD/qkoPkg064Qx1xepYGd+/5342wZi27MHc926hH40V+W5iEglCPEK4aHLHmJd/3VM7zKdy4Mup8BZwJr4NQxbM4yomCiWHliKrdBmdFQRERERMZgKdBH5S4bvPweo27zofcoe4zKIVJCsjRuJjx5MQUoKri2a03TBAjwuvdToWCIitYrVbKVnWE8+6vkRi3svpn+r/nhYPDiQdoDJWyfTfXF3Zu6aycm8k0ZHFRERERGDqEAXkb9UPIFuaIHe4LKi98d3gNNpXA6RcuR0Ojk1dy7HRj2IMy8Pr2uuoem8ebg2MmhVkoiIANA6oDWTr57M+gHrGXfFOOp71ef0mdO8+/O7dF/cnSe/ebLk+yMRERERqT1UoIvInzidTvamVYEJ9OCLwOwKeWmQnmBcDpFy4iwoIGnKFFKm/RecTuoMHEjjWe9i9vExOpqIiJzl6+rL0IuH8mW/L3n5+pfpENgBu8POykMr6R/Tn+FrhrPp6CYcTofRUUVERESkEugQURH5k6ScJDJsGVhMFprXaW5cEItbUYl+fCck7gD/psZlEblADpuNxHHjyF6/AUwmgiZMIGDoXTqkTkSkirK4WOjRtAc9mvZgd+puPv39U9YmrGVb0ja2JW2jiU8TottGE9EiAk+rp9FxRURERKSCaAJdRP6keP95szrNcDW7GhumZI3LTmNziFyAwuxsjo64l+z1GzC5utLwjdepe/dQleciItXEJYGXMP366ayOWs3dF9+Nj6sPR7KO8OK2F7l58c288tMrnMjWoeciIiIiNZEKdBH5kyqxvqVYg8uL3qtAl2qq4NQpEoYMIXfbNly8vGg8Zza+3boZHUtERM5DiFcIY68Yy/r+63mi8xOE+oaSlZ/Fh799SM+lPXl086P8nPqz0TFFREREpBypQBeRP6kSB4gWK5lA3wUO7RqV6iX/WCIJd0Rj+30P5rp1Cf3kY7w6dTI6loiIXCBPqyeD2gxiZcRK3rrpLTqHdKbQWcia+DUM/nIw0V9Gszp+NQWOAqOjioiIiMgFUoEuIn9SvMKlShTogW3A4gH5WXDqoNFpRErNduAACXfcQX5CAtYGDWj62ae4t2tndCwRESlHLiYXrm98PXN6zGFx78VEtIjA6mJld+puxm8eT8+lPfnw1w/JzM80OqqIiIiInCcV6CJyjsz8TBKzEwFo5d/K4DSA2QL1Lym6rTUuUk3k7txJ/OA7KUhJwa1lC0LnfY5r06ZGxxIRkQrUOqA1U/8zlbX913J/h/sJcA8gKSeJV7a/ws2Lbub5758nITPB6JgiIiIiUkYq0EXkHMXrWxp4NcDPzc/gNGeV7EHfYWwOkVLI3vINR4YNx5GRgcellxL6ySdYg4ONjiUiIpWknkc9Hrj0Adb2X8uUa6bQ0r8leQV5zN83n97LevPQhofYdmIbTqfT6KgiIiIiUgoq0EXkHMUFeuuA1gYn+YOSPeiaQJeqLSM2lqMPPIAzLw+v666jyQfvY65Tx+hYIiJiADezG5EtI1nSewmzu8/m+kbX48TJpmObGL52OANiBrD84HLyC/ONjioiIiIi/0AFuoico3j/eduAtgYn+YOGZyfQT+yGQh3GJVXT6c8/5/ij48Fuxzc8nMYz38LF09PoWCIiYjCTycRV9a/ira5vERMRw8DWA/GweLAvbR9PffsU3Rd3552f3+FU3imjo4qIiIjIX1CBLiLnKC7Qq9QEekBzcPOFgjxI3Wt0GpFzOJ1OUt+aSfKUqeB04h8dTYOXpmNydTU6moiIVDFN/Zoy6apJrOu/jkeueIRgz2BOnTnF27vepvvi7jz17VPsStml9S4iIiIiVYgKdBEpYS+0cyjjEABtAtoYnOYPXFygfoei29qDLlWI0+Eg+bnnOfnWWwDUe/BBgic9iclFX15FROTv+bn5MeziYayKWsX0LtNpX689+Y58lh9czp2r7qTvir68/8v7pOamGh1VREREpNbT//BFpMShjEMUOArwcfWhvld9o+OcS3vQpYpx5udzfPwE0j77DEwmgp+aROCDozCZTEZHExGRasLqYqVnWE8+D/+cT3p+Qp/mffCweBCXEcdrO16j2+JujNowinUJ67AX2o2OKyIiIlIrWYwOICJVR/H6ljYBbapeCVi8Bz1RE+hiPEduLsdGjyFnyxawWGgwbRp+vcKNjiUiItXYpUGXcmnQpTzR+QnWxK9h+cHl7EzZydfHvubrY1/j7+ZPeLNwIlpEVK1VeyIiIiI1nAp0ESnxxwK9yimeQE/+DQpsYHEzNo/UWoXp6RwdeT95u3Zh8vCg0Ruv433ddUbHEhGRGsLL6kW/lv3o17IfcRlxrDi4gphDMaTkpfDpnk/5dM+ntA1oS0SLCMKbhePn5md0ZBEREZEaTStcRKRElS7Q64SCRwA47JD8q9FppJayJ6eQcOcQ8nbtwsXPjyYfvK/yXEREKkyYXxhjrhjDmv5rmNl1Jt1Cu2FxsbDn9B5e3PYiNy68kXGbxvFN4jcUOgqNjisiIiJSI2kCXUQAcDqd7Du9D4DW/lXw14JNpqIp9EMbivagN7zC6ERSy+THx3Nk+D3YExOxBAXR5P05uLVsaXQsERGpBSwuFro06kKXRl1IO5PGl3Ffsvzgcvae3svahLWsTVhLkGcQfZr3IaJFBKG+oUZHFhEREakxNIEuIgAkZieSbc/G6mKlWZ1mRsf5ayV70HWQqFSuM7//Tnz0YOyJiVhDmxD6+ecqz0VExBD+7v5Et41mUe9FLOq9iOi20fi5+ZGSm8KcX+bQa1kv7lp1F8sOLCPHnmN0XBEREZFqTwW6iACUTJ+3qNMCq4vV4DR/o3gP+nEV6FJ5crZtI2HIXRSeOoVbu7Y0/ewzXBs1NDqWiIgIbQLaMLHTRDYO2MiM62dwbcNrcTG5sCNlB09vfZobF97IpG8m8VPSTzidTqPjioiIiFRLWuEiIgDsOb0HqKL7z4s1ODuBnroH8nPB1dPYPFLjZW3cSOKYR3Dm5+PZsSON3p6J2cfH6FgiIiLncDW70r1pd7o37U5yTjIxh2NYfnA5CZkJrDi0ghWHVtDEpwl9W/SlT/M+hHiFGB1ZREREpNrQBLqIAP+bQG8dUAX3nxfzrQ/eIeB0QNJuo9NIDZe+dBnHHnoYZ34+3l270njObJXnIiJS5QV7BXNP+3uIiYjh454fE9kiEk+LJ0eyjvDmzjfpvrg7I9eNZHXcamyFNqPjioiIiFR5mkAXEQD2pu0FqvgEOhTtQd/3ZdEalyZXGZ1GaqhTH3xIyvTpAPj160f9Kc9isuhLpoiIVB8mk4nLgi7jsqDLmNhpIusS1rHs4DK2J2/n2+Pf8u3xb/F19aVnWE8iW0bSLqAdJpPJ6NgiIiIiVY7aABEh/Uw6STlJALT2r8IT6FC0B33fl5C4w+gkUgM5nU5SX3mFU7PnABAwfBhBjz6qQkFERKo1T6snfVv0pW+LvhzNPMryQ8tZcXAFybnJLNi3gAX7FtDMrxnhzcK5NexWGvk0MjqyiIiISJWhFS4iUjJ93tinMd6u3gan+RfFe9B1kKiUM2dBASeeeqqkPA96dBzB48erPBcRkRqlsW9jHrrsIdZErWHWzbPo2bQnri6uHM44zJs736Tn0p4MWTWEhfsWkn4m3ei4IiIiIobTBLqIlOw/r/LrW6BoAh3g1AE4kwHufsbmkRrBYbNx/NFHyVq3HlxcqD/lWer07290LBERkQpjdjFzTcNruKbhNWTlZ7E+YT2xh2PZlrSNnSk72Zmykxe3vci1Da4lvHk4NzS6AXeLu9GxRURERCqdCnQRYe/pogn0Kr++BcCrLtRpAulH4MTPENbF6ERSzRVmZ3Ns1IPk/vADJquVBq/MwLdbN6NjiYiIVBofVx8iW0YS2TKS5JxkVsWtIjYulr2n97Lp2CY2HduEl9WLrk260qtZLzqFdMLsYjY6toiIiEilUIEuIiUFerWYQIeiKfT0I0V70FWgywUoOH2aoyPu5cxvv+Hi5UWjmTPxuqqz0bFEREQME+wVzNCLhzL04qEcTDtIbFwsXx7+kuM5x1l5aCUrD60k0COQnmE9CW8WTtuAtlp3JiIiIjWadqCL1HK2QhtxGXEAtA6oBhPooD3oUi7sx4+TcEc0Z377DXNAAE0++kjluYiIyB+08G/B6MtHsypqFXNvmcuAVgPwdfUlNS+Vj3//mIFfDKTvir68t/s9jmUdMzquiIiISIUwOZ1Op9EhaoLMzEz8/PzIyMjA19fX6Dgipfbbyd+4PfZ2/N382Txwc/WYIDq8GT7uU7TKZcwvRqeRash26BBHht9DQVISlgb1afL++7iFhRkdS0REpMrLL8znm8RviD0cy6ajm8h35Jc8dlnQZYSHhdOjaQ/quNcxMKWIiIjIPytLl6sVLiK1XMn+84DW1aM8B2hwadH79COQc6poL7pIKeX98itHR4ygMD0d1xbNaTJnDtaQEKNjiYiIVAuuZlduanITNzW56X+Hj8bFsu3E/w4fnbZtGtc2vJbwZuFc3/h6PCweRscWEREROW8q0EVquWq3/xzA3Q/qtoBTB4vWuLS82ehEUk3kbNvGsfsfwJGTg3v79jR+bxYWf3+jY4mIiFRL///w0dXxq/ni8Bd/efhoeLNwOod01uGjIiIiUu2oQBep5fal7QOq0f7zYg0uV4EuZZK1aROJo8fgtNnw7NyZRjNnYvb2MjqWiIhIjRDsFcxdF93FXRfdxaH0Q8QejiX2cOyfDh+9JewWejXrpcNHRUREpNrQIaIitZjD6WDf6aICvW1AW4PTlFGDy4reH99hbA6pFjK+iOXYgw/htNnwvukmGv8fe3ceHld934v/PWf2XTMajaSRNFqwLcsyeMNgHNvUSQMEyA/atHnStLk2kA2cBZK0lDTt07TNTW6bpbdNCQHMUlKa2/y4KYQtcdgMwWbzbsmrpBnto9GMZt/n3D/OzJHGlsEG20cavV/PM885c86Zmc+BBEtvf+bzvf+nDM+JiIgukEtqLsFXVn8Fz33iOTx63aMVi48+1vOYvPjoT/f/FH1TfeCyXERERDSXcRHR84SLiNJ85Iv6cOMvb4RercfuT++GRphHX0rx7wYeuhawNgJfP6J0NTSHhX/+fzD27W8Dogjbxz8Oz//8DlRardJlERERLSi5Qg6vDb+Gp/uexitDryBTyMjnmixNuLr5amxq3oTLGy6HXq1XsFIiIiJaCLiIKBGdlfL888U1i+dXeA4ADZcCKgGIjQLRUcDWqHRFNAcFH3gAEz/4IQDA8ek/Qf23vgWVwC9fERERXWxatRabvZux2bsZ8Wwcv/X/Fs/3P483x97EcHwYjx95HI8feRxGjRHrGtdhU/MmbGzaiHpzvdKlExER0QI3zxIzIjqfyuNb5t38cwDQmYG6LiBwWJqDzgCdZhBFERM//BEmH3gAAFD7hS+g7s6vctYqERHRHGDRWXDzoptx86KbkcwlsXt0N3YO7cTOoZ2YSE3gpcGX8NLgSwCkMYMbmzfi6uarsdy1HIKKfxFOREREFxcDdKIFrNyBvtS5VOFK3ifPqlKAvgdYer3S1dAcIRaLGPu7v8PUz/8PAMD9599A7W23KVwVERERzcakNeHD3g/jw94PQxRF9IZ6sXNoJ14dehUHgwfRG+pFb6gX9x+4H06DExuaNmBT8yas96yHVWdVunwiIiJaABigEy1g8z5Ab1oF7PuZ1IFOBEDM5TByzzcRffppQKVCw7f/Fo5PflLpsoiIiOgsqFQqLKtdhmW1y/DFFV/EZGoSrw2/hp1DO/H6yOsIpUN46uRTeOrkU9CoNFhdv1oa9dK8Ee22dn7TjIiIiC6IOf39t+9+97tYu3YtrFYr3G43br75Zhw9erTimnQ6jW3btqG2thYWiwWf+MQnMD4+XnGN3+/HDTfcAJPJBLfbjT//8z9HPp+vuObll1/G6tWrodfrsWjRIjzyyCMX+vaIFBVMBTGRmoAKKixxLFG6nPfHs0raDu8BuB7ygldMpzH05a9I4blGg6YffJ/hORER0TxWa6zFTYtuwg9+7wfY+amd2H7NdmxZtgVttjbkxTzeHHsT33/7+7jpv2/CDb+8Ad9783t4feR1ZAtZpUsnIiKiKjKnA/RXXnkF27Ztw+7du7Fjxw7kcjlcc801SCQS8jV33XUXfvWrX+EXv/gFXnnlFYyMjOAP//AP5fOFQgE33HADstksXn/9dTz66KN45JFH8Dd/8zfyNf39/bjhhhuwefNm7Nu3D3feeSc++9nP4te//vVFvV+ii+lY6BgAoNXWCpPWpHA171P9ckDQAqkQMOVXuhpSUCEex+DnPo/4yy9Dpdej5d9+DNv1HOtDRERULbSCFlc0XoFvrP0GfvUHv8Izf/AM7l57N65qvApaQYvB2CD+o/c/8IUdX8CGn2/AV1/8Kv7v8f+LieSE0qUTERHRPKcSxfnTtjkxMQG3241XXnkFmzZtQiQSQV1dHR5//HH80R/9EQDgyJEj6Orqwq5du7Bu3To899xzuPHGGzEyMoL6emkF9/vuuw933303JiYmoNPpcPfdd+OZZ57BoUOH5M/61Kc+hampKTz//PNnVVs0GoXdbkckEoHNZjv/N090nj106CH86J0f4dq2a/H9q7+vdDnv30+vBkb3AX/8CND9B0pXQwrIh8MY/NznkT50CILZjJb7fgLT2rVKl0VEREQXSSKXwO6R3dg5LC1EGkwFK84vq12GTc2bsKlpE7pd3VyIlIiIiM4py51XPzlEIhEAgNPpBAC88847yOVy+P3f/335mqVLl8Lr9WLXrl0AgF27duHSSy+Vw3MAuPbaaxGNRnH48GH5mpnvUb6m/B6zyWQyiEajFQ+i+eTI5Dyff15WHuPCOegLUm58HL7PfAbpQ4egdjjgffRRhudEREQLjFlrxkdaP4Jvr/82XvjjF/DzG3+OO1begUtdlwIAeiZ7cN/++/DpZz+Nzf+1Gd967Vt4yf8SR70QERHRWZk3i4gWi0Xceeed+NCHPoTly5cDAMbGxqDT6VBTU1NxbX19PcbGxuRrZobn5fPlc+92TTQaRSqVgtFoPK2e7373u/j2t799fm6OSAFHwlUSoDetBt55WJqDTgtK1u+H/9bbkBsagqa+Ht6HtkN/ySVKl0VEREQKElQCumu70V3bjdtX3I5gKnjaQqRPnnwST558EladFde0XoPr26/Hmvo1UAtqpcsnIiKiOWjeBOjbtm3DoUOH8NprryldCgDgnnvuwde+9jX5eTQaRUtLi4IVEZ29ZC6JgcgAgCoI0Msd6KP7gWIREObVF2vofUofOwb/bbehMBGEttUL7/aHoGtuUrosIiIimmNcRhduBr/9DgAAIABJREFUXnQzbl50M3KFHPYE9uDlwZfxm4HfIJAK4InjT+CJ40+gzliH69qvw/Xt16O7thsqlUrp0omIiGiOmBcB+pe+9CU8/fTT2LlzJ5qbm+XjDQ0NyGazmJqaquhCHx8fR0NDg3zNm2++WfF+4+Pj8rnytnxs5jU2m23W7nMA0Ov10Ov1H/zmiBRwYuoERIioNdTCZXQpXc4HU9cFaAxAJgqETgKuxUpXRBdY6sAB+D/3eRQjEeiXLIF3+4PQ1NUpXRYRERHNcVq1Flc2XokrG6/ENy7/Bt4ZfwfP9j+L3/h+g4nUBB7reQyP9TwGr9WL6zuux8faP4YOe4fSZRMREZHC5nSrpiiK+NKXvoRf/vKXePHFF9He3l5xfs2aNdBqtXjhhRfkY0ePHoXf78dVV10FALjqqqtw8OBBBAIB+ZodO3bAZrNh2bJl8jUz36N8Tfk9iKrNkVCVjG8BALUGaLhM2ucc9KqX2L0b/q23oBiJwLhiBVr//VGG50RERHTO1IIaVzRegb9d/7d4+ZMv4182/ws+1vYxGNQG+GN+3Lf/Ptz03zfhk7/6JB4+9DDGEmNKl0xEREQKmdMd6Nu2bcPjjz+OJ598ElarVZ5ZbrfbYTQaYbfbcdttt+FrX/sanE4nbDYbvvzlL+Oqq67CunXrAADXXHMNli1bhs985jP4x3/8R4yNjeFb3/oWtm3bJneQf/GLX8SPf/xj/MVf/AVuvfVWvPjii/iv//ovPPPMM4rdO9GFVFUBOiDNQR96U5qDftknla6GLpDYCy9g+K6vQcxmYbpqHVp+/GMIZrPSZREREdE8p1PrsNm7GZu9m5HMJfHS4Et4tv9ZvD78OnpDvegN9eKH7/wQa+rX4Pr26/HR1o/CYXAoXTYRERFdJCpRFEWliziTM82de/jhh7F161YAQDqdxte//nX853/+JzKZDK699lrce++98ngWAPD5fLj99tvx8ssvw2w2Y8uWLfje974HjWb67w9efvll3HXXXejp6UFzczP++q//Wv6MsxGNRmG32xGJRGCz2d7X/RJdLH/6zJ/iQPAA/mnTP+G69uuULueD2/9z4JdfAFrWAbf9Wulq6AKIPPUURu75JlAowPL7H0HTD34AgWO0iIiI6AIKp8PY4duBZ/ufxTvj78jHNSoN1jetx8faP4YPt3wYJq1JwSqJiIjo/TiXLHdOB+jzCQN0mi8KxQLWPb4O6UIaT938FNrt7e/9orlu4hjwb2sBjRG4Z0ga60JVI/Qf/4Hxv/8HAID9ppvQ+J1/gErDf8dERER08YwlxvB8//N4tv9Z9IZ65eMGtQG/1/J7uL79emxo2gCtWqtglURERHS2ziXLZQJBtMD4Yj6kC2kYNUZ4rV6lyzk/ahcBOiuQjQHBo0B9t9IV0XkgiiImf3o/Jv75nwEAjj/7M9R/8x6ohDm9fAcRERFVoQZzA7Yu34qty7eiL9KH5/qfw7N9z8If8+P5gefx/MDzsOls+GjrR3F9+/VYU78GakGtdNlERETvqlgUkS+K0Gn4e/a7YYBOtMAcmZTmny92LK6eH+oFAfCsBAZeleagM0Cf90RRROD730do+0MAANcdd8D15S+dcbQXERER0cXSYe/AtpXbcMeKO9Az2YNn+p/B8/3PYyI1gSeOP4Enjj8Bt9GNa9uvxQ3tN2BZ7TL+DENEtECVA+pCUUS+WES+UPm8UDqfL4jI5ovIFgrI5IvSfr44vV+YPpYtSMcz+cL0sVOuKb8uIx8ryOdnvn++KGJNqwNP3L5e6X9UcxoDdKIF5khYCtC7nF0KV3KelQP0kb3A6s8oXQ19AGKhgLG//TamfvELAID77rtRe8tWZYsiIiIiOoVKpUK3qxvdrm58fc3X8c74O3i2/1n8xvcbBFIBPNbzGB7reQxeqxfXd1yPj7V/DB32DqXLJiKqGsWiKAfJ6Zy0zeSLyOSKSOcLyOROP5fOzX5N+Vw2L4XauaKIQinwLlSE4CLyheIpxyqD8JnP58Pg7Gy+qHQJcx4DdKIF5mjoKACg09mpcCXnmWe1tB3Zo2wd9IGI2SyG774bseeeBwQBjX//d6j5xCeULouIiIjoXakFNa5ovAJXNF6Bb175Tfxu+Hd4rv85vDT4EvwxP+7bfx/u238fljiWYFPzJmxq3oTLXJdVzzdCiWjBEUUpIJY7neUwesbzU/YzOakjOlMOsWe9dub5crA98/1nfE5h/ga/WrUKakEFjSCUtiroNIL0UAsV+3qtWtrOdl5TeVyvmfladeXzU67Ra9TQaQQYtBzf8l4YoBMtIKIo4khI6kBf6liqcDXnmWeVtB07BOQzgEavbD10zoqpFIa++lUkdr4KaLVo+qd/gu26a5Uui4iIiOic6NQ6bPZuxmbvZiRzSbw4+CKe638Orw+/jmPhYzgWPoYHDz4Iu96OD3k+hI3NG7HBswE1hhqlSyeiOaZYFJHOF5DKSuM3cnlR2s54ZPMicoUi8sXpfflcQUQuf8rzQlE+li1I3dTS+VPeu/RZ5YA7WyjKwXV5dEhxDnVXawQV9BopbDaUtvqZW40Ag7yvhl4rwFDazjyn0wjQlkPtGSG3RlBBrZaC7pnB92xBePm1Z3qdoAJHe80zDNCJFpBgKohQOgRBJWCRY5HS5ZxfjjbA6ABSYSDQMx2o07xQiMUwePvtSL39DlQGA5r/9V9h2bhB6bKIiIiIPhCT1oQbO27EjR03Yio9hVeHX8WrQ6/itZHXEMlE8Gz/s3i2/1kIKgGXuS7DpuZN2Ni8EZ2OToYrRHNcrlBEKldAOltAKld6lPbTuQJS2WLpWL60Lc44N/2aiuenvFdmHo3W0KpVUjCtqexw1mvLXdSCfL7cNV3ugNbPcq1OLYXahhkBuF6rhmHG+8w8p1Gzi5ouHAboRAtIb6gXANBma4NRY1S4mvNMpZJC85MvSguJMkCfN/KhEPyf/SwyPb0QrFa03PcTmNasUbosIiIiovOqxlCDj1/ycXz8ko8jX8zjwMQB7BzaiZ3DO3E8fBz7JvZh38Q+/Mvef4Hb5MbGpo3Y1LwJ6xrXwaQ1KV0+0byWzReRyOSRyOaRyBRKW2k/Wd7PFuRj09dKx5PZ6ePl0DtXuLjt1zq1AK1aBY1agFYtQKdWQauR9uXnpX2t5pTnpddOn1eV3m/6nE5zynO1FEpPB9wzQnFNKRBXT4fegsC/9KPqxQCdaAEpzz9f6qyy8S1lntVSgD6yV+lK6Czlxsbgv/U2ZPv6oHY64d3+IAxdVbbALREREdEpNIIGq+tXY3X9aty55k6Mxkfl7vQ3xt5AIBnAE8efwBPHn4BW0OLy+svl2elem1fp8okuqGJRRDJXDrPzSGYLiGfySGbziGcKSGbypeeFylD8lP1kdjoov5Bht0oFmLRqGHVSt7Rxxr5JV3quVcMwY7/yWgFGrQbGivNC5Xtp1AyoiRTEAJ1oAZHnn1dtgF7qOmeAPi/kg0H4t2xF1ueDprER3u3boe9oV7osIiIioouu0dKIT3Z+Ep/s/CQyhQzeGntL6k4f2onh+DB2je7CrtFd+F9v/S+02dqwsXkjNjZtxOX1l0Or1ipdPi1wmXwByUxBDrXLYbfczX1awD3d7T39ulI4npXe40LRawSY9RqYdGpYSluzXgOzTiNt9eXn08dN+hn7ulIorlPDpNXAoJO6rzlyiai6MUAnWkCOhqUO9E5np8KVXCBNq6VtoBfIJgEdv+o6VxViMfg/93lkfT5oPR60Pvbv0DY1KV0WERERkeL0aj02NG3AhqYNuOeKe9Af7cerQ69i59BO7Bnfg4HoAAZ6BvBYz2MwaUy4ynMVNjVvwoamDXCb3EqXT3NUoSgimc0jlS0gKT/y8n4qJ4Xc8vmcFG6XzyWzUkieLO2nstPjTC5Ud7egghxsm/TTgbe01VQG3Xo1TDpN5TV6DSyl4+XQXMs52UT0PjBAJ1ogErkEfFEfgCruQLc2ApZ6ID4OjB0EvFcqXRHNophKYfD225Hp7YW6thbeh7YzPCciIiKahUqlQoe9Ax32Dmzp3oJ4No5do7uwc2gnXh16FZPpSbzgfwEv+F8AAHQ5u7CxWZqdvrx2OdSCWuE7oA+qWBQRS+cRSeXkx1QqW/E8msohls7LofhsIfnFWIzSoBWmA+9ZQuzKjm916VxlKG6ZEZbrNezsJqK5gQE60QJxLHwMAOA2ueE0OBWu5gJRqaQ56Meek8a4MECfc8RcDsN33oXU2+9AsFrhffAB6NralC6LiIiIaF6w6Cz4aOtH8dHWj6IoFtE72Yudw1KYfih4CL2hXvSGenH/gfvh0DvwoaYPYVPzJqz3rIddb1e6/AVLFEXEM3lMJacD7+kwPFcRhkeSlc+j6RzE89jgrSp1dRt10/O5y4F3eV8aTyKdN53hnLxfCsRNWjU07O4moirFAJ1ogaj6+edlnlWlAH2P0pXQKcRiESP3fBPxV16BymBAy30/4YKhRERERO+ToBLQ7epGt6sbt6+4HZOpSbw2/BpeHX4Vrw+/jnAmjKf7nsbTfU9L19Z248rGK7GucR1WuldCr9YrfQtziiiKyOSLSOcKSOdK2/yM/VxBPp/JFUvnZp6XjlV0iyezpRA8j0Lxg6XgBq0Au1GLGqMOdqMWNqMW9tKjxqSFpTTGxKjTnDH8NunU7OomInofGKATLRBHQ6X5544qnX9eVp6DzoVE5xRRFDH+D99B9OmnAY0Gzf/7n2Fas0bpsoiIiIiqRq2xFjctugk3LboJuWIO+wL75NnpJyMncTB4EAeDB/HgwQehV+uxyr0K6xrXYV3jOix1Lp1T415EUUS2UEQ6V0RmRjhdDqozpwTb6Xz5usIsIfiMAHyW4FsOxS/CiBOdRpgOvWcE4LYZQbj9lGC8fE6vmTv/foiIFhoG6EQLxILqQAeA4HEgHQUMNmXrIQBA8F9/jPDjjwMqFTzf+x4sV1+tdElEREREVUsraLG2YS3WNqzF1y7/GsYSY3hj9A28MfoGdo/uxkRqArtHd2P36G4AgE1nw5WNV+LKhiuxzrMOXqv3rLqUM/kCoqk8YmmpyzqWzs14nkM8na8IsE8NrWcG3zND8ky+eF7HlpwrtaCCQSPAoFXDoFVDrxVg0Khh0M44Jp8XoNeo5X2LXoMak64iCC+H4QYtQ3AiovmIATrRApAr5nA8fBzAAgjQzS7A7gUifmB0P9C+UemKFrzQv/87gvfeCwBo+Ju/hv3GGxSuiIiIiGhhaTA3yN3poiiiL9KHXSO78bvhXXgn8Bai2Sh2+HZgh28HAMCqqUOj7lI4hW5Yil3IZE2IpfPyYpXRdB7RdA7Zi9C1rVLhLMLr0vMZ+/rSeYNmZgA+830qg++Z763lLG8iIpqBATrRAjAQGUC2mIVZa0aztVnpci48z0opQB/ZwwBdYVP//d8Y/5/fBQDUffUrcPzJnyhcEREREVH1EEURsUwekWQO4WQWU0lpUcqp0n44mZUXpYymcxUheCxTA+BjAK6BYBiGxnwcavMJqE1+xPITiOVfBPAiAKCQrkchsQj55GIUku1AsXJ+ulWvgc2ohdWggc0gba0GDSwGDYxa9SzB93uF39PHtGoVZ3YTEZGiGKATLQDl8S2djk4IqgXQTdG0Guh9inPQFRZ78UWM/tW3AADOLVtQ+8UvKlwRERER0dwkiiIS2QLCCWnRyYowPJHFVGo6DD91/4MuTqnXaGHVLIZN6IJV1MJcKEDU9SOp7kVY7EE43w+1YRxqwzh0tb+DWqXGIns31rjX4kNNV+GKxlUwaHXn6Z8EERHR3MMAnWgBkBcQdVb5AqJl5Tnow3uUrWMBS7zxJobvvAsoFGC/+Wa47/4Ldg4RERFRVSoWRSRzBSQzecQzeSSzhdI2j3im8ng0VdkhPnM//wGCcINWgKM0d7vGpIXDpEONSYsak05erPLUDvHy89kXp9wk74XSIbw59qY0P31kN4biQzg6dQBHpw7g8WPbYdQYsaZ+jbwg6WLH4oXRtENERAsGA3SiBWDBLCBa1rhS2k75gGQIMDmVrWeBSR06jKE77oCYzcLykY+g8R/+HiqBv0QRERHR3JDNFxHP5JHI5JHI5pHIFJCYGXhnS4F3plA6n0ciW7omc0o4npWC8fNFpxHgKAXgduN0EG4vh+KlgLymdLx83YVcnNJpcOK6tutwXdt1AICh2JC8GOkbo28gnAnjteHX8Nrwa/L1VzZcKS1K2nglmixNbKQgIqJ5jQE6UZUTRRFHwqURLgulA91YAzgvAUInpTnoi35f6YoWjExfHwY/9zkUEwmYrrwSTT/8AVQa/lFDRERE50exKCKenbGYpbyo5Yznmcrj0XQesXQO0ZS0zVyghS8FFWDWa2DWaWDWq0/bN+mkueA1FWF4uVNcOnYhg/DzpdnajGZrMz6x5BMoikUcDx/H7tHd2DW6C3vG9yCUDuG5gefw3MBzAIA6Yx1W1K2QHu4VWFa7DHq1/j0+hYiIaO5gqkFU5caT44hkItCoNFhUs0jpci6eptWlAH0vA/SLJDcyAv+tt6EQDsOwfDma/+3fIOj5yxERERFVyhWKmIhlEIhlEEnlEEu/Sxh+yvN4Ng/xg438lhm0Asw6DUx6dSnoLj106sptad+k18Ci18CkU5e2ped66bleIyy4TmtBJaDT2YlOZye2dG9BrpDD/on9eGNMGvdyMHgQE6kJ/Nb/W/zW/1sAgEbQoMvZJYfqK90r0WBuUPhOiIiIzowBOlGVK49vaa9pX1idHp5VwMFfAMNcSPRiyE9Own/rbciPjUHX0YGWB+6H2mJWuiwiIiK6iLL5IibiGYxH0whEMwjEpO14NI1ATNpOxDKYTGQ/8GfpNAJsBi1sBk3FPO/yfG+rfG6W2d8GLcx6NTRqjpg737RqLS5vuByXN1yObSu3IZlLomeyB/sn9suPUDqEg8GDOBg8iJ/1/gwA4Da5p7vU61agq7ZrYf3uQkREcxoDdKIqJ88/dyyQ+edlntXSdoQB+oVWiMcx+LnPIzswAI2nEd7tD0LjcChdFhEREZ0nmXxB7hgPzAjDA9EMxmccC51DMK5Vq1Bn0cNu0s0IuitD7jMF41aDZl6MOiHApDXJgTogjZccig9JYXpACtSPhY8hkAxgh28Hdvh2AAC0ghZdzi5cVncZVrhXYGUdu9SJiEg5DNCJqlw5QF8w88/LGi4FVAIQGwFiY4CVP3BfCMV0GkO334F0Tw/UTie827dD29iodFlERER0FrL5IgKxNMajpwTjM7rFx6NphJO5s35PrVoFt9UAt02P+vLWZkCdVdq6S9saoxaCsLDGnRCgUqnQYm1Bi7UFN3bcCABI5pI4PHlY7lA/MHEAoXQIB4IHcCB44Ixd6stql0Gn1il5O0REtEAwQCeqcuUAvcvZpXAlF5neArg6gYleqQu982NKV1R1xFwOw3d9Dcm33oJgsaDlgfuhb29XuiwiIqIFL18oYjKRxXhUCselbnFpfyyalkPyc+kY16kFuG16OQB3W/VwzwjEy4F5jUm74OaA0wdj0pqwtmEt1jasBVDqUo8NYd/EPjlQP2OXem1XRajOLnUiIroQGKATVbFoNorh+DCABdiBDkgLiU70AsN7GKCfZ2KxiNFvfQvxl16CSq9Hy0/uhbG7W+myiIiIqlqxKCKczEqheGw6FB+v2KYRjGdQPMuFNnUaoSIUn61bvN6mh93IYJwuDpVKhRZbC1psLfj4JR8HcEqXemn0SzgTxoGJAzgwcQCP4TEAQIO5AZe5LsOKuhVY5V6Fpc6l0Kq1St4OERFVAQboRFXsWOgYAKDR3Ai73q5wNQrwrAL2/QfnoJ9noihi/LvfQ+TJpwC1Gk3//COY1q5VuiwiIqJ5K5svIprOIZzITgfhMxbgLAfkgVgaucLZJeNqQZoxXm83oH5GEO62GeR9dozTfDFbl/pgbLBicdJj4WMYS4xhLDGG3/h+AwDQq/Xoru3GSvdKrKxbiRXuFXAanEreChERzUMM0Imq2IKdf14mLyS6BxBFgL8cnhfBe+9F+DGpy8fzve/CunmzwhUREREpSxRFJLMFRFI5RFI5RMvbdL7iWDSVQzSdm3FMOp/KFc7p81wWHdxWAxrspVDcOiMUL41TqTXroeaMcapSKpUKXpsXXpt31i71fQFp/MtUZgp7AnuwJ7BHfm2rrRUr61bKoXpHTQcElaDUrRAR0TzAAJ2oipUD9KXOpQpXopD6bkDQAMlJIDII1HiVrmjeCz32MwT/9ccAgPq/+ivYP/5xhSsiIiI6f5LZPCbjWYQSWTnoLofckRnhd/SUkDyayiF/tjNT3oXdqJ0Owa0GNNin9+tnLMapVTPsIzrVbF3qvqgPewN75VD9ZOQkfFEffFEfnjz5JADAqrXiMvdlWFm3Eqvcq3Cp61KYtCYlb4WIiOYYBuhEVexo+CiABRygaw1SiD66X5qDzgD9A4n86lcY/853AACuL30Jzs/8mcIVERERvTtRFBFJ5RCMZzARy2IykUEwlsFkIotgPINgvLzNYDKeRTJ7bp3gp9KqVbAbtbAZtLAZtdK+UQu7USMfnz6mrThmMWjYMU50HqlUKrTZ29Bmb8MfLP4DAEAkE8GBiQNyqH4weBCxXAy/G/4dfjf8OwCAoBLQ6ejEiroVUpe6eyU8Zg9HHRERLWAM0ImqVK6Qw4mpEwAWcIAOSHPQR/dLc9C7b1a6mnkr9tJLGPnLewAAjs98Bq5tdyhcERERLVS5QhGhRBYT5SA8lpGC8bi0H5xxbDKePefOcL1GgNOsk4PucsAtPa8Mwu2myvMGrcCQjWgOs+vt2Ni8ERubNwIA8sU8joWPYV9gH/ZN7MP+wH6MJEbQG+pFb6gXPz/6cwCA2+jGCvcKefRLl7OLi5MSES0gDNCJqlRfpA/5Yh5WrRUes0fpcpTjWQ2884g0B53el+Rbb2H4zruAQgG2/+/jqL/nLxkOEBHReSOKIuIZaXRKOQifjGcxWeoMnw7EpW7xqWTunD/DZtDAZdXDZdbDZdWh1qyHy6JHrUUHl0WPuvIxqx5mnZp/zhEtEBpBg2W1y7Csdhk+3fVpAMBYYqxijnrvZC8CqQB2+HZgh28HgOnFSVe4V2BV3SouTkpEVOUYoBNVqd5QLwBpAdEF/UugZ5W0HdkPFIuAwJmh5yLd04PB2++AmMnAsnkzPN/5DlT8Z0hERO8hnSsglJCC8GCpE3wyPh2Cl+eMT5YC8my+eE7vrxZUcJp1qDXrUGctheFmHVzW6W05LHeaddBr1BfoTomo2jSYG9BgbsC1bdcCANL5NA5PHpbGvgT2Y9/EvorFSR/GwwCkxUnLY19W1a3i4qRERFWEATpRlToaWuDzz8vcXYDGAGQiQKgPcC1SuqJ5I9PfD/9nP4diPA7T5Zej6Uc/hErLr6oSES1EhaKIcHJGZ3gp/A4lsqWOcSkcnyyF47FM/pw/w6xTo7bUFV5rLgfh053hrlK3uMuiR41RC4HzwonoIjBoDFhTvwZr6tcAmF6cdN/EPmn0yymLkz518ikAgFVnxYq6FVjlXoVV7lVY7loOo8ao5K0QEdH7xACdqEodCR0BwAAdai3QcCkw9JY0B50B+lnJjY3Bf9ttKIRCMCxbhuaf3AvBYFC6LCIiuoCy+SL8oQT6JhLoCybQP5FAXzCO/mASk4kMxHMbJQ6tWiUF4RYdai16uMw61Fp0cJrLo1N00+fNehh17BInorlv5uKkNy+S1liadXHSbAyvDb+G14ZfAwBoVBp0Ojuxyr1K6lJ3r4Lb5FbyVoiI6CwxQCeqQqIosgN9Js/qUoC+B7jsj5WuZs7Lh8Pw33ob8iOj0LW1oeWB+6G2WpUui4iIzgNRFDEezaAvGEffRAL9wQT6JuLoCyYwGErivdbbdJi0Upe4WSfPEK+dGYiXztVa9LAZNAt7jBwRLRinLk6aK+ZwLHQM+yb2YW9gL/YG9iKQDODw5GEcnjyMn/X+DADgMXvkMH2VexUW1SyCWuBfJhIRzTUM0Imq0HB8GLFcDBpBgw57h9LlKE+eg75X2TrmgUI8gcHPfR7Zvj5oGhrgfWg7NLW1SpdFRETnKJ7Jyx3kckd5MI7+iQQS2cIZX2fWqdFeZ0aHy4KOOjPaXdJ+vV0Pp0kHjZrzfImI3otW0KLb1Y1uVzf+tOtPIYoiRhOj2BeQAvV9E/twLHwMI4kRjPSP4Nn+ZwEAZq0Zl7kuk7vUL6u7DGatWeG7ISIiBuhEVajcfb6oZhG0as6sRtNqaTu6HygWAHZ1zKqYyWBo2zakDx2C2uGA96Ht0Ho8SpdFRERnkC8UMRhOoW8ijv5gAicnpJC8byKBQCxzxtepBRVaHEZ01FnQ4TJXBOZuq55d40RE55lKpYLH4oHH4sH1HdcDAOLZOA4ED2B/YD/2BvbiQPAAErkEdo3uwq7RXQAAQSVgiWMJVtZNd6k3mBv432kioouMATpRFToS5vzzCrWLAJ0FyMaBiaNA/TKlK5pzxHwew1//OpJvvAHBbEbLAw9A38FvLxARKS2TL2BkKo3hcApD4ST6guUZ5XH4J5PIv8vMFZdFV9lJXmdBu8sMr9MEnYad5ERESrLoLFjvWY/1nvUAgEKxgONTx6e71AP7MJIYwZHQERwJHcHPj/4cAOA2ueUwfaV7JTodndAIjHaIiC4k/leWqApxAdFTCGqgcSXge00a48IAvYJYKGD0r76F+G9fgEqnQ/O998K4vFvpsoiIFoRoOofhcEp6TM14lJ5PvEsnOQAYtALaSyF5h8tcCsuloNxu5LfQiIjmC7WgxlLnUix1LsWnln4KADCeGMfeib1yl/qR0BEEkgH8euDX+PXArwEARo0Rl7ouxaWuS7HEsQRLHEvQam+FVuCfAURE5wsDdKIqVB7h0unoVLiSOcRTDtD3AKv+VOlq5gyxUMDZfjIEAAAgAElEQVToN7+JyJNPAWo1mn70Q5ivvELpsoiIqoIoipiIZ6bD8dJ2ZCqFodJ+LJ1/z/cxatVochjRVGNEu8uMS0oheUedGQ02AwSBX+UnIqpG9eZ6XGe+Dte1XQcASOaSOBQ8JC9Ouj+wH7FcDG+OvYk3x96UX6cVtOiwd2CJYwkWOxbLwbrL6OL4FyKi94EBOlGVmUpPYTQxCgDodDJAl5XnoHMhUZmYz2Pk7r9E9JlnpPD8B9+H9SMfUbosIqJ5I1coYiySlsNwKSBPSiNXSp3k2XzxPd/HYdLKAXlTjUneby5ta0xaBh5ERAST1oQrGq/AFY1Sw0tRLOLk1Em5O/14+DiOhY8hmU/iaPgojoaPVry+Rl8jh+nlcP2Smktg1BiVuB0ionmDATpRlSn/kNRkaYJVZ1W4mjnEs0rajh0E8llAo1O2HoWJuRyG//wvEHv+eUCjQdMPfwDbNdcoXRYR0ZyTzOYxEEyiP1haoDOYgH8yieGpFMajabzLCHIAgKAC6m0GKRwvh+QzAnJPjREmHX8kJyKicyeoBCx2LMZix2L5WFEsYiQ+Iofpx8LHcHzqOHxRH6YyU6d1q6ugQqutVX6fJY4lWFKzBE3WJggqrpdBRAQwQCeqOuX5513OLoUrmWMc7YChBkhPAYEeaaTLAiVmsxj++jcQ27ED0GrR/L//GdYPf1jpsoiIFJMrFDEUTkkB+USiFJZLj9FI+l1fq9cIaKqRgvDZQvIGuwFaNQMIIiK6OASVgGZrM5qtzdjs3SwfT+fTOBk5WRmsh48jlA5hIDqAgegAdvh2yNcbNUY5UF9cs1juWLfr7UrcFhGRohigE1UZef45x7dUUqmkLvS+l6Q56As0QC9msxi+62uIv/ACVFotmv71X2D9vd9TuiwiogtOFEWMRdPon0igL5jAwIyQ3B9KIv8ureQOkxbtrum54621JjQ7TGiqMcJl0XG8ChERzXkGjQHdtd3oru2uOB5MBeUwvbw9OXUSqXwKByYO4MDEgYrr6031FSNgOh2daLO3QSMwXiKi6sX/whFVmd5QLwBgqXOpwpXMQU2rSwH6wpyDXsxkMPyVryL+yitQ6XRo/rcfw7Jxo9JlERGdV1PJLPqCCfTP6CQvB+apXOGMrzNq1WhzmdHhMpfCcjPa68xorzXDYV7YY7+IiKh6uYwuuIwurPesl4/li3n4o/6KTvVj4WMYSYxgPDmO8eQ4Xh1+Vb5er9Zjcc1idDo70eXswtLapVhcsxgmrUmJWyIiOu8YoBNVkUwhg/5IPwAG6LMqz0EfXngBejGdxtCXv4LEq69Cpdej5Sf3wrx+/Xu/kIhojhFFEVPJHIanUvCHpNnk0tiVOPqDCYSTuTO+Vi2o4HWapgPycmBeZ0a91QBBYCc5ERGRRtCgo6YDHTUduK79Ovl4LBvDiakTOBaS5qofDR2VFy09NHkIhyYPydcKKgGttlYsdS6VH13OLjgMDiVuiYjoA2GATlRFTkydQEEsoEZfg3pTvdLlzD2e1dI20APkUoB2Yaw2X0ylMLTtS0i8/jpURiNafvITmNddqXRZRESzyuaLGI+mMRROYWSq9IikZjxPv2snOQA02g2VIXmdNH6l2WHkPHIiIqL3yaqzYpV7FVa5V8nHimIRQ7Eh9IZ6cTR0FL2hXhwJHUEwFUR/pB/9kX481/+cfL3b5Ja61GcE602WJo5DI6I5jQE6URWZOf+cP4DMwuYBzG4gEQDGDgItVyhd0QVXTCYxePsdSL7xBlQmE7w/vQ+mtWuVLouIFihRFBFN5TFcCsZn2wZiGYhnHkcuc1n0aHYY0VFXHrtiQbvLjDaXCSYdf8QlIiK6GASVAK/NC6/Ni2vbrpWPB1NBHAkdqXj4oj4EkgEEkgG8MvSKfK1Va0Wns1PqUq/tQqejEx01HdAKWiVuiYjoNPztgqiKHAkdAQAsdXB8y6xUKmkO+rHnpTnoVR6gFxMJDH7hi0i+/TYEsxktD9wP0+rVSpdFRFUsXyhiLJrGyFRaDsTL4fjIVArD4RQS2XfvHgcAnUZAU40RnhoDPHYjmhxGeGqMpWNGNNoNMGjVF+GOiIiI6P1wGV3Y0LQBG5o2yMcSuQSOho5WhOonpk4glovh7fG38fb42/K1OkGHRY5FFeNfljiWcK46ESmCATpRFSkH6J3OToUrmcM8q6QAfXiP0pVcUIV4HIOf/wJSe/ZAsFjgffABGFeuVLosIqoCyWx+xtxx6TEYSmJkKoWxaBrFs+ged5p10wF5KRgvh+OeGiNcFh2/SUVERFRlzFozVtevxur66aaeXCGHvkhfxQiYo6GjiOfi6JnsQc9kj3ytCip5rnqnsxPdtd1YVrsMdr1didshogWEATpRlSiKRXmECxcQfRflOegj1buQaCEWw+BnP4fU/v0QbDZ4tz8I46WXKl0WEc0jhaKI4XAKJ4Nx9E8k0FdaoLNvIoHRSPpdX6tVq9Bonw7Em8oheamL3GM3wqhj9zgREREBWrUWnc7OiiawoljEcHwYR0JH0DvZi6PhozgyeQSBVAAD0QEMRAfw/MDz8vXNlmZ0u6Qwvbu2G121XbDpbErcDhFVKQboRFViKDaEZD4JnaBDu71d6XLmLk9pwZvgMSATA/RWZes5zwqRCPyf/RzSBw9CsNvhfWg7jN3dSpdFRHNUKJFFfzCOkxPljvI4+iYS8E0mkS0Uz/g6h0lbWpxTmjvudZrQ5DCiucYIl0UPQWD3OBEREb0/gkpAi7UFLdYWfLT1o/LxydSk3KXeG+pFz2QPBmODGIoPYSg+hF8P/Fq+1mv1oru2Ww7Wu5xdsOgsStwOEVUBBuhEVaI8vmWxYzE0Av+vfUaWOsDeAkQGgdH9QNuG937NPFGYmoL/1tuQ7umBuqYG3ocfgqGrS+myiEhh6VwBvskk+ibi6Ct1kZc7yqeSuTO+TqcR0FZrQofLgo46sxyYd7jMcJh1F/EOiIiIiIBaYy3WN63H+qb18rFIJoLeUC8OBw/j8ORh9Ez2YDg+DH/MD3/Mj+cGnpOvbbO1yV3qy2qXoau2C2atWYlbIaJ5hikbUZWQFxDl+Jb35lkpBejDe6omQM+Hw/Dfehsyvb1QO53wPvwwDJ1LlC6LiC4SURQxEkmjb2J61IoUlscxPJWC+C5zyT12g9xJ3lE3HZJ7aoxQs5OciIiI5jC73o51jeuwrnGdfGwqPYWekDQ//XBQCtVHEiPy+Jdn+58FIM1Ub7O3SZ3qpVB9qXMpFyolotMwQCeqElxA9Bx4VgO9v6qaOej5yUn4b7kVmWPHoHa50PrIw9AvWqR0WUR0ARSKIvyhJE4E4jgeiOFEII4TgThOBuJIZAtnfJ3VoJGD8Y4Zo1faXWbOIyciIqKqUmOowXrPeqz3THeqh9IheVHSw8HD6An1YCwxhv5IP/oj/Xi672kA0viYDnsHltUuk7vVO52dMGqMSt0OEc0BDNCJqgQXED0H5TnoI3uUreM8yAeD8G3diuyJk9DU1cH76CPQd3QoXRYRfUCZfAEDwdOD8r5gAtn87LPJNYIKrbUmtLssuGTmyJU6M2rNOqhU7CYnIiKihclpcGJD0wZsaJr+BnIwFZwO1ScPoyfYg0AqgBNTJ3Bi6gSeOvkUAECtUqOjpgPLnFKovtixGO32dtQaavnzFdECwQCdqApMpiYRSAWgggpLHBzb8Z48K6VteABIhgCTU9Fy3q9cIAD/1luQ7euDpr4erY8+Al1bm9JlEdE5SGbz6JtIyCH58XEpKPeFkigUZ5+7otcIuKTOgsX1Fix2W7DIbcEitxWttSZo1cJFvgMiIiKi+clldGFT8yZsat4kH5tITkwH6qVtMBXE8fBxHA8fx5Mnn5SvtWqtaLO3od3ejnZ7O9ps0r7X6oVWrVXilojoAmGATlQFjoal7nOvzctFUM6G0QE4O4BQnzTGZdFHlK7onOXGx+H/H1uQ9fmgaWyUwnOvV+myiOgMIqlcqYu8FJSXOsqHwqkzvsaq1+AS93RIvrjegkV1VjQ5OJuciIiI6EKoM9XhatPVuLrlagDSOjOBZEAO03tDveiP9GM4PoxYLoaDwYM4GDxY8R5qlRrN1mY5UJ8ZsDsMDiVui4g+IAboRFVAnn/u4Pzzs+ZZPW8D9NzICHxbb0HO74fW44H33x+FrrlZ6bKICEAik8fB4YgUkI/H5KA8EMuc8TVOs67URT4jLHdbUW/T82vBRERERApSqVSoN9ej3lyPzd7N8vFsIQt/1I/+aL88R30gMoD+aD8SuQR8UR98UR9eGXql4v1q9DWnday329vRZGmCRmBERzRX8f+dRFWgHKBz/vk58KwCDv3/824h0ezQMPxbtiA3PAxtSwtaH3kY2qYmpcsiWrAC0TTe9oXx1kAIbw+E0TMaPePolQabYToor7dgUZ20X2vRX+SqiYiIiOiD0Kl1WORYhEWORRXHRVHERGqiIlAvB+yjiVFMZaawN7AXewOVv4dqBA28Vu9pHevt9nZYddaLeWtENAsG6ERVgAuIvg/yQqLzJ0DPDg7Ct2UL8iOj0LZ60frII9A2NipdFtGCIYoiTk4k8PZACG8NhPG2LwTfZPK06xrtBnQ12rDYbZFHsFzitsBm4CxMIiIiomqmUqngNrnhNrlxZeOVFeeSuST8Mb8cqPdH+jEQHcBAZADpQhp9kT70RfpOe0+X0SXPVm+2NqPF2iI/GK4TXRwM0InmuVQ+hYHoAAAG6OekcQUAFRAdBmLjgLVe6YreVdbng2/LVuTHxqBra4P30UegrZ/bNRPNd9l8EYdGItOB+UAI4WSu4hqVCljaYMPaNgfWtDpweZsTTTVGhSomIiIiornKpDVhqXPpab+3F8UixhJjcqA+M2CfSE0gmAoimArirbG3TnvPGn0NWqwtpwXrLdYW1BnrOA6Q6DxhgE40zx0PH0dRLMJpcMJldCldzvyhtwB1ncDEEakLvfM6pSs6o0x/P/xbtiIfCEB3ySXwPvwQtG630mURVZ1IKoc9/rAcmO8fnEImX6y4Rq8RsLKlBmvbnLi8zYFVXgfsRnaWExEREdH7I6gEeCweeCwefKjpQxXn4tm4HKr7Y34MxgYxGBvEUGwIoXQIU5kpTGWmTlvIFAAMagOarc2zhuseiwdagT/DEp0tBuhE89zM+ef82+Vz5FldCtD3zNkAPXPyJHxbt6IwEYR+8SJ4H34YGhf/ooTofBiZSsmzy98aCOHoeAziKePLHSYtLm9zYm2b1F2+3GOHTiMoUzARERERLSgWnQXLXcux3LX8tHPxbBxD8SE5VJ8Zro8mRpEupHFi6gROTJ047bWCSkCjubEiXPdavXI3u1lrvhi3RzRvMEAnmufK8887nZ0KVzIPeVYB+x+fs3PQM8ePw7f1FhQmJ6Hv7IT34YegcTqVLotoXioWRRwLxORRLG8PhDE8lTrtutZaEy5vnQ7ML6kz8y8niYiIiGjOsegss46EAYBcIYeRxMis4fpQbAjpQhrD8WEMx4fxxugbp73eaXBWBOtt9ja02lrRZmuDSWu6GLdHNKcwQCea546EpQ70LmeXwpXMQ02rpe3wHkAUpWHGc0T66FH4t96CQjgMfVcXvA9th8bhULosonkjmc3j0HC01GEewtu+MGLpfMU1akGFbo8Nl7dK41gub3XAbTMoVDERERER0fmhVWvRamtFq631tHOiKGIiNTFruD4YG8RUZgqhdAihdAj7J/af9nq3yY02WxvabKVQ3d6Gdls7Gi2N0AiMGak68X/ZRPNYoVjA8fBxAOxAf1/qlwOCBkgGgcgQUNOidEUAgHRPD/y33IpCJAJDdze82x+EuqZG6bKI5qxIKoeekSgOj0RwaDiCwyNRnJyIo3jKOBaTTo3VXgcub3NgbZsTK1tqYNbzRyEiIiIiWjhUKhXcJjfcJjfW1K857XwsG6sI1v1RPwaiAxiIDCCcCSOQDCCQDODNsTcrXqcRNPBavRWhennfoXfwW500r/G3RqJ5zBfzIZVPwaA2oNV6+t8s03vQGgD3MmDsgDQHfQ4E6KlDh+G/7TYUIxEYLrsM3gcfgNpmU7osojljMp7BoVJYfng4ikMjEfgmk7NeW2fVS6NYWp1Y2+ZEV6MVGjXnlxMRERERnYlVZ8Wy2mVYVrvstHORTAQD0QH4oj4MRAakYD06AH/Uj0whg75IH/oifcDg6e85M1Avd6+32lph0PAboDT3MUAnmsfK88+XOJZALagVrmae8qwqBeh7gWU3KVpK6tBh+G+5BcVYDMaVK9HywP1QW62K1kSkFFEUMR7N4NBwBIdGIjg0LIXmo5H0rNc31RixvMmG5R47uktbjmMhIiIiIjp/7Ho7VtStwIq6FRXHi2IRY4kxDEQG0B/tlwN2X9SH0cQoYtkYDgQP4EDwQMXrVFChwdwgjYQpzVlvt7Wj1d6KRnMjBBWbX2huYIBONI8dCUnzzzm+5QNoWg3seVTxhUTTPT1S53ksBuPq1Wi5/36oLVz5nBYGURQxGEqVgvIIDo1E0TMSQTCenfX6DpcZ3U12LPfY0O2xo9tjg8Osu8hVExERERERAAgqAR6LBx6LB+ub1lecS+fT8EV9Uqg+o3u9P9qPWDaG0cQoRhOj2DW6q+J1WkGLBnMDPGYPGi2NlVtzIxrMDdCqtRfzNmkBY4BONI+VO9BnW3WbzpJnlbQd2avYQqLpI0fgv+VWFCMRqfOc4TlVsUJRRH8wLneUHyqNYTl1gU9AWuRzsdsih+TLm+zoarTCauAPykRERERE84FBY0Cns/O0xj9RFBHOhOVO9f5ov7zvj/mRK+bkOeyzUUGFOmPd6eG6pRGN5kZ4LB6Ytfy9ms4PBuhE85QoiugN9QJggP6BuJcBaj2QjgChPqD2kov68emjx+Dfeou0YOiKy9Dy4AMMz6lq5AtFHA/EcXA4gsNyZ3kUqVzhtGt1agFLG63oLnWVL2+yY2mDFQYtx1MREREREVUblUoFp8EJp8GJ1fWrK87li3mMJ8cxEh/BWGIMI/ERjCZG5e1oYhSZQgaBVACBVAD7J/bP+hk2nQ0ei0cO1BvNjRX7ToOTi5vSWWGATjRPBVNBhNIhCCoBix2LlS5n/lJrgYZLgeG3pS70ixigZ06cgP+WW1CYmoJh+XJ4H3gAaovlon0+0fkkiiKGwinsH5rC/sEp7B+M4OBwZNaw3KRTY1mjTQrLm+xY7rFjcb0FWi7wSURERES04GkEDZosTWiyNM16XhRFhNKhilB9JD6CkcR04B7NRqVHKCqPvz2VQW2QxsScEq632drQam+FTWe7kLdJ8wgDdKJ5qvwHQKutFUaNUeFq5rmm1dMB+qV/dFE+MtPXB9/WW1AIhaBf1gXv9gehtvEPZ5o/wolsKSyPyKH5ZOL0meUWvQbLm2y4tEnqKu/22NHuMkMtsNODiIiIiIjOnUqlQq2xFrXGWix3LZ/1mng2Lnery53r8VGMJEYwGh/FRGoC6UIaA9EBDEQHZn0Pp8GJVlur/GizSQudtlhbYNAYLuAd0lzDAJ1onjoa5vzz86Y8B314z0X5uEx/P/xbtqIQDEK/dCm827dDbbdflM8mej/SuQIOj0SwbzAidZcPTcE3mTztOq1aha5GG1Y012BFSw1WttjR4bJAYFhOREREREQXkUVnwWLd4jN+Yz9XyGEsMSYF7KVQfSQxguH4MHxRHwLJAELpEELpEPYG9la8VgUVGswNpwXrbbY2NFoaoREYt1Yb/hslmqfKHegM0M8DT2ne2uh+oFgAhAs3cznr88G/ZSvyExPQL1kC78MPQeNwXLDPIzpXhaKIE4E49g9OYV+ps/zoWAz5onjatR0uM1a01GBFsx0rWmrQ1WjjzHIiIiIiIprztGotWmwtaLG1zHo+mUvCH/NjIDoAX8QHX9QnL3Yay8bk7vbdo7srXqcRNGixtlQE6+V9l9HFmevzFAN0onlKDtAdDNA/MNdiQGsGcgkgeAxwd12Qj8kODsK3ZSvygQD0ixfB+8jDDM9JUaIoYiSSLs0sn8K+wSkcHI4gmT19brnLosfKUlf5ipYaXNZUA7tJq0DVREREREREF5ZJa8JS59LTmhZFUcRUZgq+qE8K16M+DESkMTD+qB/ZYhb9kX70R/pPf0+NaTpYt08H616bl/PW5zgG6ETzUCKXgD/qBwAscS5RuJoqIKgBz0rA9ztpDvoFCNCzQ8PwbdmC/NgYdB0d8D78MDRO53n/HKJ3E0nmphf5HJrCvsEIgvHMadeZdWpcWuoqX1kax9JoN7BbgoiIiIiIFjSVSgWHwQGHwYGV7pUV54piEWOJMTlYl0P2iA8jiREk80n0hnrRG+o97X2dBicazA1wm9yoN9Wftq0318OsNV+s26RTMEAnmoeOh49DhIg6Yx1cRpfS5VQHzyopQB/eA6z89Hl969zICPxbtyI/MgpdW5vUee7ivze6sIpFEX3BON4eCONtXxh7fGH0BROnXacRVFjaaJ0xt7wGl9RZuMgnERERERHRORBUAjwWDzwWD9Z71lecyxayGIoNnR6uR30IpoLyvPWeyZ4zvr9Zaz5jwO42S1unwQlBJVzoW11wGKATzUOcf34BlBcSHdn77tedo9zYGHxbtiI3NARtqxfeRx+B1u0+r59BBACpbAEHhqbwti+Md3xh7PGHMZXMnXZdW62pNLdcCsy7PZxbTkREREREdCHp1Dp01HSgo6bjtHPxbBz+mB+BZADjiXGMJ8el/dI2kAwgnosjkUuccTxMmUalQZ2pbvag3Sxt3SY39Gr9hbzdqvP/2rvzOLnqOt//73Nq7arqru7O0qE7OyQRhOwhBFBAUdDR36DiMCNzQUZ0HFlEREdGRZxhjCP3ziDK4jhO4jjjwHUeoldUFBHCYgJJEAgQEpbsSXcn6a325Zzz++PU2l1JOltXd/J6Ph71ONu3Tn2r0jnpvOt7Pl8CdGAMIkA/DooBeucGKZ+VvP6jPmWuq1vbrr5auR075JsyRdN++EP52tqO+ryAJHUPpLV+mzu6fN22Xr2yq3/IRJ9Bn6l5k5u1eHqLFk1r0YIpLWoJH/3PNgAAAADg2Ij4Izpj3Bk6Y9wZB2yTyCWqAvVaQfv+1H7lnXxpgtODaQm0lML0Oa1z9NmFnz3Wb+uEQoAOjEHFAH1O65w69+QE0jpTCkaldL+0d6N0yryjOl2uu1vbr75auW3b5evo0LQfrpRv0qRj1FmcbCzb0evdMa3b2lsIzXu0oyc1pN3ExkAhLG/Vomktent7k3webt8DAAAAgLEs7AtrZnSmZkaHjmAvytk57U/tV2eisxy0JyuC9oS7zNpZ9WZ61Zvp1abeTerP9o/gOxmbCNCBMSZv5/V67+uSGIF+TBmGOwr9rSfcOuhHEaDn9+3T9mv+StmtW+VtP0VTf/hD+drbj11fccJLZPJ6cUdfaXT5H7f1KpbJV7UxDGlOW6MWT2/R4kJgPrmlgYk+AQAAAOAk5DN9mhSepEnhAw/ecxxH/Zn+qmA94ouMYC/HJgJ0YIzZ2r9VWTurkDekKY1T6t2dE0v7QjdA3/1HSdcc0SnyPT3afs01yr75pryTJmnaypXyT+44pt3EiWd3X0rrt5VHl2/cE5M1qBxLyO/RgqnNpdHlC6Y2qynoq1OPAQAAAABjjWEYag42qznYTFWDw0CADowxr/WWy7cws/IxVppI9Pkjenq+t1fbP36NMq+/Ie/EiZq2coX8U6ceww7iRJC3bL3WGSvVL1+/tUe7+9ND2rVHg1o0vVWLp7n1y982qVFeyrEAAAAAADCiCNCBMea1/YUAvYVvCo+5joXusnujlEtJvoZhP9Xq69P2v/qEMps3yzNhvKauXCn/9OnHp58YU1JZS3/c0au1W9zR5c9v61Uia1W1MQ3pjPYmLZ7WqoXTWrR4Wovam4f/8wcAAAAAAI4PAnRgjCmOQKf++XHQ1CGFJ0iJvVLny9KUJcN6mtXf74bnGzfKM368pq1cqcDMGce5sxitehNZrd3ao3XbevXclh69vKtf+UHlWBoDXi0oBOWLprVo/pRmhQP8kwwAAAAAwGjD/9aBMcRxHG3q2SSJAP24MAy3Dvrrv3HroA8jQLdiMW2/9pNKv/qqPK2tmrbi3xU49dQR6CxGA8dxtLM3pbVbe7R2a6/Wbu3RG93xIe0mNQW1ZEarlhQm/JwzqVEek8k+AQAAAAAY7QjQgTGkK9mlvkyfPIZHp7WcVu/unJjaFxQC9EPXQbfice249pNKb9ggT3Ozpq5YocCsWSPQSdSLbTva1BXTuq09em5rr9Zt7dGeGvXLT5sY0ZLpLVoyvVVLprdqckuDDIPAHAAAAACAsYYAHRhDXutxy7fMiM5QwBOoc29OUMU66Lv/eNBmVjyhHZ/8lFIvvihPNKqpK1coOGf2CHTw+MjnLNmWI1/AQ9BbIZO39NLOfneE+Ra3LEssna9q4zUNndkRLQXmi6e3qjXsr1OPAQAAAADAsUSADowhxQCd8i3HUfsCd7l3k5SJSYHGIU3sREI7/vqvlfrjH2U2NWnKv/9AwbeNrj8T27KVTuSVimWVjGWVjuWUjGWVimWViuUKy6yShfVc2p3U0vQaaoj41dDoUzDsU0OjXw0Rn7sdGboeCPtkjsJSJLbtKJvMK53MKZvKK5PIK5PKK5PMKZPMK5PMK5exFAh7FY4GFGryKxwNyAqYeq0voXXb3XIsL+7sVzZvV5075Pdo0TS3FMuSGW798pCff04BAAAAADgR8T9+YAyh/vkIiEyUmiZLAzulPS9J08+rOmwnk9rx6b9Rav16mY2NmvqDH6jh7W8/7t1yHEfZtKXUQDkEP1ggnk7kJOfQ5x3MzjtK9GWU6MsMq71hSIGwTw0Rn4KRysDdXwjgfWqI+BVsdNs0RPzy+MxhvV8rZytTDMELoffgELx6Pa9Myt0ufqSISZ8AACAASURBVCFwpAzD0dsNR9NMr/J+Q82tDTplUlizpjZr1rQmNbYEFY4G5At4jup1AAAAAADA6EaADowRe+J7tLZrrSRpTuucOvfmBNc+3w3Qdz9fFaDbqZR2fOY6JdeulRkOa+q/fV8NZ5151C9nWbZi+9Lq606qryupRF+mFIoniwF5PCs7f5iJuKHSKPJQYyHcbnRHl7v7yusNTX6ZpqFUPKt0PKdUPKd0LKvU4PVYTumE27dMMi/HkdLxnNLx3LC75Qt6CoG7+/q+gEfZlFUOwwsh+WG/31qvFfAoEPIWHj6ZAVP9eUt7Ullt708pm8wrbBuKOIbCthR2DHlkKOS4jwm2pLykZEb5nRltXNejjYPeS3kEu1+haEChqDuaPRT1K9zkLgMhL6VxAAAAAAAYgwjQgTGgN92rTz36KfVn+nVq9FQtnLiw3l06sXUslF57WNr6tLTseskwZGcy2nnd9UquWSMzFNKU739fDfPmDfuUjuMo0ZctheR93Un1dyXV153SwN6UbHt4YbEv6BleIN7oVzDslek59GjvqvMHGtQ0rmFYbS3LLoXnbrheK3wv7Iu57WzbUS5tKZe2NLBv6OSbgxmG5C+E38GQV/4Gd70cig/abiish922pmlo456YVm3eq1Wbu7Vua6/yFZ+1GZbOaG/S4mmtmjejVYumNKvJ41GiP6tkf8ZdDhSWVesZ5bO2cmlLfWn3z/RgPF6zEKwXQvbClxahRp8amvzlP78mv/xB6tADAAAAADBaGI7jHP0QP2hgYEDRaFT9/f1qamqqd3dwAknmkrr2t9dqw74NmhSepB+970eaFJ5U726d2Hatl77/Lnf9/M/Jfset2nn9DUo89ZSMUEhTv/+vCi1aVPOp6USuKhwvhuV9XUnls3bN50iS12cq2hZS88SQIq2FgLUQiIcKAWtDxCevf+yWDHEcxy3JMihwz2Us+Rs8Q8LvYMgn3xGEyf3JnJ5+Y5+e2NStVZv3qjtWXY5mxviwLpg9QRfMnqDF01vUGPQd0XvJpS0l+jNK9meVGCgsK4P3/oySA+5I/cPh8ZrlP/fKcL3iZ6G4DEZGZw16AAAAAABGs8PJcgnQjxECdBwPOSunG35/g57Z/Yyigaj+49L/0MzmmfXu1slhzf3SI38r25J2vbpI8Vf2yAgGNeVfv6fA/EXq31sdjvd1pdTXnTxoKRPDNNQ0PqjmQlDuLhvU3BZSOBqQQRB6RGzb0cu7+7Vq0149sXmv/ri9V5UD+ht8Hp176jhdMMcNzaeNC49o//JZS8mBrJID2VLgnizUsi8tYzmlBrLKZQ6zdruhUs35UNVIdl/VqPZi+O71jd0vYAAAAAAAOFYI0OuAAB3Hmu3YuvWpW/WrLb9Sg7dB//bef9PcCXPr3a2Thm3ZGvjtv+mNe3+hntQUJcNtshdeoFjGp3jPwSfYDDcH1NzWUBGSu8vG8UF5DrOkCmrbH8/oqdf3adXmvXpy817tT2Srjs+aGNEFsyfowjkTtXh6i4JjJDjOZYsTxRYmiR3IlpaVNfGTA0c2UWwg5FW4OaBwc0CRwjLcHFCkpbwvGPFRQgYAAAAAcEI7nCyXGujAKOQ4ju5ce6d+teVX8hpe/fOF/0x4PkKSA1m98LvteuXJXcqmT5M6Plc+uMeW5IbngZC3IhxvULQQkkcnNMgf5NJ6rFm2oxd29GlVoSzLS7v6Vfn1byTg1XmnjdMFsyfqgjkT1NE8vDruo43P75FvfIOaxh+6/7Zll0rhpAYKgXvlqPaBwrHCPttyS+hkknn17E4c8Lwer6lws/8AQXvQPRYNyOPlyyAAAAAAwImPlAcYhX7w8g/0nxv/U5L09+f9vc7vOL/OPTrxxXrS+uNvt+vVZ3bLyrm1yk0rq1B6n8ZN9mhc9ik1e3arecF5av7AjQpG/IzSPc66B9KFyT/36qnX96k/VV0e5/RTmnRhoSzLomkt8p1ko/tNj6lwNKBwNHDItsX688n+rBJ9GcX70oVlYbvX3U7FcrLytgb2pQ85yWtDo68QqFcH7ZGKUe3+Bn7NAAAAAACMbfzPFhhlHnr9IX37+W9Lkm5ZfIs+eOoH69yjE1tfV1Lrf7NNm9d0yi4Uzo5mdmva5p9r3MBmTf3u3YpccIH0XFz61X9Jmx6Xxg1I7/n7Ovf8xJOzbD2/rVdPbN6rVZv26tU9A1XHm4JevWP2BF04e4LeOXuC2pqCderp2GMYhoJhn4Jhn1rbD1wD3srbSvRlCuF69dIN2jNK9Gdk5x2lYjmlYjnt3R474Pl8AY8bsEf9CkbcWuzFmu3BSPV6MOKjxBEAAAAAYNQhQAdGkce3P67bV98uSbrmzGt09duvrm+HTmD7dsa1/pGtenN9d6kUyMRQTO1rVqql5zV5x41T+733KPKOwuj/sz/pLn91i/SHuyU50nv+QWIU+lHZ2ZvUU6/v0xObuvXMG/sVz+RLxwxDmtsR1QWzJ+iCORM0b3KzvASsx5XHa6rpECVkHMdROp5zw/SDBO3ZVF65jFWYZDc5rNcPhLyFYN0N2yvXGyK+UggfLATvPv/YqG0PAAAAABi7CNCBUWJ913p94ckvyHZs/empf6rPLfzcoZ+Ew9b5Vr/WP7JNW1/aV9o3dUZA7c/9h0KvPClJanr/+9X21a/I29JS/eSqEP07kuNI772DEP0w9CdzWv3WPj39xj49/fo+bd1fHayOC/v1ztluWZZ3zBqvcZFDlyfByDIMQw2NfjU0+jVhauMB2+UyVqk8THHy03SxZnt80HphQtRijfb+7tSw+uL1mQo2VobshZHtFeuhJrevoSa/fAECdwAAAADA4SFAB0aBzb2bdcNjNyhjZXTB5At0+7m3U1/7GHIcR7s29Wrdr7dp16Zed6chnbZgvGYOPKf8ym9L+bw8LS2a9LWvqenSSw58srM/6Qbmv/y8tPq77j5C9APK5C2t39arZwqB+YZd/bIrJv/0mIbmT2nWBbMn6MI5E3Rme1SmyWd5IvAFPO5Eu22hQ7a1bUeZRK4QrLth++D1quA9npWdd5TP2Yr3ZBTvyQyrT16/WQrUGxr9CjX61NDkL4fsjeWwPRDyyuBnEQAAAABOegToQJ3tiu/Spx/9tGK5mBZMXKA7L7hTXpO/mseC4zjatmG/1v16q7q2uPW0TdPQ7HMm6czZlhL/dJsyGzdKkhrf+15N+tpt8o4bd+gTL7lWkiH98mY3RHcc6ZJ/JESXG4Ru7BzQM2/s01Ov79ParT1KFyZlLTptYkTnnzZe5582Xktntqox6KtTbzFamGZ5VLt04BrtRY7jKJe2lIpXjGwfHLzHc0oNuPuSsaysnK18dngTpBb7FGz0lQL1hkafG7A3+auXje4xj5fyQgAAAABwIiKlA+qoJ92jTz/6ae1N7dVpzafpO+/6jhq8B649jOGxbUdvPt+t9Y9s0/6dcUmSx2fqjPPaNf9d7cr+9D+195P3SrmcPNGo2m77qpre//7DG/W/5BNuYP7w56Q197j7TtIQfWdvshSY/+HN/epJZKuOT2wM6PzTxuu8wmNSlMk/cXQMw5C/wSt/g1fRCYdu7ziOchlLyUKgnhrIFsrKZCvWc4XjWWWSedm2o2R/Vsn+rPYPo0+BkLcUtrsTohoyzPLDNDRo25BhlveZpiHDGLxdbjP4uGEYMs1B2x7D7UehpE0g7OOODgAAAAA4SgToQJ0kcgl95nef0daBrTolfIruv/h+RQPRendrTLMsW5uf7dTzv9lemrTQF/DozAs6NO/dU+Tt3q7dn7lG6ZdfliRF3v1unXL71+SdMIwErpbFfyXJkB6+qRCiO9Il3zjhQ/RD1TEP+z06Z+Y4nXfaeJ0/a7xmTYxQkgh1ZRiG/EGv/EGvmiceur2Vt92gPVYI1weypXB9cNieiuXk2E6pfvtwJ0wdCYah0oSrxUlYQ40+BQvbxdHzDRG/Gpp8CoZ8lK0BAAAAgEEI0IE6yFk53fT4TXpl/ytqDjTr/vfcr7ZwW727NWbls5Y2/mGPnv/ttlIt5EDIq7nvmqK5F01WIGBo/4oV2nf3d+TkcjKbmjTpK19W0wc/ePTB7uJr3OXDN0lr7nXLuVy6/IQK0Yt1zJ9+fZ+eeaN2HfMFU5pLgfn8Kc3yeShngbHL4zUVaQko0nLoSWyL4XllwJ6O52RbjhzHkW07cmxHjq2h27Yj2znQtrvPtt3z1N52ZBee5ziObMvtS3EUveOo8EVAbljve3DgXgreC/XigxG/Qk3usqGRwB0AAADAyYEAHRhhtmPry09/WWv2rFGDt0H3vvtezYzOrHe3xqRsOq+Xn9ylF363Q6kBt2xIQ5Nf8y+eojPf2SF/0KvMW1u09dYvKf3iS5Kk8AXv1Cl//w/ytQ1jGOpwLb7GTZ5+8Vnp2fvcfWM4RC/WMX/6dXeUOXXMgQMzTEPBiE/BiE/Dqd8+UizLdmvDx4r14cv14pOxrNKxirrxxyBw9/rM8k5VX/7K60Z5vep49bWyus1BzmcY8gU8ijQHFGkJKtLqLhtbAwpFA5SvAQAAAHBMEKADI8hxHP3Tc/+kX2/9tbyGV3ddeJfOmnBWvbs15qQTOb30+x166fGdyiTzkqRIa0AL3ztNp597irx+jxzL0v4VK7X3rrvkZDIyIxG1/d3fKfqhy45POZFFH3eXpRDdkS795pgI0R3H0c7elP7wJnXMgROFx2MqHA0oHD30KHppUOAey1aF66l4zg3cC+tHGriPJMM0FI76q4L1SEtAjRXbDRFG0AMAAAA4NAJ0YAR9f8P39ePXfixJuuP8O3Rux7l17tHYkujP6MXf7dDLT+5SLmNJkprbQlp4yTTNXtomT6FsSHbrVu3+uy8r9fzzkqTw+efrlH/4e/lOOeX4dnDRxyUZ0i9ulJ693903CkN0x3G0vSepNW/t17Nv9WjNW/u1uz9d1YY65sDJ5WgDdytvS4XSTo7klrMqLyoOSE5Fw6rjcq9PNdsX1we1z6byivemFevJKN6bVrwno0RfRrbtKN6bUbw3I71V+z2YXqPG6PVgoXyPuwyEvFz7AAAAgJMcATowQv5n8//oO3/8jiTpb5f8rf5k5p/UuUdjx8D+lF747Xa9+sweN6SRNG5yRIsunaZTF04s3abv2LZ6//O/1P3P/ywnnZYZCmnil/5WzR/96MgFIIuudgPz/1cI0R1Het8/1TVEdxxHW/cXA/P9WvNWjzoHqgNzr2lo3pRmtywLdcwBHMLhBu4jybYdpQayihUC9XhvuhCml4P25EBWdt7RwL60BvalD3gub8CjxkI9/GKoHmkNKtTorypDM1IM01Aw5HNr0Ed88gU8BPwAAADAcUaADoyAx7Y9pn9Y8w+SpGvPulZ/ecZf1rlHY8P+XXG98Lvt2vxsl+zCrJWTZjZp0fuma9qZ46pCg+yOHdpz698puW6dJCl0zjlq/8c75OvoGPmOL7xKkiH9vxuk574nyZHe960RC9Edx9Fb+xJVI8y7Y5mqNj6PoflTmnXOzHFaOmOcFk5rVsjPPwkAxj7TNBRuDijcHJBm1G5j5W0l+jKlYD3em1G8J61Yb3kkezqRUz5jqbczqd7O5Mi+iWHyeM1SmN7Q6Fcw7IbrDcWJXiPl9YaI3x1RT9kaAAAA4LCQlgDH2drOtfrik1+U7dj68KwP68YFN9a7S6OabTva+tI+vfT4Du3a1FfaP/ltLVr0vunqmN1cFZw7tq2+Bx9U153/W04yKSMUUtsXblHzFVfIMOs4gnrh/3ID859fLz33r+5I9PffeVxCdMdx9ObeuFa/1aNn39qvZ7f0aO+gwNzvMTV/qhuYnzOjVQumtqjB7znmfQGAscDjNdU0vkFN4xsO2CaXtZTozdQcyZ6O16fuu207bumceE5WzpaVt8ulaoahOPFrMOJXQ6Q4kr283hDxF8L48rrHy91IAAAAOLkRoAPH0aaeTbrx9zcqa2d10ZSL9NVzvsqt1geQTuS08Zk92rBqp2L73dvpDUOaOX+C5r9nqibNjA55Tm7XLu3+yleUXL1GkhRaskSnfOMf5Z8yZUT7fkALCnca/Px6ae33JTnS+//3UYfojuPo9e54aYT5s1v2a1+8etJPv9fUwqnlEeYLpjYr6CMwB4Dh8vk9am4LqbktVO+u1JTLWOVJXuO50sSv6eIEsPHq9WyqeuLX3mG+jj/oUbCxGLK7y8qR7YPXKSsDAACAEw0BOnCc7Ijt0Kd/92nFc3EtnLhQ33rnt+Q1+Ss32P5dcb30xE5tXtOpfM6tbx4Ie/X28zt05gUdamwNDnmO4zjq+8lP1P3Nf5KdTMoIBjXx859Xy5Ufq++o81oW/KUkQ/r5ddLaf3P3HWaIbtuONnfHtOZNd3T5s1t61JOoDswDXlOLprUUAvNWzZtCYA4AJzJfwCNf4OCj6CtZeVvpRGHi13hW6cIyFc+V1yuC93Q8J8eRsmlL2XRKA3tTw3odj88sh+zF4H3wyPZGX2k/ZWUAAAAw2pHmAcfB/tR+ffrRT2tfap9mtczSd979HQW9Q4Pgk1W5TMtO7dpUHgM3riOiue+arNlL2uQ9QHmR3J492vOVryrxzDOSpIaFC9W+/BvyT5s2In0/IguudAPzn33GDdGdwkj0A4T9tu3otc6YO8J8ixua9yWrywU0+DyFwLxVS2eO09zJUQW8BOYAgNo83sOb+NWxHWWS+YqR7bmh6/GcUjE3bE/FcrLytqzcYZaVMQ0Fw94hNdyLIXsg5JM/6JE/6JWvctnglddnMtodAAAAxx0BOnCMxbNx/c3v/kbbY9vVEenQ/RffryZ/U727NSocrEzL3HdN1imnNR/wP8KO46j/pw+pa/ly2fG4jEBAE266Sa1X/S8ZnjEQHM//mLv82WekdT+QW87l/0imqX3xjDbs7NdLO/v10s4+rdvWq/5UdWAe8ntKI8zPmdmqszqa5acuLQDgODFMo1Av3aeWSYdu7ziOchmrFKan4tmh64XAvVh2JpvKy7GdUlmZI+mjP+gpBevloN07JHT3N1S2q97vD3jl8R3+v6mO48i2HFl5e+gy78iyKpe2LMtxl3lHtl04Nui5kgrvyatAg1f+0sOjQIP73kxG7AMAAIwoAnTgGMpaWd30+E3a2LNRLYEW3X/x/ZoYmljvbtXd/t1xbXh8pzY926l8trJMS7vOvGByzTItlXJd3dpz21eVWPWkJCk4b67aly9XYObM4973Y2r+x5TIWgr96gYZ6/5dqzbv1d+lr9augeyQpmG/R4unt7olWWa26qyOqHweAnMAwOhkGEYpnD6ssjLx2qVkivszybxyGUvZVF7ZtKVcOq9sxpKc8ij5TDIvaXgj3g/E9BryB4pBu1cej+EG3ZZ9wIDctp2jes0j5Qt4SsF6oMFTEbK7n3/Vvqogvrzfw+8UAAAAw0aADhwjlm3p1qdu1bOdzyrkDem+i+/T9Oj0enerbo6mTEuRY1kaePhhdf7jN2QPDMjw+TThszeq9ZprxsSo81g6p5d3DWjDrr7C6PJ+be9p1YfMT+v/+O7XBQO/0GfySX3VuEYzJzRpbkdUZ02OasHUFp3Z3iQv/7kFAJzAPF5T4eaAws3DKytT5NiOcllLubSlbDpfqNOeVy5lKZvJK5sqbJeOV6ynrIpAPl/6Yt/OO0rnc0onDn8kfIkheTymTK8xdOk1ZXqGLk2PKY+3vFSh7nwmlS/1MZty+23l3b7mMu57SPQd+ZcGXp85KHj3yOv3yOM15fWZ8vhNeb2mPD734fWZ8vo8pXWPzyy19fpNebzVxyqX5kn++4xt2cqk8sok3C97HDkKhnzuFyBhvswAAGAsIEAHjgHHcbT8ueX67bbfymt6dddFd+nt499e727VxcHKtJx10WS1zzp4mZbc9u1KrF6txOo1Sq5ZI6u/X5IUPPNMtX9zuQKnnTZi7+VwpLKWXtnthuQbdrmlWN7al5BTY3DaH1su0Y8aW3RV53Jd6X1Mf7Z4snz/310HrIkOAADK3NIt7ujqsA4vfB/Mtmw3UE9Xh+523nFD7gOG34Xg22vK4zFkegwZpnFca7JbOTeILYfqbrA+NGzPK5OyBrXLK5O2lM9YkqR8zlY+l1Wyxl1wx5phGhUhvBu8V4bsvoC3XIon4JbXKdW7D3hq1sB3J9H1jFgNfMd23BA8mXPvekjklS6uJ3OFcNzdTle0ySRzyqatg57bG3DL8wRCxYfPXTYM2q6x7vUzDwAAACOBAB04Bu5/6X49uOlBGTK0/PzlWta+rN5dGnEHK9Py9nd2qGlc7du58/v2KbHmWSVW/0HJ1WuU27276rgZiWjctZ/QuGuvleEdHZesTN7Sa3tiemlnXykw39wVU607uTuaGzR3sjuyfG5Hs87qiCoa8km6SHpxuvSzT8v3wg8lU9IHCNEBABhJpsdUIGQqEPLVuyuH5PGZCvn8CjX5j/gctmW7XxZUBO6ZlLtdnAQ2n7Vl5S3lc4XtWsu8VWhXfk6+uJ6zZOfLvxQ5tqN8phzeHzNGoZxNwFOqe++G695SHXk3fHf3VU1CG/Aon7ergu9MMqd0RfBdCseTeWVSeekoK/b4Ah4FQl7JkLLJfClYL342R3JHgekxFAgVyvmEfAqGvPIfIIT3N7h3Gbh3DVQs/dwpAADAoYyONAoYw/7vpv+re1+4V5L0pbO/pEtnXFrnHo2cYpmWDU/s1M7XBpVpuWiyZp3dJt+gMi1WPKHkurVKrl6jxOrVymzeXH1Sn0+h+fMVPneZQueco4azzqprcJ6zbG3uipVKsGzY1adNnTHlrKH/i5rYGNDcyc2lwPysjqjGRw4yMm7eFe7w/If+Wnr+h+4+QnQAAHCcmB5TwbCpYPj4fmHg2G6t+KHhu+Uu87asrLs/lynWt7eq1rPpfOnugFy6XAs/l7HcO/wcuc9JW1L/8R9JL0lev1kKp4PhoSPDy/vKx4Jhn/yhoaVabMsu3EGQK9XyrwrtC8F91XbSnXw3k8jLtt1JbMuT8KaO6r2ZHqMiWK8VspfD9tI+v1u6x1dYVrUrPt/nKZQrcksVldfL+wxDjKQHAIxqBOjAUXh026O6Y80dkqRPzf2UPnb6x+rco5GRTuS08Q97tOGJ6jItM+ZP0NxBZVqcXE6pl15S4g+rlVizRqkXX5Ty+arzBU4/XeFlyxRetkyhRQtlhkIj/p4kqT+Z0+bumDZ1uo8Nu/r16p4BZQs1Ryu1hv06qyOqeZOjOqsQmrc1HXwy1Jrm/pkkQ3roU4UQ3ZE+8G1CdAAAMGYZZiGMPcR8N0fCcRzls3ap5I4bshfK72SKZXjKE87mBq0X23p8Zs2wu3qfT8FwYbvBK4/v2P1+ZnpMBSOmgpHD/zKj+BkMDtfLtdYL61XBu1X6AiOXtUpfYBTZllMo93PM3uJhqQrZzaEhe2ndrBXEmxXHyu1kGJLjlG8ecKoWkuPU2Cc5g3ZWlWQsbDg1j7srHp9ZKkd0oDsgKu+a8AeO7c8WAODYI0AHjtBze57T3z75t3Lk6PLZl+v6+dfXu0vH3XDKtDiOo8zmzYU65quVWrtOdjJZdR7flCmFwPwchZYulbe1dUTfRzKb1+tdcW3uimlzV0ybuuLa3BlT50C6ZvvGoFdzJ0fd0eWFiT47mhuO3UiZuR91lw99Snr+P6SeLdK0c6WJp0sTTpfGnSp5Rv+t5QAAAMebYRilGuiK1rs39VH5GURajvw8juOUS/DkrOpl1i3jM2RfVdsa+0rPs0rnti1btuWOmLdr1TyUSseloQNXTgamx6io9e+pmhvAF/QWQvfquQF8pUDeXXr9pjtxscedn6HyywRG+APA0SFAB47Axv0bdePjNypn5/Tuqe/WV5Z+5YT6pcTK2Yr3pRXvySjWm1a8J61dm/sGlWkJa+5FUzTr7DZpb6cSj/9Su1avUWLNGln791edz9PS4oblhVHm/smTR+R9ZPO23toX16bOQlDe6YbmO3qTNSf3lNya5bPbIprd1qi3d0Q1tyOqaeNCx//Pd+5H3VEyP/2ktPUp91Fk+qTxs91AfeLp0sQz3GXzNEaqAwAA4IgYRuWdAiMzWMNxHDmF8jOVoXpVyG45su1B20OOO0OC+cFtym/U/TV78HuvPO4ujMNrb5Q3Kg/ns3bpboghdz9UliVKW6W7AGzLUTqRUzqRO7IP9hCKYXpxMmTTrAzZC5MimxXrVSP/ixMoV6wPugvAMN1HMaw3TJW3TcMt01O5bbqfaXnbbVO5bZruB1vznIVtx3Z/pmzb/bkauu3us51B27ZT+ll0bEe2raHbhTaDz+3YzuF9PhVfZlTu93jNQecpHzfMEydbwMHZhXlCchlLuawlj7eiHJbP5GdhFDEc50AxEg7HwMCAotGo+vv71dTUVO/u4Cjl7by6kl3aFdulnfGd2hnbqV1xd31XbJf2p92AeHHbYt3/nvsV8BykzvUo49iOkrGs4r0ZxXvSivWkh6wnB2rXkSyWaXn74qii3RuVXLNaiTWrldu2vbpdQ4NCixeXRpkH5syRcRyDXst2tL0nWQ7Ku2La3BnTln0J5Q8wymV8JKA5kyKaNbFRcyY1anZbo2a1RdQUrPNI765XpC1PSt2vSt0b3Uc2XrutLyRNeFshUH9bOVxvPGXob/0AAAAARhXbsitCdasieHfXs6nquQHKgXxhX0UJo3zO/QLBOcD/fzB2GGYxUK8I2L1uwO7xmfJ43S86yuuVj0I47zPl9ZqD2riBfnHbWzzmq95fedwsfKFiyHC/LyouDKPwZdPJ8f9Ox3HceTvSlvLZQuBdLBOWcf+e5rJ2aT6P0vFDPKzcwe+6KQfq1fNPDJ4Q2uM35fMVln5THp+ntCw95yDzWXi9J2dYfzhZLgH6MUKAPrY4jqOedI8bihfC8WJAvjO2U12JLuWd/EHPsXDiQn333d9Vo79xhHo9PNl0vmrkeLw3J+ya4wAAFnpJREFUUwjG04r1ZBTvTcvOH/qvvcdnKtISUCTqUzgkhY2ETul9UVq7SumNG6uLAXo8apg7V+Fl5yi8bJka5s2T4fcf8/fmOI5296e1ubMckm/qiumN7rgyNeqUS275lTltjZo9qdFdtjVqdltE4w42uedoYtvSwM5CmP5qebl3s2Rlaj8nGC2PUi8uJ5wuhceNbN8BAAAAjKjiCH+rakS+u27ly/uqjtfcb8vKD74DwJZlObLzg0b8H3SE9wFGfFfsO9T2gUaaH2hkevXod3dfrW13hLsqRsEXn6fa24V9TvHzHHR3ROXnW/qsqj7fin2W7X6OJ8oXHoUwvXRjhuHe1WEYxe3yMcMwyuO9iu2K4+0q20nlULfQrnSHyAHPV14vh/zl7QO1K/WzoFbYreP4R+XOHWLKzrs/RyNt/JSIrvjy2SP+uvV2OFkuJVwGueeee3TnnXeqs7NT8+bN03e+8x2dffbJ90N0IkjmkqUR4zvjhZC8Yj2VP/gMOT7Tp/ZIuyZHJqsj0qGOxg51RDo0OTJZkxsnq8nfNKLfthYnC0rFB40eL4TixXA8kzx48F8UCpsKBW2FvFk1KKlgfkDBVI/88S75e3fLs3+3rJ4eOelyXfDKCuGBWae5JVnOWabQ2UvkiUSO+H1l8rbimbxi6bzi6bximZy7TOfVm8zqzb3FMixxxTO131/QZ2rWRDcgnzMpUlg2alJTcGx/K26aUvNU9zH7kvJ+Ky/1bqkeqd69Udr/hpTul7avdh+VwhOrQ/XiyPXA6PoSCAAAAMCRMUxDHtNgYtIxwnGqSxUN/tKi9IVG3l238rasXGGZt2XlnPJ63padd8+Rr2hjl9Yr2laeI+8M2naPH9ZwW6dQ4mbwzhOQ12+W5qHwBdx5CXxBj3x+T8X+wr7A0Ie3Yt1feL7pLc9V4Njun9/Q+Seq55kYPO/E4KWVtZXL2rJyVvWyYo6LYljvOw6Tfp9oGIFe4cEHH9RVV12l+++/X0uXLtVdd92ln/zkJ9q0aZMmTpx40OcyAv34chxHOTunrJUdsuxKdpWC8tJI8thO9WZ6D3pOQ4Ymhia6oXjj5KplR6RDE0MTZRpH90uHZdnlenfFW+xSxdvtKm7Fq1gfUhuv8Jxcxhr2P2A+j6WQJ6OgnVAw169Acr8CA3vk692twMAeBTJ9Mp3hf6tp+P3ytrW5ZVnOXabQ0qXyTZyodM5SPOOG3vFMXgPpXGm9GIjH0nnFKwLxWEX7WDqneCavnDX8y5DXNHTqhEhhRHk5KJ/cEpLnJLzlaIh8Rtr3+tAR633bDvyc6FQ3UG+ZJnkDkjfoLj0V696g5PVXb3sC1e29FdseP2VkAAAAAGCMKgX6tiM5TjmPKIblhe1SrFhrv1O8eb2wv+JYcdtR7XbF8w5uJxXuUFDxfO5z3HYV+ytD/SHnG/R+5N7ZUHTA8Nvvce9eOEHYtvvliW07CjScfGOsKeFyhJYuXaolS5bou9/9riTJtm1NmTJFN9xwg770pS8d9Lknc4D+yM9/qW0vbpLt2HJkyXFs2Y4tW7Ycxyqtu9vuw5Yt26luaxeOOYVjpX1yHzU5xcle3IfhuLW5DBmSY8hn+BUwwwp6Qu7SbJDfDClgNshvBmUantJFXTKqL/yFpbtuyFDlPwSSYxuybEO2Zci2TXfdNt11xyPbNuXo2H/rbziW/PmYApk+NST3Kpjap2C6V8FMrwKFpddKH/QcltendLhJqXCTUqFGpUJNSoaalAw1KtHQpEQookSwUbFQo+LBiNLegHK2qsLxeDqvrHVsby2KBLzuI+hVY9Bdbwr6NHNCuBSUTx8Xlt/LaIrDlolLezeVQ/W9hRHrsT3H7zU9BwjXS+F8MWz3qXBfZMXDqF6XcZDjhYd08DalcxjV55VqrEvVM0gNt50O3u6YvtbgY4dxPgAAAAAAJKmhWZrxznr3YsRRwuUIZLNZrV+/Xrfeemtpn2mauvjii7V69eoh7TOZjDKZcv3hgYGBEennaLTlty/LtpZU7TMLj9EmV3gkRvh1TTsnTz4tj5WW18rIky8srcK+fHE9I6+Vlqew7S3sq26flTHoVqis6VV/IKxOf0R9kWnq94fVH4ioLxAprbuPsPr8EaW8gYOPDi5+UDHJ/bQO/olVBt+RgBt+FwPwSMBXvR30qjHoK7UrPc/vPaG+yR11AhFp8iL3USnZI+19zZ28NLbHHcFuZaV82l0vPQrbVuV2Zbv00JrsVqH9AUq1AwAAAACAOutYJH3y9/XuxahGgF6wb98+WZaltra2qv1tbW167bXXhrRfvny5vv71r49U90Y1b7RB2rWlsFUOQI1B2xp05MDbNfY7BztjxX03hXXDGbyvPKTcGLy/dAqn6lyGpKp7jAYvHUuGk5fh5CRZMpSTHEtSvryU7S5NQ45hyDFNOYapnMdQ1me6+9wZTOQYXjmGX47ZJMdw26n0nHK7vNenTLhJmUiT0uGospEm2cGQTI8pT2GSE48peQxDEdNQ1HBr4JmmUT5uuG3K64bMinamoUFtDXk9RiH09hF8n0hCrdK0c93H0XKcivC9RrheK3gv7ndv65D7d9WueDhD14e0GW67Wm2kivsFVXFP4aD1I22ngxw7nq81jHYAAAAAAEyYU+8ejHoE6Efo1ltv1c0331zaHhgY0JQpU+rYo/r55DdurHcXAIwGhlEu1QIAAAAAAHACIEAvGD9+vDwej7q6uqr2d3V1adKkSUPaBwIBBQKERAAAAAAAAABwohqNZarrwu/3a9GiRXrsscdK+2zb1mOPPaZly5bVsWcAAAAAAAAAgHpgBHqFm2++WVdffbUWL16ss88+W3fddZcSiYSuueaaencNAAAAAAAAADDCCNArXHHFFdq7d69uu+02dXZ2av78+XrkkUeGTCwKAAAAAAAAADjxGY7jOPXuxIlgYGBA0WhU/f39ampqqnd3AAAAAAAAAAA1HE6WSw10AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGrw1rsDJwrHcSRJAwMDde4JAAAAAAAAAOBAihluMdM9GAL0YyQWi0mSpkyZUueeAAAAAAAAAAAOJRaLKRqNHrSN4QwnZsch2bat3bt3q7GxUYZh1Ls7I25gYEBTpkzRjh071NTUVO/uAMAhcd0CMJZwzQIw1nDdAjDWcN06uTiOo1gspvb2dpnmwaucMwL9GDFNU5MnT653N+quqamJiwyAMYXrFoCxhGsWgLGG6xaAsYbr1snjUCPPi5hEFAAAAAAAAACAGgjQAQAAAAAAAACowXP77bffXu9O4MTg8Xh04YUXyuulMhCAsYHrFoCxhGsWgLGG6xaAsYbrFmphElEAAAAAAAAAAGqghAsAAAAAAAAAADUQoAMAAAAAAAAAUAMBOgAAAAAAAAAANRCgAwAAAAAAAABQAwE6jto999yj6dOnKxgMaunSpXruuefq3SUAkCQ9+eST+uAHP6j29nYZhqGf/exnVccdx9Ftt92mU045RQ0NDbr44ov1+uuv16m3ACAtX75cS5YsUWNjoyZOnKjLLrtMmzZtqmqTTqd13XXXady4cYpEIvrIRz6irq6uOvUYwMnuvvvu09y5c9XU1KSmpiYtW7ZMv/71r0vHuWYBGM2++c1vyjAM3XTTTaV9XLcwGAE6jsqDDz6om2++WV/72tf0/PPPa968ebrkkkvU3d1d764BgBKJhObNm6d77rmn5vFvfetbuvvuu3X//ffr2WefVTgc1iWXXKJ0Oj3CPQUA16pVq3TddddpzZo1evTRR5XL5fTe975XiUSi1OZzn/ucfvGLX+gnP/mJVq1apd27d+vDH/5wHXsN4GQ2efJkffOb39T69eu1bt06vetd79Kf/umf6pVXXpHENQvA6LV27Vp973vf09y5c6v2c93CYIbjOE69O4Gxa+nSpVqyZIm++93vSpJs29aUKVN0ww036Etf+lKdewcAZYZh6KGHHtJll10myR193t7ers9//vO65ZZbJEn9/f1qa2vTypUr9ed//uf17C4ASJL27t2riRMnatWqVXrnO9+p/v5+TZgwQT/+8Y91+eWXS5Jee+01nX766Vq9erXOOeecOvcYAKTW1lbdeeeduvzyy7lmARiV4vG4Fi5cqHvvvVd33HGH5s+fr7vuuovftVATI9BxxLLZrNavX6+LL764tM80TV188cVavXp1HXsGAIe2ZcsWdXZ2Vl3DotGoli5dyjUMwKjR398vyQ2jJGn9+vXK5XJV1663ve1tmjp1KtcuAHVnWZYeeOABJRIJLVu2jGsWgFHruuuu05/8yZ9UXZ8kftdCbd56dwBj1759+2RZltra2qr2t7W16bXXXqtTrwBgeDo7OyWp5jWseAwA6sm2bd10000677zzdOaZZ0pyr11+v1/Nzc1Vbbl2AainDRs2aNmyZUqn04pEInrooYd0xhln6IUXXuCaBWDUeeCBB/T8889r7dq1Q47xuxZqIUAHAAAARqHrrrtOL7/8sp5++ul6dwUADmrOnDl64YUX1N/fr//5n//R1VdfrVWrVtW7WwAwxI4dO/TZz35Wjz76qILBYL27gzGCEi44YuPHj5fH4xkyE3FXV5cmTZpUp14BwPAUr1NcwwCMRtdff70efvhhPf7445o8eXJp/6RJk5TNZtXX11fVnmsXgHry+/067bTTtGjRIi1fvlzz5s3Tt7/9ba5ZAEad9evXq7u7WwsXLpTX65XX69WqVat09913y+v1qq2tjesWhiBAxxHz+/1atGiRHnvssdI+27b12GOPadmyZXXsGQAc2owZMzRp0qSqa9jAwICeffZZrmEA6sZxHF1//fV66KGH9Pvf/14zZsyoOr5o0SL5fL6qa9emTZu0fft2rl0ARg3btpXJZLhmARh13v3ud2vDhg164YUXSo/FixfryiuvLK1z3cJglHDBUbn55pt19dVXa/HixTr77LN11113KZFI6Jprrql31wBA8Xhcb7zxRml7y5YteuGFF9Ta2qqpU6fqpptu0h133KFZs2ZpxowZ+upXv6r29nZddtlldew1gJPZddddpx//+Mf6+c9/rsbGxlKtzWg0qoaGBkWjUX3iE5/QzTffrNbWVjU1NemGG27QsmXLdM4559S59wBORrfeeqve9773aerUqYrFYvrxj3+sJ554Qr/5zW+4ZgEYdRobG0tzyxSFw2GNGzeutJ/rFgYjQMdRueKKK7R3717ddttt6uzs1Pz58/XII48MmZQPAOph3bp1uuiii0rbN998syTp6quv1sqVK/XFL35RiURCn/rUp9TX16fzzz9fjzzyCLXwANTNfffdJ0m68MILq/avWLFCH//4xyVJ//Iv/yLTNPWRj3xEmUxGl1xyie69994R7ikAuLq7u3XVVVdpz549ikajmjt3rn7zm9/oPe95jySuWQDGHq5bGMxwHMepdycAAAAAAAAAABhtqIEOAAAAAAAAAEANBOgAAAAAAAAAANRAgA4AAAAAAAAAQA0E6AAAAAAAAAAA1ECADgAAAAAAAABADQToAAAAAAAAAADUQIAOAAAAAAAAAEANBOgAAAAAAAAAANRAgA4AAACcYJ544gkZhqG+vr66vP5jjz2m008/XZZlHbLtI488ovnz58u27RHoGQAAAHB4CNABAACAMcQwjIM+br/9dp177rnas2ePotFoXfr4xS9+UV/5ylfk8XgO2fbSSy+Vz+fTf/3Xf41AzwAAAIDDYziO49S7EwAAAACGp7Ozs7T+4IMP6rbbbtOmTZtK+yKRiCKRSD26Jkl6+umn9YEPfECdnZ0KBoPDes4999yjlStXau3atce5dwAAAMDhYQQ6AAAAMIZMmjSp9IhGozIMo2pfJBIZUsJl5cqVam5u1sMPP6w5c+YoFArp8ssvVzKZ1A9/+ENNnz5dLS0tuvHGG6vKrmQyGd1yyy3q6OhQOBzW0qVL9cQTTxy0fw888IDe8573VIXnL774oi666CI1NjaqqalJixYt0rp160rHP/jBD2rdunV68803j+2HBQAAABwlb707AAAAAOD4SyaTuvvuu/XAAw8oFovpwx/+sD70oQ+publZv/rVr/TWW2/pIx/5iM477zxdccUVkqTrr79er776qh544AG1t7froYce0qWXXqoNGzZo1qxZNV/nqaee0sc+9rGqfVdeeaUWLFig++67Tx6PRy+88IJ8Pl/p+NSpU9XW1qannnpKp5566vH7EAAAAIDDRIAOAAAAnARyuZzuu+++UkB9+eWX60c/+pG6uroUiUR0xhln6KKLLtLjjz+uK664Qtu3b9eKFSu0fft2tbe3S5JuueUWPfLII1qxYoW+8Y1v1Hydbdu2ldoXbd++XV/4whf0tre9TZJqhu/t7e3atm3bsXzLAAAAwFEjQAcAAABOAqFQqGp0d1tbm6ZPn15VL72trU3d3d2SpA0bNsiyLM2ePbvqPJlMRuPGjTvg66RSqSG1z2+++WZde+21+tGPfqSLL75YH/3oR4eMNG9oaFAymTzi9wcAAAAcDwToAAAAwEmgsmSKJBmGUXOfbduSpHg8Lo/Ho/Xr18vj8VS1O9gkpePHj1dvb2/Vvttvv10f+9jH9Mtf/lK//vWv9bWvfU0PPPCAPvShD5Xa9PT0aMKECUf03gAAAIDjhQAdAAAAwBALFiyQZVnq7u7WO97xjsN63quvvjpk/+zZszV79mx97nOf01/8xV9oxYoVpQA9nU7rzTff1IIFC45Z/wEAAIBjwax3BwAAAACMPrNnz9aVV16pq666Sj/96U+1ZcsWPffcc1q+fLl++ctfHvB5l1xyiZ5++unSdiqV0vXXX68nnnhC27Zt0zPPPKO1a9fq9NNPL7VZs2aNAoGAli1bdlzfEwAAAHC4CNABAAAA1LRixQpdddVV+vznP685c+bosssu09q1azV16tQDPufKK6/UK6+8ok2bNkmSPB6P9u/fr6uuukqzZ8/Wn/3Zn+l973ufvv71r5ee89///d+68sorFQqFjvt7AgAAAA6H4TiOU+9OAAAAADhxfOELX9DAwIC+973vHbLtvn37NGfOHK1bt04zZswYgd4BAAAAw8cIdAAAAADH1Je//GVNmzatNCHpwWzdulX33nsv4TkAAABGJUagAwAAAAAAAABQAyPQAQAAAAAAAACogQAdAAAAAAAAAIAaCNABAAAAAAAAAKiBAB0AAAAAAAAAgBoI0AEAAAAAAAAAqIEAHQAAAAAAAACAGgjQAQAAAAAAAACogQAdAAAAAAAAAIAaCNABAAAAAAAAAKjh/wdSjMNqJXh+BwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for r in results:\n", + " r.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 6.06 ms, sys: 27.9 ms, total: 34 ms\n", + "Wall time: 103 ms\n" + ] + } + ], + "source": [ + "# Here, a parameter value is modified over multiple simulations. Notice how the method for\n", + "# sweeping over parameters is identical to sweeping over species initial values.\n", + "\n", + "results = []\n", + "# Here we will iterate over multiple parameter values\n", + "def iterate_parameter():\n", + " for i in range(1, 6):\n", + " # Call model.run with keyword argument variables\n", + " results.append(model.run(solver=solver, variables={'infect': 0.0001 * i}))\n", + " # This will update the value of the 'infect' parameter for this simulation only\n", + "%time iterate_parameter()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gU1f7H8fem94RQEoJUKQICAVSKShE0ES4/QAEpUpTiVWkqVkRAEC4qiqiXYqFIEVBBpSOCIiUKSJEikBukBpCSkIT08/sj7siSTUgQWMrn9TzzsDunzHfOzMZ7v3v2jM0YYxAREREREREREREREQdurg5ARERERERERERERORapAS6iIiIiIiIiIiIiIgTSqCLiIiIiIiIiIiIiDihBLqIiIiIiIiIiIiIiBNKoIuIiIiIiIiIiIiIOKEEuoiIiIiIiIiIiIiIE0qgi4iIiIiIiIiIiIg4oQS6iIiIiIiIiIiIiIgTSqCLiIiIiIiIiIiIiDihBLqIiIiIXBOGDRuGzWajSZMmrg7lhrZ06VJsNhs+Pj6Xtd/du3djs9mw2WzEx8df9fZybZs4cSI2m43bbrvN1aGIiIiIFIoS6CIiIiKFZE/0FnSTG9e5c+cIDg7GZrPRt2/fArdbs2aNdX989dVXVzBCsUtLS2Py5MlERUURERGBt7c3wcHBVK5cmfvuu4/BgwezbNky0tLSnLZPTEzknXfeoWnTppQoUQIvLy9CQ0OpWrUq0dHRjBgxgtWrV5OdnX3RWN59913r+jdr1qzQ53LmzBnGjRtHy5YtKVOmDH5+fvj6+lK6dGlatmzJe++9x/Hjx/Nsv3jxYjp27Mitt96Kn58ffn5+lC9fngYNGtC3b1/mzJnDyZMnCx2XiIiIyI3Iw9UBiIiIiFzPwsLCXB2CuJCvry+dOnVi0qRJzJo1i7Fjx+Lt7X3Rdp9++ikAxYsXp1WrVlc6TAcBAQFUqVKlQHHeKOLi4mjRogW7d++29nl5eeHu7k5sbCx79+5l1apVjBo1ivXr11O/fn2H9ps2beL//u//OHLkiLXP19eX7Oxsfv/9d3bv3s2yZcsAOHr0KOHh4fnG88knn1ivV61aRVxcHOXLly/QuUyYMIGXX36ZhIQEa5+fnx9eXl4cOnSIQ4cOsXjxYl5++WWGDx/O888/b9U7d+4cnTp14uuvv7b2ubm5ERISwuHDh9m/fz8bNmzgww8/ZPTo0bz00ksFiklERETkRqYZ6CIiIiL/QHx8/EU3ubH17NkTgNOnT7NgwYKL1k9KSmLevHkAdO3aFU9Pzysa34Xuuecedu/ezdatW6/qcV0lIyODVq1asXv3bgICAhg1ahSHDh0iNTWVU6dOkZyczPr16xkyZIjTJPbp06dp2bIlR44cISwsjA8++IATJ06QkpLCmTNnSExMZNWqVTz33HMF+kItJiaGHTt2EBYWRocOHTDGMGXKlAKdy3PPPcdTTz1FQkICNWrUYMaMGZw4cYLk5GTOnDlDcnIyixcvplOnTqSlpfHll186tB8wYICVPO/Tpw/bt28nPT2dkydPkpqays6dO3nvvfeoX7++fj0jIiIi8hcl0EVERERE/oE777yTGjVqAH/PLM/P3LlzSU5OBv5OvsuVs3TpUnbs2AHAZ599xssvv0ypUqWsBLGPjw/169fn9ddfZ9++fdSuXduh/YwZMzh27JjV19NPP02xYsWs8oCAAJo0acLbb7/NwYMHKV68eL7x2Gefd+rUiccffxyAqVOnXnTpl2nTpvHOO+8A8Oijj7Jp0ya6dOniEIufnx8PPvggs2bNYuPGjVSpUsUqO3XqlJWoHzBgAJMmTeL222/H3d0dyJmJXrVqVfr378/69evp379/vvGIiIiI3CyUQBcRERG5ip588klsNhshISHs37/faZ0JEyZgs9nw8PDgxx9/dCj77bffGDZsGPfddx+33norvr6+BAUFUbt2bV599VX+/PPPPI9drlw5bDYbU6dOJSUlhWHDhlG1alX8/PyIiIiga9euxMXFWfX//PNPXnzxRSpXroyvry/h4eH06tXLSiZe6MKHgM6dO5fGjRsTGhqKv78/devW5YMPPiArK6twg3aeEydO8Oqrr1K7dm2Cg4Px8fGhQoUK9OzZ00qSuoI9Ef7dd99x8ODBfOvak+z169enWrVqDmX79u1j9OjRREVFUalSJfz9/QkICKB69eo8++yzHDp0KM9+7bOG//Of/5CWlsaYMWOoU6eOtUb7hg0bgPwfIpqdnc2KFSvo27cv9erVo1SpUnh5eVGsWDGaNm3KRx99RGZmZoHGZNeuXXTt2pVSpUrh7e1N2bJlefrpp//RrzKysrKYNm0a0dHR1jrkxYsXJzo6mrlz52KMydVmy5YtANhstosul+Pm5pZraRt7+zJlyhAZGZlve09PTysh7UxycjKff/45AN27d6d58+ZERERw8OBBVqxYkWe71NRUXnzxRQAiIyP55JNPLvrLhdq1azvMbN+xY4d17Vq3bp1vW8hZoiYvK1as4KGHHqJkyZLW/XH//ffz2WefFWgN+PNVqVIFm83GK6+8km+9xYsXW38Xnd1DsbGx9OvXj6pVqxIQEICfnx9Vq1bN93Nz4YNNly9fTqtWrQgPD8fd3Z1///vfhToXERERuUEZERERESmUoUOHGsBcyv+USklJMdWrVzeAadCggcnIyHAo3759u/Hx8TGAee2113K1L1u2rHVsHx8fExoaamw2m7WvVKlSZvfu3U6PbW87btw4U6NGDasPX19fq33JkiVNXFyciY2NNeXLlzeA8fPzM15eXladSpUqmYSEhDzHpXHjxuaFF14wgLHZbKZIkSLGzc3Nah8VFWVSU1Pzbe/MihUrTEhIiNWPp6en8ff3t957eXmZadOmFeAqXH5//vmnNUYjRozIs96ePXuseCdPnpyrvF69eg7nExoa6jB2oaGhJiYmxmnf9rZDhgwxd955pwGMh4eHNWbr1683xhizZMkSAxhvb+9cfezatcs6FmACAwNNUFCQw7777rvP6fU7v+28efOsaxMYGGjd04ApXry42bZtW77tjx49mqv8+PHjpkGDBg6xBAcHO7xv165drs/U66+/bpUfOHDA+YXJx+OPP24A4+vra9LS0grd/nxTpkwxgKlRo4a1z/5Zad++fZ7tpk+f7jC2l+LHH3+0+pg+ffol9ZGdnW2eeuopqx/759vd3d3h852UlJSr7YQJEwxgqlSp4rB/xIgRBjBlypQx2dnZeR67Y8eOBjDR0dG5yj755BPj6enp8Lfx/HsuJCTErFq1Kt+YxowZ41Df09PTPPHEE4UfJBEREbnhKIEuIiIiUkj/JIFuTE6S3J60fuWVV6z95yfX7777bpOZmZmrbbdu3czUqVPNH3/8Ye1LS0sz3333nbnrrrsMYOrUqeP0uPYEekhIiClXrpxZvny5ycrKMpmZmWb58uWmePHiBjAdOnQwd911l4mMjLSSrunp6WbOnDnGz8/PAGbw4MF5jos9qdm3b19z/PhxY4wxCQkJZsSIEVay/5lnnsmzvbME+rZt26wx6927t9m5c6c1Pn/88YeV1PPw8DC//PJLPqN/5XTo0MEA5tZbb80zEfjSSy8ZwPj7+5vExMRc5U8//bSZOHGi2bdvn9VHRkaGWbdunWnWrJkBTNmyZZ0mcu0J9ICAABMcHGw+++wzc+7cOWNMTvL59OnTxpj8E+j79u0z3bp1M4sWLTKnTp2y9ickJJiPP/7YhIWFGcC8/PLLudqenwAPDg42derUMRs3bjTGGJOVlWUWL15sIiIirDFKTk7Os/2FCfSMjAwreX7HHXeYJUuWmJSUFGOMMWfPnjUff/yxKVasmAHMSy+95NB26dKlDsldZ8n5/EycONFq3717d2scL8U999xjAPPWW29Z+3bs2GF9YfLnn386bde9e3frSyP7eRdWQkKC8fb2NoApV66c2bx5c6H7eOutt6yx6Nu3rzl27JgxJucavPnmm1YivXv37rna5pVA379/v/V3wVmS2xhjEhMTrc//rFmzHMq+/fZbY7PZjJeXlxk8eLD5448/THZ2tsnKyjI7duwwbdq0MYApUqSIOXLkiNOY/Pz8jJubm+ndu7c5dOiQMSbnnouNjS30GImIiMiNRwl0ERERkUI6P4EeFhaW79a/f3+nfdgTN25ubub77783xhjzxBNPWAnu8xPkBXX27FkrwblmzZpc5fYEuq+vr9m7d2+u8k8++cThvJwl84YMGWIlQC90/rh07drVaYyvvvqqleg+fPiw0/bOEuj33Xdfnolbu/79+xvAtG7dOs86V9KyZcus83eWCMzMzLQSyD169Ch0/xkZGea2227Lcxby+bPXly9fnmc/+SXQL2bNmjVWgvzCmd7nJ8DDwsLMyZMnc7XfsmWL8fDwMIAZP358nu0vTHJPnjzZAKZmzZrm7NmzTmNbt26ddX+fn/zPzs42jRo1svr28PAwd999t3n22WfNzJkzzb59+/I95+TkZFOlShWrvbe3t2nWrJl56aWXzLx586yE68Xs3r3bAMbd3T1XIrdu3boGcn4d4swdd9yRa+b6pbB/fu1b9erVTe/evc3EiRPN5s2bnX5pZ5eYmGj9GuGxxx5zWufNN9+0+t6+fbtDWV4JdGOMady4cb79fvrpp9avGc7/AiEjI8P6u5bXr0+ys7NNVFSUAcyLL77oNCbAdO7cOc9zFxERkZubEugiIiIihXR+ovhim7OZmHYPPfSQAUxERISZNGnSP16iwZi/Z0GPHj06V5k90fToo486bXvo0CErhiFDhjit89NPP1l1Llym4fxxcZagNyZnFqx9JumFCdS8EuhxcXFW4tNZUtZu48aN1uzu/BKBV0pWVpYpU6aMAUy3bt1ylS9atMganx9//PGSjmH/kmDAgAG5yuwJ9Lp16+bbxz9JoBtjrF8Y/Prrrw77z0+A57eMjf2+b9iwYZ7tL0yg289t0qRJ+cZWsWJFA5gFCxY47E9MTDS9e/e2kvcXbuXLlzcjRozIMzkfHx9vHnroIYflki5MRL///vv5LvFiX6rF2RIk48ePzzdBbl9OKa/ljQoqOzvbvP322w5LIZ2/hYSEmCeeeMLs378/V9s5c+YYyFm2xVm5MTm/hrH/EuD8X9cYk38C/eOPPzaACQoKcjrDvmnTpk4T7PZ7uVSpUvku/zJjxgwDmMjISKcxOUv4i4iIiNjpIaIiIiIi/4DJmZCQ5zZ16tQ823788ceUKVOGI0eO8MQTTwDQq1cv2rVrl+8xFy5cyCOPPEKFChXw9/fHZrNZ29y5cwHyfdjkXXfd5XR/WFiY9frOO++8aJ0zZ844rVO6dGkqVqzotCwoKIi6desCsHHjxjxjPN/atWuBnAdcVqtWjfDwcKdbdHQ0kPOgxpMnTxao78vJzc2NHj16APDFF19w9uxZh3L7w0MrV67Mvffem2c/q1evpmvXrlSpUoWAgACH6zt+/Hgg/+t79913/6PzSE1N5cMPP+T++++nZMmSeHt7O8SQkJBw0Rjuu+++i5Zt2rTJ6UM/ncWzadMmAF5++eU8r394eDh//PEHgPWvXWBgIJMnT+bgwYNMmDCBLl26cNttt+HmlvN/h+Li4hgyZAh16tTJ1RZy7vsvv/yS2NhY3nnnHdq1a0eFChWw2WxAzgM6+/Xrx7333uv0c5GZmcn06dMB6NatW67yTp064enpyfbt2/nll18uOiaXymaz8dxzz3H48GHmzp3Lk08+yR133GE9UPbMmTNMmjSJGjVqsHz5coe29s9rxYoVKVu2rNP+vby8aNy4sUP9gmjfvj2+vr4kJiby9ddfO5QdPHiQ1atXA7nHzv634cSJE5QsWTLP+6Jfv35A7vvCLjg4mNtvv73A8YqIiMjNRQl0ERERERcpUqQIH374ofW+QoUKvPfee3nWz87OpnPnzrRq1Yq5c+cSFxdHeno6RYoUISwsjLCwMCsRlpycnGc/gYGBTvd7eHgUqk5GRobTOqVKlcrz2OeXHz9+PN96dkeOHAFyzv/YsWN5bn/++afVJiUlpUB9r1u3Ls+k25w5cwrUx/kee+wxbDYbKSkpfP7559b+P//8k2+//RaAxx9/PM/2AwYMoGnTpsyYMYM9e/aQmprqcH39/f2B/K9viRIlCh233dGjR6lduzZ9+/blu+++Iz4+Hnd3d4oVK2bFYE865xdDfveAvSwtLY3ExMSLxnTixAkyMzMBOHXqVL73gP2ezOv6h4eH8+9//5sZM2awa9cuzpw5w1dffUX9+vUB2Lt3L48++miesZQvX55nnnmGefPmERsby4kTJ5g+fTpVq1YF4Oeff6Zv37652i1evJj4+HiCgoJo06ZNrvJixYrRsmVL4O8vWs5XtGhR6/wvBz8/P9q3b89///tffvnlFxITE/nxxx/p3LkzAGfPnqVDhw4OX0TZP68X+3zfcsstDvULIigoiNatWwPw2WefOZTNnDkTYwxly5a1kvN29r8N6enp+d4Xp0+fBvK+L4oXL17gWEVEROTmowS6iIiIiAt99NFH1uvDhw+zb9++POt+8sknzJ49G3d3d1577TX27t1LWloap06dIj4+nvj4eGv2ekFm9l4vsrKygJxZwBeb8W/fypUrV6C+80u8nTt3rtCxlitXjmbNmgEwZcoUa//MmTNJT0/H3d3d6QxkgG+//daaYT5gwAB27NiR6/o++eSTQP7X193dvdBx2/Xt25fdu3dTokQJpk+fzrFjx0hJSeHEiRNWDKGhoReN4XKyX3+AVatWFej6v/TSSwXqOzAwkLZt2/LTTz/RsGFDAH766Sd2795doPZFixala9euxMTEcOuttwIwZ86cXL8++OSTTwBITEzEz8/PYUa/fVuwYAEAs2fPznXvVa9eHYDdu3eTmppaoNgKw9PTk3vvvZeZM2fywgsvAJCQkMC8efMu+7HyYv9cLF++nGPHjln77Qn1Ll26WDP+7ez3RuPGjQt0X+Q1dv/kMyMiIiI3PiXQRURERFzkgw8+4JtvvsHd3Z1q1aqRlpZGx44d85wlaZ/R3KtXL4YPH07FihWt2cB28fHxVzzuizl8+HCBygs6Uzo8PBzImcWd36znS9GkSZM8k2325VgKq2fPngCsX7/eSsTak+ktWrSgZMmSTtvZr2/r1q0ZN24c1apVy5XYu5LXNyUlxZolP2nSJLp27ZrrGqWlpeW5dM/58rsH7GXe3t4EBQVdtK8SJUpYidO8luD4p9zd3a3rBvD7778Xqn1gYKA1ezszM5P//e9/Vll8fDyLFy8ucF8JCQl88cUXDvvsX8pkZGSwcOHCQsVWWPblpMBxHOz3Qn5L95xfXthfQjzwwAOEhYWRmZnJ7NmzAdi8eTM7d+4EnC99Y//bcKXuCxERERFQAl1ERETEJbZv387zzz8PwGuvvcbixYsJCQlh165dPPPMM07bHDx4EIDatWs7LU9KSiImJubKBFwIBw8eJDY21mnZ2bNnrfWs77jjjgL1Z1/TOysriyVLllyeIK+gtm3bWrO0P/30UzZt2sTWrVsBHJK0F7rY9c3KyrLWgr4S4uPjrSVQ8oph9erV1nIq+Vm1atVFy+rWrZtrRrEzfn5+Vjz2BP+VEBAQYL329va+bO2nTZtGZmYmt9xyC2fPns13syevL1zGpV27dtbzB9544408l0+6UHZ29mU7D/vnNTY2Ns+EdUZGBj/88AOQ93MU8uLu7m59CWGfdW7/96677qJKlSq52tj/Nuzfv5/ffvutUMcTERERKSgl0EVERESusnPnztGxY0dSU1O55557GDx4MGXLlmXy5MkATJ48mS+//DJXu+DgYAArGXuhESNG5Fo6wlVGjBjhdP/YsWM5d+4cHh4ePPzwwwXqq1KlSjRp0gSAwYMHWw+xzMvlWif6Unl7e9OlSxcgJwFoX6YnLCzMWufamYtd3/Hjx1909u8/YT9+XjGkp6czZMiQAvX1wQcfWOtOn2/79u3WQyIfeeSRAsfWp08fAObPn893332Xb90Lr//WrVsvOnPfGGM95NPNzY3IyEirbMOGDRe95zIyMqxZ08HBwVSoUMEqsyfD27VrR0BAQL5bx44dAfjhhx8cvoTy9fVl9OjRAGzZsoXHH3/8okn0bdu2Oay3Hx8fn+e9db5p06ZZr+vUqWO9btGiBUFBQRhjGD58uNO277//vvUsAvu5FIZ9lvnmzZvZtm2bNaZ5LXsUFRVFmTJlABg4cOBFv9xx9d8GERERuT4pgS4iIiJylT3zzDPs3LmTkJAQZs6caS3T0b59e2uGcu/eva0ZyXbR0dFAzrrpkydPJj09HchJjD3zzDO8+eab1sMGXSk4OJhp06YxYMAAK5l29uxZRo0axeuvvw7A008/TURERIH7fP/99wkICGDPnj3Ur1+fr7/+2mE948OHD/PZZ5/RrFkzXnzxxct7QpfAfh3j4+OtBHq3bt0cHsJ6Ifv1nT9/PmPGjLGW8jl16hTDhw9n0KBBV/T6Fi1a1Jpl3L9/f3788UdrnfMtW7YQFRXFjh078PX1vWhf586d44EHHuDXX38FcmZCL126lBYtWpCZmUmFChXynY1/occff5xGjRqRnZ1Nq1at+M9//uOQFE9KSmLlypU88cQT1gM97VasWEG5cuXo1KkTX331lUO71NRUfvjhB1q2bMmiRYsA6Ny5s7U0CMCMGTMoU6YMvXv3ZvHixQ5J2OTkZBYuXEijRo3YsmULAP369cPLywuANWvWsGfPHgA6dOhw0fNs1KiRtdb/hbPQH3vsMfr372/FVLduXWbNmuXwoM9z586xYsUKunXrRp06dRzWcj906BCRkZHcd999fPTRR+zdu9e6vpmZmezcuZN+/fpZ68dXrFiR//u//7PaBwQEWF+gTJkyhX79+nHixAlrHMaOHWutn969e3duv/32i57vhSIjI612PXv25NixY3h6euaZjPfy8mLixIm4ubmxcuVKmjZtmutXEvv27ePDDz+kTp06Th/QKiIiInJRRkREREQKZejQoQYwgAkLC7votnbtWqvtl19+abWdN29err6Tk5PNbbfdZgBz7733mszMTKvs9OnTVhlg3NzcTEhIiLHZbAYwTzzxhOnevbsBTPfu3XP1XbZsWQOYKVOm5Hlu9r5XrVrltDwuLs6qExcX53RcGjdubF544QUDGJvNZooUKWLc3d2tds2bNzfnzp3Lc1wbN27s9Ng//fSTCQ8Pt/pxd3c3RYsWNb6+vtY+wPTq1SvP87ua6tat6xDXrl278q2fmppq6tWrZ9W3j539+rZt29Y8//zzBjBRUVG52tvbjh49Ot/jLFmyxADG29s7V9m6descxtPHx8cEBAQYwHh6epo5c+aYsLAwA5jZs2c7tN21a5fDve3v728AExgY6NBn0aJFzZYtW3Id+/z2R48ezVV+6tQpExUV5TCmwcHBJjg42BojwAQEBDi0GzdunEMbwPj6+poiRYrk2t+yZUuTlJTk0H7gwIG56vn7+5ugoKBc+3v27GkyMjKstvbPY+nSpU12dna+18XuqaeeMoApVaqUw+ffbvz48bmO7e/vb4KDgx32BQQEmHHjxlntfv3111zxenp6mtDQUOPm5uawv3LlymbPnj25jp2dnW3Fl9fn+4EHHsg1hsYYM2HCBAOYKlWq5Hv+b775pkMsrVu3vuiYzZkzx7rf7OdVtGhR4+Xl5dDX22+/fUkxiYiIyM1NM9BFRERE/oFjx45ddLPPFD948CC9evUCcmZXtmvXLld/fn5+zJ49G29vb9asWcPIkSOtspCQENatW8fAgQMpV64c7u7ueHh40KRJE2bPns3EiROvzkkXwJgxY/j888+55557MMbg5eVFZGQk7733HkuXLsXHx6fQfd59993s2bOHt99+m0aNGhESEsKZM2dwd3enatWqPProo8ycOZNx48ZdgTMqvPNnWDds2JDbbrst3/re3t58//33DB48mIoVK1qz1Rs2bMhHH33El19+meuhsZdbgwYNiImJ4eGHH6Zo0aJkZWURHBxMp06d2LBhQ4FmUQPcc889/PLLL3Tp0oXAwECysrIoXbo0Tz75JNu3b6dWrVqFjq1IkSIsWbKEb7/9lnbt2lG6dGlSU1NJTU3llltuITo6mjFjxrB9+3aHdgMGDGDz5s2MHj2aVq1aUbFiRWw2G4mJiQQFBVG9enV69OjBsmXLWLhwIf7+/g7tx44dy9q1axk6dChRUVGULVuWrKwskpOTCQkJoXbt2jz11FNs2LCBjz/+2LpuZ8+eZd68eUDO8i0FWe8d/p6pfvjwYZYtW5arvF+/fuzfv5+xY8cSHR3NLbfcQnZ2tjUOLVu25IMPPuCPP/5gwIABVrvIyEgOHDjAhAkT6Ny5MzVq1MDX15eEhAR8fHwoX748bdq0YcqUKWzfvp1KlSrlOrbNZuPDDz9k2bJltGnThhIlSpCUlERwcDDNmjVj2rRpLFmyJNcYFkaXLl0cHp6b1/It5+vQoQP79u1jyJAh3HHHHfj7+3PmzBl8fX2JjIzkiSee4JtvvrFm8IuIiIgUhs2Yv363JyIiIiLyDwwbNozhw4fTuHHjK/qwSxERERERkatFM9BFRERERERERERERJxQAl1ERERERERERERExAkl0EVEREREREREREREnFACXURERERERERERETECT1EVERERERERERERETECc1AFxERERERERERERFxwsPVAdwosrOzOXLkCIGBgdhsNleHIyIiIiIiIiIiIiJOGGM4e/YsERERuLnlP8dcCfTL5MiRI5QuXdrVYYiIiIiIiIiIiIhIARw8eJBbbrkl3zpKoF8mgYGBQM6gBwUFuTgaEREREREREREREXEmMTGR0qVLWznd/CiBfpnYl20JCgpSAl1ERERERERERETkGleQpbj1EFERERERERERERERESeUQBcRERERERERERERcUIJdBERERERERERERERJ7QGuoiIiIiIiIiIiFwXjDFkZmaSlZXl6lDkGubu7o6Hh0eB1ji/GCXQRURERERERERE5JqXnp7O0aNHSUlJcXUocql+Z3EAACAASURBVB3w8/OjZMmSeHl5/aN+lEAXERERERERERGRa1p2djZxcXG4u7sTERGBl5fXZZldLDceYwzp6emcOHGCuLg4KlWqhJvbpa9krgS6iIiIiIiIiIiIXNPS09PJzs6mdOnS+Pn5uTocucb5+vri6enJH3/8QXp6Oj4+Ppfclx4iKiIiIiIiIiIiIteFfzKTWG4ul+te0R0nIiIiIiIiIiIiIuKEEugiIiIiIiIiIiIiIk4ogS4iIiIiIiIiIiJylTVp0oSBAwde98e40SmBLiIiIiIiIiIiIiLihBLoIiIiIiIiIiIiIiJOKIEuIiIiIiIiIiIi1x1jDCnpmS7ZjDGFijU5OZlu3boREBBAyZIlGTt2rEN5WloagwYNolSpUvj7+1OvXj1Wr15tlZ88eZJOnTpRqlQp/Pz8qFGjBrNnzy7UMeTSeLg6ABEREREREREREZHCOpeRRbXXlrnk2Dtfj8LPq+Cp1eeff54ffviBr7/+mhIlSvDKK6+wefNmIiMjAejbty87d+7k888/JyIigvnz5xMdHc327dupVKkSqamp1K1blxdffJGgoCAWLVpE165dufXWW7nrrrsKdAy5NEqgi4iIiIiIiIiIiFwhSUlJfPLJJ8yYMYNmzZoBMG3aNG655RYADhw4wJQpUzhw4AAREREADBo0iKVLlzJlyhRGjRpFqVKlGDRokNVnv379WLZsGXPnzuWuu+666DHk0imBLiIiIiIiIiIiItcdX093dr4e5bJjF1RsbCzp6enUq1fP2hcaGkqVKlUA2L59O1lZWVSuXNmhXVpaGkWLFgUgKyuLUaNGMXfuXA4fPkx6ejppaWn4+fkV6Bhy6ZRAFxERERERERERkeuOzWYr1DIq16qkpCTc3d3ZtGkT7u6OifmAgAAA3nrrLd577z3GjRtHjRo18Pf3Z+DAgaSnp7si5JuKHiIqIiIiIiIiIiIicoXceuuteHp6EhMTY+07ffo0e/bsAaB27dpkZWVx/PhxKlas6LCFh4cDsHbtWlq3bs2jjz5KrVq1qFChgtW+IMeQS3f9f0UjIiIiIiIiIiIico0KCAigZ8+ePP/88xQtWpQSJUowePBg3Nxy5jZXrlyZLl260K1bN8aOHUvt2rU5ceIEK1eupGbNmrRs2ZJKlSrxxRdfsG7dOooUKcI777zDsWPHqFatWoGOIZdOCXQRERERERERERGRK+itt94iKSmJVq1aERgYyHPPPUdCQoJVPmXKFEaOHMlzzz3H4cOHKVasGPXr1+df//oXAK+++ir/+9//iIqKws/Pjz59+tCmTRuHPi52DLk0NmOMcXUQN4LExESCg4NJSEggKCjI1eGIiIiIiIiIiIjcMFJTU4mLi6N8+fL4+Pi4Ohy5DuR3zxQml6s5/CIiIiIiIiIiIiIiTiiBLiIiIiIiIiIiIiLihBLoIiIiIiIiIiIiIiJOKIEuIiIiIiIiIiIiIuKEEugiIiIiIiIiIiIiIk4ogS4iIiIiIiIiIiIi4oRLE+g//vgjrVq1IiIiApvNxoIFCxzKjTG89tprlCxZEl9fX5o3b87evXsd6pw6dYouXboQFBRESEgIPXv2JCkpyaHOtm3buPfee/Hx8aF06dK8+eabuWKZN28et912Gz4+PtSoUYPFixdf/hMWERERERERERERkeuGSxPoycnJ1KpViw8//NBp+Ztvvsn48eOZOHEiMTEx+Pv7ExUVRWpqqlWnS5cu7NixgxUrVrBw4UJ+/PFH+vTpY5UnJibywAMPULZsWTZt2sRbb73FsGHDmDx5slVn3bp1dOrUiZ49e/Lrr7/Spk0b2rRpw2+//XblTl5ERERERERERERErmk2Y4xxdRAANpuN+fPn06ZNGyBn9nlERATPPfccgwYNAiAhIYGwsDCmTp1Kx44d2bVrF9WqVeOXX37hjjvuAGDp0qW0aNGCQ4cOERERwYQJExg8eDDx8fF4eXkB8NJLL7FgwQJ2794NwCOPPEJycjILFy604qlfvz6RkZFMnDixQPEnJiYSHBxMQkICQUFBl21crgsn9sCJXYANbG5gs/312uZkH3+X2dwuqJfHPqsPnPfr5gFunuD+1+bstc3mipEREREREREREZHLIDU1lbi4OMqXL4+Pj4+rw5HrQH73TGFyuR5XMsh/Ii4ujvj4eJo3b27tCw4Opl69eqxfv56OHTuyfv16QkJCrOQ5QPPmzXFzcyMmJoa2bduyfv16GjVqZCXPAaKiohgzZgynT5+mSJEirF+/nmeffdbh+FFRUbmWlDlfWloaaWlp1vvExMTLcdrXp51fw6qRro4if1aS3QvcL9NrD2/w8s/ZPP0c/7Ve+4FXQM5rTz9w02MHRERERERERERuJk2aNCEyMpJx48ZdsWOUK1eOgQMHMnDgwDzrDBs2jAULFrBly5YrFseN6JpNoMfHxwMQFhbmsD8sLMwqi4+Pp0SJEg7lHh4ehIaGOtQpX758rj7sZUWKFCE+Pj7f4zgzevRohg8ffglndgMKvgXKNABjAAMm+7zXzvbxd5nJvqBeXvsu7O+8frMzISsTstIhOyPn/YWyM3O2zHNXZUjyZE+ke/mB51+Jdqev7Ql5+76/EvFefuATDAFh4F8c3Nxdez4iIiIiIiIiInLNuXC1D7l012wC/Vr38ssvO8xaT0xMpHTp0i6MyIUiO+Vs1wpjICsjJ5melXHe6/ScRLvT1xl5tMnrdTpkpkF6EqSnQEbKBa+Tc7aMv97b2d+n5B1+gdnccpLoAWEQGO7k33AIDMt57+F9GQ4oIiIiIiIiIiJyc7lmE+jh4eEAHDt2jJIlS1r7jx07RmRkpFXn+PHjDu0yMzM5deqU1T48PJxjx4451LG/v1gde7kz3t7eeHsrKXlNstnAwwvwumjVqyI7O2fm+/lJdYfXfyXf7a8z/ipz+joFzp2G5BM5s++TjuVs8dvyj8EnJI8k+wXJdu/AqzMmIiIiIiIiIiL/lDGOExevJk+/Qj1zLzs7mxdeeIGPP/4YLy8v/v3vfzNs2DAAzpw5w6BBg/j6669JS0vjjjvu4N1336VWrVoAxMbG8uyzz7JhwwaSk5OpWrUqo0ePdlj6+nzlypUDoG3btgCULVuW/fv3W+WfffYZQ4YM4fTp0zz44IN89NFHBAYGMn36dJ555hmOHDnikPds06YNgYGBfPbZZ4UYoBvHNZtAL1++POHh4axcudJKmCcmJhITE8OTTz4JQIMGDThz5gybNm2ibt26AHz//fdkZ2dTr149q87gwYPJyMjA09MTgBUrVlClShWKFCli1Vm5cqXDGkErVqygQYMGV+185Qbm5vb3uuiXS1YmpPwJZ+NzEuh5/Zt0LGe2fOqZnO3E7vz79fT/a9Z6eO5/Q0pD6fo568CLiIiIiIiIiLhaRgqMinDNsV85Uqhcz7Rp03j22WeJiYlh/fr19OjRg7vvvpv777+f9u3b4+vry5IlSwgODmbSpEk0a9aMPXv2EBoaSlJSEi1atOCNN97A29ub6dOn06pVK37//XfKlCmT61i//PILJUqUYMqUKURHR+Pu/vcSwLGxsSxYsICFCxdy+vRpOnTowH/+8x/eeOMN2rdvT//+/fnmm29o3749AMePH2fRokUsX778n4/ZdcqlmbCkpCT27dtnvY+Li2PLli2EhoZSpkwZBg4cyMiRI6lUqRLly5dnyJAhREREWGv3VK1alejoaHr37s3EiRPJyMigb9++dOzYkYiInA9P586dGT58OD179uTFF1/kt99+47333uPdd9+1jjtgwAAaN27M2LFjadmyJZ9//jkbN25k8uTJV3dARArK3SNn5nhg3r+SAHK+iT13Ov8ku/3f9KScWe6n/pezOeNfAmp2gMjOEFb98p+XiIiIiIiIiMgNqGbNmgwdOhSASpUq8cEHH7By5Up8fX35+eefOX78uDXr++2332bBggV88cUX9OnTh1q1almz0QFGjBjB/Pnz+eabb+jbt2+uYxUvXhyAkJCQXCtsZGdnM3XqVAIDc1Yh6Nq1KytXruSNN97A19eXzp07M2XKFCuBPmPGDMqUKUOTJk0u+5hcL1yaQN+4cSNNmza13tvXFO/evTtTp07lhRdeIDk5mT59+nDmzBnuueceli5dio+Pj9Vm5syZ9O3bl2bNmuHm5sbDDz/M+PHjrfLg4GCWL1/O008/Td26dSlWrBivvfYaffr0seo0bNiQWbNm8eqrr/LKK69QqVIlFixYwO23334VRkHkCrLZwC80ZytRNf+6aUl/z1p3lmSP3wbJx2H9BzlbyVpQqzPUaA/+Ra/O+YiIiIiIiIiI2Hn65cwEd9WxC6FmzZoO70uWLMnx48fZunUrSUlJFC3qmFs5d+4csbGxQM4k5GHDhrFo0SKOHj1KZmYm586d48CBA4UOu1y5clby/Pw47Hr37s2dd97J4cOHKVWqFFOnTqVHjx7YCrFczY3GpQn0Jk2aYIzJs9xms/H666/z+uuv51knNDSUWbNm5XucmjVrsmbNmnzrtG/f3vpmReSm5B2QsxW91Xl5VgbsXQFbZsKeZXB0a862/FWoHJUzK73SA+DueXXjFhEREREREZGbk812eZfMvYLsS0vb2Ww2srOzSUpKomTJkqxevTpXm5CQEAAGDRrEihUrePvtt6lYsSK+vr60a9eO9PT0yxaHXe3atalVqxbTp0/ngQceYMeOHSxatKjQx7mRaDFjESkYd0+4rUXOlnwSfvsCtsyCo1tg98Kcza9Yzoz0yM5QsubF+xQRERERERERuYnVqVOH+Ph4PDw8rId/Xmjt2rX06NHDeihoUlKSw0NBnfH09CQrK+uSYurVqxfjxo3j8OHDNG/enNKlS19SPzcKN1cHICLXIf+iUO8JeOIHeHI9NOyXsz56yp8QMwEm3QsT7ob1H0LSCVdHKyIiIiIiIiJyTWrevDkNGjSgTZs2LF++nP3797Nu3ToGDx7Mxo0bgZw107/66iu2bNnC1q1b6dy5s8OscWfKlSvHypUriY+P5/Tp04WKqXPnzhw6dIiPPvqIxx9//JLP7UahBLqI/DNh1eCBkfDsLug8D6q1AXcvOPYbLHsFxlaBWR1h5zeQmebqaEVERERERERErhk2m43FixfTqFEjHnvsMSpXrkzHjh35448/CAsLA+Cdd96hSJEiNGzYkFatWhEVFUWdOnXy7Xfs2LGsWLGC0qVLU7t27ULFFBwczMMPP0xAQABt2rS55HO7UdhMfouQS4ElJiYSHBxMQkICQUFBrg5HxLVSTsGOr3KWeDm86e/9vkVylnip1QkiauesVSYiIiIiIiIichGpqanExcVRvnx5fHx8XB3ODa9Zs2ZUr16d8ePHuzqUS5bfPVOYXK7WQBeRy88vFO7slbOd+D0nkb5tDpw9Cj9PztmKV4XITlDzEQgMd3XEIiIiIiIiIiI3vdOnT7N69WpWr17Nf//7X1eHc01QAl1ErqziVeD+4dDsNfjfqpxk+u5FcGIXrHgNvhsGFZvnzEqv0gI89S2yiIiIiIiIiIgr1K5dm9OnTzNmzBiqVKni6nCuCUqgi8jV4eaekyiv2BzOnYEd82HrbDgYA3uX52w+wXD7wxDZBUrV1RIvIiIiIiIiIiJX0f79+10dwjVHCXQRufp8Q+COx3K2P/flJNK3fg6Jh2Djpzlb0UoQ2RlqdYSgCFdHLCIiIiIiIiIiNyE3VwcgIje5YhWh2RAYuB26fZ2zJrqHL5zcCyuHw7vVYeXrkJ3t6khFREREREREROQmowS6iFwb3NygQhN4aDIM2gP/9wGUvRtMNqwZC3MehbSzro5SRERERERERERuIkqgi8i1xycI6nSFxxbDQx+Buzf8vgg+eQBO73d1dCIiIiIiIiIicpNQAl1Erm01O8BjSyAgHI7vhMlNYf9Pro5KRERERERERERuAkqgi8i175a60GcVRNSGc6dgemvYOMXVUYmIiIiIiIiIyA1OCXQRuT4EReTMRL/9YcjOhIUDYfELkJXp6shERERERERERPLUpEkTBg4cWOD6u3fvpn79+vj4+BAZGXkFI7s0NpuNBQsWuDqMq8bD1QGIiBSYpy88/AmUqArfj4SfJ8Gfv0O7KeAX6uroRERERERERERy+eqrr/D09Cxw/aFDh+Lv78/vv/9OQEDAZYnBZrMxf/582rRpc1n6u5loBrqIXF9sNmj0PDwyAzz94X+r4eNmcGKPqyMTEREREREREcklNDSUwMDAAtePjY3lnnvuoWzZshQtWvQKRiYFoQS6iFyfqraCnsshuAyc+l9OEn3vCldHJSIiIiIiIiJXiTGGlIwUl2zGmALHef4SLuXKlWPUqFE8/vjjBAYGUqZMGSZPnmzVtdlsbNq0iddffx2bzcawYcMAOHjwIB06dCAkJITQ0FBat27N/v37HY7z6aefUr16dby9vSlZsiR9+/a1jgnQtm1bbDab9R7g66+/pk6dOvj4+FChQgWGDx9OZubfy+Xu3buXRo0a4ePjQ7Vq1Vix4ubLvWgJFxG5foXfnvNw0Tld4cA6mNUB7h8BDZ7OmakuIiIiIiIiIjesc5nnqDernkuOHdM5Bj9Pv0tqO3bsWEaMGMErr7zCF198wZNPPknjxo2pUqUKR48epXnz5kRHRzNo0CACAgLIyMggKiqKBg0asGbNGjw8PBg5ciTR0dFs27YNLy8vJkyYwLPPPst//vMfHnzwQRISEli7di0Av/zyCyVKlGDKlClER0fj7u4OwJo1a+jWrRvjx4/n3nvvJTY2lj59+gA5y8hkZ2fz0EMPERYWRkxMDAkJCYVay/1GoRnoInJ98y8G3b6GOt3AZMPywfD105CZ5urIRERERERERERyadGiBU899RQVK1bkxRdfpFixYqxatQqA8PBwPDw8CAgIIDw8nICAAObMmUN2djYff/wxNWrUoGrVqkyZMoUDBw6wevVqAEaOHMlzzz3HgAEDqFy5MnfeeaeV7C5evDgAISEhhIeHW++HDx/OSy+9RPfu3alQoQL3338/I0aMYNKkSQB899137N69m+nTp1OrVi0aNWrEqFGjrvJouZ5moIvI9c/DC1qNhxLVYdnLsGUmnNyXs056QAlXRyciIiIiIiIiV4Cvhy8xnWNcduxLVbNmTeu1zWYjPDyc48eP51l/69at7Nu3L9c66qmpqcTGxnL8+HGOHDlCs2bNChXH1q1bWbt2LW+88Ya1Lysri9TUVFJSUti1axelS5cmIiLCKm/QoEGhjnEjUAJdRG4MNhvU/zcUqwTzHoODMTC5KXSaBSVruTo6EREREREREbnMbDbbJS+j4kqenp4O7202G9nZ2XnWT0pKom7dusycOTNXWfHixXFzu7RFRpKSkhg+fDgPPfRQrjIfH59L6vNGpAS6iNxYKjaD3ithdsecWeifRkPbiVCttasjExEREREREREptDp16jBnzhxKlChBUFCQ0zrlypVj5cqVNG3a1Gm5p6cnWVlZufr9/fffqVixotM2VatW5eDBgxw9epSSJUsCsGHDhn9wJtcnrYEuIjeeYpWg13dw632QkQJzu8HqMVCIJ2SLiIiIiIiIiFwLunTpQrFixWjdujVr1qwhLi6O1atX079/fw4dOgTAsGHDGDt2LOPHj2fv3r1s3ryZ999/3+rDnmCPj4/n9OnTALz22mtMnz6d4cOHs2PHDnbt2sXnn3/Oq6++CkDz5s2pXLky3bt3Z+vWraxZs4bBgwdf/QFwMSXQReTG5FsEOs+D+k/lvF89Cub1gPQUl4YlIiIiIiIiIlIYfn5+/Pjjj5QpU4aHHnqIqlWr0rNnT1JTU60Z6d27d2fcuHH897//pXr16vzrX/9i7969Vh9jx45lxYoVlC5dmtq1awMQFRXFwoULWb58OXfeeSf169fn3XffpWzZsgC4ubkxf/58zp07x1133UWvXr0c1ku/WdiM0ZTMyyExMZHg4GASEhLy/CmFiLjI5s9g4TOQnQHhNaHTbAi+xdVRiYiIiIiIiEgBpaamEhcXR/ny5bU+txRIfvdMYXK5moEuIje+Ol2h+7fgVwzit+U8XPTgz66OSkRERERERERErnFKoIvIzaFsA+izCsJuh+TjMLUlbJnl6qhEREREREREROQapgS6iNw8QsrA48vgtn9BVjoseBKWvwrZWRdvKyIiIiIiIiIiNx0l0EXk5uIdAB0+g0bP57xf9z7M7gipCa6NS0RERERERERErjlKoIvIzcfNDe57Fdp9Ch4+sHc5fHw/nIx1dWQiIiIiIiIiInINUQJdRG5etz8Mjy+FwAj483f46D743w+ujkpERERERERERK4RSqCLyM0tonbOw0VL1YXUM/BZW/j5I1dHJSIiIiIiIiIi1wAl0EVEAsOhx2Ko+QiYLFg8CBY+A1kZro5MRERERERERERcSAl0EREATx9oOwmaDwNssPFT+PppFwclIiIiIiIiIiKupAS6iIidzQb3PAMdZ4HNDbbNgYM/uzoqEREREREREZHr2tSpUwkJCXF1GJdECXQRkQvd1gIiu+S8XjYYjHFtPCIiIiIiIiIi4hJKoIuIONN0MHj6waGfYdc3ro5GRERERERERG4Q6enprg7hklyvcf9TSqCLiDgTVBIa9st5vWIoZN6c/5EQERERERERuVYZY8hOSXHJZgrxa/UmTZrQt29fBg4cSLFixYiKiuLMmTP06tWL4sWLExQUxH333cfWrVsd2n377bfceeed+Pj4UKxYMdq2bWuVnT59mm7dulGkSBH8/Px48MEH2bt3LwCJiYn4+vqyZMkSh/7mz59PYGAgKSkpABw8eJAOHToQEhJCaGgorVu3Zv/+/Vb9Hj160KZNG9544w0iIiKoUqUKAGlpaQwaNIhSpUrh7+9PvXr1WL16tcOxpk6dSpkyZfDz86Nt27acPHmywON1rfFwdQAiIteshv1h4xQ4HZfzUNH6/3Z1RCIiIiIiIiLyF3PuHL/XqeuSY1fZvAmbn1+B60+bNo0nn3yStWvXAtC+fXsryR0cHMykSZNo1qwZe/bsITQ0lEWLFtG2bVsGDx7M9OnTSU9PZ/HixVZ/PXr0YO/evXzzzTcEBQXx4osv0qJFC3bu3ElQUBD/+te/mDVrFg8++KDVZubMmbRp0wY/Pz8yMjKIioqiQYMGrFmzBg8PD0aOHEl0dDTbtm3Dy8sLgJUrVxIUFMSKFSusfvr27cvOnTv5/PPPiYiIYP78+URHR7N9+3YqVapETEwMPXv2ZPTo0bRp04alS5cydOjQfzrkLmMzhfm6RPKUmJhIcHAwCQkJBAUFuTocEblcNk6BhQPBNxT6/wq+1+cDL0RERERERESuZ6mpqcTFxVG+fHl8fHwAyE5JcWkC3a2ACfQmTZqQmJjI5s2bAfjpp59o2bIlx48fx9vb26pXsWJFXnjhBfr06UPDhg2pUKECM2bMyNXf3r17qVy5MmvXrqVhw4YAnDx5ktKlSzNt2jTat2/PggUL6Nq1K8eOHcPPz4/ExETCwsKsZPeMGTMYOXIku3btwmazATlLtISEhLBgwQIeeOABevTowdKlSzlw4ICVUD9w4AAVKlTgwIEDREREWDE1b96cu+66i1GjRtG5c2cSEhJYtGiRVd6xY0eWLl3KmTNnCjnSl87ZPWNXmFyuZqCLiOSndlfYMAH+/B1+egfuf93VEYmIiIiIiIgIYPP1pcrmTS47dmHUrft3on/r1q0kJSVRtGhRhzrnzp0jNjYWgC1bttC7d2+nfe3atQsPDw/q1atn7StatChVqlRh165dALRo0QJPT0+++eYbOnbsyJdffklQUBDNmze3Yti3bx+BgYEOfaemploxANSoUcNKngNs376drKwsKleu7NAuLS3NOp9du3Y5LDcD0KBBA5YuXZrPCF27lEAXEcmPuwc8MAJmdYANE+HOXhBSxtVRiYiIiIiIiNz0bDZboZZRcSV/f3/rdVJSEiVLlsy1bjhASEjOL999C5mgv5CXlxft2rVj1qxZdOzYkVmzZvHII4/g4eFhxVC3bl1mzpyZq23x4sWdxm1v5+7uzqZNm3B3d3coCwgI+EcxX6uUQBcRuZhKD0C5e2H/Glg5Ah7+yNURiYiIiIiIiMh1qk6dOsTHx+Ph4UG5cuWc1qlZsyYrV67ksccey1VWtWpVMjMziYmJcVjC5ffff6datWpWvS5dunD//fezY8cOvv/+e0aOHOkQw5w5cyhRokShlqOuXbs2WVlZHD9+nHvvvddpnapVqxITE+Owb8OGDQU+xrXGzdUBiIhc82w2eOCv/8hsnwtHfnVtPCIiIiIiIiJy3WrevDkNGjSgTZs2LF++nP3797Nu3ToGDx7Mxo0bARg6dCizZ89m6NCh7Nq1i+3btzNmzBgAKlWqROvWrenduzc//fQTW7du5dFHH6VUqVK0bt3aOk6jRo0IDw+nS5culC9f3mHJly5dulCsWDFat27NmjVriIuLY/Xq1fTv359Dhw7lGXvlypXp0qUL3bp146uvviIuLo6ff/6Z0aNHW2ue9+/fn6VLl/L222+zd+9ePvjgg+t2+RZQAl1EpGAiIqHmIzmvlw8BPX9ZRERERERERC6BzWZj8eLF/8/enYdFXe/vH79nhhlWETdAVARRCJHcK7PMXLNssTotVi6nstPJflm22Gk/bSeXTmbl0XPO1608bcdOtqeWGy65L6gpiKio4IogO8zvj5ExckkTec8Mz8d1ec2Hmc9n5h7jMrh583qrW7duGjp0qOLj43XHHXcoMzNTERERklwbj37yySeaPXu22rVrpx49euinn35yP8eUKVPUsWNH9e/fX126dJHT6dTXX38tu91e5XXuvPNOrVu3TnfddVeVDEFBQVq4cKGio6N18803KzExUffee6+Kiop+c0X6lClTNGjQII0czFcbGgAAIABJREFUOVIJCQm66aabtGLFCkVHu0beXnbZZfrnP/+p8ePHq23btvr+++/17LPPVtdfX42zOJ20QNXhXHZuBeCljuyUJnSSyoulOz+SEq4xnQgAAAAAgFqhqKhIGRkZio2NVUBAgOk48AJn+pw5ly6XFegAcLbCoqXLHnQdz3leKi8zmwcAAAAAAAAXFAU6AJyLKx+TAutLB36W1kw3nQYAAAAAAAAXEAU6AJyLgLpS91Gu4x9fl4rzzOYBAAAAAADABUOBDgDnquNQqX4L6ViOtGSC6TQAAAAAAAC4QCjQAeBc+TmkXi+6jpdMkI7uNZkGAAAAAAAAFwgFOgD8Hok3SM0ulUoLpB9fNZ0GAAAAAAAAFwAFOgD8HhaL1OcV1/Ga96XsVLN5AAAAAAAAUO0o0AHg92p2idT6JklOac7zptMAAAAAAACgmlGgA8D56PWCZLVLaXOl9B9MpwEAAAAAAEA1okAHgPNRv4XU+T7X8ffPSxXlZvMAAAAAAAD4gKlTpyosLMx0DAp0ADhvVz0p+deVsjdI6z8ynQYAAAAAAOCMLBaL/ve//5mO4RYTE6O33nqryn233367tm7daijRCRToAHC+gupL3Ua6jue9LJUUmM0DAAAAAADg5QIDAxUeHm46BgU6AFSLSx6Q6kZLeXukZe+ZTgMAAAAAgM9zOp0qLS438sfpdJ51zk8//VTJyckKDAxUgwYN1KtXLy1YsEB2u1379u2rcu6IESN05ZVXSjoxwuTLL79UQkKCgoKCdOutt6qgoEDTpk1TTEyM6tWrp//3//6fystPjJSNiYnRyy+/rDvvvFPBwcFq0qSJ3n333SqPS9KAAQNksVjcH0vSxIkTFRcXJ4fDoYSEBM2YMaNKPovFokmTJql///4KCgpSYmKili5dqrS0NHXv3l3BwcG6/PLLlZ6e7r4mPT1dN954oyIiIhQSEqLOnTtr7ty57se7d++uzMxMPfroo7JYLLJYLFXe/y998cUX6ty5swICAtSwYUMNGDDgrP87/F5+F/wVAKA2sAdIPZ+XZt0nLX5L6jBYCmlkOhUAAAAAAD6rrKRCkx9ZYOS1h42/SnZ/22+et3fvXt15550aPXq0BgwYoLy8PC1atEgdO3ZUixYtNGPGDD3xxBOSpNLSUn3wwQcaPXq0+/qCggK9/fbb+vDDD5WXl6ebb75ZAwYMUFhYmL7++mtt375dt9xyi7p27arbb7/dfd2YMWP0l7/8RS+99JK+++47PfLII4qPj1fv3r21YsUKhYeHa8qUKbrmmmtks7nex2effaZHHnlEb731lnr16qUvv/xSQ4cOVdOmTXX11Ve7n/vll1/Wm2++qTfffFNPPfWUBg4cqBYtWujpp59WdHS0/vjHP2r48OH65ptvJEn5+fm69tpr9eqrr8rf31/Tp0/X9ddfr59//lnR0dGaNWuW2rZtq2HDhun+++8/7d/lV199pQEDBuiZZ57R9OnTVVJSoq+//vrc/sP9DhToAFBd2twiLX1H2rtWWvA36bpxphMBAAAAAACD9u7dq7KyMt18881q3ry5JCk5OVmSdO+992rKlCnuAv2LL75QUVGRbrvtNvf1paWl7lXhknTrrbdqxowZys7OVkhIiFq3bq2rr75aP/74Y5UCvWvXrho1apQkKT4+XikpKfr73/+u3r17q1Ej14K/sLAwRUZGuq8ZO3ashgwZoj//+c+SpMcee0zLli3T2LFjqxToQ4cOdWd86qmn1KVLFz333HPq27evJOmRRx7R0KFD3ee3bdtWbdu2dX/88ssv67PPPtPs2bM1fPhw1a9fXzabTXXq1KmS59deffVV3XHHHXrppZeqPPeFRoEOANXFapX6vCJN6y+tnCJd+iepYSvTqQAAAAAA8El+DquGjb/K2GufjbZt26pnz55KTk5W37591adPH916662qV6+ehgwZomeffVbLli3TZZddpqlTp+q2225TcHCw+/qgoCB3eS5JERERiomJUUhISJX7cnJyqrxuly5dTvr415t0/trmzZs1bNiwKvd17dpV48ePr3LfxRdfXOW1pRM/FKi8r6ioSEePHlVoaKjy8/P14osv6quvvnL/QKGwsFA7d+48Y55fW7t27RlXqF8ozEAHgOoUe6UU309ylktzXjCdBgAAAAAAn2WxWGT3txn5Uzmn+7fYbDbNmTNH33zzjVq3bq0JEyYoISFBGRkZCg8P1/XXX68pU6YoOztb33zzjf74xz9Wud5ut5/8nk9xX0VFxfn9ZZ6DX75+5d/Dqe6rzPT444/rs88+02uvvaZFixZp7dq1Sk5OVklJyTm9bmBg4PlG/10o0AGguvV+SbLYpJ+/kjKXmE4DAAAAAAAMslgs6tq1q1566SWtWbNGDodDn332mSTpvvvu00cffaTJkycrLi5OXbt2rZbXXLZs2UkfJyYmuj+22+1VNh6VpMTERKWkpFS5LyUlRa1btz6vLCkpKRoyZIgGDBig5ORkRUZGaseOHVXOcTgcJ+X5tYsvvljz5s07ryy/BwU6AFS3RglSx8Gu4++ekWrwp8AAAAAAAMBzLF++XK+99ppWrlypnTt3atasWdq/f7+7zO7bt69CQ0P1yiuvVJkbfr5SUlI0evRobd26Ve+++64++eQTPfLII+7HY2JiNG/ePO3bt0+HDx+WJD3xxBOaOnWqJk6cqG3btunNN9/UrFmz9Pjjj59XllatWmnWrFlau3at1q1bp4EDB560Yj4mJkYLFy5UVlaWDhw4cMrneeGFF/Sf//xHL7zwgjZv3qwNGzbojTfeOK9sZ4MCHQAuhO5PS44Qac9qKXWW6TQAAAAAAMCA0NBQLVy4UNdee63i4+P17LPPaty4cerXr58kyWq1asiQISovL9egQYOq7XVHjhyplStXqn379nrllVf05ptvujf5lKRx48Zpzpw5atasmdq3by9JuummmzR+/HiNHTtWSUlJmjRpkqZMmaLu3bufV5Y333xT9erV0+WXX67rr79effv2VYcOHaqc89e//lU7duxQXFyce5PTX+vevbs++eQTzZ49W+3atVOPHj30008/nVe2s2FxOp3OC/4qtcDRo0dVt25d5ebmKjQ01HQcAJ5gwRjpx1eksGhp+ErJz990IgAAAAAAvFJRUZEyMjIUGxurgIAA03Gq1b333qv9+/dr9uzZ1fJ8MTExGjFihEaMGFEtz+etzvQ5cy5dLivQAeBC6fKQVKexdGSn9NNk02kAAAAAAIAHyc3N1eLFizVz5kw9/PDDpuPgNCjQAeBCcQRJPZ51HS8cIxUcMpsHAAAAAAB4jBtvvFF9+vTRn/70J/Xu3dt0HJyGn+kAAODT2t4pLX1PykmVFo2T+r5qOhEAAAAAAPAA8+fPvyDPu2PHjgvyvLUVK9AB4EKy2qQ+f3UdL58kHcowmwcAAAAAAABnjQIdAC60lr2kuB5SRak076+m0wAAAAAA4LWcTqfpCPAS1fW5QoEOADWh98uSLFLqLGn3StNpAAAAAADwKna7XZJUUFBgOAm8ReXnSuXnzu/FDHQAqAmRbaR2d0lr35e+f1Ya+o1ksZhOBQAAAACAV7DZbAoLC1NOTo4kKSgoSBa+r8YpOJ1OFRQUKCcnR2FhYbLZbOf1fBToAFBTejwjbfyvtHOptOUrKbG/6UQAAAAAAHiNyMhISXKX6MCZhIWFuT9nzgcFOgDUlNAoqctD0qKx0pznpfi+ku38fo0IAAAAAIDawmKxqHHjxgoPD1dpaanpOPBgdrv9vFeeV6JAB4CadMUIafU06VC6tGqqdMn9phMBAAAAAOBVbDZbtZWjwG9hE1EAqEn+daTuo1zH81+XinLN5gEAAAAAAMBpUaADQE3rMFhqGC8VHJQWv2U6DQAAAAAAAE6DAh0AaprNLvV6yXW87D0pd7fZPAAAAAAAADglCnQAMCGhn9T8CqmsSPrhFdNpAAAAAAAAcAoU6ABggsUi9XnZdbzuQ2nvOrN5AAAAAAAAcBIKdAAwpUkHqc2tkpzS989JTqfpRAAAAAAAAPgFCnQAMKnn85LNIWUskNLmmk4DAAAAAACAX6BABwCT6jWXLn3Adfz9c1J5mdk8AAAAAAAAcKNABwDTrhwpBdaT9m+W1n5gOg0AAAAAAACOo0AHANMC60ndnnQd//iaVJxvNg8AAAAAAAAkUaADgGfofJ9UL0bK3yctfcd0GgAAAAAAAIgCHQA8g59D6vWi63jJO1JZick0AAAAAAAAEAU6AHiOxBul4HCpJE/atcx0GgAAAAAAgFqPAh0APIXVKrXs6TpOm2s2CwAAAAAAACjQAcCjxFUW6D+YzQEAAAAAAAAKdADwKHFXS7JI2Ruko3tNpwEAAAAAAKjVKNABwJMEN5Si2ruO01mFDgAAAAAAYBIFOgB4mpa9XLfMQQcAAAAAADCKAh0APE3lRqLbf5Qqys1mAQAAAAAAqMUo0AHA0zTpJPnXlQoPS3vWmE4DAAAAAABQa1GgA4CnsflJcd1dx4xxAQAAAAAAMIYCHQA8EXPQAQAAAAAAjKNABwBPFHd8DnrWKqngkNksAAAAAAAAtRQFOgB4orpNpEaJkrNC2j7fdBoAAAAAAIBaiQIdADxVy+Or0NPmmc0BAAAAAABQS1GgA4CnqpyDnj5PcjrNZgEAAAAAAKiFKNABwFNFd5H8AqW8vVLOJtNpAAAAAAAAah0KdADwVPYAKfZK13HaXLNZAAAAAAAAaiEKdADwZJVjXCjQAQAAAAAAahwFOgB4ssoCPXOpVJxvNgsAAAAAAEAtQ4EOAJ6sfgsprLlUUSrtWGw6DQAAAAAAQK1CgQ4AnsxiYYwLAAAAAACAIRToAODpKNABAAAAAACMoEAHAE8Xe6VktUuHM6SD6abTAAAAAAAA1BoU6ADg6fzrSNGXuY7TfzCbBQAAAAAAoBahQAcAb9Cyp+uWMS4AAAAAAAA1hgIdALxB5Rz0jIVSWbHZLAAAAAAAALUEBToAeIOINlJIhFRaIO1cajoNAAAAAABArUCBDgDewGKR4irHuMwzmwUAAAAAAKCWoEAHAG/RkgIdAAAAAACgJlGgA4C3iOshySLlpEpH95hOAwAAAAAA4PMo0AHAWwTVl5p0cB2n/2A2CwAAAAAAQC1AgQ4A3qRlL9dt2lyzOQAAAAAAAGoBCnQA8CaVBXr6j1J5mdksAAAAAAAAPo4CHQC8SVQHKSBMKjoi7VltOg0AAAAAAIBPo0AHAG9i85NadHcdp80zmQQAAAAAAMDnUaADgLdhDjoAAAAAAECNoEAHAG/TsqfrNmuVVHDIbBYAAAAAAAAfRoEOAN4mNEoKT5LklNJ/MJ0GAAAAAADAZ1GgA4A3atnDdUuBDgAAAAAAcMFQoAOAN/rlHHSn02wWAAAAAAAAH0WBDgDeKLqLZA+S8rOl7I2m0wAAAAAAAPgkjy7Qy8vL9dxzzyk2NlaBgYGKi4vTyy+/LOcvVls6nU49//zzaty4sQIDA9WrVy9t27atyvMcOnRId911l0JDQxUWFqZ7771X+fn5Vc5Zv369rrzySgUEBKhZs2YaPXp0jbxHAPhd/Pyl2G6u47S5ZrMAAAAAAAD4KI8u0N944w1NnDhR77zzjjZv3qw33nhDo0eP1oQJE9znjB49Wm+//bb+8Y9/aPny5QoODlbfvn1VVFTkPueuu+5Samqq5syZoy+//FILFy7UsGHD3I8fPXpUffr0UfPmzbVq1SqNGTNGL774oiZPnlyj7xcAzklcT9dt2jyzOQAAAAAAAHyUxen03OG5/fv3V0REhP7973+777vlllsUGBio999/X06nU1FRURo5cqQef/xxSVJubq4iIiI0depU3XHHHdq8ebNat26tFStWqFOnTpKkb7/9Vtdee612796tqKgoTZw4Uc8884z27dsnh8MhSRo1apT+97//acuWLWeV9ejRo6pbt65yc3MVGhpazX8TAHAKB9OlCR0kq116KkPyr2M6EQAAAAAAgMc7ly7Xo1egX3755Zo3b562bt0qSVq3bp0WL16sfv36SZIyMjK0b98+9erVy31N3bp1demll2rp0qWSpKVLlyosLMxdnktSr169ZLVatXz5cvc53bp1c5fnktS3b1/9/PPPOnz48CmzFRcX6+jRo1X+AECNahAn1YuVKkqljEWm0wAAAAAAAPgcjy7QR40apTvuuEMXXXSR7Ha72rdvrxEjRuiuu+6SJO3bt0+SFBERUeW6iIgI92P79u1TeHh4lcf9/PxUv379Kuec6jl++Rq/9vrrr6tu3bruP82aNTvPdwsAv0PL4z9AZA46AAAAAABAtfPoAv3jjz/WBx98oJkzZ2r16tWaNm2axo4dq2nTppmOpqefflq5ubnuP7t27TIdCUBt1LJyDvpcyXMncgEAAAAAAHglP9MBzuSJJ55wr0KXpOTkZGVmZur111/X4MGDFRkZKUnKzs5W48aN3ddlZ2erXbt2kqTIyEjl5ORUed6ysjIdOnTIfX1kZKSys7OrnFP5ceU5v+bv7y9/f/9qeJcAcB5irnTNQD+SKR3a7hrrAgAAAAAAgGrh0SvQCwoKZLVWjWiz2VRRUSFJio2NVWRkpObNm+d+/OjRo1q+fLm6dOkiSerSpYuOHDmiVatWuc/54YcfVFFRoUsvvdR9zsKFC1VaWuo+Z86cOUpISFC9evUu2PsDgPPmHyI1d/17xxgXAAAAAACA6uXRBfr111+vV199VV999ZV27Nihzz77TG+++aYGDBggSbJYLBoxYoReeeUVzZ49Wxs2bNCgQYMUFRWlm266SZKUmJioa665Rvfff79++uknpaSkaPjw4brjjjsUFRUlSRo4cKAcDofuvfdepaam6qOPPtL48eP12GOPGXvvAHDWmIMOAAAAAABwQVicTs8dmpuXl6fnnntOn332mXJychQVFaU777xTzz//vBwOhyTJ6XTqhRde0OTJk3XkyBFdccUVeu+99xQfH+9+nkOHDmn48OH64osvZLVadcstt+jtt99WSEiI+5z169froYce0ooVK9SwYUM9/PDDeuqpp84669GjR1W3bl3l5uYqNDS0+v4SAOC37Nso/aOrZA+SnsyQ7AGmEwEAAAAAAHisc+lyPbpA9yYU6ACMcTqlcRdJ+fuke/4nxV1tOhEAAAAAAIDHOpcu16NHuAAAzoLFwhgXAAAAAACAC4ACHQB8Qcuertu0eWc+DwAAAAAAAGeNAh0AfEGL7pLFKu3fLOVmmU4DAAAAAADgEyjQAcAXBNWXmnR0HaezCh0AAAAAAKA6UKADgK9gDjoAAAAAAEC1okAHAF9RWaCnz5fKy4xGAQAAAAAA8AUU6ADgK6LaS4H1pOJcKWuV6TQAAAAAAABejwIdAHyF1Sa1uNp1zBgXAAAAAACA80aBDgC+hDnoAAAAAAAA1YYCHQB8Scuerts9a6RjB81mAQAAAAAA8HIU6ADgS+pEShFtJDml7T+aTgMAAAAAAODVKNABwNdUrkJnjAsAAAAAAMB5oUAHAF/jnoM+T6qoMJsFAAAAAADAi1GgA4CvaXaZZA+WjuVI2RtMpwEAAAAAAPBaFOgA4Gv8HFJsN9dx2jyzWQAAAAAAALwYBToA+CL3HHQKdAAAAAAAgN+LAh0AfFHlHPRdy6Sio2azAAAAAAAAeCkKdADwRfVjpfpxUkWZlLHQdBoAAAAAAACvRIEOAL6qcoxLOmNcAAAAAAAAfg8KdADwVZVjXNLmSk6n2SwAAAAAAABeiAIdAHxVzBWSzSEd2SkdTDOdBgAAAAAAwOtQoAOAr3IES80vdx2nzTWbBQAAAAAAwAtRoAOAL4s7Pgc9jTnoAAAAAAAA54oCHQB8WeUc9B2LpdJCs1kAAAAAAAC8DAU6APiy8ESpTpRUVihlLjGdBgAAAAAAwKtQoAOAL7NYpJaMcQEAAAAAAPg9KNABwNdVFujpFOi11YHCA5qwZoLeXfuuduTuMB0HAAAAAACv4Wc6AADgAmvRXbJYpf1bpCO7pLBmphOhhhSXF2vGphn614Z/6VjpMUnSP9b9Qxc3ulg3xt2ovjF9Vde/ruGUAAAAAAB4LovT6XSaDuELjh49qrp16yo3N1ehoaGm4wBAVf/uI+1aLl0/Xuo4xHQaXGBOp1PfZ36vv6/6u7LysyRJSQ2SVD+gvlL2pKjCWSFJslvt6t6su26Mu1Fdm3SVn5WfqwMAAAAAfN+5dLl8pwwAtUHLXq4CPW0uBbqPSz2QqtErRmt1zmpJUnhguB7p+Ij6t+gvq8WqA4UH9NX2r/R5+ufadnib5mTO0ZzMOaofUF/XtbhON8bdqIT6CYbfBQAAAAAAnoEV6NWEFegAPNruVdK/ekj+odKT2yWb3XQiVLPsY9l6e83bmp0+W5IUYAvQ0DZDNSRpiILsQSed73Q6teXQFs1On62vM77WoaJD7scS6iXohrgbdF2L69QgsEGNvQcAAAAAAGrCuXS5FOjVhAIdgEerKJfGtJQKD0lDv5WadzGdCNWksKxQU1OnasrGKSosK5Qk9W/RX490eESRwZFn9RylFaVavHuxZqfP1vzd81VWUSZJsllsuqLJFboh7gZ1b9ZdDpvjgr0PAAAAAABqCgW6ARToADzep/dKGz+Vrnxc6vmc6TQ4TxXOCn2d8bXeWvWWsguyJUltG7XVU52fUnKj5N/9vEeKjuibHd9odtpsbTy40X1/qCNU/WL76Ya4G5TcMFkWi+W83wMAAAAAACZQoBtAgQ7A462dKf3vQalxO+mBBabT4DyszVmrMSvGaP2B9ZKkxsGN9VjHx9Q3pm+1Ftvbj2zX5+mf68vtXyqnIMd9f0xojG5seaP6t+h/1qvcAQAAAADwFBToBlCgA/B4efukccc3h3w8TQppZDYPztme/D16a9Vb+mbHN5KkIL8g3Zd8n+5pfY8C/AIu2OuWV5Rr+b7lmp0+W/My56movEiSZJFFlza+VDfE3aCe0T1POWsdAAAAAABPQ4FuAAU6AK/wjyukfRukm/8pXXyb6TQ4SwWlBfrXhn9p+qbpKi4vlkUW3dTyJj3c/mE1CqrZH4Tkl+RrTuYcfZ7+uVZlr3LfH+QXpD4xfXRD3A3qGNFRVou1RnMBAAAAAHC2KNANoEAH4BXmvigt/rt08e3SzZNNp8FvqHBW6PO0z/X2mrd1oPCAJKlTRCc92flJJTZINJxO2pW3S1+mf6nZ6bO1O3+3+/4mIU10fdz1ur7F9YoOjTaYEAAAAACAk1GgG0CBDsArZCySpvWXghtJI7dKVlYJe6qV+1Zq9IrR2nxosySpWZ1mGtlxpHpE9/C4DTydTqdW56zW7PTZ+m7HdzpWesz9WPvw9rot4TZdF3udx+UGAAAAANROFOgGUKAD8AplJdLoWKkkXxq2QIpqZzoRfmXX0V16c9WbmrtzriQpxB6iBy5+QAMTB8phcxhO99sKywr1w84fNDt9tpbtXaYKZ4Uk6db4W/WXS/8iu9VuOCEAAAAAoLY7ly7Xr4YyAQA8gZ9Dir1K+vkrKW0uBboHySvJ0z/X/1Pvb35fpRWlslqs+kP8H/Tndn9W/YD6puOdtUC/QF3X4jpd1+I6ZR/L1sdbP9Y/1/9Tn279VHvy92jsVWNVx1HHdEwAAAAAAM4Kv7sPALVNy56u27R5ZnNAklRWUaaPf/5Y/T/rrympU1RaUaoujbvo0+s/1bOXPetV5fmvRQRH6OH2D2v81eMV6BeoJXuWaNA3g7Qnf4/paAAAAAAAnBUKdACobSoL9N0/SUW5ZrPUckv2LNEfvviDXl72sg4VHVJMaIze7fmuJvWepFb1WpmOV22ujr5aU66ZokaBjZR2JE0DvxqojQc2mo4FAAAAAMBvokAHgNqmXozUoKVUUSZlLDSdplbKyM3Q8HnD9cCcB5R2JE2hjlCNumSUZt04S92advPJzTaTGiRp5nUzFV8vXgeLDmrot0M1L5PfggAAAAAAeDYKdACojVr2ct2mzTWbo5YpqyjTmBVjdPPnN2vB7gXys/jp7sS79fXNX+uuxLt8foPNyOBITe83XVc0uUJF5UV6dP6jmrpxqtjPHAAAAADgqSjQAaA2chfo8yTKyxrz0c8fafqm6Spzlumqpldp1o2z9NQlT6muf13T0WpMsD1YE3pM0O0Jt8spp8atGqeXl72ssooy09EAAAAAADgJBToA1EbNu0o2fyl3l3Rgm+k0tUJZRZlmbJohSXq80+N6p+c7iq0baziVGX5WPz1z6TN6otMTssiiT7Z+ouHzhiu/JN90NAAAAAAAqqBAB4DayBEkNb/cdcwYlxoxd+dcZeVnqZ5/Pd2ecLvpOMZZLBYNShqkt65+S4F+gUrZk6J7vrlHe/P3mo4GAAAAAIAbBToA1FbMQa8xTqdT0zZOkyTdedGdCvALMJzIc/SI7qEp10xRw8CGSjuSpoFfD1TqgVTTsQAAAAAAkESBDgC1V2WBnpkilRaazeLjVmWv0saDG+Vv89ftF7H6/NeSGiRp5rUz1apeKx0oPKAh3w7RvMx5pmMBAAAAAECBDgC1VqMEKbSJVFbkKtFxwUxLda0+v6nlTaofUN9wGs/UOKSxpl8zXV2bdFVReZEenf+opqVOk5NNbgEAAAAABlGgA0BtZbFILXu6jtNY7XuhbM/drvm758sii+5pfY/pOB4txBGid3q8o9vib5NTTo1dOVavLHtFZRVlpqMBAAAAgM9xlpSo7NAh0zE8np/pAAAAg1r2klZPPz4H/XXTaXzS9NTpklyzvpuHNjecxvP5Wf307GXPKjo0WuNWjtPHWz9W1rEsje02ViGOENPxAAAAAMCrOEtLVbJ7t0oyM1W6c6dKdmSqJNP1p3TPHgV36aLof//LdEyPRoEOALVZ7FWSxSYd2Cod2SmFRZtO5FMOFB7Q7PTZkqQhSUPMhvFPv+m7AAAgAElEQVQiFotFg5MGq2mdphq1cJRSslI06NtBerfHu2oc0th0PAAAAADwKM6yMpVmZbmK8cqCfOdOV0melSWVl5/22rKc7BpM6p0o0AGgNgsMk5p2lnYtc41x6TTUdCKf8p8t/1FpRanaNmqrduHtTMfxOj2je2rqNVM1/Ifh2nZ4mwZ+PVDv9HxHSQ2STEcDAAAAgBrlLCtT6Z49Ksnc6V5BXpK543hJvkcqO/3oS0tgoBzR0XI0by5H88rb5rI3by6/Ro1q8F14Jwp0AKjtWvY6XqDPpUCvRgWlBfro548ksfr8fCQ1TNLMa2fqz/P+rLQjaRr67VD97cq/qUd0D9PRAAAAAKBaOcvLVbp3r2sV+c5Mlf5yRXlWllRaetprLf7+rpI85kQ5XlmU+4WHy2Kx1OA78S0U6ABQ27XsKf34irR9gVReKtnsphP5hM/TP1duca6a1Wmmq5tdbTqOV2sc0lgz+s3QyAUjtWTPEo34cYQe7/S47ml9D18EAgAAAPAqFceOqWR3lkqzdqt01y7XceWM8l275DxTSe5wyNE82lWOR58oyB0xx0tyq7UG30ntQYEOALVd43ZSYH2p8JC0d73UtKPpRF6vvKLcvXnooNaDZLPaDCfyfiGOEL3b8129tvw1fbL1E41ZOUY783Zq1CWj5GflyxkAAAAAnsFZWqrSvXtdpfiu3SrdvVulWbtdRfmuXSo/fPiM11vsdtmjT4xZ+eXYFb/ISEpyA/iOEwBqO6tVimovpc+T9q6hQK8GP+z6QbvzdyvMP0w3trzRdByf4Wf103OXPafmoc01buU4ffTzR9qdv1tju41ViCPEdDwAAAAAtYDT6VTZ/v0q3Z2l0t27VLJ79/Hj3SrZvUtl+7KlioozPoetbl3ZmzaVvWlTOZodv43+RUluYxGWJ6FABwBIUe2OF+jrTCfxek6nU1M3TpUk3XHRHQr0CzQbyMdYLBYNThqspiFNNWrRKKVkpWjQt4P0Xs/3FBkcaToeAAAAAB9Qnpd3fAX5rhPleNZule7ardKsLDmLi894vcXf/3hB3kSOps1+cewqy2116tTQO0F1oEAHALjGuEjSnrVmc/iANTlrtP7AejmsDt2RcIfpOD6rZ/OemhI8RcPnDde2w9s08KuBmtBzgpIaJJmOBgAAAMALlB0+rNLMTBXv2OGaP56ZqZLMnSrZvVsVublnvthqlT0y0lWMN2vqLsbtTVwrym0NG7Jfkw+hQAcAuFagS1LOZqmsWPLzN5vHi01NnSpJuqHlDWoQ2MBsGB/XpmEbzbxuph6a95DSjqRp6LdD9bcr/6Ye0T1MRwMAAADgAcrz81WyI1Mlma6SvKSyLN+RqfLfKMlt9eu7RqtUluOVK8ibNZM9MlIWu72G3gVMo0AHAEh1m0mB9aTCw1J2qtSkg+lEXikjN0Pzd82X5No8FBdeVEiUpvebrscXPK4le5ZoxI8j9ETnJ3R34t2s+AAAAABqgYqiItfK8cwdvyrLM1V+4MAZr/WLjHRt0hkT496s096smRxNmsgaHFxD7wCejgIdACBZLK4xLtt/lPaupUD/nWZsmiGnnOrerLti68aajlNr1HHU0Ts939Fry1/Tp1s/1egVo5V5NFOjLhklPytf6gAAAADezllSopLdWe4V5CfK8kyV7d17xmttDRr8oiA/XpbHNJcjOlrWQPaswm/ju0oAgEtUZYHORqK/x8HCg5qdPluSNCRpiNkwtZDdatfzlz2v5nWaa9yqcfro54+UlZ+lcVeNU5A9yHQ8AAAAAL/BWVGhsr17VZyxw1WU7zgxdqU0K0uqqDjttdbQ0BMleUxzOZrHHP84mg07cd4o0AEALmwkel4++vkjFZcXK7lhsjqEs4LfBIvFoiFthqhJnSZ6etHTWpy1WI8teEwTrp4gu435hAAAAIAnKM8/ppKMDJXsyFBJRoaKt7tuSzIz5SwqOu11lqCg4+V486pjV2JiZAsLY4QjLhgKdACAS+O2rtucTVJZieTnMJvHixSWFerDLR9KkgYnDeYLN8N6N++thoEN9cCcB5SSlaJRi0ZpdLfRslltpqMBAAAAtYKzvFyle/a4ivFfluQZGSrbv//0F9rtckRHyxEbI/+YGNl/UZb7NWrE91owggIdAOBSL0YKCJOKjrhK9Kh2phN5jS/Sv9Dh4sNqEtJEvaJ7mY4DSe3D2+vv3f+u4T8M1/eZ36vOsjp6ocsLfMENAAAAVKPyo0ddBXlGhkoqS/IdGSrJ3ClnSclpr7M1bCj/mBg5YmPlaNHCVZjHxsrepIksftSV8Cx8RgIAXCwW1yr0jAWujUQp0M9KeUW5pqVOkyQNaj2IVc4epGuTrnrjyjf0xMIn9N9t/1WoI1SPdnyUEh0AAAA4B86yMpXu3u0qyTN2qCRju/u4/ODB015ncThcq8djY+WIjZV/C9etIyZGttDQGnwHwPmhQAcAnBDV7niBzkaiZ2v+rvnambdToY5Q3dTyJtNx8Ct9YvoovzRfLyx5QVNSpyjUP1T3Jd9nOhYAAADgcZxOp8pyclS0ebOKN29W0eYtKk5LU8muXVJp6Wmv8wsPP16Su1aRu1aUx8reuLEsNhYYwftRoAMATmAj0XM2NXWqJOn2hNsVZA8yGwandHOrm5VXkqexK8dq/OrxqmOvo9svut10LAAAAMAYZ3m5SjJ3qmjzJldZvmmzirZsUfmhQ6c83xIQ4Nq0M/Z4SR4bK0dsC9dq8pDgmg0P1DAKdADACZUbiWanSuWlks1uNo+HW5uzVmv3r5XdatfAxIGm4+AMBicN1tGSo5q8frJeXf6q6jjq6NoW15qOBQAAAFxwFcXFKt66zVWWb9niKsu3bpWzoODkk61W+ce1kP9FiQpITJR/fLz8Y2Pk17ixLFZrjWcHPAEFOgDghPotJP+6UnGulLNZanyx6UQerXL2+fVx16thYEPDafBbhrcbrrySPP1ny3/0zOJnFOIIUbem3UzHAgAAAKpNeW6uijZvUdGWze6V5cXbt0vl5SedawkIkH9CvAISExWQ2FoBiRfJPz5e1oAAA8kBz0WBDgA4wWJxleY7FrnmoFOgn9bOozs1b+c8Sa7NQ+H5LBaLRl0ySnklefpy+5d6bP5jmthrojpHdjYdDQAAADgnTqdTZfv2ucryzZuOzy3fotKsrFOebwsLU0DrRPknJirgokQFtE6UIyaGGeXAWaBABwBUFdXueIG+VtI9ptN4rOmbpsspp7o17aa4sDjTcXCWrBar/tr1r8ovydf83fP18A8P6999/q2khkmmowEAAACn5CwvV8mOHa7RK5s3q3iLa2V5+ZEjpzzf3qTJSWW5X0SELBZLDScHfAMFOgCgKjYS/U2Hiw7r87TPJUlDkoaYDYNzZrfaNbb7WD0490Gt2LdCf5r7J027ZppahLUwHQ0AAAC1nNPpVOmuXSrcsEFF6zeocONGFW3aJGdh4ckn22zyj4tzzSpPvMg9hsUWGlrzwQEfRoEOAKiqskDP3iiVl0k2/lfxax/+/KGKyouU1CBJnSI6mY6D38Hf5q8JPSbo3u/uVerBVN0/535N7zddTUKamI4GAACAWqRs/34Vbtiowg3rVbRho4o2bFB5bu5J51mCghSQkOCaU358Zrl/q5ay+vsbSA3ULrQiAICq6reQHHWkkjxp/xYpso3pRB6lqKxIH275UJJr9Tm/Bum9gu3BmthrooZ+O1Tpueka9v0wTes3jQ1hAQAAcEGU5+WpKDVVhes3qGiDa3V52d69J51nsdvln5iowDZtFHBxsgKTk5lXDhhEgQ4AqMpqlRq3lTIXuzYSpUCv4ovtX+hQ0SFFBUepV/NepuPgPNULqKdJvSdp8LeDtTNvpx6Y84D+r+//qa5/XdPRAAAA4MUqiotVvGWLCjdsVNGG9SrcsFEl27effKLFIv+WcQpok6zAi5MV0CZZAQnxsjgcNR8awClRoAMAThbV7niBvlZqf5fpNB6jwlmh6anTJUn3tL5Hflb+N+oLIoIjNLn3ZA36ZpC2Ht6qh+Y9pMm9JyvIHmQ6GgAAALyAs7xcxenpKvrlKJatW6XS0pPOtTdpooDkZAUmt1FAcrICWifJFhJsIDWAs8V3/gCAk7GR6Ckt2LVAO47uUB1HHQ1oNcB0HFSj6NBoTeo9SUO/G6p1+9fp0fmPakKPCXLYWPkDAACAE5xOp0qzslwjWCpHsWzaJGdBwUnn2urVc41gca8ubyO/Bg0MpAZwPijQAQAna9zWdbtvAxuJ/sLU1KmSpNvib1OwnVUiviahfoLe6/mehs0ZpiV7lmjUolEa022MbFZmTQIAANRGTqdTZfv2ueaWp6aqKDVVRRs2qvzw4ZPOtQQFKTApybW6/PgoFnuTKPZMAnwAjQgA4GQNWkqOEKkkXzqwVYpobTqRcev3r9fqnNXys/ppYOJA03FwgbQLb6e3rn5Lw+cN15zMOfrrsr/qxS4v8o0PAACAj6ssyws3bnQV5ambVJSaqvJDh04+2W5XQEKCApLbuFeXO1q0YJNPwEdRoAMATma1SpEXSzuXuDYSpUDXtNRpkqTrYq9TeFC44TS4kC6Pulyju43WyAUjNWvbLNWx19HITiMp0QEAAHyE0+lU2d69J1aVn6kst9nk37KlApKSFJDUWoHJyfJPSJDV37/mgwMwggIdAHBqUe2OF+hrpXZ3mk5j1K68XZq7c64kaXDSYMNpUBN6Ne+lF7u8qOeXPK9pm6Yp1D9Uwy4eZjoWAAAAzpHT6VTZnj3Hy/JNxwvz1FOOYZHNJv9WrRSQ1FoBSUkKTEpyleUBATUfHIDHoEAHAJwaG4m6zdg0QxXOCl3R5Aq1qtfKdBzUkAGtBiivJE9jVo7RhDUTVMdRR3deVLt/mAQAAODJXBt87nGX5O6y/MiRk0/283OtLG/jKsoDKstyVpYD+BUKdADAqbk3El0vVZRLtXQjxSNFR/S/tP9JkoYkDTEbBjVuUNIgHS05qknrJ+m15a+pjqOO+rfobzoWAABArecuy90zy1NVtGnT6cvy4yvLKcsBnCsKdADAqTVsJdmDpdJj0oFtUvhFphMZ8fHWj1VYVqjE+om6JPIS03FgwEPtHlJeSZ5mbpmpZxc/qxB7iLo36246FgAAQK1Snn9MhevWqnDVahWuXetaWZ6be/KJdrv8W7V0F+UBSUnyj4+nLAfwu1GgAwBOzWqTIpOlXctcG4nWwgK9uLxYMzfPlOSafc4mkrWTxWLRU5c8pbySPH2x/QuNnD9S/+j9D3WO7Gw6GgAAgM8qzc5R4ZrVKli1WoWrVqloyxapoqLqSXa7Alq1chflrpXl8bI6HGZCA/BJFOgAgNOLane8QF8rtb3ddJoa99X2r3Sw6KAigyPVJ6aP6TgwyGqx6qWuLymvNE/zd83X8HnD9X99/09JDZNMRwMAAPB6zooKlWzf7irLV69Sweo1Kt2166Tz7E2bKrBDewV16KCANsnyj29FWQ7ggqNABwCcXi3eSLTCWaFpqdMkSXcn3i271W44EUyzW+0ae9VY/Xnun/XTvp/0p7l/0tRrpiouLM50NAAAAK9SUVKioo2prrJ81WoVrl598jgWq1X+FyUoqENHBXXsoMAOHWSPiDATGECtRoEOADi9KhuJVkhWq9k8NWhx1mJtz92uEHuIbml1i+k48BD+Nn+93eNt3ffdfdp4cKOGzRmm6f2mq0lIE9PRAAAAPFb50aMqXLNGBatWq2D1KhWt3yBnSUmVcywBAQps2/Z4Wd5Rge3ayhYSYigxAJxAgQ4AOL2G8ZJfoFSSLx1MkxrFm05UY6ZsnCJJ+kP8HxTi4At3nBBsD9bEXhM15NshSs9N1/3f36/p/aarYWBD09EAAAA8QumePe6yvHDVahVv2yY5nVXOsdWv7y7Lgzp2UEBioix2fusTgOehQAcAnJ7Nz7WR6O6fXBuJ1pICfeOBjVqZvVJ+Fj/dlXiX6TjwQGEBYZrUe5IGfztYu/J2adicYZrSd4rq+tc1HQ0AAKBGOcvLVbxtmwpWucrygtWrVbZv30nnOZo3V2DHE+NYHDExslgsBhIDwLmhQAcAnFlUu+MF+lrp4j+YTlMjKmefX9viWkUEM2cRpxYRHKF/9v6nBn07SNsOb9ND8x7S5N6TFWQPMh0NAADggnFWVKj45591LCVFx5b/pMI1a1SRn1/1JD8/BbRuraAOHRTYsYOC2reXX0N+Ww+Ad6JABwCcWS3bSDQrP0vfZ34vSRrUepDhNPB0zUKbaVLvSRr67VCt279OI34coXd6viOHzWE6GgAAQLUpzcnRsSVLdCxliY4tWaLygwerPG4NClJg+/ausrxDRwVenCxrEIsKAPgGCnQAwJlVbiS6d12t2Ej0/U3vq8JZocujLldC/QTTceAF4uvF671e7+n+7+/X0r1LNWrRKI3uNlp+Vr7MAgAA3qmiqEgFK1e5VpmnpKh469Yqj1uCghR86aUK7nKZgjp1kn98vCx+fO0DwDfxrxsA4MwaXST5BUgledKh7VLDlqYTXTC5xbn677b/SpIGJw02nAbepG2jthp/9Xg9NO8hzcmcoycXPqnXr3xd/jZ/09EAAAB+k9PpVPHWrTq22FWYF6xcKWdJyYkTLBYFtGmj4K6XK6RrVwW2bSuLg9+4A1A7UKADAM7M5idFtJGyVrrmoPtwgf7J1k9UWFao+Hrx6tK4i+k48DJdorpozFVj9MSCJzQnc44OFh7U2z3eZmNRAADgkcr279expUt1LCVF+UuWqHz/gSqP+0VGugrzK65Q0GWXya9ePUNJAcAsCnQAwG+LaneiQE++1XSaC6KkvEQzN8+UJA1JGiKLxWI4EbxRz+iemtR7kh754RGtzlmtwd8M1sReE9U4pLHpaAAAoJarKC5W4apVyk9J0bGUJSresqXK45bAQAVd0lkhXbsquGtXOVq04GtiABAFOgDgbFTOQffhjUS/2v6V9hfuV3hQuK6JucZ0HHixzpGdNbXfVD0490Gl56br7q/v1nu93mOmPgAAqFFOp1PF27a5Nv5MSVHBihVyFhdXOSegdWsFHy/MAzu0l5WxLABwEgp0AMBva9zOdbt3veR0Sj62EsXpdGpa6jRJ0t2Jd8tusxtOBG8XXy9eH1z7gR6c+6DSjqRpyLdDNP7q8bqk8SWmowEAAB9WdvCgji1Z6t78s2z//iqP+4WHuwvz4Mu7yK9+fUNJAcB7UKADAH5beKJk85eKc10biTaIM52oWi3OWqz03HQF24N1a7xvjqhBzYsMjtTUa6bqkR8f0arsVfrT3D/p1SteVb/YfqajAQAAH1FRUKDCtWt1bOlS5aekqHjT5iqPWwICFNS5s3vzT0fLloxlAYBzRIEOAPhtNrsUkSTtWS3tXedzBXrl6vNbW92qOo46htPAl9T1r6tJvSfpL4v+ou8zv9eTC59UTkGOBicNNh0NAAB4ofK8PBWuXq2ClStV8NMKFaamSmVlVc7xT0xUSNfLj49l6SCrv7+htADgGyjQAQBnJ6rd8QJ9rdTmZtNpqs2mg5u0fN9y+Vn8dHfru03HgQ/yt/lrzFVjFL4iXO9vfl9jV45VdkG2Hu/0uKwWq+l4AADAg5UdPqyClStVuHKljq1YoeItP0sVFVXO8WvcWMGXXKLgK7oquEsX+TVsaCgtAPgmCnQAwNnx0Y1EK1ef943tq8jgSMNp4KusFque7PykIoIiNG7VOM3YNEM5BTl67YrX5LCxWRcAAHApzc5RwcoV7tK8eFvaSefYm0crqHNnBXXqpKBOneVo2sRAUgCoPSjQAQBnx72R6Dqf2Uh0b/5efbfjO0nS4NaM1MCFZbFYNKTNEDUKaqRnU57Vdzu+08HCgxrfY7xCHaGm4wEAgBrmdDpVmrXHVZivcJXmpZk7TzrPv1VLBXbqpODOnRXYsZPsEeEG0gJA7UWBDgA4O+GtJZtDKjoiHd4h1Y81nei8vb/5fZU7y3Vp40uV2CDRdBzUEte1uE4NAxtqxI8jtDJ7pQZ/M1gTe03kNyAAAPBxTqdTJRk73CvMC1asVNnevVVPsloVcNFFCurcSUGdOyuwY0f51atnJjAAQBIFOgDgbPk5XCX63rWuVeheXqAfLTmqT7d+KkkakjTEbBjUOpc2vlRTr5mqB+c+qLQjabr767s1sddEtarXynQ0AABQTZwVFSretk0FK1a6CvOVK1V+4EDVk/z8FNimjasw79RJgR06yFaHTe0BwJNQoAMAzl5Uu+MF+lop6SbTac7Lp1s/VUFZgVqGtVTXqK6m46AWSqifoPevfV8Pzn1Q23O3a/A3gzW+x3h1juxsOhoAAPgdnGVlKtq8xT2OpWDVKlXk5lY5x+JwKLBtW9cM886dFNi2raxBQYYSAwDOBgU6AODs+chGoqXlpfpg0weSpMFJg2XxgXnu8E5RIVGa3m+6Hv7hYa3JWaMH5jyg1658TdfEXGM6GgAAOAtlBw4of+Ei5S9YoGMpKarIz6/yuCUoSEHt27tHsgQkJ8vqYANxAPAmFOgAgLPn3kh0rVdvJPrtjm+VU5ij8MBwXRd7nek4qOXq+tfV5N6T9fSipzV351w9ueBJ7S/Yr3ta32M6GgAA+BVnRYWKUlOVP3+B8hcsUNHGjVUet4aGKqhjRwV16qSgzp0U0Lq1LH5ULwDgzfhXHABw9iKSJKtdKjwsHdkp1WtuOtHv8uOuHyVJt8TfIrvNbjgNIAX4BWjsVWP1t5/+pg9//lCjV4xW9rFsPdbpMVktVtPxAACo1crz8nQsJcVVmi9apPKDB6s8HpCUpJCrrlJI96sUkJQki81mKCmA/8/enUc3WadtHP8mTbq3aSktbdkpKPsmi4LIDmURcUWFARTEBQVFRR1cRlxBEFAQFBUcQQUFHQZkKZsoIFsBQRAQkL0tdN/bpHn/CHTkdSPY8jTt9TnHk+T3PEmunjNDmzu/575FSoMK6CIicuksPhDRABJ+cA0S9cACepGziG0J2wBoF93O4DQi/+Nl9uKfbf9JZEAkU+On8tG+j0jKSeLl61/G20uXeouIiFwpTqeTgsOHyfrmG7K+2UBOfDzY7cXHzQEBBLRv7yqa39ABS3i4gWlFRKS0qYAuIiLuiW5+voC+Cxr2MzqN2w6lHiItPw0/ix+NKjcyOo7IRUwmE8OaDCPCP4LnNz7P8l+Wk5yXzNTOUwnyDjI6noiISLlVlJdHztatxa1ZCk+duui4d506roJ5xxvwb9kSk/qYi4hUGCqgi4iIezx8kOiF3ectI1piNat9i5RNN8bcSJhfGI+te4ytCVsZumIo73R9hyoBVYyOJiIiUm4Unj7t2mW+/huyt2zBmZdXfMzk7Y1/27YE3nADgZ064l29uoFJRUTESCqgi4iIe6JauG49dJDo1oStALSObG1wEpE/1y66HXNj5/LQmoc4mHqQQcsHMavbLGJCYoyOJiIi4pGcdju5O3eeb83yDfmHfr7ouCUy8vwu844EXNsWs7+/QUlFRKQsUQFdRETcU6URmC2QkwzpJyHEc3bjOIocbE/YDkCbyDYGpxH5aw3CGjCv9zweiHuAXzJ+4R/L/8HbXd7mmirXGB1NRETEI9hTUsjasIHsDRvI+m4jRRkZ/ztoNuPXokVx0dznqnqYPGxziIiIlD4V0EVExD1WXwhvAIl7XINEPaiA/lPqT2QWZhJoDaRBWAOj44hckqqBVfm418c8vPZhdp/dzYhVI3j9htfpXrO70dFERETKHGdREXn79xfvMs/7YY/rqsnzvEJCCLihg6to3r49XiEhBqYVERFPoAK6iIi4L7rZ+QL6LmjQ1+g0l2zbGVf/82uqXIPFrF+B4jlCfEN4v8f7jN0wlnUn1vH4+sd5qs1TDGww0OhoIiIihitMSCB74yayN20ie/NmHCkpFx33adjA1cu8Y0f8mjbF5OVlUFIREfFEqh6IiIj7oprDznkeN0hU/c/Fk/lafJnSaQqvbX2NBQcW8PrW10nMSeTRlo9iNpmNjiciInLFFGVnk71tW3HRvODw4YuOm/398W93nWuX+Q0dsVaJMCipiIiUByqgi4iI+6Kau249aJCovchOfFI8oP7n4rm8zF6MazuOKv5VeGvnW8zZO4eknCReavcSVi+r0fFERERKhdPhIG/fPrI3biR74yZydu2CwsL/nWA249ukMYHt2xPQrh1+zZphsur3ooiIlAwV0EVExH2RjcHkBdlnIeM02Koanegv7UveR3ZhNsHewVxd6Wqj44hcNpPJxH1N7yPcP5wXN73IsiPLOJd7jqmdphLoHWh0PBERkRJRcPIU2ZtcBfPs77+nKD39ouPWatUIOF8wD7i2LV42m0FJRUSkvFMBXURE3Gf1g/D6kPSja5CoBxTQL7RvaVWlldpdSLnQv25/wv3CeWz9Y2w5s4WhK4byTrd3iPDXZeoiIuJ5HFlZ5GzZUrzLvODYsYuOm4OCCLi2bXHR3LtGDYOSiohIRaMCuoiIXJ7o5ucL6Lugfm+j0/ylbQmuAaJtotS+RcqP9lXbMyd2Dg+tfogDqQcYsnwI7/d8n6qBZf9LLRERqdicdju5e/YU9zHP3b0bHI7/neDlhV+zZgS0b+dqy9KkCSaLShgiInLl6bePiIhcnqhmsGu+RwwSLXQUsjNpJ6ABolL+NAprxLze8xixagQns04ydMVQ3u/xPjWDaxodTUREpJjT6aTw+HGyN20ia+NGcrZspSgz86JzvGvVcrVkub49/m3a4BWo1mQiImI8FdBFROTy/HqQaBm3N3kvufZcQn1CqRtS1+g4IiWuelB15sbO5b64+ziafpShK4Yyu/ts6obqf+8iImIcR3o62d+fb8uyaROFJ09edNzLZsP/uusIaN+OwHbtsFbVFVQiIlL2qIAuIiKXJ7IJmMyQlQgZZyA4yuhEf2jrmfP9zyPV/1zKrwxwL7AAACAASURBVCoBVZjTcw4j4kZwMPUg96y8h/e6v0eDsAZGRxMRkQqk8MwZMuNWkxkXR86OHVBU9L+DViv+zZu7+pi3b4dvw4aYvLyMCysiInIJVEAXEZHL4+0Pla+Gs/tdg0TLcAG9uP95pPqfS/kW5hfGhz0/5IG4B9ibvJdhK4cxs/tMmoU3MzqaiIiUYwXHjpGxahWZcavJ++GHi455140hoF07Atu3x79VK8wBAQalFBERuTwqoIuIyOWLana+gL4Lro41Os3vKnAUsOusq82MCuhSEdh8bMzuMZuRa0YSnxTPiFUjmN51uvr/i4hIiXE6neQfPERmXByZq1aRf/Dg/w6aTPhd05Lg7t0J6tZNbVlERMTjlfnr2E+dOsWgQYMICwvDz8+PJk2asH379uLjTqeT559/nqioKPz8/OjWrRuHDh266DVSUlIYOHAgwcHBhISEMGzYMLKysi4654cffqBDhw74+vpSvXp1Jk6ceEV+PhERjxZ9vg96GR4kuvvsbvId+VT2q0xtW22j44hcEYHegczsNpO2UW3Jsefw0OqH2Hhqo9GxRETEgzmdTnL37CFp8mSOxPbi6E03cW76dFfx3GIhoF07Iv/1L+pt+IZa8+ZRacgQFc9FRKRcKNM70FNTU2nfvj2dO3dm+fLlhIeHc+jQIUJDQ4vPmThxIm+99RYfffQRtWvX5rnnnqNnz57s27cPX19fAAYOHMiZM2eIi4ujsLCQe+65hxEjRvDJJ58AkJGRQY8ePejWrRuzZs1iz5493HvvvYSEhDBixAhDfnYREY/gAYNEtya4+p+3rtIak8lkcBqRK8ff6s+MrjMYs34MG05u4JG1jzCp4yS61OhidDQREfEQToeD3Ph4MuLiyIxbjf3MmeJjJm9vAq6/nqDu3Qnq3AmvkBADk4qIiJQek9PpdBod4o88/fTTbNy4kW+//fZ3jzudTqKjo3n88cd54oknAEhPT6dKlSrMnTuXO++8k/3799OwYUO2bdtGq1atAFixYgW9e/fm5MmTREdHM3PmTMaNG0dCQgLe3t7F7/3VV1/x008/XVLWjIwMbDYb6enpBAcHl8BPLyLiAfKz4LVqgBMePwhBVYxO9BtDlg8hPimeF657gduuus3oOCJXXKGjkKe+fYq4Y3F4mbx4vcPrxNYumy2XRETEeM7CQrK3bCVz1Soy16zBkZxcfMzk709gxxsI7tGDgA434BWofuYiIuKZ3KnllukWLkuWLKFVq1bcfvvtRERE0KJFC2bPnl18/OjRoyQkJNCtW7fiNZvNRtu2bdm8eTMAmzdvJiQkpLh4DtCtWzfMZjNbtmwpPueGG24oLp4D9OzZkwMHDpCamvq72fLz88nIyLjoPxGRCscnECpf5bp/ZrexWX5Hrj2XH865Blmp/7lUVFYvKxNvmEjfOn1xOB089e1TfPXzV0bHEhGRMqQoL4/MNWs4/dTTHGx/PSeGDydt4UIcycmYbTZs/ftT7Z0ZXLVpI9WmTCG4Vy8Vz0VEpMIo0y1cjhw5wsyZMxkzZgz//Oc/2bZtG6NGjcLb25shQ4aQkJAAQJUqF+94rFKlSvGxhIQEIiIiLjpusVioVKnSRefUrl37N69x4divW8Zc8Nprr/Hiiy+WzA8qIuLJoprBuQOuNi5X9TA6zUV2Je3CXmSnin8VqgdVNzqOiGEsZguvXP8KPl4+LDq0iOc2Pke+PZ8B9QcYHU1ERAziyMome8M3ZKyKI2vDBpw5OcXHvMLCCOrWjaAe3Qlo0waT1WpgUhEREWOV6QJ6UVERrVq14tVXXwWgRYsW7N27l1mzZjFkyBBDsz3zzDOMGTOm+HFGRgbVq6s4IyIVUHRz2LOwTA4S3ZawDXDtPlf/c6nozCYzL1z3An4WP+btn8fLW14mz5HHkEbG/k0lIiJXjiMtjcy168iMiyN740acBQXFxyzRUQR3705Q9+74tWiBycvLwKQiIiJlR5kuoEdFRdGwYcOL1ho0aMCiRYsAiIyMBCAxMZGoqKjicxITE2nevHnxOUlJSRe9ht1uJyUlpfj5kZGRJCYmXnTOhccXzvn/fHx88PHxudwfTUSk/CjDg0SLB4hGtjY4iUjZYDKZGNt6LL4WX97f8z6Ttk8i157L/U3v15dMIiLllD05mcy4ODJXrSJ7y1ZwOIqPedesSVCPHgT16IFv40b6XSAiIvI7ynQBvX379hw4cOCitYMHD1KzZk0AateuTWRkJGvWrCkumGdkZLBlyxYefPBBAK677jrS0tLYsWMH11xzDQBr166lqKiItm3bFp8zbtw4CgsLsZ6/NC0uLo6rr776d9u3iIjIr0Q1BUyQcQqyzkJguNGJAMgpzOHHcz8C0CZK/c9FLjCZTIxuORo/ix9v73ybGbtmkGfPY3TL0SqciIiUE067nazvviN90SIy160Hu734mM/VVxPUw7XT3KdePf3bLyIi8hfKdAH9scceo127drz66qvccccdbN26lffee4/33nsPcH0AfPTRR3n55ZepV68etWvX5rnnniM6Opr+/fsDrh3rsbGx3HfffcyaNYvCwkIefvhh7rzzTqKjowG4++67efHFFxk2bBhPPfUUe/fuZdq0aUyZMsWwn11ExGP4BEFYXUg+5BokWq/bXz/nCohPisfutFM1sCpVA6saHUekzBnRdAS+Xr68sf0NPtj7AXmOPMa2HovZVKZnzIuIyJ8oOHaMtEWLSf/qK+y/uhLbt1EjgnvFEtS9O97nN6SJiIjIpSnTBfTWrVvz5Zdf8swzzzB+/Hhq167N1KlTGThwYPE5Y8eOJTs7mxEjRpCWlsb111/PihUr8PX1LT5n/vz5PPzww3Tt2hWz2cytt97KW2+9VXzcZrOxatUqRo4cyTXXXEPlypV5/vnnGTFixBX9eUVEPFZUs/MF9J1lpoCu9i0if21wo8H4Wnx56fuXmL9/Pnn2PJ679jm8zOp7KyLiKYpycshYtYr0LxaRs3178bpXaCi2fv2w3XILvldfZWBCERERz2ZyOp3Oy3liQUEBSUlJFBUVXbReo0aNEgnmaTIyMrDZbKSnpxMcHGx0HBGRK2vT27DqWajfF+6cb3QaAO5aehd7k/fy6vWvcmPMjUbHESnT/vPzf3h+0/MUOYvoU6cPL7d/GYu5TO+zEBGp0JxOJ3k//EDaF4vI+PprirKzXQfMZgKub0/IrbcR1LkTJm9vY4OKiIiUUe7Uct3+ZHTo0CHuvfdeNm3adNG60+nEZDLh+NVAEhERqSCKB4nuNjbHeZkFmexL2QdoB7rIpbip7k34WHx4ZsMzLDuyjAJHARM6TMDqZTU6moiI/Io9JYX0/ywhffEi8g/9XLxurV6dkFtvwda/P9bISAMTioiIlD9uF9CHDh2KxWJh6dKlREVFaeCIiIicHyQKpJ+A7GQICDM0TnxiPEXOImoE1SAyQB8iRS5FbK1YfL18GbN+DHHH4siz5zGl8xR8vHyMjiYiUqE57XayN24k7YtFZK5bVzwQ1OTrS3DPHthuuRX/1q0wmTXDQkREpDS4XUDftWsXO3bsoH79+qWRR0REPJGvDSrFQMphOLML6nY1NI76n4tcnk7VOzG963RGrx3Nt6e+ZeSakbzV+S38rf5GRxMRqXAKjh0jbfGXpH/55cUDQZs0IeTWWwnu0xuvoCADE4qIiFQMbhfQGzZsyLlz50oji4iIeLKoZmWugN4mso2hOUQ8UbvodszsNpORa0ay5cwWHlj9ADO6ziDIW0UaEZHSVpSbS8bKlaQvWkzOtm3F614hIdhu6oftlls1EFREROQKc7uAPmHCBMaOHcurr75KkyZNsFov7o2pAZoiIhVUdHP4cTGc3mVojPT8dA6kHAC0A13kcrWKbMXsHrN5YPUD7EzayX2r7uPd7u9i87EZHU1EpNxxOp3k7dnjGgi6bNlvB4LecitBXTprIKiIiIhB3C6gd+vWDYCuXS/eXaghoiIiFVzxIFFjC+jbE7bjxEltW23C/cMNzSLiyZqGN+XDnh8yYtUIfkz+kXtW3sPs7rMJ8zN2xoGISHlhT0khfckS0hdpIKiIiEhZ5nYBfd26daWRQ0REPF1UM9dt2nHISQH/SobEUPsWkZJTv1J95sTO4b5V93Eo9RBDVwzl/R7vUyWgitHRREQ8ktPhIPu770hbtNg1ELSwEACTjw9BPXsQcuttGggqIiJSxrhdQO/YsWNp5BAREU/nFwKhtSH1KJzZDTGdDYmhArpIyYoJiWFu7FyGrxrOLxm/uIroPd+namBVo6OJiHiMvIMHyVi6jPT//Ad7YmLxumsg6C0E9+mjgaAiIiJllNsFdIC0tDQ++OAD9u/fD0CjRo249957sdnUF1NEpEKLana+gL7LkAJ6Sl4KP6e5LoFW/3ORklMjuEZxEf1E5gmGLB/CBz0/oGZwTaOjiYiUWQUnT5Kx7Gsyli4l/9Ch4nUNBBUREfEsbl8Xtn37dmJiYpgyZQopKSmkpKTw5ptvEhMTQ3x8fGlkFBERTxF9vg+6QYNEtyVsA6BeaD1CfUMNySBSXkUHRjM3di51bHVIzElk6Iqh/Jz6818/UUSkArGfO0fKvPn8cuddHO7WnbNTppB/6BAmq5XAbl2pOnUqdTd8Q5VnnlHxXERExEO4vQP9scceo1+/fsyePRuLxfV0u93O8OHDefTRR9mwYUOJhxQREQ9h8CDRCwV0tW8RKR0R/hF82PND7o+7nwOpB7hn5T282/1dGoY1NDqaiIhhHJmZZMatJmPZMrI3b4aiItcBsxn/tm2w9e1LUPfueAUHGxtURERELovbBfTt27dfVDwHsFgsjB07llatWpVoOBER8TAXBomm/gK5qeB3ZXeBX+h/rvYtIqUnzC+MD3p+wANxD7A3eS/DVw7nnW7v0DyiudHRRESumKL8fLLWf0PGsmVkrV+Ps6Cg+Jhv06bY+vYhKDYWa0SEgSlFRESkJLhdQA8ODub48ePUr1//ovUTJ04QpKEnIiIVm38lCKkJacfgzA9Q58oNnj6bc5aj6UcxYaJVFX2hK1KabD42ZveYzcg1I4lPimdE3Aje6vIW10Zda3Q0EZFS47Tbyf5+CxnLlpEZF0dRVlbxMe+YGGx9+xDcuzfeNTUfQkREpDxxu4A+YMAAhg0bxqRJk2jXrh0AGzdu5Mknn+Suu+4q8YAiIuJhopqdL6DvuqIF9AvtW+pXqo/NR0OtRUpboHcgM7vN5NF1j7L5zGYeWv0QkzpOokuNLkZHExEpMU6nk9xdu8hYuoyMFStwJCcXH7NERWHr05vgvn3xufpqTCaTgUlFRESktLhdQJ80aRImk4nBgwdjt9sBsFqtPPjgg7z++uslHlBERDxMdHPYv+SKDxJV+xaRK8/f6s/0rtN5asNTrD6+mjHrx/BS+5e4MeZGo6OJiPwteQcPuormy5ZReOpU8bpXSAhBvWKx9e2LX4sWmMxmA1OKiIjIleB2Ad3b25tp06bx2muvcfjwYQBiYmLw9/cv8XAiIuKBDBokqgGiIsbw9vLmjY5v8MKmF1hyeAn//O6fZBdmc2f9O42OJiLiloKTJ8lY9jUZS5eSf+hQ8brJ35+gbl2x9e1LwHXXYbJaDUwpIiIiV5rbBfQL/P39adKkSUlmERGR8iC6hes25QjkpYNv6bdTSchO4HjmccwmMy2rtCz19xORi1nMFl5q/xKB1kA++ekTXtnyClmFWQxvMtzoaCIif8p+7hwZK1aSsXQpubv+9+W/yWol4IYbsPXtQ2CnTpj9/AxMKSIiIka6pAL6Lbfcwty5cwkODuaWW27503MXL15cIsFERMRD+VcCWw1IP+4aJFq7Q6m/5YX2LQ0rNSTIWwOtRYxgNpl5us3TBPsEM2v3LKbFTyOzIJNHWz6qvsAiUqY4srLIjFtNxtKlZG/eDEVFrgMmE/5t22Lr24eg7t3xsmmmioiIiFxiAd1msxV/8AkODtaHIBER+XNRTc8X0HddmQL6mfP9z6PU/1zESCaTiZHNRxJoDWTS9kl8uPdDMgsyGdd2HF5mL6PjiUgFl3fgIKnz5pH+3//izMsrXvdt0sRVNI/thbVKhIEJRUREpCy6pAL6nDlziu/PnTu3tLKIiEh5Ed0cflp6xQaJqv+5SNkypNEQAq2BvLj5RT4/+DlZhVm8cv0rWM3qGywiV5bTbidz7VpSP55HzrZtxevetWsTfGNfbH364F2zpoEJRUREpKxzuwd6ly5dWLx4MSEhIRetZ2Rk0L9/f9auXVti4URExENFne+DfgUGiZ7MPMnp7NNYTBZaRqj/uUhZcetVtxLgHcAz3z7D8qPLySnMYVLHSfhafI2OJiIVgD01lbTPvyD100+xnznjWvTyIqhbNyoNGohfq1a6slpEREQuidsF9PXr11NQUPCb9by8PL799tsSCSUiIh4uqpnrNvlnyMsA3+BSe6sLu88bV26Mv9W/1N5HRNwXWyuWAEsAj61/jG9OfsNDax7i7S5vE2ANMDqaiJRTefv3kzJvHhlLl+HMzwfAKzSUkDvuIPTOAVijogxOKCIiIp7mkgvoP/zwQ/H9ffv2kZCQUPzY4XCwYsUKqlatWrLpRETEMwWGQ3BVyDgFCXugVvtSe6sLA0RbR6r/uUhZ1KFaB2Z1m8XDax9mW8I2hq8czsxuMwnxDfnrJ4uIXAJnYSGZq1eTMm8+uTt2FK/7NmxI6KBBBPfpjdnHx8CEIiIi4skuuYDevHlzTCYTJpOJLl26/Oa4n58fb7/9domGExERDxbV3FVAP7Or1AroTqezuIDeJkr9z0XKqlaRrfig5wc8EPcAe5P3MnTFUN7r8R4R/hrWJyKXz56cTNrnn5P66WfYExNdixYLwT26EzroH/i1aK42LSIiIvK3XXIB/ejRozidTurUqcPWrVsJDw8vPubt7U1ERAReXl6lElJERDxQdHM4sKxUB4kezzxOUk4SVrOV5uHNS+19ROTvaxTWiLmxcxmxagSH0w8zZPkQZveYTbWgakZHExEPk7tnL6nz5pHx9dc4CwsB8AoLI3TAHYQMuBNrFX05JyIiIiXnkgvoNc9PJi8qKiq1MCIiUo5EnS9ol+Ig0Qu7z5uGN9VgQhEPEBMSw0e9PmJE3AhOZJ5gyPIhvNfjPWJCYoyOJiJlnLOggIyVq0idN4/c3buL132bNqXSoIEExcZi9vY2MKGIiIiUV24PEb1g3759HD9+/DcDRfv16/e3Q4mISDkQfb6Afu4Q5GeBT2CJv8W2M64Bom0i1b5FxFNUC6rGR7GuIvrPaT8zdMVQZnWbRaPKjYyOJiJlkP3sWVIXLCR1wWc4zp5zLVqtBMfGUmnQQPyaNTM2oIiIiJR7bhfQjxw5ws0338yePXswmUw4nU6A4t5yDoejZBOKiIhnCoyAoCjIPOMaJFrzuhJ9+V/3P9cAURHPEu4fzpyec3hozUPsObeHYauG8XaXt/X/ZREplrt7NykfzyNj5Uo436bFEh5OyJ0DCL3jDiy/aikqIiIiUprM7j5h9OjR1K5dm6SkJPz9/fnxxx/ZsGEDrVq1Yv369aUQUUREPFYptnE5mn6U5LxkfLx8aBau3WcinibEN4TZPWbTJrIN2YXZPLj6QTac3GB0LBExUFFBAen/+Q9Hb7+DXwbcScbSpVBYiF+LFkRPnkTdNasJHzlSxXMRERG5otwuoG/evJnx48dTuXJlzGYzZrOZ66+/ntdee41Ro0aVRkYREfFUF9q4lMIg0Qu7z5uHN8fbSz1PRTxRgDWAd7q9Q6dqnch35DN67WhWHF1hdCwRucIKExNJmjaNnzt34fRTT5O3Zw8mqxVb//7U+uILan36CbY+fTCpx7mIiIgYwO0WLg6Hg6CgIAAqV67M6dOnufrqq6lZsyYHDhwo8YAiIuLBSnEHutq3iJQPPl4+vNn5TZ797lm+Pvo1YzeMJaswi9uuus3oaCJSipxOJ7k7d5I6bx4Zq+LAbgfAUqUKoXfdRcgdt2OpVMnglCIiIiKXUUBv3Lgxu3fvpnbt2rRt25aJEyfi7e3Ne++9R506dUojo4iIeKriQaIHoSAbvANK5GWLnEVsSzg/QDRKA0RFPJ3VbOW1Dq8RaA1k4cGFvLj5RbIKshjaeKjR0USkhDkyM0lfsoS0BQvJP3iweN2v1TVUGjSIoK5dMVmtBiYUERERuZjbBfRnn32W7OxsAMaPH0/fvn3p0KEDYWFhLFiwoMQDioiIBwuKhMAqkJUICXuhRtsSedlDqYdIy0/Dz+JH47DGJfKaImIss8nMs9c+S6B3IB/u/ZDJOyaTUZDBIy0eKR5WLyKeyel0krd3L6kLFpCx7GucubkAmHx9Ce7bh0qDBuFbv77BKUVERER+n9sF9J49exbfr1u3Lj/99BMpKSmEhobqw42IiPxWVHM4tNLVxqWECugXdp+3iGiB1Uu71ETKC5PJxGPXPEaQdxDT4qcxe89ssgqzeLrN05hNbo/uERGDObKyyVi2jNQFn5G/b3/xunfdGELvGIDtpn542WwGJhQRERH5a24X0H9PJfWmExGRPxJ9voBegoNEL/Q/bxOp9i0i5dHwJsMJsgbxypZX+PSnT8kqyGJ8+/FYzCXyp6uIlLK8fftIXbCQjP/+l6KcHABM3t4ExfYkdMAA/Fq21OYrERER8RiX9CnklltuueQXXLx48WWHERGRcqiEB4k6ihxsT9wOqIAuUp4NqD8Af6s/z218jv8e+S/ZhdlM7DgRHy8fo6OJyO8oyskhY/lyUj9bQN6ePcXr3rVqETJgALb+N2EJDTUwoYiIiMjluaQCuk2X1YmIyOW6MEj07E9QkAPe/n/r5Q6kHiCzIJMAawANwhqUQEARKatujLmRQGsgT3zzBGtPrGXkmpG81fkt/K1/798RESk5eQcOkrZgAelLllCUleVatFoJ7t6NkAF34t+mtXabi4iIiEe7pAL6nDlzSjuHiIiUV0FREBAO2Wch8Ueo3vpvvdyF/ufXVLlG7RxEKoDONTrzTrd3eGTtI2w5s4X74u7jna7vYPPRBg8RoxTl5ZGxYgVpCxaSu3Nn8bq1Rg1C77gd2803YwkLMzChiIiISMlR5UFEREqXyeRq4/JznKuNy98soKv/uUjF0zaqLe/3eJ8HVz/ID2d/4N6V9/Ju93ep7FfZ6GgiFUr+4cOkLlhA+n+WUJSe7lq0WAjq0oWQAXcQcN11mMwa+CsiIiLli9sF9Nq1a//pJXhHjhz5W4FERKQcij5fQP+bg0TtRXZ2JO4AoHXk3yvEi4hnaRrelDmxc7g/7n4Oph5kyPIhzO4xm+jAaKOjiZRrRQUFZK5cRdqCBeRs3168bo2OJuSOO7DdcjPWiAgDE4qIiIiULrcL6I8++uhFjwsLC9m5cycrVqzgySefLLFgIiJSjpTQINH9yfvJLswmyDuIq0OvLoFgIuJJrgq9io9iP+K+VfdxPPM4g5cPZkbXGVxdSf8eiJS0gl9+IXXh56QvXowjLc21aDYT2LkzoQPuIKB9e0xeXsaGFBEREbkC3C6gjx49+nfXZ8yYwfZf7UgQEREpdmGQaNJ+KMwDq+9lvcyF9i2tqrTCy6wP7SIVUY3gGnzU6yNGxI3gaPpRBi8fzKSOk+hQrYPR0UQ8nrOggMw1a0hdsJCc778vXrdERhJy222E3HYr1shIAxOKiIiIXHkl1qCuV69eLFq0qKReTkREypPgquAfBk6Ha5DoZbowQFT9z0UqtsiASD7u9TFtItuQY8/h4bUP8+lPnxodS8RjFZw4QdLkNznUuQunHhvjKp6bTAR0vIFq77xD3dVxhD88UsVzERERqZBKbIjoF198QaVKlUrq5UREpDy5MEj08Bo4sxOqXeP2SxQ6ColPigfU/1xEwOZjY1a3WYz/fjxf/fwVr255leMZx3mi1RO6QkXkEuX++CPJs2aRuXoNOJ0AeIVXJuS22wi97TasVasanFBERETEeG4X0Fu0aHHREFGn00lCQgJnz57lnXfeKdFwIiJSjkSfL6Bf5iDRvcl7ybXnEuITQr3QeiUcTkQ8kdXLyvh246kZXJNp8dOYt38eJzNPMuGGCfhb/Y2OJ1Jm5cTv5NysmWRv+LZ4LaB9e0IG3EFQ586YrFYD04mIiIiULW4X0Pv373/RY7PZTHh4OJ06daJ+/folFkxERMqZvzlIdOsZV//z1pGtMZtKrAOZiHg4k8nE8CbDqRZYjXHfjWP9yfUMXTGUt7u8TZWAKkbHEykznE4nOVu2cG7mLHK2bHEtms0E9+1D5REj8Klb19iAIiIiImWU2wX0F154oTRyiIhIeffrQaL2fLD4uPX0C/3P1b5FRH5PbO1YIgMiGb1uNPtT9nP313czo+sM6lfSBg+p2JxOJ9nffsu5mbPI3bnTtWixYOt/E5Xvuw/vmjWNDSgiIiJSxl1WD3SHw8GXX37J/v37AWjYsCE33XQTFkuJtVQXEZHyxlYd/EIhN9U1SLRqy0t+aoGjgF1nXTvXNUBURP5I84jmzOs9j4fXPMyR9CMMXj6YN254g47VOxodTeSKcxYVkblmDckzZ5G3bx8AJm9vQm67jbDhw7BGRxucUERERMQzuH0N/I8//ki9evUYMmQIX375JV9++SVDhgyhXr167N27tzQyiohIeXBhkCi43cZl99nd5DvyCfMNo46tTimEE5HyonpQdT7u/TFto9qSa89l1LpRzN8/3+hYIleM0+Egfekyjt50E6ceGUXevn2Y/PyodM89xKyOI/L551Q8FxEREXGD2wX04cOH07hxY06ePEl8fDzx8fGcOHGCpk2bMmLEiNLIKCIi5cWFNi5uDhK90L6lTWSbiwZZi4j8nmDvYGZ2m8kt9W6hyFnE61tf57Utr+EochgdTaTUOAsLSVu0mCO9+3D6iSfIP/Qz5sBAwh64n7pr11DlqbFYeqe6hAAAIABJREFUIyKMjikiIiLicdzuubJr1y62b99OaGho8VpoaCivvPIKrVurL62IiPyJ4h3ou9162taE8wNEo/R7RkQujdVs5V/X/YsaQTWYGj+VT376hJNZJ5l4w0QCrAFGxxMpMUX5+aQvXkzy7PcpPH0aAC+bjUpDhxA6cCBewcEGJxQRERHxbG4X0K+66ioSExNp1KjRRetJSUnU1eR2ERH5M8WDRPeBvQAs3n/5lDx7Hj+c/QFQ/3MRcY/JZGJYk2FUD6rOP7/7JxtObmDI8iFM7zqdyIBIo+OJ/C1FOTmkLlxIygcfYj97FgCvypUJu+ceQu8cgDlAXxSJiIiIlAS3C+ivvfYao0aN4l//+hfXXnstAN9//z3jx49nwoQJZGRkFJ8brN0OIiLyayE1wTcE8tJcRfQLBfU/sevsLgqLConwj6BGUI0rEFJEypsetXoQGRDJI2sf4UDqAe5edjfTu06nYVhDo6OJuM2RlUXq/E9I+egjHCkpAFgiIwkbPpyQ227F7OtrcEIRERGR8sXtAnrfvn0BuOOOO4r70DqdTgBuvPHG4scmkwmHQ30mRUTkV0wmiGoGR79xDRK9hAL61jOu9i3qfy4if0fT8KZ80ucTRq4eyeH0wwxdMZQJHSbQuUZno6OJXBJHWhop//6YlHnzKDq/aclavTphI+4j5KabMHn/9VVdIiIiIuI+twvo69atK40cIiJSUUQ3dxXQT++Ca/769F8PEBUR+TuqBlbl494f8/j6x9l8ZjOj143mydZPMqjBIH1BJ2WWPTmZlLlzSZ3/CUU5OQB416lD5QfuJ7h3b0wWtz/SiYiIiIgb3P5rq2PHjqWRQ0REKgo3BonmFOaw99xeAFpHaoCoiPx9Qd5BzOg2g1e3vMoXB79g4raJHMs4xtNtnsZiViFSyo7CxESSP/iAtIWf48zLA8Cnfn0qP/AAQd27YfLyMjihiIiISMVwWZ8S0tLS+OCDD9i/fz8AjRo14t5778Vms5VoOBERKYeimrluE38ERyF4Wf/w1J1JO7E77UQHRFMtqNoVCigi5Z3VbOX5a5+nVnAtJm+fzIIDCziZdZJJN0wi0DvQ6HhSwRWcPEny7PdJX7wYZ2EhAL5Nm1L5wQcI7NRJV0uIiIiIXGFmd5+wfft2YmJimDJlCikpKaSkpPDmm28SExNDfHx8aWQUEZHypFId8LGBIx+S9v/pqVsTXP3PtftcREqayWRiSKMhTOk0BV8vXzae2sjgFYM5k3XG6GhSQRX88gunn36Gwz1jSVuwAGdhIf6tWlHjww+oteAzgjp3VvFcRERExABuF9Afe+wx+vXrxy+//MLixYtZvHgxR48epW/fvjz66KOlkVFERMoTkwmimrrun9n1p6cWDxCNUv9zESkdXWt2ZU7sHCr7VeZQ6iHu/vpufjz3o9GxpAIpTErizL/+xeE+fUn/6itwOAi4/npqzvuYmvM+JqBdOxXORURERAx0WTvQn3rqKSy/GlZjsVgYO3Ys27dvL9FwIiJSTkWf74N++o8L6JkFmexL2QdogKiIlK7GlRvzSe9PqBdaj3O55xi6Yihrjq8xOpaUc46MDJKmTHXtOP9sgatw3vEGai1cQI33Z+PfqpXREUVERESEyyigBwcHc/z48d+snzhxgqCgoBIJJSIi5dwlDBKNT4ynyFlE9aDqRAZEXqFgIlJRRQVG8e/Yf9O+anvyHHk8tu4x5u6di9PpNDqalDNF+fkkf/Ahh7v3IPndd3Hm5uLXvDk1531MjXffxa9pU6MjioiIiMivuF1AHzBgAMOGDWPBggWcOHGCEydO8NlnnzF8+HDuuuuu0sgoIiLlzYUCeuJecNh/95QL/c+1+1xErpRA70Cmd5nOgKsH4MTJ5B2Teen7lygsKjQ6mpQDToeDtEWLORzbi6Q33sCRno533RiqzZhOzU8/0Y5zERERkTLK8tenXGzSpEmYTCYGDx6M3e4qelitVh588EFef/31Eg8oIiLlUKU64B0EBZlw9ieIbPybU7YlbAM0QFREriyL2cK4tuOoEVSDSdsn8fnBzzmVdYpJHScR5K2rLcV9TqeTrLVrSZoyhYKfDwNgiYwk/JFHsPW/CZOXl8EJRUREROTPmJyXeV1qTk4Ohw+7/gCMiYnB39+/RIN5moyMDGw2G+np6QQHBxsdR0Sk7JvTB459BzfNgBaDLjqUnp9Oh8864MTJ2tvXEu4fblBIEanI1h5fy9PfPk2uPZe6IXWZ3nU6VQOrGh1LPEjO9u0kTX6T3J07ATDbbFQeMYLQgXdj9vU1OJ2IiIhIxeVOLdetHei//PILcXFxFBQU0KlTJ5o0afK3goqISAUW3dxVQD+96zcF9O2J23HipLattornImKYLjW6MCd2Do+seYSf037m7mV3M73LdJqE629g+XN5Bw5y9s03yfrmGwBMvr5UGjyYsOHD8NJmGxERERGPcskF9HXr1tG3b19yc3NdT7RY+PDDDxk0aNBfPFNEROR3/Mkg0QvtW9T/XESM1iisEZ/0+YSRa0ZyMPUg96y8h9c6vEb3mt2NjiZlUMHJU5x7+y3Sl/wXnE7w8iLkttuo/NBDWKtEGB1PRERERC7DJQ8Rfe655+jevTunTp0iOTmZ++67j7Fjx5ZmNhERKc+imrluE/b8ZpDohQGi6n8uImVBZEAk/+71bzpU7UC+I58x68fw7u53ucxOiFIO2VNTSXztNY706kX6f5aA00lQbCx1lv6XqBf/peK5iIiIiAe75B7oISEhbNq0iYYNGwKuHujBwcEkJiYSFhZWqiE9gXqgi4i4qagIXq8OBVnw4Gao4vr9kpKXQscFHQH4ZsA3VPKtZGRKEZFi9iI7b2x7g09++gSA2FqxjG8/Hj+Ln8HJxChF2dkkf/QRKR98SFF2NgD+115LxONj8FO7SxEREZEyy51a7iXvQM/IyKBy5crFj/39/fHz8yM9Pf3yk4qISMVlNkNkU9f90zuLl7cnbAegbkhdFc9FpEyxmC080/YZnr/ueSwmCyt+WcGQ5UNIyE4wOppcYc6CAlLmz+fnnrGce+ttirKz8WnYgOrvv0+NOR+qeC4iIiJSjrg1RHTlypXYbLbix0VFRaxZs4a9e/cWr/Xr16/k0omISPkW3QKOb3IV0FsMBP7XvkX9z0WkrLr9qtupHVybMevHsD9lP3cuvZOpnafSPKK50dGklDmLisj4ejlnp02j8MQJAKw1ahA+ehTBvXphMl/y/iQRERER8RBuFdCHDBnym7X777+/+L7JZMLhcPz9VCIiUjFUbem6PR1fvKQBoiLiCVpFtuLTvp8yau0oDqYe5N6V9/Lctc9xc72bjY4mpcDpdJL93UaSprxJ/r79AHhVrkzlhx4k9LbbMHl7G5xQRERERErLJRfQi4qKSjOHiIhURNEtXLcJe8FewLnCDI6kH8GEiVaRrYzNJiLyF6oGVuXjXh8z7rtxrD6+muc3Pc+htEOMuWYMFrNb+1SkDMvds4ekyW+S8/33AJgDAggbPoxKgwdjDggwOJ2IiIiIlDb9ZS8iIsapVAd8bZCXDkn72Jp3GoCrK12Nzcf2F08WETGev9WfyZ0mM2v3LGbunsnH+z7mcNphJt4wUf+Oebj8o0c5O3UamStXAmCyWgm9+27CHrgfS2iowelERERE5EpRkz4RETGOyfS/Xein44v7n7eObG1gKBER95hNZh5q/hCTO07Gz+LHptObGPj1QI6kHzE6mlyGwsQkzjz/Akf63ugqnptM2G66iZgVy6nyzNMqnouIiIhUMCqgi4iIsaLP90E/Fa/+5yLi0XrU6sG/e/2bqIAojmUcY+CygXx78lujY8klcmRlkTRtGod79iRt4UJwOAjs1InaX31F9ITXsVatanREERERETGACugiImKs84NEE87EczzzOGaTmWuqXGNwKBGRy1O/Un0+7fMpLSNaklWYxcg1I5m7dy5Op9PoaPIHnIWFpMyfz+EePUmeOQtnXh5+zZtTc/48qs+aie/VVxkdUUREREQMpAK6iIgY6/wO9G1ZxwBoUKkBQd5BRiYSEflbwvzCeL/H+9xa71acOJm8YzLjvhtHviPf6GjyK06nk4yVqzjS90YSX3oZR0oK3rVqUfXtt6j56Sf4X6Mvc0VERETkMoaInjhxApPJRLVq1QDYunUrn3zyCQ0bNmTEiBElHlBERMq54GgIiGCrrx2ANlFq3yIins/qZeWF617gqtCrmLhtIv898l9+yfiFqZ2nEuEfYXS8Ci9nxw6SJr5B7u7dAHiFhRH+8EhCbrsNk9VqcDoRERERKUvc3oF+9913s27dOgASEhLo3r07W7duZdy4cYwfP77EA4qISDlnMkHVlmzz9QXU/1xEyg+TycTdDe5mVvdZBHsHs+fcHu5aehd7z+01OlqFlX/kKCcefphjAweRu3s3Jj8/Kj/0EDErVxJ6110qnouIiIjIb7hdQN+7dy9t2riKGwsXLqRx48Zs2rSJ+fPnM3fu3JLOJyIiFcCpiKs4ZbVgwUTLiJZGxxERKVHXRl3LZ30+I8YWQ1JuEkNXDGXZkWVGx6pQ7OfOcebFFzly441krV4DZjMhd9xBzMoVhI96BK/AAKMjioiIiEgZ5XYBvbCwEB8fHwBWr15Nv379AKhfvz5nzpwp2XQiIlIhbD2/+7yRHfyt/ganEREpedWDqzOv9zw6VutIviOfp799mqk7puIochgdrVwrys7m7IwZ/NyjJ2mffgYOB4FdulBnyX+IGv8i1gi10xERERGRP+d2Ab1Ro0bMmjWLb7/9lri4OGJjYwE4ffo0YWFhJR5QRETKv22FyQC0yUqDvHSD04iIlI5A70CmdZ7G8CbDAfhg7weMXjearIIsg5OVP067ndQFC/k5NpZzb0/HmZODb9Om1Pz431R/ZwY+desaHVFEREREPITbBfQJEybw7rvv0qlTJ+666y6aNWsGwJIlS4pbu4iIiFwqp9PJ1nM/ANA6Nw9O7zI4kYhI6fEyezG65WgmdJiAj5cP35z8hoFfD+R4xnGjo5ULTqeTzLVrOdLvJhJeeAHH2XNYa9Sg6tQp1FrwGf6tWxsdUUREREQ8jMXdJ3Tq1Ilz586RkZFBaGho8fqIESPw99dl9yIi4p4TmSdIzEnEgonm+QVwOh7qdDQ6lohIqepdpzc1g2syat0ojqQf4a5ldzG502SujbrW6GgeK3f3bhLfeIPc7TsA8AoJofLIkYQOuAOTt7fB6URERETEU7m9Ax1cOzt27NjBu+++S2ZmJgDe3t4qoIuIiNu2JmwFoKlvBH5OJ5zeaXAiEZEro1HlRnzW5zOaVm5KRkEGD8Q9wPz983E6nUZH8ygFx45x8tHH+GXAneRu34HJx4ewESOIiVtFpX8MUvFcRERERP4Wt3egHzt2jNjYWI4fP05+fj7du3cnKCiICRMmkJ+fz6xZs0ojp4iIlFNbz7gK6G0iWsL+bXBKBXQRqTjC/cP5MPZDxm8ez5LDS3h96+scSj3EuLbjsHpZjY5XptlTUjj3zkxSP/sM7HYwmbDdfDPhox7BGhlpdDwRERERKSfc3oE+evRoWrVqRWpqKn5+fsXrN998M2vWrCnRcCIiUr45nc7iHehtYnq5FtOPQ/Y5A1OJiFxZPl4+vNz+ZZ5o9QRmk5lFhxYxfNVwknOTjY5WJhXl5nJu1rsc7t6D1HnzwG4n4IYO1P7qK6JffUXFcxEREREpUW7vQP/222/ZtGkT3v/vUshatWpx6tSpEgsmIiLl39H0oyTnJeNt9qZp1XYQVg+SD8GpeLiqh9HxRESuGJPJxJBGQ4gJiWHsN2OJT4rnrmV38VaXt6hfqb7R8coEp8NB+ldfcXbaW9iTkgDwbdiQiCefIOC66wxOJyIiIiLllds70IuKinA4HL9ZP3nyJEFBQSUSSkREKoYLu8+bRzTHx8sHqrZ0HVAfdBGpoK6vej3z+8ynVnAtzmSfYfDywaz6ZZXRsQzldDrJ+uYbjva/mTPjnsWelIQ1OproN96g1hefq3guIiIiIqXK7QJ6jx49mDp1avFjk8lEVlYWL7zwAr179y7RcCIiUr5tS9gGQOvI1q6F6AsF9HiDEomIGK+2rTbzes+jfXR7cu25PP7N48zYNYMiZ5HR0a643D17OT70Hk7c/wD5hw5httmIeOop6qxYju3GvpjMbn+cERERERFxi9t/cU6ePJmNGzfSsGFD8vLyuPvuu4vbt0yYMKE0MoqISDnkdDrZlbQLgGuqXONajG7huj0VD06nQclERIxn87Exvet0BjccDMCs3bN4fP3j5BTmGJzsyrCfPcupJ57kl9tvJ2fLFkze3lQadi91V60k7J6hmP9fO0kRERERkdLidg/0atWqsXv3bj777DN++OEHsrKyGDZsGAMHDrxoqKiIiMifSchOICk3CYvJQuPKjV2LkU3A5AXZSZBxCmzVjA0pImIgi9nCk62fpF5oPcZvHs/q46s5uuwoUzpPobatttHxSoXT6SR98WISJ0ykKCMDTCZs/W4kfNQorFWrGh1PRERERCogtwvoABaLhUGDBpV0FhERqUB2n90NwFWVrsLPcv4LWG9/iGgIiXtcfdBVQBcRoX/d/tQKrsWY9WM4nH6Yu5bdxSvtX6Frza5GRytRBcePc+b5F8j5/nvANSA0cvx4/Bo3MjiZiIiIiFRkl1RAX7JkCb169cJqtbJkyZI/Pbdfv34lEkxERMq3XWdd7VuahTe7+EDVFq4C+ql4aHCjAclERMqe5hHNWXjjQp745gl2JO7g0fWPcm/je3mkxSNYzJe1J6bMcNrtpHz0b86+/TbOvDxMvr6EP/IIlYYMxmTx7J9NRERERDzfJf1F2r9/fxISEoiIiKB///5/eJ7JZMLhcJRYOBERKb92J7l2oP+mgB7dAuL/rUGiIiL/T2W/yszuMZtpO6bx0b6P+HDvh/x47kcm3DCBML8wo+Ndlrz9+zkz7lny9u0DwP/aa4ka/yLeNWoYnExERERExOWShogWFRURERFRfP+P/lPxXERELkWePY+fUn4CXLsqLxLd0nV7eqcGiYqI/D9Ws5UnWj/BpI6T8LP4sSVhCwOWDuCHsz8YHc0tRXl5JE1+k6O33U7evn2Yg4OJeuVlasz5UMVzERERESlTLqmALiIiUpL2Je/D7rRT2a8y0QHRFx+s0gi8fCAvHVKOGBNQRKSM61mrJ5/2+ZRawbVIzElkyIohLDywEKcHfPGYvXUrR2/qT/Ls2eBwEBQbS8yypYTceismk8noeCIiIiIiF3G7gD5q1Cjeeuut36xPnz6dRx99tERCiYhI+fbr/ue/KZZ4WSGyiev+6Z1XOJmIiOeICYnh0z6f0r1md+xFdl76/iWe3fgsefY8o6P9LkdGBmeee57jg4dQcOwYlogIqs2YTrWpU7CEhxsdT0RERETkd7ldQF+0aBHt27f/zXq7du344osvSiSUiIiUb3/Y//yC6Bau21Pqgy4i8mcCvQOZ3HEyj1/zOGaTmSWHl/CP5f/gROYJo6NdJCMujiN9+pL2+ecAhAwYQJ1lSwnq2tXgZCIiIiIif87tAnpycjI2m+0368HBwZw7d65EQomISPnldDrZffYvCuhVL/RBVwFdROSvmEwmhjYeyuzus6nkW4mfUn5iwNIBbDi5wehoFCYlcfKRUZx6ZBT2s2fxrlWLmh//m6gX/4VXUJDR8URERERE/pLbBfS6deuyYsWK36wvX76cOnXqlEgoEREpv05lnSI5LxmL2ULDsIa/f9KFQaJndkORBlSLiFyKNlFtWNB3AU3Dm5JZkMnDax7mnV3vUOQsuuJZnE4nqZ9/zpE+fcmMiwOLhbAH7qf2f77Cv3XrK55HRERERORyWdx9wpgxY3j44Yc5e/YsXbp0AWDNmjVMnjyZqVOnlnhAEREpXy7sPm9QqQG+Ft/fP6lyPfAOhIIsOHsAqvxBoV1ERC4SGRDJnJ5zmLhtIgsOLGDm7pnsObeH1zu8js3nt1eRloaCY8c489zz5GzdCoBv48ZEvfwSvvXrX5H3FxEREREpSW4X0O+9917y8/N55ZVXeOmllwCoVasWM2fOZPDgwSUeUEREypddSf8bIPqHzF4Q1RyOfedq46ICuojIJfP28ubZa5+lWXgzxm8ez3envmPA0gFM6TSFBmENSu19nXY7yXPmcG76DJz5+Zh8fQkfPZpK/xiEyeL2xw4RERERkTLB7RYuAA8++CAnT54kMTGRjP9j797je67//4/fXu/DjnZgM8PGjORMSh8qpRAx5/Mp6URRSZ8P6ZdESqVUfJTiU1SOcz7nUCSHTyFnoWzMbGPMZjM7vN/v3x/aPvl2Mra9drhfL5dd3m/v93vv131/lO3uuccjJYUTJ06oPBcRkevyt/PPc1RqdPVWi0RFRG5Ih+od+LLdl4SUCSE2NZYBawew7OdlBXKt9EOHiOrZk3PvTsaVkYH3XXcRvnIFAYMeUXkuIiIiIsXaDRXo2dnZbNy4kSVLluByuQA4c+YMqamp+RpORERKlstZlzmWdAyARkGN/vrFuYtEfyzgVCIiJdet5W5lfsR87g25lwxHBmO2jWH8jvFkOjLz5f2d6ekkTJpEdM9eZBw+gsXPj4oTJxL6n5m4hYbmyzVERERERMyU5wL95MmT1K9fn06dOjF06FDOnTsHwFtvvcU///nPfA8oIiIlx6Hzh3C4HAR5BRHsHfzXL85ZJJpwELLzp+gRESmN/Nz9mPrAVIY1GoaBQeSxSAauHUh8WvxNvW/azp2c6NSZC//5FBwOfNs9RPXVq/Dv0hnDMPIpvYiIiIiIufJcoD/33HPccccdJCUl4enpmft4ly5d2LRpU76GExGRkuW6x7cAlA0Dz7LgyLxaoouIyA2zGBYGNxzMh60+xNfNl4PnD9JzZU92xu3M83s5kpM58/LLnHpkEFmnTmELDibkww+pPHkytsDAAkgvIiIiImKePBfoW7du5eWXX8bNze2ax8PCwoiNjc23YCIiUvLsO5uHAt0woNJtV++f0Rx0EZH8cE/le1gQsYDa5WqTlJHE4A2DmXlgZu5Yxr/icrlI+Wo9v0REkLxoMQBl+/YhfNVKfB64v6Cji4iIiIiYIs8FutPpxOFw/O7x06dP4+Pjky+hRESk5HG5XHk7gQ7/G+OiOegiIvkmxCeEL9p9QZcaXXC6nHyw5wOGfzOcS5mX/vRzshISOP3MM8Q+9xyOc4m4hYdTdc6XBL/yCtYyZQoxvYiIiIhI4cpzgf7ggw/y/vvv5/7ZMAxSU1MZO3Ys7dq1y9dwIiJScsRciiEpIwm7xU6dgDrX90k5i0RjVaCLiOQnd6s74+8ez9hmY7Fb7Hwd8zV9VvfheNLxa17ncjpJWrCQE+0jSN24CWw2Ap9+impLl+B1++0mpRcRERERKTx5LtDfffddtm3bRp06dbhy5Qp9+/bNHd/y1ltvFURGEREpAXJOn9cJqIOb1e1vXv2rnBPo545AZloBJRMRKb261+zO5w99TrB3MCdTTtJvTT/WnFgDQGZ0NKcGPkL82LE4U1PxaNCAaosXU/7ZZ7G4u5ucXERERESkcNjy+gkhISHs27eP+fPns3//flJTU3nsscfo16/fNUtFRUREfmvv2b1AHsa3APhWhDLBkBoPcfuharMCSiciUnrVC6zHwoiFjPp2FDvidjB6y0jSZ8+l7rKDuDIyMDw9CRr+HGX798ewWs2OKyIiIiJSqPJcoAPYbDb69++f31lERKQEy/P88xyVG8PRNVfnoKtAFxEpEGU9yvJRq4+YvWwcFaZEEh6/Gxdgb3oHVSZMxC0kxOyIIiIiIiKmuKEC/ejRo0ydOpUjR44AULt2bYYNG0atWrXyNZyIiJQMaVlpHL94da5ungv0SjkF+p4CSCYiIgDOjAzOf/gRzWYuAQekehjMbmlw6M4Y3rEncDsq0EVERESkdMrzDPTFixdTr149du/eTcOGDWnYsCF79uyhfv36LF68uCAyiohIMXcw8SBOl5OK3hWp4F0hb59c+bart7Eq0EVECsLl3buJ6tyF8x9/DA4HPm3aUH7JHGLvrUnilfM89tVjfHbwM5wup9lRRUREREQKXZ5PoI8cOZLRo0czfvz4ax4fO3YsI0eOpFu3bvkWTkRESoYbHt8CUPHXAv3CL5B+ETz98zGZiEjp5UhN5dzkySTNnQeAtXwgwa+8gm/r1gDMCZ3DuB3jWBO1hsm7J7MtdhsT7plAsHewmbFFRERERApVnk+gx8XF8fDDD//u8f79+xMXF5cvoUREpGS5oQWiObwDwL/q1ftxe/MxlYhI6ZW6ZQsnOnTMLc/9unej+qpVueU5gJfdizebv8nYZmPxtHny3/j/0m1FN9ZHrzcrtoiIiIhIoctzgd6iRQu2bt36u8e/++47mjdvni+hRESk5HC5XOxP3A/cYIEOVxeJgsa4iIjcpOykJGL/NZKYwUPIjovDHhpKlc8+pdKECVj9/H73esMw6F6zOwsjFlI3oC4pmSm8sOUFxmwbQ1pWmglfgYiIiIhI4crzCJeOHTsyatQodu/eTdOmTQHYuXMnkZGRjBs3jhUrVlzzWhERKd2iU6JJzkjG3epOrXI3uGy6UmM4tFSLREVEbpDL5SJl9RoSXn8dR1ISWCyUGziQ8s8+g8XT828/P8wvjC/afcFHez9i5oGZLPt5GbsTdvNm8zdpUL5BIXwFIiIiIiLmMFwulysvn2CxXN+hdcMwcDgcNxSqOEpJScHPz4/k5GR8fX3NjiMiUmQs+3kZY7aNoXFQY2Y/NPvG3iT6O5jVHnxDYMSh/A0oIlLCZcXHE//qOFI3bwbAvWZNKr4+Ac/69W/o/XbF7+Kl714iLi0Oq2FlSMMhPF7/cWyWPJ/NERERERExRV663DyPcHE6ndf1UZrKcxElGEqDAAAgAElEQVQR+XM3tUA0R8WGgAEppyH1bP4EExEp4VxOJ0nz53OifcTV8txuJ/DZZ6i2KPKGy3OAO4LvYFHHRTxU7SEcLgfT9k7j0a8e5fSl0/kXXkRERESkiMhzgS4iIpIXN7VANIe7DwTWvHr/zI/5kEpEpGTLiIri1MMDiX91HM60NDwbNSJ86RLKP/00hpvbTb+/r5svb9/7NhObT8Tb7s2PZ3+k+8rurPxlJXn8BVcRERERkSLtugv0HTt2sGrVqmse+/zzz6lWrRpBQUE8+eSTZGRk5HtAEREpvi5lXuKXi78A0DDoJgp00CJREZHr4MrKIvGTGUR16szlXbswvLyo8NJLVJ3zJe41auT79SLCI1jUYRG3Bd1GWlYaL333EqO+HUVKZkq+X0tERERExAzXXaCPHz+eQ4f+N3f2wIEDPPbYY7Rq1YoXX3yRlStXMnHixAIJKSIixdOBxAO4cFG5TGUCPQNv7s0q/Vqga5GoiMgfunL4MFG9enFu8mRcmZl433034StWUO7hARhWa4FdN8QnhE/bfMrQRkOxGlbWRq+l+4ru7IrfVWDXFBEREREpLNddoO/du5eWLVvm/nn+/Pn84x//YMaMGYwYMYIpU6awcOHCAgkpIiLFU77MP89R6bart7F7QOMBRERyOa9c4ey7k4nq0ZOMw0ew+PlR8c2JhM6cgVtI5ULJYLPYGNJwCJ8/9DmhPqHEpcXx6FeP8sGeD8hyZBVKBhERERGRgnDdBXpSUhIVKlTI/fOWLVt46KGHcv/cpEkTYmJi8jediIgUa/vO5mOBHlwfLDa4nAjJWlQnIgJwedcuojp34fyMGeBw4NO2LdVXr8K/c2cMwyj0PA3KNyCyQyRdanTBhYuZB2bSf21/opKjCj2LiIiIiEh+uO4CvUKFCkRFXf3GNzMzkz179tC0adPc5y9duoTdbs//hCIiUiw5XU72n9sP5MP8cwC7BwTVuXpfY1xEpJRzpKYSN24cJ/sPIDM6Glv58oT8eyoh77+HLfAmR2bdJG+7N+PvHs/kFpPxdfPl8PnD9FrVi0XHFmnBqIiIiIgUO9ddoLdr144XX3yRrVu3Mnr0aLy8vGjevHnu8/v376d69eoFElJERIqfqOQoLmVdwsPqQc2yNfPnTbVIVESES5s3cyKiAxfnzQfAv0cPwlevwqdVK5OTXat11dYs7riYfwT/g/TsdMbtGMdz3zxH0pUks6OJiIiIiFy36y7QX3vtNWw2G/fddx8zZsxgxowZuLm55T7/6aef8uCDDxZISBERKX5y5p/XC6yH3ZJPv6GUMwddJ9BFpBTKvnCB2Bf+yekhT5EdH4+9ShWqzJpFxdfGY/X1NTveHwr2DuaTBz/hhdtfwGax8U3MN3Rd0ZXtsdvNjiYiIiIicl2uu0APDAzk22+/JSkpiaSkJLp06XLN85GRkYwdOzbfA/7Wm2++iWEYDB8+PPexK1euMHToUAICAihTpgzdunUjISHhms87deoU7du3x8vLi6CgIP71r3+RnZ19zWs2b95M48aNcXd3p0aNGsyaNatAvxYRkZIuXxeI5qj06wn0M/vA6cy/9xURKcJcLhfJK1dxol17UlavBouFco8+SvjyZXg3/YfZ8f6WxbDwSL1HmNtuLuF+4SSmJzJ442De+v4tMhwZZscTEREREflL112g5/Dz88Nqtf7u8XLlyl1zIj2//fDDD3z88cc0aNDgmseff/55Vq5cSWRkJFu2bOHMmTN07do193mHw0H79u3JzMxk+/btzJ49m1mzZvHKK6/kviYqKor27dtz//33s3fvXoYPH87jjz/OV199VWBfj4hISbf37F4gnwv0oNpg84CMZLhwIv/eV0SkiMpKSOD0U09z5l//wnHxIu41axK2YD4VRv4Li6en2fHypHZAbeZHzKfXrb0A+PLIl/RZ3YfjScdNTiYiIiIi8ufyXKCbITU1lX79+jFjxgzKli2b+3hycjL/+c9/mDx5Mg888AC33347n332Gdu3b2fnzp0ArF+/nsOHD/Pll1/SqFEjHnroIV577TWmTZtGZmYmANOnT6datWq8++671K5dm2HDhtG9e3fee+89U75eEZHiLjkjmRPJVwvuBuUb/M2r88Bqh+Bf309jXESkBHO5XCRFRnKifQSpmzeD3U7gs89QbVEknvXrmx3vhnnaPHm56cv8+4F/U86jHMeTjtN7VW/mHJmjBaMiIiIiUiQViwJ96NChtG/fnlb/ZzHS7t27ycrKuubxWrVqUaVKFXbs2AHAjh07qF+/PhUqVMh9TZs2bUhJSeHQoUO5r/m/792mTZvc9/gjGRkZpKSkXPMhIiJXHUg8AEAVnyoEeAbk75vnzEHXIlERKaEyT58m5rHHiB/zCs7UVDwaNCB8yWLKP/00RgH+xmdhui/0PhZ3XEzzys3JdGby5vdv8tSmp0hMTzQ7moiIiIjINYp8gT5//nz27NnDxIkTf/dcfHw8bm5u+Pv7X/N4hQoViI+Pz33Nb8vznOdznvur16SkpJCenv6HuSZOnIifn1/uR2ho6I19gSIiJVCBzD/PUTlnDvqP+f/eIiImcjmdXPjiS0506Eja9h0Y7u4EjRxJ2Ly5uN9yi9nx8l2gZyDTWk7jpX+8hLvVnW2x2+i6vCvfnPrG7GgiIiIiIrmKdIEeExPDc889x5w5c/Dw8DA7zjVGjx5NcnJy7kdMTIzZkUREiox9ZwuwQM9ZJBq3DxzZf/1aEZFiIuNEFCf7DyDh9ddxpafj1aQJ4SuWE/DoIIw/2D9UUhiGQZ9afVgQsYBby95KUkYSz37zLON3jOdy1mWz44mIiIiIFO0Cfffu3Zw9e5bGjRtjs9mw2Wxs2bKFKVOmYLPZqFChApmZmVy8ePGaz0tISCA4OBiA4OBgEhISfvd8znN/9RpfX188/2Q5k7u7O76+vtd8iIgIOJwO9ifuB6BhUAEU6AE1wM0HstPh3E/5//4iIoXIlZ1N4icziOrcmfQ9e7B4eRE89hWqzJ6FW9WqZscrNNX9qzO3/VwG1hkIQOSxSHqt6sWh84dMTiYiIiIipV2RLtBbtmzJgQMH2Lt3b+7HHXfcQb9+/XLv2+12Nm3alPs5R48e5dSpUzRr1gyAZs2aceDAAc6ePZv7mg0bNuDr60udOnVyX/Pb98h5Tc57iIjI9fsl+RfSstLwtHlSw79G/l/AYoFKja7e1yJRESnGrhw9SnSv3pybPBlXZibezZsTvmolZfv0wbAU6W/TC4Sb1Y1/Nvknn7T+hCDPIKJToum3uh/T9k4jy5FldjwRERERKaWK9HfmPj4+1KtX75oPb29vAgICqFevHn5+fjz22GOMGDGCb775ht27dzNo0CCaNWtG06ZNAXjwwQepU6cOAwYMYN++fXz11Ve8/PLLDB06FHd3dwCGDBnCiRMnGDlyJD/99BMffvghCxcu5PnnnzfzyxcRKZZy5p83CGyAzWIrmIvkLBLVHHQRKYacmZmcmzKFqG7duXLoEBZfXypOnEjoJx9jr1TJ7Hima1apGYs7LqZ11dY4XA6m75tOn9V9OHrhqNnRRERERKQUKtIF+vV47733iIiIoFu3btx7770EBwezZMmS3OetViurVq3CarXSrFkz+vfvz8MPP8z48eNzX1OtWjVWr17Nhg0baNiwIe+++y4zZ86kTZs2ZnxJIiLFWs788wblGxTcRXIWicbqBLqIFC/p+/cT3a0biR9+BNnZ+LRuRfiqlfh36YxhGGbHKzL8PfyZ3GIyk+6bhL+7P0eTjtJ7VW+m75tOllOn0UVERESk8Bgul8tldoiSICUlBT8/P5KTkzUPXURKtQ5LOxCdEs20ltO4N+TegrlI0kn4oAFY7PBSLNjcC+Y6IiL5xJmezrmp/+bCrFngdGINCCB4zMv4tGmj4vxvJKYn8tqO1/g65msA6gTUYcLdE7il7C0mJxMRERGR4iovXW6xP4EuIiJFx8UrF4lOiQaujnApMP5VwCsAnFkQf7DgriMikg8u//ADJzp35sKnn4LTiW/HDoSvWolv27Yqz69DoGcg79//PhObT8TXzZfD5w/Ta1UvZh6YSbYz2+x4IiIiIlLCqUAXEZF8sz9xPwBhvmH4e/gX3IUM4zdz0DXGRUSKJkdqGvHjx3NywMNknTyFrUIFQqZ/ROW338ZWtqzZ8YoVwzCICI9gaael3BdyH1nOLD7Y8wEPr32YExdPmB1PREREREowFegiIpJv9p7dC0DD8g0L/mKVfp2DrkWiIlIEpW79jhMdO5A0dx4A/j17Er5qJT4tWpgbrJgL8gpi6gNTmXD3BHzsPhxIPECPlT2YdXAWDqfD7HgiIiIiUgKpQBcRkXyz/9zVE+gNgwqhQNciUREpghzJyZwZ/RIxTzxB9pk47CEhVJn1GRXHj8Pq42N2vBLBMAw61ejEkk5LuLvy3WQ6M3l397sMXDeQ6ORos+OJiIiISAmjAl1ERPJFtjM7d4RL4ZxA/3WES+JRyEgt+OuJiPyNlA0b+CUiguSlS8EwKPvwAMJXLMe7aVOzo5VIwd7BfNTyI8bdNQ5vuzf7zu2j+8rufHH4C5wup9nxRERERKSEUIEuIiL54ueLP5OenY633ZvqftUL/oI+weBTCVxOiN9f8NcTEfkT2efPc/r554l95lkc5xJxCw+n6pw5BL/0EhYvL7PjlWiGYdD1lq4s7biUphWbkuHI4O0f3mbQukHEpMSYHU9ERERESgAV6CIiki/2nd0HQIPABlgt1sK5qMa4iIiJXC4XyStXcaJ9BJfWrgOrlYAnn6Ta0iV4Nb7N7HilSsUyFfmk9SeMaToGT5sne87uodvKbsz7aZ5Oo4uIiIjITVGBLiIi+WLfuasFeqHMP8+RM8bljAp0ESlcWQkJnH7qac786184Ll7EvVYtwhYuIGjE81jc3c2OVyoZhkHPW3uypOMSmgQ3IT07nTf++wZPrH+C2NRYs+OJiIiISDGlAl1ERPJFboFeGPPPc+gEuogUMpfLRVJkJCfaR5C6eTOG3U754c9RLXIhnnXrmh1PgBCfEGY+OJPRd47G0+bJ9/Hf03V5VxYeXYjL5TI7noiIiIgUMyrQRUTkpp1PP8+pS6cAqB9Yv/AuXLHR1dukKEhPKrzrikip5Lh0idNPPU38mFdwpqbi0bAB1ZYuIXDIEAy73ex48hsWw0Lf2n1Z1GERjYMaczn7Mq/tfI0nNzxJXGqc2fFEREREpBhRgS4iIjdt/7mrSzzD/cLxc/crvAt7lYOy1a7eP/Nj4V1XREqdzOhoonv1vnrq3N2doFGjCJs7F/caNcyOJn+him8VPmv7GSObjMTd6s7OuJ10WdGFJceX6DS6iIiIiFwXFegiInLTcsa3NApqVPgX1xgXESlgqdu2EdWzF5knTmCrUIGqc+YQMOgRDGshLUyWm2IxLAyoM4BFHRbRsHxD0rLSGLt9LE9teor4tHiz44mIiIhIEacCXUREbpop889zVPq1QNcJdBHJZy6Xiwuff0HMk4NxpqTg2bAh1RZF4llPs86LozC/MGa3nc0Lt7+Am8WNbbHb6Lq8K8t/Xq7T6CIiIiLyp1Sgi4jITclyZnHo/CHArAL9tqu3KtBFJB85MzOJGzOGhDfeAIcDvy5dqPLF59jKlzc7mtwEq8XKI/UeIbJDJPUC6nEp6xIvb3uZZ75+hnOXz5kdT0RERESKIBXoIiJyU44lHSM9Ox0fNx+q+VUr/AAVG4JhgZRYuJRQ+NcXkRIn+/x5Tj0yiORFi8FiIejFUVR843Usbm5mR5N8Eu4fzhftvuC5xs9ht9jZcnoLnZd3ZvWJ1TqNLiIiIiLXUIEuIiI3Zd/Zq+NbGgQ2wGKY8NeKexkIvPXq/TOagy4iN+fKkSNEde9B+p49WHx8CP14OgGPPIJhGGZHk3xms9h4vP7jLIhYQO1ytUnJTOHFrS/y/ObnSUxPNDueiIiIiBQRKtBFROSm5M4/DzJhfEsOLRIVkXyQsm4d0X37kR0Xh1tYGGELFlCmeXOzY0kBu6XsLcxpP4dhjYZhs9jYdGoTHZd1ZPah2WQ6Ms2OJyIiIiImU4EuIiI3xdQFojk0B11EboLL6eTclKnEDn8eV3o63vfcQ9jCBbiHmzCWSkxht9gZ3HAw89vPp1a5WlzKvMQ7u96h47KOrI1aq7EuIiIiIqWYCnQREblhiemJxKbGYmDQILCBeUEq/XoC/cweUMkhInngTEsj9rnnSPzwQwDKDRpE6MfTsfr6mpxMzHBruVuZ334+4+4aR3nP8sSmxjLy25H0Xd2XXfG7zI4nIiIiIiZQgS4iIjcsZ/55df/qlHErY16Q4HpgscPl83DxlHk5RKRYyTwdS3SfvlzasBHDbqfixIlUGDUSw2o1O5qYyGqx0vWWrqzqsoqhjYbiafPk4PmDDPpqEM9+/SxRyVFmRxQRERGRQqQCXUREbljO+JZGQY3MDWJzhwp1r97XIlERuQ5p339PdI8eZBw7hrV8IFW/+Bz/Lp3NjiVFiJfdiyENh7Cm6xp61OyB1bDyTcw3dFnehQk7J3A+/bzZEUVERESkEKhAFxGRG1Yk5p/n0CJREblOSfMXcOrRx3AkJeFRty7VIiPxbGTyPwRKkRXoGcgrzV5hSccltAhpgcPlYMHRBbRf2p5P9n9Cena62RFFREREpACpQBcRkRuS5cji0PlDQBEp0LVIVET+hisri/jx44l/9VXIzsa3fXuqzvkSe3Cw2dGkGAj3D2dqy6l82uZT6gTUIS0rjak/TiViaQTLfl6Gw+kwO6KIiIiIFAAV6CIickN+uvATGY4M/Nz9CPMNMzvO/xaJxu0Dp9PcLCJS5GQnJXHqscdJmjsPDIPyI0ZQ6Z1JWDw8zI4mxUyT4CbMaz+PN5u/SSXvSpy9fJYx28bQc1VPtsduNzueiIiIiOQzFegiInJDcsa3NAhsgGEYJqcBytcCmydkpMD5n81OIyJFyJVjx4ju0ZPL33+PxcuLkGnTCHzyiaLx/y4pliyGhfbh7VnRZQUv3P4CPnYfjiUdY/DGwQzeMJijF46aHVFERERE8okKdBERuSFFZoFoDqsNKv46SkaLREXkV5e+/pqTvfuQdfo09tBQwhbMx+eB+82OJSWEu9WdR+o9wpqua+hfuz82i43tZ7bTY2UPxmwbQ0JagtkRRUREROQmqUAXEZEbUqQWiObQHHQR+ZXL5SJx+secHjoM5+XLeP3jH4QtXID7LbeYHU1KIH8Pf0bdOYoVnVbQJqwNLlws+3kZEUsjmLJnCmlZaWZHFBEREZEbpAJdRETyLCEtgbi0OCyGhfqB9c2O8z+Vf52DHqsT6CKlmTM9nTMvvMC5998Hl4uy/fpRZeYMbGXLmh1NSrhQ31Deue8dvmz3JbcF3cYVxxVmHJhBuyXtWPDTArKcWWZHFBEREZE8UoEuIiJ5lnP6/Bb/W/Cye5mc5jdyFonG7weHSgqR0igrLo6T/fqTsmYt2GwEjxtH8JiXMex2s6NJKdKwfENmt53N+y3ep6pvVS5cucCE/06g6/KufH3qa1wul9kRRUREROQ6qUAXEZE8K5LjWwDKhYO7H2RfgbNHzE4jIoXs8o8/EtWjJ1cOH8ZatixVP/uUsr16mh1LSinDMGhZtSVLOy3lpX+8RFn3skSnRPPcN88x6KtBHEw8aHZEEREREbkOKtBFRCTPitwC0RwWC1TKWSSqOegipcnFJUs59fBAHImJuN96K2GRkXg1aWJ2LBHsFjt9avVhddfVPF7/cdyt7uxO2E2f1X0YuWUkpy+dNjuiiIiIiPwFFegiIpInmY5MDp8/DBTBE+jwvzEuZzQHXaQ0cGVnkzDxTeJeeglXVhY+rVsTNncObiGVzY4mcg0fNx+ea/wcq7qsomP1jhgYrI1eS8dlHXnnh3dIzkg2O6KIiIiI/AEV6CIikieHzx8my5lFWfeyhPqEmh3n97RIVKTUcCQnEzN4CBdmzwYgcOhQKn/wPhZvb5OTify5YO9gXr/ndRZ2WEjTik3JcmYx+/Bs2i1px+eHPteiUREREZEiRgW6iIjkyW/nnxuGYXKaP5BzAv3sYci6Ym4WESkwGSeiiO7Vm7Rt2zA8Pan8/vuUf2YYhkXf3krxUKtcLT5p/QkftfqIGv41SMlMYdKuSfRe1ZsD5w6YHU9EREREfqWfMEREJE9yC/SgIji+BcAvBLzLgzMbErSgTaQkurRpE9E9e5IZHY2tUkXC5s7Bt20bs2OJ5JlhGNxT+R4WdVjEq81exd/dn2NJx+i3ph9vfv8maVlpZkcUERERKfVUoIuISJ789gR6kWQYUOm2q/c1xkWkRHE5HJyd/B6nhw7DmZqK5x23Uy0yEo/atc2OJnJTrBYr3Wp2Y3nn5XQI74ALF3OOzKHTsk5sjtlsdjwRERGRUk0FuoiIXLf4tHjOXj6L1bBSN6Cu2XH+nBaJipQ42UlJxDzxJOc/+QSAcgMfpupnn2ELCDA5mUj+KedRjjeav8HHrT8mpEwICZcTeObrZxixeQTnLp8zO56IiIhIqaQCXURErtves3sBqFm2Jl52L5PT/AUtEhUpUdIPHCSqWzfStm/H8PSk0rvvUGH0aAy73exoIgXirkp3saTTEh6t9yhWw8qGkxvotKwTC48uxOlymh1PREREpFRRgS4iItetyI9vyZEzwiXxGGRcMjeLiNyUi4sWcbJfP7LPxOFWtSphC+bj17692bFECpynzZPnb3+e+RHzqRdQj0tZl3ht52s8su4Rfrn4i9nxREREREoNFegiInLdcgr0RkGNTE7yN8oEgW8I4IK4fWanEZEb4MzIIG7MGOJeHoMrM5MyLVsStigSj5o1zY4mUqhqlavFl+2+ZFSTUXjaPPnx7I90X9mdaXunkeHIMDueiIiISImnAl1ERK5LhiODIxeOAMXgBDpAZS0SFSmuss6c4WS//lyMXASGQfnhwwmZOgWrj4/Z0URMYbVY6V+nP8s7Lee+kPvIdmYzfd90uq/ozq74XWbHExERESnRVKCLiMh1OXz+MNnObAI8AqhcprLZcf6eFomKFEtp27cT1bUbVw4exOrvT+iMGQQOGYxh0betIhXLVGTqA1N55753CPAIIDolmkFfDeLV7a+SnJFsdjwRERGREkk/iYiIyHXJWSDasHxDDMMwOc11yFkkeuZHc3OIyHVxuVwkfjKDU48/gePiRTzq1qXa4kWUuedus6OJFCmGYdAmrA3LOy+ne83uACw+vphOyzqxLmodLpfL5IQiIiIiJYsKdBERuS65C0SDisH4FoCKv85pT4qGyxdMjSIif82RmsrpZ57h3OTJ4HTi170bVefOwV65GPy2i4hJ/Nz9GNtsLLPazqKaXzXOXznPv779F0M3DeVM6hmz44mIiIiUGCrQRUTkb7lcrv8tEC1fxBeI5vD0h3LVr97XGBeRIivj+HGiu/cgdeMmDLud4PHjqDRhAhZ3d7OjiRQLt1e4nUUdFvF0w6exW+xsjd1K5+Wd+fzQ52Q7s82OJyIiIlLsqUAXEZG/dSbtDInpidgMG3UC6pgd5/rljHGJ1RgXkaIoZc0aonr1JjM6GlvFilSdO4eyPXuaHUuk2HGzuvFUo6dY1GERjYMak56dzqRdk+i3ph9Hzh8xO56IiIhIsaYCXURE/lbO/PNa5WrhYfMwOU0eVNIcdJGiyJWVRcLEN4kd8QKuy5fxataUaosX4Vm/vtnRRIq1cP9wPmv7GWObjcXH7sPh84fps7oP7+56l8tZl82OJyIiIlIsqUAXEZG/Vezmn+eodNvVW41wESkyshMTOTXoUS7Mng1AwBNPUGXGDGzlypmcTKRksBgWutfszvLOy2kT1gaHy8GsQ7PouqIr22K3mR1PREREpNhRgS4iIn+r2M0/z1GxARgWuBQHKXFmpxEp9S7v+ZGort24vGsXFm9vKk+dQtALIzBsNrOjiZQ45b3K88597/DvB/5NsHcwsamxDNk4hFHfjuJ8+nmz44mIiIgUGyrQRUTkL6Vnp3PswjEAGpYvZifQ3byhfO2r93UKXcQ0LpeLC3PmcHLgQLLPnsWtRnXCIiPxbd3a7GgiJd59ofexvNNy+tfuj8WwsCZqDR2XdWTp8aW4XC6z44mIiIgUeSrQRUTkLx1KPES2K5sgzyCCvYPNjpN3lXPGuGgOuogZnOnpnBk1ioTXJkBWFj5t21JtwQLcw6uZHU2k1PCyezHqzlHMaTeHW8veSkpmCq9sf4XH1z9OdHK02fFEREREijQV6CIi8pf2nru6QLRhUEMMwzA5zQ3IWSQaqxPoIoUt89Qpovv0JWXFSrBaCRo1isrvTcbi7W12NJFSqV5gPeZFzGPE7SPwsHrwffz3dFvRjU/2f8KV7CtmxxMREREpklSgi4jIX8pdIFrcxrfk+O0iUf2qukihubR5M1Hde5Dx009YAwKo8tmnBAx6pHj+Q5xICWK32BlUbxBLOi2hWcVmZDozmfrjVNosbsNH+z4i6UqS2RFFREREihQV6CIi8qdcLhf7z+0HinGBXqEeWN0gPQmSos1OI1LiuZxOzk39N6eHPIUzJQXPRo2otmQx3nfeaXY0EfmNUJ9QPm79MRObT6SSdyUuXLnAh3s/5MFFD/L6zteJuRRjdkQRERGRIkEFuoiI/KnTl05z4coF7BY7dQLqmB3nxtjcrpbooDnoIgXMcfEiMUOGkDhtGgBl+/al6uezsVeoYHIyEfkjhmEQER7B6q6reav5W9QuV5srjivMPzqfiKURvLD5BQ4mHjQ7poiIiIipVKCLiMifypl/XjugNm5WN5PT3ITKv85BP6M56CIF5cqRI0R170Hat1sx3N2p+OZEgl8Zg+FWjP/fIVJK2Cw22oW3Y0HEAmY8OIO7K9+N0+Vk/cn19Fndh0fWPcK3p7/F6XKaHVVERGI3iBcAACAASURBVESk0NnMDiAiIkVXsZ9/niNnDnqsTqCLFISLy5YRP/ZVXBkZ2ENDCZnyAR61a5sdS0TyyDAMmlZsStOKTTmWdIzZh2az5sQadifsZnfCbqr7VWdg3YG0D29fvP9hXURERCQPdAJdRET+VMkp0H89gR63F5wOc7OIlCCurCzix48n7sXRuDIy8L7vXqotilR5LlIC1Cxbk9fveZ213dbySN1H8LZ780vyL7yy/RXaLm7LzAMzSclMMTumiIiISIFTgS4iIn/octZljiUdA0pAgV7+VrB7Q2YqJB43O41IieBITubUk0+SNHceGAaBw4YR+tFHWP38zI4mIvko2DuYF+54gQ3dNzDi9hEEeQZxLv0cH+z5gNaRrXn7h7eJS40zO6aIiIhIgVGBLiIif+hg4kGcLifB3sEEewebHefmWKxQ8dd/BNAiUZGblnnqFNF9+nJ5x04MLy9Cpk2j/LChGBZ9aylSUvm4+TCo3iDWdVvHhLsnUMO/BpezL/PF4S9ot6QdL259kaMXjpodU0RERCTf6accERH5QyVmfEuOnDnoWiQqclMu79pFdM9eZJ44gS04mLC5c/B54H6zY4lIIbFb7XSq0YklHZfwYcsPuTP4TrJd2aw+sZruK7vz5Pon2X5mOy6Xy+yoIiIiIvlCS0RFROQP7T23FyhBBXrlX+egx6pAF7lRycuXE/fyGFxZWXjUq0fIh9OwBwWZHUtETGAYBs1DmtM8pDmHzh9i9sHZfHXyK3bE7WBH3A5qlavFwLoDaRPWBrvFbnZcERERkRumE+giIvI7LpeL/ef2AyWoQM85gR5/ALIzzc0iUsy4nE7OfvABZ0a9iCsrC58HH6TqF5+rPBcRAOoG1OXt+95mTdc19KvdD0+bJz9d+InRW0fTbkk7Pj/0OWlZaWbHFBEREbkhKtBFROR3Tqac5GLGRdwsbtQuV9vsOPmjXDh4+IEjA84dMTuNSLHhvHKF2Bde4PxH0wEIeOIJKr//HhZPT5OTiUhRU7lMZV6880U2dN/AM7c9QzmPcsSnxTNp1yRaR7bm/d3vc+7yObNjioiIiOSJCnQREfmdnPnndQPrYreWkF+7Noz/nULXGBeR65KdmMjJgQO5tHYd2O1UfP11gl4YoWWhIvKX/Nz9eLLBk6zvvp6xzcYS5hvGpaxL/Ofgf2izuA2vbHuFXy7+YnZMERERkeuin35EROR3Stz88xyVfp2DrkWiIn/ryrFjRPfsxZV9+7H4+VHlPzPx79bV7FgiUoy4W93pXrM7yzsv54P7P+C2oNvIcmax9OeldF7emaGbhvLfuP9q4aiIiIgUaVoiKiIiv5NzAr3EFei5i0R/NDeHSBGXunUrscOfx5mWhlvVqoRM/wj3atXMjiUixZTFsPBAlQd4oMoD7D27l1mHZvH1qa/59vS3fHv6W2r416BPrT5EhEfgZfcyO66IiIjINXQCXURErpGamcrPST8DJbBAzzmBfvYwZKWbm0WkiLrw5RxiBg/BmZaGV5MmhC2Yr/JcRPJNo6BGvH//+6zsspJet/bC0+bJzxd/5rWdr9FqUSsm/TCJmEsxZscUERERyaUCXURErnEg8QAuXFQuU5nyXuXNjpO/fCuBdxC4HBB/wOw0IkWKKzub+NcmkDBhAjid+HXtSpX/zMTq7292NBEpgar6VuXlpi+zqccmRjYZSRWfKlzKvMTnhz+n/ZL2DNs0jO2x2zXeRUREREynAl1ERK6RM76lQfkGJicpAIbxmzEumoMuksORmkrM00+TNGcOAOVHjKDi6xMw3NxMTiYiJZ2Pmw8D6gxgZZeVTGs5jbsr340LF1tOb2HwxsF0XNaRuUfmkpaVZnZUERERKaVUoIuIyDVK7ALRHFokKnKNrNhYTvbpS9q3WzE8PKj8wQcEPvkEhmGYHU1EShGLYeHekHuZ3mo6KzuvpF/tfnjbvYlOiWbi9xNpGdmSN79/k5MpJ82OKiIiIqWMCnQREcnldDnZf24/AI3KNzI5TQHJOYF+RotERdL37SOqV28yjh/HWj6Qql98gW+bB82OJSKlXJhfGC/e+SKbemxi9J2jCfMNIy0rjTlH5hCxNIIhG4ew9fRWnC6n2VFFRESkFLCZHUBERIqO6ORoLmVewsPqQc1yNc2OUzAq3Xb1NvE4XEkBD19z84iYJGXtWs68OBpXRgbutWoR+tGH2CtWNDuWiEgub7s3fWv3pXet3uw8s5O5P83l29Pfsi12G9tit1HVtyq9b+1Npxqd8HHzMTuuiIiIlFA6gS4iIrly5p/XDayL3WI3OU0B8Q4EvyqAC+L2mp1GpNC5XC4Sp08n9vkRuDIyKNOiBVW//FLluYgUWRbDwl2V7+LfLf/N6i6rGVBnAD52H06mnOStH96iVWQrJuycwImLJ8yOKiIiIiWQCnQREcmVU6CX2PnnOSr/ego9dre5OUQKmTMzk7gXR3Pu/Q8AKDfwYUKm/RtrGW+Tk4mIXJ9Q31BGNhnJxh4bGdN0DNX9qnM5+zILji6g0/JOPLn+STbHbMbhdJgdVUREREoIFegiIpJr79kSvkA0R2jTq7cnNpsaQ6QwZSclcerRR0levhysVoJfHUuF0aMxrFazo4mI5JmX3Yuet/ZkaaelzHxwJveH3o/FsLAjbgfPfP0MEUsjmH1oNskZyWZHFRERkWLOcLlcLrNDlAQpKSn4+fmRnJyMr6/m6YpI8ZOSmcLd8+4GYHPPzQR4BpicqACd/wWmNgaLHUZFgbvmpkrJlnHiBDFDniLr1CksZcpQ+f33KXPP3WbHEhHJV7GpsSz4aQGLjy8mJTMFAE+bJxHhEfSp1Ydbyt5ickIREREpKvLS5eoEuoiIAHDg3AEAQn1CS3Z5DhBQHQJqgDMLfvnG7DQiBSpt506ie/ch69Qp7JUrEzZ/nspzESmRKpepzIg7RrCxx0ZebfYqNcvWJD07nchjkXRd0ZXHvnqMTSc3abyLiIiI5IkKdBERAUrR/PMcNdtevT32lbk5RApQUmQkpx5/AmdKCp6NGhG2cAHuNWqYHUtEpEB52jzpVrMbizos4tM2n9K6amushpXv479n+ObhPLTkIT49+CkXr1w0O6qIiIgUAyrQRUQEKEXzz3PUbHP19vhX4HSam0Ukn7mcThImTSJ+zCuQnY1v+/ZUmT0LW0AJ/+0SEZHfMAyDJsFNmNxiMuu6rePx+o/j7+5PXFoc7+1+j1aLWjF2+1iOXjhqdlQREREpwjQDPZ9oBrqIFGdOl5O7591NalYqCyMWUjugttmRCp4jC94Oh4wUePxrCLnd7EQi+cJ5+TKxI0eSunETAIFDhxI4bCiGYZicTETEfBmODNacWMO8n+Zx5MKR3McbBzWmX+1+PFDlAWwWm4kJRUREpDDkpcvVdwYiIsIvF38hNSsVT5tn6VmwZbVDjZZwaCkcW6cCXUqErIQETj/1NFcOH8aw26n4xhv4dYgwO5aISJHhbnWnyy1d6FyjM3vP7WXukblsPLmRPWf3sOfsHip4VaDXrb3oVrMb5TzKmR1XREREigCNcBERkdz55/UD65euU1e5c9DXmZtDJB+kHzpEdI+eXDl8GGvZslSZPUvluYjInzAMg9uCbmPSfZNY120dgxsMppxHORIuJzDlxym0jmzN//vu/3Ho/CGzo4qIiIjJVKCLiEjpWyCao0YrwID4/ZByxuw0Ijfs0tffcLL/ALLPnsWtenXCFi7Aq3Fjs2OJiBQLFbwrMOy2YWzovoE37nmDegH1yHRmsuKXFfRe1ZsBawawNmotWc4ss6OKiIiICVSgi4hI6VsgmsM7EEKaXL1/7Ctzs4jcoAtz5nB62DBc6el433UXYfPm4hYaanYsEZFix83qRofqHZgXMY857ebQrlo7bBYbe8/tZeS3I2mzqA3T900nMT3R7KgiIiJSiFSgi4iUcjGXYohOicZqWGkU1MjsOIWvZpurtyrQpZhxOZ0kvPkWCa9NAKcTv+7dCP14OlYtMxcRuWkNyjfgrXvfYkP3DTzd8GkCPQM5l36OaXun8eCiBxm9dTQHzh0wO6aIiIgUAhXoIiKl3JaYLQA0rtAYP3c/k9OYIGcO+onNkJVuahSR6+W8coXY4c9zYdYsAMoPH07F117DsNvNDSYiUsIEegbyVKOnWN9tPW81f4sG5RuQ5cxi1YlV9F3Tl76r+7Lyl5VkOjLNjioiIiIFRAW6iEgptzlmMwAtQlqYmsM0FeqCbwhkp0PUVrPTiPyt7AsXODXwES6tX49ht1Np0iQChwzGMAyzo4mIlFh2q5124e2Y024O89vPp2P1jtgtdg4kHuCl717iwUUPMm3vNM5ePmt2VBEREclnKtBFREqx5IxkdiXsAuD+0PtNTmMSw/jNGJd15mYR+RsZUVFE9+5D+r59WPz8CP3PTPw6RJgdS0SkVKkbWJfX73mdDd038MxtzxDkFcT5K+eZvm86bRa1YeSWkew9uxeXy2V2VBEREckHKtBFREqx72K/w+FyUMO/BqG+pXjpYM4Yl2NfgX7YlSLq8u7dnOzdh6xTp7BXrkzYvLl433mn2bFEREqtAM8AnmzwJOu6rWPSfZNoHNSYbFc2a6PXMmDtAHqv7s3yn5eT4cgwO6qIiIjcBBXoIiKlWO74ltAWpuYwXbXmYPOElNOQcMjsNCK/k7JmDacGPYojORmPBg0IWzAf9/Bws2OJiAhgt9hpG9aW2Q/NZmHEQrrU6IKbxY3D5w/z8raXaR3Zmil7phCfFm92VBEREbkBKtBFREqpLEcW38V+B6hAx+4J4S2u3tcYFylCXC4XiTNmEDviBVyZmZRp2ZKqs2dhCww0O5qIiPyB2gG1GX/3eDb22MhzjZ8j2DuYpIwkZhyYQdvFbXlh8wvsTtit8S4iIiLFiAp0EZFSalfCLlKzUinnUY76gfXNjmO+3DnoX5mbQ+RXruxs4l8dx7l3JwNQ9uEBhEz5AIunp8nJRETk75T1KMvj9R9nbde1vNfiPZoEN8HhcrD+5HoeWfcIPVf1ZOnxpRrvIiIiUgyoQBcRKaV+O77FYuivg9wC/fQPkJZobhYp9RypacQ8/TQXFywAw6DCS6MJfuklDKvV7GgiIpIHNouNVlVb8WmbT1nUYRHdbumGh9WDny78xCvbX6F1ZGs+2POBxruIiIgUYWpMRERKIZfL9b8CPaSFqVmKDN9KENwAcMHxDWankVIsK+EsJwcMIO3brRgeHoRMnUK5hx82O5aIiNykW8vdyqt3vcqG7ht4/vbnqehdkaSMJGYemJk73mVPwh6NdxERESliVKCLiJRCx5KOcSbtDB5WD5pWamp2nKKjZturt8c1xkXMceXoMaJ79SLjyBGsAQFU/Xw2Pq1amR1LRETykb+HP4/We5Q1Xdfwfov3rxnvMnDdQHqt6qXxLiIiIkWICnQRkVLom5hvAGhaqSmeNs1TzpVToP+8CRxZ5maRUid12zZO9u1Ldnw8btWqETZ/Hp4NGpgdS0RECojNYqNl1ZbXjHdxt7pz5MKR3PEuU/ZM0XgXERERk6lAFxEphXLGt9wfer+5QYqaSreBd3nISIFTO8xOI6XIxcWLiRk8BGdaGl533EHYvLm4hYaaHUtERApJzniXjd03XjPeZcaBGRrvIiIiYjIV6CIipUxCWgKHzh/CwODekHvNjlO0WCxwy6/LRI9pjIsUPJfLxdkPPiDu/70M2dn4RkQQ+ul/sPr7mx1NRERM8NvxLu+1eO8Px7ss+3mZxruIiIgUIhXoIiKlzJbTWwCoX74+gZ6BJqcpgmrmFOjrzM0hJZ4rM5Mzo0Zx/qPpAAQMGUylSW9jcXMzOZmIiJjNZrHRqmqrPxzvMmbbGI13ERERKUQq0EVEShmNb/kb1e8Hix3O/wyJP5udRkooR3Iypx5/gpQVK8FqJfi18QQNH45hGGZHExGRIubvxrv8c8s/+fHsjxrvIiIiUkBUoIuIlCKXsy7z37j/AtAipIW5YYoqdx8Iu+fq/eMa4yL5L/N0LNF9+3H5+++xeHsT+vHHlO3Rw+xYIiJSxP3f8S53VLgDh8vBV9Ff8fDahzXeRUREpICoQBcRKUW2n9lOpjOTUJ9QqvtXNztO0aUxLlJA0g8cJLp3bzJ/+QVbhQpUnfMlZe652+xYIiJSjOSMd/ms7Wd/Od4lIS3B7KgiIiIlggp0EZFS5JuYbwBoEdpCoyL+Sk6BfnI7XEk2N4uUGJe+/pqTDz+MIzER91q1CFu4AI9atcyOJSIixdhvx7sMbzycYO/g3PEubRa30XgXERGRfKACXUSklHA4HXx7+ltA88//VrlwCKwJzmz45Wuz00gJcOHLOZwe9gyu9HS877mHql9+gb1CBbNjiYhICeHv4c9j9R9jbde1fzreZf5P80nJTDE7qoiISLGjAl1EpJTYd24fFzMu4uvmS6OgRmbHKfpyx7hoDrrcOJfTScLEN0mYMAGcTvx79CD0ow+xliljdjQRESmB/u94l663dM0d7/L6f1/ngYUP8OLWF/lv3H9xupxmxxURESkWVKCLiJQSm2M2A9A8pDl2i93cMMVBzbZXb4+vB6fD3CxSLDnT04l9bjgXZs8GoPyIEQSPH4dh139/IiJS8G4tdyvj7hrHxu4bGdlkJDX8a5DhyGD1idU8vv5x2i1px/R904lPizc7qoiISJFmuDQMLV+kpKTg5+dHcnIyvr6+ZscREfmdDks7EJ0SzaT7JtE2rK3ZcYo+RxZMqn51BvpjGyD0TrMTSTGSff48MU8/zZV9+zHsdipOnIhfRHuzY4mISCnmcrk4dP4QS48vZU3UGlKzUgEwMLir0l10uaUL94fej5vVzeSkIiIiBS8vXa6tkDKJiIiJopKjiE6JxmaxcU+le8yOUzxY7VCjFRxcDMfWqUCX65ZxIoqYwYPJionB4udH6LR/43XHHWbHEhGRUs4wDOoF1qNeYD3+2eSfbDy5kaU/L+WH+B/YdmYb285sw9/dn4jwCLrc0oWaZWuaHVlERKRI0AgXEZFSIGd8y53Bd1LGTbOXr1vOGBfNQZfrdHnPHk726UNWTAz2kBDC5s1TeS4iIkWOp82TDtU78GmbT1ndZTVP1H+CIK8gLmZc5MsjX9JtRTd6r+rNwqMLtXhURERKPRXoIiKlQE6B3iK0hak5ip0arcCwQMJBuBhjdhop4i5t2sSpQY/iSE7Go2EDwhbMxz28mtmxRERE/lIV3yo82/hZ1ndbz7SW02hdtTU2i41D5w/x2s7XeGDhA4zeOprv477X4lER+f/s3XeYVPX5///n9O2zvbAFlrL0RcUCKogVFI2NGD/JzyQajTWiJmrUVFPMN/FjSaJii36S2JJYoiiIDUVBBaUpZYFd2N7YvjszO+X8/pjdYVdQBJY9W16P65rrnDnnzOw9Xl7LzGvvud8iw5JGuIiIDHEN3gbW1a0DYE7OHHOLGWxikiH3OChdBdteh2MuN7siGaAa//Uvqn/1awiFiDv5ZLLv+V+s0dFmlyUiIvK12aw2ZufMZnbObBq8DSzesZgXt7/I9qbtLC5ezOLixeTE5XDe2PM4d+y5ZMZmml2yiIhIv1AHuojIELeifAUhI8SE5AlkxWWZXc7gUzA3vNUYF9kHwzCoe+ABqn/xSwiFcC+4kJy//FnhuYiIDGrJUcl8d/J3eeEbL/D0WU+zoGABsY5YytvK+eu6vzL3+blc/ebVLNu5DH/Qb3a5IiIih5U60EVEhjiNbzlEBfPgzV9B8bvQ2Q7OWLMrkgHCCAap/s1vaHr2OQBSrr6KtOuvx2KxmFyZiIhI37BYLExNm8rUtKncfPTNvFn6Ji9se4FPaj7h/Yr3eb/ifZJcScwfPZ8Lxl3AuKRxZpcsIiLS5yyGYRhmFzEUtLS04Ha7aW5uJiEhwexyREQA8AV9zHp2Fp6Ah2fPfpbJKZPNLmnwMQy4vxCaSuF/noXxZ5pdkQwAIZ+Pyp/cTOsbb4DFQsbP7iD5O98xuywREZF+satlFy9tf4n/bv8vdZ66yPEpKVM4f9z5nJl/JvHOeBMrFBER+WoHkuVqhIuIyBD2UdVHeAIe0mPSmZQ8yexyBieLJdyFDhrjIgAEW1oo+8HltL7xBhaHg+x771V4LiIiw8rIhJEsPGohyxaEFx49Le807BY7n+3+LLLw6O0rbmd19WotPCoiIoOeRriIiAxh3eNbTs49WWMlDkXBXPj4kXCAbhjhUF2GJX9NDWVX/BBfURHWuDhyHniA2OOONbssERERU9it9sjCo7s9u1lcvJgXt73IjuYdvFL8Cq8Uv0JGTAbzRs3jzPwzmZQySe9JRURk0NEIlz6iES4iMtCEjBCn//t0aj21PHTaQ5yYfaLZJQ1efi/8cTT42+HKFZBVaHZFYgJfcTGll19OoLIKe1oauY8+QtSECWaXJSIiMqAYhsHG+o28sO0FXt/5Om3+tsi5vPg85uXP46z8sxiTOMbEKkVEZLg7kCxXAXofUYAuIgPN5/Wfc/GrFxNjj2HFxStw2pxmlzS4Pfsd2LIYTv4ZnHSz2dVIP/OsW0fZlVcRbG7GOWoUuY89hjMn2+yyREREBjRf0Mf7Fe+zpGQJ75a9izfojZwblzSOs/LPYu6oueTG55pYpYiIDEcHkuVqhIuIyBD1Ttk7AJyQfYLC875QMDccoBctVYA+zLQuX07FDTdieL1EFRaS+/Ai7ElJZpclIiIy4LlsLk7NO5VT806lw9/BO2XvsLRkKe9Xvs+2xm3c33g/9396P1NTp3Jm/pnMHTWX9Jh0s8sWERHpRQG6iMgQ1T3/fE7uHFPrGDLGnRHeVnwCbbUQpw93w0HT8y9Q9YtfQDBI7OxZ5Nx3H9aYGLPLEhERGXRiHDHMHz2f+aPn0+xr5q3St1hSsoSPqz9mY/1GNtZv5E+r/8TRmUczb9Q8Th95OklR+oO1iIiYTyNc+ohGuIjIQFLRVsG85+dhtVh596J3SYxKNLukoeHhk6BqHZz7IBz5HbOrkcPIMAx2P/IodffeC4D7vPPI+s2dWBwOkysTEREZWuo99SzbuYylO5eytnZt5LjdYmfGiBmcmX8mp+SeQpwzzsQqRURkqNEIFxGRYa67+/zI9CMVnvelgnnhAL1oqQL0IcwIhaj5/V00/vOfAKRccTlpN92ExWIxuTIREZGhJzU6lW9P/DbfnvhtKtsqeX3n6ywpWcLmhs28X/E+71e8j9PqZHbObM7MP5PZObOJskeZXbaIiAwjCtBFRIag7gD95NyTzS1kqCmYC+/+AXa8DYFOsGu2/FAT6uyk8tZbaV2yFICM228j+bvfNbkqERGR4WFE3AgunXIpl065lJLmEpbuXMqSkiWUNJfwZumbvFn6JjH2GE7OO5mz8s9iZtZMHDZ9O0xERA4vjXDpIxrhIiIDRWtnK7OfnU3ACLD4/MWMTBhpdklDRygE90yAthq45CUYoz9QDCXB1lbKr/sRHR99BA4HI/5wF+75880uS0REZFgzDIOixiKWlCxh6c6lVLRVRM65XW5OyzuNM/PP5OiMo7FZbSZWKiIig4lGuIiIDGMfVHxAwAiQ785XeN7XrNbwYqJr/wFFrytAH0L8tbWU/fBKfFu2YI2NJeevfyF25kyzyxIRERn2LBYL45PHMz55PAuPWsiG+g0sKVnC6ztfp95Tz/Pbnuf5bc+TGp3K3FFzmTdqHtPSpmn0moiI9BkF6CIiQ8w7Ze8AMCd3jrmFDFUF87oC9CUw7y7Qh7NBz1dSQtnlV+CvqMCWmkreIw8TNWmS2WWJiIjIF1gsFqalTWNa2jRuPvpmPqn5hNdKXuONXW9Q76nnqc1P8dTmpxgRO4JT8k5hVvYspmdOx2VzmV26iIgMYhrh0kc0wkVEBgJ/yM9Jz51Ea2crfz/z7xyZfqTZJQ09vjb4Yz4EO+Ha1ZBWYHZFcgg8GzdS9sMrCTY24hiZR95jj+HMzTW7LBERETkA/qCfVVWrWFKyhLdL36Yj0BE5F22P5rjM45iVM4tZ2bPIissysVIRERkoNMJFRGSY+rTmU1o7W0mOSqYwtdDscoYmVxyMmgU73oKipQrQB7G2Fe9TvnAhRkcHUZMnk/vIw9hTUswuS0RERA6Qw+Zgds5sZufMxhvw8kHFB6yoWMGK8hXUempZXr6c5eXLARibODYSph+RfgQOqxYhFRGRr2Y1u4Cvctddd3HMMccQHx9Peno65513Hlu3bu11jdfr5dprryUlJYW4uDguvPBCampqel1TWlrK/PnziYmJIT09nZtvvplAINDrmuXLl3PUUUfhcrkYO3YsTz755OF+eSIifW552XIAZufM1iJKh1PBvPC26HVz65CD1vzyy5RdfTVGRwexJ5zAyL//n8JzERGRISDKHsWpI0/lV8f/ije/+Sb/Oec/LDxqIUemH4nVYmV703ae+OwJLnv9Mk569iR+vPzHvLT9Jeo99WaXLiIiA9SA7kB/9913ufbaaznmmGMIBALcfvvtnHHGGWzatInY2FgAbrzxRl599VX+/e9/43a7ue6667jgggv44IMPAAgGg8yfP5/MzExWrlxJVVUV3/3ud3E4HPz+978HoKSkhPnz53PVVVfx1FNP8dZbb3H55ZeTlZXF3LlzTXv9IiIHwjAMzT/vLwVnwJKboXQVeBohOsnsiuQA7H78b9T+6U8AJJxzDiN+91ssTqfJVYmIiEhf67kA6eVTL6fZ18zKypWsKF/B+xXv0+hrZNmuZSzbtQyASSmTmJU9i9k5s5mcMlkNKSIiAgyyGeh1dXWkp6fz7rvvMnv2bJqbm0lLS+Ppp59mwYIFAGzZsoWJEyeyatUqZsyYwZIlSzj77LOprKwkIyMDgEWLFnHrrbdSV1eH0+nk1ltv5dVXX+Wzzz6L/KyLL76YpqYmli5d+rVq0wx0ETHbtsZtXPDyBTitTlZcKBEGOAAAIABJREFUvIIYR4zZJQ1tD8yAus1w4eMwdYHZ1cjXYIRC1P7xTzR0fcss+dJLSb/5J1isA/oLeSIiInIYBENBPt/9eWTUy+e7P+91PsmVxAnZJzArexYnZJ+A2+U2qVIRETkchuwM9ObmZgCSk5MB+OSTT/D7/Zx22mmRayZMmEBeXl4kQF+1ahVTp06NhOcAc+fO5eqrr+bzzz/nyCOPZNWqVb2eo/uaG2644Utr8fl8+Hy+yP2WlpY+eY0iIgere3zLjBEzFJ73h4K54QC96HUF6IOA0dlJ5e130LJ4MQDpt9xCymWXmlyViIiImMVmtVGYVkhhWiHXHnEt9Z56Pqj4gPfK32NV5SoafY0sLl7M4uLFWC1WpqVNY1b2LGblzGJ80ngsFovZL0FERPrJoAnQQ6EQN9xwAyeccAJTpkwBoLq6GqfTSWJiYq9rMzIyqK6ujlzTMzzvPt997quuaWlpwePxEB0dvVc9d911F7/+9a/75sWJiPSB7gBd41v6ScE8+OA+2P4GhIKgr/gOWMG2diquv572lSvBbmfE73+H+xvfMLssERERGUBSo1M5d+y5nDv2XPwhP+tr14e70ytWsK1xG2tr17K2di1/Xvtn0qPTOTHnRGZnz2bGiBnEOmLNLl9ERA6jQROgX3vttXz22We8//77ZpcCwG233cZNN90Uud/S0kJubq6JFYnIcFbXUceG+g0AzMmZY24xw0XOMeHZ555GKF8NeTPMrkj2IVBfT9mVV+H9/HMsMTHk3H8/cbNONLssERERGcAcVgdHZx7N0ZlHc+P0G6lur+a98vdYUbGCj6o+otZTywvbXuCFbS9gt9qZnj6dWTmzmJU9i3x3vrrTRUSGmEERoF933XUsXryY9957j5ycnMjxzMxMOjs7aWpq6tWFXlNTQ2ZmZuSajz/+uNfz1dTURM51b7uP9bwmISFhn93nAC6XC5fLdegvTkSkD7xb/i4AU1OnkhaTZnI1w4TNDmNPh43/gqKlCtAHoM7SUkovvwJ/aSm25GRyH15E9NSpZpclIiIig0xmbCYXjb+Ii8ZfRGewkzU1ayILke5s2clH1R/xUfVH3L3mbkYljGJe/jzOzD+T0e7RZpcuIiJ9YECvmmUYBtdddx0vvvgib7/9Nvn5+b3OT58+HYfDwVtvvRU5tnXrVkpLS5k5cyYAM2fOZOPGjdTW1kaueeONN0hISGDSpEmRa3o+R/c13c8hIjLQaXyLSQrmhrdFr5tbh+zFu2kTO//n2/hLS3Hk5DDq6acUnouIiMghc9qcHD/ieG499lZeOf8VXj3/VX567E85YcQJOK1OdrbsZNH6RZz70rkseHkBj298nIq2CrPLFhGRQ2AxDMMwu4gvc8011/D000/z3//+l/Hjx0eOu93uSGf41VdfzWuvvcaTTz5JQkICP/rRjwBYuXIlAMFgkCOOOIIRI0bwxz/+kerqai655BIuv/xyfv/73wNQUlLClClTuPbaa7nssst4++23uf7663n11VeZO3fu16r1QFZuFRHpSx3+DmY/Nxtf0Mfz33iegqQCs0saPjyN8McxYARh4QZIGml2RQJ41q2j9IofEmptxTVxInmPPIw9Td/MEBERkcOr3d/OO2XvsLRkKR9UfEDACETOFaYVclb+WZwx8gx9Y1REZAA4kCx3QAfoXzY37IknnuD73/8+AF6vlx//+Mc888wz+Hw+5s6dy4MPPhgZzwKwa9curr76apYvX05sbCzf+973+MMf/oDdvmeCzfLly7nxxhvZtGkTOTk5/PznP4/8jK9DAbqImOXt0rdZ+M5CsuOyWXLBEs1c7G9PzIdd78NZd8OxV5hdzbDXsWYNZT+8klBHB9FHTyd30SJscXFmlyUiIiLDTLOvmTd3vcmSkiV8XP0xBuHoxWqxckzGMczLn8fpI0/H7XKbXKmIyPA0ZAL0wUQBuoiY5Rcf/IIXt7/IdyZ+h58e+1Ozyxl+PvgzvPFzGHsa/H/Pm13NsNb+4YeUXX0NhsdDzIwZ5D74ANaYGLPLEhERkWGurqOOZbuWsaRkCevr1keO2y12js8+nnmj5nFK3inEOmJNrFJEZHhRgG4CBegiYoZgKMgp/z6FBm8Dj57xKDOytJBlv6vbCg8cCzYn3FICLnU7m6FtxfuUX3cdhs9H7KxZ5Pzlz1ijoswuS0RERKSXirYKlpYsZenOpWxp2BI57rK5mJ0zm7Pyz+LE7BOJsut9jIjI4aQA3QQK0EXEDOtq13HJkkuId8Tz7sXv4rA6zC5p+DEM+PMR0LgTLn4aJsw3u6Jhp/Xtd6hYuBDD7yfulFPIvu9erE6n2WWJiIiIfKXipmKW7lzKkpIl7GzZGTke64jl1LxTmTdqHjNGzNB7fBGRw+BAslxrP9UkIiKHwTtl7wBwYs6JemNtFosFCuaF94uWmlvLMNTy+jLKr78ew+8nfu5cchSei4iIyCAxOnE01xxxDS+f9zL/OvtfXDr5UjJjM2n3t/Pyjpe55q1rOOVfp3DnqjtZXb2aYChodskiIsOSff+XiIjIQLW8bDkAJ+eebG4hw13BXPhoERQtg1AIrPr7dH9oXvwqlbfeCsEgCWefzYg/3IXFrrc2IiIiMrhYLBYmpkxkYspEbph+AxvqNvBayWu8vvN1GrwN/Lvo3/y76N+kR6dzxqgzODP/TKamTsVisZhduojIsKARLn1EI1xEpL/tatnF2S+ejd1i592L3yXBqd89pgn44I+jobMNfrgcRhxpdkVDXtOLL1F1++1gGLjPP5+s3/4Gi81mdlkiIiIifSYQCrC6ejVLdy7ljV1v0NrZGjmXHZfNmflncmb+mYxLHKcwXUTkAB1Ilqs2LRGRQaq7+3x65nSF52azu2DMybD5FSh6XQH6Ydb43L+o/tWvwDBI/Na3yPzlL7Co619ERESGGLvVzswRM5k5YiZ3HHcHKytX8lrJaywvW05FWwWPbXyMxzY+xhj3GE4fdTonjDiBKalTsFsV9YgMZaGQgS8QwusPRrbeQBCvv2vfH973Bb64H4rc93ad8/lD5KXEcOu8CWa/rAFNv1VFRAap7vnnGt8yQBTM6wrQl8Kcn5pdzZDV8M+nqPntbwFIuuQSMm6/TR1XIiIiMuQ5bU7m5M5hTu4cOvwdvFfxHkuKl7CiYgU7mnewY/0OFq1fRJwjjuOyjuP4Ecczc8RMcuNzzS5dZNgxjHDA3eYL0OELhredga5tkHZfIHzr2u8+5vlC8B0Jx3sG44EQnYFQn9Y7Lcfdp883FClAFxEZhJq8TaytXQvAnNw55hYjYePOCG8r10JrNcRnmlvPELT7b09Q+8c/ApD8g8tI/8lPFJ6LiIjIsBPjiGHeqHnMGzWP1s5W3i59mxUVK/iw6kOafc28VfoWb5W+BUBufG4kTD8281jinfEmVy8y8ARDBu2dAdq83UF3kA5fj8C7syvw9gW/EHzvuaY7LG/vDN8PhvpnYrbdaiHKYSPKYcVlt+FyWImyh++Hj3ft2224HHuOu+xd5+1WMt1R/VLrYKYAXURkEFpRsYKQEaIgqYDsuGyzyxGAuHTIng4Vn8C2ZXDUd82uaEipX7SIuvvuByDl6qtIu/56heciIiIy7MU74zl37LmcO/ZcgqEgmxs2s7JyJSsrV7K+dj1lrWU8t/U5ntv6HDaLjcK0QmaOmMnxI45ncspkjXuRQckwDLz+EK0+fyTUbuvq6m7rEXS3RTq9w6F4r2O+Pcc8/uBhqzXGaSPGaSfWZSO2e+uyR/ZjnHbiXHainTaiewbeXwi+I4F3z2DcbsVu0yjL/qDflCIig1D3+BZ1nw8wBfPCAXrR6wrQ+4hhGNT/5S/UP/gQAGkLryf16qtNrkpERERk4LFZbUxJncKU1Cn8sPCHtPvbWV29mpWVK1lVuYqdLTtZW7uWtbVreXDdg8Q745mRNSMSqKsxR/pK9wiT7vEjnq7xI57IfO6u453h2d2ezvC4Ek/nnus8XV3dPcPvngH44WjwtlstxLrCgXaMsyvojgTfvff3nLcT6+wdincfj3bYsFnV9DMUWAzD6J/vFAxxB7Jyq4jIoegMdjLr2Vl0BDp4Zv4zTEmdYnZJ0q1qPTw8GxyxcEsxOPRVuENhGAZ1//u/7H7scQDSb76ZlB9cZnJVIiIiIoNTRVsFqypXsbJyJR9WfUhrZ2uv8yMTRjIzKxymH5t1LLGOWJMqlf5iGAYef5AWT4BWr58Wr58Wb4AWj59Wb4DWrpEme4LursUnewTfPedze3osUNlfaWN3eB3XFVrv2fY+3vNY5Liz+3z4uMtu1bdch5EDyXLVgS4iMsisrl5NR6CDtOg0JqVMMrsc6SmzEOKzoLUKdr0PY08zu6JByzAMau66i8a//wOAjDvuIPmS/8/kqkREREQGr+y4bBYULGBBwQKCoSCf7/480p2+vm49u1p2satlF89ufRa7xU5hWiHHjzie40ccz6SUSdisNrNfgnyBPxiitUfg3eL1h4NwTyAShrd6/fu4Zs/2cM/qtlktvUaTdO9HO2xEOcNjSKKdNqLsNqKd4Rne0V3newfgtr1C8hiHDas6vKUfKEAXERlkuse3nJR7ElaL5p0NKBYLFMyFT54Mj3FRgH5QjFCI6jvvpOnZ5wDI/PWvSfrWRSZXJSIiIjJ02KzheeiFaYVcNe0qWjtbe417KW0t5dPaT/m09lP+uu6vJDgTmJE1IxKoZ8Vlmf0SBp1QKNzt3dEZ7tzuXmzS0xmko2u/o2s/fD6Ip/u4P9jVEe7vFYR7/aE+qc1mtRAfZSchykF8lL3HvoNYV8/Z3Daiu2ZwRzttuLpC70gI3hV8u3oE5Q7N6JYhQCNc+ohGuIhIfzAMg9P/czo1HTU8cOoDzM6ZbXZJ8kVbl8AzF0NiHizcEA7V5WszgkGqfv4Lml94ASwWsn73OxIvON/sskRERESGlbLWMlZVrmJV5So+qvqIVn/vcS/57nyOH3E8M7NmcnTm0YN+3IthGHQGQ3j9IXw9xpB0z+qOzO0OhPaE2j2Cb88X7vcMybvPHc6FKmOdNuKjHCRE24nvCsG7w/CE6C/c73Fd97EYp02jS2TY0QgXEZEhanPDZmo6aoi2R3Nc1nFmlyP7kn8S2KOgqRTqtkL6BLMrGjSMQIDK226n5ZVXwGZjxB/+gPucs80uS0RERGTYyY3PJXd8LheNv4hAKMBn9Z+xsnIlKytXsrF+IyXNJZQ0l/DU5qci4166FySdnDoZh9XRZ7WEQgatvkBkNEmr10+bL7An2A7sCbl9XSF3z4UqfT3OewPdAXnvkNwXCPXbzG6gazxJuHs7xmEn2tl13xEOs8O38H501/29gvGuIDzOZceuLm+Rw0oBuojIILK8bDkAx484HpfNZW4xsm/OGMifDduWQdFSBehfk+H3U3HzLbQuXQp2O9l3303CvLlmlyUiIiIy7Nmtdo5IP4Ij0o/gmiOuoaWzhY+rPo6MeylvK4+Me3lw/YPEOmI5JuMYZoyYwXGZx5EdO6pr5EiP+duRRSr9ex3rvt99rK0z0K/httUCUQ4bLrs1MrZkz76VGGdX4N0VcodDcBsxrj3hd/f87u7wO8ZhJ8YV3o+ya263yGCjAF1EZBDpDtDn5M4xtQ7Zj4K5XQH663DiDWZXM+CFOjupuPEm2t56C4vDQfb99xF/yilmlyUiIiIyrBmGQUdnkDbfnoUo23wB2rwBWn3jyQ6OYa77YqrsFZR2rKeqcwNNxiba/e0sL1/O8vLlAIT8CQTbxxJoH0uwYyxG4ODG3jrtVhK6Oq/joux7hdxRPULuvYPv8HGXvcf5HvuuHsccNovGmYhILwrQRUQGier2ajY3bMaCRbPPB7pxc4EfQ9mH0NEAMclmVzRghbxeyq+/nvb3VmBxucj561+ImzXL7LJEREREBq3ewXcgEoCHg++uANwboM3nj1zTMxxv84W7wNt9AUJfu/N7XNftfKxRVdhjtmOL3YYtZidWRwvWxE9xJH4KgD2YRbwxiTT7FLJdk0mOSdhr4co9M7r3zPSOctgO038xEZGvpgBdRGSQ6O4+PyL9CJKjFMgOaIm5kDEFaj6D7W9B4TfNrmhACnV0UH7ddbSvXIUlKorchx4kduZMs8sSERERMU0gGIqE2T1HmfTsAN/n8Z5B+QEF3/tntUB8lIM4Vzjkjmy7jiVE957L3XPhSpcjyM62z1lXt4YPq1exefdmArYqGqmikbco7rRT6C5kRvoMjhkxgympU/p0frqISF9QgC4iMki8U/YOoPEtg8a4M8IBetFSBej7EGxrp/yqq+hYswZrTAy5Dy8i5phjzC5LRERE5KD5AsG9gu3wjO89Xd+R4769Q/BWbwCPP9hn9VgtdIXdjkjwHRcJwHsc6wrEw/fD41Hio+zEd10f7bAd0kiT/JQTOXnkicANNHmb+Lj6Yz6s+nC/89NnZM1gtHu0xqmIiOkshtGfSzEMXS0tLbjdbpqbm0lIOLh5XiIiX6ats41Zz80iEArw8nkvk+/ON7sk2Z/Sj+BvZ0CUG24uBpv+Zt0t2NpK2RU/xLNuHda4OHIffYSYI480uywRERER/MEQzR7/nluHv/d9j5+mrmMt3fc9nTR7/Hj9oT6rI8phDYfckXDbEQm5e3aDd3d8x/U4nhDVN8F3fyhrLeOjqo9YVbmKj6o/otnX3Ot8enR6JEw/Lus40mPSTapURIaaA8ly9WleRGQQ+KDyAwKhAKMSRik8HyxyjoboZPA0QNlHMOoEsysaEIJNTZRefgXezz7D6naT99hjRE+dYnZZIiIiMoQEgiFavIEvhN6dkcD7i0F4dxje5PHT0XnoHeCxTttegXev/b1C8b3Dcafd2gf/JQa+3PhccuNzWVCwgJARYkvDlkh3+qc1n1LrqeXlHS/z8o6XARjjHsPMETM5Lus4pqVNIykqyeRXICLDgQJ0EZFBoHv+uca3DCJWW3iMy4Znw2NcFKATaGig9AeX49u8GVtSEnlP/I2oCRPMLktEREQGOK8/yO72ThraOmno6KSh3cfutk4a2ve+7W4Pd4MfqniXHXeMA3f0F277OJYY7Yzsx0XZsVkHdtf3QGW1WJmUMolJKZO4bMpleANe1tWt48PKD1lVFZ6fvqN5Bzuad/DPzf8EIC8+j8K0wvAttZCC5ALNUBeRPqcRLn1EI1xE5HAJhAKc9NxJtHS28OS8J5meMd3skuTr+uwF+M+lkDoervvY7GpMFairo/Syy/Bt244tNZWRT/wN17hxZpclIiIi/cwwDFq8ARq7wu5w8O1jd3vnF451srutk8aOzoPuCo912kiMcZIQ7cAdbd8TeMeEA++EXiH4nv34KDt22/DoAB9Mes5PX129mp0tO/e6xmVzMSllEoWphZFgPSMmY8CPshGR/qcRLiIiQ8ja2rW0dLaQ6EpkWto0s8uRAzHmFLDaoX4rNBRD8mizKzKFv6aG0u99n86dO7FnZJD35BO48jWKSEREZCjxB0NUN3upavZS1eyhoslDbYuP+jZfrw7xxo5O/MED7+Nz2CwkxzpJinGSEuckOdZFStf95DgnKbFOkmPD26TYcEDuUAg+pCRGJXLGqDM4Y9QZADT7mtlYv5GNdRtZX7+eDXUbaO1sZW3tWtbWro08Lj06fU+Xelohk1ImEW2PNutliMggpABdRGSAe6fsHQBm58zGbtWv7UElOhHyZsLOFVC0DGZcZXZF/c5fUcGu71+Kv6wM+4gsRj75JM68PLPLEhERkQMQDBnUtfqobPZQ1RQOyCu7t81eqpo81LX5OJDvt8c4bZHAOzk2HIgnxzoiwXhyVxCeEhsOyONddnURSy9ul5sTs0/kxOwTAQgZIXa17GJD3QY21m9kQ90GihqLqPXU8mbpm7xZ+iYANouNgqSCSKA+NXUqoxJG6f8vEflSSmJERAYwwzA0/3ywK5jXFaAvHXYBum/7dkqv+CGBqiocubmMfPIJHNnZZpclIiIiPRiGQUN7J1XNXiqbPOHtF4LymhYvgdD+03GnzUpWYhRZ7ihGuKPJdEeREueKdIXvCcudRDls/fDqZDixWqzku/PJd+dz7thzAejwd7Bp9yY21G8Id6rXrafOU8fmhs1sbtjMc1ufAyDBmcDUtKlMS51GYVohU1Kn4Ha5zXw5IjKAaAZ6H9EMdBE5HHY07eC8/56Hw+rg/YvfJ8YRY3ZJcqDqt8Nfp4PVAbeWgCve7Ir6RceaNZRdcy2hlhac+fnkPfkEjowMs8sSEREZVnyBIC2eAA3tnfvuHu8KzH2B0H6fy2a1kBHvIisxOhyQd22z3NGMSAzfT4l1qotXBjTDMKjpqGF93fpIp/qm3ZvwBX17XTsqYRSFaYVMS5vG1NSpjEsap28EiwwhmoEuIjJEdI9vOS7rOIXng1XqWEgeAw07YMc7MOkbZld02LW8vozKm2/G6Owk+sgjyXnwAexJSWaXJSIiMuh0B+AtXj8tHj8t3kDX1v8Vx/fc/zrBeLfUOBfZieFAPCsx3EGelbgnIE+Lc2lhTRn0LBYLmbGZZMZmMnfUXAD8QT9FjUWsr1sfGf1S2lrKzpad7GzZycs7XgYg2h7NpJRJTM+YzjGZxzAtbZpmqYsMEwrQRUQGsO7xLSfnnmxuIXJoCubBhw9A0etDPkBv+Mc/qfn978EwiDvtVLLvvhtrVJTZZYmIiJjGFwiyu62T+jYfjR3+wxaAfxmLBdzRjnAQ7o7qFYqHj0WT4XbhsmukigxPDpuDyamTmZw6OXKs0dvIxvrwyJeNdRvZWL+RNn8bn9R8wic1n/DIhkewW+0UphZydObRCtRFhjiNcOkjGuEiIn2t3lPPKf86BQODNxa8QWZsptklycEqfhf+/g2ITYMfF4F16HVvGaEQdffcw+7HHgcg8X8uJvNnP8Ni04dxEREZWgzDoM0XoL4rFN/d5qOurZPdbb6u++Hj3edbvYFD/pnxUXYSohwkRDtIiLJ3bR0kRIePu6O/5Fy0gzinHatVY1VEDkXICFHSXMK62nWsqVnDx9UfU9tR2+uanoH6sZnHMi1tGlF2NZKIDFQa4SIiMgSsKF+BgcGklEkKzwe7vJngSoD2OqhcCznTza6oTxmdnVTe8TNaXnkFgLQbbiDlyh9qBqqIiAwawZBBY0fnPgPw3b32O6lr89F5gJ3hDpuFlFgXiTE9w+49AfiXBeMJ0Q7iXHZsCsBFTGW1WBmTOIYxiWO4sOBCDMOgvLWcj6s/ZnXNalZXr6a2o5ZPaz/l09pPeWTDIzisDqamTuWYzGMiHeoK1EUGJwXoIiID1NtlbwMwJ3eOuYXIobM7YcwpsOklKFo6pAL0YFsbFddfT/vKVWC3k/Wb35B4/nlmlyUiIsOcYRi0+gI0tHWyuz3cHd7Q3r3fye723t3iDe2dhA7wu9mxThup8S5SYp2kxrlIiXORFuckJc5FapyL1K79tDgXCdF2/WFZZAixWCzkJuSSm5AbCdTLWstYXb06HKhXrabWsydQf3jDw70C9WMzj6UwrVCBusggoREufUQjXESkL3kCHmY/Oxtv0Mt/zvkP45PHm12SHKp1z8BLV0FmIVy1wuxq+oS/ppayK6/Et2ULlpgYcu6/n7hZJ5pdloiIDEH7C8Qb2n099sO3zuCBdYlbLJAU44wE4t3heFqvkLzrXJyLaKfGlInIvn1ZoN6Tw+qgMK0w3KGecYwCdZF+phEuIiKD3EdVH+ENesmKzaIgqcDscqQvjDsdsED1BmiphIQRZld0SHzFxZRdfgX+ykpsqankLlpE9JTJ+3+giIhIlzZfgPpW32ELxCHcJZ4c5yQ51kVqrJPkWCfJcU7SeoThKbEuUuOdJMc4sduG3jolItL/LBYLeQl55CXkRTrUS1tLw4F69WrWVK+h1lMbWZR0EYsUqIsMYArQRUQGoOVly4Hw+BZ93XeIiE2FnGOg/GPYtgymf9/sig5ax6efUn71NQSbm3GOHEnuY4/izM01uywRERlgPJ1Byhs7KG/0UNbYQVlDz30PzR7/AT9njNNGSlcgnhIb7hZPjnN27btIjnOS2rVNiXUS5VCXuIiYz2KxMDJhJCMTRrKgYMFegfrq6tXUeep6BepOq3NPoJ55DJNTJhPjiDH7pYgMSwrQRUQGmJAR6hWgyxBSMDccoG/8Dxz1vfB3xQeZljfeoPInN2P4fERNKyR30SLsSUlmlyUiIiboDISobNoTiJc3dlDW6IkE5fVtvv0+R4zTRnJXEJ4S5wrvd4XfybGuHvvhgFxjU0RkKPi6gfqamjWsqVnDQ+sfwmqxMiphFBNTJjIxeSKTUiYxPnk8CU6NERY53DQDvY9oBrqI9JUNdRv4zmvfIdYRy4pvrcBhc5hdkvSVxp3w12Mg2Anf/lc4UB9EGp5+mprf/BYMg7iTTyb7nv/FGh1tdlkiInKYBEMGVc2eXuF4eY8u8uoWL/v7NBnvspOTHENOUjS5STHkJkeT02Mb51JPl4jIFxmGwa6WXeH56dWr+aT6k71mqHfLjc9lQvIEJqVMYmLyRCamTCQ5KrmfKxYZfDQDXURkEHun7B0ATsw+UeH5UJM0CmZcDR/cD0tvg9Eng91pdlX7ZRgGdffex+5HHgEg8aKLyPzFz7HY9TZCRGQwMwyDulZfpIO814iVxg6qmrwEQl+dkEc5rOQmdQXkvYLy8L472qFxdCIiB8hisTDKPYpR7lF8s+CbANR11LG5YTObd2+ObCvbKylrLaOstYw3dr0ReXxGTEakU707VM+IydDvY5GDpE++IiIDjMa3DHGzfgLrnoGGHfDxI3D8dWZX9JWMzk6qfv4Lmv/7XwDSFl5PylVX6c23iMgg0ezxdwXjXSF5YwelDXvmkfsCX70wp8NmITuxOxzfE5TnJoU7yFPjnPo3QUSkH6TFpJEWk8bsnNmRY03eJjY3bGbTsTTRAAAgAElEQVRLw5ZIsL6zZSc1HTXUdNREPlsCJEclR8L07mA9Jz5Hv8NFvgaNcOkjGuEiIn2hrKWMs148C5vFxrvfehe3y212SXI4fPp3ePlH4HLD9Z+GFxgdgIJt7VQsXEj7Bx+AzUbWnXeSeOEFZpclIiI9eP1BKprC3ePd88fD+19voU6rBbLc0XtGq3xhzEpGfBRWq8IVEZHBoq2zja2NW/d0qjdspripmKAR3OvaeEc8E1ImRIL1ScmTGJkwEptV603I0KcRLiIig9Ty8uUATM+YrvB8KDviO7D6MahaD2//Fs65z+yK9hKoq6P0yivxbdqMJTqanPvvI2727P0/UERE+lQwZFDT4qWsoatzvGsOeXdAXt3i3e9zpMQ6w13jXZ3j4W0MeckxZCVG4bBZ++GViIhIf4hzxjE9YzrTM6ZHjnkDXrY1bmNzw2Y27d7E5obNbGvcRqu/NbJoabdoezQFSQW9Fiod7R5NlD3KjJcjMiAoQBcRGUA0vmWYsNpg3h/giTPh0/+DY34AmVPNrirCV1xC2RVX4K+owJacTO7Di4ieOnDqExEZSgzDoKnD3xWO7xmz0t1JXtHkwR/86i8NxzptkRErucnRkXC8ew55rBbqFBEZ1qLsUUxNm8rUtD3v6f1BP8XNxZFAffPuzWxt3Ion4GF93XrW162PXGu1WMmLz2Nc0jjGJY2jILGAgqQCsuOzsVr0R1gZ+jTCpY9ohIuIHKrq9mrmPT+PoBHktfNfIzch1+yS5HD79/fh8xdh1Cz43iswAOYPdqxdS/nV1xBsasIxMo+8Rx/FmZdndlkiIoOapzPYKxQva/T0mkPe5gt85ePtVgvZPRbn7A7JuzvKk2M1h1xERA5dMBRkV+uu8PiX3ZvZ1LCJosYimn3N+7w+2h7N2MSx4WA9cVwkYE+OSu7nykUOnEa4iIgMQnevuZugEeSo9KMUng8Xp98JW5fAzhWw+RWY9A1Ty2l96y0qbvoxhs9HVGEhuYsewp6sN78iIvsTCIaoavb2mj3es6O8vs233+dIj3dFusZzk6LJ6R6zkhJDZkIUNs0hFxGRw8xmtTHaPZrR7tHMHz0fCH9Tqs5Tx7bGbeFbU3i7o2kHnoCHjfUb2Vi/sdfzpESlUJBUEAnUxyWNY4x7jMbAyKClDvQ+og50ETkUH1Z9yBXLrsBqsfLc2c8xIXmC2SVJf3n7d/DeHyFxJFz7MTjMeVPZ+OxzVN95J4RCxJ10Etn33oM1JsaUWkREBhrDMKhv6+zdRd49aqWxg8omL8HQV3+sio+yhwPy7jErkbA8PGYlyqEF20REZPAIhAKUtpZS1Fi0J1xv3EZ5W/k+r9/XGJhxSePIic/RGBgxxYFkuQrQ+4gCdBE5WP6gnwWvLKC4uZiLx1/MHTPuMLsk6U+d7fCXo6G1Ek79Bcz6cb/+eMMwqPvzn9n90CIAEr+5gMxf/hKLXV9SE5HhpdXrp6zBQ3ljeMTKnnEr4bDc4w9+5eOdNis5kdEqveeQ5ybF4I5x9NMrERERMU+Hv4PtTdsj3erdAXuTr2mf10fboxnjHrMnWO/qXNcYGDncFKCbQAG6iBysJz57gns+uYfkqGRePu9l3C632SVJf1v/HLz4Q3DEwvWfQnxmv/xYw++n6he/pPnFFwFIve46Uq+9RnN0RWRI8nQGKW8Mzxzv7iTfs++h2eP/ysdbLJCVEBUZrZKbHN0rIE+Pd2HVmBUREZG9GIZBvad+r1C9uLkYX3DfY85So1OZlDIpfEsOb9Nj0vVZRfqMAnQTKEAXkYNR017DOS+dgyfg4c7j7+T8ceebXZKYIRSCx0+HijVwxHfgvAcP/49sb6d84Q20v/8+2Gxk/uqXJH3zm4f954qIHC6dgRAVTV0d5F3jVcq7OsnLG7/eHPLkWCc5XYt15nyhi3xEYhQuu8asiIiI9JVgKLj3GJimbZS3lmOwd1yZEpWyJ1TvumXEZChUl4OiAN0ECtBF5GDc8u4tLNm5hMK0Qv5x5j80+204K18Dj50a3r/ibciefth+VKC+nrIrr8L7+edYoqLIvvce4k8++bD9PBGRvhAIhqhu8fYKx8u7RqyUN3qobvGyv0828S57Vwd5NDk9Rq3kJIfvx7k0vkpERMRsHf4OihqL2LR7U/jWsInipmKCxt7j1JKjknsF6pNTJitUl69FAboJFKCLyIH6uOpjfrDsB1gtVp6Z/wyTUiaZXZKY7YUrYcOzkHscXPZ6eF5AH+vcuZPSy6/AX16OLSmJ3EUPET1tWp//HBGRg+H1B9m5u53iunZK6tvZtbs9MmalqslLYD8LdUY5rF3jVWIineS5XeF4blIMCdF2faAWEREZhDwBT69Q/fPdn39lqD4xZSKTksOB+qSUSWTGZuo9gPSiAN0ECtBF5ED4Q36++fI32dG8g2+N/xY/m/Ezs0uSgaClEv4yHfwdcOHjMHVBnz69Z/16yq66mmBjI47cXPIefQTnqFF9+jNERPbHMAxqWnwU17Wxo76d4ro2iuva2VHXRkWT5yu7yJ02K9lJ0eR8sYM8KZrc5BhSYp36cCwiIjJMeANetjZu3dOpvnsTO5p2fHmonjyxV7d6VmyW3jcMYwrQTaAAXUQOxP99/n/cveZuklxJvHL+K1o4VPZ490/wzm8hIRuuWwPOmD552tZ33qHixpswvF6ipkwhd9FD2FNT++S5RUT2xdMZpLg+HI4X17X32G+jvXPvD7bd4qPsjEmLY3RaLKNSYiPhuBbqFBERkf3xBry9x790heoBI7DXtUmupHCneo/xLwrVhw8F6CZQgC4iX1dtRy3nvHgOHYEOLRwqe/N74K/HQnMpzLkN5vz0kJ+y6aWXqLrjZxAMEjt7Fjn33os1NrYPihWR4S4UMqhq8Ua6yIvr2iiub2dHbRuVzd4vfZzNaiE3KToSlI9Oi2N0anibGqcuchEREek7vqCPooaiyDz1Tbs3sb1x+z5D9URXIuOTxzMhaUJ4mzyBfHc+dqvWSRlqFKCbQAG6iHxdt7x3C0tKllCYWsg/ztLCobIPn78I//4+2KPhR2vAnXPQT9Xw1FPU/Oa3ALjPO4+s39yJxeHoo0JFZLho8wUo6eoi39EVlO+oa2dnfTse/5d3kyfGOBidGtsVlIfD8jFpseQlx+K0698/ERERMYcv6GNb47ZeM9W/LFR3Wp2MSxrHhOQ9oXpBUgGxDjUlDWYK0E2gAF1Evo7V1au57PXLsGDh2bOf1cKhsm+GAU+cBaUrYcoCWPD4QTyFwe6HH6HuvvsASLrkEjJu+ykWqwIrEflyXn+Q7bVtbKlupaimNbytbqW65cu7ye1WC3kpMYxOjWNMeixjUvd0lSfHOvuxehEREZGD5wv62N64na2NW9nSsIWtDeFtR6Bjn9fnxedFAvUJyRMYnzSe9Jh0fZNukFCAbgIF6CKyP1o4VA5I1Xp4+CTAgMuWQd5xX/uhhmFQ97//y+7HwsF76jVXk/qjH+mNnIhEBIIhdu7uoKimla3V4VtRTSs7d7cT+pJPBymxznAwntrdSR7e5ibH4LDpj3MiIiIy9ISMEBWtFWxp3MKWhj232o7afV6fHJXM+KTxvbrVRyaM1AiYAUgBugkUoIvI/nQvHJroSmTx+Yu1cKjs33+vg7X/gBFHwuVvw9foHjdCIarvvJOmZ58DIP2WW0i57NLDXamIDFCGYVDV7GVrV1BeVB3uKt9e10ZnILTPxyTFOBifGc/4jHjGZyZQkBHHuPR43DEa/yQiIiIC0OBtYGvD1nCXemO4W72kuYSgsfdoO5fNxbjEcb261QuSCohxxJhQuXRTgG4CBegi8lVqO2r5xkvfoN3fzq+P/zUXjLvA7JJkMGirhT8fBZ2tcO6DcOR3vvJyw++n8rbbaVm8GCwWMn/9K5IuuqifihURszV1dEY6ybd0dZVvrWml1bv3LE+AaIeNgow4CjLiw4F51y0tzqVvrIiIiIgcIG/Ay46mHZEu9a2N4YB9XyNgLFjIS8jr1a0+NnEsmbGZWietnyhAN4ECdBH5Kre+dyuvlbymhUPlwH1wP7zxC4jLgB99Aq74fV4W8vmouPEm2t5+G+x2Rvy/P+CeP7+fixWR/uD1B9lW09bVVd7C1po2tla3UNPi2+f1NquF0amxFGTGMyEjPrzNjCc3KQarVUG5iIiIyOESMkKUt5b3CtW/agRMtD2afHc+Y9xjGJ04mtHu0YxJHEN2XLbGwPQxBegmUIAuIl+m58Khz8x/hsmpk80uSQaTgA8eOA4aS+DEm+C0X+51Sai9nbJrr6Pjww+xuFxk338f8XPm9H+tItLnmjo62VDezIbyJj6raGFr15zyL3sHn50YvaebvKuzfHRaLC67rX8LFxEREZEvtduzO9KhvqVhC0WNRexs2UkgtO9vDjqsDka5R4UDdfcY8hPDIfvIhJE4bVq0/WAoQDeBAnQR2Rd/yM9Fr1zE9qbtXFRwET+f+XOzS5LBaMur8Oy3weaCaz+C5PzIqWBTE6VXXol3/QasMTHkPPQQsccda2KxInKw2n0BPqtoZkN5M+vLm9hY0cyu3Xt/5Rf2zCmfkJkQGcFSkBFHfJTmlIuIiIgMRv6Qn/LWcoqbiiluLmZH8w6Km4opaS7BG/Tu8zE2i43c+Nxw13riGEa7RzM6cTT5Cfmasb4fCtBNoABdRPbl75//nT+t+ZMWDpVDYxjwj/OgeDlMPAe+9U8AAnV1lP7gcnxFRdjcbnIffYTowkJzaxWRr8UXCLK5qpUN5U2RDvPttW2E9vHOfGRKDIU5iRRmu5mYlUBBZpzmlIuIiIgMEyEjRGVbJcXNxb3C9ZKmElr9rV/6uBGxIyKd6t2jYPLd+coluihAN4ECdBH5orqOOs556Rza/e38auavuLDgQrNLksGsZhMsOgGMEHxvMX7naHZddhn+XaXY0lLJe/xxogoKzK5SRPYhEAyxrbaNjV2d5RvKm9lS3YI/uPfb8MyEKApz3EzLTaQwx83UbDeJMfparoiIiIj0ZhgGdZ46djTt6BWuFzcX0+Bt+NLHpUanhsfAdHWtj0sax/SM6f1Y+cCgAN0ECtBF5It+uuKnvFr8KlNTp/LPs/6phUPl0L36Y1j9GD7nJEqXRRGorsaRnU3eE3/DmZdndnUiAoRCBrsaOthQ3sT6snBn+eeVLXj8wb2uTYpxUJiTyLQcd7jDPMdNekKUCVWLiIiIyFDS6G2MhOnFTcWRkL2mo2ava8cmjuXFc180oUpzHUiWq+VbRUQOgzXVa3i1+FUsWLjjuDsUnkvfmHM73uXPU/riboI+G87Ro8n72+M4MjPNrkxkWDIMg6pmbzgs7xrDsqG8mVbv3os/xbnsTMlOYFpOYiQsz0mK1hgWEREREelzSVFJTI+avldneVtnGyXNJeH56l3hek58jklVDh4K0EVE+pg/5Od3H/0OgAUFC5icOtnkimSo6NhaStmbbkK+TlwpIfIe/St2heci/aaxvZN15U2sL+ueW95MfZtvr+ucdiuTR4TD8qnZbqbluhmdGofVqrBcRERERMwT54xjatpUpqZNNbuUQUUBuohIH3t2y7Nsb9qO2+Xm+iOvN7scGSLaV66k7NrrMDydRGfZyJ1Zhe2zxyD7d2aXJjIkef1BNlW1sL6siXVdt127O/a6zma1MD4jnmm5bqZmhzvLx2fG47Dpm0ciIiIiIkOBAnQRkT5U76nnwXUPArDwqIUkRiWaXJEMBa1vvknFjTdh+P3EnngiOQvPx/r8/8BHi2D6pZA61uwSRQa1UMigZHd7r7B8c9W+F/kcnRobWeCzMCeRySMSiHLYTKhaRERERET6gwJ0EZE+dM+ae2jztzElZQoXjL3A7HJkCGj+73+pvP0OCAaJP+MMRtz9J6xOJ2w4A7Ytg2V3wLefM7tMkUGlvs3XKyxfX9ZEyz7mlifHOjkiNzFym5aTiDvGYULFIiIiIiJiFgXoIiJ95JOaT3il+JXwwqEz7sBmVUeiHJqGp5+m5s7fAOA+/3yyfnMnFnvXP91zfw873oaipbD9TRh7momVigxcns4gn1c2s66sibVdYXl5o2ev61x2K1Oy3b0Ccy3yKSIiIiIiCtBFRPpAIBSILBx6wbgLmJI6xeSKZLCrf/gR6u69F4CkSy4h47afYrH2mKmcOg6OvRI+fACW3g5XnwQ2dcbK8BYKGeyoa2Ntj87yLdWtBEO9R7FYLDAmLS7cVZ6byJG5iZpbLiIiIiIi+6QAXUSkDzy39Tm2NW7D7XKz8KiFZpcjg5hhGNTdcw+7H30MgNRrrib1Rz/adxfsSbfAhmehfius+Rscd2U/VytirpoWb68xLBvKm2nz7T2KJS3e1auzfGqOm4Qo/cFJRERERET2TwG6iMghqvfU89e1fwXg+iOvJykqyeSKZLAyQiGq77yTpmfDM83Tb7mFlMsu/fIHRCfCyXfAqzfBO7+Hqd+EmOR+qlak/wSCIUrq29lU1cLmqlY2V7WwuaqF2lbfXtdGO2xMzek9iiXLHaVRLCIiIiIiclAUoIuIHKJ7P7mXNn8bk1Mmc+G4C80uRwYpw++n8rbbaVm8GCwWMn/9K5Iuumj/D5z+/XD3ec1n4RB9/t2HvVaRw6m5w98VlHfdqlsoqmmjMxDa61qLBQrS48NBeV54kc+CjDjsGsUiIiIiIiJ9RAG6iMgh+LTmU17e8XJ44dDjtHCoHJyQz0fFjTfR9vbbYLcz4v/9Aff8+V/vwVYbzLsL/u+ccJB+zA8gfeLhLVikDwRDBrt2t/fqKN9c1UJls3ef18c4bUzIjGdCVgITsxKYlBXPhMwEYl16OysiIiIiIoePPnGIiBykLy4cOjVtqskVyWAUam+n7Nrr6PjwQywuF9n330f8nDkH9iT5s2HC2bBlMSy9DS55MdyaKzJAtHr9bKneE5RvqmqlqLoVjz+4z+uzE6MjIfnErsA8LzkGq1X/X4uIiIiISP9SgC4icpCe2/ocRY1FJDgTtHCoHJRgUxOlV16Jd/0GrDEx5Dz0ELHHHXtwT3bGb2HbMih+B7YugQln9W2xIl9DKGRQ1tjRFZS3RkawlDV49nl9lMPK+Iw9IfnErATGZ8bjjtYCnyIiIiIiMjAoQBcROQj1nnoeWPsAAAuPWqiFQ+WABerqKP3B5fiKirC53eQ++gjRhYUH/4TJ+TDjGvjgPlh2B4w9FeyuvitY5AsCwRBFNW2sL2/i88pmNle1srW6lTZfYJ/XZ7mjmJiVwITMPYF5fmosNnWVi4iIiIjIAKYAXUTkINz7yb20+luZmDxRC4fKAfNXVLDrssvw7yrFlpZK3uOPE1VQcOhPPPsnsP4ZaCiGjx6GE64/9OcU6VLd7GVdWSNry5pYV9rExopmOjr3HsHitFkZlxHXo6s8non/f3v3Hp9HWef//z33+U7unNumTZv0APQItNCWUlgVFOTg+hUExAUXdHX97n5B1AIKKggrKyjo4gEBdRdWf8sWdUFcgSKLgMByaAtV2tLSQpuWpkmac3Kf75n5/TH3Mbl7TnMnzev5eIwzc801d66kOE3f93V/rsmVqin3lWDUAAAAAHB4CNAB4CCta1+n373zO0nSN079BguH4qDE392mHZ/9rFK7d8vb0KCmB/5NvunTh+fF/RXSh26WHrtK+tOd0sJPSqFJw/PaGFciiZTefK9X63b2ZLfdRRb3DPk9OnFalU6YVqX5ebPKvW5XCUYNAAAAAMOPAB0ADsLghUNPnHgYJTcw7oRfeVW7rr1WZmenfLNmqenf/lXeyZOH94ssvEx67WfS7nXSH78l/Z8fDe/r46hjWbbe2TPgzCxPzy7f3NYv07IL+rkMaXZ9hU5qqtFJjdVa1FStYyaGKMECAAAA4KhGgA4AB+FXm3+lTV2bVOGrYOFQHDA7kdCeH/5Qnf/6b5Jtyz9/npp+/nN5amuH/4u5XNK5d0gPnCu9/ktp6eekKQuH/+tgzOoYiGvdjtzM8j/v7FF/kbrl9ZV+ndRYo0VN1VrUWK0Tplap3M+vjgAAAADGF/4VBAAHqDPaqR+/8WNJ0hdP+qJqA0cg/MRRJ/7uu2q57nrFNm6UJFVfconqb/iqXOXlR+6LTl8uHX+RtP6/pFU3Sp9+XDKYJTwexZKmNrT0ZcPyN3Z0673u6JB+Qa9bJ0yrcmaWp2eXT6kKlmDEAAAAADC6EKADwAHKXzj04tkXl3o4GOVs21bPww+r7Y7vyI7F5K6u1uRv/ZMqzz57ZAZw1q3Spiek5pekjY9JCy4Yma+LkrFtW9s7I1q3s1vrdvTojZ09emt3n5JmYSkWw5COnRjKBuWLGqs1p75CHuqWAwAAAMAQBOgAcADWta/TY+88Jkn6+qlfZ+FQ7FOqs1O7v3GTBp59VpJUftppmnL77fLWj+CCntWN0unXSM9/R/rDTdLscyQvM4qPJomUpfUtvVq9rUurt3drbXOXuiPJIf0mhHxOWN5YrUWNNTqxsUqVAW8JRgwAAAAAYw8BOgDsh2mZ2YVDLzz2Qi2cSD1p7N3ACy+o5cavyezokOH1atJ116rmb/9WhqsEs3tP/6JTB713h/Tyj6X3Xz/yY8CwGYin9Hpzt1Zv79Lq7V1at7NHsaRV0Mfncen4hkotStcuP6mxWtNqgjIo4QMAAAAAh4QAHQD241dv5xYO/dLiL5V6OBilrFhM7d/7vrp/+UtJkv+4Y9Vw110KzJlTukH5yqWz/0l65HPSC/8iLfqUVDmldOPBQWnvj2nN9lxgvrGlT1ZhNRbVlHm1ZEatTplRqyUzarSgoUo+D6VYAAAAAGC4EKADwD50xbr0ozd+JEm65qRrWDgURcU2b1bLddcpvmWrJKnmU5/SpOuulSsQKPHIJJ1wsfTaT6X3XpNWfVW6+AGJEkSjTqZ+uVOOxdm2d0aG9GusDWrp9FotnVmrpTNqdMzEELPLAQAAAOAIIkAHgH24e+3d6k84C4deMvuSUg8Ho4xtWer6xS+053vfl51Myj1hghq+/c8Kvf/9pR5ajmFI590h/exDzmKiD31CuujnUrCm1CMb11Kmpbd29+u17V1as92pYd4xEC/oYxjS3MmVWjqjRktn1GrpjFpNrhoFb8oAAAAAwDhCgA4Ae7GufZ0e3fqoJOlry77GwqEokGxr1+4bb1T4f/9XkhQ680xNue1b8tTVlXhkRUxdLF38r9Jvr5K2/o/0sw9Kn/xPadLcUo9s3IgmTL2xsztbkuX15m6FE2ZBH5/bpYWNVU5YPrNWJzfVqCrIYp8AAAAAUEoE6ABQhGmZ+var35YkXXDsBVo0aVGJR4TRpO/pp9V6080ye3pkBAKqv+Grqr700tFdSuP4i6S6Y6WVl0td70o/P0v6+P3S3I+UemRHpe5wQqu3d2lNc7de29al9bt6lRpUwLwi4NGS6TXpciy1OmFqlQJe3qgDAAAAgNGEAB0AivjN27/RW11vOQuHnszCoXBY4bDa7rhDPb/+jSTJP3+ept51l/yzZpV4ZAdoykLp889Jv7pSan5RWnmZdMbXpPdfL7lYePJwtPbG9Oq2Tr22rUuvbevSlvaBIX0mVwa0dGatTplRoyUzajWnvkIu1yh+0wUAAAAAQIAOAIPt6NuhH7zxA0nS1YuuVl1wFJbkwIiLvvmmWq67XonmZskwVPfZv9PEa66R4fOVemgHp3yCdMVvpae+5iwu+ty3pbY3pQvulfwVpR7dmGDbtnZ2RfXKOx1au6VT67d1q6cnrjJLCtqGqmxDs10uVUwMavaxtTrl2FotmV6raTXB0f0pBQAAAADAEIZt2/b+u2F/+vr6VFVVpd7eXlVWVpZ6OAAO0f80/49ueukmDSQHNK92nh76yEPyuHivcTyzTVOdP/u59vz4x1IqJU99vRq+8x2Vn7qs1EM7fK//Qvr9CslKShPnSX/zkFQ7RmbTDzPbtpWImYoNJBQdSCqW3qIDSUX7E2rviKitI6L+nrgSkZS8phS0JUP7CcQNqaI2oJrJZaquL1NNvbOvri9XebWPQB0AAAAASuBgslwC9GFCgA6MbUkrqbvX3q1fbPyFJOnkSSfrzg/cqUllk0o8MpRSctcu7frqVxVds1aSVHHuuZpyyzflrq4u8ciG0c7XpIc/JQ20SYFq6ZIHpWPOPKyXtG1byZipcG9ckd6EEnFThiEnLDaUPS5sS5+70ucyZLiGXtf+7lX63CVZpp0LwsOJbCAe60/v89sGkrLMQ/uVyO13q6zSp/IKrwIhn7w+l/o6Y+ppiygeSe31Pq/fnQ7Ty7IBe2bz+qiFDgAAAABHCgF6CRCgA2NXW7hN1//per3R/oYk6dMLPq1rTr5GXpe3xCNDKfX+/nG13nqrrP5+ucrKVH/TTaq64GNH54zhvhYnRN+1VjJc0tnfkpZf5STdeWzLViycVLg3oUhv3Nn3OSF55jhzLZWwSvTNHB7TJUVkK2zYiqa3iCElPNKkuqCmT63QvBnVOmFmraprAgqUe+RyF68fb9u2ov1J9bSF1d0aUU+bs3W3RdTXEZNt7f1XsFCNPx2ql+dmrk8uU6jan32jAAAAAABwaAjQS4AAHRibXm55WTe8cIO6Yl0KeUO67fTb9KHpHyr1sFBCZn+/Wr/1LfX97r8lScGFC9Vw53fla2oq8ciOHNO0FO3sV/jJ7yry1qsKWzWKTHifIlM+pHC/qUhvXJG+hCK9CVn7CH0H8wbcKq/yyxdwZlPbthMq27ZzYttOKJ/5TcQ5trP9ZO/lnsw1y1a6WbIG32fLMAwFQl4FQl4FQ87s8GDIK0+ZW11JU80DUW3qjugve/rVbZqKGrZS6Wy63OfWkhm1OmVmrZbNrNUJ06rk9wzfrHAzZal3T7QgVO9Jh+yxcHKv93l8roKZ6jV5x74A5aYAAAAA4EAQoJcAATowtli2pfv/cr/uXXevbNmaWztX3//A98D9x7oAACAASURBVNVY2VjqoaGEImvXquX6ryjZ0iK5XJrwj/+oCf/4DzI8ozuYtExLqYSlVNJSKmGmj9P7hJltjw4kFSkyazw6kJQO4reBQMir8iqfyqr8Kq909mVVPqeMSfq4vMovr390lCGJJFJ6vblHr23r1KvbuvTGzh4lUoUz5KuCXi2dUatTZzmh+fwplfLsZWb5kRYdSKinNR2q52297dF9voFRXu1XWaVPgXKP/OVe+cu8CpQ5x4Fyj3Oe3XvlL/fI4x0df0YAAAAAMJIOJssd3YkAABwB3bFu3fjCjXqp5SVJ0kXHXaQbTrlBAU+gxCNDqdjJpPb85CfqvP+nkmXJO22aGr77XZWdfNKwfh3LstX53oCiA4lBIXfu2EyaSiYsmYn0PlkYgheE5OnzQ63dnc9wGekA3KcyT7/K2p9XmdWq8mBSZR/4O5Ufe2I2JHd7ShMsH6ieSEJrm7v12vYuvbatS2++16vUoOB5QsivZTPTM8xn1Wr2pAq5RklplGDIp+CxPk05trDWvmla6u+I5c1WD2dD9mh/UuGeuMI98YP6Wh6vS/5syO6Vv8yT3Rdrc4J3r3wB99FZzggAAAAABiFABzCu/HnPn3Xtc9eqLdKmgDugb5z6DX3s2I+VelgooURzs3Zd/xXF/vIXSVLVxz6m+pu+IXcoNCyvH+6Na8eGLu3Y0Kmdb3Xtc1HJ4eDxuuT2ueT1ueX2uuTxueXxuuTxuRQo82Zni2dnkFf5VFbpVzDkLayt3T1LWnm51LZeevl3Us2d0szPHNGxHwrbttXcGdGa5m6tbe7S6u3d2to+MKRfQ1VAy2bV6ZR0aD5rQvmYC4Dd7lz5Fp1YeC0WTqq3ParoQELxSEqxcFLxcFKxSErxSFLxcLotktvblu28IZP+NMLBMFyGE7KnQ/XMmyrZH6mR/Z+CUvq568bgbkP7G/mXci+S/3r+Mo9qp4RU21Cu2oZyhWr8Y+7PFQAAAMDoRgmXYUIJF2B0s21bD216SHetuUspK6UZlTP0vTO+p9k1s0s9NJSIbdvqfeQRtf7zt2VHInJVVGjKrbeo8vzzD+t1TdNS6zu9Tmi+sVMdOwvDXH+ZR6GagDw+V3rLBNxF9kWv513zFu7dXtfwhoeJsPTb/ydt/K1zvuTvpHO/I3l8w/c1DlLStLShpU9rtndpzfZurWnuVsfA0FnXsyaWa8n0Gi2b6YTmjbVlJRjt6GXbtpIxc0io7uyTioVTiu+lLZUcvQvE+gJu1UxxwvS6hpBq08dlVT6CdQAAAABZ1EAvAQJ0YPQaSAzom//7Tf2h+Q+SpA9P/7BuPe1WhXzDM8MYY0+yrV1t//zP6v+D899E2dKlavjOHfI2NBzS6/V3xbRjQ6d2bOjSzk1dSsbM3EVDmtRUoaYFdWpaUKf6GRVylai29iGxbemF70l/vE2SLTUtlz7xCyk0aUS+fG80qdd3dGvt9m6tae7Sup09ig0KcH1ul06YVqUl02u0OL3VhfwjMr7xKJU082a5O3vLdBaAzcosDJs70JDfOG07V3rfzjZlTwr6Z6/nGm1bivYn1NUSVtfusHpaI3utEe8v8ziz1KeUq7YhlD0uqyzdm0EAAAAASocAvQQI0IHR6e3ut3Xtc9dqe992eVweXbfkOl029zJmIo5TyV271PHzn6v3vx6RnUhIHo8mXnON6j77dzLcB76Yopm01LK1Rzs2dKp5Q5e6d4cLrgcrvGqcX6um+XVqml+rYMVRENJtXiU98vdSvE+qnCp98j+khuGtEW/btt7rjmptc7dWb+/S2uZubW7rHxK8Vpd5tbipRktm1GrJjBqdMLVKARbDHPfMlKWe9ogTqKdD9a6WsHrbI0PD+7RAyKu6bLCeC9cD5d6RHTwAAACAEUWAXgIE6MDo89jWx3TbK7cpZsY0uXyy7vrAXVo4cWGph4USSGzfro6f/ky9v/udlHJqkAdPPln1X/uagscvOKDX6N0TTc8y79R7m7uVSuRmQRuGVD+zSk0LajX9+DpNbKworCd+tNjztrTyb6TOrZInIP2fH0knfuKQXy5lWtrU2q/V27u0prlba7Z3qa1vaDmW6XVlWjLdCcuXTK/RMRNDo2bBT4x+qaSpnjYnWO/MC9f7OqLSXn4LLqv0Zeuq104pV93UkGqmlMsfZPkgAAAA4GhAgF4CBOjA6BFLxXTHa3fov7b8lyTp9IbTdfv7bldNoKbEI8NIi2/Zoo77f6q+J56QLCfwLj9tuer+4R9UtnTpPj+JkEyYanm7R83p0Ly3PVpwvazK55RlmV+rxnm142fGarTHmYm+xSl/o9O+IJ11q+Ta/wzwgXhKb+zoTtcu79IbO3oUSZgFfTwuQwumOuVYls6o0cnTazSpInAkvhOMc8mEqe7d6Znqu3Iz1vu7Ynu9J1TjV+2UclVNKpPXP2gtgiLrEmTWK3B7Cxf25Q0gAAAAoLQI0EuAAB0YHXb27dSK51doU9cmGTL0/xb9P33+xM/LZYyhmtM4bNENG9R53/3qf/rpbFvojDM04R/+r4KLFhW9x7Zt9bRFnMU/N3Rq15YemXm1tl0uQ5OPqdL04+vUtKBWdVND47cUkGVKz/6zUxtdko75oHTRv0pltdkupmXr3T0D2tDS54Tmzd16a3efBpeorgh4dHKTE5Yvnl6rRY3VCvoox4LSScRS2TA9vxRMuGfopyMOlctjFATqxRcQLh7Ie7PBfGFI7y04d/qNqfUWAAAAgBFEgF4CBOhA6T2z4xnd9OJN6k/2qzZQqzved4eWNywv9bAwgiJvvKGO++5T+Pk/OQ2GoYoPf1gT/u/nFZg/f0j/RCylXZu71ZwOzfs7C2eehmr8ajq+TtMX1GnanBr5KN9QaP0j0mNXScmI4pXT9T8L79bL/RO1flefNrX2DVnsU5Km1QSdxT5n1GrpjBrNnlTBbFyMCbFwMjtjva8zJjNhKZU0lSq2T1hKJUylkrm9WeT/D0eay20UBO1en6swePem2/zuvQTxrnQftwIhrwIhr4IVXnlYcwAAAABjHAF6CRCgA6WTtJL6wdof6N83/rsk6aRJJ+nO99+p+vL6Eo8MI8G2bUVefU0d992nyCuvOI0ulyr/+iOa8PnPy3/ssQV9u1rC2bIsu7f2yjJzfw26PIamHledLs1Sp5opZeN3lvle9MeS2tjSpw3pLbJznb7e90+aZnRowA5oRfIf9QdrqSSpzOfWvCmVOmFqVbp+ea0mV1GOBeOTbdlKpdKBekHAnh+8D742dG8mLCXz+iWz9zltyYS519ruw8UbcCtY4VMw5HX2FV4FQ+l9kXa3l5nwAAAAGF0I0EuAAB0ojbZwm67/0/V6o/0NSdKV86/UFxd/UV7XOKlHPY7Ztq3wCy+o4977FH3D+fOX16vqCz6mus99Tr7p0yVJiWhK723qzobmA92FZRgqJwQ0fUGdmo6v09TZNfL6mVmZ0TEQ14aWPq3f1ZsOzXu1vTMypF+N+nR/4Ec6RRskSZvnXiXPB2/QjAkVcjO7HBhRtm3LStkFIXsqaSoZHxq0pwaF76mEqWSyMMhPxp3rsYGkov1JWYPrMB0AX8CtwOBgfW8BPIE7AAAARsDBZLl8Fh3AmPXK7lf01T99VV2xLoW8IX3r9G/prOlnlXpYOMJsy1L/M8+o8977FNu4UZJk+HyqvuQS1X327+SZMsWZZf5Uc26WeV7g4/a6NHV2jZoW1Gr6gjpV15eV6lsZNWzb1nvdUW1o6dPGll6tT4flbX3Faz43VAU0v6FKCxoqtaChUsdPrdKU0EXSH74hvXa/5my6R1KzdOF9kr9iZL8ZYJwzDENur+GE0OXD+9q2bSsRTSnan1S0P6HoQHrfn1R0IDGkPZYO3BMxU4lYVH17ovv/IsoF7mUVXrnT5WLyPwyUPU4fGNn/yR0YRq7NGHJj4es550ZBf4/frVCNX6GagEI1flXUOntf0MMnkwAAAMYZZqAPE2agAyPHsi397C8/0z3r7pEtW3Nq5uj7Z3xfTZVNpR4ajiDbNNX35Cp13n+f4lu2SpKMsjLVfPKTCn3yU2rtdGvH+k7t2Ng1ZJZ51aRgbpb5cdXyjONFKvMX99zQ0pstxdIbTQ7paxjSzLpyLZiaC8sXNFSptty39y/wxv8n/f7LkpmQJs6VPvmQVHfMEfyOAIxWtm0rHkmlZ6/nB+2Z48L22CHOcB9JXr9bodqAKmr8TsCeDtYzQXuoNiDvOP47BgAAYKyghEsJEKADI6Mn1qMbX7xRL+56UZL08eM+rhtPuVEBD3WVj1Z2Mqne3/23On/6UyWamyVJRigk1yWfU9+cD2jnOxG1vlM4y9zjdWnqnBo1LajT9ONrVTVxfM4yj6dMvd06oPUtvdmwfNPufkWT5pC+Xreh4yZVZGeUL2io1LwplSr3H8KH1Xaulh7+lDTQKgWqpAvvl2afO3TKJwDkyQTumVnssf6kzJQlO1PU3ZaG/MvFtnMl3+1sU/akoH/2eq6x6OvZziLTA11xDXTH1N/t7OPh1AF9H/5yj0I1mZA9oFCts69I78ur/XJ7KFMDAABQSgToJUCADhx5f9nzF137/LVqDbcq4A7o66d+XRcce0Gph4UjxIrH1fvII+r82c+VbGlRyh1Qz7TF6l/8EbWbExTuLZwxXV1fli3L0jAOZ5n3x5J6a3e/NrT0av0uZ3b51vYBpYrM5sws7pk/q/y4+pD8nmH8mfXtln71t9J7q53z6iZpwYXONmURYTqAMScZNzXQHdNAV1z93TENpIP1ge64BrqcfTI+9A3KIQyprMJXdAZ7sMIn27RlWbYs05Jl2s42+DzbPrjNyutf7LzY61iSJH+ZR4FyrwLlXvlD3uxxYNCxL+CmjA0AABjzCNBLgAAdOHJs29ZDmx7SXWvuUspKaXrldH3vA9/TnNo5pR4ajgArElH3r36lzn/9N/VEfOqsm6+u+kXqDU2Xbef+we7xujR1bo1TmmXB+JplnlncM1uCZVfxxT0lqbrM68wqb6jS/HRYPnNC+cgs7pmKS0/fLL3+SykZzrXXzHSC9OM/LtUfT5gO4KiQqRE/0B1Xf9eggD0dvA90x2WmrFIP9bC4XIb85Z6h4fqQsN0jf167282sewAAMHoQoJcAATpwZISTYX3zf7+pp7Y/JUk6e/rZ+qfT/kkhX6jEI8NwMwcG1PaLlXrnd69qj3+6OmvnK+GvLuiTnWV+fHqWuffonmVu27Z29US1fpezuGemXnlrX6xo/ylVAS1oqNT8hiod31CpBVOr1FAVKP1MwURE2vIHacOj0ttPSam8hQTrjsuF6ZPmlW6MADACbNtWtD9ZJFh3zmPhpFxuQy63y9m7jPS5IcPltLkz53n93K7C88J7B79WXp/0uSTFI0nFBpKKhZOKhVN5x0nFw861VPLQw39vwF00aA9WeBUMeRWs8DnHFT4FQz75yzwyRuLNXgAAMC4RoJcAATowvCLJiJ7d+azu+/N92t63XR7Do+uWXqfL5l5W+jAQw8a2bbW/tVubVz6vne9E1Btqkm3kQvHCWeZ1qpoYLOFojyzTsrWtw1ncc/2ufS/uKUmzJpRnZ5RnSrHUhfwjPOpDEB+Q3l7lhOlbnpbMvAVfJ85zgvQFF0oTjivdGAEARaUSZjZUdwL2VO44klQ8L3TPhvCRpHQI/+I0XIYCoUy4ngvWc8deAncAAHDICNBLgAAdOHxJM6mXWl7SE+8+oefee07R9CzV+rJ63fWBu7Ro0qISjxCHyzItdbw3oJ2v79R7b7yn9j22EravoE9luaUZpzRq+gkTjtpZ5pnFPTMlWNa39O51cU+Py9Bx9RXOjPL0rPJ5UyoVOpTFPUebWJ8Tpq9/RNr6P5KV92ZB/QnS8ema6bWzSjdGAMBhsS1b8WjhjPZs6D6QVDScVLQv4RwPJBXtTygeObAFW/MdWOCePg/55PG5ZLgMZzPEBA0AAMYZAvQSIEAHDo1pmXq9/XU9/u7jerr5afUl+rLXmiqadN7M83T5vMtVE6gp4ShxqFJJU+3b+/Xe+lbtWrdL7e2WUnZhIO4y46pLtmjmKU2affFpqppUXqLRDj/bttXSG9Pm1j5tbh3Q5tY+bWrt3+vinkGvW/OmVGhBQ5WOn3qEFvccraI90uYnnDD93WclKy88mbLImZk+/wKpZnrpxggAGBGmaTmBen9C0f68/UDuPDaQVCS9P5TAfTDDUC5Qdxly7e88E7wXOXflB/PZY0MuV/q6O1eOx9hLyR6X2zX0vKD0jiGXax8lewb1cXtd8vrd8gbc1KMHAEAE6CVBgA4cONu2tbFro5549wmt2rZK7dH27LWJwYk6d+a5On/m+VpQt4DZQGNMIpZS67u92rWpU7v+3KI97SlZduE/0jypiKp639WEwICmzq3T1DMXqWL5KWP+z7o7nNCm1n693daf3b/d2q/+ePF/1FcFvdmQfMFIL+452kW6pE2/d8L0bX+S7LyZ+VOXpMP0j0lV00o3RgDAqGGm0oH7QELRvsKgPTowNIBPRA8/cB/L3F6XfAF3OlD3pI/T+4BbPr9H3sxxwCOv352+5sne5wuk+/jclM4BAIxJBOglQIAO7N+23m16ctuTemLbE2rua862V/gq9OHpH9Z5M8/TkvolcrvGwWzbo0RsIKmWrT1qebtbu9a3qrM9KVuF/4jyJfpU1bNVEzzdaphTq8nvO1EVy06Ru6qqRKM+PNGEqS3t6ZC8tV+b2/q1ubVf7f3xov09LkOzJpZrzuRKzakPaXZ9heY3VGpqdXDMv2kwIsId0lu/c8L05pckO28Bu8ZTnRIvCy6QKiaXbowAgDHFTFkyU5Zsy5ZtSZZly7Zt2ZbtHFtO6Rnb3s+5ZctK35dpy73W4PPc17JMW5Zp5R0757ZlyzRzbbZpyTJzbbaVvi/dln8++LUss/A8lbJkpY7AP/0NOYF6fhifF8h7/G65DGc2vjKz8mVILqdsTrZ8jqHscWbmvpQ+d+VK7BScD7pHea9nuCRf0CN/mVeB8sze65Tu4fcvAIAI0EuCAB0orjXcqqe2P6XH331cb3W9lW0PuAM6o/EMnT/zfJ0+9XT53L59vApGi4HuuHZv7dGuLd1q2bhH3R1DF7gMRDtU3btVNWabps6u0aTTFyl02qnyTh5bAWfKtLS9M5wNyjOzypu7Itrb35zTaoKaO7lCs+srNGeys82aEJLPw0elh0V/Wy5M3/GycqvSGdL0052a6fM+JoUmlnKUAACMSqZpKRkzlYillIyZSsZNJaIpJWKmkvH0ftBxIpZy+sVMJQcdj8UkweUxFCjzyl/mUaDcK3+5V4Eyj/zl+W0ep09emy/okWuEZtqbpqVU3PnzScZNpRKWkvGUknErfZ67lkwfp+KmDMOQL+i8keEPenKfGgg655lPFPiC7qNyjSEAOFgE6CVAgA7k9MR69IfmP+jJbU9qbdta2emQy2N4tLxhuc6fdb7ObDxT5d6jp9b10ci2bfXuiaplS492b+1Ry6Yu9XUnhvQrC+92AvPoe5pyTKUmnrZI5actl++YY8bEDJ9idco3tw3onfYBJUyr6D115T7NSQflcydXaHb6+KhY2HOs6GuRNj7mhOnvvZZrN1zSjPc5ZV7mflQqryvdGAEAOErZtq1UcnAgXxi8J2JO2Gtb6X8N2JmZ/M79Su/tvP3gtvxzZe6VM5tfQ/rl3WvZSkRTzoK1kZTi4aQs8zCiD0PyBz0FgXt2nw7a/elgXraywXZ+4J0qCL2tgiA8//iwxnmAXB7DCdMDbvmCnnSwnj7PHAfdRft4A+50QO+R28skEQBjFwF6CRCgY7yLJCN6duezenLbk3pp10tK2bnakidPOlkfmfURnT39bBYDHcVsy1bX7rBatvRky7JE+pKDO6li4D1V92xV9cA2TW4qU83yk1S+fLmCJ5wgwzN6A+SkaWlnV0TbOsLa1hHWO3vC+61TXuZzO7PJ82aUz5lcoQkh/wiPHvvUs1Pa+Ftpw6PSrrWF10KTpQnHSXXHOvsJs53j6iaJclEAAIwLtm0rGTcVj6QUjyQVCzuheiycHNoWcdpi4aTiYWfWfSkYLsOpU+9zyeNP16z3O3XnvX6nPI7Xl9m7ZEtKRtNvXkRT2TcxEtFU3icNhvd7cXmcMbo9rsLN65LbY+QdZ7ZibZl79natSLs3sxCvy1mI15VbTJea/AAOFAF6CRCgYzxKmkm91PKSnnj3CT333nOKpqLZa3Nr5+r8mefr3BnnakpoSglHicES0ZR690TVuyeqvo5o9rhjZ7/ikcIg2bBSquxvdgLz3q2aONmj6lOXqHz5qSpbvFiusrISfRfF2bat1r6Ytu0J6910UJ7ZdnRFZFrF/8rzuAwdMzGk2ZMrsiVY5k6u0NTq4Ih9XBfDpHu7E6Svf0Rq/cve+7n9Uu0sacKxUt1xheF6sHrEhgsAAEY3M2UVD9nDqdw+nMxed7kkTybk9rmzi61mAnDnmivbJ3/LtvnccnmMYf80p2XZudI96VA9G7jnnY90ED+sDDmBustwwvVMwJ45dxlyuZ0A3nANDd9d7mLnroL7M0s+Zf90DCPveOi1TMPQPnmd93Jf/j0en3tIOZ7spwPS516/e0x8ChgYDQjQS4AAHeOFZVta27ZWj7/7uJ5uflp9ib7staaKJp038zydP/N8zaqeVcJRjm+2bSvSl3AC8j3RIWF5bGBo3fIMtxlXZe+7qu7dquqeraqrTKny1KUqP225ypYtk6e2dgS/k73riSScgHxPLiB/tyOs7R1hRZN7/4U+4HVp5oSQZk0o14wJZdla5dQpP0rFeqXOrVLHFmfr3CJ1bHXazOKLvkqSyiemQ/VMuD7bCdirp0vu0fspCwAAgJGQH8QnY2Z2Yd7cZstM5p0nB11LH1vJXFsqfWwNfp3B9ydz7RjKMJRd0DdXesddWKZncPugsj3OQsAE8Tj6EaCXAAE6jmZJK6m3u97WE9ue0Krtq9Qeac9emxicqHNmnKOPzPqIFtQt4C/ZEWKalvo7Y7mAvCMXlvd1RJVK7PsXSm+iX8FYh4LRDgWjexSMdqg80qoqz4BCpy5V+fLlKl++XL7GxhH6joaKJkxt78wLyPeEta1jQNs6wuqO7ONNAJehptoyzZxQnt1mTSjXzInlqq8IMKMckmVKvTvTYXp+uL5F6t+99/tcXql2Zi5cnzA7N3u9bHS8uQQAADBe2JYty7RlWc5mZ45NW5ZpOW15fbLH5qD+Vrq/me6T7jekf7qfpIJFdLPHtp1d4l4F1+2CtsI+9qDXyL9u57pZUippDvrkgFnwKQF7L5+2PRSGoWzNe4/X7czYN4z0XgUz+I28Gf65Pum9S4V98j8NYORm9TvtTumibJ+8bCE/usz/WTk7u+Dnve/+g37eKvzzy+9mWc7iCpaVfj1LsmxbsmxZmfUX0seZNRry78ms05Bpy6zPYA+6nmmzbWV/btlPQQz+BEXBuSt77HIbBeWMCj5dMfgTFelPYeSf+8u9mnJM1SH/9zJWEaCXAAE6xpqklVRXtEudsU51RDvUGe1UZ6wzu8+/1hPvKbi3wlehs6efrfNnnq8l9Uvkpo7wEZGIpQpKrPTl7fu7Ytrn09u2FIh3FwTkTmC+R8F4l4KTauSdNk3exmnyTWuUt3Ga/MccI//s2TJcIzMT27JshRMpdQ4ksjPIMwH5tj1htfTG9nn/5MqAE5BPTAfk6a2xtkxeN7PJcYji/elZ63nhescWpy2vTNUQwdp0rfXjpLpjpLI6KVA1aKuWApWS2zty3w8AAACOepmFfYuX58ks9ptSPHMczSvNE8v1SURT+/53Jo5Kk6ZX6JIbl5Z6GCPuYLJcPocMHEUSZkJdsa4hYXixgLw33ntQrx1wB3RG4xk6b+Z5+qupfyWf23eEvoujl2VauQWJIinFBpz6ibGB3EJFsXBSA10x9bZHFB0ovrBlhstMKBjrHBqQRztU5k8pMHWKvI2N8jVOk3fqHCcsb2yUd8oUGd7DD/BiSVP9sZT6Y0n1ZfbRzHkyfS2lvqhzPdPWF02qP5bUQDyl/U2SqAx4NGtiKBeQT3T2M+rKVe7nrzAcAf4KqeEkZ8tnWVLfrrwyMFukjred4773pGiXtPNVZ9sfb3mRcH0vW7C6MID3V1JGBgAAAAUMw3Bq7fvcKq/yH/Lr2LatVMIqCN/NlOnMwjZtWXZu5n5mtn7B3kzPujb3cj0989+2M7P8tdfXsi07V0NeeYfGoPrxmZ1R2NEYfD1zbV/15jPXXM5MeyM9Ez537PysC68Pait2fa+v58zSz8y2z/1c9vdJiNwnJwo+ZVHwqYq9vZY15LVrp5Qf8n8z4wUz0Ae55557dOedd6q1tVULFy7Uj370I51yyin7vY8Z6BgOKSuluBlXNBVVLBVzNjOmaCqabetP9BcE4fkheX+i/6C+nttwqzZQq7pgnbMF9r6v9lcz0zzNsmwl8gLvYoF4rC+mWH9csYGEcy1qKbn3qiN75UkOpGeRdygY25M9Lkv1KDShXL7MLPLGRnmnpcPyadPkrqyUadlKmpYSpqVkylLSdM6dbei1aNLMhtuZQLx/SPDtnPfFUkoMU93BgNelGXXlhSVXJpZr5oSQasq8lAXC6JcIS53v5ML1rnelWI9Tgz1/SwwMz9fzhYqH7f5KyVcmeYKSN5C3T2/e4P73POcBAAAAjAOUcDlEDz/8sK644grdd999WrZsme6++279+te/1ubNmzVp0qR93kuAfvSxbEtJK6mUlVLKSmWPk1bS2cxkQbAdM53AO5qKZo/3dh418wLyVCx7nrQOIWEdxGN4VBusHRKCTwhOGNJW5a+Syzg6Sl1k3ql1Fp6xZZrOAjOZNjNlKZUwZSVTSsVTspKmEvGUkvGkEnFTyURKyXhKqaSpVMJ06suFk0pEkkpGTKUSlpIJKWW6lLLcPU4HxwAAE5xJREFUynu/+qB5UhF5khF5U2F5k+GCY28qIl+8V8HoHskVV6SiUt3VE9VdOVGdlXXqCE1UW0WduoJVSlhGLgTPhOKp3PkwlsDbp4qAR5UBb+E+WHheEfCqMpje551XBrzye1yE5BgfzJQU7yserh/INlwB/L64vOkwfVAAv8/w3e8cu33O5vE7ZWrc6b3Hn7s2+Lon0z6oL0E+AAAAgCOIAP0QLVu2TEuXLtWPf/xjSZJlWWpsbNQXvvAF3XDDDfu8dzwH6Ksee1zNf95csApDZumM3P8WuZa3gENmpQx70N12wUoQha9pZ2+zZNuWLFnpY1uWbaXvtmTZlmRbMtP90q2yrXR/Wc7HkLLXnVcasgrFEOnAzzZyHx+SodyHiQzlfYYo18c2Cs/z+hnKXXPJLZfhltvwyJBHbsMlQx55DLe8hk8ewyuv4ZPX5ZVH3vS5V+5MZSbbcl7VtnKrYNh5W+YHbluSbctQetGKbD8rvc+/N/92W5KReylbsmUUtDt/xpmPImX2g9uM9E/acO7Pa8+02TJkG27ZcmX3luGWbbhkGx6nzTXyJQ3cqai8qUg6BA/njtNhuDsZlWUnlLJTSshUQpaiLkNRj08Rj19hb0ART0ARbyB9HlTE41ePv0Kt5bWKeQ79o3fFeFyGvG6XvG5DPo8rfeyce90u+b1uVaZD78Fhd9FwPOhVyOdhUU5gpJhJp0b73gL4aI+UjDq12pMxKZXektG97GNOXzNR6u9sKMOdDtuLBeyZcN7nlLMx3HI+++pygvfMcf6Wbc/sjUF981/DtZd2d/pjv+m9jMLPEku59uzxAVwb/AbifvuV+Jm7rzEd6Njzv+cDfT0AAAAcGcFqaeb7Sz2KEUcN9EOQSCS0du1a3Xjjjdk2l8uls846Sy+//PKQ/vF4XPF4PHve19c3IuMcjbb9Yb0sc3gWGxgl/zQcMyxJ8fRWcqPtD8+25LJSctkpGVZKLsvMO07JZZvOse2cyzZlWKazt00ZtiXZCVl2UqZMmYaplEtKuqWkx1Dc51HCH1CiPKikP6hkoEwJf7XMQJlSgTKlguWy/H65XS653YbchiFPeiXs/H3AZajcMLJ93NmQOxd0e1zFQ2+f2yWvZ9B5pi3zOp50QO5yEXQDY53bK5XVOttwsqwDCNujUiqeF84P2ptxKZVwwngz7oT9qXj6PL0VvZ5Mnw8K8W3Tee19LdwKAAAA4PBNXSz9/R9LPYpRjQA9raOjQ6Zpqr6+vqC9vr5emzZtGtL/9ttv16233jpSwxvVPFUBade2/fQ6vOBu33cXu7q3O/b1SnnX7MK2vd+VP4PezutXrD1vRnt62rYxpK8Gtdt5L5ebp20budnZMtJ3ZBadKDKTK3Pdmfxd2Jbrm/nK+ce5a7nZYHnjNfL3+T8oO/vl7fSXtAu+nOG8TmYBDyM3LsOlvHZn7/IYcrldcnmcze1xyeVzyeVxy+Nzy+Nxy+33yOtzy+3zyhtwy+vzyu3xyOvzyOP1yuN19l6fR16vRx6fR16vV16/V16PW163S24CZgDjkcvl1E73lZVuDLadDtPzA/f4oOO8sD0Txlsp5xNTlpn+5JTlhO+ZY6tYW37fYm2m0qtfDX1Ny8x9Siv7d3Th3/nZ4wO6tq9+2ke/UjnQsQ/H91ikHwAAAIbfxDmlHsGoR4B+iG688UatWLEie97X16fGxsYSjqh0/v7bXyz1EAAAwFhmGE65Fo+v1CMBAAAAgAIE6GkTJkyQ2+1WW1tbQXtbW5smT548pL/f75ffP7z1iQEAAAAAAAAAo4er1AMYLXw+nxYvXqxnnnkm22ZZlp555hktX768hCMDAAAAAAAAAJQCM9DzrFixQldeeaWWLFmiU045RXfffbfC4bA+85nPlHpoAAAAAAAAAIARRoCe59JLL9WePXt08803q7W1VYsWLdKqVauGLCwKAAAAAAAAADj6GbbN8vbDoa+vT1VVVert7VVlZWWphwMAAAAAAAAAKOJgslxqoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQhKfUAzha2LYtSerr6yvxSAAAAAAAAAAAe5PJcDOZ7r4QoA+T/v5+SVJjY2OJRwIAAAAAAAAA2J/+/n5VVVXts49hH0jMjv2yLEstLS2qqKiQYRilHs6I6+vrU2Njo3bu3KnKyspSDwcA9ovnFoCxhGcWgLGG5xaAsYbn1vhi27b6+/vV0NAgl2vfVc6ZgT5MXC6Xpk2bVuphlFxlZSUPGQBjCs8tAGMJzywAYw3PLQBjDc+t8WN/M88zWEQUAAAAAAAAAIAiCNABAAAAAAAAACjCfcstt9xS6kHg6OB2u3XGGWfI46EyEICxgecWgLGEZxaAsYbnFoCxhucWimERUQAAAAAAAAAAiqCECwAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToO2z333KMZM2YoEAho2bJleu2110o9JACQJP3pT3/SRz/6UTU0NMgwDP32t78tuG7btm6++WZNmTJFwWBQZ511lrZs2VKi0QKAdPvtt2vp0qWqqKjQpEmTdMEFF2jz5s0FfWKxmK666irV1dUpFArpoosuUltbW4lGDGC8u/fee3XiiSeqsrJSlZWVWr58uZ588snsdZ5ZAEazO+64Q4Zh6Etf+lK2jecWBiNAx2F5+OGHtWLFCn3zm9/U66+/roULF+qcc85Re3t7qYcGAAqHw1q4cKHuueeeote/+93v6oc//KHuu+8+vfrqqyovL9c555yjWCw2wiMFAMfzzz+vq666Sq+88oqefvppJZNJffjDH1Y4HM72+fKXv6z//u//1q9//Ws9//zzamlp0cc//vESjhrAeDZt2jTdcccdWrt2rdasWaMPfvCD+tjHPqYNGzZI4pkFYPRavXq17r//fp144okF7Ty3MJhh27Zd6kFg7Fq2bJmWLl2qH//4x5Iky7LU2NioL3zhC7rhhhtKPDoAyDEMQ48++qguuOACSc7s84aGBl177bW67rrrJEm9vb2qr6/Xgw8+qE9+8pOlHC4ASJL27NmjSZMm6fnnn9f73/9+9fb2auLEiXrooYd08cUXS5I2bdqkefPm6eWXX9app55a4hEDgFRbW6s777xTF198Mc8sAKPSwMCATj75ZP3kJz/RbbfdpkWLFunuu+/mdy0UxQx0HLJEIqG1a9fqrLPOyra5XC6dddZZevnll0s4MgDYv23btqm1tbXgGVZVVaVly5bxDAMwavT29kpywihJWrt2rZLJZMGza+7cuWpqauLZBaDkTNPUypUrFQ6HtXz5cp5ZAEatq666Sh/5yEcKnk8Sv2uhOE+pB4Cxq6OjQ6Zpqr6+vqC9vr5emzZtKtGoAODAtLa2SlLRZ1jmGgCUkmVZ+tKXvqTTTz9dxx9/vCTn2eXz+VRdXV3Ql2cXgFJ68803tXz5csViMYVCIT366KOaP3++1q1bxzMLwKizcuVKvf7661q9evWQa/yuhWII0AEAAIBR6KqrrtL69ev14osvlnooALBPc+bM0bp169Tb26vf/OY3uvLKK/X888+XelgAMMTOnTv1xS9+UU8//bQCgUCph4MxghIuOGQTJkyQ2+0eshJxW1ubJk+eXKJRAcCByTyneIYBGI2uvvpq/f73v9ezzz6radOmZdsnT56sRCKhnp6egv48uwCUks/n07HHHqvFixfr9ttv18KFC/WDH/yAZxaAUWft2rVqb2/XySefLI/HI4/Ho+eff14//OEP5fF4VF9fz3MLQxCg45D5fD4tXrxYzzzzTLbNsiw988wzWr58eQlHBgD7N3PmTE2ePLngGdbX16dXX32VZxiAkrFtW1dffbUeffRR/fGPf9TMmTMLri9evFher7fg2bV582bt2LGDZxeAUcOyLMXjcZ5ZAEadD33oQ3rzzTe1bt267LZkyRJdfvnl2WOeWxiMEi44LCtWrNCVV16pJUuW6JRTTtHdd9+tcDisz3zmM6UeGgBoYGBAW7duzZ5v27ZN69atU21trZqamvSlL31Jt912m4477jjNnDlTN910kxoaGnTBBReUcNQAxrOrrrpKDz30kB577DFVVFRka21WVVUpGAyqqqpKn/3sZ7VixQrV1taqsrJSX/jCF7R8+XKdeuqpJR49gPHoxhtv1Hnnnaempib19/froYce0nPPPaennnqKZxaAUaeioiK7tkxGeXm56urqsu08tzAYAToOy6WXXqo9e/bo5ptvVmtrqxYtWqRVq1YNWZQPAEphzZo1OvPMM7PnK1askCRdeeWVevDBB/WVr3xF4XBYn//859XT06O/+qu/0qpVq6iFB6Bk7r33XknSGWecUdD+wAMP6NOf/rQk6V/+5V/kcrl00UUXKR6P65xzztFPfvKTER4pADja29t1xRVXaPfu3aqqqtKJJ56op556SmeffbYknlkAxh6eWxjMsG3bLvUgAAAAAAAAAAAYbaiBDgAAAAAAAABAEQToAAAAAAAAAAAUQYAOAAAAAAAAAEARBOgAAAAAAAAAABRBgA4AAAAAAAAAQBEE6AAAAAAAAAAAFEGADgAAAAAAAABAEQToAAAAAAAAAAAUQYAOAAAAHGWee+45GYahnp6eknz9Z555RvPmzZNpmvvtu2rVKi1atEiWZY3AyAAAAICDQ4AOAAAAjCGGYexzu+WWW3Taaadp9+7dqqqqKskYv/KVr+gb3/iG3G73fvuee+658nq9+o//+I8RGBkAAABwcAzbtu1SDwIAAADAgWltbc0eP/zww7r55pu1efPmbFsoFFIoFCrF0CRJL774ov76r/9ara2tCgQCB3TPPffcowcffFCrV68+wqMDAAAADg4z0AEAAIAxZPLkydmtqqpKhmEUtIVCoSElXB588EFVV1fr97//vebMmaOysjJdfPHFikQi+vd//3fNmDFDNTU1uuaaawrKrsTjcV133XWaOnWqysvLtWzZMj333HP7HN/KlSt19tlnF4Tnf/7zn3XmmWeqoqJClZWVWrx4sdasWZO9/tGPflRr1qzRO++8M7w/LAAAAOAweUo9AAAAAABHXiQS0Q9/+EOtXLlS/f39+vjHP64LL7xQ1dXVeuKJJ/Tuu+/qoosu0umnn65LL71UknT11Vdr48aNWrlypRoaGvToo4/q3HPP1Ztvvqnjjjuu6Nd54YUXdNlllxW0XX755TrppJN07733yu12a926dfJ6vdnrTU1Nqq+v1wsvvKBjjjnmyP0QAAAAgINEgA4AAACMA8lkUvfee282oL744ov1y1/+Um1tbQqFQpo/f77OPPNMPfvss7r00ku1Y8cOPfDAA9qxY4caGhokSdddd51WrVqlBx54QN/+9reLfp3m5uZs/4wdO3bo+uuv19y5cyWpaPje0NCg5ubm4fyWAQAAgMNGgA4AAACMA2VlZQWzu+vr6zVjxoyCeun19fVqb2+XJL355psyTVOzZ88ueJ14PK66urq9fp1oNDqk9vmKFSv0uc99Tr/85S911lln6ZJLLhky0zwYDCoSiRzy9wcAAAAcCQToAAAAwDiQXzJFkgzDKNpmWZYkaWBgQG63W2vXrpXb7S7ot69FSidMmKDu7u6CtltuuUWXXXaZHn/8cT355JP65je/qZUrV+rCCy/M9unq6tLEiRMP6XsDAAAAjhQCdAAAAABDnHTSSTJNU+3t7Xrf+953UPdt3LhxSPvs2bM1e/ZsffnLX9bf/M3f6IEHHsgG6LFYTO+8845OOumkYRs/AAAAMBxcpR4AAAAAgNFn9uzZuvzyy3XFFVfokUce0bZt2/Taa6/p9ttv1+OPP77X+8455xy9+OKL2fNoNKqrr75azz33nJqbm/XSSy9p9erVmjdvXrbPK6+8Ir/fr+XLlx/R7wkAAAA4WAToAAAAAIp64IEHdMUVV+jaa6/VnDlzdMEFF2j16tVqamra6z2XX365NmzYoM2bN0uS3G63Ojs7dcUVV2j27Nn6xCc+ofPOO0+33npr9p7//M//1OWXX66ysrIj/j0BAAAAB8Owbdsu9SAAAAAAHD2uv/569fX16f77799v346ODs2ZM0dr1qzRzJkzR2B0AAAAwIFjBjoAAACAYfX1r39d06dPzy5Iui/bt2/XT37yE8JzAAAAjErMQAcAAAAAAAAAoAhmoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQxP8PW8zYOBJ5gRgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyNdf/H8deZfZ8xlhkjywgTUoPKUiHUiNwohMlSlu7KVmmVENGm5K5faLFkCRWVXSJCkyWSJcw9doMyZsww+/f3x9znyjFnxozoGL2fj8d5OHN9r+91fa7lzKPe5zvfy2aMMYiIiIiIiIiIiIiIiAM3VxcgIiIiIiIiIiIiInI1UoAuIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIiIOKEAXURERERERERERETECQXoIiIiIiIiIiIiIiJOKEAXEREREREREREREXFCAbqIiIiIiIiIiIiIiBMK0EVEREREREREREREnFCALiIiIiJXhREjRmCz2WjWrJmrS7mmLV26FJvNho+Pz2Xd7u7du7HZbNhsNhITE//2/nJ1mzhxIjabjRtuuMHVpYiIiIgUiwJ0ERERkWKyB71Ffcm169y5cwQHB2Oz2ejfv3+R+61du9a6P7788ssrWKHYZWRkMHnyZGJiYoiIiMDb25vg4GBq1KhB8+bNGTp0KMuWLSMjI8Np/5SUFN5++23uuusuypUrh5eXF6GhodSsWZNWrVoxatQoVq9eTW5u7kVreeedd6zr36JFi2Ify+nTpxk/fjxt2rShUqVK+Pn54evrS8WKFWnTpg3vvvsuJ06cKLD/4sWL6dKlC9dffz1+fn74+fkRGRlJo0aN6N+/P3PmzOGPP/4odl0iIiIi1yIPVxcgIiIiUpKFhYW5ugRxIV9fX7p27cqkSZOYNWsW48aNw9vb+6L9PvnkEwDKli1L27Ztr3SZDgICAoiKiipSndeKhIQEWrduze7du61lXl5euLu7Ex8fz969e1m1ahVjxoxhw4YNNGzY0KH/5s2b+de//sXRo0etZb6+vuTm5vLbb7+xe/duli1bBsCxY8cIDw8vtJ6PP/7Yer9q1SoSEhKIjIws0rF88MEHvPDCCyQnJ1vL/Pz88PLy4vDhwxw+fJjFixfzwgsvMHLkSJ555hlrvXPnztG1a1e++uora5mbmxshISEcOXKE/fv38+OPP/L+++8zduxYnn/++SLVJCIiInIt0wh0ERERkb8gMTHxoi+5tvXu3RuApKQkFixYcNH1U1NTmTdvHgDdu3fH09PzitZ3oTvuuIPdu3ezbdu2v3W/rpKVlUXbtm3ZvXs3AQEBjBkzhsOHD5Oens6pU6dIS0tjw4YNDBs2zGmInZSURJs2bTh69ChhYWG89957nDx5krNnz3L69GlSUlJYtWoVTz/9dJG+UIuLi2PHjh2EhYXRuXNnjDFMmTKlSMfy9NNP8/jjj5OcnEydOnWYMWMGJ0+eJC0tjdOnT5OWlsbixYvp2rUrGRkZfPHFFw79Bw0aZIXn/fr1Y/v27WRmZvLHH3+Qnp7Ozp07effdd2nYsKH+ekZERETkfxSgi4iIiIj8Bbfeeit16tQB/hxZXpi5c+eSlpYG/Bm+y5WzdOlSduzYAcCnn37KCy+8QIUKFayA2MfHh4YNG/LKK6+wb98+6tat69B/xowZHD9+3NrWE088QZkyZaz2gIAAmjVrxltvvcWhQ4coW7ZsofXYR5937dqVRx55BICpU6dedOqXadOm8fbbbwPw0EMPsXnzZmJjYx1q8fPz495772XWrFls2rSJqKgoq+3UqVNWUD9o0CAmTZrEjTfeiLu7O5A3Er1mzZoMHDiQDRs2MHDgwELrEREREfmnUIAuIiIi8jd67LHHsNlshISEsH//fqfrfPDBB9hsNjw8PFizZo1D26+//sqIESNo3rw5119/Pb6+vgQFBVG3bl1eeuklfv/99wL3XaVKFWw2G1OnTuXs2bOMGDGCmjVr4ufnR0REBN27dychIcFa//fff+e5556jRo0a+Pr6Eh4eTp8+faww8UIXPgR07ty5NG3alNDQUPz9/alfvz7vvfceOTk5xTtp5zl58iQvvfQSdevWJTg4GB8fH6pWrUrv3r2tkNQV7EH4t99+y6FDhwpd1x6yN2zYkFq1ajm07du3j7FjxxITE0P16tXx9/cnICCA2rVr89RTT3H48OECt2sfNfzaa6+RkZHB66+/Tr169aw52n/88Ueg8IeI5ubmsmLFCvr370+DBg2oUKECXl5elClThrvuuosPP/yQ7OzsIp2TXbt20b17dypUqIC3tzeVK1fmiSee+Et/lZGTk8O0adNo1aqVNQ952bJladWqFXPnzsUYk6/P1q1bAbDZbBedLsfNzS3f1Db2/pUqVSI6OrrQ/p6enlYg7UxaWhqfffYZAD179qRly5ZERERw6NAhVqxYUWC/9PR0nnvuOQCio6P5+OOPL/qXC3Xr1nUY2b5jxw7r2rVr167QvpA3RU1BVqxYwf3330/58uWt++Puu+/m008/LdIc8OeLiorCZrPx4osvFrre4sWLrd+Lzu6h+Ph4BgwYQM2aNQkICMDPz4+aNWsW+rm58MGmy5cvp23btoSHh+Pu7s6///3vYh2LiIiIXKOMiIiIiBTL8OHDDWAu5T+lzp49a2rXrm0A06hRI5OVleXQvn37duPj42MA8/LLL+frX7lyZWvfPj4+JjQ01NhsNmtZhQoVzO7du53u2953/Pjxpk6dOtY2fH19rf7ly5c3CQkJJj4+3kRGRhrA+Pn5GS8vL2ud6tWrm+Tk5ALPS9OmTc2zzz5rAGOz2UypUqWMm5ub1T8mJsakp6cX2t+ZFStWmJCQEGs7np6ext/f3/rZy8vLTJs2rQhX4fL7/fffrXM0atSoAtfbs2ePVe/kyZPztTdo0MDheEJDQx3OXWhoqImLi3O6bXvfYcOGmVtvvdUAxsPDwzpnGzZsMMYYs2TJEgMYb2/vfNvYtWuXtS/ABAYGmqCgIIdlzZs3d3r9zu87b94869oEBgZa9zRgypYta3755ZdC+x87dixf+4kTJ0yjRo0cagkODnb4uWPHjvk+U6+88orVfvDgQecXphCPPPKIAYyvr6/JyMgodv/zTZkyxQCmTp061jL7Z6VTp04F9ps+fbrDub0Ua9assbYxffr0S9pGbm6uefzxx63t2D/f7u7uDp/v1NTUfH0/+OADA5ioqCiH5aNGjTKAqVSpksnNzS1w3126dDGAadWqVb62jz/+2Hh6ejr8bjz/ngsJCTGrVq0qtKbXX3/dYX1PT0/z6KOPFv8kiYiIyDVHAbqIiIhIMf2VAN2YvJDcHlq/+OKL1vLzw/Xbb7/dZGdn5+vbo0cPM3XqVHPgwAFrWUZGhvn222/NbbfdZgBTr149p/u1B+ghISGmSpUqZvny5SYnJ8dkZ2eb5cuXm7JlyxrAdO7c2dx2220mOjraCl0zMzPNnDlzjJ+fnwHM0KFDCzwv9lCzf//+5sSJE8YYY5KTk82oUaOssP/JJ58ssL+zAP2XX36xzlnfvn3Nzp07rfNz4MABK9Tz8PAwGzduLOTsXzmdO3c2gLn++usLDAKff/55Axh/f3+TkpKSr/2JJ54wEydONPv27bO2kZWVZdavX29atGhhAFO5cmWnQa49QA8ICDDBwcHm008/NefOnTPG5IXPSUlJxpjCA/R9+/aZHj16mEWLFplTp05Zy5OTk81HH31kwsLCDGBeeOGFfH3PD8CDg4NNvXr1zKZNm4wxxuTk5JjFixebiIgI6xylpaUV2P/CAD0rK8sKz2+55RazZMkSc/bsWWOMMWfOnDEfffSRKVOmjAHM888/79B36dKlDuGus3C+MBMnTrT69+zZ0zqPl+KOO+4wgHnzzTetZTt27LC+MPn999+d9uvZs6f1pZH9uIsrOTnZeHt7G8BUqVLFbNmypdjbePPNN61z0b9/f3P8+HFjTN41eOONN6wgvWfPnvn6FhSg79+/3/q94CzkNsaYlJQU6/M/a9Ysh7ZvvvnG2Gw24+XlZYYOHWoOHDhgcnNzTU5OjtmxY4dp3769AUypUqXM0aNHndbk5+dn3NzcTN++fc3hw4eNMXn3XHx8fLHPkYiIiFx7FKCLiIiIFNP5AXpYWFihr4EDBzrdhj24cXNzM999950xxphHH33UCrjPD8iL6syZM1bAuXbt2nzt9gDd19fX7N27N1/7xx9/7HBczsK8YcOGWQHohc4/L927d3da40svvWQF3UeOHHHa31mA3rx58wKDW7uBAwcawLRr167Ada6kZcuWWcfvLAjMzs62AuRevXoVe/tZWVnmhhtuKHAU8vmj15cvX17gdgoL0C9m7dq1VkB+4Ujv8wPwsLAw88cff+Trv3XrVuPh4WEAM2HChAL7XxhyT5482QDmpptuMmfOnHFa2/r16637+/zwPzc31zRp0sTatoeHh7n99tvNU089ZWbOnGn27dtX6DGnpaWZqKgoq7+3t7dp0aKFef755828efOswPVidu/ebQDj7u6eL8itX7++gby/DnHmlltuyTdy/VLYP7/2V+3atU3fvn3NxIkTzZYtW5x+aWeXkpJi/TXCww8/7HSdN954w9r29u3bHdoKCtCNMaZp06aFbveTTz6x/prh/C8QsrKyrN9rBf31SW5uromJiTGAee6555zWBJhu3boVeOwiIiLyz6YAXURERKSYzg+KL/ZyNhLT7v777zeAiYiIMJMmTfrLUzQY8+co6LFjx+ZrswdNDz30kNO+hw8ftmoYNmyY03V++OEHa50Lp2k4/7w4C+iNyRsFax9JemGAWlCAnpCQYAWfzkJZu02bNlmjuwsLAq+UnJwcU6lSJQOYHj165GtftGiRdX7WrFlzSfuwf0kwaNCgfG32AL1+/fqFbuOvBOjGGOsvDH7++WeH5ecH4IVNY2O/7xs3blxg/wsDdPuxTZo0qdDaqlWrZgCzYMECh+UpKSmmb9++Vnh/4SsyMtKMGjWqwHA+MTHR3H///Q7TJV0YRP/nP/8pdIoX+1QtzqYgmTBhQqEBuX06pYKmNyqq3Nxc89ZbbzlMhXT+KyQkxDz66KNm//79+frOmTPHQN60Lc7ajcn7axj7XwKc/9c1xhQeoH/00UcGMEFBQU5H2N91111OA3b7vVyhQoVCp3+ZMWOGAUx0dLTTmpwF/iIiIiJ2eoioiIiIyF9g8gYkFPiaOnVqgX0/+ugjKlWqxNGjR3n00UcB6NOnDx07dix0nwsXLuTBBx+katWq+Pv7Y7PZrNfcuXMBCn3Y5G233eZ0eVhYmPX+1ltvveg6p0+fdrpOxYoVqVatmtO2oKAg6tevD8CmTZsKrPF869atA/IecFmrVi3Cw8Odvlq1agXkPajxjz/+KNK2Lyc3Nzd69eoFwOeff86ZM2cc2u0PD61RowZ33nlngdtZvXo13bt3JyoqioCAAIfrO2HCBKDw63v77bf/peNIT0/n/fff5+6776Z8+fJ4e3s71JCcnHzRGpo3b37Rts2bNzt96KezejZv3gzACy+8UOD1Dw8P58CBAwDWv3aBgYFMnjyZQ4cO8cEHHxAbG8sNN9yAm1ve/w4lJCQwbNgw6tWrl68v5N33X3zxBfHx8bz99tt07NiRqlWrYrPZgLwHdA4YMIA777zT6eciOzub6dOnA9CjR4987V27dsXT05Pt27ezcePGi56TS2Wz2Xj66ac5cuQIc+fO5bHHHuOWW26xHih7+vRpJk2aRJ06dVi+fLlDX/vntVq1alSuXNnp9r28vGjatKnD+kXRqVMnfH19SUlJ4auvvnJoO3ToEKtXrwbynzv774aTJ09Svnz5Au+LAQMGAPnvC7vg4GBuvPHGItcrIiIi/ywK0EVERERcpFSpUrz//vvWz1WrVuXdd98tcP3c3Fy6detG27ZtmTt3LgkJCWRmZlKqVCnCwsIICwuzgrC0tLQCtxMYGOh0uYeHR7HWycrKcrpOhQoVCtz3+e0nTpwodD27o0ePAnnHf/z48QJfv//+u9Xn7NmzRdr2+vXrCwzd5syZU6RtnO/hhx/GZrNx9uxZPvvsM2v577//zjfffAPAI488UmD/QYMGcddddzFjxgz27NlDenq6w/X19/cHCr++5cqVK3bddseOHaNu3br079+fb7/9lsTERNzd3SlTpoxVgz10LqyGwu4Be1tGRgYpKSkXrenkyZNkZ2cDcOrUqULvAfs9WdD1Dw8P59///jczZsxg165dnD59mi+//JKGDRsCsHfvXh566KECa4mMjOTJJ59k3rx5xMfHc/LkSaZPn07NmjUB+Omnn+jfv3++fosXLyYxMZGgoCDat2+fr71MmTK0adMG+POLlvOVLl3aOv7Lwc/Pj06dOvF///d/bNy4kZSUFNasWUO3bt0AOHPmDJ07d3b4Isr+eb3Y5/u6665zWL8ogoKCaNeuHQCffvqpQ9vMmTMxxlC5cmUrnLez/27IzMws9L5ISkoCCr4vypYtW+RaRURE5J9HAbqIiIiIC3344YfW+yNHjrBv374C1/3444+ZPXs27u7uvPzyy+zdu5eMjAxOnTpFYmIiiYmJ1uj1oozsLSlycnKAvFHAFxvxb39VqVKlSNsuLHg7d+5csWutUqUKLVq0AGDKlCnW8pkzZ5KZmYm7u7vTEcgA33zzjTXCfNCgQezYsSPf9X3ssceAwq+vu7t7seu269+/P7t376ZcuXJMnz6d48ePc/bsWU6ePGnVEBoaetEaLif79QdYtWpVka7/888/X6RtBwYG0qFDB3744QcaN24MwA8//MDu3buL1L906dJ0796duLg4rr/+egDmzJmT768PPv74YwBSUlLw8/NzGNFvfy1YsACA2bNn57v3ateuDcDu3btJT08vUm3F4enpyZ133snMmTN59tlnAUhOTmbevHmXfV8FsX8uli9fzvHjx63l9kA9NjbWGvFvZ783mjZtWqT7oqBz91c+MyIiInLtU4AuIiIi4iLvvfceX3/9Ne7u7tSqVYuMjAy6dOlS4ChJ+4jmPn36MHLkSKpVq2aNBrZLTEy84nVfzJEjR4rUXtSR0uHh4UDeKO7CRj1fimbNmhUYttmnYymu3r17A7BhwwYriLWH6a1bt6Z8+fJO+9mvb7t27Rg/fjy1atXKF+xdyet79uxZa5T8pEmT6N69e75rlJGRUeDUPecr7B6wt3l7exMUFHTRbZUrV84KTguaguOvcnd3t64bwG+//Vas/oGBgdbo7ezsbP773/9abYmJiSxevLjI20pOTubzzz93WGb/UiYrK4uFCxcWq7bisk8nBY7nwX4vFDZ1z/ntxf1LiHvuuYewsDCys7OZPXs2AFu2bGHnzp2A86lv7L8brtR9ISIiIgIK0EVERERcYvv27TzzzDMAvPzyyyxevJiQkBB27drFk08+6bTPoUOHAKhbt67T9tTUVOLi4q5MwcVw6NAh4uPjnbadOXPGms/6lltuKdL27HN65+TksGTJkstT5BXUoUMHa5T2J598wubNm9m2bRuAQ0h7oYtd35ycHGsu6CshMTHRmgKloBpWr15tTadSmFWrVl20rX79+vlGFDvj5+dn1WMP+K+EgIAA6723t/dl6z9t2jSys7O57rrrOHPmTKEve3h94TQuHTt2tJ4/8OqrrxY4fdKFcnNzL9tx2D+v8fHxBQbWWVlZfP/990DBz1EoiLu7u/UlhH3Uuf3f2267jaioqHx97L8b9u/fz6+//lqs/YmIiIgUlQJ0ERERkb/ZuXPn6NKlC+np6dxxxx0MHTqUypUrM3nyZAAmT57MF198ka9fcHAwgBXGXmjUqFH5po5wlVGjRjldPm7cOM6dO4eHhwcPPPBAkbZVvXp1mjVrBsDQoUOth1gW5HLNE32pvL29iY2NBfICQPs0PWFhYdY8185c7PpOmDDhoqN//wr7/guqITMzk2HDhhVpW++995417/T5tm/fbj0k8sEHHyxybf369QNg/vz5fPvtt4Wue+H137Zt20VH7htjrId8urm5ER0dbbX9+OOPF73nsrKyrFHTwcHBVK1a1Wqzh+EdO3YkICCg0FeXLl0A+P777x2+hPL19WXs2LEAbN26lUceeeSiIfovv/ziMN9+YmJigffW+aZNm2a9r1evnvW+devWBAUFYYxh5MiRTvv+5z//sZ5FYD+W4rCPMt+yZQu//PKLdU4LmvYoJiaGSpUqATB48OCLfrnj6t8NIiIiUjIpQBcRERH5mz355JPs3LmTkJAQZs6caU3T0alTJ2uEct++fa0RyXatWrUC8uZNnzx5MpmZmUBeMPbkk0/yxhtvWA8bdKXg4GCmTZvGoEGDrDDtzJkzjBkzhldeeQWAJ554goiIiCJv8z//+Q8BAQHs2bOHhg0b8tVXXznMZ3zkyBE+/fRTWrRowXPPPXd5D+gS2K9jYmKiFaD36NHD4SGsF7Jf3/nz5/P6669bU/mcOnWKkSNHMmTIkCt6fUuXLm2NMh44cCBr1qyx5jnfunUrMTEx7NixA19f34tu69y5c9xzzz38/PPPQN5I6KVLl9K6dWuys7OpWrVqoaPxL/TII4/QpEkTcnNzadu2La+99ppDKJ6amsrKlSt59NFHrQd62q1YsYIqVarQtWtXvvzyS4d+6enpfP/997Rp04ZFixYB0K1bN2tqEIAZM2ZQqVIl+vbty+LFix1C2LS0NBYuXEiTJk3YunUrAAMGDMDLywuAtWvXsmfPHgA6d+580eNs0qSJNdf/haPQH374YQYOHGjVVL9+fWbNmuXwoM9z586xYsUKevToQb169Rzmcj98+DDR0dE0b96cDz/8kL1791rXNzs7m507dzJgwABr/vhq1arxr3/9y+ofEBBgfYEyZcoUBgwYwMmTJ63zMG7cOGv+9J49e3LjjTde9HgvFB0dbfXr3bs3x48fx9PTs8Aw3svLi4kTJ+Lm5sbKlSu566678v2VxL59+3j//fepV6+e0we0ioiIiFyUEREREZFiGT58uAEMYMLCwi76WrdundX3iy++sPrOmzcv37bT0tLMDTfcYABz5513muzsbKstKSnJagOMm5ubCQkJMTabzQDm0UcfNT179jSA6dmzZ75tV65c2QBmypQpBR6bfdurVq1y2p6QkGCtk5CQ4PS8NG3a1Dz77LMGMDabzZQqVcq4u7tb/Vq2bGnOnTtX4Hlt2rSp033/8MMPJjw83NqOu7u7KV26tPH19bWWAaZPnz4FHt/fqX79+g517dq1q9D109PTTYMGDaz17efOfn07dOhgnnnmGQOYmJiYfP3tfceOHVvofpYsWWIA4+3tna9t/fr1DufTx8fHBAQEGMB4enqaOXPmmLCwMAOY2bNnO/TdtWuXw73t7+9vABMYGOiwzdKlS5utW7fm2/f5/Y8dO5av/dSpUyYmJsbhnAYHB5vg4GDrHAEmICDAod/48eMd+gDG19fXlCpVKt/yNm3amNTUVIf+gwcPzreev7+/CQoKyre8d+/eJisry+pr/zxWrFjR5ObmFnpd7B5//HEDmAoVKjh8/u0mTJiQb9/+/v4mODjYYVlAQIAZP3681e/nn3/OV6+np6cJDQ01bm5uDstr1Khh9uzZk2/fubm5Vn0Ffb7vueeefOfQGGM++OADA5ioqKhCj/+NN95wqKVdu3YXPWdz5syx7jf7cZUuXdp4eXk5bOutt966pJpERETkn00j0EVERET+guPHj1/0ZR8pfujQIfr06QPkja7s2LFjvu35+fkxe/ZsvL29Wbt2LaNHj7baQkJCWL9+PYMHD6ZKlSq4u7vj4eFBs2bNmD17NhMnTvx7DroIXn/9dT777DPuuOMOjDF4eXkRHR3Nu+++y9KlS/Hx8Sn2Nm+//Xb27NnDW2+9RZMmTQgJCeH06dO4u7tTs2ZNHnroIWbOnMn48eOvwBEV3/kjrBs3bswNN9xQ6Pre3t589913DB06lGrVqlmj1Rs3bsyHH37IF198ke+hsZdbo0aNiIuL44EHHqB06dLk5OQQHBxM165d+fHHH4s0ihrgjjvuYOPGjcTGxhIYGEhOTg4VK1bkscceY/v27dx8883Frq1UqVIsWbKEb775ho4dO1KxYkXS09NJT0/nuuuuo1WrVrz++uts377dod+gQYPYsmULY8eOpW3btlSrVg2bzUZKSgpBQUHUrl2bXr16sWzZMhYuXIi/v79D/3HjxrFu3TqGDx9OTEwMlStXJicnh7S0NEJCQqhbty6PP/44P/74Ix999JF13c6cOcO8efOAvOlbijLfO/w5Uv3IkSMsW7YsX/uAAQPYv38/48aNo1WrVlx33XXk5uZa56FNmza89957HDhwgEGDBln9oqOjOXjwIB988AHdunWjTp06+Pr6kpycjI+PD5GRkbRv354pU6awfft2qlevnm/fNpuN999/n2XLltG+fXvKlStHamoqwcHBtGjRgmnTprFkyZJ857A4YmNjHR6eW9D0Lefr3Lkz+/btY9iwYdxyyy34+/tz+vRpfH19iY6O5tFHH+Xrr7+2RvCLiIiIFIfNmP/93Z6IiIiIyF8wYsQIRo4cSdOmTa/owy5FRERERET+LhqBLiIiIiIiIiIiIiLihAJ0EREREREREREREREnFKCLiIiIiIiIiIiIiDihAF1ERERERERERERExAk9RFRERERERERERERExAmNQBcRERERERERERERccLD1QVcK3Jzczl69CiBgYHYbDZXlyMiIiIiIiIiIiIiThhjOHPmDBEREbi5FT7GXAH6ZXL06FEqVqzo6jJEREREREREREREpAgOHTrEddddV+g6CtAvk8DAQCDvpAcFBbm4GhERERERERERERFxJiUlhYoVK1qZbmEUoF8m9mlbgoKCFKCLiIiIiIiIiIiIXOWKMhW3HiIqIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIiIOKE50EVERERERERERKREMMaQnZ1NTk6Oq0uRq5i7uzseHh5FmuP8YhSgi4iIiIiIiIiIyFUvMzOTY8eOcfbsWQTxV2cAACAASURBVFeXIiWAn58f5cuXx8vL6y9tRwG6iIiIiIiIiIiIXNVyc3NJSEjA3d2diIgIvLy8LsvoYrn2GGPIzMzk5MmTJCQkUL16ddzcLn0mcwXoIiIiIiIiIiIiclXLzMwkNzeXihUr4ufn5+py5Crn6+uLp6cnBw4cIDMzEx8fn0velh4iKiIiIiIiIiIiIiXCXxlJLP8sl+te0R0nIiIiIiIiIiIiIuKEAnQREREREREREREREScUoIuIiIiIiIiIiIj8zZo1a8bgwYNL/D6udQrQRUREREREREREREScUIAuIiIiIiIiIiIiIuKEAnQREREREREREREpcYwxnM3MdsnLGFOsWtPS0ujRowcBAQGUL1+ecePGObRnZGQwZMgQKlSogL+/Pw0aNGD16tVW+x9//EHXrl2pUKECfn5+1KlTh9mzZxdrH3JpPFxdgIiIiIiIiIiIiEhxncvKodbLy1yy752vxODnVfRo9ZlnnuH777/nq6++oly5crz44ots2bKF6OhoAPr378/OnTv57LPPiIiIYP78+bRq1Yrt27dTvXp10tPTqV+/Ps899xxBQUEsWrSI7t27c/3113PbbbcVaR9yaRSgi4iIiIiIiIiIiFwhqampfPzxx8yYMYMWLVoAMG3aNK677joADh48yJQpUzh48CAREREADBkyhKVLlzJlyhTGjBlDhQoVGDJkiLXNAQMGsGzZMubOncttt9120X3IpVOALiIiIiIiIiIiIiWOr6c7O1+Jcdm+iyo+Pp7MzEwaNGhgLQsNDSUqKgqA7du3k5OTQ40aNRz6ZWRkULp0aQBycnIYM2YMc+fO5ciRI2RmZpKRkYGfn1+R9iGXTgG6iIiIiIiIiIiIlDg2m61Y06hcrVJTU3F3d2fz5s24uzsG8wEBAQC8+eabvPvuu4wfP546derg7+/P4MGDyczMdEXJ/yh6iKiIiIiIiIiIiIjIFXL99dfj6elJXFyctSwpKYk9e/YAULduXXJycjhx4gTVqlVzeIWHhwOwbt062rVrx0MPPcTNN99M1apVrf5F2YdcupL/FY2IiIiIiIiIiIjIVSogIIDevXvzzDPPULp0acqVK8fQoUNxc8sb21yjRg1iY2Pp0aMH48aNo27dupw8eZKVK1dy00030aZNG6pXr87nn3/O+vXrKVWqFG+//TbHjx+nVq1aRdqHXDoF6CIiIiIiIiIiIiJX0Jtvvklqaipt27YlMDCQp59+muTkZKt9ypQpjB49mqeffpojR45QpkwZGjZsyH333QfASy+9xH//+19iYmLw8/OjX79+tG/f3mEbF9uHXBqbMca4uohrQUpKCsHBwSQnJxMUFOTqckRERERERERERK4Z6enpJCQkEBkZiY+Pj6vLkRKgsHumOFmuxvCLiIiIiIiIiIiIiDihAF1ERERERERERERExAkF6CIiIiIiIiIiIiIiTihAFxERERERERERERFxQgG6iIiIiIiIiIiIiIgTCtBFRERERERERERERJxwaYC+Zs0a2rZtS0REBDabjQULFji0G2N4+eWXKV++PL6+vrRs2ZK9e/c6rHPq1CliY2MJCgoiJCSE3r17k5qa6rDOL7/8wp133omPjw8VK1bkjTfeyFfLvHnzuOGGG/Dx8aFOnTosXrz48h+wiIiIiIiIiIiIiJQYLg3Q09LSuPnmm3n//fedtr/xxhtMmDCBiRMnEhcXh7+/PzExMaSnp1vrxMbGsmPHDlasWMHChQtZs2YN/fr1s9pTUlK45557qFy5Mps3b+bNN99kxIgRTJ482Vpn/fr1dO3ald69e/Pzzz/Tvn172rdvz6+//nrlDl5ERERERERERERErmo2Y4xxdREANpuN+fPn0759eyBv9HlERARPP/00Q4YMASA5OZmwsDCmTp1Kly5d2LVrF7Vq1WLjxo3ccsstACxdupTWrVtz+PBhIiIi+OCDDxg6dCiJiYl4eXkB8Pzzz7NgwQJ2794NwIMPPkhaWhoLFy606mnYsCHR0dFMnDixSPWnpKQQHBxMcnIyQUFBl+28lAgn98DJXeDuDe6e4OEN7l5/vjz+t/zCdjcPsNlcXb2IiIiIiIiIiFzl0tPTSUhIIDIyEh8fH1eXIyVAYfdMcbJcjytZ5F+RkJBAYmIiLVu2tJYFBwfToEEDNmzYQJcuXdiwYQMhISFWeA7QsmVL3NzciIuLo0OHDmzYsIEmTZpY4TlATEwMr7/+OklJSZQqVYoNGzbw1FNPOew/JiYm35Qy58vIyCAjI8P6OSUl5XIcdsm06yv4bvQldLQVHrBbAbz9/fnt/1vfwxsCw6FUJIRWhdBI8PK/7IcoIiIiIiIiIiJyKZo1a0Z0dDTjx4+/YvuoUqUKgwcPZvDgwQWuM2LECBYsWMDWrVuvWB3Xoqs2QE9MTAQgLCzMYXlYWJjVlpiYSLly5RzaPTw8CA0NdVgnMjIy3zbsbaVKlSIxMbHQ/TgzduxYRo4ceQlHdg0KjIBKjSA7A3KyICcDcjIhOzPvX/srOwM4/w8ezP/WzShoy5cmICwvTD8/VA/933vfUpd3XyIiIiIiIiIiIleZC2f7kEt31QboV7sXXnjBYdR6SkoKFStWdGFFLlQ3Nu91McZAbk7hAbvDe3sYn+XYdn579jlIOQqn/gunEuDcKUg9nvc6uCF/DT4h/wvVq/4ZqtuD9oBymlJGRERERERERERELFdtgB4eHg7A8ePHKV++vLX8+PHjREdHW+ucOHHCoV92djanTp2y+oeHh3P8+HGHdew/X2wde7sz3t7eeHt7X8qh/XPZbODukffiCk2zci4pL0hPSvgzVD/1v/epiZB+Go5uyXtdyNP/z9Hq1uj1/wXtQRXAzf3K1CwiIiIiIiIiIsVnDGSddc2+Pf2KNRAzNzeXZ599lo8++ggvLy/+/e9/M2LECABOnz7NkCFD+Oqrr8jIyOCWW27hnXfe4eabbwYgPj6ep556ih9//JG0tDRq1qzJ2LFjHaa+Pl+VKlUA6NChAwCVK1dm//79Vvunn37KsGHDSEpK4t577+XDDz8kMDCQ6dOn8+STT3L06FGH3LN9+/YEBgby6aefFuMEXTuu2gA9MjKS8PBwVq5caQXmKSkpxMXF8dhjjwHQqFEjTp8+zebNm6lfvz4A3333Hbm5uTRo0MBaZ+jQoWRlZeHp6QnAihUriIqKolSpUtY6K1eudJgjaMWKFTRq1OhvO165THxLQYVSUKFe/rbMNEja/2egfuq/fwbtyYchKw2O/5r3upC7F4RUdgzVq7WE0tdf8UMSEREREREREREnss7CmAjX7PvFo8V6Dt+0adN46qmniIuLY8OGDfTq1Yvbb7+du+++m06dOuHr68uSJUsIDg5m0qRJtGjRgj179hAaGkpqaiqtW7fm1Vdfxdvbm+nTp9O2bVt+++03KlWqlG9fGzdupFy5ckyZMoVWrVrh7v7noND4+HgWLFjAwoULSUpKonPnzrz22mu8+uqrdOrUiYEDB/L111/TqVMnAE6cOMGiRYtYvnz5Xz9nJZRLA/TU1FT27dtn/ZyQkMDWrVsJDQ2lUqVKDB48mNGjR1O9enUiIyMZNmwYERER1tw9NWvWpFWrVvTt25eJEyeSlZVF//796dKlCxEReR+ebt26MXLkSHr37s1zzz3Hr7/+yrvvvss777xj7XfQoEE0bdqUcePG0aZNGz777DM2bdrE5MmT/94TIleWlz+E1c57XSg7E04fdAzV7UF70v68aWP+2Jv3svPwhYcXQYX6f9shiIiIiIiIiIhIyXPTTTcxfPhwAKpXr857773HypUr8fX15aeffuLEiRPWqO+33nqLBQsW8Pnnn9OvXz9uvvlmazQ6wKhRo5g/fz5ff/01/fv3z7evsmXLAhASEpJvho3c3FymTp1KYGAgAN27d2flypW8+uqr+Pr60q1bN6ZMmWIF6DNmzKBSpUo0a9bssp+TksKlAfqmTZu46667rJ/tc4r37NmTqVOn8uyzz5KWlka/fv04ffo0d9xxB0uXLsXHx8fqM3PmTPr370+LFi1wc3PjgQceYMKECVZ7cHAwy5cv54knnqB+/fqUKVOGl19+mX79+lnrNG7cmFmzZvHSSy/x4osvUr16dRYsWMCNN974N5wFuSp4eEGZanmvC+XmQMoRx1D9v6sh8ReY1QX6roSQ/N/2iYiIiIiIiIjIFeTplzcS3FX7LoabbrrJ4efy5ctz4sQJtm3bRmpqKqVLl3ZoP3fuHPHx8UDeIOQRI0awaNEijh07RnZ2NufOnePgwYPFLrtKlSpWeH5+HXZ9+/bl1ltv5ciRI1SoUIGpU6fSq1cvbP/g5wa6NEBv1qwZxpgC2202G6+88gqvvPJKgeuEhoYya9asQvdz0003sXbt2kLX6dSpk/XNiogDN/e8gDykElRtlrcsPQWm3Js33cvMztB7GfgEu7JKEREREREREZF/FputWNOouJJ9amk7m81Gbm4uqamplC9fntWrV+frExISAsCQIUNYsWIFb731FtWqVcPX15eOHTuSmZl52eqwq1u3LjfffDPTp0/nnnvuYceOHSxatKjY+7mWXLVzoItc1XyCoNsc+LAFnNwFc3tA7Ofg7nnxviIiIiIiIiIiIkC9evVITEzEw8PDevjnhdatW0evXr2sh4KmpqY6PBTUGU9PT3Jyci6ppj59+jB+/HiOHDlCy5YtqVix4iVt51rh5uoCREqs4OvyQnRP/7wpXRY+mff0ZxERERERERERkSJo2bIljRo1on379ixfvpz9+/ezfv16hg4dyqZNm4C8OdO//PJLtm7dyrZt2+jWrZvDqHFnqlSpwsqVK0lMTCQpKalYNXXr1o3Dhw/z4Ycf8sgjj1zysV0rFKCL/BUR0dDxE7C5wc+fwrrxrq5IRERERERERERKCJvNxuLFi2nSpAkPP/wwNWrUoEuXLhw4cICwsDAA3n77bUqVKkXjxo1p27YtMTEx1KtXr9Dtjhs3jhUrVlCxYkXq1q1brJqCg4N54IEHCAgIoH379pd8bNcKmylsEnIpspSUFIKDg0lOTiYoKMjV5cjfLW4SLHk2733HKXDj/a6tR0RERERERETkGpKenk5CQgKRkZH4+Pi4upxrXosWLahduzYTJkxwdSmXrLB7pjhZrkagi1wODR6FBo/lvZ//bzj0k2vrERERERERERERKaakpCTmz5/P6tWreeKJJ1xdzlVBDxEVuVxiXoXTB+C3xTC7C/T5FkKruroqERERERERERGRIqlbty5JSUm8/vrrREVFubqcq4ICdJHLxc0dHvgIptwLx7bBzM7Qezn4hbq6MhERERERERERkYvav3+/q0u46mgKF5HLycsfus6BoOvgj70wpztkZ7q6KhEREREREREREbkECtBFLreg8hA7F7wC4cAP8PUA0LN6RUREREREREREShwF6CJXQlht6DwVbO7wy2fw/RuurkhERERERERERESKSQG6yJVSrSW0GZf3fvUY2DbHtfWIiIiIiIiIiIhIsShAF7mSbnkYbh+U9/6rJ2D/OtfWIyIiIiIiIiIiIkWmAF3kSmsxAmr+C3Kz4LNu8PteV1ckIiIiIiIiIiIiRaAAXeRKc3OD+ydDhVsg/TTM7Ahpv7u6KhERERERERER+Rs0a9aMwYMHF3n93bt307BhQ3x8fIiOjr6ClV0am83GggULXF3G30YBusjfwdMXun4GIZUgaX/eSPSsdFdXJSIiIiIiIiIiV9iXX37JqFGjirz+8OHD8ff357fffmPlypWXpYZ/Wuh9OSlAF/m7BJSF2M/BJxgOxcGCxyA319VViYiIiIiIiIjIFRQaGkpgYGCR14+Pj+eOO+6gcuXKlC5d+gpWJkWhAF3k71Q2Ch6cAW4esONLWDXa1RWJiIiIiIiIiJRIxhjOZp11ycsYU+Q6z5/CpUqVKowZM4ZHHnmEwMBAKlWqxOTJk611bTYbmzdv5pVXXsFmszFixAgADh06ROfOnQkJCSE0NJR27dqxf/9+h/188skn1K5dG29vb8qXL0///v2tfQJ06NABm81m/Qzw1VdfUa9ePXx8fKhatSojR44kOzvbat+7dy9NmjTBx8eHWrVqsWLFimJcoWuDh6sLEPnHiWwCbSfAV4/D2nFQKhLqdXd1VSIiIiIiIiIiJcq57HM0mNXAJfuO6xaHn6ffJfUdN24co0aN4sUXX+Tzzz/nscceo2nTpkRFRXHs2DFatmxJq1atGDJkCAEBAWRlZRETE0OjRo1Yu3YtHh4ejB49mlatWvHLL7/g5eXFBx98wFNPPcVrr73GvffeS3JyMuvWrQNg48aNlCtXjilTptCqVSvc3d0BWLt2LT169GDChAnceeedxMfH069fPyBvGpnc3Fzuv/9+wsLCiIuLIzk5uVhzuV8rFKCLuELdWEhKgDVvwsLBEHwdXH+Xq6sSEREREREREZErrHXr1jz++OMAPPfcc7zzzjusWrWKqKgowsPD8fDwICAggPDwcABmzJhBbm4uH330ETabDYApU6YQEhLC6tWrueeeexg9ejRPP/00gwYNsvZz6623AlC2bFkAQkJCrG0CjBw5kueff56ePXsCULVqVUaNGsWzzz7L8OHD+fbbb9m9ezfLli0jIiICgDFjxnDvvfde4TN0dVGALuIqdw3Ne6Do9nkwtwf0Xg7larq6KhERERERERGREsHXw5e4bnEu2/eluummm6z3NpuN8PBwTpw4UeD627ZtY9++ffnmUU9PTyc+Pp4TJ05w9OhRWrRoUaw6tm3bxrp163j11VetZTk5OaSnp3P27Fl27dpFxYoVrfAcoFGjRsXax7VAAbqIq9hs0O59SD4MBzfAzM7Q51sIDHN1ZSIiIiIiIiIiVz2bzXbJ06i4kqenp8PPNpuN3NzcAtdPTU2lfv36zJw5M19b2bJlcXO7tMdcpqamMnLkSO6///58bT4+Ppe0zWuRAnQRV/Lwhi6z4KOWcCoeZneBXovAq+T98hcRERERERERkcuvXr16zJkzh3LlyhEUFOR0nSpVqrBy5Uruusv5FMGenp7k5OTk2+5vv/1GtWrVnPapWbMmhw4d4tixY5QvXx6AH3/88S8cScl0aV9PiMjl4xcKsfPAtxQc3QJf9oXcnIv3ExERERERERGRa15sbCxlypShXbt2rF27loSEBFavXs3AgQM5fPgwACNGjGDcuHFMmDCBvXv3smXLFv7zn/9Y27AH7ImJiSQlJQHw8ssvM336dEaOHMmOHTvYtWsXn332GS+99BIALVu2pEaNGvTs2ZNt27axdu1ahg4d+vefABdTgC5yNSh9PXSZDe5esHshrHjZ1RWJiIiIiIiIiMhVwM/PjzVr1lCpUiXuv/9+atasSe/evUlPT7dGpPfs2ZPx48fzf//3f9SuXZv77ruPvXv3WtsYN24cK1asoGLFitStWxeAmJgYFi5cyPLly7n11ltp2LAh77zzDpUrVwbAzc2N+fPnc+7cOW677Tb69OnjMF/6P4XNGGNcXcS1ICUlheDgYJKTkwv8UwqRi9r+OXzRO+99m3Fwax/X1iMiIiIiIiIichVIT08nISGByMhIzc8tRVLYPVOcLFcj0EWuJnU6wl15fybD4mdgz3LX1iMiIiIiIiIiIvIPpgBd5GrTZAhEx4LJhc8fhsTtrq5IRERERERERETkH0kBusjVxmaD+8ZDZBPITIWZnSHlqKurEhERERERERER+cdRgC5yNfLwgs6fQpkoOHMUZnWGjFRXVyUiIiIiIiIiIvKPogBd5GrlGwKxc8GvTN40Lp8/AjnZrq5KRERERERERETkH0MBusjVrFQV6DYHPHxg7zJY+jwY4+qqRERERERERERE/hEUoItc7a67Be6fnPd+44cQN9G19YiIiIiIiIiIiPxDKEAXKQlqtYO7X8l7v+xFOH3QtfWIiIiIiIiIiIj8AyhAFykpGg+E8tFgcuHwJldXIyIiIiIiIiIics1TgC5SUthsUP7mvPfHf3VtLSIiIiIiIiIiIkU0depUQkJCXF3GJVGALlKShNfJ+/f4DtfWISIiIiIiIiIi8g+gAF2kJAmrnfdvokagi4iIiIiIiIiURJmZma4u4ZKU1Lr/KgXoIiWJPUBPOQznklxbi4iIiIiIiIiICxljyD171iUvY0yR62zWrBn9+/dn8ODBlClThpiYGE6fPk2fPn0oW7YsQUFBNG/enG3btjn0++abb7j11lvx8fGhTJkydOjQwWpLSkqiR48elCpVCj8/P+6991727t0LQEpKCr6+vixZssRhe/PnzycwMJCzZ88CcOjQITp37kxISAihoaG0a9eO/fv3W+v36tWL9u3b8+qrrxIREUFUVBQAGRkZDBkyhAoVKuDv70+DBg1YvXq1w76mTp1KpUqV8PPzo0OHDvzxxx9FPl9XGw9XFyAixeATDMGVIPkgHN8JVW53dUUiIiIiIiIiIi5hzp3jt3r1XbLvqC2bsfn5FXn9adOm8dhjj7Fu3ToAOnXqZIXcwcHBTJo0iRYtWrBnzx5CQ0NZtGgRHTp0YOjQoUyfPp3MzEwWL15sba9Xr17s3buXr7/+mqCgIJ577jlat27Nzp07CQoK4r777mPWrFnce++9Vp+ZM2fSvn17/Pz8yMrKIiYmhkaNGrF27Vo8PDwYPXo0rVq14pdffsHLywuAlStXEhQUxIoVK6zt9O/fn507d/LZZ58RERHB/PnzadWqFdu3b6d69erExcXRu3dvxo4dS/v27Vm6dCnDhw//q6fcZWymOF+XSIFSUlIIDg4mOTmZoKAgV5cj17JZXWDPErj3DWjwqKurERERERERERG54tLT00lISCAyMhIfHx8Acs+edWmA7lbEAL1Zs2akpKSwZcsWAH744QfatGnDiRMn8Pb2ttarVq0azz77LP369aNx48ZUrVqVGTNm5Nve3r17qVGjBuvWraNx48YA/PHHH1SsWJFp06bRqVMnFixYQPfu3Tl+/Dh+fn6kpKQQFhZmhd0zZsxg9OjR7Nq1C5vNBuRN0RISEsKCBQu455576NWrF0uXLuXgwYNWoH7w4EGqVq3KwYMHiYiIsGpq2bIlt912G2PGjKFbt24kJyezaNEiq71Lly4sXbqU06dPF/NMXzpn94xdcbJcjUAXKWnCb8wL0I9rHnQRERERERER+eey+foStWWzy/ZdHPXr/xn0b9u2jdTUVEqXLu2wzrlz54iPjwdg69at9O3b1+m2du3ahYeHBw0aNLCWlS5dmqioKHbt2gVA69at8fT05Ouvv6ZLly588cUXBAUF0bJlS6uGffv2ERgY6LDt9PR0qwaAOnXqWOE5wPbt28nJyaFGjRoO/TIyMqzj2bVrl8N0MwCNGjVi6dKlhZyhq5cCdJGSxj4P+vEdrq1DRERERERERMSFbDZbsaZRcSV/f3/rfWpqKuXLl883bzhASEgIAL7FDOgv5OXlRceOHZk1axZdunRh1qxZPPjgg3h4eFg11K9fn5kzZ+brW7ZsWad12/u5u7uzefNm3N3dHdoCAgL+Us1XKwXoIiVN2I15/x7fCbk54OZe+PoiIiIiIiIiInLVqFevHomJiXh4eFClShWn69x0002sXLmShx9+OF9bzZo1yc7OJi4uzmEKl99++41atWpZ68XGxnL33XezY8cOvvvuO0aPHu1Qw5w5cyhXrlyxpqOuW7cuOTk5nDhxgjvvvNPpOjVr1iQuLs5h2Y8//ljkfVxt3FxdgIgUU2hV8PCF7HNwKsHV1YiIiIiIiIiISDG0bNmSRo0a0b59e5YvX87+/ftZv349Q4cOZdOmTQAMHz6c2bNnM3z4cHbt2sX27dt5/fXXAahevTrt2rWjb9++/PDDD2zbto2HHnqIChUq0K5dO2s/TZo0ITw8nNjYWCIjIx2mfImNjaVMmTK0a9eOtWvXkpCQwOrVqxk4cCCHDx8usPYaNWoQGxtLjx49+PLLL0lISOCnn35i7Nix1pznAwcOZOnSpbz11lvs3buX9957r8RO3wIK0EVKHjd3KFcz7/3x7a6tRUREREREREREisVms7F48WKaNGnCww8/TI0aNejSpQsHDhwgLCwMyHvw6Lx58/j666+Jjo6mefPm/PTTT9Y2pkyZQv369bnvvvto1KgRxhgWL16Mp6enw366du3Ktm3biI2NdajBz8+PNWvWUKlSJe6//35q1qxJ7969SU9Pv+iI9ClTptCjRw+efvppoqKiaN++PRs3bqRSpUoANGzYkA8//JB3332Xm2++meXLl/PSSy9drtP3t7MZY4yri7gWFOfJrSJ/2dcDYMt0aPIMNC+5v4BERERERERERIoiPT2dhIQEIiMj8fHxcXU5UgIUds8UJ8vVCHSRksiaB10PEhUREREREREREblSFKCLlERhtfP+TfzVtXWIiIiIiIiIiIhcwxSgi5RE9gA9+SCkJ7u2FhERERERERERkWuUAnSRksi3FARdl/de07iIiIiIiIiIiIhcEQrQRUoq+yh0BegiIiIiIiIiIiJXhAJ0kZIq3P4gUc2DLiIiIiIiIiIiciUoQBcpqfQgURERERER+X/27jw8yvpe//g9a/aVQDaBBIQQICCCRQgoCopaULEexXJ+rVblWIqKglXrimitFEHcl9Naa7WHLmpRcUEEgciOyiKgLCEs2SCQkHVmMs/vj0kGIlsiSZ7M5P26rlwzJM/M3KNcLHc+fL4AAKBFUaADgSoxy3db9K3k9ZqbBQAAAAAAAAhCFOhAoIrvJtlDJXeldGiX2WkAAAAAAACAoEOBDgQqm13q2Mt3nz3oAAAAAAAACCJ/+ctfFBsba3YMCnQgoPkPEt1sbg4AAAAAAAAEDIvFovfee8/sGH5paWl65plnGnzu+uuv13fffWdSoqPsZgcAcAYS6wp0DhIFGF9+8QAAIABJREFUAAAAAABAEAkLC1NYWJjZMZhABwJaYh/fLStcAAAAAABAO2MYhtw1taZ8GIbR6Jz/+te/lJWVpbCwMHXo0EGjRo3SF198IYfDoYKCggbXTpkyRcOHD5d0dIXJBx98oIyMDIWHh+vaa69VZWWl3njjDaWlpSkuLk533HGHamtr/c+RlpamGTNm6IYbblBERIRSU1P1wgsvNPi6JI0bN04Wi8X/Y0l66aWX1L17dzmdTmVkZOjNN99skM9iseiVV17RmDFjFB4erszMTK1YsULbt2/XiBEjFBERoaFDh2rHjh3+x+zYsUNXXXWVEhMTFRkZqfPOO0+fffaZ/+sjRozQ7t27ddddd8lischisTR4/8d6//33dd555yk0NFQJCQkaN25co/8//FhMoAOBrH4C/fBuqbpMCo02Nw8AAAAAAEAr8bi8evXOL0x57YlzL5QjxHba6/Lz83XDDTdo5syZGjdunI4cOaJly5Zp4MCB6tatm958803dc889kiS326233npLM2fO9D++srJSzz77rP7v//5PR44c0TXXXKNx48YpNjZWCxYs0M6dO/Wzn/1M2dnZuv766/2P++Mf/6jf/e53mj59uj755BPdeeed6tmzpy655BKtWbNGnTp10uuvv67LLrtMNpvvfbz77ru688479cwzz2jUqFH64IMPdNNNN+mss87SRRdd5H/uGTNmaPbs2Zo9e7buvfde/fznP1e3bt10//33q0uXLvrVr36lyZMn66OPPpIklZeX64orrtATTzyhkJAQ/fWvf9XYsWO1bds2denSRe+884769++viRMn6tZbbz3pf8sPP/xQ48aN0wMPPKC//vWvcrlcWrBgQdP+x/0IFOhAIAuPl6JSpCP7paJvpS7nm50IAAAAAAAAdfLz8+XxeHTNNdeoa9eukqSsrCxJ0s0336zXX3/dX6C///77qq6u1nXXXed/vNvt9k+FS9K1116rN998U4WFhYqMjFTv3r110UUXafHixQ0K9OzsbN13332SpJ49eyonJ0dz5szRJZdcoo4dO0qSYmNjlZSU5H/MrFmzdOONN2rSpEmSpLvvvlsrV67UrFmzGhToN910kz/jvffeqyFDhuihhx7S6NGjJUl33nmnbrrpJv/1/fv3V//+/f0/njFjht59913Nnz9fkydPVnx8vGw2m6Kiohrk+aEnnnhC48eP1/Tp0xs8d0ujQAcCXVJfX4FeuIkCHQAAAAAAtBt2p1UT515o2ms3Rv/+/TVy5EhlZWVp9OjRuvTSS3XttdcqLi5ON954ox588EGtXLlS559/vv7yl7/ouuuuU0REhP/x4eHh/vJckhITE5WWlqbIyMgGnysqKmrwukOGDDnuxz88pPOHtmzZookTJzb4XHZ2tubOndvgc/369Wvw2tLRbwrUf666ulplZWWKjo5WeXm5Hn30UX344Yf+byhUVVUpLy/vlHl+6Ouvvz7lhHpLoUAHAl1iH+n7T6XCzWYnAQAAAAAAaDUWi6VRa1TMZLPZtHDhQn355Zf69NNP9dxzz+mBBx7QqlWrlJ6errFjx+r1119Xenq6PvroIy1ZsqTB4x0OR4MfWyyWE37O6/W29Fs5Yab6feUn+lx9pmnTpmnhwoWaNWuWzj77bIWFhenaa6+Vy+Vq0uuadaAoh4gCga5+D3oBB4kCAAAAAAC0NRaLRdnZ2Zo+fbq++uorOZ1Ovfvuu5KkW265RfPmzdOrr76q7t27Kzs7u1lec+XKlcf9ODMz0/9jh8PR4OBRScrMzFROTk6Dz+Xk5Kh3795nlCUnJ0c33nijxo0bp6ysLCUlJSk3N7fBNU6n87g8P9SvXz8tWrTojLL8GEygA4GuvkAv+lbyeiUr3xcDAAAAAABoC1atWqVFixbp0ksvVadOnbRq1SoVFxf7y+zRo0crOjpajz/+uB577LFme92cnBzNnDlTV199tRYuXKh//vOf+vDDD/1fT0tL06JFi5Sdna2QkBDFxcXpnnvu0XXXXacBAwZo1KhRev/99/XOO+/os88+O6MsPXr00DvvvKOxY8fKYrHooYceOm5iPi0tTUuXLtX48eMVEhKihISE457nkUce0ciRI9W9e3eNHz9eHo9HCxYs0L333ntG+U6Hpg0IdB3OlmxOyVUuHc41Ow0AAAAAAADqREdHa+nSpbriiivUs2dPPfjgg3r66ad1+eWXS5KsVqtuvPFG1dbW6he/+EWzve7UqVO1du1aDRgwQI8//rhmz57tP+RTkp5++mktXLhQnTt31oABAyRJV199tebOnatZs2apT58+euWVV/T6669rxIgRZ5Rl9uzZiouL09ChQzV27FiNHj1a5557boNrHnvsMeXm5qp79+7+Q05/aMSIEfrnP/+p+fPn65xzztHFF1+s1atXn1G2xrAYhmG0+Ku0A2VlZYqJiVFpaamio6PNjoP25uXhUsEG6fq/SZljzU4DAAAAAADQrKqrq7Vr1y6lp6crNDTU7DjN6uabb1ZxcbHmz5/fLM+XlpamKVOmaMqUKc3yfIHqVD9nmtLlMoEOBIOkupOOOUgUAAAAAAAgIJSWlmr58uV6++23dfvtt5sdByfBDnQgGCT28d0WbDQ3BwAAAAAAABrlqquu0urVq3XbbbfpkksuMTsOToICHQgG9QeJMoEOAAAAAAAQEJYsWdIiz5ubm9siz9tescIFCAb1E+iHdkk15eZmAQAAAAAAAIIEBToQDCISpMgk3/2ib83NAgAAAAAA0EIMwzA7AgJEc/1coUAHgkVS/RqXTebmAAAAAAAAaGYOh0OSVFlZaXISBIr6nyv1P3d+LHagA8EisY+0/TOpgAIdAAAAAAAEF5vNptjYWBUVFUmSwsPDZbFYTE6FtsgwDFVWVqqoqEixsbGy2Wxn9HwU6ECwSMzy3XKQKAAAAAAACEJJSb71tfUlOnAqsbGx/p8zZ4ICHQgW9QeJFm6WDEPiu7AAAAAAACCIWCwWJScnq1OnTnK73WbHQRvmcDjOePK8HgU6ECwSekg2p+Q6Ih3eLcWlmZ0IAAAAAACg2dlstmYrR4HT4RBRIFjYHFLHDN991rgAAAAAAAAAZ4wCHQgmiX19txwkCgAAAAAAAJwxCnQgmPj3oFOgAwAAAAAAAGeKAh0IJvUT6KxwAQAAAAAAAM4YBToQTOoL9JKdkqvC3CwAAAAAAABAgKNAB4JJZEcpMlGSIRVtMTsNAAAAAAAAENAo0IFgwx50AAAAAAAAoFlQoAPBpr5AL6BABwAAAAAAAM4EBToQbBKzfLccJAoAAAAAAACcEQp0INj4V7hslgzD3CwAAAAAAABAAKNAB4JNQk/J6pBqSqXSPWanAQAAAAAAAAIWBToQbOxOqWOG7z5rXAAAAAAAAIAfjQIdCEYcJAoAAAAAAACcMQp0IBgl9vXdFlKgAwAAAAAAAD8WBToQjI49SBQAAAAAAADAj0KBDgSj+gn0kh2Sq9LcLAAAAAAAAECAokAHglFUohTRUTK8UvEWs9MAAAAAAAAAAYkCHQhWHCQKAAAAAAAAnBEKdCBY+Q8SZQ86AAAAAAAA8GNQoAPBigIdAAAAAAAAOCMU6ECwql/hUrhRMgxzswAAAAAAAAABiAIdCFYdMySrXaoulcr2mZ0GAAAAAAAACDgU6ECwsodICT199zlItEmqPFV6bMVjeu6r55Rbmmt2HAAAAAAAAJjEbnYAAC0osY9U9K1UuEnKuMzsNAHj/R3v65/f/VOS9OqGV9W/Y39d2f1KXZZ+maKd0SanAwAAAAAAQGthAh0IZhwk+qMs37dckpQamSqrxapvir/RjJUzdNG8izTti2launepPF6PySkBAAAAAADQ0phAB4KZv0BnhUtjuWvdWpW/SpI0e8RsdQzrqA93fqj/7PiPth/erk9yP9EnuZ+oQ2gH/bTbT3Vl9yuVEZ9hcmoAAAAAAAC0BIthGIbZIYJBWVmZYmJiVFpaquhoVjygjThSID2dIVms0u/2S44wsxO1eWsK1uhXn/xK8aHxWnzdYlktvn+oYxiGtpRs0fwd87Vg5wIdqjnkf0yv+F66svuVuiL9CnUI62BWdAAAAAAAADRCU7pcJtCBYBaZKIV3kCoPSsVbpZQBZidq8+rXt2SnZPvLc0myWCzq3aG3enforakDp2rZvmWav2O+vtj7hbaWbNXWkq2avXa2hqUO05VnX6kLz7pQTpvTrLcBAAAAAACAZkCBDgQzi8V3kOiupVLBJgr0RsjZlyNJyk7NPuk1DptDF3e5WBd3uViHqw9rwa4Fmr9jvjYf3Kwle5doyd4ligmJ0WVpl+mq7lepb0JfWSyW1noLAAAAAAAAaCYU6ECwS8zyFegcJHpaRZVF2nZomyyyaEjKkEY9JjY0Vj/P/Ll+nvlz7Ti8Q//Z8R99uONDFVUVad62eZq3bZ7SY9J1ZfcrNabbGCVFJLXwuwAAAAAAAEBzsZ7+EgABLbGP75aDRE+rfvq8T4c+ig+Nb/Lju8d2190D79an136qV0a9oivSr1CILUS7Sndp7vq5uvRfl2ripxP1wc4PVOWpau74AAAAAAAAaGZMoAPB7tgC3TB8a11wQjn7T7++pTFsVpuGpg7V0NShKneV69Pdn+o/2/+j9UXrtSJ/hVbkr1C4PVyXpl2qK7tfqYGJAxvsWwcAAAAAAEDbQIEOBLuOvSSLTao6JB3Jl6JTzE7UJnm8Hq3Yv0KSNCx1WLM9b6QzUtf0uEbX9LhGe47s0fs73tf8HfO1r3yf3tv+nt7b/p5SI1M1tvtYXdntSnWO7txsrw0AAAAAAIAzw8gjEOwcoVJCD9/9Ata4nMymA5tU5ipTtDNafRP6tshrdI7qrEnnTNKCaxbo9dGva9zZ4xThiNC+8n16+ZuXdcW7V+iXH/1SS/YsaZHXBwAAAAAAQNNQoAPtQWJdIcwe9JOqX98yJGWI7NaW/cc5VotVg5IG6bHsx7T4usV6cviTGpI8RBZZtL5ove74/A59nvd5i2YAAAAAAADA6VGgA+2Bfw/6ZnNztGH1B4hmp5zZ/vOmCrOHaUy3MXr10lf16bWfaky3MTJk6N6l92pj8cZWzQIAAAAAAICGKNCB9oAJ9FM6VH1Imw74/tuc6QGiZyIpIkkzsmdoeOpwVddWa/Lnk7XnyB7T8gAAAAAAALR3FOhAe5BUV6Af+F5yV5ubpQ1asX+FDBnqGddTncI7mZrFbrVr1oWzlBmfqZLqEk36bJIOVx82NRMAAAAAAEB7RYEOtAdRyVJYnGTUSsVbzU7T5tTvPzdz+vxY4Y5wPT/yeSVHJCu3LFd3Lr5TNbU1ZscCAAAAAABodyjQgfbAYjlmjQt70I/lNbz+/efDUoaZnOaoTuGd9OLIFxXliNL6ovV6YPkD8hpes2MBAAAAAAC0KxToQHtBgX5C20q26WD1QYXZwzSg0wCz4zRwdtzZmnPRHNmtdn2S+4meWf+M2ZEAAAAAAADaFQp0oL1I7OO7Ldxobo42pn59y+DkwXLYHCanOd7g5MF6bOhjkqTXN72ueVvnmZwIAAAAAACg/aBAB9qL+oNECzZJhmFuljZk+b7lktrW+pYfGtt9rCafM1mS9PvVv9cXe74wOREAAAAAAED7QIEOtBcde0kWq1RVIpUXmp2mTTjiOqJvir6RJA1NHWpymlOb2G+irulxjbyGV/csvUebD7CKBwAAAAAAoKVRoAPthSNM6nC2737BJnOztBGr81fLY3iUFp2mzlGdzY5zShaLRQ+e/6CGpgxVladKv1n0G+0r32d2LAAAAAAAgKBGgQ60J/6DRCnQJWn5ft/6luzUbJOTNI7D6tDTFz6tjLgMHaw+qEmfTVJpTanZsQAAAAAAAIIWBTrQnvgPEqVANwxDOft8B4hmpwRGgS5Jkc5IvTDyBSWGJ2pn6U5NWTxFrlqX2bEAAAAAAACCEgU60J74J9DZn72rdJfyK/LltDo1KGmQ2XGaJDEiUS+OelGRjkitLVyrh3Iektfwmh0LAAAAAAAg6FCgA+1JUl2BfuA7yVNjbhaTLd/nW98yKGmQwuxhJqdpup5xPTV7xGzZLXYt2LVAz3/1vNmRAAAAAAAAgg4FOtCeRKdKoTGS1yMVbzM7jaly9gfe+pYfGpIyRI8MfUSS9NrG1/TP7/5pciIAAAAAAIDgQoEOtCcWi5SY5bvfjte4VHmqtLZgrSRpWOowk9OcmavPvlq/7v9rSdITK5/Qsr3LTE4EAAAAAAAQPCjQgfaGg0S1tmCtXF6XkiOSlR6TbnacM/br/r/Wld2vVK1Rq6lfTNW3B781OxIAAAAAAEBQaNMFem1trR566CGlp6crLCxM3bt314wZM2QYhv8awzD08MMPKzk5WWFhYRo1apS+//77Bs9TUlKiCRMmKDo6WrGxsbr55ptVXl7e4JoNGzZo+PDhCg0NVefOnTVz5sxWeY9Aq6NAP7q+JTVbFovF5DRnzmKx6NEhj2pw8mBVear0m0W/UX55vtmxAAAAAAAAAl6bLtCfeuopvfTSS3r++ee1ZcsWPfXUU5o5c6aee+45/zUzZ87Us88+q5dfflmrVq1SRESERo8ererqav81EyZM0ObNm7Vw4UJ98MEHWrp0qSZOnOj/ellZmS699FJ17dpV69at0x//+Ec9+uijevXVV1v1/QKtov4g0Xa8wiVnn69AH5YS2OtbjuWwOTRnxBydHXu2DlQd0KRFk1TmKjM7FgAAAAAAQECzGMeOc7cxY8aMUWJiov70pz/5P/ezn/1MYWFh+tvf/ibDMJSSkqKpU6dq2rRpkqTS0lIlJibqL3/5i8aPH68tW7aod+/eWrNmjQYNGiRJ+vjjj3XFFVdo7969SklJ0UsvvaQHHnhABQUFcjqdkqT77rtP7733nrZu3dqorGVlZYqJiVFpaamio6Ob+b8E0IxcldLvUyQZ0tTvpKhEsxO1qj1H9uiKd66Q3WLX0vFLFeWMMjtSsyqoKNCEDyeoqKpIP0n6iV4e9bIcNofZsQAAAAAAANqMpnS5bXoCfejQoVq0aJG+++47SdI333yj5cuX6/LLL5ck7dq1SwUFBRo1apT/MTExMRo8eLBWrFghSVqxYoViY2P95bkkjRo1SlarVatWrfJfc8EFF/jLc0kaPXq0tm3bpkOHDp0wW01NjcrKyhp8AAHBGS516O673w7XuHy570tJUv9O/YOuPJekpIgkvTDqBYXbw7W6YLUe+fIRteHvkwIAAAAAALRpbbpAv++++zR+/Hj16tVLDodDAwYM0JQpUzRhwgRJUkFBgSQpMbHhBG1iYqL/awUFBerUqVODr9vtdsXHxze45kTPcexr/NCTTz6pmJgY/0fnzp3P8N0CrSix/a5xWb5/uSRpWGrwrG/5oV7xvTR7xGzZLDa9v/N9vfD1C2ZHAgAAAAAACEhtukD/xz/+obfeektvv/221q9frzfeeEOzZs3SG2+8YXY03X///SotLfV/7Nmzx+xIQOP5C/T2NYHurnVrVb7vX55kp2SbnKZlZadm6+EhD0uSXtnwit79/l2TEwEAAAAAAAQeu9kBTuWee+7xT6FLUlZWlnbv3q0nn3xSv/zlL5WUlCRJKiwsVHJysv9xhYWFOueccyRJSUlJKioqavC8Ho9HJSUl/scnJSWpsLCwwTX1P66/5odCQkIUEhLSDO8SMEE7PUh0fdF6VXmq1CG0gzLiM8yO0+Ku6XGN9pXv06sbXtX0FdOVGJ6ooalDzY4FAAAAAAAQMNr0BHplZaWs1oYRbTabvF6vJCk9PV1JSUlatGiR/+tlZWVatWqVhgwZIkkaMmSIDh8+rHXr1vmv+fzzz+X1ejV48GD/NUuXLpXb7fZfs3DhQmVkZCguLq7F3h9gmsQ+vtvibZLHZW6WVpSzL0eSbzrbamnTv/w1m8nnTNaYbmNUa9Tq7i/u1raSbWZHAgAAAAAACBhtukEaO3asnnjiCX344YfKzc3Vu+++q9mzZ2vcuHGSJIvFoilTpujxxx/X/PnztXHjRv3iF79QSkqKrr76aklSZmamLrvsMt16661avXq1cnJyNHnyZI0fP14pKSmSpJ///OdyOp26+eabtXnzZs2bN09z587V3Xffbdp7B1pUTGcpJEbyuqUD35mdptXU7z8P9vUtx7JYLHps6GP6SdJPVOGu0KRFk1RQceKzHQAAAAAAANBQmy7Qn3vuOV177bWaNGmSMjMzNW3aNP3P//yPZsyY4b/mt7/9rW6//XZNnDhR5513nsrLy/Xxxx8rNDTUf81bb72lXr16aeTIkbriiis0bNgwvfrqq/6vx8TE6NNPP9WuXbs0cOBATZ06VQ8//LAmTpzYqu8XaDUWy9Ep9HayxqWwolDfH/peFlk0JGWI2XFalcPm0JyL5qh7THcVVRZp0qJJOuI6YnYsAAAAAACANs9iGIZhdohgUFZWppiYGJWWlio6OtrsOMDpfThNWvOaNPR26dLHzU7T4t79/l09/OXDykrI0ts/fdvsOKbYX75fExZM0IGqAzo/+Xy9OOpFOawOs2MBAAAAAAC0qqZ0uW16Ah1AC2pnB4ku31e3viW1/axv+aGUyBS9MPIFhdnDtDJ/paZ/OV18DxUAAAAAAODkKNCB9iqx/RToHq9HK/JXSGpf+89PpHeH3pp14SxZLVb9Z8d/9PKGl82OBAAAAAAA0GZRoAPtVadMSRapvFAqLzY7TYvadGCTjriOKNoZrayELLPjmO6Csy7Qg+c/KEl68esX9Z/t/zE5EQAAAAAAQNtEgQ60V84IKb6b737hJnOztLD69S1DU4bKZrWZnKZt+K+e/6Wb+94sSXr0y0e1Mn+lyYkAAAAAAADaHgp0oD1L7OO7DfICPWdfjqT2vf/8RO449w5dnn65PIZHdy2+S98d+s7sSAAAAAAAAG0KBTrQnrWDPegl1SXafND3/tr7/vMfslqsejz7cQ1MHKhyd7kmfTZJB6oOmB0LAAAAAACgzaBAB9qzpPoCPXgn0FfsXyFDhjLiMtQxvKPZcdocp82puRfNVXpMugorC3XX4rvkqnWZHQsAAAAAAKBNoEAH2rP6FS7F26Rat7lZWgjrW04vJiRGz138nKKcUfq6+Gv9ftXvZRiG2bEAAAAAAABMR4EOtGexXSVnlFTrkg58b3aaZuc1vMrZ7yvQh6UOMzlN29Y1uqtmXjBTVotV//7+35q3bZ7ZkQAAAAAAAExHgQ60ZxbLMQeJBt8e9K0lW1VSXaJwe7jO6XiO2XHavGGpwzTl3CmSpKdWP6U1BWtMTgQAAAAAAGAuCnSgvfMX6BvNzdEC6te3DE4eLIfNYXKawHBjnxt1efrl8hgeTV0yVfvL95sdCQAAAAAAwDQU6EB75z9INPgm0JfvWy6J9S1NYbFYNH3odGXGZ+pQzSHdufhOVXmqzI4FAAAAAABgCgp0oL1LrCvQCzaZm6OZHXEd0TfF30iShqYMNTlNYAmzh2nuRXMVHxqvrSVb9XDOwxwqCgAAAAAA2iUKdKC965Tpuy0vkCoOmJulGa3KX6Vao1Zp0Wk6K+oss+MEnOTIZM0eMVt2i10f536sP2/6s9mRAAAAAAAAWh0FOtDehURJcem++0G0xoX1LWduYOJA3T/4fknS3PVztXTvUpMTAQAAAAAAtC4KdADHHCQaHGtcDMNQzn7fAaLZqdkmpwls12Vcp//q+V8yZOjepfdqV+kusyMBAAAAAAC0Ggp0AFJSlu82SCbQd5buVEFFgUJsIRqUOMjsOAHv/p/cr3M7natyd7nu+PwOHXEdMTsSAAAAAABAq6BAB3B0Ar1go7k5mkn9+pZBiYMUag81OU3gc9gcenrE00oMT1RuWa7uW3afar21ZscCAAAAAABocRToAI4W6MVbpVqPuVmaQc4+1rc0t4SwBM29eK5CbCFaunepXvj6BbMjAQAAAAAAtDgKdABSbJrkjJRqXdLB7WanOSOV7kqtLVwriQK9ufXp0EfTh06XJL228TV9nPuxyYkAAAAAAABaFgU6AMlqlTr19t0P8INE1xauldvrVkpEitKj082OE3R+2u2nuqnPTZKkh3Me1taSrSYnAgAAAAAAaDkU6AB86te4BHiBfuz6FovFYnKa4HTnuXcqOyVbVZ4q3fn5nSqpLjE7EgAAAAAAQIugQAfgk9TXd1u42dwcZyhnP/vPW5rNatNTFzylLlFdtL9iv6Z9MU1ur9vsWAAAAAAAAM2OAh2AT2JdgV4QuBPoe8r2aHfZbtktdg1OGmx2nKAWExKjZy9+VuH2cK0pWKM/rvmj2ZEAAAAAAACaHQU6AJ/6HehH9kuVgbmSY/n+5ZKkczqdo0hnpMlpgl/32O76w/A/SJL+vvXveuf7d0xOBAAAAAAA0Lwo0AH4hEZLsV199wN0D/qx+8/ROi7qcpEmnzNZkjRj5Qx9XfS1yYkAAAAAAACaDwU6gKMSA3cPuqvWpdUFqyVJw1KHmZymfZnYb6Iu6XqJPF6P7lpylworCs2OBAAAAAAA0Cwo0AEc5T9INPAm0NcXrVeVp0oJYQnKiMswO067YrFY9Hj24+oR10MHqg5oyuIpqqmtMTsWAAAAAADAGaNAB3BUYh/fbQAeJFq/vmVoylBZLBaT07Q/4Y5wPXvRs4oJidGmg5v02IrHZBiG2bEAAAAAAADOCAU6gKPqV7gUb5VqPeZmaaLl+3wHiLK+xTxnRZ2lWRfOks1i0/wd8/W3LX8zOxIAAAAAAMAZoUAHcFRcuuQIlzzVUslOs9M0WkFFgbYf3i6LLBqSPMTsOO3a+cnna9qgaZKkWWtnacX+FSYnAgAAAAAA+PEo0AEcZbVKnXr77hduNDdLE3y5/0tJUlZClmJDY01OgwmZE3RV96vkNbya9sU07SnbY3YkAAAAAACAH4UCHUBD/oNEN5ubownq17dkp2bz1KQKAAAgAElEQVSbnASS71DRh4Y8pKyELJW5ynTH4jtU4a4wOxYAAAAAAECTUaADaKh+D3qAHCTq8Xq0cv9KSRTobUmILUTPXPSMOoZ11PbD2/XA8gfkNbxmxwIAAAAAAGgSCnQADSX28d0GyAT6xgMbdcR9RNHOaPXt0NfsODhGp/BOmnPRHDmsDi3KW6RXNrxidiQAAAAAAIAmsZsdAEAbU1+gl+2Vqg5JYXHm5jmN+vUtQ1OGyma1mZwGP9S/Y389dP5DevjLh/Xi1y+qZ1xPjewy0uxYAAAAAAC0K97KSrkLCuTeny93/n558vPlzi+QIzlJHe+4w+x4bRoFOoCGQmOkmC5SaZ5vCj1tmNmJTilnX44k1re0ZeN6jNO2Q9v01pa39Ltlv9NbV7yls+PONjsWAAAAAABBwfB45Ckuljs/X+79+fIU5NcV5flyFxTIs3+/aktLT/jYkN6ZFOinQYEO4HhJfQOiQD9YdVCbD/pWzWSnUKC3ZVMHTdX3h77X6oLVumPxHfr7T/+umJAYs2MBAAAAANCmGYYhb2mprwzPL2gwPe77XL48RUVSbe1pn8saGSlHcrLsKclyJCXLkZwsZ3p6K7yLwEaBDuB4iX2kbQukwrZ9kOiK/BWSpF7xvdQxvKPJaXAqDqtDsy6cpRs+vEF7juzRPV/coxdHvSi7ld+GAAAAAADtk2EY8lZUqPbAgaPrVQryfQX5MRPkRmXl6Z/M4ZAjMdFXkCcnyZGcIkdyshzJSbIn+8pyW1RUy7+pIERzAeB49XvQC9p2ge5f38L0eUCIC43T3Ivm6v999P+0In+Fnln3jKadN83sWAAAAAAANBuvy6XagwflKSlRbUmJPAcPqvZgiTwlP7wtUe3BgzJcrkY9r61Dhx8U4ilyJCfVFebJsickyGK1tvC7a58o0AEcLzHLd1u0RfLWSm3wcE6v4dWX+7+UxP7zQJIRn6EZ2TM07YtpeuPbN5QRn6Gx3ceaHQsAAAAAgBMyamtVW1rqK8UPlqi2xHd7fCHuu/WWlzf5Nazh4bIn+cpwR4qvEHck+e47kpNlT0qSNSSkBd4dGoMCHcDx4tMle5jkqZJKdkoJPcxOdJwtJVtUUl2iCEeEzul4jtlx0ASj00ZrW8k2vbbxNT365aPqFtNNfRL6mB0LAAAAANBOGC6XPCUl8hw4KM+BYtUeOCDPgQPyHDjoL8j9t4cPS15v017Abpc9Pl62Dh3qbuNlj+/Q8Lb+a/HxsoaFtcwbRbOgQAdwPKtN6pQp7V/v24PeBgv0+vUtg5MGy2FzmJwGTTV5wGR9f+h7Ldm7RHcsvkPzxsxTQliC2bEAAAAAAAHKqK1V7eHDviK8+IBqDx7w3/ccOCDPwQO+orz4gK8UbyJbbOwxhfixxXi8bPEdZO9w9NYaHS2LxdIC7xJmoEAHcGJJfesK9M1Sn3FmpzmOf/8561sCktVi1ZPDn9SEBRO0s3Snpn0xTa9d+pocVr4ZAgAAAADwMQxD3rIyeQ4erCvCG06Le/z3i1VbckiqrW38k9tssnfoIFtCB9kTEmRP6OibCk/ocLQQry/KY2NlcfD31faKAh3AiSX29d22wYNEy1xl+qb4G0kU6IEs0hmpZy56Rjd8eIPWFa7TM+ue0T3n3WN2LAAAAABAK6ktr5B7377jPwoLfaV48QEZbnfjn9BikS0urq4Q7yDbscV4xwTZExLqPpfgK8U5dBONQIEO4MTqC/TCzebmOIFV+atUa9QqPSZdqZGpZsfBGUiPSdcT2U9oypIp+uu3f1VWxyxdlnaZ2bEAAAAAAM3gpAV53UdtaWmjnscaHV03HZ4ge8e6ErxDgv/H9oQE2TokyB4fx6Q4mh0FOoATS+ztuy3Nk6oOS2Gx5uY5hn99SwrT58FgZNeR+lXfX+nPm/6sh3Me1tkxZ+vsuLPNjgUAAAAAOI3a8gq599cX4vvl3ru3yQW5LTZWjtTUhh/JSXVT5L6y3BoS0grvBjgxCnQAJxYWJ0WfJZXtlYq+lboONTuRJN/+s+X7lkuShqUOMzkNmsvtA27X5oObtSp/le5acpf+/tO/K9IZaXYsAAAAAGjXjivIfzhB3ojDOG0xMccX5P6PFNki+bsf2jYKdAAnl9TXV6AXbm4zBfqOwztUWFmoEFuIBiYONDsOmondatfMC2bq+g+uV25Zrh7MeVBzRszh1HIAAAAAaGG1hw/LlZcn1+48ufJ2y52XJ1fubrny8lR76NBpH09BjmBHgQ7g5BL7SN99LBVsNDuJX85+3/qWQUmDFGoPNTkNmlN8aLxmXzhbv/z4l1qUt0h/3vRn3Zx1s9mxAAAAACCgGYbhK8lzc33l+O48X2GelyfX7t3ynmbNijUmRo7UFDlTU+VIPYuCHO0OBTqAk0vs47ttQweJ+te3pLC+JRhldczS/YPv12MrHtOzXz2rPgl9dH7y+WbHAgAAAIA2zTAM1R48eHSSfHfDstx75MgpH2/v1EnOLl3k6NpFzi5d5ezaRc6uXeU46yzZoqJa6V0AbRMFOoCTS8zy3RZ9K3m9ktVqapxKd6XWFa6TJGWncoBosLq2x7XaULxB721/T7/94reaN2aekiOTzY4FAAAAAKYyDEOeomK583YfU5T77rt375a3svKUj7cnJcnZxVeMO7t2kaP+fufOsoaHt9K7AAIPBTqAk4vvJtlDJXeldGiX1KG7qXHWFKyR2+tWamSq0qLTTM2ClmOxWPTA4Ae0rWSbtpRs0d1L7tYbl78hp81pdjQAAAAAaFGGxyN3fr6vFN+zR668PXLvyZMrb49ceXkyqqpO/mCLRY7k5KNT5F26yJnmu3V07ixrKGtQgR+DAh3AydnsUqdMaf9XUuEm0wv0+vUt2SnZHC4Z5ELtoZpz0Rxd/8H12nRwk55c/aQeGfKI2bEAAAAA4Ix5q6rk2rPn+IJ8T57c+/ZLHs/JH2y1ypGS0nCKvG7liqNzZ1mdDB4BzY0CHcCpJfbxFegFm6TeV5kapf4AUda3tA+pkal6avhT+vVnv9a/vvuX+iX007ge48yOBQAAAACnVH9opzvvmGI8b4+vNM/Lk6e4+JSPtzgccnTuLGfnzr6CvHPno2V5aqoslORAq6JAB3BqiX19tyYfJJpXlqc9R/bIbrFrcPJgU7Og9WSnZus35/xGz3/9vB5f+bgy4jPUu0Nvs2MBAAAAaOeM2lp5Cgrk2rOnwbqV+rLcW15+ysdbo6PrCvLOcnbuImeXznLU3doTE2Ux+QwyAEdRoAM4NX+BvsnUGPXrWwYkDlCEI8LULGhdt/a7VZsObNKSvUt01+K7NG/MPMWGxpodCwAAAECQM9xuufbu9U2S787zHdy5J0/u3Xly79snw+0+5ePtnTr5CvIuXesK8s6+veSdO8sWy99pgEBBgQ7g1BL7+G4P75aqy6TQaFNi+Ne3pLC+pb2xWqx6YvgTGv/BeO05skf3LbtPL4x8QTarzexoAAAAAAKc1+WSe+9euXJ3y5W3u0FZ7t6/X6qtPfmDHQ45U1L8a1Z8ZXndfQ7tBIIGBTqAUwuPl6JSpCP7paJvpS7nt3qEmtoarSlYI0kaljqs1V8f5ot2RmvOiDn67wX/rZz9OXrxmxd1+4DbzY4FAAAAIAB4q6vrVqzUleO768ry3Xly5+dLhnHSx1rCwnyleJcudQd1Hl234khOksXGYA8Q7CjQAZxeYm9fgV681ZQCfX3helV5qpQQlqCecT1b/fXRNmTEZ+iRoY/o/mX369UNryorIUsjOo8wOxYAAACANsBbWenbR7674RS5a/dueQoKTvlYa3i4HGld61at+IpyZ5cucnTtKnvHjrJYLK30LgC0RRToAE4vOsV3e6TQlJfP2Xd0fQt/cGnfxnQbo43FG/X21rf1u2W/0/+N+T91ie5idiwAAAAArcBbXe2bHt+V22CK3JWXJ09R0Skfa42MlLNrV98Uede6sryuKLd16MDfNQGcFAU6gNOLTPLdlp/6u/YtpX7/OetbIEnTBk3TlpIt+qroK01ZMkV/u/xvCneEmx0LAAAAQDMwDEOewkK5du1Szc6dvrJ81y65du067boVW0xMXTl+dOWKs2tXObp2lS02lpIcwI9CgQ7g9KISfbcmTKAXVBRo++HtslqsOj+59dfHoO1x2ByadeEsXf/B9fr+0PeavmK6/jD8D/xhGAAAAAgg3spKuXJzVbNrl1w7fQV5Te4uuXJ3y6isPOnjrDExcqZ1rZsm/8EkeWxsK74DAO0FBTqA0zNxAr1+fUvfhL6KDeUPQ/DpFN5Jsy6cpZs/uVkLdi1Qv479NCFzgtmxAAAAABzD8Hrlyc9XjX+KfKevMN+Ve+q95DabnJ07y5meXveRppD0dDm7dZMtLo7hGQCtigIdwOlF1RXoJkyg+9e3pLC+BQ0NTByoqYOmauaamZq1ZpZ6d+itAZ0GmB0LAAAAaHdqyyt8BXlu3SR53US5a/duGdXVJ32cLS6uYUFe/3HWWbI4na33BgDgFCjQAZxeZN0Kl/JC3765Vvpuv9vr1or9KyRJ2anZrfKaCCz/nfnf2lC8QR/nfqypS6bqH2P/oYSwBLNjAQAAAEHHP02+s26SvH4/+c6d8hQXn/yBDodvH3l6XUmednSq3B4X11rxAeBHo0AHcHr1BbrXLVWWSBEdWuVlNxZvVLm7XDEhMerToU+rvCYCi8Vi0fSh07X98HZtP7xdU5dM1f+O/l85rA6zowEAAAAByb+bvH6KfNdO3/3c3FNPkyckKCQtreHalW7d5EhNlcVO/QQgcPErGIDTszulsHipqsS3B72VCvQ1BWskSUOSh8hmtbXKayLwhDvCNWfEHN3w4Q1aX7Rec9bN0W/P+63ZsQAAAIA2yzAMeYqKj06S1x/iuWunPPvzT/5Ah0POrl0Ukt5Nzm7dGqxesUVHt1p+AGhNFOgAGicqyVegHymQEltnGnx/xX5JUrfYbq3yeghcaTFpemLYE7pz8Z1689s3lZWQpcvTLzc7FgAAAGAqb02NXLt3+wry3F0NynJvRcVJH2eLizumIO8mZ7d0pskBtFv8qgegcSITpaJvfXvQW0lhpe+1EsMTW+01Ebgu7nKxbsm6Rf+78X/1yJePqEdsD50dd7bZsQAAAIAWZRiGag8dkmvnD6fJd8m9d6/k9Z74gTabnGed5SvK6wry+vUr7CYHgKMo0AE0TlSS7/ZIQau9ZHGl7yCaTuGdWu01EdgmnzNZmw5s0sr8lZqyZIr+/tO/K8oZZXYsAAAAoNnUlpWpasNGVW/coKpvNqhq40bVHjx40uutkZFyduvmW7VybFneubMsTmcrJgeAwESBDqBx6g8SbcUJ9KLKIkkU6Gg8m9WmmRfM1PUfXK/dZbv1wPIH9MxFz8hqsZodDQAAAGgyw+VS9bZtqtqwQdUbNqhqw0a5du06/kKLRY6UFF9R3q3+EE/ffVtCgiwWS+uHB4AgQYEOoHFaeQK9prZGh2sOS2KFC5omLjROs0fM1i8++oUW71msP2/6s27JusXsWAAAAMApGYYhd16eqjZs9Bfm1Vu2yHC5jrvW0aWLwrKyFNa/n0KzshTaq5esYWEmpAaA4EeBDqBxWnkCvX76PMQWomgnp7mjafom9NUDgx/Qoyse1XNfPafeHXpraMpQs2MBAAAAfp5Dh1S9cWPdGpYNqt6wUbWHDx93nS0mRqH9+imsXz+F9ctSaL9+7CgHgFZEgQ6gcVp5Av3Y9S38c0P8GD/r+TNtOLBB73z/ju5deq/+MeYfSo5MNjsWAAAA2iFvTY1qtmzxT5dXbdggd17ecddZHA6F9M5UWL/+CuuXpbB+/eTo0oW/EwGAiSjQATTOsRPohiG18B/g2H+O5vC7wb/T1pKt+vbgt7pryV164/I3FGILMTsWAAAAgpjh9cqVu/voIZ8bNqh62zbJ7T7uWmdamm8NS92EeWhGBgd7AkAbQ4EOoHHqJ9DdlVLNESm0ZdeqUKCjOYTYQjRnxBxd/8H12nxws55c9aQeHfqo2bEAAAAQJAzDkHvvXlV/u0XVW75V9YaNqtq0Sd6ysuOutcXH+9aw9O+n0Kx+CsvqK1tMjAmpAQBNQYEOoHGcEZIzSnId8U2ht3CBXljp27XOAaI4UymRKXrqgqd028Lb9O/v/61+Hfvpmh7XmB0LAAAAAcZwu1WzY4evLN+6RTXfblH11q3ylpcfd60lJEShffocs7e8vxypKaxiAYAARIEOoPGiEqWDR3x70BN6tOhLMYGO5jQ0ZahuH3C7nv3qWT2x8gllxGWoT0Ifs2MBAACgjaotr1DNtq2q3rLVN1m+ZYtc32+XcYI1LBaHQyE9eyq0d6a/NA/p0UMWh8OE5ACA5kaBDqDxIpOkg9t9E+gtjAIdze3mrJu14cAGLdmzRHctuUvzxsxTXGic2bEAAABgMk9xsaq3bq1bw7JFNVu2yJWX5zv76QesUVEKzcxUaGamQjJ7KTSzt0K6pVOWA0AQo0AH0HhRdetUjhS0+EvVF+iscEFzsVqs+v2w32v8B+OVdyRP9y69Vy+Nekk2q83saAAAAGgFhtcr9549qt6yxb+GpXrLFtUWHzjh9fakJIX26qXQ3pkKqSvNHamprGEBgHaGAh1A40XWHSRa3rIFumEYTKCjRUQ5o/TMRc9owoIJWpG/QjPXzNR9P7mPvwQBAAAEGcPlUs327b6yfMtW32T51q3yVlQcf7HFImd6um+yvHemQnr1Umhmpuzx8a0fHADQ5lCgA2g8/wR6y65wOVRzSG6vb7dgx7COLfpaaH96xPXQY9mP6Z4v7tHbW99WlDNKkwdMNjsWAAAAfiTD7Vb1d9+peuMmVW/epKpNm1Wzfbt0on3lISG+feWZmQrN9BXlIT17yhoebkJyAEAgoEAH0HitNIFeP30eHxovh41dgmh+l6VdpkPVh/T7Vb/XKxteUYQjQjf1vcnsWAAAADgNo7ZWrl27VLVxk6o3blTV5k2q2bJVhst13LXWmBhfUV63hiU0M1PO9HRZ7FQhAIDG43cNAI3XShPo7D9Ha7ih1w2qcFdo7vq5mr1utiIcEbou4zqzYwEAAKCOYRhy793rK8o3bVb1xo2q3rxZ3srK4661RkcrrG8fhfbNUmhWX4X17i17Sgqr+gAAZ4wCHUDjtdIEemGlr6DvGM76FrSsW7JuUaW7Uq9tfE2Pr3xc4Y5wjek2xuxYAAAA7ZK7sMi3gmXjRt86lk2bVHv48HHXWcLCFNq7t8L69lVoVpbCsvrK0aULZTkAoEVQoANovPoJ9OpSyV0lOcJa5GU4QBSt6fYBt6vcXa6/b/27Hlz+oMLsYRrZZaTZsQAAAIJa7eHDvqnyTRv961g8RUXHX+hwKDQjwzdVXjddHtK9uyw2W+uHBgC0SxToABovNFayhUi1NVJ5oRSX1iIvQ4GO1mSxWHTfT+5ThbtC83fM1z1f3KPnRz6voSlDzY4GAAAQFLwVFar+9ltfUV5XmLv37Dn+QqtVId27+6fKQ/v2VUhGhqxOZ+uHBgCgDgU6gMazWHxT6IfzfHvQW6hAr1/hwg50tBarxarpQ6erylOlhbsXasriKXrlklc0oNMAs6MBAAAEFMMw5NqVq8q1a1S1/itVbdoo146dkmEcd62jaxffVHnfvr7CPDNT1ogIE1IDAHByFOgAmiYyyVegt+Ae9OLKYklMoKN12a12/WH4H1TpqVTOvhxN+myS/jT6T+rdobfZ0QAAANoso7ZWNd99p8o1a1W5dq0q161T7cGDx11nT0pSaN8+/jUsYX37yhYTY0JiAACahgIdQNNE1pXaRwpb7CVY4QKzOG1OzRkxR7ctvE3ri9brtoW36S+X/UXdYruZHQ0AAKBNMFwuVW3e7CvL165V1fqv5D1ypME1FqdTYf36KWzQQIX166/Qvn3k6MSf7QEAgYkCHUDTRCX5bstbpkCvqa3R4ZrDkljhAnOE2cP0wsgXdMunt2jzwc269dNb9cblb+isqLPMjgYAANDqvFVVqvrmG/+EedU338iorm5wjTUiQmHnnqvwgQMVft4ghWZlsbccABA0KNABNE1kfYHeMitc6qfPQ2whinZGt8hrAKcT6YzUy6Ne1k2f3KTth7frlk9v0RuXvaHECL6pAwAAglttaakq169X1bp1qlyzVlWbN0seT4NrbLGxCj9vkMIHDVLYwEEK7ZUhi516AQAQnPgdDkDTRNUViC20wuXY9S0Wi6VFXgNojNjQWL16yav65ce/1J4jezRx4US9ftnrig+NNzsaAABAs/EUF6ty3TpVrl2nyrVrVbNt23EHftqTkhQ+aFDdx0A5u3fnz+oAgHaDAh1A07TSBDr7z9EWdAzvqNcufU2//OiX2lm6U7ctvE1/Gv0nRTmjzI4GAADQZIZhyL1vvyrXrvGtY1m7Tq7c3OOuc3btqrDz6gvz8+RITaEwBwC0WxToAJqmFSfQgbYgNTJVr136mm78+EZtKdmi3yz6jV4e9bLCHeFmRwMAADgt1+7dqlix0nfo57p18uTnN7zAYlFIRoZ/f3n4wIGyd+xoTlgAANogCnQATVM/gV5RLNV6JFvz/jJSWOkr5jlAFG1Jeky6Xr3kVd30yU36qugrTVk8Rc+PfF5OG4djAQCAtsVbVaXK1atVvnSZypctkzsvr+EFdrvC+vRR2KCBvgnzc8+VLSbGnLAAAAQACnQATRORIFmskuH1lejRyc369Eygo63KiM/QS6Ne0q2f3qoV+St0zxf36OkRT8tu5bdSAABgLldursqXLlX50mWqXLNGRk3N0S86HAo/5xyF/+QnCh80UGH9+8sazr+kAwCgsfhbP4CmsdqkiE6+HejlBRToaFf6d+yv5y5+TpM+m6TP93yuh3Ie0hPDnpDVYjU7GgAAaEe8VVWqWLVKFUuXqXz58uOmzO3JyYocPlyRFwxX+PlDZIuMMCkpAACBjwIdQNNFJfrK8xbYg15foLPCBW3V4OTBenrE07pr8V36YOcHCreH68HzH+RgLQAA0GIMw5BrV64qlh0zZe5yHb3A4VD4wIH+0tx59tn82QQAgGZCgQ6g6SKTJH3jK9GbkWEYTKAjIIzoPEK/H/573bv0Xv3ju38owhGhuwbexV9UAQBAs/FWVvqmzJctU/nSZXLv3dvg6/aUZEUOv8A3ZT74fKbMAQBoIRToAJouqm46vJkn0A/VHJLb65YkdQzr2KzPDTS3y9MvV6W7Uo+ueFSvb35dkc5ITew30exYAAAgQNVPmZcv/UIVS5epcu3a46fMBw30l+bO7t355j0AAK2AAh1A00Um+W6beQK9fvo8PjReDpujWZ8baAk/6/kzVbgr9Me1f9RzXz2nCEeEJmROMDsWAAAIEN7KSlWsXKXyZUtVsWz5cVPmjpQURVwwXJEXXKCIwYNljWDKHACA1kaBDqDpWmgCnf3nCES/6PMLVbgr9OI3L+oPq/+gcHu4xvUYZ3YsAADQBhmGIdfOnSpfukwVy5aqcs1aGW63/+sWh0Ph5w1SRP2UebduTJkDAGAyCnQATddCE+iFlb5CvmM461sQWG7rf5sq3BV649s39OiKRxXuCNfotNFmxwIAACYzDEPuvXtVtX69KteuU8WXX8q9b1+Daxypqb4p8+EXKGLwT5gyBwCgjaFAB9B0UXUFegtNoHOAKAKNxWLR1EFTVe4u17+//7fuW3qfwuxhuuCsC8yOBgAAWpHh8ah62zZVrVuvyvXrVbVunTzFxQ2u8U2Zn+dfzeJMT2fKHACANowCHUDTRdatWCkvlAxDaqY/8FOgI5BZLBY9dP5DqvRU6qNdH+nuJXfrpVEv6byk88yOBgAAWoi3slJVGzaoct26/8/efYdHVadtHP9Okkkyk2TSG73ZQFSKshaKtAAiAu6KCohUCxZggV3buuJKURQUC1JVhF0L+C4iVaQpKE1ABBTpRZJAep9k5v1jyEgUVyZMOJnk/lyXl+R3TsabP8Dh5pnnkL9tO/k7duDIyyt7k9mMpUkTLC2aY23Z0rXL3Go1JrCIiIh4TAW6iHiutEB32CEvDUKivfKypStctANdfJW/nz8v3PIC+fZ81h5fyyOrH2FW51k0jW1qdDQRERHxguLTp89OlrsmzAv27IGSkjL3+IWFYWl2HdbmLbC2aE5w06b4BQcblFhEREQulgp0EfFcQCBYoiA/zbUH3UsFemqe6+OtmkAXX2b2MzO53WSGfz6cb059w4OfP8jcLnO5PPJyo6OJiIiIB5xOJ0WHD7v2l29zrWMpOnLkN/cF1EjE2rwFlubNsLZoQVCjRpj8/Q1ILCIiIhVBBbqIlE9YgqtAzz4F8U288pJa4SJVRZB/EK+1f42hq4ayK3UXw1YO492u71LXVtfoaCIiIvI7nEVFFOzdS9627eRt30b+9m8pSUsre5PJRNDll2Nt0RxL8xZYmzfDXKOGMYFFRETkklCBLiLlExoPKXtce9C9oLCkkIzCDEArXKRqsJqtvNnhTYasHMK+tH0MXTmUd7u8S2JootHRREREBCjJySH/2x2usnzbdvJ37cJZUFDmHlNgIJZrrsHSwrWOxXLddfjbbAYlFhERESOoQBeR8glLcP07+5RXXq50+jzIPwhboP5QIlVDeFA40ztO5/7l93M46zBDVw3lnS7vEGOJMTqaiIhItePIzydv82ZyvvyKvK1bKfzhB3A4ytzjHx7+S1nevDnBTZrgFxhoUGIRERGpDFSgi0j5lD5I1EsT6OeubzGZTF55TZHKINoSzczOMxmwbABHso4wbNUw5ibNJTwo3OhoIiIiVVrpDvPcDRvIWb+BvC1bcBYWlrnHXKcO1mbNsLRojrVFCwLr18fk52dQYhEREamMVKCLSPlU0AS69p9LVZQQksCszrMYsHwA+9P3M2zVMGZ0mqESXURExMsc+fnkfvMNues3kLNhA00ws7wAACAASURBVPZjx8pcD6iRSGjrNoTc+CcszZtjjtN7TxEREfnfVKCLSPlU4AS6SFVU21abGZ1mMGjFIPac2cPQlUOZ2XmmSnQREZGL4HQ6KTp0mNwN63+ZMi8q+uUGsxlryxaEtm5DaJvWBDZsqE87ioiIiEdUoItI+Xh5Aj05z1XE6wGiUpU1imzE7KTZDFk5hL1pe1Wii4iIlIMjL881ZX52NYv9+PEy10unzEPbtiGkVSv8QkIMSioiIiJVgQp0ESmfcyfQnU64yEkeTaBLdXFZ5GXM7jybwSsHszdtL0NWDmFmp5lEBEcYHU1ERKRSck2ZHyJn/Xpy128gb+vWMlPmJrMZi6bMRUREpIKoQBeR8imdQLfnQWE2BNsu6uVUoEt10iiyEXOS5jB4xWD2pe1zleidZxIZHGl0NBERkUrBkZdH7tffkLPBVZrbT5woc91cowYhbVoT2kZT5iIiIlKxVKCLSPkEhkBgGBRlu6bQvVSga4WLVBcNIxoyJ2kOg1YM4of0Hxi8cjCzOs8iKjjK6GgiIiKXnNPppOjgQXLWbyB3w3rytmzFabe7r5vMZqzXtySkdMq8QQNNmYuIiMgloQJdRMovLB7OZLv2oMdcVu6XcTqdmkCXaqlBRAPmdHFNou9P38/gFa4SPdoSbXQ0ERGRCufIzSX3m2/cq1nsJ0+WuW6uWdM1Zd66DSGtbtCUuYiIiBhCBbqIlF9oApz5yTWBfhHSC9OxO1wTRrGWWG8kE/EZDcIbuNe5/JTxE0NWDlGJLiIiVZLT6aTo8GFy168nZ9168rZsOc+U+fXu1SyB9etrylxEREQMpwJdRMov7Oy6lexTF/UypdPnUcFRmP3NF5tKxOfUD69fpkQfvGIws5JmEWOJMTqaiIjIRXEUFpK3eTM569aTs3499qNHy1w316pFaJvWhLRu7dplbrUalFRERETk/FSgi0j5hZ59kGiOdwp07T+X6qxeeD3mdHHtRD+QeYDBKwYzO2m2SnQREfE59hMnyDk7ZZ779dc4Cwp+uWg2Y23ZgtC2bTVlLiIiIj5BBbqIlJ97Av3iVrgk57m+P9aq9S1SvdW11WVu0lwGrRjEwcyDDFoxiNmdZ+vXhoiIVGpOu5287d+Ss34dOevWUfTTgTLXA+LjCW3ThtC2bbD+6Ub8Q7XLXERERHyHCnQRKT8vT6DrAaIiUMdWx1WirxzEocxDrhI9abZ+fYiISKViT0khd8MG15T5xo04cnJ+uejnh6VZM1dp3q4tQZdfrilzERER8Vkq0EWk/Lw0ga4CXaSs2rba7p3oh7MOuyfR40O05khERIzhLCkhf9cuctavJ3fdegr27Clz3T8qitDWrQlt24aQm2/GPzzcoKQiIiIi3qUCXUTKz0sT6KUrXLQDXeQXtcN+KdGPZB1xT6InhCQYHU1ERKqJ4vR0cr/8ylWab9hASUZGmevBTZu6V7MEX301Jj8/g5KKiIiIVBwV6CJSfqUT6AWZYM8Hs6VcL5OalwpoAl3k12qF1WJOF1eJfjT7KINWDGJO0hyV6CIiUiGcTicFe/aQe/YBoPm7doHD4b7uZ7MResvNhLRpQ+gttxAQowddi4iISNWnAl1Eyi84AvyDoKQQcpIhsl65XkYrXER+X83QmsxJmsOgFYM4ln2MgcsHMidpDomhiUZHExGRKsCRm0vOl1+Rs34dues3UJyaWuZ60BVXuKfMLdddhylAf4QUERGR6qXSf8buxIkT9OvXj+joaCwWC02bNmXr1q3u606nk3/84x8kJiZisVjo2LEj+/fvL/MaaWlp9O3bF5vNRkREBIMHDybn3IfcALt27aJ169YEBwdTu3ZtXnzxxUvy8xPxaSbTRe9BLywpJKPQ9XFgrXAROb8aoTWYmzSXWqG1OJ5znIErBnIy56TRsURExEc58vLIWr6c44+P4Mebb+HE44+TuXARxampmKxWQjt0IOG552i0dg0N/vt/xP11FNaWLVWei4iISLVUqd8Bpaenc/PNN3PrrbeybNkyYmNj2b9/P5GRke57XnzxRV577TXeffdd6tevzzPPPENSUhJ79uwhODgYgL59+/Lzzz+zatUq7HY7AwcOZNiwYSxYsACArKwsOnfuTMeOHZk+fTrfffcdgwYNIiIigmHDhhnycxfxGaEJkHG03HvQS6fPg/yDsAXavJlMpEpJDE1kbpe57kn00p3oNUNrGh1NRER8gCM/n5z1G8havoyctetw5ue7r5nr1CHs1ltdU+YtW+IXGGhgUhEREZHKpVIX6JMmTaJ27drMnTvXfVa/fn33j51OJ1OnTuXpp5/mjjvuAOC9994jPj6e//u//+Puu+9m7969LF++nC1bttCyZUsApk2bRrdu3Zg8eTI1atRg/vz5FBUVMWfOHAIDA2nSpAk7duzglVdeUYEu8kcucgL93PUtJpPJW6lEqqSEkAT3g0WPZh9l0PJBzOkyRyW6iIicl6OggJwNG8hetpzstWtx5uW5r5lr18bWpQu2rl0IuuoqvQ8TERER+R2VeoXL4sWLadmyJX/5y1+Ii4ujWbNmzJw503390KFDnDp1io4dO7rPwsPDadWqFZs2bQJg06ZNREREuMtzgI4dO+Ln58c333zjvqdNmzYEnjNpkZSUxA8//EB6evp5sxUWFpKVlVXmH5FqKfTswwwvcgJd+89FLkxpiV7XVpeTuScZuHwgx7OPGx1LREQqCUdhIdmrV3Ni9Bj233QzJx59jKylS3Hm5WGuWZPoIYOp9/HHNFy5gri/jiK4cWOV5yIiIiL/Q6WeQD948CBvvfUWo0aN4sknn2TLli089thjBAYGMmDAAE6dchV28fFl9ybHx8e7r506dYq4uLLFXEBAAFFRUWXuOXey/dzXPHXqVJmVMaUmTJjAc889552fqIgvK51Az7n4CXQRuTDxIfHuSfTDWYcZuML1YNHaYbWNjiYiIgZwFBWR++VXrvUsq7/AkZvrvhaQmOieNA9u2lRluYiIiIiHKnWB7nA4aNmyJePHjwegWbNm7N69m+nTpzNgwABDsz3xxBOMGjXK/XVWVha1a6u4kGqodAK9nCtckvNc36cHiIp4Js4ax5ykOQxaMchVoi8fyNykudS26f9FIiLVgbOoiJyNG13rWVavxpGT474WkJCALSnJVZpfe61KcxEREZGLUKkL9MTERBo3blzm7KqrrmLhwoUAJCS4irvk5GQSExPd9yQnJ3Pddde570lJSSnzGsXFxaSlpbm/PyEhgeTksuVf6del9/xaUFAQQUFB5f2piVQdYVrhImKUWGus+8GihzIPcf+K+5mbNJc6tjpGRxMRkQrgLCoi9+uvySotzc9ZIxkQF0dYlyRsXbpiue5aTH6VeluniIiIiM+o1O+qbr75Zn744YcyZz/++CN169YFXA8UTUhIYPXq1e7rWVlZfPPNN9x4440A3HjjjWRkZLBt2zb3PV988QUOh4NWrVq571m/fj12u919z6pVq7jiiivOu75FRM4Rerb49sJDREXEczGWGOYkzaFheENS8lIYuHwgR7KOGB1LRES8xGm3k7PhS04+9RQ/tm7DsWEPkPnJJziysvCPjSGyXz/qzn+fRmvXkPDkk1ibN1N5LiIiIuJFlXoCfeTIkdx0002MHz+eu+66i82bNzNjxgxmzJgBgMlkYsSIEfzrX//isssuo379+jzzzDPUqFGDnj17Aq6J9S5dujB06FCmT5+O3W7nkUce4e6776ZGjRoA3HvvvTz33HMMHjyYv/3tb+zevZtXX32VKVOmGPZzF/EZpStcclOhpBj8PfttpbRA1woXkfKLscQwK2kWQ1cO5aeMnxi4fCCzk2ZTP7z+H3+ziIhUOs7iYnK/+Ybs5cvJXrmKksxM9zX/6GhsSZ2xde2KpXlzTP7+BiYVERERqfoqdYF+/fXX88knn/DEE08wbtw46tevz9SpU+nbt6/7nrFjx5Kbm8uwYcPIyMjglltuYfny5QQHB7vvmT9/Po888ggdOnTAz8+PO++8k9dee819PTw8nJUrVzJ8+HBatGhBTEwM//jHPxg2bNgl/fmK+KSQGDD5gdPhKtFtiX/8PWc5nU5NoIt4SYwlhlmdZzFk5RB+yviJwSsGMytpFg3CGxgdTURELoCzpIS8LVtc61lWrqQkPd19zT8qirDOnbB16Yr1+pYqzUVEREQuIZPT6XSW5xuLiopISUnB4XCUOa9Tp3ruXc3KyiI8PJzMzExsNpvRcUQurclXuHagD1sLNZpd8LelFaTR9oO2AGzvtx2zv7li8olUI2kFaQxZOYT96fuJscQwu/NsGkSoRBcRqYycTicF331H5qdLyFq2jJLTp93X/CMiCOvcGVvXLlivvx5TQKWefRIRERHxKZ50uR6/C9u/fz+DBg1i48aNZc6dTicmk4mSkhJPX1JEfF1YvKtA93APeun0eVRwlMpzES+JCo5idufZDFk5hB/Tf2TQikHMTppNw4iGRkcTEZGzCg8eJGvJEjKXfIb96FH3uX94OGGdOxHWpQshN9yAyaz3RyIiIiJG87hAv//++wkICGDJkiUkJiZiMpkqIpeI+JLQBGCnq0T3gPafi1SMyOBIZneezdBVQ9mXts9VoneeTaPIRkZHExGptuzJyWR9tpTMJZ9SuGev+9xksRDWvj227rcRevPNmAIDDUwpIiIiIr/mcYG+Y8cOtm3bxpVXXlkReUTEF4WdLcA9nEBPznPdH2uN9XYikWovIjiCmZ1mMmzVMPam7WXwysHM6jyLyyIvMzqaiEi1UZKZSdaKFWQt+Yy8LVugdHumvz8ht9xMePfbCWt/K34hIcYGFREREZHf5XGB3rhxY06fs5tPRMQ1gU65J9D1AFGRihERHMHMzjMZunIoe9P2MmjFIKZ3mk6T6CZGRxMRqbIc+fnkrF1L5pLPyFm/Hux29zVLixaEd7+NsKQkAqKiDEwpIiIiIhfK4wJ90qRJjB07lvHjx9O0aVPMv9rLpwdoilRD5ZxAV4EuUvHCg8KZ2XkmD656kN1ndjNkxRBe7/A6LeJbGB1NRKTKcBYXk7vpa7KWLCF71SoceXnua0GXX46te3fCb+uGuWZNA1OKiIiISHl4XKB37NgRgA4dOpQ510NERaqxck6gl65w0Q50kYoVHhTOrKRZPLL6EbYmb+XBVQ8y5dYp3FLzFqOjiYj4LKfTSf6OHWQt+YysZcsoSUtzXzPXqIGte3dst91G8BWXG5hSRERERC6WxwX6mjVrKiKHiPiysLMFuocT6Kl5qYAm0EUuhRBzCG91fItRa0ex4cQGHv3iUV5s8yKd6nYyOpqIiE8p/OknMpcsIWvJZ9iPH3ef+0dGYuvaBVv37liaNcNkMhmYUkRERES8xeMCvW3bthWRQ0R8WejZCfKcZNfDsS7wD4xa4SJyaQUHBPPqra/yxJdPsOLwCkavG824m8ZxR6M7jI4mIlKp2X/+maylS8n8dAmF+/a5z01WK2EdOxDevTshN96I6VfrLUVERETE93lcoANkZGQwe/Zs9u7dC0CTJk0YNGgQ4eHhXg0nIj6itEB32CEvDUKi//BbCksKySjMALTCReRSMvubmdR6EiHmEBbtX8TTXz1Njj2Hvlf1NTqaiEilUpyeTvaKlWQtWULe1q2/XAgIILR1a2zdbyPs1lvxs1qNCykiIiIiFc7jAn3r1q0kJSVhsVi44YYbAHjllVd44YUXWLlyJc2bN/d6SBGp5AICwRIF+WmuPegXUKCXTp8H+QdhC9TDh0UuJX8/f/554z+xBlh5f+/7TNw8kTx7HkOaDtHKARGp1hyFheSsXk3mp0vI+fJLsNvd16wtW2K7/XbCOnciIDLSwJQiIiIicil5XKCPHDmSHj16MHPmTAICXN9eXFzMkCFDGDFiBOvXr/d6SBHxAWEJrgI9+xTEN/nD289d36LCTuTSM5lMjL1+LGGBYby18y1e+/Y1su3ZjGw+Ur8mRaTaKdizh4yFi8hcsgRHZqb7POiqqwjvfhu2bt0wJyYamFBEREREjFKuCfRzy3OAgIAAxo4dS8uWLb0aTkR8SGg8pOxx7UG/ANp/LmI8k8nEw9c9TIg5hMlbJzN391xyi3J56k9P4WfyMzqeiEiFKk5PJ2vJZ2QsWkTh2dWUAAEJCYTfcQfht3cnqFEjAxOKiIiISGXgcYFus9k4evQoV155ZZnzY8eOERYW5rVgIuJjwhJc/84+dUG3q0AXqTwGNBlAiDmEcZvG8eGPH5JbnMvzNz+P2U8PwxORqsVZUkLuxk1kLFpIzuercZ5d0WIymwnr1JHwXr0JuelGTP7+BicVERERkcrC4wK9T58+DB48mMmTJ3PTTTcB8NVXXzFmzBjuuecerwcUER9R+iDRC5xAT85z3acHiIpUDn++/M+EmEN4csOTfHbwM/LsebzU9iWC/IOMjiYictGKjh4lY9EiMv/vvxSf+uUv+4MaX0VE7zsJ734b/hERBiYUERERkcrK4wJ98uTJmEwm7rvvPoqLiwEwm8089NBDTJw40esBRcRHaAJdxOd1rd+VEHMII9eMZM2xNQxfPZzXbn0Nq9lqdDQREY858vLIWrmSzIWLyNuyxX3uFx5O+O23E9G7F8GNGxuYUERERER8gccFemBgIK+++ioTJkzgwIEDADRs2BCrVX+4FqnWPJxAV4EuUjm1qdWGtzq+xaNfPMo3P3/DsFXDeLPjm9gCbUZHExH5Q06nk4KdO8lYuIispUtx5Oa6LphMhNx8MxF39ia0fXv8gvTpGhERERG5MB4X6KWsVitNmzb1ZhYR8WXlnEDXCheRyueGxBuY2XkmD33+EDtTdzJo+SDe7vQ20ZZoo6OJiJxX8enTZP53MRmLFlF0dsgHwFy7NhG9exHesyfmxEQDE4qIiIiIr7qgAr13796888472Gw2evfu/T/vXbRokVeCiYiPOXcC3ekEk+l3b3U6nZpAF6nkrom9hrld5jJs5TB+SP+B+5ffz8zOM0kISTA6mogIAE67nZz168lYuIicdeugpAQAU3AwtqQkwu/sjbVlS0x+fgYnFRERERFfdkEFenh4OKazZZjNZnP/WETErXQC3Z4HhdkQ/PvrHtIL07E77ADEWmIvRToRKYfLIy/n3a7vMnTlUA5nHea+Zfcxq/Ms6tjqGB1NRKqxwgMHyFi4iMz//peSM2fc55ZrryX8zt7YunbFPyzMwIQiIiIiUpVcUIE+d+5c94/feeedisoiIr4sMAQCw6Ao2zWF/j8K9NLp86jgKMz+5kuVUETKoa6tLu92eZdhq4ZxOOswA5YPYEanGVwWeZnR0USkGinJySFr6VIyFy4if+dO97l/dDThd9xBRO9eBDVqZGBCEREREamqPP48Y/v27cnIyPjNeVZWFu3bt/dKKBHxUWFn17j8wR507T8X8S2JoYnM7TKXKyKv4HT+aQauGMh3qd8ZHUtEqjin00nu5s2c/Nvf2X9La07941lXee7vT2j79tR643UuW7uG+LFjVJ6LiIiISIXx+CGia9eupaio6DfnBQUFbNiwwSuhRMRHhSbAmZ9cE+j/Q3Ke63qsVetbRHxFjCWG2UmzeXj1w+xK3cWQlUN4vcPrXJ9wvdHRRKSKKcnJIXPRItLmz8d+5Kj7PLBBAyLu7E14jx4ExOo9hIiIiIhcGhdcoO/atcv94z179nDq1C8TpiUlJSxfvpyaNWt6N52I+BYPJ9D1AFER3xIeFM7MTjN57IvH+ObUNzz0+UO80u4V2tRqY3Q0EakCio4cIe39+WQuXIgjLw8Av5AQbN26EXFnb4KvvVbPYhIRERGRS+6CC/TrrrsOk8mEyWQ676oWi8XCtGnTvBpORHxM6NkHieaoQBepqqxmK290fIPR60az9thaHv/icSa0nkCX+l2MjiYiPsjpdJK7cSPp894nZ906cDoBCGzYkKj+/Qjv0QM/q9XglCIiIiJSnV1wgX7o0CGcTicNGjRg8+bNxJ7zscnAwEDi4uLw9/evkJAi4iPcE+gXtsJFO9BFfFOQfxCvtHuFp798mqWHljJ2/VjyivPofVlvo6OJiI9w5OeTufhT0ua9R9FPB9znIW3bENX/PkJuvknT5iIiIiJSKVxwgV63bl0AHA5HhYURER93gRPoqXmpgCbQRXyZ2c/M+FvGE2IO4aMfP+LZjc+Sa8+lf+P+RkcTkUrMfvIk6QsWkP7RxzgyMwEwWa1E9OpFZL++BNWvb3BCEREREZGyPH6IaKk9e/Zw9OjR3zxQtEePHhcdSkR81AVOoGuFi0jV4O/nzzN/eoZQcyhzv5/Li1teJKcohwevfVCToyLi5nQ6yd++nbT35pH9+edQUgKAuVYtIvv1JeLOO/EPCzM4pYiIiIjI+XlcoB88eJBevXrx3XffYTKZcJ7dU1j6B+WSs2+IRaQauoAJ9MKSQjIKMwCtcBGpCkwmEyNbjCQ0MJRp307jzZ1vkmPPYXTL0SrRRao5R1ERWUuXkj7vfQq+/959bm3Viqj7+hParh0mrYAUERERkUrO4wL98ccfp379+qxevZr69euzefNmzpw5w1//+lcmT55cERlFxFeUTqAXZII9H8yW39xSOn0e5B+ELdB2KdOJSAUxmUwMu2YYIeYQJm6eyHt73iPXnsszf3oGfz+VYyLVTXFqKun/+YD0Dz6g5PRpAEyBgdh63E5U//4EX3GFwQlFRERERC6cxwX6pk2b+OKLL4iJicHPzw8/Pz9uueUWJkyYwGOPPca3335bETlFxBcER4B/EJQUQk4yRNb7zS3nrm/RdKpI1dL3qr6EmEN4duOzLNy/kFx7LuNbj8fsZzY6mohcAvm7vyd93ntkLV2G024HICAujsh77yWiz10EREYanFBERERExHMeF+glJSWEnd1RGBMTw8mTJ7niiiuoW7cuP/zwg9cDiogPMZlcU+gZR1170P+gQBeRqqdno55YA6z8bcPfWH54OXnFebzc9mWCA4KNjiYiFcBZXEz255+T9t488rdvd59brr2WyPv6Y+vcGZNZf4kmIiIiIr7L4wL96quvZufOndSvX59WrVrx4osvEhgYyIwZM2jQoEFFZBQRXxKa4CrQf2cPugp0kaqvc73OWM1WRq4Zyfrj63l49cO8euurhAXqIYEiVUVJRgbpH31E+oJ/U/zzz67DgABsXboQdV9/LNdcY2xAEREREREv8bhAf/rpp8nNzQVg3LhxdO/endatWxMdHc0HH3zg9YAi4mNK96BnJ5/3cnKe61wPEBWp2m6peQvTO01n+OrhbDm1hfuX389bHd/SX56J+LjC/ftJm/c+mYsX4ywoAMA/MpKIu/sQefc9mOP1a1xEREREqhaPC/SkpCT3jxs1asS+fftIS0sjMjJS+4xFxDWBDppAFxFaxLdgbtJcHl79MD+m/0i/pf2Y3nE6DSL0iTURX+J0OMhZt470efPI3bjJfR505ZVE9e+Prftt+AUFGZhQRERERKTieFygn09UVJQ3XkZEqoLSCfSc80+gq0AXqV6uir6KeV3n8dDnD3E46zD9l/VnWvtpNI9vbnQ0EfkDJVlZZH7yCWkLFmA/ctR16OdHWIf2RPbvj/X66zVAIyIiIiJV3gUV6L17977gF1y0aFG5w4hIFVA6gf47K1xKC3StcBGpPmqF1eK9ru/x6BePsjN1J0NXDmVSm0l0rNvR6Ggich4F+/aRPn8BmUuW4MzPB8AvLIyIP/+ZyL59CaxV0+CEIiIiIiKXzgUV6OHh4RWdQ0SqirDfX+HidDo1gS5STUUGRzKz80z+tv5vrDm2hlFrR/H3G/7OvVfda3Q0EQGcdjvZq1aRtmAB+Vu3uc+DLruMyL73En777fiFhBiYUERERETEGBdUoM+dO7eic4hIVRH6+w8RTS9Mx+6wAxBrib2UqUSkErAEWJjSbgrjvxnPhz9+yITNE0jOS+bx5o/jZ/IzOp5ItWRPTiHjww/J+PBDilNTXYf+/oR16kTkvfdoTYuIiIiIVHte2YEuIuJWOoGemwolxeD/y28zpdPnUcFRmP3NRqQTEYP5+/nz9J+eJiEkgde+fY05u+eQkpfCuJvG6fcFkUvE6XSSv3UraQsWkL3qcyguBsA/NobIv9xFRJ+7MMdr1ZqIiIiICJSjQK9fv/7/nEI5ePDgRQUSER9njQGTPzhLXCW6LdF9SfvPRQTAZDIx9JqhxFpj+efGf7Lk4BJO559mSrsphAaGGh1PpMpy5OaS+ekS0hcsoPDHH93nlhYtiLz3HmydOmEKDDQwoYiIiIhI5eNxgT5ixIgyX9vtdr799luWL1/OmDFjvBZMRHyUnx+ExkH2z6496OcU6Ml5rrUu2n8uIgA9G/UkxhLDqLWj+Prnrxm4YiBvdniTWKtWPIl4U+GhQ6T/+99kfvJ/OLKzATBZLIR3705k33sJvvJKgxOKiIiIiFReHhfojz/++HnP33jjDbZu3XrRgUSkCigt0H+1B710Al3lmIiUuqXmLcztMpeHP3+YfWn76Le0H291eosG4Q2Mjibi05wlJeSsW0f6/AXkfvWV+9xctw6R99xDRK9e+IeHG5hQRERERMQ3eO2JXV27dmXhwoXeejkR8WWhZ/eg55wqc1xaoGsCXUTO1SS6Ce93e5+6trqczD3JfcvuY0fKDqNjifik4vR0Ts+cyYFOnTn+8HBXeW4yEdquHbVnzqDhsmVE33+/ynMRERERkQvktYeIfvzxx0RFRXnr5UTEl4Wd3XH+qwn00hUu2oEuIr9WO6w273V9j0dXP8qu07sYsnIIk9pMokOdDkZHE/EJ+d/tJn3+fLKWLsVZVASAf3g44X++k8h77iGwVi2DE4qIiIiI+CaPC/RmzZqVeYio0+nk1KlTpKam8uabb3o1nIj4qN+ZQE/NSwU0gS4i5xcVHMWspFmMWTeGdcfXV/YDkgAAIABJREFUMWrtKJ5q9RR3XXGX0dFEKiVHYSFZy5aRvuDfFOza5T4PbtyYyL59sd3WDb/gYAMTioiIiIj4Po8L9J49e5b52s/Pj9jYWNq1a8eVegCRiMDvTqBrhYuI/BFLgIWpt07lX1//i4X7F/L8189zKvcUjzZ7tMxf4ItUZ/YTJ0j/zwdkfPwxJenpAJjMZsK6diHq3nsJvvZa/XoREREREfESjwv0Z599tiJyiEhVcp4J9MKSQjIKMwCtcBGR/y3AL4Bnb3yWhJAE3tjxBjO/m0lyXjL/vOmfmP3MRscTMYTT6SRv0ybS5i8gZ80acDgACEhMJLJPHyL+8mcCoqMNTikiIiIiUvWUawd6SUkJn3zyCXv37gWgcePG3HHHHQQEeG2luoj4srCzBfo5E+il0+dB/kHYAm1GpBIRH2IymXjw2geJs8YxbtM4Fh9YzJn8M7zc7mVCzCFGxxO5ZJwlJWSvWsXp6W9TuG+f+9x645+I6tuX0HbtMOk9uIiIiIhIhfH43fb333/P7bffTnJyMldccQUAkyZNIjY2lk8//ZSrr77a6yFFxMeEnp0wz0kGpxNMpjLrW/SxchG5UL0v602MJYbR60bz1cmvGLh8IG92fJMYS4zR0UQqlNNuJ/Ozzzjz9gyKDh0CwM9qJbxXLyLvvYeghg0NTigiIiIiUj34efoNQ4YM4eqrr+b48eNs376d7du3c+zYMa655hqGDRtWERlFxNeUFugOO+SlAdp/LiLl16ZWG+YkzSEqOIq9aXvpt7QfhzMPGx1LpEI4iopI/88HHOjSlZ///gRFhw7hFx5OzPDhNPpiNQnPPK3yXERERETkEvJ4An3Hjh1s3bqVyMhI91lkZCQvvPAC119/vVfDiYiPCggESxTkp7n2oIdEq0AXkYtydczVzOs6jwc/f5Bj2cfov6w/r3d4nWtjrzU6mohXOPLySP/wQ9LmzKU4xfX/TP/oaKIH3k/E3ffgH6rVRSIiIiIiRvB4Av3yyy8nOTn5N+cpKSk0atTIK6FEpApw70F3PUg0Oc/1+4YeICoi5VXHVod5XefRJLoJGYUZDFkxhLXH1hodS+SilGRnc3r62/zUoSMpEydRnJJCQEIC8U89RaPPVxE9ZIjKcxERERERA3lcoE+YMIHHHnuMjz/+mOPHj3P8+HE+/vhjRowYwaRJk8jKynL/IyLV2Ll70NEKFxHxjmhLNHOS5tC6ZmsKSgp4fM3jfPTjR0bHEvFYcXo6Ka++yk/tO5A6dSol6emY69Qh4flxNFq5gqj+/fCzWIyOKSIiIiJS7Xm8wqV79+4A3HXXXe4HATqdTgBuv/1299cmk4mSkhJv5RQRX/OrCXQV6CLiLVazldfav8a4TeP45KdPGLdpHMm5yQy/brgeUiyVnj0lhbS575D+wQc48/IACGzUkJgHHsDWtSumAI/fnouIiIiISAXy+B36mjVrKiKHiFQ1vzOBrhUuIuINAX4BPHfTc8SHxDN953Te3vU2KXkpPHPjM5j9zEbHE/kN+4kTnJk9m4yPF+IsKgIguHFjoh98gLCOHTH5efzBUBERERERuQQ8LtDbtm1bETlEpKo5ZwLd6XRqAl1EvM5kMjH8uuHEW+N5/uvn+eSnT0jNT+Xlti9jNVuNjicCQOGhQ5yZOYvMxYuhuBgAS/PmxDz4ACGtW+tTEyIiIiIilVy5PiOakZHB7Nmz2bt3LwBNmjRh0KBBhIeHezWciPiwcybQ0wvTsTvsAMRaYg0MJSJV0Z8v/zMxlhjGrBvDlye+ZNCKQbzR4Q2iLdFGR5NqrOCHHzjz9ttkLV8BDgcAITfdSPSDD2K9/noV5yIiIiIiPsLjz4pu3bqVhg0bMmXKFNLS0khLS+OVV16hYcOGbN++vSIyiogvOmcCvXT6PCo4CrO/ViuIiPe1q92O2UmziQiK4Psz39N/WX+OZh01OpZUQ/m7dnHs4eEcuqMnWUuXgcNB6K23Uu+D/1BnzhxCbrhB5bmIiIiIiA/xeAJ95MiR9OjRg5kzZxJw9iFHxcXFDBkyhBEjRrB+/XqvhxQRH3TOBHpKrmsPuvafi0hFuib2GuZ1nceDnz/Isexj9F/Wn2ntp3FN7DVGR5NqIG/LFk6/NZ3cjRtdByYTYV2SiHngAYKvvNLYcCIiIiIiUm7lmkD/29/+5i7PAQICAhg7dixbt271ajgR8WGlE+j2PJLPToFq/7mIVLR64fV4v9v7NI5uTFpBGoNXDGb1kdVGx5Iqyul0krNhA4f79uNI//tc5bm/P+G9etHgs8+oNWWKynMRERERER/ncYFus9k4evS3H4k+duwYYWFhXgklIlVAYAgEun5PSMk8DECsVfvPRaTixVhimJs0lza12lBQUsDItSOZt2ee0bGkCnE6HGStWsXhP/+FY0OHkb9tGyazmYh77qbhihXUmDCeoAb1jY4pIiIiIiJe4PEKlz59+jB48GAmT57MTTfdBMBXX33FmDFjuOeee7weUER8WFg8nMkmJfs4oAl0Ebl0rGYrr976KhM3T+SDHz7gxS0vciLnBGNajsHfz9/oeOKjnE4n2StXcfr1aRTu/wkAk8VCZJ8+RA0ciDle/58TEREREalqPC7QJ0+ejMlk4r777qO4uBgAs9nMQw89xMSJE70eUER8WGgCnPmJ5LMPEdUOdBG5lAL8Aniq1VPUCq3Fy9teZv7e+ZzMOcnE1hOxmq1GxxMfk//996RMmEje2ZWFfqGhRPbrS9SAAQRERhqcTkREREREKorHBXpgYCCvvvoqEyZM4MCBAwA0bNgQq1V/EBWRXwlzFeapBWmAJtBF5NIzmUzcf/X9JIYm8uSGJ1lzbA2DVwxmWodpxFhijI4nPsCekkLqq6+SuegTcDoxBQcTPWggUfffj7/NZnQ8ERERERGpYB4V6IcPH2bVqlUUFRXRrl07mjZtWlG5RKQqCHU9SDTFngOoQBcR4yTVSyLOGsdjXzzG7jO76be0H292eJMGEQ2MjiaVlKOwkLR33uXM22/jyMsDwHb77cSNGok5MdHgdCIiIiIicqlccIG+Zs0aunfvTn5+vusbAwKYM2cO/fr1q7BwIuLjwuIpNEGGswjQChcRMVazuGa83+19Hv78YY5mH6Xfsn68euurXJ9wvdHRpBJxOp1kr1hByosvYT95EoDga68h4YknsFx3ncHpRERERETkUvO70BufeeYZOnXqxIkTJzhz5gxDhw5l7NixFZlNRHxdaAIp/q6H9QX5B2EL1EfdRcRYdW11eb/b+1wbey3ZRdkMWzWMJQeXGB1LKon83d9zpF9/TowYif3kSQISEqjx0kvU+/e/VZ6LiIiIiFRTF1yg7969m/Hjx5OYmEhkZCQvvfQSKSkpnDlzpiLziYgvC4snxd/1QZc4axwmk8ngQCIiEBkcyazOs+hctzPFjmKe2PAEM3bNwOl0Gh1NDGJPTuHkE09y+C9/IX/bNkwWCzGPPkLDZUsJv707Jr8LfsssIiIiIiJVzAWvcMnKyiIm5peHbVmtViwWC5mZmURHR1dIOBHxcaEJpAS4JtC1/1xEKpPggGBeavsSNbfVZO73c5n27TRO5Jzg6T89jdnPbHQ8uUQcBQWkvfMOp2fMxHl2z3n4HT2IHTkSc0KCwelERERERKQy8OghoitWrCA8PNz9tcPhYPXq1ezevdt91qNHD++lExHfFhbvXuESF6y/aBORysXP5MeolqOoEVqDCZsnsGj/In7O+ZlX2r1CaGCo0fGkAjmdTrKXLSN58mSKT/4MgOW664h/8gks11xjcDoREREREalMPCrQBwwY8JuzBx54wP1jk8lESUnJxacSkaohOIJkcyAA8QEhBocRETm/u6+8mxqhNRi9bjSbft7Efcvv480Ob5IQognkqij/u+9IHj+B/G+/BSAgMZG40X/F1q2bVo2JiIiIiMhvXPBCR4fD8Yf/qDwXkTJMJlKCXcV5nCnQ4DAiIr+vTa02zO0ylxhLDPvT99P3s77sS9tndCzxIntyMif/9ncO/+Uu8r/9FpPFQuzjj9Fw6WeE33abynMRERERETkvPRFJRCpUSoBrl3CcU8WEiFRuTaKbsKDbAhpFNCIlP4UBywbw5YkvjY4lF8mRn0/qm29yoEtXMv/7XwDCe/ak4fJlxDz0EH4Wi8EJRURERESkMlOBLiIVKsXfVZzH24sNTiIi8scSQxN5t+u7tEpoRV5xHo+sfoSPfvzI6FhSDk6nk8wln3Gg222cfm0azvx8LM2bU++jD6kxcQLm+HijI4qIiIiIiA9QgS4iFcbpdJLitAMQV5RncBoRkQtjC7TxVse36NGwByXOEsZtGsfUbVNxOB1GR5MLlL9zJ0fuuZeTo0dT/PPPmGvUoOaUV6g7/30sTZsaHU9ERERERHyIRw8RFRHxRHphOnacAMTmZRmcRkTkwpn9zfzr5n9RK6wWb+54k9m7Z3My5yTP3/I8Qf5BRseT32E/dYqUV14ha/GnAJisVmKGDSPq/gH4BQcbnE5ERERERHyRCnQRqTApeSkARJWUYM5NNTiNiIhnTCYTD137EDVDa/LsV8+y7PAykvOSefXWV4kIjjA6npzDkZ/PmdlzODNrFs6CAjCZCO/Vi9gRj2OOizM6noiIiIiI+DCPV7gcO3aM48ePu7/evHkzI0aMYMaMGV4NJiK+r7RAjy8ugZxTBqcRESmfHg17ML3TdMLMYWxP2U7/Zf05lnXM6FgCOB0OMj/9lANdu3H69ddxFhRgadmCeh99RI3xL6g8FxERERGRi+ZxgX7vvfeyZs0aAE6dOkWnTp3YvHkzTz31FOPGjfN6QBHxXcl5yQDElZRAdrLBaUREyq9VYive6/oeiSGJHM46TL9l/diZutPoWNVa/o4dHL7nHk6OGUvxqVOYa9ak5tSp1J03D8vVTYyOJyIiIiIiVYTHBfru3bu54YYbAPjwww+5+uqr2bhxI/Pnz+edd97xdj4R8WGlE+ixxcWQmwolxQYnEhEpv0aRjZjfbT5XRV1FWkEag1cMZvWR1UbHqnbsJ05w4q+jOXz3PRTs3IWf1UrsqFE0WPoZti5JmEwmoyOKiIiIiEgV4nGBbrfbCQpyPTzr888/p0ePHgBceeWV/Pzzz95NJyI+rbRAjytxAk5XiS4i4sNirbG80+Ud2tZqS2FJISPXjuS979/D6XQaHa3KK8nJJWXKVA50u42szz5z7Tm/szcNVywnZthQ/IL0cFcREREREfE+jwv0Jk2aMH36dDZs2MCqVavo0qULACdPniQ6OtrrAUXEd5WucIkPsLoOtAddRKoAq9nK1Fun0ueKPjhx8tLWl5i4eSIljhKjo1VJzpISMj7+mANdu3Dm7bdxFhZibdWK+osWUuOFFwiIjTU6ooiIiIiIVGEBnn7DpEmT6NWrFy+99BIDBgzg2muvBWDx4sXu1S4iIgCpea6J87igCOCk9qCLSJUR4BfAU62eonZYbSZvncyCfQs4mXuSSa0nYTVbjY5XZeR+/TXJEydRuG8fAOa6dYgfO5bQ9u21qkVERERERC4Jjwv0du3acfr0abKysoiMjHSfDxs2DKtVf2AUkV+4V7hY44A9mkAXkSrFZDIxoMkAEkMSefLLJ1l7bC2DVgzi9Q6vE2OJMTqeTys8dIiUlyaT88UXAPjZbMQ8/BBR996LKTDQ4HQiIiIiIlKdeLzCBcDpdLJt2zbefvttsrOzAQgMDFSBLiJuhSWFZBRmABAfUsN1qAl0EamCOtfrzKzOs4gMiuT7M9/Tb2k/9qfvNzqWTyrJyCB5wgQO3t7DVZ77+xPZrx8NVywn+v77VZ6LiIiIiMgl53GBfuTIEZo2bcodd9zB8OHDSU11rWiYNGkSo0eP9npAEfFNpdPnQf5B2Gy1XIeaQBeRKuq6uOt4v9v71LXV5UTOCfou7cvyw8uNjuUznHY7ae/N40BSF9LefQ+Kiwlt25YGny4m4emnCDjnU48iIiIiIiKXkscF+uOPP07Lli1JT0/HYrG4z3v16sXq1au9Gk5EfNe561tMYQmuQ02gi0gVVsdWh/e7vs+fEv9EfnE+Y9aNYfKWyRQ7io2OVmk5nU6y16zhYI87SB4/npLMTIIuu4zas2dR++3pBDVoYHREERERERGp5jzegb5hwwY2btxI4K8+QluvXj1OnDjhtWAi4tvK7D8PjXcdagJdRKq4iOAIpneczrRvpzF792ze3fMue9P28mKbF4m2RBsdr1Ip+OFHUiZNJHfjJgD8o6KIfewxIv58J6YAj9+iioiIiIiIVAiPJ9AdDgclJSW/OT9+/DhhYWFeCSUivq9Mga4JdBGpRvz9/BnRYgRT2k3BGmBl86nN9FnSh+9SvzM6WqVQfPo0P//jWQ716kXuxk2YzGaihw6h4coVRN7dR+W5iIiIiIhUKh4X6J07d2bq1Knur00mEzk5OTz77LN069bNq+FExHcl57nK8nhr/DkT6MngdBqYSkTk0ulYtyP/vu3f1A+vT3JeMgOWD+DjHz82OpZhHIWFnJ4xkwNJXcj48ENwOAjr0oUGy5YS99e/4h8aanREERERERGR3/C4QH/55Zf56quvaNy4MQUFBdx7773u9S2TJk2qiIwi4oPOu8LFYYe8NANTiYhcWg0iGrCg2wI61OmA3WHnuU3P8c+N/6SwpNDoaJeM0+kka9kyDna7jdRXXsGRm0vw1VdTd/771Jo6hcBatYyOKCIiIiIi8rs8/oxsrVq12LlzJ//5z3/YtWsXOTk5DB48mL59+5Z5qKiIVG9lCvSAQLBEQX6aaw96iPYAi0j1ERoYypR2U5i9ezbTvp3Gwv0L+SHtB6bcOoWEkASj41Wo/F27SJ4wkfxvvwUgID6euL+Owta9OyY/j+c4RERERERELrlyLZkMCAigX79+3s4iIlVIaYEebz07fR6W4CrQs09BfBMDk4mIXHomk4khTYfQOLoxY9ePZfeZ3fRZ0oeX2rzEDYk3GB3P6+w//0zKK1PI+vRTAEwWC9FDBhM9aBB+GrgQEREREREfckEF+uLFi+natStms5nFixf/z3t79OjhlWAi4rucTmfZCXRwrXFJ2ePagy4iUk3dVOMmPuj+ASPXjGRv2l6GrhrKyOYjGdBkACaTyeh4F82Rm8uZ2bM5M2cuzoICAMJ79iR25AjM8fEGpxMREREREfHcBRXoPXv25NSpU8TFxdGzZ8/fvc9kMlFSUuK1cCLim9IL07E77ADEWmJdh2Fn1xRknzIolYhI5VAztCbvdX2P579+nsUHFvPytpf57vR3PH/z81jNVqPjlYvT4SDzk/8jdepUilNTAbC2bEnc3/+O5Wp96khERERERHzXBRXoDofjvD8WETmf0unzqOAozP5m12Hpg0Q1gS4iQnBAMP+6+V9cE3MNE7dMZOWRlRzIOMDUW6dSL7ye0fE8krdlC6cmTKBwz14AzLVrEzdmNGGdOlWJqXoREREREane9PQmEfG63+w/B02gi4j8islkos+VfZibNJdYSywHMg9wz2f3sOboGqOjXZCSnFx+fvafHOl/H4V79uIXGkrcmDE0+GwJts6dVZ6LiIiIiEiV4HGB/thjj/Haa6/95vz1119nxIgRXgklIr4tOc81Ze7efw6aQBcR+R3XxV3Hh7d/SPO45uTYc3hszWNM+3YaJY7KuxYvd9MmDvXoQcYHHwAQ0acPDVeuIHrwIPwCAw1OJyIiIiIi4j0eF+gLFy7k5ptv/s35TTfdxMcff+yVUCLi20on0GOtsb8cagJdROR3xVhimJU0i75X9QVgxq4ZDP9iOJmFmQYnK8uRm8upceM4OnAQ9pMnMdesSZ133iHxuX8SEBVldDwRERERERGv87hAP3PmDOHh4b85t9lsnD592iuhRMS3lRbovzuB7nQakEpEpHIz+5n5+w1/Z0LrCQT7B/PVia/os6QP+9L2GR0NgNxvNnPwjp6kL/g3ABH33E2Dxf8l5E+tDE4mIiIiIiJScTwu0Bs1asTy5ct/c75s2TIaNGjglVAi4ttKV7icdwe6PQ8Ksw1IJSLiG7o36M773d6nVmgtTuScoP/S/nx64FPD8jjy8jj1/L84OmAA9uPHMdeoQZ25c0h89ln8QkIMyyUiIiIiInIpBHj6DaNGjeKRRx4hNTWV9u3bA7B69Wpefvllpk6d6vWAIuJ7UvNSgV9NoAeGQGAYFGW7ptCDbQalExGp/K6IuoL/dP8Pf9/wd7488SVPfvkku0/vZvT1ozH7mS9ZjrwtWzj55FPYjx0DXLvO48aMwT9UxbmIiIiIiFQPHhfogwYNorCwkBdeeIHnn38egHr16vHWW29x3333eT2giPie865wAQiLhzPZrj3oMZcZkExExHeEB4XzevvXeWvnW7y9620W7FvAvrR9TG47uewzJiqAIz+flClTSJ/3PjidBCQmkviv5wk9z3NwREREREREqjKPV7gAPPTQQxw/fpzk5GSysrI4ePCgynMRAaCwpJCMwgzgVytcAELPrnHJSb7EqUREfJO/nz+PNHuEae2nEWoOZXvKdvos6cOOlB0V9t/M27aNgz17kv7ePHA6ifjLn2nw6WKV5yIiIiIiUi2Vq0AvLi7m888/Z9GiRTjPPgzw5MmT5OTkeDWciPie0unzIP8gbIG/WtMSdrZQzz51iVOJiPi2drXb8Z/u/6FRRCNS81MZuHwg/973b/f7MG9w5OeTPGEiR/r1x37kKAEJCdSeOZPE55/HPzTUa/8dERERERERX+JxgX7kyBGaNm3KHXfcwfDhw0lNde06njRpEqNHj/Z6QBHxLeeubzGZTGUvuifQVaCLiHiqrq0u87vNJ6leEsXOYsZ/M56nv3qaguKCi37tvO3fcqhnL9LefRecTsLv7O2aOm99ixeSi4iIiIiI+C6PC/THH3+cli1bkp6ejsVicZ/36tWL1atXezWciPie391/DudMoGuFi4hIeVjNVl5q8xKjW47G3+TP4gOLuW/ZfRzPPl6u13MUFJD84ksc6duXoiNHCIiLo/bb06nxwgv4h4V5Ob2IiIiIiIjv8bhA37BhA08//TSBgYFlzuvVq8eJEye8FkxEfNP/LNA1gS4ictFMJhMDmgxgRqcZRAVHsTdtL3d/djcbT2z06HXyd+zgUK/epM2Z45o679nTNXXetm0FJRcREREREfE9HhfoDoeDkpKS35wfP36cME0qiVR7yXmu6fLfPEAUNIEuIuJFNyTewAfdP6BpTFMyCzN58PMHmb5zOiWO375PO5ejsJCUyZM5fG9fig4dIiA2llpvvUmNiRPwDw+/ROlFRERERER8g8cFeufOnZk6dar7a5PJRE5ODs8++yzdunXzajgR8T2aQBcRuXQSQhJ4p8s73HnZnThx8saON3hg1QOk5qWe9/78777jUO87OTNrNjgc/D979x1Xdd2/cfx1OOewh6AMJ+LWMltqdZcNUzMcIJoZZqZZlpWmaVaWpQ1vy7aVaWXTPYncpllWliMbbgEVZahs8HDgnN8fCHf+WqDAl3E9Hw8eHM85nO/FHwpevHl/fPv0plnMSnxuvLGSk4uIiIiIiFQPZS7QZ8yYwbfffku7du04c+YMd9xxR8n6lv/+978VkVFEqpFS7UA/kwH2vEpMJSJSc7maXXnmmmd4/trn8bB48EPSD/SP6c83id+UPMeRn0/KK68SP/B28g8dwhxYj0Zvz6Th9OmY69QxML2IiIiIiEjVZinrBzRq1Iiff/6Z+fPns3v3brKzsxk+fDjR0dHnHCoqIrVTcYH+lytc3OuA2Q0KbZCdDP5NKzeciEgN1qd5H9rXa8/4zePZl7aP+9ffz90X380I602kPvkUtgMHAfDt1YvgJ5/A4u9vcGIREREREZGqr8wFOoDFYmHw4MHlnUVEqjmn0/nPE+gmU9EUevqRoj3oKtBFRMpVmF8Yn4V/xss/vsyi3+eRO3MOR76fjYsDzHXrEvLMZHy7dTM6poiIiIiISLVxXgX6vn37ePPNN9mzZw8Abdu25cEHH6RNmzblGk5Eqpc0Wxp2hx2AQI/Av36Sd0hRga496CIiFcLN7MZYnwh6L9qINe44AD9cZKXR02Np1UHluYiIiIiISFmUeQf6kiVLuPjii9m+fTsdOnSgQ4cO7Nixg/bt27NkyZKKyCgi1UTx9HmAewBWs/Wvn1S8Bz0ruZJSiYjUHs78fFLfeJP4gbdjjTuOyb8Oi+9qxow+Th7ZNZmp303lTMEZo2OKiIiIiIhUG2WeQJ8wYQKPP/44U6ZMOef+yZMnM2HCBKKiosotnIhUL/+4/7yYd0jRe02gi4iUqzN79nD88Sew7d0LgM8ttxDy9FNMrOODz86ZvP/r+yzcv5Bdqbt4qctLNKvTzODEIiIiIiIiVV+ZJ9BPnDjBkCFD/nT/4MGDOXHiRLmEEpHqKTm3aKr8L/efF9MEuohIuXLYbKS89hpxA27Dtncv5jp1aPjqKzR67VUsAQFYXayMuWIMs26eRYB7APvT9nN77O0sO7AMp9NpdHwREREREZEqrcwF+g033MCWLVv+dP8333zDddddVy6hRKR6Kp5AD/T8m/3noAl0EZFylLNtG3F9Izj17iwoKMCnWzeafRGDb8+ef3ruNQ2vYUmfJVxV/yryCvJ4euvTPP7N4+TYcwxILiIiIiIiUj2UeYVLnz59eOyxx9i+fTtXXXUVAN9//z2LFi3i2WefZeXKlec8V0Rqj+IC/Z8n0IsLdE2gi4icr8LMTFJeepn0RYsAsAQGEvzUJHy7d//Hj6vnUY9Z3Wbx/i/vM3PXTGIPx/LryV95qctLtK3btjKii4iIiIiIVCsmZxl/d9fFpXRD6yaTicLCwvMKVR1lZmbi5+dHRkYGvr6+RscRMcTI9SP5NvFbnr3mWfq17PfXTzqxG2ZdB15BMP5A5QYUEak9yBk2AAAgAElEQVTmnE4nWWvWkvT8cxSmngSgzsCBBI0bi7mM33/sTNnJhK8nkJSThNXFyrgrx3FHmzswmUwVEV1ERERERKTKKEuXW+YVLg6Ho1Rvtak8F5EiqbmpQCkn0HNSobCgElKJiNQM9qQkjo16kMQxYyhMPYlrWBihn3xM/WefKXN5DnBZ0GUs7r2YGxvfiN1hZ9q2aYz+ajQZtowKSC8iIiIiIlI9lblAFxH5O6Va4eJZD0xmwFlUoouIyD9yOhyc/vxzDof3InvjRrBaqffA/YQtX4Znx44X9Np+bn68fuPrTOw0EauLla+OfkX/mP7sSN5RTulFRERERESqt1IX6N999x1ffPHFOfd9/PHHhIWFERQUxL333ovNZiv3gCJSPdgKbaTb0gEI9gz++ye6uID32YJdB4mKiPwj28GDJEQPJnnKVBw5OXh06EDYksUEPvwwLm5u5XINk8lEdNtoPrv1M0J9Q0nKSWLYmmG8t/s9Ch36jUIREREREandSl2gT5kyhd9++63kz7/88gvDhw/n5ptvZuLEicTExPDiiy9WSEgRqfqKp8/dzG74uv7LKgHvswV7lg4SFRH5K478fFLfeJPDkf3I27kTF09PgidNIvTzz3Bv1apCrtm2blsW9FpAr2a9KHQW8ubON7lv/X0l67lERERERERqo1IX6Lt27aJr164lf54/fz6dO3dm9uzZjB07ljfeeIOFCxdWSEgRqfr+uL7lXw+gK96Drgl0EZE/yd2+nbiISE6+/TbY7XjfeCPNYr8gYHA0JrO5Qq/tZfXihWtfYOp/puJh8eCHEz/QP6Y/3yZ+W6HXFRERERERqapKXaCnpaURHPy/tQybN2+mZ8+eJX/u2LEjR48eLd90IlJtlGr/eTFNoIuI/ElhVhYnnnmGhOjB5B8+jLlePRq+9iqN3p6JtX79SsthMpmIaBHB/F7zaeXfitNnTjNy/Uhe3f4qdoe90nKIiIiIiIhUBaUu0IODg4mLiwMgPz+fHTt2cNVVV5U8npWVhdVqLf+EIlItlKlA1wS6iMg5Mtet43B4L9LnLwDAr38UzWO/wPeWW/79t3oqSDO/Znx262cMbD0QgA9+/YChq4eSmJ1oSB4REREREREjlLpAv/XWW5k4cSJbtmzh8ccfx9PTk+uuu67k8d27d9O8efMKCSkiVV9ybtE0+T8eIFpME+giIgDYk1M49tBDJD70MAUpKbiGhtLko49o8NxzmP38jI6Hu8WdSVdN4pUbXsHH6sPu1N0MiBnA+oT1RkcTERERERGpFKUu0KdOnYrFYuH6669n9uzZzJ49G1dX15LHP/jgA7p3714hIUWk6tMEuohI6TkdDtLmz+dweDhZ69aDxULde+8lbMVyvDp3Mjren3QL7caiPou4pN4lZOVn8cimR3ju++ewFdqMjiYiIiIiIlKhSl2g16tXj6+//pq0tDTS0tKIjIw85/FFixYxefLkcg/4R9OmTcNkMjFmzJiS+86cOcOoUaOoW7cu3t7eREVFkZx87lTrkSNHCA8Px9PTk6CgIMaPH09BQcE5z9m0aROXX345bm5utGjRgrlz51bo5yJS05RtB/rZAl0T6CJSC9kOHybhziEkPfMsjuxs3Nu3J2zJYoLGPoKLu7vR8f5WQ++GzO05l2EXDwNgwb4F3BF7B4czDhucTEREREREpOKUukAv5ufnh9ls/tP9AQEB50ykl7cff/yRWbNmcckll5xz/yOPPEJMTAyLFi1i8+bNHD9+nH79+pU8XlhYSHh4OPn5+WzdupWPPvqIuXPn8vTTT5c8Jy4ujvDwcG688UZ27drFmDFjuOeee1izZk2FfT4iNU1xgV6qFS4+Z5+TnQxOZwWmEhGpOpz5+aTOnElc3wjytm/H5OlJ8BOP03T+PNxbtzY6XqlYXaw8csUjvHvzuwS4B7A/bT+3f3E7yw4sw6l/z0VEREREpAYqc4FuhOzsbKKjo5k9ezb+/v4l92dkZPD+++/zyiuvcNNNN3HFFVfw4YcfsnXrVr7//nsA1q5dy++//86nn37KpZdeSs+ePZk6dSozZ84kPz8fgHfffZewsDBmzJhB27ZtefDBB+nfvz+vvvqqIZ+vSHXjdDrLNoHudfY5Djvknq7AZCIiVUPuzp3ERUVx8s23cNrteHW5juYxKwkYMgTTXwwmVHX/afgfFvdeTOeQzuQV5PH01qd5+KuHOZl30uhoIiIiIiIi5apaFOijRo0iPDycm2+++Zz7t2/fjt1uP+f+Nm3a0KRJE7777jsAvvvuO9q3b09w8P+mYnv06EFmZia//fZbyXP+/2v36NGj5DX+is1mIzMz85w3kdoqzZaG3WEHINAj8N8/wOIKnnWLbmsPuojUYIXZ2SRNmUrCHdHYDhzEHBBAg5dfpvGsWVgbNjQ63gUJ9AxkVrdZjL58NBYXC5uObiJyRSRr49caHU1ERERERKTcVPkCff78+ezYsYMXX3zxT48lJSXh6upKnTp1zrk/ODiYpKSkkuf8sTwvfrz4sX96TmZmJnl5eX+Z68UXX8TPz6/krXHjxuf3CYrUAMXT5wHuAVjN1tJ9kPfZv3NZKtBFpGbK2riRw+G9SPv8c3A68YuMpFnsF/j1CsdkMhkdr1yYXczc0/4e5ofPp7V/a9Jt6YzbPI7Hvn6MDFuG0fFEREREREQuWJUu0I8ePcro0aP57LPPcK9ih2o9/vjjZGRklLwdPXrU6EgihinT/vNi3n/Ygy4iUoMUpKZybPQYjj0wioLkZKyNG9Pkg/dp8OILWP6wiq4maR3Qmnnh8xjRfgQuJhe+jPuSyBWRbDm2xehoIiIiIiIiF6RKF+jbt28nJSWFyy+/HIvFgsViYfPmzbzxxhtYLBaCg4PJz88nPT39nI9LTk4mJCQEgJCQEJKTk//0ePFj//QcX19fPDw8/jKbm5sbvr6+57yJ1FbJuUV/f0q1/7yYT9HfP02gi0hNkhETw6HwXmStWQNmM3XvGU6zlSvwuuYao6NVOKvZysOXP8wnPT+hqW9TUvNSeWDDAzyz9Rly7DlGxxMRERERETkvVbpA79q1K7/88gu7du0qebvyyiuJjo4uuW21WtmwYUPJx+zbt48jR45w9dVXA3D11Vfzyy+/kJKSUvKcdevW4evrS7t27Uqe88fXKH5O8WuIyD8r0wGixTSBLiI1SGF2Dscfe4zj4yfgyMzEvV07whYtJOjRR3H5mx/G11SXBF7Cot6LGNx2MABLDiwhamUUPyb9aHAyERERERGRsrMYHeCf+Pj4cPHFF59zn5eXF3Xr1i25f/jw4YwdO5aAgAB8fX156KGHuPrqq7nqqqsA6N69O+3atePOO+9k+vTpJCUlMWnSJEaNGoWbmxsAI0eO5K233mLChAkMGzaMjRs3snDhQmJjYyv3ExappooL9EDPUhwgWkwT6CJSQ+T98guJ4x7FfuQIuLhQ74EHqDfyPkyWKv1tVoVyt7jzWKfHuKnJTUz6ZhKJ2YkMWzOMwW0HM/ry0bhbqtZqPhERERERkb9TpSfQS+PVV1+lV69eREVF0aVLF0JCQli6dGnJ42azmS+++AKz2czVV1/N4MGDGTJkCFOmTCl5TlhYGLGxsaxbt44OHTowY8YM5syZQ48ePYz4lESqneIVLtqBLiK1idPh4OTs2cQPugP7kSNYGtQn9JOPCXxwVK0uz/+oY0hHlvZdSlTLKAA+3fMpA2IG8EvqLwYnExERERERKR2T0+l0Gh2iJsjMzMTPz4+MjAztQ5daJ2plFPvT9vPOze9wbcNrS/dBCVvhw57gHwajd1VsQBGRcmZPTuH4xMfI/e57AHx69KD+lGcx+/kZnKzq+vrY1zyz9RlS81Ixm8wMbz+ckZeMxGq2Gh1NRERERERqmbJ0udV+Al1EjHfBO9D1czwRqUayvvqKuIgIcr/7HpOHByFTp9DwtVdVnv+LLo26sKzvMnqG9aTQWch7u9/jji/vYH/afqOjiYiIiIiI/C0V6CJyQWyFNtJt6UAZV7gU70C354ItqwKSiYiUL4fNRtJzz3Ps/gcoTEvDrW1bwpYsxn/AAEwmk9HxqgU/Nz+md5nOy9e/TB23Ouw9vZeBXwxkzi9zKHQUGh1PRERERETkT1Sgi8gFKZ4+dzO74etahvVFrl7g6lN0W3vQRaSKsx08SPxtA0n79FMAAu4aQtMF83Fr1szgZNVTj6Y9WNZ3GTc0uoECRwGv73idIauHEJ8Rb3Q0ERERERGRc6hAF5EL8sf1LWWewPQ5O7GelVTOqUREyofT6SRtwULi+g/Atm8f5oAAGs96l+DHH8fF1dXoeNVaPY96vHHTG0z9z1S8rd7sTt3NgJgBfLbnMxxOh9HxREREREREABXoInKBzmv/eTHvs2tcNIEuIlVQYXo6iQ+PJmnyZJxnzuB1zTU0W7Ec7+uvNzpajWEymYhoEcHSPkvpXL8zZwrPMG3bNO5dey/Hs48bHU9EREREREQFuohcmAsq0DWBLiJVVO6PP3I4IpKsdevAaiVo/Hgaz5mNJTDQ6Gg1Un3v+rzX7T2e6PwE7mZ3fkj6gX4r+7HswDKcOmhaREREREQMpAJdRC5Icm7R9HiZDhAtVjKBrgJdRKoGZ0EBqW+8QcJdQylISsI1NJSm8+ZRd/gwTC76tqkiuZhcGNRmEIv7LKZDYAdy7Dk8vfVpHtr4ECfzThodT0REREREain9T1BELkj5TKBrhYuIGC//WCIJdw7h5NvvgMOBX2QkYUuX4HHxRUZHq1VCfUP56JaPGHP5GKwuVjYf20zEighWx682OpqIiIiIiNRCKtBF5IKUzw50TaCLiLEyV60iLjKSvJ07cfH2psGMl2nw4gu4eHkZHa1WMruYGd5+OPN7zadNQBsybBmM3zyeCZsnkH4m3eh4IiIiIiJSi6hAF5ELUlygn9cKF02gi4jBHLm5HH/ySRIfGYsjKwuPDh0IW74Mv/Bwo6MJ0Mq/FZ/f+jn3XXIfZpOZVfGriFwZydfHvjY6moiIiIiI1BIq0EXkvDmdTk2gi0i1lffbb8T1iyJjyVIwmag78j5CP/0E10aNjI4mf2A1W3nwsgf5pOcnhPmFcTLvJKM2jGLy1slk52cbHU9ERERERGo4Fegict7SbGnYHXYAAj0Cy/4CxRPoZzLAnleOyURE/p7T4eDU3LnE3z6I/Ph4LMHBNJk7l6AxYzBZrUbHk7/RPrA9C3stZEi7IZgwsfTAUiJXRrLhyAacTqfR8UREREREpIZSgS4i5614+jzAPQCr+TxKJ/c6YHYrup2tNS4iUvEKTp7k6H0jSZn2X7Db8b65K2HLl+HVuZPR0aQU3C3ujO84nvd7vE9D74Yk5SQx5qsxjNowiqOZR42OJyIiIiIiNZAKdBE5bxe0/xzAZNIedBGpNNlbvuFwRCQ5W7ZgcnMj5JnJNHrzTSz+/kZHkzLqGNKRpX2Wck/7e7C4WNiSuIWIFRG8s+sdbIU2o+OJiIiIiEgNogJdRM5bcm5R6X1e+8+LaQ+6iFQwR34+ydP+y9ERIyg8eRK3Vq0IW7wI/9tvx2QyGR1PzpOn1ZPRl49mSZ8ldK7fmXxHPm///DYRyyN0yKiIiIiIiJQbFegict4u6ADRYppAF5EKZIuLI+H2QZyeOxcA/+homi5cgFvLlsYGk3LTzK8Zs7vN5qXrXyLII4hj2ccYtWEUozeO5nj2caPjiYiIiIhINacCXUTOW3GBHuh5HgeIFtMEuohUAKfTSfqSpcRF9efM779jrlOHRm/PJOSpSbi4uxsdT8qZyWTilqa3sDJyJXe1uwuzyczGoxvpu7wvc36Zg73QbnREERERERGpplSgi8h5K17hct470EET6CJS7hy5uRyf8BgnnnwSZ24unlddRdiK5fjcdJPR0aSCeVm9eLTjoyzqvYgrgq/gTOEZXt/xOv1W9uP7E98bHU9ERERERKohFegict5Sc1MB7UAXkarDFhdH/MCBZMbEgNlM4NixNHl/DtbgC/hBn1Q7Lf1b8mGPD3nh2hcIcA8gPjOeEWtHMH7zeJJz9ANbEREREREpPRXoInLeymcHenGBrkJDRC5M5tq1xPcfgO3AQSyBgYR+/BH17h2ByWw2OpoYwGQy0bt5b2IiY7ijzR24mFxYHb+aPsv78NFvH2F3aK2LiIiIiIj8OxXoInJebIU20m3pwAWucPHWChcRuTDOggKSX3qJxIdH48jJwfPKKwlbugTPK64wOppUAb6uvjze+XHmh8/nksBLyC3I5eWfXua2mNvYnrzd6HgiIiIiIlLFqUAXkfNSPH3uZnbD19X3/F+oeAI9JxUKC8ohmYjUJgWpqRy5exin3/8AgIBhw2jy4QdYAi/gcGOpkdrWbcsnPT/h2WuepY5bHQ6mH2To6qE8+c2TnMw7aXQ8ERERERGpolSgi8h5+eP6FpPJdP4v5FkPTGbAWVSii4iUUu6OHcT1iyL3xx9x8fKi4euvEzxhPCar1ehoUkW5mFzo17IfMREx9G/VHxMmVh5aSZ9lfZi3dx6FjkKjI4qIiIiISBWjAl1Ezku57D8HcHEB77OvoYNERaQUnE4npz/+mIQhd1GQmopri+Y0XbQI3x7djY4m1UQd9zpMvnoyn936Ge3qtiPLnsULP7zAoNhB/Jz6s9HxRERERESkClGBLiLnpdwKdNAedBEpNUdODsfHjSP5hRehoADfW28lbMEC3JqFGR1NqqH2ge35/NbPmdR5Ej6uPuw5vYfBXw7mma3PkH4m3eh4IiIiIiJSBahAF5HzkpxbVHZf0AGixYr3oGsCXUT+ge3wYeIGDiTzy1VgsRD8xBM0mPEyLl5eRkeTaszsYmZgm4HERMTQt3lfAJYcWEKv5b1YvH8xDqfD4IQiIiIiImIkFegicl40gS4ilSlz9Rri+w8g/+AhLEFBhH78EQFD7rywMxhE/qCuR12eu/Y5PrrlI1r5tyLDlsGz3z3LnV/eye+nfjc6noiIiIiIGEQFuoicl3It0DWBLiJ/w2m3kzztvySOGYMjNxfPTp0IW7oEz8svNzqa1FCXB1/Ogl4LmNBxAl5WL3af3M2g2EE8//3zZOZnGh1PREREREQqmQp0ETkvxQV6uaxw0QS6iPwFe0oKCXffzem5cwGoe89wmnzwPpZ69YwNJjWexcXCne3uZGXESnqG9cThdDB/33x6L+vNykMrcTqdRkcUEREREZFKogJdRMrM6XRqAl1EKlTuTz8RFxVF3k/bcfHyouGbbxD06KOYLBajo0ktEuQZxPQu05nTfQ5hfmGcPnOaJ795kqGrh7I/bb/R8UREREREpBKoQBeRMkuzpWF32AEI9Ai88Bf0PlugawJdpNZzOp2c+nAuCXcNpTD1JG4tW9J08SJ8u3UzOprUYp3rd2ZJ7yU8csUjeFg82JGyg9tibmP6j9PJzs82Op6IiIiIiFQgFegiUmbF0+cB7gFYzdYLf0GfsytcspNBvxYvUmsVZueQ+MhYUv77XygsxLdXL5oumI9bWJjR0USwmq0Mu3gYKyNW0i20G4XOQj75/RN6L+9N7OFYrXUREREREamhVKCLSJmV6/5zAK+za2Acdsg9XT6vKSLViu3QIeJvu42s1avBaiX4qUk0eGk6Lp6eRkcTOUeIVwiv3PAKs26eRahvKCfzTjJxy0SGrx3OofRDRscTEREREZFypgJdRMosObdo1Uq57D8HsLiCZ92i29qDLlLrZK5aRdyA28g/fBhLcDChH39EQHQ0JpPJ6Ggif+uahtewtM9SHr7sYdzN7vyY9CP9V/Znxk8zyLHnGB1PRERERETKiQp0ESmzcj1AtFjJHnQV6CK1hdNuJ+mFF0h8ZCzO3Fw8r7qKsKVL8LzsMqOjiZSKq9mVEZeMYHnEcm5qfBMFzgLm/jaXPsv7sDp+tda6iIiIiIjUACrQRaTMigv0QM9yOEC02B/3oItIjWdPTiHhrqGkffwJAHVHjKDJnNlY6tY1OJlI2TX0bsjrN73OzK4zaezTmJTcFMZvHs+96+7lcMZho+OJiIiIiMgFUIEuImVWvMKl3HaggybQRWqRnG3biIuKIm/HDly8vWk08y2Cxo3FZLEYHU3kgnRp1IVlfZfxwKUP4GZ24/sT3xO1MorXtr9Grj3X6HgiIiIiInIeVKCLSJml5qYC5bzCRRPoIjWe0+nk1PsfcOTuYRSePIlbq1aELVmMT9euRkcTKTduZjfu73A/y/ou4/pG11PgKOD9X9+n74q+rEtYp7UuIiIiIiLVjAp0ESkz7UAXkbIqzM4m8eHRpLz0EhQW4te3D00XzMc1NNToaCIVorFPY97q+hZv3vQmDb0bkpSTxNhNY7l//f0kZCYYHU9EREREREpJBbqIlImt0Ea6LR0o7xUuZ8t4TaCL1Di2AweI7z+ArHXrwGolZPLT1J82DRcPD6OjiVS4GxrfwLK+y7jvkvuwulj59vi3RK6I5I0db5BXkGd0PBERERER+Rcq0EWkTIqnz93Mbvi6+pbfC/toAl2kJsqIjSXutoHkx8djCQmh6aef4D9oECaTyehoIpXGw+LBg5c9yPK+y/lPw/9gd9iZ/ctsIpZHsPHIRq11ERERERGpwlSgi0iZ/HF9S7kWYN5/2IGuIkGk2nM6HKS8/jrHxz2KMy8Pr2uuJmzpEjw6dDA6mohhmvg24Z2u7/DaDa9R36s+x3OOM/qr0YzaMIqjmUeNjiciIiIiIn9BBbqIlEmF7D+H/02g23PBllW+ry0ilcqRl0fiI2M59c67ANS9ZziNZ8/GEhBgcDIR45lMJrqGdmV53+WMaD8Ci4uFLYlbiFgRwdu73uZMwRmjI4qIiIiIyB+oQBeRMqmwAt3VC1x9im5rD7pItWVPTiHhziFkrVkDViv1X3iBoEcfxWQ2Gx1NpErxtHry8OUPs7TPUq6ufzX5jnze+fkdIlZEsPnoZqPjiYiIiIjIWSrQRaRMknOLyu1yPUC0mM/Z19QedJFqKe+334gfMIAzv/6KuU4dQj/8gDr9Io2OJVKlhfmFMavbLGZcP4MgzyASsxN5cOODPLTxIY5lHTM6noiIiIhIracCXUTKpMIm0AG8z65x0QS6SLWTuXYtCdGDKUhJwbVFc5ouWojnlVcaHUukWjCZTHRv2p2YiBjuvvhuLCYLm45uImJFBO/+/C62QpvREUVEREREai0V6CJSJhVaoGsCXaTacTqdnHx3FokPj8Z55gxe111H03nzcG3c2OhoItWOp9WTsVeMZUmfJXQK6YSt0MbMXTPpt6If3yR+Y3Q8EREREZFaSQW6iJRJcYFeIStcSibQVaCLVAcOm43jjz1G6muvAeB/5500fudtzD4+BicTqd6a1WnGnO5zmN5lOoEegRzJOsL96+9nzFdjiMuIMzqeiIiIiEitogJdRErN6XRW0gS6VriIVHUFp05xZOjdZK6MAbOZkGcmE/LkE5gsFqOjidQIJpOJnmE9WRmxkiHthmA2mdlwZAMRKyKY8PUEDqYdNDqiiIiIiEitoAJdREotzZaG3WEHINAjsPwvoAl0kWrhzL79xA+4jbydO3Hx9aXJ7Pfwv/12o2OJ1Ejert6M7zieRb0XcUPjG3A4HayKW0XkykjGbhrL3tN7jY4oIiIiIlKjqUAXkVIrnj4PcA/AaraW/wU0gS5S5WVt2kTCoEHYjx/HGtqEpvPn43XNNUbHEqnxWvq35M2b3mRR70V0C+0GwLqEdQyIGcBDGx7i15O/GpxQRERERKRmUoEuIqVWofvPQRPoIlWY0+nk1Ny5HHtgFI7cXDw7daLp/Pm4NQszOppIrdImoA2v3PAKS/sspWfTnpgwsenYJgbFDmLk+pHsStlldEQRERERkRpFBbqIlFpybtFkeIXsP4f/TaCfyQB7XsVcQ0TKzJmfT9LTk0mZ9l9wOKgzoD9N5szG4u9vdDSRWqulf0umXz+dFREr6NO8D2aTmW8Tv+XOVXdyz5p7+DHpR6MjioiIiIjUCCrQRaTUKvQAUQD3OmB2K7qdrTUuIlVBYXo6R+4ZQfqiRWAyETTxMUKmTMHk6mp0NBEBwvzCeP7a54mJiCGqZRQWk4Ufkn5g2Jph3LXqLrYe34rT6TQ6poiIiIhItaUCXURKrbhAD/SsgANEAUwm7UEXqUJsh+OIGziQ3G3bcPH0pNE7b1N36FBMJpPR0UTk/2ns25hnrnmG2H6xDGw9EKuLlR0pO7hv3X0M/nIwXx/7WkW6iIiIiMh5UIEuIqVWvMKlwnagg/agi1QROVu3En/77dgTjmBt0IDQefPwueEGo2OJyL9o4N2ASVdNYlW/VQxuOxg3sxu7T+5m1IZRDPxiIBuObMDhdBgdU0RERESk2lCBLiKllpqbClTgChfQBLpIFZA2fz5HRtyLIzMTj0svpemihbi3bmV0LBEpg2CvYB7r9Biro1Zz90V342HxYM/pPYz5agz9Y/qzOn41hY5Co2OKiIiIiFR5KtBFpNQqfAc6aAJdxEDOggKSnn+BpGeehcJCfHv3pslHc7HUrWt0NBE5T/U86jH2yrGsiVrDiPYj8LJ6cSDtAOM3jydyZSRfHP6CAkeB0TFFRERERKosFegiUiq2QhvptnSggle4aAJdxBCFWVkcvf8B0j75BIDAMWNoMP2/uLi5GZxMRMqDv7s/D1/+MGui1vBAhwfwcfUhLiOOx7c8Tt/lfVl2YBl2h93omCIiIiIiVY4KdBEpleLpczezG76uvhV3IU2gi1S6/KNHiR80iJwtWzC5u9Pw9depN/I+HRYqUgP5uflx/6X3szZqLQ9f9jB13OpwJOsIT299mt7LerNw30LyC/ONjikiIiIiUmWoQBeRUvnj+pYKLdV8zhbomkAXqRS5P/1E/G0DyT94CEtQEKGffopvj+5GxxKRCubt6s2IS0awJmoN464YR133uprwAIMAACAASURBVCRmJzL1+6ncuvRWPt/zObZCm9ExRUREREQMpwJdREqlUvafA3ifXeGSrQJdpKKlL1tOwt3DKExLw/2ii2i6aCEeF19kdCwRqUSeVk+GXjyU1VGrmdhpIkEeQSTnJvPithe5ZcktfPTbR+Tac42OKSIiIiJiGBXoIlIqlVagF0+g56RCoQ41E6kIToeDlBkzOPH442C349OjB6GffoI1uALPNxCRKs3d4k5022i+jPqSSZ0nUd+rPifzTvLyTy/Tc2lP3v35XU6fOW10TBERERGRSqcCXURKJTm3aCK8Qg8QBfCsByYz4Cwq0UWkXDlycjj28MOcmj0HgLr3j6Thq6/g4uFhcDIRqQrczG4MbDOQ2MhYnrn6GRp5N+L0mdPM3DWTbou6MXnrZPan7Tc6poiIiIhIpVGBLiKlUmkT6C4u4H32GjpIVKRc2U+cID56MNnrN2BydaXBS9MJGj0ak4u+HRCRc1nNVqJaRRETGcO066ZxUd2LyHfks/TAUqJWRnHP2nvYfHQzDqfD6KgiIiIiIhXKYnQAEakeKq1Ah6I96FkndJCoSDnK272bo6NGUZh6EnPdujR66008L7vM6FgiUsVZXCyENwvn1rBb+Tn1Zz75/RPWH1nPDyd+4IcTPxDqG0p022j6Nu+Lp9XT6LgiIiIiIuVOI2ciUirFBXqFr3CB/+1B1wS6SLnIXL2ahDuHUJh6ErdWrQhbuEDluYiUiclk4tKgS5lxwwxW9VvF0IuG4mP1ISEzgRd+eIGbF93MjJ9mcCL7hNFRRURERETKlQp0EflXTqez8ifQQRPoIhfI6XRyctZ7JI55BKfNhvf11xP6+edYGzY0OpqIVGMNvBsw7spxrB+wnic6P0GobyhZ9izm/jaXnkt7Mm7TOHal7MLpdBodVURERETkgmmFi4j8qzRbGnaHHYBAj8CKv6Am0EUumDM/nxPPPEvG0qUA+A+5k+DHHsNkNhucTERqCk+rJ4PaDGJg64F8k/gNH//+MT+c+IG1CWtZm7CWi+tezOB2g+ke2h2r2Wp0XBERERGR86IJdBH5V8XT5wHuAZXzH2BNoItckML0dI7cM6KoPHdxIfipSYQ88YTKcxGpEC4mF7o06sKc7nNY0mcJ/Vr2w9XFlV9P/crELRO5ZcktzN49m/Qz6UZHFREREREpMxXoIvKvKnX/OWgCXeQC5CckEH/7IHK3bcPF05PG775DQHS00bFEpJZo5d+KZ695lnUD1vHgpQ9Sz6MeKXkpvLHzDW5efDPPfvcsh9IPGR1TRERERKTUVKCLyL9Kzi2aBK+U/ecA3mcLdE2gi5RJ7vbtxA+8nfz4eCz16xM673O8u3QxOpaI1EIB7gHc1+E+1kat5YVrX6BtQFtshTYW719MxIoI7lt3H1uObcHhdBgdVURERETkH2kHuoj8q0o9QBTA5+yke3YyOJ1gMlXOdUWqsYyYGE488SROux339u1p/PZMLIGVcGaBiMg/sJqt9G7em17NerEjZQef/v4pG49uZOvxrWw9vpUwvzAGtx1Mr2a98LR6Gh1XRERERORPNIEuIv+quEAP9KykMs7rbFHvsEPu6cq5pkg15XQ6SX3zLY6Pn4DTbsene3dCP/5I5bmIVCkmk4krgq/g1RtfJTYyliHthuBt9SYuI46p30+l2+JuvLr9VZJytL5NRERERKoWFegi8q+OZx8HIMQzpHIuaHEFz7pFt7UHXeRvOWw2jj86npMzZwJQd8Q9NHztVVw8PAxOJiLy9xr5NGJ8x/GsH7CeiZ0m0tinMZn5mXzw6wfcsuQWxm8ez+7U3UbHFBEREREBVKCLyL9wOp3sT9sPQEv/lpV34ZI96CrQRf5KwenTHLl7GJmxsWCxEDJ1CkHjxmFy0Zd2EakevKxeRLeNJiYihjdufINOIZ0odBayOn410V9GE/1lNF8e/hJ7od3oqCIiIiJSi2kHuoj8o9S8VE6fOY3ZZKZFnRaVd2GfYEj5rWgPuoicw3b4MEfvG4n96FFcfHxo9MbreF19tdGxRETOi9nFzI1NbuTGJjey7/Q+Pt3zKbGHY9mdupvdqbuZ/uN0olpFMaDVAEK8Kum34UREREREztKYmoj8o72n9wIQ5heGu8W98i6sCXSRv5Tz/ffE3z4I+9GjWBs1oun8eSrPRaTGaB3Qmqn/mcra/mt54NIHCPQI5NSZU7y3+z1uWXILj3z1CN+f+B6n02l0VBERERGpJVSgi8g/Ki7QWwe0rtwL+wQXvdcEukiJ9CVLOHLPCByZmXhcdhlNFy7ArXlzo2OJiJS7eh71uL/D/azpv4aXr3+ZjiEdKXQWsv7IekasHUHfFX35bM9nZOVnGR1VRERERGo4Fegi8o+KC/Q2/m0q98KaQBcp4XQ4SJkxgxNPToKCAnzDw2ky90MsAQFGRxMRqVBWFys9mvbggx4fsKzPMga2HoinxZO4jDimbZtG10VdmfrdVA6kHTA6qoiIiIjUUCrQReQf7Tu9D9AEuohRHHl5JI55hFOz5wBQ74EHaPDyS7i4uRmcTESkcrXwb8GkqyaxYcAGnuj8BM39mpNXkMfC/Qvpt7IfQ1cPZXXcah06KiIiIiLlSoeIisjfyrHncCTrCABtAjSBLlLZClJTOTrqQc7s3o3JaqX+88/h16eP0bFERAzl7erNoDaDuL317fyU/BPz9s5j45GNbE/ezvbk7dTzqEf/Vv3p37I/wV7BRscVERERkWpOBbqI/K39afsBCPYMxt/dv3Iv/scJdKcTTKbKvb6Iwc7s38/RkSMpOH4Cc506NHrrTTyvvNLoWCIiVYbJZKJjSEc6hnQkOSeZxQcWs3j/Yk7mneTdn99l9u7Z3NTkJm5vfTsdQzpi0vcSIiIiInIetMJFRP7WnlN7AAOmz+F/E+j2XLDpgDCpXbK3fEPCoDsoOH4C16ZNabpgvspzEZF/EOwVzKhLR7E2ai0vdXmJK4KvoNBZyLqEdQxfO5zIFZHM2zuP7Pxso6OKiIiISDWjAl1E/ta+NIP2nwO4eoKbb9Ft7UGXWiRt3jyOjhyJIycHz06daDp/Hq6hoUbHEhGpFqxmK7eE3cLcW+aypM8Sbmt1Gx4WDw5lHOKFH16g66KuPPf9cxxMO2h0VBERERGpJlSgi8jf2nt6L2DQBDqAd1DRe+1Bl1rAWVhI8ovTSHp2ChQW4hcRQZM5szHXqWN0NBGRaqmVfyueuvopNgzYwMROEwnzCyO3IJcF+xYQuTKSYWuGsSZ+DXaHDh0VERERkb+nHegi8pfsDnvJdJZxBXoInDqoCXSp8Rw5OSQ+Op7sr74CIHDMGOred6/29YqIlAMfVx+i20ZzR5s72Ja0jfl75/PV0a/4MelHfkz6kSCPoKJDR1v1J9Az0Oi4IiIiIlLFqEAXkb8UlxFHviMfb6s3Db0bGhOi+CBRTaBLDWZPSuLo/Q9g27MHk5sbDaa9iG/PnkbHEhGpcUwmE53rd6Zz/c4k5SSxaP8iluxfQkpeCm///Dbv7X6PrqFdGdh6IFcGX6kfYoqIiIgIoBUuIvI39p0u2n/eyr8VLiaD/qkoPkg064Qx1xepYGd+/5342wZi27MHc926hH40V+W5iEglCPEK4aHLHmJd/3VM7zKdy4Mup8BZwJr4NQxbM4yomCiWHliKrdBmdFQRERERMZgKdBH5S4bvPweo27zofcoe4zKIVJCsjRuJjx5MQUoKri2a03TBAjwuvdToWCIitYrVbKVnWE8+6vkRi3svpn+r/nhYPDiQdoDJWyfTfXF3Zu6aycm8k0ZHFRERERGDqEAXkb9UPIFuaIHe4LKi98d3gNNpXA6RcuR0Ojk1dy7HRj2IMy8Pr2uuoem8ebg2MmhVkoiIANA6oDWTr57M+gHrGXfFOOp71ef0mdO8+/O7dF/cnSe/ebLk+yMRERERqT1UoIvInzidTvamVYEJ9OCLwOwKeWmQnmBcDpFy4iwoIGnKFFKm/RecTuoMHEjjWe9i9vExOpqIiJzl6+rL0IuH8mW/L3n5+pfpENgBu8POykMr6R/Tn+FrhrPp6CYcTofRUUVERESkEugQURH5k6ScJDJsGVhMFprXaW5cEItbUYl+fCck7gD/psZlEblADpuNxHHjyF6/AUwmgiZMIGDoXTqkTkSkirK4WOjRtAc9mvZgd+puPv39U9YmrGVb0ja2JW2jiU8TottGE9EiAk+rp9FxRURERKSCaAJdRP6keP95szrNcDW7GhumZI3LTmNziFyAwuxsjo64l+z1GzC5utLwjdepe/dQleciItXEJYGXMP366ayOWs3dF9+Nj6sPR7KO8OK2F7l58c288tMrnMjWoeciIiIiNZEKdBH5kyqxvqVYg8uL3qtAl2qq4NQpEoYMIXfbNly8vGg8Zza+3boZHUtERM5DiFcIY68Yy/r+63mi8xOE+oaSlZ/Fh799SM+lPXl086P8nPqz0TFFREREpBypQBeRP6kSB4gWK5lA3wUO7RqV6iX/WCIJd0Rj+30P5rp1Cf3kY7w6dTI6loiIXCBPqyeD2gxiZcRK3rrpLTqHdKbQWcia+DUM/nIw0V9Gszp+NQWOAqOjioiIiMgFUoEuIn9SvMKlShTogW3A4gH5WXDqoNFpRErNduAACXfcQX5CAtYGDWj62ae4t2tndCwRESlHLiYXrm98PXN6zGFx78VEtIjA6mJld+puxm8eT8+lPfnw1w/JzM80OqqIiIiInCcV6CJyjsz8TBKzEwFo5d/K4DSA2QL1Lym6rTUuUk3k7txJ/OA7KUhJwa1lC0LnfY5r06ZGxxIRkQrUOqA1U/8zlbX913J/h/sJcA8gKSeJV7a/ws2Lbub5758nITPB6JgiIiIiUkYq0EXkHMXrWxp4NcDPzc/gNGeV7EHfYWwOkVLI3vINR4YNx5GRgcellxL6ySdYg4ONjiUiIpWknkc9Hrj0Adb2X8uUa6bQ0r8leQV5zN83n97LevPQhofYdmIbTqfT6KgiIiIiUgoq0EXkHMUFeuuA1gYn+YOSPeiaQJeqLSM2lqMPPIAzLw+v666jyQfvY65Tx+hYIiJiADezG5EtI1nSewmzu8/m+kbX48TJpmObGL52OANiBrD84HLyC/ONjioiIiIi/0AFuoico3j/eduAtgYn+YOGZyfQT+yGQh3GJVXT6c8/5/ij48Fuxzc8nMYz38LF09PoWCIiYjCTycRV9a/ira5vERMRw8DWA/GweLAvbR9PffsU3Rd3552f3+FU3imjo4qIiIjIX1CBLiLnKC7Qq9QEekBzcPOFgjxI3Wt0GpFzOJ1OUt+aSfKUqeB04h8dTYOXpmNydTU6moiIVDFN/Zoy6apJrOu/jkeueIRgz2BOnTnF27vepvvi7jz17VPsStml9S4iIiIiVYgKdBEpYS+0cyjjEABtAtoYnOYPXFygfoei29qDLlWI0+Eg+bnnOfnWWwDUe/BBgic9iclFX15FROTv+bn5MeziYayKWsX0LtNpX689+Y58lh9czp2r7qTvir68/8v7pOamGh1VREREpNbT//BFpMShjEMUOArwcfWhvld9o+OcS3vQpYpx5udzfPwE0j77DEwmgp+aROCDozCZTEZHExGRasLqYqVnWE8+D/+cT3p+Qp/mffCweBCXEcdrO16j2+JujNowinUJ67AX2o2OKyIiIlIrWYwOICJVR/H6ljYBbapeCVi8Bz1RE+hiPEduLsdGjyFnyxawWGgwbRp+vcKNjiUiItXYpUGXcmnQpTzR+QnWxK9h+cHl7EzZydfHvubrY1/j7+ZPeLNwIlpEVK1VeyIiIiI1nAp0ESnxxwK9yimeQE/+DQpsYHEzNo/UWoXp6RwdeT95u3Zh8vCg0Ruv433ddUbHEhGRGsLL6kW/lv3o17IfcRlxrDi4gphDMaTkpfDpnk/5dM+ntA1oS0SLCMKbhePn5md0ZBEREZEaTStcRKRElS7Q64SCRwA47JD8q9FppJayJ6eQcOcQ8nbtwsXPjyYfvK/yXEREKkyYXxhjrhjDmv5rmNl1Jt1Cu2FxsbDn9B5e3PYiNy68kXGbxvFN4jcUOgqNjisiIiJSI2kCXUQAcDqd7Du9D4DW/lXw14JNpqIp9EMbivagN7zC6ERSy+THx3Nk+D3YExOxBAXR5P05uLVsaXQsERGpBSwuFro06kKXRl1IO5PGl3Ffsvzgcvae3svahLWsTVhLkGcQfZr3IaJFBKG+oUZHFhEREakxNIEuIgAkZieSbc/G6mKlWZ1mRsf5ayV70HWQqFSuM7//Tnz0YOyJiVhDmxD6+ecqz0VExBD+7v5Et41mUe9FLOq9iOi20fi5+ZGSm8KcX+bQa1kv7lp1F8sOLCPHnmN0XBEREZFqTwW6iACUTJ+3qNMCq4vV4DR/o3gP+nEV6FJ5crZtI2HIXRSeOoVbu7Y0/ewzXBs1NDqWiIgIbQLaMLHTRDYO2MiM62dwbcNrcTG5sCNlB09vfZobF97IpG8m8VPSTzidTqPjioiIiFRLWuEiIgDsOb0HqKL7z4s1ODuBnroH8nPB1dPYPFLjZW3cSOKYR3Dm5+PZsSON3p6J2cfH6FgiIiLncDW70r1pd7o37U5yTjIxh2NYfnA5CZkJrDi0ghWHVtDEpwl9W/SlT/M+hHiFGB1ZREREpNrQBLqIAP+bQG8dUAX3nxfzrQ/eIeB0QNJuo9NIDZe+dBnHHnoYZ34+3l270njObJXnIiJS5QV7BXNP+3uIiYjh454fE9kiEk+LJ0eyjvDmzjfpvrg7I9eNZHXcamyFNqPjioiIiFR5mkAXEQD2pu0FqvgEOhTtQd/3ZdEalyZXGZ1GaqhTH3xIyvTpAPj160f9Kc9isuhLpoiIVB8mk4nLgi7jsqDLmNhpIusS1rHs4DK2J2/n2+Pf8u3xb/F19aVnWE8iW0bSLqAdJpPJ6NgiIiIiVY7aABEh/Uw6STlJALT2r8IT6FC0B33fl5C4w+gkUgM5nU5SX3mFU7PnABAwfBhBjz6qQkFERKo1T6snfVv0pW+LvhzNPMryQ8tZcXAFybnJLNi3gAX7FtDMrxnhzcK5NexWGvk0MjqyiIiISJWhFS4iUjJ93tinMd6u3gan+RfFe9B1kKiUM2dBASeeeqqkPA96dBzB48erPBcRkRqlsW9jHrrsIdZErWHWzbPo2bQnri6uHM44zJs736Tn0p4MWTWEhfsWkn4m3ei4IiIiIobTBLqIlOw/r/LrW6BoAh3g1AE4kwHufsbmkRrBYbNx/NFHyVq3HlxcqD/lWer07290LBERkQpjdjFzTcNruKbhNWTlZ7E+YT2xh2PZlrSNnSk72Zmykxe3vci1Da4lvHk4NzS6AXeLu9GxRURERCqdCnQRYe/pogn0Kr++BcCrLtRpAulH4MTPENbF6ERSzRVmZ3Ns1IPk/vADJquVBq/MwLdbN6NjiYiIVBofVx8iW0YS2TKS5JxkVsWtIjYulr2n97Lp2CY2HduEl9WLrk260qtZLzqFdMLsYjY6toiIiEilUIEuIiUFerWYQIeiKfT0I0V70FWgywUoOH2aoyPu5cxvv+Hi5UWjmTPxuqqz0bFEREQME+wVzNCLhzL04qEcTDtIbFwsXx7+kuM5x1l5aCUrD60k0COQnmE9CW8WTtuAtlp3JiIiIjWadqCL1HK2QhtxGXEAtA6oBhPooD3oUi7sx4+TcEc0Z377DXNAAE0++kjluYiIyB+08G/B6MtHsypqFXNvmcuAVgPwdfUlNS+Vj3//mIFfDKTvir68t/s9jmUdMzquiIiISIUwOZ1Op9EhaoLMzEz8/PzIyMjA19fX6Dgipfbbyd+4PfZ2/N382Txwc/WYIDq8GT7uU7TKZcwvRqeRash26BBHht9DQVISlgb1afL++7iFhRkdS0REpMrLL8znm8RviD0cy6ajm8h35Jc8dlnQZYSHhdOjaQ/quNcxMKWIiIjIPytLl6sVLiK1XMn+84DW1aM8B2hwadH79COQc6poL7pIKeX98itHR4ygMD0d1xbNaTJnDtaQEKNjiYiIVAuuZlduanITNzW56X+Hj8bFsu3E/w4fnbZtGtc2vJbwZuFc3/h6PCweRscWEREROW8q0EVquWq3/xzA3Q/qtoBTB4vWuLS82ehEUk3kbNvGsfsfwJGTg3v79jR+bxYWf3+jY4mIiFRL///w0dXxq/ni8Bd/efhoeLNwOod01uGjIiIiUu2oQBep5fal7QOq0f7zYg0uV4EuZZK1aROJo8fgtNnw7NyZRjNnYvb2MjqWiIhIjRDsFcxdF93FXRfdxaH0Q8QejiX2cOyfDh+9JewWejXrpcNHRUREpNrQIaIitZjD6WDf6aICvW1AW4PTlFGDy4reH99hbA6pFjK+iOXYgw/htNnwvukmGv8fe3ceHld934v/PWf2XTMajaSRNFqwLcsyeMNgHNvUSQMEyA/atHnStLk2kA2cBZK0lDTt07TNTW6bpbdNCQHMUlKa2/y4KYQtcdgMwWbzbsmrpBnto9GMZt/n3D/OzJHGlsEG20cavV/PM885c86Zmc+BBEtvf+bzvf+nDM+JiIgukEtqLsFXVn8Fz33iOTx63aMVi48+1vOYvPjoT/f/FH1TfeCyXERERDSXcRHR84SLiNJ85Iv6cOMvb4RercfuT++GRphHX0rx7wYeuhawNgJfP6J0NTSHhX/+fzD27W8Dogjbxz8Oz//8DlRardJlERERLSi5Qg6vDb+Gp/uexitDryBTyMjnmixNuLr5amxq3oTLGy6HXq1XsFIiIiJaCLiIKBGdlfL888U1i+dXeA4ADZcCKgGIjQLRUcDWqHRFNAcFH3gAEz/4IQDA8ek/Qf23vgWVwC9fERERXWxatRabvZux2bsZ8Wwcv/X/Fs/3P483x97EcHwYjx95HI8feRxGjRHrGtdhU/MmbGzaiHpzvdKlExER0QI3zxIzIjqfyuNb5t38cwDQmYG6LiBwWJqDzgCdZhBFERM//BEmH3gAAFD7hS+g7s6vctYqERHRHGDRWXDzoptx86KbkcwlsXt0N3YO7cTOoZ2YSE3gpcGX8NLgSwCkMYMbmzfi6uarsdy1HIKKfxFOREREFxcDdKIFrNyBvtS5VOFK3ifPqlKAvgdYer3S1dAcIRaLGPu7v8PUz/8PAMD9599A7W23KVwVERERzcakNeHD3g/jw94PQxRF9IZ6sXNoJ14dehUHgwfRG+pFb6gX9x+4H06DExuaNmBT8yas96yHVWdVunwiIiJaABigEy1g8z5Ab1oF7PuZ1IFOBEDM5TByzzcRffppQKVCw7f/Fo5PflLpsoiIiOgsqFQqLKtdhmW1y/DFFV/EZGoSrw2/hp1DO/H6yOsIpUN46uRTeOrkU9CoNFhdv1oa9dK8Ee22dn7TjIiIiC6IOf39t+9+97tYu3YtrFYr3G43br75Zhw9erTimnQ6jW3btqG2thYWiwWf+MQnMD4+XnGN3+/HDTfcAJPJBLfbjT//8z9HPp+vuObll1/G6tWrodfrsWjRIjzyyCMX+vaIFBVMBTGRmoAKKixxLFG6nPfHs0raDu8BuB7ygldMpzH05a9I4blGg6YffJ/hORER0TxWa6zFTYtuwg9+7wfY+amd2H7NdmxZtgVttjbkxTzeHHsT33/7+7jpv2/CDb+8Ad9783t4feR1ZAtZpUsnIiKiKjKnA/RXXnkF27Ztw+7du7Fjxw7kcjlcc801SCQS8jV33XUXfvWrX+EXv/gFXnnlFYyMjOAP//AP5fOFQgE33HADstksXn/9dTz66KN45JFH8Dd/8zfyNf39/bjhhhuwefNm7Nu3D3feeSc++9nP4te//vVFvV+ii+lY6BgAoNXWCpPWpHA171P9ckDQAqkQMOVXuhpSUCEex+DnPo/4yy9Dpdej5d9+DNv1HOtDRERULbSCFlc0XoFvrP0GfvUHv8Izf/AM7l57N65qvApaQYvB2CD+o/c/8IUdX8CGn2/AV1/8Kv7v8f+LieSE0qUTERHRPKcSxfnTtjkxMQG3241XXnkFmzZtQiQSQV1dHR5//HH80R/9EQDgyJEj6Orqwq5du7Bu3To899xzuPHGGzEyMoL6emkF9/vuuw933303JiYmoNPpcPfdd+OZZ57BoUOH5M/61Kc+hampKTz//PNnVVs0GoXdbkckEoHNZjv/N090nj106CH86J0f4dq2a/H9q7+vdDnv30+vBkb3AX/8CND9B0pXQwrIh8MY/NznkT50CILZjJb7fgLT2rVKl0VEREQXSSKXwO6R3dg5LC1EGkwFK84vq12GTc2bsKlpE7pd3VyIlIiIiM4py51XPzlEIhEAgNPpBAC88847yOVy+P3f/335mqVLl8Lr9WLXrl0AgF27duHSSy+Vw3MAuPbaaxGNRnH48GH5mpnvUb6m/B6zyWQyiEajFQ+i+eTI5Dyff15WHuPCOegLUm58HL7PfAbpQ4egdjjgffRRhudEREQLjFlrxkdaP4Jvr/82XvjjF/DzG3+OO1begUtdlwIAeiZ7cN/++/DpZz+Nzf+1Gd967Vt4yf8SR70QERHRWZk3i4gWi0Xceeed+NCHPoTly5cDAMbGxqDT6VBTU1NxbX19PcbGxuRrZobn5fPlc+92TTQaRSqVgtFoPK2e7373u/j2t799fm6OSAFHwlUSoDetBt55WJqDTgtK1u+H/9bbkBsagqa+Ht6HtkN/ySVKl0VEREQKElQCumu70V3bjdtX3I5gKnjaQqRPnnwST558EladFde0XoPr26/Hmvo1UAtqpcsnIiKiOWjeBOjbtm3DoUOH8NprryldCgDgnnvuwde+9jX5eTQaRUtLi4IVEZ29ZC6JgcgAgCoI0Msd6KP7gWIREObVF2vofUofOwb/bbehMBGEttUL7/aHoGtuUrosIiIimmNcRhduBr/9DgAAIABJREFUXnQzbl50M3KFHPYE9uDlwZfxm4HfIJAK4InjT+CJ40+gzliH69qvw/Xt16O7thsqlUrp0omIiGiOmBcB+pe+9CU8/fTT2LlzJ5qbm+XjDQ0NyGazmJqaquhCHx8fR0NDg3zNm2++WfF+4+Pj8rnytnxs5jU2m23W7nMA0Ov10Ov1H/zmiBRwYuoERIioNdTCZXQpXc4HU9cFaAxAJgqETgKuxUpXRBdY6sAB+D/3eRQjEeiXLIF3+4PQ1NUpXRYRERHNcVq1Flc2XokrG6/ENy7/Bt4ZfwfP9j+L3/h+g4nUBB7reQyP9TwGr9WL6zuux8faP4YOe4fSZRMREZHC5nSrpiiK+NKXvoRf/vKXePHFF9He3l5xfs2aNdBqtXjhhRfkY0ePHoXf78dVV10FALjqqqtw8OBBBAIB+ZodO3bAZrNh2bJl8jUz36N8Tfk9iKrNkVCVjG8BALUGaLhM2ucc9KqX2L0b/q23oBiJwLhiBVr//VGG50RERHTO1IIaVzRegb9d/7d4+ZMv4182/ws+1vYxGNQG+GN+3Lf/Ptz03zfhk7/6JB4+9DDGEmNKl0xEREQKmdMd6Nu2bcPjjz+OJ598ElarVZ5ZbrfbYTQaYbfbcdttt+FrX/sanE4nbDYbvvzlL+Oqq67CunXrAADXXHMNli1bhs985jP4x3/8R4yNjeFb3/oWtm3bJneQf/GLX8SPf/xj/MVf/AVuvfVWvPjii/iv//ovPPPMM4rdO9GFVFUBOiDNQR96U5qDftknla6GLpDYCy9g+K6vQcxmYbpqHVp+/GMIZrPSZREREdE8p1PrsNm7GZu9m5HMJfHS4Et4tv9ZvD78OnpDvegN9eKH7/wQa+rX4Pr26/HR1o/CYXAoXTYRERFdJCpRFEWliziTM82de/jhh7F161YAQDqdxte//nX853/+JzKZDK699lrce++98ngWAPD5fLj99tvx8ssvw2w2Y8uWLfje974HjWb67w9efvll3HXXXejp6UFzczP++q//Wv6MsxGNRmG32xGJRGCz2d7X/RJdLH/6zJ/iQPAA/mnTP+G69uuULueD2/9z4JdfAFrWAbf9Wulq6AKIPPUURu75JlAowPL7H0HTD34AgWO0iIiI6AIKp8PY4duBZ/ufxTvj78jHNSoN1jetx8faP4YPt3wYJq1JwSqJiIjo/TiXLHdOB+jzCQN0mi8KxQLWPb4O6UIaT938FNrt7e/9orlu4hjwb2sBjRG4Z0ga60JVI/Qf/4Hxv/8HAID9ppvQ+J1/gErDf8dERER08YwlxvB8//N4tv9Z9IZ65eMGtQG/1/J7uL79emxo2gCtWqtglURERHS2ziXLZQJBtMD4Yj6kC2kYNUZ4rV6lyzk/ahcBOiuQjQHBo0B9t9IV0XkgiiImf3o/Jv75nwEAjj/7M9R/8x6ohDm9fAcRERFVoQZzA7Yu34qty7eiL9KH5/qfw7N9z8If8+P5gefx/MDzsOls+GjrR3F9+/VYU78GakGtdNlERETvqlgUkS+K0Gn4e/a7YYBOtMAcmZTmny92LK6eH+oFAfCsBAZeleagM0Cf90RRROD730do+0MAANcdd8D15S+dcbQXERER0cXSYe/AtpXbcMeKO9Az2YNn+p/B8/3PYyI1gSeOP4Enjj8Bt9GNa9uvxQ3tN2BZ7TL+DENEtECVA+pCUUS+WES+UPm8UDqfL4jI5ovIFgrI5IvSfr44vV+YPpYtSMcz+cL0sVOuKb8uIx8ryOdnvn++KGJNqwNP3L5e6X9UcxoDdKIF5khYCtC7nF0KV3KelQP0kb3A6s8oXQ19AGKhgLG//TamfvELAID77rtRe8tWZYsiIiIiOoVKpUK3qxvdrm58fc3X8c74O3i2/1n8xvcbBFIBPNbzGB7reQxeqxfXd1yPj7V/DB32DqXLJiKqGsWiKAfJ6Zy0zeSLyOSKSOcLyOROP5fOzX5N+Vw2L4XauaKIQinwLlSE4CLyheIpxyqD8JnP58Pg7Gy+qHQJcx4DdKIF5mjoKACg09mpcCXnmWe1tB3Zo2wd9IGI2SyG774bseeeBwQBjX//d6j5xCeULouIiIjoXakFNa5ovAJXNF6Bb175Tfxu+Hd4rv85vDT4EvwxP+7bfx/u238fljiWYFPzJmxq3oTLXJdVzzdCiWjBEUUpIJY7neUwesbzU/YzOakjOlMOsWe9dub5crA98/1nfE5h/ga/WrUKakEFjSCUtiroNIL0UAsV+3qtWtrOdl5TeVyvmfladeXzU67Ra9TQaQQYtBzf8l4YoBMtIKIo4khI6kBf6liqcDXnmWeVtB07BOQzgEavbD10zoqpFIa++lUkdr4KaLVo+qd/gu26a5Uui4iIiOic6NQ6bPZuxmbvZiRzSbw4+CKe638Orw+/jmPhYzgWPoYHDz4Iu96OD3k+hI3NG7HBswE1hhqlSyeiOaZYFJHOF5DKSuM3cnlR2s54ZPMicoUi8sXpfflcQUQuf8rzQlE+li1I3dTS+VPeu/RZ5YA7WyjKwXV5dEhxDnVXawQV9BopbDaUtvqZW40Ag7yvhl4rwFDazjyn0wjQlkPtGSG3RlBBrZaC7pnB92xBePm1Z3qdoAJHe80zDNCJFpBgKohQOgRBJWCRY5HS5ZxfjjbA6ABSYSDQMx2o07xQiMUwePvtSL39DlQGA5r/9V9h2bhB6bKIiIiIPhCT1oQbO27EjR03Yio9hVeHX8WrQ6/itZHXEMlE8Gz/s3i2/1kIKgGXuS7DpuZN2Ni8EZ2OToYrRHNcrlBEKldAOltAKld6lPbTuQJS2WLpWL60Lc44N/2aiuenvFdmHo3W0KpVUjCtqexw1mvLXdSCfL7cNV3ugNbPcq1OLYXahhkBuF6rhmHG+8w8p1Gzi5ouHAboRAtIb6gXANBma4NRY1S4mvNMpZJC85MvSguJMkCfN/KhEPyf/SwyPb0QrFa03PcTmNasUbosIiIiovOqxlCDj1/ycXz8ko8jX8zjwMQB7BzaiZ3DO3E8fBz7JvZh38Q+/Mvef4Hb5MbGpo3Y1LwJ6xrXwaQ1KV0+0byWzReRyOSRyOaRyBRKW2k/Wd7PFuRj09dKx5PZ6ePl0DtXuLjt1zq1AK1aBY1agFYtQKdWQauR9uXnpX2t5pTnpddOn1eV3m/6nE5zynO1FEpPB9wzQnFNKRBXT4fegsC/9KPqxQCdaAEpzz9f6qyy8S1lntVSgD6yV+lK6Czlxsbgv/U2ZPv6oHY64d3+IAxdVbbALREREdEpNIIGq+tXY3X9aty55k6Mxkfl7vQ3xt5AIBnAE8efwBPHn4BW0OLy+svl2elem1fp8okuqGJRRDJXDrPzSGYLiGfySGbziGcKSGbypeeFylD8lP1kdjoov5Bht0oFmLRqGHVSt7Rxxr5JV3quVcMwY7/yWgFGrQbGivNC5Xtp1AyoiRTEAJ1oAZHnn1dtgF7qOmeAPi/kg0H4t2xF1ueDprER3u3boe9oV7osIiIioouu0dKIT3Z+Ep/s/CQyhQzeGntL6k4f2onh+DB2je7CrtFd+F9v/S+02dqwsXkjNjZtxOX1l0Or1ipdPi1wmXwByUxBDrXLYbfczX1awD3d7T39ulI4npXe40LRawSY9RqYdGpYSluzXgOzTiNt9eXn08dN+hn7ulIorlPDpNXAoJO6rzlyiai6MUAnWkCOhqUO9E5np8KVXCBNq6VtoBfIJgEdv+o6VxViMfg/93lkfT5oPR60Pvbv0DY1KV0WERERkeL0aj02NG3AhqYNuOeKe9Af7cerQ69i59BO7Bnfg4HoAAZ6BvBYz2MwaUy4ynMVNjVvwoamDXCb3EqXT3NUoSgimc0jlS0gKT/y8n4qJ4Xc8vmcFG6XzyWzUkieLO2nstPjTC5Ud7egghxsm/TTgbe01VQG3Xo1TDpN5TV6DSyl4+XQXMs52UT0PjBAJ1ogErkEfFEfgCruQLc2ApZ6ID4OjB0EvFcqXRHNophKYfD225Hp7YW6thbeh7YzPCciIiKahUqlQoe9Ax32Dmzp3oJ4No5do7uwc2gnXh16FZPpSbzgfwEv+F8AAHQ5u7CxWZqdvrx2OdSCWuE7oA+qWBQRS+cRSeXkx1QqW/E8msohls7LofhsIfnFWIzSoBWmA+9ZQuzKjm916VxlKG6ZEZbrNezsJqK5gQE60QJxLHwMAOA2ueE0OBWu5gJRqaQ56Meek8a4MECfc8RcDsN33oXU2+9AsFrhffAB6NralC6LiIiIaF6w6Cz4aOtH8dHWj6IoFtE72Yudw1KYfih4CL2hXvSGenH/gfvh0DvwoaYPYVPzJqz3rIddb1e6/AVLFEXEM3lMJacD7+kwPFcRhkeSlc+j6RzE89jgrSp1dRt10/O5y4F3eV8aTyKdN53hnLxfCsRNWjU07O4moirFAJ1ogaj6+edlnlWlAH2P0pXQKcRiESP3fBPxV16BymBAy30/4YKhRERERO+ToBLQ7epGt6sbt6+4HZOpSbw2/BpeHX4Vrw+/jnAmjKf7nsbTfU9L19Z248rGK7GucR1WuldCr9YrfQtziiiKyOSLSOcKSOdK2/yM/VxBPp/JFUvnZp6XjlV0iyezpRA8j0Lxg6XgBq0Au1GLGqMOdqMWNqMW9tKjxqSFpTTGxKjTnDH8NunU7OomInofGKATLRBHQ6X5544qnX9eVp6DzoVE5xRRFDH+D99B9OmnAY0Gzf/7n2Fas0bpsoiIiIiqRq2xFjctugk3LboJuWIO+wL75NnpJyMncTB4EAeDB/HgwQehV+uxyr0K6xrXYV3jOix1Lp1T415EUUS2UEQ6V0RmRjhdDqozpwTb6Xz5usIsIfiMAHyW4FsOxS/CiBOdRpgOvWcE4LYZQbj9lGC8fE6vmTv/foiIFhoG6EQLxILqQAeA4HEgHQUMNmXrIQBA8F9/jPDjjwMqFTzf+x4sV1+tdElEREREVUsraLG2YS3WNqzF1y7/GsYSY3hj9A28MfoGdo/uxkRqArtHd2P36G4AgE1nw5WNV+LKhiuxzrMOXqv3rLqUM/kCoqk8YmmpyzqWzs14nkM8na8IsE8NrWcG3zND8ky+eF7HlpwrtaCCQSPAoFXDoFVDrxVg0Khh0M44Jp8XoNeo5X2LXoMak64iCC+H4QYtQ3AiovmIATrRApAr5nA8fBzAAgjQzS7A7gUifmB0P9C+UemKFrzQv/87gvfeCwBo+Ju/hv3GGxSuiIiIiGhhaTA3yN3poiiiL9KHXSO78bvhXXgn8Bai2Sh2+HZgh28HAMCqqUOj7lI4hW5Yil3IZE2IpfPyYpXRdB7RdA7Zi9C1rVLhLMLr0vMZ+/rSeYNmZgA+830qg++Z763lLG8iIpqBATrRAjAQGUC2mIVZa0aztVnpci48z0opQB/ZwwBdYVP//d8Y/5/fBQDUffUrcPzJnyhcEREREVH1EEURsUwekWQO4WQWU0lpUcqp0n44mZUXpYymcxUheCxTA+BjAK6BYBiGxnwcavMJqE1+xPITiOVfBPAiAKCQrkchsQj55GIUku1AsXJ+ulWvgc2ohdWggc0gba0GDSwGDYxa9SzB93uF39PHtGoVZ3YTEZGiGKATLQDl8S2djk4IqgXQTdG0Guh9inPQFRZ78UWM/tW3AADOLVtQ+8UvKlwRERER0dwkiiIS2QLCCWnRyYowPJHFVGo6DD91/4MuTqnXaGHVLIZN6IJV1MJcKEDU9SOp7kVY7EE43w+1YRxqwzh0tb+DWqXGIns31rjX4kNNV+GKxlUwaHXn6Z8EERHR3MMAnWgBkBcQdVb5AqJl5Tnow3uUrWMBS7zxJobvvAsoFGC/+Wa47/4Ldg4RERFRVSoWRSRzBSQzecQzeSSzhdI2j3im8ng0VdkhPnM//wGCcINWgKM0d7vGpIXDpEONSYsak05erPLUDvHy89kXp9wk74XSIbw59qY0P31kN4biQzg6dQBHpw7g8WPbYdQYsaZ+jbwg6WLH4oXRtENERAsGA3SiBWDBLCBa1rhS2k75gGQIMDmVrWeBSR06jKE77oCYzcLykY+g8R/+HiqBv0QRERHR3JDNFxHP5JHI5JHI5pHIFJCYGXhnS4F3plA6n0ciW7omc0o4npWC8fNFpxHgKAXgduN0EG4vh+KlgLymdLx83YVcnNJpcOK6tutwXdt1AICh2JC8GOkbo28gnAnjteHX8Nrwa/L1VzZcKS1K2nglmixNbKQgIqJ5jQE6UZUTRRFHwqURLgulA91YAzgvAUInpTnoi35f6YoWjExfHwY/9zkUEwmYrrwSTT/8AVQa/lFDRERE50exKCKenbGYpbyo5Yznmcrj0XQesXQO0ZS0zVyghS8FFWDWa2DWaWDWq0/bN+mkueA1FWF4uVNcOnYhg/DzpdnajGZrMz6x5BMoikUcDx/H7tHd2DW6C3vG9yCUDuG5gefw3MBzAIA6Yx1W1K2QHu4VWFa7DHq1/j0+hYiIaO5gqkFU5caT44hkItCoNFhUs0jpci6eptWlAH0vA/SLJDcyAv+tt6EQDsOwfDma/+3fIOj5yxERERFVyhWKmIhlEIhlEEnlEEu/Sxh+yvN4Ng/xg438lhm0Asw6DUx6dSnoLj106sptad+k18Ci18CkU5e2ped66bleIyy4TmtBJaDT2YlOZye2dG9BrpDD/on9eGNMGvdyMHgQE6kJ/Nb/W/zW/1sAgEbQoMvZJYfqK90r0WBuUPhOiIiIzowBOlGVK49vaa9pX1idHp5VwMFfAMNcSPRiyE9Own/rbciPjUHX0YGWB+6H2mJWuiwiIiK6iLL5IibiGYxH0whEMwjEpO14NI1ATNpOxDKYTGQ/8GfpNAJsBi1sBk3FPO/yfG+rfG6W2d8GLcx6NTRqjpg737RqLS5vuByXN1yObSu3IZlLomeyB/sn9suPUDqEg8GDOBg8iJ/1/gwA4Da5p7vU61agq7ZrYf3uQkREcxoDdKIqJ88/dyyQ+edlntXSdoQB+oVWiMcx+LnPIzswAI2nEd7tD0LjcChdFhEREZ0nmXxB7hgPzAjDA9EMxmccC51DMK5Vq1Bn0cNu0s0IuitD7jMF41aDZl6MOiHApDXJgTogjZccig9JYXpACtSPhY8hkAxgh28Hdvh2AAC0ghZdzi5cVncZVrhXYGUdu9SJiEg5DNCJqlw5QF8w88/LGi4FVAIQGwFiY4CVP3BfCMV0GkO334F0Tw/UTie827dD29iodFlERER0FrL5IgKxNMajpwTjM7rFx6NphJO5s35PrVoFt9UAt02P+vLWZkCdVdq6S9saoxaCsLDGnRCgUqnQYm1Bi7UFN3bcCABI5pI4PHlY7lA/MHEAoXQIB4IHcCB44Ixd6stql0Gn1il5O0REtEAwQCeqcuUAvcvZpXAlF5neArg6gYleqQu982NKV1R1xFwOw3d9Dcm33oJgsaDlgfuhb29XuiwiIqIFL18oYjKRxXhUCselbnFpfyyalkPyc+kY16kFuG16OQB3W/VwzwjEy4F5jUm74OaA0wdj0pqwtmEt1jasBVDqUo8NYd/EPjlQP2OXem1XRajOLnUiIroQGKATVbFoNorh+DCABdiBDkgLiU70AsN7GKCfZ2KxiNFvfQvxl16CSq9Hy0/uhbG7W+myiIiIqlqxKCKczEqheGw6FB+v2KYRjGdQPMuFNnUaoSIUn61bvN6mh93IYJwuDpVKhRZbC1psLfj4JR8HcEqXemn0SzgTxoGJAzgwcQCP4TEAQIO5AZe5LsOKuhVY5V6Fpc6l0Kq1St4OERFVAQboRFXsWOgYAKDR3Ai73q5wNQrwrAL2/QfnoJ9noihi/LvfQ+TJpwC1Gk3//COY1q5VuiwiIqJ5K5svIprOIZzITgfhMxbgLAfkgVgaucLZJeNqQZoxXm83oH5GEO62GeR9dozTfDFbl/pgbLBicdJj4WMYS4xhLDGG3/h+AwDQq/Xoru3GSvdKrKxbiRXuFXAanEreChERzUMM0Imq2IKdf14mLyS6BxBFgL8cnhfBe+9F+DGpy8fzve/CunmzwhUREREpSxRFJLMFRFI5RFI5RMvbdL7iWDSVQzSdm3FMOp/KFc7p81wWHdxWAxrspVDcOiMUL41TqTXroeaMcapSKpUKXpsXXpt31i71fQFp/MtUZgp7AnuwJ7BHfm2rrRUr61bKoXpHTQcElaDUrRAR0TzAAJ2oipUD9KXOpQpXopD6bkDQAMlJIDII1HiVrmjeCz32MwT/9ccAgPq/+ivYP/5xhSsiIiI6f5LZPCbjWYQSWTnoLofckRnhd/SUkDyayiF/tjNT3oXdqJ0Owa0GNNin9+tnLMapVTPsIzrVbF3qvqgPewN75VD9ZOQkfFEffFEfnjz5JADAqrXiMvdlWFm3Eqvcq3Cp61KYtCYlb4WIiOYYBuhEVexo+CiABRygaw1SiD66X5qDzgD9A4n86lcY/853AACuL30Jzs/8mcIVERERvTtRFBFJ5RCMZzARy2IykUEwlsFkIotgPINgvLzNYDKeRTJ7bp3gp9KqVbAbtbAZtLAZtdK+UQu7USMfnz6mrThmMWjYMU50HqlUKrTZ29Bmb8MfLP4DAEAkE8GBiQNyqH4weBCxXAy/G/4dfjf8OwCAoBLQ6ejEiroVUpe6eyU8Zg9HHRERLWAM0ImqVK6Qw4mpEwAWcIAOSHPQR/dLc9C7b1a6mnkr9tJLGPnLewAAjs98Bq5tdyhcERERLVS5QhGhRBYT5SA8lpGC8bi0H5xxbDKePefOcL1GgNOsk4PucsAtPa8Mwu2myvMGrcCQjWgOs+vt2Ni8ERubNwIA8sU8joWPYV9gH/ZN7MP+wH6MJEbQG+pFb6gXPz/6cwCA2+jGCvcKefRLl7OLi5MSES0gDNCJqlRfpA/5Yh5WrRUes0fpcpTjWQ2884g0B53el+Rbb2H4zruAQgG2/+/jqL/nLxkOEBHReSOKIuIZaXRKOQifjGcxWeoMnw7EpW7xqWTunD/DZtDAZdXDZdbDZdWh1qyHy6JHrUUHl0WPuvIxqx5mnZp/zhEtEBpBg2W1y7Csdhk+3fVpAMBYYqxijnrvZC8CqQB2+HZgh28HgOnFSVe4V2BV3SouTkpEVOUYoBNVqd5QLwBpAdEF/UugZ5W0HdkPFIuAwJmh5yLd04PB2++AmMnAsnkzPN/5DlT8Z0hERO8hnSsglJCC8GCpE3wyPh2Cl+eMT5YC8my+eE7vrxZUcJp1qDXrUGctheFmHVzW6W05LHeaddBr1BfoTomo2jSYG9BgbsC1bdcCANL5NA5PHpbGvgT2Y9/EvorFSR/GwwCkxUnLY19W1a3i4qRERFWEATpRlToaWuDzz8vcXYDGAGQiQKgPcC1SuqJ5I9PfD/9nP4diPA7T5Zej6Uc/hErLr6oSES1EhaKIcHJGZ3gp/A4lsqWOcSkcnyyF47FM/pw/w6xTo7bUFV5rLgfh053hrlK3uMuiR41RC4HzwonoIjBoDFhTvwZr6tcAmF6cdN/EPmn0yymLkz518ikAgFVnxYq6FVjlXoVV7lVY7loOo8ao5K0QEdH7xACdqEodCR0BwAAdai3QcCkw9JY0B50B+lnJjY3Bf9ttKIRCMCxbhuaf3AvBYFC6LCIiuoCy+SL8oQT6JhLoCybQP5FAXzCO/mASk4kMxHMbJQ6tWiUF4RYdai16uMw61Fp0cJrLo1N00+fNehh17BInorlv5uKkNy+S1liadXHSbAyvDb+G14ZfAwBoVBp0Ojuxyr1K6lJ3r4Lb5FbyVoiI6CwxQCeqQqIosgN9Js/qUoC+B7jsj5WuZs7Lh8Pw33ob8iOj0LW1oeWB+6G2WpUui4iIzgNRFDEezaAvGEffRAL9wQT6JuLoCyYwGErivdbbdJi0Upe4WSfPEK+dGYiXztVa9LAZNAt7jBwRLRinLk6aK+ZwLHQM+yb2YW9gL/YG9iKQDODw5GEcnjyMn/X+DADgMXvkMH2VexUW1SyCWuBfJhIRzTUM0Imq0HB8GLFcDBpBgw57h9LlKE+eg75X2TrmgUI8gcHPfR7Zvj5oGhrgfWg7NLW1SpdFRETnKJ7Jyx3kckd5MI7+iQQS2cIZX2fWqdFeZ0aHy4KOOjPaXdJ+vV0Pp0kHjZrzfImI3otW0KLb1Y1uVzf+tOtPIYoiRhOj2BeQAvV9E/twLHwMI4kRjPSP4Nn+ZwEAZq0Zl7kuk7vUL6u7DGatWeG7ISIiBuhEVajcfb6oZhG0as6sRtNqaTu6HygWAHZ1zKqYyWBo2zakDx2C2uGA96Ht0Ho8SpdFRERnkC8UMRhOoW8ijv5gAicnpJC8byKBQCxzxtepBRVaHEZ01FnQ4TJXBOZuq55d40RE55lKpYLH4oHH4sH1HdcDAOLZOA4ED2B/YD/2BvbiQPAAErkEdo3uwq7RXQAAQSVgiWMJVtZNd6k3mBv432kioouMATpRFToS5vzzCrWLAJ0FyMaBiaNA/TKlK5pzxHwew1//OpJvvAHBbEbLAw9A38FvLxARKS2TL2BkKo3hcApD4ST6guUZ5XH4J5PIv8vMFZdFV9lJXmdBu8sMr9MEnYad5ERESrLoLFjvWY/1nvUAgEKxgONTx6e71AP7MJIYwZHQERwJHcHPj/4cAOA2ueUwfaV7JTodndAIjHaIiC4k/leWqApxAdFTCGqgcSXge00a48IAvYJYKGD0r76F+G9fgEqnQ/O998K4vFvpsoiIFoRoOofhcEp6TM14lJ5PvEsnOQAYtALaSyF5h8tcCsuloNxu5LfQiIjmC7WgxlLnUix1LsWnln4KADCeGMfeib1yl/qR0BEEkgH8euDX+PXArwEARo0Rl7ouxaWuS7HEsQRLHEvQam+FVuCfAURE5wsDdKIqVB7h0unoVLiSOcRTDtD3AKv+VOlq5gyxUMDZfjIEAAAgAElEQVToN7+JyJNPAWo1mn70Q5ivvELpsoiIqoIoipiIZ6bD8dJ2ZCqFodJ+LJ1/z/cxatVochjRVGNEu8uMS0oheUedGQ02AwSBX+UnIqpG9eZ6XGe+Dte1XQcASOaSOBQ8JC9Ouj+wH7FcDG+OvYk3x96UX6cVtOiwd2CJYwkWOxbLwbrL6OL4FyKi94EBOlGVmUpPYTQxCgDodDJAl5XnoHMhUZmYz2Pk7r9E9JlnpPD8B9+H9SMfUbosIqJ5I1coYiySlsNwKSBPSiNXSp3k2XzxPd/HYdLKAXlTjUneby5ta0xaBh5ERAST1oQrGq/AFY1Sw0tRLOLk1Em5O/14+DiOhY8hmU/iaPgojoaPVry+Rl8jh+nlcP2Smktg1BiVuB0ionmDATpRlSn/kNRkaYJVZ1W4mjnEs0rajh0E8llAo1O2HoWJuRyG//wvEHv+eUCjQdMPfwDbNdcoXRYR0ZyTzOYxEEyiP1haoDOYgH8yieGpFMajabzLCHIAgKAC6m0GKRwvh+QzAnJPjREmHX8kJyKicyeoBCx2LMZix2L5WFEsYiQ+Iofpx8LHcHzqOHxRH6YyU6d1q6ugQqutVX6fJY4lWFKzBE3WJggqrpdBRAQwQCeqOuX5513OLoUrmWMc7YChBkhPAYEeaaTLAiVmsxj++jcQ27ED0GrR/L//GdYPf1jpsoiIFJMrFDEUTkkB+USiFJZLj9FI+l1fq9cIaKqRgvDZQvIGuwFaNQMIIiK6OASVgGZrM5qtzdjs3SwfT+fTOBk5WRmsh48jlA5hIDqAgegAdvh2yNcbNUY5UF9cs1juWLfr7UrcFhGRohigE1UZef45x7dUUqmkLvS+l6Q56As0QC9msxi+62uIv/ACVFotmv71X2D9vd9TuiwiogtOFEWMRdPon0igL5jAwIyQ3B9KIv8ureQOkxbtrum54621JjQ7TGiqMcJl0XG8ChERzXkGjQHdtd3oru2uOB5MBeUwvbw9OXUSqXwKByYO4MDEgYrr6031FSNgOh2daLO3QSMwXiKi6sX/whFVmd5QLwBgqXOpwpXMQU2rSwH6wpyDXsxkMPyVryL+yitQ6XRo/rcfw7Jxo9JlERGdV1PJLPqCCfTP6CQvB+apXOGMrzNq1WhzmdHhMpfCcjPa68xorzXDYV7YY7+IiKh6uYwuuIwurPesl4/li3n4o/6KTvVj4WMYSYxgPDmO8eQ4Xh1+Vb5er9Zjcc1idDo70eXswtLapVhcsxgmrUmJWyIiOu8YoBNVkUwhg/5IPwAG6LMqz0EfXngBejGdxtCXv4LEq69Cpdej5Sf3wrx+/Xu/kIhojhFFEVPJHIanUvCHpNnk0tiVOPqDCYSTuTO+Vi2o4HWapgPycmBeZ0a91QBBYCc5ERGRRtCgo6YDHTUduK79Ovl4LBvDiakTOBaS5qofDR2VFy09NHkIhyYPydcKKgGttlYsdS6VH13OLjgMDiVuiYjoA2GATlRFTkydQEEsoEZfg3pTvdLlzD2e1dI20APkUoB2Yaw2X0ylMLTtS0i8/jpURiNafvITmNddqXRZRESzyuaLGI+mMRROYWSq9IikZjxPv2snOQA02g2VIXmdNH6l2WHkPHIiIqL3yaqzYpV7FVa5V8nHimIRQ7Eh9IZ6cTR0FL2hXhwJHUEwFUR/pB/9kX481/+cfL3b5Ja61GcE602WJo5DI6I5jQE6URWZOf+cP4DMwuYBzG4gEQDGDgItVyhd0QVXTCYxePsdSL7xBlQmE7w/vQ+mtWuVLouIFihRFBFN5TFcCsZn2wZiGYhnHkcuc1n0aHYY0VFXHrtiQbvLjDaXCSYdf8QlIiK6GASVAK/NC6/Ni2vbrpWPB1NBHAkdqXj4oj4EkgEEkgG8MvSKfK1Va0Wns1PqUq/tQqejEx01HdAKWiVuiYjoNPztgqiKHAkdAQAsdXB8y6xUKmkO+rHnpTnoVR6gFxMJDH7hi0i+/TYEsxktD9wP0+rVSpdFRFUsXyhiLJrGyFRaDsTL4fjIVArD4RQS2XfvHgcAnUZAU40RnhoDPHYjmhxGeGqMpWNGNNoNMGjVF+GOiIiI6P1wGV3Y0LQBG5o2yMcSuQSOho5WhOonpk4glovh7fG38fb42/K1OkGHRY5FFeNfljiWcK46ESmCATpRFSkH6J3OToUrmcM8q6QAfXiP0pVcUIV4HIOf/wJSe/ZAsFjgffABGFeuVLosIqoCyWx+xtxx6TEYSmJkKoWxaBrFs+ged5p10wF5KRgvh+OeGiNcFh2/SUVERFRlzFozVtevxur66aaeXCGHvkhfxQiYo6GjiOfi6JnsQc9kj3ytCip5rnqnsxPdtd1YVrsMdr1didshogWEATpRlSiKRXmECxcQfRflOegj1buQaCEWw+BnP4fU/v0QbDZ4tz8I46WXKl0WEc0jhaKI4XAKJ4Nx9E8k0FdaoLNvIoHRSPpdX6tVq9Bonw7Em8oheamL3GM3wqhj9zgREREBWrUWnc7OiiawoljEcHwYR0JH0DvZi6PhozgyeQSBVAAD0QEMRAfw/MDz8vXNlmZ0u6Qwvbu2G121XbDpbErcDhFVKQboRFViKDaEZD4JnaBDu71d6XLmLk9pwZvgMSATA/RWZes5zwqRCPyf/RzSBw9CsNvhfWg7jN3dSpdFRHNUKJFFfzCOkxPljvI4+iYS8E0mkS0Uz/g6h0lbWpxTmjvudZrQ5DCiucYIl0UPQWD3OBEREb0/gkpAi7UFLdYWfLT1o/LxydSk3KXeG+pFz2QPBmODGIoPYSg+hF8P/Fq+1mv1oru2Ww7Wu5xdsOgsStwOEVUBBuhEVaI8vmWxYzE0Av+vfUaWOsDeAkQGgdH9QNuG937NPFGYmoL/1tuQ7umBuqYG3ocfgqGrS+myiEhh6VwBvskk+ibi6Ct1kZc7yqeSuTO+TqcR0FZrQofLgo46sxyYd7jMcJh1F/EOiIiIiIBaYy3WN63H+qb18rFIJoLeUC8OBw/j8ORh9Ez2YDg+DH/MD3/Mj+cGnpOvbbO1yV3qy2qXoau2C2atWYlbIaJ5hikbUZWQFxDl+Jb35lkpBejDe6omQM+Hw/Dfehsyvb1QO53wPvwwDJ1LlC6LiC4SURQxEkmjb2J61IoUlscxPJWC+C5zyT12g9xJ3lE3HZJ7aoxQs5OciIiI5jC73o51jeuwrnGdfGwqPYWekDQ//XBQCtVHEiPy+Jdn+58FIM1Ub7O3SZ3qpVB9qXMpFyolotMwQCeqElxA9Bx4VgO9v6qaOej5yUn4b7kVmWPHoHa50PrIw9AvWqR0WUR0ARSKIvyhJE4E4jgeiOFEII4TgThOBuJIZAtnfJ3VoJGD8Y4Zo1faXWbOIyciIqKqUmOowXrPeqz3THeqh9IheVHSw8HD6An1YCwxhv5IP/oj/Xi672kA0viYDnsHltUuk7vVO52dMGqMSt0OEc0BDNCJqgQXED0H5TnoI3uUreM8yAeD8G3diuyJk9DU1cH76CPQd3QoXRYRfUCZfAEDwdOD8r5gAtn87LPJNYIKrbUmtLssuGTmyJU6M2rNOqhU7CYnIiKihclpcGJD0wZsaJr+BnIwFZwO1ScPoyfYg0AqgBNTJ3Bi6gSeOvkUAECtUqOjpgPLnFKovtixGO32dtQaavnzFdECwQCdqApMpiYRSAWgggpLHBzb8Z48K6VteABIhgCTU9Fy3q9cIAD/1luQ7euDpr4erY8+Al1bm9JlEdE5SGbz6JtIyCH58XEpKPeFkigUZ5+7otcIuKTOgsX1Fix2W7DIbcEitxWttSZo1cJFvgMiIiKi+clldGFT8yZsat4kH5tITkwH6qVtMBXE8fBxHA8fx5Mnn5SvtWqtaLO3od3ejnZ7O9ps0r7X6oVWrVXilojoAmGATlQFjoal7nOvzctFUM6G0QE4O4BQnzTGZdFHlK7onOXGx+H/H1uQ9fmgaWyUwnOvV+myiOgMIqlcqYu8FJSXOsqHwqkzvsaq1+AS93RIvrjegkV1VjQ5OJuciIiI6EKoM9XhatPVuLrlagDSOjOBZEAO03tDveiP9GM4PoxYLoaDwYM4GDxY8R5qlRrN1mY5UJ8ZsDsMDiVui4g+IAboRFVAnn/u4Pzzs+ZZPW8D9NzICHxbb0HO74fW44H33x+FrrlZ6bKICEAik8fB4YgUkI/H5KA8EMuc8TVOs67URT4jLHdbUW/T82vBRERERApSqVSoN9ej3lyPzd7N8vFsIQt/1I/+aL88R30gMoD+aD8SuQR8UR98UR9eGXql4v1q9DWnday329vRZGmCRmBERzRX8f+dRFWgHKBz/vk58KwCDv3/824h0ezQMPxbtiA3PAxtSwtaH3kY2qYmpcsiWrAC0TTe9oXx1kAIbw+E0TMaPePolQabYToor7dgUZ20X2vRX+SqiYiIiOiD0Kl1WORYhEWORRXHRVHERGqiIlAvB+yjiVFMZaawN7AXewOVv4dqBA28Vu9pHevt9nZYddaLeWtENAsG6ERVgAuIvg/yQqLzJ0DPDg7Ct2UL8iOj0LZ60frII9A2NipdFtGCIYoiTk4k8PZACG8NhPG2LwTfZPK06xrtBnQ12rDYbZFHsFzitsBm4CxMIiIiomqmUqngNrnhNrlxZeOVFeeSuST8Mb8cqPdH+jEQHcBAZADpQhp9kT70RfpOe0+X0SXPVm+2NqPF2iI/GK4TXRwM0InmuVQ+hYHoAAAG6OekcQUAFRAdBmLjgLVe6YreVdbng2/LVuTHxqBra4P30UegrZ/bNRPNd9l8EYdGItOB+UAI4WSu4hqVCljaYMPaNgfWtDpweZsTTTVGhSomIiIiornKpDVhqXPpab+3F8UixhJjcqA+M2CfSE0gmAoimArirbG3TnvPGn0NWqwtpwXrLdYW1BnrOA6Q6DxhgE40zx0PH0dRLMJpcMJldCldzvyhtwB1ncDEEakLvfM6pSs6o0x/P/xbtiIfCEB3ySXwPvwQtG630mURVZ1IKoc9/rAcmO8fnEImX6y4Rq8RsLKlBmvbnLi8zYFVXgfsRnaWExEREdH7I6gEeCweeCwefKjpQxXn4tm4HKr7Y34MxgYxGBvEUGwIoXQIU5kpTGWmTlvIFAAMagOarc2zhuseiwdagT/DEp0tBuhE89zM+ef82+Vz5FldCtD3zNkAPXPyJHxbt6IwEYR+8SJ4H34YGhf/ooTofBiZSsmzy98aCOHoeAziKePLHSYtLm9zYm2b1F2+3GOHTiMoUzARERERLSgWnQXLXcux3LX8tHPxbBxD8SE5VJ8Zro8mRpEupHFi6gROTJ047bWCSkCjubEiXPdavXI3u1lrvhi3RzRvMEAnmufK8887nZ0KVzIPeVYB+x+fs3PQM8ePw7f1FhQmJ6Hv7IT34YegcTqVLotoXioWRRwLxORRLG8PhDE8lTrtutZaEy5vnQ7ML6kz8y8niYiIiGjOsegss46EAYBcIYeRxMis4fpQbAjpQhrD8WEMx4fxxugbp73eaXBWBOtt9ja02lrRZmuDSWu6GLdHNKcwQCea546EpQ70LmeXwpXMQ02rpe3wHkAUpWHGc0T66FH4t96CQjgMfVcXvA9th8bhULosonkjmc3j0HC01GEewtu+MGLpfMU1akGFbo8Nl7dK41gub3XAbTMoVDERERER0fmhVWvRamtFq631tHOiKGIiNTFruD4YG8RUZgqhdAihdAj7J/af9nq3yY02WxvabKVQ3d6Gdls7Gi2N0AiMGak68X/ZRPNYoVjA8fBxAOxAf1/qlwOCBkgGgcgQUNOidEUAgHRPD/y33IpCJAJDdze82x+EuqZG6bKI5qxIKoeekSgOj0RwaDiCwyNRnJyIo3jKOBaTTo3VXgcub3NgbZsTK1tqYNbzRyEiIiIiWjhUKhXcJjfcJjfW1K857XwsG6sI1v1RPwaiAxiIDCCcCSOQDCCQDODNsTcrXqcRNPBavRWhennfoXfwW500r/G3RqJ5zBfzIZVPwaA2oNV6+t8s03vQGgD3MmDsgDQHfQ4E6KlDh+G/7TYUIxEYLrsM3gcfgNpmU7osojljMp7BoVJYfng4ikMjEfgmk7NeW2fVS6NYWp1Y2+ZEV6MVGjXnlxMRERERnYlVZ8Wy2mVYVrvstHORTAQD0QH4oj4MRAakYD06AH/Uj0whg75IH/oifcDg6e85M1Avd6+32lph0PAboDT3MUAnmsfK88+XOJZALagVrmae8qwqBeh7gWU3KVpK6tBh+G+5BcVYDMaVK9HywP1QW62K1kSkFFEUMR7N4NBwBIdGIjg0LIXmo5H0rNc31RixvMmG5R47uktbjmMhIiIiIjp/7Ho7VtStwIq6FRXHi2IRY4kxDEQG0B/tlwN2X9SH0cQoYtkYDgQP4EDwQMXrVFChwdwgjYQpzVlvt7Wj1d6KRnMjBBWbX2huYIBONI8dCUnzzzm+5QNoWg3seVTxhUTTPT1S53ksBuPq1Wi5/36oLVz5nBYGURQxGEqVgvIIDo1E0TMSQTCenfX6DpcZ3U12LPfY0O2xo9tjg8Osu8hVExERERERAAgqAR6LBx6LB+ub1lecS+fT8EV9Uqg+o3u9P9qPWDaG0cQoRhOj2DW6q+J1WkGLBnMDPGYPGi2NlVtzIxrMDdCqtRfzNmkBY4BONI+VO9BnW3WbzpJnlbQd2avYQqLpI0fgv+VWFCMRqfOc4TlVsUJRRH8wLneUHyqNYTl1gU9AWuRzsdsih+TLm+zoarTCauAPykRERERE84FBY0Cns/O0xj9RFBHOhOVO9f5ov7zvj/mRK+bkOeyzUUGFOmPd6eG6pRGN5kZ4LB6Ytfy9ms4PBuhE85QoiugN9QJggP6BuJcBaj2QjgChPqD2kov68emjx+Dfeou0YOiKy9Dy4AMMz6lq5AtFHA/EcXA4gsNyZ3kUqVzhtGt1agFLG63oLnWVL2+yY2mDFQYtx1MREREREVUblUoFp8EJp8GJ1fWrK87li3mMJ8cxEh/BWGIMI/ERjCZG5e1oYhSZQgaBVACBVAD7J/bP+hk2nQ0ei0cO1BvNjRX7ToOTi5vSWWGATjRPBVNBhNIhCCoBix2LlS5n/lJrgYZLgeG3pS70ixigZ06cgP+WW1CYmoJh+XJ4H3gAaovlon0+0fkkiiKGwinsH5rC/sEp7B+M4OBwZNaw3KRTY1mjTQrLm+xY7rFjcb0FWi7wSURERES04GkEDZosTWiyNM16XhRFhNKhilB9JD6CkcR04B7NRqVHKCqPvz2VQW2QxsScEq632drQam+FTWe7kLdJ8wgDdKJ5qvwHQKutFUaNUeFq5rmm1dMB+qV/dFE+MtPXB9/WW1AIhaBf1gXv9gehtvEPZ5o/wolsKSyPyKH5ZOL0meUWvQbLm2y4tEnqKu/22NHuMkMtsNODiIiIiIjOnUqlQq2xFrXGWix3LZ/1mng2Lnery53r8VGMJEYwGh/FRGoC6UIaA9EBDEQHZn0Pp8GJVlur/GizSQudtlhbYNAYLuAd0lzDAJ1onjoa5vzz86Y8B314z0X5uEx/P/xbtqIQDEK/dCm827dDbbdflM8mej/SuQIOj0SwbzAidZcPTcE3mTztOq1aha5GG1Y012BFSw1WttjR4bJAYFhOREREREQXkUVnwWLd4jN+Yz9XyGEsMSYF7KVQfSQxguH4MHxRHwLJAELpEELpEPYG9la8VgUVGswNpwXrbbY2NFoaoREYt1Yb/hslmqfKHegM0M8DT2ne2uh+oFgAhAs3cznr88G/ZSvyExPQL1kC78MPQeNwXLDPIzpXhaKIE4E49g9OYV+ps/zoWAz5onjatR0uM1a01GBFsx0rWmrQ1WjjzHIiIiIiIprztGotWmwtaLG1zHo+mUvCH/NjIDoAX8QHX9QnL3Yay8bk7vbdo7srXqcRNGixtlQE6+V9l9HFmevzFAN0onlKDtAdDNA/MNdiQGsGcgkgeAxwd12Qj8kODsK3ZSvygQD0ixfB+8jDDM9JUaIoYiSSLs0sn8K+wSkcHI4gmT19brnLosfKUlf5ipYaXNZUA7tJq0DVREREREREF5ZJa8JS59LTmhZFUcRUZgq+qE8K16M+DESkMTD+qB/ZYhb9kX70R/pPf0+NaTpYt08H616bl/PW5zgG6ETzUCKXgD/qBwAscS5RuJoqIKgBz0rA9ztpDvoFCNCzQ8PwbdmC/NgYdB0d8D78MDRO53n/HKJ3E0nmphf5HJrCvsEIgvHMadeZdWpcWuoqX1kax9JoN7BbgoiIiIiIFjSVSgWHwQGHwYGV7pUV54piEWOJMTlYl0P2iA8jiREk80n0hnrRG+o97X2dBicazA1wm9yoN9Wftq0318OsNV+s26RTMEAnmoeOh49DhIg6Yx1cRpfS5VQHzyopQB/eA6z89Hl969zICPxbtyI/MgpdW5vUee7ivze6sIpFEX3BON4eCONtXxh7fGH0BROnXacRVFjaaJ0xt7wGl9RZuMgnERERERHRORBUAjwWDzwWD9Z71lecyxayGIoNnR6uR30IpoLyvPWeyZ4zvr9Zaz5jwO42S1unwQlBJVzoW11wGKATzUOcf34BlBcSHdn77tedo9zYGHxbtiI3NARtqxfeRx+B1u0+r59BBACpbAEHhqbwti+Md3xh7PGHMZXMnXZdW62pNLdcCsy7PZxbTkREREREdCHp1Dp01HSgo6bjtHPxbBz+mB+BZADjiXGMJ8el/dI2kAwgnosjkUuccTxMmUalQZ2pbvag3Sxt3SY39Gr9hbzdqvP/2rvzOLnqOt//73Nq7arqru7O0qE7OyQRhOwhBFBAUdDR36DiMCNzQUZ0HFlEREdGRZxhjCP3ziDK4jhO4jjjwHUeoldUFBHCYgJJEAgQEpbsSXcn6a325Zzz++PU2l1JOltXd/J6Ph71ONu3Tn2r0jnpvOt7Pl8CdGAMIkA/DooBeucGKZ+VvP6jPmWuq1vbrr5auR075JsyRdN++EP52tqO+ryAJHUPpLV+mzu6fN22Xr2yq3/IRJ9Bn6l5k5u1eHqLFk1r0YIpLWoJH/3PNgAAAADg2Ij4Izpj3Bk6Y9wZB2yTyCWqAvVaQfv+1H7lnXxpgtODaQm0lML0Oa1z9NmFnz3Wb+uEQoAOjEHFAH1O65w69+QE0jpTCkaldL+0d6N0yryjOl2uu1vbr75auW3b5evo0LQfrpRv0qRj1FmcbCzb0evdMa3b2lsIzXu0oyc1pN3ExkAhLG/Vomktent7k3webt8DAAAAgLEs7AtrZnSmZkaHjmAvytk57U/tV2eisxy0JyuC9oS7zNpZ9WZ61Zvp1abeTerP9o/gOxmbCNCBMSZv5/V67+uSGIF+TBmGOwr9rSfcOuhHEaDn9+3T9mv+StmtW+VtP0VTf/hD+drbj11fccJLZPJ6cUdfaXT5H7f1KpbJV7UxDGlOW6MWT2/R4kJgPrmlgYk+AQAAAOAk5DN9mhSepEnhAw/ecxxH/Zn+qmA94ouMYC/HJgJ0YIzZ2r9VWTurkDekKY1T6t2dE0v7QjdA3/1HSdcc0SnyPT3afs01yr75pryTJmnaypXyT+44pt3EiWd3X0rrt5VHl2/cE5M1qBxLyO/RgqnNpdHlC6Y2qynoq1OPAQAAAABjjWEYag42qznYTFWDw0CADowxr/WWy7cws/IxVppI9Pkjenq+t1fbP36NMq+/Ie/EiZq2coX8U6ceww7iRJC3bL3WGSvVL1+/tUe7+9ND2rVHg1o0vVWLp7n1y982qVFeyrEAAAAAADCiCNCBMea1/YUAvYVvCo+5joXusnujlEtJvoZhP9Xq69P2v/qEMps3yzNhvKauXCn/9OnHp58YU1JZS3/c0au1W9zR5c9v61Uia1W1MQ3pjPYmLZ7WqoXTWrR4Wovam4f/8wcAAAAAAI4PAnRgjCmOQKf++XHQ1CGFJ0iJvVLny9KUJcN6mtXf74bnGzfKM368pq1cqcDMGce5sxitehNZrd3ao3XbevXclh69vKtf+UHlWBoDXi0oBOWLprVo/pRmhQP8kwwAAAAAwGjD/9aBMcRxHG3q2SSJAP24MAy3Dvrrv3HroA8jQLdiMW2/9pNKv/qqPK2tmrbi3xU49dQR6CxGA8dxtLM3pbVbe7R2a6/Wbu3RG93xIe0mNQW1ZEarlhQm/JwzqVEek8k+AQAAAAAY7QjQgTGkK9mlvkyfPIZHp7WcVu/unJjaFxQC9EPXQbfice249pNKb9ggT3Ozpq5YocCsWSPQSdSLbTva1BXTuq09em5rr9Zt7dGeGvXLT5sY0ZLpLVoyvVVLprdqckuDDIPAHAAAAACAsYYAHRhDXutxy7fMiM5QwBOoc29OUMU66Lv/eNBmVjyhHZ/8lFIvvihPNKqpK1coOGf2CHTw+MjnLNmWI1/AQ9BbIZO39NLOfneE+Ra3LEssna9q4zUNndkRLQXmi6e3qjXsr1OPAQAAAADAsUSADowhxQCd8i3HUfsCd7l3k5SJSYHGIU3sREI7/vqvlfrjH2U2NWnKv/9AwbeNrj8T27KVTuSVimWVjGWVjuWUjGWVimWViuUKy6yShfVc2p3U0vQaaoj41dDoUzDsU0OjXw0Rn7sdGboeCPtkjsJSJLbtKJvMK53MKZvKK5PIK5PKK5PMKZPMK5PMK5exFAh7FY4GFGryKxwNyAqYeq0voXXb3XIsL+7sVzZvV5075Pdo0TS3FMuSGW798pCff04BAAAAADgR8T9+YAyh/vkIiEyUmiZLAzulPS9J08+rOmwnk9rx6b9Rav16mY2NmvqDH6jh7W8/7t1yHEfZtKXUQDkEP1ggnk7kJOfQ5x3MzjtK9GWU6MsMq71hSIGwTw0Rn4KRysDdXwjgfWqI+BVsdNs0RPzy+MxhvV8rZytTDMELoffgELx6Pa9Myt0ufqSISZ8AACAASURBVCFwpAzD0dsNR9NMr/J+Q82tDTplUlizpjZr1rQmNbYEFY4G5At4jup1AAAAAADA6EaADowRe+J7tLZrrSRpTuucOvfmBNc+3w3Qdz9fFaDbqZR2fOY6JdeulRkOa+q/fV8NZ5151C9nWbZi+9Lq606qryupRF+mFIoniwF5PCs7f5iJuKHSKPJQYyHcbnRHl7v7yusNTX6ZpqFUPKt0PKdUPKd0LKvU4PVYTumE27dMMi/HkdLxnNLx3LC75Qt6CoG7+/q+gEfZlFUOwwsh+WG/31qvFfAoEPIWHj6ZAVP9eUt7Ullt708pm8wrbBuKOIbCthR2DHlkKOS4jwm2pLykZEb5nRltXNejjYPeS3kEu1+haEChqDuaPRT1K9zkLgMhL6VxAAAAAAAYgwjQgTGgN92rTz36KfVn+nVq9FQtnLiw3l06sXUslF57WNr6tLTseskwZGcy2nnd9UquWSMzFNKU739fDfPmDfuUjuMo0ZctheR93Un1dyXV153SwN6UbHt4YbEv6BleIN7oVzDslek59GjvqvMHGtQ0rmFYbS3LLoXnbrheK3wv7Iu57WzbUS5tKZe2NLBv6OSbgxmG5C+E38GQV/4Gd70cig/abiish922pmlo456YVm3eq1Wbu7Vua6/yFZ+1GZbOaG/S4mmtmjejVYumNKvJ41GiP6tkf8ZdDhSWVesZ5bO2cmlLfWn3z/RgPF6zEKwXQvbClxahRp8amvzlP78mv/xB6tADAAAAADBaGI7jHP0QP2hgYEDRaFT9/f1qamqqd3dwAknmkrr2t9dqw74NmhSepB+970eaFJ5U726d2Hatl77/Lnf9/M/Jfset2nn9DUo89ZSMUEhTv/+vCi1aVPOp6USuKhwvhuV9XUnls3bN50iS12cq2hZS88SQIq2FgLUQiIcKAWtDxCevf+yWDHEcxy3JMihwz2Us+Rs8Q8LvYMgn3xGEyf3JnJ5+Y5+e2NStVZv3qjtWXY5mxviwLpg9QRfMnqDF01vUGPQd0XvJpS0l+jNK9meVGCgsK4P3/oySA+5I/cPh8ZrlP/fKcL3iZ6G4DEZGZw16AAAAAABGs8PJcgnQjxECdBwPOSunG35/g57Z/Yyigaj+49L/0MzmmfXu1slhzf3SI38r25J2vbpI8Vf2yAgGNeVfv6fA/EXq31sdjvd1pdTXnTxoKRPDNNQ0PqjmQlDuLhvU3BZSOBqQQRB6RGzb0cu7+7Vq0149sXmv/ri9V5UD+ht8Hp176jhdMMcNzaeNC49o//JZS8mBrJID2VLgnizUsi8tYzmlBrLKZQ6zdruhUs35UNVIdl/VqPZi+O71jd0vYAAAAAAAOFYI0OuAAB3Hmu3YuvWpW/WrLb9Sg7dB//bef9PcCXPr3a2Thm3ZGvjtv+mNe3+hntQUJcNtshdeoFjGp3jPwSfYDDcH1NzWUBGSu8vG8UF5DrOkCmrbH8/oqdf3adXmvXpy817tT2Srjs+aGNEFsyfowjkTtXh6i4JjJDjOZYsTxRYmiR3IlpaVNfGTA0c2UWwg5FW4OaBwc0CRwjLcHFCkpbwvGPFRQgYAAAAAcEI7nCyXGujAKOQ4ju5ce6d+teVX8hpe/fOF/0x4PkKSA1m98LvteuXJXcqmT5M6Plc+uMeW5IbngZC3IhxvULQQkkcnNMgf5NJ6rFm2oxd29GlVoSzLS7v6Vfn1byTg1XmnjdMFsyfqgjkT1NE8vDruo43P75FvfIOaxh+6/7Zll0rhpAYKgXvlqPaBwrHCPttyS+hkknn17E4c8Lwer6lws/8AQXvQPRYNyOPlyyAAAAAAwImPlAcYhX7w8g/0nxv/U5L09+f9vc7vOL/OPTrxxXrS+uNvt+vVZ3bLyrm1yk0rq1B6n8ZN9mhc9ik1e3arecF5av7AjQpG/IzSPc66B9KFyT/36qnX96k/VV0e5/RTmnRhoSzLomkt8p1ko/tNj6lwNKBwNHDItsX688n+rBJ9GcX70oVlYbvX3U7FcrLytgb2pQ85yWtDo68QqFcH7ZGKUe3+Bn7NAAAAAACMbfzPFhhlHnr9IX37+W9Lkm5ZfIs+eOoH69yjE1tfV1Lrf7NNm9d0yi4Uzo5mdmva5p9r3MBmTf3u3YpccIH0XFz61X9Jmx6Xxg1I7/n7Ovf8xJOzbD2/rVdPbN6rVZv26tU9A1XHm4JevWP2BF04e4LeOXuC2pqCderp2GMYhoJhn4Jhn1rbD1wD3srbSvRlCuF69dIN2jNK9Gdk5x2lYjmlYjnt3R474Pl8AY8bsEf9CkbcWuzFmu3BSPV6MOKjxBEAAAAAYNQhQAdGkce3P67bV98uSbrmzGt09duvrm+HTmD7dsa1/pGtenN9d6kUyMRQTO1rVqql5zV5x41T+733KPKOwuj/sz/pLn91i/SHuyU50nv+QWIU+lHZ2ZvUU6/v0xObuvXMG/sVz+RLxwxDmtsR1QWzJ+iCORM0b3KzvASsx5XHa6rpECVkHMdROp5zw/SDBO3ZVF65jFWYZDc5rNcPhLyFYN0N2yvXGyK+UggfLATvPv/YqG0PAAAAABi7CNCBUWJ913p94ckvyHZs/empf6rPLfzcoZ+Ew9b5Vr/WP7JNW1/aV9o3dUZA7c/9h0KvPClJanr/+9X21a/I29JS/eSqEP07kuNI772DEP0w9CdzWv3WPj39xj49/fo+bd1fHayOC/v1ztluWZZ3zBqvcZFDlyfByDIMQw2NfjU0+jVhauMB2+UyVqk8THHy03SxZnt80HphQtRijfb+7tSw+uL1mQo2VobshZHtFeuhJrevoSa/fAECdwAAAADA4SFAB0aBzb2bdcNjNyhjZXTB5At0+7m3U1/7GHIcR7s29Wrdr7dp16Zed6chnbZgvGYOPKf8ym9L+bw8LS2a9LWvqenSSw58srM/6Qbmv/y8tPq77j5C9APK5C2t39arZwqB+YZd/bIrJv/0mIbmT2nWBbMn6MI5E3Rme1SmyWd5IvAFPO5Eu22hQ7a1bUeZRK4QrLth++D1quA9npWdd5TP2Yr3ZBTvyQyrT16/WQrUGxr9CjX61NDkL4fsjeWwPRDyyuBnEQAAAABOegToQJ3tiu/Spx/9tGK5mBZMXKA7L7hTXpO/mseC4zjatmG/1v16q7q2uPW0TdPQ7HMm6czZlhL/dJsyGzdKkhrf+15N+tpt8o4bd+gTL7lWkiH98mY3RHcc6ZJ/JESXG4Ru7BzQM2/s01Ov79ParT1KFyZlLTptYkTnnzZe5582Xktntqox6KtTbzFamGZ5VLt04BrtRY7jKJe2lIpXjGwfHLzHc0oNuPuSsaysnK18dngTpBb7FGz0lQL1hkafG7A3+auXje4xj5fyQgAAAABwIiKlA+qoJ92jTz/6ae1N7dVpzafpO+/6jhq8B649jOGxbUdvPt+t9Y9s0/6dcUmSx2fqjPPaNf9d7cr+9D+195P3SrmcPNGo2m77qpre//7DG/W/5BNuYP7w56Q197j7TtIQfWdvshSY/+HN/epJZKuOT2wM6PzTxuu8wmNSlMk/cXQMw5C/wSt/g1fRCYdu7ziOchlLyUKgnhrIFsrKZCvWc4XjWWWSedm2o2R/Vsn+rPYPo0+BkLcUtrsTohoyzPLDNDRo25BhlveZpiHDGLxdbjP4uGEYMs1B2x7D7UehpE0g7OOODgAAAAA4SgToQJ0kcgl95nef0daBrTolfIruv/h+RQPRendrTLMsW5uf7dTzv9lemrTQF/DozAs6NO/dU+Tt3q7dn7lG6ZdfliRF3v1unXL71+SdMIwErpbFfyXJkB6+qRCiO9Il3zjhQ/RD1TEP+z06Z+Y4nXfaeJ0/a7xmTYxQkgh1ZRiG/EGv/EGvmiceur2Vt92gPVYI1weypXB9cNieiuXk2E6pfvtwJ0wdCYah0oSrxUlYQ40+BQvbxdHzDRG/Gpp8CoZ8lK0BAAAAgEEI0IE6yFk53fT4TXpl/ytqDjTr/vfcr7ZwW727NWbls5Y2/mGPnv/ttlIt5EDIq7nvmqK5F01WIGBo/4oV2nf3d+TkcjKbmjTpK19W0wc/ePTB7uJr3OXDN0lr7nXLuVy6/IQK0Yt1zJ9+fZ+eeaN2HfMFU5pLgfn8Kc3yeShngbHL4zUVaQko0nLoSWyL4XllwJ6O52RbjhzHkW07cmxHjq2h27Yj2znQtrvPtt3z1N52ZBee5ziObMvtS3EUveOo8EVAbljve3DgXgreC/XigxG/Qk3usqGRwB0AAADAyYEAHRhhtmPry09/WWv2rFGDt0H3vvtezYzOrHe3xqRsOq+Xn9ylF363Q6kBt2xIQ5Nf8y+eojPf2SF/0KvMW1u09dYvKf3iS5Kk8AXv1Cl//w/ytQ1jGOpwLb7GTZ5+8Vnp2fvcfWM4RC/WMX/6dXeUOXXMgQMzTEPBiE/BiE/Dqd8+UizLdmvDx4r14cv14pOxrNKxirrxxyBw9/rM8k5VX/7K60Z5vep49bWyus1BzmcY8gU8ijQHFGkJKtLqLhtbAwpFA5SvAQAAAHBMEKADI8hxHP3Tc/+kX2/9tbyGV3ddeJfOmnBWvbs15qQTOb30+x166fGdyiTzkqRIa0AL3ztNp597irx+jxzL0v4VK7X3rrvkZDIyIxG1/d3fKfqhy45POZFFH3eXpRDdkS795pgI0R3H0c7elP7wJnXMgROFx2MqHA0oHD30KHppUOAey1aF66l4zg3cC+tHGriPJMM0FI76q4L1SEtAjRXbDRFG0AMAAAA4NAJ0YAR9f8P39ePXfixJuuP8O3Rux7l17tHYkujP6MXf7dDLT+5SLmNJkprbQlp4yTTNXtomT6FsSHbrVu3+uy8r9fzzkqTw+efrlH/4e/lOOeX4dnDRxyUZ0i9ulJ693903CkN0x3G0vSepNW/t17Nv9WjNW/u1uz9d1YY65sDJ5WgDdytvS4XSTo7klrMqLyoOSE5Fw6rjcq9PNdsX1we1z6byivemFevJKN6bVrwno0RfRrbtKN6bUbw3I71V+z2YXqPG6PVgoXyPuwyEvFz7AAAAgJMcATowQv5n8//oO3/8jiTpb5f8rf5k5p/UuUdjx8D+lF747Xa9+sweN6SRNG5yRIsunaZTF04s3abv2LZ6//O/1P3P/ywnnZYZCmnil/5WzR/96MgFIIuudgPz/1cI0R1Het8/1TVEdxxHW/cXA/P9WvNWjzoHqgNzr2lo3pRmtywLdcwBHMLhBu4jybYdpQayihUC9XhvuhCml4P25EBWdt7RwL60BvalD3gub8CjxkI9/GKoHmkNKtTorypDM1IM01Aw5HNr0Ed88gU8BPwAAADAcUaADoyAx7Y9pn9Y8w+SpGvPulZ/ecZf1rlHY8P+XXG98Lvt2vxsl+zCrJWTZjZp0fuma9qZ46pCg+yOHdpz698puW6dJCl0zjlq/8c75OvoGPmOL7xKkiH9vxuk574nyZHe960RC9Edx9Fb+xJVI8y7Y5mqNj6PoflTmnXOzHFaOmOcFk5rVsjPPwkAxj7TNBRuDijcHJBm1G5j5W0l+jKlYD3em1G8J61Yb3kkezqRUz5jqbczqd7O5Mi+iWHyeM1SmN7Q6Fcw7IbrDcWJXiPl9YaI3x1RT9kaAAAA4LCQlgDH2drOtfrik1+U7dj68KwP68YFN9a7S6OabTva+tI+vfT4Du3a1FfaP/ltLVr0vunqmN1cFZw7tq2+Bx9U153/W04yKSMUUtsXblHzFVfIMOs4gnrh/3ID859fLz33r+5I9PffeVxCdMdx9ObeuFa/1aNn39qvZ7f0aO+gwNzvMTV/qhuYnzOjVQumtqjB7znmfQGAscDjNdU0vkFN4xsO2CaXtZTozdQcyZ6O16fuu207bumceE5WzpaVt8ulaoahOPFrMOJXQ6Q4kr283hDxF8L48rrHy91IAAAAOLkRoAPH0aaeTbrx9zcqa2d10ZSL9NVzvsqt1geQTuS08Zk92rBqp2L73dvpDUOaOX+C5r9nqibNjA55Tm7XLu3+yleUXL1GkhRaskSnfOMf5Z8yZUT7fkALCnca/Px6ae33JTnS+//3UYfojuPo9e54aYT5s1v2a1+8etJPv9fUwqnlEeYLpjYr6CMwB4Dh8vk9am4LqbktVO+u1JTLWOVJXuO50sSv6eIEsPHq9WyqeuLX3mG+jj/oUbCxGLK7y8qR7YPXKSsDAACAEw0BOnCc7Ijt0Kd/92nFc3EtnLhQ33rnt+Q1+Ss32P5dcb30xE5tXtOpfM6tbx4Ie/X28zt05gUdamwNDnmO4zjq+8lP1P3Nf5KdTMoIBjXx859Xy5Ufq++o81oW/KUkQ/r5ddLaf3P3HWaIbtuONnfHtOZNd3T5s1t61JOoDswDXlOLprUUAvNWzZtCYA4AJzJfwCNf4OCj6CtZeVvpRGHi13hW6cIyFc+V1yuC93Q8J8eRsmlL2XRKA3tTw3odj88sh+zF4H3wyPZGX2k/ZWUAAAAw2pHmAcfB/tR+ffrRT2tfap9mtczSd979HQW9Q4Pgk1W5TMtO7dpUHgM3riOiue+arNlL2uQ9QHmR3J492vOVryrxzDOSpIaFC9W+/BvyT5s2In0/IguudAPzn33GDdGdwkj0A4T9tu3otc6YO8J8ixua9yWrywU0+DyFwLxVS2eO09zJUQW8BOYAgNo83sOb+NWxHWWS+YqR7bmh6/GcUjE3bE/FcrLytqzcYZaVMQ0Fw94hNdyLIXsg5JM/6JE/6JWvctnglddnMtodAAAAxx0BOnCMxbNx/c3v/kbbY9vVEenQ/RffryZ/U727NSocrEzL3HdN1imnNR/wP8KO46j/pw+pa/ly2fG4jEBAE266Sa1X/S8ZnjEQHM//mLv82WekdT+QW87l/0imqX3xjDbs7NdLO/v10s4+rdvWq/5UdWAe8ntKI8zPmdmqszqa5acuLQDgODFMo1Av3aeWSYdu7ziOchmrFKan4tmh64XAvVh2JpvKy7GdUlmZI+mjP+gpBevloN07JHT3N1S2q97vD3jl8R3+v6mO48i2HFl5e+gy78iyKpe2LMtxl3lHtl04Nui5kgrvyatAg1f+0sOjQIP73kxG7AMAAIwoAnTgGMpaWd30+E3a2LNRLYEW3X/x/ZoYmljvbtXd/t1xbXh8pzY926l8trJMS7vOvGByzTItlXJd3dpz21eVWPWkJCk4b67aly9XYObM4973Y2r+x5TIWgr96gYZ6/5dqzbv1d+lr9augeyQpmG/R4unt7olWWa26qyOqHweAnMAwOhkGEYpnD6ssjLx2qVkivszybxyGUvZVF7ZtKVcOq9sxpKc8ij5TDIvaXgj3g/E9BryB4pBu1cej+EG3ZZ9wIDctp2jes0j5Qt4SsF6oMFTEbK7n3/Vvqogvrzfw+8UAAAAw0aADhwjlm3p1qdu1bOdzyrkDem+i+/T9Oj0enerbo6mTEuRY1kaePhhdf7jN2QPDMjw+TThszeq9ZprxsSo81g6p5d3DWjDrr7C6PJ+be9p1YfMT+v/+O7XBQO/0GfySX3VuEYzJzRpbkdUZ02OasHUFp3Z3iQv/7kFAJzAPF5T4eaAws3DKytT5NiOcllLubSlbDpfqNOeVy5lKZvJK5sqbJeOV6ynrIpAPl/6Yt/OO0rnc0onDn8kfIkheTymTK8xdOk1ZXqGLk2PKY+3vFSh7nwmlS/1MZty+23l3b7mMu57SPQd+ZcGXp85KHj3yOv3yOM15fWZ8vhNeb2mPD734fWZ8vo8pXWPzyy19fpNebzVxyqX5kn++4xt2cqk8sok3C97HDkKhnzuFyBhvswAAGAsIEAHjgHHcbT8ueX67bbfymt6dddFd+nt499e727VxcHKtJx10WS1zzp4mZbc9u1KrF6txOo1Sq5ZI6u/X5IUPPNMtX9zuQKnnTZi7+VwpLKWXtnthuQbdrmlWN7al5BTY3DaH1su0Y8aW3RV53Jd6X1Mf7Z4snz/310HrIkOAADK3NIt7ujqsA4vfB/Mtmw3UE9Xh+523nFD7gOG34Xg22vK4zFkegwZpnFca7JbOTeILYfqbrA+NGzPK5OyBrXLK5O2lM9YkqR8zlY+l1Wyxl1wx5phGhUhvBu8V4bsvoC3XIon4JbXKdW7D3hq1sB3J9H1jFgNfMd23BA8mXPvekjklS6uJ3OFcNzdTle0ySRzyqatg57bG3DL8wRCxYfPXTYM2q6x7vUzDwAAACOBAB04Bu5/6X49uOlBGTK0/PzlWta+rN5dGnEHK9Py9nd2qGlc7du58/v2KbHmWSVW/0HJ1WuU27276rgZiWjctZ/QuGuvleEdHZesTN7Sa3tiemlnXykw39wVU607uTuaGzR3sjuyfG5Hs87qiCoa8km6SHpxuvSzT8v3wg8lU9IHCNEBABhJpsdUIGQqEPLVuyuH5PGZCvn8CjX5j/gctmW7XxZUBO6ZlLtdnAQ2n7Vl5S3lc4XtWsu8VWhXfk6+uJ6zZOfLvxQ5tqN8phzeHzNGoZxNwFOqe++G695SHXk3fHf3VU1CG/Aon7ergu9MMqd0RfBdCseTeWVSeekoK/b4Ah4FQl7JkLLJfClYL342R3JHgekxFAgVyvmEfAqGvPIfIIT3N7h3Gbh3DVQs/dwpAADAoYyONAoYw/7vpv+re1+4V5L0pbO/pEtnXFrnHo2cYpmWDU/s1M7XBpVpuWiyZp3dJt+gMi1WPKHkurVKrl6jxOrVymzeXH1Sn0+h+fMVPneZQueco4azzqprcJ6zbG3uipVKsGzY1adNnTHlrKH/i5rYGNDcyc2lwPysjqjGRw4yMm7eFe7w/If+Wnr+h+4+QnQAAHCcmB5TwbCpYPj4fmHg2G6t+KHhu+Uu87asrLs/lynWt7eq1rPpfOnugFy6XAs/l7HcO/wcuc9JW1L/8R9JL0lev1kKp4PhoSPDy/vKx4Jhn/yhoaVabMsu3EGQK9XyrwrtC8F91XbSnXw3k8jLtt1JbMuT8KaO6r2ZHqMiWK8VspfD9tI+v1u6x1dYVrUrPt/nKZQrcksVldfL+wxDjKQHAIxqBOjAUXh026O6Y80dkqRPzf2UPnb6x+rco5GRTuS08Q97tOGJ6jItM+ZP0NxBZVqcXE6pl15S4g+rlVizRqkXX5Ty+arzBU4/XeFlyxRetkyhRQtlhkIj/p4kqT+Z0+bumDZ1uo8Nu/r16p4BZQs1Ryu1hv06qyOqeZOjOqsQmrc1HXwy1Jrm/pkkQ3roU4UQ3ZE+8G1CdAAAMGYZZiGMPcR8N0fCcRzls3ap5I4bshfK72SKZXjKE87mBq0X23p8Zs2wu3qfT8FwYbvBK4/v2P1+ZnpMBSOmgpHD/zKj+BkMDtfLtdYL61XBu1X6AiOXtUpfYBTZllMo93PM3uJhqQrZzaEhe2ndrBXEmxXHyu1kGJLjlG8ecKoWkuPU2Cc5g3ZWlWQsbDg1j7srHp9ZKkd0oDsgKu+a8AeO7c8WAODYI0AHjtBze57T3z75t3Lk6PLZl+v6+dfXu0vH3XDKtDiOo8zmzYU65quVWrtOdjJZdR7flCmFwPwchZYulbe1dUTfRzKb1+tdcW3uimlzV0ybuuLa3BlT50C6ZvvGoFdzJ0fd0eWFiT47mhuO3UiZuR91lw99Snr+P6SeLdK0c6WJp0sTTpfGnSp5Rv+t5QAAAMebYRilGuiK1rs39VH5GURajvw8juOUS/DkrOpl1i3jM2RfVdsa+0rPs0rnti1btuWOmLdr1TyUSseloQNXTgamx6io9e+pmhvAF/QWQvfquQF8pUDeXXr9pjtxscedn6HyywRG+APA0SFAB47Axv0bdePjNypn5/Tuqe/WV5Z+5YT6pcTK2Yr3pRXvySjWm1a8J61dm/sGlWkJa+5FUzTr7DZpb6cSj/9Su1avUWLNGln791edz9PS4oblhVHm/smTR+R9ZPO23toX16bOQlDe6YbmO3qTNSf3lNya5bPbIprd1qi3d0Q1tyOqaeNCx//Pd+5H3VEyP/2ktPUp91Fk+qTxs91AfeLp0sQz3GXzNEaqAwAA4IgYRuWdAiMzWMNxHDmF8jOVoXpVyG45su1B20OOO0OC+cFtym/U/TV78HuvPO4ujMNrb5Q3Kg/ns3bpboghdz9UliVKW6W7AGzLUTqRUzqRO7IP9hCKYXpxMmTTrAzZC5MimxXrVSP/ixMoV6wPugvAMN1HMaw3TJW3TcMt01O5bbqfaXnbbVO5bZruB1vznIVtx3Z/pmzb/bkauu3us51B27ZT+ll0bEe2raHbhTaDz+3YzuF9PhVfZlTu93jNQecpHzfMEydbwMHZhXlCchlLuawlj7eiHJbP5GdhFDEc50AxEg7HwMCAotGo+vv71dTUVO/u4Cjl7by6kl3aFdulnfGd2hnbqV1xd31XbJf2p92AeHHbYt3/nvsV8BykzvUo49iOkrGs4r0ZxXvSivWkh6wnB2rXkSyWaXn74qii3RuVXLNaiTWrldu2vbpdQ4NCixeXRpkH5syRcRyDXst2tL0nWQ7Ku2La3BnTln0J5Q8wymV8JKA5kyKaNbFRcyY1anZbo2a1RdQUrPNI765XpC1PSt2vSt0b3Uc2XrutLyRNeFshUH9bOVxvPGXob/0AAAAARhXbsitCdasieHfXs6nquQHKgXxhX0UJo3zO/QLBOcD/fzB2GGYxUK8I2L1uwO7xmfJ43S86yuuVj0I47zPl9ZqD2riBfnHbWzzmq95fedwsfKFiyHC/LyouDKPwZdPJ8f9Ox3HceTvSlvLZQuBdLBOWcf+e5rJ2aT6P0vFDPKzcwe+6KQfq1fNPDJ4Q2uM35fMVln5THp+ntCw95yDzWXi9J2dYfzhZLgH6MUKAPrY4jqOedI8bihfC8WJAvjO2U12JLuWd/EHPsXDiQn333d9Vo79xhHo9PNl0vmrkeLw3J+ya4wAAFnpJREFUUwjG04r1ZBTvTcvOH/qvvcdnKtISUCTqUzgkhY2ETul9UVq7SumNG6uLAXo8apg7V+Fl5yi8bJka5s2T4fcf8/fmOI5296e1ubMckm/qiumN7rgyNeqUS275lTltjZo9qdFdtjVqdltE4w42uedoYtvSwM5CmP5qebl3s2Rlaj8nGC2PUi8uJ5wuhceNbN8BAAAAjKjiCH+rakS+u27ly/uqjtfcb8vKD74DwJZlObLzg0b8H3SE9wFGfFfsO9T2gUaaH2hkevXod3dfrW13hLsqRsEXn6fa24V9TvHzHHR3ROXnW/qsqj7fin2W7X6OJ8oXHoUwvXRjhuHe1WEYxe3yMcMwyuO9iu2K4+0q20nlULfQrnSHyAHPV14vh/zl7QO1K/WzoFbYreP4R+XOHWLKzrs/RyNt/JSIrvjy2SP+uvV2OFkuJVwGueeee3TnnXeqs7NT8+bN03e+8x2dffbJ90N0IkjmkqUR4zvjhZC8Yj2VP/gMOT7Tp/ZIuyZHJqsj0qGOxg51RDo0OTJZkxsnq8nfNKLfthYnC0rFB40eL4TixXA8kzx48F8UCpsKBW2FvFk1KKlgfkDBVI/88S75e3fLs3+3rJ4eOelyXfDKCuGBWae5JVnOWabQ2UvkiUSO+H1l8rbimbxi6bzi6bximZy7TOfVm8zqzb3FMixxxTO131/QZ2rWRDcgnzMpUlg2alJTcGx/K26aUvNU9zH7kvJ+Ky/1bqkeqd69Udr/hpTul7avdh+VwhOrQ/XiyPXA6PoSCAAAAMCRMUxDHtNgYtIxwnGqSxUN/tKi9IVG3l238rasXGGZt2XlnPJ63padd8+Rr2hjl9Yr2laeI+8M2naPH9ZwW6dQ4mbwzhOQ12+W5qHwBdx5CXxBj3x+T8X+wr7A0Ie3Yt1feL7pLc9V4Njun9/Q+Seq55kYPO/E4KWVtZXL2rJyVvWyYo6LYljvOw6Tfp9oGIFe4cEHH9RVV12l+++/X0uXLtVdd92ln/zkJ9q0aZMmTpx40OcyAv34chxHOTunrJUdsuxKdpWC8tJI8thO9WZ6D3pOQ4Ymhia6oXjj5KplR6RDE0MTZRpH90uHZdnlenfFW+xSxdvtKm7Fq1gfUhuv8Jxcxhr2P2A+j6WQJ6OgnVAw169Acr8CA3vk692twMAeBTJ9Mp3hf6tp+P3ytrW5ZVnOXabQ0qXyTZyodM5SPOOG3vFMXgPpXGm9GIjH0nnFKwLxWEX7WDqneCavnDX8y5DXNHTqhEhhRHk5KJ/cEpLnJLzlaIh8Rtr3+tAR633bDvyc6FQ3UG+ZJnkDkjfoLj0V696g5PVXb3sC1e29FdseP2VkAAAAAGCMKgX6tiM5TjmPKIblhe1SrFhrv1O8eb2wv+JYcdtR7XbF8w5uJxXuUFDxfO5z3HYV+ytD/SHnG/R+5N7ZUHTA8Nvvce9eOEHYtvvliW07CjScfGOsKeFyhJYuXaolS5bou9/9riTJtm1NmTJFN9xwg770pS8d9Lknc4D+yM9/qW0vbpLt2HJkyXFs2Y4tW7Ycxyqtu9vuw5Yt26luaxeOOYVjpX1yHzU5xcle3IfhuLW5DBmSY8hn+BUwwwp6Qu7SbJDfDClgNshvBmUantJFXTKqL/yFpbtuyFDlPwSSYxuybEO2Zci2TXfdNt11xyPbNuXo2H/rbziW/PmYApk+NST3Kpjap2C6V8FMrwKFpddKH/QcltendLhJqXCTUqFGpUJNSoaalAw1KtHQpEQookSwUbFQo+LBiNLegHK2qsLxeDqvrHVsby2KBLzuI+hVY9Bdbwr6NHNCuBSUTx8Xlt/LaIrDlolLezeVQ/W9hRHrsT3H7zU9BwjXS+F8MWz3qXBfZMXDqF6XcZDjhYd08DalcxjV55VqrEvVM0gNt50O3u6YvtbgY4dxPgAAAAAAJKmhWZrxznr3YsRRwuUIZLNZrV+/Xrfeemtpn2mauvjii7V69eoh7TOZjDKZcv3hgYGBEennaLTlty/LtpZU7TMLj9EmV3gkRvh1TTsnTz4tj5WW18rIky8srcK+fHE9I6+Vlqew7S3sq26flTHoVqis6VV/IKxOf0R9kWnq94fVH4ioLxAprbuPsPr8EaW8gYOPDi5+UDHJ/bQO/olVBt+RgBt+FwPwSMBXvR30qjHoK7UrPc/vPaG+yR11AhFp8iL3USnZI+19zZ28NLbHHcFuZaV82l0vPQrbVuV2Zbv00JrsVqH9AUq1AwAAAACAOutYJH3y9/XuxahGgF6wb98+WZaltra2qv1tbW167bXXhrRfvny5vv71r49U90Y1b7RB2rWlsFUOQI1B2xp05MDbNfY7BztjxX03hXXDGbyvPKTcGLy/dAqn6lyGpKp7jAYvHUuGk5fh5CRZMpSTHEtSvryU7S5NQ45hyDFNOYapnMdQ1me6+9wZTOQYXjmGX47ZJMdw26n0nHK7vNenTLhJmUiT0uGospEm2cGQTI8pT2GSE48peQxDEdNQ1HBr4JmmUT5uuG3K64bMinamoUFtDXk9RiH09hF8n0hCrdK0c93H0XKcivC9RrheK3gv7ndv65D7d9WueDhD14e0GW67Wm2kivsFVXFP4aD1I22ngxw7nq81jHYAAAAAAEyYU+8ejHoE6Efo1ltv1c0331zaHhgY0JQpU+rYo/r55DdurHcXAIwGhlEu1QIAAAAAAHACIEAvGD9+vDwej7q6uqr2d3V1adKkSUPaBwIBBQKERAAAAAAAAABwohqNZarrwu/3a9GiRXrsscdK+2zb1mOPPaZly5bVsWcAAAAAAAAAgHpgBHqFm2++WVdffbUWL16ss88+W3fddZcSiYSuueaaencNAAAAAAAAADDCCNArXHHFFdq7d69uu+02dXZ2av78+XrkkUeGTCwKAAAAAAAAADjxGY7jOPXuxIlgYGBA0WhU/f39ampqqnd3AAAAAAAAAAA1HE6WSw10AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGogQAcAAAAAAAAAoAYCdAAAAAAAAAAAaiBABwAAAAAAAACgBgJ0AAAAAAAAAABqIEAHAAAAAAAAAKAGAnQAAAAAAAAAAGrw1rsDJwrHcSRJAwMDde4JAAAAAAAAAOBAihluMdM9GAL0YyQWi0mSpkyZUueeAAAAAAAAAAAOJRaLKRqNHrSN4QwnZsch2bat3bt3q7GxUYZh1Ls7I25gYEBTpkzRjh071NTUVO/uAMAhcd0CMJZwzQIw1nDdAjDWcN06uTiOo1gspvb2dpnmwaucMwL9GDFNU5MnT653N+quqamJiwyAMYXrFoCxhGsWgLGG6xaAsYbr1snjUCPPi5hEFAAAAAAAAACAGgjQAQAAAAAAAACowXP77bffXu9O4MTg8Xh04YUXyuulMhCAsYHrFoCxhGsWgLGG6xaAsYbrFmphElEAAAAAAAAAAGqghAsAAAAAAAAAADUQoAMAAAAAAAAAUAMBOgAAAAAAAAAANRCgAwAAAAAAAABQAwE6jto999yj6dOnKxgMaunSpXruuefq3SUAkCQ9+eST+uAHP6j29nYZhqGf/exnVccdx9Ftt92mU045RQ0NDbr44ov1+uuv16m3ACAtX75cS5YsUWNjoyZOnKjLLrtMmzZtqmqTTqd13XXXady4cYpEIvrIRz6irq6uOvUYwMnuvvvu09y5c9XU1KSmpiYtW7ZMv/71r0vHuWYBGM2++c1vyjAM3XTTTaV9XLcwGAE6jsqDDz6om2++WV/72tf0/PPPa968ebrkkkvU3d1d764BgBKJhObNm6d77rmn5vFvfetbuvvuu3X//ffr2WefVTgc1iWXXKJ0Oj3CPQUA16pVq3TddddpzZo1evTRR5XL5fTe975XiUSi1OZzn/ucfvGLX+gnP/mJVq1apd27d+vDH/5wHXsN4GQ2efJkffOb39T69eu1bt06vetd79Kf/umf6pVXXpHENQvA6LV27Vp973vf09y5c6v2c93CYIbjOE69O4Gxa+nSpVqyZIm++93vSpJs29aUKVN0ww036Etf+lKdewcAZYZh6KGHHtJll10myR193t7ers9//vO65ZZbJEn9/f1qa2vTypUr9ed//uf17C4ASJL27t2riRMnatWqVXrnO9+p/v5+TZgwQT/+8Y91+eWXS5Jee+01nX766Vq9erXOOeecOvcYAKTW1lbdeeeduvzyy7lmARiV4vG4Fi5cqHvvvVd33HGH5s+fr7vuuovftVATI9BxxLLZrNavX6+LL764tM80TV188cVavXp1HXsGAIe2ZcsWdXZ2Vl3DotGoli5dyjUMwKjR398vyQ2jJGn9+vXK5XJV1663ve1tmjp1KtcuAHVnWZYeeOABJRIJLVu2jGsWgFHruuuu05/8yZ9UXZ8kftdCbd56dwBj1759+2RZltra2qr2t7W16bXXXqtTrwBgeDo7OyWp5jWseAwA6sm2bd10000677zzdOaZZ0pyr11+v1/Nzc1Vbbl2AainDRs2aNmyZUqn04pEInrooYd0xhln6IUXXuCaBWDUeeCBB/T8889r7dq1Q47xuxZqIUAHAAAARqHrrrtOL7/8sp5++ul6dwUADmrOnDl64YUX1N/fr//5n//R1VdfrVWrVtW7WwAwxI4dO/TZz35Wjz76qILBYL27gzGCEi44YuPHj5fH4xkyE3FXV5cmTZpUp14BwPAUr1NcwwCMRtdff70efvhhPf7445o8eXJp/6RJk5TNZtXX11fVnmsXgHry+/067bTTtGjRIi1fvlzz5s3Tt7/9ba5ZAEad9evXq7u7WwsXLpTX65XX69WqVat09913y+v1qq2tjesWhiBAxxHz+/1atGiRHnvssdI+27b12GOPadmyZXXsGQAc2owZMzRp0qSqa9jAwICeffZZrmEA6sZxHF1//fV66KGH9Pvf/14zZsyoOr5o0SL5fL6qa9emTZu0fft2rl0ARg3btpXJZLhmARh13v3ud2vDhg164YUXSo/FixfryiuvLK1z3cJglHDBUbn55pt19dVXa/HixTr77LN11113KZFI6Jprrql31wBA8Xhcb7zxRml7y5YteuGFF9Ta2qqpU6fqpptu0h133KFZs2ZpxowZ+upXv6r29nZddtlldew1gJPZddddpx//+Mf6+c9/rsbGxlKtzWg0qoaGBkWjUX3iE5/QzTffrNbWVjU1NemGG27QsmXLdM4559S59wBORrfeeqve9773aerUqYrFYvrxj3+sJ554Qr/5zW+4ZgEYdRobG0tzyxSFw2GNGzeutJ/rFgYjQMdRueKKK7R3717ddttt6uzs1Pz58/XII48MmZQPAOph3bp1uuiii0rbN998syTp6quv1sqVK/XFL35RiURCn/rUp9TX16fzzz9fjzzyCLXwANTNfffdJ0m68MILq/avWLFCH//4xyVJ//Iv/yLTNPWRj3xEmUxGl1xyie69994R7ikAuLq7u3XVVVdpz549ikajmjt3rn7zm9/oPe95jySuWQDGHq5bGMxwHMepdycAAAAAAAAAABhtqIEOAAAAAAAAAEANBOgAAAAAAAAAANRAgA4AAAAAAAAAQA0E6AAAAAAAAAAA1ECADgAAAAAAAABADQToAAAAAAAAAADUQIAOAAAAAAAAAEANBOgAAAAAAAAAANRAgA4AAACcYJ544gkZhqG+vr66vP5jjz2m008/XZZlHbLtI488ovnz58u27RHoGQAAAHB4CNABAACAMcQwjIM+br/9dp177rnas2ePotFoXfr4xS9+UV/5ylfk8XgO2fbSSy+Vz+fTf/3Xf41AzwAAAIDDYziO49S7EwAAAACGp7Ozs7T+4IMP6rbbbtOmTZtK+yKRiCKRSD26Jkl6+umn9YEPfECdnZ0KBoPDes4999yjlStXau3atce5dwAAAMDhYQQ6AAAAMIZMmjSp9IhGozIMo2pfJBIZUsJl5cqVam5u1sMPP6w5c+YoFArp8ssvVzKZ1A9/+ENNnz5dLS0tuvHGG6vKrmQyGd1yyy3q6OhQOBzW0qVL9cQTTxy0fw888IDe8573VIXnL774oi666CI1NjaqqalJixYt0rp160rHP/jBD2rdunV68803j+2HBQAAABwlb707AAAAAOD4SyaTuvvuu/XAAw8oFovpwx/+sD70oQ+publZv/rVr/TWW2/pIx/5iM477zxdccUVkqTrr79er776qh544AG1t7froYce0qWXXqoNGzZo1qxZNV/nqaee0sc+9rGqfVdeeaUWLFig++67Tx6PRy+88IJ8Pl/p+NSpU9XW1qannnpKp5566vH7EAAAAIDDRIAOAAAAnARyuZzuu+++UkB9+eWX60c/+pG6uroUiUR0xhln6KKLLtLjjz+uK664Qtu3b9eKFSu0fft2tbe3S5JuueUWPfLII1qxYoW+8Y1v1Hydbdu2ldoXbd++XV/4whf0tre9TZJqhu/t7e3atm3bsXzLAAAAwFEjQAcAAABOAqFQqGp0d1tbm6ZPn15VL72trU3d3d2SpA0bNsiyLM2ePbvqPJlMRuPGjTvg66RSqSG1z2+++WZde+21+tGPfqSLL75YH/3oR4eMNG9oaFAymTzi9wcAAAAcDwToAAAAwEmgsmSKJBmGUXOfbduSpHg8Lo/Ho/Xr18vj8VS1O9gkpePHj1dvb2/Vvttvv10f+9jH9Mtf/lK//vWv9bWvfU0PPPCAPvShD5Xa9PT0aMKECUf03gAAAIDjhQAdAAAAwBALFiyQZVnq7u7WO97xjsN63quvvjpk/+zZszV79mx97nOf01/8xV9oxYoVpQA9nU7rzTff1IIFC45Z/wEAAIBjwax3BwAAAACMPrNnz9aVV16pq666Sj/96U+1ZcsWPffcc1q+fLl++ctfHvB5l1xyiZ5++unSdiqV0vXXX68nnnhC27Zt0zPPPKO1a9fq9NNPL7VZs2aNAoGAli1bdlzfEwAAAHC4CNABAAAA1LRixQpdddVV+vznP685c+bosssu09q1azV16tQDPufKK6/UK6+8ok2bNkmSPB6P9u/fr6uuukqzZ8/Wn/3Zn+l973ufvv71r5ee89///d+68sorFQqFjvt7AgAAAA6H4TiOU+9OAAAAADhxfOELX9DAwIC+973vHbLtvn37NGfOHK1bt04zZswYgd4BAAAAw8cIdAAAAADH1Je//GVNmzatNCHpwWzdulX33nsv4TkAAABGJUagAwAAAAAAAABQAyPQAQAAAAAAAACogQAdAAAAAAAAAIAaCNABAAAAAAAAAKiBAB0AAAAAAAAAgBoI0AEAAAAAAAAAqIEAHQAAAAAAAACAGgjQAQAAAAAAAACogQAdAAAAAAAAAIAaCNABAAAAAAAAAKjh/wdSjMNqJXh+BwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyNdf/H8deZfZ+xzhhZw4RkLNnKEmomchuFLFnKdle2olVCRJtuqe7QYgmFioREIkKyRG5LmN/YDQozZpj9+/tj7nPdjjkzZiY6jPfz8TiPzlzf63tdn2s5Hvf9Pt/zvWzGGIOIiIiIiIiIiIiIiDhwc3UBIiIiIiIiIiIiIiLXIwXoIiIiIiIiIiIiIiJOKEAXEREREREREREREXFCAbqIiIiIiIiIiIiIiBMK0EVEREREREREREREnFCALiIiIiIiIiIiIiLihAJ0EREREREREREREREnFKCLiIiIiIiIiIiIiDihAF1ERERERERERERExAkF6CIiIiJyXRg9ejQ2m40WLVq4upQibfny5dhsNnx8fK7qdvfu3YvNZsNmsxEfH/+395fr25QpU7DZbNx2222uLkVERESkQBSgi4iIiBSQPejN70uKrosXLxIcHIzNZmPgwIH57rdu3Trr/vjqq6+uYYVil5qayrRp04iKiiI8PBxvb2+Cg4OpVq0aLVu2ZMSIEXz33XekpqY67Z+YmMjbb7/NPffcQ+nSpfHy8qJ48eJUr16d6Ohoxo4dy5o1a8jKyrpiLf/617+s69+qVasCH8u5c+eYNGkSbdu2pXz58vj5+eHr60u5cuVo27Yt77zzDqdOncq1/7Jly+jSpQu33norfn5++Pn5UalSJRo3bszAgQOZN28ef/75Z4HrEhERESmKPFxdgIiIiMiNLDQ01NUliAv5+vrStWtXpk6dyty5c5k4cSLe3t5X7PfJJ58AUKpUKdq1a3ety3QQEBBAREREvuosKuLi4mjTpg179+61lnl5eeHu7k5sbCz79+9n9erVjB8/no0bN9KoUSOH/lu3buUf//gHx48ft5b5+vqSlZXF77//zt69e/nuu+8AOHHiBGFhYXnW8/HHH1vvV69eTVxcHJUqVcrXsXzwwQe88MILJCQkWMv8/Pzw8vLi6NGjHD16lGXLlvHCCy8wZswYnnnmGWu9ixcv0rVrV77++mtrmZubGyEhIRw7doyDBw/y888/8/777zNhwgSef/75fNUkIiIiUpRpBLqIiIjIXxAfH3/FlxRtffr0AeDs2bMsWrToiusnJSWxYMECAHr06IGnp+c1re9yd999N3v37mXHjh1/635dJT09nXbt2rF3714CAgIYP348R48eJSUlhTNnzpCcnMzGjRsZOXKk0xD77NmztG3bluPHjxMaGsp7773H6dOnuXDhAufOnSMxMZHVq1czbNiwfH2htmnTJnbt2kVoaCidO3fGGMP06dPzdSzDhg3jiSeeICEhgVq1ajF79mxOnz5NcnIy586dIzk5mWXLltG1a1dSU1P58ssvHfoPGTLECs/79+/Pzp07SUtL488//yQlJYXdu3fzzjvv0KhRI/16RkREROS/FKCLiIiIiPwFd955J7Vq1QL+N7I8L/Pnzyc5ORn4X/gu187y5cvZtWsXAJ9++ikvvPACZcuWtQJiHx8fGjVqxCuvvMKBAweoU6eOQ//Zs2dz8uRJa1tPPvkkJUuWtNoDAgJo0aIFb731FkeOHKFUqVJ51mMffd61a1cee+wxAGbMmHHFqV9mzpzJ22+/DcAjjzzC1q1b6d69u0Mtfn5+3H///cydO5ctW7YQERFhtZ05c8YK6ocMGcLUqVO5/fbbcXd3B7JHolevXp3BgwezceNGBg8enGc9IiIiIjcLBegiIiIif6PHH38cm81GSEgIBw8edLrOBx98gM1mw8PDg7Vr1zq0/ec//2H06NG0bNmSW2+9FV9fX4KCgqhTpw4vvfQSf/zxR677rlixIjabjRkzZnDhwgVGjx5N9erV8fPzIzw8nB49ehAXF2et/8cff/Dcc89RrVo1fH19CQsLo2/fvlaYeLnLHwI6f/58mjdvTvHixfH396devXq89957ZGZmFuykXeL06dO89NJL1KlTh+DgYHx8fKhcuTJ9+vSxQlJXsAfh33//PUeOHMlzXXvI3qhRI2rUqOHQduDAASZMmEBUVBRVq1bF39+fgIAAatasydNPP83Ro0dz3a591PBrr71Gamoqr7/+OnXr1rXmaP/555+BvB8impWVxcqVKxk4cCANGzakbNmyeHl5UbJkSe655x4+/PBDMjIy8nVO9uzZQ48ePShbtize3t5UqFCBJ5988i/9KiMzM5OZM2cSHR1tzUNeqlQpoqOjmT9/PsaYHH22b98OgM1mu+J0OW5ubjmmtrH3L1++PJGRkXn29/T0tAJpZ5KTk/n8888B6NWrF61btyY8PJwjR46wcuXKXPulpKTw3HPPARAZGcnHH398xV8u1KlTx2Fk+65du6xr1759+zz7QvYUNblZuXIlDz74IGXKlLHuj3vvvZdPP/00X3PAXyoiIgKbzcaLL76Y53rLli2z/l10dg/FxsYyaNAgqlevTkBAAH5+flSvXj3Pz83lDzZdsWIF7dq1IywsDHd3d/75z38W6FhERESkiDIiIiIiUiCjRo0ygCnM/5S6cOGCqVmzpgFM48aNTXp6ukP7zp07jY+PjwHMyy+/nKN/hQoVrH37+PiY4sWLG5vNZi0rW7as2bt3r9N92/tOmjTJ1KpVy9qGr6+v1b9MmTImLi7OxMbGmkqVKhnA+Pn5GS8vL2udqlWrmoSEhFzPS/Pmzc2zzz5rAGOz2UyxYsWMm5ub1T8qKsqkpKTk2d+ZlStXmpCQEGs7np6ext/f3/rby8vLzJw5Mx9X4er7448/rHM0duzYXNfbt2+fVe+0adNytDds2NDheIoXL+5w7ooXL242bdrkdNv2viNHjjR33nmnAYyHh4d1zjZu3GiMMebbb781gPH29s6xjT179lj7AkxgYKAJCgpyWNayZUun1+/SvgsWLLCuTWBgoHVPA6ZUqVLmt99+y7P/iRMncrSfOnXKNG7c2KGW4OBgh787duyY4zP1yiuvWO2HDx92fmHy8NhjjxnA+Pr6mtTU1AL3v9T06dMNYGrVqmUts39WOnXqlGu/WbNmOZzbwli7dq21jVmzZhVqG1lZWeaJJ56wtmP/fLu7uzt8vpOSknL0/eCDDwxgIiIiHJaPHTvWAKZ8+fImKysr13136dLFACY6OjpH28cff2w8PT0d/m289J4LCQkxq1evzrOm119/3WF9T09PM2DAgIKfJBERESlyFKCLiIiIFNBfCdCNyQ7J7aH1iy++aC2/NFy/6667TEZGRo6+PXv2NDNmzDCHDh2ylqWmpprvv//eNGjQwACmbt26TvdrD9BDQkJMxYoVzYoVK0xmZqbJyMgwK1asMKVKlTKA6dy5s2nQoIGJjIy0Qte0tDQzb9484+fnZwAzYsSIXM+LPdQcOHCgOXXqlDHGmISEBDN27Fgr7H/qqady7e8sQP/tt9+sc9avXz+ze/du6/wcOnTICvU8PDzM5s2b8zj7107nzp0NYG699dZcg8Dnn3/eAMbf398kJibmaH/yySfNlClTzIEDB6xtpKenmw0bNphWrVoZwFSoUMFpkGsP0AMCAkxwcLD59NNPzcWLF40x2eHz2bNnjTF5B+gHDhwwPXv2NEuXLjVnzpyxlickJJiPPvrIhIaGGsC88MILOfpeGoAHBwebunXrmi1bthhjjMnMzDTLli0z4eHh1jlKTk7Otf/lAXp6eroVntevX998++235sKFC8YYY86fP28++ugjU7JkSQOY559/3qHv8uXLHcJdZ+F8XqZMmWL179Wrl3UeC+Puu+82gHnzzTetZbt27bK+MPnjjz+c9uvVq5f1pZH9uAsqISHBeHt7G8BUrFjRbNu2rcDbePPNN61zMXDgQHPy5EljTPY1eOONN6wgvVevXjn65hagHzx40Pp3wVnIbYwxiYmJ1ud/7ty5Dm3ffPONsdlsxsvLy4wYMcIcOnTIZGVlmczMTLNr1y4TExNjAFOsWDFz/PhxpzX5+fkZNzc3069fP3P06FFjTPY9FxsbW+BzJCIiIkWPAnQRERGRAro0QA8NDc3zNXjwYKfbsAc3bm5u5ocffjDGGDNgwAAr4L40IM+v8+fPWwHnunXrcrTbA3RfX1+zf//+HO0ff/yxw3E5C/NGjhxpBaCXu/S89OjRw2mNL730khV0Hzt2zGl/ZwF6y5Ytcw1u7QYPHmwA0759+1zXuZa+++476/idBYEZGRlWgNy7d+8Cbz89Pd3cdtttuY5CvnT0+ooVK3LdTl4B+pWsW7fOCsgvH+l9aQAeGhpq/vzzzxz9t2/fbjw8PAxgJk+enGv/y0PuadOmGcDccccd5vz5805r27Bhg3V/Xxr+Z2VlmWbNmlnb9vDwMHfddZd5+umnzZw5c8yBAwfyPObk5GQTERFh9ff29jatWrUyzz//vFmwYIEVuF7J3r17DWDc3d1zBLn16tUzkP3rEGfq16+fY+R6Ydg/v/ZXzZo1Tb9+/cyUKVPMtm3bnH5pZ5eYmGj9GuHRRx91us4bb7xhbXvnzp0ObbkF6MYY07x58zy3+8knn1i/Zrj0C4T09HTr37Xcfn2SlZVloqKiDGCee+45pzUBplu3brkeu4iIiNzcFKCLiIiIFNClQfGVXs5GYto9+OCDBjDh4eFm6tSpf3mKBmP+Nwp6woQJOdrsQdMjjzzitO/Ro0etGkaOHOl0nZ9++sla5/JpGi49L84CemOyR8HaR5JeHqDmFqDHxcVZwaezUNZuy5Yt1ujuvILAayUzM9OUL1/eAKZnz5452pcuXWqdn7Vr1xZqH/YvCYYMGZKjzR6g16tXL89t/JUA3Rhj/cLg119/dVh+aQCe1zQ29vu+SZMmufa/PEC3H9vUqVPzrK1KlSoGMIsWLXJYnpiYaPr162eF95e/KlWqZMaOHZtrOB8fH28efPBBh+mSLg+i33333TyneLFP1eJsCpLJkyfnGZDbp1PKbXqj/MrKyjJvvfWWw1RIl75CQkLMgAEDzMGDB3P0nTdvnoHsaVuctRuT/WsY+y8BLv11jTF5B+gfffSRAUxQUJDTEfb33HOP04Ddfi+XLVs2z+lfZs+ebQATGRnptCZngb+IiIiInR4iKiIiIvIXmOwBCbm+ZsyYkWvfjz76iPLly3P8+HEGDBgAQN++fenYsWOe+1yyZAkPP/wwlStXxt/fH5vNZr3mz58PkOfDJhs0aOB0eWhoqPX+zjvvvOI6586dc7pOuXLlqFKlitO2oKAg6tWrB8CWLVtyrfFS69evB7IfcFmjRg3CwsKcvqKjo4HsBzX++eef+dr21eTm5kbv3r0B+OKLLzh//rxDu/3hodWqVaNp06a5bmfNmjX06NGDiIgIAgICHK7v5MmTgbyv71133fWXjiMlJYX333+fe++9lzJlyuDt7e1QQ0JCwhVraNmy5RXbtm7d6vShn87q2bp1KwAvvPBCrtc/LCyMQ4cOAVj/tQsMDGTatGkcOXKEDz74gO7du3Pbbbfh5pb9f4fi4uIYOXIkdevWzdEXsu/7L7/8ktjYWN5++206duxI5cqVsdlsQPYDOgcNGkTTpk2dfi4yMjKYNWsWAD179szR3rVrVzw9Pdm5cyebN2++4jkpLJvNxrBhwzh27Bjz58/n8ccfp379+tYDZc+dO8fUqVOpVasWK1ascOhr/7xWqVKFChUqON2+l5cXzZs3d1g/Pzp16oSvry+JiYl8/fXXDm1HjhxhzZo1QM5zZ/+34fTp05QpUybX+2LQoEFAzvvCLjg4mNtvvz3f9YqIiMjNRQG6iIiIiIsUK1aM999/3/q7cuXKvPPOO7mun5WVRbdu3WjXrh3z588nLi6OtLQ0ihUrRmhoKKGhoVYQlpycnOt2AgMDnS738PAo0Drp6elO1ylbtmyu+760/dSpU3muZ3f8+HEg+/hPnjyZ6+uPP/6w+ly4cCFf296wYUOuodu8efPytY1LPfroo9hsNi5cuMDnn39uLf/jjz/45ptvAHjsscdy7T9kyBDuueceZs+ezb59+0hJSXG4vv7+/kDe17d06dIFrtvuxIkT1KlTh4EDB/L9998THx+Pu7s7JUuWtGqwh8551ZDXPWBvS01NJTEx8Yo1nT59moyMDADOnDmT5z1gvydzu/5hYWH885//ZPbs2ezZs4dz587x1Vdf0ahRIwD279/PI488kmstlSpV4qmnnmLBggXExsZy+vRpZs2aRfXq1QH45ZdfGDhwYI5+y5YtIz4+nqCgIGJiYnK0lyxZkrZt2wL/+6LlUiVKlLCO/2rw8/OjU6dO/Pvf/2bz5s0kJiaydu1aunXrBsD58+fp3LmzwxdR9s/rlT7ft9xyi8P6+REUFET79u0B+PTTTx3a5syZgzGGChUqWOG8nf3fhrS0tDzvi7NnzwK53xelSpXKd60iIiJy81GALiIiIuJCH374ofX+2LFjHDhwINd1P/74Yz777DPc3d15+eWX2b9/P6mpqZw5c4b4+Hji4+Ot0ev5Gdl7o8jMzASyRwFfacS//VWxYsV8bTuv4O3ixYsFrrVixYq0atUKgOnTp1vL58yZQ1paGu7u7k5HIAN888031gjzIUOGsGvXrhzX9/HHHwfyvr7u7u4Frttu4MCB7N27l9KlSzNr1ixOnjzJhQsXOH36tFVD8eLFr1jD1WS//gCrV6/O1/V//vnn87XtwMBAOnTowE8//USTJk0A+Omnn9i7d2+++pcoUYIePXqwadMmbr31VgDmzZuX49cHH3/8MQCJiYn4+fk5jOi3vxYtWgTAZ599luPeq1mzJgB79+4lJSUlX7UVhKenJ02bNmXOnDk8++yzACQkJLBgwYKrvq/c2D8XK1as4OTJk9Zye6DevXt3a8S/nf3eaN68eb7ui9zO3V/5zIiIiEjRpwBdRERExEXee+89Fi9ejLu7OzVq1CA1NZUuXbrkOkrSPqK5b9++jBkzhipVqlijge3i4+Oved1XcuzYsXy153ekdFhYGJA9ijuvUc+F0aJFi1zDNvt0LAXVp08fADZu3GgFsfYwvU2bNpQpU8ZpP/v1bd++PZMmTaJGjRo5gr1reX0vXLhgjZKfOnUqPXr0yHGNUlNTc52651J53QP2Nm9vb4KCgq64rdKlS1vBaW5TcPxV7u7u1nUD+P333wvUPzAw0Bq9nZGRwf/93/9ZbfHx8Sxbtizf20pISOCLL75wWGb/UiY9PZ0lS5YUqLaCsk8nBY7nwX4v5DV1z6XtBf0lxH333UdoaCgZGRl89tlnAGzbto3du3cDzqe+sf/bcK3uCxERERFQgC4iIiLiEjt37uSZZ54B4OWXX2bZsmWEhISwZ88ennrqKad9jhw5AkCdOnWcticlJbFp06ZrU3ABHDlyhNjYWKdt58+ft+azrl+/fr62Z5/TOzMzk2+//fbqFHkNdejQwRql/cknn7B161Z27NgB4BDSXu5K1zczM9OaC/paiI+Pt6ZAya2GNWvWWNOp5GX16tVXbKtXr16OEcXO+Pn5WfXYA/5rISAgwHrv7e191frPnDmTjIwMbrnlFs6fP5/nyx5eXz6NS8eOHa3nD7z66qu5Tp90uaysrKt2HPbPa2xsbK6BdXp6Oj/++COQ+3MUcuPu7m59CWEfdW7/b4MGDYiIiMjRx/5vw8GDB/nPf/5ToP2JiIiI5JcCdBEREZG/2cWLF+nSpQspKSncfffdjBgxggoVKjBt2jQApk2bxpdffpmjX3BwMIAVxl5u7NixOaaOcJWxY8c6XT5x4kQuXryIh4cHDz30UL62VbVqVVq0aAHAiBEjrIdY5uZqzRNdWN7e3nTv3h3IDgDt0/SEhoZa81w7c6XrO3ny5CuO/v0r7PvPrYa0tDRGjhyZr22999571rzTl9q5c6f1kMiHH34437X1798fgIULF/L999/nue7l13/Hjh1XHLlvjLEe8unm5kZkZKTV9vPPP1/xnktPT7dGTQcHB1O5cmWrzR6Gd+zYkYCAgDxfXbp0AeDHH390+BLK19eXCRMmALB9+3Yee+yxK4bov/32m8N8+/Hx8bneW5eaOXOm9b5u3brW+zZt2hAUFIQxhjFjxjjt++6771rPIrAfS0HYR5lv27aN3377zTqnuU17FBUVRfny5QEYOnToFb/ccfW/DSIiInJjUoAuIiIi8jd76qmn2L17NyEhIcyZM8eapqNTp07WCOV+/fpZI5LtoqOjgex506dNm0ZaWhqQHYw99dRTvPHGG9bDBl0pODiYmTNnMmTIECtMO3/+POPHj+eVV14B4MknnyQ8PDzf23z33XcJCAhg3759NGrUiK+//tphPuNjx47x6aef0qpVK5577rmre0CFYL+O8fHxVoDes2dPh4ewXs5+fRcuXMjrr79uTeVz5swZxowZw/Dhw6/p9S1RooQ1ynjw4MGsXbvWmud8+/btREVFsWvXLnx9fa+4rYsXL3Lffffx66+/AtkjoZcvX06bNm3IyMigcuXKeY7Gv9xjjz1Gs2bNyMrKol27drz22msOoXhSUhKrVq1iwIAB1gM97VauXEnFihXp2rUrX331lUO/lJQUfvzxR9q2bcvSpUsB6NatmzU1CMDs2bMpX748/fr1Y9myZQ4hbHJyMkuWLKFZs2Zs374dgEGDBuHl5QXAunXr2LdvHwCdO3e+4nE2a9bMmuv/8lHojz76KIMHD7ZqqlevHnPnznV40OfFixdZuXIlPXv2pG7dug5zuR89epTIyEhatmzJhx9+yP79+63rm5GRwe7duxk0aJA1f3yVKlX4xz/+YfUPCAiwvkCZPn06gwYN4vTp09Z5mDhxojV/eq9evbj99tuveLyXi4yMtPr16dOHkydP4unpmWsY7+XlxZQpU3Bzc2PVqlXcc889OX4lceDAAd5//33q1q3r9AGtIiIiIldkRERERKRARo0aZQADmNDQ0Cu+1q9fb/X98ssvrb4LFizIse3k5GRz2223GcA0bdrUZGRkWG1nz5612gDj5uZmQkJCjM1mM4AZMGCA6dWrlwFMr169cmy7QoUKBjDTp0/P9djs2169erXT9ri4OGuduLg4p+elefPm5tlnnzWAsdlsplixYsbd3d3q17p1a3Px4sVcz2vz5s2d7vunn34yYWFh1nbc3d1NiRIljK+vr7UMMH379s31+P5O9erVc6hrz549ea6fkpJiGjZsaK1vP3f269uhQwfzzDPPGMBERUXl6G/vO2HChDz38+233xrAeHt752jbsGGDw/n08fExAQEBBjCenp5m3rx5JjQ01ADms88+c+i7Z88eh3vb39/fACYwMNBhmyVKlDDbt2/Pse9L+584cSJH+5kzZ0xUVJTDOQ0ODjbBwcHWOQJMQECAQ79JkyY59AGMr6+vKVasWI7lbdu2NUlJSQ79hw4dmmM9f39/ExQUlGN5nz59THp6utXX/nksV66cycrKyvO62D3xxBMGMGXLlnX4/NtNnjw5x779/f1NcHCww7KAgAAzadIkq9+vv/6ao15PT09TvHhx4+bm5rC8WrVqZt++fTn2nZWVZdWX2+f7vvvuy3EOjTHmgw8+MICJiIjI8/jfeOMNh1rat29/xXM2b948636zH1eJEiWMl5eXw7beeuutQtUkIiIiNzeNQBcRERH5C06ePHnFl32k+JEjR+jbty+QPbqyY8eOObbn5+fHZ599hre3N+vWrWPcuHFWW0hICBs2bGDo0KFUrFgRd3d3PDw8aNGiBZ999hlTpkz5ew46H15//XU+//xz7r77bowxeHl5ERkZyTvvvMPy5cvx8fEp8Dbvuusu9u3bx1tvvUWzZs0ICQnh3LlzuLu7U716dR555BHmzJnDpEmTrsERFdylI6ybNGnCbbfdluf63t7e/PDDD4wYMYIqVapYo9WbNGnChx9+yJdffpnjobFXW+PGjdm0aRMPPfQQJUqUIDMzk+DgYLp27crPP/+cr1HUAHfffTebN2+me/fuBAYGkpmZSbly5Xj88cfZuXMntWvXLnBtxYoV49tvv+Wbb76hY8eOlCtXjpSUFFJSUrjllluIjo7m9ddfZ+fOnQ79hgwZwrZt25gwYQLt2rWjSpUq2Gw2EhMTCQoKombNmvTu3ZvvvvuOJUuW4O/v79B/4sSJrF+/nlGjRhEVFUWFChXIzMwkOTmZkJAQ6tSpwxNPPMHPP//MRx99ZF238+fPs2DBAiB7+pb8zPcO/xupfuzYMb777rsc7YMGDeLgwYNMnDiR6OhobrnlFrKysqzz0LZtW9577z0OHTrEkCFDrH6RkZEcPnyYDz74gG7dulGrVi18fX1JSEjAx8eHSpUqERMTw/Tp09m5cydVq1bNsW+bzcb777/Pd999R0xMDKVLlyYpKYng4GBatWrFzJkz+fbbb3Ocw4Lo3r27w8Nzc5u+5VKdO3fmwIEDjBw5kvr16+Pv78+5c+fw9fUlMjKSAQMGsHjxYmsEv4iIiEhB2Iz57+/2RERERET+gtGjRzNmzBiaN29+TR92KSIiIiIi8nfRCHQREREREREREREREScUoIuIiIiIiIiIiIiIOKEAXURERERERERERETECQXoIiIiIiIiIiIiIiJO6CGiIiIiIiIiIiIiIiJOaAS6iIiIiIiIiIiIiIgTHq4uoKjIysri+PHjBAYGYrPZXF2OiIiIiIiIiIiIiDhhjOH8+fOEh4fj5pb3GHMF6FfJ8ePHKVeunKvLEBEREREREREREZF8OHLkCLfcckue6yhAv0oCAwOB7JMeFBTk4mpERERERERERERExJnExETKlStnZbp5UYB+ldinbQkKClKALiIiIiIiIiIiInKdy89U3HqIqIiIiIiIiIiIiIiIEwrQRUREREREREREREScUIAuIiIiIiIiIiIiIuKE5kAXERERERERERGRG4IxhoyMDDIzM11dilzH3N3d8fDwyNcc51eiAF1ERERERERERESue2lpaZw4cYILF/Umzh8AACAASURBVC64uhS5Afj5+VGmTBm8vLz+0nYUoIuIiIiIiIiIiMh1LSsri7i4ONzd3QkPD8fLy+uqjC6WoscYQ1paGqdPnyYuLo6qVavi5lb4mcwVoIuIiIiIiIiIiMh1LS0tjaysLMqVK4efn5+ry5HrnK+vL56enhw6dIi0tDR8fHwKvS09RFRERERERERERERuCH9lJLHcXK7WvaI7TkRERERERERERETECQXoIiIiIiIiIiIiIiJOKEAXERERERERERER+Zu1aNGCoUOH3vD7KOoUoIuIiIiIiIiIiIiIOKEAXURERERERERERETECQXoIiIiIiIiIiIicsMxxnAhLcMlL2NMgWpNTk6mZ8+eBAQEUKZMGSZOnOjQnpqayvDhwylbtiz+/v40bNiQNWvWWO1//vknXbt2pWzZsvj5+VGrVi0+++yzAu1DCsfD1QWIiIiIiIiIiIiIFNTF9ExqvPydS/a9+5Uo/LzyH60+88wz/Pjjj3z99deULl2aF198kW3bthEZGQnAwIED2b17N59//jnh4eEsXLiQ6Ohodu7cSdWqVUlJSaFevXo899xzBAUFsXTpUnr06MGtt95KgwYN8rUPKRwF6CIiIiIiIiIiIiLXSFJSEh9//DGzZ8+mVatWAMycOZNbbrkFgMOHDzN9+nQOHz5MeHg4AMOHD2f58uVMnz6d8ePHU7ZsWYYPH25tc9CgQXz33XfMnz+fBg0aXHEfUngK0EVEREREREREROSG4+vpzu5Xoly27/yKjY0lLS2Nhg0bWsuKFy9OREQEADt37iQzM5Nq1ao59EtNTaVEiRIAZGZmMn78eObPn8+xY8dIS0sjNTUVPz+/fO1DCk8BuoiIiIiIiIiIiNxwbDZbgaZRuV4lJSXh7u7O1q1bcXd3DOYDAgIAePPNN3nnnXeYNGkStWrVwt/fn6FDh5KWluaKkm8qeoioiIiIiIiIiIiIyDVy66234unpyaZNm6xlZ8+eZd++fQDUqVOHzMxMTp06RZUqVRxeYWFhAKxfv5727dvzyCOPULt2bSpXrmz1z88+pPBu/K9oRERERERERERERK5TAQEB9OnTh2eeeYYSJUpQunRpRowYgZtb9tjmatWq0b17d3r27MnEiROpU6cOp0+fZtWqVdxxxx20bduWqlWr8sUXX7BhwwaKFSvG22+/zcmTJ6lRo0a+9iGFpwBdRERERERERERE5Bp68803SUpKol27dgQGBjJs2DASEhKs9unTpzNu3DiGDRvGsWPHKFmyJI0aNeKBBx4A4KWXXuL//u//iIqKws/Pj/79+xMTE+OwjSvtQwrHZowxri6iKEhMTCQ4OJiEhASCgoJcXY6IiIiIiIiIiEiRkZKSQlxcHJUqVcLHx8fV5cgNIK97piBZrsbwi4iIiIiIiIiIiIg4oQBdRERERERERERERMQJBegiIiIiIiIiIiIiIk4oQBcRERERERERERERcUIBuoiIiIiIiIiIiIiIEwrQRURERERERERERESccGmAvnbtWtq1a0d4eDg2m41FixY5tBtjePnllylTpgy+vr60bt2a/fv3O6xz5swZunfvTlBQECEhIfTp04ekpCSHdX777TeaNm2Kj48P5cqV44033shRy4IFC7jtttvw8fGhVq1aLFu27OofsIiIiIiIiIiIiIjcMFwaoCcnJ1O7dm3ef/99p+1vvPEGkydPZsqUKWzatAl/f3+ioqJISUmx1unevTu7du1i5cqVLFmyhLVr19K/f3+rPTExkfvuu48KFSqwdetW3nzzTUaPHs20adOsdTZs2EDXrl3p06cPv/76KzExMcTExPCf//zn2h28iIiIiIiIiIiIiFzXbMYY4+oiAGw2GwsXLiQmJgbIHn0eHh7OsGHDGD58OAAJCQmEhoYyY8YMunTpwp49e6hRowabN2+mfv36ACxfvpw2bdpw9OhRwsPD+eCDDxgxYgTx8fF4eXkB8Pzzz7No0SL27t0LwMMPP0xycjJLliyx6mnUqBGRkZFMmTIlX/UnJiYSHBxMQkICQUFBV+283BBO/w6n9oBvCPiEgE9w9nvvIHBzd3V1IiIiIiIiIiJyg0tJSSEuLo5KlSrh4+Pj6nLkBpDXPVOQLNfjWhb5V8TFxREfH0/r1q2tZcHBwTRs2JCNGzfSpUsXNm7cSEhIiBWeA7Ru3Ro3Nzc2bdpEhw4d2LhxI82aNbPCc4CoqChef/11zp49S7Fixdi4cSNPP/20w/6joqJyTClzqdTUVFJTU62/ExMTr8Zh35j2LoFVrzhpsGWH6L7B2aG6T8h/Q/b/vrf+viR0v3Q9D++//VBERERERERERESuphYtWhAZGcmkSZOu2T4qVqzI0KFDGTp0aK7rjB49mkWLFrF9+/ZrVkdRdN0G6PHx8QCEhoY6LA8NDbXa4uPjKV26tEO7h4cHxYsXd1inUqVKObZhbytWrBjx8fF57seZCRMmMGbMmEIcWREUEAblG8PFc5CSACnnIP0CYCA1IftVGB4+TkL3YMfQ3a84RNwPvsWu6iGJiIiIiIiIiIjcqC6f7UMK77oN0K93L7zwgsOo9cTERMqVK+fCilyoTvfs16Uy0v4Xpqck/Ddc/+/Lep/gGLpb7xMAAxkpkBSf/cpLSAXovyY7TBcRERERERERERG5Sq7bAD0sLAyAkydPUqZMGWv5yZMniYyMtNY5deqUQ7+MjAzOnDlj9Q8LC+PkyZMO69j/vtI69nZnvL298fbWFCO58vCCgFLZr4LKyoK08/kI2s/BwZ/g3CFYOAC6zgM3lz4XV0RERERERERE/i7G/HcWBBfw9AObLd+rZ2Vl8eyzz/LRRx/h5eXFP//5T0aPHg3AuXPnGD58OF9//TWpqanUr1+ff/3rX9SuXRuA2NhYnn76aX7++WeSk5OpXr06EyZMcJj6+lIVK1YEoEOHDgBUqFCBgwcPWu2ffvopI0eO5OzZs9x///18+OGHBAYGMmvWLJ566imOHz/ukHvGxMQQGBjIp59+WoATVHRctwF6pUqVCAsLY9WqVVZgnpiYyKZNm3j88ccBaNy4MefOnWPr1q3Uq1cPgB9++IGsrCwaNmxorTNixAjS09Px9PQEYOXKlURERFCsWDFrnVWrVjnMEbRy5UoaN278tx2vXMLN7b9TtgQDFfJe98Rv8PG9sH8FrH0TWjz3t5QoIiIiIiIiIiIuln4Bxoe7Zt8vHgcv/3yvPnPmTJ5++mk2bdrExo0b6d27N3fddRf33nsvnTp1wtfXl2+//Zbg4GCmTp1Kq1at2LdvH8WLFycpKYk2bdrw6quv4u3tzaxZs2jXrh2///475cuXz7GvzZs3U7p0aaZPn050dDTu7u5WW2xsLIsWLWLJkiWcPXuWzp0789prr/Hqq6/SqVMnBg8ezOLFi+nUqRMAp06dYunSpaxYseKvn7MblEuH6yYlJbF9+3Zr4vq4uDi2b9/O4cOHsdlsDB06lHHjxrF48WJ27txJz549CQ8Pt+buqV69OtHR0fTr149ffvmF9evXM3DgQLp06UJ4ePaHp1u3bnh5edGnTx927drFvHnzeOeddxymXxkyZAjLly9n4sSJ7N27l9GjR7NlyxYGDhz4958UKZgyd8AD/8p+v2YC7F/p2npEREREREREREQuc8cddzBq1CiqVq1Kz549qV+/PqtWreKnn37il19+YcGCBdSvX5+qVavy1ltvERISwhdffAFA7dq1GTBgALfffjtVq1Zl7Nix3HrrrSxevNjpvkqVyp4RIiQkhLCwMOtvyB4JP2PGDG6//XaaNm1Kjx49WLVqFQC+vr5069aN6dOnW+vPnj2b8uXL06JFi2t0Zq5/Lh2BvmXLFu655x7rb3uo3atXL2bMmMGzzz5LcnIy/fv359y5c9x9990sX74cHx8fq8+cOXMYOHAgrVq1ws3NjYceeojJkydb7cHBwaxYsYInn3ySevXqUbJkSV5++WX69+9vrdOkSRPmzp3LSy+9xIsvvkjVqlVZtGgRt99++99wFuQvi+wGRzfDlk/gy74w4EcoVtHVVYmIiIiIiIiIyLXk6Zc9EtxV+y6AO+64w+HvMmXKcOrUKXbs2EFSUhIlSpRwaL948SKxsbFA9iDk0aNHs3TpUk6cOEFGRgYXL17k8OHDBS67YsWKBAYG5qjDrl+/ftx5550cO3aMsmXLMmPGDHr37o2tANPVFDUuDdBbtGiBMSbXdpvNxiuvvMIrr7yS6zrFixdn7ty5ee7njjvuYN26dXmu06lTJ+unCXIDin4NTuyAY1thfk947Dvw9HV1VSIiIiIiIiIicq3YbAWaRsWV7FNL29lsNrKyskhKSqJMmTKsWbMmR5+QkBAAhg8fzsqVK3nrrbeoUqUKvr6+dOzYkbS0tKtWh12dOnWoXbs2s2bN4r777mPXrl0sXbq0wPspSq7bOdBFCsTDGzrPgqnNsoP0pcOh/XsFepiDiIiIiIiIiIjI36lu3brEx8fj4eFhPfzzcuvXr6d3797WQ0GTkpIcHgrqjKenJ5mZmYWqqW/fvkyaNIljx47RunVrypUrV6jtFBUunQNd5KoKvgU6fgI2N9g+G7bNdHVFIiIiIiIiIiIiuWrdujWNGzcmJiaGFStWcPDgQTZs2MCIESPYsmULAFWrVuWrr75i+/bt7Nixg27dujmMGnemYsWKrFq1ivj4eM6ePVugmrp168bRo0f58MMPeeyxxwp9bEWFAnQpWiq3gJYjs98veyZ7ShcREREREREREZHrkM1mY9myZTRr1oxHH32UatWq0aVLFw4dOkRoaCgAb7/9NsWKFaNJkya0a9eOqKgo6tatm+d2J06cyMqVKylXrhx16tQpUE3BwcE89NBDBAQEEBMTU+hjKypsJq9JyCXfEhMTCQ4OJiEhgaCgIFeXc3MzBuY9AnuXQHA56P8j+Je4cj8REREREREREbkupaSkEBcXR6VKlfDx8XF1OUVeq1atqFmzJpMnT3Z1KYWW1z1TkCxXI9Cl6LHZIObfUPxWSDgCX/aBrMLN+SQiIiIiIiIiInKzOHv2LAsXLmTNmjU8+eSTri7nuqAAXYomn2B4+FPw9IP/Ww2rx7u6IhERERERERERketanTp16N27N6+//joRERGuLue64OHqAkSumdCa8I93s0egr3sLbqkPEfe7uioREREREREREZHr0sGDB11dwnVHI9ClaKvVERoMyH7/1QD4M9a19YiIiIiIiIiIiMgNQwG6FH33jYNyDSE1Aeb3hLQLrq5IREREREREREREbgAK0KXo8/CCTjPBvzSc/A8sGQrGuLoqERERERERERERuc4pQJebQ1AZ6DQdbO7w2zzY/JGrKxIREREREREREZHrnAJ0uXlUvBvuHZP9fvkLcOQX19YjIiIiIiIiIiIi1zUF6HJzaTwQarSHrHSY3wuSTru6IhEREREREREREblOKUCXm4vNBu3fh5LV4Pxx+OJRyMxwdVUiIiIiIiIiIlJEtWjRgqFDh+Z7/b1799KoUSN8fHyIjIy8hpUVjs1mY9GiRa4u42+jAF1uPt6B8PBs8AqAg+vgh1dcXZGIiIiIiIiIiBRRX331FWPHjs33+qNGjcLf35/ff/+dVatWXZUabrbQ+2pSgC43p1IR0P697Pfr34Hdi11bj4iIiIiIiIiIFEnFixcnMDAw3+vHxsZy9913U6FCBUqUKHENK5P8UIAuN6+aHbLnRAdY9AT8sd+19YiIiIiIiIiISL4ZY7iQfsElL2NMvuu8dAqXihUrMn78eB577DECAwMpX74806ZNs9a12Wxs3bqVV155BZvNxujRowE4cuQInTt3JiQkhOLFi9O+fXsOHjzosJ9PPvmEmjVr4u3tTZkyZRg4cKC1T4AOHTpgs9msvwG+/vpr6tati4+PD5UrV2bMmDFkZPxvuuP9+/fTrFkzfHx8qFGjBitXrizAFSoaPFxdgIhLtR4Nx3+FQ+th3iPQdxV4B7i6KhERERERERERuYKLGRdpOLehS/a9qdsm/Dz9CtV34sSJjB07lhdffJEvvviCxx9/nObNmxMREcGJEydo3bo10dHRDB8+nICAANLT04mKiqJx48asW7cODw8Pxo0bR3R0NL/99hteXl588MEHPP3007z22mvcf//9JCQksH79egA2b95M6dKlmT59OtHR0bi7uwOwbt06evbsyeTJk2natCmxsbH0798fyJ5GJisriwcffJDQ0FA2bdpEQkJCgeZyLyo0Al1ubu6e0HE6BITB6b2weBAU4BtEERERERERERGRgmjTpg1PPPEEVapU4bnnnqNkyZKsXr0agLCwMDw8PAgICCAsLIyAgADmzZtHVlYWH330EbVq1aJ69epMnz6dw4cPs2bNGgDGjRvHsGHDGDJkCNWqVePOO++0wu5SpUoBEBISQlhYmPX3mDFjeP755+nVqxeVK1fm3nvvZezYsUydOhWA77//nr179zJr1ixq165Ns2bNGD9+/N98tlxPI9BFAkOh80yY0RZ2fQW33AmNn3B1VSIiIiIiIiIikgdfD182ddvksn0X1h133GG9t9lshIWFcerUqVzX37FjBwcOHMgxj3pKSgqxsbGcOnWK48eP06pVqwLVsWPHDtavX8+rr75qLcvMzCQlJYULFy6wZ88eypUrR3h4uNXeuHHjAu2jKFCALgJQvhHc9yosfw5WjoTwSKjQxNVViYiIiIiIiIhILmw2W6GnUXElT09Ph79tNhtZWVm5rp+UlES9evWYM2dOjrZSpUrh5la4SUaSkpIYM2YMDz74YI42Hx+fQm2zKFKALmLXcAAc3Qz/+QIW9IYBayEwzNVViYiIiIiIiIjITaxu3brMmzeP0qVLExQU5HSdihUrsmrVKu655x6n7Z6enmRmZubY7u+//06VKlWc9qlevTpHjhzhxIkTlClTBoCff/75LxzJjUlzoIvY2Wzwj8lQqjokncwO0TPTXV2ViIiIiIiIiIjcxLp3707JkiVp374969atIy4ujjVr1jB48GCOHj0KwOjRo5k4cSKTJ09m//79bNu2jXfffdfahj1gj4+P5+zZswC8/PLLzJo1izFjxrBr1y727NnD559/zksvvQRA69atqVatGr169WLHjh2sW7eOESNG/P0nwMUUoItcyssfHp4NXoFweCOsHOXqikRERERERERE5Cbm5+fH2rVrKV++PA8++CDVq1enT58+pKSkWCPSe/XqxaRJk/j3v/9NzZo1eeCBB9i/f7+1jYkTJ7Jy5UrKlStHnTp1AIiKimLJkiWsWLGCO++8k0aNGvGvf/2LChUqAODm5sbChQu5ePEiDRo0oG/fvg7zpd8sbMYY4+oiioLExESCg4NJSEjI9acUcgPZ8w3MeyT7fcdP4PaHXFuPiIiIiIiIiMhNLCUlhbi4OCpVqqT5uSVf8rpnCpLlagS6iDPV28FdQ7Pffz0ITu11bT0iIiIiIiIiIiLyt1OALpKbliOhUjNIT84ejZ6S6OqKRERERERERERE5G+kAF0kN+4e8NAnEFQW/twPXz8BmvFIRERERERERETkpqEAXSQvAaWg8yxw88yeF33DZFdXJCIiIiIiIiIiIn8TBegiV3JLfbj/tez334+GuLUuLUdERERERERERET+HgrQRfKjfh+o3RVMFix4FBKOuboiERERERERERERucYUoIvkh80Gbd+G0Nvhwh+woBdkpLm6KhEREREREREREbmGFKCL5JeXHzz8KXgHw9HNsHKkqysSERERERERERGRa0gBukhBFK8MHaZkv9/8EWRmuLYeERERERERERERuWYUoIsUVLUosLlBVkb2dC4iIiIiIiIiIiKSqxkzZhASEuLqMgpFAbpIQbm5g3+p7PdJJ11bi4iIiIiIiIiIiFwzCtBFCsO/dPZ/k065tg4REREREREREbmhpKWlubqEQrlR6/6rFKCLFEaAAnQREREREREREVcyxpB14YJLXsaYfNfZokULBg4cyNChQylZsiRRUVGcO3eOvn37UqpUKYKCgmjZsiU7duxw6PfNN99w55134uPjQ8mSJenQoYPVdvbsWXr27EmxYsXw8/Pj/vvvZ//+/QAkJibi6+vLt99+67C9hQsXEhgYyIULFwA4cuQInTt3JiQkhOLFi9O+fXsOHjxord+7d29iYmJ49dVXCQ8PJyIiAoDU1FSGDx9O2bJl8ff3p2HDhqxZs8ZhXzNmzKB8+fL4+fnRoUMH/vzzz3yfr+uNh6sLELkhBYRm/1dTuIiIiIiIiIiIuIS5eJHf69Zzyb4jtm3F5ueX7/VnzpzJ448/zvr16wHo1KmTFXIHBwczdepUWrVqxb59+yhevDhLly6lQ4cOjBgxglmzZpGWlsayZcus7fXu3Zv9+/ezePFigoKCeO6552jTpg27d+8mKCiIBx54gLlz53L//fdbfebMmUNMTAx+fn6kp6cTFRVF48aNWbduHR4eHowbN47o6Gh+++03vLy8AFi1ahVBQUGsXLnS2s7AgQPZvXs3n3/+OeHh4SxcuJDo6Gh27txJ1apV2bRpE3369GHChAnExMSwfPlyRo0a9VdPucvYTEG+LpFcJSYmEhwcTEJCAkFBQa4uR661laNg/SRo+Djc/5qrqxERERERERERKdJSUlKIi4ujUqVK+Pj4AJB14YJLA3S3fAboLVq0IDExkW3btgHw008/0bZtW06dOoW3t7e1XpUqVXj22Wfp378/TZo0oXLlysyePTvH9vbv30+1atVYv349TZo0AeDPP/+kXLlyzJw5k06dOrFo0SJ69OjByZMn8fPzIzExkdDQUCvsnj17NuPGjWPPnj3YbDYge4qWkJAQFi1axH333Ufv3r1Zvnw5hw8ftgL1w4cPU7lyZQ4fPkx4eLhVU+vWrWnQoAHjx4+nW7duJCQksHTpUqu9S5cuLF++nHPnzhXwTBees3vGriBZrkagixSGfQqXZE3hIiIiIiIiIiLiCjZfXyK2bXXZvguiXr3/Bf07duwgKSmJEiVKOKxz8eJFYmNjAdi+fTv9+vVzuq09e/bg4eFBw4YNrWUlSpQgIiKCPXv2ANCmTRs8PT1ZvHgxXbp04csvvyQoKIjWrVtbNRw4cIDAwECHbaekpFg1ANSqVcsKzwF27txJZmYm1apVc+iXmppqHc+ePXscppsBaNy4McuXL8/jDF2/FKCLFIY1hYsCdBERERERERERV7DZbAWaRsWV/P39rfdJSUmUKVMmx7zhACEhIQD4FjCgv5yXlxcdO3Zk7ty5dOnShblz5/Lwww/j4eFh1VCvXj3mzJmTo2+pUqWc1m3v5+7uztatW3F3d3doCwgI+Es1X68UoIsUhvUQUc2BLiIiIiIiIiIi+Ve3bl3i4+Px8PCgYsWKTte54447WLVqFY8++miOturVq5ORkcGmTZscpnD5/fffqVGjhrVe9+7duffee9m1axc//PAD48aNc6hh3rx5lC5dukDTUdepU4fMzExOnTpF06ZNna5TvXp1Nm3a5LDs559/zvc+rjduri5A5Ibkbw/QNQJdRERERERERETyr3Xr1jRu3JiYmBhWrFjBwYMH2bBhAyNGjGDLli0AjBo1is8++4xRo0axZ88edu7cyeuvvw5A1apVad++Pf369eOnn35ix44dPPLII5QtW5b27dtb+2nWrBlhYWF0796dSpUqOUz50r17d0qWLEn79u1Zt24dcXFxrFmzhsGDB3P06NFca69WrRrdu3enZ8+efPXVV8TFxfHLL78wYcIEa87zwYMHs3z5ct566y3279/Pe++9d8NO3wIK0EUKxz4CPeUcZKS6thYREREREREREblh2Gw2li1bRrNmzXj00UepVq0aXbp04dChQ4SGZk8b3KJFCxYsWMDixYuJjIykZcuW/PLLL9Y2pk+fTr169XjggQdo3LgxxhiWLVuGp6enw366du3Kjh076N69u0MNfn5+rF27lvLly/Pggw9SvXp1+vTpQ0pKyhVHpE+fPp2ePXsybNgwIiIiiImJYfPmzZQvXx6ARo0a8eGHH/LOO+9Qu3ZtVqxYwUsvvXS1Tt/fzmaMMa4uoigoyJNbpQgwBsaWgqx0GPofCCnn6opERERERERERIqslJQU4uLiqFSpEj4+Pq4uR24Aed0zBclyNQJdpDBstkvmQdc0LiIiIiIiIiIiIkWRAnSRwrIH6MkK0EVERERERERERIoiBegihRWQPScVSSddW4eIiIiIiIiIiIhcEwrQRQpLU7iIiIiIiIiIiIgUaQrQRQrLXwG6iIiIiIiIiIhIUaYAXaSwNIWLiIiIiIiIiIhIkaYAXaSwNIWLiIiIiIiIiIhIkaYAXaSw7AF6sgJ0ERERERERERGRokgBukhhWVO4KEAXEREREREREREpihSgixSWfQR6WhKkJrm2FhERERERERERkSJkxowZhISEuLoMBegiheYVAB6+2e81jYuIiIiIiIiIiNwgbDYbixYtcnUZlooVKzJp0iSHZQ8//DD79u1zUUX/owBdpLBstkseJHratbWIyP+zd+fRUdZ3+8evWZPMhCyQFRIIqwRBRYuguICyqJXHUj0WtVotlv4eq4C4oeIuj4qAsrRWW/elVVvtsYJaKoqKEKyAIgJFCAQkCWHLMpNltt8fkxmIIIKZmXtmeL/OyZmE3DP3NZa6XHzy+QIAAAAAgCSSlpamvLw8o2NQoAPtEt6DXm1sDgAAAAAAgGNMIBCQp9lnyEcgEDjinH/72980YMAApaWlqVOnThoxYoSWLFkim82mqqqqNtdOnjxZZ555pqT9K0zefvttHXfccXI4HLrkkkvkdrv1/PPPq6SkRNnZ2Zo4caJ8Pl/4NUpKSvTAAw/osssuk9PpVJcuXfT73/++zfclaezYsTKZTOGvJemJJ55Qz549Zbfbddxx7X0fZAAAIABJREFUx+nFF19sk89kMunJJ5/UhRdeKIfDodLSUi1btkzffPONhg0bJqfTqdNPP12bNm0KP2fTpk266KKLlJ+fr/T0dA0aNEj//ve/w98fNmyYtm7dqhtvvFEmk0kmk6nN+z/QP//5Tw0aNEipqanKycnR2LFjj/h/hx/LGvU7AMksPIFOgQ4AAAAAABBL3ha/npq0xJB7T5hztmwplh+8rrKyUpdddplmzJihsWPHqr6+Xh9//LFOOeUU9ejRQy+++KJuueUWSZLH49HLL7+sGTNmhJ/vdrs1d+5c/fWvf1V9fb1+/vOfa+zYscrKytLChQu1efNmXXzxxRo6dKh+8YtfhJ/36KOP6o477tB9992n9957T5MmTVKfPn00cuRIffbZZ8rLy9Ozzz6r8847TxZL8H28+eabmjRpkh5//HGNGDFCb7/9tq655hoVFRVp+PDh4dd+4IEHNHv2bM2ePVu33XabLr/8cvXo0UO33367unbtql//+te6/vrr9c4770iSGhoadMEFF2j69OlKSUnRCy+8oDFjxmjDhg3q2rWr3njjDZ144omaMGGCfvOb33zvX8sFCxZo7NixuvPOO/XCCy+opaVFCxcuPLr/4X4ECnSgPUIFuosVLgAAAAAAAGirsrJSXq9XP//5z9WtWzdJ0oABAyRJ48eP17PPPhsu0P/5z3+qqalJl156afj5Ho8nPBUuSZdccolefPFFVVdXKz09Xf369dPw4cP1wQcftCnQhw4dqqlTp0qS+vTpo6VLl+qxxx7TyJEjlZubK0nKyspSQUFB+DkzZ87U1Vdfreuuu06SNGXKFC1fvlwzZ85sU6Bfc8014Yy33XabTjvtNN11110aPXq0JGnSpEm65pprwtefeOKJOvHEE8NfP/DAA3rzzTf11ltv6frrr1fHjh1lsVjUoUOHNnm+a/r06Ro3bpzuu+++Nq8dbRToQHuwwgUAAAAAAMAQVrtZE+acbdi9j8SJJ56oc889VwMGDNDo0aM1atQoXXLJJcrOztbVV1+tadOmafny5RoyZIiee+45XXrppXI6neHnOxyOcHkuSfn5+SopKVF6enqbX9u5c2eb+5522mkHff3dQzq/a926dZowYUKbXxs6dKjmzJnT5tdOOOGENveW9v+hQOjXmpqaVFdXp4yMDDU0NOjee+/VggULwn+g0NjYqIqKisPm+a7Vq1cfdkI9WijQgfYIr3DZefjrAAAAAAAAEFEmk+mI1qgYyWKxaNGiRfr000/1r3/9S/PmzdOdd96psrIyde/eXWPGjNGzzz6r7t2765133tGHH37Y5vk2m63N1yaT6ZC/5vf7o/1WDpkptK/8UL8WynTzzTdr0aJFmjlzpnr16qW0tDRdcsklamlpOar7pqWltTf6j8IhokB7OCnQAQAAAAAA8P1MJpOGDh2q++67T6tWrZLdbtebb74pSbr22mv16quv6qmnnlLPnj01dOjQiNxz+fLlB31dWloa/tpms7U5eFSSSktLtXTp0ja/tnTpUvXr169dWZYuXaqrr75aY8eO1YABA1RQUKAtW7a0ucZutx+U57tOOOEEvf/+++3K8mMwgQ60R3iFCwU6AAAAAAAA2iorK9P777+vUaNGKS8vT2VlZaqpqQmX2aNHj1ZGRoYefPBB3X///RG779KlSzVjxgz97Gc/06JFi/T6669rwYIF4e+XlJTo/fff19ChQ5WSkqLs7GzdcsstuvTSSzVw4ECNGDFC//znP/XGG2/o3//+d7uy9O7dW2+88YbGjBkjk8mku+6666CJ+ZKSEn300UcaN26cUlJSlJOTc9Dr3HPPPTr33HPVs2dPjRs3Tl6vVwsXLtRtt93Wrnw/hAl0oD3CK1yqpUDA2CwAAAAAAACIKxkZGfroo490wQUXqE+fPpo2bZpmzZql888/X5JkNpt19dVXy+fz6aqrrorYfW+66Sb95z//0cCBA/Xggw9q9uzZ4UM+JWnWrFlatGiRiouLNXDgQEnSz372M82ZM0czZ87U8ccfryeffFLPPvushg0b1q4ss2fPVnZ2tk4//XSNGTNGo0eP1sknn9zmmvvvv19btmxRz549w4ecftewYcP0+uuv66233tJJJ52kc845RytWrGhXtiNhCgRo/SKhrq5OmZmZqq2tVUZGhtFxECueRml66+nAUyuk1Exj8wAAAAAAACShpqYmlZeXq3v37kpNTTU6TkSNHz9eNTU1euuttyLyeiUlJZo8ebImT54ckddLVIf7PXM0XS4rXID2sKVJKRlSc11wjQsFOgAAAAAAAI5AbW2t1qxZo1deeSVi5TkijxUuQHsduMYFAAAAAAAAOAIXXXSRRo0apf/3//6fRo4caXQcfA8m0IH2Ss+Xdn9DgQ4AAAAAAIAj9uGHH0bldbds2RKV1z1WMYEOtJez9WCDhhpjc0TRrsZdWrB5gVwel9FRAAAAAAAAgJhhAh1or/T84GMST6A/suIRvbvlXWWmZOpX/X6ly/pepnR7utGxAAAAAADAMSYQCBgdAQkiUr9XmEAH2iu8A32nsTmiqLy2XJJU21yruavmavTfR+upL59SQ0uDwckAAAAAAMCxwGazSZLcbrfBSZAoQr9XQr93fiwm0IH2ChXoruQt0KvcVZKk6066Tgs3L9SWui2at2qenl/7vK7qd5WuKL2CiXQAAAAAABA1FotFWVlZ2rkz2L84HA6ZTCaDUyEeBQIBud1u7dy5U1lZWbJYLO16PQp0oL2SfIWL2+NWbXOtJOmXpb/UhAET9N6W9/THL/+o8tpyzV89Xy98/YKu6neVLi+9XB3sHQxODAAAAAAAklFBQYEkhUt04HCysrLCv2fagwIdaK8kX+ESmj532pzhcvyCHhdodMlovbflPT355ZPaXLtZ81fP1/Nf759Ip0gHAAAAAACRZDKZVFhYqLy8PHk8HqPjII7ZbLZ2T56HUKAD7eUMrXCpkfx+yZxcRwtUuYIFeoGj7Z/YWcyWcJH+r63/0h+/+KM2127W71f/Xi98/YKu7Helrii9Qhn2DCNiAwAAAACAJGWxWCJWjgI/JLmaPsAIztzgo98rNe41NksUVLuCq2kKnIf+kReL2aLzu5+vN/7nDT161qPqmdlT9S31+sPqP+i8v52nJ1Y/obqWulhGBgAAAAAAACKCAh1oL6tdSusY/DwJ96CHJ9C/p0APsZgtOq/7eXrjojf06NmtRbqnXn/4Ilik/2H1HyjSAQAAAAAAkFAo0IFICO9BT74CvdJVKemHC/QQs8ms80qCRfrMs2eqV1Yv1Xvq9cQXT1CkAwAAAAAAIKFQoAORkH7AHvQkc6QT6N9lNpk1umS0/v4/fz+oSB/9t9H6/erfq7a5NhqRAQAAAAAAgIigQAciIT0/+JiEE+hV7h9XoIccWKTPOnuWemf3VoOnQX/84o867+/naf6q+RTpAAAAAAAAiEsU6EAkJGmBHggE9k+gO35cgR5iNpk1qmSU/jbmb5o9bHa4SH/yyyc1+u+jNW/VPIp0AAAAAAAAxBUKdCASnLnBx4bkWuFS11KnRm+jpB8/gf5dZpNZI7uN1N/G/E2PDXtMfbL7yOVx6akvn9Lov4/W3JVzKdIBAAAAAAAQFyjQgUhI0gn00PR5dkq2Uq2pEX1ts8msEd1G6PUxr+vxYY+Hi/Q/rflTuEjf17QvovcEAAAAAAAAjgYFOhAJoUNEG3YamyPCfuwBokfDbDLr3G7nhov047KPO6hId3vcUbs/AAAAAAAA8H0o0IFICBXoruQs0POd+VG/V6hIf23Ma3p8+OPq27Gv3F63/rTmT5ry4RT5A/6oZwAAAAAAAAAORIEOREJohYtrl+TzGpslgqrckTlA9GiYTWad2/VcvXbha3ps2GNKsaRo6Y6l+vOaP8csAwAAAAAAACBRoAOR4egkmcySApJ7l9FpIiYWK1y+j8lk0ohuI3Tn4DslSb9f/XutqFwR8xwAAAAAAAA4dlGgA5FgtkiOnODnSXSQaKhAL3QWGpZhbO+xuqjnRfIH/Lr1o1u1qzF5/oACAAAAAAAA8Y0CHYiU0BqXhhpjc0RQpatSkjET6Ae6c8id6pXVS7ubduvWj26Vz+8zNA8AAAAAAACODRToQKSEDhJNkgl0f8CvanfwvRhdoKdZ0zRr2CylWdP0WdVn+sMXfzA0DwAAAAAAAI4NFOhApIQn0JOjQN/TtEdev1cmmZTryDU6jnpk9tA9p90jSXrqy6f0ybefGJwIAAAAAAAAyY4CHYiU9NaS2ZUcK1xC+89z03JlM9sMThP00x4/1aV9LpUk3f7x7eGMAAAAAAAAQDRQoAORkmQT6KFyuiDd2PUt33XrqbeqtGOp9jXv0y1LbpHH7zE6EgAAAAAAAJIUBToQKeECfaexOSIkfICoI74K9BRLimadPUvptnStrlmtuSvnGh0JAAAAAAAASYoCHYgUZ+sKlyQp0MMT6AYfIHooxRnFemDoA5Kk59Y+p8UViw1OBAAAAAAAgGREgQ5ESrKucInDAl2SRnQboV+W/lKSNG3pNG2v325wIgAAAAAAACQbCnQgUtLzgo9N+yRvs7FZIqDKHd8FuiRNOWWKTsg5QfUt9bp5yc1q8bUYHQkAAAAAAABJhAIdiJS0bMlsC37uqjE2SwSEJtALnYUGJ/l+NotNM8+eqcyUTK3dvVYz/zPT6EgAAAAAAABIIhToQKSYTPun0BN8jYvH71GNO/iHAPE8gS5JhemF+r8z/k+S9Jf1f9G7W941OBEAAAAAAACSBQU6EEnhAj2xDxKtcdcooICsZqs6pnY0Os4POqvoLI3vP16SdO+n92pL7RZjAwEAAAAAACApUKADkZQkB4mG1rfkO/JlNiXG3yauH3i9Tsk/RS6PSzctuUlN3iajIwEAAAAAACDBJUYzBiQKZ27wsSGxd6CHCvR4X99yIKvZqhlnzVDH1I76797/6uEVDxsdCQAAAAAAAAmOAh2IpGSZQHcnXoEuSXmOPD1y1iMyyaS/b/y73tr0ltGRAAAAAAAAkMAo0IFISpYCvXUCvdBZaHCSozekcIj+96T/lSQ9sOwBbdy70eBEAAAAAAAASFQU6EAkpbeucHEl9gqXSlelJKnAkVgT6CETBkzQaYWnqcnXpJuW3CS3x210JAAAAAAAACQgCnQgkpJkAr3aFcyfaCtcQixmix468yHlpeWpvLZc9y27T4FAwOhYAAAAAAAASDAU6EAkhQv0ncbmaKdEPET0uzqlddKMs2fIYrJoYflC/W3j34yOBAAAAAAAgARDgQ5EkrN1hUtLg9TiMjbLj9TkbdLe5r2SErtAl6RT8k/RxJMnSpIeLntY63avMzgRAAAAAAAAEgkFOhBJKR0ka1rw8wSdQq92B9e3pFnTlGHPMDhN+119/NU6u+hstfhbdNOSm1TfUm90JAAAAAAAACQICnQgkkwmKT0v+HmCFujhA0SdBTKZTAanaT+zyazpZ0xXobNQ2+q36Z5P72EfOgAAAAAAAI4IBToQaQl+kGh4/7kjsde3HCgzJVMzz54pq9mqRVsX6ZX1rxgdCQAAAAAAAAmAAh2ItNAEuisxJ9CT4QDRQzkh9wTd/JObJUkz/zNTX9Z8aXAiAAAAAAAAxDsKdCDSEnyFS7IW6JJ0ed/LNbLbSHn9Xt285GbVNtcaHQkAAAAAAABxjAIdiLREX+HiDhbohc5Cg5NEnslk0n2n36fiDsWqdFXqzk/ulD/gNzoWAAAAAAAA4hQFOhBpztzgY0ONsTl+pKqGYIGe78w3OEl0dLB30Oxhs2U327Vk+xI9t/Y5oyMBAAAAAAAgTlGgA5GWJBPoybjCJaRvx766ffDtkqS5K+fq8+rPDU4EAAAAAACAeESBDkRauEBPvB3o9S31cnlckqQCR/IW6JJ0ce+LdWGPC+UL+HTrklu1u3G30ZEAAAAAAAAQZyjQgUhLb13h4topBQLGZjlKoQNEM+wZctgcBqeJLpPJpLuG3KUemT20s3Gnpn48VT6/z+hYAAAAAAAAiCMU6ECkOfOCj94mqbnO2CxHKVSgJ/P6lgM5bA7NHjZbadY0La9crqfWPGV0JAAAAAAAAMQRCnQg0uwOKSUj+HmCrXGpdFVKkgqdhQYniZ2eWT1115C7JElPrH5Cy3YsMzgRAAAAAAAA4gUFOhANztY1Lgl2kOixNoEeMqbnGF3c+2IFFNDUj6dqpzux/uADAAAAAAAA0UGBDkRDgh4kWu0OFv7HWoEuSVNPnao+2X20p2mPbllyi7x+r9GRAAAAAAAAYDAKdCAa0lv3oCdYgR6aQM935BucJPZSramadfYsOW1Ordy5UvNXzTc6EgAAAAAAAAxGgQ5EQ3gCnRUuiaQks0T3nn6vJOnpr57WR9s/MjYQAAAAAAAADEWBDkRDeusOdFfiTKAHAoFwgX4sHSL6XeeVnKfL+l4mSbr949v1bcO3BicCAAAAAACAUSjQgWhIwB3oe5r2qMXfIpNMx+QKlwPd/JOb1b9Tf9W11OmmD29Si6/F6EgAAAAAAAAwAAU6EA0JuMKlyh2cPu+U1kk2i83gNMayW+yaNWyWMlMytXb3Ws34bIbRkQAAAAAAAGCAuC7QfT6f7rrrLnXv3l1paWnq2bOnHnjgAQUCgfA1gUBAd999twoLC5WWlqYRI0Zo48aNbV5nz549uuKKK5SRkaGsrCyNHz9eDQ0Nba758ssvdeaZZyo1NVXFxcWaMYPCDO3gbF3h0lBjbI6jEN5/7jg2959/V+f0znrojIckSa9ueFVvb37b4EQAAAAAAACItbgu0B955BE98cQTmj9/vtatW6dHHnlEM2bM0Lx588LXzJgxQ3PnztUf//hHlZWVyel0avTo0Wpqagpfc8UVV2jt2rVatGiR3n77bX300UeaMGFC+Pt1dXUaNWqUunXrps8//1yPPvqo7r33Xj311FMxfb9IIqEJdNdOye83NssROtYPED2UM4vO1IQTgn+vuH/Z/fpm7zcGJwIAAAAAAEAsxXWB/umnn+qiiy7ST3/6U5WUlOiSSy7RqFGjtGLFCknB6fPHH39c06ZN00UXXaQTTjhBL7zwgnbs2KF//OMfkqR169bp3Xff1Z///GcNHjxYZ5xxhubNm6e//vWv2rFjhyTp5ZdfVktLi5555hkdf/zxGjdunCZOnKjZs2cb9t6R4EIT6H6v1LjX2CxHqNoVXDdDgd7WdSdep8GFg9XobdSNH94ol8dldCQAAAAAAADESFwX6Keffrref/99/fe//5UkffHFF/rkk090/vnnS5LKy8tVVVWlESNGhJ+TmZmpwYMHa9myZZKkZcuWKSsrSz/5yU/C14wYMUJms1llZWXha8466yzZ7fbwNaNHj9aGDRu0d++hy8/m5mbV1dW1+QDCrHYpLTv4eYLsQa90VUqiQP8ui9miR858RHmOPG2p26J7P723zRopAAAAAAAAJK+4LtCnTp2qcePGqW/fvrLZbBo4cKAmT56sK664QpJUVRVcOZGfn9/mefn5+eHvVVVVKS8vr833rVarOnbs2OaaQ73Ggff4roceekiZmZnhj+Li4na+WySdA9e4JABWuHy/TmmdNPPsmbKarHp3y7v6y/q/GB0JAAAAAAAAMRDXBfprr72ml19+Wa+88opWrlyp559/XjNnztTzzz9vdDTdfvvtqq2tDX9s27bN6EiIN+mtf3DTkCAFupsC/XAG5g3UjafcKEl69D+P6ouaLwxOBAAAAAAAgGiL6wL9lltuCU+hDxgwQFdeeaVuvPFGPfTQQ5KkgoJg0Vdd3XZFRnV1dfh7BQUF2rmzbYHp9Xq1Z8+eNtcc6jUOvMd3paSkKCMjo80H0EZoAj0BVrj4/D7VuGskSQUOCvTvc2W/KzWy20h5/V7dvORm7W1KjP32AAAAAAAA+HHiukB3u90ym9tGtFgs8vv9kqTu3buroKBA77//fvj7dXV1Kisr02mnnSZJOu2007Rv3z59/vnn4WsWL14sv9+vwYMHh6/56KOP5PF4wtcsWrRIxx13nLKzs6P2/pDknIkzgV7TWCNfwCeryaqctByj48Qtk8mk+0+/X90yuqnKVaXbP75dPr/P6FgAAAAAAACIkrgu0MeMGaPp06drwYIF2rJli958803Nnj1bY8eOlRQssyZPnqwHH3xQb731ltasWaOrrrpKnTt31s9+9jNJUmlpqc477zz95je/0YoVK7R06VJdf/31GjdunDp37ixJuvzyy2W32zV+/HitXbtWr776qubMmaMpU6YY9t6RBBJohUto/3meI08Ws8XgNPEt3Z6u2cNmK9WSqqU7luqpNU8ZHQkAAAAAAABRYjU6wOHMmzdPd911l6677jrt3LlTnTt31m9/+1vdfffd4WtuvfVWuVwuTZgwQfv27dMZZ5yhd999V6mpqeFrXn75ZV1//fU699xzZTabdfHFF2vu3Lnh72dmZupf//qXfve73+mUU05RTk6O7r77bk2YMCGm7xdJJoFWuHCA6NHpk91H04ZM07Sl0/TE6id0Ys6JOr3L6UbHAgAAAAAAQISZAoFAwOgQyaCurk6ZmZmqra1lHzqCvvm39NLFUn5/6X+XGp3msJ776jnN+nyWzu9+vmacNcPoOAnj3k/v1d83/l1ZKVl6fczr/AEEAAAAAABAAjiaLjeuV7gACS2RJtDdTKD/GLcPvl2lHUu1r3mfblpykzw+zw8/CQAAAAAAAAmDAh2IllCB7tol+bzGZvkB4RUuDgr0o5FiSdGsYbPUwdZBX9Z8qdmfzzY6EgAAAAAAACKIAh2IFkcnyWSWFJDcu41Oc1iVrkpJUqGz0OAkiae4Q7GmnzFdkvTSupf07pZ3DU4EAAAAAACASKFAB6LFbJEcOcHP43yNC4eIts/wrsP16/6/liTds/QeldeWG5wIAAAAAAAAkUCBDkRTeA/6TmNzHEaLr0V7mvZIokBvjxsG3qCf5P9Ebq9bUz6cIrfHbXQkAAAAAAAAtBMFOhBN6XnBxzieQK92BbOlWFKUlZJlcJrEZTVb9ejZjyonLUff7PtGDyx/QIFAwOhYAAAAAAAAaAcKdCCaQgW6K34n0Kvc+9e3mEwmg9Mktpy0HM04a4YsJove3vy2Xv/v60ZHAgAAAAAAQDtQoAPRFJ5Aj+MCnf3nETWoYJAmnjxRkvTwioe1dvdagxMBAAAAAADgx6JAB6IpvAM9fle4VLoqJUkFDgr0SLnm+Gs0rHiYPH6PbvrwJtU21xodCQAAAAAAAD8CBToQTU4m0I9FJpNJ08+Yri7pXfRtw7e685M75Q/4jY4FAAAAAACAo0SBDkQTK1yOWRn2DD027DHZzXYt2b5Ez3z1jNGRAAAAAAAAcJQo0IFoSoAVLgceIorIKu1UqjsG3yFJmrdqnlZUrjA4EQAAAAAAAI4GBToQTaEJ9KZ9krfZ2CzfIzSBXugsNDhJcvp575/rf3r+j/wBv2756BbtdMfvTyMAAAAAAACgLQp0IJpSsySzLfi5q8bYLIfg8rhU31IviQn0aDGZTJo2ZJp6Z/fWnqY9umXJLfL4PUbHAgAAAAAAwBGgQAeiyWw+YA96/K1xCU2fd7B1kNPmNDhN8kqzpmn22bPltDm1cudKzVs5z+hIAAAAAAAAOAIU6EC0xfFBoqECPd+Zb3CS5FeSWaIHhj4gSXp27bN6v+J9gxMBAAAAAADgh1CgA9HmjP8CnfUtsTGy20hd2e9KSdK0T6ZpW902gxMBAAAAAADgcCjQgWiL5wl0NwV6rN14yo06KfckNXgadOOHN6rJ22R0JAAAAAAAAHwPCnQg2tJb16PE4Q70yoZKSVKhs9DgJMcOm9mmmWfPVMfUjtqwd4MeWvGQ0ZEAAAAAAADwPSjQgWgLTaC7mEBHUL4zX4+c9YhMMumNjW/ozY1vGh0JAAAAAAAAh0CBDkRbHK9wqXYFp+ILHBTosTakcIh+d9LvJEnTy6Zrw54NBicCAAAAAADAd1GgA9EWpytcAoEAh4ga7Dcn/EZndDlDzb5mTflwiupb6o2OBAAAAAAAgANQoAPR5gxNoNcYm+M7aptr1eQLHmCZ78w3OM2xyWwy66EzHlKhs1AV9RW6a+ldCgQCRscCAAAAAABAKwp0INpCK1xa6qUWl7FZDlDpCh4g2jG1o1IsKQanOXZlpWZp9rDZspqter/ifb3w9QtGRwIAAAAAAEArCnQg2lI6SNa04OdxtAed9S3xo39Of9026DZJ0mOfP6aV1SsNTgQAAAAAAACJAh2IPpNJSs8Nfh5PBbq7tUDnANG48IvjfqELul8gX8Cnm5bcFD7gFQAAAAAAAMahQAdiIXSQqCuOCnQm0OOKyWTSPafdo15ZvbSrcZcmfTBJTd4mo2MBAAAAAAAc0yjQgVgIFegN8TNVTIEefxw2h+aeM1dZKVlau3ut7v70bg4VBQAAAAAAMBAFOhALoYNE42mFS2uBXugsNDgJDlTcoTh4qKjJqnfK39HTXz1tdCQAAAAAAIBjFgU6EAvO+C3QmUCPP4MKBmnqqVMlSXNXztUHFR8YnAgAAAAAAODYRIEOxEKcTaD7/D7tdAezUKDHp1/0/YV+cdwvFFBAUz+eqo17NxodCQAAAAAA4JhDgQ7EQpztQN/dtFvegFdmk1k5aTlGx8H3uO3U23Rqwalye926YfEN2tu01+hIAAAAAAAgSQT8fvndbqNjxD2r0QGAY0JoAt0VHxPoofUtuWm5spr520C8spltmnX2LI1bME7fNnyrm5bcpCdHPimb2WZ0NAAAAAAAEIcCfr98+/bJu2uXfLt3y7trl7y7dsu3O/jo3b1b3t275Nu1W949e+Q45RR1e/45o2PHNZozIBYOXOESCEgmk6Fx2H+eOLJSszT/nPm6YuEV+qzqMz1c9rDuOu0uo2MBAAAAAIAYCfh88u13eFu0AAAgAElEQVTdGyy/w8X4AUX4rl37i/E9eyWf74hf27t7VxSTJwcKdCAWQoeIepuk5jopNdPQOJWuSklSobPQ0Bw4Mr2ye+mRsx7RxMUT9dp/X1Of7D76Rd9fGB0LAAAAAAC0g6/BJW9VpTzV1fLt2hWeFg8X47uDH749eyS//6he25KVJUtOJ1k75cjaqZOsuTmyhD7P6RT8PKeTrB07RundJQ8KdCAW7A7J3kFqqQ9OoRtcoDOBnniGFQ/TxJMnas7KOXpoxUPqntldpxaeanQsAAAAAABwCP7mZnmrquSprJKnqrLt55VV8lRVyV9Xd+QvaDLJkpV1QPkdLMPDJXlOJ1k6dZI1J1fWjtky2Vj/GikU6ECspOdJe1oL9JzehkapdgcPM6VATyzj+4/Xxr0btbB8oaYsmaK/XPAXFWcUGx0LAAAAAIBjSsDrlXfnTnmqquSpPEQ5XlkZnBo/Aub0dNkKC2TNzT30hHhOTrAY79hRJitVrhH4qw7ESnq+tGeT1FBtdJL9E+gOCvREYjKZdN/p96mirkJf7f5KNyy+QS9d8JLS7elGRwMAAAAAICkE/H75du8+uByvrJS3slKeqip5a2qOaKWKKTVVtoICWQsLZCsoDBblBQWyFRa2/nqhLOn8N328o0AHYuXAg0QNxgqXxJVqTdXjwx/XZQsu06baTZr68VTNGT5HFrPF6GgAAAAAAMS9gMcTLMe/3SHPjh3yfPttm0dvdbUCHs8Pv5DVKlt+/uHL8awsmUym6L8pRBUFOhAroQLdZWyB7vF5tKsxeMIyBXpiynfma87wObr63au1ZPsSzVs1T5NPmWx0LAAAAAAADOdvbg4W4m3K8f1fe3fu/OHpcZNJ1tzc/eV4aIq8sHO4KLfm5MhkNsfmTcFQFOhArIQn0I1d4VLtrlZAAdnNdnVM5aTlRDUgd4DuG3qfbv/4dj391dPqld1LF/a40OhYAAAAAABEld/tPuTkeEvro69m1w++hslul61z5+BHly6ydWl9LCyUrbBQ1rw8DuFEGAU6ECvp+cFHg1e4hNa35Dvz+TGiBHdhjwu1ce9GPfPVM7pn6T0qyShR/5z+RscCAAAAAOBHCbS0yFdXJ++uXfsnx79TlPv27v3B1zE5HLJ1LgyW4p07y976GCrMLZ06MT2OI0aBDsSKMz52oFe52X+eTCYOnKhN+zZpyfYlmrh4ov564V+V58gzOhYAAAAA4BgV8Hrlq6uTr7ZW/tZHX22dfHWhr1t/ra5O/tbH0NeBxsYjuoe5Q4dwOb7/sbNsnYPT5OweRyRRoAOxEieHiIYPEHVQoCcDi9mih898WFe+c6W+2feNJi2epGfPe1ap1lSjowEAAAAAEpivoUG+3btbC+46+etqDyjDWwvxg76uk9/lat+NTSZZsrK+U44fsGalc2dZOnSIzJsEjgAFOhAroRUurtbDKgz6UaFwgc4EetJIt6dr7vC5umzhZfpq91e659N79PCZD/On7QAAAACAQ/I3NclTWSlvVZU8lVXyVFXKW1klT1WVvFWV8lRWyd/Q0K57mNPTZcnIkDkzU5bMTFkyMmTJzJA5I0OWzKy2X2dkypIVvMbcoQPrVRBXKNCBWHHmBh/9Xqlpn+Qw5gBPCvTkVJxRrFlnz9JvF/1WC8sXqk92H40fMN7oWAAAAACAGAt4PPJU7wwX4QeW46HPj2SPuBTcJR4uvzMyZMnK3F94h8vwzPDX4cK8QweZrNSOSA78TgZixWqX0rKlxr1SQzUFOiJucOFgTT11qqaXTdeclXPUM6unhhUPMzoWAAAAACBCAj6fvLt27y/HKysPKMqr5K2slHfXLikQ+MHXMjkcshUUyFZQIGthgWyFnWUrLJC1oEC2wkLZ8vNldjpj8K6A+EaBDsRSev7+Aj2v1JAIHCKa3Mb1HaeNezfqtf++pts+uk0vX/CyemX3MjoWAAAAAOAI+fbtU8vWrWqpqFDLluCjZ8cOeSsr5dm5U/J6f/A1TDabrIWFwYK8sEDWgsK25XhBgcwZGaz+BI4ABToQS+l5Us16ww4SbfQ2qra5VhIFejKbOniqyuvK9VnVZ7ph8Q36y0//oqzULKNjAQAAAABa+erqgiX5lq3Bx61b1VKxVZ4tW+WrrT38ky0WWfPy2pbjoSny1qLc0rEje8SBCKFAB2LJmRd8NKhAD61vcVgd6mDjxOpkZTPbNOvsWbpswWXa3rBdNy25SX8c+UfZzDajowEAAADAMcNXX7+/IK/YKs8Bhblv377DPtealyd7t26yl3STrWtX2bt0CU6UFxbKmpPDfnEghvh/GxBL6fnBx4ZqQ25f6aqUJBU6C/kxrSSXnZqteefM0y8X/lIrqlbokRWPaNqQaUbHAgAAAICk4mtoUMvW1nI8VJBXVARL8j17Dvtca26ubN26BovybiWtj11l79pVZocjRu8AwA+hQAdiKd3YCfRqV7C4Z33LsaF3dm89fObDmvTBJL264VX1ye6jS4+71OhYAAAAAJBQ/G536z7yLW1XrmzdKt/u3Yd9riUnp7UY7yZ7166yl+z/nAM6gcRAgQ7EUqhAdxm7woUC/dgxvOtw3TDwBs1dNVcPlT2k7pndNahgkNGxAAAAACCuBDweeb79Vs1btrQW5a1l+ZYt8lZVHfa5lk6dguV468qVUGFu69pVlvT0GL0DANFCgQ7EksET6FXu4D/08535htwfxrh2wLXauG+j3il/R1M+nKJXfvqKijsUGx0LAAAAAGIqEAjIW13dphwPf2zfLnm93/tcS1ZWa0Fe8p21K11l6cAZY0Ayo0AHYsngHejhCXQHE+jHEpPJpPtPv18VdRVau3utJi6eqJcueElOGz8uCAAAACD5+PbtU8uWLQdMk7eW5Vu3KtDY+L3PM6Wmyl5S0voRLMtTSkpk69ZN1uzsGL4DAPGEAh2IJWfrBLp7t+T3SWZLTG8fPkQ0vTCm94XxUq2pmjN8jsYtGKdv9n2jqR9P1Zzhc2Q2mY2OBgAAAABHzd/YGNxLXr6l7ST5li3y7dv3/U+0WGQvKtpflHcvCX9uzcuTycx/IwFoiwIdiCVnjmQySwG/5NoldYjdKpVAIMAE+jEu35mvOcPn6Jp3r9GH2z7UvFXzNOnkSUbHAgAAAICDBAIB+Wtr1bJtmzzbtqmlYptatm+TZ9t2tVRUyFtZedjnW/PzD5gm3z9Rbi8qkslmi9G7AJAMKNCBWDJbJEdO8BDRhuqYFuh1LXVq9AZ/VI0d6MeuE3JP0L2n36s7PrlDf17zZ/XO6q0LelxgdCwAAAAAx6CA1ytPZWWwIN+2XZ5tFWrZtl0t2yrk2bZd/vr6wz7fnJEhe/fgmpU2ZXnXrjI7WVkJIDIo0IFYS89vLdBje5BoaPo8KyVLada0mN4b8WVMzzHauG+jnv3qWd396d3qmtFV/XP6Gx0LAAAAQBLyNTTIUxEsxj3bg5PkwcJ8mzw7dkg+32Gfb83Nla1rV9mLimTrWix7cbFsRcWydy+RJStLJpMpNm8EwDGLAh2ItfRcqVrBEj2Gqt3Bg0sLnKxvgTRp4CRt2rdJH23/SJMWT9JfLvyL8hx5RscCAAAAkGACfr+81dXBYnx7azFesU0t27fLU1Fx+H3kkkx2u2xFRcFivLhY9uIi2Yq7Bh+LimROYwAMgLEo0IFYS29dn9JQHdPbVjYE98NRoEOSLGaLHjnzEV2x8Aptrt2syR9M1jOjn1GqNdXoaAAAAADijK+hQZ7t24Pl+PZvgxPkrfvIPdu3K+DxHPb5lo4dZSsukr24a/CxqFj2rsHCnIM7AcQ7CnQg1tJbp3xjvcLFzQGiaCvdnq5558zTZQsu05pda3Tvsnv10BkP8SOQAAAAwDEm4PXKU1W9f4I8tG6ltSz37d17+BewWmXr0ln2ouLgmpWi4mBR3rWrbEVFsqSnx+aNAEAUUKADseY0qEBv3YHOBDoO1DWjq2YPm63fLvqtFmxeoF5ZvXTtgGuNjgUAAAAgwny1tfv3kB9Ykm/bLk9lpeT1Hvb5lqys/StWQgV5UXDdiq0gXyYrFROA5MTf3YBYM2iFCwU6vs/gwsGaeupUTS+brjkr56hbRjeN7DbS6FgAAAAAjkKgpUWeHTuCU+MHlOShVSv++vrDPt9ks8lWVNS6j/yAkry4mClyAMc0CnQg1oxa4UKBjsMY13ecymvL9cr6V3THx3eos7Ozjs853uhYAAAAAA4QCASCB3Zu3qzmzeVq2bwp+FixVd6qasnvP+zzLbk5+9erFAVL8uChnewiB4DvQ4EOxFqoQHfFrkD3B/yqdgcn3gudhTG7LxLLLYNu0db6rVr67VJNXDxRr/z0FeU7842OBQAAABxzAi0tatm2Tc2bNqllc7maNwcfWzZvlt/t/t7nmVJTv7NipXj/RHmXLjI7HDF8FwCQHCjQgVgLrXBp3Ct5myVrStRvuadpjzx+j0wyKdeRG/X7ITFZzVY9etajunLhldpUu0k3LL5Bz533nBw2/iUbAAAAiAZffX1wmnzTZrWUt06Vb9qklm3bJJ/v0E+yWGTv2lX2Hj2U0qO77D16yt6tm+zFRbLk5MhkMsX2TQBAkqNAB2ItNUsy2yS/R3LVSJlFUb9laH1LblqubGZb1O+HxNXB3kHzz52vyxdcrnV71un2j2/XY8Mfk9nEj3ICAAAAP0YgEJC3qkrNmze3mSZv3rxJvppd3/s8s8MRLMl79pC9ew/Ze/ZQSo8eshcXy2S3x/AdAMCxjQIdiDWzWXLmSvU7ggeJxrBAZ/85jkRRhyLNOWeOxr83Xou3LdbclXM1+ZTJRscCAAAA4lqgpUUtFRX7p8k3bQ5Ol5eXK3CYtSvWvLzWafIe+6fKe/YM7iRnmhwADEeBDhghPa+1QK+Jye1CBTr7rHGkBuYN1H2n36c7PrlDT3/1tEoyS/SzXj8zOhYAAAAQF/xut5rWb1DTuq/V9PXXavp6nZo3bpS83kM/wWptXbvSXSk9erY+BgtzS3p6bMMDAI4KBTpghNAe9IbqmNyOCXT8GGN6jlF5bbn+tOZPum/ZfSruUKxT8k8xOhYAAAAQU766OjWtW99alAc/WsrLJb//oGvNTqfsPXsqpXtwijy4o7x17YqNdZoAkIgo0AEjpOcFHxt2xuR2la5KSVKhszAm90PyuH7g9dpSt0WLti7S5A8m65ULXlFxRrHRsQAAAICo8O7eraav17Upyz3bth3yWmturlL79VPq8f2Cj6WlsnbuzNoVAEgyFOiAEUIFuis2BXqVmwl0/Dhmk1nTz5iuHQ07tHb3Wv1u8e/00gUvKcOeYXQ0AAAA4EcLBALyVlcHS/K1+8tyb/Whf0rY1qXLwWV5bm6MUwMAjECBDhjBqBUuDgp0HL00a5rmnTNP4xaMU3ltuW7+8Gb9YcQfZDXzjxAAAADEv0AgIM+2bW3L8nXr5Nuz5+CLTSbZS0qCJXm/fkrtV6rU0lJZsrJiHxwAEBdoPwAjxHCFi9fv1a7GXZKYQMePl+vI1fxz5utX7/5KyyqX6eEVD+vOwXfy46kAAACIKwGfTy3l5eGDPUNlub++/uCLLRal9OoVnihPPb6fUo7rK0u6M/bBAQBxiwIdMIIzdgV6jbtG/oBfVrNVndI6Rf1+SF6lnUr10JkP6cYPbtSrG15V98zuuqL0CqNjAQAA4BgV8PnUsnmzGteuDU6Wr12rpvXrFXC7D7rWZLcr5bjjgkV56yqWlD59ZE5JMSA5ACCRUKADRgivcIl+gR46QDTfkS+zyRz1+yG5ndv1XE0+ZbIe+/wxzfhshrpldNMZXc4wOhYAAACSXMDrVfPmzfuL8lBZ3th40LUmh0OpffvuX8NyfD+l9Oghk81mQHIAQKKjQAeMEFrh0lIvtbgluyNqtwrvP2d9CyLkmuOvUXltuf7xzT9085Kb9eL5L6p3dm+jYwEAACBJBLxeNW/avL8oD5XlTU0HXWtyOJRaWqq0/scr9fjgh72kRCaLxYDkAIBkRIEOGCGlg2RNlbxNkmunZC+J2q2q3BToiCyTyaS7h9ytbfXb9Hn157ph8Q16+YKXWREEAACAo9amLP/qq+Djhg2HLMvNDodS+pUq7XjKcgBA7FCgA0YwmYJT6PsqgmtcskuidqvwBLqDAh2RY7PY9Piwx3X5wsu1rX6bJn8wWX8e/WelWNghCQAAgEMLluWb1PTVAZPlhynLg+tXjldq/wPKcjNrKQEAsUWBDhglPb+1QK+O6m1Y4YJoyUrN0vxz5+uXC36p1TWrde+n9+r/zvg/mUwmo6MBAADAYAGPJ1iWtxbljWvXqnn9BgWamw+61ux0Bg/37N//gMnybpTlAIC4QIEOGCV8kGhsCvRCZ2FU74NjU4/MHpo1bJb+99//q7c3v63umd014YQJRscCAABADPldLjVt2KCmr9epaf06NX+9Ts0bNyrg8Rx0rdnp3D9ZTlkOAEgAFOiAUZy5wceGmqjehgl0RNtpnU/THYPv0APLH9C8VfNUklGiUSWjjI4FAACAKPDu2qWmdevUtG69mtZ9reZ169WydasUCBx0rTk9/TtleT/Zu1GWAwASCwU6YJQYTKA3eZu0t3mvJAp0RNelx12q8tpyvbTuJd35yZ3qnN5Z/XP6Gx0LAAAAP1LA75dn27bWonxduCz31hx6AMial6fU0lKllPZVamk/pZb2la2oiLIcAJDwKNABo6TnBR8bdkbtFtXuYDmfZk1Thj0javcBJOnmn9ysrXVb9fG3H2vi4ol65aev8Ac3AAAACSDQ0hLcV/71umBZvn6dmtetl9/lOvhik0n2khKllvZVSmlpuCy3duoU++AAAMQABTpglFCB7opegR5a35LvyOdgR0SdxWzRjLNm6Mp3rtQ3+77RDYtv0PPnPS+HzWF0NAAAALTyNTSoef361n3lweny5m++kQ6xr9xktyuld2+l9isNluV9S5V6XB+ZnU4DkgMAYAwKdMAoMVjhwv5zxFq6PV3zz52vyxdcrvV71mvqx1P1+PDHZTbxo7sAAACx5mtwqfGL1Wpa81XrGpZ18lRUHPJac0aGUvv2VWppabAw71uqlB7dZbLZYpwaAID4QoEOGOXAFS6BgBSFCfFKV6UkqdBZGPHXBr5Pl/QumjN8jsa/N14fbPtAj698XFNOmWJ0LAAAgKQWCATk3bFD7pWr1LhqpdyrVqt5wwbJ7z/oWmtBQbAoP2Bnua1LZ35qFQCAQ6BAB4zibC3QvU1Sc72UGvkd5Uygwygn5Z2k+4fer6kfT9WzXz2r7hndNbb3WKNjAQAAJI2Ax6Om9RuCZfnKVWpctUre6oN/utXWpYvSTjxRqcf3ay3MS2XNzjYgMQAAiYkCHTCK3SHZO0gt9cEp9GgU6G4KdBjnpz1+qvLacj355ZO6f/n9KupQpEEFg4yOBQAAkJB8dXVqXL1a7pUr1bhylRrXrFGgsbHtRVarUktLlTbwJDlOPllpA0+WLT/PmMAAACQJCnTASOl50p764B70nF4Rf/lqV3ACpcBBgQ5jXHfSddpSt0XvbXlPN354o1654BV1zehqdCwAAIC4FggE5Nm2bX9ZvmpV8KDPQKDNdeaMjGBZPnCg0gaerLQB/WV2cIA7AACRRIEOGCk9X9qzKWoHibLCBUYzm8x6cOiD2tGwQ2t2rdHv3v+dXrrgJWWmZBodDQAAIG4EWlrU9PXXbfaX+3btOug6W7eucpw0UGknnyzHyQNl79lTJjOHtQMAEE0U6ICR0nODj66aiL90fUu9GjwNkijQYaxUa6rmDJ+jyxZcpi11W3Tzkpv1hxF/kM1sMzoaAACAIbx796px1erw/vKmNWsUaGlpe5HNprTjj1fawIFKO3mgHAMHypqTY0xgAACOYRTogJHS84OPUZhAD02fZ9gz5LDxY5wwVq4jV/PPna+r3rlKyyuX6+GyhzVtyDSZTCajowEAAESdZ8cOuZaXyf35f9S4cpVayssPusaSlbW/LD/5ZKX27y9zSooBaQEAwIEo0AEjpbce6BPFAp3pc8SLvh376pEzH9GkDybptf++ph5ZPXRF6RVGxwIAAIg4765dcpWVyb28TK6yMnkqKg66xt6jR5vDPu3dSxguAAAgDlGgA0Zyhgr0yK9wqXJToCP+DO86XFNOmaJZn8/SjM9mqLhDsc4qOsvoWAAAAO3i27dPrs8+ay3Ml6vlm01tLzCblTqgv5ynnho87HPgSbJmZxsTFgAAHBUKdMBIMVjhUuCgQEd8+dXxv1J5Xbne2PiGbv3oVr14/ovqnd3b6FgAAABHzNfgUuPKz4NrWZYvV9O6dVIg0OaalNJSOQcPlmPIYDl+8hNZ0tMNSgsAANqDAh0wUniFy86Iv3SoQC9ML4z4awPtYTKZNG3wNG2r36bPqj7T9e9frxcveFF5jjyjowEAABySv6lJjatXy7V8udzLy9S4Zo3k87W5xt6jh5xDBssxeIgcpw5iwhwAgCRBgQ4YKVSgu2okv18ymyP20qECPd+RH7HXBCLFZrHpsWGP6fIFl6uivkLXvHuNnh79NCuHAABAXAh4PGpc85XcZcvlWl6mxlWrFGhpaXONrahIjiGD5Rw8RI5TT5Utn2EAAACSEQU6YCRnbvDR75Ga9kmOjhF7aQ4RRbzLTMnUkyOf1LX/ulYV9RW6+t2r9edRf1ZRhyKjowEAgGNMwOdT07r14cLc/fnnCrjdba6x5ubKMWRI65T5YNmL+HcWAACOBRTogJGsKVJattS4N7gHPUIFeiAQULU7uFedAh3xrKhDkZ477zmNf2+8Kuor9Kt3f6WnRz2tkswSo6MBAIAkFggE1PLNN3K1HvrpXvGZ/HV1ba6xZGXJMXhweC2LvXuJTCaTMYEBAIBhKNABo6Xn7y/Q80oj8pJ7m/eq2dcsiRUuiH8FzgI9d95zuvZf12pz7ebwJHqv7F5GRwMAAEkiEAjIU1ERnC4vK5OrrEy+3bvbXGN2OuUYNCi4lmXIEKX06SNTBFcsAgCAxESBDhjNmSvVrJcaaiL2kpWuSklSp9ROslvsEXtdIFpyHbl6ZvQzmrBogv6797/69Xu/1lOjnlLfjn2NjgYAABKUp6oqfOinq6xM3srKNt83pabKcfLJ4bUsqf36yWTlP5EBAEBb/NsBYLT01gnxhuqIvWRo/3mhszBirwlEW6e0Tnpm9DP67aLfau3utcESfeRT6p/T3+hoAAAgAXh3726dLl8h9/Llatm6te0FNpvSTjwheOjn4FOVdtJJMtsZNgEAAIdHgQ4YLYoFOvvPkWgyUzL1p1F/0nX/vk6ra1br2n9dqydGPKGBeQONjgYAAOKMr65O7s8+C65lWb5czRs3tr3AbFZq//5yDh4sx5DBcgwcKLPDYUxYAACQsCjQAaOl5wYfXZFb4VLt4gBRJK4O9g56cuSTun7x9fqs6jP9dtFvNf+c+Tq18FSjowEAAAP53W65P18pd9lyuZaXqenrryW/v801KccdFz700zHoJ7J06GBQWgAAkCwo0AGjMYEOHMRhc+j35/5ekz+YrE93fKrr3r9Ojw9/XGd0OcPoaAAAIEb8zc1qXP1FuDBv/PJLyettc429e/fgoZ+Dh8hx6iBZO3Y0KC0AAEhWFOiA0dLzgo8NOyP2klXuYIGe78yP2GsCsZZmTdPcc+bq5g9v1ofbP9TExRM16+xZGt51uNHRAABAFAS8XjV99ZVcy8vkKluuxpWrFGhubnONtXOhnENOa50yHyxbPv++CwAAoosCHTCaM/IFeqWrUhKHiCLxpVhSNHvYbN328W1atHWRpnw4RQ+f9bBGl4w2OhoAAGingN+v5vXrgzvMy8rk/s9/5He52lxjyc2Rc/CQ/YV5UZFMJpNBiQEAwLGIAh0wWmiFi3uX5PdJZku7Xs7n96nGHdynXuBghQsSn81i04yzZmja0mlasHmBbv3oVrX4WjSm5xijowEAgKMQCATkqaiQa9kyuZYtl3v5cvlqa9tcY87MlPPUU4NrWYYMkb1HDwpzAABgKAp0wGjOHMlklgJ+ybVL6tC+H0OtaayRL+CT1WRVTlpOhEICxrKarZo+dLpSLCl6Y+MbuvOTO9Xia9HFfS42OhoAADgM765dwZUsyz6Ve9lyeXbsaPN9s8Mhx6BBcgweLOeQwUrp21cms9mgtAAAAAejQAeMZrZIjk6SqyZ4kGg7C/TQAaK5jlxZ2jnNDsQTi9mie067RzazTa9ueFX3LrtXLf4WXdb3MqOjAQCAVr4Gl9z/+ez/s3ff4VHVaRvHvzOTSZ1kEtIIRaSoFFlFUUAEkRZAirqKBdQlFFdFim137RUFUVEUFaS8uiDYCyodBARFBAQVkQXppNdJn/L+MWQgKsrAhJNyf67LK+Sck3jzB8rceeb5UbT+awrXr6f0l18qP2C1En7++YR36khEx06EtT0Xk9VqTFgRERGRE6ACXaQ6sCV6C/TCU9+DXnGAaP0IrW+R2sdsMvNAhwcIsYTw5k9vMuGbCZS5yrilzS1GRxMREamTPOXlFG/dSuG69RR+/TXF338PTmelZ0JatSKiUyciOnUk/MILMYeHG5RWRERExH8q0EWqA1sCpBGQg0RTHSrQpXYzmUzc0/4eQiwhzNg2g8kbJ1PiLOHW8241OpqIiEit5/F4KP3llyN7zNdT/O1G3EVFlZ6xNmrkLcwv6UR4hw4E1atnUFoRERGRU6cCXaQ6qDhI1JF2yt9KE+hSF5hMJsZcMIYQSwgvb3mZl7e8TKmrlDvb3amDxkRERAKs/OBB38GfhV9/jSsrq9J9S0yM99DPTp2I6NSJ4MaNDUoqIiIiEngq0EWqg4h470dHxil/q4od6PXDVaBL7XfrebcSGhTK5I2TmbFtBqWuUu5pf49KdBERkVPgzMmh6JsN3tL86/WU791X6b4pLIzw9u19a1lCzjlHB3+KiCLcSuIAACAASURBVIhIraUCXaQ6COQEeqEm0KVuuaXNLQRbgpnwzQTe/OlNSl2l3N/hfswmvZAXERE5Ee7iYoq+20TR1+spXLeeku3bweM5+oDFQljbtkRc4p0wDzvvPEzBwcYFFhERETmNVKCLVAcq0EVOyQ0tbyDEEsKj6x5lwY4FlLvLebjjw1jMFqOjiYiIVDsej4eyXbtwrF5D4do1FH27EU95eaVnQs5qQXhHb2EefvFFWGw2g9KKiIiIGEsFukh1YDuywqXw1Fa4lLnKyCrx7qRUgS51zdVnXY3VbOXBrx7kg50fUOoq5cnOTxJk1v/qREREXA6HdyXL6jU41q7FefhwpftB9ev7VrKEd+yINSHBoKQiIiIi1YtaBZHqIEAT6GmF3q8PsYQQExJzqqlEapwBzQcQbAnm36v/zWe7P6PMVcbELhOxWqxGRxMRETmtPB4PpT//jGPNWgrXrKFo82ZwOn33TcHBhF98MbYulxJx6aUEN2umM0RERERE/oAKdJHqoKJAL84BZxkEndxOydSio+tb9AJI6qrkM5MJNgdz95d3s3TvUspd5UzuNpkQS4jR0URERKqUKzeXwvXrcaxeg2PtGlwZmZXuBzdpQkSXLti6diH8ooswh4UZlFRERESk5lCBLlIdhEaDOQjcTu8aF3vDk/o2vv3n4VrfInXb5WdcztTuUxm7ciyrDqxizIoxTLl8CmFBKgpERKT28LjdlPz4I441ayhcvYbirVvB7fbdN4WFEdGhAxFdLsXWpQvBZ5xhYFoRERGRmkkFukh1YDZDRAIUHPKucTnFAj0xIjGQ6URqpM4NOzOtxzRGrxjNukPruGP5Hbzc/WXCreFGRxMRETlpzuxsCteu9a5mWbsWV05OpfvBLZpju9Q7ZR524YWYQ/QOLBEREZFToQJdpLqwVRTo6Sf9LQ4Xeg+D0gGiIl4XJ13M671e57Zlt/Ft6rfcuvRWpvWcRmRwpNHRRERETojH6aR46zYK167BsXoNJT/+CB6P7745IoKISzoRcWkXbF0uxdqggYFpRURERGofFegi1UUADhKtmEBPikgKRCKRWqFdQjve6P0Go5aOYkvGFkYuGcnrvV7HHmI3OpqIiMgfKk9Pp3DNWhxr11C4bj3uvLxK90NatsTWpQsRXS4lvF07TFYdli0iIiJSVVSgi1QXtnjvx8KTn0A/9hBRETnq3LhzmZU8i1FLRvFj1o8MXzyc6b2nUy+0ntHRRERE8LhcFG/ZgmPVlzjWrKH0558r3TdHRRHR+RJsXboS0bkz1sQEg5KKiIiI1D0q0EWqC98E+ikU6DpEVOS4WtZryazkWYxcOpIdOTtIWZTCjN4ziA+PNzqaiIjUQe7iYgrXraNg+Qocq1bhys6udD/03HOxde1CxKVdCPtbW0xBeukmIiIiYgT9LUykujjFFS5F5UUUlBUAmkAXOZ4WMS2YnTybEUtGsCtvFymLU5iVPEsluoiInBbOrCwcK1dSsHwFhevW4Skt9d0zR0Vh69rVW5p37kxQbKyBSUVERESkggp0keoi4kiB58g4qS+vmD63WW3Ygm2BSiVS65xpP5M5feaQsjiFPfl7VKKLiEiVKt39K44VyylYvoLiLVsqHQBqbdAAW48eRPboTviFF2qXuYiIiEg1ZDY6wF85ePAgQ4cOJTY2lrCwMNq2bcvGjRt99z0eDw8//DBJSUmEhYXRs2dPdu7cWel7ZGdnM2TIEKKiooiOjmb48OE4HI5Kz2zdupUuXboQGhpK48aNmTRp0mn5/Yn4nOIE+uHCw4Cmz0VORKPIRsxKnkWDiAa+Ej296OTXJ4mIiFTwuFwUbdpM+uTJ7Orbj939+pE++TmKN28Gj4fQ1q2Ju3M0TT/6kObLl1H/gfuJ6NhR5bmIiIhINVWtJ9BzcnLo3Lkzl19+OV988QXx8fHs3LmTmJgY3zOTJk3ipZde4v/+7/9o2rQpDz30EMnJyfz000+EhoYCMGTIEA4fPszSpUspLy9n2LBhjBo1innz5gGQn59P79696dmzJ6+99hrbtm0jJSWF6OhoRo0aZcjvXeqgU9yB7tt/rgJd5IQ0imzErD6zSFnknUQfvng4M5NnkhCug9lERMQ/7pISCtetp2DFchwrV+HKyjp602ol4uKLsXW/nMju3bEmJRkXVERERET8Vq0L9IkTJ9K4cWNmz57tu9a0aVPfrz0eD1OmTOHBBx9k0KBBALz55pskJiby0Ucfcf3117N9+3YWLVrEt99+S/v27QGYOnUq/fr1Y/LkyTRo0IC5c+dSVlbGrFmzCA4Opk2bNmzZsoXnn39eBbqcPrYj6yPKCqCsCILD/fry1CIV6CL+amhrWKlET1mcwszeM0mMSDQ6moiIVHPO7GwcK1dRsGIFhV99haekxHfPHBmJrWtXInt0J6JLFyyRkQYmFREREZFTUa1XuHzyySe0b9+ea6+9loSEBNq1a8eMGTN893/99VdSU1Pp2bOn75rdbqdDhw6sX78egPXr1xMdHe0rzwF69uyJ2Wzmm2++8T3TtWtXgoODfc8kJyezY8cOcnJy/jBbaWkp+fn5lf4ROSUhURDkfdcEhf5Pofsm0MNVoIv4o6JEb2hryN78vQxfMpy0wpNbpSQiIrVb2Z49ZM2cxZ4hQ9l5aRcOP/AAjuXL8ZSUEJSURMyQIZwxayZnf7WWhs9NJqpfP5XnIiIiIjVctZ5A3717N6+++ip33XUX999/P99++y1jxowhODiYW265hdRUb2GYmFh5UjAxMdF3LzU1lYSEym/HDwoKol69epWeOXay/djvmZqaWmllTIWnn36axx57LDC/UREAkwlsCZC7z7vGJeZMv75cK1xETl5DW0NmJc8iZXEKe/P3+g4W1SS6iEjd5nG7Kdm6lYLlKyhYsYKyXbsq3Q9p1YrI7t2J7NGdkFatMJlMBiUVERERkapSrQt0t9tN+/btmTBhAgDt2rXjhx9+4LXXXuOWW24xNNt//vMf7rrrLt/n+fn5NG7c2MBEUivYEo8U6P5Pv1YU6EkR2qspcjIa2Br4SvR9Bfu861ySZ+qHUiIidYy7tJTC9etxLF9BwaqVuDIyj94MCiL8ovZEdu9BZPfLsTZsaFxQERERETktqnWBnpSUROvWrStda9WqFe+//z4A9et7S420tDSSjjmMJy0tjfPPP9/3THp65XUYTqeT7Oxs39fXr1+ftLTKhWXF5xXP/FZISAghISEn+1sT+WMRR94t4edBoh6PRxPoIgHQwNaA2cmzGbZ4mK9En5U8S3+uRERqOY/bTfGmTeR9/DH5XyzC7XD47pkjIrBd1hVb9x7YunbBEhVlYFIREREROd2q9Q70zp07s2PHjkrXfvnlF5o0aQJ4DxStX78+y5cv993Pz8/nm2++oVOnTgB06tSJ3NxcvvvuO98zK1aswO1206FDB98zq1evpry83PfM0qVLOeecc/5wfYtIlbGdXIGeV5pHict7cJVWToicmiRbErOTZ9PQ1pD9BftJWZzi+wGViIjULmV79pDx0kvs6tWbvUNvIvfd93A7HAQlJhJz4w00fuMNzl6/jobPP4+9/xUqz0VERETqoGo9gT5+/HguueQSJkyYwODBg9mwYQPTp09n+vTpAJhMJsaNG8eTTz7JWWedRdOmTXnooYdo0KABV155JeCdWO/Tpw8jR47ktddeo7y8nNGjR3P99dfToEEDAG688UYee+wxhg8fzr/+9S9++OEHXnzxRV544QXDfu9SR9mOlN9+rnBJLfKWe/VC6xFi0TsjRE5VRYmesjiF/QX7GbZoGLP7zNYkuohILeDKzSV/0SLyPvqY4i1bfNfNERFE9knGPmgQ4e3bYzJX61kjERERETlNqnWBftFFF/Hhhx/yn//8h8cff5ymTZsyZcoUhgwZ4nvmvvvuo7CwkFGjRpGbm8ull17KokWLCA0N9T0zd+5cRo8eTY8ePTCbzfz973/npZde8t232+0sWbKEO+64gwsvvJC4uDgefvhhRo0adVp/vyLY4r0fCzP8+rKK6djEcE2fiwRKki2J2X1mM2zRMA44DjBs0TBmJc8iyaZzBkREahpPWRmONWvI++hjHKtW4al456nZTETnztgHDSKyR3fMYWHGBhURERGRasfk8Xg8J/OFZWVlpKen43a7K10/44wzAhKspsnPz8dut5OXl0eU3topJ2v7p7BgKDS6CEYsO+Eve/vnt5nwzQQub3w5L3V/6a+/QEROWGphqm8SvZGtkUp0EZEawuPxULJtG3kff0L+Z5/hys313Qtp2RL7oEFEXdEPa0KCgSlFRERExAj+dLl+T6Dv3LmTlJQU1q1bV+m6x+PBZDLhcrn8/ZYiUuFkV7gcmUBPilCpJxJo9SPqMyt51tF1LouHMTt5tkp0EZFqqvzQIfI++ZS8jz+m7Ndffdct8XHY+w/APmggoS1bGphQRERERGoSvwv0f/zjHwQFBbFw4UKSkpIwmUxVkUukboo4ssLFkQEeD5zgn6+KAl37mUWqxh+V6LOSZ9HA1sDoaCIiArgcDgoWLyHv448p2rDBd90UGkpkz57YBw0iolNHTEHVeoOliIiIiFRDfv8NcsuWLXz33Xe01NSGSODZjryF2FkMpQUQemLrgFSgi1S9ihJ9+OLh7CvYR8riFJXoIiIG8jidFK7/mryPP6Zg2TI8JSW+e+EdOnj3mvfuhcVmMzCliIiIiNR0fhforVu3JjMzsyqyiEhwBARHQlkBONJPuEBPK/KufFGBLlK1jp1EryjRZybPpKGtodHRRETqjJIdO8j76GPyFn6KK+Po65Lgpk2xDxqEfUB/rA3132URERERCQy/C/SJEydy3333MWHCBNq2bYvVaq10XwdoipwiWzxkF3j3oMe1+MvHXW7X0QI9XAW6SFVLjEj0TqIvGc7e/L2kLEphVp9ZKtFFRKqQMyODvIWfkffxx5T+/LPvuiU6mqgrrsB+5SBCzz1X6yVFREREJOD8LtB79uwJQI8ePSpd1yGiIgFiS4Ts3VCYfkKPZ5Vk4XQ7MZvMxIfHV3E4EQFviT6z90yV6CIiVchdXEzB8hXkffwxhV99BW43ACarFdvll2MfNBBbly6YgoMNTioiIiIitZnfBfrKlSurIoeIVKjYg+44sQK9Yv95fFg8QWYdjCVyulRMoqcsTlGJLiISIJ7ycgq//pr8hQspWLYcd2Gh717Y+edjv3IQUX36YImONjCliIiIiNQlfrdtl112WVXkEJEKtkTvR0faCT2uA0RFjJMQnuA7WHRP/h6GLRrGrORZNIpsZHQ0EZEaw+N2U7xlC/kLF5K/aDGu7GzfPWvDht695gMHEHzmmcaFFBEREZE666TGVXNzc5k5cybbt28HoE2bNqSkpGC32wMaTqROiji5CXQV6CLGSAhPYGbyTF+JXnGwaOPIxkZHExGptjweD6U7dpD/2WfkffYZzkOHffcs9eoR1acPUf37E9bufO01FxERERFD+V2gb9y4keTkZMLCwrj44osBeP7553nqqadYsmQJF1xwQcBDitQp/q5wKTpSoOsAURHDVEyipyxO8ZXos5JnqUQXEfmNsv37vaX5woWU/W+X77o5IoLInj2J6t+fiE4dMQVpLZ2IiIiIVA9+/810/PjxDBw4kBkzZhB05C+2TqeTESNGMG7cOFavXh3wkCJ1ykmucEmyJVVVIhE5AfHh8d51LkuG82ver94SvfcsGkepRBeRus2ZkUH+F4vI+2whJd9v9V03Wa3YunUj6oorsHW7DHNoqIEpRURERET+2ElNoB9bngMEBQVx33330b59+4CGE6mTbPHej4UZJ/S4b4WLJtBFDBcfHs/M3jOPluhLVKKLSN3kys+nYOlS8j/7jMKvvwG323vDbCaiY0eirriCyF49sURFGRtUREREROQv+F2gR0VFsW/fPlq2bFnp+v79+4mMjAxYMJE6yzeBnu59sWk2/+nj2oEuUr1UTKKnLE7h17xfGbZ4GLOTZ6tEF5Faz11SgmPVKvI/+wzHqi/xlJf77oWddx5R/fsT1SeZoPh4A1OKiIiIiPjH7wL9uuuuY/jw4UyePJlLLrkEgK+++op7772XG264IeABReqciCMvKt3lUJIL4fWO+2i5q5zM4kwAEiMST0c6ETkBcWFx3nUui4ezO283wxYPY1byLM6IOsPoaCIiAeUpL6fw66/JX7iQgmXLcRcW+u6FnNWCqCv6E3VFP4Ib64eIIiIiIlIz+V2gT548GZPJxM0334zT6QTAarVy22238cwzzwQ8oEidExQCodHe8tyR9qcFenpxOh48WM1W6oUe/zkROf3iwuKYmTyzUok+O3m2SnQRqfE8bjfFW7aQv3Ah+YsW48rO9t2zNmhA1BVXENW/P6HnnG1gShERERGRwPC7QA8ODubFF1/k6aefZteuXQA0b96c8PDwgIcTqbNsiUcK9HRIaHXcxw47DgOQGJ6I2fTnq15E5PSrKNFHLB7Brrxdvkn0JlFNjI4mIuIXj8dD6S+/kL9wIXmffYbz0GHfPUu9ekT16UNU//6EtTsfk8lkYFIRERERkcDyu0CvEB4eTtu2bQOZRUQq2BIgc4e3QP8TqUXe/edJtqTTkUpETkJcWBxvJL/hK9FTFqUwq49KdBGpGcrT0sj78EPyFi6k7H+7fNfNERFE9upF1BVXENGpI6agk35ZISIiIiJSrZ3Q33Svvvpq5syZQ1RUFFdfffWfPvvBBx8EJJhIneY7SDTtTx/zHSAargNERaqz35bowxYN443kN2hmb2Z0NBGR3/G4XBSuXUvOgndwrFrlPdQcMFmt2Lp1I+qKK7B1uwxzaKixQUVEREREToMTKtDtdrvvrZhRUVF6W6ZIVbMleD8W/sUEekWBHqECXaS6q1jnMnLpSHbm7PSW6L3f4KyYs4yOJiICQHlaOrnvv0fue+9VWtES3r499quuIrJXTyxRUQYmFBERERE5/U6oQJ89e7bv13PmzKmqLCJSoaJA/4sVLmmF3gl1FegiNUNsWCwze8/k1qW3sj17OymLU5jeazqtYo9/1oGISFXyuFwUfvUVOe+8g2PlKnC5ALDY7divvJLowdcS0ry5sSFFRERERAzk96mD3bt3Jzc393fX8/Pz6d69e0BCidR5J7jC5XChdzpMBbpIzRETGsOM3jNoG9eW3NJchi8ZzraMbUbHEpE6pjwtnczXXmNXr97sH3UrjmXLweUirP2FNJg0kRarvyTxP/9WeS4iIiIidZ7fp/2sWrWKsrKy310vKSlhzZo1AQklUudFVEygZ/zpYxWHiKpAF6lZ7CF2pveazu3Lb2dz+mZGLh3Jqz1fpV1CO6OjiUgt5nG7KfxqHbnvLKBgxUrftLnZbsc+aCAxgwcT0qKFwSlFRERERKqXEy7Qt27d6vv1Tz/9RGpqqu9zl8vFokWLaNiwYWDTidRVvhUux59AL3YWk1eaB6hAF6mJbME2Xuv5GqNXjObb1G+5demtvNLjFS6qf5HR0USklnFmZJD7/gfkvvsu5QcP+q6HXXABMdcNJjI5WQeCioiIiIgcxwkX6Oeffz4mkwmTyfSHq1rCwsKYOnVqQMOJ1FkVK1yKMsHtArPld49UHCAaHhROpDXydKYTkQAJt4bzSo9XGLtiLOsPr+f2ZbfzYvcXuaTBJUZHE5EazuN2U7huPbkLFlCwciU4nQCYo6KwDxpEzOBrCTlLhxiLiIiIiPyVEy7Qf/31VzweD82aNWPDhg3Ex8f77gUHB5OQkIDF8vuST0ROQngsYAKPG4qyjk6kH6OiQK8fUR+TyXSaA4pIoIQFhTG1x1TuWnUXqw+s5s7ld/LC5S/QtVFXo6OJSA3kzMgg94MPvdPmBw74roe1a0f0dYOJ6tNH0+YiIiIiIn444QK9SZMmALjd7ioLIyJHWIIgIg4KM7xrXP6iQBeRmi3EEsKUblO4d/W9LN+3nLErxzK562R6NOlhdDQRqQE8bjeF69eT+867FCxffnTaPDIS+6BBRA++ltCzzzY4pYiIiIhIzeT3IaIVfvrpJ/bt2/e7A0UHDhx4yqFEBO8al4oCnba/u11RoCdFJJ3mYCJSFawWK89e9iz3r7mfRXsWcfeXd/NMl2fo07SP0dFEpJpyZmaS++GH5L77HuX79vmuh51/PtGDBxPVtw/msDADE4qIiIiI1Hx+F+i7d+/mqquuYtu2bZhMJjweD4BvhYTL5QpsQpG6ypYAaYAj/Q9vpxZ5C/TEiMTTGEpEqpLVbOWZLs9gNVv5dPen/GvNvyh3lzOg+QCjo4lINeFxuyn65htyFrzjnTYvLwfAbLNhHziQ6OuuI/QcTZuLiIiIiASK3wX62LFjadq0KcuXL6dp06Zs2LCBrKws7r77biZPnlwVGUXqpogja1uOV6BXrHAJ1woXkdrEYrbwROcnCLYE8/7O93lg7QOUu8u5+qyrjY4mIgZyZmeT98EH5Lz7LuV7j5k2P++8o9Pm4eEGJhQRERERqZ38LtDXr1/PihUriIuLw2w2YzabufTSS3n66acZM2YMmzdvroqcInWP7QQLdO1AF6l1LGYLD3d6mCBzEAt2LOCRdY9Q5irj+pbXGx1NRE6z4q1byZk7j/wvvsBzZHWid9p8ANGDBxPasqXBCUVEREREaje/C3SXy0VkZCQAcXFxHDp0iHPOOYcmTZqwY8eOgAcUqbNsR1azONJ+d8vj8ahAF6nlzCYzD3R4gGBLMG/99BZPffMUZa4ybm5zs9HRRKSKuUtLyf/8C3LmzaNk2zbf9dBzzyXmhuuJ6ttX0+YiIiIiIqeJ3wX6ueeey/fff0/Tpk3p0KEDkyZNIjg4mOnTp9OsWbOqyChSN1VMoBf+fgI9vyyfImcRoAJdpDYzmUzc2/5eQiwhvLHtDZ7d+Cxl7jJGtB1hdDQRqQJlBw6Su2A+ue++hys3FwCT1UpUv37EDLmRsL/9zeCEIiIiIiJ1j98F+oMPPkhhYSEAjz/+OP3796dLly7ExsayYMGCgAcUqbP+ZIVLxfR5dEg0YUFhpzOViJxmJpOJMe3GEGwOZtr303hx04uUu8r553n/9B3gLSI1l8ftpnDdenLmzcOxahW43QAENUgi5vobiL7m7wTVq2dsSBERERGROszvAj05Odn36xYtWvDzzz+TnZ1NTEyMXsiLBNKfrHBJK/Je0/S5SN1gMpm47fzbsFqsvLjpRaZ9P40ydxlj2o3R/3tFaihXQQF5H35Izry3Kduzx3c94pJOxAwZgq1bN0wWi3EBRUREREQEOIkC/Y/U01SMSOBFHJlAL84BZxkEBftu+fafh6tAF6lLRrQdQbA5mGc3Pssb296gzFXGPe3vUYkuUoOU7PiFnHnzyPv0UzxF3nVsZpsN+1VXEXPDDYQ0a2pwQhEREREROdYJFehXX331CX/DDz744KTDiMgxwmLAHARuJxRmgL2h71ZFgZ4YkWhUOhExyM1tbibYEsxT3zzFmz+9SamrlPs73I/ZZDY6mogch6e8nIJly8iZO4+ijRt910POakHMkCHYBwzAHBFhYEIRERERETmeEyrQ7XZ7VecQkd8ym71T6AWHvGtcjinQDxceBrTCRaSuur7l9QRbgnl03aMs2LEAp9vJw50eVokuUs2Up6eT+8675L7zDs70I2eaWCxE9uxJzJAbCb/oIr2DRERERESkmjuhAn327NlVnUNE/oitokCvfJBoxQR6UkSSEalEpBq4+qyrsZqtPPjVg7y/833KXGU83vlxgswB2c4mIifJ4/FQvGkTOXPnkr9kKTidAFji4ogZPJjo6wZjTdQ7yEREREREagq9yhapzmxH9qAX/nGBrgl0kbptQPMBWM1W/r3m33y6+1PK3eVM6DIBq9lqdDSROsddVETepwvJmTeP0h07fNfDLriAmCE3EtWrF6bg4D/5DiIiIiIiUh35XaA3bdr0T99qunv37lMKJCLHqCjQHWm+S26Pm7Qi7+cq0EWkT9M+WM1W7ll9D4v2LKLcXc6zXZ/FalGJLnI6lO3ZQ87bb5P7wYe4CwoAMIWGYh/Qn5gbbyS0VSuDE4qIiIiIyKnwu0AfN25cpc/Ly8vZvHkzixYt4t577w1YMBEBbEfe4n3MCpfskmzK3eWYMJEQnmBQMBGpTno06cGLl7/I+JXjWb5vOeNWjeP5bs8TYgkxOppIreRxuXCsXk3O3HkUrl3ru2494wxibriB6KuvwqIzhEREREREagW/C/SxY8f+4fVXXnmFjRs3nnIgETlGRMUE+tECvWJ9S1xYnNY0iIhP10ZdmdpjKmNXjGX1gdWMWTGGKZdPISwozOhoIrWGu7CQnHffJeet/1J+8KD3osmErWtXYoYOIaJzZ0xmHeYrIiIiIlKbBOxv+H379uX9998P1LcTEThmhcvvC3QdICoiv3VJg0uY1nMaYUFhrDu0jjuW30FReZHRsURqPFduLhkvv8L/uvcg/ZmJlB88iNlup15KCs2XLKbx669h69JF5bmIiIiISC0UsENE33vvPerVqxeobycicMwKl6M70CsK9MSIRCMSiUg1d1H9i3i91+vctuw2vk39ln8u+yfTekzDFmwzOppIjVOelkb27DnkvPMOniLvD6OsTc4gNmU49oEDMIfpHR4iIiIiIrWd3wV6u3btKh0i6vF4SE1NJSMjg2nTpgU0nEidVzGBXpjhu1RRoOsAURE5nnYJ7ZjRawa3LruVzembGbV0FK/2fBV7iHYyi5yIsj17yJo5k7yPPsZTXg5ASMuWxI0aSWRyMiaLxeCEIiIiIiJyuvhdoF955ZWVPjebzcTHx9OtWzdatmwZsGAiwtECvTQfyoogOJzUoiMFergKdBE5vrbxbZnZeyajlo5iW+Y2Ri4ZyfRe04kOjTY6mki1VbJ9O5nTp1OweAm43QCEtb+QuFGjhY336QAAIABJREFUiOjSpdIQiYiIiIiI1A1+F+iPPPJIVeQQkT8SEgVBoeAsgcJ0CD5TE+gicsJaxbZiZvJMRi4Zyfbs7fxj0T94teerJNl0hoLIsYo2biTz9ekUrlnju2a77DJibx1F+AUXGJhMRERERESMdlI70F0uFx9++CHbt28HoHXr1gwaNIigoICtVBcRAJMJIhIgb5/3INGYMzlceBhQgS4iJ+bsmLOZ3Wc2IxePZFfeLoZ8PoRXerxCq9hWRkcTMZTH48GxahVZM96geNMm70Wzmai+fYkdNZLQc84xNqCIiIiIiFQLfjfeP/74IwMGDCAtLY1zjrywmDhxIvHx8Xz66aece+65AQ8pUqfZjhboTreTzOJMAJIiNEEqIiemmb0Zc6+Yy23LbuN/uf/jlkW3MPmyyXRt1NXoaCKnncfpJH/RYrKmT6f0l18AMFmt2K++mtjhKQSfcYbBCUVEREREpDox+/sFI0aM4Nxzz+XAgQNs2rSJTZs2sX//fv72t78xatSoqsgoUrfZEr0fHWlkFGXg9rgJMgcRGxZrbC4RqVHqR9Tnzb5v0jGpI8XOYsasGMM7O94xOpbIaeMuLSVn/gJ29e3HoXvuofSXXzCHh1MvJYXmy5aR9NijKs9FREREROR3/J5A37JlCxs3biQmJsZ3LSYmhqeeeoqLLroooOFEhKMHiTrSfQeIJoYnYjb5/fMvEanjIoMjmdZzGo+te4yPd33ME18/wSHHIcZcMEb/TZFay+UoJHfBfLLmzMGV4X0XlyU6mpibb6LekCFY7HaDE4qIiIiISHXmd4F+9tlnk5aWRps2bSpdT09Pp0WLFgELJiJHVBTohem+A0QTwxMNDCQiNZnVbOWJzk/QMLIh07ZMY+YPMznkOMSTlz5JsCXY6HgiAePMzib7rbfImTsPd34+AEH16xObMozoa67BHB5ucEIREREREakJ/C7Qn376acaMGcOjjz5Kx44dAfj66695/PHHmThxIvlHXqAAREVFBS6pSF11zAS6DhAVkUAwmUzcdt5tNLQ15JGvHuGLPV+QVpTGS91fwh6iaVyp2coPHSJr9hxy330XT0kJAMFNmxI7YgT2Af0xBesHRSIiIiIicuL8LtD79+8PwODBgzGZTAB4PB4ABgwY4PvcZDLhcrkClVOk7jpmB3rFBLoOEBWRQBjYfCAJ4QmMXzmeTembGPr5UKb1nEbjyMZGRxPxW+nu3WTNeIO8Tz8FpxOA0DZtiB01isiePTBZLAYnFBERERGRmsjvAn3lypVVkUNEjifimB3oRwp0TaCLSKB0TOrIm33f5Pblt7Mnfw9DPx/Ky91fpm18W6OjiZyQ4m0/kDV9OgXLlsGRoY7wDh2IHTWSiEsu8Q18iIiIiIiInAy/C/TLLrusKnKIyPHYVKCLSNU6K+Ys5vaby+jlo9mevZ2UxSlM7DqR7md0NzqayHEVffstma++SuG69b5rth49iBs5grDzzzcwmYiIiIiI1CZ+F+gAubm5zJw5k+3btwPQpk0bUlJSsNu1N1Uk4CoKdGcxaTpEVESqSEJ4AnP6zOHuL+9m7cG1jFs5jn9d/C+GtBpidDSRSkp37iT9uedxrFrlvWCxEHVFP2JHjCD07LMNzSYiIiIiIrWP2d8v2LhxI82bN+eFF14gOzub7Oxsnn/+eZo3b86mTZuqIqNI3RYcAcE2nEBOaS4A8eHxxmYSkVop3BrO1O5Tufbsa/Hg4ZkNzzDp20m4PW6jo4lQnpbO4YceYvegK73lucVC9HXX0XzxIhpOmqTyXEREREREqoTfE+jjx49n4MCBzJgxg6Ag75c7nU5GjBjBuHHjWL16dcBDitR5tgSy84rx4MFsMhMTEmN0IhGppYLMQTzU8SEa2hoyZdMU3vrpLQ47DvN0l6cJDQo1Op7UQS6Hg6yZM8mePQdPSQkAkb16ET9+PCHNmhqcTkREREREaju/C/SNGzdWKs8BgoKCuO+++2jfvn1Aw4nIEbZEMh37AYgNjcVithgcSERqM5PJxPC2w2lga8ADax9g2b5lpC9JZ2r3qdQLrWd0PKkjPOXl5LzzDpmvTMOVnQ1A2Pnnk3DfvYRfcIHB6UREREREpK7we4VLVFQU+/bt+931/fv3ExkZGZBQIvIbtgQyLd7SPC4szuAwIlJX9G3al+m9phMVHMXWjK0M/Xwoe/L2GB1LajmPx0P+4iXs7j+AtCeexJWdTXCTJjR86UWavD1P5bmIiIiIiJxWfhfo1113HcOHD2fBggXs37+f/fv3M3/+fEaMGMENN9xQFRlFJEIFuogYo3399rzV7y0a2hqyv2A/N31xE5vTNxsdS2qpou++Y+/1N3Bw7FjK9u7FUq8eiQ8/RLOFnxLVuzcmk8noiCIiIiIiUsf4vcJl8uTJmEwmbr75ZpxOJwBWq5XbbruNZ555JuABRQSwJZIRpAJdRIzRzN6M//b7L2NWjGFb5jZGLB7BhC4TSD4z2ehoUkuU7t5N+vPP41i2HABTWBixw/5BvZThWGwRBqcTEREREZG6zO8CPTg4mBdffJGnn36aXbt2AdC8eXPCw8MDHk5EjtAKFxExWFxYHDOTZ/Kv1f9i5f6V3PPlPRx2HOaWNrdoKlhOmjMjg4xXXiH33ffA5QKzmei//5240aOxJiYYHU9ERERERMS/An3Pnj0sXbqUsrIyunXrRtu2basql4gcy5ZAlgp0ETFYWFAYL3R7gWc3Psvc7XN57rvnOOA4wL8v/jdBZr9/Ji91mLuwkKzZc8iaNQtPUREAtssvJ+Huuwhp0cLgdCIiIiIiIked8KvdlStX0r9/f4qLi71fGBTErFmzGDp0aJWFE5EjbAlkqEAXkWrAYrbw74v/TUNbQ5799lkW7FhAamEqk7pOItyqd6PJn/M4neS+9z4ZL7+MKzMTgNC2bUm49x4iLr7Y4HQiIiIiIiK/d8KHiD700EP06tWLgwcPkpWVxciRI7nvvvuqMpuIVLAlkmnx/nGNV4EuItXATa1v4vluzxNiCeHLA18ybPEwMoszjY4l1ZTH46FgxQp2DxxE6qOP4srMxNq4MQ1feJ4z31mg8lxERERERKotk8fj8ZzIg9HR0axbt47WrVsDUFRURFRUFGlpacTGxlZpyJogPz8fu91OXl4eUVFRRseRWsZTXsLF/72QErOZz/vOo3GC1ieJSPWwJX0LY1aMIac0hwYRDZjWcxrNo5sbHUuqkeLvvyft2Wcp3vgdAJboaOJuv52Y66/DFBxscDoREREREamL/OlyT3gCPT8/n7i4o5Ov4eHhhIWFkZeXd/JJReSEFHqclJi9f1xjnS6D04iIHHV+wvn8t99/aRLVhEOFh7jpi5v4NvVbo2NJNVC2dy8Hxo1nz3XXU7zxO0whIcSOGkXzpUuod/NNKs9FRERERKRG8OvEr8WLF2O3232fu91uli9fzg8//OC7NnDgwMClExEAMoozAIhwuwkv0Q+tRKR6OSPqDN7q+xZjVoxhS8YWRi0dxeOXPM6A5gOMjiYGcGZnkzntVXLmzwenE0wm7FddRfyYO7HWr290PBEREREREb/4VaDfcsstv7t26623+n5tMplwuTQdKxJoFXuF41wucKQbnEZE5PdiQmOY0XsGD6x9gCV7l3D/2vs5XHiYkW1HYjKZjI4np4G7uJjs/3uTrBkzcBcWAhDRtQsJd99N6DnnGJxORERERETk5Jxwge52u6syh4j8iaziLADinC4oVIEuItVTaFAoz172LA2/a8jsH2czdfNUDjkO8UDHB7CarUbHkyricbnI++gjMl58CWe69/9Roa1bk3DvPUR06mRwOhERERERkVPj1wS6iBijYoWLdwI9zeA0IiLHZzaZuav9XTSwNeDpDU/z/s73OVx4mEldJ2EPsf/1N5Aaw+Px4Fi1ioznX6B0504ArA0aED9+PFFX9MNkPuGjdkRERERERKotFegiNcDRFS5urXARkRrh+pbXUz+iPvetvo91h9Zx/cLrmXL5FM6pp1UetUHRps2kP/ccxd99B4DZbifun/8k5sYbMIeEGJxOREREREQkcDQaJFIDaAe6iNRE3Rp3482+b9LQ1pADjgMM/Xwon+761OhYcgpKd+5k/+13sPfGGyn+7jtMISHEjhxBiyWLiR32D5XnIiIiIiJS66hAF6kBVKCLSE3Vsl5LFvRfQOeGnSlxlXD/2vt5+punKXeVGx1N/FB+6BCH/nM/uwddiWPFCrBYiL72WpovWUzC3XdjsWs9j4iIiIiI1E5a4SJSA1QU6PHagS4iNZA9xM4r3V/h1e9f5fWtrzPv53lsz97Oc5c9R3x4vNHx5E84c3LIen06OfPm4SkrAyCyd2/ix40lpFkzg9OJiIiIiIhUPb8n0Pfv38+BAwd8n2/YsIFx48Yxffr0gAYTkaMqTaAXZYLbZXAiERH/WMwWRrcbzdTuU4m0RrI5fTODFw5mU9omo6PJH3AXFZH52mvs6tWb7Dlz8JSVEX7xxZy5YD6NXnpR5bmIiIiIiNQZfhfoN954IytXrgQgNTWVXr16sWHDBh544AEef/zxgAcUqevK3eXklOQAEOt0g8cNRVkGpxIROTndGnfj7f5v0yK6BZnFmQxfPJy52+fi8XiMjiaAp7ycnPnz+V9yMhlTXsTtcBDSsiWNZ0znjP+bQ9h55xkdUURERERE5LTyu0D/4YcfuPjiiwF45513OPfcc1m3bh1z585lzpw5gc4nUudlF2fjwYPFZCEmrJ73YkGqsaFERE5Bk6gmzO03l75n9sXpcfLMhmf4z9r/UOwsNjpaneVxu8n/4gt29x9A6qOP4crIxNqoEQ2efZamH7yPrUsXTCaT0TFFREREREROO793oJeXlxMSEgLAsmXLGDhwIAAtW7bk8OHDgU0nImSWeNe31Auth8Vmg8IM7UEXkRov3BrOxK4TaRvfluc2Psdnuz9jZ85OpnSbQuOoxkbHq1MK160j/bnnKfnxRwAssbHE3XYbMYOvxRQcbHA6ERERERERY/k9gd6mTRtee+011qxZw9KlS+nTpw8Ahw4dIjY2NuABReq6rGLvupa4sDiIrO+9qAl0EakFTCYTN7W+iTd6v0FsaCy/5PzCdZ9dx+oDq42OVicU//Aj+1JS2JcynJIff8QcHk7cnaNpvngx9YYOUXkuIiIiIiLCSRToEydO5PXXX6dbt27ccMMNnHdkF+Ynn3ziW+0iIoGTUZQBVBToid6LKtBFpBZpX789C/ov4G/xf6OgrIA7lt/Bq1texe1xGx2tVirbs4cD48ez55prKFy3HqxWYm66ieZLlxB/xx1YbBFGRxQREREREak2/F7h0q1bNzIzM8nPzycmJsZ3fdSoUYSHhwc0nIhAZrF3hUtcWByYj0wDOlSgi0jtkhiRyJzkOUz8diILdixg2vfT+CHrByZcOgF7iN3oeLWCMyODjGnTyH33PXA6wWTCPnAAcXfeSXCjRkbHExERERERqZb8nkAH8Hg8fPfdd7z++usUFBQAEBwcrAJdpApkFB87ga4VLiJSe1ktVh7s+CBPXfoUIZYQVh9YzfULr2dH9g6jo9VoroIC0qdM4X+9k8l9ez44ndguu4ymH31Ig4kTVZ6LiIiIiIj8Cb8n0Pfu3UufPn3Yt28fpaWl9OrVi8jISCZOnEhpaSmvvfZaVeQUqbMq7UAnynuxQAf2ikjtNbD5QM6KPovxq8ZzwHGAoZ8P5ZFLHqF/s/5GR6tR3KWl5Mx7m6zXX8eVmwtA2HnnkXDP3YRfdJHB6URERERERGoGvyfQx44dS/v27cnJySEsLMx3/aqrrmL58uUBDSciR1e4xIfHQ2SS92JBmoGJRESqXqvYVizov4DODTpT4irhP2v+wzMbnqHcXW50tGrP43KR+8GH7Orbl/SJE3Hl5hLcvDmNXp5Kk/lvqzwXERERERHxg98T6GvWrGHdunUEBwdXun7mmWdy8ODBgAUTEa9KK1xCErwXHangdoP5pLYwiYjUCPYQO6/0eIVp309j+tbpzN0+l+1Z25l82WTvDxWlEo/Hg2PlSjJeeIHSnf8DIKh+feLvHI190CBMQX7/tU9ERERERKTO87t9c7vduFyu310/cOAAkZGRAQklIl4ej+foCpfQOLAlACZwO6Eoy9hwIiKngcVs4c52d/LS5S9hs9rYlL6JwQsHszl9s9HRqpWS7dvZO/QmDtx+B6U7/4fZbifh3ntpvugLov/+d5XnIiIiIiIiJ8nvAr13795MmTLF97nJZMLhcPDII4/Qr1+/gIYTqesc5Q5KXCUAxIbFgsUKEXFHbuogURGpOy4/43Lm959Pi+gWZBZnkrIohbnb5+LxeIyOZih3YSFpEyfx6zXXUvzdd5hCQ4kdNYoWS5cQOzwFc2io0RFFRERERERqNL8L9Oeee46vvvqK1q1bU1JSwo033uhb3zJx4sSqyChSZ1XsP4+wRhBuDfdetNX3fixQgS4idUuTqCbM7TeXPmf2welx8syGZ7h/7f0UO4uNjmaIghUr2dV/ANmzZ4PLRVS/vjRfvIiEu8ZjiYoyOp6IiIiIiEit4Pf7eRs1asT333/P/Pnz2bp1Kw6Hg+HDhzNkyJBKh4qKyKnzHSAadsyu38j6kLYNCg4blEpExDjh1nAmdZ1E27i2PP/d8yzcvZBfcn5hSrcpNI5qbHS806I8NZW0p56iYOkyAKyNGlH/kYexdelicDIREREREZHa56QWYgYFBTF06NBAZxGR36go0GPDYo9ejKyYQE8zIJGIiPFMJhM3t7mZVrGtuOfLe/gl5xeu++w6nunyDF0bdTU6XpXxuFzkzJ1HxpQpuIuKICiI2GHDiLv9NswaYhAREREREakSJ1Sgf/LJJ/Tt2xer1conn3zyp88OHDgwIMFE5E8m0EET6CJS511U/yLe6f8Od315F1sztjJ6+WhuO+82bj3vVswmv7fUVWvFP/xI6iOPUPLjjwCEtWtH/cceJfTssw1OJiIiIiIiUrudUIF+5ZVXkpqaSkJCAldeeeVxnzOZTLhcroCFE6nrMoozAIgLizt6saJAd2gCXUQkMSKR2cmzmfTtJBbsWMC076fxQ9YPTLh0AvYQu9HxTpnLUUjGSy+S89+54HZjjooi4e67ib72Gkzm2vVDAhERERERkerohF55ud1uEhISfL8+3j8qz0UCK6s4C/jtCpck70dNoIuIABBsCebBjg/yZOcnCbGEsPrAam747AZ2ZO8wOtopKVi2jN39+5Pz5lvgdhPVvz/NP/+MmOsGqzwXERERERE5TfTqS6Qa+8MVLraKFS6pBiQSEam+BrUYxFt936KhrSH7C/Yz9POhfLLrz1fPVUflhw6x//Y7ODD6TpypqVgbN6bxG2/QcPKzBMXF/fU3EBERERERkYDxu0AfM2YML7300u+uv/zyy4wbNy4goUTE6y9XuLjdBqQSEam+WsW2Yv4V8+ncoDMlrhIeWPsAj6x7hBJnidHR/pLH6SRr9hx29R+AY8UKsFqJ/eetNPv0E2yXdjY6noiIiIiISJ3kd4H+/vvv07nz71/EXXLJJbz33nsBCSUiXhUrXCoV6LYEwARuJxRlGRNMRKQaiw6N5pUer3DH+XdgwsQHOz9gyOdD2JO3x+hox1W8bRu/XjuY9IkT8RQVEXbhhTT74H0Sxo3DHBpqdDwREREREZE6y+8CPSsrC7v994dyRUVFkZmZGZBQIgLl7nKyS7KB3xToFitEHPlce9BFRP6QxWzhn+f9k+m9p1MvtB6/5PzC9Z9dz6I9i4yOVonL4SD1iSfZM/g6Srdvx2y3k/TkEzR5601CzjrL6HgiIiIiIiJ1nt8FeosWLVi06PcvPr/44guaNWsWkFAiAtnF3vLcYrIQExpT+eaxa1xEROS4OiZ15N0B73Jh4oUUlhdy75f3MuGbCZS5ygzN5fF4yF+8hN39riBn7lzweIgaOIDmn39G9DXX6JBQERERERGRaiLI3y+46667GD16NBkZGXTv3h2A5cuX89xzzzFlypSABxSpqzJLvO/oiA2NxWz6TZFiqw9s0wS6iMgJSAhP4I3eb/DKlld4Y9sbvP3z22zN2MrkyybTKLLRac9TduAgaU88gePLLwGwNjmDpEceIeKSS057FhEREREREflzfhfoKSkplJaW8tRTT/HEE08AcOaZZ/Lqq69y8803BzygSF2VWXSkQA+L/f3Nign0gtTTmEhEpOYKMgcx9oKxtEtox/1r7+fHrB8ZvHAwT3V+isvPuPy0ZPCUl5P95ltkvPwynuJisFqJGzmS2FtHYQ4JOS0ZRERERERExD8n9f7g2267jQMHDpCWlkZ+fj67d+9WeS4SYJnF3gI9Pjz+9zcjk7wfVaCLiPila6OuvNv/Xf4W/zcKygoYs3IMz218jnJ3eZX+e4u3bOHXa64l/dln8RQXE96+Pc0++pD4MXeqPBcREREREanGTqpAdzqdLFu2jA8++ACPxwPAoUOHcDgcAQ0nUpdlFGcAvzlAtEJkovejCnQREb8l2ZKYkzyHm1rfBMCcH+eQsiiF1MLA/zfVlZ/P4cceY88NN1K6YwcWu52kCRM44603CWnePOD/PhEREREREQksvwv0vXv30rZtWwYNGsQdd9xBRoa35Js4cSL33HNPwAOK1FUVE+ixoX+0wuXIBLpDBbqIyMmwWqzcd9F9TOk2hUhrJFsytnDtp9ey9uDagHx/j8dD/hdfsOuKK8h9ez54PNivvJJmX3xO9NVXYTKZAvLvERERERERkarld4E+duxY2rdvT05ODmFhYb7rV111FcuXLw9oOJG6LKs4CzjeChftQBcRCYQeTXqwoP8CWtVrRW5pLrcvu52pm6ficrtO+nuWHTjA/lG3cnD8XbgyMgk+80zOmDOHBs88TVC9egFMLyIiIiIiIlXN7wJ9zZo1PPjggwQHB1e6fuaZZ3Lw4MGABROp6/50hYvtSIHuSAO3+zSmEhGpfRpHNeatfm9x3TnX4cHD9K3TGbV0lO+dQCfK43KRNWs2u/sPoHDNGkxWK3GjR9P0k4+J6NihitKLiIiIiIhIVfK7QHe73bhcv5/KOnDgAJGRkQEJJSLHHCIa9gcT6LYEwARuJxRlnd5gIiK1UIglhAc7PsjELhMJCwpjQ+oGrvnkGjYc3nBCX1+6+1f2DhlK+qRJeEpKCO/QgaYff0z86Dsw/2boQERERERERGoOvwv03r17M2XKFN/nJpMJh8PBI488Qr9+/QIaTqSu8ng8R3egh/3BDnSLFSKOFOsFh09jMhGR2q1fs37M7z+fFtEtyCrJYuTSkUzfOh2354/f7eNxuciaOYtfr7qK4i1bMNtsJD35BGfMmU1Is6anOb2IiIiIiIgEmt8F+nPPPcdXX31F69atKSkp4cYbb/Stb5k4cWJVZBSpcxzlDkpdpcBxVrgARCZ6P2oPuohIQDWzN2PeFfMY1HwQbo+bqZuncvuy28kpyan0XOnu3ey9cQjpzz6Lp7SUiEsvpdmnnxB9zTU6JFRERERERKSWCPL3Cxo1asT333/P/Pnz2bp1Kw6Hg+HDhzNkyJBKh4qKyMmrmD63WW2EBR3nz1VkEqRuA4cKdBGRQAsLCuPJS5/kwsQLmfDNBL469BXXfnotky+bzHmxbcmeM4eMF1/CU1aG2WYj8d//wv73v6s4FxERERERqWX8LtABgoKCGDp0aKCziMgRFQX6cafPAWyaQBcRqWpXnXUVbeLacPequ9mTv4cH/nsLj/4/e/cdHVWBvnH8OyW9QXqAUIJ0BRT5CaxYkA6hCEGKoALqAhZEQUFFxYIrKiogIAoWkKqUBFApUlzAgiIISIdAIJWQXifz+yMki7u6S8nMTXk+5+TcMDO598k5RsiTN+/9NhDvI2cB8GrfnrApL+ESFmZwUhEREREREXGEqyrQDx06xIwZMzh48CAATZo04ZFHHqFx48ZlGk6kqrqsAt3nYlmjHegiIg7VsHpDFndbxJdT7qfF6oO42s6S524lZOIzhA4YrKlzERERERGRSuyKd6B/8cUXXH/99ezevZsWLVrQokULfv75Z2644Qa++OILR2QUqXKSspOA/1WghxYfMxKckEhEpOrKO3aMpPsepPWXB3G1wa8RZh4fYecB62ccSDlgdDwRERERERFxoCueQJ8wYQITJ05kypQpf3j8hRdeYMKECfTr16/MwolUVcm5lzOBXlKgawJdRMQR7IWFpCxYQPKMmcW7zn18CHnmGYpub4jH1qeIy4xj6PqhjG89noGNBmoSXUREREREpBK64gn0c+fOMWzYsP94/N577+XcORV5ImUhJScFuNwCXTvQRUTKWt7Ro5wcPISkt97Gnp+P1+23ERG9hmr97qZZ4PUsi1xGh/AOFBQV8Nr3rzF+23gy8zONji0iIiIiIiJl7IoL9DvuuIPt27f/x+Pfffcd7du3L5NQIlXd5a1wubgDPTMBioqckEpEpPKzFxaS/ME8TvS9m9y9ezH7+BA2dSrhc+bgEhpa+jpfV1/eufMdxt88HqvJytcnv2bg2oEcOn/IwPQiIiIiIiJS1q54hUuvXr14+umn2b17N23atAFg165dLF++nJdeeok1a9b84bUicuVKVrgEeQT99Yu8ggET2G2QnQzewc4JJyJSSeUdOcLZSc+Su28fAF6330bYlCm4hIT86etNJhPDmg2jeVBzntr6FKfSTzFk3RCeveVZ+lzXRytdREREREREKgGT3W63X8kHmM2XN7RuMpmw2WxXFaoiSk9Px8/Pj7S0NHx9fY2OIxXcbUtuIzUvlRWRK2jk3+ivXzitAWQlwsPbIay58wKKiFQi9sJCUj6aT/LMmdgLCop3nU+ahF+f3pddgqfmpjLpu0l8F/cdAD0jevJcm+fwcvFyZHQRERERERG5ClfS5V7xCpeioqLLeqsc8AGIAAAgAElEQVRK5blIWSooKiA1LxX4HytcQHvQRUSuUd6RI5wcOIik6dOxFxTgffvtRMREU63vlU2QV3evzqy7ZvHYjY9hNpmJOR7DwJiB/H7+dwemFxEREREREUe74gJdRBzrfM55ACwmC9Xdq//3F5cW6LqBr4jIlbAXFpI8Zy4n7u5H7m+/Yfb1pcY/XqfWnNl/ubLlfzGbzDzY/EHmd5lPiGcIJ9NPMmTtEBb/vpgr/IU/ERERERERKScuu0DfuXMnMTExf3js008/pV69egQHB/PQQw+Rl5dX5gFFqprknOL95wHuAZhN/+NLtKRAz0xwcCoRkcoj9/BhTt4zkKR33imeOr/jDiKio/HrffkrW/6bViGtWBG5gttr3U5+UT6vff8a47aMIz0/vQzSi4iIiIiIiDNddoE+ZcoU9u/fX/rnffv2MWLECDp27MgzzzxDdHQ0U6dOdUhIkaqkpEAP9Pwf61sAfMKKj5pAFxH5n4qnzudwol9/cvfv/9fU+ez3cQkp2xsxV3OvxowOM5jQegJWs5WNsRuJWhPFr0m/lul1RERERERExLEuu0Dfs2cPd911V+mflyxZwi233MK8efMYN24c7733HsuWLXNISJGqJCknCbiM/ecA3hfXDGgHuojIf5V7qGTq/F0oKMD7zjuJiCm7qfM/YzKZGNp0KAu7LaSWdy3OZp3l/vX3s+C3BRTZixxyTRERERERESlbl12gp6amEnLJTtCtW7fSrVu30j+3bt2a06dPl206kSqodAL9cgr00gl0FegiIn/GXlBA8uzZnOh/cercz48a096g1vuzcAku26nzv9IssBnLIpfRpW4XCu2FvL37bcZsGsP53PNOub6IiIiIiIhcvcsu0ENCQjhx4gQA+fn5/Pzzz7Rp06b0+YyMDFxcXMo+oUgVc2UFuibQRUT+Su6hQ8VT5+++Vzx13qEDEdFr8IuMdNjU+V/xcfVh2m3TmNx2Mm4WN76L+46oNVH8GP+jU3OIiIiIiIjIlbnsAr179+4888wzbN++nYkTJ+Lp6Un79u1Ln9+7dy/169d3SEiRquSqJtAzE6DI5sBUIiIVhz0/n6RZszjRP4rcAwf+NXU+a6bTps7/jMlkIqphFJ/3+JwIvwgScxIZ+c1I3t/zPjb9P1xERERERKRcuuwC/eWXX8ZqtXL77bczb9485s2bh6ura+nz8+fPp3Pnzg4JKVKVlBToQR5B//vFXsGACew2yE5xbDARkQog+5dfONGvH8kzZhZPnd91F/Vjog2ZOv8rDas3ZHGPxfS9ri9F9iJm/zqbkd+MJCErwehoIiIiIiIi8m8uu0APDAxk27ZtpKamkpqaSt++ff/w/PLly3nhhRfKPOClXn/9dUwmE2PHji19LDc3lzFjxhAQEIC3tzf9+vUjIeGP34DGxsbSo0cPPD09CQ4OZvz48RQWFv7hNVu2bOGmm27Czc2N6667jo8//tihn4vIX7miCXSLFbwuFu0Z5xyYSkSkfLNlZhH/yqucGjyEvCNHsfj7U+OtN6k1cwbWoMv4gaSTebp4MuVvU5jafiqeVk9+SviJqOgotp/ZbnQ0ERERERERucRlF+gl/Pz8sFgs//G4v7//HybSy9qPP/7I3Llzad68+R8ef+KJJ4iOjmb58uVs3bqVs2fPcvfdd5c+b7PZ6NGjB/n5+ezYsYNPPvmEjz/+mMmTJ5e+5sSJE/To0YM777yTPXv2MHbsWEaOHMnXX3/tsM9H5M/Y7fYrK9ABfEKLjxmaXBSRqinj2285HhlJ6sKFYLfj17cvEWtj8OvRo9xMnf+VnhE9WdpzKY39G5Oal8roTaN5+6e3KSgqMDqaiIiIiIiIcBUFuhEyMzMZMmQI8+bNo3r16qWPp6Wl8dFHH/H222/ToUMHWrVqxYIFC9ixYwe7du0C4JtvvuHAgQMsXLiQli1b0q1bN15++WVmzZpFfn4+AHPmzKFevXq89dZbNGnShEceeYT+/fszffp0Qz5fqboyCzLJs+UBEOARcHkfVLIHXRPoIlLFFCYnEzduHGdGjabw3DlcatWi9vyPqDH1NayX/HuhvKvrV5eF3RcyqPEgABbsX8D96+8nLjPO4GQiIiIiIiJSIQr0MWPG0KNHDzp27PiHx3fv3k1BQcEfHm/cuDG1a9dm586dAOzcuZMbbriBkJCQ0td06dKF9PR09u/fX/qafz93ly5dSs/xZ/Ly8khPT//Dm8i1SspJAsDbxRsPq8flfZDPxf+2M+IdlEpEpHyx2+1c+HIlx3r0JH3dejCb8R8xnIjoNXi1a2d0vKviZnFj0i2TmH7HdHxcfdibvJeoNVFsOLXB6GgiIiIiIiJVWrkv0JcsWcLPP//M1KlT/+O5+Ph4XF1dqVat2h8eDwkJIT4+vvQ1l5bnJc+XPPffXpOenk5OTs6f5po6dSp+fn6lb+Hh4Vf3CYpcIiWn+Eagl72+Bf41gZ6pAl1EKr/82Fhihw/n3KRJFKWl4dakCXWXLSNk/HjMHpf5g8dyrGOdjiyPXE7zoOZkFGQwbss4Xtn1SulvJ4mIiIiIiIhzlesC/fTp0zz++OMsWrQId3d3o+P8wcSJE0lLSyt9O336tNGRpBJIyi6eQL+yAr1kB7oKdBGpvOyFhaR8NJ/jvXqTvXMXJjc3gp96knrLluJxfTOj45Wpmt41+bjrxwy/fjgASw8tZcjaIZxIO2FwMhERERERkaqnXBfou3fvJjExkZtuugmr1YrVamXr1q289957WK1WQkJCyM/P58KFC3/4uISEBEJDi0vF0NBQEhIS/uP5kuf+22t8fX3x+ItpNjc3N3x9ff/wJnKtSm4gGuQRdPkf5F1SoGsHuohUTrkHDnBywD0kTpuGPTcXzzZtiFizmoCRIzG5uBgdzyFczC480eoJZnecjb+7P4dSD3FPzD1EH4s2OpqIiIiIiEiVUq4L9Lvuuot9+/axZ8+e0rebb76ZIUOGlL7v4uLCpk2bSj/m0KFDxMbG0rZtWwDatm3Lvn37SExMLH3Nhg0b8PX1pWnTpqWvufQcJa8pOYeIsyTnFhfol30DUbhkAj3hv79ORKSCKcrJIfHNNzkRNYDcAwcw+/kR9uqr1F4wH9c6dYyO5xS31ryV5ZHL+b/Q/yOnMIdJ303i2e+eJbsg2+hoIiIiIiIiVYLV6AD/jY+PD9dff/0fHvPy8iIgIKD08REjRjBu3Dj8/f3x9fXl0UcfpW3btrRp0waAzp0707RpU4YOHcobb7xBfHw8zz33HGPGjMHNzQ2Av//978ycOZMJEyYwfPhwNm/ezLJly1i7dq1zP2Gp8pKziwv0q1rhkpkARTYwWxyQTETEubJ27uTcCy9SEBsLgE+3roROmoQ16Ap+Q6eSCPYM5oNOH/DBvg+Y8+sc1hxbw77kfUy7bRqN/BsZHU9ERERERKRSK9cT6Jdj+vTp9OzZk379+nHbbbcRGhrKl19+Wfq8xWIhJiYGi8VC27Ztuffeexk2bBhTpkwpfU29evVYu3YtGzZsoEWLFrz11lt8+OGHdOnSxYhPSaqw0hUunldQEHkFAyaw2yAr2THBREScxHbhAmcnPUvsA8MpiI3FGhpKrfffp9b06VWyPC9hMVsY1WIUH3b+kGCPYE6knWDw2sEsO7QMu91udDwREREREZFKy2TXd11lIj09HT8/P9LS0rQPXa5a39V9OXrhKHM7zqVdzXaX/4FvNiyeQH94G4S1cFxAEREHsdvtZHz1FfGvvIotJQVMJqoPGkTQuCeweHsbHa9cOZ97nue+e47tcdsB6FynMy+2exEfVx+Dk4mIiIiIiFQMV9LlVvgJdJHKJCUnBYBAzytY4QLgHVJ8zIgv40QiIo5XcO4cZ0aPIe6JcdhSUnCtX586ixYSOvl5led/wt/dn5l3zeSpm5/CarLyzalviIqO4rfk34yOJiIiIiIiUumoQBcpJwqKCkjNSwWucAc6gE9Y8VEFuohUIPaiIs4vWsTxHj3J/PZbcHEhcMwY6q38Es+bbjI6XrlmNpm5r9l9fNrtU2p61yQuM46h64bywd4PKLAVGB1PRERERESk0lCBLlJOlEyfW01WqrlVu7IPLrmRqAp0Eakg8o4e5dSQe0l4+RWKsrPxaNmSiC+/IOjRRzC7uhodr8K4IegGlkUuo1OdThTaC5nxywz6R/fnp/ifjI4mIiIiIiJSKahAFyknSgp0fw9/zKYr/NIsLdDPlXEqEZGyVZSfT9LMWRzvezc5v/yC2dOTkOefo87ni3Br0MDoeBWSr6svb93+FlPbT8Xf3Z/jacd54OsHeP6fz5Oam2p0PBERERERkQpNBbpIOZGUkwRcxfoW+FeBnplQholERMpW9s+/cOLuu0meORMKCvC+4w4i1sbgP2QIJrP+SXItTCYTPSN6sqbPGqIaRgGw6ugqIldFsvLISnTPeBERERERkauj71ZFyonknGQAgjyCrvyDS3egawJdRMofW2Ym8VNe5tSQIeQfPYYlIICab79Frdnv4xIWZnS8SsXPzY/JbSfzWbfPaFC9AWl5aUzeMZn7v7qfo6lHjY4nIiIiIiJS4ahAFyknSgr0q5pA9w4pPmoHuoiUM5lbt3K8ZySpn38Odjt+d99N/bUx+HbvjslkMjpepdUyuCVLey7lyVZP4mH14OfEn4mKjuLdn98lpzDH6HgiIiIiIiIVhgp0kXKipEAP8Ai48g8umUDPTIQiWxmmEhG5OvbCQhLffJPTD/+dwvh4XMLDqT3/I2q89iqWald4o2S5Ki5mF+6//n5W917NHeF3UGgv5MN9H9J3dV+2n9ludDwREREREZEKQQW6SDlxTStcvIIAE9htkJVctsFERK5QQWIisfc/QMqHHwFQ/d57iVizGq927QxOVjWFeYcxo8MM3r3zXUK9QonLjGP0ptGM2zKOhCzdO0NEREREROS/UYEuUk5c001ELVbwDi5+X3vQRcRAWbu+58Td/cj+6SfMXl7UfGc6oc89i9nDw+hoVV6H2h1Y3Xs19zW9D4vJwoZTG+i9ujeLDi7Cpt9eEhERERER+VMq0EXKiZScFOAqC3QAn9DiY6amCUXE+exFRSTP/YDY4cOxJSfj1rAhdVcsx7drV6OjySU8XTx5qvVTLO25lOaBzckqyOL1H15n0NpB7E/eb3Q8ERERERGRckcFukg5YLfbr+0mogDeFwt0TaCLiJPZLlzgzKjRJE2fDkVF+PXpQ92lS3CrV8/oaPIXGvk34rPun/F8m+fxcfHh4PmDDFo7iNe+f42M/Ayj44mIiIiIiJQbKtBFyoGMggzybHlAGUygZ2gCXUScJ2ffPk7c3Y/MrVsxuboS9srLhE19TStbKgCzycyARgNY03cNPSJ6YMfO4t8X03tVb746+RV2u93oiCIiIiIiIoZTgS5SDpRMn/u4+OBudb+6k/iEFR81gS4iTmC32zn/+eecGjyEgrNncaldm7pLl1Ctf39MJpPR8eQKBHoE8nr71/mg0wfU8a1DUk4S47eOZ9SmUZzOOG10PBEREREREUOpQBcpB5Kziwv0AI+Aqz+JT0jxMSO+DBKJiPy1oqwszj41noQpL2MvKMCnU0fqfbEC9yZNjI4m16BtjbZ80esLRrUYhYvZhX/G/ZO+q/syb+88CmwFRscTERERERExhAp0kXKgZAI9yDPo6k9SMoGeqQJdRBwn7+hRTgy4h/S1a8FiIfjpp6n53ntYfHyMjiZlwM3ixuiWo/my15fcEnoLebY83vvlPfpH9+fH+B+NjiciIiIiIuJ0KtBFyoHSG4i6X+X+c7hkB7oKdBFxjLToGE5EDSD/2DGswcHU+fQTAh64XytbKqG6fnWZ13keU9tPxd/dn+Npxxn+9XCe++45UnNTjY4nIiIiIiLiNCrQRcqBkgL9mla4eF8s0DMToMhWBqlERIoV5edz7qWXODt+PPacHDzbtqHeyi/xbNXK6GjiQCaTiZ4RPVnTZw1RDaMAWH1sNZGrIll5ZCVF9iKDE4qIiIiIiDieCnSRcqBMVrh4BYHJDPYiyEouo2QiUtXln4nj1KDBXFi8BEwmAkePovaHH2INuIYf+EmF4ufmx+S2k/ms22c0qN6AtLw0Ju+YzANfPcDR1KNGxxMREREREXEoFegi5UBSThIAgR7XsMLFYgWv4OL3M86VQSoRqeoyvv2WE/36kbt/PxY/P8I/mEvQY49hsliMjiYGaBnckqU9l/JkqyfxsHrwc+LPREVH8c7ud8gpzDE6noiIiIiIiEOoQBcpB0p3oF9LgQ7gE1J81B50EbkG9sJCEt96mzOjRlOUloZ7i+bUW/kl3u3bGx1NDOZiduH+6+9nde/V3BF+B4X2Qj767SN6r+rN+hPrsdvtRkcUEREREREpUyrQRcqBlJwUoCwK9LDiY6YKdBG5OoVJScQ+MJyUefMAqD50KHU/+wyXGjUMTiblSZh3GDM6zODdO98l1CuUc1nnmLBtAsPWD+O35N+MjiciIiIiIlJmVKCLGKzAVkBqXipQBgW6tybQReTqZf3wA8fvvpvsH3/E7OlJzelvE/rsJEyurkZHk3KqQ+0OrOmzhjEtx+Bh9WBP0h4GrR3Es989S0JWgtHxRERERERErpkKdBGDpeQWT59bTVaquVW7tpOVTKBrB7qIXAF7URHJ8+YRe/8D2JKScWvQgLorVuDbrZvR0aQC8LB68PcWfye6TzS96vcCYM2xNUSuimTOr3O0H11ERERERCo0FegiBivZf+7v4Y/ZdI1fkj6hxccMTf2JyOWxpaVxZvQYkt56G4qK8Ovdm7rLluIWUc/oaFLBhHiF8Oqtr7K4x2JaBrUkpzCHWXtm0WtVL9YdX6f96CIiIiIiUiGpQBcxWEmBHuQRdO0nKy3QNYEuIv9bzr7fOHF3PzK3bMHk6kroy1MIe30qZg8Po6NJBXZ94PV82u1Tpt02jTCvMOKz4nl6+9Pcu/5e9ibtNTqeiIiIiIjIFVGBLmKwkgL9mvefw78K9ExNoIvIX7Pb7aQuWcKpwYMpiIvDJTycuksWUz0qCpPJZHQ8qQRMJhNd63VlTZ81PHrjo3hYPdibtJch64YwcftE4rN0rw4REREREakYVKCLGCwpJwkoqwL94g70zAQosl37+USk0inKyuLshKeJf/El7AUFeHe8i3pfrMC9aVOjo0kl5G5156HmDxHTN4be9XsDEHM8hsiVkczeM1v70UVEREREpNxTgS5isJSc4puIlkmB7hUEJjPYiyAr6drPJyKVSt6xY5y45x7So6PBYiF4wgRqzZiBxdfX6GhSyQV7BvPKra+wpMcSbgq+iVxbLu//+j6RKyOJOR5Dkb3I6IgiIiIiIiJ/SgW6iMGSsstwAt1sAa/g4vcz9OvxIvIvaWvXciJqAPlHj2ENCqLOJx8TMPwBrWwRp2oW2IyPu37Mm7e/SQ2vGiRkJzBx+0SGrhvKr0m/Gh1PRERERETkP6hAFzFYcm4Z3kQULrmRqAp0EQF7YSEJU1/n7JNPYc/OxrNNG+qt/BLPm282OppUUSaTiS51u7Cm7xoev+lxPK2e7E3ey73r7uXpbU9rP7qIiIiIiJQrKtBFDJacXVygB3gElM0JSwv0c2VzPhGpsApTU4kd+SDnP/kEgICHH6b2Rx9iDSyD33gRuUZuFjdG3jCSmL4x9L2uLyZMrDuxjsiVkczaM4vsgmyjI4qIiIiIiKhAFzGS3W4nOefiBLpnGU+gZyaUzflEpELKPXiQk/36k71rFyZPT2q+9y7BT4zFZLEYHU3kD4I8g5jytyks6bmEViGtyLXlMufXOUSujCT6WLT2o4uIiIiIiKFUoIsYKKMgg/yifAAC3MtoAt1bE+giVV1azFpODhpMwdmzuNSpTb2lS/Dt3NnoWCL/VdOApizosoC373ibmt41ScxJZNJ3kxiydgh7EvcYHU9ERERERKooFegiBipZ3+Lj4oO71b1sTqod6CJVlr2wkIQ3pnH2qaew5+bidVt76i1bhluDBkZHE7ksJpOJTnU6sbrPasbeNBYvFy9+S/mNoeuHMmHrBM5mnjU6ooiIiIiIVDEq0EUMVLK+JdCzDPcR+4QVH1Wgi1QptgsXOP3Qw5yfPx+AgIceInz2bCx+fgYnE7lybhY3Rtwwgpi+MfRr0A8TJtafXE+vVb2Y8csM7UcXERERERGnUYEuYqCknCQAAj3KskAPKT6qQBepMnIPHeJE/yiyduzA5OFBzXemEzzuCe07lwov0COQF9u9yLLIZbQObU2eLY8P9n5Az5U9WX10tfaji4iIiIiIw6lAFzFQ6QR6mRboFyfQsxKhyFZ25xWRcil9/XpODhxEwZkzuISHU3fJEny7djU6lkiZauzfmI86f8Q7d75DuE84STlJPPfP5xi8djB7k/YaHU9ERERERCoxFegiBkrJSQHKuED3CgKTGexFkJVUducVkXLFbrOR+NZbxD0xDntODl5/+xv1li/DvVFDo6OJOITJZOKu2nexqvcqnmz1JN4u3uxP2c+QdUN4YccLnM89b3REERERERGphFSgixjIIStczBbwCi5+P+Nc2Z1XRMoN24ULnH7476TM+xCAgJEjCP9gLpZq1QxOJuJ4rhZX7r/+fqL7RtOrfi8AvjzyJZErI1ny+xJs+u0rEREREREpQyrQRQxUssIlyCOobE/sE1p8zEgo2/OKiOFyDx3mRNQAsr77rnjf+dtvEfzUU9p3LlVOoEcgr976Kp91+4zG/o1Jz0/n1e9fZdDaQexJ3GN0PBERERERqSRUoIsYqKRAD/AIKNsTl+xB1wS6SKWS/tXXnBw0iILTp3GpWZO6iz/Ht3t3o2OJGKplcEuW9FjCpFsm4ePqw8HzBxm6fijP//P50lVpIiIiIiIiV0sFuoiBHDeBHlJ8zIgv2/OKiCHsNhuJ098hbuxY7NnZeLVrS90Vy3Fv3NjoaCLlgsVsYVDjQUT3iabvdX0BWHV0FZGrIvn84OcUFhUanFBERERERCoqFegiBimwFXAh7wJQxjvQ4V8T6Jkq0EUqOlt6OqdHjSJl7lwA/IcPJ/yDD7BWr25wMpHyJ8AjgCl/m8LC7gtp4t+EjPwMpv4wlYExA/kl8Rej44mIiIiISAWkAl3EICm5xb9WbjVZ8XPzK9uTe2sCXaQyyDtyhBNRUWRt247J3Z0a06YRMmE8JqvV6Ggi5VqLoBYs7rGY5255Dl9XXw6lHmLY+mE8+92zpb/9JSIiIiIicjlUoIsY5NL952ZTGX8page6SIWX/s03nLxnIAWnYnGpUYO6ny/CL7Kn0bFEKgyL2cI9je8hpm8M/Rr0w4SJNcfWELkykkUHF2mti4iIiIiIXBYV6CIGScpOAhywvgXAJ7T4mJFQ9ucWEYeyFxWR+O67xD32OEXZ2Xjecgt1v1iBe9OmRkcTqZCqu1fnxXYvsqj7IpoFNCOzIJPXf3ide2LuYXfCbqPjiYiIiIhIOacCXcQgybkOuoEo/KtAz0qEIlvZn19EHMKWkcGZ0WNImT0HAP/77qP2Rx9q37lIGbgh6AYWdV/E5LaT8XPz43DqYe7/6n4mbp9Y+kNtERERERGRf6cCXcQgl65wKXNeQWAyg70IslQKiFQEeceOcTJqAJlbtmByc6PGG/8gZOIz2ncuUoYsZgtRDaOI6RNDVMMoTJiIOR5D5KpIPt3/KQVFBUZHFBERERGRckYFuohBkrOLC3SHrHAxWy65kaj2oIuUdxmbN3NywD3knzyJNSyMOp8vwq9XL6NjiVRa1dyrMbntZBb3WMwNgTeQVZDFtJ+mMSB6AD/G/2h0PBERERERKUdUoIsYpGQC3SErXOCSAj3eMecXkWtmLyoiacZMzoweQ1FWFp6tW1NvxXI8mjUzOppIldAssBkLuy/kxbYvUs2tGkcvHGX418N5etvTJGYnGh1PRERERETKARXoIgYpKdAdMoEO4BNWfFSBLlIu2TIzOfPIoyTPmgVA9aFDqT3/I6wBDljrJCJ/yWwy069hP2L6xjCg4QBMmFh3Yh2RKyP5ZP8nWusiIiIiIlLFqUAXMUhpge7pqAL94o1EVaCLlDt5x09wcsA9ZG7ejMnVlbCpUwl9dhImFxejo4lUWX5ufjzf9nkW91xM88DmZBdm8+ZPbxK1Joofzv1gdDwRERERETGICnQRA9jtdidMoJcU6NqBLlKeZGz+lpMDBpB//DjW0FDqLFpItb59jI4lIhc1C2jGZ90/Y0q7KVR3q86xtGOM+GYE47eOJyErweh4IiIiIiLiZCrQRQyQnp9OflE+4IQCPVPf7IuUB3a7nZT5CzgzZgxFmZl43NyqeN/5DTcYHU1E/o3ZZKZvg75E941mYKOBmE1mvjr5FZGrIpn/23wKbFrrIiIiIiJSVahAFzFASk4KAD6uPrhZ3BxzkdId6JpAFzGa3WYj4dXXSHzjDbDbqTZoIHUWLMAa6KAfoIlImfBz8+PZNs+ypMcSWgS1IKcwh+m7p3P3mrtZeWQl+bZ8oyOKiIiIiIiDqUAXMUBSThLgwOlzAO+Q4qN2oIsYqignh7ixY0lduBCA4KefJnTyZO07F6lAmgQ04dNun/Ly317G392fk+knmbxjMp1XdGbOr3M4n3ve6IgiIiIiIuIgKtBFDFCy/zzII8hxFymZQM9KAluh464jIn+p8Px5Yu9/gIwNGzG5ulLznekEPHA/JpPJ6GgicoXMJjN9rutDTN8YxrUaR4hnCCm5KczaM4vOKzrz0s6XOH7huNExRURERESkjKlAFzFASYEe4BHguIt4BYLJDPai4hJdRJwq/9QpTg4aRM6vv2L286P2gvn4du1qdCwRuUY+rj48cP0DrO+3nn+0/wdNA5qSZ8tjxeEV9F7dm9EbR7Pr3C7sdrvRUUVEREREpAyoQBcxQEmB7tAVLmbLJWtctAddxJlyfthOPtoAACAASURBVP2VkwMHUXAqFpeaNam7+HM8W7UyOpaIlCEXswvdI7qzpMcSPu76MR3CO2DCxPa47Tz4zYP0j+7PqqOrtCddRERERKSCU4EuYgCnrHAB8AktPmYmOPY6IlIqY9MmTt13P7bUVNybNaPuksW4RUQYHUtEHMRkMtEqpBXvdniXmL4xDGo8CA+rB4dTD/P8P5+n84rOzP11Lqm5qUZHFRERERGRq6ACXcQATrmJKID3xQJdE+giTnF+0SLOPPIo9txcvG6/jTqffoI1yME/KBORcqO2b20m3TKJDf038ESrJwj2DCYlN4WZe2bSaUUnpuycwvE07UkXEREREalIVKCLGCAlJwVwQoFeMoGeoQl0EUeyFxWRMG0aCS+/AnY71QYMIHzWLMxeXkZHExED+Ln5Mfz64XzV7yteb/86TfybkGfLY/nh5fRe1Zsxm8bw/bnvtSddRERERKQCsBodQKQqcsoOdACfsOKjJtBFHKYoL49zEyeSvm49AEFjxxLw8EOYTCaDk4mI0VzMLvSI6EH3et3ZnbCbTw98ypbTW9h2ZhvbzmyjUfVGDGs2jG51u+FicTE6roiIiIiI/AlNoIs4WYGtgAt5FwBnFOglNxGNd+x1RKoo24ULnB4xsrg8d3Ghxhv/IPDvD6s8F5E/MJlM3Bx6M+91eI/ovtEMbDQQD6sHh1IP8ex3z9Lliy7M2zuPC7kXjI4qIiIiIiL/RgW6iJOl5Bavb7Garfi5+Tn2YiUT6Jkq0EXKWv6ZOE4OHkL2Tz9h9vam9rwP8OvVy+hYIlLO1fGtw7NtnmVD/w08ftPjBHsEk5STxHu/vEenFZ14eefLnEg7YXRMERERERG5SAW6iJMlZRffQDTAPQCzycFfgqU70FWgi5SlnP37OTloIPnHj2MNDaXO54vwatPG6FgiUoH4ufkx8oaRfNXvK1679TUa+zcm15bLssPL6LWqF49seoQfzv2gPekiIiIiIgbTDnQRJyvZfx7kEeT4i3lfLNAzE8FWCBZ9yYtcq8xt2zgz9gns2dm4NWpE+AdzcQkJMTqWiFRQLhYXIutH0jOiJz8l/MSn+z9ly5ktbD2zla1nttLYvzHDmg6ja92u2pMuIiIiImIATaCLOFlyrpNuIArgFQgmC2CHrCTHX0+kkktdtozTo0Zjz87Gq1076ixaqPJcRMqEyWSidWhrZtw1gzV91nBPo3twt7jz+/nfmfTdJLp80YUP931IWl6a0VFFRERERKoUFegiTpacfbFA93RCgW62gHdw8fsZ5xx/PZFKym63k/juu8RPfgFsNvz69CF87hws3t5GRxORSqieXz2ea/McG/pv4LEbHyPQI5CknCTe/fldOq3oxCu7XuFk2kmjY4qIiIiIVAkq0EWcrGSFi1Mm0EF70EWukT0/n3PPPEPK7DkABI4eTdjU1zC5aJWCiDhWNfdqPNj8Qb7u9zWv3voqjao3Iqcwh6WHltJrVS8e3fwoP8b/qD3pIiIiIiIOpIXIIk6WlFO8SiXQ3VkFehjwC2SqQBe5UraMDM489hjZO3eBxULYSy9SrX9/o2OJSBXjanGlV/1eREZE8kP8D3x64FO2ndnGltNb2HJ6C038mzCs2TC61OmiPekiIiIiImVME+giTpaSkwI4aYULgPfF/cyaQBe5IgXx8Zwaci/ZO3dh9vQkfM5sleciYiiTycQtYbcw665ZrO6zmgENB+BmcePg+YNM3D6Rrl925aN9H2lPuoiIiIhIGVKBLuJkzl/hElZ8VIEuctlyDx3i5D0DyTt8GEtQIHUWfoZ3+/ZGxxIRKRXhF8HzbZ9nQ/8NPHrjowR6BJKYncg7P79DpxWdeO3714hNjzU6poiIiIhIhacCXcSJ7HZ76QqXII8g51xUO9BFrkjWzp2cGnIvhQkJuNavT70lS3Bv2tToWCIif6q6e3Ueav4QX/f7mlf+9goNqzckpzCHxb8vpufKnjy++XF+iv9Je9JFRERERK6SCnQRJ0rPT6egqACAAI8A51y0tEA/55zriVRgF1atIvbBhyjKzMSzdWvqfr4Il5o1jY4lIvI/uVpc6X1db1ZErmBe53m0r9keO3Y2n97MA18/wMC1A1l7fG3pv0NEREREROTyqEAXcaKS9S0+rj64Wdycc9GSAj0zwTnXE6mA7HY7ybNnc+6ZiVBYiG/37oR/9CEWPz+jo4mIXBGTyUSbsDa83/F9VvdeTf+G/XGzuHEg5QDPbH+Gbl90Y/5v87UnXURERETkMqlAF3GikgLdaetb4F870DMTwVbovOuKVBD2wkLiJ08m6d33AAh4cCQ13pyG2dXV4GQiItcmoloEL7R9gW/6f8OYlmPwd/cnITuB6bun02lFJ6Z+P5XT6aeNjikiIiIiUq6pQBdxIqffQBTAMxBMFsAOWYnOu65IBVCUlcXp0aO5sHwFmM2ETH6e4CefxGTWX48iUnn4u/vz9xZ/55v+3zCl3RSuq3YdOYU5fP775/RY2YOx347l54SftSddRERERORPqCEQcSJDCnSzGbxDit/XjURFShUmJXFq6DCytm3H5O5OrZkz8B882OhYIiIO42Zxo2+DvnzZ60vmdprLrTVvxY6dTbGbuO+r+xi8djDrT6zXnnQRERERkUtYjQ4gUpUYUqAD+IRAxlkV6CIX5R07xukHH6Lg7Fks/v6Ez5mNR/PmRscSEXEKk8lEuxrtaFejHccuHOOzA58RfSya31J+Y8K2CYR6hTKk8RDubng3vq6+RscVERERETGUJtBFnCgpJwkwokC/uAc945xzrytSDmXt+p6TgwZTcPYsrnXqUHfJYpXnIlJl1a9Wnxfbvcg3/b9hdMvR+Lv7E58Vz1u736LT8k7844d/cDpDe9JFREREpOpSgS7iRMZNoIcWHzMTnHtdkXImbfVqYh98kKL0dDxuvJE6SxbjWru20bFERAwX4BHAqBaj/rAnPbswm4UHF9JzZU/GfjuWH+N/1J50EREREalytMJFxIlSclIAAwp074sFuibQpYqy2+0kv/8+yTNmAuDTrSs1Xn8ds5ubwclERMqXkj3pfa7rw86zO/n0wKf88+w/2RS7iU2xm2hUvRFDmgyhe0R33Cz6f6iIiIiIVH6aQBdxopIVLkEeQc69cMkEeoYm0KXqsefnc27ipNLyPODBkdR86y2V5yIi/4XJZKJdzXbM6TSHlb1W0r9hf9wt7hxKPcTkHZPpvKIzM36ZQWJ2otFRRUREREQcSgW6iJPk2/JJy0sDtANdxFls6enEPvQwaatWgcVC6EsvEfzkk5jM+utPRORyXVf9Ol5o+wIbozYy9qaxhHqFcj73PB/s/YAuK7rw9Lan2Ze0z+iYIiIiIiIOoQZBxElK1rdYzVb83Pyce3GfkOJjRrxzrytioPwzcZwcPJjsXbswe3oSPmc21e8ZYHQsEZEKy8/NjxE3jGD93et58/Y3uTH4Rgrthaw7sY7B6wYzZN0Q1p9YT0FRgdFRRURERETKjHagizjJpTcQNZlMzr14yQR6VhLYCsGiL32p3HL2/cbpUaOwJSdjDQkhfO4c3Bs3NjqWiEilYDVb6VK3C13qdmF/yn4WHVjE+pPr2Zu0lwlJEwj2DGZgo4H0b9if6u7VjY4rIiIiInJNNIEu4iSlBbq7k9e3AHgGgskC2CFLu0qlcsvY/C2nhg3DlpyMW6NG1F26ROW5iIiDNAtoxmvtX2ND/w2MajEKf3d/ErMTee+X9+i0ohMv7HiBw6mHjY4pIiIiInLVVKCLOEnJDUQDPQ0o0M1m8C5Z46I96FJ5nf9sIWceeQR7Tg5et95KnUULcQkNNTqWiEilF+gRyOiWo9nQfwOv3voqTfybkGfL48sjX9JvTT9GfD2CzbGbsRXZjI4qIiIiInJFtMdBxElKdqA7/QaiJXxCIeMsZCQYc30RB7LbbCS+8QbnP/kUgGpRUYROfh6Ti4vByUREqhZXiyu96vciMiKSPUl7WHhgIZtiN/FD/A/8EP8DtbxrMajxIPo26IuPq4/RcUVERERE/icV6CJOUjqBbliBfnEPuibQpZIpyskhbvx4MjduAiDoyXEEjBzp/HsNiIhIKZPJxI3BN3Jj8I2cyzzHkkNLWHF4BWcyzzDtp2nM2jOL3tf1ZnDjwdT1q2t0XBERERGRv6QVLiJOUrIDPcgjyJgAPiUrXOKNub6IAxQmJ3PqvvvJ3LgJk6srNd9+i8AHH1R5LiJSjoR5h/FEqyfYGLWRyW0nU9+vPtmF2Sz+fTGRqyIZvXE0O+J2YLfbjY4qIiIiIvIfNIEu4iQlK1wCPAKMCVAygZ6pAl0qh7xjxzj90MMUxMVh8fOj1vuz8GzVyuhYIiLyFzysHkQ1jKJ/g/7sOreLRQcXse3MNrbHbWd73HYi/CIY0mQIPSN64uniaXRcERERERFAE+giTlOywsWwCXRvTaBL5ZH1/Q+cHDSYgrg4XGrXpu7SJSrPRUQqCJPJRNsabZl510xi+sYwpMkQPK2eHE87zsu7Xqbjio68/dPbnM08a3RUEREREREV6CLOYLfbS1e4GL8DXQW6VGxpa9YQO3IkRenpeLRsSd0li3GtW9foWCIichVq+9bmmf97hk1Rm3i69dOE+4STkZ/Bgv0L6PZlN8Z+O5YdcTsoshcZHVVEREREqiitcBFxgvT8dAqKCgAjV7iEFh9VoEsFZbfbSZ49m+T3ZgDg07UrNV6fitnd3eBkIiJyrbxdvbm36b0MajyI7XHbWXhwId+f+55NsZvYFLuJWt61iGoURZ/r+uDv7m90XBERERGpQlSgizhByfS5r6svbhY3Y0KUFOhZSWArBIu+/KXisOfnc+6FF0lbuRKAgJEjCBo3DpNZv0glIlKZWMwW7gi/gzvC7+Bo6lGWH17OmmNrOJN5hum7pzPzl5l0rNORAQ0H0CqklW4aLSIiIiIOpwZNxAkMX98C4BkIJgvYbZCVCL41jMsicgVs6emcefxxsnfuArOZ0MnPU33gQKNjiYiIg11X/Tom3jKRx296nK9Pfs2yQ8v4LeU31p9Yz/oT64nwiyCqYRSR9SPxc/MzOq6IiIiIVFIa3RNxAsNvIApgNl+yxuWccTlErkBBXBynhgwhe+cuTJ6ehM9+X+W5iEgV4+niSd8GfVncczFLei6hX4N+eFg9OJ52nH/8+A/uWn4Xz333HHuT9mK3242OKyIiIiKVjCbQRZwgJScFMHD/eQnvEEiP0x50qRBy9v3G6dGjsCUlYw0OJnzObNybNjU6loiIGKhZQDOatWvGUzc/xdrja1l6eClHUo+w+thqVh9bTWP/xkQ1jKJHRA+8XLyMjisiIiIilYAm0EWcICm7eALd0BUuAD5hxUcV6FLOZWz+llPDhmFLSsatUSPqLluq8lxEREp5u3pzT+N7+CLyCz7r9hm96vfC1ezK7+d/5+VdL9NhWQde3vkyv5//3eioIiIiIlLBaQJdxAmSc4t3oBu6wgUuWeGiAl3Kr/OLFpHw6mtQVITX3/5GzXffweLtbXQsEREph0wmEy2DW9IyuCUTWk9g9dHVLD+8nJPpJ1l2eBnLDi+jeWBzohpF0aVuFzysHkZHFhEREZEKRgW6iBOU3ETU8BUu2oEu5ZjdZiPxjWmc/+QTAKpF9Sd08mRMLi4GJxMRkYrAz82PYc2GMbTpUH5K+Illh5axMXYje5P3sjd5L2/8+Aa96/cmqmEUEdUijI4rIiIiIhWECnQRJ0jOvjiB7llOJtAzE4zNIfJvinJyODthAhkbNgIQ9MQTBDz0ICaTyeBkIiJS0ZhMJlqHtqZ1aGuSc5JZdXQVKw6vIC4zjoUHF7Lw4EJahbRiQMMBdKzTEVeLq9GRRURERKQcU4Eu4gQlK1wC3Q3ege6tCXQpfwpTUjg9ajS5e/dicnEh7PWp+PXoYXQsERGpBAI9Ahl5w0iGXz+cHWd3sOzQMrae2cruhN3sTthN9R+q06dBH6IaRBHuG250XBEREREph1SgizhYvi2ftLw0oDzcRFQ70KV8yTt+gtMPPUTBmTNY/PyoNWsmnjffbHQsERGpZMwmM7fWvJVba95KfFY8K4+sZMWRFSRmJ7LgtwUs+G0BbcPaMqDRAG4Pvx0Xs9aHiYiIiEgxFegiDpaSkwKA1WzFz83P2DA+YcXHrGSwFYBF3xyKcXIPHCB2xEhsqam4hIcTPncubhH1jI4lIiKVXKhXKKNajuLB5g+y7cw2lh1exo64Hew8t5Od53YS5BFEn+v60Kt+L+r61TU6roiIiIgYTAW6iIOV3EA00CPQ+H3OngFgtkJRIWQmgl9NY/NIlZX98y+cfvhhijIycG/WjPB5H2D19zc6loiIVCFWs5UOtTvQoXYHTmec5ovDX7Dy6EqScpKYt28e8/bN44bAG+gZ0ZNu9bpR3b260ZFFRERExABmowOIVHZJOUkABHkYfANRALMZvEOK38/UGhcxRtaOHcSOGEFRRgYerVpR++MFKs9FRMRQ4T7hjG01lo39NzLt9mm0r9kei8nCvuR9TP1hKh2WdeDRzY/yzclvyLPlGR1XRERERJxIE+giDlYygR7gEWBwkot8QiE9TnvQxRAZmzcT9/hY7AUFeP3tb9Sa8R5mT0+jY4mIiADgYnGha92udK3bleScZNafWE/0sWgOnj/IltNb2HJ6Cz6uPnSu05nI+pHcFHyT8b9hKCIiIiIOpQJdxMFKCvRyMYEO4F1yI9FzxuaQKictZi1nn34abDZ8OnWkxltvYXZ1NTqWiIjInwr0CGRo06EMbTqUYxeOEX0smpjjMSRkJ/DFkS/44sgX1PSuSc+InkTWj6SObx2jI4uIiIiIA2iFi4iDXboDvVzwKSnQE4zNIVVK6vLlnB0/Hmw2fHtFUnP6dJXnIiJSYdSvVp+xrcbyTf9v+LDzh/Su3xtPqydxmXHM3TuXnit7MmTtEBb/vpjU3FSj44qIiIhIGdIEuoiDlb8CPaz4qAl0cZKUjz8m8fV/AFBt4D2ETp6Myayf34qISMVjNpm5JewWbgm7hWfbPMu3sd8SfTyaHWd3sDd5L3uT9/LGD2/QvlZ7IutHcnut23G16AfGIiIiIhWZCnQRByt/BfrFm4hqB7o4mN1uJ/n990meMRMA/+HDCR7/lHbFiohIpeBh9aB7RHe6R3QnOSeZdcfXEXM8hoPnD/Lt6W/59vS3+Lj60KVuFyIjIrkx+Eb9HSgiIiJSAalAF3Gw8legX5xAz1SBLo5jt9tJnPYm5+fPByDwsUcJHDVKxYGIiFRKgR6BDGs2jGHNhnE09SjRx6NZe3wtCdkJrDi8ghWHV1DTuyaR9SPpGdFT+9JFREREKhCT3W63Gx2iMkhPT8fPz4+0tDR8fX2NjiPlhN1up9XCVhQUFfBNv28I8w4zOhKc2wtz24NXEIw/anQaqYTsRUXEvzSFC0uXAhAy8Rn877vP4FQiIiLOZSuy8VPCT0Qfi2bDqQ1kF2aXPtc8qDmREZF0rduVau7VDEwpIiIiUjVdSZerAr2MqECXP5OWl8atS24FYPe9u8vHDszMJHjzuuL3n08Gi4uxeaRSsRcWcnbiJNKjo8FkInTKS1SPijI6loiIiKFyCnPYHLuZ6OPR7Dy7kyJ7EQBWs5Xbat5GZP1Ibqt1W/n4t6KIiIhIFXAlXa5WuIg4UMn6Fl9X3/LzDZFnAJitUFQImYngV9PoRFJJFOXnEzduHJkbN4HVSo1/vI5fjx5GxxIRETGch9WDHhE96BHR4z/2pW8+vZnNpzfj6+pL57qd6VynMzeH3oyLWUMOIiIiIuWBCnQRB0rKSQIgyCPI4CSXMJvBOwTS44pvJKoCXcpAUXY2Zx55lKwdOzC5ulLznXfw6XCn0bFERETKnUv3pR9JPVK6Lz0xO7F0X7qfmx93ht9JpzqdaBPWpvwMYoiIiIhUQSrQRRyo3N1AtIRPaHGBrhuJShmwZWRw+u+jyNm9G5OHB+Hvz8KrbVujY4mIiJR7Dao3YFyrcTx+4+P8mPAjX534im9Pf8v53POsOrqKVUdX4e3izW21bqNznc60q9kOD6uH0bFFREREqhQV6CIOlJx9sUD3LG8F+sWbmWacMzaHVHiFqamcHvkgufv3Y/bxIXzuXDxvutHoWCIiIhWKxWyhTVgb2oS14bmi5/gl8Rc2nNrAxlMbScpJYt2Jdaw7sQ4Pqwe31ryVTnU6cVut2/By8TI6uoiIiEilpwJdxIFKJ9Ddy1mB7h1SfMzQBLpcvYLERE6PGEHekaNYqlen9kcf4t60qdGxREREKjSr2Urr0Na0Dm3NM//3DHuT9paW6WezzrLh1AY2nNqAq9mVdjXa0bFOR+4IvwM/Nz+jo4uIiIhUSirQRRwoObe8rnApmUBXgS5XpyAujlMPDKcgNhZrcDC1F8zHrX59o2OJiIhUKmaTmZbBLWkZ3JKnbn6KA+cPsPHURjae2sjJ9JNsObOFLWe2YDVZ+b+w/6NjnY50CO9AgEeA0dFFREREKg0V6CIOVH5XuIQWH1Wgy1XIO3GC2AeGUxgfj0utWtReMB/X8HCjY4mIiFRqJpOJZgHNaBbQjMdufIyjF46y8dRGNsRu4EjqEXac3cGOszt4ZdcrtAppRcfaHbmr9l2EeIUYHV1ERESkQlOBLuJA5fomoqACXa5Y7qFDxA4fgS0lBdeICGovmI9LiL4xFxERcSaTyUSD6g1oUL0Bo1qO4mTaSTbGbmTDqQ0cSDnAj/E/8mP8j0z9YSotglrQqU4nOtbpSE3vmkZHFxEREalwVKCLOFBSThIAQR5BBif5NyUFeqYKdLl8Ob/+SuyDD1GUno5bkybU/uhDrP7+RscSERGp8ur61WXkDSMZecNI4jLjSte87Enaw69Jv/Jr0q+8+dObNPFvUlqm1/OrZ3RsERER+X/27jw+jru+H/9rZu9bq5W0uiXfZ+JDdhLnMDGkmDYpFNIW+v22BRJDyQmBhqtAKYUECpSWM5CT7w/ory003wQcOwkhDiTYDnHs+JDjI9at1Uq7Wu19z3z/mN3RriU7PmSNdvV6Ph77mNmZ2dF7gEeQXnnv+0MVQZBlWda6iGoQiUTgcrkQDofhdDq1LofmgEw+g66fdAEAXnzfi3NrYad4APh6YV715wOAzqBtPTTnxfe+jMHbboOUSMCydi3afvRD6PjPOiIiojltNDGK5/qfw6/7fo1X/K9AkiX13OKaxWqYvqRmCQRB0LBSIiIiotl1PlkuO9CJLpHi+BaDaIDTOMeCRkstIOoBKQfE/ICrVeuKaA6LvfACBu/+KOR0GtZNV6Htu9+FaLNpXRYRERG9iQZrA/5q+V/hr5b/FcZT43i+/3k82/8s9g7vxcmJkzg5cRI/eO0H6HB2YEvbFmxp24I19WugE3Val05EREQ0Z4haF3A2999/PzZu3AiHw4GGhgb82Z/9GY4dO1Z2TSqVwh133AGPxwO73Y6bb74Zfr+/7Jr+/n7ceOONsFqtaGhowL333otcLld2za5du7B+/XqYTCYsXrwYjz322KV+PKpypfPP51xHjygC9uIcdP/Zr6V5LbJzJwbuvAtyOg37li1oe+ABhudEREQVqNZci5uX3owHbngAu967C1+59iu4vu16GEUj+iJ9eOzIY3j/zvdjy39twede/Bye63sOiWxC67KJiIiINDenO9BfeOEF3HHHHdi4cSNyuRw++9nP4u1vfzu6u7thKwQ499xzD7Zv347//u//hsvlwp133on3vOc9eOmllwAA+XweN954IxobG/H73/8ePp8Pf/u3fwuDwYD77rsPANDT04Mbb7wRH/nIR/DTn/4Uzz33HLZt24ampiZs3bpVs+enyjZnFxAtcniByCAQ9WldCc1RE//zOHyf+xwgSXD+yZ+g+WtfhWDguB8iIqJK5zK58M5F78Q7F70T8WwcLw69iF0Du/Dbwd8ilA7hiTeewBNvPAGjaMRVzVfh+rbr8ZbWt6DB2qB16URERESzrqJmoI+NjaGhoQEvvPACNm/ejHA4jPr6evzsZz/Dn//5nwMAXn/9daxYsQK7d+/GVVddhR07duCmm27C8PAwvF4vAOCBBx7Apz71KYyNjcFoNOJTn/oUtm/fjsOHD6s/633vex8mJiawc+fOc6qNM9DpdP917L/wz3v+GVvatuDbb/221uVM9f//b+D1XwE3fhPYuE3ramiOGf/JT+H/8pcBADV/8edo/OIXIej4dW4iIqJqlpWyODB6AM8PPI/n+5/HYGyw7Pxqz2psad+C69uu59x0IiIiqmjnk+XO6REupwuHwwCA2tpaAMC+ffuQzWZxww03qNcsX74c7e3t2L17NwBg9+7duOyyy9TwHAC2bt2KSCSCI0eOqNeU3qN4TfEe00mn04hEImUvolJzvwO9OMJlRNs6aM4J/PBHanhe+/73o/FLX2J4TkRENA8YRAM2Nm7EJzd+Ek+95yk8/s7H8dH1H8Xl9ZcDAA4HD+M7+7+Dm5+8GX/8P3+Mr738Nez17UVWympcOREREdGlM6dHuJSSJAkf+9jHcM0112D16tUAgJGRERiNRtTU1JRd6/V6MTIyol5TGp4XzxfPne2aSCSCZDIJi8UypZ77778f//RP/zQzD0dVaSw5BmAOB+jqDHSOcCGFLMsY+9dvIfjggwCAuttvR91dd7K7jIiIaB4SBAGL3Yux2L0Y2y7bhkAygBcGXsDzA89jj28PhmJD+MnRn+AnR38Ch8GBa1uvxVvb3oprWq6Bw+jQunwiIiKiGVMxAfodd9yBw4cP48UXX9S6FADAZz7zGXz84x9X30ciEbS1tWlYEc01ldOBzkVECZAlCf6v3IfQT38KAGi49154br1F46qIiIhorqiz1OHmpTfj5qU3I5FNYI9vD3YN7MILgy9gPDWOHT07sKNnB/SCHhsaN2BLmzLqpdnerHXpjMI3ZAAAIABJREFURERERBelIgL0O++8E7/61a/w29/+Fq2trerxxsZGZDIZTExMlHWh+/1+NDY2qte8/PLLZffz+/3queK2eKz0GqfTOW33OQCYTCaYTKaLfziqWsFkEMBcDtCblC1HuMx7cj4P3+c+j/DjjwOCgMZ//Ee43/dercsiIiKiOcpqsOKt7W/FW9vfiryUx6HAIWVu+sDz6An3YI9vD/b49uD+l+/HMvcydW76ytqV/GYbERERVZw5HaDLsoy77roLjz/+OHbt2oUFCxaUne/q6oLBYMBzzz2Hm2++GQBw7Ngx9Pf3Y9OmTQCATZs24Stf+QpGR0fR0KCsGv/ss8/C6XRi5cqV6jVPPfVU2b2fffZZ9R5EF6I4wqXeUq9xJWfgKIwt4giXeU3OZjH8qU8h8tQOQKdD8/33wfXOd2pdFhEREVUInajD2oa1WNuwFvd03YPecC9eGHwBv+n/DQ6MHcCx0DEcCx3DA689gAZrg9qZfkXjFTDqjFqXT0RERPSmBFmWZa2LOJPbb78dP/vZz/DEE09g2bJl6nGXy6V2ht9222146qmn8Nhjj8HpdOKuu+4CAPz+978HAOTzeaxduxbNzc34l3/5F4yMjOBv/uZvsG3bNtx3330AgJ6eHqxevRp33HEHbrnlFvzmN7/B3Xffje3bt2Pr1q3nVOv5rNxK1U+WZaz/yXrkpByeufkZNNmbtC5pqngA+PoiZf/zAUBn0LYemnVSJoOhez6O2HPPAQYDWr75DTjf/natyyIiIqIqEUqF8Luh3+H5/ufx0vBLSOaS6jmr3oprWq7BDe034C1tb4HNYNOwUiIiIppvzifLndMB+pm+3vfoo4/iAx/4AAAglUrhE5/4BP7jP/4D6XQaW7duxfe//311PAsA9PX14bbbbsOuXbtgs9nw/ve/H1/96leh10824O/atQv33HMPuru70drais9//vPqzzgXDNCp1ERqAtf953UAgH1/vW9udtdIEvDlBkDKAvccAVytb/4ZqhpSMonBu+5G/MUXIRiNaP3Ot2F/y1u0LouIiIiqVDqfxsu+l/H8wPPYNbBL/bYmAJh0JlzXch22dm7F5tbNsBqsGlZKRERE80HVBOiVhAE6lToZOol3P/luuEwuvPi+ubHw7bT+dRUQGQS2PQe0btC6GpolUjyOgdtuR+LllyFYLGj7/vdg48gqIiIimiWSLOFo8Cie638OT/c+jf5ov3rOrDNjc+tmbO3ciutar4NFP/2aVERERLNJlmXkJRnZvIxMXkK2+Mqd9j4vIZOTy9/nZWRz5e9zpefyErI5CTlJ+Rl5WUY+X9hKk6+cJCEvAXlJQl4ubKXTryl5f9rnS6+RitfKMta0uvDfH7la6/+IZ935ZLlzegY6UaUKpAIAgDrzHF1AtMjRqAToXEh03shHoxj40IeRPHAAos2Gth/9ENauLq3LIiIionlEFESsqluFVXWrcNe6u3AsdAxP9z6NnT07MRgbxDN9z+CZvmdg0Vvwlta3YGvnVlzbci3MerPWpRMR0UWSZSW4PbfwWQmN1f385Dn1HiVh9OT1yrnJ60+/T8k1Z7hPaQ3FGqu1BTmTk7QuYc5jgE50CYwllK+k1lkrIEAHuJDoPJELhTCw7UNIHTkC0eVC+0MPwnLZZVqXRURERPOYIAhYXrscy2uX4+51d6N7vBtP9z6NZ3qfwVBsCDt7d2Jn705Y9BZc33a9GqabdCatSyciqhiyrHROJ7N5pLN5JLN5pLJSYZufejyTRyqXRyqTR7oQdE92T5eHzdN1V092Z5e/zxXC6Gph0Akw6ET1ZdQJMOhPe188r1fe60WxcI0AY8lnDToBep0AnSBAJ4rQiYBOFKEXBYiiULZVrlGuF4XTzpW+hMI9RVH9TOmreL1JL2r9H+WcxwCd6BIIJoMAgDpLpQTo7ECvdrlAAP0fvAXpEyegc7vR/ugjMC9frnVZRERERCpBELDKswqrPKtwz/p7cCR4BE/3Po2ne5+GL+7Djp4d2NGzAzaDTQnTO7bimpZr5uZ6Q0REZyDLMtI5qfDKI1Pcz572PicV9vNI5yQ16E5llf1UNl8IupXAO53Lq8F3MnPaddk8pDncPW3Ui4UwWYBep+zry8JpJewtvp88VwikSwJo9RqxeC9lqxcFGPUi9KLy+eLP0IsijHpBPW7QiWqwbdSfHpCLMBSO6UXhjGs3UvVhgE50CRQXRaqIES4AEGOAXs2yIyPo/8AHkenthb6+Hu2PPgLT4sVal0VERER0RoIgYHXdaqyuW42Pd30chwKH1DDdn/Bj+6nt2H5qO+wGO7a0bcHWzq3Y1LyJYToRvSlJUrqg01kJqVxeDa5T2cmwuux9IYguDb3TWUm9R/EzmelC8ZyEdDZfcq2keQe2KAAWgw5m9SXCYtTBrNfBYtTBVNia9SLMBh1MelHtqp6uo7osYNaXh95nCp8nQ2qlA5pBNM11DNCJLoFAUpmBXm+t17iSN2FnB3q1ywwOof8DH0B2cBD65iZ0PPoojB0dWpdFREREdM4EQcDl9Zfj8vrL8YkNn8DBsYPKmJe+ZzCaGMUvT/0Svzz1SzgMDmxpL4TpTZtg0Bm0Lp2IzlE2r4wTSWbySGSUbTKbK9nPl+0XO65LQ2815J4mEE+dFnTPFYIAmArd16ZCWG3UizDplf3J96IaeFuKobdBB5P6XgeLUYRZr4O5JAwvXlcalht1IgNrovPEAJ3oEiiOcPFYPBpX8iYcTco26te2DrokMr296PvAB5EbGYGhvR0djz4CQ0uL1mURERERXTBRELG2YS3WNqzFvRvvxWtjr6kz08eSY3jyjSfx5BtPwml04m3tb8PWzq24oukKGESG6UQXKy/JiGdyiKVyiKdziKaV7XQBdyKTQzIjnTUEV65R9rN5beaLiALULuvi1qRXgmaTXgeTQQmvTSXnlPflIXfxXDHsNhlEGHUlny89VxKSG3TsviaqBAzQiS6B4giXessc70DnIqJVK33iBPpuuQX5sQCMCxei/dFHYfA2aF0WERER0YwRBRHrGtZhXcM6fHLjJ7F/dD929uzEs33PIpgK4vGTj+Pxk4/DZXLhhvYb8PbOt+OKxiugF/lnMM0fsqwsHBlL5RBLF16l+6cfO8u5RCZ/yesVBcBq1MNiVDqrrUbdaft6WEq6qieD7ZIA3KCMHzmXcwYdF08kojfH3xyILoHiCJeKWUQ0EQByGUDPmZHVINXdjf5btyEfCsG0bBnaH3kYes8c/zYEERER0UUQBRFd3i50ebvw6Ss+jVdHX8XTvU/j2b5nMZ4axy9O/AK/OPELuE1uvK3jbdjStgUbvBtgNVi1Lp1IXVSyuNhjsStbWSRSUjq1SxaNTGal094r3dzRQtAdL4TexQ7xmV48Ui8KcJj1sJn0sJtOD7uVgPvNQ/Dpjus4XoSI5iRBluU5vA5v5YhEInC5XAiHw3A6nVqXQxpK59PY8JMNAIAX3/ciXCaXxhWdhSQBX24ApCxwzxHA1ap1RXSRkq+9hv4PfRhSJALz6tVof+hB6GpqtC6LiIiISBM5KYd9/n14uvdp/Lrv1wilQ+o5vajH2vq12NS8CVc1XYVVnlXQiToNq6W5LpeXEE/nEU1nEU/nEUtnEUsXu7uV/WQh7FbGl0yG3IlsHqni/O7CMTUwz+ZxqZMZUQBsJj0cJj3sJeG3w6yHzagcc5gKx83KueLLVriuuG/SM+Qmosp3PlkuA/QZwgCdioZjw9j6i60wiAbs++t9c/8Xi2+tBsIDwLbngNYNWldDFyHxhz9g4O8+AimRgGX9erT98AHoHA6tyyIiIiKaE3JSDn8Y+QOe6XsGvx/6PYbjw2XnHUYHrmy8EpuaN2FT0ya0Ods0qpRmklSY210MvKOp0/eLo0oKgXiqZD+tXBstBOSp7KVffNKoE5WFH42li0Mq+5bS/dPOW426ydD7tADcblY6vuf836ZERLPofLJcjnAhmmGl41sq4hcUu1cJ0DkHvaLFXnoJg3fcCTmVgvWqq9D2ve9CtNm0LouIiIhoztCLeiUcb94EWZYxEB3A7uHd2O3bjZd9LyOaieLX/b/Gr/t/DQBosbeo3elXNV01t79ZWoXyknzaDO4sIqnyWd3RVBbRkhnd0cLYklhqMvyOpXMzXptRL5YH1CVd3TbjuYfexfNmozLyxKwXoedMbiKiOYcBOtEMq5gFRIvUhURHtK2DLlj0N89j6KMfhZzNwrb5OrR++9sQzWatyyIiIiKaswRBQLuzHe3Odrx3+XuRk3I4EjyiBOrDu3Fw7CCGYkP4+fGf4+fHfw4BAlZ6Vqrd6Wsb1sKo4/pBgNLhnZUkZPMycnkJmbyyn81JSOcktdO7GHDH1JBbCcCLIXm09H0qh/gML1ipE4Upgfd0Abhjun2jXp35bTPpYNJz1A8R0XzCAJ1ohgWTQQCAx1IhizYyQK9okZ07MfT39wK5HBx/dAOav/lNiEb+MUdERER0PvSiHmvq12BN/Rp8ZM1HkMgm8Ir/FTVQfyP8Bo4Ej+BI8AgeOvQQLHoL1nvXY1OT0qG+1L1Us2+fFhegjJZ2ZhdD68KxRCaPbF5Cthhw5+Ty94XAe/J94VheQiZX/n7ymPI+N9MrVJ7GoBPgMBvUGdzFud0Os6EsCFeO6WE3GWAz6eAsnC/O7+bcbiIiulAM0IlmGDvQabaEn3wSw5/+DCBJcN54I5q/ej8Eg0HrsoiIiIgqntVgxebWzdjcuhkA4I/7sce3B3t8e7B7eDeCqSBeGnoJLw29BADwmD24qvkqNVD32rxv+jOKwXd5Z3a20JmdO2NndrR4vTqvO4dsfu4sbSYIyhxvo06EoTDqxFEScitbw7TB95RrzXp2exMRkeYYoBPNsNIZ6BXB0aRsYwzQK0nov/4LI//4RUCW4XrPe9D0z1+CoOMfF0RERESXgtfmxbsWvwvvWvwu5PISDo6+jheHfo9X/HtxZHw/gqkgtp/aju2ntgMAavRtaDCsRg1WwZRbglTGUNYdfimCb0EA7MaS0SSFrdNsgMWog1FfCLV1Agw6EQadCKP+tPc6EQa9AL1YPD95rvS8ul+8n37yvU5klzcREVUXBuhEM6wYoFfMCBc7O9Arzfj/+f/gv+8+AID7f/0veD/3DxBELjZEREREdDaSJCOczGI8kUE0lUM8PdnpHS/p9p5uv3Qxy2S2OJu7CcCfAcJN0Fn6oLOdgN52EqJ5CBO5AUzkBgDsgCyLyCfbkY8vQS6+GFKyBaV/ik8XfDvMBmX+9hlGlNgL+46S8zajHiLDayIiohnHAJ1ohgUSSoDOES50KQQefBBj3/xXAEDtLbeg4d6/5yxHIiIimnfyxTA8nkEokUGouE1kEYpnCsezhWPK+YlkFvIMTjoxFsaT2E1W2E3rYDdtVEaOGFNI6I4hjCMYzR5CNO+H3toLvbUXpvpnYRRNWFazGusaunBF0wZsbFwLq9Eyc4URERHRjGKATjTDAqkKHeGSCAC5DKDnApRzkSzLCHznuwh8//sAgLrbb0fdXXcyPCciIqKKl8tLCCeVsHs8ni0JxIvHMphQt0oHefgiwnCHSQ+npXwBSntJt7fNNNnZXdy3lSxeaTPpYTPp3mQ293Xq3kBkALt9u7HHtwd/GPkDJtITODS+D4fG9+H/vP4jGEQDLqu7DF3eLnR5u7C2YS1sBtuFPRwRERHNOAboRDNIlmV1hEu9tUI60K21gGgApCwQ8wM1bVpXRKeRZRmj3/gGxh9+BABQ//GPo+7DH9K4KiIiIiLl95RkNq8udBlJlSx6WbJfdrxkYcxQIotwMnvBP99p1sNtM8JtNaLWZkSN1YBaq7HkmAE1JedqLEYY9bM7+q7N2YY2Zxv+ctlfQpIl9IR78MrIK9jn34dX/K9gLDmGV0dfxaujr+LBQw9CJ+iwonYFurxd2NC4Aesa1sFlcs1qzURERDSJATrRDAqnw8hJOQBArblW42rOkSAoY1zCAwzQ5yBZkuD/8lcQ+tnPAADez34WtX/7NxpXRURERNVAlmUkMnlMJLOIprLKPPBUDpHCfjHkLs4JPz0ILx7PSzMzF8VlMZSF4DWFALwYhisv5Rq3zYgaiwF6XWWtAyMKIhbVLMKimkV47/L3QpZlDEQH1DB9n38fhmJDOBw8jMPBw/hx948hQMAS9xJs8G5Al7cL673rK+fbrkRERFWAATrRDCp2n7tMLhh1FTQKpRigR31aV0Il5Hwevi98AeFf/A8gCGj84hfhfu9fal0WERERzUGTY1CymEhMjj8p7k8kMgjFi8cmt5m8NCM/XxSgLHxZXADTrIdTXfyy/PjkywC31QC31QhXBYbhM0EQBLQ729HubMe7l7wbAOCL+bBvdJ/apd4b6cXx0HEcDx3Hz15Xmio6nZ3Y0KgE6hu8G9Boa9TyMYiIiKoaA3SiGTSWHANQQQuIFtm9ypYLic4ZcjaL4U9/BpHt2wFRRPP998H1rndpXRYRERFdYsWu8NOD7vJQPKsumDlRmBceSeUu+GcadAKcJSF3cdZ3aRDuMBtgN5/huEkPq1HHtVlmSJO9CTfZb8JNC28CoDTp7PPvU1/HQ8fRG+lFb6QXPz/+cwBAi71FDdM3eDeg1dHK/z6IiIhmCAN0ohlU7ED3WDwaV3KeiguJMkCfE+RMBkOf+ASiz/4a0OvR8o2vw/mOd2hdFhEREV0EWZYxkcjCH01hJJyCP5KCP5LGSCQFfziFkUgKY9H0RXeFO8x6ddRJTdnWCLdt8pjbqoxKcVuNDL/nuDpLHbZ2bsXWzq0AlLGRr/pfVQP1o+NHMRQbwlBsCE++8SQAoMHaoAbqXd4uLHQt5H/HREREF4gBOtEMUhcQrbQOdEfhK58M0DUnpVIY/OhHEX/htxAMBrT8+7/D8dYtWpdFREREZ5HK5jFaCMNHIimMRpSQXNkvhOSRFNK5cw/GDTrhtAC8GHqfFoDbJq+pxJngdP5cJhe2tG/Blnbld8R4No4DowfUOeqHAocwmhjFjp4d2NGzAwDgNrmxpmEN1jWsw9r6tVhVtwomnUnLxyAiIqoYDNCJZlAxQK+4RX3UAJ0z0LUkpdMYuO02JHbvgWA2o/V734X9mmu0LouIiGjekiQZwXim0C2eUrvF/SWh+EgkhYlE9pzv6bYa4HWa4XWa0eg0w+syw+s0odFpRoPDrIbiNnaF0zmyGWy4puUaXNOi/N6YyqVwKHBInaH+2thrCKVD2DWwC7sGdgEADKIBKz0r1UB9bcPayvsWLRER0SxhgE40gyo+QI/5ta1jHpNzOQx94hNI7N4D0WpF6wM/gO2KK7Qui4iIqGrIsoxUVsJEUllMcyJZnC1euq9sx2JpjEbSGI2mkM3L53R/k15Eo8sMr0MJxRudpsmg3KWE5fUOE8wG3SV+UprvzHozNjZuxMbGjQCAbD6L7vFuHBg9gAOjB7B/dD+CqSBeG3sNr429pn6u3dGOtQ1KmL6ufh0W1iyEKPAbDURERAzQiWZQxQbodnaga0mWZfi++EXEfv0cBKMRrT9geE5ERHQ2qWxeDb5D8SzCyeKCmoUwfJqAPJTIInMeI1SKBAGos5vULnG1c9xZDMqVDnKXxcCOcZqTDDoD1tSvwZr6NXj/qvdDlmUMRgexf2w/9o/ux4HRA3hj4g30R/vRH+1X56g7jU6sqV+jBOoN67C6bjUseovGT0NERDT7GKATzaCKDdCLi4gmgkAuA+iN2tYzz4x9698Q/vkvAFFE8ze/AduVDM+JiGj+kGUZkVQOgVgaY9HJVyCWRigxfbd4Knvhi2zqRWW2uLKApgEuy+R+8bjHZlS7x+sdJhg4V5yqiCAIaHO2oc3ZhncueicAIJKJ4LXR17B/dD9eG3sNhwKHEMlE8Luh3+F3Q78DAOgFPZbXLp/sUm9YhwZrg5aPQkRENCsYoBPNoLHkGIAKXETUWguIBkDKKmNcatq0rmjeCD72GII/+hEAoPGfvgjnH/2RxhURERHNjEQmh0A0g7FYajIYj2VK9tMIFLYX0hmuEwXUWAxwFRfUtBjKg/HCseJimzWFgJyzxYmmchqduK71OlzXeh0AICtlcXz8uNKhPqaMfRlNjOJw8DAOBw/jJ0d/AgBosbdgTb2yOOm6hnVYXLMYOpFjioiIqLowQCeaIel8GtFMFAAqbwEeQVDmoIcHgOgIA/RZEn7ySYx+9WsAgPp77oH7L/5C44qIiIjOLpOTyjrF1f3Yae+jacQz+fO6t8OkR73DhDqHCfV2E+rsRnjsJjX4VgJyJRB3WQ1wmPQMwokuEYNowKq6VVhVtwp/jb9WRg7GferIlwNjB3A8dBxDsSEMxYbwVM9TAJQFTS+vu1xZnLRhLS6vvxw2g03jpyEiIro4DNCJZkgwGQQAGEUjnEanxtVcgGKAHhvRupJ5IfbCCxj+7D8AAGrf/7fwfPhDGldERETzkSTJmEhmMR5PIxjLIBhXXuOxDILxtPI+lkag0DkeTmbP6/5mg4j6QiBe7zChrrAt2y9subgm0dwlCAKa7c1otjfjxoU3AgBimRgOBg6qo18OBg4ino1jt283dvt2AwBEQcSK2hXY4N2ADY0bsK5hHVwml5aPQkREdN4YoBPNkOL4ljpLXWV2QzmKC4kyQL/UEvv3Y/CjHwNyOTj/9E/R8KlPVeb/ZoiIaM6RJBnhZFYJv2MZjMczCJwWiBf3x+PKwpp5ST6vn2HQCWXh97SheOHFcSlE1ctutOPq5qtxdfPVAIC8lMeJiRM4MHpA7VQfjg/jSPAIjgSP4MfdP4YAAUvdS7GhcQM2eDegy9sFt9mt8ZMQERGdHQN0ohlSsQuIFtmLAbpP2zqqXPrECQx85DbIqRRsm69D831fgSByYTIiIjqzVDYPfyQFfyStdIMXQvDxeOm+EopfSCAOAE6zHnV2E2ptRnjsRtTaTPCo+0a1S7zeYYLLYmAoTkRT6EQdltcux/La5Xjf8vcBAEbiI3jF/wpeGXkF+/z70BvpxbHQMRwLHcNPj/4UALC4ZjG6vF1qqF6xf08REVHVYoBONEMCiQoP0NUOdL+2dVSx7NAQ+rd9CFI4DMuaNWj9t3+DYDBoXRYREWlElpVu8ZFICr5wCv5wCiORFEZO204kzm9sCqAE4h67EoIroXjpvhEemxKW19mNcNuMMOj4L3OJaOY12hpx08KbcNPCmwAAY4kx7PPvwyt+JVA/OXFSff3nsf8EAHQ6O8s61BttjVo+AhEREQN0opkSSFV6gN6kbNmBfknkxsfRf+s25Px+GBcvQtsPH4BotWpdFhERXSK5vISxWFoJwYuBeDEUD6fgL4Tm6Zx0TvczG0Q0Os1qEF7sDPfYTGWBuMduhNtqhFHPQJyI5p56az3eseAdeMeCdwAAxlPjeNX/qtqlfjx0HL2RXvRGevHz4z8HALTaW9VAfUPjBrTYW7R8BCIimocYoBPNkIof4eLwKlvOQJ9x+VgcAx/+O2R6e6FvakL7Qw9BV1OjdVlERHSBEpncmwbjgVga5zpJpdZmhNdpRqPThEaXGY1OCxpdJnidZjS5LGh0muG06Dk2hYiqTq25Fjd03IAbOm4AAITT4clA3f8KXh9/HYOxQQyeHMT/Pfl/AQBNtiY1TN/g3YA2Rxv/+UhERJcUA3SiGaKOcLFWaoBe6ECPMUCfSVImg6G770Lq8GHoamrQ/vBDMDTya6hERHNdMpNHbzCOnoDy6i1ug3EEYplzuodeFOB1muE9SzDe4DTBbNBd4qchIqoMLpMLW9q3YEv7FgBANBPF/tH96siX7kA3fHEffnnql/jlqV8CABosDehq7FJCde8GLHAtYKBOREQzigE60QxRO9DNFRqgFxcRTQSBXAbQG7WtpwrI+Tx8n/404r/fDcFqRduPfgjTwoVal0VERAXpXB4D4wn0BBLoDcRxqhCU9wbj8IVTZ/2szahTQnGXuRCIm9HoNKvhuNdlQp3NBFFkiENEdKEcRgc2t27G5tbNAIBENoEDYwfURUkPBQ5hNDmKHT07sKNnBwClq73L24VVnlVY6l6KZbXLUG+pZ6hOREQXjAE60QwZS44BUOb6VSRrLSAaACkLxPxATZvWFVU0WZbh/8p9iDy1AzAY0Pqdb8Ny+eVal0VENO/k8hKGJpLlneTBBHoCMQyFkmcds1JjNaDTY8PCOhs6C6+FdTa0e6xwmrkINBHRbLMarLi6+Wpc3Xw1ACCVS+Hg2EF15MvBsYMYT43j2b5n8Wzfs+rnakw1WOpeOvmqXYpFrkUw681aPQoREVUQBuhEM0CSJQRTQQAVPANdEJQxLuF+ZQ46A/SLEvj+9xH62c8AQUDL174K+zXXaF0SEVHVkiQZI5HUlHErPcE4BsYTyObPnJLbjDp01tmwoOTVWWfDAo8Nbhu/jUVENJeZ9WZc0XQFrmi6AgCQyWdwOHAYr46+iuPjx3EsdAy9kV5MpCfw8sjLeHnkZfWzoiCiw9mBZe5larC+rHYZvFYvu9WJiKgMA3SiGRBJR5CTcgAAj9mjcTUXweEtBOg+rSupaKH/+A8EvvNdAID3H/4Bzj/5E40rIiKqbJIkIxjPwBdOYngiBV84CV84hf5gAr1BZeRKKiud8fNGvYgFHhs666xYUGfHgjorOj02LKi3od5uYlBCRFQljDoj1nvXY713vXoslUvhVPgUjoeO49j4MZwIncCx0DFMpCfQE+5BT7gHO3t3qtc7jI7JQL0Qri+qWQSrwarFIxER0RzAAJ1oBhTHt9SYamDQVfBXuh2FOegxv7Z1VLDIzp0Y+dI/AwDqbr8dtX/9vzWuiIhobpNlGeFkVg3Gh8Mp+CaUgHy4sB0Jp5DJnzkgB5QFO9trrWo3eXHcSmedDU1OM2eRExHNU2a9GSs9K7HSs1I9JssyAskAjoWO4XjouBqu94Z7Ec1Esc+/D/uzlU4bAAAgAElEQVT8+9TrBQhod7aXjYFZVrsMzbZm/ktYIqJ5gAE60QxQFxCt1PEtRY4mZcsO9AsS370bw/d+EpBl1Lzvvai7606tSyIi0lw8nSvrHC/dDoeTGAmnkMjk3/Q+ggDU201orrGguUZZqLOlxoIF9cq4lVa3BXqdOAtPRERElU4QBNRb61Fvrce1LdeqxzP5DHrCPWqgXgzXg6kg+iJ96Iv0lc1WtxvsWOJeUj5f3b2U3epERFWGATrRDKiaAN3uVbbREW3rqEDJw0cweMedkLNZOLZuRePnP89uFCKqepmchJFwCoMTCfjO0EEeSeXO6V61NiOaXEowXgzIi9smlxlepxlGPQNyIiK6dIw6I5bVLsOy2mX400V/qh4PJAM4HjqOE6ETaqj+xsQbiGVj2D+6H/tH96vXChCwwLVA7Xpf6VmJFbUrGKoTEVUwBuhEM6BqAnS1A50B+vlI9/Rg4MMfhpRIwHrVVWj++r9A0Om0LouI6KJl8xJ8EykMhhIYDCVLtsr+SCQF6czrc6ocJj2aak4Pxy1odpnRVKME5GYD/7lJRERzU52lDnWWOlzdfLV6LCtl0RvunRwBEzqG4+PHMZYcw6nwKZwKn8KvTv0KAEN1IqJKxwCdaAZUT4BemIHOAP2cZf2jGLh1G/Lj4zCvWoXW734XotGodVlEROckm1c6yAdCCQyOX1hAbtKLaKmxTAbkJaF4c2HrMFfw+iBERETTMIgGLHEvwRL3EtyIG9XjgWQA3cFuHAkeQXewG93BbowmRqcN1TtdnUqgXlsI1T0rYDPYtHokIiI6AwboRDOguIho9QTonIF+LvLhMAa2bUN2eBjGjg60/eiH0Nn5Cy8RzR1lAXlJMD4YSmIolIQvnHzTgNyoF9HqtqDVbS1sLWhT962osxs5soqIiKigzlKHza2bsbl1s3qsGKqXvvwJP3rCPegJ92D7qe0AlFC9w9kxpVPdbrRr9ThERAQG6EQzIpgMAqiGAL0wwiU5DuTSgN6kbT1zmJRMYuC225E+cQL6+nq0Pfww9B6P1mUR0TwjyzICsQx6g3H0BuJqSD4QSlxUQF66X2czQRQZkBMREV2o8wnVeyO96I304qmepwBMhuorPCuwyrOKoToRkQYYoBPNgGIHer2lXuNKLpLFDeiMQD4DxPxATbvWFc1JcjaLoY/dg+Srr0J0OtH20EMwtrZoXRYRVSlZljEeV0LynkACvYG4EpgH4+gNJBBLn32RTgbkREREc890oXowGSwP1ce7MRIfUUP1HT071Gs7nZ1lofry2uVwGB1aPAoRUdVjgE40A6pmBrogAPZGINyvzEFngD6FLEnwfe7ziL3wAgSTCW0P/ADmZUu1LouIKpwsywglsugJxNFX6CbvCU6G5dHUmUNyQQBaaizo9NjQVlsyZqWwz4CciIioMngsHlzXeh2ua71OPTaeGp/Sqe6L+6YN1dsd7VjhWYHltcuxslaZqe42u7V4FCKiqsIAnegipfNpRDNRAECdtcIDdECZg14M0GmK0W98E+EnngB0OrT827dgXb9e65KIqIJMJDLoKYTiPYHEZFgeiCPyJiF5s8uCzjorOj02LKizocNjw4I6K9pqrTDpdbP4FERERDRbas21uLblWlzbcq16bDw1jqPBo2Wh+nB8GP3RfvRH+/F079PqtY22RqyoXYEVnhVqqF5vqef6JURE54EBOtFFKnafG0UjHIYq+Mqcw6tsGaBPEXz4YYw/8ggAoOnLX4ZjyxaNKyKiuSiczKqd4z2ByW7yvmAcE4nsWT/b7DKjsyQcL4blbbVWmA0MyYmIiEgJ1a9puQbXtFyjHptITeDo+FHlFVS2fZE+jMRHMBIfwfMDz5d9vjRQX1G7Ai32FobqRERnwACd6CKVjm+pil84iguJxhigl5r4xf9g9OvfAAA03Hsvat79ZxpXRERai6dzODEaw/GRKI75ozjuj+LYSBSj0fRZP9foNKOzzooFdTZ0eophuQ0dHobkREREdGFqzDXY1LwJm5o3qcdimRiOhY6pgXp3sBunwqcwnhrHS0Mv4aWhl9RrHUYHVtYqs9RXeJSO9Q5HB3QifzchImKATnSRAolCgF4N41sAZYQLwA70EtHf/Aa+L3wBAFB76y3w3HqLxhUR0WxK5/I4NRZXA/LjfiUwHxhPnvEzXqdJCcY9NnTWFbrJ62zoqLXBYuQfokRERHTp2Y12dHm70OXtUo8lc0mcCJ3A6+OvozvYjaPjR3EidALRTBR7R/Zi78he9VqL3qIE6oURMCtqV2BhzUIYRIMWj0NEpBkG6EQXSe1AN1dJgG4vBug+beuYIxKvvIKhez4O5PNwvfvdaPj7v9e6JCK6RHJ5CX3jiSkd5b3BBPKSPO1nGhwmLPU6sNTrwLJGO5Z6HVjidcBu4q9YRERENPdY9BZcXn85Lq+/XD2WzWfxRvgNda766+Ov41joGJK5JPaP7sf+0f3qtUbRiCXuJWqgvrx2ORbXLIbVYNXicYiIZgX/uiO6SIGUEqDXW+s1rmSGqB3ofm3rmANSx45h4LbbIafTsF9/PZr++UvVMaaHaJ6TZRlDE8lCQB5Tg/KTYzFkctK0n3Ga9Vje6MTSRjuWFQLzpV4H3DbjLFdPRERENLMMOgOW1y7H8trlePeSdwMA8lIefZE+dI93qyNgXg++jmg2iiPBIzgSPFJ2j1Z7Kxa7F2NJzRIscS/Bkpol6HB1sFudiKoCA3SiizSWGAMAeCwejSuZIcUZ6PO8Az0zOIj+bdsgRaOwdHWh5Vv/CkHPf2QSVRJZljEWS+P4SEzpKC90lp/wRxHP5Kf9jMWgw1KvvdBR7lC3DQ4T/wUaERERzRs6UYeFNQuxsGYhblp4EwDld6vB2GDZTPXjoeMIJAMYjA1iMDaIXQO71HvoRT0WuBZgcc1iLHUvxeKaxVjiXoImWxNEQdToyYiIzh/TIKKLFEwGASiLiFaFYgd6chzIpQG9Sdt6NJAbG0P/rbciPxaAaelStH3/exAtFq3LIqKzyOUlvDEWR7cvjCNDEXT7IjjqiyCUyE57vUEnYFH9aUG514FWtwWiyKCciIiI6HSCIKDN0YY2Rxve3vl29XgoFcLJiZM4HjqOkxMncSJ0AicnTiKejeNE6AROhE5gR88O9Xqr3jqlW32xezFqzbVaPBYR0ZtigE50kcaSSgd6vaVKRrhY3IDOCOQzQMwP1LRrXdGsygUC6PvAB5Ht64ehpQVtDz4InculdVlEVCKRyeH1kSiODEfQPRxG93AEr49EkZ5m/IooAJ0emzJypdGBpV5lBEtnnQ0GHTufiIiIiC6W2+zGxsaN2Ni4UT0myzJ8cd+UYP1U+BQSuQQOjh3EwbGDZffxmD1TgvVFNYs4X52INMcAnegiqYuIVksHuiAoXegT/UB0ZF4F6LlgEH0f+AAyb7wBfWMj2h99BAZvg9ZlEc1rwVga3b5IISyP4MhwGD2BOKZb09Nm1GFlsxMrm5xY1ezCymYnFjfYYTboZr9wIiIionlMEAQ025vRbG/G5tbN6vGslEV/pB8nJpTO9JOhkzgxcQKD0UEEU0EEfUHs9e0tuxfnqxOR1higE10ESZYQTFXZCBcAsBcD9PkzBz03Po7+D3wQmZNvQO/1ouPHj8HYPn/+5QGR1mRZxmAoiSPD4ZKwPIKRSGra6+vsJqxqdhZeSljeUWvl+BUiIiKiOcwgGrCoZhEW1SzCOzrfoR5PZBM4FT6ljHwphusTJ888X13Qo83ZhgXOBVjgWoBOVycWuJR9p9GpwZMRUTVjgE50EcLpMHJSDoDydbOqUZyDHvVrW8csyYVC6P/gLUifOAF9fb0Snnd0aF0WUdXK5iWcHI2VdZV3+yKIpnLTXt/psaoh+cpCaN7gMM9y1URERER0qVgNVqyuW43VdavLjp9tvnpPuAc94R5goPxeHrNnMlQvBOwLXAvQZGuCTuQ3E4no/DFAJ7oIxfEtNaYaGHRV9PUxNUCv/g50NTw/dgy6+jq0//jHMHZ2al0WUdVIZHLoHlYW9TwyFMERXxjHR2LI5KfOKzfoBCz1OrCqOIalxYUVTU7YTfx1hYiIiGg+OtN89ZH4CHoiSoDeG+5V90cTo8oomFQQr/hfKbuXUTSiw9UxtWvduYBz1onorPgXKdFFKC4gWlXjW4DJAD1W3R3o+YkJ9N96K9Kvvw5dXR06fvxjmBYu0LosooolyzKGwyns6wvh1b4Q9vWF0O2LID/NwHKHSY8V6rxyZQzL4gY7jHou7ElEREREZyYIAprsTWiyN+Hq5qvLzsWzcfRGetXu9J5wD3ojvegL9yEjZZQRMaETU+7ptXqVUN05OQpmgWsBvFYvBIEjAonmOwboRBchmKzC+ecA4GhStlXcgZ4Ph9F/6zaku49C5/Gg47FHYVq4UOuyiCpKNi+heziCfYWwfF9faNqZ5fUOE1YXQvJVhTEsbW7OKyciIiKimWUz2LDKswqrPKvKjuelPIbjw1M61nvCPRhPjcOf8MOf8GOPb0/Z5yx6S1mo3unqRIejA+3OdtgMttl8NCLSEAN0ootQHOFSb6nXuJIZZvcq2+iItnVcIvlIBP3bPoTUkSPQud1of/QRmBYv1rosojlvPJ5ROsv7lbD84OAEUtnyUSw6UcDKJie6OtxY3+FGV4cbLTUWjSomIiIiIgJ0og5tjja0OdqwuXVz2blwOjxt1/pAZADJXBJHx4/i6PjRKff0mD1od7ajzdGGdkc7OpwdaHMq+w6jY7YejYhmAQN0ootQvSNcih3o1Reg56NRJTw/dAi6mhq0P/YYzEuXal0W0ZwjSTLeGItNdpf3h3BqLD7lOpfFgPXtNdjQWYv17W6saXPBauSvF0RERERUGVwmF9bUr8Ga+jVlx7NSFoPRwSkd6wPRAYynxtVZ6/tH90+5p9vkRruzHe2OdjVUb3e0o93ZDpfJNVuPRkQzhH/hEl2EYge6x+LRuJIZVpyBnhwHcmlAb9K2nhmSj8UwsO1DSB08CJ3LhfbHHoV5GcNzIkBZ7PPAwIQ6u/zV/gmEk9kp1y2qt6Gr0Fne1eHGwjo7R7EQERERUdUxiAZ1dMsWbCk7F81EMRAdQH+0H/0R5VV8H0gGEEqHEBoL4bWx16bc12VyKcG6o00N2YvbGlMNZ64TzUEM0IkuQtWOcLG4AZ0JyKeVLnR3h9YVXbR8LI6BD30Yyddeg1gMz5cv17osIk2ULva5r3cc+/pDOOqLTlns02wQsaa1Bl0dbmzodGNdmxtum1GjqomIiIiI5gaH0YGVnpVY6Vk55Vw8G1fC9Eg/+qNKsN4X6cNAZACjyVGE02EcSh/CocChqfc1OCY71kvC9TZHGzxmD8N1Io0wQCe6CMUAvepGuAgC4PACE/1AzF/xAboUj2Pg7/4Oyf37ITqdaH/kYZhXrNC6LKJZk8jk8PpIFPv7JzvMp1vss8llLusuX9HkhEEnalAxEREREVFlshlsWF67HMtrpzZsJbIJDMYG1XC9tHN9JD6CaDaK7mA3uoPd09633dGOTmcn2p3KzPXii2NhiC4tBuhEF0EN0K1VFqADyhz0iX4g6tO6kosiJRIY+LuPILlvH0SHA+0PPwzLqlVv/kGiCiTLMvyRNLp9YRz1RdE9HMFRXwQ9wTjk8uZy6EQBq5qdWN8+GZg3c7FPIiIiIqJLxmqwYql7KZa6p44STeVSGIwOlnWt90f7MRAZgC/uQzwbP+OCpjWmGiVUd3SUBevtznbYDLbZeDSiqsYAnegCpXIpRDNRAFXYgQ4Adq+yreCFRKVkEgMfuQ2JV16BaLej/ZGHYblstdZlEc2IbF7CydEYjvoiSlA+omxDialzywGgzm7CZS1ObOisRVeHG5e3crFPIiIiIqK5wqw3Y7F7MRa7F085l86nMRgdVEL1SD96I73oj/ajL9yH0eQoJtITmBibwMGxg1M+W2epmwzUSzrY2xxtMOvNs/FoRBWPfzkTXaBgKggAMIpGOAwOjau5BBxNyrZCA3QpmcTAbbcj8fLLEG02tD/8ECyXXaZ1WUQXJJzIotsXQbcvogbmJ0djyOSlKdfqRAEL62xY2ezEiqbiy4EGB385JiIiIiKqRCadCYtqFmFRzaIp5xLZBAaiA0qoHulHX6RP7V4fT40jkAwgkAxgn39f2ecECGi0NaLdWQjVHZNjYVocLTCIhtl6PKI5jwE60QUaS4wBAOqt9dW5kIejcjvQpVQKg3fcgcSePRCtVrQ9+CAsa9ZoXRbRm5IkGQOhhDp6RQnMoxiaSE57vcOkVwPyYmC+1OuA2aCb5cqJiIiIiEgLVoMVy2qXYVntsinnIplIWahe7GDvi/Qhmo3CF/fBF/dhr29v2ed0gg4t9ha0O9vRam9Fo62x7NVgbWDATvMKA3SiCxRMKh3oHotH40oukWIHeqyyAnQpncbgHXci/vvdEKxWtD30IKzr12ldFtEUyUwex/zRyREshe7yeCY/7fWtbgtWNDmxstBVvqrZiVa3pTr/BR4REREREV00p9GJ1XWrsbqufJSpLMsIpUOT42BKtv3RfiRzSWWR02j/tPcVIKDOUlcerFvLQ/Y6Sx1EQZyNxyS65BigE12g4gKi9ZZ6jSu5RByNyraCOtCldBqDd96F+EsvQbBa0f6jH8K6fr3WZRFBlmWcHI1hT884/tAzjiPDYfQE4pDkqdca9SKWeu1qUL6yyYnlTU64LOzwICIiIiKiiycIAmrNtag112Jtw9qyc7IsYzQxiv6oEqr7Yj6MxEfgiytbf8KPrJTFWHIMY8kxHAocmvZn6AU9GqwNaLQ1wmvzloXsTbYmNNoaUWOqYUMQVQQG6EQXaCypjHCpygVEAcBeDNB92tZxjqRMBoN33434734HwWJB2wM/gHXDBq3LonlKkmS8PhLF3p4gXu4Zx8s94wjGM1Ou89iM6uiVYmC+sN4Gg46dGkRERERENPsEQYDX5oXX5sXGxo1TzkuyhPHUOPxxP0biIxhJjCjb4isxgrHEGHJyDsPxYQzHh8/4s0w6kxqsqyF74X2zvRnN9mZY9JZL+bhE54QBOtEFKnagV+8Il0KAngwBuTSgN2lbz1lImQyG7v4o4i/8FoLZjLYf/AC2K67QuiyaR/KSjO7hCPb2BLHn1Dj+0DuOcDJbdo1JL2J9uxtXLqzF2rYarGxyot5hYscFERERERFVDFEQUWepQ52lDqvqVk17TU7KIZAMTAnWS98HU0Gk82l1NvuZ1Fnq0GpvRauj8Crst9hb0GBt4JgYmhUM0IkuUNWPcLG4AZ0JyKeVMS7uDq0rmpacyWDoY/cgtmsXBJMJbT/4PmxXXal1WVTlsnkJh4fC2Nszjr2ngnilN4RoOld2jdWoQ1eHG1ct9ODKBbW4rNUFk56LexIRERERUXXTi3q1m/xMMvkM/Am/GqiX7vviPvhiPkSzUQSSAQSSARwYOzDlHkbRiGZ7c1mwXhqw2432S/mYNI8wQCe6QMUAvWpHuAgC4PACE/1zNkCXs1kMfeITiP3mNxCMRrR+/3uwbdqkdVlUhdK5PA4OhrH3VBB7e8axry+ExGmLfTpMemzodOPKQmC+usXFUSxERERERETTMOqMaHO0oc3RdsZrwukwBmODGIwWXoX9odgQfDEfMlIGvZFe9EZ6p/282+RGi71lSvd6q6MVXqsXepGxKJ0b/i+F6AJVfQc6ADialAA9NvcWElXC879H9NlfK+H5974H+zXXaF0WVYlUNo/9/RPY2xPE3lPjeLU/hHROKrvGZTHgigW1uHJBLa5c4MHKZid0IsexEBERERERzQSXyQWXyYVVnqmjYnJSDv6EvyxcH4oOqSF7KB1SX4eDh6d8Xi8oXfKl4XqLowWt9lY0WBtQa65lwE4q/i+B6AJIsoRgMgigimegA5Nz0KNzK0CXczkM3ftJRJ95BoLBgNbvfgf2667VuiyqYIlMDq/2TQbmBwYmkMmXB+Yem3EyMF/owTKvAyIDcyIiIiIiolmnF/Vosbegxd6CK5umjnGNZWIYig2Vda6XdrBnpazyPjYI+KbeXxREeMweNFgbUG+tR4OlsLU2oN5Srx6vMdVwDvs8wACd6AKE02HkZGXescdcxQG6vRigT/P/JhqRczkMf/KTiO7cCRgMaPnOt2HfvFnrsqjCjMczeG1wAi8XZpgfHAwjJ8ll19Q7TGpYftWCWixusHPBTyIiIiIiogpgN9qxrHYZltUum3JOkiWMJkanBuzRQQzHhhFIBSDJEsaSYxhLjgHBM/8cvaifEq5PF7Q7DA7+PVnBGKATXYCx5BgAZZ6WQWfQuJpLSO1A92tbR4Gcy2H4U59G5KkdgMGA1n//dziuv17rsmgOk2UZo9E0Dg+FcXgogsPDYRwZCmM4nJpybbPLrM4vv3KhB50eK3/BISIiIiIiqjKiIKqLnHZ5u6acz0t5jKfGMZocxVhiDKOJUSVML+wX34+nxpGTchiOD2M4PnzWn2nRWybD9TME7g3WBlj0lkv12HQRGKATXYDi/POqHt8ClATo2negy/k8hj/zWUS2bwf0erT+27fgeOsWrcuiOUSWZQyGkjg8FMaRYSUsPzwUQSCWnvb6BXU2dHW4ceWCWly10INWt4WBORERERER0TynE3WotyrBNs4S+2TzWQSSgSlBuxqyJ8YwmhxFNBNFMpdEf7Qf/dH+s/5sl8kFr9WrvGzeafftRvsMPzG9GQboRBdgXiwgCkwG6DFtO9DlfB6+z/4DIr/8JaDToeVfvwnH296maU2kLUmS0ROMT4blQ2EcHgojkspNuVYUgMUNdqxudmFViwurm51Y2eyEw1zF3x4hIiIiIiKiS8qgM6DJ3oQme9NZr0vmkggkJoN2f8KvhutjiTE1dE/mkginwwinwzgeOn7G+9kMtqnBeknA3mhrhNPoZIPYDGKATnQBigF6naVO40ouMUfh/wQ07ECXJQm+z30e4SeeUMLzb34Tzre/XbN6aPZl8xJOjsbKwvKjvgjimfyUaw06AcsaHWVh+fJGJyxGnQaVExERERER0Xxn0VvQ5mxDm7PtjNfIsoxoNgp/3A9/wj+5PW0/mokino3jVPgUToVPnfF+Jp3pzF3shW2tuZYLoJ4jBuhEF2DeBOh2r7JNhoBsCjCYZ/XHy5IE3xe+gPDjjyvh+Te+Duc7ts5qDTS7Utk8jvujZfPKj45EkclJU641G0SsbHJidYsLq5qdWNXswlKvA0Y9fwEgIiIiIiKiyiEIApxGJ5xGJ5a4l5zxukQ2MTVYL2xHE6PwJ/wYT40jnU+/6cgYvaiH1+rFZXWX4etv+fqleKyqwQCd6AIEEvMkQLe4AZ0JyKeVMS7ujln70XI2C9/nPofwE08Coojmf/kanH/8x7P28+nSk2UZr49EsfdUEIcLneUnR2PISfKUax0mPVY2K2H56hYnVje7sLDeDp3Ir6QRERERERHR/GA1WLHAtQALXAvOeE06n1bC9Gm62IvHx5JjyEk5DMWG4LV6Z/EJKhMDdKILEEjNkwBdEJQ56BN9QHRk1gJ0KZHA4Mc+hvhvfwfodGj+6lf/X3t3Hh5Hdad9/66qXrW1LMmWZCNj451kwGBsY3YnrC/JDAQYCM5A9ncykIE4ZCELIXnyhDyTZ8IyYckbEpNhIM5kIZmEgYQx2GBW22BCABtjvGEsWXu3lt6q6v2jepXa+9KS/f1cV1NVp061TkumLN99+ncUufjiQ/5100lbvR2DirYPKtoZlz9gqaImoIpIQBU1QYVr/LIsZjcfiGg8pWc3dGj5+nateKtdrdH4sD51lQG9LxuWj/cC85YxFTIJywEAAAAA2K2gFVRLdYtaqnddMiblpNQ52KnW/lZqpe8FAnRgP7QPtEuStyLzkS4XoB+eOujp7m5t+8d/VPzVv8gIhTThjttVfc45B+W5XddVoj+t3vZB9XYMKNo+6O23e6F5f29yj88RqvKrMhLwgvWaYCZcz4fs2XOBsI+/hOR9z9/cEdPyt3Zq+fp2vbylu2iGechvav7kep3YUqv3Z0Lz5kiI7x0AAAAAAIeI3/SrqbJJTZVN5R7KqECADuyHzsFOSVJ9uL7MIzkMqjM30762Q/6lUu+9p62f/oyS77wjMxJRy333quKkk/bpOVzHVV9PIheK5wLyDm+bHEzv9vpA2KfI2LBq6kOy044Gokn19yY1GE3KcVzF+1KK96XUub1/t89j+c1MyO49KiOFYXuw6Jx1hNXs7h1MaeWGDq14a6dWvNWutmii6PxxYyt1zvRxOmfGWM2bXKeQnwU+AQAAAADAyESADuyjvmSfYqmYJGls+GiYgd7sbQ/xDPTEhg3a+pnPKt3aKl9Tkybe/xMFp04t2TedshXtiOcD8o58WB7tHJSTHl5Du1BlJKCasWFFMo+asWFFGioUGRtWsLL0zHHXcRUfSGmgN+k9ogn19yY1EM08ehO5/cRAWnbKUawzrljn8BIlQ4Uq/UUz2QNBnwzTkGHK2xqGTNNbVMRrzxxnznnHmf5Dj3PXG/nnHHpsGjINQ5bflC9gyR/MPEKWfH5zj7PBXdfV6+9FteKtdi1fv1Mvb+2RXTDLPOy3dNqUep0zY6zOmTFOLXUVe/yeAAAAAAAAjAQE6MA+cF1X33nhO5Kk5spmVfmryjyiw6Aqs5hErPWQfYmBl1/Rts99Tk5vrwJTpmji/T+Rv7lZycG0tr7RpZ6d+XIr0Y5B9fUkpN1k5KZlqLo+5AXkDeFcWF4zNqyahrD8gX2f8WyYhsJVAYWrAqqfsPu+6aRdEKxnwvbcfkHY3puZ1d6fUrw/pa73dj+rvSwM5QP1gofhM9WTSqttIKl3Y3H1ptJKGZIjV8cbpuoiQc1qiejEyWP0/mPHqKrSL3/Qki9gybYdaskDAAAAAIBRgQAd2Ac/f/3nemzTY/IZPt125m1HR+x5k3cAACAASURBVJ3m3Az0QxOgx5Yv1/YbvyA3Hlf4xBM14Z571NZhaN3jb2jjyzuVTjklr/OHrJIBeaQhrKq6UFkXnPQFLNU0eGH97riOq8RAWv0Fs9f7exNKJ2y5ruQ4rtzcQ3LcwmNXjqviY8d7k8d1XLkF5xzHzbQrf5zpU/g17LSjVNJRKmErnbAzg5RScVupuF3yNVRLmiVDkr/4xKArtfbonVU9ekebhl1n+oxcGB8I+YrqyHslb4rrzAcrqCkPAAAAAAAOPwJ0YC89995zuv3l2yVJX5n3Fc1pnFPmER0m1YduBnrPI7/Tjm98Q7JtGWddoJ0X/ZOeuX2doh35sie1jRVqnFzjBeQN+bIroSr/qA9UDdNQqMqvUJV/j7PaDzfXcdXZm9DKdTv1/PoOvfJOl/oHUvK7UsCV/DI0viqo6XWVmlRboXFhv5yUq1TCzjzSXvCeKHgk7Vx5HSftKpFOK9GflpTY4+x702fka8kX1I/P1ZOPZM5VB2T5md0OAAAAAAAODgJ0YC9si23Tl1Z8SY7r6NKpl+rKGVeWe0iHzyGoge66rrp++lPt+OFdam84Se0nfFjtdoP0p3clSYGQpalzGzXrtGY1TqoZ9UH5aOE4Xi3z5et3avlb7Xpla7cKSpmrosLSaVMaMrXMx+qYMftey9xOO8WhesJWciCtgVgyPxM/U/YmW/ImMZCWk3bV15VQX1dij18jWOErXqg1ElBlTbCoznxlTXCX9e4BAAAAAACyCNCBPRhIDeiGp25QNBnVCQ0n6Ounfv3oCt2qm7xtvEdKxSV/6ICezrFtrf/uvVq/ulNtp31PaV+FlPbOTZgxRrNOa9ZxJ43drzrl2HetvXE9+3aHnn27Q09v6FBHX3FAPW1cVW7xz1MmjVHQd2A/F8tnyvKZClX699w5I50aWlPeqyNfqq68Y3tlcRIDaXXv2POs9uoxIVXXhzIldzL79d6nHcLVo/9TDgAAAAAA4MAQoAO74bquvvHsN7She4Mawg364Tk/VNAKlntYh1eoVrKCkp2Q+lqlMZP262kGokmtf267XvuvvyjmHC9lSpZU14U0c0GTZi5o3mPNcBy4WDylF9/p0spMaL5hZ1/R+cqApdOmNuRC8wm15f+Z+PyWF2rX76GmvOsq0Z9Wf7RgJnt2Edds0J4J27Oz2nszi9NK3SW+rpkP1+tDqq73QvaahrCq60PUZQcAAAAA4ChAgA7sxk//+lM9seUJ+Uyfbj/ndjVWNpZ7SIefYXiz0Hu2SLG2fQrQbdvRltc69eZzO7T1r51yHFdStUw7qYnHSCdeOU8Tpo+RUcYFP490KdvR2m09WrnBC8xf2dYju6Aui2FIJ0yI6PSpDTpjaoNOmVSngG901hA3jIKa8uN339dOOervTSjWGVe0c1DRzrhiHd5+rDOuvp6E0ilH3a0D6m4dKPkcgZCl6ky4XlMfVnVDyNvPBOyBEH/FAgAAAAAw2vGve2AXnnn3Gd318l2SpK/N/5pmj5td5hGVUXWzF6DvfF2aOH+P3Tvf69O653Zo/YutGoylcu010U0a37FaJ33pStWdd84hHPDRy3VdbdjZlwvMX3inU/1Ju6jPpPqKXGC+YEq9aisCZRpt+Vh+M1O2JawJGjPsvJ1yFOvOh+pewO5to51xDUaTSsZtdb7bp853+0p8BSlU6c+UhcmE7Jl9L1y3ZFqmTNOQYRkyTSO3bxhiZjsAAAAAACMEATpQwpboFn3l6a/Ilasrpl+hK6ZfUe4hldfEU6VtL0iPfUWqmSBNv2BYl8RAShtWtenN53Zo55ZYrj1caanpvec1bv2fVOMfVMuP71N49lH8ZsQhUFjHfOXbHdoZK65jXlcZ0GlT6nXG1AadPrVBLXX7vvjn0cbym6odV6HacaW/V6mkXTRjvThgH1SiP614f0rx/lTR/w97y7SM4nDdMmSY+X3TMouODdOQle0z9NpsH8tQqMKv6vqQqjK136vrQtR6BwAAAABgNwjQgSH6U/264ckbFEvFNHvsbN087+ZyD6n8Fn5d6toovfkHaeki6Yol0qwPy3VcvbuuW28+v0PvrG2XnXIkSaZpaNIJDZoyyZV7241y2nbI19SkiT99SMEpU8r8Yka/wjrmK9/u0NtD6pgHfabmTa7TGVMbdMa0Bs1qqpFJmZyDyh+wVDe+UnXjK0ueTwymFescVLQjni8T0xFXLBO4p1OOHNstea0kObbrnU/tsstB4/ObqqrLB+rVdUFvWx9SVV1IVbVBmdboLOsDAAAAAMCBMlzX3fW/4LHXotGoIpGIent7VVNTU+7hYD85rqPFyxdr2dZlGhcep6UfWqqxFWPLPayRwU5Jv/2s9Ppv1Ws3a92kH2rdxoj6uvKznesnVGrmgmZNn9ckvf1XbfvHz8mJRhWYMkUT7/+J/M3NZXwBo1dhHfOVb3do7e7qmE9r0MkTxyjkt8o4Yuwt13HlOF5Y7jiuXLvw2PHO2wXnh/bN9i+81nHk2q5su7i/Y7sajCUV64qrr8sL9vujSWkPvwUYpqHK2kAmXA/lwvXCkN0f4M8bAAAAAGD02JcslxnoQIGf/OUnWrZ1mfymX7cvvJ3wvEAqbWrjhO9q3cvna3t3o9QuSQkFK3yaNrdRs05r1tiJ1TIMQ7GnntL2G78gN5FQePZstdx3r6za2nK/hFGjsI75yrc79OJu6pifOa1Bpx53dNYxPxIYpiHLNGSV6W9jO+Wor8cL02NdccW6Et42c9zXFZdju+rrSqivK6Ed6i35PKEqf3GwPiRoD1b6KBMDAAAAABiVCNCBjOXbluvutXdLkr556jd1wtgTyjyikcFOOVrz+GatXbZNqbgtqVGSq5bAWs0KP6nJl10l37yzcv17fvuIdnzzm5Jtq+rsszXhjttlhsNlG/9oMZBM6+m3OvTEG216ZkP7LuuYnzmtQadNoY45Dg7LbyoytkKRsaX/PLmOq4FoMhOuFwbt+f1U3Fa8L6V4X0rtW0vXezctQ/6gJV/Akj9oZfZN+YM++YOm/Jl2X+5cvl/xObP4fMCSQXkiAAAAAMAhRIAOSNrUu0k3P3OzXLm6asZVunTapeUe0ojQ+k6vnnxwnbp39EuSahpCmnVas2bMa1T1C49Kq1dK/71SMpJyT/mkOu+/X+3/+kNJUuSSS9T8v74jw+8v50sY0Tr6Elr2ZlsmNO9QIu3kzoX8puZNrtcZU+t1+lTqmKM8vPItQVXWBtV0XGTYedd1lRhIq6+7IFwv3HYnNBhNyrG9fomB9EEfo89veuF6wJI/lA3Xs+G8pXCVX6Eqf2YbKNj3Hhb13QEAAAAAu0EN9IOEGuijVywZ09WPXq3N0c06edzJuv+C++U3j+7QN5Ww9eLv39GrT22TXClc7deZV07X1JPH5Wd7uq70+M3Si/fKdaWdPRer60+vSJLqPvVJjbvpJko2lLCpo19PvNGqP7/epjVbu1V4B55YV6Hzjm/UB2eO08nHUsccR4Z00tZgX0rppK1UwlY6aSsZt5VOOrnjVCLzyPZJ2EPOOcXnkvYea7fvrUDYlwvV88F6IL9f6Ve4On8cDPuY9Q4AAAAAoxw10IG95LiOvvbM17Q5ulmNFY3613P+9agPz7e92aXlD61TtCMuSZp5apNOv2KaQpVDvi+GIV14m1z59N4dDyq6xQvPx335y6r/5CcO97BHLMdx9Zftvfrz66164o02bdjZV3T+byZEdP7xjTr/fU2a3ljFmw444vgClqrrDu6bQa7ryk45pYP3pJML4JPxtOJ9KQ1mSswM9iW9cjP93rHrSsnBtJKDaUXbB/fqaxuGioL17Ez2cGV+pnuw0i9fwJLlM2X5jMzWlOUv3BqyLJMwHgAAAABGOAJ0HNXuffVeLX93uQJmQHcuvFMN4YZyD6lsEgMpPfvrt/XmczskSVV1QS1cNFMT31e/y2ucgQG9+5s29W+pkAxX4+f1KDKl43ANecRKpG09v7FTT7zhlWcprGfuMw0tmFKv845v1LmzGjW+lvrwwL4yDEO+gFeuJVy9f8/hOK6SA+lcqD4sZO9LabA/pcFYSvFMWzJuy3WlwZjX3t06cMCvxbSGBuxGcdju21Vb9hpDZmbf5zcz3xevrrxX2sbM1Yz3BaxMu9efN+wAAAAAYM8I0HHUWrZ1me579T5J0rdO+5be1/C+Mo+ofN5Z264Vv1ivgd6kZEh/c/YxOvWS4xQI7foWke7u1rb/9x8V/8tfZITDOubTZ6iq/efSU9+V7KS08GveVM2jRO9gSsvX79Sf32jTivXt6kvkaz1XBX06e8ZYnX98o86ZMU6R8NH9KQdgJDBNIzd7fG/ZaSc3e30wlsyF7vH+TACfbetPyU45stOO7LSb2XoPJ11ce8axXTm2N2P+cDIM79MBpUP2fF35bE15X6Bw8Vaz4FovsA9V+hWuCcgfoPQUAAAAgCMLATqOSht7Nuprz3xNkvSxWR/T30752zKPqDwGokk9vfQtbXx5pySptrFCC/9hpsZPrd3tdant27X1059RctMmWZGIWn58n8KzZ0vPTpGeuEV6+l+8EP3cW4/oEH1H72BulvnzGzuVdvLB2LjqoM47vlHnHd+oBVPqFfQRKgGjneUzVRkJqjIS3O/ncF1XTtpVOu0UhOz5cN0uaE+nsu3Dg3ivjzvsOdJJr158vua8k68ln7RzAb7rKlcCZ++K1+wdf9BSuCagiuqAKiLeNlwTUEVN4b5X/mZ3b9ICAAAAwEjBv1xw1Ikmo7rhqRs0kB7Q3Ka5WnzK4nIP6bBzXVfrX2zVyv/coMRAWoZp6OTzJ+qUiyfJt4eFK+NvvaVtn/ms0m1t8jU3a+L9P1FwyhTv5Ok3SFZAevyr0rN3eCH6Bd87YkJ013W1vi2mJ15v05/faNNr23uLzk8bV6XzMvXMT5gQkUltYwBDGIYhy2/I8ptSGSo4OfbQkD0TsCfzC7QOXeA113/IfmHf7Kz7VMJWqn1wr2rK+4KWKqr9qqgJKFzthey58L2m4LgmIH/QouQMAAAAgLIgQMdRxXZsfeXpr2hLdIuaK5v1f8/+v0fdoqHRzkGteHi9tr7eJUlqaKnSB66ZpbEtey4kPLBmjbZ97p/kRKMKTJ2iifffL39TU3GnUz/nheiPLpZeuMcL0S/6gWSah+LlHHK242r15i498YYXmm/tytc8NgxpzsQxuZnmx42tKuNIAWDPTMtUIGwqED64vwK6rqtU3NZANKmBWFIDvUkNxpK548Gotz+YOZdOeYu9RhN2btHq3fH5zVyYHi4I2IMVPpmWKdMycvXkc/sF7WamvajN8urLF12f2WdxVwAAAABZBOg4qty99m6t3L5SISukOxfeqbpQXbmHdNi4jqu/Pr1dzz+yUamELctnau6HJmn2eRNlWXsOt2NPPqXtX/iC3ERC4ZNOUsu998iq3UWpl7mf8kL0//q8tOp+L0T/0J2jJkTv7k/qxU1d+p832/Tkup3q6k/mzgV8ps6c2qDz39eoD8xs1Njq/S/lAABHCsMwFAj7FAj7VNtYsdu+rusqlfDC9sEhAftAYdAeTWoglvJmvqccxTrjinXuOWw/OK9HudB9aPCeXdA1XOVXqCqgcJVf4erMfrU/317tV6jCTxgPAAAAjHIE6Dhq/Hnzn/WT134iSbr1tFs1q35WmUd0+HS39uup/1inHW97JUeap0a08GMzNaapco/Xpru71f3gg+r48f8n2baqzj5bE+64XWZ4D7UHTv4HyfJLv/uc9PK/S3ZK+ru7JXNk1QJ3XVfvdg9q9ZYuvbSpW6s3d2nDzr6iPpGwXx+cOU7nv69RZ04bq8ogt04A2F+GYSgQ8ikQ8ql23O7Ddkm5sL0wcM/uJwbTmYVYHTmOKyftZI69mvGOU7CfaXdsb9+28/2Hcl159eVTB/pa5S1WW+nVfQ9X+RXKbjPBezgXvAcUqvLL8o2ON5sBAACAowUpEI4Kb3W/pW88+w1J0rXHX6uLj7u4zCM6PGzb0dontmrVHzfLTjvyBy0tuHSK3n/WhD3OiEtu2aLOBx5Q7yO/kxv3ZvxFLrlEzf/rOzL8e1n25sSrvBD9N5+RXv2FNxP90h97bWXiOF4d89Wbu/TSZi8w39E7fEbj1HFVOiMz03zepDr59mKWPgDg4PMHLUXGhhUZe2iKxruuK9fJBOrZgD3tys4E7U7aleNkQve0dz5b9z3el9JgLKXBvqQGYynF+5Ia7PPaEwNpua6887GUulsH9jwYSYGQlQvZw9VeqB6uygfs/qAlX8CUP2DJF/D2s1t/ZmvydxYAAABw0BCg44jXm+jVDU/eoMH0oOY3z9eNc24s95AOi/atMT354Jvq2ObNpp74vjqdffUM1dTvPoAYeOUVdf1siWL/8z/eFDxJofe9T/Wf+qSqL7po3xdxe/9lkumXfv1J6a+/8UL0y34m+QL79br2VSJt6y/v9mrV5i6t2tSlNVu6FY2ni/r4TEPvnxDR3EljNHdSnU6ZVKe6ysMzPgBAeRmGIcMyDvoHpGzbUbwvG7J7wXphyF60n+nnOq6ScVvJ+N4txLorpmUUhev+XMheuJ9vKwzfc+f8ltcWtOTzZ2rDG4YMU0O2hgxjyH6ptiHXAAAAAKOF4bru8M+tYp9Fo1FFIhH19vaqpqam3MNBhu3Y+qdl/6Tn3ntOE6omaOnFS1Ub2kXd7iNEOmVr1aOb9cqft8p1XAUrfTrzimmaPr9pl+G3a9vqe+opdf70Zxp85ZVce9XZZ6vuk59Uxby5+x6cD7X+cek//8EL0KdfJP39zyXfwa8f3juY0stbur3AfHOXXn23V8m0U9SnImBpzrFjdMqxdZo7eYxmt9SqIsD7iQCA8nEdV4nBtAZjSS90Lwje47GUBvu99nTSUTppK5XZeg9HqaQtjaLf6ncZupv5oF6GIctnyOe3crXnfZmHVbC1/NawNp/flOXz3hCwfKWu8d4kGNqfcB8AAODosC9ZLokRjmh3vnKnnnvvOYV9Yd258M4jPjx/7+0ePfXgOvW0eR8TnzpnnM68croqakrPpnbicfX+7vfqWrJEyS1bJEmG36+av/2w6j/+cQWnTTt4g5txofTRX0hLF0lvPSb94qPSVQ9J/gP7SH5rb1wvbe7ySrJs6tL6tpiGvi3YUBXIzSyfN6lOs5qrKckCABhRDNNQqNKrl74/XNcrN5MaEqqnSwTtpdvsEuF8vp/juHJdL+h33Xzpm/y+t93bED97nZyRlfqbPkO+TPDuD1nyBy0FQj75gwXHQV9uP9seCBb3ybWFLOraAwAAjHIE6DhiPbbpMS356xJJ0ndO/45m1M0o84gOnWQ8rRce2ajXVmyXJFVEAjr7ozN03OyxJfunu7rU/fAv1P3QQ7K7uyVJZk2Nxlx1lcZ8bJH848YdmoFOPVe6+j+lX1wlbVwmPfz30keXSoE9L2Yqef/Q3tjep1Wbu7VqU5dWbenStq7hH3GfVF+huZPqvMfkOk2qrzjwGfQAAIxghmHI8huy/Ka0nyH8weC6JQL2om0+bM9vd3WNV5c+nXRkpxyl016gb6czx0lHdtpROpU5TtmZxV+9tnQqcz6ZaU8XX5NOObKTdtEb707aVTJtKxm3pejB+Z6YllEQrvsU2EP47s2cz8yM91myAqZ82Rn4AbNgNn5+Bn22xA4AAAAOPgJ0HJHWd63XLc/eIkn65Ps/qQsnXVjmER06W17v1PKH1qmvKyFJmnV6s06/bKqCFcP/8ZzcvFmdP/+5en/7iNyE198/YYLqrr1WtZd9RGbl3gXZB+S4s6WP/UZ66App09PSf1wuLfpPKVg9rGs8ZevNHVGt3tydm2XePZAq6mMa0vHja3TKsXWaN7lOp0wao3HVoUP/OgAAwDCG4ZVikQzpINeVP1QcuzCE97appK1UwlYq7m2T8XTRcSp7nLCVzLWnM329djvlZJ7fVWIgrcRAWlLikLwGw1BRaZqh5W7yZWyGl7vJ7ptmJog3DZmWIdMs2B96bHprB1iWIcM0ZWbaDdPI7e/yuQr67k3oX/jJBjffWLCf37pDOrqF+0M+omhZpkwfbzwAAIA9owb6QUIN9JGjJ96jqx69Stv7tuv08afr7g/eLetgrww2AsT7Ulr56w1a/0KrJKmmIaRzPjZTLTPrhvX1Fgb9mWL/s2z4wqDnny/DV4b30ra9JP3HZVIiKveYedr5tw/pjS7pjR1RvZl5bOroH/bJ7qDP1EkTa3MzzE+aWKvqUPlm2gEAAJRi247SBYF6YfCea8sE78lE/tgpnCFfOLM+PXzW/WhnGJn/lArED8fXN438wrpBK7eYrj9YsOhurt2SP5gp75M7b8mXbcu15/vwyQAAAEYuaqDjqJV20rrp6Zu0vW+7Wqpb9H/O+j9HXHjuuq42vtyup5eu12AsJRnSiR9o0fy/PU7+YP61urat2JNPqutnSw7dwqD7IZG2taGtT2+2Nav3uDt01bp/VtW7L6n1RxfoxuRX1auqov51lQGdPHGM5k4ao7mT6/T+8REFqCUKAABGOMsyZVWYJT8VeDC4rpsvZ5MqtbWLj7MBfMqRnc7UuM9cb6ccOY5XMsfNbPPH+XO58wV9bduVm+3vFOzbTu54V1O2XFfa5cnDwHVcJeOZkj2HQC6gLxHCZ0P23Qf4XkDvL+jvK+gz0uvru44rx3Vzn0zhzQQAwGhFgI4jyu1rbteLO17MLRoaCUbKPaSDxnVcdbcN6IXfbdSmVzskSWOaK/WBf5ippuPyr9NbGPR36lrywPCFQT/xCQWnTj1sY26PJXKzyb1HTBvb+5TOTSsP6bfG1/Qfge/pRPMd/abiNv108u2a2DJRs5qrdXxzjcZWB/llGwAAYAjDMDJ10C0Fyz2YPcgGqa49NJwvCM8Lft0b+rufN1M9280o0T+/k2su9XwFbU7aUSqRXTjXVjph5xbZTSUKFtnNtWf7ZK7J9EklnaJr0wlv0d3s6z6UAb1pGt6M970I6C2fOfxNjswbHe6Qn8mu3jBxnII3WAreIBn+5om3HfZpAiNf5skr4aNcKZ+iNsMYcr5UmyHDHPp8BW2moUDIUrDSr2CFT6EKn4IVfgUrM9sKn0LZ47BPpjWy34wAAJQXATqOGH/Y+Af9+xv/Lkn632f8b00bM63MI9p/ju2ou3VA7dtiat/qPTre7VMq88u3aRo6+aJjdcqFk7zFwrSbhUE/+lGNWXT1oVsYVFLKdrSxvU9v7ohq3Y5YpgxLTB19pet8RsJ+zWqu1symGh3ffII6gnM15k9Xa2r/Jt0W+5p0yu+lqkM3XgAAABw+hmnIGml18QOWghWH5qmzi9fuKaD3tk7ufDaQzwf4pZ7Dyb3x4BzigP6gyy4WLEn2yKok6w9ZCmZC9lBByJ4L2yuzx8VtgbBPpnnkT/bJrkXguK6UWQA6+yZJ9ie5N29eGUX7BY1D3+Mq8WYYk6oAlBMBOo4Ib3S+oW8//21J0mf+5jM679jzyjyivWenHHW+1+eF5Nv61L7NC8tL1bW0/Kaap0R0xhXTVD/BK3WS3LxZnQ88oN5HfndYFgbt7k/qzR3RXEj+5o6o3t7Zp6Q9fLyGIU2ur9Ss5hrNaq7ObGvUHAkN+QWoRWr+b+nnH5Z2viE9cLF0zX9JNc0HdewAAADAoWb5vIVbD2VAv+tZ8k5uv3CWvJ12Mou+Fi70ahYd73bRWNOQZZkyhiwEO2zR2IJzlmXmwk/X8Ur5uK6b33fczLGKt6Xahl7jardtjuMoOWgrMZBSoj+t+EAqs5ivt433e9vsBKVU3FuDoK9r3xf6DYR9ReG65TOGLGSb+URCwXsG7tCi/+7wakZFy9XlFsPNHwx7Prfwezzk+zZsX0O+Z6Xb5GRC85H1fof3aQZJZub/NctnyPKZ3rFlyPKbMq18u+XzFkm2/KZXXstnFF3rXZfpl7sm85xWdjFm7890dmHmwsWYCxdsJugHjkwsInqQsIho+XQOduqqR69Sa3+rzjrmLN218K4RW/c8lbDV8W6fOrIzy7fF1LW9P/cxz0L+oKWGliqNnVjtPVqqNaapIvfxwoGXX1HXkoO/MGgibWtnNKH3egbVGo3rvZ64WnsHtbVrQG/uiKk1Gi95XVXQl5tVng3MZzRVqyKwD+Po3OiF6NHtUt1x0rV/kCLH7NfrAAAAAIDdcWxHicH08JC939vGB9JeW/+QAH4grXRilMz8x2E1LFj35csoWX7TK7uU2ff6WLu4JnPss2RlrjFMI/fmgWHmp+0bmcaitQaMbHkrI1cGa6/7Zc5l+2XLPdnpgm3akW17W8d2ZduOnHTBNtuednZ77fBt/nrXVa5EU/aNvGyZpvyxN+6iY1MyjcJjQ2a21FP2uKDck1FwLvsmYPZnkPv5ZPZ9AbPkOd48GZ32JcslQD9ICNDLI+Wk9Nk/f1ar21br2Jpj9fDFD6smMDK+/4mBVG5GebYMS0/bQMl1koKVPo1tqS4KyyNjw/m/FDPcdFqxp55S109/psG1a3PtVWefrbpPfVIVc3e/MGgy7agtGteO3rh29A56257MNvPYVdmVQhPrKopmlB/fXKNjxoQPzl8Y3Zu9EL1nq1R7rBeijzn2wJ8XAAAAAA4SO+2UnNWeq+1fVLZkX+v6G8V9NaT/kH925QLRbNhoGFIuaPQ6mNnwtWC/VFthLfndXpP9OoYKJtIXzKjPDi43e77EjHrvhAo2Q867xceFT+EUh7W5wDblhbC5oDbt7ef6ZPdtJ3M+E/Jm9+3Mwsp2/ppc+JtZkNlO5RdhTqeckTdDH4efIe+NkWzQXhCs+wJW/g2SzL7Pb8oK5Ptlw3hJBZ8mkaTMQtwF/x9lj92C/9EK27PX5D6ZotLXFz53VV1QJyxsORzfqRFlX7JcSrgMcffdd+sHP/iBWltbdeKJJ+rf/u3fNG/evHIPCxkpJ6VYMpZ7/GbDolJUpwAAFAhJREFUb7S6bbUq/ZW6a+FdZQvPB6JJb1Z5QVge7Sg9U7siEsiF5GNbqlXfFFDYjsnu7la6Y5vsLV1Kr+nUzq5OpTs6le7slN2Z2XZ3535rGLowaDLt6N3uwaJwvLU3XjSTfG/CcUkK+EyNj4TUFAlpfCTsbWvDmtnkzSqvDvkP2vdumDGTpI9nyrl0b5KW/D/SSR+TQhEpXCuFagv2I95xoHLYL6UAAAAAcKhYPlMVNQFV1ATKPRSUkeu6ueA+nXKUTtm5oD2dLAjbk47Sae9cOlNWKZ3Kh/B2ypGdsvNtBddn11XIluDJ5aYlwtShoemu+kmZUj176Oe63psmpi8zM9vKlLmxMiVzfEauXM5ut5axi/5mbsZ3/nnzJaByJYWyixVnyw05+YWNh5Yiyrdnr8s/h1e/v+DYceW4Q46d4p9nOlnws0ramXZHduZnosz3MNueUPow/gk8OMZNqjkqA/R9wQz0Ar/85S91zTXX6L777tP8+fN1xx136Fe/+pXWr1+vcXtYgJEZ6Hsn5aTUl+zLBeC9yd6iQDyWjCmajA5riyVjiqViGkwPlnzeOxfeqQ9M/MABjc113PxfYiX+ssq9w5z0/mLrbR9U+zavHEtfd+lguqrK0JhqW7WBftU6XaqK71CgZ4cXjHd1yu7olNPfv0/jtCurtf2si/TKnPO0yQ0VzRzfm/+bAz5TzZFQ5hEu2s8G5WMq/OX/+FF0hxeid27Yc1/Tlw/TC4P1kqF7if0RWvIHAAAAAACMPNnFdO1MwJ4N14cG7emkXfRGSVEoXxjIZ9fBK1l+R97iukPL8UiSaeQW6C3ut6v2gk+yZD5hUs0MdEq47Iv58+dr7ty5+tGPfiTJW3ikpaVFn//85/XVr351t9cezQH6479/VFteXa+0k5LtpJRyk0q7KdlOWmnH2087aaXdlBw3reLPmxWsrp3bKz5fqqclv3yGXz4joKbQZNUHWuQ6hhxHchwj8w6k4e3n2jL7riE3c5xrzzwORDDZpar+dxXp3qSa6BZV922TPz2wV9emDEs9oSr1BKrUE6rObL3j7lC1eoNV6g5WqydYpd5glRzDLPk8uwrHmwr26yoD5Q/H91Z/h7R6iRR7TxrskeK9UjyzHezx9p2D8O5usKZE6B6RrEC26Fr+oezx0G2pPtnzu3qOXfTJLzWfGaCh4Z/dNEr32+W5ve03Sv5sAAAAAACAAxeulSafVe5RHHaUcNkPyWRSa9as0c0335xrM01T5557rp5//vlh/ROJhBKJ/KzjaDR6WMY5Em3681/l2HMlSVbmcTilY1LbwX5S15HppGQ6KVlOSqaT9o7tVK49mOxVdWybqvu2qapvu3x2ccmWAV9QOysb1BOsKnhUFx13B71wvM8fLgo6LdNQ0GdmHpYCmf0JflPTAz6Nr83MFh/N4fjeqGyQzv7Srs+7rpQaKA7Xd7VfGLpn91OZ2f+JqPfo3XZ4XhcAAAAAAMBIMGGO9Jknyz2KEY0APaOjo0O2bauxsbGovbGxUevWrRvW/7bbbtO3v/3twzW8Ec0fCcndvklSZu6qm9tT8bxx71xxS4mVQnKHbv45d7kqhyvDdWS4aRmu7W2dtAzZ3rGTacseu+l8/1xbwUO25NqSnIIgunCRlvxs3XQgqO5jatVWPVfpyHlK14yRU1srd0ydjNo6+SrCuRB8nN/SMZapoD8fipcKyIN+UwHLlM8qPcMcQxiGV/88UClFJuz79XaqIFjvleLdxcdOWpkCa9nia8WPbFG4PfYZes7ddR/HzgyucKWcoavmuMX7e31uH/oBAAAAAIAj39gZ5R7BiEeAvp9uvvlmLV68OHccjUbV0nL01QuSpE9/74ZyDwHYP5bfm+Ve2VDukQAAAAAAAGAEIkDPaGhokGVZamsrLgbS1tampqamYf2DwaCCweDhGh4AAAAAAAAA4DCjTkRGIBDQnDlztGzZslyb4zhatmyZFixYUMaRAQAAAAAAAADKgRnoBRYvXqxrr71Wp5xyiubNm6c77rhD/f39+sQnPlHuoQEAAAAAAAAADjMC9AJXXnml2tvbdcstt6i1tVWzZ8/W448/PmxhUQAAAAAAAADAkc9wXdct9yCOBNFoVJFIRL29vaqpqSn3cAAAAAAAAAAAJexLlksNdAAAAAAAAAAASiBABwAAAAAAAACgBAJ0AAAAAAAAAABKIEAHAAAAAAAAAKAEAnQAAAAAAAAAAEogQAcAAAAAAAAAoAQCdAAAAAAAAAAASiBABwAAAAAAAACgBAJ0AAAAAAAAAABKIEAHAAAAAAAAAKAEAnQAAAAAAAAAAEogQAcAAAAAAAAAoAQCdAAAAAAAAAAASiBABwAAAAAAAACgBAJ0AAAAAAAAAABKIEAHAAAAAAAAAKAEAnQAAAAAAAAAAEogQAcAAAAAAAAAoAQCdAAAAAAAAAAASiBABwAAAAAAAACgBAJ0AAAAAAAAAABKIEAHAAAAAAAAAKAEAnQAAAAAAAAAAEogQAcAAAAAAAAAoAQCdAAAAAAAAAAASiBABwAAAAAAAACgBAJ0AAAAAAAAAABK8JV7AEcK13UlSdFotMwjAQAAAAAAAADsSjbDzWa6u0OAfpDEYjFJUktLS5lHAgAAAAAAAADYk1gspkgksts+hrs3MTv2yHEcvffee6qurpZhGOUezmEXjUbV0tKibdu2qaamptzDAYA94r4FYDThngVgtOG+BWC04b51dHFdV7FYTOPHj5dp7r7KOTPQDxLTNHXMMceUexhlV1NTw00GwKjCfQvAaMI9C8Bow30LwGjDfevosaeZ51ksIgoAAAAAAAAAQAkE6AAAAAAAAAAAlGDdeuutt5Z7EDgyWJalc845Rz4flYEAjA7ctwCMJtyzAIw23LcAjDbct1AKi4gCAAAAAAAAAFACJVwAAAAAAAAAACiBAB0AAAAAAAAAgBII0AEAAAAAAAAAKIEAHQAAAAAAAACAEgjQccDuvvtuTZo0SaFQSPPnz9dLL71U7iEBgCTp6aef1oc//GGNHz9ehmHod7/7XdF513V1yy23qLm5WeFwWOeee642bNhQptECgHTbbbdp7ty5qq6u1rhx43TJJZdo/fr1RX3i8biuu+461dfXq6qqSpdddpna2trKNGIAR7t7771XJ5xwgmpqalRTU6MFCxbosccey53nngVgJPv+978vwzB044035tq4b2EoAnQckF/+8pdavHixvvWtb+nll1/WiSeeqAsuuEA7d+4s99AAQP39/TrxxBN19913lzz/L//yL7rrrrt033336cUXX1RlZaUuuOACxePxwzxSAPCsWLFC1113nV544QU98cQTSqVSOv/889Xf35/r84UvfEF/+MMf9Ktf/UorVqzQe++9p4985CNlHDWAo9kxxxyj73//+1qzZo1Wr16tD3zgA/q7v/s7vf7665K4ZwEYuVatWqUf//jHOuGEE4rauW9hKMN1Xbfcg8DoNX/+fM2dO1c/+tGPJEmO46ilpUWf//zn9dWvfrXMowOAPMMw9Mgjj+iSSy6R5M0+Hz9+vL74xS/qpptukiT19vaqsbFRDzzwgK666qpyDhcAJEnt7e0aN26cVqxYobPOOku9vb0aO3asHn74YV1++eWSpHXr1mnWrFl6/vnndeqpp5Z5xAAg1dXV6Qc/+IEuv/xy7lkARqS+vj6dfPLJuueee/Td735Xs2fP1h133MHvWiiJGejYb8lkUmvWrNG5556bazNNU+eee66ef/75Mo4MAPZs06ZNam1tLbqHRSIRzZ8/n3sYgBGjt7dXkhdGSdKaNWuUSqWK7l0zZ87UxIkTuXcBKDvbtrV06VL19/drwYIF3LMAjFjXXXedLr744qL7k8TvWijNV+4BYPTq6OiQbdtqbGwsam9sbNS6devKNCoA2Dutra2SVPIelj0HAOXkOI5uvPFGnX766Xr/+98vybt3BQIB1dbWFvXl3gWgnF577TUtWLBA8XhcVVVVeuSRR3T88cdr7dq13LMAjDhLly7Vyy+/rFWrVg07x+9aKIUAHQAAABiBrrvuOv31r3/VypUryz0UANitGTNmaO3atert7dWvf/1rXXvttVqxYkW5hwUAw2zbtk033HCDnnjiCYVCoXIPB6MEJVyw3xoaGmRZ1rCViNva2tTU1FSmUQHA3snep7iHARiJrr/+ev3xj3/UU089pWOOOSbX3tTUpGQyqZ6enqL+3LsAlFMgENDUqVM1Z84c3XbbbTrxxBN15513cs8CMOKsWbNGO3fu1Mknnyyfzyefz6cVK1borrvuks/nU2NjI/ctDEOAjv0WCAQ0Z84cLVu2LNfmOI6WLVumBQsWlHFkALBnkydPVlNTU9E9LBqN6sUXX+QeBqBsXNfV9ddfr0ceeURPPvmkJk+eXHR+zpw58vv9Rfeu9evXa+vWrdy7AIwYjuMokUhwzwIw4nzwgx/Ua6+9prVr1+Yep5xyihYtWpTb576FoSjhggOyePFiXXvttTrllFM0b9483XHHHerv79cnPvGJcg8NANTX16e33347d7xp0yatXbtWdXV1mjhxom688UZ997vf1bRp0zR58mR985vf1Pjx43XJJZeUcdQAjmbXXXedHn74Yf3+979XdXV1rtZmJBJROBxWJBLRpz71KS1evFh1dXWqqanR5z//eS1YsECnnnpqmUcP4Gh0880366KLLtLEiRMVi8X08MMPa/ny5frTn/7EPQvAiFNdXZ1bWyarsrJS9fX1uXbuWxiKAB0H5Morr1R7e7tuueUWtba2avbs2Xr88ceHLcoHAOWwevVqLVy4MHe8ePFiSdK1116rBx54QF/+8pfV39+vz372s+rp6dEZZ5yhxx9/nFp4AMrm3nvvlSSdc845Re1LlizRxz/+cUnS7bffLtM0ddlllymRSOiCCy7QPffcc5hHCgCenTt36pprrtGOHTsUiUR0wgkn6E9/+pPOO+88SdyzAIw+3LcwlOG6rlvuQQAAAAAAAAAAMNJQAx0AAAAAAAAAgBII0AEAAAAAAAAAKIEAHQAAAAAAAACAEgjQAQAAAAAAAAAogQAdAAAAAAAAAIASCNABAAAAAAAAACiBAB0AAAAAAAAAgBII0AEAAAAAAAAAKIEAHQAAADjCLF++XIZhqKenpyxff9myZZo1a5Zs295j38cff1yzZ8+W4ziHYWQAAADAviFABwAAAEYRwzB2+7j11lt12mmnaceOHYpEImUZ45e//GV94xvfkGVZe+x74YUXyu/366GHHjoMIwMAAAD2jeG6rlvuQQAAAADYO62trbn9X/7yl7rlllu0fv36XFtVVZWqqqrKMTRJ0sqVK/WhD31Ira2tCoVCe3XN3XffrQceeECrVq06xKMDAAAA9g0z0AEAAIBRpKmpKfeIRCIyDKOoraqqalgJlwceeEC1tbX64x//qBkzZqiiokKXX365BgYG9POf/1yTJk3SmDFj9M///M9FZVcSiYRuuukmTZgwQZWVlZo/f76WL1++2/EtXbpU5513XlF4/uqrr2rhwoWqrq5WTU2N5syZo9WrV+fOf/jDH9bq1au1cePGg/vNAgAAAA6Qr9wDAAAAAHDoDQwM6K677tLSpUsVi8X0kY98RJdeeqlqa2v13//933rnnXd02WWX6fTTT9eVV14pSbr++uv1xhtvaOnSpRo/frweeeQRXXjhhXrttdc0bdq0kl/nmWee0dVXX13UtmjRIp100km69957ZVmW1q5dK7/fnzs/ceJENTY26plnntGUKVMO3TcBAAAA2EcE6AAAAMBRIJVK6d57780F1JdffrkefPBBtbW1qaqqSscff7wWLlyop556SldeeaW2bt2qJUuWaOvWrRo/frwk6aabbtLjjz+uJUuW6Hvf+17Jr7Nly5Zc/6ytW7fqS1/6kmbOnClJJcP38ePHa8uWLQfzJQMAAAAHjAAdAAAAOApUVFQUze5ubGzUpEmTiuqlNzY2aufOnZKk1157TbZta/r06UXPk0gkVF9fv8uvMzg4OKz2+eLFi/XpT39aDz74oM4991xdccUVw2aah8NhDQwM7PfrAwAAAA4FAnQAAADgKFBYMkWSDMMo2eY4jiSpr69PlmVpzZo1siyrqN/uFiltaGhQd3d3Udutt96qq6++Wo8++qgee+wxfetb39LSpUt16aWX5vp0dXVp7Nix+/XaAAAAgEOFAB0AAADAMCeddJJs29bOnTt15pln7tN1b7zxxrD26dOna/r06frCF76gj370o1qyZEkuQI/H49q4caNOOumkgzZ+AAAA4GAwyz0AAAAAACPP9OnTtWjRIl1zzTX67W9/q02bNumll17SbbfdpkcffXSX111wwQVauXJl7nhwcFDXX3+9li9fri1btujZZ5/VqlWrNGvWrFyfF154QcFgUAsWLDikrwkAAADYVwToAAAAAEpasmSJrrnmGn3xi1/UjBkzdMkll2jVqlWaOHHiLq9ZtGiRXn/9da1fv16SZFmWOjs7dc0112j69On6+7//e1100UX69re/nbvmF7/4hRYtWqSKiopD/poAAACAfWG4ruuWexAAAAAAjhxf+tKXFI1G9eMf/3iPfTs6OjRjxgytXr1akydPPgyjAwAAAPYeM9ABAAAAHFRf//rXdeyxx+YWJN2dzZs365577iE8BwAAwIjEDHQAAAAAAAAAAEpgBjoAAAAAAAAAACUQoAMAAAAAAAAAUAIBOgAAAAAAAAAAJRCgAwAAAAAAAABQAgE6AAAAAAAAAAAlEKADAAAAAAAAAFACAToAAAAAAAAAACUQoAMAAAAAAAAAUAIBOgAAAAAAAAAAJfz/xtUE214n1boAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyNdf/H8feZfZ8xgxkjzAgTUpZkqRBqRG6jkCVLWfpVtlaVChFtSqrb0mIJJRUVsiQipBC57eYeu0GWGWP2me/vj7nPlWPOjBlLh+n1fDyuh5nru1yf6zrXmUd9zvd8LpsxxggAAAAAAAAAADhwc3UAAAAAAAAAAABcjUigAwAAAAAAAADgBAl0AAAAAAAAAACcIIEOAAAAAAAAAIATJNABAAAAAAAAAHCCBDoAAAAAAAAAAE6QQAcAAAAAAAAAwAkS6AAAAAAAAAAAOEECHQAAAAAAAAAAJ0igAwAA4KowfPhw2Ww2NWvWzNWhlGiLFi2SzWaTj4/PZZ13x44dstlsstlsSkxM/NvH4+o2ceJE2Ww23XDDDa4OBQAAoFhIoAMAABSTPdFb1A0lV1pamoKDg2Wz2dS/f/8ij1u1apV1f3z99ddXMELYZWRkaPLkyYqNjVVkZKS8vb0VHBysatWqqXnz5ho6dKgWL16sjIwMp+OTk5P19ttv684771TZsmXl5eWl0NBQVa9eXa1atdLIkSO1YsUK5ebmXjCWd955x3r9W7RoUexzOX36tMaNG6c2bdqoYsWK8vPzk6+vrypUqKA2bdro3Xff1bFjxwocv3DhQnXu3FnXX3+9/Pz85Ofnp+joaDVq1Ej9+/fX7NmzdeLEiWLHBQAAUBJ5uDoAAACAa1l4eLirQ4AL+fr6qkuXLpo0aZJmzZqlsWPHytvb+4LjPvnkE0lSmTJl1LZt2ysdpoOAgADFxMQUKc6SIiEhQa1bt9aOHTusfV5eXnJ3d1d8fLx2796t5cuXa/To0Vq7dq0aNmzoMH7Dhg3617/+pcOHD1v7fH19lZubq507d2rHjh1avHixJOnIkSOKiIgoNJ6PP/7Y+nn58uVKSEhQdHR0kc5lwoQJev7555WUlGTt8/Pzk5eXlw4ePKiDBw9q4cKFev755zVixAg988wzVr+0tDR16dJF33zzjbXPzc1NISEhOnTokPbu3atffvlFH3zwgcaMGaPnnnuuSDEBAACUZKxABwAAuASJiYkX3FCy9e7dW5J06tQpzZs374L9U1JSNGfOHElS9+7d5enpeUXjO9/tt9+uHTt2aPPmzX/rcV0lKytLbdu21Y4dOxQQEKDRo0fr4MGDSk9P18mTJ3X27FmtXbtWL730ktMk9qlTp9SmTRsdPnxY4eHhev/993X8+HGlpqbq9OnTSk5O1vLly/XUU08V6QO1devWaevWrQoPD1enTp1kjNGUKVOKdC5PPfWUHnvsMSUlJalWrVqaMWOGjh8/rrNnz+r06dM6e/asFi5cqC5duigjI0NfffWVw/hBgwZZyfN+/fppy5YtyszM1IkTJ5Senq5t27bp3XffVcOGDfn2DAAAwP+QQAcAAAAuQf369VWrVi1Jf60sL8wXX3yhs2fPSvor+Y4rZ9GiRdq6dask6dNPP9Xzzz+v8uXLWwliHx8fNWzYUK+88or27NmjOnXqOIyfMWOGjh49as31+OOPq3Tp0lZ7QECAmjVrprfeeksHDhxQmTJlCo3Hvvq8S5cuevjhhyVJU6dOvWDpl2nTpuntt9+WJD344IPasGGDunXr5hCLn5+f7rnnHs2aNUvr169XTEyM1Xby5EkrUT9o0CBNmjRJN954o9zd3SXlrUSvXr26Bg4cqLVr12rgwIGFxgMAAPBPQQIdAADgb/Too4/KZrMpJCREe/fuddpnwoQJstls8vDw0MqVKx3a/vOf/2j48OFq3ry5rr/+evn6+iooKEh16tTRiy++qD///LPAY0dFRclms2nq1KlKTU3V8OHDVb16dfn5+SkyMlLdu3dXQkKC1f/PP//UkCFDVK1aNfn6+ioiIkJ9+vSxkonnO/8hoF988YWaNm2q0NBQ+fv7q169enr//feVk5NTvIt2juPHj+vFF19UnTp1FBwcLB8fH1WuXFm9e/e2kqSuYE+E//DDDzpw4EChfe1J9oYNG6pGjRoObXv27NGYMWMUGxurqlWryt/fXwEBAapZs6aefPJJHTx4sMB57auGX3vtNWVkZOj1119X3bp1rRrtv/zyi6TCHyKam5urpUuXqn///mrQoIHKly8vLy8vlS5dWnfeeac+/PBDZWdnF+mabN++Xd27d1f58uXl7e2tSpUq6fHHH7+kb2Xk5ORo2rRpatWqlVWHvEyZMmrVqpW++OILGWPyjdm0aZMkyWazXbBcjpubW77SNvbxFStWVO3atQsd7+npaSWknTl79qw+//xzSVLPnj3VsmVLRUZG6sCBA1q6dGmB49LT0zVkyBBJUu3atfXxxx9f8JsLderUcVjZvnXrVuu1a9euXaFjpbwSNQVZunSp7rvvPpUrV866P+666y59+umnRaoBf66YmBjZbDa98MILhfZbuHCh9XfR2T0UHx+vAQMGqHr16goICJCfn5+qV69e6Pvm/AebLlmyRG3btlVERITc3d31f//3f8U6FwAAUEIZAAAAFMuwYcOMJHMx/ymVmppqatasaSSZRo0amaysLIf2LVu2GB8fHyPJvPzyy/nGV6pUyTq2j4+PCQ0NNTabzdpXvnx5s2PHDqfHto8dN26cqVWrljWHr6+vNb5cuXImISHBxMfHm+joaCPJ+Pn5GS8vL6tP1apVTVJSUoHXpWnTpubZZ581kozNZjOlSpUybm5u1vjY2FiTnp5e6Hhnli5dakJCQqx5PD09jb+/v/W7l5eXmTZtWhFehcvvzz//tK7RyJEjC+y3a9cuK97Jkyfna2/QoIHD+YSGhjpcu9DQULNu3Tqnc9vHvvTSS6Z+/fpGkvHw8LCu2dq1a40xxnz//fdGkvH29s43x/bt261jSTKBgYEmKCjIYV/z5s2dvn7njp0zZ4712gQGBlr3tCRTpkwZ88cffxQ6/siRI/najx07Zho1auQQS3BwsMPvHTp0yPeeeuWVV6z2/fv3O39hCvHwww8bScbX19dkZGQUe/y5pkyZYiSZWrVqWfvs75WOHTsWOG769OkO1/ZirFy50ppj+vTpFzVHbm6ueeyxx6x57O9vd3d3h/d3SkpKvrETJkwwkkxMTIzD/pEjRxpJpmLFiiY3N7fAY3fu3NlIMq1atcrX9vHHHxtPT0+Hv43n3nMhISFm+fLlhcb0+uuvO/T39PQ0jzzySPEvEgAAKHFIoAMAABTTpSTQjclLktuT1i+88IK1/9zk+m233Ways7Pzje3Ro4eZOnWq2bdvn7UvIyPD/PDDD+bWW281kkzdunWdHteeQA8JCTFRUVFmyZIlJicnx2RnZ5slS5aYMmXKGEmmU6dO5tZbbzW1a9e2kq6ZmZlm9uzZxs/Pz0gyQ4cOLfC62JOa/fv3N8eOHTPGGJOUlGRGjhxpJfufeOKJAsc7S6D/8ccf1jXr27ev2bZtm3V99u3bZyX1PDw8zG+//VbI1b9yOnXqZCSZ66+/vsBE4HPPPWckGX9/f5OcnJyv/fHHHzcTJ040e/bssebIysoya9asMS1atDCSTKVKlZwmcu0J9ICAABMcHGw+/fRTk5aWZozJSz6fOnXKGFN4An3Pnj2mR48eZsGCBebkyZPW/qSkJPPRRx+Z8PBwI8k8//zz+caemwAPDg42devWNevXrzfGGJOTk2MWLlxoIiMjrWt09uzZAsefn0DPysqykue33HKL+f77701qaqoxxpgzZ86Yjz76yJQuXdpIMs8995zD2EWLFjkkd50l5wszceJEa3zPnj2t63gxbr/9diPJvPnmm9a+rVu3Wh+Y/Pnnn07H9ezZ0/rQyH7exZWUlGS8vb2NJBMVFWU2btxY7DnefPNN61r079/fHD161BiT9xq88cYbViK9Z8+e+cYWlEDfu3ev9XfBWZLbGGOSk5Ot9/+sWbMc2r777jtjs9mMl5eXGTp0qNm3b5/Jzc01OTk5ZuvWrSYuLs5IMqVKlTKHDx92GpOfn59xc3Mzffv2NQcPHjTG5N1z8fHxxb5GAACg5CGBDgAAUEznJtDDw8ML3QYOHOh0Dnvixs3Nzfz444/GGGMeeeQRK8F9boK8qM6cOWMlOFetWpWv3Z5A9/X1Nbt3787X/vHHHzucl7Nk3ksvvWQlQM937nXp3r270xhffPFFK9F96NAhp+OdJdCbN29eYOLWbuDAgUaSadeuXYF9rqTFixdb5+8sEZidnW0lkHv16lXs+bOysswNN9xQ4Crkc1evL1mypMB5CkugX8iqVausBPn5K73PTYCHh4ebEydO5Bu/adMm4+HhYSSZ8ePHFzj+/CT35MmTjSRz0003mTNnzjiNbc2aNdb9fW7yPzc31zRp0sSa28PDw9x2223mySefNDNnzjR79uwp9JzPnj1rYmJirPHe3t6mRYsW5rnnnjNz5syxEq4XsmPHDiPJuLu750vk1qtXz0h53w5x5pZbbsm3cv1i2N+/9q1mzZqmb9++ZuLEiWbjxo1OP7SzS05Otr6N8NBDDznt88Ybb1hzb9myxaGtoAS6McY0bdq00Hk/+eQT69sM536AkJWVZf1dK+jbJ7m5uSY2NtZIMkOGDHEakyTTtWvXAs8dAAD8s5FABwAAKKZzE8UX2pytxLS77777jCQTGRlpJk2adMklGoz5axX0mDFj8rXZE00PPvig07EHDx60YnjppZec9vn555+tPueXaTj3ujhL0BuTtwrWvpL0/ARqQQn0hIQEK/HpLClrt379emt1d2GJwCslJyfHVKxY0UgyPXr0yNe+YMEC6/qsXLnyoo5h/5Bg0KBB+drsCfR69eoVOselJNCNMdY3DH7//XeH/ecmwAsrY2O/7xs3blzg+PMT6PZzmzRpUqGxValSxUgy8+bNc9ifnJxs+vbtayXvz9+io6PNyJEjC0zOJyYmmvvuu8+hXNL5iej33nuv0BIv9lItzkqQjB8/vtAEub2cUkHljYoqNzfXvPXWWw6lkM7dQkJCzCOPPGL27t2bb+zs2bONlFe2xVm7MXnfhrF/E+Dcb9cYU3gC/aOPPjKSTFBQkNMV9nfeeafTBLv9Xi5fvnyh5V9mzJhhJJnatWs7jclZwh8AAMCOh4gCAABcApO3IKHAberUqQWO/eijj1SxYkUdPnxYjzzyiCSpT58+6tChQ6HHnD9/vh544AFVrlxZ/v7+stls1vbFF19IUqEPm7z11lud7g8PD7d+rl+//gX7nD592mmfChUqqEqVKk7bgoKCVK9ePUnS+vXrC4zxXKtXr5aU94DLGjVqKCIiwunWqlUrSXkPajxx4kSR5r6c3Nzc1KtXL0nSl19+qTNnzji02x8eWq1aNd1xxx0FzrNixQp1795dMTExCggIcHh9x48fL6nw1/e22267pPNIT0/XBx98oLvuukvlypWTt7e3QwxJSUkXjKF58+YXbNuwYYPTh346i2fDhg2SpOeff77A1z8iIkL79u2TJOtfu8DAQE2ePFkHDhzQhAkT1K1bN91www1yc8v736GEhAS99NJLqlu3br6xUt59/9VXXyk+Pl5vv/22OnTooMqVK8tms0nKe0DngAEDdMcddzh9X2RnZ2v69OmSpB49euRr79Klizw9PbVlyxb99ttvF7wmF8tms+mpp57SoUOH9MUXX+jRRx/VLbfcYj1Q9vTp05o0aZJq1aqlJUuWOIy1v1+rVKmiSpUqOZ3fy8tLTZs2dehfFB07dpSvr6+Sk5P1zTffOLQdOHBAK1askJT/2tn/Nhw/flzlypUr8L4YMGCApPz3hV1wcLBuvPHGIscLAAD+WUigAwAAuEipUqX0wQcfWL9XrlxZ7777boH9c3Nz1bVrV7Vt21ZffPGFEhISlJmZqVKlSik8PFzh4eFWIuzs2bMFzhMYGOh0v4eHR7H6ZGVlOe1Tvnz5Ao99bvuxY8cK7Wd3+PBhSXnnf/To0QK3P//80xqTmppapLnXrFlTYNJt9uzZRZrjXA899JBsNptSU1P1+eefW/v//PNPfffdd5Kkhx9+uMDxgwYN0p133qkZM2Zo165dSk9Pd3h9/f39JRX++pYtW7bYcdsdOXJEderUUf/+/fXDDz8oMTFR7u7uKl26tBWDPelcWAyF3QP2toyMDCUnJ18wpuPHjys7O1uSdPLkyULvAfs9WdDrHxERof/7v//TjBkztH37dp0+fVpff/21GjZsKEnavXu3HnzwwQJjiY6O1hNPPKE5c+YoPj5ex48f1/Tp01W9enVJ0q+//qr+/fvnG7dw4UIlJiYqKChIcXFx+dpLly6tNm3aSPrrg5ZzhYWFWed/Ofj5+aljx47697//rd9++03JyclauXKlunbtKkk6c+aMOnXq5PBBlP39eqH393XXXefQvyiCgoLUrl07SdKnn37q0DZz5kwZY1SpUiUrOW9n/9uQmZlZ6H1x6tQpSQXfF2XKlClyrAAA4J+HBDoAAIALffjhh9bPhw4d0p49ewrs+/HHH+uzzz6Tu7u7Xn75Ze3evVsZGRk6efKkEhMTlZiYaK1eL8rK3mtFTk6OpLxVwBda8W/foqKiijR3YYm3tLS0YscaFRWlFi1aSJKmTJli7Z85c6YyMzPl7u7udAWyJH333XfWCvNBgwZp69at+V7fRx99VFLhr6+7u3ux47br37+/duzYobJly2r69Ok6evSoUlNTdfz4cSuG0NDQC8ZwOdlff0lavnx5kV7/5557rkhzBwYGqn379vr555/VuHFjSdLPP/+sHTt2FGl8WFiYunfvrnXr1un666+XJM2ePTvftw8+/vhjSVJycrL8/PwcVvTbt3nz5kmSPvvss3z3Xs2aNSVJO3bsUHp6epFiKw5PT0/dcccdmjlzpp599llJUlJSkubMmXPZj1UQ+/tiyZIlOnr0qLXfnlDv1q2bteLfzn5vNG3atEj3RUHX7lLeMwAAoOQjgQ4AAOAi77//vr799lu5u7urRo0aysjIUOfOnQtcJWlf0dynTx+NGDFCVapUsVYD2yUmJl7xuC/k0KFDRWov6krpiIgISXmruAtb9XwxmjVrVmCyzV6Opbh69+4tSVq7dq2ViLUn01u3bq1y5co5HWd/fdu1a6dx48apRo0a+RJ7V/L1TU1NtVbJT5o0Sd27d8/3GmVkZBRYuudchd0D9jZvb28FBQVdcK6yZctaidOCSnBcKnd3d+t1k6SdO3cWa3xgYKC1ejs7O1v//e9/rbbExEQtXLiwyHMlJSXpyy+/dNhn/1AmKytL8+fPL1ZsxWUvJyU5Xgf7vVBY6Z5z24v7TYi7775b4eHhys7O1meffSZJ2rhxo7Zt2ybJeekb+9+GK3VfAAAASCTQAQAAXGLLli165plnJEkvv/yyFi5cqJCQEG3fvl1PPPGE0zEHDhyQJNWpU8dpe0pKitatW3dlAi6GAwcOKD4+3mnbmTNnrHrWt9xyS5Hms9f0zsnJ0ffff395gryC2rdvb63S/uSTT7RhwwZt3rxZkhyStOe70Oubk5Nj1YK+EhITE60SKAXFsGLFCqucSmGWL19+wbZ69erlW1HsjJ+fnxWPPcF/JQQEBFg/e3t7X7bx06ZNU3Z2tq677jqdOXOm0M2evD6/jEuHDh2s5w+8+uqrBZZPOl9ubu5lOw/7+zU+Pr7AhHVWVpZ++uknSQU/R6Eg7u7u1ocQ9lXn9n9vvfVWxcTE5Btj/9uwd+9e/ec//ynW8QAAAIqKBDoAAMDfLC0tTZ07d1Z6erpuv/12DR06VJUqVdLkyZMlSZMnT9ZXX32Vb1xwcLAkWcnY840cOTJf6QhXGTlypNP9Y8eOVVpamjw8PHT//fcXaa6qVauqWbNmkqShQ4daD7EsyOWqE32xvL291a1bN0l5CUB7mZ7w8HCrzrUzF3p9x48ff8HVv5fCfvyCYsjMzNRLL71UpLnef/99q+70ubZs2WI9JPKBBx4ocmz9+vWTJM2dO1c//PBDoX3Pf/03b958wZX7xhjrIZ9ubm6qXbu21fbLL79c8J7LysqyVk0HBwercuXKVps9Gd6hQwcFBAQUunXu3FmS9NNPPzl8COXr66sxY8ZIkjZt2qSHH374gkn0P/74w6HefmJiYoH31rmmTZtm/Vy3bl3r59atWysoKEjGGI0YMcLp2Pfee896FoH9XIrDvsp848aN+uOPP6xrWlDZo9jYWFWsWFGSNHjw4At+uOPqvw0AAODaRAIdAADgb/bEE09o27ZtCgkJ0cyZM60yHR07drRWKPft29dakWzXqlUrSXl10ydPnqzMzExJeYmxJ554Qm+88Yb1sEFXCg4O1rRp0zRo0CArmXbmzBmNHj1ar7zyiiTp8ccfV2RkZJHnfO+99xQQEKBdu3apYcOG+uabbxzqGR86dEiffvqpWrRooSFDhlzeE7oI9tcxMTHRSqD36NHD4SGs57O/vnPnztXrr79ulfI5efKkRowYoaeffvqKvr5hYWHWKuOBAwdq5cqVVp3zTZs2KTY2Vlu3bpWvr+8F50pLS9Pdd9+t33//XVLeSuhFixapdevWys7OVuXKlQtdjX++hx9+WE2aNFFubq7atm2r1157zSEpnpKSomXLlumRRx6xHuhpt3TpUkVFRalLly76+uuvHcalp6frp59+Ups2bbRgwQJJUteuXa3SIJI0Y8YMVaxYUX379tXChQsdkrBnz57V/Pnz1aRJE23atEmSNGDAAHl5eUmSVq1apV27dkmSOnXqdMHzbNKkiVXr//xV6A899JAGDhxoxVSvXj3NmjXL4UGfaWlpWrp0qXr06KG6des61HI/ePCgateurebNm+vDDz/U7t27rdc3Oztb27Zt04ABA6z68VWqVNG//vUva3xAQID1AcqUKVM0YMAAHT9+3LoOY8eOteqn9+zZUzfeeOMFz/d8tWvXtsb17t1bR48elaenZ4HJeC8vL02cOFFubm5atmyZ7rzzznzfktizZ48++OAD1a1b1+kDWgEAAC7IAAAAoFiGDRtmJBlJJjw8/ILb6tWrrbFfffWVNXbOnDn55j579qy54YYbjCRzxx13mOzsbKvt1KlTVpsk4+bmZkJCQozNZjOSzCOPPGJ69uxpJJmePXvmm7tSpUpGkpkyZUqB52afe/ny5U7bExISrD4JCQlOr0vTpk3Ns88+ayQZm81mSpUqZdzd3a1xLVu2NGlpaQVe16ZNmzo99s8//2wiIiKsedzd3U1YWJjx9fW19kkyffr0KfD8/k716tVziGv79u2F9k9PTzcNGjSw+tuvnf31bd++vXnmmWeMJBMbG5tvvH3smDFjCj3O999/byQZb2/vfG1r1qxxuJ4+Pj4mICDASDKenp5m9uzZJjw83Egyn332mcPY7du3O9zb/v7+RpIJDAx0mDMsLMxs2rQp37HPHX/kyJF87SdPnjSxsbEO1zQ4ONgEBwdb10iSCQgIcBg3btw4hzGSjK+vrylVqlS+/W3atDEpKSkO4wcPHpyvn7+/vwkKCsq3v3fv3iYrK8saa38/VqhQweTm5hb6utg99thjRpIpX768w/vfbvz48fmO7e/vb4KDgx32BQQEmHHjxlnjfv/993zxenp6mtDQUOPm5uawv1q1ambXrl35jp2bm2vFV9D7++677853DY0xZsKECUaSiYmJKfT833jjDYdY2rVrd8FrNnv2bOt+s59XWFiY8fLycpjrrbfeuqiYAADAPxsr0AEAAC7B0aNHL7jZV4ofOHBAffr0kZS3urJDhw755vPz89Nnn30mb29vrVq1SqNGjbLaQkJCtGbNGg0ePFhRUVFyd3eXh4eHmjVrps8++0wTJ078e066CF5//XV9/vnnuv3222WMkZeXl2rXrq13331XixYtko+PT7HnvO2227Rr1y699dZbatKkiUJCQnT69Gm5u7urevXqevDBBzVz5kyNGzfuCpxR8Z27wrpx48a64YYbCu3v7e2tH3/8UUOHDlWVKlWs1eqNGzfWhx9+qK+++irfQ2Mvt0aNGmndunW6//77FRYWppycHAUHB6tLly765ZdfirSKWpJuv/12/fbbb+rWrZsCAwOVk5OjChUq6NFHH9WWLVt08803Fzu2UqVK6fvvv9d3332nDh06qEKFCkpPT1d6erquu+46tWrVSq+//rq2bNniMG7QoEHauHGjxowZo7Zt26pKlSqy2WxKTk5WUFCQatasqV69emnx4sWaP3++/P39HcaPHTtWq1ev1rBhwxQbG6tKlSopJydHZ8+eVUhIiOrUqaPHHntMv/zyiz766CPrdTtz5ozmzJkjKa98S1HqvUt/rVQ/dOiQFi9enK99wIAB2rt3r8aOHatWrVrpuuuuU25urnUd2rRpo/fff1/79u3ToEGDrHG1a9fW/v37NWHCBHXt2lW1atWSr6+vkpKS5OPjo+joaMXFxWnKlCnasmWLqlatmu/YNptNH3zwgRYvXqy4uDiVLVtWKSkpCg4OVosWLTRt2jR9//33+a5hcXTr1s3h4bkFlW85V6dOnbRnzx699NJLuuWWW+Tv76/Tp0/L19dXtWvX1iOPPKJvv/3WWsEPAABQHDZj/ve9PQAAAOASDB8+XCNGjFDTpk2v6MMuAQAAAODvwgp0AAAAAAAAAACcIIEOAAAAAAAAAIATJNABAAAAAAAAAHCCBDoAAAAAAAAAAE7wEFEAAAAAAAAAAJxgBToAAAAAAAAAAE54uDqAkiI3N1eHDx9WYGCgbDabq8MBAAAAAAAAADhhjNGZM2cUGRkpN7fC15iTQL9MDh8+rAoVKrg6DAAAAAAAAABAERw4cEDXXXddoX1IoF8mgYGBkvIuelBQkIujAQAAAAAAAAA4k5ycrAoVKlg53cKQQL9M7GVbgoKCSKADAAAAAAAAwFWuKKW4eYgoAAAAAAAAAABOkEAHAAAAAAAAAMAJEugAAAAAAAAAADhBDXQAAAAAAAAA1wRjjLKzs5WTkxjJhLcAACAASURBVOPqUHAVc3d3l4eHR5FqnF8ICXQAAAAAAAAAV73MzEwdOXJEqamprg4F1wA/Pz+VK1dOXl5elzQPCXQAAAAAAAAAV7Xc3FwlJCTI3d1dkZGR8vLyuiyri1HyGGOUmZmp48ePKyEhQVWrVpWb28VXMieBDgAAAAAAAOCqlpmZqdzcXFWoUEF+fn6uDgdXOV9fX3l6emrfvn3KzMyUj4/PRc/FQ0QBAAAAAAAAXBMuZSUx/lku173CHQcAAAAAAAAAgBMk0AEAAAAAAAAAcIIEOgAAAAAAAAD8zZo1a6bBgwdf88co6UigAwAAAAAAAADgBAl0AAAAAAAAAACcIIEOAAAAAAAA4JpjjFFqZrZLNmNMsWI9e/asevTooYCAAJUrV05jx451aM/IyNDTTz+t8uXLy9/fXw0aNNCKFSus9hMnTqhLly4qX768/Pz8VKtWLX322WfFOgYujoerAwAAAAAAAACA4krLylGNlxe75NjbXomVn1fRU6vPPPOMfvrpJ33zzTcqW7asXnjhBW3cuFG1a9eWJPXv31/btm3T559/rsjISM2dO1etWrXSli1bVLVqVaWnp6tevXoaMmSIgoKCtGDBAnXv3l3XX3+9br311iIdAxeHBDoAAAAAAAAAXCEpKSn6+OOPNWPGDLVo0UKSNG3aNF133XWSpP3792vKlCnav3+/IiMjJUlPP/20Fi1apClTpmj06NEqX768nn76aWvOAQMGaPHixfriiy906623XvAYuHgk0AEAAAAAAABcc3w93bXtlViXHbuo4uPjlZmZqQYNGlj7QkNDFRMTI0nasmWLcnJyVK1aNYdxGRkZCgsLkyTl5ORo9OjR+uKLL3To0CFlZmYqIyNDfn5+RToGLh4JdAAAAAAAAADXHJvNVqwyKlerlJQUubu7a8OGDXJ3d0zMBwQESJLefPNNvfvuuxo3bpxq1aolf39/DR48WJmZma4I+R+Fh4gCAAAAAAAAwBVy/fXXy9PTU+vWrbP2nTp1Srt27ZIk1alTRzk5OTp27JiqVKnisEVEREiSVq9erXbt2unBBx/UzTffrMqVK1vji3IMXLxr/yMaAAAAAAAAALhKBQQEqHfv3nrmmWcUFhamsmXLaujQoXJzy1vbXK1aNXXr1k09evTQ2LFjVadOHR0/flzLli3TTTfdpDZt2qhq1ar68ssvtWbNGpUqVUpvv/22jh49qho1ahTpGLh4JNABAAAAAAAA4Ap68803lZKSorZt2yowMFBPPfWUkpKSrPYpU6Zo1KhReuqpp3To0CGVLl1aDRs21L333itJevHFF/Xf//5XsbGx8vPzU79+/RQXF+cwx4WOgYtjM8YYVwdREiQnJys4OFhJSUkKCgpydTgAAAAAAABAiZGenq6EhARFR0fLx8fH1eHgGlDYPVOcXC5r+AEAAAAAAAAAcIIEOgAAAAAAAAAATpBABwAAAAAAAADACRLoAAAAAAAAAAA4QQIdAAAAAAAAAAAnSKADAAAAAAAAAOCESxPoK1euVNu2bRUZGSmbzaZ58+Y5tBtj9PLLL6tcuXLy9fVVy5YttXv3boc+J0+eVLdu3RQUFKSQkBD17t1bKSkpDn3++OMP3XHHHfLx8VGFChX0xhtv5Itlzpw5uuGGG+Tj46NatWpp4cKFl/+EAQAAAAAAAADXDJcm0M+ePaubb75ZH3zwgdP2N954Q+PHj9fEiRO1bt06+fv7KzY2Vunp6Vafbt26aevWrVq6dKnmz5+vlStXql+/flZ7cnKy7r77blWqVEkbNmzQm2++qeHDh2vy5MlWnzVr1qhLly7q3bu3fv/9d8XFxSkuLk7/+c9/rtzJAwAAAAAAAACuajZjjHF1EJJks9k0d+5cxcXFScpbfR4ZGamnnnpKTz/9tCQpKSlJ4eHhmjp1qjp37qzt27erRo0a+u2333TLLbdIkhYtWqTWrVvr4MGDioyM1IQJEzR06FAlJibKy8tLkvTcc89p3rx52rFjhyTpgQce0NmzZzV//nwrnoYNG6p27dqaOHFikeJPTk5WcHCwkpKSFBQUdNmuyzXh+C4p8Q+pbHUprKrk4eXqiAAAAAAAAFCCpKenKyEhQdHR0fLx8XF1OLgGFHbPFCeXe9XWQE9ISFBiYqJatmxp7QsODlaDBg20du1aSdLatWsVEhJiJc8lqWXLlnJzc9O6deusPk2aNLGS55IUGxurnTt36tSpU1afc49j72M/jjMZGRlKTk522P6xdi6UvuotTWgsjS4nfdBAmtNL+ukNaft30ol4KTfH1VECAAAAAAAAf7tmzZpp8ODBV/QYUVFRGjduXKF9hg8frtq1a1/ROEoiD1cHUJDExERJUnh4uMP+8PBwqy0xMVFly5Z1aPfw8FBoaKhDn+jo6Hxz2NtKlSqlxMTEQo/jzJgxYzRixIiLOLMSyL+MVKGBdGy7lJEsHd+Rt22d+1cfDx+pdDWpbI28ler2f4Ovk2w218UOAAAAAAAAlDDnV/vAxbtqE+hXu+eff15PPvmk9XtycrIqVKjgwohcqE63vM0YKfmQdGyHdGxbXkL92Dbp+E4pOy2vzEviH45jvQL/l1Cv7phcDyjjmnMBAAAAAAAAgP+5aku4RERESJKOHj3qsP/o0aNWW0REhI4dO+bQnp2drZMnTzr0cTbHuccoqI+93Rlvb28FBQU5bP94NlveivKqLaXbBkrtJ0iP/CS9cEgasFF6YKZ054tSzfukMtUlNw8p84x08Fdp4zRp0RBp+r+kt6pIb1SWpt4rLXxGWv+JtP8XKe20q88QAAAAAAAAVwtjpMyzrtmK+VjJ3NxcPfvsswoNDVVERISGDx9utZ0+fVp9+vRRmTJlFBQUpObNm2vz5s1We3x8vNq1a6fw8HAFBASofv36+uGHHwo8VlRUlCSpffv2stls1u92n376qaKiohQcHKzOnTvrzJkzkqTp06crLCxMGRkZDv3j4uLUvXv3Yp1vSXLVrkCPjo5WRESEli1bZtXmSU5O1rp16/Too49Kkho1aqTTp09rw4YNqlevniTpxx9/VG5urho0aGD1GTp0qLKysuTp6SlJWrp0qWJiYlSqVCmrz7JlyxxqES1dulSNGjX62863RHNzl8Kuz9uq3/vX/uxM6WT8OavV/7di/WSClHpC2rsqbztXUPn8K9YjbpbcrtrPggAAAAAAAHAlZKVKoyNdc+wXDkte/kXuPm3aND355JNat26d1q5dq169eum2227TXXfdpY4dO8rX11fff/+9goODNWnSJLVo0UK7du1SaGioUlJS1Lp1a7366qvy9vbW9OnT1bZtW+3cuVMVK1bMd6zffvtNZcuW1ZQpU9SqVSu5u7tbbfHx8Zo3b57mz5+vU6dOqVOnTnrttdf06quvqmPHjho4cKC+/fZbdezYUZJ07NgxLViwQEuWLLn0a3aNcmkCPSUlRXv27LF+T0hI0KZNmxQaGqqKFStq8ODBGjVqlKpWraro6Gi99NJLioyMtGr3VK9eXa1atVLfvn01ceJEZWVlqX///urcubMiI/PePF27dtWIESPUu3dvDRkyRP/5z3/07rvv6p133rGOO2jQIDVt2lRjx45VmzZt9Pnnn2v9+vWaPHny33tB/mk8vP5Khp8rM1X6c+dfCXV7cj350F/bnnM+Zbups3TfpL83dgAAAAAAAKCIbrrpJg0bNkySVLVqVb3//vtatmyZfH199euvv+rYsWPy9vaWJL311luaN2+evvzyS/Xr108333yzbr75ZmuukSNHau7cufr222/Vv3//fMcqUyavNHJISEi+Chu5ubmaOnWqAgMDJUndu3fXsmXL9Oqrr8rX11ddu3bVlClTrAT6jBkzVLFiRTVr1uyyX5NrhUsT6OvXr9edd95p/W6vKd6zZ09NnTpVzz77rM6ePat+/frp9OnTuv3227Vo0SL5+PhYY2bOnKn+/furRYsWcnNz0/3336/x48db7cHBwVqyZIkef/xx1atXT6VLl9bLL7+sfv36WX0aN26sWbNm6cUXX9QLL7ygqlWrat68ebrxxhv/hquAfLz8pMg6edu50k7n1VO3J9UP/55X/iXhJ9fECQAAAAAAANfx9MtbCe6qYxfDTTfd5PB7uXLldOzYMW3evFkpKSkKCwtzaE9LS1N8fLykvEXIw4cP14IFC3TkyBFlZ2crLS1N+/fvL3bYUVFRVvL83Djs+vbtq/r16+vQoUMqX768pk6dql69eslmsxX7WCWFSxPozZo1kymkXpDNZtMrr7yiV155pcA+oaGhmjVrVqHHuemmm7Rq1apC+3Ts2NH6ZAVXKd8QqWKDvE2SUk9Kb0RLZ47k1Z4qxtdmAAAAAAAAcI2z2a6ZfJC9tLSdzWZTbm6uUlJSVK5cOa1YsSLfmJCQEEnS008/raVLl+qtt95SlSpV5Ovrqw4dOigzM/OyxWFXp04d3XzzzZo+fbruvvtubd26VQsWLCj2cUqSq7YGOnBBfqGST4iUfjqvbnoE3xgAAAAAAADAtaNu3bpKTEyUh4dHvod92q1evVq9evVS+/btJeWtSN+7d2+h83p6eionJ+eiYurTp4/GjRunQ4cOqWXLlqpQocJFzVNS8ORFXNvCrs/79+R/XRsHAAAAAAAAUEwtW7ZUo0aNFBcXpyVLlmjv3r1as2aNhg4dqvXr10vKq5n+9ddfa9OmTdq8ebO6du3qsGrcmaioKC1btkyJiYk6depUsWLq2rWrDh48qA8//FAPP/zwRZ9bSUECHde20Mp5/56Md20cAAAAAAAAQDHZbDYtXLhQTZo00UMPPaRq1aqpc+fO2rdvn8LDwyVJb7/9tkqVKqXGjRurbdu2io2NVd26dQudd+zYsVq6dKkqVKigOnXqFNr3fMHBwbr//vsVEBCguLi4iz63ksJmCitCjiJLTk5WcHCwkpKSFBQU5Opw/jmWj5F+ek2q20P613uujgYAAAAAAABXQHp6uhISEhQdHS0fHx9Xh1PitWjRQjVr1tT48eNdHcpFK+yeKU4ulxrouLbZV6CfoIQLAAAAAAAAcClOnTqlFStWaMWKFfr3v//t6nCuCiTQcW2jBjoAAAAAAABwWdSpU0enTp3S66+/rpiYGFeHc1UggY5rm30F+pnDUmaq5OXn2ngAAAAAAACAa9TevXtdHcJVh4eI4trmW0ryCc77+VSCa2MBAAAAAAAAUKKQQMe1zWaTQinjAgAAAAAAAODyI4GOa5/1INF418YBAAAAAAAAoEQhgY5rHw8SBQAAAAAAAHAFkEDHtc++Ap0EOgAAAAAAAIDLiAQ6rn3UQAcAAAAAAABwBZBAx7XPvgI9+ZCUmeraWAAAAAAAAIBzNGvWTIMHDy5y/x07dqhhw4by8fFR7dq1r2BkF8dms2nevHmuDuNv4+HqAIBL5hcq+QRL6UnSqb1SeA1XRwQAAAAAAABIkr7++mt5enoWuf+wYcPk7++vnTt3KiAg4LLEYLPZNHfuXMXFxV2W+f5JWIGOa5/Ndk4d9HjXxgIAAAAAAACcIzQ0VIGBgUXuHx8fr9tvv12VKlVSWFjYFYwMRUECHSUDddABAAAAAAD+UYwxSs1KdclmjClynOeWcImKitLo0aP18MMPKzAwUBUrVtTkyZOtvjabTRs2bNArr7wim82m4cOHS5IOHDigTp06KSQkRKGhoWrXrp327t3rcJxPPvlENWvWlLe3t8qVK6f+/ftbx5Sk9u3by2azWb9L0jfffKO6devKx8dHlStX1ogRI5SdnW217969W02aNJGPj49q1KihpUuXFuMVKhko4YKSwb4C/QQr0AEAAAAAAP4J0rLT1GBWA5cce13XdfLz9LuosWPHjtXIkSP1wgsv6Msvv9Sjjz6qpk2bKiYmRkeOHFHLli3VqlUrPf300woICFBWVpZiY2PVqFEjrVq1Sh4eHho1apRatWqlP/74Q15eXpowYYKefPJJvfbaa7rnnnuUlJSk1atXS5J+++03lS1bVlOmTFGrVq3k7u4uSVq1apV69Oih8ePH64477lB8fLz69esnKa+MTG5uru677z6Fh4dr3bp1SkpKKlYt95KCBDpKBquECyvQAQAAAAAAcPVq3bq1HnvsMUnSkCFD9M4772j58uWKiYlRRESEPDw8FBAQoIiICEnSjBkzlJubq48++kg2m02SNGXKFIWEhGjFihW6++67NWrUKD311FMaNGiQdZz69etLksqUKSNJCgkJseaUpBEjRui5555Tz549JUmVK1fWyJEj9eyzz2rYsGH64YcftGPHDi1evFiRkZGSpNGjR+uee+65wlfo6kICHSVDmL2ES4Jr4wAAAAAAAMDfwtfDV+u6rnPZsS/WTTfdZP1ss9kUERGhY8eOFdh/8+bN2rNnT7466unp6YqPj9exY8d0+PBhtWjRolhxbN68WatXr9arr75q7cvJyVF6erpSU1O1fft2VahQwUqeS1KjRo2KdYySgAQ6Sgb7CvTkg1JWmuR58X/EAAAAAAAAcPWz2WwXXUbFlTw9PR1+t9lsys3NLbB/SkqK6tWrp5kzZ+ZrK1OmjNzcLu4xlykpKRoxYoTuu+++fG0+Pj4XNWdJRAIdJYNfmOQdLGUkSaf2SmWruzoiAAAAAAAA4JLVrVtXs2fPVtmyZRUUFOS0T1RUlJYtW6Y777zTabunp6dycnLyzbtz505VqVLF6Zjq1avrwIEDOnLkiMqVKydJ+uWXXy7hTK5NF/fxBHC1sdmk0Oi8n3mQKAAAAAAAAEqIbt26qXTp0mrXrp1WrVqlhIQErVixQgMHDtTBgwclScOHD9fYsWM1fvx47d69Wxs3btR7771nzWFPsCcmJurUqVOSpJdfflnTp0/XiBEjtHXrVm3fvl2ff/65XnzxRUlSy5YtVa1aNfXs2VObN2/WqlWrNHTo0L//ArgYCXSUHFYddB4kCgAAAAAAgJLBz89PK1euVMWKFXXfffepevXq6t27t9LT060V6T179tS4ceP073//WzVr1tS9996r3bt3W3OMHTtWS5cuVYUKFVSnTh1JUmxsrObPn68lS5aofv36atiwod555x1VqlRJkuTm5qa5c+cqLS1Nt956q/r06eNQL/2fwmaMMa4OoiRITk5WcHCwkpKSCvwqBa6wH0dJK9+U6vWS2r7r6mgAAAAAAABwmaSnpyshIUHR0dHU50aRFHbPFCeXywp0lByhrEAHAAAAAAAAcPmQQEfJEVo5798TJNABAAAAAAAAXDoS6Cg57DXQkw9KWWmujQUAAAAAAADANY8EOkoOvzDJ+381i07tdWkoAAAAAAAAAK59JNBRcthsUmh03s/UQQcAAAAAAABwiUigo2ThQaIAAAAAAAAALhMS6ChZrAeJxrs2DgAAAAAAAADXPBLoKFnCWIEOAAAAAAAA4PIggY6Sxb4CnQQ6AAAAAAAAgEtEAh0li70GetJBKSvdtbEAAAAAAAAA0NSpUxUSEuLqMC4KCXSULP6lJa9ASUY6tdfV0QAAAAAAAAC4hpFAR8lis0lhlHEBAAAAAADA1SkzM9PVIVyUazXuS0UCHSWPVQc93rVxAAAAAAAA4Ioxxig3NdUlmzGmyHE2a9ZM/fv31+DBg1W6dGnFxsbq9OnT6tOnj8qUKaOgoCA1b95cmzdvdhj33XffqX79+vLx8VHp0qXVvn17q+3UqVPq0aOHSpUqJT8/P91zzz3avXu3JCk5OVm+vr76/vvvHeabO3euAgMDlZqaKkk6cOCAOnXqpJCQEIWGhqpdu3bau3ev1b9Xr16Ki4vTq6++qsjISMXExEiSMjIy9PTTT6t8+fLy9/dXgwYNtGLFCodjTZ06VRUrVpSfn5/at2+vEydOFPl6XW08XB0AcNnZ66CzAh0AAAAAAKDEMmlp2lm3nkuOHbNxg2x+fkXuP23aND366KNavXq1JKljx45Wkjs4OFiTJk1SixYttGvXLoWGhmrBggVq3769hg4dqunTpyszM1MLFy605uvVq5d2796tb7/9VkFBQRoyZIhat26tbdu2KSgoSPfee69mzZqle+65xxozc+ZMxcXFyc/PT1lZWYqNjVWjRo20atUqeXh4aNSoUWrVqpX++OMPeXl5SZKWLVumoKAgLV261Jqnf//+2rZtmz7//HNFRkZq7ty5atWqlbZs2aKqVatq3bp16t27t8aMGaO4uDgtWrRIw4YNu9RL7jI2U5yPS1Cg5ORkBQcHKykpSUFBQa4O55/t95nSN49J0U2lnt+6OhoAAAAAAABcovT0dCUkJCg6Olo+Pj6SpNzUVJcm0N2KmEBv1qyZkpOTtXHjRknSzz//rDZt2ujYsWPy9va2+lWpUkXPPvus+vXrp8aNG6ty5cqaMWNGvvl2796tatWqafXq1WrcuLEk6cSJE6pQoYKmTZumjh07at68eerevbuOHj0qPz8/JScnKzw83Ep2z5gxQ6NGjdL27dtls9kk5ZVoCQkJ0bx583T33XerV69eWrRokfbv328l1Pfv36/KlStr//79ioyMtGJq2bKlbr31Vo0ePVpdu3ZVUlKSFixYYLV37txZixYt0unTp4t5pS+es3vGrji5XFago+SxSrgkuDYOAAAAAAAAXDE2X1/FbNzgsmMXR716fyX6N2/erJSUFIWFhTn0SUtLU3x8XkniTZs2qW/fvk7n2r59uzw8PNSgQQNrX1hYmGJiYrR9+3ZJUuvWreXp6alvv/1WnTt31ldffaWgoCC1bNnSimHPnj0KDAx0mDs9Pd2KQZJq1aplJc8lacuWLcrJyVG1atUcxmVkZFjns337dodyM5LUqFEjLVq0qJArdPUigY6SJ+x/JVySDkjZGZKHd+H9AQAAAAAAcM2x2WzFKqPiSv7+/tbPKSkpKleuXL664ZIUEhIiSfItZoL+fF5eXurQoYNmzZqlzp07a9asWXrggQfk4eFhxVCvXj3NnDkz39gyZco4jds+zt3dXRs2bJC7u7tDW0BAwCXFfLUigY6Sx7+M5BUgZaZIp/ZKZWJcHREAAAAAAAAgSapbt64SExPl4eGhqKgop31uuukmLVu2TA899FC+turVqys7O1vr1q1zKOGyc+dO1ahRw+rXrVs33XXXXdq6dat+/PFHjRo1yiGG2bNnq2zZssUqR12nTh3l5OTo2LFjuuOOO5z2qV69utatW+ew75dffinyMa42bq4OALjsbLZzyrjwIFEAAAAAAABcPVq2bKlGjRopLi5OS5Ys0d69e7VmzRoNHTpU69evlyQNGzZMn332mYYNG6bt27dry5Ytev311yVJVatWVbt27dS3b1/9/PPP2rx5sx588EGVL19e7dq1s47TpEkTRUREqFu3boqOjnYo+dKtWzeVLl1a7dq106pVq5SQkKAVK1Zo4MCBOnjwYIGxV6tWTd26dVOPHj309ddfKyEhQb/++qvGjBlj1TwfOHCgFi1apLfeeku7d+/W+++/f82Wb5FIoKOksifQT8QX3g8AAAAAAAD4G9lsNi1cuFBNmjTRQw89pGrVqqlz587at2+fwsPDJeU9eHTOnDn69ttvVbt2bTVv3ly//vqrNceUKVNUr1493XvvvWrUqJGMMVq4cKE8PT0djtOlSxdt3rxZ3bp1c4jBz89PK1euVMWKFXXfffepevXq6t27t9LT0y+4In3KlCnq0aOHnnrqKcXExCguLk6//fabKlasKElq2LChPvzwQ7377ru6+eabtWTJEr344ouX6/L97WzGGOPqIEqC4jy5FX+DZa9Iq8ZKt/SW7n3b1dEAAAAAAADgEqSnpyshIUHR0dHy8fFxdTi4BhR2zxQnl8sKdJRMVgkXVqADAAAAAAAAuDgk0FEyhV6f9y810AEAAAAAAABcJBLoKJnsK9CTDkrZGa6NBQAAAAAAAMA1iQQ6SqaAspJXgGRypVP7XB0NAAAAAAAAgGsQCXSUTDabFBqd9zN10AEAAAAAAABcBBLoKLmsB4lSBx0AAAAAAABA8ZFAR8nFg0QBAAAAAAAAXAIS6Ci57CvQT1DCBQAAAAAAAEDxkUBHyRXGCnQAAAAAAAAAF48EOkou+wr0pANSdqZrYwEAAAAAAABQZFOnTlVISIirwyCBjhIsIFzy9JdMrnR6n6ujuSyW7V+m8RvH68+0P10dCgAAAAAAAK5RNptN8+bNc3UYlqioKI0bN85h3wMPPKBdu3a5KKK/kEBHyWWzlbg66KPXjdaHWz5U669ba8KmCUrNSnV1SAAAAAAAAMBl5+vrq7Jly7o6DBLoKOHC/pdALwF10I0xOpl2UpKUlp2mf2/+t9rMbaM5u+YoOzfbxdEBAAAAAAD8vYwxysrIcclmjClynF9++aVq1aolX19fhYWFqWXLlvrpp5/k6empxMREh76DBw/WHXfcIemvEibz589XTEyM/Pz81KFDB6WmpmratGmKiopSqVKlNHDgQOXk5FhzREVFaeTIkerSpYv8/f1Vvnx5ffDBBw7tktS+fXvZbDbrd0maMGGCrr/+enl5eSkmJkaffvqpQ3w2m02TJk3SvffeKz8/P1WvXl1r167Vnj171KxZM/n7+6tx48aKj/9rMWt8fLzatWun8PBwBQQEqH79+vrhhx+s9mbNmmnfvn164oknZLPZZLPZHM7/XN99953q1/9/9u48Pqr63v/4+8yeEJJJIiEsWSDsm4C4gRt1oWrVor0W8dcW65Xeh0VBiisuIAiCiKD11nrbule83kqvBWkvdSkKiCD7qhIgbAEkZCPLTGbO74/JDIQ1ZDuTzOv5eMzjTJJzvuczwIPAez75fC+Ux+PReeedp+HDh9f696GuHI1+B8BK4Q70gubfgV5WVaYqMxSUTx0yVa+se0V7Svfo6eVP6+3Nb+uBCx7QlR2vjPwlAwAAAAAA0JJV+YJ6dey/LLn36LlXyum2CzEHKAAAIABJREFUn/W8/fv364477tDMmTM1fPhwlZSU6PPPP9cFF1ygzp0766233tKDDz4oSfL7/XrnnXc0c+bMyPVlZWV68cUXNW/ePJWUlOjWW2/V8OHD5fV69dFHHyk3N1e33XabhgwZop/+9KeR65577jk99thjmjx5sv7xj39o7Nix6tatm6699lqtXLlSaWlpeu211/TDH/5QdnvodcyfP19jx47VnDlzdM0112jBggW666671LFjRw0dOjSy9pQpUzR79mzNnj1bDz/8sEaOHKnOnTvr0UcfVWZmpn75y19qzJgxWrRokSSptLRUN9xwg5555hm53W69+eabuummm7Rt2zZlZmbqgw8+0Pnnn6/Ro0frnnvuOe2v5cKFCzV8+HBNnDhRb775pnw+nz766KNz+42rAwJ0tGwpOaFjC+hAL6wslCS5bC7dnHOzbuh0g97b9p5eWf+Kcotydd8n92lQ20GaMGiCep/X2+JqAQAAAAAAsH//flVVVenWW29VVlaWJKlv376SpLvvvluvvfZaJED/29/+poqKCt1+++2R6/1+f6QrXJJ+8pOf6K233tKBAweUkJCgXr16aejQofr0009rBOhDhgzRI488Iknq1q2bli5dqhdeeEHXXnut2rRpI0nyer1KT0+PXDNr1iyNGjVK9957ryRp/Pjx+vLLLzVr1qwaAfpdd90VqfHhhx/WpZdeqieeeELDhg2TJI0dO1Z33XVX5Pzzzz9f559/fuTjKVOmaP78+frwww81ZswYpaSkyG63q3Xr1jXqOdEzzzyjESNGaPLkyTXWbmwE6GjZWtAM9KLKIklSkjtJhmHIaXfq//X6f7q5y83644Y/6u3Nb2vVgVUasXCErs++XvcPvF8dW3e0uGoAAAAAAIDG4XDZNHrulZbduzbOP/98XX311erbt6+GDRum6667Tj/5yU+UnJysUaNG6fHHH9eXX36pSy65RK+//rpuv/12tWrVKnJ9fHx8JDyXpLZt2yo7O1sJCQk1Pnfw4MEa97300ktP+vjETTpPtGXLFo0ePbrG54YMGaK5c+fW+Fy/fv1q3Fs69qZA+HMVFRUqLi5WYmKiSktLNWnSJC1cuDDyhkJ5ebny8vLOWM+J1q5de8YO9cbCDHS0bKnVf8EU7ZaqfNbWUk/HB+jHS3Ql6oELHtCC4Qt0c87NMmRo0c5FuvmvN+u5lc9FrgMAAAAAAGhJDMOQ02235FHbEbp2u12LFy/WokWL1KtXL7300kvq3r27duzYobS0NN1000167bXXdODAAS1atEi//OUva1zvdDpPfs2n+FwwGKzfL+Y5OP7+4V+HU30uXNOECRM0f/58TZs2TZ9//rnWrl2rvn37yuc7t6wuLi6uvqXXCQE6WraEtpIzXjKDUuG5vasVbU4XoIe1S2inZy57Ru/96D1d0u4S+YN+vbn5TV3/wfV6fePrqgxUNmW5AAAAAAAAUChQHjJkiCZPnqw1a9bI5XJp/vz5kqR///d/13vvvadXX31VOTk5GjJkSIPc88svvzzp4549e0Y+djqdNTYelaSePXtq6dKlNT63dOlS9erVq161LF26VKNGjdLw4cPVt29fpaena+fOnTXOcblcJ9Vzon79+unjjz+uVy11QYCOls0wWsxGopEA3XXqAD2sZ2pPvXrtq3rlmlfUNbmrSnwlev7r53Xz/Ju1IHeBgmbTvSMJAAAAAAAQy1asWKFp06Zp1apVysvL0wcffKBDhw5Fwuxhw4YpMTFRU6dOrTE3vL6WLl2qmTNn6ptvvtHLL7+s999/X2PHjo18PTs7Wx9//LHy8/N15MgRSdKDDz6o119/Xb/73e/07bffavbs2frggw80YcKEetXStWtXffDBB1q7dq3WrVunkSNHntQxn52drSVLlmjv3r36/vvvT7nOU089pXfffVdPPfWUtmzZog0bNmjGjBn1qq02CNDR8kUC9Oa9kWiRLxSgez3es55rGIaGdBii93/0vp4e/LTS4tK07+g+Pfr5oxqxYIS+2v9VY5cLAAAAAAAQ8xITE7VkyRLdcMMN6tatmx5//HE9//zzuv766yVJNptNo0aNUiAQ0M9//vMGu+9vfvMbrVq1SgMGDNDUqVM1e/bsyCafkvT8889r8eLFysjI0IABAyRJP/7xjzV37lzNmjVLvXv31u9//3u99tpruuqqq+pVy+zZs5WcnKzBgwfrpptu0rBhwzRw4MAa5zz99NPauXOncnJyIpucnuiqq67S+++/rw8//FD9+/fXD37wA331VeNnXIZpmmaj3yUGFBcXKykpSUVFRUpMTLS6HBxv8VPS0jnShfdIN86yupo6m7lypt7a/Jbu6n2Xxg8af07XlleV6+3Nb+uPG/+oo/6jkqQrOl6hBwY+oC7JXRqjXAAAAAAAgAZTUVGhHTt2qFOnTvJ4PFaX06DuvvtuHTp0SB9++GGDrJedna1x48Zp3LhxDbJec3WmPzPnkuXSgY6WL7yRaHPvQK8e4ZLoPvc3aOIccbqn3z1aOHyhRnQfIYfh0JI9S3Tb327TpGWTdLDs4NkXAQAAAAAAQIMpKirSF198oT//+c+67777rC4Hp0GAjpavhcxAL64sliR53Wcf4XI6qXGpmnjJRM2/Zb6uybxGQTOov3z7F/1o/o/02zW/jXSnAwAAAAAAoHHdcsstuu666/Qf//Efuvbaa60uB6fhsLoAoNGlVHegF+ZJVT7J4bK2njoqrCyUJCW5z7yJaG1kJ2XrhaEvaM3BNXp+1fNad2idfr/+93r/m/d17/n36tZut8ppc9b7PgAAAAAAADi1zz77rFHW3blzZ6OsG6voQEfL1zpdcsZLZjAUojdT4U1Ek1z1D9DDBqQN0FvXv6XZV81WZutMFVQUaOqKqbr1f2/VJ3mfiC0SAAAAAAAAEMsI0NHyGcZxY1ya7xz08Az0huhAP55hGLo261r99cd/1aMXPapkd7J2Fu/U2E/HatTfR2n9ofUNej8AAAAAAIC6otkPtdVQf1YI0BEbUjqFjs10DrppmpEZ6A0doIc5bU6N7DlSC29dqHv63iO33a3VB1frzo/u1IR/TdDu4t2Ncl8AAAAAAICzcTpDo2bLysosrgTNRfjPSvjPTl0xAx2xITwHvZl2oB/1H1WVWSWp8QL0sNau1rp/4P26vfvt+u2a3+rD7R/qHzv/oU/yPtF/XvOfuqTdJY16fwAAAAAAgBPZ7XZ5vV4dPHhQkhQfHy/DMCyuCtHINE2VlZXp4MGD8nq9stvt9VqPAB2xoZmPcAnPP3fZXPLYPU1yz/RW6Zp62VT9rNfPNGPlDK3MX6nHPn9MH9z8gbweb5PUAAAAAAAAEJaeni5JkRAdOBOv1xv5M1MfBOiIDeEA/XDzHOESnn/udXub/N3V7ind9fLVL+unC36qHUU7NHn5ZM2+ajbv8gIAAAAAgCZlGIbatWuntLQ0+f1+q8tBFHM6nfXuPA8jQEdsSK0e4VKYJwX8kr1+s4+aWmFloSQp0Z1oyf3jHHF69vJndedHd+qfef/U/27/X/24y48tqQUAAAAAAMQ2u93eYOEocDZsIorYkJAuOeIkMxAK0ZuZxt5AtDZ6pfbSmP5jJEnTV0zX7hI2FQUAAAAAAEDLRoCO2GCzNes56MePcLHSqN6jdEHbC1RWVabHPn9MVcEqS+sBAAAAAAAAGhMBOmJHSqfQsRnOQQ+PcLGyA12S7Da7pl02TQnOBK09tFZ/2PAHS+sBAAAAAAAAGhMBOmJHeA56c+xA94U60JNc1gboktQ+ob0mXjJRkvTKule04dAGiysCAAAAAAAAGgcBOmJHZIRL8+tAD49wsboDPezGTjfq+uzrFTADeuTzR1TmL7O6JAAAAAAAAKDBEaAjdqQ04w70KAvQDcPQxEsmKr1VuvJK8vTcquesLgkAAAAAAABocAToiB3hDvQju6SA39pazlG0BehSqJZnhjwjQ4b+55v/0ad5n1pdEgAAAAAAANCgCNARO1q3kxxxkhmQCvOsruachGege91eiyup6aJ2F2lU71GSpKeWPaXvy7+3tiAAAAAAAACgARGgI3bYbFJKp9DzZjbGJdyBnuhKtLiSk40ZMEbdk7vrSOURPbn0SZmmaXVJAAAAAAAAQIMgQEdsiWwk2nwCdNM0o3KES5jL7tKzlz8rl82lz/d+rve2vWd1SQAAAAAAAECDIEBHbGmGAfpR/1EFzICk6BvhEtYluYvGDxovSZq1apZyC5vPry8AAAAAAABwOgToiC3hAP3wdmvrOAeFlYWSJLfdLY/DY3E1p3dHjzs0uP1gVQYq9cjnj8jfzDZqBQAAAAAAAE5EgI7YkpoTOjajDvTwBqJJrugb33I8m2HTlCFT5HV7taVgi/5z3X9aXRIAAAAAAABQLwToiC3hDvTCXVKgytpaaiky/9wT3QG6JKXFp+mpS5+SJP1xwx/19YGvLa4IAAAAAAAAqDsCdMSW1u0lh0cKVklFeVZXUyuRAD3KO9DDrsm6RsO7DJcpU499/phKfCVWlwQAAAAAAADUCQE6YovNJiV3Cj0/3DzGuEQCdHfzCNAl6eGLHlbHhI7ad3Sfpq2YZnU5AAAAAAAAQJ0QoCP2NLM56M0xQG/lbKXpl0+XzbBpQe4CLdqxyOqSAAAAAAAAgHNGgI7Yk1LdgV6w3do6aimyiWgzCtAlqX9af43uN1qSNOXLKco/mm9xRQAAAAAAAMC5IUBH7Elpph3ozWQG+vFG9xutvuf1VYmvRBO/mKigGbS6JAAAAAAAAKDWCNARe1I6h46Hm0kHejMc4RLmtDk1/fLpinPE6av8r/TW5resLgkAAAAAAACoNQJ0xJ5wgF64SwpUWVtLLYQDdK/ba3EldZOVmKWHL3xYkjR39VxtK9hmcUUAAAAAAABA7RCgI/YkdpDsbilYJRXttrqasyqsLJTUPDvQw27tequGZgyVP+jXI58/ooqqCqtLAgAAAAAAAM6KAB2xx2ZrVhuJFvuKJUmJrkSLK6k7wzA0afAkpXpS9V3hd5q7eq7VJQEAAAAAAABnRYCO2BTZSHSHtXWchWmazX6ES1iKJ0VThkyRJL295W0t27vM4ooAAAAAAACAMyNAR2wKd6BH+Uaipf5SBcyApOY9wiXs8o6Xa0T3EZKkx5c+rsKKQosrAgAAAAAAAE6PAB2xKTXcgZ5rbR1nEe4+d9vd8jg8FlfTMMYPGq9OSZ10qPyQJi+fLNM0rS4JAAAAAAAAOCUCdMSmlM6hY5TPQC/yhQL0ltB9HhbniNOzlz8rh82hf+b9U3/97q9WlwQAAAAAAACcEgE6YlN4BvqRXVKgytpazqCoouUF6JLUK7WXxvQfI0l69qtntbt4t8UVAQAAAAAAACcjQEdsSuwg2d1S0C8VRW94G+lAd7WsAF2SRvUepQvaXqCyqjI9+sWjqgpG7xsZAAAAAAAAiE0E6IhNNtuxjUSjeA56eAa61+21uJKGZ7fZNe2yaUpwJmjdoXX6w4Y/WF0SAAAAAAAAUAMBOmJXZA569AbohZWFklreCJew9gntNfGSiZKkV9a9og2HNlhcEQAAAAAAAHAMATpiVzMI0MMd6InuRIsraTw3drpR12dfr4AZ0COfP6Iyf5nVJQEAAAAAAACSCNARy5pBgF7sK5bUMke4hBmGoYmXTFR6q3TlleRp5sqZVpcEAAAAAAAASCJARywLB+iHt1tbxxlERri0wE1Ej5fkTtIzQ56RIUN/+fYv+iTvE6tLAgAAAAAAAAjQEcNSc0LHIzulYMDSUk4nPMKlpc5AP95F7S7SqN6jJEmTlk3S9+XfW1sQAAAAAAAAYh4BOmJXYgfJ7pKCfqlot9XVnFIsBeiSNGbAGHVP7q4jlUf0xNInZJqm1SUBAAAAAAAghhGgI3bZ7FJyp9DzKJ2DHp6BHisBusvu0rOXPyuXzaUv9n6h97a9Z3VJAAAAAAAAiGEE6IhtUTwH3TTNYx3oLXwG+vG6JHfR+EHjJUmzVs1SbmF0vrkBAAAAAACAlo8AHbEtPAe9YIe1dZxCqb9UATM0mz1WOtDD7uhxhwa3H6zKQKUe+fwR+QN+q0sCAAAAAABADCJAR2xLCY9wib4O9HD3ucfukcfhsbiapmUzbJoyZIq8bq+2FGzRnNVzrC4JAAAAAAAAMYgAHbEtJdyBHn1jQsIBeqI70eJKrJEWn6ZJgydJkt7c/KYW7VhkbUEAAAAAAACIOQToiG3hGehHdkrBgKWlnCgy/zzGxrcc7+rMq3V3n7slSU8ufVLbCrZZXBEAAAAAAABiCQE6YltSR8nukgI+qWiP1dXUUOQLBehet9fiSqx134D7NLj9YFUEKjTu03GRNxYAAAAAAACAxkaAjthms0vJ2aHnUTbGpbCyUJKU5IrdDnRJstvsmnnFTHVI6KA9pXv08OcPKxBlPy0AAAAAAACAlokAHQiPcYmyjUQZ4XJMkjtJc4fOlcfu0dK9S/Xy2petLgkAAAAAAAAxgAAdiGwkusPaOk5AgF5T95TukU1F/2vDf+mfu/5pbUEAAAAAAABo8QjQgZROoeNhOtCj3Y2db9TPev1MkjTxi4naXhhdv2cAAAAAAABoWQjQgdRwB3p0zUAPbyIa6zPQTzT+gvG6MP1ClVWVadyn41TiK7G6JAAAAAAAALRQBOhAeAb6kR1SFG1OGe5A97q9FlcSXRw2h5674jmlt0rXzuKdeuyLxxQ0g1aXBQAAAAAAgBaIAB1IypBsTingk4r3Wl1NRDhAT3QnWlxJ9EmNS9Wcq+bIZXPps92f6ffrf291SQAAAAAAAGiBCNABm11Kzg49j6I56MxAP7Pe5/XW45c8Lkn63drfacmeJRZXBAAAAAAAgJaGAB2Qom4OetAMRmagM8Ll9IZ3Ha6fdv+pTJl6ZMkj2lW8y+qSAAAAAAAA0IJEdYAeCAT0xBNPqFOnToqLi1NOTo6mTJki0zQj55imqSeffFLt2rVTXFycrrnmGn377bc11ikoKNCdd96pxMREeb1e3X333SotLa1xzvr163X55ZfL4/EoIyNDM2fObJLXiCgRnoMeJQF6qb80Mtc70cUIlzN5+MKHNSBtgEr8JRr7yViV+cusLgkAAAAAAAAtRFQH6DNmzNDvfvc7/fa3v9WWLVs0Y8YMzZw5Uy+99FLknJkzZ+rFF1/UK6+8ohUrVqhVq1YaNmyYKioqIufceeed2rRpkxYvXqwFCxZoyZIlGj16dOTrxcXFuu6665SVlaWvv/5azz33nCZNmqRXX321SV8vLBRlAXp4fIvH7pHH4bG4mujmtDv1/JXPq01cG20v2q7Hlz5e4002AAAAAAAAoK6iOkBftmyZbrnlFt14443Kzs7WT37yE1133XX66quvJIW6z+fMmaPHH39ct9xyi/r166c333xT+/bt01//+ldJ0pYtW/T3v/9df/jDH3TxxRfrsssu00svvaR58+Zp3759kqR33nlHPp9Pf/rTn9S7d2+NGDFC999/v2bPnm3Za0cTi7IAvbiyWBIbiNZWm/g2mn3VbDlsDi3etVivbXrN6pIAAAAAAADQAkR1gD548GB9/PHH+uabbyRJ69at0xdffKHrr79ekrRjxw7l5+frmmuuiVyTlJSkiy++WMuXL5ckLV++XF6vV4MGDYqcc80118hms2nFihWRc6644gq5XK7IOcOGDdO2bdt05MiRU9ZWWVmp4uLiGg80Y5EAfYcUDFpbi451oDP/vPb6p/XXoxc9Kkmau3qulu1bZnFFAAAAAAAAaO6iOkB/5JFHNGLECPXo0UNOp1MDBgzQuHHjdOedd0qS8vPzJUlt27atcV3btm0jX8vPz1daWlqNrzscDqWkpNQ451RrHH+PE02fPl1JSUmRR0ZGRj1fLSyVlCHZnFKgUirea3U1KqwslCQluZMsrqR5+bdu/6bhXYYraAb10JKHtKdkj9UlAQAAAAAAoBmL6gD9v//7v/XOO+/oz3/+s1avXq033nhDs2bN0htvvGF1aXr00UdVVFQUeezevdvqklAfdoeUnBV6XrDd2lokFflCHehJLgL0c2EYhiZeMlF9UvuoqLJID3z2gMqryq0uCwAAAAAAAM1UVAfoDz74YKQLvW/fvvrZz36mBx54QNOnT5ckpaenS5IOHDhQ47oDBw5Evpaenq6DBw/W+HpVVZUKCgpqnHOqNY6/x4ncbrcSExNrPNDMpeSEjlEwBz08woUO9HPntrv1wtAXlOJJ0daCrZq8fDKbigIAAAAAAKBOojpALysrk81Ws0S73a5g9YzqTp06KT09XR9//HHk68XFxVqxYoUuvfRSSdKll16qwsJCff3115FzPvnkEwWDQV188cWRc5YsWSK/3x85Z/HixerevbuSk5Mb7fUhyoTnoB+Ogg50AvR6SW+VrllXzpLdsGth7kK9s+Udq0sCAAAAAABAMxTVAfpNN92kZ555RgsXLtTOnTs1f/58zZ49W8OHD5cUGtcwbtw4TZ06VR9++KE2bNign//852rfvr1+/OMfS5J69uypH/7wh7rnnnv01VdfaenSpRozZoxGjBih9u3bS5JGjhwpl8ulu+++W5s2bdJ7772nuXPnavz48Za9dlggNdyBvsPaOkSA3hAuTL9QEwZNkCTNWjVLK/NXWlwRAAAAAAAAmhuH1QWcyUsvvaQnnnhC9957rw4ePKj27dvrV7/6lZ588snIOQ899JCOHj2q0aNHq7CwUJdddpn+/ve/y+PxRM555513NGbMGF199dWy2Wy67bbb9OKLL0a+npSUpP/7v//Tr3/9a11wwQU677zz9OSTT2r06NFN+nphsZROoWMUzUD3ur0WV9K83dnzTm08vFELcxdqwr8m6L0fvaf0VqceywQAAAAAAACcyDAZDtwgiouLlZSUpKKiIuahN1cFO6QX+0t2tzQxX7JZ9wMad350p9YfWq85V83R1VlXW1ZHS1BeVa6fL/q5thZsVZ/UPnr9+tfltrutLgsAAAAAAAAWOZcsN6pHuABNKilDsjmkQKVUvNfSUooriyVJiW7ejKmvOEec5gydoyR3kjYe3qhnvnyGTUUBAAAAAABQKwToQJjdISVnh54X5FpaSngGOiNcGkaHhA6aecVM2Qyb5n83X+9/877VJQEAAAAAAKAZIEAHjpfSOXS0MEAPmsHIDHQ2EW04g9sP1tiBYyVJ07+arrUH11pcEQAAAAAAAKIdATpwvEiAbt1GoqX+UgXNoCQC9IZ2V++7dF3WdaoKVmn8Z+N1qOyQ1SUBAAAAAAAgihGgA8dLyQkdC3ZYVkJ4fEucI47NLhuYYRiaMmSKuni76FD5IY3/bLz8Ab/VZQEAAAAAACBKEaADxwt3oB+2rgM9HKAnuthAtDHEO+M1Z+gctXa21tpDazVj5QyrSwIAAAAAAECUIkAHjpdaHaAf2SEFg5aUEA7QGd/SeLISs/TsFc/KkKH3tr2n+d/Ot7okAAAAAAAARCECdOB4SZmSzSFVVUgl+ywpIRyge91eS+4fK67oeIXu7X+vJGnql1O16ftNFlcEAAAAAACAaEOADhzP7pC8WaHnBbmWlFBYWSiJDvSmMLrfaF2VcZV8QZ/GfTZOh8sPW10SAAAAAAAAoggBOnAii+egF/mYgd5UbIZN0y6bpuzEbOUfzdeDSx5UVbDK6rIAAAAAAAAQJQjQgROl5oSOFnWgF1cWS6IDvam0drXW3KFzFe+I18r8lZr99WyrSwIAAAAAAECUIEAHThTuQLcoQGcGetPr7O2saZdNkyS9tfktLcxdaHFFAAAAAAAAiAYE6MCJUqztQGcGujWuzrpa9/S9R5I0adkkbS3YanFFAAAAAAAAsBoBOnCilE6hY8EOKRhs8tuHZ6AnuQjQm9qv+/9aQzoMUUWgQuM+HRf5aQAAAAAAAADEJgJ04ETeLMnmkKrKpZL9TX57ZqBbx26za8blM9QxoaP2lu7VQ0seUiAYsLosAAAAAAAAWIQAHTiR3SF5M0PPLRjjwggXayW5kzRn6BzFOeK0bN8yzV0z1+qSAAAAAAAAYBECdOBUIhuJbm/S2wbNoIp9dKBbrXtKdz095GlJ0msbX9OiHYssrggAAAAAAABWIEAHTsWijURL/aUKmqG56wTo1vph9g91d5+7JUlPLn2STUUBAAAAAABiEAE6cCrhDvTDTduBXlQR2rQyzhEnt93dpPfGye4bcF+NTUWPVByxuiQAAAAAAAA0IQJ04FRSwx3oO5r0tkW+UICe6Eps0vvi1MKbima0ztDe0r168F8PqipYZXVZAAAAAAAAaCIE6MCpRGag50rBYJPdtqgyFKB73d4muyfOLMmdpBeHvqg4R5xW5K/QC1+/YHVJAAAAAAAAaCIE6MCpeDMlwy5VlUul+U1228LKQknMP482XZK7aNpl0yRJb25+U3/b/jeLKwIAAAAAAEBTIEAHTsXuDIXoUpPOQQ93oBOgR59rsq7R6H6jJUmTl0/W5sObLa4IAAAAAAAAjY0AHTidyBz03Ca7ZXgGOgF6dPp1/1/rio5XqDJQqbGfjtXh8sNWlwQAAAAAAIBGRIAOnM7xc9CbSKQD3UWAHo1shk3TL5+u7MRs5R/N14R/TZA/6Le6LAAAAAAAADQSAnTgdFLCHeiMcMExia5EzR06V62crbTqwCrNWjnL6pIAAAAAAADQSAjQgdOJdKDvaLJbhgN0r9vbZPfEuevs7azpl02XJP1565/11+/+anFFAAAAAAAAaAwE6MDpHD/CxTSb5JbhAD3Rndgk90PdDc0cqnvPv1eSNGX5FG04tMHiigAAAAAAANDQCNCB0/FmSoZd8pdJJflNcsvIJqLMQG8WfnX+rzQ0Y6h8QZ/GfTZO35d/b3VJAAAAAAAAaEAE6MDpOFySNyP0vInmoDPCpXmxGTZNu2yaOiV10sEU6R1RAAAgAElEQVSyg/rNZ7+RP8CmogAAAAAAAC0FATpwJpGNRHMb/VZBM6hiX7EkNhFtThJcCXpx6ItKcCZo9cHVmrFyhtUlAQAAAAAAoIEQoANnEp6DfrjxO9BLfCUKmkFJzEBvbrKTsjXjihkyZOi9be/pL9/8xeqSAAAAAAAAagiWl8u/f78qtmzR0eXLVbxokUr/9S+ry4p6DqsLAKJaatN1oBdXhrrP4xxxctvdjX4/NKwrOl6hMQPG6KU1L+mZFc8ox5uj/mn9rS4LAAAAAAC0MGYgoEBxsQKFhcc9ik74+OSHWVl50lpx/fsr4corLXgVzQcBOnAm4Q70JgjQIxuIMr6l2bqn7z3aWrBVi3ct1vjPxmvej+YpLT7N6rIAAAAAAECUMv1+VR0+rMCRI6cNvqtOCMqDxcWSadbthk6n7N4kObxe2ZO8cnfv3rAvqAUiQAfO5PgZ6KYpGUaj3aqwslCSlOQiQG+uDMPQ1CFTtaNoh74r/E7jPxuvPw37k1x2l9WlAQAAAACAJhY8elT+AwdVdSBf/gMHVBV5flBVBw6EHt9/X+cw3JaQILvXe04PW6t4GY2Yb7VEBOjAmXgzJcMm+cuk0gNS6/RGu1VRJR3oLUG8M15zh87ViIUjtO7QOk1bMU1PXfoU35wAAAAAAGghzGBQgSNH5M/PD4XiBw8ce37ggPwHD6gq/4CCpaW1W9DhqA64k2qE3Y4zheFJSTKczsZ9oZBEgA6cmcMVCtGP7AxtJEqAjlrITMzUzCtm6t5/3qu/fPsX9Urtpdu73251WQAAAAAA4CyCPp+qDh7rEPfnHzgWih84qKr8fPkPHZL8/lqtZ2vVSo70dDnbpsmR1laO9LZytm0rR/XD2bat7CkpMmy2Rn5lqCsCdOBsUjqHAvSCXCl7SKPdhgC9Zbmsw2UaO3Cs5qyeo+lfTVcXbxcNbDvQ6rIAAAAAAIhZpmkqcPiw/Pv3y79vv/z79sm/f5+qwh/v369AQUHtFjMM2c9LlTOtOghPbxsKyMPP24Y+tie0atwXhUZHgA6cTUpnafsnUsH2Rr1NZBNRZqC3GL/s80ttKdiif+z8R2RT0fRWjfdTDAAAAAAAxLJgZWUoDD8uEI+E5NUfmz7fWdcxXK7qDvE0OdumV3eKp9XoGne0acMIlRhBgA6czfEbiTaicAe61+1t1Pug6RiGoacHP60dRTv0zZFv9MCnD+j161+X2+62ujQAAAAAAJoV0zQVKCwMBeL7anaNh0Ly/Qp8//3ZFzIMOdLS5GzXTs727eRo107O9u3lbNdeznbpcqSny+71spcZIgjQgbNJ6Rw6Hm7cAL2wslASI1xamnhnvOYMnaM7Ft6hjYc3asryKZoyZArfiAEAAAAAOE7w6FH5j9uQs0ZIXh2QmxUVZ13HiIurDsTbRUJyZ/v2x4LytDQZLlcTvCK0FATowNmkHteBbppSIwWfxZXFkqREd2KjrA/rZLTO0HNXPKf/+Od/6H+3/696pfbSyJ4jrS4LAAAAAIBGZwaDChw5EtqIM7wx54HjNuSs3pwzWFJSq/Xsbc4LdYufJiSnexwNjQAdOBtvlmTYJP9RqfSA1LpxZliHZ6AzwqVlurT9pRp/wXjNWjVLz618Tl2Tu+rC9AutLgsAAAAAgDozfT75Dx5S1cEDoTD8wMHqgDw/FJAfOKCqgwdl+v21Ws8WHy9Henpo9nj79sdGq4QD8vR02egeRxMjQAfOxuGSkjKkwl2hLvRGCtAjI1zYRLTF+nmvn2vz4c36aMdHmvCvCZp34zy1S2hndVkAAAAAANRgmqaCxcWqOnRI/vwD1UF4ded4/oFI13jg8OHaLWgYsqemypmWdiwgb9tWjrS2cqa3jWzOaU9IaNwXBtQBATpQGymdQwH64e1S1uAGXz5oBiMjXJiB3nIZhqFJgycptyhXWwu2auynY/Xm9W/K4/BYXRoAAAAAoIULVlQocPiwqgoKVHX4sAKHC1RVcOKxIHTOkSNSLbvGDaczEoA724bD8DQ509NDAXnbNDnatGHuOJotAnSgNlJzpNxPQx3ojaDEVyJTpiQC9JYuzhGnuUPnasSCEdpSsEWTl0/WtMumMZ8NAAAAAHBOzKqq0GzxcOh9uECBIwWhY0H1x9WBeeDwYQXLys75HrbExFAA3va4rvHjn6enM3McLR4BOlAbKZ1Dx0YK0IsqQ/PP4xxxctl5R7ala5/QXrOunKXRi0drQe4C9UrtpZ/1+pnVZQEAAAAAooDp88l/4ID8+/bLv3+fqvbvV9Wh748F5dXHQFGRZJrntLbhdMp+3nlypKTInpISOqamypGaInvKiccU2dzuRnqVQPNBgA7URkpO6FiwvVGWDwfodJ/HjovaXaQJgyZoxsoZen7V8+qW3E0Xt7vY6rIAAAAAAI0oPFvcv2+f/Pv3h0LyfftCQfm+/fLv36+qQ4dqH4wbhuzJyacJwE84pqbK1qoV3eLAOSJAB2oj0oG+I/RNrIG/2RT5QgG61+1t0HUR3e7seae2FGzRh9s/DG0q+qN56pDQweqyAAAAAAB1ZPr9qjp4sGZAvr9mSF6bUSqG2y1nu3Zytm8nR3o7OdLayJGSKntqihypqaHu8dTU0PgUu70JXhkQuwjQgdpIzpIMm+QrlUoPSq3bNujykQ50Fx3oscQwDD1xyRPaXrhdmw5v0thPxuqtG95SnCPO6tIAAAAAAKcQKCmJjFbx7wuNVzk+JK86eFAKBs+6jj0lpTogbx8Kydu1k7Nd+8jH9pQUOsWBKEGADtSGwy0ldZQK80Jz0Bs4QC+sLJQkJboTG3RdRD+Pw6M5Q+fopwt+qm1HtumppU9pxhUz+IcSAAAAAFjADAZVdeiQfLt2yZ+XJ1/ebvny8kLPd+9WsKTkrGsYTmd1IF4dkIc7yY/72ObxNMGrAdAQCNCB2krpXB2gb5eyLm3QpYsriyUxAz1WpbdK1/NXPq97/u8eLdq5SD1Te+quPndZXRYAAAAAtEhmVZX8+/fLtytP/t158u3KC4Xku0OBuVlZecbr7V6vHO2rO8aP6yIPP7enpsqw2Zro1QBobAToQG2l5Ei5n4U60BsYM9AxKH2QHrroIU1bMU1zVs9Rt+RuGtJhiNVlAQAAAECzFKyslH/Pnpoh+e7d8uXtkn/vPqmq6vQX2+1yduggV2amXJkZcmZmhp5nZMjZvr1srVo13QsBYDkCdKC2whuJHt7e4EuHR7gwAz22jeg+QlsLtuqDbz/Qg0se1Ls3vqusxCyrywIAAACAqBQoPXpcOJ5XY+RKVX6+ZJqnvdZwueTMzJArMysUjGdlypWRKVdWppzt2slwOpvwlQCIZgToQG2l5oSOjdGBHt5ElBEuMc0wDE28eKK2F27XukPrdP8n9+udG95RgivB6tIAAAAAwBKB4uJQQL5rV6h7vHrcii8vT4HDh894ra1Vq2PBeGZ1OF4dkjvS0hizAqBWCNCB2gp3oBfkht7FbsBNHpmBjjCX3aUXrnpBIxaOUG5Rrh79/FHN/cFc2Qz+YQcAAACg5TFNU4HCwuru8byTwvJAYeEZr7cnJ8uVmXlszEpWppwZGXJlZcmenCyjAf/vDiA2EaADtZWcLcmQfKXS0UNSQlqDLR0Z4UKADklt4tto7tC5+sWiX+izPZ/p5bUv674B91ldFgAAAADUiWmaChw5It/O6mA879jGnb5duxQsLj7j9Y42bUKd5JlZx0Ly6sDc3rp1E70KALGKAB2oLYdbSsqQivJCXegNGKCHNxFlBjrC+pzXR5MGT9JjXzymV9e/qm7J3TQse5jVZQEAAADAKZmmqcD335+yi9yXl6dgaekZr3e0bRsKx7OzqsPxLLmyQht3smknACsRoAPnIrVzKEA/vF3KvKRBlgyawcgIF6/H2yBromW4KecmbSvYpjc2v6Enlj6h7MRsdU/pbnVZAAAAAGKUWVUlf36+/Hv2yLd7t/zVG3aGwvI8mWVlZ7ze0a6dXFkndJFnhTbxtMXFNdGrAIBzQ4AOnIuUzlLuZw26kWiJr0SmQjuDJ7oSG2xdtAzjLhinbwu/1bJ9y3T/J/dr3o/mKdmTbHVZAAAAAFog0zQVLCqSb/ce+fdWh+S798i/Z3foc/v2SYHA6RcwDDnbtz9uxEqWXNmhwNzZsaNsHk/TvRgAaCAE6MC5SMkJHQu2N9iSRZWh8S1xjji57K4GWxctg8Pm0MwrZmrkwpHKK8nTb/71G/3+2t/LaXNaXRoAAACAZsj0+eTfty8UiO/ZLd+ePfLv3iPfnlBYHiwpOeP1htMpZ8eOcnbsKFdGR7mysiKd5M6OHWVz8f9aAC0LATpwLlI6h44N2IEeDtC9bsa34NSS3El68QcvauTCkVqZv1LPrXxOj138mNVlAQAAAIhCpmkqUFAg/+7dx0Ly3XtCY1f27FbV/nzJNM+4hr3NeXJ1zJAzo2PoWB2WOzMy5EhLk2GzNdGrAQDrEaAD5yIcoB/ODf2DwzDqvWRhZaGkUEgKnE6ON0fPXv6s7v/0fr279V11T+6u27rdZnVZAAAAACxgVlWFusirN+v07847LiTfc9ZZ5EZcnFwdO8h5fEie0VGujh3l7NBBtvj4JnolABD9CNCBc5GcLcmQfCXS0e+lhDb1XrLIF+pAT3IRoOPMhmYO1Zj+Y/Tbtb/V1BVTlePNUf+0/laXBQAAAKARmIGA/Pv3y7dzl3y7doaC8urA3Ld3r+T3n/5iw5AjPT0UiGdkyNmxg1wZ4U7yDNlTU2U0QEMYAMQCAnTgXDg9UlJHqWh3aA56QwTo1SNc6EBHbYzuN1rbjmzT4l2LNe7TcZr3o3lKb5VudVkAAAAA6iAUkufLt2un/Hl51WF59WPPnjOG5IbbLVdmhpxZWXJlZIaedwyF5c4OHZhFDgANhAAdOFcpnasD9Fwp85J6L0eAjnNhGIamDpmqXcW79M2RbzTu03F6/Yevy+NgN3sAAAAgGpnBoKry848F4zt3yZdXPXolL0/mmUJypzOyQWfkkZ0lV2amHOnpzCIHgCZAgA6cq5TO0o5/SYe3N8hyBOg4V/HOeM0dOld3LLxDmw5v0uTlkzXtsmn8CCYAAABgEdM0VXXggHw7d0bmkoceO+XP2y3T5zv9xU6nXBkZcoWD8uxjYbkjPV2G3d50LwQAcBICdOBcpeaEjgW5DbJceAa61+1tkPUQGzq27qjnr3xeoxeP1oLcBeqR0kO/6P0Lq8sCAAAAWjQzEJB/715Vbt8u3/btqtyeG3kePHr09Bc6HHJ17BgJyENd5dmh5+3aEZIDQBQjQAfOVUrn0LGhAvTqDvREV2KDrIfYcVG7i/TQhQ9p+lfTNfvr2eri7aIhHYZYXRYAAADQ7Jl+v3x5ear8brt8udtV+d32UFC+Y4fMyspTX2S3hzbrzMoKheNZWXJlhbrKne3by3AQwQBAc8Tf3sC5SmngDnRGuKAe7uhxh7Yd2aYPvv1ADy55UO/e+K6yErOsLgsAAABoFoIVFfLt2FHdSf6dfN9tV2Vurny7dklVVae8xnC55OrUSe6cznLl5Mhd/XBlZclg404AaHEI0IFzldgudKwslvzlkjOuXssRoKM+DMPQxIsnanvhdq07tE73f3K/3rnhHSW4EqwuDQAAAIgagdJS+XJzqzvJv5OvevSKf88eyTRPeY0RHx8Kxzt3lqvLsaDc2bEjI1cAIIYQoAPnytVaMmySGZTKC+sfoDMDHfXksrv0wlUvaMTCEcotytWjnz+quT+YK5ths7o0AAAAoEkFSktVuXVrKCjP3R7pKK/Kzz/tNfakJLm6dJG7c2e5u+TI1TlH7i45oQ08DaMJqwcARCMCdOBc2WySJ0kqPyJVFB7rSK+DQDCg4spiSXSgo37axLfR3KFz9YtFv9Bnez7Ty2tf1n0D7rO6LAAAAKBRmKapqoOHVLl1iyq2bFHF5i2q2LpV/ry8017jaNMmMnLFldNZ7pwucnfJkT0lhaAcAHBaBOhAXXi8oQC9vLBey5T6S2Uq9OOCSS4CdNRPn/P6aNLgSXrsi8f06vpX1S25m4ZlD7O6LAAAAKBezGBQvp27joXlW7aqYssWBQ4fPuX5jnbt5O7aJRSQHzen3J6Y2MSVAwBaAgJ0oC7ivNIRhTrQ6yE8/zzeES+n3dkAhSHW3ZRzk7YVbNMbm9/QE0ufUHZitrqndLe6LAAAAKBWgpWVqvz2O1Vs2azKcFi+bZvMsrKTT7bZ5OrcSZ6eveTp2VOenj3k7tFDjuTkpi8cANBiEaADdeGpnldezw70wsrQ9YxvQUMad8E4fVv4rZbtW6b7P7lf8340T8ke/hMBAACA6BIoLq7uJt+syuqu8srcXKmq6qRzDY9H7u7d5OnRMxSW9+opd9eussXVb08qAADOhgAdqIu46gC9gTrQCdDRkBw2h2ZeMVMjF45UXkmefvOv3+j31/5eThs/5QAAAICmZ5qmqg4cCM0p37JZlVu3qmLzFvn37j3l+fakJLl79azRWe7KzpbhIMIAADQ9vvsAddFAHehFPgJ0NI4kd5LmDp2rOz+6UyvzV+q5lc/psYsfs7osAAAAtHBmMCh/Xp7KN21SxeZjY1gCR46c8nxn+/bVYfmxhyM9nU09AQBRgwAdqIuG7kBnA1E0gi7JXTT98uka++lYvbv1XfVI6aFbu95qdVkAAABoIcxgUL5du1SxabMqNm0KPTZvVrC09OST7Xa5O3cOjV4Jj2Hp2UP2JP4vBACIbgToQF00VAc6I1zQyH6Q+QP9uv+v9fLalzXlyynqnNRZ/dP6W10WAAAAmplIWL5x07GwfMuWU4blhssld48e8vTqKU+v0BgWd9eusnk8FlQOAED9EKADdRFXvSFjA3Wge93e+lYEnNbofqP1zZFvtHjXYo37dJzm/Wie0lulW10WAAAAopQZDMq3c9exoDzcWX706EnnGm633D26K653b3mqH+6cHBlO9t8BALQMBOhAXcQ1TAd6YWXoejrQ0Zhshk1Th0zVzuKd+vbItxr36Ti9/sPX5XHQAQQAABDrQmH5zlBIvvG4zvLThOWeHj0iQbmnT2+5O3cmLAcAtGgE6EBdeBpoBnr1JqKJrsT6VgScUbwzXi8OfVEjFo7QpsObNHn5ZE27bBqbMwEAAMQQMxA4FpZv2qTyTZtUuXmLgmVlJ51reDzydO9eHZT3qe4s7yzDQYwAAIgtfOcD6qKBOtCLK4slMcIFTaNj6456/srn9avFv9KC3AXqkdJDv+j9C6vLAgAAQCM4NrN8oyo2bjx7WH58ZzlhOQAAEXw3BOqioTrQ2UQUTezidhfrwQsf1LNfPavZX89WV29XDe4w2OqyAAAAUE/+AwdUsWGDyjdsVMWG9SrfuEnB4uKTzjPi4k4Iy3uFxrAQlgMAcEp8hwTqItyBXlUh+cslZ1ydlmEGOqwwssdIbSvYpvnfzdeEJRM078Z5ykzMtLosAAAA1FKgqEjlGzeqYsNGlW/YoIoNG1R18OBJ5xlutzw9e8rTt688vXsprndvuTp3lmG3W1A1AADNEwE6UBeu1pJhk8xgaIxLHQL0QDCgEl+JJAJ0NC3DMPT4JY9re9F2rT+0Xvd9cp/eueEdJbgSrC4NAAAAJwhWVKhi85ZQV/mGjarYsEG+XbtOPtFmk7trV8X16ytPn76K69tH7q5d2eATAIB6IkAH6sJmkzxJUvmR0BiXxHbnvESpv1SmTElSkosAHU3LZXdpzlVzNGLBCOUW5erRLx7V3KFzZTNsVpcGAAAQs8yqKlV+953K168PdZdv3KjKb76RAoGTznVmZiqub195+vYJHXv2lC0+3oKqAQBo2QjQgbryeEMBeh03Eg2Pb4l3xMtppysETa9NfBvNGTpHo/4+Sp/t/kwvr31Z9w24z+qyAAAAYoJpmvLn5al8/QZVbKyeXb55s8yKipPOtbc5T3F9+ka6yz19esuRnGxB1QAAxB4CdKCu4rzSEdV5I1E2EEU06Numr54a/JQmfjFRr65/VameVI3sOdLqsgAAAFqcqkOHVL5+ffXM8lB3ebCo6KTzbAkJ8vTpc6y7vF8/Odq2lWEYFlQNAAAI0IG68lRvJFrHDvRwgO51exuqIqBObs65WTuLduq/NvyXpn81XZII0QEAAOrBDAbly81V2erVKv96tcrWrJE/L++k8wyXS+6ePRTXt5/i+vaRp29fubKzZdgYqwcAQLQgQAfqKq46+K5jB3p4hEuiO7GhKgLq7L4B9ylgBvSnjX/S9K+myzAM3dHjDqvLAgAAaBaClZWq2LBBZavXqHx1KDA/qbvcMOTukiNP337HRrF06yrD5bKmaAAAUCsE6EBd1bMDvdhXLIkNRBEdDMPQuIHjZMrUaxtf07QV02TI0IgeI6wuDQAAIOpUFRSofM0alX29WuWrV6ti0yaZfn+NcwyPR3H9+inugoGKHzhQceefL3sizTMAADQ3BOhAXdWzA50RLog2hmHogYEPSKb02qbX9MyKZ2TI0E97/NTq0gAAACxjmqZ8O3aqfM3qyEgW386dJ51nb3Oe4gcMVNzAAYq/4AJ5evSQ4XQ2fcEAAKBBEaADdVXPDvTwCBc2EUU0MQxDD1zwgEyZen3T65q6YqoMw9Dt3W+3ujQAAIAmEfT5VLFpU2gUy+o1Kl+zRoGCgpPOc3XJCQXm1R3mzowMNvoEAKAFIkAH6qqBOtAJ0BFtDMPQ+AvGyzRNvbH5DU35cookEaIDAIAWKVBYqLI1a1S+eo3K1qxWxfoNMn2+GucYLpc8/foe6zAfMEB2Lz9JCgBALCBAB+qqnh3oRT4CdEQvwzD0m0G/kSlTb25+U1O+nCLDMPRv3f7N6tIAAADqxbdnj8pWrVL516tVtma1fN9tP+kce3Ky4gZWzy4fOECe3r1lY7NPAABiEgE6UFdxyaFjXTvQK6oDdDYRRZQyDEMTBk2QKVNvbX5LTy9/WpII0QEAQLMSKClR2YoVKl26VEeXLpM/L++kc1ydOoU6ywcOVNzAgXJlZzOOBQAASCJAB+oujg50tHyGYejBQQ/KNE29veVtPb38aRky9JNuP7G6NAAAgFMyq6pUsXFjJDAvX7dOCgSOneBwKK5Pn8js8rgBA+RISbGuYAAAENUI0IG68jTMDHSvm9mJiG6GYeihCx+SJL295W1NXj5Zhgzd1u02iysDAAAI8e3Zq6NLl4YeX36pYHFxja+7srPVasgQtRoyRPEXXSR7QiuLKgUAAM0NATpQV+EO9KoKyV8hOT21vjQQDKjEVyJJSnQnNkZ1QIM6MUSftHySDMPQrV1vtbgyAAAQiwKlR1X21Vc6+sUXOrp0qXy7dtX4ui0xUa0uvVSthgxWq8FD5OrYwaJKAQBAc0eADtSVq7Vk2CQzGOpCd6bX+tISX4lMmZKYgY7mIxyimzL1zpZ3NGnZJBkyNLzrcKtLAwAALZwZCKhi8+ZQh/kXS1W2dq1UVXXsBLtdcf37q9WQwUoYMkSePn1k2O3WFQwAAFoMAnSgrmw2yZMklR8JPVrXPkAPzz9v5Wwlp93ZWBUCDc4wDD184cMyTVN/3vpnPbXsKUkiRAcAAA3Ov2+fji5bptKlS1W2bLkCRUU1vu7MylTC8WNZWre2qFIAANCSEaAD9eHxVgfo5zYHPTz/nO5zNEeGYeiRix6RKVPvbn1XTy17SoZh6Mddfmx1aQAAoBkLHj2qoytX6ujSZaGxLLm5Nb5ua91arS65pHqW+WC5MjIsqhQAAMQSAnSgPuK80hGd80aihZWh85PcBOhongzD0KMXPSrTNDVv2zw9ufRJGTJ0S5dbrC4NAAA0E2YwqIrNWyKbf5atWSP5/cdOsNkUd/75kcA8rm9fGQ7+CwsAAJoW//oA6sNTvZFoXTvQCdDRjBmGoccufkymTL237T09sfQJSSJEBwAAp2QGAqrctk1lq1apbOVKla1cpUBhzX9HOzt2VKvLQmNZWl18seyJiRZVCwAAEEKADtRHXHWAfo4d6MW+YkkE6Gj+DMPQxIsnSlIkRDcMQzfn3GxxZQAAwGqm36+KTZuqA/NVKlu9WsGSkhrn2Fq1Uvyll0RmmbsyMy2qFgAA4NQI0IH6qGMHemSECzPQ0QJEOtFNU//9zX/r8S8elyFDN+XcZHVpAACgCQUrK1W+bp3KVq1S+apVKluzVmZ5eY1zbAkJirtgoOIHDVL8oEGK69NHhtNpUcUAAABnR4AO1EcdO9AZ4YKWxmbYNPGSiTJl6v1v3tfEL0Jd6YToAAC0XMGjR1W2dm1oHMuqVapYt17m8TPMJdmTkhR34SC1uvBCxQ0aJM//Z+++o5uq/z+OP2/SdDdpC5TlYDoAB0uUJSKUjYBfUaYIiCIq4F6I4kRko6KIuHCDCrJBkKUiKCJDRTZoWR1pS1eS+/ujNMLPRaDlNu3rcQ7H9t6kvPieU77pi3fen4suwrDbLUosIiIiEjgV6CJnQjvQRfxsho3HrnwME5NPfv2Ex9Y8hmEYdKzW0epoIiIiUgi8bjfHNmzwr2TJ3rIFvN6THmMvV9Zflkc1bEho9eoYNptFiUVERETOnAp0kTOhCXSRk9gMGyOuHIFpmszaPotHVz+KgUGHah2sjiYiIiIB8hw9yrH1xwvz9evJ+flnMM2THuOoVInIhg2JbJi/ksVx/vkYhmFRYhEREZHCpwJd5Eyc6QS6dqBLCWQzbDx+1eMAzNo+i0dWPwKgEl1ERKSYyzt4kGPrvvMX5rk7dvzlMaFVquSX5Q0bElm/Po7KlS1IKiIiInL2qEAXOROnO4Gem1+gxxYU8CIlzN+V6AYG7au1tziZiIiIFPCkpJC5eg2Za9dybP168vbt+8tjwmrW9E+YR9SvjyMhwYKkIiIiItZRgS5yJiLi8v8b4AR6ak7+4zWBLiVZQYluYjJ7+2weXv0whmHQrmo7q6OJiIiUSqRC+NcAACAASURBVKbPR/bmzWSsXEXGqpVkb/rp5JUsNhvhF19MZIMGRF7RkIh69QiJi7MusIiIiEgxoAJd5EyEBz6B7vV5Sc9NB8AZ5iyKVCLFhs2wMfKqkZimyae/fcpDqx4CUIkuIiJyluRPma8mY+UqMlevxpuSctL9sAsuIKpZU6IaNSKiXj3s0dEWJRUREREpnlSgi5yJghUunmzIywZH+H8+paA8Bx0iKqWDzbDxROMnMDH57LfPeGjVQxgYtK3a1upoIiIiJY7p9Z4wZb6K7J9OnjK3RUUR1bgxUc2bEd2sGY4KFSxMKyIiIlL8qUAXOROhMWDYwPTlT6E7/vsHkIL1LVGOKBw2R1EnFCkWbIaNJxs/iWmafL7j8/xJdAPaVlGJLiIicqY8ycknT5mnnvzuyLALLyS6eTOimjUjsm5dDIdeg4qIiIicKhXoImfCZoNwF2Sl5O9Bj/nvAr3gAFHtP5fSxl+iYzJnxxweWpk/id6mShuro4mIiAQV0+sl+6ef/pwy37z55Cnz6GiiGjf2l+aO8uUtTCsiIiIS3FSgi5yp8NjjBXrKfz8WSMs5XqBrfYuUQnabnVGNRwEwZ8ccHlz5IIBKdBERkf/gOXr0zynzNWv+OmV+0UVEN2tGdPNmRFx+uabMRURERAqJCnSRMxURCymc8kGiKtCltCso0U3TZO7OuSrRRURE/obp9ZK1aROZq1aRsXIV2Vu2nDxlHhPz55R502Y4yidYmFZERESk5FKBLnKmwo8fJJqlAl3kVNltdp5q8hSAv0T3mT7aVW1ncTIRERHreI4cIWP1ajILpszT0k66H3bxxX9OmV92mabMRURERM4CFegiZyrieIF+qhPox3egx4bFFlUikaBQUKLbDJv/YFGv6aVjtY5WRxMRETkrzLw8sjZuJGPVajJXryZ769aT7ttiYohq0oToZs2IatYUR4KmzEVERETONhXoImfqNCfQnaHOokokEjTsNjujmozCbrMze/tsHln1CF6fl+tqXGd1NBERkSKRu29f/i7z1Ws49s03+DIzT7ofVutiops1/3PKPEQ/somIiIhYSa/GRM5UgBPoqTn5j9MKF5F8NsPGyKtGYjNsfPLrJ4xYMwKf6aNrza5WRxMRETljvsxMMtetI3P1GjJXryZ3z56T7tvj4ohq3JioZk2JatxYU+YiIiIixYwKdJEzFeAEujvHDWiFi8iJbIaNEVeOwG7Y+fCXD3l87eN4TS//u+B/VkcTEREJiGma5Pzyi3/KPGvDBsy8vD8fYLcTUfdyops2JapJU8Jr18Kw2awLLCIiIiL/SgW6yJkKdAe6DhEV+Vs2w8ajjR4lxBbCzG0zefLrJ/GZPrpf2N3qaCIiIv/Kk5JC5pq1+aX5mtV4Dx856b6jcmWimjYlqmkToq68EntMjEVJRURERCRQKtBFzlSAE+ha4SLyzwzD4MGGD2IzbLyz9R2e+uYpPD4PPS/uaXU0ERERP9PjIevHH8lYvZrMVavJ3rIFTNN/34iIIPKKhkQ3aUpU06aEVq2CYRjWBRYRERGR06YCXeRMBTqBnqsJdJF/YxgG9ze4nxAjhBlbZvDcuufwml761OpjdTQRESnF8g4cIGP1GjJXryLz62/wZWScdD/sgguIatqU6GZNiahfH1toqEVJRURERKQwqUAXOVMBTKB7fV7Sc9MBcIWqQBf5J4ZhMLz+cGyGjembp/PCdy/gM33cXPtmq6OJiEgp4cvK4ti6dcdL89Xk7tp10n27y0VUkyb5q1maNMFRXod/ioiIiJRExf60mgMHDtC7d2/KlClDREQEl1xyCevXr/ffN02Txx9/nIoVKxIREUGrVq3Yvn37SV8jOTmZXr164XQ6iY2NZcCAAWT8v4mRTZs20axZM8LDwzn33HN54YUXzsqfT0qAiLj8/57CBLo71+3/2BnmLKpEIiWCYRgMrTeUQZcOAuDF9S8y/afpFqcSEZGSLO/AAZLfeou9/fvza6Mr2Xfb7aS8805+eW63E1GvHmXvvosqH31IzbVrqDxuLLHduqo8FxERESnBivUEekpKCk2aNOGaa65hwYIFlCtXju3btxMXF+d/zAsvvMCkSZN46623qFq1KiNGjKBNmzZs3bqV8PBwAHr16sUff/zBkiVLyMvL45ZbbmHQoEG89957ALjdbhITE2nVqhVTp07lp59+on///sTGxjJo0CBL/uwSRApWuHiyIS8bHOH/+NCCA0SjHFE4bI6zkU4kqBmGwV117yLECOHlH19mwvcT8Jk+br30VqujiYhICZG7ezfuxUtIX7yY7M2bT7oXUqmif4951FVXYndqAEJERESktCnWBfro0aM599xzmTFjhv9a1apV/R+bpsmECRN47LHHuO666wB4++23KV++PJ999hk33XQT27ZtY+HChXz33Xc0aNAAgMmTJ9O+fXtefPFFKlWqxMyZM8nNzeWNN94gNDSU2rVrs3HjRsaNG6cCXf5baAwYNjB9+VPojgr/+NCC/eexYbFnK51IiTD48sHYDBtTNk5h0g+T8JgeBl822OpYIiIShEzTJPe333AvXkz64iXk/PLLnzcNg8j69YludS3RzZoRWq2aDv8UERERKeWK9QqXOXPm0KBBA2644QYSEhKoW7cu06ZN89/ftWsXSUlJtGrVyn/N5XLRqFEjvv76awC+/vprYmNj/eU5QKtWrbDZbHz77bf+xzRv3pzQEw76adOmDb/88gspKSl/my0nJwe3233SLymlbDYIP77P/D/2oBdMoDtDNb0kEqjbLruNofWGAvDyxpeZ8sMUTNO0OJWIiAQD0zTJ2rKFQ+MnsLN9B3Z26syRyVPyy3O7najGjanwxBPUXLWS8999hzL9+hFWvbrKcxEREREp3hPoO3fu5JVXXuGee+7hkUce4bvvvuPuu+8mNDSUm2++maSkJADKly9/0vPKly/vv5eUlERCwsk7CUNCQoiPjz/pMSdOtp/4NZOSkk5aGVPgueee48knnyycP6gEv/BYyEr5zz3oBQW6K0wHiIqcjoGXDCTECGHshrG8uulVfKaPu+repYJDRET+wvT5yN60CfeixaQvWULe/v3+e4bDQVSTJsQkJhLT8hrssXp3oIiIiIj8vWJdoPt8Pho0aMCzzz4LQN26ddm8eTNTp07l5ptvtjTbww8/zD333OP/3O12c+6551qYSCwVEQsp5Jfo/6KgQNcKF5HT169OP2yGjTHrxzDtp2l4TA/D6w1XiS4iIpheL8c2bCB98RLSlyzBc/Cg/54RHk50s2bEJCYSfU0L7NHRFiYVERERkWBRrAv0ihUrUqtWrZOuXXzxxcyaNQuAChXyd00fPHiQihUr+h9z8OBBLr/8cv9jDh06dNLX8Hg8JCcn+59foUIFDp7w4rrga5z4e/x/YWFhhIWFne4fTUqa8OOF+H+scEnNyb+vCXSRM9O3dl/sNjvPr3ueGZtn4PP5uLfBvSrRRURKITMvj8xv15G+eDHpy5bhPXrUf88WFUV0ixb5pXmzptgiIy1MKiIiIiLBqFgX6E2aNOGXEw/1AX799VfOP/98IP9A0QoVKrBs2TJ/Ye52u/n2228ZPDj/cLmrrrqK1NRUNmzYQP369QH48ssv8fl8NGrUyP+YRx99lLy8PBwOBwBLlizhwgsv/Nv1LSJ/EXG8QD/FFS7agS5y5npd3Au7YeeZb5/hra1v4TW9PNDwAZXoIiKlgC8nh8w1a/NL8+XL8aWl+e/ZXC5iWrYkJrE1UY0bY9PQi4iIiIicgWJdoA8fPpzGjRvz7LPP0r17d9atW8drr73Ga6+9BoBhGAwbNoynn36amjVrUrVqVUaMGEGlSpXo0qULkD+x3rZtW2699VamTp1KXl4ed955JzfddBOVKlUCoGfPnjz55JMMGDCABx98kM2bNzNx4kTGjx9v2Z9dgswpTqCn5WqFi0hhuumim7Db7Iz6ehTvbnsXj8/DI40eUYkuIlIC+Y4dI2PVatIXLyZjxQp8mZn+e/YyZYhp1Sq/NL/iCozjQzEiIiIiImeqWBfoDRs25NNPP+Xhhx9m1KhRVK1alQkTJtCrVy//Yx544AEyMzMZNGgQqampNG3alIULFxIeHu5/zMyZM7nzzju59tprsdlsXH/99UyaNMl/3+VysXjxYoYMGUL9+vUpW7Ysjz/+OIMGDTqrf14JYgFOoGuFi0jhueGCGwgxQhi5diQf/PIBPtPHo1c+is2wWR1NRETOkDcjg4zlK/JL81WrMLOz/fdCypcnpnVrYhJbE1m/PobdbmFSERERESmpDNM0zdN5Ym5uLocOHcLn8510/bzzziuUYMHG7XbjcrlIS0vD6dR6jlJn9QRYOhIuvQm6vfqPD7vpi5vYcnQLk1tOpsW5Lc5ePpFS4PPfPmfEmhGYmFxf83oev+pxlegiIkHIzM0lffkK0j77jMzVqzHz8vz3HOecQ0xiIs7E1oRfeimGTX/Pi4iIiEjgAulyA55A3759O/3792ft2rUnXTdNE8Mw8Hq9gX5JkeAX4AS6VriIFL7ralyHzbDx2JrHmLV9Fl7TyxNXPYHdpolEEZFgkL11K6mffoZ77ly8qX++pgqtVo2YxNY4ExMJu/hirekSERERkbMq4AK9X79+hISE8MUXX1CxYkW9gBWBgHegO8P0LgWRotCpeifshp2HVz/MZ799hs/0MarxKJXoIiLFlCc5GfcXX5A6+1Nyfv7Zfz0kIQHXddfh6tyJsJo1LUwoIiIiIqVdwAX6xo0b2bBhAxdddFFR5BEJTqcwge7xeUjPTQfAFaod6CJFpX219thsNh5a+RBzdszB4/PwTNNnCLEV62M/RERKDTMvj4xVq0n7dDbpK76C4ytaDIeD6FbXEtutG1GNG2unuYiIiIgUCwG3CbVq1eLIkSNFkUUkeJ3CBHpBeQ46RFSkqLWt0ha7YeeBrx5g/q75+EwfzzV7TiW6iIiFcrZvJ3X2p6TNnYv3hJ8nwuvUwdWtK6727bHHas2diIiIiBQvATcJo0eP5oEHHuDZZ5/lkksuweFwnHRfB2hKqXQKE+gF+8+jHdEq8UTOgtbnt2Zsi7Hc+9W9LNy9EK/pZXTz0Thsjv9+soiIFApvWhru+fNJnf0p2T/95L9uL1MGV6dOuLp1JfyCCyxMKCIiIiLy7wJu8Vq1agXAtddee9J1HSIqpVpEXP5/PdmQlw2O8L88JDUnv1zX9LnI2dPyvJaMbzGee1bcw5I9S/B95WNM8zE47CrRRUSKiun1krn26/wVLUuXYebm5t8ICSG6xdXEdutGdLNmGA79XSwiIiIixV/ABfry5cuLIodIcAuNAcMGpi9/Ct1R4S8Pcee6ARXoImdbi3NbMOGaCQxfPpxle5dxz1f3MPbqsYTaQ62OJiJSouTs2kXap5+R9vnneA4e9F8Pu/BCYrt1xdmpEyHx8RYmFBEREREJXMAF+tVXX10UOUSCm80G4S7ISsnfgx7z1wK9YIWLDhAVOfuan9OcSS0ncfeXd7Ni3wqGrxjOuBbjCLOHWR1NRCSoeTMycC9YQNqnn5H1/ff+63aXC2enTri6diG8Vi0Mw7AwpYiIiIjI6TutRcypqalMnz6dbdu2AVC7dm369++Py6ViUEqx8Nj8Av0f9qBrhYuItZpUbsKUa6dw15d3sXL/SoYuH8rEayaqRBcRCZDp83Fs3XekfTob9+IlmFlZ+TdsNqKaNSW2azeiW16DLVTv9BERERGR4GcL9Anr16+nevXqjB8/nuTkZJKTkxk3bhzVq1fn+xOmTkRKnYKDRLP+vkD3T6CrQBexzFWVruKla18iIiSCNQfWcNeyu8jyZFkdS0QkKOTu38/hyVPY0TqRvf36kfb5HMysLEKrVSPhvnupsWI55736Ks62bVSei4iIiEiJEfAE+vDhw+ncuTPTpk0jJCT/6R6Ph4EDBzJs2DBWrlxZ6CFFgkJ4QYGe8re3VaCLFA+NKjbipWtfYsiyIXz9x9fcuexOJrecTKQj0upoIiLFjjcjk/SlS0j79DOOffut/7otOhpnhw7Edu1C+GWXaUWLiIiIiJRYARfo69evP6k8BwgJCeGBBx6gQYMGhRpOJKgUTKD/wwoX7UAXKT4aVmjI1FZTGbx0MOuS1nHHsjt46dqXiHJEWR1NRMRyvpwcMlauxD1vPhkrVmBmZ+ffMAyirroSV9duxLRuhS083NqgIiIiIiJnQcAFutPpZO/evVx00UUnXd+3bx8xMTGFFkwk6IT/xwqXXE2gixQn9crX47XE17h9ye1sOLiB25fcziutXiE6NNrqaCIiZ53p8ZD5zbe4580jfckSfBkZ/nuhVarguq4zruuuw1GpkoUpRURERETOvoAL9BtvvJEBAwbw4osv0rhxYwDWrFnD/fffT48ePQo9oEjQOMUJ9Niw2LOVSET+w2XlLmNa4jQGLRnExsMbuW3JbbzS+hWcoU6ro4mIFDnT5yNr40bcX8zDvWgR3qNH/fdCKlTA2b49zg7tCa9VSytaRERERKTUCrhAf/HFFzEMg759++LxeABwOBwMHjyY559/vtADigSN/5hAT83Jv64JdJHipU7ZOrye+DqDlgxi05FNDFo8iFdbv6rvVREpkUzTJOfnn3HPm0fa/Pl4fv/Df88eF0dM2za4OnQgol49DJvNwqQiIiIiIsVDwAV6aGgoEydO5LnnnmPHjh0AVK9enchIHb4mpdx/TKC7c9wAOMM02SpS3NQqU4vpidO5dfGtbDm6hYGLBzKt9TRiw/WOEREpGXJ37yZt3jzc8+aTu3On/7otKoqYVq1wduxA1JVXYjgcFqYUERERESl+Ai7QC0RGRnLJJZcUZhaR4PYvE+gen4f0vHRAK1xEiqsL4y9kepvpDFw8kJ+Tf6b/4v68nvg68eHxVkcTETkteUlJuOcvwD1vHtlbtvivG6GhRF99Nc6OHYm+urkOAxURERER+RenVKB369aNN998E6fTSbdu3f71sbNnzy6UYCJB518m0N25bv/H2q0sUnzVjKvJjDYzGLB4ANtTtjNg0QCmJU6jbERZq6OJiJwST0oK6YsW4f5iHsc2bADTzL9htxN11VU4O3QgptW12GNirA0qIiIiIhIkTqlAd7lc/oODnE6nDhES+Tv/MoFecIBotCOaENtpv/FDRM6CarHV/CX6b6m/0X9Rf6YnTqdcZDmro4mI/C1vRiYZy5aSNm8emWu/huPnFAFE1K+Ps0N7nG3bEhKvd9SIiIiIiATqlJq8GTNm+D9+8803iyqLSHD7lwn0ggJdhxKKBIcqriq82eZN+i/uz660Xdyy6BZeT3ydClEVrI4mIgKALyeHjK++wj1vPhkrVmDm5PjvhdW6GFeHDjjbtcNRqZKFKUVEREREgl/Ao7AtW7Zk9uzZxMaevMfZ7XbTpUsXvvzyy0ILJxJUCibQPdmQlw2OP/eJFqxwUYEuEjzOdZ7LjDYzGLh4IHvce7hl4S280eYNKkZXtDqaiJRSpsdD5tff4J43j/SlS/FlZPjvhVapgrNDB5wdOhBWraqFKUVERERESpaAC/QVK1aQm5v7l+vZ2dmsWrWqUEKJBKUwJxg2MH35U+iOPydVU3Pyp9JdoSrQRYLJOTHnMKPNDPov6s/+jP3csugWpreZTuXoylZHE5FSJC8piZSZ75E6axbe5GT/9ZAKFXC2b4+zQ3vCa9XSmkURERERkSJwygX6pk2b/B9v3bqVpKQk/+der5eFCxdSubIKBSnFbDYId0FWSv4e9Jg/C/SCFS6xYbH/9GwRKaYqRldkRts/J9H7LezHG4lvcK7zXKujiUgJl/XjjyS/9TbuRYvA6wXAHhdHTNs2uDp0IKJePQybzeKUIiIiIiIl2ykX6JdffjmGYWAYBi1btvzL/YiICCZPnlyo4USCTnhsfoH+//agFxTozjCnFalE5AxViKrAG23eYODigexK20W/hf2Y3mY6VVxVrI4mIiWM6fGQvmQJyW+9TdbGjf7rkQ0bEte3DzEtWmA4HBYmFBEREREpXU65QN+1axemaVKtWjXWrVtHuXLl/PdCQ0NJSEjAbrcXSUiRoBERCynkT6CfwL/CRTvQRYJWQmRCfom+aCA70nbkr3NJnE612GpWRxOREsCblkbqxx+TPPM9PH/8AYDhcODs0IH4vn0Ir1XL4oQiIiIiIqXTKRfo559/PgA+n6/IwogEvYKDRP/fBLo7J/8QUa1wEQluZSPK8kbb/En07SnbuWXRLbye+Do142paHU1EglTOzl0kv/M2aZ99jpmVBYA9Pp64Hj2Iu+lGQk4YWhERERERkbMv4ENEC2zdupW9e/f+5UDRzp07n3EokaAVcbwgz0o56XJabv4KF02giwS/+PB4pidOZ9CSQfyc/DMDFg1gWuI0Loy/0OpoIhIkTNMkc+1akt9+m8yvVvqvh114IfE334yzQ3tsYWEWJhQRERERkQIBF+g7d+6ka9eu/PTTTxiGgWmaABiGAeQfKCpSahVMoP/TCpdQFegiJUFceByvJ77OoCWD2Hp0KwMWD+C11q9Rq4xWLIjIP/NlZ5M2Zw7Jb79N7m878i8aBtHXXEN8375ENrrC/5paRERERESKB1ugTxg6dChVq1bl0KFDREZGsmXLFlauXEmDBg1YsWJFEUQUCSIRf7/CpeAQUU2gi5QcrjAX0xKncWnZS0nLSWPg4oFsPrLZ6lgiUgzlHTzEofET+K3FNSQ9PpLc33Zgi4wkrk8fqi9cwLkvv0TUlY1UnouIiIiIFEMBT6B//fXXfPnll5QtWxabzYbNZqNp06Y899xz3H333fzwww9FkVMkOPzDBHrBDnQV6CIlizPUyautX2Xw0sFsPLyRWxffytTWU7ms3GVWRxORYiDrp80kv/027gULwOMBwFGpEnF9+hD7v+uxx8RYnFBERERERP5LwBPoXq+XmOMv9suWLcvvv/8O5B8y+ssvvxRuOpFg8zcT6B6fh/S8dEAFukhJFB0azdTWU6mXUI+MvAxuW3IbPxzSPyaLlFamx4N74SJ29+zF7htuwD13Lng8RDSoT+VJE6m+eBFlbumn8lxEREREJEgEPIFep04dfvzxR6pWrUqjRo144YUXCA0N5bXXXqNatWpFkVEkePzNBLo71+3/2BnqPNuJROQsiHJE8UqrV7jry7tYl7SO25bcxkvXvkTDCg2tjiYiZ4nX7Sb1k1mkvPsueccHTHA4cLVvR1yfvkTUqW1tQBEREREROS0BF+iPPfYYmZmZAIwaNYqOHTvSrFkzypQpw4cffljoAUWCyt9MoBfsP49xxBBiC/hbTkSCRKQjkinXTmHol0P5+o+vuWPpHUy5dgqNKjayOpqIFKHc3btJfuddUj/9FPPYMQDscXHE9biJ2JtuwpGQYHFCERERERE5EwG3eW3atPF/XKNGDX7++WeSk5OJi4vTwUcifzOBXlCgO8M0fS5S0kWERDD52skMWz6M1QdWM2TZECZdM4nGlRtbHU1ECpFpmhz75huS33qbjK++AtMEIKxmTeJv7ouzY0ds4eEWpxQRERERkcJQKOOw8fHxhfFlRILfv0yga/+5SOkQZg9j4jUTuXfFvazYv4K7vryL8deMp/k5za2OJiJnyJuRiXvePFJmziTn11/916NbtCD+5r5EXnmlBkpEREREREqYUyrQu3XrdspfcPbs2acdRiToFUyge7IhLxsc4aTl5hfosWGxFgYTkbMp1B7KuBbjuH/l/Szbu4xhy4cxrsU4WpzbwupoIhIg0zTJ3ryF1I8+Im3ePP+aFiMyktiuXYnr3YuwqlUtTikiIiIiIkXllAp0l0uTsyKnJMwJGICZP4XuqEDq8Wl0V6i+j0RKE4fdwZirx/DQyodYvGcxw5cPZ8zVY2h1fiuro4nIKfBmZOD+4gtSPvqInK3b/NdDq1Yltnt3Yrt1xa7XyCIiIiIiJd4pFegzZswo6hwiJYPNBuGu/PI8KxViKvgn0LUDXaT0cdgcjG4+GvtqOwt2LeC+r+7j+ebP07ZKW6ujicjfME2T7J9+IuWjj3DPm4+ZlQWAERpKTJs2xHW/gYgGDbSmRURERESkFCmUHegicoKIuPwC/fjkecEOdK1wESmdQmwhPNf0OUKMEObunMuDKx8kz5tHp+qdrI4mIsd509OPT5t/TM62E6bNq1Uj7sbuODt3JiQuzsKEIiIiIiJilYAL9KpVq/7r1M3OnTvPKJBI0IuIhRTyJ9ABd44b0CGiIqWZ3WbnqSZPYbfZ+ey3z3hk9SMcPHaQAXUGaJJVxCKmaZK9aVP+tPn8BSdPm7dtQ1z37kTUr6/vURERERGRUi7gAn3YsGEnfZ6Xl8cPP/zAwoULuf/++wstmEjQKjhI9PgEemrO8R3oKtBFSjW7zc6TjZ/EGerk7a1vM/H7iSRlJvHwFQ9jt9mtjidSanjdbtLmziX1o4/J+eUX//XQGtWJ694dV+fO2GP1rjEREREREckXcIE+dOjQv73+0ksvsX79+jMOJBL0Io7/0H18Ar1gB7pWuIiIzbBxf8P7qRhVkRe+e4EPf/mQg8cO8kLzF4gIibA6nkiJZZomWRs3kvrRx7gXLMDMzgbACAvD2bYtsTd2J6JuXU2bi4iIiIjIXxTaDvR27drx8MMP68BRkYIJ9KwU4M8d6M5QHSIqIvl61+pN+ajyPLzqYVbsW8GARQOY3HIyZSLKWB1NpETxpqWRNmcuqR99RM727f7rYTVrENv9RlydO2F36R1iIiIiIiLyzwqtQP/kk0+Ij48vrC8nErwiTl7hUlCga4WLiJyo9fmtKRtRlru+vIufjvxEnwV9eKXVK5zvPN/qaCJBzTRNsn7YSOpHH+VPm+fkAGCEh+Ns147Y7jcQcfnlmjYXEREREZFTEnCBXvf/vb3VNE2SkpI4fPgwL7/8cqGGsOuHAQAAIABJREFUEwlK4X+ucMnz5ZGRlwFohYuI/FXdhLq80+4dBi8dzL70ffSZ34fJ107msnKXWR1NJOh409JI+3wOqR9/RM723/zXwy64gNju3fOnzZ16N5iIiIiIiAQm4AK9S5cuJ31us9koV64cLVq04KKLLiq0YCJB64QJ9PTcdP/lmNAYiwKJSHFW1VWVd9u/y5BlQ9h6dCsDFg3gheYv0PK8llZHEyn2TNMk6/vv86fNFy46edq8fXviut9A+GWXadpcREREREROW8AF+siRI4sih0jJccIEempO/hqXGEcMIbZC25gkIiVM2YiyzGgzg/u+uo9VB1YxbPkwHm70MD0u6mF1NJFiyZedTeqsWaS8/z65v+3wXw+78EJib+yOq1Mn7DH6h2sRERERETlzp9Xoeb1ePv30U7Zt2wZArVq1uO666wgJUUEocuIEujvHDYAzTG8ZF5F/F+mIZFLLSTzz7TN88usnPPvts/yR+QfD6g3DZtisjidSLPgyM0n54EOOzpiB98gRAIyICJwd2hPXvTvhl1yiaXMRERERESlUATfeW7ZsoVOnThw8eJALL7wQgNGjR1OuXDnmzp1LnTp1Cj2kSFA5YQK94ABR7T8XkVMRYgvh8Ssfp1JUJSb9MIkZm2eQlJHE002fJtQeanU8Ect43W5SZs4k+c238Kbl/3+ro1Il4vv3x9XlOuzR0RYnFBERERGRkirgAn3gwIHUqVOHDRs2EBcXB0BKSgr9+vVj0KBBrF27ttBDigSVEybQC1a4uMJcFgYSkWBiGAa3XnorFaIq8Piax1mwewGHsw4zseVEnKF6N4uULp6UFJLfeouUd2fiy8g/lDv0/PMpc9ttuDp1xHA4LE4oIiIiIiIlXcAF+saNG1m/fr2/PAeIi4vjmWeeoWHDhoUaTiQoFUyge7JJyzoKgCtUBbqIBKZT9U6UjSjL8BXDWX9wPX3n9+WVVq9QMbqi1dFEilzeoUMkz3iTlA8+wMzKAiCsZg3K3H47zrZtMex2ixOKiIiIiEhpEfBS1QsuuICDBw/+5fqhQ4eoUaNGoYQSCWphTiB//2pa5iFAE+gicnquqnQVb7V9i4SIBHak7aDX/F78nPyz1bFEikze77+TNOopdrRqTfKMGZhZWYTXrs05UyZT9fPPcXXooPJcRERERETOqoAL9Oeee467776bTz75hP3797N//34++eQThg0bxujRo3G73f5fIqWSzQbh+YV5WtZhQAW6iJy+C+MvZGaHmdSIrcHhrMPcvOBm1h7QujQpWXL37OH3xx7jt8Q2pLz3HmZuLhF163LutNeo8snHxLRqhWHTYboiIiIiInL2BbzCpWPHjgB0794dw8ifsjVNE4BOnTr5PzcMA6/XW1g5RYJLRCxkp5KWnQKoQBeRM1MhqgJvtXuL4cuHsy5pHUOWDWFk45F0qdHF6mgiZyTnt9848upruOfNA58PgMgrr6Ts7bcT2egK/2tNERERERERqwRcoC9fvrwocoiULBFxkLKbtOOHiMaGxVocSESCnTPUySutXuHxtY8zb+c8RqwZQVJmErddeptKRgk62Vu3cmTqq6QvWQLHBzGirm5O2dtuJ7JeXYvTiYiIiIiI/CngAv3qq68uihwiJcvxg0RTc9MBTaCLSOEItYfybNNnqRBZgembp/PSxpdIykzi0SsfxWFzWB1P5D9lbdzIkamvkrFihf9aTOvWlLn9NiJq17YumIiIiIiIyD8IuEAHSE1NZfr06Wzbtg2A2rVr079/f1wulYQiQP4KF8DtyQTyJ0dFRAqDzbAxrP4wKkZV5Nl1zzJr+yySjiUx7upxRDoirY4n8hemaXLsu+84OnUqmWu/zr9os+Fs356ytw0irGZNawOKiIiIiIj8i4BPY1q/fj3Vq1dn/PjxJCcnk5yczLhx46hevTrff/99UWQUCT7HJ9DTPNmAVriISOG78aIbmdBiAuH2cNYcWEO/hf04knXE6lgifqZpkrFqNXt692Fv35vzy/OQEFzXd6P6/HlUfnGMynMRERERESn2DLPgBNBT1KxZM2rUqMG0adMICckfYPd4PAwcOJCdO3eycuXKIgla3LndblwuF2lpaTidmjYu9ZY+Qd7q8dSreh4AK29cSVx4nMWhRKQk2nR4E3d9eRfJ2clUjq7My61eppqrmtWxpBQzfT4yli/nyCtTyd68GQDD4SD2hv9RZsAAHJUrW5xQRERERERKu0C63IBXuKxfv/6k8hwgJCSEBx54gAYNGgSeVqQkCo/FbfvzDR4xoTEWhhGRkuzScpfybrt3uX3p7exN30uf+X2Y3HIy9crXszqalDKm10v6okUcmfoqOb/+CoAREUHcjTcSf8stOMonWJxQREREREQkcAGvcHE6nezdu/cv1/ft20dMjEpCEQAiYkmz5397xYTGEGI7reMGREROybnOc3mn/TtcWu5S3Llubl18K4t2L7I6lpQSZl4eqZ9+xs4OHTlwz73k/Portqgoytx2GzWWLaX8Qw+qPBcRERERkaAVcKt34403MmDAAF588UUaN24MwJo1a7j//vvp0aNHoQcUCUonTKC7QnW4rogUvfjweF5PfJ0HVz7I8n3Luf+r+zmYeZC+tftaHU1KKNPnwz1/AYcnTiRv3z4AbC4X8X37EN+7N3YdLi8iIiIiIiVAwAX6iy++iGEY9O3bF4/HA4DD4WDw4ME8//zzhR5QJChFxJJqswPgClOBICJnR0RIBONbjOf5dc/zwS8fMGb9GP7I/IP7G96PzQj4TWci/yjzm285NGYM2Vu2AGAvU4Yyt/Qj9qYe2KOjLE4nIiIiIiJSeAIu0ENDQ5k4cSLPPfccO3bsAKB69epERkYWejiRoBX+5wqX2LBYi8OISGlit9l5pNEjVIquxLgN43h327scPHaQZ5s+S3hIuNXxJMhl//orh8eOI+OrrwCwRUZS5taBxN98Mza9FhQRERERkRIooAJ99+7dLFmyhNzcXFq0aMEll1xSVLlEgltELGnHV7g4w/79JF8RkcJmGAa31LmFClEVeHT1oyzZs4QjWUeYdM0kYsP1j3oSuLyDBzk8eTJpsz8Fnw9CQojr3p2yQ+4gpEwZq+OJiIiIiIgUmVMu0JcvX07Hjh3JysrKf2JICG+88Qa9e/cusnAiQSs8ltTjE+iukGiLw4hIadWuajvKRpRl6PKh/HDoB3ov6M2UllOo4qpidTQJEt6MDI6+/jrJb76FmZ0NQExiIuWGDyOsalWL04mIiIiIiBS9U16IOmLECFq3bs2BAwc4evQot956Kw888EBRZhMJXmFO3AU70O2hFocRkdKsYYWGvN32bSpGVWSPew895/fk69+/tjqWFHNmbi7J785kR+tEjk59FTM7m4h69Tj//fc4Z9JEleciIiIiIlJqnHKBvnnzZp599lkqVqxIXFwcY8aM4dChQxw9erQo84kEJ5uNNEcYALGGw+IwIlLa1YirwXsd3uOycpeRnpvO4KWDef/n962OJcWQaZq4Fy5iR6dOHHz6abwpKYRWqcI5UyZz/sx3iaxb1+qIIiIiIiIiZ9UpF+hut5uyZcv6P4+MjCQiIoK0tLQiCSYS7FJD8otz16l/m4mIFJmyEWWZ3mY6nap1wmt6efbbZ3n6m6fJ8+VZHU2KiWMbNrDnph4cGDaMvD17sZcpQ4UnRlJt7hxiWrXCMAyrI4qIiIiIiJx1AR0iumjRIlwul/9zn8/HsmXL2Lx5s/9a586dCy+dSBBLs9sBLy6f1UlERPKF2cN4pukzVI+tzsTvJ/LhLx+y272bsVePxRXm+u8vICVSzs6dHBo7joxlywAwIiIo078/8bfcgj06yuJ0IiIiIiIi1jJM0zRP5YE2239P0RqGgdfrPeNQwcjtduNyuUhLS8PpdFodR4qBtm/V5QAe3q3Zj8sa32t1HBGRkyzfu5wHVz1IlieL82LOY8q1U6jq0l7r0sRz+DCHX3qJ1I8/Aa8X7HZi//c/yg65A0dCgtXxREREREREikwgXe4p75bw+Xz/+au0lucifyeV/NFzl0frEUSk+LnmvGt4p907VIyqyN70vfSa14u1B9ZaHUvOAl9mJoenvMRvbdqS+sGH4PUS3bIl1eZ8TsUnn1B5LiIiIiIicgItZxYpAnm+PDILCvS8bIvTiIj8vQvjL+T9Du9TN6Eu6Xnp3LHsDt7b9h6n+OY0CTKmx0PKBx/yW5u2HJkyBfPYMcIvvZTz33mbc19+ibDq1a2OKCIiIiIiUuyoQBcpAu4ct/9jZ06WhUlERP5dmYgyvJ74Op2rd8Zrenlu3XM6XLSEMU2T9GXL2NmpM0lPPIH3yBEc551H5QnjqfLhB0Q2bGh1RBERERERkWIroENEReTUpOWkARDj9WHPTrU4jYjIvwu1h/J0k6epEVuD8RvG89GvH7HHvYexLXS4aLDL2riRg2NeJGvDBgDscXGUveMO4m7sjhEaanE6ERERERGR4k8T6CJFIC03v0B3+bygAl1EgoBhGNxS5xYmtZxEZEgk3yZ9S895PdmZttPqaHIacnfvZv/QYey+qQdZGzZghIVR5rbbqL54EfF9eqs8FxEREREROUUq0EWKQMEEeqzPB1kq0EUkeLQ4twXvtH+HytGV2Zu+l97zerPmwBqrY8kp8iQnk/TU0+zo2In0RYvAMHBd343qixaSMHwY9pgYqyOKiIiIiIgElYAL9H379rF//37/5+vWrWPYsGG89tprhRpMJJgVFOgur08T6CISdC6Iu4D3OrxHvYR6/sNFZ26bqcNFizFfVhZHpk5lR+tEUmbOBI+HqKubU/Wzz6j0zDM4KlSwOqKIiIiIiEhQCrhA79mzJ8uXLwcgKSmJ1q1bs27dOh599FFGjRpV6AFFglFqTn5p7tQEuogEqfjweKYlTqNLjS74TB/Pr3ueUd+M0uGixYzp8ZDy8cfsaNOWwxMm4svMJLxWLc57cwbnvfoq4RdeYHVEERERERGRoBZwgb5582auuOIKAD766CPq1KnD2rVrmTlzJm+++WZh5xMJSv4VLppAF5EgFmoPZVTjUdzX4D4MDD759RNuW3Ibqfp7zXKmaZL+5XJ2dulC0ojH8Rw6hKNyZSqNGUOVTz4m6sorrY4oIiIiIiJSIgRcoOfl5REWFgbA0qVL6dy5MwAXXXQRf/zxR+GmEwlS7lw3AC6fDzzZkJdtcSIRkdNjGAY3176ZKddOIcoRxXdJ39Fzfk92pupwUatk/fgje/r0Yf8dd5D72w7sLhcJDz1ItQXzcXXqiGHTETciIiIiIiKFJeCfsGrXrs3UqVNZtWoVS5YsoW3btgD8/vvvlClTptADigSjghUuLp8v/4KmNUUkyDU/pznvtnuXytGV2Ze+j17ze7H6wGqrY5Uqubt3s3/oMHbfeBNZ6zdghIVR5tZbqb5kMWX69cMWGmp1RBERERERkRIn4AJ99OjRvPrqq7Ro0YIePXpw2WWXATBnzhz/aheR0s5/iKg9PP+C9qCLSAlQI66G/3DRjLwMhiwbwjtb39HhokXMc/QoSaOeYkfHTqQvWgSGgatbN6ovXEDCvfdgdzqtjigiIiIiIlJihQT6hBYtWnDkyBHcbjdxcXH+64MGDSIyMrJQw4kEK3+BHnL8e0IT6CJSQsSHx/N64us8/e3TzN4+mxe+e4EdqTt4tNGjOOwOq+OVKL5jxzj65pskvz4d37FjAERd3ZyEe+7V4aAiIiIiIiJnScAFOuQfXLVhwwZ27NhBz549iYmJITQ0VAW6yHH+At0Rk39BE+giUoI47A6euOoJqruqM3bDWGZtn8Ue9x7GtRhHXHjcf38B+Vemx0PqrNkcmTIFz+HDAITXqUPCffcRdWUji9OJiIiIiIiULgEX6Hv27KFt27bs3buXnJwcWrduTUxMDKNHjyYnJ4epU6cWRU6RoJKWe7xADzv+tnpNoItICWMYBn1r96WKqwoPrHyA9QfX03NeT6ZcO4XqsdWtjheUTNMk48svOTR2HLk78w9pdZxzDgn3DCembVsdDioiIiIiImKBgH8SGzp0KA0aNCAlJYWIiAj/9a5du7Js2bJCDScSjPJ8eWTmZQIQG3H8YF1NoItICXXi4aL7M/bTe35vVu1fZXWsoJO1cSN7evdh/5A7yd25E3tsLOUfeYTq8+fhbN9e5bmIiIiIiIhFAv5pbNWqVTz22GOEhoaedL1KlSocOHCg0IKJBKuC9S0AMeHHC3RNoItICVYjrgbvd3if+uXrk5GXwZ1f3snbW97W4aKnIGfXLvbfPZTdN/Uga8MGjPBwytx2G9WXLCa+bx+M//d6S0RERERERM6ugAt0n8+H1+v9y/X9+/cTExNTKKFEgpk7xw1ATGgM9sjju4A1gS4iJVxceBzTWk/j+prX4zN9jFk/hie+foI8b57V0Yolz5EjJI0axc6OnUhfvBhsNlz/u57qixaSMHwYdr2mEhERERERKRYCLtATExOZMGGC/3PDMMjIyGDkyJG0b9++UMOJBKOC/eexYbEQHpt/URPoIlIKOOwORl41kgcaPoDNsDF7+2xuXXIrKdkpVkcrNnyZmRye8hI7EtuQ8t774PUS3aIF1T7/jEpPP42jfHmrI4qIiIiIiMgJAj5EdOzYsbRp04ZatWqRnZ1Nz5492b59O2XLluX9998viowiQSX1eFnuCnVBxPECPUvlkYiUDoZh0KdWH6o48w8X3XBwAz3m9WBsi7HULlPb6niWMfPySJ01i8NTXsJ75AgA4ZdcQsL99xF1xRUWpxMREREREZF/EnCBfs455/Djjz/ywQcfsGnTJjIyMhgwYAC9evU66VBRkdKqYALdFeb6cwJdK1xEpJRpdk4zZrafyZ1f3sm+9H30md+Hh654iBsuuAHDMKyOd9aYpkn60qUcHjee3F27AHCcdx4J9wwnpk2bUvW/hYiIiIiISDAKuEAHCAkJoXfv3oWdRaREKDhE1BV2wgS6VriISClULbYa73d4nxFrRrB833Ke+uYpNhzcwMirRhLpiLQ6XpE79v0PHBozhqwffgDAHhdH2SFDiOt+gw4HFRERERERCRKnVKDPmTOHdu3a4XA4mDNnzr8+tnPnzoUSTCRYnVSgawJdREo5V5iLiddM5O2tbzN+w3jm75rPtuRtjLt6HDXialgdr0jk7NzJoXHjyFi6DAAjIoL4fjdTZsAA7NHRFqcTERERERGRQJxSgd6lSxeSkpJISEigS5cu//g4wzDwer2FFk4kGGkCXUTkZIZhcHPtm7m03KXc99V97ErbRc/5PRlx5Qg6Ve9kdbxC48vJ4fCkSSS/+RZ4vWCzEXv99ZS9804c5ROsjiciIiIiIiKnwXYqD/L5fCQkJPg//qdfKs9F/tyBHhsW++cEuicb8rItTCUiYr26CXX5uNPHNK7UmCxPFo+sfoQn1j5Btif4/37M+vFHdnXtRvL0N8DrJfqaa6g253MqPjVK5bmIiIiIiEgQO6UCXUROXcEEujPUCWFO4PgBcZpCFxEhPjyel699mTsuvwMDg1nbZ9F7fm/2uPdYHe20+HJzOTR2HLt79CR3507s5cpyzssvce4rLxNWo2SuqBERERERESlNAi7Q7777biZNmvSX61OmTGHYsGGFEkokmJ20wsVmg3BX/g3tQRcRAcBuszP4ssG8lvga8eHx/JLyCzd+cSNL9iyxOlpAsn76iV3dunF02jTw+XB26kT1uXOJadnS6mgiIiIiIiJSSAIu0GfNmkWTJk3+cr1x48Z88sknhRJKJJgVFOixYcfXt2gPuojI37qy4pV83Olj6iXUIzMvk3tW3MPodaPJ8+ZZHe1f+XJzOTR+Artv6kHubzuwlynDOVMmU3nMC9hjY62OJyIiIiIiIoUo4AL96NGjuFyuv1x3Op0cOXKkUEKJBLOCHeiusOPfJwV70DWBLiLyFwmRCUxvM53+dfoD8O62d+m3sB9/ZPxhcbK/l7VlC7uv/x9HX30VvF6c7dtT7Yu5xLRqZXU0ERERERERKQIBF+g1atRg4cKFf7m+YMECqlWrViihRIJVnjePzLxMAFyhxwt0TaCLiPyrEFsIw+sPZ3LLyThDnWw6sokbvriBlftXWh3Nz8zN5fCkSezufiM527djj4+n8sSJVB43lpC4OKvjiYiIiIiISBEJCfQJ99xzD3feeSeHDx+m5fEdn8uWLWPs2LFMmDCh0AOKBJOC6XMDg5jQmPyLmkAXETklLc5twUedPuLeFfey5egWhiwbwsBLBjLk8iGE2AJ+yVJosrdt4/eHHibnl18AiGnXlgojRhASH29ZJhERERERETk7Av5ptH///uTk5PDMM8/w1FNPAVClShVeeeUV+vbtW+gBRYKJO8cNQExoDHabPf9ixPHJRE2gi4j8p8rRlXm73du8uP5F3v/5fV7/6XU2HtrIC81foFxkubOaxczL48irr3Fk6lTweLDHxVFh5OM427Y9qzlERERERETEOgGvcAEYPHgw+/fv5+DBg7jdbnbu3KnyXARIzckvyf37z+HPFS6aQBcROSWh9lAeafQIY5qPITIkkvUH13PD3BtY98e6s5Yh++ef2dX9Ro5MmQIeDzGJiVT7Yq7KcxERERERkVLmtAp0j8fD0qVLmT17NqZpAvD777+TkZFRqOFEgk1aTv4Kl9iw2D8vhmsHuojI6WhbtS0fdvyQmnE1OZp9lFuX3Mprm17DZ/qK7Pc08/I4/PLL7LqhOznbtmF3uag09kUqT5xASJkyRfb7ioiIiIiISPEUcIG+Z88eLrnkEq677jqGDBnC4cOHARg9ejT33XdfoQcUCSYFO9CdYc4/L2oCXUTktFVxVWFm+5l0qdEFn+lj8g+TuWPZHaRkpxT675X966/svvEmjkyaDHl5RLe6lmpfzMXVoQOGYRT67yciIiIiIiLFX8AF+tChQ2nQoAEpKSlERET4r3ft2pVly5YVajiRYFMwge4KPWGFi/8Q0cIve0RESoOIkAieavIUoxqPItwezpoDa7hh7g1sPLSxUL6+6fFwZOqr7Lr+f2Rv3YrN5aLSmDGcM3kyIeXO7t51ERERERERKV4CLtBXrVrFY489Rmho6EnXq1SpwoEDBwotmEgw8hfof7cDXStcRETOSNeaXZnZYSZVnFU4eOwgtyy8hXe2vuNfJ3c6cn77jd039eDwhAn5U+fXXEO1uXNwdeqoqXMREREREREJvED3+Xx4vd6/XN+/fz8xMTGFEkokWP3rDnStcBEROWMXxF3A+x3ep02VNnhMDy989wL3rLiH9Nz0gL6O6fFwZNo0dnXtRvbmzdicTiqNfp5zXn4JR0JCEaUXERERERGRYBNwgZ6YmMiECRP8nxuGQUZGBiNHjqR9+/aFGk4k2KTm5JfkmkAXESk60aHRjGk+hkcaPUKILYSle5fSfW53th3ddkrPz9mxg909e3F47DjMvDyir76aanPn4rruOk2di4iIiIiIyEkCLtDHjh3LmjVrqFWrFtnZ2fTs2dO/vmX06NFFkVEkaPgPEQ094RDRggl0TzbkZVuQSkSk5DEMgx4X9eCddu9QOboy+zP203t+bz7+9eN/XOlier0cnT49f+p80yZsMTFUfPZZzpn6Co7ymjoXERERERGRvwoJ9AnnnHMOP/74Ix988AGbNm0iIyODAQMG0KtXr5MOFRUpjdw5buD/rXAJcwIGYOZPoTsqWJJNRKQkqlO2Dh92/JDHVj/Giv0rGPX1KL4/+D0jrhxBpCPS/7icnbv445FHyNqYf/BoVPNmVBw1CkcF/Z0sIiIiIiIi/yzgAh0gJOT/2LvvuKrrvo/j73MOcJgHQRQVBDTNkWY5KvVqOtAciTNzXaVpjoampt2mpl23DbW0NE3LtNxbsVyVWxt6qTmzFMQBLgSUDef+g+DOMmP/GK/n48EDPOfHOW/+QOHt53y+DurZs2d+ZwGKvdseImo2S86eGeV5wnXJg7IGAPKTp9VT056YpvlH52vagWkKPR2qY1ePaepjU1XVI0jXFnyhyx98IHtSkszu7vIdPUqeHTuyrgUAAAAA8I9yVaCfPHlSH374oY4fz9g1WqtWLQ0ZMkQ1a9bM13BAcXPbHehSxh70xOvsQQeAAmI2mfVsnWd1b7l7NXL7SJ2OOa1XFnTTm9t85HIsXJLk1rSpKr41UY4VKxqcFgAAAABQXOR4B/rKlStVp04d7d+/X/Xq1VO9evV04MAB1a1bVytXriyIjECxkJKWovjUeEl/WuEi/f8e9AQKdAAoSA18G2hp60UadLyyJn5yUy7HwpXs7CDv8WNUee4cynMAAAAAQI7keAJ95MiRGj16tCZMmHDL7ePGjdPIkSPVqVOnfAsHFCeZB4iaZJK7o/utd7r8XqAzgQ4ABSrxxAnFjXlDjx05I0n6OcikmU/a5ea0SO9eu0/3lL3H4IQAAAAAgOIkxxPoFy9eVO/evf9ye8+ePXXx4sV8CQUUR5n7zz2cPGQxW269kwl0AChQ6YmJujRlis506qzEI0dk9vBQhQlv6u75C+VUqZLOxp1Vz696av7R+Uq3pxsdFwAAAABQTOS4QH/ssce0c+fOv9y+a9cuPfzww/kSCiiOMgv0v6xvkZhAB4ACdHPfPp1u/5SuzpkrpaXJIzhYVTeEyqtrV93ne7+Wt1uu5gHNlZqeqsk/TdaQb4boWuI1o2MDAAAAAIqBHK9wad++vV577TXt379fDz30kCRp3759Wr58ud58802tW7fulmuB0iKzQP/LAaISE+gAUADSrl9X1LvvKWbVKkmSg6+vKowbK48nnrjlOk+rp6Y+NlXLf1mud354RzvP71TndZ319sNv64GKDxgRHQAAAABQTOS4QB80aJAkaebMmZo5c+Zt75Mkk8mktLS0PMYDio/rSRnluM1q++udLl4Z75lAB4A8s9vtiv1cYGzfAAAgAElEQVTqK0X97ySlXb0qmUzy6t5d5YYNlcXd/bafYzKZ1LVGV91X/j6N2D5Cp2NOq9/mfnr+3uc1sN5AOZhz/CMRAAAAAKAUyPEKl/T09Gy9UZ6jtIlNjpX0DytcmEAHgDxJuXBBES+8oAuvDlfa1atyqnaXAhcuVIWxb/xtef5Hd3vdrcVtFqtT9U6yy65PDn+i5zY9p4s3OMcFAAAAAPBXOS7QAdxe1goXpzutcIkuxEQAUHLY09J0bcEC/da2nW5u3yGTo6N8XhyiKqtWybX+/Tl6LFdHV41vMl7vPfKe3B3d9d9L/1Xn9Z31Tfg3BZQeAAAAAFBcZbtA37t3r0JDQ2+5bcGCBapSpYrKly+v/v37KykpKd8DAsVF5gqX2+5A5xBRAMi1xJO/KKz7M4r630myx8fLpUEDVVmzWuUGD5bZySnXj9uqSista7dMdX3qKjY5Vq9se0Vv7XtLSWn8PAMAAAAAyJDtAn3ChAk6evRo1p9//vln9e3bV82bN9eoUaO0fv16TZo0qUBCAsUBh4gCQP5KT0rSpfc/0JlOnZR4+LDM7u6qMH6cAr9YIOtdd+XLc1T2qKz5refr2TrPSpKWnlyqZzY8o9PXT+fL4wMAAAAAirdsF+gHDx5Us2bNsv68ZMkSPfjgg5ozZ46GDRum6dOna9myZQUSEigOYpLvUKAzgQ4AOXLz+x90pv1Tujp7tpSaKo8WzVV1Q6i8nn5aJnP+bqBzNDtqWINhmtV8lrydvfVL9C96esPTWn1qtex2e74+FwAAAACgeMn2b6DR0dHy9fXN+vP27dvVunXrrD83atRIERER+ZsOKEaytQM9NVFKSSzEVABQvKTFxOjiG2/obJ8+Sg4Pl0O5cvKbPk3+H34oxz/8HFIQmvo11cr2K9W4YmMlpCZo7J6xem3Ha4pLjivQ5wUAAAAAFF3ZLtB9fX115swZSVJycrIOHDighx56KOv+uLg4OTo65n9CoJi44woXq02SKeNjptAB4C/sdrtiN27Ub23a6vryFZKkMt26qeqGUNlatiy0HD4uPprVYpZeqf+KLCaLvg77Wl3Xd9WRK0cKLQMAAAAAoOjIdoH+5JNPatSoUdq5c6dGjx4tV1dXPfzww1n3Hz58WHfl0z5SoDjKLNDLWMv89U6zWXL+vVhnDzoA3CIlMlLnBg3W+VeGKu3KFTlVrarAL79QxTfHy2KzFXoes8msvnX7an7r+fJz99O5G+fU66te+vzI50q3pxd6HgAAAACAcbJdoE+cOFEODg569NFHNWfOHM2ZM0dOTk5Z93/22WdqWYgTYkBRkpKWovjUeEl/M4EusQcdAP7Enp6uawsX6nSbtrrx3XeSo6N8Bg1SlTWr5dqwodHxVK9cPS1rt0wtA1sq1Z6qKfunaNA3g3Q14arR0QAAAAAAhSTbBbqPj4927Nih6OhoRUdHKyQk5Jb7ly9frnHjxuV7wD96++23ZTKZ9Morr2TdlpiYqMGDB6ts2bJyd3dXp06dFBUVdcvnnT17Vm3atJGrq6vKly+vESNGKDU19ZZrtm3bpvr168tqtapatWr6/PPPC/RrQcmSeYCoSSa5O7rf/qLMPehMoAOAkk6dUvgzPRQ18S2l37wpl/vuU9VVK1XupRdl/sN/0BvN5mTT5Ecna2zjsbJarNp9frc6r++svRf2Gh0NAAAAAFAIsl2gZ/L09JTFYvnL7d7e3rdMpOe3H3/8UbNnz9a99957y+1Dhw7V+vXrtXz5cm3fvl0XLlxQx44ds+5PS0tTmzZtlJycrD179mj+/Pn6/PPPNXbs2Kxrzpw5ozZt2ujxxx/XwYMH9corr6hfv37atGlTgX09KFky17fYrDZZzH/9/pDEBDoASEpPTtbl6dN1umMnJRw8KLObm3zfGKPARQtlrV7d6Hi3ZTKZ1OXuLlrSZomqlammKwlXNGDLAE07ME0p6SlGxwMAAAAAFKAcF+hGuHHjhnr06KE5c+bIy8sr6/aYmBh9+umnmjp1qp544gk1aNBA8+bN0549e7Rv3z5J0ubNm3Xs2DF9+eWXuu+++9S6dWtNnDhRM2bMUHJysiRp1qxZqlKliqZMmaJatWppyJAh6ty5s95//31Dvl4UP1kHiDr9zfoWiQl0AKVe/E8/6cxTHXRl5sdSSorcH39cVTeEyrtHD5nMRf9Hkmpe1bSozSJ1ubuL7LJr7s9z9ezGZ3X+xnmjowEAAAAACkjR/21V0uDBg9WmTRs1b978ltv379+vlJSUW26vWbOmAgICtHdvxkur9+7dq7p168rX1zfrmuDgYMXGxuro0aNZ1/z5sYODg7Me43aSkpIUGxt7yxtKr+tJGaX43+4/l5hAB1BqpcXF6eK48Qrv2UvJZ87I4uMjvw/el//MGXKsUMHoeDni4uCisY3HasqjU+Th6KFDlw+py7ou2hy22ehoAAAAAIACUOQL9CVLlujAgQOaNGnSX+6LjIyUk5OTypQpc8vtvr6+ioyMzLrmj+V55v2Z993pmtjYWCUkJNw216RJk+Tp6Zn1Vrly5dx9gSgRsibQ71SgM4EOoBSK3bJFp59so+tLl0qSynTprLs2hMrWqpVMJpPB6XKvZVBLLW+/XPXK1VNcSpxe3f6qJuydoMTURKOjAQAAAADyUZEu0CMiIvTyyy9r4cKFcnZ2NjrOLUaPHq2YmJist4iICKMjwUCxyRmvQGACHQAypF67pnNDh+r8iy8p9fJlOQUGKmD+fFWcOFEWzzv8XVmM+Ln7aV6reepXt59MMmn5L8vVfUN3/Rr9q9HRAAAAAAD5pEgX6Pv379elS5dUv359OTg4yMHBQdu3b9f06dPl4OAgX19fJScn6/r1WwvJqKgoVfj9JeEVKlRQVFTUX+7PvO9O19hsNrm4uNw2m9Vqlc1mu+UNpVfWCpc77UB3+X1/PxPoAEowu92umA0bdLpNW8V9vVGyWFS2f39VWbdWbg8+YHS8fOdodtTL9V/W7Baz5ePio1+v/6ruG7pr0fFFSrenGx0PAAAAAJBHRbpAb9asmX7++WcdPHgw661hw4bq0aNH1seOjo765ptvsj7n5MmTOnv2rBo3bixJaty4sX7++WddunQp65otW7bIZrOpdu3aWdf88TEyr8l8DOCfZK5wKWMt8/cXOTOBDqBkS7l0SedefFEXXh2utOhoWWvUUNDSpSo/bKjMVqvR8QpU40qNtaLdCjWt1FSJaYma9MMk9dvcT+fizhkdDQAAAACQBw5GB7gTDw8P1alT55bb3NzcVLZs2azb+/btq2HDhsnb21s2m00vvviiGjdurIceekiS1LJlS9WuXVu9evXSu+++q8jISI0ZM0aDBw+W9fdf5l944QV99NFHGjlypJ577jl9++23WrZsmTZs2FC4XzCKrcwC3Wa9wysRMle4JEQXQiIAKDx2u10xa9cqatLbSo+JkRwc5PPCC/Lp/7xMTk5Gxys0ZV3KambzmVp2cpmm7p+qHyN/VMd1HfVqg1fVpUYXmU1Fem4BAAAAAHAbxf43uffff19t27ZVp06d9Mgjj6hChQpatWpV1v0Wi0WhoaGyWCxq3Lixevbsqd69e2vChAlZ11SpUkUbNmzQli1bVK9ePU2ZMkVz585VcHCwEV8SiiEOEQVQWqVERirihRd0cdRopcfEyLl2bVVZuULlhgwuVeV5JrPJrKdrPq2V7VeqoW9DJaQm6K3v31L/zf11/sZ5o+MBAAAAAHLIZLfb7UaHKAliY2Pl6empmJgY9qGXQl3Wd9GJayf0cfOP9S+/f93+ougwaVo9ycFZGhN1+2sAoJiw2+26vny5Lr37ntJv3JDJ0VE+Q4aobN/nZHIo0i9wKzTp9nQtPrFYH+z/QIlpiXJ1cNWrDV9Vl7u7yGQyGR0PAAAAAEqtnHS5xX4CHSgKsibQ73SIaOYEemqilJJYCKkAoGAknzuviL59FTl2nNJv3JBLvXqqsma1fAb0pzz/A7PJrB61emhl+5WqX76+4lPjNXHfRA3YMkAXb1w0Oh4AAAAAIBso0IF8cD0pYy3LHVe4WG2Sfp845CBRAMWQPT1d1xYu1On27XVzz16ZrFaVf+01BS5aKOtddxkdr8gKsAVoXqt5GtlopJwtztp7ca9C1oVo5S8rxQsBAQAAAKBoo0AH8ig5LVkJqQmS/qFAN5sl59/vZw86gGImOTxcZ3v3UdTEt2SPj5dLwwaqunaNyj77b5ksFqPjFXlmk1m9avfS8nbLdV+5+3Qz5abG7x2vgVsHKvJmpNHxAAAAAAB/gwIdyKPY5FhJkkkmeTh53Plil9/XuDCBDqCYsKel6ernn+v0Ux0U/9NPMrm6ynfMGAUuWCCnoCCj4xU7QZ5B+rzV5xrecLisFqt2X9itkLUhWn1qNdPoAAAAAFAEUaADeXT99zLcZrXJbPqHb6nMPehMoAMoBpJOn1Z4j5669PY7sicmyvWhh1R13Vp59+whk5kfIXLLYraozz19tLzdct1b7l7dSLmhsXvGatA3gxR1k0OmAQAAAKAo4bdfII9ikrNxgGgmJtABFAP21FRd+WSOznQIUcLBgzK7uanCm28qYN5ncvL3NzpeiVHFs4oWtFqgYQ2GycnspF3ndylkbYjW/rqWaXQAAAAAKCIo0IE8iknKKNDLWMv888VMoAMo4hJP/qKwbk/r8tSpsicny+3hh1U1dL28unWVyWQyOl6JYzFb9GydZ7W83XLV9amruJQ4jdk9RkO+HaJL8ZeMjgcAAAAApR4FOpBHmQW6zWr754uZQAdQRNlTUnR5xgyd6dxZiUePymyzqeKkSar8yWw5VqxodLwSr2qZqlrQeoFerv+yHM2O2nFuhzqs7aD1v61nGh0AAAAADESBDuRRZoHuac3GChcm0AEUQQlHj+pMl6668uFHUkqK3J94QlXXr1eZkA5MnRciB7OD+tXtp2Vtl6l22dqKS47T67te10vfvaQrCVeMjgcAAAAApRIFOpBHmTvQs7XChQl0AEVIenKyLn3wgcK6dlPSiROylCmjSpMny3/GR3L0LW90vFKrmlc1LXxyoV66/yU5mB20LWKbOqztoA2nNzCNDgAAAACFjAIdyKOsCfTsHCLKBDqAIiLh0CGd6dhRV2fNltLS5NGqlapuCJVn2zZMnRcBDmYHPX/v81radqlqeddSTFKMRu0cpaHbhjKNDgAAAACFiAIdyKPrSRllePZ2oHtlvGcCHYBB0hMTFfXuewrr/oySf/1NlrJl5Tdtmvw/eF8OZcsaHQ9/crfX3VrYZqEG3zdYDiYHfXP2G4WsDdHXZ75mGh0AAAAACgEFOpBHsUmxknK4woUJdAAGiN+/X2ee6qBrn30mpafL1q6dqoauly24pdHRcAeOZke9UO8FLWm7RDW9a+p60nWN3DFSr25/VVcTrhodDwAAAABKNAp0II8yd6Dn7BDR6AJMBAC3sicnK2rSJIX37KXk8HA5lC8v/5kz5ffeu3Lw8jI6HrKphncNLXpykQbWGygHk4O2hG9RyNoQbQrbZHQ0AAAAACixKNCBPMpc4ZKtHegcIgqgkKVevarwZ5/TtfkLJLtdnp06qmroenk88bjR0ZALjhZHDbpvkBa1WaTqXtUVnRSt4duH69Vtr+pa4jWj4wEAAABAiUOBDuRR5iGi2VrhkjmBnpoopSQWYCoAkBKPH9eZLl2UsH+/zO7u8p85U5X+8x9ZbNk4swFFWq2ytbS0zVINuHeALCaLNodvVsjaEG04vYHd6AAAAACQjyjQgTxITktWQmqCpGweImq1STJlfMwUOoACFLtps8Ke6aHUCxflFBiooGVLmTovYRwtjhpy/xAtbLNQ1cpU07XEaxq1c5R6ft1Thy8fNjoeAAAAAJQIFOhAHmROn5tNZnk4efzzJ5jNkvPvq144SBRAAbCnp+vyhx/p/Msvy56QILcmTRS0bKmsVasaHQ0F5J6y92hp26V68f4X5eLgosOXD6vHVz00eudoRd6MNDoeAAAAABRrFOhAHmQW6DYnm8ymbH47sQcdQAFJv3lT519+RVdmzJAkeffpo8qfzJbFMxtnNKBYc7I4qf+9/RUaEqqn7npKkhR6OlTtVrfTxwc/znq1FAAAAAAgZyjQgTyISc4o0D2tOSinMvegM4EOIB8lnzuvsGd6KG7LFpkcHVXxP/+R7+hRMjk4GB0Nhai8a3m99a+3tKTNEtUvX1+JaYmaeWim2q1up9DToUq3pxsdEQAAAACKFQp0IA+uJ2WU4J5OOSjQmUAHkM/if/pJYV26KOnkSVl8fBQwf77KdOpodCwY6B6fe/R5q881+dHJquRWSVHxURq9c7R6fdVLhy4fMjoeAAAAABQbFOhAHsQmxUpiAh2AcaKXLVP4s88pLTpazrVrq8ryZXKtf7/RsVAEmEwmBQcFa13IOr1c/2W5Orjq8JXD6vlVT7224zX2owMAAABANlCgA3mQuQM9RwU6E+gA8oE9JUWRE99S5NhxUkqKPFq3UuDCL+VYsaLR0VDEWC1W9avbT6EhoQqpFiKTTPrqzFdqt7qdZhycofiUeKMjAgAAAECRRYEO5EHWChcm0AEUotToaJ19vr+iFy6UJJV75WX5TZ0qs4uLwclQlJVzLacJTSdoSdslauDbQIlpiZp1aJbarW6n9b+tZz86AAAAANwGBTqQB1mHiLIDHUAhSTp1SmHdnlb8vn0yubrK/6MP5fPCCzKZTEZHQzFRu2xtzQuep6mPTZWfu58uJVzS67teV48NPXTw0kGj4wEAAABAkUKBDuRBrla4MIEOIJfivv1OYU93V8rZs3L081PQ4sXyaN7c6Fgohkwmk1oEttDaDmv1Sv1X5ObopiNXj6jX1700cvtIXbhxweiIAAAAAFAkUKADecAOdACFwW6368onc3Ru8GCl37wp10aNFLRiuZxr3G10NBRzVotVfev2VWhIqDpV7ySTTPo67Gu1X9NeH/73Q/ajAwAAACj1KNCBPMhdge6V8Z4JdADZkJ6YqAvDR+jy1KmS3a4y3Z9WwGefysHLy+hoKEF8XHw0vsl4LWu3TI0qNFJSWpI+OfyJ2q5uq7W/rmU/OgAAAIBSiwIdyIPMHehlrGWy/0nOTKADyJ6UyEiF9+ip2A0bJAcHVRg3VhXHjZPJ0dHoaCihanrX1KctP9UHj30gf3d/XU64rDG7x6j7hu46EHXA6HgAAAAAUOgo0IE8yJpAz80hognRBZAIQEmRcPCgznTposSjR2UpU0YBn34qr+7djY6FUsBkMqlZYDOt7bBWwxoMk5ujm45dPaY+G/to+PbhOn/jvNERAQAAAKDQUKADuZSclqyE1ARJks1qy/4nZk6gpyZKKYkFkAxAcXd99RqF9+qttMtXZK1eXUErlsvtwQeMjoVSxsnipGfrPKvQkFB1vruzzCazNoVtUvvV7TX9wHTdTLlpdEQAAAAAKHAU6EAuZU6fm01meTh5ZP8TrTZJpoyPWeMC4A/saWmKeuddXRw9WvaUFLk3b6bAxYvl5O9vdDSUYj4uPhrXeJyWtV2mByo8oOT0ZM35eY7arm6r1adWsx8dAAAAQIlGgQ7kUmaBbnOyyWzKwbeS2Sw5/77yhYNEAfwuLTZWES8M1LV58yRJPoMGyn/6dFnc3QxOBmSo4V1Dc1vO1bTHp6myR2VdSbiisXvG6unQp9mPDgAAAKDEokAHcul6Ukb57WnNwf7zTC4cJArg/yWdPqOwrt10c+dOmZyd5ff+VJV76SWZzPwzjaLFZDLpiYAntOapNRrecLjcHd11/Npx9dnYR/+z6390LfGa0REBAAAAIF/xmzmQSzHJvx8gmpsCPXMPOhPoQKl3Y+cuhXXrpuSwMDlUrKigRQtla93a6FjAHTlZnNTnnj7a0HGDOt/dWSaZtO63dWq3up2W/7KctS4AAAAASgwKdCCXYpNiJUmeTkygA8g5u92uq/M+V8SAAUqPi5PL/feryvJlcq5d2+hoQLZ5O3trXONx+uLJL1TTu6Zik2M1Ye8E9fqql45fPW50PAAAAADIMwp0IJfytMKFCXSgVEtPTtbF1/9Hl955R0pPl2enjgqY/7kcfHyMjgbkSr1y9bS4zWK91ug1uTm66fCVw3p6w9N654d3dCP5htHxAAAAACDXKNCBXMo8RLSMtUzOP5kJdKDUSr18WWd791HM6tWS2Szf119XxbfektnJyehoQJ44mB3Us3ZPreuwTq2CWindnq4vj3+p9mvaa+OZjbLb7UZHBAAAAIAco0AHcilzB7rNasv5JzOBDpRKCT8f0ZkuXZVw8KDMNpsqz/lE3r17yWQyGR0NyDflXcvrvUff0+wWsxVoC9TlhMsasWOEBmwZoPDYcKPjAQAAAECOUKADuZQ5gc4OdADZcX31GoX36KHUyEg5Va2qKsuWyr1pU6NjAQWmSaUmWtl+pQbdN0hOZiftvbhXIWtDNOPgDCWlJRkdDwAAAACyhQIdyKU8rXBhAh0oNewpKYr8z//q4ujRsicny/3xxxW0dImcgoKMjgYUOKvFqoH1Bmr1U6vVtFJTpaSnaNahWQpZG6Jd53cZHQ8AAAAA/hEFOpBLWRPouTlElAl0oFRIvXZNZ5/rq+gvvpAk+QweLP8ZH8ni4WFwMqBwBdgC9HHzjzXl0Skq71peEXERGrh1oIZtG6aom1FGxwMAAACAv0WBDuTS9aSM8jtXBToT6ECJl3D0qM507qz4H3+U2dVV/h99qHIvDpHJzD+9KJ1MJpNaBrXUug7r1Lt2b1lMFm0J36L2a9pr/tH5Sk1PNToiAAAAAPwFv8UDuRSbHCuJHegA/ipm3TqFP9NDqRcuyikwUEHLlsqjeXOjYwFFgpujm0Y0GqGlbZeqXrl6ik+N1+SfJqtbaDcdvHTQ6HgAAAAAcAsKdCAXktKSlJCaIEnydM5Nge6V8Z4JdKBEsaemKmrS27ow8jXZk5Lk/uijClq+TNZq1YyOBhQ5NbxraEHrBXqzyZvytHrql+hf1OvrXhq3Z5yu8x/MAAAAAIoICnQgFzL3n5tNZrk7uuf8ATJXuKQmSCmJ+ZgMgFFSo6N1tt/zujZ/viSp7MAX5P/xTFlsNoOTAUWX2WRWx+odtb7DeoVUC5EkrTq1Su3WtNPqU6uVbk83OCEAAACA0o4CHciFzALd5mST2ZSLbyOrTZIp42Om7IBiL/HYMYV16qz4fftkdnWV3/RpKv/yy+w7B7LJy9lLE5pO0ILWC1Tdq7quJ13X2D1j9e+N/9bJayeNjgcAAACgFOM3eyAXMgv0MtYyuXsAs1nKXP3CGhegWIsJ3aCwZ3oo5cIFOQYGKGjpEtlatjQ6FlAs3V/+fi1tu1TDGw6Xi4OL/nvpv+oW2k3v/fiebqbcNDoeAAAAgFKIAh3IhZjk3yfQrXlYzcBBokCxZk9NVdQ77+rC8OGyJybK7ZGHVWXZMlmrVzc6GlCsOZod1eeePlrXYZ1aBLZQmj1NC44tUPs17bUlfIvsdrvREQEAAACUIhToQC5kTqB7OuXiANFMmXvQmUAHip3U6GhF9O+va/PmSZLK9u+vyh9/LItnHv5OAHCLCm4VNPWxqZrZbKb83f11Kf6Shm0bpkHfDFJEbITR8QAAAACUEhToQC7keYWLxAQ6UEwlnjihsC5ddXPPXplcXeX3wQcqP2yoTBaL0dGAEulh/4e1+qnVGnDvADmaHbXr/C6FrAvRrEOzlJyWbHQ8AAAAACUcBTqQC1kT6FYm0IHSJParrxTW/RmlnDsnx8qVFbRksWytgo2OBZR4zg7OGnL/EK1qv0oPVnxQSWlJmnFwhp5a85SW/7JcSWlJRkcEAAAAUEJRoAO5cD0po/RmBzpQOtjT0nRp8mSdH/aq7AkJcmvaVFWWL5Pz3XcbHQ0oVYI8gzSnxRy9+8i78nHx0bkb5zRh7wS1WtlKnx35TDeSbxgdEQAAAEAJQ4EO5EJscqykPK5wYQIdKBbSrl9XRP8Bujr3U0lS2ef7qfIns2Upk4fvfwC5ZjKZ1LpKa20I2aCRjUbK19VXVxKu6P3976vlipaadmCariRcMTomAAAAgBKCAh3IhXw5RJQJdKDISzz5i8506aqbu3fL5OIiv6lTVP7VV9l3DhQBro6u6lW7l77u+LUmNp2oqp5VFZcSp7k/z1XwimBN3DuRw0YBAAAA5BkFOpALmStc2IEOlFyxGzcprHt3pUREyNHPT0GLF8n25JNGxwLwJ44WR3Wo1kGrn1qtaY9P070+9yo5PVnLflmmtmvaauT2kTpx7YTRMQEAAAAUUw5GBwCKo8wJ9DytcGECHSiS7Glpujxtuq5+8okkya1JY1WaMkUOXl4GJwNwJ2aTWU8EPKHHKz+un6J+0qdHPtXu87v1ddjX+jrsazX1a6q+dfqqoW9DmUwmo+MCAAAAKCYo0IFcyNyBnqdDRJlAB4qctJgYnR8xQjd37JQkeT/3nMoPGyqTA/9cAsWFyWRSowqN1KhCI524dkKfHflMm8I2aff53dp9frfuLXev+tbpq8cqPyaziRdjAgAAALgzfmsAcigpLUkJqQmS8rjChQl0oEhJOnVKZ7p21c0dO2VydlalyZPlO3IE5TlQjNX0rql3H3lXoR1C1a1GNzmZnXT48mG9/N3LClkbojW/rlFKWorRMQEAAAAUYRToQA5dTbgqSXIwOcjd0T33D8QEOlBkxG7erDPdnlZK+Fk5VqqkoMWL5Nm2jdGxAOSTyrbKGvPQGG3qvEn96vaTu6O7Tsec1hu731DrVa31xbEvFJ8Sb3RMAAAAAEUQBTqQQ2fjzkqS/D388/bSb5ff9ymnJkgpifmQDEBO2dPTdemDD3T+pZdlj4+X60MPKWjlCjnXqmV0NAAFwMfFRy/Xf1mbO2/W0AZD5ePio6j4KL3747tqubKlZh6cqejEaKNjAgAAAChCKNo7TMYAACAASURBVNCBHDobm1GgB9gC8vZAVpuk3w8xY40LUOjSYmN1buAgXZ01W5Lk3aePAubO4bBQoBTwcPLQc3We08ZOGzWu8TgFeAQoJilGHx/6WMErg/XOD+/o4o2LRscEAAAAUARQoAM5FB4bLkkK8MhjgW42S86/71BnjQtQqJJOn1FY1266sX27TFarKr37jnxHj2LfOVDKWC1Wdb67s9Z1WKfJj05WLe9aSkhN0JfHv9STq57U/+z6H/0a/avRMQEAAAAYiAIdyKHMCfRAW2DeH4yDRIFCF3/ggMK7d1dyWJgcKlVU4KKF8mzf3uhYAAxkMVsUHBSspW2XanaL2XqwwoNKtadq3W/rFLIuRC9++6IOXjpodEwAAAAABmDUDsih8LjfJ9DzusJF4iBRoJDFbtykCyNHyp6cLOd696ryzJlyKFvW6FgAigiTyaQmlZqoSaUmOnLliD478pm2hm/Vtoht2haxTQ18G6hvnb76l9+/ZDKZjI4LAAAAoBBQoAM5kJaepoi4CElMoAPFzbX58xX19juS3S73Zs3kN/k9mV1cjI4FoIiq41NHUx+bqjMxZ/T50c+17rd12h+1X/uj9utur7vVs1ZPta7SWs4OzkZHBQAAAFCAWOEC5MCFmxeUmp4qR7OjKrhWyPsDMoEOFDh7erqiJk1S1KS3JbtdXs88I//p0yjPAWRLFc8qerPJm9rYcaP61O4jVwdX/RL9i8buGasWK1po2oFpirwZaXRMAAAAAAWEAh3Igcz95wEeAbKYLXl/QCbQgQKVnpSk80OH6dr8BZKk8iOGy/eNMTJZ8uH7F0Cp4uvmq+GNhmtz580a1mCYKrlV0vWk65r781y1WtlKr257Vfuj9stutxsdFQAAAEA+YoULkAPhsfm4/1xiAh0oQGnXryti8BAl7N8vk6OjKk6aJM+2bYyOBaCY87R66tk6z6p37d7adm6bFh1fpB8if9Dm8M3aHL5ZNb1r6pmaz+jJqk/KarEaHRcAAABAHjGBDuTA2biMCfR82X8uMYEOFJDkc+cU1v0ZJezfL7OHhyrPnUt5DiBfWcwWNQtopk+DP9XK9ivVqXonOVucdeLaiYz1LstZ7wIAAACUBBToQA4wgQ4UfQlHjirs6e5KPnNGDhUrKmjRQrk9+IDRsQCUYHd73a3xTcZra5etGtZgmCq6VVR0UvQt610ORB1gvQsAAABQDFGgAzmQuQM90IMJdKAourF9u8J791balSuy1qypoCVLZK1e3ehYAEqJzPUuX3X8Sh889oEeqPCA0uxp2hy+WX029lG30G5afWq1ktKSjI4KAAAAIJso0IFsSklP0fkb5yUxgQ4URdHLlyti0GDZ4+Pl1qSJAr/8Qo6+5Y2OBaAUcjA7qFngX9e7HL92PGu9y/QD01nvAgAAABQDFOhANp2PO680e5qcLc4q75pPpRwT6ECe2e12XZ4+XZFvjJXS0uTZoYMqz54li7u70dEAIGu9y5bOWzS0wdCs9S5zfp7DehcAAACgGHAwOgBQXGQeIBpgC5DZlE//98QEOpAn9uRkXRw7TjFr1kiSfAYNks+LQ2QymQxOBgC3KuNcRs/VeU69a/fW9ojtWnhioX6M/FGbwzdrc/hm1fKupWdqPaPWVVrLarEaHRcAAADA75hAB7Ip8wDRQFs+7T+X/n8CPTVBSmUfKpATaTduKOKFgRnlucWiChMnqNxLL1KeAyjSMte7fBb8mVa0W6FO1TvJarHq+LXjemP3G1nrXaJuRhkdFQAAAIAo0IFsyyzQAzzyaf+5JFk9Jf1e9jGFDmRbSlSUwnv20s09e2RydVXlj2fKq0sXo2MBQI7U8K6h8U3Ga2vnrX9Z7xK8MljDtw/Xfy/9l/UuAAAAgIEo0IFsOhubscIlXyfQzWbJ2TPj44To/HtcoARLOnVKYU93V9KJE7L4+ChwwQK5P/KI0bEAINcy17t81fErvf/Y+2pUoZHS7GnaFLZJvb/urW6h3bT217VKSuPVagAAAEBho0AHsumPO9DzFQeJAtl28/sfFPZMD6VevCinKlUUtGSxXOrcY3QsAMgXDmYHNQ9sftv1LmN2j1HLFS01/cB0Rd6MNDoqAAAAUGpQoAPZkJyWrAs3LkjK5wl0iYNEgWyKCd2giH79lB4XJ5f69RW4aKGc/P2NjgUABeJ2612uJV7LWu8y9Luh+uHiD6x3AQAAAAoYBTqQDRFxEbLLLlcHV5V1Lpu/D84EOnBHdrtdV+fO1YXhw2VPSZFHcLAC5n0mBy8vo6MBQIH783qXBys8qHR7urae3aq+m/sqZG2Ilp5YqviUeKOjAgAAACUSBTqQDZkHiAbaAmUymfL3wZlAB/6WPS1NURMn6tLkKZIk7z595Pf+VJmtVoOTAUDhylzvMjd4rla3X61uNbrJxcFFv8X8pre+f0vNljfT2z+8rTMxZ4yOCgAAAJQoFOhANhTIAaKZmEAHbis9IUHnXnpZ0YsWSyaTfEePku/oUTKZ+acLQOlWzauaxjw0Rt90+UajHhilIFuQbqTc0MLjC9V+TXsN2DJA2yK2KS09zeioAAAAQLHnYHQAoDgIj8uYQM/3A0QlJtCB20i9dk0RAwcq8dBhmZycVOndd2VrFWx0LAAoUjycPNSjVg91r9ld+y7s0+KTi7U9Yrv2XNijPRf2yM/dT91qdFNItRCVyfx5AwAAAECOUKAD2cAEOlB4ksPDdbZ/f6WEn5XF01P+M2fItUEDo2MBQJFlNpnVxK+Jmvg10bm4c1p2cplWnlqp8zfOa+r+qZpxcIaerPKkutfsrlplaxkdFwAAAChWeB08kA2ZO9ADPJhABwpSwqFDCnu6u1LCz8rRz0+BixdRngNADvh7+GtYw2Ha2mWrJjSZoJreNZWUlqTVv65W19Cu6vVVL311+iulpKUYHRUAAAAoFijQgX+QkJqgqPgoSUygAwUp7ptvFN7n30qLjpbzPfcoaMliWatWNToWABRLLg4uCqkeomVtl+mL1l+odZXWcjA56ODlg3pt52tqsaKFZhycoUvxl4yOCgAAABRprHAB/kHm+hYPJw+VsRbA/lAm0AFdW7hQUf/5Xyk9XW6PPiL/qVNldnMzOhYAFHsmk0n3lb9P95W/T5cbXtaKUyu0/ORyXU64rFmHZmnu4blqFthM3Wt2V/3y9WUymYyODAAAABQpTKAD/+BsXEaBHmQLKphfKplARylmT0/XpSlTFDXxLSk9XWW6dFHlGTMozwGgAJRzLaeB9QZqU+dNeu/R91S/fH2l2lO1KWyT/r3x3+q8vrNW/LJC8SnxRkcFAAAAigwKdOAfZO0/txXA/nOJCXSUWunJybow8jVdnTNXklTu5ZdUYcKbMjnw4igAKEiOZke1Cmql+a3na0W7FepUvZOcLc76JfoXvbn3TTVf0Vzv/fieImIjjI4KAAAAGI4CHfgHmStcAj0KYP+59P8T6KkJUmpSwTwHUMSkxcYq4vn+ig0NlRwcVHHSJPkMHMjqAAAoZDW8a2h8k/Ha2mWrhjccLn93f8Ulx2nBsQVqs7qNBm0dpJ3ndirdnm50VAAAAMAQjPkB/6DAJ9CtnpJMkuwZU+gevgXzPEARkXLxoiL6D1DSqVMyu7nJb/o0uTdtanQsACjVPK2e6nNPH/Wq3Uu7zu/S4hOLtev8Lu08v1M7z+9UoC1Q3Wt2V4dqHeTmyJotAAAAlB5MoAP/IHMHeqCtgCbQzWbJ2TPjY/ago4RLPHlSYU93V9KpU3IoV06BX35BeQ4ARYjZZNYj/o/o4+YfKzQkVL1q95KHo4fCY8P19g9vq/ny5nrnh3cUEcd6FwAAAJQOFOjAHdxMuakrCVckFeAEuvT/a1wSogvuOQCD3dy7V+E9eio1KkpO1e5S0NIlcq5Vy+hYAIC/EWgL1MhGI7W1y1a9/uDrCrIF6UbKDX15/Eu1WdVGL377or6/+L3sdrvRUQEAAIACQ4EO3EHm+hYvq5dsTraCeyIOEkUJF7N+vc72H6D0Gzfk2rChghYulGOlSkbHAgBkg6ujq7rX7K61HdZqZrOZalqpqeyya1vENvXb3E+d1nfSyl9WKjE10eioAAAAQL6jQAfuIOsA0YJa35IpcwKdFS4oYex2u658MkcXRoyUUlLk0bqVKn86VxZPT6OjAQByyGwy62H/hzWrxSyt7bBW3Wp0k4uDi05Fn9L4vePVYkULTTswTZE3I42OCgAAAOQbCnTgDgr8ANFMTKCjBLKnpSlywgRdnjpVkuT97LPymzJFZqvV4GQAgLyq6llVYx4ao61dtmp4w+Gq5FZJ15Oua+7Pc9VqZSuN2D5CBy8dZL0LAAAAij0HowMARVmBHyCaiQl0lDDpCQk6/+pw3fj2W8lkku/oUfLu3dvoWACAfGZzsqnPPX3Us1ZPbYvYpi+Pf6mfon7SxrCN2hi2UXXK1lGP2j0UHBgsR4uj0XEBAACAHGMCHbgDJtCBnEu9dk3h//63bnz7rUxOTvL74APKcwAo4Sxmi5oFNtO8VvO0vN1ydajWQU5mJx25ekSjd45W8MpgzTo0S1cTrhodFQAAAMgRCnTgDrJ2oHswgQ5kR3J4uMK6d1fiocOyeHoq4PN5sgW3NDoWAKAQ1fSuqYlNJ2pLly0act8QlXMpp8sJlzXj4Ay1XNFSY3aN0YlrJ4yOCQAAAGQLBTrwN2KSYhSdFC2JCXQgOxIOHVLY092VEn5Wjn5+Cly8SK716xsdCwBgEG9nbw2oN0CbOm3S2w+/rbo+dZWcnqy1v61Vl/Vd9O+N/9bW8K1KS08zOioAAADwt9iBDvyNzOlzHxcfuTm6FeyTMYGOYi7u2+90ftgw2RMT5Vy7tirPniWHcuWMjgUAKAIcLY5qU7WN2lRto0OXD2nhsYXaEr5F+6P2a3/UflVyq6TuNbsrpHqIPK2eRscFAAAAbsEEOvA3wuMy9p8X+AGiEhPoKNailyzVuSFDZE9MlNvDDytgwQLKcwDAbdUrV0/vPvquNnbaqOfrPq8y1jK6cPOCpuyfohYrWuitfW/pdMxpo2MCAAAAWSjQgb+Rtf+8MAp0JtBRDNntdl16/wNFjh8vpafLs1NHVZ45Qxb3An7FBgCg2PN189VL9V/Sls5b9GaTN1Xdq7oSUhO09ORSPbXmKb2w5QXtPLdT6fZ0o6MCAACglGOFC/A3wmMzJtADPAp4/7nEBDqKHXtysi6+8YZi1q6TJPkMGSKfwYNkMpkMTgYAKE6cHZzVsXpHhVQL0U9RP+nLY1/qu4jvtPvCbu2+sFuVPSorpFqI2t/VXr5uvkbHBQAAQClEgQ78DUMm0FMTpNQkycFa8M8J5FJaXJzOvfSS4vfukywWVZzwpsp06mR0LABAMWYymdSoQiM1qtBI5+LOafGJxVp9arUi4iI0/b/T9dHBj/Qvv3+pY7WOeqTyI3I0OxodGQAAAKUEBTpwG3a7PWsHeoCtECbQrZ6STJLsGVPoHkxYoWhKiYpSRP8BSjp5UiZXV/lP+0DuDz9sdCwAQAni7+GvEY1GaPB9g7UlfItWnVqlA5cOaMe5Hdpxboe8nb311F1PqUP1DqrqWdXouAAAACjhKNCB27iedF1xyXGSpMoelQv+Cc1mydkmJcZk7EGnQEcRlHTqlM4+31+pkZGy+Pio8qxZcqlzj9GxAAAllKujq56q9pSeqvaUwmLCtPrX1Vr32zpdSbiieUfnad7Rebq//P0KqRai4KBguTq6Gh0ZAAAAJRCHiAK3kbn/3NfVVy4OLoXzpC5eGe/Zg44i6Ob3PyjsmR5KjYyUU5UqClqymPIcAFBogjyDNLTBUG3uvFnTHp+mx/wfk8Vk0X8v/Vdj94zV48se1/g943Xo8iHZ7Xaj4wIAAKAEYQIduI3MAj3IFlR4T5p1kGh04T0nkA0xGzbo4qjRsqekyKV+ffnP+EgOXl5GxwIAlEKOZkc9EfCEngh4QpfjL2vtb2u1+tRqnY07q5WnVmrlqZW6y/MuhVQPUbu72snb2dvoyAAAACjmmEAHbiOzQC+U/eeZMg8STWQCHUWD3W7X1U8/04VXh8uekiKPli0V8NmnlOcAgCKhnGs59avbT6EhoZoXPE/t72ovZ4uzfov5TZN/mqxmy5tp2LZh2nV+l9LS04yOCwAAgGKKCXTgNs7GnZUkBdoCC+9JsybQKdBhPHtamqImva3oL7+UJHn17iXf116TyWIxOBkAALcymUxqWKGhGlZoqFEPjNLXZ77WqlOrdPTqUW0J36It4VtUwa1CxsGj1TrI38Pf6MgAAAAoRijQgds4G5tRoAd4MIGO0ic9MVEXRoxQ3JatkqTyr72mss/+29hQAABkg4eTh7rW6KquNbrq5LWTWv3raoWeDlXkzUjNPjxbsw/P1oMVH1Sn6p30RMATslqsRkcGAABAEUeBDvyJ3W7PWuHCBDpKm9ToaJ0bOEgJBw/K5OioSu+8LduTTxodCwCAHKvhXUOjHhiloQ2G6ruz32nVqVXad3Gfvr/4vb6/+L1sTja1rdpWHat3VA3vGkbHBQAAQBFFgQ78ydXEq4pPjZfZZC7cl/gygQ6DJUdEKOL5/koOC5PZZlPlGR/JtVEjo2MBAJAnVotVraq0UqsqrXT+xnmt+XWN1vy6RpE3I7XoxCItOrFItcvWVsdqHdW6amvZnGxGRwYAAEARQoEO/Enm9HlFt4pysjgV3hMzgQ4DJRw5qogBA5R29aocKlVUwCefyFqtmtGxAADIV37ufhp832C9cO8L2ndxn1adWqVvI77VsavHdOzqMb3303tqEdhCHap1UEPfhrKYOfsDAACgtKNAB/7EkPUtEhPoMMzNPXsUMeRF2ePjZa1ZU5Vnz5ajb3mjYwEAUGAsZoua+jVVU7+mik6MVujpUK06tUq/Xv9VoadDFXo6VD4uPmoZ2FKtqrRSvXL1ZDaZjY4NAAAAA1CgA3+SWaAX6gGiEhPoMETsps26MHy47Ckpcm38kPw//FAWd3ejYwEAUGi8nL3Uq3Yv9azVU0euHNGqX1dpc9hmXUm4krXixdfVV8FBwWoV1Ep1fOrIZDIZHRsAAACFhAId+JOzsWclMYGOki962TJFjn9TSk+XR8uWqjT5PZmdCnFtEQAARYjJZFLdcnVVt1xdvf7A69p7ca82hW3SN2e/UVR8lBYcW6AFxxbIz91PrYIydqrX8KpBmQ4AAFDCUaADfxIe9/sEuo0JdJRMdrtdV+fM1eWpUyVJZbp0UYXx42SysOcVAABJcrQ46hH/R/SI/yMamzZWu87v0qYzm7Tt3Dadv3Fenx75VJ8e+VRBtiAFBwWrdZXWuqvMXUbHBgAAQAGgQAf+IN2erojYCEkGTqCnJkipSZKDtXCfH6WC3W7Xpfcm69pnn0mSyj7/vMoNG8r0HAAAf8NqsapZQDM1C2im+JR47Ti/Q5vObNKOczsUFhum2Ydna/bh2apWplrWZHqh/xwJAACAAmOy2+12o0OUBLGxsfL09FRMTIxsNpvRcZBLkTcj1WJFC1lMFv3Y80c5mh0L78nT06UJ3pLs0qu/SB6+hffcKBXsqam6OHacYlatkiSVHzlSZZ971uBUAAAUTzeSb+i7iO+0KWyTdl/YrdT01Kz7annXUqsqrRQcFCw/dz8DUwIAAOB2ctLlMoEO/EHm/nM/d7/CLc8lyWyWnG1SYkzGHnQKdOSj9KQknR/2qm58841kNqvixIkq06mj0bEAACi23J3c1e6udmp3VzvFJMXo27PfalPYJu27uE/Hrx3X8WvH9f7+93Wvz70KDgpWcFCwfN34+Q4AAKC4oUAH/iAsNkySAetbMjmXySjQ2YOOfJR244bODRqs+B9+kMnJSX5Tp8ijeXOjYwEAUGJ4Wj0VUj1EIdVDdC3xmraGb9WmsE36MfJHHb5yWIevHNbknybr/vL3q1WVVmoR2EI+Lj5GxwYAAEA2UKADf5A5gW5Yge5SRroenjGBDuSD1KtXFfF8fyUeOyazm5v8Z86U24MPGB0LAIASy9vZW11rdFXXGl11Of6yNodv1qawTfrvpf/qwKUDOnDpgN7+4W01qtBIrYJaqXlAc5XJPEweAAAARQ4FOvAH4XHhkqQAW4AxAVy8Mt4nRBvz/ChRUs6f19m+/ZQcFiaLt7cqz/lELvfcY3QsAABKjXKu5dSjVg/1qNVDkTcjtSlskzae2agjV4/o+4vf6/uL3+s/+/6jBys9qFZBrfREwBOyOXGeEgAAQFFCgQ78QdYEuoeBK1wkVrggz5J+/VVn+/ZTalSUHCpVVMCnn8papYrRsQAAKLUquFVQn3v6qM89fRQRF6FNYZu0KWyTTlw7od3nd2v3+d16c++bauDbQI/6P6pH/R81bqgDAAAAWSjQgd+lpacpIi5CkpET6L8X6KxwQR4kHDqkiP4DlBYTI6e77lLAp3PlWKGC0bEAAMDvKntUVr+6/dSvbj+diTmjjWEbtenMJv0W81vWZPq7P76rIFtQRple+VHdV/6+wj/kHgAAABToQKbI+EilpKfI0eyoim4VjQnBBDry6Mbu3Tr34kuyx8fL+d57VXn2LDl4eRkdCwAA/I0qnlU0sN5ADaw3UGExYdpxbod2nNuh/VH7FRYbprBjYZp/bL48HD3U1K+pHvF/RA/7PczedAAAgEJiNjrAnUyaNEmNGjWSh4eHypcvrw4dOujkyZO3XJOYmKjBgwerbNmycnd3V6dOnRQVFXXLNWfPnlWbNm3k6uqq8uXLa8SIEUpNTb3lmm3btql+/fqyWq2qVq2aPv/884L+8lDEhMdm7D/39/CXxWwxJgQT6MiD2I2bFPHCQNnj4+XWpLEC531GeQ4AQDES5Bmk3vf01tzgudrx9A5NfnSy2t/VXl5WL8WlxGlj2Ea9vut1PbrsUfX+urfm/h97dx4mR13nD/xd1fd9zNUz0zOZmZCbkAAh5Hg2sKIk6Ooj6CPu/lZBQEFBBVZF/eGBF4q6iLqCCKi/dVllvXAFooJKJGDCEUjIncxk7p6Znr7vq35/VHfNdGZykkz18X49Tz9VXVVd+VQ4MvPOZz7fXQ/hYPAgJElSu3QiIiKimlXRHejPPvssbr75Zlx00UXI5XL47Gc/i8svvxx79uyBxWIBANx222144okn8D//8z9wOBy45ZZbcNVVV2Hr1q0AgHw+j7e97W3weDx4/vnnMTo6ive///3Q6XT42te+BgDo6+vD2972Ntx00034r//6LzzzzDO44YYb0Nraio0bN6r2/DS3SgH6PLtK888BdqDTaQv+4jH4vvhFQJJg27gRbd+8B6Jer3ZZREREdJpsehs2dm3Exq6NyBfy2OXfhS1DW/Ds0LM4EDyAHeM7sGN8B+575T60WdqwwbsBl3Rcgos8F8GgMahdPhEREVHNEKQqaleYmJhAc3Mznn32WWzYsAHhcBhNTU149NFH8e53vxsAsG/fPixZsgQvvPAC1qxZg6eeegr/9E//hJGREbS0tAAAHnjgAdxxxx2YmJiAXq/HHXfcgSeeeAKvv/668mu9973vRSgUwubNm0+qtkgkAofDgXA4DLvdfuYfns66b2z/Bn6292e4Zuk1+MRFn1CniN2/Af7nWqBzLXDdyf27R/VNkiRMPvgjTNx7LwDA+Z73wPOFz0PQqPRTFERERHTWjcZGlTB92+g2ZAoZ5ZxJa8Ka1jW4xHsJ/sH7D2g2N6tYKREREVFlOpUst6I70I8WDocBAG63GwDw8ssvI5vN4s1vfrNyzeLFi9HZ2akE6C+88AKWL1+uhOcAsHHjRnz4wx/G7t27cf755+OFF14ou0fpmltvvfWYtaTTaaTTaeV9JBI5I89I6il1oKu2gCjADnQ6JVKhgPF7volAceRUw403ounWj0MQBHULIyIiorOq1dqKqxdfjasXX41ENoHtvu14duhZbBncgvHkOP4y+Bf8ZfAvAIClDUvlhUi9l2BJwxKIQkVP8SQiIiKqOFUToBcKBdx6661Yv349zj33XACAz+eDXq+H01m+gE5LSwt8Pp9yzfTwvHS+dO5410QiESSTSZhMphn13H333bjrrrvOzMNRRRiIDgBQeYQLZ6DTSZJyOYze+TmEf/tbAEDzHXeg4QPXqlsUERERzTmzzoxLOy7FpR2XQlojYV9gnxymD23BLv8u7Jncgz2Te3D/a/ej0dSIDd4N2ODdgLWta2HWmdUun4iIiKjiVU2AfvPNN+P111/Hc889p3YpAIDPfOYzuP3225X3kUgEHR0dKlZEb0SukMNwdBgAZ6BT5SukUhi+/d8Q+/OfAY0GrV/5CpxXvlPtsoiIiEhlgiBgScMSLGlYgptW3AR/0o+/Df0Nfxv+G7YOb4U/6cevD/4avz74a+hEHVZ7ViuButfmVbt8IiIioopUFQH6Lbfcgt///vfYsmULvN6pL+w8Hg8ymQxCoVBZF/rY2Bg8Ho9yzfbt28vuNzY2ppwrbUvHpl9jt9tn7T4HAIPBAIOBi/PUipHYCHJSDgaNQd05kaUO9FwSyKUBLf8do3L5aBRDH7kZiRdfhKDXo/0798L2pjepXRYRERFVoEZTI65ccCWuXHAlMvkMXh57GVuGtuCvg3/FUGwIW0e2YuvIVty9/W4sbViKK7quwMaujWi1tqpdOhEREVHFqOgBeJIk4ZZbbsFvfvMb/PnPf0Z3d3fZ+QsvvBA6nQ7PPPOMcmz//v0YGBjA2rVrAQBr167Frl27MD4+rlzzpz/9CXa7HUuXLlWumX6P0jWle1DtK80/77B1qDsX0uAAUJxfzS50OkpuchL911yDxIsvQrRY0PHQjxieExER0UnRa/RY27YWd6y+A09e9SQef+fj+LcL/w2rWlZBI2iwZ3IPvv3yt3H5ry7H+596Px7d+yj8Sb/aZRMRERGprqI70G+++WY8+uijePzxx2Gz2ZSZ5Q6HAyaTQy2GlwAAIABJREFUCQ6HA9dffz1uv/12uN1u2O12fPSjH8XatWuxZs0aAMDll1+OpUuX4n3vex/uuece+Hw+3Hnnnbj55puVDvKbbroJ3//+9/GpT30K1113Hf785z/jsccewxNPPKHas9PcKgXoXfYudQsRRcBoB1JheQ66reXEn6G6kB0exsB11yPT3w+N243Oh34EY/EvAYmIiIhOhSAI6HH0oMfRg2vPvRaTyUk83f80Nh/ZjJfHXsaO8R3YMb4D33jxG7io5SJs6t6EN3e+GU6j88Q3JyIiqiOFgoRsoYB8QUKuICGfL24LErL5accLEnLF67L58ve5goRcXkK+UEA2Lx9XrslPHStdl8sXkJ32a+RK54u/dunXzZYdl7fZ4j2VzxYkLPHY8cD7LlT7t7KiVXSAfv/99wMALr300rLjP/7xj3HttdcCAO69916Iooh3vetdSKfT2LhxI37wgx8o12o0Gvz+97/Hhz/8YaxduxYWiwXXXHMNvvSlLynXdHd344knnsBtt92G++67D16vFw899BA2btx41p+RKkMpQO+0d6pcCeQ56KkwO9BJkT50CAPX34Dc2Bi0ba3ofPhhGI76iRwiIiKi09VgasDVi6/G1Yuvxlh8DH/s/yM2923GTv9ObPNtwzbfNnz171/F2ra1uKL7Cvxjxz/CqreqXTYREVUpSZoKd7M5OYDO5eVAtxTqZnKlwLiAzLSQOJObCoPLj0+/Xt5O3We264++T6EYPstBdi4/M/hWAuxp7yVJ7d/NN85h0qldQsUTJKkW/lGrLxKJwOFwIBwOw263q10OnaIb/3Qjnh95HnetuwtXLbhK3WJ+uAEYfQ34l8eAhfxLnHqXfO01DH7oRuTDYejPmY/Ohx6Crrh+AxEREdHZNBQdwuYjm/GHI3/AvsA+5bhe1OMfvP+ATd2bcIn3Epi0s68bRUREc6dQkIPgbF4Ok7N5OTzO5PPI5MrPZZRriu+L++lpn8vmp647lQB6epCdzU91OWdzBSUozxVqP4rUigK0GgFaUYRGFKAVhamtRoCueFxTvE4jitAV3+s0ovLZ0n10GrHsnmXHRAHa4mdK99VpiseK91OOieJR9xBgM+qwsMWm9m/ZnDuVLLeiO9CJ5orSgW6rkA50gB3ohNjWrRj66McgJRIwrjgPHQ88AK3LpXZZREREVCe8Ni9uWH4Dblh+A3rDvfhD3x/w1JGn0BfuwzMDz+CZgWdg0ppwaceluKLrCqxvXw+9Rq922UREqskXJKRzeaSyBaSy+eKrgFRO3k9nCzPP5wpT12XzSOcKSGfzxc9MXZfJy93amWOE4NUeSmunBcf6aQGyXisqAbF+Wihcfnz69VPh8MnfZ+p6zVHBt05TCr6PCsKLx3WiCI1mekAuQhTkcWlUOxigU93L5rMYjY8CAObZ56lcDQBTMSBNBtWtg1QV2bwZw5/8FJDNwrJuHbzf+y5Ei0XtsoiIiKhO9Th68OGVH8ZNK27CgeABbD6yGU/1PYXh2DCe6nsKT/U9BZvOhjd1vglXdF+B1a2roRP5I+FENDfyxc7nTK6AdD6v7GemdVinp2+nHc/k5HA6nZ06PvMaOfguXVcebk8F3tl85YTYpXBYp5HDY31xq9NMOz7tnE45L28NxWvlUPv4oXOpG7rU4azsa6buoZvWDX30Oa0oMHCmisYAnereYGwQBakAs9aMRlOj2uUApmIHeood6PUq+PNfwHfXXYAkwbZpE9ru+QZEPbu5iIiISH2CIGCRexEWuRfhY+d/DK/7X8dTR57CH/r+gPHkOB4//DgeP/w4XAYX3jLvLdjUvQkXNF8AjahRu3QimgOSJBU7qOWQOT2t+3q2rut0KYCeHkgfHU5P+/z066YH3JXYfa3XiDDoRBh1Ghi08taoE2HUapR9g04Do1YjX6ctntdN2xbPGYpb/fSQWyN3W+s1Gui0woxzoshAmuhMYYBOdW8gMgBAXkC0Iv7GkyNc6pr/hw9i4t57AQDOq6+G5/Ofg6DhN5xERERUeQRBwPKm5VjetByfWPUJvDL2CjYf2Yw/9f8JgVQAjx14DI8deAxNpiZs7NqITd2bcF7jeZXxNTdRnSsF3fF0DolMHvFMDvF0DvF0Xt5mStvy44lMHrF0DolMDrF0HslMrnxESa5QEYsq6rUiDKXu6mI3dWlf6brWapSQe/q1eqUDWzN1bNr9pgffxmK4PRV8Tx3TMMAmqhkM0KnuleafV8T4FoAd6HVs8uGHlfC84aYb0fTxj/MbTCIiIqoKoiBilWcVVnlW4dOrP43tvu3Y3LcZTw88jYnkBH6292f42d6fod3ajo1dG3FF9xVY5FrEr3WITpIkSUhm5fC6FGbL+znlmBxqTwu503LInSiF4KVQvHjN2e7aFgUc1X19VCf2MbqvDUd1as/4TKkje5ZQ3KDVQKfhOBAiOrMYoFPdq6gFRAF2oNep4GOPYfyb3wIANN12Gxpv/JDKFRERERGdHq2oxbq2dVjXtg6fW/M5PD/yPJ468hT+PPBnDMeG8cjrj+CR1x9Bl70Ll3ZcinVt63BBywUwaAxql050RmWKHd6xaZ3csaPC76OPlR+f3hGew9nKu006DSwGDSwGLcx6LawGTXGrhVkvH7ccdcxq0MJc3C8Pv6eCcQbZRFQrGKBT3SuNcGEHOqkl8uST8H3hiwCAhg/ewPCciIiIaoZOo8MlHZfgko5LkMwl8behv2Hzkc3YMrQFRyJH8JPdP8FPdv8ERo0RF3ouxPq29VjXtg49jh4Gb3TWFAqSMmc7WZzJnczkkc7lkczI87VLx0uzt5XrjprlPXVcXkhyKgCXZ3SfaYIAWPVaJdS2GrRlwbel+N6i104LxYuBdykAN2iU82a9lqNGiIhOgAE61b3+aIWNcGEHel2JPfsshj91ByBJcF59NZpuv13tkoiIiIjOCpPWhMu7LsflXZcjno1jy9AWbB3eiudHnsdEcgJbh7di6/BWAECLuQXr29djbdtarG1dC4fBoXL1pKbS+JJIModoKotIKotIKodoKodIMitvU1n5XDKnzOieGXTLQXgmd+aD7eMxaEUl6LYYpoJua/E123GLXju1XxaUa/iXS0REc4wBOtW1VC4FX9wHQF5EtCKwA71uJF56CUMf+ziQy8H+trfJC4byi2EiIiKqAxadBVd0X4Eruq+AJEk4GDqIF0ZewNbhrXh57GWMJcbw64O/xq8P/hoCBJzbeC7Wta3D+vb1WN64HFqR38pWk2y+cMywW96ftk2Wv48Ww/L8WZpfoteKME2br20qzuA2TXs/fXHI0nuTrnzhyNJx87Sw26qXu711GvGs1E5ERHODX3VQXRuMDgIAbDobXAaXytUUsQO9LiR378bgTR+GlE7DesklaPv63RA0GrXLIiIiIppzgiBgoWshFroW4ppl1yCVS+HlsZexdWQrXhh5AYdCh7DLvwu7/Lvww50/hFVnxcWtFytz1r02r9qPUDOy+QISGXmcSSIjLzSZKO4np+2Xjiez8nxu5Vw2j0RxgcrSgpfRVBap7Jnp+NaKAmxGLWxGHewmLWyG4taog92oK57Twm7UwaSfCrVNenlxSZO+PPw2aDUcX0JERCfEAJ3qWmn+eae9s3I6f0sd6LkkkEsDWi6mVGvSvb0YvOGDKMRiMK9ahfb7vgNBp1O7LCIiIqKKYNQasb59Pda3rwcA+OI+vDDyAp4feR4vjL6AcDqMZwaewTMDzwCQRzGubV2L9e3rsdqzGmadWc3yz4pcvoBUrlA2kzuVlWd2T40pKZS/L+6ni+NLpgfj8Wn7yUxeeX82ZnZPZzVoy0Jum1ELu0k37f1UIF46Zp92jUnH8SVERDT3GKBTXTsSOQKgguafA4DBAUAAIMld6LYWtSuiMyg7PIyB665HPhiEcdkyeB+4H6LRqHZZRERERBXLY/HgygVX4soFVyJfyGNvYK8yO/21idfQH+lHf6QfP9//c2hFLVY2rcT6dnkx0sXuxRCFuRmfMX1OdySVRSRZnNU97X0snVeC73S2oITcZcF46Vy2dG0BubM0vuRYNKIAs15TfGmVfZNeC3NxTMmxzlkMxf3icXuxO9xq5GKVRERUnRigU10biMod6BUVoIsiYLQDqbA8B50Bes3I+f3ov+465Hw+6OfPR8dDP4LGalW7LCIiIqKqoRE1OLfxXJzbeC5uXHEjYpkYtvm2KfPTh2JDeGnsJbw09hLue+U+uI1urGldo4x7aTI3HfPeJxOAR4ozuo91fC6Cbr1WhFErls3lNuo0MGo1MEybyW3UivL74ugSk14Di14LkxKMlwfgpX2TXgO9RmSnNxERUREDdKpr/ZF+ABW0gGiJ0SkH6JyDXjPy4TAGbvggsv0D0LW1ofPhh6B1VcjcfSIiIqIqZdVbcVnnZXhTx5uQyOSxz9+H50e24sXxv2NP4BUEUgE82fcknux7EgDg0HSiQVwOc34JxEw3YkmxLBTP5t94AK4RBWXsiL04kqTUhW0xaKctPClvDdrStnxRSmMx/J5+rV4jQmQXNxER0ZxigE51rTQDfZ6tgjrQAXkOeqhf7kCnqldIJDB4401I79sHTWMjOn/8CHQej9plEREREalOkiQkMlOLTUZTOcTSOcRSOURTOUSL+7F09qj38vWx4rF4Ooep5u8mAG8HcAU0pgForAehtRyEaBxGOD+AcH4AwBOQRA3y4jzkpfnIFc5BIe8FoDluAK7sm47an3bOrOecbiIiolrCAJ3qViKbwERyAkCFdqAD7ECvAYVMBkMf/RiSr74K0eFA58MPQz+vwv7ChoiIiOgUlQffxTC7FHxPC8Bj6ey0a6bC8VhaHn9SHny/cRpRgM2oLS5WqYPN0AyrcQ2sBi10+gRi4h74c7swmtmFaM4PraUXWksvDPgTzFoLzm++EOvaLsaatjVY4FzAIJyIiIgYoFP9Ks0/dxqccBgcKldzFFMxQGcHelWTcjmMfOKTiG/dCsFsRucPH4Bx0UK1yyIiIqI6J0kSYukcQoms/EpmyoJvpbs7PRV6R1Mzz52t4FsOv+UA3GrQwmrUwlY8Jr+Xj9uN8rnSNXajDgbtiWZ3r1d+D/oj/dg2ug3bfNuw3bcd4XQYW0e2YOvIFgCA2+jGxZ6LcXGr/PLavGfugYmIiKhqMECnulWx888BwFScjZ0MqlsHnTapUMDo57+A6B//CEGnQ8f3vwfTypVql0VEREQ1pNQFHkxkysJweV/eBhNZhJOl/QzCSfm6M7XYpUYUlMC7fKtTgm/leDH4lsNxLSylfYMORt3cLlopCAK6HF3ocnTh6sVXoyAVsC+wTw7UR7fhlXF5fvpTR57CU0eeAgC0W9uxpnUNLm69GKs9q9FgapizeomIiEg9DNCpbpUC9C57l7qFzIYjXKqaJEkY/8Y9CP/614Aoou3fvw3LunVql0VEREQVLJXNIxCfFn4ns0owHk5mEYzLx44Oxt/IopcGrQiXWQ9HcZ73jO5uw1SHt82om9YBrl7wfbaIgoilDUuxtGEpPnDuB5DJZ7BzYie2+eRAfdfELgzHhvGrg7/Crw7+CgCwwLUAa1rXYE3rGlzYciEsOovKT0FERERnAwN0qltKB7qtEjvQOcKlmvnvvx+Bn/4UAND61a/C/pa3qFwRERERzSVJkhBJ5RCIZxCIpzEZyyCYyGAynkEglpGPJ+TtZPF9Mps/7V9PrxHhNOuKLz2cJh1cZv3Ue7MOTtPUfumcUac5g09dW/QaPVZ5VmGVZxVuXnkz4tk4Xh57GX8f/Tu2jW7DgeABHAwexMHgQfznnv+EVtDi3MZzlXEvK5pWQK/Rq/0YREREdAYwQKe6NRCRZ6DPs1fggo7sQK9agf/3n/B/93sAgJbPfhbOK9+pckVERET0RuXyBQQTWTnwjqcRiGcQjBcD8eI2eNT+6YxI0YoCnGY9XMUw3GGa2i8Lv006OKYF4Sadpia6wCuZRWfBBu8GbPBuAABMJifxou9FJVAfig3h1YlX8erEq/jhzh/CqDHigpYLlEB9sWsxNCL/woKIiKgaMUCnulVaRLQyZ6CzA70ahX77W4x97WsAgMaP3gL3+9+nckVERER0PKlsHqPhFEZDSXkblrcT0XSxe1wOxMPJ7Gnd36LXwG3Vw20xwG3WwW0xoMGqh8usR4NFD7dFL583y1ubQcsgvEo0mBqwqXsTNnVvAgAMx4axbXSbEqgHUgE8P/I8nh95HgBg19ux2rMaqzyrcF7jeVjkXsQOdSIioirBAJ3qUjQTRSAVAMAOdDozok8/jdH/eycAwH3N+9H4kY+oXBEREVF9U8LxcBKjoRR8kRRGQkn4wimMhFPwhZMIJk4+GBcEwGnSwW3Ro8FigMtSDMRLQfi0Vykk54iU+tFubcdVC67CVQuugiRJOBQ6pCxI+uLYi4hkInh64Gk8PfA0AEAn6rDYvRjLG5djedNyLG9cjk5bJ/8ChYiIqAIxQKe6VBrf0mBsqMzFftiBXlXiL7yA4dtuB/J5OK66Cs133MFvfoiIiM6iVDZfDMLlQHx6UF7aP9lw3KzXoNVhRKvDVNwa0WQ3KsF4aes066ER+ec7nZggCFjgWoAFrgX416X/ilwhh92Tu7FtdBteHX8Vu/y7EEqHsMu/C7v8u4B98ufsentZoL68cTlcRpe6D0NEREQM0Kk+lRYQrcjuc4Ad6FUk+eqrGLz5FkjZLGyXX47WL90FQRTVLouIiKjqZHIFRFJZRFM5RFNZRJI5jEenAnFfOIWRYid5IJ45qXuadBq0Oo1oc5jgcRjR5jDC4zCh1WlUQnO7kWNT6OzSilqsaFqBFU0rAMiLzA5Fh5QAfZd/F/ZO7kUkE8HWka3YOrJV+azX6i0L1Jc0LIFBY1DrUYiIiOoSA3SqSxUfoJc60HNJIJcGtPwiuRKl9h/AwI03QUokYFm/Hm3f+iYELf+3SkRE9adQkBDL5BBJlgLw4n5aDsKjqSwiqalt6bpSYB5JZpHOFU7p1zTqRLQVw3CP3YQ2p7EYkpuUrd3EcJwqjyAI6LB3oMPegbf2vBUAkM1ncSB4oCxU7wv3YSg2hKHYEJ7qewoAoBW0WOheqATqy5uWo8veBVFgAwcREdHZwqSH6lJ/VA7QK3IBUQAwOAAIACS5C93WonZFdJRMfz8GbrgehXAYpvPPh/d734Wo50JQRERU3fIFCZPxNPzRDPyxNPyxNCZj8iKaR3eHK+F3KotYOgdJOjM1WA1a2Izyq9FqmBqtMq1rvNVhhMOkYzhONUOn0WFZ4zIsa1yG9+K9AIBIJoLX/a/jdf/r2DWxCzv9OxFIBbBncg/2TO7BL/b/AgBg09mwrHFZWajeaGpU83GIiIhqCgN0qkulGegV24EuioDRDqTC8hx0BugVJTs2hoEPXIf8hB+GRYvQ8cD9EM1mtcsiIiKaVS5fQCCewUQsDX8sg4moHIz7S9vYtLA8nnlDQbheI8Ju0sJm1MFuLG5NWtgMOtiMWthNxa1x5nu7UQerUcs540RFdr0d69rWYV3bOgDy6JfR+Ch2+nfi9YnXscu/C3sm9yCajeLvo3/H30f/rny2zdKGcxvPxXlN5+HcxnOxtGEpTFqTWo9CRERU1RigU10qjXDptFVoBzogz0FPhTkHvcLkgkEMXHc9siMj0M3rROfDD0HjcKhdFhER1ZlsvoDJYvA9oYThU0H4xLRwPJg4tVBcEAC3WY9GqwFNNgMarHo4TTol7LYVw+7ZAnGjTnP2HpqozgmCgDZrG9qsbdjUtQkAkC1kcTh0GDsndsqd6v5dOBw6jJH4CEbiI/hj/x8ByHPYz2s8D6tbV2O1ZzXOazqPs9SJiIhOEgN0qjuhVAiRTARABY9wAeQ56KF+uQOdKkI+FsPgDR9E5vBhaD0ezHvkEWgb+eOxRET0xhUKEsLJLCbjGQTiGUwWu8EnYxkE4lP7pYA8mMie0v1FAXBbDGi06tFkM6DRKu+XQnL5vQGNNj3cZj20Gs5TJqoGOlGHxe7FWOxejPcseg8AIJaJYc/kHrlTvTj+ZTw5jlfGX8Er46/ggdcegEFjwMrmlbjYczFWt67GsoZl0IqMB4iIiGbDPyGp7pTmnzebmyv7xxiNxYVE2YFeEQqpFIY+/BGkdu+GxuVC5yMPQ9fernZZRERUoQoFCZFUtiwE98fkcDwQl4PwQPHcZFzuEs8XTm12iigADdapMLzJakCjzVDc6qdCcasBboueo1GI6oRVb5U7zVtXA5BHvwzFhvCi70VsG92G7b7t8Cf92Da6DdtGtwE7AIvOggtbLsRqj9yhvsi9iAuTEhERFTFAp7pT8fPPS0zFAJ0d6KqTslkMf/xWJF58EaLVio6HfgRDT4/aZRER0RzLFySMhpMYDaeUDvFAMQCfLHaNB4r7gfipB+IAYDNq0WDRw23Ro8FqmLFf6hJvshrgMushMhQnohMQBAEdtg502Dpw1YKrIEkS+sJ92Obbhu2j27Hdtx2RTARbhrZgy9AWAIDD4MBFLRdhdetqXOy5GN2Obi7aS0REdYsBOtWdqph/DkzrQA+qW0edk/J5jHz6M4g9+ywEgwEdD9wP07JlapdFRERnSTiZxWAggYFAQtmW9odDSWTzpxaKnygQl/f1aLAY4LLoYNByhjgRnV2CIKDH2YMeZw/+efE/oyAVcCB4QOlOf8n3EsLpMJ4eeBpPDzwNAGg0NSrd6atbV8Nr9TJQJyKiusEAnepOKUDvsnepW8iJmFzyliNcVCNJEnxf/jIiTzwBaLXwfu+7MK9apXZZRET0BmTzBYyEkkowXgrHBwPysXDy+LPFdRoBbU4TGhiIE1GNEAVRmaN+zbJrkC1ksWdyD7aPbsc23za8Ov4q/Ek/nux7Ek/2PQkAaLO0KQuSrvasRoulReWnICIiOnsYoFPdUTrQK3kBUYAjXCrAxL3fQejnvwAEAe33fAPWDRvULomIiE5AkiQE4hk5GA8m5S7yyamwfDScxIkmqzRaDeh0m9DpNqPTbYa3uO10m9FiN3KWOBHVNJ2ow4qmFVjRtAIfPO+DSOfT2DmxE9t927F9dDt2TuzESHwEvz30W/z20G8ByM1Jpe70izwXwW10q/wUREREZw4DdKorkiRhIFolM9C5iKiqJh96CJMPPggA8Nz1Rdjf+laVKyIiopJUNo+h4FTX+NGjVuKZ/HE/b9CKSiDeMWNrglnPL5GJiEoMGgMu8lyEizwX4eaVNyORTWDH+A5lhvqeyT04EjmCI5EjeOzAYwCAha6FWO2Rw/TljcvRZG5S+SmIiIhOH787oLoymZpEPBuHAAFem1ftco6PHeiqCf73f2P8W98GADR/8hNwvec9KldERFRfSot1DgaSGAwmMFQKx4sd5ePR9Anv4bEby4Lxzga5o7zDZUaTzcDZvUREp8msM2N9+3qsb18PAAinw3h57GVs923HttFtOBQ6hAPBAzgQPICf7f0ZAKDJ1ISlDUvLXs3mZjUfg4iI6KQxQKe6MhCRu89bLa0waAwqV3MC7EBXReiXv4Tvri8BABpuvBEN11+vckVERLWnNGZFGbESSCgd5YPBBIaDSeROMGfFatDC65oas9LZMBWWtztNMOo4e5yIaC44DA68qfNNeFPnmwAAk8lJvDj2IraPbsfLYy+jL9yHieQEnh16Fs8OPat8rtHUOBWou5diWeMyhupERFSRGKBTXama+ecAO9BVEP7d7zD6uc8DANzXXoumWz+uckVERNUrkcmVjVgZLAXkxf3ECcas6DQC2p0mdBS7yDtc8niVDpcckjvNOnaRExFVoAZTAzZ1bcKmrk0AgEQ2gX2BfdgzuUd59UX64E/6sWVoC7YMbVE+e3SoXupU5//viYhITQzQqa5UzfxzgB3ocyyyeTNGPv0ZQJLg+pd/RvMdn+IX6kREx5HJFTASSmIomCyG41NjVoYCCUzGMye8R4vdoATiXrcZHS6T0kXOxTqJiGqDWWfGBS0X4IKWC5RjiWwC+4P7y0L13nDvrKF6g7FhxviXFnMLv1YnIqI5wwCd6kqpA70qAvRSB3ouCeTSgLbCR85Usegzz2D4E58ECgU43v0utNx5J78gJ6K6l8kVMBqWA/KhYEIOygOJ4vskxqIpSMefsgK7UVu2SGeHywQvx6wQEdU9s86M85vPx/nN5yvHEtkEDgQPYPfk7rJQfTI1ib8N/w1/G/6bcq3b6C4L1Jc1LGOoTkREZw0DdKorVRWgGxwABACS3IVua1G7opoU27IFQ7feBuRysL/j7Wi96y4Ioqh2WUREZ91sAfn0fV/kxAG5QSvC6zLB6yqF5KbiqBX55TDp5uZhiIio6pl1ZqxsXomVzSuVY8lcEvsD0zrVA3vQG+pFIBXAc8PP4bnh55Rr3UY3ljQskeepNyzDQtdCtNvaIQr82p6IiN4YBuhUNyRJwmB0EADQaauCGeiiCBjtQCosz0FngH7GxV94AUMf/RiQzcK2aRPavvY1CBp2QxJRbcjmCxgNpaa6x5WQ/PQC8vKtvN9o1bPbj4iIzhqT1jRrqH4geEAJ1XdP7lZC9a3DW7F1eKtyrVFjRI+zB+c4z8E5znMw3zkf5zjPQaullX9+ERHRSWOATnVjPDGOZC4JjaBBu61d7XJOjtEpB+icg37GJV56CYMfuRlSOg3rZZeh/Zv3QNDyf4lEVD1y+QJGwyk5GA/M7CL3RVIoMCAnIqIaY9KasKJpBVY0rVCOpXKpspnqeyf3oi/ch1Q+pRybzqKzYL5jvhKol8J1LlhKRESzYVpEdaO0gGibtQ06sUp+pNzkBEL9cgc6nTHJV1/F4IduhJRMwrLhH9B+779D0FXJvxNEVDcKBQnj0bSyQGdpBnmpk3w0nEL+BAk5A3IiIqoHRq1xRqieK+QwFB3CodAhHAodwuHQYRwKHcKR8BHEs3Hs9O/ETv/OsvsKNMgiAAAgAElEQVTY9LayTvXSfoOxgX9eEhHVMQboVDdK88877VUwvqXEWFxIlB3oZ0zy9d0Y+OCHUEgkYF67Bt7vfheiXq92WURUhyRJwmQ8MxWOBxMYnNZJPhxMIpMvHPceek0xIHfLwXgHA3IiIiIAgFbUosvRhS5HF948783K8Wwhi4HIAA6GDuJw6DAOhw7jYPAgBqODiGai2DG+AzvGd5Tdy2VwYb5T7lhf4FygBOzO0vdrRERU0xigU90YiMgd6PNsVbCAaImp+AUZO9DPiNT+/Ri8/noUolGYVl2Ijv/4D4hGo9plEVENCyeyxY5xORwvdY+XQvNkNn/cz2tEAW1OI7zOqQU6vdMW6myyGiCKDMiJiIhOlk7UKWH4dJl8Bn3hvrJu9cOhwxiMDiKYDuKlsZfw0thLZZ9pNDXOCNUXuBbAorPM5SMREdFZxgCd6saRyBEAwDx7FQXo7EA/Y9KHD2PgA9chHw7DtGIFOh74IUSzWe2yiKjKlbrI+/xx9E7E0OuPo28ijsHiHPJoKnfczwsC4LEbp7rHp3WSd7hN8NiN0GrEOXoaIiKi+qXX6LHIvQiL3IvKjidzSfSF++RO9Wld68OxYfiTfviTfmwb3aZcL0BAt6MbSxuWYlnDMixtWIrF7sUw6/i9BxFRtWKATnVD6UCvpgC91IGeDKpbR5XLHDmCgWs/gHwgAOPSpej40YPQWNkVQkQnL5nJ48hkHL0TcfT5Y+idiOOwP46+iRgiJwjJG60GORR3m9FRHK3S4Za3bU4jDFrNHD0FERERnSqT1oSlDUuxtGFp2fF4No7eUG/ZjPWDoYMYT4yjN9yL3nAvft/7ewCAKIjocfQo91nWsAyL3Itg0prUeCQiIjpFDNCpLhSkAgajgwCqdAY6R7ictszQEPqv/QByExMwLFqEjocfgsZuV7ssIqpA+YKEkVCy2EVe7Cb3y6H5cCh5zM8JAtDuNKG70YL5TVZ0NZgxr8GizCE36RmQExER1RqLzoLlTcuxvGl52XF/0o89k3uwZ3IPdk/uxh7/Hownx5Wg/XeHfwdADtXnO+djqXspljXKneqLXItg1HLEJBFRpWGATnXBF/chU8hAK2rRamlVu5yTZ3LJW45wOS3Z0VEMXHMtcj4f9PPno/ORh6F1udQui4hUFkpkcHgiroxdKYXkfZNxZHLHXrTTYdKhp8mCnkZrcWtBd5MFXQ0WGHUMyYmIiEiei77BuwEbvBuUYxOJialAvbj1J/04GDyIg8GDePzw4wAAjaDBOc5zlC71ZY3LsMC1AAaNQa3HISIiMECnOtEf6QcAeK1eaMUq+teei4ietuz4OPqvvRbZ4WHo5nWi88ePQNvQoHZZRDRHMrkC+ifjODwRR68/hr6JuNJRHohnjvk5vUbEvAYzepos6J4WlPc0WeG26OfwCYiIiKhWNJmbcIn5ElzScQkAeQ2V8cT4jFA9kApgf3A/9gf34zeHfgMA0ApaLHAtmBr/0rgMC5wLoNfw6xIiorlSRUki0emryvnnABcRPU25yUkMfOA6ZPsHoGtvx7yf/AS65ma1yyKis6BQkDAUTGL/WBT7fRHsH4thvy+C3ok4cgXpmJ9rdRiLIbncUd7dZMH8RivaXSZoRGEOn4CIiIjqjSAIaLG0oMXSgn/s/EcAcqg+lhjD7snd2O3frYyBCaaD2BvYi72BvfjVwV8BALSiFgtdC6c61RuW4RznOdBpdGo+FhFRzWKATnWhPyp3oFfV/HOAHeinIRcMYuAD1yFz+DC0Hg86f/oT6FqraGwPER3TRDSNA2NR7PNFccAXxb6xKA6ORZHI5Ge93mrQlnWQdzdalNDcrOeXQERERFQ5BEGAx+KBx+LBZZ2XAZBD9dH46FSXun83dk/uRiQTUQL2X+KXAACdqMM5znOw2L0Yi9yLsMS9BIvci2DRWdR8LCKimsDvHqkulEa4dNm71C3kVLED/ZTkIxEM3vBBpA8cgKapEfN+8mPovV61yyKiUxRL53BgLIr9vqnXgbEoJo8xekWvEXFOsxWLPDb51SJvWx1GCAK7yYmIiKg6CYKANmsb2qxteMu8twCQQ/Xh2HDZ6Jc9/j2IZqNKp/p0nbZOLHYvxpKGJVjkWoQlDUvQaGpU43GIiKoWA3SqC6URLlXbgZ5LArk0oOXiMceSj8Ux+MEPIbV7NzRuN+b9+MfQd3WpXRYRHUcmV0CvP1YWlO8fi2IomJz1ekEA5rnN00JyOxZ5bOhqMEOrEee4eiIiIqK5JwgCvDYvvDYvNnZtBDAVqu8L7MPewF7sD+zH3sBejCfGMRAdwEB0AH/s/6Nyj0ZTIxa7FyuvJe4l8Nq8EAV+PUVENBsG6FTzcoUchqJDAIB5tiqbgW5wABAASHIXuq1F7YoqUiGRwOBNNyL52mvQOBzo/PEjMJxzjtplEVFRaU75Pl9kagTLWPS4c8qbbYaybvJFHhsWNNtg0mvmuHoiIiKiyjY9VH/zvDcrxwOpAPYF9smvyX3YF9yHI+Ej8Cf9eG74OTw3/JxyrUVnwSLXorJgnXPViYhkDNCp5o3GRpGTcjBoDGixVFkALYqA0Q6kwvIcdAboMxRSKQx+5GYkX3oZos2GjocfhnHRIrXLIqprY5EUXukP4pWBIF4ZCGHvaOSYc8ptBi0WeWxY6LFhsceGhS1yaO6y6Oe4aiIiIqLa4ja6sa5tHda1rVOOJbIJHAgeULrU9wX24WDwIOLZOF4ZfwWvjL+iXKsVtZjvmF82AmaxezGseqsaj0NEpBoG6FTzSguIdtg6qvNH0oxOOUDnHPQZCpkMhj72MST+/neIZjM6f/QgTOcuU7ssorqSyRWwZzSiBOY7BkIYDs0cwaLXiJjfbFVC8sXF0LyNc8qJiIiI5oxZZ8bK5pVY2bxSOZYr5NAX7pvqVi+Ogolmotgf3I/9wf14/PDjyvUdto6yTvVuRzfaLG3QiPxJQSKqTQzQqeaVFhDttFXZ/PMSkxMI9csd6KSQslkM33Y74lv+BsFkQseDP4Rp5coTf5CI3pDxSErpLH+lP4hdw2Gkc4Wya0QBWNhiwwXzXLig04UVXge6Gy2cU05ERERUgbSiFgtcC7DAtQBvn/92APJc9dH4aNlM9X2BffDFfRiMDmIwOog/9f9JuYdBY8A8+zz0OHrQ4+hBt7MbPY4edNm7oNfwJwuJqLoxQKeaV1pAdJ69yuaflxiLC4myA10h5XIY/uSnEHvmGQh6PTp+8B8wr1qldllENSebL2DPSKQsMJ+tu9xp1uH8Dicu6HThgnkurOhwwmrglxhERERE1UoQBLRZ29BmbcNlnZcpx0OpEPYFp2aqHwwexJHwEaTzaRwIHsCB4IGy+4iCCK/VWxaq9zh60O3ohk1vm+vHIiI6LfzulmpeqQO9agN0UzFAZwc6AEDK5zHy2c8iunkzoNPB+/3vwbJ2rdplEdWE8WgKr/SHsGNAHseyc2hmd7kgAItabDi/04ULOp24YJ4LPY0WjmEhIiIiqgNOoxNrWtdgTesa5Vi+kMdIbAS94d6yV1+oD9FsFAPRAQxEB/DXob+W3avZ1FwWqvc4etDj7EGDsYFfWxJRRWGATjVPGeFir9IRLuxAV0iFAka/8AVEfve/gFYL73fuhXXDBrXLIqpK2XwBe5XZ5SG8MhDEUHBmd7nDpMP5ncXu8k4XVnQ4YDPqVKiYiIiIiCqRRtSgw96BDnsHLum4RDkuSRL8Sf9UqB7qRV+4D73hXkwkJzCeHMd4chzbRreV3c+mt6HbcVSw7uhBm5Vz1olIHQzQqaZl81mMxEcAsAO92kmShLGvfAXhX/4KEEW0f/Me2C677MQfJCIAwEQ0XRzFEsSO/hB2DoeQyh6/u/z8Trm7XBTZAUREREREp0YQBDSZm9BkbsLFrReXnYtkInKYPi1U7w33Yjg2jGgmip0TO7FzYmfZZ6bPWe92dMNr88Jr9aLd2o4mcxNEgevtENHZwQCdatpQbAgFqQCT1oQmU5Pa5ZwepQM9qG4dKpIkCeNf/waCj/43IAho+/rdsF9xhdplEVWsYDyDXcNh7BoO47XBEHYNhzEaTs24jt3lRERERKQGu96OFU0rsKJpRdnxdD6N/ki/MgKmFKwfb846AOhFPdqsbWi3tsNrk0P1dms72m3t8Fq9cBgcc/VoRFSDGKBTTSstINpp66zeGWqm+h7hIkkSJu79DgI//SkAoPXLX4LjHe9QuSqiyhFJZfH6cBg7h8LYNRTGzuEQBgMzR7EIArCw2YYL5jmLHebsLiciIiKiymLQGLDQtRALXQvLjh89Z/1I5AiGo8MYig3BF/chU8jgSOQIjkSOzHpfm86Gdlu7EqyXQnav1Ys2axuMWuMcPB0RVSsG6FTTqn7+OQCYXPK2Tke4+O+/H5MPPggAaPn85+B897tVrohIPYlMDrtHIkpX+a6hMHr98Vmv7W604DyvA8vbHTjP68SyNjssBv6xT0RERETV51hz1gEgV8jBF/dhODaM4dgwhqJDGIoNye+jw5hMTSKajWJfYB/2BfbNev9GU6M8DqYYsnutXiVkbzG3cPY6UZ3jd9JU0waicgd61c4/B+p6EVH/Dx+E/7vfAwA0f/oOuP/lX1SuiGjupLJ57B2NYOdQsbt8OIRD4zEUpJnXel0mnOeVg/Lz2h1Y1u6Aw8RRLERERERU+7SiVp6HbvPOej6ZS2IkNjIjWC/tx7Nx+JN++JN+vDrx6sz7C1p4LB5lHExpgdP5zvnwWDycvU5UBxigU00r/fhWVQfodbqIqP+BBzDxnfsAAE233YaGa69VtyCisyiTK2C/L4qdwyF5DMtQGAfGosjNkpZ77EYs9zqwwuvAcq8Ty9sdcFv0KlRNRERERFT5TFoT5jvnY75z/oxzkiQhnA5jODaMwdgghqPDSid76ZUr5DAUk8P3bdg2497TA/UeRw96HD3w2rzQiozciGoF/2ummlaagV7VAXoddqBP/OAHSud50623ovHGD6lcEdGZk8sXcGgihp2DYSUw3zsaRSZfmHFtg0Uvj2HxOuXAvN2BZjvnMxIRERERnQmCIMBpdMJpdGJZ47IZ5/OFPCaSExiKyt3qg9FB9IX7lDnsyVwSeyb3YM/knrLP6UQd5tnnTYXqzh7Md8zHPPs86DVsfiGqNgzQqWal82n44j4A8iKiVavUgZ5LArk0oDWoW89ZNvH9/4D/+98HADTdfjsaP/RBlSsiOn2hRAZ7R6PY54tg72gE+3xR7PdFkc7NDMsdJl3ZzPLzvA60OozVuwAyEREREVGV04gaeCweeCwerMKqsnPZQhZD0SH0huSFTQ+HD6M31Iu+cB9S+RQOhQ7hUOhQ+f0EDTpsHeh2dJeF6932bph15rl8NCI6BQzQqWYNRgYhQYJVZ4Xb6Fa7nNNncAAQAEhyF7qtRe2KzgpJkuD/3vfh/8EPAADNn/g3NNxwg8pVEZ2cXL6APn8ce4oh+b7RCPaORuGLpGa93mrQ4tx2O84rjmBZ4XWiw21iWE5EREREVCV0og7djm50O7pxGS5TjhekAkZiI+gN95aF632hPkSzURyJHMGRyBH8ZfAvZfdrs7Shx9lTNg6m29ENh8Ex149GREdhgE41qz/aDwDotHdWdyglioDRDqTC8hz0GgzQ5fD8e/D/4H4AQPMnP4mG669TuSqi2QXiGewdneoo3zsawcHxGDKzdJUDQIfbhMUeO5Z4bFjcasdijw1dDRaIYhX/f4mIiIiIiGYlCqKyqOkG7wbluCRJmEhOyIF66LASrveGexFIBTASH8FIfATPDT9Xdr8mU5MyV91j8aDV0opWSys8Fg9aLC0waGr7p9SJKgEDdKpZyvxzWxXPPy8xOuUAvQbnoEuShIn77sPkAz8EADTfcQcaPnCtukURQV7Ys9cfw77RKPb65I7yfaMRjEfTs15v0WuwqBiSL2mVA/OFHhvsRt0cV05ERERERJVGEAQ0m5vRbG7GmtY1ZeeCqaASpitd66HDGEuMYSI5gYnkBLb5ts163wZjgxKsl8bNTA/ZG0wNEAVxLh6RqGYxQKea1R+Z6kCveiYnEOqXO9BriCRJmLj3O5h88EEAQMtnPg33NdeoXBXVo4loempO+WgUe31RHBqPIpuXZr1+XoMZSzx2LG61YbHHjqWtdnhdJnaVExERERHRKXMZXbjQeCEubLmw7HgsE1MWLR2JjcCX8GE0NorR+CjGEmNI5pKYTE1iMjWJ3ZO7Z723VtTCY/YcN2S36q1z8ZhEVYsBOtWsUoA+z14jHehATXWgS5KEiX//d0z+6CEAQMtnPwv3+9+nclVUDyZjabx4JIBXBkLKKBZ/LDPrtTaDVgnJF7fasKTVjkUtNlgM/OOTiIiIiIjOLqveiuVNy7G8afmMc5IkIZwOYzQ+Cl/cp2xL+6PxUUwkJ5Ar5DAUG8JQbOiYv45NZ4PH6oHHPDNkb7O2ocXcAo2oOZuPSlTRmABQzVJGuNRCgG4qBug10oEuSRLGv/UtBB5+BADQcuedcP/r/1G5KqpVI6EktvcFsP1IANv7Ajg0HptxjSAA3Q0WOST32JVZ5V4XF/YkIiIiIqLKIwgCnEYnnEYnljQsmfWaXCGHicREWcg+Gh/FWHxMPpbwIZwOI5qNIhqM4mDw4Kz30YpatFna4LV50W5tl2e8W73KrHe73n42H5VIdQzQqSYlsgmMJ8cB1EiAXkMd6JIkYfyebyLw4x8DAFo+dyfc/4fhOZ0ZkiShzx8vC8yHgskZ1y1qsWFVlwvL2x1YXOwqN+nZUUFERERERLVDK2rRam1Fq7X1mNcksokZnevT34/ER5Ar5DAQHcBAdGDWe9j19qlgfVq43mHtgMfqgU7kulBU3RigU00ajA4CABwGBxwGh8rVnAE10oEuSRLGv/4NBH76UwCA5wufh+uf/1nlqqia5QsS9vui2N43WQzMg/DHyhf51IgCzm2zY3W3Gxd1yS+XRa9SxURERERERJXDrDOjx9mDHmfPrOfzhTwmkhMYjA5iKDqE4diwPBImKr8mU5OIZCKIBCLYG9g74/OiIMJj9pSF69PDdpfBxZ/6pYrHAJ1qkjL/3FYD3edATXSgS5KEsbvvRvD//ScAwPPFL8L13qtVroqqTSZXwOsjYbnDvC+Al44EEEnlyq7Ra0Ws7HDi4mJgfsE8F6ycWU5ERERERHTKNKJGmYl+keeiGecT2YQcqs8Srg/FhpDOpzESH8FIfATbfdtnfN6sNc86Gqbd2o4WcwsXOKWKwESBalLpx4o67Z0qV3KGlDrQk0F16zhNkiRh7KtfQ/BnPwMAeL50F1zveY/KVVE1SGby2DEYVALzVwaCSGULZddY9Bpc2OVWAvPzvA4YdRzHQkREREREdLaZdWYscC3AAteCGeckSYI/6cdwbFjuYD8qXB9PjCORS+BA8AAOBA/Men+LzoIWc4v8shy1Lb4cBge72OmsYoBONanUgV4zAbqxeke4SJKEsS9/BcFHHwUEAa1f/hKc73632mVRhYqksnj5SBDb+gLY3jeJXcNhZPNS2TUusw4XdbmxutuNi7sbsKTVBq1GVKliIiIiIiIimo0gCGgyN6HJ3ISVzStnnE/n0xiJjSiBeilcH44NYyQ2gmg2ing2jt5wL3rDvcf8dQwaw8xg/aiw3W10QxT4fSOdHgboVJNKAXqXvUvdQs4Uk0veVtkIF6lQgO/LX0bov38uh+df+TKc73qX2mVRBRmPpPByfykwD2CvLwKpPC+Hx27E6u5SYO7G/CYrRJHdBURERERERNXMoDGg29GNbkf3rOcT2QTGEmPyK37UNjGG8cQ4AqkA0vn0cRc5BeQFVZtNzccN2RtNjdCKjEppJv5bQTWp5jrQq3ARUalQgO9LX0Lo57+Qw/OvfhXOq65UuyxSUSqbx+6RMHYMhLBjIIRXB0MYDiVnXNfVYC4G5g24uNsNr8vEH8cjIiIiIiKqM2ad+bgBOyB3sY8nxsuC9elh+3hiHBPJCeQKOWUW+7GIgohGYyM8Fo8Sqpf2PWZ5DjxD9vrEf+JUc2KZGAKpAAAuIqoWqVCA74t3IfTYY3J4fvfX4HznO9Uui+aQJEkYCCSKYXkQrw6GsGc0MmMciygAC1tsSof56i43mu1GlaomIiIiIiKiamLQGNBh60CHreOY12QLWUwmJ+GL+2btYi8F7Tkph/HkOMaT44B/9nuJgohGUyM8Zobs9YT/NKnm9Efl7nO30V07qzWXOtBzSSCXBrQGdes5DqlQgO8LX0Dof34JiCLavn43HO94h9pl0VkWSWWxczCshOU7BkMIxDMzrmu06nF+pwsrO5w4v9OJ87xOWA38o4iIiIiIiIjODp2og8cih9vHUpAKCKQCcsgeH4MvUb4tBe65Qg7jiXGMJ04iZLd4pgL2o7YM2asL/0lRzRmIyDOv5tlrpPscAAwOAAIASe5Ct7WoXdGspEIBo5/7HMK/+rUcnn/j63C8/e1ql0VnWL4g4eB4VB7DMhDCjsEgDo7HZswu12tELGu34/wOF1Z2OnF+h5PjWIiIiIiIiKjilELvRlMjzm08d9ZrjhmyFzvbfXHfVCd7KWQ/zq/XZGpSOtebzc1oMDXAaXCWv4xOOAwO6ETd2Xp0OgkM0KnmKPPPbTUy/xwARBEw2oFUWJ6DXoEBupTPY/TOzyH8m9/I4fk998DxT29Tuyw6A/yxdHFmeRA7BkJ4bTCEeCY/47oOt0kOy4vd5Uvb7DBoNSpUTERERERERHRmnWzIPpmcVAJ1ZTstcC+F7KWu9p3YecJf26azwWmcGa67DC44DA64jK4Z4btOw9D9TGGATjWnJjvQAXkOeipckXPQpXweo//3ToR/+1tAo0H7N++B/a1vfcP3jYfTmByOQafXwGjVwWjVwWDWQRTZwXy2pHN57BmJyGNYit3lg4GZC31a9BqsKAblK4uheZOtckcLEREREREREZ1toiCiydyEJnPTMUP2fCE/1ck+rXM9mA4ilAohlJZfwXQQkXQEEiREs1FEs1EMRgdPuhaLzgKnoRiyGx1wGVyzBvCN5kb0OHrO1G9BTWKATjWn1IFecwG6yQmE+uUO9Aoi5fMY/exnEX78d3J4/q1vwn7FFad8n3y2gImhKMZ6I/D1heHrDSMWSM+8UAAMZi1MVj2MFi2M07Ymqw5Gixy0l7Ymqw4GsxaiRjwDT1t7svkCXu4P4i/7x7G9L4DdwxFk8oWyawQBWNBsxfkdLjkw73RiQbMNGv5FBhEREREREdEp0YgaJWRfjuXHvTZfyCOSiUyF6qkgwumwHLanQ+WBe/FcOBNGQSogno0jno1jODZ83F9jkWsRfvmOX57JR6w5DNCp5pQWEa25AN1YXEi0gjrQpXweI5/+DCL/+79yeP7tb8O+aeOJPydJiAXT8PWGMdYXga83jInBKAq58iHaggA4W8zI5yWkYllkkjlAAtLxHNLx3CnVajBrlWC9LGhXjulhtGphtOiLx2o3dB+LpPDX/eP46/4JPHfQj2i6/PfSbdHj/Gnd5ed1OGA38ke/iIiIiIiIiOaSRtTAZXTBZXSd9GcKUgHRTBTBVHDW4D2cDped67TX0Ajks4QBOtWUcDqMcDoMAOiwdahczRlmKgboFdKBLuVycnj++98DWq0cnm+8fNZrc5n8/2/v3uPjrOv877+v65pDZpKZSdo0CWmatpSeWIQeOFXOUkTXdUVhRekK6+7e3o/fFna14oFbRfzdPsRbdxVdDrq/x2/BVbH82F3WRRGFQstBxNJSQKCVltKUHpKmTTLJnOe6rvuPa2Yyk0wPKW0nSV/Px2O4Tt/rmu+06UX7nu/1+aqna7AUmHe/OaDEQHZUu7oGv9pOjal1dlRts6NqmRVVoG74NmXbjjKJvNJDOaUTWaWGcoX1wnIop1TZejqRUybphcOZZF6ZZF4DGl2O5GCC9T6FIwGFCq9wNKBQxF9YDm+HIgH5g9a4nRwzbzt6cWe/ntzsheav7YlXHJ9aH9Al86bpwrnNWjqzSZ1TwuP2swAAAAAAgIMzDVOxYEyxYKzWXZk0CNAxqRTLt7SEWhT2h2vcm2NsHI1Ad/N57f78FxR/5BEvPP/udxS94grvmOsq3pseDsu3D6h355AcZ8ToctNQc0eD2mZH1XpqTG2nRhVtDh0yuLUsU+GoF1xL9UfUV8d2lEnmR4ftiZy3rxS4Z5VO5JUaynqhe9lI9769ycO+j89vKlQWrIcLwXooGvBC+LLwvS7sl3Gcy5/0DKa1bss+rf3jPj39x32Kp4dHmRuGdFZHoy6dP02XzW/Ru6bHqCsPAAAAAABQBQE6JpVigD4pHz8ZJyPQ3Xxeuz73OQ3+6lHJ71frP35X8c4leuPRt7T3TS8wTw3mRp0Xjga80eWnRtU2O6ZpMyPyB6zj3l/TMksjyI+U47jKJHJKDeaUHMwqNZhVMu4tU/GskoO54X3xrPI5R/mco8H9aQ3uTx/2+oZpKNTgL4TtI4L2SECW35Bju94r78gurttOab+dL1u3Hdl5R/vjGXX3p7UvnlYilZcp72uGD7imAmadokGfGvyWQj5Txh7J3rlPG37drfW2K9t2ZfkMhaNB1ccCCscCqo8GvWUs6H0pUFj3143f0fYAAAAAAADHEgE6JpWuwS5Jk7D+uTQuRqA72ay23Pw/teelPg0suE6pBReo/78k132xop1pGZrWGVHbbC8wb50dVWRK3YQJXU3TKIXuU45gpHs2nVeqPFQvhe65yu3BrDKJvFzHVTLutd1/6Lk8xsyS1FZaK2NLytnKy9bgQc7NZ7xR9317Eod8D1/AVDhWCNrLA/dYZeBeV3/8R9oDAAAAAAAcTwTomFQYgX7s2XlHb6zv1hvr92rPa93K6T3SwsLBQlcamoLDtctPjal5RoN8/uM/uny8CNT5FKjzKTYtdNi2dt5Remg4WAaj2DQAACAASURBVE+WQvdcYXR7Vo7tyLRMWZYh0zJl+gyZliHTNNSXzmt3PKWd/Sl1D2VkS3IMLx8P+E3NbmnQ3LaI5rdHFav3y7JM71zLkOnz1kvXLSytwvXzOccL9geySgxklBzIKjmQUWLA62NiIKNc2lY+6yi+L6X4vkPXkzcto1RypxS4j1xGgwpH/ZN2wlYAAAAAADCxEaBjUumKnwwj0PtOyNtlUnm9+vQuvfzE20r0Zwp7AzLtrJpbA2pf3Km2U6NqnRVTQ1PwhPRpMrB8puobg6pvPLJfs75EVk+9sU9rt+zTuj/u04FE2eSrIelP2qOlWuaLZjTK9w6D6Knthz6ey9ilcL0UsseHQ/Zi4J4eysmxXQ31ZTTUl5EOOu7dq8neMKVOsWkhRaeFFGsODa9PC1VMJAsAAAAAAHAikUpg0nBdtzQCfWZkEgbooRNTwmWoL62X1uzUq8/sVi5tS5KCbkrTtz+mqYNbNf8bn1PsskuOax9OZo7j6g+7B7R2yz49uaVHL+3sV/n8q5GgTxfNa9al81t06bxpaonWndD++YOWGlvCamw59CS9dn7EaPZ4lVHtAxklB3NyHXe4fvzm0V8QhSJ+RUeE6rFmbz0cDUyY0kAAAAAAAGDiIUDHpHEgfUBDuSEZMjQjOqPW3Tn2Qk3e8jiVcOl9e0ibHuvSG+u75RQS28bmgDr++LCaX3lEVtCnjn/+vhouuui4vP/JbOeBpH67rVfPbN2v327t1f7yUeaSFrRFdOn8Fl02f5qWzGySfwKUO7F8piJT6hSZcuiA33FcpeJZDexLaWBfSvHe1PD6vpTShclcU4M5dW+PjzrfF7QUa64rBezlIXtkSh2lYQAAAAAAwDtCgI5JoziBaFt9m4LWJCwpchwmEXVdV29v6dOm33Sp67UDpf3tcxt1+qyM9O3Pyunvk6+lRR13363QGX9yzN77ZNaXyOq32/br2W29enZrr3bsT1Ycrw9YunBuYZT5/Gk6JXb42uoTlWkapZI27XMbRx3PpPKK7yuG6klvvRCyD/VllM/Y2r8rof27Rk98apiGIlOChVA9PKo0jD948tTpBwAAAAAAR4cAHZPGpJ5AVBou4ZJPSfmM5Dv6Lwkc29HWjT168Tdd6t05JMmrQz1nSYsWXdGp4IbHtee226RcTnVnnKGOu+6Sv7XlGHyIk1Mqa2v9Wwf07NZePbutV6/ujsstK8timYYWzWjUBac168LTmrVoRqMCPkZOS1Iw5NO0zoimdUZGHbNzjuL7K0eux0sj2dOy847ivWnFe9PS66NLw9Q1+GUVfp0rqsAYxYUxvF5x3ChvJhkaVUamavuya9XHgoq1hBVr8cL8xpawIs11shgxDwAAAADAuEKAjkmjNIHoZKx/LknBmLzIzvVGoUdax3yJbDqv15/do5fW7NTggbQkyRcwtfDd7Trr8hmKTgmo55++oz3/+q+SpMj73qf2278hMzR5R0AfD3nb0Su7BvTs1l49s7VXG3f0K2s7FW3mt0b07tOm6sLTmnXu7CmK1Plr1NuJy/KbamqrV1Nb/ahjruMqMZCpKAcz0DscsGeSeaWHcjXotWf/roRU9tSH5I2Yj06tKwXrjS0hxVrCamyhHA0AAAAAALVCgI5JY9KPQDdNqS4qpQekva+MKUBPDGT08pNv69WndimTzEvyJmZ816UdetclHapr8MseSujtG2/S0JNPSpKaV65U88q/k2ES2h2O67ratm9Iz27dr2e29up32/ZrMJOvaNMeq9MFpzXrgtOa9e45U0/45J8nG8M01NBUp4amOk2f1zTqeDqR01BfWq7j/f4VlVZdyZVbWh993B0+VDruDh8aeapbuppc29VQX0b9PUkN9HilaQZ6UsrnnFLgr1cr+2uahiLNdWoshethr+Z7S1iRqXUyTSZSBQAAAADgeCBAx6RRrIE+Kzqrth05nua8R3r1IenBG6Tr/o8064JDNu/bm9CLj3Vpy/N75eS9+C7WEtKi5Z1acH6bfAGvBnRu1y7t/B9/p8wf/ygjENApt39DsQ984Lh/nImsO54ujTB/dmuvuuOZiuPROp/ePadZF8z1yrLMmhoeVeYDtVNX71dd/fgZ9V8cMd/fk9JAIVjv70mWAnU753hhe09q1LmmZSjaXBixPq0sYG8JqWEK4ToAAAAAAO8EATomBdd1J/8IdEn60F1S8oC0fZ30k6ulj/9MmnNZRRPXdbVn64BefKxLb73cW9rfdmpMi9/bqdlnNssoC9SSG1/U2zfdJHv/flnTmjXjzjsVOuusE/aRJop4OqffbdtfqGO+X1t7hiqOB3ymzpnVVKpj/iftMVkElzhC5SPmO+ZXjph3HVdD/RkN9CRLAXt/z3BpGjvvqL87qf7upKT9FeeaPsObPLUQqNdHg/LXWfIHC686S4Ggr7TuD1oK1FmUiwEAAAAAoIAAHZPCvtQ+pfIpmYapjoaOWnfn+AnUS9c9ID3wCWnrY9L910rX/kSa9145jqvtm/bpxce61L097rU3pNlnNmvxe2fqlDmxUZcb+PnPtefLX5Gbyym4cKFm3H2X/KeccoI/1PiUydvauKO/NMr85bf75ZSV8jAM6czpMb27EJgvndmkOr9Vuw5j0jJMQ5EpdYpMqVPHgspjjuNqqC9dKAWTGi4L05PUQG9KTt5V396k+vYmx/Sels+sCNS9gN0L2gPByu3K8H1kGO9t+wImT2AAAAAAACYkAnRMCsXR5+317fJb46csw3HhD0kf+6n04CelLb9U7v6/0paF/6pNf4h5tZPlhV/zl7Vp0eUzDjLBoqN9d3xP+//lXyRJDcsv1/RvfUtmOHxCP8p40zuU0RObe/T4a916+o1epXJ2xfFTm+sLdcyn6vxTp6oxHKhRTwGPaRqKTg0pOjWkGQsrjzmOq6ED6YpyMOmhnHIZW9l0XrmM7b3StrIZb7tY6snOO7KHnGM20aphqBS6lwfygbqyUfB1xbC+uF5YVmlr+RkhDwAAAAA4MQjQMSl0xb365zOjM2vckxPEF1Tq/f9Lr+z4oV7ZMVvpvQFJKQXrfXrXJR1616UdCkerh7tOMqndX/iCBh97XJI09VOf0rRP/8NJOVmo67p6o2dIj7/ercdf69aLO/tVNp+kmhuCuvC0qaXJP9sbQ7XrLDBGpunVRo82hzTj9ClHdI6ddyoD9rRdtswrW9weEbwX2406L+N9CeW6UjZtK5u2lTgWn80ySiF7MXQvBuz+Ol8hdLcUCPkUjgQUigQUjnrLUMQvy3fy3e8AAAAAAEeHAB2Two7Bk6D+eUF/T1IvPb5Trz+3R3ZukSQpYnVrUf3DWvjRD8l/9sUHPTe3Z492/t1KZV5/XYbfr1O+/v8q9qEPnaiujws529H6tw7o8dd69Pjr3eo6UFna4l3TY1q+sFWXL2zRn7RHKTuBk4rlM2X5zGM2warruMplywL3dL4QvNvKpQuBfDGILz9eHtgXQvls2padcyRJju0qk8grk8gfVb+CYV9FqB6O+BWKVgbt4ahfoUhA/qDFfQAAAAAATmIE6JgUToYR6KnBrJ79963a8vu9UmGUdMvMiBYt79CcXf8lc9MvpV88IhlpaekNo89/+WXtXLlS9r5eWVOmqOPOf1Z4yZIT/ClqYyCV07o/7tPjr3Vr7ZYexdPDoVvAZ+qCOVO1/PRWXb6gVW2xuhr2FJhcDNMojBL3SaOnYRgz23YqR7uPCuALwXvKC94zqbxSg1klB3NKxbNKDeXkOq4yybwyyXxh4tVD8/nNEeG63xvVHg2UlqGIX+FoQHVhf8UkzQAAAACAiY8AHZNCsQb6ZAzQXdfVGy906+kH3ijVI555xlQtvqJT7fMavZGRS++Q/AFp/f+SHv57yc5K5/5fpWvEH3lEu2/5f+RmMgrOnauOe+5RoGN6rT7SCdG1P+mVZnm9W7/ffkD5shlAp9YH9J4FLbp8Yasumtus+iC3QmAisCxTVv3Rj5B3HVfpZE6peE7JwawXrsezXrheDNrL9uVzjvI5R4P70xrcnz7s9Q3TUKjBr7oGv0xrOEgfOYK9YrOwUb5veN0YXq84fpDrGYbq6v2qbwyoPhZUfWPhFQuovjHofZEBAAAAABgT/iWFCc9xHe0c3ClJmhmZXAH6UF9a6+7forde2S9Jmjq9Xpf95UK1zo5WNjRN6U+/LfmC0nN3So/cLOUzcpetVO+dd6n3rrskSQ2XXqr2f/xHWQ2jJxad6BzH1aa3+/X4a91a83qPtnQPVhyf29Kgyxe26orTW7RoRpMsRokCJx0v4A4o1BDQFB3+PphN55UqD9VLoXvlvuRgVplEXq7jKhn39o9H/qBVCtTDscpw3Vv3tn0Bq9ZdBQAAAIBxgwAdE153olsZOyOf4dMpDafUujvHhOu4eu3Z3frtf2xVNm3LtAyd/aeztOTKmQef/M4wpPd+3QvRn/4nOY98SbvvfkSDL2yXJE35679Wy2dXybAmTzCSzOb1zBu9WvN6j9Zs7lHvUKZ0zDINnTOrScsXtmr5wlbNap58XxoAOL6K5Wdi0w4/gbCdd5QeyikZzyqdyMl1XcktVdwqrbjlMxW7ZYvC/vLDw8eHG1YcH3E913GVGsop0Z9RYiCjRH9WyYGMEv2Z0gSw/d3Jw5auCYZ9w+F6LKhwY1ANhYA9XBjdHo4FZFlMxgoAAABg8iNAx4RXnEC0I9Ihnznxf6T7e5Ja+5PN2vXHfklS6+yoLvvEAk1tbzj8yYYhXX6rckOO3v7/fqz0ge2SZeqUr31Njddcc5x7fmL0xNNas7lHj7/WrWe29iqTd0rHIkGfLpk/TVec3qpL57UoFj42EyECwOFYPrM0kns8yqbzSg5kvWB9IKNEX9l6f0aJgawS/RnZOadUI/7A7sTBL2hIoQZ/aeS6P2iV9pcW1UrNlI4bVdqXN6zcN1zVxqjYZ/lMBcI+BUM+BcM+BUP+iu1AyHuZPHUEAAAA4ChN/LQRJ73iBKKd0c4a9+SdcWxHL615W88//KbsnCNfwNT5H5qjd13WMaZ/+KdefVVvf2et8gcCsgK2pl/Yq/rYy5J79agwYyJwXVeb9w7q8de8euYvvT1QcbyjKaTlC1t1xemtOmfWFAUONkIfAE5ixdH0ja3hg7ZxXVfZVF6J/mxZsJ4ZtZ0cyMqx3UJ5m5x6dw6dwE9ydAJ1ViFY95eC9WC4GLr7FAz7h/eFfJUhfJ2PyWEBAACAkxgBOia84gSinZGJG6Dv3zWkJ/7tdfXs8Op2dyxo0qUrFhxR2YBy8V//Rru/8AW56bQCc+Zoxv99kQIbvyE9+z0pn5He981xH6Lbjqstewe1oatPL+7o0/PbD2hXf6qizaIZjbri9FZdvrBF81sjoybUAwCMnWEYCob9Cob9mtJ+8LJXruMqncgNh+v9GeVz9nB5mfIqNSNqzoxs41bUuRl9zuhrVpa6yeccZVPeiPniMpPKK5vMKZPKK5/1nlLKpm1l07aGNFzq64gZ3hcQI4P1cCyocDRQ9UUdeQAAAGDyIEDHhFccgT4zOvEmELVzjl549C1t/NUOOY6rQMinC645TQvffcqYQmHXdbX/hz/Uvju+J0mqv/BCTf/ud2RFIlJ7i/SLz0jP/0DKp6UPfNebdHScGEjmtHFnnzbu6NPGrj5t6upXImtXtKnzm7rwtGlavrBF71nYopZIXY16CwAwTEOhSEChSEDNHbXuzaHZ+eGA3QvXc1XCdm/p7c9V7M/nHMmVsinvHB04svcN1FkKx4IKRfwKR72a8aOD9qBCUT+15AEAAIBxjgAdE16xBvpEC9D3vjmgJ368WX17vBqzs89q1iUfnz/m+rlOJqM9X/6K4g8/LElq+sQn1PqFz8vwFf54n/1Jb2LRn6+UNtwn5bPSh+6UzBM/Os5xXL3ZO6QNO/q0cUe/NnT1aWvP6Ef/G4I+Le5s1OLOJi2d2aRzZ01RiNF8AIAxsnxmKew/GnbO8cL0UgjvjWxPD+WUHMwqGc8qFfeWyQFvaeedwoj3pPq7D/8edfV+hWNeH8PRQJWw3RvpXtfgp5Y7AAAAUAME6JjQ8k5eOwd3Spo4AXouY+v5/35TLz2xU3KlUMSviz82X3OWTBtzKZJ8b6/eXnmjUi+9JFmW2r7yZTV97GOjGy66TrIC0n9+SnrpfsnOSB/+oWQd30k2hzJ5vbSz3wvMu7xR5vF0flS72c31WtLZpCUzG7V0ZpPmtkRkERIAAGrM8psK+70g+0i4rqts2lZyIOOF6iNew2F7RsnBXKkcTjqRk3SISVvlVWCra/DL8pkyLUOGacg0jRHrZccsb19pvbBtmoaMkeuWWeVaI65jaHiCV8Mr+VOa0LVsu3wCWcMsTBhbameUJpOt3D/yeoVrGZLPb8of9MkftOSvs7xlwKIuPQAAAE4YAnRMaHsSe5R38gqYAbXVt9W6O4e1c/MBrf3JZsV705Kk+ee36cJr5qquYexBdnrzZu38H3+n/J49MqNRdXzvDtUvW3bwE951jRei//tfS3/4D8nOSlf/q+Q7ulF5I7muq64DyVJYvmFHv7bsjcsZUdu2zm/qrA4vKF/S2aTFnY2a2jC2UfcAAIxHhmF4NdJDPjW1HbyOvFSoJZ/MlUauV74yw2F7PKvUUE6uK6UGcyfok4xzhuQPWBWheqCuELIfYl9gZBBf1sbyU0oHAAAA1RGgY0Ir1j+fEZkh0xi///DJJHN69j+26vVn90iSGqYEdemKBZr5J1OP6nqDTzyhXTd/Tm4yqcDMmer4wT0Kzp59+BNP/3Pp2p9I/+cT0usPSw/8pfTRf5P8Y68pns7ZevntgVJg/mJXn3qHsqPaTW8MFcLyRi2dOUULTonIT71XAMBJzjANhRoCCjUENHX6ods6tqPUUE6pwZwc25HjuHJtV47tynHc4W2nuM+p2HadsmOF/a5Tdr5ddr7jyi28R/lxucMTvLqu9x9XKuwvrnhtipO8Vu4vmyC27BzXHb7e8DnD17FzjnLpvHIZW9mM7c0j63pP9OUythQ/Nr8fpmWUhes++fzm8Mh9a3h0f/lI/4pj5SP9D9Wuos3IbUOW31IgZCkY8isQ8kJ+JksHAACoLQJ0TGg74l79885oZ417cnBvbtqndT/bouSAFy6/65LpOv/DcxSoG/sfP9d1deB//2/1/NN3JNdVeNn56rjjDlmx2JFfZP77pI+vllavkN74tbT649K1P5UC4UOetrs/VVGK5dXdceVHDC8PWKbOmB7VkkLt8iUzm9QaZcJPAADeCdMyVR8Lqj52cj+x5bqu8jlHubStXCavbNoL0XOFZbYQtOdK+4eD94rtsvPsvCNJcmy3NNmslKntBy1jmEYhUPcpUHi6oXwZCI/eFwz7FKgrLEM+Wb7jM3DBdQq/H4Vf33zWLq2P3B5ed5TL2soX9+ds+fyWAnWW/CGfAkHL+1x1Pu+pgTqfd6ywDIR8hScHLJkMyAAAACcIATomtK5BbwT6eKx/noxn9dTqP2rbxh5JUmNrWJf95QK1z20c87Vyu3Zp6KmnFP/Nb5R87nfe9T52rdq+9CUZ/qOoY37a5dKKB6X7r5W2PSHd/1EvVA82SJKyeUev7h7Qxq5+bdzRpw07+rQ3nh51mZZIsFSKZcnMJp0xPaqgj8k+AQDAsWcYhle6JWBJOjYl6GzbUX5EqJ7L5JXPOWUj9svWSy+nYkT/6G1vn2u7ssvOKY78t6tuu7JztrIpW9lUvvSkQCaRVyYxeg6ZI2X5zcpwPVQZsAcLoXQ+Vwi1M45ymbxyWecQQbitfNY5Jr8HR8sXMIeD9ZFBe52vMILfW1YG8r5SGR/LZ8rnN2UVnjhgtD8AAKiGAB0T2ngcge66rv74/F49/eAbyiTyMkxDi9/bqXM+MEs+/5GFy24up+TGFzX01DoNrVun7NZtwwdNU6233KKmv1zxzv6SP/si6RMPST+9RnrrafX9y5/p3pnf1m935fTyrgFl85X/KLJMQ6efEtXSmV7d8qUzmzS9McQ/NAAAwIRlWaassKlg+PhOrD5Wrusqn3WUTXmj4rPpvDKpvLLJwjJVtiwcH3ksl7YleWVwkjmvnv7x4guY8gct+QLD9eXL1/0BU77g6GM+v1l6qiCbLjxVMGJZsT81/NRAPuson80qdYzK+BiG92WD5Tfl81uFpemF7AGzLGy3SqF7qU1hWTyvPJj3VbtmoY3lN+XzmTJ9hPcAAIxnBOiY0Io10GdFZ9W2IwWDB9Ja+9PN6nr1gCSpeUaD3vOJhZrWGTnsubmeHiWefkZD69Yp8dvfyhkaGj5omgotXqyGiy9W5IrlCp566lH3MW872rx3UC929WnDjoAS+rL+0b1NTftf1OX7PqUfZb+orBrUFPYXwnKvHMuZHTGFA9wyAAAAjjfDMEphc33j0ZXucRxX2RFh+6jgvbCey9iyCqP7/cHKMLwiCB8VkpvyBywZ5okLf+18ZeCeTeeHtwufJZsaGcIX14fPyWcd2bnhASOuWwzlHWV09CP+j1YxUPfCdcML3H3l2154b/mMUvBese03ZfrKQv/ybb9Xp991NDwHglM5P4LrDs+Z4O3XqHalpT1yf5XrFq4pV/IFLQWKk/nWDZfh8RefDAgWnxAo7AtaMk/gzxQAAIdDGoYJK+fktGtolySpM1LbEeiu4+oPT+3Scw9t8/4B4jN1zp/N0qIrOmUdpD6ja9tKvfyyhp56Sol1Tyn92msVx62mJjVcfJHqL75YDRdcIKtx7KVfJKkvkdWLO/u0cUe/Nuzo00tv9yuZtctadOjj5pf1s+DtOst8U2tbvqP4Xzyozo4ZjIQBAACYoEzTUF29X3X142t0/Ttl+UxZDabqGt7553JdV07eVT5nK5/zAvXi0s576/msN+q9/Ji3HH1Ovnhe1pGdt0cdK792eXgveV8M2HlHSr3jjzUpHD50Hy7Z4x0rC+ELgbyv8LSAWfgCgrr5AICjRYCOCcdxHe0a3KUXul+Q7doK+UJqCbfUrD99exN68iebtWfrgCTplDkxXfaJBWpqqx/VNt/Xp8Qzz3qh+dNPy+7vrzhed8YZarjkEjVccrHqzjhDhjm2v+Q5jqut+4a8yT539GlDV5/e3JcY1S4S9GnxzCYtKZRiOWvGexWNv0f60Z+rKb5ZTf/9Uen6n0uR1jG9PwAAADBRGIYhy++N4D7RU/SWwvt8ZaieL1u3c86hj+dHtCkL/svbFGv6m6ZRqPUub2kaMs2yZaEOvFm+NL0vYyraFdqaRmFZcUwyTbN0rqThyXuLTwJkykr1ZIafIsilbTmOK0nKZ7zJZnWMSvRI3qS8pRH9pRH/VtkI/0JpHV+VUjuHGeFfXpJHhlEafe+6rtzCUo7kqrDtVB4f1fZQ207hHA2vl7dxyq9dOF7a57iF/ZJT7FNZu4r1I9xX/LU1y34WLGv4Z6P4s+X9/JkVP3uldetg22bl+cX1wqv4JYkv4D0RUyy3xEAwAMcaATrGLdd1tSexR1v7t2pr/1Zt69+mrf1b9Wb/m0rbwxNazorOqsn/IG3b0abHurT+F2/JzjvyBS0tu2qO3nXJ9NJjrK7rKvP66xpat05D655S6uWXJWd4tIkZiaj+wgvUcPElarjoQvmam8fUh8F0Tpt29nujy7v69GJXnwbTox85PXVavZYUSrEs6WzS3JaG0Y9F1i2UPvkr6UcflPa9Lt33p9IND0vR9rH/4gAAAAA4qPLwXqFa92Z8cF23rESPN6FvMXgvL9UzHMjnyyYAHh3I2zmnFMhLXvjrBfNSpoafE8eZIfl85aG6N/+AP+B9YVKxLLYphvDlYbx/xLGyfcNfIgx/eeE4bsX6qC80yr68KF9WfuEx8ouS0evFtpIK22VfqJR9meJtu4fe70jSYc53C++jsvcvO+Ztu6X9clwVmheW7nA/y/dXtCt7n7J2pbkpjuKLrJHnlZfJMk3mncDYEaCj5lzXVU+yR9v6t+mN/je0rX9bKSxP5pNVzwmYAc2Ozdacxjm6buF1J6yv+aytZDyrgZ6UfvvQVvXu9OqUd54+RZesmK/o1JDswUElfvuchp5ap8RTTyu/b1/FNYLz5qnhkovVcMklCi1aJMN3+D+G6Zyt3qGMeoey2tYzpA1d3gjzLd2Dpf/ZFYX8lhbNaNSSmd7o8sUzmtRUHziyD9h8mvTJR6Qf/bm0f6t07/u9EL1x/EzSCgAAAGDyMYziiGJLocNPIXVEHMetGNFfGqFfbQT/iFI9xbI6I58KONx53ofxPo9heKOzvazOG5Vf3K/i8ULb8nNUfq4K2+Xnavi6FecW25Qdq1wf2a/KPpb2ldqVX7P69UoBb1lNfceurIdfXjt/eNv7gqP6sbL6/Ae5bun3Jmsrny37ssRVqWSSRj+MDXjBfMW8E+aop1CKP++lp24KP/cV26a8J3HK9pnFP0elJ3PK/twUt0t/zoaf3CltH+RpjNJ64amMkU9yHPTJjmL70lNG4suDo2S47sj47eR211136dvf/rb27t2rs846S//8z/+sc88997DnxeNxxWIxDQwMKBqNnoCeTjyu62p/en8pHC8fVT6YHax6js/0aVZ0lk5rPE1zGufotMbTdFrjaeqIdMhnHpvvf1zHVTqRU2Igq2Q8o2Q8q+RA4RXPFPZ7r2yqcnR3MOzTBX8xV7Obh5R46mkNrVun5MaNUn64nREOq37ZMjVcfLEaLr5I/lNOkeu6iqfzXig+mNH+RLYUkPcOZbS/Yj2roczBJzKaMSVUMbp8QVtEvnda36+/ywvR+7ZLsRleOZepc97ZNQEAAAAAOA5s25GdHZ67IJ91vPkNsoXt3Ihlxf6DtC2/XnFOhJxT5QuSg3wRcch9B/lC41BfWBS+XJFGfPEilf5jmCp96XLQdsX3LDUo7i5vN3p/+TFDKpRpqrz2yGuUvvAxRm4XV0Z8MVS2X66q/LrlBgAAEpZJREFUfok18surg5a4KvvCzLGJPotKIXtZWD+tM6IP3rSo1l074caS5RKgl3nggQd0/fXX6wc/+IHOO+883XHHHXrwwQe1ZcsWtbQcusY2AXql/nR/KSAvH1Xel+mr2t4yLHVGO0cF5Z3RTvnNo5sgKJe1C0F4phSAJ8rWS8cGc14NuiNk+QyFI35Ni2W1IPk72c+sUW737oo2+ekzFD/zHO1esERvts9VT8rV/kSmFIjvH8oqazsHeYfqApap5oaA2htDWlIIy5fMbFRLpG5M1zli8d2FkehvSJFTpOv/W5o27/i8FwAAAAAAwHFQ8dTCiDkiRj1hkh9+8qFU799R6emH0jwCFduuHGf4aQyvPE/ZtuPKcUduF8r2lD3BUf7ExRE91VHtSY5CG40h7W2dHdU1Xzj7+P0GjFME6EfpvPPO0znnnKM777xTkuQ4jmbMmKGbbrpJX/ziFw957skcoP/m4V9r+8Y/KGHHlczFlcjHlXULNcpdQ4WHzgoMhax6hX0x1fuiCltRha2IQr6IjOIsMwf9iSzWFS/b5Up2zlUuI+WzhvJ5U/m8T3nbJ8e1xvQ5fHZS/vyQ/LkhBbJxBbJxBTMD3it1QHWZfgWycfnyqYpPJElZ06eXm+dofetCrW9doD0NR1bLPBL0aWpDQM0NQTU3BMvWA4XtwnokqEjQd+IftRnqkf7tQ1LPa1JdTJpyqmT6JdMnmVZh6RvetvyV2xXHq71GtLEOcnzUrzgAAAAAAACq8SYQViHIlxxXchyj6j4rHFHj0ktq3eUTbixZLjXQC7LZrDZs2KBbbrmltM80TS1fvlzPPffcqPaZTEaZzPDUI/H4MZwefILZ+quNcp3zFJQUlNQ0hnMzhVf1cenvnGlnFcgOKFgIxEvBeHE94x3z5wZlumMbEd4datL6tgVa37pQLzXPUcYXlGlIU+oDml8fVHMkoKn1XjDeHAmouXxfJKip9QHV+ccW8p9wDS3SDb+QfnyVtPdlafeLte4RAAAAAAAADsGQZBVehzV9qbT0iePboQmOAL2gt7dXtm2rtbW1Yn9ra6s2b948qv3tt9+ur33tayeqe+NasLFBzq43ZcgsG3FeZcSw61bZ6x5kXaWh5ka1Y2XnmE5WppOS4aZluFkZykpGTjJycnyGXMsnO+xXIurXoM8n1zdNru8UOT6/XJ9Pri8g1++T6/PL9fklv1+O3y8V1l2fT4Y/IBX2uYGADJ9P4Tq/5kWCenfZyPGmcECWOclGS9dPlf52jdT1nJTPSE5OcvKFl+0t7Vzl9kFfR9HeztX6VwAAAAAAAGBymja/1j0Y9wjQj9Itt9yiVatWlbbj8bhmzJhRwx7Vzt9846ZadwHHmy8gnXryPc4DAAAAAACAkxsBekFzc7Msy1J3d3fF/u7ubrW1tY1qHwwGFQwGT1T3AAAAAAAAAAAnmFnrDowXgUBAS5cu1Zo1a0r7HMfRmjVrtGzZshr2DAAAAAAAAABQC4xAL7Nq1SrdcMMNOvvss3XuuefqjjvuUCKR0Cc/+cladw0AAAAAAAAAcIIRoJe59tprtW/fPt16663au3evFi1apEcffXTUxKIAAAAAAAAAgMnPcF3XrXUnJoN4PK5YLKaBgQFFo9FadwcAAAAAAAAAUMVYslxqoAMAAAAAAAAAUAUBOgAAAAAAAAAAVRCgAwAAAAAAAABQBQE6AAAAAAAAAABVEKADAAAAAAAAAFAFAToAAAAAAAAAAFUQoAMAAAAAAAAAUAUBOgAAAAAAAAAAVRCgAwAAAAAAAABQBQE6AAAAAAAAAABVEKADAAAAAAAAAFAFAToAAAAAAAAAAFUQoAMAAAAAAAAAUAUBOgAAAAAAAAAAVRCgAwAAAAAAAABQBQE6AAAAAAAAAABVEKADAAAAAAAAAFAFAToAAAAAAAAAAFUQoAMAAAAAAAAAUAUBOgAAAAAAAAAAVRCgAwAAAAAAAABQBQE6AAAAAAAAAABVEKADAAAAAAAAAFAFAToAAAAAAAAAAFUQoAMAAAAAAAAAUAUBOgAAAAAAAAAAVRCgAwAAAAAAAABQha/WHZgsXNeVJMXj8Rr3BAAAAAAAAABwMMUMt5jpHgoB+jEyODgoSZoxY0aNewIAAAAAAAAAOJzBwUHFYrFDtjHcI4nZcViO42j37t2KRCIyDKPW3Tnh4vG4ZsyYoZ07dyoajda6OwBwWNy3AEwk3LMATDTctwBMNNy3Ti6u62pwcFDt7e0yzUNXOWcE+jFimqY6Ojpq3Y2ai0aj3GQATCjctwBMJNyzAEw03LcATDTct04ehxt5XsQkogAAAAAAAAAAVEGADgAAAAAAAABAFdZtt912W607gcnBsixdeuml8vmoDARgYuC+BWAi4Z4FYKLhvgVgouG+hWqYRBQAAAAAAAAAgCoo4QIAAAAAAAAAQBUE6AAAAAAAAAAAVEGADgAAAAAAAABAFQToAAAAAAAAAABUQYCOd+yuu+7SrFmzVFdXp/POO0+///3va90lAJAkPfXUU/rgBz+o9vZ2GYah//qv/6o47rqubr31Vp1yyikKhUJavny53njjjRr1FgCk22+/Xeecc44ikYhaWlp01VVXacuWLRVt0um0Vq5cqalTp6qhoUFXX321uru7a9RjACe7e+65R2eeeaai0aii0aiWLVumX/3qV6Xj3LMAjGff/OY3ZRiGPv3pT5f2cd/CSAToeEceeOABrVq1Sl/96le1ceNGnXXWWbryyivV09NT664BgBKJhM466yzdddddVY9/61vf0ve//3394Ac/0PPPP6/6+npdeeWVSqfTJ7inAOBZt26dVq5cqd/97nd67LHHlMvl9N73vleJRKLU5jOf+YwefvhhPfjgg1q3bp12796tj3zkIzXsNYCTWUdHh775zW9qw4YNeuGFF/Se97xHH/rQh/Tqq69K4p4FYPxav369fvjDH+rMM8+s2M99CyMZruu6te4EJq7zzjtP55xzju68805JkuM4mjFjhm666SZ98YtfrHHvAGCYYRh66KGHdNVVV0nyRp+3t7frs5/9rG6++WZJ0sDAgFpbW3XffffpYx/7WC27CwCSpH379qmlpUXr1q3TxRdfrIGBAU2bNk3333+/rrnmGknS5s2btXDhQj333HM6//zza9xjAJCmTJmib3/727rmmmu4ZwEYl4aGhrRkyRLdfffd+vrXv65Fixbpjjvu4O9aqIoR6Dhq2WxWGzZs0PLly0v7TNPU8uXL9dxzz9WwZwBweNu3b9fevXsr7mGxWEznnXce9zAA48bAwIAkL4ySpA0bNiiXy1XcuxYsWKDOzk7uXQBqzrZtrV69WolEQsuWLeOeBWDcWrlypT7wgQ9U3J8k/q6F6ny17gAmrt7eXtm2rdbW1or9ra2t2rx5c416BQBHZu/evZJU9R5WPAYAteQ4jj796U/rggsu0BlnnCHJu3cFAgE1NjZWtOXeBaCWXnnlFS1btkzpdFoNDQ166KGHdPrpp2vTpk3cswCMO6tXr9bGjRu1fv36Ucf4uxaqIUAHAAAAxqGVK1fqD3/4g5555pladwUADmn+/PnatGmTBgYG9O///u+64YYbtG7dulp3CwBG2blzp/7hH/5Bjz32mOrq6mrdHUwQlHDBUWtubpZlWaNmIu7u7lZbW1uNegUAR6Z4n+IeBmA8uvHGG/WLX/xCTz75pDo6Okr729ralM1m1d/fX9GeexeAWgoEAjrttNO0dOlS3X777TrrrLP0ve99j3sWgHFnw4YN6unp0ZIlS+Tz+eTz+bRu3Tp9//vfl8/nU2trK/ctjEKAjqMWCAS0dOlSrVmzprTPcRytWbNGy5Ytq2HPAODwZs+erba2top7WDwe1/PPP889DEDNuK6rG2+8UQ899JCeeOIJzZ49u+L40qVL5ff7K+5dW7ZsUVdXF/cuAOOG4zjKZDLcswCMO5dffrleeeUVbdq0qfQ6++yztWLFitI69y2MRAkXvCOrVq3SDTfcoLPPPlvnnnuu7rjjDiUSCX3yk5+sddcAQENDQ9q6dWtpe/v27dq0aZOmTJmizs5OffrTn9bXv/51zZ07V7Nnz9ZXvvIVtbe366qrrqphrwGczFauXKn7779fP//5zxWJREq1NmOxmEKhkGKxmP7mb/5Gq1at0pQpUxSNRnXTTTdp2bJlOv/882vcewAno1tuuUXvf//71dnZqcHBQd1///1au3atfv3rX3PPAjDuRCKR0twyRfX19Zo6dWppP/ctjESAjnfk2muv1b59+3Trrbdq7969WrRokR599NFRk/IBQC288MILuuyyy0rbq1atkiTdcMMNuu+++/T5z39eiURCn/rUp9Tf368LL7xQjz76KLXwANTMPffcI0m69NJLK/bfe++9+qu/+itJ0ne/+12Zpqmrr75amUxGV155pe6+++4T3FMA8PT09Oj666/Xnj17FIvFdOaZZ+rXv/61rrjiCkncswBMPNy3MJLhuq5b604AAAAAAAAAADDeUAMdAAAAAAAAAIAqCNABAAAAAAAAAKiCAB0AAAAAAAAAgCoI0AEAAAAAAAAAqIIAHQAAAAAAAACAKgjQAQAAAAAAAACoggAdAAAAAAAAAIAqCNABAAAAAAAAAKiCAB0AAACYZNauXSvDMNTf31+T91+zZo0WLlwo27YP2/bRRx/VokWL5DjOCegZAAAAMDYE6AAAAMAEYhjGIV+33Xab3v3ud2vPnj2KxWI16ePnP/95ffnLX5ZlWYdt+773vU9+v18//elPT0DPAAAAgLExXNd1a90JAAAAAEdm7969pfUHHnhAt956q7Zs2VLa19DQoIaGhlp0TZL0zDPP6M/+7M+0d+9e1dXVHdE5d911l+677z6tX7/+OPcOAAAAGBtGoAMAAAATSFtbW+kVi8VkGEbFvoaGhlElXO677z41NjbqF7/4hebPn69wOKxrrrlGyWRSP/rRjzRr1iw1NTXp7//+7yvKrmQyGd18882aPn266uvrdd5552nt2rWH7N/q1at1xRVXVITnL730ki677DJFIhFFo1EtXbpUL7zwQun4Bz/4Qb3wwgvatm3bsf3FAgAAAN4hX607AAAAAOD4SyaT+v73v6/Vq1drcHBQH/nIR/ThD39YjY2NeuSRR/Tmm2/q6quv1gUXXKBrr71WknTjjTfqtdde0+rVq9Xe3q6HHnpI73vf+/TKK69o7ty5Vd/n6aef1nXXXVexb8WKFVq8eLHuueceWZalTZs2ye/3l453dnaqtbVVTz/9tObMmXP8fhEAAACAMSJABwAAAE4CuVxO99xzTymgvuaaa/TjH/9Y3d3damho0Omnn67LLrtMTz75pK699lp1dXXp3nvvVVdXl9rb2yVJN998sx599FHde++9+sY3vlH1fXbs2FFqX9TV1aXPfe5zWrBggSRVDd/b29u1Y8eOY/mRAQAAgHeMAB0AAAA4CYTD4YrR3a2trZo1a1ZFvfTW1lb19PRIkl555RXZtq158+ZVXCeTyWjq1KkHfZ9UKjWq9vmqVav0t3/7t/rxj3+s5cuX6y/+4i9GjTQPhUJKJpNH/fkAAACA44EAHQAAADgJlJdMkSTDMKrucxxHkjQ0NCTLsrRhwwZZllXR7lCTlDY3N6uvr69i32233abrrrtOv/zlL/WrX/1KX/3qV7V69Wp9+MMfLrU5cOCApk2bdlSfDQAAADheCNABAAAAjLJ48WLZtq2enh5ddNFFYzrvtddeG7V/3rx5mjdvnj7zmc/o4x//uO69995SgJ5Op7Vt2zYtXrz4mPUfAAAAOBbMWncAAAAAwPgzb948rVixQtdff73+8z//U9u3b9fvf/973X777frlL3950POuvPJKPfPMM6XtVCqlG2+8UWvXrtWOHTv07LPPav369Vq4cGGpze9+9zsFg0EtW7bsuH4mAAAAYKwI0AEAAABUde+99+r666/XZz/7Wc2fP19XXXWV1q9fr87OzoOes2LFCr366qvasmWLJMmyLO3fv1/XX3+95s2bp49+9KN6//vfr6997Wulc372s59pxYoVCofDx/0zAQAAAGNhuK7r1roTAAAAACaPz33uc4rH4/rhD3942La9vb2aP3++XnjhBc2ePfsE9A4AAAA4coxABwAAAHBMfelLX9LMmTNLE5IeyltvvaW7776b8BwAAADjEiPQAQAAAAAAAACoghHoAAAAAAAAAABUQYAOAAAAAAAAAEAVBOgAAAAAAAAAAFRBgA4AAAAAAAAAQBUE6AAAAAAAAAAAVEGADgAAAAAAAABAFQToAAAAAAAAAABUQYAOAAAAAAAAAEAVBOgAAAAAAAAAAFTx/wMFvWzUr6UdTwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdAAAANcCAYAAABfaY0IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZzNdf//8ceZfZ8xlhkjDGGilH0rS6iZyNfoQpYsZbsqW2mnENGmC9WltFiyhIqELCkRmizRXHausRsUZgxmf//+mN/5XE5zZsyIjhnP++12bmY+7+Xz+ixnbvU67/P62IwxBhERERERERERERERceDm6gBERERERERERERERG5ESqCLiIiIiIiIiIiIiDihBLqIiIiIiIiIiIiIiBNKoIuIiIiIiIiIiIiIOKEEuoiIiIiIiIiIiIiIE0qgi4iIiIiIiIiIiIg4oQS6iIiIiIiIiIiIiIgTSqCLiIiIiIiIiIiIiDihBLqIiIiIiIiIiIiIiBNKoIuIiIjIDWHUqFHYbDZatGjh6lCKteXLl2Oz2fDx8bmm8+7evRubzYbNZiMxMfFvHy83tg8++ACbzcZtt93m6lBERERECkUJdBEREZFCsid6C/qS4uvSpUsEBwdjs9kYOHBggcetW7fOuj+++uqr6xih2KWlpTF16lSio6OJiIjA29ub4OBgqlWrRsuWLRk+fDgrVqwgLS3N6fjk5GTeeecd7r33XsqUKYOXlxehoaFUr16dmJgYxowZw5o1a8jOzr5iLP/617+s69+qVatCH8u5c+eYOHEibdu2pUKFCvj5+eHr60v58uVp27YtkyZN4tSpU3mOX7ZsGV26dOHWW2/Fz88PPz8/KlWqROPGjRk4cCDz5s3jjz/+KHRcIiIiIsWRh6sDEBERESnKwsLCXB2CuJCvry9du3blww8/ZM6cOUyYMAFvb+8rjvv0008BKF26NO3atbveYToICAggKiqqQHEWFwkJCbRp04bdu3db27y8vHB3d+fAgQPs27ePH374gXHjxrFx40YaNWrkMH7Lli383//9H8ePH7e2+fr6kp2dzZ49e9i9ezcrVqwA4MSJE4SHh+cbzyeffGL9/MMPP5CQkEClSpUKdCxTpkzhxRdfJCkpydrm5+eHl5cXR48e5ejRoyxbtowXX3yR0aNH8+yzz1r9Ll26RNeuXfn666+tbW5uboSEhHDs2DEOHjzIzz//zPvvv8/48eN54YUXChSTiIiISHGmFegiIiIif0FiYuIVX1K89enTB4CzZ8+yaNGiK/ZPSUlhwYIFAPTo0QNPT8/rGt+f3XPPPezevZvt27f/rft1lYyMDNq1a8fu3bsJCAhg3LhxHD16lNTUVM6cOcOFCxfYuHEjL7/8stMk9tmzZ2nbti3Hjx8nLCyM9957j9OnT3Px4kXOnTtHcnIyP/zwA8OGDSvQB2pxcXHs2LGDsLAwOnfujDGGadOmFehYhg0bxhNPPEFSUhI1a9Zk1qxZnD59mgsXLnDu3DkuXLjAsmXL6Nq1K2lpaXz55ZcO44cMGWIlz/v37098fDzp6en88ccfpKamsnPnTiZNmkSjRo307RkRERGR/08JdBERERGRv6B+/frUrFkT+N/K8vzMnz+fCxcuAP9Lvsv1s3z5cnbs2AHAZ599xosvvki5cuWsBLGPjw+NGjXi1VdfZf/+/dSuXdth/KxZszh58qQ115NPPkmpUqWs9oCAAFq0aMHbb7/NkSNHKF26dL7x2Fefd+3alcceewyA6dOnX7H0y4wZM3jnnXcAeOSRR9iyZQvdu3d3iMXPz48HHniAOXPmsHnzZqKioqy2M2fOWIn6IUOG8OGHH3LHHXfg7u4O5KxEr169OoMHD2bjxo0MHjw433hEREREbhZKoIuIiIj8jR5//HFsNhshISEcPHjQaZ8pU6Zgs9nw8PBg7dq1Dm3/+c9/GDVqFC1btuTWW2/F19eXoKAgateuzYgRI/j999/z3HdkZCQ2m43p06dz8eJFRo0aRfXq1fHz8yMiIoIePXqQkJBg9f/99995/vnnqVatGr6+voSHh9O3b18rmfhnf34I6Pz582nevDmhoaH4+/tTt25d3nvvPbKysgp30i5z+vRpRowYQe3atQkODsbHx4fKlSvTp08fK0nqCvZE+HfffceRI0fy7WtPsjdq1IgaNWo4tO3fv5/x48cTHR1N1apV8ff3JyAggNtvv52nn36ao0eP5jmvfdXw66+/TlpaGm+88QZ16tSxarT//PPPQP4PEc3OzmbVqlUMHDiQhg0bUq5cOby8vChVqhT33nsvH330EZmZmQU6J7t27aJHjx6UK1cOb29vKlasyJNPPvmXvpWRlZXFjBkziImJseqQly5dmpiYGObPn48xJteYbdu2AWCz2a5YLsfNzS1XaRv7+AoVKlCrVq18x3t6eloJaWcuXLjA559/DkCvXr1o3bo1ERERHDlyhFWrVuU5LjU1leeffx6AWrVq8cknn1zxmwu1a9d2WNm+Y8cO69q1b98+37GQU6ImL6tWreKhhx6ibNmy1v1x33338dlnnxWoBvzloqKisNlsvPTSS/n2W7ZsmfV30dk9dODAAQYNGkT16tUJCAjAz8+P6tWr5/u++fODTVeuXEm7du0IDw/H3d2df/7zn4U6FhERESmmjIiIiIgUysiRIw1gruY/pS5evGhuv/12A5jGjRubjIwMh/b4+Hjj4+NjAPPKK6/kGl+xYkVr3z4+PiY0NNTYbDZrW7ly5czu3bud7ts+duLEiaZmzZrWHL6+vtb4smXLmoSEBHPgwAFTqVIlAxg/Pz/j5eVl9alatapJSkrK87w0b97cPPfccwYwNpvNlChRwri5uVnjo6OjTWpqar7jnVm1apUJCQmx5vH09DT+/v7W715eXmbGjBkFuArX3u+//26dozFjxuTZb+/evVa8U6dOzdXesGFDh+MJDQ11OHehoaEmLi7O6dz2sS+//LKpX7++AYyHh4d1zjZu3GiMMebbb781gPH29s41x65du6x9ASYwMNAEBQU5bGvZsqXT63f52AULFljXJjAw0LqnAVO6dGnz22+/5Tv+xIkTudpPnTplGjdu7BBLcHCww+8dO3bM9Z569dVXrfbDhw87vzD5eOyxxwxgfH19TVpaWqHHX27atGkGMDVr1rS22d8rnTp1ynPczJkzHc7t1Vi7dq01x8yZM69qjuzsbPPEE09Y89jf3+7u7g7v75SUlFxjp0yZYgATFRXlsH3MmDEGMBUqVDDZ2dl57rtLly4GMDExMbnaPvnkE+Pp6enwt/Hyey4kJMT88MMP+cb0xhtvOPT39PQ0AwYMKPxJEhERkWJHCXQRERGRQvorCXRjcpLk9qT1Sy+9ZG2/PLl+9913m8zMzFxje/bsaaZPn24OHTpkbUtLSzPfffedadCggQFMnTp1nO7XnkAPCQkxkZGRZuXKlSYrK8tkZmaalStXmtKlSxvAdO7c2TRo0MDUqlXLSrqmp6ebefPmGT8/PwOY4cOH53le7EnNgQMHmlOnThljjElKSjJjxoyxkv1PPfVUnuOdJdB/++0365z169fP7Ny50zo/hw4dspJ6Hh4eZtOmTfmc/eunc+fOBjC33nprnonAF154wQDG39/fJCcn52p/8sknzQcffGD2799vzZGRkWE2bNhgWrVqZQBTsWJFp4lcewI9ICDABAcHm88++8xcunTJGJOTfD579qwxJv8E+v79+03Pnj3N0qVLzZkzZ6ztSUlJ5uOPPzZhYWEGMC+++GKusZcnwIODg02dOnXM5s2bjTHGZGVlmWXLlpmIiAjrHF24cCHP8X9OoGdkZFjJ83r16plvv/3WXLx40RhjzPnz583HH39sSpUqZQDzwgsvOIxdvny5Q3LXWXI+Px988IE1vlevXtZ5vBr33HOPAcxbb71lbduxY4f1gcnvv//udFyvXr2sD43sx11YSUlJxtvb2wAmMjLSbN26tdBzvPXWW9a5GDhwoDl58qQxJucavPnmm1YivVevXrnG5pVAP3jwoPV3wVmS2xhjkpOTrff/nDlzHNq++eYbY7PZjJeXlxk+fLg5dOiQyc7ONllZWWbHjh0mNjbWAKZEiRLm+PHjTmPy8/Mzbm5upl+/fubo0aPGmJx77sCBA4U+RyIiIlL8KIEuIiIiUkiXJ9DDwsLyfQ0ePNjpHPbEjZubm/n++++NMcYMGDDASnBfniAvqPPnz1sJznXr1uVqtyfQfX19zb59+3K1f/LJJw7H5SyZ9/LLL1sJ0D+7/Lz06NHDaYwjRoywEt3Hjh1zOt5ZAr1ly5Z5Jm7tBg8ebADTvn37PPtcTytWrLCO31kiMDMz00og9+7du9DzZ2RkmNtuuy3PVciXr15fuXJlnvPkl0C/knXr1lkJ8j+v9L48AR4WFmb++OOPXOO3bdtmPDw8DGAmT56c5/g/J7mnTp1qAHPnnXea8+fPO41tw4YN1v19efI/OzvbNGvWzJrbw8PD3H333ebpp582s2fPNvv378/3mC9cuGCioqKs8d7e3qZVq1bmhRdeMAsWLLASrleye/duAxh3d/dcidy6desayPl2iDP16tXLtXL9atjfv/bX7bffbvr162c++OADs3XrVqcf2tklJydb30Z49NFHnfZ58803rbnj4+Md2vJKoBtjTPPmzfOd99NPP7W+zXD5BwgZGRnW37W8vn2SnZ1toqOjDWCef/55pzEBplu3bnkeu4iIiNzclEAXERERKaTLE8VXejlbiWn30EMPGcBERESYDz/88C+XaDDmf6ugx48fn6vNnmh65JFHnI49evSoFcPLL7/stM9PP/1k9flzmYbLz4uzBL0xOatg7StJ/5xAzSuBnpCQYCU+nSVl7TZv3myt7s4vEXi9ZGVlmQoVKhjA9OzZM1f70qVLrfOzdu3aq9qH/UOCIUOG5GqzJ9Dr1q2b7xx/JYFujLG+YfDrr786bL88AZ5fGRv7fd+kSZM8x/85gW4/tg8//DDf2KpUqWIAs2jRIoftycnJpl+/flby/s+vSpUqmTFjxuSZnE9MTDQPPfSQQ7mkPyei33333XxLvNhLtTgrQTJ58uR8E+T2ckp5lTcqqOzsbPP22287lEK6/BUSEmIGDBhgDh48mGvsvHnzDOSUbXHWbkzOt2Hs3wS4/Ns1xuSfQP/4448NYIKCgpyusL/33nudJtjt93K5cuXyLf8ya9YsA5hatWo5jclZwl9ERETETg8RFREREfkLTM6ChDxf06dPz3Psxx9/TIUKFTh+/DgDBgwAoG/fvnTs2DHffS5ZsoSHH36YypUr4+/vj81ms17z588HyPdhkw0aNHC6PSwszPq5fv36V+xz7tw5p33Kly9PlSpVnLYFBQVRt25dADZv3pxnjJdbv349kPOAyxo1ahAeHu70FRMTA+Q8qPGPP/4o0NzXkpubG7179wbgiy++4Pz58w7t9oeHVqtWjaZNm+Y5z5o1a+jRowdRUVEEBAQ4XN/JkycD+V/fu++++y8dR2pqKu+//z733XcfZcuWxdvb2yGGpKSkK8bQsmXLK7Zt2bLF6UM/ncWzZcsWAF588cU8r394eDiHDh0CsP61CwwMZOrUqRw5coQpU6bQvXt3brvtNtzccv53KCEhgZdffpk6derkGgs59/2XX37JgQMHeOedd+jYsSOVK1fGZrMBOQ/oHDRoEE2bNnX6vsjMzGTmzJkA9OzZM1d7165d8fT0JD4+nk2bNl3xnFwtm83GsGHDOHbsGPPnz+fxxx+nXr161gNlz507x4cffkjNmjVZuXKlw1j7+7VKlSpUrFjR6fxeXl40b97coX9BdOrUCV9fX5KTk/n6668d2o4cOcKaNWuA3OfO/rfh9OnTlC1bNs/7YtCgQUDu+8IuODiYO+64o8DxioiIyM1FCXQRERERFylRogTvv/++9XvlypWZNGlSnv2zs7Pp1q0b7dq1Y/78+SQkJJCenk6JEiUICwsjLCzMSoRduHAhz3kCAwOdbvfw8ChUn4yMDKd9ypUrl+e+L28/depUvv3sjh8/DuQc/8mTJ/N8/f7779aYixcvFmjuDRs25Jl0mzdvXoHmuNyjjz6KzWbj4sWLfP7559b233//nW+++QaAxx57LM/xQ4YM4d5772XWrFns3buX1NRUh+vr7+8P5H99y5QpU+i47U6cOEHt2rUZOHAg3333HYmJibi7u1OqVCkrBnvSOb8Y8rsH7G1paWkkJydfMabTp0+TmZkJwJkzZ/K9B+z3ZF7XPzw8nH/+85/MmjWLXbt2ce7cOb766isaNWoEwL59+3jkkUfyjKVSpUo89dRTLFiwgAMHDnD69GlmzpxJ9erVAfjll18YOHBgrnHLli0jMTGRoKAgYmNjc7WXKlWKtm3bAv/7oOVyJUuWtI7/WvDz86NTp078+9//ZtOmTSQnJ7N27Vq6desGwPnz5+ncubPDB1H29+uV3t+33HKLQ/+CCAoKon379gB89tlnDm2zZ8/GGEPFihWt5Lyd/W9Denp6vvfF2bNngbzvi9KlSxc4VhEREbn5KIEuIiIi4kIfffSR9fOxY8fYv39/nn0/+eQT5s6di7u7O6+88gr79u0jLS2NM2fOkJiYSGJiorV6vSAre4uKrKwsIGcV8JVW/NtfkZGRBZo7v8TbpUuXCh1rZGQkrVq1AmDatGnW9tmzZ5Oeno67u7vTFcgA33zzjbXCfMiQIezYsSPX9X388ceB/K+vu7t7oeO2GzhwILt376ZMmTLMnDmTkydPcvHiRU6fPm3FEBoaesUYriX79Qf44YcfCnT9X3jhhQLNHRgYSIcOHfjpp59o0qQJAD/99BO7d+8u0PiSJUvSo0cP4uLiuPXWWwGYN29erm8ffPLJJwAkJyfj5+fnsKLf/lq0aBEAc+fOzXXv3X777QDs3r2b1NTUAsVWGJ6enjRt2pTZs2fz3HPPAZCUlMSCBQuu+b7yYn9frFy5kpMnT1rb7Qn17t27Wyv+7ez3RvPmzQt0X+R17v7Ke0ZERESKPyXQRURERFzkvffeY/Hixbi7u1OjRg3S0tLo0qVLnqsk7Sua+/bty+jRo6lSpYq1GtguMTHxusd9JceOHStQe0FXSoeHhwM5q7jzW/V8NVq0aJFnss1ejqWw+vTpA8DGjRutRKw9md6mTRvKli3rdJz9+rZv356JEydSo0aNXIm963l9L168aK2S//DDD+nRo0eua5SWlpZn6Z7L5XcP2Nu8vb0JCgq64lxlypSxEqd5leD4q9zd3a3rBrBnz55CjQ8MDLRWb2dmZvLf//7XaktMTGTZsmUFnispKYkvvvjCYZv9Q5mMjAyWLFlSqNgKy15OChzPg/1eyK90z+Xthf0mxP33309YWBiZmZnMnTsXgK1bt7Jz507Aeekb+9+G63VfiIiIiIAS6CIiIiIuER8fz7PPPgvAK6+8wrJlywgJCWHXrl089dRTTsccOXIEgNq1azttT0lJIS4u7voEXAhHjhzhwIEDTtvOnz9v1bOuV69egeaz1/TOysri22+/vTZBXkcdOnSwVml/+umnbNmyhe3btwM4JGn/7ErXNysry6oFfT0kJiZaJVDyimHNmjVWOZX8/PDDD1dsq1u3bq4Vxc74+flZ8dgT/NdDQECA9bO3t/c1Gz9jxgwyMzO55ZZbOH/+fL4ve/L6z2VcOnbsaD1/4LXXXsuzfNKfZWdnX7PjsL9fDxw4kGfCOiMjgx9//BHI+zkKeXF3d7c+hLCvOrf/26BBA6KionKNsf9tOHjwIP/5z38KtT8RERGRglICXURERORvdunSJbp06UJqair33HMPw4cPp2LFikydOhWAqVOn8uWXX+YaFxwcDGAlY/9szJgxuUpHuMqYMWOcbp8wYQKXLl3Cw8ODf/zjHwWaq2rVqrRo0QKA4cOHWw+xzMu1qhN9tby9venevTuQkwC0l+kJCwuz6lw7c6XrO3ny5Cuu/v0r7PvPK4b09HRefvnlAs313nvvWXWnLxcfH289JPLhhx8ucGz9+/cHYOHChXz33Xf59v3z9d++ffsVV+4bY6yHfLq5uVGrVi2r7eeff77iPZeRkWGtmg4ODqZy5cpWmz0Z3rFjRwICAvJ9denSBYAff/zR4UMoX19fxo8fD8C2bdt47LHHrphE/+233xzq7ScmJuZ5b11uxowZ1s916tSxfm7Tpg1BQUEYYxg9erTTse+++671LAL7sRSGfZX51q1b+e2336xzmlfZo+joaCpUqADA0KFDr/jhjqv/NoiIiEjRpAS6iIiIyN/sqaeeYufOnYSEhDB79myrTEenTp2sFcr9+vWzViTbxcTEADl106dOnUp6ejqQkxh76qmnePPNN62HDbpScHAwM2bMYMiQIVYy7fz584wbN45XX30VgCeffJKIiIgCz/nuu+8SEBDA3r17adSoEV9//bVDPeNjx47x2Wef0apVK55//vlre0BXwX4dExMTrQR6z549HR7C+mf267tw4ULeeOMNq5TPmTNnGD16NM8888x1vb4lS5a0VhkPHjyYtWvXWnXOt23bRnR0NDt27MDX1/eKc126dIn777+fX3/9FchZCb18+XLatGlDZmYmlStXznc1/p899thjNGvWjOzsbNq1a8frr7/ukBRPSUlh9erVDBgwwHqgp92qVauIjIyka9eufPXVVw7jUlNT+fHHH2nbti1Lly4FoFu3blZpEIBZs2ZRoUIF+vXrx7JlyxySsBcuXGDJkiU0a9aMbdu2ATBo0CC8vLwAWLduHXv37gWgc+fOVzzOZs2aWbX+/7wK/dFHH2Xw4MFWTHXr1mXOnDkOD/q8dOkSq1atomfPntSpU8ehlvvRo0epVasWLVu25KOPPmLfvn3W9c3MzGTnzp0MGjTIqh9fpUoV/u///s8aHxAQYH2AMm3aNAYNGsTp06et8zBhwgSrfnqvXr244447rni8f1arVi1rXJ8+fTh58iSenp55JuO9vLz44IMPcHNzY/Xq1dx77725viWxf/9+3n//ferUqeP0Aa0iIiIiV2REREREpFBGjhxpAAOYsLCwK77Wr19vjf3yyy+tsQsWLMg194ULF8xtt91mANO0aVOTmZlptZ09e9ZqA4ybm5sJCQkxNpvNAGbAgAGmV69eBjC9evXKNXfFihUNYKZNm5bnsdnn/uGHH5y2JyQkWH0SEhKcnpfmzZub5557zgDGZrOZEiVKGHd3d2tc69atzaVLl/I8r82bN3e6759++smEh4db87i7u5uSJUsaX19faxtg+vbtm+fx/Z3q1q3rENeuXbvy7Z+ammoaNmxo9befO/v17dChg3n22WcNYKKjo3ONt48dP358vvv59ttvDWC8vb1ztW3YsMHhfPr4+JiAgAADGE9PTzNv3jwTFhZmADN37lyHsbt27XK4t/39/Q1gAgMDHeYsWbKk2bZtW659Xz7+xIkTudrPnDljoqOjHc5pcHCwCQ4Ots4RYAICAhzGTZw40WEMYHx9fU2JEiVybW/btq1JSUlxGD906NBc/fz9/U1QUFCu7X369DEZGRnWWPv7sXz58iY7Ozvf62L3xBNPGMCUK1fO4f1vN3ny5Fz79vf3N8HBwQ7bAgICzMSJE61xv/76a654PT09TWhoqHFzc3PYXq1aNbN3795c+87Ozrbiy+v9ff/99+c6h8YYM2XKFAOYqKiofI//zTffdIilffv2Vzxn8+bNs+43+3GVLFnSeHl5Ocz19ttvX1VMIiIicnPTCnQRERGRv+DkyZNXfNlXih85coS+ffsCOasrO3bsmGs+Pz8/5s6di7e3N+vWrWPs2LFWW0hICBs2bGDo0KFERkbi7u6Oh4cHLVq0YO7cuXzwwQd/z0EXwBtvvMHnn3/OPffcgzEGLy8vatWqxaRJk1i+fDk+Pj6FnvPuu+9m7969vP322zRr1oyQkBDOnTuHu7s71atX55FHHmH27NlMnDjxOhxR4V2+wrpJkybcdttt+fb39vbm+++/Z/jw4VSpUsVard6kSRM++ugjvvzyy1wPjb3WGjduTFxcHP/4xz8oWbIkWVlZBAcH07VrV37++ecCraIGuOeee9i0aRPdu3cnMDCQrKwsypcvz+OPP058fDx33XVXoWMrUaIE3377Ld988w0dO3akfPnypKamkpqayi233EJMTAxvvPEG8fHxDuOGDBnC1q1bGT9+PO3ataNKlSrYbDaSk5MJCgri9ttvp3fv3qxYsYIlS5bg7+/vMH7ChAmsX7+ekSNHEh0dTcWKFcnKyuLChQuEhIRQu3ZtnnjiCX7++Wc+/vhj67qdP3+eBQsWADnlWwpS7x3+t1L92LFjrFixIlf7oEGDOHjwIBMmTCAmJoZbbrmF7Oxs6zy0bduW9957j0OHDjFkyBBrXK1atTh8+DBTpkyhW7du1KxZE19fX5KSkvDx8aFSpUrExsYybdo04uPjqVq1aq5922w23n//fVasWEFsbCxlypQhJSWF4OBgWrVqxYwZM/j2229zncPC6N69u8PDc/Mq33K5zp07s3//fl5++WXq1auHv78/586dw9fXl1q1ajFgwAAWL15sreAXERERKQybMf//e3siIiIiIn/BqFGjGD16NM2bN7+uD7sUERERERH5u2gFuoiIiIiIiIiIiIiIE0qgi4iIiIiIiIiIiIg4oQS6iIiIiIiIiIiIiIgTSqCLiIiIiIiIiIiIiDihh4iKiIiIiIiIiIiIiDihFegiIiIiIiIiIiIiIk54uDqA4iI7O5vjx48TGBiIzWZzdTgiIiIiIiIiIiIi4oQxhvPnzxMREYGbW/5rzJVAv0aOHz9O+fLlXR2GiIiIiIiIiIiIiBTAkSNHuOWWW/LtowT6NRIYGAjknPSgoCAXRyMiIiIiIiIiIiIiziQnJ1O+fHkrp5sfJdCvEXvZlqCgICXQRURERERERERERG5wBSnFrYeIioiIiIiIiIiIiIg4oQS6iIiIiIiIiIiIiIgTSqCLiIiIiIiIiIiIiDihGugiIiIiIiIiIiJSJBhjyMzMJCsry9WhyA3M3d0dDw+PAtU4vxIl0EVEREREREREROSGl56ezgo949QAACAASURBVIkTJ7h48aKrQ5EiwM/Pj7Jly+Ll5fWX5lECXURERERERERERG5o2dnZJCQk4O7uTkREBF5eXtdkdbEUP8YY0tPTOX36NAkJCVStWhU3t6uvZK4EuoiIiIiIiIiIiNzQ0tPTyc7Opnz58vj5+bk6HLnB+fr64unpyaFDh0hPT8fHx+eq59JDREVERERERERERKRI+CsrieXmcq3uFd1xIiIiIiIiIiIiIiJOKIEuIiIiIiIiIiIiIuKEEugiIiIiIiIiIiIif7MWLVowdOjQIr+P4k4JdBERERERERERERERJ5RAFxERERERERERERFxQgl0ERERERERERERKXKMMVxMz3TJyxhTqFgvXLhAz549CQgIoGzZskyYMMGhPS0tjWeeeYZy5crh7+9Pw4YNWbNmjdX+xx9/0LVrV8qVK4efnx81a9Zk7ty5hdqHXB0PVwcgIiIiIiIiIiIiUliXMrKo8coKl+x756vR+HkVPLX67LPP8uOPP/L1119TpkwZXnrpJbZu3UqtWrUAGDhwIDt37uTzzz8nIiKChQsXEhMTQ3x8PFWrViU1NZW6devy/PPPExQUxNKlS+nRowe33norDRo0KNA+5OoogS4iIiIiIiIiIiJynaSkpPDJJ58wa9YsWrVqBcCMGTO45ZZbADh8+DDTpk3j8OHDREREAPDMM8+wfPlypk2bxrhx4yhXrhzPPPOMNeegQYNYsWIF8+fPp0GDBlfch1w9JdBFRERERERERESkyPH1dGfnq9Eu23dBHThwgPT0dBo2bGhtCw0NJSoqCoD4+HiysrKoVq2aw7i0tDRKliwJQFZWFuPGjWP+/PkcO3aM9PR00tLS8PPzK9A+5OopgS4iIiIiIiIiIiJFjs1mK1QZlRtVSkoK7u7ubNmyBXd3x8R8QEAAAG+99RaTJk1i4sSJ1KxZE39/f4YOHUp6erorQr6p6CGiIiIiIiIiIiIiItfJrbfeiqenJ3Fxcda2s2fPsnfvXgBq165NVlYWp06dokqVKg6v8PBwANavX0/79u155JFHuOuuu6hcubI1viD7kKtX9D+iEREREREREREREblBBQQE0KdPH5599llKlixJmTJlGD58OG5uOWubq1WrRvfu3enZsycTJkygdu3anD59mtWrV3PnnXfStm1bqlatyhdffMGGDRsoUaIE77zzDidPnqRGjRoF2odcPSXQRURERERERERERK6jt956i5SUFNq1a0dgYCDDhg0jKSnJap82bRpjx45l2LBhHDt2jFKlStGoUSMefPBBAEaMGMF///tfoqOj8fPzo3///sTGxjrMcaV9yNWxGWOMq4MoDpKTkwkODiYpKYmgoCBXhyMiIiIiIiIiIlJspKamkpCQQKVKlfDx8XF1OFIE5HfPFCaXqzX8IiIiIiIiIiIiIiJOKIEuIiIiIiIiIiIiIuKEEugiIiIiIiIiIiIiIk4ogS4iIiIiIiIiIiIi4oQS6CIiIiIiIiIiIiIiTiiBLiIiIiIiIiIiIiLihEsT6GvXrqVdu3ZERERgs9lYtGiRQ7sxhldeeYWyZcvi6+tL69at2bdvn0OfM2fO0L17d4KCgggJCaFPnz6kpKQ49Pntt99o2rQpPj4+lC9fnjfffDNXLAsWLOC2227Dx8eHmjVrsmzZsmt/wCIiIiIiIiIiIiJSZLg0gX7hwgXuuusu3n//faftb775JpMnT+aDDz4gLi4Of39/oqOjSU1Ntfp0796dHTt2sGrVKpYsWcLatWvp37+/1Z6cnMz9999PxYoV2bJlC2+99RajRo1i6tSpVp8NGzbQtWtX+vTpw6+//kpsbCyxsbH85z//uX4HLyIiIiIiIiIiIiI3NJsxxrg6CACbzcbChQuJjY0FclafR0REMGzYMJ555hkAkpKSCAsLY/r06XTp0oVdu3ZRo0YNNm3aRL169QBYvnw5bdq04ejRo0RERDBlyhSGDx9OYmIiXl5eALzwwgssWrSI3bt3A/Dwww9z4cIFlixZYsXTqFEjatWqxQcffFCg+JOTkwkODiYpKYmgoKBrdl6KhNRk2PQRNOgP3oGujkZERERERERERIqZ1NRUEhISqFSpEj4+Pq4OR4qA/O6ZwuRyb9ga6AkJCSQmJtK6dWtrW3BwMA0bNmTjxo0AbNy4kZCQECt5DtC6dWvc3NyIi4uz+jRr1sxKngNER0ezZ88ezp49a/W5fD/2Pvb9OJOWlkZycrLD66a18X1Y/SpMqgU/T4HMNFdHJCIiIiIiIiIickNo0aIFQ4cOva77iIyMZOLEifn2GTVqFLVq1bqucRRHN2wCPTExEYCwsDCH7WFhYVZbYmIiZcqUcWj38PAgNDTUoY+zOS7fR1597O3OjB8/nuDgYOtVvnz5wh5i8RF+B4TeChd/h+UvwLt14dfZkJ3l6shERERERERERERuOs6eNylX54ZNoN/oXnzxRZKSkqzXkSNHXB2S61RvB0/GwYMTIbAsJB2Br5+AfzeGnYvhxqgSJCIiIiIiIiIiIlIoN2wCPTw8HICTJ086bD958qTVFh4ezqlTpxzaMzMzOXPmjEMfZ3Ncvo+8+tjbnfH29iYoKMjhdVNz94R6j8LgX+G+MeBbAn7fA/N7wMet4L9rXB2hiIiIiIiIiIgUJ8ZA+gXXvAq5YDQ7O5vnnnuO0NBQwsPDGTVqlNV27tw5+vbtS+nSpQkKCqJly5Zs377daj9w4ADt27cnLCyMgIAA6tevz3fffZfnviIjIwHo0KEDNpvN+t3us88+IzIykuDgYLp06cL58+cBmDlzJiVLliQtzbE8c2xsLD169CjU8RYnHq4OIC+VKlUiPDyc1atXW7V5kpOTiYuL4/HHHwegcePGnDt3ji1btlC3bl0Avv/+e7Kzs2nYsKHVZ/jw4WRkZODp6QnAqlWriIqKokSJElaf1atXO9QiWrVqFY0bN/7bjrfY8PSFuwdD3V6w4V3Y+G84tgVmtodKzaH1SChX19VRioiIiIiIiIhIUZdxEcZFuGbfLx0HL/8Cd58xYwZPP/00cXFxbNy4kd69e3P33Xdz33330alTJ3x9ffn2228JDg7mww8/pFWrVuzdu5fQ0FBSUlJo06YNr732Gt7e3sycOZN27dqxZ88eKlSokGtfmzZtokyZMkybNo2YmBjc3d2ttgMHDrBo0SKWLFnC2bNn6dy5M6+//jqvvfYanTp1YvDgwSxevJhOnToBcOrUKZYuXcrKlSv/+jkroly6Aj0lJYVt27axbds2IOfBodu2bePw4cPYbDaGDh3K2LFjWbx4MfHx8fTs2ZOIiAhiY2MBqF69OjExMfTr149ffvmF9evXM3DgQLp06UJERM6bp1u3bnh5edGnTx927NjBvHnzmDRpEk8//bQVx5AhQ1i+fDkTJkxg9+7djBo1is2bNzNw4MC//6QUFz7B0HIEDNkGDQaAmyck/AgftYR5j8DpPa6OUERERERERERE5G9x5513MnLkSKpWrUrPnj2pV68eq1ev5qeffuKXX35hwYIF1KtXj6pVq/L2228TEhLCF198AcBdd93FgAEDuOOOO6hatSpjxozh1ltvZfHixU73Vbp0aQBCQkIIDw+3foeclfDTp0/njjvuoGnTpvTo0YPVq1cD4OvrS7du3Zg2bZrVf9asWVSoUIEWLVpcpzNz43PpCvTNmzdz7733Wr/bk9q9evVi+vTpPPfcc1y4cIH+/ftz7tw57rnnHpYvX46Pj481Zvbs2QwcOJBWrVrh5ubGP/7xDyZPnmy1BwcHs3LlSp588knq1q1LqVKleOWVV+jfv7/Vp0mTJsyZM4cRI0bw0ksvUbVqVRYtWsQdd9zxN5yFYi6gDLR5Exo/CWteh98+h13fwO6lcFc3aPEChNzED2AVEREREREREZGr4+mXsxLcVfsuhDvvvNPh97Jly3Lq1Cm2b99OSkoKJUuWdGi/dOkSBw4cAHIWIY8aNYqlS5dy4sQJMjMzuXTpEocPHy502JGRkQQGBuaKw65fv37Ur1+fY8eOUa5cOaZPn07v3r2x2WyF3ldx4dIEeosWLTD51Auy2Wy8+uqrvPrqq3n2CQ0NZc6cOfnu584772TdunX59unUqZP11QS5DkpUhA5Tcsq7fD8Wdi+BbbMgfj7U6wNNh0FA6SvPIyIiIiIiIiIiAmCzFaqMiivZS0vb2Ww2srOzSUlJoWzZsqxZsybXmJCQEACeeeYZVq1axdtvv02VKlXw9fWlY8eOpKenX7M47GrXrs1dd93FzJkzuf/++9mxYwdLly4t9H6Kkxu2BroUU2WqQ5fZcHQzfDcKDq6DuCnw62c5q9QbDwSfm/yBrCIiIiIiIiIiclOoU6cOiYmJeHh45HrYp9369evp3bs3HTp0AHJWpB88eDDfeT09PcnKyrqqmPr27cvEiRM5duwYrVu3pnz5m7t6hEtroMtN7JZ60Osb6LEQytaC9BT48Q2YdFfOw0czUl0doYiIiIiIiIiIyHXVunVrGjduTGxsLCtXruTgwYNs2LCB4cOHs3nzZgCqVq3KV199xbZt29i+fTvdunVzWDXuTGRkJKtXryYxMZGzZ88WKqZu3bpx9OhRPvroIx577LGrPrbiQgl0cR2bDW5tCf3XQOeZULIqXDoDK0fAu3VgywzIynR1lCIiIiIiIiIiIteFzWZj2bJlNGvWjEcffZRq1arRpUsXDh06RFhYGADvvPMOJUqUoEmTJrRr147o6Gjq1KmT77wTJkxg1apVlC9fntq1axcqpuDgYP7xj38QEBBAbGzsVR9bcWEz+RUhlwJLTk4mODiYpKQkgoJUguSqZGXC9rk5DxtNPpqzrWQVaDkCqrcHN33eIyIiIiIiIiJyM0pNTSUhIYFKlSrh4+Pj6nCKvVatWnH77bczefJkV4dy1fK7ZwqTy1VGUm4c7h5QpwcM2gLR48GvJPyxHxb0ho9awP7vQJ/3iIiIiIiIiIiIXBdnz55l4cKFrFmzhieffNLV4dwQ9BBRufF4+kDjJ6D2I/Dzv3Nqop/YDrP+AZFNodVIKF/f1VGKiIiIiIiIiIgUK7Vr1+bs2bO88cYbREVFuTqcG4IS6HLj8gmCFi9A/b6w7h3Y9DEcXAeftIaoNtDyZQir4eooRUREREREREREioWDBw+6OoQbjkq4yI3PvxTEjIPBW6F2D7C5wZ5lMKUJfDUAko+7OkIREREREREREREphpRAl6Ij+BZo/x48EQc12gMGfvscFv7T1ZGJiIiIiIiIiIhIMaQEuhQ9patB55nQ8dOc35OPuTYeERERERERERERKZaUQJeiq1S1nH9Tk10bh4iIiIiIiIiIiBRLSqBL0eUdlPNvmhLoIiIiIiIiIiIicu0pgS5Fl8//T6BnpkJmumtjERERERERERERkWJHCXQpuuwr0EGr0EVERERERERE5IbUokULhg4dWuD+u3fvplGjRvj4+FCrVq3rGNnVsdlsLFq0yNVh/G08XB2AyFVzcwevAEhPgdQk8C/l6ohEREREREREREQcfPXVV3h6eha4/8iRI/H392fPnj0EBARckxhsNhsLFy4kNjb2msx3M1ECXYo276D/JdBFRERERERERERuMKGhoYXqf+DAAdq2bUvFihWvU0RSGCrhIkWbjx4kKiIiIiIiIiJyMzLGcDHjoktexpgCx3l5CZfIyEjGjRvHY489RmBgIBUqVGDq1KlWX5vNxpYtW3j11Vex2WyMGjUKgCNHjtC5c2dCQkIIDQ2lffv2HDx40GE/n376Kbfffjve3t6ULVuWgQMHWvsE6NChAzabzfod4Ouvv6ZOnTr4+PhQuXJlRo8eTWZmptW+b98+mjVrho+PDzVq1GDVqlWFuELFg1agS9Fmr4OeqgS6iIiIiIiIiMjN5FLmJRrOaeiSfcd1i8PP0++qxk6YMIExY8bw0ksv8cUXX/D444/TvHlzoqKiOHHiBK1btyYmJoZnnnmGgIAAMjIyiI6OpnHjxqxbtw4PDw/Gjh1LTEwMv/32G15eXkyZMoWnn36a119/nQceeICkpCTWr18PwKZNmyhTpgzTpk0jJiYGd3d3ANatW0fPnj2ZPHkyTZs25cCBA/Tv3x/IKSOTnZ3NQw89RFhYGHFxcSQlJRWqlntxoQS6FG1agS4iIiIiIiIiIkVImzZteOKJJwB4/vnn+de//sUPP/xAVFQU4eHheHh4EBAQQHh4OACzZs0iOzubjz/+GJvNBsC0adMICQlhzZo13H///YwdO5Zhw4YxZMgQaz/169cHoHTp0gCEhIRYcwKMHj2aF154gV69egFQuXJlxowZw3PPPcfIkSP57rvv2L17NytWrCAiIgKAcePG8cADD1znM3RjUQJdijatQBcRERERERERuSn5evgS1y3OZfu+Wnfeeaf1s81mIzw8nFOnTuXZf/v27ezfv5/AwECH7ampqRw4cIBTp05x/PhxWrVqVag4tm/fzvr163nttdesbVlZWaSmpnLx4kV27dpF+fLlreQ5QOPGjQu1j+JACXQp2rQCXURERERERETkpmSz2a66jIoreXp6Ovxus9nIzs7Os39KSgp169Zl9uzZudpKly6Nm9vVPeYyJSWF0aNH89BDD+Vq8/Hxuao5iyMl0KVo0wp0EREREREREREpxurUqcO8efMoU6YMQUFBTvtERkayevVq7r33Xqftnp6eZGVl5Zp3z549VKlSxemY6tWrc+TIEU6cOEHZsmUB+Pnnn//CkRRNV/fxhMiNwlqBnuTaOERERERERERERK6D7t27U6pUKdq3b8+6detISEhgzZo1DB48mKNHjwIwatQoJkyYwOTJk9m3bx9bt27l3XffteawJ9gTExM5e/YsAK+88gozZ85k9OjR7Nixg127dvH5558zYsQIAFq3bk21atXo1asX27dvZ926dQwfPvzvPwEupgS6FG3ewTn/agW6iIiIiIiIiIgUQ35+fqxdu5YKFSrw0EMPUb16dfr06UNqaqq1Ir1Xr15MnDiRf//739x+++08+OCD7Nu3z5pjwoQJrFq1ivLly1O7dm0AoqOjWbJkCStXrqR+/fo0atSIf/3rX1SsWBEANzc3Fi5cyKVLl2jQoAF9+/Z1qJd+s7AZY4yrgygOkpOTCQ4OJikpKc+vUsh1sP1zWDgAKreAnl+7OhoREREREREREbkOUlNTSUhIoFKlSqrPLQWS3z1TmFyuVqBL0aYa6CIiIiIiIiIiInKdKIEuRZvP/y/hkqYEuoiIiIiIiIiIiFxbSqBL0eajFegiIiIiIiIiIiJyfSiBLkWbvYSLVqCLiIiIiIiIiIjINaYEuhRt9hXomamQme7aWERERERERERERKRYUQJdijbvy56Sq1XoIiIiIiIiIiIicg0pgS5Fm5s7eAXk/Jya5NpYREREREREREREpFhRAl2KPtVBFxERERERERERketACXQp+ux10FOVQBcREREREREREZFrRwl0KfrsK9BVwkVEREREREREROSGM336dEJCQlwdxlVRAl2KPh+VcBEREREREREREZFrTwl0Kfq8VcJFRERERERERESKhvT0dFeHcFWKatx/lRLoUvRpBbqIiIiIiIiIyE3HGEP2xYsueRljChxnixYtGDhwIEOHDqVUqVJER0dz7tw5+vbtS+nSpQkKCqJly5Zs377dYdw333xD/fr18fHxoVSpUnTo0MFqO3v2LD179qREiRL4+fnxwAMPsG/fPgCSk5Px9fXl22+/dZhv4cKFBAYGcvHiRQCOHDlC586dCQkJITQ0lPbt23Pw4EGrf+/evYmNjeW1114jIiKCqKgoANLS0njmmWcoV64c/v7+NGzYkDVr1jjsa/r06VSoUAE/Pz86dOjAH3/8UeDzdaPxcHUAIn+ZVqCLiIiIiIiIiNx0zKVL7KlT1yX7jtq6BZufX4H7z5gxg8cff5z169cD0KlTJyvJHRwczIcffkirVq3Yu3cvoaGhLF26lA4dOjB8+HBmzpxJeno6y5Yts+br3bs3+/btY/HixQQFBfH888/Tpk0bdu7cSVBQEA8++CBz5szhgQcesMbMnj2b2NhY/Pz8yMjIIDo6msaNG7Nu3To8PDwYO3YsMTEx/Pbbb3h5eQGwevVqgoKCWLVqlTXPwIED2blzJ59//jkREREsXLiQmJgY4uPjqVq1KnFxcfTp04fx48cTGxvL8uXLGTly5F895S5jM4X5uETylJycTHBwMElJSQQFBbk6nJvL2rfg+7FQ+xFo/76roxERERERERERkWssNTWVhIQEKlWqhI+PDwDZFy+6NIHuVsAEeosWLUhOTmbr1q0A/PTTT7Rt25ZTp07h7e1t9atSpQrPPfcc/fv3p0mTJlSuXJlZs2blmm/fvn1Uq1aN9evX06RJEwD++OMPypcvz4wZM+jUqROLFi2iR48enDx5Ej8/P5KTkwkLC7OS3bNmzWLs2LHs2rULm80G5JRoCQkJYdGiRdx///307t2b5cuXc/jwYSuhfvjwYSpXrszhw4eJiIiwYmrdujUNGjRg3LhxdOvWjaSkJJYuXWq1d+nSheXLl3Pu3LlCnumr5+yesStMLlcr0KXo8w7O+Vcr0EVEREREREREbho2X1+itm5x2b4Lo27d/yX6t2/fTkpKCiVLlnToc+nSJQ4cOADAtm3b6Nevn9O5du3ahYeHBw0bNrS2lSxZkqioKHbt2gVAmzZt8PT0ZPHixXTp0oUvv/ySoKAgWrdubcWwf/9+AgMDHeZOTU21YgCoWbOmlTwHiI+PJysri2rVqjmMS0tLs45n165dDuVmABo3bszy5cvzOUM3LiXQpehTDXQRERERERERkZuOzWYrVBkVV/L397d+TklJoWzZsrnqhgOEhIQA4FvIBP2feXl50bFjR+bMmUOXLl2YM2cODz/8MB4eHlYMdevWZfbs2bnGli5d2mnc9nHu7u5s2bIFd3d3h7aAgIC/FPONSgl0KfpUA11ERERERERERIqIOnXqkJiYiIeHB5GRkU773HnnnaxevZpHH300V1v16tXJzMwkLi7OoYTLnj17qFGjhtWve/fu3HfffezYsYPvv/+esWPHOsQwb948ypQpU6hy1LVr1yYrK4tTp07RtGlTp32qV69OXFycw7aff/65wPu40bi5OgCRv0wr0EVEREREREREpIho3bo1jRs3JjY2lpUrV3Lw4EE2bNjA8OHD2bx5MwAjR45k7ty5jBw5kl27dhEfH88bb7wBQNWqVWnfvj39+vXjp59+Yvv27TzyyCOUK1eO9u3bW/tp1qwZ4eHhdO/enUqVKjmUfOnevTulSpWiffv2rFu3joSEBNasWcPgwYM5evRonrFXq1aN7t2707NnT7766isSEhL45ZdfGD9+vFXzfPDgwSxfvpy3336bffv28d577xXZ8i2gBLoUB1qBLiIiIiIiIiIiRYTNZmPZsmU0a9aMRx99lGrVqtGlSxcOHTpEWFgYkPPg0QULFrB48WJq1apFy5Yt+eWXX6w5pk2bRt26dXnwwQdp3LgxxhiWLVuGp6enw366du3K9u3b6d69u0MMfn5+rF27lgoVKvDQQw9RvXp1+vTpQ2pq6hVXpE+bNo2ePXsybNgwoqKiiI2NZdOmTVSoUAGARo0a8dFHHzFp0iTuuusuVq5cyYgRI67V6fvb2YwxxtVBFAeFeXKrXGNnD8GkO8HDB0acdHU0IiIiIiIiIiJyjaWmppKQkEClSpXw8fFxdThSBOR3zxQml6sV6FL02Uu4ZKZCZrprYxEREREREREREZFiQwl0Kfq8L/uUSHXQRURERERERERE5BpRAl2KPjd38ArI+Tk1ybWxiIiIiIiIiIiISLGhBLoUD/ZV6FqBLiIiIiIiIiIiIteIEuhSPNjroKcqgS4iIiIiIiIiIiLXhhLoUjzcJCvQx8eNp8uSLvx+6XdXhyIiIiIiIiIiIlLsKYEuxcNNsAL9QsYF5u2Zx44/djBi/QiMMa4OSUREREREREREpFhTAl2KB/sK9GL8ENHtp7aTZbIAWH9sPXN2z3FxRCIiIiIiIiIiIsWbEuhSPPgU/xIum09uBqCkT0kA3tn8DvvP7ndlSCIiIiIiIiIiIsWaEuhSPHgX/xIuW05uAWBQ7UHcU+4e0rPTeX7d86Rnpbs4MhERERERERERkWtr+vTphISEuDoMJdClmLBWoBfPEi5pWWnE/x4PQP3w+oy5ewyhPqHsPbuXSVsnuTg6EREREREREREpSmw2G4sWLXJ1GJbIyEgmTpzosO3hhx9m7969Lorof5RAl+LBOzjn32K6Aj3+dDwZ2RmU9i1N+cDylPItxatNXgVg5s6ZbDy+0cURioiIiIiIiIiIXDu+vr6UKVPG1WEogS7FRDGvgW4v31I3rC42mw2A5uWb07laZwBG/DSCc6nnXBafiIiIiIiIiMjfzRhDRlqWS17GmALH+cUXX1CzZk18fX0pWbIkrVu35scff8TT05PExESHvkOHDqVp06bA/0qYLFmyhKj/x96dh0dV2G0fv2fLTBayEZKwJYDsEHZFAQUVldr6KNXXWpUWtdLnsVJQQTY3UEG2KGq1dXmtdam016N9rUtbRBGILLLIGkBlCYSQIEtClsnMZOb9YzIDAWTLJGcy8/1cV64TMmfOuWNRys2P3+nSRXFxcbrllltUWVmpN998U+3atVNKSop+//vfq6amJniNdu3a6cknn9Qvf/lLxcfHq3Xr1vrDH/5Q53VJGjlypEwmU/DHkvTyyy/roosuUkxMjLp06aK33nqrTj6TyaQ//elP+tnPfqa4uDh169ZNK1as0Hfffadhw4YpPj5egwYN0vfffx98z/fff68bb7xRGRkZSkhI0MUXX6zPPvss+PqwYcO0Z88ePfDAAzKZTMHu63QrXP75z3/q4osvlsPhUFpat6XTqAAAIABJREFUmkaOHHnO/ztcKGuD3wFoDBG+Az3wANH+Gf3rfH3CxRO0+sBq7S7brekrpit3WG7wPzIAAAAAAACRzOPy6pVxXxpy7zELhspmt5z1vKKiIv3yl7/UnDlzNHLkSB07dkzLli1T//791aFDB7311luaOHGiJMntduudd97RnDlzgu+vrKzU888/r/fee0/Hjh3Tz3/+c40cOVLJycn65JNPtHPnTt18880aPHiwfvGLXwTfN3fuXE2dOlXTp0/Xv//9b40bN06dO3fWNddco6+//lrp6el64403NGLECFks/u/jgw8+0Lhx4/Tcc89p+PDh+uijj3TXXXepTZs2uvLKK4PXfvLJJ5Wbm6vc3FxNmjRJt99+uzp06KApU6YoKytLd999t+6//359+umnkqTy8nJdf/31evrpp2W32/WXv/xFN9xwg7Zv366srCy9//776t27t8aMGaN77733R/9Zfvzxxxo5cqSmTZumv/zlL3K5XPrkk0/O73+4C0CBjsgQwRPobq9bGw5ukHRqgR5rjdXsK2brjk/u0GcFn+kf3/1DIzs1/J+8AQAAAAAA4OyKiork8Xj085//XNnZ2ZKknJwcSdI999yjN954I1ig//Of/5TT6dStt94afL/b7Q5OhUvSLbfcorfeekvFxcVKSEhQ9+7ddeWVV+qLL76oU6APHjxYkydPliR17txZeXl5evbZZ3XNNdeoRYsWkqTk5GRlZmYG3zNv3jyNHj1a9913nyTpwQcf1MqVKzVv3rw6Bfpdd90VzDhp0iRddtllevTRR3XddddJksaNG6e77roreH7v3r3Vu3fv4I+ffPJJffDBB/rwww91//33KzU1VRaLRc2aNauT52RPP/20brvtNk2fPr3OtRsaBToiQwRPoOcfyleVp0pJ9iRdlHzRKa93b95d9/e5X8+te06zVs9Sv4x+yk7MNiApAAAAAABA47HGmDVmwVDD7n0uevfurauvvlo5OTm67rrrdO211+qWW25RSkqKRo8erUceeUQrV67UpZdeqj//+c+69dZbFR8fH3x/XFxcsDyXpIyMDLVr104JCQl1vlZSUlLnvpdddtkpPz75IZ0ny8/P15gxY+p8bfDgwVqwYEGdr/Xq1avOvaXjfygQ+JrT6VRZWZkSExNVXl6uJ554Qh9//HHwDxSqqqpUUFBwxjwn++abb844od5Q2IGOyBDBE+iB/ef90vvJbDr9v7Kje4zWxZkXq8pTpSnLpsjtdTdmRAAAAAAAgEZnMplks1sM+TjXFboWi0WLFi3Sp59+qu7du+uFF15Qly5dtGvXLqWnp+uGG27QG2+8oeLiYn366ae6++6767zfZrOd+j2f5mter7d+/zDPw4n3D/xzON3XApkmTJigDz74QDNnztSyZcv0zTffKCcnRy6X67zuGxsbW9/oF4QCHZEhMIHucUqe8/uXL9yd+ADRH2MxWzRzyEw1i2mmTT9s0p82/Kmx4gEAAAAAAOAMTCaTBg8erOnTp2v9+vWKiYnRBx98IEn6zW9+o4ULF+qVV17RRRddpMGDB4fknitXrjzlx926dQv+2Gaz1XnwqCR169ZNeXl5db6Wl5en7t271ytLXl6eRo8erZEjRyonJ0eZmZnavXt3nXNiYmJOyXOyXr16afHixfXKciEo0BEZAgW6FFFT6DXeGq0rXidJGpAx4IznZsZn6rFLH5MkvbrpVa0vWd/g+QAAAAAAAPDjVq1apZkzZ2rNmjUqKCjQ+++/r4MHDwbL7Ouuu06JiYl66qmn6uwNr6+8vDzNmTNHO3bs0B/+8Af9/e9/17hx44Kvt2vXTosXL9aBAwd05MgRSdLEiRP15z//WS+//LK+/fZb5ebm6v3339eECRPqlaVTp056//339c0332jDhg26/fbbT5mYb9eunZYuXarCwkL98MMPp73O448/rr/+9a96/PHHlZ+fr02bNmn27Nn1ynYuKNARGSxWKaZ295Oz1NgsIfTd0e90zH1M8bZ4dUntctbzR7Qfof+66L/k9Xk1ZdkUHXMda4SUAAAAAAAAOJ3ExEQtXbpU119/vTp37qxHHnlE8+fP109+8hNJktls1ujRo1VTU6Nf/epXIbvvQw89pDVr1qhv37566qmnlJubG3zIpyTNnz9fixYtUtu2bdW3b19J0k033aQFCxZo3rx56tGjh/70pz/pjTfe0LBhw+qVJTc3VykpKRo0aJBuuOEGXXfdderXr1+dc2bMmKHdu3froosuCj7k9GTDhg3T3//+d3344Yfq06ePrrrqKq1evbpe2c6Fyefz+Rr8LlGgrKxMSUlJKi0tVWJi4tnfgNCb3006tl8as0Rq1dfoNCHxTv47emb1MxrcerD+OPyP5/Secle5bvnnLSosL9QNHW7QzMtnNnBKAAAAAACAhuV0OrVr1y61b99eDofD6Dghdc899+jgwYP68MMPQ3K9du3aafz48Ro/fnxIrtdUnennzPl0uUygI3IEHiTqjJwVLoH952db33KihJgEzbp8lswms/6585/6dNenDRUPAAAAAAAAF6i0tFTLly/Xu+++q7FjxxodBz+CAh2RI7AHPUJ2oPt8vnN6gOjp9E3vqzG9xkiSnlzxpIrKi0KeDwAAAAAAABfuxhtv1LXXXqv//u//1jXXXGN0HPwIq9EBgJCJsAn0XWW7dNh5WHaLXT2a9zjv9/+212/1VeFX2vjDRk1dPlWvXfuaLGZLAyQFAAAAAADA+VqyZEmDXHf37t0Nct1oxQQ6IkeETaAHps97teilGEvMeb/farZq1uWzFGuN1ZriNfrzlj+HOCEAAAAAAAAQ2SjQETkibAL9Qte3nCgrMUtTLpkiSXpx/YvacmhLSLIBAAAAAAAYwefzGR0BTUSofq5QoCNyBCbQnaXG5ggBn8+nNQfWSKpfgS5JN3W8SddkXyOPz6PJSyerylMViogAAAAAAACNxmazSZIqKysNToKmIvBzJfBz50KxAx2RIzCBXt30C/T9FftVXFksq8mqXmm96nUtk8mkxy59TBtKNmh32W7N+3qeHr3s0RAlBQAAAAAAaHgWi0XJyckqKSmRJMXFxclkMhmcCuHI5/OpsrJSJSUlSk5OlsVSv2cCUqAjctiT/McIWOESWN/SPa274mxx9b5esiNZTw15SmMWjdHfdvxNQ1oP0ZVZV9b7ugAAAAAAAI0lMzNTkoIlOnAmycnJwZ8z9UGBjsjhiJyHiIZi//nJLmt1mX7d/dd6c+ubevyrx5XTIkdpsWkhuz4AAAAAAEBDMplMatmypdLT0+V2u42OgzBms9nqPXkeQIGOyGGPnIeIBgr0ARkDQnrd3/f7vVYWrdT2I9v1SN4jevnql/nrTgAAAAAAoEmxWCwhK0eBs+EhoogcETKBfrDyoPaU7ZFJJvVN7xvSa8dYYvTM5c/IbrErrzBPf93215BeHwAAAAAAAIgkFOiIHBEygR6YPu+a2lXNYpqF/PodUzrqwf4PSpLmr5mv7458F/J7AAAAAAAAAJGAAh2RI0Im0NcUr5EU2v3nJ/tl119qSOshcnldmrRsklw1rga7FwAAAAAAANBUUaAjcgQm0D1OydN0C+GGeIDoyUwmk54c/KRS7CnacWSHnl/3fIPdCwAAAAAAAGiqKNAROQIFutRkp9CPOo/qu6P+lSr9Mvo16L3SYtM0Y/AMSdKbW9/Uiv0rGvR+AAAAAAAAQFNDgY7IYbFKtnj/585SY7NcoHUl6yRJHZI6KNWR2uD3G9Z2mG7tfKsk6ZHlj+io82iD3xMAAAAAAABoKijQEVkcSf5jE51Ab4z1LSebcPEEtUtsp5KqEs1YOUM+n6/R7g0AAAAAAACEMwp0RJbAg0SdFOjnKtYaq9lXzJbVbNWiPYv0j+/+0Wj3BgAAAAAAAMIZBToiS2APehOcQK9wVyj/cL6kxi3QJal78+66v8/9kqRZq2epoKygUe8PAAAAAAAAhCMKdESWJjyB/k3JN/L6vGqT0EaZ8ZmNfv/RPUZrQMYAVXmqNGXZFLm97kbPAAAAAAAAAIQTCnREliY8gb6meI2kxp8+D7CYLZp1+Sw1i2mmjT9s1J82/MmQHAAAAAAAAEC4oEBHZGnCE+hG7D8/WWZ8ph679DFJ0qubXtX6kvWGZQEAAAAAAACMRoGOyNJEJ9CdHqc2/bBJkjQgY4ChWUa0H6EbOtwgr8+rKcumqNxVbmgeAAAAAAAAwCgU6IgswQn0UmNznKdNP2ySx+tRemy62jRrY3QcTR04Va0TWquwvFAzV800Og4AAAAAAABgCAp0RBZ7kv/YxAr0E/efm0wmg9NICTEJmnX5LJlNZv1z5z/1r13/MjoSAAAAAAAA0Ogo0BFZHE1zhUs47D8/Wd/0vro3515J0oyVM3Sg4oDBiQAAAAAAAIDGRYGOyGJveg8Rdde4taFkg6TwKtAl6be9f6teab10zHVMU5ZNUY23xuhIAAAAAAAAQKOhQEdkaYIT6FsPb5Wzxqlke7I6JHcwOk4dNrNNsy6fpVhrrNYUr9Frm14zOhIAAAAAAADQaCjQEVma4AT6ietbzKbw+1cyKzFL0wZOkyS9tOElrS5abXAiAAAAAAAAoHGEX1sH1EcTnEBfc+D4A0TD1Y0db9RNHW+S1+fVw0sf1g9VPxgdCQAAAAAAAGhwFOiILIEJdI9T8riMzXIOarw1Wl+yXlJ4F+iSNHXgVHVM7qhDzkN6eOnD7EMHAAAAAABAxKNAR2QJFOhSk5hC33Fkh8rd5Yq3xatLShej45xRrDVWucNyFWeN09cHvtZLG14yOhIAAAAAAADQoCjQEVksVskW7//cWWpslnMQ2H/eN72vLGaLwWnOrn1Sez1+2eOSpFc3vqq8wjyDEwEAAAAAAAANhwIdkacJ7UE/8QGiTcX1Ha7XrZ1vlU8+TVk2RQcqDhgdCQAAAAAAAGgQFOiIPIE1Ls7wLtB9Pl+wQB+QMcDgNOfn4UseVrfUbjpSfUQPL31Ybq/b6EgAAAAAAABAyFGgI/I4kvzHMJ9A31W6S0eqj8husatH8x5Gxzkvdotd84fOV4ItQetL1uuF9S8YHQkAAAAAAAAIOQp0RB5H05hAX1O8RpLUu0Vv2Sw2g9Ocv7aJbTVj8AxJ0hub39CSvUuMDQQAAAAAAACEGAU6Io+9aexAb6rrW050TfY1urPbnZKkacunqbC80OBEAAAAAAAAQOhQoCPyNIEJdJ/PF5xAb0oPED2dB/s/qJy0HJW5yjTxy4ly17APHQAAAAAAAJGBAh2RpwlMoO8r36eSyhJZzVbltMgxOk692Cw2zRs6T4kxidr0wyblrs01OhIAAAAAAAAQEhToiDzBCfRSY3OcQWB9S8/mPRVrjTU4Tf21SmilmUNmSpLezn9bi/YsMjgRAAAAAAAAUH8U6Ig89iT/MYwn0AMFelNf33KioW2H6q6ed0mSHst7TAVlBQYnAgAAAAAAAOqHAh2RpwnsQI/EAl2SxvYdq37p/VTuLtdDXz6k6ppqoyMBAAAAAAAAF4wCHZHHHt4rXIorirX32F6ZTWb1Se9jdJyQspltmnPFHKXYU7Tt8DbNWT3H6EgAAAAAAADABaNAR+RxhPdDRNeVrJMkdUnpomYxzQxOE3oZ8Rl65vJnZJJJf9vxN32882OjIwEAAAAAAAAXhAIdkcce3itcInV9y4kGtR6kMb3GSJKmr5iunaU7DU4EAAAAAAAAnD8KdESeMJ9ADxToAzIGGJykYf1P7//RJZmXqMpTpYeWPKQqT5XRkQAAAAAAAIDzQoGOyBOYQPc4JY/L2CwnOeI8ou+OfidJ6pfRz+A0Dctitmj2FbOVFpum745+p5mrZhodCQAAAAAAADgvFOiIPIECXQq7KfR1xf795x2TOyrFkWJwmoaXFpumOVfMkdlk1j+++4c++PYDoyMBAAAAAAAA54wCHZHHYpVs8f7PnaXGZjnJmuI1kiJ7//nJLs68WL/r8ztJ0sxVM7XjyA6DEwEAAAAAAADnhgIdkSlM96BHwwNET+c3Ob/R4FaD5axx6qElD6nCXWF0JAAAAAAAAOCsKNARmQJrXJzhU6Afcx3T9iPbJUn90iN7//nJzCazZl0+S+lx6dpdtlszVsyQz+czOhYAAAAAAABwRhToiExhOIH+Tck38vq8atusrTLiM4yO0+hSHCmaN3SeLCaLPtn1if6+4+9GRwIAAAAAAADOiAIdkSkMJ9CjdX3Lifqm99X4fuMlSbNXz1b+oXyDEwEAAAAAAAA/jgIdkcmR5D+G0QQ6Bbrfr3v8WsPaDJPL69JDXz6kY65jRkcCAAAAAAAATosCHZHJEV4T6FWeKm0+tFkSBbrJZNJTQ55Sq/hW2ntsrx7/6nH2oQMAAAAAACAsUaAjMtnDawf6poOb5PF6lBGXoTYJbYyOY7gke5LmDZ0nq9mqRXsW6d1t7xodCQAAAAAAADgFBToiU3ACvdTYHLXWFK+R5J8+N5lMBqcJDzktcjRhwARJ0rw187Tp4CaDEwEAAAAAAAB1UaAjMtnDawc6+89P7/aut+ua7Gvk8Xo04csJKq0Ojz/wAAAAAAAAACQKdESqMNqB7q5xa8PBDZKkARkDDE4TXkwmk6YPmq62zdpqf8V+TVs+TV6f1+hYAAAAAAAAgCQKdESqMNqBvuXQFlXXVCvFnqL2Se2NjhN2msU00/yh8xVjjtGX+77Um1veNDoSAAAAAAAAIIkCHZEqjCbQ2X9+dt2ad9PkgZMlSQvWLdC64nUGJwIAAAAAAADCvECvqanRo48+qvbt2ys2NlYXXXSRnnzySfl8vuA5Pp9Pjz32mFq2bKnY2FgNHz5c3377bZ3rHD58WHfccYcSExOVnJyse+65R+Xl5XXO2bhxoy6//HI5HA61bdtWc+bMaZTvEQ3EHj4PEWX/+bm5pdMtur799arx1Wji0ok67DxsdCQAAAAAAABEubAu0GfPnq2XX35ZL774ovLz8zV79mzNmTNHL7zwQvCcOXPm6Pnnn9cf//hHrVq1SvHx8bruuuvkdDqD59xxxx3asmWLFi1apI8++khLly7VmDFjgq+XlZXp2muvVXZ2ttauXau5c+fqiSee0CuvvNKo3y9CyBEeK1xqvDVaX7JeEgX62ZhMJj1+2eNqn9ReJZUlmrJsCvvQAQAAAAAAYKiwLtC/+uor3XjjjfrpT3+qdu3a6ZZbbtG1116r1atXS/JPnz/33HN65JFHdOONN6pXr176y1/+ov379+sf//iHJCk/P1//+te/9Nprr2ngwIEaMmSIXnjhBb333nvav3+/JOmdd96Ry+XS//2//1c9evTQbbfdpt///vfKzc017HtHPQUm0D1OyeMyLMb2I9tV4a5Qgi1BnVM6G5ajqYizxWn+0PlyWBz6av9XenXjq0ZHAgAAAAAAQBQL6wJ90KBBWrx4sXbs2CFJ2rBhg5YvX66f/OQnkqRdu3bpwIEDGj58ePA9SUlJGjhwoFasWCFJWrFihZKTkzVgwIDgOcOHD5fZbNaqVauC51xxxRWKiYkJnnPddddp+/btOnLkyGmzVVdXq6ysrM4HwkigQJcMnUIPrG/pm95XFrPFsBxNSaeUTnrk0kckSS9teEmri1YbnAgAAAAAAADRKqwL9MmTJ+u2225T165dZbPZ1LdvX40fP1533HGHJOnAgQOSpIyMjDrvy8jICL524MABpaen13ndarUqNTW1zjmnu8aJ9zjZrFmzlJSUFPxo27ZtPb9bhJTFKtni/Z8buAd9zQH/A0QHZA44y5k40Y0db9RNHW+S1+fVw0sf1sHKg0ZHAgAAAAAAQBQK6wL9b3/7m9555x29++67Wrdund58803NmzdPb775ptHRNGXKFJWWlgY/9u7da3QknMzgPehen1frStZJYv/5hZg6cKo6JnfUIechTfhygtxet9GRAAAAAAAAEGXCukCfOHFicAo9JydHo0aN0gMPPKBZs2ZJkjIzMyVJxcXFdd5XXFwcfC0zM1MlJSV1Xvd4PDp8+HCdc053jRPvcTK73a7ExMQ6HwgzgTUuTmMK9J1Hd+po9VHFWmPVPbW7IRmaslhrrHKH5SreFq91JeuUu4ZnEgAAAAAAAKBxhXWBXllZKbO5bkSLxSKv1ytJat++vTIzM7V48eLg62VlZVq1apUuu+wySdJll12mo0ePau3atcFzPv/8c3m9Xg0cODB4ztKlS+V2H59wXbRokbp06aKUlJQG+/7QwAyeQA/sP+/VopdsFpshGZq69knt9fSQpyVJb+e/rY92fmRwIgAAAAAAAESTsC7Qb7jhBj399NP6+OOPtXv3bn3wwQfKzc3VyJEjJUkmk0njx4/XU089pQ8//FCbNm3Sr371K7Vq1Uo33XSTJKlbt24aMWKE7r33Xq1evVp5eXm6//77ddttt6lVq1aSpNtvv10xMTG65557tGXLFi1cuFALFizQgw8+aNj3jhAweAI9UKCzvqV+rs66Wvfm3CtJmv7VdG0/vN3gRAAAAAAAAIgWVqMDnMkLL7ygRx99VPfdd59KSkrUqlUr/fa3v9Vjjz0WPOfhhx9WRUWFxowZo6NHj2rIkCH617/+JYfDETznnXfe0f3336+rr75aZrNZN998s55//vng60lJSfrPf/6j3/3ud+rfv7/S0tL02GOPacyYMY36/SLEDJxA9/l8wQJ9QAYPEK2v3/X5nbYe3qq8wjyN+2KcFv5soZLsSUbHAgAAAAAAQIQz+Xw+n9EhIkFZWZmSkpJUWlrKPvRw8eHvpXVvSsOmSsMmNeqt95bt1fUfXC+r2aoVv1whh9Vx9jfhjEqrS/WLj36hwvJCDW41WH+4+g+ymC1GxwIAAAAAAEATcz5dblivcAHqxVE7oWzABPqa4jWSpJy0HMrzEEmyJ2nBlQvksDiUtz9PL214yehIAAAAAAAAiHAU6IhcgRUuztJGvzX7zxtGl9QuenzQ45KkVza+os8LPjc4EQAAAAAAACIZBToil934CXT2n4fezzr8THd2u1OSNHX5VO0q3WVwIgAAAAAAAEQqCnREruAEeuMW6AcqDqiwvFBmk1l90vs06r2jxYMDHlS/9H6qcFdo/BfjVeGuMDoSAAAAAAAAIhAFOiKXvbZAb+QJ9MD6lm6p3RRvi2/Ue0cLm9mm+cPmKz02XTtLd+rRvEfF85ABAAAAAAAQahToiFwGTaCz/7xxpMWmKffKXFnNVi3as0hvbHnD6EgAAAAAAACIMBToiFwGT6BToDe83i16a8olUyRJC9Yt0Ff7vzI4EQAAAAAAACIJBToilwET6IeqDmln6U5JUr/0fo1232j2fzr/H43sOFJen1eTlk5SYXmh0ZEAAAAAAAAQISjQEbkCE+ieKsnjapRbri9ZL0nqmNxRyY7kRrlntDOZTJp26TT1aN5DR6uP6oEvHpDT4zQ6FgAAAAAAACIABToiV6BAlxptjQvrW4xht9j17LBnlWJPUf7hfD258kkeKgoAAAAAAIB6o0BH5LJYJVu8/3NnaaPcMlCgD8gY0Cj3w3EtE1pq7tC5MpvM+vD7D7Vw+0KjIwEAAAAAAKCJo0BHZHM03oNEj7mOadvhbZKYQDfKwJYD9UC/ByRJs1fP1jcl3xicCAAAAAAAAE0ZBToim73xHiS6vmS9fPIpOzFbLeJaNPj9cHq/7vFrXdfuOnl8Hj245EEdrDxodCQAAAAAAAA0URToiGyNOIG+pniNJKbPjWYymTRj0Ax1TO6og1UH9dCXD8ld4zY6FgAAAAAAAJogCnREtkacQOcBouEjzhan5658Tgm2BK0vWa+5a+YaHQkAAAAAAABNEAU6IlsjTaBXuiu19YetkijQw0V2YraeufwZSdJft/1VH37/ocGJAAAAAAAA0NRQoCOyNdIE+sYfNsrj8ygzPlOt4ls16L1w7oa2Har/6f0/kqQZK2Yo/1C+wYkAAAAAAADQlFCgI7I10gT6ietbTCZTg94L5+e/e/+3Lm99uaprqvXAkgd01HnU6EgAAAAAAABoIijQEdnsSf6js7RBb8P+8/BlNpk16/JZatusrQrLC/Xw0odV460xOhYAAAAAAACaAAp0RDZHbYHegBPorhqXNh7cKIkCPVwl2ZP03JXPKdYaqxVFK/TiNy8aHQkAAAAAAABNAAU6Ipuj4Xegbzm0RdU11Up1pKp9YvsGuw/qp3NKZ00fNF2S9Nqm1/TZns8MTgQAAAAAAIBwR4GOyGZv+B3oaw6skcT+86bgJ+1/ol91/5Ukadryadp5dKfBiQAAAAAAABDOKNAR2RphAp39503LA/0f0MWZF6vSU6lxX4xTuavc6EgAAAAAAAAIUxToiGwNPIHu8Xq0vmS9JGlAxoAGuQdCy2q2au4Vc5URl6HdZbs1bfk0eX1eo2MBAAAAAAAgDFGgI7I18AT69sPbVempVLOYZuqY3LFB7oHQax7bXM8Oe1Y2s02f7/1cr2963ehIAAAAAAAACEMU6IhsgQl0T5XkcYX88muK/fvP+6X3k8VsCfn10XByWuRo2sBpkqQX1r+gvMI8gxMBAAAAAAAg3FCgI7IFCnSpQda4sP+8abu58826udPN8smnh5c+rH3H9hkdCQAAAAAAAGGEAh2RzWKVbPH+z52lIb201+fVupJ1kijQm7KpA6cqJy1HZa4yPbDkAVV5qoyOBAAAAAAAgDBBgY7I52iYB4l+f/R7lVaXKtYaq27Nu4X02mg8MZYY5Q7LVaojVdsOb9OMFTPk8/mMjgUAAAAAAIAwQIGOyGdvmAeJBta39G7RWzazLaTXRuPKjM/UvKHzZDFZ9NHOj/TutneNjgQAAAAAAIAwQIGOyNdAE+iBB4iyviUyXJx5sR7s/6Akad7X84J/QAIAAAAAAIDoZTU6ANDgGmAC3efzBQvWARkDQnZdGGtU91HbVjmDAAAgAElEQVTafGizPt31qR5a8pD+dsPflB6XbnQsAAAAAACAs/J5vfKWl6umtFQ1R0tVU1oqb5n/eOLXasrKVFN6VN7SUsV07Kg2zz5rdPSwRoGOyNcAE+gFxwr0Q9UPspltymmRE7Lrwlgmk0lPXPaEvjv6nb498q0eWPKA3rjuDcVYYoyOBgAAAAAAooTP5aotuU8ovstK5T1tEV7qL8OPlqrm2DHJ6z2/m1lZS3w2FOiIfA0wgR6YPs9Jy5HdYg/ZdWG8OFucFgxboF98/AttPLhRT696Wk9c9oRMJpPR0QAAAAAAQBPj8/nkrahQzaFD8hw6rJrDP3IsPT4p7qusrNc9TbGxsiQlnfCRKHPw8+Tg1yxJSbKmpYXoO41cFOiIfA0wgR4o0Nl/HpnaJrbV3Cvm6r7F9+n9b99X99Tu+kXXXxgdCwAAAAAAhAFvdbVqDh8+fRF+6JA8h2uPR46o5tAh+Vyu87+JySRzYuLxEjzweXLS8TI80f/jE8tyc1KSzDH8TfpQokBH5LMn+Y/O0pBdkv3nkW9w68Ea32+8ctfm6pnVz6hjSkf+wAQAAAAAgAhVc+yYPAcO1CnDPYcPqeY0R295+Xlf3xwXJ0vz5rKmpvqPzVNlSa09pqTKkpx8vAxPTJS5WTOZLJYG+E5xvijQEflCPIF+xHlEheWFMsmk3um9Q3JNhKfRPUYr/1C+Pt39qR5c8qAW/myhMuMzjY4FAAAAAADOg8/lkru4WO79RfIcKJK7qEju/UVyHyiSp/Zzb0XF+V3Uaj1ehqemytI8VdbU5nWPgddSU2WOjW2Ybw4NjgIdkS/EO9CPVB+RJCXEJCjeFh+SayI8mUwmTR88XbvKdmnb4W0a98U4vTniTTmsDqOjAQAAAAAA+XeM1xw6JHfRAbmL9gcLcfeBA/6ivGi/an44JPl8Z72WOSnpeOl98pT4SUdzYiLPS4sSFOiIfI7aFS4hmkAvd/n/mk4zW7OQXA/hLdYaq+eufE63fXSbth7aqidXPqmnBj/FL5IAAAAAADQCb0WFvwzf7y/DPcHPAxPkB85px7jJbpctM1PWVi1la9lKtsxM2Vq1lLVlS9latpQtM1PmuLhG+I7Q1FCgI/I5QjuBHijQE2ISQnI9hL/WCa01b+g8/XbRb/Xh9x+qW2o33dn9TqNjAQAAAADQpPm8Xnl++EGe/fvlDn7UluO1H97Sc3imnckka4sWsrVs6S/IM2tL8VYtZc30Hy0pKQzD4YJQoCPy2UO7A73M7b9Osxgm0KPJwJYDNWHABM3+erbmrZmnTimdNLDlQKNjAQAAAAAQtoK7xwtPLMj3y13kP3r2F8nndp/1OubERP/E+IkFeSv/1Li1ZSvZMtJlstka4TtCNKJAR+RroAl0VrhEnzu63aH8w/n68PsPNeHLCXrvZ++pdUJro2MBAAAAAGAIb0VF3WJ8//7jZXlRkTwlJWffPW42y5qRIVurVsc/WraUrXWr2oK8pSwJbAGAcSjQEfkCE+ieKqnGLVnq9yeSx1zHJDGBHo1MJpMevfRRfX/0e205tEXjPh+nt65/S7FWnqQNAAAAAIgsPp9PNYcP+1eqnFyS136cy3oVk91eu06llb8Ub1X3w5rO9DjCGwU6Il+gQJf8U+jxzet1uUCBzg706OSwOvTclc/pFx/9QtuPbNfjeY9r9hWz2aMGAAAAAAhLPp9PvspK1ZSWqubo0ZOOJ3x+mtfl8Zz1+uakpOMF+YkftWW5JTWV3zOjSaNAR+SzWCVbvOSukKpLQ1agM4EevTLjM5U7LFe/+fdv9OnuT9WteTfd1fMuo2MBAAAAACKYz+eTr6qqbtn9YwV46dHg596jpee0Z/zHWFu0qFOIW08qylmvgkhHgY7o4Ej0F+jOc3hy81mUu9mBDql/Rn9NvmSynlr1lJ5b95w6p3TW4NaDjY4FAAAAAGhivC6XPCUH5TlYUns8KE9JSZ1jzZEjqiktlc/luuD7mGw2WZKTZUlOkiUpWebkJFmSkvxfS0o+4fMkWVJqj6mpMsfEhPC7BZoeCnREB3uidKwoJA8SZQIdAbd2uVX5h/P1v9/+ryYunaj3fvqeshKzjI4FAAAAAAgD3urq2hL81EL8xGPNOewRr8Nmqy3B/UV4sPQOHAOf1ynIk2SKjWWVCnABKNARHRy1e9CrQ1egswMdJpNJUwdO1bdHv9XGgxs17otxeuf6dxRnizM6GgAAAACggXidTn/5HSjC60yP+4txd8nBc3rAZoDJZpM1PV3WFi38xxM/b9FC1tSUYBluioujCAcaEQU6okPgQaIhmEBnhQtOFGOJ0bPDntVtH92m745+p2nLpyl3WC7/ZwYAAAAAmiiv0yl3YaFcBQVy790n1769chfslbtw3/kX4zExp5bhwWML/37x9HSZk5L4fSQQpijQER0aYAKdFS4ISI9L17NXPqu7/nWXPiv4TK9uelVjeo0xOhYAAAAA4DR8Pp9qDh+We+9euWo/3Hv3ybXXX5h7iovPeg2T3X5qKX5CIR74mjkxkWIcaOIo0BEdQjmB7vJPoLPCBSfq3aK3pg2cpidWPKEX17+oLildNLTtUKNjAQAAAEBU8rlcchcVyVWwV+59e+se9+6Vt7LyjO83x8fLlpWlmDZtZMtqq5i2bWVr01a2zAxZW7SgGAeiCAU6okOIJtC9Pu/xFS5MoOMkN3e+WfmH87Vw+0JNXjZZ7/70XbVPam90LAAAAACISDWlpXLt3Sf33oKTjnvlLiqSvN4ff7PJJGtGhr8Yb9tWMVn+gjwmy/9jS3IyBTkASRToiBb2JP/ReZ5Ptj5JhbtCPvkkUaDj9CZdPEnfHvlW60rW6fef/17v/vRdfq4AAAAAwAWqOXpUrj175Nq9u/a4x3/ct++su8hNDodi2raRrW3WSce2srVuLbPd3kjfBYCmjAId0SFEE+iB/ecx5hjZLfxCi1PZLDbNHzZft310m3aX7dbUZVO14KoFMpvMRkcDAAAAgLBUU14h157dcu/Zc7ws3+0/1pylJLe0SFNMm1MnyGPatpUlLY0pcgD1RoGO6BCiHeiBAp395ziTtNg0LbhygX716a+0ZN8SvbzhZf2uz++MjgUAAAAAhvE6nXIVFNSZJnfv3qPqPbtVc/CHM77XmpGhmOxsxbRrV3vM9pfkbdrIHBfXSN8BgGhFgY7oEOIJ9MSYxPomQoTrkdZDjw96XNOWT9MfN/xRXVO66ursq42OBQAAAAANxud2y7Vv3/F1KyeU5Z6iA5LP96PvtaSmnlSSt1NMu2zFZGVRkgMwFAU6okOIJtADDxBNsDGBjrP7r4v+S/mH8vV2/tuaunyq3kl8Rx1TOhodCwAAAAAumK+mRu6iotpd5LuPH/fskXtfoVRT86PvNTdrdrwgP7Ekz86WJZFBNQDhiQId0cFR+xDREE2g81BInKuHBjykb498q1UHVmncF+P07k/fVVLgobYAAAAAEIb8JfmB48X4noLjE+X79klu94++1xQbW7cgr125EtOunSwpKewkB9DkUKAjOjjYgQ5jWM1WzR06V7d9dJsKjhVo0rJJ+sNVf5DFbDE6GgAAAIAo5vN65Tlw4IRVK7XHggK5CwrkO1NJbrPJlpV12pUr1vR0SnIAEYUCHdEhsMLFUyXVuCWL7YIuE1jhwgQ6zkeKI0ULrlqgUZ+MUl5hnl5Y/4LG9x9vdCwAAAAAEc7n9cpTXCzXiRPke/wrV9wFe+VzuX70vSabzf+gzmz/HvLAqpWY7GxZMzNlsjAUBCA6UKAjOthP2KXmLJPim1/QZYIrXGwU6Dg/XVO7asbgGXp46cN6ffPr6tq8q0a0G2F0LAAAAABNnM/nk6ekJLiL3F1QcHyifO9e+ZzOH3+z1aqYNm2Ca1Zs2cdLclvLlpTkACAKdEQLi1WyxUvuCqm6tN4FOitccCF+0v4nyj+crzc2v6HH8h5T+8T26pLaxehYAAAAAMJcnUnyAv8Uub8oL5CroODsJXnr1rK1y1ZMVvYJ+8lrS3Ir1RAAnAn/lUT0cCT6C/R67EHnIaKor3F9x2n74e36av9XGvfFOL330/eU7Eg2OhYAAAAAgwUe3Oku8O8hD5Tj57JuRRaLbK1bHy/HAw/uzMqSrVUrmWwXtsYUAECBjmhiT5SOFUnVF16gswMd9WUxWzTnijn65ce/1N5jezVh6QT9cfgfZTXzn2MAAAAg0vk8HrmLimp3ku+uM0Xu3rv3jA/uPGWSPCtLMdlZ/pK8dWtKcgBoIDQ2iB6O2j3oztILvgQ70BEKSfYkLbhyge745A6tKlqlZ9c+q4kXTzQ6FgAAAIAQ8LndchcWnjpFvqdArsJCyeP50fcGH9xZW47bsgNrV7JYtwIABuG/vIgegQeJhmCFCzvQUV+dUjpp5pCZemDJA/rL1r+oa2pX3XDRDUbHAgAAAHAOvC6X3PsKT5kid+3ZI/f+/VJNzY++12S3KyarrWwnTZHHZGfLmpnJgzsBIMxQoCN6BCbQQ7DCJTEmMRSJEOWGZw/XmF5j9MrGVzR9xXR1SO6gHs17GB0LAAAAgCRvdbXce/cenyQ/oSx3FxVJXu+PvtfkcARL8ZjsLNmysoKT5NaMDJnM5kb8TgAA9UGBjujBBDrC0O/6/E7bD2/Xl/u+1Pgvxuu9n76n5rHNjY4FAAAARAVvVZVcBXvlKthzyiS558AByef70fea4+JqV6xkHZ8kz86WLStb1vQWMplMjfidAAAaCgU6okc9J9BdNS5V11RLkhJsFOgIDbPJrFmXz9LtH9+u3WW79dCXD+nVa1+VzcwDgAAAAIBQ8FZUyLV3b+0U+R5/WV5blHuKi8/4XnNCwmmnyGOys2Vp3pySHACiAAU6ooc9yX+8wIeIBqbPJQp0hFazmGZacNUC3f7x7VpbvFZzVs/RtEunGR0LAAAAaDJ8Pp88xcVybtum6u07gkW5a88e1Rz84YzvNScm+kvyk1euZGfLkpJCSQ4AUY4CHdGjnhPogf3n8bZ4Wcw81AWh1SGpg565/BmN/Xys3tv+nrISszSq+yijYwEAAABhx+dyqXrnTn9Znr9Nzu3bVZ2fr5rSHx+WsqSkKCYrS7bsulPkMVlZsiQnN2J6AEBTQ4GO6FHPHeiBCfRmMc1ClQioY1jbYXqw/4PKXZuruV/PVcv4lhqePdzoWAAAAIBhao4elXPbdjm35at623Z/af7995LbferJFovsHTrI3rWr7B3aH1+5ktVWlqSkxg8PAIgIFOiIHvWcQA8+QJT1LWhAo3uMVmF5oRZuX6jJyybrtdjX1Ce9j9GxAAAAgAbl83rlLijwl+Xbj0+We4qKTnu+uVkzObp2lb1r19pjF9k7dpTZbm/k5ACASEeBjugRogn0xJjEUCUCTmEymTT5kskqrijWkn1LNPbzsXr7+reVnZhtdDQAAAAgJLxVVaresUPO/G3Bsrx6xw55KytPe76tbVs5unYJluWOrl1lbdWK3eQAgEZBgY7oEaId6AkxTKCjYVnNVs2+Yrbu/vfd2nJoi+777D69df1bSnWkGh0NAAAAOGc+n0+ekoOq3pZfZw2La/duyec75XyT3S57p05ydOsqe5eutccusiTwezAAgHEo0BE92IGOJiTOFqcXr35Rd35ypwqOFWjs52P1+rWvy2F1GB0NAAAAOC13SYmcmzeratMmOTdtlnPrVtUcPnzacy0t0uQIluT+Y0x2tkxWagoAQHjhVyZED0ftQ2M8VVKNW7LYzuvt7EBHY0uLTdNLw1/SqE9GaePBjZq8bLLmD50vi9lidDQAAABEuZqjR1W1eYucmzepatNmOTdvlqe4+NQTLRbFtG8nR9dutWtY/EdrWlqjZwYA4EJQoCN62E/YXe4sk+Kbn9fbAytcmEBHY+qQ1EHPX/W87v3PvVpcsFjz1szTpEsmGR0LAAAAUcRbUSHn1q21RfkmVW3eIndBwaknms2yX3SRHDk5is3pKUfPnrJ36iSzg79FCQBouijQET0sVskWL7krpOrS8y7QWeECo/TP6K+ZQ2Zq4tKJejv/bbVKaKVR3UcZHQsAAAARyOtyqXrbNv8altoJ8+rvd0pe7ynn2rKzFNszR46cnort2VOObt1kjo83IDUAAA2HAh3RxZHoL9AvYA86K1xgpBHtR6iooki5a3M19+u5ahnfUsOzhxsdCwAAAE2Yz+NR9fff191bvmOH5Hafcq41M9M/Vd6jZ7AwtyQlGZAaAIDGRYGO6GJPlI4VSdUXXqAnxiSe5UygYYzuMVqF5YVauH2hJi+brNdiX1Of9D5GxwIAAEAT4PN65dqzJzhVXrVps5z5+fJVVZ1yriUl5fhUeU//OhZrixYGpAYAwHgU6Igujtry+wIm0AM70BNimECHMUwmkyZfMlnFFcVasm+Jxn4+Vm9f/7ayE7ONjgYAAIAwEizLt25VdX6+qrZskXPzFnmPHTvlXHN8vBw9evgL85wcOXrmyNa6lUwmkwHJAQAIPxToiC6BB4nWYwKdHegwktVs1ewrZuvuf9+tLYe26L7P7tNb17+lVEeq0dEAAABgAJ/L5V/DsjVfzq1b5czPV/W2bfJWVp5yrslul6Nr1+MP+czJUUy7djKZzQYkBwCgaaBAR3QJTqCXnvdbgwW6jQIdxoqzxenFq1/UnZ/cqYJjBRr7+Vi9fu3rclgdRkcDAABAA/JWVsq5bbuc+f6i3Ll1q1zffiffaXaWmxwO2bt0lqNbNzm6dVdsTk/ZO3WSyWYzIDkAAE0XBTqii/3CVrj4fL7gChcm0BEO0mLT9NLwlzTqk1HaeHCjJi+brPlD58tithgdDQAAACHgOXJE1fn5tUW5/+jatUvy+U4515yYWFuUd5Oju/8Y0769TFZ+yw8AQH3xqymii+PCVrhUeirl9XklsQMd4aNDUgc9f9Xzuvc/92pxwWLNWzNPky6ZZHQsAAAAnAefzydPcXGdFSzO/K3y7C867fnWFi3k6N5d9u6Bwry7bK1bs7McAIAGQoGO6GJP8h/Pc4VLYH2L1WSVw8KaDISP/hn9NXPITE1cOlFv57+tVgmtNKr7KKNjAQAA4DQCD/cMTpZv8RfmNUeOnPZ8W1ZWsCQPTJZb09IaOTUAANGNAh3R5QIn0E98gCiTHQg3I9qPUFFFkXLX5mru13PVMr6lhmcPNzoWAABAVPN5vXLt3iPnls1ybt6sqi1bVL01/7QP95TFIvtFFx1fwdK9u+xdu8rSjPWRAAAYjQId0eUCd6AH9p+zvgXhanSP0SosL9TC7Qs1edlkvRb7mvqk9zE6FgAAQFTweb1yFxSoavMWObdskXPzZjm3bpW3ouKUc012u+xduwQf7uno3k32Tp1kdvA3XQEACEcU6IguIZhAB8KRyWTS5Esmq7iiWEv2LdHYz8fq7evfVnZittHRAAAAIorP55N7797gVLmztjT3lpefcq7J4fAX5T17ytGju2J79ODhngAANDH8qo3ocoET6MEC3UaBjvBlNVs1+4rZuvvfd2vLoS2677P79Nb1bynVkWp0NAAAgCbJ5/PJXVjonyjfskVVmzfLuWWrvGWn/n7CZLfL0bWrHD16+Avznj1k79CBshwAgCaOX8kRXZhAR4SLs8Xpxatf1J2f3KmCYwUa+/lYvX7t63JY+SvBAAAAZ+Lz+eTZv//4VHltaV5TWnrKuSabTfauXeXo2UOxPXvK0bOnvyy32QxIDgAAGhIFOqILO9ARBdJi0/TS8Jc06pNR2nhwoyYvm6z5Q+fLYrYYHQ0AACAs+Hw+eQ4cqDNV7ty8WTVHjpx6ss0mR+fOx9ew9Owpe8eOMsXENH5wAADQ6CjQEV0cSf6jp0qqcUuWc5sQYQIdTU2HpA56/qrnde9/7tXigsWat2aeJl0yyehYAAAAhvB5varevl0VK1epctUqVW3apJpDh0490WqVvXMnxfboGVzFYu/cSWbKcgAAohYFOqKL/YQC3FkmxTc/p7exAx1NUf+M/po5ZKYmLp2ot/PfVquEVhrVfZTRsQAAABqcz+eTa+dOVaxcqcpVq1W5atWpq1gsFtk7dQpOlfvL8s4y2+3GhAYAAGGJAh3RxWKTbPGSu0KqLj3nAr3cxQoXNE0j2o9QUUWRctfmau7Xc9UyvqWGZw83OhYAAEDIufbtU+XKlapYuUoVq1aq5uAPdV43x8Up9uIBih94qeL69ZW9a1eZHTwnBgAAnBkFOqKPI9FfoJ/HHvQyt/9cVrigKRrdY7QKywu1cPtCTV42Wa/FvqY+6X2MjgUAAFAv7uJiVa5aFVzL4i4srPO6yW5XbL++ih84UHEDByq2Z08e8gkAAM4bBTqijz1ROlYkVZ97gR6YQGeFC5oik8mkyZdMVnFFsZbsW6Kxn4/V29e/rezEbKOjAQAAnDPPkSOqXLVaFatWqnLlKrl27ap7gtWq2F69FH/pQMUNvFSxfXqzjgUAANQbBTqijyPRfzyPCXQeIoqmzmq2avYVs3X3v+/WlkNbdN9n9+mt699SqiPV6GgAAACnVXPsmCq/XqPKVStVsWq1qrdtq3uCySRHjx61hflAxfXrJ3N8vDFhAQBAxKJAR/Sx1xboFzCBzg50NGVxtji9ePWLuvOTO1VwrEBjPx+r1699XQ4ruz8BAIDxvFVVqly3TpUrV6li1So5N2+WvN4659g7dVLcpZf6S/MBA2RJSjIoLQAAiBYU6Ig+FzKB7mYCHZEhLTZNLw1/SaM+GaWNBzdq8rLJmj90vixmi9HRAABAlPG6XHJu2BB86GfVho2S213nHFt2luIH1hbml1wia1qaQWkBAEC0okBH9DnPCXS3160qT5UkdqAjMnRI6qDnr3pe9/7nXi0uWKx5a+Zp0iWTjI4FAAAinM/nk2vnTlUsX67yvDxVfr1GvqqqOudYMzMVf+mlirt0oOIHDpStZUuD0gIAAPhRoCP6BCfQS8/p9ApXRfBzVrggUvTP6K+ZQ2Zq4tKJejv/bbVKaKVR3UcZHQsAAESYmtJSVaxYofLly1WR95U8RUV1Xrc0b674gZcornbK3JaVJZPJZFBaAACAU1GgI/rYa/cknmOBHniAaKw1VlYz/8ogcoxoP0JFFUXKXZuruV/PVcv4lhqePdzoWAAAoAnzeTyq2ripdsp8uZyb6u4xN8XEKG5Af8UPHqL4IYNl79yZwhwAAIQ12kBEH8f5rXAJ7j9nfQsi0Ogeo1VYXqiF2xdq0tJJeuGqFzSo9SCjYwEAgCbEta9QFcuXqyIvTxUrV8p77Fid12M6XqSEwYMVP2SI4gYMkDk21qCkAAAA548CHdHHfn4PEQ1MoPMAUUQik8mkyZdM1sHKg/p87+ca+/lYPXvls7qizRVGRwMAAGHKW1GhitWrVbE8TxV5eXLt3l3ndXNSkuIHXaaEIUMUP2gQe8wBAECTRoGO6HOeE+jlrnJJ7D9H5LKarZo3dJ4mLp2oxQWLNf6L8codlqthbYcZHQ0AAIQBn9crZ36+KvK+UsXy5apcv15yu4+fYLEotk8fxQ8epIQhQ+To0UMmi8W4wAAAACFEgY7oc54T6GUu/3lMoCOS2Sw2zR06V5OWTtKiPYv0wJIHNO+Kebo6+2qjowEAAAN4Dh5UeV6evzT/6ivVHDpU53VbmzaKHzJY8YMHK/7SS2Vpxv9XBgAAkYkCHdHnfCfQ3f4JdHagI9LZzDbNuWKOpi6bqk93f6oJX07Q7Ctm69p21xodDQAANDCvy6WqtWtVvny5KvK+UvW2bXVeN8fFKW7gQMUPGayEwYNly87m4Z8AACAqUKAj+rADHfhRVrNVMy+fKYvZoo92fqSHlz4sr8+rEe1HGB0NAACEkNflknPzFlWtW6uK1atVufpr+ZzOOuc4evTwT5gPGay4Pn1kiokxKC0AAIBxKNARfRxJ/qOnSqpxSxbbGU8PFOjsQEe0sJqtemrwU7KYLPp/3/8/TVo2SR6fRz/r8DOjowEAgAtUU1qqqm++UeXadapct1bOjZvkc7nqnGNt0aK2MB+i+EGXyZqaalBaAACA8EGBjuhjP2GS3FkmxTc/4+nBFS5MoCOKWMwWzRg8Q1azVf/77f9q6rKpqvHW6MaONxodDQAAnIXP55Nn/35VrlunyrVrVbV2naq//faU8yypqYrr30+x/forftAg2Tt3Yi0LAADASSjQEX0sNskWJ7krperSsxbowRUu7EBHlDGbzHrsssdkNpn19x1/16N5j/5/9u48zOa6/+P486yzn8EMBslesoSQkn0niUpl35W4s/RLd+7SnTZKRSQlhFSUlBZ7thDZFZVC1rHNcmZfzjm/P2bmZFLdc+rMfM3M63Fdrpn5fs+ZXq7LfXNe8z7vD26Pmx41ehgdTURERC7jcblIO3LEW5Yn79lDZnT0FY+zV65MUMObCL6pIcENb9IecxEREZE8UIEuxVOAI6tAz8Me9MT0rAl0rXCR4shsMvPkLU9iMVn44McPmLhtIpmeTHpe19PoaCIiIsWWOyWFlIMHSdmzh+Tde0jZuxd3YmLuB1mtBNaqRfBNN2WX5jdhjfjrwRERERERuZIKdCmeAsMhMRrS/neB7kzPeoxWuEhxZTKZmNBkAlazlXcPv8uk7ZPIdGfSq2Yvo6OJiIgUC5kxMd6yPHnPblK/PwSZmbkeYw4OJqhBA++EedCNdTEHBxuUWERERKToUIEuxVOgI+tjXibQtQNdBJPJxPjG47Garbzz/Ts8v+N5XG4XfWv1NTqaiIhIkeLxeMg4ccJblqfs3kP6sWNXPM5apgzBjRoS1OAmghveRMB112Gy6uWdiIiIiL/pX1hSPAVkF+h5mEDXDnSRLCaTiXENx2ExWZj73VymfDsFl8fFgNoDjI4mIiJSqGWcOUPipk0kbf+G5D17cF28eMVjAmpUJyh7d3nQTQ2xVSiv/eUiIiIiBUAFuhRPeZa/RZQAACAASURBVJxA93g82oEuchmTycTom0ZjNVt588CbTN01lUx3JkPqDjE6moiISKHhycwkZf9+EjduInHjRtKOHMl132SzEVi3bnZZfhPBDRpgKVHCoLQiIiIixZsKdCme8jiBnpKZQqYna7+kw+7I71QihYLJZGJUg1FYzBZm7ZvFtD3TyHRn8kC9B4yOJiIictVyxcWRuOXrrEnzLVtwxcf/dtNsJqhBA0KbNye4cSMC69TBHBBgXFgRERER8VKBLsWTdwI9/i8flrP/3GKyEGQNyu9UIoXKiHojsJqsvLb3NWbum4nL42JEvRF6O7mIiAhZ72RMO3Ika8p80yZS9u4Ft9t73xweTmizZoS2akVIs9uwlixpYFoRERER+TMq0KV4CgjP+vg/JtAvX9+iUlDkSsNuHIbFbOHV3a/yxv43yHRn8q8G/9L/XkREpFhyp6aSvGMHiZs2kbBxI5lnzua6H1CjBqGtWhLaqhVB9erp0E8RERGRQkD/YpPiKY8T6M70rII91Kb95yJ/ZnCdwVhMFqbumsqcg3NweVyMuWmMSnQRESkWMs6eJXHTJhI3biLpm2/wpKZ675kCAgi+pQmhLVsS1rIltgoVDEwqIiIiIn+HCnQpngLydohozgqXMHtYficSKdQG1B6A1Wxl8s7JzPtuHi63i0caPaISXUREihyPy/XbAaCbNpH244+57lujorKmzFu2JOSWWzAHaQ2giIiISGGmAl2Kp8C8HSKakJ4AqEAXyYs+N/TBYrLw3I7nWHBoAS6Pi/GNx6tEFxGRQs8VH0/i119nTZlv2YIrLu63m2YzQfXqEdqqFaGtWhJw3XX6u09ERESkCFGBLsVTHifQcwp0rXARyZv7a96PxWxh0vZJvHv4XTLcGUxoMgGzyWx0NBERkTzzeDyk//yzd5d5yt594HJ575sdjqwDQFu3IqRZMx0AKiIiIlKEqUCX4kkT6CL5pud1PbGarDy17SmW/LgEl8fFk7c8qRJdRESuau6UFJJ37iRx02YSN20i4/TpXPcDalQntGXWapagBg10AKiIiIhIMaF/9UnxpB3oIvmqR40eWMwWntz6JB/99BEut4v/Nv2vSnQREbmqpJ86lXUA6KZNJO/YiSctzXvPZLcT3KRJ9j7zVtiv0QGgIiIiIsWRCnQpngLDsz5mpoArAyy2P3yYJtBF/r5u1bphMVmY8PUElv+8HJfHxaSmk7CYLUZHExGRYsqTnk7y7t1ZU+abN5N+9Giu+9Zy5Qht0YLQli2yDgANDjYoqYiIiIhcLVSgS/EUcFkhnuqEkIg/fJh2oIv8M7dXvR2L2cK/N/+bFb+sINOdyXPNnsNq1l8/IiJSMDLOnSNx82aSNm8maes23MnJv920WAi+6aaswrxFCwJq1NABoCIiIiKSy1X/XvrTp0/Tt29fIiIiCAoKom7duuzatct73+PxMHHiRMqVK0dQUBDt2rXjyJEjub5HTEwMffr0weFwUKJECYYMGUJiYmKuxxw4cIDmzZsTGBhIxYoVefHFFwvk9ycGsdjAlj1RlBb/pw/LWeHisDsKIpVIkdSpcideavkSVpOVL499yeNbHifDnWF0LBERKaI8mZkk79nD+VencbR7D35u2YroJyeSsHYd7uRkLJGRhPfoQYVp07hu+zYqLVpIxNChBF53ncpzEREREbnCVT0CGBsby2233Ubr1q1ZuXIlpUuX5siRI5S87JT7F198kddee40FCxZQpUoVnnzySTp27MihQ4cIDAwEoE+fPpw9e5a1a9eSkZHBoEGDGD58OO+99x4ATqeTDh060K5dO2bPns3BgwcZPHgwJUqUYPjw4Yb83qUABDggI/kv96B7J9DtmkAX+SfaV2rPy61e5pFNj7Dq+CpcHhdTWkzBZv7j9UkiIiK+yIyJIWnLlqzVLFu34o6/bEDCZCLoxhsJadmC0BYtCax1AybzVT9HJCIiIiJXiau6QJ8yZQoVK1Zk/vz53mtVqlTxfu7xeJg2bRpPPPEEd955JwALFy6kbNmyfPLJJ9x///0cPnyYVatW8e2339KoUSMAZsyYQZcuXZg6dSrly5dn8eLFpKenM2/ePOx2O7Vr12bfvn288sorKtCLskAHJEZDWh4KdK1wEfnH2lzbhmmtpjF241jW/roW10YXU1tOxfYnZxCIiIj8GY/bTer3h0jcvInEzZtJPXAQPB7vfXN4OKHNmmWtZmnWDGupUgamFREREZHC7KoevVixYgWNGjWiZ8+elClThgYNGjBnzhzv/WPHjhEdHU27du2818LDw2nSpAnbt28HYPv27ZQoUcJbngO0a9cOs9nMjh07vI9p0aIFdrvd+5iOHTvy448/Ehsb+4fZ0tLScDqduX5JIROQvZYlDxPoWuEi4h8tK7Zkeuvp2M12vjr5FWM3jiXdlW50LBERKQRcTifOVas48/gEjrRoyfGePbk4Yyap+w+Ax0PADTcQ8eADVHrvPa7b+jUVXp5KeLduKs9FRERE5B+5qifQjx49yhtvvMG4ceOYMGEC3377LQ8//DB2u50BAwYQHR0NQNmyZXM9r2zZst570dHRlClTJtd9q9VKqVKlcj3m8sn2y79ndHR0rpUxOV544QWefvpp//xGxRiB4Vkf/2ICPWcHula4iPhP82uaM6PNDB7e8DCbTm1i9IbRTGs9jQBLgNHRRETkKuLxeEg7coTETZtI2rSZ5L17weXy3jeHhBDStGnWlHnz5th+95pARERERMQfruoC3e1206hRI55//nkAGjRowHfffcfs2bMZMGCAodkef/xxxo0b5/3a6XRSsWJFAxOJzwL/egLd5XaRlJEEQJg9rKBSiRQLTSs05fW2rzNq/Si+Pv01o9aPYnrr6QTnHO4rIiLFVvqJE8R/8gnxn64g4/TpXPfs1aoR2rIloS1aEHxTA0yXvYNURERERCQ/XNUFerly5ahVq1auazfccAPLli0DICoqCoBz585Rrlw572POnTtH/fr1vY85f/58ru+RmZlJTEyM9/lRUVGcO3cu12Nyvs55zO8FBAQQEKBpyUItZ4XLn0yg50yfA4TZVKCL+FuTck2Y1W4Wo9aP4puz3zBi3QhmtZtFiC3E6GgiIlLAXIlJJKxeTfzy5STv2uW9bgoMJKRJk+wDQFtgv+YaA1OKiIiISHF0Ve9Av+222/jxxx9zXfvpp5+oVKkSkHWgaFRUFOvXr/fedzqd7Nixg1tvvRWAW2+9lbi4OHbv3u19zFdffYXb7aZJkybex2zevJmMjAzvY9auXcv111//h+tbpIjwTqDH/+HtnP3ngZZAHXIokk8aRzXmzfZvEmoLZc/5PQxfOxxnus6UEBEpDjxuN0nf7ODMY//mSPPmnP3Pf7LKc7OZkObNqfDKy1z3zXYqvjmbUr17qzwXEREREUNc1QX62LFj+eabb3j++ef5+eefee+993jrrbcYOXIkACaTiTFjxvDss8+yYsUKDh48SP/+/Slfvjzdu3cHsibWO3XqxLBhw9i5cydbt25l1KhR3H///ZQvXx6A3r17Y7fbGTJkCN9//z1Llixh+vTpuVa0SBEU8Nc70LX/XKRg1C9Tn7c7vo3D7uDAhQMMXT2UuNQ4o2OJiEg+ST95kguvzeCXdu05MXAg8Z9+iiclBXuVKpQeN47qG77i2jlv4ejSBXNgoNFxRURERKSYu6pXuDRu3Jjly5fz+OOPM2nSJKpUqcK0adPo06eP9zHjx48nKSmJ4cOHExcXR7NmzVi1ahWBl/1je/HixYwaNYq2bdtiNpu5++67ee2117z3w8PDWbNmDSNHjqRhw4ZERkYyceJEhg8fXqC/Xylg/2MHes4Euvafi+S/2hG1mddxHsPXDudwzGEGrxnMW+3fIjIo0uhoIiLiB+6kJJyr12StaPn2W+91c1gYji5dKNGjO4H16mEymQxMKSIiIiJyJZPH4/H8nSemp6dz/vx53G53ruvXXnutX4IVNk6nk/DwcOLj43E4HEbHkbzY9z588iBUawP9ll9x+6sTXzF6w2hujLyRxbcvNiCgSPFzNO4oQ9cM5ULKBaqEV2FO+zmUDSlrdCwREfkbPG43yd/uIn75cpxr1uBJTs66YTIR0rQp4T16ENaurabMRURERKTA+dLl+jyBfuTIEQYPHsy2bdtyXfd4PJhMJlwul6/fUsQY/2MHula4iBS8qiWq8k6ndxiyZgjH4o8xaPUg3u7wNuVDyxsdTURE8ij91CniP/mU+E8+IePUKe91e+XKhPfoQfid3bBFRRmYUEREREQk73wu0AcOHIjVauXzzz+nXLlyepulFF4BWuEicjW61nEt73R6h6Grh3Iy4SQDVw1kboe5VHRUNDqaiIj8CXdSEs41a7NWtOzc6b1uDg3F0aUL4T26E1S/vl47iIiIiEih43OBvm/fPnbv3k3NmjXzI49IwcmZQP+TQ0RzCvRQmybQRQpahdAKzO80n2FrhnHceZyBqwYyp+McqoZXNTqaiIhk87jdpOzeTdzHy3GuXp17Rcutt/62oiUoyNigIiIiIiL/gM8Feq1atbh48WJ+ZBEpWHmcQHfYtdNexAhRIVHeEv3nuJ8ZtCprnUuNkjWMjiYiUqylnzpN/KefEP/Jp2ScPOm9bq9U6bcVLeXKGZhQRERERMR/fC7Qp0yZwvjx43n++eepW7cuNpst130doCmFRmB41sfMFHBlgCX3n2XtQBcxXmRQJPM6zmP42uH8EPMDg1cP5s32b1IropbR0UREihV3cjLONWuIX/4JyTt2eK+bQ0JwdOlMeI+7CGqgFS0iIiIiUvT4XKC3a9cOgLZt2+a6rkNEpdAJuGy3eaoTQiJy3dYOdJGrQ8nAkrzd4W1GrBvBwYsHGbp6KLPbz+bG0jcaHU1EpEjzZGaStGMHzi++JGHVKty5VrTckr2ipZ1WtIiIiIhIkeZzgb5hw4b8yCFS8Cw2sAVDRjKkxf9pga4d6CLGCw8I5632bzFy/Uj2nN/DsDXDmNVuFg3LNjQ6mohIkeLJzCT5229xrlxFwpo1uOLivPdsla6lRI8ehHfrhq18eQNTioiIiIgUHJ8L9JYtW+ZHDhFjBDiyCvQ/2IOemJ61wkU70EWuDqH2UN5o9wYPf/UwO6J3MGLdCF5r8xq3lLvF6GgiIoWax+Ui+dtdOFetJGHNWlwxMd57llKlCOvQnvCuXQlq2FArWkRERESk2PG5QAeIi4tj7ty5HD58GIDatWszePBgwsPD/RpOJN8FOiAxGtKuLNATMrIn0LUDXeSqEWwLZmbbmYzZOIatp7cyct1IXm39Ki2uaWF0NBGRQsXjcpG8ezcJq1bhXLMW18WL3nuWEiUI69ABR+dOBDdujMn6t14yiIiIiIgUCT7/a3jXrl107NiRoKAgbr75ZgBeeeUVnnvuOdasWcNNN93k95Ai+SYge7r8DybQtQNd5OoUaA3ktdav8X+b/o8NJzcwesNopracSttr2/7vJ4uIFGMet5uUPXtwrlyFc81qXBcuK83Dwwnr0J6wTp0IuflmTDbbX3wnEREREZHiw+cCfezYsXTr1o05c+ZgzZ5GyczMZOjQoYwZM4bNmzf7PaRIvgnMLtD/aAI9p0C3qUAXudrYLXZebvUyj295nNXHV/PIxkeY3Hwynap0MjqaiMhVxeN2k7JvX9ZO89WryTx/3nvP7HAQ1r4djk6dCbmliUpzEREREZE/8Lcm0C8vzwGsVivjx4+nUaNGfg0nku/+ZAI9zZVGhjsD0AoXkauVzWxjcvPJ2M12Pjv6GY9teYw0Vxp3Vr/T6GgiIobyuN2k7N+ftZ5l1Woyz53z3jOHhRHWrh2Ozp0IueUWTHa7gUlFRERERK5+PhfoDoeDEydOULNmzVzXT548SViYJnWlkAnM3tv/uwn0nOlzEyZCbCEFnUpE8shqtvJss2exW+wsO7KMJ7Y+Qbo7nZ7X9TQ6mohIgfJ4PKQePIjzy5U4V68m8+xZ7z1zaChhbdtkrWe57TbMKs1FRERERPLM5wL9vvvuY8iQIUydOpWmTZsCsHXrVh599FF69erl94Ai+SpnhUtqfK7LOQV6qC0Us8lc0KlExAdmk5mJt07EbrHz/g/vM2n7JNJd6fS5oY/R0URE8pXH4yH1u+9xrlpJwspVZJw5471nDg4mtG3brEnz227DHBBgYFIRERERkcLL5wJ96tSpmEwm+vfvT2ZmJgA2m40RI0YwefJkvwcUyVcBfz2BrgNERQoHs8nM4zc/TqAlkPnfz2fyzsmkudIYXGew0dFERPzK4/GQeuhQ1nqWlavIOHXKe88UHExY69ZZpXmzZpgDAw1MKiIiIiJSNPhcoNvtdqZPn84LL7zAL7/8AkC1atUIDg72eziRfBf4xzvQE9MTAe0/FylMTCYTYxuOJcAawOz9s3l196ukudJ48MYHMZlMRscTEflH0o4eI/6TT3CuWkXGiRPe66agIMJatyKsUydCW7RQaS4iIiIi4mc+F+g5goODqVu3rj+ziBS8nENEfz+BnqEJdJHCyGQyMbL+SAIsAUzfM51Z+2aRlpnG6JtGq0QXkULHnZpKwpo1xC39kORdu7zXTYGBhLZqhaNTJ0JbtsAcFGRgShERERGRoi1PBfpdd93FO++8g8Ph4K677vrLx3788cd+CSZSIP5kAt27wsWmAl2kMBpadyh2s52Xdr3E3O/mkuZKY3zj8SrRRaRQSP3pJ+I+/Ij4FStwx2ef02I2E9qiBeHd7iC0ZUvMITrkXERERESkIOSpQA8PD/eWDg6HQwWEFB1/MoGes8JFE+gihVf/2v0JsATw7I5neffwu6S70vnPLf/RwcAiclVyp6TgXLmKuKVLSdm3z3vdVr484ffcTYm77sIWFWVgQhERERGR4ilPBfr8+fO9n7/zzjv5lUWk4Hkn0ONzXXamZxXq2oEuUrjdV/M+7BY7T217iqU/LSXNlcbTTZ/GYrYYHU1EBIDUw4eJ+/BD4ld8hjsx6wf4WK2EtW5NiXt7EtK0KSaL/j9LRERERMQoPu9Ab9OmDR9//DElSpTIdd3pdNK9e3e++uorv4UTyXcBf3KIaEb2IaI2FegihV2PGj2wW+z85+v/8Okvn5LuTue5Zs9hM9uMjiYixZQrMQnnl18Q9+FHpB486L1uq1iREj17UqJHd6ylSxuYUEREREREcvhcoG/cuJH09PQrrqemprJlyxa/hBIpMIHhWR8zU8CVAZasQi1nB7rD7jAqmYj40e1Vb8dusTN+83hWHltJuiudl1q8hM2iEl1ECobH4yH1u++JW7oU5xdf4E5OzrphsxHWri0l772X4CZNMJm1ZkpERERE5GqS5wL9wIED3s8PHTpEdHS092uXy8WqVauoUKGCf9OJ5LeAy3acpzohJAL4bQe6VriIFB3tK7VnWqtpjN04lvUn1jNm4xheafUKAZYAo6OJSBHmSkjA+fnnxC79kLTDh73X7ZUrU+LeewnvfifWUqUMTCgiIiIiIn8lzwV6/fr1MZlMmEwm2rRpc8X9oKAgZsyY4ddwIvnOYgNbMGQkQ1q8t0DP2YGuQ0RFipaWFVsys81MRm8YzeZTmxm5biTT20wnxBZidDQRKUI8Hg8p+/YR9+FHOFeuxJOSAoDJbiesY0dK3tuToEaNMJlMBicVEREREZH/Jc8F+rFjx/B4PFStWpWdO3dS+rK9jHa7nTJlymDRAUdSGAU4sgr0y/ag5+xAD7OpQBcpappWaMqsdrMYtX4UO6J3MHzNcGa1m0V4QLjR0USkkHPFxRG/4jPiPlxK2pGfvdft1atR8t57Ce/WDcvvzhESEREREZGrW54L9EqVKgHgdrvzLYyIIQIdkBgNaZcV6NkrXDSBLlI0NY5qzNyOc3lw3YMcuHiAQasH8Vb7t4gMijQ6mogUMh6Ph5Tdu4ldupSEVavxZJ8VZAoMxNG5MyV69iSoQX1Nm4uIiIiIFFI+HyKa49ChQ5w4ceKKA0W7dev2j0OJFKiA7INCL5tAzzlEVDvQRYquOpF1mN9xPg+sfYAjsUfov7I/czrMoUKozvMQkf8tMzaW+OWfEPfRR6QfPeq9HlCzJiXu7Ul4165YHDqMXERERESksPO5QD969Cg9evTg4MGDmEwmPB4PgHeqxuVy+TehSH4LzH5xmz2B7va4f1vhogl0kSKtRskaLOi0gGFrh3Ey4aS3RK8aXtXoaCJyFfJ4PKTs2kXs+x+QsHYtnowMAEzBwYTf3oUS995LYJ06mjYXERERESlCzL4+YfTo0VSpUoXz588THBzM999/z+bNm2nUqBEbN27Mh4gi+ex3E+hJGUl4yPrBkAp0kaKvoqMiCzotoFp4Nc4nn2fgyoEcunTI6FgichVxp6URt+xjjvW4i1/79cf55Zd4MjIIrFOHqKefpsbmzZR75hmC6tZVeS4iIiIiUsT4PIG+fft2vvrqKyIjIzGbzZjNZpo1a8YLL7zAww8/zN69e/Mjp0j++d0Ees7+c5vZRoAlwKhUIlKAyoaUZX6n+Ty47kEOXTrEkNVDeL3t69xU9iajo4mIgTLOnSf2g/eJW7IUV0wMkLXbPLxbN0refx+BtWoZnFBERERERPKbzwW6y+UiLCxrKjcyMpIzZ85w/fXXU6lSJX788Ue/BxTJd94J9HgAnOlZRbqmz0WKl5KBJZnbYS6jvhrF7nO7eWDtA7za+lWaVWhmdDQRKWApBw4Qs3ARzlWrIDMTAGu5cpTq05sS99yDpUQJgxOKiIiIiEhB8blAr1OnDvv376dKlSo0adKEF198EbvdzltvvUXVqtoZK4VQYPaL4JwJdO0/Fym2Qu2hzG43m3Ebx7Hl9Bb+9dW/mNx8Mh0rdzQ6mojkM09GBs41a4hduIiU/fu914MaNqRUv36EtWuLyerzP51FRERERKSQ8/lVwBNPPEFSUhIAkyZNomvXrjRv3pyIiAiWLFni94Ai+S4w9w70hPQEAMJsKtBFiqNAayDTW09nwtcTWHV8FeM3jyc5I5keNXoYHU1E8kFmbCxxS5YS+/77ZJ47B4DJZsPRpQsl+/cjqHZtgxOKiIiIiIiRfC7QO3b8bQqvevXq/PDDD8TExFCyZEkdmiSFU0DuHeg5BXqoPdSoRCJiMJvFxuTmkwmxhbDsyDImbptIYkYi/Wr1MzqaiPhJ6o8/EbNoIc7PPseTlgaAJTKSkvffT8n778MaGWlwQhERERERuRr45X2opUqV8se3ETHG7ybQtcJFRAAsZgtP3foUYfYw3vn+HV789kUS0hMYUW+EfmAsUkh5XC4SN24kZuEiknfs8F4PrF2bUv37Eda5M2a73cCEIiIiIiJytclTgX7XXXfl+Rt+/PHHfzuMiCH+ZAJdBbqImEwmxjUcR5g9jBl7Z/DG/jdISE/g0caPYjaZjY4nInnkSkggbtkyYhe/R8bJk1kXLRbCOrSnVL/+BDWorx+MiYiIiIjIH8pTgR4eHp7fOUSM8/sJ9PTsCXTtQBcRskr04TcOJ9QWygs7X+Ddw++SmJHIU7c+hdWsAwVFrmZpx44R++5i4pcvx52cDIAlPJwS995Lyd69sJUrZ3BCERERERG52uXplf/8+fPzO4eIcX43ge5Mz/qoHegicrneN/Qm1B7KxK0T+eTnT0jKSGJy88nYLVr3IHI18Xg8JG3dRsyihSRt2uy9HlCjOiX79SP8jjswBwUZmFBERERERAoTjc6JBGa/wyIjGVwZ2oEuIn+qW7VuhNhCeHTTo6z9dS1JGUm82upVgm3BRkcTKfbcycnEr1hBzKJ3Sf/ll6yLJhOhrVpRqn8/gm+5RWtaRERERETEZz4X6FWqVPnLFx9Hjx79R4FEClzAZUV5qlM70EXkL7W9ti2vt32d0RtGs+3MNh5c9yAz287EYXcYHU2kWMo4fZqY994j7sOPcDuz3kVmDgkh/O67KNWnD/ZKlQxOKCIiIiIihZnPBfqYMWNyfZ2RkcHevXtZtWoVjz76qN+CiRQYiw1swVkT6Gnx3h3ooTatcBGRP3Zr+Vt5q/1bPLT+Ifae38uQ1UOY3W42EUERRkcTKTaS9+wh5p0FJKxbB243ALZK11KqT1/C7+qBJVR/j4uIiIiIyD/nc4E+evToP7z++uuvs2vXrn8cSMQQAY6sAj3V6d2Brgl0Efkr9cvUZ37H+QxfO5wfYn5g4KqBzOkwh6iQKKOjiRRZHrebxA0buPT2XFL27vVeD2l6KyX79SO0ZUtMZrOBCUVEREREpKjx2yuMzp07s2zZMn99O5GCFfjbQaLagS4ieXV9qetZ2Hkh5ULKcdx5nP4r+/Or81ejY4kUOe70dGI//JCjt3fl1MhRpOzdi8lup0TPnlT9bAXXzptHWOvWKs9FRERERMTv/HaI6EcffUSpUqX89e1EClZAdoGe6vSucFGBLiJ5UclRiQWdFjB87XCOO48zYOUA3mz/JteXut7oaCKFnsvpJPaDJcQsWojrwkUAzA4HJXv1olS/vlgjIw1OKCIiIiIiRZ3PBXqDBg1yHSLq8XiIjo7mwoULzJo1y6/hRApM9gR6Rkosqa5UQDvQRSTvyoWW451O7/Dgugf5IeYHBq0exBvt3qBe6XpGRxMplDKio4lZuIi4JUtwJyUBYI2KotTAAZS4pyeW0BCDE4qIiIiISHHhc4HevXv3XF+bzWZKly5Nq1atqFmzpt+CiRSo7An0hOSL3ksq0EXEFxFBEcztOJeR60ay78I+hq0ZxvTW07m1/K1GRxMpNNKOHOHSvPnEf/45ZGQAEFCjBhFDh+Do0gWTzWZwQhERERERKW58LtCfeuqp/MghYqzsCfSE1EsAhNhCsJgtRiYSkULIYXfwZvs3GbtxLNvObGPk+pG81PIl2l7b1uhoIlctj8dDyu7dXHp7LokbN3qvBzduTMTQIYS0aJHr3Y8iIiIio+wY0AAAIABJREFUIiIF6W/tQHe5XCxfvpzDhw8DUKtWLe68806sVr+tVBcpWNkT6ImpsYCmz0Xk7wu2BTOjzQz+veXfrP11LY9sfIRnbnuGO6rdYXQ0kauKx+0mYf16Yt6eS8r+/VkXTSbC2rcnYshgguppBZKIiIiIiBjP58b7+++/54477uDcuXNcf33WAWlTpkyhdOnSfPbZZ9SpU8fvIUXyXWA4AM60OEAHiIrIP2O32HmxxYv8d9t/+fSXT5nw9QQSMxLpVbOX0dFEDOdOSyP+00+JmTef9OPHATDZ7YT36EHEoIHYK1c2NJ+IiIiIiMjlfC7Qhw4dSp06ddi9ezclS5YEIDY2loEDBzJ8+HC2bdvm95Ai+S5nAj09AVCBLiL/nNVsZdJtkwi1h7L48GKe3/E8iemJDK07VOsopFhyOZ3EfrCEmEULcV3IOnPE7HBQsncvSvXtizUy0uCEIiIiIiIiV/K5QN+3bx+7du3ylucAJUuW5LnnnqNx48Z+DSdSYLIn0BMykgAV6CLiH2aTmccaP4bD7uCN/W/w2t7XSEhPYGzDsSrRpdjIOHuWmAULiVu6FHdyMgDWqChKDRxAiXt6YgkNMTihiIiIiIjIn/O5QL/uuus4d+4ctWvXznX9/PnzVK9e3W/BRApUziGiGclg1Q50EfEfk8nEQ/UfItQWyku7XmL+9/OJT4/nyVuexGrW2SFSdKX+9BMxc+cR/8UXkJkJQECNGkQMHYKjSxdMNpvBCUVERERERP43n1+5v/DCCzz88MP897//5ZZbbgHgm2++YdKkSUyZMgWn0+l9rMPh8F9SkfyUs8LFlQJWTaCLiP/1r92fUHsoT29/mo+PfMyF5AtMbTmVYFuw0dFE/Mbj8ZCyaxeX3p5L4qZN3uvBN99MxNAhhDRvrndfiIiIiIhIoeJzgd61a1cA7r33Xu8LII/HA8Add9zh/dpkMuFyufyVUyR/5Uygu9IBiwp0EckXd9W4i5IBJRm/eTxbTm9h0OpBvN72dSKDtPtZCjePy0XC+vVcmjuX1P0Hsi6aTIS1b0/EkMEE1atnbEAREREREZG/yecCfcOGDfmRQ8RY2RPoCZ4MVKCLSH5qfW1r3u74Nv9a/y8OXTpE3y/78ka7N6gSXsXoaCI+86SnE/fJJ8TMnUf6r78CYLLbCe/Rg4hBA7FXrmxsQBERERERkX/I5wK9ZcuW+ZFDxFg5h4jiBrQDXUTyV73S9VjUZREj1o3gZMJJ+q/sz4w2M6hfpr7R0UTyxJ2eTvyyZVx8aw6ZZ88CYHY4KNm7F6X69sUaqXdViIiIiIhI0fC3Ti+Li4tj7ty5HD58GIDatWszePBgwsPD/RpOpMAEZE2cJ5rNgHagi0j+q+SoxKLOi/jXV//i4MWDDF0zlCnNp9C2Ulujo4n8KXdaGnEffcSlOW+TGR0NgKV0JBGDh1CiZ08soSEGJxQREREREfEvs69P2LVrF9WqVePVV18lJiaGmJgYXnnlFapVq8aePXvyI6NI/rPYwBZMggp0ESlAEUERvN3hbVpd04o0VxpjN47lvcPvGR1L5ArutDRiFr3LL+07cO6ZZ8mMjsZapgxlJ0yg+tq1RAwaqPJcRERERESKJJ8n0MeOHUu3bt2YM2cOVmvW0zMzMxk6dChjxoxh8+bNfg8pUiACHN4CXStcRKSgBNuCebX1qzy/43k+/OlDXtj5AtFJ0YxpOAazyeefc4v4lTs1lbilS7Mmzi9cAMBatiwRw4ZRouc9mAMCDE4oIiIiIiKSv3wu0Hft2pWrPAewWq2MHz+eRo0a+TWcSIEKdJBgTgLAYXcYHEZEihOr2cqTtzxJ+dDyTN8znfnfzyc6KZpnmz2L3WI3Op4UQ+6UFGKXLOHS3Lm4LlwEwBoVRcTwYZS45x7Mdv25FBERERGR4sHnAt3hcHDixAlq1qyZ6/rJkycJC9PaCym8PAFhJJlTAAi1awJdRAqWyWRiaN2hlA0uy8StE1l5fCUXUi4wvc10/VBPCow7OZnYD5Zwad48XBezi/Py5YgcPpzwu+5ScS4iIiIiIsWOzwX6fffdx5AhQ5g6dSpNmzYFYOvWrTz66KP06tXL7wFFCkpKQBguT9bb07UDXUSMcke1O4gMimTsxrHsOreLASsH8Ea7N4gKiTI6mhRh7uRkYt9/n0tz5+GKiQHAVr48EQ88QIke3TGpOBcRERERkWLK5wJ96tSpmEwm+vfvT2ZmJgA2m40RI0YwefJkvwcUKSjOgGBIBStmAi2BRscRkWLs1vK3sqDTAh5a9xA/x/1Mny/6MKvdLK4vdb3R0aSIcSclEfPee8TMm48rNhYAW4UKRDz4ACXuvFPFuYiIiIiIFHsmj8fj+TtPTE5O5pdffgGgWrVqBAcH+zVYYeN0OgkPDyc+Ph6HQ2+1L4x+Xj6YHs5vKWkOYHO/XUbHERHhbOJZRqwbwS/xvxBiC2Fa62ncUu4Wo2NJEeBKTCJ28WJi5s/HFRcHgK1iRSIffIDwbt0w2WwGJxQREREREck/vnS5Pk2gHz9+nLVr15Kenk6rVq2oW7fuPwoqcjVJsGZN2YWaLAYnERHJUi60HAs6L2DMhjHsOreLEWtHMOm2SdxR7Q6jo0kh5UpMJPbdd4mZ/w6u+HgAbNdeS+SDDxJ+R1cV5yIiIiIiIr+T5wJ9w4YNdO3alZSUrEMWrVYr8+bNo2/fvvkWTqQgJVgDAAjFbHASEZHfhAeE82b7N3ni6ydYeXwlE76ewLnkcwypMwSTyWR0PCkkXAkJxCxaRMyChbizi3N7pUpEjHiQ8K5dMVl93uonIiIiIiJSLOS5KXzyySdp3749p0+f5tKlSwwbNozx48fnZzaRApVgyZo8d3hUSInI1cVusTO5xWQG1R4EwPQ903n2m2fJdGcanEyudi6nkwszX+fntu24+NoM3PHx2KtUofxLL1L1i88p0b27ynMREREREZG/kOdXTN999x3btm2jXLlyALz00ku8+eabXLp0iYiIiHwLKFJQEs1ZP08KdbsNTiIiciWzycy4RuMoG1KWKTunsPSnpZxPPs+UFlMIthXvc0jkSq74eGIWLiJm4ULcCQkA2KtVI3LECBydO2GyaF2ZiIiIiIhIXuS5QHc6nURGRnq/Dg4OJigoiPj4eBXoUiQkZA+eh7lcxgYREfkLfW7oQ1RwFI9teYyNpzYydM1QZrSZQUSQ/i4WcMXFEbNwITELF+FOTATAXr0apR96iLCOHVWci4iIiIiI+Min9+yuXr2a8PBw79dut5v169fz3Xffea9169bNf+lEClCCyQNAqCvD4CQiIn+tbaW2vB30NqO+GsXBiwfpt7Ifs9vN5lrHtUZHE4O4nE4uzZtH7KJ3cSclARBQowaRIx8irEMHTGad7yEiIiIiIvJ3+FSgDxgw4IprDzzwgPdzk8mES9O7UkglerL+7Doy0gxOIiLyv9UvU59FnRcxYt0ITiacpO+XfZnZdiY3lr7R6GhSgNzp6cS+9x6X3piNK/tw0IDrryfyoYcIa99OxbmIiIiIiMg/lOdXVW63+3/+UnkuhVmCOx2A0IxUg5OIiORNlfAqvNvlXWpF1CI2LZYhq4ew4cQGo2NJAfC43cR/9jlHO3fh/OQpuOLjsVerRoXXplNl+cc4OmrqXERERERExB/0ykokW06BHpaRBlrjIiKFRGRQJPM7zqdZhWakulIZs3EMS35YYnQsyUdJ27dz/J6enHn0UTJOn8ZaujRRz0yi6qef4NC6FhEREREREb/SKyyRbAmZKQCEud2QlmBwGhGRvAu2BTOjzQzurnE3bo+bZ3c8y7Td03B73EZHEz9K/fFHTgwbzolBg0k9dAhzSAilx4ym2upVlOzZE5PVp818IiIiIiIikgd6pSWSLTEj69C1ULcbUuMhuJTBiURE8s5qtvLUrU9RNqQss/bNYu53c4lOjuaZps9gs9iMjif/QMaZM1x4bQbxn34KHg9YrZS8/34iHxqBtZT+rhIREREREclPKtBFsiWkZ02dZ02gOw1OIyLiO5PJxIh6I4gKjuLp7U/zxdEvuJh8kVdbv0qYPczoeOIjV3w8l+bMIWbhIjzp2WvGOneizJgx2CtVMjidiIiIiIhI8aACXSRbQkZOge7JmkAXESmketToQZngMozbOI4d0TsYsGoAs9rOIiokyuhokgfutDRiF7/HxTffxB2f9fdRcOPGlHn0/wi68UaD04mIiIiIiBQvPu9AP3nyJKdOnfJ+vXPnTsaMGcNbb73l12AiBSnDnUHK5TvQUzWBLiKF220VbmN+p/lEBkVyJPYIfb/sy0+xPxkdS/6Cx+0mfsUKjnbuwvkXX8QdH09AjepcM/sNrl24QOW5iIiIiIiIAXwu0Hv37s2GDRsAiI6Opn379uzcuZP//Oc/TJo0ye8BRQpCUnqS9/MQrXARkSKiVkQt3u3yLlXCq3Au+Rz9vuzHmuNrjI4lfyBx61aO3XMPZ8Y/RsaZM1jLlKHcc89S5ZNPCGvVCpPJZHREERERERGRYsnnAv27777j5ptvBmDp0qXUqVOHbdu2sXjxYt555x1/5xMpEDn7z4MwYwNNoItIkVEhtAKLOi+icVRjkjOTeWTTI7z07UtkuDOMjiZA6uHDnBgylJNDhpJ26DDm0FBKjx1LtdWrKHH33ZgsFqMjioiIiIiIFGs+F+gZGRkEBAQAsG7dOrp16wZAzZo1OXv2rH/TiRQQ7/5zU/axAJpAF5EiJDwgnLfav8Wg2oMAWHhoIUNXD+VC8gWDkxVfGadPc+axxzh2190kbd0KNhsl+/ej2to1RD4wHHNQkNERRUREREREhL9RoNeuXZvZs2ezZcsW1q5dS6dOnQA4c+YMERERfg8oUhAS0xMBCLNk/XBIh4iKSFFjNVsZ12gcr7Z6lRBbCHvO7+Hez+9l97ndRkcrVlzx8Zx78SV+6dyF+E9XgMeDo0sXqn35BVETJmAtWdLoiCIiIiIiInIZnwv0KVOm8Oabb9KqVSt69epFvXr1AFixYoV3tYtIYZOzwiXUEph1QRPoIlJEtavUjg9u/4DqJapzMeUiQ1YPYcH3C/B4PEZHK9LcaWlcmjuPn9t3IGbePDzp6QQ3aULlDz+kwisvY69Y0eiIIiIiIiIi8gesvj6hVatWXLx4EafTScnLpqSGDx9OcHCwX8OJFJScFS6h1uy3zGsHuogUYZXDK7O4y2Ke3v40Xx77kqm7pnLgwgEm3TaJEFuI0fGKFI/bjfOzzzg/fTqZZ7JW3QXUqEGZR/+PkObNdTioiIiIiIjIVc7nAh3A4/Gwe/dufvnlF3r37k1YWBh2u10FuhRaORPojpziSBPoIlLEBduCmdx8MvVK1+OlXS+x5tc1HIk7wqutXqVaiWpGxysSEr/eyvmpU0n74QcArFFRlH74YcLv7KbDQUVERERERAoJnwv0X3/9lU6dOnHixAnS0tJo3749YWFhTJkyhbS0NGbPnp0fOUXyVc4O9FBbWNYFTaCLSDFgMpnofUNvakXU4pFNj3As/hi9vujFpKaT6FSlk9HxCq3UQ4c4P3UqSdu2A2AOCyNi+DBK9euHOTDQ4HQiIiIiIiLiC593oI8ePZpGjRoRGxtLUFCQ93qPHj1Yv369X8OJFBRnelZhHhYYnnVBE+giUozUL1OfpV2XcnPUzaRkpvDo5keZsnMKGe4Mo6MVKq64OM4++STH7rqbpG3bMdlslBowgGprVhM5bJjKcxERERERkULI5wn0LVu2sG3bNux2e67rlStX5vTp034LJlKQEjOyJtDDAkpkXdAEuogUMxFBEbzZ/k1m7p3J3O/m8u7hd/n+0vdMbTmVMsFljI53VfN4PDhXrODclBdxxcQA4Lj9dkqPHYP9mmsMTiciIiIiIiL/hM8T6G63G5fLdcX1U6dOERYW5pdQIgUtZwd6WFBE1gVNoItIMWQ1WxnTcAzTWk8j1BbK3vN7ufeze/k2+lujo1210o4d48SgwZx57N+4YmIIqFGdSovfpcLLU1Wei4iIiIiIFAE+F+gdOnRg2rRp3q9NJhOJiYk89dRTdOnSxa/hRAqKdwd6cGTWhYxkcGl1gYgUT22vbcsHXT+gRskaXEq9xLA1w3jnu3fweDxGR7tquNPSuDBjJse63UnyN99gCgig9NixVFm2jOCGDY2OJyIiIiIiIn7ic4H+8ssvs3XrVmrVqkVqaiq9e/f2rm+ZMmVKfmQUyXcJGdkT6JevKUhLMCiNiIjxKjkqsbjLYrpW7YrL4+Ll3S8zbuM47w8ci7Okb77h2J3dufj663gyMghp3pyqn39G5APDMf1uxZ2IiIiIiIgUbj7vQL/mmmvYv38/H3zwAQcOHCAxMZEhQ4bQp0+fXIeKihQm3hUugSXAFpw1gZ4aD8GlDE4mImKcIGsQzzd7nvql6zP528msO7GOn+N+5tVWr1K9ZHWj4xW4zEuXODdlCs4VnwFgKR1J1IQJhHXqhMlkMjidiIiIiIiI5AefC3QAq9VK3759/Z1FxDDeFS62UAhwZBXo2oMuIoLJZOK+mvdxQ8QNjNs4juPO4/T+sjf/vfW/dKlaPFa3edxu4pYt4/zUl3HHx4PJRMlevSg9dgwWnf8iIiIiIiJSpOWpQF+xYgWdO3fGZrOxYsWKv3xst27d/BJMpKB4PJ7fJtDtYRDogMRoSFWBLiKS48bSN7L0jqU8tvkxvjn7DY9teYx9F/bxaKNHsVlsRsfLN2lHjnD2qf+SsmcPAAE33EC5p/9L0I03GpxMRERERERECkKeCvTu3bsTHR1NmTJl6N69+58+zmQy4XK5/BZOpCCkulLJ9GQC2QV6gCPrhibQRURyKRVYitntZvP6vteZc3AO7//wPocuHWJqy6lEhUQZHc+v3CkpXJz1Bpfmz4fMTEzBwZR++F+U6tsXk/VvvYFPRERERERECqE8HSLqdrspU6aM9/M/+6XyXAqjnOlzs8lMsDU4awIdsnagi4hILhazhYdvepgZbWYQZgtj/4X93Pf5few4u8PoaH6TuHkzR+/oxqU5cyAzk9B2ban2xedEDByo8lxERERERKSYyVOBLlKUXb7/3GQy/TaBrhUuIiJ/qlXFVizpuoTrS15PTGoMw9cOZ+7BuXg8HqOj/W0Z585zasxYTg5/gIxTp7CWK8c1s16n4syZ2MqVMzqeiIiIiIiIGMDnAv3hhx/mtddeu+L6zJkzGTNmjF9CiRQkZ3pWUR5mzz4ILlArXERE8qKioyKLuiyiW7VuuD1upu2ZxugNo73v7CksPC4XMe8u5ujtt5OwahVYLJQaNIhqn39GWJs2RscTERERERERA/lcoC9btozbbrvtiutNmzblo48+8ksokYKUmJE1ge4t0AO0wkVEJK+CrEE8e9uzTLx1IjazjQ0nN3D/5/fzY8yPRkfLk5Tvv+f4ffdz7tlncScmEnjjjVT56EPKPjYec0iI0fFERERERETEYD4X6JcuXSI8PPyK6w6Hg4sXL/ollEhBylnh8tsEevafb02gi4jkiclkoud1PVnYeSHlQspxIuEEfb/sy2e/fGZ0tD/lSkzi3AsvcLznvaR+9x3m0FDKTnySyu+/R+ANNxgdT0RERERERK4SPhfo1atXZ9WqVVdcX7lyJVWrVvVLKJGClLPCJdQWmnVBO9BFRP6WOpF1WNJ1CU3LNyXVlcqEryfw7DfPku5KNzqal8fjwbl2LUe7diVmwUJwu3F06UzVL7+gVO/emCwWoyOKiIiIiIjIVcTq6xPGjRvHqFGjuHDhAm2y94KuX7+el19+mWnTpvk9oEh+u2KFi3agi4j8bSUDSzKr7SxmH5jN7P2zWfLjEg5dOsRLLV+iQmgFQ7NlnD5N9LPPkbhhAwC2ihWJmjiR0ObNDM0lIiIiIiIiVy+fC/TBgweTlpbGc889xzPPPANA5cqVeeONN+jfv7/fA4rkt5zD7q7cga4CXUTk77CYLYysP5K6kXX595Z/c/DiQXp+1pNnbnuGtte2LfA8nowMYhYu4sLMmXhSUsBmI2LIYCIffBBzYGCB5xEREREREZHCw+cVLgAjRozg1KlTnDt3DqfTydGjR1WeS6GVU6B7V7hoAl1ExC9aXNOCD+/4kLqRdUlIT2DMhjFM3jm5QFe6pOzbx7F7enL+pZfwpKQQ1KghVZd/TJkxY1Sei4iIiIiIyP/0twr0zMxM1q1bx8cff4zH4wHgzJkzJCYm+jWcSEHQBLqISP6pEFqBBZ0WMKDWAAAWH15Mv5X9OOk8ma//XZfTydmnn+Z4r96k/fgjlvBwyj33LJUWLiSgevV8/W+LiIiIiIhI0eFzgf7rr79St25d7rzzTkaOHMmFCxcAmDJlCv/3f//n94Ai+U070EVE8pfNYuP/Gv8fM9vMJDwgnEOXDtHz856sOn7loeT+kLB+PUdv70rc+x+Ax0N49+5UXfklJe6+G5P5b80OiIiIiIiISDHl86vI0aNH06hRI2JjYwkKCvJe79GjB+vXr/drOJGCcOUEenjWx4xkcGUYlEpEpOhpWbElH93xEQ3KNCApI4lHNz3KM9ufITUz1S/fP/PSJU6PG8epkaPIvHABe+XKXLtgAeUnv4C1VCm//DdERERERESkePG5QN+yZQtPPPEEdrs91/XKlStz+vRpvwUTKSh/ugMdIC3BgEQiIkVXVEgU8zrOY2jdoQAs/Wkpfb7sw7H4Y3/7e3o8HuI/+4yjt3fF+eVKsFiIGDaMKp8sJ6TJzf6KLiIiIiIiIsWQzwW62+3G5XJdcf3UqVOEhYX5JZRIQcpZ4eKwZxfnFhvYgrM+T403KJWISNFlNVsZfdNoZrebTanAUvwU+xP3fX4fn/3ymc/fKyM6mlMPjuDMo+NxxcURULMmlZcsocwj43RIqIiIiIiIiPxjPhfoHTp0YNq0ad6vTSYTiYmJPPXUU3Tp0sWv4UQKgncC3R7628UA7UEXEclvt1W4jQ/v+JDGUY1JyUxhwtcTmLh1IimZKf/zuR63m9glSzna9Q4SN23CZLNRevTDVPlwKUF1ahdAehERERERESkOfC7QX375ZbZu3UqtWrVITU2ld+/e3vUtU6ZMyY+MIvnG5XaRlJEEXLYDHX5b45KqAl1EJD+VCS7DnPZzGFFvBCZMLP95Ob0+78XPsT//6XPST5zgxMBBRD/1FO7ERILq1aPK8o+JHDECk81WgOlFRERERESkqLP6+oRrrrmG/fv388EHH3DgwAESExMZMmQIffr0yXWoqEhhkLO+BSDMdlmBrgl0EZECYzFbeKj+QzQs25B/b/k3v8T/Qq8vejGhyQS6V++OyWQCwONyEbNwERemT8eTmoopKIgyY0ZTsm9fTBaLwb8LERERERERKYp8LtABrFYrffv29XcWkQKXU6AHWAKwWS6bWtQEuohIgWtSrgkf3vEhE7ZMYPvZ7UzcNpGd0Tt58pYnsRw/zZn/PEHqgQMABN9yC+WemYS9YkWDU4uIiIiIiEhR9rcK9B9//JEZM2Zw+PBhAG644QZGjRpFzZo1/RpOJL/l7D/Ptb4FfptA1yGiIiIFKjIoktntZzP34Fxm7pvJyiOfEbVkMx02OiEzE3NoKGUeG0+Je+7xTqaLiIiIiIiI5Befd6AvW7aMOnXqsHv3burVq0e9evXYs2cPdevWZdmyZfmRUSTf/D979x3eZKG/f/xO0nQPKNACZZUhw4GiHMGFTIGyC6JMB7g4gqA4wYHHAwIulgNEpiJQVkE2giBDBFG2CqUtdLBKB3SkTX5/lPQnX/VIoe3TJu/XdfVKSR6e3P0D0n76yf0UXEDU6n/lA95UuACAUcwmswbfMlizao7SxNkmtdtwXsrNVVrT+gpfGa3yvXoxPAcAAAAAlIhCb6C/+OKLeuWVVzRmzJgr7n/jjTf04osvKjIyssjCAcXNOUAP9Ay88gE20AHAMPasLJ2ZPFneX8xSmN2uTH+rPm2dp+0Nf9cDRyfqzeA35e/p/88nAgAAAADgOhV6Az0xMVEDBgz40/39+vVTYmJikYQCSoqzA/1PgxjvoPxbNtABoERd2r1bMV276fznMyW7XYEREbpp7SY17z9SHmar1p5YqwdXPqhD5w4ZHRUAAAAA4AYKPUC///77tXXr1j/dv23bNt17771FEgooKf/cgc4AHQBKQl7GRSWNGaPY/gOUExsrj5AQVZs2TWHvTZRnhYp65KZHNKvDLFX1q6r49Hj1+6af5h+eL4fDYXR0AAAAAIALK3SFS5cuXfTSSy9pz549atasmSRp586dWrRokd566y2tWLHiimOB0owOdAAwXsbWrUp8/Q3lXn4nW7levRQy8gVZAq+s12pcqbEWdl6o179/XZviN2ncD+O0O2m33rrrLQV5BRkRHQAAAADg4go9QH/mmWckSdOmTdO0adP+8jFJMplMysvLu854QPHKyMmvcPn7DnQG6ABQXPIuXFDy2HFKXb5ckmStVk1V/vO2/C7/gv6vBHkF6cOWH+rLI19q4o8TtTFuo46cP6Lx943XLZVuKanoAAAAAAA3UegKF7vdflUfDM9RFqTbLm+g/6kDnQ10AChOaWvX6VinzvnDc5NJwQMHqPaK5f9zeO5kMpnUt2FfzeswT9X8q+lUxikNXD1Qsw/OptIFAAAAAFCkCj1AB1zJ31a4sIEOAMUi98wZnRw6TKeGDVPe2bPyrFNHtb76UqGvvCKzr2+hznVjxRu1sPNCtavZTrmOXE38caKe3fSsLmRdKKb0AAAAAAB3c9UD9B07dmjlypVX3DdnzhyFh4crJCRETzzxhLKzs4s8IFCc/vYiomygA0CRcjgcurB0mY516qz0deskDw9VePophS9dIp9bb73m8wZ4Bmhii4ka3Wy0PM2e2nJyi3pG99RPp38qwvQAAAAAAHd11QP0MWPG6ODBgwV/3r9/vx7YksH5AAAgAElEQVR//HG1adNGL7/8sqKjozV27NhiCQkUF2cH+p8G6M6L0dkuSXm2Ek4FAK7FlpCg+CeeVOIrr8iemirvRo0UvniRQoYNk9nT87rPbzKZ9GD9BzU/Yr5qBtZU8qVkPbrmUc3YP0N2h70IvgIAAAAAgLu66gH6vn371Lp164I/L1iwQHfeeaemT5+uESNGaNKkSVq4cGGxhASKi7MD/W830CUpO70EEwGA63DY7Tr/5Zc63qmzLm7dKpOnpyo9P0K1Fn4t7wYNivz5GgQ30NedvlbH8I7Kc+Tpo70f6Yn1T+j0pdNF/lwAAAAAAPdw1QP0lJQUhYaGFvx5y5Yt6tChQ8GfmzZtqvj4+KJNBxSzv+1At1glD5/8z7NSSzgVAJR92cdjFNt/gJLHvC37pUvyuf12hS9bpoqDB8vk4VFsz+tn9dO4e8dpzF1j5OPho12JuxS5IlKb4zcX23MCAAAAAFzXVQ/QQ0NDFRMTI0nKycnR3r171axZs4LH09PTZbVaiz4hUIycFS6BnoF/ftD7co0LPegAcNUcNpvOfvKpYrp1U+aePTL7+ip01CjVnDtHXrXDSySDyWRS93rdtaDTAjUIbqAL2Rf07KZn9c7Od5SVm1UiGQAAAAAAruGqB+gdO3bUyy+/rK1bt+qVV16Rr6+v7r333oLHf/nlF9WpU6dYQgLFITsvWzn2HEmSv6f/nw9w1rhkMUAHgKuReeCgYno9qDMffihHTo787rtXtVdGK7hfX5nMV/0tR5GpHVRb8zvO14BGAyRJC44u0MOrHtZvKb+VeBYAAAAAQNl01T/Nvv322/Lw8FCLFi00ffp0TZ8+XZ5/uPDXzJkz1a5du2IJCRQHZ32LSSb5Wf3+fIDX5QE6G+gA8D/Zs7J0euJEnejdW9lHjshSrpyqjn9X1T/9VNaqVQ3N5mnx1MimI/Vxm48V7B2s3y/8rodXPawFRxbI4XAYmg0AAAAAUPpd9QC9YsWK+u6775SSkqKUlBR17979iscXLVqkN954o8gD/tG4ceNkMpn03HPPFdyXlZWlIUOGqEKFCvL391dkZKSSk5Ov+HtxcXGKiIiQr6+vQkJCNHLkSOXm5l5xzObNm9WkSRN5eXmpbt26mjVrVrF+LTDeH/vPzaa/+KfABjoA/KOLu37Q8a5ddW7G51JengI7dlTtVSsV1KWLTCaT0fEK3BN2j6K6ROmesHuUnZetd3a9o6HfDlVKVorR0QAAAAAApVih308dFBQki8Xyp/uDg4Ov2Egvart379ann36qW2655Yr7hw8frujoaC1atEhbtmxRQkKCevToUfB4Xl6eIiIilJOTo+3bt2v27NmaNWuWXn/99YJjYmJiFBERoZYtW2rfvn167rnnNGjQIK1du7bYvh4Yz9l//pf1LRIb6ADwP+SlpyvxjTcVN3CgbLFx8ggNVbVp0xT2/nvyqFDB6Hh/qaJPRU1tPVUvNn1RVrNVm+M3K3JFpHYm7jQ6GgAAAACglCr5QtJrkJGRob59+2r69OkqX758wf2pqan6/PPP9f7776tVq1a6/fbb9cUXX2j79u3auTP/h+F169bp0KFDmjdvnm699VZ16NBBb7/9tqZOnaqcnPz+608++UTh4eF677331LBhQ/373/9Wz5499cEHHxjy9aJkODfQAzwD/voANtAB4C+lb/pWxzt11oWvv5YklevdW7VXRiugVUuDk/0zs8ms/o3668uILxUeFK4zmWf0xLon9MGeD2TLsxkdDwAAAABQypSJAfqQIUMUERGhNm3aXHH/nj17ZLPZrri/QYMGqlGjhnbs2CFJ2rFjh26++WaFhoYWHPPAAw8oLS1NBw8eLDjm/577gQceKDjHX8nOzlZaWtoVHyhb0m3/v8LlLzk30LMulFAiACjdcs+d06kRI3TymWeUm5wsa80aqjFntqq89aYsAX/zy8hSqkFwAy2IWKCeN/SUQw7NPDBT/Vf3V1xanNHRAAAAAAClSKkfoC9YsEB79+7V2LFj//RYUlKSPD09Va5cuSvuDw0NVVJSUsExfxyeOx93Pva/jklLS1NmZuZf5ho7dqyCgoIKPqpXr35tXyAM49xAD/QM/OsDvIPyb6lwAeDmHA6HUpcv1/GOEUr7ZrVksajC4EGqvXy5/P71L6PjXTNfq6/eaP6GPrj/AwV6BurguYPqFd1Ly39fzgVGAQAAAACSSvkAPT4+XsOGDdP8+fPl7e1tdJwrvPLKK0pNTS34iI+PNzoSCumqO9CpcAHgxmynTin+iSeV8NLLyktNlVfDhqq18GuFPP+8zKXstflatanZRlFdonRH6B26lHtJo74fpZe2vlTwi1YAAAAAgPsq1QP0PXv26PTp02rSpIk8PDzk4eGhLVu2aNKkSfLw8FBoaKhycnJ04cKVFRvJycmqXLmyJKly5cpKTk7+0+POx/7XMYGBgfLx8fnLbF5eXgoMDLziA2WLs8LlHzvQ2UAH4IYcdrvOz5uvY5276OLWrTJ5eqrS8OEKX/i1fG680eh4Ra6yX2XNaDdDz972rCwmi1bHrFav6F7ad3qf0dEAAAAAAAYq1QP01q1ba//+/dq3b1/Bxx133KG+ffsWfG61WrVx48aCv3P06FHFxcWpefPmkqTmzZtr//79On36dMEx69evV2BgoBo1alRwzB/P4TzGeQ64Judm4T93oDNAB+Beso8fV2y//kr+z3/kuHRJPrffrvBly1TxySdkslqNjldsLGaLnrjlCc1qP0th/mE6lXFKj6x5RJ/+/Kny7HlGxwMAAAAAGMDD6AD/S0BAgG666aYr7vPz81OFChUK7n/88cc1YsQIBQcHKzAwUM8++6yaN2+uZs2aSZLatWunRo0aqX///ho/frySkpI0atQoDRkyRF5eXpKkp556SlOmTNGLL76oxx57TJs2bdLChQu1atWqkv2CUaKcFS5/34HOBjoA9+Kw2XTu8891duo0OWw2mX19VemF51X+oYdkMpfq37kXqVtDbtWizov0n53/0Tcx32jKvinakbhD4+4dp8p+lY2OBwAAAAAoQWX+p+EPPvhAnTp1UmRkpO677z5VrlxZS5YsKXjcYrFo5cqVslgsat68ufr166cBAwZozJgxBceEh4dr1apVWr9+vRo3bqz33ntPM2bM0AMPPGDEl4QSUrCBTgc6AChz/wHF9OylMx9+JIfNJr8W96n2ymgF9+njVsNzpwDPAI27d5zeuecd+Xr4ak/yHkWuiNSG2A1GRwMAAAAAlCCTw+FwGB3CFaSlpSkoKEipqan0oZcRj6x5RHuS92hCiwlqX6v9nw84f1yadJtk9ZVeSyz5gABQAuyZmTozZYrOfzFLsttlKVdOoa+9psBOETKZTEbHKxXi0uL00ncv6cC5A5KkyHqRerHpi/K1+hqcDAAAAABwLQozy3W/lTLgMucGeqD1b/6ReAXl39ouSXm2EkoFACXn4s5dOt61m85/PlOy2xXYqZNqf7NKQZ07MTz/gxqBNTSnwxw9ftPjMsmkqN+i9NCqh3Tk/BGjowEAAAAAihkDdLgtZwf631a4eP9hsJ6dXgKJAKBk5KWnK/H1NxT3yCOyxcXJIzRU1T6eprCJE+QRHGx0vFLJarHquduf02ftPlMln0qKSY1Rn1V9NPfQXPFmPgAAAABwXQzQ4bacG+gBngF/fYDFKnn45H+elVpCqQCgeKVv2qTjEZ10YeFCSVK5hx9S7VUrFdCypcHJyoZmVZopqkuU7q9+v2x2m8bvHq9nNj6js5lnjY4GAAAAACgGDNDhluwOuzJs+RvofztAl/7/Fno2FxIFULblnj2rk8OH6+QzQ5R7+rQ8a9ZUzblzVOWNN2Tx/5t34uAvlfcur0ktJ2nUnaPkZfHStlPb1HNFT207tc3oaAAAAACAIsYAHW7pku2SHMp/y/3/HKB7XR6gZzFAB1B2pX/7rY536qz01Wski0UVBg9W+PJl8m3a1OhoZZbJZFLvBr31VcRXqluurs5lndPTG57W+N3jlZOXY3Q8AAAAAEARYYAOt+Ssb7GarfKyeP39gd6XLyTKBjqAMsiRk6Pkce/q5NPPKO/CBXk1bKjwRQsV8vwImb29jY7nEuqVr6evIr7Sww0eliTNPTRXfb/pq19TfjU4GQAAAACgKDBAh1tKt/1D/7mTNxvoAMqmnPh4nejbT+dnzZIkBQ8coFpfL5B3o0bGBnNB3h7eevXOVzW51WSV8yqnI+eP6MHoB/X+j+/rku2S0fEAAAAAANeBATrc0j9eQNTJiw50AGVP2urViuneQ1n798scFKRq06Yq9JVXZPb0NDqaS7u/+v2K6hKltjXbKs+Rpy8OfqFuy7tpU9wmo6MBAAAAAK4RA3S4pYyc/AuI+lv/4cJ5bKADKEPsWVlKfONNnRo+QvaMDPk0aaLaS5cooFUro6O5jRDfEL1///ua2nqqwvzDlHgxUcO+HaZnNz2rhIwEo+MBAAAAAAqJATrcUlpO/kD86jfQU4s5EQBcn+xjx3Tiwd668PXXksmkCk8+qZpzZstatarR0dzSfdXu09KuSzXo5kHyMHloc/xmdVveTV8c+EI2u83oeAAAAACAq8QAHW4pw5a/gf7PHeiXLyLKBjqAUsrhcOjCkqWK6dlL2b/+KkvFiqo+Y7pChj8nk4eH0fHcmo+Hj4Y1GaZFnRepSUgTZeZm6v097+vB6Af10+mfjI4HAAAAALgKDNDhlgrdgZ7FBjqA0icv46ISXnpJia++Kkdmpvzuaq7aS5fI/+67jY6GP6hbvq5mtZ+lt+9+W+W8yun3C79rwOoBenP7m7qQdcHoeAAAAACA/4EBOtxSoTvQuYgogFIm6/BhnYiMVNqKaMliUaXnnlP1GTPkUamS0dHwF0wmk7rV7abobtHqUa+HJCnqtyh1WdZFy35fJofDYXBCAAAAAMBfYYAOt5RuK+wGOgN0AKWDw+HQ+fnzdeLB3sqJjZVH5cqqOWe2Kj71pExmXtZLu3Le5fTWXW9pToc5qluurlKyUzT6+9F6dO2jOnbhmNHxAAAAAAD/Bz9pwy1ddYULG+gASpG81FSdGjpUyW//Rw6bTf4tWyp86RL53n670dFQSLeF3KaFnRdqxO0j5OPhoz3Je9RzRU99tPcjZeZmGh0PAAAAAHAZA3S4JWeFCxvoAMqKzH37FNO9h9LXb5CsVoW+8rKqTZsqj/LljY6Ga2Q1W/XoTY9qWddlur/a/cp15GrG/hnqvry7vjv5ndHxAAAAAABigA435dxApwMdQGnnsNt1bsYMnejXX7aEBFmrV1etL79U8MCBMplMRsdDEajqX1WTW0/WRy0/UmW/yjqVcUpDNg7R8G+HK+liktHxAAAAAMCtMUCHW7r6DvSg/FvbJSnPVsypAOBKuefPK/7Jp3R64ntSbq4CO3ZQ+JIo+dx8k9HRUAxa1Wil5V2X65EbH5HFZNGGuA3quqyr5hyco1x7rtHxAAAAAMAtMUCHWyp0B7okZacXYyIAuNLFnbsU07WbLm7dKpOXlyqPeUtV33tPloB/+H8LZZqv1VfP3/G8vu70tW6tdKsu5V7ShB8n6KGVD+mXM78YHQ8AAAAA3A4DdLglZwf6P1a4WKySh0/+51mpxZwKACRHXp7OTJqsuEcfVe6ZM/KsU0e1Fi5U+QcfpLLFjdQPrq/ZHWbrzeZvKtAzUEdTjqrfN/309o63lZrN6xEAAAAAlBQG6HA7tjybsvKyJF3FBrpEDzqAEmNLTlbcI4/q7LRpksOhoMgeCl+0UN71bzA6GgxgNpkVeUOkortHq0udLnLIoYW/LlSXZV208vhKORwOoyMCAAAAgMtjgA634+w/l65iA12SvC4P0LMYoAMoPhlbtiimW3dd2r1bZl9fVZ0wQVXfeUdmX1+jo8Fgwd7BeueedzTzgZkKDwrX+azzemXrKxq8brBiUmOMjgcAAAAALo0BOtyOs77Fz+oni9nyz3+BDXQAxciRk6Pk8RMU/+RTyktJkVejhgpfEqWgzp2MjoZSpmnlporqHKWhtw2Vl8VLu5J2KXJFpKb8NEVZuVlGxwMAAAAAl8QAHW7HeQHRq9o+l9hAB1Bsck6e1Il+/XV+5kxJUvl+/VRrwQJ51qplbDCUWlaLVYNvGaylXZfqnrB7ZLPb9Okvn6rHih76/tT3RscDAAAAAJfDAB1ux1nhclX955LkHZR/ywY6gCKUtmatYrr3UNYvv8gcGKiwyZNUedRrMnt6Gh0NZUD1gOqa1nqa3r//fYX4hCg+PV5PbXhKIzaP0KmMU0bHAwAAAACXwQAdbse5gX71A3Q20AEUHXt2thLfekunnntO9vR0+TRurNpLlyiwbVujo6GMMZlMaluzrZZ3W65+DfvJbDJrfex6dV3WVVP3TVVmbqbREQEAAACgzGOADrfj7EAvdIVLdmoxJQLgLnJOnNCJ3g/pwlcLJEkVBg9SzXlzZQ0LMzgZyjJ/T3+99K+XtLDTQjWt3FTZedn65OdP1GVZF62JWSOHw2F0RAAAAAAosxigw+2k5eRvkhe6woUNdADXIX3jRsX07KXsI0dkCQ5W9enTFfL88zJZrUZHg4uoH1xfn7f7XO+1eE9V/Koo6WKSRn43Uo+ufVRHzh8xOh4AAAAAlEkM0OF2Mmz5G+hXPUAv2EBngA6g8By5uTr93vs6OeTfsmdkyKdJE4UvXSr/e+8xOhpckMlkUrta7bSi2wo9c+sz8rZ4a0/yHvVe2VtjdoxRSlaK0REBAAAAoExhgA63Qwc6gJKSe+6c4gYN1rnp0yVJ5Qf0V83Zs2QNDTE4GVydt4e3nm78tFZ0W6H2tdrL7rBr0a+LFLE0QvMPz5fNbjM6IgAAAACUCQzQ4XacA/RCd6Bn0YEO4Opl/vyzYiJ76tLOnTL5+qrqexNV+dVXqWxBiariX0UTWkzQFw98ofrl6ys9J13jfhinXit6aUfCDqPjAQAAAECpxwAdbsd5EdFCb6BT4QLgKjgcDqV89ZVO9Ouv3KQkedaqpfCvFygoIsLoaHBjd1S+Q193+lqjm41WOa9yOpZ6TE+sf0JDNw1VfHq80fEAAAAAoNRigA63k24rZIWLFxUuAK6OPTNTiS+/rKS3xkg2mwLatlWtxYvkVa+e0dEAWcwWPVj/Qa3svlJ9G/aVxWTRt/Hfquuyrvpo70e6ZLtkdEQAAAAAKHUYoMPtsIEOoDjkxMXpxEMPK3X5CslsVsjIFxQ26SNZ/K+yLgooIUFeQXr5Xy9rcefFalalmWx2m2bsn6HOSzsr+li0HA6H0REBAAAAoNRggA63k5aTPwi/+g70oPxb2yUpj4uuAfiz9E3fKiayp7KPHpWlQgXVmDlTFR5/XCaTyehowN+qW76uPmv7mT5s+aHC/MN0OvO0Xt32qvqv7q+DZw8aHQ8AAAAASgUG6HA7GbZr3ECXpOz0YkgEoKxy5OXp9Icf6uQzz8ieni6fW29V+JIo+TW70+howFUxmUxqXaO1lndbrqG3DZWPh49+PvOzHl71sN7Y/obOZZ4zOiIAAAAAGIoBOtyKw+EofIWLxSp5+OR/npVaTMkAlDW5KSmKH/yEzn3yqSSpfL9+qjlntqyhoQYnAwrPy+KlwbcMVnS3aHWq3UkOObTktyXqtLSTZh+cLRvvwAIAAADgphigw61k5mYqz5EnqRAVLhI96ACukLl/v2IiI3Vx+3aZfHxUdcIEVR71mkyenkZHA65LqF+oxt47VnM7zFWjCo2UYcvQxB8nqseKHtp6cqvR8QAAAACgxDFAh1tx9p97mDzk49wqvxpelwfoWQzQAXfmcDiUsuBrxfbpq9yERFlr1lCtBQsU1LmT0dGAInVryK36KuIrjblrjIK9g3Ui7YSe2fiMhmwcoti0WKPjAQAAAECJYYAOt+Ksb/H39C/cxf3YQAfcnj0rS4mvvqakN9+Uw2aTf+vWCl+8WN71bzA6GlAszCazutfrrpXdV2pgo4HyMHnou5Pfqdvybnr/x/cLXlMBAAAAwJUxQIdbKfQFRJ3YQAfcWk58vE483EepS5dKZrMqjRihapMnyRJQyP9LgDIowDNALzR9QUu6LtHdYXcr156rLw5+oc7LOmvZ78tkd9iNjggAAAAAxYYBOtyKs8KlUP3nEhvogBtL37xZMZE9lX34sCzBwarx+QxVfGKwTGZeQuFewoPC9XHrjzWl1RTVCKihs5lnNfr70er3TT/9fOZno+MBAAAAQLHgp3+4FefbzQM9Awv3F9lAB9yOIy9PZyZN1smnnpY9LU3ejW9ReNRi+TVvbnQ0wDAmk0ktqrfQ0q5LNfz24fL18NX+s/vV75t+en7z84pPizc6IgAAAAAUKQbocCvpOemS8jvQC8U7KP82O7WIEwEojXJTUhT/5FM6O22aJKl8n4dVc+5cWatUMTgZUDp4Wjz12E2PaVWPVepWt5tMMmld7Dp1Wd5F434Yp5SsFKMjAgAAAECRYIAOt5JuuzxAL3SFy+UBOhvogMvL3H9AJyJ76uK2bTJ5e6vqu+NU+fXXZfb0NDoaUOpU9Kmot+9+W4s6LyroR59/eL46Lumoz/d/rqzcLKMjAgAAAMB1YYAOt+LcQL/mi4jSgQ64tJRFixTbp49sCQmy1qihWl8vUFDXrkbHAkq9+sH19UmbT/RZ28/UILiBMmwZ+nDvh+q8rLNWHFvBhUYBAAAAlFkM0OFWnB3ohR6ge9OBDrgye1aWEl57TUmjX5fDZpN/y5YKX7xI3vXrGx0NKFOaV22urzt9rf/e819V9quspItJem3ba3ow+kFtT9hudDwAAAAAKDQG6HArbKAD+L9yTp5SbJ++So1aIplMqvTcc6o2dYosgYW82DAASZLZZFbnOp0V3S1aw28frgBrgI6mHNWT65/UU+uf0tHzR42OCAAAAABXjQE63Mq1d6CzgQ64ooytW3UiMlJZhw7JUq6cqs+YropPPSmTmZdH4Hp5e3gXXGi0X8N+8jB76PuE79UrupdGfz9aSReTjI4IAAAAAP+ICQHcirPCJdCzkJulzg30rNQiTgTACA67XWemTFX8E08qLzVV3jffrPAlUfK/+26jowEup7x3eb30r5e0ousKPVDrATnk0LLfl6nz0s6atHdSwWszAAAAAJRGDNDhVpwVLv6e17iBToULUObZc3J06vnndXbKFMnhULnevVVz/jxZq1Y1Ohrg0qoHVtfEFhM1v+N8NQlpoqy8LE3fP10dl3TUl4e/lM1uMzoiAAAAAPwJA3S4FWeFS+E70IPyb22XpDx+wAfKqryMi4p/8kmlr14jWa2q8s47qvLWmzJ7ehodDXAbt1S6RbPaz9JHLT9SrcBaSslO0dgfxqr78u5aH7teDofD6IgAAAAAUIABOtxKwUVErYUcoHv/ofIlO70IEwEoKbnnziluwABd2rFTJl9fVf/kY5WL7GF0LMAtmUwmtarRSku6LtHoZqMV7B2s2LRYjdg8QgNWD9C+0/uMjggAAAAAkhigw43k2nOVmZsp6RoqXCxWycMn/3N60IEyJ+fkSZ3o0yf/YqHly6vm7Nn0nQOlgNVs1YP1H9Q3Pb7RU42fko+Hj/ad2af+q/tr+LfDFZsWa3REAAAAAG6OATrcxh8vUlboAbpEDzpQRmUdPaoTDz8sW2ycrFWrquaX8+Vz801GxwLwB35WPw25dYhWdl+pyHqRMpvM2hC3Qd2WddN/d/1X57POGx0RAAAAgJtigA634ew/9/HwkdVsLfwJvC4P0LMYoANlxaXduxXbr7/yzpyVV716qvnVV/IKDzc6FoC/EeIbojfvelNRnaN0X7X7lOvI1VdHvlLHJR01/ZfpBe8kAwAAAICSwgAdbuOa+8+d2EAHypT0jRsV9/gg2dPT5XP77ao5b66soSFGxwJwFeqWr6uprafq83afq2FwQ120XdSknyap09JOWvrbUuXZ84yOCAAAAMBNMECH23BWuFxTfYvEBjpQhlxYvFgnnx0qR06O/Fu2VI3PZ8gSFGR0LACF9K8q/9KCTgs07t5xqupXVacvndbr219Xr5W9tO3UNjkcDqMjAgAAAHBxDNDhNpwVLgGebKADrsrhcOjsp58pcdRoyW5XUI8eqjZ5ksze3kZHA3CNzCazImpHaEX3FXrhjhcU4Bmg31J+09MbntagdYO09eRW2R12o2MCAAAAcFEM0OE2nBUubKADrslhtyt57Fid+eADSVKFwYNU5Z3/yOThYXAyAEXBy+KlgTcO1OoeqzWw0UBZzVb9kPSDntn4jLot76ZFvy5SVm6W0TEBAAAAuBgG6HAbzgqXQGvgtZ3A+3L9Q3ZqESUCUFQcOTlKePElpcyZK0kKefklhTz/vEwmk8HJABS1IK8gvdD0Ba3svlIDGg2Qn9VPMakxGrNjjNoubqvJP03WmUtnjI4JAAAAwEUwQIfbYAMdcE32ixcV/8wQpa1cKXl4qOr4d1XhkUeMjgWgmFX1r6qRTUdqQ88NerHpiwrzD9OF7Av67JfP1C6qnV7b9pqOnD9idEwAAAAAZRwDdLiN6+9Ad26gM0AHSovclBTFPvqYLm7bJpOPj6p/PE1BXboYHQtACfL39Ff/Rv21svtKvX//+7ot5Dbl2nO14tgK9YrupcfXPq7N8ZvpSQcAAABwTSiGhdtwbqBf90VE2UAHSgVbQoLiBg1WzvHjsgQFqfpnn8qncWOjYwEwiIfZQ21rtlXbmm21/8x+zT00V+ti1+mHpB/0Q9IPqhVYS30b9lWXOl3ka/U1Oi4AAACAMoINdLgNZwe6v/U6K1zYQAcMl/377zrRp69yjh+XR5UqqvnlfIbnAArcXOlmjW8xXmsi1+jRGx9VgDVAJ9JO6J1d76jt4rb6cM+HSr6YbHRMAAAAAGUAA3S4DTbQAddw6aefdKJvP+UmJcmzTh3V+nK+vOrUMToWgD2eM7EAACAASURBVFKosl9ljbhjhDb02qBX/vWKqgdUV1pOmj4/8LnaR7XXy1tf1sFzB42OCQAAAKAUY4AOt3HdHehsoAOGy9iyRXGPPiZ7aqp8GjdWzXlzZa1SxehYAEo5X6uv+jTso+hu0fqo5Ue6I/QO5Tpyter4Kj208iENXD1QG+M2Ks+eZ3RUAAAAAKUMHehwG84KFzbQgbIpdflyJbz6mpSXJ7/77lW1Dz+U2ZceYwBXz2K2qFWNVmpVo5UOnTukuYfmak3MGu09vVd7T+9VNf9q6teon7rV7SY/q5/RcQEAAACUAmygw204K1yuvQM9KP/WdlHKsxVRKgBX49zML5Tw0stSXp6CunZR9alTGZ4DuC6NKjTS2HvHak3kGg26eZACPQN1MuOkxv0wTm0XtdV7P76nxIxEo2MCAAAAMBgDdLgFh8Nx/RUuzg10ScpOL4JUAP6Jw+FQ8oQJOj1+vCQp+NFHVWXsWJmsVoOTAXAVoX6hGtZkmNb3XK9Rd45SrcBaSrela9bBWeqwpINGbhmpX878YnRMAAAAAAZhgA63kJWXpVx7rqTrGKBbrJKHz+UTphZRMgB/x5Gbq8RXX9P5z2dKkkJGvqDQl16UycxLF4Ci52v1Ve8GvbW823JNaTVFd1a+U3mOPK05sUZ9v+mr/t/017oT6wq+nwAAAADgHuhAh1tw9p+bTWb5elxH7YN3oJSRyYVEgWJmz8zUqeEjlLF5s2SxqMrbb6tcj+5GxwLgBswms1pUb6EW1Vvo6PmjmnNojr6J+Ub7zuzTvi37VNWvqvo07KMe9Xpc+y/lAQAAAJQZrPHBLfyx/9xkMl37iby4kChQ3PJSUxX3+CBlbN4sk5eXqk2ezPAcgCHqB9fXO/e8o/U91+vJW55UOa9ySriYoIk/TlSbRW007odxik+LNzomAAAAgGLEAB1u4br7z52cPehsoAPFwpacrNh+/ZS5d6/MgYGq8cVMBbRqaXQsAG6uok9F/fu2f2t9z/V6o/kbqhNUR5dyL2n+4fmKWBqhoZuGanfSbjkcDqOjAgAAAChiVLjALTg30K97gM4GOlBsso/HKG7Q48pNSJRHSIiqz5gu7xtuMDoWABTw9vBWzxt6KrJepHYk7NDcw3O17dQ2fRv/rb6N/1b1y9dXv0b91CG8g7wsXkbHBQAAAFAE2ECHW3B2oPtb/a/vRGygA8Uic/9+xfbtq9yERHnWqqVaX33J8BxAqWUymXRX2F36uM3HWt5tuXrX7y0fDx8dTTmq0d+PVrvF7TRt3zSdzTxrdFQAAAAA14kBOtxCkVW4sIEOFLmMbd8rduAjyktJkffNN6vml/NlDQszOhYAXJXaQbU1qtkore+5XsNvH65Q31Cdzzqvj3/+WO0Wt9OobaN05PwRo2MCAAAAuEYM0OEWiqzCxTso/zY79ToTAZCk1OXLFf/003JcuiS/u+5SzVlfyCM42OhYAFBoQV5Beuymx7Q6crUm3DdBt1S6RTa7TcuPLVev6F56bO1j2hS3SXn2PKOjAgAAACgEOtDhFpwVLmygA6WDw2ZT8oQJSpkzV5IU2LGjqo4bK5Onp8HJAOD6WM1WtQ9vr/bh7fXzmZ81/9B8rYtdp91Ju7U7abeq+VdT34Z91b1ed/lZ/YyOCwAAAOAfsIEOt5CWkz/wpgMdMF7u2bOKe/SxguF5haefUtWJExieA3A5jSs11vgW47Umco0eu+kxBXoG6mTGSb27+121WdRG43eP18n0k0bHBAAAAPA/MECHW8iwsYEOlAaZ+/YppkekLv34o8z+/qo2bapChg2TyczLEQDXVdmvsobfPlzre67X6GajFR4UrgxbhuYemquIpRF67tvn9GPSj3I4HEZHBQAAAPB/UOECt1D0HegM0IHCcDgcuvD1QiW9845ks8mzTh1VmzxZXrXDjY4GACXG1+qrB+s/qJ439NT2hO2ad2ievk/4XhvjNmpj3EY1DG6ofo36qX2t9vK08K4cAAAAoDRg5Q9uwdmBXmQVLmygA1fNnp2txNGjlfTmm5LNpoB27VTr668ZngNwW2aTWfeE3aNP2n6iZV2XqecNPeVl8dLh84f12rbX9EDUA/rk5090LvOc0VEBAAAAt8cAHW7B2YFeZBUubKADV8WWkKDYvv2UujhKMpsV8sLzCvvoQ1n8uXAeAEhSnXJ19EbzN7Sh5wYNazJMIT4hOpt5VlP3TVW7xe30+vev6+j5o0bHBAAAANwWA3S4hSLrQGcDHbhqF3fuUkxkT2UdOCBLuXKqMWO6KgwaJJPJZHQ0ACh1ynmX06CbB2lNzzV69953dVOFm5Rjz9HS35eqZ3RPDVo7SJvjN8vusBsdFQAAAHArdKDDLTgrXK5/A/1yB7rtopSXK1n4JwT8Xw6HQ+e/mKXTEydKdru8GjVUtUmT5VktzOhoAFDqWc1WdazdUR3CO+jnMz9r7qG52hC3QbuSdmlX0i7VCKihPg37qGudrvL3vM5qOgAAAAD/iOkfXF6ePa9gA73IOtCl/BoX3+DrOx/gYuyXLilx1CilfbNakhTUtasqv/WmzN7eBicDgLLFZDLp1pBbdWvIrUrISNCCIwu0+LfFikuP07gfxmnyT5PVvW539WnQR9UDqxsdFwAAAHBZVLjA5V3MvVjw+XVvoFuskodP/udZqdd3LsDF5MTG6kTvh/KH5x4eCn19tKqMG8vwHACuU1X/qhpxxwht6LlBo+4cpfCgcF20XdS8w/MUsTRCz258VjsTd8rhcBgdFQAAAHA5bKDD5aXnpEuSvCxe8rR4Xv8JvQOljEwuJAr8QfrmzUoY+aLs6emyVKqoah99JN8mTYyOBQAuxdfqq94NeqtX/V7akbBD8w7P07ZT27T55GZtPrlZdcvVVd+GfRVRO0I+zl/4AwAAALgubKDD5RVZ/7mTFxcSBZwcdrvOTJmqk089LXt6unxuu03hUVEMzwGgGJlNZt0ddrc+bvOxVnRboYfqPyQfDx/9fuF3vbXjLbVd3FYf7vlQSReTjI4KAAAAlHkM0OHy0nLyB93X3X/u5OxBZwMdbi4vLU0nnxmis1OmSJLK9+mjmrNnyRoSYnAyAHAf4UHheq3Za9rQa4NeuOMFhfmHKTU7VZ8f+Fzto9rrhS0v6KfTP1HvAgAAAFwjKlzg8thAB4pe1q+/6uSzz8oWGyeTl5cqv/mmynXvZnQsAHBbgZ6BGnjjQPVr2E+bT27W/MPztTtpt9aeWKu1J9aqUYVG6tewn9rXai+rxWp0XAAAAKDMYAMdLi/dlt+BXmQDdDbQ4ebSVq/Wid4PyRYbJ2vVqqr55XyG5wBQSljMFrWu0VozH5ipxZ0Xq3vd7vI0e+rQuUN6ddurahfVTh/v+1hnM88aHRUAAAAoExigw+U5LyJaZBUubKDDTTlyc5U8foJODR8hR2am/O5qrlpRi+Vz441GRwMA/IX6wfU15u4xWt9rvZ697VmF+ITobOZZTft5mtotbqfXtr2mQ+cOGR0TAAAAKNUYoMPlFXmFi3dQ/m12atGcDygDcs+fV9ygwTo/c6YkqcLgQar+2WfyKF/e4GQAgH8S7B2sJ255Qmt6rtG7976rWyreIpvdphXHVqj3yt4auHqg1p1Yp1x7rtFRAQAAgFKHDnS4POcGOh3owLXJ3H9AJ4cOVW5ioky+vqr63/8qsP0DRscCABSS1WxVx9od1bF2R/1y5hfNOzxP60+s197Te7X39F5V8auihxo8pMh6kQryCjI6LgAAAFAqsIEOl5dhK+oNdDrQ4T4uREUptm9f5SYmyrNWLYUv/JrhOQC4gFsq3aLx943Xmsg1GnzzYJX3Kq/Ei4n6YM8Haru4rcbsGKNjF44ZHRMAAAAwHAN0uLy0nPxBNx3owNWz5+Qo8Y03lfjaKDlycuTfqpVqLVoor7p1jY4GAChCoX6hGtpkqNb3Wq8xd43RDeVvUGZuphb9ukjdlnfTE+ue0Hcnv5PdYTc6KgAAAGAIKlzg8oq+A50NdLg2W3KyTg0dpsyff5ZMJlUa+qwqPPmkTGZ+5woArsrL4qXu9bqrW91u+jH5R807NE+bT27WjsQd2pG4Q2H+YepRr4e61umqUL9Qo+MCAAAAJYYBOlweHejA1bv04486+dxw5Z09K3NgoMImjJd/ixZGxwIAlBCTyaSmlZuqaeWmOpl+UguOLNCS35boVMYpTf5psqbum6r7wu5T5A2RuifsHnmY+XECAAAAro3veOHynB3oRVbh4n35olpsoMOFOBwOpcydp+Tx46XcXHndcIOqTZkszxo1jI4GADBItYBqeqHpCxpy2xCtj12vqF+jtPf0Xm0+uVmbT25WiE+IutXrph71eijMP8zouAAAAECxYIAOl+fsQC/yChc20OEiHLm5Shz9ulKXLpUkBUZEqMrbY2T29TU4GQCgNPDx8FGXOl3UpU4XHb9wXFG/RWnFsRU6nXlan/3ymab/Ml3NqzZXZL1ItazeUlaL1ejIAAAAQJFhgA6XV+Qd6L4V829tF6XMFMmnfNGcFzCAIydHp14YqfR16ySLRSEjX1DwwIEymUxGRwMAlEK1y9XWyKYjNazJMG2K36SoX6O0M3Gntids1/aE7Qr2DlaXOl3Uo14PhQeFGx0XAAAAuG4M0OHSsvOylWPPkVTEG+hBNaTUOCn5kFTr7qI5L1DC7NnZOjXsOWVs3iyT1aqwjz5UQKtWRscCAJQBnhZPta/VXu1rtVd8eryW/rZUy35fpjOZZzTr4CzNOjhLt4fersh6kWpbs628PbyNjgwAAABcE7PRAYDi5LyAqEkm+Vn9iu7EoY3yb5MPFt05gRJkz8zUyaefyR+ee3mp2rSpDM8BANekekB1DW0yVOt6rtOklpPUoloLmU1m7Uneo1e3vapWi1pp7K6x+jXlV6OjAgAAAIXGBjpcmrO+xd/qL7OpCH9fFHqj9OsaKflA0Z0TKCF5GRd18umndWn3bpl8fFT942nya9bM6FgAgDLOw+yhljVaqmWNlkq6mKRlvy/T0t+WKuFigr488qW+PPKlbq54syLrRapDeAf5WrnWBgAAAEo/Buhwac4NdH9P/6I9ceiN+bdsoKOMyUtPV/zgJ5S5b5/Mfn6qPv0z+TZpYnQsAICLqexXWU81fkqDbx6snYk7FfVblL6N+1b7z+7X/rP7NX73eHUI76CeN/TUjRVu5NobAAAAKLUYoMOlpdvyB+hF1n/uFHpT/u3pw5LdLplpQ0Lpl3fhguIGDVbWgQMyBwaqxozp8rnlFqNjAQBcmMVs0d1hd+vusLt1NvOsVhxboSW/LVFsWqyifotS1G9Rql++viJviFRE7QgFegYaHRkAAAC4AlM/uLSCDXRrEW+gB9eRLF6S7aJ04UTRnhsoBrnnzil24CPKOnBAlvLlVXP2LIbnAIASVdGnoh676TFFd4vWzAdmKqJ2hDzNnjqaclT/3fVftVrYSq9ufVV7kvfI4XAYHRcAAACQxAAdLs7ZgV7kG+gWDymkQf7n1LiglLMln1bsgIHKPnpUlkoVVXPObHk3bGh0LACAmzKZTGpauanG3TtOmx7cpJf/9bLqlqur7LxsRR+P1iNrHlHX5V01++Bsnc86b3RcAAAAuDkG6HBpzg30Ih+gS/+/xoUBOkoxW0KCYgf0V86xY/IIDVXNOXPkVa+e0bEAAJAkBXkFqW/DvlrSZYnmdZyn7nW7y8fDRzGpMZr440S1WthKQzYO0ZqYNcrKzTI6LgAAANwQHehwac4O9CKvcJH+cCHRA0V/bqAI5Jw8qbiBj8h26pSsYWGqMesLeVavbnQsAAD+xGQyqXGlxmpcqbFebPqiVp9YrSW/LtGBcwf03cnv9N3J7+Rn9VPbmm3VuXZn3VH5DplN7AIBAACg+DFAh0srtgoX6Q8DdDbQUfpkx8Qo7pFHlZucLGvNGqo5a5asVaoYHQsAgH/k7+mvXjf0Uq8beul46nGtPLZSq46vUsLFBC37fZmW/b5Mob6hiqgdoc61O6tu+bpGRwYAAIALY20DLq1EKlzOx0jZGUV/fuAaZf/2m2L7D1BucrI869RRzblzGZ4DAMqk2kG1NbTJUK2OXK1Z7Wcpsl6kAqwBSr6UrJkHZqr7iu7qFd1Lsw/O1plLZ4yOCwAAABfEBjpcmrPCpVgG6H4VJf9QKSNZOnNEqnZH0T8HUEhZhw8r7rHHlZeSIq/69VVj5ufyqFDB6FgAAFwXs8ms20Nv1+2ht+uVO1/Rdye/U/SxaG09tVVHzh/RkfNH9P6e99WsSjN1qt1JrWu0lq/V1+jYAAAAcAEM0OHSnBvo/p7F0IEu5de4ZCTn96AzQIfBMn/5RXGDBsuelibvm25SjRnTZSlXzuhYAAAUKS+Ll9rWbKu2NdvqQtYFrT2xVtHHo/XzmZ+1PWG7tidsl4+Hj1rXaK1OtTvpzip3ysPMjz0AAAC4NnwnCZfm7EAPtAYWzxOENJKObaIHHYa7tHev4gc/IfvFi/K59VZVn/6ZLAHF8M4LAABKkXLe5dS7QW/1btBb8WnxWnl8pVYeX6m49LiCzyv6VFTH8I7qVLuTGgQ3kMlkMjo2AAAAyhAG6HBpxb+BfrkHnQE6DHRx5y7FP/OMHJcuybdpU1X7+GNZ/P2MjgUAQImqHlhdT9/6tJ5q/JR+OfuLVh5bqTUn1uhs5lnNOTRHcw7NUd1ydRVRO0KdandSZb/KRkcGAABAGWByOBwOo0O4grS0NAUFBSk1NVWBgcW07YxCu+uru5Sek67l3ZardlDton+CxF+kT++VvIOkl2IlNppQwjK2btXJfz8rR3a2/O6+W9WmTJbZx8foWAAAlAq2PJu2ndqmlcdXanP8ZuXYcyRJJpl0R+U71Ll2Z7Wp2aZ4rpcDAACAUqsws1w20OGy7A77/69w8SymX2pUqi+ZLFJWqpSWIAWFFc/zAH8hfeNGnXpuuBw2m/xbtlTYhx/I7OVldCwAAEoNq8WqljVaqmWNlkrLSdOG2A2KPhatH5N/1O6k3dqdtFvv7HpH91e/X51rd9ZdYXfJarYaHRsAAAClCAN0uKxLtktyKP8NFv7WYqpw8fCSKt4gnTmcX+PCAB0lJG3NGp16YaSUm6uAdu0UNnGCTJ6eRscCAKDUCvQMVI96PdSjXg8lZCTom5hvFH0sWsdTj2vtibVae2KtynuVV/vw9oqoHaGbK94ss8lsdGwAAAAYjAE6XFaGLX/73Gq2ystSjFu5oTdeHqAfkG5oV3zPA1yWumKFEl5+RbLbFdi5s6qO/a9MHvx3DgDA1arqX1WDbh6kx296XIfPH1b0sWitjlmtc1nn9NWRr/TVka8U4hui1jVaq23Ntrot5DZ5mHmtBQAAcEd8FwiXlZaTJkkK8AyQqTi7yUNvlA4s5kKiKBEpixYp6fU3JIdDQT0jVeWtt2SyWIyOBQBAmWQymdSoQiM1qtBIz9/xvHYm7lT0sWhtjt+s05dOFwzTy3uVV6sardS6Rms1q9JMVgs1LwAAAO6CATpclrP/vNgvChV6U/4tA3QUs/Pz5yv57f9Iksr3eViho0bJZOat5QAAFAUPs4fuCbtH94Tdo+y8bO1M2KkNcRv0bfy3SslOUdRvUYr6LUoB1gDdV/0+ta3RVneF3SUfDy7eDQAA4MoYoMNlpeekSyrG/nOn0Bvzb8/+KuVm5/eiA0Xs3OczdXrCBElS8COPKOSlF4v3nRUAALgxL4uXWlRvoRbVW8hmt2lP8h5tiN2gjXEbdTbzrFYdX6VVx1fJx8NH94Tdo9Y1WqtFtRby9yzm7zsBAABQ4higw2Wl2/IH6MW+gR5YVfIuJ2VdkM4clarcUrzPB7dz9uOPdeajSZKkCk89qUrDhjE8BwCghFjNVjWr0kzNqjTTq3e+qp/P/KwNsRu0IXaDEi4maH3seq2PXV9wXNuabXV/9ftV3ru80dEBAABQBBigw2U5N9CLfYBuMuXXuMRuy69xYYCOIuJwOHTmo4907pNPJUmVhg1VxaefNjgVAADuy2wy67aQ23RbyG164Y4XdPj8YW2I3aD1set1Iu2Etp7aqq2ntspisuiO0DvUumZrtareSqF+oUZHBwAAwDVigA6X5exAL/YKFym/xiV2m5R8oPifC27B4XDo9LvjdX7WLElSyIsvqsJjjxobCgAAFPjjBUiHNhmqYxeOFdS8HD5/WLuSdmlX0i79d9d/1bhSY7Wp0UZtarZRtYBqRkcHAABAITBAh8sqsQ10SQptlH/LhURRBBx2u5L/8x+lfPmVJCl09CgF9+1rcCoAAPC/1ClXR3XK1dGTjZ9UfHq8NsVt0vrY9fr5zM8FH+/teU8NgxuqdY3WalOzjeqUq2N0bAAAAPwDs9EB/pexY8eqadOmCggIUEhIiLp166ajR49ecUxWVpaGDBmiChUqyN/fX5GRkUpOTr7imLi4OEVERMjX11chISEaOXKkcnNzrzhm8+bNatKkiby8vFS3bl3Nurz1ibLL2YFeIhdzCr0p/5YBOq6TIy9PiaNH5w/PTSZV+c/bDM8BAChjqgdU18AbB2pex3na2GujXr3zVd1Z+U6ZTWYdPn9YU/ZNUbfl3dRlWRdN2jtJh84dksPhMDo2AAAA/kKpHqBv2bJFQ4YM0c6dO7V+/XrZbDa1a9dOFy9eLDhm+PDhio6O1qJFi7RlyxYlJCSoR48eBY/n5eUpIiJCOTk52r59u2bPnq1Zs2bp9ddfLzgmJiZGERERatmypfbt26fnnntOgwYN0tq1a0v060XRcla4BHoGFv+TVWogySRdPC1lnCn+54NLcuTmKuHlV5QatUQym1X13XEq17On0bEAAMB1CPEN0cMNHtaMB2Zo84ObNeauMbo37F55mD0Ukxqj6funq/fK3uqwpIPG7x6vnYk7ZcuzGR0bAAAAl5kcZWjV4cyZMwoJCdH/Y+/Ow+O663vxv8+ZfdcskkarJVuRbEvekjjOnpYY4gD50f4ohdtemjYJJCGEQtKWS29LC5SW9kJvf7dtSkhC0uc+D9B726aUxaXBSYiTGC9xHFu2JW+Stc5ImhnNvp45vz/OzNGMJRvbsTSL3q/nmeds3znzPfBYyzsffb4/+9nPcOeddyIcDqOxsRHf+c538GuFkGloaAgbNmzAvn37cPPNN2P37t344Ac/iKmpKTQ3K4v3fPOb38TnP/95zM7OQq/X4/Of/zx+9KMfYXBwoX/1xz72MczPz+M//uM/LmtukUgEDocD4XAYdvsKBLb0Cz3y0iN4Y+oN/Nltf4YP9Xxo+T/wf20DgueA3/o+sPaXlv/zqK7k02lMPvEkYnv2AFot2r7+P2DftavS0yIiIqJlEs1E8drEa9gztgevT76OZC6pXjNrzbil9Rbc0XYHbm+7nYuQEhEREV1jV5Ll1lQP9HA4DABwuVwAgLfeegvZbBY7d+5Ux6xfvx6dnZ1qgL5v3z5s2rRJDc8B4J577sGjjz6K48ePY9u2bdi3b1/ZPYpjPvvZz150Lul0Gul0Wj2ORCLX5Bnp2im2cFmRHuiAspBo8JzSxmXtL63MZ1JdyMfjGP/0p5HY93MIej3a/uZvYHvPL1d6WkRERLSMbHobPrD2A/jA2g8gmUvijck38Or4q3h98nUEUgHsGduDPWN7AADrXetxR9sduKP9DmzybIJWrKlf44iIiIhqWs385JXP5/HZz34Wt912GwYGlH7TPp8Per0eDQ0NZWObm5vh8/nUMaXhefF68dqlxkQiESSTSZhMpkXz+Yu/+At86UtfujYPR8tiRRcRBZQ+6Cd/wD7odEWkcBjjDz+C5JEjEM1mtD/1FCw376j0tIiIiGgFmbQm7FyzEzvX7ERezuNk8CT2TuzF3om9ODZ3DEPBIQwFh/DMsWdg19txW+ttuKP9DtzWdhtcRlelp09ERERU12omQH/ssccwODiI119/vdJTAQB84QtfwBNPPKEeRyIRdHR0VHBGdKFiD/QVrUAHAP/gpccRFeTm5jD20CeQHhqC6HCg81tPw7RlS6WnRURERBUkCiL63f3od/fjkS2PIJgK4o3JN7B3ci/emHwDkUwEu0d3Y/fobggQsMmzCbe334472+7EBvcGiEJVL3NFREREVHNqIkD/9Kc/jR/+8Id47bXX0N7erp73er3IZDKYn58vq0L3+/3wer3qmAMHDpTdz+/3q9eK2+K50jF2u33J6nMAMBgMMBgM7/7haNkUK9CtOuvKfGAxQJ8ZAqQcoKmJf15UIdmpKYw98CAyo6PQeDzofO45GPt6Kz0tIiIiqjIuowv3rbsP9627D7l8DsfmjinV6ZN7MRQcwtG5ozg6dxRPHXkKbqMbt7fdjjva78AtrbfArufaTERERETvVlUnfLIs4/HHH8eLL76IV199Fd3d3WXXb7jhBuh0OuzZswcf/vCHAQDDw8MYGxvDLbfcAgC45ZZb8NWvfhUzMzNoamoCALz00kuw2+3YuHGjOubHP/5x2b1feukl9R5Ue7JSFikpBWAFK9AbugCdBcjGgeBZoLFvZT6Xak56ZARjDzyI3PQ0dK2t6Hz+29CvWVPpaREREVGV04pabGvahm1N2/CZ6z8Df9yP1ydfx97Jvdg3tQ+BVADfP/t9fP/s96ERNNjatBV3tt+JO9ruQE9DDwRBqPQjEBER0VXK52Xk8jKkvIxcPo+cVH4sFa4r5xeOpcI5KS8jm89DuuB9DpMOv9TXVOnHq2qCLMtypSdxMZ/61Kfwne98B9///vfR17cQRjocDrUy/NFHH8WPf/xjvPDCC7Db7Xj88ccBAG+++SYAQJIkbN26Fa2trfirv/or+Hw+fPzjH8dDDz2EP//zPwcAjIyMYGBgAI899hgeeOABvPzyy/jMZz6DH/3oR7jnnnsua65XsnIrLb9gKoi7/ukuAMDbH3975RZaenYnMHEQ+LVvAwMfXpnPpJqSURwUGQAAIABJREFUGh7G2AMPQgoEoO/uRue3n4OupaXS0yIiIqIal5WyODxzGK9NvIa9k3sxEh4pu+61eJWFSNvuwI6WHTDrzBWaKRER0fLJF0LirCQjm8sjK+WRkQrHUh6Zwjn1WMoXxsmF8/lC0CxDkvIlQbNcElBfEE4Xw2o1pJYhFQLuC8eVh96FcSUhd1nwXRibK4xZrgR3a0cD/u2x25bn5lXsSrLcqg7QL1Yh8fzzz+O3f/u3AQCpVApPPvkkvvvd7yKdTuOee+7BU089pbZnAYDz58/j0UcfxauvvgqLxYL7778fX/va16DVLoSqr776Kj73uc/hxIkTaG9vxx//8R+rn3E5GKBXl7HIGD7w4gdg1pqx/zf3r9wH/+B3gbdeAO54Erj7iyv3uVQTkkeOYOyTDyMficCwYQM6n30GWre70tMiIiKiOjQeHVeq0yf24oDvANJSWr2mE3XY7t2uBOrtd2CNnX8JR0REC2R5IeTNSkroWwylcyXhs3o+pwS8xWA6J+WRzcuF80uNly84Xzp+Ici+MPTO5eVFAfjCdVkds9poRQEaUYBWFKDViGXHGo0ArSiWXBegEcvH9DRZ8eUPDVT6MVZc3QTotYQBenU5HjiOj/3wY2g2N+OnH/npyn3wgWeAH/8e0LsL+I1/WrnPpaoX37cP4499GnIiAdO2beh4+pvQ8GsFERERrYBULoUDvgNq7/TJ2GTZ9U5bJ97X9T7s6tqFXmcvW70QEV1jsiwjK8lI5SSkshLS2TxSWQmpbL78XK5wLls4l1vYz0qXWbV8YbuOkuMLxyn3XFxlLdVRCC0IgF4jQq8RodOK0GkE6IrHGhHa0mOtEjbrNMVwWSwEzoUwuiR41i0RRJeF1yXvu9h9tCWfoxGhBt06jVgy9sJxQtn8ROHiBch0aVeS5VZ1D3Siq1VcQHTF+p8XFRcS9R9f2c+lqhbdsweTn/0c5GwWlltvRfvf/S1EM/9smoiIiFaGUWvEne134s72OyHLMkYiI0qYPrEXb828hbHoGJ499iyePfYs1jnWYVf3LtzbfS8r04mobuWkPFIl4XQqm0e6EF6ns9IFQXZhW3I9fcF7iyF4cWzxeum4Ws+kBQHQaUToRAE6ragGzWoILZYH0Mr5wviSoFqnES44v8R9CmOKobauEHYXQ2+dRplD2fFFrmlEhsv07jFAp7oUy8QAVCBAb9qgbMPjQHIeMDWs7OdT1Qn/4AeY+m9fACQJtvfuROs3vgFRr6/0tIiIiGiVEgQBax1rsdaxFvf3349YJobXJ1/H7pHd2Du5F2fDZ/H3R/4ef3/k77HRvRHv734/7um6B16L9xffnIjoCuTzMjJSHulsHmlJqcBO55R2HOmcEj6XHWfzhfHFYLo8uF4cfJcG2AsBeSorVbzNh1EnwqjTwKjVwKgTYShudZrC+cL1wjiDVlTD5rL2HBetfC5UOF+kZcdS91lU9SyKhfYfAoNoWvUYoFNdKlagW3XWlf1gkxOwtwORCWDmJLDmlpX9fKoqoe9+F74vfwWQZTg+9CG0fPXPIGj5ZZeIiIiqh1Vvxa7uXdjVvQuRTAQvj72M3SO7sX96P04ETuBE4AS+fujruL7petzbfS/eu+a9cJu4hgtRvcnnlfYiyYyEZCF8TmbySGaV42QmV9jmS64vhNTFwDtTCL3TOWlhP3vBcWFcRspX+rEBAHqtWBJYa8rCbUNJuK1e02oWhduLg+/F91m4n8iWG0Q1hkkO1aWKtXABlDYukQnAP8gAfRWb+9YzmP3rvwYAOH/zN9H83/8QgihWeFZEREREF2fX2/ErPb+CX+n5FQSSAfz0/E/x45Ef4/DMYfX1tQNfw46WHdjVtQt3r7kbdj3XdCFaKVJeRjyTQyyVQyxdeBX2E8Xgu7BNZBZC7mIIvug4IyFROJfOVTbMFgQoQbRWCaT1WlE9Vvd15deWquAuD7ZLzy2E34aSENygFSGyspqIfgEG6FSXotkKB+inf8I+6KuULMuY/ev/icAzzwAA3I88jMbf/V1WGBAREVFNcZvc+Oj6j+Kj6z8KX9yHn4z+BLtHduN44DjenHoTb069ia/8/Cu4ve12vL/7/biz/U6YdVzjhehCsiwjkZEWBd6L9gvH8XQO0eJ+ISyPppXziYy0InM2aEWY9BqYdIWXfmFr1JWfL1ZoG9TAu3BcqLTWLwrFixXbSo/qYiiuFQX+zkREVYsBOtWlYg/0FW/hAnAh0VVMzufh/7M/Q+g73wUANP3ek3A/9FCFZ0VERET07ngtXtzffz/u778fY5Ex7B7Zjd0ju3E2fBavjL+CV8ZfgUlrwi+1/xLu7b4Xt7XdBr2Ga75QbZFlpR93MqNUbycyucJWqdCOF46L+wvjFsYmS4LyeDEgz+QgX+N22zqNAKtBC6tRC4teC5tRC5NeC3NJyG1eKvTWizDpSo+VcaXHRq2GFdlERBdggE51KZKJAKhUBfqAsp05AeTzANt2rApyLoepP/xDRP79B4AgwPsnX4TzYx+r9LSIiIiIrqlOeyce3vIwHt7yME6FTuE/Rv4Du0d2YyI2gd2ju7F7dDdseht2du7Eru5duMl7E7Qif+2kaysr5RFP5xDPSMo2nUM8rQTbxfOJkrYmiUwOiXQh7C70846nS64VgnBpGReWFAUooXch+LYatLAYlPBb3S+G4oVxtkJAXhxffK9Bq1m2eRIR0WL8SYbqUrECvSIBursH0OiBTAyYPw+4uld+DrSi8uk0Jp94ErE9ewCNBq1f+xoc932w0tMiIiIiWla9zl70Onvx+LbHMTg3iN2ju/GTkZ9gJjmDF8+8iBfPvAiX0YX3rXkf7u2+F1ubtkIUWFyy2hRbmMQLIXaxX7cSdJeE36WBeGahZUksXfo+ZexyLz6p14hqdbZJr4FFr1WPlZdWvWbWaWExLFRzFwNvm0EHi0Gjht8mnYYtSoiIahQDdKpLsWwFA3SNFmhcD/iOKm1cGKDXtXw8jvFPfxqJfT+HoNej7W/+Brb3/HKlp0VERES0YgRBwKbGTdjUuAlP3vAkDs8cxu6R3Xjp/EsIpoL43vD38L3h78Fr8WJX1y7c230vNrg2MEysUrIsI53Lq8F2rBBox9RK7xxi6YXK72jZ+YUwvDg+kZWueQuTIr1WhKUQaFsNWpgNGmW7KPTWquG3Sa+FpRh+l5w3l4zXafgfeoiIaAEDdKpL0YyyiGhFeqADShuXYoC+gZXI9UoKhzH+8CNIHjkCwWxGx1N/D8vNN1d6WkREREQVoxE12O7dju3e7fjCji9g//R+7B7ZjT1je+CL+/DC8RfwwvEXsMa+Bru6duGu9ruw0b0RGpEtKa5UPi8jlZOQyuaRzEpIZZUe3OmchGQmrxwXz2el8r7c6YVK71hJC5Tifm4ZWpkIAmApBNbFsNuiV9qVWAxKqF26NRu0sBpKwnH1fVpYC2G3Xsugm4iIlh8DdKpLxQC9IhXoQMlCooOV+Xxadrm5OYw99Amkh4YgOhzo/NbTMG3ZUulpEREREVUNnajD7W234/a22/FF6YvYO7EXu0d242cTP8P5yHk8ffRpPH30adh0NtzgvQE3t9yMm7w3oaehp6ar04uLUSbSSr/txAU9uVM5JehO5fJIZaSSoFsJwtMXBN+prBKGXzguk1veNiYAYNJpCv24NWrQbVW3CwF48ZylUAG+1DkuTklERLWKATrVpWi2WgL045X5fFpW2akpjD3wIDKjo9B4POh87lkY+/oqPS0iIiKiqmXQGLBzzU7sXLMT8Wwcr4y/gpdGX8JB30FEs1G8Ov4qXh1/FQDgMrqww7sDO1p24KaWm9Bh61i2eUl5WV1Esthzu7Rft7JVAvDkhecL70lmF95b3C5HBfel6LUijFqlb7dRp4FJp4FBp4FJJ6rHC6F2yb6+fEHL0qDcotdCw8CbiIiIATrVH1mWK7uIKKC0cAGA4DkgEwf0lsrMg6659MgIxh54ELnpaWhbW7Dm29+Gvqur0tMiIiIiqhkWnQUfXPtBfHDtByHlJQwFh/Dz6Z/jgO8ADvsPI5gKYvfobuwe3Q0AaLO24SbvTbip5Sbs8O5Ao7kR+byMeCaHaKr4yiKayiGSyiKWLj934ZhoOquG4KnsMi9GWdKj22JQgmyjbiHkNuqU0NugVXpyG7UamPSiOqZsXOk5vUYNzA1aDYNuIiKiZcQAnepOMpeEJEsAKtgD3doIWBqB+CwwOwS03VCZedA1lRoextgDD0IKBKDv6kLn89+GrqWl0tMiIiIiqimyLCOWzmE+kUUklUU05UWn5oNwee7BDnMSZyMncC52BFPpYwhJZzAZm8SLZ17Ei2deVG6QaUImvg5SfB1y8bVA3vyu5yQW+3MX2pKYDQsLTBb7dlsMF2wLfbgthbGL3q/TQMvFKImIiGoeA3SqO8X+51pBC5PWVLmJNPcD515V2rgwQK95ySNHMPbJh5GPRGDYsAGdzz4Drdtd6WkRERERVYwsy0hkJIQSGcwnssorWdxXtqFEFuFkBqHCuXBSGXfpFidaADcqLyENjXkUWstZaMxnIRqnIOhnoNfPAM59kGUBQqYNhlwf7NgAj7YPDqMVNqMWNoMWNqNO2Ve3ystq0JWF4QatWNN914mIiGj5MECnulMM0K16a2V/CG4eWAjQqabF9+3D+GOfhpxIwLRtGzqe/iY0dnulp0VERER0TciyjGRWWgjBExnMJ7NqMB5OZhGKK+cuDMaz0tX3+tZrRdiNOtjVYFsHq0G7KPC2G7crobdRC2gSOB8/hpPzb+Ho3FsYjYwAhgmkDROYxR6ERC02ezajp0Xpob7Z0wedRncN/9ciIiKi1YYBOtWdWFbpf16x9i1FXEi0LkT37MHkZz8HOZuF5dZb0f53fwvR/O7/TJiIiIjoasiyjFQ2v2gxy0Qmh3i6sM1IJQtflh+XjisumBlL55DJXX0vcL1GRINZV3jp0WBS9p1mPRyFbYNJt7Bv1qHBpIdJr7mqz7sDawB8EADgj/txwHcA+6f3Y79vP3xxHw7PHMbhmcP4h3f+ASatCdc3Xa/0T2/ZgfXO9dCIV/e5REREtDoxQKe6E8lEAFRwAdEiNUAfBGQZ4J+E1pzwD36Aqf/2BUCSYHvvTrR+4xsQ9fpKT4uIiIhqlCzLiGckhOIZhBIZBONKNXewcBxJZheF3BeG3fFMDvLVF31fkk4jlAXgxX2nRQ9HSSh+YRhu0mkq9pefzZZm3LfuPty37j7Isozx6Dj2+/bjwPQBHPAdQDAVxBtTb+CNqTcAKL8jbG/ejhu9N2Jb0zb0ufqgE1mhTkRERBfHAJ3qTiyjVKBXPED39AGCBkiGgOg0YG+t7HzoioS++134vvwVQJbh+ND/g5avfhWCll8yiYiISFFcCDMUzyKYUAJwJRjPqgH5hSH5fCKLjHT1ld4XMus1hdfixS3LF7PULix0qS54qYHZsLBtMCk9wWu5D7ggCOi0d6LT3omP9H4EeTmP06HTaoX6If8hRDNRvDz+Ml4efxkAYNKaMOAZwNbGrdjatBVbGrfAYXBU+EmIiIiomjANorpTbOFS8QBdZwQ81wGzQ0obFwboNSP0ve/B96UvAwCcv/EbaP6j/w5BFCs8KyIiIlpOmVwegXgaM5E0gvGMWhWuhOBK7++Fc8rx1fb/1mtFuMx6OC16OM1KhbfLrFR5WwwLIXcxIF8qGDfpNBDF2g27V4IoiOhz9aHP1YePb/w4cvkcTgROYP/0frw98zaOzB5BNBPFQd9BHPQdVN/X09CDrU1bsbVxK7Y1bUOHraOm/8MCERERvTsM0KnuFFu4VLwHOqC0cZkdUtq4XPfeSs+GLkNk9241PHc/9CAan3ySvzARERHVKFmWEUnmMBtLYSaaxmzJa6ZsP4VQIntVn2HQinBb9Ggw6+GyKC1NXBY9nOaFcNxZuFYMzCvZ8mQ104pabG7cjM2NmwEAeTmPc/Pn8Pbs2zgycwRHZo5gLDqGM/NncGb+DP751D8DAFxGF7Y1bVOr1De6N0KvYVs/IiKi1YIBOtWdqmnhAigB+uC/cCHRGhF7/Q1M/sHnAVlGw0c/yvCciIioSmVyeczFFofgi8LxWPqKFsfUigI8VgPcVv2SIXixUrw0JL/ahTCp8kRBRI+zBz3OHnyk9yMAgLnkHN6ZeQdHZo/g7Zm3cSJwAsFUEHvG9mDP2B4AgF7UY8AzgC1NW7CtcRu2Nm2F0+is5KMQERHRMmKATnUnmokCqJYAfUDZMkCveskjRzDx+ONANgvbrl3wfvGPGZ4TERGtoJyURyiRxVwsjblYGoFYRg3BZyIpzMYWwvH5K6wWtxu1aLQZ0GgzoMlmVPcbrQY02Rf2nWY926Ksch6TB3evuRt3r7kbAJCW0jg+d1wN1I/MHMF8eh6HZw7j8MxhPI/nAQBd9i5sbVJavmxt2opuezd/liQiIqoTDNCp7kSz1RSg9yvbuVNALgNo+aee1Sh9+jTGH34EcjIJy623ovWv/hKChtVkRERE71YqKxUC8QwChWB8LpZZdC4QyyCYyEC+gpbiWlEoBOKGhUC8GI4Xg3Grct6o4/d1ujoGjQHXN1+P65uvB6C0BRqNjCotXwqh+kh4BKORUYxGRvFvZ/4NAOAwONSWL9uatqHf3Q+j1ljJRyEiIqKrxACd6k6xAr0qeqDb2wCjA0iFlRDdO1DpGdEFMhOTGHvwIUjhMIybN6P9b/8XRD3/QwcREdFSij3F5+JpzEXTCMQzZaF4oGw/g1g6d0X3FwTAZdarbVQWV4kb1WDcYdKxWpxWnCAI6HZ0o9vRjV+97lcBAPOpebwz+w7ennkbb8+8jeOB4winw/jZxM/ws4mfAVD6r290bcSWpi3Y0qi8vBZvJR+FiIiILhMDdKo7VdUDXRCApn5g7E2ljQsD9KqSCwQw/uCDyM3MQL9uHTqe/iZEi6XS0yIiIlox6ZyE+UQWoUQGwXgGobiyH4pnECo5H4grgXgglkFGuvye4gCg14jwWPXw2AxwW4rhuEE5ZzUoL5sebosBLoseGobiVGMajA24q+Mu3NVxFwAgK2VxMnhSbfny9szbCKQCODp3FEfnjuJ/438DAJrMTWqYvrlxMza4NrBKnYiIqAoxQKe6U1U90AGljcvYm4B/EMBHKz0bKpBiMYx94hPInD8PbWsLOp97FlonF38iIqLalcpKhfC7EIKXBOHBeOE4kS2cU67FM9JVfZbNqC2E30rwXQzAPTYDPBYlLC9WkdsMWvaCplVFp9Fhc+NmbG7cjPv774csy5iITeDIzBG8M/sOjs4exanQKcwkZvDS+Zfw0vmXAChV6uud67G5cbMaqrdZ2/jvh4iIqMIYoFPdKfZAt+qroIULsNAHnQuJVo18Oo2JTz2G9ImT0Lhc6HzuOei8/BNaIiKqLlJexmw0DV8kBV84hZloqlAlvlAdXhqYJ64yDNeIApxmHRrMerjMejSYdXBZ9MqxRTlfWi3usujZU5zoCgiCgA5bBzpsHbhv3X0AgEQ2geOB4zg6exTvzL6Dd2bfQTAVxGBgEIOBQXxn6DsAALfRrYbxWxq3oN/dD7POXMnHISIiWnUYoFPdKbZwsevsFZ5JQXOhbQsD9Kog53KYfPJJJA4cgGixoONb34Khu7vS0yIiolUmmZHUYNwfSWG6sPWFU5iOpOAPpzAbS0PKX8GqmlAW1iwNvl1mPZwWHZxm/aJQ3GXWw2nWw2bUspc40Qoz68zY7t2O7d7tAJT1BSZjkzg6q7R5eWfmHQwFhxBIBfDK+Ct4ZfwVAIBG0OA653VqhfqWxi3otHWySp2IiGgZMUCnupLL55DIJQBUUQV60wZlG/MB8TnA4qnsfFYxWZYx/cU/QeyneyDo9Wh/6imYBvorPS0iIqojsiwjlMiWBeO+QiBeDMZ9kRTCyexl3U8jCmiyGdBsN6LZrvQOd5oXAnGnWQ+nRa+cs7BdClGtEgQB7bZ2tNva8f617wcApHIpnAyeLKtSn0nMYCg4hKHgEP5p+J8AAA6DA5s9C21fNnk2Vc/vQkRERHWAATrVlXg2ru5XzQ+NBivg7AZCI0oV+tq7Kj2jVWvm619H+F//FRBFtP31N2DZcVOlp0RERDUkmZEwF0tjJppeVDXuKwTjvkgKmdzlLbJp1mvgtRvRbDeixWFEs8MIr90Ib8nWYzVwUU2iVcqoNWJb0zZsa9qmnvPFfWof9aOzR3EicALhdBh7J/di7+ReAIAAAesa1pVVqXc7uiEKYqUehYiIqKYxQKe6EslEAAAmrQk6UVfh2ZRo7meAXmGBZ59F8LlvAwBavvIV2HburPCMiIioGiQyOcxFM5iNpTEXS2M2qmznYmnMRTML+7EMYuncZd/XbdGjuRiGFwPxkuNmuxF2I6vFiejKeC1eeC1e3NN1DwAgI2UwHBxeCNXnjmIyNokz82dwZv4M/uX0vwAAbHobbmi6ATd6b8SN3hux3rkeGpFrGRAREV0OBuhUV4r9z206W4VncoHmAWDoh+yDXiGh//t/MfP1bwAAmn7/99Hw4f+3wjMiIqLlFE/nyoLw2VgGc6XHUSUQn4ulr3jhTb1WRKPVUFYl7rUr1eMthf0muwEGLYMpIlp+eo0emxo3YVPjJvXcbGIWR+eOqq1fjs8dRzQTxasTr+LViVcBAFadFdc3X4/tzduVQN21HlqR8QAREdFS+B2S6ko0EwVQRe1bipoLfbb9g5WdxyoU+c//hO9P/hQA4P7EQ3A/+EBlJ0RERFctn5fhi6QwGojjfCCB6fmkEo7HyqvGk9krC8WNOhEeq0F9Ndr0JfvF83p4bAb2GCeiqtdobsTdnXfj7s67AQDZfBbDwWEc9B3EIf8hHPYfRiwbw2sTr+G1idcAABadBduatmG7dztubL4RG90bGagTEREV8Dsi1ZVotsoD9NkhQMoBGv7TWwnxn/8cU0/+HpDPw/FrH0bjE09UekpERPQLZKU8JkNJjAbiGAsmMDqXwPlAHOeDCYwFE5fdX9yk08Bj06OxGIwXgvBGq7782GaARa9hKE5EdUsn6jDgGcCAZwC/M/A7kPIShkJDOOQ7hEO+Q3jL/xai2Shen3wdr0++DgAwa83Y1rRNafnSfCP6Pf3V1SKTiIhoBTHFo7pSrEC36aushYuzG9CZgWwCCJ4DGnsrPaO6lzw2iIlPPQY5m4Xtve9Fy5/+KcMRIqIqkcpKGAsmcD6ghOPFivLzgQQm55OQ8vJF36sVBXS4zFjjNqOtwVRWJV5aOW4x8MdcIqKlaEQN+t396Hf34/7++yHlJZwKnVIr1N/yv4VIJoI3pt7AG1NvAFDWmNrauFWpUPfeiAH3AHQaBupERLQ68DcLqitV2wNdFIGmjcDkIWDmOAP0ZZY+dw7jn/wk8okEzDffjNav/w8IWn65IyJaSdFUVg3FRwNxjBW3wQSmw6lLvteoE7HGZcEat7nwUva73Ba0OIzQasQVegoiovqnETXY4N6ADe4N+K3+30JezuN06LQaqB/yH0I4Hca+6X3YN70PAGDUGLGlaYvaQ32TZxP0Gn2Fn4SIiGh5MFGiulJs4VJ1FegA0FwI0P3Hgf5frfRs6lZ2ehpjDz4EKRSCcWAA7X/3dxANhkpPi4io7uSkPGaiaUyHkyXV5IV2K4EEAvHMJd9vM2rR5bag021Gl9usBuZdHguabAb+1RARUYWIgog+Vx/6XH34rxv/K/JyHmfmz+Cg7yDe8r+FQ75DCKVD2D+9H/un9wMADBoDtjZuxQ3eG7C9eTs2NW6CQcOfwYmIqD4wQKe6UrWLiAJA84Cy9R+v7DzqWC4UwtiDDyE3PQ19dzc6vvU0NFZLpadFRFRzSsPx6XAKvnAKU/Mp+CJJZRtOYSaawiU6rQAAPFY9Ol1K5XixirxYUe406xiSExHVAFEQ0evsRa+zF7+54TeRl/M4N38OB/0HlT7q/kMIpoLY79uP/T4lUNeLemxp2oIbmm/ARtdGrHeth9fi5dd9IiKqSQzQqa4UW7jY9fYKz2QJxYVE/YOVnUedkmJxjH/yYWTOnYPW60Xnc89C63JVelpERFVnIRxPYTqcvOpwHAB0GgHNdiPaGkzo9hSryS3oLPQotxnZH5eIqN6IgogeZw96nD34L+v/C2RZxkh4BIf8h9S2L3PJORz0HcRB30H1fQ6DA+ud69Hn6sN6l7LtdnRzcVIiIqp6DNCprqgV6LoqrEBv2qhs58eAVBgwOio7nzqSz2Qw+ZnHkTp2DJqGBnQ+9yx0ra2VnhYR0YorDcd9hYB8unQ7f+XheIvDiBaHqbA1wuswobXBCK/DCI/FAFFkNSER0WomCALWNqzF2oa1+PW+X4csyxiNjOKQ/xCOzBzBUHAI5+bPIZwOl1WpA4BO1KGnoUcN1Ne71qPX2VudLTmJiGjVYoBOdaWqe6CbXYC9DYhMAjMngc6bKz2juiBLEqZ+/w8Qf3MfBLMZHc98C4Z16yo9LSKiZZOV8pgIJTEyF8O52ThG5pTX6FwcvsjlheNaUQnHlSDchFaHEoirQXkDw3EiIro6giCg29GNbkc3PtL7EQBARsrg7PxZDAWHMBwaVrbBYcSyMZwMnsTJ4Mmye7Rb28tC9fWu9Wg2N7MFDBERVQQDdKorxQr0qgzQAaWNS2RSaePCAP1dk2UZvi99GdGf/ASCToeOv/tbmDZtqvS0iIjeNVmW4Y+kcW4upgTkJUH5WDCB3CVS8mI4rgThC5XjpZXkHivDcSIiWjl6jR4b3Buwwb1BPSfLMiZiExgOLgTqQ6Eh+OI+TMQmMBGbwE/HfqqObzA0KIF6SRuYLkcXW8AQEdGyY4BOdaXYA70qW7gASoB++j+5kOg1Mvs3/x/m/8//AUQRrV//Oiy33lrpKRERXZH5REYNxkfm4jhXEpYns9JF32fUiej2WLHWY0F34dXlsaDDaYJ0Mt7wAAAgAElEQVTbaoCG4TgREVU5QRDQYetAh60DO9fsVM/Pp+bLqtSHQkoLmPn0PPZP78f+6YUWMHpRjx5noQWMc6EFjFVfpb8PEhFRTWKATnWl+ivQB5QtA/R3LfD8Cwg8/TQAwPunfwL7Pe+r8IyIiJaWzEgYDZSE5LNx9TgYz1z0fRpRQKfLrAbk3R6LEpg3WtBsM7KCnIiI6lKDsQE7WnZgR8sO9VxaSqstYIrB+nBoGPFsHCcCJ3AicKLsHh22Dmx0b8SAewD9nn5sdG+ERWdZ6UchIqI6wQCd6oYsy9XdAx1QKtABwH8CyOcBUazsfGrU/Iv/hpm//EsAQOMTT8D5679e4RkR0WoXS+cwHkxgIpTEWDCBkZLWK1Ph1CXf67UblYC80VJWUd7hMkOn4fcJIiIig8aAje6N2OjeqJ7Ly3lMRicxFFoI1YeCQ/An/BiPjmM8Oo6fjP4EACBA6cs+4BlAv7sfA54B9Ln6YNAYKvVIRERUQxigU91IS2nk8jkAVRygu3sAjR7IRIHwGODsqvSMak705Zcx/Ud/BABw/c7vwP2Jhyo8IyJaDVJZCROhBMZDSUwEC9tQAuPBJMZDCcwnspd8v8Okw9rGQjjuVsLybo8FXW4LLAb+OEZERHSlREFEh70DHfYOvHfNe9XzoVQIJ4MncSJwAoNzgxicG4Q/4ce58DmcC5/Dv5/9dwCAVtDiOud16Pf0Y8A9gAHPANY1rINW5PdlIiIqx+8MVDeK7VtEQYRZa67wbC5CowMa+wDfMaUKnQH6FYkfOIDJz34OkCQ4fvVX0fQHvw9BYAsDInr3Mrk8psNJNRAvDccnQknMRtO/8B5Osw7tTjM6XKZCFblVbbvitOhX4CmIiIjIaXTi1tZbcWvrwvpIc8k5HJ87jsGAEqgfnzuOUFoJ2k8GT+Kf8c8AAKPGiPWu9RjwDCgtYDwDWGNfA1HgX4QREa1mDNCpbhTbt1h11uoOVZsHCgH6cWD9+ys9m5qROnECE596DHImA+t73oOWr3y5uv9/JqKqIuVl+CIptc3KeDChhuMTwQR8kRTy8qXvYTVo0e40ocNlRofTvLDvMqGtwQSbUbcyD0NERERXxGPy4K6Ou3BXx10AlPafU/EpNVQ/PnccxwPHEc/GcWT2CI7MHlHfa9PZsNG9Ef2efrX9S4ulhb+LEBGtIgzQqW5U/QKiRU2Fvn3+wcrOo4ZkRkcx9olPIh+LwXzjjWj7629A0PLLFxGVS+ckjAUSOFdYqPN8II7xQiX51HwSuV+QkBt1olJB7jSpleRKUK7sO0w6/rJMRERUBwRBQJu1DW3WNryv630AlJ7qo5FRNUwfnBvEUHAI0WwU+337sd+3X32/y+hSw/RitbrH5KnU4xAR0TJjAkV1I5aJAaiBAF1dSPR4ZedRI7J+P8YeeBBSIADDhg1o/4enIBqNlZ4WEVWILCuV5COzcZwtLNJ5bi6Gc7NxTIQSl6wi12kEtDUshOPtpVXkTjM8Vj0DciIiolVKFESsdazFWsda3LfuPgBANp/F2fmzai/1E4ETOB06jWAqiL2Te7F3cq/6fq/FiwH3ADa4N6DP2YdeZy+8Fi9/tiAiqgMM0KluFCvQrTprhWfyCzQPKNvgWSCTAPRV2q+9Ckjz8xh/6CFkp6agW9OJzme+BY2tyv8DCRFdE9FUFiOFSnKlolwJyUcDcSQy0kXfZzVo1cU6u9wWdLrM6HApQXmz3QiNyF9iiYiI6PLoRB3Wu9ZjvWs9fq331wAAqVwKw6FhtZf68cBxjIRH4Iv74Iv78NOxn6rvt+vt6HX2os/Vp4Tqrl70NPTAoDFU6pGIiOgqMECnuqH2QNdXeYBubQLMHiAxB8wOAW3XV3pGVUkKhzH2wINInz4DbVMTOp/7NrQe/lkkUT3JSnmMBxM4NxtXwvK5GM4W9i+1aKdGFNDpMmOtx1IIy61Y26gs1tloM7DSi4iIiJaNUWvElsYt2NK4RT0Xy8RwMngSg3ODGA4NYzg4jJHwCCKZCA75D+GQ/5A6ViNo0GXvQq+rV61U73P1odHUyJ9hiIiqFAN0qhvFCnS73l7hmfwCgqC0cRn5mdLGhQH6IlI4jLHfeQCpEyegcbnQ+dyz0Le3VXpaRHQVZFnGbCy9EJLPxtTK8rFg4pJ9yT1WA9Y2WrCuUFG+1mNFd6NSVa7TiCv4FEREREQXZ9Vbsd27Hdu929VzGSmDs/Nn1UD9VOgUhkPDCKfDOBs+i7Phs9g9slsd7zQ41VC9WLG+1rEWOg0XKSciqjQG6FQ3ij3Qq76FC6C0cSkG6FRmUXj+wvMwXHddpadFRJchK+VxdjaGE1MR5TWtvOYT2Yu+x6TToNtjQXejBes8FqxttKrHdiN/YSQiIqLapNfoscG9ARvcG9RzsixjJjGD4VAhUA8OYzg0jPOR8wilQ9g/vR/7pxcWK9UKWnQ3dCuheqEFTJ+zD26TuxKPRES0ajFAp7pRrECv+kVEgZKFRAcrO48qU2zbUhqeG3t7Kz0tIlpCJJXF0HQUJ6bCalB+yhdDRsovGisKQLvTrFSRNyohebH9SrPNCJF9yYmIiGgVEAQBzZZmNFuacWf7ner5ZC6pVKuXVKqfCp5CNBvF6dBpnA6dxg/xQ3W8x+QpC9R7nb3ocnRBJ7L4gIhoOTBAp7pR7IFeWwH6cUCWlbYuq5wanh8/zvCcqIrIsozpcGqhorywHQsmlhxvNWixscWOja12ddvTZIVRp1nhmRMRERHVBpPWhAHPAAY8A+o5WZYxHZ9Wq9RPhU7hVOgUxiJjmEvOYS45hzem3lDH60Qd1jWsQ6+zF9c1XIdeZy96Xb1wG93srU5E9C4xQKe6UWzhUhMBeuN6QBCBZBCI+gB7S6VnVFFl4bnTyfCcqEKyUh7nZuM4MR0uC8xDF2nB0uowlgXlG1scaHeaWFFORERE9C4JgoBWaytara345c5fVs8nsgmcnj+9UK1e2CZyCQwFhzAUHCq7j9PgVEJ1ZyFUd/ZiXcM6GLXGlX4kIqKaxQCd6kaxhUtN9EDXGQH3dcDcsFKFvooDdCkcxtiDDy2E5//4AsNzohUQTWUx5IuW9Ssf9keRyS1uwaIRBVzXZC2rLN/QYofToq/AzImIiIhWL7POjC2NW7ClcYt6Li/nMRWbUqvUT4VO4XToNMaiY0pvdd9+7Pct9FYXBRGdts6yUL3X2YtWaytEgQu1ExFdiAE61Y2aauECKG1c5oaBmePAdTsrPZuKUMPzwcFC5TnDc6LlEE5mcXgshMGJhX7l5wNswUJERERUD0RBRLutHe22dryn8z3q+WQuiXPz58pC9VOhUwilQxiNjGI0MoqXzr+kjjdrzWqoXrq16+2VeCwioqrBAJ3qRk0tIgooAfrxf1Uq0FchKRJZHJ73MTwnuhYm55M4NBrEwdEgDo2GMOyPQpYXj2txGNWQvJ8tWIiIiIjqiklrQr+nH/2efvWcLMsIpAI4FSyE6vNKqH52/iwSuQTemX0H78y+U3Yfr8VbVql+XcN1WONYw0VLiWjVYIBOdaPYA70mWrgA5QuJrjJSJKL0PGd4TvSuSXkZp/zRQmAewqHRIKbCqUXjuj0WbGl3oL/VgY2tSgsWF1uwEBEREa0qgiDAY/LA0+bBrW23quez+SzGImOL2sBMx6fhi/vgi/vw2sRr6vjioqXrGtah09aJDlsHOu3K1mlwcuFSIqorDNCpLkh5CbFsDS0iCiwE6LPDQC4DaFdHkLU4PH+e4TnRFUhlJbwzPo9D50M4OBrEW+dDiKZyZWM0ooCBVjtu7HJhe5cTN6xxodFmqNCMiYiIiKjalQbi93bfq56PZCI4HTqttn8pBusXW7QUUIraOmwdZaF6h60DnbZONJob2WediGoOA3SqC/FcXN2vmQDd0QEY7EA6AgROLwTqdWxx25bnYezrq/S0iKpaMJ7BW+dDakuWY5NhZKXyfiwWvQbXr3HixjVKYL61swFmPb/FExEREdG7Y9fbcUPzDbih+Qb1XOmipefC5zARncBYdAzj0XH44j7EsjGcDJ7EyeDJRfczaAzosHWg3daOTlunWr3eYe9Ai6UFWpE/wxJR9eFXJqoLxfYtBo0Bek2NVHILghKaj+1T2rjUeYCuhufHjkHT0MDwnGgJsixjPJhUepefV1qynJmJLRrXZDNge5cLN3Y5sb3LhfVeG7QaVvIQERER0fIrW7QU7ym7lsqlMBmbxHh0HGMRJVQfj45jLDqGqdgU0lIaZ+bP4Mz8mUX31QpatFpb0WHvQIdVqV4vBuxttjYYNPyLSiKqDAboVBeKC4jWTP/zIjVAHwTw65WezbJZFJ7/4wsMz4kA5KQ8Tk5HywLz2Wh60bieJiu2dxUrzF3ocJnYV5KIiIiIqo5Ra1RbwVwom8/CF/OpgXqxan08Mo6J2ATSUlo9fyEBApotzWX91rvsXeh2dKPd1s4FTYloWTFAp7pQDNBrpn1L0SpYSFSKRDD20CcYnhMBmIulcXI6UmjJEsLhsRASGalsjE4jYHN7A24sBOY3rHFysU8iIiIiqnk6UadUl9s7cCtuLbuWl/OYScwsVKxfUL0ez8bVxUwP+A6UvVcraNFua0e3oxvdjm41WO92dMNhcKzkIxJRnWKATnWhdgP0AWVbpwG6Gp4fPcrwnFaVWDqHU/4ohn3Kq7gfiGcWjbUZtbhxjbOw4KcLm9sdMOo0FZg1EREREVFliIIIr8ULr8WL7d7tZddkWUYoHSoL1c9HzmM0MoqR8AiSuSRGI6MYjYzilfFXyt7rMrrKAvXiq9XSCo3In7mJ6PIwQKe6EMsqPYJrLkBv2qBso9NAPABY3JWdzzUkRaPl4Tl7nlMdyuTyODcXKwvKh3xRTISSS44XBKDTZcbWjoZCYO5Eb5MNosh2LERERERESxEEAS6jCy6jC1ubtpZdk2UZ/oQfI+ERNVAvvvwJP4KpIIKpIA7PHC57n17Uo9PeWVaxvtaxFl2OLlh0lpV8PCKqAQzQqS5EMhEANdgD3WADnF1AaBSYOQ5031npGV0TUjSq9DwvDc/Xr6/0tIiuWj4vYyKUxLA/imFfBMP+GIZ9EZybjSOXl5d8T5PNgD6vDX3NNvR6bVjvtaGnyQqznt96iYiIiIiuBUEQ1Mr1W1pvKbuWyCYWheqjkVGMhkeRyWcuuphpk6lJCdYdhcp1u1K13mxphiiIK/VoRFRF+Fs81YVYpkYr0AGljUtoFPCfqIsAvSw8dzgYnlPNmY2m1UryU74ohvxRnPZHF/UqL7IZtOjzLoTkvc1KaO5k33IiIiIiooox68zY6N6Ije6NZeelvITp+PSSVeuBVAAzyRnMJGew37e/7H0mrQlr7GvQYetAq6UVbbY2tFmVV6u1FSataSUfj4hWEAN0qgs12wMdUBYSHfoh4B+s9EzetUXh+T++wPCcqtaFfcqLLViW6lMOAHqNiJ4mq1JVXqgs7/Pa0OIwQhDYgoWIiIiIqBZoRA3abe1ot7XjDtxRdi2SiWA0PFpWsT4SHsFYZAzJXBJDwSEMBYeWvK/b6C4L1MsCdksrdBrdSjweES0DBuhUF4o90GuuhQugBOhAzS8kqvQ8Z3hO1Ws2msaBkSAOjASwfySIYX8U8hLdVwQB6HJb0NtsRZ/XrgblXW4ztBr+ySYRERERUb2y6+3Y3LgZmxs3l53P5rOYjE5iNDKKydik8opOqvuxbAyBVACBVABH544uuq8AAU3mJjVQb7MpoXq7rR2t1lY0m5uhFRnREVUr/uukulDTFehNhQB95iSQl4AaXAlcDc/fYdsWqh5T80kcGAlifyEwPzcbXzSm2W5Ab/NC65X1Xjt6mqww6Wvv3yERERERES0PnahDl6MLXY6uJa+H02FMxiYxFZvCZGwSE9EJTMWnMBmdxFR8CslcEv6EH/6Ef9GCpgCgFbRotjQvBOyFKvZ2WzvarG3wmDzsv05UQQzQqS7UdIDu6ga0JiCXBIIjgKen0jO6IlI0ivGHPlEenm/YUOlp0SojyzLOBxKFwFwJzSdCybIxggCs99qxo9uFm7pd2N7lQqPNUKEZExERERFRvXAYHHAYHIv6rQPK7yrBVFAN2CdiE2Vh+1RsSqlwL1SzL0Uv6tFqbVVfxbYwxX23yc2AnWgZMUCnulBs4VKTAbqoAZo2AFOHlT7oNRSgF8Pz5DvvMDynFSXLMk7PxLB/JKi2ZfFH0mVjNKKAgVY7dqx146YuF27scqLBzIU9iYiIiIho5QiCALfJDbfJvag1DADk5TxmE7MLrWEKr2LA7ov7kMlnMBoZxWhkdMnPWCpgV3uxW9vgNrq5bhPRu8AAnepCsQK9JnugA0of9KnDSh/0/l+p9GwuixSLlYfnz3+b4TktGykv4+R0pBCYB3BwNITgBYt96jUitnQ4cFO3Czu63bh+jRNWA7/NERERERFR9RIFEc2WZjRbmnF98/WLrufyOfjiPkzHpxdVrk/FpuBL/OKA3aAxoMXSoobqahU7A3aiy8JkgepCTbdwAYDmAWVbIwuJSrEYxh98qDw837j4T9WIrlZWyuPYZFhpyXIugEOjIUTTubIxRp2IG9Y4cVOXGzd1u7CtswFGHXuXExERERFR/dCKWrTb2tFua8d2bF90PZvPwh/3LwTr8amykN2f8CMtpa84YG+3tqv7LqOLLWJoVWOATnWh9gP0wkKi/sHKzuMylIbnIsNzukZSWQlHxufVRT8Pn59HMiuVjbEatLixy4kd3UpgvqnNAb2WP8QREREREdHqpRN1asC+lGsRsOtFPVqsLfBavGi1tKLF2qL2YG+xtKDZ0gydqFvGpySqLAboVPPSUhqZvNLKwaqv4RYuADB/HkhFAKO9svO5iAvD8zUMz+kqyLKMsWACRyfCGJwM4+2xeRwZn0dGypeNazDrcFOXsuDnzWvd2NBih0bknxUSERERERFdrssN2C9sD1PsxT6bnEUmn8H5yHmcj5xf8h4CBDSaG5cM11ssLWi1tsKsMy/nYxItKwboVPOK1ecChNrtgW52AbZWIDoFzJwEOndUekaLlPY8Z3hOl0uWZUyEkjg2GcbRiTCOTc7j2EQYkVRu0dhGmwE7ul3Y0e3CTd1uXNdkhcjAnIiIiIiIaNlcTsA+k5jBVGwK0/Hpsm2xN3taSmMmMYOZxAyOzB5Z8j4Og0MJ2AuButfiVVrEFEJ3p8HJPuxUtRigU82LZWIAAIvOUts9uZr7lQDdP1h1Aboanh85orRt+fZzDM9pEVmWMTmfxKAaliuv+UR20Vi9RsSGFhsG2hzY0t6A7d0udLnN/IGJiIiIiIioiuhEHdqsbWizti15XZZlBFIBTMemMRWfwnRsWgnYC/tT8SlEM1GE02GE02GcDJ5c8j4mrQlei1etWvdavGg0NcJtcsNj8sBj8sBtdEOnYasYWnkM0KnmxbJKgF6z/c+LmvuBMy8BMycqPZMyUiyO8U98siw8N/X3V3paVGGyLMMXSSlBeUlYHoxnFo3VaQSs99ox0ObA5nYHNrU50NtsY/9yIiIiIiKiGicIghpwb2rctOSYWCZ20XB9OjaN2eQskrkkRsIjGAmPXPLz7Hr7QqBucsNtXAjYi+c8Jg+cBic0omY5HplWIQboVPMimQiAGu5/XtQ8oGz9xys7jxJSLI7xT34SybffZni+yvmLYflkGMcm5nFsMoy52OKwXCsK6PPasKnNgU2FsLzPa4NByx9ciIiIiIiIViOr3opefS96nb1LXs9IGbUdTLFFjD/hRyAZwFxyDnPJOQRSAeTyOUQyEUQyEZwLn7vkZ4qCCKfBWV7BvlTgbnTDYXDwr6HpkhigU80rtnCx6eqgAh1QAnRZBir8xVuKxTH+8MNIHj4M0W5H53MMz1eLmWhqoaq8sJ2JpheN04gCrmuyKlXl7Q3Y1ObAeq8NRh3DciIiIiIiIro8eo0enfZOdNo7LzpGlmVEMpGFQL0YrqeU/dKwPZQOIS/nEUgFEEgFcCp06pKfrxW1cBvdcJvcaDQ1lrWSKfZrbzQ1sqJ9FWOATjWvuIhozbdw8VwHiDogHQHC40DDxb9xLLd8PI7xRx5G8q23FsLzAYbn9UjKyzgxFcHrZ+bw1vkQBifD8EVSi8aJAnBdk02tKt/U7sDGFjvDciIiIiIiIlp2giDAYXDAYXBgXcO6S46V8hJC6dCiCvbifjAZVMP3cDqMXD4Hf8IPf8J/0XtqBS2azE1osbao4XrZvqUFZp35Wj82VQkG6FTz6qYHukYHNPYpi4j6j1csQM/H4xh/+BEkD70F0WZD53PPwrRpoCJzoWtPlmWMBhJ448wc3jgzhzfPBhBOli/yKQhAT6NVDcs3tzuwocUOs57fMoiIiIiIiKi6aUSN2qKlD32XHJuVskqleiFsn0nOYDo2rbaUmY5Pwx/3IyfnMBWfwlR86qL3chgc6gKoLZYWtFpa4bUu7LtNbogC1wKrRUxDqOapPdB1Nd4DHVDauPgHlVffvSv+8flEAuOPPIrEoUMQrdZCeL70IiBUO2ajabx5dq4QmgcwOZ8su241aHHzWhduXuvGlo4GbGyxw2LgtwciIiIiIiKqbzqNDl6LF16L96JjpLyEueQcpuNKsF5c/FTdj08jmokinA4jnA5jKDi05H20ohZes3dR5XqLpQVeqxduoxs2vY0hexViQkI1T+2BXusV6EB5H/QVpobnBw8uhOebN6/4POjdi6VzODASwOunA3jz7ByGfNGy6zqNgOs7nbi9x4NbezzY0u6AVsNv0EREREREREQX0ogaNFua0WxpvuiYWCamBuql1evTMWU7k5hBLp/DRGwCE7GJi3+WoEGDoQFOoxMuowtOoxMNhgZ132l0wmlwqtcdBgd0om45HptKMECnmlc3PdCBigXo+WQS449+CokDByBaLOh89hmYtmxZ0TnQ1ctKeRwZn8frp5Uq8yPj88jl5bIxG1vsuP06D27r8WB7l5PtWIiIiIiIiIiuEaveih59D3qcPUtez+VzmE3MLgTrJeF6sU1MNBuFJEvq4qeXy6a3KQF7IVi/MGS/MIA3aU3X6rFXDSYoVPOiWSVAt+rroYVLodd44AyQTQK65f+ipobn+/dDtFjQ8ewzMG3duuyfeymSlEcmmUM6kUMuI8FsN8Bk00EQhIrOq1rk8zKG/VG1j/n+kSASGalsTKfLjNt6PLitx41b1rrhthoqNFsiIiIiIiKi1U0rapXWLdaWi47JSBmEUiHMp+cRTAURSoUQSocQTAUxn5pX90OpkDpOhoxoJopoJorzOH9ZczFqjAtBu9GJ3oZePHHjE9fqUesSA3SqeXXVwsXaDJjdQCIAzA4BrduW9ePyqRQmHnsMiZ//HKLZjI5nnoF527v/zLyURyYpIZXIqkF4OpFb2E9mkUnkkE4qL3W/sM2lpUX31OhE2FxG2NzGsq3dreybHQaIYv0G7BOhhNrD/M2zc5iLZcquuyx63LrOjdt7lCrzDhdX/yYiIiIiIiKqFXqN/he2iikl5SVEMhGEUoVgPR1Sw/XSsL00kM/ms0hJKbXyHVjo7EAXxwCdap7awkVXBwG6IChtXEZeU9q4LGOAnk+lMPGpxxB/c58Snj/7DMzXL/48WZYRnk0iMBm7dBBecj67RAB+NXQGDbR6EclYFlI2j3l/AvP+xJJjRY0Aq9MAm9tUHq4Xwnar0wCxhvp8h+IZ7DsXwOtn5vDmmTmMBsqf26TT4KZulxqYr/fa6vo/IBARERERERHRAo2oUavI1/7/7d15dBzlne7xp5buVktqSZZky9iWF4xtbMA2GDBmmxBMyHpDAgkZmIEhZHLuvcAMGMINsxByTk7ImcwkhLBO5ozJzYQxyUxIbiA4AbOEHS84LN7wvmqzlm4tvVXV/aO6W91SW95kt2R/P+f0qaq3qrrflkVhP/XW79WpBz3e8zz1pHpyAXs2eD8hKjocYwToGPW6UyfQCHTJL+Oy7Y9S87pj9hH+yPNb1fPGGzLKy9X4k39V+TnnSPIvqJ3NvdqzqVN7P/JfPZ2JI/qcQMhSqNxWMGwrVG4rFLYVLLcVCgcO0J7dDigYtnKBt5N21d2RUKw9rtj+PsX2xzPr/rK7PSHX8RRtiyvaFi/aF8OQKsaEMsF6eNBI9khtmazA8AbsnufJTXtKp105KVdOZpnOW3dSrtJpV/F4Wpv3xbRxX1SbWru1satXvYanHsNTnyFZlqH5jTV+WZbpdTp78hgF7dFzQwAAAAAAAJSOYRiqDFaqMlipRjWWujujCgE6Rr1oMirpBKmBLuVNJPrBMXl7N5HQ7ltvU8/rr/vh+eOPqW/8LG15ebcfmm/uVF+0sDyIaRmqn1Sp8qrgEQXgR8uyTVWPDat6bFjSmMHfyfXU05nIC9b9kD2a3W6Py0176m5PqLs9oX2bu4p+Tnl1sGDUumEauZDbSbt5QbgnJ+X4QXh2O+0qnXIy+/rPOVxhSfMkzVNhzfKyyoDKWy2F4z3q2pnS25H9Kq8KKhwJqjziL8NVAZVHgrKD1mF/LgAAAAAAAAYjQMeo5nquelI9kqSqYFWJezNM8gN0z/OHTg8TN5HQrlv/Rs1rt6tz2ieUuPRqvb4srnjPOwXHWbaphmlVmjCzRhNn1Kjh1GoFRnAoa5pGbhR5MZ7rqTeW9AP2TKgeza7v71OsPa500lVvV1K9XUk1bY0em37apjxTSslT3HGV8Dw5ktKG5MiTFTBVXRnUmFBAZY6U6kmprzsleVK8O6V4d0pSz0E/J1Bm5YJ1P2QPKFzVH7SXVwX8wD0SVKjcZnJWAAAAAACAAyBAx6jWm+qV6/mjfCsDJ8gI9LGnS4bpTyTa3SJFDm3yiANxHVetu7q1Z32btv76de13P6f0uZkJJnekJUl20NT4U6s1cWaNJswYo4apVcNezqSUDNNQRXVIFdUhjT+1etB+zwg1LcgAACAASURBVPMU7075wXpbtixMXJ4k2zZlBUxZmaWdt27ZA7YH7E95nt7d06k3t7Xr1S1t2tjSXfC54YClhafW6pIZY3XJjHrNGFc5KMx2Xb9vfbGkeqPJwmUspb68tt5YUm7aUyruKBXvU7S176A/G9M2csF6MGzLMPwbEjIMmaYkwyhoM0z/sa/+pb9/8PoQbYYy7X6bHbRUN6FC9Y0RlVUEjuaPGgAAAAAAYFgRoGNUy9Y/t01bISt0kKNHiUBYqp0u7f/IH4V+mAG647hq3RHTnk0d2vtRp/Zt6VIqnpnU05goBSTblibMqtWEGTWaOHOMxk6OyDqJ62kbhpEbkT1uypE/yeC6ntbti+qP65v02kdtWrW9Q0mnv4yLYUhnTqjWJTPqdfGMei2YMkYhe+iR/aZpqLzKH0leN3Hoz/c8T8m4o75MmN5XELincm3ZZTLu+KVtOhLq7jiyOvfDrXJMSPWNEdU3VmrsJH8ZqStjlDwAAAAAACgJAnSMatn651XBqhMrYGs4IxOgfyiddvmQhzopV83bu3KTfjZt7VI6WVh721ZS1W0bNaZnu06/5Ro1fmrRsNUnP9nt7ezTax+16dXNbXp9c5vaewrrx0+oLtMlM8bq4hn1uui0etVWBI9ZXwzD8OvQh23VNJQf9Ph0ylFfrH90ezKeludK8jy5rh/Iy/NvDBRrG7jfy637ZXM8z5PnSq7nSZlz/fbC9URvWm17uhVt7cuF+dvfa8v1M1hm+aH6pErVN1aqflJEtadUnFBPSQAAAAAAgJGJAB2jWnfSH4F+wpRvyWo4U1r3az9AHyCVdNS8tUt7PurU3k2dat4WHTRZZVlFQBNm1OiUUytl/+pfZb78G5mhoBofe1QVixYdr29xQupJpPXW1v169aM2vfpRq7a0FtYkrwhaWjS9Lhean1pfMWJv7tgBS5Fa64C144+3RF9a+3d3q213TG27utW2u1v793YrGXe09yP/BlGWaRoac0pFJlCvzAXslIABAAAAAADDiQAdo1q2hEskGClxT4ZZbiLR/gA93p3Sq7/YpM2rW+Q6XsHh4UhAE2aMydQwr1HtKRVSOqXdt9+h7pdflBEKqfHRRwjPj4Djenp/T5de3dSqVze36d2dHUrl/fxNQ5o7qUaXzqjXxTPG6uzJNQowuv+IhMK2Jszwf4ezHMdVZ1Ov2nbF1Lq7W227/HA90ZvW/j3d2r+nWxvz3qOyNqT6SRGNbewP1SkBAwAAAAAAjhQBOka1bAmXyuCJNgI9E6C3bpCclHZtjGnFT9epp8svD1JRE8oFjRNn1qimobwgIPSSSe2+Y4m6X3xRRjCoSY88rIoLLyzFNxmVmqNxvbihRa9+1KrXN+9XV1+qYH9jbdif+PO0el04vV7V5Yx6PlYsy1TdxErVTazUrEyb5/l129t2xdS2uzszWj2maFtc3e0JdbcPKAETtgvKv9Q3VvolYE7iuv8AAAAAAODQEKBjVMuWcKkKHvnEjyNSzWQpGFE6EddbP1utP73V6zc3lOvyG2erYdqBa757qZT23HmnulesyITnj6jyoouOZ+9HHc/ztH5fTC+sb9YL65v13u6ugv2RMlsXZsqyXDKjXlPqKkrUU0h+rfdIbZkitWWaNm9srj3Rm9L+Pd1q3dWdC9fb9/Yo2ZceXALGMlTTUK5AyJJpGjIyL9MyZBj+0m9Xbn/uOMsY1GbmzvXf2yiyP/v+pmkoVG4rnJkctrwqKDsw9GSyAAAAAACgNAjQMarFkjFJJ2ANdMPQ/sif6fm9l2t/sx+en3npRF14zWkKBA8ctHmplPYsuVOx51/ww/OHH1blxYTnxSTSjt7e2u6H5uuatbcrXrB/fmONPjZrrC6ZMVbzJlXLpizLiBcq90sZTZgxJtfmpF11NPX4o9QzI9XbdvslYNr39gzxbsdXsMzqD9QjwYJwPRzJW68KDnkNAAAAAAAAw4sAHaNaLOUH6CdSDXTP9fSnF3fpzfV/Jde1FA4l9fGvnaupZ9UPfV4qpT133qXY88/LCAQ06eGHVHnJxcep16NDR09SL21s0Qvrm/XHTW3qTqRz+8oCpi4+bayumDNOl50+TuMiI2NiTRwdyzb9si2TIlJmCgDP8xRrj6ujqVdu2pXrevJcyXVdeY4n1/X/O/TbPbmOJ88bsMzf78o/z/My5w/cn/c+mWW8J6XeaFK9saTctKdk3FEy3qeulr6DfqdAyA/bKzKBekHgnlsPqLwqpECIsB0AAAAAgKNBgI5RLTcC/QSpgd7dkdCKn67T7g0dkixNDa3UZfM/VPlZnxzyPC+V0p5v3K3YH/7gh+cP/ViVl1xyfDo9wm1t7c6UZmnRqu3tcvPmXx0bCWnx7HFaPLtBF06vV5iRvScFwzBUVRdWVV241F2R53lK9qXVG02qL5ZUbzSl3mjC344m1RtL5a0n5aRcpRKOUq19irYePGy3Q5bKI4HcSPayyoCCYVuhsK1gma1g2FIwbA9o89spKwMAAAAAAAE6RrkTqQb65tUtevnnG5ToTcsOmLrocltnvPtdGR0ThzzPS6e15+67FVu+XAoENPHHD6ryz/7sOPV65Ek7rtbs7NSK9c16fn2ztrYWluk4fXxEV8xp0OWzGzR3YrVMs3gteeB4MAxDofKAQuUBjRk/dG19z/OUijv+yPXMyw/d/XC9L789mlQ65SqdcBRNOIq2xYd872JM2xgQqtsKlll+W94rFLYVGNCeXbeD5gHnawAAAAAAYDQgQMeodiLUQE/2pfXqLzZpw5tNkqSxkyO64qtzNKbGkdZKiu6Retul8tpB53rptPbe/X8Ue84Pzyc9+CNFPvax4/sFRoDuRFp/3NSqF9Y366UNLeroTeX2BSxDF5xap8tPH6fLZzeosba8hD0FjpxhGLmAuqZh6N9jz/OUSjgFo9f7oknFe9JK9qWViKeV6ksr0eco2ZdWMp5p70srFXckSW7aU18spb5YasjPGrLPpqFgmTUoWA+GrVwwP3SbrWDIksGNLgAAAABAiRCgY1TL1kAfrSVc9m3u1AtPrFO0LS7DkM755BSd95lpsuzMhJU1U6TOHVLLOmlqYT1zL53W3v/zTUV/9zs/PP/RjxS57LISfIvS2NvZlxll3qK3tuxX0nFz+6rDAV02a6wWz2nQpTPHqqosUMKeAsefYRh+GF1mq2bc4d008lxPyUQmWM+E6v0hu1PY1pf267cXafMytd8TvWkletMH/+ADfhkpGLLyRsFnQ/aDtGVGzFu2KStg+kvblGkZjIoHAAAAABwyAnSMaqO1hIvjuFr17Hatfm67PE+K1JZp8U1zNGFGTeGBDWf4AXrzhwUBuuc42vvNexR99lk/PH/gh4p8/MQOzz3P0wd7onp+fbNeWNesdfuiBfun1pVr8ewGLZ7ToHOnjJFtmSXqKTC6GaZfuiUUPvK/Iniep3TSPbSwPdNeeJx/jJv2JE+ZSVYdqSMxLN/RD9ONXLBu2qbsXMhu9IftmaUV8Nts25SZF8bnH5sf0tsBU6GKgMKVAZVVBBQqtxlFDwAAAACjFAE6RrXRWMKls7lXzy9dp5btfgA8a+F4XfKVmcXDqoYzpI2/k5o/yDXlwvNnnpFsW5N++ANFLr/8eHX/uOpNpvX21nY9v75ZL65vUVO0v46zYUgLJo/R4jkNWjy7QdPHVjCqFBghDMNQIGQpELJUURM64vdxUm7BCPj+kN0p0tYf0OeXo3HSrlzHK3zftCsnLSlTruZYMwwpVB5QWaUfqueH62WVmVe2LfMKlQeYowEAAAAARgACdIxq3Sl/BHokGClxTw7O8zyte22vXvvlR0onXYXKbf3ZdbM049yGA5/UcIa/bP7Qfw/H0b6/+ztFf/tbybY18Yc/UGTx4uPQ++MjkXb07s5OvbFlv97c0qa1uzqVygu+yoOWLp3hl2a5bNZY1VUeeTAHYOSzAqbKA0GVVwWP6n0815PjuHLSnpyU6wfo2WU6054u0p4asC/tyk27clKe0nnHuOnC90onHcV7Urma856nzHZKnc2H2GlDCpXbClcGVVZhq2zAMlwZzAXvuWWFLZOnbwAAAABgWBGgY9RKuSn1pfskjfwAvS+W1Ev/sUHb/tQmSZo4q0aX3zhHkdqyoU9sONNftqxXau8eNX33fnW/sEKyLE38wb+o6oorjnHPj6204+q9PV16c8t+vbGlTau2dyiRdguOmVgT1mWnj9Xlsxu06NQ6lQWsEvUWwGhlmIZs05IdkBQ+vp/tpN1ceB7v7l/2dRdvS/Sk/JrxnpToSSvRc3j1481sWRnLLzFjDig3Y1r9JWlMa8C+7Lrll6QxLaOgXI2ZV0d+YBkbO2gpUOZPBBsos2QHTJ4KAgAAAHBCIEDHqJWtfy5JFYGKEvZkaDs+2K8V/3e9+qJJmbahCz4/XfMvbzy0eri1p8pVmfa/a2r/Lz4jL5Hww/N/+RdVfeITx77zw8x1Pa1vimYC8/16Z1u7uhOF4VB9ZUgXTq/LvOrVWBsmhAEwalm2qYrqkCqqD/2JGddxFe9JZ8L1pOLdafV1J/sD90zonh/CZydqddOe3LSjlI5PeZoDMUy/jE+wzC/lEyizc+vB7HombPfbs22ZED5UGMhbjKwHAAAAUCIE6Bi1svXPy+1y2ebI+1VOJx298astev/l3ZKkMadU6BM3z1H9pEMbLe95nqLPPqeWZ+qV7nYlJRResEAN99yj8JlnHMOeDx/P87SltVtvbNmvNzbv11vb9quzN1VwTHU4oEWn1unC0+q06NQ6nTauksAcwEnNtEyVV2VL1xzaDWLXcZXoTSudyi8342VqwPtlZ/wyNv3t2ZIzrlNYysbNrjuu3JQrx8lvLyxr4zp+WZxU0lEq7iiV8IN7z/Vy9eiHg2Wb/WF7Loy3FSq3c7Xlw5Fgro58uDKocMSvN08teQAAAABHY+SljsAhiqX8AH0klm9p3RnT8//+oTqaeiVJcy+bpEVfmC47eGjlR/ree0/N371ffWvXSpIC5WmNu+4yRe58fMSHy7vae/XGljY/NN+yX62xRMH+iqCl86fV6sLp9Vo0vU6zT6mSRbgBAEfFtEyFI0dXK344eK6XC9OT8bRSCUfJuKNU3J/k1d/2J3jNHuO3pzPb/noys9/JlPVy0q6cblfx7tRBejCAoYIJWouF7Nl68tl1K8BodwAAAAD9CNAxKrXH2/XUhqckjawA3XU9rX1+p97+f1vlOp7Kq4K6/MbZmnxG3SGdn2puVusPfqCu3/w/SZJRXq76T85TrfnfMif1SCMwPG/qiuvNrW16Y/N+vbl1v3Z39BXsD9mmzp06RotOrdOi6fWaO6laAR7FB4ATkmEamRIttip09BM9O47bH8YPCOCTcUeJ3kwpm1jSX2ZqyffFkrla8tmyN4cqUGZlQvZswJ5ZzwvZyyoDCpXbCpX7S8vm/2sAAADAiYoAHaNKNBnVEx88of9Y/x+5CUQvOOWCEvfKF2uP64Wl67T3o05J0rR59brsL09XuPLgIwLdeFz7//3ftf8n/yavz/9e1VddpbF33KFA7wbpp/8tNX94TPt/qNp7knpr6/7cKPOtrT0F+23T0PzGGl043Q/Mz55cw8SfAIAjYlmmrApTZRWBwz7XcVwletLqy4TrfbFk/wSu2bbuTFvMD9ld18uNjo+2xQ/5s+yA6QfqFQGFwn5pmWBewO63ZUP3wvVAyBrxT5cBAAAAJzMCdIwKvale/Xz9z7X0w6W52udz6ubotrNv00UTLipx76RNK5v0ypOblOxLyw5ZuuTLMzT7wlMO+g9iz/MUe+45Nf/zPyu9d58kKXz22Wr4u3sUPuss/6CeTPjcsU1KdEuhymP5VQZp605o1fYOrdzerje27Nf6fdGC/YYhnTWxWoum+zXMz5taq4oQlxYAQGlZBbXkD87zPCV60wWj2OOZkN0P3TPrMX/y1kRvf433dMpVuiupnq7kYffTMI1c6J4fsAfLbZVl17OhfNiW53p+HXvHr0Hv5pZeri696+Tv9+Sm+491sm1OtgZ+/ntk6tqn89YdV57jKVCWqTlfEVCowlZZ9iZARcBvy+zLrofKbZk8cQYAAIATACkXRrSEk9AvNv5C//b+v6k93i5JOq3mNN06/1Z9fPLHSz5iK9Gb0h+XbdKmd5olSQ3TqrT4pjmqGVd+0HP73v9Azfffr741ayRJ9imnaNxdd6rq058u/F4VdVLkFCm2T2pZLzWed0y+i5Sd9LNHq3e0a+X2Dq3e0aFtbT2DjpvVENGi6XW6cHqdFk6rU3X54Y8MBABgJDEMIxcA1zQc2jluZrLUbJge700p2etv568nelNK9GXXM9u9abmOJ8/1FO/xQ/kR7QhuDgTLrIKAPVQeUFlFJnQvzwTxeeF7dv+hzhkDAAAAHA8E6BiRUm5Kv978az3+p8fV3OuH042RRv3v+f9bn5r6KVlm6f9htWdTh154Yp262xMyDOncT0/Vgk9PlXWQ0Vap5ha1/vCH6vr1ryVJRjisur/+mupuuklmOFz8pIYz/AC9+YNhDdATaUfv7+7Sqh0dWrW9Q6t3tKujd/A/4Gc1RLQgU8f8glPrNDZy9HVtAQAY7UyzP3Q/XJ7nKZ3yy8wUBuypXNCezGzHMwF9Mp6WaRoyLUOmZeaWlt3fZlmZddsc3GaZMm1DVu7c/PP723L7s+9hGkol0or3pP3R9z39/Ur09I/IT/SmFO/pH5mfzNSqj+0/9HI4kmQFTH/0fUVAdtDK9e+Ay0xfB+/3+2/Zed87bznUuXbQVCBkybLNkg/YAAAAQGkRoGNEcVxHv9v2Oz36p0e1K7ZLktRQ3qD/Oe9/6vOnfV4Bs7QjnT3PU9vubq1/Y5/ef3m35ElV9WW64qtnaPyp1UOe68bjan/iCbX960/k9fZKkqo//z80dskSBRoOMtRt3Bxp8wtHXQe9oyep1Ts6MoF5u97b06Vk2i04JmSbmtdYo/OmjtG5U2p1zuQxjDAHAGCYGYahQNBSIGipcsyJdWPadVz/hkCPPxI/kQ3eMzcHsiG8v6+wzXU9OSlXPUdYEme4maahQJmlQCjvVebXrg+WHWC7aJudex/TJJAHAAAYTQjQMSJ4nqcVO1fooXcf0pauLZKk2rJa/fVZf60vzfqSQlbp/mHpeZ7adnVr8+oWbVnToq7Wvty+2Reeoou/PEPBsgP/p+R5nmLLl6vl+/+s1N69kqTw/Pl+nfO5cw+tEw1n+svDCNA9z9OO/b1aub09F5pvbukedFx9ZVALpvhh+blTx+iMCdUK2tQsBQAAR8a0TIUrg4c0kXo+z/OUSji5Ee3xnpScpOvXc8/WfU/3128f2F64dHO13Idcpge/f3Yp+WV6sk8EDBc7YOaF8nZeEG/JCpjyXEmeJ8+TPNdfuq43oM2TO+i4g52T1+b6P+9su+d5/R00DOUifiNvkRmJXzAgP7e//8BBA/aLvV/ee9lBS8Gw/3Pwl7aCYSuzPEB7ma1A2Drok58AAADDgQAdJeV5nl7b85p+/O6Ptb59vSQpEozoq2d+Vdedfp3KAwevJX6s+tW6M6Yta1q0eU2ronmhuRUwNeWMOs25eIKmnFk35Pv0ffihX+d81WpJkj1+vMbdeaeqPvuZw3scuOEMf9n8oeR5Rf5lIiXTrj7c26XVOzpyoXlb9+CRW9PHVui8qbV+aD61VlPrynk0GQAAlJxhGLlwVEP/FeuYc11P6YRfgiaVSCuVcJSKO0omMttxx2/LHeMoFU8X3c6e67p+SJ1OuUqnXPXFRnjd+1HADpgKZEL2UNhWoCwvcM+G79kgPi98D4atTImf/HJGhaWMTNPg78gAAEASATpKaGXTSj307kNa0+JPollul+sv5vyFbjzjRlUFq457f7KheXakebStv16nHTA15cw6TV8wTlPOrBtyxLkkpVtb1fLDB9T19NOS58koK1Pd176mupu/euA650OpnymZtpTokrp2SzWN6upLac1OvxTLqu0d+tPuTsVTheVYgpapuZOqtWDqGJ03pVbnTBmj2orDGw0GAABwsjFNIxfCSkf/JKTneXLTnpKDwvfCkD2dcmUYkpEJb/vX89pMFS4L2jLHFuwv9n6F7yP5+/yB6F6mz9nOD/4u/euFx3jyihxfuOLlH5956iAZTyvZl/l5xB0l+tJK9aUzdfSzcwA4ubkA0kn/77z+zYik+qJH9cdzQIZpFATqxUL2wSF8XluRcwzTkJn5s1BmXab8NlOS4Z+nzJ+jmWk74J/jkf6OFPyuFFk/4P5ixxX5zMx+0zRkBZhLAAAwuhGg47j7oO0DPbjmQb25701JUtAM6iunf0U3n3Wzastqj2tfPM9Ty/aYNq/xQ/P8Sa7sgKkpZ9Vp+jmHFppLkptIqP2Jn2r/44/LzdQ5r/rc5zRuyR0KnHLKEfezz7Wk6tMU7tig//ubZ/Xz9jna1BKTN+AfKGPKA1qQKcVy7pQxOnNitcoCpZ9wFQAA4GRmGIasgKFwIKhwZal7M/o5jus/ETAgWM8F8bltR6m+tBKZ41KZtkRfOlO+xy/n4zqDg3/JL33juJ4cHhY4OoYK5xEo+rKH3p8pdWQH80oeHeMSPtkyR/7vSeZ3JVvmyfFvirmuv54tDeU6/i+SYfo3P3I3E8zMUw15bcW3+9sKtrM3XphDAQBKggAdx82mjk166N2H9NKulyRJtmHrizO+qK/P/boaKg4yieYw8jxPzduj2rK6RVvWtCrWnheaB01NPas+F5oHQocWPnuep9gfnlfL97+v1O7dkqSyuXM1/u/uUXj+/EPum+N62r6/RxubYtrQFNPGpqg2NsW0o71XP7Dr9AVLatq0WhudRknStPoKLZgyRudNHaMFU2o1fWwFozsAAABwQrMsU1aFqbKK4Zvo3nP9kDQbjh5ou6Bt4LbbH7Q6BzrHPXDd+qJtXpFzcjXsB9eyz9bQdw90jle4X3n19Avb/JsKnuvJzbQN+rwifSz+w5X/5EXcGbY/L0kybaNIAG8qELJlB/35BFzHlev68x3k/izSmbbsen5A7mQC83R/GD7SZEN1My+cz3/ixD8oM/eAMbA9M2dBdr6CAcdlTs099ZDbzjun4DhJpmXIDlqyA2bB0gqaCgT9uR36l6asgCU7mDk2aMoODFgGTVk2Ty2Uiuf5/z2kk/5TUemkK8/zZFpGpvSV/1SNlfdUDX9WOBkQoOOY2xHdoYfXPqzl25bLkyfTMPXZUz+r/zXvf2lSZNJx6YPn+qF5tjxLd0cit88OWZp6Vp1OO2ecJp9Zp0Dw8EZsx9etU/P931PvypX++zU0aNydS1T12c/KMIuPivA8T63dCW1siuWF5TFtao4pkXaLnrMrME1yX9dnGjo09+MLtGDKGI2NlG5yVQAAAOBEYZiGrEy5ERy5gTcBXNfrL1OUeaUHbOeXMcrNOZB0B803MHA+ATftKZFOK9GTlpQYumPDJL+sj5VfvsfuDxQlyXUzP4vcpL+ZGxDFtl1Prte/fTBe5ly32GMTJwpDgwL5wpDd6g9zszcUTEOGZco0JMMqHNWfLadkGAOW2fOyx+XtM83B72GY/g0DZUsjGSq4SWEYxgG2B5fMypY5kgbcADnA+8mQ3LSbCbUdpZN+uJ1OOYXLZN52JgB3ko5Sqcwy6crJnTPg+Mz5B7wZdgCmXRiqZ8tW9QfuA/bn/dkVPyZzfsAc9BRKIDhgO3PzzA6YPKGBY4oAHcfMvu59euy9x/Sbzb+R4/mjDT4x5RO6Zf4tOrXm1GP++Z7rqWlbZqT5u4ND82ln+TXNJ59x+KG5JKXb2tT6ox+p87/+269zHgqp7uabVfe1m2WW909+2ptMDwrKNzbH1N4zeIJPSQoHLM1sqNSs8RHNGl+l08dHNGt8RPX7QtLP/0NnWLt0xpnjD/8HAgAAAADHkGEayoxpzjmUUpiHw0m7xQP4vEl+00k3E3Zmgrj80G5g0GcPCMMtU5ZdWLs+u/94BHT9gXp/qO7mP0mQ3c5ry+7vn19AkrJPFPTPXVB828vMTZB3/KBtL9eeC/mz2443RIjr5o1kdgaEvwPb3YL3zgbEKB3DkKygJcNQ7kmNYjd53LQnN+0oXYI+5hjqL/GUeQXz1u0hy0PZCgTN/jA+aOb+G8s9oZK/7fpPIDmOm/vvMfcUUt45BcfnrbvZ8/Ley82cm/kqkpl9OmTAUyKG+rcP+DRJkfPy1gc+XWKYUkV1SKcvOvKywycDAvQBHn74YX3/+99XU1OT5s2bpx//+Mc6//zzS92tUaWtr00/ee8n+uWmXyrl+gUDL510qW6df6tm180+pp/tuZ72be3SljV+eZaezv7QPBCyNHVuvU5bME6T59TKPkho7qVScqJROZ2dg16p5mZ1/fev5Pb0SJKqPvMZ1d5+u/aEavTO5i5tbNrlh+XNMe1s7y16B9c0pKl1FZo1PqLTx1dllhFNri33Jw4aqOEMf9n2kbTq36VwrVReK4XH+OvhMVIg3P8sHQAAAACcYCzbL/ExnCV8RhLDNGTJkE7Cqawcx5WTdJVKOnJS/cviI67dgpsJruPlyo8UtGcDSk/yHDezHLB/yPfRoP1S4dMW2ZsSXt5SedvZckiZZilb/kielF9e6VBkg+KgOaA8jr/MjdYfVFancAT/gcrn5J+XHZGfb2B5q1zZqrx5AAr2p4u0HaB8Uv/7+OvplDv4iZWkM+jJFL9jUjrzhEvfMP0+nkzGTa0iQD8IAvQ8Tz31lJYsWaLHHntMCxcu1AMPPKArr7xSGzdu1Lhx40rdvRGvM96ppR8u1ZPrn1Tc8euKnz/+fN129m2aP+7Q64AfLs/1tG9LlzavadHWNS3q6eof2R0o80PzU+dUacJ4yeiOyuncpJ4/DA7FB77c7u6DfnZs6ky9uPh6vRo8RR89/r6SByi/MjYS8keSN0RygfmMhsrD/9DAEwAAEc5JREFUm+AzMl6qGCv1tErP3FH8GCs0IFSv8dcHBu0D2wJlh94PAAAAAACGmWWZssKmguGTM6rKhe2Dwnh/3co8MVHKmuMjrdyV53pKp9z+J1AS+ev55aGGDuHzz3GSrgyrv/SPXx4ou232l3IyB5T7sYpsZ8+1TP/4gvcq3M494ZL3BEnhUyJ5vyMHOS73e5TbLnyPge1VdWRCB2N43iHf5zrhLVy4UOedd54eeughSZLrumpsbNRtt92mb37zm0OeG41GVV1dra6uLlVVVR2P7o4Yby1/S++8+YL29GzOlGoxFLHrNLVyjqoDY+V5/Rf37G+b5xkDHi/TgY+TCi4Q/jJTW84x1B21lU73/w/W9JKq7t2muo4PVN/ynkI9nbKcI3+YKBYIKxqsUCxYrmiwPLe+YcwUvTpxrjyj/38c4YClmeMjOj0blJ/ih+Z1lcNUq3zzC9IHv5L6OvxXb3tmvV1yj+KBKTs8IFQfMzhoD1VJxsj4nyQAAAAAAACGQbhGmnZpqXtx3B1Olnty3tYrIplMavXq1brnnntybaZpavHixXrzzTcHHZ9IJJRI9JcHiUajx6WfI9E7v/mDLO9iTdaFBe3dXdLBx3APDzvdq/q29zSu9V3Vtm+Q6Q0Ok5OmrWiwXLFgRWbph+HRYLligfK8kLwid1x3MCw3LzQ2DClomQrapsZFQvp0pvRKtvxK45gDlF8ZLqct9l8DeZ6U7M4L1DOhel+H1DtguyB475A8R0r3SbE+Kbb32PUdAAAAAAAAI8vEBdJfv1jqXoxoBOgZbW1tchxHDQ0NBe0NDQ3asGHDoOPvv/9+ffvb3z5e3RvRxtRNUHzXVhmeJUOmjOwzRvJkeJmSJp4rIzfkPLvuP2diKPe8yQHX/fca8J6ZddPtlGF0KV5ZoS0Ns7Sh8jw5lVVyIlVyI1VSVbWMqhpZ5WEFA5aCtqmQZWqsbWqS7YfhQdvMBeNB21TINhWyrUHttlnax6UOyDCkUMR/jZly6Oe5rpSMDQjei4Tsfe1S/OS9SQQAAAAAAHBCGjur1D0Y8QjQj9A999yjJUuW5Laj0agaGxtL2KPS+cvvfE2u58qkvMfoY5pSWbX/0rRS9wYAAAAAAAAYUQjQM+rr62VZlpqbmwvam5ubNX78+EHHh0IhhULDVNf6BEB4DgAAAAAAAOBEQ+qZEQwGtWDBAq1YsSLX5rquVqxYoUWLFpWwZwAAAAAAAACAUmAEep4lS5boxhtv1Lnnnqvzzz9fDzzwgHp6enTTTTeVumsAAAAAAAAAgOOMAD3Ptddeq9bWVt17771qamrS/PnztXz58kETiwIAAAAAAAAATnyG53leqTtxIohGo6qurlZXV5eqqqpK3R0AAAAAAAAAQBGHk+VSAx0AAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIgjQAQAAAAAAAAAoggAdAAAAAAAAAIAiCNABAAAAAAAAACiCAB0AAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIgjQAQAAAAAAAAAoggAdAAAAAAAAAIAiCNABAAAAAAAAACiCAB0AAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIgjQAQAAAAAAAAAoggAdAAAAAAAAAIAiCNABAAAAAAAAACiCAB0AAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIgjQAQAAAAAAAAAoggAdAAAAAAAAAIAiCNABAAAAAAAAACiCAB0AAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIuxSd+BE4XmeJCkajZa4JwAAAAAAAACAA8lmuNlMdygE6MMkFotJkhobG0vcEwAAAAAAAADAwcRiMVVXVw95jOEdSsyOg3JdV3v37lUkEpFhGKXuznEXjUbV2NioXbt2qaqqqtTdAYCD4roFYDThmgVgtOG6BWC04bp1cvE8T7FYTBMmTJBpDl3lnBHow8Q0TU2aNKnU3Si5qqoqLjIARhWuWwBGE65ZAEYbrlsARhuuWyePg408z2ISUQAAAAAAAAAAiiBABwAAAAAAAACgCOu+++67r9SdwInBsix97GMfk21TGQjA6MB1C8BowjULwGjDdQvAaMN1C8UwiSgAAAAAAAAAAEVQwgUAAAAAAAAAgCII0AEAAAAAAAAAKIIAHQAAAAAAAACAIgjQAQAAAAAAAAAoggAdR+3hhx/W1KlTVVZWpoULF+qdd94pdZcAQJL0xz/+UZ/73Oc0YcIEGYahX//61wX7Pc/Tvffeq1NOOUXhcFiLFy/WRx99VKLeAoB0//3367zzzlMkEtG4ceN01VVXaePGjQXHxONx3XLLLaqrq1NlZaWuvvpqNTc3l6jHAE52jz76qObOnauqqipVVVVp0aJFeu6553L7uWYBGMm+973vyTAM3X777bk2rlsYiAAdR+Wpp57SkiVL9K1vfUtr1qzRvHnzdOWVV6qlpaXUXQMA9fT0aN68eXr44YeL7v+nf/onPfjgg3rsscf09ttvq6KiQldeeaXi8fhx7ikA+F555RXdcssteuutt/T8888rlUrpE5/4hHp6enLH3HHHHfrtb3+rX/7yl3rllVe0d+9effGLXyxhrwGczCZNmqTvfe97Wr16tVatWqWPf/zj+vznP68PP/xQEtcsACPXypUr9fjjj2vu3LkF7Vy3MJDheZ5X6k5g9Fq4cKHOO+88PfTQQ5Ik13XV2Nio2267Td/85jdL3DsA6GcYhp5++mldddVVkvzR5xMmTNCdd96pu+66S5LU1dWlhoYGPfHEE/rKV75Syu4CgCSptbVV48aN0yuvvKJLL71UXV1dGjt2rJ588kldc801kqQNGzZo9uzZevPNN3XBBReUuMcAINXW1ur73/++rrnmGq5ZAEak7u5unXPOOXrkkUf0ne98R/Pnz9cDDzzA37VQFCPQccSSyaRWr16txYsX59pM09TixYv15ptvlrBnAHBw27ZtU1NTU8E1rLq6WgsXLuQaBmDE6OrqkuSHUZK0evVqpVKpgmvX6aefrsmTJ3PtAlByjuNo2bJl6unp0aJFi7hmARixbrnlFn3mM58puD5J/F0Lxdml7gBGr7a2NjmOo4aGhoL2hoYGbdiwoUS9AoBD09TUJElFr2HZfQBQSq7r6vbbb9dFF12kM888U5J/7QoGg6qpqSk4lmsXgFJ6//33tWjRIsXjcVVWVurpp5/WnDlztHbtWq5ZAEacZcuWac2aNVq5cuWgffxdC8UQoAMAAAAj0C233KIPPvhAr732Wqm7AgBDmjVrltauXauuri7913/9l2688Ua98sorpe4WAAyya9cu/e3f/q2ef/55lZWVlbo7GCUo4YIjVl9fL8uyBs1E3NzcrPHjx5eoVwBwaLLXKa5hAEaiW2+9Vc8884xeeuklTZo0Kdc+fvx4JZNJdXZ2FhzPtQtAKQWDQZ122mlasGCB7r//fs2bN08/+tGPuGYBGHFWr16tlpYWnXPOObJtW7Zt65VXXtGDDz4o27bV0NDAdQuDEKDjiAWDQS1YsEArVqzItbmuqxUrVmjRokUl7BkAHNy0adM0fvz4gmtYNBrV22+/zTUMQMl4nqdbb71VTz/9tF588UVNmzatYP+CBQsUCAQKrl0bN27Uzp07uXYBGDFc11UikeCaBWDEufzyy/X+++9r7dq1ude5556r66+/PrfOdQsDUcIFR2XJkiW68cYbde655+r888/XAw88oJ6eHt10002l7hoAqLu7W5s3b85tb9u2TWvXrlVtba0mT56s22+/Xd/5znc0Y8YMTZs2Tf/4j/+oCRMm6KqrriphrwGczG655RY9+eST+s1vfqNIJJKrtVldXa1wOKzq6mrdfPPNWrJkiWpra1VVVaXbbrtNixYt0gUXXFDi3gM4Gd1zzz361Kc+pcmTJysWi+nJJ5/Uyy+/rN///vdcswCMOJFIJDe3TFZFRYXq6upy7Vy3MBABOo7Ktddeq9bWVt17771qamrS/PnztXz58kGT8gFAKaxatUqXXXZZbnvJkiWSpBtvvFFPPPGE7r77bvX09OjrX/+6Ojs7dfHFF2v58uXUwgNQMo8++qgk6WMf+1hB+9KlS/VXf/VXkqQf/vCHMk1TV199tRKJhK688ko98sgjx7mnAOBraWnRDTfcoH379qm6ulpz587V73//e11xxRWSuGYBGH24bmEgw/M8r9SdAAAAAAAAAABgpKEGOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAAAAAAABFEKADAAAAAAAAAFAEAToAAAAAAAAAAEUQoAMAAAAAAAAAUAQBOgAAAAAAAAAARRCgAwAAAAAAAABQBAE6AAAAcIJ5+eWXZRiGOjs7S/L5K1as0OzZs+U4zkGPXb58uebPny/XdY9DzwAAAIDDQ4AOAAAAjCKGYQz5uu+++3ThhRdq3759qq6uLkkf7777bv3DP/yDLMs66LGf/OQnFQgE9POf//w49AwAAAA4PIbneV6pOwEAAADg0DQ1NeXWn3rqKd17773auHFjrq2yslKVlZWl6Jok6bXXXtNnP/tZNTU1qays7JDOefjhh/XEE09o5cqVx7h3AAAAwOFhBDoAAAAwiowfPz73qq6ulmEYBW2VlZWDSrg88cQTqqmp0TPPPKNZs2apvLxc11xzjXp7e/XTn/5UU6dO1ZgxY/Q3f/M3BWVXEomE7rrrLk2cOFEVFRVauHChXn755SH7t2zZMl1xxRUF4fmf/vQnXXbZZYpEIqqqqtKCBQu0atWq3P7Pfe5zWrVqlbZs2TK8PywAAADgKNml7gAAAACAY6+3t1cPPvigli1bplgspi9+8Yv6whe+oJqaGv3ud7/T1q1bdfXVV+uiiy7StddeK0m69dZbtW7dOi1btkwTJkzQ008/rU9+8pN6//33NWPGjKKf8+qrr+q6664raLv++ut19tln69FHH5VlWVq7dq0CgUBu/+TJk9XQ0KBXX31V06dPP3Y/BAAAAOAwEaADAAAAJ4FUKqVHH300F1Bfc801+tnPfqbm5mZVVlZqzpw5uuyyy/TSSy/p2muv1c6dO7V06VLt3LlTEyZMkCTdddddWr58uZYuXarvfve7RT9nx44dueOzdu7cqW984xs6/fTTJalo+D5hwgTt2LFjOL8yAAAAcNQI0AEAAICTQHl5ecHo7oaGBk2dOrWgXnpDQ4NaWlokSe+//74cx9HMmTML3ieRSKiuru6An9PX1zeo9vmSJUv0ta99TT/72c+0ePFifelLXxo00jwcDqu3t/eIvx8AAABwLBCgAwAAACeB/JIpkmQYRtE213UlSd3d3bIsS6tXr5ZlWQXHDTVJaX19vTo6Ogra7rvvPl133XV69tln9dxzz+lb3/qWli1bpi984Qu5Y9rb2zV27Ngj+m4AAADAsUKADgAAAGCQs88+W47jqKWlRZdccslhnbdu3bpB7TNnztTMmTN1xx136M///M+1dOnSXIAej8e1ZcsWnX322cPWfwAAAGA4mKXuAAAAAICRZ+bMmbr++ut1ww036Fe/+pW2bdumd955R/fff7+effbZA5535ZVX6rXXXstt9/X16dZbb9XLL7+sHTt26PXXX9fKlSs1e/bs3DFvvfWWQqGQFi1adEy/EwAAAHC4CNABAAAAFLV06VLdcMMNuvPOOzVr1ixdddVVWrlypSZPnnzAc66//np9+OGH2rhxoyTJsizt379fN9xwg2bOnKkvf/nL+tSnPqVvf/vbuXP+8z//U9dff73Ky8uP+XcCAAAADofheZ5X6k4AAAAAOHF84xvfUDQa1eOPP37QY9va2jRr1iytWrVK06ZNOw69AwAAAA4dI9ABAAAADKu///u/15QpU3ITkg5l+/bteuSRRwjPAQAAMCIxAh0AAAAAAAAAgCIYgQ4AAAAAAAAAQBEE6AAAAAAAAAAAFEGADgAAAAAAAABAEQToAAAAAAAAAAAUQYAOAAAAAAAAAEARBOgAAAAAAAAAABRBgA4AAAAAAAAAQBEE6AAAAAAAAAAAFEGADgAAAAAAAABAEf8f8PmZ1OuHhy0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for r in results:\n", + " r.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.66 ms, sys: 28.3 ms, total: 36 ms\n", + "Wall time: 96.9 ms\n" + ] + } + ], + "source": [ + "# Finally, let's sweep over a species and a parameter at the same time.\n", + "\n", + "results = []\n", + "# Here we will iterate over multiple species and parameter values\n", + "def iterate_multiple_values():\n", + " for i in range(1, 6):\n", + " # Call model.run with keyword argument variables\n", + " results.append(model.run(solver=solver, variables={'healthy': (i+4)*1000, 'infect':0.0001*i}))\n", + "%time iterate_multiple_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUVf7H8fek94QSEghdOoIUpagUAQ3C8gMUWIoUKbooXRQVERAFCyiy2EGKdFSw0EVQpK3CgkgnG6SGTkIgPef3xzDXDCkkFAfI5/U852HmnnK/t0zc/c6Zc23GGIOIiIiIiIiIiIiISD7i5uoARERERERERERERET+bkqOi4iIiIiIiIiIiEi+o+S4iIiIiIiIiIiIiOQ7So6LiIiIiIiIiIiISL6j5LiIiIiIiIiIiIiI5DtKjouIiIiIiIiIiIhIvqPkuIiIiIiIiIiIiIjkO0qOi4iIiIiIiIiIiEi+o+S4iIiIiIiIiIiIiOQ7So6LiIiIyE03atQobDYbjRs3dnUod7Tly5djs9nw8fG5oePu2bMHm82GzWYjJibmb+8vt7aPP/4Ym81GpUqVXB2KiIiISJ4oOS4iIiKSgSOJm9sid66EhASCg4Ox2Wz069cv1/3WrVtn3R9ff/31TYxQHJKSkvj000+JjIykWLFieHt7ExwcTIUKFWjSpAnDhw9nxYoVJCUlZdk/Li6Od999l4ceeogiRYrg5eVFwYIFqVy5Ms2bN2fMmDGsXbuW9PT0q8by3nvvWde/adOmeT6W8+fPM3HiRFq2bEnJkiXx8/PD19eXEiVK0LJlS95//31OnjyZbf+lS5fSsWNH7rrrLvz8/PDz86NMmTLUr1+ffv36MX/+fM6cOZPnuERERETuRB6uDkBERETkVhUWFubqEMSFfH196dSpE5988glz5sxhwoQJeHt7X7Xf559/DkBoaCitWrW62WE6CQgIoGLFirmK804RHR1NixYt2LNnj7XNy8sLd3d3oqKi2L9/P2vWrGHs2LFs3LiRevXqOfXfsmUL//d//8exY8esbb6+vqSnp7N371727NnDihUrADh+/Djh4eE5xjN16lTr9Zo1a4iOjqZMmTK5OpaPPvqIl156idjYWGubn58fXl5eHDlyhCNHjrB06VJeeuklRo8ezfPPP2+1S0hIoFOnTnzzzTfWNjc3N0JCQjh69CgHDx5k06ZNfPDBB4wbN44XX3wxVzGJiIiI3Mk0c1xEREQkGzExMVctcmfr1asXAOfOnWPx4sVXbR8fH8/ChQsB6Nq1K56enjc1vis9+OCD7Nmzh+3bt/+t+3WVlJQUWrVqxZ49ewgICGDs2LEcOXKExMREzp49y8WLF9m4cSMjRozIMkF97tw5WrZsybFjxwgLC2Py5MmcOnWKS5cucf78eeLi4lizZg3PPfdcrr4s27x5Mzt37iQsLIwOHTpgjGHatGm5OpbnnnuOZ555htjYWKpVq8asWbM4deoUFy9e5Pz581y8eJGlS5fSqVMnkpKS+Oqrr5z6Dxw40EqMP/XUU+zYsYPk5GTOnDlDYmIiu3bt4v3336devXr61YuIiIjIZUqOi4iIiIhk47777qNatWrAXzPCc7JgwQIuXrwI/JVYl5tn+fLl7Ny5E4AvvviCl156iYiICCv56+PjQ7169Xjttdc4cOAANWvWdOo/a9YsTpw4YY317LPPUrhwYas+ICCAxo0bM378eA4fPkxoaGiO8ThmjXfq1ImePXsCMH369KsuxzJjxgzeffddAJ544gm2bNlCly5dnGLx8/Pj0UcfZc6cOfz2229UrFjRqjt79qyVhB84cCCffPIJd999N+7u7oB9BnnlypUZMGAAGzduZMCAATnGIyIiIpJfKDkuIiIicoP07dsXm81GSEgIBw8ezLLNRx99hM1mw8PDg59//tmp7o8//mDUqFE0adKEu+66C19fX4KCgqhZsyavvPIKp0+fznbfpUuXxmazMX36dC5dusSoUaOoXLkyfn5+FCtWjK5duxIdHW21P336NMOGDaNChQr4+voSHh5O7969rUThla58oOaCBQto1KgRBQsWxN/fn9q1azN58mTS0tLydtIyOHXqFK+88go1a9YkODgYHx8fypYtS69evawEqCs4ktw//PADhw8fzrGtI4Fer149qlSp4lR34MABxo0bR2RkJOXLl8ff35+AgACqVq3KkCFDOHLkSLbjOmb7vvnmmyQlJfHWW29Rq1Yta030TZs2ATk/kDM9PZ1Vq1bRr18/6tatS0REBF5eXhQuXJiHHnqIzz77jNTU1Fydk927d9O1a1ciIiLw9vamVKlSPPvss9f1a4q0tDRmzJhB8+bNrXW/Q0NDad68OQsWLMAYk6nPtm3bALDZbFddwsbNzS3TcjOO/iVLlqRGjRo59vf09LSSzVm5ePEi8+bNA6B79+40a9aMYsWKcfjwYVatWpVtv8TERIYNGwZAjRo1mDp16lV/cVCzZk2nGek7d+60rl3r1q1z7Av2ZWOys2rVKh577DGKFi1q3R8PP/wwX3zxRa7WXM+oYsWK2Gw2Xn755RzbLV261Pq7mNU9FBUVRf/+/alcuTIBAQH4+flRuXLlHD83Vz4kdOXKlbRq1Yrw8HDc3d3517/+ladjERERkTuUERERERHLyJEjDWCu5X8mXbp0yVStWtUApn79+iYlJcWpfseOHcbHx8cA5tVXX83Uv1SpUta+fXx8TMGCBY3NZrO2RUREmD179mS5b0ffiRMnmmrVqllj+Pr6Wv2LFi1qoqOjTVRUlClTpowBjJ+fn/Hy8rLalC9f3sTGxmZ7Xho1amReeOEFAxibzWYKFChg3NzcrP6RkZEmMTExx/5ZWbVqlQkJCbHG8fT0NP7+/tZ7Ly8vM2PGjFxchRvv9OnT1jkaM2ZMtu327dtnxfvpp59mqq9bt67T8RQsWNDp3BUsWNBs3rw5y7EdfUeMGGHuu+8+AxgPDw/rnG3cuNEYY8yyZcsMYLy9vTONsXv3bmtfgAkMDDRBQUFO25o0aZLl9cvYd+HChda1CQwMtO5pwISGhprff/89x/7Hjx/PVH/y5ElTv359p1iCg4Od3rdr1y7TZ+q1116z6g8dOpT1hclBz549DWB8fX1NUlJSnvtnNG3aNAOYatWqWdscn5X27dtn22/mzJlO5/Za/Pzzz9YYM2fOvKYx0tPTzTPPPGON4/h8u7u7O32+4+PjM/X96KOPDGAqVqzotH3MmDEGMCVLljTp6enZ7rtjx44GMM2bN89UN3XqVOPp6en0tzHjPRcSEmLWrFmTY0xvvfWWU3tPT0/z9NNP5/0kiYiIyB1HyXERERGRDK4nOW6MPQHuSEi//PLL1vaMifMHHnjApKamZurbrVs3M336dPPnn39a25KSkswPP/xg6tSpYwBTq1atLPfrSI6HhISY0qVLm5UrV5q0tDSTmppqVq5caUJDQw1gOnToYOrUqWNq1KhhJVSTk5PN/PnzjZ+fnwHM8OHDsz0vjoRlv379zMmTJ40xxsTGxpoxY8ZYifzBgwdn2z+r5Pjvv/9unbM+ffqYXbt2Wefnzz//tBJ2Hh4e5tdff83h7N88HTp0MIC56667sk3yvfjiiwYw/v7+Ji4uLlP9s88+az7++GNz4MABa4yUlBSzYcMG07RpUwOYUqVKZZmkdSTHAwICTHBwsPniiy9MQkKCMcaeWD537pwxJufk+IEDB0y3bt3MkiVLzNmzZ63tsbGxZsqUKSYsLMwA5qWXXsrUN2NyOzg42NSqVcv89ttvxhhj0tLSzNKlS02xYsWsc3Tx4sVs+1+ZHE9JSbES4/fee69ZtmyZuXTpkjHGmAsXLpgpU6aYwoULG8C8+OKLTn2XL1/ulLjNKvGek48//tjq3717d+s8XosHH3zQAOadd96xtu3cudP6MuT06dNZ9uvevbv1hZDjuPMqNjbWeHt7G8CULl3abN26Nc9jvPPOO9a56Nevnzlx4oQxxn4N3n77bStJ3r1790x9s0uOHzx40Pq7kFUC2xhj4uLirM//nDlznOq+++47Y7PZjJeXlxk+fLj5888/TXp6uklLSzM7d+40bdq0MYApUKCAOXbsWJYx+fn5GTc3N9OnTx9z5MgRY4z9nouKisrzORIREZE7j5LjIiIiIhlkTI6HhYXlWAYMGJDlGI6kjJubm/nxxx+NMcY8/fTTVvI6Y/I7ty5cuGAlL9etW5ep3pEc9/X1Nfv3789UP3XqVKfjyipRN2LECCu5eaWM56Vr165ZxvjKK69YSeyjR49m2T+r5HiTJk2yTco6DBgwwACmdevW2ba5mVasWGEdf1ZJvtTUVCs53KNHjzyPn5KSYipVqpTt7OGMs85XrlyZ7Tg5JcevZt26dVby+8oZ2hmT22FhYebMmTOZ+m/bts14eHgYwEyaNCnb/lcmsD/99FMDmOrVq5sLFy5kGduGDRus+ztjYj89Pd00bNjQGtvDw8M88MADZsiQIWb27NnmwIEDOR7zxYsXTcWKFa3+3t7epmnTpubFF180CxcutJKpV7Nnzx4DGHd390xJ2tq1axuw/6ojK/fee2+mGefXwvH5dZSqVauaPn36mI8//ths3bo1yy/kHOLi4qxfETz55JNZtnn77betsXfs2OFUl11y3BhjGjVqlOO4n3/+ufUrhIxfDqSkpFh/17L71Uh6erqJjIw0gBk2bFiWMQGmc+fO2R67iIiI5G9KjouIiIhkkDEJfLWS1QxKh8cee8wAplixYuaTTz657mUTjPlr9vK4ceMy1TmSSE888USWfY8cOWLFMGLEiCzb/PLLL1abK5dOyHheskq+G2OfveqYAXplcjS75Hh0dLSV1Mwq4erw22+/WbOyc0ry3SxpaWmmZMmSBjDdunXLVL9kyRLr/Pz888/XtA/HFwADBw7MVOdIjteuXTvHMa4nOW6MsX4Z8N///tdpe8bkdk5Lyzju+/vvvz/b/lcmxx3H9sknn+QYW7ly5QxgFi9e7LQ9Li7O9OnTx0rMX1nKlCljxowZk23iPSYmxjz22GNOSxhdmWT+97//neOyK47lU7JaFmTSpEk5Jr8dSxxlt+RQbqWnp5vx48c7LU+UsYSEhJinn37aHDx4MFPf+fPnG7AvpZJVvTH2X7E4ZvBn/FWMMTknx6dMmWIAExQUlOXM+IceeijL5LnjXo6IiMhxSZZZs2YZwNSoUSPLmLJK5ouIiIg46IGcIiIiItkw9okE2Zbp06dn23fKlCmULFmSY8eO8fTTTwPQu3dv2rVrl+M+v//+e/75z39StmxZ/P39sdlsVlmwYAFAjg9urFOnTpbbw8LCrNf33XffVducP38+yzYlSpSgXLlyWdYFBQVRu3ZtAH777bdsY8xo/fr1gP1hkVWqVCE8PDzL0rx5c8D+0MMzZ87kauwbyc3NjR49egDw5ZdfcuHCBad6x4M4K1SoQIMGDbIdZ+3atXTt2pWKFSsSEBDgdH0nTZoE5Hx9H3jgges6jsTERD744AMefvhhihYtire3t1MMsbGxV42hSZMmV63bsmVLlg/QzCqeLVu2APDSSy9le/3Dw8P5888/Aax/HQIDA/n00085fPgwH330EV26dKFSpUq4udn/r050dDQjRoygVq1amfqC/b7/6quviIqK4t1336Vdu3aULVsWm80G2B922b9/fxo0aJDl5yI1NZWZM2cC0K1bt0z1nTp1wtPTkx07dvDrr79e9ZxcK5vNxnPPPcfRo0dZsGABffv25d5777Ueznr+/Hk++eQTqlWrxsqVK536Oj6v5cqVo1SpUlmO7+XlRaNGjZza50b79u3x9fUlLi6Ob775xqnu8OHDrF27Fsh87hx/G06dOkXRokWzvS/69+8PZL4vHIKDg7n77rtzHa+IiIjkL0qOi4iIiNwEBQoU4IMPPrDely1blvfffz/b9unp6XTu3JlWrVqxYMECoqOjSU5OpkCBAoSFhREWFmYluS5evJjtOIGBgVlu9/DwyFOblJSULNtERERku++M9SdPnsyxncOxY8cA+/GfOHEi23L69Gmrz6VLl3I19oYNG7JNqM2fPz9XY2T05JNPYrPZuHTpEvPmzbO2nz59mu+++w6Anj17Ztt/4MCBPPTQQ8yaNYt9+/aRmJjodH39/f2BnK9vkSJF8hy3w/Hjx6lZsyb9+vXjhx9+ICYmBnd3dwoXLmzF4Ego5xRDTveAoy4pKYm4uLirxnTq1ClSU1MBOHv2bI73gOOezO76h4eH869//YtZs2axe/duzp8/z9dff029evUA2L9/P0888US2sZQpU4bBgwezcOFCoqKiOHXqFDNnzqRy5coA/Oc//6Ffv36Z+i1dupSYmBiCgoJo06ZNpvrChQvTsmVL4K8vUTIqVKiQdfw3gp+fH+3bt+fDDz/k119/JS4ujp9//pnOnTsDcOHCBTp06OD0JZPj83q1z3fx4sWd2udGUFAQrVu3BuCLL75wqps9ezbGGEqVKmUl3h0cfxuSk5NzvC/OnTsHZH9fhIaG5jpWERERyX+UHBcRERG5ST777DPr9dGjRzlw4EC2badOncrcuXNxd3fn1VdfZf/+/SQlJXH27FliYmKIiYmxZp3nZkbu7SItLQ2wz9692kx9RyldunSuxs4pqZaQkJDnWEuXLk3Tpk0BmDZtmrV99uzZJCcn4+7unuXMYYDvvvvOmhk+cOBAdu7cmen69u3bF8j5+rq7u+c5bod+/fqxZ88eihQpwsyZMzlx4gSXLl3i1KlTVgwFCxa8agw3kuP6A6xZsyZX1//FF1/M1diBgYG0bduWX375hfvvvx+AX375hT179uSqf6FChejatSubN2/mrrvuAmD+/PmZfjUwdepUAOLi4vDz83Oaie8oixcvBmDu3LmZ7r2qVasCsGfPHhITE3MVW154enrSoEEDZs+ezQsvvABAbGwsCxcuvOH7yo7jc7Fy5UpOnDhhbXcky7t06WLN1Hdw3BuNGjXK1X2R3bm7ns+MiIiI3PmUHBcRERG5CSZPnsy3336Lu7s7VapUISkpiY4dO2Y7u9ExE7l3796MHj2acuXKWbN4HWJiYm563Fdz9OjRXNXndoZzeHg4YJ99ndNs5WvRuHHjbBNpjiVS8qpXr14AbNy40UqyOhLlLVq0oGjRoln2c1zf1q1bM3HiRKpUqZIpaXczr++lS5es2e2ffPIJXbt2zXSNkpKSsl1OJ6Oc7gFHnbe3N0FBQVcdq0iRIlZSNLtlMa6Xu7u7dd0A9u7dm6f+gYGB1qzr1NRU/ve//1l1MTExLF26NNdjxcbG8uWXXzptc3zhkpKSwvfff5+n2PLKscQTOJ8Hx72Q03I6Gevz+guGRx55hLCwMFJTU5k7dy4AW7duZdeuXUDWy9E4/jbcrPtCREREBJQcFxEREbnhduzYwfPPPw/Aq6++ytKlSwkJCWH37t0MHjw4yz6HDx8GoGbNmlnWx8fHs3nz5psTcB4cPnyYqKioLOsuXLhgrR9977335mo8xxraaWlpLFu27MYEeRO1bdvWml39+eefs2XLFrZv3w7glIC90tWub1pamrX28s0QExNjLUuSXQxr1661ljjJyZo1a65aV7t27UwzgbPi5+dnxeNI3t8MAQEB1mtvb+8b1n/GjBmkpqZSvHhxLly4kGNxJKavXFqlXbt21nr/b7zxRrZLGl0pPT39hh2H4/MaFRWVbTI6JSWFn376Ccj+uQXZcXd3t75gcMwWd/xbp04dKlasmKmP42/DwYMH+eOPP/K0PxEREZHcUnJcRERE5AZKSEigY8eOJCYm8uCDDzJ8+HBKlSrFp59+CsCnn37KV199lalfcHAwgJVovdKYMWMyLefgKmPGjMly+4QJE0hISMDDw4PHH388V2OVL1+exo0bAzB8+HDrgZDZuVHrMl8rb29vunTpAtiTe46lc8LCwqx1pbNytes7adKkq87avR6O/WcXQ3JyMiNGjMjVWJMnT7bWec5ox44d1gMX//nPf+Y6tqeeegqARYsW8cMPP+TY9srrv3379qvOuDfGWA/MdHNzo0aNGlbdpk2brnrPpaSkWLOdg4ODKVu2rFXnSHS3a9eOgICAHEvHjh0B+Omnn5y+YPL19WXcuHEAbNu2jZ49e141Qf777787rW8fExOT7b2V0YwZM6zXtWrVsl63aNGCoKAgjDGMHj06y77//ve/rbX/HceSF47Z4Vu3buX333+3zml2SxFFRkZSsmRJAAYNGnTVL25c/bdBREREbk9KjouIiIjcQIMHD2bXrl2EhIQwe/Zsa+mM9u3bWzOL+/TpY80kdmjevDlgX6f8008/JTk5GbAnvQYPHszbb79tPbjPlYKDg5kxYwYDBw60EmUXLlxg7NixvPbaawA8++yzFCtWLNdj/vvf/yYgIIB9+/ZRr149vvnmG6f1g48ePcoXX3xB06ZNGTZs2I09oGvguI4xMTFWcrxbt25ODzS9kuP6Llq0iLfeestaXufs2bOMHj2aoUOH3tTrW6hQIWt28IABA/j555+tdcW3bdtGZGQkO3fuxNfX96pjJSQk8Mgjj/Df//4XsM9gXr58OS1atCA1NZWyZcvmOIv+Sj179qRhw4akp6fTqlUr3nzzTaeEd3x8PKtXr+bpp5+2Ho7psGrVKkqXLk2nTp34+uuvnfolJiby008/0bJlS5YsWQJA586dreU6AGbNmkXJkiXp06cPS5cudUqwXrx4ke+//56GDRuybds2APr374+XlxcA69atY9++fQB06NDhqsfZsGFDa239K2ePP/nkkwwYMMCKqXbt2syZM8fpoZkJCQmsWrWKbt26UatWLae1048cOUKNGjVo0qQJn332Gfv377eub2pqKrt27aJ///7Weu3lypXj//7v/6z+AQEB1pcj06ZNo3///pw6dco6DxMmTLDWK+/evTt33333VY/3SjVq1LD69erVixMnTuDp6Zltot3Ly4uPP/4YNzc3Vq9ezUMPPZTp1w0HDhzggw8+oFatWlk+7FRERETkqoyIiIiIWEaOHGkAA5iwsLCrlvXr11t9v/rqK6vvwoULM4198eJFU6lSJQOYBg0amNTUVKvu3LlzVh1g3NzcTEhIiLHZbAYwTz/9tOnevbsBTPfu3TONXapUKQOYadOmZXtsjrHXrFmTZX10dLTVJjo6Osvz0qhRI/PCCy8YwNhsNlOgQAHj7u5u9WvWrJlJSEjI9rw2atQoy33/8ssvJjw83BrH3d3dFCpUyPj6+lrbANO7d+9sj+/vVLt2bae4du/enWP7xMREU7duXau949w5rm/btm3N888/bwATGRmZqb+j77hx43Lcz7JlywxgvL29M9Vt2LDB6Xz6+PiYgIAAAxhPT08zf/58ExYWZgAzd+5cp767d+92urf9/f0NYAIDA53GLFSokNm2bVumfWfsf/z48Uz1Z8+eNZGRkU7nNDg42AQHB1vnCDABAQFO/SZOnOjUBzC+vr6mQIECmba3bNnSxMfHO/UfNGhQpnb+/v4mKCgo0/ZevXqZlJQUq6/j81iiRAmTnp6e43VxeOaZZwxgIiIinD7/DpMmTcq0b39/fxMcHOy0LSAgwEycONHq99///jdTvJ6enqZgwYLGzc3NaXuFChXMvn37Mu07PT3dii+7z/cjjzyS6RwaY8xHH31kAFOxYsUcj//tt992iqV169ZXPWfz58+37jfHcRUqVMh4eXk5jTV+/PhriklERETyN80cFxEREcnGiRMnrlocM7wPHz5M7969AfusyHbt2mUaz8/Pj7lz5+Lt7c26det4/fXXrbqQkBA2bNjAoEGDKF26NO7u7nh4eNC4cWPmzp3Lxx9//PccdC689dZbzJs3jwcffBBjDF5eXtSoUYP333+f5cuX4+Pjk+cxH3jgAfbt28f48eNp2LAhISEhnD9/Hnd3dypXrswTTzzB7NmzmThx4k04orzLODP6/vvvp1KlSjm29/b25scff2T48OGUK1fOmmV+//3389lnn/HVV19legDrjVa/fn02b97M448/TqFChUhLSyM4OJhOnTqxadOmXM1+BnjwwQf59ddf6dKlC4GBgaSlpVGiRAn69u3Ljh07uOeee/IcW4ECBVi2bBnfffcd7dq1o0SJEiQmJpKYmEjx4sVp3rw5b731Fjt27HDqN3DgQLZu3cq4ceNo1aoV5cqVw2azERcXR1BQEFWrVqVHjx6sWLGC77//Hn9/f6f+EyZMYP369YwcOZLIyEhKlSpFWloaFy9eJCQkhJo1a/LMM8+wadMmpkyZYl23CxcusHDhQsC+pEpu1leHv2aYHz16lBUrVmSq79+/PwcPHmTChAk0b96c4sWLk56ebp2Hli1bMnnyZP78808GDhxo9atRowaHDh3io48+onPnzlSrVg1fX19iY2Px8fGhTJkytGnThmnTprFjxw7Kly+fad82m40PPviAFStW0KZNG4oUKUJ8fDzBwcE0bdqUGTNmsGzZskznMC+6dOni9CDa7JZUyahDhw4cOHCAESNGcO+99+Lv78/58+fx9fWlRo0aPP3003z77bfWzHsRERGRvLAZc/n3diIiIiIi2Rg1ahSjR4+mUaNGN/XBkSIiIiIiIn8XzRwXERERERERERERkXxHyXERERERERERERERyXeUHBcRERERERERERGRfEfJcRERERERERERERHJd/RAThERERERERERERHJdzRzXERERERERERERETyHQ9XB3A7SE9P59ixYwQGBmKz2VwdjoiIiIiIiIiIiIhkwRjDhQsXKFasGG5uOc8NV3I8F44dO0aJEiVcHYaIiIiIiIiIiIiI5MLhw4cpXrx4jm2UHM+FwMBAwH5Cg4KCXByNiIiIiIiIiIiIiGQlLi6OEiVKWDndnCg5nguOpVSCgoKUHBcRERERERERERG5xeVmeWw9kFNERERERERERERE8h0lx0VEREREREREREQk31FyXERERERERERERETyHa05LiIiIiIiIiIiIreEtLQ0UlJSXB2G3OI8PT1xd3e/7nGUHBcRERERERERERGXi4+P58iRIxhjXB2K3OJsNhvFi8Q/ovMAACAASURBVBcnICDgusZRclxERERERERERERcKi0tjSNHjuDn50doaCg2m83VIcktyhjDqVOnOHLkCOXLl7+uGeRKjouIiIiIiIiIiIhLpaSkYIwhNDQUX19fV4cjt7jQ0FAOHjxISkrKdSXH9UBOERERERERERERuSVoxrjkxo26T5QcFxEREREREREREZF8R8lxEREREREREREREcl3lBwXERERERERERERuYEaN27MoEGDbvt93OmUHBcRERERERERERGRfEfJcRERERERERERERHJd5QcFxERERERERERkVuKMYZLyakuKcaYPMV68eJFunXrRkBAAEWLFmXChAlO9UlJSQwdOpSIiAj8/f2pW7cua9euterPnDlDp06diIiIwM/Pj2rVqjF37tw87UOujYerAxARERERERERERHJKCEljSqvrnDJvne9FomfV+7Tps8//zw//fQT33zzDUWKFOHll19m69at1KhRA4B+/fqxa9cu5s2bR7FixVi0aBHNmzdnx44dlC9fnsTERGrXrs2wYcMICgpiyZIldO3albvuuos6derkah9ybZQcFxEREREREREREbkG8fHxTJ06lVmzZtG0aVMAZsyYQfHixQE4dOgQ06ZN49ChQxQrVgyAoUOHsnz5cqZNm8bYsWOJiIhg6NCh1pj9+/dnxYoVLFiwgDp16lx1H3LtlBwXERERERERERGRW4qvpzu7Xot02b5zKyoqiuTkZOrWrWttK1iwIBUrVgRgx44dpKWlUaFCBad+SUlJFCpUCIC0tDTGjh3LggULOHr0KMnJySQlJeHn55erfci1U3JcREREREREREREbik2my1PS5vcquLj43F3d2fLli24uzsn3QMCAgB45513eP/995k4cSLVqlXD39+fQYMGkZyc7IqQ8xU9kFNERERERERERETkGtx11114enqyefNma9u5c+fYt28fADVr1iQtLY2TJ09Srlw5pxIeHg7A+vXrad26NU888QT33HMPZcuWtfrnZh9y7W7/r19EREREREREREREXCAgIIBevXrx/PPPU6hQIYoUKcLw4cNxc7PPSa5QoQJdunShW7duTJgwgZo1a3Lq1ClWr15N9erVadmyJeXLl+fLL79kw4YNFChQgHfffZcTJ05QpUqVXO1Drp2S4yIiIiIiIiIiIiLX6J133iE+Pp5WrVoRGBjIc889R2xsrFU/bdo0Xn/9dZ577jmOHj1K4cKFqVevHv/4xz8AeOWVV/jf//5HZGQkfn5+PPXUU7Rp08ZpjKvtQ66NzRhjXB3ErS4uLo7g4GBiY2MJCgpydTgiIiIiIiIiIiJ3lMTERKKjoylTpgw+Pj6uDkducTndL3nJ5WruvYiIiIiIiIiIiIjkO0qOi4iIiIiIiIiIiEi+o+S4iIiIiIiIiIiIiOQ7So6LiIiIiIiIiIiISL6j5LiIiIiIiIiIiIiI5DtKjouIiIiIiIiIiIhIvuPS5PioUaOw2WxOpVKlSlZ9YmIizz77LIUKFSIgIIDHH3+cEydOOI1x6NAhWrZsiZ+fH0WKFOH5558nNTXVqc3atWupVasW3t7elCtXjunTp/8dhyciIiIiIiIiIiIityiXzxyvWrUqx48ft8ovv/xi1Q0ePJjvvvuOhQsX8tNPP3Hs2DEee+wxqz4tLY2WLVuSnJzMhg0bmDFjBtOnT+fVV1+12kRHR9OyZUseeughtm3bxqBBg+jduzcrVqz4W49TRERERERERERERG4dHi4PwMOD8PDwTNtjY2OZOnUqc+bMoUmTJgBMmzaNypUrs2nTJurVq8fKlSvZtWsXP/zwA2FhYdSoUYMxY8YwbNgwRo0ahZeXFx9//DFlypRhwoQJAFSuXJlffvmF9957j8jIyL/1WG9Ll87CwXVgcwOb++V/3cDNLYttGV5nuc3x2pZhe1b9bc5tsf39x22zgZuHvdhcsH8RERERERERERG5qVyeHN+/fz/FihXDx8eH+vXrM27cOEqWLMmWLVtISUmhWbNmVttKlSpRsmRJNm7cSL169di4cSPVqlUjLCzMahMZGUnfvn3ZuXMnNWvWZOPGjU5jONoMGjQo25iSkpJISkqy3sfFxd3AI77NnN4HC7q5OgrXciTJ3TzB/fK/bh5/vXb3/KuNu+flevcMr69s657h9RVt3TPuK4tx3bOLxfOK/eciPiX9RURERERERESuS+PGjalRowYTJ068afsoXbo0gwYNyjGfOWrUKBYvXsy2bdtuWhx3Ipcmx+vWrcv06dOpWLEix48fZ/To0TRo0IA//viDmJgYvLy8CAkJceoTFhZGTEwMADExMU6JcUe9oy6nNnFxcSQkJODr65sprnHjxjF69Ogbdpy3Na8AKHk/mDQw6ZB++d8ri9P2NDAmi22OtlltSwOMq482a+mp9kKiqyO5sa5MwnsHgHcQeAdeLle89sn43lGfYZunrxLuIiIiIiIiIiI3mc1mY9GiRbRp08bVodz2XJocf/TRR63X1atXp27dupQqVYoFCxZkmbT+u7z00ksMGTLEeh8XF0eJEiVcFo9Lhd8NPZf9Pfsy5nJJc33C3KTbE+JpqZCecvl1xn9T7PE5Xqddfm+9TnVum+04V7a7yjhO+7xcl2XbjOOnZH2MjvapCfb3CWev75y5eWSRWL8ioe4TlDnp7uUPnn7g5Wf/11HcXP5IBBERERERERERuYO5fFmVjEJCQqhQoQIHDhzg4YcfJjk5mfPnzzvNHj9x4oS1Rnl4eDj/+c9/nMY4ceKEVef417EtY5ugoKBsE/De3t54e3vfsOOSXLLZLs88VlL0hnLM4s8xkZ4MyRchKQ4S4yDpQoYSd7lcfp9VPcY+TsI5e7kRPHwuJ8397bPSrdd+9vdZvr4iye7lB56X+ztee/mBh6+S7yIiIiIiIiK3MmMg5ZJr9u3pl6dfx6enp/PCCy8wZcoUvLy8+Ne//sWoUaMAOH/+PEOHDuWbb74hKSmJe++9l/fee4977rkHgKioKIYMGcKmTZu4ePEilStXZty4cZmWiXYoXbo0AG3btgWgVKlSHDx40Kr/4osvGDFiBOfOnePRRx/ls88+IzAwkJkzZzJ48GCOHTvmlPds06YNgYGBfPHFF3k4QXeOWyo5Hh8fT1RUFF27dqV27dp4enqyevVqHn/8cQD27t3LoUOHqF+/PgD169fnjTfe4OTJkxQpUgSAVatWERQURJUqVaw2S5cuddrPqlWrrDFE7ng2m339cXcPwOfGj5+eDikXr0iex12RXM/wOvGK98mX7P1TEpz/o5eaaC/XO6M9Oz7BEFgMgopBUNEMr4tBYFEIigC/gloqRkRERERERMQVUi7B2GKu2ffLx+wT8XJpxowZDBkyhM2bN7Nx40Z69OjBAw88wMMPP0z79u3x9fVl2bJlBAcH88knn9C0aVP27dtHwYIFiY+Pp0WLFrzxxht4e3szc+ZMWrVqxd69eylZsmSmff36668UKVKEadOm0bx5c9zd3a26qKgoFi9ezPfff8+5c+fo0KEDb775Jm+88Qbt27dnwIABfPvtt7Rv3x6AkydPsmTJElauXHn95+w25dLk+NChQ2nVqhWlSpXi2LFjjBw5End3dzp16kRwcDC9evViyJAhFCxYkKCgIPr370/9+vWpV68eAI888ghVqlSha9euvP3228TExPDKK6/w7LPPWt+A/Otf/2Ly5Mm88MIL9OzZkx9//JEFCxawZMkSVx66yJ3Dze2vZVKuV3q6fZmXlAT7TPaUS/aSfCmH15cT61m9Tr50Oel++bVjCRmAxFh7ObU7+3jcvSEw/IqkueP15aR6QDh4eF3/sYuIiIiIiIjIbal69eqMHDkSgPLlyzN58mRWr16Nr68v//nPfzh58qSVqxw/fjyLFy/myy+/5KmnnuKee+6xZpEDjBkzhkWLFvHtt9/Sr1+/TPsKDQ0F7CtwOFbOcEhPT2f69OkEBtpzNF27dmX16tW88cYb+Pr60rlzZ6ZNm2Ylx2fNmkXJkiVp3LjxDT8ntwuXJsePHDlCp06dOHPmDKGhoTz44INs2rTJusjvvfcebm5uPP744yQlJREZGcmHH35o9Xd3d+f777+nb9++1K9fH39/f7p3785rr71mtSlTpgxLlixh8ODBvP/++xQvXpwpU6YQGRn5tx+viFyFm5v9m1kvf/AvfOPHdyTfky/BpTNw4RjEHYO44xleH4MLx+HiKUhLgvN/2ktO/ItcMfu86F/J86AIe1LdJ+jGH4+IiIiIiIjIncrTzz6D21X7zoPq1as7vS9atCgnT55k+/btxMfHU6hQIaf6hIQEoqKiAPtKGqNGjWLJkiUcP36c1NRUEhISOHToUJ7DLl26tJUYzxiHQ58+fbjvvvs4evQoERERTJ8+nR49emDLx7+ad2lyfN68eTnW+/j48MEHH/DBBx9k26ZUqVKZlk25UuPGjfnvf/97TTGKyB0kY/I9IBSKVMq+bWoSXIixJ8ozJs2t18fs9WnJcPGkvRzfnv14XgH2JHlwBISUvFxK/fU6IFzroIuIiIiIiIg42Gx5WtrElTw9PZ3e22w20tPTiY+Pp2jRoqxduzZTH8czFocOHcqqVasYP3485cqVw9fXl3bt2pGcnHzD4nCoWbMm99xzDzNnzuSRRx5h586d+X51jVtqzXERkVuGhzcUKGUv2UlPt6+JHnf0itnnV7xOioXkeDiz316y4u4FwcWvSJpnTJ6HKXkuIiIiIiIichupVasWMTExeHh4WA/SvNL69evp0aOH9YDN+Ph4pwdsZsXT05O0tLRriql3795MnDiRo0eP0qxZM0qUKHFN49wplBwXEblWbm725V/8C0PRe7Jvl3zRniSPOwqxRyD2MJw/dLn8CbFH7TPQz/7PXrLi7gXBJTLMOlfyXERERERERORW1qxZM+rXr0+bNm14++23qVChAseOHWPJkiW0bduWe++9l/Lly/P111/TqlUrbDYbI0aMcJrtnZXSpUuzevVqHnjgAby9vSlQoECuY+rcuTNDhw7ls88+Y+bMmdd7iLc9JcdFRG42L38oXM5espKWap9pbiXMD2WTPI+yl6woeS4iIiIiIiJyS7HZbCxdupThw4fz5JNPcurUKcLDw2nYsCFhYWEAvPvuu/Ts2ZP777+fwoULM2zYMOLi4nIcd8KECQwZMoTPPvuMiIiIq840zyg4OJjHH3+cJUuW0KZNm+s5vDuCzRhjXB3ErS4uLo7g4GBiY2MJCtJD9UTkb5aWap91nmXy/BDEHQGT87fKeAVAhUi4+3Eo18y+bIyIiIiIiIjILSIxMZHo6GjKlCmDj4+Pq8O5ozVt2pSqVasyadIkV4dyzXK6X/KSy9XMcRGRW527R87rn6el2Nc3zyl5nhwPf3xlL97BUPkfUPUxKNsI3D2zHldERERERERE7hjnzp1j7dq1rF27lg8//NDV4dwSlBwXEbnduXtePXl+/HfY+TX88bV9CZdts+3FtyBUaW2fUV7qfnBz/3tjFxEREREREZG/Rc2aNTl37hxvvfUWFStWdHU4twQlx0VE7nTunlC8tr08PAYOb7InyXcthounYMs0ewkIh6pt4e7HoPh9YLO5OnIRERERERERuUHysjZ5fqHkuIhIfuLmZp8hXup+aP4mHFxnX2pl97cQHwObP7KX4JJwd1v7jPLw6kqUi4iIiIiIiMgdR8lxEZH8yt0D7nrIXlq+C/9bY0+U71kCsYdg/fv2UqicfX3yux+HIpVcHbWIiIiIiIiIyA2h5LiIiICHF1SItJeUBNi/0p4o37cCzhyAn9+2lyJV7cuu3P0YFCzr6qhFRERERERERK6ZkuMiIuLM09f+kM4qrSHpAuxdZl+j/MAPcHIn/LgTfhwDxWrZk+RV20JwcVdHLSIiIiIiIiKSJ0qOi4hI9rwDoXoHe0k4B7u/t88oj/4Zjm21l5WvQMn69mVXqrSGgCKujlpERERERERE5KqUHBcRkdzxLQC1utpL/CnY/Y19RvmfG+DQRntZ9gKUbmBPlFduBX4FXR21iIiIiIiIiEiW3FwdgIiI3IYCQuG+3vDkUhi8EyLHQkRtMOkQ/RN8NwDGl4fZHWDHl5CS6OqIRURERERERG64xo0bM2jQoFy337NnD/Xq1cPHx4caNWrcxMiujc1mY/Hixa4O42+jmeMiInJ9giOg/rP2cjYadi6yzyg/sQP2r7AXn2D7bPIaXexJdJvN1VGLiIiIiIiIXLevv/4aT0/PXLcfOXIk/v7+7N27l4CAgBsSg81mY9GiRbRp0+aGjJefKDkuIiI3TsEy0GCIvZzaCzsWwvZ5EHsYfvvcXgpXgBqdoXpHCCrq6ohFRERERERErlnBgnlbTjQqKoqWLVtSqlSpmxSR5IWWVRERkZsjtCI0eQUG/g7dvoHq/wQPXzi9D34YBe9VgVmP22eZa9kVERERERERycAYw6WUSy4pxphcx5lxWZXSpUszduxYevbsSWBgICVLluTTTz+12tpsNrZs2cJrr72GzWZj1KhRABw+fJgOHToQEhJCwYIFad26NQcPHnTaz+eff07VqlXx9vamaNGi9OvXz9onQNu2bbHZbNZ7gG+++YZatWrh4+ND2bJlGT16NKmpqVb9/v37adiwIT4+PlSpUoVVq1bl4QrdGTRzXEREbi43Nyjb2F5ajIddi2HbHPsDPA/8YC8+wXB3u8vLrtTSsisiIiIiIiL5XEJqAnXn1HXJvjd33oyfp9819Z0wYQJjxozh5Zdf5ssvv6Rv3740atSIihUrcvz4cZo1a0bz5s0ZOnQoAQEBpKSkEBkZSf369Vm3bh0eHh68/vrrNG/enN9//x0vLy8++ugjhgwZwptvvsmjjz5KbGws69evB+DXX3+lSJEiTJs2jebNm+Pu7g7AunXr6NatG5MmTaJBgwZERUXx1FNPAfalXdLT03nssccICwtj8+bNxMbG5mnt9DuFkuMiIvL38QmCWt3s5UwUbJ8L2+ZC3BH4baq9FK54edmVf2rZFREREREREbmttGjRgmeeeQaAYcOG8d5777FmzRoqVqxIeHg4Hh4eBAQEEB4eDsCsWbNIT09nypQp2C5PFJs2bRohISGsXbuWRx55hNdff53nnnuOgQMHWvu57777AAgNDQUgJCTEGhNg9OjRvPjii3Tv3h2AsmXLMmbMGF544QVGjhzJDz/8wJ49e1ixYgXFihUDYOzYsTz66KM3+QzdWpQcFxER1yh0l33ZlcYvQ/RP9tnku7+F03vhh5GwejSUa2ZPlFd4FDx9XB2xiIiIiIiI/E18PXzZ3Hmzy/Z9rapXr269ttlshIeHc/LkyWzbb9++nQMHDhAYGOi0PTExkaioKE6ePMmxY8do2rRpnuLYvn0769ev54033rC2paWlkZiYyKVLl9i9ezclSpSwEuMA9evXz9M+7gRKjouIiGu5ucFdD9lL4njYeXnZlcObYP9Ke/EJgWrt7InyYlp2RURERERE5E5ns9mueWkTV/L09HR6b7PZSE9Pz7Z9fHw8tWvXZvbs2ZnqQkNDcXO7tkdGxsfHM3r0aB577LFMdT4+mnzmoOS4iIjcOnyCoXZ3ezl9ALbPge3zIO4o/DrFXkIr/bXsSmD41ccUERERERERuUXVqlWL+fPnU6RIEYKCgrJsU7p0aVavXs1DDz2UZb2npydpaWmZxt27dy/lypXLsk/lypU5fPgwx48fp2hR+5KmmzZtuo4juT1d21cPIiIiN1vhctD0VRi0A7ougmrtwcMHTu2BVa/Cu1Vgdgf7TPPUJFdHKyIiIiIiIpJnXbp0oXDhwrRu3Zp169YRHR3N2rVrGTBgAEeOHAFg1KhRTJgwgUmTJrF//362bt3Kv//9b2sMR/I8JiaGc+fOAfDqq68yc+ZMRo8ezc6dO9m9ezfz5s3jlVdeAaBZs2ZUqFCB7t27s337dtatW8fw4cP//hPgYkqOi4jIrc3NHe5qAo9PgaH7oNX7ULwOmDTYvwIWdofxFWDJUDi6FYxxdcQiIiIiIiIiueLn58fPP/9MyZIleeyxx6hcuTK9evUiMTHRmknevXt3Jk6cyIcffkjVqlX5xz/+wf79+60xJkyYwKpVqyhRogQ1a9YEIDIyku+//56VK1dy3333Ua9ePd577z1KlSoFgJubG4sWLSIhIYE6derQu3dvp/XJ8wubMcoiXE1cXBzBwcHExsZm+/MGERH5m53eb1+bfPs8uHDsr+1FqtiXXanRBfwKui4+ERERERERybXExESio6MpU6aM1sSWq8rpfslLLlczx0VE5PZUuDw0GwmD/4Anvoa729mXXTm5C1a+ApPvhZ2LXB2liIiIiIiIiNyi9EBOERG5vbm5Q7mm9pJw3p4Q3/yxfW3yhT3sa5K3nAD+hV0dqYiIiIiIiIjcQjRzXERE7hy+IXDvk/D0Omj4PNjcYddi+KCOZpGLiIiIiIiIiBMlx0VE5M7j4QVNXoE+q+1rkF86Y59FvrAHXDzt6uhERERERERE5Bag5LiIiNy5itWEp9b+NYt85yL4oC7s+sbVkYmIiIiIiIiIiyk5LiIidzYP7ytmkZ+GBd0uzyI/4+roRERERERERMRFlBwXEZH8wTGLvMHQDLPI62gWuYiIiIiIiEg+peS4iIjkHx7e0HQE9P4BQitnmEX+pGaRi4iIiIiIiOQzSo6LiEj+E1ELnv4JGjx3eRb51/BhXdj1rasjExEREREREZG/iZLjIiKSP3l4Q9NX/5pFfvEULOgKX/bULHIRERERERGRXJo+fTohISGuDuOaKDkuIiL525WzyP/4yj6LfPd3ro5MRERERERERG4iJcdFREScZpFXss8in/8EfNkLLp11dXQiIiIiIiJym0hOTnZ1CNfkdo37eik5LiIi4hBRC57+GR4cAjY3+ONL+KAu7P7e1ZGJiIiIiIjkK8YY0i9dckkxxuQ6zsaNG9OvXz8GDRpE4cKFiYyM5Pz58/Tu3ZvQ0FCCgoJo0qQJ27dvd+r33Xffcd999+Hj40PhwoVp27atVXfu3Dm6detGgQIF8PPz49FHH2X//v0AxMXF4evry7Jly5zGW7RoEYGBgVy6dAmAw4cP06FDB0JCQihYsCCtW7fm4MGDVvsePXrQpk0b3njjDYoVK0bFihUBSEpKYujQoURERODv70/dunVZu3at076mT59OyZIl8fPzo23btpw5c/suTerh6gBERERuKR7e0GwkVP4HLH4GTu2B+V2gWnt49G3wK+jqCEVERERERO54JiGBvbVqu2TfFbduwebnl+v2M2bMoG/fvqxfvx6A9u3bWwns4OBgPvnkE5o2bcq+ffsoWLAgS5YsoW3btgwfPpyZM2eSnJzM0qVLrfF69OjB/v37+fbbbwkKCmLYsGG0aNGCXbt2ERQUxD/+8Q/mzJnDo48+avWZPXs2bdq0wc/Pj5SUFCIjI6lfvz7r1q3Dw8OD119/nebNm/P777/j5eUFwOrVqwkKCmLVqlXWOP369WPXrl3MmzePYsWKsWjRIpo3b86OHTsoX748mzdvplevXowbN442bdqwfPlyRo4ceb2n3GVsJi9fheRTcXFxBAcHExsbS1BQkKvDERGRv0tKIvz0Jqx/H0w6+BeBVhOhUktXRyYiIiIiInJHSUxMJDo6mjJlyuDj40P6pUsuTY675TI53rhxY+Li4ti6dSsAv/zyCy1btuTkyZN4e3tb7cqVK8cLL7zAU089xf3330/ZsmWZNWtWpvH2799PhQoVWL9+Pffffz8AZ86coUSJEsyYMYP27duzePFiunbtyokTJ/Dz8yMuLo6wsDArkT1r1ixef/11du/ejc1mA+zLpoSEhLB48WIeeeQRevTowfLlyzl06JCVLD906BBly5bl0KFDFCtWzIqpWbNm1KlTh7Fjx9K5c2diY2NZsmSJVd+xY0eWL1/O+fPn83imr92V90tGecnlaua4iIhIdjx9oNkoqNQKFveF03thXmfNIhcREREREbnJbL6+VNy6xWX7zovatf9K4m/fvp34+HgKFSrk1CYhIYGoqCgAtm3bRp8+fbIca/fu3Xh4eFC3bl1rW6FChahYsSK7d+8GoEWLFnh6evLtt9/SsWNHvvrqK4KCgmjWrJkVw4EDBwgMDHQaOzEx0YoBoFq1alZiHGDHjh2kpaVRoUIFp35JSUnW8ezevdtpCRiA+vXrs3z58hzO0K1LyXEREZGrKV7bvhb52nGwYRLsWAj/+0mzyEVERERERG4Sm82Wp6VNXMnf3996HR8fT9GiRTOt0w0QEhICgG8ek+9X8vLyol27dsyZM4eOHTsyZ84c/vnPf+Lh4WHFULt2bWbPnp2pb2hoaJZxO/q5u7uzZcsW3N3dneoCAgKuK+ZblZLjIiIiueHpAw+Phsqt7GuRO2aRV/8nNH9Ts8hFRERERESEWrVqERMTg4eHB6VLl86yTfXq1Vm9ejVPPvlkprrKlSuTmprK5s2bnZZV2bt3L1WqVLHadenShYcffpidO3fy448/8vrrrzvFMH/+fIoUKZKnJaJr1qxJWloaJ0+epEGDBlm2qVy5Mps3b3batmnTplzv41bj5uoAREREbivF77XPIn9gENjc4Pf58GE92LP06n1FRERERETkjtasWTPq169PmzZtWLlyJQcPHmTDhg0MHz6c3377DYCRI0cyd+5cRo4cye7du9mxYwdvvfUWAOXLl6d169b06dOHX375he3bt/PEE08QERFB69atrf00bNiQ8PBwunTpQpkyZZyWYenSpQuFCxemdevWrFu3jujoaNauXcuAAQM4cuRItrFXqFCBLl260K1bN77++muio6P5z3/+w7hx46w1xgcMGMDy5csZP348+/fvZ/Lkybftkiqg5LiIiEjeOWaR91oFhStA/AmY1wm+fgouhsSlawAAIABJREFUnXV1dCIiIiIiIuIiNpuNpUuX0rBhQ/6fvfsOr7I8/D/+PpkkgQRQCSiELQIyBBkRB1ohLKsg1q0o1q/+tHUXbW2t27rtcNS2otbRYsEKYYoCimGIYHGLTGUrJEASss7vjyNHoqiMJE/G+3Vduc5znvs553xOiBfh433u+6KLLuLwww/nrLPOYtWqVaSnpwORTTzHjRvHK6+8Qvfu3TnppJNYsGBB9DmeeuopevbsybBhw8jMzCQcDjN58mTi4+PLvc7ZZ5/Nu+++y7nnnlsuQ3JyMnPmzCEjI4MRI0bQsWNHRo8eTWFh4Y/OJH/qqae44IILuO666+jQoQOnnXYaCxcuJCMjA4C+ffvy5JNP8sgjj9CtWzemT5/OzTffXFHfvioXCofD4aBDVHf7ssOpJKmOKS6EWXfBW3+CcBmkHgbn/Auadgk6mSRJkiTVGIWFhaxYsYLWrVtTr169oOOomvuhn5d96XKdOS5J0oGIrwcDboOLp0PjtpD3BfxjEHxccz9WJkmSJElSXWA5LklSRWjRC37+GrQ+AYq2R5ZZyXkU/ICWJEmSJEnVkuW4JEkVJakhnPcf6DkqssTKtJsg+1ooLQ46mSRJkiRJ+hbLcUmSKlJsPAx7GAbeCYTg7X/A8z+Dwtygk0mSJEmSpN1YjkuSVNFCITjmSjjreYhPgc9eg78PhC0rg04mSZIkSZK+ZjkuSVJlOWIIXDwFGhwKmz6CJ38Cq+cHnUqSJEmSJGE5LklS5WrWDX4+M3KbvxmePgX+Ny7oVJIkSZIk1XmW45IkVbbUQ+GiKXDEMCjdCeMvgVn3QDgcdDJJkiRJkuosy3FJkqpCQgr87Fnod1Xk/qy7YfzPobgw2FySJEmSJNVRluOSJFWVmBgYcBuc8keIiYOl4+CZn8L2TUEnkyRJkiSpSo0dO5aGDRsGmsFyXJKkqtbzQjhvPNRLgzXz4W8nwcaPgk4lSZIkSaolQqEQL7/8ctAxolq1asXDDz9c7tyZZ57JJ598ElCiCMtxSZKC0OYEuGQmNGoNW1fD3wfAsplBp5IkSZIkqUokJSXRpEmTQDNYjkuSFJSD20cK8oxjYGcePHcGLPx70KkkSZIkKXDhcJjinaWBfIXD4X3K+tJLL9GlSxeSkpI46KCDOPnkk5k9ezbx8fGsX7++3LVXX301xx13HPDNsiKTJk2iQ4cOJCcnM3LkSPLz83n66adp1aoVjRo14pe//CWlpaXR52jVqhW33347Z599NikpKRx22GH85S9/KTcOMHz4cEKhUPQ+wGOPPUbbtm1JSEigQ4cOPPvss+XyhUIhnnjiCYYNG0ZycjIdO3YkJyeHZcuW0b9/f1JSUjjmmGP47LPPoo/57LPPOPXUU0lPT6d+/fr06tWLV199NTrev39/Vq1axTXXXEMoFCIUCpV7/7ubOHEivXr1ol69ehx88MEMHz58n/4s9lVcpT67JEn6YSkHwQUvw8Sr4N0XIPta+HIZDLwDYmKDTidJkiRJgSgpKuOvV80O5LUvfeQE4hP37t9j69at4+yzz+bee+9l+PDhbNu2jTfeeIOePXvSpk0bnn32WW644QYAiouLee6557j33nujj8/Pz+ePf/wjL774Itu2bWPEiBEMHz6chg0bMnnyZJYvX87pp59Ov379OPPMM6OPu++++/j1r3/NrbfeyrRp07jqqqs4/PDDGTBgAAsXLqRJkyY89dRTDBo0iNjYyHuZMGECV111FQ8//DAnn3wykyZN4qKLLqJ58+aceOKJ0ee+/fbbefDBB3nwwQcZM2YM55xzDm3atOGmm24iIyODiy++mCuvvJIpU6YAsH37doYMGcKdd95JYmIizzzzDKeccgoff/wxGRkZjB8/nm7dunHppZfy85///Hu/l9nZ2QwfPpzf/OY3PPPMMxQVFTF58uS9/4PbD5bjkiQFLS4RTnsMDmoHr90O8x6Fr5bD6X+DxAZBp5MkSZIkfY9169ZRUlLCiBEjaNmyJQBdunQBYPTo0Tz11FPRcnzixIkUFhbys5/9LPr44uLi6GxugJEjR/Lss8+yYcMG6tevT6dOnTjxxBN5/fXXy5Xj/fr148YbbwTg8MMPZ+7cuTz00EMMGDCAQw45BICGDRvStGnT6GPuv/9+Ro0axf/7f/8PgGuvvZZ58+Zx//33lyvHL7roomjGMWPGkJmZyW9/+1uysrIAuOqqq7joooui13fr1o1u3bpF799+++1MmDCBV155hSuvvJLGjRsTGxtLgwYNyuX5tjvvvJOzzjqLW2+9tdxzVybLcUmSqoNQCI6/Hg5qCxMug0+mwj8GwTn/grTmQaeTJEmSpCoVlxDDpY+cENhr761u3brxk5/8hC5dupCVlcXAgQMZOXIkjRo1YtSoUdx8883MmzePvn37MnbsWH72s5+RkpISfXxycnK0GAdIT0+nVatW1K9fv9y5jRs3lnvdzMzM79z/9oaX3/bhhx9y6aWXljvXr18/HnnkkXLnunbtWu614ZvCf9e5wsJC8vLySE1NZfv27fz+978nOzs7+j8LCgoKWL169Q/m+bYlS5b84MzyymA5LklSddJ5OKS1gBfOhg3vwZMnwdkvwGE9g04mSZIkSVUmFArt9dImQYqNjWXGjBm89dZbTJ8+nT/96U/85je/Yf78+bRu3ZpTTjmFp556itatWzNlyhRmzZpV7vHx8fHl7odCoT2eKysrq+y3ssdMu9YH39O5XZmuv/56ZsyYwf3330+7du1ISkpi5MiRFBUV7dPrJiUlHWj0feaGnJIkVTfNj4afz4QmnWH7BnhqKHzw36BTSZIkSZL2IBQK0a9fP2699VYWL15MQkICEyZMAOCSSy7hX//6F3/9619p27Yt/fr1q5DXnDdv3nfud+zYMXo/Pj6+3CaeAB07dmTu3Lnlzs2dO5dOnTodUJa5c+cyatQohg8fTpcuXWjatCkrV64sd01CQsJ38nxb165dmTlz5gFl2VeW45IkVUcNM+DiqdBuAJQUwL8vgDcegH3cNV2SJEmSVHnmz5/PXXfdxdtvv83q1asZP348mzZtihbVWVlZpKamcscdd5Rbp/tAzZ07l3vvvZdPPvmEv/zlL4wbN46rrroqOt6qVStmzpzJ+vXr2bJlCwA33HADY8eO5bHHHuPTTz/lwQcfZPz48Vx//fUHlKV9+/aMHz+eJUuW8O6773LOOed8Z6Z7q1atmDNnDl988QWbN2/e4/PccsstvPDCC9xyyy18+OGHLF26lD/84Q8HlO3HWI5LklRd1UuFs1+E3v8XuT/zNvjvFVCybx9NkyRJkiRVjtTUVObMmcOQIUM4/PDDufnmm3nggQcYPHgwADExMYwaNYrS0lIuuOCCCnvd6667jrfffpujjjqKO+64gwcffDC6YSbAAw88wIwZM2jRogVHHXUUAKeddhqPPPII999/P507d+aJJ57gqaeeon///geU5cEHH6RRo0Ycc8wxnHLKKWRlZdGjR49y19x2222sXLmStm3bRjcM/bb+/fszbtw4XnnlFbp3785JJ53EggULDijbjwmFw05B+zF5eXmkpaWRm5tLampq0HEkSXXRgidhyq8gXAYtj4Uzn4XkxkGnkiRJkqQKUVhYyIoVK2jdujX16tULOk6FGj16NJs2beKVV16pkOdr1aoVV199NVdffXWFPF9N9EM/L/vS5TpzXJKkmqD3z+GccZDQAFa9CX87GTYvCzqVJEmSJOl75Obm8uabb/L888/zi1/8Iug42gPLcUmSaor2J8Po6ZCWAV99Bn/7Cax4I+hUkiRJkqQ9OPXUUxk4cCCXXXYZAwYMCDqO9iAu6ACSJGkfpHeCn8+EF86GL96GZ0+DUx6Bo84LOpkkSZIkaTezZs2qlOdduXJlpTxvXeTMcUmSapr6TWDUJOg8AspKIpt0vvp7cBsRSZIkSZL2muW4JEk1UXwSnP53OP5XkftvPgSv3xVsJkmSJEk6QGEn/WgvVNTPieW4JEk1VUwMnPQbGPpg5P6ce2Hh34PNJEmSJEn7ITY2FoCioqKAk6gm2PVzsuvnZn+55rgkSTVdr9GwfSPMvgcmXw/106HjsKBTSZIkSdJei4uLIzk5mU2bNhEfH09MjHN6tWdlZWVs2rSJ5ORk4uIOrN62HJckqTbofyNsWwfvPA3/GQ0X/Bcy+gadSpIkSZL2SigUolmzZqxYsYJVq1YFHUfVXExMDBkZGYRCoQN6HstxSZJqg1AosrzKjk3w8WR4/ky4eBo0OSLoZJIkSZK0VxISEmjfvr1Lq+hHJSQkVMinCyzHJUmqLWLjIpt0PnMqfL4A/nk6XDIDUg8NOpkkSZIk7ZWYmBjq1asXdAzVES7eI0lSbZKQDOf8Cw5qD3mfwz9HQsHWoFNJkiRJklTtWI5LklTbJDeG8/4T2Zhz4/vwr/OgZGfQqSRJkiRJqlYsxyVJqo0atYRzX4KEBrDyDZjwf1BWFnQqSZIkSZKqDctxSZJqq2Zd4aznICYe3p8A026CcDjoVJIkSZIkVQuW45Ik1WZtToDhj0eO5z8Ocx8JNo8kSZIkSdWE5bgkSbVdl5Ew8M7I8au3wLsvBptHkiRJkqRqwHJckqS64JgrIfPKyPF/r4BlM4PNI0mSJElSwCzHJUmqKwbcDkeOhLIS+PcFsHZJ0IkkSZIkSQqM5bgkSXVFTAyc9ii0Ph6KtsNzI+GrFUGnkiRJkiQpEJbjkiTVJXGJcOZzkN4FdmyCf46AHZuDTiVJkiRJUpWzHJckqa6plwrnvQRpGfDVcnjuDCjaEXQqSZIkSZKqlOW4JEl1UYOmcP54SGoMa9+BcaOgtDjoVJIkSZIkVRnLcUmS6qqD28M5/4a4JPh0Oky8CsLhoFNJkiRJklQlLMclSarLWvSCM56CUAwseQ5euyPoRJIkSZIkVQnLcUmS6roOg2HYw5HjN+6HhX8LNo8kSZIkSVXAclySJEHPC6H/TZHj7Ovhw4nB5pEkSZIkqZJZjkuSpIgTxkCPC4EwvDQaVuUEnUiSJEmSpEpjOS5JkiJCIRj6IHQYAqU74YUzYeNHQaeSJEmSJKlSWI5LkqRvxMbB6X+H5r2hMBf+eTrkfhF0KkmSJEmSKpzluCRJKi8hGc75FxzUHvI+h+dGQsHWoFNJkiRJklShLMclSdJ3JTeG8/4D9dNh4wfw4rlQXBh0KkmSJEmSKozluCRJ2rNGLeHclyChAax6EyZcCmWlQaeSJEmSJKlCWI5LkqTv16wrnPUcxMTDB/+FqTdBOBx0KkmSJEmSDpjluCRJ+mFtToDhj0eOFzwBcx8ONo8kSZIkSRXAclySJP24LiMh667I8au/h3dfDDSOJEmSJEkHynJckiTtncwrIPPKyPF/r4BlrwabR5IkSZKkA2A5LkmS9t6A26HLGVBWAv+6ANYuDjqRJEmSJEn7xXJckiTtvZgYOPVRaH0CFO+A586ArWuCTiVJkiRJ0j6zHJckSfsmLgHO/Cekd4Edm2DKmKATSZIkSZK0zyzHJUnSvquXCqc/CTFx8HE2fDI96ESSJEmSJO0Ty3FJkrR/mnSEPpdFjqf8CooLg80jSZIkSdI+sByXJEn7r/+N0KAZbFkBb/0x6DSSJEmSJO01y3FJkrT/EhvAwDsix288AFtWBZtHkiRJkqS9ZDkuSZIOzJGnQ8tjoaQQpv066DSSJEmSJO0Vy3FJknRgQiEYej+EYuGjSfDpjKATSZIkSZL0oyzHJUnSgWvSEfpeHjme8iso2RlsHkmSJEmSfoTluCRJqhgnjIH66fDVcjfnlCRJkiRVe5bjkiSpYtRLhYF3Ro7nPABbVwebR5IkSZKkH2A5LkmSKk6XkV9vzlkAU28KOo0kSZIkSd/LclySJFWcUAiG3Lfb5pyvBp1IkiRJkqQ9shyXJEkVK70T9LkscjzlBjfnlCRJkiRVS5bjkiSp4vW/cbfNOf8UdBpJkiRJkr7DclySJFW8eqkw8I7I8Zz73ZxTkiRJklTtWI5LkqTK0eUMaNkvsjnntF8HnUaSJEmSpHIsxyVJUuXYfXPODyfCMjfnlCRJkiRVH5bjkiSp8qR3hj7/Fzme/Cs355QkSZIkVRuW45IkqXL1vxFSmsBXn0HOn4NOI0mSJEkSYDkuSZIqW720b23OuSbYPJIkSZIkYTkuSZKqQtefQcYxUJzv5pySJEmSpGrBclySJFW+cptzvgLLZgadSJIkSZJUx1mOS5KkqtH0SOh9aeR4iptzSpIkSZKCZTkuSZKqzok3RTbn/HIZ5Pwl6DSSJEmSpDqs2pTj99xzD6FQiKuvvjp6rrCwkCuuuIKDDjqI+vXrc/rpp7Nhw4Zyj1u9ejVDhw4lOTmZJk2acMMNN1BSUlLumlmzZtGjRw8SExNp164dY8eOrYq3JEmSvq1eGgy8PXI85z7I/TzYPJIkSZKkOqtalOMLFy7kiSeeoGvXruXOX3PNNUycOJFx48Yxe/Zs1q5dy4gRI6LjpaWlDB06lKKiIt566y2efvppxo4dy+9+97voNStWrGDo0KGceOKJLFmyhKuvvppLLrmEadOmVdn7kyRJu+l6JmRkujmnJEmSJClQoXA4HA4ywPbt2+nRowePPvood9xxB927d+fhhx8mNzeXQw45hOeff56RI0cC8NFHH9GxY0dycnLo27cvU6ZMYdiwYaxdu5b09HQAHn/8ccaMGcOmTZtISEhgzJgxZGdn895770Vf86yzzmLr1q1MnTp1rzLm5eWRlpZGbm4uqampFf9NkCSprlm/FJ44HsJlcP7L0PbEoBNJkiRJkmqBfelyA585fsUVVzB06FBOPvnkcucXLVpEcXFxufNHHHEEGRkZ5OTkAJCTk0OXLl2ixThAVlYWeXl5vP/++9Frvv3cWVlZ0efYk507d5KXl1fuS5IkVaCmXb7ZnHPyDVBSFGweSZIkSVKdE2g5/uKLL/LOO+9w9913f2ds/fr1JCQk0LBhw3Ln09PTWb9+ffSa3YvxXeO7xn7omry8PAoKCvaY6+677yYtLS361aJFi/17g5Ik6fv1vwlSDoEvP4V5bs4pSZIkSapagZXja9as4aqrruK5556jXr16QcXYo5tuuonc3Nzo15o1a4KOJElS7ZPUEAbcFjme7eackiRJkqSqFVg5vmjRIjZu3EiPHj2Ii4sjLi6O2bNn88c//pG4uDjS09MpKipi69at5R63YcMGmjZtCkDTpk3ZsGHDd8Z3jf3QNampqSQlJe0xW2JiIqmpqeW+JElSJeh6FrToC8U7YNpvgk4jSZIkSapDAivHf/KTn7B06VKWLFkS/Tr66KM599xzo8fx8fHMnDkz+piPP/6Y1atXk5mZCUBmZiZLly5l48aN0WtmzJhBamoqnTp1il6z+3PsumbXc0iSpADFxMDQ+yEUAx+8DJ+9HnQiSZIkSVIdERfUCzdo0IAjjzyy3LmUlBQOOuig6PnRo0dz7bXX0rhxY1JTU/nFL35BZmYmffv2BWDgwIF06tSJ888/n3vvvZf169dz8803c8UVV5CYmAjAZZddxp///Gd+9atfcfHFF/Paa6/x73//m+zs7Kp9w5Ikac+adoFeP4cFT8CUX8FlcyEuIehUkiRJkqRaLtANOX/MQw89xLBhwzj99NM5/vjjadq0KePHj4+Ox8bGMmnSJGJjY8nMzOS8887jggsu4Lbbbote07p1a7Kzs5kxYwbdunXjgQce4G9/+xtZWVlBvCVJkrQnJ/46sjnn5k9g3qNBp5EkSZIk1QGhcDgcDjpEdZeXl0daWhq5ubmuPy5JUmVZ/Bz89/9BfApcuRDSDgs6kSRJkiSphtmXLrdazxyXJEl1SLezoUWfyOac028OOo0kSZIkqZazHJckSdVDTAwM+XpzzvfHw/JZQSeSJEmSJNViluOSJKn6aNYVjh4dOZ78KygpCjaPJEmSJKnWshyXJEnVy0m/geSDYfPHMP+xoNNIkiRJkmopy3FJklS9JDWCAbdGjmf9AfLWBptHkiRJklQrWY5LkqTqp9s50Ly3m3NKkiRJkiqN5bgkSap+YmJg6Nebc773H1gxJ+hEkiRJkqRaxnJckiRVT826wdEXR44n3wClxcHmkSRJkiTVKpbjkiSp+jrpZkg+CDZ9BPMfDzqNJEmSJKkWsRyXJEnVV1IjOHnX5pz3QN66YPNIkiRJkmoNy3FJklS9dT8XDjsaira7OackSZIkqcJYjkuSpOotJgaGPgCE4L2XYMUbQSeSJEmSJNUCluOSJKn6O7T7bptzXu/mnJIkSZKkA2Y5LkmSaoZym3M+EXQaSZIkSVINZzkuSZJqhuTGcPLvI8ez7nZzTkmSJEnSAbEclyRJNUf3877ZnPP1O4JOI0mSJEmqwSzHJUlSzRETA4Pujhy/+yJ8tSLYPJIkSZKkGstyXJIk1SwtekPbk6CsBN54IOg0kiRJkqQaynJckiTVPCfcGLl99wXYsjLQKJIkSZKkmslyXJIk1TwZfaDNic4elyRJkiTtN8txSZJUM/X/evb4kudhy6pgs0iSJEmSahzLcUmSVDNl9IU2/Z09LkmSJEnaL5bjkiSp5tq19viS52Dr6mCzSJIkSZJqFMtxSZJUc7XMhNYnOHtckiRJkrTPLMclSVLNtmvt8cXOHpckSZIk7T3LcUmSVLO1PAZaHw9lxfDGg0GnkSRJkiTVEJbjkiSp5tu19vjif8LWNcFmkSRJkiTVCJbjkiSp5mvVD1odF5k9/qazxyVJkiRJP85yXJIk1Q671h5/51nI/TzYLJIkSZKkas9yXJIk1Q6tjv1m9rhrj0uSJEmSfoTluCRJqj1OGBO5XezscUmSJEnSD7MclyRJtUfr46DlsVBaBG8+FHQaSZIkSVI1ZjkuSZJql+ja489A7hfBZpEkSZIkVVuW45IkqXZpfRy07OfscUmSJEnSD7IclyRJtU909vjTkLc22CySJEmSpGrJclySJNU+rY6DjGOcPS5JkiRJ+l6W45IkqfYJhb6ZPb7I2eOSJEmSpO+yHJckSbVT6+MhIxNKd8KbDwedRpIkSZJUzViOS5Kk2qnc7PGxkLcu0DiSJEmSpOrFclySJNVerU+AFn0js8fnOntckiRJkvQNy3FJklR7fXv2+Lb1gcaRJEmSJFUfluOSJKl2a9MfWvSBkkLXHpckSZIkRVmOS5Kk2q3c7PGnnD0uSZIkSQIsxyVJUl3Q5kRo3jsye3zuI0GnkSRJkiRVA5bjkiSp9tt99vjb/4BtG4LNI0mSJEkKnOW4JEmqG9qeBM17OXtckiRJkgRYjkuSpLqi3Ozxvzt7XJIkSZLqOMtxSZJUd7T9CRx2dGT2+Ft/DDqNJEmSJClAluOSJKnuCIWg/02R44V/h+0bg80jSZIkSQqM5bgkSapb2u2aPV7g2uOSJEmSVIdZjkuSpLpl97XHnT0uSZIkSXWW5bgkSap72p0Mh/WMzB537XFJkiRJqpMsxyVJUt0TCsEJX88eX/A32L4p2DySJEmSpCpnOS5Jkuqm9gPg0B7OHpckSZKkOspyXJIk1U3l1h539rgkSZIk1TWW45Ikqe5qPxAOPQqK8yHnT0GnkSRJkiRVIctxSZJUd5Vbe/xJ2LE52DySJEmSpCpjOS5Jkuq2w7OgWffI7PG3nD0uSZIkSXWF5bgkSarbdl97fMGTsOPLYPNIkiRJkqqE5bgkSdLhg6BZNyje4drjkiRJklRHWI5LkiTtvvb4/L86e1ySJEmS6gDLcUmSJIAOg6Fp169nj/856DSSJEmSpEpmOS5JkgTfWnv8r5D/VbB5JEmSJEmVynJckiRplw5DoGkXKNru7HFJkiRJquUsxyVJknYpt/b4E84elyRJkqRazHJckiRpd0cM3W32+F+CTiNJkiRJqiSW45IkSbsLheCEMZFjZ49LkiRJUq1lOS5JkvRtHYZCehco2gbzHg06jSRJkiSpEliOS5IkfVtMDJzwq8jxvMedPS5JkiRJtZDluCRJ0p4cMQzSj/x69vhjQaeRJEmSJFUwy3FJkqQ92X32+PzHoWBLsHkkSZIkSRXKclySJOn7HHEKNOkMO/OcPS5JkiRJtYzluCRJ0vcpt/b4Y84elyRJkqRaxHJckiTph3T8KTTp9PXs8ceDTiNJkiRJqiCW45IkST/kO7PHtwabR5IkSZJUISzHJUmSfkzHU+GQjrAz17XHJUmSJKmWsByXJEn6MTExcMINkeOFf4OSomDzSJIkSZIOmOW4JEnS3uj4U6jfFPI3w8eTg04jSZIkSTpAluOSJEl7IzYejjo3crxobKBRJEmSJEkHznJckiRpb/W4IHK7/HXYsjLQKJIkSZKkA2M5LkmStLcatYI2J0aO33km0CiSJEmSpANjOS5JkrQveo6K3C5+DkqLA40iSZIkSdp/luOSJEn7osMQSD4Ytq+HT6YFnUaSJEmStJ8sxyVJkvZFXMI3G3O+83SwWSRJkiRJ+81yXJIkaV/1uDBy++kM2Lom2CySJEmSpP1iOS5JkrSvDmoLrY4DwrD4n0GnkSRJkiTtB8txSZKk/RHdmPNZKCsNNIokSZIkad9ZjkuSJO2PI4ZBUmPI+wKWvRp0GkmSJEnSPrIclyRJ2h/x9aDb2ZHjRWMDjSJJkiRJ2neW45IkSfur59cbc34yDfLWBptFkiRJkrRPLMclSZL21yEdICMTwqWw+Lmg00iSJEmS9oHluCRJ0oHYtTHnO89AWVmgUSRJkiRJe89yXJIk6UB0OhXqpUHualj+WtBpJEmSJEl7yXJckiTpQMQnQdezIseLng42iyRJkiRpr1mOS5IkHahdG3N+PBm2bww2iyRJkiRpr1iOS5IkHaj0ztC8F5SVwBI35pQkSZKkmsByXJIkqSL0+Hr2+KKn3ZhTkiRJkmoAy3FJkqSKcOQISGgAW1bAyjeCTiM8qqs2AAAgAElEQVRJkiRJ+hGW45IkSRUhIQW6nhE5XjQ20CiSJEmSpB9nOS5JklRReo6K3H40CXZsDjSKJEmSJOmHWY5LkiRVlGbdoFl3KC2Cd18IOo0kSZIk6QdYjkuSJFWkXbPHFz0N4XCgUSRJkiRJ389yXJIkqSJ1GQnxKfDlp7DqraDTSJIkSZK+h+W4JElSRUpsAF1Ojxy/83SwWSRJkiRJ38tyXJIkqaL1GBW5ff9lyP8q0CiSJEmSpD2zHJckSapoh/WA9C5QuhP+9++g00iSJEmqQ8LhMEVr1rB9zpygo1R7cUEHkCRJqnVCIeh5IUy+HhaNhT7/FzknSZIkSRUsHA5TtHIl+QsXkr/wbfIXLqRk/XpCiYkcvnABMQkJQUestizHJUmSKkOXM2D6b2HTh/D5QmjRO+hEkiRJkmqBcDhM0bJl7Fi4MFKIv/02pZs2l78oPp56nTpRunkzMYceGkzQGsByXJIkqTIkNYTOw+Hd5yOzxy3HJUmSJO2HcFkZOz/5hPwFu5XhW7aUuyaUkEBS164k9+5Fcq9eJHXvTkxSUkCJaw7LcUmSpMrSc1SkHH9vPAy6G+qlBZ1IkiRJUjUXLi2l8MOPvl4mZSH5ixZRlptb7ppQvXokHdWd5F69SD76aJK6dSMmMTGgxDWX5bgkSVJladEbDjkCNn0U2Ziz98+DTiRJkiSpmgkXF1P4/vvRZVIK3llM2fbt5a6JSU4mqUePSBneqxdJR3Ym5FriB8xyXJIkqbKEQpHZ41NvhEVPQ69L3JhTkiRJquPKioooXLo0Mit8wULylywhnJ9f7pqYBg1I7tEjukxKvU6dCMVZ5VY0v6OSJEmVqeuZMOMW2LAU1r4Dh/UMOpEkSZKkKlRWWEjBu/+LLpNSsGQJ4Z07y10Tm5ZGUq+jSfl6Znhihw6EYmMDSlx3WI5LkiRVpuTG0OlUWPrvyOxxy3FJkiSp1ivZtIm8adPZNn06BYsXEy4uLjcee9BBJB99dHSZlMT27QjFxASUtu6yHJckSapsPS+MlONLX4KsOyGxQdCJJEmSJFWwkq++Ytv06eRNmUr+woVQVhYdi2vSJFqEJ/fuRULr1oRccjFwluOSJEmVrWU/OKgdfLkM3vtPZB1ySZIkSTVeyZYtbHv1VbZNmcqO+fOhtDQ6ltStGw0GD6LBiScSn5FhGV4NWY5LkiRVtlAIelwIM34Li8ZajkuSJEk1WGleHttenUnelCnsyMmBkpLoWL0jjyR18CBSBw0i/rDDAkypvWE5LkmSVBW6nwMzb4O1i2Hdu9CsW9CJJEmSJO2l0u3b2f7aa+RNnsL2uXNhtzXEEzt2JHXQIFIHDyIhIyPAlNpXluOSJElVIeVg6DgM3p8Q2Zhz2INBJ5IkSZL0A8p27GDbrFmRGeJz3iBcVBQdS2zfngaDB5E6aDCJbVoHmFIHwnJckiSpqvQcFSnHl46DgbdDQkrQiSRJkiTtpqyggO2z55A3ZQrbZ88mXFgYHUto3ZrUwYNJHTKYxHbtAkypimI5LkmSVFVaHQ+NWsGWlZGS/Kjzgk4kSZIk1XllO3eyfc4ctk2ZyrZZswjn50fH4jMyvinEDz/cTTVrGctxSZKkqhITE9mYc+atkaVVLMclSZKkQJQVFbHjzbnkTZ3C9pmvUbZjR3Qs/rDDSB0ymAaDBlGvUycL8VrMclySJKkqdT8XXr8TPl8AGz6A9E5BJ5IkSZLqhHBxMTtycsibMpVtr75K2bZt0bG4Zs2im2rW69LFQryOsByXJEmqSg3SocNg+HAivPM0DP5D0IkkSZKkWqvkyy/JX7CA7W++yfZXZ1Kamxsdi2vShAaDskgdNJik7t0IxcQEmFRBsByXJEmqaj1GRcrxd1+Ak38P8UkBB5IkSZJqh9KtW9mxcCH58xeQP38eOz9dVm489uCDSR04kNQhg0nq0cNCvI6zHJckSapqbU+EtAzIXQ0fvALdzgw6kSRJklQjlW7fTv7XZfiOBfPZ+eFHEA6XuyaxQweS+/SmwUknkdyrF6HY2IDSqrqxHJckSapqMbHQ4/zI2uOLxlqOS5IkSXupLD+f/EXvkL9gPjvmL6DwvfegrKzcNQlt25LSpzfJvfuQ3Kc3cY0aBZRW1Z3luCRJUhCOOg9m3Q2r34JNn8AhhwedSHVQQUkBuTtzKQuXUVpWSkm4hLJwGSVlkdvScGm549JwKaVl37r91vGux+9+HH3819eVlJXQMLEhfZr1oX2j9sSE/DizJEnas7KdOylYvIQd8+eRP38BBUuXQnFxuWviW2aQ0rsPyX36kNy7F/FNmgSUVjWN5bgkSVIQUg+F9lnwyZTIxpxZdwadSHXEztKdvPn5m2SvyGb2mtkUlRUFmqdxvcb0bdaXzEMzyWyWSXpKeqB5JElSsMJFRRQsXcqOeV+X4UuWEC4q//tK3KHNSOnTl+Q+vUnp04f4Zs0CSquaLhQOf2sRnir02GOP8dhjj7Fy5UoAOnfuzO9+9zsGDx4MQGFhIddddx0vvvgiO3fuJCsri0cffZT09G9+YV69ejWXX345r7/+OvXr1+fCCy/k7rvvJi7um95/1qxZXHvttbz//vu0aNGCm2++mVGjRu11zry8PNLS0sjNzSU1NbVC3rskSRIfT4UXzoSkxnDdRxCXGHQi1VKlZaUs3LCQycsn8+qqV9lWvC06FhcTR1wojtiYWGJCMcSF4ogJxRAbExs9jov55lxsaLev3R6zp8fvumb362NDkevWbFvDog2LKCgpKJe1TVqbaFneq2kvUuJTqvrbJUmSqlC4pITC999nx/wF5M+bR/7ixYQLyv9+EHfIIST37RtZKqVPH+KbNycUCgWUWNXdvnS5gc4cb968Offccw/t27cnHA7z9NNPc+qpp7J48WI6d+7MNddcQ3Z2NuPGjSMtLY0rr7ySESNGMHfuXABKS0sZOnQoTZs25a233mLdunVccMEFxMfHc9dddwGwYsUKhg4dymWXXcZzzz3HzJkzueSSS2jWrBlZWVlBvn1JklTXtTsZGhwK29bCR5PgyNODTqRaJBwO88GXH5C9IpupK6ayqWBTdCw9OZ0hrYcwpM0QOjTqENg/LotKi3h307vkrM1h3rp5vP/l+yzPXc7y3OU8/9HzxIXi6HpIV/oe2pfMZpkcefCRxMX44VdJkmqycGkphR99RP78BeTPn0/+229TtmNHuWtiGzcmuXdvUvr2Ibl3HxJat7IMV6UIdOb4njRu3Jj77ruPkSNHcsghh/D8888zcuRIAD766CM6duxITk4Offv2ZcqUKQwbNoy1a9dGZ5M//vjjjBkzhk2bNpGQkMCYMWPIzs7mvffei77GWWedxdatW5k6depeZXLmuCRJqjSv3wWz/wCtj4cLJwadRrXAytyVTF4xmckrJrMqb1X0fFpiGgNbDmRI6yH0SO9RLdf5zt2Zy4L1C5i3dh4563JYs21NufH68fXp1bRXdAmWlqkt/YeyJEk1QLi4mB3z5pE3KZtts2ZRlptbbjwmLY3kXkdH1g3v24fE9u39O177rcbMHN9daWkp48aNY8eOHWRmZrJo0SKKi4s5+eSTo9ccccQRZGRkRMvxnJwcunTpUm6ZlaysLC6//HLef/99jjrqKHJycso9x65rrr766u/NsnPnTnbu3Bm9n5eXV4HvVJIkaTdHnQez74UVc+DLz+CgtkEnUg20MX8jU1dMZfKKybz/5fvR8/Vi63FiixMZ0mYI/Q7tR3xsfIApf1xaYhoDWg5gQMsBAHy+7XNy1uWQszaH+evmk1eUx+trXuf1Na8D0CylGZmHZtK3WV/6NOtD43qNg4wvSZJ2Ey4ro+Cdd8jNzmbb1GmUbtkSHYtJSSH56KNJ7tOHlL59SOzQgVBsbIBpVVcFXo4vXbqUzMxMCgsLqV+/PhMmTKBTp04sWbKEhIQEGjZsWO769PR01q9fD8D69evLFeO7xneN/dA1eXl5FBQUkJSU9J1Md999N7feemuFvUdJkqTv1TAjsrzKshnwzjMwwN9BtHfyivKYuWom2cuzWbB+AWEiHwiNDcWSeWgmQ9sM5aQWJ5Ecnxxw0v3XvEFzzmhwBmccfgalZaV89NVH0bJ88cbFrNuxjvGfjmf8p+MB6Ni4Y3QJlh7pPUiMdR1/SZKqUjgcpvCDD8jLnkzelCmUrFsXHYtt3JjUQVmkDhlCUvfuhOICryWl4MvxDh06sGTJEnJzc3nppZe48MILmT17dqCZbrrpJq699tro/by8PFq0aBFgIkmSVKv1vDBSji95Dk78DcQlBJ1I1dTO0p3M+XwO2cuzmfP5HIrLiqNjRzU5iiGthzCw1cBaOYM6NiaWzgd3pvPBnbmkyyXkF+fzzsZ3ouuVf7LlEz786kM+/OpDnnrvKRJjE+nRpEe0LO/QuEO1XEpGkqTaYOfyFeRlZ5M3eTJFK1ZEz8fUr0+Dk08mdehQUjL7Woir2gn8JzIhIYF27doB0LNnTxYuXMgjjzzCmWeeSVFREVu3bi03e3zDhg00bdoUgKZNm7JgwYJyz7dhw4bo2K7bXed2vyY1NXWPs8YBEhMTSUx0lokkSaoihw+C+umwfQN8MgU6nRp0IlUjJWUlLFi/gMnLJzNz9Uy2F2+PjrVr2I6hbYYyqNUgmjdoHmDKqpccn8yxhx3LsYcdC8Dmgs3MWzcvUpavncfGgo2RWebrcniIh2hcrzF9mvbhmMOO4eSMk6mfUD/gdyBJUs1WvG4deZMnk5udzc4PPoyeDyUmUr9/f1KHDqH+CScQY8emaizwcvzbysrK2LlzJz179iQ+Pp6ZM2dy+umnA/Dxxx+zevVqMjMzAcjMzOTOO+9k48aNNGnSBIAZM2aQmppKp06dotdMnjy53GvMmDEj+hySJEmBi42PrD3+xgOw6GnLcREOh3lv83tkr8hm6oqpfFn4ZXSsWUozhrQewpA2Qzi80eEBpqxeDk46mGFthjGszTDC4TDLc5dHy/KF6xfyVeFXTFk5hSkrp3DX/LsY0HIAw9sNp2d6Tzf8kiRpL5V89RV5U6eSlz2ZgkWLvhmIjSWl3zGkDR1K/Z/8hNj6/k9o1QyhcDgcDurFb7rpJgYPHkxGRgbbtm3j+eef5w9/+APTpk1jwIABXH755UyePJmxY8eSmprKL37xCwDeeustILKJZ/fu3Tn00EO59957Wb9+Peeffz6XXHIJd911FwArVqzgyCOP5IorruDiiy/mtdde45e//CXZ2dlkZWXtVc592eFUkiRpv3y1Av7YHQjBVe9Co5ZBJ1IAlucuZ/LyyUxeMZk129ZEzzdMbEhWqyyGtB5C9ybdXR5kHxWXFvO/zf8jZ20O01dNZ0XuNx/3bpnaktPancZP2/6UJslNAkwpSVL1VLp9O9tmvEpedjY7cnKgtDQ6lnz00aQOG0qDrCziGjUKMKX0jX3pcgMtx0ePHs3MmTNZt24daWlpdO3alTFjxjBgQGR3+sLCQq677jpeeOEFdu7cSVZWFo8++mh0yRSAVatWcfnllzNr1ixSUlK48MILueeee4jbbQ2jWbNmcc011/DBBx/QvHlzfvvb3zJq1Ki9zmk5LkmSqsQzp8Hy1+H4G+Ckm4NOoypSWFLIvz/+N5OWT+LDr775SHJSXBInZZzEkNZDyDw0k/iY+ABT1h7hcJh3N73Ly8teZsqKKeSX5AMQE4rhuMOOY3i74Rzf/HjiY/1+S5LqrrLCQrbPmk1edjbbZ88mXFQUHavXuTOpQ4eSOmQw8bt1dFJ1USXleFFRERs3bqSsrKzc+YyMjP15umrNclySJFWJ9yfAuFHQoBlc/R7EVrsV8FTB5q+bz205t7F622oA4kJx9DusH0NaD6F/i/4kxycHnLB2yy/OZ/qq6Uz4dALvbHwner5xvcac0uYUhrcfTtuGbQNMKElS1QkXF7MjJ4e87Gy2vTqTsh07omMJbdqQOnQIqUOGkNi6dYAppR9XqeX4p59+ysUXXxxd2mSXcDhMKBSidLePVtQWluOSJKlKlBTBgx0hfzOc9QIcMSToRKokWwu38sCiB3h52csANElqwqVdLyWrVRYN6zX8kUerMqzIXcHLy17mlc9eYXPB5uj5rod0ZUS7EWS1ynITT0lSrRMuK6PgnXfInTSJbdOmU7plS3Qs7tBmpA0ZQurQoSQecYR7dKjGqNRyvF+/fsTFxXHjjTfSrFmz7/yH0a1bt31PXM1ZjkuSpCoz/bfw1h+hfRac+++g06iChcNhpqyYwh8W/oGvCr8iRIgzO5zJVT2usnitJkrKSnjzizcZ/+l45nw+h9JwZPJPUlwSA1sOZHj74fRo0sOCQJJUY4XDYXZ++CG5k7LJmzyZkvXro2OxjRuTOmgQqcOGktS9O6EY9zlRzVOp5XhKSgqLFi3iiCOOOKCQNYnluCRJqjKbl8Gfe0IoBq5eCmnNg06kCvLF9i+4Y94dvPnFmwC0a9iOWzJvoXuT7gEn0/fZXLCZiZ9NZPyn41mZtzJ63k08JUk1UdHnn5M3aRK5EydR9Nln0fMx9evTYMAAUocOJaVvH0JxLu2nmq1Sy/FevXrx0EMPceyxxx5QyJrEclySJFWpscNg5RvQ/ybof2PQaXSASspKeP7D5/nzkj9TUFJAfEw8l3a9lNFHjnbTxxpi1yaeE5ZNYMqKKRSUFAAQG4rl2MOOZXj7rzfxdNNUSVI1U7JlC9umTSP3lYkUvPPN/hqhhATqn3giqcOGUv/444lJTAwwpVSxKrUcf+2117j55pu566676NKlC/Hx5X8BrI3lseW4JEmqUktfgv+MhtTmcPX/ICY26ETaTx999RG3vHULH3z5AQA9mvTglmNuoU1am4CTaX/lF+czbeU0JiybwOKNi6PnG9drzE/b/pTh7YbTpqF/vpKk4JQVFrL99dfJfWUi2998E4qLIwOhEMl9+pB2yik0GDiA2AYNgg0qVZJKLcdjvl5r6Ntr7LkhpyRJUgUpLoQHj4CCLXDOODh8YNCJtI8KSgp47N3HeOb9ZygNl9IgvgHXHn0tI9qPICbk2p21xfLc5ZFNPJe9wpeFX0bP79rEc1DrQaTEpwSYUJJUV4RLS8mfP5/ciZPYNn06ZTt2RMcSO3Yk7ZRTSB06hPj09ABTSlWjUsvx2bNn/+D4CSecsC9PVyNYjkuSpCo39dcw7y9wxDA467mg02gfvLX2LW7PuZ3Pt38OwMCWA7mx940cknxIwMlUWYrLinnz8zcZv2w8b3z+xnc28RzRfgRHNTnKTTwlSRUqHA5T+MEH5E2cRF52NiWbNkXH4g89lNRhw0g7ZRiJ7dsHmFKqepVajtdFluOSJKnKbfoY/tIbQrFw7QfQoGnQifQjthRu4b6F9zFx+UQA0pPTubnvzfRv0T/YYKpSmws288pnrzDh0wnlNvFsldqK8zudz/B2w11rXpJ0QL53Y820NFIHDSLtp6eQdNRRhGL8tJrqpkovx7du3crf//53PvzwQwA6d+7MxRdfTFpa2v4lruYsxyVJUiD+MQhW58BJv4Xjrw86jb5HOBxm0vJJ3LfwPrbs3EKIEGcfcTa/7PFLl9Sow8LhMEs2LWH8p+OZtnJadBPPpilNueTISxjefjgJsQkBp5Qk1RQlW7awbepUcidO+u7GmiedRNopw6h/3HGEEvy7RarUcvztt98mKyuLpKQkevfuDcDChQspKChg+vTp9OjRY/+TV1OW45IkKRBLXoCXL4OGLeGXS8DZP9XOmm1ruGPeHby19i0A2jVsx++P+T3dDukWcDJVJzuKdzDh0wn8471/sKkg8pH39OR0RncZzYj2I0iMTQw4oSSpOiq3seYbb0BJSWQgFCK5bx/ShrmxprQnlVqOH3fccbRr144nn3ySuLg4AEpKSrjkkktYvnw5c+bM2f/k1ZTluCRJCkRxATzQAQpz4fwJ0PakoBPpayVlJTz7wbM8uuRRCksLSYhJ4LJulzHqyFHEx7hkhvassKSQ/3z6H/6x9B9sLNgIQJPkJlx85MWMPHykJbkk6ZuNNV+ZyLb/z959R0dV7l0c/84kk0Z6QkCKQgDpRYi0K0WRTqgCIkhViq8KFhQVBQsCioLoVaqAgtI70lFAEKkC0nvoLSGFhGQyM+8f8eZer+UyMJMzSfZnLVcyZ2bO2VnLFZKd5/yetWt/v7FmhfKEtNLGmiL/i1vLcX9/f/bs2UO5cuV+d/zgwYPExMSQmprqfGIPp3JcREREDPPdYNg+CSq0gU5fGZ1GgAPXDzB863AOxx8GoGbhmrxV5y3uC77P4GSSW6Tb0ll4bCFT9k/hSmpWSV7Qv2B2Se7n7WdwQhERyUn/c2PN2NisjTVLlzYwpUju4UyX6+3syYODg4mLi/tDOX727FmCdBuHiIiIiGtV75FVjh9eAcmXIUirhIySak3ln7/8k5mHZmJ32An2CeblmJdpW7otJpPJ6HiSi/h6+dKlXBc6lOnAomOLmPLrFC7dvMToHaOZ+utUelXsRceyHfH39jc6qoiIuFFmQgI35s8ncfGS322s6RUSQlDzZoTEamNNEXdzeuX4888/z6JFixgzZgx169YFYMuWLQwePJgOHTowbtw4twQ1klaOi4iIiKGmNoGzP8MjQ6H+YKPT5Es/nv+Rd396lws3LwDQvERzXqn5CpH+kQYnk7wgw5bB4uOLmbJ/ChdvXgQgwi+CXpV60fH+jgRYAgxOKCIirnTr4EHiZ84iaflyHBkZAJh8fQl85GFCYmMJfOghbawpchfcOlYlIyODwYMHM2HCBDJ/2wjAYrEwYMAARo0aha9v3puTp3JcREREDLV3DizqC8HFYNA+MHsZnSjfuJ52nQ92fMB3p74D4J4C9zC09lDqF6tvcDLJi6w2K0tOLGHK/imcTzkPQLhfOD0r9qRz2c4qyUVEcjGH1Ury2rXEz5xF2u7d2cf9KlYk7IkuBDVtildgoIEJRfIOt5bj/5KamsqJ3275KFWqFAEBefcHNZXjIiIiYijrLfi4PKTFw+PfQrkWRifK8xwOB0tOLGHMzjEkpidiNpl5otwTPPfAcyooxe2sdivLTixj0r5J2SV5mG8YPSr2oEu5Lvp/UEQkF8m8do2EuXO5MXsOmVey9pnA25vgpk0J69YV/2rVNJ5NxMVypBzPT1SOi4iIiOHWvgVbPoFSjeDJhUanydPikuJ456d3+PnSzwCUDSvL8LrDqRRZyeBkkt9Y7VaWn1jO5P2TOZt8FoBQ39DskryApYDBCUVE5K+k7d9PwsyZJH23EofVCoBXZCRhnToR2rkzlkJRBicUybtcXo63b9+e6dOnExwcTPv27f/2tQsX5r1f1lSOi4iIiOHiT8H4BwAHPL8HwqONTpTnZNozmX5gOhP2TiDdlo6vly8Dqg6ge8XuWMwWo+NJPpZpz2TFyRVM2jeJuOQ4AEJ8Q+heoTtPlHuCQB/dhi8i4gkcGRkkrV5D/MyvubV3X/Zxv6pVCO/WjeCmTTVLXCQHONPlet/OCUNCQrJv8QgODtbtHiIiIiI5LbwklG4Ex9fBzmnQ5F2jE+Updoed1ze/zsrTKwGodU8thtUeRvHg4gYnEwFvszdtSrehZXRLVp5ayaR9kziddJpP93zKjAMzeLLCk3Qt35UgnyCjo4qI5EvWK1e4MWcuCXPnYLt6LeugxUJIi+aEdeuGf+XKxgYUkb+ksSq3QSvHRURExCMcWQnfPg7+4fDiIbD4GZ0oT3A4HIzaPopvDn+Dt9mbt2q/RdvSbbUgRDyWzW5j5emVTNw7kdNJpwEI8gniyfJP0rVCV4J99DuLiIi7ORwObu3dS/zXM0laswZ+G53iXbAgoV0eJ6xTJ7wjIw1OKZI/uXXm+COPPMLChQsJDQ39w0Xbtm3Lhg0bnE/s4VSOi4iIiEew2+CTqpB4FtpNhKqPG50oT5i0bxKf7vkUgNH1RtMiWhueSu5gs9tYfXo1E/dN5GTiSQCCLEF0q9CNruW7EuIbYnBCEZG8x56RQdJ335Ewcxa3fv01+7j/Aw8Q/mQ3gho3xmTRODYRI7m1HDebzVy6dImoqN9vHHDlyhWKFi2K9be/lOUlKsdFRETEY2z6EDa8B8VqwlNrjU6T680/Op+3f3obgCE1h9C1fFeDE4k4z2a3sfbMWibsncCJxBMABFoC6Vq+K09WeFIluYiIC1gvXybh22+5MXcetvh4AEw+PgS3bElYt674V6xocEIR+Re3lOP79mVtJFCtWjU2bNhAeHh49nM2m41Vq1YxceJETp8+fefJPZTKcREREfEYyZdhbEWwW6HfZrinitGJcq31Z9bz4sYXsTvsPF35aZ6v/rzRkUTuit1hzy7Jj984DkABSwEGVB3AkxWexGwyG5xQRCR3cTgcpO3eTfzMmSSvWQs2GwDehQsT1qULoR0fw/s/+jER8QxuKcfNZnP23MU/e4u/vz+ffvopvXv3voPInk3luIiIiHiUeb3gwEKo0RNiPzE6Ta6049IO+q/tT4Y9g/Zl2jO8znDNGJc8w+6wsz5uPRP2TuBowlEAHir6ECMeGkG4n0ocEZH/xX7rFkkrVhA/cxbphw5lHw+IiSGsWzeCHm2EydvbwIQi8nfcUo6fOXMGh8NBdHQ027dvp2DBgtnP+fj4EBUVhZeX190l91Aqx0VERMSjnN4C01uAJQBeOgx+GpngjCPxR+i5qicp1hQeLv4wHzf8GG+zfsGVvMfusDPvyDw+2PEBGfYMovyjGFV/FA8WftDoaCIiHsl64QIJ387mxrx52G7cAMDk60tI61jCunbFr1w5gxOKyO1w68zx/EjluIiIiHgUhwM+rwNXD0HzD6FWX6MT5Rpnk8/SfWV3rqVdo3pUdSY2noift5/RsUTc6kj8EQZvGsypxFOYMNGvaj/6VemnPwqJiJC1wWbKxo0kLllCyobvwW4HwFKkCDE8hQ0AACAASURBVGFPdCGkQwe8w8IMTikizsiRcvzgwYPExcWRkZHxu+OtW7e+k9N5NJXjIiIi4nF+ngQrB0PBcvDMNtBIkP/petp1uq/sTlxyHGXCyjC92XSCffSzneQPqdZURm4fyeLjiwGoUagGo+qNonCBwgYnExHJeQ67ndSdO0latpyk1auxJyVlPxdQuzbh3boS+PDDmPLohASRvM6t5fjJkydp164d+/fvx2QyZc8f/9eMRttvmxPkJSrHRURExOPcSoSPyoP1JvRcASUeMjqRR0vJSKH36t4cij9E0cCifNX8K6ICooyOJZLjlp9czrs/vUtqZiqhvqG894/3aFC8gdGxRERyxK2jR0latozE5SvIvHgx+7h3VBTBrVoR2q4tvmXKGJhQRFzBmS7X6e3KBw4cSMmSJbly5QoBAQEcOHCATZs2ERMTww8//HCnmUVERETEGX4hUKVj1uc7phqbxcNl2DIY9P0gDsUfIsw3jAmPTlAxLvlWq+hWzI2dS/nw8txIv8GzG57lgx0fYLVZjY4mIuIW1kuXuD5lCifbtOVU6zZcnzyFzIsXMQcGEtKhPfdOn0bp7zdQ6JXBKsZF8iGnV45HRkayYcMGqlSpQkhICNu3b6ds2bJs2LCBl156iT179rgrq2G0clxEREQ80sV9MLEemC3wwgEIKmR0Io9js9t4ZdMrrDmzhgDvAL5s+iUVIysaHUvEcBm2DD7e9TGzDs0CoGJERT6s/yHFg4sbnExE5O7ZkpJIXrOGxKXLSN2xI2u/FgCLhcAG9QlpFUtgwwaY/bTviEhe5EyX6/QOLDabjaCgICCrKL9w4QJly5blvvvu48iRI3eWWEREREScd08VKFYTzm2HPV9B/cFGJ/IoDoeDkdtHsubMGrzN3ox7eJyKcZHf+Hj5MKTmEGoVrsXQLUM5cP0AHZd3ZHid4TQr2czoeCIiTvvXxppJS5eRsnEjjv/YI88/pgYhsa0JbtoEr9BQA1OKiKdxuhyvVKkSe/fupWTJktSqVYsPPvgAHx8fJk2aRHR0tDsyioiIiMhfebBPVjm+czo89CKYtXHUv0zYN4E5R+ZgwsTIh0ZSp0gdoyOJeJyH732YBRELeGXTK+y5sofBmwaz7eI2Xq35Kv7e/kbHExH5W3+3saZvmdIEx7YmpGULLEWLGphSRDyZ02NVVq9ezc2bN2nfvj3Hjx+nVatWHD16lIiICObMmcMjjzzirqyG0VgVERER8VjWW/BxeUiLh8e/hXItjE7kEeYemcu7294F4LWar/FE+ScMTiTi2TLtmXyx9wsm75uMAwelQ0vzYf0PKR1W2uhoIiJ/cOvIUZKW/8nGmoUKEdyyJSGtY/EtWxaTyWRgShExijNdrtPl+J+Jj48nLCwsz37TUTkuIiIiHm3Nm7B1PJR+FLotMDqN4daeWctLP7yEAwd9q/TluQeeMzqSSK6x7eI2Xtv8GtfSruHn5cerNV+lQ5kOefZ3PRHJPawXL5K0YgWJy5aT/h9jfc2BgQQ1bUJIbGsCHozB5KW76ETyuxwvx/M6leMiIiLi0eJPwvgHABM8vxvC8++oux2XdtBvbT+sdiuP3f8Yb9V+S6WeiJOupV3jjR/fYOuFrQA0K9GMt+q8RZBPkMHJRCS/sSUlkbR6NUnLlv/1xpoPN8Ts62tsUBHxKC4vx9u3b3/bF1+4cOFtvza3UDkuIiIiHm9mBzi+Duo+D03eNTqNIQ7HH6bXql6kWFNodG8jPmrwEV6awS5yR+wOO9MPTOfT3Z+S6cikWGAxPmzwIZUiKxkdTUTyOHtGBik//EDSsuWk/PADDqs1+7mAmBiCY2O1saaI/C1nutzb2pAzJCTEJcFERERExE1i+mSV43tmwsNvgMXP6EQ56mzSWfqv7U+KNYWYQjGMrj9axbjIXTCbzPSu1JsahWrwysZXOJdyjidXPsmg6oPoXqG77sgQEZe7dfgwN+bOI3H5cm2sKSI5RmNVboNWjouIiIjHs9tgXBVIOgftJkHVzkYnyjHX0q7RfWV3ziafpWxYWaY1m6bxDyIulJieyPCtw1kXtw6A+sXq894/3iPML8zgZCKS29lSbpL03QpuzJvPrf37s497FypEcKuWhMRqY00RcZ5mjruYynERERHJFTZ9CBveg2I14am1RqfJESkZKfRe3ZtD8YcoGliUr5t/TcGAgkbHEslzHA4Hc4/M5YMdH5BhzyAqIIrR9UYTUzjG6Ggikss4HA5u7d/PjXnzSFzxHY7U1KwnLBaCHnmE0I4dKVCntjbWFJE75tZyvGTJkn/7F7uTJ086c7pcQeW4iIiI5ArJl2FsBbBnQv8foXBloxO5VbotnWfWPcP2S9sJ9wvn6+Zfc2/wvUbHEsnTjsQf4eWNL3M66TRmk5n+VfvTt3JfjTESkf/JlphI4tJl3Jg3j/SjR7OP+5QoQWjHjoS0bYN3RISBCUUkr3D5zPH/NGjQoN89tlqt7Nmzh1WrVjF48GBnTyciIiIirhJUCMrHwoFFsGMqxI4zOpHb2Ow2Xtv8GtsvbaeApQBfPPqFinGRHFA2vCxzWs3h/Z/fZ8mJJXz+y+fsuLSDUfVGERUQZXQ8EfEwDoeDtJ07SZg3j+TVa3CkpwNg8vUlqGkTwjp2xD8mRmNTRMQwLhur8s9//pOdO3cybdo0V5zOo2jluIiIiOQap3+E6S3BUgBeOgx+ee9nF4fDwXvb3mPu0blYzBa+ePQLat1Ty+hYIvnOshPLeHfbu6RlphHmG8aIh0ZQr1g9o2OJiAfIjI8ncdFibsyfT8apU9nHfe+/P2uVeOtYvEJCDEwoInmZITPHT548SbVq1Uj6jx2F8wqV4yIiIpJrOBzweW24ehhajIGaTxudyOU+/+Vzvtj7BSZMjGkwhiYlmhgdSSTfOp14msGbBnM4/jAAPSr0YGD1gVi8LAYnE5Gc5rDbufnTT9yYN5/k9evBagXAFBBASMsWhD72GH5VqmiVuIi4nVvHqvyV+fPnEx4e7qrTiYiIiMidMJkgpjesfAV2TIEHn8o6lkfMOTyHL/Z+AcAbtd5QMS5isBIhJZjVYhYf7fyIbw5/w4yDM9h9ZTej64+meFBxo+OJSA6wXr5M4sKF3Ji/AOv589nH/SpXJrTjYwS3aIlXYAEDE4qI/DWny/EHHnjgd3/lczgcXLp0iatXr/L555+7NJyIiIiI3IGqj8O64Vmrx89shRL/MDqRS6w+vZoRP48AYEDVAXQu19ngRCIC4OPlw2u1XqPmPTV5a8tb7L+2n07LOjG09lBalGyhVaIieZAjM5OUTZu5MW8eKRs3gt0OgDkoiJDYWEI7dcSvXDmDU4qI/G9Ol+Nt27b93WOz2UzBggVp2LAh5fSNT0RERMR4fiFQuSPsngE7p+aJcvzniz/z2ubXcOCg0/2dGFB1gNGRROS/NLq3ERXCK/DKplf45eovDNk8hMXHF/N6rdcpGVLS6Hgi4gIZ585zY8F8EhcsJPPKlezj/jE1CH3sMYKbNsXs729gQhER57hs5nheppnjIiIikutc3AcT64HZAi8ehMAooxPdsYPXD9JrVS9SM1NpfF9jPqz/IV5mL6NjichfyLRnMmX/FCbvm0yGPQNvsze9Kvbi6SpP4++t0kwkt3FkZJC84XtuzJvHza1bs/Y3AbzCwghp25bQjo/hGx1tcEoRkX9z+4acNpuNRYsWcejQIQAqVKhAmzZt8PZ22Qhzj6JyXERERHKlKY/CuR3wyJtQ/2Wj09yRuKQ4nlz5JPG34qlZuCZfPPoFPl4+RscSkdtwNuksI7ePZPP5zQAUKVCE12q9RsPiDY0NJiK3Jf3UKW7Mm0/i4sXY4uOzjxeoW4fQjh0JbNQIs4/+TRYRz+PWcvzAgQPExsZy+fJlypYtC8DRo0cpWLAgy5Yto1KlSnee3EOpHBcREZFc6ZdvYXF/CCkOA/dCLlttfTX1Kk+ufJLzKecpH16eL5t+SaBPoNGxRMQJDoeDDWc3MGr7KC7dvARAw2INebXmqxQLKmZwOhH5M6m7d3Nt4kRubtyUfcy7YEFC2rcn9LEO+BTXZrsi4tncWo7XqVOHggULMmPGDMLCwgBISEigZ8+eXL16la1bt955cg+lclxERERyJest+LgcpCVAl9lQtrnRiW5bckYyvVb14kjCEYoHFeer5l8R6R9pdCwRuUOp1lQm7ZvEjIMzyLRn4uvlS98qfelZsafuBhHxAA6Hg5tbtnJ9wgRSd+7MOmg2E1ivHqGdOhLYoAGmPDotQETyHreW4/7+/uzcuZOKFSv+7vivv/7Kgw8+SFpamvOJPZzKcREREcm11gyFrZ9C6cbQbb7RaW5Lui2d/mv7s/PyTiL8Ivi6xdcUD9IqNZG84OSNk4z4eQTbL20HoERwCV6v9Tp1itQxOJlI/uSw20let47rEydx68ABAEwWCyHt2hHxVB987r3X4IQiIs5zpss1O3vy+++/n8uXL//h+JUrVyhdurSzpxMRERERd6rRK+vj8XUQf8rYLLfp/Z/fZ+flnQRaApnQeIKKcZE8JDo0milNpjCq3igi/SM5nXSavmv7MnjjYC7f/OPvmSLiHg6rlcQlSzgZ25rzzw/k1oEDmPz9Ce/Rg1Lr1nLPO2+rGBeRfMHpcnzkyJE8//zzzJ8/n3PnznHu3Dnmz5/PoEGDGD16NElJSdn/iYiIiIjBIkpBqUaAA3ZNMzrN/3Tw+kEWHlsIwNiHx1IuvJzBiUTE1UwmEy2jW7K07VK6le+G2WRm1elVtF7cmhkHZmC1W42OKJJn2dPTSfj2W040a86FV4eQceIE5qAgIgb0p/SG9RR6bQiWQoWMjikikmOcHqtiNv+7TzeZTEDWbKr/fmwymbDZbK7KaSiNVREREZFc7fAKmP0EBETACwfB4md0oj/lcDjos6YPOy7toGV0S0bVG2V0JBHJAYfjD/PetvfYe3UvAGXCyjC01lCqF6pucDKRvMOWcpMbc2Zzffp0bFevAeAVEUF4zx6EdemCV6A2vBaRvMOZLtfp3RS+//77Ow4mIiIiIgYo0xSCi0HSOTi4BKp2NjrRn9p4biM7Lu3Ax+zDwAcGGh1HRHJIufByfNX8KxYfX8zYXWM5lnCMHqt60KZUG16o8QIR/hFGRxTJtTITEkiYOYv4mTOxJyYC4H3PPUT06UPoYx0w+3nmH8xFRHKK0yvH8yOtHBcREZFcb+OH8P17ULwW9FljdJo/sNqttF/SntNJp+lTqQ+DagwyOpKIGODGrRuM2z2OBccWABDkE8Sg6oPoUKYDXmYvg9OJ5B7WK1eInzadhDlzcKSmAuBTogQRffsS0qolJh8fgxOKiLiPM13uHZXjN27cYOrUqRw6dAiAihUr0rt3b0JCQu4ssYdTOS4iIiK5XvJlGFsB7JnQ/0coXNnoRL/z7eFvef/n9wn3C2dFuxUE+uj2bpH8bO/VvYzYNoJD8b/9zhlRkTdrv0nFyIoGJxPxbBnnznF9yhQSFyzEYc2a3+9bvjyR/foS1LgxJi/9kUlE8j63luM7d+6kadOm+Pv7U7NmTQB27NhBWloaa9asoXr1vDcXTuW4iIiI5AnzesKBRVCjF8SOMzpNtuSMZFoubElCegJDaw2lcznPHPsiIjkr057JnCNz+GzPZ6RYUzBholPZTjz3wHOE+ObNhVkidyr9+HGuTZpE0orv4Lf93/yrVyeyfz8K1KuXvUeciEh+4NZyvF69epQuXZrJkyfj7Z01sjwzM5OnnnqKkydPsmnTpjtP7qFUjouIiEiecGozzGgFlgLw0mHw84yfa8buGsuXv35JyZCSLGy9EG+z09viiEgedi3tGmN2jmHFyRUAhPuF82KNF2ldqrUKP8n30vb/yvVJE0leuy77WIGHHiKyX18CHnzQwGQiIsZxaznu7+/Pnj17KFeu3O+OHzx4kJiYGFJ/m2WVl6gcFxERkTzB4YB/1oJrR6DFGKj5tNGJOJ9yntaLWpNhz+CzRz6jQfEGRkcSEQ+149IO3tv2HicTTwJQPao6Q2sPpUxYGYOTieQsh8NB6o4dXJ84iZtbtmQfD2rcmIh+/fCvpPFDIpK/OdPlmp09eXBwMHFxcX84fvbsWYKCgpw9nYiIiIjkFJMJHuyT9fmOqVllucHG7x5Phj2DWoVrUb9YfaPjiIgHe7Dwg8yPnc8LNV7A39uf3Vd203FZR8bsGMNN602j44m4ncPhIPmHHzjzRFfiuvfIKsa9vAhp04bo5cso9ul4FeMiIk5yuhzv3Lkzffr0Yc6cOZw9e5azZ88ye/ZsnnrqKbp06eKOjCIiIiLiKlUfB0sAXD0EcT8ZGmX/1f18d+o7TJh4KeYljUcQkf/J4mWhd6XeLGmzhEfvfRSbw8aMgzNovag1q0+vxskbo0VyBYfNRtLKlZxq155z/QeQtmcPJh8fwp7oQqnVqykyehS+pUsbHVNEJFdyeqDjmDFjMJlMdO/enczMTAAsFgsDBgxg1KhRLg8oIiIiIi7kFwKVH4PdX8GOKXBfXUNiOBwOxuwcA0BsqVjKR5Q3JIeI5E73BN7D2IfHsvncZkZuH8nZ5LO8vPFl6txTh9drvU6JkBJGRxS5a/aMDJKWLuX6lKlknD4NgDkggNAujxPRsyfeBQsaG1BEJA9weub4v6SmpnLixAkASpUqRUBAgEuDeRLNHBcREZE85cIvMKkBmC3w4kEIjMrxCOvPrGfQD4Pw8/JjWbtlFC5QOMcziEjekG5L58v9XzJl/xQy7BlYzBaervI0fSr1wcfLx+h4Ik6zJSdzY+5c4md8ReaVKwB4hYQQ1v1Jwrt2xSs01OCEIiKezW0bcp4+fZq1a9eSkZFBw4YNqVgxf8yyUjkuIiIiec7kRnB+JzR6C+q9lKOXttqstF3SlrjkOPpW6ctzDzyXo9cXkbwpLimO97e/z5bzWRsURodEM6zOMKoXqm5wMpHbY71yhYSvvybh29nYU1IA8C5UiPAePQjr3AlzgQIGJxQRyR3cUo5///33tGrVirS0NAC8vb358ssv6dat290n9nAqx0VERCTP+eVbWNwfQorDwL1g9sqxS888OJPRO0YT4RfBivYrKGDRL/si4hoOh4PVp1czcvtI4m/FA/DY/Y8xqPogQnxDDE4n8ufST50i/ssvSVy8BIfVCoBPqVJE9OlDSKuWmHx0B4SIiDPcUo4/9NBDREZG8sUXX+Dn58fQoUNZtGgRFy5ccEloT6ZyXERERPIc6y34uBykJUCXOVC2WY5cNjE9kZaLWpKYnsiwOsN47P7HcuS6IpK/JKYnMnbXWBYcWwBAhF8EQ2oOoWmJptr8VzxG2t69XJ8yleR16+C3asa/enUinnqKwIYNMJnNBicUEcmd3FKOh4aGsnXrVipUqABkzRwPDg7m8uXLRERE3H1qD6ZyXERERPKk1W/AT59B6cbQbX6OXHLMjjHMODiD0qGlmRc7D2+z0/vDi4jctp2XdvL2T29zOuk0APWK1mNo7aEUCSxibDDJtxwOBzc3b+b65Cmk7tiRfTzwkUeIeKoPAdU1BkhE5G450+Xe9p8hk5KSiIyMzH4cEBCAv78/iYmJd55URERERIwT0zvr4/F1kHDa7Zc7m3yWbw5/A8BLMS+pGBcRt4spHMOC1gt4puozWMwWNp/fTNslbZlxYAaZ9kyj40k+4rBaSVy6lFNt2nK2b7+sYtxiIaRdO6KXL6P45/9UMS4iYgCnfiNZvXo1ISH/ntNmt9tZv349v/76a/ax1q1buy6diIiIiLhPRCko9Qic2AA7p0Hjt916uU92f4LVbqVukbo8VPQht15LRORffLx8GFBtAE1LNuWdn95h1+VdjNk5hhUnVzCs7jAqRlQ0OqLkYfbUVG7Mn8/16dPJvHARAHNAAKGdOxPeozuWwoUNTigikr/d9lgV823MujKZTNhstrsO5Wk0VkVERETyrEPLYU5XCIiAFw+Bt69bLvPLlV94cuWTmDAxL3YeZcPLuuU6IiJ/x+6ws/j4YsbsHENyRjJmk5mu5bvybLVnCbAEGB1P8pDM+HgSZs4iYdYsbL/dce8VEUH4k08S1uVxvEK0QayIiLs40+Xe9spxu91+18FERERExMPc3wyCi0LSeTi4BKp0cvklHA4HH+78EIB2ZdqpGBcRw5hNZtqXaU/9YvX5YMcHrDy1kq8Pfs26M+sYWnso9YvVNzqi5HIZZ88SP206NxYuxHHrFgCWe+8londvQtq2weznZ3BCERH5T7e9cjw/08pxERERydM2fgDfj4DitaHPapeffvXp1by88WX8vf1Z0W4FBQMKuvwaIiJ34sfzP/Letvc4n3IegCb3NWFIzSH6PiVOu3XwINenTCVp1Sr4bXGhX8WKRDz9FEGNG2Py8jI4oYhI/uGWDTlFREREJI+q3h3M3nB2G1z69X+/3gkZtgzG7hoLQK+KvVQ4iYhHeajoQyxsvZCeFXviZfJizZk1tFnchrlH5mJ36O5p+XsOh4ObP/1EXJ+nONW+A0nffQd2OwX+8Q/unT6NEvPnEdysmYpxEREPpnJcREREJL8LKgzlWmV9vnOqS0/97eFvOZ9ynij/KHpU7OHSc4uIuEKAJYCXYl5idqvZVIyoSLI1mXe3vUvPVT05nnDc6HjigRw2G0mrVnH6sY7E9erNzS1bwGwmuGVLSi5cwL1Tp1Cgdm1MJpPRUUVE5H/QWJXboLEqIiIikued2gQzYsFSAF46DH53/zPPjVs3aLGoBckZybxT9x3alWnngqAiIu5js9v49vC3jN8znrTMNLzN3vSu1Ju+Vfri6+WeDYsl97DfukXi4sVc/3Ia1rg4AEx+foS2b0947174FCtmcEIREQGNVRERERERZ5WoB5H3g/Um7JvjklNO3DeR5Ixk7g+7n9alWrvknCIi7uRl9qJbhW4sabOEhsUakmnPZNK+SXRY2oHtF7cbHU8MYk9L49rkyRxv9CiXhr+NNS4Or5AQIp95htIb1lP4rTdVjIuI5FJOl+Nnz57l3Llz2Y+3b9/OoEGDmDRpkkuDiYiIiEgOMpkgpk/W5zu/hLu8ufBM0hlmH54NwMsxL+Nl1rxVEck97gm8h/GPjOfjhh9T0L8gZ5LO0GdNH97c8iY3bt0wOp7kEEdmJglz5nKiSVOufvQxtuvX8S5yD4Vef43SG9ZT8Pnn8A4PNzqmiIjcBafL8SeeeILvv/8egEuXLtG4cWO2b9/OG2+8wTvvvOPygCIiIiKSQ6o+DpYAuHIQ4n66q1ON2zWOTEcm9YrWo06ROi4KKCKSc0wmE43va8yStkvoXLYzJkwsPr6Y1otbs+zEMjShNO9yOBwkrVnDydjWXBo2jMyrV7EUKcI9I0dSevVqwrt3x1yggNExRUTEBZwux3/99Vdq1qwJwNy5c6lUqRJbt25l1qxZTJ8+3dX5RERERCSn+IdC5ceyPt9x5xtz7rq8i3Vx6zCbzLxY40UXhRMRMUaQTxBDaw/lq+ZfUTq0NAnpCbz+4+v0W9uPs0lnjY4nLnZz+3ZOP/44558fSMapU3iFhlLotSFEr1pJaLu2mCwWoyOKiIgLOV2OW61WfH2zNiJZt24drVtnzY8sV64cFy9edG06EREREclZ/xqtcnAJpFx1+u12h50xO8YA0KFMB0qHlXZlOhERw1SLqsbcVnN5/oHn8TH78NPFn2i3tB1T90/FarcaHU/u0q0jR4jr14+47j24tXcfJn9/Igb0p9TaNYT36IHZx8foiCIi4gZOl+MVK1ZkwoQJbN68mbVr19KsWTMALly4QEREhMsDioiIiEgOKlINitYAuxX2fOX021edWsWv138lwDuAZ6o944aAIiLGsXhZeLrK0yxss5BahWuRbktn3O5xPL78cfZd3Wd0PLkDGefOc+HVVznVth03N24CLy9CuzxOqdWriBo4EK+gIKMjioiIGzldjo8ePZqJEyfSsGFDunTpQtWqVQFYunRp9rgVEREREcnFHnwq6+PO6WC33fbb0m3pfLL7EwD6VO5DpH+kG8KJiBjvvuD7mNxkMiMeGkGobyhHE47S7btujN89XqvIc4nMhAQujxzJyebNSVyyFBwOgpo1I3r5Mu4ZNgxLVJTREUVEJAeYHHewi4jNZiMpKYmwsLDsY6dPnyYgIICoPPgPSFJSEiEhISQmJhIcHGx0HBERERH3sqbBR+Xg1g14Yi7c3/S23jZ1/1TG7R5HoYBCLGu3DH9vfzcHFRExXsKtBD7Y8QHLTy4HoGrBqoyuP5qigUUNTiZ/xp6aSvxXX3F9ylTsKSkABNSqRdTLL+FfubLB6URExBWc6XKdXjkOWTs379q1i4kTJ5KcnAyAj48PAQEBd3I6EREREfEkFn94oFvW5zum3NZb4m/FM2V/1msHVh+oYlxE8o0wvzBG1hvJh/U/JNASyN6re3ls6WOsPLXS6GjyHxxWKwmz53C8aVOujvsEe0oKvuXLU3zyZO6dPk3FuIhIPuXt7BvOnDlDs2bNiIuLIz09ncaNGxMUFMTo0aNJT09nwoQJ7sgpIiIiIjkppjf89BkcWwsJpyGsxN++/ItfviDFmkL58PK0jG6ZIxFFRDxJs5LNqFywMq9uepW9V/fyyqZX2HJ+C6/Xep0AixaSGcXhcJC8eg1Xx44l48wZACzFilFw4ECCW7bAZL6jNYMiIpJHOP2vwMCBA4mJiSEhIQF//3+vCGrXrh3r1693aTgRERERMUhEKYhuCDhg99d/+9KTiSeZd3QeAIMfHIzZpKJBRPKnooFFmd5sOv2q9MNsMrPkxBI6Le/EwesHjY6WL93c9jOnOz/O+UGDyDhzBq/wcAq98QalvltBSGwrFeMiIuJ8Ob5582aGDh2Kj4/P746XKFGC8+fPuyyYiIiIiBisRq+sj3u+BttfbzA3dtdYbA4bDYs35MHCD+ZQqJAHlwAAIABJREFUOBERz+Rt9ubZB55lapOpFAooxJmkM3T9riszDszA7rAbHS9fuHX4MHFP9yWuZ09u7duHKSCAyP/7P0qtWUP4k90w/VefISIi+ZfT5bjdbsdms/3h+Llz5wgKCnJJKBERERHxAGVbQIGCkHIZjq7605fsuLSDH87+gJfJixdqvJDDAUVEPFdM4RgWtF7Ao/c+SqY9kzE7xzBg3QCupV0zOlqelXHuHOcHv8Kpdu25uXkzeHsT9sQTlF6zmoLPPYtXYAGjI4qIiIdxuhxv0qQJ48aNy35sMplISUlh2LBhtGjRwqXhRERERMRA3j7/3phz57Q/PG132Plwx4cAdLy/I9Eh0TmZTkTE44X4hvBxw495s/ab+Hn5sfXCVjos7cDmc5uNjpanZMbHc+n99znRvAVJy5aBw0FwixaUWrGcwm+9iXdkpNERRUTEQ5kcDofDmTecO3eOpk2b4nA4OHbsGDExMRw7dozIyEg2bdpEVFSUu7IaJikpiZCQEBITEwkODjY6joiIiEjOiT8J4x8ATDDwl99tzLnsxDJe//F1Ai2BrGi/gnC/cMNiioh4uhM3TjB402COJRwDoFv5brxQ4wV8vDTi407Zb97k+owZxE/9EvvNmwAUqFuXgi++iH+liganExERozjT5TpdjgNkZmYye/Zs9u3bR0pKCtWrV6dr166/26AzL1E5LiIiIvnaV23h5PdQ7yVo9BYAaZlpxC6K5XLqZQZVH0Sfyn0MDiki4vnSbel8vPNjvjn8DQDlwssxuv5o3XnjJIfVSsK8eVz7/Ats17LG1PhVqEDBl14k8B//MDidiIgYze3leH6jclxERETytQOLYV4PCCwELxwALwuT9k3i0z2fUqRAEZa2W4qvl6/RKUVEco2NZzfy5pY3SUhPwN/bnyE1h9CudDtMJpPR0Tyaw24nedUqrnzyCdYzcQBY7r2XqEEDCWrWDJPZ6cmxIiKSBznT5XrfzgmXLl1K8+bNsVgsLF269G9f27p169tPKiIiIiKer1xLKBCVvTHntRJ1mLp/KgADqw9UMS4i4qQGxRswv/V8Xv/xdX6++DPDtg5jy/ktDKs7jGAfLcj6b47MTJJWruTahIlknDgBgFdEBJHPDCCsY0dMPhpNIyIid+a2Vo6bzWYuXbpEVFQU5r/5S6zJZMJms7k0oCfQynERERHJ99YNhx/HQqlGvFO6GvOOzqNSRCVmtZyF2aSVeiIid8LusDPt12l8tuczMh2Z3FPgHkbXH80DUQ8YHc0jODIySFy2jGuTJmWvFDcHBRHeswcRPXtiLlDA4IQiIuKJNFbFxVSOi4iISL7328acxy0WOhQrih07M5rNoHqh6kYnExHJ9fZf3c+rm1/lbPJZzCYz/av05+kqT+Ntvq2bvfMce3o6iQsXcm3yZDIvXATAKzSU8J49Cev6BF5BQQYnFBERT+bysSoiIiIiks+FR0P0w3x081fs2Hn03kdVjIuIuEjlgpWZFzuPEdtGsOzkMj7f+znbLm5jVL1R3BN4j9Hxcow9LY0bc+dyfeqXZF65AoBXZCQRvXsT1rmTVoqLiIjLOX0P7PPPP8/48eP/cPyzzz5j0KBBLgklIiIiIp5na+mH+DHAH2+Hg0HVnjU6johInlLAUoD3673P+w+9T4B3ALuv7KbDsg6sOb3G6GhuZ0u5yfUpUzj+aGMujxxF5pUreBcuTKGhQym9bi0RvXupGBcREbdwuhxfsGAB//jHP/5wvG7dusyfP98loURERETEs9jsNj66uhWAx5OSue/iAYMTiYjkTbGlYpkfO5/KkZVJzkjmpY0vMXzrcFKtqUZHczlbUhJXP/+cE40acWXMR9iuX8dStCiF336bUmtWE96tK2Y/P6NjiohIHuZ0OX79+nVCQkL+cDw4OJhr1665JJSIiIiIeJalJ5Zy9MYxgkwW+t1Igl3TjY4kIpJnFQ8uzozmM+hTqQ8mTCw4toDHVzzOkfgjRkdzicyEBK6MG8fxRxpxbfyn2BIT8SlRgntGjqTUqpVZI1R8fIyOKSIi+YDT5Xjp0qVZtWrVH46vXLmS6Ohol4QSEREREc+Rak3l0z2fAtCvfDdC7XY4sQESThsbTEQkD7OYLQyqMYhJTSZR0L8gpxJP0WVFF2YenInD4TA63h3JvHqVyx98yPFGj3J9wkTsKSn4lilNkY/GEL1iOaHt2mKyWIyOKSIi+YjTG3K++OKLPPvss1y9epVHHnkEgPXr1/PRRx8xbtw4lwcUEREREWPNODCDq2lXKRZYjC7Vn4VDm+Dk97D7K2j0ltHxRETytNr31GZB6wW8teUtfjj3A6N3jGbrha28+493ifCPMDrebbFeusT1qV9yY+5cHOnpAPhWKE9k//4EPfooJrPT6/ZERERcwuS4gz85f/HFF4wYMYILFy4AUKJECYYPH0737t1dHtATJCUlERISQmJiIsHBwUbHEREREckxV1Kv0GpRK9Iy0xjTYAxNSzSFA4thXg8ILAQvHAAvrfITEXE3h8PBt4e/5aOdH5FhzyDSP5IRD42gbpG6Rkf7SxnnznN98mQSFy7EYbUC4Fe1CpEDBhDYoAEmk8nghCIikhc50+XeUTn+L1evXsXf35/AwMA7PUWuoHJcRERE8qthW4ex8NhCqhasytfNv84qMmxW+LgC3LwCnb6GCq2Njikikm8ciT/Cq5te5UTiCQB6VezFsw88i4+X58zozjh9mmuTJpO4dClkZgIQEBND5DMDCKhTR6W4iIi4lTNd7h3du5SZmcm6detYuHBh9qyzCxcukJKScienExEREREPdCT+CIuOLQLg5ZiX/11meFngga5Zn2tjThGRHFU2vCzftvqWTvd3AmDagWm0X9qeTec2GZwM0o8d4/zLgznRoiWJCxdCZiYF6tblvq+/4r6ZX1Ogbl0V4yIi4lGcXjl+5swZmjVrRlxcHOnp6Rw9epTo6GgGDhxIeno6EyZMcFdWw2jluIiIiORH/db2Y+uFrTQt0ZQxDcb8/sn4UzC+GmCCgb9AWAkjIoqI5Gvrz6zn3W3vcv3WdQAaFGvAKw++wr3B9+ZojlsHD3JtwkSS16zJPhbYsCGR/fvhX61ajmYRERFx68rxgQMHEhMTQ0JCAv7+/tnH27Vrx/r1651PKyIiIiIeZ+v5rWy9sBVvszcDqw/84wvCS0L0w4Aja2NOERHJcY3ua8TydsvpWbEn3iZvNp7bSNslbflk9yekWlPdfv20ffs4238Ap9p3yC7Ggxo3puTCBRSf8IWKcRER8XhOl+ObN29m6NCh+Pj8fp5ZiRIlOH/+vMuCiYiIiIgx7A47Y3ePBeDxso9TPKj4n78wplfWxz0zs+aQi4hIjgv0CeSlmJdY0GYBdYvUxWq3MmX/FGIXx/Ldye+4i23G/lL6iRPE9XmK0506k/LDD2A2E9yyJdHLllLs0/H4Vajg8muKiIi4g9PluN1ux2az/eH4uXPnCAoKckkoERERETHOipMrOBx/mCBLEP2q9PvrF5ZtAQWiIOUyHFmZcwFFROQPokOimfDoBD55+BOKBhblSuoVXt38Kr1W9+JI/BGXXMNhtXJtwkROtW3HzS1bwMuLkHbtiF6xnKIfjcG3TBmXXEdERCSnOF2ON2nShHHjxmU/NplMpKSkMGzYMFq0aOHScCIiIiKSs9Jt6Xy651MAelfuTahf6F+/WBtzioh4FJPJxCP3PsLiNov5v2r/h5+XH7su76LT8k6M2DaCxPTEOz73rUOHONW5M1fHjcNhtVKgQX1KrVpJkZHv41uypAu/ChERkZzj9Iac586do2nTpjgcDo4dO0ZMTAzHjh0jMjKSTZs2ERUV5a6shtGGnCIiIpJfzDgwgzE7xxAVEMWKdivw8/b7+zdoY04REY91IeUCH+38iDVnsuaBh/qG8twDz9GhTAe8zF63dQ57RgbXPv+c61OmQmYmXiEhFHrjdYJjYzGZTO6MLyIickec6XKdLscBMjMzmT17Nvv27SMlJYXq1avTtWvX323QmZeoHBcREZH8IDE9kRYLW5CUkcQ7dd+hXZl2t/fGr9rCye+h3kvQ6C33hhQREaf9fPFnRm0fxfEbxwEoH16e12u9TrWov98wM+2XX7gwdCgZx08AENS0KYXfHIp3ZKTbM4uIiNwpt5fj+Y3KcREREckPPt75MdMOTKN0aGnmx86/7VWFHFwCc7tDYCF44UDWuBUREfEoVruVuUfm8s89/yTZmgxAq+hWvFjjRQoGFPzda+1paVz9ZDzxM2aAw4FXZCSF33yT4KZNjIguIiLiFGe6XKdnjgMcOXKEZ599lkaNGtGoUSOeffZZDh8+fEdhRURERMR4F1MuMuvQLABeqPHC7RfjoI05RURyAYvZQtfyXVnWbhnty7THhInlJ5fTalErpv06DavNCsDNn7dzsk1b4qdPB4eDkDZtKLV8mYpxERHJk5wuxxcsWEClSpXYtWsXVatWpWrVquzevZvKlSuzYMECd2QUERERETf77JfPyLBn8GDhB6lXtJ5zb/aywAPdsj7XxpwiIh4twj+Ct+u+zTctv6FyZGVSM1P5eNfHdJnblj0v9yeuRw+scXF4Fy5M8UkTKTJ6FF6hf7M5s4iISC7m9FiVUqVK0bVrV955553fHR82bBgzZ87kxIkTLg3oCTRWRURERPKyI/FH6LisIw4cfNvyWypFVnL+JNqYU0Qk17E77Cw9sZQ1s0fRZUkikVnTVvDu0Iro14bhFRhobEAREZE74NaxKhcvXqR79+5/ON6tWzcuXrzo7OlERERExGBjd43FgYNmJZrdWTEOEF4SSj0COGD3Vy7NJyIi7uFITKLm5J94bmZWMX4pzMTwJ8w8Xm4Dnx+bRlpmmtERRURE3Mrpcrxhw4Zs3rz5D8d//PFH6tVz8hZcERERETHUTxd+YsuFLXibvXn+gefv7mQ1emZ93DMTfptdKyIinilp9RpOtIolcclSMJkI79mT4ovmEVS7Dhn2DCbtm0Trxa1ZdXoVTt5wLiIikmt4O/uG1q1b8+qrr7Jr1y5q164NwLZt25g3bx5vv/02S5cu/d1rRURERMQz2R12xu4aC0Dnsp0pHlz87k743xtzVtDPgiIinibz2jUuvfseyatXA+BTqhRFRryHf7VqFAImF5rM+rj1fLjjQy7cvMDgjYOZV3geQ2oOoUxYGWPDi4iIuJjTM8fN5ttbbG4ymbDZbHcUytNo5riIiIjkRStOrmDI5iEUsBTgu/bfEe4XfvcnXfc2/Phx1oiVJxfd/flERMQlHA4HScuWcXnE+9gSE8HLi4i+TxM5YABmH58/vD4tM41pv07jy1+/JN2WjpfJi85lO/NMtWcI8Q0x4CsQERG5PW6dOW6322/rv7xSjIuIiIjkRRm2DD7d8ykAfSr1cU0xDlD9t71pTmyAhNOuOaeIiNwV68WLnO3fnwuvvIotMRHfCuUpOX8eUQMH/mkxDuDv7c8z1Z5hSdslPHrvo9gcNr45/A2xi2JZcHQBdoc9h78KERER13O6HBcRERGR3G/24dmcTzlPlH8U3Sp0c92JszfmRBtziogYzGG3kzB7DidbxXJz4yZMFgsFX3iBknPm4Fe+/G2do2hgUcY+PJZJjScRHRJNQnoCw38azhMrnmDPlT1u/gpERETc67bL8Z9++only5f/7thXX31FyZIliYqKom/fvqSnp7s8oIiIiIi4VlJGEpP2TwLgmWrP4O/t79oLaGNOERHDZcTFEderN5eGD8d+8yb+1apRcvEiIvv1xWSxOH2+OkXqML/1fAbHDCbQEsiB6wfovrI7z294npM3TrrhKxAREXG/2y7H33nnHQ4cOJD9eP/+/fTp04dHH32UIUOGsGzZMkaOHOmWkCIiIiLiOlP3TyUxPZFSIaVoU7qN6y/w3xtziohIjnHYbFyfPp2TrduQ+vPPmPz9KfTaEO6bNRPfUqXu6twWs4XuFbuzrN0yOpTpgNlk5vuz39NuaTuGbx3OldQrLvoqREREcsZtl+O//PILjRo1yn48e/ZsatWqxeTJk3nxxRcZP348c+fOdUtIEREREXGNSzcvMevQLAAG1RiEt9nb9RfxssADv41q2TXN9ecXEZE/lX7iBGee6MqVUaNx3LpFQK1aRC9dQniPHpi8vFx2nUj/SIbXHc6i1ot4uPjD2B12FhxbQMuFLRm/ezwpGSkuu5aIiIg73XY5npCQQKFChbIfb9y4kebNm2c/fvDBBzl79qxr04mIiIiIS3225zPSbenUKFSDBsUauO9C2phTRCTHOKxWrk2YyKm27UjbuxdzgQIUfvtt7p0+DZ/ixd123ejQaMY/Mp4ZzWZQtWBVbtluMXn/ZFosbMGsQ7OwarSWiIh4uNsuxwsVKsSpU6cAyMjIYPfu3dSuXTv7+eTkZCx3MLdMRERERHLG0YSjLD2xFIAXa7yIyWRy38X+c2POXTPcdx0RkXzu1sGDnOrUmavjxuGwWgls0IDoFcsJ69zJvd/n/0P1QtX5uvnXjGs4jhLBJUhIT2DU9lHELo7lu5PfYXfYcySHiIiIs267HG/RogVDhgxh8+bNvPbaawQEBFCvXr3s5/ft20epu5xfJiIiIiLuM27XOBw4aHxfY6oUrOL+C2pjThERt3FkZnL1n//kVMdOpB86hFdICEU+/IBiE77AUrhwjucxmUw0uq8Ri9os4s3abxLpH8n5lPO8uvlVuqzowraL23I8k4iIyP9y2+X4u+++i7e3Nw0aNGDy5MlMnjwZHx+f7Oe//PJLmjRp4paQIiIiInJ3tl/czubzm/E2eTOw+sCcuei/Nua8eUUbc4qIuFDGufOc6d6Da59+BjYbQU2bEr1iOSGxsTm2WvyveJu96VS2EyvareD/qv0fAd4BHLx+kKfXPE3/tf05En/E0HwiIiL/z959R1ddJWoYfs9JLxAIEFqAhN6VYkFAUZROCkWQjl1ARRQFuzgj2CuII0rvJSF0EAVxABVQejXUNFpISM8p949cc3WuoyAn7Jzke9ZikXUS8XXNiOHLzm//1hWP4xUrVuTbb78lNTWV1NRUoqOjf/f+xYsX88orr1zV33zixIncdNNNlClThpCQEKKiojh8+Pf/oczJyWHkyJFUqFCBwMBAevfuTUpKyu8+5tSpU3Tv3h1/f39CQkIYO3YsNpvtdx+zadMmWrZsiY+PD3Xr1mXGjBlX1SoiIiLirhxOB+/tfA+APvX7UKtsrevzN9bFnCIiLpe2YiXHo6LI3rULa2Ag1d5+m9APP8CzYkXTab/j7+XPozc8yupeqxnQcACeFk/+nfhv+q7oy/NbnicxI9F0ooiIyJWP478KCgrC4w9uuQ4ODv7dSfIrsXnzZkaOHMn27dvZsGED+fn5dOrUiczMzMKPeeqpp1ixYgWLFy9m8+bNJCYm0qtXr8L32+12unfvTl5eHlu3bmXmzJnMmDGDl19+ufBjjh8/Tvfu3bnzzjv5+eefGT16NA8++CDr1q272n98EREREbez7sQ69l/Yj79nwVBxXbUaWvCzLuYUEbkm9suXSXj2WRLHjsWRkYFfixaEx8YQ1LOH6bQ/VcGvAuNvGU9cVBxdwrrgxMmK+BX0iOnBOz++Q1pumulEEREpxSxOp9NpOuJX586dIyQkhM2bN3P77beTlpZGpUqVmDdvHn369AHg0KFDNGrUiG3btnHrrbeyZs0aevToQWJiIpUrVwZg6tSpPPfcc5w7dw5vb2+ee+45Vq1axb59+wr/Xv379+fSpUusXbv2L7vS09MJCgoiLS2NsmXLFs0/vIiIiEgRyLPnEREbQUJGAiNvHHn9x3GA2dEF43i7MXD31X2noYiIQNaun0gcO5b8hASwWqk4YgQVH30Ei6en6bSrtu/8Pt7f+T4/JP8AQBmvMjzQ7AEGNhqIr6ev4ToRESkJrmbLveqT40UpLa3gK8bBwcEA7Ny5k/z8fO6+++7Cj2nYsCE1a9Zk27ZtAGzbto1mzZoVDuMAnTt3Jj09nf379xd+zG9/jV8/5tdf4z/l5uaSnp7+ux8iIiIi7mjR4UUkZCRQ0a8iQxoPMROhizlFRP4Wp83GuU8mc3LwYPITEvAKDaXWnDlUGjXSLYdxgKYVmzKt0zSmdJxCvfL1uJx/mQ92fUCPmB7EHI3B7rCbThQRkVKk2IzjDoeD0aNH07ZtW5o2bQpAcnIy3t7elCtX7ncfW7lyZZKTkws/5rfD+K/v//V9f/Yx6enpZGdn/7+WiRMnEhQUVPijRo0arvmHFBEREbmOLudd5rM9nwEw4sYR+Hv5mwn53cWcq800iIi4mbwzCZwcPITznxRculk2oifhsTH4t2xhOu2aWSwW2oe2Z3GPxfyz3T+pElCFlKwUXt76Mn1W9OHbM99SjL7JXURESrBiM46PHDmSffv2sWDBAtMpjB8/nrS0tMIfp0+fNp0kIiIictWm75vOpdxLhAeFE103+q//gqLyu4s5Z5jrEBFxE2krVhRcuvnTT4WXblZ/6y08AgNNp7mUh9WDiDoRrIxeydOtnqasd1mOXTrGyI0juX/d/ew5t8d0ooiIlHDFYhwfNWoUK1eu5JtvviE0NLTw9SpVqpCXl8elS5d+9/EpKSlUqVKl8GNSUlL+3/t/fd+ffUzZsmXx8/P7fz0+Pj6ULVv2dz9ERERE3ElKZgqzD8wGYHTL0XhaDX/7/W8v5rx43GyLiEgxZb98mYSxz5I49tmCSzdbtiQ8NrbYX7p5rXw8fBjWdBire61meJPheFu92ZGyg4GrBzJm0xhOpp80nSgiIiWU0XHc6XQyatQoYmJi+PrrrwkPD//d+1u1aoWXlxcbN24sfO3w4cOcOnWKNm3aANCmTRv27t3L2bNnCz9mw4YNlC1blsaNGxd+zG9/jV8/5tdfQ0RERKSkmbJ7Cjn2HFqEtODOGneazoHyYVDnroK3d80ymiIiUhxl7fqJ41HRpK9YAR4eVHx8FLVmzcQ7tLrptOsmyCeIMa3HsDJ6JZF1IrFgYcPJDUTFRvHP7f/kfPZ504kiIlLCWJwGH+Q1YsQI5s2bx/Lly2nQoEHh60FBQYUnuh977DFWr17NjBkzKFu2LI8//jgAW7duBcBut3PjjTdSrVo13nrrLZKTkxk8eDAPPvggb7zxBgDHjx+nadOmjBw5kvvvv5+vv/6aJ554glWrVtG5c+e/7LyaG05FRERETDuWeozeK3rjcDqY3XU2N4bcaDqpwIE4WDS44PnjYw4UPG5FRKSUc9psnP90Kuc//RQcDrxCQ6n29lv4t3D/Z4tfqyOpR/hg5wdsSdgCgL+nP8OaDGNok6Hm7tEQEZFi72q2XKPjuMVi+cPXp0+fzrBhwwDIycnh6aefZv78+eTm5tK5c2emTJlS+MgUgJMnT/LYY4+xadMmAgICGDp0KJMmTcLzN7d3b9q0iaeeeooDBw4QGhrKSy+9VPj3+Csax0VERMSdjNo4is1nNnN3zbt5/873Tef8H3s+vN8EMlLg3lnQONJ0kYiIUXlnzpA49lmyf/oJgKDICCq/9FKJe7b4tfox+Ufe2/Ee+y7sA6CCbwVGthhJdN1o848NExGRYsdtxnF3oXFcRERE3MWPyT9y/7r78bB4EBMZQ3hQ+F//RdfTxgmw5d2CR6wMjjFdIyJiTNqKFSS/NgFHRgbWwECqvPoqQT26m84qtpxOJ+tOruOjXR9x+vJpAGoH1WZMqzHcHnr7fz18JyIipc/VbLnF4kJOEREREbl2TqeT93cWnBTvU79P8RvGAVoOKfhZF3OKSCn1Xy/d1DD+pywWC13CurA8cjnjbh5HOZ9yxKfFM+rrUTyw/gH2X9hvOlFERNyQxnERERGREmL9yfXsPb8XP08/Hr3hUdM5f0wXc4pIKaZLN6+dl4cXAxsNZFWvVQxvOhxvqzc/Jv9I/5X9GbdlHIkZiaYTRUTEjWgcFxERESkB8u35fLjrQwCGNxlORb+Khov+RKvhBT//NKfgOeQiIiWc02bj3MefcHLQIPITEvAKDaXWnNlUGjkSi6eemf13lPUuy5hWY1gRvYIetXsAsCp+FT1jevLejvdIz0s3XCgiIu5A47iIiIhICbD4yGJOXz5NBd8KDG0y1HTOn2vQFQIrQ+ZZOLzadI2ISJHKO3OGk4MGc37yZHA4CIqMIDw2Bv8WLUynlQjVAqsxsf1EFvRYwM1VbibPkcf0/dPptqwbcw7MIV9fhBURkT+hcVxERETEzWXkZTB191QAHrvhMfy9/A0X/QUPL2gxqODtnTOMpoiIFKW0uDiOR0aR/fPPWAMDqfbOO1R78008AgNNp5U4TSo0YVqnaUzuOJk6QXVIy03jzR/fJHJ5JOtOrMPpdJpOFBGRYkjjuIiIiIibm75/Oqm5qYSVDaNX/V6mc65MyyGARRdzikiJZL98mYRnxpL47HM4MjPxa9VKl25eBxaLhdtDb2dJxBJeafMKFXwrcPryaZ7Z/AyD1wzm57M/m04UEZFiRuO4iIiIiBs7m3WWWfsLLrZ8suWTeFm9DBddIV3MKSIlVNauXQWXbq5cWXDp5hOPU2vmDF26eR15Wj3pU78Pq3ut5rEbHsPP04/d53YzeM1gnvrmKU6mnzSdKCIixYTGcRERERE3NuXnKeTYc7ih0g10rNnRdM7VaTWs4GddzCkiJcD/Xbo5+PeXbo4YoUs3DfH38mfEjSNYFb2K3vV6Y7VY+erUV0TFRvHG929wMeei6UQRETFM47iIiIiIm4q/FE/MsRgAnm79NBaLxXDRVdLFnCJSQujSzeKtkn8lXr3tVZb2XEr76u2xOW3MPzSf7su6M23vNHJsOaYTRUTEEI3jIiIiIm7q/V3v43A6uKvGXbQIccMB5rcXc+6YbrZFRORvcDqdpC5axPGIyIJLN8uU0aWbxVjd8nWZcvcUpnV1nn6KAAAgAElEQVSaRqPgRmTkZ/Dhrg/pGduTuF/icDgdphNFROQ60zguIiIi4oZ2puxk0+lNeFg8eLLVk6Zz/r5fL+aM/0YXc4qIW8lPSeH0w4+Q/PIrOLKy8GvditqxMbp00w3cUvUWFvRYwBvt3qBKQBWSM5N54bsX6L+yP9uTtpvOExGR60jjuIiIiIibcTqdvLfzPQCi60VTO6i24aJroIs5RcTNOJ1O0lasJL5nBJlbtmDx9iZk3HPUmjULr+q6dNNdWC1WetbpyYqoFYxuOZpAr0AOXjzIQ+sf4rGvHuNo6lHTiSIich1oHBcRERFxM1+d+oo95/bg5+nHiBtGmM65drqYU0TchO3iRRKeHE3i2LE40tPxbdqU8JhlVBg2DItVf7x2R76evjzQ7AFW91rNgIYD8LR48l3Cd/RZ0YdXt77KuaxzphNFRKQI6b/eIiIiIm4k35HPh7s+BGBI4yFU8q9kuMgFdDGniLiByxs3Et8zgsvr14OnJxWfeJywBfPxqVPHdJq4QHnf8oy/ZTyxUbHcU+seHE4HS48upXtMd6b8PIWs/CzTiSIiUgQ0jouIiIi4kaVHlnIy/STBvsEMbzrcdI5r6GJOESnG7OnpJI4bz5mRo7BfuIBPvXqEL1pIpREjsHh6ms4TF6tVthbvdXiP2V1nc0OlG8i2ZfPp7k/pHtOdpUeW6tJOEZESRuO4iIiIiJvIzM/k092fAvDoDY8S4BVguMiFdDGniBRDmVu3Eh8RSVpsLFitVHjoQcKWLsG3cWPTaVLEbgy5kdldZ/PuHe9So0wNzmef59VtrzJkzRAOXzxsOk9ERFxE47iIiIiIm5ixfwYXcy5Ss0xN+tTvYzrHtX53MedMoykiIo6sLJInTODU/Q9gS07Gq1ZNas2ZQ8jTT2P19jadJ9eJxWKhU1gnlkcuZ2zrsQR4BbD73G76rezHezve06NWRERKAI3jIiIiIm7gXNY5Zu4vGI2fbPkkXlYvw0VF4LcXc9ryjKaISOmVtWsX8VHRpM6bD0D5gQOpHRODf8sWhsvEFC8PL4Y0GcLyyOXcU+se7E470/dPJ3p5NJtPbzadJyIi10DjuIiIiIgb+HT3p2TbsmlesTn31LrHdE7RKLyY8xwcWWO6RkRKGUduLmffeYeTAweRf+oUnlWrUvPLL6jy0otY/f1N50kxUDmgMu91eI/JHSdTLaAaiZmJjPp6FE998xTJmcmm80RE5G/QOC4iIiJSzMWnxbPs6DIAnmr1FBaLxXBREdHFnCJiSPb+/Zzo04cL074Ap5Og6Ghqxy0n4LbbTKdJMXR76O3ERMYwvOlwPCwefHXqKyJjI5lzYA52h910noiIXAWN4yIiIiLF3Ic7P8TutNMhtAOtq7Q2nVO0fncxZ7zpGhEp4Zz5+ZybPJkT/fqTe/QYHhUqEDplMtUmvoFHmTKm86QY8/fyZ0yrMSzquYgbKt1Ali2LN398k/tW3cf+8/tN54mIyBXSOC4iIiJSjO07v4+vT3+N1WJldKvRpnOKXvkwqNux4O2tHxtNEZGSLffYMU7cN4DzH38CNhtlOnem9soVlLnrLtNp4kbql6/PrK6zeLnNy5TxLsPBiwcZsHoAE7+fSEZehuk8ERH5CxrHRURERIqxqbunAtA9vDt1ytUxXHOdtBtT8POu2ZB2xmyLiJQ4TrudC9NncLxXb3L27cMaFES1d96h+gfv41m+vOk8cUNWi5W+9fsSFxVHt/BuOJwO5h2aR2RsJOtPrMfpdJpOFBGR/0LjuIiIiEgxdeDCATaf2YzVYuXh5g+bzrl+wtpCWHtw5MN375uuEZESJO/0aU4OHcrZN9/EmZdHwO3tqR0XR1CP7iX3Pge5bir6VeTN29/ks3s+o2aZmpzNPsvTm59m5MaRJGQkmM4TEZE/oHFcREREpJj69dR41/CuhAWFmY253u54ruDnXbMgTYOCiFwbp9NJ6oKFxEdGkb1jJ1Z/f6q8PoEan32GV+UQ03lSwtxW7TaWRS7jkeaP4Gn1ZEvCFqJio/hy35fkO/JN54mIyG9oHBcREREphg5dPMQ3p7/BgoWHm5WiU+O/Cm8PtdqBPU+nx0XkmuSnpHD6oYdJfvVVnFlZ+N90E+Fxyynft69Oi0uR8fHwYVSLUSyNWErryq3Jsefw/s736beyHz+f/dl0noiI/C+N4yIiIiLF0L/2/AuALmFdqF2utuEaQzr8enp8JqQnmm0REbfjdDpJi4sjvmcEmd99h8XHh8rjx1Fz5gy8Q0NN50kpUTuoNl92/pJ/tP0H5XzKcTT1KIPXDOa1ba+RlptmOk9EpNTTOC4iIiJSzBxJPcKGkxsAStezxv9TWHuoedv/nh7/wHSNiLgR28WLJDzxJInPPocjPR3f5s0Jj1lG8NChWKz6Y7BcXxaLhci6kayIWkF03WgAlhxZQkRsBCvjV+rCThERg/RZgYiIiEgx8+up8Xtq3UPd8nUN1xhksfzf6fGdMyA9yWiOiLiHy199RXyPnlzesAE8Pak0+knC5s3Fp3Yp/S4cKTbK+ZZjQtsJTO88ndpBtbmYc5HxW8bz8IaHOZl+0nSeiEippHFcREREpBj55dIvrD+xHoBHmj9iuKYYCL8DarYBey78W6fHReS/y09JIeGZsZwZ9Tj2ixfxqV+f8MWLqPjoo1g8PU3niRRqXaU1S3ou4YkWT+Dj4cP2pO30Wt6LT3d/Sp49z3SeiEiponFcREREpBj5bM9nOHHSsWZHGgQ3MJ1jnsUCd/zm9PjlZKM5IlL8OHJyOP/pp/zSpSvpK1eC1UqFhx8mbMlifBs1Mp0n8oe8PLx4qPlDxETEcFu128hz5DHl5yn0juvNj8k/ms4TESk1NI6LiIiIFBPxafGsPb4W0Knx36ndAWrcArYc+PeHpmtEpJhwOp2kr11LfLfunPvwI5zZ2fi1aEHYwoWEjHkKq7e36USRv1SjbA2m3j2Vt25/iwq+FTiRfoL7193PC9+9wMWci6bzRERKPI3jIiIiIsXEtD3TcOKkQ40ONKqg046Ffnt6fMeXcDnFbI+IGJdz4AAnBw8mYfRT5Ccm4lmlCtXefYda8+bi16yp6TyRq2KxWOga3pW46Dj6NeiHBQtxv8QRERvBsqPLcDgdphNFREosjeMiIiIixcDJ9JOsOr4KgEebP2q4phiqcxeE3lRwenzrR6ZrRMQQ2/nzJL74Isd79yF7x04svr5UHDWKOmtWE9S9OxaLxXSiyN9W1rssL976InO6zaFB+Qak5abxytZXGLZ2GFvObNFILiJSBDSOi4iIiBQDn+/5HIfTQfvq7WlSsYnpnOLHYoEO4wre/vELyDhrtkdEritHXh4Xpk3jl85dSFuyFJxOyvboQZ01q6k0aiRWPz/TiSIu07xScxb0WMAzrZ/Bz9OPn87+xIiNI4iMjWTBoQVk5WeZThQRKTEsTqfTaTqiuEtPTycoKIi0tDTKli1rOkdERERKmNOXT9Mzpid2p5253ebSvFJz00nFk9MJ0+6GhB3QZhR0/qfpIhEpYk6nk4yvvyblzbfIP3UKAN+mTan8/PP4t2xhuE6k6CVnJjP7wGyWHV1GRn4GAGW8ytC7fm/ua3gf1QKrGS4UESl+rmbL1Th+BTSOi4iISFF6ZesrLDu6jLbV2jL1nqmmc4q3oxtgbh/w9IPReyGwkukiESkiOYePkDJpIlnbtgPgWakSlcaMISgyAotV3wQtpUtmfiaxx2KZd3Aepy4XfKHIarHSsWZHBjUaRIuQFnqskIjI/9I47mIax0VERKSoJGQk0GNZD2xOG7O7zubGkBtNJxVvTid8fhck7oLbnoBOr5suEhEXs6Wmcu6jj7i0cBE4HFi8vQkePpyKDz+ENSDAdJ6IUQ6ngy1ntjDn4By2J20vfL1RcCMGNx5M57DOeHt4GywUETFP47iLaRwXERGRojJh2wQWH1nMrVVv5fNOn5vOcQ9H1sO8vuDlD0/u0elxkRLCmZ9P6vz5nPtkMo70dADKdO5MyNhn8A4NNVwnUvwcTT3K3INzWRm/klx7LgAVfCvQr2E/7q1/LxX8KhguFBExQ+O4i2kcFxERkaKQlJFEt5hu2Bw2ZnSZQavKrUwnuQenEz6/ExJ/grZPwj0TTBeJyDXK+PZbUia9SV58PAA+DRtS+fnxBNx8s+EykeIvNSeVJUeWsODQAs5mF1xY7WX1olt4NwY1HkTD4IaGC0VEri+N4y6mcVxERESKwj+2/4OFhxdyc5Wb+aLzF6Zz3MvhtTC/H3gFFDx7PECn40TcUW58PCmTJpH57RYAPIKDqTT6Scr17o3Fw8NwnYh7yXfks+HEBuYcnMPe83sLX29duTWDGg+iQ2gHPKz690pESj6N4y6mcVxERERcLSUzha7LupLvyOfLzl9yU5WbTCe5F6cT/tUBkn6Gdk/B3a8aDhKRq2FPS+Pc5MmkzpsPNht4eRE8eDAVH3sUjzJlTOeJuL3d53Yz58AcNpzcgN1pB6B6YHUGNBxAdL1oynjr3zMRKbk0jruYxnERERFxtYnfT2TeoXm0DGnJjC4zsFgsppPcz+E1ML8/eAcWPHtcp8dFij2nzcalxYs59+FH2C9dAiDwzjup/NyzeIeFmY0TKYGSM5NZcGgBS44uIS03DQB/T3+i6kYxoNEAapWtZbhQRMT1NI67mMZxERERcaVzWefosrQLeY48Pu/0ObdWvdV0kntyOuFfd0DSbmg3Bu5+xXSRiPyJzG3bSHljIrlHjwLgXbcOlcePJ7BtW8NlIiVfti2blfErmXtgLr+k/QKABQu3h97OoMaDuKXKLfpCvYiUGBrHXUzjuIiIiLjSmz+8yZyDc7ix0o3M6jpLfxi9FodWwYIBBafHR+8F/2DTRSLyH/JOniTlrbfJ2LgRAI+gICo+8Tjl+/XD4ulpuE6kdHE6nWxL2sacA3PYkrCl8PW65eoyqNEgutfujq+nr8FCEZFrp3HcxTSOi4iIiKuczz5Pl6VdyLXnMvXuqbStrhOT18TphM/aQ/JeaP8MdHzJdJGI/C97RgYXpk7l4sxZOPPzwcOD8gMGUGnkCDzKlTOdJ1LqHU87zryD81j+y3KybdkAlPMpR9/6fenXoB+VAyobLhQR+Xs0jruYxnERERFxlXd3vMuM/TNoXrE5c7rN0alxVzi4AhYOAu8yMHqPTo+LGOZ0OkmLieXse+9hP38egIB27ag87jl86tY1XCci/yk9L52YozHMOziPxMxEADwtntwTdg/DmgyjcYXGhgtFRK6OxnEX0zguIiIirnAh+wJdl3Ul25bN5I6TuT30dtNJJYPDAZ/dDil74faxcNeLpotESi37pUskvvgiGV8VPELFOyyMkHHPEXjHHfpioEgxZ3PY2HR6E7MPzGbX2V2Fr99a9VaGNx1Om6pt9O+xiLiFq9lyrdepSURERKTUm3VgFtm2bJpUaEL76u1N55QcVivc8WzB299/BtmpZntESqmsH38kPiqajK82YvHyIuSZp6kdt5wyHTpoUBNxA55WT+6udTczu85kYY+FdAvvhofFg+1J23lkwyP0W9mPtcfXYnPYTKeKiLiMTo5fAZ0cFxERkWuVmpNK56WdybZl8/FdH9OhRgfTSSWLwwFT28HZ/XDHc3Dn86aLREoNp83G+Smfcn7qVHA48A4Lo/p77+LbWI9iEHF3CRkJzNo/i2VHl5FjzwEgNDCUoU2GElU3Spd3ikixpJPjIiIiIsXM7AOzybZl0yi4EXeE3mE6p+T57enx7VMh+5LZHpFSIj8xkZNDh3F+yhRwOAjq1YvwpUs0jIuUENUDqzP+lvGs77OeETeMoJxPOc5knOGf3/+Tzks789nuz0jLTTOdKSLyt+nk+BXQyXERERG5Fmm5aXRe2pnM/Ew+uPMDOtbsaDqpZHI4YGpbOHsAOoyHDuNMF4mUaOnr15P00ss40tKwBgRQ5bXXCOrR3XSWiBShrPwsYo/FMuvALBIyEgDw8/Sjd73eDG0ylCoBVQwXiojoQk6X0zguIiIi12Lyz5OZunsq9cvXZ3HPxVgt+ua9IrM/BhYPA58gGL0H/MqZLhIpcRw5OaRMmsSlBQsB8G3enOrvvoN3jRqGy0TkerE5bKw7sY7p+6ZzOPUwAJ4WT7rV7sawJsOoV76e4UIRKc30WBURERGRYiI9L525B+YC8EjzRzSMF7VGkVCpEeSmFVzOKSIulXPkCCf69i0cxis89CBhc+doGBcpZTytnnSv3Z3FPRcz9e6p3FzlZmxOG3G/xNErrhcjN45kZ8pOdB5TRIo7/elMREREpAjNPTiXy/mXqVuuLnfXutt0TslntcIdYwve3j4ZcvQcVBFXcDqdpC5YwIm+95J79BgelSpS44tphDz9NBYvL9N5ImKIxWKhbfW2fNH5C+Z3n889te7BgoVvz3zLsLXDGLxmMBtPbcThdJhOFRH5QxrHRURERIpIRl4Gsw/MBnRq/LpqHAUVGxQM49//y3SNiNuzX7pEwhNPkvzqazhzcwm4vT21Y2MJbNvWdJqIFCNNKzblvQ7vsSJ6BX3q98Hb6s3uc7sZ/c1oImMjWXZ0GXn2PNOZIiK/o2eOXwE9c1xERET+jn/t+Rcf//QxtYNqsyxiGR5WD9NJpcfeJbD0AfAtB6P3gq8+hxP5O7J27CBh7LPYkpLAy4uQp8cQPGQIFqu+2Ccif+589nnmHpzLwkMLuZx/GYAQvxAGNR5E3/p9CfQONFwoIiWVLuR0MY3jIiIicrUy8zPpvLQzablpTGo/ie61u5tOKl0cdphyK5w/Ane9CLePNV0k4lacNhvnp37G+SlTwOHAq1ZNqr/7Hn5Nm5hOExE3k5GXwdKjS5l1YBZns84CEOgVyL0N7mVQo0FU8q9kuFBEShpdyCkiIiJi2IJDC0jLTSOsbBhdwrqYzil9rB5w+7MFb2+bDLmXzfaIuJH8pCRODhvG+U8+AYeDoKgowpcu0zAuIn9LoHcgQ5sMZW2vtUy4bQLhQeFk5Gfw5b4v6by0M69ufZUTaSdMZ4pIKaVxXERERMTFsvKzmLl/JgAPN39Yj1MxpWkvqFAPslPhBz17XORKpG/YQHxUNNk7dmL196fa229RbdJEPAIDTKeJiJvz8vAiul40sZGxfHTnR9xY6UbyHfksPbqUiNgInvrmKfae22s6U0RKGY3jIiIiIi626PAiUnNTqVGmBl3Du5rOKb2sHnDH/54e3/qJTo+L/AlHTg5Jr71GwuNP4EhLw7dpU8JjYwjq2dN0moiUMFaLlTtr3snsbrOZ1XUWHUI74MTJV6e+YsDqAdy/7n6+PfMtDqfDdKqIlAIax0VERERcKNuWzfT90wF4qNlDeFo9DReVck17Q4W6kH0RfvjcdI1IsZR79Cgn+t7LpfkLAAh+4H7C5s3Fu2ZNw2UiUtK1CGnBxx0/JiYihsg6kXhaPPkx+UdGbhxJ9PJolh5ZSq4913SmiJRgupDzCuhCThEREblSs/bP4u0db1M9sDorolfgZfUynSS7F0DMI+AXDKP3gk+g6SKRYsHpdHJp4SJSJk7EmZuLR8WKVJs0icB2bU2niUgplZyZzJwDc1hydAmZ+ZkABPsG079hf/o36E953/KGC0XEHVzNlqtx/ApoHBcREZErkWPLoeuyrpzPPs+rbV6ld/3eppMEwG6DyTfBxXi4+zVoN9p0kYhx9rQ0kl56mcvr1wMQ0K4d1SZNxLNiRcNlIiKQkZfB0qNLmXtwLkmZSQD4ePgQUSeCwY0HEx4UbrhQRIozjeMupnFcRERErsTcg3OZ9MMkqgZUZVX0Krw8dGq82Ph5PsQ+Cv4VYfQe8NblglJ6Ze3cScIzY7ElJYGXFyFPPUXwsKFYrHrqpogUL/mOfL46+RUz989k/4X9AFiwcEeNOxjaeCitKrfCYrEYrhSR4uZqtlx99iMiIiLiArn2XL7c+yUADzZ7UMN4cdOsLwTXhqzz8OMXpmtEjHDa7ZybPJmTg4dgS0rCq1ZNwubNo8L9wzWMi0ix5GX1omt4V+Z3n8/0ztMLL+/cdHoTw9cN575V97Hm+BpsDpvpVBFxU/oMSERERMQFYo7GcDb7LJX9KxNVN8p0jvwnD09o/0zB2//+EPIyzfaIXGf5ycmcGjqM8x9/Ag4HZSN6Er50GX7NmppOExH5SxaLhdZVWvNxx4+Ji4qjb/2++Hj4sP/Cfp799lm6LevGrP2zyMjLMJ0qIm5Gj1W5AnqsioiIiPyZPHse3ZZ1IyUrhRdueYH+DfubTpI/YrfBJ60g9QR0+gfc9rjpIpHr4vLGjSQ9/wL2tDSs/v5UeeVlgiIjTWeJiFyTizkXWXh4IQsOLeBizkUAAr0C6VO/DwMbDaRKQBXDhSJiip457mIax0VEROTPLDq8iNe3v06IXwire6/Gx8PHdJL8N7tmQ9woCKgET+4Bb3/TRSJFxpGTw9m33iZ13jwAfJs0ofq77+AdFmY2TETEhXJsOayMX8msA7M4nnYcAE+LJ53COjG0yVAaV2hsuFBErjc9c1xERETkOsm35zNt7zQA7m92v4bx4u6G/lCuFmSeg53TTdeIFJmcgwc53qdP4TAePHw4YfPnaRgXkRLH19OXPvX7EBsZy+SOk7m5ys3YnDZWH19Nv5X9uH/d/Ww+vRmH02E6VUSKIZ0cvwI6OS4iIiL/zdIjS3l126tU9KvIml5r8PX0NZ0kf2XXLIh7HAJC4MndOj0uJYrT4eDi9Bmc/eADyM/Ho2JFqk18g8D27U2niYhcNwcuHGDm/pmsO7EOu9MOQHhQOEMaD6FnnZ46zCBSwumxKi6mcVxERET+SL4jn54xPUnISGBs67EMaTLEdJJcCXs+fNwSLp2CzhOhzQjTRSIukZ+UROK48WR9/z0AgR07UvX1CXgGBxsuExExIzkzmbkH57LkyBIy8gsu6wz2DaZ/g/70a9iPYF/9/ihSEmkcdzGN4yIiIvJHYo/F8tK/XyLYN5i1vdfi5+lnOkmu1M4ZsOJJCKxccHrcS//biXtLW7WK5Ncm4EhPx+LnR+Xx4yjXty8Wi8V0moiIcRl5GSw7uow5B+eQlJkEgI+HDz3r9GRI4yGEB4UbLhQRV9I47mIax0VEROQ/2Rw2ImIjOH35NE+3epphTYeZTpKrYcuDj1tB2ino8ibc+qjpIpG/xX75Msmvv0563AoAfJs3p/pbb+rZ4iIif8DmsPHVya+YuX8m+y7sK3z9jtA7GNpkKK0rt9YXFUVKAF3IKSIiIlLE1hxfw+nLpynvU557G9xrOkeulqc3tB9T8PZ370N+jtkekb8ha8cOjkdGFQzjVisVRzxG2Nw5GsZFRP4LT6snXcK7MK/7PKZ3nk6HGh2wYGHzmc3cv+5+BqwawMZTG3V5p0gponFcRERE5CrZHXb+tedfAAxpMgR/L13o6JZuHAhBNSAjGXbNNF0jcsWceXmcff8DTg4ZSn5iIl6hodSaM4dKTzyBxcvLdJ6ISLFnsVhoXaU1H9/1MXFRcdxb/158PHzYd2Efo78ZTe+43qyMX4nNYTOdKiJFTI9VuQJ6rIqIiIj81qr4VYzbMo4gnyDW9V5HgFeA6ST5u378AlaNgTJV4YmfwcvXdJHIn8qNjydx7LPk7N8PQFB0NJVfeB6PwEDDZSIi7u1C9gXmHpzL/EPzCy/vrB5Ynfub3k9k3Uh8PHwMF4rIldJjVURERESKyO9OjTceomHc3bUYBGWrw+Uk+Gm26RqR/8rpdJK6YAHHe/UmZ/9+rEFBVP/gA6pNfEPDuIiIC1Twq8ATLZ9gfZ/1PNnySYJ9g0nISOD17a/TdWlXZu6fSVZ+lulMEXExnRy/Ajo5LiIiIr9ae2ItYzePpYx3Gdb3Xk+gt0Ypt/fjNFj1dMFI/sRP4KmTYVK82C5cIOmFF8nYtAmAgNvaUHXiRLwqVzYbJiJSgmXbsll2dBnT900nJSsFgCCfIAY2GsiAhgMI8gkyXCgi/41OjouIiIgUAYfTwWe7PwNgcOPBGsZLihaDC4bx9ASdHpdi5/I33xAfEUnGpk1YvLwIGfccNaZN0zAuIlLE/Dz9GNhoIGt6reG1216jZpmapOWmMeXnKXRa0on3drzH+ezzpjNF5Brp5PgV0MlxERERAdhwcgNjNo2hjFcZ1vZZS1lvfV5QYvzwOax+RqfHpdhwZGeT8tZbXJq/AACfevWo9s47+Daob7hMRKR0sjvsbDi5gc/3fs6R1CMAeFu9ia4XzfCmw6keWN1woYj8SifHRURERFzM4XQwdfdUAAY2HqhhvKRpMbjgUs70BNg503SNlHLZ+/ZzvFfvwmE8eOhQwpYs1jAuImKQh9WDLuFdWNJzCZ/c9QnNKzUnz5HHwsML6b6sOy989wLxl+JNZ4rIVdLJ8Sugk+MiIiKy9vhaxn47lgCvANb1XqfnTJZEvz573CcIRv0AZaqYLpJSxmm3c2HaF5z7+GOw2fAMCaHapIkE3Hab6TQREfkPTqeTHSk7+HzP52xL2gaABQt317qbB5o9QJMKTQwXipReV7Plahy/AhrHRURESres/Cx6xvbkbNZZRtw4gsdueMx0khQFhx2mdYTEn6BxFNyrE+Ry/eSdSSBx3HNk79gJQJlOnajy2qt4li9vuExERP7K3nN7mbZ3Gl+f/rrwtbbV2vJQ84doVbmVwTKR0knjuItpHBcRESnd3t/5Pl/u+5LQwFBio2Lx8dDzqEuspD3wrw7gtMOARVC/s+kiKeGcTifpK1aQPOF1HBkZWP39qfzSSwRFRWKxWEzniYjIVTiWeowv9n3BmuNrsDvtALQMacmDzR6kXfV2+n1d5DrROO5iGsdFRERKr+Npx+kV1wubw8bHd31MhxodTCdJUVv/Emz9CIJqwIjt4BNoukhKKHtaGsmvTSB99WoA/Fq0oNpbb+Jdo4bhMhERuRanL0XdO4cAACAASURBVJ9m+r7pxB6LJd+RD0Cj4EY82OxBOtbsiIfVw3ChSMmmcdzFNI6LiIiUTk6nk0e/epStiVu5PfR2JnecbDpJroe8TJhyK1w6BbeOhC5vmC6SEihz+/ckjh+PLSkJPDyoOHIEFR9+GIunp+k0ERFxkbNZZ5m5fyaLjywm25YNQFjZMB5o9gDda3fHy+pluFCkZNI47mIax0VEREqnjSc3MnrTaLysXsRGxlKzbE3TSXK9HP0K5vYGixUe+hqqtTBdJCWEIy+Pcx9+yMUvp4PTiVetmlR/+238mjc3nSYiIkXkUs4l5h6ay9yDc7mcdxmAqgFVGd50ONF1o/H19DVcKFKyaBx3MY3jIiIipU+2LZvI2EiSMpN4uPnDPN7icdNJcr0teQD2LYEqzeGhb8BDJ3rl2uQeO0bC2GfJPXgQgHJ9+1J53HNYAwIMl4mIyPWQkZfBoiOLmLV/FhdyLgAQ7BvM4MaD6VWvF8G+wYYLRUoGjeMupnFcRESk9Pnkp0/4bM9nVA2oyvKo5fh5+plOkust4yx80hpy0qDTP+G2UaaLxE05nU5S58zl7Dvv4MzNxaN8ear+43XKdOxoOk1ERAzIseUQeyyW6fumk5iZCICX1YsuYV3o37A/zSo20+WdItdA47iLaRwXEREpXU6nnyZqeRR5jjze7/A+d9e623SSmLJrFsQ9Dl7+BZdzlq9lukjcjO3cORKff4HMLVsACGjfnmpv/BPPSpUMl4mIiGn5jnzWHF/DvIPz2H9hf+HrjYIbcV/D++ga3lWPXBH5GzSOu5jGcRERkdJl1MZRbD6zmTZV2/DZPZ/p5E5p5nTCjO5w8t9Q9x4YuBj0/we5Qpe//oakF17AnpqKxceHkLFjKT9wgH5PERGR/2fvub0sOLyAtcfXkufIA6Csd1mi60bTr0E/apStYbhQxH1oHHcxjeMiIiKlx+bTmxn19Sg8rZ4si1hGeFC46SQx7dwRmNoW7HnQ50to2tt0kRRzjuxsUt58k0sLFgLg07Ah1d95G5+6dQ2XiYhIcZeak0rMsRgWHV5EQkZC4ettq7flvgb30a56OzysHgYLRYo/jeMupnFcRESkdMi15xIVG8WZjDMMbzqcMa3GmE6S4mLTJNg0EQJCYNQP4FfedJEUU9n795P4zFjyjh8HIHj4cCo9NRqrt7fhMhERcSd2h53vEr5jweEFfJfwXeHr1QOrc2+De4muG015X30+IvJHNI67mMZxERGR0mHq7qlM/nkyIX4hrIhegb+Xv+kkKS5suTC1HZw/Aq2GQc8PTRdJMeO027k4fTpnP/wI8vPxDAmh2qSJBNx2m+k0ERFxc6fTT7Pw8EJijsWQnpcOgLfVmy7hXejfoD/NKjUzXChSvGgcdzGN4yIiIiVfQkYCkbGR5Npzeev2t+ga3tV0khQ3J7fC9P/9/8XwNVBLo6cUyE9KIvG5cWT98AMAZe65hyoTXsOzvE70iYiI62Tbsll7fC3zD83n4MWDha83qdCE/g370yWsiy7wFEHjuMtpHBcRESn5Rn8zmo2nNnJTlZv4otMXujBP/ljcE7BrJlRsAI9uAU8f00ViWPratSS9/AqO9HQs/v5UeeF5gnr10u8hIiJSZJxOJ3vP72XBoQWsPbGWfEc+AEE+QfSq24t7G9xLaJlQw5Ui5mgcdzGN4yIiIiXbvxP+zaNfPYqHxYPFPRdTr3w900lSXGWnwic3Q+ZZ6PA8dHjOdJEYYs/IJOUf/yAtNhYA3+bNqf7Wm3iHhZkNExGRUuVizkWWHV3G4sOLScxMBMCChXbV29G/YX/aVW+H1WI1XClyfWkcdzGN4yIiIiVXnj2P3nG9OZF+gsGNB/PsTc+aTpLibu8SWPoAeHjDY1uhor6YUtpk/fQTic8+R/7p02C1UuGRh6k0YgQWLy/TaSIiUkrZHXa+PfMtCw4vYGvi1sLXQwND6degH9H1ognyCTJYKHL9aBx3MY3jIiIiJdcXe7/gg10fUMG3AiuiV1DGu4zpJCnunE6Y2xeObYBa7WDYStAjNEoFp83G+amfcf7TT8Fux6taNaq9/Rb+rVqZThMRESl0Mv0kCw8vJPZYLJfzLgPg4+FD1/Cu9G/YnyYVmhguFClaGsddTOO4iIhIyZScmUxEbATZtmzeaPcGPev0NJ0k7iL1JEy5FfKzIOITaDnYdJEUsbzTp0kc+yzZP/8MQNmePany8kt4lNEX1EREpHjKtmWzOn41Cw4v4NDFQ4WvN6vYjP4N+9M5rDM+Hro/RUoejeMupnFcRESkZBq7eSxrT6ylZUhLZnSZoQv05Ops/RjWvwi+5WDUDgisZLpIioDT6SRt+XJSXv8HjsxMrIGBVHnlFYJ69jCdJiIickWcTie7z+1mweEFrD+xvvACz3I+5ega3pXIOpE0rtBYnwtLiaFx3MU0jouIiJQ8PyT9wAPrH8BqsbKoxyIaBDcwnSTuxm6Dz++E5D3QrC/0nma6SFzMnpZG8muvkb56DQB+rVpR7c038Q6tbrhMRETk77mQfYFlR5ex6MgikjOTC1+vE1SHiLoR9KjdgxD/EIOFItdO47iLaRwXEREpWfId+fSN68svab9wX8P7eP6W500nibtK2AXTOoLTAYOWQt27TReJi2R+/wOJ48ZhS0oCT08qjRpFhYcexOLhYTpNRETkmtkddrYnbWf5seV8ffprcu25AFgtVtpUbUNEnQjuqnkXvp6+hktFrp7GcRfTOC4iIlKyzNw/k3d2vEOwbzBxUXEE+QSZThJ3tnY8bJ8C5WrBiO3g7W+6SK6BMy+Pcx9/woVp08DpxLtWLaq98zZ+zZqZThMRESkSl/Mus+7EOuJ+ieOnsz8Vvh7oFUjnsM70rNOTliEt9dgVcRsax11M47iIiEjJcS7rHD1je5KZn8mE2yYQXS/adJK4u9wMmHwLpJ+Btk/CPRNMF8nflBt/nMRnniHnwAEAyvXtQ+Vx47AGBBguExERuT5Op58mLj6OFb+sICEjofD10MBQIupE0LNOT0LLhBosFPlrGsddTOO4iIhIyTF+y3hWxq+kecXmzO42G6vFajpJSoLDa2B+f7B4wMOboGpz00VyFZxOJ5cWLiJl0iScOTl4BAVR5fUJlO3UyXSaiIiIEQ6ng50pO4n7JY71J9aTZcsqfF+ryq2IrBNJp7BOBHjpC8hS/GgcdzGN4yIiIiXDzpSdDFs7DAsW5nefT5OKTUwnSUmyaAgcWA7VWsKDX4FVz6Z2B7aLF0l68SUyvv4agIDb2lB14kS8Klc2XCYiIlI8ZOVnsfHURuJ+ieP7pO9xUjAl+nr40rFWRyLqRHBLlVvw0Oc+UkxoHHcxjeMiIiLuz+aw0W9lP46kHqFP/T680uYV00lS0lxOhk9uhtw06PIm3Pqo6SL5CxlbtpD4/PPYz53H4uVFpTFjCB46BItV31EiIiLyR5Izk1kZv5Llx5ZzIv1E4euV/SvTo3YPIupGUDuotrlAETSOu5zGcREREfc37+A8Jv4wkSCfIFZGraScbznTSVIS/fgFrBoD3oEw8nsI0jM5iyNHbi5n332X1FmzAfCuW4fq77yDb8OGhstERETcg9PpZO/5vcT9Esea42tIz0svfF+zis2IqBNB1/CuuvhejNA47mIax0VERNzbhewL9IzpyeX8y7x060vc2+Be00lSUjkcML0LnP4eGnSD/vPAYjFdJb+Rc/gIic88Q+7RowCUHziQkLHPYPX1NVwmIiLinvLseWw+s5m4Y3FsSdiC3WkHwMvqRYcaHYioE0Hb6m3xsnoZLpXSQuO4i2kcFxERcW8v//tlYo7F0Ci4EfO7z9fzEKVonT0IU9uDIx/unQ2NI0wXCQUn3FLnzOXs22/jzMvDo0IFqr3xTwLvuMN0moiISIlxIfsCq4+vJu6XOA5dPFT4erBvMN3CuxFZN5KGwfpOLSlaGsddTOO4iIiI+9p9bjeDVg8CYHbX2dwYcqPhIikVNr4OW96BMlULHq/iq28pNsmelkbSiy9yecNXAAR26EDVf/4DzwoVDJeJiIiUXIcvHibulzhWxa/iQs6Fwtfrl69Pr3q96FG7hx67IkVC47iLaRwXERFxT3aHnQGrB3DgwgGi6kbxetvXTSdJaZGfA5/eBhd/gZsehO7vmi4qtbL37CHhqTHkJyRg8fIiZOxYyg8ehEWPuxEREbkubA4bWxO3svzYcr45/Q35jnwAvK3e3BN2D73r9aZ15db6b7O4jMZxF9M4LiIi4p4WHV7E69tfp4xXGVZEr6CCn06JynUUvxlmRQAWeGA91LjZdFGp4nQ6uThjJmfffRdsNrxq1KD6++/j17SJ6TQREZFSKy03jdXHV7P0yFIOpx4ufL1W2Vr0qteLyDqR+pxdrpnGcRfTOC4iIuJ+LuVcokdsD9Jy0xh38zgGNhpoOklKo9gR8PNcCGkMj3wLHrqI6nqwX7pE4vjnyfjmGwDKdOlC1dcn4FGmjOEyERERgYIvYh+4cIAlR5ewOn41WbYsADwtntxZ80561+tNm2ptsFqshkvFHWkcdzGN4yIiIu5nwrYJLD6ymPrl67Owx0I8rZ6mk6Q0yroIn7SGrAvQ8WVo/7TpohIv66efSBjzNLakpILHqIwfR/n77tO3aouIiBRTWflZrD2xlqVHlrLn/J7C16sFVCO6XjRRdaOoElDFYKG4G43jLqZxXERExL3sv7Cf+1behxMnM7rMoFXlVqaTpDTbvRBiHgYPHxixDSrUMV1UIjkdDi5On87Z9z8oeIxKrZqEvv8+vo0bm04TERGRK3Qk9QhLjyxlRfwKLuddBsBqsdK+ent61+tN+9D2OvQif0njuItpHBcREXEfDqeDwasHs+f8HrrX7s6k9pNMJ0lp53TC7GiI/wbC74Ahy0GnmF3KlppK4rhxZG7+FoCy3bpRZcJreAQGGi4TERGRvyPHlsOGkxtYenQpO1N2Fr5eya8SUXWj6FWvF6FlQg0WSnGmcdzFNI6LiIi4j5ijMby89WX8Pf1ZGb2SSv6VTCeJwMV4mNIGbDkQ/Rnc0N90UYmRtXNnwWNUUlKweHtT+YUXKHdvXz1GRUREpIQ4kXaCZUeXsfyX5VzMuVj4+q1Vb6V3/d7cVeMuvD28DRZKcaNx3MU0jouIiLiHtNw0ImIjuJhzkWdaP8PQJkNNJ4n8ny3vwcbXwC8YRu2AgAqmi9ya0+HgwufTOPfRR2C34x0WRvUPP8C3QQPTaSIiIlIE8u35fHP6G5YeXcq2xG04KZg0y/uUJ6JOBL3q96J2UG3DlVIcaBx3MY3jIiIi7mHi9xOZd2getYNqsyRiCV5WL9NJIv/Hng+f3QFn98MNAyD6U9NFbst24QKJz40j87vvACgb0ZOqr7yCNSDAcJmIiIhcDwkZCSw7uozYo7GczT5b+HrLkJb0rt+bTrU64evpa7BQTNI47mIax0VERIq/wxcPc+/Ke3E4HUzrNI1bqt5iOknk/zv9I3xxD+AsePZ47Q6Gg9xP5g8/kPj0M9jOncPi60uVl14kqFcvPUZFRESkFLL9D3v3Hd9Uvf9x/JXRJmnTppMuVpkKbkSvA1ygV3GAOK9exf27XrcoKIpcx8UN6lVxr+sWceFCUXGCwFVkyJ4t3W2atGmacX5/pLSgoKBtT8f7+Xj0cZKTk+Rdr3Dbt998vtEwXxV8xfQV05lTMIeoEQUgKS6JEb1GcEq/U+ifpk+VdTYqx5uZynEREZG2zTAMxnw4hoUlCzmm5zHce9i9ZkcS2bGZY+H7JyCtF/zjG4hzmZ2oXTAiEcoee4yy/zwM0SjxvXuTN+V+nP36mR1NRERE2oDimmLeXv02b658kwJ/QeP5PdL3YHS/0RybfyyJcfqUWWegcryZqRwXERFp295d/S43fnUjLruLd0a+Q3ZittmRRHasrhoePhB8hTDkWjhqotmJ2rxwWRkF111H7bffAeAZOZLsiTdjTUgwOZmIiIi0NVEjynebv2P6iunM3jibcDQMgMvu4q89/8rJfU9m78y99amzDkzleDNTOS4iItJ2+ev9nPDWCZQFyrhyvyu5cM8LzY4k8vuWvQuvng1WO1zyJWQNMDtRm1Xz3XcUjL2OSFkZFpeL7IkTSRk10uxYIiIi0g6UB8p5d/W7TF85nXXV6xrP53vyGdVnFCf0PoEMV4Z5AaVFqBxvZirHRURE2q57vr+H55c+T8/knkw/cTrxtnizI4nsnFfOgp/fg64HwPkfgdVqdqI2xYhEKHv4EcoefRQMA0ffPuRNmYKjTx+zo4mIiEg7YxgGC0sWMmPlDD5e/zGBcAAAm8XG0K5DObnvyRyadyh2q93kpNIcVI43M5XjIiIibdOqylWc8u4pRIwI04ZN45C8Q8yOJLLzvAWx8Sr1PhhxHwzWpx62CJWUUDj2OmrnzQPAc8posidMwOrSfHYRERH5c/z1fj5a9xFvrnqTRaWLGs9nuDI4sfeJjOwzknxPvokJ5c9SOd7MVI6LiIi0PYZhcOHHFzKvaB5HdT+KqUdMNTuSyK6b+xh8cD04kuGf8yA5x+xEpvN//TWF148jUl6OJSGBnH9NwnPCCWbHEhERkQ5oddVqZqycwbtr3qWirqLx/H5d9mNkn5Ec0/MYEuK0x0l7sytdrqmf3ZwzZw4nnHACubm5WCwW3nrrrW0eNwyDiRMnkpOTg8vlYtiwYaxcuXKbayoqKjjrrLNITk4mJSWFCy64AL/fv801ixYtYsiQITidTrp168bdd9/d4t+biIiItKyP1n3EvKJ5OGwOrht8ndlxRP6YwRdC3iAIVsN7V0MnXrdihMOUTJ3KxgsvIlJejqN/f/LfeEPFuIiIiLSY3im9GTt4LJ+c8glTD5/K0K5DsVqsLCxZyMRvJnLEa0dwyze38EPJD2h9ccdkajleU1PD3nvvzcMPP7zdx++++24efPBBpk2bxty5c0lMTOSYY46hrq6u8ZqzzjqLJUuWMGvWLN577z3mzJnDxRdf3Ph4dXU1Rx99ND169GDBggXcc889TJo0iccff7zFvz8RERFpGbWhWu6Zfw8AF+55IXnuPJMTifxBVhuc8CDY4mHFB/Ddo2YnMkWouJj1Y8ZQPu0xMAxSTj+dnq++gqOXPtIsIiIiLS/OFsdRPY7i4aMeZtYps7hyvyvpntSd2nAtb658k79/8HdGvj2SZxc/S1mgzOy40ozazFgVi8XCjBkzGDkytvO8YRjk5uZy7bXXMnbsWAC8Xi9ZWVk8++yznHHGGSxbtowBAwbw/fffs//++wPw4Ycfctxxx7Fp0yZyc3N59NFHmTBhAkVFRcTHxzboGj9+PG+99RY///zzTmXTWBUREZG2ZcqCKTy9+Gm6urvy1si3cNgcZkcS+XPmPQHvjwVrHFzwUWw1eSfh//LL2BiVykqsiYlk3/ovPCNGmB1LREREOjnDMFhQvIAZq2Ywa/2sxk087RY7Q7sOZVTfUdrEs41qN2NVfsvatWspKipi2LBhjec8Hg8HHngg3377LQDffvstKSkpjcU4wLBhw7BarcydO7fxmqFDhzYW4wDHHHMMy5cvp7KycrvvHQwGqa6u3uZLRERE2oa13rU8v/R5AMYfMF7FuHQMgy+EASdBNASvj4FAldmJWpwRClFy331svOhiIpWVOAbsTv70N1SMi4iISJtgsVjYP3t/7jj0DmafOptbDrqFvTL2ImyEmb1xNpfPvpzhbwxnyoIprPOuMzuu/EFtthwvKioCICsra5vzWVlZjY8VFRXRpUuXbR632+2kpaVtc832XmPr9/ilyZMn4/F4Gr+6dev2578hERER+dNC0RATvppAOBpmaNehHNbtMLMjiTQPiwVOfAhSekDVBnjnsg49fzy0eTPrzzmX8ieeBCD1b2fS8+WXie/Z09xgIiIiItvhjndzSr9TeHHEi8w4cQbnDDiHNGcaZYEynl78NCe8dQLnfnAub616i9pQrdlxZRe02XLcTDfccANer7fxa+PGjWZHEhEREeDRHx7lp7KfSIpP4ua/3Gx2HJHm5fTAqc/GRqssezc2aqUD8s+Zw9pRJxP43/+wut3kTZ1C9sSJWB36FIiIiIi0fX1S+3Dd4Ov45JRPmHL4lG028bz565s54rUjmPTNJG3i2U602aE42dnZABQXF5OTk9N4vri4mH322afxmpKSkm2eFw6HqaioaHx+dnY2xcXF21yz5f6Wa37J4XDg0A/nIiIibcr3Rd/z5E+xVaaTDppEduL2/39cpF3L2w+Ovg0+HA8fT4BuB0DuPmanahZGOEzpAw9S/kSs9HcOHEjelPuJ797d5GQiIiIiuy7OFsewHsMY1mMYxTXFvLvmXWasnMEG3wamr5zO9JXT6eXpxag+oxjeczh57jyzI8t2tNmV4/n5+WRnZ/Ppp582nquurmbu3LkcdNBBABx00EFUVVWxYMGCxmtmz55NNBrlwAMPbLxmzpw5hEKhxmtmzZpF//79SU1NbaXvRkRERP4Mb9DLDV/egIHBqD6jOLrn0WZHEmk5B/4f7HY8ROpj88frvGYn+tNCxSVsGHNeYzGe+re/0ePll1SMi4iISIeQlZjFhXteyHuj3uOZY57hxN4n4rQ5WeNdw30L7uOv0//K8DeGM/7L8by+4nXWeNdoVXkbYTFM/F/C7/ezatUqAPbdd1/uv/9+jjjiCNLS0ujevTt33XUXd955J8899xz5+fncfPPNLFq0iKVLl+J0OgE49thjKS4uZtq0aYRCIc477zz2339/XnrpJQC8Xi/9+/fn6KOPZty4cSxevJjzzz+fKVOmcPHFF+9Uzl3Z4VRERESal2EYXPvFtcxaP4seyT147fjXSIhLMDuWSMsKVMK0oeDdAANGxsatWCxmp/pD/F9/TeF11xOpqMCamEjO7beRfOyxZscSERERaVH+ej8frPuAd1e/y0+lPxE2wts8nuZMY78u+zEoaxD7Ze1H/9T+2Kw2k9J2LLvS5Zpajn/++eccccQRvzp/7rnn8uyzz2IYBrfccguPP/44VVVVHHrooTzyyCP069ev8dqKigouu+wy3n33XaxWK6NHj+bBBx/E7XY3XrNo0SL++c9/8v3335ORkcHll1/OuHHjdjqnynERERHzzFg5g4nfTMRusfPf4/7LwIyBZkcSaR2b5sPTx0A0DCPug8EXmp1olxiRCGWPPErZI4+AYeDo35+8qVNw5OebHU1ERESkVdWGallUtogFxQtYWLyQH0t/JBgJbnONO87NPl32YVDWIAZlDWJg+kDibfEmJW7f2k053l6oHBcRETHHOu86TnvvNALhAFftdxUX7HmB2ZFEWtc3D8HHN4HNARd+Ajl7mZ1op4TLyii47jpqv/0OgJRTTyVrwo1YGz79KSIiItKZhSIhlpQvYX7xfBYWL+R/Jf/DH/Jvc43D5mCvzL0aV5fvnbm3PkG7k1SONzOV4yIiIq0vFAlx9gdns7R8KQdmH8jjRz+O1dJmt0sRaRmGAS+fASs+hLTecMkX4EgyO9Vvqpk7j4Kx1xIpLcPicpHzr0l4TjzR7FgiIiIibVYkGmFF5YrYyvKShSwoXkBFXcU219gtdgakD2C/rFhZvm+XffE4PCYlbttUjjczleMiIiKtb8qCKTy9+Gk8Dg/TT5hOVmKW2ZFEzFFbAdOGQPUm2OMUGP1km5w/bkSjlD/+BKUPPgjRKI6+fcibOhVH795mRxMRERFpVwzDYG312sYxLPOL51NUU7TNNRYs9Entw6AugxiUPYhBXQaRmZBpUuK2ReV4M1M5LiIi0rrmbp7LRR9fhIHB1MOnclSPo8yOJGKuDXPhmWPBiMAJD8CgMWYn2ka4spLC68dR8+WXAHhGjiR74s1YE/TRXxEREZHmUOgvZEHxgsavddXrfnVN96TujTPLB2UNIs+dh6UNLqpoaSrHm5nKcRERkdZTVVfF6HdGUxIo4ZR+p3DLQbeYHUmkbfhqCnwyCexOuPBTyN7D7EQA1C5cSMHV1xAuLsbicJA9cSIpo082O5aIiIhIh1YWKGNh8cLGMSzLK5ZjsG3N2yWhC88f+zx57jyTUppD5XgzUzkuIiLSOgzD4KrPrmL2xtnke/J5ZcQr2nRGZItoFF46DVbNgvS+cPHn4HCbFscwDCqefoaS+++HSIT4/Hzypk7F2b+faZlEREREOqvq+mp+KPmhcWX5krIlOOwOvjrjK+xWu9nxWtWudLmd65+MiIiItGlvrHyD2RtnY7fauWvIXSrGRbZmtcKoabH54+UrYea1sfsmfFQ2UlVF4Q034v/sMwCSjz+e7EmTsLkTWz2LiIiIiEByfDJDuw5laNehAATCAdZXr+90xfiuspodQERERARgTdUa7p53NwBX7XcVu6fvbnIikTYoMQNOeQosNlj0CvzwYqtHCPz4I2tPHo3/s8+wxMeTPWkSuffcrWJcREREpA1x2V3slrab2THaPJXjIiIiYrr6SD3jvhxHXaSOg3IO4u8D/m52JJG2q8fBcMSNsdszx0LJslZ5W8MwqHj+Bdad/XdChYXEde9Oz1deJvWM0zvlRk8iIiIi0v6pHBcRERHTPbDwAX6u+JlURyp3HHoHVot+RBH5TYdeA72PhHAAXh8D9TUt+nYRn4+CK6+i+N//hlCIpGOOIX/6GzgHDGjR9xURERERaUn6zVNERERM9U3BNzy/9HkAbj3kVjITMk1OJNIOWK0w6nFwZ0Ppz/D+9S32VoElS1h78mh8H38McXFkTZhA3tQp2JKSWuw9RURERERag8pxERERMU1FXQUTvp4AwOn9T+fwboebG0ikPXFnwugnwWKFH/4LP77SrC9vGAaVr7zC+jPOJLRxI3G5ufR86UXS/n62xqiIiIiISIegclxERERMYRgGE7+eSFmgjN6e3ozdf6zZkUTan/whcNj42O33roHSFc3yDOZ+ZQAAIABJREFUshF/DYXXjqVo0r8wQiHcRx5J/ow3ce25Z7O8voiIiIhIW6ByXEREREzx6vJX+WLTF8Rb47lr6F047U6zI4m0T0PHQv5QCNXE5o+HAn/q5eqWL2fdKadQ/f77YLfT5frr6frwf7B5PM2TV0RERESkjVA5LiIiIq1uVeUq7p1/LwBXD7qa/mn9TU4k0o5ZbXDyk5DYBUqWwAfj/tDLGIZB1RtvsO6006lftw57djY9Xnie9PPP0xgVEREREemQVI6LiIhIqwpGglz/5fUEI0EOzTuUs3Y/y+xIIu1fUhaMfgKwwMLnYNHru/T0aG0tm8ffwOabbsYIBkkcOoT8GW+SsO++LZNXRERERKQNUDkuIiIirWrKgimsrFxJmjON2w65TStSRZpLr8Nh6HWx2+9dBWWrduppwVWrWHvaaXjffhusVjKvvppu06ZhT01tsagiIiIiIm2BynERERFpNXM2zeHFZS8CcNsht5HhyjA5kUgHc/h46HEo1Psb5o/X/ebl3nfeYe2pp1G/ajX2zEx6PPcsGZdcjMWqXxNEREREpOPTT70iIiLSKsoCZdz89c0AnLX7WQztOtTkRCIdkNUGo5+EhAwo/gk+umG7lxmRCMV33U3h9eMwAgESDz6I/LdmkDB4cCsHFhERERExj93sACIiItLxRY0oN319ExV1FfRN7cvVg642O5JIx5WcAyc/Bv8dDfOfhp5DYI+TGx+O+P0UXjsW/xdfAJBx6T/I+Oc/sdhsZiUWERERkV1UWx+mpDpIiS9Iia+u8XZpw/1SX5Cq2hDf3nCkRln+BpXjIiIi0uJeWvYSXxd8jcPm4O4hd+OwOcyOJNKx9RkGh14DX90P71wBOXtDem/qN21i0z/+QXDlKiwOB7l3Tib52GPNTisiIiIigGEYeAOhWOFdHaTUX7dVAR6kpLquofwO4g+Gd+o1vYEQKQnxLZy8/VI5LiIiIi1qecVy7l9wPwDX7n8tfVL7mJxIpJM4YgJs+Db29cZ51O57N5uuvIZIZSX2zEy6PvIwrj33NDuliIiISIcXiRqU+7dd2b3Nqu/GMjxIfTi606/rirPRJdlBlyQHXZKcZCY5yExquJ/spEuSg0SH6t/fon86IiIi0mLqwnWMmzOOUDTEYV0P44z+Z5gdSaTzsNlh9FMw7VCqvl7B5gfPh4iBc8AAuj76CHFZWWYnFBEREWk3olEDXzBMdSCENxBqOtZtuR/G+4tzW66rqKknauz8e3lccU0l91ZFd2ZDCb6lEHc77BqZ8iepHBcREZEWc+/8e1ntXU2GK4NbD7lVP7iJtDLDnU1J1XFUzJsNGCQdtCe5jzyH1eUyO5qIiIhIq6sPR7dbXlcHQlTXNZTbtb94vC52zhcMY+xCwf1LFgukJ24pu5tWe2+5nZnUVIA747QXTGtROS4iIiIt4vONn/Pq8lcBuOOQO0hzppmcSKRzifhrKLzuOvyffQZAxkAfGX2/wxIoAle+yelERERE/rxo1KAqEKLcHxtJUu6vp8wfpGyb2/WN9wOhyJ9+T4fdiscVh8cVR3LD0eOKI9lpbzyX3HgujmSXnQy3g/TEeOw2azN819KcVI6LiIhIsyutLWXi1xMBOGfAORycd7DJiUQ6l/pNBWy69FKCK1ZgcTjIuf1WPMUPwaZ58Mb5cP5HYNfGTCIiItL21IejlNfEyuxSf5AyX5Dymvqm41aFd0VNPZFdmVfSIGlLke3cqtx2bXUuYetyu+nxZGecVnV3MCrHRUREpFlFjSgTvppAZbCS3dJ248r9rjQ7kkinUrtwIZsuu5xIRQW2zAy6Pfwwrr32gqp9YdqhULgQPrkF/jrZ7KgiIiLSSQTqI5T6Yqu7S31BymuClPkaVnRvuV0TK8Kr68K7/PoeVxwZ7njS3Q4y3Q7S3fGx1doNxy0rt1MT4nE77disGvcoMSrHRUREpFm9sPQFvt38LU6bk7uG3EW8TatTRVpL1Yy3KJo4ESMUwjFgd7o98ghx2dmxB1O6wahp8PIZ8N0j0PNQ2G2EuYFFRESk3dqywrvUF/sq8zfd3lKCl/nrKfUF8Qd3rfC2WS2kJ8bK7ozGgntL4b31OQdpifHE2zWuRP4YleMiIiLSbJaVL2PqwqkAXDf4Onql9DI5kUjnYESjlE6ZQvkTTwKQdPTR5N45GWtCwrYX9j8WDroMvv0PvPUP+L+vIKW7CYlFRESkLYpEDSpq6rctu/3bL7+rakO79NrxditdkhyNpXbGdlZ3bznnccVh1epuaQUqx0VERKRZ1IZquX7O9YSjYY7sdiSn9jvV7EginUK0poaC68fh//RTANL/8X9kXn45FusOVlAddQts+BYKFsTmj5/3AdjiWjGxiIiItIZI1MBXF6I6EMYbCOENhKiuazgGQlTWhn5Vfpf7g+zKCG+71UK6O57MpNg4k8yG8jszydF4LqPhdpLDjsWiwlvaFpXjIiIi0izumX8P66rX0cXVhX8d/C/94CvSCkIFBWy89J8Ely/HEh9Pzh134Dnh+N9+kj0eTnkGHhsCm76HWRPhmH+D/syKiIi0OXWhCNVbldqxYjvcWHD/uvRuesy3i6NMtrBYIC0h/tcF91al95YCPEUrvKWdUzkuIiIif9qn6z/ljRVvYMHCHUPuIMWZYnYkkQ6v9n//i228WV6OLSODbg//B9fee+/ck1N7wEmPwKtnxeaPx7ngyJtVkIuIiDSzulCE6roQvrowvrpwrLSuCzeci5XZ1XW/LLqbVnrXh6N/OoMrzobHFUeyyx47OuPwuOLwJMT9qvzukhSb4W23aYa3dA4qx0VERORPKa4p5pZvbwFgzB5j+EvOX0xOJNLxed9+m8033RzbeHP33en2yMPE5eTs2ovsfjwcfQd8PAG+vA8i9TD8NhXkIiIiDSJRA39Dkb2l4N623A43Fty+YMOxLlZubzlfH/nz5bbFAsnOpnJ764I72dV0THbatzm35TptVimyYyrHRURE5A+LRCPc+NWNeINeBqQP4PJ9Ljc7kkiHZkSjlE59gPLHHwcgafgwcu+669cbb+6sgy8DWzx8cB188xBEQvDXO1WQi4hIhxSKRCnzBympDlLiC1Liq2u8XeoL4g3Ub1Nw+//gWJJfsljA7bCT7IwjybnV0dV0f5uV3b8ov5Mcdo0uEWkhKsdFRETkD3t2ybPMK5qHy+7iriF3EadN/URaTLSmhoJx4/B/0rDx5iWXkHnlFTveeHNnHXhxbEPO966CudMgHIQR98OffV0REZFWEqiPxIpu35bie9vbpb5YAV5RU/+HXt8ZZyXJGVuZnbRVsZ28VdGd1LCyO8kR11R6Nxzd8Sq3RdoqleMiIiLyhywuW8x//vcfAMYfMJ6enp7mBhLpwEKFhbGNN3/+Obbx5u234TnxxOZ7g/3PixXkb18GC56JrSA/8UGw2prvPURERHaBYRhUB8JNRfdWq7xjxXes9C71BXdp40m71UJmUmy2dmaSky7JsdtdkpykJsRts5p7S+mtsSQiHZfKcREREdllP5X+xKWfXkrYCDO8x3BG9RlldiSRDivwww9svOxyImVl2NLT6fqfh0jYd9/mf6N9z46NWJlxCfzw39gM8pGPgk2/MoiISPMyDIPK2hCFVYGmL28dhVUBNnvrKK6OFeK7shmlK862TdGdmeRouO+MnUuObTiZmhCvVdwi0kg/6YqIiMgu+bbwW6787EoC4QB7pO/BpIMnYdF8YpEW4X33PTZPmIBRX49jt91iG2/m5rbcG+51WmwF+fQL4afXYgX56Cdj50RERHZSoD5CoTfA5qpY4V1QFWCzN0Bhw/1Cb4C60M4V3x5XXGO53Vh6Jzkajk0rv90Ou34mFZFdpnJcREREdtrH6z5m/JfjCUVDHJhzIA8c8QCJcYlmxxLpcIxolNIHHqT8sccAcB91FHl334U1sRX+vA0cFVtB/tq5sPQtiIbhlKfB7mj59xYRkTYvEjUo8dU1Fd0Nq70Ltrq9s7O9M5Mc5Ka4yPU4yU1xkdNwzEp2NhbgzjiN+BKRlmMxDMMwO0RbV11djcfjwev1kpycbHYcERERU7yx4g1u/fZWDAyG9xjOnUPuJN4Wb3YskQ4nWltL4bhx+GZ9AkD6RReRefVVf37jzV214mN49WyIBKHv0XDaCxDnbN0MIiLS6sKRKBsqallXXkPBVgV47Cs28iQc/f0qKTHeFiu+G77yUpzkeLbcdpHlceCwq/gWkea3K12uyvGdoHJcREQ6M8MweGrxUzyw8AEARvcdzc1/uRmbNuoTaXahzZtjG28uW4YlLi628eZJJ5kXaPVsePlvEA5AryPgjJcgPsG8PCIi0mxqgmFWl/pjXyU1rCqJ3V5XXkMo8ttVkd1qISvZSV6Ki9wUJznbKcCTnRpzIiLm2JUuV2NVREREZIcMw+C++ffx3NLnALhwzwu5Yt8r9IuOSAsI/PgjGy+7jEhpGba0NLr+5z8k7NcCG2/uit5Hwlmvw0unw5rP4KXT4MxXwOE2N5eIiOwUwzAo9QUbi+/VpU0l+GZv3Q6f54qzkZ+RSNfULSu/t4w9ia36zkxyYNOmliLSAagcFxERke0KR8NM+mYSb69+G4Cx+4/l3IHnmpxKpGPyvjeTzTfeGNt4s18/uj36CHF5eWbHiskfAn9/E/57Cqz7Ev47OlaYO/WJShGRtiLUMAqlsQQvqWFVqZ81JX58wfAOn5fhdtA7M5HeXdz0yXTHjl3c5CQ7sar8FpFOQOW4iIiI/EowEuS6L67js42fYbPYmHTwJEb2GWl2LJEOJ1pTQ/Hd91D16qsAuI88kty778bmbmMb3Xb/C5zzFrxwMmz8Dl4YBWdPB1eK2clERDoVX12INVut/l5d6mdViZ/15bU7nANutUD3tAT6dHHTu6EA753ppndmIikJ2j9GRDo3leMiIiKyDX+9n8tnX8784vnEW+O557B7OLL7kWbHEulwahcsoHD8DYQ2bgQaNt686kostjY6z7/r/nDuO/DCSCiYD8+fBH+fAQlpZicTEekwolGDMn+QgqoAm72xzTA3VNQ2luDF1cEdPtcVZ6N3l8TYCvCtVoH3SE/QxpciIjugclxEREQalQfK+ccn/2BZxTIS4xJ56MiHGJw92OxYIh1KtL6esgcfpPypp8EwsOfmkPvvyST+5UCzo/2+3H3g3PdixfjmH+C5E+CctyExw+xkIiLtgq8uxGZvHQVVAQqrAmyuihXgBVUBCr0Birx1v7sZZmZSwyiUTPc2q8E1CkVEZNepHBcREREACv2FXDzrYtZXryfNmcajwx5lQPoAs2OJdCh1y5ZReP04gitXAuA5+WSybrwBm7sdbXCZvQeMmQnPnwjFi+HZEXDOO5CUZXYyERFThSJRihpWe29dgG9931e34/nfW1gtkJXsJMcT2wQzL9XVVIRnuPEkxLXCdyMi0jmoHBcRERFWV63m4lkXU1JbQk5iDo8Pf5yenp5mxxLpMIxwmPInn6T0Pw9DOIwtPZ2c224l6ch2OrKoy24w5v3YyvHSn+HZ4+DcdyE51+xkIiItwjAMKmrqKayqo9DbVHoXNpThhVUBSnxBjN9e9A2AxxVHjsdJXoqL3BQXOSlb3fY4yUp2Emeztvw3JSIiKsdFREQ6u0Wli7j000vxBr309vRm2vBpZCdmmx1LpMMIrl1L4fjx1P24CICk4cPJ/tck7GntfFZ3Rh84byY8dyKUr4JnGgrylG5mJxMR2WXhSJSi6joKKgONK74LqgJs2up+XSj6u68Tb7OSk+Ik1xMru3NTnA1HF7keJzkpLtwOVTEiIm2F/kYWERHpxL4p/IarPruKQDjAXhl78fBRD5PiTDE7lkiHYESjVL70MiX33otRV4c1KYnsm28i+YQTsFg6yEzYtF5wXsMK8sq1DQX5O5CWb3YyEZFtBOojFDQU3gWVTeX3ljK8qLqOSPT3l31nJjkai+6tS+8tt9MT4zX3W0SkHVE5LiIi0kl9tO4jxn85nnA0zEE5BzH1iKkkxCWYHUukQwht3szmCROo+eZbABIPPoicO+4gLifH5GQtIKV704iVitWxGeTnvgvpvc1OJiKdhGEYeAOhxlXev1z9XVAZoLym/ndfJ85mIcfjIq9hzveWY9etxp847LZW+I5ERKS1qBwXERHphF5f8Tq3fXsbBgZH9ziayUMmE2+LNzuWSLtnGAbV77xD0e13EPX5sDiddLluLKlnnonF2oHnx3ryGlaQnwhly+GZY2MFeWZ/s5OJSAcQjkQp9gXZvKXs3s7q75r6yO++jtth36b4zt3qdtdUF5luh1Z9i4h0MirHRUREOhHDMHhq8VM8sPABAE7tdyoTDpyAzapVUCJ/VriigqJbJuGbNQsA5957kXvnnTjyO8mIkaRsGDMTnj8JSpY0jVjJGmh2MhFpwwzDoKo21LDJZcPmllvd3tww8mQnJp6Q4Y7fdtV3iou81ARyU5x0TUkg2WXvOGOtRESkWagcFxER6SSiRpT75t/H80ufB+CiPS/i8n0v1y+JIs3AN3s2m2+eSKS8HOx2Mi/7J+kXXojF3sl+3HZnwpj3YgV50SJ49ng45y3I2dvsZCJikrpQhM3eusZV3pu3KcBjJXgg9PurvreMPMnxOH819mTLKnBnnP5jv4iI7JpO9tO6iIhI5xSOhrnlm1t4Z/U7AIzdfyznDjzX5FQi7V/E76f435PxvvkmAI6+fcm9606cAwaYnMxECWmxFeP/HQ0FC2KzyP8+A/IGmZ1MRJpZJGpQ5g82zvfeXFXXdLuhEN+ZWd8AGW4HuSlOcj0Nm1ymbLvhZYZGnoiISAtQOS4iItLB1YXruG7OdXy+8XNsFhv/OvhfnNTnJLNjibR7Nd/NZfONNxIqLASLhbTzzyPziiuwOhxmRzOfKxX+/ha8eApsnAvPj4Sz3oDuB5qdTER2UW19mA0Vtawrq2VDRQ3rymvZUF7L+ooaNlfVEd6JeScJ8bZtiu5f3s72OLXqW0RETKFyXEREpAPz1fu4YvYVzC+eT7w1nnsPu5cjuh9hdiyRdi1aV0fplClUPBcbURTXtSu5d04mYf/9TU7WxjiT4ew34aXTYf1X8MIoOOt16HmI2clE5Be8gRDry2tYX17L+vKmAnxdeQ0lvuBvPtdmtZCd7CQ3xUlOw6rvvG1uuzTrW0RE2iyV4yIiIh1UeaCcf3zyD5ZVLMMd5+bBIx9kcPZgs2OJtGuBn36icNx46tesASDltNPocv312NyJJidroxzuWCH+ypmw5vPYqJW/vQK9Djc5mEjnYhgGZf76bQrw9RW1rGu4XVUb+s3ne1xx9ExPoHt6YuyYlkCP9ES6prrokuTAbrO20nciIiLSvFSOi4iIdEAF/gIumXUJ66vXk+ZMY9qwaeyevrvZsUTaLSMUomzaY5RNmwaRCPbMTHJuvw33YYeZHa3ti0+AM1+FV8+GVbNiK8lPfxH6DjM7mUiHEo0abK6u26oA33oVeA019b+96WVmkqOh+G4owNMT6JmeSI/0BFIS4lvpuxAREWldKsdFREQ6mFWVq7hk1iWUBErITczl8aMfp0dyD7NjibRbwVWrKBw3nrolSwBIPu5Ysm6+GXtqqsnJ2pE4J5zxIrx+HiyfGVtJfupzsNtxZicTaXfqQhFWlfhZUexjRbGfVSW+WAFeUUt9OLrD51kskOtx0SM9tuq7Z3pC4+3uaQkkOlQPiIhI52MxDOP3d8/o5Kqrq/F4PHi9XpKTk82OIyIiskOLShdx6aeX4g166e3pzWPDHyMrMcvsWCLtkhGNUvH885TePwWjvh6rx0P2xJvxjBhhdrT2KxKC6RfA0rcBCwy+EI66GZwes5OJtDmhSJT15TUsL/KzvNjHiiIfK4p9rCuvYUd7YNqtFrqlxUrvng2ld8+MphEoDrs2vRQRkY5vV7pcleM7QeW4iIi0B98UfMNVn19FIBxgr4y9eGTYI3gcKpxE/oj6TQVsvuEGar//HoDEIUPIuf124rK6mJysA4iEYeY1sPC52H13Fhzzb9hjdGxpq0gnE40abKoMxArwYh/LG0rwNaU11Ee2vxI8JSGOfllJ9M9Kol+Wm/wMNz3SE8jxODX/W0REOj2V481M5biIiLR1H677kBu+vIFwNMzBuQcz5fApJMQlmB1LpN0xDAPvm29S/O/JRGtqsCQkkHX99aScfhoWFbfNa80XsZK8fFXsfq8jYMR9kN7b3FwiLcQwDEp8wcbye8txRbGfQGj788AT4m1NJXj2lqObTLdDfyeJiIjsgMrxZqZyXERE2irDMHjp55e4a95dGBgc0/MYJh86mThbnNnRRNqdUGEhRbfdjv+zzwBw7bcfuXdOJr57d5OTdWDhIHz9AMy5FyJBsDlgyLVw6FVgd5idTuQPq6yp32Yl+Mri2GgUbyC03evjbVZ6d3HTP8vdVIJnJZGX4sJqVQkuIiKyK1SONzOV4yIi0hZV1VUx6dtJfLrhUwBO7XcqEw6cgM2qeaIiuyJcUUH5Y49R+dLLGKEQlrg4Mq+8grTzzsNi05+nVlG+Gt4fC6tnx+6n94mtIu91uJmpRH5XKBJlVYmfxQVelm1uKMOLfZT6gtu93mqB/IxE+mcnNa4I75uVRM/0BI1DERERaSYqx5uZynEREWlr5m2exw1f3UBJbQl2q52r9ruKcwaco49Yi+yCiN9PxTPPUvHMM0RrawFIGDyYrJtuwtm/n8npOiHDgCUz4MMbwF8UO7fnqXD0HZCkjYXFfHWhCMuLfCwprGZxoZclBV6WFfmoD29/LnjXVNe241CykuiVmYgzTv/RTUREpCWpHG9mKsdFRKStCEVDPPLDIzz101MYGPRM7sldQ+9iQPoAs6OJtBvRYJDKl1+mfNpjRKqqAHAOGEDm1VeTeOgh+o9MZqvzwuw74PsnwIiCwwPDJsKg80CfjJFWUhMMs2xzNYsLvCwujB1XlfgJR3/963OSw86A3GQG5CazW8OK8L5ZSbgddhOSi4iIiMrxZqZyXERE2oIN1RsYN2cci8sXA3By35MZN3icNt4U2UlGOIz3rbcoffgRwps3AxDfsyeZV11J0tFHY7FqpEGbUrAQ3rsaNv8Qu583CI6fAjl7m5tLOhxvbYglhV4WF3pZXBBbFb62rIbt/aacmhDHHnke9sjzMDA3mT1yPXRPS9BccBERkTZE5XgzUzkuIiJmMgyDd9e8yx3f3UFtuJak+CRuOegWjul5jNnRRNoFwzDwffQxpQ88QP3atQDYs7PJ+OelpIwahcWu1Z1tVjQC85+GT2+FYDVYrHDAJXDEjeDUz+Wy60p9wcaRKFvGo2ysCGz32uxkJwNzkxmY52GP3GT2yPOQ43Hq0yUiIiJtnMrxZqZyXEREzOKr93Hbd7fxwdoPABiUNYjJh04mx51jcjKRts8wDGq+/obSKVOoW7IEAFtKCumXXELq387E6nCYnFB2mq8IProRFk+P3U/Kgb/eCQNOAhWVsh2GYVDorWNJw1iU2NFLcfX2N8rsluZij9ymFeEDcz1kJunvCBERkfZI5XgzUzkuIiJm+KHkB8Z/OZ4CfwE2i41L97mUC/a4AJtm7or8rsAPP1AyZSq1c+cCYE1IIG3MGNLOPw+b221yOvnDVn0KM6+FytgnAOgzHI67B9Lyzc0lpopEDdaV17CksJolhV6WNswIr6wN/epaiwV6ZSTGRqPkNhXhnoQ4E5KLiIhIS1A53sxUjouISGsKR8M88dMTTPtxGlEjSp47j7uG3sXemZqzK/J7gitXUjL1AfyffgqAJS6OlDPPIOOSS7Cnp5ucTppFKABfTYl9RerB7oSh18HBV4A93ux00sLqQhFWFPtYUljN0oYy/OciH7X1kV9da7da6JuV1DAbPDYWZfecZBK1UaaIiEiHpnK8makcFxGR1lLoL+SGL29gYclCAEb0GsFNB96EO14rXUV+S/2mAsoeegjvO++AYYDVimfkSDL/eSlxeXlmx5OWULYKZl4Da7+I3c/oD8ffDz0PNTeXNBtvbYglm2MrwWNFeDWrSv1Eor/+FdYZZ2W37GQG5iYzIDeZPfM89MtKwhmnT1uJiIh0NirHm5nKcRERaQ0frvuQW7+5FV/IR2JcIhMOnMAJvU8wO5ZImxYuK6Ps0WlUvvYahGIjFJKGDyfzqitx9O5tcjppcYYBP70BH90ANaWxc3ufCcNvA3emudlkpxmGQVF1HUsKYgX40s2xzTI3VW5/o8zUhDgGNoxEGZAbK8TzM9zYrJo/LyIiIirHm53KcRERaUm1oVomz5vMW6veAmCvjL24c+iddEvqZnIykbYr4vNR/tRTVDz/AkZtLQAJB/2FLldfjWuvvUxOJ60uUAmf3gbznwYMcKbA8H/BvueA1Wp2OtlKJGqwtsy/1ViUapZurqaipn6713dNdcVK8JyG+eB5yWQnO7FoI1YRERHZAZXjzUzluIiItJQlZUsY9+U41levx4KFi/a6iP/b+/+Is2pjMJHtiQYCVL74ImVPPEnU6wXAueeedLnmahIPOsjkdGK6TfPhvaug6KfY/a4HwPFTIHsPc3N1UnWhCD8X+Rpngy8prObnomrqQtFfXWuzWujbxc2AnC2rwT0MyEnWRpkiIiKyy1SONzOV4yIi0tyiRpRnlzzLQwsfImyEyUrIYvKQyQzOHmx2NJE2yQiFqJr+JmWPPEK4pASA+N69ybzqSpKGDdMqUmkSCcO8x+GzO6DeDxYbHHQpHDYeHNq/oSX4g2HWlPpZVeJndamf1SU1rCr1s7asZrvzwRPibeyek8yAnKYZ4ZoPLiIiIs1F5XgzUzkuIiLNqbimmAlfTWBu0VwAhvcYzi0H3YLH4TE5mUjbY0SjVH/wAaUPPkho/QYA7Lk5ZF52OZ6TTsRiU5kmO+AtgA/Hw7J3YveTu8Jxd8NuI8zN1U7n09NUAAAgAElEQVQZhkGJL8jqEj+rSv2sLvGzurSGVSV+iqrrdvi89MT4xpXgW4rwnumJmg8uIiIiLUbleDNTOS4iIs1l9obZ3PLNLVQFq3DZXYw/YDyj+ozSqleRXzAMg5o5cyiZ+gDBZcsAsKWlkfF/l5ByxhlY4+NNTijtxoqP4f1roSr2H1fo91cYci10HQz6u/dXQpEo68trYyvAG1eD17CmxI8vGN7h8zKTHPTOTKR3pps+Xdz0znTTPzuJLkkO/X+ciIiItCqV481M5biIiPxZgXCA++bfx6vLXwVg97TduWvoXeR78k1OJtK2GIZB7dx5lP7nIQLzFwBgTUwk7fzzSDt3DDZ3oskJpV2qr4Uv74WvH4RoKHYuZx844GLY42SIc5mbzwS+uhCrS2saVoA3jURZX15LeDujUCA2F7x7WgK9M9307pJIn0w3vbu46Z3h1mxwERERaTNUjjczleMiIvJnLK9Yzrg541jtXQ3AmIFjuHzfy4m3aeWryBZGOIxv1izKn3yKuiVLALDEx5N61lmkX3wR9tRUkxNKh1C6HL5+AH56AyLB2DlXGux3Dux/PqT2MDdfMzMMg+Lq4Dbl95ZjcXVwh89LiLdttQK8aTV49/QEHHaNMhIREZG2TeV4M1M5LiIif4RhGLz080vcP/9+6qP1ZLgyuOPQOzg492Czo4m0GdFAgKo336TimWcJbdoEgMXhwHPyKDIuvpi4nByTE0qHVFMO/3sevn8KvBtj5yxW6HcsHHAR9Dq8XY1c2VKCryj2sbLEz8piX+NtX92OR6F0SXJsW4J3id3OTnZqFIqIiIi0WyrHm5nKcRER2VXlgXJu+vomvir4CoDDuh7GrYfcSpozzeRkIm1DuKKCyhdfovLFF4lUVQFgS0kh9W9/I/Xss7Cn6c+KtIJoBFZ8CPMehzWfN53P6AeDL4K9zwBn2/n5f0sJvrLEx4riWAm+ssTPimLfDktwm9VCj/SGUShbFeG9Mt14XBqFIiIiIh2PyvFmpnJcRER2xVcFX3HTVzdRXldOvDWesYPHckb/M7QKTwSo37CBimefperNGRh1dQDEde1K2pgxpJw8CmtCgskJpdMqXQ7fPwk/vAT1/ti5eDfsfWZsNXlm/1aLYhgGJb7YSvAVxX5WbVWGV/9GCd4zPYG+XZLol+Wmb1YS/bKS6JmhUSgiIiLSuagcb2Yqx0VEZGfUR+qZunAqLyx9AYA+KX24e+jd9E3ta3IyEfMFfvqJ8qeexvfxxxCNAuAcOJD0Cy8gafhwLHa7yQlFGtRVw6JXY6vJy1Y0nc8/LLaBZ7+/gq15/n3dugRfWezfZkX4b5XgPdIT6NdQgvfJih3zMxJVgouIiIigcrzZqRwXEZHf82Ppj9z67a2sqIwVKWfudibXDLoGp91pcjIR8xiGQc2XX1L+5FPUzpvXeD5xyBDSL7iAhAMP0CcqpO0yDFj7Bcx7Apa/D0bsP+rg6RbbvHO/cyExfSdfyqDUF2RFsb9hFnisDF+xEyV43y5u+mUlNawEVwkuIiIi8ntUjjczleMiIrIj3qCXKQumMH3ldABSHancdshtHNbtMJOTiZjHqK/H+/77VDz1NMGVK2Mn7XY8I44j7fzzcfZvvfEUIs2iagPMfxoWPAeBitg5mwP2GB0buZK3HwB1oQhry2pYU1rDmlI/a8pqWF3qZ21pDb7g9ktwqwV6pifSNytWgvdpKMN7ZaoEFxEREfkjVI43M5XjIiLyS4Zh8Pbqt7l//v1UBisBOKn3SVyz/zXadFM6rYjfT9Vrr1Px3HOEi4sBsCYkkHLaaaSdew5xOTkmJxT5k0J1GIunE/p2GvElixpPr4rfjReNY3jJvx9BY/ubXFot0CM9cauV4G76domV4M44leAiIiIizUXleDNTOS4iIltbWbmS27+7nYUlC4HYbPGb/nITg7IGmZxMxByh4hIq//sCla+8StTnA8CWmUHa388h9YzTsennJ2mHauvDsRXgZQ2rwEtrWFMWO9bWh9nHsppz7B9zvPVb4i0RAMqMZN60DGNe+kg8WT3plZlI78xEemW66ZGujTFFREREWoPK8WamclxERABqQ7U8+uOjvLD0BSJGBJfdxT/2/gdnDzibOOv2VwqKdGTB1aspf/ppvO+8C6EQAPG9epF+/nkkn3gi1vh4kxOK/LZo1GBzdR2rS/yNY1C2jEQp9Nbt8Hk2q4XuaQn0zkxkz5QgR9R8yG6bXie+tih2gcUGu42IbeDZ81DQbH0RERGRVqNyvJmpHBcR6dwMw2D2htnc+f2dFNXEio+juh/FuMHjyHFrTIR0LoZhEFi4kPInn8L/2WeN512DBpF+wfm4Dz8ci9VqYkKRXwtFoqwtq2F5kY+VJX5WN6wEX1vmpy4U3eHzUhPi6JXpblz93SsjduyelkC8/Rf/nkfCsHxmbAPPdV82nc/cPTaXfK/TweFuoe9QRERERLZQOd7MVI6LiHReG30buXPenczZNAeAPHceNxxwgzbclE7HiETwffopFU89TeDHH2MnLRbcRx1J+vkXkLDfvuYGFAEiUYONFbUsL/axosjHihI/K4p8rCnzE4ps/9eeONuWVeDuWAG+ZRRKhpvUxD/46YfipfD9E/DjKxCqjZ1zJMPuJ8IeoyD/MLDpE0ciIiIiLUHleDNTOS4i0vnUR+p5dsmzPL7ocYKRIHarnfMGnsdFe12Ey+4yO55Iq4nW1eF9620qnnmG+vXrAbDEx+MZOZK0MWNw9Mo3OaF0RoZhUFRdx/IiHyuKfSwv8rOi2MfKEt8OV4K7HXb6ZcU2w+zdUIL3ynTTLdWF3dZCn3YIVMGPL8dWk1esbjrvSoPdT4A9ToYeh4LN3jLvLyIiItIJqRxvZirHRUQ6l7mb53L7d7ezrnodAAdkH8CEv0ygl6eXucFEWlFw9Wq8771H1WuvEykvB8CanEzq384k7eyzsWdkmJxQOotyf/BXK8GXF/vw1YW3e73DbqVvQwnePyuJftmxY47HicWs2d/RKGz4Bha/CUvfhtqypscSMxtWlJ8M3Q8CqzbtFBEREfkzVI43M5XjIiKdQ1mgjHu+v4f3174PQLoznbGDxzIif4R5hYpIKwoVFOB9/32qZ75P8OefG8/bc3NIHzOGlNGjsSYmmphQOjJfXYgVxf6GleCxFeErin2U+eu3e73daiE/I7Gx/O6XlUT/7CS6pyVgs7bhv7MjYVj/VawoX/YuBCqaHnNnw4CTYkV51wNA8/tFREREdpnK8WamclxEpGOLRCO8uvxVHvrfQ/hDfixYOL3/6Vy+3+Ukx+vvfenYwmVlVH/4EdUzZxL43/+aHrDbcR9yCMknnkDy0UdjidN8ZGke0ajBqlI/iwu8TSvCi/0UVAW2e73FAt3TEn61Ejw/I/HXm2K2N5EQrP0CFs+An9+FOm/TY8l5MGAkDBwFXfeP/YMQERERkd+lcryZqRwXEem4Fpct5rbvbmNp+VIABqQPYOJfJjIwY6DJyURaTqS6Gt+sT6ieOZOa776LjXwAsFhIGDyY5BEjSDp6OPbUVHODSocQjkRZurmaeWsrmLe2gu/XVVBZG9rutdnJzoby2924ErxPFzcJ8Z1gJne4HtZ8BktmwM8zIVjd9JinOwxsKMpz91VRLiIiIvIbVI43M5XjIiIdjzfo5aH/PcRry1/DwCApLokr9ruCU/udik3zXqUDigYC+D//HO/MmdR8MQcj1FROOvfck+QRx5F87LHEZWWZmFI6grpQhEWbvMxbW87ctRUsXF9JTX1km2tccTb27Oph9+ymleB9s5LwuPQJBQBCdbD601hRvvwDqPc3PZaaHyvJB46C7D1VlIuIiIj8gsrxZqZyXESk4zAMg/fWvMe98++loi425/X4Xsdz7f7XkuHSBoPSsRihEP6vv6Z65vv4P/2UaG1t42PxfXrjGTGC5OOOI75HDxNTSnvnD4ZZuL6ycWX4D5uqqA9Ht7km2WlncM80DsiPfe2R5yHO1s5HorSWUABWfhwryld8BKGmP8ek94GBJ8eK8qwB5mUUERERaUNUjjczleMiIh3Dmqo13D73dr4v+h6AfE8+Nx14EwfkHGByMpHmY0Sj1H4/n+qZM/F99BERb9MM47i8PJKPO47k40fg6NdPG83KH1JZU8/362JF+Lx1FSwprCYS3fZXiswkBwdsVYb3z0rC2pY3yWwv6mtgxYexonzlLAjXNT2WuVtTUZ7Zz7yMIiIiIiZTOd7MVI6LiLRvgXCAx358jOeWPkc4GsZpc3LJ3pdw7oBzibPpI/zS/hmGQd3ixVS/N5PqDz4gXFLS+JgtI4Pkv/6V5BHH4dpnHxXissuKvHXMW1fBvLXlzFtbwYpi/6+u6ZbmYnDPNA7MT+OA/HR6pifo37WWFvTB8g9hyZuw6hOI1Dc9lrVHw4zykyG9t3kZRUREREygcryZqRwXEWm/Pt/4OZPnTqawphCAw7oexvgDxtM1qavJyUT+vOCqVXhnzqT6/fcJrd/QeN6alETS0cPxjBhBwgEHYLF3gs0M2xnDMAjWhqmpCuKvClLrDWK1WXG47MS77DgSGo4uO3EOG5ZWWnVtGAbry2sbV4XPW1vBhoraX13Xt4ubwfmxMnxwzzRyU1ytkk92IFAVm02+5E1YPRui4abHcvaGPsOg+8HQ7QBw6vcZERER6dhUjjczleMiIu1Pob+QyfMm8/nGzwHITsxm/AHjObLbkVrNKO1a/aYCqt9/n+qZMwkuX9543uJ0knTkESSPGEHikCFY4+NNTNm5RSNRaqtD+KvqqKkKxgrwyuCvbodD0d9/MQALsdLc+evivPG+s+l8vMuGwxUXOybEjva47W80HI0arCjxNc4Ln7e24v/bu/cgOarDXOBfP+c9s7vaFyuthARI4mEJECBkjJGEMPZ1XMGGhMTUhbiSSt0qIMEydpmKg3GVK7jiP0KIAbvqVkHKFSIquSGpmBiXkJAMBGxJRFgII4Mk9N6XVjuz8+rpx7l/9GN6ZmdXu9JKs9J8P1e7T58+3XNmtPTufHPmNIbGjZo2sgRc3ZfBTV4QfuOl7ZiXjJzty0TnSnEU+PAVNyg/sB0QoZuhSjLQc7UblC+8GVj0aSDV27y+EhEREZ0DDMdnGcNxIqILx3BxGC9//DL+757/i5JVgiqp+N9X/2/8nxX/B3Et3uzuEZ0Ra3gYuVd/gdwrr6C0e3d1h6YhecstSH/xi0itXwc5kWheJ1uEWbFROOWO9q4Pu/NjBgqnyijmKpjuX9iRhIpkWxSJjA7HEaiULBhFC5Wyu3bs2flTXVFl6DEFSkSBpUgoCAdjpoWhsomC7cCSBCwJMAFAAS7piGFxbwpXXJLCsgVppBIRqLoMVZOh6opb1hWoqnzeRrXTGSicBPb9F3Dov4HD/w2c+mRim/ZLa8PyeZcD/BCZiIiILmAMx2cZw3EiornteP44Xjv0Gl47/Bp2D+2GgPur7fru6/Gdm7+DK9qvaHIPiWZGCIHK/v0Y3/o68lu3ovTeewjSVklC/KabkP7i/0L6c5+D0tbW3M5eRBzbwamBIsZHy6GwOxR8jxkwitbpTwRAkiUkMjoSbREk2yJItEeq5bYIku0RJDIRqHrjEd2A+3Ngmw6MkuWG5iULlaJVu+3XlSfZV7InPf9sUbRQaF4TnstQNaXxWpehaG774HhNgRLarl27+1RVhqxK/AbQmcqdAA6/DRx+xw3LB94HUPd2MN7pBuUL1wCL1gC9K4AL5P4cwhFwbAFJBmRFbnZ3iIiIqEkYjs8yhuNERHPP4dxhbD60GZsPbcbek3tr9q3oXIF7l9+LLy35EgMUumAIy0Lx3XeR3/o6xl/fWjOHOABEV6xA5ov/C6nPfwFaT3eTenlxcWwHw4fzOPa7Uzj2uzGc2D8Gs3z6MFmNKLUhd33o3RZBLKVDPo8jqm1HYP9wHruPjLnL4THsGxyHbQvoAKJCQkS460vTMSxpi2NhKoremI42XYVjObAqDizTdtcVB1bFhmXWrm3TgVmx4VhNfAshAapaG577QXt9qO4H6oo3yl3R3GDen6JGjyre2p2Oxq9X1BYJVstZ4MgOLzB/Gzi6E7Brp9WBlgAW3FANy+ffAESSE04lhIBp2CiNV1DMmSiNV2AaNhzbgW2JiWvLgW3Xrx04lhtwu+VJjm1wLscWcJzqz2UkriKa1BBLaogm9VC5WhdLaogmNMRSGvSYyr8ZiIiILhIMx2cZw3EiouYTQmD/2H5sPrwZrx16Db879btgnwQJ1/dcjzsW3YHbF96O3gTnT6ULg50voPDmm8i/vhX5bdthZ7PBPknTEF9zM1Lr1yO5di20Xv5cny3HdjB8xA3Dj/9uDMc/nhiG6zEV6c6oN9o7imSbP/o7ioQ3AlyPKk0P0QZzZfzP4TG8d9QNwvccyyJvTBzV3pWK4Nr+Nlzb34br+ttwzYIM0tGzHwXsOKImLLfNUKAeDtnDYXtQrg3bLcuBbbqL5S22aXvrav355E9Do0W9ud2jblmPKYhEVWh+sO6H7DXb1cD9ggvZLQM4vtsdVX74HYhD76BcclC0Myg5bSg5GRRFO0qxpShGF6Mk96Bop1DKC5TGK+f932k2ybKEiB+ce4F5OED3Q/VYyg3ao0kN2hTf/CAiIqLmYTg+yxiOExE1hxACvx39LV479Bo2H9qMT3KfBPsUScGNvTfijkV3YP3C9eiMdTavo0QzYA4OIr91K8a3vo7iO+9AmGawT8lkkFy7Fsn165G45RYoSc4hfjamE4ZH4ir6rmjD/KXt6Fvahnnzk+d1xPd0FAwLvzmaDYLw946O4US2PKFdXFfwqfmZIAxf2d+GSzLRpgf5s0EIAccSQZBuVWzYlhME6DVBuuWG8LbpuG0qTk1bs2LDLHvTzpTtmrVpzO40NH7IrkdVaFEFmjfljKIp0HR3RLumeSPb9cmmp1GmrJeVmU0zY5sOSvkKirkKSuOmt66gOF5ByS97I79L+QrEDPNuVZMQT0cQS+vQowpkVYaiuNPh1KwVydvnrVUJstJo7bZV1AbnCJ0rvN+2HJQLJkp5E+W8+1zC2/V10/nGSOPnKgdBeSylIxpXoXn/1nrE+0Alqnjb7gcnWsTb77VTNfmi+G+UiIhoLplJlquepz4RERFNiyMc/Gb4N8Ec4sfyx4J9mqxhTd8abFi4Aev616EtyrmWae4TQsDYtw/jW7civ2UryntrpwHSFi1Eav3tSK1fh9h110FS+efZmZpuGH7J5W2Yv7QN85e1z7kw3LId/G4wXxOE/25wHE7dcBZZApb2pGqC8Cu6k1Av0nmWJUmCoklQNBmInbvHcRx3apBKKRSe+0F6aNss2TDKFsySe/PUIGT32vghu205KI07KI2bp3nkMyfJkheah+d0r4btiqbAKJoojbuB8HTnzQ+LJFTEUzriaR2xqIWYGEbc+ASxwm8RK+xDXB5DTM4iLo9Bkw0g2etNwbIK6LnGXZJd5+DZTy6W0tE+zba26YfpldoAPW+iPF5BqRDazrvtHEvAMh3kT7k35T1TkoRqiB4O1CPVAN3dri0H32bwpgaKZ3QoF+l//0REROcSR45PA0eOExGdW7Zj492hd7H50GZsObwFQ8WhYF9UieIz8z+DDYs24LYFtyGpT5znlGiuEZUKijt3BjfUNI8fr+6UJMRWrkTy9vVIrV8PfckSjho8Q47tYORoHkf3TTMMX9qOeQvmThg+Vqxg/3AeHw/l8dFgHr85lsWeo1mUzImjWC/JRGuC8E/NzyAR4Qcpc5XjCHd0enhketmqTjszYT53B3bFhml664o3tUzFqbarm5rmbN7FybKEWEpDLK0jntKr65SOeNodBe3XRVPa1KFrcRQ48ivgkDsVC47/D+A0+DAg0Q30XgP0XF0NzDuXAqp+5k+kSfz51cOBeTlfQbngflhilm1UDDv4GTANr64crpvlm+VKQCKtI9kRRaojimR7pKac6ogimtT4+4aIiFoCp1WZZQzHiYhmn+mY2HFiBzYf3oyth7ditDwa7EtoCXx2wWdxx6I7cEvfLYhr8Sb2lGh67FwO+V++gfzWrci/8Qac8fFgnxSNIvHpTyN1+3okb7sNaienAToTfhh+bN8Yjn10Cic+GkOlwZzh7jQpcyMMdxyBY2Ml7B/OY/9wAR8P5d3yUB4nC5WGxyQjKlYsyARB+LX9behJR89zz2kuE8K9aWVNyF4/t7tZnV5Gj6mIpTR35HdKRyR+Dm8+WSkCx991b/B54jfA4PvA6EEADd52yirQuSwUml8N9HwKSHa7Q6ovYsIR3hQ/3rcRjInhuR+0u2F7KGA3rJq2lZIFxz7923pFk2uD82AdRbLDLXMedSIiuhgwHJ9lDMeJiGaHYRt4+/jb2HxoM7Yd2YZcJRfsS+tprOtfhzsW3YGb+25GRIk0sadE01M5esydP/z1rSju2AlY1ekKlHnzkFy3Fqn1tyOx5mbIsXM4F8RF6kIKw8umjYMjBS/4LuBjLwA/MJJHeYqbFPZlorisO4nLupK4qi+N6/rbsKQrCWWOjG4nmhVGHhj+EBjYAwzurS5GtnH7eKcblPd+qhqady0HVP5t0IhwBEp5E+OjZeRPlZEfNYLy+KiB/GgZxVzjD+PqRROaG5S3e6POOyJeeB5FqiOCeCYyZ759Q0RENBmG47OM4TgR0ZkrmkW8eexNvHboNfzy2C9RMAvBvo5oB25feDs2LNqAG3tvhCZrTewp0ekJx0F57153/vCtr8PYt69mv375ZUitW4/U7esRXbECksz5X6fDqtgYHy1j/GQZuZPu+uTx/JwMw08VqlOhVNcFHDlVnHSaC02RsLgzgcu63BD8ci8MX9KV4NQo1LqEALJHvKD8fXc98D4wuh8N7wIqKe40LH5Y7gfnqUsu+lHms8E2HeTH3KDcD83HvSDd3S5P68akkiwh0aZ7I9Cj0KIKFFX2FilUlqFo/rquXm1Qr8k155E5fzoREZ0FhuOzjOE4EdHMjJZH8cbRN/D6kdfx1rG3ULbLwb7ueDc2LNyADYs24Pru66HI/PouzV3m4BDKe/cGS+n992GPjFQbyDLiq1YhuX49UuvXQV+0qHmdncMahd/jJ0tBeaoRjXpUQd8Vbehb2o4Fy85PGO5PheKP/g6PBh+dZCoUAEhFVVzencTlXclgNPjl3Un0t8cu2htlEs26StEdZe4H5oN73RHn5bHG7WMdoXnMr3anaOlaDmj8ts5MGSUL+dGyN+rcG30eKhdOGXDq7w58jkgSJobmWjWA16IKInENkZiKSFx1y/GJZT2mIhrX3Jv5zgFCuDdyNQomjKKFcsGEUbBQLppB2SiaKAdrt04IgUx3DG09CbT3xNHWG0d7TxzJjihH8hMRNcBwfJYxHCcimpoQAgeyB7DtyDZsO7IN7w2/BxGaW3R+cj7uWHQHNizagE91fgqyNDfeoBCFuUH4+yi/7wXhH+yFPTwyoZ0cjyNx661IrV+HxGc/C7W9vQm9nVss0/YC75mH3z41oiA9L4r0vChS82LIdMVwyeUZdPanzskbf9N2cHyshEMnizg86i0ni/jkZAEHRwowrMmnQpnfFsOSrkQwAtwPwTuTOm92R3QuCAHkjodGmXvB+chHgGgw2lmSgfZL3ZC8aznQfSXQtcwdec7Q/Iw5jkApV3E/7BwtozBmBPPe25aAbTmwLQeO6a7D9Y63z10ELNOGbQm33mt/LpMJVZOhe8F5NK56ZRWRWDhUV6uBe6Ja1qLKhGu7cAQqZWtCiO0H2+WiCaNQDbnDQbg9xe+XmVJUGZnuWE1g3taTQFtvHJEYv5lERK2L4fgsYzhORDSR6ZjYNbgL249sx7Yj23A0f7Rm//KO5bhtwW24feHtWN6xnIERzRlCCFhD3ojw0wThkGVELluC6FVXI3r11YheczWi11wDWdfPf8ebyDJt5EcN5E6WGgbgxezMw+9UUI4iPS+GSGL2bxCYLZk4MloMBeCFIAg/PlaGPcUISF2R3alQuhMTpkKJ6wwciOYEswyM7HOnYwkH58WTjdsHobkXlndf6YbnnVcwNJ8DHNsL081wkO4tphe+e/sqhuWF0RaMkhtAV4oWykWvXKrua3Qv2JmQZAmRmBuoSwDK3mOdTZIiyxIiCRXRhBfOJzRE41qozq2PJtw6CGBsqIixgSLGBos4NVjE2FARjjV5J2JpvS40d5f0vCinrSGiix7D8VnGcJyIyJU1snjj2BvYdmQb3jr2FvJmPtinyRpWX7IaaxesxW39t6E30dvEnhK5hBCwBger06Ls3Yvy3g9qp0bx+UH41de4QfjVVyO6fBnkePz8d7wJygUT2aESssNFZIdLyA6XkBsuITtSmrPht+0InMiWglHfh0eLODRaxBEvAB8rmlMeH1FlLOyIu8s8d71oXhxLOpNYwKlQiC5MQgCFYWDot8DwPmD4t8DQh+66dKrxMZOG5ksBLXpeu0+zyx/hbRT9xfTCdC9cL5mhfdVg3Q/ZpwqfAfd3X9QfkZ7wQ25v1Hko6Pb3+YG3Fpk4Gn2mHEdg/GQZY4OhwHyggFODxSl/b8uKhExXDO29iSAwb+9119EE7/9DRBcHhuOzjOE4EbWyg9mD7ujwo9uwe2g37NDXlzuiHfjsgs9i7YK1WNO3BnGtNUJEmpuEELAGBkIhuBeEn2wwglCWEbnssmoI3gJBuBACxVzFC8CrIXjOC8KNojXl8X74nZoXRbojFIB3unXRhHZOviFSMKyaaU/CAfjRU0WY9tR/ynYmI1jYEcOieQn0d1QD8IUdcXQlI5yrlahV1ITmH9aG59MJzbuXV6dpYWjeEoRwR7GHg3MBVEd4z6G5zOtVShbGhoo45Y8099ZjQ0XY5uTTukSTWhCUt/XE0dYVhxqZ7GaqSs1NVWVF4jdFiWjOYDg+yxiOE1ErsRwL/3AL95cAACAASURBVDP0P9h+ZDu2H92OT3Kf1Oy/vO1yrOtfh9v6b+P84dQ0fhBeev/9IAQv790Le3R0YmNFqQvCr0J0+XLIsYvvK/SOI5AfLSM7UgpC8FwoCLcqU89zmsjoSHfFkOmOI9Plzvud7owh3Xluw+9jYyUcO1XCUW/tbrtB+Eh+6lHrmiKhvz2O/lDo7Zf72+NIRDgFChFNQQggP+SG5MP7asPzyW4CKslA+2JvPvPl1RHnnJ6F5jjhCIyPlqsjzQer4XlhzDjr87tBudTgRqrVm6kqqgy5JmSXoaoy5PAxavOCdj8iEwLelDwCQvjbwq8K2ta3g3A3hfALcO/F5G3CqZ5DIHROx3scfy1Etdyo7nT7p6pzhFfvXs6Cm9iGbnCrx9XQ/Pzh/W5ZUefOe0AhBKyKg0rZQqVkoVKy3XLZK5e8ctmGWbYASYKsuIuiSJBkCbIih+pkry7URpEgy9U27hLalk+zrUiz8o0Rmj6G47OM4TgRXexylRzeOvYWth3ZhjePvYlcJRfsU2UVN/bciNv6b8Pa/rWYn5zfxJ5SqxGOA+vECRgHDqJyYL+3PgDj449hn2ow0k9RELn88iAEj119NSLLl0OOXjwj/GzLcb9GPVQ78js7XEJupARnipHUkgQkO6Ju8N0dR6Yzhky3F4J3xaDpyqz2VQiBk4UKjp0q4fiYG3ofDcJvd50tTT31CQC0xTUs6mgUgCfQm45C4ehvIppt4dDcn5bFD88nC80BIN4JZOYDaX/pAzIL3LW/rUbO3/MgmqZK2UJ2qIRTg4VgbvPcyTKsSoM54C0Bx3TgTHHvDrq4qbpcDc3rgnM3WNege2F7NKFCD9381g+JhRCwTMcLtN3wuj7gNssWDL/stymFgm8v9BYXwM+irEiIp3XEMxEkMqF1WkciE0E8465jKY33BZgFDMdnGcNxIroYHckdwbaj27D9yHbsGtwFS1SnVGiLtOHW+bfitv7bcEvfLUjqySb2lFqBYxiofHIIlYMHYOzfj8qBgzAOHkDl4CcQpVLjg1TVC8KvQvTqq90gfNmyCzoIt00HhZyBYraCYraCQtZAMVdBMWsgd7KM7HAJ+dHylDcBkxUJaT/0DsJvdyR4al50Vkf6WLaDgVw5NNq7hOPZagB+fKyE8hRf3/aloyrmt8cxvy2GBe0xzG+LYX57LAjBMzHOgUpEc4QQQH7QG13+YW14Xs5O7xyJLi8s90Lz+jCdATpdIByn9kaptuXAsUToRqoOLG9dU19zo1W74Y1Yz/ZGqmdMAiBJkLyyJEnuGtV6yf+/oH6SdrK/c4p23uf7kiRBkv21W19TrlmH23rrRsdPep5q2bFF7U1si6F5+Et120U3uD5bsixB1WWYFWdWQ21JAvSYCi2qQI+q7hJTocf8bQVaVAWEgGN7i+OXnelt1yxOaP/EbeEdP/MnAsSSWm2I3ihUz+hQtdkd2HIxYTg+yxiOE9HFwHZsvDf8XhCIH8geqNm/JLPEHR2+YC1Wdq2EIvMXLc0+e2wMxoED7ujvAwdR2b8fxsGDMI8eBZxJQlRNg75oISKLl0C/bAkiS5ZAX7wEkaVXQI5cGOFBpWy5gXfOQCEcfIcC8ELWgFGY3hsOVZeDwNsdBe6O/M50xZBsj87aPNrFioXjY+XQSO+iNwrcrRvIlWGf5o9+SQK6UxH0tVVD7wXeen5bHH1tUaSiDL+J6AInBFAcBXLHgNxxIHfUXWePeXVevVWe3vkSXdXAPDM/NPKcAToRNY/jiCBId29ea8IoVMuVRje/DYXuDb/hKCEIr/WYH2ortXVevRZVEPHLXpuIF4jPxWlLhPACdkugXDCDv/+LWf89gf8+wCuPmzP6wCASVycdjR6u06Nz77U51xiOzzKG40R0ITEdE8PFYQwWBzFYGMRAYQAfjX2EN46+gVNGdRoKRVKwqmcVblvgTpeyML2wib2mi4lwHJjHT3jToBxwR4EfcEeDN5wT3COnUm7wvWQJ9CWLEbnsMuiLF0Pv74ekzr15o4UQMApWNeTOGRND72wFhVwFlmGf/oQeWZGCr1WG/7BNtkeDKVDiaf2s/sAVQmC0UMGJbBmDuTIGcmUMZL0l59adyJYxXj59WK8pUhB8NwrAezNRRFR+2EZEVBuge0vWD9PPMkBPdgGJbreuvhxtA1osFCGiucefRsUoWDANC1rEDcE1XYHEKfIAuB8+lPPmhPcTxayBQq5SM9hmqpvr1vva334G8bR+Dns+98wky5177zSJiGhSpmNipDiCgeJAEHwPFmvXI6URiEm+h5jSU7h1/q1Y278Wt8y/BWmdH/jRmRFCwBkfh3n8eHUU+IEDbhh+8CCEMflNndRLLglC8MiSxdCXXIbIksVQOjubOqLBthyUCybKBRNGwUQ5bwXb5bwZlP1R3sVcBY41/TEGWkSpC71D8wumq/MMRhLqWb0OFcvBYG7q0HsoZ6BiT+8P6mREDQLvIAD3ygvaY+hKRmZtpDoR0UVNkoDEPHe5ZEXjNkGA7o88PxoKz49XA3XbAArD7nJi99SPK2tuUJ7oBJJeaJ7oqi372/F5gMJv8xDR7JMkCZquePe44TdfGpFlb17ytA70T95OCHcEf6FmFHolND1jdUS6ZdiIJXldnwrDcSKiOcIPvuvD7mBdGMRIeQSOOH2gpcoqeuI97pLowYLkAqzpW4Nru6+FJvMXI03NKRZhDQ3BHBqCNTQMa2jIWwZr6kR5ipFtmobIpYug10+FsvhSyInEOe2/EAKVsl0TaIfLRt5EuWhNqDfL0x/dHRZNaIg3uJmOu9YR94JvPXp2f3YJITBuWBj0gu4T2XJQ9kPvwVwZI/nKtM/ZmYygNxNBbzqKnnQUl2TcdW+mWuaUJ0RE51FNgL6ycZv6AD13DMh7QXlhCCiMuDcTLYwARhZwTGD8uLtMR6wjFJ53uqPQk36IHh6d3gVocY5KJyI6zyRJ8m6AqqHjkqnfW1kVmyPzT4PhOBHReWDYBkZKIxguDs968N0b7w3WvQm33BHtgCzxDtdUy6lUYA8Pwxwcqgbew0O1QfjgIJx8ftrnlDMZRBYvnjAKXFuw4KynQhFCwKq4o7mNoolywYJRcOcrrA+2w9tGwTqzm9/AfX8fiWuIJjVEEyqiCQ3RhIZIUgvKNaO+UzoU7ez+WzNtByfzFQyPGxjOlzEyXsFw3vC23fXIuIHBXBmFyvQCfF2R0XOa0Ls7FYU+izfnJCKi82Q6AbrPLANFPyz3AnQ/OC94dX6wXhwBhAOURt1lZN/0+qNGQ0vEXWvh7dgM6uvOpYXahI/R4oDCOIOI6HRUndMbng5/mxARnSEhBApmwQ29S8NB+O1vD5eGMVJ0y7lKblrnZPBNZ0KYJqzRU9Wwe9Af4V078ts+der0J/NIsRi07m6o/tLTA7W7q7auqwtyLHbac/k37vGDa6NoBjfvqa1zw+9yoVpueNOeaVI1GdGkhkiiGmzXhN6hwNvfjsTUWRlZYTsCp4pe4D1uYMQPu/1yaPtU0ZzRudNRFb2Zaujdm46iJxR696aj6Eic3ZzkRER0kdCiQGaBu5yOY7sj0ieMQG+wnR9yp3YB3DnSpztP+mySNUCPA1rCDdH9sh53w3MtPkU54ZVjk5QZvhMRtQpe7YmI6gghMGaM1YTbjcLvkdIISlZp2ufVZA1dsS435I73BGF3EIAnehl8tzghBJxCAfbYGOxTY+46m3XXUywzGektaVo13O7uhtrTXRt4e4ucSEwIVx1HuCF23kS2YKH8UQHl/Fhw9/lgrm4/5PbWRsnCJNPgT4usSG7AHXdD7UhCQySu1gXeXugdCrxne5SEaTvIly2cLBgYDo/urgu/h/MGRgsV2DMYva7IEjqTOjqTEXSlIujy1sF2KoLuVAS9mSjiOv98IyKic0BW3OlSkl0Arpq6rRBAJQ+YJTcYN72A3DIAq+Stw/XhpX7fZMfU1ftrn2MC5ay7nAuKHgrSY9UAXdHd0etKxBvNHgnVhffpdW3CdVPtC51HVjltDRHROcZ3V0R0URJCoOJUULbKqNgVGLYRLBW7Ug2/SyNBAB4OvS3HmvZjxdU4uuJd6Ix1oivmreNd1XKsC13xLqT1NEdythBhmlMG29aEuizsbBYwZzaKOKAoUDs7g3Bb6/FHd4dD7y4obW0AEExXUs6bKIanJfmtifLO4962VXODSqM4/f8uGtEiCiLeqO1IXEU07o/qVr0586rht1/nhtzyWf23Y9kO8oaF8bIVWpu126HyeNlE3nC382ULOa99eQZ3hPfNS+g1AbcbeOteAB4NttvjOm9qSUREFw5JAiIpdzmfHMcdsW6WALMIVIruekK5EGpTmKRNg3KlgOATfbviLuWx8/sca0jVKWX0pBvUN1yStWU/1J9wTLI6wl7mgBwiIoDhOBGdR6ZtYtwcR6FSQN7MI2/mg/C6bE8MsQ3bgGF5gXZd0H26YyrO9G9IN5m2SFtNuN0Z62wYgMe1+Cy8OjQXCCEgDANOodBwsf1yvvF+p1CAncvNeDR3PSkSgdLWdpolAzmTAVIZONEUTCUGo+QG3vm6ubiND0yUd+RRLpzy5uW2YFszD3p9ekytnY/bXwfhdjX4DuriKpRpzm8thIBhOShWbIwVDJTGbBQMC8VKaF2pD7TdADscdo974XbJPLMbbU4mHVXRGRrdXT/C26/vSOjQFL7xJCIimjWyDMgxdwQ3Omb//EK4I9RrAvaCF557YbtdcdvYBmBV6tZGg31G6JiKNwq+wXF+GxH+u0V4o+dLsx/SBwF6KESfEKrH3elrFM0dxS6rXllzv2nglxVvOyjX7/eOnexc9fs5oIiIzqOWCsefeeYZ/PCHP8TAwABWrlyJf/iHf8BNN93U7G4RzXmmbQZhdr7irgtmYeK2V67f9suzEVifCQkSomoUuqIjokQQUSJIaskJo7s7414QHuvCvNg86IrelP6SSwgB2DaEZbmLaU6+bVoQVu22UyrCKRQnCbHztWF3qB3sWQxSJQlyOg2lLROE2mpbG+RMG6RMO5xkG+x4BnYsDVtPwNbisJQoKraMStmCWbZQKdkwSl65bKNy3EJlv1tfKWfh2Gf+RklWpAZzb6uTzNOtBcG3Egp8LdtB0bRRNGwUK25wnTUsnKjYKBQKKI66QXax4u4veO0KFRtFw1v7+41q25lMSTJdEVVGKqohFVWRjLhLKqoiGVWRiqhIRTUko9V6t51Ws52IqAy8iYiILlaS5M7TrkWB+DkI36fDtiYG5lbZDeuDJV8N8Cv5ifsqk+wzC+5NV4HqqPnCcHOe51Qk2V0geWXJK4fWwX40qGvULlw3xflkBZAUL+xXqkF+fZ0U3l9fd7rj1EnONZ3j5LrtRnVK6HmE+teoLnh9iVpXy4TjL730EjZu3Igf//jHWL16NZ566inceeed2LdvH7q7u5vdPbpICSHgCAeOcGAJC7Zjwxbu4ggHlmPBEQ5sx4YlrNo6r134mKDs2ME5pzym7tjwMeF9lmOhaBZrAvBw+D3boXZMjSGpJZHQEoipMTewViNBcK0rOqJKbZjdsH4ax0SUCFRZbdnpTIKA2XEA04SY0WKFypWGbSacs2JCWBacirvtWDZsy4FtOXAsAdsGbMe9WaFjA7YjwXYkOAJw/DJk2EKCgAxHUuHIGhxZrS6SChHeljWvXaheUgEISEJAEg4kEYEEDZJIe9sO4K2lmAMp6kCa520L2z1OlgBFhqTIgCIDigKoCqAoEKq3KAocVQ0WW9VgqzpsOQJb0uBAAUwBYQrAdADTgSg7wLgDHA7/SxneMnrm/9iaBOgKhC5B6DIcTYatSbBVGZYGmIoEUwFMVUJFAQwJMCBgCwHLETBtA5ZdhpkTsMccWLaAaTuwHAHLFrCcap3tCJiOgGU7OAcZdo2IKiMRURHXFSR0FfGIgriuIK77gbbqBdpusJ0OBd/uthtuJyIq9GmOXCciIiJqGkV1Fz0x++cWIhS0508fqJsFN6x3TMA23Zu2BmVv2y/77RzLqwutg7JfHzpnoxvTeH+r0/k0nQ8V6uvQuN2kH2rItR9mTNmu0QcYU31IMlkdGrdrlrP54GbK1wkN6kLrO59072tADUlCiHP8tnZuWL16NW688Ub86Ec/AgA4joP+/n48/PDD+Pa3vz3lsblcDplMBtlsFul0+nx0d87Ys2cPfvn/XgEgIAQg4EAEv7yE+z8BAI5XK9xpCby9CGq9/cI9Bt65Qmdxy8H+6rHN4Pff7YYIbbtlSbi9FxCQgtcm1FZUn7l/4ZWCC7DkbUleIym0V6prX3eMmLpN/WP455/42Kg9rualdp+tJKrPz6+XIUGWFMiQoUhyTVmBt+2XoXhtZCh+O7jbwSN7r1fwfyLUheBnCxPqvZe69kfEK1cvaVLw7yGJup+m+vMHJwyva05au/bKYtJ2Der8siTVtQs/vlR3rP8TJHn9ldyfN/8VrHlSUs0x1Wr331x4ZQH3l6WQZPc84Tq49X6d8I+dcZ3/C5ymw4BARQIMaZJ1aL9fN2EbaOrfeIB7Q8lwgJ3QvUDbC7b9QDsR8da6gng49A619dcxTYHKUdpEREREFy/Hrg3P/eDcf8MXrJ26OnhvvJ26dqH1lPsmaS8ctz/C9vpmVwN+f99UdSJ8TH1d+LhpnL++jfDbOpOfp76Nv80PG1rbXw1401G1jplkuS0xcrxSqWDXrl147LHHgjpZlrFhwwa8/fbbE9obhgHDMILtXC53Xvo5F3343+8BA+7UM03+fI0uAI63nN0t+5pEqlvTrHOE++GaAwE7tLYluGsAtuT+/NgSYHllU5JgSf5a8toDllR3THAutw5w/zllAch+2dt2y1JQr0oSFAlQIUGVJaiSBFUCFMhQZUCRJCjw125b2duWvXMp3hoy4KgSHEWC7a2d8LqmDtURDSESgKi3TJcseX1XJKiyDFWRoCkyFFmCJktQFdnb5+7XFLdOkSW37NfJMhRFghacQ4Iiy1Bl93zBORQZmlcXjyjQlbO7aSYRERERtSB/ChA10uyeXNyEaBCg29UPHRp9kDBpHab5IUT9BxqTfTDRqN10j51O31Fb1ywz6jtO324mr5PcEvHvGWuJV2dkZAS2baOnp6emvqenBx9++OGE9k8++SS+973vna/uzWmZefMwVvpkQn3jKGcmLoAAJTSCNxg9HRoFHB5RXb2++mN6a9tLoXZSzcVYTPE49Y9V2zZ4rAbDqyetF3WP7T+uEKHRv1JQBlCth+wNbK5+bccfeVw7Mrn2q0rV0cnVrzVV6+CNiQ6RQk9V8vvpjZyuvpg1z8I/zh98XbNvkvYi/BWr4BzhryP561DKCmliO29bqjmueqwUfgyvTfAah15DIXmvX+i1CtchfExNm/D56ssIRnM7sgRJVbyvacqQZDdMlSQJkixBllFbliV3v7eWFbetorj7JEmCIkuQZbeN4q1lxWsvwx3xKwGyKkNWJCiK+60B/7WSJK8P/ksqed9zkLy+oL4uVIbbRpZqzyfBf17uSOYgJJZrQ91wSKx6z4OIiIiIiOiiJEnVKXuIqAb/q2jgsccew8aNG4PtXC6H/v7+JvaoeT53zxeAe5rdCyIiIiIiIiIiIqLZ1RLheGdnJxRFweDgYE394OAgent7J7SPRCKIRPiVHiIiIiIiIiIiIqKLVUvc5UrXdaxatQpbtmwJ6hzHwZYtW7BmzZom9oyIiIiIiIiIiIiImqElRo4DwMaNG/HAAw/ghhtuwE033YSnnnoKhUIBX/va15rdNSIiIiIiIiIiIiI6z1omHL/33nsxPDyMxx9/HAMDA7j22mvx6quvTrhJJxERERERERERERFd/CQhhGh2J+a6XC6HTCaDbDaLdDrd7O4QERERERERERERUQMzyXJbYs5xIiIiIiIiIiIiIqIwhuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy2E4TkREREREREREREQth+E4EREREREREREREbUchuNERERERERERERE1HIYjhMRERERERERERFRy1Gb3YELgRACAJDL5ZrcEyIiIiIiIiIiIiKajJ/h+pnuVBiOT8P4+DgAoL+/v8k9ISIiIiIiIiIiIqLTGR8fRyaTmbKNJKYTobc4x3Fw/PhxpFIpSJLU7O6cd7lcDv39/Thy5AjS6XSzu0NEdFq8bhHRhYbXLSK60PC6RUQXGl63WocQAuPj4+jr64MsTz2rOEeOT4Msy1iwYEGzu9F06XSaFw8iuqDwukVEFxpet4joQsPrFhFdaHjdag2nGzHu4w05iYiIiIiIiIiIiKjlMBwnIiIiIiIiIiIiopajPPHEE080uxM09ymKgrVr10JVORMPEV0YeN0iogsNr1tEdKHhdYuILjS8blE93pCTiIiIiIiIiIiIiFoOp1UhIiIiIiIiIiIiopbDcJyIiIiIiIiIiIiIWg7DcSIiIiIiIiIiIiJqOQzHiYiIiIiIiIiIiKjlMBynKT3zzDO49NJLEY1GsXr1avz6179udpeIiAK//OUv8aUvfQl9fX2QJAn//u//XrNfCIHHH38cl1xyCWKxGDZs2ICPPvqoSb0lolb35JNP4sYbb0QqlUJ3dzfuuusu7Nu3r6ZNuVzGgw8+iHnz5iGZTOLuu+/G4OBgk3pMRK3uueeew4oVK5BOp5FOp7FmzRr8/Oc/D/bzmkVEc90PfvADSJKERx55JKjjtYvCGI7TpF566SVs3LgR3/3ud/Huu+9i5cqVuPPOOzE0NNTsrhERAQAKhQJWrlyJZ555puH+v/3bv8XTTz+NH//4x/jVr36FRCKBO++8E+Vy+Tz3lIgI2L59Ox588EG888472Lx5M0zTxOc+9zkUCoWgzde//nX853/+J/7lX/4F27dvx/Hjx/GVr3ylib0mola2YMEC/OAHP8CuXbuwc+dOrF+/Hr//+7+PvXv3AuA1i4jmth07duAnP/kJVqxYUVPPaxeFSUII0exO0Ny0evVq3HjjjfjRj34EAHAcB/39/Xj44Yfx7W9/u8m9IyKqJUkSXn75Zdx1110A3FHjfX19+MY3voFHH30UAJDNZtHT04MXXngBf/RHf9TM7hIRYXh4GN3d3di+fTs++9nPIpvNoqurCy+++CLuueceAMCHH36IK6+8Em+//TZuvvnmJveYiAjo6OjAD3/4Q9xzzz28ZhHRnJXP53H99dfj2Wefxfe//31ce+21eOqpp/j3Fk3AkePUUKVSwa5du7Bhw4agTpZlbNiwAW+//XYTe0ZEND0HDx7EwMBAzXUsk8lg9erVvI4R0ZyQzWYBuEETAOzatQumadZct5YvX46FCxfyukVETWfbNjZt2oRCoYA1a9bwmkVEc9qDDz6IL37xizXXKIB/b9FEarM7QHPTyMgIbNtGT09PTX1PTw8+/PDDJvWKiGj6BgYGAKDhdczfR0TULI7j4JFHHsEtt9yCa665BoB73dJ1HW1tbTVted0iombas2cP1qxZg3K5jGQyiZdffhlXXXUVdu/ezWsWEc1JmzZtwrvvvosdO3ZM2Me/t6gew3EiIiIiovPswQcfxPvvv48333yz2V0hIprSsmXLsHv3bmSzWfzrv/4rHnjgAWzfvr3Z3SIiaujIkSP4y7/8S2zevBnRaLTZ3aELAKdVoYY6OzuhKMqEu/UODg6it7e3Sb0iIpo+/1rF6xgRzTUPPfQQfvazn+H111/HggULgvre3l5UKhWMjY3VtOd1i4iaSdd1XH755Vi1ahWefPJJrFy5En//93/PaxYRzUm7du3C0NAQrr/+eqiqClVVsX37djz99NNQVRU9PT28dlENhuPUkK7rWLVqFbZs2RLUOY6DLVu2YM2aNU3sGRHR9CxevBi9vb0117FcLodf/epXvI4RUVMIIfDQQw/h5ZdfxtatW7F48eKa/atWrYKmaTXXrX379uHw4cO8bhHRnOE4DgzD4DWLiOak22+/HXv27MHu3buD5YYbbsB9990XlHntojBOq0KT2rhxIx544AHccMMNuOmmm/DUU0+hUCjga1/7WrO7RkQEwL0D+ccffxxsHzx4ELt370ZHRwcWLlyIRx55BN///vdxxRVXYPHixfjrv/5r9PX14a677mpir4moVT344IN48cUX8R//8R9IpVLBvJaZTAaxWAyZTAZ/+qd/io0bN6KjowPpdBoPP/ww1qxZg5tvvrnJvSeiVvTYY4/hC1/4AhYuXIjx8XG8+OKL2LZtG37xi1/wmkVEc1IqlQru5+JLJBKYN29eUM9rF4UxHKdJ3XvvvRgeHsbjjz+OgYEBXHvttXj11Vcn3NyOiKhZdu7ciXXr1gXbGzduBAA88MADeOGFF/Ctb30LhUIBf/7nf46xsTF85jOfwauvvsq554ioKZ577jkAwNq1a2vqn3/+efzJn/wJAODv/u7vIMsy7r77bhiGgTvvvBPPPvvsee4pEZFraGgI999/P06cOIFMJoMVK1bgF7/4Be644w4AvGYR0YWJ1y4Kk4QQotmdICIiIiIiIiIiIiI6nzjnOBERERERERERERG1HIbjRERERERE9lJKCwAABZpJREFURERERNRyGI4TERERERERERERUcthOE5ERERERERERERELYfhOBERERERERERERG1HIbjRERERERERERERNRyGI4TERERERERERERUcthOE5ERERERERERERELYfhOBERERHRBWbbtm2QJAljY2NNefwtW7bgyiuvhG3bp2376quv4tprr4XjOOehZ0RERERE08dwnIiIiIhoDpEkacrliSeewKc//WmcOHECmUymKX381re+he985ztQFOW0bT//+c9D0zT80z/903noGRERERHR9ElCCNHsThARERERkWtgYCAov/TSS3j88cexb9++oC6ZTCKZTDajawCAN998E7/3e7+HgYEBRKPRaR3zzDPP4IUXXsCOHTvOce+IiIiIiKaPI8eJiIiIiOaQ3t7eYMlkMpAkqaYumUxOmFblhRdeQFtbG372s59h2bJliMfjuOeee1AsFvGP//iPuPTSS9He3o6/+Iu/qJkKxTAMPProo5g/fz4SiQRWr16Nbdu2Tdm/TZs24Y477qgJxt977z2sW7cOqVQK6XQaq1atws6dO4P9X/rSl7Bz507s379/dl8sIiIiIqKzoDa7A0REREREdPaKxSKefvppbNq0CePj4/jKV76CL3/5y2hra8N//dd/4cCBA7j77rtxyy234N577wUAPPTQQ/jggw+wadMm9PX14eWXX8bnP/957NmzB1dccUXDx3njjTfw1a9+tabuvvvuw3XXXYfnnnsOiqJg9+7d0DQt2L9w4UL09PTgjTfewGWXXXbuXgQiIiIiohlgOE5EREREdBEwTRPPPfdcED7fc889+OlPf4rBwUEkk0lcddVVWLduHV5//XXce++9OHz4MJ5//nkcPnwYfX19AIBHH30Ur776Kp5//nn8zd/8TcPHOXToUNDed/jwYXzzm9/E8uXLAaBhsN7X14dDhw7N5lMmIiIiIjorDMeJiIiIiC4C8Xi8ZlR2T08PLr300pr5yXt6ejA0NAQA2LNnD2zbxtKlS2vOYxgG5s2bN+njlEqlCXONb9y4EX/2Z3+Gn/70p9iwYQP+4A/+YMII8VgshmKxeMbPj4iIiIhotjEcJyIiIiK6CISnMQEASZIa1jmOAwDI5/NQFAW7du2Coig17aa64WdnZydOnTpVU/fEE0/gq1/9Kl555RX8/Oc/x3e/+11s2rQJX/7yl4M2o6Oj6OrqOqPnRkRERER0LjAcJyIiIiJqQddddx1s28bQ0BBuvfXWGR33wQcfTKhfunQpli5diq9//ev44z/+Yzz//PNBOF4ul7F//35cd911s9Z/IiIiIqKzJTe7A0REREREdP4tXboU9913H+6//37827/9Gw4ePIhf//rXePLJJ/HKK69Metydd96JN998M9gulUp46KGHsG3bNhw6dAhvvfUWduzYgSuvvDJo88477yASiWDNmjXn9DkREREREc0Ew3EiIiIiohb1/PPP4/7778c3vvENLFu2DHfddRd27NiBhQsXTnrMfffdh71792Lfvn0AAEVRcPLkSdx///1YunQp/vAP/xBf+MIX8L3vfS845p//+Z9x3333IR6Pn/PnREREREQ0XZIQQjS7E0REREREdOH45je/iVwuh5/85CenbTsyMoJly5Zh586dWLx48XnoHRERERHR9HDkOBERERERzchf/dVfYdGiRcHNPafyySef4Nlnn2UwTkRERERzDkeOExEREREREREREVHL4chxIiIiIiIiIiIiImo5DMeJiIiIiIiIiIiIqOUwHCciIiIiIiIiIiKilsNwnIiIiIiIiIiIiIhaDsNxIiIiIiIiIiIiImo5DMeJiIiIiIiIiIiIqOUwHCciIiIiIiIiIiKilsNwnIiIiIiIiIiIiIhaDsNxIiIiIiIiIiIiImo5/x/NZm+mVK9grAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3RU1drH8e+k94RQEoKUIBDBiwZCV4qCBkEuoMClSBEErxqKghVRmiAqiqiXokiRIqCCKEUQQZAmwgWRTgzdAFISAklI2e8feefcDCkkCA6Q32ets5g5++x9nlMmS5/Z8xybMcYgIiIiIiIiIiIiIlKEuDg7ABERERERERERERGRv5uS4yIiIiIiIiIiIiJS5Cg5LiIiIiIiIiIiIiJFjpLjIiIiIiIiIiIiIlLkKDkuIiIiIiIiIiIiIkWOkuMiIiIiIiIiIiIiUuQoOS4iIiIiIiIiIiIiRY6S4yIiIiIiIiIiIiJS5Cg5LiIiIiIiIiIiIiJFjpLjIiIiInLdDR06FJvNRpMmTZwdyi1t2bJl2Gw2vLy8rum4e/bswWazYbPZiI+P/9v7y41t4sSJ2Gw27rjjDmeHIiIiIlIoSo6LiIiIZGNP4hZ0kVtXcnIygYGB2Gw2YmJiCtxv7dq11v3x1VdfXccIxS41NZXJkycTHR1NWFgYnp6eBAYGUqVKFe6//34GDx7Md999R2pqaq79ExMTeffdd7nvvvsoVaoUHh4eBAcHU7VqVZo3b86IESNYvXo1mZmZV4zlvffes65/06ZNC30s586dY9y4cbRs2ZJy5crh4+ODt7c3ZcuWpWXLlrz//vucPHkyz/5LliyhY8eO3H777fj4+ODj40N4eDj169cnJiaGuXPncvr06ULHJSIiInIrcnN2ACIiIiI3qpCQEGeHIE7k7e1Np06dmDRpErNnz2bs2LF4enpesd+nn34KQMmSJWnVqtX1DtOBn58fERERBYrzVhEXF0eLFi3Ys2ePtc7DwwNXV1diY2PZv38/q1atYtSoUWzYsIF69eo59N+yZQv//Oc/OX78uLXO29ubzMxM9u7dy549e/juu+8A+OOPPwgNDc03nilTplivV61aRVxcHOHh4QU6lgkTJvDyyy+TkJBgrfPx8cHDw4OjR49y9OhRlixZwssvv8ywYcN4/vnnre2Sk5Pp1KkTX3/9tbXOxcWFoKAgjh07xsGDB9m4cSMfffQRo0eP5qWXXipQTCIiIiK3Ms0cFxEREclDfHz8FRe5tfXq1QuAs2fPsnDhwitun5SUxPz58wHo2rUr7u7u1zW+y917773s2bOH7du3/637dZa0tDRatWrFnj178PPzY9SoURw9epSUlBTOnDnDhQsX2LBhA0OGDMk1QX327FlatmzJ8ePHCQkJ4cMPP+TUqVNcvHiRc+fOkZiYyKpVqxg4cGCBvizbtGkTO3fuJCQkhA4dOmCMYerUqQU6loEDB/L000+TkJBA9erVmTlzJqdOneLChQucO3eOCxcusGTJEjp16kRqaipffvmlQ//+/ftbifE+ffqwY8cOLl26xOnTp0lJSWHXrl28//771KtXT796EREREfl/So6LiIiIiOShdu3aVK9eHfjfjPD8zJs3jwsXLgD/S6zL9bNs2TJ27twJwGeffcbLL79MmTJlrOSvl5cX9erVY/jw4Rw4cIAaNWo49J85cyYnTpywxnrmmWcoUaKE1e7n50eTJk145513OHLkCCVLlsw3Hvus8U6dOtGzZ08Apk2bdsVyLNOnT+fdd98F4LHHHmPLli106dLFIRYfHx8eeughZs+ezS+//EJERITVdubMGSsJ379/fyZNmsQ//vEPXF1dgawZ5FWrVqVfv35s2LCBfv365RuPiIiISFGh5LiIiIjINfLUU09hs9kICgri4MGDuW4zYcIEbDYbbm5urFmzxqHtt99+Y+jQodx///3cfvvteHt7ExAQQI0aNXj11Vf5888/89x3hQoVsNlsTJs2jYsXLzJ06FCqVq2Kj48PYWFhdO3albi4OGv7P//8kxdffJEqVarg7e1NaGgoTzzxhJUovNzlD9ScN28ejRs3Jjg4GF9fX6Kiovjwww/JyMgo3EnL5tSpU7z66qvUqFGDwMBAvLy8qFixIr169bISoM5gT3J///33HDlyJN9t7Qn0evXqUa1aNYe2AwcOMHr0aKKjo6lcuTK+vr74+flx55138txzz3H06NE8x7XP9n3zzTdJTU1lzJgx1KxZ06qJvnHjRiD/B3JmZmayYsUKYmJiqFu3LmXKlMHDw4MSJUpw33338fHHH5Oenl6gc7J79266du1KmTJl8PT0pHz58jzzzDN/6dcUGRkZTJ8+nebNm1t1v0uWLEnz5s2ZN28expgcfbZt2waAzWa7YgkbFxeXHOVm7P3LlStHZGRkvv3d3d2tZHNuLly4wOeffw5A9+7dadasGWFhYRw5coQVK1bk2S8lJYUXX3wRgMjISKZMmXLFXxzUqFHDYUb6zp07rWvXunXrfPtCVtmYvKxYsYJHHnmE0qVLW/fHAw88wGeffVagmuvZRUREYLPZeOWVV/LdbsmSJdbfxdzuodjYWPr27UvVqlXx8/PDx8eHqlWr5vu5ufwhocuXL6dVq1aEhobi6urKv//970Idi4iIiNyijIiIiIhYXn/9dQOYq/nPpIsXL5o777zTAKZ+/fomLS3NoX3Hjh3Gy8vLAOa1117L0b98+fLWvr28vExwcLCx2WzWujJlypg9e/bkum9733Hjxpnq1atbY3h7e1v9S5cubeLi4kxsbKwJDw83gPHx8TEeHh7WNpUrVzYJCQl5npfGjRubF154wQDGZrOZYsWKGRcXF6t/dHS0SUlJybd/blasWGGCgoKscdzd3Y2vr6/13sPDw0yfPr0AV+Ha+/PPP61zNGLEiDy327dvnxXv5MmTc7TXrVvX4XiCg4Mdzl1wcLDZtGlTrmPb+w4ZMsTUrl3bAMbNzc06Zxs2bDDGGLN06VIDGE9Pzxxj7N6929oXYPz9/U1AQIDDuvvvvz/X65e97/z5861r4+/vb93TgClZsqT59ddf8+3/xx9/5Gg/efKkqV+/vkMsgYGBDu/btWuX4zM1fPhwq/3w4cO5X5h89OzZ0wDG29vbpKamFrp/dlOnTjWAqV69urXO/llp3759nv1mzJjhcG6vxpo1a6wxZsyYcVVjZGZmmqefftoax/75dnV1dfh8JyUl5eg7YcIEA5iIiAiH9SNGjDCAKVeunMnMzMxz3x07djSAad68eY62KVOmGHd3d4e/jdnvuaCgILNq1ap8YxozZozD9u7u7ubJJ58s/EkSERGRW46S4yIiIiLZ/JXkuDFZCXB7QvqVV16x1mdPnN9zzz0mPT09R99u3bqZadOmmUOHDlnrUlNTzffff2/q1KljAFOzZs1c92tPjgcFBZkKFSqY5cuXm4yMDJOenm6WL19uSpYsaQDToUMHU6dOHRMZGWklVC9dumTmzp1rfHx8DGAGDx6c53mxJyxjYmLMyZMnjTHGJCQkmBEjRliJ/GeffTbP/rklx3/99VfrnPXu3dvs2rXLOj+HDh2yEnZubm5m8+bN+Zz966dDhw4GMLfffnueSb6XXnrJAMbX19ckJibmaH/mmWfMxIkTzYEDB6wx0tLSzPr1603Tpk0NYMqXL59rktaeHPfz8zOBgYHms88+M8nJycaYrMTy2bNnjTH5J8cPHDhgunXrZhYvXmzOnDljrU9ISDCffPKJCQkJMYB5+eWXc/TNntwODAw0NWvWNL/88osxxpiMjAyzZMkSExYWZp2jCxcu5Nn/8uR4WlqalRivVauWWbp0qbl48aIxxpjz58+bTz75xJQoUcIA5qWXXnLou2zZMofEbW6J9/xMnDjR6t+9e3frPF6Ne++91wDm7bffttbt3LnT+jLkzz//zLVf9+7drS+E7MddWAkJCcbT09MApkKFCmbr1q2FHuPtt9+2zkVMTIw5ceKEMSbrGrz11ltWkrx79+45+uaVHD948KD1dyG3BLYxxiQmJlqf/9mzZzu0ffPNN8ZmsxkPDw8zePBgc+jQIZOZmWkyMjLMzp07TZs2bQxgihUrZo4fP55rTD4+PsbFxcX07t3bHD161BiTdc/FxsYW+hyJiIjIrUfJcREREZFssifHQ0JC8l369euX6xj2pIyLi4v54YcfjDHGPPnkk1byOnvyu6DOnz9vJS/Xrl2bo92eHPf29jb79+/P0T5lyhSH48otUTdkyBAruXm57Oela9euucb46quvWknsY8eO5do/t+T4/fffn2dS1q5fv34GMK1bt85zm+vpu+++s44/tyRfenq6lRzu0aNHocdPS0szd9xxR56zh7PPOl++fHme4+SXHL+StWvXWsnvy2doZ09uh4SEmNOnT+fov23bNuPm5mYAM378+Dz7X57Anjx5sgHMXXfdZc6fP59rbOvXr7fu7+yJ/czMTNOoUSNrbDc3N3PPPfeY5557zsyaNcscOHAg32O+cOGCiYiIsPp7enqapk2bmpdeesnMnz/fSqZeyZ49ewxgXF1dcyRpo6KiDGT9qiM3tWrVyjHj/GrYP7/25c477zS9e/c2EydONFu3bs31Czm7xMRE61cEjz/+eK7bvPXWW9bYO3bscGjLKzlujDGNGzfOd9xPP/3U+hVC9i8H0tLSrL9ref1qJDMz00RHRxvAvPjii7nGBJjOnTvneewiIiJStCk5LiIiIpJN9iTwlZbcZlDaPfLIIwYwYWFhZtKkSX+5bIIx/5u9PHr06Bxt9iTSY489lmvfo0ePWjEMGTIk121++ukna5vLSydkPy+5Jd+NyZq9ap8BenlyNK/keFxcnJXUzC3havfLL79Ys7LzS/JdLxkZGaZcuXIGMN26dcvRvnjxYuv8rFmz5qr2Yf8CoH///jna7MnxqKiofMf4K8lxY4z1y4D//ve/DuuzJ7fzKy1jv+8bNGiQZ//Lk+P2Y5s0aVK+sVWqVMkAZuHChQ7rExMTTe/eva3E/OVLeHi4GTFiRJ6J9/j4ePPII484lDC6PMn8wQcf5Ft2xV4+JbeyIOPHj883+W0vcZRXyaGCyszMNO+8845DeaLsS1BQkHnyySfNwYMHc/SdO3eugaxSKrm1G5P1Kxb7DP7sv4oxJv/k+CeffGIAExAQkOvM+Pvuuy/X5Ln9Xi5Tpky+JVlmzpxpABMZGZlrTLkl80VERETs9EBOERERkTyYrIkEeS7Tpk3Ls+8nn3xCuXLlOH78OE8++SQATzzxBO3atct3n99++y3/+te/qFixIr6+vthsNmuZN28eQL4PbqxTp06u60NCQqzXtWvXvuI2586dy3WbsmXLUqlSpVzbAgICiIqKAuCXX37JM8bs1q1bB2Q9LLJatWqEhobmujRv3hzIeujh6dOnCzT2teTi4kKPHj0A+OKLLzh//rxDu/1BnFWqVKFhw4Z5jrN69Wq6du1KREQEfn5+Dtd3/PjxQP7X95577vlLx5GSksJHH33EAw88QOnSpfH09HSIISEh4Yox3H///Vds27JlS64P0Mwtni1btgDw8ssv53n9Q0NDOXToEID1r52/vz+TJ0/myJEjTJgwgS5dunDHHXfg4pL1vzpxcXEMGTKEmjVr5ugLWff9l19+SWxsLO+++y7t2rWjYsWK2Gw2IOthl3379qVhw4a5fi7S09OZMWMGAN26dcvR3qlTJ9zd3dmxYwebN2++4jm5WjabjYEDB3Ls2DHmzZvHU089Ra1atayHs547d45JkyZRvXp1li9f7tDX/nmtVKkS5cuXz3V8Dw8PGjdu7LB9QbRv3x5vb28SExP5+uuvHdqOHDnC6tWrgZznzv634dSpU5QuXTrP+6Jv375AzvvCLjAwkH/84x8FjldERESKFiXHRURERK6DYsWK8dFHH1nvK1asyPvvv5/n9pmZmXTu3JlWrVoxb9484uLiuHTpEsWKFSMkJISQkBAryXXhwoU8x/H39891vZubW6G2SUtLy3WbMmXK5Lnv7O0nT57Mdzu748ePA1nHf+LEiTyXP//80+pz8eLFAo29fv36PBNqc+fOLdAY2T3++OPYbDYuXrzI559/bq3/888/+eabbwDo2bNnnv379+/Pfffdx8yZM9m3bx8pKSkO19fX1xfI//qWKlWq0HHb/fHHH9SoUYOYmBi+//574uPjcXV1pUSJElYM9oRyfjHkdw/Y21JTU0lMTLxiTKdOnSI9PR2AM2fO5HsP2O/JvK5/aGgo//73v5k5cya7d+/m3LlzfPXVV9SrVw+A/fv389hjj+UZS3h4OM8++yzz588nNjaWU6dOMWPGDKpWrQrAzz//TExMTI5+S5YsIT4+noCAANq0aZOjvUSJErRs2RL435co2RUvXtw6/mvBx8eH9u3b85///IfNmzeTmJjImjVr6Ny5MwDnz5+nQ4cODl8y2T+vV/p833bbbQ7bF0RAQACtW7cG4LPPPnNomzVrFsYYypcvbyXe7ex/Gy5dupTvfXH27Fkg7/uiZMmSBY5VREREih4lx0VERESuk48//th6fezYMQ4cOJDntlOmTGHOnDm4urry2muvsX//flJTUzlz5gzx8fHEx8dbs84LMiP3ZpGRkQFkzd690kx9+1KhQoUCjZ1fUi05ObnQsVaoUIGmTZsCMHXqVGv9rFmzuHTpEq6urrnOHAb45ptvrJnh/fv3Z+fOnTmu71NPPQXkf31dXV0LHbddTEwMe/bsoVSpUsyYMYMTJ05w8eJFTp06ZcUQHBx8xRiuJfv1B1i1alWBrv9LL71UoLH9/f1p27YtP/30Ew0aNADgp59+Ys+ePQXqX7x4cbp27cqmTZu4/fbbAZg7d26OXw1MmTIFgMTERHx8fBxm4tuXhQsXAjBnzpwc996dd94JwJ49e0hJSSlQbIXh7u5Ow4YNmTVrFi+88AIACQkJzJ8//5rvKy/2z8Xy5cs5ceKEtd6eLO/SpYs1U9/Ofm80bty4QPdFXufur3xmRERE5Nan5LiIiIjIdfDhhx+yaNEiXF1dqVatGqmpqXTs2DHP2Y32mchPPPEEw4YNo1KlStYsXrv4+PjrHveVHDt2rEDtBZ3hHBoaCmTNvs5vtvLVaNKkSZ6JNHuJlMLq1asXABs2bLCSrPZEeYsWLShdunSu/ezXt3Xr1owbN45q1arlSNpdz+t78eJFa3b7pEmT6Nq1a45rlJqammc5nezyuwfsbZ6engQEBFxxrFKlSllJ0bzKYvxVrq6u1nUD2Lt3b6H6+/v7W7Ou09PT+f333622+Ph4lixZUuCxEhIS+OKLLxzW2b9wSUtL49tvvy1UbIVlL/EEjufBfi/kV04ne3thf8Hw4IMPEhISQnp6OnPmzAFg69at7Nq1C8i9HI39b8P1ui9EREREQMlxERERkWtux44dPP/88wC89tprLFmyhKCgIHbv3s2zzz6ba58jR44AUKNGjVzbk5KS2LRp0/UJuBCOHDlCbGxsrm3nz5+36kfXqlWrQOPZa2hnZGSwdOnSaxPkddS2bVtrdvWnn37Kli1b2L59O4BDAvZyV7q+GRkZVu3l6yE+Pt4qS5JXDKtXr7ZKnORn1apVV2yLiorKMRM4Nz4+PlY89uT99eDn52e99vT0vGb9p0+fTnp6Orfddhvnz5/Pd7Enpi8vrdKuXTur3v8bb7yRZ0mjy2VmZl6z47B/XmNjY/NMRqelpfHjjz8CeT+3IC+urq7WFwz22eL2f+vUqUNERESOPva/DQcPHuS3334r1P5ERERECkrJcREREZFrKDk5mY4dO5KSksK9997L4MGDKV++PJMnTwZg8uTJfPnllzn6BQYGAliJ1suNGDEiRzkHZxkxYkSu68eOHUtycjJubm48+uijBRqrcuXKNGnSBIDBgwdbD4TMy7Wqy3y1PD096dKlC5CV3LOXzgkJCbHqSufmStd3/PjxV5y1+1fY959XDJcuXWLIkCEFGuvDDz+06jxnt2PHDuuBi//6178KHFufPn0AWLBgAd9//32+215+/bdv337FGffGGOuBmS4uLkRGRlptGzduvOI9l5aWZs12DgwMpGLFilabPdHdrl07/Pz88l06duwIwI8//ujwBZO3tzejR48GYNu2bfTs2fOKCfJff/3Vob59fHx8nvdWdtOnT7de16xZ03rdokULAgICMMYwbNiwXPt+8MEHVu1/+7EUhn12+NatW/n111+tc5pXKaLo6GjKlSsHwIABA674xY2z/zaIiIjIzUnJcREREZFr6Nlnn2XXrl0EBQUxa9Ysq3RG+/btrZnFvXv3tmYS2zVv3hzIqlM+efJkLl26BGQlvZ599lneeust68F9zhQYGMj06dPp37+/lSg7f/48o0aNYvjw4QA888wzhIWFFXjMDz74AD8/P/bt20e9evX4+uuvHeoHHzt2jM8++4ymTZvy4osvXtsDugr26xgfH28lx7t16+bwQNPL2a/vggULGDNmjFVe58yZMwwbNoxBgwZd1+tbvHhxa3Zwv379WLNmjVVXfNu2bURHR7Nz5068vb2vOFZycjIPPvgg//3vf4GsGczLli2jRYsWpKenU7FixXxn0V+uZ8+eNGrUiMzMTFq1asWbb77pkPBOSkpi5cqVPPnkk9bDMe1WrFhBhQoV6NSpE1999ZVDv5SUFH788UdatmzJ4sWLAejcubNVrgNg5syZlCtXjt69e7NkyRKHBOuFCxf49ttvadSoEdu2bQOgb9++eHh4ALB27Vr27dsHQIcOHa54nI0aNbJq618+e/zxxx+nX79+VkxRUVHMnj3b4aGZycnJrFixgm7dulGzZk2H2ulHjx4lMjKS+++/n48//pj9+/db1zc9PZ1du3bRt29fq157pUqV+Oc//2n19/Pzs74cmTp1Kn379uXUqVPWeRg7dqxVr7x79+784x//uOLxXi4yMtLq16tXL06cOIG7u3ueiXYPDw8mTpyIi4sLK1eu5L777svx64YDBw7w0UcfUbNmzVwfdioiIiJyRUZERERELK+//roBDGBCQkKuuKxbt87q++WXX1p958+fn2PsCxcumDvuuMMApmHDhiY9Pd1qO3v2rNUGGBcXFxMUFGRsNpsBzJNPPmm6d+9uANO9e/ccY5cvX94AZurUqXkem33sVatW5doeFxdnbRMXF5freWncuLF54YUXDGBsNpspVqyYcXV1tfo1a9bMJCcn53leGzdunOu+f/rpJxMaGmqN4+rqaooXL268vb2tdYB54okn8jy+v1NUVJRDXLt37853+5SUFFO3bl1re/u5s1/ftm3bmueff94AJjo6Okd/e9/Ro0fnu5+lS5cawHh6euZoW79+vcP59PLyMn5+fgYw7u7uZu7cuSYkJMQAZs6cOQ59d+/e7XBv+/r6GsD4+/s7jFm8eHGzbdu2HPvO3v+PP/7I0X7mzBkTHR3tcE4DAwNNYGCgdY4A4+fn59Bv3LhxDn0A4+3tbYoVK5ZjfcuWLU1SUpJD/wEDBuTYztfX1wQEBORY36tXL5OWlmb1tX8ey5YtazIzM/O9LnZPP/20AUyZMmUcPv9248ePz7FvX19fExgY6LDOz8/PjBs3zur33//+N0e87u7uJjg42Li4uDisr1Klitm3b1+OfWdmZlrx5fX5fvDBB3OcQ2OMmTBhggFMREREvsf/1ltvOcTSunXrK56zuXPnWveb/biKFy9uPDw8HMZ65513riomERERKdo0c1xEREQkDydOnLjiYp/hfeTIEZ544gkga1Zku3btcozn4+PDnDlz8PT0ZO3atYwcOdJqCwoKYv369QwYMIAKFSrg6uqKm5sbTZo0Yc6cOUycOPHvOegCGDNmDJ9//jn33nsvxhg8PDyIjIzk/fffZ9myZXh5eRV6zHvuuYd9+/bxzjvv0KhRI4KCgjh37hyurq5UrVqVxx57jFmzZjFu3LjrcESFl31mdIMGDbjjjjvy3d7T05MffviBwYMHU6lSJWuWeYMGDfj444/58ssvczyA9VqrX78+mzZt4tFHH6V48eJkZGQQGBhIp06d2LhxY4FmPwPce++9bN68mS5duuDv709GRgZly5blqaeeYseOHdx9992Fjq1YsWIsXbqUb775hnbt2lG2bFlSUlJISUnhtttuo3nz5owZM4YdO3Y49Ovfvz9bt25l9OjRtGrVikqVKmGz2UhMTCQgIIA777yTHj168N133/Htt9/i6+vr0H/s2LGsW7eO119/nejoaMqXL09GRgYXLlwgKCiIGjVq8PTTT7Nx40Y++eQT67qdP3+e+fPnA1klVQpSXx3+N8P82LFjfPfddzna+/bty8GDBxk7dizNmzfntttuIzMz0zoPLVu25MMPP+TQoUP079/f6hcZGcnhw4eZMGECnTt3pnr16nh7e5OQkICXlxfh4eG0adOGqVOnsmPHDipXrpxj3zabjY8++ojvvvuONm3aUKpUKZKSkggMDKRp06ZMnz6dpUuX5jiHhdGlSxeHB9HmVVIluw4dOnDgwAGGDBlCrVq18PX15dy5c3h7exMZGcmTTz7JokWLrJn3IiIiIoVhM+b/f28nIiIiIpKHoUOHMmzYMBo3bnxdHxwpIiIiIiLyd9HMcREREREREREREREpcpQcFxEREREREREREZEiR8lxERERERERERERESlylBwXERERERERERERkSJHD+QUERERERERERERkSJHM8dFREREREREREREpMhxc3YAN4PMzEyOHz+Ov78/NpvN2eGIiIiIiIiIiIiISC6MMZw/f56wsDBcXPKfG67keAEcP36csmXLOjsMERERERERERERESmAI0eOcNttt+W7jZLjBeDv7w9kndCAgAAnRyMiIiIiIiIiIiIiuUlMTKRs2bJWTjc/So4XgL2USkBAgJLjIiIiIiIiIiIiIje4gpTH1gM5RURERERERERERKTIUXJcRERERERERERERIocJcdFREREREREREREpMhRzXERERERERERERG5IWRkZJCWlubsMOQG5+7ujqur618eR8lxERERERERERERcbqkpCSOHj2KMcbZocgNzmazcc0Y4qIAACAASURBVNttt+Hn5/eXxlFyXERERERERERERJwqIyODo0eP4uPjQ8mSJbHZbM4OSW5QxhhOnTrF0aNHqVy58l+aQa7kuIiIiIiIiIiIiDhVWloaxhhKliyJt7e3s8ORG1zJkiU5ePAgaWlpfyk5rgdyioiIiIiIiIiIyA1BM8alIK7VfaLkuIiIiIiIiIiIiIgUOUqOi4iIiIiIiIiIiEiRo+S4iIiIiIiIiIiIyDXUpEkTBgwYcNPv41an5LiIiIiIiIiIiIiIFDlKjouIiIiIiIiIiIhIkaPkuIiIiIiIiIiIiNxQjDFcvJTulMUYU6hYL1y4QLdu3fDz86N06dKMHTvWoT01NZVBgwZRpkwZfH19qVu3LqtXr7baT58+TadOnShTpgw+Pj5Ur16dOXPmFGofcnXcnB2AiIiIiIiIiIiISHbJaRlUe+07p+x71/BofDwKnjZ9/vnn+fHHH/n6668pVaoUr7zyClu3biUyMhKAmJgYdu3axeeff05YWBgLFiygefPm7Nixg8qVK5OSkkJUVBQvvvgiAQEBLF68mK5du3L77bdTp06dAu1Dro6S4yIiIiIiIiIiIiJXISkpiSlTpjBz5kyaNm0KwPTp07ntttsAOHz4MFOnTuXw4cOEhYUBMGjQIJYtW8bUqVMZNWoUZcqUYdCgQdaYffv25bvvvmPevHnUqVPnivuQq6fkuIiIiIiIiIiIiNxQvN1d2TU82mn7LqjY2FguXbpE3bp1rXXBwcFEREQAsGPHDjIyMqhSpYpDv9TUVIoXLw5ARkYGo0aNYt68eRw7doxLly6RmpqKj49PgfYhV0/JcREREREREREREbmh2Gy2QpU2uVElJSXh6urKli1bcHV1TLr7+fkB8Pbbb/P+++8zbtw4qlevjq+vLwMGDODSpUvOCLlI0QM5RURERERERERERK7C7bffjru7O5s2bbLWnT17ln379gFQo0YNMjIyOHnyJJUqVXJYQkNDAVi3bh2tW7fmscce4+6776ZixYpW/4LsQ67ezf/1i4iIiIiIiIiIiIgT+Pn50atXL55//nmKFy9OqVKlGDx4MC4uWXOSq1SpQpcuXejWrRtjx46lRo0anDp1ipUrV3LXXXfRsmVLKleuzBdffMH69espVqwY7777LidOnKBatWoF2odcPSXHRURERERERERERK7S22+/TVJSEq1atcLf35+BAweSkJBgtU+dOpWRI0cycOBAjh07RokSJahXrx4PP/wwAK+++iq///470dHR+Pj40KdPH9q0aeMwxpX2IVfHZowxzg7iRpeYmEhgYCAJCQkEBAQ4OxwREREREREREZFbSkpKCnFxcYSHh+Pl5eXscOQGl9/9Uphcrubei4iIiIiIiIiIiEiRo+S4iIiIiIiIiIiIiBQ5So6LiIiIiIiIiIiISJGj5LiIiIiIiIiIiIiIFDlKjouIiIiIiIiIiIhIkaPkuIiIiIiIiIiIiIgUOU5Pjh87dozHHnuM4sWL4+3tTfXq1fnll1+sdmMMr732GqVLl8bb25tmzZqxf/9+hzHOnDlDly5dCAgIICgoiF69epGUlOSwza+//krDhg3x8vKibNmyvPXWW3/L8YmIiIiIiIiIiIjIjcepyfGzZ89yzz334O7uztKlS9m1axdjx46lWLFi1jZvvfUW48ePZ+LEiWzatAlfX1+io6NJSUmxtunSpQs7d+5kxYoVfPvtt6xZs4Y+ffpY7YmJiTz44IOUL1+eLVu28PbbbzN06FAmT578tx6viIiIiIiIiIiIiNwYbMYY46ydv/TSS6xbt461a9fm2m6MISwsjIEDBzJo0CAAEhISCAkJYdq0aXTs2JHdu3dTrVo1Nm/eTK1atQBYtmwZLVq04OjRo4SFhTFhwgQGDx5MfHw8Hh4e1r4XLlzInj17rhhnYmIigYGBJCQkEBAQcI2O/iZx8QzErQEXV7C5ZvvX5bL3+a13yWW7K6y32Zx95CIiIiIiIiIi8jdJSUkhLi6O8PBwvLy8nB2O3ODyu18Kk8t1u55BXsmiRYuIjo6mffv2/Pjjj5QpU4ann36a3r17AxAXF0d8fDzNmjWz+gQGBlK3bl02bNhAx44d2bBhA0FBQVZiHKBZs2a4uLiwadMm2rZty4YNG2jUqJGVGAeIjo5mzJgxnD171mGmOkBqaiqpqanW+8TExOt1Cm58f+6D+d2dsGNbVqLczQs8fP+3uGd77eGXx+vLl8u2c3V3wvGIiIiIiIiIiMitpkmTJkRGRjJu3Ljrto8KFSowYMAABgwYkOc2Q4cOZeHChWzbtu26xXErcmpy/Pfff2fChAk899xzvPLKK2zevJl+/frh4eFB9+7diY+PByAkJMShX0hIiNUWHx9PqVKlHNrd3NwIDg522CY8PDzHGPa2y5Pjo0ePZtiwYdfuQG9mHn5QrgGYDMjMyPZv5mXvMyAzM5ft8ljPlX6wYCAzHS4lZS3Xkot7Hgn1bO+9gyD4dih+OxSvBH4hms0uIiIiIiIiIiJOZ7PZWLBgAW3atHF2KDc9pybHMzMzqVWrFqNGjQKgRo0a/Pbbb0ycOJHu3Z0xWznLyy+/zHPPPWe9T0xMpGzZsk6Lx6lC/wE9l177cY3JJYmeS9I9IxUuXchlScr9fdrFvNsyLmXtOzMNUs5lLQXl4QfBFbMS5faEuT157hN87c+PiIiIiIiIiIiIXFdOTY6XLl2aatWqOayrWrUqX375JQChoaEAnDhxgtKlS1vbnDhxgsjISGubkydPOoyRnp7OmTNnrP6hoaGcOHHCYRv7e/s22Xl6euLp6flXDk2uxGYDVzf+1lswIy2fBHu212kXIOkUnImF0wfg3OGs9vhfs5bLeRf7/6R5toR58duzXnv6/X3HJyIiIiIiIiJyqzAmaxKkM7j7FKqCQGZmJi+88AKffPIJHh4e/Pvf/2bo0KEAnDt3jkGDBvH111+TmppKrVq1eO+997j77rsBiI2N5bnnnmPjxo1cuHCBqlWrMnr0aIcy09lVqFABgLZt2wJQvnx5Dh48aLV/9tlnDBkyhLNnz/LQQw/x8ccf4+/vz4wZM3j22Wc5fvy4Q96zTZs2+Pv789lnnxXiBN06nJocv+eee9i7d6/Dun379lG+fHkAwsPDCQ0NZeXKlVYyPDExkU2bNvHUU08BUL9+fc6dO8eWLVuIiooC4IcffiAzM5O6deta2wwePJi0tDTc3bPqTa9YsYKIiIgcJVXkFubqnlUuxTuocP3SU+HsoaxEuT1hfjo2azl/HJLPwtHNWcvl/Es7JsztCfTgcHDTFzAiIiIiIiIiIrlKuwijwpyz71eOZ5XdLaDp06fz3HPPsWnTJjZs2ECPHj245557eOCBB2jfvj3e3t4sXbqUwMBAJk2aRNOmTdm3bx/BwcEkJSXRokUL3njjDTw9PZkxYwatWrVi7969lCtXLse+Nm/eTKlSpZg6dSrNmzfH1dXVaouNjWXhwoV8++23nD17lg4dOvDmm2/yxhtv0L59e/r168eiRYto3749ACdPnmTx4sUsX778r5+zm5RTk+PPPvssDRo0YNSoUXTo0IGff/6ZyZMnM3nyZCCrfs6AAQMYOXIklStXJjw8nCFDhhAWFmbV1KlatSrNmzend+/eTJw4kbS0NGJiYujYsSNhYVkfoM6dOzNs2DB69erFiy++yG+//cb777/Pe++957Rjl5uImyeUrJK1XO7SBTjzu2PC3J5Av3gazv+RtRz6ybGfzQUCy15WoqUSlIyAoCJawkdERERERERE5CZ011138frrrwNQuXJlPvzwQ1auXIm3tzc///wzJ0+etGZrv/POOyxcuJAvvviCPn36cPfdd1uzyAFGjBjBggULWLRoETExMTn2VbJkSQCCgoJyVMTIzMxk2rRp+Pv7A9C1a1dWrlzJG2+8gbe3N507d2bq1KlWcnzmzJmUK1eOJk2aXPNzcrNwanK8du3aLFiwgJdffpnhw4cTHh7OuHHj6NKli7XNCy+8wIULF+jTpw/nzp3j3nvvZdmyZXh5eVnbzJo1i5iYGJo2bYqLiwuPPvoo48ePt9oDAwNZvnw5zzzzDFFRUZQoUYLXXnuNPn36/K3HK7cgD18IrZ61XC75LJz+/bIZ5wey1l06D+cOZS2xPzj2i2gJTV+DUnf8PccgIiIiIiIiInKjcffJmsHtrH0Xwl133eXwvnTp0pw8eZLt27eTlJRE8eLFHdqTk5OJjY0FICkpiaFDh7J48WL++OMP0tPTSU5O5vDhw4UOu0KFClZiPHscdr1796Z27docO3aMMmXKMG3aNHr06IGtECVkbjVOTY4DPPzwwzz88MN5tttsNoYPH87w4cPz3CY4OJjZs2fnu5+77rqLtWvXXnWcIoXmXQxui8pasjMGkk5eVqLl///9cy/sXQz7lkJkZ2jyCgSWcU78IiIiIiIiIiLOYrMVqrSJM9nLONvZbDYyMzNJSkqidOnSrF69OkefoKCssr+DBg1ixYoVvPPOO1SqVAlvb2/atWvHpUuXrlkcdjVq1ODuu+9mxowZPPjgg+zcuZPFixcXej+3Eqcnx0WKHJsN/EOylvINHNtO7YWVw2HPt/DfmbDjC6jTB+59FnyCnROviIiIiIiIiIgUWs2aNYmPj8fNzc16kObl1q1bR48ePawHbCYlJTk8YDM37u7uZGRkXFVMTzzxBOPGjePYsWM0a9aMsmWLdnlfF2cHICLZlIyAjrOg1woo1wDSU2D9eBgfCT+9B2nJzo5QREREREREREQKoFmzZtSvX582bdqwfPlyDh48yPr16xk8eDC//PILkFWj/KuvvmLbtm1s376dzp07O8z2zk2FChVYuXIl8fHxnD17tlAxde7cmaNHj/Lxxx/Ts2fPqz62W4WS4yI3orJ14PEl0HkelKoGKQnw/VAYXxO2TIeMdGdHKCIiIiIiIiIi+bDZbCxZsoRGjRrx+OOPU6VKFTp27MihQ4cICQkB4N1336VYsWI0aNCAVq1aER0dTc2aNfMdd+zYsaxYsYKyZctSo0aNQsUUGBjIo48+ip+fH23atLnqY7tV2IwxxtlB3OgSExMJDAwkISGBgIAAZ4cjRU1mBvw6D1a9AQlHstaVqJL10M47Hs4q0yIiIiIiIiIichNLSUkhLi6O8PBwvLy8nB3OLa1p06bceeedjB8/3tmhXLX87pfC5HI1c1zkRufiCpGdIOYXiB4F3sHw5z6Y+xhMeQAOrnN2hCIiIiIiIiIicoM7e/YsCxYsYPXq1TzzzDPODueGoOS4yM3C3QvqPwP9t0HDQeDmDUc3w7QWMKsDnNjp7AhFREREREREROQGVaNGDXr06MGYMWOIiIhwdjg3BDdnByAiheQVCE2HQJ3e8OOYrBrk+7+D/cvh7o5w3ysQVM7ZUYqIiIiIiIiIyA3k4MGDzg7hhqOZ4yI3K/9QePg9eOZnqNYGMLB9DnwQBctegQunnR2hiIiIiIiIiIjIDUvJcZGbXYlK0GE69P4BKjSEjEuw8SMYHwlr3oZLF5wdoYiIiIiIiIiIyA1HyXGRW0WZKOj+DTz2JYRWh9RE+GEkjK8Bm6dARpqzIxQREREREREREblhKDkuciux2aBSM+izBh6dAkHlIekELH4OPqoLv30Fxjg7ShEREREREREREadTclzkVuTiAtXbQcwv8NBb4FMCzsTCF4/Dx/fB7z86O0IRERERERERERGnUnJc5Fbm5gF1n4T+26DxS+DhB8f/CzP+CZ+1hT+2OztCERERERERERERp1ByXKQo8PSH+16GftugzpPg4g6xP8CkRvBFLzjzu7MjFBERERERERG56TRp0oQBAwYUePs9e/ZQr149vLy8iIyMvI6RXR2bzcbChQudHcbfRslxkaLEryS0eAtifoZ/tMta99sX8GFt+O8s58YmIiIiIiIiInKT+eqrrxgxYkSBt3/99dfx9fVl7969rFy58prEUNQS2teSkuMiRVFwRWg3BZ5cAxXvg8x0WDwQTsc6OzIRERERERERkZtGcHAw/v7+Bd4+NjaWe++9l/Lly1O8ePHrGJkUhJLjIkVZ6bvhsa+gQkNIT4ZFfSEz09lRiYiIiIiIiEgRZ4zhYtpFpyzGmALHmb2sSoUKFRg1ahQ9e/bE39+fcuXKMXnyZGtbm83Gli1bGD58ODabjaFDhwJw5MgROnToQFBQEMHBwbRu3ZqDBw867OfTTz/lzjvvxNPTk9KlSxMTE2PtE6Bt27bYbDbrPcDXX39NzZo18fLyomLFigwbNoz09HSrff/+/TRq1AgvLy+qVavGihUrCnGFbg1uzg5ARJzMxQVafwj/aQCH1sHPk6Hev50dlYiIiIiIiIgUYcnpydSdXdcp+97UeRM+7j5X1Xfs2LGMGDGCV155hS+++IKnnnqKxo0bExERwR9//EGzZs1o3rw5gwYNws/Pj7S0NKKjo6lfvz5r167Fzc2NkSNH0rx5c3799Vc8PDyYMGECzz33HG+++SYPPfQQCQkJrFu3DoDNmzdTqlQppk6dSvPmzXF1dQVg7dq1dOvWjfHjx9OwYUNiY2Pp06cPkFXaJTMzk0ceeYSQkBA2bdpEQkJCoWqn3yo0c1xEoFgFeGBY1uvvh6q8ioiIiIiIiIjIVWjRogVPP/00lSpV4sUXX6REiRKsWrUKgNDQUNzc3PDz8yM0NBQ/Pz/mzp1LZmYmn3zyCdWrV6dq1apMnTqVw4cPs3r1agBGjhzJwIED6d+/P1WqVKF27dpWIrtkyZIABAUFERoaar0fNmwYL730Et27d6dixYo88MADjBgxgkmTJgHw/fffs2fPHmbMmMHdd99No0aNGDVq1N98tpxPM8dFJEutXrDrazi4Fr6OgR6Ls2aVi4iIiIiIiIj8zbzdvNnUeZPT9n217rrrLuu1zWYjNDSUkydP5rn99u3bOXDgQI665SkpKcTGxnLy5EmOHz9O06ZNCxXH9u3bWbduHW+88Ya1LiMjg5SUFC5evMju3bspW7YsYWFhVnv9+vULtY9bgZLjIpIle3mVw+tVXkVEREREREREnMZms111aRNncnd3d3hvs9nIzOf5bklJSURFRTFr1qwcbSVLlsTlKicuJiUlMWzYMB555JEcbV5eXlc15q1IyXER+R97eZUlg7LKq1R+AIrf7uyoRERERERERERuSTVr1mTu3LmUKlWKgICAXLepUKECK1eu5L777su13d3dnYyMjBzj7t27l0qVKuXap2rVqhw5coQ//viD0qVLA7Bx48a/cCQ3J9VMEBFHtXpBhYaQnpxVXiWfbzdFREREREREROTqdenShRIlStC6dWvWrl1LXFwcq1evpl+/fhw9ehSAoUOHMnbsWMaPH8/+/fvZunUrH3zwgTWGPXkeHx/P2bNnAXjttdeYMWMGw4YNY+fOnezevZvPP/+cV199FYBmzZpRpUoVunfvzvbt21m7di2DBw/++0+Akyk5LiKO7OVV3H3/V15FRERERERERESuOR8fH9asWUO5cuV45JFHqFq1Kr169SIlJcWaSd69e3fGjRvHf/7zH+68804efvhh9u/fb40xduxYVqxYQdmyZalRowYA0dHRfPvttyxfvpzatWtTr1493nvvPcqXLw+Ai4sLCxYsIDk5mTp16vDEE0841CcvKmzGGOPsIG50iYmJBAYGkpCQkOfPG0RuOZs/gcUDwc0bnlqn8ioiIiIiIiIict2kpKQQFxdHeHi4amLLFeV3vxQml6uZ4yKSu6ieKq8iIiIiIiIiIiK3LCXHRSR3OcqrTHJ2RCIiIiIiIiIiIteMkuMikrdiFeDB4Vmvvx8Gp2OdGo6IiIiIiIiIiMi1ouS4iOQvqieEN1J5FRERERERERERuaUoOS4i+XNxgX+qvIqIiIiIiIiIiNxalBwXkSsrVl7lVURERERERERE5Jai5LiIFIxDeZVnVF5FRERERERERERuakqOi0jB2MurePjB4Q0qryIiIiIiIiIiIjc1JcdFpOCKlYcHVF5FRERERERERERufkqOi0jhRD2u8ioiIiIiIiIiIgLAtGnTCAoKcnYYV0XJcREpHJVXERERERERERGRW4CS4yJSeCqvIiIiIiIiIiKSw6VLl5wdwlW5WeP+q5QcF5GrU6unyquIiIiIiIiIyHVhjCHz4kWnLMaYAsfZpEkTYmJiGDBgACVKlCA6Oppz587xxBNPULJkSQICArj//vvZvn27Q79vvvmG2rVr4+XlRYkSJWjbtq3VdvbsWbp160axYsXw8fHhoYceYv/+/QAkJibi7e3N0qVLHcZbsGAB/v7+XLx4EYAjR47QoUMHgoKCCA4OpnXr1hw8eNDavkePHrRp04Y33niDsLAwIiIiAEhNTWXQoEGUKVMGX19f6taty+rVqx32NW3aNMqVK4ePjw9t27bl9OnTBT5fNxo3ZwcgIjcpmy2rvMqEBlnlVTZNhPpPOzsqEREREREREbkFmORk9taMcsq+I7ZuwebjU+Dtp0+fzlNPPcW6desAaN++vZXADgwMZNKkSTRt2pR9+/YRHBzM4sWLadu2LYMHD2bGjBlcunSJJUuWWOP16NGD/fv3s2jRIgICAnjxxRdp0aIFu3btIiAggIcffpjZs2fz0EMPWX1mzZpFmzZt8PHxIS0tjejoaOrXr8/atWtxc3Nj5MiRNG/enF9//RUPDw8AVq5cSUBAACtWrLDGiYmJYdeuXXz++eeEhYWxYMECmjdvzo4dO6hcuTKbNm2iV69ejB49mjZt2rBs2TJef/31v3rKncZmCvNVSBGVmJhIYGAgCQkJBAQEODsckRvL5imw+Dlw84an1kHx250dkYiIiIiIiIjcZFJSUoiLiyM8PBwvLy8yL150anLcpYDJ8SZNmpCYmMjWrVsB+Omnn2jZsiUnT57E09PT2q5SpUq88MIL9OnThwYNGlCxYkVmzpyZY7z9+/dTpUoV1q1bR4MGDQA4ffo0ZcuWZfr06bRv356FCxfStWtXTpw4gY+PD4mJiYSEhFiJ7JkzZzJy5Eh2796NzWYDssqmBAUFsXDhQh588EF69OjBsmXLOHz4sJUsP3z4MBUrVuTw4cOEhYVZMTVr1ow6deowatQoOnfuTEJCAosXL7baO3bsyLJlyzh37lwhz/TVu/x+ya4wuVzNHBeRv6ZWT9j1NcT9mFVepceSrId2ioiIiIiIiIhcJZu3NxFbtzht34URFfW/JP727dtJSkqiePHiDtskJycTG5v1zLZt27bRu3fvXMfavXs3bm5u1K1b11pXvHhxIiIi2L17NwAtWrTA3d2dRYsW0bFjR7788ksCAgJo1qyZFcOBAwfw9/d3GDslJcWKAaB69epWYhxgx44dZGRkUKVKFYd+qamp1vHs3r3boQQMQP369Vm2bFk+Z+jGpeS4iPw1Nhu0/hD+U1/lVURERERERETkmrDZbIUqbeJMvr6+1uukpCRKly6do043QFBQEADehUy+X87Dw4N27doxe/ZsOnbsyOzZs/nXv/6Fm5ubFUNUVBSzZs3K0bdkyZK5xm3v5+rqypYtW3B1dXVo8/Pz+0sx36iUHBeRvy6oHDw4Ar59FlYOhyrRKq8iIiIiIiIiIkVOzZo1iY+Px83NjQoVKuS6zV133cXKlSt5/PHHc7RVrVqV9PR0Nm3a5FBWZe/evVSrVs3arkuXLjzwwAPs3LmTH374gZEjRzrEMHfuXEqVKlWoEtE1atQgIyODkydP0rBhw1y3qVq1Kps2bXJYt3HjxgLv40aj2gcicm1EPQ7hjSE9GRY+DZkZzo5IRERERERERORv1axZM+rXr0+bNm1Yvnw5Bw8eZP369QwePJhffvkFgNdff505c+bw+uuvs3v3bnbs2MGYMWMAqFy5Mq1bt6Z379789NNPbN++nccee4wyZcrQunVraz+NGjUiNDSULl26EB4e7lCGpUuXLpQoUYLWrVuzdu1a4uLiWL16Nf369ePo0aN5xl6lShW6dOlCt27d+Oqrr4iLi+Pnn39m9OjRVo3xfv36sWzZMt555x3279/Phx9+eNOWVAElx0XkWrGXV/HwgyMbYdMkZ0ckIiIiIiIiIvK3stlsLFmyhEaNGvH4449TpUoVOnbsyKFDhwgJCQGyHuI5f/58Fi1aRGRkJPfffz8///yzNcbUqVOJiori4Ycfpn79+hhjWLJkCe7u7g776dSpE9u3b6dLly4OMfj4+LBmzRrKlSvHI488QtWqVenVqxcpKSlXnEk+depUunXrxsCBA4mIiKBNmzZs3ryZcuXKAVCvXj0+/vhj3n//fe6++26WL1/Oq6++eq1O39/OZowxzg7iRleYJ5yKFHm/fJpVXsXNG55ap/IqIiIiIiIiInJFKSkpxMXFER4ejpeXl7PDkRtcfvdLYXK5mjkuItdW1ONQsYnKq4iIiIiIiIiIyA1NyXERubZsNvjnByqvIiIiIiIiIiIiNzQlx0Xk2gsqBw+OyHq9cjicjnVuPCIiIiIiIiIiIpdRclxErg+VVxERERERERERkRuYkuMicn3kKK8y0dkRiYiIiIiIiIiIWJQcF5HrR+VVRERERERERETkBqXkuIhcX1Z5lRSVVxERERERERERkRuGkuP/x96dx1VV538cf9+dTUBZFVQUVEDNtExNKncr20ynZRpNsynLpsUWp7KmxaaZyvYsZyotfzXTMtVU2oKmlai5ZaOGqLgQIosbKOu93Pv74wKJu4mce+H1fDx4nMO95x7eN30kvP36+QI4verGq7RgvAoAAAAAAAB8BuU4gNPv0PEquzYbmwcAAAAAAADNHuU4gMZx1rhfx6v8dxLjVQAAAAAAAJqx2bNnKzw83NAMlOMAGgfjVQAAAAAAABqFyWTSJ598YnSMOgkJCXr++efrPXb11Vdr48aNBiXyohwH0HgYombjkQAAIABJREFUrwIAAAAAAABJgYGBio6ONjQD5TiAxnXWOKnjwJrxKrcyXgUAAAAAABzG4/HIWVltyIfH4zmprB9++KG6d++uwMBARUREaMiQIfr2229ls9mUn59f79o777xT5513nqRfx4p8/vnn6tKli4KCgjR69GiVlZXprbfeUkJCglq2bKnbb79d1dW/9icJCQl6/PHHde211yo4OFhxcXF65ZVX6j0vSSNHjpTJZKr7XJJeffVVJSYmym63q0uXLpozZ069fCaTSTNnztQll1yioKAgpaSkaOnSpdq8ebMGDBig4OBgnXvuucrOzq57TXZ2ti6//HLFxMQoJCREvXv31vz58+ueHzBggLZv36677rpLJpNJJpOp3vs/2GeffabevXsrICBAkZGRGjly5En9Wpws62m9OwAcqna8yox+0i8/eMer9JtkdCoAAAAAAOBDXFVu/eOObw352je9cIFsDssJXbtz505de+21euqppzRy5Ejt379f33//vc466yx17NhRc+bM0b333itJcjqdeuedd/TUU0/Vvb6srEwvvvii/v3vf2v//v268sorNXLkSIWHh2vevHnasmWLRo0apf79++vqq6+ue93TTz+tBx54QI8++qi++uor3XHHHercubOGDh2qFStWKDo6WrNmzdKFF14oi8X7Xj7++GPdcccdev755zVkyBB9/vnnGj9+vOLj4zVw4MC6ez/++ON69tln9eyzz2rKlCn6/e9/r44dO+r+++9Xu3btdMMNN+i2227TF198IUk6cOCALr74Yj3xxBNyOBx6++23demllyorK0vt2rXTRx99pB49euimm27SH//4x6P+t5w7d65GjhypBx98UG+//baqqqo0b968E/+F+w0oxwE0vvC20rDHpM/vkjJelPre6i3NAQAAAAAA/MjOnTvlcrl05ZVXqn379pKk7t27S5ImTJigWbNm1ZXjn332mSoqKnTVVVfVvd7pdNat5pak0aNHa86cOSooKFBISIhSU1M1cOBALVy4sF453r9/f/35z3+WJHXu3FkZGRl67rnnNHToUEVFRUmSwsPDFRsbW/eaZ555RuPGjdOtt94qSZo8ebKWLVumZ555pl45Pn78+LqMU6ZMUb9+/fTQQw9p+PDhkqQ77rhD48ePr7u+R48e6tGjR93njz/+uD7++GN9+umnuu2229SqVStZLBa1aNGiXp5DPfHEE7rmmmv06KOP1rv36UQ5DsAYZ14nffWgdCBfyl8rtT7D6EQAAAAAAMBHWO1m3fTCBYZ97RPVo0cPDR48WN27d9fw4cM1bNgwjR49Wi1bttS4ceM0depULVu2TH379tXs2bN11VVXKTg4uO71QUFBdcW4JMXExCghIUEhISH1HissLKz3dfv163fY54dueHmozMxM3XTTTfUe69+/v1544YV6j51xxq8dTUxMjKRfC//axyoqKlRSUqLQ0FAdOHBAjzzyiObOnVv3lwXl5eXKyck5Zp5DrVmz5pgry08HynEAxrA6pA7nSxu/lDZ9TTkOAAAAAADqmEymEx5tYiSLxaL09HQtWbJEX3/9tV566SU9+OCD+uGHH9ShQwddeumlmjVrljp06KAvvvhCixYtqvd6m81W73OTyXTEx9xu9+l+K0fMVDsf/EiP1Wa65557lJ6ermeeeUZJSUkKDAzU6NGjVVVVdVJfNzAw8FSjnzQ25ARgnE5DvcfN8499HQAAAAAAgI8ymUzq37+/Hn30Uf3444+y2+36+OOPJUk33nij3nvvPf3jH/9QYmKi+vfv3yBfc9myZYd9npKSUve5zWart4mnJKWkpCgjI6PeYxkZGUpNTT2lLBkZGRo3bpxGjhyp7t27KzY2Vtu2bat3jd1uPyzPoc444wwtWLDglLKcLFaOAzBOUk05/styqXyfFBh+7OsBAAAAAAB8yA8//KAFCxZo2LBhio6O1g8//KCioqK6onr48OEKDQ3VtGnT9NhjjzXY183IyNBTTz2lK664Qunp6frggw80d+7cuucTEhK0YMEC9e/fXw6HQy1bttS9996rq666Sj179tSQIUP02Wef6aOPPtL8+ae2aLFTp0766KOPdOmll8pkMumhhx46bKV7QkKCvvvuO11zzTVyOByKjIw87D5/+ctfNHjwYCUmJuqaa66Ry+XSvHnzNGXKlFPKdyysHAdgnJbtpcjOkqda2rLQ6DQAAAAAAAAnJTQ0VN99950uvvhide7cWVOnTtX06dN10UUXSZLMZrPGjRun6upqjR07tsG+7t13362VK1eqZ8+emjZtmp599tm6DTMlafr06UpPT1fbtm3Vs2dPSdIVV1yhF154Qc8884y6du2qmTNnatasWRowYMApZXn22WfVsmVLnXvuubr00ks1fPhw9erVq941jz32mLZt26bExMS6DUMPNWDAAH3wwQf69NNPdeaZZ2rQoEFavnz5KWU7HpPH4/Gc1q/QBJSUlCgsLEzFxcUKDQ01Og7QtHz1oLT0Ze8GnVfMMDoNAAAAAAAwQEVFhbZu3aoOHTooICDA6DgNasKECSoqKtKnn37aIPdLSEjQnXfeqTvvvLNB7uePjvX75WS6XFaOAzBW0hDvcfN8qRE3lwAAAAAAADidiouLtXjxYr377rv605/+ZHQcHAHlOABjtT9XsgVLBwqkgrVGpwEAAAAAAGgQl19+uYYNG6aJEydq6NChRsfBEbAhJwBjWR1Sh/OljV9Im76WWvcwOhEAAAAAAMApW7Ro0Wm577Zt207LfZsjVo4DMF6nmr893XRquyMDAAAAAAAAJ4pyHIDxasvx3OVS+V5jswAAAAAAAMN4PB6jI8APNNTvE8pxAMYLbydFdpE8bil7odFpAAAAAABAI7NYLJKkqqoqg5PAH9T+Pqn9ffNbMXMcgG/oNFTalSVtSpe6XWl0GgAAAAAA0IisVquCgoJUVFQkm80ms5k1vTgyt9utoqIiBQUFyWo9tXqbchyAb+g0VFr6srR5vuR2S/whCAAAAABAs2EymdS6dWtt3bpV27dvNzoOfJzZbFa7du1kMplO6T6U4wB8Q7t+ki1YKi2U8v8ntTnT6EQAAAAAAKAR2e12derUidEqOC673d4g/7qAchyAb7A6pI4XSFnzvKNVKMcBAAAAAGh2zGazAgICjI6BZoK5BQB8R6eh3uPmdGNzAAAAAAAAoMmjHAfgO5JqyvHcFVLZHmOzAAAAAAAAoEmjHAfgO8LbSlHJksctbVlodBoAAAAAAAA0YZTjAHxL7WiVTYxWAQAAAAAAwOlDOQ7At9SOVtk8X3K7jc0CAAAAAACAJotyHIBvaddPsodIpUVS/k9GpwEAAAAAAEATRTkOwLdY7VKHC7znjFYBAAAAAADAaUI5DsD3MHccAAAAAAAApxnlOADfU1uO71gple0xNgsAAAAAAACaJMpxAL4nLF6KSpE8bin7G6PTAAAAAAAAoAmiHAfgmxitAgAAAAAAgNOIchyAb6otxzfPl9xuY7MAAAAAAACgyaEcB+Cb2vaV7CFS2S5p5xqj0wAAAAAAAKCJoRwH4JusdqnjAO85o1UAAAAAAADQwCjHAfiuutEqlOMAAAAAAABoWJTjAHxXUk05nrtSKttjbBYAAAAAAAA0KZTjAHxXWJwUnSrJI2V/Y3QaAAAAAAAANCGU4wB8W+1olU1fG5sDAAAAAAAATQrlOADfVjtaZfMCye02NgsAAAAAAACaDMpxAL6tXV/J3kIq2yXt/NHoNAAAAAAAAGgiKMcB+DaLTUoc4D3flG5oFAAAAAAAADQdlOMAfF/taBXKcQAAAAAAADQQynEAvi9piPe4Y5VUutvYLAAAAAAAAGgSKMcB+L6wOCm6qySPlP2N0WkAAAAAAADQBFCOA/APnWpHq3xtbA4AAAAAAAA0CZTjAPxDbTmevUByu43NAgAAAAAAAL9HOQ7AP7TtIzlCpbLdUt6PRqcBAAAAAACAn6McB+AfLDap4wDv+eZ0I5MAAAAAAACgCTC0HH/kkUdkMpnqfSQnJ9c9X1FRoUmTJikiIkIhISEaNWqUCgoK6t0jJydHI0aMUFBQkKKjo3XvvffK5XLVu2bRokXq1auXHA6HkpKSNHv27MZ4ewAaGnPHAQAAAAAA0EAMXznetWtX7dy5s+5j8eLFdc/ddddd+uyzz/TBBx/o22+/VV5enq688sq656urqzVixAhVVVVpyZIleuuttzR79mw9/PDDddds3bpVI0aM0MCBA7VmzRrdeeeduvHGG/XVV1816vsE0ACShniPO1ZLpbuMzQIAAAAAAAC/ZvJ4PB6jvvgjjzyiTz75RGvWrDnsueLiYkVFRendd9/V6NGjJUkbNmxQSkqKli5dqr59++qLL77QJZdcory8PMXExEiSXnvtNU2ZMkVFRUWy2+2aMmWK5s6dq3Xr1tXd+5prrtG+ffv05ZdfnlDOkpIShYWFqbi4WKGhoQ3wzgH8Zq/2lwrWSVf+UzrjKqPTAAAAAAAAwIecTJdr+MrxTZs2qU2bNurYsaOuu+465eTkSJJWrVolp9OpIUOG1F2bnJysdu3aaenSpZKkpUuXqnv37nXFuCQNHz5cJSUlWr9+fd01B9+j9praexxJZWWlSkpK6n0A8BGMVgEAAAAAAEADMLQc79Onj2bPnq0vv/xSr776qrZu3arzzjtP+/fvV35+vux2u8LDw+u9JiYmRvn5+ZKk/Pz8esV47fO1zx3rmpKSEpWXlx8x15NPPqmwsLC6j7Zt2zbI+wXQAJJqyvHNCyR3tbFZAAAAAAAA4LesRn7xiy66qO78jDPOUJ8+fdS+fXu9//77CgwMNCzX/fffr8mTJ9d9XlJSQkEO+Iq250iOUKl8j5T3oxR/ttGJAAAAAAAA4IcMH6tysPDwcHXu3FmbN29WbGysqqqqtG/fvnrXFBQUKDY2VpIUGxurgoKCw56vfe5Y14SGhh61gHc4HAoNDa33AcBHWGxS4kDv+aZ0Y7MAAAAAAADAb/lUOX7gwAFlZ2erdevWOuuss2Sz2bRgwYK657OyspSTk6N+/fpJkvr166e1a9eqsLCw7pr09HSFhoYqNTW17pqD71F7Te09APihJOaOAwAAAAAA4NQYWo7fc889+vbbb7Vt2zYtWbJEI0eOlMVi0bXXXquwsDBNmDBBkydP1sKFC7Vq1SqNHz9e/fr1U9++fSVJw4YNU2pqqsaMGaOffvpJX331laZOnapJkybJ4XBIkiZOnKgtW7bovvvu04YNGzRjxgy9//77uuuuu4x86wBORVLNJrt5P0qlu4zNAgAAAAAAAL9kaDmem5ura6+9Vl26dNFVV12liIgILVu2TFFRUZKk5557TpdccolGjRql888/X7Gxsfroo4/qXm+xWPT555/LYrGoX79++sMf/qCxY8fqscceq7umQ4cOmjt3rtLT09WjRw9Nnz5dr7/+uoYPH97o7xdAAwltLcV0l+TxbswJAAAAAAAAnCSTx+PxGB3C15WUlCgsLEzFxcXMHwd8xfxHpcXPSt1GS6PfMDoNAAAAAAAAfMDJdLk+NXMcAE5Yp5q549kLJHe1sVkAAAAAAADgdyjHAfin+HMkR5hUvlfasdroNAAAAAAAAPAzlOMA/JPFKiUO9J5vTjc2CwAAAAAAAPwO5TgA/1U7WmXT18bmAAAAAAAAgN+hHAfgv5KGeI95P0oHiozNAgAAAAAAAL9COQ7Af7WIlWK7e8+zFxibBQAAAAAAAH6FchyAf+s0zHtktAoAAAAAAABOAuU4AP+WVDN3PPsbyV1tbBYAAAAAAAD4DcpxAP4tvrcUECaV75V2rDI6DQAAAAAAAPwE5TgA/2axSomDvOeb0o3NAgAAAAAAAL9BOQ7A/9WOVmHuOAAAAAAAAE4Q5TgA/5c0xHvcuUY6UGhsFgAAAAAAAPgFynEA/q9FjBR7hvd88wJjswAAAAAAAMAvUI4DaBo6DfMeGa0CAAAAAACAE0A5DqBp6FQzdzz7G6naZWwWAAAAAAAA+DzKcQBNQ9zZUkCYVLFP2rHK6DQAAAAAAADwcZTjAJoGi1VKHOw935xubBYAAAAAAAD4PMpxAE1H7WgV5o4DAAAAAADgOCjHATQdSUO8x50/SfsLjM0CAAAAAAAAn0Y5DqDpCImWWp/pPc9eYGwWAAAAAAAA+DTKcQBNC6NVAAAAAAAAcAIoxwE0LUk15Xj2N1K1y9gsAAAAAAAA8FmU4wCalvizpYBwqaJY2rHS6DQAAAAAAADwUZTjAJoWs0VKGuw935RubBYAAAAAAAD4LMpxAE1PEnPHAQAAAAAAcGyU4wCantqV4/n/k/YXGJsFAAAAAAAAPolyHEDTExIttenpPd8839gsAAAAAAAA8EmU4wCaptrRKpuZOw4AAAAAAIDDUY4DaJo61ZTj2d9I1S5jswAAAAAAAMDnUI4DaJrizpICW0oVxVLuCqPTAAAAAAAAwMdQjgNomswWKbFmY05GqwAAAAAAAOAQlOMAmq7a0SqbvjY2BwAAAAAAAHwO5TiApqt25Xj+Wml/vrFZAAAAAAAA4FMoxwE0XSFRUpte3vPN843NAgAAAAAAAJ9iNToAAJxWnYZKeaulTelSzz8YnQYNyOPxaF/lPu04sEO5+3OVeyC37lhYVqhzYs/RHb3uUAt7C6OjAgAAAAAAH0Q5DqBpSxoqfft3KXuhVO2SLPxvz59UVlfWld91JXjt+YFclTpLj/rarcVbtfCXhfpLv7/o/PjzGzE1AAAAAADwB7REAJq2uF5SYCupfI+Uu1xqf67RiXAQt8etorIi5R44Qvm9P1eF5YXHvUd0YLTiWsQpPiRe8S3iFRcSJ4fVoZdWv6Sc/TmatGCSLul4iab0nqLwgPBGeFcAAAAAAMAfUI4DaNrMFilpsLT2A+9oFcrxRneg6sARR5/k7s9V3oE8Vbmrjvn6IGuQ4lvE1yu/az9vE9JGAdaAI77ugvgLNGPNDL3989v6fMvnWpq3VFP7TtWQ9kNOx9sEAAAAAAB+xuTxeDxGh/B1JSUlCgsLU3FxsUJDQ42OA+Bk/fSe9PFNUkx36ZbFRqdpNlYXrNY9396jovKiY15nMVkUGxxbrwCPD/m1BA93hMtkMv3mHP8r+p8eznhY2cXZkqRh7YfpgT4PKCIw4jffEwAAAAAA+KaT6XIpx08A5Tjg50p3SU8nSfJIkzdIoa2NTtQsjP1irH4s/FGS1NLR8rBV37WjUGKDY2U1n95/yFRVXaWZ/5upN9a+oWpPtcId4frzOX/WxR0uPqXiHQAAAAAA+BbK8QZGOQ40Af8cJO1YJV32stRrjNFpmrzVBat1/ZfXy2a26bORnykuJM7oSJKkzN2ZeijjIWXtzZIkDYgfoKl9pyomOMbgZAAAAAAAoCGcTJdrbqRMAGCspKHe4+Z0Y3M0E2+ue1OSdFniZT5TjEtSSkSK/nXJv3TbmbfJarZqUe4ijfzvSH286WPxd8UAAAAAADQvlOMAmodONeV49kKp2mlsliZu496N+jb3W5lk0vhu442Ocxib2aabe9ys9y95X90iumm/c78eXvKwJs6fqLwDeUbHAwAAAAAAjYRyHEDz0KanFNhKqiyRflludJombda6WZKkoe2Hqn1oe4PTHF2nlp005+I5mnzWZNnNdi3JW6KR/x2p9za8J7fHbXQ8AAAAAABwmlGOA2gezBYpaYj3nNEqp82OAzv0xdYvJEk3dL/B4DTHZzVbNb7beH142YfqGd1TZa4yTfthmiZ8NUE5JTlGxwMAAAAAAKcR5TiA5qN2tMomyvHT5a31b6naU61+rfupa0RXo+OcsA5hHTT7wtn68zl/VqA1UCsLVmrUp6P09vq3Ve2uNjoeAAAAAAA4DSjHATQfiYMlmaSCdVIJs6Ub2p6KPfp408eS/GPV+KHMJrOuS7lO/7nsP+oT20cV1RV6euXTuv7L67WleIvR8QAAAAAAQAOjHAfQfARHSHFnec83zzc2SxP0bua7qqiuUNeIruoT28foOL9Z2xZt9c9h/9TD/R5WsC1YPxX9pN99+ju9vvZ1udwuo+MBAAAAAIAGQjkOoHlhtMppUeos1b82/EuSNKH7BJlMJoMTnRqTyaTfdf6dPrn8E6XFpanKXaUXVr+g6+Zdp6w9WUbHAwAAAAAADYByHEDzklRTjm9ZJDFLusF8uPFDlVSVKCE0QYPaDjI6ToOJDY7VjMEz9ETaE2phb6Gfd/+saz6/RjPWzJCz2ml0PAAAAAAAcAooxwE0L23OlKwBUmWJtHeb0WmahKrqKr29/m1J0vhu42UxWwxO1LBMJpMuS7xM/738vxrUdpBcHpde/elVXT33aq3ftd7oeAAAAAAA4DeiHAfQvJgtUmQn73nRBmOzNBFzt8xVYXmhogOjdUnHS4yOc9pEBUXp+YHP6+nzn1ZLR0tt2rtJv5/3ez236jlVVlcaHQ8AAAAAAJwkynEAzU9UivdIOX7K3B633lz3piRpTOoY2S12gxOdXiaTSRd2uFCfXPGJLkq4qO79j/50tNYUrjE6HgAAAAAAOAmU4wCan6gu3mMh5fipWpizUNtKtqmFvYVGdx5tdJxG0yqglZ664Ck9P/B5RQZGalvJNo39Yqz+vvzvKnOWGR0PAAAAAACcAMpxAM1PNCvHG4LH49Eb696QJF3T5RqF2EMMTtT4BrcbrE8u/0SXJV4mjzz6v8z/0zVzr9GOAzuMjgYAAAAAAI6DchxA8xOV7D3u2ii5q43N4sdW5K/Q2l1r5bA4dF3KdUbHMUyYI0xPpD2hGYNnKDooWluLt2rMvDHK2pNldDQAAAAAAHAMlOMAmp+WCZLFIbkqpH3bjU7jt2pXjV+RdIUiAiMMTmO88+LP07sXv6uk8CQVlRdp/JfjtSJ/hdGxAAAAAADAUVCOA2h+zBYpsrP3nLnjv0nm7kwtyVsii8micV3HGR3HZ8QEx2j2hbPVK7qX9jv3a2L6RM3fPt/oWAAAAAAA4AgoxwE0T9E1o1WYO/6bvLnuTUnS8IThim8Rb3Aa3xLmCNPMoTM1qO0gVbmrdPe3d+v9rPeNjgUAAAAAAA5BOQ6geYrq4j1Sjp+0nJIcfb39a0nSDd1uMDiNbwqwBmj6gOka3Xm03B63Hl/2uF5d86o8Ho/R0QAAAAAAQA3KcQDNU1SK90g5ftJmr58tt8et8+LOU5dWXYyO47OsZqse7vuwJvaYKEma8dMMPb7scVWzCSwAAAAAAD6BchxA8xRVO1Zlo+R2G5vFj+wq36X/bv6vJFaNnwiTyaRJZ07S1D5TZZJJH2z8QHd/e7cqqyuNjgYAAAAAQLNHOQ6geWqZIFkckqtc2rfd6DR+4/9+/j9VuavUI6qHzoo5y+g4fuPq5Ks1fcB02cw2LchZoJu+vkklVSVGxwIAAAAAoFmjHAfQPFmsUmQn7zmjVU7I/qr9ei/rPUnShG4TZDKZDE7kX4a2H6qZQ2cqxBai1YWrNe7LcSosKzQ6FgAAAAAAzRblOIDmq260CuX4iXg/630dcB5QYliiLmh7gdFx/FLv2N6afeFsRQZGatPeTRozb4y2Fm81OhYAAAAAAM0S5TiA5qu2HC+kHD+eyupKzfl5jiTphu43yGzij4/fqkurLppz0Ry1D22vvNI8jf1irP5X9D+jYwEAAAAA0OzQbgBovqJZOX6i/rv5v9pdsVuxwbG6qMNFRsfxe/Et4vX2RW+rW0Q37avcpxu/vlHf535vdCwAAAAAAJoVynEAzVftyvFdGyW329gsPqzaXa3Z62dLkq5PvV42s83YQE1Eq4BWemP4G+rfpr/KXeW6/Zvb9Wn2p0bHAgAAAACg2aAcB9B8tewgWeySs0wqzjE6jc9Kz0nXL/t/UZgjTFd2utLoOE1KkC1ILw16SZd0vEQuj0sPLn5Qs9fNNjoWAAAAAKAJ8Hg8RkfweVajAwCAYSxWKaKTVLjeO3e8ZYLRiXyOx+PRm2vflCRdl3ydgmxBBidqemwWm55Ie0IRARF66+e3NH3VdBWVF+nus+9mtjsAAAAA4Kg8Ho+qd+2Sc8cOVe3YIWdenpw7dsi5I0/OvDxV79mjTksyZDKZjI7qsyjHATRv0cnecrxog9TlQqPT+JyleUuVuSdTgdZAXZt8rdFxmiyzyax7et+jqKAoPbPyGb3989vaVb5L0/pPk83CGBsAAAAAaI48brdcRUW/Ft47dng/akvwvDx5qqqOeY/qPXtkjYhopMT+h3IcQPMWxaacx/LGujckSaM6jVJ4QLjBaZq+67ter1YBrfRwxsOat3We9lXu07MDnlWwLdjoaAAAAACABuaprparoKCu7D5s9ffOnZLTeeybmM2yxsTI1qaNbHFtZIuLk61NG9nj4mSLi5MlnJ/lj4VyHEDzRjl+VGuL1mp5/nJZTVaNTR1rdJxm49LES9UyoKUmL5qsJXlLNOGrCXpl8CuKCORv+gEAAADAn3hcLjnzCw5f8V17np8vuVzHvonFIltsbE35HVdXfnvP28gWEyOT3d44b6gJohwH0LzVleNZktstmZnxXOvNdd5Z4xd3vFitQ1obnKZ5SYtL0xvD3tCkBZO0fvd6jf1irGYOnan4FvFGRwMAAAAA1Kgbe5KbK2durnfld25N+Z2b6y2/q6uPfRObTbbWrX9d+V1TfNtrSnBrTIxMVirc04X/sgCat1YdJbNNcpZJxb9ILdsbncgnbCneogU5CyRJN3S7weA0zVP3qO56+6K3dXP6zcrZn6MxX4zRq0NeVXKrZKOjAQAAAECz4PF4VL1nj7fo3rFDVbk76s6dubnemd/HGXtistnqr/qOq78C3BoVJZPF0kjvCIeiHAfQvFmsUmQnqfBn72gVynFJ0ux1s+WRRwPbDlRieKLRcZqthLAEzbl4jm6Zf4s27t2o8V+O14uDXlTv2N5O2UKmAAAgAElEQVRGRwMAAACAJqG6uLim+M6tt+q7akeunDvy5CkvP/YNLBbvyu+4ONni42SPj685j5ctLl7WqEiZ+FfqPotyHACikn8txzsPNzqN4fJL8/XZls8ksWrcF0QHRWvWhbN0xzd3aGXBSt2cfrP+dt7fNCxhmNHRAAAAAMDnuUtLDxt3Ult8O3Nz5d6//9g3MJlkjY6WLT5e9vja1d/xNeV3nGyxjD3xZ/zKAUDt3PFCNuWUpDk/z5HL7dJZMWfpzOgzjY4DSaH2UL029DXd//39St+ernu+vUcPVDyga5KvMToaAAAAABjKXVnpLbp3/DrupOqgIrx6797j3sMSEeFd9X1I8W2Pj5O1TRuZ2fCyyaIcB4Do2k05KceLK4v14cYPJUkTuk0wOA0O5rA49PT5T+vJ5U/qvaz39MQPT6iovEi3nXmbTCaT0fEAAAAA4LTwOJ1y5ucfNPe7/vgTV1HRce9hDguTLa6N7Aev+K4dgdKmjcxBQY3wTuCLKMcBoHbleFGW5HZLzXgW2L83/FtlrjJ1btlZaXFpRsfBISxmix7s86AiAyP1yppX9I///UO7y3drat+pspr5Ix0AAACA//FUV8tVWFgz7qRm/EltEb4jV678Au/P6sdgDgo6qPQ+aPxJzWOWFi0a6d3A3/CTNAC06iiZbZKzVCrJlcLbGZ3IEOWucr2T+Y4k76pxViP7JpPJpIk9JioiMELTlk3Tfzb9R7srduvp859WgDXA6HgAAAAAUI/H5fKW3zt3ypmXV28ESlXuDjl37pSczmPew+Rw1Mz6PmTTy7h42eLjZAkP52dY/CaU4wBgsUkRSVJRpnfueDMtxz/e9LH2Vu5VXEgcmz36gd91/p1aBbTSfd/ep0W/LNLN6TfrlcGvKMQeYnQ0AAAAAM2Iu7zcW3zvyJNzZ563AK/5cOXtlLOgQKquPvZNrFbZ2rTxjj6Jj/eW3jVFuC0uTtbISJma8b/yxulDOQ4AknfueFGmd+545+ZXDDvdTr21/i1J0riu4xjR4ScGtxusmUNn6vZvbtfqwtW6dcGtem3IawqyMS8PAAAAwKnzeDyq3revrvh21RXfO+sK8BPZ8FI2m2yxsbK1bu0twQ/a8NIWHy9rdLRMFsvpf0PAIWg/AEA6aO5489yU86ttXymvNE+tAlrpiqQrjI6Dk3B27Nl6ffjruvHrG/Vj4Y+atGCSZgyZoUBroNHRAAAAAPi4upEnRyi9nXl5cu7cKU95+XHvYw4O9pbeNau/rbUleM2HNTKS8hs+iXIcAKRmXY57PB69sfYNSdIfUv7A3Go/lBqRqn8M/Yf++PUftbJgpW7/5na9NOglfi0BAAAAeFd/79mjys3ZqtqSrcrN2arckq2q7dvlKig8/sgTSZaoSG/R3brNQaX3rwW4JTS0Ed4J0PAoxwFAOqgcz5I8HqkZbeTx/Y7vtXnfZgXbgnV18tVGx8Fv1C2ym14d8qpuTr9Zy3Yu052L7tSLA1+U3WI3OhoAAACARuDxeOTKzz+kBN+iqs2bVV1cfPQX2mzecSf1Vnv/em6NjZXZ4Wi8NwI0IspxAJCkiETJbJWqDkjFuVJ4W6MTNZraVeNXdb5KoXb+tt+fnRl9pl4Z/IpuXXCrMnZk6O5Fd+vZAc/KZrEZHQ0AAABAA/FUV8uZm6vK7GxVZmerqrYEz86Wu6zsyC8ymWSLj5cjMVH2xI5yJCbJnpDg3ewyis0u0XxRjgOAJFlsUkSSd6xK0YZmU46vLlit1YWrZTPb9IfUPxgdBw3g7Niz9dKglzRpwSQtyl2ke7+7V09f8LRsZgpyAAAAwJ94qqpUtX27KrO3qDJ7s6qys1WZvUVVW7fKU1V15BdZrbK3by9Hx46yJyXK0TFRjqRE2Tt0kDmAsYvAoSjHAaBWVPKv5XinoUanaRRvrntTknRZ4mWKDoo2OA0aSp/WffTiwBd12ze3aUHOAj3w/QN68rwnZTXzxz4AAADga9zl5d6V31u21BuJUpWTc9R54CaHQ/YOHeqtBHckJcretq1MdkYrAieKn5IBoFbt3PHC5rEp56a9m/Rt7rcyyaRxXccZHQcN7Ny4c/X8wOd1x8I79OW2L2U1WzWt/zRZzOwQDwAAADQ2j8sl544dqtq2TVXbt3uP27apatt2OXfu9O59dQTm4GDZExPlSEyUI7Fj3bktLk4mC9/bA6eKchwAakXXbsrZPMrxWetmSZKGtB+ihLAEY8PgtDg//nxNv2C67l50tz7f8rmsZqsePfdRmU3MEwQAAAAamsftlqug4NcCfOtBRXhuruRyHfW1lvDw+mNQao7WmBiZTKZGfBdA80I5DgC1aleOF2V5/9a+CX8DkncgT/O2zpMkTeg2weA0OJ0GtRukv5//d9333X36ZPMnspqterjvw3yDDQAAAPwGHo9H1Xv2/Fp+H7wSPCdHnoqKo77W5HDI3q6d7AkJNR/t686tERGN+C4A1KIcB4BarRIls1Wq2i+V7JDC4o1OdNq8tf4tVXuq1ad1H3WN7Gp0HJxmwxKGyel26oHFD+jDjR/KZrbp/nPupyAHAAAAjqJ6/35Vbdt++BiU7dvl3r//6C+0WmWPj5e9ffv6BXj79rLGxspk5l9xAr6EchwAalnt3oJ8V5Z37ngTLcf3VOzRR5s+ksSq8eZkRMcRcrldeijjIf1rw79kNVt179n3UpADAACgWXPt3q2KzA2q3JCpyi1b64rw6t27j/4ik0m21q3rFd+1R1tcnEw2W+O9AQCnhHIcAA4Wnewtx4s2SJ2GGJ3mtPjXhn+porpCqRGp6tu6r9Fx0IguT7pcLrdLjyx9RHN+niOb2aY7e91JQQ4AAIAmz+N2y5mbq4qfM1WxIVMVmZmqzNwgV2HhUV9jiYqsV3zXHdu1kzkgoBHTAzhdKMcB4GBRyZL+KxVlGp3ktChzlundzHcleVeNU4o2P6M6j5LL7dK0H6bpzXVvym6xa9KZk4yOBQAAADQYT1WVKjdvVkXmBlVkesvwyswNcpeWHn6xySR7+/ZypCTLkZRUU4B7x6FYQkIaPzyARkU5DgAHO3hTzibow40fqqSqRO1D22twu8FGx4FBrk6+Wk63U39f8Xe99tNrspqsurnHzUbHAgAAAE5a9f79qtxQU4LXlOGV2dmS03nYtSa7XY7OnRWQkixHcrICUlIV0KWzzMHBBiQH4AsoxwHgYAeX4x6P1IRWVjurnXrr57ckSeO6jpPFbDE4EYz0h9Q/yOV2afqq6Xp5zcuyWWy6odsNRscCAAAAjsjj8chVUFBTgntXgldkZsqZm3vE681hYQpITlZASoq3DE9JkaNDB+aBA6iHchwADhaRJJksUmWJVJInhcUZnajBfL7lcxWWFSoqMEqXJV5mdBz4gHHdxsnpdurFH1/Uc6uek81s05jUMUbHAgAAQDPnqa5W1bZtdfPBK2tWhVfv3XvE661tWntXgScnKyA1RQHJybK2acMYSQDHRTkOAAez2qWIRGnXRu/c8SZSjrs9bs1aP0uSNCZ1jOwWu8GJ4Cv+eMYf5XQ79epPr+qpFU/Jarbq2uRrjY4FAACAZsJTXa2qLVtUvnadKtatU/n6darM2ihPRcXhF1sscnTsKEdKzUiUlGQFJCfLEh7e+MEBNAmU4wBwqKjkmnI8S0oaYnSaBrHwl4XaWrxVLWwt9LvOvzM6DnzMLT1ukdPt1OtrX9dff/irbGabRncebXQsAAAANDEet1vOnJx6RXjFz5nylJUddq0pKEgBXbrUjUQJSE6Ro1OSzAEBBiQH0FRRjgPAoaKSpcxPpcJMo5M0CI/HozfWviFJuib5GoXY2XEd9ZlMJt3e8/a6ufSPLX1MVrNVVyRdYXQ0AAAA+CmPxyNXXp63CF+/TuXr1qli3Xq59+8/7FpTUJACU1MV0L27Arp2VUDXVNnbtZPJwj5JAE4vynEAOFT0QZtyNgErC1Zq7a61spvt+n3K742OAx9lMpl099l3y+Vx6Z3Md/RwxsOymq26pOMlRkcDAACAH3AWFqpiXc2K8JoivHrPnsOuM9nt3k0yu3VTQPduCuzWTfYOHSjCARiCchwADhVVW45vkDweyc83cfkg6wNJ0hVJVygyMNLgNPBlJpNJU3pPkcvt0ntZ7+nBxQ/KZrZpeMJwo6MBAADAh7j27lXFuvWqWLdW5evWq2LtWrkKCw+/0GpVQOfO9YpwR1KSTDZb44cGgCOgHAeAQ0UkSSaLVFki7d8phbYxOtEp+anoJ0nSsIRhBieBPzCZTHqgzwNyup36aNNHmvLdFFlNVg1uP9joaAAAADBA9f79qlj/c70i3Lljx+EXms1yJCZ6i/BuXRXYvbscXbrI7HA0fmgAOEGU4wBwKKtDatVR2r3JO3fcj8vxPRV7lFeaJ0lKjUg1OA38hdlk1l/6/UUut0ufZn+qe767R88PeF4XtL3A6GgAAAA4jdxlZarYsEEVa38twqu2bTvitfb27b0zwmuK8IDkZJmDgxs3MACcIrPRAWr97W9/k8lk0p133ln3WEVFhSZNmqSIiAiFhIRo1KhRKigoqPe6nJwcjRgxQkFBQYqOjta9994rl8tV75pFixapV69ecjgcSkpK0uzZsxvjLQHwZ01k7vj6XeslSQmhCWphb2FwGvgTs8msx859TBd1uEgut0t3LbpLGTsyjI4FAACABuKuqlL52rXa8+67ynvgQW257HJlnd1b239/nQqe/JtKPvusrhi3tWmjFsOHK+ruyWo36011Xv6DEr/6UnHPPK2IceMUdNZZFOMA/JJPrBxfsWKFZs6cqTPOOKPe43fddZfmzp2rDz74QGFhYbrtttt05ZVXKiPD+8N5dXW1RowYodjYWC1ZskQ7d+7U2LFjZbPZ9Ne//lWStHXrVo0YMUITJ07UO++8owULFujGG29U69atNXw4M1QBHEVUspT5mVSUaXSSU7Ju9zpJUrfIbgYngT+ymC36a9pf5XK7lL49XXcsvEMvD35ZfVv3NToaAAAAToLH6VRldrZ3s8y13k0zKzZulJzOw661REUqsNtBK8K7dZO1VSsDUgPA6Wd4OX7gwAFdd911+uc//6lp06bVPV5cXKw33nhD7777rgYNGiRJmjVrllJSUrRs2TL17dtXX3/9tX7++WfNnz9fMTExOvPMM/X4449rypQpeuSRR2S32/Xaa6+pQ4cOmj59uiQpJSVFixcv1nPPPUc5DuDooprWynHKcfxWVrNVfz//73ItcmnhLwv1pwV/0owhM9Q7trfR0QAAAHAEHrdbVVu31i/CMzPlqaw87FpLeHi9zTIDunWTLSbGgNQAYAzDy/FJkyZpxIgRGjJkSL1yfNWqVXI6nRoyZEjdY8nJyWrXrp2WLl2qvn37aunSperevbtiDvof9/Dhw3XLLbdo/fr16tmzp5YuXVrvHrXXHDy+5VCVlZWqPOgPjZKSkoZ4qwD8SW05XrhB8ngkk8nYPL+Bx+PRul3eleNdI7oanAb+zGa26ZkLntGdC+/U9zu+16QFkzRz6Ez1jO5pdDQAAIBmzePxyPnLL/WL8PXr5S4rO+xac0iIArp2VWD3bjWbZnaXLa6NTH74sw4ANBRDy/F///vfWr16tVasWHHYc/n5+bLb7QoPD6/3eExMjPLz8+uuiTnkbzRrPz/eNSUlJSovL1dgYOBhX/vJJ5/Uo48++tvfGAD/F9lJMpmlymJpf74U2troRCetoKxAuyt2y2KyqEurLkbHgZ+zW+x6buBz+tOCP2npzqW6Zf4t+ufQf6p7VHejowEAADQLHo9Hrvx8la9bp4qazTLL16+Xu7j4sGtNAQEKSE39tQjv2k32hPYymX1m6zkA8AmGleO//PKL7rjjDqWnpysgIMCoGEd0//33a/LkyXWfl5SUqG3btgYmAtDorA6pVUdp92bv3HE/LMdrV40nhScp0Hr4XwQCJ8thceiFQS/otgW3aXn+ct2cfrNeH/66UiNSjY4GAADQ5LirqlS+erXKVq6qK8Krd+067DqTzSZHcrJ3Rng374xwR2JHmayGDwsAAJ9n2P8pV61apcLCQvXq1avuserqan333Xd6+eWX9dVXX6mqqkr79u2rt3q8oKBAsbGxkqTY2FgtX7683n0LCgrqnqs91j528DWhoaFHXDUuSQ6HQw6H49TfJAD/FpVcU45nSYmDjE5z0mrLceaNoyEFWgP10qCXdMv8W7S6cLX++PUfNevCWercsrPR0QAAAPyax+ORc/t2HVicodLFi1W6fLk8h45HsVjk6NSpXhEe0LmTTHa7MaEBwM8ZVo4PHjxYa9eurffY+PHjlZycrClTpqht27ay2WxasGCBRo0aJUnKyspSTk6O+vXrJ0nq16+fnnjiCRUWFio6OlqSlJ6ertDQUKWmptZdM2/evHpfJz09ve4eAHBUUcnShs+lwkyjk/wm63d7N+PsGsm8cTSsIFuQZgyZoZvTb9ZPRT/plvRbNOfiOWoT0sboaAAAAH6l+kCpyn5YpgOLF6v0+8Vy5ubWe94SGangvn0V2KOHArp1VUByssxHWegHADh5hpXjLVq0ULdu9VczBgcHKyIiou7xCRMmaPLkyWrVqpVCQ0P1pz/9Sf369VPfvn0lScOGDVNqaqrGjBmjp556Svn5+Zo6daomTZpUt/J74sSJevnll3Xffffphhtu0DfffKP3339fc+fObdw3DMD/RKd4j0VZxub4DTweT1053i2CleNoeMG2YL0y+BWN+3KcNu/brJvTb9bbF72tlgEtjY4GAADgszxutyoyM1X6/WKVLl6ssjVrJJfr1wtsNgX16qXgtP4KSUuTo0sX5oQDwGnk0wOonnvuOZnNZo0aNUqVlZUaPny4ZsyYUfe8xWLR559/rltuuUX9+vVTcHCwrr/+ej322GN113To0EFz587VXXfdpRdeeEHx8fF6/fXXNXz4cCPeEgB/ElWziWVRpuTxSH60i3vO/hztr9ovh8WhpJZJRsdBExXmCNNrQ17TmC/GaFvJNk1aMEmvD3tdQbYgo6MBAAD4DNeuXSrNyPCOS8nIUPWePfWet7Vvp5D+aQpOS1Nwn3NkDg42KCkAND8mj8fjMTqEryspKVFYWJiKi4sVGhpqdBwAjcVZIf21teRxS3dnSS1ijU50wuZumas/f/9nnRF1ht65+B2j46CJ21K8RWO/GKviymKlxaXpxUEvyma2GR0LAADAEJ6qKpX9uEalixfrQMZiVf5cf0yjOShIQX371q0Ot7drZ1BSAGiaTqbL9emV4wBgKFuA1LKDtCfbO3fcj8rxus04GamCRtAxrKNeGfyKbvzqRi3esVh/yfiLpqVNk9nEPwEGAADNQ1VOjndu+OIMlS1bJvchG2k6UlPqVocH9TyTDTQBwEdQjgPAsUSneMvxoiwpcaDRaU4Ym3GisfWI6qHpA6br9m9u12dbPlNkYKQmnz3Z6FgAAACnhbu0VKU/LPeuDl+8WM6cnHrPW1q1UnD//go5L03B554ra2SkQUkBAMdCOQ4AxxLVRdrwuXfuuJ9wuV3K3O3Ny8pxNKbz48/Xo+c+qqkZUzVr/SxFBEbo+q7XGx0LAADglHncblVmZelA7UaaP/4oOZ2/XmC1KqhnT+/c8LT+CkhJYSNNAPADlOMAcCxRKd5jUZaxOU5C9r5sVVRXKNgWrISwBKPjoJm5POly7a7YredWPadnVj6jiMAIXdLxEqNjAQAAnDTXnj0qzciomR2+RNW7dtV73hYfr+Dz0hSSlqagPn1kCQkxKCkA4LeiHAeAY4nq4j0WZkoej2QyGZvnBNSOVEmNSGXmMwwxvut47SrfpTk/z9FDix9SS0dL9Y/rb3QsAACAY/I4nSpfs0YHFnsL8Yr16+s9bwoKUvA55yg4LU0haf1la99eJj/4+QAAcHSU4wBwLJGdJJNZqtgnHSiUWsQYnei41u/yfhPPSBUYxWQy6Z6z79Hu8t2at3We7lp0l94c/qa6RfJ7EgAA+Jaq3Ny6ueFlS5fJXVpa73lHcrJC0vorOC1Ngb16ycxGmgDQpFCOA8Cx2AKllgnSni3eueN+UI6v271OEptxwlhmk1nT+k/T3oq9WrpzqW6df6vevuhtRv0AAABDucvKVLp8uUprZodXbd9e73lLy5YK7t9fwWn9FdK/v6xRUQYlBQA0BspxADieqJSacjxL6jjA6DTHVFVdpY17N0oSq3RhOJvFpucGPqcJX03Q+t3rNXH+RM25aI6igvghEwAANA6Px6PKrKya1eEZKl+1Sp6DN9K0WBTY80yFpKUpuH+aArqmspEmADQjlOMAcDxRXaSsud654z4ua0+WXG6XWjpaqk1wG6PjAAq2BeuVwa9o7BdjlbM/RxPnT9TsC2erhb2F0dEAAEAT5dq7V6UZS1S6eLFKMzLkKiqq97wtLk7BaWkKTuuv4L59ZWnB9yUA0FxRjgPA8USneI9FWcbmOAG1I1VSI1PZHAg+IyIwQjOHztSYL8Zo496Nuv2b2/Xa0NfksDiMjgYAAJoAj8ul8p9+0oHFi1X6fc1Gmh5P3fOmwEAFndNbIf3TFHxemuwJCXyvDACQRDkOAMcX1cV7LMr0fpPtw99Ir9vlLcfZjBO+Jr5FvF4d8qrGfzleKwtW6s/f/VnPXPCMLGaL0dEAAIAfcu7YoQOLM1S6+HuVLl0m94ED9Z53dO6s4PPSFJKWpsCzzmIjTQDAEVGOA8DxRHaWZJLK90qlRVJItNGJjmr9rvWSmDcO35TcKlkvDnpRN6ffrPk58/XXH/6qqX2nsnILAAAcl2vvXpWtWKGy5StUmpGhqq1b6z1vCQ9X8Lnnesel9O8vW4zvfs8OAPAdlOMAcDy2QKllgrR3q3fuuI+W46XOUm0p3iKJchy+q3dsb/3tvL/pnm/v0fsb31dkUKRu6XGL0bEAAICPce3apbKVK1W2fIXKVixX5abN9S+wWBTYo4eC0/orJC1NAV27ymThX6QBAE4O5TgAnIjoFG85XpQldbzA6DRHlLk7Ux55FBMUo8jASKPjAEc1LGGYHqx4UNN+mKYZa2YoIiBCV3W5yuhYAADAQM7CQu/K8JrV4VVbthx2jaNTkoJ691ZQn74K7tdXltBQA5ICAJoSynEAOBFRXaSsed654z5q/W5GqsB/XJ18tYrKizTzfzP1xA9PKCIgQoPbDzY6FgAAaCTO/Py6IrxsxQpVbdt22DWOLl28ZXjv3grqfbasrVo1flAAQJNGOQ4AJyIqxXssyjI2xzHUbcZJOQ4/MenMSdpVvkv/2fQf3ffdfZo5dKbOjj3b6FgAAOA0cOblqXT58prV4SvlzMmpf4HJJEdysoLP8ZbhgWedJWvLlsaEBQA0G5TjAHAiorp4j4WZkscj+eAGgrXleNeIrgYnAU6MyWTS/7N33+FRlXkbx78zyaRnQjq9S4CACKJSVLoQguhixwUUEEUUEMW+tkWRXbCsdAQBF3dXWN1FICCEIgIuRVAITZEOIb33ybx/TDLKa8uECScJ9+e6vA4558yZG/8g4eaZ3/NilxdJL0hn4+mNjN84nsUxi2kV3MroaCIiInIJ7HY7xWfPOlaFlxXixWfPXnyT2YxPmzaOVeHXX4/ftZ3wCAoyJrCIiFyxVI6LiFREWCvABPlpkJsCAeFGJ7pIRkEGZ3LOANA2tK3BaUQqztPsybSbp/Hw+of5OulrHln/CB8O/JAGAQ2MjiYiIiIVZLfbKT51yjkzPHfnLkrOn7/4Jg8PfKKj8buus6MQv/ZaPAIDjQksIiJSRuW4iEhFePlBcBNIP+GYO17NyvHyeeONAxsT5K0VN1Kz+Hj68Lfef+OBtQ/wfcb3PLL+EZbGLCXYRx+lFhERqY7sdjvFJ0+S+7+dzkK85MKFi2/y9MS3XbuyleHX4duxEx4B/sYEFhER+RUqx0VEKiq8TVk5fgSa3Wx0mos4R6qEaaSK1ExB3kHM7TuXYXHDOJF1gnHx43j/lvfxs/gZHU1EREQAe0kJ+Xv3kr1xEzkbN1J08uTFN1gs+LZvj1/ZzHC/jh0x++n7uIiIVG8qx0VEKio8Co7GOeaOVzMHUss24wzVZpxSc0X6RzK331xGxI1gf8p+Jm2ZxHu938NithgdTURE5Ipky8kld9s2cjZuJGfLFmwZGT9etFjw69DBUYZffz2+HTpg9vU1LqyIiEglqBwXEamoiDaOY/IRY3P8goQUx1iVdmEqx6Vmax7UnFl9ZjH689FsO7uNl7a9xOs3vo7ZZDY6moiIyBWhODGRnE2byN64ibyvvsJeXOy85hEUREDPHgT06o3/jd3xCAgwMKmIiMilUzkuIlJR4VGOY3L1WjmelJdEcn4yZpOZ1iGtjY4jcsmuDr+aGT1m8PjGx1n1wyrCfMN4svOTRscSERGplex2O4WHD5O9cSM5GzdRkJBw0XVL48YE9u5NQO9e+HXqhMlTNYKIiNQe+q4mIlJRYVGACfJSITcF/MOMTgT8OG+8RZ0Wms8stcZNDW/ite6v8cKXL7A4YTFhvmGMiB5hdCwREZFawV5URO7OXeRs3Ej2pk2UnD//40WTCd8OHQjo05vA3r3xat4ck8lkXFgREZEqpHJcRKSivPwguIljU86kQ9DsJqMTAT+W45o3LrXN4BaDSc1P5a09bzF993RCfEK4tcWtRscSERGpkWwZGeRs3Up2/EZyt26lNDfXec3k44N/9+4E9u5FQI8eeIZVj0UgIiIiVU3luIiIK8JbO8rx5MPVphxPSNW8cam9Hoh+gOT8ZD48+CEvbXuJYJ9gbmxwo9GxREREaoSiU6ec41Ly9uwBm815zSM8jMCevQjo3Qv/rl0x+/gYmFRERMQYKsdFRFwR3hqOrnWU49WA3W53luPRodEGpxFxP5PJxFOdnyI1P5U1x9cwafMkFt6ykPbh7Y2OJiIiUu3YS/kliVQAACAASURBVEsp+PZbsjduIntjPEXfH7vouvdVVxHQuzeBfXrj064dJrM2vBYRkSubynEREVeEl214mXzE2BxlzmSfIbMwE4vZQqvgVkbHEakSZpOZKd2nkFGYwfZz2xkXP44lMUtoFtTM6GgiIiKGK83PJ3fHDscK8c1bsKWk/HjRwwO/665zjEvp1QuvRo2MCyoiIlINqRwXEXFFRFk5nnTI2BxlDqQ65o1HBUdh8bAYnEak6lg8LLzd821GrhtJQmoCj6x/hKUxS4n0jzQ6moiIyGVXkppKzubNjvnh27djLyhwXjMHBBBw800E9O5DwE034hEUZGBSERGR6k3luIiIK8LKVmfnpUBuCvgbu1lR+Wac0WEaqSK1n5/Fj1l9ZjFi7QhOZp1kxNoRzO83n8bWxkZHExERqXJFJ06QHR9PdvxG8vfuBbvdec1Sv75jXErvXvh17ozJy8vApCIiIjWHynEREVd4+UOdJpBx0jF33N/YjQG1GadcaUJ9Q5nXbx4Pff4Qp7NPMyxuGHP6zqFtaFujo4mIiLiVc354/EayN26k6NjF88N92rYloE9vAvv0wTsqCpPJZFBSERGRmkvluIiIq8Jb/1iONzWuHLeV2jiYehCAdqEqx+XK0SCgAUtjljJ2w1gOpx1m5LqRvNvrXW6od4PR0URERC5JaWEhuTt2kBO/kezNm7Al/2R+uKcn/tdfR0DvPgT27oWlfn3jgoqIiNQSKsdFRFwV0Rq+WwdJhw2NcTzzOPkl+fh6+mpjQrnihPmGsaj/IiZsmsCuxF2M3TCWaTdPo1+TfkZHExERcYktI4OcLVvI3hBPzrZt2PPynNcumh9+8014WK0GJhUREal9VI6LiLgqvGxTzmRjy/HyzTjbhrbFw+xhaBYRIwR6BTKn7xye/eJZNpzawJObn+TFLi9yd9TdRkcTERH5TUVnzpBTNj88b88esNmc1zwjIwns05uA3n3wv/46zQ8XERGpQirHRURcVV3K8fLNOEO1Gadcubw9vJneYzpT/jeFFUdX8Oev/kxqQSqPXP2IZq+KiEi1YbfbKUg4SM7GeLI3xFN49OhF171btXLMD+/dB5920foeJiIicpmoHBcRcVVYK8cxNxlyU8E/1JAYCSnajFMEwMPswUtdXiLUJ5R5385j9r7ZpOWn8ez1z+pTFSIiYhh7URG5O3c5CvGNmyhJTPzxoocHftdeW7ZCvDdejRoZF1REROQKpnJcRMRV3gFQpzFknHKsHvfvftkjFNuKOZJ+BNBmnCIAJpOJxzo+RohPCG/ufJN/Hvkn6YXpvHHjG3h56OPoIiJyediys8n54gty4uPJ+WIrpTk5zmsmPz8CuncnoE9vAnr0wDM42MCkIiIiAirHRUQqJ7z1j+V408tfjh9NP0pxaTFB3kE0DGx42d9fpLoa2mYowT7BPP/l86w7sY7Mwkze6fUO/hZ/o6OJiEgtZcvIIGvd52SvW0furl1QXOy85hEWRmCvXgT06Y1/166Yvb0NTCoiIiL/n8pxEZHKCG8N331u2NzxhFTHSJXoUM2kFPn/YprFEOQdxMRNE/nq/FeMWjeK2X1nE+ITYnQ0ERGpJUrz8sjetImsVavJ+fLLiwpxr+bNneNSfDt0wGQ2G5hUREREfovKcRGRyjB4U05txiny27rV78ai/ot4dMOjJKQmMDxuOPP6zaNBQAOjo4mISA1lLy4md/t2MletJjs+HntenvOad+vWWAcOJLBfX7ybNTMwpYiIiLhC5biISGVElJXjSQaV46mOclybcYr8unZh7VgSs4SH1z/MyayTDFszjLn95tIquJXR0UREpIawl5aSv3cvmatWkR23FltGhvOapWFDrINiCYqNxfuqqwxMKSIiIpWlclxEpDLCohzH3CTISwO/yzeuIa84j2MZxwCV4yK/p1lQMz6M+ZBHNjzC9xnf88DaB5jZeyadIjsZHU1ERKqxgiNHyFq1iszVqyk5d9553iM0FGtMDEGDYvHp0EHj7URERGo4leMiIpXhHQBBjSGzbFPOJt0u21sfTjtMqb2UcN9wIvwiLtv7itRUkf6RLB6wmMfiH2Nf8j7GrB/D9B7T6dmop9HRRESkGik6c4as1WvIWrWKwu++c543+/sT2K8f1kGD8O9yAyZP/TVaRESkttB3dRGRygqPMqQcd84bD9O8cZGKCvIOYv4t85m8ZTJbzmxh4qaJvNz1Zf5w1R+MjiYiIgYqSU0la+1aslatJn/vXud5k8VCQM8eWGMHEdCzB2YfHwNTioiISFVROS4iUlkRreH79Zd97rhz3nioRqqIuMLX05e3e73NK9tfYeWxlby0/SXSC9MZ2W6k0dFEROQysuXkkhO/gcxVq8ndvh1sNscFkwm/LjcQNGgQgf364WG1GhtUREREqpzKcRGRygov25Qz+fKW4wkpCYDmjYtUhsVsYUr3KYT6hPJBwge8vedt0vLTmNR5EmaT2eh4IiJSRUqLisjdupXMVavI2bgJe2Gh85pP+/YEDYolMCYGS4RG1omIiFxJKl2OFxUVkZSURGlp6UXnGzdufMmhRERqhPA2juNlLMczCzM5lX0KgOhQjVURqQyTycSkzpMI8Qlhxp4ZLDm4hLSCNF7t/ioWs8XoeCIi4iZ2m428XbvJWr2KrHWfU5qV5bzm1awZ1kGxBMXG4tW0qXEhRURExFAul+PfffcdI0eOZPv27Redt9vtmEwmbOUfSRMRqe3CWzmOORcgLw38Qqr8LQ+mHgSgYUBD6vjUqfL3E6nNHmj3ACG+Iby07SU+++EzMgozmN5jOn4WP6OjiYhIJdntdgoSDpK1ahVZa9ZQkpTkvOYZGYl14ECsg2LxadsWk8lkYFIRERGpDlwuxx944AE8PT1ZtWoV9erV0w8UInLl8g6EoEaQeRqSj0CTrlX+lgmpGqki4k6DWwymjncdntz8JFvPbmXM+jHM6jOLIO8go6OJiIgLCn/4gaxVq8las4aiEyec581BQVhvuQXroEH4XdcZk1kjtERERORHLpfj+/btY8+ePbRu3boq8oiI1CzhUWXl+OHLUo4fSCnbjFPluIjb3NzwZhbcsoBH4x/lm+RvGBE3grn95lLXv67R0URE5DcUnztH1po1ZK5eQ+GhQ87zJh8fAnv3wjpoEP433ojZy8vAlCIiIlKduVyOt23blpSUlKrIIiJS84S3hu83XLa54+XluOaNi7jXNRHXsGTAEh5Z/wjHMo8xLG4Y8/rNo3lQc6OjiYjIT5SkppK1di1Zq9eQ//XXP17w9CSge3esg2IJ6NUbjwB/40KKiIhIjeFyOT5t2jSefvpp3njjDdq3b4/FcvHGVVar1W3hRESqvfCyT9FchnI8JT+FC3kXMGGiTWibKn8/kSvNVcFX8eHAD3l4/cOcyDrBiLgRzO4zm/bh7Y2OJiJyRbNlZ5O9fgNZq1eT+9VXUL7PlcmE33XXYY2NJfCWfngGBxsbVERERGocl8vxvn37AtCnT5+LzmtDThG5IkWUldRJVV+Ol68abx7UHH+LVkOJVIX6AfVZGrOURzc8yoHUA4z6fBTv9HyHbg26GR1NROSKUlpQQM7mzWStXk3Oli+wFxU5r/m0b481diDWmBgskZEGphQREZGazuVyfNOmTVWRQ0SkZgpr5TjmJEJ+OvhW3Yol50iVMI1UEalKwT7BLOy/kImbJrLj/A7GxY/j9RtfZ2DzgUZHExGp1ezFxeRu307m6tXkbIinNC/Pec2rRQussQMJio3Fq0kTA1OKiIhIbeJyOd6jR4+qyCEiUjP5WMHaELLOQPIRaNylyt7qQKo24xS5XPwsfszqM4sXvnyBuBNxPLP1GdIL07m/zf1GRxMRqVXspaXk7d5N1uo1ZK9bhy0jw3nNUr++Y4V4bCzeUVGYTCYDk4qIiEht5HI5DpCRkcHChQs5VLYjeHR0NCNHjiQoKMit4UREaoTwqLJy/HCVleN2u52DKQcBaBeqclzkcrB4WHjz5jcJ9gnmo8Mf8ebON0nNT+Xxjo+roBERuQR2u52CAwlkrV5NVlwcJRcuOK95hIZiHTAAa2wsvh2v0Z+3IiIiUqVcLsd3795N//798fX15frrrwfgrbfe4vXXX+fzzz+nU6dObg8pIlKtRbSBY/FVOnf8XO450gvT8TR7EhUSVWXvIyIXM5vMPHv9s4T6hvLe3vdYsH8BqQWpvNjlRSxmy+8/QEREnAqPHXMU4qvXUHTypPO8OTCQwH79sMYOxP+GGzB5VmoNl4iIiIjLXP6p44knnmDw4MEsWLAAz7IfWkpKShg9ejQTJ07kiy++cHtIEZFqLbysrE6uunK8fN54q+BWeHl4Vdn7iMjPmUwmxlw9hhCfEP781Z/55LtPuJB7gRk9Z2hzXBGR31F89iyZa9aQtXoNhYd//FnJ5ONDQK+eBMXG4n/zzZi99PONiIiIXH6VWjn+02IcwNPTk6effprOnTu7NZyISI0Q3sZxrMJyPCElAdBIFREj3dnqTsJ8w3j6i6fZdm4bI+JGMKvPLCL9I42OJiJSrZQkJ5O17nOyVq8mf+/eHy94ehLQvTvWQbEE9OqNR4D+gVFERESM5XI5brVaOXXqFK1bt77o/OnTpwkMDHRbMBGRGiO8leOYfR7yM8C3jtvfonwzzuiwaLc/W0QqrmejnnzQ/wMejX+UI+lHuH/N/czuO5tWwa2MjiYiYqiSlBSy168nK24tebt2gd3uuGAy4XfddVhjYwm8pR+ewcHGBhURERH5CZfL8XvuuYdRo0Yxffp0unXrBsC2bduYPHky9913n9sDiohUez5BYG0AWWch+Qg0vsGtjy+1l3Iw1bEZZ3SoynERo0WHRbNs4DIejX+U45nHGRE3grd7vU2XelWzIa+ISHVVkpZG9ufryVq7lrydO6G01HnNp8PVWAfEYB0YgyVSn7ARERGR6snlcnz69OmYTCaGDx9OSUkJABaLhbFjx/Lmm2+6PaCISI0QHlVWjh92ezl+IvMEucW5+Hj40KJOC7c+W0Qqp2FgQz6M+ZAJmyaw58Iexq4fyyvdXuG2lrcZHU1EpEqVpKeTvX492WvXkvu/nWCzOa/5tG+PdcAAAvv3x6thAwNTioiIiFSMy+W4l5cX7777LlOnTuXYsWMAtGjRAj8/P7eHExGpMcLbwLGNVTJ3vHykSpvQNniaXf5jW0SqSJB3EPP7zefFbS8SdzyOF7e9yLmcczzS4RFMJpPR8URE3MaWkUH2hg1kxa0l96uvLi7Eo6OxxgwgcMAAvBo2NDCliIiIiOsq3bL4+fnRvn17d2YREam5wqMcx6oox1PK5o1rpIpItePl4cWbN71Jg4AGvL//fWZ/M5uzOWd5uevLWDwsRscTEak0W2Ym2fEbyYqLI3fHDij71DCAd9s2jpEpA/rj1bixgSlFRERELk2FyvEhQ4awePFirFYrQ4YM+c17P/nkE7cEExGpUSLaOI5J7i/HE1ITAGgX1s7tzxaRS2c2mZnQaQL1/Ovx+v9e57/H/suFvAu81fMtAr20WbmI1By2rCyyN24kO24tOdu3Q3Gx85p369ZYBwxwFOJNmxoXUkRERMSNKlSOBwUFOT8ebLVa9VFhEZH/L6yV45h9DgoyHZt0ukFxaTFH0o4AKsdFqru7o+6mrn9dntryFF+d/4oRa0cwu89s6vrXNTqaiMivsuXkkLNxo2NkypdfYv9pIX7VVQTGDMA6YADezZsbmFJERESkapjsdrvd6BDVXVZWFkFBQWRmZmK1Wo2OIyLV1Yw2jnJ81HpodL1bHnko9RB3r7qbQEsg2+7bpn+cFKkBDqYeZFz8OFLyU4jwjWB239lEhUQZHUtExMmWk0vOpk1krV1L7tat2IuKnNe8WrTAGuMYmeLdsqWBKUVEREQqx5Uu1+zqw3v37k1GRsYvvmnv3r1dfZyISO1RBXPHyzfjbBvWVsW4SA3RNrQtywYuo0VQC5LykxixdgTbzm4zOpaIXOFKc3PJXL2aM48/znfdunFu8mRy4uOxFxXh1awZYY8+SvPPVtJi9SrCHxunYlxERESuCC5vyLl582aKfrKyoFxBQQFbt251SygRkRopog38sMmtc8cTUsrmjYdqpIpITVI/oD5LBy7liU1PsDNxJ+Pix/FS15cYctVv790iIuJO9pISsjfEkxUXR86WLdgLCpzXvJo0IXBgDNYBMXi3ukr/CC8iIiJXpAqX499++63z1wcPHiQxMdH5tc1mY+3atTRo0MC96UREapKqWDme4lg5rnnjIjWP1cvK3L5zeWn7S6z6YRUvb3+Zszlneeyax1RCiUiVspeUkPnZKlLmzKH41CnneUvjxo6RKTED8I6K0p9FIiIicsWrcDl+zTXXYDKZMJlMvzg+xdfXl/fee8+t4UREapTwNo6jm8rx/JJ8vs/4HlA5LlJTWTwsvHHjG9QPqM/8b+cz/9v5nM85z6vdXsXiYTE6nojUMvaSEjJXfkbK3LnOUtwjOJg6d96BNSYG7zZtVIiLiIiI/ESFy/Hjx49jt9tp3rw5O3fuJDw83HnNy8uLiIgIPDw8qiSkiEiNUL5yPOssFGSBz6Vt4Hsk7Qg2u41Qn1Ai/SLdEFBEjGAymXi84+M0CGjAazte47MfPuNC3gXe7vU2Vi9t9C0il85eXPxjKX76NOAoxUNHjyL43nsx+/sbnFBERESkeqpwOd6kSRMASktLqyyMiEiN5lsHAutB9nlIPgKNrrukxyWkls0bD2unVV4itcCQq4YQ6RfJpM2T2Jm4kxFxI5jdZzb1AuoZHU1EaihHKb6SlDlzKT5zBgCPkBBCR40i+L57Mfv5GZxQREREpHpzeUPOcgcPHuTUqVM/25xz8ODBlxxKRKTGCo8qK8cPX3I5Xj5vPDos2h3JRKQa6N6gO0tiljBuwzi+z/ieoWuGMqvPLNqGtjU6mojUIPbiYjL/+19S5s77sRQPDSV05EiV4iIiIiIucLkc/+GHH/jDH/7A/v37MZlM2O12AOeqRpvN5t6EIiI1SXgb+GGzW+aOOzfjDNW8cZHapHVIa5bFLmPshrF8n/E9D6x9gOk9pnNzw5uNjiYi1ZyzFJ8zl+KzZ4GyUnzUKILvvUeluIiIiIiLzK6+YMKECTRr1oykpCT8/PxISEjgiy++oHPnzmzevLkKIoqI1CDlc8cvsRzPLsrmRNYJQCvHRWqjuv51WRqzlC71upBfks/4jeNZfnS50bFEpJqyFxWRvnw5xwbEcP7FP1F89iweoaFEPPMMLTesJ3TkgyrGRURERCrB5ZXjO3bsYOPGjYSFhWE2mzGbzdx4441MnTqV8ePHs3fv3qrIKSJSM0S0cRyTLq0cP5h6EID6/vUJ8Qm51FQiUg0FegUyu89sXtnxCiuPreS1Ha9xLuccj3d8HLPJ5fULIlIL2YuKyPjPf0idO4/ic+cA8AgLc2y0ec89mH19DU4oIiIiUrO5XI7bbDYCAwMBCAsL49y5c0RFRdGkSROOHDni9oAiIjVK+crxrDNQkAU+1ko9RvPGRa4MFg8LU7pPoWFAQ2Z/M5v397/P2ZyzTOk+BS8PL6PjiYhB7EVFZHz6H1LmzaXk3HkAPMLDCBs9mjp3361SXERERMRNXC7H27VrxzfffEOzZs244YYb+Mtf/oKXlxfz58+nefPmVZFRRKTm8A2GgLqQkwgpR6Fh50o9JiE1AYB2YZo3LlLbmUwmxl4zlnoB9Xh1+6vEHY8jKS+Jd3u9S5B3kNHxROQyshcVkfHJp6TMn3dxKf7QQ45S3MfH4IQiIiIitYvL5fiLL75Ibm4uAK+99hqDBg3ipptuIjQ0lH/9619uDygiUuOERznK8eTDlS7HtRmnyJXn9pa3E+kXyRObn2DPhT0MixvG7D6zaRjY0OhoIlLFfqkU9wwPJ/Sh0SrFRURERKqQy+V4//79nb9u2bIlhw8fJi0tjeDgYEwmk1vDiYjUSBFt4PgWSDpUqZen5qdyPvc8Jky0DW3r5nAiUp11rd+VJQOW8Gj8oxzPPM79a+5ndp/ZGrEkUkuVFhWR+cknpMybT8n5n5biD1Hn7rtUiouIiIhUMbfs9hQSEqJiXESkXPnc8eTK7cNQPlKlaVBTArwC3JVKRGqIqJAolg1cRqvgVqQVpPHgugfZfHqz0bFExI1Ki4pI/8c/OHZLfxJfeZWS8+fxDA8n8oUXaLFhPSHDh6kYFxEREbkMKrRyfMiQIRV+4CeffFLpMCIitUJ4G8cx+XClXp6QUjZvXCNVRK5Ydf3rsmTAEp7c8iTbz21nwqYJPHf9c9zb+l6jo4nIJSgtKiJjxQpS5y+gJDERAM+ICELHjKHOXXdi9vY2OKGIiIjIlaVC5XhQkDaDEhGpsPKV45mnoTAbvANdevmBVMe8cY1RELmyBXgFMLPPTKZ8NYVPvvuE1//3OqezTzPp2kl4mD2MjiciLigtLHSU4gve/7EUj4wkdMxD1LlTpbiIiIiIUSpUjn/wwQdVnUNEpPbwC4GASMi5AMlHoeG1FX6p3W53bsYZHapyXORKZzFbeKXrKzQIaMB7e99j6cGlnM4+zZs3vYmfxc/oeCLyO0rS00n/xz9IX/YRttRUoKwUf3gMde64Q6W4iIiIiMFc3pBTREQqIDyqrBw/7FI5npibSFpBGp4mT1qHtK7CgCJSU5hMJsZcPYZGgY148csX2XR6Ew+ue5CZvWcS7hdudDwR+QVFp0+TtngJGZ98gj0/HwDP+vUIHT3asVLcy8vghCIiIiIClSjHmzVr9pubb/7www+XFEhEpFYIbwPHv4DkQy69rHykSsvglvh4aiMuEflRTLMY6vrXZcLGCRxMPcjQNUOZ2XsmUSFRRkcTkTL5+/eTunAR2Z9/DqWlAHi3bUPoyFFY+9+CyWIxOKGIiIiI/JTL5fjEiRMv+rq4uJi9e/eydu1aJk+e7LZgIiI1Wvnc8eQjLr1MI1VE5Ld0jOjIsoHLeDT+UU5knWDE2hFM7zGdGxvcaHQ0kSuWvbSUnC1bSFv0AXm7djnP+990E6EjH8SvS5ffXFwkIiIiIsZxuRyfMGHCL56fNWsWu3fvvuRAIiK1QkQbxzHpsEsvS0hJAKBdWDt3JxKRWqKRtRF/H/h3ntj8BLsSd/FY/GM8d/1z3NP6HqOjiVxRSouKyPrsM1IXfUDRsWOOk56eBMXGEjJyJD5RrYwNKCIiIiK/y+yuB8XExPDvf//bXY8TEanZwsvmhWeegsKcCr2k1F7KwdSDgMpxEfltQd5BzOs7j8EtBmOz25jyvyn8dddfsZXajI4mUuvZMjNJmTef7/v04fwLL1J07BjmgABCRo2k5Yb11J/2popxERERkRrCbRtyrlixgpCQEHc9TkSkZvMLAf8IyE2ClCPQ4Pc35TyVdYrs4my8PbxpUafFZQgpIjWZxcPClO5TaBzYmJn7ZrL04FLOZJ9h6k1T8bP4GR1PpNYpPnuWtKVLSV++AnteHgCekZGEDB9OnbvvwiMw0OCEIiIiIuIql8vxjh07XjQzz263k5iYSHJyMrNnz3ZrOBGRGi08ylGOJ1esHC/fjLN1SGssZm3YJSK/z2Qy8XCHh2kU2IgXt73IxtMbeXDdg8zsPZNwv3Cj44nUCgUHD5K6cBFZa9eCzfHpDO9WrQgdNRJrTAwmLy+DE4qIiIhIZblcjt9+++0XfW02mwkPD6dnz560bt3abcFERGq8iDZwYiskHarQ7eXzxrUZp4i4amDzgdQLqMf4jeM5mHqQoWuGMqvPLFoFa7SDSGXY7XZyv/yS1EWLyNvxlfO8f7euhDw4Ev8bu2uTTREREZFawOVy/OWXX66KHCIitU94lOOYfKRCtx9Icawc17xxEamMjhEdWTZwGePix3Ei6wTD44Yzo8cMujfobnQ0kRrDXlRE5po1pC36gMKjRx0nPTywxsQQOvJBfNq2NTagiIiIiLhVpWaO22w2Pv30Uw4dcqyGbNu2Lbfddhuenm4bYS4iUvOFt3Eck39/5XhJaQmH0w4DEB2mleMiUjmNrY35+8C/M3HTRHZf2M24+HE8f8Pz3B11t9HRRKo1W3Y2GR9/TNrSDym5cAEAs58fde66i5ARw7HUr29wQhERERGpCi632QkJCdx6661cuHCBqCjHqshp06YRHh7OZ599Rrt2WvEoIgJAeNmoqYxTUJQLXv6/euuxjGMU2AoIsATQ1Nr08uQTkVopyDuI+f3m88qOV1h5bCV//urPnMo6xaTOkzCbzEbHE6lWihMTSVuylIyPP6Y0NxcAz/BwgocNI/ieu/EICjI4oYiIiIhUJZfL8dGjR9OuXTv27NlDcHAwAOnp6TzwwAOMGTOG7du3uz2kiEiN5B8K/uGQm1y2KWenX721fKRK29C2Kq9E5JJZPCxM6T6FRoGNmLVvFksOLuFMzhmm3jQVX09fo+OJGK7gyBHSFi0ic/UaKCkBwKtlC0IfHIn11kGYtcmmiIiIyBXB5XJ837597N6921mMAwQHB/P6669z3XXXuTWciEiNF966QuV4QmrZZpwaqSIibmIymXikwyM0CmzEn7b9ifhT8Ty49kFm9plJmG+Y0fFELju73U7ejh2kLlxE7rZtzvN+119PyMgHCbj5Zkxm/QO1iIiIyJXE5Z/+WrVqxYWyOXw/lZSURMuWLd0SSkSk1igfrfI7c8edm3GGajSViLhXbPNY3r/lfep41yEhNYGhq4fyXfp3RscSuWzsJSVkrl7N8Tvu4NTIUY5i3GwmMGYATZcvp8nSJQT27KliXEREROQK5PJPgFOnTmX8+PGsWLGCM2fOcObMGVasWMHEiROZNm0aWVlZzv9ERK544Y69GUg+8qu3FNoKnUVVuzCV4yLifp0iO7Fs4DKaWJtwPvc8w+KGse3stt9/oUgNVpqXR9qHf+dY/wGce/IpCg8ewuTjOHMj6AAAIABJREFUQ/D999Ni3Voavv02vu31fVdERETkSmay2+12V15g/smKCpPJBDg+ovj/vzaZTNhsNnflNFRWVhZBQUFkZmZitVqNjiMiNcmJL2FxLNRpAhO//cVbvk3+lvvX3E+wdzBb7tni/LNURMTdMgoymLh5Insu7MHD5MELXV7grlZ3GR1LxK1K0tJI//sy0pctw5aZCYBHcDDBf7yf4KFD8fzJeEgRERERqX1c6XJdnjm+adOmSgcTEbnilI9VyTgFRbng5f+zW8pHqkSHRasYF5EqVcenDvP7zefl7S+z6odVvLbjNU5lneKJa5/QZsBS4xWdOkXqBx+Q+cmn2AsLAbA0akToyAcJuv12zL7ajFZERERELuZyOd6jR4+qyCEiUjv5h4FfGOSlQMpRqN/xZ7eUb8apkSoicjl4eXjxxo1v0NjamNn7ZrM4YTFnss/wxk1v4Oup8lBqnvz9+0lduIjszz+H0lIAfNq3J3TUKAL79cXk4WFwQhERERGprlwuxwEyMjJYuHAhhw45NpiLjo5m5MiRBAUFuTWciEitEN4aTn7pmDv+C+W4NuMUkcvNZDIxtsNYGgU24qVtL7Hh1AYS1ybyXp/3CPMNMzqeyO+y2+3kbt1K6vsLydu503nev8fNhI4chd/11+nTWCIiIiLyu1z+/Ozu3btp0aIFb7/9NmlpaaSlpfHWW2/RokULvv7666rIKCJSs0WUjVZJOvSzS7nFuRzPPA44xqqIiFxOg5oPYsEtCwjyDuJA6gGGrh7q3CBYpDqyFxWR8Z//cHzwbZwe87CjGPf0JOi222j23//SeN48/G+4XsW4iIiIiFSIyyvHn3jiCQYPHsyCBQvw9HS8vKSkhNGjRzNx4kS++OILt4cUEanRyueOJx/52aWDqQexY6euf12t1hQRQ1wbeS3LBi5jXPw4TmadZHjccGb0nEG3+t2MjibiZMvJJWP5ctKWLKEkMREAs58fde65h5Dhw7DUq2dwQhERERGpiSq1cvyZZ55xFuMAnp6ePP300+zevdulZ82ZM4err74aq9WK1Wqla9euxMXFOa8XFBQwbtw4QkNDCQgI4I477uDChQsXPePUqVPExsbi5+dHREQEkydPpqSk5KJ7Nm/eTKdOnfD29qZly5YsXrzY1d+2iEjlOcvxn68cT0gpmzeukSoiYqAm1ib8PebvdIroRE5xDo9ueJQVR1cYHUuE4qQkkma8xfe9epE0bRoliYl4hIcRPmkSLTdvIvKZp1WMi4iIiEiluVyOW61WTp069bPzp0+fJjAw0KVnNWzYkDfffJM9e/awe/duevfuzW233UZCgqMseuKJJ/jss89Yvnw5W7Zs4dy5cwwZMsT5epvNRmxsLEVFRWzfvp0lS5awePFiXnrpJec9x48fJzY2ll69erFv3z4mTpzI6NGjWbdunau/dRGRyikvx9NPQlHeRZcOpDrmjWukiogYrY5PHRbcsoBBzQdhs9t4dcervLX7LUrtpUZHkytQ4Q8/cO7FFznWpy+pCxZQmp2NV7Nm1JvyZ1rGxxM25iE8rFajY4qIiIhIDWey2+12V14wfvx4Pv30U6ZPn063bo6P227bto3Jkydzxx138M4771xSoJCQEP76179y5513Eh4ezkcffcSdd94JwOHDh2nTpg07duygS5cuxMXFMWjQIM6dO0dkZCQAc+fO5ZlnniE5ORkvLy+eeeYZVq9ezYEDB5zvce+995KRkcHatWsrlCkrK4ugoCAyMzOx6odwEamMvzSHvFQYswXqX+M8PeDfAzibc5b5/ebTtX5XAwOKiDjY7XbmfjOX2d/MBqBv475MuXEK/hZ/g5PJlSDv672kLlxITny885xvp06EjhpJQK9emMwur+0RERERkSuMK12uyzPHp0+fjslkYvjw4c7xJRaLhbFjx/Lmm29WLjGOVeDLly8nNzeXrl27smfPHoqLi+nbt6/zntatW9O4cWNnOb5jxw7at2/vLMYB+vfvz9ixY0lISKBjx47s2LHjomeU3zNx4sRfzVJYWEhhYaHz66ysrEr/vkREAMfq8ZPbHHPHy8rx9IJ0zuacBbRyXESqD5PJxNhrxtIwsCEvb3+ZDac28P2q75neYzpRIVFGx5NayF5aSs6mTaQuXET+1187zwf06UPoqJH4depkYDoRERERqc1cLse9vLx49913mTp1KseOHQOgRYsW+Pn5VSrA/v376dq1KwUFBQQEBPDpp5/Stm1b9u3bh5eXF3Xq1Lno/sjISBLLNuFJTEy8qBgvv15+7bfuycrKIj8/H19f359lmjp1Kq+++mqlfj8iIr/IWY7/OHc8IdUxQqqJtQlWL30qRUSql1tb3EqjwEY8teUpTmSd4P419/Pc9c8x5KohmEwmo+NJLVBaVETWypWkLlxE0fHjAJgsFoJuv42QBx/Eu3lzgxOKiIiISG3nUjl+4sQJ1q9fT1FRET179qR9+/aXHCAqKop9+/aRmZnJihUrGDFiBFu2bLnk516K5557jkmTJjm/zsrKolGjRgYmEpEaz7kp5xHnqQMpZfPGQ7VqXESqp2sirmH5rct5/svn+fLsl7yy4xV2X9jNn7r8CT9L5RZGiNhycsn45z9IXbIEW3IKAObAQILvvZfgYX/EEhFhcEIRERERuVJUuBzftGkTgwYNIj8/3/FCT08WLVrEH//4x0sK4OXlRcuWLQG49tpr2bVrF++++y733HMPRUVFZGRkXLR6/MKFC9StWxeAunXrsnPnzoued+HCBee18mP5uZ/eY7Vaf3HVOIC3tzfe3t6X9PsSEblIRFk5nvSTleMpjpXj7cLaGZFIRKRCgn2CmdVnFosOLGLm3pms+mEVCakJzOgxg6uCrzI6ntQgtqws0j78kLSlH1KamQmAZ926hIwYQZ277sIjQHPtRUREROTyqvCONn/605/o168fZ8+eJTU1lYceeoinn37a7YFKS0spLCzk2muvxWKxEP+TzXiOHDnCqVOn6NrVsWld165d2b9/P0lJSc571q9fj9VqpW3bts57fvqM8nvKnyEiclmUrxxPPwHF+djtdg6kOlaOqxwXkerObDIzuv1oFvZfSIRvBMczjzN09VD+8/1/jI4mNUBJejpJb7/D9737kPLeTEozM/Fq1ox6U6fS8vN1hD74gIpxERERETGEyW632ytyY506ddi+fbuzdM7Ly8NqtXLhwgVCQ0Mr9ebPPfccMTExNG7cmOzsbD766COmTZvGunXr6NevH2PHjmXNmjUsXrwYq9XK448/DsD27dsBxyae11xzDfXr1+cvf/kLiYmJDBs2jNGjR/PGG28AcPz4cdq1a8e4ceMYOXIkGzduZPz48axevZr+/ftXKKcrO5yKiPwiux3+0hzy02DMFi4E1aPvir54mDzYMXQHvp6//EkWEZHqJjU/lee/fJ7t5xw/jw1uMZgXbnhBY1bkZ0qSk0n9YDHp//wn9rw8ALyvuoqwsY8Q2L8/Jg8PgxOKiIiISG3kSpdb4bEqWVlZhIWFOb/28/PD19eXzMzMSpfjSUlJDB8+nPPnzxMUFMTVV1/tLMYB3n77bcxmM3fccQeFhYX079+f2bNnO1/v4eHBqlWrGDt2LF27dsXf358RI0bw2muvOe9p1qwZq1ev5oknnuDdd9+lYcOGvP/++xUuxkVE3MJkgog2ZZtyHuZASSoALeq0UDEuIjVKqG8oc/rO4f397zNr3yxWHltJQkoCM3rOoEWdFkbHk2qgODGR1PcXkrF8OfbCQgB82rYldOwjBPbpg8lc4Q+vioiIiIhUqQqvHDebzSxZsoSgoCDnufvuu4933nmHyMhI57nBgwe7P6XBtHJcRNxi9VOwawF0n8DfQsNYsH8BQ64awqvdXjU6mYhIpexK3MXTXzxNSn4Kvp6+/KnLn7i1xa1GxxKDFJ05Q+r8BWR8+ikUFwPg26EDYY+Oxf/mmzGZTAYnFBEREZErQZWsHAcYMWLEz849/PDDzl+bTCZsNpsrjxQRuXJEtHEcLxzkgD0EgOjQaAMDiYhcmuvqXsfyW5fz7NZn+d/5//H8l8+z+8Junrv+OXw8fYyOJ5dJ4fHjpM5fQObKlVD2dwG/664j7NGx+HXpolJcRERERKqtCpfjpaWlVZlDRKT2i3Ds2WBPOkSCRx0AosNUjotIzRbmG8a8vvOY/+185nwzh0+++4T9KfuZ0WMGzYKaGR1PqlDB0aOkzptPVlwclP1dwb97d8LGPoJf584GpxMRERER+X0urRwXEZFLULZy/HReIllFZixmC63qtDI4lIjIpfMwezD2mrF0jOzIM188w3fp33HPqnt4uevLxDaPNTqeuFnBwYOkzJlL9vr1znMBvXoRNvYRfK++2sBkIiIiIiKuUTkuInK5+NYBawMO2NIBaB3SGouHxeBQIiLu06VeF1bcuoJntj7DrsRdPLv1WXZf2M2z1z+Lt4e30fHkEuV/8w0ps+eQs2WL44TJROAttxD2yMP4tGljbDgRERERkUrQVvEiIpdTRBsOeHsBmjcuIrVTuF84C/ot4OGrH8aEiRVHV3D/6vs5mXXS6GhSSXm7dnFq5EhO3HOvoxg3m7HeeivNP1tJw3ffUTEuIiIiIjWWynERkcspoi0JZeV4u7B2BocREakaHmYPHuv4GHP7ziXEJ4Qj6Ue4Z9U9rD2x1uhoUkF2u52cbds48cc/cnLYcHK37wBPT4LuGEKLNatp8Ne/4N2ypdExRUREREQuicaqiIhcRrbw1hw6q3JcRK4M3Rp0Y/mty5m8ZTJfJ33N5C2T2Z24m8nXTdaYlWrKbreTs2ULKXPmUPDNtwCYLBaC7hhC6OiH8GrYwOCEIiIiIiLu43I5fvr0aUwmEw0bNgRg586dfPTRR7Rt25YxY8a4PaCISG3yg7+VfLMZv1I7TQObGB1HRKTKRfhFsLD/Qmbtm8X7+9/nX0f+xbfJ3zKjxwwaWRsZHU/K2EtLyd6wgZS5cyk8eAgAk7c3de65m9BRo7BERhqcUERERETE/VweqzJ06FA2bdoEQGJiIv369WPnzp288MILvPbaa24PKCJSmxwozQegTWEhHnkpBqcREbk8PM2eTOg0gdl9ZlPHuw6H0g5x96q7WX9yvdHRrnh2m43MVas5ftttnB0/gcKDhzD5+REyaiQt4zdQ9/nnVYyLiIiISK3lcjl+4MABrr/+egA+/vhj2rVrx/bt21m2bBmLFy92dz4RkVolIeMoAO2KiiDpoMFpREQur5sa3sTyW5fTMaIjOcU5TNo8iTd3vkmRrcjoaFccu91O9qZN/DDoVs499RSF332POSCA0LGP0DJ+A5GTJ+MZFmZ0TBERERGRKuVyOV5cXIy3t2NG5IYNGxg8eDAArVu35vz58+5NJyJSyxxIOQBAu8IiSDpkcBoRkcuvrn9dFvZfyIPtHgRg2aFljIgbwZnsMwYnu3IUHDnK6VGjODP2UYqOH8cjKIjwCeNpuTGeiAkT8AwONjqiiIiIiMhl4XI5Hh0dzdy5c9m6dSvr169nwIABAJw7d47Q0FC3BxQRqS2KbEUcST8CQHRhIVzQynERuTJZzBYmXTuJmb1nEuQdxIHUA9y96m42ntpodLRarSQ1lfMvv8LxP/yB3O07MFkshD40mhbxGwgbOxYPq9XoiCIiIiIil5XL5fi0adOYN28ePXv25L777qNDhw4ArFy50jluRUREfu5o+lFKSkuo4+lHwxKbxqqIyBWvR6MeLB+0nKvDrya7KJsJmybwl11/odhWbHS0WqW0qIjU99/nWP8BZPzrX1BaSuCAATSPW0PEk0/iERBgdEQREREREUN4uvqCnj17kpKSQlZWFsE/+cjlmDFj8PPzc2s4EZHapHykSnRwK0wchuTDUFoKZpf/nVJEpNaoF1CPxf0X887X77D04FI+PPgh3yR9w197/JX6AfWNjlej2e12sj9fT9L06RSfPg2AT3Q0kc89i1/nzganExERERExXqUaGbvdzp49e5g3bx7Z2dkAeHl5qRwXEfkNCakJAERHdgYPbyjOg4wTxoYSEakGLB4WJl83mXd7vUugVyDfpnzLXZ/dxRdnvjA6Wo2Vn5DAqWHDOTthAsWnT+MZEUG9qVNpuvxjFeMiIiIiImVcLsdPnjxJ+/btue222xg3bhzJycmAY9zKU0895faAIiK1hXMzzvCrIbyV46Q25RQRcerduDfLb11O+7D2ZBVlMS5+HDP3zsRWajM6Wo1RfCGJc889z4k77yJv925M3t6EPfooLdbGUecPt2PSp5VERERERJxc/ul4woQJdO7cmfT0dHx9fZ3n//CHPxAfH+/WcCIitUWhrZDjmccBaBPaBiKiHRc0d1xE5CINAhqweMBi7o26F4B5385j7IaxpBekG5yseistKCBlzhyOxcSQ+emnYLdjvfVWWqyNI3z845j1CU8RERERkZ9xeeb41q1b2b59O15eXhedb9q0KWfPnnVbMBGR2uSHjB+w2W1YvaxE+kVCRBvHhQsqx0VE/j8vDy9e6PIC10Rcw6s7XmXH+R3c9dldzOg5gw7hHYyOV63Y7XayVq8hacYMSs6fB8C3Qwcin38O3w76fyUiIiIi8ltcXjleWlqKzfbzj7aeOXOGwMBAt4QSEaltjqQfASAqJAqTyQQRbR0XNFZFRORXxTaP5aOBH9HU2pQLeRd4YO0D/OPwP7Db7UZHqxby9+3j5L33ce6ppyg5fx7PevWoP2M6Tf75DxXjIiIiIiIV4HI5fsstt/DOO+84vzaZTOTk5PDyyy8zcOBAt4YTEaktjqSVlePBUY4TkWXleOp3UFJkUCoRkeqvZXBL/hH7D/o16UdJaQlv/O8Nnt36LHnFeUZHM0zx+fOcfWoyJ+69j/xvvsHk50f4hPG0iFtDUGys4x9hRURERETkd7lcjs+YMYNt27bRtm1bCgoKGDp0qHOkyrRp06oio4hIjfdd+ncAtAou24jT2gC8rVBa4ijIRUTkVwV4BTCjxwwmd56Mh8mDNcfXMHT1UH7I/MHoaJdVaW4uyX/7G8cGxJC1ahWYTAQNGUKLuDjCxo7F7ONjdEQRERERkRrF5ZnjDRs25JtvvuGf//wn3377LTk5OYwaNYr777//og06RUTEwW63O8eqtAopK8dNJsfc8dP/c4xWiYw2MKGISPVnMpkYHj2cdmHteGrLUxzLPMZ9q+7jte6v0b9pf6PjVSl7aSmZ//kvyW+/TUlyMgB+nTsT8dyz+Ebr+4eIiIiISGW5XI4DeHp68sc//tHdWUREaqWkvCQyCjMwm8y0rNPyxwsRbcvKcW3KKSJSUZ0iO/HxrR/z9BdPsytxF09teYpvkr/hiWufwGK2GB3P7fJ27+bC1DcpSEgAwNKwIRGTJxN4Sz+NTxERERERuUQVKsdXrlxJTEwMFouFlStX/ua9gwcPdkswEZHaonzVeFNrU7w9vH+8UL4p5wWV4yIirgjzDWN+v/m8t/c9Fh1YxIcHP+RAygGm95hOhF+E0fHcoujMGZL+Op3sdesAMPv7E/boWIKHDcPs5WVwOhERERGR2qFC5fjtt99OYmIiERER3H777b96n8lkwmazuS2ciEhtcDT9KPCTzTjLRbRxHLVyXETEZZ5mT5649gmuDr+aF798kb1Je7nrs7uY3mM619W9zuh4lWbLySF17lzSlizFXlwMZjN17ryT8PGP4xkWZnQ8EREREZFapUIbcpaWlhIREeH89a/9p2JcROTnjqY5ynHnvPFy5SvHM05CYc5lTiUiUjv0adyHfw36F62CW5FWkMboz0ezcP9C7Ha70dFcYrfZSP/XxxzrP4DU9xdiLy7Gv1tXmn36KfVee1XFuIiIiIhIFahQOS4iIpVXPlblZyvH/UMhINLx6+TDlzmViEjt0djamL8P/DuDWwym1F7KO1+/w4RNE8gqyjI62u+y2+3kbP2S40PuIPHll7GlpuLVtCkN58ym0cKF+ES1+v2HiIiIiIhIpbhcjo8fP56//e1vPzs/c+ZMJk6c6JZQIiK1RaGtkBNZJwBoFfwLBYdGq4iIuIWvpy9Tuk/hpa4vYTFb2HR6E/euupcjaUeMjvar8vcf4NSDIzn90EMUHjmC2Wol8rlnab7yvwT26qUNN0VEREREqpjL5fi///1vunfv/rPz3bp1Y8WKFW4JJSJSW3yf8T2l9lLqeNf55U3iIqIdR23KKSJyyUwmE3e1uosPYz6kvn99Tmef5v419/Of7/9jdLSLFJ08ydlJkzhx113kffUVJouFkBEjaLFuLSEjRmDShpsiIiIiIpeFy+V4amoqQUFBPztvtVpJSUlxSygRkdqifN54VHDUL68A1MpxERG3iw6L5uNbP+bGBjdSaCvkT9v+xCvbX6HQVmhorpLUVBL/PIVjsYPIWhMHJhNBtw2meVwckc89i2dwsKH5RERERESuNC6X4y1btmTt2rU/Ox8XF0fz5s3dEkpEpLY4mu4ox68KvuqXbyjflDPp0GVKJCJyZQjyDmJWn1mMu2YcJkz8+7t/M2zNMM5kn7nsWUpzc0meNYtj/W4hfdkyKCnB/6abaPbpJ9SfNg2vhg0ueyYREREREQFPV18wadIkHnvsMZKTk+nduzcA8fHxzJgxg3feecftAUVEajLnZpwhUb98Q0RrxzE3CXJTwD/sMiUTEan9zCYzj3R4hKvDruaZrc9wKO0Q96y6h6k3TeXmhjdX+fvbi4vJWLGC5FmzsZV9wtInOpqIyU/h36VLlb+/iIiIiIj8NpfL8ZEjR1JYWMjrr7/On//8ZwCaNm3KnDlzGD58uNsDiojUVHa73bkRXFTwr5TjXv4Q3BTSTzhGqzSr+rJGRORK061BNz4e9DFPbnmS/Sn7GRc/joevfpixHcbiYfZw+/vZ7fb/Y+++47Ks9z+Ov+4bbvYQREBRRFTc2Vbb/cytKGrlyjJLT46GpWXjVFpaeTTbw6Zp7glqrtLsaJ5S04ZiDkREAWXL5r5+f+DNsdMSBS7G+/l48LgQLu7r7R8pvf3y+ZC1fj3Jr75K4bF4AGyhoQQ+/BDe3btjsZb5hzdFRERERKQCWAzDMC72i1NSUnB3d8fLy6s8M1U5mZmZ+Pr6kpGRgY+Pj9lxRKSaOHX2FF2WdsHJ4sTOoTtxdXL94xsXDIHYNdDjFegwunJDiojUIgXFBcz4bgYLYxcC0Kl+J1666SX83fzL7Rlnd/6H5Jkzydu3DwAnf38Cxo7B7/bbtWhTRERERKQSlKXLvahjK0VFRWzatInly5fj6NYTExPJzs6+mJcTEamRHPPGm/g2+fNiHP67lDPp50pIJSJSe7k4ufBUx6eYfuN03J3d2XFyB3dE38HelL2X/Np5sQeJHz2a+LvvJm/fPiweHgSMGUPTDRvwHzpUxbiIiIiISBVU5rEqx44do3v37sTHx5Ofn0+XLl3w9vbm5ZdfJj8/n3fffbcicoqIVDuOkSoRfhF/faOjHNdSThGRStE7vDct/FowYcsE4jLjuOeLe5h0zSQGtRiExWIp02sVJiaS8vobZKxaBYYBzs743XE7AQ88gHO9ehX0OxARERERkfJQ5pPjDz30EFdffTVpaWm4u7uXfjwqKorNmzeXazgRkerMcXL8T5dxOgS1Kbkm7y8pVkREpMI192vOgl4L6NK4C0X2IqbtnMYT254gpzDngr6+OD2dpFdmcLh7DzJWrgTDwLt7d5rGRBP8z3+qGBcRERERqQbKfHJ827ZtbN++HZf/+dHQsLAwTpw4UW7BRESqu9i0Czw57t8UrDYoyIKM41AntBLSiYiIl4sXM2+eyWe/fMasXbNYe3QtsamxzLp1FuG+4X/4Nfa8PNLmzeP0+3OwZ2YC4HHNNQROfAz3yy6rzPgiIiIiInKJynxy3G63U1xc/LuPJyQk4O3tXS6hRESqu7yiPI5lHgOghd/fnBx3doGA5iXva7SKiEilslgsDG8znA+7fUg993oczjjMoJhBrD68+jf3GcXFpC9bzuHuPUj+10zsmZm4Nm9Oo/feJXTupyrGRURERESqoTKX4127dmX27Nmlv7ZYLGRnZ/Pss8/Ss2fPcg0nIlJdHUo/hN2w4+/mT4B7wN9/QWDrkmvyLxUbTERE/tBVQVexuM9iOgR3ILcol6e+eYqnv3maswVnyfryK47268fJp56i6NQpnOvXp/706TRZuQKvm28u85xyERERERGpGso8VmXmzJl069aN1q1bk5eXx5AhQ/j1118JCAhgwYIFFZFRRKTaccwbb+7X/MJKE8dSziSV4yIiZglwD+C9Lu/x/o/v8+7ed/nl65VsfWEtTeJyAbD6+hIwahR+w4ZidXU1Oa2IiIiIiFyqMpfjDRs2ZO/evSxcuJB9+/aRnZ3NyJEjGTp06G8WdIqI1GaxqSXzxv92pIpD6clxjVURETGTk9WJe727c8M323H++nsglwInyOp3Ex0nvoxznTpmRxQRERERkXJS5nIcwNnZmWHDhpV3FhGRGsOxjLOF/wWW40HnyvHTsVBcBE4X9ceziIhcgqK0NFJmv0b60qU4FxeD1cpP19bjratOc8ZnO71/fJlnOj6Dh83D7KgiIiIiIlIOyjxzHCA2NpZx48bRuXNnOnfuzLhx4zhw4EB5ZxMRqZYMwygdqxLhF3FhX+QbCjZPKC6A1MMVmE5ERP5I1ubNHOndh/RFi6C4GK9bb6XJyhUM+PhLht78EFaLlZgjMdwZc2fpTweJiIiIiEj1VuZyfNmyZbRt25Zdu3bRvn172rdvz+7du2nXrh3Lli2riIwiItXKqbOnyCrIwtniTLhv+IV9kdUKgS1L3tdSThGRSlOcmUni40+QMHYcxWfO4Nq8GY0/m0ujd97GLSICq8XK/Zfdz0fdPiLQI5C4zDiGrBnCkoNLMAzD7PgiIiIiInIJylyOT5r2VBVeAAAgAElEQVQ0icmTJ7Njxw5mzZrFrFmz2L59O08++SSTJk2qiIwiItWKY6RKkzpNcHFyufAv1NxxEZFKlf3NvzkS2ZeMVavAYqHufSMJW7oUj2uu+d29VwVdxdI+S7kh5AYK7AVM2TGFx79+nOyCbBOSi4iIiIhIeShzOX7y5EmGDx/+u48PGzaMkydPlksoEZHqrMwjVRwc5XjSz+WcSEREzmc/e5aTzz/P8fvuo+jUKWyNQ2k8fz6Bjz2G1dX1T7/Oz82Ptzq/xYSrJuBkcWJd3DrujLmT/Wf0j5oiIiIiItVRmcvxW265hW3btv3u49988w033nhjuYQSEanOHLNoW/hd4DJOh8BWJVedHBcRqTA533/PkX5RpC9YCIDf0KGEr1iBx5VXXNDXWy1WRrQdwSfdPyHYM5j4rHiGrh3KggMLNGZFRERERKSacS7rF0RGRvL444+za9cuOnbsCMC3337LkiVLeP7551m9evVv7hURqW0cJ8fLXI4HtSm5ph6BwlywuZdzMhGR2suen0/K7NdI/eQTMAyc69enwbQX8ezU6aJe7/LAy1naZylPf/M0WxK2MG3nNL479R3PX/c83i7e5RteREREREQqhMUo4xEXq/XCDptbLBaKi4svKlRVk5mZia+vLxkZGfj4+JgdR0SqsNyiXDrM74CBwVd3fEWAe8CFf7FhwIymkHMGRm2BBhd2ilFERP5a7o8/kfjEExQcPgyA74D+BD3xBE7el15iG4bBZ798xqu7X6XIXkSIVwgzb55Jm4A2l/zaIiIiIiJSdmXpcss8VsVut1/QW00pxkVEyuJQ2iEMDPzd/MtWjANYLFrKKSJSjoyCAlJef524QYMoOHwYp3oBNHznbRq8+GK5FONQciBkeJvhzO0+lxCvEE5kn2DYumHM+2WexqyIiIiIiFRxZS7HRUTkz8WmXeS8cQct5RQRKRd5sQc5OmgQp99+B4qL8enZk/DVq/G+9dYKeV67eu1Y3GcxnUM7U2Qv4uXvXubhrx4mIz+jQp4nIiIiIiKX7oLL8R07dhATE/Obj82dO5cmTZoQGBjIqFGjyM/PL/eAIiLVSem8cf+LLce1lFNE5FIYxcWcnjOHuIEDyf9lP0516hDy6ixCZs3E2c+vQp/t4+LDq7e8yuRrJ2Oz2vjy+JfcEX0H+1L2VehzRURERETk4lxwOT5lyhR+/vm/Jxl//PFHRo4cyW233cYTTzxBdHQ006dPr5CQIiLVRWxqycnxCL+Ii3sBjVUREblo+UePcmzIUFJmzsIoLMTr1lsJj16NT48elZbBYrEwpNUQPuv5GY28G5F4NpG7193Npz9/qjErIiIiIiJVzAWX4z/88AOdO3cu/fXChQvp0KEDc+bMYcKECbz++ussXry4QkKKiFQHhmHwa9qvwKWU4+dOjmclQm5aOSUTEanZDLud1M/mcTSqP7l792L18qL+tGk0fPstnOvVMyVTm7ptWNR7Ed3CulFkFPGv7//F+C/Hk56XbkoeERERERH5vQsux9PS0ggKCir99datW+lx3imca665huPHj5dvOhGRaiTxbCJZhVk4W50J9w2/uBdx8wHfRiXv6/S4iMjfKjxxgvgR95L04osYeXl4dOpI+OpV1OkfhcViMTWbt4s3M26awTMdn8HF6sLWhK0MjB7InuQ9puYSEREREZESF1yOBwUFcfToUQAKCgrYvXs3HTt2LP18VlYWNput/BOKiFQTB1NL5o2H+4Zjc7qEPw9LR6v8Ug6pRERqJsMwSF+6lCORfcnZuROLuztB/3yG0A8/xNaggdnxSlksFu5ocQfze82nsU9jknKSGPHFCD748QPsht3seCIiIiIitdoFl+M9e/bkiSeeYNu2bUyePBkPDw9uvPHG0s/v27ePpk2bVkhIEZHqIDatZN54C7+LXMbp4BitkqRyXETkjxQmJXP8H//g5NPPYD97FvcrryR85Qr8hwzBYr3gb28rVUv/lizqvYieTXpSbBTz2u7XGLN5DKl5qWZHExERERGptS74/x6mTp2Ks7MzN998M3PmzGHOnDm4uLiUfv6jjz6ia9euFRJSRKQ6OJhWcnK8hf+lluNayiki8kcMwyBjzRqOREZyduvXWGw2AidOpPFnc3Fp3NjseH/L0+bJSze+xHOdnsPVyZV/n/g3t6++ne9PfW92NBERERGRWsn5Qm8MCAjg66+/JiMjAy8vL5ycnH7z+SVLluDl5VXuAUVEqgtHOX7Ryzgdgs4bq2IYYPLMXBGRqqAoLY1Tz08h64svAHBr3ZoGL7+Ea/PmJicrG4vFwoCIAbSr147Htj7G0YyjjNwwkjHtx3Bfu/twsjr9/YuIiIiIiEi5KPPPnfr6+v6uGAfw9/f/zUlyEZHaJKcwh/jMeKAcyvG6zcHiBHnpkHWyHNKJiFRvWV9+yZHefUqKcWdnAsaNI2zRwmpXjJ8vwi+Chb0WEtk0Erth580f3mT4uuH8kPyD2dFERERERGqNqjmUUUSkmvk1/VcMDALcA6jrXvfSXszmBnXP7XDQUk4RqcWKMzNJfGIyCWPGUnzmDK7NmxG2cCH1xo3FUgMWwXvYPHjxhhd54foXcHd2Z9/pfdy17i4e2/oYCVkJZscTEREREanxVI6LiJSD0nnjl7qM00Fzx0Wklsv+9785EtmXjJUrwWKh7n0jCVu6FPe2bcyOVu76NutLTFQMUc2isGBhfdx6IldGMuv7WWQWZJodT0RERESkxlI5LiJSDmJTY4FyGKni4CjHk3RyXERql+LsbE4++xzHR95H0alT2BqH0nj+fAIfewyrq6vZ8SpMoEcgU66fwpI+S+hQvwOF9kI+/vljei3vxYIDCyi0F5odUURERESkxlE5LiJSDkqXcfqXVznequSqsSoiUotkbdnCkV69SV+0CAC/oUMJX7ECjyuvMDlZ5Wnh34I5XebwVue3aOLbhPT8dKbtnEb/Vf3ZenwrhmGYHVFEREREpMZwNjuAiEh1ZxhG+Y9VCTo3NiAlFuzFYP39ImQRkZqiKDWVpGnTyYyJAcDWOJT6U6bi2eFak5OZw2KxcFPDm+jUoBPLDi7j7R/eJi4zjnFfjqND/Q5MvHoiLfzL6e8bEREREZFaTCfHRUQu0YnsE5wtPIvNaiPMN6x8XtQvDJzdoCgX0uLK5zVFRKoYwzDIiFnDkV69S4pxqxX/kfcSvnJlrS3Gz2ez2hjUchBr+q/h3rb3YrPa2HlyJ7dH384z/36G5JxksyOKiIiIiFRrKsdFRC5RbFrJvPGmdZpis9rK50WtTlDv3KlAjVYRkRqo8NQpEh4YQ+Jjj1GcloZrRARhixYRNHEiVnd3s+NVKd4u3jxy1SNER0XTI6wHBgYrD62k94revPPDO+QU5pgdUURERESkWlI5LiJyiQ6mnps3Xl7LOB0Cz41WSd5fvq8rImIiw24nbdFijvTuQ/aWLWCzEfDgeJosXYJ7u7Zmx6vSQrxCeOXmV5jXcx7t67UntyiXt/e+TZ8VfVh5aCV2w252RBERERGRakXluIjIJSpdxlnu5fi5pZxJP5fv64qImKTg2DHi7xnBqWefxZ6djXv79oSvWE69MWOwuLiYHa/aaF+vPZ/1+IwZN88gxCuE5Nxknvn3M9wZcyc7T+40O56IiIiISLWhclxE5BI5xqqU+3K0wNYlV50cF5Fqzigq4syHH3Eksi85//kPFnd3gp6cTOPP5+ParJnZ8aoli8VC97DurO63mkevehRvmzcHUg9w34b7GL95PEczjpodUURERESkylM5LiJyCc4WnuV41nEAWviVczkedK4cP3MIivLL97VFRCpJXmwscYMGkzxjBkZ+Pp7XdSI8ejX+w4djcXIyO1615+Lkwj1t72FN/zUMbjkYJ4sTWxK20H9Vf6btnEZaXprZEUVEREREqiyV4yIil+DXtF8BCHQPxM/Nr3xf3Ls+uPmCUQynD5bva4uIVDB7QQEpr7/B0QEDyfvpJ6ze3tR/8QUaffghLg0bmh2vxvFz8+PJDk+yvO9ybml4C0VGEQsOLKDX8l588tMnFBQXmB1RRERERKTKUTkuInIJHPPGm/s3L/8Xt1g0WkVEqqXcH37gaP/+nH77bSgqwuu2zoTHxFBnwAAsFovZ8Wq0cN9w3uj8Bh90/YCW/i3JKsxi5q6ZRK6MZH3cegzDMDuiiIiIiEiVoXJcROQSxKaemzde3iNVHBzluJZyikg1YM/JIWn6dOIGD6Hg0GGc6tYlZPZsGr7xBragQLPj1Sod6ndgYa+FTL1+KvXc63Ei+wSPbX2M4euGszdlr9nxRERERESqBJXjIiKXwHFyvOLK8VYlV50cF5Eq7uz27RyJ7Evqp3PBMPDt25fwmGh8unfTaXGTOFmd6NesHzFRMYxpPwZ3Z3d+SPmBYWuHMWnrJE5knzA7ooiIiIiIqVSOi4hcJLthLy3HI/wiKuYhQW1KrirHRaSKKs7MJPGpp4i/dySFCQk4N6hPoznv0+Dll3D2K+ddDHJRPGwePHD5A8RExdCvWT8sWFgXt47IFZG8uutVsgqyzI4oIiIiImIKleMiIhfpRNYJcopycLG6EOYbVjEPqdey5JoRD3mZFfMMEZGLlLVpE0d69SZj2XIA/IYOJXx1NF433mhyMvkjgR6BTL1+Kov7LKZDcAcK7AV89NNH9F7Rm0UHFlFkLzI7ooiIiIhIpVI5LiJykRynxpvWaYqz1bliHuLhD971S95POVAxzxARKaOi06dJePgREsaNpyglBZcmTWg8fx7BzzyNk5en2fHkb7T0b8mcrnN48//epIlvE1LzUnlh5wsMWD2ArxO+1tJOEREREak1VI6LiFyk2LSSZZwVNlLFwbGUM/mXin2OiMjfMAyD9JUrOdyrN1lffAFOTtQdNYomK1fgcdVVZseTMrBYLNzc6GaWRS7jyQ5P4ufqx5GMI4zdPJZRG0eVLpwWEREREanJVI6LiFwkR3HQwr+ClnE6OJZyJqkcFxHzFJ44wfFRozn5xGTsGRm4tmpFkyWLCZzwCFZXV7PjyUWyWW0MbjmYmP4xjGgzApvVxrcnv+X26Nt5dvuzpOSkmB1RRERERKTCqBwXEblIjrEqLfwquhzXyXERMY9ht5M6fz5H+kRydts2LC4u1JswgSaLF+HWurXZ8aSc+Lj4MOHqCazut5ruYd0xMFj+63J6rejFu3vfJbco1+yIIiIiIiLlTuW4iMhFyC7IJiE7AaiEsSpBjnJ8f8U+R0Tkf+QfOcqxu4aTNPUF7Dk5uF91FU1WriRg1P1YbDaz40kFaOjdkBk3z+CzHp9xWb3LyC3K5a0f3qL3it6sPrwau2E3O6KIiIiISLlROS4ichF+Tf8VgECPQOq41anYhwW0ACyQcxqykyv2WSIinDstPvczjkZFkbtrF1YPD4KeeZrGn83FNbyJ2fGkElweeDnzesxjxk0zCPEKITknmae+eYpBMYP47tR3ZscTERERESkXKsdFRC5C6bzxih6pAuDiAf7nyiiNVhGRClZ46hTH77uPpGnTMPLz8bzuOsKjV+M/dCgWq751rE0sFgvdm3RnVb9VTLhqAl42L/an7ufe9ffy4JcPEpcRZ3ZEEREREZFLov/DERG5CKXzxit6GadDoEariEjFMgyDjOgYjkT25ez2HVjc3Aj65zM0+vADbCEhZscTE7k6uTKi7QjW9F/DoBaDcLI48dXxr4haFcVL/3mJ9Lx0syOKiIiIiFwUleMiIhchNq3k5HiFzxt3cJTjST9XzvNEpFYpTk/nxIQJJE6ciD0zE7fLLqPJ8uX4DxmCxWIxO55UEf5u/jzV8SmWRy7n5oY3U2QUMX//fHqu6MmnP39KQXGB2RFFRERERMpE5biISBnZDTu/ppXMHK+UsSoAga1Krjo5LiLlLHvbNo70iSRr3Rfg5ETA+HGEfT5fs8XlT4XXCefNzm8yp+scWvi1IKsgi399/y/6ruzLhrgNGIZhdkQRERERkQuiclxEpIwSshLILcrF1cmVUJ/QynloUJuSa8oBsNsr55kiUqPZc3I4+fzzHL9/FEUpKbiEhxO2cCH1xo7F4uxsdjypBjrW78ii3ouYct0U6rnXIyE7gUe3PsrdX9zNjyk/mh1PRERERORvqRwXESkjx0iVpnWa4mytpALJPxycXKAgGzLiK+eZIlJj5e7dy9Go/qQvWAiA31130WT5MtzbtTU5mVQ3TlYnoppHERMVwwPtH8Dd2Z09yXsYsnYIj3/9OInZiWZHFBERERH5UyrHRUTKKDa1pByvtJEqAE42CDg331yjVUTkIhmFhSS/9hpxg4dQcOwYzsHBhH70IcFPPYnVzc3seFKNedg8GHP5GKL7RdO3aV8sWFh7dC19VvRh9q7ZZBdkmx1RREREROR3VI6LiJTRwbSDALTwr8RyHP67lDP5l8p9rojUCPmHDhF35yDOvPMu2O349O5N+KqVeF53ndnRpAYJ8gzihRteYFHvRVwbfC0F9gI+/OlDeq3oxeLYxRTZi8yOKCIiIiJSSuW4iEgZOcrxCL+Iyn2wYylnkspxEblwht1O6qefcrT/APJ++QWrry8hr84i5F8zcPL1NTue1FCt6rbig64f8PqtrxPmE0ZqXipTv53KwNUD2ZawTUs7RURERKRKUDkuIlIGWQVZnMg+AZhRjjtOjmusiohcmMLEROLvHUnS9JcwCgrwvOEGwlevxqdHD7OjSS1gsVi4NfRWlvddzuRrJ1PHtQ6HMw4zZvMYRm8cXfqPzSIiIiIiZlE5LiJSBr+m/QpAsGcwvq6VfOIy6Fw5fvogFBdW7rNFpFoxDIOM1as50rcfOd9+i8XdneBn/0mjOe9jCwo0O57UMjarjSGthrCm/xruaXMPNquNHSd3cHv07bz8n5c1j1xERERETKNyXESkDGLTTFjG6eDbCFy8wF4IZw5V/vNFpFooSkvjxMOPkDjpcexZWbi1v4zwFcvxGzwYi8VidjypxXxcfHj06kdZ1W8VXRp3wW7Ymbd/HpErI/ni6BcatSIiIiIilU7luIhIGcSmlpTjlT5SBcBi+e/ccS3lFJE/kP311xyJjCRr/XpwdqbeQw8SNn8+LmFhZkcTKdXIuxGzbpnFe7e9R6h3KCm5KUz8eiKjN44mLiPO7HgiIiIiUouoHBcRKQPHWJUIfxPKcfjv3HEt5RSR89jPnuXks89xfNRoilNO49K0KWELFxLwwANYnJ3Njifyh64LuY7lfZcz5vIxuFhd2HFyB/1X9+fNPW+SV5RndjwRERERqQVUjouIXKBiezG/ppeU46aMVQEt5RSR38nZs4cjUf1JX7QIAP+7h9Nk2VLc27YxOZnI33N1cuWB9g+wsu9Krg+5nkJ7Ie/te4+oVVFsS9hmdjwRERERqeFUjouIXKDjWcfJLcrFzcmNUO9Qc0I4lnJqrIpIrWcUFJA8ezbHhg6jMD4e5/r1Cf3kY4ImT8bq5mZ2PJEyaeTTiHc6v8OsW2YR6BFIQnYCYzaP4ZGvHuHU2VNmxxMRERGRGkrluIjIBXIs42xWpxlOVidzQjhOjqfFQcFZczKIiOnyDx3i6KBBnHn3PbDb8YnsQ/iqlXh27Gh2NJGLZrFY6NK4C6v7rebu1nfjZHFiU/wmIldG8vFPH1NoLzQ7ooiIiIjUMCrHRUQu0MG0gwC08DdppAqAZwB41gMMSDlgXg4RMYVht3Pmk0842n8A+b/sx8nXl5DZswl55RWcfHzMjidSLjxtnjx2zWMs7rOYKwKvILcol1m7ZnFH9B3sStpldjwRERERqUFUjouIXKCDqSXleHO/5uYG0dxxkVqpMDGR+BH3kvzSyxgFBXjedCNNolfj072b2dFEKkSEXwSfdP+EqddPxc/Vj0Pph7jni3t46punOJN7xux4IiIiIlIDqBwXEblAjrEqpi3jdHCU40maOy5SW2SsXs2RyL7k7NyJxd2d4Oeeo9F772ELDDQ7mkiFslqs9GvWj9X9VjMwYiAAqw+vJnJlJItjF2M37CYnFBEREZHqTOW4iMgFyCzI5OTZkwBE+EeYGyawVclVSzlFajyjsJBTU6aSOOlx7NnZuF9+OeErV+A36E4sFovZ8UQqTR23Ojzb6Vnm9ZxHS/+WZBZkMvXbqQxbO4xfzujvQxERERG5OKaW49OnT+eaa67B29ubwMBA+vXrR2xs7G/uycvLY+zYsdStWxcvLy8GDBhAUlLSb+6Jj4+nV69eeHh4EBgYyMSJEykqKvrNPVu2bOHKK6/E1dWVZs2a8cknn1T0b09EahDHSJUGng3wcTF5rm9Qm5KrxqqI1GhFqanE3zuStM8/ByBg3Dgaz/sMl8aNTU4mYp729dqzoNcCnrj2CTxtnvx4+kcGrxnM9J3TySrIMjueiIiIiFQzppbjW7duZezYsXz77bds3LiRwsJCunbtytmzZ0vveeSRR4iOjmbJkiVs3bqVxMRE+vfvX/r54uJievXqRUFBAdu3b+fTTz/lk08+4Z///GfpPUePHqVXr17ceuut/PDDDzz88MPcd999rF+/vlJ/vyJSfTlGqkT4mXxqHKDeubEu2acgJ9XcLCJSIfL27ydu4O3kfPcdVk9PGr79FvXGjcXi7Gx2NBHTOVudGdpqKNH9oukR1gO7YefzA5/TZ0Uf1hxZg2EYZkcUERERkWrCYlSh7x5TUlIIDAxk69at3HTTTWRkZFCvXj0+//xzBg4smTF44MABWrVqxY4dO+jYsSPr1q2jd+/eJCYmEhQUBMC7777L448/TkpKCi4uLjz++OOsWbOGn376qfRZgwYNIj09nS+++OJvc2VmZuLr60tGRgY+PiafGBURUzy3/TmW/bqMUZeNYvwV482OA7PbQXo83LMGwm4wO42IlKPMdetInPwkRl4etsahNHrrLVybNTM7lkiVtSNxB9N2TiMuMw6ADsEdeLLjk4T7hpsbTERERERMUZYut0rNHM/IyADA398fgF27dlFYWMhtt91Wek/Lli0JDQ1lx44dAOzYsYN27dqVFuMA3bp1IzMzk59//rn0nvNfw3GP4zX+V35+PpmZmb95E5HaLTa1iizjdAjUaBWRmsYoLiZ51quceGQCRl4enjfcQJPFi1WMi/yNTg06sSxyGeOvGI+rkys7T+1kwOoBvL77dXKLcs2OJyIiIiJVWJUpx+12Ow8//DDXX389bdu2BeDUqVO4uLhQp06d39wbFBTEqVOnSu85vxh3fN7xub+6JzMzk9zc33/DPH36dHx9fUvfGjVqVD6/SRGplortxRxKPwRUkbEq8N+lnEk/m5tDRMpFcVYWCWPGcub99wHwH3kvjd57FydfX5OTiVQPLk4ujLpsFCv6ruDGkBspshcx58c5RK2KYuvxrWbHExEREZEqqsqU42PHjuWnn35i4cKFZkdh8uTJZGRklL4dP37c7EgiYqL4rHjyivNwd3ankXcV+ceywNYlV50cF6n28o8cJe6OO8neuhWLqysNZrxC0MSJWJyczI4mUu008m7EW53fYvatswn2DOZE9gnGfTmOB798kMTsRLPjiYiIiEgVUyXK8XHjxhETE8NXX31Fw4YNSz8eHBxMQUEB6enpv7k/KSmJ4ODg0nuSkpJ+93nH5/7qHh8fH9zd3X+Xx9XVFR8fn9+8iUjt5VjG2bxOc5ysVaSsCjqvHK86qyNEpIyyv/6auDvvpODoUZyDg2k8fz6+ffqYHUukWrNYLHQO7cyqvqsY0XYEzhZnvjr+Ff1W9ePDHz+ksLjQ7IgiIiIiUkWYWo4bhsG4ceNYsWIFX375JU2aNPnN56+66ipsNhubN28u/VhsbCzx8fF06tQJgE6dOvHjjz+SnJxces/GjRvx8fGhdevWpfec/xqOexyvISLyVw6mHgSguV9zk5Ocp25zsDpDfgZknjA7jYiUkWEYnJ4zh+Oj/4E9Kwv3K6+kydIluLdtY3Y0kRrDw+bBhKsmsKTPEq4Kuorcolxm757NwOiBbE/cbnY8EREREakCTC3Hx44dy7x58/j888/x9vbm1KlTnDp1qnQOuK+vLyNHjmTChAl89dVX7Nq1ixEjRtCpUyc6duwIQNeuXWndujV33XUXe/fuZf369Tz99NOMHTsWV1dXAP7xj39w5MgRJk2axIEDB3j77bdZvHgxjzzyiGm/dxGpPhwnx1v4V5FlnADOLlD33JI+jVYRqVbsubkkPvoYKTNngWFQ5447aPzJxzgHBJgdTaRGaubXjI+7fcyLN7yIv5s/RzKOMHrjaMZ/OZ5jmcfMjiciIiIiJjK1HH/nnXfIyMjglltuoX79+qVvixYtKr3n1VdfpXfv3gwYMICbbrqJ4OBgli9fXvp5JycnYmJicHJyolOnTgwbNozhw4czZcqU0nuaNGnCmjVr2LhxI+3bt2fmzJl88MEHdOvWrVJ/vyJSPR1MKzk53sKvCpXjcN7c8V/MzSEiF6wwMZG4oUPJXLsWnJ0Jfu5Z6k95HouLi9nRRGo0i8VCZNNIVvdbzbBWw3C2OLPl+Bb6rerHzO9nklWQZXZEERERETGBxTA0rPbvZGZm4uvrS0ZGhuaPi9QyGfkZ3LDwBgC2D96Ot4u3yYnOs3UGfPUCXDYI+r9ndhoR+Rs5331HwkMPU5yaipO/Pw1fm43HNdeYHUukVjqSfoRXvn+Ff5/4NwD+bv48eMWD9GvWr+rsFxERERGRi1KWLrdKLOQUEamqHKfGQ7xCqlYxDhDYquSqk+MiVV7aggUcG3EvxampuLZuRZOlS1SMi5govE447972Lm91foswnzBS81J5bsdzDF4zmO9PfW92PBERERGpJCrHRUT+gqMcj/CLMDnJHwg6N1YlJRaKi8zNIiJ/yCgo4OQ/n+XU81OgqAifnj0Jmz8fW4MGZkcTEeCmhjexPHI5E6+eiLfNm/2p+xmxfg94pVAAACAASURBVASPbnmUE9laeC0iIiJS06kcFxH5C7GpVXAZp0OdMHB2h+J8SDtqdhoR+R9Fp09z7J4RpC9eDBYL9R6dQIOZ/8Lq7m52NBE5j83JxvA2w4npH8MdEXdgtVjZcGwDkSsieWPPG+QU5pgdUUREREQqiMpxEZG/EJtWUo5XyZPjVisEtix5X6NVRKqU3B9/4ujA28ndvRurtzeN3n2HgPvvx2KxmB1NRP6Ev5s/z3R6hsW9F3Nt8LUU2At4f9/79FnRh+jD0dgNu9kRRURERKScqRwXEfkTRfYiDqcfBqCFXxU8OQ4Q2KbkmqRyXKSqyIiO5tiwYRSdOoVLkyaELVqE1803mx1LRC5QC/8WfND1A1695VVCvEJIzk3myW+e5K61d7EvZZ/Z8URERESkHKkcFxH5E/GZ8eQX5+Pu7E5D74Zmx/ljWsopUmUYxcUkvTKDxImTMPLz8br5ZsIWL8I1vInZ0USkjCwWC7c1vo1V/Vbx0JUP4eHswb7T+xi6dihPbnuSpLNJZkcUERERkXKgclxE5E84Rqo092uO1VJF/7h0LOVM3m9uDpFarjgjg+Oj/0HqRx8BUHf0aBq+/RZO3t4mJxORS+Hq5Mp97e4jJiqGvk37AhB9JJo+K/vw/r73ySvKMzmhiIiIiFyKKtr2iIiY72DaQaAKj1QBCDxXjqcehsJcc7OI1FL5hw5x9I47OPvNN1jc3AiZNZPARx7G4uRkdjQRKSf1POrxwg0vsLDXQi6vdzm5Rbm8secN+q7sy/q49RiGYXZEEREREbkIKsdFRP5EbGrJyfEqXY57BYG7Hxh2OH3Q7DQitU7Wl18Rd+cgCo/FY2vQgLAFn+PTs6fZsUSkgrQJaMPcHnN5+caXCfIIIvFsIo9tfYwR60dwIPWA2fFEREREpIxUjouI/AnHWJUI/wiTk/wFi+W/Szk1WkWk0hiGwel33iFh7FjsZ8/icc01hC1dglurVmZHE5EKZrFY6Bnek+ioaB5o/wBuTm7sStrFHdF38Nz25ziTe8bsiCIiIiJygVSOi4j8gfS8dJJzkgGI8KvC5Tj8dyln0s/m5hCpJexnz3LioYdJee11MAz8hgwh9KMPcfb3NzuaiFQid2d3xlw+huioaHo06YGBwbJfl9F7RW8++ekTCosLzY4oIiIiIn9D5biIyB9wzBtv6NUQT5unyWn+hqMc18lxkQpXkJBA3OAhZG3YADYbwVOnEPzPZ7DYbGZHExGTBHsG88pNrzC3x1xa121NdmE2M3fNJGp1FFuOb9E8chEREZEqTOW4iMgfcIxUaeFfheeNOwRprIpIZcjZtYu4gbeTf/AgTgEBNP70E/xuv93sWCJSRVwReAULei1gynVTCHAP4FjmMcZ/OZ7RG0dzKO2Q2fFERERE5A+oHBcR+QOOZZxVfqQKQL2WJdfMBMhNNzeLSA2V+cUXxI+4l+L0dNzatqXJ0iV4XHml2bFEpIqxWqxENY8iJiqGkW1HYrPa2HFyBwOjBzJt5zRSclLMjigiIiIi51E5LiLyBxxjVVr4VYOT4+51wCek5P2UA+ZmEalhDMPgzEcfc+LhRzAKCvDq3JnGn83FFhxsdjQRqcI8bZ48fNXDrOq3is6hnSk2illwYAFdl3Vl8rbJ/HxGe0JEREREqgKV4yIi/6PIXsTh9MMARPhXg5PjAIGtS67Jv5ibQ6QGMYqLSXpxGsmvvAKA39ChNHz9Nazu7iYnE5HqopF3I2bfOpsPun7AFYFXUGQvIuZIDINiBnH3urvZELeBInuR2TFFREREai1nswOIiFQ1cRlxFNgL8HD2IMQrxOw4FyawFRzaCEkqx0XKgz03lxMTJ5K9aTMAgZMm4T/iHiwWi8nJRKQ66lC/Ax3qd+Dn0z8zb/88vjj6BbuTd7M7eTf1PeszpOUQoppH4evqa3ZUERERkVpFJ8dFRP6HY6RKhF8EVks1+WOy9OS4lnKKXKqi1FSO3XMP2Zs2Y7HZCHl1FnXvHaFiXEQuWZuANky/cTrrB65n1GWj8HP14+TZk8zcNZMuS7vwwrcvcDTjqNkxRURERGqNatL6iIhUnti0kmWcLfyrwbxxh6DzxqoYhrlZRKqxgrg44gYNJm/vPqy+voR+/BE+PXqYHUtEaphAj0DGXzGeDQM3MOW6KTT3a05uUS6LYhcRuTKSMZvGsD1xO4b+ThcRERGpUBqrIiLyPxzleIRfNZk3DhAQARYr5KZCdhJ4a1mgSFnl7NlDwgNjKE5PxxYSQqM57+MaHm52LBGpwdyc3YhqHkW/Zv34z6n/MO+XeWxN2Mq2E9vYdmIbTX2bMrT1UHqH98bdWfsORERERMqbTo6LiPyPX1N/BapZOW5zB/9zJZ6WcoqUWebGjcTfM4Li9HTc2rYlbNFCFeMiUmksFgsd6nfgjc5vEBMVw9BWQ/Fw9uBwxmGm7JhCl6VdeG33a5w6e8rsqCIiIiI1ispxEZHzpOWlkZybDFSzchw0d1zkIqXO/YwTDz6EkZ+P1y230HjupzgHBJgdS0RqqVCfUJ649gk23b6JiVdPJMQrhIz8DD748QN6LOvBpK2T2Jeyz+yYIiIiIjWCynERkfM4Rqo08m6Eh83D5DRl5CjHk3RyXORCGHY7SdNfImnaNDAM6gy6k4ZvvoHVo5r9ty8iNZK3izfD2wxnTdQaZt86m6uDrqbIKGJd3DqGrh3K0LVDWXd0HYX2QrOjioiIiFRbmjkuInKeg6kHAWjhV42WcToEtiq5aqyKyN+y5+WROOlxsjZsAKDeoxOoe999WCwWk5OJiPyWk9WJzqGd6RzamQOpB5j3yzzWHl3LvpR9TEqZRKBHIINbDmZg84HUcatjdlwRERGRakUnx0VEzlO6jNO/mo1UAQhqU3JNOQB2u7lZRKqworQ04kfcS9aGDVhsNhr8618E3H+/inERqfJa+rfkhRteYMPADYxpPwZ/N3+Sc5J5bfdrdFnahSk7pnA4/bDZMUVERESqDZXjIiLnOZhWjU+O+zUBJ1cozIH0OLPTiFRJBfHxHBs0mNw9e7D6+NDoww/w7d3L7FgiImUS4B7AA5c/wMaBG3nxhhdp6d+SvOI8lhxcQr9V/Ri9cTTbErZhN/SP5SIiIiJ/ReW4iMg5hfbC0tNW1W4ZJ4CTM9Q7V+prKafI7+Tu20fcoMEUHDuGc4P6hM2fh+e115odS0Tkork4uRDZNJLFvRfzcbeP6RzaGavFyvbE7YzZPIa+K/uy8MBCcgpzzI4qIiIiUiWpHBcROScuI45CeyFeNi9CvELMjnNxtJRT5A9lffklx4bfTXFqKq6tWxG2YCGuzZubHUtEpFxYLBauDr6a2bfOZk3UGoa3Ho6XzYu4zDhe3PkiXZZ24bXdr5Gck2x2VBEREZEqReW4iMg5pfPG/SKq7+xhLeUU+Z3Uzz8nYdx4jLw8PG+8kcZzP8MWFGh2LBGRCtHQuyETr5nIpts38cS1T9DIuxGZBZl88OMHdFvWjae+eYrY1FizY4qIiIhUCSrHRUTOOZhaMm+8uV81Pk3qWMqpsSoiGHY7yf/6F0lTpoLdTp3bB9Lo7bdw8vI0O5qISIXztHkytNVQovtFM/vW2VwZeCVF9iJWH17NwOiB3L/hfrYlbMMwDLOjioiIiJjG2ewAIiJVRekyTv9quIzTwXFy/MyvUFQAzi7m5hExiT0/n5OTJ5O5dh0A9R5+iLqjR1ffnwoREblITlYnOod2pnNoZ35M+ZG5v8xl47GNfHvyW749+S1NfZsyvM1weoX3wtXJ1ey4IiIiIpVKJ8dFRM5xjFVp4VeNy3GfEHD1BXtRSUEuUgsVp6dzfOR9JcW4szMNXn6JgH/8Q8W4iNR67eq1Y8bNM1jTfw13tb4LT5snhzMO8+z2Z+m6tCvv7H2HtLw0s2OKiIiIVBqV4yIiwJncM5zOPY0FC83qNDM7zsWzWM6bO67RKlL7FCScIG7IUHK+/x6rlxehc97Ht29fs2OJiFQpIV4hTLpmEhsHbuSxqx8j2DOY1LxU3v7hbbos7cKUHVM4mnHU7JgiIiIiFU7luIgI/x2pEuoTiofNw+Q0l8hRjif9bG4OkUqW+9PPxA0aRMGRIzgHB9N4/nw8O3UyO5aISJXl7eLN3W3uZm3/tbx848u0rtua/OJ8lhxcQuTKSMZvHs93p77TXHIRERGpsTRzXESE/5bjEX4RJicpB4GtS646OS61SPbWrSQ8/AhGbi6uLVrQ6L13sQUHmx1LRKRasFlt9AzvSY8mPdiVtItPf/mUrce3siVhC1sSttDKvxXD2wynW1g3bFab2XFFREREyo1OjouIALGpNWDeuEOQoxz/xdwcIpUkbdFijo8Zi5Gbi+d119F4/jwV4yIiF8FisXB18NW88X9vsLrfau6IuAM3Jzf2p+5n8rbJ9FjWg49/+pjMgkyzo4qIiIiUC5XjIiLUsJPj9c6NVUk/BvlZ5mYRqUCGYZD86mxOPfssFBfjGxVFo/fexcnLy+xoIiLVXphvGM90eoYNAzcw7vJx1HWrS1JOErN2zaLLki68/J+XOZF9wuyYIiIiIpdE5biI1HqFxYUczjgMQAv/GnBy3LMueAWVvJ8Sa24WkQpiFBSQOOlxzrz3HgABY8dSf9qLWGz6cX8RkfLk5+bH6PajWT9wPVOum0KzOs3IKcph3v559Fzek0e3PMq+lH1mxxQRERG5KCrHRaTWO5JxhCJ7Ed42b+p71jc7TvkI1GgVqbmKs7KIv38UmdHR4OxM/RdfpN74cVgsFrOjiYjUWK5OrkQ1j2J55HLeve1dOtXvhN2ws+HYBoauHcrwdcPZdGwTxfZis6OKiIiIXDAt5BSRWs8xUqW5X/OaU64FtoYjX0GSynGpWYpSU4kfeR/5+/dj9fAg5PXX8brherNjiYjUGhaLhetDruf6kOs5mHaQuT/PZc3RNexJ3sOe5D008m7EsFbD6NesHx42D7PjioiIiPwlnRwXkVrPUY7XiJEqDoHn5o7r5LjUIIVJSRwbdhf5+/fjVLcujefPUzEuImKiCL8IXrjhBTYM2MD97e7Hx8WH41nHmf6f6XRZ2oVXd71KYnai2TFFRERE/pTKcRGp9WJTS+Zyt/CrQeV4kGOsyn5zc4iUk4Ljxzk2dBgFR47gHBxM488+w61VK7NjiYgIUM+jHg9e+SAbB27kqQ5PEeodSmZBJh/99BE9lvfg4a8eZufJnRiGYXZUERERkd9QOS4itV5sWkk5HuEXYXKSclSvZcn1bDKcPW1uFpFLlH/oEMeGDqMwIQFbaChh8+fhGt7E7FgiIvI/PGweDGo5iNX9VvPara/RoX4H7IadzfGbuW/DffRf3Z/FsYvJKcwxO6qIiIgIoHJcRGq507mnSc1LxWqx0syvmdlxyo+LJ/iFlbyv0SpSjeX+/DPH7hpOUXIyrs2b0XjeZ9hCQsyOJSIif8HJ6sT/hf4fH3T9gJV9V3Jniztxd3bnUPohpn47lduW3MbL/3mZ+Mx4s6OKiIhILadyXERqtYOpJfPGQ71DcXd2NzlNOQtsU3LVUk6ppnJ27yb+7nsoTkvDrW1bQufOxRYYaHYsEREpg6Z1mvJ0x6fZfPtmHr/mcUK9Q8kqzGLe/nn0XtGbMZvG8M2Jb7AbdrOjioiISC2kclxEarUaOVLFQUs5pRrL/ve/iR95H/bsbNyvvorQTz7G2c/P7FgiInKRvF28GdZ6GNFR0bzd+W1uCLkBA4NtJ7bxwKYHiFwZyfz988kqyDI7qoiIiNQiKsdFpFY7mFZycryFfw1axulQWo5rKadUL1mbN5PwjwcwcnPxvOEGQufMwcnLy+xYIiJSDqwWKzc2vJF3bnuHmKgYhrUahpfNi2OZx3jpPy9x25LbeOHbFziSfsTsqCIiIlILqBwXkVrNcXK8hV8NLMeDzo1VSd4PhmFuFpELlBEdTcKDD2EUFuLdtSsN334Lq3sNG3kkIiIANPZpzOPXPs7m2zfzdIenaerblJyiHBbFLqLvqr7cv+F+vor/imJ7sdlRRUREpIZyNjuAiIhZCooLOJp+FKihJ8frNgOrDQqyIOM41Ak1O5HIX0pbuIhTzz8PhoFv377Uf/EFLM76VkVEpKbzsHlwZ8s7uaPFHew8tZPP93/O1oStfHvyW749+S0hXiHc2eJO+jfvj6+rr9lxRUREpAbRyXERqbWOZhylyCjC28WbII8gs+OUPycbBJybpa7RKlLFnfnwI0499xwYBn5DhlB/+jQV4yIitYzFYqFj/Y68/n+vs7b/Wka0HYGvqy8nsk8wa9csbltyG89tf47Y1Fizo4qIiEgNoXJcRGqt80eqWCwWk9NUEMfc8aSfzc0h8icMwyDl9ddJnjEDgLr330/QM09jsepbFBGR2izEK4QJV01g08BNPH/d87Twa0FecR7Lfl3GwOiB3L3ubtbHrafQXmh2VBEREanGdCRLRGotx6mjGjlSxUFLOaUKMwyD5JdeIvXTuQDUe+QRAkaPMjmViIhUJW7ObvRv3p+oZlHsSd7D5wc+Z9OxTexO3s3u5N0EegRyZ4s7GdB8AHXd65odV0RERKoZleMiUmsdTDsIQIRfhMlJKtD5SzlFqhCjuJiTzz5LxtJlAAQ9/TT+w4aanEpERKoqi8XClUFXcmXQlSSdTWLxwcUsPbiU5Jxk3tjzBu/ufZceTXowuOVg2ga0NTuuiIiIVBP6mWURqZUMwygtx1v41YKT46djoVg/dixVg1FYSOLEiSXFuNVK/enTVYyLiMgFC/IMYvwV49k4cCPTbphGu4B2FNoLWX14NYPXDGbo2qFsPLaRYnux2VFFRESkilM5LiK10unc06TmpWK1WGlap6nZcSqObyjYPKG4AFKPmJ1GBHteHgnjHyRz7Tqw2QiZNYs6Uf3MjiUiItWQi5MLfZr24fNen/N5z8/pHd4bZ6sz+1L2MWHLBPqs7MPCAwvJLco1O6qIiIhUUSrHRaRWcpwab+zTGDdnN5PTVCCrVUs5pcqwnz3L8dH/IHvLFiyurjR66018unczO5aIiNQA7eq1Y/qN09k4cCOjLhuFr6svx7OO8+LOF+m2tBtv//A2qXmpZscUERGRKkbluIjUSrFp55Zx1uSRKg4Nrii5xm0zN4fUasUZGcTfO5KcnTuxenrSaM77eN10k9mxRESkhglwD2D8FePZMGADT1z7BCFeIaTlp/HO3nfourQrU3dMJT4z3uyYIiIiUkWoHBeRWik29Vw57l8LyvHmXUuuB9eDYZibRWqlotOnOTb8bnL37sXq60voJx/jee21ZscSEZEazMPmwdBWQ4mJimHGzTNoU7cN+cX5LD64mN4revPIV4+wN2Wv2TFFRETEZCrHRaRWcoxVifCLMDlJJWhyIzi7Q+YJjVaRSld48iTHht1FfmwsTgEBNJ47F/d27cyOJSIitYSz1ZnuYd1Z0GsBH3X7iJsa3oSBwab4TQxbO4zh64bzZfyX2A272VFFRETEBM5mBxARqWwFxQUczTgK1JJy3OYO4TfDwS/g1/UQ3NbsRFJLFBw7RvyIeylMTMS5QX0af/QRLmFhZscSEZFayGKxcE3wNVwTfA2H0g7x6S+fEnMkhj3Je9iTvIcwnzDubnM3fZr2wdXJ1ey4IiIiUkl0clxEap3D6YcpNorxdfUlyCPI7DiV4/zRKiKVIO/gQeKGDaMwMRGXxo0JmzdPxbiIiFQJzfyaMfX6qawfsJ6RbUfibfMmLjOO53c8T9elXXlv73uk56WbHVNEREQqgcpxEal1zl/GabFYTE5TSRzleMJ3kJNqbhap8XJ//In4u4ZTnHIa14gIGs+fh61BA7NjiYiI/EagRyAPX/UwG2/fyMSrJxLsGUxqXipv/vAmXZd1ZdrOaSRkJZgdU0RERCqQynERqXVq1bxxhzqNIKgtGHY4tMnsNFKD5Xz/PfH33ENxRgZu7S+j8dxPcQ4IMDuWiIjIn/K0eTK8zXDW9l/LSze+REv/luQW5bLgwAJ6rejFY1sf4+fT2tsiIiJSE6kcF5Fa52BqLSzH/5+9O4+PqrD3//+afTKZZLLvCQQICCiKuFYBpSrbVXulWr9dvnWttmo3bW1v621tq72trb3WftW6VW/7621tbevCphQBrRuLyqoESEgC2ZeZbLOf3x+TDImggkBOlvfz8ZjHOXO2fI4LIe985nNgwGiVFebWIaNW18svU3Pd9cS7u/GccQZljz2OLSPD7LJEREQOi8PqYPGExTz1b0/xyEWPcE7ROcSNOCurV3Ll0iu5esXVrKtbp4d3ioiIjCIKx0VkTDEM48BYlawpJlczxCbPTyx3rYJY1NxaZNQJrHyB2q/chBEMkjp3DqUP/xabN9XsskRERI6YxWLhrMKzeOjCh/jrxX/l4gkXY7fY2dC4gZv+eROXPXMZf6/8O+FY2OxSRURE5CgpHBeRMaU6UE1HqAO71c7EjIlmlzO0Sk6HlEwI+qHuTbOrkVGk4x//YN83vgGRCGkLFlB6//1Y3W6zyxIRETlqU7KmcPfsu1m+ZDlXTb+KVEcqu/27+c9X/5MFTy/g0S2PEggHzC5TREREPiaF4yIyprxU+xIAZxScgcvmMrmaIWa1waQLE+s7V5pbi4wabX/8I/Xf+S7E4/iWXEbxL3+Bxek0uywREZFjqiC1gFtPu5UXP/0i35z1TfI8eTT3NnPfpvu48C8X8vP1P2d/136zyxQREZEjpHBcRMaUl2oS4fj5peebXIlJ+kerKByXo2QYBs0PPEDjj34MQOYXvkDhj3+MxWYzuTIREZHjJ82ZxtUnXs2Ky1Zw17l3UZFZQU+0h99v/z0L/7aQG1+8kWV7lhGMBs0uVURERA6D3ewCRESGSktvC+80vwPAeaXnmVuMWSbOA4sVmndARw1klJldkYxA8VCI+u/fQeC55wDI/vKN5H71q1gsFpMrExERGRoOm4NLJl7CxRMu5tX9r/K7bb/jjfo3+Nf+f/Gv/f/C6/Ayf/x8Lpl4CTPzZup7pIiIyDClcFxExox1deswMJiWPY2C1AKzyzGHJwtKz4KaVxPd42dcb3ZFMsJEW1qou+lmet95B+x2Cr7/fTKv/IzZZYmIiJjCYrFwTvE5nFN8DjWBGp7d/SzP7X6O/d37ebryaZ6ufJrStFIunngxl0y8hGJvsdkli4iIyAAaqyIiY0b/vPExO1Kl3+SLEkuNVpEjFHzvPaquuILed97B6vNR9ugjCsZFRET6lKWXcfPMm1m+ZDmPz3+cSydeSoo9hdrOWh54+wEWPL2Aq1dczd8r/053pNvsckVERASwGIZhmF3EcBcIBPD5fPj9ftLT080uR0Q+ht5oL3P+NIdgLMhfL/4rU7KmmF2SeRq3w4Nng90N364Cp8fsimQE6Fz9Evtuuw2jpwfn+PGUPPgArvJys8sSEREZ1noiPfyz5p88s/sZ3qx/E4PEj98p9hQ+WfZJLpl4CWcUnIHNqmd2iIiIHCtHkuVqrIqIjAmv7X+NYCxIsbeYyZmTzS7HXHlTwVcK/lqoWgdTFphdkQxjhmHQ9vjvaPrFL8Aw8Jx1FiX3/Tc2n8/s0kRERIY9j8PDxRMv5uKJF9PQ3cBzu5/j2d3PUh2o5vk9z/P8nufJ9+Qnx66U+/SLZxERkaGksSoiMiYMHKky5h+IZLHA5PmJ9UqNVpEPZoTD1H//+zTdcw8YBhmf+QxljzysYFxERORjKEgt4PoZ1/Psp57lD4v+wBWTryDNmUZjTyOPbnmUS/5xCZ9b+jn+/O6f8Yf8ZpcrIiIyJmisymHQWBWRkS0WjzHvL/NoC7bx2EWPcUbhGWaXZL6dL8AfL4f0YvjGtkRgLjJAtL2dfbd8lZ4NG8BqJf873yHzC5/XL5dERESOoVAsxJraNTy7+1n+te9fxIwYAA6rg/NKz+PSiZfyieJP4LA6TK5URERk5NBYFRGRAd5pfoe2YBvpznROzT/V7HKGh/LZYE+BwD5o3AYFJ5pdkQwjod27qb3xy0Rqa7GmplL8q3vxzpljdlkiIiKjjsvmYv74+cwfP5+W3haW7VnGs7uf5b3293hx74u8uPdFstxZLJ6wmEsmXsIJWSeYXbKIiMioorEqIjLq9Y9UmVMyB7tVvxMEwJECE+Ym1jVaRQboevkVqj9zJZHaWhwlJYz/0/8qGBcRERkCOSk5/N/p/5e/XvJX/nrxX/nCtC+Q5c6iLdjG77f/nsufu5wlzy7hyW1P0tLbYna5IiIio4LCcREZ1QzDSIbj55WeZ24xw03FRYnlToXjktD2h/+P2htuIN7VRcqsWYx/6s+4KirMLktERGTMmZI1hW+f/m1WXb6K38z7DReOuxCH1cHO9p38YsMvuOAvF3DTP29iZfVKQrGQ2eWKiIiMWGqhFJFRrcpfxd7AXhxWB+cWn2t2OcNLfzhetx562sCTZW49YhojEqHxpz+l/Y//C4DvU5+i4Ed3YnU6Ta5MRERkbHNYHcwtncvc0rn4Q35WVK3g2d3PsrllM+vq1rGubh1pzjQuGncRiycsZlb+LKwW9cCJiIgcLoXjIjKqra5dDcAZhWeQ6kg1uZphJqMU8qZD0zbYtQpmXGF2RWKCmN/Pvm98g+5XXwOLhbxbv0nWtdfqwZsiIiLDjM/l4zMnfIbPnPAZ9vj38Nzu53hu93M09jTydOXTPF35NAWpBSwqX8TiCYuZnDnZ7JJFRESGPf1KWURGtf6RKvNK55lcyTA1eX5iqdEqY1K4uprqK/8P3a++hsXjoeQ395N93XUKxkVERIa5Cb4JfO3Ur7FyyUoevehR/n3Sv+N1eGnobuDxrY+z5NklXPbsZTy25THqu+rNLldERGTYshiGYZhdxHAXCATw+Xz4/X7S09PNLkdEDlNLbwvznpqHgcE/L/8neZ48s0safmpeh8fng9sH39oDNn2gaKzoA6ynlgAAIABJREFUfv0N6r72NeJ+P/bCQkof+H+4p041uywRERH5mEKxEOvq1rF0z1LW1a0jEo8k983Kn8XiCYu5aNxF+Fw+E6sUERE5/o4ky1UKIiKj1praNRgYnJh9ooLxD1JyOqRkQm871L0J4z5hdkUyBNqfeoqGH/0YolHcJ8+g9De/wZ6ba3ZZIiIichRcNhcXjruQC8ddiD/kZ9XeVSytWsqGhg1sbNzIxsaN3P3G3ZxbfC6LJyzmvJLzcNvdZpctIiJiKoXjIjJq9Y9UOb/sfJMrGcasNph0IWx5KjFaReH4qGbEYjT9/B7annwSgPTFiym86ydY3frBWEREZDTxuXwsmbyEJZOX0NDdwPKq5Szds5T32t9jTe0a1tSuIdWRyifLPsniCYs5s+BMbFab2WWLiIgMOY1VOQwaqyIy8vREepj9p9mE42H+dsnfqMisMLuk4WvLX+HpayF3Ktz0utnVyHES6+pi36230r12HQA5t9xMzle+ovniIiIiY8iu9l0srVrKsj3L2N+9P7k9JyWHheULWTxhMdOypunvByIiMqIdSZarcPwwKBwXGXlW7V3FN9Z8gxJvCcsuW6a/4H+Ynja4ZyIYcfj6FsgoM7siOcbCdfuo+/KXCVVWYnG5KPqvn5K+cKHZZYmIiIhJ4kact5veZumepazcuxJ/yJ/cNz59PIsnLGZx+WJK00tNrFJEROTjOZIs1zpENYmIDKmBI1UUjH8ETxaUnpVY37nS3FrkmOvZtInqK64gVFmJPTeXcX/4vYJxERGRMc5qsXJq/qnccfYdvHT5S9w/734WjF+Ay+aiOlDN/3v7/7Ho74v43LLP8ccdf6S1t9XskkVERI4LzRwXkVEnGo+ytm4tAOeXat74YZl8EdS8CpUvwBnXm12NHCP+Z56h/vt3YEQiuKZNpfSBB3AUFJhdloiIiAwjDpuD80rP47zS8+iOdPPPmn+ydM9SXq9/nc3Nm9ncvJmfr/85ZxedzeIJi5lXOg+Pw2N22SIiIseExqocBo1VERlZ1jes55qV1+Bz+VhzxRrsVv0e8CM1bocHzwa7G75dBU79wDOSGfE4zf99H60PPwxA2oUXUvSz/8Lq0b9XEREROTwtvS2sqFrB0j1L2dq6Nbk9xZ7C+aXns3jCYs4uOhuH1WFilSIiIgc7kixXiZGIjDr9I1XmlsxVMH648qaCrxT8tVC1DqYsMLsi+ZjiPT3sv/12Ol9cBUD2DTeQ+7WvYrFqkpqIiIgcvpyUHD4/7fN8ftrnqfZXs6xqGUv3LKWms4ZlVctYVrWMDFcGF467kIXlCzk171RsVpvZZYuIiBwRdY4fBnWOi4wchmGw6G+LqOuq41fn/YoLxl1gdkkjx9JbYf2jcNo18G+/Mrsa+RgiDQ3UfvkrhHbswOJwUPiTH+O79FKzyxIREZFRwjAMtrZsZWnVUpZXLact2Jbcl5uSy/zx81lQvoAZOTP03B8RETHNkWS5CscPg8JxkZGjsr2Sy569DKfVyctXvqx5iEdi5wvwx8shvRi+sQ30A82I0rt5M7U33USsuQVbVhYlv7kfz6mnml2WiIiIjFLReJQNjRtYUbWCF/e+SCAcSO4rSi1iQfkCFpYvZErmFAXlIiIypDRWRUTGrP6RKmcVnaVg/EiVzwZ7CgT2QeM2KDjR7IrkMAVWrGD/7d/BCIVwVVRQ8uCDOEuKzS5LRERERjG71c5ZhWdxVuFZfO/M7/Fa/Wssr1rO6prV7O/ez+NbH+fxrY8zPn08C8sXsqB8ARN8E8wuW0REZBCF4yIyqrxUkwjHzy893+RKRiBHCkyYCztXQOVKheMjRPuf/kTDnT8Cw8A7dy5Fv/wFNq/X7LJERERkDHHYHMwpmcOckjkEo0Fe3vcyy6uWs65uHdWBah5850EefOdBpmROYUH5AhaMX0BJWonZZYuIiGisyuHQWBWRkaGpp4lP/uWTWLCw+orV5KTkmF3SyLP+MVj6TSg9C65daXY18hFaHn6E5nvvBSDjys9QcMcdWGx6EJaIiIgMD92Rbl6qfYnlVct5dd+rRI1oct+MnBksKF/A/PHzyfPkmViliIiMNhqrIiJj0praNQCclHuSgvGPq+KixLLuTehpA0+WufXIIRmGQfO999L6yKMAZH/pS+R+4+ua5ykiIiLDSqojlX+b8G/824R/wx/ys2rvKlZUr+DNhjfZ3LKZzS2buWf9PczKn8XC8oVcMO4Cstz6+6eIjA2GYRCKxvteMcL965HE++S+SGzQcaFInHDs/cfF+t4P2Na3/6kbzsZus5p9u8OWwnERGTVW164GNFLlqGSUQt50aNoGu1bBjCvMrkjex4jFaPjRj+n4858ByPvWbWRfe63JVYmIiIh8OJ/Lx5LJS1gyeQktvS28UP0CK6pX8FbTW2xo3MCGxg3c/cbdnFV4FgvKF/DJsk+S5kwzu2wRGWKGYRCLG8T6ltG4QSzWt4wbROPxA9vjBtHYobfH4gPOj8cPcfz7tg/af4jt/dePfcD2910/Zgz4GjFjQJh9ILwOR+ND8s80HIsrHP8QGqtyGDRWRWT46450M/tPs4nEIzxz6TNMyNDDfj62VXfCK/fCiZ+GTz9mdjUygBEOs/873yGwbDlYLBTc+UMyr9AvMERERGTkqu+qZ2X1SpZXL2d76/bkdofVwezi2SwsX8ickjl4HB4TqxQZvQyjL7h9X8dy+EO6lt/fnRyOfXDX8qHODUfjHxhOx+JjM6a0WMBlt+Ky2xJLR2LdaetfH7ivb9m/rW+/c+AxA46bd0IejjEWjh9Jlqtw/DAoHBcZ/lZWr+S2tbcxLn0cz33qOY2XOBo1r8Pj88Htg2/tAZs+ZDQcxHt7qfv61+leuw4cDop//jPSFy40uywRERGRY2ZvYC8rqlawvGo5u/27k9tT7CmcV3IeC8oXcG7xuThtThOrFBka8Xhi5EZvJJZ4hWMED7Ee7HvfG4m/733iFRpwTm8kPmh/sC/4HikcNgs2qwW71dq3tBxY2izYLO/bb7MMOq5/X/I8mwXbwPeDltaDzk9ut1qwHrT9g69ns1oODr2T4XbivcNmUY5xDGnmuIiMOS/VvgQkRqroG8pRKjkdUjKhtz0xe3zcJ8yuaMyLdXZS++Uv07thIxa3m5Jf34d3zhyzyxIRERE5psalj+OGk2/ghpNvoLK9kuVVy1lRvYLazlqWVy9nefVy0hxpzCubx6IJizij4AzsVsUaMjzE4gbd4ShdwShdoSidfcvuUGJbZ6h/X4SuUJSuUIyuYKTvmPeF3ZEYwYg5ofX7u44HdicnupgP3bX8/vD3QCfzoY+z2w4jbB4Qglut+jlfjg99FxGRES8Sj7Cubh2geePHhNUGky6ELU/BzpUKx00WbWuj9rrrCW7fjtXrpfShB/GcdprZZYmIiIgcVxWZFVRkVnDLzFvY3ro9GZQ39jTyzO5neGb3M2S7s1lQvoBF5Ys4KeckNcnIEet/IGJXaHCo3R3qWx8YaAf7Au3+cHtA4N0ditIdjh23Op12KykOW+LltOF22EhxWPuWNtxO2yH2J47pf+8esD/F0b/tfWM5bFb9fyRjjsaqHAaNVREZ3t6of4PrXriOLHcWqy9fjc1qM7ukkW/LX+HpayFvGnzlNbOrGbMi9fXUXHsd4T17sGVlUfrIw6RMn252WSIiIiKmiBtx3mp6i+VVy1lZvZKOUEdyX4m3hEUTFrG4fLGePzQGHKpLuz/QPrhLO9a3PTKoo7u/qzsSO7axmMNmweuy43Xb8bocpCXX7aS67KT1rfcfk+ayk+K04XHa+0LrvtB7QIhtU9e0yBHRWBURGVP6R6rMKZmjYPxYmTgPLFZo2g4dNZBRZnZFY064upq911xDdH899sJCyh57DNeEcrPLEhERETGN1WJlVv4sZuXP4vYzbue1/a+xrGoZq2tWU9dVx8ObH+bhzQ9zQtYJLCpfxMLyhRSkFphdtgwQ7wu1O4P9rwidoQHrfcvuUKwvxB66Lm2P03YguHYnQu1Uly0RcLvtAwLvweG2d2Dg7bbjsutnUpGRROG4iIxohmHwUs2BeeNyjHiyoPRMqHktMVrljOvNrmhMCb77LjXXXU+spQXnuHGU/e5xHEVFZpclIiIiMmw4rA7mlMxhTskceiI9rK1by7I9y3hl3yu82/Yu77a9y70b72VW/iwWT1jMhWUXkuHOMLvsES0WN+gKRgkMCLE7g1E6+0aOBIIHh9z9IXhXKHFeVyjKsZxfYLdaEsH0gC7tVJcNr9sxOLR+X5jd37HtdSe6uVOddnVni4xRGqtyGDRWRWT4eq/tPT793Kdx29ysu3IdKfYUs0saPV75Faz6IVRcBJ/7i9nVjBk9m96i9sYbiQcCuE44gbJHH8Gek2N2WSIiIiIjQkewgxdrXmTZnmVsaNyQ3G632jm36FwWTVjE3JK5eBweE6s0TzQWx98boaM3QkdPBH9vOPG+p/99pO99mI7ewSF3zzHs1u4PtdPcjr5l37rrwHp/cJ12iC7t1L5tLrtmZIvIwTRWRUTGjNW1qwE4q+gsBePHWsX8RDhetQ7CPeAcmz9ADKWuV/5F3S23YPT2knLqqZQ+9CA2/VJWRERE5LBluDO4fPLlXD75chq6G1hRtYJlVcvY0baDNXVrWFO3hhR7CvPK5rGofBFnF52Nw+owu+wjYhgGwUicjt7wgFB7QMjdtwz0Rt53TKJz+2i57FbS3A7S+0LtRBe246CwO70v4D7UdoXaIjJcmBqOr1u3jnvuuYeNGzdSX1/P3//+dz71qU8l9xuGwQ9+8AMeeeQROjo6OOecc3jwwQepqKhIHtPW1sYtt9zCc889h9VqZcmSJdx33314vd7kMZs3b+amm25i/fr15Obmcsstt/Dtb397SO9VRI6P/pEq80rnmVzJKJQ3FXyl4K9NBORTFphd0agWWPkC+267DSIRUs89l5Jf34fVo19IiIiIiHxcBakFXHXiVVx14lXs6djDsqplLKtaRm1nLUv3LGXpnqVkuDKYP34+i8oXcUreKVgt1iGrLx436AxGDwTYfV3b/p7woJD7/cG3vydCOBY/qq+d5raT4XGQkeIkw+MgPcVBRoojuc3nceBLcSTD7LRk17YDp33o/hmJiBxvpobj3d3dnHzyyVxzzTVcdtllB+3/+c9/zq9//WuefPJJysvLueOOO5g/fz7bt2/H7XYD8LnPfY76+npefPFFIpEIV199NV/60pf44x//CCTa6C+66CIuuOACHnroIbZs2cI111xDRkYGX/rSl4b0fkXk2GrobmBH2w4sWJhTMsfsckYfiwUmz4f1j0LlSoXjx1HH03+j/o47IB4nbf58iu/5ORan0+yyREREREaNCRkTuHnmzdx0yk1sbdnKsqplLK9aTmuwlT+/92f+/N6fKUwtZGH5QhaVL2Jy5uTD7mwORWN9oXbkfd3b4QFjSvqD7fCBzu5g5Kjmb9utFjL6QuwMj5OMlMS6b0DoPTj4ThyT5rZjtyngFhGBYTRz3GKxDOocNwyDoqIibr31Vm677TYA/H4/+fn5PPHEE1x55ZXs2LGDadOmsX79ek477TQAVqxYwaJFi6irq6OoqIgHH3yQ733vezQ0NODsCxq+853v8I9//IN33333sGrTzHGR4el/3/1f7n7jbmbmzeR/Fv6P2eWMTjtfgD9eDukl8I2ticBcjqnWJ56g6b9+BoDv00sovPNOLDY94V5ERETkeIvGo6xvWM+yqmWs2ruKrkhXcl+RZzwzMs5joudciObQ3hPG39Mfcofx90aTQffRzuL2OG2JYHtAwJ3hORBy+1IcZHoGBN99x3mcNo0mERE5hFExc7yqqoqGhgYuuOCC5Dafz8eZZ57Ja6+9xpVXXslrr71GRkZGMhgHuOCCC7Barbzxxhv8+7//O6+99hpz5sxJBuMA8+fP52c/+xnt7e1kZmYe9LVDoRChUCj5PhAIHKe7FJGj0T9S5fzS802uZBQrnw32FAjUQeM2KDjR7IpGDcMwaLn/floeeBCArKuvJu/b39IPOCIiIiJHqX9cSXtPmPZkp3aY9u6+5YDO7vaeKO3d5xPoPYOQcxv29Lexe99jf081+3ueAJ4g1lNGJHAy0cAMjFjaIb+mxUIi1E52bzsHjClJvPcNHF3iceDrC741pkRExDzDNhxvaGgAID8/f9D2/Pz85L6Ghgby8vIG7bfb7WRlZQ06pry8/KBr9O87VDj+05/+lDvvvPPY3IiIHBed4U7WN64HFI4fV44UmDAXdq5IjFZROH5MGPE4jXf/lPY//AGA3K9/jewbblAwLiIiInIIwUiMpkCIps4gzZ0hWrvDdPTN5W7v6Q+5w4PGmcSP+DPyVgidRKzrJNyeKCkZO4ilbqTX+h42Tw02Tw0UPE+hezLTM87itLxzmJ59ApmpTjJSnKS57Vit+ruciMhIM2zDcTN997vf5Zvf/GbyfSAQoLS01MSKROT9Xtn3CtF4lHJfOeN9480uZ3SruCgRju98AWbfanY1I54RjVL/ve/jf+YZAPLv+D5Zn/ucyVWJiIiIDC3DMPD3RmjqDNHcmQi+EwH4gPedIZoDITpD0Y/1NVKdtsQIEo+DTM+BGdyJdSeZfeu+vmWmx0G629EXcl8KQHNPMyurV7KsahlbWrZQH3yP+ob3WNXwJPmefOaUzOG80vM4o+AM3Fb3MfwnJCIiQ2HYhuMFBQUANDY2UlhYmNze2NjIKaeckjymqalp0HnRaJS2trbk+QUFBTQ2Ng46pv99/zHv53K5cLlcx+ZGROS40EiVIVRxUWJZ9yb0tIEny9x6RrB4KMS+W2+la9U/wWaj6O678F16qdlliYiIiBwz0Viclq5wssu7qTNEUyBEc9fg8Lu5M0Q4Fj/s67odVvLS3OSmuchOdR4Ucg8MwTP75nW77Ef/HJdcTy6fn/Z5Pj/t8zT1NPFy3cusrVvL6/Wv09jTyF92/oW/7PwLbpubMwvPZE7JHOaUzKEg9dB5g4iIDC/DNhwvLy+noKCAf/7zn8kwPBAI8MYbb/DlL38ZgLPPPpuOjg42btzIrFmzAFi9ejXxeJwzzzwzecz3vvc9IpEIDocDgBdffJEpU6YccqSKiAx/kViEl/e9DCgcHxIZpZA3HZq2wa5VMOMKsysakWJd3dTdfDM9r7+Oxemk+Ff3kvbJT5pdloiIiMhhiccNWrvD1Pt72d8RpMHfmwi+kwF4kJauxMgT4whGmmR4HOR6XeSlu8hLc5OX5iK379Ufhuelu0hz2U0fQZfnyWPJ5CUsmbyEUCzEm/VvsrZuLevq1lHfXc/aurWsrVsLwAlZJzC3ZC5zS+YyPWc6VovmiouIDEemhuNdXV3s2rUr+b6qqoq3336brKwsysrK+PrXv85PfvITKioqKC8v54477qCoqIhPfepTAEydOpUFCxZw/fXX89BDDxGJRLj55pu58sorKSoqAuCzn/0sd955J9deey233347W7du5b777uNXv/qVKfcsIkdvfeN6uiJdZLmzOCnnJLPLGRsmz0+E4ztXKhz/GGIdHdTccAPBdzZj9XgoeeABUs860+yyRERERIDEiJO27jD1/iD7O3ppCATZ3xGk3t9LvT+xbPQffqe3zWohx+tMht156S5yvS5y0w+E3/3LY9HdbQaXzcXsktnMLpmNYRhUdlSyrm4da2rXsLl5M++2vcu7be/y282/JcudxZySOcwtmcvZRWeT6kg1u3wREeljMYwj+Z3usbVmzRrOP//grs8vfvGLPPHEExiGwQ9+8AMefvhhOjo6OPfcc3nggQeYPHly8ti2tjZuvvlmnnvuOaxWK0uWLOHXv/41Xq83eczmzZu56aabWL9+PTk5Odxyyy3cfvvth11nIBDA5/Ph9/tJT08/upsWkaN21+t38af3/sRlFZdx5yf08NwhUfM6PD4f3Bnwrd1gG7YfPBp2Ik1N1F57HaHKSmw+H6WPPEzKjBlmlyUiIiJjhGEYdPRE2O/vpb4jSH0gSH3HgdA7sQwSjn508G2xQF6ai0JfCoU+N/np7kFBd16am7x0F1ke55h+OGVbsI1X9r3C2tq1vLr/VboiXcl9dqud0/NPZ27pXOaUzKE0Tc83ExE51o4kyzU1HB8pFI6LDB+GYXDR0xfR0N3A/fPu57zS88wuaWyIx+CeidDbDlcvh3GfMLuiESFcV0fN1dcQqa3FnptL6WOP4h7wC14RERGRo2EYBoHeKPv9vTT4gwcCcP/gru9g5PCC7xyviyKfm0JfCgU+N0UZ7mQQXpiRQl6aC4dN40GORCQWYVPTpsTIldq11HTWDNo/0TeROaWJrvKTc0/GblUTiojI0VI4fowpHBcZPna07uCK568gxZ7Cus+sw23XE+GHzNPXw5an4Jyvw4Xq2P8oocpKaq65lmhzM46SEsp+9zjOUnUGiYiIyEfrCUeTD61s6TrwAMvmrnDfMkRL3/JwOr4BcrzOA6F3X9hd6HMP6gJ32hV8H0+GYVAdqGZd3TrW1q1lU+MmYkYsuT/dmc65xecyt2Qu5xSfg8/lM7FaEZGR60iyXP1KUkRGlJdqXwLg7MKzFYwPtcnzE+F45QsKxz9C75Yt1F53PTG/H1fFJEoffQxHfp7ZZYmIiIiJQtEYLX3hdn+wfVAA3hd6d4djH33BAbJSnX1Bd1/YnXFgvciXQr5v5M72Hk0sFgvlvnLKfeV8cfoXCYQDvLrvVdbUreGVfa/gD/lZVrWMZVXLsFlszMybydySucwumc0E3wTTH0gqIjIaKRwXkRGlPxw/v+zg5xXIcTZxHlis0LQdOmogo8zsioal7tffoO4rXyHe04N7xgxKf/sQ9sxMs8sSERGR4yAYidHaHaatK0xr94GAOxF4h2nuDCbX/b2RI7q222ElLy0x0zvH6yQ3zUWuN/F+4LYcrwu3Q8H3SJTuTGdB+QIWlC8gGo+yuXkza+vWsq5uHbs6drGhcQMbGjfwy42/JNOVycy8mZyafyoz82YyNXsqDqvD7FsQERnxNFblMGisisjwsL9rP/Ofno/VYmXNFWvIdCtwHHKPL4Ca12DRL+CM682uZtjpXP0S+77+dYxwGM9ZZ1Hym99g86aaXZaIiIgcBsMwCASjtHWHaesO0dYdoa07lAy/23rCffvCtHYllr2RI+vwdtgs5Hpd5KS5yPW6BgTdB9b796c6beoUHsPqOuuS41c2Nm4kFAsN2u+2uZmROyMZmJ+cezKpDv29U0QENFZFREap/q7xU3JPUTBulsnzE+F45QsKx98nsHw5+277FsRieD/5SYrv/SVWl8vsskRERMasaCxOe08kGWj3h96tg973hd3dYdq7w0TjR9475rBZyPQ4yUp1kpfuHtDl7Rq8THPhS3Eo8JbDUpJWwmenfpbPTv0s4ViY7a3beavpLTY1buKt5rfwh/y82fAmbza8CYDVYmVK5hRm5c9KBuY5KTkm34WIyPCncFxERoz+cHxe2TyTKxnDKubDqh9C1ToI94DTY3ZFw4L/2WfZ/53vQjxO+sUXU3T3XVgc+piriIjIsRKPGwSCiaC7vSdCe3eik7t/2dEdOfC+f1vPkY0x6ZfqtJGZ6iQ7NRF4Z6W6yEp1kJXqSm5L7vc6SXPZFXjLceW0OTkl7xROyTuFq0+8mrgRp8pfxcbGjbzV9BZvNb3Fvq597GjbwY62Hfxhxx8AKEsrY2bezGRgPi59nP5bFRF5H4XjIjIiBMIBNjZsBOD8Us0bN03eVPCVgr82EZBPWWB2RabrePpv1H//+2AY+C67jMIf/wiLTXM/RUREPkj/+JJBAXd3Iswe+L6950AQ3t4T5mM0dQOQ4XGQNSjsPhB6Zw8Muvtemt8tw53VYmVixkQmZkzkiilXANDQ3ZDsLN/UtInK9kpqOmuo6azhmd3PAJDlzuLUvFOTneUnZJ2A3apYSETGNv0pKCIjwst1LxM1okz0TaQsXQ+CNI3Fkhitsv5RqFw55sPx9j/9mYYf/hCAjCs/Q8F//icWq9XcokREREwQisZoCoRoDARpCARpDIRo7QolAu4BXd39gXfsYybdXpedzFQHWZ5EqJ3pcfaNNHEMep/tTQTdGSkO7DZ9b5bRryC1gIXlC1lYvhBINBe90/QOm5o2salxE1tbttIWbGNVzSpW1awCIMWewozcGczKm8XM/JnMyJmBx6FPhorI2KJwXERGhP6RKueXqWvcdBV94fjOF8AwEoH5GNT2+z/QeNddAGR+4Qvk/8d39TFVEREZdQzDoK073Bd4J0LvBn//epCGvkC8rTt8xNfuH1+Sleokw+Mky5MIuAcF36mJru8sT+IYp11Bt8jhSHemM7tkNrNLZgMQjoXZ1rotMbO8bxRLIBzgjfo3eKP+DQBsFhtTs6YyM39mssM8OyXbzNsQETnuFI6LyLAXjoV5Zd8rgEaqDAvls8GeAoE6aNwGBSeaXdGQa33scZruuQeArGuvIe+22xSMi4jIiNMbjg0IvYM0+BNd302BEA1975s7Q4Rj8cO6ntNuJT/dRUG6m7x0N7leV2I+9/tC70QY7sBl1/gSkaHitDmZmTeTmXkzAYgbcXZ37E6MYunrLq/vrmdr61a2tm7l99t/D0C5r5zT80/ntILTOC3/NHI9uWbehojIMadwXESGvfUN6+mOdJObksuJOWMviB12HClQPicxVqVy5ZgLx1seeojm/74PgOwv30juV7+qYFxERIaVeNygtTtMgz9Ivb/3QMf3gBC8MRAkEIwe9jVzvE7y093J4Lsg3U2Bz3VgPd1Nhseh74kiI4TVYqUis4KKzIrk3PL6rvoDYXnTJna176LKX0WVv4qndj4FwLj0cZyWf1oyLC9ILTDzNkREjprCcREZ9vpHqswtnYvVoo/SDguT5yeC8Z0vwOxbza5mSBiGQcv9v6HLSg0CAAAgAElEQVTlgQcAyPnqLeR+5SsmVyUiImNNJBanqTNEg7+XBn+Ien9vIgQPBGn0B6n3B2nqDBKJHd5Mb4/T1hd4Jzq+832JoDu/71XgS3SAa5yJyOhX6C2k0FvIogmLAPCH/Gxs3MiGxg1saNjAu23vsjewl72BvTxd+TQAJd4STi840Fle5C0y8xZERI6YwnERGdYMwzgwb1wjVYaPiosSy7o3oacNPFnm1nOcGYZB87330vrIowDk3XYr2dddZ3JVIiIy2vSPOenv9q7394066Rt3Uu8P0tIVwjiM3Ntigbw0VzLoLvANCLwHdH2nuezq9haRQ/K5fMwrm8e8snlA4iGfbzW+xYbGDaxvWM+Oth3UddVRt6uOv+/6OwDF3mJm5c/itPzTOL3gdIq9xfozRkSGNYXjIjKsbW/dTlNPEyn2FM4sPNPscqRfRinkTYembbBrFcy4wuyKjhvDMGj6r/+i7cn/ASD/u98h64tfNLkqEREZSQzDIBCMJkPuBn8v9X2jTeoHhN8dPZHDup7DZiE/3U2hz02BL4XCvuA78T4RfuemuXDY1O0tIsdOujOduaVzmVs6F4CucBdvNb3F+sb1bGzYyLbWbezr2se+rn08u/tZAApSCxJjWPrC8tK0UoXlIjKsKBwXkWFtde1qAM4tPheXzWVyNTLI5PmJcHznylEbjhvxOI0/+Qntf/xfAAp+8J9k/p//Y3JVIiIyXMTiBq1dIZo6QzR3hmjqTDzMsrkrRFMg8b5/PRQ9vIdaepw2Cnx9QXd6CgU+VyIA7+v+LvC5yfI4sVoVLomIubxOL7NLZjO7ZDYA3ZFu3m56OzmGZWvLVhq6G3h+z/M8v+d5APJS8phVMCsxiiX/NManj1dYLiKmUjguIsOaRqoMY5Pnwyv3JjrHY1Gwja5vKUY8TsMPfkDHX/4KFguFP/4RGZ/+tNlliYjIEAhGYoPC7kHhd3I9RGtXiPjhjfYGIMPjoGBAx3fBwG7vvpfGnIjISJXqSOWc4nM4p/gcAHoiPbzT/E4yLN/SsoWm3iaWVy1nedVyAHJScpiVP4vT8xNzyyf4JujPQBEZUqMryRCRUaWus47K9kpsFhtzSuaYXY68X8npkJIJve2J2ePjPmF2RceMEYtR/x/fw//MM2C1UvTTu/FdeqnZZYmIyFEKRmLUtvXQ1Bd0N3eGkuF38n1niM5g9LCvabVAttdFXlr/KzHSJC898T53wDa3w3Yc705EZHjxODycXXQ2ZxedDUAwGmRz8+bkzPLNzZtp6W1hZfVKVlavBCDLncWs/FnMyJnB9JzpTM2aitfpNfM2RGSUUzguIsNWf9f4qfmn4nP5TK5GDmK1waQLYctTidEqoyQcN6JR9t/+HQJLl4LNRtHPf4Zv8WKzyxIRkSPQGYywq6lr0KuyqYva9p7DepglgMtu7Qu43QNC7gNBd38Anp3qwqYRJyIiH8ltd3NG4RmcUXgGAKFYiC3NW5Izy99ufpu2YBsv7n2RF/e+mDxvfPp4pmZPZXr2dKZlT1NgLiLHlMJxERm2NFJlBJg8PxGOV74AF95pdjVHzQiH2Xfbt+h84QWw2yn+5S9Jn3+R2WWJiMgHaOsO9wXfnYOC8Hp/8APPSXPbkw+szEtzkZd+IPzu7/LOS3dpvImIyHHmsrk4reA0Tis4DU6GcCzM1patbGraxLaWbWxr3UZ9dz3VgWqqA9XJUSwWLIxLH8e07GkHAvPsqaQ6Uk2+IxEZiRSOi8iw5A/52dS4CVA4PqxNnAcWKzRth44ayCgzu6KPLR4Os+9rX6frpZewOBwU33cfafP0356IiNkMw6CpM0RlYxe7mjqpHBCCt3aHP/C8vDQXFfleJuV6mZSfxqRcLxX5XrJTnQq9RUSGIafNyan5p3Jq/qnJbW3BNra3bmd763a2tWxje9t2GrobkoH5sqplQCIwH+8bPzgwz5qKx+Ex63ZEZIRQOC4iw9K6unXEjBgVmRWUpJWYXY58EE8WlJ4JNa8lRquccb3ZFX0s8WCQulu+SvfLL2NxuSj5zf14Z882uywRkTElHjfY19Gb7ASvbOxiV3MXuxq76Ax98AzwkswUJuV5qcjzMinPy6S8NCblefGlOIawehEROR6y3FmcW3wu5xafm9zW2tt6IDBv3cb21u009jRS5a+iyl/F0j1LgURgXu4rHxSYn5B1ggJzERlE4biIDEsaqTKCTJ6fCMcrXxiR4Xi8p4fam26i57XXsbjdlD74AKlnn212WSIio1b/QzF3N3ezq28cSmVTF7ubuwhG4oc8x2a1MC7LkwjB8719YXgaE3JT8Tj1I42IyFiSnZLN7JLZzC450MzS0ttyUGDe1NPEHv8e9vj38Pye5wGwWqyUp5czPWd6MjSfkjWFFHuKWbcjIiazGMbhPpJm7AoEAvh8Pvx+P+np6WaXIzLqhWIhZv9pNr3RXv60+E9Mz5ludknyYRq3w4Nng90N364C58jpxIh1dVN34430bNiA1eOh9LcP4Tn9dLPLEhEZ8foD8OrWHqpbuqlu7Xu19LDf3/uBD8V02qxMyE3t6wBPBOCT8ryMz/HgstuG9iZERGRE6w/Mt7VsSwbnTb1NBx1ntViZ4JuQ7CyflDGJiswKclJyTKhaRI6FI8ly1WYhIsPOG/Vv0BvtJc+Tx7TsaWaXIx8lbyr4SsFfC1XrYMoCsys6LLHOTmqv/xK9b7+N1eul9JGH8cycaXZZIiIjxscNwAG8LjvlOamJUSh9c8Er8tMozUzBbrMO3U2IiMiolZOSw5ySOcwpmZPc1tzTPKi7fFvrNlp6W9jVsYtdHbt4dvezyWOz3FlMypiUDMv7l3rwp8joonBcRIadgSNV9MCsEcBiSYxWWf8oVK4cEeF4zO+n5rrrCW7ZgjU9nbLHHiXlpJPMLktEZNg52gB8fI6H8dmpiVdOKuOzPYzPSdVDMUVExBS5nlzmeuYyt3RucltTT1PyYZ+V7ZVUtldS21lLW7CNNxve5M2GNwddoyi1iIrMikGBeXl6OQ6bnnUhMhIpHBeRYSVuxFlTuwbQvPERpaIvHN/5AhhGIjAfpqLt7dRccy2hHTuwZWRQ9rvHcU+danZZIiKmUQAuIiJjWZ4nj7yyPM4vO/DzZ2+0lz0de6jsqEwG5rs6dtHc28z+7v3s797P2rq1yePtFjvjfeMP6jIv9hZjtegTUSLDmcJxERlWtrZspaW3hVRHKqcXaPbziFE+G+wpEKiDxm1QcKLZFR1StKWFmquvIVRZiS07OxGMT55sdlkiIsddNBanrr2Xqpbug14KwEVERAZLsacwPWf6Qc+/6gh2UNmRCMr7A/PK9kq6Il3J0SwrqlcMus6hRrNku7P1/VNkmFA4LiLDSv9IlXOLz8Vpc5pcjRw2RwqUz0mMValcOSzD8UhTEzVXXU14zx7submUPfkErgkTzC5LROSYiccNGgJBqlu62dMXfFf3LWvaeojGPzgB7w/Ax2WnUq4AXERE5JAy3BmcXnD6oEYuwzBo6G5Idpn3B+Z7/HvojfaypWULW1q2DLpOpitzUFg+KWMS49PHk+HOGOpbEhnzFI6LyLDyUs2BeeMywkyenwjGd74As281u5pBIg0N1HzxKsJ792IvKGDcE7/DOX682WWJiBwxwzBo7Q4nA/DqAR3g1a3dBCPxDzzX7bAyPjuV8pxE+F2ek8qEnFTGZaeS41UALiIi8nFYLBYKvYUUegsHPfwzGo9SE6g5KDSv7aylPdR+yHnmma5Myn3ljPeNpzy9b+krp9hbjN2qCE/keND/WSIybNQEatjt343dYmd2yWyzy5EjVXFRYln3JvS0gSfL3Hr6hOv2UXPVVUTq6nAUF1P25BM4S0rMLktE5EMFgpFBwXd/F/ielm46g9EPPM9utVCW5RkUgPe/CtLdWK0KwEVERIaC3WpnQsYEJmRMYP74+cnth5pnXhWooqG7gfZQO+1N7Wxq2nTQtcrSyhLBefr4AwG6r5x0Z/pQ35rIqKJwXESGjf6RKrMKZukb/EiUUQp506FpG+xaBTOuMLsiwjU17L3qKqL763GUlTHuid/hKCoyuywREQBicYOath52NXWxq6mLqpauZBDe0hX+wPMsFijypQwKvvtfJZkp2G168JeIiMhw9UHzzHsiPVQHqqn2V1MVqEos/VXsDewlGAuyx7+HPf49B10v252dDMr7g/Py9HKKvEXYrLahui2REUvhuIgMG6trVgMaqTKiTZ6fCMd3rjQ9HA/tqaLmqquINjXhLC+n7IkncOTnmVqTiIxN4Wic6tZuKhsTIXhlUye7mrrY09JNOPrBY1By01yUv38MSm4qZVke3A79sCsiIjKaeBwepmVPY1r2tEHb40achu4GqvxVVAcSgXl/cN7U20RrsJXWYCsbGzcOOs9pdVKWPrjbvH/d6/QO5a2JDGsKx0VkWGgPtvN289uAwvERbfJ8eOXeROd4LAo2c77NhCor2Xv1NcRaWnBVTKLsd7/DnpNjSi0iMnb0hKPsae5Oht+VjV3sau5ib2sPsQ94GKbLbmVSnpdJeV4m5Hgpz+1/IKaHNLdjiO9AREREhhurxUqRt4gibxHnFJ8zaF9XuIu9gb1UBaqo8lclA/S9/r2E42F2dexiV8eug66Zm5J7yBEthamFWC36BJqMLQrHRWRYWFu3lrgRZ0rmFIq8GnsxYpWcDimZ0NuemD0+7hNDXkJw+3Zqrr2OWHs7rhNOoOzxx7BnDY/55yIyOvh7I32jUPpC8L6xKHXtvR94TprLzsQ8LxV9QXhFvpeKvDSKM1I0B1xEREQ+Fq/Te8gRLbF4jPru+kHd5v3rLb0tNPc209zbfNADQV02F+PSxx0cnKeX43F4hvLWRIaMwnERGRZeqknMGz+/TF3jI5rVBpMugC1/SYxWGeJwvGfTJmpvuJF4Zyfu6dMpe+xRbBkZQ1qDiIwOhmHQ2h1Odn/vauxkV3OiG7ypM/SB52WnOgeH4HlpTMrzkp/uwmJRCC4iIiLHn81qoySthJK0EmYze9C+znBncq55/4iW6kA1ewN7CcVC7Gzfyc72nQddM8+Td9CIlvL0cvJT89VtLiOawnERMV0wGuS1+tcAjVQZFSYvSITjlS/AhXcO2ZftevkV6m65BSMYJOW0WZQ++CC2tLQh+/oiMjJ1BiPsbe2htq2HvW097G3tTnaDd/REPvC8Qp87OQ5lYAieleocwupFREREjkyaM42Tck/ipNyTBm2PxqPs79o/qNO8v9u8LdhGU08TTT1NvFH/xqDzUuwpiW7z9PJBDwYdlz5O3eYyIigcFxHTvV7/Or3RXgpSC5iaNdXscuRoTZwHFis0bYeOGsgoO+5fMrDyBfbddhtEIqTOmU3JffdhTUk57l9XRIa/eNygsTNITWsi/K5p7aGmrX+9m/YPCcAtFijN9CS6wPO9TMr1UpGfxsTcVM0DFxERkVHFbrVTll5GWXoZc0rmDNrnD/kPehhodaCamkANvdFe3m17l3fb3j3omgWpBZSnlw+aaz4+fTz5nnx9ok6GDYXjImK6l2oTI1XOKzlP3yBHA08WlJ4JNa8lRquccf1x/XIdT/+N+jvugHictIULKP7Zz7A41bkpMpYEIzFq2/pC777wu6avC7y2vZdwNP6h5+d4nZRmeRiX5aEsy8PEvm7wible3A7bEN2FiIiIyPDkc/k4OfdkTs49edD2SDzCvs59B4LzAQF6e6idhu4GGrobkp8U7+exezgh6wSmZU9javZUpmVNY7xvPHarYkoZevqvTkRMFYvHWFO7BtC88VFl8vxEOF75wnENx9v+539ovPunAGRc/mkKfvhDLDYFWSKjjWEYtPdE2NvanQi+39cF3hAIfuj5dquF4swUyvrC73HZHsqyUhPvsz14XforsYiIiMiRclgdjPeNZ7xvPOeVnjdoX0ew48CIlgHzzWs7a+mJ9rCpaRObmjYlj3fb3EzJmsLUrKlMy57GtOxpTMiYgMOqT+vJ8aWfBETEVFtattAWbMPr8HJ6/ulmlyPHSsV8WPVDqFoH4R5wHttZc4Zh0PLAA7Tc/xsAsq66irzbv61PHoiMYOFonH0dvckO8Nr3dYF3haIfen6ay05ZticZeI/rC7/HZXso9Lmx2/SgKBEREZGhkuHO4BT3KZySd8qg7ZF4hL3+vexo28H21u1sb93Ou23v0hPt4Z3md3in+Z3ksU6rk8mZkxPd5X1d5hUZFTht+qSwHDsKx0XEVKtrVwMwu3g2Dpt+Izxq5E0FXyn4axMB+ZQFx+zShmHQ9F8/o+3JJwHI/dpXyb7xRgXjIsOcYRg0d4Wobeuhtq03GYDXtPVQ195Lvb+XuPHh1yj0uZPjT8ZlexLr2amMy/KQ4XHozwERERGRYc5hdTApcxKTMidx8cSLAYgbcfYG9rKjNRGY72jbwY7WHXRGOtnaupWtrVuT59utdioyKhJheV+XeUVmBW6726xbkhFO4biImOqlmsS8cY1UGWUslsRolfWPwpsPJ9aPQWhlxGLU/+AH+P/6NAD5//EfZP3fLxz1dUXk2OgORaltHxx+JzvB23sIRj589neKw0ZZlofSrBRKMhMBeP8IlJLMFM3/FhERERmFrBYr5b7EgzsXTVgEJBor6jrr2N6W6C7f0bqD7W3b8Yf8ifC8bUfyfJvFxsSMiUzNmsrU7KlMz57O5MzJeBzH9hPMMjpZDMP4iB4dCQQC+Hw+/H4/6enpZpcjMmpU+au45B+XYLfaWfeZdaQ508wuSY6lph3w27kQC8FFd8Enbj6qyxnhMPu+fTudK1aA1UrhXXeR8e+fOkbFisjhiMbi1PuDfQF4//iT3r7u7x5ausIfer7VAoW+FEqzEvO/SzMTI1BK+9ZzvE51f4uIiIjIIRmGQX13fXIcy/a2RGjeFmw76FirxUp5evmBkSx9wXmqI9WEymWoHUmWq85xETHNS7WJrvHT809XMD4a5U2FBT+Fpd+EVT+AsrOhZNbHulS8t5e6r36N7pdfxuJwUPTLX5B+0UXHuGAR6ReKxti+P8DbtR3sbOxKBuH7O3qJfsTskwyPIxF6Z3koyTrwEMzSTA9FGSk47Zr9LSIiIiJHzmKxUOQtoshbxAXjLgASgXljTyM7Wnck55jvaN1BU28Tu/272e3fzfN7nk9eIzcll2JvMUXeIoq9xZSklSTXC1IL9ADQMUjhuIiYZk3tGkAjVUa1066BqrWw/Rn469Vw48vg9h3RJWKdndTe+GV6N27EkpJCyW/ux3vOOcepYJGxxzAMatt6eau2nbdrO3irpoPt+wOEY4cegeK0WSnJTEl0ew8Iv0syEx3gvhT9QCEiIiIiQ8NisVCQWkBBasGgbKGltyXZYd4/kqWhu4Hm3maae5t5u/ntg65ltVjJ9+Qnw/MSbwnFacUUpRZRklZCbkouNqvG/I02GqtyGDRWReTYa+ltYd5T8zAwePHTL1KQWmB2SXK89HbAb2dDRw1MuxQuf/Kw549H29qoue46Qtt3YE1Lo/S3v8Vz6szjXLDI6BYIRthc6+ft2nbequng7doOWrsPHoeS6XEwsyyT6UXpjMtOpTQzhbJsD/lpbqxWjT4RERERkZHFH/JT11nHvq59B732d+0nFAt96Pl2q53C1EKKvcXJ18AO9Gx3tkYEDhMaqyIiw5phGNz1+l0YGMzImaFgfLRLyYBPPwGPX5ToIN/wOJx+7UeeFmlooOaaawnv2YMtO5uyRx/BPXXq8a9XZBSJxuLsbOzq6whPdIbvau7i/a0RDpuFaUU+ZpZmMLMsg1NKMyjL8ugv9yIiIiIyavhcPnwuH9Nzph+0zzAMWoOt1HXWsb9r/0HheX1XPdF4lNrOWmo7aw95fZfNlRz7UuItGdSBXpJWgs91ZJ+ilqGhzvHDoM5xkWPr6Z1P88PXfojdaucPi/7A9OyDvzHJKPTq/fDC98HmgutXQ8GJH3hoeO9eaq6+hsj+/dgLCyl7/DFc5eVDWKzIyNQYCPJWTUdiREpNB1v2+ekJxw46rjQrhVNKM5lZmsEpZRlMK0zH7dBHREVEREREDiUWj9Hc25zsPN/ftZ+6rgPrjT2NxI1DjyXsl+5MpyytjP+fvTuPj6u67///uvfOqm202JItW/ICtsEYL4AxZktIIZCmJKwlgRQCackCpMQhEJoESJqELL80hLCFJsH9paWmoeWbhCTQlLJ/DV6IF2ywWWzLlizJ2tfZ7r3fP+5oNGPJG8gaSfN+PjKPe+fcc++cMXlcSe858zk1xTXUlNRQU1xDbXEttSW1mnU+wo4ky1U4fhgUjouMnB2dO7jiySvoT/az4uQVXLvg2lwPSUaL48C/XwFv/TdMmgt/9ywEi4Z0i27bTt1nPoPd0kJgxgxqH/kl/urqHAxYZGzrj9u83tDJhowwvKEzOqRfUdDHopoIS2rKWJwKwycVBXMwYhERERGRiSlhJ2jsbaS+t5767qFlW1r6Ww56ftgX9kLzVGCeGZ5XFVSp1vkRUjg+whSOi4yMuB3nU3/4FG+0vcGyqct4+LyHMQ0z18OS0dTbCg+dAd17YdGVcPGDWYf7N26k7vrP4nR2EjzuOGp//s/4Jk3K0WBFxg7HcdnR2jsYhO/u4I293dhO9q9xpgFzq4pZUluWLpFyzOQi1QgXEREREcmhvkQfe3r2sLtrN3Xddezu9rZ7uvewt3fvQWed+00/04qmUVtSmx2gF9cwrWgafss/iu9kfFA4PsIUjouMjB+t+xErt6ykNFjK4xc+TlVhVa6HJLmw8yX4lwvBdeDin8GiTwDQ+8or7P7CDbh9fYQXL6bmZw9hRVSTTfJPPOnwdnMPWxo62bq3i60NXWzd20V3NDmkb2VxMFUjvIwltaWcOC1CYVBLyoiIiIiIjBdxO059T326nnldV116f0/PHpLO0L8DBpiGydTCqVmB+cCs85riGsK+8Ci+k7FD4fgIUzgu8v6tbljN9X+6HoCfnPMTPlT7oRyPSHLque/Dc98FfyF89nm6N+2m/uYv4cbjFJ6+nOk//SlmYWGuRyly1HVHE7yxt5utDZ1sSYXgbzX1ELeHzhwJ+kwWTo+wuKaUJbVeiZSpkZBqE4qIiIiITFC2Y9PY15gVmA/MOt/dtZuoPbSsYqbKcCWPXfgYk8L59Y3sI8lyNbVIRI66tmgbX3vpawD89dy/VjAucPYtsPNF2Pkinf94JQ3/0w+2TfF551L9ox9hBgK5HqHIiHJdl+buGFsbutIzwrc0dLGrtW/Y/iUhH/OrS5g/NcIJ1SXMry7h2Moi/JZKUYmIiIiI5AvLtJhWNI1pRdNYzvKsY67r0tLfMlimJSNAr+uuozveTVusjbJgWY5GPz4oHBeRo8p1Xe58+U729e9jdmQ2tyy9JddDkrHAtOCSf6bt78+maXU3YBC56CKmfvsfMXz60STjm+247GjpTZdE2dLQyRt7u2jpiQ/bvzoSYn51hPnVJV4QPrWE6WVhzQgXEREREZEDMgyDyQWTmVwwmZOrTh5yvDPWyd7evVrM8xCUQIjIUfUf2/6D5/Y8h9/08/2zv5+39a5kqJZVT7JvtfdjqGxOD1WfOlXBuIw70YTNtsbuVEkUrzTKm3u76U/YQ/papsExkwuZP7WEE1Jh+PypJZQV6psSIiIiIiIysiLBCJGg1vE6FKUQInLUvN3+Nj9c90MAbj7pZo4rPy7HI5KxwHVd9v3TP9H6zz8HYNIFxzMp8gzG7/4epi2Bspm5HaDIAXT0xb0QPKM0yjv7erGdocu3hP0Wx08tTs0GjzB/agnzphQT8mvWhoiIiIiIyFihcFxEjoqYHeO2F28jZsc4o/oMPjX/U7kekowBruPQ+K1v0bHqMQAqb72Vims+BY98BPashcc/A9c9BZY/xyOVfDZQH/z1em8m+MC2vqN/2P4VhYHBEDxVGmVmRSGWqbIoIiIiIiIiY5nCcRE5Ku5Zfw/b27dTHirn22d+G9PQInL5zk0kaLj9H+h68kkwDKZ865uUXX65d/CyX8JDZ0L9OnjmW/Dhf8ztYCVvuK5LXVsfr9d7s8Ffb+hia0PnAeuDz6goSNcFHwjDK4uDqg8uIiIiIiIyDikcF5ER9+KeF/nXN/4VgH884x+ZFJ6U4xFJrjmxGPU3f4meZ58Fn49pP/g+JX/5l4MdSmvhY/fBf/wN/N97YdbZMOe83A1YJqSk7fDOvt70TPAtDZ1sbeiiO5Yc0tc0YE5lMSdUl3DCtIgXiFeXUBLStxpEREREREQmCoXjIjKiWvpb+PrLXwfgyuOu5OzpZ+d4RJJrdk8ve264gb5XX8UIBpl+708o+sAHhnac/zFY+new9p/hic/C516CkurRH7BMCAMLZb7eMBCEd/Hm3i5iSWdI34DP5LgpxZxQ7YXgC6ZFOE71wUVERERERCY8heMiMmJc1+UbL3+Dtmgbx5Yey4pTVuR6SJJjyfZ2dl//WaKbN2MWFlLz0IMULF164BM+/G3Y/Qo0bob/uh6u/g2YCijl4LqjidQimV28npoN/lZzz7ALZRYFfV5JlGkl6TD82Moi/JZKP4mIiIiIiOQbheMiMmIeffNRXqp/iYAZ4Adn/4CgFcz1kCSHEnv3svv6zxJ76y2s0lJqfv5zwgtOOPhJ/hBcthJ+djbsfBFe+CF88KujMl4ZH3piSTbt7mDDng62pOqE72ztG7ZveWHAK4tSHWFBKgyfUV6AqYUyRUREREREBIXjIjJCtrVt45/W/RMAXz7ly8wpm5PjEUku9bzwAg233obd0YGvspLaX/6C4LHHHt7Jk46Fv/oxPHE9PP99mHEGzDrr6A5YxiTbcXmruZsNdR38ua6DDbs72N7cjTt0QjjVkRDzM0LwBdNKmFIS0kKZIiIiIiIickAKx0XkfYsmo9z2wm3EnThnTz+bTx73yVwPSXLETSbZd8vCXsQAACAASURBVO9PaX34YQBCJ5zAtJ/8hMD0aUd2oUVXwI4XYMO/wn/+LXz+ZSjUwq4TXXN31AvCd3ewoa6DTXs66I3bQ/pNKw2zuKaUBdMGw/DywkAORiwiIiIiIiLjmcJxEXnffrTuR7zT+Q4VoQq+dfq3NFMzTyWamqj/8pfpX7cegLKrrqLytlsxA+8xtPzLH8CetdCyDZ74HFz5H2CqLvREEU3YbGno5M8ZYXh9R/+QfgUBi0XTS1lcW8rimlKW1JRSWRLKwYhFRERERERkolE4LiLvy3O7n2PVtlUAfOfM71ARrsjxiCQXel56mYZbb8Vua8MsLGTqd75NyQUXvL+LBgrh8kfgnz8Eb/8JVt8HZ3xxZAYso8p1XXa29rFhd3u6PMrWhi6S+y2YaRgwt7KYxTVeGL6ktpQ5lcVYqhEuIiIiIiIiR4HCcRF5z/b17eOOl+8A4G/m/w1nTDsjxyOS0ebaNvvuu4/Wh34Grkvw+OOZ/uN/IjBz5si8QNUJcMHd8OSX4JlvQu1yqFk6MteWo6azL8GGPR38ua6dDbu9MLyjLzGk36SiAItrylhS680IP3F6hOKQPwcjFhERERERkXykcFxE3hPHdfjaS1+jPdbOvLJ53HzSzbkekoyyRHMzDbd8hb41awAo/cQVVN1+O2YwOLIvdPK1Xv3xLU/Af14Hn30RwqUj+xryniVsh22N3fy5rt0rj7K7g3f39Q7pF/CZLKguSYfhi2tKmV4WVhkmERERERERyRmF4yLynvxq669YvXc1ISvED87+AQFLi+Hlk97Vq6m/5SvYra2YBQVM+da3iPzVR4/OixkGXPgTaPgztO+E394Ef/3/e+0y6uJJh017Olj9Tiur323ltbp2oglnSL+ZFQVejfDaMhbXlHL81BICPtWMFxERERERkbFD4biIHLE3Wt/gntfuAeArS7/C7NLZOR6RjBbXtml58CFa7r/fK6Mydy7T7rmH4OxZR/eFQxG47Jfwi/Phjd/C2p/DqX93dF9TAEjaDq83dKXD8LU72uhP2Fl9SkI+FqdC8CU1pSyqKaW8UB+YiYiIiIiIyNimcFxEjkhfoo/bXryNpJPknJpzuHzu5bkekoySZEsL9V/5Cn2rXwGg9PLLqPra1zBDodEZwLST4bxvwtP/AE9/DWqWwdSFo/PaecRxXLbu7eKVd1tZ/U4ra3a00R1LZvUpLwxw2uxylh8zieWzy5k9qQhTi2aKiIiIiIjIOKNwXESOyA/X/ZAdnTuoDFfyzdO/qXrBeaL31TXU3/Jl7H0tGOEwU795F5GPfWz0B3LaF7z649ufgsevheufh2DR6I9jAnFdl+1NPax+p4XV77byyrttdPZnL55ZEvKxbHYFy2dXcPqxFcytLFYYLiIiIiIiIuOewnEROWzP7HqGx7c/joHBd876DmWhslwPSY4y13Fo/dnP2PfT+8BxCM451iujcswxuRmQYcDHH4CHzoTWt+EPt8DFDw3p5jhuurs+wMnmui7vtvSmy6S88k4rrb3xrD5FQR9LZ5ax/JgKTj9mEsdPLcFSGC4iIiIiIiITjMJxETksTb1N3Ln6TgA+veDTnDb1tByPSI62ZFsbDV+5ld6XXwYgcsklTPnG1zHD4SO6juu4JBMOdsIhmbBJxh2SqX07Yz8ZH+iTOpZwUn1t7/yM/WT8QezWrSSf8WO/+t8kzaKsfgPhOIBpGhiWgWkamJaBYR5kP9XvsPYHrmkaGJaZsW9gmgzzOubhv05m22GOG8BOOji2i5N0sW3H2yZtGtujbKnv4M36LrY3dtPTl8R0wQJqgTmmnxllYWpLC5geCVFREAAb7Pok+3Y10GjX4yQdbNvN3iZdXNf1xm2ZWL5htj4TyzIxfYa3tYyM4wPPM44P2e5/jrf1+U1CRX59+CEiIiIiIiLvmcJxETkk27H5h5f+gc5YJ/Mr5nPT4ptyPSQ5yvrWraN+xZdJNjdjhEJMufNOSi++6LDO7e2MsWtzKzs2tVC/rZ1EzD70Se/Jcd6mAyB6wF6O44LjcrRGMZ5UA9WYwDCLZfYmYE8ne+hkz2gP7D3yBUwikwuIVIYprQxn7BdQEAkoOBcREREREZGDUjguIoe0cstK1jSuIewL8/2zvo/f8ud6SHKUuI5D6z//nH333gu2TeCYY5h+z48Jzplz4HNcl7a9vezY2MLOTS007eg6YF/TMvD5TSy/ic9v4Qtk73vHBvd9fgsr3Z7dz+czsF74R3zNr+GrmI7vsgewwgVeH78JBji2i+u4OI47uG97z7P3nfT+sOcc8vzUfmZ/x8XNPP5+rp1xreH3HVwXXAOSQML1PgywDRcHcAwIBiwKwz5KCgKUFPrx+63BWdvWwAzvA21TM7kzZ3pb3sxuw/Q+gMiere79e3pbb4Z5ejvcDHTbHdovq7+Tff3UNhl3aK3vobW+Z8j/1xSci4iIiIiIyKEoHBeRg9rSsoX7/nwfALefejszIzNzOyA5apLt7TTcdhu9L7wIQOTjH2PKHXdgFhYO6WvbDnvf7mTnxhZ2bNpHV0v2zO3KGcXMWjSJGQsmUVQWTAXbJqZljuyg53wdHjwDurfA5u/AX/14ZK8/Brmuyzv7elm7s421O9tYt7Odurb+rD6mASdOL2X57ArOOqaCU2aWURCYWD/ybduhuyVKR3Mfnfv66Wzup7O5j459/XS3RhWci4iIiIiIyCFNrL+URWRE9SX6uO3F20i6Sc6bcR4XHXt4ZTVk/Ol77TWvjEpjI0YwyJRvfJ3IpZdmhYSx/iR1W1rZsbGFui2txPqS6WOWz2T68WXMWjiJmSdOorA0ODoDL54ClzwM/3oJrPslzDobTrh4dF57lCRsh9frO1m3s501O9tYv6udtv0W0DQNOH5qCctnV7D8mAqWziqnJDSxv+FhWSalVQWUVhUMOabgXERERERERA6HwnEROaDvrfkeu7p2MaVwCncuv1Oh0ATkOg5tv/wlzT++xyujMnMm035yD6F58wDoau1n56ZWdm7aR/32Dhx7cKHLUJGfmSdWMGvhZKYfX0YglKMfKcf+BZz5JXjpx/DbL8LUxVA+KzdjGQE9sSSv7Wpn3c421u5s58+724kmnKw+QZ/J4ppSTp1Vzikzy1lSWzrhw/AjcdDgPOnQ3ZoKzpv7U+H5kQXnxRUh71Ge8agIES7WAqEiIiIiIiLjicJxERnW0zuf5om3n8DA4LtnfpdIMJLrIckIS7a3s/ert9Pz/PMAlHz0o1TddRdtbQ4bf/suOza10LonOyAsrSpg1qJJzFo4iarZEUxzjASB53wNdr4Me9bA49fBdU+Db5hFJ8eg5u4o63a2p8ukbG3ownGz+5QW+DllRjlLZ5axdFY5C6ojBHwjXKImT1i+oxOcD1y7qDyYDsszw/Oi8pBXYkj/3URERERERMYMw3Vd99Dd8ltXVxeRSITOzk5KSkpyPRyRo25vz14u/d2ldMe7+bsT/44vnvTFXA9JRlj/hg3sWbGCZMNe3GAY97PfYF/keHZubqW3I5buZxgw5ZgIsxZOZubCCsqmDK0/PmZ01MFDZ0G0A5bfCOd/J9cjGsJ1XXa0DNQL92aH72ztG9JvelmYpTPLU48yjplcNHY+iMhTmcF5d2uUnvYo3a1RuttidLdF6e2MwaF+ozKgMBKkeL8AvShj9nnOvoEhIiIiIiIyQRxJlqtw/DAoHJd8Yjs21z19Ha81v8bCSQtZ+ZGV+E2Va5goXNelbeW/sOcnD9EamUdb7Wm0lR5HIjH4o8AXtJgxv5yZiyYxY0EF4aLxMQMbgDeehMeu8vYv/QUsuNRL+HMkYTtsbejKWjyzdb964YYBx00pYenMMk5JheFTI+EcjVjeKzvp0NsRSwXmGY/WKD3tXoBu71ceZzjBAt9gWJ4RmheVBykoDuAPWQSCPiy/ZqCLiIiIiIgMR+H4CFM4Lvnk4U0P89M//5QCXwGPX/g4NSU1uR6SjJDWt5vY9KNV1LeH6YzMBmMwXCuMBJi5aDKzFk1i2txSfH4rhyN9n/5wK6z5mbdfsww+cCsc8xejEpL3xJJsqOvwgvBdbfy5roO+uJ3VJ+AzWTy9lKWzvDD8pNoyImF9ADXRua5Lf3ciHZh3t0XpacsO0mO9yUNfKMW0jHRQ7g9Z+IMWgZCFP+QjEPS2/qDl9QlZ+IO+1PGM/aBFIOSdr3IvIiIiIiIyUSgcH2EKxyVfbNy3kWv+eA22a/OdM7/Dx475WK6HJO9Te2Mv29c08db/3U1nR3ZIO2l6ETNT9cMn1xZPnIUEkzH4n2/Cul9AMuq1VZ8EH7gN5p4/YiF5c3eUrQ1dbGnoYuveLrY2dLGztZf9f6pGwn5OmeEF4afOKmPBtAhB3zj+8EGOmng0mQrNY9kzz1P70d4EyfihZ5+/F6bP8MLyVNieGbT7Ahamz8CyzOytz8S0BrYmls/I2qaPDXduxjWy2iwDIw9LCLmOSzLp4PObE+deLCIiIiKSIwrHR5jCcckHPfEeLv/d5ezp2cNHZn2E75/1ff2BPk71dsR4a10T29c0sa+uO91uOEnKo3XMuWARcy84keLyUA5HOQq6G+H//hTW/gKS/V7blIXeTPJ5HwXz8GbKOo7LrrY+tjR0ZoXh+7pjw/afVhrmlJll6ZrhcypVL1xGjuO4JGI2iWiSeNQmEbWJx5IkonZ2e8wmHvXaB54nYgPnJFPH7cMq9TLaDNPAsgwsv4nPb+ILWKmHObj1W/gzn2ds/Zlt/qF9/APX85uHHcS7rouTdEnEvX/LZHrrkIjbJGP24Da2X1vca0vud67Xx2tPpv47BEIWpVUFlE0pTG29xWMjleHx/Y0eEREREZFRpHB8hCkcl3zwDy/+A79793dUF1bz+McepzhQnOshyRGI9Sd598/NbF/TRP229vTsZcOxKW/fSlXTOmYuqqT2u3dhFefZf9uefbD6p7Dm55Do9doqT4Czb4H5HwdzMHCKJmzeaurxgvC9XhD+xt6uIaVRwJuAPntSIfOrI5xQXcL8qSXMry5hUlFwtN6ZyPvm2E46KM8K2jP34zaO7eIkHewDbZMujj24dWwXOznMdr9z7aRz6IVMjyLLb2YF5gOBfDr0TofcDq6Tu4EaBhRXhLJCcy84LyRc7NeH2SIiIiIiGRSOjzCF4zLR/f7d3/PVF7+KaZisvGAlSyqX5HpIchjshMOuLa1sX9PIzk2tXsiUEul8h6qmtVTue43IifOo+Mx1FH3oQ/kdoPS2wisPwJqHIdYFQF/kWF6dfh1P2qexpbGXt5t7SA4TgAV9JsdN9QLwE6q9EPy4KcUUBHyj/S5EJhzHGT5oTyYc7ERqZvVAWJ3w9rPa4g523CaR0Tc5MGM7vl9b6prvh2l5JWh8ASu1TYXrwdSs9WD284E+A/2H6+sPenXfe9pjtDf10t7YR0dTX3ob7z9wPfpggc8LzKsKKJ1SQFlVIaVTCohMDquWvIiIiIjkJYXjI0zhuExkaxvX8sX//SI9iR6+sOgLfH7x53M9JDkI13HZ+04H215t4p3Xmon1DQYmRck2Kuteoqp5HeFYG8Xnnkv5dddSsCS/P+xwXZeGzoH64J3s3F3PgvpVXJ74LRGjD4B3nSncn7yI3zinU1QQ5oTqEk6ojqTD8FmTCvFZCplEJgLHcdOheyKeHbYn4zZ20sHy7xd4Byz8QRNf0MIa5XuB67r0dcWzwnJv20tXa/SAM+8N06BkUigVmhcOhudTCggXBUb1PYiIiIiIjCaF4yNM4bhMRK81vcYDGx7g1cZXAVg8eTGPXPAIPlMzYceilj09bF/TyFtrm+hpH6x1HQ7YVDWtY/I7/0tRzx7MYJDIJRdTcc01BGbOzN2Ac2hvZz9rdrTxen1nuj54R19iSL8i+vhi8bNcaf+WIserzZ4sqcX6wC0Yiz4JPoVHIjK2JRM2nc396bC8vamPjsY+2pv6SESHloMaECz0pWeYl1UVUFQeJFTgJ1joJ1jgI1ToJxD2ab0EERERERmXFI6PMIXjMpFsaN7AAxseYPXe1QD4TB+XzrmUGxffSGmoNMejk0zdbVG2r2lk+5om2hp60+2BoEl1qIXydf9FpH4DBi5WaSllV11F2VVX4isvz+GoR9+e9j5efbeNV95t5dUdbdS19Q3p4zMNjq0s8maDV3uzwY+fWkIk7IdYD6z7Bbx8L/S1eCdEauDMm2HJ34BPNcRFZHxxXZe+zjjtjb1DZpx3tx94tnkWA4JhH8FCP6GC/bapED1Y4CdU6MsK1UMFfiy/vmkjIiIiIrmjcHyEKRyXiWDzvs3cv/F+Xq5/GQCf4eOiORdx/YnXM7Voao5HJwOivQneXt/M9jWN7H27M91u+gxqZoWZ0rSG8NP/ghnzAmB/bS0V136ayEUXYYbDuRr2qHFdl91t/byyozUdiNd39Gf1MQ1YMC3CkprSdBg+p6qIoM86wFVT4n2w/hF4+SfQ0+S1FVfDGX8PJ18D/on/7ysiE18ibtPZnB2Y93XFifUliPYmiPUmScQOPOv8cPgC5n4Bup9goS81O32wzR+0MEyvBIxpGBjmwANM08AwhntOut3M6G8Y+z3PuOaBuK6L67hevfshi8sOt6Csi21nbp30udnHh1+8FtclMrmA8upCyqsLKZkU1ux8ERERkaNA4fgIUzgu49mW1i08sOEBXtjzAgCWYfHxYz/O9QuvZ1rRtByPTgCScZsdm1rYvqaJui2tOHbqtmxA9ZxSZlXFKH7pMeLPPp0+J7RoIRXXfYbic/8CwzpE6DuOua7Lrta+9KzwV99tpaEzmtXHMg0WTo+wbFYFy2aXc8qMMopD/vf+ool+eO1X8PI90FXvtRVWwhlfhFOug0Dh+3hHIiJjn510iPUlU4F5klhvgmifF5ynt70JYn0JYn3JdKge60swFv+ySAfsA2G5QTrIPqxZ9EeJ5Tcpn1roPaoHH8XlofxeQFtERETkfVI4PsIUjst49EbrGzyw8QGe2/0cAKZhcuHsC/nsws9SU1KT28EJjuNS/2Y729c08s6GfVm1YSumFzH3lEqmRrcT+/df0r9xY/pY0Yc+RMVnriN80kkT8g9n13V5t6XXC8PfbePVHa00dcWy+vgtg4XTSzltdjnLZlVw8owyCoNHoVZ+MgYb/g1e/DF01nltBRVw+k2w9G8hWDzyrykiMo65jks8mswKzL0wPUG0L5m97U2QjDs4jjd723VcXJfs546L43LQ5yP9l4xpGpg+A8tnYlr7b00snzG49ZlYVsbWMr1z99+mruE60NHUR2tDD+2NfdgJZ9gx+EPWYGA+tZCK6iLKqwspiAQm5M9+ERERkZGmcHyEKRyX8WR7+3Ye3PAg/1P3P4AXin901kf57KLPMqNkRo5Hl99c12VfXTfb1zTx1tom+rri6WPF5SHmnFrFnIWlWK/+N60rV5LY5QWyRiBA5OMfp/zaTxOcPTtXwz8qXNfl7eYeXtnRlg7EW3qyw/CAZbK4JhWGz67gpNoywoFRnC1vJ2DjKnjx/4P2nV5buAxOuwGWXQ+hyOiNRUREsriuF5Cnw3NnmOfOYAkVx3HB9WZtZ4Xflrc9WBmWkeQ4Ll37+mnb20tbQw9tDb20Nng14tPfINtPsMCXml1elArNvQA9XKwFpEVEREQyKRwfYQrHZTx4u/1tHtz4IP+9678BMDD4yKyP8LlFn2NWZFaOR5e/EjGb+m3t7NrSyq7XW+luHSwJEiz0cezJVcw9tYrJpTYd//7vtD/6KHZ7OwBmJELZJz9B+ac+hW/SpFy9hRHlOC7bm7vT9cLX7GijtTee1SfgMzmptpRlsyo4bXYFS2pLCfnHQOkYOwmvPw4v/BBa3/baghE47XOw7HNQkF8LoYqIyMizbYfOJi80b02F5m0NvXQ29x1wlny42D9saB4seB8lxvKI66TqxmfWkz9Unfms+vSDW9dxsfwmPr+J5TexfBn7A+2+gX0r1cf7kEbfChARERk5CsdHmMJxGcve7XiXhzY+xFM7n8JNFc68YOYFfG7R5zim9Jgcjy7/uK5LR1Mfu15vpW5LK/VvdeAkB2+zlt9k1qJJzD11CrXzy7Hrd9O6ciWd//UEbsybMe2fNo3yT3+a0ksuxiwc3/WtHcfljcaudImUNTvaaO9LZPUJ+U1OnlHm1QyfVc6imjEShh+IY8OWJ7yQfN+bXlugGE79O1h+IxRW5HZ8IiIy4SQTtleSpb43Ndvcm3He1RI94DmFpUEvNJ9SiD9kpcvQpGfbuy442c/T7RnPGeY81wGGOW+wfeRL3hwJ13GHCa+HX2TVccbGn8MDobnlN/H5hgbqWSF7xvGBY4Gwz1sEN+wnUOAjGPal2wIhC9Myc/0WRURERo3C8RGmcFzGop2dO3lo00P84d0/pEPx82acx+cWfY65ZXNzPLr8crDZ4QDFFSFmnFBB7YIKps8rwx+06N+wgdZf/JLu//kfBv56DJ1wAhWfuY7iD38Yw3cUamgfZa7rsrczyqY9nWza08Hm+k427u6gK5rM6hf2W5wys4zTZnth+MLppQR84/APNseBN37rheRNr3tt/kJYeDnM/iDMOBOKJudyhCIiMsElYjbtjb0Zobk327ynPXbok2V4RiqotvarK58qwXOwWvSGCXbCC+LthENy//39no8mf8jKCsyDYZ8XoodS27DfC9LDGccGwvWwD2s8/q4mIiJ5S+H4CFM4LmNJXVcdP9v0M55890kc1/ul+kM1H+ILi7/AvPJ5OR5dfth/dnjDW53YycE/cEyfwbQ5pdSeUMGMBRWUVhVgGAau49Dz7LO0/vIR+tevT/cv/MDZVFz3GQpOXTquvlLb0hNj056OVBjuPfavFw5QGLA4ZWa5F4bPLufEaRH8E2n2kuPA9j/C89+HvRuzj00+DmaeBTPP9B6FE6M8joiIjG2x/iTte3tpre+hvakPJ+liGHi/Z5jeduC5YeDVWjf2a0/1O1C7YQAZ52dej/Q2N+/fMLID7MGFVPcPuIcurmqOUt15102VczlUiJ7a2gk73W9In7hDrD9JPPWI9XsL48b6kyRj9qEHcxh8fnO/wNxPMGxhWOPnd9eRYFom/qBFIGjhD1kEQj5vG/S2/pDlHQ/5UlvN2hcRyQWF4yNM4biMBbu7d/Pwpof53Tu/w3a9X3I/OP2DfH7x55lfMT/Ho5v4MmeH121pHfI15uFmh9sdHfRv2kT/xk3edtMmnM5O7wS/n8iFF1Jx7acJzpmTg3d0ZDr7Emyq7xicFb6nk4bOoV/ltkyDeVXFLJwe4cTpERZNL+W4KcX48uGPAteFd/4X3vpv2PnS4GzyTJXzB4PyGWeqBIuIiIgcVbbtDIbmqcA8PrAdpi3WlyDebxPrTxDvSxKPjky4ns8sv0kgFZr7Q750sO4PeiVv0iF7Kkwf6JcVugct/AELX8ArpzOeJtSIiOSCwvERpnBccqmhp4GHNz3Mb97+DUnXK09x1rSz+MLiL7Bg0oIcj27iGpgdXreljV1bWmnY3jFkdnj1saXMWODNDo+U+Yhtf4v+TRuJbtpE/4aNxHftGnJds7iYsk9cQdmn/gZ/VeVovqXD1hNL8np9J5v3dLKp3gvDd7X2DelnGHDM5CIWTo+wcFqEhTWlzJ9aMrbrhY+m3lbY9bIXlO98EZq3Du1TecJgWD7zTC3qKSIiImOK47hZM9IHQ3SvLd/iBDvpkIjaxGM2iWiSRNQmEbOJR20SMe/DBO94MmvdoRFleDP5famw3AvNrVTbQLuV3ventpbfTAfsmX3Sbf7MY6YWihWRcU3h+AhTOC650NjbyMObHuaJt58g6Xih+BnVZ/D5xZ9n0eRFOR7dxHTYs8NPKKeqJEryzdfp37CR/k2biG7dml5QM1Ng5kzCixYSWriQ8KLFhObNxfD7R+stHVI0YbN1bxebdnekgvBO3tnXM+wiWjMqClg4vdQLwqdHOGFahKLg+KuNnjO9LYNh+Y4XYd8bQ/tULUgF5WfBjNMVlouIiIiMU3bSSQXnmSG6tx9PPc8M1BPR5GDoPhC4p4L2RMw+emH7gaRCeNPyyg0ZluFtTTDNgTr7RmrfGLqf7n+A/dT2QPs+v4U/aOIbmDWfMXveH/TC/YEZ9abPUJAvIlkUjo8wheMympp6m/j55p/zn2/9JwknAcBpU0/jhsU3sLhycY5HN7Ec7uzwmjnFVFn7COzcTHTzJvo3bcTe1zLkemYkQnjhQsKLFhFetJDwiSdilZaO5ls6qHjSYXtTNxtTZVE27ulke1M3tjP0x0B1JMSJ0yNeGD49wonTIpQWBHIw6gmsZ18qLH/RC8z3vblfB8MLy2elapbPOB3CZTkZqoiIiIjkluO4JOM2ybgzuE3YJOM2icy2rGMOiaz2jP2EM+y5jj3+IiLDNNIz5AdCdH/QTAfo6Rn0+wXt/qCFL2imgnjvYaUW4LX8xuD+wKK8CuFFxg2F4yNM4bgcTUknyd7evezu2s0L9S/w622/Ju7EAVg6ZSlfWPQFTplySo5HOf65rku0J0FXa5Suln72vtXBruFmh5cHmVbjo9LdS2nDBhKb/kzs7be9RRcz+XyE5s1LB+GhhQsJzJyZ81+W+uJJ6tv7qe9IPdr7aejoZ0dLL280dhNPOkPOmVQUSIfgXhBeyuTiYA5Gn+d6mr2wfEcqLG/Ztl8HA6acOLjA54zTITx2PnwRERERkfHPth3sVKhuJxwc28VxXFzHHX4/tc3ed3AdcOxU31T/wfOcg17PHvggIDYQ4Hsz7ZNxJ7X1nuciyDd9+4fmqQV+93tu+Yf2yQzZs66RKonjzwjt07Xmg75UwK8yN5lc18VOOsT7M76R0e99+yLen/S+iTHQFvX6xPu9b2F4C0mb7+kbDcN+S+Jg35A41LWHvZ55wHPSi2vLISkcH2EKx+X9itkx6rvrqeuuo66r/l+gCAAAGMNJREFUjt3du9OPhp6GdC3xASdVnsQNi2/g1Kmn5mjE41Oszwu/u1uidLX2p/a9bVdrlGRs6IJCpmVQVeFQ6TZQunsdvk0v4fYNra/tq57qBeELFxFetIjQ/OMxQ6HReFtpruvS2hunIRV6Zwbg9R1eCN7elzjoNSJhf3om+EAgPjUS0g/YsaineXBW+c6XoGX7fh0MmLpwMCyfvhTC5WDmweKnIiIiIpL3bNvxZrzHUmVq4ra3nwrWE/HBIN3bOuk+A7PmM8P2gRn1dtLBTro4CQdnmG/Z5oTBYHAe9Ga/B4KDz9OP/UP1oJneH66vZWX/7eC6Lnj/A9dNbUm1ZR5jcM2BzP4D/1yZ/d2Ma6eOOY6bKjGUTAXXmWWHBgPtRFa4nSpFlOo7Hr/lMBIOFK4bBwneL7nlJHyB/FobTOH4CFM4LoejN9HL7u7dWeF3Xbe339TbROrHyrCCVpDpRdOZFZnFX8/7a06beprCymEkYjZdrf2p8Duasd9Pd2uUWF/ykNcIBx0KfTGKY02U7lpD8buv4LOza4WbBQWETjzRK5GyeBHhhQvxTZ58tN5WWsJ2aOyMDgm8B0Lwho5+oomhM7/3VxzyMa007D3KwlSXhqkpK2DBtBJqywv0/63xqrspOyxvfWtoH9MHhZVQlPmo8h6Fkwf3iyohWOytqioiIiIiIsNyHW+Gsm272Ong3Hs4ydSxrHY343j2czsxtE+6PZGqUR+zB8P+1ONoMozBsHu88gctAiGLQNiHP+RL7weCFv5w6nnI5x0PegHxIb/V4HCQb0g4Q78tMdz19ts/4LclhnudEQ7+P/vTD+DzKxw/EK2kJnKYXNelM9bpzf5Ohd67uwZD8LZo20HPL/QXUltcS01xDTXFNdSWDO5XFlRiGprtaSccutu8siddrVG6U7O/u1q8/f7ug8+KBggYcQqcbsKxVoLdTQQ76gn17SMcbSMUbcPcb5Y+hkFwzhxCixamZ4YHjz0Gwxq5HxwJ26E/YRON23T0J6hv72fPQPCdEYI3dUU51MQEw4DK4iDVGeH3/kF4SWjsLPgpI6i4Ck68zHsAdDemgvIXvVIsbe+Ak4TuBu9xKL7QAcLzzFC90gvbAwVH972JiIiIiIxBhml4tcwBwqP/+q7jkkwF54nU4qyJmJOxb6cXfD30Y/CcgQVeR3W6rAEGgOEt7BoI+giErQME2pmhtjcTPhBOPQ8N7vuDFoY5MSf8pAP2Q4XwwwbuTuq4N0t//28ISLa8mjl+//3388Mf/pDGxkYWLVrET3/6U0499dBlKzRzfOJLOAn6En30J/vpS/bR1t82ZPb37q7ddCe6D3qdsmAZNSU1WSH4QBBeFizLmxm7rut9qj5Y42uw3lciltHWb9PTkSqD0tJPb2f8kNf2OVHC0VZCvc2Eom3efrSVUH8r4WgrljPMNUwTq6Ic36TJ+CZPwjd5MoHaGQQWLMCddzyxYJho3CGatOmP2/Qn7HSYPbDfH7eJJmyiCeegx/sz+gwcTx7BV/ECPpNppWGqS0OpbXYIPiUSIujLr0985TAl49C7D3qaBrc9TV55lvQjdSzWdWTXDhRnB+aZAXrBJPCHvYcv5D38IfCFB7eWX7PURURERETGCNv2ytEkU99MHsgqDINUiD2QZA+0Galgm8H+6bA7o39mAD5wTH8HSA6orMowHnvsMa6++moeeughli1bxj333MOvf/1rtm3bRmVl5UHPVTg+driumw6w+xPeti/ZR1/C2/Yn+9P7+2/7E/3pc9PHUvsJ59AzkgdUFlSmw+/M2d81xTUUB4qP4rs/+ry6XwdeuCLenyTelyDeFyfWGyfelxjsH/U+wY7HHRKJ9/4JtGXHCPW3ZATfLalZ314I7k/2p/vaPj/9xaX0FnmP7oIIXQURugpKaA9HaA8W0xospj1QSNQxiCcd4rZDPOkQS9okRrlGmWlAccifDrynlw2E4AWpWd8hJhUGMSfoJ98yhsT7oHe/0DwzPM8M1pPRQ1/vUAwzOyz3BQfD9PQ2M1AP7XdsuG0QTL9XSsb0gWll7B/Oc5/qs4uIiIiIiExACseHsWzZMpYuXcp9990HgOM41NTUcNNNN/HVr371oOfmczi++fXXeek//4CLm1qYwcXBxcX7dDHdjpNao2HguZuqse319xZyyD42UIPbdZ10uzPQnurvYGM7NrabxHGT2By6pvT7YWBiGT78RoCQWUSBr5CQWUTYKiJsFhAyCzENK3NFiazFJ1L/KKQbMxeoyCzkldVn4FKpfw/H6+s4g4tXuK6R2qau4+KV3xhox0j1NVKXTD3HwHW9j29dBrfpNmOgzcQxfLjGCJfjcB0sO4YvGcVnR7GS/d421WbZUYKxTkLRVsJRLxD3J3ro8YdpDxXTFiymPVRCW6gkY7849byEXn9oRGajGgaE/RZhv0XIbxHym4QDg8/Dfiv7ecAi5LMIB8ystvQ19j/XbxEKmAQsrTAu44zrQqw7IzjfP0xvhr4WSEQh2T90O+YZRxioW97DsLzAP+thHEbbcH2O4Dg5vn8YWdOH3seW93n+SI3jENcREREREZkIjvuo93dMHlHN8f3E43HWr1/P7bffnm4zTZNzzz2X1atXD+kfi8WIxQYX6OvqOsKvn08gb7y8AWfvKVlt+TbPzgX6Uo9xxdhvewRMJ4GVFWjH0s+9ULsfXzKKacdwnQSum8B1kjgksZ0ktrdHEpeE5SNu+ulLbeOWj4Tlw/YFsIM++koj9BTW0ltUSn9RKdHiUoxQiIBlEvClHqn9Mp/JlIzn3jELv88gYJkEfdnt+58/cNyf6lsQ8ALsoE+htciwDANCJd5j0rFHdq7rgh2HRL83+/ywt1Fve8i+Ma/GupMEx87YH+a5e6CFjFxwEt5DRERERERkIvpaI5g5KJo/TuRFON7S0oJt21RVVWW1V1VV8eabbw7pf/fdd/PNb35ztIY3pkUqyuns3znsMeMgzw7svfZLPXe9/dGLMff/YsWBn7t4o3SP4Jw0w8uRvMl03vx5Y6CvMTi93DDcwWsY3nPXMDBS/dI1wDInvhmA6dX5MlL7DNQHS7VjGph+EyNkYQb9mOEgRjCIGSzCCEzCDAWwQkHMYBBfKIgVCGKFg/gDAXymgc8y8VsGPjO1tUx8poHfMvFZBn7T2w7sq2yISB4wDK/0iS+Y65Gkvo4zTIDuHiJUH/J84DznAA/3IMfeZx/nQAH/qP0jDn51KfPbU0Paj2Q73HWPdPt+x3Gg80VEREREJggj36a5Hpm8CMeP1O23386KFSvSz7u6uqipqcnhiHLn/Mv+Ei7L9ShERETeB8MAy+c9RERERERERFLy4q/ESZMmYVkWTU1NWe1NTU1MmTJlSP9gMEgwOAZmuomIiIiIiIiIiIjIUZEX8+oDgQAnn3wyzzzzTLrNcRyeeeYZli9fnsORiYiIiIiIiIiIiEgu5MXMcYAVK1ZwzTXXcMopp3Dqqadyzz330Nvby7XXXpvroYmIiIiIiIiIiIjIKMubcPyKK65g37593HHHHTQ2NrJ48WKeeuqpIYt0ioiIiIiIiIiIiMjEZ7iu6+Z6EGNdV1cXkUiEzs5OSkpKcj0cERERERERERERERnGkWS5eVFzXEREREREREREREQkk8JxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO/4cj2A8cB1XQC6urpyPBIREREREREREREROZCBDHcg0z0YheOHobu7G4Campocj0REREREREREREREDqW7u5tIJHLQPoZ7OBF6nnMch4aGBoqLizEMI9fDGXVdXV3U1NSwe/duSkpKcj0cEZFD0n1LRMYb3bdEZLzRfUtExhvdt/KH67p0d3dTXV2NaR68qrhmjh8G0zSZPn16roeRcyUlJbp5iMi4ovuWiIw3um+JyHij+5aIjDe6b+WHQ80YH6AFOUVEREREREREREQk7ygcFxEREREREREREZG8Y91111135XoQMvZZlsUHP/hBfD5V4hGR8UH3LREZb3TfEpHxRvctERlvdN+S/WlBThERERERERERERHJOyqrIiIiIiIiIiIiIiJ5R+G4iIiIiIiIiIiIiOQdheMiIiIiIiIiIiIikncUjouIiIiIiIiIiIhI3lE4Lgd1//33M3PmTEKhEMuWLWPNmjW5HpKISNoLL7zAhRdeSHV1NYZh8H/+z//JOu66LnfccQdTp04lHA5z7rnn8tZbb+VotCKS7+6++26WLl1KcXExlZWVXHTRRWzbti2rTzQa5YYbbqCiooKioiIuvfRSmpqacjRiEcl3Dz74IAsXLqSkpISSkhKWL1/OH//4x/Rx3bNEZKz73ve+h2EY3Hzzzek23bskk8JxOaDHHnuMFStWcOedd/Laa6+xaNEizj//fJqbm3M9NBERAHp7e1m0aBH333//sMd/8IMfcO+99/LQQw/x6quvUlhYyPnnn080Gh3lkYqIwPPPP88NN9zAK6+8wp/+9CcSiQQf/vCH6e3tTff50pe+xO9+9zt+/etf8/zzz9PQ0MAll1ySw1GLSD6bPn063/ve91i/fj3r1q3jQx/6EB//+MfZsmULoHuWiIxta9eu5Wc/+xkLFy7Mate9SzIZruu6uR6EjE3Lli1j6dKl3HfffQA4jkNNTQ033XQTX/3qV3M8OhGRbIZh8MQTT3DRRRcB3qzx6upqvvzlL3PLLbcA0NnZSVVVFStXruQTn/hELocrIsK+ffuorKzk+eef5+yzz6azs5PJkyfz6KOPctlllwHw5ptvcvzxx7N69WpOO+20HI9YRATKy8v54Q9/yGWXXaZ7loiMWT09PZx00kk88MADfPvb32bx4sXcc889+n1LhtDMcRlWPB5n/fr1nHvuuek20zQ599xzWb16dQ5HJiJyeHbs2EFjY2PWfSwSibBs2TLdx0RkTOjs7AS8oAlg/fr1JBKJrPvWcccdR21tre5bIpJztm2zatUqent7Wb58ue5ZIjKm3XDDDXz0ox/NukeBft+SoXy5HoCMTS0tLdi2TVVVVVZ7VVUVb775Zo5GJSJy+BobGwGGvY8NHBMRyRXHcbj55ps544wzWLBgAeDdtwKBAKWlpVl9dd8SkVzavHkzy5cvJxqNUlRUxBNPPMH8+fPZsGGD7lkiMiatWrWK1157jbVr1w45pt+3ZH8Kx0VERERERtkNN9zA66+/zksvvZTroYiIHNS8efPYsGEDnZ2dPP7441xzzTU8//zzuR6WiMiwdu/ezd///d/zpz/9iVAolOvhyDigsioyrEmTJmFZ1pDVepuampgyZUqORiUicvgG7lW6j4nIWHPjjTfy5JNP8uyzzzJ9+vR0+5QpU4jH43R0dGT1131LRHIpEAhw7LHHcvLJJ3P33XezaNEifvKTn+ieJSJj0vr162lubuakk07C5/Ph8/l4/vnnuffee/H5fFRVVeneJVkUjsuwAoEAJ598Ms8880y6zXEcnnnmGZYvX57DkYmIHJ5Zs2YxZcqUrPtYV1cXr776qu5jIpITruty44038sQTT/C///u/zJo1K+v4ySefjN/vz7pvbdu2jbq6Ot23RGTMcByHWCyme5aIjEl/8Rd/webNm9mwYUP6ccopp3DVVVel93XvkkwqqyIHtGLFCq655hpOOeUUTj31VO655x56e3u59tprcz00ERHAW4H87bffTj/fsWMHGzZsoLy8nNraWm6++Wa+/e1vM2fOHGbNmsU3vvENqqurueiii3I4ahHJVzfccAOPPvoov/nNbyguLk7XtYxEIoTDYSKRCJ/5zGdYsWIF5eXllJSUcNNNN7F8+XJOO+20HI9eRPLR7bffzkc+8hFqa2vp7u7m0Ucf5bnnnuPpp5/WPUtExqTi4uL0ei4DCgsLqaioSLfr3iWZFI7LAV1xxRXs27ePO+64g8bGRhYvXsxTTz01ZHE7EZFcWbduHeecc076+YoVKwC45pprWLlyJbfeeiu9vb1cf/31dHR0cOaZZ/LUU0+p9pyI5MSDDz4IwAc/+MGs9kceeYRPf/rTAPz4xz/GNE0uvfRSYrEY559/Pg888MAoj1RExNPc3MzVV1/N3r17iUQiLFy4kKeffprzzjsP0D1LRMYn3bskk+G6rpvrQYiIiIiIiIiIiIiIjCbVHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERERERERGRvKNwXERERERERERERETyjsJxEREREREREREREck7CsdFREREREREREREJO8oHBcRERERGWeee+45DMOgo6MjJ6//zDPPcPzxx2Pb9iH7PvXUUyxevBjHcUZhZCIiIiIih0/huIiIiIjIGGIYxkEfd911F6effjp79+4lEonkZIy33norX//617Es65B9L7jgAvx+P//2b/82CiMTERERETl8huu6bq4HISIiIiIinsbGxvT+Y489xh133MG2bdvSbUVFRRQVFeViaAC89NJL/NVf/RWNjY2EQqHDOuf+++9n5cqVrF279iiPTkRERETk8GnmuIiIiIjIGDJlypT0IxKJYBhGVltRUdGQsiorV66ktLSUJ598knnz5lFQUMBll11GX18f//Iv/8LMmTMpKyvji1/8YlYplFgsxi233MK0adMoLCxk2bJlPPfccwcd36pVqzjvvPOygvGNGzdyzjnnUFxcTElJCSeffDLr1q1LH7/wwgtZt24d77zzzsj+Y4mIiIiIvA++XA9ARERERETev76+Pu69915WrVpFd3c3l1xyCRdffDGlpaX84Q9/4N133+XSSy/ljDPO4IorrgDgxhtvZOvWraxatYrq6mqeeOIJLrjgAjZv3sycOXOGfZ0XX3yRK6+8MqvtqquuYsmSJTz44INYlsWGDRvw+/3p47W1tVRVVfHiiy9yzDHHHL1/BBERERGRI6BwXERERERkAkgkEjz44IPp8Pmyyy7jV7/6FU1NTRQVFTF//nzOOeccnn32Wa644grq6up45JFHqKuro7q6GoBbbrmFp556ikceeYTvfve7w77Orl270v0H1NXV8ZWvfIXjjjsOYNhgvbq6ml27do3kWxYREREReV8UjouIiIiITAAFBQVZs7KrqqqYOXNmVn3yqqoqmpubAdi8eTO2bTN37tys68RiMSoqKg74Ov39/UNqja9YsYK//du/5Ve/+hXnnnsul19++ZAZ4uFwmL6+vvf8/kRERERERprCcRERERGRCSCzjAmAYRjDtjmOA0BPTw+WZbF+/Xosy8rqd7AFPydNmkR7e3tW21133cWVV17J73//e/74xz9y5513smrVKi6++OJ0n7a2NiZPnvye3puIiIiIyNGgcFxEREREJA8tWbIE27Zpbm7mrLPOOqLztm7dOqR97ty5zJ07ly996Ut88pOf5JFHHkmH49FolHfeeYclS5aM2PhFRERERN4vM9cDEBERERGR0Td37lyuuuoqrr76av7rv/6LHTt2sGbNGu6++25+//vfH/C8888/n5deein9vL+/nxtvvJHnnnuOXbt28fLLL7N27VqOP/74dJ9XXnmFYDDI8uXLj+p7EhERERE5EgrHRURERETy1COPPMLVV1/Nl7/8ZebNm8dFF13E2rX/r737t20QiAI4/CJ3DAFyY8/CAm5O8hZUVCyBxAQME1oKdwwAjRcgnbskTpF/uu+r76R37U9Putcoy/LdOymlmOc5brdbREQcDofYti2u12ucTqe4XC5R13V0Xfe4M45jpJSiKIpvfxMAADzrZd/3/beHAAAA/o+maeJ+v8cwDJ+eXdc1zudzTNMUx+PxB6YDAIDn2BwHAAC+pG3bqKrq8bnnR5Zlib7vhXEAAP4cm+MAAAAAAGTH5jgAAAAAANkRxwEAAAAAyI44DgAAAABAdsRxAAAAAACyI44DAAAAAJAdcRwAAAAAgOyI4wAAAAAAZEccBwAAAAAgO+I4AAAAAADZeQNwKkPTy8ziggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZxOdf/H8dc1+z5jGTO2MWQb3cpSGBWKGpHbErJkyVLJLqXSQoo2JekOpUEoVFR2KSVbInJbwvzGblCYMcw+398fc1+nucxixnZh3s/H4zxcc77ne87nnOtc86j3fK/vsRljDCIiIiIiIiIiIiIiRYiLswsQEREREREREREREbnWFI6LiIiIiIiIiIiISJGjcFxEREREREREREREihyF4yIiIiIiIiIiIiJS5CgcFxEREREREREREZEiR+G4iIiIiIiIiIiIiBQ5CsdFREREREREREREpMhROC4iIiIiIiIiIiIiRY7CcREREREREREREREpchSOi4iIiMhVN2rUKGw2G02aNHF2KTe1ZcuWYbPZ8PLyuqL73b17NzabDZvNRlxc3DXvL9e3yZMnY7PZqF69urNLERERESkUheMiIiIi2dhD3IIucvNKSkoiMDAQm83GgAEDCtxvzZo11v3x9ddfX8UKxS4lJYWpU6cSFRVFmTJl8PT0JDAwkKpVq3LfffcxcuRIli9fTkpKSq79ExISePfdd7n33nspVaoUHh4eFC9enIiICJo3b86YMWNYvXo1mZmZF63lvffes97/pk2bFvpczpw5w4QJE2jZsiVhYWH4+Pjg7e1N+fLladmyJe+//z4nTpzIs/+SJUvo1KkTt9xyCz4+Pvj4+FCxYkUiIyMZMGAAc+fO5e+//y50XSIiIiI3IzdnFyAiIiJyvQoJCXF2CeJE3t7edO7cmSlTpjBnzhzGjx+Pp6fnRft9+umnAAQHB9OqVaurXaYDPz8/qlWrVqA6bxaxsbG0aNGC3bt3W+s8PDxwdXUlJiaGvXv38uOPPzJ27FjWr19PgwYNHPpv3ryZf//73xw9etRa5+3tTWZmJn/++Se7d+9m+fLlABw7dozQ0NB865k2bZr1+scffyQ2NpaKFSsW6Fw++ugjnn/+eeLj4611Pj4+eHh4cPjwYQ4fPsySJUt4/vnnGT16NM8884y1XVJSEp07d+abb76x1rm4uBAUFMSRI0fYv38/GzZs4MMPP2TcuHE899xzBapJRERE5GamkeMiIiIieYiLi7voIje33r17A3D69GkWLlx40e0TExOZP38+AN26dcPd3f2q1nehu+++m927d7Nt27ZrelxnSUtLo1WrVuzevRs/Pz/Gjh3L4cOHSU5O5tSpU5w7d47169fz0ksv5RpQnz59mpYtW3L06FFCQkKYNGkSJ0+e5Pz585w5c4aEhAR+/PFHnn766QL9sWzjxo3s2LGDkJAQOnbsiDGG6OjoAp3L008/zVNPPUV8fDw1a9Zk1qxZnDx5knPnznHmzBnOnTvHkiVL6Ny5MykpKXz11VcO/QcPHmwF448//jjbt28nNTWVv//+m+TkZHbu3Mn7779PgwYN9K0XERERkf9ROC4iIiIikoc777yTmjVrAv+MCM/PvHnzOHfuHPBPsC5Xz7Jly9ixYwcAn332Gc8//zxly5a1wl8vLy8aNGjAq6++yr59+6hdu7ZD/1mzZnH8+HFrX/3796dkyZJWu5+fH02aNOGdd97h0KFDBAcH51uPfdR4586d6dWrFwDTp0+/6HQsM2bM4N133wXg0UcfZfPmzXTt2tWhFh8fHx588EHmzJnDb7/9RrVq1ay2U6dOWSH84MGDmTJlCv/6179wdXUFskaQR0REMGjQINavX8+gQYPyrUdERESkqFA4LiIiInKF9OvXD5vNRlBQEPv37891m48++gibzYabmxs///yzQ9t///tfRo0axX333cctt9yCt7c3AQEB1K5dmxdffJG//vorz2OHh4djs9mYPn0658+fZ9SoUURERODj40OZMmXo1q0bsbGx1vZ//fUXI0aMoGrVqnh7exMaGkqfPn2soPBCFz5Qc968eTRu3JjixYvj6+tL3bp1mTRpEhkZGYW7aNmcPHmSF198kdq1axMYGIiXlxeVKlWid+/eVgDqDPaQ+/vvv+fQoUP5bmsP0Bs0aECNGjUc2vbt28e4ceOIioqiSpUq+Pr64ufnx6233sqwYcM4fPhwnvu1j/Z94403SElJ4c0336ROnTrWnOgbNmwA8n8gZ2ZmJitXrmTAgAHUr1+fsmXL4uHhQcmSJbn33nv5+OOPSU9PL9A12bVrF926daNs2bJ4enpSoUIF+vfvf1nfpsjIyGDGjBk0b97cmvc7ODiY5s2bM2/ePIwxOfps3boVAJvNdtEpbFxcXHJMN2PvHxYWRq1atfLt7+7uboXNuTl37hxffPEFAD169KBZs2aUKVOGQ4cOsXLlyjz7JScnM2LECABq1arFtGnTLvqNg9q1azuMSN+xY4f13rVu3TrfvpA1bUxeVq5cSbt27ShdurR1f9x///189tlnBZpzPbtq1aphs9l44YUX8t1uyZIl1u/F3O6hmJgYBg4cSEREBH5+fvj4+BAREZHv5+bCh4SuWLGCVq1aERoaiqurK08++WShzkVERERuUkZERERELK+88ooBzKX8Z9L58+fNrbfeagATGRlp0tLSHNq3b99uvLy8DGBefvnlHP0rVKhgHdvLy8sUL17c2Gw2a13ZsmXN7t27cz22ve+ECRNMzZo1rX14e3tb/UuXLm1iY2NNTEyMqVixogGMj4+P8fDwsLapUqWKiY+Pz/O6NG7c2Dz77LMGMDabzRQrVsy4uLhY/aOiokxycnK+/XOzcuVKExQUZO3H3d3d+Pr6Wj97eHiYGTNmFOBduPL++usv6xqNGTMmz+327Nlj1Tt16tQc7fXr13c4n+LFiztcu+LFi5uNGzfmum9735deesnceeedBjBubm7WNVu/fr0xxpilS5cawHh6eubYx65du6xjAcbf398EBAQ4rLvvvvtyff+y950/f7713vj7+1v3NGCCg4PNH3/8kW//Y8eO5Wg/ceKEiYyMdKglMDDQ4ef27dvn+Ey9+uqrVvvBgwdzf2Py0atXLwMYb29vk5KSUuj+2UVHRxvA1KxZ01pn/6x06NAhz34zZ850uLaX4ueff7b2MXPmzEvaR2Zmpnnqqaes/dg/366urg6f78TExBx9P/roIwOYatWqOawfM2aMAUxYWJjJzMzM89idOnUygGnevHmOtmnTphl3d3eH343Z77mgoCDz448/5lvTm2++6bC9u7u7eeKJJwp/kUREROSmo3BcREREJJvLCceNyQrA7YH0Cy+8YK3PHpzfddddJj09PUff7t27m+nTp5sDBw5Y61JSUsz3339v6tWrZwBTp06dXI9rD8eDgoJMeHi4WbFihcnIyDDp6elmxYoVJjg42ACmY8eOpl69eqZWrVpWoJqammrmzp1rfHx8DGBGjhyZ53WxB5YDBgwwJ06cMMYYEx8fb8aMGWMF+UOHDs2zf27h+B9//GFds759+5qdO3da1+fAgQNWYOfm5mY2bdqUz9W/ejp27GgAc8stt+QZ8j333HMGML6+viYhISFHe//+/c3kyZPNvn37rH2kpaWZdevWmaZNmxrAVKhQIdeQ1h6O+/n5mcDAQPPZZ5+ZpKQkY0xWsHz69GljTP7h+L59+0z37t3N4sWLzalTp6z18fHx5pNPPjEhISEGMM8//3yOvtnD7cDAQFOnTh3z22+/GWOMycjIMEuWLDFlypSxrtG5c+fy7H9hOJ6WlmYF43fccYdZunSpOX/+vDHGmLNnz5pPPvnElCxZ0gDmueeec+i7bNkyh+A2t+A9P5MnT7b69+jRw7qOl+Luu+82gHn77betdTt27LD+GPLXX3/l2q9Hjx7WH4Ts511Y8fHxxtPT0wAmPDzcbNmypdD7ePvtt61rMWDAAHP8+HFjTNZ78NZbb1kheY8ePXL0zSsc379/v/V7IbcA2xhjEhISrM//nDlzHNq+++47Y7PZjIeHhxk5cqQ5cOCAyczMNBkZGWbHjh2mTZs2BjDFihUzR48ezbUmHx8f4+LiYvr27WsOHz5sjMm652JiYgp9jUREROTmo3BcREREJJvs4XhISEi+y6BBg3Ldhz2UcXFxMT/88IMxxpgnnnjCCq+zh98FdfbsWSu8XLNmTY52ezju7e1t9u7dm6N92rRpDueVW1D30ksvWeHmhbJfl27duuVa44svvmiF2EeOHMm1f27h+H333ZdnKGs3aNAgA5jWrVvnuc3VtHz5cuv8cwv50tPTrXC4Z8+ehd5/WlqaqV69ep6jh7OPOl+xYkWe+8kvHL+YNWvWWOH3hSO0s4fbISEh5u+//87Rf+vWrcbNzc0AZuLEiXn2vzDAnjp1qgHMbbfdZs6ePZtrbevWrbPu7+zBfmZmpmnUqJG1bzc3N3PXXXeZYcOGmdmzZ5t9+/ble87nzp0z1apVs/p7enqapk2bmueee87Mnz/fClMvZvfu3QYwrq6uOULaunXrGsj6Vkdu7rjjjhwjzi+F/fNrX2699VbTt29fM3nyZLNly5Zc/yBnl5CQYH2L4LHHHst1m7feesva9/bt2x3a8grHjTGmcePG+e73008/tb6FkP2PA2lpadbvtby+NZKZmWmioqIMYEaMGJFrTYDp0qVLnucuIiIiRZvCcREREZFssofAF1tyG0Fp165dOwOYMmXKmClTplz2tAnG/DN6edy4cTna7CHSo48+mmvfw4cPWzW89NJLuW7zyy+/WNtcOHVC9uuSW/huTNboVfsI0AvD0bzC8djYWCvUzC1wtfvtt9+sUdn5hXxXS0ZGhgkLCzOA6d69e472xYsXW9fn559/vqRj2P8AMHjw4Bxt9nC8bt26+e7jcsJxY4z1zYDff//dYX32cDu/qWXs933Dhg3z7H9hOG4/tylTpuRbW+XKlQ1gFi5c6LA+ISHB9O3b1wrmL1wqVqxoxowZk2fwHhcXZ9q1a+cwhdGFIfMHH3yQ77Qr9ulTcpsWZOLEifmG3/YpjvKacqigMjMzzTvvvOMwPVH2JSgoyDzxxBNm//79OfrOnTvXQNZUKrm1G5P1LRb7CP7s34oxJv9w/JNPPjGACQgIyHVk/L333ptreG6/l8uWLZvvlCyzZs0ygKlVq1auNeUW5ouIiIjY6YGcIiIiInkwWQMJ8lymT5+eZ99PPvmEsLAwjh49yhNPPAFAnz59aN++fb7HXLRoEY888giVKlXC19cXm81mLfPmzQPI98GN9erVy3V9SEiI9frOO++86DZnzpzJdZvy5ctTuXLlXNsCAgKoW7cuAL/99lueNWa3du1aIOthkTVq1CA0NDTXpXnz5kDWQw///vvvAu37SnJxcaFnz54AfPnll5w9e9ah3f4gzqpVq3LPPffkuZ/Vq1fTrVs3qlWrhp+fn8P7O3HiRCD/9/euu+66rPNITk7mww8/5P7776d06dJ4eno61BAfH3/RGu67776Ltm3evDnXB2jmVs/mzZsBeP755/N8/0NDQzlw4ACA9a+dv78/U6dO5dChQ3z00Ud07dqV6tWr4+KS9b86sbGxvPTSS9SpUydHX8i677/66itiYmJ49913ad++PZUqVcJmswFZD7scOHAg99xzT66fi/T0dGbOnAlA9+7dc7R37twZd3d3tm/fzqZNmy56TS6VzWbj6aef5siRI8ybN49+/fpxxx13WA9nPXPmDFOmTKFmzZqsWLHCoa/981q5cmUqVKiQ6/49PDxo3Lixw/YF0aFDB7y9vUlISOCbb75xaDt06BCrV68Gcl47+++GkydPUrp06Tzvi4EDBwI57wu7wMBA/vWvfxW4XhERESlaFI6LiIiIXAXFihXjww8/tH6uVKkS77//fp7bZ2Zm0qVLF1q1asW8efOIjY0lNTWVYsWKERISQkhIiBVynTt3Ls/9+Pv757rezc2tUNukpaXluk3ZsmXzPHb29hMnTuS7nd3Ro0eBrPM/fvx4nstff/1l9Tl//nyB9r1u3bo8A7W5c+cWaB/ZPfbYY9hsNs6fP88XX3xhrf/rr7/47rvvAOjVq1ee/QcPHsy9997LrFmz2LNnD8nJyQ7vr6+vL5D/+1uqVKlC12137NgxateuzYABA/j++++Ji4vD1dWVkiVLWjXYA+X8asjvHrC3paSkkJCQcNGaTp48SXp6OgCnTp3K9x6w35N5vf+hoaE8+eSTzJo1i127dnHmzBm+/vprGjRoAMDevXt59NFH86ylYsWKDB06lPnz5xMTE8PJkyeZOXMmERERAPz6668MGDAgR78lS5YQFxdHQEAAbdq0ydFesmRJWrZsCfzzR5TsSpQoYZ3/leDj40OHDh34z3/+w6ZNm0hISODnn3+mS5cuAJw9e5aOHTs6/JHJ/nm92Oe7XLlyDtsXREBAAK1btwbgs88+c2ibPXs2xhgqVKhgBe929t8Nqamp+d4Xp0+fBvK+L4KDgwtcq4iIiBQ9CsdFRERErpKPP/7Yen3kyBH27duX57bTpk3j888/x9XVlZdffpm9e/eSkpLCqVOniIuLIy4uzhp1XpARuTeKjIwMIGv07sVG6tuX8PDwAu07v1AtKSmp0LWGh4fTtGlTAKKjo631s2fPJjU1FVdX11xHDgN899131sjwwYMHs2PHjhzvb79+/YD8319XV9dC1203YMAAdu/eTalSpZg5cybHjx/n/PnznDx50qqhePHiF63hSrK//wA//vhjgd7/5557rkD79vf3p23btvzyyy80bNgQgF9++YXdu3cXqH+JEiXo1q0bGzdu5JZbbgFg7ty5Ob41MG3aNAASEhLw8fFxGIlvXxYuXAjA559/nuPeu/XWWwHYvXs3ycnJBaqtMNzd3bnnnnuYPXs2zz77LADx8fHMnz//ih8rL/bPxYoVKzh+/Li13h6Wd+3a1Rqpb2e/Nxo3blyg+yKva3c5nxkRERG5+SkcFxEREbkKJk2axLfffourqys1atQgJSWFTp065Tm60T4SuU+fPowePZrKlStbo3jt4uLirnrdF3PkyJECtRd0hHNoaCiQNfo6v9HKl6JJkyZ5Bmn2KVIKq3fv3gCsX7/eClntQXmLFi0oXbp0rv3s72/r1q2ZMGECNWrUyBHaXc339/z589bo9ilTptCtW7cc71FKSkqe0+lkl989YG/z9PQkICDgovsqVaqUFYrmNS3G5XJ1dbXeN4A///yzUP39/f2tUdfp6en83//9n9UWFxfHkiVLCryv+Ph4vvzyS4d19j+4pKWlsWjRokLVVlj2KZ7A8TrY74X8ptPJ3l7YbzA88MADhISEkJ6ezueffw7Ali1b2LlzJ5D7dDT23w1X674QERERAYXjIiIiIlfc9u3beeaZZwB4+eWXWbJkCUFBQezatYuhQ4fm2ufQoUMA1K5dO9f2xMRENm7ceHUKLoRDhw4RExOTa9vZs2et+aPvuOOOAu3PPod2RkYGS5cuvTJFXkVt27a1Rld/+umnbN68mW3btgE4BLAXutj7m5GRYc29fDXExcVZ05LkVcPq1autKU7y8+OPP160rW7dujlGAufGx8fHqsce3l8Nfn5+1mtPT88r1n/GjBmkp6dTrlw5zp49m+9iD6YvnFqlffv21nz/r7/+ep5TGl0oMzPzip2H/fMaExOTZxidlpbGTz/9BOT93IK8uLq6Wn9gsI8Wt/9br149qlWrlqOP/XfD/v37+e9//1uo44mIiIgUlMJxERERkSsoKSmJTp06kZyczN13383IkSOpUKECU6dOBWDq1Kl89dVXOfoFBgYCWEHrhcaMGZNjOgdnGTNmTK7rx48fT1JSEm5ubjz88MMF2leVKlVo0qQJACNHjrQeCJmXKzUv86Xy9PSka9euQFa4Z586JyQkxJpXOjcXe38nTpx40VG7l8N+/LxqSE1N5aWXXirQviZNmmTN85zd9u3brQcuPvLIIwWu7fHHHwdgwYIFfP/99/lue+H7v23btouOuDfGWA/MdHFxoVatWlbbhg0bLnrPpaWlWaOdAwMDqVSpktVmD7rbt2+Pn59fvkunTp0A+Omnnxz+wOTt7c24ceMA2Lp1K7169bpoQP7HH384zG8fFxeX572V3YwZM6zXderUsV63aNGCgIAAjDGMHj06174ffPCBNfe//VwKwz46fMuWLfzxxx/WNc1rKqKoqCjCwsIAGDJkyEX/cOPs3w0iIiJyY1I4LiIiInIFDR06lJ07dxIUFMTs2bOtqTM6dOhgjSzu27evNZLYrnnz5kDWPOVTp04lNTUVyAq9hg4dyltvvWU9uM+ZAgMDmTFjBoMHD7aCsrNnzzJ27FheffVVAPr370+ZMmUKvM8PPvgAPz8/9uzZQ4MGDfjmm28c5g8+cuQIn332GU2bNmXEiBFX9oQugf19jIuLs8Lx7t27OzzQ9EL293fBggW8+eab1vQ6p06dYvTo0QwfPvyqvr8lSpSwRgcPGjSIn3/+2ZpXfOvWrURFRbFjxw68vb0vuq+kpCQeeOABfv/9dyBrBPOyZcto0aIF6enpVKpUKd9R9Bfq1asXjRo1IjMzk1atWvHGG284BN6JiYmsWrWKJ554wno4pt3KlSsJDw+nc+fOfP311w79kpOT+emnn2jZsiWLFy8GoEuXLtZ0HQCzZs0iLCyMvn37smTJEoeA9dy5cyxatIhGjRqxdetWAAYOHIiHhwcAa9asYc+ePQB07NjxoufZqFEja279C0ePP/bYYwwaNMiqqW7dusyZM8fhoZlJSUmsXLmS7t27U6dOHYe50w8fPkytWrW47777+Pjjj9m7d6/1/qanp7Nz504GDhxozddeuXJl/v3vf1v9/fz8rD+OREdHM3DgQE6ePGldh/Hjx1vzlffo0YN//etfFz3fC9WqVcvq17t3b44fP467u3ueQbuHhweTJ0/GxcWFVatWce+99+b4dsO+ffv48MMPqVOnTq4POxURERG5KCMiIiIilldeecUABjAhISEXXdauXWv1/eqrr6y+8+fPz7Hvc+fOmerVqxvA3HPPPSY9Pd1qO336tNUGGBcXFxMUFGRsNpsBzBNPPGF69OhhANOjR48c+65QoYIBTHR0dJ7nZt/3jz/+mGt7bGystU1sbGyu16Vx48bm2WefNYCx2WymWLFixtXV1erXrFkzk5SUlOd1bdy4ca7H/uWXX0xoaKi1H1dXV1OiRAnj7e1trQNMnz598jy/a6lu3boOde3atSvf7ZOTk039+vWt7e3Xzv7+tm3b1jzzzDMGMFFRUTn62/uOGzcu3+MsXbrUAMbT0zNH27p16xyup5eXl/Hz8zOAcXd3N3PnzjUhISEGMJ9//rlD3127djnc276+vgYw/v7+DvssUaKE2bp1a45jZ+9/7NixHO2nTp0yUVFRDtc0MDDQBAYGWtcIMH5+fg79JkyY4NAHMN7e3qZYsWI51rds2dIkJiY69B8yZEiO7Xx9fU1AQECO9b179zZpaWlWX/vnsXz58iYzMzPf98XuqaeeMoApW7asw+ffbuLEiTmO7evrawIDAx3W+fn5mQkTJlj9fv/99xz1uru7m+LFixsXFxeH9VWrVjV79uzJcezMzEyrvrw+3w888ECOa2iMMR999JEBTLVq1fI9/7feesuhltatW1/0ms2dO9e63+znVaJECePh4eGwr3feeeeSahIREZGiTSPHRURERPJw/Pjxiy72Ed6HDh2iT58+QNaoyPbt2+fYn4+PD59//jmenp6sWbOG1157zWoLCgpi3bp1DBkyhPDwcFxdXXFzc6NJkyZ8/vnnTJ48+dqcdAG8+eabfPHFF9x9990YY/Dw8KBWrVq8//77LFu2DC8vr0Lv86677mLPnj288847NGrUiKCgIM6cOYOrqysRERE8+uijzJ49mwkTJlyFMyq87COjGzZsSPXq1fPd3tPTkx9++IGRI0dSuXJla5R5w4YN+fjjj/nqq69yPID1SouMjGTjxo08/PDDlChRgoyMDAIDA+ncuTMbNmwo0OhngLvvvptNmzbRtWtX/P39ycjIoHz58vTr14/t27dz++23F7q2YsWKsXTpUr777jvat29P+fLlSU5OJjk5mXLlytG8eXPefPNNtm/f7tBv8ODBbNmyhXHjxtGqVSsqV66MzWYjISGBgIAAbr31Vnr27Mny5ctZtGgRvr6+Dv3Hjx/P2rVreeWVV4iKiqJChQpkZGRw7tw5goKCqF27Nk899RQbNmzgk08+sd63s2fPMn/+fCBrSpWCzK8O/4wwP3LkCMuXL8/RPnDgQPbv38/48eNp3rw55cqVIzMz07oOLVu2ZNKkSRw4cIDBgwdb/WrVqsXBgwf56KOP6NKlCzVr1sTb25v4+Hi8vLyoWLEibdq0ITo6mu3bt1OlSpUcx7bZbHz44YcsX76cNm3aUKpUKRITEwkMDKRp06bMmDGDpUuX5riGhdG1a1eHB9HmNaVKdh07dmTfvn289NJL3HHHHfj6+nLmzBm8vb2pVasWTzzxBN9++6018l5ERESkMGzG/O/7diIiIiIieRg1ahSjR4+mcePGV/XBkSIiIiIiIteKRo6LiIiIiIiIiIiISJGjcFxEREREREREREREihyF4yIiIiIiIiIiIiJS5CgcFxEREREREREREZEiRw/kFBEREREREREREZEiRyPHRURERERERERERKTIcXN2ATeCzMxMjh49ir+/PzabzdnliIiIiIiIiIiIiEgujDGcPXuWMmXK4OKS/9hwheMFcPToUcqXL+/sMkRERERERERERESkAA4dOkS5cuXy3UbheAH4+/sDWRc0ICDAydWIiIiIiIiIiIiISG4SEhIoX768lenmR+F4AdinUgkICFA4LiIiIiIiIiIiInKdK8j02Hogp4iIiIiIiIiIiIgUOQrHRURERERERERERKTIUTguIiIiIiIiIiIiIkWO5hwXERERERERERGR60JGRgZpaWnOLkOuc+7u7ri6ul72fhSOi4iIiIiIiIiIiNMlJiZy+PBhjDHOLkWuc20zbzgAACAASURBVDabjXLlyuHn53dZ+1E4LiIiIiIiIiIiIk6VkZHB4cOH8fHxITg4GJvN5uyS5DpljOHkyZMcPnyYKlWqXNYIcoXjIiIiIiIiIiIi4lRpaWkYYwgODsbb29vZ5ch1Ljg4mP3795OWlnZZ4bgeyCkiIiIiIiIiIiLXBY0Yl4K4UveJwnERERERERERERERKXIUjouIiIiIiIiIiIhIkaNwXEREREREREREROQKatKkCUOGDLnhj3GzUzguIiIiIiIiIiIiIkWOwnERERERERERERERKXIUjouIiIiIiIiIiMh1xRjD+dR0pyzGmELVeu7cObp3746fnx+lS5dm/PjxDu0pKSkMHz6csmXL4uvrS/369Vm9erXV/vfff9O5c2fKli2Lj48PNWvW5PPPPy/UMeTSuDm7ABEREREREREREZHsktIyqPHycqcce+erUfh4FDw2feaZZ/jpp5/45ptvKFWqFC+88AJbtmyhVq1aAAwYMICdO3fyxRdfUKZMGRYsWEDz5s3Zvn07VapUITk5mbp16zJixAgCAgJYvHgx3bp145ZbbqFevXoFOoZcGoXjIiIiIiIiIiIiIpcgMTGRadOmMWvWLJo2bQrAjBkzKFeuHAAHDx4kOjqagwcPUqZMGQCGDx/OsmXLiI6OZuzYsZQtW5bhw4db+xw4cCDLly9n3rx51KtX76LHkEuncFxERERERERERESuK97urux8Ncppxy6omJgYUlNTqV+/vrWuePHiVKtWDYDt27eTkZFB1apVHfqlpKRQokQJADIyMhg7dizz5s3jyJEjpKamkpKSgo+PT4GOIZdO4biIiIiIiIiIiIhcV2w2W6GmNrleJSYm4urqyubNm3F1dQzd/fz8AHj77bd5//33mTBhAjVr1sTX15chQ4aQmprqjJKLFD2QU0REREREREREROQS3HLLLbi7u7Nx40Zr3enTp9mzZw8AtWvXJiMjgxMnTlC5cmWHJTQ0FIC1a9fSunVrHn30UW6//XYqVapk9S/IMeTS3fh/fhERERERERERERFxAj8/P3r37s0zzzxDiRIlKFWqFCNHjsTFJWtMctWqVenatSvdu3dn/Pjx1K5dm5MnT7Jq1Spuu+02WrZsSZUqVfjyyy9Zt24dxYoV49133+X48ePUqFGjQMeQS6dwXEREREREREREROQSvf322yQmJtKqVSv8/f15+umniY+Pt9qjo6N57bXXePrppzly5AglS5akQYMGPPTQQwC8+OKL/N///R9RUVH4+Pjw+OOP06ZNG4d9XOwYcmlsxhjj7CKudwkJCQQGBhIfH09AQICzyxEREREREREREbmpJCcnExsbS8WKFfHy8nJ2OXKdy+9+KUyWq7H3IiIiIiIiIiIiIlLkKBwXERERERERERERkSJH4biIiIiIiIiIiIiIFDkKx0VERERERERERESkyFE4LiIiIiIiIiIiIiJFjsJxERERERERERERESlynBqOh4eHY7PZciz9+/cHIDk5mf79+1OiRAn8/Px4+OGHOX78uMM+Dh48SMuWLfHx8aFUqVI888wzpKenO2yzevVq6tSpg6enJ5UrV2b69OnX6hRFRERERERERERE5Drk1HB806ZNHDt2zFpWrlwJQIcOHQAYOnQo3333HfPnz+enn37i6NGjtGvXzuqfkZFBy5YtSU1NZd26dcyYMYPp06fz8ssvW9vExsbSsmVL7r33XrZu3cqQIUPo06cPy5cvv7YnKyIiIiIiIiIiIiLXDZsxxji7CLshQ4awaNEi9u7dS0JCAsHBwcyZM4f27dsDsHv3biIiIli/fj0NGjRg6dKlPPTQQxw9epSQkBAAJk+ezIgRIzh58iQeHh6MGDGCxYsX89///tc6TqdOnThz5gzLli0rUF0JCQkEBgYSHx9PQEDAlT/x69n5U/B/q8HDF9y9wd3nf/96g3u2da5uzq5URERERERERERuUMnJycTGxlKxYkW8vLycXY5c5/K7XwqT5V43iWZqaiqzZs1i2LBh2Gw2Nm/eTFpaGs2aNbO2qV69OmFhYVY4vn79emrWrGkF4wBRUVH069ePHTt2ULt2bdavX++wD/s2Q4YMybOWlJQUUlJSrJ8TEhKu4JneYP7eB18+dvHtXNz/Cc49fC4I0X0uCNOzrfPIZZ17tv5+IeDpd/XPU0REREREREREpJCaNGlCrVq1mDBhwlU7Rnh4OEOGDMk3zxw1ahQLFy5k69atV62Om9F1E44vXLiQM2fO0LNnTwDi4uLw8PAgKCjIYbuQkBDi4uKsbbIH4/Z2e1t+2yQkJJCUlIS3t3eOWsaNG8fo0aOvyHnd8Ny8oMLdkHYO0pIg7fz//k2C1HPA/754kJkGKfFZy5Vkc4XQmlChIYRFZv3rW/LKHkNEREREREREROQGYbPZWLBgAW3atHF2KTe86yYcnzZtGg8++CBlypRxdik8//zzDBs2zPo5ISGB8uXLO7EiJyp9Gzy2OPc2YyA9xTEwTzufbcm2LjX7uuxt5y7o+7/Q3eqXCMe2Zi0b/pN13JJV/wnKwyIhKAxstmt3TUREREREREREROSGd12E4wcOHOD777/n66+/ttaFhoaSmprKmTNnHEaPHz9+nNDQUGubX3/91WFfx48ft9rs/9rXZd8mICAg11HjAJ6ennh6el7+id3sbDZw98parpb4w3BgPRxcl/XvyV3w156sZcuMrG0Cyv4vLI+EsIYQXB1cnPqsWRERERERERERuRzGZA2cdAZ3n0INxMzMzOTZZ5/lk08+wcPDgyeffJJRo0YBcObMGYYPH84333xDSkoKd9xxB++99x633347ADExMQwbNowNGzZw7tw5IiIiGDduXI5pou3Cw8MBaNu2LQAVKlRg//79Vvtnn33GSy+9xOnTp3nwwQf5+OOP8ff3Z+bMmQwdOpSjR4865J5t2rTB39+fzz77rBAX6OZxXYTj0dHRlCpVipYtW1rr6tati7u7O6tWreLhhx8G4M8//+TgwYNERkYCEBkZyeuvv86JEycoVaoUACtXriQgIIAaNWpY2yxZssTheCtXrrT2Ide5wHJwW4esBbIeEHpwwz9h+bGtkHAE/vtl1gLgXQzKN/gnLC9TC1zdnXcOIiIiIiIiIiJSOGnnYayTZph44WjWc/IKaMaMGQwbNoyNGzeyfv16evbsyV133cX9999Phw4d8Pb2ZunSpQQGBjJlyhSaNm3Knj17KF68OImJibRo0YLXX38dT09PZs6cSatWrfjzzz8JCwvLcaxNmzZRqlQpoqOjad68Oa6urlZbTEwMCxcuZNGiRZw+fZqOHTvyxhtv8Prrr9OhQwcGDRrEt99+S4cOWTnbiRMnWLx4MStWrLj8a3aDcno4npmZSXR0ND169MDN7Z9yAgMD6d27N8OGDaN48eIEBAQwcOBAIiMjadCgAQAPPPAANWrUoFu3brz11lvExcXx4osv0r9/f+svIE8++SSTJk3i2WefpVevXvzwww/MmzePxYvzmCpErm8+xaF6i6wFsqZgOfwbHFwPB9bB4U2QdBr2LM1aANy8odwd/0zDUr5eoX7BiYiIiIiIiIiI5OW2227jlVdeAaBKlSpMmjSJVatW4e3tza+//sqJEyesrPKdd95h4cKFfPnllzz++OPcfvvt1ihygDFjxrBgwQK+/fZbBgwYkONYwcHBAAQFBVkzZ9hlZmYyffp0/P39AejWrRurVq3i9ddfx9vbmy5duhAdHW2F47NmzSIsLIwmTZpc8Wtyo3B6OP79999z8OBBevXqlaPtvffew8XFhYcffpiUlBSioqL4z3/+Y7W7urqyaNEi+vXrR2RkJL6+vvTo0YNXX33V2qZixYosXryYoUOH8v7771OuXDk++eQToqKirsn5yVXm4QuVGmctABlpcOyPf0aWH1wPSadg/5qsBbIe8ln69qyw3B6Y+xR33jmIiIiIiIiIiIgjd5+sEdzOOnYh3HbbbQ4/ly5dmhMnTrBt2zYSExMpUaKEQ3tSUhIxMTEAJCYmMmrUKBYvXsyxY8dIT08nKSmJgwcPFrrs8PBwKxjPXodd3759ufPOOzly5Ahly5Zl+vTp9OzZE1sRfpaf08PxBx54AGNMrm1eXl58+OGHfPjhh3n2r1ChQo5pUy7UpEkTfv/998uqU24Qru5Qrm7W0nAgZGZmzU+ePSyPPwRHt2Qt6ydl9QuufsFDPovoA1hFRERERERERK4HNtsN881/d3fH6XxtNhuZmZkkJiZSunRpVq9enaOP/RmLw4cPZ+XKlbzzzjtUrlwZb29v2rdvT2pq6hWrw6527drcfvvtzJw5kwceeIAdO3YU+dk1nB6Oi1xVLi5QqnrWcsf/vp1w5tA/07AcXA8nd/+zbI7O2qZMHeg6H3xLOq92ERERERERERG5YdWpU4e4uDjc3NysB2leaO3atfTs2dN6wGZiYqLDAzZz4+7uTkZGxiXV1KdPHyZMmMCRI0do1qwZ5csX7QGiLs4uQOSaCyoPt3WEVhOg/0Z45v+g0xyIHABl62ZNu3J0C6yb6OxKRURERERERETkBtWsWTMiIyNp06YNK1asYP/+/axbt46RI0fy22+/AVlzlH/99dds3bqVbdu20aVLF4fR3rkJDw9n1apVxMXFcfr06ULV1KVLFw4fPszHH3+c6zTXRY3CcRHfElC9JUS9Dn1/yArKATZNg/OnnFubiIiIiIiIiIjckGw2G0uWLKFRo0Y89thjVK1alU6dOnHgwAFCQkIAePfddylWrBgNGzakVatWREVFUadOnXz3O378eFauXEn58uWpXbt2oWoKDAzk4Ycfxs/PjzZt2lzyud0sbCavCb/FkpCQQGBgIPHx8QQEBDi7HLnajIHJd8Px/0KTF6DJCGdXJCIiIiIiIiJyU0tOTiY2NpaKFSvi5eXl7HJuak2bNuXWW29l4sQbd9aE/O6XwmS5GjkuciGbDe4ZlvV640eQkujcekRERERERERERC7T6dOnWbBgAatXr6Z///7OLue6oHBcJDc12kDxWyDp9D8P6RQREREREREREblB1a5dm549e/Lmm29SrVo1Z5dzXXBzdgEi1yUXV7h7KHw7ANZ9AHf2BXd9pUdERERERERERG5M+/fvd3YJ1x2NHBfJy22PQEA5SDwOW2c7uxoRERERERERERG5ghSOi+TFzQPuGpT1eu0EyEhzbj0iIiIiIiIiIiJyxSgcF8lPne7gGwxnDsJ/v3J2NSIiIiIiIiIiInKFKBwXyY+7NzR4Kuv1mnchM9O59YiIiIiIiIiIiMgVoXBc5GLu7AOegfDXn7B7kbOrERERERERERERkStA4bjIxXgFQP3Hs16veQeMcW49IiIiIiIiIiIictkUjosURP1+4O4Dx7ZBzCpnVyMiIiIiIiIiIteBJk2aMGTIkAJvv3v3bho0aICXlxe1atW6ipVdGpvNxsKFC51dxjXj5uwCRG4IviWg7mOw4UP4eTxUbubsikRERERERERExMm+/vpr3N3dC7z9K6+8gq+vL3/++Sd+fn5XpAabzcaCBQto06bNFdlfUaKR4yIF1XAAuHrAwXVwYJ2zqxEREREREREREScrXrw4/v7+Bd4+JiaGu+++mwoVKlCiRImrWJkUhMJxkYIKKAO1umS9XjPeubWIiIiIiIiIiNzEjDGcTzvvlMUU4nlz2adVCQ8PZ+zYsfTq1Qt/f3/CwsKYOnWqta3NZmPz5s28+uqr2Gw2Ro0aBcChQ4fo2LEjQUFBFC9enNatW7N//36H43z66afceuuteHp6Urp0aQYMGGAdE6Bt27bYbDbrZ4BvvvmGOnXq4OXlRaVKlRg9ejTp6elW+969e2nUqBFeXl7UqFGDlStXFuIdujloWhWRwrhrCGyZCfu+h6Nbocz1NzeUiIiIiIiIiMiNLik9ifpz6jvl2Bu7bMTH3eeS+o4fP54xY8bwwgsv8OWXX9KvXz8aN25MtWrVOHbsGM2aNaN58+YMHz4cPz8/0tLSiIqKIjIykjVr1uDm5sZrr71G8+bN+eOPP/Dw8OCjjz5i2LBhvPHGGzz44IPEx8ezdu1aADZt2kSpUqWIjo6mefPmuLq6ArBmzRq6d+/OxIkTueeee4iJieHxxx8HsqZ2yczMpF27doSEhLBx40bi4+MLNXf6zUIjx0UKo3hF+Ff7rNcaPS4iIiIiIiIiItm0aNGCp556isqVKzNixAhKlizJjz/+CEBoaChubm74+fkRGhqKn58fc+fOJTMzk08++YSaNWsSERFBdHQ0Bw8eZPXq1QC89tprPP300wwePJiqVaty5513WkF2cHAwAEFBQYSGhlo/jx49mueee44ePXpQqVIl7r//fsaMGcOUKVMA+P7779m9ezczZ87k9ttvp1GjRowdO/YaXy3n08hxkcK6Zxhsnwe7voOTf0JwNWdXJCIiIiIiIiJyU/F282Zjl41OO/aluu2226zXNpuN0NBQTpw4kef227ZtY9++fTnmLU9OTiYmJoYTJ05w9OhRmjZtWqg6tm3bxtq1a3n99detdRkZGSQnJ3P+/Hl27dpF+fLlKVOmjNUeGRlZqGPcDBSOixRWqQio/hDsXgS/vAdtJzu7IhERERERERGRm4rNZrvkqU2cyd3d3eFnm81GZmZmntsnJiZSt25dZs+enaMtODgYF5dLm/gjMTGR0aNH065duxxtXl5el7TPm5HCcZFLcc+wrHD8j3nQ5HkoVsHZFYmIiIiIiIiIyA2mTp06zJ07l1KlShEQEJDrNuHh4axatYp7770313Z3d3cyMjJy7PfPP/+kcuXKufaJiIjg0KFDHDt2jNKlSwOwYcOGyziTG5PmHBe5FGXrQqV7wWTA2vedXY2IiIiIiIiIiNyAunbtSsmSJWndujVr1qwhNjaW1atXM2jQIA4fPgzAqFGjGD9+PBMnTmTv3r1s2bKFDz74wNqHPTyPi4vj9OnTALz88svMnDmT0aNHs2PHDnbt2sUXX3zBiy++CECzZs2oWrUqPXr0YNu2baxZs4aRI0de+wvgZArHRS5Vo+FZ//4+C87GObcWERERERERERG54fj4+PDzzz8TFhZGu3btiIiIoHfv3iQnJ1sjyXv06MGECRP4z3/+w6233spDDz3E3r17rX2MHz+elStXUr58eWrXrg1AVFQUixYtYsWKFdx55500aNCA9957jwoVsmY/cHFxYcGCBSQlJVGvXj369OnjMD95UWEzxhhnF3G9S0hIIDAwkPj4+Dy/3iBFkDHwaRQc2ggNB8IDrzm7IhERERERERGRG1JycjKxsbFUrFhRc2LLReV3vxQmy9XIcZFLZbPBPf8bPb7pUzh/yrn1iIiIiIiIiIiISIEpHBe5HFXuh9CakHYONk5xdjUiIiIiIiIiIiJSQArHRS6HzQb3PJ31euNkSDnr3HpERERERERERESkQBSOi1yuiH9DiSqQfAZ++9TZ1YiIiIiIiIiIiEgBKBwXuVwurnD30KzX6yZBWrJz6xEREREREREREZGLUjguciXc1hECy8O5E/D7Z86uRkRERERERERERC5C4bjIleDqDncNznq9diJkpDm3HhEREREREREREcmXwnGRK6X2o+BbCuIPwvb5zq5GRERERERERERE8qFwXORKcfeGyP5Zr9e8C5kZzq1HRERERERERERE8qRwXORKuqMXeAXC33th13fOrkZEREREREREROSqmj59OkFBQc4u45IoHBe5krwCoP6TWa/XjAdjnFuPiIiIiIiIiIiI5ErhuMiVVv9JcPeFuD9g3/fOrkZERERERERERK6R1NRUZ5dwSW7Uui+XwnGRK82nONzxWNbrNeOdW4uIiIiIiIiIyA3IGEPm+fNOWUwhZgJo0qQJAwYMYMiQIZQsWZKoqCjOnDlDnz59CA4OJiAggPvuu49t27Y59Pvuu++488478fLyomTJkrRt29ZqO336NN27d6dYsWL4+Pjw4IMPsnfvXgASEhLw9vZm6dKlDvtbsGAB/v7+nD9/HoBDhw7RsWNHgoKCKF68OK1bt2b//v3W9j179qRNmza8/vrrlClThmrVqgGQkpLC8OHDKVu2LL6+vtSvX5/Vq1c7HGv69OmEhYXh4+ND27Zt+fvvvwt8va43bs4uQOSmFDkAfp0KB9fD/rUQfpezKxIRERERERERuWGYpCT+rFPXKceutmUzNh+fAm8/Y8YM+vXrx9q1awHo0KGDFWAHBgYyZcoUmjZtyp49eyhevDiLFy+mbdu2jBw5kpkzZ5KamsqSJUus/fXs2ZO9e/fy7bffEhAQwIgRI2jRogU7d+4kICCAhx56iDlz5vDggw9afWbPnk2bNm3w8fEhLS2NqKgoIiMjWbNmDW5ubrz22ms0b96cP/74Aw8PDwBWrVpFQEAAK1eutPYzYMAAdu7cyRdffEGZMmVYsGABzZs3Z/v27VSpUoWNGzfSu3dvxo0bR5s2bVi2bBmvvPLK5V5yp7GZwvwppIhKSEggMDCQ+Ph4AgICnF2O3CgWDYXfPoVbmkK3r51djYiIiIiIiIjIdSs5OZnY2FgqVqyIl5cXmefPOzUcdylgON6kSRMSEhLYsmULAL/88gstW7bkxIkTeHp6WttVrlyZZ599lscff5yGDRtSqVIlZs2alWN/e/fupWrVqqxdu5aGDRsC8Pfff1O+fHlmzJhBhw4dWLhwId26deP48eP4+PiQkJBASEiIFWTPmjWL1157jV27dmGz2YCsaVOCgoJYuHAhDzzwAD179mTZsmUcPHjQCssPHjxIpUqVOHjwIGXKlLFqatasGfXq1WPs2LF06dKF+Ph4Fi9ebLV36tSJZcuWcebMmUJe6Ut34f2SXWGyXI0cF7la7hoMm2dAzCo4sgXK1nF2RSIiIiIiIiIiNwSbtzfVtmx22rELo27df0L8bdu2kZiYSIkSJRy2SUpKIiYmBoCtW7fSt2/fXPe1a9cu3NzcqF+/vrWuRIkSVKtWjV27dgHQokUL3N3d+fbbb+nUqRNfffUVAQEBNGvWzKph3759+Pv7O+w7OTnZqgGgZs2aVjAOsH37djIyMqhatapDv5SUFOt8du3a5TAFDEBkZCTLli3L5wpdvxSOi1wtxcKhZgf44wv45V14JOdfA0VEREREREREJCebzVaoqU2cydfX13qdmJhI6dKlc8zTDRAUFASAdyHD9wt5eHjQvn175syZQ6dOnZgzZw6PPPIIbm5uVg1169Zl9uzZOfoGBwfnWre9n6urK5s3b8bV1dWhzc/P77Jqvl4pHBe5mu4emhWO7/oOTuyGUtWdXZGIiIiIiIiIiFwlderUIS4uDjc3N8LDw3Pd5rbbbmPVqlU89thjOdoiIiJIT09n48aNDtOq/Pnnn9SoUcParmvXrtx///3s2LGDH374gddee82hhrlz51KqVKlCTRFdu3ZtMjIyOHHiBPfcc0+u20RERLBx40aHdRs2bCjwMa43Ls4uQOSmVqo6RLTKev3Le86tRURERERERERErqpmzZoRGRlJmzZtWLFiBfv372fdunWMHDmS3377DYBXXnmFzz//nFdeeYVdu3axfft23nzzTQCqVKlC69at6du3L7/88gvbtm3j0UcfpWzZsrRu3do6TqNGjQgNDaVr165UrFjRYRqWrl27UrJkSVq3bs2aNWuIjY1l9erVDBo0iMOHD+dZe9WqVenatSvdu3fn66+/JjY2ll9//ZVx48ZZc4wPGjSIZcuW8c4777B3714mTZp0w06pAgrHRa6+e57O+nf7fDgV69xaRERERERERETkqrHZbCxZsoRGjRrx2GOPUbVqVTp16sSBAwcICQkBsh7iOX/+fL799ltq1arFfffdx6+//mrtIzo6mrp16/LQQw8RGRmJMYYlS5bg7u7ucJzOnTuzbds2unbt6lCDj48PP//8M2FhYbRr146IiAh69+5NcnLyRUeSR0dH0717d55++mmqVatGmzZt2LRpE2FhYQA0aNCAjz/+mPfff5/bb7+dFStW8OKLL16py3fN2YwxxtlFXO8K84RTkVx91i7rwZx39IKHNIJcRERERERERCS75ORkYmNjqVixIl5eXs4uR65z+d0vhclyNXJc5Fqwjx7/fRYkHHNuLSIiIiIiIiIiIqJwXOSaCL8LwiIhIxXWT3J2NSIiIiIiIiIiIkWewnGRa8U+evy3aDh/yrm1iIiIiIiIiIiIFHEKx0WulcrNIPQ2SDsHGyc7uxoREREREREREZEiTeG4yLVis/0zenzjZEhOcG49IiIiIiIiIiIiRZjCcZFrKeLfULIqJMfDb586uxoREREREREREZEiS+G4yLXk4gJ3D816vf5DSEtybj0iIiIiIiIiIiJFlMJxkWutZgcIDINzJ+D3Wc6uRkREREREREREpEhSOC5yrbm6w12Dsl6vfR8y0pxbj4iIiIiIiIiISBGkcFzEGWp3A99SEH8I/pjn7GpERERERERERESuqenTpxMUFOTUGhSOiziDuxc0HJD1+pd3ITPDufWIiIiIiIiIiMhNw2azsXDhQmeXYQkPD2fChAkO6x555BH27NnjpIqyKBwXcZY7eoFXEPy9D3Z96+xqRERERETk/9m77/Ao63z94/f0NNKA9AABEQGRJkJAVJpYjj8XdS27FhTlgCIgWFdUECtSxIJlV9Hl6Fl1V8+iiEpRcSlBUVSKSAkCaZSQhLTJTGZ+f0xmIIIKkuSZmbxf15XrSXlm5p5dL8vNJ58vAABoMpGRkUpKSjI0A+U4YBRHC6nvGN/nK2ZJXq+xeQAAAAAAAIKE1+uVy1lryIf3BDuaf/7zn+rWrZsiIyPVsmVLDR06VJ9//rlsNpsKCwvr3Ttx4kQNHDhQ0uG1Ih988IE6deqkqKgoXXHFFaqsrNTrr7+udu3aKSEhQePHNEvlPQAAIABJREFUj1dt7eGtA+3atdP06dN1zTXXKDo6Wunp6Xr++efr/VySRowYIZPJFPhakl544QV16NBBdrtdnTp10oIFC+rlM5lMeumll/Rf//VfioqKUufOnbV69Wpt27ZN5513nqKjo9W/f39t37498Jjt27fr0ksvVXJysmJiYtSnTx8tXbo08PPzzjtPP/30k+644w6ZTCaZTKZ67/9I77//vvr06aOIiAi1atVKI0aMOKH/L06UtVGfHcCv6/vf0qpnpaLvpa1LpFPPNzoRAAAAAACA4dw1Hr084XNDXnv03HNlc1iO696CggJdc801mjFjhkaMGKFDhw7piy++UO/evdW+fXstWLBAd911lyTJ5XLpjTfe0IwZMwKPr6ys1DPPPKN//OMfOnTokC677DKNGDFC8fHx+vDDD7Vjxw5dfvnlGjBggK666qrA45566in95S9/0bRp0/Txxx9rwoQJOvXUUzVs2DB9+eWXSkpK0vz583XBBRfIYvG9l/fee08TJkzQ008/raFDh+qDDz7QjTfeqIyMDA0aNCjw3NOnT9fs2bM1e/Zs3XPPPfrTn/6k9u3b67777lObNm100003ady4cVq8eLEkqby8XBdddJEeffRRORwO/f3vf9cll1yiLVu2qE2bNnr33XfVvXt3jR49Wrfccssv/m+5aNEijRgxQvfff7/+/ve/q6amRh9++OHx/x/3O1COA0aKSpT63OQryL+YKXUcJtX96RkAAAAAAACCW0FBgdxuty677DK1bdtWktStWzdJ0qhRozR//vxAOf7++++rurpaV155ZeDxLpcrMM0tSVdccYUWLFigoqIixcTEqEuXLho0aJA+/fTTeuX4gAEDdO+990qSTj31VK1cuVJz5szRsGHD1Lp1a0lSfHy8UlJSAo+ZOXOmRo4cqVtvvVWSNGnSJK1Zs0YzZ86sV47feOONgYz33HOPsrOz9cADD2j48OGSpAkTJujGG28M3N+9e3d179498PX06dP13nvvaeHChRo3bpwSExNlsVjUokWLenl+7tFHH9XVV1+tadOm1XvuxkQ5Dhgte5yU87K0O0f6aaXU7myjEwEAAAAAABjKajdr9NxzDXvt49W9e3cNGTJE3bp10/Dhw3X++efriiuuUEJCgkaOHKkpU6ZozZo16tevn1577TVdeeWVio6ODjw+KioqUIxLUnJystq1a6eYmJh639u7d2+9183Ozj7q658fePlzmzdv1ujRo+t9b8CAAZo7d269751xxhn1Xls6XPj7v1ddXa2ysjLFxsaqvLxcU6dO1aJFiwJ/WFBVVaVdu3b9ap6fW79+/a9OljcGynHAaC1SpJ7XSl+9Iq2YSTkOAAAAAACaPZPJdNyrTYxksVi0ZMkSrVq1Sp988omeffZZ3X///crJyVFWVpYuueQSzZ8/X1lZWVq8eLE+++yzeo+32Wz1vjaZTMf8nsfjaey3csxM/v3gx/qeP9Odd96pJUuWaObMmTrllFMUGRmpK664QjU1NSf0upGRkScb/YRxICcQDAZMkEwWacenUt7XRqcBAAAAAADAcTKZTBowYICmTZumb775Rna7Xe+9954k6eabb9Zbb72ll19+WR06dNCAAQMa5DXXrFlz1NedO3cOfG2z2eod4ilJnTt31sqVK+t9b+XKlerSpctJZVm5cqVGjhypESNGqFu3bkpJSdHOnTvr3WO324/K83NnnHGGli1bdlJZThST40AwSGgrnXaxtHmhtH25lN7L6EQAAAAAAAD4DTk5OVq2bJnOP/98JSUlKScnR/v27QsU1cOHD1dsbKweeeQRPfzwww32uitXrtSMGTP0hz/8QUuWLNE777yjRYsWBX7erl07LVu2TAMGDJDD4VBCQoLuuusuXXnllerZs6eGDh2q999/X++++66WLl16Ulk6duyod999V5dccolMJpMeeOCBoybd27VrpxUrVujqq6+Ww+FQq1atjnqehx56SEOGDFGHDh109dVXy+1268MPP9Q999xzUvl+DZPjQLBIqvvTvdI9xuYAAAAAAADAcYmNjdWKFSt00UUX6dRTT9WUKVM0a9YsXXjhhZIks9mskSNHqra2Vtdff32Dve7kyZP11VdfqWfPnnrkkUc0e/bswIGZkjRr1iwtWbJEmZmZ6tmzpyTpD3/4g+bOnauZM2eqa9eueumllzR//nydd955J5Vl9uzZSkhIUP/+/XXJJZdo+PDh6tWr/uDnww8/rJ07d6pDhw6BA0N/7rzzztM777yjhQsXqkePHho8eLDWrl17Utl+i8nr9Xob9RXCQFlZmeLi4lRaWqrY2Fij4yBcfb1AWjhOOmWodO2/jE4DAAAAAADQZKqrq5Wbm6usrCxFREQYHadBjRo1Svv27dPChQsb5PnatWuniRMnauLEiQ3yfKHo1/56OZEul7UqQLCIy/BdmRwHAAAAAAAIeaWlpfr+++/15ptvNlgxjoZFOQ4Ei7hM37V0j+T1SnUn/wIAAAAAACD0XHrppVq7dq3GjBmjYcOGGR0Hx0A5DgSLuHTftaZcqjooRSUamwcAAAAAAAC/22effdYoz7tz585Ged7miAM5gWBhi5Si6w4kYLUKAAAAAAAA0Kgox4FgElitstvYHAAAAAAAAAbwer1GR0AIaKi/TijHgWDCoZwAAAAAAKAZslgskqSamhqDkyAU+P868f9183uxcxwIJkyOAwAAAACAZshqtSoqKkr79u2TzWaT2cxML47N4/Fo3759ioqKktV6cvU25TgQTOLryvESynEAAAAAANB8mEwmpaamKjc3Vz/99JPRcRDkzGaz2rRpI5PJdFLPQzkOBBPWqgAAAAAAgGbKbrerY8eOrFbBb7Lb7Q3y2wWU40AwCZTjTI4DAAAAAIDmx2w2KyIiwugYaCZY3gMEk7g2vmt5keR2GpsFAAAAAAAACGOU40AwiUqUrJG+z8vyjM0CAAAAAAAAhDHKcSCYmEwcygkAAAAAAAA0AcpxINhwKCcAAAAAAADQ6CjHgWBDOQ4AAAAAAAA0OspxINj4D+Us3WVsDgAAAAAAACCMUY4DwYbJcQAAAAAAAKDRUY4DwcZfjnMgJwAAAAAAANBoKMeBYBOf6buW7pG8XmOzAAAAAAAAAGGKchwINi3SJJmkWqdUsd/oNAAAAAAAAEBYohwHgo3VLrVI9X3OoZwAAAAAAABAo6AcB4IRh3ICAAAAAAAAjcrwcjwvL0/XXnutWrZsqcjISHXr1k1fffVV4Oder1cPPvigUlNTFRkZqaFDh2rr1q31nqO4uFh//vOfFRsbq/j4eI0aNUrl5eX17vnuu+80cOBARUREKDMzUzNmzGiS9wf8LhzKCQAAAAAAADQqQ8vxgwcPasCAAbLZbFq8eLE2bdqkWbNmKSEhIXDPjBkz9Mwzz+jFF19UTk6OoqOjNXz4cFVXVwfu+fOf/6yNGzdqyZIl+uCDD7RixQqNHj068POysjKdf/75atu2rdatW6ennnpKU6dO1csvv9yk7xc4bkceyokG5fV69c6P7+hfP/5LXg48BQAAAAAAaLasRr74k08+qczMTM2fPz/wvaysrMDnXq9XTz/9tKZMmaJLL71UkvT3v/9dycnJ+r//+z9dffXV2rx5sz766CN9+eWXOvPMMyVJzz77rC666CLNnDlTaWlpeuONN1RTU6NXX31VdrtdXbt21fr16zV79ux6JToQNOL85TiT4w3t1Q2v6umvn5YkfbP3Gz3U/yHZzDaDUwEAAAAAAKCpGTo5vnDhQp155pn64x//qKSkJPXs2VN//etfAz/Pzc1VYWGhhg4dGvheXFyc+vbtq9WrV0uSVq9erfj4+EAxLklDhw6V2WxWTk5O4J5zzjlHdrs9cM/w4cO1ZcsWHTx48KhcTqdTZWVl9T6AJkU53ig+2vlRoBg3yaR/b/+3bl92uypdlQYnAwAAAAAAQFMztBzfsWOHXnjhBXXs2FEff/yxxo4dq/Hjx+v111+XJBUWFkqSkpOT6z0uOTk58LPCwkIlJSXV+7nValViYmK9e471HEe+xpEef/xxxcXFBT4yMzMb4N0CJ4ADORvc+r3rdf8X90uSru18rZ4b8pwirZFamb9SIz8aqf1V+w1OCAAAAAAAgKZkaDnu8XjUq1cvPfbYY+rZs6dGjx6tW265RS+++KKRsXTfffeptLQ08LF7N9O7aGL+crzygFTDVPPJ2l22W+OXj1eNp0aDMgfpzjPv1DkZ5+iV819RYkSiNhdv1rUfXqvc0lyjowIAAAAAAKCJGFqOp6amqkuXLvW+17lzZ+3atUuSlJKSIkkqKiqqd09RUVHgZykpKdq7d2+9n7vdbhUXF9e751jPceRrHMnhcCg2NrbeB9CkIuMlR91fd0yPn5SS6hLduuxWHXQeVNeWXfXEwCdkMVskSd1ad9OCCxcos0Wm8srzdP3i67V+73qDEwMAAAAAAKApGFqODxgwQFu2bKn3vR9//FFt27aV5DucMyUlRcuWLQv8vKysTDk5OcrOzpYkZWdnq6SkROvWrQvcs3z5cnk8HvXt2zdwz4oVK+RyuQL3LFmyRJ06dVJCQkKjvT/gpARWq/CbC79XTW2NJnw6QTvLdio1OlXPDXlOUbaoeve0iW2jBRcu0OktT1eJs0Q3f3Kzlu9ablBiAAAAAAAANBVDy/E77rhDa9as0WOPPaZt27bpzTff1Msvv6zbbrtNkmQymTRx4kQ98sgjWrhwob7//ntdf/31SktL0x/+8AdJvknzCy64QLfccovWrl2rlStXaty4cbr66quVlpYmSfrTn/4ku92uUaNGaePGjXrrrbc0d+5cTZo0ybD3DvwmyvGT4vV69eCqB/X13q8VY4vR80OeV6vIVse8t2VkS70y/BWdk3GOnLVO3fHZHXrrh7eaODEAAAAAAACakqHleJ8+ffTee+/pf//3f3X66adr+vTpevrpp/XnP/85cM/dd9+t22+/XaNHj1afPn1UXl6ujz76SBEREYF73njjDZ122mkaMmSILrroIp199tl6+eWXAz+Pi4vTJ598otzcXPXu3VuTJ0/Wgw8+qNGjRzfp+wVOSFzdQbCsVfld5n07T4t2LJLVZNWs82apY0LHX70/yhaluYPm6vKOl8vj9eiRnEc09+u58nq9TZQYAAAAAAAATcnkpfn5TWVlZYqLi1NpaSn7x9F0vpgtLZsmdb9GGmHsIbWh5t/b/q0pK6dIkqb1n6bLOl523I/1er168bsXNW/9PEnS/+vw/zQ1e6psFlujZAUAAAAAAEDDOZEu19DJcQC/Ir6N71rCWpUTsbZgraaunipJurnbzSdUjEu+dU5ju4/Vw/0flsVk0cLtC3XbsttUXlPeCGkBAAAAAABgFMpxIFixc/yE7SjZoYmfTpTb49YF7S7Q7T1v/93PNaLjCD07+FlFWiO1umC1bvz4Ru2r3NeAaQEAAAAAAGAkynEgWPnL8bI8yVNrbJYQsL9qv25ddqsOuQ6pR+seeuTsR2Q2ndzf4gZmDNT84fOVGJGoH4p/0LUfXqsdJTsaKDEAAAAAAACMRDkOBKsWqZLJInncUnmR0WmCWpW7SuOXj1deeZ4yW2TqmcHPyGFxNMhzd23VVf9z0f+obWxb5Vfk67rF1+mbvd80yHMDAAAAAADAOJTjQLAyW6TYdN/npXuMzRLEPF6P/vLFX/T9/u8V54jTvCHzlBCR0KCvkdkiUwsuXKAzWp2hspoy3fzxzVr609IGfQ0AAAAAAAA0LcpxIJjFZ/quJbuMzRHE5qybo6W7lspmtmnuoLlqF9euUV4nISJBfxv+N52XeZ5qPDWa9Nkkvbn5zUZ5LQAAAAAAADQ+ynEgmAUO5WRy/Fje3vK2Xtv4miRp+oDp6p3cu1FfL9IaqTnnzdEfT/2jvPLq8bWPa/a62fJ4PY36ugAAAAAAAGh4lONAMKMc/0Vf7PlCj+Y8Kkka12OcLm5/cZO8rtVs1QP9HtD4nuMlSfM3zNd9X9wnV62rSV4fAAAAAAAADYNyHAhmcXVrVUp3G5sjyGwp3qI7P79THq9Hl3a4VKPPGN2kr28ymXTLGbfokQGPyGqy6sPcDzV22VgdqjnUpDkAAAAAAADw+1GOA8EsUI4zOe5XWFGoW5fdqkp3pfqm9NVD2Q/JZDIZkuXSUy7V80OeV5Q1SjkFORr50UgVVRQZkgUAAAAAAAAnhnIcCGb+tSolTI5LUoWrQuOWjdPeyr1qH9deswfNls1iMzRT//T+mn/BfLWKbKUfD/6oaxdfq+0l2w3NBAAAAAAAgN9GOQ4EM3857iyVqkuNzWIwt8etuz6/S1sOblFiRKLmDZ2nWHus0bEkSV1adtH/XPQ/ahfbToUVhbpu8XX6qvAro2MBAAAAAADgV1COA8HMESNFJvg+L80zNouBvF6vnlj7hL7I+0IRlgg9N/g5pcekGx2rnvSYdC24cIF6tO6hQzWHNHrJaH2882OjYwEAAAAAAOAXUI4DwY5DOfX3TX/XW1vekkkmPTHwCXVr3c3oSMcUHxGvv57/Vw3OHCyXx6W7Pr9LCzYtMDoWAAAAAAAAjoFyHAh2zbwcX/bTMs36apYkafKZkzWk7RCDE/26CGuEZp83W1d1ukpeeTXjyxma+eVMebweo6MBAAAAAADgCJTjQLBrxodyfr/ve937xb3yyqurOl2l67tcb3Sk42IxW3R/3/s1sddESdLrm17XvSvuVU1tjcHJAAAAAAAA4Ec5DgS7eP/k+B5jczSxPYf2aNzycaqurdbA9IG696x7ZTKZjI513Ewmk0Z1G6XHzn5MVpNVi3cu1pilY1RWU2Z0NAAAAAAAAIhyHAh+/snxZlSOlzpLdduy21RcXazTEk/TU+c+JavZanSs3+WSDpdo3tB5irZF68vCL3XD4htU6iw1OhYAAAAAAECzRzkOBLu4Nr5rM9k57qp1afJnk7WjdIeSopL03ODnFG2LNjrWSclOy9ZrF7ym1pGtta1kmyZ/Plluj9voWAAAAAAAAM0a5TgQ7PyT44cKpFqXsVkamdfr1bTV05RTmKMoa5TmDZmn5Ohko2M1iNMST9OLw15UpDVSOQU5eurLp4yOBAAAAAAA0KxRjgPBLrq1ZLFLXo+vIA9jL3/3sv69/d+ymCyaee5MdUrsZHSkBnVqwql6fODjkqQ3f3hT//zxnwYnAgAAAAAAaL4ox4FgZzYfnh4vCd/VKot2LNJz65+TJN131n0amDHQ4ESNY0ibIRrXY5wk6dGcR7WuaJ3BiQAAAAAAAJonynEgFIT5oZzritbpgZUPSJJu6HKDrjrtKoMTNa7RZ4zW+W3Pl9vj1qTPJim/PN/oSAAAAAAAAM0O5TgQCuIyfdfSXcbmaAQ7S3dqwqcT5PK4NLTNUE06c5LRkRqdyWTS9AHT1Tmxs4qrizV++XhVuiqNjgUAAAAAANCsUI4DoSBQjofX5HhxdbFuXXarSp2l6taqmx4b+JjMpubxt6UoW5TmDpqrxIhEbTm4RVNWTpHH6zE6FgAAAAAAQLPRPFooINSF4VoVl8elCcsnaPeh3UqPSdczg59RpDXS6FhNKjUmVU8PelpWs1VLflqil757yehIAAAAAAAAzQblOBAK4usmx8PoQM51Reu0ft96xdhiNG/IPLWKbGV0JEP0TOqpB/s9KEmat36elv601OBEAAAAAAAAzQPlOBAKjlyr4vUam6WB7Dnkm4LvldxL7ePbG5zGWCM6jtC1na+VJP3lP3/RluItBicCAAAAAAAIf5TjQCiITfddXRVS1UFjszSQ/PJ8SVJqdKrBSYLD5DMnq19qP1W5qzR++XgVVxcbHQkAAAAAACCsUY4DocAWIUUn+T4vDY/VKoUVhZKklOgUg5MEB6vZqpnnzlSbFm2UX5GvSZ9NkqvWZXQsAAAAAACAsEU5DoSKMDuUs6CiQJKUFp1mcJLgEeeI07ODn1W0LVrritbpsbWPyRsma3QAAAAAAACCDeU4ECr85XiYHMrpL8dTY1ircqT28e0145wZMsmkf/74T7215S2jIwEAAAAAAIQlynEgVMS38V3DYK1KradWRRVFktg5fiznZJyjib0nSpKeWPuEcgpyDE4EAAAAAAAQfijHgVARRmtV9lXtk9vrlsVkUevI1kbHCUo3dr1RF7e/WLXeWk3+fLJ2Hwr9PxQBAAAAAAAIJpTjQKiIy/Rdw2By3H8YZ3JUsixmi8FpgpPJZNLU7Kk6veXpKnWWavzy8SqvKTc6FgAAAAAAQNigHAdCRRhNjrNv/PhEWCM0d/BctY5srW0l23TfF/fJ4/UYHQsAAAAAACAsUI4DocI/OV5eJLmqjc1ykvLL8yWxb/x4JEUlae6gubKb7fpsz2d67pvnjI4EAAAAAAAQFijHgVARlSjZonyfl+UZm+UkBSbHKcePS7fW3TS1/1RJ0l+//6s+3PGhsYEAAAAAAADCAOU4ECpMprBZreLfOc5aleN3SYdLdOPpN0qSHlz1oDYe2GhwIgAAAAAAgNBGOQ6EkjA5lDO/grUqv8eEnhM0MH2gnLVOjV8+Xvur9hsdCQAAAAAAIGRRjgOhJFwmx8t9k+Np0WkGJwktFrNFT57zpLLisrS3cq8mfDpBNbU1RscCAAAAAAAISZTjQCjxT46XhO7k+KGaQzrkOiRJSolOMThN6Glhb6FnBz+rFvYW+m7fd3p49cPyer1GxwIAAAAAAAg5lONAKIkP/bUq/sM44x3xivIfMIoT0ja2rWaeO1Nmk1n/3v5vLdi0wOhIAAAAAAAAIYdyHAglYbBWJXAYJ/vGT0r/tP6668y7JEmz1s3SyryVBicCAAAAAAAILZTjQCg5shz3eIzN8jvll/sO42Slysn7c+c/a8QpI+TxenTX53dpZ+lOoyMBAAAAAACEDMpxIJTEpksySbVOqXK/0Wl+F/9albQYDuM8WSaTSVP6TVGP1j10yHVIty+/XWU1ZUbHAgAAAAAACAmU40AosdikFnXrSEJ073hBua8cZ61Kw7Bb7JozaI6So5K1s2yn7l5xt2o9tUbHAgAAAAAACHqU40Co8R/KWRKi5XgF5XhDaxXZSs8MfkYRlgitzFupp79+2uhIAAAAAAAAQY9yHAg1IX4oJ+V44+jSsoumnz1dkvTaxte0cPtCgxMBAAAAAAAEN8pxINQEyvHQmxx3eVzaV7VPkpQaQzne0C5od4FGnzFakjR11VR9u+9bgxMBAAAAAAAEL8pxINTE1a1VCcHJ8b2Ve+XxemQ325UYkWh0nLB0W4/bNChzkFwelyZ+OlGFFYVGRwIAAAAAAAhKlONAqAmU46E3OZ5fni9JSolOkdnE334ag9lk1uMDH9cp8adof9V+Tfh0gqrd1UbHAgAAAAAACDq0U0CoCeEDOf1TzKxUaVzRtmg9O/hZxTvitenAJj246kF5vV6jYwEAAAAAAAQVynEg1Ph3jlcVSzUVxmY5QRzG2XQyWmRo9nmzZTVZtTh3sV7Z8IrRkQAAAAAAAIIK5TgQaiLiJEes7/MQ2zvuX6tCOd40+qT00b1n3StJeubrZ7RizwqDEwEAAAAAAAQPynEgFIXo3vHAWhXK8SZz1WlX6Y+n/lFeefWX//xFBeUFRkcCAAAAAAAICpTjQCjyr1YJtcnxirrJcXaON6l7z7pXXVp2UamzVHeuuFOuWpfRkQAAAAAAAAxHOQ6EIn85HkKHcnq93sDkeFp0msFpmhe7xa5Z585SC1sLfbfvO835eo7RkQAAAAAAAAxHOQ6Eonj/WpXQmRwvdZaqyl0lSUqOTjY4TfOT0SJDj5z9iCRpwaYFWvrTUoMTAQAAAAAAGItyHAhFcaFXjvtXqrSMaCmHxWFwmuZpcJvBGtl1pCTpgZUPaHdZ6PzmAQAAAAAAQEOjHAdCUaAc32VsjhNQUOE7CDIthpUqRhrfa7x6tO6hcle5Jn8+Wc5ap9GRAAAAAAAADEE5DoQi/87xsnzJU2tsluNUUO4rx1OiUwxO0rzZzDY9de5TinfEa3PxZs1YO8PoSAAAAAAAAIagHAdCUYsUyWyVPG7pUKHRaY5LYHKcwzgNlxKdoicGPiGTTHr7x7e1aMcioyMBAAAAAAA0OcpxIBSZLVJsXckcInvH/eV4akyqwUkgSQPSB2j0GaMlSdNWT9OOkh0GJwIAAAAAAGhalONAqArsHQ+NQxVZqxJ8xnYfq7NSzlKVu0qTP5+sSlel0ZEAAAAAAACaDOU4EKr8e8dDpRxnrUrQsZgtevKcJ9UqspW2lWzTozmPyuv1Gh0LAAAAAACgSVCOA6EqMDke/GtVnLVOHag+IElKjWatSjBpFdlKM86ZIbPJrIXbF+r/tv2f0ZEAAAAAAACaBOU4EKr8k+MlwT85XljhOzQ00hqpOEecwWnwc31S+mhcj3GSpEdzHtWW4i0GJwIAAAAAAGh8lONAqIoPncnxwGGc0akymUwGp8GxjOo2Smenny1nrVOTP5+s8ppyoyMBAAAAAAA0KspxIFSF0FoV/2GcrFQJXmaTWY+f/bhSolP0U9lPemjVQ+wfBwAAAAAAYY1yHAhV/rUqzlKputTYLL8hMDkeQzkezOIj4vXUOU/JarLqk58+0T+2/MPoSAAAAAAAAI2GchwIVfZoKTLR93mQT48fuVYFwa1HUg/d0fsOSdKML2dow/4NBicCAAAAAABoHJTjQCjzT48HeznOWpWQcl2X6zSkzRC5PW7d+fmdKnUG928mAAAAAACAw7xer9wHD8q5davRUYKe1egAAE5CfBup8DupZJfRSX4Vk+OhxWQy6eEBD2tL8RbtKd+jKf+ZomcGP8NhqgAAAAAAGMzr9cpz6JBcBYVyFxXKVVAoV2GB3AWFchUWyl1QIFdRkbzV1ZLFotO++1Ymi8Xo2EGLchwIZSEwOe7xetg5HoJi7bHpeWFXAAAgAElEQVSadd4sXfvhtfpsz2d6fePrGnn6SKNjAQAAAAAQ1jwVFXIV+kpvd2GBr/wuKqxXfnsqK4/ruSxxcaotKZG1ZctGTh26KMeBUBYox3cbm+NXFFcXy+VxyWwyKykqyeg4OAFdWnbRvWfdq+lrpuvpr59W96Tu6pnU0+hYAAAAAACEJE91tVwFBXIXFspVWHS4/D5i8ttz6NBxPZclLk7W1FTZUlJkTUmWLSVVttQUWf3X5GSZHY5Gfkehj3IcCGVxmb5rEE+O+/eNt45sLZvZZnAanKg/nvpHfVX0lRbnLtadn9+pdy55R4kRiUbHAgAAAAAgaHjdbrkPFMu9d6/c+/YddXUVFcldUKDakpLjej5zTMzhojslRdbUFF/5nZJc971kmaOiGvldNQ+U40AoC4FyPL8iXxL7xkOVyWTS1Oyp+qH4B+WW5uq+L+7TvCHzZDGzrwwAAAAAEN68LpfcBw4cu/D2f71vn2r3H5C83uN6TlNUlGwpKUcU3UeU36kpsqakyBIT08jvDH6U40Ao869VOVQg1bokS/BNZhdWFEpi33goi7JFada5s/SnRX/SqvxV+uv3f9WY7mOMjgUAAAAAwO/idbnk3r//6KI7cK0rvYuLj7v0ltksa6tWsrZuLWtSku/q/0hJlq1uBYo5NlYmk6lx3yCOG+U4EMqiW0sWh1TrlMrypYS2Ric6Sn45k+PhoGNCR03pN0VTVk7RvPXz1COph/ql9jM6FgAAAAAAkiSP06na4mK5DxSrtvhA/euBA4cnwP2l9/GyWOoX3UmtjyrAbUlJsiQmymTht6xDDeU4EMrMZikuXSre4TuUMwjL8YIK387xtOg0g5PgZF16yqVaV7RO7217T/esuEf/vOSfah3V2uhYAAAAAIAw5PV4VFtaqtr9++sV3e7iA6o9xtVTXn5iL2Cz+Sa9kw4X3IcL8KTA1ZKQIJPZ3DhvEoajHAdCXVxmXTkenHvHWasSXu7re582HNigrQe36u4Vd+uv5/9VVjP/KAEAAAAA/DZPTY3cRUW+Se7iYrkPHLvodhcX+6a7PZ4TewGbTdbERFlaJsqa2FLWlomy+K8Jib7Su64Mt8THU3qDchwIeYFDOXcbm+MX+A/kTIlOMTgJGkKkNVKzz52tqz64Sl8VfaXn1z+vCb0mGB0LAAAAABAEvC6XXIWFcu3ZI1denmry8uTKy5MrL1+uPXvk3rv3+Hd417HEx8vSsmVd6d3ycPndsqUsifWv5hYt2OeNE0I5DoQ6/6GcJcFXjle6KlXqLJXEWpVw0i6unab1n6a7Vtylv33/N/VM6qlzMs4xOhYAAAAAoJF53e668ttfeufVleB75MrLl7uo6DenvU0Oh6ytWtUvuhNbHrvwTkiQyWZroneH5ohyHAh18f7J8eBbq+LfN97C1kIx9hiD06AhXZB1gdYVrdM/tvxDf/nPX/TOf73D6hwAAAAACHFet1vuoqK6ie98X/ldNwXuysuTq6hIqq391ecwORyypafLlpEuW3q67Om+q+97Gb4d3kx3I0hQjgOhzj85HsTlOKVpeLqrz136fv/32nhgo+5ccadeG/6abBb+RB8AAAAAgpn74EHV5O6Ua/cu1ezZc7gEz8uTq7BQcrt/9fEmu122tDTZMjIOl97pabLXfW1p2ZLyGyGDchwIdUfuHPd6pSD6B1CgHI+mHA9HdotdM8+dqSs/uFLf7ftOc76eo7v73G10LAAAAABo9jxVVar56SfV7Nzp+8jdGfi8trT0Vx9rstl85ffPJr5t6b7vWVu14iBLhA3KcSDUxab7rq5KqeqgFJVobJ4jFJT7ynEO4wxfGS0y9OiARzX+0/FasGmBeiX10tC2Q42OBQAAAABhz+t2+/Z915XeTn8RvvMnuQsKfvWx1rRU2du0lS0jPTDx7f+wtm5N+Y1mg3IcCHW2CCk6SarYK5XsCq5yvG5yPC2GwzjD2aA2gzSy60i9tvE1PbDyAXVK6KTM2EyjYwEAAABAyPN6vardv1/O3NxA8R2YBt+9W3K5fvGxlvh42du1q/+RlSV7m0yZIyOb8F0AwcvQcnzq1KmaNm1ave916tRJP/zwgySpurpakydP1j/+8Q85nU4NHz5c8+bNU3JycuD+Xbt2aezYsfr0008VExOjG264QY8//ris1sNv7bPPPtOkSZO0ceNGZWZmasqUKRo5cmSTvEegScRn+srx0j1SWg+j0wTkl+dLYq1KczC+13it37te6/et1+TPJ2vBRQvksDiMjgUAAAAAIaG2vLze6pMjPzwVFb/4OFNEhOxt29YrwB1Z7WRr21bWhISmewNAiDJ8crxr165aunRp4OsjS+077rhDixYt0jvvvKO4uDiNGzdOl112mVauXClJqq2t1cUXX6yUlBStWrVKBQUFuv7662Wz2fTYY49JknJzc3XxxRdrzJgxeuONN7Rs2TLdfPPNSk1N1fDhw5v2zQKNJS5DylsXdIdyFlYUSqIcbw5sZpueOvcpXfn+ldpcvFkz1s7QA9kPGB0LAAAAAIKK++BB1WzbJue2bXJu3Sbn1q1y7sxV7b79v/wgs1m2jAzZ2x0uwR11U+DW5GRWoAAnwfBy3Gq1KiXl6H3EpaWleuWVV/Tmm29q8ODBkqT58+erc+fOWrNmjfr166dPPvlEmzZt0tKlS5WcnKwePXpo+vTpuueeezR16lTZ7Xa9+OKLysrK0qxZsyRJnTt31n/+8x/NmTOHchzh48hDOYNEradWRZVFkijHm4uU6BQ9MfAJjVk6Rm//+LZ6JffSxe0vNjoWAAAAADS52kOHDpff27bJuc13/bUS3NK6lRxt28me9bM1KBkZMtntTRceaEYML8e3bt2qtLQ0RUREKDs7W48//rjatGmjdevWyeVyaejQwwe7nXbaaWrTpo1Wr16tfv36afXq1erWrVu9NSvDhw/X2LFjtXHjRvXs2VOrV6+u9xz+eyZOnPiLmZxOp5xOZ+DrsrKyBnzHQCMIwnJ8X9U+1XprZTVZ1SqyldFx0ET6p/fX6DNG66XvXtK01dPUObGz2se3NzoWAAAAADSK2vIK1WyvmwT/0V+Eb5O7qOgXH2NLT5fjlFPk6HiKHB07yt6+g+xZ7WSJiWm64AAkGVyO9+3bV6+99po6deqkgoICTZs2TQMHDtSGDRtUWFgou92u+Pj4eo9JTk5WYaFvVUNhYWG9Ytz/c//Pfu2esrIyVVVVKfIYBxA8/vjjR+1CB4JaXIbvWhI85bj/MM7k6GRZzBaD06Apje0+Vt/s/UZrC9dq8ueT9cZFbyjKFmV0LAAAAAD43TyVlXJu31FvCty5davc+QW/+BhrSoocHTv6inB/Gd6hg8zR0U2YHMCvMbQcv/DCCwOfn3HGGerbt6/atm2rt99++5ildVO57777NGnSpMDXZWVlyszMNCwP8Jvi/ZPjwbNznMM4my+L2aInz3lSf3z/j9pWsk33/+d+zTx3Jn9IAgAAACDoeZxO1ezYcdQkuGvPHsnrPeZjrK1bH54C9xfhp5wiS4sWTZwewIkyfK3KkeLj43Xqqadq27ZtGjZsmGpqalRSUlJveryoqCiwozwlJUVr166t9xxFdb+2cuQ9RT/7VZaioiLFxsb+YgHvcDjkcDga7H0Bjc6/VqVir+SqlmwRxubR4cnxtJg0g5PACK0iW2nmuTN1yye3aOmupZq+Zroeyn5IJpPJ6GgAAAAAmrnaQ4fkysvzfezZo5q8PLn25Klm+3bV7N4teTzHfJylZcv6U+AdO8rRoYMsP9t6ACB0BFU5Xl5eru3bt+u6665T7969ZbPZtGzZMl1++eWSpC1btmjXrl3Kzs6WJGVnZ+vRRx/V3r17lZSUJElasmSJYmNj1aVLl8A9H374Yb3XWbJkSeA5gLAQmSDZoiRXpVSWJ7XsYHQiFVb4VhulRB994C6ah97JvfXUOU9p0ueT9K+t/1KcI0539L7D6FgAAAAAwlxtefkR5XfdNT9PNXWfe37jbDlLXJxvCryjfwq8oxwdT5E1MbGJ3gGApmJoOX7nnXfqkksuUdu2bZWfn6+HHnpIFotF11xzjeLi4jRq1ChNmjRJiYmJio2N1e23367s7Gz169dPknT++eerS5cuuu666zRjxgwVFhZqypQpuu222wKT32PGjNFzzz2nu+++WzfddJOWL1+ut99+W4sWLTLyrQMNy2TyTY/v3+I7lDMIynHWqkCShrQdoqnZU/Xgqgf16oZXFe+I142n32h0LAAAAAAhzFNR4Zv2zsuTKy9frj17DpfheXmqLS39zeewJCbKlp4uW0a67OnpsqalyZGV5VuH0qoVv/UKNBOGluN79uzRNddcowMHDqh169Y6++yztWbNGrVu3VqSNGfOHJnNZl1++eVyOp0aPny45s2bF3i8xWLRBx98oLFjxyo7O1vR0dG64YYb9PDDDwfuycrK0qJFi3THHXdo7ty5ysjI0N/+9jcNHz68yd8v0KjiMurK8eDYOx5YqxLNWpXmbkTHESpxlmj2utmavW624h3xGtFxhNGxAAAAAAQpT2WlXPn5qgmU3vmBFSiuvDzVlpT85nNYEhJ85XfgI032jAzf52lpMkdFNcE7ARDsTF7vL5wmgICysjLFxcWptLRUsbGxRscBju39CdK616Rz75UG3Wd0GmW/ma1yV7n+/Yd/q31ce6PjIAjMXjdb8zfMl9lk1uxzZ2tI2yFGRwIAAABgEK/LpZrdu1WTm6uanTvlzM1VTe5O1ezcqdoDB37z8Za4uPrld0aGbOlpdeV3uiwx0U3wLgAEoxPpcoNq5ziAkxCX4bsGweR4WU2Zyl3lklirgsPu6HWHSp2lenfru7prxV16ceiLOiv1LKNjAQAAAGgkXq9XtcXFqsnN9ZXfO3J9ZXhurmr27JFqa3/xsebYWNnS02XP8JXd/hUo/jLcEhPThO8EQLiiHAfCRVym71q6y9gckgrKfStVEhwJirRGGpwGwcJkMumBfg+ozFmmpbuW6vblt+vV4a+qa6uuRkcDAAAAcBI8Tqdqdv5UNwXuK7+dO3eqJnfnrx5+aYqKkr1dWznaZcme5f9oJ3tmpiz85j6AJkA5DoSLQDlu/OS4f994SnSKwUkQbKxmq5445wndtvQ25RTmaOzSsXrtwtdYvQMAAAAEOa/XK3dR0eEp8NydgSlwV36+9Etbe00m2dLS6pXfjrrPrcnJHHwJwFCU40C4CKxVyZM8HslsNixK4DDOGA7jxNEcFofmDp6rUR+P0sYDG/XfS/5bCy5cwB+mAAAAAEHAW1urmtxcVW/ZUq8Ar9m5U57Kyl98nLlFC9mzsuTIaucrwf3T4G3byBwR0XRvAABOAOU4EC5i0ySTWap1ShX7pBbJhkXxl+PsG8cvibZF64WhL+iGj25QbmmuRi8ZrdcveF0JEQlGRwMAAACaDY/TKeePW1W9eZOqN2+Wc9NmVW/ZIm919bEfYLHInpFxzClwS8uWTIEDCDmU40C4sNikFqlSWZ5vtYqR5Xg55Th+W0JEgl4e9rKuW3ydcktzNXbpWL0y/BVF2zhVHgAAAGhoteXlcm7erOrNm1W9yXd1bt8uud1H3WuKjFTEqafKfkqHQPltz8qSPSNDJrvdgPQA0Dgox4FwEpdRV47vkjJ6GxYjMDkeQzmOX5cSnaKXhr2kkYtHauOBjZqwfIKeH/q8HBaH0dEAAACAkOXev79eCV69aZNcu3Yd815LfLwiunSWo3NnRXTuoogunWVv21Ymi6WJUwNA06McB8JJXKa0O8fwQzmZHMeJaB/XXi8MfUE3fXyTcgpzdM+KezTz3JmymvlHFAAAAPBrvF6vXHl5qt60yfdRtxrFvW/fMe+3pqYqonNn30eXzoro0kXWlBTWoQBotmgegHASOJTTuHLcVevSvirfv4hRjuN4dW3VVc8OflZjlo7Rsl3LNH3NdE3Nnsq/pAMAAAB1vG6376DMzZtVvdFXhFf/8IM8ZWVH32wyyd6uXb0S3NG5s6wJnPEDAEeiHAfCib8cL9ltWISiyiJ55ZXdbFdiRKJhORB6zko9S0+d85QmfT5J7259V3GOOE3qPcnoWAAAAECT8nq9cu/dp5rcHXJu3153YOZmObdskdfpPPoBNpscHU9RRJcudVPhXRTR6VSZoznLBwB+C+U4EE7i2/iupcaV40fuG2fqFydqSNshmpo9VQ+uelDzN8xXvCNeN51+k9GxAAAAgAbndbtVs3u3anJz5dy+XTXbd8iZu0M123fIU15+zMeYo6LqdoMfXo3i6NCBQzIB4HeiHAfCSRCsVQmU46xUwe80ouMIlTpLNWvdLM1ZN0fxjnhd1vEyo2MBAAAAv4unslI1O3fKuX2HnDt8JXhN7g7V7PxJXpfr2A8ym2XPzJS9Qwc5OrRXRGffgZn2tm1lMpub9g0AQBijHAfCib8cryqWaioke9P/Gl1+eb4kynGcnJGnj9RB50G9uuFVTVs9TbH2WA1tO9ToWAAAAMAvchcXq2bHDjm371DNju1y7shVzfbtcuXn/+JjTBERsrfPkiOrvewd2svR3leG29q2lZlpcABodJTjQDiJiJMccZKz1Dc93rpTk0corCiU5FurApyMib0mqtRZqn9t/ZfuXnG3Xhj6gvqm9jU6FgAAAJoxr8cjV36Br/z+WQleW1Lyi4+zJCTI3r69HO39JXh72dt3kC0tlUlwADAQ5TgQbuIypL2lvkM5DSjHWauChmIymfRAvwdU6izV0l1LNX75eL0y/BWd3up0o6MBAACgmXDv36+KNTmqWL1K1Zs2qyY3V97q6l+835aW5luFcmQJ3qGDrAkJTZgaAHC8KMeBcBOfKe3daNihnKxVQUOymC168pwndeuyW5VTkKOxS8fq9QtfV/u49kZHAwAAQBjyVFSo8quvVLFqtSrWrJFzy5ajb7LZ5GjXVva6FSj2rPZ11yyZIyObPjQA4HejHAfCjYGHcnq93sBalbTotCZ/fYQnu8WuuYPm6uaPb9aGAxs0+pPRWnDhAlb3AAAA4KR5XS5Vff+9KlavVsXq1apa/63kdte7x9G5s6KzsxXVu5ccHTrIlpEhk5U6BQDCAX83B8JNoBxv+snxg86Dqq71/YphcnRyk78+wle0LVrzhs7TDR/doNzSXI1eMlqvX/i6EiMSjY4GAACAEOL1elWzbZuvDF+1WpVr18pTWVnvHlt6uqL791d0dj9F9esnayL/zgkA4YpyHAg3cZm+qwGT4/59460jW8tu4WR1NKyEiAS9POxlXbf4Ou0s26mxS8fq1eGvKtoWbXQ0AAAABDFXQYEqVq/xFeJrVqt23/56P7fExSkqO1vR2dmK7p8te2amQUkBAE2NchwIN/5yvKTpJ8cLy30rVdg3jsaSEp2il4e9rBsW36BNBzZp/PLxmjd0nhwWh9HRAAAAECRqy8pUkZOjyrpCvCY3t97PTQ6Hos48U9H9fYW447TTZDKbDUoLADAS5TgQbuLryvGyPMlTK5ktTfbS+RW+wzhTolOa7DXR/GTFZemFYS9o1MejtLZwre7+/G7NOm+WrGb+kQYAANAceZxOVX2zPrA3vHrDBsnjOXyD2ayIbqcrup+vDI/s2UNmB8MVAADKcSD8xCRLZqvkcUuHCqW49CZ7af9albQYDuNE4+rasqueHfysxiwZo+W7l+vh1Q9rWv9pMplMRkcDAABAI/N6PKrevFmV/r3h69bJ63TWu8eelRVYkxJ11lmyxMYalBYAEMwox4FwY7ZIsWlSyS7foZxNWY6X+8pxJsfRFPqk9NGMc2do0meT9N629xTviNekMycZHQsAAAANzON0qnrjJlWtX6+qb75R5ZdfqrakpN49ltatfGV4tu8gTVsK/00CAPhtlONAOIprU1eON+2hnIHJ8Wgmx9E0hrQZoqnZU/Xgqgc1f+N8xUfE66bTbzI6FgAAAH4nr9crd0GBqtavV+X69apa/62qN2+WXK5695mjoxV11lmKzu6n6Oxs2U85hd8iBACcMMpxIBzFZfiupU17KKe/HE+N4UBONJ0RHUeorKZMM7+aqTnr5ijOHqfLT73c6FgAAAA4Dr6p8I2q+ma9bzJ8/Xq59+076j5LYqIie/RQZI8eijqztyK7dZPJZjMgMQAgnFCOA+HIX46XNF05Xu2uVnF1sSQpNZpyHE3rhq436GD1Qb2y4RU9vOZhxTpiNaztMKNjAQAA4Aher1fu/PzARHjV+vWq/uGHo6bCZbEo4rTTFNm9uyJ7+gpxW0YGk+EAgAZHOQ6Eo/hM37UJ16oUVhRKkqKsUYq1c9gNmt6EXhNU4izRv7b+S/esuEcxQ2KUnZZtdCwAAIBmy1Nd7ZsKX++fCv/22FPhLVvWTYV3V1SPHoo4/XSZIyMNSAwAaG4ox4FwZMBalfyKfEm+qXEmOmAEk8mkB/o9oLKaMi35aYnGLx+veUPnqU9KH6OjAQAAhD2v1ytXXv7hIvzbul3hbnf9G61WRXTqFFiREtmzh2zp6fw3BADAEJTjQDiKa+O7GjA5zr5xGMlituiJgU+oyl2l/+T9R7ctu03PD3meghwAAKCBeaqrVb1hQ6AIr1y/XrX79h91n6VVq8BEeGSPHoro2pWpcABA0KAcB8JRXLrv6iyTqkuliLhGf8nAYZzsG4fB7Ba7nh70tCZ8OkEr81ZSkAMAADQAV0GBqr75RpV1B2f+4lT4aacdngrv0UO29DSmwgEAQYtyHAhH9mgpMlGqKvYdypnS+OV4fvnhtSqA0RwWh+YOmktBDgAA8Dt4a2pUvXmzqtav95Xh33wjd1HRUfdZWrcKTIRH9uihiC5dmAoHAIQUynEgXMVn+srx0j1SyumN/nKsVUGwCRTkyydoZb6vIJ83ZJ7OTDnT6GgAAABBxb1/f10R/o2q1n+r6g0b5HU6699ksfh2hffs6ftgKhwAEAYox4FwFZcpFXzbZIdyslYFwchhcWju4Lkav3y8VuWv0q3LbtULQ19Q7+TeRkcDAAAwhNftlnPr1sNl+Dfr5dp99H8zWOLiAiV4ZM+eiux2usxRUQYkBgCg8VCOA+EqLtN3bYJy3OP1BCbH06LTGv31gBPhnyAfv3y8Vhes1tilYynIAQBAs1FbWuo7MPObb3y7wr/9Tp7Kyvo3mUxynNJBkT0OT4Xbs9oxFQ4ACHuU40C4isvwXUv3NPpLHag6IJfHJbPJrNZRrRv99YATFWGN0DODn6lXkL849EX1Su5ldDQAAIAG4/V4VJObW28qvGb79qPuM0dHK7J798NT4d3PkCU21oDEAAAYi3IcCFf+cryk8SfH8yt8h3EmRSXJauZvKwhO/oL89uW3a03BGl9BPuxF9UzqaXQ0AACA38VTXa2q9b4DMyvXr1fV+m/lKS096j5b2zaK8k+F9+whxymnyGSxGJAYAIDgQosFhKt4/1qVxp8c9+8bZ6UKgl2ENULPDn42UJCPWTKGghwAAIQMb22tqjduVMWq1apYs0ZVX38tb01NvXtMDociu3VTZE//VHh3WVu2NCgxAADBjXIcCFf+neOHCqRal2SxNdpLFZb79o2nRKc02msADeXICfKcghyNWTJGLw17ST2SehgdDQAAoB6v16uanTtVsXq1KlevVkXOWnnKyurdY01KUtSZvev2hfdQRKdOMtntBiUGACC0UI4D4SqqlWRxSLVOqSxPSmjXaC/lX6uSFsPkOEJDpDXSN0G+7HblFObov5f8NwU5AAAICu59+1SxZo1vOnz1arkLC+v93NyihaL6nqXo7GxFZ2fLnpXFwZkAAPxOlONAuDKbfXvHi7f7Vqs0YjnuX6uSGp3aaK8BNLRIa6SeHXK4IB+zdIxeHPoiBTkAAGhSteUVqvxyrSrrCnHn1q31fm6y2RTZq5eis/spOjtbEV27ymTlP+UBAGgI/BMVCGf+cryRD+UsKPeV46xVQajxF+Tjlo3T2sK1FOQAAKDReV0uVX33XWAyvOq77yS3u949ji6d6ybD+yuqdy+ZIyMNSgsAQHijHAfCWRMdysmBnAhl/hUr45aP05eFX2rMUt8O8u6tuxsdDQAAhAGv1yvnj1tVsXqVrwz/8it5Kivr3WPLzPSV4f2zFdW3r6wJCQalBQCgeaEcB8KZ/1DO0sabHK9wVaisxncoUGoMa1UQmqJsUXpu8HOHC/K6QzrP+P/s3Xd0lGXexvHvTDLpmUlIAglVioKAoojSEZEemuVdG4rSWVSQFZVdd11dUVEWFRRQQF3LWlbdpYTeBAKKgIUiiHRIQhJSJr3MzPvHkNEsrDIwyZNyfc7xJLmfmSeX56zZzJV7fnfM1UZHExERkWqoJCmJvG3byNv2JXlffokjPb3cdb/ISEI6dfx5bnijRgYlFRERqd1UjovUZLaG7o8VWI6XjVSxBlgJtYRW2PcRqWhlBfnEdRPZcXqH55BOFeQiIiLyWxx2u/sQzW3byN+6jeJjx8pdNwUFEdKhg2d3eGDLlpjMZoPSioiISBmV4yI1ma3ix6roME6pSUIsIbx+8+v8ft3v2Xl6J+PWjOPNPm9yVcxVRkcTERGRKsTlclH0ww/kbtpM7ubNFHz7LTgcPz/AbCb4qqsI6eLeGR58zTWYAwKMCywiIiLnpXJcpCYr2zmedQJcLjCZfP4tVI5LTRNiCWHuzXPLF+R936RtdFujo4mIiIiBHNnZ5CUmugvxxC040sqPSglo2pTQLl3cc8Ovvx4/q9WgpCIiInKhVI6L1GRl5XhpAeRnQGiUz7+FpxzXvHGpQcoK8glrJ7ArdRdjV49VQS4iIlLLuJxOCvf9QN7mTeRu2kzBd9+B0+m5bgoJIbRjR8J6dCe0ew8CGjYwMK2IiIhcDJXjIjWZfyCE1YPc0+654xVZjmvnuNQwIZYQ5vWeV64gX9B3AW2i2xgdTURERCqIIyuL3P0xVC8AACAASURBVMRE8jZtJnfLFhxnzpS7HtCiOWHdexDWozvB112nUSkiIiLVnMpxkZrO1vDncrz+NT6/fdmBnNo5LjXRfxfkY1aPUUEuIiJSg7icTgr37iV30ybyNm2mYPfucrvDzSEhhHTuTFj37oR174algXaHi4iI1CQqx0VqOlsjOLWzwg7l1M5xqelCLCHM7e0esfJN6jeMWXO2II9SQS4iIlIdlWZmkrclkdzNm8jbkogjI6Pc9cDLWxB6dnd4SPv2mLQ7XEREpMZSOS5S05XNHa+AcrzUWUpqfiqgclxqtlBLqGcH+Tep3/y8g1wFuYiISJXncjop3LPHfZDm5k0Ufr/bfVj9WebQUEK7dCa0e3fCunfHEqffa0VERGoLleMiNZ2tkftj1nGf3zotPw2Hy4G/2Z/o4Gif31+kKikryMevGc+3ad96ZpC3jmptdDQRERH5L6UZGeRt2ULu5i3kbdmCIzOz3PXAK67wHKQZcu012h0uIiJSS6kcF6npIs6W4xWwc7xspEpsSCxmk9nn9xepajwF+drxfJf2nWcHuQpyERERY7lKSij4/nvyEreSu3kzhXv2lN8dHhZGaOfOhPY4uzs8NtbAtCIiIlJVqBwXqek8Y1VO+PzWSXlJgA7jlNolLCCM+b3nlyvIF/ZdyJVRVxodTUREpNZwuVwUHz1K3tat5CVuJf+rr3Dm5ZV7TGCrVu6DNHt0J/iaazBZLAalFRERkapK5bhITVc2ViUvDUoKwBLss1un5KUAmjcutc85Bfkad0Heqk4ro6OJiIjUWI6sLPK+/JK8xETyErdSkpRU7rpfRIR7dnjXroR2646lXl2DkoqIiEh1oXJcpKYLjgRLKJTkgT0Jopr77NZJuWd3jqscl1qorCAft3Yc36d9z+jVo1WQi4iI+JCruJj8b78lL3EreVu3njMqBYuFkPbt3WV4ly4Etb4Sk1mj/kREROTCqRwXqelMJvdolfQD7kM5fViOl80crx9W32f3FKlOPDvI14zn+3R3Qb6o7yJa1mlpdDQREZFqx+VyUXz4sGdneN7XX+PKzy/3mMDLWxDapQuhXbsS0qED5pAQg9KKiIhITaByXKQ2iGjkLsd9fChn2ViV2FAdaCS1V3hAOPP7/FyQj1o9SgW5iIjIBSrNyCBv2zZ3GZ6YSOnp0+Wu+0VFuQ/S7NqV0C6dsdSrZ1BSERERqYlUjovUBhVwKKfL5dJYFZGzygrycWvGsTt9t2fEigpyERGR8pzFxRTs2uXZHV64b1+566aAAEI6XOcZlRLYsqVGpYiIiEiFUTkuUht4ynHf7Ry3F9vJL3W/zVXluMgvCvLV49hzZo8KchEREdwbKooOHvTMDc//+mtchYXlHhPYsuUvRqVchzkoyKC0IiIiUtuoHBepDWyN3R99uHO8bKRKnaA6BPnrBYwIgDXAyht93/AU5GNWj2Fhv4VcEXmF0dFEREQqjbOggJz168nbtJm8rVspTUsrd90vJpqws2V4aOfO+MfEGJRUREREajuV4yK1QdnO8SzfleMaqSJyfmUF+djVY9l7Zi+jV41WQS4iIjWey+kk/+sdZC9eTM7KlTh/cZCmKSiIkA4dfh6VcsXlmEwmA9OKiIiIuKkcF6kNIhq5P9pPgdMJPpjbmJyXDKgcFzkfa4CVN/q8wbg14zwF+aJ+i7g88nKjo4mIiPhU0ZEjZC9eTPaSJZQmJXvWLQ0aYB3Qn9CuXQlu3x5zYKCBKUVERETOT+W4SG0QHgcmMziKIS8Nwutd8i3LyvHY0NhLvpdITWQLtPFGnzcYu2Ys+87s88wgV0EuIiLVnSMrC/uKFWT/ZzEF333nWTeHhWEd0B/b0KEEt2+vgzRFRESkylM5LlIb+FncBbn9lHvuuA/L8fph9S/5XiI1lS3Qxpt93ixXkC/qu4gWkS2MjiYiIuIVV3ExuZs3k/2fxeRu3IirpMR9wc+P0G5diRg6lLBevXSYpoiIiFQrKsdFagtbo5/L8YYdLvl2GqsicmHKCvIxq8fwQ8YPjFo9SgW5iIhUCy6Xi8I9e8n+z3+wJyTgyMryXAu88kpsQ4dgi4/XgZoiIiJSbakcF6ktbA3hBD47lDM592w5HqZyXOS32AJtLOi7oFxB/la/t2ge0dzoaCIiIucoSU4me+kyshcvpvjQIc+6X0w0tkGDsQ0bSlDLlgYmFBEREfENleMitUXZoZzZJy/5VsWOYtIK0gDtHBe5UP9dkI9cNVIFuYiIVBnOvDzsa9aQvXgx+V9+BS4XAKbAQMJ798Y2bCihnTtj8tdLSBEREak59JuNSG1ha+j+6INy/HTeaQCC/IKIDIy85PuJ1BZlBfno1aPZn7GfUavcO8ibRTQzOpqIiNRCLoeD/O3byf7PYuxr1uDKz/dcC7n+emzDhhLerx9+YWEGphQRERGpOCrHRWoLW9nO8eOXfKuyeeOxobGYTKZLvp9IbWILtLGgzwLGrBnD/oz9nh3kKshFRKSyFB06RPZ/FpO9dCmlKSme9YAmTbANG4p18BACGjYwMKGIiIhI5VA5LlJb2Hw3VkWHcYpcmoigCBb0ce8gP5B5wF2Q93+LZjYV5CIiUjFKMzKwJywne/FiCvfs8aybbTasAwcQMXQoQe3aaeODiIiI1Coqx0Vqi7KxKgWZUJQLgRf/9tikvCQA6ofV90UykVopIijCM4P8QOYBRq0axaJ+i1SQi4iIzziLisjd+AXZS5aQ+8UXUFrqvuDvT1iPHtiGDiXspp6YAwKMDSoiIiJiEJXjIrVFkBUCbVCU7d49XrfVRd8qJc/99tvY0FhfpROplSKDIj0zyH/M/NEzg7ypranR0UREpJpyFReTm5iIfcUKctetx5mX57kW1LYttqFDscYPxL9OHQNTioiIiFQNKsdFapOIRnD60svxpFz3znGNVRG5dJFBkSzsu7BcQb6o3yIV5CIicsFcpaXkffUV9uXLyVm7Dmd2tueaf/04bPHx2IYOJbBFCwNTioiIiFQ9KsdFahNbQzi955IP5SzbOa6xKiK+UVaQj1o9ioOZBz07yC+zXWZ0NBERqaJcDgf5O3ZiX7GcnNVrcGRkeK75x8QQ3r8/1oEDCG7XDpPZbGBSERERkapL5bhIbeKDQzldLpfnQE6NVRHxnV/uID+YedB9SKcKchER+QWXy0XBt99iX76CnJUrKU1L81zzi4wkvF9frAMHEnLddZj8/AxMKiIiIlI9qBwXqU3KDuW8hHI8ozCDIkcRJkzEhqgcF/GlOkF13DvIV43ip6yf3DvI+79FE2sTo6OJiIhBXC4XhXv2Yl+xAvvKFZQmJXuuma1Wwvv0xjpwIKEdO2Ly18s7EREREW/otyeR2qSsHM86cdG3KBupEhMcg8XP4otUIvILZQX56NWj+SnrJ0auHKmCXESklnG5XBT9+CP25Suwr1hByfGfR+KZQ0MJu7kX1gEDCOvaFVNAgIFJRURERKo3leMitUlEY/fHS9g5npTnPowzNky7xkUqSlRwVPmCfNVI3u73No2tjY2OJiIiFajo8GFPIV586JBn3RQURNhNPbEOHEhY9+6Yg4IMTCkiIiJSc1x0OV5cXExqaipOp7PceuPGeuEuUmWV7Ry3nwJHKfh5/yMgOdf9Vt76oTqMU6QilRXko1aN4lD2IR5Y9YAKchGRGqj4xAlPIV60f79n3RQQQGiP7lgHDCC8Z0/MoaEGphQRERGpmbxuxg4ePMjIkSPZunVruXWXy4XJZMLhcPgsnIj4WFgsmC3gLIHclJ/Lci+UHcYZFxrn63Qi8l+igqNY2G8ho1eN5lD2Ic8O8kbWRkZHExGRS1CSnIx9xUrsK1ZQuHv3zxf8/Qnt2sVdiN98M37h4caFFBEREakFvC7H77//fvz9/Vm2bBlxcXGYTKaKyCUiFcFsBmt9yDrmHq1yKeV4mMpxkcoQHRxdriAv20GuglxEpHopTUvDvnIV9hUrKNi16+cLZjOhnTpiHTiQ8N698YuIMC6kiIiISC3jdTn+7bffsnPnTlq1alUReUSkotkaucvxrBPQuJPXT9fOcZHKV1aQj1o1isPZhxm5eiRv9XuLRuEqyEVEqjJHdjb21auxJywnf/t2KBtJaTIRct11hA8cgLVvX/yjo40NKiIiIlJLeV2Ot27dmvT09IrIIiKVIaIRHAOyT1zU08tmjqscF6lc0cHRLOq3iJGrRnIk+wgjV6kgFxGpipz5+eSs34A9IYHcLVugpMRzLbhdO6wDBxDevz+WevUMTCkiIiIicBHl+IwZM3jsscd47rnnuOqqq7BYLOWuW61Wn4UTkQpQNkrlIsrxgtICMosyAY1VETFCdHA0b/V7SwW5iEgV4ywuJm/LFuzLEsjZsAFXQYHnWmDLlljj47EOHEhAwwYGphQRERGR/+Z1Od67d28Abr755nLrOpBTpJrwlOMnvX5qSl4KAKGWUMItOiBKxAjRwdEs6uveQX7UfpRRq0bxVr+3aBju/RkCIiJy8VwOB/nbt5OdkEDO6jU47XbPNUvjxljjB2KLjyewRQsDU4qIiIjIr/G6HN+wYUNF5BCRymI7u8P0IsrxX45U0WG8IsaJCYnx7CA/aj/q2UGuglxEpGK5XC4Kv/uO7ITl2FeuwJH287hJ/7p1sQ4YgHVQPEFt2+p3JREREZFqwOty/MYbb6yIHCJSWcrK8awT4HKBFy/cdBinSNVxvoL8zT5vcpntMqOjiYjUOIUHfsSekIB9+XJKTv68wcDPZiO8Xz+s8fGEdLgOk5+fgSlFRERExFtel+MAWVlZLFq0iB9++AGANm3aMHLkSGw2m0/DiUgFKBurUpwDhdkQHHHBT03KSwJUjotUFTEhMSzqt4hRq0Zx1H6U+1bcx9zec2kb3dboaCIi1V7x8ePYly/HnpBA0cGfPOumkBDCb74Za/xAwrp0wRQQYGBKEREREbkUZm+fsGPHDpo3b87LL79MRkYGGRkZzJo1i+bNm7Nr166LDvLCCy9gMpmYPHmyZ62wsJCJEycSFRVFWFgYt912G6dPny73vOPHjxMfH09ISAh169Zl6tSplJaWlnvMxo0bad++PYGBgbRo0YJ33nnnonOKVHsBIRAS5f7cy9EqZTPHdRinSNVRN6Qu7/R/h9ZRrcksymTkqpEknko0OpaISLVUcjqVjH/8gyO/u4NDffuR9sqrFB38CZPFQljvm2nw8iyuSNxCg5deJLxnTxXjIiIiItWc1zvHH3nkEYYMGcKCBQvw93c/vbS0lNGjRzN58mQ2bdrkdYivv/6aN954g6uvvvqc75WQkMC//vUvbDYbDz74ILfeeiuJie4X/Q6Hg/j4eGJjY9m6dSvJycncd999WCwWnnvuOQCOHDlCfHw848eP54MPPmDdunWMHj2auLg4+vXr53VWkRrB1hDyz0D2CYi98B2mGqsiUjVFBUfxVr+3eGTDI2xL3saD6x7kb93+xqBmg4yOJiJS5TmysrCvXo09YTn527e7x84BmM2EduqENT6e8D698bNajQ0qIiIiIj5ncrnKfvu7MMHBwXzzzTe0atWq3Pq+ffvo0KED+fn5XgXIzc2lffv2zJ07l2effZZrrrmGV155hezsbGJiYvjnP//J7bffDsD+/fu58sor2bZtG506dWLFihUMGjSIpKQk6tWrB8D8+fN5/PHHSUtLIyAggMcff5yEhAT27Nnj+Z533nknWVlZrFy58oIy2u12bDYb2dnZWPVLsdQEH90D+5fBwJlww5gLflr/z/pzKvcU7w54l2vrXluBAUXkYpQ4SvhT4p9YcWQFAI92eJQRbUYYnEpEpOpx5uWRs34D9oQEchMToaTEcy342muxxsdj7d8P/+hoA1OKiIiIyMXwpsv1eqyK1Wrl+PHj56yfOHGC8PBwb2/HxIkTiY+Pp3fv3uXWd+7cSUlJSbn1Vq1a0bhxY7Zt2wbAtm3buOqqqzzFOEC/fv2w2+3s3bvX85j/vne/fv089zifoqIi7HZ7uX9EahTPoZzn/rf8vzicDk7nu8caaee4SNVk8bPwQvcXGH7lcABm7pjJrB2zcLqcBicTETGes7iYnPXrOTVlCj927UbS1KnkbtwIJSUEtmpFzB+m0GLdWi778J/UGX6PinERERGRWsDrsSp33HEHo0aNYubMmXTp0gWAxMREpk6dyl133eXVvT766CN27drF119/fc61lJQUAgICiIgof1hgvXr1SElJ8Tzml8V42fWya7/2GLvdTkFBAcHBwed87+eff56nn37aq38XkWql7FBOL2aOnyk8Q6mzFD+TH9HBerEoUlWZTWYeu/4xYkJieHnny7y9923SC9J5uuvTWMwWo+OJiFQql8NB/tc7sCcsw75qNc5fbHqxNGmMLT4ea3w8gc2bG5hSRERERIzidTk+c+ZMTCYT9913n+fgS4vFwoQJE3jhhRcu+D4nTpxg0qRJrFmzhqCgIG9jVKhp06YxZcoUz9d2u51GjRoZmEjExyLO/u/Zi3I8KTcJgHoh9fA3e/2jQ0QqkclkYmTbkUQHR/OXxL+w9PBSMooymHXjLEIsIUbHExGpUC6Xi8K9+7AvW4Z9+XJKU1M91/zr1sU6YADWQYMIatsGk8lkYFIRERERMZrXDVdAQACvvvoqzz//PIcOHQKgefPmhIR492J7586dpKam0r59e8+aw+Fg06ZNvPbaa6xatYri4mKysrLK7R4/ffo0sbGxAMTGxrJ9+/Zy9z19+rTnWtnHsrVfPsZqtZ531zhAYGAggYGBXv37iFQrnp3jJy74KSl57ndjxIbGVkQiEakAQ5oPISIwgke/eJTEU4mMXj2a129+ncigSKOjiYj4XNGRI9gTlmNftozio0c962arFWu/fljj4wm5vgMmPz/jQoqIiIhIlXLR2z9DQkK46qqrLvob33zzzezevbvc2gMPPECrVq14/PHHadSoERaLhXXr1nHbbbcBcODAAY4fP07nzp0B6Ny5M9OnTyc1NZW6desCsGbNGqxWK61bt/Y8Zvny5eW+z5o1azz3EKmVbI3dH3NSoLQY/AN+8ylJee6d4/XD6ldkMhHxsR4Ne7Cg7wImrpvI7vTd3LfiPub3mU+DsAZGRxMRuWQlp09jX74C+7JlFJ49cwjAFBREeK+bsA4aRGi3bpgDfvt3HRERERGpfS6oHL/11lt55513sFqt3Hrrrb/62M8///yCvnF4eDht27YttxYaGkpUVJRnfdSoUUyZMoU6depgtVp56KGH6Ny5M506dQKgb9++tG7dmnvvvZcXX3yRlJQUnnzySSZOnOjZ+T1+/Hhee+01HnvsMUaOHMn69ev55JNPSEhIuKCcIjVSaDT4BYKjCHKSIPKy33xKcm4yoMM4RaqjdjHteHfAu4xfM56j9qPcu/xe5vWeR8s6LY2OJiLiNUd2NvbVq7EvSyB/+3ZwudwX/PwI7doF26BBhPW6Gb+wUGODioiIiEiVd0HluM1m88zjs1qtlTab7+WXX8ZsNnPbbbdRVFREv379mDt3rue6n58fy5YtY8KECXTu3JnQ0FBGjBjBM88843lM06ZNSUhI4JFHHuHVV1+lYcOGLFy4kH79+lXKv4NIlWQyuUerZByCrBMXVI5rrIpI9dbM1oz3BrzH+LXj+SnrJx5Y+QCv9nqV62OvNzqaiMhvchYUkLthA9kJy8ndtAlKSjzXgtu3xzooHmv//vjXqWNgShERERGpbkwuV9lWC/lf7HY7NpuN7OxsrFar0XFEfOPdoXB4IwybD9fc9ZsPv23JbfyY+SPzes+jW4NuFZ9PRCpEdlE2D69/mF2puwgwBzCjxwx6N+ltdCwRkXO4SkrI27aN7GXLyF27Dmd+vudaYMuWWAfFYxs4EEsDjYkSERERkZ950+Wavb15r169yMrKOu837dWrl7e3ExGjeHkoZ3KexqqI1AS2QBtv9HmDXo16Uews5g9f/IFPDnxidCwREQBcTif5u3aR8swzHOxxIyfGjsO+ZCnO/HwsDRoQNW4cTZcsptni/xA9ZoyKcRERERG5JF4fyLlx40aKi4vPWS8sLGTz5s0+CSUilaDsUM4LKMdzi3PJKc4BVI6L1ARB/kHM6jmLZ796lk9//JS/ffk30gvSmdBuQqWNThMRKeNyuSj68Ufsy5ZhT1hOSVKS55pfnTpYBwzAOiie4Guu0c8oEREREfGpCy7Hv//+e8/n+/btIyUlxfO1w+Fg5cqVNNDODZHqw7Nz/ORvPrRs17gt0EaIJaQiU4lIJfEz+/GXTn8hJjiGed/NY95380grSOPJjk/iZ/YzOp6I1ALFJ09iX5aAPWEZRQd/8qybQ0MJ79MH66BBhHbqiMnf6/08IiIiIiIX5IJ/07zm7E4Nk8l03vEpwcHBzJkzx6fhRKQClZXjWb+9c1wjVURqJpPJxO+v+T3RwdE8+6V7F3lmYSYzeswg0C/Q6HgiUgOVZmaSs3Il2UuWUvDNN551k8VCWM8bscYPIqznjZiDggxMKSIiIiK1xQWX40eOHMHlctGsWTO2b99OTEyM51pAQAB169bFz087zUSqjYhG7o/ZJ8Hlgl95m3JyrspxkZrsdy1/R2RQJI9vepx1x9cxdvVY5tw8B2uADqEWkUvnLCoid8NGspcsIXfzZigpcV8wmwnt1BFrfDzhffrgp4PvRURERKSSXXA53qRJEwCcTmeFhRGRSmQ9OwaptADyz0Bo9P98qHaOi9R8fZr0IaJPBA+vf5hdqbu4f+X9zO89n7ohdY2OJiLVkMvpJH/HDuxLl2JfuQpnTo7nWmDrK7ENHoJ14EAs9fQzRkRERESMc9ED/Pbt28fx48fPOZxzyJAhlxxKRCqBfyCE1YPc0+5DOX+lHE/Kcx+MpXJcpGa7PvZ63un/DuPXjudg5kHuXX4v8/vMp6mtqdHRRKSaKPrpJ7KXLCV72VJKk5I96/5xcdgGDcI2ZDCBl19uYEIRERERkZ95XY4fPnyYW265hd27d2MymXC5XACek+MdDodvE4pIxbE1OluOn4T61/7Ph6XkuQ/gjQtTOS5S07Ws05L3B77P+DXjOWo/yn0r7uP1m1/n6pirjY4mIlVUaVoa2QkJ2JcspXDfPs+6OSyM8P79sA0eQsj1HTCZzQamFBERERE5l9e/oU6aNImmTZuSmppKSEgIe/fuZdOmTXTo0IGNGzdWQEQRqTAXeCinxqqI1C4NwhrwjwH/4Kroq8gqymL06tFsPrnZ6FgiUoU48/PJXrqU46PHcPDGnqS+MMNdjPv7E3bTTTR45WUu37KZ+s8+S2jHG1SMi4iIiEiV5PXO8W3btrF+/Xqio6Mxm82YzWa6devG888/z8MPP8w3vzh1XkSquF8eyvk/lDhLSM1PBaB+WP3KSCUiVUCdoDos7LuQKRunkJiUyEPrH+KZrs8wpLnGp4nUVq7SUvK+/IrsJYvJWbsOV36+51pwu3ZYhw7BOmAA/pGRBqYUEREREblwXpfjDoeD8PBwAKKjo0lKSqJly5Y0adKEAwcO+DygiFQgW1k5/r93jqflp+F0ObGYLdQJqlNJwUSkKgixhDDn5jn8JfEvLDu8jD9t+RNnCs5wf5v7PePURKRmc7lcFP3wA9mLl5C9PAFHWrrnmqVxY2yDB2MbMpiAJk0MTCkiIiIicnG8Lsfbtm3Ld999R9OmTenYsSMvvvgiAQEBvPnmmzRr1qwiMopIRSkbq/Ir5XhSrvswztjQWMwmvSVapLaxmC1M7zad6OBo3tn7DrN2ziKtII1HOzyqnwkiNVhJUhLZyxLIXrKY4p8Oedb9IiKwDhyAbcgQgtq10x/KRERERKRa87ocf/LJJ8nLywPgmWeeYdCgQXTv3p2oqCg+/vhjnwcUkQpk++2xKmXzxuuHaqSKSG1lNpn5Q4c/EB0czcwdM3lv33ucKTjDs12fxeJnMTqeiPiIIyeHnFWryF6ylPzt2z3rpoAAwnr1wjZkMGHdumEKCDAwpYiIiIiI73hdjvfr18/zeYsWLdi/fz8ZGRlERkZq54hIdVO2czwvDUoKwBJ8zkNS8lIA985xEandRrQZQZ2gOvwl8S8sP7KcrKIsZvWcRagl1OhoInKRXMXF5G7ZQvaSpeSuX4+ruNhzLeSGG7ANGUx43774Wa0GphQRERERqRhel+PnU6eO5hCLVEvBkRAQBsW5kH0Koluc85CkPPdYFR3GKSIAg5sPJjIokikbp7A1aSujVo3itZtfIzo42uhoIuIFZ14emR99xJm338GR/vMc8YAWzbENGYptUDyW+vr/fhERERGp2S6oHL/11lsv+Iaff/75RYcRkUpmMrl3j6ftd88dP085XjZWJS40rrLTiUgV1a1BN97q9xa/X/t79p7Zy53L7uTVm16lTXQbo6OJyG9w5OSQ+f77ZLzzDxzZ2QD4RUdji4/HNnQIgVdeqXeDioiIiEitcUHluM1mq+gcImKUX5bj55Gc6y7HNVZFRH6pbXRb3hv4Hg+tf4gj2UcYsXIET3d5mvhm8UZHE5HzKM3MJOPdd8l8/wOcOTkABDRpQtS4cdgGD8Jk0fkBIiIiIlL7XFA5/vbbb1d0DhExyq8cyulyuX4+kFNjVUTkvzSxNuGDgR/wxOYn2HRyE09sfoIDmQeYdO0k/Mx+RscTEaA0PZ0zb79N5ocf4crPB9yjU6LHT8A6oD8mP/23KiIiIiK1l09mjotINVZ2KGfWuTvH7cV2CkoLAO0cF5HzCw8IZ/ZNs3nt29dYuHshb+95m4OZB5nRYwbWAB3gJ2KUktOnObNoEVmf/AtXYSEAgVdeSfT48YT36Y3JbDY4oYiIiIiI8bwux5s2bfqrcwgPHz58SYFEpJJZG7g/5iSdcykp170WFRRFoF9gZaYSkWrEz+zHpPaTaBnZkj8n/pktp7ZwT8I9zO41m6a2pkbHE6lVik+eBqYqqwAAIABJREFU4szCBWR/9jmukhIAgq6+mugJ4wnr2VPzxEVEREREfsHrcnzy5Mnlvi4pKeGbb75h5cqVTJ061WfBRKSSWM8etGlPPueSDuMUEW/0b9qfxtbGTNowiaP2o9ydcDczesygR8MeRkcTqfGKjx0j/Y03yV6yBEpLAQjucB3REyYQ2qWLSnERERERkfPwuhyfNGnSeddff/11duzYccmBRKSSle0ct5+7c9xTjoepHBeRC9M6qjUfxX/ElI1T2JW6iwfXPcjk6ybzQJsHVM6JVICin34i/Y03sSckgNMJQGiXzkSNH0/oDTcYnE5EREREpGrz2bDBAQMG8Nlnn/nqdiJSWcLPFt/FOVCUU+5Scq52jouI96KCo1jYdyG3X3E7Lly8vPNlntj8BIWlhUZHE6kxCn/4gZOTJnN48BDsS5eC00nYjTfS5MN/0vitt1SMi4iIiIhcAJ8dyPnpp59Sp04dX91ORCpLYBgEWqHI7h6tEhPuuaSxKiJysSx+Fp7q/BStIlvxwvYXWH5kOUeyjzC712wd8CtyCQq+/570efPJ3bDBsxbepzdR48cT3KaNgclERERERKofr8vxa6+9ttzbol0uFykpKaSlpTF37lyfhhORSmKtD2l2sJ+CmCs8yxqrIiKX6o5Wd9Asohl/2PgHfsj4gTuX3cnLN73MtXWvNTqaSLWSv3Mn6XPnkZeY6F4wmbAOGEDU+HEEXXHFrz9ZRERERETOy+tyfNiwYeW+NpvNxMTE0LNnT1q1auWzYCJSicLjIG0/5JQ/lFM7x0XEF66PvZ4PB33IpPWTOJB5gJGrRvJkxye57YrbjI4mUqW5XC7yv/yS9LnzyP/6a/einx+2wYOJGjuWwGZNjQ0oIiIiIlLNeV2OP/XUUxWRQ0SMZK3v/viLQzmLHcWkF6QDKsdF5NI1CGvAuwPe5c+Jf2b1sdX8ddtfOZB5gKnXT8VithgdT6RKcblc5G3aRPq8+RR8+6170WIh4pZbiBozmoBGjYwNKCIiIiJSQ1zUzHGHw8G///1vfvjhBwBat27N0KFD8ff32QhzEalM5ynHU/JSAAj2DyYiMMKIVCJSw4RYQph540ze/P5NXvv2NT7c/yGHsg4x88aZRAZFGh1PxHAup5Ocdes4M28+hfv2AWAKDCTi//6PqFEjscTpj9UiIiIiIr7kdZu9d+9eBg8ezOnTp2nZsiUAM2bMICYmhqVLl9K2bVufhxSRChZ+9sX2L8aqlI1UiQ2NLXfOgIjIpTCZTIxrN47LIy9n2uZpbE/Zzl0JdzG712yuiNTcZKmdXE4nOStXkj5vPkUHDwJgCg4m8q67iHrgfvxjYgxOKCIiIiJSM5m9fcLo0aNp27YtJ0+eZNeuXezatYsTJ05w9dVXM3bs2IrIKCIV7Tw7x5Ny3Z/XD61vRCIRqeF6Ne7FBwM/oFF4I07lnmL48uGsPbbW6FgilcrlcmFfvZojQ4dyasofKDp4EHNoKFHjxtFi/TrqPTZVxbiIiIiISAXyeuf4t99+y44dO4iM/Pntz5GRkUyfPp3rr7/ep+FEpJL8yliV2NBYIxKJSC3QIrIFH8Z/yKNfPMqXyV/yyMZHmNBuAuPbjcds8vrv9yLVhsvlIveLL0ibPZuife4xhebwcOqMGEGde4fjZ7MZnFBEREREpHbw+pXnFVdcwenTp89ZT01NpUWLFj4JJSKVLPxsOZ6XBo4S4OexKjqMU0Qqki3Qxrze8xh+5XAA5n03jykbp5BXkmdwMhHfc7lc5CYmcvTOOzk5fgJF+37AHBJC1ITxtFi7hpgHJ6oYFxERERGpRF7vHH/++ed5+OGH+etf/0qnTp0A+PLLL3nmmWeYMWMGdrvd81ir1eq7pCJScUKiwGwBZwnkpEBEI5Lyzo5VCdNYFRGpWP5mfx6/4XFa1mnJM9ueYd3xdRxbfozZvWbTKLyR0fFEfCL/669Je3U2+Tt2AGAKCqLO8HuoM2oU/pE6kFZERERExAhel+ODBg0C4He/+53nkD6XywXA4MGDPV+bTCYcDoevcopIRTKbwRoHWcfdo1UiGmmsiohUumEthtHU1pRHNjzCT1k/cVfCXfz9xr/TMa6j0dFELlrBd9+R9ups8rZuBcBksRBx551Ejx2jeeIiIiIiIgbzuhzfsGFDReQQEaOF13eX4zlJOF1OknPdY1W0c1xEKlO7mHZ8NOgjJm+YzO703YxbM46p10/l7lZ3e/4oL1IdFO7bR9rsOeRu3Ohe8Pcn4vbbiB4/Hkus/vAsIiIiIlIVeF2O33jjjRWRQ0SMZj07W9yeTEZhBsXOYkyYqBtS19hcIlLr1A2py9v93+bprU+z9PBSXtj+AgcyDvBkpycJ8AswOp7Iryr88UfS57xGzpo17gWzGduwYUT/fgIBDRsaG05ERERERMrxuhwHyMrKYtGiRfzwww8AtGnThpEjR2LTAUIi1VfZoZz2U56RKjEhMVjMFgNDiUhtFegXyPRu02lZpyWzds7i3z/9m8PZh3nlpleIDo42Op7IOYqOHCH9tdexL18OLheYTFjj44me+HsCmzY1Op6IiIiIiJyH2dsn7Nixg+bNm/Pyyy+TkZFBRkYGs2bNonnz5uzatasiMopIZbCeLcdzkknKPXsYZ6hGqoiIcUwmEyPajGDuzXMJDwjnu7TvuGPZHexN32t0NBGP4pMnSZr2Rw7HD8KekAAuF+F9+9JsyWIazHxJxbiIiIiISBXmdTn+yCOPMGTIEI4ePcrnn3/O559/zpEjRxg0aBCTJ0+uiIwiUhl+MVYlOc89bzwuNM7AQCIibl0bdOXD+A9pZmtGan4qI1aOYNnhZUbHklquJDmZ5Kf+yqH+A8j+97/B6STsppto+vlnNJz9KoGXX250RBERERER+Q1ej1XZsWMHCxYswN//56f6+/vz2GOP0aFDB5+GE5FK9IuxKp5yPEzluIhUDU2sTfhg4AdM2zyNjSc3Mm3zNA5nHeahax/SQZ1SqUpSUznz5gKyPv4YV0kJAKFduxLz8EMEt2tncDoREREREfGG1zvHrVYrx48fP2f9xIkThIeH+ySUiBjAM1YlheRc7RwXkaonLCCMV3u9ypirxgCwYPcCpm2ZRomjxOBkUhuUZmZy+qWXONS3H5nvv4+rpISQDh1o8v57NF60UMW4iIiIiEg15PXO8TvuuINRo0Yxc+ZMunTpAkBiYiJTp07lrrvu8nlAEakk4WeLcEcRyTknAZXjIlL1mE1mHm7/MI2tjXl669MkHE4gLT+Nl296GWuA1eh4UgM5srM58/bbZL77Hs78fACC27UjZtLDhHTurHcuiIiIiIhUY16X4zNnzsRkMnHfffdRWloKgMViYcKECbzwwgs+DygilcQ/AEKiIT+d5Dz3gZwaqyIiVdWwFsOoG1yXKV9MYXvKdkasGMG83vOIDY01OprUEI7cXDLefZeMt9/BmZMDQGDrK6k7aRKhPXqoFBcRERERqQFMLpfLdTFPzM/P59ChQwA0b96ckJAQnwarSux2OzabjezsbKxW7UqTGmx+d/JP76bjZY0A2HrXVsIDNC5JRKqu/Rn7mbh2IqkFqdQNrsvrvV+nVZ1WRseSasyZn0/mP//JmQULcWRnAxB4+eVEP/wQ4b17qxQXEREREanivOlyvdo5fvToUdasWUNxcTE9e/bkqquuuqSgIlLFWOuTcmYfAGGWMBXjIlLltarTig/iP2DC2gn8lPUTI1aMYFbPWXRt0NXoaFLNOIuKyPr4Y9LfXIAjPR2AgKZNiX5wItYBAzCZvT6qR0REREREqrgLLsc3bNjAoEGDKCgocD/R35+33nqL4cOHV1g4Ealk4XEk+7t/LGikiohUF7GhsfxjwD94ZMMjbE/ZzsR1E3mq81PccvktRkeTasBZXEzWp59yZv4blKamAmBp2JDoiROxDR6Eyd/rKYQiIiIiIlJNXPAWmD//+c/06dOHU6dOcebMGcaMGcNjjz1WkdlEpLJZG5Ds7wfoME4RqV6sAVbm957PoGaDcLgc/GXrX5j77Vwucnqc1AKukhIyP/mEQ/37c/qZv1Gamop/XByxTz9N8xXLibhlmIpxEREREZEa7oJ/49+zZw9bt24lLs5dmL300ku88cYbnDlzhqioqAoLKCKVyBpHUtnOcZXjIlLNWPwsPNftOeJC41iwewHzvptHUm4ST3V5CovZYnQ8qSJcpaVkL1lK+ty5lJw8CYB/3bpEjR9HxO23Yw4IMDihiIiIiIhUlgsux+12O9HR0Z6vQ0JCCA4OJjs7W+W4SE0RHkeKn8pxEam+TCYTD7d/mLiwOKZ/OZ3FhxaTmp/KrJ6zCAsIMzqeGMjlcGBfvpz0116n+NgxAPyio4keO4aI3/0Oc1CQwQlFRERERKSyefVe0VWrVmGz2TxfO51O1q1bx549ezxrQ4YM8V06Ealc1gYkaayKiNQA/3fF/1EvpB6PfvEo25K3cf/K+3n95tepF1rP6GhSyVxOJzmrVpH22usUHzoEgF9EBFFjRhN5112YQ0IMTigiIiIiIkYxuS5wGKfZ/NvjyU0mEw6H45JDVTV2ux2bzUZ2djZWq9XoOCIVpzCb/u934pTFn/d6L+CaBp2MTiQickn2ntnLxLUTOVN4hnoh9Zjbey5XRF5hdCypBC6Xi9x160ib8xpFBw4AYLbZiHrgASKHD8cvLNTghCIiIiIiUhG86XIv+EBOp9P5m//UxGJcpDZxWEI5fXbneKzLZHAaEZFL1yaqDR/Ef0BTW1NO559mxIoRfJX8ldGxpAK5XC5yNm7k6G23c/LBhyg6cABzWBjRDz5Ii7VriB4/TsW4iIiIiIgAXpTjIlLzpRWmU2oy4e9yEVNcYHQcERGfaBDWgPcGvEf7uu3JLcll/NrxLD201OhY4mMul4vcLYkcvfNOTo6fQOG+fZhDQogaP44W69YS8+BE/MLDjY4pIiIiIiJViFczx0WkZkvJSwGgXqkDv5zTBqcREfEdW6CNN/u+yZNbnmTl0ZX8ccsfSc5LZsxVYzCZ9E6Z6i7vy69ImzOHgp07ATAFBVFn+D3UGTUK/8hIg9OJiIiIiEhVpXJcRDyS85IBiC0thZwkg9OIiPhWoF8gM3rMIC4sjrf3vM2cb+aQlJvEk52exN+sX4mqo/ydO0mbPYf8r9yjckwBAUTedSdRY8bgHx1tcDoREREREanq9EpQRDySct2FeP1SB9hVjotIzWM2mZly3RTiQuN4YfsLfHbwM1LzU5l540xCLCFGx5MLVPDdd6TNnkNeYiIAJouFiP/7P6LGjcNSr67B6UREREREpLpQOS4iHp6d445SleMiUqPd1eou6oXU4/FNj7P51GbuX3k/c3vPJTpYu42rsoK9e0mfPYfcL75wL/j7E3HrrUSPH4elfn1jw4mIiIiISLXj9YGcJ06c4OTJk56vt2/fzuTJk3nzzTd9GkxEKl9ZOV6/tBRykg1OIyJSsXo17sWifouoE1SHHzJ+4J6EezicddjoWHIehQcOcOLBBzl62+3uYtzPD9utt9J85QrinnlaxbiIiIiIiFwUr8vxu+++mw0bNgCQkpJCnz592L59O3/605945plnfB5QRCpPWTkep7EqIlJLXB1zNe8PeJ8m1iYk5SUxfMVwdqTsMDqWnFX000+cnPwIR4YOI3ftOjCZsA4ZTPOEZdR/bjoBDRsaHVFERERERKoxr8vxPXv2cMMNNwDwySef0LZtW7Zu3coHH3zAO++84+t8IlKJUnJTAIgrLYXc0+AoNTiRiEjFa2RtxHsD3qNdTDtyinMYu2YsK46sMDpWrVZ87Binpj7G4cFDyFm5EgDrwAE0W7aUBi++SMBllxkbUEREREREagSvZ46XlJQQGBgIwNq1axkyZAgArVq1IjlZYxhEqquc4hxySnIAiHUALifkpYJVb1UXkZovMiiShX0XMm3zNNYeX8tjmx4jJS+F+9vcj8lkMjperVGamUn663PJ/OgjKHX/gTa8Tx+iH3yQoJZXGJxORERERERqGq93jrdp04b58+ezefNm1qxZQ//+/QFISkoiKirK5wFFpHKUjVSJCIwgJCzWvajRKiJSiwT5BzHzxpkMv3I4ALN2zmL6V9NxOB0GJ6v5nIWFpL+5gEN9+pL5/vtQWkpoj+40/fwzGs6ZrWJcREREREQqhNc7x2fMmMEtt9zCSy+9xIgRI2jXrh0AS5Ys8YxbEZHqJzn37Lzx0DiwBoL9pMpxEal1/Mx+PH7D49QPq89LX7/Exwc+5nT+aV7s8SLB/sFGx6txXA4H2UuWkvbqq5SmuEd7Bba+knpTpxLaubPB6UREREREpKbzuhzv2bMn6enp2O12IiMjPetjx44lJCTEp+FEpPJ4DuMMjYNw9+gkcjQqSURqp3tb30tsaCzTNk9j44mNjFo1ijm95hAVrHfJ+UpuYiKpL82kaP9+APzrx1F38mSsgwZhMnv95kYRERERERGvXdQrD5fLxc6dO3njjTfIyXHPKA4ICFA5LlKNecrxsDiwNnAv2k8ZmEhExFh9mvRhYd+F2AJt7E7fzfDlwzmafdToWNVe4YEDHB89hhOjRlO0fz/m8HDqTn2U5itWYBsyRMW4iIiIiIhUGq93jh87doz+/ftz/PhxioqK6NOnD+Hh4cyYMYOioiLmz59fETlFpIKVG6tScnZ0gF07x0Wkdrum7jW8P+B9JqydwMnck9y74l5euekVrqt3ndHRqp2SlBTSXp1N9n/+Ay4XWCzUufsuosaPx/8X70YUERERERGpLF5vzZk0aRIdOnQgMzOT4OCfZ2/ecsstrFu3zqfhRKTylB+rUt+9qLEqIiJcZruM9we+T9uotmQVZTFy1UjmfDOHEmeJ0dGqBUduLqmzXuZQv/5k//vf4HJhHTiA5ssTqDdtmopxERERERExjNc7xzdv3szWrVsJCAgot37ZZZdx6pRGMIhUV0l57sM364fVB0LdixqrIiICQFRwFIv6LWL6V9NZcmgJb37/JltPbeX57s9zme0yo+NVSa6SEjI//oT011/HkZkJQHCH66g3dSrBZw90FxERERERMZLXO8edTicOh+Oc9ZMnTxIeHu6TUCJSuUqcJaTlpwEQGxoL1jj3BXuy+63vIiJCiCWE6d2m89KNL2ENsLLnzB5+t+x3fHLgE1z6Wenhcrmwr1rN4UGDOf3sszgyMwlo1oyGc1+nyXvvqRgXEREREZEqw+tyvG/fvrzyyiuer00mE7m5uTz11FMMHDjQp+FEpHKk5qfiwkWAOYA6QXUg/Gw5XloAhVnGhhMRqWL6X9afz4d8Tqe4ThSUFvC3L//Gg+sfJL0g3ehohsvf9Q3H7r6HU5MmUXzsGH5RUcT+9SmaLVlMeK9emEwmoyOKiIiIiIh4eF2O//3vfycxMZHWrVtTWFjI3Xff7RmpMmPGjIrIKCIVLCnXPVIlLiwOs8kMlmAIruO+aE8yMJmISNVUL7Qeb/R5g8euf4wAcwCbTm7itiW3sfHERqOjGaL46FFOPjyJY3ffTcE332AKDib697+n+apVRN55JyZ/ryf5iYiIiIiIVDivX6k0bNiQ7777jo8++ojvv/+e3NxcRo0axT333FPugE4RqT5S8lKAsyNVyljrQ0GGe7RKvTYGJRMRqbrMJjP3tr6XjnEdeWLzExzMPMhD6x/i9ituZ2qHqYRYQoyOWOFKMzJIf30umR9/DKWlYDYTcdutRD/4EJZ6dY2OJyIiIiIi8qsuahuPv78/w4cP93UWETFI2c7x+qH1f14Mj4PTeyBHO8dFRH7NFZFX8FH8R8z5Zg7v7H2HT3/8lK9Tvub5bs9zVcxVRserEM6CAjL+8S5nFizAmZcHQOiNPaj36KMEXn65welEREREREQuzAWV40uWLGHAgAFYLBaWLFnyq48dMmSIT4KJSOVJzksGIC407udF69miXGNVRER+U4BfAH/o8Ae6NejGn7b8iWP2Y9y74l7GtRvHmKvG4G+uGWNFXA4H2YuXkDZ7NqUp7ncdBbVuTd3HphLaqZPB6URERERERLxzQa/Uhg0bRkpKCnXr1mXYsGH/83EmkwmHw+GzcCJSOf7nWBVQOS4i4oWOcR35bMhnTP9yOiuOrmDut3PZcmoLL3R7gUbWRkbHuyS5m7eQOnMmRQcOAGCpX5+YRx7BGj8Qk9nrY2xEREREREQMd0HluNPpPO/nIlIzJOWdHasS9l9jVQBykg1IJCJSfdkCbbx444vc2OhGnv3yWb5P+57bl97OEzc8wbAWwzCZTEZH9Erh/v2kvvgSeVu3AmC2WokeN47I4fdgDgw0OJ2IiIiIiMjF0zYfkVrO5XJ5do6ff6yKynERkYsR3yyez4Z8Rod6HcgvzecvW//C5A2TySzMNDraBSlJTSVp2h85csut7mLcYqHOiBE0X7WSqFEjVYyLiIiIiEi153U5/vDDDzN79uxz1l977TUmT57sk1AiUnmyirIoKC0A/tdYlVMGpBIRqRnqh9VnYd+FPHLdI/ib/Vl/Yj23LrmVLae2GB3tf3IWF3Nm4UIO9x9A9r//DS4X1oEDab5iOfWmPYF/ZKTREUVERERERHzC63L8s88+o2vXruesd+nShU8//dQnoUSk8pQdxhkdHE2AX8DPF8rGqhRkQEmhAclERGoGP7MfI9uO5J8D/0lzW3PSC9KZsHYCz331nOePk1WBy+UiZ/16Dg8aTOrMv+PMzyfo6qu57OOPaDDr7wQ0bGh0RBEREREREZ/yuhw/c+YMNpvtnHWr1Up6erpPQolI5Skrx8uNVAEIjgT/IPfnmjsuInLJroy6ko8GfcQ9V94DwIf7P+SOZXew78w+g5NB0U8/cWL0GE7+fiIlx4/jHxND/RkvcNlHHxLcrp3R8URERERERCqE1+V4ixYtWLly5TnrK1asoFmzZj4JJSKVJznXXXyXG6kCYDL9YrRKUiWnEhGpmYL8g3jihid4o/cbxATHcCT7CPck3MPC3QtxOB2VnseRnU3K9Oc4PHQYeYmJmCwWosaOpdmKFdiGDsVk1vE0IiIiIiJSc/l7+4QpU6bw4IMPkpaWRq9evQBYt24df//733nllVd8HlBEKlZSnrv4bhDW4NyL4fUh47B2jouI+FiXBl34fMjnPL3tadYeX8uru15l88nNPNf9ufP/PPYxl8NB1r/+Rdorr+LIygIgrPfN1HvsMQIaN67w7y8iIiIiIlIVeF2Ojxw5kqKiIqZPn87f/vY3AC677DLmzZvHfffd5/OAIlKxknLd5Xj9sPrnXrSeHbWineMiIj4XERTBrJ6zWHxoMc9/9Ty7Undx25Lb+FPHPzGo2SBMJlOFfN+8r7Zz+rnnKDpwAIDAy1tQb9o0Qrt0qZDvJyIiIiIiUlV5XY4DTJgwgQkTJpCWlkZwcDBhYWG+ziUilcRTjoeerxzXWBURkYpkMpkY1mIY19W7jj9u/iPfpn3LH7f8kS9OfsGfO/0ZW+C557xcrOKTp0h96SVyVq0CwGyzEfPQQ0TeeQcm/4v6lVBERERERKRau6hBkqWlpaxdu5bPP/8cl8sFQFJSErm5uT4NJyIVr2ysynl3joefXctROS4iUpEahTfi7f5v89C1D+Fv8mfV0VXcuuRWtiVtu+R7O/PzSZs9m8Px8e5i3Gwm8u67ab5yBXWG36NiXEREREREai2vXw0dO3aM/v37c/z4cYqKiujTpw/h4eHMmDGDoqIi5s+fXxE5RaQC5Bbnkl2UDfzWWBXNHBcRqWj+Zn/GXj2WLvW7MG3zNI7ajzJ2zVjubX0vk9pPItAv0Kv7uVwu7AnLSZ05k9KUFABCOnak3h//yP+zd+/xOdf/H8cf17VdOx8YdqY5JqW+JbFESZGcbSKnwvcrvlQo5FtSFEonHagoSgkzZyHp61AUTSJnGWNHp2222em6rt8fO3zz62Rs+2zXnvfbzS12ffb5PK8/Knvutdfb7fpGZfEWREREREREKpUST44/+eST3H777Vy4cAF3d/fij/fo0YNNmzaVajgRKVtFU+O+rr54Wjx/f4FP4aFwWqsiIlJubqp5E4s7L+ahRg8BsODAAvqs6cPh84ev+B6XftnPyX79SXj6afKTkrCEhBDy9kzqzJ+nYlxERERERKRQiSfHt23bxvbt23Fxcbns42FhYcTHx5daMBEpe4kZBRPhf7hvHMC7cHI8IwlsNjBf1SYmEREpIQ+LBxPDJ3J37buZ+N1EjqUeo+/avjx1+1M83PjhPz2sM//sWVLeeou06GVgt2Nyd6fmY4/hN+hRzK4lmzwXERERERFxdCVuumw2G1ar9XcfP336NN7e3qUSSkTKR3xGwTe0QrxC/vgCrwAwmcGWD5lnyjGZiIgAtAltw7Kuy7g79G5ybblM2zmNJ/77BKnZqZddZ8/N5dxHH/NrhwdIWxoNdjs+XbtQf/06ag57TMW4iIiIiIjIHyhxOd6+fXveeuut4j+bTCYyMjKYNGkSDz74YInuNXv2bG6++WZ8fHzw8fEhPDycdevWFb+enZ3NiBEjqFGjBl5eXkRERJCcnHzZPeLi4ujUqRMeHh74+/szduxY8vPzL7tm8+bN3Hbbbbi6utKgQQPmz59f0rct4pASMwsmx4O8gv74AifngoIcIF0/GSIiYoQa7jV45953eOaOZ7CYLWw+tZmI1RHsStoFwMXNmznepSspM2Zgy8zE7aabuO6LhYS8+iqWgACD04uIiIiIiFRcJS7HX3/9db777juaNGlCdnY2ffv2LV6p8sorr5ToXqGhoUyfPp2YmBh+/PFH7r33Xrp168b+/fsBGD16NKtXryYqKootW7aQkJBAz549iz/farXSqVMncnNz2b59O5988gnz58/n+eefL74mNjaWTp060bZtW/bs2cOoUaP45z//yYYNG0r61kUczt9OjsP/VqsMY9FyAAAgAElEQVRc1KGcIiJGMZlM9LuhHws7LSTMJ4yUrBQmLhzMtj4dOD1sOLknT+JUsyZBU6cStmQxHrfeanRkERERERGRCs9kt9vtJf2k/Px8Fi1axN69e8nIyOC2226jX79+lx3QebX8/PyYMWMGkZGR1KpVi4ULFxIZGQnAoUOHuOGGG9ixYwctW7Zk3bp1dO7cmYSEBAIKJ6Pef/99xo8fz5kzZ3BxcWH8+PGsXbuWX375pfgZffr0ITU1lfXr119RpvT0dHx9fUlLS8PHx+ea36NIRdFnTR/2n9vP223fpm2dtn980aJ+cGgNPPga3PGv8g0oIiK/k3EumY0v/IsGm47ibAOrkwn3fg8R9sTTOHl5GR1PRERERETEUCXpckt8ICeAs7Mz/fv3v6pwf8ZqtRIVFUVmZibh4eHExMSQl5fHfffdV3xN48aNqVOnTnE5vmPHDpo2bVpcjAN06NCB4cOHs3//fm699VZ27Nhx2T2Krhk1atSfZsnJySEnJ6f4z+np6aX4TkUqjqK1KsFef3IgJ4BP4WvpCeWQSERE/ozdaiU1Opozb82k8fnzAPzUyJl5be1kBn7Fi+dacb/X/QanFBERERERqTxKvFYF4PDhw4wcOZJ27drRrl07Ro4cyaFDh64qwL59+/Dy8sLV1ZVhw4axfPlymjRpQlJSEi4uLlSrVu2y6wMCAkhKSgIgKSnpsmK86PWi1/7qmvT0dC5duvSHmaZNm4avr2/xr9q1a1/VexOpyLLysjifXVCu/OnOcdBaFRGRCiArJobYXr1Ien4S1vPncalfn9pz5tD68y/xb3QLF3MvMmbzGCbvmMyl/D/++42IiIiIiIhcrsTleHR0NDfddBMxMTHccsst3HLLLezevZumTZsSHR1d4gDXX389e/bs4YcffmD48OE88sgjHDhwoMT3KU0TJkwgLS2t+NepU6cMzSNSFoqmxr0t3vi4/MWPmGhyXETEMLasLJKmvMTJfv3JOXAQs7c3Af+ZQL0Vy/FqfRe1vWszv+N8htw0BBMmoo5E0XdtX45eOGp0dBERERERkQqvxGtVxo0bx4QJE5g8efJlH580aRLjxo0jIiKiRPdzcXGhQYMGADRr1oxdu3Yxc+ZMevfuTW5uLqmpqZdNjycnJxMYGAhAYGAgO3fuvOx+ycnJxa8V/bPoY7+9xsfH5093pLu6uuLq6lqi9yFS2SRkFJTdf7lSBVSOi4gYJGv3bhImTCDvZBwA1XpFUmv0aJz9/C67zmK2MKrZKFoEteA/3/6HY6nHeHjtw4xrPo5ejXphMpmMiC8iIiIiIlLhlXhyPDExkYEDB/7u4/379ycx8drXLthsNnJycmjWrBkWi4VNmzYVv3b48GHi4uIIDw8HIDw8nH379pGSklJ8zcaNG/Hx8aFJkybF1/z2HkXXFN1DpKq64nLcu/B1rVURESkXtuxskl95lZP9+pN3Mg7nwEBqfzSXoClTfleM/1Z4cDhLuyzlrpC7yLHmMOX7KYzZPIa0nLRyTC8iIiIiIlJ5lLgcv+eee9i2bdvvPv7tt9/SunXrEt1rwoQJbN26lRMnTrBv3z4mTJjA5s2b6devH76+vgwZMoQxY8bw3//+l5iYGAYNGkR4eDgtW7YEoH379jRp0oQBAwbw888/s2HDBp577jlGjBhRPPk9bNgwjh8/zrhx4zh06BCzZs1iyZIljB49uqRvXcShxGfGA1cyOV64czw3A7J1OK2ISFm6tHcvsT0jOD9vHtjt+PbsSb3Vq/Bq1eqKPr+Gew3ea/ceY28fi7PZma/jviZydSQxyTFlnFxERERERKTyKfFala5duzJ+/HhiYmKKS+rvv/+eqKgoXnzxRVatWnXZtX8lJSWFgQMHkpiYiK+vLzfffDMbNmzg/vvvB+DNN9/EbDYTERFBTk4OHTp0YNasWcWf7+TkxJo1axg+fDjh4eF4enryyCOPXLbypW7duqxdu5bRo0czc+ZMQkNDmTt3Lh06dCjpWxdxKIkZBZPgwZ5/U467eIKbL2SnFaxWcfuL/eQiInJVbLm5nH1vFufmzAGbDadaNQmaPBnvtm1LfC+zyczAGwfSLLAZ47aMI+5iHIM3DGbYLcMY2nQoTmanMngHIiIiIiIilY/JbrfbS/IJZvOVDZubTCasVutVhapo0tPT8fX1JS0tDR8fFYPiGPqt7cfes3t56563aHddu7+++L2WcOYgDFgO9e8tn4AiIlVE9oEDJDwzgZwjRwDw6dyZwOeexek3Z65crcy8TKb+MJVVvxYMLzQLaMb01tMJ9Ay85nuLiIiIiIhURCXpcku8VsVms13RL0cpxkUcVXxGwVqVIK+gv7+4aLVKuvaOi4iUFnteHmfefY/Yh3qTc+QITn5+hLw9k5DXZpRKMQ7gafHk5bteZupdU/Fw9iAmOYbI1ZF8E/dNqdxfRERERESkMitxOS4ilV92fjbnss8BEOIV8vef4FO4eiU9oQxTiYhUHdlHjnCidx/Ovvsu5Ofj3b499dasxqd9+zJ5Xpf6XYjqEsWNNW4kLSeNJ//7JC9//zI51pwyeZ6IiIiIiEhlcMXl+I4dO1izZs1lH/v000+pW7cu/v7+DB06lJwcfYElUhkkZhZMgHtaPPFxuYJVQd6F5fhFleMiItfCnp/P2Q/ncCIikuwDBzD7+hL82muEzHwLZz+/Mn12HZ86LOi4gEdvfBSARYcX8fDah/k19dcyfa6IiIiIiEhFdcXl+OTJk9m/f3/xn/ft28eQIUO47777eOaZZ1i9ejXTpk0rk5AiUroSMgpK7iDPIEwm099/gtaqiIhcs5zjsZzo148zb7yBPS8Pr3vuod7qVfh27nRl/y0uBRYnC0/d/hTv3/c+fm5+HL1wlD5r+rD0yFJKeAyNiIiIiIhIpXfF5fiePXto1+5/h/YtWrSIFi1aMGfOHMaMGcPbb7/NkiVLyiSkiJSuhMyCcvyKVqoA+BRelx5fRolERByX3Wbj/CefENujB9k/78Xs5UXQ1KmEzp6Fxd/fkEytQloR3TWa8KBwsq3ZvLjjRZ7e8jTpuemG5BERERERETHCFZfjFy5cICAgoPjPW7ZsoWPHjsV/bt68OadOnSrddCJSJoomx4O9gq/sE7wLJ8cvanJcRKQkcuPiODlwIMnTpmPPycGzVSvqrV5FtZ49ym1a/M/UdK/J+/e/z5hmY3A2OfPVya/otaoXe1L2GJpLRERERESkvFxxOR4QEEBsbCwAubm57N69m5YtWxa/fvHiRSwWS+knFJFSF59RMAEe7HmF5XjRgZyZZyA/t4xSiYg4DrvNxvmFCznevQeXfozB5OFB4AsvUHvuHCxBQUbHK2Y2mRl00yA+7fgpoV6hJGQm8Oj6R/lw74dYbVaj44mIiIiIiJSpKy7HH3zwQZ555hm2bdvGhAkT8PDwoHXr1sWv7927l/r165dJSBEpXYkZBRPgVzw57lEDnFwKfq/pcRGRv5SXkEDckCEkT56CPSsLjzvuoN6qlVTv09vwafE/07RWU6K6RPFg3Qex2q2889M7DN04lJSsFKOjiYiIiIiIlJkrLsenTJmCs7Mzd999N3PmzGHOnDm4uLgUv/7xxx/Tvn37MgkpIqWraK3KFe8cN5m0WkVE5G/Y7XZSly7leJeuZO34HpObGwHPPkud+fNwCQ01Ot7f8nLxYnrr6bzU6iXcnd3ZmbSTiFURbDm1xehoIiIiIiIiZcL5Si+sWbMmW7duJS0tDS8vL5ycnC57PSoqCi8vr1IPKCKlK9eaS8qlgknAIK8S/Gi/TzCknoT0hDJKJiJSeeUlp5D4/EQyt2wFwP3WWwmeNhWXsDBjg5WQyWSiW4Nu3FzrZsZvHc/B8wcZ+c1IIhpGMLb5WDwtnkZHFBERERERKTVXPDlexNfX93fFOICfn99lk+QiUjElZSYB4O7sTnXX6lf+iUV7xzU5LiJSzG63k7ZqFce7dCFzy1ZMLi74jx3LdZ8tqHTF+G/V9a3LZw9+xoAmAwCIPhpNxKoIdiXtMjiZiIiIiIhI6SlxOS4ildtvD+Ms0e7borUqmhwXEQEg/+xZTj/+OAnjxmNLT8etaVPqLoumxpDBmP5gkKCycXFyYVzzcXzc4WNCvEKIz4hn8IbBTN85nUv5l4yOJyIiIiIics1UjotUMUX7xku0UgX+NzmuclxEhPT16zneuQsZX28Ci4Vao54k7IuFuDZoYHS0Utc8sDnRXaPp1agXAJ8f/Jxeq3uxJ2WPwclERERERESujcpxkSomIbOEh3EW0YGcIiLkX7hA/JgxxI8ajTU1FdfGjakbtYSaw4Zhcr7io1wqHU+LJ8+HP8/s+2bj7+HPyfSTPLL+Ed6MeZNca67R8URERERERK6KynGRKqZocjzYK7hkn+hTWKanx5dyIhGRyuHiN99wvEtX0r9cB05O1Pz3cOouWYxb48ZGRys3d4XcxbKuy+hSrws2u42Pf/mY3mt6c+DcAaOjiYiIiIiIlJjKcZEqprgc9yxpOV40OZ4EdnsppxIRqbisaWkkjB/P6X+PwHr2LC4N6hO2aBG1nngCUxU8jNzX1Zeprafy1j1v4efmx7HUY/Rb24/ZP88mz5ZndDwREREREZErpnJcpIopWqtS4slxr8CCf1pzIetcKacSEamYMrZt43iXrqStXAVmMzX+OYS60dG4N73J6GiGa3ddO5Z3W879191Pvj2fWXtm0f/L/hy7cMzoaCIiIiIiIldE5bhIFZJnzSMlKwW4inLc2QU8/Qt+r9UqIuLgrBkZJE6cyKl/DSU/JQWX667jus8/w//ppzG7uhodr8Lwc/Pj9btf55XWr+Dj4sOBcwd4aM1DzPtlHlab1eh4IiIiIiIif0nluEgVkpSVhM1uw9XJlRpuNUp+g6LVKuk6lFNEHFfm998T27UbqVFLAag+cAB1VyzH49ZbDU5WMZlMJh6s9yDLuy2ndUhr8mx5vBHzBo+uf5S49Dij44mIiIiIiPwpleMiVUhiRkGpHeQZhMlkKvkNvAunzS8mlGIqEZGKwZaVRdLkKcQ9Ooi8hAQsoaHU+fQTAv/zH8zu7kbHq/D8Pfx5r917vHjni3haPNlzZg+RqyP54tAX2Ow2o+OJiIiIiIj8jspxkSokPqNgHUqJV6oU8Sn8vHSV4yLiWLJiYjjevQcXFi4EoFqf3tRbuQLPO+4wOFnlYjKZ6NmwJ8u6LqNFYAsu5V9i6g9TGbpxaPE3aEVERERERCoKleMiVchVH8ZZRGtVRMTB2LKzSZ7+Cif7DyAvLg7noCBqfzSXoBdewOzpaXS8SivYK5gP23/IhDsm4Obkxg+JP9BjVQ+WH12O3W43Op6IiIiIiAigclykSknIKCjHQ7xCru4GWqsiIg7k0s8/E9szgvPz54Pdjm/PntRbtRKvVq2MjuYQzCYzfW/oy9KuS/lHrX+QmZfJ89ufZ+Q3IzmTdcboeCIiIiIiIirHRaqSonI8yDPo6m6gtSoi4gBsubmkvPEmJx7uS+7x4zjVqkno7FkET30ZJ29vo+M5nOt8rmP+A/MZ02wMFrOFrae30n1ld748/qWmyEVERERExFAqx0WqkGueHC8ux7VWRUQqp+wDBzgR2YtzH34INhs+nTtTf/VqvNu2NTqaQ3MyOzHopkEs6byEG/xuID03nfHbxvPUlqc4n33e6HgiIiIiIlJFqRwXqSLybfkkZyUD17Bz3Ltw4jwnDXIySimZiEjZs+flcebd94h9qDc5R47g5OdHyNszCXltBk7Vqhkdr8poUL0Bn3f6nH/f8m+cTc5sPLmRHit7sCluk9HRRERERESkClI5LlJFpGSlYLVbsZgt1HSveXU3cfMBl8KVAxc1PS4ilUP2kSOc6N2Hs+++C/n5eLdvT701q/Fp397oaFWSxWxh+D+G83mnz2lQrQHns88z6r+j+M+2/5Cem250PBERERERqUJUjotUEb/dN242XcO/+j6F0+PaOy4iFZw9P5+zH87hREQk2QcO4OTrS/DrrxEy8y2c/fyMjlflNanRhMWdFzP4psGYTWZWH19Nj5U9+C7+O6OjiYiIiIhIFaFyXKSKSMgsKLOveqVKkaLVKpocF5EKLOd4LCf69ePMG29gz8vD6557qLt6Fb6dOmEymYyOJ4VcnFwY3Ww0nzzwCXW865CSlcKwr4cxecdkMvMyjY4nIiIiIiIOTuW4SBURnxEPlEI57lN4mGd6/DUmEhEpfXabjXPz5xPbowfZP+/F7OVF0NSphM6ehcXf3+h48if+4f8PorpE0bdxXwCijkQRsSqCXUm7DE4mIiIiIiKOTOW4SBWRmFEw6R3sea3leNFaFU2Oi0jFkhsXx8mBA0mZ/gr2nBw8W7Wi3upVVOvZQ9PilYCHxYMJLSYwt/1cgj2Dic+IZ/CGwUzfOZ2svCyj44mIiIiIiANSOS5SRRTtHNdaFRFxNHabjfMLF3K8W3cu/RiDycODwBdeoPbcOViCgoyOJyXUIqgF0V2jiWwUCcDnBz+n1+pe7E7ebXAyERERERFxNCrHRaoIrVUREUeUFx9P3JAhJE+egv3SJTzuuIN6q1ZSvU9vTYtXYl4uXkwKn8T7972Pv4c/cRfjeHT9o8zYNYPs/Gyj44mIiIiIiINQOS5SBVhtVpKykgAI8Qq5tptprYqIVAB2u50LUVEc79qNrB3fY3JzI+DZZ6kzfx4uoaFGx5NS0iqkFcu7Lad7g+7YsfPpgU/ptboXP5/52ehoIiIiIiLiAFSOi1QBZy6dId+Wj7PJmVruta7tZt6Fk+cZyWDNu/ZwIiIllJeSwqnHHiNp4vPYMjNxv/VW6q1Yjt+A/pjM+quNo/Fx8WFKqym81+49arnX4kT6CQauG8ibMW+SY80xOp6IiIiIiFRi+gpSpAoo2jce4BmAk9np2m7mWQvMzoC9oCAXESlHGdu+JbZ7DzK3bsPk4oL/2LFc99kCXMLCjI4mZaxNaBuWd1tOl3pdsNltfPzLx/Re3Ztfzv5idDQREREREamkVI6LVAEJmQXl+DWvVAEwm/93KKdWq4hIObHn5ZHy2muc+te/sJ4/j+v111N3WTQ1hgzG5HSN3/STSsPX1Zepracys+1MarjV4Ne0X+n/ZX/e3v02udZco+OJiIiIiEglo3JcpAoomhy/5sM4ixSV4xcTSud+IiJ/Ifd0PCf7D+Dc3I8AqPZwH8IWL8K1QQODk4lR7q1zLyu6raBjWEesditz9s2hz9o+HDx30OhoIiIiIiJSiagcF6kCistxz1Iqx30K75OuclxEylb6V18R27Mnl37+GbO3NyEzZxI0aRJmNzejo4nBqrlV49W7X+X1u1+numt1jl44St+1fZm9ZzZ5Np2JISIiIiIif0/luEgVUOqT4yrHRaSM2XJySJo8hfgnnsSWno7bLTdTd/kyfDq0NzqaVDDtw9qzvNty7r/ufvLt+cz6eRZ91/bl8PnDRkcTEREREZEKTuW4SBVQtHO89NeqaOe4iJS+nNhYTvR5mAsLFwLgN2QwYZ99hktoqMHJpKKq4V6D1+9+nRltZuDr6suh84fos7YPH+79kHxbvtHxRERERESkglI5LuLgbHabJsdFpNJIW7mS2IhIcg4exKl6dWp/+AEBY8disliMjiYVnMlk4oG6D7Ci2wra1m5Lvi2fd356h35f9uPYhWNGxxMRERERkQpI5biIgzt36Rx5tjycTE4EeASUzk1VjotIKbNlZpLwzAQSxj+DPSsLjzvuoO6KFXi1aWN0NKlkarrXZGbbmUxrPQ1vF28OnDvAQ2se4qN9H2mKXERERERELqNyXMTBxWfEAxDgEYCz2bl0bvrbtSp2e+ncU0SqrOzDh4mN7EXaihVgNlPz8ZHUmfcxlgB/o6NJJWUymehcrzMruq2gTWgb8mx5vLX7LR5Z9wjH044bHU9ERERERCoIleMiDq5opUqQV1Dp3bSoHM/PhksXSu++IlKl2O12LnzxBSd6PURubCzO/v7UmT+PWiNGYHJyMjqeOAB/D3/evfddprSagpfFi71n99JrVS8+2f8JVpvV6HgiIiIiImIwleMiDq7oMM4Qr5DSu6nFDTxqFPxeq1VE5CpY09OJf3IUSS9Oxp6bi9fdd1N35Qo877jD6GjiYEwmE90bdGd5t+W0Cm5Fri2X1358jUEbBnEy/aTR8URERERExEAqx0UcXPHkuGcpTo4DeBfuHb+YWLr3FRGHd+nnn4nt0ZOLX30FFgv+48cTOnsWztWrGx1NHFigZyCz75vNC+Ev4Gnx5KeUn4hcFcnnBz/HZrcZHU9ERERERAygclzEwRWV46U6OQ46lFNESsxus3Huo4840a8/efHxWEJDCVv4OTUGPYrJrL+SSNkzmUxENIpgWddltAhqQbY1m+k7pzN4w2BOXTxldDwRERERESln+kpUxMEVrVUJ9gou3Rv7FE6iqxwXkSuQf/48p4YNI2XGa5Cfj3fHB6i7fBnuTZsaHU2qoGCvYObcP4eJLSfi7uxOTHIMEasiWHRokabIRURERESqEJXjIg7MbrcXT44He5ZyOV68VkXluIj8tcwfdhLbvQeZW7dhcnUl8MUXCXnjDZy8vY2OJlWYyWTioesfYlnXZTQPbM6l/Eu8/MPLDP1qqKbIRURERESqCJXjIg7sXPY5cqw5mDAR6BlYujcvXquineMi8sfsVitn3nmXuEGDyE9JwaV+fcKWLKF674cwmUxGxxMBINQ7lLnt5zLhjgm4O7vzQ9IP9FjZg7n75pJnzTM6noiIiIiIlCGV4yIOLDGjoLj29/DH4mQp3ZtrrYqI/IW85GTiHh3E2ffeA5sN34ie1I1agtv1jYyOJvI7ZpOZvjf0ZWmXpbQIbEGONYeZu2fSa3UvYpJjjI4nIiIiIiJlROW4iAOLz4wHymDfOGitioj8qYwtW4jt3oOsXbswe3gQPONVgl9+GbOHh9HRRP5SHZ86zGk/h6l3TcXPzY9f037l0fWPMvG7iVzIvmB0PBERERERKWUqx0UcWPG+8bIox4smxy9dgLxLpX9/Eal07Lm5JL/yKqceG4b1wgVcm9xA3WXR+HbpYnQ0kStmMpnoUr8Lq7qvIrJRJAArjq2g64qurDi2ArvdbnBCEREREREpLSrHRRxYmR3GCeBWDSyFU6BarSJS5eWeOsWJ/gM4P28eANX79yds0SJcwsKMDSZylXxdfZkUPokFHRfQsHpDUnNSmfjdRAZtGMSvqb8aHU9EREREREqBynERB1amk+MmE3gXTo9f1KGcIlVZ+vr1xPboSfbevZh9fQl99x0Cn3sWs4uL0dFErtk//P/B4s6LGdNsDO7O7sQkxxC5OpK3d79Ndn620fFEREREROQaqBwXcWBlWo4D+BTeN13luEhVZMvOJnHSC8SPGo0tIwP3W2+l3vJleN93n9HRREqVxWxh0E2DWNFtBfeE3kO+LZ85++bQY2UPvo3/1uh4IiIiIiJylVSOizgou91OQmZBOR7iFVI2Dykux+PL5v4iUmFlHz7CiV4Pkbp4MZhM1Bg6lOs+/QRLcBl9M06kAgj2Cubte9/mrbZvEeARwOmM0wz/ejhPb3malKwUo+OJiIiIiEgJqRwXcVCpOalcyi84KDPQM7BsHqK1KiJVjt1u5/ynCzjRqxc5R4/iVLMmtefOwX/MaEwWi9HxRMqcyWSiXZ12rOy+koFNBuJkcmLDiQ10W9GNhQcXYrVZjY4oIiIiIiJXSOW4iIMqWqlSy70Wrk6uZfOQ4slxHcgpUhXknz3LqcceI3nqVOy5uXjdfTf1Vq7Aq1Uro6OJlDtPiydjm49lUedFNK3ZlIy8DKbtnEa/L/tx4NwBo+OJiIiIiMgVUDku4qCKVqqU2b5xUDkuUoVkbNnC8W7dydy6DZOLCwETnyP0/dk416hhdDQRQzX2a8yCjgt4rsVzeFu82X9uPw+vfZjpO6eTkZthdDwREREREfkLKsdFHFTxYZyeZViOexfeW2tVRByWLSeHpJencuqxYVjPncO1YUPClkbh168fJpPJ6HgiFYKT2YnejXuzqscqOtbtiM1u4/ODn9NtRTe+OvEVdrvd6IgiIiIiIvIHVI6LOKj4jIJDMst2crxo53gSaMeqiMPJPlJw6OaFBQsAqD5gAGFLo3Br1MjgZCIVU033mrza5lU+uO8DanvXJuVSCk9teYoRm0Zw+uJpo+OJiIiIiMj/o3JcxEElZhRMc5dpOe4VACYnsFshI6XsniMi5cput3P+s885EdmLnCNHcKpRg9offkDgs//B7FpGZxiIOJA7Q+5kWddlPHbzYzibndkWv40eK3swd99c8qx5RscTEREREZFCKsdFHFR8ZjlMjpudCgpygIvaOy7iCPLPneP0sOEkv/QS9txcPNu0Ljh0s00bo6OJVCpuzm6MvHUk0V2jaR7YnGxrNjN3z+ShNQ+xO3m30fFERERERASV4yIOyW63l8/kOPxvtUq69o6LVHYZ27ZxvFt3MrZsKTh089lnqf3BBzjXrGl0NJFKq55vPT5q/xFT75pKddfqHEs9xiPrH2HS9kmkZqcaHU9EREREpEpTOS7igNJz08nIywDK+EBOAJ/C+6drclyksrLl5JA8bRqn/jUU69mzuDZsQFhUFH4D+uvQTZFSYDKZ6FK/C6t7rCaiYQQAy44uo8uKLqw4tkIHdoqIiIiIGETluIgDSsgoKKr93Pxwc3Yr24d5F5bjWqsiUinlHDvGiYd6c/6TTwGo3q8fYVFRuF2vQzdFSpuvqy8v3PkCn3b8lAbVGpCak8rE7yYyeMNgjqceNzqeiIiIiEiVo3JcxAElZBYU1SFeIWX/MK1VEamU7HY75xcuJDYikpzDh3Hy8yP0/dkETnwOs1sZf1NNpIq71f9WlnRZwuhmo3FzcuPH5B+JWB3B1B+mEpceZ3Q8EetIz4MAACAASURBVBEREZEqQ+W4iAMqmhwv833jAD6FBXx6fNk/S0RKRf7585z+9wiSJ0/BnpODZ+uCQze977nH6GgiVYbFbGHwTYNZ0X0FbULbkG/L54tDX9B5eWce/+ZxdiXt0roVEREREZEy5mx0ABEpfcXleFnvGwfwLpwcv6jJcZHKIOPb70iY8AzWM2cxWSz4P/0U1QcMwGTW98tFjBDiFcK7977L94nfs+DAArbFb2Pzqc1sPrWZxn6NGdBkAA+EPYCLk4vRUUVEREREHI7KcREHVL6T40UHciaC3Q46vE+kQrLl5nLm9Tc4/8knALg0qE/Ia6/h1rixwclExGQyER4cTnhwOMfTjvP5gc9Z9esqDp0/xLPfPsubMW/S+/rePHT9Q/i5+RkdV0RERETEYWhMTMQBFe0cL5dyvGhyPC8TstPK/nkiUmL/O3SzoBiv3vdh6i5dqmJcpAKq51uPieET2Ri5kSdvexJ/d3/OXjrLe3ve4/6o+5m0fRJHLxw1OqaIiIiIiENQOS7igOIzCvZ/l8taFRcPcKtW8HutVhGpUOx2OxcWLSo4dPPQIZyqVyd01iwCn39eh26KVHDV3Krxz6b/ZH3keqa3ns6NNW4k15bLsqPL6LmqJ0O/Gsq209uw2W1GRxURERERqbS0VkXEwVzMvcjF3ItAOU2OQ8FqlexUSE8A/xvK55ki8pfyL1wg8bmJZGzaBIBnq1YETZuKxd/f4GQiUhIWs4VO9TrxYN0H+SnlJz47+Bmb4jaxI3EHOxJ3UNe3Lv1v6E+X+l1wd3Y3Oq6IiIiISKWiclzEwRTtG6/mWg0Pi0f5PNQnGFIOaHJcpILI3L6dhPHPkH/mDCaLhVpPjcFv4EAduilSiZlMJm4LuI3bAm7j9MXTLDy0kGVHlxGbFsuU76fw9k9v06tRL/pc34cAzwCj44qIiIiIVAr6KlnEwZTrYZxFivaOpyeU3zNF5Hdsubkkv/IqcYOHkH/mDC716hG2ZDE1Hn1UxbiIAwn1DmVc83F8Hfk145uPJ8QrhLScNObum8sD0Q/wzLZn2H92v9ExRUREREQqPH2lLOJgig7jDPEKKb+H+hQW8SrHRQyTc/w4J/r04fy8eQBU69ObutFLcbtBq45EHJWXixf9m/RnbY+1vHXPW9zmfxv59nzWHl9Ln7V9eGTdI3x98musNqvRUUVEREREKiStVRFxMEWT40GeQeX30KJyXGtVRAyRGr2MpClTsGdn41StGkEvv4R3u3ZGxxKRcuJkdqLdde1od1079p/bz2cHPmN97Hp2p+xmd8puQrxC6Nu4Lz0b9sTLxcvouCIiIiIiFYYmx0UcjDFrVYomx+PL75kigt1mI+W110h89lns2dl43hlO3ZUrVYyLVGE31riRaa2nsSFyA/9q+i98XX2Jz4hnxo8zuG/pfbyy8xVOXzxtdEwRERERkQpB5biIgzFmrUrRznFNjouUF1t2NvFjnuLc3I8AqDliBLXnzsUS4G9wMhGpCPw9/HnitifYGLmR58Ofp55vPTLzMvns4Gd0Wt6JUf8dRUxyDHa73eioIiIiIiKG0VoVEQdjzFqVwiI+6yzk54Cza/k9W6QKyj9/ntP/HsGlPXvAYiH4pSn4dutmdCwRqYDcnd3p1agXEQ0j2J6wnQUHFrA9YTub4jaxKW4TTWo0YUCTAXQI64DFbDE6roiIiIhIudLkuIgDycrLIjUnFSjntSru1cGpsBDX3nGRMpVzPJYTvftwac8ezD4+1Jk7V8W4iPwts8nMXSF38cH9H7C863IiGkbg6uTKgXMHmLBtAh2jOzL/l/lczL1odFQRERERkXKjclzEgRRNjfu4+ODt4l1+DzaZtFpFpBxk7drFiYcfJu/UKSyhoYR9sRDPFncYHUtEKpkG1Rvwwp0vsDFyIyP/MZIabjVIzkrm9ZjXuX/p/czYNYPEDP3/XEREREQcn8pxEQdStG+8XKfGixStVrmYUP7PFqkC0lavIW7wEGxpabjdcjNhixfhWr++0bFEpBKr7ladx255jA2RG5h852Tq+9YnMy+TTw98SsdlHRm3ZRz7z+43OqaIiIiISJlROS7iQOIz4gEI9jSgHPcumhxXOS5Smux2O2dnzyZh7FjseXl4t2/PdZ98gnONGkZHExEH4erkSo+GPVjebTmz2s2iRVALrHYr606so8/aPgxaP4jNpzZjs9uMjioiIiIiUqp0IKeIAyn6EWhjJse1VkWktNnz8kic9AJpy5YB4Dd4MP5PP4XJrO9ti0jpM5lMtA5tTevQ1hw6f4hP9n/C+tj1/Jj8Iz8m/0iYTxgDbxxIl3pdcHN2MzquiIiIiMg101fXIg6keHJca1VEKj1rejpxQ4cWFONmM4GTnidg3FgV4yJSLhr7NWZa62msi1jHoJsG4W3x5kT6CSbvmEyH6A7M3jOb89nnjY4pIiIiInJN9BW2iAMpOpDTkHJca1VESk1efDwn+vYla8f3mDw8qD17FtUfftjoWCJSBQV6BjKm2Rg29trIuObjCPYM5nz2eWb9PIv2S9vz4o4XiU2LNTqmiIiIiMhVMbQcnzZtGs2bN8fb2xt/f3+6d+/O4cOHL7smOzubESNGUKNGDby8vIiIiCA5Ofmya+Li4ujUqRMeHh74+/szduxY8vPzL7tm8+bN3Hbbbbi6utKgQQPmz59f1m9PpNwVHcgZ4hVS/g/3KSzktVZF5Jpc2vcLsb37kHvsV5z9/Qn7bAFed99tdCwRqeI8LZ4MaDKAtT3XMuPuGdxU4yZyrDksPbKUriu68vimx9mVtAu73W50VBERERGRK2ZoOb5lyxZGjBjB999/z8aNG8nLy6N9+/ZkZmYWXzN69GhWr15NVFQUW7ZsISEhgZ49exa/brVa6dSpE7m5uWzfvp1PPvmE+fPn8/zzzxdfExsbS6dOnWjbti179uxh1KhR/POf/2TDhg3l+n5FytKl/EvFP94c5BlU/gGKJscvJoJNB3aJXI2LmzZxcuBArGfP4nr99YQtWYxbkyZGxxIRKeZsduaBsAdY2Gkh8x+YT9vabTFhYvPpzQzeMJg+a/uwLnYd+bb8v7+ZiIiIiIjBTPYKNN5x5swZ/P392bJlC23atCEtLY1atWqxcOFCIiMjATh06BA33HADO3bsoGXLlqxbt47OnTuTkJBAQEAAAO+//z7jx4/nzJkzuLi4MH78eNauXcsvv/xS/Kw+ffqQmprK+vXr/zZXeno6vr6+pKWl4ePjUzZvXuQaHU89TreV3fCyeLH94e2YTKbyDWDNgym1ADs8fRS8/Mv3+SKV3PlPPyV52nSw2/Fs3ZqQN9/AycvL6FgiIn/rRNoJFhxYwMpfV5JjzQEKvlHf/4b+9GzYEy8X/bdMRERERMpPSbrcCrVzPC0tDQA/Pz8AYmJiyMvL47777iu+pnHjxtSpU4cdO3YAsGPHDpo2bVpcjAN06NCB9PR09u/fX3zNb+9RdE3RPf6/nJwc0tPTL/slUtEVrVQJ9gou/2IcwMnyv0Jce8dFrpjdaiXp5akkT50GdjvVevem9uxZKsZFpNII8w1jYvhEvor8in//49/4ufmRmJnIjB9ncP/S+3n9x9dJykwyOqaIiIiIyO9UmHLcZrMxatQoWrVqxU033QRAUlISLi4uVKtW7bJrAwICSEpKKr7mt8V40etFr/3VNenp6Vy6dOl3WaZNm4avr2/xr9q1a5fOmxQpQ8WHcXoacBhnkd+uVhGRv2XLyuL0409wYcECAPzHPk3gC5MwOTsbnExEpOT83PwYfstwvor8ihfCX6Cub10y8jKYv38+HaM78sy2Zzh47qDRMUVEREREilWYcnzEiBH88ssvLFq0yOgoTJgwgbS0tOJfp06dMjqSyN+Kz4gHCibHDeNTeBBoerxxGUQqibyUFE4OGEjGN99gcnEh5K03qTFkiDE/+SEiUopcnVyJaBTBim4reK/de9wReAf59nzWHl/LQ2seYsiGIWw9vRWbXWeUiIiIiIixKsRo2siRI1mzZg1bt24lNDS0+OOBgYHk5uaSmpp62fR4cnIygYGBxdfs3LnzsvslJycXv1b0z6KP/fYaHx8f3N3df5fH1dUVV1fX0nlzIuUkMaNgWtvYcrxwcjxdk+MifyX7yBFODRtGfkIiTtWrE/ree3jcdqvRsURESpXZZKZNaBvahLbhwLkDfLL/Ezac2MDOpJ3sTNpJmE8YvRr1omv9rlRzq/b3NxQRERERKWWGTo7b7XZGjhzJ8uXL+eabb6hbt+5lrzdr1gyLxcKmTZuKP3b48GHi4uIIDw8HIDw8nH379pGSklJ8zcaNG/Hx8aFJkybF1/z2HkXXFN1DxBHEZ1aAyXGtVRH5W5nbt3Oybz/yExJxCQsjbPEiFeMi4vCa1GjCK21eYV3PdTzS5BE8LZ6cSD/BjB9ncG/UvYzbOo5dSbuw2+1GRxURERGRKsTQyfERI0awcOFCVq5cibe3d/GOcF9fX9zd3fH19WXIkCGMGTMGPz8/fHx8ePzxxwkPD6dly5YAtG/fniZNmjBgwABeffVVkpKSeO655xgxYkTx9PewYcN49913GTduHIMHD+abb75hyZIlrF271rD3LlLaineOa62KSIWVGh1N4qQXID8f99ubUfvdd3GqpmlJEak6gryCeLr50wy7ZRhfxn7J0iNLOXj+IOti17Eudh1hPmH0bNiTrvW7UsO9htFxRURERMTBmewGjmf82V7VefPm8eijjwKQnZ3NU089xRdffEFOTg4dOnRg1qxZxStTAE6ePMnw4cPZvHkznp6ePPLII0yfPh3n3xxotnnzZkaPHs2BAwcIDQ1l4sSJxc/4O+np6fj6+pKWloaPj89Vv1+RspJjzeH2z24HYGvvrVR3q25MkOOb4dNuUPN6GLnzby8XqSrsdjtnZs7k3PsfAODTuTNBU1/G7OJicDIREePtP7ef6CPRrD2+lqz8LACczc60q9OOyEaR3BF4B2ZThTkqSUREREQquJJ0uYaW45WFynGp6E6knaDLii64O7vzQ98fjDvQ78wReK85uPrABB1kKwJgy80lccJ/SC/8aaWa/x5Ozccf18GbIiL/T1ZeFuti1xF9NJp9Z/cVfzzUK5SIRhF0b9Cdmu41DUwoIiIiIpVBSbrcCnEgp4hcm6KVKiFeIcYWbkUHcuakQ85FcPU2LotIBZB/4QKnRz7OpZgYcHYm6MUXqRbR0+hYIiIVkofFg4hGEUQ0iuDQ+UMsPbKUtcfXcjrjNDN3z+S9n96jbZ22RDSMIDw4XNPkIiIiInLNVI6LOICEzIJyPMgzyNggrt4FU+M56ZCeCLVUjkvVlXvyJKeGPkbuyZOYvbwIfedtPHUQtIjIFWns15jnWj7HmGZj+OrkVyw9spSfz/zMxpMb2XhyIyFeIfRs2JPuDbrj7+FvdFwRERERqaQ0biHiACrEYZxFvAsL+osJxuYQMVDW7p840bsPuSdPYgkOJuyLhSrGRUSugofFg+4NuvPZg58R3TWavo374u3iTXxGPO/89A7tl7bniW+eYOvprVhtVqPjioiIiEglo3JcxAEUTY6HeIUYnATwKSzo01WOS9WUvm4dcY8+ijU1FbebbiJs8SJcGzY0OpaISKXXqHojJrSYwDe9vmHqXVO5zf82rHYr/z31X0ZsGsEDyx5g9p7ZJGUmGR1VRERERCoJrVURcQBFk+NBXgavVQGV41Jl2e12zs2dy5nX3wDAq107Qma8itnDw+BkIiKOxc3ZjS71u9ClfheOpx5n6dGlrPp1FUmZScz6eRbv732f1iGtiWwUyV0hd+Fs1pc8IiIiIvLH9DdFEQcQnxEPQIhnBZgcL16rkmhsDpFyZM/PJ2nyFFKXLAHA75GB+I8bh8nJyeBkIiKOrV61eoxrPo4nb3uSTSc3sfToUnYl7WLL6S1sOb0Ff3d/ejTsQc+GPSvG+jkRERERqVBUjotUcnnWPM5knQEqyM5xTY5LFWPNyCR+9Ggyt20Dk4mACRPwGzjA6FgiIlWKq5MrD9Z7kAfrPUhsWizLji5j5bGVpFxK4YO9H/Dh3g+5M+ROejXsRZvabbCYLUZHFhEREZEKQOW4SCWXlJmEHTtuTm74ufkZHUfluFQpeUlJnBo2nJxDhzC5uRHy+mt4t2tndCwRkSqtrm9dnrr9KR6/9XG+OfUNS48s5YfEH/gu/ju+i/+Omu41iWgYQWSjSAI9A42OKyIiIiIGUjkuUsnFZxasVAnyCsJkMhmcBq1VkSoj+9AhTj02jPzkZJxq1qT27Fm4N21qdCwRESnk4uTCA2EP8EDYA5xKP0X00WiWH1vO2Utn+WDvB8zdN5d7at9D7+t70yKoBWaT2ejIIiIiIlLO9DdAkUouMaOghK4QK1UAfAr3nmekgDXP2CwiZSRj27ec7NuP/ORkXOrXJ2zRIhXjIiIVWG2f2oxqNoqvI7/mtbtfo3lgc6x2K5viNjF041C6rejGggMLSMtJMzqqiIiIiJQjleMilVzRYZzBnhWkHPeoAWYLYIeLSUanESl1F5Ys4dSwYdiysvBo0YKwLxbiEloBDsMVEZG/ZXGy0CGsAx93+JgV3VbwcOOH8bR4ciL9BK/uepX7ou5j0vZJHDh3wOioIiIiIlIOVI6LVHIJGQW7vSvM5LjZrNUq4pDsNhspb7xJ0vOTwGrFt1s36sz5ECcfH6OjiYjIVahfrT7/afEfvun1DRNbTqRh9YZkW7NZdnQZvdf0pt/afqz6dRU51hyjo4qIiIhIGVE5LlLJJWQWlOMhXhVoclWHcoqDseXkkPD0WM59+CEANUeOJGj6NEwuLgYnExGRa+Vh8eCh6x8iuks0n3b8lAfrPoiz2Zm9Z/fy7LfPcl/Ufbzx4xucunjK6KgiIiIiUsp0IKdIJVc0OR7kGWRwkt/wKcyiclwcQP6FC5we+TiXYmLA2ZmgKVOo1qO70bFERKSUmUwmbvW/lVv9b2XspbGsOLaCJYeXkJiZyLz985i/fz6tQlrR5/o+3BVyF05mJ6Mji4iIiMg1UjkuUonl2fJIzkoGKtjkuHfh5PhFleNSueXGxXHqX0PJPXkSs7c3oe+8jWfLlkbHEhGRMlbTvSb/bPpPBt04iG3x21h0eBHfxX/Ht/Hf8m38twR7BtPr+l70bNgTPzc/o+OKiIiIyFVSOS5SiaVkpWCz23Axu1DDvYbRcf6neK2Kdo5L5ZX100+c/vcIrBcu4BwcRJ0PPsC1YUOjY4mISDlyMjtxT+17uKf2PcSlxxF1JIrlx5aTkJnAzN0zmbVnFu3D2tPn+j7cUusWTCaT0ZFFREREpAS0c1ykEiteqeIVhNlUgf511loVqeTSN3xF3KODsF64gNuNN1J38WIV4yIiVVwdnzo8dftTfB35NS+1eommNZuSZ8tj7fG1DFg3gF6rexF1JIqsvCyjo4qIiIjIFapAbZqIlFR8RjwAwZ7BBif5f7RWRSopu93OuY/nET9qFPacHLzatuW6BZ/iXKuW0dFERKSCcHN2o1uDbizstJBFnRbRo0EPXJ1cOXzhMJN3TKZdVDum/TCN46nHjY4qIiIiIn9D5bhIJZaYUbC2JNirgpXjv12rYrcbm0XkCtnz80meMoWUV18Fu53q/foR+u47mD08jI4mIiIV1I01b2Ryq8ls6rWJsbePpY53HTLyMlh4aCHdVnZjyIYhfHXiK/JseUZHFREREZE/oJ3jIpVY8eR4RSvHvQvXqlhzIOs8eFagfegif8CWmUn8mKfI2LIFTCYCnhlP9YEDtTtWRESuiK+rLwNvHEj/Jv35PvF7Fh9azObTm9mZtJOdSTup5V6LyEaR9GzYk0DPQKPjioiIiEghleMilVhCZsHakgpXjju7gEdNyDpbsFpF5bhUYHnJKZwaPoycAwcxuboSPONVfNq3NzqWiIhUQmaTmTuD7+TO4DtJykwi6kgU0UeiOXPpDLN/ns37P79Pq5BWRDSM4O7ad2MxW4yOLCIiIlKlqRwXqcSKDuQM8QoxOMkf8AkuKMfTEyGwqdFpRP5Q9pEjnHpsGPmJiTj5+VF79izcb7nF6FgiIuIAAj0DefzWxxl28zA2xW1i8eHF/Jj8I9/Gf8u38d/i5+ZHt/rd6NGwB3V96xodV0RERKRKUjkuUknl2/JJzkwGIMgzyOA0f8AnGJL2Qnq80UlE/lDm9u2cfuJJbBkZuNStS+0PP8Cldm2jY4mIiIOxOFl4oO4DPFD3AU6mn2T50eWs/HUlZy+dZd7+eczbP4/b/G8jolEE9193P+7O7kZHFhEREakydCCnSCV1JusM+fZ8nM3O1HKvZXSc3yvaO34x0dgcIn8gNXoZcUMfw5aRgcfttxP2xUIV4yIiUuau87mOUc1G8VXkV8xsO5O7Q+/GbDKzO2U3z377LO2WtOOl71/i4LmDRkcVERERqRI0OS5SSRXtGw/0CMTJ7GRwmj/gU7jqJT3B2Bwiv2G32zn7zjucnTUbAJ/OnQma+jJmFxeDk4mISFViMVu4t8693FvnXpIzk1n560qWHV1GfEY8iw8vZvHhxdzgdwMRDSPoWK8jPi4+RkcWERERcUiaHBeppCr0vnEAn8LJcZXjUkHYcnNJGD++uBivMXwYwTNeVTEuIiKGCvAMYOjNQ/my55fMaT+HjmEdsZgtHDx/kJd+eIl2S9rx7LfPEpMcg91uNzquiIiIiEPR5LhIJRWfUbDLO9gr2OAkf0JrVaQCsaalcXrk42Tt2gVOTgS9+ALVIiONjiUiIlLMbDLTMqglLYNakpqdyprja4g+Gs2x1GOs+nUVq35dRZhPGD0b9qRL/S7UdK9pdGQRERGRSk+T4yKVVGJmQekc5FUBD+MErVWRCiP39GlOPNyXrF27MHt6UvuDD1SMi4hIhVbNrRr9m/RnWddlfP7g50Q0jMDd2Z0T6Sd4I+YN7o+6n9H/Hc2209uw2qxGxxURERGptDQ5LlJJFU2OV/i1KtmpkJsFLh7G5pEq6dLevZwa/m+s587hHBhI7Q8+wO36RkbHEhERuSImk4mba93MzbVuZmzzsWw4sYHoo9HsPbOXr+O+5uu4rwnwCKBHwx70aNCj4v5EoYiIiEgFpclxkUqqaOd4sGcF/SLI1QcsngW/12oVMUD6xo2cHPgI1nPncL3hBsIWL1YxLiIilZanxZOeDXvy+YOfs6zrMvr/H3v3HSdVfe4P/HOm99nZPtvYXdiCFJEmohSVIML12pJoLEk0ihFLEmM0Ro3mxhtjNMaSKLmWqDflZ64tMRgFC4KKiHQpC9t3Z3ub3uf8/jgzww4ggsKemd3P+/Wa15w2w3Ms7O5nn3m+E6+AVWtFt68bK7evxJKXl+C6Ndfhrea3EIqG5C6XiIiIKCMwHCfKQDExlhyrkrYdQoLARTlJNgPPPw/HzT+AGAjAuGA+xv3v/0JdkC93WURERMdFla0Kt8++He9+4108OP9BzLHPgQgRH3V8hFvfvxWL/m8RHtz0IBqGGuQulYiIiCitcawKUQbq9fUiEotAKSiRb0jjwM9SBPTXMxynESOKInoeeggDzzwLAMi69BIU3nUXBBW/3BER0eijUWqwpGIJllQsQZu7Da/Vv4bX9r+GHn8PXtj9Al7Y/QKm5U3DRVUX4Zzyc2BQc8wdERER0XBMC4gyUIdXCpsLjYVQKdL4f2NzvKvdzXCcTjwxEkHnPffA+fIrAIC8H9+CnGuugSAIMldGRER04pWaS3HTKTfh+pOvx0cdH+HlfS/j/fb3sa13G7b1bsMDmx7AuRXn4uKqizEpZxK/PhIRERGB4ThRRkrMG7cb7TJX8gWSY1U4c5xOrFgwCMePfwzP2+8ACgXsv/wlsi6+SO6yiIiIRpxKocL8kvmYXzIfff4+vFb/Gl7d/ypa3a14ad9LeGnfS6ix1eCiqouwrHIZrFqr3CUTERERyYYzx4kyUHIxznSdN55gKZaeXQ5566BRLerxoO3a5fC8/Q4EjQYljz3KYJyIiAhArj4X10y5Bv+68F949pxnsaxyGTQKDeoG63D/J/fjrL+fhZ+u/yk2dW2CKIpyl0tEREQ04tg5TpSBHB4pbC42FctcyRcwxzvH3ewcpxMj0t+PtmuXI7B7NxRGI0qeeALGU2fLXRYREVFaEQQBswpnYVbhLNwx+w6salyFl/e/jH2D+7CqcRVWNa5CmbkMF1ZdiPPHn488Q57cJRMRERGNCHaOE2WgTq8UNnOsCo1lYYcDLZddjsDu3VBmZ6PshecZjBMREX0Bq9aKyyZehpfOewn/b9n/wzeqvwGj2ohWdyse3fIovvbS13Dzuzfj/bb3EYlF5C6XiIiI6IRi5zhRBkqMVUn7zvHEWBVPFxCNAEr+lUPHR3D/frRecy0i3d1QFxWh9Jmnoa2okLssIiKijCEIAiblTsKk3Em4deatWN2yGq/sfwVbe7bivbb38F7be8jX5+P8CefjwqoLUWoulbtkIiIiouOOneNEGSYmxjJn5rgxDxCUgBgDvD1yV0OjhH/bNjRfcSUi3d3QTBiPcX/7K4NxIiKir8CgNuCCCRfghXNfwD/O/we+c9J3YNPa0OPvwVM7n8LSV5bimtXX4N9N/0YwGpS7XCIiIqLjhm2cRBlmIDCAUCwEhaBAgbFA7nKOTKEEzIXSgpyuTsCS5mE+pT3P+g/QfvPNEP1+6E8+GaV/XAllVpbcZREREY0alVmVuHXWrfjB9B/gvbb38Mr+V/BRx0fY2LkRGzs3wqq14rzK83BR1UWoslXJXS4RERHRV8JwnCjDJBbjzDfkQ61Qy1zNUbAUxcNxB4AZcldDGcz1xhtw3P5TIByG8YwzUPLYo1AYDHKXRURENCqplWosLl+MxeWL0eHpwKv1r+LV/a+i29eNP+/5M/6858+YmjsVF1VdhCUVS2BUG+UumYiIiOiYcawKZyVKMwAAIABJREFUUYbp9EiLWxYZM6QL2xxflNPNRTnpyxv829/g+PGtQDgMy9JzUfrEHxiMExERjZAiUxFumHYD3rr4LTxx9hNYVLYIKkGFHX07cO+Ge3Hm38/EPR/dg+292yGKotzlEhERER01do4TZZhE53jazxtPSIxScXXIWwdlJFEU0ffkk+h77HEAgO2yb6HgzjshKJUyV0ZERDT2KBVKzCuZh3kl89Dn78PrDa/jlf2voNnVjFf2v4JX9r+CCVkTcFHVRTiv8jxk6Tj6jIiIiNIbO8eJMkzGLMaZkAjH2TlOx0iMxdD9q/uTwXjuihUouPtuBuNERERpIFefi6smX4V/XvBPPLfkOfzn+P+ETqlD/VA9frPpNzjr/87CLWtvwZtNb8IX9sldLhEREdFhsXOcKMN0eKVwvNhULHMlR8nMznE6dmI4jI6f3QnX668DAAruvBPZV14hc1VERER0MEEQMKNgBmYUzMDts2/Hvxv/jZf3v4w9A3uwpmUN1rSsgVapxbziefjauK9hQekCzicnIiKitMFwnCjDJDrH7Ua7zJUcJUu8TobjdJRifj/af/hDeN9fB6hUKLr/V7Ced57cZREREdEXsGgsuKT2ElxSewn2DuzFm01vYnXLarS52/B269t4u/VtaJVanF50OhaXL8aCkgUwaUxyl01ERERjGMNxogwiimIyHM+YzvHhY1VEERAEeeuhtBZ1OtF2/Qr4t2yBoNOh5NFHYFqwQO6yiIiI6BjVZteiNrsWP5j+A9QN1mF182qsblmNFlcL3m17F++2vQuNQoO5xXOxeNxiLCxdCLPGLHfZRERENMYwHCfKIIPBQQSiAQgQUGgslLuco2OOd46HfUBgCNDb5K2H0la4pwdt11yL4L59UFgsKF35JAzTp8tdFhEREX0FgiAkg/KbTrkJ+wb3YXXLaqxuXo1mVzPWtq3F2ra1UCvUOL3odHyt/GtYWLoQFo1F7tKJiIhoDGA4TpRBEl3jefo8aJQamas5Smq9FIj7BwFXJ8NxOqxQaytar/4ewu3tUOXlofTpp6GrqZa7LCIiIjqOBEFATXYNarJrcOO0G7F/aH+yo7zJ2YS17Wuxtn0tVAoV5hZJHeVnlp3JoJyIiIhOGIbjRBnE4XEAAIpMRTJXcowsxVI47u4ACk6SuxpKM4G9e9F6zbWI9vVBXVaGsmefgaakRO6yiIiI6AQSBAHVtmpU26px4yk3on6wPtlR3uBswLr2dVjXvg6qDSrMsc/B4nGLcVbZWbBqrXKXTkRERKMIw3GiDNLp6QQA2E0ZshhngtkOdH/GRTnpEL5PP0Xb9SsQc7uhra1F2dNPQZWbK3dZRERENMIm2CZggm0CVkxbgYahhmRQXj9Ujw8cH+ADxwf4rw3/hVOLTpWC8tKzkKXLkrtsIiIiynAMx4kySKJzPGMW40ywxMN8V6e8dVBacb/7Hhw/+hHEYBCGmTNR8uQTUJq5EBcREdFYNz5rPK7Puh7Xn3w9Gp2NydEr+wf340PHh/jQ8SF+KfwSs+2zkx3lNh1H9xEREdGxYzhOlEE6vFLndUaOVQGksSpEAIZeew2dd94FRKMwnXkmin/3MBQ6ndxlERERUZqptFbi+yd/H98/+ftocjZhTcsarG5ejbrBOnzU8RE+6vgIv/z4l5hdOBtfK/8azi47G9m6bLnLJiIiogzBcJwogyQW5CwyZlg4bk50jjMcJ6D/uefQ8+sHAADWCy6A/b5fQlDxyxEREREdWYW1AsunLsfyqcvR4mpJBuV7BvZgQ+cGbOjcgP/++L8xq3AWllYsxaJxi2DW8FNpRERE9PmYRhBlCFEUD4TjGdc5Hq+XY1XGNFEU0fvIo+j/4x8BANnf/S7yb/sJBIVC5sqIiIgo04yzjMM1U67BNVOuQaurNTmjfM/AHnzc+TE+7vwY9318HxaULsCyimWYVzIPGqVG7rKJiIgozTAcJ8oQzqATvogPAGA3ZtiCnIlwnGNVxiwxGkXXL/4LQ3//OwAg75ZbkHPtNRAEQebKiIiIKNOVWcqSQXmbuw1vNr2JVY2r0OBswJqWNVjTsgZmjRmLxy3G0oqlmFk4EwqBv5wnIiIihuNEGSMxbzxHlwOdKsNmMyfGqvj6gXAAUGdY/fSVxEIhdPzkNrjfegtQKFB47z2wffObcpdFREREo1CpuRTXTr0W10y5BnWDdVjVuApvNL2BHl8PXt7/Ml7e/zLyDflYWrEUyyqXocZWw1/WExERjWEMx4kyRGKkSrGpWOZKvgS9DVDpgEgAcHcC2RVyV0QjJOrxov2mG+Hb8DEEtRpFDz0EyzmL5S6LiIiIRjlBEFCbXYva7Fr8aMaPsLl7M1Y1rsLqltXo8fXguV3P4bldz6HSWolllcuwtGIpSswlcpdNRET0lYiiiHBUhD8cRSAchT8URXmuUe6y0hrDcaIM4fA4AGTgvHEAEARptMpAI8PxMSQyOIi25dchsHMnFAYDSv7wexhPO03usoiIiGiMUQgKzCqchVmFs/CzU3+G9Y71WNW4Cu+3vY9GZyMe3/o4Ht/6OE7OOxnLKpfhnPJzkK3LlrtsIiIaZURRRCgagz8UhT8eXCdCbF8odV/ajsEfikjXhqPwh2LxaxPHYggk3mvY+0VjYsqfu/+/z4VayXFin4fhOFGG6PRKi1naTRk2bzzBHA/HXZw7PhbEgkG033AjAjt3QpmVhdKn/gf6KVPkLouIiIjGOI1Sg7PLzsbZZWfDHXLjndZ3sKpxFT7p+gTbe7dje+92PPDJA5hbNBdLK5firNKzYFAb5C6biIi+hHA0Bm8wAk8wAl8oCm8wglAkhnBURDgaQygaQzjxiEjBdSQqnU85FxXjrxu2H40hHDmwP/xcyntHpP1APMA+KLc+oZQKAQa1EsFIjOH4ETAcJ8oQic7xYmMGjlUBAEs81Gc4PuqJoojOO++Cf8sWKMxmlL3wPHTV1XKXRURERJTCrDHjggkX4IIJF6DX14s3m6WFPHf178J6x3qsd6yHXqXHmaVnYlnlMpxWdBrUCrXcZRMRjVrBSBTeoBRie0MR6Tm+7wnG9+Mh9/DtxDlfKJpyXSgSk/uWPpdaKUCnVkKvVkKvOehZrYROo4Rh2DHd51yn10jnDJrUfb1aCbVS4LoaR4HhOFGGSMwcz8ixKoA0VgWQxqrQqNb3+O/h+te/AJUKJY89ymCciIiI0l6eIQ9XnnQlrjzpSjQ5m/BG0xtY1bgKbe42vNH0Bt5oegM2rQ2LyxdjWeUyTMubxsCBiEataExEMCKFy8FILP4cRSAsdUQHk8/RYedjh33N8PPD3ycl/I5vh6Mnpq1ao1LApFXFQ2YF1MrEQ4BaqYBGddB+4rwqdV+Vcl6AOv46zfD3Ux20H9/WqRUp4TU7udMHw3GiDNHpkULljA3HzfG6XQ5566ATyvmPf6DviScAAPZ77+GMcSIiIso4FdYK3DDtBqw4eQU+6/sMq5pW4d9N/8ZAYAAv1r2IF+teRLGpGEsrlmJZ5TKMzxovd8lENIaEo7HkfGpfSOqW9idnVkv7B85H4QtHktvDX+MLSbOtDxdkR0Zy9sdh6NQKGDUqGLXxh0YJo1YFk1YFo1YJgyaxLe0nrjVpVTBolclzJo20zyCajoThOFEGcIVccIfdAAC7MUNnjifHqrBzfLTybdqEjrvuBgDkXHsNsr7+dZkrIiIiIvryBEHAlLwpmJI3BbfOvBWfdH6CVU2r8HbL23B4HHhq51N4audTqLHVYFnlMpxbcS4KjYVyl01EMhu+6KLv4FA6HB0WVA8LssPDgu7hrwkfOOYNSoswnqju6s+jEACtSgmtWgGtSuqy1qqU0CgVw44poVWlnk/sp7wmceyg8NsUD7wTQbiKYTaNIIbjRBkgMVIlW5eduQsCWeKz0jlWZVQKNTej/cabgHAY5nPOQd6PfiR3SURERETHjUqhwtziuZhbPBd3zbkL77e/j1WNq/CB4wPUDdahbnMdHt78MCblTMLC0oU4s/RMVNuqOXqFKE1FYyL88aA6EE4NqA/psh4WaA8PtRPd2inHQlH4wlFER6DzOrHYol4TnzetUcGgOTB7OnHMeND5xPUGjRI6lRJa9fAgOzXA1igVDKpp1GM4TpQBEuF4xnaNA4A5Xru7E4jFAAW/wI4WkcFBtF33fUSdTuimTkXRA7+GwH+/RERENErpVXosKV+CJeVL4Aw6sbplNVY1rsKW7i3Y1b8Lu/p34Q/b/gC70Y6FpQuxsHQhZhXMglrJxTyJjkY4GoM/HEUgHkAnQujh+weH2qnXx+APRZLX+cMxBMIHwu7E3OyRoFEqhoXX8VBarTr0mEaVDLQPCbLV8fOa4eelzm3+Ao7oq2M4TpQBMn4xTgAwFQCCAohFAG8vYC6QuyI6DmKhEBw33YxQSwvURUUofeIPUOh0cpdFRERENCKsWiu+Uf0NfKP6G+jz92F9+3q81/YeNnRsQKe3E3/b+zf8be/fYFKbcHrx6VhYuhDziufBqrXKXTrRVyaKUve1NyiFzt5gFP5wJGXfF4rAG4rCF4w/xzusDz7nC0mLMvqC0RELrhMSobRueBe2elhoPTzIVh/afZ0Msoe9xqCV9jnrmij9MRwnygAOj7SIZbGpWOZKvgKlCjDmA54uwN3BcHwUEEURXXffDd+nn0JhMqFk5ZNQ5ebKXRYRERGRLHL1ubiw6kJcWHUhApEANnZuxHtt7+H99vfR5+/DW81v4a3mt6AUlJheMB0LS6TxK6WWUrlLp1EqMfs6EIolF2X0h6PxLupYcoxIYFiHdeK8NF4kdkiAnbIfjkI8gdNDFIIUXOvjYbReLT0SIbZenXpcnwi41QfCbJ36oOsOul6rYvc10VjHcJwoA3R6pTndGT1WBQAsRVI47uoAik6Ruxr6ivqefBLOf/wTUCpR/Mgj0FVXy10SERERUVrQqXRYULoAC0oXICbGsKtvF95rew9r29di/+B+bOrahE1dm/Dgpw9ivHV8cvzK1LypUAjsNB2LYjER7mAELn8YrkAYLn8k/hyGOxAZFmpHh40LSR0xkhw/Muz8CIy+BoBkx7QxsbCiRgmDNjHvWjqu1yhhjHdZG7Xx53iXtTF5jUoaI6Ll2BAiGhkMx4kyQGKsSkZ3jgNSON6xRQrHKaM5/7UKfY89DgAovPtumM44XeaKiIiIiNKTQlBgSt4UTMmbgpun34x2dzveb38f77W9h81dm9HgbECDswHPfPYMsnXZWFCyAAtLF+K0otOgV+nlLp+OkiiK8AQjcAXiAbc/DFcgAmdyOzXwTuw749ueYOSEdmGrFMIh3dPDu6x1n9OBbdIOW9TxoLA78axTKaFQMMQmoszEcJwoAyTGqmT0zHEgdVFOyli+LVvQeccdAIDsq66C7dJLZK6IiIiIKHOUmEtw+cTLcfnEy+EKufBB+wdY27YWHzg+wEBgAK/Wv4pX61+FVqnFafbTsLB0IRaULkCunuPrTrRYTIQ7EMGQP4QhXxhD/jCGfCG4/GEM+cLJIDsZcgfix/wRuAPh49KlrVUpYNGrYdWrYdGpYNGrYdIemGk9PMQePic7OXJk2Mzs4ddz9jUR0eExHCdKc56QB66QC8AoCMct8frZOZ6xQq2taL/hRojhMEyLzkb+rT+WuyQiIiKijGXRWLC0cimWVi5FOBrG5p7NWNu2Fmvb1sLhcWBt+1qsbV8LbACm5k5Njl+ZkDWB4yaOIBiJwukPw5kMuKWQ2+mXwuxE8C1dE0pe4wqEv3L3tkYphdsWvQoWnVrajofc0r4qHnwfes6sU0GnVh6ffwhERHRUGI4TpbkOrxQkW7VWGNVGmav5ihiOZ7So04m2676P6OAgdJMmofg3v4Gg5DfvRERERMeDWqnGHPsczLHPwe2zbsf+of3JoHxn307s6NuBHX078NjWx1BsKsaZpWdiYelCTC+YDrVCLXf5x4UoighGYvDGF3/0hiLwBqVFIJOLQQajUse2LxFyh5KBd+LZH45+pToMGiWy9GpYDRpk6dXIMkid3FZ9PNA+KNS2DgvCGW4TEWUWhuNEaS4xb7zImOFd4wDHqmQwMRRC+003I9TUBJXdjpInn4DCYJC7LCIiIqJRSRAEVNuqUW2rxvKpy9Hr68X77e9jbdtafNz5MRweB/6858/4854/w6w2Y27xXMwrnoczis9Ajj5nRGqMRGPwDgusE8/+cOq+LxSRrgtKz/546O0Lxp9D0WQY7gtFjtsCkoIAWPXqZMid2M4yqFOCb2vimEENq166TqPiCBIiorGC4ThRmkuG45k+UgUALPEFRdk5nlFEUUTnPffC98knUBiNKF35JNT5+XKXRURERDRm5Bny8PXqr+Pr1V+HL+zDx50fY23bWrzf/j4GAgN4q/ktvNX8FgQImJw7GfOK52F+yXxMzJkIhSAFvaF4R7YnHkR7ghF4E494QC2dk0Jtz0HnpO0D50KR2Am9Z51aAaNGBYNWKT1rlDBqVdCrlbAMC7qtB3V4Z8UDbrNOxUUiiYjoCzEcJ0pzoyscj3eOhzxAwAXoLPLWQ0el/4//A+errwIKBYp/9zB0NTVyl0REREQ0ZiQWiUzMy3b6w/D7J6JWNQEF+Vegyb0Xzb7N6AhtgVtsxs6+ndjZtxNPbH8CQtQM+GsRdFUj6K4CYrrjXp9KIcAYXzAyEWAbNPFAW6uCUSMtGHm4oFt6zYF9o0YJQzwAVzLYJiKiEcBwnCjNJWaOF5uKZa7kONAYAa0VCDql0SoMx9Oe64030PvIIwCAgrvuhGn+fJkrIiIiIso80ZgI17Bw2+mXFn9M2T/ofGJBSXcw8gWLRCoBzAYwG4LKBaWxDirTXqiM9YDSDZg2QWPaBLWoQNRXDvhqoQtPhlFZBJNGLYXSWhVM8eBa2k+E1cPOaVUwaFQwJc7Hz3EECRERZTKG40RpLtE5bjfaZa7kOLEUAb1OabRKHjuQ05lv61Z0/PQOAED2d76N7Msuk7kiIiIiopEXjYnJESOexCMg7bsP2nb6Dg24XX4p4P6qdGpFclHIlMUhddIIESm4VsKonQeDRgWdWoQjsAu7hjZia98GtHtaoDI2AsZGRPAGTKZinFF8BuaXzMeswlOgV+mPwz8tIiKizMJwnCjNJcLxUdE5DkijVXr3cO54mgu1taH9hhshhkIwnXUW8m+7Te6SiIiIiI5aLCYOm48dhicYhScwPNwOwxuKwh04EHoP306E3YmFIo8Xg0Yphdq6A+F2auCtgtVwaABu1auhVSm/xJ9oB7AIANDmasM6xzqsd6zHps5NcHgceLHuRbxY9yK0Si1mF87GvBJpVvmo+dmDiIjoCzAcJ0pjvrAPg8FBAIDdNEo6x83x2eluhuPpKupyoe267yM6MADtSRNR/OBvICi/zA9jRERERF9NJBqD0x/GoC8Mpz+EQW8Yg75Q/FhIOu4bvh2CKx6CH29qpRAfKSKNFjFpVTDphm1rVfHFIQ8ffFt0allHkJRaSnG55XJcPvFy+MI+fNL1Cda3r8c6xzp0ebuw3rEe6x3r8auNv8J46/hkUD4tfxrUCrVsdRMREZ1IDMeJ0lintxMAYFabYdGMkvnclng47uqUtw46LDEcRvsPfoBQYyNUBQUoffJJKIxGucsiIiKiDCeKIlyBCIZ8IQz5hgXc3nio7U8NuAfj17gDXy3kTiwWadKqYNYdFGwngm6dNI7EpFXDqFXCrFMd2I4/m3SqL9m5nZ4MagMWli7EwtKFEEUR9UP1WNcudZVv69mGBmcDGpwNeG7XczCpTTit6DTMK56HeSXzkKvPlbt8IiKi44bhOFEac3gcAIAiU5HMlRxHlngHPMeqpB1RFNH5i1/At+FjCAYDSlc+CXVBgdxlERERUZoSRRFOfxhdrgC6XUF0uwLodgbQ7Zb2B7whDMbDcKc/jGjsiKtKHpFFp0KWQQObQY0sgwZZBjVs8ecsvRo2o0Y6Hu/STnR0a1UKCIJwHO969BEEAVW2KlTZqvC9Kd+DM+jEho4NWO9Yjw8cH2AgMIA1LWuwpmUNAGBSziSpq7x4PiblToJC4IKcRESUuRiOE6WxTo/UXT1qRqoAHKuSxvqffhrOl14GFAoUP/xb6CZOlLskIiIikok3GJHC7kTondh2pwbgoUjsmN5Xr1YePuBObmviYbc6JexWKRnAjhSr1oolFUuwpGIJYmIMn/V9hvWO9VjXvg67+3djV/8u7OrfhZXbVyJbl40zis/AvJJ5mFs0d/R82pWIiMYMhuNEaczhlTrHR9WCOByrkpZcb76F3t8+DAAouOMOmBculLcgIiIiOiFCkRh63IcJvZPbAfS4gnAfw8zubKMG+WYtCiw6FFp0KLBokWfRIc+kSQnBrXo1dOrRM5pkLFAICkzNm4qpeVNxw7Qb0Ofvw/p2aTb5ho4NGAgM4J8N/8Q/G/4JpaDEtPxpmFcszSqfkDWBXftERJT2GI4TpbEOj9RdXWQcTWNV4vfi7QEiIUClkbcegn/7dnTcfjsAwHbFFci+8gqZKyIiIqJjJYoiBn1hdDr96HYF0OUMSuNOhnV5d7sCGPCGjvo9TVoV8i1aFJh1KLTqUrYLLFrkm6Vjo2kWNx1Zrj4XF1ZdiAurLkQ4GsbWnq3JrvJGZyM2d2/G5u7NeGTLI7Ab7cmgfLZ9NvQqvdzlExERHYLhOFEaS4xVGVUzxw05gFIDREOApwvIKpO7ojEt1O5A24obIAaDMC1YgII7fip3SURERHSQUCQmBd6uALqcgXj4HYjP+g4kZ34f7YgTjVKBAqsUdBdYpIBb6viOB+DxbZOWPy7S51Mr1Zhtn43Z9tn48cwfo93dngzKN3VtQqe3E3/f93f8fd/foVFoMMs+C/OL52NeyTyUmkvlLp+IiAgAw3GitDYqF+QUBMBsB4ZapNEqDMdlE3W70fb96xDt74e2thZFv/0tBCU7v4iIiEaKKIpw+SPocgUO7fgeFoT3H0O3d65Jc2C8iVV6LkwE4FYdCsw6ZBnUHHdBx12JuQTfqv0WvlX7Lfgjfmzq2oR17euwvn09Orwd+NDxIT50fIj7P7kfFdaKZFf59PzpUCvVcpdPRERjFMNxojQViATQH+gHMMpmjgPSaJWhFsDlkLuSMUsMh+H4wQ8Rqm+AKj8fpSufhNJklLssIiKijBaJxuAJRuAOROAKhOHyR+AOhOEOROD0hw/t/nYFEAgfZbe3SpEMuqXQOz7j26pLdn0XWHTQqLhwJclPr9Jjfsl8zC+ZD1EU0TDUkOwq39qzFU3OJjQ5m/DC7hdgVBtxmv00zC+ZjzOKz0CeIU/u8omIaAxhOE6Upjq90kgVg8ow+lZ9N9ulZzcX5ZSDKIro+uV98H70EQS9HiVPPgF1YaHcZREREckqFhPhDR0Itt0BKdhOBNyuwKHn3IEIXP4D+95Q9Ev92VkGdTLgtlt1h4TehVYdbOz2pgwlCAIm2CZggm0Crpp8FVwhFzZ0bMC69nX4wPEBBgIDeLv1bbzd+jYAYGL2RMwvkcavTM6ZDKWCn2wkIqITR9ZwfN26dXjwwQexefNmdHZ24tVXX8UFF1yQPC+KIu655x489dRTGBoawumnn44nn3wSVVVVyWsGBgZw00034fXXX4dCocDFF1+MRx99FCaTKXnNjh07cMMNN2DTpk3Iy8vDTTfdhNtuu21E75XoWCUX4zQVjb4fhBKLcro65K1jjBp49k8Y+vvfAUFA8W8fgn7SJLlLIiIiOu4C4Si6XQcWokw8+jyhZKCdCLpdgTA8wQhE8fj82Tq1AmadGmadCmadGhadCha9GvlmabZ3IvgujAfhOjXDPxo7LBoLzik/B+eUn4OYGMPu/t1Y3y51lX/W/xn2DOzBnoE9+OOOP8KmteGM4jMwr2Qe5hbNhVVrlbt8IiIaZWQNx71eL04++WRcffXVuOiiiw45/5vf/AaPPfYYnn/+eVRUVODuu+/GOeecg927d0On0wEALr/8cnR2dmLNmjUIh8O46qqrsHz5cvz1r38FALhcLixevBiLFi3CypUrsXPnTlx99dXIysrC8uXLR/R+iY5FYt74qBupAjAcl5FrzRr0PPQQAKDgp7fDfNZZMldERER0bMLRGPo8QXS7guhyBtDjDiRndSe2u11BOP3hL/X+aqWQDLQTAbdlWNBtjgfd0vFE+J04L+1ztAnR0VEICkzOnYzJuZNx/bTr0efvw4eOD7GufR0+6vgIg8FBvN74Ol5vfB0KQYFpedMwr2Qe5tjnoMZWw1nlRET0lckajp977rk499xzD3tOFEU88sgjuOuuu3D++ecDAF544QUUFBTgtddew6WXXoo9e/bgzTffxKZNmzBz5kwAwOOPP46lS5fioYceQlFREf7yl78gFArh2WefhUajwaRJk7Bt2zY8/PDDDMcprSXGqtiNdpkrOQE4VkUW/p2foeMntwGiCNtl34Lt29+WuyQiIqKkWEzEoC+ELlcAPclu72B8P4ButxSA93uDR93hrVMr4otRxmdym7XIM2th0R8aaFv0UgiuVSlG36f2iDJErj4X5084H+dPOB/hWBjberZhfft6rHesR/1QPbb0bMGWni14FI9Co9DgpJyTMDVvKqbmTcXJeSejwFDA/3+JiOiYpO3M8aamJnR1dWHRokXJY1arFaeeeio2bNiASy+9FBs2bEBWVlYyGAeARYsWQaFQYOPGjbjwwguxYcMGzJ8/HxqNJnnNOeecgwceeACDg4Ow2WyH/NnBYBDBYDC573K5TtBdEn2+0d05Hr8ndo6PmHBHB9pWXA8xEIBx/jwU/Oxn/MGBiIhGhC8UQb8nhD5PEP2eEPq9QfR5Quh1Dx93InV9h6NHl3qrFALyzdp46K1NDcCH7Vt0Kn69I8pQaoUaswpnYVbhLNwy8xY4PA580P4B1jvWY1vvNjiDTmzr3YYDZAB/AAAgAElEQVRtvduSr8nX5yfD8ql5U3FSzknQq/Qy3gUREaW7tA3Hu7q6AAAFBQUpxwsKCpLnurq6kJ+fn3JepVIhOzs75ZqKiopD3iNx7nDh+P33349f/OIXx+dGiL6k4TPHRx3LsM5xUQT4Q+sJFfV40Pb96xHt7YO2uhrFDz8MQZW2f/0TEVGaC0djGPSG0BcPupPBtzeE/ngA3jds2x8+tkUqc00a5JsT87i1yDcnFqU8sJ1j1ECh4PcPRGNJsakYl9RegktqL4Eoimh1t2JH7w5s792OHb07sG9wH3r8PSmLeyoFJapt1cnO8ql5U1FmLuMvzYiIKInpyGHccccduOWWW5L7LpcLpaWlMlZEY1GnRxo5MirDcVOh9BwNAb5+wJgrbz2jWNTjQfv3r0dw3z4o83JRuvJJKIctWExERCSKIlyBiBRmx0PtPk9oWOid2JfOD/mOfZa3VqVArkmLXJMGOSYtcowa5MYXpyywaJNd33kmLed1E9EXEgQB4yzjMM4yDueNPw8A4I/4sbt/N3b07kiG5r3+3uQCny/WvQgAyNJmYUrulGR3+ZTcKTBrzHLeDhERyShtw/HCQik86+7uht1+YOZyd3c3pk2blrymp6cn5XWRSAQDAwPJ1xcWFqK7uzvlmsR+4pqDabVaaLXa43MjRF9CKBpCj1/6b3tUhuMqDWDMB7w90mgVhuMnRHRoCK3XLkdg504oTCaUPvEk1EWj8L8nIiI6okA4io4hPxxDfjgG/WgfHL7tQ68neNTjTBIUApBt1CDHqEXOsMA7zyw955ik47nx8waNkp2aRHRC6VV6zCiYgRkFMwBIv/jr9nUnO8t39O7A7v7dGAoOYb1DmmMOAAIEVForU8axjLeOh1KhlPN2iIhohKRtOF5RUYHCwkK88847yTDc5XJh48aNuP766wEAp512GoaGhrB582bMmCF9AXz33XcRi8Vw6qmnJq+58847EQ6HoVZLK1mvWbMGNTU1hx2pQpQOEotx6lV62LSj9L9Ti/1AOG6fKnc1o06krw+tV39P6hjPykLp009DP3mS3GUREdEJ4A1GDoTdQ1Lg7YgH4O2DfvS6g1/8JgBMWpUUaJsOBNy5Jk1q2B0/l2XQQMmxJkSUxgRBQKGxEIXGQpxTfg4AIBwNo26wLiUwb/e0o8HZgAZnA16tfxUAYFAZDukuz9HnyHk7RER0gsgajns8HtTX1yf3m5qasG3bNmRnZ6OsrAw//OEPcd9996GqqgoVFRW4++67UVRUhAsuuAAAMHHiRCxZsgTXXnstVq5ciXA4jBtvvBGXXnopiuLdkZdddhl+8Ytf4Hvf+x5uv/12fPbZZ3j00Ufxu9/9TpZ7JjoaiXnjdqN99HZZmYuAzu2Am4tyHm/hzk60fvcqhFpaoMzLxbhnn4W2qkrusoiI6Ety+sOHBN5SEC4dGzyKMSd6tRLFNj1KbHoUZ+nj2wYUZ+lRYNEi16SFTs0uSSIa3dRKNSbnTsbk3Mm4fOLlAIB+fz929u1MhuU7+3bCF/FhY9dGbOzamHxtiakEU/KmYEqu9KjNroVOpZPrVoiI6DiRNRz/9NNPceaZZyb3E3O+v/Od7+C5557DbbfdBq/Xi+XLl2NoaAhnnHEG3nzzTeh0B74A/eUvf8GNN96Is88+GwqFAhdffDEee+yx5Hmr1YrVq1fjhhtuwIwZM5Cbm4uf//znWL58+cjdKNExGtWLcSZY4vfm6pS3jlEm1NKC1quuRrijA6oiO8b96U/QjBsnd1lERHQErkAYzX3eA6H3oC8lBHcHI1/4HmadCsVZUuBdcpgQ3GZQj95fuBMRfQU5+hwsLF2IhaULAQDRWBQNzgbs7N2JHX1SYN4w1IB2TzvaPe34d9O/AQAqQYUqWxWm5k3F5NzJmJI7BRXWCigErptARJRJBFEUj23A4BjkcrlgtVrhdDphsVjkLofGgMe2PIandj6FS2ouwV1z7pK7nBNj3YPAu/cB064ALviD3NWMCsH9+9Fy9dWI9vZBU16Osj89C/WwNRuIiEg+wUgUbQM+NPZ60dQnPRp7vWjs86LP88VjT7KNmgOBd1Y8/I53fhfb9LDq1SNwF0REY5M75MbOvp34rO8z7OzbiZ29O9Ef6D/kOqPaiMk5k5Nh+eTcySgwFshQMRHR2HYsWW7azhwnGssSM8ftxlEcbJrjneMcq3Jc+D/bhbZrrkF0aAja6mqUPfsMVLlc6JSIaCTFYiI6XQE09XrR1OdB47AQvH3Qh9gRWlJyTRqUZRuSgbcUfutRatOjKEsPg4bfthMRycWsMWNu0VzMLZoLQFrss8vbJQXl8cfu/t3whr2HjGPJN+Qng/IpuVMwKWcSTBqTXLdCREQH4XfZRGkoMVal2FQscyUnkLVEeu7eDUQjgJJ/HX1Zvi1b0Lb8OsQ8HuimTEHZU/8DZVaW3GUREY1ag95QMvhu6vMkA/Dmfi8C4djnvs6oUaIiz4jKXBMqco2ozDOiIteI8lwjLDp2fhMRZQpBEGA32WE32bG4fDEAIBKLoNHZiJ29O5Nd5vuH9qPH14N3Wt/BO63vSK+FgEprZTIsn5I3BVW2KqgV/DpARCQHplFEacjhcQAY5TPHy+YAhhzA0wXUrwFqzpW7oozk/egjtN1wI0S/H4aZM1Gy8kkoTexEISL6qgLhKJr7vckxKI29B4LwIy2AqVIIKMsxoDLXlAy/K3KNqMw1Is+s5dxvIqJRSqVQodpWjWpbNS6uvhgA4Av7sGdgT3Icy2d9n8HhcaDB2YAGZwP+0fAPAIBWqUVtdm1ysc8puVNQYi7h1wwiohHAcJwozYSjYfT6ewGM8nBcpQWmXQZ89Djw6Z8Yjn8J7nffheMHP4QYDsM4bx5KHnsUCr1e7rKIiDJGOBpD24APzf1eNPX50NTnQXOfD019XjiG/Ed8bZFVh4pk+G1CZTwEL7HpoVJyMTYiIgIMagNmFMzAjIIZyWN9/j7s6tuVMpLFHXJje+92bO/dnrwuS5uVMrv8pJyTkKvn2EQiouONC3IeBS7ISSOpzd2Gpa8shVapxabLN43uboH+BuDx6QAE4Ic7gKwyuSvKGM5/rULH7bcD0SjMX1uEot/+FgqNRu6yiIjSTjQmomPIj6Y+b7ITvLnfi+Y+L9oG/YgeYRC4Va9Odn9XxkNwaQyKgTPAiYjouBBFEa3u1uRCn5/1fYY9A3sQjh36KaUCQwEm5UzCpNxJOCnnJJyUcxKyddkyVE1ElN64ICdRBkvMG7cb7aM7GAeAnPFAxQKg6X1gywvAWXfJXVFGGPy//0PXz+8BRBHW8/8T9v/+bwgq/nVORGOXKIrocgWkADzeAd7UJ3WEt/b7EIp+/hxwvVqJ8lwjKnINUvCdk5gFbkK2kb90JCKiE0sQBIyzjMM4yzj8R+V/AJA+TbxvcB929O1IjmRpdjaj29eNbl833m17N/n6ImNRSlg+KWcSrFqrXLdDRJRxmKYQpZlEOD6qR6oMN/OqeDj+v8CC2wElF6I5koHnn0f3/b8GAGRdegkKf/5zCAp+fJ+IRj9RFNHvDcUXwZQ6vxPbLf0++MPRz32tRqXAuGwDyuMd4OXDQvB8zgEnIqI0o1aqMSlX6hBP8Ia92DuwF7v6dmFX/y7s7t+NZlczOrwd6PB2YE3LmuS1JaYSKSjPnYRJOZMwMWciLBp+Cp6I6HAYjhOlmQ7vGAvHa5YBxjxpYc59bwITz5O7orQkiiL6V65E76OPAQCyr74a+T+5lYEOEY06gXAU9T0e7O9xS93fw8JwdzDyua9TKQSUZhtQnnNoCF6UpYdSwb8viYgocxnVxkPml7tD7mRgvrt/N3b170KruxXtnna0e9qxumV18toyc1nKSJaJ2RNh0pjkuBUiorTCcJwozSQ7x41jJBxXaYBTrgA++J20MCfD8UOIooje3/4W/U8/AwDIvelG5K5YwWCciDJaLCaidcCHvV1u1HW5Udftwt4uN5r7vPi8MeCCABRn6ZPjTyrii2CWxxfCVHMhTCIiGkPMGjNmFc7CrMJZyWPOoBN7BvZIYXm8y9zhcaDV3YpWdyv+3fzv5LXllvLkKJZJuZMwMXsiDGqDHLdCRCQbhuNEaWbMjVUBgOnfkcLxhneAgSYgu0LuitKGGIuh+777MPjXvwEA8m+/HTlXfVfeooiIjlGvO4i6Ljf2drmwr1sKw/d1ez53FIrNoEZ1gRmVeakheGm2ATq1coSrJyIiyhxWrRVz7HMwxz4neWwoMITdA7uxu393MjTv8Hag2dWMZlcz3mh6AwAgQECFtSKlw7zaVg2j2ijX7RARnXAMx4nSTCIcLzYVy1zJCMquAMafLYXjW54HFt0rd0VpQYxE0HnX3XC+9hogCCi8917YLvmm3GUREX0uXyiCfd0e1HW5DnSEd7nR7w0d9nqtSoGqAhNqCiyoLTSjptCM2kIz8jgHnIiI6LjJ0mVhbtFczC2amzw2EBhICct39e9Ct68bjc5GNDob8Xrj68lrS0wlqMmuQY2tBtW2alRnV6PYVAyFwE9sEVHmE0RR/JwPrlKCy+WC1WqF0+mExcJFLOjEicQimPnnmYiKUbz99bdRYCyQu6SRs+d14MUrpPnjP9otjVsZw8RQCI5bfwL36tWAUomiX98P63kcOUNE6SESjaG534u9XW7s63JLQXi3G60DPhzuO0tBAMpzjKgpMKM6HoDXFJpRnmPkLHAiIqI00efvS84u3923G7sHdqPH13PYa41qI6qyqlCTHQ/M4w+OZSGidHAsWS47x4nSSI+vB1ExCpVChTxDntzljKzqJYCpUFqYs24VMOlCuSuSTSwQQPvNN8O7bj0EtRrFv3sY5kWL5C6LiMYgURTR7Qpib5cr2QW+t8uN+l4PQpHYYV+Ta9Imw+9EJ3hVvhl6DcehEBERpbNcfS7ml8zH/JL5yWODgUHsH9yPusE61A3UYd/gPjQMNcAb9mJb7zZs692W8h6l5tKUDvMaWw2KTcX8RBgRpS2G40RpxOFxAJAW4xxzH1FTqoHpVwLrHgQ+fXbMhuNRjxftK1bA98knEHQ6lPz+9zCdcbrcZRHRKBaJxtAxFEDLgBct/T60DfjQ0u9Dy4C07QlGDvs6g0aJqgIzagsOhOA1hWbkmLQjfAdERER0oth0Nsy2z8Zs++zksUgsgmZnM/YN7pNC88E67B/Yjx5/D9rcbWhzt+Ht1reT1xvVxpTu8prsGlRlVbHLnIjSAsNxojSSmDduN9llrkQm078NrHsIaFoH9DcAOePlrmhERZ1OtC5fjsD2HVAYjSj940oYZs6UuywiGgW8wQha+n1oHfCiNR5+J54dQ35EY58/ZU+pEFCRa5QC8GFjUUptBig4EoWIiGjMUSlUmGCbgAm2CViKpcnjg4FBKTAfiAfmg/tRP1QPb9iLrT1bsbVna/JaAYLUZZ5dgypbFWpsNajJrkGRsYhd5kQ0ohiOE6WRDu8YXIxzuKwyoGoxsP8tYPOfgMX3yV3RiIn096P1e9cguHcvlFYrSp9+Gvopk+Uui4gyhCiK6HUHk4F3y4APrf1SEN464EOf5/ALYiZoVAqUZRswLtuA0mwDxuVIj7JsI0qz9dCqOBKFiIiIjsyms+FU+6k41X5q8lg4Fk7pMt83uA/7Bvah19+LVncrWt2tWNOyJnm9SW1Cta0aE7ImYHzWeFTZqjA+azyyddly3BIRjQEMx4nSSKJzvMhYJHMlMpp5lRSOb/srcNbdgGr0fzw/3NWF1quuRqipCcrcXJQ9+wx01dVyl0VEaSYUicEx5EdLIvROhuBSAO4PR4/4eptBjbIcYzIEL8s58Fxg1rELnIiIiI47tUKNKlsVqmxVWIZlyeMDgYFkl/m+wX3JWeaesAdberZgS8+WlPfJ1mVjfNZ4TMiakAzOJ2RNgFVrHelbIqJRhuE4URrp9HQCAIpMYzgcn/A1wFIMuBzAnteBKV+Xu6ITKtTaitarrkbY4YDKbse4Pz0LTXm53GURkYwi0Ria+73YO2wBzH3dbrQN+HCE6SdQCIDdqk/p+paepQDcolOP3E0QERERHUG2Lhtz7HMwxz4neSwcC6PJ2ZQMyusH61E/VA+Hx4GBwAAGugawqWtTyvvk6nMPCczHZ42HWWMe6VsiogzFcJwojSQX5BzL4bhSJc0eX3u/tDDnKA7Hgw0NaL3qakR6eqAeV4Zxf/oT1EVj+N890RgjiiK6XUHs7XKhblgQXt/rQSgSO+xr9GplMuxOdH2XZRswLseI4iw9NKoxtpgzERERjRpqhTq5aOdwvrAPTa4m1A/WS6H5kPTc4e1An78Pff4+fNz5ccprCgwFKYF5YpuLgBLRwRiOE6WJaCyKLm8XgDE8czzhlCuB9x8AWj4EeuuAvBq5KzruArt3o/V71yA6OAht1QSUPvMM1Pn5cpdFRCeIKxDGvnj4nQjC67rdcPrDh73eoFGiukBa+LIm/piQZ0KeWctFqoiIiGhMMagNmJQzCZNyJqUc94a9aBhqSAnM9w/tR4+vB92+bnT7uvFhx4cprykyFmGCLbXLvNJaCb1KP5K3RERphOE4UZro9fciIkagElTI0+fJXY68rMVA9blA3Spg83PAkvvlrui48m3ZirbrrkPM7YZu8mSUPvU/UNlscpdFRMdBKBJDY58n2QWeCMIdQ/7DXq9UCKjINaKm0IzaAikEry20oMSm5wxwIiIioiMwqo2YmjcVU/Omphx3hVxoHGpE/VB98tEw1IA+fx86vB3o8HZgXfu65PUCBJSYSzA+azxqbDWYmDMRJ2WfhEJjIZsSiMYAhuNEaSKxGGeBsQBKhVLmatLAzKukcHzbX4Gzfw6oR8dv8r0ff4y2FTdA9PmgnzEDpX9cCaXJJHdZRHSMRFFE+6Af+7pTQ/CGXg8inzMYvNCii4ffB7rBx+eZoFPz73wiIiKi48WisWBa/jRMy5+WcnwoMJQMyuuH6tHglOaaDwYH0eZuQ5u7DWvb1iavz9JmYWL2REzMmZgMzEvMJVAIHGNHNJowHCdKE4l542N+pErC+LMAaxngbAV2/wM4+VK5K/rK3O+9B8cPfggxFILx9NNR8vhjUBg4844o3bkDYdR1ubGn04U9XW7s7XRhX7cHnmDksNebtapk+C0F4RbUFJhhNXBBTCIiIiK5ZOmyMLNwJmYWzkw53u/vT45kqRuow56BPagfrMdQcAgbOjdgQ+eG5LUmtQm12bVSYJ49ESflnIRySzkb3IgyGMNxojTR6e0EANiNdpkrSRMKJTDj28C790kLc2Z4OO5aswaOH90CRCIwLTobxQ8/DIVGI3dZRDRMLCaidcCHvV0u7O6UQvA9XS60DRx+JIpaKWB8numQILzIquNHcImIiIgyRI4+Bzn6HMy2z04eC0VD2D+0H3v690iPgT2oG6iDJ+zBp92f4tPuT5PX6lV6VNuqk2H5xJyJGG8dD7WSjRFEmYDhOFGaaHY2A2DneIpTrgTW/hpo2wh07wYKTpK7oi/F9eabcPz4ViAahWXpUhQ98GsIan6jRCQnTzCCungIvqfThb2dLtR1ueENRQ97vd2qQ22hGbV2i/RcaEFFrhEaFT9WS0RERDTaaJSaQxYBDcfCaHI2JcPyxLM/4sf23u3Y3rs9ea1aoUaVrepAYJ49EVW2KuhUOjluh4iOQBBF8fCDMSnJ5XLBarXC6XTCYrHIXQ6NQj2+Hpz78rkIxUJ4evHTONV+qtwlpY8XrwT2/BOYvRxY+qDc1Rwz579WoeP226Vg/D/PQ9GvfgVBxd9LEo2UWExE26APe+Ih+J5OF/Z2udE64Dvs9RqVAtUFJkwstGCi3YJauxkTCy2wGflJDyIiIiJKFY1F0epuTQnMdw/shjvkPuRapaBEZVZlSmBem10Lg5qjNomOt2PJchmOHwWG43Si3b/xfvx1718xLW8aXjj3BX4cf7iGd4H/vRDQWoEf7wU0mfONg/Mf/0DHHT8DYjFYL7oI9l/+FwQlZ9ERnShSN3hqCL630/W53eCFFp0Ufse7wU+yS93gKiW7wYmIiIjoyxFFEe2e9kM6zAcCA4dcK0DAOMs41GbXotJaicqsSlRaKzHOMg4aJZsziL6sY8ly2b5IJLNubzde2vcSAGDFtBUMxg9WsRCwlQODzcCuV4BTrpC5oKMz9PLL6LzrbkAUkfXNb6Lw3nsgKBi4ER0PoiiifdCP3fEQPBGEt/R/Tje4UoGqAhMm2qVu8Inx8SjZ7AYnIiIiouNMEASUmktRai7F4vLFAKTvX7t93Yd0mPf4etDsakazqznlPZSCEqXm0pTAvDKrEhWWCnaaEx1nDMeJZPb0zqcRioUwPX865tjnyF1O+lEogBnfBd6+V1qYMwPC8cH/9yK67r0XAGC77FsouOsuBuNEX4E3GMGOdie2tA5ia+sgtrYOod8bOuy1BRYtauMjUSbGu8Irco1QsxuciIiIiGQiCAIKjYUoNBbizLIzk8f7/H3YO7AX9YP1aHA2oNHZiMahRnjCnmRo/m7buynvVWwqRoW1AuOt41OCc4uGkw6IvgyOVTkKHKtCJ0qXtwtLX1mKcCzMWeNH4ukFHp4IxMLAdesB+1S5K/pcA3/5C7p/eR8AwPbtK1Fwxx38NADRMRBFES39PmxpHZQeLUOo63YjGkv9dkWtFFCVb04JwWsLzcgxaWWqnIiIiIjoqxNFET2+Hikoj4flDc4GNDmbDjuaJSFPn5fSaT4+azwqrBXI0eXwZ1IaczhWhShDPLXjKYRjYcwomIHZhbPlLid9mfKAiedJY1U2/wn4j9/JXdFhDTz/PLrv/zUAIPvqq5H/k1v5TQjRF/AGI9jePoStrUPY0jKIrW1DGDhMV7jdqsP0MhtOKcvC9HE2TCqyQKviDH8iIiIiGl0EQUCBsQAFxgKcVnRayrnBwCAanY1oGJLC8oYhqdu829eNXn8vev292Ni1MeU1Vq1VCs2tB0Lz8VnjUWAo4M+rRGDn+FFh5zidCB2eDix7dRkisQiePedZzCqcJXdJ6a1pHfD8eYDGLC3MqTXJXVGK/meeQc+DDwEAcpYvR96PfshvNIgOIooimvt92NIS7wpvHUJdlwsHNYVDo1RgcrEF08tsmD5OCsTtVr08RRMRERERpTlPyJPSaZ4I0B0eB0QcPvYzqAyosFag3FqOcks5yq3lqLBUoMxSBr2K33tTZmPnOFEGeGrnU4jEIphVOIvB+NEonwfkTAD664HPXpLmkKeJvpV/RO8jjwAAclesQO5NNzIYJ0K8K7xtKBmEb20dxKAvfMh1RVYdThlnS3aGsyuciIiIiOjomTQmTM2biql5qSNIA5EAml3NKaNZGoYa0OpqhS/iw67+XdjVv+uQ97Mb7cnAfHhwXmAsgELgWj40ujAcJ5KBw+PAa/tfAwCsOHmFzNVkCEGQAvHVd0kLc6ZBOC6KIvr+8AT6fv97AEDuzTchbwX/fdLYJIoimvq82NIaD8NbBrGv231oV7hKgSnFVkwvy4qH4TYUWnXyFE1ERERENIrpVDrUZteiNrs25Xg4Fkabqw2NzkY0u5rR5GySFgB1NsMVcqHT24lObyc2dG5IeZ1epUeZueyQ0LzcWg6j2jiSt0Z03DAcJ5LBUzueQkSM4FT7qZhZOFPucjLHyZcB7/wX0LkdcGwBiqfLVoooiuh99FH0r/wjACDvlluQu/xa2eohGmn9niA+63BhR7wzfGvbEIYO0xVenKWX5oT/f/buPF6uur4f/+tss2935u5bFgjZ94QkgAhls64IQfrVfkVqa1sCViNfK9pS/f602vq1IjWAtVVsv1IQ/aKtVhBDCYsJhIQEEkggZLn7fu/s21l+f5yZMzN3SW6Se+/cm3k9H4/h7DOfmYSTe1/nPe+Ta5GyrMEHm8xqEyIiIiKiclFExbxxZ2BhyXrDMDCcHsbJ8EkrLD8ROYGT4ZPoiHYgqSZxdPgojg4fHfOcNc6akrA8H543uhshifxWKM1eDMeJZlhHtAO/OPYLAMC2NdvKPJo5xh0Clt0IvP4T88acZQrHDcNA/7e+hcF//hcAQO1f/iVCt3+iLGMhmm6GYaA3ksahzjAOdYVxqDOCw11hdIdTY/a1ySJWNfmxbl4V1rUGsLa1CnU+VoUTEREREc0FgiAg6Agi6AhiXV3p79tZPYvOaKcVmhdXnA+lhqwbgu7t2VtynE20odXXOqZNS6u3FQF7gC1JqewYjhPNsH967Z+gGiq2NGzB2tq15R7O3LPhdjMcf/1nwPVfAxwze5NcwzDQ942/w9CPfgQAqPviFxH8+P+c0TEQTRfDMNAxnBwThA/EMmP2FQRgQbUbKxr9WJsLwlkVTkRERER0YVJExQy3/fOBltJtkUykpNo8H5y3RdqQ0TM4NnIMx0aOjXlOj+JBi7cFrb5Wc+o1py3eFtS4atjfnGYEw3GiGdQeacd/vPMfAIA71rA39Tlp3QJULwYGjpoh+cY/nrGXNgwDvV/7Wwz/3/8LAKj/m3tR9T/+x4y9PtFU0nUDJwbjONQZxuGuiBmId4YRSalj9hUFYFGtF8ubfFjR6MfKZj+WNvjgsfPHCCIiIiKiSuez+ca9Iaima+iOd5eE5vn53kQvYtkY3hx6E28OvTnmOR2SA83e5tLQ3GcG5w3uBsgifxehqcG/SUQz6HuvfQ+aoeHyxsuxpnZNuYczNwmCWT3+5BeAV34IbPikuW6aGbqOnv/9vzHy6GOAIKD+K19G1Uc+Mu2vSzQVVE3Hsf4YDnVGcmF4GG90RRDPaGP2VSQBi+u9WNHox/ImP1Y0+rCk3genjX0CiYiIiIho8iRRQrO3Gc3eZlzRdEXJtpSaQmesE+3RdrRF2tAebTfno23oinUhpaUmrDiXBRlN3iY0e5ut4LzV24oWXwuaPc2wSbaZeot0ARAMwzDKPYjZLhKJwLkAZxEAACAASURBVO/3IxwOw+eb2RYOdOFoi7Thgz//IDRDw4/f++MxV1TpLCSHgW8tAdQU8MnfAi0bp/XlDF1H9733IvzTnwGCgIavfQ2Bmz48ra9JdK7Sqoa3emK5tihhHOqK4Eh3BGlVH7OvQxGxtMGsBl/R5MPyRj8uqfOyNQoREREREZVNVs+iJ9aDtmibFZi3R9qtAD2jj237mCdAQL273mrPMrpli0txzeA7oXI5myyXleNEMyRfNX5F0xUMxs+XswpYfhNw8BHzxpzTGI4bmobuL34J4V/8AhBFNH7j6/B/8IPT9npEZ2M4nsGRniiO9kTwZncUh7rCeKs3iqw29rq3xy5jWWMhCF/R5MfCajdkiUE4ERERERHNHoqomC1UfC1jtumGjr5EX0nFeT5Eb4+2I56Nozveje54N17ueXnM8dXOarR6W62bgs7zzcM83zy0eFvgkB0z8fZolmHl+CSwcpzO18nwSXzoFx+Cbuh45L2PYGXNynIPae5rfxn4l+sA2Ql87gjgDEz5Sxiqiq4v3IPIL38JSBIa//7v4H/f+6b8dYjOJJXV8HZvDEd6InirN5oLxKPoi6bH3d/vVLCyyW/1CF/R5Me8oAuiyDvBExERERHRhckwDAylhkpatLRH29EeMedH0iOnPb7eXY95XjMsb/UVgvNmTzMUSZmhd0FTgZXjRLPM9177HnRDx5XNVzIYnyrNG4Ha5UDfYeC1x4BNfzqlT29ks+j8/OcR/fWTgCyj6Vvfgu+G66f0NYhG03QDbUMJHO2JWAH40Z4oTg7GoU9wKbsl6MTiOi+W1JvV4CuafGgKOCHMQC9+IiIiIiKi2UIQBIScIYScoXHv8xbJRNAWacOpyCm0RdpwMnLSXI6eQjQTRU+8Bz3xHrzU81LJcaIgotHdaIXlxcE5bw4697FyfBJYOU7n40T4BG78xY3QDR2Pvu9RLK9eXu4hXThe/j7wX3cDNUuAO/ZM2Y05jUwGnZ+7G9GnnwYUBc33fRvea66ZkucmyuuPpnG0J4ojPREzBO+N4q3eKFLZsb3BAaDKpWBxvRmCL673YnG9F5fUeeGx8wcxIiIiIiKic2UYBobTw1Zwnn+0Rc3lpJqc8FhZlNHsabbCcis8985DnbsOosA2luXAynGiWeShgw9BN3Rc1XwVg/GptuojwNP3Av1HgLY9wLwt5/2UeiaDzs98FrFnnoGgKGi6/zvwXn31FAyWKlUio+Kt3tiYavDB+Pg3kbHLIhbVebC4zocluRB8Sb0XNV47q8GJiIiIiIimmCAICDqCCDqCYyrODcNAf7LfqjYvDs7bIm3I6BmcjJzEycjJMc9rl+xo8bZYFebVzmrUuGpQ7ahGtasa1c5qBOwBBuhlxnCcaBodHzmOX5/4NQDgz9f8eZlHcwFy+IEVNwOv/pt5Y87zDMf1dBodn/404rueg2CzoXnHd+F517umaLB0oTMMsyXKoc5IIQjvjaJtKIHxvqMlCMD8kBuL6woB+OJ6L+aF3JDYG5yIiIiIiKjsBEFArasWta5abKzfWLJNN3T0xHtK27TkQvOOaAfSWhrHRo7h2MixCZ9fFmSEnCEzOHfWWKF5jbMGIWcINc4aa94m2ab77VYkhuNE0+ihgw/BgIGrW67GstCycg/nwrThdjMcP/xz4D3fAFzBc3oaPZVCx7Y7EX/xRQgOB1oe2AH3ZZdN8WDpQmIYBtqHkthzfBC7jw9iz/FBdIdT4+5b7bFb4Xc+CF9U64XTJs3wqImIiIiIiGgqiIKIRk8jGj2N2NJYWqyn6iq6Yl1WlXlvohcDiQEMJAfQn+zHYHIQw+lhqIaK3kQvehO9Z3w9v91vVZ3XOGtQ7ay2HsXBulfx8lvHZ4HhONE0OTZ8DE+efBIAcMeaO8o8mgtY4zqgfhXQ8xpw8N+BLdvO+in0RALtd2xDYs8eCE4nWh56CO5Nl07DYGmuax9KWGH4S8eH0DlS2ntOkQQsa/RjaVEQvrjOi5DHXqYRExERERER0UyTRRmtvla0+lon3CerZTGYGjQD80Q/BlIDYwL0/mQ/BpIDyOpZhNNhhNNhvBN+57SvbZfsJaH5Vy7/Cnw23kNxIgzHiabJQ6+ZVePXtF6DJcEl5R7OhUsQzOrxX34WeOWHwOY7zurGnHo8jvY//TMkXnkFosuFln/6HlwbNkzjgGku6RxJYvc7ZlX4nuOD6BgeG4avaQlg88IQtiwMYW1rFavBiYiIiIiI6IwUSUG9ux717vrT7mcYBiKZiBWg9yfMwHy8ED2aiSKtpdEZ60RnrBMA8HdX/t1MvJ05i+E40TR4e/ht/ObkbwAAf76avcan3cpbgN/8NTD4NnDyBWDB5PqEa7EY2j/1p0ju3w/R40HL9/8JrrVrp3mwNJt1jeTapLwziD0nBtE+VBqGy6KA1S0BbF4YxJaF1Vg3LwCXjf+UEhERERER0fQQBAF+ux9+ux8X4+LT7ptSU1ZwPpAcwEh6hL3Kz4C/0RNNgwcPPggDBq6bdx0WBxeXezgXPrvXDMj3/dB8TCIc1yIRtP/Jp5A8eBCiz4fWf/4+nKtWzcBgaTbpCadKwvBTg4mS7ZIoYFWz36oMXz+vCm47/+kkIiIiIiKi2cchO9DsbUazt7ncQ5kz+Bs+0RQ7OnQUT596GgDwZ6v/rMyjqSAbbjeD8Tf+A4gPAO7qCXfVRkbQ9sd/gtShQxD9frT+4F/gXL58Bgc7PQzDgJrVkY6rSCeySCdVpBPmvJrR4fLa4PLb4PKZU1mpvPYfvZGU1SJlz/EhnBiIl2yXRAErmvzYsjCEzQuD2DA/CA/DcCIiIiIiIqILEn/jJ5piDx18CABw/bzrcUnVJWUeTQVpWG3enLNrP3Dgx8DlfzHubpn2dnTceRfSR49CCgTQ+vAP4Vgye3rCG4YBNaOb4XYu2E7FCyG3OVVLtqcTKlK5eV01Jv1adpdsBeUunx0uvw3u3LR43u6S5+ydrvuiKew5PmSG4e8M4vioMFwUUBSGh7BhfhW8DqVMoyUiIiIiIiKimcRwnGgKHRk6gt+2/RYCBPYaL4cNtwP/sd+8MeeWuwBRLNkc3bkTXV+4B3o0CikUQusPfgDH4um/gJFJqgj3JzHSl0B8JG2G2vFsLtAeG3Tr2uQD7vEIAmB3KbC7ZPPhViDJIpLRDBLhDBKRDDRVt4L24Z7EaZ9PlAW4fDa4/fZcmG6H26pAL8w7fTZIknja55pOhmHg5GAC+08NY3/bMPYcH8Q7/aVhuCAAyxt9Vhi+cUEQPobhRERERERERBWJ4TjRFHrwwIMAgBvm34CLq05/kwSaBituBp76EjB8AjixC7joagCAkc2i79v3YegHPwAAONesQdO3/wFKQ8OUvXQmqWKkL4FwfxLhviTCufmRvgSS0exZP58gCoVw26XAUTRvTd2j18lwuBQoDum0ld6GYSCdUJGIZJAIpxHPBeaJcBqJSMZczs2nEyp01UBsKI3YUPqM43Z4lJLg3OUzK89tDhk2Z+7hkHJTGTanOX8uoXo8reJg+wj2tw1jf9sIXm0bxnCi9LMWBGBZgw+bc2H4pQuC8DsZhhMRERERERERw3GiKfPm4Jt4pv0ZCBDYa7xcbG5g1a3A3u+b/ccvuhrZ3l50bv8ckvv2AQCCt92G2s9th2A7+7s1p5OqGXr3JRHuT2CkL2nNnykAd3oV+Gtc8IYcZtDtLqrsdubm3YWgW7GfPuA+H4IgwOFW4HArCDa4T7uvmtVywXnmtGF6MpKBrhtIxbJIxbIY7Iyf9nlHkxSxEJw7CiG63SlDccqw2SXEDB1d8TRORZJ4eyiO4+EkUjCQEYB0bmpTRKxs8mNdawAb5gexaUEQARfvzE1EREREREREYzEcJ5oiDxx8AADwngXvwUWBi8o8mgq24XYzHD/yK8R/+yt03vu30IaGIHo8aPja1+C74frTHp5OZK2K73BR+D3Sl0QqduYAPFDrgr/GCX+tC/5apzVvd87N062sSPCFnPCFnKfdz9ANpOLZXHCeRiKcQTycRjKSRTqlIpMseqQ0ZHLr1IwOANCyOpLZDJKRM48pCGATgE2wj9mm2CXYTuqw9UaQfCuFV6qG4A064KmywxN0wFvlgCdoh80xN/88iIiIiIiIiGjqMB0gmgKHBw/j2fZnIQoiq8bLrW45jMaNGPjNmxj497sBA7AvWYLm79wH27x5AIBsWsNQd9xqfRLuS1otUc4YgPtsCORD7xozAM8H4rY5GoBPBUEU4PTa4PTaAHgmfZyu6UgnVRzriuLQiWEc7QzjeFcUA8MpKDpgNwTYDHPqFARU2xVUKTJcogibDmgZDZmkBk01Q/ZsWkM2rSEezpy2l7rdJcNT5YA3aIbmniq7GaLn5t0Be1n7pxMRERERERHR9KvcJIdoCuV7jb93wXux0L+wzKOpbOrQELp+a0f8kA8AENh6M+r+6q8Amx1thwdxZE8PThzoh5rVJ3wOl89mVn3nQu9CNbiTFcdTIJrK4mB7GK+2mTfOfLV9BCOjeoVDAZoCTqybV4W1LQGsm1eFZQ0+2OTxA2stq5vV6CkVmaSGdMKsYo8NpxAdSiM2nEJsyJzPJPM3Qo1hsDM27vMJAuAO2MdUnJuBuvmwu+Vpa31DRERERERERNOPKQ/ReTo0cAi7OnZBFET86ao/LfdwKlpi/350fnY71N5eCJKB+g0j0N57FXb/qgNvvdyDRDhj7ZuvAA9Y7U8KbVAYgE8dwzDwTn88F4SbN8082huFYZTuZ5dFrGr2Y21rFda1BrCutQq1PsekX0dSRDiVfOX66WWSKqLDKfMmo8MpRIdGzQ+noWsGYsNpxIbTwPHxe73IimgG57nQPD/vcCuQFQmSIkK2iZDk/FSCrIiQbCJkWYQgMlgnIiIiIiIiKicmQETn6YEDZq/x9y98P+b755d3MBXKMAwMPfwj9H3rW4CqwrhoOeKXX46nurwY+FcRQBsAwOFWsGhjHRZvrkftPC+rfqeBpht4szuCPccH8dKJIew9OTS2KhxAc5UT61qrsDYXhC89TVX4VLM5ZYScHoQax2//YugGEtEMYkPpXFhuhufRfPX5cBrJSAZqVsdIbwIjvRO3bzkdURYgyyIkmwQ5H6ArohmgK6IVsOfDdWtfpbBf8b6iLFh/pwVRQP6vd35egACI5g1ZBQCCCEAwjxEEAAKsecE8oHQeAgRx7DZJEeHy2hj2ExERERER0ZzDcJzoPLzW/xqe73wekiCxarxMtEgE3V/6EkZ2PouB0CoMrHw/+lAHw8zDISKL+SuCWHzFfMxbEYI0QwFspdB0A290RfDSiUErEI+m1JJ97LKI1c0BrG0NWJXhZ1MVPtMEUYDbb4fbb0fdAt+4+2hZHbGRsS1bYkMppHM3GtVUHWpGy011aFkdul4omddVAxlVA1LaTL21aSMrotWKKP9tjPzU5bPxQhQRERERERHNSgzHic7DAwcLVeOtvtYyj6byJA8fxqEvfAsdwnz0XfYNqLITyLUSr1vgw2L9Z1iU/Dc4Vn4aWPP5so71QqFqOg5bYfgQ9p4YQjRdGoZ77DI2zq/CpoUhbFoQxIomP5QL7OaWkiKarXhqXGd1nK7pULN6SWCuZvNTbcLlwjodWkaDmj/emmrQsgYAA4YBs22NkZ83Ri2fbpsB5PaZ7Lb8uAY74xjsjI95z4pDKgnMA/kQvc4Fh1s57z8LIiIiIiIionPFcJzoHB3oO4AXO19k1XgZjPQlcPAHz+CdIwkkm/7QWu8J2rF4Uz0Wb6pHVb0beO048P8eAPb9CHjX5wBRKuOo5yZV03GoK9cm5fgg9p4cRmxUGO61y7h0QRCbFgaxeWEIyxp8kC+wMHyqiJII2wX22WiajuhACiN9CYT7krlpAiN9SUSHUsimNPS3RdHfFh1zrN0tjwrOC/M2J39EISIiIiIiounF3zyJzlG+1/gHL/ogWnwtZR7NhS+dyOLYvj4c+V0Xek5EAbgAhwsSsrh4Qz2WvqsVjYsCpX2Pl34QcP4lEOkA3n4aWPyeso1/rshqOl7vDOfC8CG8cnII8Uxp2w+fwwzDNy8MYdOCEJY1+iCx33TFkiQRgTqzEnw0Nash0m8G5/nwPB+cx0fSSMdV9J6IoPfE2Juejr5prjk15xXbuV/oMgwDupZ/6Na8VjRfuk2HVrTe0Ay4/DZWvhMREREREV0AGI4TnYNX+17F7u7dkAUZn1r1qXIP54KlaTra3xjC0T09OHFwAJqa65li6AiOHMUl60NY+RdbYbNPcCpTHMCajwK7vwvs+yHD8XFkVB2vd45gz/Eh7Dk+iH2nhpEYFYb7nUpRGB7E0gaG4TQ5siIh2OhGsNE9Zls2rSHcn8BIbzI3LVSeJ6NZJCMZJCMZdB8LjznWU2WHr9oJQUAu2C4NuvUJg26jpO/7+XK4FQTqclXv9Wble6DOBX+NE/J5BPhEREREREQ0MxiOE52DHQd2AAA+dPGH0OxtLvNoLiyGYWCgPYaje3rw1t4eJKNZa5s70YP67t1oUo/jom9+Ba4NG878hOtvN8Pxt38DhDsAf2X/eWVUHQc7RvDScbNn+L5Tw0hmS8PwgEvBpgVBbFoQwuaFISyp90JkGE5TTLFLqG72orrZO2ZbOqnmKsxzgXmvWW0e7ksgnVARG04jNpyesrEIgtnyRpQEiLIAURIhSYK5nF8vCRBFAYIoID5ivn4qnkXP8Sx6jo+qfBfMAD9Q60JVnQv+XGV9oNYFb8jB/5+IiIiIiIhmCYbjRGdpX+8+vNT9EmRBxp+s+pNyD+eCER9J4+jLPTi6pwdDXYWb+jk8Cpr1E6h67t/giXXAvWUzmv7Pv0IOhSb3xNUXA/PfBZx8Htj/r8DVX5ymdzA7abqBgx0jeOHtAbx0wqwMT2X1kn2qXEouCA9i80UhXFLLMJzKy+6UUTvPh9p5vpL1hmEgFc8i3JdEdDAFAIXgujjELpqXJlhfvE04h7/vmZSKcH8yV/FuVsCP9JkV8OmEithQGrGhNDqODJccJ8oC/NVOqxVNPjQP1Lng9CoQBP6/R0RERERENFMYjhOdpXyv8RsX3YgmT1OZRzO3ZTMaThzox5E9Peh4cwhGrtuBJItYsLoaF10kQ/juXyPzxiFAEFB9x5+jets2CNJZtivYcHshHL/y84B0YZ/6+iIp7HqrH7ve6sfzbw8gnMyWbA+5bdbNMzctCGFRrYdhOM0JgiDA6bHB6bGhfqG/rGOxOWTUtHhR01Ja+W4YBlKxbK7avTQ0D/cloak6hnsSGO5JjH1Op2z2WR8VmvtrnbA5zu28ZRgGDN2AoQO6bs6PP8WE20RRgGKXINskKHYJikOCdIHdWJaIiIiIiCrThZ0QEU2xvT178XLPy5BFGZ9ayV7j5yoeTuO1Z9pxaFcnMqlCS4+Gi/xYvLkeF6+vReZ3u9D1l1+EHo1CCgTQ+M1vwvOuK87tBZd8AHBVA9Fu4K0ngaXvn6J3MjtkVB37Tg1bgfib3aUtHnwOGVcsqsaWhWablItrPaxOJZomgiDA6bXB6bWh4eJAyTZdNxAbSo0JzUd6E4gOpZBJqug7FUXfqeiY53X5bXC4FfOmoEXhdXG4PXadYV10nGqibAbm5kOGYhOhOHLz1vozPBxFgbtdgmKTzqmKHygE+7peuHFqfl7X9ELYX9R73hi1Pf/ZGjog2UQoubHJNrHk4oAk88IAEREREdGFguE40VnIV43fdPFNaPA0lHk0c89IXwKvPt2GI7u7oatmYuOrdmDxpnos3lwPf40LRjaLvn/4NoZ++EMAgHPNGjR9+x+gNJzH5y3bgLV/CLx4n3ljzgsgHG8fSuC5t/ux62g/fvfOIGJptWT7qmY/3n1JDa5aXIPVzQHIrPIkKjtRFOCrdsJX7UTrstJtalZDuD+JcC40H+5NIJyrPk9Gs0iEM0iEM1M7IAFWH/X8VBDHrjN0A9mMhmxas87dumograpIx1UAU9f/XS4Kz2VFLATZVtitly7nQm1M00WA8YiiYI7TJhbGa5Ny6yTIdrFkuRCsi4WLAaP3t94zb+RKRERERDSTGI4TTdLL3S/jld5XoIgKe42fpb5TEex/qg3HX+2zqhjrF/qw7oZ5mL+y2qoUzPb2ovOz25Hcvx8AELztNtTe/TkIinL+g1h/mxmOH9sJDJ8Cquad/3POoFRWw0snhrDraD92vdWHd/rjJdtDbhuuvKQG776kBlcsqka1x16mkRLRuZAVCaFGD0KNnjHb8n3Ws2nV7JEu5MLr3HxhHUrXlYTe+flC+H0u3yDRVB3ZtGY91IyGbEorWWc+VHOa0qxgveRRfExGs8JtNa1BTWtInu8HmiPmP6fcDVWtz8VaFkctCxAEQM2a71NNa8hmdKhpDbqeuzCgG8gkVWSmapBFXD4bgo1uBBvc5rTRg2CjG3Ynf2QnIiIiIpoO/EmbaBIMw8COAzsAADctugn17voyj2j2MwwDHUeHsf/JUyU3pJu3MoR1189Dw8X+kmAm9uKL6Lr7f0EbHobo8aDhb78G3/XXT92AgguBhVcDx/8b2P8j4Jp7p+65p4FhGDg+EM+F4f3Yc3wQabVwI01JFLCuNYB3X1KDd19Si+WNPvYNJ7pAOdwKHAum4CLhFJBkEZIswuGeuvEYhmGG0aNCdjWrWQH2+MF20bJUuBAgSSKEXMg9lS2k8hcG1Ez+woBuhftq8TStj12XMdcXjtWKjtWh5c7viUgGiUhmzI1c3QE7Qo1uVBUH5w3uc+5FT0REREREJv5ETTQJL/W8hP19+6GICv545R+Xezizmq4bOP5qP/Y/dQr9bWbfXEEUsGhjLdZdPw+hptKqSEPTMPDgQxjYsQMwDNiXLkXzfd+Gbd40VHZvuD0Xjv8bcNU9gDQ7wqa8WFrF744NWL3DO4ZLyxIb/I5cGF6Dyy6uht85u8ZPRHQuBEEw24/YZndLkfyFAUzhhYE8XdORSWkI9yUx1B3DUFfcfHTHERtOIz5iPtreGCo5zht0FCrNm8xpVYN71n+WRERERESzBcNxojMwDMPqNb71kq2sGp+AltVxZE83Xn26DeE+M9SVFRFLr2jEmmta4Kt2jjlGHRpC193/C/Hf/Q4AELjlFtR96YsQHY7pGeTi9wKeOiDWCxz5FbD8xul5nUkyDANHeqJmGH60H6+cGkJWKzTOtUkiLl0QNAPxxTVYxBtpEhFdkERJhMMtwrFAQd0CX8m2dFLFcHccg50xDHUXQvNEOIPoUArRoRROHRosHCAAvpDDasmSrzSvqnexpzkRERER0SgMx4nOYHf3brza9ypsoo1V4+PIJFUceq4TB3e2IxExbxZnd8lYeVUzVl3dDKfXNuaYbG8vRn72Mwz/+79D6x+A4HSi4ct/A/+HPjS9g5UUYO3/BJ7/P8DuHcD8dwHu0PS+5igjiQxeODZgtUvpi5beyG5eyIWrcmH45oUhuGw8TRMRVTK7U0b9Qj/qF/pL1qfiWSsoNyvNzfA8Gc0iMpBCZCCFk68NWPsLAuCvdRX1MzeD80Cdy6yIn0aGYd401TAXrPunirn++URERERE5cLUheg0iqvGb1l8C2pdtWUe0ewRD6fx2jMdOPRcJzJJFQDgqbJj9TUtWHZF45g+qIaqIvbc8xh5/HHEdu0CdLO/qm3hQjR/5z7YFy2amYHnb8zZ8TLw7eXAmo8CW7YBoYum/KV03ewbfqB9BAfah3GgfQRvdEWgF4rD4VQkbLkoZLVLmV/tnvJxEBHRhcfhVtC4KIDGRYGS9cloBkNdcQxawbkZmqfjKkZ6ExjpTeD4gX5rf1EUYHPKMKz0GubNs4tC7OJguzCf35RbMU74jaJ/7yaiOCTYnTIUhwxb0bzdKUFxyrA55Nw6c5vNIUNxFuZtThmyTeQ3q4iIiIjonAiGYUzix9bKFolE4Pf7EQ6H4fP5znwAXTBe7HwRf/bbP4NdsuPXN/0aNa6acg+p7Eb6EjjwdBuO7O6xbiBWVe/C2uvn4ZJL68ZUn2W7ujDy059h5Gc/g9rba613bdiAwK0fgff66yHa7TP6HnDst8DO/w/oPpBbIZgtVy67C2jdbJbXnYPBWDoXhBce0ZQ6Zr9L6jzWjTQ3zK+Cg19zJyKiaWQYBhKRTEkv83y1eSallXt4500QAJsVlktF82bgbs3ntuXby1gV7YZRuCBg5K4BnMW2ye4LwByLQ8pdABg13lzwL0nTW8lPREREdKE7myyXleNEEyipGr/klooPxvvbotj/1Cm8s78P+UtqdQt8WHfDPCxYVV3ytWgjm0Vs1y4MP/444s89j/wBUiAA/4c/jMAtW2FfuLAcb8N08bXARdcAp14EfvePwFtPAkd/ZT6a1gNb7gSWfhCQJj5FplUNh7siONBWCMLbhhJj9nMoIlY2+bGmJYA1LVVYNy+ABv/Y/utERETTRRAEuP12uP12tCwNWusNw0B8JINM7kJu/tqwVYUtFF8vFgrzQmGfMdtHP0d+HwEQzP9Y6zTVQCalIpNUkUlpuWluOalNals+hE4nVKQTYy9Iz0WyIubC/Fy4Xxz8W6H/BBcC8sfZJbasISIiIpoEVo5PAivHK9PzHc/jjp13wCE58Oubf41qZ3W5hzTjDMNA59Fh7H/qFNrfHLbWz1sRwrobWtFwcaDkl99MRwdGfvpThH/2/6D2F76y7dq8GVUfuQWea6+FaBvbg7zs+t8Cdn8XOPgooOV6gAdagc13AGv/EIbNg1ODCbzaPmyF4W90R0punpl3UY0ba1qqsKY1gLUtASyu90JhBRgREdGUMwwDaka3gvN0UkU2qSGdW86mCvPFobqaMavlBUGAIBYF/aIZ8AuCYF0AsK4TTLStaH70ttHLBoBsqijsHxX8qxl9Sj8fpahq3uGW4fTY4PAocHqUwtRrM6duBU6vjS1qiIiI6IJwNlkuw/FJYDheeQzDPCoCFwAAIABJREFUwEd/9VEcGjyE25bdhrs33l3uIc0oXTdw4kA/9j91Cn2nogDMXwovXl+LdTe0orrZa+1rZLOIPvPfGPnJTxD/3e8KVeLBIAI3fRiBrVthmz+/HG/j7MX6gb3/DP3l70NMDgIAEoIbjxnX4qHUdehFsGT3kNuWqwgPYE1rAKuaA/A7lXKMnIiIiOY4TdORLamSH1Uxnwv7s8XzuYsCxYG7Ps7F+8mSFLE0PPfYxl/2KmbY7pYhsgiAiIiIZhm2VSE6T893Po9Dg4fglJ24fcXt5R7OjNGyOo6+1IP9vzmFcF8SgPlL0rLLGrDmulb4qgvtQDKnTmHkpz/FyBM/hzYwYK13X3YZAh/5CLy/dzWE2VglPkpG1XGkJ4JXrfYoW9A1vAQ3S8/jk9J/4SKxG7fjF/hD+y/xgvPdOLrgNjQs3oi1LVVoCTpZXUVERERTQpJESG4RDvf5XWjXsvqoinkVqbiKVCyDZCyLZCyLVCyLZDSDVDw/n4Wm6tCyOmLDacSG05N+PbtLniBMNyvRRUnIVd4LuXkU5q11AkRBgCAJEEVAEEUIonnDWEEUzGnx8fl1RdPCvNnCR9N0GLoBXTega+bDyM/r4y3r0HUDhjbOMdby2OfU9cLzGIYBSRaLHgLEUcv5eXHUsqSYn1V+XpJFiDPYGscwjML7H/UZWZ/leJ+dpkNTDWiqbn0m5ry5fsxU1aFppVNdM19DV/PTCY4tmtocMjxBB7xVdnMadMATtMNT5YCnyg6bg1EHERFNDv/FIBqluNf4Hyz+A4ScoTKPaPplkioOPd+JgzvbkQhnAJi/6Ky8qhkrr2qGy2eG3Homg9jOnRj+yU+Q2L3HOl6qqUbgppsR2HozbC0tZXkPk6HpBk4MxHG4K4yD7WEcaB/Goa4IMurorzHbsLvqg0g1/yHe53gNm3oegafnJVydegZXv/kMkL4KcN8FBK8px9sgIiIimpCkiHApNuvnt8kwDAPZtGYG5bnwfKIwPRnNbU9kgaJ+7/nCCpo6goBCcJ4P06VCeJ4P10VJgK6jJLAuDu1Hh/hWyG2F4Trm2vfJk9Eswv0T/52zu2V4qszQPB+ge4J2eKsc8AQdcPtt/NYDEREBYDhONMYzbc/g8OBhOGUnPrHiE+UezpTTVB3DPXEMdMQw0B7DQEcMfScjyKbN/pvugB1rrm3BsisarYqL9IkTGHn8pwg/8QS04VzvcUGA+11XIHDLLfBedRUEZXa1E0mrGt7ujeFQZxiHuyI43BXGm91RJLPamH39TqWkPcqa5gCq3PlfKNcB+ATQud/sS37458DxZ81HzVLgsjuBlbcAsn3m3hwRERHRFBIEwexP7pBLvil4OrpuIB0vCs9jmUK4Hs0iGc9AyxSFtDpg6LoV4uYrsAtTWMvF2864fRKhriDArEqXzGpsUTSr1CWpUHEuSkVV7NayaC5LhQp1ScpXuBf2E3LPCwG5queiaupRy+Nuy5pV1Jqqm83pcwwDULM61OzU9qM/G/nP6nSfkSSPM5VFSJIIMRfojzed8FhJtEJ/s8p+1LGSgHQii+hQGtGhlPlth6GUNZ9JqkjHVaTjMQx2xMZ9X4Jg/t7jDZqV5lb1edG83SXzW6JERBWAPccngT3HL1wZLYM3h97Ea/2vWY+ueBcA4I9W/BE+u/6zZR7h+UnFs7kQPIrBjhj6O2IY7o6P24uyqt6Ftde34pJL6yHJIvR0GtHfPI2Rxx9H4uWXrf3k2loEtt6MwM03Q2lqmsm3M6FYWsWb3ZGiIDyCt3ujUPWx79OhiFja4MPKJj/WtASwtrUK80Ouyf/gO9IG7HkI2P8jIJP7YdtTB1z6KWDDHwGu4OmPJyIiIqIpYxj5wLwoPAesIFcUzDB3Lsi3NtGyhRYjWrYQqOujlvNhu64ZhTYzUlGYXxLii+ME2+McU3xhQMCcDIfTSbUkLI8NpRAdTiE2lEZs2Fw3md78sl0qtG3JTR1upXCD3pJpoWVQyXxuH3H0PhMdO8FzF7fckXMXDObinw0R0UzhDTmnGMPxC4NhGOiKd5UE4W8OvYmsni3ZT4CASxsuxbfe/S347f4yjfbsGLqBcH/SDMI7zCB8oCM2Yb9Im1NGdbMH1c0ehJo9qGnxorrZA0EUkH7nHYz85HGEf/5zaOGweYAownPllQh85BZ4rrwSgly+L50MxtI43BXBoS4zCH+jK4KTg/Fxq4b8TgXLG31Y0eTH8kYfljf6sKDaA2kqfkFKjpgB+Z6HgKh5QQWKC1jzMWDLHUBw4fm/BhERERERTSlDN5CIZszwPBeYj55PRrNnfqIys/rTK2bFvaxIhXY7ighZEUftkwvWcwG7VLS9ZN+iED7fC3/8b1iI41+MkRjcE1H5MRyfYgzH56ZENoHDg4dxsP+gFYYPpgbH7Bd0BLGqehVW1ZiP5aHl8Ng8ZRjx5GQzGgY7zZYog/kwvDNutUUZzVftQHWzF9UtHoSaPKhu8cAbdJT8wKKnUog+9RSGf/I4kvv2Wevl+noEtm5F4OaboDQ0TPt7K2YYBjpHkjjUGcEbXYWK8J5Iatz9G/wOLG/0YVljIQhvCszADTO1LHD4CeB39wM9r+dWCsDS9wNb7gJaN03v6xMRERER0ZRSs1pRu5ZCaJ5JqjD0om8sGLk2QYbZOgi56n8YKGn9Y+4/0XFF+xetL95f1w3o6tyJbqxWRvlvLYxuzyOO+uZCybIIMdcO3hjVZggwP6vS9bkFo7DPmONyK8Y7ztyO/H8AofRCQOEbFeI437AoatM0+gJB0Xuf6L0W2jTl2gid6cJFGW7WS2fPMIpvTlyYSrIIu1OGpPB+BzOB4fgUYzg+++mGjpORkyVV4W+PvA3dKO3PJwsylgSXWEH4qppVaPY0z8or24ZhIBHOoL89aoXhAx0xjPQlSnoR5kmKiFCjO1cNbobh1U0e2JxmlbeeyUDt6kKmoxPZjg5kO9qt+cyJE9Dj8dwTSfBcdRWqPnIL3FdcAUGSpv29mjfKjOFQp9kbPB+Eh5NjKzYEAVgQcmNZow/Li4LwkKfMPb8NAzjxnNmX/O3fFNY3bwQuuwtY8n5AnP7PkoiIiIiILjyGXtxqx4Ca1ax5q91OVoeqFrffya0r2p7fpqo69NH7j95X1Qs3btWLbu5adGNXmnmiKJQE6NY3A6x1AiRZyi0LY8J2sWjffAslwPxdG0XZSGG9eU+F0vVCbv/cuqIDStcXjhVGPfeEFzlyF0HM9dYOJdcwxlwIMUqfp/i44mXDgHnT4tHhda6Vla6a94DQ89ty8+a2XDsra9340zO1bRLl3H0+nDJsDgl2pwzFIcOeW1achXlzHxk2Z/G8uY03FT49huNTjOH47BNOh/H6wOuFMHzgNUQz0TH71bvrrarw1TWrsSS4BA7ZUYYRj0/XdKTiKpLRDJKxLOLDqVxrFPORio3/dT6nz4aaXEsUMwT3wl9thz7Yb4bdVgDegUxnB7IdnVB7e0v/9RlFaWxE4Jat8N90E5S6uil7jxlVx1A8g8F4GkPxjDkfM5cHohm81RfFkQlulKlIAhbVeq0AfEWTH0safPDYZ/m9hPuOmCH5a48BWsZcVzUf2HyH2XbFPnu/mUBERERERDQZhpGrdtfMYNGqcs+F50ZxoF603lw2w8SS4F0rVMoXy4etxUGruV4Yux0oCmPN/1iHjAp7i9fnnztf9Vs8lvGX9dL3lZta78e6iKCXLo++yKAXqoy10Rcq8vcXyGiTuvkwzV6iLEz5tz9km1gSltucRfPWejNYX7y5HrJSWcV6DMcnsGPHDnzzm99ET08PVq9ejX/8x3/EpZdeesbjGI6Xl6qreHv4bSsEf63/NZyMnByzn0NyYFloGVbXrMaqmlVYWb0Sde6pC3knQ9d0JGNZpGJZJKIZpKJZJGMZJKNZJGNZMwSPZpCKZZGMZpFKZMetAs8TBCBQ7871B3ejKiDAZwxDGeoaG4B3dQPZ0/fGExwOKM1NsDU1Q2lpMeebzXn7okUQxDNfeUyrWlHAncFQPI3BWGbMOjMQzyCaUif12blsEpY25ELwRj+WNfqwqM4DuzyHT+DRXmDv94G9/wwkh811ggg4qwBXCHBVmzfwdIUAd3Vu3aj1rhBgc5dcwSciIiIiIqLKoWuFbwmMru7X1Ny603wDwNpn1DcINDXXV8bAqMrssRXY41VuF44bp53NGdrgTFRRjuLKdBT9Kpy/0DGqcl0oOXj8ivfi4yRZgCiLkCRzKkoCJMm80W3xdPR+Y/aRResGxpI8zjR3bP7GurpuIJtSkUlpyCRV85GfT6lIJ1VkR20z15nbMikN2aQKNVvaIWEyPvWdd0Oxz+Fs5RwwHB/HY489ho9//ON46KGHsGnTJtx33314/PHHcfToUdTW1p72WIbj507TNaS1NJJqEikthZRqPpJqsmRdUk2a27TS7ScjJ/HG4BtIqskxzz3fNx8rq1da7VEWVS2CIipTO35VN4PsfMAdzQfdZqV3SfgdzSCdmFwQPJrdLcPpUeB0y6jy6fDLcXgzvXANnYTe1WGF4HoicfonkmUoDQ2F0LupGUpzM2zNTVCamyGFQjAMIKvryGoGVE1HRtORzuoYSWQxEE9jKB90FwXfg7mK76F4BrH02b9HSRRQ5bIh5LYh5LEh6Dbng247FtS4sbzRh/kh99TcKHM2yiSAg48Aux8Aht45++NlRy4oD+aC81BRoB4sCtRDhf2kqf1/gYiIiIiIiIjKS1N1ZHPBeSaVD8+LQ3UVmaRmTnPz7/3zlbOynfB0Yjg+jk2bNmHjxo347ne/CwDQdR0tLS2466678IUvfOG0x1ZyOH7o0CG88LMnoRkadEO1pjo0aLoGDSp0Pbe+eJ2139lf0SomGAIESJBhh08OwiOH4JUCcMkBSFAAQ4Ch569oCrkbmCC3DBi6kLuKmduWvyhqmOvzxxTWmcu6LkLVJOjGOVxZMwzIRgqyloSiJaFocSjZOBQ1Dls2CiUThS0Tgy0dhi0dgZIMQ9KyEIzJfVZxbxXCgRqE/TUY8VVj0FeNAW8IA54QBp1+pHQBWc0Mv82pjoxaWFanoC+cLAoIunMht8cMuUP5wNtTCL5DuXmfQ+FNQwDzL2CsD0gMAomB3HQQiA8W5q31Q0B8ANDS5/ZaDn9pJbozYFatW5fWS75rOHZ6um2FS/covZw/3rbTHTfRtgn2Oafxltlkxjneugk/qwmet3h/IiIiIiIiorwl76u4e6CdTZY7yxv3To1MJoN9+/bhnnvusdaJoohrr70Wu3fvHrN/Op1GOl0IpCKRyIyMczZ648VXoXWvAwCIuUe5xXOPGWPoULIx2LIxKJmYGXBnY7BlYlCyUXN9NgZbxlyvZOMQTtcr5QyiihM9riB63UH0uIJF8yH0uaqQGa8iOAtgGMBw7KxfTxAAmyQi4FIQdNtRnavszld3hzz2okpvG0JuO3xOueKuOk4JQQC8deZjMgwDyMSLQvOhXJheFKwXP+IDufYtBpAKm4+h49P6loiIiIiIiIhoFvtSDyA6yz2KWasiwvGBgQFomoa6UTcZrKurw5EjR8bs//Wvfx1f+cpXZmp4s5o/FEI4eQL5asTi/6JkfnRQmls2zPlzj1ENADoEo3QKQ4dgTfMl4UXLMAr7oFAyLkCHASNXpV26rbCcmyIDAyoMUYMhStAlCUlFQtwuQ5ck6JIDuugx50UJuiRDk6TcvjJ0UYIhmfsakgRNkqGLhWVdkmCIsrWPLknQbXYIThcUSYAiiVAkEU2yiPmSAFkUYZPFkm02SYQij1qWzH3kUduLtylyYfmCbWVyIRAE8+addg9QNW9yx+gakBwZVZk+YAblRvHfeaCksVzJOqN0CoxdN+H+OMv9z7QNZxjDmcZXLuOM5Zw/g9HbcJrPgIiIiIiIiKiIMBtKXWevigjHz9Y999yD7du3W8uRSAQtLS1lHFH53LD1vcDWco+CiCZNlAB3yHwQEREREREREdGEKiIcr66uhiRJ6O3tLVnf29uL+vr6Mfvb7XbY7faZGh4RERERERERERERzbCKqKu32WxYv349du7caa3TdR07d+7Eli1byjgyIiIiIiIiIiIiIiqHiqgcB4Dt27fjtttuw4YNG3DppZfivvvuQzwex+23317uoRERERERERERERHRDKuYcPzWW29Ff38/7r33XvT09GDNmjV48sknx9ykk4iIiIiIiIiIiIgufIJhGEa5BzHbRSIR+P1+hMNh+Hy+cg+HiIiIiIiIiIiIiMZxNlluRfQcJyIiIiIiIiIiIiIqxnCciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjhyuQcwFxiGAQCIRCJlHgkRERERERERERERTSSf4eYz3dNhOD4J0WgUANDS0lLmkRARERERERERERHRmUSjUfj9/tPuIxiTidArnK7r6OrqgtfrhSAI5R7OjItEImhpaUF7ezt8Pl+5h0NEdEY8bxHRXMPzFhHNNTxvEdFcw/NW5TAMA9FoFI2NjRDF03cVZ+X4JIiiiObm5nIPo+x8Ph9PHkQ0p/C8RURzDc9bRDTX8LxFRHMNz1uV4UwV43m8IScRERERERERERERVRyG40RERERERERERERUcaQvf/nLXy73IGj2kyQJV111FWSZnXiIaG7geYuI5hqet4horuF5i4jmGp63aDTekJOIiIiIiIiIiIiIKg7bqhARERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjtNp7dixA/Pnz4fD4cCmTZvw8ssvl3tIRESW5557Dh/4wAfQ2NgIQRDw85//vGS7YRi499570dDQAKfTiWuvvRZvv/12mUZLRJXu61//OjZu3Aiv14va2lrceOONOHr0aMk+qVQK27ZtQygUgsfjwc0334ze3t4yjZiIKt2DDz6IVatWwefzwefzYcuWLfj1r39tbec5i4hmu2984xsQBAGf+cxnrHU8d1ExhuM0occeewzbt2/H3/zN32D//v1YvXo1brjhBvT19ZV7aEREAIB4PI7Vq1djx44d427/+7//e9x///146KGH8NJLL8HtduOGG25AKpWa4ZESEQG7du3Ctm3bsGfPHjz99NPIZrO4/vrrEY/HrX0++9nP4j//8z/x+OOPY9euXejq6sJNN91UxlETUSVrbm7GN77xDezbtw+vvPIKfu/3fg8f+tCHcPjwYQA8ZxHR7LZ3715873vfw6pVq0rW89xFxQTDMIxyD4Jmp02bNmHjxo347ne/CwDQdR0tLS2466678IUvfKHMoyMiKiUIAp544gnceOONAMyq8cbGRnzuc5/D3XffDQAIh8Ooq6vDww8/jD/4gz8o53CJiNDf34/a2lrs2rULV155JcLhMGpqavDII49g69atAIAjR45g6dKl2L17NzZv3lzmERMRAcFgEN/85jexdetWnrOIaNaKxWJYt24dHnjgAXz1q1/FmjVrcN999/HnLRqDleM0rkwmg3379uHaa6+11omiiGuvvRa7d+8u48iIiCbnxIkT6OnpKTmP+f1+bNq0iecxIpoVwuEwADNoAoB9+/Yhm82WnLeWLFmC1tZWnreIqOw0TcOjjz6KeDyOLVu28JxFRLPatm3b8L73va/kHAXw5y0aSy73AGh2GhgYgKZpqKurK1lfV1eHI0eOlGlUREST19PTAwDjnsfy24iIykXXdXzmM5/B5ZdfjhUrVgAwz1s2mw2BQKBkX563iKicXn/9dWzZsgWpVAoejwdPPPEEli1bhgMHDvCcRUSz0qOPPor9+/dj7969Y7bx5y0ajeE4EREREdEM27ZtGw4dOoQXXnih3EMhIjqtxYsX48CBAwiHw/jpT3+K2267Dbt27Sr3sIiIxtXe3o6/+Iu/wNNPPw2Hw1Hu4dAcwLYqNK7q6mpIkjTmbr29vb2or68v06iIiCYvf67ieYyIZps777wTv/zlL/Hf//3faG5uttbX19cjk8lgZGSkZH+et4ionGw2Gy6++GKsX78eX//617F69Wp85zvf4TmLiGalffv2oa+vD+vWrYMsy5BlGbt27cL9998PWZZRV1fHcxeVYDhO47LZbFi/fj127txprdN1HTt37sSWLVvKODIioslZsGAB6uvrS85jkUgEL730Es9jRFQWhmHgzjvvxBNPPIFnnnkGCxYsKNm+fv16KIpSct46evQo2traeN4iollD13Wk02mes4hoVrrmmmvw+uuv48CBA9Zjw4YN+NjHPmbN89xFxdhWhSa0fft23HbbbdiwYQMuvfRS3HfffYjH47j99tvLPTQiIgDmHciPHTtmLZ84cQIHDhxAMBhEa2srPvOZz+CrX/0qFi1ahAULFuCv//qv0djYiBtvvLGMoyaiSrVt2zY88sgj+MUvfgGv12v1tfT7/XA6nfD7/fjkJz+J7du3IxgMwufz4a677sKWLVuwefPmMo+eiCrRPffcg9///d9Ha2srotEoHnnkETz77LN46qmneM4iolnJ6/Va93PJc7vdCIVC1nqeu6gYw3Ga0K233or+/n7ce++96OnpwZo1a/Dkk0+OubkdEVG5vPLKK7j66qut5e3btwMAbrvtNjz88MP4/Oc/j3g8jk996lMYGRnBFVdcgSeffJK954ioLB588EEAwFVXXVWy/oc//CE+8YlPAAC+/e1vQxRF3HzzzUin07jhhhvwwAMPzPBIiYhMfX19+PjHP47u7m74/X6sWrUKTz31FK677joAPGcR0dzEcxcVEwzDMMo9CCIiIiIiIiIiIiKimcSe40RERERERERERERUcRiOExEREREREREREVHFYThORERERERERERERBWH4TgRERERERERERERVRyG40RERERERERERERUcRiOExEREREREREREVHFYThORERERERERERERBWH4TgRERERERERERERVRyG40REREREc8yzzz4LQRAwMjJSltffuXMnli5dCk3Tzrjvk08+iTVr1kDX9RkYGRERERHR5DEcJyIiIiKaRQRBOO3jy1/+Mi677DJ0d3fD7/eXZYyf//zn8Vd/9VeQJOmM+77nPe+Boij48Y9/PAMjIyIiIiKaPMEwDKPcgyAiIiIiIlNPT481/9hjj+Hee+/F0aNHrXUejwcej6ccQwMAvPDCC3j/+9+Pnp4eOByOSR2zY8cOPPzww9i7d+80j46IiIiIaPJYOU5ERERENIvU19dbD7/fD0EQStZ5PJ4xbVUefvhhBAIB/PKXv8TixYvhcrmwdetWJBIJ/OhHP8L8+fNRVVWFT3/60yWtUNLpNO6++240NTXB7XZj06ZNePbZZ087vkcffRTXXXddSTB+8OBBXH311fB6vfD5fFi/fj1eeeUVa/sHPvABvPLKK3jnnXem9sMiIiIiIjoPcrkHQERERERE5y+RSOD+++/Ho48+img0iptuugkf/vCHEQgE8F//9V84fvw4br75Zlx++eW49dZbAQB33nkn3njjDTz66KNobGzEE088gfe85z14/fXXsWjRonFf5/nnn8dHP/rRknUf+9jHsHbtWjz44IOQpP+/vbtnjWqLwgD85g4iBjsNAymSiHCidiktLARB0hlIInFgKkubqKksjI3+A8VqihRapQvaGUgEyQcIEsFCdKYzJBFEjCIxVne4wY9r1Oi9zvN0s2ftOXtN+bLYp5SHDx9m165dze+7urpSLpczMzOTgwcP7tyfAAAA2yAcBwCAP8D79+9z48aNZvg8ODiYiYmJvHjxInv37s2RI0dy/Pjx3Lt3L6dPn06j0UitVkuj0UhnZ2eS5OLFi7l7925qtVquXr362efU6/Vm/d8ajUbGxsZy6NChJPlssN7Z2Zl6vf4zWwYAgB8iHAcAgD9Ae3v7lqnscrmcnp6eLfeTl8vlLC8vJ0kePXqUjY2NFEWx5XfevXuXffv2ffE56+vrn9w1fv78+Zw9ezYTExM5ceJEhoaGPpkQ37NnT968efPd/QEAwM8mHAcAgD/AP68xSZK2trbPrn348CFJ8vr165RKpSwuLqZUKm2p+9oLP/fv35+XL19uWRsfH8+ZM2cyNTWVO3fu5PLly7l9+3YGBgaaNWtra+no6Piu3gAAYCcIxwEAoAX19fVlY2Mjy8vLOXbs2Lb2PX78+JP1oihSFEVGR0czMjKSWq3WDMffvn2bp0+fpq+v76edHwAAftRfv/sAAADAr1cURSqVSqrVaiYnJ/Ps2bPMzc3l2rVrmZqa+uK+kydPZnZ2tvl5fX09586dy/T0dOr1eu7fv5/5+fkcPny4WfPgwYPs3r07R48e3dGeAABgO4TjAADQomq1WqrVai5cuJDe3t6cOnUq8/Pz6erq+uKeSqWSpaWlPHnyJElSKpWyurqaarWaoigyPDyc/v7+XLlypbnn1q1bqVQqaW9v3/GeAADgW7Vtbm5u/u5DAAAA/x9jY2N59epYipbJAAAAmElEQVRVbt68+a+1Kysr6e3tzcLCQg4cOPALTgcAAN/G5DgAALAtly5dSnd3d/Plnl/z/PnzXL9+XTAOAMB/jslxAAAAAABajslxAAAAAABajnAcAAAAAICWIxwHAAAAAKDlCMcBAAAAAGg5wnEAAAAAAFqOcBwAAAAAgJYjHAcAAAAAoOUIxwEAAAAAaDnCcQAAAAAAWs5H3d79Kwy/KDMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZyO9f7H8dc9+z5jnTGyjLUhsmUrS1EzkYNCmCxlO5WtUikJKY5KR+hnKVmyhIqUJRLZJ3EsxxLmjN2gMGMwY5bv748593XcZhfdmPfz8bgf7rm+1/e6Ptdyz6Pe93e+l80YYxARERERERERERERKUBcnF2AiIiIiIiIiIiIiMhfTeG4iIiIiIiIiIiIiBQ4CsdFREREREREREREpMBROC4iIiIiIiIiIiIiBY7CcREREREREREREREpcBSOi4iIiIiIiIiIiEiBo3BcRERERERERERERAocheMiIiIiIiIiIiIiUuAoHBcRERERERERERGRAkfhuIiIiIjccsOHD8dms9G0aVNnl3JXW7FiBTabDS8vr5u63f3792Oz2bDZbMTFxf3l/eX2NnnyZGw2G/fee6+zSxERERHJF4XjIiIiItewh7h5fcnd68qVKwQGBmKz2ejbt2+e+61fv966P7755ptbWKHYJScnM3XqVCIiIggNDcXT05PAwEAqVarEI488wpAhQ/jhhx9ITk7Osn9CQgIfffQRDz/8MMWLF8fDw4PChQsTHh5OZGQkI0eOZO3ataSnp+dayz//+U/r+jdr1izfx3LhwgXGjRtHy5YtKV26ND4+Pnh7e1OqVClatmzJxx9/zJkzZ7Ltv2zZMjp27Ej58uXx8fHBx8eHsLAwGjRoQN++fZk/fz5//PFHvusSERERuRu5ObsAERERkdtVcHCws0sQJ/L29qZTp05MmTKFuXPnMnbsWDw9PXPt9/nnnwNQrFgxWrVqdavLdODn50flypXzVOfdIjY2lhYtWrB//35rmYeHB66ursTExHDw4EHWrFnDqFGj2Lx5M/Xr13fov23bNv72t79x8uRJa5m3tzfp6en89ttv7N+/nx9++AGAU6dOERISkmM906ZNs96vWbOG2NhYwsLC8nQskyZN4o033iA+Pt5a5uPjg4eHB8ePH+f48eMsW7aMN954gxEjRvDqq69a6125coVOnTrx7bffWstcXFwICgrixIkTHD58mC1btvDJJ58wevRoBg8enKeaRERERO5mGjkuIiIiko24uLhcX3J369GjBwDnz59n8eLFua6fmJjIwoULAejSpQvu7u63tL7rPfTQQ+zfv5+dO3f+pft1lpSUFFq1asX+/fvx8/Nj1KhRHD9+nKSkJM6dO8elS5fYvHkzQ4cOzTKgPn/+PC1btuTkyZMEBwczceJEzp49y+XLl7lw4QIJCQmsWbOGV155JU9flkVHR7Nnzx6Cg4Pp0KEDxhimT5+ep2N55ZVXeOGFF4iPj6datWrMnj2bs2fPcunSJS5cuMClS5dYtmwZnTp1Ijk5ma+//tqh/4ABA6xgvHfv3uzevZurV6/yxx9/kJSUxN69e/n444+pX7++/upFRERE5L8UjouIiIiIZOOBBx6gWrVqwP9GhOdkwYIFXLp0CfhfsC63zooVK9izZw8AX3zxBW+88QYlS5a0wl8vLy/q16/PO++8w6FDh6hZs6ZD/9mzZ3P69GlrWy+++CJFixa12v38/GjatCkffvghx44do1ixYjnWYx813qlTJ5577jkAZsyYket0LDNnzuSjjz4C4JlnnmHbtm1ERUU51OLj48Pjjz/O3Llz+fXXX6lcubLVdu7cOSuEHzBgAFOmTOG+++7D1dUVyBhBHh4eTv/+/dm8eTP9+/fPsR4RERGRgkLhuIiIiMhN8vzzz2Oz2QgKCuLw4cNZrjNp0iRsNhtubm6sW7fOoe3f//43w4cP55FHHqF8+fJ4e3sTEBBAzZo1eeutt/j999+z3XfZsmWx2WzMmDGDy5cvM3z4cMLDw/Hx8SE0NJQuXboQGxtrrf/777/z+uuvU6lSJby9vQkJCaFnz55WUHi96x+ouWDBApo0aULhwoXx9fWldu3aTJw4kbS0tPydtGucPXuWt956i5o1axIYGIiXlxflypWjR48eVgDqDPaQ+8cff+TYsWM5rmsP0OvXr0+VKlUc2g4dOsTo0aOJiIigYsWK+Pr64ufnR9WqVXn55Zc5fvx4ttu1j/b9xz/+QXJyMmPGjKFWrVrWnOhbtmwBcn4gZ3p6OqtWraJv377Uq1ePkiVL4uHhQdGiRXn44Yf59NNPSU1NzdM52bdvH126dKFkyZJ4enpSpkwZXnzxxT/11xRpaWnMnDmTyMhIa97vYsWKERkZyYIFCzDGZOqzY8cOAGw2W65T2Li4uGSabsbev3Tp0tSoUSPH/u7u7lbYnJVLly7x5ZdfAtCtWzeaN29OaGgox44dY9WqVdn2S0pK4vXXXwegRo0aTJs2Lde/OKhZs6bDiPQ9e/ZY165169Y59oWMaWOys2rVKp588klKlChh3R+PPvooX3zxRZ7mXL9W5cqVsdlsvPnmmzmut2zZMuv3Ylb3UExMDP369SM8PBw/Pz98fHwIDw/P8XNz/UNCV65cSatWrQgJCcHV1ZW///3v+ToWERERuUsZEREREbEMGzbMAOZG/jPp8uXLpmrVqgYwDRo0MCkpKQ7tu3fvNl5eXgYwb7/9dqb+ZcqUsfbt5eVlChcubGw2m7WsZMmSZv/+/Vnu29533Lhxplq1atY2vL29rf4lSpQwsbGxJiYmxoSFhRnA+Pj4GA8PD2udihUrmvj4+GzPS5MmTcxrr71mAGOz2UyhQoWMi4uL1T8iIsIkJSXl2D8rq1atMkFBQdZ23N3dja+vr/Wzh4eHmTlzZh6uws33+++/W+do5MiR2a534MABq96pU6dmaq9Xr57D8RQuXNjh3BUuXNhER0dnuW1736FDh5oHHnjAAMbNzc06Z5s3bzbGGLN8+XIDGE9Pz0zb2Ldvn7UvwPj7+5uAgACHZY888kiW1+/avgsXLrSujb+/v3VPA6ZYsWJm165dOfY/depUpvYzZ86YBg0aONQSGBjo8HO7du0yfabeeecdq/3o0aNZX5gcPPfccwYw3t7eJjk5Od/9rzV9+nQDmGrVqlnL7J+V9u3bZ9tv1qxZDuf2Rqxbt87axqxZs25oG+np6eaFF16wtmP/fLu6ujp8vhMTEzP1nTRpkgFM5cqVHZaPHDnSAKZ06dImPT0923137NjRACYyMjJT27Rp04y7u7vD78Zr77mgoCCzZs2aHGsaM2aMw/ru7u6mT58++T9JIiIictdROC4iIiJyjT8TjhuTEYDbA+k333zTWn5tcP7ggw+a1NTUTH27du1qZsyYYY4cOWItS05ONj/++KOpW7euAUytWrWy3K89HA8KCjJly5Y1K1euNGlpaSY1NdWsXLnSFCtWzACmQ4cOpm7duqZGjRpWoHr16lUzf/584+PjYwAzZMiQbM+LPbDs27evOXPmjDHGmPj4eDNy5EgryH/ppZey7Z9VOL5r1y7rnPXq1cvs3bvXOj9HjhyxAjs3NzezdevWHM7+rdOhQwcDmPLly2cb8g0ePNgAxtfX1yQkJGRqf/HFF83kyZPNoUOHrG2kpKSYTZs2mWbNmhnAlClTJsuQ1h6O+/n5mcDAQPPFF1+YK1euGGMyguXz588bY3IOxw8dOmS6du1qli5das6dO2ctj4+PN5999pkJDg42gHnjjTcy9b023A4MDDS1atUyv/76qzHGmLS0NLNs2TITGhpqnaNLly5l2//6cDwlJcUKxuvUqWOWL19uLl++bIwx5uLFi+azzz4zRYsWNYAZPHiwQ98VK1Y4BLdZBe85mTx5stW/W7du1nm8EQ899JABzAcffGAt27Nnj/VlyO+//55lv27dullfCNmPO7/i4+ONp6enAUzZsmXN9u3b872NDz74wDoXffv2NadPnzbGZFyD999/3wrJu3XrlqlvduH44cOHrd8LWQXYxhiTkJBgff7nzp3r0Pbdd98Zm81mPDw8zJAhQ8yRI0dMenq6SUtLM3v27DFt2rQxgClUqJA5efJkljX5+PgYFxcX06tXL3P8+HFjTMY9FxMTk+9zJCIiIncfheMiIiIi17g2HA8ODs7x1b9//yy3YQ9lXFxczE8//WSMMaZPnz5WeH1t+J1XFy9etMLL9evXZ2q3h+Pe3t7m4MGDmdqnTZvmcFxZBXVDhw61ws3rXXteunTpkmWNb731lhVinzhxIsv+WYXjjzzySLahrF3//v0NYFq3bp3tOrfSDz/8YB1/ViFfamqqFQ53794939tPSUkx9957b7ajh68ddb5y5cpst5NTOJ6b9evXW+H39SO0rw23g4ODzR9//JGp/44dO4ybm5sBzPjx47Ptf32APXXqVAOY6tWrm4sXL2ZZ26ZNm6z7+9pgPz093TRu3Njatpubm3nwwQfNyy+/bObMmWMOHTqU4zFfunTJVK5c2erv6elpmjVrZgYPHmwWLlxoham52b9/vwGMq6trppC2du3aBjL+qiMrderUyTTi/EbYP7/2V9WqVU2vXr3M5MmTzfbt27P8Qs4uISHB+iuCZ599Nst13n//fWvbu3fvdmjLLhw3xpgmTZrkuN3PP//c+iuEa78cSElJsX6vZfdXI+np6SYiIsIA5vXXX8+yJsB07tw522MXERGRgk3huIiIiMg1rg2Bc3tlNYLS7sknnzSACQ0NNVOmTPnT0yYY87/Ry6NHj87UZg+RnnnmmSz7Hj9+3Kph6NChWa6zYcMGa53rp0649rxkFb4bkzF61T4C9PpwNLtwPDY21go1swpc7X799VdrVHZOId+tkpaWZkqXLm0A07Vr10ztS5cutc7PunXrbmgf9i8ABgwYkKnNHo7Xrl07x238mXDcGGP9ZcC//vUvh+XXhts5TS1jv+8bNmyYbf/rw3H7sU2ZMiXH2ipUqGAAs3jxYoflCQkJplevXlYwf/0rLCzMjBw5MtvgPS4uzjz55JMOUxhdHzJPmDAhx2lX7NOnZDUtyPjx43MMv+1THGU35VBepaenmw8//NBheqJrX0FBQaZPnz7m8OHDmfrOnz/fQMZUKlm1G5PxVyz2EfzX/lWMMTmH45999pkBTEBAQJYj4x9++OEsw3P7vVyyZMkcp2SZPXu2AUyNGjWyrCmrMF9ERETETg/kFBEREcmGyRhIkO1rxowZ2fb97LPPKF26NCdPnqRPnz4A9OzZk3bt2uW4z++//56nn36acuXK4evri81ms14LFiwAyPHBjXXr1s1yeXBwsPX+gQceyHWdCxcuZLlOqVKlqFChQpZtAQEB1K5dG4Bff/012xqvtXHjRiDjYZFVqlQhJCQky1dkZCSQ8dDDP/74I0/bvplcXFzo3r07AF999RUXL150aLc/iLNSpUo0atQo2+2sXbuWLl26ULlyZfz8/Byu7/jx44Gcr++DDz74p44jKSmJTz75hEcffZQSJUrg6enpUEN8fHyuNTzyyCO5tm3bti3LB2hmVc+2bdsAeOONN7K9/iEhIRw5cgTA+tfO39+fqVOncuzYMSZNmkRUVBT33nsvLi4Z/6sTGxvL0KFDqVWrVqa+kHHff/3118TExPDRRx/Rrl07ypUrh81mAzIedtmvXz8aNWqU5eciNTWVWbNmAdC1a9dM7Z06dcLd3Z3du3ezdevWXM/JjbLZbLzyyiucOHGCBQsW8Pzzz1OnTh3r4awXLlxgypQpVKtWjZUrVzr0tX9eK1SoQJkyZbLcvoeHB02aNHFYPy/at2+Pt7c3CQkJfPvttw5tx44dY+3atUDmc2f/3XD27FlKlCiR7X3Rr18/IPN9YRcYGMh9992X53pFRESkYFE4LiIiInILFCpUiE8++cT6uVy5cnz88cfZrp+enk7nzp1p1aoVCxYsIDY2lqtXr1KoUCGCg4MJDg62Qq5Lly5lux1/f/8sl7u5ueVrnZSUlCzXKVmyZLb7vrb9zJkzOa5nd/LkSSDj+E+fPp3t6/fff7f6XL58OU/b3rRpU7aB2vz58/O0jWs9++yz2Gw2Ll++zJdffmkt//333/nuu+8AeO6557LtP2DAAB5++GFmz57NgQMHSEpKcri+vr6+QM7Xt3jx4vmu2+7UqVPUrFmTvn378uOPPxIXF4erqytFixa1arAHyjnVkNM9YG9LTk4mISEh15rOnj1LamoqAOfOncvxHrDfk9ld/5CQEP7+978ze/Zs9u3bx4ULF/jmm2+oX78+AAcPHuSZZ57JtpawsDBeeuklFi5cSExMDGfPnmXWrFmEh4cD8Msvv9C3b99M/ZYtW0ZcXBwBAQG0adMmU3vRokVp2bIl8L8vUa5VpEgR6/hvBh8fH9q3b8///d//sXXrVhISEli3bh2dO3cG4OLFi3To0MHhSyb75zW3z/c999zjsH5eBAQE0Lp1awC++OILh7Y5c+ZgjKFMmTJW8G5n/91w9erVHO+L8+fPA9nfF8WKFctzrSIiIlLwKBwXERERuUU+/fRT6/2JEyc4dOhQtutOmzaNefPm4erqyttvv83BgwdJTk7m3LlzxMXFERcXZ406z8uI3DtFWloakDF6N7eR+vZX2bJl87TtnEK1K1eu5LvWsmXL0qxZMwCmT59uLZ8zZw5Xr17F1dU1y5HDAN999501MnzAgAHs2bMn0/V9/vnngZyvr6ura77rtuvbty/79++nePHizJo1i9OnT3P58mXOnj1r1VC4cOFca7iZ7NcfYM2aNXm6/oMHD87Ttv39/Wnbti0bNmygYcOGAGzYsIH9+/fnqX+RIkXo0qUL0dHRlC9fHoD58+dn+quBadOmAZCQkICPj4/DSHz7a/HixQDMmzcv071XtWpVAPbv309SUlKeassPd3d3GjVqxJw5c3jttdcAiI+PZ+HChTd9X9mxfy5WrlzJ6dOnreX2sDwqKsoaqW9nvzeaNGmSp/siu3P3Zz4zIiIicvdTOC4iIiJyC0ycOJElS5bg6upKlSpVSE5OpmPHjtmObrSPRO7ZsycjRoygQoUK1iheu7i4uFted25OnDiRp/a8jnAOCQkBMkZf5zRa+UY0bdo02yDNPkVKfvXo0QOAzZs3WyGrPShv0aIFJUqUyLKf/fq2bt2acePGUaVKlUyh3a28vpcvX7ZGt0+ZMoUuXbpkukbJycnZTqdzrZzuAXubp6cnAQEBuW6rePHiViia3bQYf5arq6t13QB+++23fPX39/e3Rl2npqbyn//8x2qLi4tj2bJled5WfHw8X331lcMy+xcuKSkpfP/99/mqLb/sUzyB43mw3ws5TadzbXt+/4LhscceIzg4mNTUVObNmwfA9u3b2bt3L5D1dDT23w236r4QERERAYXjIiIiIjfd7t27efXVVwF4++23WbZsGUFBQezbt4+XXnopyz7Hjh0DoGbNmlm2JyYmEh0dfWsKzodjx44RExOTZdvFixet+aPr1KmTp+3Z59BOS0tj+fLlN6fIW6ht27bW6OrPP/+cbdu2sXPnTgCHAPZ6uV3ftLQ0a+7lWyEuLs6aliS7GtauXWtNcZKTNWvW5NpWu3btTCOBs+Lj42PVYw/vbwU/Pz/rvaen503rP3PmTFJTU7nnnnu4ePFiji97MH391Crt2rWz5vt/7733sp3S6Hrp6ek37Tjsn9eYmJhsw+iUlBR+/vlnIPvnFmTH1dXV+oLBPlrc/m/dunWpXLlypj723w2HDx/m3//+d772JyIiIpJXCsdFREREbqIrV67QsWNHkpKSeOihhxgyZAhlypRh6tSpAEydOpWvv/46U7/AwEAAK2i93siRIzNN5+AsI0eOzHL52LFjuXLlCm5ubjz11FN52lbFihVp2rQpAEOGDLEeCJmdmzUv843y9PQkKioKyAj37FPnBAcHW/NKZyW36zt+/PhcR+3+Gfb9Z1fD1atXGTp0aJ62NXHiRGue52vt3r3beuDi008/nefaevfuDcCiRYv48ccfc1z3+uu/c+fOXEfcG2OsB2a6uLhQo0YNq23Lli253nMpKSnWaOfAwEDKlStntdmD7nbt2uHn55fjq2PHjgD8/PPPDl8weXt7M3r0aAB27NjBc889l2tAvmvXLof57ePi4rK9t641c+ZM632tWrWs9y1atCAgIABjDCNGjMiy74QJE6y5/+3Hkh/20eHbt29n165d1jnNbiqiiIgISpcuDcDAgQNz/eLG2b8bRERE5M6kcFxERETkJnrppZfYu3cvQUFBzJkzx5o6o3379tbI4l69elkjie0iIyOBjHnKp06dytWrV4GM0Oull17i/ffftx7c50yBgYHMnDmTAQMGWEHZxYsXGTVqFO+88w4AL774IqGhoXne5oQJE/Dz8+PAgQPUr1+fb7/91mH+4BMnTvDFF1/QrFkzXn/99Zt7QDfAfh3j4uKscLxr164ODzS9nv36Llq0iDFjxljT65w7d44RI0YwaNCgW3p9ixQpYo0O7t+/P+vWrbPmFd+xYwcRERHs2bMHb2/vXLd15coVHnvsMf71r38BGSOYV6xYQYsWLUhNTaVcuXI5jqK/3nPPPUfjxo1JT0+nVatW/OMf/3AIvBMTE1m9ejV9+vSxHo5pt2rVKsqWLUunTp345ptvHPolJSXx888/07JlS5YuXQpA586drek6AGbPnk3p0qXp1asXy5YtcwhYL126xPfff0/jxo3ZsWMHAP369cPDwwOA9evXc+DAAQA6dOiQ63E2btzYmlv/+tHjzz77LP3797dqql27NnPnznV4aOaVK1dYtWoVXbt2pVatWg5zpx8/fpwaNWrwyCOP8Omnn3Lw4EHr+qamprJ371769etnzddeoUIF/va3v1n9/fz8rC9Hpk+fTr9+/Th79qx1HsaOHWvNV96tWzfuu+++XI/3ejVq1LD69ejRg9OnT+Pu7p5t0O7h4cHkyZNxcXFh9erVPPzww5n+uuHQoUN88skn1KpVK8uHnYqIiIjkyoiIiIiIZdiwYQYwgAkODs71tXHjRqvv119/bfVduHBhpm1funTJ3HvvvQYwjRo1MqmpqVbb+fPnrTbAuLi4mKCgIGOz2Qxg+vTpY7p162YA061bt0zbLlOmjAHM9OnTsz02+7bXrFmTZXtsbKy1TmxsbJbnpUmTJua1114zgLHZbKZQoULG1dXV6te8eXNz5cqVbM9rkyZNstz3hg0bTEhIiLUdV1dXU6RIEePt7W0tA0zPnj2zPb6/Uu3atR3q2rdvX47rJyUlmXr16lnr28+d/fq2bdvWvPrqqwYwERERmfrb+44ePTrH/SxfvtwAxtPTM1Pbpk2bHM6nl5eX8fPzM4Bxd3c38+fPN8HBwQYw8+bNc+i7b98+h3vb19fXAMbf399hm0WKFDE7duzItO9r+586dSpT+7lz50xERITDOQ0MDDSBgYHWOQKMn5+fQ79x48Y59AGMt7e3KVSoUKblLVu2NImJiQ79Bw4cmGk9X19fExAQkGl5jx49TEpKitXX/nksVaqUSU9Pz/G62L3wwgsGMCVLlnT4/NuNHz8+0759fX1NYGCgwzI/Pz8zbtw4q9+//vWvTPW6u7ubwoULGxcXF4fllSpVMgcOHMi07/T0dKu+7D7fjz32WKZzaIwxkyZNMoCpXLlyjsf//vvvO9TSunXrXM/Z/PnzrfvNflxFihQxHh4eDtv68MMPb6gmERERKdg0clxEREQkG6dPn871ZR/hfezYMXr27AlkjIps165dpu35+Pgwb948PD09Wb9+Pe+++67VFhQUxKZNmxg4cCBly5bF1dUVNzc3mjZtyrx585g8efJfc9B5MGbMGL788kseeughjDF4eHhQo0YNPv74Y1asWIGXl1e+t/nggw9y4MABPvzwQxo3bkxQUBAXLlzA1dWV8PBwnnnmGebMmcO4ceNuwRHl37Ujoxs2bMi9996b4/qenp789NNPDBkyhAoVKlijzBs2bMinn37K119/nekBrDdbgwYNiI6O5qmnnqJIkSKkpaURGBhIp06d2LJlS55GPwM89NBDbN26laioKPz9/UlLS6NUqVI8//zz7N69m/vvvz/ftRUqVIjly5fz3Xff0a5dO0qVKkVSUhJJSUncc889REZGMmbMGHbv3u3Qb8CAAWzfvp3Ro0fTqlUrKlSogM1mIyEhgYCAAKpWrUr37t354Ycf+P777/H19XXoP3bsWDZu3MiwYcOIiIigTJkypKWlcenSJYKCgqhZsyYvvPACW7Zs4bPPPrOu28WLF1m4cCGQMaVKXuZXh/+NMD9x4gQ//PBDpvZ+/fpx+PBhxo4dS2RkJPfccw/p6enWeWjZsiUTJ07kyJEjDBgwwOpXo0YNjh49yqRJk+jcuTPVqlXD29ub+Ph4vLy8CAsLo02bNkyfPp3du3dTsWLFTPu22Wx88skn/PDDD7Rp04bixYuTmJhIYGAgzZo1Y+bMmSxfvjzTOcyPqKgohwfRZjelyrU6dOjAoUOHGDp0KHXq1MHX15cLFy7g7e1NjRo16NOnD0uWLLFG3ouIiIjkh82Y//69nYiIiIhINoYPH86IESNo0qTJLX1wpIiIiIiIyF9FI8dFREREREREREREpMBROC4iIiIiIiIiIiIiBY7CcREREREREREREREpcBSOi4iIiIiIiIiIiEiBowdyioiIiIiIiIiIiEiBo5HjIiIiIiIiIiIiIlLguDm7gDtBeno6J0+exN/fH5vN5uxyRERERERERERERCQLxhguXrxIaGgoLi45jw1XOJ4HJ0+epFSpUs4uQ0RERERERERERETy4NixY9xzzz05rqNwPA/8/f2BjBMaEBDg5GpEREREREREREREJCsJCQmUKlXKynRzonA8D+xTqQQEBCgcFxEREREREREREbnN5WV6bD2QU0REREREREREREQKHIXjIiIiIiIiIiIiIlLgKBwXERERERERERERkQJHc46LiIiIiIiIiIjIbSEtLY2UlBRnlyG3OXd3d1xdXf/0dhSOi4iIiIiIiIiIiNMlJiZy/PhxjDHOLkVuczabjXvuuZR8fkAAACAASURBVAc/P78/tR2F4yIiIiIiIiIiIuJUaWlpHD9+HB8fH4oVK4bNZnN2SXKbMsZw9uxZjh8/TsWKFf/UCHKF4yIiIiIiIiIiIuJUKSkpGGMoVqwY3t7ezi5HbnPFihXj8OHDpKSk/KlwXA/kFBERERERERERkduCRoxLXtys+0ThuIiIiIiIiIiIiIgUOArHRURERERERERERKTAUTguIiIiIiIiIiIichM1bdqUgQMH3vH7uNspHBcRERERERERERGRAkfhuIiIiIiIiIiIiIgUOArHRURERERERERE5LZijOHy1VSnvIwx+ar10qVLdO3aFT8/P0qUKMHYsWMd2pOTkxk0aBAlS5bE19eXevXqsXbtWqv9jz/+oFOnTpQsWRIfHx+qVavGvHnz8rUPuTFuzi5ARERERERERERE5FpXUtKo8vYPTtn33nci8PHIe2z66quv8vPPP/Ptt99SvHhx3nzzTbZv306NGjUA6Nu3L3v37uXLL78kNDSURYsWERkZye7du6lYsSJJSUnUrl2b119/nYCAAJYuXUqXLl0oX748devWzdM+5MYoHBcRERERERERERG5AYmJiUybNo3Zs2fTrFkzAGbOnMk999wDwNGjR5k+fTpHjx4lNDQUgEGDBrFixQqmT5/OqFGjKFmyJIMGDbK22a9fP3744QcWLFhA3bp1c92H3DiF4yIiIiIiIiIiInJb8XZ3Ze87EU7bd17FxMRw9epV6tWrZy0rXLgwlStXBmD37t2kpaVRqVIlh37JyckUKVIEgLS0NEaNGsWCBQs4ceIEV69eJTk5GR8fnzztQ26cwnERERERERERERG5rdhstnxNbXK7SkxMxNXVlW3btuHq6hi6+/n5AfDBBx/w8ccfM27cOKpVq4avry8DBw7k6tWrzii5QNEDOUVERERERERERERuQPny5XF3dyc6Otpadv78eQ4cOABAzZo1SUtL48yZM1SoUMHhFRISAsDGjRtp3bo1zzzzDPfffz/lypWz+udlH3Lj7vyvX0REREREREREREScwM/Pjx49evDqq69SpEgRihcvzpAhQ3BxyRiTXKlSJaKioujatStjx46lZs2anD17ltWrV1O9enVatmxJxYoV+eqrr9i0aROFChXio48+4vTp01SpUiVP+5Abp3BcRERERERERERE5AZ98MEHJCYm0qpVK/z9/XnllVeIj4+32qdPn867777LK6+8wokTJyhatCj169fniSeeAOCtt97iP//5DxEREfj4+NC7d2/atGnjsI3c9iE3xmaMMc4u4naXkJBAYGAg8fHxBAQEOLscERERERERERGRu0pSUhKxsbGEhYXh5eXl7HLkNpfT/ZKfLFdj70VERERERERERESkwFE4LiIiIiIiIiIiIiIFjsJxERERERERERERESlwFI6LiIiIiIiIiIiISIGjcFxEREREREREREREChyF4yIiIiIiIiIiIiJS4Dg1HE9LS2Po0KGEhYXh7e1N+fLlGTlyJMYYax1jDG+//TYlSpTA29ub5s2bc/DgQYftnDt3jqioKAICAggKCqJHjx4kJiY6rLNr1y4aNWqEl5cXpUqV4v333/9LjlFEREREREREREREbj9ODcfHjBnDpEmTmDhxIvv27WPMmDG8//77TJgwwVrn/fffZ/z48UyePJno6Gh8fX2JiIggKSnJWicqKoo9e/awatUqvv/+e9atW0fv3r2t9oSEBB577DHKlCnDtm3b+OCDDxg+fDhTp079S49XRERERERERERERG4PNnPtMO2/2BNPPEFwcDDTpk2zlj311FN4e3sze/ZsjDGEhobyyiuvMGjQIADi4+MJDg5mxowZdOzYkX379lGlShW2bt1KnTp1AFixYgUtWrTg+PHjhIaGMmnSJIYMGUJcXBweHh4ADB48mMWLF7N///5c60xISCAwMJD4+HgCAgJuwZm4jV25AAdXgm8x8CsOvsXBpzC4uDq7MhERERERERERuUskJSURGxtLWFgYXl5ezi5HbnM53S/5yXKdOnK8YcOGrF69mgMHDgCwc+dONmzYwOOPPw5AbGwscXFxNG/e3OoTGBhIvXr12Lx5MwCbN28mKCjICsYBmjdvjouLC9HR0dY6jRs3toJxgIiICH777TfOnz+fqa7k5GQSEhIcXgXW7wfhm17wRRuY1BA+rAAji8IHFWHSgzCrDXzTG34YAhs/hh3z4NCPcGoXXIyDtFRnH4GIiIiIiIiIiMgt0bRpUwYOHHhL91G2bFnGjRuX4zrDhw+nRo0at7SOu5GbM3c+ePBgEhISuPfee3F1dSUtLY333nuPqKgoAOLi4gAIDg526BccHGy1xcXFUbx4cYd2Nzc3Chcu7LBOWFhYpm3Y2woVKuTQNnr0aEaMGHGTjvIO5+oGZRvBpbOQeAaunAOTDpfOZLxyZcsYae5bHPyK/fff4o4j0e3LfYuBm0fumxQRERERERERESmgbDYbixYtok2bNs4u5Y7n1HB8wYIFzJkzh7lz51K1alV27NjBwIEDCQ0NpVu3bk6r64033uDll1+2fk5ISKBUqVJOq8epQmtC9+//93NaClz6PSMYTzz733/P/C88v3b55T8ygvTLf2S8zu7LfX9eQY6hebmmULv7LTo4ERERERERERERKaicGo6/+uqrDB48mI4dOwJQrVo1jhw5wujRo+nWrRshISEAnD59mhIlSlj9Tp8+bf2ZQEhICGfOOI5gTk1N5dy5c1b/kJAQTp8+7bCO/Wf7Otfy9PTE09PzJh3lXcbVHQJKZLxyk56WEYpfH5pnGaafBZMGSRcyXr9nTLXDnkVQsjaEVLu1xyUiIiIiIiIiIrcPYyDlsnP27e4DNlueV09PT+e1117js88+w8PDg7///e8MHz4cgAsXLjBo0CC+/fZbkpOTqVOnDv/85z+5//77AYiJieHll19my5YtXLp0ifDwcEaPHu0wzfS1ypYtC0Dbtm0BKFOmDIcPH7bav/jiC4YOHcr58+d5/PHH+fTTT/H392fWrFm89NJLnDx50iH3bNOmDf7+/nzxxRf5OEF3D6eG45cvX8bFxXHac1dXV9LT0wEICwsjJCSE1atXW2F4QkIC0dHRPP/88wA0aNCACxcusG3bNmrXrg3ATz/9RHp6OvXq1bPWGTJkCCkpKbi7uwOwatUqKleunGlKFbmJXFwzRoH7Fc993fT0jFDcCszPwLYZcHg9bJoIT0655eWKiIiIiIiIiMhtIuUyjAp1zr7fPAkevnlefebMmbz88stER0ezefNmunfvzoMPPsijjz5K+/bt8fb2Zvny5QQGBjJlyhSaNWvGgQMHKFy4MImJibRo0YL33nsPT09PZs2aRatWrfjtt98oXbp0pn1t3bqV4sWLM336dCIjI3F1dbXaYmJiWLx4Md9//z3nz5+nQ4cO/OMf/+C9996jffv29O/fnyVLltC+fXsAzpw5w9KlS1m5cuWfP2d3KKc+kLNVq1a89957LF26lMOHD7No0SI++ugj65sPm83GwIEDeffdd1myZAm7d++ma9euhIaGWnPqhIeHExkZSa9evfjll1/YuHEjffv2pWPHjoSGZnyAOnfujIeHBz169GDPnj3Mnz+fjz/+2GHqFHEyF5eMucmL3wthjaFaO3j0nYy2f38F8SecW5+IiIiIiIiIiEgWqlevzrBhw6hYsSJdu3alTp06rF69mg0bNvDLL7+wcOFC6tSpQ8WKFfnwww8JCgriq6++AuD++++nT58+3HfffVSsWJGRI0dSvnx5lixZkuW+ihUrBkBQUBAhISHWz5Axgn3GjBncd999NGrUiC5durB69WoAvL296dy5M9OnT7fWnz17NqVLl6Zp06a36Mzc/pw6cnzChAkMHTqUF154gTNnzhAaGkqfPn14++23rXVee+01Ll26RO/evblw4QIPPfQQK1aswMvLy1pnzpw59O3bl2bNmuHi4sJTTz3F+PHjrfbAwEBWrlzJiy++SO3atSlatChvv/02vXv3/kuPV/KpZC0o8xAc2QDRk+Gxkc6uSERERERERERE/gruPhkjuJ2173yoXr26w88lSpTgzJkz7Ny5k8TERIoUKeLQfuXKFWJiYgBITExk+PDhLF26lFOnTpGamsqVK1c4evRovssuW7Ys/v7+meqw69WrFw888AAnTpygZMmSzJgxg+7du2PLxxQydxunhuP+/v6MGzeOcePGZbuOzWbjnXfe4Z133sl2ncKFCzN37twc91W9enXWr19/w7WKkzTslxGOb5sBjV8FrwBnVyQiIiIiIiIiIreazZavqU2cyT6Ns53NZiM9PZ3ExERKlCjB2rVrM/UJCgoCYNCgQaxatYoPP/yQChUq4O3tTbt27bh69epNq8OuZs2a3H///cyaNYvHHnuMPXv2sHTp0nzv527i1HBcJFcVH4OilTIe0Ll9FjTs6+yKREREREREREREclWrVi3i4uJwc3OzHqR5vY0bN9K9e3drmunExESHB2xmxd3dnbS0tBuqqWfPnowbN44TJ07QvHlzSpUqdUPbuVs4dc5xkVy5uECD/wbiWyZBWopz6xEREREREREREcmD5s2b06BBA9q0acPKlSs5fPgwmzZtYsiQIfz6668AVKxYkW+++YYdO3awc+dOOnfu7DDaOytly5Zl9erVxMXFcf78+XzV1LlzZ44fP86nn37Kc889d8PHdrdQOC63v+pPg28xSDgOe791djUiIiIiIiIiIiK5stlsLFu2jMaNG/Pss89SqVIlOnbsyJEjRwgODgbgo48+olChQjRs2JBWrVoRERFBrVq1ctzu2LFjWbVqFaVKlaJmzZr5qikwMJCnnnoKPz8/2rRpc8PHdrewGWOMs4u43SUkJBAYGEh8fDwBAZrz2il+fh/WvAcl7ofeP2fMOyUiIiIiIiIiIneFpKQkYmNjCQsLw8vLy9nl3NWaNWtG1apVGT9+vLNLuWE53S/5yXI1clzuDHV6gJs3nNoJh/VgVRERERERERERkfw4f/48ixYtYu3atbz44ovOLue2oHBc7gy+RaBmVMb7TROcW4uIiIiIiIiIiMgdpmbNmnTv3p0xY8ZQuXJlZ5dzW3BzdgEieVb/Bdg6DQ6uhDP7oHi4sysSERERERERERG5Ixw+fNjZJdx2NHJc7hxFykP4ExnvN090bi0iIiIiIiIiIiJyR1M4LneWhv0z/t21AC7GObcWERERERERERERuWMpHJc7S6m6UKoepF2FX6Y6uxoRERERERERERG5QykclztPw34Z/26dBsmJzq1FRERERERERERE7kgKx+XOU7kFFC4HSRdgxxxnVyMiIiIiIiIiIiJ3IIXjcudxcYUGL2a83/wJpKU6tx4RERERERERERG54ygclzvT/Z3BuzBcOAL7v3N2NSIiIiIiIiIiUgA1bdqUgQMH5nn9/fv3U79+fby8vKhRo8YtrOzG2Gw2Fi9e7Owy/jIKx+XO5OEDdXtlvN80AYxxbj0iIiIiIiIiIlLgfPPNN4wcOTLP6w8bNgxfX19+++03Vq9efVNqKGiB9s2kcFzuXA/0AldPOLENjm5xdjUiIiIiIiIiIlLAFC5cGH9//zyvHxMTw0MPPUSZMmUoUqTILaxM8kLhuNy5/IpBjU4Z7zdNcG4tIiIiIiIiIiJy0xhjuJxy2Skvk48ZCq6dVqVs2bKMGjWK5557Dn9/f0qXLs3UqVOtdW02G9u2beOdd97BZrMxfPhwAI4dO0aHDh0ICgqicOHCtG7dmsOHDzvs5/PPP6dq1ap4enpSokQJ+vbta+0ToG3btthsNutngG+//ZZatWrh5eVFuXLlGDFiBKmp/3t238GDB2ncuDFeXl5UqVKFVatW5eMK3R3cnF2AyJ/SoC9smwG/LYPfD0LRis6uSERERERERERE/qQrqVeoN7eeU/Yd3TkaH3efG+o7duxYRo4cyZtvvslXX33F888/T5MmTahcuTKnTp2iefPmREZGMmjQIPz8/EhJSSEiIoIGDRqwfv163NzcePfdd4mMjGTXrl14eHgwadIkXn75Zf7xj3/w+OOPEx8fz8aNGwHYunUrxYsXZ/r06URGRuLq6grA+vXr6dq1K+PHj6dRo0bExMTQu3dvIGNql/T0dJ588kmCg4OJjo4mPj4+X3On3y00clzubEUrQqXHAQObP3F2NSIiIiIiIiIiUoC1aNGCF154gQoVKvD6669TtGhR1qxZA0BISAhubm74+fkREhKCn58f8+fPJz09nc8++4xq1aoRHh7O9OnTOXr0KGvXrgXg3Xff5ZVXXmHAgAFUqlSJBx54wAqyixUrBkBQUBAhISHWzyNGjGDw4MF069aNcuXK8eijjzJy5EimTJkCwI8//sj+/fuZNWsW999/P40bN2bUqFF/8dlyPo0clztfw35wYDnsnAcPD8mYbkVERERERERERO5Y3m7eRHeOdtq+b1T16tWt9zabjZCQEM6cOZPt+jt37uTQoUOZ5i1PSkoiJiaGM2fOcPLkSZo1a5avOnbu3MnGjRt57733rGVpaWkkJSVx+fJl9u3bR6lSpQgNDbXaGzRokK993A0Ujsudr0xDCK0FJ7fD1s/g4TecXZGIiIiIiIiIiPwJNpvthqc2cSZ3d3eHn202G+np6dmun5iYSO3atZkzZ06mtmLFiuHicmMTfyQmJjJixAiefPLJTG1eXl43tM27kcJxufPZbBmjx796FrZ+Cg8OAI8775eniIiIiIiIiIgULLVq1WL+/PkUL16cgICALNcpW7Ysq1ev5uGHH86y3d3dnbS0tEzb/e2336hQoUKWfcLDwzl27BinTp2iRIkSAGzZsuVPHMmdSXOOy90h/G8QVBou/5ExvYqIiIiIiIiIiMhtLioqiqJFi9K6dWvWr19PbGwsa9eupX///hw/fhyA4cOHM3bsWMaPH8/BgwfZvn07EyZMsLZhD8/j4uI4f/48AG+//TazZs1ixIgR7Nmzh3379vHll1/y1ltvAdC8eXMqVapEt27d2LlzJ+vXr2fIkCF//QlwMoXjcndwdYP6L2a83/wJpKflvL6IiIiIiIiIiIiT+fj4sG7dOkqXLs2TTz5JeHg4PXr0ICkpyRpJ3q1bN8aNG8f//d//UbVqVZ544gkOHjxobWPs2LGsWrWKUqVKUbNmTQAiIiL4/vvvWblyJQ888AD169fnn//8J2XKlAHAxcWFRYsWceXKFerWrUvPnj0d5icvKGzGGOPsIm53CQkJBAYGEh8fn+2fN8htIDkR/lkFkuLh6TkQ/oSzKxIRERERERERkTxISkoiNjaWsLAwzYktucrpfslPlquR43L38PSDOj0y3m+akPO6IiIiIiIiIiIiUqApHJe7S70+4OIOx7bAsa3OrkZERERERERERERuUwrH5e7iHwLVn854v1mjx0VERERERERERCRrCsfl7tOwb8a/+76Dc/9xbi0iIiIiIiIiIiJyW1I4Lnef4uFQ4VEw6bBlkrOrERERERERERERkduQwnG5OzXsl/Hvv2bD5XPOrUVERERERERERERuOwrH5e4U1hhCqkPKZfh1mrOrERERERERERERkduMwnG5O9ls/xs9Hj0VUpKcW4+IiIiIiIiIiIjcVhSOy92ralsIKAmXzsDuBc6uRkRERERERERERG4jCsfl7uXqDvWfz3i/aSKkpzu3HhERERERERERkbvMjBkzCAoKcnYZN0ThuNzdanUDzwD4/Tc4tMrZ1YiIiIiIiIiIiMhtQuG43N28AqB2t4z3myY4txYREREREREREbmrXb161dkl3JA7te4/S+G43P3q/R1c3ODwejix3dnViIiIiIiIiIhILowxpF++7JSXMSbPdTZt2pS+ffsycOBAihYtSkREBBcuXKBnz54UK1aMgIAAHnnkEXbu3OnQ77vvvuOBBx7Ay8uLokWL0rZtW6vt/PnzdO3alUKFCuHj48Pjjz/OwYMHAUhISMDb25vly5c7bG/RokX4+/tz+fJlAI4dO0aHDh0ICgqicOHCtG7dmsOHD1vrd+/enTZt2vDee+8RGhpK5cqVAUhOTmbQoEGULFkSX19f6tWrx9q1ax32NWPGDEqXLo2Pjw9t27bljz/+yPP5ut24ObsAkVsu8B647ynYNR82T4R2nzu7IhERERERERERyYG5coXfatV2yr4rb9+Gzccnz+vPnDmT559/no0bNwLQvn17K8AODAxkypQpNGvWjAMHDlC4cGGWLl1K27ZtGTJkCLNmzeLq1assW7bM2l737t05ePAgS5YsISAggNdff50WLVqwd+9eAgICeOKJJ5g7dy6PP/641WfOnDm0adMGHx8fUlJSiIiIoEGDBqxfvx43NzfeffddIiMj2bVrFx4eHgCsXr2agIAAVq3631TEffv2Ze/evXz55ZeEhoayaNEiIiMj2b17NxUrViQ6OpoePXowevRo2rRpw4oVKxg2bNifPeVOYzP5+SqkgEpISCAwMJD4+HgCAgKcXY7ciFO7YEojsLnCgB0QVNrZFYmIiIiIiIiIyH8lJSURGxtLWFgYXl5epF++7NRw3CWP4XjTpk1JSEhg+/aM2Qo2bNhAy5YtOXPmDJ6entZ6FSpU4LXXXqN37940bNiQcuXKMXv27EzbO3jwIJUqVWLjxo00bNgQgD/++INSpUoxc+ZM2rdvz+LFi+nSpQunT5/Gx8eHhIQEgoODrSB79uzZvPvuu+zbtw+bzQZkTJsSFBTE4sWLeeyxx+jevTsrVqzg6NGjVlh+9OhRypUrx9GjRwkNDbVqat68OXXr1mXUqFF07tyZ+Ph4li5darV37NiRFStWcOHChXye6Rt3/f1yrfxkuRo5LgVDiepQrin8Zy1smQyRo5xckIiIiIiIiIiIZMfm7U3l7ductu/8qF37fyH+zp07SUxMpEiRIg7rXLlyhZiYGAB27NhBr169stzWvn37cHNzo169etayIkWKULlyZfbt2wdAixYtcHd3Z8mSJXTs2JGvv/6agIAAmjdvbtVw6NAh/P39HbadlJRk1QBQrVo1KxgH2L17N2lpaVSqVMmhX3JysnU8+/btc5gCBqBBgwasWLEihzN0+1I4LgVHw34Z4fj2mdDkNfAOcnZFIiIiIiIiIiKSBZvNlq+pTZzJ19fXep+YmEiJEiUyzdMNEBSUkUV55zN8v56Hhwft2rVj7ty5dOzYkblz5/L000/j5uZm1VC7dm3mzJmTqW+xYsWyrNvez9XVlW3btuHq6urQ5ufn96dqvl0pHJeCo3wzKF4FzuyFbTPgoYHOrkhERERERERERO4itWrVIi4uDjc3N8qWLZvlOtWrV2f16tU8++yzmdrCw8NJTU0lOjraYVqV3377jSpVqljrRUVF8eijj7Jnzx5++ukn3n33XYca5s+fT/HixfM1RXTNmjVJS0vjzJkzNGrUKMt1wsPDiY6Odli2ZcuWPO/jduPi7AJE/jI2W8bocYDoyZB61bn1iIiIiIiIiIjIXaV58+Y0aNCANm3asHLlSg4fPsymTZsYMmQIv/76KwDDhg1j3rx5DBs2jH379rF7927GjBkDQMWKFWndujW9evViw4YN7Ny5k2eeeYaSJUvSunVraz+NGzcmJCSEqKgowsLCHKZhiYqKomjRorRu3Zr169cTGxvL2rVr6d+/P8ePH8+29kqVKhEVFUXXrl355ptviI2N5ZdffmH06NHWHOP9+/dnxYoVfPjhhxw8eJCJEyfesVOqgMJxKWjuawf+JeDiKfj3186uRkRERERERERE7iI2m41ly5bRuHFjnn32WSpVqkTHjh05cuQIwcHBQMZDPBcuXMiSJUuoUaMGjzzyCL/88ou1jenTp1O7dm2eeOIJGjRogDGGZcuW4e7u7rCfTp06sXPnTqKiohxq8PHxYd26dZQuXZonn3yS8PBwevToQVJSUq4jyadPn07Xrl155ZVXqFy5Mm3atGHr1q2ULl0agPr16/Ppp5/y8ccfc//997Ny5Ureeuutm3X6/nI2Y4xxdhG3u/w84VTuABv+CT8Oh+JV4fmNGSPKRURERERERETEaZKSkoiNjSUsLAwvLy9nlyO3uZzul/xkuRo5LgVP7WfBww/O7IGYn5xdjYiIiIiIiIiIiDiBwnEpeLyDoGaXjPebJji3FhEREREREREREXEKheNSMNV/Hmwu8J81ELfb2dWIiIiIiIiIiIjIX0zhuBRMhcpAlTYZ7zdNdG4tIiIiIiIiIiIi8pdTOC4FV8N+Gf/++yuIP+HcWkREREREREREROQvpXBcCq6StaDMQ5CeCtGTnV2NiIiIiIiIiIiI/IUUjkvBZh89vm0GJCU4tRQRERERERERERH56ygcl4Kt4mNQtBIkJ8C/vnB2NSIiIiIiIiIiIvIXUTguBZuLCzTom/F+yyRIS3FuPSIiIiIiIiIiIvKXUDguUv1p8C0G8cdg77fOrkZEREREREREROSuN2PGDIKCgpxag8JxEXcvqNsn4/2m8WCMc+sRERERERERERH5E2w2G4v/n707j4+qvtv/f82aTBKyk4RAFogRSECQRUVcANnU8lWsdam9C4pSxI1FpCp6y2KtyKJQRVGLW/219b7V26UqSEUssqsoCWsCQZAtCUkI2SYz8/tjkiFhzX6yvJ6PxzwymTlzznWqYr3yyfvz4YdGx/BJTEzU888/X+21W2+9VTt37jQokRflOCBJ/cdJVod0cIu09xuj0wAAAAAAAACtmsPhUFRUlKEZKMcBSQoIly7+nff5t4uNzQIAAAAAANDGeTweOUtdhjw8tZwq8D//8z/q2bOnHA6HIiIiNHToUH399dey2Ww6dOhQtWMnTZqkK6+8UtLJsSKffPKJunbtqoCAAN18880qKirSm2++qcTERIWFhenBBx+Uy+XynSMxzRjrgQAAIABJREFUMVGzZ8/W7bffrsDAQHXs2FEvvvhitfclafTo0TKZTL7vJWnJkiVKSkqS3W5X165d9fbbb1fLZzKZ9Morr+hXv/qVAgIC1L17d61du1a7d+/WoEGDFBgYqMsvv1wZGRm+z2RkZOiGG25QdHS0goKC1L9/f3355Ze+9wcNGqSsrCxNnjxZJpNJJpOp2v1X9fHHH6t///7y9/dXZGSkRo8eXau/FrVlbdSzAy3JgInSxtekXculI9ukqO5GJwIAAAAAAGiTysvcWvrQ14Zce/wLV8vmZ6nRsQcPHtTtt9+uuXPnavTo0Tp+/Li++eYb9e3bV126dNHbb7+tadOmSZKcTqf+9re/ae7cub7PFxUVadGiRfr73/+u48eP66abbtLo0aMVGhqqf/3rX8rMzNSvf/1rDRw4ULfeeqvvc88995wee+wxzZw5U1988YUeeughXXjhhRo2bJg2btyoqKgoLVu2TCNHjpTF4r2XDz74QA899JCef/55DR06VJ988onuvPNOderUSYMHD/ade/bs2VqwYIEWLFig6dOn67e//a26dOmiRx99VPHx8brrrrt0//3367PPPpMkFRYW6rrrrtPTTz8tPz8/vfXWWxo1apR27Nih+Ph4vf/+++rVq5fGjx+ve+6556z/W3766acaPXq0Hn/8cb311lsqKyvTv/71r5r/hasDynGgUngXqfsoadtH0tq/SDe8eP7PAAAAAAAAoM06ePCgysvLddNNNykhIUGS1LNnT0nSuHHjtGzZMl85/vHHH6ukpES33HKL7/NOp9O3mluSbr75Zr399ts6fPiwgoKClJKSosGDB+urr76qVo4PHDhQf/zjHyVJF154odasWaOFCxdq2LBhat++vSQpNDRUMTExvs/MmzdPY8eO1cSJEyVJU6ZM0bp16zRv3rxq5fidd97pyzh9+nQNGDBATzzxhEaMGCFJeuihh3TnnXf6ju/Vq5d69erl+3727Nn64IMP9NFHH+n+++9XeHi4LBaL2rVrVy3PqZ5++mnddtttmjlzZrVzNybKcaCqyx/wluM//lO65ikpqL3RiQAAAAAAANocq92s8S9cbdi1a6pXr1665ppr1LNnT40YMULDhw/XzTffrLCwMI0dO1YzZszQunXrdNlll+mNN97QLbfcosDAQN/nAwICfMW4JEVHRysxMVFBQUHVXjty5Ei16w4YMOC070/d8PJU27Zt0/jx46u9NnDgQL3wwgvVXrvooouqXVs6WfhXvlZSUqKCggIFBwersLBQTz31lD799FPfDwuKi4u1b9++c+Y51Q8//HDOleWNgXIcqCruEikiWcrZJR3aIl0w1OhEAAAAAAAAbY7JZKrxaBMjWSwWrVixQt9++62WL1+uxYsX6/HHH9f69evVuXNnjRo1SsuWLVPnzp312WefadWqVdU+b7PZqn1vMpnO+Jrb7W7sWzljpsr54Gd6rTLTww8/rBUrVmjevHm64IIL5HA4dPPNN6usrKxW13U4HPWNXmtsyAmcql3Fr3cU5xmbo4nkluTq2Q3PKi07zegoAAAAAAAALY7JZNLAgQM1c+ZMff/997Lb7frggw8kSXfffbf+8Y9/aOnSpUpKStLAgQMb5Jrr1q077fvu3U/un2ez2apt4ilJ3bt315o1a6q9tmbNGqWkpNQry5o1azR27FiNHj1aPXv2VExMjPbu3VvtGLvdflqeU1100UVauXJlvbLUFivHgVM5KnbJLT5mbI4m8o8d/9A7297R+7ve19LhS9WrfePOcgIAAAAAAGgt1q9fr5UrV2r48OGKiorS+vXrdfToUV9RPWLECAUHB2vOnDmaNWtWg113zZo1mjt3rm688UatWLFC7733nj799FPf+4mJiVq5cqUGDhwoPz8/hYWFadq0abrlllt08cUXa+jQofr444/1/vvv68svv6xXluTkZL3//vsaNWqUTCaTnnjiidNWuicmJmr16tW67bbb5Ofnp8jIyNPO89///d+65pprlJSUpNtuu03l5eX617/+penTp9cr37mwchw4lSPM+7WNrBz/6ehPkqSi8iJNWDFBW7O3GpwIAAAAAACgZQgODtbq1at13XXX6cILL9SMGTM0f/58XXvttZIks9mssWPHyuVy6fe//32DXXfq1KnatGmTLr74Ys2ZM0cLFizwbZgpSfPnz9eKFSsUFxeniy++WJJ044036oUXXtC8efOUmpqqV155RcuWLdOgQYPqlWXBggUKCwvT5ZdfrlGjRmnEiBHq06dPtWNmzZqlvXv3Kikpybdh6KkGDRqk9957Tx999JF69+6tIUOGaMOGDfXKdj4mj8fjadQrtAIFBQUKCQlRfn6+goODjY6DxrbiSWnNC9Jl90kj/2R0mkbl8Xg06J+DlFuSq7h2cfr5+M9qZ2+n14a/ppSI+v1KDQAAAAAAQE2VlJRoz5496ty5s/z9/Y2O06DGjRuno0eP6qOPPmqQ8yUmJmrSpEmaNGlSg5yvJTrX3y+16XJZOQ6cyrdyvPWPVTl44qByS3JlNVn1t+v+pt7te+t42XGNXzFeO3J3GB0PAAAAAACgxcrPz9d//vMfvfvuu3rggQeMjoMzoBwHTtWGyvHKESrJYckK8w/TkqFLdFHkRcovzdc9y+/RrmO7DE4IAAAAAADQMt1www0aPny4JkyYoGHDhhkdB2fAhpzAqdpgOd4jsockKcgepCXDlmj88vFKy0nT3cvv1rIRy9QltIuRMQEAAAAAAFqcVatWNcp59+7d2yjnbYtYOQ6cqi2V4znVy3FJCrYH65Vhr6hbeDflluRq3PJx2pu/16CEAAAAAAAAQOOgHAdO1UbKcbfHrfScdElSakRqtfdC/EL06rBXlRyWrOzibI1bPk4/F/xsREwAAAAAANCGeDweoyOgBWiov08ox4FTVS3HW/EfyHvz9+qE84T8Lf5KCk067f1Q/1C9OuxVJYUk6UjREd21/C4dKDxgQFIAAAAAANDaWSwWSVJZWZnBSdASVP59Uvn3TV0xcxw4VWU57nZKZSckvyBj8zSSypEq3SO6y2o+8x8FEY4IvTbiNd35+Z3aW7BX474Yp2UjlqlDUIemjAoAAAAAAFo5q9WqgIAAHT16VDabTWYza3pxZm63W0ePHlVAQICs1vrV25TjwKlsAZLFLrnKvKvHW2s5XrEZ56kjVU4V6YjU6yNe111f3KWsgiyNW+4tyKMDo5siJgAAAAAAaANMJpM6dOigPXv2KCsry+g4aObMZrPi4+NlMpnqdR7KceBUJpPkHyqdOOItx0PjjE7UKNKy0yRV34zzbKICovTacO8K8p+P/+wryNsHtG/smAAAAAAAoI2w2+1KTk5mtArOy263N8hvFxhajicmJp7xJ0ETJ07Uiy++qJKSEk2dOlV///vfVVpaqhEjRuill15SdPTJFav79u3Tvffeq6+++kpBQUEaM2aMnnnmmWpL6letWqUpU6YoLS1NcXFxmjFjhsaOHdsUt4iWyhF2shxvhZwup7bnbpdUs3JckmICY/T6iNd15+d3+laQ/3XEXxXpiGzMqAAAAAAAoA0xm83y9/c3OgbaCEOH92zcuFEHDx70PVasWCFJ+s1vfiNJmjx5sj7++GO99957+vrrr/XLL7/opptu8n3e5XLp+uuvV1lZmb799lu9+eabeuONN/Tkk0/6jtmzZ4+uv/56DR48WD/88IMmTZqku+++W1988UXT3ixalqqbcrZCu/J2qcxdpnb2dopvF1/jz8UGxer1Ea8rJjBGe/L36J7l9yi3JLcRkwIAAAAAAACNw9ByvH379oqJifE9PvnkEyUlJenqq69Wfn6+Xn/9dS1YsEBDhgxR3759tWzZMn377bdat26dJGn58uVKT0/XO++8o969e+vaa6/V7Nmz9eKLL/p+/eLll19W586dNX/+fHXv3l3333+/br75Zi1cuNDIW0dz18rL8arzxms7m6lTu056ffjrinJEaXfebt2z/B7lleQ1RkwAAAAAAACg0TSbbV/Lysr0zjvv6K677pLJZNLmzZvldDo1dOhQ3zHdunVTfHy81q5dK0lau3atevbsWW3MyogRI1RQUKC0tDTfMVXPUXlM5TnOpLS0VAUFBdUeaGMqy/FWWvqm5dR83viZxAfH67URrynSEamdx3Zq/Irxyi/Nb8iIAAAAAAAAQKNqNuX4hx9+qLy8PN8s8EOHDslutys0NLTacdHR0Tp06JDvmKrFeOX7le+d65iCggIVFxefMcszzzyjkJAQ3yMurnVuyIhzaCMrx3tE1K0cl6TOIZ312vDXFO4frm252zRhxQQdLzveUBEBAAAAAACARtVsyvHXX39d1157rWJjY42OokcffVT5+fm+x88//2x0JDS1VlyOF5cXKyMvQ5KUGplar3MlhSbpteGvKdQvVFtztmrClxNUWFbYEDEBAAAAAACARtUsyvGsrCx9+eWXuvvuu32vxcTEqKysTHl51cdaHD58WDExMb5jDh8+fNr7le+d65jg4GA5HI4z5vHz81NwcHC1B9oYR8VvLLTCcnx77na5PC5FOiIVHRB9/g+cR3JYsl4d/qqC7cH68eiPmrhyooqcRQ2QFAAAAAAAAGg8zaIcX7ZsmaKionT99df7Xuvbt69sNptWrlzpe23Hjh3at2+fBgwYIEkaMGCAfvrpJx05csR3zIoVKxQcHKyUlBTfMVXPUXlM5TmAM/KtHG99M8erjlSp7WacZ9MtvJuWDl+qdrZ2+v7I97pv5X0U5AAAAAAAAGjWDC/H3W63li1bpjFjxshqtfpeDwkJ0bhx4zRlyhR99dVX2rx5s+68804NGDBAl112mSRp+PDhSklJ0X/9139py5Yt+uKLLzRjxgzdd9998vPzkyRNmDBBmZmZeuSRR7R9+3a99NJL+uc//6nJkycbcr9oIVrxWJXKcry+I1VOlRqRqleGvaIgW5A2Hd6kB//9oErKSxr0GgAAAAAAAEBDMbwc//LLL7Vv3z7dddddp723cOFC/epXv9Kvf/1rXXXVVYqJidH777/ve99iseiTTz6RxWLRgAED9Lvf/U6///3vNWvWLN8xnTt31qeffqoVK1aoV69emj9/vl577TWNGDGiSe4PLVQrLsfTctIkST0i674Z59n0bN9TS4YuUYA1QOsPrddDXz2kUldpg18HAAAAAAAAqC+Tx+PxGB2iuSsoKFBISIjy8/OZP95W5O6RFvWWbAHS4weNTtNgCsoKNPD/GyhJWn3raoX5hzXKdTYf3qx7v7xXxeXFurLjlXp+8POyW+yNci0AAAAAAACgUm26XMNXjgPNUuXKcWeR5Gw9o0HSsr2rxjsGdWy0YlyS+kb31YvXvCh/i7++OfCNpn49VU6Xs9GuBwAAAAAAANQW5ThwJn7BkqniH4+S1rMpZ2OOVDlV/5j+WjRkkfwsflr18yo9svoROd0U5AAAAAAAAGgeKMeBMzGbJf9Q7/NWNHe8cjPOHhGNX45L0oDYAXph8AuymW36ct+XevSbR1XuLm+SawMAAAAAAADnQjkOnE0r3JSzshxPjUxtsmsO7DhQzw9+XlazVV/s/UKP/+dxudyuJrs+AAAAAAAAcCaU48DZtLJyPLs4W4eLDsskk1IiUpr02ld1ukrzr54vq8mqf+35l5789km5Pe4mzQAAAAAAAABURTkOnE0rK8crV413CemiQFtgk19/SPwQzb16riwmiz7K+Egz186kIAcAAAAAAIBhKMeBs2ml5XhTjlQ51bCEYfrzlX+W2WTW+7ve19PrnpbH4zEsDwAAAAAAANouynHgbFpbOZ5TsRlnZNNsxnk2IzuP1JyBc2SSSf/c+U/N3zTf0DwAAAAAAABomyjHgbNpReW4x+NRWnaaJKlHhLHluCSNShqlWQNnSZLeTH9Tn+/53OBEAAAAAAAAaGsox4GzaUXl+IHCA8orzZPVbFXX8K5Gx5Ek3XjBjbq7592SpP/+9r+VmZ9pcCIAAAAAAAC0JZTjwNm0onK8cqTKhWEXym6xG5zmpPt636f+Mf1VVF6kqaumqshZZHQkAAAAAAAAtBGU48DZtKJyvDmNVKnKarZq7lVzFemI1O683Zq9bjYbdAIAAAAAAKBJUI4DZ9OKyvGt2c1jM84ziXRE6rmrnpPFZNEnmZ/of3b9j9GRAAAAAAAA0AZQjgNn4yvH84zNUU8ut0vpOemSpNTIVIPTnFm/mH56sM+DkqRn1j+jtJw0gxMBAAAAAACgtaMcB86mshwvLZBcTmOz1MPegr0qKi+Sw+pQUkiS0XHOamzqWA2KGySn26mpq6YqvzTf6EgAAAAAAABoxSjHgbPxDzn5vKTlFrWVI1W6h3eXxWwxOM3ZmU1mzRk4Rx2DOupA4QHN+M8MuT1uo2MBAAAAAACglaIcB87GYpX8KgryFjx3vDnPGz9ViF+IFgxaILvZrlX7V+mNtDeMjgQAAAAAAIBWinIcOBdHqPdrCy7HK+d3t4RyXJJSIlL0x0v/KEla9N0ibTq0yeBEAAAAAAAAaI0ox4Fz8W3K2TLLcafLqe252yVJPSJaRjkuSTcn36xRXUbJ5XFp2uppyi7ONjoSAAAAAAAAWhnKceBcWng5vjNvp5xup0L8QtSpXSej49SYyWTSjMtm6ILQC5RdnK3pq6er3F1udCwAAAAAAAC0IpTjwLm08HJ861HvvPHUiFSZTCaD09ROgC1A8wfNl8Pq0IZDG/TSDy8ZHQkAAAAAAACtCOU4cC4tvRzPOVmOt0RdQrpo5uUzJUmv/vSqVu9fbXAiAAAAAAAAtBaU48C5tPRyPNtbjreUzTjP5NrO1+r2brdLkh795lEdKDxgcCIAAAAAAAC0BpTjwLm04HK8yFmkzPxMSS27HJekh/s9rJ6RPVVQVqCpq6aqzFVmdCQAAAAAAAC0cJTjwLm04HJ8W+42uT1uRTmiFBUQZXScerFb7Jp39TyF+IUoLSdNczfONToSAAAAAAAAWjjKceBcWnA5XjlSJTWyZc4bP1VsUKyeueIZSdI/dvxDn2Z+anAiAAAAAAAAtGSU48C5tOByPC07TVLLH6lS1ZWdrtT4i8ZLkmaunanMvEyDEwEAAAAAAKClohwHzqUFl+Nbcyo244xoPeW4JE3sNVGXxlyq4vJiTV41WUXOIqMjAQAAAAAAoAWiHAfOxVeO50lut7FZaiG/NF8/H/9ZUusZq1LJYrbo2aueVZQjSpn5mZq1bpY8Ho/RsQAAAAAAANDCUI4D5+IIrXjikUrzDY1SG5UjVeLaxSnEL8TgNA0vwhGh565+ThaTRZ9mfqr3dr5ndCQAAAAAAAC0MJTjwLlY/SRboPd5Cxqt0lpHqlTVJ7qPJvWZJEn684Y/+34gAAAAAAAAANQE5ThwPpWrx1tSOZ7tLcdb20iVU41JHaMhcUPkdDs1ZdUU5beg1f0AAAAAAAAwFuU4cD4tcFPOylXUPSJb78pxSTKZTJp9xWx1CuqkX078osf/87jcnpYzGx4AAAAAAADGoRwHzqfqppwtwJGiIzpSfERmk1ndw7sbHafRBduDtWDQAtnNdn29/2v9detfjY4EAAAAAACAFoByHDifFjZWpXKkSpeQLgqwBRicpml0j+iuxy59TJK0+PvF2nhoo8GJAAAAAAAA0NxRjgPn08LGqlSW4619pMqpbkq+Sf8v6f/J7XFr2tfTdLToqNGRAAAAAAAA0IxRjgPn08LGqqTlVMwbj2hb5bjJZNKMy2YoOSxZOSU5emT1Iyp3lxsdCwAAAAAAAM0U5ThwPi1o5bjH4zlZjrexleOS5LA6tODqBQq0BWrT4U36y/d/MToSAAAAAAAAminKceB8WlA5vv/4fuWX5stmtunCsAuNjmOIxJBEzbx8piTp9a2va9XPq4wNBAAAAAAAgGaJchw4nxZUjm/N8c4b7xrWVTaLzeA0xhmROEJ3dL9DkvTYfx7T/uP7DU4EAAAAAACA5oZyHDifllSOV2zGmRqZanAS403tO1UXRV6k42XHNWXVFJW6So2OBAAAAAAAgGaEchw4nxZYjrfFeeOnsllsmnf1PIX6hWpb7jbN3TDX6EgAAAAAAABoRijHgfOpWo57PMZmOQeX26VtudskST0iKMclqUNQBz1z5TMyyaR/7vynPsn8xOhIAAAAAAAAaCYox4HzqSzH3U6p7ISxWc4hMz9TxeXFclgd6hzS2eg4zcYVHa/QH3r9QZI0a+0sZeRlGJwIAAAAAAAAzQHlOHA+tgDJYvc+b8ajVSpHqqREpMhithicpnmZcNEEXdbhMhWXF2vyqskqchYZHQkAAAAAAAAGoxwHzsdkahFzx9Ny0iQxUuVMLGaLnr3qWUUFRGlP/h499e1T8jTjETkAAAAAAABofJTjQE20gHKczTjPLdw/XPOunieryarP9n6mf+z4h9GRAAAAAAAAYCDKcaAmmnk5XuYq045jOyRJqZGpBqdpvi6OuliT+06WJD278VltObrF4EQAAAAAAAAwCuU4UBPNvBzfeWynyt3lCvULVaegTkbHadb+K+W/NCxhmMrd5Zry1RRlF2cbHQkAAAAAAAAGoBwHaqKZl+OVI1VSI1JlMpkMTtO8mUwmzR44W11CuuhI8RE9/PXDcrqdRscCAAAAAABAE6McB2qipZTjjFSpkUBboJ4f/LwCbYHafHizFmxaYHQkAAAAAAAANDHKcaAmHKHer820HE/LSZMk9YhgM86a6hzSWU9f8bQk6Z1t7+iTzE8MTgQAAAAAAICmRDkO1EQzXjle5CxSZn6mJKlHJOV4bVwTf43u6XmPJGnmtzO1I3eHwYkAAAAAAADQVCjHgZrwleN5xuY4g/ScdLk9bkUHRKt9QHuj47Q49/W+TwM7DlSJq0QPffWQ8kvzjY4EAAAAAACAJkA5DtREM1457hupwqrxOrGYLXr2ymfVMaijDhQe0PRvpsvldhkdCwAAAAAAAI2MchyoiWZcjlduxkk5XnchfiF6YfAL8rf4a82BNVqyZYnRkQAAAAAAANDIKMeBmmgB5XhqRKrBSVq2ruFd9eSAJyVJr/z4ir7a95XBiQAAAAAAANCYKMeBmqgsx8uLJWexsVmqyCvJ0/7C/ZKk1EjK8foalTRKd3S/Q5L02H8e0578PQYnAgAAAAAAQGOhHAdqwi9YMlm8z5vRppyV88YTghMUbA82OE3rMLXfVPWJ6qNCZ6EmfzVZJ5wnjI4EAAAAAACARkA5DtSEySQ5Qr3Pm9FolZ+yf5LESJWGZDPbNH/QfLV3tFdGfoaeWPOEPB6P0bEAAAAAAADQwCjHgZpqhnPH07K9K8fZjLNhRToitWDQAlnNVq3IWqE30t4wOhIAAAAAAAAaGOU4UFPNrBz3eDzamuPdjJNyvOH1juqtRy95VJL0/HfPa93BdQYnAgAAAAAAQEOiHAdqqpmV44eLDiu7OFsWk0XdwrsZHadV+s2Fv9GNF9wot8etaV9P0y+FvxgdCQAAAAAAAA2EchyoqWZWjleOVEkKTZLD6jA4TetkMpn0+KWPKyUiRXmleZq8arJKykuMjgUAAAAAAIAGQDkO1FQzK8cZqdI0/K3+WjhooUL9QpWek6456+awQScAAAAAAEArQDkO1FRzK8ezveV4akSqwUlav9igWM29aq7MJrP+L+P/9N7O94yOBAAAAAAAgHqiHAdqqhmV4x6PR2k53rEqrBxvGgNiB+ihPg9Jkp7Z8Ix+OPKDwYkAAAAAAABQH5TjQE01o3J83/F9Ol52XHazXclhyUbHaTPuTL1TwxKGqdxdrqmrpiq7ONvoSAAAAAAAAKgjynGgpppROV45UqVbeDfZzDaD07QdJpNJswfOVlJIko4UH9HUVVPldDuNjgUAAAAAAIA6oBwHaspXjucZm0NV5o1HMm+8qQXaArVw8EIF2YL03ZHvtGDTAqMjAQAAAAAAoA4ox4GaakYrx5k3bqzOIZ319BVPS5Le2faOPs742OBEAAAAAAAAqC3KcaCmKsvxsuOSy7hRGuXucm3L2SZJ6hFBOW6UIfFDNP6i8ZKkWWtnaXvudoMTAQAAAAAAoDYox4Ga8g85+dzA0SoZeRkqcZUo0BaoxJBEw3JAmthrogZ2HKgSV4kmfTVJ+aX5RkcCAAAAAABADVGOAzVltkh+FQW5gaNVKkeqpESkyGziH2EjWcwWPXvls+oY1FEHCg9o+urpcrldRscCAAAAAABADdCsAbXhCPV+NbAcr9yMk5EqzUOIX4heGPyC/C3+WvPLGr205SWjIwEAAAAAAKAGKMeB2mgGm3JWluOpkamGZUB1XcO76skBT0qSlv64VP/e92+DEwEAAAAAAOB8KMeB2jC4HC91lWrXsV2SpB6RrBxvTkYljdId3e+QJD32n8e0J3+PwYkAAAAAAABwLoaX4wcOHNDvfvc7RUREyOFwqGfPntq0aZPvfY/HoyeffFIdOnSQw+HQ0KFDtWvXrmrnyM3N1R133KHg4GCFhoZq3LhxKiwsrHbMjz/+qCuvvFL+/v6Ki4vT3Llzm+T+0MoYXI7vyN2hck+5wvzCFBsYa0gGnN3UflPVJ6qPTjhPaNJXk3TCecLoSAAAAAAAADgLQ8vxY8eOaeDAgbLZbPrss8+Unp6u+fPnKywszHfM3LlztWjRIr388stav369AgMDNWLECJWUlPiOueOOO5SWlqYVK1bok08+0erVqzV+/Hjf+wUFBRo+fLgSEhK0efNmPffcc3rqqae0dOnSJr1ftAIGl+NVR6qYTCZDMuDsbGab5g+aryhHlDLzM/XEmifk8XiMjgUAAAAAAIAzsBp58WeffVZxcXFatmyZ77XOnTv7nns8Hj3//POaMWOGbrjhBknSW2+9pejoaH344Ye67bbbtG3bNn3++efauHGj+vXrJ0lavHixrrvuOs2bN0+xsbHJ7Xo/AAAgAElEQVT629/+prKyMv31r3+V3W5XamqqfvjhBy1YsKBaiQ6cl8HleFpOmiRGqjRnkY5IzR80X3d+cadWZK3QsrRluqvHXUbHAgAAAAAAwCkMXTn+0UcfqV+/fvrNb36jqKgoXXzxxXr11Vd97+/Zs0eHDh3S0KFDfa+FhITo0ksv1dq1ayVJa9euVWhoqK8Yl6ShQ4fKbDZr/fr1vmOuuuoq2e123zEjRozQjh07dOzY6SVnaWmpCgoKqj0ASSfL8ZI8Qy5fuXK8RwTleHPWO6q3Hr3kUUnSC9+9oLW/rDU4EQAAAAAAAE5l6MrxzMxMLVmyRFOmTNFjjz2mjRs36sEHH5TdbteYMWN06NAhSVJ0dHS1z0VHR/veO3TokKKioqq9b7VaFR4eXu2YqivSq57z0KFD1ca4SNIzzzyjmTNnNtyNovUwcOX4CecJ3yaPqZGpTX591M5vLvyNfsr+SR/u/lCPrH5E//jVPxQbxJx4AAAAAABQdx63W+6CApXnHpMr75hcubkqz82VK/eYXMeOqfxYxfPcXLmOH1fS8i8YzXsOhpbjbrdb/fr105/+9CdJ0sUXX6ytW7fq5Zdf1pgxYwzL9eijj2rKlCm+7wsKChQXF2dYHjQjBpbj6Tnp8sijmMAYRToim/z6qB2TyaTHL31cO4/tVHpOuiZ9NUlvXfuW/K3+RkcDAAAAAADNhMfpVPmxY3Idy5PrWG5F2e0tul3HKp7n5nqfH8uT69gxyeWq8fndx4/LEhzciHfQshlajnfo0EEpKSnVXuvevbv+93//V5IUExMjSTp8+LA6dOjgO+bw4cPq3bu375gjR45UO0d5eblyc3N9n4+JidHhw4erHVP5feUxVfn5+cnPz68+t4bWysBynJEqLY+/1V8LBy3UrZ/cqm252zRn3RzNHjibn9gCAAAAANBKeZzOikI7R+XZOd6vFQW3b1X3scrvj8ldx3HO5sBAWcLDZQkPkzUsXJawMO/z8HBZwipfD5PZ4WjgO2xdDC3HBw4cqB07dlR7befOnUpISJDk3ZwzJiZGK1eu9JXhBQUFWr9+ve69915J0oABA5SXl6fNmzerb9++kqR///vfcrvduvTSS33HPP7443I6nbLZbJKkFStWqGvXrqeNVAHOqRmU44xUaVlig2I196q5mvDlBP1fxv+pZ2RP3drtVqNjAQAAAACAGvB4PHIXFsqVk6PyiocrN9f7NSdH5Tm53q8Vr7nz82t/EZNJltBQb9kdFuotu89WfId7vzdX2VsRdWdoOT558mRdfvnl+tOf/qRbbrlFGzZs0NKlS7V06VJJ3rEEkyZN0pw5c5ScnKzOnTvriSeeUGxsrG688UZJ3pXmI0eO1D333KOXX35ZTqdT999/v2677TbFxnrn+/72t7/VzJkzNW7cOE2fPl1bt27VCy+8oIULFxp272ihfOV4nuR2S+am29M2LSdNktQjkpXjLc2A2AGa1GeSFmxeoD9v/LOSQpPUL6bf+T8IAAAAAAAanG91d062t9zO9Zbc5TnZcuXkqjw3x/u1ogD3OJ21u4DZLEt4uKwRERWldsTJ4rtiZbc1PMxXdFtCQmSyWBrnZnFOhpbj/fv31wcffKBHH31Us2bNUufOnfX888/rjjvu8B3zyCOP6MSJExo/frzy8vJ0xRVX6PPPP5e//8m5vX/72990//3365prrpHZbNavf/1rLVq0yPd+SEiIli9frvvuu099+/ZVZGSknnzySY0fP75J7xetgCO04olHKs0/WZY3stySXB0oPCBJSolIOc/RaI7Gpo7V1uytWp61XFNWTdG717+rTu06GR0LAAAAAIAWzeNyyVVQ4J3ZnZfn3aSy6vM87/PyY8fkyj1W59Xd5oAAWSIivIV3RIS35I6MkDU8QtaIcFnCI2SN9L5nCQmRqQkXVKLuTB6Px2N0iOauoKBAISEhys/PVzAD7PF0rOQ8IT34vRTepUku+c3+bzRx5UQlBifq49EfN8k10fCKy4s15rMx2pa7TReEXqC3r31bQfYgo2MBAAAAANAseMrKVF5RZp8suCu/P3bm5wUFUl3qTYvFt6rbV25XFt8R3vEl1shI3ygTZne3HLXpcg1dOQ60SI4wbznehHPHt+Ywb7w1cFgdWjRkkX776W+1O2+3pn8zXYsGL5LFzK9OAQAAAABaJ3dxsZwHD8l58BeVHzwo5+HD1YvvKkW3+8SJOl/HHBTkHVESGnryEXbyuTU0lNXdOA3lOFBbjjCpYH+TluNp2RXzxiOYN97SxQTGaNGQRRr7+Vit3r9aCzcv1MP9HzY6FgAAAAAAteYpL1f50aPVy++Dh+Q8eFDOgwdVfvCgXHl5tTup2SxLSMgpJXfYaYW3tep7ISEy2WyNc5No1SjHgdqqnDteXMs/3OvI4/Foa7Z35TibcbYOPSJ7aM7AOZq2epreTH9TSaFJGp082uhYAAAAAAD4eDweufPz5Tx0SM5fDnrLb9/zg3IeOqjyw0ckl+u85zIHBMjWMVbWmA6yxUTLEhZepfD2FuHWiu/NwcGs6EaToRwHaqtyE84mWjl+uOiwckpyZDVZ1S28W5NcE41vZOeRysjP0MtbXtasdbMUHxyvvtF9jY4FAAAAAGgj3KWl3rL74EFv4X3Iu9Lb+9z7uqeo6Pwnslpli46WrUMHWTt0kK1DB9k6xFQ8j5WtQ4zM7drJZDI1/k0BtUQ5DtRWE5fjlavGLwi7QP5W/ya5JprGvb3uVUZehlZkrdDkrybr3evfVad2nYyOBQAAAABo4Txut8qzsyvGnBw849gTV05Ojc5lCQ+vKL5jKspub/ntfS1W1sgImSzspYWWiXIcqC2DyvHUCDbjbG3MJrOevuJpHSg8oPScdD3w7wf09rVvK8geZHQ0AAAAAEAz5ioslPOXU2d8/6LyyueHD0tO53nPY3I4vGV3TIyssRWrvmM6yFbx3BoTI7M/C/XQelGOA7XV1OV4DvPGWzOH1aFFgxfp9k9v1+683Zr+zXQtGrxIFjM/dQcAAACAtshTVibnkSPe8vvUGd8Vz92Fhec/kdksa3S0bDHeVd622A7emd9Vim9LaCjjTtCmUY4DtdWE5bjb41Z6drokyvHWLDowWouGLNLYz8dq9f7VWrh5oR7u/7DRsQAAAAAADczj8chdUCDnL794Hwcqvh6qGHvyy0GVZ2dLHs95z2UJCaky47vK2JPYipXgUVEyWan+gHPhnxCgtpqwHN9XsE/HncflZ/FTUmhSo18PxukR2UNzBs7RtNXT9Gb6m0oKTdLo5NFGxwIAAAAA1ILH45ErO/tk+V21AD9wQM5ffpH7xInznsdkt58su2NivKu+q448iYmROTCwCe4IaN0ox4HaasJy/KfsnyRJ3cK7yWa2Nfr1YKyRnUcqIz9DL295WbPWzVJcuzj1i+lndCwAAAAAQAVPebnKK0aeVC28fQX4wYPylJae9zyW8HDZYmO9jw4dZOsYK2vMyZXflvBwxp0ATYByHKitJizH03LSJDFSpS25t9e9yszL1PKs5Zqyaorevf5ddWrXyehYAAAAANAmuMvKVF511Xdl8V1Zgh8+LLlc5z6JyeSd9V1Zflc+OsbK1rGjbB06yOxwNM0NATgnynGgtqqW4x6P1Ig/yd2a7d2MMzUitdGugebFbDJrzhVztL9wv9Jz0vXAvx/Q29e+rSB7kNHRAAAAAKBVcBUUqCxrn8qyslS2L0vOrCyVZe2T88ABlR89ev4T2GzeUScdO565AI+Olslub/wbAVBvlONAbVWW4+5yqaxQ8mvXKJdxup3anrtdEivH2xqH1aFFgxfp9k9v1+683Xpk9SNaPGSxLGaL0dEAAAAAoEVw5eWpbN++U0pw73NXXt45P2tyOE4W3bGxssV2rFZ+W9u3l8lsbqI7AdCYKMeB2rI5JIuf5Cr1rh5vpHI8Iy9Dpa5SBdmClBCc0CjXQPMVHRitRUMWaeznY/XNgW+0cPNCPdz/YaNjAQAAAECz4PF45MrL8676rlaC75MzK0uu/Pxzft7avr3sCQmyJcTLHp8ge0K8bJ3iZOsYK0toKPO+gTaCchyoLZPJu3q88JC3HA+Nb5TLVB2pYjbxE+m2qEdkD80ZOEfTVk/Tm+lvKik0SaOTRxsdCwAAAACahMfjkevYMW/pnZUl5ykluLug4Jyft0ZFnSzAExJ8Jbg9Lk7mwMAmugsAzRnlOFAXVcvxRuIrxyOZN96Wjew8Upn5mVqyZYlmrZuluHZx6hfTz+hYAAAAANAgfAX43qzTZoCX7dsn9/Hj5/y8NSZG9viK8jshXrb4eNkTEmWP6yRzQEAT3QWAlopyHKiLqptyNpK0nDRJzBuHNKHXBGXkZWh51nJNXjVZ717/ruLaxRkdCwAAAABqzJWf71sB7ivCKx7nXQHeoUPFyu9478rvhARvCR4XJ7PD0UR3AKA1ohwH6qKRy/GS8hLtOrZLktQjgnK8rTObzJpzxRztL9yv9Jx0PbDyAb1z3TsKsgcZHQ0AAAAAfFyFhRXF917vGJQqRfj5NsH0FeC+R7zs8fGyxcXJ7O/fRHcAoK2hHAfqopHL8e252+XyuBTuH66YwJhGuQZaFofVoUWDF+n2T29XRn6GHln9iBYPWSyL2WJ0NAAAAABtiLuoyLsB5imrv8uysuTKzj7nZ32bYCZWKcETE2WPj6cAB2AIynGgLhyh3q+NVI5XHanCDtmoFB0YrUVDFmns52P1zYFvtHDzQj3c/2GjYwEAAABoZTxlZSrLylLp3r0V879PrgAvP3LknJ+1RERUXwFeWYTHx7MJJoBmh3IcqItGXjleuRknI1Vwqh6RPTTnijma9vU0vZn+prqEdtFNyTcZHQsAAABAC+Rxu+U8cEClu3apdOdO72PXLpXu2SuVl5/1c5aQkOqrvxMSfUW4pV27prsBAKgnynGgLnzl+LlnptVVZTmeGpnaKOdHyzYycaQy8zK1ZMsSzV43W/Ht4tUvpp/RsQAAAAA0Y+XZ2b4SvGTXLpXu3KXS3bvlKSo64/HmwEDZO3c+fQV4QoIsoaFNnB4AGgflOFAXjbhy/HjZce0t2CvJu0oYOJMJvSYoIy9Dy7OWa/KqyXr3+ncV1y7O6FgAAAAADOYqPKGy3btUsnOnSnft9q0Gd+XmnvF4k80me1KS/C5Mll9ysvwvvFB+ycmydujAmE8ArR7lOFAXjViOp+ekS5JiA2MV7h/e4OdH62A2mTXnijnaX7hf6TnpemDlA3rnuncUZA8yOhoAAACAJuApK1Ppnr0nR6FUfHUeOHDmD5hMssXH+cpvv4qv9oQEmazUQwDaJv70A+qiEctxRqqgphxWhxYNXqTbP71dGfkZemT1I1o8ZLEsZovR0QAAAAA0EN9c8FNK8HPNBbe2b+8rv31fL0iS2eFo2vAA0MxRjgN10YjleFpOmiRGqqBmogOjtXjIYo35fIy+OfCNFmxeoGn9pxkdCwAAAEAteDweubKzVbZvn8r2Znm/7stSWVaWyvZmnX0ueFBQlRLcOxbFLzlZ1rCwJr4DAGiZKMeBuqgsx8tLJGexZGu4n75XrhzvEUE5jppJjUzVnCvmaNrX0/RW+ltKCk3STck3GR0LAAAAQBUej0flR47KuS/rlBJ8n5xZWXKfpQCXKuaCX3CB/JIvqDYWxRoTw1xwAKgHynGgLvzaSSaL5HF5V483UDmeU5yjgycOyiSTUiJSGuScaBtGJo5UZl6mlmxZotnrZiu+Xbz6xfQzOhYAAADQpnjcbpUfPepd8Z2VJee+fSrL2uf9ft8+eYqLz/5hs1m2Dh1kT0iQLSFe9vgE2RMSZE9MkD0+nrngANAI+JMVqAuTSXKESkU53nI8OLZBTls5UiUxJJGNFVFrE3pNUGZ+pr7Y+4Umr5qsd69/V3Ht4oyOBQAAALQqHrdb5YcPe0vvfaeU4Pv2yVNScvYPm82ydewoe3y8t/hOiJctPl72hETZOnWU2W5vuhsBAFCOA3XmCDtZjjcQRqqgPswms2YPnK39x/crLSdND6x8QO9c9w4/aAEAAADqwON2qywrS6Xbt6tk23aVZmbImZWlsn0/y1NaevYPWiyyderoXfl9agnesaNMFOAA0GxQjgN11QibclaW46mRqQ12TrQtDqtDLwx+Qbd/ersy8jP0yOpHtHjIYlnMFqOjAQAAAM2Wu6REpbt2qWTbNpVs26bSbdtVsnPnWTfClNUqe8eO3vEnCYkVJbi3CLfFxspkszXtDQAA6oRyHKirBi7HPR6Pb6xKj0hWjqPuogOjtXjIYo35fIy+OfCNFmxeoGn9pxkdCwAAAGgWyo8dU+m2bSrZtl0l27erZFu6yjL3SG73acea/P3l1/VC+XfrLr/k5JOrwGNjmQEOAK0Af5IDddXA5fjBEweVW5Irq8mqbuHdGuScaLtSI1M154o5mvb1NL2V/paSQpN0U/JNRscCAAAAmozH7ZZz//6KErxiNfi2bSo/fPiMx1vCw+Xfvbv8u3eTXzfvV3tiokwWfgsTAForynGgrhq4HK8cqZIcliw/i1+DnBNt28jEkdqTt0cvbXlJs9fNVmxQrC7rcJnRsQAAAIAG5y4rU+muXb754CXbt6l0+w65CwvPeLwtIV7+3VPk362brwy3RrWXyWRq4uQAACNRjgN11dDleA7zxtHwJvSaoMz8TH2+93M9+O8H9frw19WzfU+jYwEAAAB15srPr74afPt2lWZkSOXlpx1rstnkd+GF8uverWJVeHf5XdhVlqBAA5IDAJobynGgrhq4HN9XsE+SlBya3CDnAyTJZDJpzhVzdKz0mNYfXK97V96rN0a8oQvCLjA6GgAAAHBeziNHVJKe7p0Rnp6ukrR0OX/55YzHmkNCvAV45Wrw7t3l17kzm2MCAM6KchyoK185ntcgp8svzZckhfmHNcj5gEp+Fj8tGrxI9yy/Rz9m/6g/rPiD3rz2TXVq18noaAAAAIAkyePxyHngF5Wkp3lL8PR0lWzbJtfR7DMeb+vUqWIcSjdfIW7t0IGxKACAWqEcB+qqgVeO55V6S/YQv5AGOR9QVYAtQC8NfUljPx+r3Xm7dc/ye/TWtW+pfUB7o6MBAACgjfG4XCrLylJJmrcAryzC3fn5px9sNsvepbP8U1K8j+4p8u/eTZbg4KYPDgBodSjHgbpq4JXjBaUFkqRQv9AGOR9wqhC/EL0y7BWN+WyM9hfu1/gV4/XGyDf4gQwAAAAajcfpVGlGhrcIryjBS7Zvl6eo6PSDbTb5JyfLL6W7/FNS5EhJkV/XrjI7HE0fHADQJlCOA3XVgCvHPR4PK8fRJKICorR0+FKN+WyMduft1sSVE/XqsFcVYAswOhoAAABaOHdJiUp37PAW4BVleOnOnfI4nacda/L3984GT0mRf2qKd6PMCy6QyW43IDkAoK2iHAfqqrIcLzsuuZySpe6bvBSXF6vMXSaJleNofHHt4vTKsFc09vOx+vHoj5r01ST95Zq/yG7hP0QAAABQM67CwpObZKZ7v5ZmZkou12nHmtu1qxiJ0t1bhKekyJ6YKJPFYkByAABOohwH6sq/ygrv4jwpqO6zmwvKvCNVrGarAqys4EXjSw5L1pKhS3T38ru19uBaTV89Xc9d/ZysZv61AAAAgNO5jh9X0aZNKtqwUUXr16tk2zbJ4zntOEtExMn54Ckp8k/pLlunTmyUCQBolmhBgLoyW7wFeUm+d7RKPcpx30gVewj/pxFN5qL2F2nRkEWa+OVEfbnvS81cO1MzL58ps8lsdDQAAAAYzFV4QsWbN+nEhg0qWr9BJenpkttd7RhrbIeTK8JTUuSfkiprVHv+mwYA0GJQjgP14Qg7WY7XQ36pd1d2RqqgqV3W4TI9d9VzmvL1FH24+0O1s7fTtH7T+A8aAACANsZ94oSKvvtORRs26MT6DSpJSzttRIo9IUEBl16qgEsuUcAl/WWLijIoLQAADYNyHKgPR5h0bG+9y3E244SRrkm4RrMun6UZa2bo7fS3FWIP0R96/cHoWAAAAGhE7qIiFX33vYo2bFDR+vUqTkuTysurHWOLj1fAJf0VWFGI26KjDUoLAEDjoBwH6qNyU84GWjlOOQ6j3HDBDTpedlzPbnxWf/nhL2pnb6ffdv+t0bEAAADQQNzFxSr+4QedWL9eRes3qPinn04vwzt1UsAllyjw0ku8ZXiHDgalBQCgaVCOA/XRwOU4Y1VgpN+l/E75Zfl6ecvLembDM2pnb6dRSaOMjgUAAIA6cJeUqPiHLSrasF4nNmxQyZYf5XE6qx1jje2gwEsqx6RcInunjgalBQDAGJTjQH00UDnOWBU0FxN7TVRBaYHe3f6unljzhNrZ22lQ3CCjYwEAAOA83KWlKt6yRUXrN6howwYVb9kiT1lZtWOsMTG+VeEBl14qW8eO7DUDAGjTKMeB+qAcRytjMpk0/ZLpKnQW6qOMjzR11VS9POxl9Y/pb3Q0AAAAVOEuLVXJjz/qxMaN3jEpP/wgT2lptWOs7dt7N9C89BIFXnKJbPHxlOEAAFRBOQ7URwOV4wWlBZIox9E8mE1mzbx8pgrKCrTq51W6f+X9+uuIvyo1MtXoaAAAAG2W+8QJFf3wg4o2blTRpk1nHJNiiYxUYMWq8IBL+suemEgZDgDAOVCOA/XRwCvHmTmO5sJqtmre1fM08cuJ2nBogyZ8OUFvjHxDSaFJRkcDAABoE1wFBSravFlFmzapaOMmlaSlSS5XtWMs7SMV0K+frxC3d+5MGQ4AQC1QjgP10VAbcpaxISeaHz+LnxYNWaS7v7hbW3O2avyK8Xrr2rfUMYiNmgAAABpaeW6uijZu8pbhmzapdPt2yeOpdowtNlYB/fvJ0a+fAvv3ly0hgTIcAIB6oBwH6qOhyvFSbzkebA+ubyKgQQXaArVk6BKN/XysMvIzNH75eL157ZuKdEQaHQ0AAKBFcx4+7C3DK8aklGVknHaMPTFRAf37KaCf92HryCIFAAAaEuU4UB8NUI57PB5fOc7KcTRHof6hemXYKxrz+RjtO75Pf1jxB/11xF+ZkQ8AAFBDHo9Hzv37q5Xhzp9/Pu04v+RkBfTv710d3revbFFRBqQFAKDtoBwH6qOyHC/Jl9wuyWyp9SkKnYVyebyzAykb0VxFB0Zr6bCl+v1nv9fOYzt138r7tHTYUgXYAoyOBgAA0Ox4PB6VZWaeHJOycaPKDx+ufpDZLP/u3b2rwi/pL0efPrKGhRkTGACANopyHKgP/8qV3h5vQR4QXutTVG7G6W/xl7/VvwHDAQ0rPjherwx7RXd+cae2HN2iyasma/GQxbJb7EZHAwAAMJTH5VLprl0q2rDRNzPclZtb/SCbTY4ePbxleP9+cvTpI0tQkDGBAQCAJMpxoH6sdskeJJUVeker1KEcLygtkMSqcbQMXcO76qVrXtL4FeP17S/f6o/f/FHPXfWcLHX4rQkAAICWyl1SopKfflLR5u9U9N1mFX//g9zHj1c7xuTnJ0fv3ifL8F69ZHY4DEoMAADOhHIcqC9HWEU5nlenj1euHKccR0vRO6q3nh/8vO5beZ9WZK3QrHWz9NSAp2QymYyOBgAA0CjKjx1T8fc/qPi7zSratFnFaWmS01ntGHNAgBx9+vhmhvv36CGznd+wAwCgOaMcB+rLESrl/1znTTkry3E240RLcnns5Zp71Vw9/PXDen/X+wq2B2tK3ykU5AAAoMXzeDxyHjig4s2bfSvDy3ZnnHacpX2kAvr2U0CfPnL07SP/rl1lsvKf2AAAtCT8mxuor8pNOetYjueX5kti5ThanmEJw/TUgKf05LdP6o20NxRsD9Y9F91jdCwAAIBa8bhcKt25U0WbNntHpGz+TuVHjpx2nD0pyVeEB/TtK1unTiwMAACghaMcB+qLchxt2Ojk0SooK9C8TfO06PtFCrYH69ZutxodCwAA4KzcxcUq/vEn74iUzd+p+Pvv5T5xovpBVqscqaly9O2rgL595Lj4YlnDa7+/EAAAaN4ox4H6qmc5zlgVtHRjUseooKxAS39cqqfXP60ge5Cu73K90bEAAAAkVcwL/+4738rwkrR0qby82jHmoCA5Lr7YW4T36SNHz55sngkAQBtAOQ7UV31XjpdVrBy3s3IcLdf9ve9XQWmB/r7j75rxnxlqZ2+nqzpdZXQsAADQxng8Hjl//tm7IrxiZXhZZub/z959R0dZp20c/05NMklmEkJVlCodRYqCSgg1IGBB0RelVwGVorjrrorirog0URCkSHDVVVF3V0SF0KsixQaoCCgoTUgyQ9okmcz7R2Ak1gxMeFKuzzmcTZ7nSbhyziLJxT3371fPWStXxtGyxZnJ8BaEXXEFJovFgMQiIiJiJJXjIhcqRJPjWqsipZnJZOLhax/mdO5plh9Yzvh145nbaS6tqrYyOpqIiIiUcT6Ph4ytH5GxaSPpGzeRd+zYr54Ju6IuEc3PrEhp3gLbpZdoX7iIiIioHBe5YBdYjnu8HkBrVaT0M5vMPHn9k2TkZLDuh3Xct+Y+FiUuonFcY6OjiYiISBniz88ne8/eQBme9emn4PMF7ptsNsKbNg2sSHFcfTWWGH2vLSIiIr+mclzkQmlyXCTAZrYxtd1URq4ayfbj2xmZPJKkbknUdtU2OpqIiIiUYnmnTpGxeTPpGzeRsXkzvpSUQvftdeoQdcMNRLZti6NlC8zh4QYlFRERkdJE5bjIhdKBnCKFhFvDeb7D8wxZOYQ9p/YwbMUwkromcZnzMqOjiYiISCnhz8sj67PPSN+4kYyNm8jevbvQfXNkJJHXtSHyhrZE3XA9tksvNSipiIiIlGYqx0Uu1AWU4758H6dzTgOaHJeyJcoexbxO8xi8YjDfpn3LkJVDSOqaxCVRlxgdTUREREqo3KNHSd+0iYyNm8jYupX806cL3Q9r1MG9YaIAACAASURBVJCoG9oS1fYGIpo1w2SzGZRUREREygqV4yIX6txy3O+HIA728eR4Am87w5yhTiZiqNjwWBZ0WcCgDwfxnec7hq4cyuLExVSJrGJ0NBERESkB8nNyyNq+vWBVyqaNePd9W+i+JSaGyOuvJ7LtDURdfz3WSpUMSioiIiJllcpxkQt1thz3+8B7GsKLXnK7vW4AomxR2MyafJGyp2JERRZ0WcDADwdy+PThgoK862IqRlQ0OpqIiIgYIOf77wvK8I0bydi2DX9W1s83zWYirryyoAxv25bwxo0xWSzGhRUREZEyT+W4yIWyRYAlDHzegunxIMpxHcYp5UHVyKosSlzEwA8H8p3nO4atHMZLiS8RGx5rdDQREREpZvkZGWRs20bGxk2kb9pE7qFDhe5bK1Uism3BqpTINm2wxOgcHhEREbl4VI6LhEJELKQfKyjHY2sU+cPOTo6rHJey7tKoS1nYZSGDPhzEt2nfMiJ5BAsTF+K0a52QiIhIWeL3+8k5eJD0tetI37SRrO078Ofm/vyAzYajefOCMrxtW8Lq1cMUxFpCERERkVBSOS4SCueW40Fw5xSU4zFhmpCRsq+Gs0ZBQb5iEHtT9jIyeSTzu8wn0hZpdDQRERG5AP6cHDJ37CB93TpOr1tH7veFp8Nt1asHVqU4rrkWS5T+7hcREZGSQeW4SCiceyhnENKyz6xVsWtyXMqH2jG1md95PkNWDuHzk58zatUo5naai8PmMDqaiIiIBCEvNZWMDRs4vXYdGZs2kZ+eHrhnstlwXHMNUe3iiWzbFnvNmpoOFxERkRJJ5bhIKJxvOa6d41IO1a9Qnxc7v8jQFUPZeWIn96+9n9kdZhNuDTc6moiIiPwOv9+Pd98+0tetJ33tWrI+/RT8/sB9S1wcUe3aEdU+gcg212k6XEREREoFleMioXCe5bgnxwOoHJfyp3FcY+Z2msvw5OF8fPRjxq8bz6z2s7BZbEZHExERkTPyc3LI/Hgb6evWkb5uHbk//ljofljDhkQltCM6IYHwpk0xmc0GJRURERE5P4Z+9/L4449jMpkK/WrQoEHgfnZ2NqNHjyYuLo6oqChuu+02jh8/XuhzHDp0iO7du+NwOKhcuTITJkwgLy+v0DPr1q2jefPmhIWFUbduXZKSki7GlyflScSZneHnOTmuneNSHjWr3Iw5HecQbgln448bmbBhArn5uX/+gSIiIlJs8k6eJO3tt/nhvvv4pnUbDg8bRuqrr5L744+Y7HYi28VT9fGJ1F27htr/eYfKY8YQcdVVKsZFRESkVDJ8crxx48asWrUq8L7V+nOkcePGsXz5cpYuXYrL5eLee++lV69ebN68GQCfz0f37t2pWrUqW7Zs4ejRo/Tv3x+bzcZTTz0FwMGDB+nevTv33HMPr776KqtXr2bo0KFUq1aNxMTEi/vFStkVmBxPC+rD3N6CAzk1OS7lVauqrZjVYRb3rb6P1YdW8/eNf2dy28lYzBajo4mIiJQLfr8f71dfcXrtWtLXrSf7888L3bdWqkRUQkLBupTWrTE7dE6IiIiIlB2Gl+NWq5WqVav+6rrb7WbRokW89tprdOjQAYDFixfTsGFDPvroI1q3bs3KlSvZs2cPq1atokqVKjRr1ownn3ySv/zlLzz++OPY7XbmzZtHrVq1mD59OgANGzZk06ZNzJw5U+W4hM55rlVROS4C111yHTMSZjB27Vg++O4DbBYbT17/JGaTJtBERESKQ352NhkffXRmXcp68o4dK3Q/vEmTgkI8IYHwRg01FS4iIiJlluHl+L59+7jkkksIDw+nTZs2TJ48mcsvv5wdO3aQm5tLp06dAs82aNCAyy+/nK1bt9K6dWu2bt1K06ZNqVKlSuCZxMRERo4cye7du7n66qvZunVroc9x9pmxY8f+biav14vX6w287/F4QvgVS5l0gQdyaq2KlHftLmvHM+2eYcL6Cby7/13CLGE82vpRTCaT0dFERETKhNzjJwK7wzO2bsWfnR24ZwoPJ/K664hqn0BUfDtsVSobmFRERETk4jG0HL/22mtJSkqifv36HD16lCeeeIK2bdvy5ZdfcuzYMex2OzExhUvDKlWqcOzMZMOxY8cKFeNn75+990fPeDwesrKyiIiI+FWuyZMn88QTT4Ts65Ry4Gw5nn1+a1VUjotA5xqd+ecN/+ThjQ+z9JulhFnCeKjVQyrIRUREzoM/P5/sL78kff0G0teuJXvPnkL3rdWqBQ7TdFx7LebwcIOSioiIiBjH0HK8W7dugbevvPJKrr32WmrUqMGbb775m6X1xfLwww8zfvz4wPsej4fLLrvMsDxSCpzH5HiuL5fMvExAa1VEzupeuzs5vhwe2/IYr+x9BbvFztjmY1WQi4iIFIHP7SZj82bS168nfeMmfCkpP980mQi/sinR7dsTlZBAWP36+vtVREREyj3D16qcKyYmhnr16vHtt9/SuXNncnJySEtLKzQ9fvz48cCO8qpVq7Jt27ZCn+P48eOBe2f/9+y1c59xOp2/W8CHhYURFhYWsq9LyoHzKMfPrlQxYSLaHl0cqURKpVuvuJUcXw7/+PgfvPTlS4RbwhnZbKTRsUREREocv9+P95tvSF+3nvQNG8jatQvy8wP3zZGRBetSEhKIahePtWJFA9OKiIiIlDwlqhxPT09n//799OvXjxYtWmCz2Vi9ejW33XYbAF9//TWHDh2iTZs2ALRp04Z//vOfnDhxgsqVC/biJScn43Q6adSoUeCZ999/v9Dvk5ycHPgcIiFxthzPy4bcLLD9+Ssfzq5UcYY5dfCgyC/c2eBOvD4vU7dP5YXPXsBusTOk6RCjY4mIiBjOl55B5kdbC9albNhA3i8GgcKuqEtkfDxR8e1wXN0Mk91uUFIRERGRks/QcvzBBx+kZ8+e1KhRgyNHjjBx4kQsFgt9+vTB5XIxZMgQxo8fT4UKFXA6ndx33320adOG1q1bA9ClSxcaNWpEv379eOaZZzh27BiPPPIIo0ePDkx+33PPPcyePZuHHnqIwYMHs2bNGt58802WL19u5JcuZU1YNJgs4PcVTI8XoRzXYZwif6x/4/7k5Ocwa+csnt35LGGWMPo26mt0LBERkYvK7/eTc/A70jesJ339ejK374Dc3MB9U3g4ka1bE9Uunsi28dirX2pgWhEREZHSxdBy/IcffqBPnz6cOnWKSpUqccMNN/DRRx9RqVIlAGbOnInZbOa2227D6/WSmJjICy+8EPh4i8XCe++9x8iRI2nTpg2RkZEMGDCASZMmBZ6pVasWy5cvZ9y4ccyaNYvq1auzcOFCEhMTL/rXK2WYyVQwPZ55sqAcd17ypx/izimYHNe+cZHfN7TpULw+L/M+m8eUT6YQZg2jd73eRscSEREpVvnZ2WRu2xaYDs89fLjQfdtllxHVrh1R7drhuKYVZq2EFBERETkvhpbjr7/++h/eDw8PZ86cOcyZM+d3n6lRo8av1qb8UkJCArt27TqvjCJFdm45XgRn16q47CrHRf7IqKtG4c3zsnj3Yp7c+iR2s52b695sdCwREZGQyvnhR9I3rCdj/QYyPv4Yf3Z24J7JZsPRqlXBdHh8PPaaNXWYpoiIiEgIlKid4yKlWpCHcmqtikjRmEwmxrUYh9fn5bWvXuOxLY8RZgmja62uRkcTERE5b/6cHDJ37iJ9wwbSN6wn59v9he5bq1YlKj6+oBBv3RpzZKRBSUVERETKLpXjIqESZDkemBzXWhWRP2UymfjrNX/F6/Py9r63+evGv2Iz2+hYo6PR0URERIos9/gJMjZtJH3dejK2bCE/I+PnmxYLEVc3K1iXEt+OsHpXaDpcREREpJipHBcJFZXjIsXKZDLxWJvHyPHlsOzAMh7c8CCz2s8ivnq80dFERER+kz8vj6zPPy/YHb5xA949ewvdt8TFEdW2bcF0+HXXYXHp+0IRERGRi0nluEionGc5rrUqIkVnNpmZdP0kcvJzWPHdCsatHcecTnNoXa210dFEREQAyDt5kvSNm8jYuIH0TZvJ93h+vmkyEd60KVHt4omKb0d440aYzGbjwoqIiIiUcyrHRULlPHeOa3JcJDhWs5XJbSeT48th7eG13Lf6PuZ1nkeLKi2MjiYiIuWQ3+crmA7fsIGMDRvJ3r270H2Ly0XkDTcQFd+WyBtuwBoXZ1BSEREREfklleMioaJyXOSisZltTGs3jfvX3s/mHzczatUo5neZz1WVrjI6moiIlAN5p06RsWkT6es3kLF5Mz63u9D98MaNiYxvS1R8PBFXXonJYjEoqYiIiIj8EZXjIqESZDnu8Ra8xFZrVUTOj91i59mEZ7l39b18fOxjRiaPZGHiQhrFNTI6moiIlDF+n4/sL788szt8I9lffgl+f+C+2ekk6obriWwbT9QN12OtVMnAtCIiIiJSVCrHRUIliHLc7/drclwkBMKt4TzX4TlGrhrJzhM7GZE8gpcSX+KK2CuMjiYiIqVcXmpqwXT4ho1kbNyILy2t0P2wRg2JahtPVLsz0+FW/WglIiIiUtroOziRUAmU42l//ByQlZdFTn4OoMlxkQvlsDmY03EOw5OH88XJLxi6ciiLuy6mtqu20dFERKQU8efnF0yHb9hI+sYNZH/+ReHp8OhoIq+/nqi2bYlsewO2ypUNTCsiIiIioaByXCRUIs6U3EWYHPfkFKxUsZqsOKyO4kwlUi5E2aOY22kuQ1cO5auUrxi2YhhJXZO4zHmZ0dFERKQEy0tNJWPzFtI3rCdj02Z8KSmF7oc1aEBU27YF0+FXXYXJZjMoqYiIiIgUB5XjIqFydnI8Jx3ycsBq/91Hz12pYjKZLkY6kTLPFeZifuf5DF4xmG/TvmXgioEs6LJAE+QiIhLgz88ne/ce0jduIGPDRrI+/xzy8wP3zZGRBdPh8W2JbNsWW5UqBqYVERERkeKmclwkVMJdgAnwQ3YaRP3+S23dXjeglSoioRYbHsuCLgsYsmIIB9wHGPThIOZ3nk/9CvWNjiYiIgby7tuH+91luJe/R96Ro4XuhdWrV1CGx8fjuPpqTYeLiIiIlCMqx0VCxWwpKMiz0wpWq/xBOa7DOEWKT8WIiiR1TWJE8gj2puxl0IpBzO00l6sqXWV0NBERuYhyjx3Ds3w57mXv4f3qq8B1s8NB5PXXEdm2LVHx8diqVjUwpYiIiIgYSeW4SChFxP5cjv+Bs5PjKsdFikdseCyLEhcxevVodp3YxbCVw3i+w/NcW+1ao6OJiEgx8nk8nF65Evey98jctu3nAzVtNqLi43H17EFUQgLm8HBjg4qIiIhIiaByXCSUImIh9WCRy3GtVREpPtH2aOZ1mseYtWP46OhHjFo1ipntZxJfPd7oaCIiEkL5OTmkr1+P591lpK9fjz8nJ3AvomULXD164uyaiCVG33eJiIiISGEqx0VC6eyhnH9SjmutisjF4bA5mN1xNhPWT2Dt4bWMWTOGyW0n07VWV6OjiYjIBfDn55P5yXY87y3Ds2Il+R5P4F7YFXVx9rwJV/cbsV16qYEpRURERKSkUzkuEkpFLMe1VkXk4gmzhDE9YTqPbn6U5QeW89CGh8jMy6TXFb2MjiYiIkHK/vprPMuW4V7+PnlHfz5Y01qlCs4e3XH17ElY/fqYTCYDU4qIiIhIaXHe5XhOTg4nTpwgPz+/0PXLL7/8gkOJlFoqx0VKJJvZxlM3PIXD6mDpN0uZuGUimbmZ9G3U1+hoIiLyJ3KPHMG9fDmed5fh3bcvcN0cHU10YhdcPXriaNUSk8ViYEoRERERKY2CLsf37dvH4MGD2bJlS6Hrfr8fk8mEz+cLWTiRUifItSraOS5y8ZhNZh5t/SgOq4Mle5Yw5ZMpZORmMPzK4ZowFBEpYXxuN54VK/C8u4zM7dsD1002G1EJ7XD26ElUQjvMYWEGphQRERGR0i7ocnzgwIFYrVbee+89qlWrpkJB5FxFnRzP0YGcIkYwmUw80PIBIu2RvPDpC8z+dDYZeRmMaz5Of5+JiBgs3+slfe063O8tI2P9Bvy5uYF7jlatcN7UE2eXLlhceuWdiIiIiIRG0OX4p59+yo4dO2jQoEFx5BEp3YJcq+K0O4s7kYj8gslkYuRVI4m0RjJ1+1QWf7mYzNxM/nbt3zCbzEbHExEpV/w+H5mffIJ72TJOr0wm//TpwL2wevVw3dQTZ/fu2KpVMzCliIiIiJRVQZfjjRo14uTJk8WRRaT0K0I57vf7A+W4JsdFjNO/cX8cNgeTtk7ija/fIDM3k0nXT8Jq1lnVIiLFLfubb3D/9394li8n7/jxwHVrtWq4enTH2aMn4fXrGZhQRERERMqDoBuAKVOm8NBDD/HUU0/RtGlTbDZboftOpyZhpRwrQjmenpuOz1+wm18HcooY6/Z6t+OwOvjbpr+x7MAysvKymBI/BbvFbnQ0EZEyx+/zkb52LSn/eoXMjz8OXDc7nTgTE3H27IGjZUtMZr2KR0REREQujqDL8U6dOgHQsWPHQtd1IKcIRSrHzx7GGW4JJ9wafjFSicgfuLH2jURYI3hg/QOsOrSK+9fcz8z2M4mwRhgdTUSkTPClpZH29tukvvoauUeOFFy0WIju0B7XzTcTGR+P2a5/lBQRERGRiy/ocnzt2rXFkUOkbDhbjme7Id8HZsuvHvF4PYCmxkVKkvaXt2dOxzmMWTuGzUc2c0/yPczuOJtoe7TR0URESq3sb74h9ZVXcb/7Lv7sbAAsMTHE3HEHsX3+T3vERURERMRwQZfj7dq1K44cImVDxDk7xLPd4Kjwq0fOTo6rHBcpWdpc0ob5neczatUodp7YydCVQ3mx04vEhOtsABGRogqsTnnlVTI/+ihwPaxBAyr064uze3fM4XrlnIiIiIiUDOd16lhaWhqLFi1i7969ADRu3JjBgwfjcqnsk3LOYgN7FOSkF6xW+YNyXIdxipQ8zSo3Y1HiIkYkj2DPqT0MWjGI+Z3nU8lRyehoIiIlms/tJu2tt0l97TVyf/yx4KLZTHSnTlTo15eIli0xmUzGhhQRERER+YWgT7vZvn07derUYebMmaSkpJCSksKMGTOoU6cOO3fuLI6MIqXLn+wdd3vdgCbHRUqqhnENSeqaROWIynyb9i0DPhzAkfQjRscSESmRvPv2cXTi4+xLaM+JqVPJ/fFHLC4XccOGUXdVMtWfm4WjVSsV4yIiIiJSIgU9OT5u3DhuuukmFixYgNVa8OF5eXkMHTqUsWPHsmHDhpCHFClVImLAfVjluEgpVjumNkndkhi2chiHTx+m/wf9WdhlITVdNY2OJiJiOL/PR/q6daT865XCq1Pq1y9YndKjh1aniIiIiEipEHQ5vn379kLFOIDVauWhhx6iZcuWIQ0nUir92eR4TkE5rrUqIiXbZdGXsaTrEoYlD+Og+yADPhzA/M7zqV+hvtHRREQM8UerU2L73q0JcREREREpdYIux51OJ4cOHaJBgwaFrh8+fJjo6OiQBRMptf6kHA8cyGnX5LhISVclsgpJXZMYkTyCr1K+YtCKQczrNI8rK11pdDQRkYvGu28fKa+8ivvdd/FnZQFgcbmIuaM3sf/3f9guvdTghCIiIiIi5yfocvzOO+9kyJAhTJs2jeuuuw6AzZs3M2HCBPr06RPygCKlTlHLca1VESkVKoRXYFHiIkatGsVnP33GsJXDmN1xNq2qtjI6mohIsQmsTnnlFTK3Fl6dEtv3blw9emCOiDAwoYiIiIjIhQu6HJ82bRomk4n+/fuTl5cHgM1mY+TIkTz99NMhDyhS6vxJOe7xegCtVREpTZx2J/M7z+f+tffz8dGPGblqJDMSZhBfPd7oaCIiIeVzu0l7+x1SX3218OqUjh2J7ddXq1NEREREpEwJuhy32+3MmjWLyZMns3//fgDq1KmDw+EIeTiRUkmT4yJlksPmYE7HOTy4/kHWHV7HmDVjeDr+aRJrJhodTUTkgnm//ZaUV17B/b+fV6eYXS5ie99ObJ8+Wp0iIiIiImVS0OX4WQ6Hg6ZNm4Yyi0jZUMRyXJPjIqVPmCWMGQkz+Pumv/PBwQ94aMNDZOZmcusVtxodTUQkaP68PNLXr//16pR69Yjt11erU0RERESkzCtSOd6rVy+SkpJwOp306tXrD5995513QhJMpNT6g3Lcl+/jdM5pAJxhzouZSkRCxGa2MfmGyTisDt7e9zaPbXmMzLxM7m54t9HRRESKJOeHH0h76y3c7/yHvBMnCi6azUR37EBs3344rtHqFBEREREpH4pUjrtcrsA3yE6nU98si/yRPyjHPTmewNtaqyJSelnMFia2mUikLZKX97zM09ueJjM3k2FXDjM6mojIb8rPySF99WrSli4lY8vWwHVLbCyuXrcS2+cu7NW1OkVEREREypcileOLFy8OvJ2UlFRcWUTKhj8ox91eNwBRtihsZtvFTCUiIWYymXiw5YNE2iKZ+9lcntv1HBm5GYxpPkb/iCwiJYb3wAHSlr6F+7//xZf68/cmkdddR8wdvYnq0AGz3W5gQhERERER4wS9c7xDhw688847xMQU3pfs8Xi45ZZbWLNmTcjCiZRKgXI8Dfx+OKck02GcImWLyWRiVLNRRNoimbZ9Gou+XER6bjp/u/ZvmE1mo+OJSDmVn53N6RUrSF26lKztOwLXrZUq4bqtFzG33469enUDE4qIiIiIlAxBl+Pr1q0jJyfnV9ezs7PZuHFjSEKJlGpny3G/D7ynIfzn3eJnJ8dVjouULQMaD8Bhc/Dk1id54+s3yMjN4Mnrn8RqPu9zr0VEgpb91VekvbkU97Jl5J8uOOMEs5mo+PiCKfH4eExW/XdJREREROSsIn93/Pnnnwfe3rNnD8eOHQu87/P5+PDDD7n0Uu0pFMEWAdZwyMsuWK1ybjmeU1COx4TF/N5Hi0gp1btebxxWB3/f9HfeO/AeGbkZTG03lTBLmNHRRKQM86Vn4Hl/OWlL3yL7iy8C122XXEJM79tx3XortqpVDUwoIiIiIlJyFbkcb9asGSaTCZPJRIcOHX51PyIigueffz6k4URKrYhYOH20oByPrRG4nJZ9Zq2KXZPjImVR99rdibRF8sC6B1h7eC2jV43muQ7P4bA5jI4mImWI3+8n+4svSFu6FPfy9/FnZhbcsFqJ7tiRmN69ibyuDSaz1juJiIiIiPyRIpfjBw8exO/3U7t2bbZt20alSpUC9+x2O5UrV8ZisRRLSJFS59xy/BzaOS5S9iVclsDcTnO5b819fHzsY4atHMYLnV7Qn3sRuWA+txv3svdIW7oU79dfB67ba9YsmBK/5RascXEGJhQRERERKV2KXI7XqFEw/Zqfn19sYUTKjMChnIXLcU+OB1A5LlLWXVPtGhZ2WcjI1SP5/OTnDFoxiPmd51MxoqLR0USklPH7/WRt307q0qWcXrESv9cLgMluJzoxkZjet+No1QrTOQeAi4iIiIhI0Zz3iTx79uzh0KFDvzqc86abbrrgUCKl3u+U42cnx7VzXKTsa1qpKYsTFzMieQT7Uvcx4IMBLOiygEuiLjE6moiUAnkpKbj/81/S3nqLnIMHA9fD6tUjpndvXD17YInR9xMiIiIiIhci6HL8wIED3HrrrXzxxReYTCb8fj9AYFrF5/OFNqFIaRRx5ofVX5Tjbm/BgZyaHBcpH66IvYIlXZcwLHkYh04fov8H/ZnfZT61XbWNjiYiJZA/P5+MrVtJW/oWp1evhtxcAEwOB84buxHbuzfhV16pKXERERERkRAJ+pSeMWPGUKtWLU6cOIHD4WD37t1s2LCBli1bsm7dumKIKFIK/c7kuMpxkfLnMudlLOm6hNqu2hzPPM6gDwex99Reo2OJSAmSl5rKyXnz2N+5C4eHDOX0hx9Cbi7hTZpQ9YknuGLDBi75xz+IuOoqFeMiIiIiIiEU9OT41q1bWbNmDRUrVsRsNmM2m7nhhhuYPHky999/P7t27SqOnCKlS6AcTyt0WWtVRMqnKpFVSOqaxD2r7mHPqT0MXjGYOR3n0LxKc6OjiYiBcn74kZSkJNLefht/VhYA5uhoXD17EtP7dsIbNjQ4oYiIiIhI2RZ0Oe7z+YiOjgagYsWKHDlyhPr161OjRg2+/vrrkAcUKZU0OS4ivxAbHsuiLou4d8297Di+gxHJI3i2/bNcf+n1RkcTkYss+6uvOLVwEZ4PPoAzKwnDGjWkQr/+OLsmYo6IMDihiIiIiEj5EHQ53qRJEz777DNq1arFtddeyzPPPIPdbmf+/PnUrq0dqiLAb5bjub5cMvMyAU2Oi5RXUfYo5naay/h149n04ybuXXMvU9pOoUvNLkZHE5Fi5vf7ydz2CacWLiRj48bA9cjr2lBhyBAir7tOK1NERERERC6yoMvxRx55hIyMDAAmTZpEjx49aNu2LXFxcbzxxhshDyhSKv1GOe7OKZgaN2Ei2h5tRCoRKQEirBE81/45/rbpb3z43YdM2DCBjNwMbr3iVqOjiUgx8Pt8nF61mlMLF5L9xRcFF81mohO7EDdkKBFNGhsbUERERESkHAu6HE9MTAy8XbduXb766itSUlKIjY3VtIvIWb9RjqdlF+wbd4Y5MZuCPgtXRMoQm8XG022fJtIWydv73uaxLY+RnptOv0b9jI4mIiGS7/Xi/t//SFn0Ejnffw+AKSwMV69biRs0CPvllxucUEREREREgi7Hf0uFChVC8WlEyo5zy3G/H0wmHcYpIoVYzBYmtplItD2apN1JPPPJM6TnpHPPVffoH5tFSjGfx0Pq62+Q8q+X8f10EgCzy0XsXX2o0Lcv1rg4gxOKiIiIiMhZRSrHe/XqVeRP+M4775x3GJEy42w57vNCbhbYHYG1KjqMU0TOMplMjG8xnmh7NM/vep4XPnsBT46HCa0m6BUmIqVM7vHjpCx5mbQ33iD/zApCa9WqeOK3cAAAIABJREFUVBg4gNjevTFHRhqcUEREREREfqlI5bjLpTJPJCj2KDBbIT+vYHrc7sDtPVOO2/XnSUR+ZjKZGH7lcKJsUUzeNplX9r5Cem46E9tMxGoOyQu8RKQYeffv59Sil3AvWwa5uQCEXVGXCkOG4OreHZPNZnBCERERERH5PUX6qXvx4sXFnUOkbDGZCqbHM34qKMddl2qtioj8obsa3kWUPYpHNz/Kf7/9Lxm5GTzd9mnsFrvR0UTkN2Tu2sWphYtIX706cC2iZQvihg4lKj4ek1mv/hARERERKek0kiZSXM4tx+HnyXGtVRGR33FTnZuItEYyYcMEkr9PJjM3kxkJM3DYHEZHExHAn59P+vr1nFq4iKwdOwLXozp2JG7oEBxXX21gOhERERERCVbQ5XitWrX+8KCwAwcOXFAgkTLj3EM5UTkuIkXTsUZH5nScw5i1Y9h8ZDP3rLqH2R1n47Q7jY4mUm75c3JwL3+flJcW4d33bcFFmw3XTT2JGzKEsNq1jQ0oIiIiIiLnJehyfOzYsYXez83NZdeuXXz44YdMmDAhZMFESr3fKce1VkVE/kybS9owv/N8Rq0exa4TuxiyYgjzOs0jLiLO6Ggi5YovPYO0pUtJWbKEvGPHADBHRhLzf3dSoX9/bFWqGJxQREREREQuRNDl+JgxY37z+pw5c9i+ffsFBxIpM35Rjp/dOa7JcREpimaVm7E4cTHDk4fzVcpXDPxwIAu6LKBqZFWjo4mUeXmnTpHyr3+R+tq/yfd4ALBUrEiF/v2J/b87sTj1Sg4RERERkbIgZCcFdevWjbfffjtUn06k9FM5LiIXqH6F+izpuoSqkVX5zvMd/T/oz/ee742OJVJm5Xz3HUcff5xvO3Tk1LwXyfd4sNeoQdVJT1B39SoqDh+mYlxEREREpAwJ2YGcb731FhUqVAjVpxMp/X5Rjnu8BZNnKsdFJBg1XTV5uevLDE8eznee7xjwwQBe7Pwi9SvUNzqaSJng9/vJ3PYJKUuWkL52Lfj9AIRfeSVxQ4cQ3bEjJovF4JQiIiIiIlIcgi7Hr7766kIHcvr9fo4dO8ZPP/3ECy+8ENJwIqXaOeW43+8PTI5r57iIBKtaVDWSuiZxz6p7+CrlKwatGMTcTnO5qtJVRkcTKbX8OTl4PviAU0uW4N2zN3A9ql07KgwejOOaVn94CL2IiIiIiJR+QZfjt9xyS6H3zWYzlSpVIiEhgQYNGoQsmEipd045nu3LJic/B1A5LiLnJy4ijkWJixi9ajSf/vQpw1YOY1b7WbS5pI3R0URKlbzUVNLeeJPUV18l76efADCFh+O65WYq9O9PWO3aBicUEREREZGLJehyfOLEicWRQ6TsiThTgmel4fa6AbCarDisDgNDiUhp5rQ7ebHzi4xbN44tR7YwevVoprWbRofLOxgdTaTE8x44SMrLS3D/93/4s7MBsFaqROzddxNz5x1YY2MNTigiIiIiIhfbee0c9/l8/Oc//2Hv3oKXoDZq1Iibb74ZqzVkK8xFSr9zJsfPPYxTL9EWkQvhsDl4vsPz/HXjX0n+Ppnx68bz5PVP0rNOT6OjiZQ4fr+fzI8/JmVxEunr1weuhzVsSNzAATi7dcNktxuYUEREREREjBR0m71792569uzJ8ePHqV+/4DCwKVOmUKlSJZYtW0aTJk1CHlKkVDqnHD87Oa6VKiISCnaLnWfin+HxLY/zv/3/42+b/kZ6bjp9GvQxOppIiZCfk4Nn+fukJCXh/frrgosmE1EJCVQYOFD7xEVEREREBDiPcnzo0KE0adKEHTt2EHvm5aepqakMHDiQ4cOHs2XLlpCHFCmVzpbjuRmkZZ4ECibHRURCwWq2Mun6SUTZo3h176s89fFTuL1uRlw5QqWflFt5qamkvf46Ka+9hu+ngr97TRERxNx6C7H9+hFWq5bBCUVEREREpCQJuhz/9NNP2b59e6AYB4iNjeWf//wnrVq1Cmk4kVItzAWYAD/u9KOAynERCS2zycxfWv0Fp93J3M/mMufTObi9bia0moDZZDY6nshF492/n5QlL+P+3//we70AWCtXJrZvX2Lv6I0lRq/cEhERERGRXwu6HK9Xrx7Hjx+ncePGha6fOHGCunXrhiyYSKlnNkO4C7LTcGeeAFSOi0jomUwmRjUbhSvMxdPbnuaVva/g9rp54vonsJltRscTKTZ+v5+MLVtIWbKEjA0bA9fDGzWiwqCBOBMTtU9cRERERET+UNDl+OTJk7n//vt5/PHHad26NQAfffQRkyZNYsqUKXg8nsCzTqczdElFSqOIWMhOC6xV0c5xESkudze8G1eYi0c2PcKyA8s4nXOaqe2mEm4NNzqaSEjle7143nuPlCUv4/3mm4KLJhNRHTsQN2AAES1barWQiIiIiIgUSdDleI8ePQC44447Aj94+P1+AHr27Bl432Qy4fP5QpVTpHSKiIXUg7izUwBNjotI8epRuwdOu5Px68az7od1jEgeweyOs4m2RxsdTeSC5Z06Req/Xyf13//Gd+oUACaHg5hevajQry/2GjUMTigiIiIiIqVN0OX42rVriyOHSNl05lBOt9cNqBwXkeIXXz2eFzu/yL2r72XniZ0MXjGYuZ3mUjGiotHRRM6Ld98+Ti1ZgufdZfhzcgCwVq1KhX59ibn9diwu/d0qIiIiIiLnJ+hyvF27dsWRQ6RsOlOOp+WeBrRWRUQujhZVWrC462JGJI/gq5SvGPDBAOZ3mc+lUZcaHU2kSPx+PxmbNpOSlETG5s2B6+FNmhTsE+/SBZNNO/VFREREROTCBF2OA6SlpbFo0SL27t0LQOPGjRk8eDAuTe6IFHZ2cjwvEwCXXX9GROTiaFChAS93e5nhK4dz6PQh+r/fnxc7v0jdWB2eLSVbxsfbODF1KtlffllwwWwmumNHKgwcQETz5tonLiIiIiIiIWMO9gO2b99OnTp1mDlzJikpKaSkpDBjxgzq1KnDzp07iyOjSOl1thz3ZQNaqyIiF1cNZw1e7vYydWPqciLrBANXDOTznz43OpbIb/Lu28fhe0ZyaMAAsr/8EpPDQWz/ftRZ8SHVn38OR4sWKsZFRERERCSkTP6zp2kWUdu2balbty4LFizAai0YPM/Ly2Po0KEcOHCADRs2FEtQI3k8HlwuF263G6fTaXQcKU22voB/xcNcXetyfMCq21dRJbKK0alEpJxxe92MWjWKz09+ToQ1gmfbP8t1l1xndCwRAHKPn+Dk7OdJe/sdyM8Hi4XYO++g4qhRWCtqV76IiIiIiAQnmC73vCbH//KXvwSKcQCr1cpDDz3E9u3bg097xtNPP43JZGLs2LGBa9nZ2YwePZq4uDiioqK47bbbOH78eKGPO3ToEN27d8fhcFC5cmUmTJhAXl5eoWfWrVtH8+bNCQsLo27duiQlJZ13TpGgRMSSbjLhO/OuJsdFxAiuMBcLuiygTbU2ZOVlMXr1aFZ8t8LoWFLO+dLTOTFrFvsTE0lb+hbk5xPduTO1ly2j6mOPqRgXEREREZFiF3Q57nQ6OXTo0K+uHz58mOjo6PMK8cknn/Diiy9y5ZVXFro+btw4li1bxtKlS1m/fj1HjhyhV69egfs+n4/u3buTk5PDli1bWLJkCUlJSTz22GOBZw4ePEj37t1p3749n376KWPHjmXo0KGsWKFSQC6CiFjSLAV/zMIt4YRbww0OJCLllcPmYHbH2XSp0YW8/DwmrJ/A0m+WGh1LyiF/bi4pr73G/i6JnJo7D392NhHNmlHjtVep/vxzhNWuZXREEREREREpJ4Iux++8806GDBnCG2+8weHDhzl8+DCvv/46Q4cOpU+fPkEHSE9P5+6772bBggXExsYGrrvdbhYtWsSMGTPo0KEDLVq0YPHixWzZsoWPPvoIgJUrV7Jnzx5eeeUVmjVrRrdu3XjyySeZM2cOOTk5AMybN49atWoxffp0GjZsyL333svtt9/OzJkzg84qErSIWDxmC6CpcRExnt1i55n4Z+hdrzd+/EzaOomFXywkyA1rIufF7/fjWbmSAz16cnzSk/hSUrDXqMGlz82ixr9fw9G8udERRURERESknAm6HJ82bRq9evWif//+1KxZk5o1azJw4EBuv/12pkyZEnSA0aNH0717dzp16lTo+o4dO8jNzS10vUGDBlx++eVs3boVgK1bt9K0aVOqVPl5h3NiYiIej4fdu3cHnvnl505MTAx8jt/i9XrxeDyFfomcl3Mmx1WOi0hJYDFbeLT1owxrOgyAWTtnMWPHDBXkUqwyd+7i+7vu5sf7x5Dz/fdYKlSgymOPUvu9ZTi7dNFBmyIiIiIiYgjrnz9SmN1uZ9asWUyePJn9+/cDUKdOHRwOR9C/+euvv87OnTv55JNPfnXv2LFj2O12YmJiCl2vUqUKx44dCzxzbjF+9v7Ze3/0jMfjISsri4iIiF/93pMnT+aJJ54I+usR+ZWIWNLMBeV4jF3luIiUDCaTifub348rzMW07dNI2p1EmjeNiW0mYjUH/a2ByO/yHjzITzNmcjo5GQBTeDgVBg0kbsgQLFFRBqcTEREREZHyLqifgL/77juSk5PJyckhISGBpk2bnvdvfPjwYcaMGUNycjLh4SVrD/PDDz/M+PHjA+97PB4uu+wyAxNJqRURg/tMOe6yBv8PSCIixWlA4wG4wlxM3DKR/377XzxeD8+0e4YwS5jR0aSUyzt5kpMvvEDqG2+CzwdmMzG39aLivfdhq1LZ6HgiIiIiIiJAEOX42rVr6dGjB1lZWQUfaLXy0ksv0bdv3/P6jXfs2MGJEydofs5+SZ/Px4YNG5g9ezYrVqwgJyeHtLS0QtPjx48fp2rVqgBUrVqVbdu2Ffq8x48fD9w7+79nr537jNPp/M2pcYCwsDDCwlQMSAhYbLjtBf8/c6lsEpES6Ja6txBtj+ah9Q+x5vAaRq0axaz2s4iya6pXgpefmcmppCRSFi4iPzMTgKiEBCo/MJ6wK64wOJ2IiIiIiEhhRd45/uijj9K5c2d+/PFHTp06xbBhw3jooYfO+zfu2LEjX3zxBZ9++mngV8uWLbn77rsDb9tsNlavXh34mK+//ppDhw7Rpk0bANq0acMXX3zBiRMnAs8kJyfjdDpp1KhR4JlzP8fZZ85+DpHidrYcjzHZDE4iIvLbOl7ekbmd5hJpi2TbsW0MWTmElOwUo2NJKeLPyyN16VL2J3bl5HPPk5+ZSXiTJlyelMRl8+aqGBcRERERkRLJ5C/iCVwxMTFs2bIlUDpnZmbidDo5fvw4cXFxIQmTkJBAs2bNePbZZwEYOXIk77//PklJSTidTu677z4AtmzZAhRMmjdr1oxLLrmEZ555hmPHjtGvXz+GDh3KU089BcDBgwdp0qQJo0ePZvDgwaxZs4b777+f5cuXk5iYWKRcHo8Hl8uF2+3G6XSG5GuV8uOvi5qz3JrLAzV6MjDhKaPjiIj8rt2ndjMyeSSp3lRqOmsyv/N8qkVVMzqWlGB+v5/09ev5afp0vPu+BcBWvTqVxo3F2a0bJnPQZ7+LiIiIiIhckGC63CL/xOLxeKhYsWLgfYfDQUREBG63+/yT/omZM2fSo0cPbrvtNuLj46latSrvvPNO4L7FYuG9997DYrHQpk0b+vbtS//+/Zk0aVLgmVq1arF8+XKSk5O56qqrmD59OgsXLixyMS5yodKsBduLXEX6ZygREeM0jmvMkm5LqBpZle8839Hvg34ccB8wOpaUUFlffMmhAQP54Z6RePd9i8XlosrDf6X2+8txde+uYlxEREREREq8Ik+Om81mlixZgsvlClzr06cPzz77LFWqVAlcu+mmm0Kf0mCaHJcLcdfL1/KFP5PnLu1O+05PGx1HRORPHcs4xvDk4Rx0HyQmLIZ5nebRuGJjo2NJCZFz+DA/zXwWz/vvA2Cy26nQvx9xw4dj0fdJIiIiIiJisGC63KDK8T9jMpnw+XxFS1mKqByXC3Hjv67hcH4WS6p0pnnXGUbHEREpktTsVEauGsnuU7txWB081+E5rq12rdGxxEB5qamcmjePlNf+Dbm5YDLhuukmKo25H9sllxgdT0REREREBCimtSr5+fl/+qssFuMiFyrNnwdATK7X4CQiIkUXGx7LosRFXFv1WjLzMhm5aiSrv1/95x8oZU5+djanFi5kf5dEUpa8DLm5RF53HbXeeZtLpjytYlxEREREREotLYMUKUa+fB+n/bkAOL0ZBqcREQlOpC2SOZ3m0PHyjuTm5zJ+/Xj+s+8/RseSi8Tv9+N+9132d7uRE9Omk3/6NGH163PZwoVc/tIiwhs2NDqiiIiIiIjIBVE5LlKMPDmewNuu7HQDk4iInJ8wSxjT2k3j1rq3ku/P57Etj5H0ZZLRsaSYZe3ezfd33c2Rh/5C3tGjWKtVo9rTk6n1zttE3XC90fFERERERERCwmp0AJGyzO11AxCVn48tN83gNCIi58dqtvLEdU/gCnORtDuJ6Tumk+pNZWzzsZhMJqPjSQjlpaby08xnSVu6FPx+TA4HFUeMoMKA/pjDw42OJyIiIiIiElIqx0WKUZq3oBB3+fIhK9XgNCIi589kMvFAyweICYvh2Z3P8tKXL+H2unm09aNYzBaj48kF8uflkfr6G/z03HPkewpe9eTs0YPKEx7EVqWKwelERERERESKh8pxkWJ0dnLcle9TOS4iZcKQpkNwhbl48qMneXvf23hyPExuO5kwS5jR0eQ8ZWzbxvF//BPvN98AENagAVUf+TuOli0NTiYiIiIiIlK8gi7HDx8+jMlkonr16gBs27aN1157jUaNGjF8+PCQBxQpzdw5Z8vxM5Pj+flg1qp/ESndbq93O067k79u/CvJ3ydz+PRhZrSbwWXOy4yOJkHIPXqUE1On4nn/AwAsLheVxo4h5o47MFn0agARERERESn7gm7p7rrrLtauXQvAsWPH6Ny5M9u2bePvf/87kyZNCnlAkdIsLbtgrUqMLx/8+ZBz2uBEIiKh0aVmF+Z2mktsWCxfpXzFHe/dwarvVxkdS4og3+vl5Lx57L+xe0ExbjYT0+f/qP3hB8T26aNiXEREREREyo2gy/Evv/ySa665BoA333yTJk2asGXLFl599VWSkpJCnU+kVAtMjvvP/FHTahURKUOurXYtb/Z8k6srX016bjrj1o1jyrYp5PpyjY4mv8Hv93N6zVoO9OjJT8/Owp+VRUSLFtR6aynVJk7EGhtrdEQREREREZGLKuhyPDc3l7Cwgr2iq1at4qabbgKgQYMGHD16NLTpREq5wM7xs7t4VY6LSBlTNbIqixIXMbDxQABe2fsKA1cM5Gi6vicoSbwHDnJ4+Ah+GDWK3MOHsVauzCVTp1LjlX8R3qiR0fFEREREREQMEXQ53rhxY+bNm8fGjRtJTk6ma9euABw5coS4uLiQBxQpzdK8Z9aqWCIKLqgcF5EyyGa28UDLB5jVfhbR9mg+/+lzer/Xmw0/bDA6WrnnS8/g+NSpHLj5ZjI2bgSbjbhhw6jzwfu4evbAZDIZHVFERERERMQwQZfjU6ZM4cUXXyQhIYE+ffpw1VVXAfDuu+8G1q2ISIHA5LgtquCCynERKcM6XN6BN3u8SeO4xri9bkavHs2snbPIy88zOlq54/f7cf/vf+zv1pWURS9Bbi6R7eKps+xdKj8wHnNkpNERRUREREREDGcN9gMSEhI4efIkHo+H2HN2Uw4fPhyHwxHScCKlXaAct0cXXFA5LiJlXPXo6rzc7WWmfjKV179+nYVfLOTTE5/yTPwzVHJUMjpeuZC1ezfH//FPsnbtAsBW43KqPPww0QkJxgYTEREREREpYYKeHIeCaaQdO3bw4osvcvr0aQDsdrvKcZFfCKxVCT/zD0kqx0WkHLBb7Py99d+ZGj8Vh9XB9uPb6b2sN9uObjM6WpmWl5rK0ccm8t3tvcnatQuTw0Gl8eOpvWyZinEREREREZHfEPTk+Pfff0/Xrl05dOgQXq+Xzp07Ex0dzZQpU/B6vcybN684coqUSoHJ8Ygz+/iz0gxMIyJycXWt1ZX6FerzwPoH2Je6j2HJwxh11SiGXTkMs+m8/n1efoM/L4/U19/gp+eeI9/jAcDZoweVH3wAW9WqBqcTEREREREpuYL+yXTMmDG0bNmS1NRUIiIiAtdvvfVWVq9eHdJwIqVZri+XzLxMAGIclQsuanJcRMqZWq5avHrjq9xS9xby/fnM/nQ2o1aNIjVb/z0MhYxt2zjY6zaO/+Mf5Hs8hDVoQI1X/sWl06aqGBcREREREfkTQU+Ob9y4kS1btmC32wtdr1mzJj/++GPIgomUdu6cgqlxEyaiI6sUXFQ5LiLlUIQ1gievf5LmlZvz1MdPsfnIZnov6820dtNoVrmZ0fFKpdyjRzkxdSqe9z8AwOJyUWnsGGLuuAOTxWJwOhERERERkdIh6Mnx/Px8fD7fr67/8MMPREdHhySUSFmQll2wQsUZ5sTsqFBwUeW4iJRjt15xK692f5WazpoczzzOoA8HsWT3Evx+v9HRSo18r5eT8+ax/8buBcW42UxMn/+j9ocfENunj4pxERERERGRIARdjnfp0oVnn3028L7JZCI9PZ2JEydy4403hjScSGkWOIwzLAYidCCniAhAvdh6vN7jdbrV7EaeP49p26cxdu1YPDkeo6OVaH6/n9Nr1nKgR09+enYW/qwsIlq0oNZbS6k2cSLW2FijI4qIiIiIiJQ6Qa9VmT59OomJiTRq1Ijs7Gzuuusu9u3bR8WKFfn3v/9dHBlFSqWza1VcdpfKcRGRc0TaIpkSP4UWVVow5ZMprDm8hq+Xfc30hOk0jmtsdLwSJ3vvXk5Mn0HGpk0AWCtXpvKECTh7dMdkMhmcTkREREREpPQKuhyvXr06n332Ga+//jqff/456enpDBkyhLvvvrvQAZ0i5Z3be6YcD/tFOe73g8oMESnnTCYTdza4kyYVm/DA+gf4Mf1H+r3fj7+0+gt31L9DpS+Q8/33/PTc83iWLy+4YLMRN3AgcSNGYImKNDaciIiIiIhIGRB0OQ5gtVrp27dvqLOIlClny/GCtSoxBRd9OZCbCXaVGiIiAI0rNuaNHm/w6OZHWXt4Lf/4+B/sOLGDiW0mEmkrn/+tzD1xgpNz55K29C3IywPAeeONVBpzP/YaNQxOJyIiIiIiUnYUqRx/99136datGzabjXffffcPn73ppptCEkyktDu7c9wV5gJ7FJitkJ9XMD2uclxEJMAV5mJW+1m8vOdlZu6YyQcHP2Dvqb3MSJjBFbFXGB3vovG53ZxauIiUf/0Lf3Y2AJHxbak8dizhjRoZnE5ERERERKTsKVI5fsstt3Ds2DEqV67MLbfc8rvPmUwmfD5fyMKJlGaF1qqYTAWrVTJ+KijHXdUNTiciUrKYTCYGNB7AlZWu5MH1D/Kd5zvuWn4Xj7R+hJvr3mx0vGKVn5VFyiuvcGrBQvI9BQeTRjRrRqXx44i85hqD04mIiIiIiJRdRSrH8/Pzf/NtEfl9hdaqQOFyXEREftPVla9mac+lPLzxYbYc2cIjmx9h54mdPHzNw4Rbw42OF1L+3FzS3n6bk3NeIO+nnwAIu+IKKo0bS1T79tq7LiIiIiIiUszOa+e4iPy5QmtVoPChnCIi8rsqhFdgbqe5LPh8AS989gLv7HuHL09+yfR206npqml0vAvmz/9/9u47rOr6f+P485zDXkdRhNyo5UgbauVom5ppImKOnKVWprkqR660YWVDy9TSTK3cCqLm+laWORqapmZaKuJCcHAQGQc45/cHwS+/9S2BAx/G/bguLvGcD59znz9SuXvxejtI2rCBhBnvkhEbC4B7lSoEDX2GgA4dMFksBicUEREREREpG8x5/YKhQ4fy7rvv/uXxmTNnMnz4cJeEEikNVI6LiOSf2WTmyZuf5MPWHxLoFciRS0fovr47G2M2Gh0t35xOJ8nffMPxiC6cefY5MmJjsVSoQPD48dTa8DnWsDAV4yIiIiIiIkUoz+X4qlWraNmy5V8eb9GiBStXrnRJKJHSICk9e2+synERkfy747o7WPnwSpoEN+FKxhWe//p5Xv3uVexZdqOj5UnKnp+I7d2Hk088SfqhQ5j9/AgaNpQ6mzcR2KsnZg8PoyOKiIiIiIiUOXkuxy9cuIDVav3L4wEBAZw/f94loURKOqfTmTs5ftXOcVA5LiKSR0E+QcxrM48BjQYAsOTXJfTZ0IeTSScNTvbv0o4c4eTTgznx6KOk/PgjJg8PAh97jNpbNlNx0CDMvr5GRxQRERERESmz8lyO16lTh40b//ojzRs2bKBWrVouCSVS0qVlpWF3ZE81qhwXESk4N7MbwxoP4/1W7xPgEcDBCweJWBvBkl+X4HAWv8PC7adOcWb0aI6HdSL5yy/BbKbcI12ovWkjwaNH4Va+vNERRUREREREyrw8H8g5cuRIhgwZQkJCAvfffz8AX3zxBW+99RbTp093eUCRksiWbgPAzeSGj5tP9oMqx0VECuzuqnez4uEVjN8+nh/ifuDV715ly4ktTGkxhar+VY2OR+b585yf8wGXli2DjAwA/Nu2JWjYUDw1RCAiIiIiIlKs5Lkcf/zxx0lPT+eVV17hpZdeAqBmzZrMnj2bPn36uDygSEn058M4TSZT9oO55XiiQalEREqHyn6VmddmHkt/Xcr0PdP5Ie4HOkd35tkmz/JI3Ucwm/L8g3EFlnX5Mhfmz+fiwkU4U1IA8G3RgqARI/Bu1LDI84iIiIiIiMi/y3M5DjBo0CAGDRpEQkIC3t7e+Pn5uTqXSImWMzmeexgngPcf61U0OS4iUmBmk5lH6z/KXVXuYsKOCew+t5uXv3uZLSe2MLnlZKr4VSmSHI60NC4tXsKFDz4gy5b9Z79Xo0ZUGjkC3+bNiySDiIiIiIiI5E++RqulDQoEAAAgAElEQVQyMzP5z3/+w+rVq3E6nQCcOXOG5ORkl4YTKan+chgnaK2KiEghqBZQjflt5zPm9jF4Wbz4Lu47Oq/pzPLDy3P/jVIYnJmZXFqxgqMPtiP+jTfIstnwqFWLKu+9S83ly1SMi4iIiIiIlAB5nhw/ceIEDz74ILGxsaSnp9O6dWv8/f15/fXXSU9PZ86cOYWRU6RE+fvJcZXjIiKFwWwy07N+z+wp8u0T2BO/h5d2vZQ9Rd5iMpX9KrvstZxOJ5c3bSZhxgzsx48D4HbddQQNGYI1rCMmt3z9UJ6IiIiIiIgYIM+T48OGDaNp06ZcunQJb2/v3MfDw8P54osvXBpOpKT6x3I8IwUy0gxIJSJSulUPqM7HD37MqNtG4WXxYtfZXXSO7szKIytdMkWesns3MY905fTw4diPH8dSvjyVxoym9sYNlIvorGJcRERERESkhMnzd3Hbtm1jx44deHh4XPV4zZo1OX36tMuCiZRkf7tWxdMKmAAnpCWCe4gh2URESjOzyUzvBr25u+rdTNg+gZ/if2Lyzsm5U+Qhvnn/szfj7Fnip71J0uefZ7+Gjw+Bjz1G4GP9sOjcFRERERERkRIrz5PjDoeDrKysvzx+6tQp/P39XRJKpKT728lxs/lPh3ImGpBKRKTsqBFQg4/bfsxzTZ/D0+LJjjM7CF8TzurfVl/zFLkjNZWE99/naLuHsotxk4lyXbtSe8tmgp4ZomJcRERERESkhMtzOd6mTRumT5+e+3uTyURycjKTJk3ioYcecmk4kZLqb8tx0N5xEZEiZDFb6HtjX1Y8vIKbg24mOSOZSTsmMeiLQcRdifufX+d0OknasIGj7dtz/r2ZONPS8G7ahNBVK7luymTcKlQownchIiIiIiIihSXP5fhbb73F9u3badCgAWlpaTz66KO5K1Vef/31wsgoUuL87VoVUDkuImKAUGsoCx9cyLNNnsXD7MH209vpvKYzkb9F/mWKPO3QIWJ79+H0iJFknjmL23XXUeWdt6nxySd4NWhg0DsQERERERGRwpDnneNVq1Zl3759LF26lJ9//pnk5GT69+9Pz549rzqgU6Qss9n/mBz30OS4iEhxYDFb6NewH3dXu5sJ307g5/M/M3HHRLac2MKk5pOokO5Owox3SVyxAhwOTF5eVBgwgAr9H8esf9+IiIiIiIiUSnkuxwHc3Nzo1auXq7OIlBpaqyIiUjzVstZiUbtFLPxlIe//9D47Yr/h/eh2dN3uxHIlDYCAh9pR6bnncK9c2eC0IiIiIiIiUpjyVY4fPnyY9957j0OHDgFQv359hgwZQr169VwaTqQkcjqdueW41qqIiBQ/FrOFxxs+zl2n/Ih79VUqxqcCkFDNn9qTXqHKna0NTigiIiIiIiJFIc87x1etWkXDhg3ZvXs3N998MzfffDN79uyhUaNGrFq1qjAyipQoyRnJZDmzAE2Oi4gUR/aYGE4+NYjM4ZOoGJ9Ohr838x5yZ8ijKTxychJrj679yy5yERERERERKX3yPDk+atQoxo4dy5QpU656fNKkSYwaNYqIiAiXhRMpiXIO4/SyeOHl5nX1kyrHRUQMk5WczPnZs7m46BPIyAA3NwJ79qTi4KcZlBXP6e3jOXjhIC98+wKbT2xmYrOJBPkEGR1bRERERERECkmeJ8fPnj1Lnz59/vJ4r169OHv2rEtCiZRkSelJAAR4Bvz1SZXjIiJFzulwkLhqNUcfbMfFj+ZDRga+d91Freg1BI8dgyUggDrl6/DpQ58y9NahuJnd2HpyK53WdGLdsXWaIhcRERERESml8lyO33vvvWzbtu0vj3/77bfcddddLgklUpLlTI7/Zd84qBwXESliKXt+IuaRrpwdN46s8+fxqFGDqnNmU33uh3jWqnXVtW5mNwbeNJDlHZbToEIDkuxJjN02luFfDed86nmD3oGIiIiIiIgUljyvVenYsSOjR49m9+7dNGvWDIBdu3axYsUKJk+eTHR09FXXipQ1KsdFRIyXERdH/Ftvk7R2LQBmX18qDh5MYK+emDw8/vFrry9/PZ8+9Cnz989nzs9z+PLkl+yO380Lt79Au9B2mEymongLIiIiIiIiUshMzjz+rLDZfG3D5iaTiaysrHyFKm6SkpKwWq3YbDYCAv5mVYbInyw+tJip30+ldY3WvH3v21c/ef43mNkUPK0wNtaYgCIipZgjLY2LCxZw/oMPcaamgsmENaIzlYYPx61ixTzf7/DFw0zYPoFDFw8B8ED1BxjXbBwVvfN+LxERERERESl8eely87xWxeFwXNNHaSnGRfLKlm4DwOpp/euTOZPj6TbIyizCVCIipZvT6SRp02aOte9AwvQZOFNT8W7cmJorVlD55ZfzVYwD1A2sy2ftP+PpW57GzeTGf2L/Q8eojqw4sgKH0+HidyEiIiIiIiJFKc/luIj8M5s9uxz/27UqXn96LM1WRIlEREq3tMOHie33GKeHDSPj9GncgoOp/Oab1PjsU7wb3ljg+7ub3Rl08yCWdlhK/cD6XLZfZsrOKfTe0JvDFw+74B2IiIiIiIiIEa65HN+5cyfr1q276rFFixYRGhpKpUqVeOKJJ0hPT3d5QJGSJmfnuNXjbybHLW7g+cePc2jvuIhIgWReukTclCkcD+9MynffYfL0pOLTg6i94XOsHdq7fDd43cC6LG6/mDG3j8HX3ZefE36m27puvPnDm6RkpLj0tURERERERKTwXXM5PmXKFA4ePJj7+/3799O/f38eeOABxowZw9q1a5k6dWqhhBQpSXLL8b9bqwLg/cf0uMpxEZF8cWZmcvGTTzn6YDsuLV4CDgf+Dz5IrfXrCRo6FLOPT6G9tpvZjZ71e7ImbA1tarQhy5nFwl8W0jGqI1/EfkEej3IRERERERERA11zOb53715atWqV+/ulS5dyxx13MHfuXEaOHMm7777L8uXLCyWkSEmSlJ4E/FM5/sfecZXjIiJ5Zj91ihO9enPulVdw2Gx41q1L9YULqTr9HTyqVimyHMG+wbx171vMajWLKn5VOJdyjuFfDWfol0M5k3ymyHKIiIiIiIhI/l1zOX7p0iWCg4Nzf//111/Trl273N/fdtttnDx50rXpREqgnMnxv905DirHRUTyyRYdzfGwTqTu3YvZz4+QSRMJXbUS3ztuNyzTXVXvIiosioGNBuJmdmPrqa10WtOJ+Qfmk+HIMCyXiIiIiIiI/LtrLseDg4M5fvw4AHa7nT179tCsWbPc5y9fvoy7u7vrE4qUMLb0fziQE1SOi4jkUdbly5x+7nnOjBqN48oVvG+9ldCoSMr36IHJzc3oeHi5eTG08VBWPbyKpsFNSc1M5Z3d79B1bVf2nNtjdDwRERERERH5H665HH/ooYcYM2YM27ZtY+zYsfj4+HDXXXflPv/zzz9Tu3btQgkpUlJkObK4bL8MQEDOwZv/TeW4iMg1S9m9m+NhnUhatw4sFio+M4QanyzCo2pVo6P9Ra1ytZjfdj6v3PkK5T3L83vi7/Td2JdJOyaRmJZodDwRERERERH5L9dcjr/00ku4ublxzz33MHfuXObOnYuHh0fu8/Pnz6dNmzaFElKkpEiyJ+Ek+zA27RwXEck/Z2YmCe++y4nefcg4cwb3qlWp8eknBA0eXCymxf8Xk8lEx9odWRu+lojrIwBY/dtqHo56mKjfo3Rgp4iIiIiISDFyzd9dVqxYkW+++QabzYafnx8Wi+Wq51esWIGfn5/LA4qUJDkrVXzdfXE3/481QyrHRUT+kT02ljPPjyJ13z4ArGFhBE8Yj6UE/TvD6mnlxRYvElYnjJd2vcRvl35jwvYJRP0exYRmE6hdTj9tJyIiIiIiYrRrnhzPYbVa/1KMAwQGBl41SS5SFv3rYZygclxE5H9wOp0kRkVxvFM4qfv2Yfb3p/Jbb1L59ddKVDH+Z7dWupVlHZbxbJNn8XbzZve53XSJ7sKMPTNIzUw1Op6IiIiIiEiZludyXET+t5zJ8f+5UgVUjouI/I0sm40zzz7L2TFjcaSk4N20CbWiIrG2b290tAJzN7vTr2E/1oSt4d5q95LpzGTe/nmErwnnm1PfGB1PRERERESkzFI5LuJCNvsf5biHynERkWuV8sMPHOsUTtLnG8BiIWj4MGosXIh7lSpGR3Op6/yu473732PGfTMI8Q3hdPJpBn8xmJFbRxJ3Jc7oeCIiIiIiImWOynERF0pM01oVEZFr5czIIP6d6Zzo05fMs2dxr16dmos/o+JTT2H6mxVupcX91e9nTdgaHrvxMSwmC1tObCEsKoxPfvmETEem0fFERERERETKDJXjIi6UOzl+LWtV0hLB4SiCVCIixY/9xAliHu3JhQ8+AKcTa3g4oatX433zzUZHKxI+7j6MbDqSZR2WcXPQzaRkpvDGD2/QY30P9ifsNzqeiIiIiIhImaByXMSFrmnnuNcfU+VOB6QnFUEqEZHiw+l0krhqNcfCO5O2fz/mgACqvPM2lae+isXP1+h4Ra5uYF0WtVvEpOaTCPAI4NeLv9Lz8568vOtlkuz6O0JERERERKQwqRwXcaHE9GtYq+LuBW7e2Z9rtYqIlCFZNhunR4zk7LhxOFNS8GnalFpRkQS0a2d0NEOZTWa63NCF6E7RdKzdESdOlh1eRsfIjqw/th6n02l0RBERERERkVJJ5biIC13T5Dho77iIlDlXvvueY2GduLxxI7i5ETRyJNUXLsC9cmWjoxUbFbwr8MqdrzC/7XxqBtTkQtoFxmwbw8AtA4mxxRgdT0REREREpNRROS7iQirHRUSu5rTbiX/rbWL79SMzLg6PGjWouWQxFZ8YWKoP3SyI20JuY1XHVTxz6zN4Wjz57ux3dI7uzOy9s8nIyjA6noiIiIiISKmhclzEhXLK8X9cqwIqx0WkTEg/fjz70M25c7MP3ewSQejqVXg3amR0tGLPw+LBEzc9QWTHSFpWaUmGI4NZ+2bRY30PDl88bHQ8ERERERGRUkHluIgL5ewc//fJ8T/Kc5XjIlIKOZ1OEleu5HjnCNIOHMBstVJlxgwqv/wyZt+yd+hmQVQLqMbsVrN54+43KOdZjsOXDtN9XXdm75tNhkNT5CIiIiIiIgWhclzERTKyMkjJTAHyMjmeWMipRESKVualS5weOoyz4yfgTE3F5447qLUmioC2bYyOVmKZTCbahbYjMiySVtVbkenMZNbeWfRc35Mjl44YHU9ERERERKTEUjku4iI2e/ZKFRMm/D38//lirVURkVLoyq5dHO8UzuUtW8DNjUrPPUv1+R/hHhJidLRSoaJ3Rd659x1ev+t1rJ5WDl08RLd13fhg3weaIhcREREREckHleMiLpKYlj0FHuAZgNn0L/9pqRwXkVLEabdzbto0Yh97nMxz5/CoWZOaS5dSYcAAHbrpYiaTiYdqPURUWBT3VbuPTEcmM/fOpNfnvfjt0m9GxxMRERERESlRVI6LuEjOvvF/XakCKsdFpNRIP3aMmO49uPjRfHA6Kde1a/ahmw1vNDpaqVbRuyIz7pvB1LumEuARwC8XfqHbum7M/XkumY5Mo+OJiIiIiIiUCCrHRVwkZ62K1eNfDuMEleMiUuI5nU4uLVuefejmL79gsVqp8t67XDdlMmYfH6PjlQkmk4kOtToQFRbFvVXvJcORwbs/vUuvz3txNPGo0fFERERERESKPUPL8dmzZ3PTTTcREBBAQEAAzZs3Z8OGDbnPp6WlMXjwYCpUqICfnx8RERGcO3fuqnvExsbSvn17fHx8qFSpEs8//zyZmVdPTG3dupXGjRvj6elJnTp1WLBgQVG8PSljbOl/lOOeKsdFpHTLvHiRU4OHEDdpEs60NHyaNyM0OpqA1q2NjlYmBfkE8e797/Lqna/i7+HPwQsHeWTtI8zbP09T5CIiIiIiIv/A0HK8atWqvPbaa+zevZsff/yR+++/n7CwMA4ePAjAiBEjWLt2LStWrODrr7/mzJkzdO7cOffrs7KyaN++PXa7nR07drBw4UIWLFjAxIkTc685fvw47du357777mPv3r0MHz6cAQMGsGnTpiJ/v1K65ZTjWqsiIqVZ8jffcKxjGMlffonJ3Z1Ko0ZR/aOPcA+uZHS0Ms1kMvFw7YeJCovi7qp3k+HIYMaeGfTZ0IdjiceMjiciIiIiIlIsmZxOp9PoEH8WGBjItGnT6NKlC0FBQSxevJguXboA8Ouvv1K/fn127txJs2bN2LBhAx06dODMmTMEBwcDMGfOHEaPHk1CQgIeHh6MHj2a9evXc+DAgdzX6N69O4mJiWzcuPGaMiUlJWG1WrHZbAQEBLj+TUup8M7ud5h/YD696vdi9O2j//nixJMwvSGY3WFCAphMRRNSRCSfHGlpxE97k0uffQaAR53aVHnzTbzq1TM4mfw3p9NJ9NFoXv/+dS5nXMbD7MGQW4fQp0EfLGYdkCoiIiIiIqVbXrrcYrNzPCsri6VLl3LlyhWaN2/O7t27ycjI4IEHHsi9pl69elSvXp2dO3cCsHPnTho1apRbjAO0bduWpKSk3OnznTt3XnWPnGty7vF30tPTSUpKuupD5N/ka62KIwPsVwoxlYhIwaUdOsTxLl1yi/HyvXoRunKlivFiymQyEVYnjMiwSO6scid2h523d79Nn419OGbTFLmIiIiIiEgOw8vx/fv34+fnh6enJ0899RSRkZE0aNCAuLg4PDw8KFfu6hUVwcHBxMXFARAXF3dVMZ7zfM5z/3RNUlISqampf5tp6tSpWK3W3I9q1aq55L1K6ZanctzDN3tqHLRaRUSKLafDwYWP5hPTtRv2349iqViRanM/JGT8OMxeXkbHk38R7BvMrFazmNJiCn7ufvyc8DOPRD/CwoMLyXJkGR1PRERERETEcIaX43Xr1mXv3r189913DBo0iL59+/LLL78Ymmns2LHYbLbcj5MnTxqaR0qGxPRE4Bp3jptM2jsuIsVaRlwcsY/3J37aNJwZGfjdfz+1otfgd9ddRkeTPDCZTIRfH05kWCQtK7fE7rDz5o9v0m9jP2JsMUbHExERERERMZTh5biHhwd16tShSZMmTJ06lZtvvpkZM2YQEhKC3W4nMTHxquvPnTtHSEgIACEhIZw7d+4vz+c890/XBAQE4O3t/beZPD09CQgIuOpD5N/klOPXNDkO/1+OpyX+83UiIkUsaeMmjoV1ImXXLkze3oRMnkzV92fiFhhodDTJpxDfEGY/MJsXm7+Ir7svexP20mVtFxYdXKQpchERERERKbMML8f/m8PhID09nSZNmuDu7s4XX3yR+9zhw4eJjY2lefPmADRv3pz9+/cTHx+fe82WLVsICAigQYMGudf8+R451+TcQ8RVktKzd9PnuRzX5LiIFBNZyVc4M/YFTg8fjsNmw6thQ0JXr6J8t66YdHBwiWcymYi4IYLIjpE0v6456VnpTPtxGo9teowTSSeMjiciIiIiIlLkDC3Hx44dyzfffENMTAz79+9n7NixbN26lZ49e2K1Wunfvz8jR47kq6++Yvfu3Tz22GM0b96cZs2aAdCmTRsaNGhA79692bdvH5s2bWL8+PEMHjwYT09PAJ566imOHTvGqFGj+PXXX5k1axbLly9nxIgRRr51KWWcTmfe1qqAynERKVZSfvqJ4+Hh2CIjwWSiwpNPUnPJYjxDQ42OJi52nd91fND6AyY2n4iPmw8/xf9El+gufPrLpzicDqPjiYiIiIiIFBk3I188Pj6ePn36cPbsWaxWKzfddBObNm2idevWALzzzjuYzWYiIiJIT0+nbdu2zJo1K/frLRYL69atY9CgQTRv3hxfX1/69u3LlClTcq8JDQ1l/fr1jBgxghkzZlC1alXmzZtH27Zti/z9SumVlpWG3WEHVI6LSMnizMzk/Ow5nJ8zB7KycK9cmcpvvI5P06ZGR5NCZDKZeOSGR2hZuSUTd0zku7Pf8foPr7PlxBZeavkS1QOqGx1RRERERESk0JmcTqfT6BDFXVJSElarFZvNpv3j8rfirsTRemVr3Exu7Om959rWD2x8AXa9Dy2HQesp/369iIiL2WNjOfP8KFL37QMg4OGHCZk4AYu/v8HJpCg5nU5WHFnBWz++RUpmCt5u3gxrPIwe9XpgNhW7DXwiIiIiIiL/KC9drr7jEXGBPx/Gec17eTU5LiIGcTqdJK5azfFO4aTu24fZ35/Kb75JlWlvqBgvg0wmE13rdmV12GruCLmD1MxUXvv+Nfpv6s/JyyeNjiciIiIiIlJoVI6LuIAt3Qbk4TBOAO8/1q+oHBeRIpR56RKnhw3n7LhxOFJS8GnalFpRkVg7tDc6mhisil8VPmzzIePuGIe3mzc/nvuRiOgIFh9aTJYjy+h4IiIiIiIiLqdyXMQF8nwYJ/xpcjyxEBKJiPzVlR07OB7WicubN4ObG0EjR1J94QLcq1QxOpoUE2aTme71urO642puC7mN1MxUpn4/la7ruvL92e+NjiciIiIiIuJSKsdFXCB/k+NaqyIiRcNht3PutdeJfbw/mfHxeISGUnPpUio+MRCTxWJ0PCmGqvpXZV6beYy7YxwBHgEcuXSE/pv7M/yr4Vq1IiIiIiIipYbKcREXUDkuIsVV+m+/EfNIVy4uWABAue7dCF21Eu+GNxobTIq9nCny9eHr6VGvBxaThS9ivyAsKox3dr9Dsj3Z6IgiIiIiIiIFonJcxAUKtlZF5biIuJ7T6eTiok84HtGF9MOHsQQGUnXWLK578UXMPj5Gx5MSpJxXOV644wVWPrySFpVbkOHIYP6B+XSI7MDq31ZrH7mIiIiIiJRYKsdFXKBAk+MZKZCRVgipRKSsyoiP5+TAJzj36qs47XZ8776LWmui8L//PqOjSQlWp3wd5jwwh5n3z6RGQA0upF1g0o5J9Fjfg93ndhsdT0REREREJM9Ujou4QL7Kcc8AMP3xn2CaDuUUEde4/MUXHA/rxJVvv8Xk6UnwhPFU++AD3IKCjI4mpYDJZOKeavcQ2TGS55o+h7+7P4cuHqLfxn48u/VZTiefNjqiiIiIiIjINVM5LuIC+VqrYjaD1x/Xa7WKiBSQIyWFsxMmcmrwELIuXcKzXj1CV60ksGdPTCaT0fGklHG3uNP3xr6s67yOR254BLPJzOYTm+kY2ZF397xLSkaK0RFFRERERET+lcpxERew2f+YHPfIw+Q4aO+4iLhE6v4DHO8cQeKKFWAyEfj449RcvgzPOnWMjialXKBXIBObT2R5h+XcEXIHdoedufvn0iGyA2t+X4PD6TA6ooiIiIiIyP+kclzEBfK1VgVUjotIgTgdDi589BExPXpgj4nBLSSE6h/PJ3jU85g9PIyOJ2VI3cC6zG0zl+n3TaeafzUSUhMYv308Pdf3ZG/8XqPjiYiIiIiI/C2V4yIF5HQ6c8vxPK1VAZXjIpJvmQkJnBwwkPhpb0JmJv5t21JrTRS+zZoZHU3KKJPJRKvqrYgKi2JEkxH4uvty4MIBem/ozahvRhF3Jc7oiCIiIiIiIldROS5SQMkZyWQ5swBNjotI0Ujeto1jncK5smMHJi8vQqZMpsr0d7BY8/hnkEgh8LB48HjDx1kXvo7O13fGhIkNxzfwcOTDzNo7i9TMVKMjioiIiIiIACrHRQos5zBOL4sXXm5eeftileMikgdOu51zr7/ByYFPkHXhAp433EDoyhWU79pVh25KsVPRuyKTW0xmWYdlNAluQlpWGrP3zebhyIdZf2w9TqfT6IgiIiIiIlLGqRwXKaCk9CQAAjwD8v7FKsdF5BrZY2KI6fEoFz/+GIDyPXtSc8VyHbopxV79CvX5uO3HvHXPW1Txq8K5lHOM2TaG3ht6c+D8AaPjiYiIiIhIGaZyXKSAcibH87xvHFSOi8g1sa1Zw/HOEaQdPIjFaqXq+zMJmTAes6en0dFEronJZKJNzTas6bSGobcOxdvNm30J++ixvgfjvh3HuSvnjI4oIiIiIiJlkMpxkQLK92GcoHJcRP5RVvIVTo8axZnRY3CkpOBz222EronCv1Uro6OJ5IunxZOBNw1kXfg6OtbuCED00WgejnqYD/Z9QFpmmsEJRURERESkLFE5LlJAOZPjeT6ME1SOi8j/lLr/AMc7dyYpei1YLAQNG0r1BR/jHhJidDSRAqvkU4lX7nyFpe2XckvQLaRmpjJz70zCosLYGLNR+8hFRERERKRIqBwXKaCcyXGV4yLiCk6HgwsfzSemRw8yYmNxq3wdNT5ZRMVBgzBZLEbHE3GpGyveyKJ2i3jj7jcI8Q3hzJUzPP/18/Tb2I9fLvxidDwRERERESnlVI6LFJDN/kc57lGQcjzRhYlEpKTKTEjg5MAniJ82DTIz8W/bllqRkfg0bmx0NJFCYzKZaBfajuhO0Tx9y9N4WbzYE7+H7uu6M3H7RM6nnjc6ooiIiIiIlFIqx0UKqGAHcv7xNelJkJXhwlQiUtIkb/uWY53CubJ9OyYvL0KmTKbK9HewWPPxP95ESiBvN28G3TyIteFraV+rPU6cRP4eSYfIDny0/yPsWXajI4qIiIiISCmjclykgAq0c9zrT4V6ms1FiUSkJHHa7Zx7YxonBw4k68IFPG+4gdCVKyjftSsmk8noeCJFLsQ3hNfueo1PH/qURhUbcSXjCtP3TCcsKoz/nPiP9pGLiIiIiIjLqBwXKaCk9CQgn+W4xQ08A7I/195xkTLHHhNDTI9HuTh/PgDle/ak5orleNapY3AyEePdHHQznz70Ka/e+SqVvCtxKvkUI7aOoP/m/hy+eNjoeCIiIiIiUgqoHBcpoAKtVYH/X62iclykTLGtWcPxzhGkHTyIxWql6vszCZkwHrOnp9HRRIoNs8nMw7UfZm34Wp686Uk8LZ78EPcDXdd1ZfLOyVxIvWB0RBERERERKcFUjosUkC09ex1K/svxnEM5VY6LlCjYr8kAACAASURBVAVZyVc4PWoUZ0aPwZGSgs9ttxG6Jgr/Vq2MjiZSbPm4+zDk1iFEd4rmwZoP4nA6WHlkJR0iO7Dw4EIydG6HiIiIiIjkg8pxkQLIcmRx2X4ZgICc9Sh5pXJcpMxI3X+A4507kxS9FiwWgoYNpfqCj3EPCTE6mkiJUNmvMtPumcbCBxfSoEIDkjOSefPHN+m0phNfxX6lfeQiIiIiIpInKsdFCiDJnoST7G/E87VzHFSOi5QBToeDCx/NJ6ZHDzJiY3GrfB01PllExUGDMFksRscTKXEaBzdmSfslTGkxhYreFYm9HMvQr4byxJYn+O3Sb0bHExERERGREkLluEgB5KxU8XX3xd3snr+bqBwXKdUyExI4OfAJ4qdNg8xM/Nu2pVZkJD6NGxsdTaREM5vMhF8fzrrwdfRv2B93szu7zu6iy9ouvLzrZS6l6e9VERERERH5ZyrHRQqgwIdxgspxkVIsedu3HOsUzpXt2zF5eREyZTJVpr+DxZrPnzQRkb/wdfdleJPhrOm0htY1WuNwOlh2eBntI9vz6S+fkuHQPnIREREREfl7KsdFCiDJngQUYKUKqBwXKYWcdjvn3pjGyYEDybpwAc8bbiB05QrKd+2KyWQyOp5IqVTNvxpv3/s289vOp275uly2X+b1H14nIjqCbae2GR1PRERERESKIZXjIgWQMzlu9VA5LiLZ7DExxPR4lIvz5wNQvmdPaq5YjmedOgYnEykbbgu5jWUdljGp+SQCvQI5bjvO0188zaD/DOJY4jGj44mIiIiISDGiclykABLTtFZFRP6fbe1ajneOIO3gQSxWK1Xfn0nIhPGYPT2NjiZSpljMFrrc0IV14evod2M/3MxufHv6WzpHd+a171/LPTNERERERETKNpXjIgVgs2d/cx3gGZD/m6gcFynxnA4H8W+9zZnnR+FIScHnttsIXROFf6tWRkcTKdP8Pfx5tumzRIVFcW+1e8lyZvHZoc9oH9meJb8uIdORaXREERERERExkMpxkQLImTzT5LhI2eVIS+P0yGe5MHcuABUGPUX1BR/jHhJicDIRyVEjoAbv3f8eH7b+kDrl6mBLt/Hqd6/yyNpH2HFmh9HxRERERETEICrHRQogZ+e4a8rxRHA4XJBKRIpK5sWLxPZ7jMsbN4K7O5Vff41Kw4ZhsliMjiYif6N55easeHgF4+8YTznPcvye+DtPbnmSZ754hhhbjNHxRERERESkiKkcFymAnMlxq2cBDuT0yinWnaAdqCIlRvqxY8R0607q3r2YrVaqfzQPa1iY0bFE5F+4md3oVq8b68LX0at+L9xMbmw9tZXw6HCm/TCNJHuS0RFFRERERKSIqBwXKQCXlOPuXuDuk/25VquIlAhXvvuemB6PknHyJO7VqlFzyRJ8b7/d6FgikgdWTyujbx/NqrBV3FXlLjIdmSz6ZREdVndg8aHFZGRlGB1RREREREQKmcpxkQJwyc5x0N5xkRIkMSqK2AEDcNhseN9yCzWXLcWzVqjRsUQkn2pZazHrgVnMfmA2odZQLqVfYur3U+kY1ZHPj32Ow6mVZyIiIiIipZXKcZECyNk5XqDJcVA5LlICOJ1OEt59j7NjxkJGBv7tHqT6wgW4BQYaHU1EXODOKneyquMqxt8xngpeFTiVfIrR20bTfV13tp/ejtPpNDqiiIiIiIi4mMpxkXzKyMogJTMFcOXkeGIBU4lIYXDY7ZwZNZrzs2YBUOGJJ6jy1luYPT0NTiYiruRudqdbvW583vlznrn1GXzdfTl08RBP/ecpBm4eyIHzB4yOKCIiIiIiLqRyXCSfbPbslSomTPi5+xXsZt5/lOuaHBcpdjIvXSL28cdJWrsW3Ny47uWXqDRyBCaz/goVKa183H144qYn2NB5A70b9Mbd7M53cd/RY30PRm4dSYwtxuiIIiIiIiLiAvrOXiSfEtOyp7wDPAOwmC0Fu5kmx0WKJfuJE5zo3oPUH3dj9vOj+ocfUK5LF6NjiUgRKe9VnlG3jWJd+Do61u6ICRNbTmyh05pOTN45mfiUeKMjioiIiIhIAagcF8mnnH3jBV6pAto5LlIMpezZQ0y37thPnMC9cmVqLlmMb4sWRscSEQNU9qvMK3e+wsqOK7mn6j1kObNYeWQl7Ve3Z8aeGSTZk4yOKCIiIiIi+aByXCSfctaqWD0KeBgnqBwXKWZs69cT27cfWYmJeDVqRM1lS/G8/nqjY4mIwW4ofwMzW81k4YMLuSXoFtKy0pi3fx4PrX6IBQcWkJ6VbnREERERERHJA5XjIvlkS/+jHPdUOS5SWjidTs7PmcOZZ5/DmZGBf+sHqLFoIW5BQUZHE5FipHFwYxa1W8SM+2ZQ21obW7qNt3a/RYfIDkT+FkmWI8voiCIiIiIicg1Ujovkk8pxkdLFabdzdtx4EqbPACDwsceoMn06Zm9vg5OJSHFkMpm4v/r9rOq4iiktphDsE0zclTgm7phIl7Vd+Cr2K5xOp9ExRURERETkH6gcF8kn7RwXKT2ykpKIfeJJbKtXg9lMyKSJBI8ehclSwMN2RaTUs5gthF8fzrrwdTzb5FkCPAL4PfF3hn41lL4b+7Ln3B6jI4qIiIiIyP+gclwknzQ5LlI62E+dIqbHo6Ts2oXZx4dqc2ZTvkcPo2OJSAnj5eZFv4b92BCxgQGNBuBl8eKn+J/ou7Evz3zxDL9d+s3oiCIiIiIi8l9UjovkU6GV4/oRbJEik7pvHzHdumM/ehS34GBqLP4Mv7vvNjqWiJRgAR4BDGs8jPWd19Plhi5YTBa2ntpKRHQE474dx5nkM0ZHFBERERGRP6gcF8mnQlmr4sgA+5WC309E/lXSps2c6NOXrAsX8GxQn5rLl+FVr57RsUSklKjkU4lJzScRGRZJ6xqtceIk+mg0HSI7MO2HaSSmJRodUURERESkzFM5LpJPNrsLJ8fdfcDikf25VquIFCqn08mFjz7i9PDhONPT8bvnHmp+8gnuwcFGRxORUijUGsrb977N4ocWc3vI7WQ4Mlj0yyLarW7Hhz9/SEpGitERRURERETKLJXjIvlkS3NhOW4yae+4SBFwZmYS9+Jk4qe9CU4n5Xv2pOr7MzH7+hodTURKuUZBjZjXZh5zHphD3fJ1Sc5I5r2f3qN9ZHuWH15OhiPD6IgiIiIiImWOynGRfHA6na5dqwIqx0UKWVZyMiefGkTismVgMhH8wlhCJozH5OZmdDQRKSNMJhMtq7Rk+cPLee2u16jiV4Xzqed5addLhK8JJ/poNBlZKslFRERERIqKynGRfEjLSsPusANg9XDB5DioHBcpRBlnz3Li0Z5c+fZbTN7eVJ35HoF9+hgdS0TKKLPJTPta7VnbaS1jbx9LoFcgJ5JOMO7bcTy46kHm7Z+Xe/C3iIiIiIgUHpXjIvmQ8w2rm8kNX3cXrWPILccvuuZ+IgJA6oGDxHTtRvqRI1iCKlLjk0/wb9XK6FgiIrhb3Hm0/qN83vlzhjUeRpB3EPGp8czYM4PWK1sz9bupnLx80uiYIiIiIiKllspxkXzIWali9bRiMplcc1O/Pw4DtJ1yzf1EhMtffsWJ3r3JTEjA8/rrCV22DO+GNxodS0TkKr7uvgxoNICNERt5ueXLXF/+elIzU1n862I6RHZg5NaR7I3fa3RMEREREZFSR+W4SD7kTI675DDOHEF1s39NOOy6e4qUYRcXfcKpwYNxpqbi27IlNZYsxr1yZaNjiYj8Tx4WD8LqhLHq4VV80PoDWlZuicPpYMuJLfTe0Jten/diy4ktZDmyjI4qIiIiIlIq6BQykXxw+WGcABVvyP5V5bhIgTizsjg39TUuffopAOW6ds0+eNPd3eBkIiLXxmQy0aJyC1pUbsFvl35j0S+LWH9sPfsS9jFy60iq+lWlV4NehNcJx8fdx+i4IiIiIiIllibHRfKhcCbH62X/evEYZNpdd1+RMsSRksKpZ4bmFuOVnn+OkMkvqhgXkRLr+vLX81LLl9jcZTMDGw3E6mnlVPIpXvv+NR5Y+QDTd08nPiXe6JgiIiIiIiWSynGRfCiUcjygMnj4gzMLLh513X1FyojM8+c50acvyV9+icnDgyrTp1Ohf3/XnQsgImKgit4VGdp4KJsjNjPujnFU96/OZftlPjrwEW1XtWXct+M4fFE/fSYiIiIikhcqx0XyoVDWqphMEKTVKiL5kX70KDHdupN24ACWcuWovmABAQ+2NTqWiIjL+bj70L1ed6I7RTP9vuk0rtSYTEcm0Uej6bK2CwM3D+Tb09/idDqNjioiIiIiUuxp57hIPhTK5DhAxbpwerfKcZE8SPnhB04OHoIjKQn3GtWp/sEHeNSsaXQsEZFCZTFbaFW9Fa2qt2J/wn4W/rKQLSe2sOvsLnad3UWdcnXo06AP7Wu1x8PiYXRcEREREZFiSZPjIvlQaOV4UN3sX8+rHBe5FrZ164l9vD+OpCS8b7mFmkuWqBgXkTKnUVAj3rznTT7v/Dm96vfCx82H3xN/Z+KOibRZ2YYP9n3ApbRLRscUERERESl2VI6L5IPNnl2Ou3StCvx/OZ5wxLX3FSllnE4n5z+cy5nnnsOZkYF/mzZUX/AxboGBRkcTETFMFb8qjL59NFse2cLIJiMJ9gnmQtoFZu6dSZuVbXhp50vE2GKMjikiIiIiUmyoHBfJh5yd41aPwpocPwKOLNfeW6SUcGZmEjfpRRLefhuAwH79qDL9HcxeXgYnExEpHgI8Anis4WNsiNjAa3e9Rv3A+qRlpbH8yHI6RnXkmS+f4ce4H7WXXERERETKPO0cF8mHQlurUq4GWDwhKx0ST0BgLdfeX6SEy0q+wumRI7jyzTYwmQh+4QUCe/cyOpaISLHkbnanfa32PBT6ED+e+5GFBxfy9amv2XpyK1tPbuXGCjfS98a+tK7RGjezvi0QERERkbJHk+MieeR0OguvHDdboOL12Z/rUE6Rq2Sci+dEn95c+WYbJi8vqs58T8W4iMg1MJlM3BZyGzNbzWRNpzV0uaELnhZPDl44yKhvRtEhsgORv0WS4cgwOqqIiIiISJFSOS6SR8kZyWQ5s1eeuHznOPxp77jKcZEcaUeOENO9O+m/HMJSoQI1Fi3Ev1Uro2OJiJQ4tay1mNR8Epu7bObpm58m0CuQ08mnmbhjIh0jO6okFxEREZEyReW4SB7l7Bv3snjh5VYIO44rqhwX+bMrO3dy4tGeZJ49i0doKDWXLsH7ppuMjiUiUqIFegUy6JZBbOi8geeaPkegVyCnkk9dVZJnOjKNjikiIiIiUqhUjovkUVJ6EgABngGF8wK5h3KqHBdJjIoiduATOJKT8W7ahJpLFuNRrZrRsURESg0fdx/63tj370vyqI5E/R6lklxERERESi2V4yJ5lDM5XigrVeBPa1WOgNNZOK8hUsw5nU4S3n+fs2PGQmYmAQ89RPWPPsJSrpD+uxMRKeP+XJI/2+RZAr0COXn5JBO2T6BjVEfW/L5GJbmIiIiIlDoqx0XyKOcwzkIrxwNrg8kC9suQdKZwXkOkGHNmZHD2hXGcf28mABUGDqDym9Mwe3oanExEpPTzcfehX8N+bOi8gZFNRlLeszwnL59k/PbxhEWFEX00WiW5iIiIiJQaKsdF8ihnctzqaS2cF3DzgMBa2Z9rtYqUMVmXL3PyySexRUaC2UzIiy9S6dlnMZn115WISFHycffhsYaPsTFiIyOajKC8Z3liL8cy7ttxKslFREREpNRQ2yCSRzmT44VWjsOfVquoHJeyIyMujhM9e3Flx05MPj5Umz2L8t27GR1LRKRM83H34fGGj/9tSd5pTSfWHl2rklxERERESiyV4yJ5ZLP/UY57qBwXcZW0Q4eI6dqN9CNHsARVpMYni/C75x6jY4mIyB/+XJIPbzyccp7lOJF0ghe+fYHwNeGsPbqWLEeW0TFFRERERPJE5bhIHhX6gZwAFVWOS9mRvO1bTvTsRWZ8PB51ahO6dCneN95odCwREfkbPu4+9G/Un00RmxjWeBjlPMsRkxTDC9++QKc1nVh3bJ1KchEREREpMVSOi+RRka5V0c5xKeUSV67k5FNP4UhJweeOO6i5eDHuVaoYHUtERP6Fj7sPAxoNYGPERoY1HobV00pMUgxjt41VSS4iIiIiJYah5fjUqVO57bbb8Pf3p1KlSnTq1InDh68uA9PS0hg8eDAVKlTAz8+PiIgIzp07d9U1sbGxtG/fHh8fHypVqsTzzz9PZubVuw+3bt1K48aN8fT0pE6dOixYsKCw356UUkVSjle8PvvXlAtw5XzhvY6IQZxOJ/HTp3N2/ATIysIa1pHqcz/EEhBgdDQREckDX3dfBjQakDtJ/t8l+fpj61WSi4iIiEixZWg5/vXXXzN48GB27drFli1byMjIoE2bNly5ciX3mhEjRrB27VpWrFjB119/zZkzZ+jcuXPu81lZWbRv3x673c6OHTtYuHAhCxYsYOLEibnXHD9+nPbt23Pfffexd+9ehg8fzoABA9i0aVORvl8pHYpkrYqHL5Srnv25VqtIKeOw2zkzajQX5nwAQMWnB3Hda69h8vAwOJmIiOTXn0vyobcOzS3Jx2wbQ3h0OJ8f+1wluYiIiIgUOyan0+k0OkSOhIQEKlWqxNdff83dd9+NzWYjKCiIxYsX06VLFwB+/fVX6tevz86dO2nWrBkbNmygQ4cOnDlzhuDgYADmzJnD6NGjSUhIwMPDg9GjR7N+/XoOHDiQ+1rdu3cnMTGRjRs3/muupKQkrFYrNpuNAE01lnktl7QkyZ5EVFgUtcvVLrwX+rQL/L4FOrwDTR8vvNcRKUJZNhunnhlKyvffg5sb101+kXIREUbHEhERF0u2J7Pk1yUsOLiAJHsSAKHWUJ666Sna1myLxWwxOKGIiIiIlFZ56XKL1c5xmy17XUVgYCAAu3fvJiMjgwceeCD3mnr16lG9enV27twJwM6dO2nUqFFuMQ7Qtm1bkpKSOHjwYO41f75HzjU59/hv6enpJCUlXfUhApDlyOKy/TJQyGtV4P/3jmtyXEoJ+6nTxDzak5Tvv8fs60u1OXNUjIuIlFJ+Hn4MvGkgmyI28cytzxDgEcBx23FGbxtN5+jObDi+QZPkIiIiImK4YlOOOxwOhg8fTsuWLWnYsCEAcXFxeHh4UK7c1esrgoODiYuLy73mz8V4zvM5z/3TNUlJSaSmpv4ly9SpU7Farbkf1apVc82blBIvyZ6Ek+wftlA5LnLtUg8cJKZ7d+xHj+IWHEyNzz7F786WRscSEZFC5ufhxxM3PcHGiI0MuWUI/h7+HLMdY9Q3o+i0phOfHfosd/BARERERKSoFZtyfPDgwRw4cIClS5caHYWxY8dis9lyP06ePGl0JCkmcg7j9HX3xd3sXrgvVlHluJQOl7/6ihO9e5N1/jyedetSc9lSvOrVMzqWiIgUIX8Pf568+Uk2RWzKLcljkmJ47fvXaLWiFZN3TubwRf2bR0RERESKVrEox4cMGcK6dev46quvqFq1au7jISEh2O12EhMTr7r+3LlzhISE5F5z7ty5vzyf89w/XRMQEIC3t/df8nh6ehIQEHDVhwgU0WGcOYJuyP718hlI02ofKZkuLVnCqcFDcKam4tuiBTU++xT3P/5sFhGRsienJN8csZlxd4yjtrU2qZmprDyyki5ru9BnQx/WH1uPPctudFQRERERKQMMLcedTidDhgwhMjKSL7/8ktDQ0Kueb9KkCe7u7nzxxRe5jx0+fJjY2FiaN28OQPPmzdm/fz/x8fG512zZsoWAgAAaNGiQe82f75FzTc49RK5VzoFShb5SBcC7PPj9sQ7o/JHCfz0RF3I6ncS/9TZxk6eAw4E1ojPVPpiDxc/P6GgiIlIM+Hn40b1edyLDIvm47ce0rdkWN5MbP8X/xJhtY2i9sjUz9szgTPIZo6OKiIiISCnmZuSLDx48mMWLF7NmzRr8/f1zd4RbrVa8vb2xWq3079+fkSNHEhgYSEBAAM888wzNmzenWbNmALRp04YGDRrQu3dv3njjDeLi4hg/fjyDBw/G09MTgKeeeoqZM2cyatQoHn/8cb788kuWL1/O+vXrDXvvUjLlTI5bPYqgHIfsvePJ57JXq1RtWjSvKVJATrudsxMmYFsTDUDFoc9QcdAgTCaTwclERKS4MZlMNA1pStOQpiSkJLDqt1WsOLKC+JR45u2fx/wD87m7yt10q9eNFpVbYDYVix98FREREZFSwtByfPbs2QDce++9Vz3+8ccf069fPwDeeecdzGYzERERpKen07ZtW2bNmpV7rcViYd26dQwaNIjmzZvj6+tL3759mTJlSu41oaGhrF+/nhEjRjBjxgyqVq3KvHnzaNu2baG/RyldEtOKcK0KZO8dP/4NnNcOTikZspKvcHrYMK5s3w4WC9dNmUK5iM5GxxIRkRIgyCeIp25+igGNBvD1ya9Zengpu87uYuuprWw9tZVq/tXoekNXOtXpRDmvIvq3mIiIiIiUaian0+k0OkRxl5SUhNVqxWazaf94GffeT+/x4c8f0q1uN8Y3G1/4L/j9XPj8ObjhQXh0WeG/nkgBZCYkcPLJp0j75RdM3t5UnTEdv7vvNjqWiIiUYMdtx1l+eDlrfl/D5YzLAHiYPXgw9EG61+1Oo6BGBicUERERkeImL12ufi5RJA9s6TagCCfHg+pm/5qgyXEp3tKPHyemx6Ok/fILlsBAaixaqGJcREQKLNQayujbR/OfR/7D5BaTqR9YH7vDTvTRaB79/FG6r+tO5G//x96dx9dZ13n/f5395CQ5J2ubPU1ampaWrRTKWu9igbaIgs4ojM4tOyiouKHejM7tbxzX0VFnULSyeQsz/hxuHLClLLYI2FIoS9ekW9JmT7Oek+Tsy/3HWZJ0TaHkStL38/HI47rOda7rnM+FEpJ3PufzfYpANGB0qSIiIiIyBSkcFzkJ6ZnjEzpWBaD/AET0S59MToGtWzn4d58k0tqKraqKWf/xBFlnqZNPREROHZfNxUfP+Ci//9DveXzV43x49oexm+3s7N3JtzZ+i+V/WM6P3vgRB30HjS5VRERERKYQheMiJyHdOe5xTNCCnDkzwJkHJKB338S8p8hJGNywgYOfvolYfz/OhQuZ9R9PYK+uNrosERGZpkwmE2cXn80/X/bPvPi3L/LF879IeU45vrCP3+76LR966kPc+cKdrG9eTzQeNbpcEREREZnkFI6LnIQJD8dNJo1WkUmr/w9/oPXue0gEg2QvvZzqxx7FWlhodFkiInKayHfmc8vCW1hz/Roe+OADLK1YigkTG9s38oUNX2Dl/13Jr7f9mp5Aj9GlioiIiMgkpXBc5CRMeDgOCsdl0kkkEnT/+wN0fvNbEI/juf56Kh94AHN2ttGliYjIachitrC0YikPfPAB1n50LbcsvIU8Rx6dw53829v/xpX/dSX3/eU+3ux6k0QiYXS5IiIiIjKJWI0uQGQqmfCZ4zAyd7y7YeLeU+QYEtEond/+/xj4wx8AKLzrToq/8AVMJpPBlYmIiEBFbgVfPP+LfPbcz/L8gef5/e7fs7V7K88eeJZnDzzLnLw53FB3A6tqV5FrzzW6XBERERExmMJxkXGKxCL4o35ggsPx4nnJbc+eiXtPkaOIBwK0fenLDG3YAGYzJd/8B/JvvNHoskRERI7gsDi4dva1XDv7Wup76/n97t+ztmkt+wb28Z3N3+FHW37EldVXcv2c61lcshizSR+oFRERETkdmRL6bOEJ+Xw+PB4PXq8Xt9ttdDlikJ5AD8v+/2WYMPH237+NxWyZmDceaIafngVmG9zfARbbxLyvyCjR/n5a7rqL4NZtmBwOyn/8L+QuX250WSIiIuPmC/t4et/T/Nee/2K/d3/meHlOOdfNuY6PzP4IpTmlBlYoIiIiIqfCyWS5apEQGaeBYHKkitvhnrhgHMBdATYXxCPQ1zRx7yuSEm5t5eANNxLcug2zx0PVIw8rGBcRkSnHbXfzqTM/xVMfeYonVj3B3879W3JsObQNtfHAOw9w9ZNXc+cLd7KuaR2hWMjockVERERkAmisisg4ecPJxTgndKQKgNkMRXOh4x3o2Q3Fcyf2/eW0Fti5k5Y77yLW04O1rJSq1atxzJ5tdFkiIiLvmslk4qziszir+Cy+esFXefHgi/z3vv9mc+dmNrZvZGP7Rtx2N6tqVnH9Gdczv2C+1tYQERERmabUOS4yTunFOD12z8S/ebEW5ZSJN/TXv9L89/+TWE8Pjro6Zv3HfyoYFxGRaSXLmsW1s6/lN1f/hmc/+ix3nXMXJdkl+MI+/nP3f/KJP32Cv33mb3m8/vHMpwhFREREZPpQOC4yTt5QsnPc4zAyHNeinDIxvE8/TcuddxH3+3EtWUL17/4PtpkzjC5LRETkfVORW8Hd597Nuo+u41dX/oqVs1ZiN9vZ3b+b77/+fa74wxV8+aUv82rbq8TiMaPLFREREZFTQGNVRMbJ0HC8SJ3jMjESiQR9Dz3EoX/5MQDua66h9HvfxWy3G1yZiIjIxLCYLVxSdgmXlF2CN+RlbdNantr7FPV99Tx/8HmeP/g8M1wz+Mjsj3DdnOuoclcZXbKIiIiIvEsKx0XGKT1WZcJnjgMUz0tue/ZCPJ6cQy5yiiViMbq+9336f/c7AApuvpkZX/0KJv3/TURETlMeh4cb593IjfNupKGvgT/u+yN/avwTh/yHWL19Nau3r2bxzMVcf8b1LK9ajsvmMrpkERERETkJCsdFxsnQzvH8WWCxQzQA3hbIr574GmRai4dCtN/3NQafew6AGV//GoU33WRsUSIiIpPIvIJ5fP3Cr/Ol87/ESy0v8dS+p9jYvpEtXVvY0rWF79q+y4pZK7huznWcU3yOFvEUERERmQIUjouMk6HhuMUKhXPg0C7o3q1wXE6pW1wP4wAAIABJREFUmNdL69334N+yBZPNRtkPvo971SqjyxIREZmU7BY7V826iqtmXUXncCfP7H+Gp/Y9RctgC0/ufZIn9z5JjaeG6+dcz7Wzr6Uoq8jokkVERETkGPRZeZFxMnSsCkDR3OS2Z7cx7y/TUqSjg4Of+hT+LVsw5+RQuXq1gnEREZFxKsku4fazb2fN9Wt45OpH+PDsD5NlzaLJ28RP3vwJy/+wnM+t/xzrm9cTiUeMLldEREREDqPOcZFx8oZTneN2AzrHAYq1KKecWsE9e2i5/Q6iXV1YZ8ygcvWvcdbVGV2WiIjIlGMymVhcspjFJYv5xoXf4LkDz/HUvqfY2r2Vl1pe4qWWlyhwFrBi1gpW1qzU2BURERGRSULhuMg4eYOpcNxpdDi+x5j3l2ll+PXXab37HuKDg9hnz6Zq9a+xlZUZXZaIiMiUl2PP4WNzP8bH5n6MxoFG/rjvjzy9/2l6g7080fAETzQ8QVl2GVfXXM2qmlXU5dcpKBcRERExiCmRSCSMLmKy8/l8eDwevF4vbrfb6HLEAIlEgsW/W0w4Hmbdx9ZRnlM+8UV07oAHLwWHB75+EPRLlLxLvnXraP/qfSQiEbIWLaLyFw9gyTNoXJCIiMhpIBKPsKl9E+ua1vHn5j/jj/ozz81yz2JlzUpW1Kyg1lNrYJUiIiIi08PJZLnqHBcZh2AsSDgeBgwcq1I4B0xmCHlhqAtyS4ypQ6a0vt/+H7q+9z1IJMi98krKfvRDzE6n0WWJiIhMazazjaUVS1lasZRgNMgrba/wbNOzvNz6Mgd8B/jl1l/yy62/ZF7BPFbMWsGKmhXGNGOIiIiInGYUjouMgzeUHKliNVnJtmUbU4TNCfmzoK8xOXdc4bichEQ8zqEf/5i+hx4GIP/vbmTm/fdjslgMrkxEROT04rQ6ubL6Sq6svpKh8BAbWjaw7sA6NrZtpKGvgYa+Bn761k85u/hsVtWs4qrqqyh2FRtdtoiIiMi0pHBcZBzS4bjH4TF2JmTxvFQ4vgdq/4dxdciUkgiHab//H/A98wwAxV/8IoV33K75piIiIgbLsedw7exruXb2tQwEB3ix+UXWNa3j9c7X2da9jW3d2/jB6z/ggpILWFGzgiurriTPqVFoIiIiIqeKwnGRcRgIDQDJcNxQRXNh91ro2W1sHTJlxEMhWj/3OYZffgWsVkr/6Z/Iu/46o8sSERGRw+Q58/ibuX/D38z9G7r93Tx/8HmebXqWrd1beb3zdV7vfJ3vvvZdLi67mJU1K1lWuYwce47RZYuIiIhMaQrHRcYhHY7nOQzu1CmuS267FY7LicUDAVrvvofhjRsxOZ1U/NvPybn8cqPLEhERkRModhXzyfmf5JPzP0nbUBvrmtax7sA6GvoaeKXtFV5pewWHxcHSiqWsmLWCpRVLcVq1hoiIiIjIyVI4LjIO6bEqbsfxV7h93ykcl3GK+/20fOaz+DdvxuRyUfngL8m+8EKjyxIREZGTVJ5Tzq1n3cqtZ91Ko7eR55qeY23TWg74DvDCwRd44eALuKwullUtY1XNKi4uvRibxWZ02SIiIiJTgsJxkXFIh+OGd44XzU1uhw+Bvw9cBcbWI5NSbGiYlrvuJLDlTczZ2VSu/jWuRYuMLktERETeo1pPLZ859zPcdc5d7O7fzbNNz7KuaR3tw+2saVzDmsY1uO1urqy+khU1K7hg5gVYzFp8W0RERORYFI6LjMOkGaviyAV3BfhaoWcPVF1kbD0y6cQGB2m5/Q4C77yDOTeXqtW/Juvcc40uS0RERE4hk8nEvIJ5zCuYx72L7mVr91bWHVjHcweeoyfQw5N7n+TJvU9S6Czk6llXs7JmJecUn6PFuEVEREQOo3BcZBzSneOGL8gJUDw3GY53NygclzFiPh/Nt91OcNs2zB4PVb/5DVlnLTS6LBEREXkfmUwmzp1xLufOOJevLv4qW7q28GzTs7xw8AV6g7080fAETzQ8QXlOOatqVvGh2g9Rm1drdNkiIiIik4LCcZFxmFzh+DzYvx669xhdiUwisYEBmm+5leCuXVjy8qh6+CGcZ55pdFkiIiIygSxmC0tKl7CkdAn3L7mfTR2bWNu0lvXN62kbamP19tWs3r6aeQXzuKbmGlbUrKAku8ToskVEREQMo3BcZBy84VQ4bp8E4Xh67niPFuWUpGhfH8233EqooQFLQQFVjzyMs67O6LJERETEQDaLjaUVS1lasRR/xM9LLS+xtmktf237Kw19DTT0NfCTN3/C4pLFXFNzDcurl0+ORhARERGRCaRwXGQcJs3McUh2jgN0KxwXiPb20nzTzYT27sVSVET1o4/gmDPH6LJERERkEnHZXKyqXcWq2lX0B/t54eALrGlcw1uH3uKNzjd4o/MN/nnzP3N5+eWsql3FByo+gNPqNLpsERERkfedwnGRcZhcY1VSHcHeFggNgSPH2HrEMJFDh2i++RbC+/djLS6m6rFHcdRqhqiIiIgcW74zn4/XfZyP132c9qF21jatZW3TWvb272V9y3rWt6wn25bNB6s+yDW113BhyYVYzfq1UURERKYn/ZQjcgKJRGJyheOuAnAVgb8HevZA+SKjKxIDRLq6aP70TYQPHMBaUkL1o49gnzXL6LJERERkCinLKeO2s27jtrNuY0//HtY2JoPyjuEOnt7/NE/vf5pCZyEra1ayqmYVC4sWYjKZjC5bRERk0kkkEkTjCaKxBOFYnGgsTjSeIBKLE40lt5FYgmg8tU09jsSTz0djcSLxBJFofMw5yddIv07ynMy16ddOv0b8sOOp6//zjouwWcxG/yOatBSOi5zAUGSIWCIGTJKxKpAcrXLwVYXjp6lIezsHb7qZSHMz1rJSqh97DHtlpdFliYiIyBQ2N38uc8+fy+cXfZ53Dr3D2qa1PHfgOXqDvfyu/nf8rv53VOVWsap2FdfUXMMszyyjSxYRkWkokUiMCXjDsXgqWE5+haOJkf10SBwd+ziaeT51bnTs49Eh80iYPSq4jseJREdC58hRgu7040jm2oTR/+iOKRpLYLMYXcXkpXBc5ATSXeNOi3PyzF4snpsMx7sbjK5EJli4tY3mT3+aSFsbtooKqh97FFt5udFliYiIyDRhNplZNHMRi2Yu4msXfI1NHZv4U+OfeKnlJZoHm3lw64M8uPVBFhQuYFXNKlbWrKTYVWx02SIi01a6IzmWCmNjqU7i0Y+j8Ximazl5bvyIc9KPo6O6jKPxBPH4yOunt+n9keeOPDd2jGti8TixBMlrUu8ZS6SejyWIJ0aFy9FRAXbma/KGzCfLYjZhNZuwWczYLCasFjM2c3JrtZiwp7ZWc+p582HHR52feY30uZb065qxZs4Zed522GvLsSkcFzmBdDjudrgNrmSUzKKce4ytQyZUuLmZg5++iWhHB7bqKqoffRRbaanRZYmIiMg0ZbPYWFqxlKUVS/FH/KxvWc+axjVsat/Ezt6d7OzdyY/f/DEXlFzANTXXsLx6Obn2XKPLFhF534WjcQLhGP5IlOFQLLkfjuKPpPdjBMJR/OEYw6P2088lz0se84djhFOjNNLhdnqcRjp4Pt3ZrWbslpHQ12YxY7eODoHN2Ec9l3z+sMeWI0PmZMA88hq2USFzOnQeHTLbraOvM48KvlPHDnvObFYoPRUoHBc5gYHQADCJRqoAFM1Nbnt2G1uHTJhQUxPNN91MtKsLe00NVY8+im3mDKPLEhERkdOEy+biQ7Uf4kO1H6Iv2MdzB55jbeNa3ul+h80dm9ncsZnvvPYdPlD5AVbVrOLyistxWBxGly0ip4l4PEEoGicUjSW3kTjBaIxQZNSxzOM4wciRx0LR2FED7OFQjEAkFX6nnp8MIzSS3cIjYa3VnNy3mJOBryUV3FrSncqpLubMNWZT6jkTFrMZiwks6eMWExaTKdP5bDGP3jdjMY+cax51zuGPj3mNyTQSeKdC7HS39EiYbc7ch9a7kPeTwnGRE5hUi3GmpTvH+xohGgKrfvGYzkL79yeD8e5u7HNmU/3II1iL9fFlERERMUaBs4Ab593IjfNupHWwlWebnmVN4xr2e/fzwsEXeOHgC+TacllWtYwrKq/g4rKLcdlcRpctIhMskUjOcg4c1j09JoAORwlEYqnu62gmlB4bao8KsyPJLuvRwXYwGjNsFIfNYiLLZsFlt+KyW8iyW1JbK9mjHrvs1tR5I49HzrfisJqPDLpHB9qp46PDagXGIqeGwnGRE5iUneO5JeBwQ8gHvfth5plGVyTvk+CePTTffAux3l4cc+dS9cjDWAsLjS5LREREBICK3ApuP/t2bjvrNvb072FN4xrWNq2ly9/F0/uf5un9T+OwOLi49GKWVS3jAxUfoDBLP8uITBbxeILgqI7pQGTsNh1g+w8bFTIyPmTkOf/h40MiMUNGgljMJpxWMw6bBYfVnPqy4LAl952Z46mtbWTfeZwAe3T47bJZybJbsFvNE35/InJqKRwXOYFJ2TluMiVHq7RtSS7KqXB8Wgo2NCSD8f5+HPPnU/XwQ1jz840uS0REROQIJpOJuoI66grquPf8e3mr6y3+3PxnNrRsoG2ojZdaX+Kl1pcwYeLcGeeyrHIZV1RdQbW72ujSRSatWDyR6pJOj/VIhs7B9H7k2IF2IJI+L0ogEieQ6tAOjArB/eFkN/ZEsFvMo7qqRwJmlyN1zGbNhNJZdksmwD5RkH34sWQHtgJrERk/heMiJ+ANp8Jx+yQKxyE5WqVtC/RoUc7pKLBzJy233ErM68W5YAFVD/0GS94k+vSCiIiIyDGYTWYWlyxmccli7rvgPvYO7GV983o2tGxgV+8u3j70Nm8fepufvPkTaj21maB8YdFCzCaFWmKcWDxBMBUqB1OjPNLjPNLbcDROJJbcpvdD0TjhWJxINEE4FksdTxx5fmzU+YcfT21Do45PdNO102bOjAhx2lJh9nEC7NHjQ9L7yfNGjRJJPWdTYC0ik5TCcZETmJRjVQCKU4tydjcYW4eccoHt22m+9TbiPh/Oc86mavVqLG630WWJiIiInDSTycTc/LnMzZ/LXefcRedwJxtaNrCheQNvdL5Bo7eRRm8jD+14iOKsYv5H5f9gWeUylpQuwW6xG12+TAKxeILhcJThUHJhxOFQNNMVHUzNpU7vjw6yg6lZ1MHU/Opk4D1y3si5yTnWRs6tHg+bxZQZ+ZFlSwbRWakAOys14sNlG+m6Hjlv1HZUcJ1lG3We3YLTasFs1gxrETn9KBwXOYFJOVYFRhbl7Fbn+HTif/ttWm6/g/jQEFmLFlH5619hyckxuiwRERGRU6IkuySzmKcv7OPV1lfZ0LKBV9peoTvQzR/2/IE/7PkDLquLy8ovY1nVMi4vv3zy/SwuxxSOxpNBdjgZZg+FovhT4fZQKDnmYygUxZ96bjiUnFGdPm8oFYCnzwtGJmbsx+HsluS4DqfNgtNmxpmaWW23mLFZzNhTIzzS+3aLGVtqO+b4mHNMqa0FW3o/dc2Yc4/xGiIicuopHBc5gUkbjhelOsd790IsChb96zzV+bdsoeWOO4n7/bgWL6byVw9izs42uiwRERGR94Xb7mZV7SpW1a4iHAvzRucbma7yQ4FDPH/weZ4/+DxWk5XzS85Pjl+pvILSnFKjS5+W4vEEQ+EovkCEweCobXDU41Bymz6WDreHQ7FMd/f71X1tNZvIdiRHeDhTnc7OTHg9OsAedTwVaDutY89z2I53fXJ+tUVd1CIipwWlaSInMGnHquRVgTULogEYOAiFs42uSN6D4c2v03LXXSQCAVwXXUTlLx7A7HIZXZaIiIjIhLBb7FxafimXll/K/1ryv9jVuyszp3zfwD42d2xmc8dmvv/695lfMJ9llctYVrWMuvw6TCaFmAChaIzBYDQTZI8JtQ8LuX3BCL7DnhsKRUmcwlzbbjWT47CS7bCQbbcmg+1UuD1mO2o/x2HF5bCS40jOq85JPe+yJxdb1P/WIiJyqikcFzmBSds5brZA0Rzo3A7duxWOT2HDGzfS8tm7SQSDZF96KRUP/Dtmp9PoskREREQMYTaZWVi0kIVFC/n8os/T7GtmQ8sG1jev553ud6jvq6e+r55fbP0FZdllLKtaxrLKZSyauQib2WZ0+ceUXuzRH07Ouw6k9gPhGIFIlEA4TiASIxCOjjwXiREMj+wH0ttR+8OhGIPBCKHoqRk/YreYcWdZyXXacDutuLNs5DqtuJ1jt7lOGznOVKBtt2SC7Gx7cgFHjQEREZGpQOG4yHHE4jEGw4PAJAzHAYrqUuF4A8xbZXQ18i4MvfIKrXffQyIcJvsDS6n4+c8xOxxGlyUiIiIyaVS5q/j0gk/z6QWfpi/Yx19a/sKGlg1sat9E+3A7j9c/zuP1j+O2u1lasZQPVH6AJSVLyHfmv+f3jsTiR3Rfj9kf1Yk9FBxZKPKIMDscO2Xh9YnkOKy4U+G1O2tUqD0m5D72c06bZULqFBERmQwUjoschy/sI0Hys4WTMhxPL8rZo0U5p6LBDRto+/wXSEQi5FxxBeU//VfMdrvRZYmIiIhMWgXOAq4/43quP+N6AtEAm9o3saFlA39p+Qv9oX7+1Pgn/tT4J0yYqCuo4/wZF7IgfzGzshcQjlrxBUZC7cFgJPN4JAAfO24kEIm9L/eRZbOQZbccfWuz4ErN1XaljjtTxw4/35V6zu204U51cmtWtoiIyPgpHBc5jvRIlWxb9uT8iGZxalHO7gZj65CT5nvhBdq+9GWIRMi98krKf/wvmBSMi4iIiBxVIByjzx+mfzjMgD9Cnz/MgD9M/3AlFv8NnJu4jtZYPV2xNxk27yRm7aChr4GGvgbgtyQSFmL+KmLDc4j65xAPVADj75DOtluOHC8y6rE7y5YZL5JlGxtspwPsZOhtxWE1Y1aALSIiMikoHBc5jkm7GGdaunO8ew8kEqAFaqYE37rnaPvKVyAaJXflCsp/+ENMtkn4xxcRERGRUyyRSOALRpPBtj9C/3CY/sP2B/wR+v1h+oZH9sc3kiQfWA4sx2QZxJK9H2v2XizZ+zDbvFizm7BmN+HgBSxkUWCZR7njHGpzzqEypxZP1thxI+7Ufo7DilXzs0VERKYlheMix+EL+wBw290GV3IMBbVgtkJkGLytkFdpdEVyAt4/raH9a1+DWAz3tddS9r3vYrLqW7GIiIhMLbF4gsFgBG8gwoA/uR395Usdz3R4+yOZbSyeeFfvabOYyHfZyXfZyXPZkvvZdvIP2/dkJTu50+G202qmZaiFzR2bea3jNV7vfB1vyEt37G26/W/zjh+KBotYUrqEi/Iu4tySiyjJLjrF/8RERERkMlIiI3Ick75z3GKDgtnQszv5pXB8UvM+/TTtX/8GxON4rr+e0u/8EyaLFjwSERERY8TiCXyBI4Pt0QH3sZ4bDEbf03u77JZMyF2QbSfPlQy281x2Clw28kcdSwff2XYLpnf5SclqdzXV7mo+XvdxYvEYDf0NybC8/TXeOvQWPYEe1jSuYU3jGgBmuWclw/LSi7ig5ILJuf6QiIiIvGcKx0WOYyA4ycNxSM4d79mdHK0yZ7nR1cgx+NatywTjeX/7N5R8+9uYzPp4roiIiJwawUiM3uEwfUNheoZD9A2F6R0O0TscxnuUzm6vP8Jg6L0F3JAMuT1ZI93anlFf6bA7GW7bxnR9O23GNQhYzBYWFC5gQeECbll4C6FYiK2HtvJax2ts7tjMjt4dHPAd4IDvAL/f/XtMmDiz8MxMWH7ejPNwWp2G1S8iIiKnjsJxkePwhpMLcrodk3SsCiTnjtc/o0U5J7HBl16i7StfTXaM/83HFIyLiIjICYWiMfqGw/QOhZOh93Aos987FKJvOEzPUDh1TojhcOxdv9exAu689L7r6OG322nDbp36P9M4LA4uLL2QC0svBJKjFbd0bsmMYWn0NrKzdyc7e3fy8I6HsZvtnDfjvExYfmbhmVjM+jSgiIjIVKRwXOQ4vKFkOD6pO8eL6pLbnj3G1iFHNfzaZto+/wWIRnGvWkWpgnEREZHTUiQWp390oJ0Ju48MvXuHwu+qq9tmMVGY7aAg205hjp3CbDsF2Y7kHO5pHnCfSm67myuqruCKqisAOOQ/lAnKX+t4Lfm4czObOzfz87d/Tq4tlwtKLuCisou4rPwyKnM16lBERGSqUDguchxTIhwvnpvcdjdAIgHvcg6jnHqBd96h5bOfJREOk3PFFZT94PuaMS4iIjJN+MNR+obTQXdynEm/f2Q/3e3d74/QOxTC9y5mdFvMpmTQnQm7k8F3UU4y9E4H4IU5yeNup/Vdz+SWY5vhmsG1s6/l2tnXkkgkOOA7kBnB8nrH6wxGBlnfsp71LeuB5Lzyy8ov4/Lyyzm/5HwcFofBdyAiIiLHonBc5DjSC3JO6gV4Cs8ATBDoh+EeyCk2uiIBgvX1NN9xJwm/H9fFF1H+rz/BZLMZXZaIiIgcRSKRwBeI0jscygTemdD7KF+9wyGCkfhJv4/ZBAXZ9lTg7aAgx05R9kjQfXjo7XbaMJsVdk8mJpOJGk8NNZ4abpx3I7F4jPq+el7reI2N7Rt5u+vtzLzy39X/jixrFheWXMhl5ZdxWfllVORWGH0LIiIiMorCcZHjSHeOT+pw3O6CvCoYOJjsHlc4brhQYyPNt95G3Ocja9EiKh94ALNDHUMiIiITLRSN0ekN0j4QpMMboMMbpMsXzHR39w2H6fOH6R8OE40nTvr17RZzJuwe/VWYbSc/Oz3WJNn1nVyI0o5FYfe0YjFbWFi0kIVFC7ntrNsYDA+yuWMzr7S9wqutr3IocIi/tP6Fv7T+BYAaTw2Xl1/OZeWXcf7M87Fb7AbfgYiIyOlN4bjIcUyJcBySi3IOHISe3VBzudHVnNbCra0033wLsb4+nGeeSeWvHsTschldloiIyLQTicXp8gXp8AZpH0gG3x0DAdq9QTq9yTC8Zyh8Uq+Z47BScHiwnXpcMOaYg/xsGzkOjTGRsXLtuSyvXs7y6uUkEgn29O9JBuVtr/LOoXdo8jbR5G3it7t+S5Y1iyWlSzJheVlOmdHli4iInHYUjoscR3qsyqSeOQ7JueN7n4Pu3UZXclqLdHXRfNPNRLu6sM+ZTeVDv8GSm2t0WSIiIlNOLJ6gezCU6fbOhN/eQKYLvHswxHiavR1WM2V5WZR6nJR6sijxOChMjS4pyE52dKc7u502rQ0ip47JZKKuoI66gjpuO+s2fGEfr7W/lgnLewI9vNTyEi+1vATAbM9sLq9IBuWLZizCZtFIPhERkfebwnGRY4jEIvijfmAqhOPzkluF44aJ9vbSfPMtRFpbsVVVUfXQw1jz840uS0REZNJJJBL0DofpGAjS7g3QkQq+21Od3+nRJ+MZc2KzmChJhd5lHieleamtJ4vSvOQ232VTd7dMCm67m6tmXcVVs64ikUjQ0NfAq22vJrvKu99hv3c/+737eXTno7isLi4qvSgTlpdklxhdvoiIyLSkcFzkGLzh5EgVEyZybDkGV3MCRXXJbc8eY+s4TcV8Pppvu51wYyPWkhKqH3kY28wZRpclIiIy4RKJBN5AJNPdnQ68O72pINybHIMSjp54MUuL2cTMXAelma7vVAieNxJ+F2U7tGClTEkmk4n5hfOZXzif28++HW/Iy6aOTbzS+gp/bfsrvcFe1resZ33LegDm5M3h8orLubz8cs6dcS42s7rKRURETgWF4yLHMBBMjlRxO9xYzJP8I7bFc5PbwQ4IesE5yWekTyPx4WFabr+DUH09lsJCqh55GFt5udFliYiIvC8Gg5FMwJ2e7z3S+R2gYyBIIBI74euYTFCU4xjT5V02qtu7LM9JcY4Dq8U8AXclYjyPw8OKWStYMWsF8USc+r56Xm19lVfaXmF7z3b2Dexj38A+HtnxCDm2nExX+aVllzIze6bR5YuIiExZCsdFjiHdOe6xT4Gg2emB3NJkON69ByovMLqi00I8GKTls3cT2LoVs8dD1cMP4aipMbosERGRdyUQjh13xnfHQJDBUHRcr1WQbT+i0zvT8e1xMtPtxG5V8C1yNGaTmQWFC1hQuIA7z7mTgeDASFd5+1/pC/bxYvOLvNj8IgBz8+dyadmlXFx2MYtmLsJhcRh8ByIiIlOHwnGRY5gyi3GmFc1NheMNCscnQCIcpu0L9+LfvBmzy0XV6l/jrKszuiwREZGjCoRjdPpGurw7fSOBd3sqBB/wR8b1Wm6ndWSBy9EzvlOPSz1OLWwpcgrlOfNYWbOSlTUriSfi7OrdlVzUs/VVtvdsZ0//Hvb07+GRnY/gsDhYPHMxF5ddzMVlF3NG3hmauS8iInIcCsdFjsEbSnWOO6ZA5zgkF+Vs+gv0aFHO91siFqPtvq8x9Je/YHI6qfzVg2SdfbbRZYmIyGnKH47SPhCkMxVyd3qDdBwWhI83+M62W4454zu9zXboVwgRo5hNZhYWLWRh0UI+c85n6A/2s7F9I5vaN7GpfROHAof4a/tf+Wv7XwEoyiri4tKLM2F5UVaRwXcgIiIyuegnW5FjmHrheGrueLfC8fdTIh6n4x++yeC6dWCzUfFv/4brAnXqi4jI+2MoFB0JuVOzvjt9gTFhuC84vlEnLrslE3iXeJyUeZyUZDq+k8fdTqu6TEWmkHxnPtfUXsM1tdeQSCRo9DaysX0jG9s3sqVzCz2BHp5pfIZnGp8BoC6/LhOUL5qxCKfVafAdiIiIGEvhuMgxTLmxKsXzkluF4++bRCJB1z9/F+9TT4HFQvmP/4Wcyy8zuiwREZmigpEY7QMB2gYCtPWPzPhOB+Gd3vHP+M51WClJjzVxO5P7nvQ2udBlrkPBt8h0ZjKZmJ03m9l5s/n7M/+ecCzMO4feyYTl9X317O7fze7+3Ty681EcFgfnzzw/01k+N3+uvkeIiMhpR+G4yDFMuc7xotROZuwlAAAgAElEQVS864FmCPvB7jK2nmmo+yf/Sv/jj4PJRNn3vov7qquMLklERCaxwWAkE3ynt60DAVr7k/s9Q6FxvU56xncm8HaP7vZOLm6Z67S9z3cjIlON3WLnwtILubD0Qu49/176gn1s7ticCcsP+Q9l9nlTI1hEROT0pHBc5BimXDieXQRZBRDog969UHqO0RVNKz0P/ore1asBKPnHf8Tz4Q8bXJGIiBgpkUjQNxweE363jg7B+/3jGneSbbdQnp9FeV5WZnHL9KiTEo+TErdTM75F5JQocBZkFvZMj2DZ1L4pOYKl68gRLHPz53Jx6cVcUnYJi2ZqBIuIiExP+klb5Bim3FgVkwmK66B5E3TvUTh+CvX99v/Q/dOfAjDjq18l/4ZPGFyRiIi83+LxBIcGQ7T2+48IvtPbQCR2wtfJc9koz8uiIj+L8jxXJgivSG3zXDaNMRCRCTd6BMunzvxUZgTLpo5kWF7fW8+e/j3s6d/DY7sew262c/7M87mk7BKNYBERkWlF4bjIMXjDqc5x+xTpHAcompsKxxuMrmTaGHjySbq++10Aiu6+m8JbbzG4IhEReS8SiQTeQITuwRCHBkOpbTDz+JAvRNtAgA5vgEgsccLXm5HrGBV4J8PviryszDF1fYvIVDB6BMsXFn0hM4Il3Vne5e9iU8cmNnVsgjeh0FnIRWUXsWjGIhYULWBu3lxsFo13EhGRqUc/rYscgzeYCsedUygcTy/K2aNFOU8F39q1dPzDNwEouOkmiu652+CKRETkWMLROD1DRwbeo0Pw9Fc4Fh/Xa1rMJko9TspTYXc69K7Id6XGoDhxWC3v852JiEy8w0ewNHmb2Ni+kU0dm3ij8w16g72saVzDmsY1ANjMNury61hQtIAFhQtYWLSQWk8tFrO+R4qIyOSmcFzkKBKJxNQbqwJQPDe57VY4/l4Nrt9A231fg0SCvI9/nBlfu08fHRURmWCJRAJfMHpE2H20ru9+f+SkXtuTZWNGroPiXMeorZPiXAdlqbEnM91OLGZ97xeR05vJZKI2r5bavNrMCJat3Vt5reM1dvTsYEfPDnxhHzt6d7Cjd0fmuixrFvML5rOgaAELCxeyoGgBVblV+plaREQmFYXjIkcRjAUJx8PAFBurku4c72uEWAT00cZ3ZXjTJtruvReiUdzXXkvJP35LP8SLiLwPIrE4HQNBWgf8tPYHUl/J/faBAN2DIULR8XV5A1jNpjFhd3Eq7D48BC/OdajjW0TkXbJb7FxQcgEXlFwAJP+Q2TrUys6enezo2cHO3p3s6t2FP+rnrUNv8dahtzLX5tpzWVA40l2+sGghM10z9bO2iIgYxtBw/OWXX+ZHP/oRb775Jh0dHTz11FNcd911mecTiQT/+I//yOrVqxkYGODSSy/ll7/8JWeccUbmnL6+Pj73uc/xzDPPYDab+djHPsbPfvYzcnJyMuds27aNu+++mzfeeIPi4mI+97nPcd99903ovcrU4g0lR6pYTVaybdkGV3MS3OVgz4HwUDIgL64zuqIpx//W27R89m4S4TA5yz9I2fe+i8miAEVE5N3IhN/9/jHBd3q/0xckfuKx3uQ6rBS7HRTnOJjhdh6z4zsvy4ZZnd4iIhPKZDJRmVtJZW4lK2pWABCLxzjgO8DO3lRg3rOThr4GBsODvNbxGq91vJa5vtBZOKa7fEHhAgqzCo26HREROc0YGo4PDw9zzjnncMstt/DRj370iOd/+MMf8vOf/5zHHnuMmpoavvnNb3L11Veza9cunE4nAJ/85Cfp6OjghRdeIBKJcPPNN3PHHXfwxBNPAODz+bjqqqtYvnw5Dz74INu3b+eWW24hLy+PO+64Y0LvV6aOdDjudrinVheDyZRclLP9reSinArHT0pg505a7ryTRCBA9qWXUv6Tn2Cy6gM2IiLHEo7G6fCOhN1tmeB7/OG33WoeM8u7Ij850qQ8LysTemfZ9UdKEZGpxGK2MDtvNrPzZvPh2R8GIBKPsK9/Hzt6k2H5zt6d7O3fS2+wl5dbX+bl1pcz15dmlyY7zIuSHeZnFp6J2+426nZERGQaMyUSiXH067z/TCbTmM7xRCJBWVkZX/7yl/nKV74CgNfrZebMmTz66KPccMMN1NfXc+aZZ/LGG2+wePFiANatW8eqVatobW2lrKyMX/7yl9x///10dnZit9sB+PrXv84f//hHGhoaxlWbz+fD4/Hg9Xpxu/Uf5NPB5o7N3Pb8bdR6avnv6/7b6HJOzlN3wdb/gGX/AB/4qtHVTBmhffs4+Km/JzYwQNbi86lavRpzVpbRZYmIGCoSi9M+EDhq13drf4BOX5AT/SRpt5pTgfdI8J3Zz8uiKMehbm8RkdNUMBpkd/9udvTsYFfvLnb07KDJ20SCI//jUu2uzoxkObv4bOYXzsdhcRhQtYiITHYnk+VO2pbIpqYmOjs7Wb58eeaYx+NhyZIlbNq0iRtuuIFNmzaRl5eXCcYBli9fjtlsZvPmzVx//fVs2rSJpUuXZoJxgKuvvpof/OAH9Pf3k5+ff8R7h0IhQqFQ5rHP53uf7lImqym5GGdaUXpRzvH98Ucg3NxM8823EBsYwLlwIZUPPqhgXEROK8OhKPu7h9jfPcS+QyNfB3v9RE/Q+u04Ivx2pbrAk19F2Qq/RUTk6JxWJ+cUn8M5xedkjg2Fh6jvq0/OME91mbcOtXLQd5CDvoOsbVoLgNVsZX7BfM4uPpuzi87mnBnnUJZdNrU++SsiIoabtOF4Z2cnADNnzhxzfObMmZnnOjs7mTFjxpjnrVYrBQUFY86pqak54jXSzx0tHP/e977Ht7/97VNzIzIljR6rMuWkF+Xs2W1sHVNEpKOD5ptuJtrdjeOMM6hc/Wsso9YsEBGZLhKJBL3D4UzwnQ7C9x8aot0bPOZ1Tpv5sHEnYzvAi3LsCiJEROSUybHnjFnwE2AgOMDO3p2ZGebburfRG+xle892tvds53EeB5Lzy88pPicZmBefzYLCBbhsLqNuRUREpoBJG44b6Rvf+AZf+tKXMo99Ph+VlZUGViQTLR2OT8nO8fSc8Z69EI+BWXNajyXa00PzzbcQaW/HXl1N1cMPYT3KH8xERKaSeDxB20BgTAf4/u4h9nUPMeCPHPO6ohw7s4tzmD0jhznFOcyZkfwq9TgVfouIiKHynHlcWn4pl5ZfCiT/4Ns+3M627m1s7d7Ktu5t1PfV0xvsZX3Leta3rAfAYrIwN38uZxefnQnNq3Kr9N81ERHJmLTheElJCQBdXV2UlpZmjnd1dXHuuedmzjl06NCY66LRKH19fZnrS0pK6OrqGnNO+nH6nMM5HA4cDs0uO51N6XA8rxosDogGYaAZCmpOfM1pKDYwQPOttxE+cABrWSlVjzyMtbjY6LJERMYtFI3R1DPM/kPDyRA81Qne2D1EKBo/6jUmE1TkZ40Jv2en9vNc9qNeIyIiMtmYTCbKc8opzylnZc1KIDm/vKGvga3dWzOBeZe/i/q+eur76vn97t8Dyd/xRo9iWVi4kBy7PjkqInK6mrTheE1NDSUlJfz5z3/OhOE+n4/Nmzfzmc98BoCLL76YgYEB3nzzTc4//3wA1q9fTzweZ8mSJZlz7r//fiKRCDabDYAXXniBurq6o45UEYGRmeMeh8fgSt4FixUK58ChndC9W+H4UcSGhmm+405Cu3djKS6i+uGHsZWVGV2WiMgREokEfcNhDvT6MzPB96e6wZv7/BxrHLjdYqa2OHukEzzVDV5bnI3Tpk8UiYjI9OO0Ojl3xrmcO+PczLHO4U62dW/LdJjv6t3FQGiAl1tf5uXWlwEwYWJO/pxkWJ6afz7LMwuzyWzUrYiIyAQyNBwfGhpi3759mcdNTU288847FBQUUFVVxb333st3vvMdzjjjDGpqavjmN79JWVkZ1113HQDz589nxYoV3H777Tz44INEIhHuuecebrjhBspSQdff/d3f8e1vf5tbb72Vr33ta+zYsYOf/exn/Ou//qsh9yxTQ7pzfEqG45AcrXJoZ3LueN0Ko6uZVOKhEK2f/SzBbduweDxUPfQQ9lmzjC5LRE5j8XiCrsEgB3r8NPcNc6DXz8HeYQ72+jnY62coFD3mtblOayb4Hj0OpbLAhUWLYIqIyGmuJLuEkuwSrpp1FQCRWITd/bvHdJe3DbWxt38ve/v38uTeJwHIteVyVvFZmVEsZxWdNXV/NxQRkeMyNBzfsmULy5YtyzxOz/n+9Kc/zaOPPsp9993H8PAwd9xxBwMDA1x22WWsW7cOp9OZuebxxx/nnnvu4YMf/CBms5mPfexj/PznP8887/F4eP7557n77rs5//zzKSoq4lvf+hZ33HHHxN2oTDnecCoct0/RH4DSc8e79xhbxySTiMVo/+p9+F9/HXN2NpW/+Q3OuXONLktETgPRWJy2gUAq8E4H4Mn95j7/McegQHIUSpkni1lFrkz4nQ7Ci3MdmpsqIiIyTjaLjYVFC1lYtJBPzv8kAD2BnjGzy3f27mQwMsjG9o1sbN+YubbGU8NZRWcxN38u8wrmUZdfR55zCo7hFBGRMUyJROIYH8iVNJ/Ph8fjwev14na7jS5HJsCH//hhmrxNPHTVQ1xYeqHR5Zy8nU/BH26C8sVw+5+NrmZSSCQSdP3Td+h/4glMNhuVq1eTfdESo8sSkWkkGInR2u/nQI+fA6nQO90F3tYfIHqsGSiA1WyiIj+L6sJsZhW6qEptqwtdVOS7NApFRERkgkTjUfb2702OY+lJhuYHfQePeu5M10zqCuqoy6+jrqCOeQXzqMyt1EgWERGDnUyWO2lnjosYacqPVSlKdY737IFEItl2eJrr/fVq+p94Akwmyn74AwXjIvKuDIWiY0aejOwP0+ELcryWA4fVTHWhi+rCbKoLXFQXJbezCrMpy3NitegXaREREaNZzVbmF85nfuF8PsEnAOgP9rO9Zzu7enexu283u/t30zLYQpe/iy5/V2Z+OUCWNYsz8s9gXv68ZHBeUMcZeWfgsrmMuiURETkOheMih0kkElM/HC+cDSYzhHww2AHu03uxyYH/+xTdqXUGZn7jG7hXrjS4IhGZrBKJBN2DIQ72+Wnu9ae2w5nHvcPh416f67BSXeSiuiA7FYS7Ut3g2czIdWDWHHAREZEpJ9+Zz9KKpSytWJo5NhQeYu/AXhr6GpKBed9u9g7sJRANZBYBTTNhotpdPTKSJdVtPsM1Q+PRREQMpnBc5DBDkSFiiRgAeY4pOkPO6oCCWujdB927T+twfOjll+n45jcBKLztVgr+598bXJGIGC0Si9PWHxgJvjMhuJ/mPj+BSOy41xdm26kqTHZ8VxW4mFU00g1ekG3XL7kiIiKngRx7DufNOI/zZpyXORaNR2n2NbO7f3cyNO9PhuY9gR4O+A5wwHeA5w8+nzk/z5GXGcmSDsxrPbXYLDYjbklE5LSkcFzkMOmucYfFgdPqPMHZk1hR3Ug4PnvZic+fhgLbttH6hXshFsPzkQ9TnFr0V0Smv8FghOZR3d8He/009yWD8PaBAMcZ/43ZBGV5WVQXuqgqcFGV6gKvKnBRVejC7dQvrCIiInIkq9lKbV4ttXm1rKwZ+bRqT6CHPX17MqH5nv49NHmbGAgNsLlzM5s7N495jTl5c8Ys/FlXUDd1P9UsIjLJKRwXOcyUH6mSVlwHu9dAz26jKzFE+MABWu68i0QgQPall1L6ne9gMmuer8h0MXr8ycHekdEnB1Pd330nGH/itJmpLsimssCVGX9SVZDsAC/Py8Ju1fcLEREROTWKsoooKi/ikvJLMsdCsRD7BvZlRrKkQ/OhyBANfQ009DXw9P6nM+eXZpdmFv1Mf5Vll+kTayIi75HCcZHDDIQGgCk8UiWtOLUoZ/ceY+swQLS7m+bbbifW349zwQLKf/YzTDZ1eopMVZFYnL1dQ+xo97KjLfnV0DmIPzy+8SdVBS6qC1xUFabmgBe4KM516JdJERERMYzD4mBB4QIWFC7IHEskErQNtWXGsaQX/2wbaqNjuIOO4Q5eankpc36uLfeIwFxjWURETo7CcZHDTKvOcYDuBmPrmGCxoWGa77yTSGsrtspKKn/1IJacbKPLEpFxCkVj7OkcG4TXdw4SjsaPONdsgvL8rDGjT6pTo0+qClzkavyJiIiITCEmk4mK3Aoqciv4YNUHM8d9Yd+YDvPd/bvZN7CPwcggW7q2sKVrS+Zcm9nGnLw5mdA8PZYl155rxC2JiEx6CsdFDjNtOseL5ia3/h4Y7oXsQmPrmQCJcJi2z3+O0K56LAUFVP1mNdaiIqPLEpFjCEZiNHQOsr3Ny842L9vbvOzpGiQSO3IgeK7DyoJyN2eVe1hY7mFBmYfqQhc2i8afiIiIyPTmtru5oOQCLii5IHMsEouw37s/GZanQ/O+3QxGBqnvq6e+r37Ma1TkVCTD8oI65hfMp66gjpmumfoknYic9hSOixxm2nSO27PBUwneluTc8exLTnzNFJaIx2m//x8Y3rgJk8tF5a8exF5dbXRZIpLiD0ep7/CxvdXLjnYfO9q87D00ROwoK2PmuWwsLEuG4AtTgXhlvguzWb+8iYiIiADYLLbMKJW0zFiWvt009DdkAvOO4Q5ah1ppHWrlxeYXM+fnOfLGhOXz8ucxyzMLq1lRkYicPvQdT+Qw3nAqHLdP8XAckqNVvC3QvRuqp3c4fujHP8b3zDNgtVLxs5+SddZZRpckctoaDEbY1e7LhOA72rzs7x7iKDk4hdn2MSH4gjIPFflZ6mISEREROUljxrJUj4xlGQgOsLt/pLu8ob+BxoFGBkIDbO7YzOaOzZlzHRYHc/LmZLrM5+TNodZTS4GzQD+fici0pHBc5DDTZqwKQFEd7HsxGY5PY32PPUbfQw8DUPqdfyLn8ssNrkjk9OENRNjZ5mVHu5ftbT52tnlp7Bk+6rkzch3JALzckxqP4qbE7dQvWiIiIiLvozxnHktKl7CkdEnmWCgWYt/AvsxIlnRw7o/62dm7k529O8e8hsfhYbZnNjWeGmbnzabWU8vsvNkazSIiU57CcZHDTJuxKjCyKGfP9A3HvWvW0PW97wNQ/KUvkXfddQZXJDJ9RWNxdncN8nbzAG819/NO88Axg/Ayj3NMCL6wzMMMt3OCKxYRERGRo3FYHCwoXMCCwgWZY/FEnNbB1kxYvqd/D/sH9tM21IY35OWtQ2/x1qG3xryOy+qi1lNLbV5tcpsKzctzyrGYLRN9WyIiJ03huMhhpmU4Pk07x4dfe432r38DgPxPfYrC228zuCKR6aVnKJQJwt9u7mdbqxd/OHbEeZUFWaNmhHtYWOamMMdhQMUiIiIi8m6ZTWaq3FVUuau4atZVmePBaJADvgM0DjSy37ufJm8T+wf20+xrxh/1s6N3Bzt6d4x5LbvZzizPrExwPtuT7Davdldjs9gm+tZERI5J4bjIKN6Ql30D+wCYmT3T4GpOgaK5ya2vDUKD4Mg1tp5TKFhfT+vd90AkQu7VVzPzG1/Xx/lE3oNwNE5Dp4+3DvbzdksyEG/pCxxxXq7DyrlVeZxXmcd51fmcW5FHfrbdgIpFREREZCI4rc4jFv8EiMQjtPhaaPQ2sn9gP43eRhq9jTR5mwjFQuzp38Oe/j1jrrGYLFTmVmZGs6Q7zms8NWRZsybytkREAIXjImP8R8N/EIgGmFcwjzMLzjS6nPfOVQDZM2D4EPTsgfLzja7olAi3ttF8xx3Eh4dxXXABZT/8ASaLPrIncjI6vUHebk4F4Qf72d7mJRSNjznHZIIzZuRwXmU+i6rzOK8qnznFOZjN+kOUiIiIyOnOZrYlw+28WpZXL88cj8VjtA+30zjQmAnOm7xN7PfuZzgyzAHfAQ74DvBn/py5xoSJspyyzGiWWZ5ZVLurmeWeRVFWkRqhROR9o3BcJCUQDfBE/RMA3LLwlunzH9/iumQ43r17WoTj0f5+Wm6/nVh3D465c6l44N8xOzS+QeR4gpEYO9t9yTC8eYC3m/tp9waPOC/PZUt2hFflc15VHudU5uF26mOvIiIiIjJ+FnOyO7wyt5IPVH4gczyRSHDIf2jMaJZGbyONA430h/ppG2qjbaiNV9peGfN6LqsrE5RXuasy+9Weatx290TfnohMMwrHRVKe2vsU/aF+ynPKubL6SqPLOXWK6+DAK9Ni7ng8EKD1rs8QbmrCWlpK5epfY3HrhyGR0RKJBG0DAd5KheBvNw+wq91HODa2K9xsgnklbs6rSobhi6ryqCnKnj5/GBQRERGRScVkMjEzeyYzs2dySdklY57rC/ZlOs0bvY0c8B2g2ddM21Ab/qif+r566vvqj3jNAmcB1e5qqnKrMt3m6cdOqxaDF5ETUzguQnJW2mM7HwPg5gU3YzVPo381iqbHopyJaJS2L36JwNatmD0eqlb/GtvMaTAXXuQ96h8OU9/hY1ubl7eb+3mreYDuwdAR5xVm2zMd4Yuq8jm7wkO2Yxp9rxMRERGRKavAWUBBSQGLSxaPOR6OhWkdauWg9yAHfQeToflgMwe9BzkUOERfsI++YB9vH3r7iNcszS6lyl2V7DJPheaz3LMoyymbXr/zi8h7ou8GIsBzB56jfbidAmcBH5nzEaPLObWKU+F4z9QNxxOJBB3/+38z9NJLmBwOKn/5Cxxz5hhdlsiEisbiNPUMs6vDR0PnIPUdPuo7fHT5jgzCrWYTZ5a5WZQKw8+rzKeyIEtd4SIiIiIypdgt9swc8sMNR4Zp9jWPhOap/SZfE4PhQTqGO+gY7mBzx+Yx11lNVipyKzKBeWZMi7uaGa4Z+plZ5DSjcFxOe4lEgoe2PwTAp+Z/avp99CodjvcfgEgQbFPv/nr+7d/x/teTYDZT/uN/wbVokdElibyvBvxh6jtGAvCGzkH2dA0esWBmWlWBiwVlIyNSzir34LRpkVoRERERmb6ybdnML5zP/ML5Y44nEgkGQgNjQvMDvgMc9B2k2ddMMBbMLAp6OIfFQVlOGRU5FZTnlFORW5Hczy2nIqeCHHvOBN2diEwUheNy2nul7RX2Dewj25bNJ+Z9wuhyTr2cmeD0QNALvfugZKHRFZ2U/v/8PT2/+AUAJd/6FrnLl5/gCpGpIxZP0NQznArAff+PvTsPj6u874b/PdvsmpE0o9WSbHlfwDY23gKkJIHSlKTQAKF9Q8KSJk9boCUmTwLv2xCaK88DSdqEJJCQtCyhT0hoFpKmTZzmIcFsxizGBgPeZVuy9m1mNOuZc+73j3NmNKMZ2TLYGknz/VzX4Wz3OXOPL+sgf+ee350LxHtKTJYJAB6HguWNVVje5MeKJj9WNlVhaUMVqjhpJhERERERAKu2eY2rBjWuGqytX1twzhQm+uP9VlgePoZjUatcy7HIMXRFu5AyUugId6Aj3FHy3gFnIBecZwPzbHje7G2GpvD3cqLZhuE4VbzsqPFrll4zN2e6liSr7njXS1ZplVkUjkf/7/9F75e+BAAI/e3fouYv5uCHF1Qxwgkd++yR4G/3RLGvN4L9fVEk9dKjwVtq3Fhhh+ArGquwosmPtloPZJlf8yQiIiIieidkSUajtxGN3kZsbtpccE43dfTGetEV7cKJsRM4MXYit90V7cJIagThVBjhVBhvDr1Z8t71nvri8NwefR5yh1iyhWgGYjhOFW13/27s6t8FTdbw8ZUfL3d3zp46OxyfRZNyxnftwonbPwuYJqqvuRqhW28pd5eIpsQwBY4NxXIBeDYMPzGaKNnerSlY1liFFU1VuTB8WWMV/BwNTkREREQ0bTRZQ2tVK1qrWkuej+mxgsB8YnieNJLojfWiN9aLV/peKbr+ZCVbWqta4dW8Z/stElEJDMepoj201xo1/uFFH0a9p77MvTmLsnXHZ0k4njp0CJ1/87cQqRR8F1+Mxi9+kZ+w04wkhEDncAK7u0ax+/godneO4O2eKBK6UbL9vGp3LgRf3ujHiqYqzA96oXA0OBERERHRjObVvFhasxRLa5YWnRNCYCg5NGl43hPrOWXJlqAriPn++Wjzt1nrKmvdWtUKj+Y522+PqGIxHKeKdWjkEJ7ufBoSJNyw6oZyd+fsCs2ecFzv68PxT30aZjgM95o1mPeNr0NS+aiimSGc0LGncxS77WVP5yiGYumidi5NxrKGbAhur5v8CLg5GpyIiIiIaK6RJAkhdwghdwhr6tYUnc+WbCkIz6Mn0DXWlSvZMpQcwlByCLv6dxVdX++ux/zAeGDe5m/D/Kr5aPW3wqk4p+MtEs1ZTJyoYj3y5iMAgA+0fQDtgfYy9+Ysy44cHzoEGBlAmZk/+kYkgs6/+hQyPT1wtLej5cHvQna7y90tqlC6YWJfTxS7O0fwmh2GHxmIFbXTFAkrm/xY21qNtW3VOHdeNdpDHA1ORERERESWgpItTcXno+kojkeP43jkeG6C0OOR4zgWPYZwKoz+RD/6E/14ufflguskSGj0NubC8jZ/Gxb4F6DN34YWXwsnCCWagpmZkBGdZT1jPfj1kV8DAG4656Yy92YaBFoBzQPocWCkAwgtKXePipipFLpuvgWpgweh1IXQ+i//ArWmptzdogohhEDXSMIKwe3yKG92R5DKFE+WOT/osYLw1mqsaa3GyiY/XJpShl4TEREREdFcUOWowqrgKqwKrio6F06FxwPz6PHx4DxyDGP6GHpiPeiJ9WBnz86C62RJRrO3uWSplmZfM1SZkSARwHCcKtRjbz2GjMhgY+NGnFt3brm7c/bJshWI9+yxSqvMsHBcGAa6P/d5xF9+GbLXi7bvfx+Olnnl7hbNYeGEjtdzdcKtpVR5lIBbwxo7CD/PDsNrvY4y9JiIiIiIiCpRwBnA6rrVWF23uuC4EALDyeGiwDy7n8gkrLItY114vvv5gmtVSc1NBNrsbUaTrwlNXmtp9jUj5A4xPKeKwb/pVEf0/skAACAASURBVHFGk6P42cGfAQA+ec4ny9ybaRRaZoXjg/sBfKjcvckRQqDvf9+D6G9/C2gaWh64H64VK8rdLZpD8suj7O4MY3fnCA5PUh5lRbY8ir20h7ycDJaIiIiIiGYcSZIQdAcRdAdxXv15BeeEEBhIDBSUZ8mG553RTqSMVG40eimKpKDB04BGbyOafc1o8jYVbDd5mzhJKM0ZDMep4vxo/4+QyCSwonYFtjRvKXd3pk/dzJyUc+hf/hUjP/whAKD53nvg3by5zD2i2W5oLIUXjwxj1/ER7O4cxd4T4ZLlUdpqx8ujrG1jeRQiIiIiIpobJElCvace9Z56bGjcUHDOFCb64/25oLwn1oPeWC+6x7rRE+tBX6wPGZFBd6wb3bHukhOEAtaI9mxQnlt846PPa121kCV5Ot4u0bvCcJwqSlyP4/G3Hwdg1RqvqBGhMzAcH33yFxj4+tcBAA133oHA5ZeXuUc0G0WTOl7qGMYLh4fw/KFB7OuNFrXxu1SssUujrG2rxpqWagR9nNWdiIiIiIgqiyzJaPQ2otHbiE1Nm4rOG6aBwcRgrpZ5T6wH3WPd6I31WvtjPYjqUYRTYYRTYewb3lfydTRZs0abe5uLRqA3eZsQdAfh03yVlcvQjMRwnCrKk4eexGhqFK1Vrbhk/iXl7s70Ctnh+OABwDStOuRlFP6P/0DPF74AAKi96SbUXn99WftDs0dSN7Dr+Ah22GH4nq4wDFMUtFneWIUNC2pzo8Lbg17IMn/pIiIiIiIiOhlFVtDgbUCDtwFrsbZkm2g6mhtx3jPWg+5Ydy4474n1YCAxAN3U0RntRGe0c9LXUmUVta7a3FLjqincd9ag1l2LWmctat218Kgehul0xjEcp4qhmzp+8OYPAAA3rLqh8iaXqG0HZA3Q40CkC6huK0s3hBAYfugh9P/TPwMAAldeifrP3l6WvtDsYJgCb5wI44XDg3jh0BBePjpcVCZlftCD9ywK4T2LgtiyKIgQR4UTERERERGdFVWOKlQ5qrC0ZmnJ87qpoz/enwvLc4u93xvrRTwTR8bMoD/ej/54/5Re16k4cwF6jasGQVcwF6DXOGsQdBfusy46TUWFpYNUybZ1bENPrAdBVxBXLL6i3N2ZfooGBBcBA/us0iplCMeFaaLv3nsx8ti/AQBqb7wR9f/zs5DKPIqdZhYhBA72j+GFQ4N4/vAQXjwyhGgyU9CmrsqJCxYFrUB8cRAtNfylh4iIiIiIaCbQZA3zfPMwzzdv0jbJTBIjyREMJ4dzy8n2k0YSKSOF3lgvemO9U+qHW3UXjECfOBI9f7/GVQOX6jpTfwQ0izAcp4pgChMP730YAHDdyuvgVCp0VGndsvFwfMml0/rSZjqN7s9/HtHfbAMA1H/+8wjeeMO09oFmrs7huFUm5fAgXjg8hIFoquB8lUvFloVBvGdREBcsDmFxPWvTERERERERzVYu1WVN4OlrmlL7uB7HSGoEw4lhjKRGMJQYKtxPDo2H6YlhpM00EpkEToydwImxE1N6DY/qKVnmpajci73vUBzv5o+AZgiG41QRnu16FodGD8GrefHRZR8td3fKJ1t3fKD0hBlnixGNouvmWxB/6SVA09B8zz0IfIiTb1aywbEUdhwewguHB/H8oSEcH44XnHdpMjYsqMWWRUFcsCiEc+YFoLBmOBERERERUUXyaB54NM9JR6NnCSEQz8RPOSJ9JGmF6sPJYWTMDOKZOOJjcXSNdU2pTz7Nd9LwPFf6xV4rsvJu/xjoLGA4ThUhO2r8o0s/Cr/DX+belFFd3qSc00Tv60Pnpz6N1IEDkL1etNz/bXi3bJm216eZIZrU8VLHMJ4/ZAXi+3qjBecVWcLa1mq8xy6Vsm5+NZwqf3EgIiIiIiKi0yNJEryaF17Ni9aq1lO2F0JgTB8rCMwnBuj5+yPJEWREBmP6GMb0MRyPHj/la6iSikZvI+ZVzcuVnMlfQu4Qvx1dJgzHac57rf817OrfBU3WcN3K68rdnfLKhuMD+wEhgLP84E0dPozjn/oUMt09UOpCaPv+9+FaseKsvibNDOGEjteOj+CVoyN4/vAgXu8KwzBFQZsVTX67TEoQG9uD8Dn5vyQiIiIiIiKaXpIk5SYZne+ff8r2QghE0pEpjUofSY5gJGWF6V1jXZOOSncqTjR5mzCvah5afC1o9jUXhOfVzmqG52cJkwia8x5+wxo1/meL/gz1nvoy96bMgosBSQaSo8BYP1DVcNZeKr7rNXT+zd/ADIfhaG9H67/8Cxwtp/76E80+QggcGYzh1WMj2HVsBLuOj+BA31hRuwVBD7YsCuGCxUFsWRhE0Fehtf+JiIiIiIho1pIkCQFnAAFnAO2B9lO2N0wDA4mBXP3zE2MncCJqrbvHutEb70XKSOFo5CiORo6WvIdH9aDZ14wWXwvmVc1Ds7e5IEivclSd4XdZORiO05x2cOQgnu56GhIk3LDqhnJ3p/w0N1A9HxjpAAb3n7VwPPrUUzix9XaIVAquNavR+uCDUGtqcucN3UTn28M4uncIRsaE063C6bEXtwqnR4Mjb9vpUaE6ZH5KOkMk0gb2dI0WhOEjcb2o3YKgB+vm12CzPZFmS42nDL0lIiIiIiIiKh9FVtDobUSjtxHrG9YXnddNHb2xXnSPdePE2Al0RbvQHevOBegDiQHEM3EcGj2EQ6OHSr6G3+EvGGne7GtGS1UL5vnmYb5/PlSZEfBk+CdDc9qjbz4KALhk/iVYEFhQ1r7MGHXLrHB8YD/Q/t4zfvuRHz+B3i99CTBN+C6+GPO+/s+QPR7oaQPH9w7h8GsDOPrGIPSkcVr3lRUJTo8Kh9sOzb0anG4VDo8KV/a4HaSPH9fs4yoUVT7j77USCCHQHU7mgvBXj43grZ5IUYkUpypjTUs11s2vwfr5NTivrRohjgwnIiIiIiIiOilN1tBa1TppffSUkcoF591j3ega67L27fB8JDWCSDqCyHAEbw+/XXT90x99GkF38Gy/jVmL4TjNWd1j3fj1kV8DAD55zifL3JsZpG4ZcGCbFY6fQUIIDH772xj8zncBAIGrr0Lw8/+AQ2+O4siuwzi2dwgZ3cy19wYcWHhePbzVDqTimdySTujj+wlrLUwB0xBIRHUkosUjlKdC1WQrXPdouZHqDpcCza3C4bK2HS4VDrcCR+6Yve9SobkUaE5lzo9eT2dMvNUTKQjDeyPJonaNfhfWL6jB+rYarJtfg5VNfjj4AQQRERERERHRGeVUnGgPtE9awiWuxwtLtthlW7pj3RhODKPWVTvNPZ5dGI7TnPXYW48hIzLY1LQJq0Kryt2dmSOUnZRz3xm7pchk0HP33Qj/9GfQVQ+SH70Nh4Or0XnnDpiZ8RHGVUEXFp1Xh0Xr6tGwwA9JPnXQLISAnjKQTmQKQvN0XEcynsk7rtvhuh2qx+x2iQwAIKObyITTiIXT7/h9ShKgZYN0d2F4XhS0l9p2K1A0GaZhhf3Z0N80BEzTzNsWEHnbpmHaa1F4bfZcQdv8+45fBwGoTivg1xxKLuxPCBNHR+I4MBzDW/1RvNkfxZhhQpeADABIgCJLWNXsx7o2a1T4+vk1aK52v+M/RyIiIiIiIiI6MzyaB0tqlmBJzZJyd2VWYjhOc9JIcgQ/P/hzAMBN59xU5t7MMHXLrfXggTNyOzORwOHP3Ilj+2PoX3MLRmuXQ3RLQPcQAKC6wZMLxEOtvtMeeS1JUm4Ut6/m1O2L+mcKpBMlQvRkBumEYa2T1lpPZJBKGNCTxeeFKSAEcvfCSOr0OzODeQFsALABeaVQJEDRZKtMzYAKLRKHfiCJV50DeN05HrBrJUL37OJwqXBXaXD7HVAUjiwnIiIiIiIiopmD4TjNST/a9yMkMgmsqF2BLU1byt2dmSVkf5I41gckRgD3O0icAYyNJHHw+WPY9+TLGFY/BCyzg08BBOf5sGhdHRaeV4faJm9ZS5HIsgSXV4PLq73jewghkNHNXDA+HqZnw/MJQXsie8za17PnExmYpgAkq4a6LEuQFdlejy9SqePyhHMTjufOZ8/JEhKGgYGxNAbGUuiNJDEwmgQyAg4BaJCstQB8qgKvLEMTEmRDwMiWvxGAkTYRT6cRfxcj7gEAEuD2afD4nfBWO+AJOOH12+uAA95qJzx+BzwBB1RNeXevRUREREREREQ0BQzHac6J63E8vu9xAMBN594052tEnzaXH/DPAyIngIEDQNumKV8aGUzg8K4BHH6tH30dEeug1gwACNUpWHLhAixcW4fqBs/Z6HnZSJJkjYp2KPAG3vkkk0JYo8/lKZSTOV3DsTRe7xrFG11h7OkK4/WuUfRHJ4xudwBen4Lz7Drh6+fXYG1rNQLuwg8OTFMgkzagpwzoSXs9cT9lQE9lctuZVP7x8SWdyCAR1WGa4zXjh06c/L04Pep4aB5wwjPJWnMyRCciIiIiIiKid47hOM05Pz/4c4RTYbRWteLStkvL3Z2ZKbTUCscH958yHB/pjeUC8cHOsfETwkQg0oHG1GGs/YcbEVq37Cx3evaTJAln4rOaaFLH3hMRvN41ite7wnj9xCg6hxNF7WQJWNpQhdUtAZzbUo31bTVY1lgF5RThvCyPl7JB4N33V5gCiTEd8UgKsXAa8bC9Hk0hFsnbD6dhZMxcbfmRnthJ76u5rA8rvAFrBLon4IDXb6+rnaiqdcJX44LCiUKJiIiIiIiIqASG4zSn6KaOH7z1AwDADatugCJzZGlJdcuAI38ABvYXnRJCYOjEmB2IDxQElJIENDbI8L/4M4S6X4K/vQmt3/8+tIb66ex9RUnqBt7sjuSNCh/FkcEYhChuuzDkzQXha1oCWNUcgNtR/p8BSZaskil+B0Itk7cTQiAVzyAWTiGeF6Jn9/PXmbQJPWlgNBnHaF988teWAG+1E/6QG1VBF/xB1/h2yA1vtfOsjOQnIiIiIiIiopmP4TjNKb/p+A16Y70IuoK4YvEV5e7OzFVnj/K2w3EhBPqPRXHktX4c3jWA8MD4KGRZkdCyvBaL1tUh2Pcahr94J6Dr8GzciJYH7odSVVWOdzAn6YaJ/b1R7Mkrj3KgLwrDLE7C51W7sbolgNXZIHxeoKg8ymwjSeP14YPNk7cTQkBPGuNhecRej9oj0CMpxEbTGBtOIqObGBtJYWwkBRwsvpcsS/DVWuG5P+hCVdANf2g8QPf4HSzNRERERERERDRHMRynOcMUJh7Z+wgA4LqV18GpvPPa0HNeyArHRf9+HHypFy/+4giiw8ncaUWT0bayFovW1WPBuUE4PRqGHn4E/V/9KgCg6oN/guavfAWyw1GW7s8FhilweGDMKovSNYo9XWG83RNBOmMWtQ35nFhjB+HWyPAAQr7K/fstSRIcbhUOt4qaRu+k7YQQiEfSiA4lERlKIDKYtLYHE4gMJTE2nIRpCEQGk4gMJkveQ9FkOzR3wR8cH3HuD1nHXF5tWsJzIQTMjICRMZHRTRgZE0Z2bW+b9ocoVnfsPkn2lt3HXFclQMpvk/cWcu8nu7LvV/A2865XNBm+WicUheVriIiIiIiIaHZhOE5zxjNdz+DQ6CH4NB+uXXZtubszs9UtR9QIYvuxj+PYgbcAAKpTwYJzglh4Xh3mnxO06k0DEKaJvnu/guFHHwUA1Hzi42i44w5IMoOw0xFO6NhxeAivHB3G6yfCePNEGLG0UdTO71KxprUa586zR4W3BtDod3H08jsgSZJdk9yJxoXFxdNNUyA2mkJ0yArLI4NJRO3gPDKUQGwkBUM3MdIbx0hv6dItmlOxg3J3rmSL5lJywXVRkJ0LtEVBGzO/bVF7KxSfyWRZgr/OjeoGj7XUu1HT6EGg3sPR90RERERERDRjMRynOePhvQ8DAD667KOocrDUx2SEKfDmq0m8MPht6MINWQE2XN6OtZe0QZ1Qn9pMp9Fz5/+LyH/9FwCg/n9+FrU33cSgawp0w8Rrx0fx3MEBPHtoEHs6RzGxOorHoeCc5oBVHqW1GqvnBTA/6OGf7zSRZQlVtS5U1brQvKT4vGGYGBtOITKUQHQwf/S5FaDHw2noKQNDJ2IYOnHyyUPPeN9VCYoqQ1FlqJoMWZWLaqcLIQD775ywDuSdsw6KggZ5TUTujN2u9PUAoKcNGLqJ0b7S9d8dLmU8NM9f6j3QnOWviU9ERERERESVi+E4zQm7+nbhtf7XoMkarltxXbm7M2ON9sXxh/+zD90HRwG40ajtw/s+Uo/a972/qK0xNoauW25F/MUXAVVF8//+Xwj82Z9Nf6dnCSGsMinPHhzEcwcH8eKRoaKR4QvrvHjPoiDWtFRjTWs1FtX5oHAyyBlLUWQE6twI1LlLns+kDUSHk4gM2SPO7QDd0E0ruNbk0mtVgqopUFSpxLnxbbXEdYomQ1FkSDPo740wBWLhFEb64hjtjWO0P54LyqNDSaSTBvqPRdF/LFp0ra/GmQvK84PzqqCLE6USERERERHRWcdwnOaEh/Y+BAC4YvEVqPPUlbk3M49pmNj9VCde+lUHDN2E6pCxefEenDt0N2TzM0Xt9f5+dH76fyC1bx9kjwfzvvUt+C68oAw9n9kGx1J4/tBgLhDvjRTWra71OnDB4hAuWhzCBUtCmFddOmSl2Ul1KKhp9J607nklkGQJvhoXfDUutC6vLTiX0Q2EBxII9yUw0hfDaH8iF6Anx/TcZKld+0YKrpNVCYE6D2oaPKhuyJZr8aK6wQ23j3MdEBERERER0ZnBcJxmvQMjB/BM1zOQIOGGVTeUuzszzmBXFL9/bB8GjlujNluW1+B91y2H/9A+YJsJDOwvaJ860oHOT30K+okTUIJBtH7/e3CvWlWOrs84Sd3ASx3DeM4OxN/uiRScd6gyNi6oxYVLQrhwcQgrm/wc/UoVTdUUBJt9CDb7ABR+cJmM6bkR5iN9cYSz6/4EjIyJkZ4YRnqKy9U4vao10rzeA6dXheZQoLkUaM7souZtFy6qU+HPJBEREREREeUwHKdZ75G9jwAALp1/Keb755e5NzOHoZt45TdHsWvbMZimgNOj4oKrF2P5liarpnV4qdUwLxxP7N6Nzr/+Gxijo9Dmt6HtX/8VjtbWMr2D8jNNgbd6ItbI8EMDePnoCNITJkZc2eTHRUtCuHBJCBsW1MKlsYYy0VS4vBoaFwaKJks1TYGx4aQVnPePl2oZ6YtjbDiFVCyDvo4I+joik9z55FRNhjpJeF68qOPBu8Neu8bXDpcKh0uBrHCCYiIiIiIiotmI4TjNat1j3fhNx28AADede1OZezNz9B4J4/ePvY2RXmtyvIVr6/Dev1wKb8A53ii0zFoPHwEyaUSffR4nPrMVIpmE69xz0fq9B6HW1pa4+9x2YjRhTaJ5cBAvHB7CcCxdcL4p4MKFi60w/ILFIYR8zknuRETvhCxL8Ifc8IfcaFsVLDinpw2E+xMY7YsjPBBHOmkgkzKgn2pJZnLziWZ0ExndRHJMP2N9VjQZDpcCzQ7LHS4rVHc4FWhuFQ6nAofbGtGeO5e3zr9GURm0ExERERERTReG4zSr/eDNH8AQBjY3bcaqIEt/pJMZ7PyPI3j9D12AANx+B/7oL5Zi0br64sb+ZsBRBaSjGHnsQfT+0/cA04T3vReh5RvfgOytjDrK0aSOHYeH8Nwhq274kcHCMg5eh4Iti4J2IF6HRXVea+Q9EU07zaEg1OJDqMV3WtcJIWBkTDsotwPztFG4n7cUB+6Zgv100rrOsL9JYugmErqJRPTdB+6yKuUCc82pwuEeXzs9Gtw+DS6vBpfP3vZltx1QHTKfT0RERERERKeB4TjNWiPJEfz84M8BADedw1HjnW8N4w8/3IfokDUp5PLNjbjgmiVwebXSF0gS0o6FGHj6GCI//i4AIPDnf46mL/0jJG2Sa+aAjGFiT9conjkwiOcODWJ35ygMU+TOK7KENS0BXLikDhctCWFtazU0lkwgmtUkSYKqKVA1Be7Ty9VPysiY0JMG0smMHZhnkE4ZSCcyueC94FzeOp3M5M7rSQMZ3QrazYxAckx/RyPbFU0eD8y92fDcUSJI1+DyOuDyqVBZCoqIiIiIiCoYw3GatR7f9ziSRhIrgyuxuWlzubtTNsmYjhd+dghvv9ADAPDVOvG+jy0vKkeQz4hGMfS972H40SGIjAeQgOBf/zXq/u7v5uSow2NDMTxzcBDPHhjAjsNDiKYyBefbQ95cqZQti4Lwu+buhwNEdOYoqgzFJ8Ple/fPDNMwrfA8VRycZwP2VDxjB+dpJMZ0JGNWiJ6I6jAyJgzdxNhICmMjqSm/ruZUisNzr6MgSHdXafAEnPAGnNCcDNOJiIiIiGjuYDhOs1Jcj+NH+34EwBo1PhcD3ak48toAtv9oP+KRNCAB5/5RCzZfuRAOV+kfbaHrGPn3f8fg/Q/AGBkBAHgaUmi4egNct/79dHb9rAondOw4PGgF4gcH0DmcKDhf7dFwweIQLrID8ZYaT5l6SkRkkRUZLq88+bd9TkIIgUzaRCKaRjKmW8G5vSTG0nnbesF5YYpcqZjst45ORXMp8Aac8Pgd8FY74Qk44PXb60D2mBMOl1Kx/28mIiIiIqLZg+E4zUo/O/gzhFNhtFW14ZK2S8rdnWkXC6fw7BMHcHjXAACgusGD9398OZoWV5dsL4TA2NNPo/9r/4T0kSMAAMfChaj/2PvhO/AlSGrXtPX9bNANE3s6R3Nh+J7OUeRVSoGmSFg/vwYX2aVSVjUHoMgMbYhobpAkCZpTgea0JjKdCiEE0onMhCDd3o6lC47HI2nEImmrFnvSwGgyjtG++Envr2qyFZhXO+HxO+ENOHL742G6E06vOm0huhAChj0hayZtwsgYyKStfUPP286Y0ByK9WfqUgomUtUcCiT+/4OIiIiIaM5gOE6zjm7oeOytxwAAN55zIxS5cr7iLYTA/hd78dxPDiIVz0CSJaz74zacf/mCSevGJt9+G31f+SriL74IAFBqahC69RbUXHMNpGgncPBLwOBBwDSAWfJnKYTA0aE4nj04gGcPDmLH4SGMTSiVsrjehwsXh/DepSFsag/C6+TjjogoS5IkOD0anB4NKDFncynpZAax0RTi4TRiEXs9mkIsnEY8ux9OI53IIKObiAwmERk8+Yh0WZUKwvLsCHRPwAmXV4ORsYNs3ciF2hndGA+5dRNG2shtZ9KTnzPsuu7vluq0A/OJ4bm973CquePWOQVa3vmJ7RXOa0FEREREVDZMi2jW+XXHr9Eb60XIHcKHF3243N2ZNpHBBJ5+fD863xoGAIRafXj/J1agrrWqZHu9rw8D930T4V/8AhACksOB2us/geCnPw2lyr6mej6gOAEjBYwcBYKLpundnL5wXMfzhwfxrD06vGuksFRKjV0q5b1L6nDhkhCaq6c2epKIiKbG4VLhaFRR0+g9aTs9bSAetkNzO0CPR7L71joWTiEVy8DMCESHk4gOT62sy5kiyxIUTYbqkK21pkB1yFA1GbIiI6Ob0JOZXNmZdNKAsL+SlEkZyKQMJE7xGlOlqPJ4sO5S4XDba5cCza3C4VLhdFsBe+H58e1s6M5SNkREREREp4fhOM0qpjDx8N6HAQAfX/lxOBVnmXt09glT4I3tXdjxiyPIpAwoqoyNH27HmktaS442M+NxDD30MIYefhgiYf3T3f+nf4q6rVvhaJlX2FhWgNBSoO8NYPDAjArHdcPEa8dHc6PDX++avFTKe5fUYVWzHzK/6k5EVHaaQ0GgzoNA3cnnczB0c3wEenh8nQ3RU/EMFFW2Q2slF2armgJVk6HYYfbk56ztyQLw05EtyZINyvWUPVmqXWpGT2VyE6rqSSMXrFvnM3nXGfZ11gcDAKzJVDMmkjH9Hf+ZA4AkAQ63Oh6ylwjanXbYPjGI15wKVLuUjOqQoToU/j+ViIiIiCoCw3GaVbZ3bseR8BH4NB+uWXpNubtz1o30xvCHf9uHnsNhAEDT4gDed93ykqP2hGEg/ItfYOC+byIzYNUid593Hhru+Dzca9ZM/iJ1djje/xaw7INn5X1MhRACHYMxe2T4IF48UrpUykVLrNHhG9trWSqFiGgWUzQZ/qAb/uDM/6aPJElQHVaA7C79ha3TZmSyYXsmL1Q3kEpkrGNJ61w6YQXv1rYVtme3s+eFAIQAUvEMUvEMgNS77l/2g4lscK46ZGiO8fBcdSjQstvOvO3sceeENhPCd1WTOdKdiIiIiMqOyRLNGkIIPLT3IQDAtcuuRZXjDP3rdAYyDBOv/fdxvPxfHTAzAppTwZY/X4Rz3juv5ERgsRdeQN9XvorU/v0AAK21FfW3346qy/741P/wrFthrX//v4DevcCWW4CW9Wf6LZU0Gk/j+UNDeO7QAJ45MIgTo8WlUi60J9G8aEkITYGZH6AQERFNhaLKUFQZLq/2ru4jhEAmbRYF6Xo2PM8P0pMG0omMHbBbQXyufEzaqtkO+1ta2RHtVth+dqh2TXanW7XLxihwuO21Sy0cCe8eP+bIa8u67URERET0bjAcp1ljV/8u7BnYA4fswHUrryt3d86ageNR/P7f3sZg5xgAoG1VLS7+2HJU1bqK2qYOH0b/V7+Gse3bAQCy34/QX/81aq77GGSHY2oveN51wLHngCNPA2/+3FratgBbbgaW/ekZnaRzOJbGSx1DePHIMHZ2DGNfbwRiQqmU8+fX4qKl1ujwlU0slUJERHQykiTlJv/0Bt5dubls+ZhM2oSeNpBJG9Z2Km/bPm4dswJ1fWI73UQmNX481yZlBe5Z2frt8XD6XfVb1WS7PvvJg/Tc5KgOBaYpIExRsDaN4mPCPp7dFrl2sK4xBYRhwhSAMErfL3cvIaAoMmT7gxFVk6GoEhRNsddy7kOT7LZadKx0+1w7TYasSByVT0RERDRFDMdp1njoDWvU+BWLr0DIHSpzb868VCKDXduOpERCxwAAH6JJREFU4bXfHYcwBZxeFRddswRLNzUW/QMnMzSEgfvvx+i//wQwDEBVUfOXf4nQ3/4N1Jqa03thfxPwiV8CvW8AO74DvPET4PgOa6lZAGz+W2DtxwCn77Tf00A0hZ0dQ9h5ZBg7O4ZwoG+sqM3ieh/eu6QOFy0NYVN7LTwOPpaIiIjKIb98jAvvbkT7ZExT5IL2gvIxeaPaU/YIeD2/pMyEEfB6IoOMbgXtGd1ERk8jETkrXZ6VCsJ0dTwwl2RrkWVY29Ip9u1jsixBymtTsC9LkHP3RsF+toxO9gOc7OSzBfv2oqgstUNERETTTxIif9wmlRKJRBAIBBAOh+H3+8vdnYq0f3g/rv7V1ZAlGb+68ldo87eVu0tnxNhIEh17BtHx+iBO7B+BaVg/jovX1+Oia5fC4y8c/W2mUhj+wWMY+t73YMZiAADfJR9A/e23w9nefmY6Fe0FXvo+8PJDQHLUOuYKAOtvBDZ+GgjMm/TS3nASO3Mjw4dwZCBW1GZpgw+b2oPYtLAWG9trUV9VPCKeiIiI6FSMjJkXrueH5+Pbuh2655ecyaQNK8C1A2NZyYa99rrUvjR+PHdOKQySZVmGJKPgftl2siwBEmAa1uh8I2Mio5swMyaMjEDGPmZMXOdtW20EDN2w1nnnsr9DzmaSLJUMzTWXAu2kAbtqr+Xcdv5Evoom85uIREREFeZ0slwO0aRZ4ZE3HwEAXDr/0lkdjAshMNwdswLxPQPoPxYtOF/T6MHmKxdh4dq6ousi//VrDHz969C7uwEArpUrUX/H5+HduPHMdrKqEfjAXcBFtwN7fmSNJh8+DDx/H7DjfmDVR6ySK81r0TUSz40K39kxjGND8YJbSRKwvNGPTe212LywFhsW1CLoe3df+SYiIiIC7NHRPhku39kZ5T6bCFPkBej5oboVxgtRWBpGmIApJuzbpV/GS8GgeD/XBsX3FCh6jUzGhJ6yPqTQU8VLJmXkvgEgTJH7IONMk2WrDI3qGC8/k1+KRtVkKJpir+1jBefywnY1/1hee02GrMiAAES2eH92lfvswvpzQt5nGflj1bLnhPWfCcfF+C3H/wMhrN+5FS1/4tzx7VLzFREREdE4jhyfAo4cL68TYydw+c8vhyEMPPGhJ7AyuLLcXTotpinQe3gUR/YMomP3ACKDyfGTEtDY7kf7mjq0rwmhptFbdH181y703fsVJF9/HQCgNjai/jO3wf/hD0OSp2ECKtMEDmyD2HE/pGPP5w7vks/BA8nL8HvzPAhY/ZAlYGWz3xoZ3m6NDK/2TLH2ORERERFVHNMUVo36gsUun5MN0e0695OF7KVCd9PkP3MBQNGygfl4iZuJIbrqVKBpClSn3aZE+8mOsxwOERHNRBw5TnPKD978AQxhYEvTllkTjOtpA51vDaNjzwCOvjGE5JieO6eoMlpW1KB9dQgLVocmnTwrffw4+v/pnxH97/8GAEgeD0Kf/hRqr78estt91t+DEAIdgzHs7BjGziNN2Nl7O4KpD+Kv1F/jcnkn1pl78ZBjL04o8/BGy/8D14brsG7xPPhdHL1FRERERFMjy5I1Yar7zP7T1DTGR85bI+qtUeq5/fztTOHxjG5Y60xxu0zaulfBffJG7UuwSugU5MX2jmT/R8o7XtgO1vXZ7Qn3kHI3QfGcRHkT4GZH4wPI9R/F1Q7PDAlWyG6PzNccSkEgr2gKNDtQt9ooUBx5gb02Hrhnzxcdd+SNzJ9FhLC/UWFYpY9yk/4a2Ul7x48XTAqcPZ5ta5dNkhVpfIJeVYas5u9LhccVmd8aICKaIobjNKMNJ4fx5MEnAQCfPPeTZe7NySWiaXS8PoiOPYPoenu44JdSp0fFgnNDaF8TQuvKWjhck//oGeEwBr/7IIZ/+ENA1wFZRvVVV6Hu726FWlc36XXvlhACh/rH8GLHMHYescqkDERTBW0GlUX4t+YvoKdZx+XJ/0TrkR9jXuoE5h37GtD/r8D5nwQ2fsoqzUJEREREVCayIkNWAM2plLsr006YVh377Kj7TNqEns7bThnI6NYIez0bqKfztksdz97Lvm+uzr2AdS5lnPX3JStSLizP1ZHPfqCQ+9AABRu5DyTyPkwoajPx2hIfcGSvz5YayoXa+UF3NuDOO15OsiJBnhCc5wfpsiJD0fK2VXtfKR3Ay5Pcp9S5ydrKKucAIKKZh+E4zWiPv/04kkYSq4KrsLHxDNfWPgNG++O5+uG9h8PIL1JUVetC+9oQ2tfUoXlx4KQjHYQQyAwMILptGwYf+A6McBgA4L3wQtR/7n/CtXTpGeuzEAKDY2kcG4qhYzCGY0NxHOyP4pWjIxiKpQvaOlQZa1ursbm9FpsWBrGurQZuR/YfGH8EpL4IvPZ/gBe/A4weA579J+D5bwLnXmPVJW8854z1m4iIiIiITi1/ctOzxTDM8ZHqeSPWc/u6UXh+4n5eez1twtDHA3lDz4b59qh3m2lk69Kftbc1LbKT/crK+FJ4TM4dU+w1YE/oa88pYGbGtw1DwNTNojDeCu8NZFKlelE+kiwVhOWKPdI9W9M/N0Jek6EoE9rlwvfSob+cH9ArUu6eSt524f3tIN+euJclgogqE2uOTwFrjpdHXI/j0p9eikg6gq9f/HVcOv/ScncJwhToPxZFx54BHNkziJGewu8nhlp9WLjWqh8enOcr+p+rGYshdfQo0h1HkT56FOmODmt99CjM2Pi9nEsWo/5zn4PvooveWT+FwEA0haNDcRwdiuGoHYIfHbLWY6nSEx25NBnr2mqsmuELa7G2tRoubQq/VJsGsO+/gB0PAJ0vjh9feDGw5RZg0QeA6aiPTkREREREc4YwBTKZCaF62syVLCk1ASowPolp3lyoyE2Iiux1441F/vUTJkUtOCfZI7JlO8SWJwTc+eeU8X0puy1JZ63ciTAFjLxyQlZpIROGnj1uwszY50uF7Pa2aeRN6Ju7xt7POzd+fzugn3Cf/NeYFSTkQvpsmaDsRL25SXgdeft52/lts5P/qppSfB/H+OS+p1uzX5gibyJlez9/kmQzb5JkkTfRcql9+5hpAhACkjz+AY0kSZBkTL6fdyy3L1sloiQ5+3ccuXZE5cKa4zQn/PTATxFJRzDfPx/vb31/2fph6Ca6DoygY88gju4ZQCw8PrpaliU0L63OTahZVeuCyGSgnziB2DO7kOroKAjCM/39k7+QLMOxYAFqr78e1Vd9BJJ68h9PIQT6oykcHYxZAfhQ3B4Nbq3j6cm/2ihJQHPAjQUhD+YHvWgPenFeWzVWt1TDob6DEFtWgJV/Zi1drwA77gfe+iVw5GlrCS2zRpKv/iignf166URERERENPtJsgTNngyUTk6SJaiyAlUDMIP+ySWEyI16NycE5yUD+ExekG+IXF3/3Mh5O4wvaHeS+xiZ/ODevo99z4KhogK5NtP57YRsGC8rkh1eIxdgm3nB96wkIfeBUFHgrkiQJVhrufDbE/lBvKxY7fM/aCrYl/M+gMq/j/2a2ftN/HaGoo5/iJX/jYLx2v7ZdiXa2N92yJYuOlOlgoQQ1s+IYZb4eSn9d77U/sS/54YhcOE1S1jS6CQqauT4Aw88gK997Wvo7e3FmjVr8O1vfxsbN566VAdHjp85iUwCw8lhDCeGMZQcsraTwxhKDBXsDyeGMZIagSlM3L3lbly19Kpp7WcqruPYm0Po2D2IY28OQU+OB82aU0HbqlrMX+xGo2sUUvdRKwQ/eswaCd7ZadUKn4RSWwtHezscC+bD2d5uby+Ao7UVksNR0NY0BfqiSRy1A++OoRiODY6PAE/okwfgsgQ0V7vRHvJiftCDBUGvtYQ8aKnxTG1E+Lsxcgx46fvAqz8A0lHrmCcEbPgra/GdvfrpRERERERERCdjmuOBe374nisDpI+X+slt2xPzWhPy5rXTDRj527lr8vbt82cj7M4G0LIkAbIdPOeN7C7at0d7Q5ImjCbPC+iz4bzIG5Vujo9iR8WkiScnSbBK+mTr/Ofq/RcG68IUk4faxtn9lsX/+NYfQa2wDxlPJ8utmHD8iSeewCc+8Qk8+OCD2LRpE+677z785Cc/wf79+1FfX3/SaxmOT84wDYTTYQwn7JDbDriHEkMF+9kwPJE5vY9gF1cvxhMfegIOxXHqxrBGeespA+lkBnrKKNxOGkgnDeipjLVtn9dLnB8bThXUbHO7BJq9YTQkDqOqaxeMo0dgRiKT9kNyOuFYsADq/PmQ2+YDLW0wWtpgNLdC9/iQyhhIZ0ykMmZuncoYGEtlcDxXCiWOY8MxJPPq7E0kS0BLjQfzgx47BPdiQdCDBSEvWmrccKoz4OGXDAO7/g3Y+SAQ7rSOKU5gzbXA5puB+uXl7R8RERERERHRNDEMczxItwN30xB5I6Zhly7JK2ViHyvYz5UxKc+IYJFX5mW85EteCZfsBLamFaSbE89nA3l7Alth2KPljfEwPjfR7cR9gdxxaz/vPmbp++WOGSIXRlvrbKmgbLmg8bJBuW895H37Ybom25VlaUqT4sr5dfez9fuVwus2/Gk7FK2ySt0yHC9h06ZN2LBhA+6//34AgGmaaG1txa233oo77rjjpNdWcji+9429eOHJ/4ZupJAWKaSNFHQzibSZhm6moJtpWB8X5qb8LvrvxLUMBZrshENyQpWdcMhOaJITmuKEJjmgyS5okgOq7IQKB8yMBMMAzAxgGhJMU4JpSDBMCcKUYJgyTFOGKWQAZ+6H3Z3sR33fa6gb3IOq6HFIEz4WNSFhtKoWfYEG9Prr0e2rQ6evDsc8dehxVCE1eaZ9WhRZQmuNuyD4XhC0RoO31HjeWRmUcjAywNu/BF64H+jeNX7cXQPIGiCrgKJa6yntK/Yx+1x2meq+VOY/N+tj+sm3pbyfmym3ncK9iIiIiIiIiOgdsYJ5wDCzawmmCSu3yu7nztt5lmn9s1xRAEURkBVAka1tRbHijew5RbGmbDuj07Ytv9x6kQrCmuMTpNNpvPrqq7jzzjtzx2RZxiWXXIIdO3YUtU+lUkilxqd0jpxkhPBct/eFXdC71wIAHPZytggAaXt5t2QjDcVIQTGSUI2UtZ1JQjFS4/tG0j6fzp3Ltnekw3AnhwEAUc2NfTVt6PLV4YSvLrfu9oWQVrTSHSgRjDsUGQ5VhlOduFbgUGU4FBkeh4LWWk9BCD6vxg1NmSUB+MkoKnDOVcCqjwCdO6265G//J5AYKXfPiIiIiIiIiIhOSQKg2Mus8f/1AvIMmoxghqmIcHxwcBCGYaChoaHgeENDA/bt21fU/p577sE//uM/Tlf3ZrRgqAHRRAcAQIKUV1NKssagCmnCWFRRelsIu93ELyoUTgEuFR03IQsdkshAyq6RgSQyAAxIyADCgCQZAAxAMgHJhCRLEJIMocgQsgKoEoRbgS7L0CUZQpYhZCcgewDZ2rfW1kd0htOFVMM8pJpaIFXXwKHK8KoyzlVlrLeD7Ynhdqmw26lZa4dy5iZpmPUkCWjbbC1jA0B8yP5agG5/zKoX7puZvGOZ0vu5Y4Z9Xf5+Ju9YZnxfnKGh/e+EEBO2Rd4xcfJjJ73mVPckIiIiIiIioopS7m/Oz3AVEY6frjvvvBNbt27N7UciEbS2tpaxR+Vz6VWXAdM7FyZVEl8dJ+YkIiIiIiIiIqKyqIhwPBQKQVEU9PX1FRzv6+tDY2NjUXun0wmn0zld3SMiIiIiIiIiIiKiaVYR4+odDgfWr1+Pp556KnfMNE089dRT2LJlSxl7RkRERERERERERETlUBEjxwFg69atuP7663H++edj48aNuO+++xCLxXDjjTeWu2tERERERERERERENM0qJhy/9tprMTAwgLvuugu9vb1Yu3Yttm3bVjRJJxERERERERERERHNfZIQQpS7EzNdJBJBIBBAOByG3+8vd3eIiIiIiIiIiIiIqITTyXIrouY4EREREREREREREVE+huNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxWE4TkREREREREREREQVh+E4EREREREREREREVUchuNEREREREREREREVHEYjhMRERERERERERFRxVHL3YHZQAgBAIhEImXuCRERERERERERERFNJpvhZjPdk2E4PgXRaBQA0NraWuaeEBEREREREREREdGpRKNRBAKBk7aRxFQi9Apnmia6u7tRVVUFSZLK3Z1pF4lE0Nrais7OTvj9/nJ3h4jolPjcIqLZhs8tIppt+NwiotmGz63KIYRANBpFc3MzZPnkVcU5cnwKZFlGS0tLubtRdn6/nw8PIppV+NwiotmGzy0imm343CKi2YbPrcpwqhHjWZyQk4iIiIiIiIiIiIgqDsNxIiIiIiIiIiIiIqo4yt133313uTtBM5+iKLj44ouhqqzEQ0SzA59bRDTb8LlFRLMNn1tENNvwuUUTcUJOIiIiIiIiIiIiIqo4LKtCRERERERERERERBWH4TgRERERERERERERVRyG40RERERERERERERUcRiOExEREREREREREVHFYThOJ/XAAw9gwYIFcLlc2LRpE1566aVyd4mIKOeZZ57Bhz/8YTQ3N0OSJPziF78oOC+EwF133YWmpia43W5ccsklOHjwYJl6S0SV7p577sGGDRtQVVWF+vp6XHnlldi/f39Bm2QyiZtvvhnBYBA+nw9XXXUV+vr6ytRjIqp03/3ud7F69Wr4/X74/X5s2bIFv/nNb3Ln+cwiopnu3nvvhSRJuO2223LH+OyifAzHaVJPPPEEtm7dii9+8YvYtWsX1qxZg8suuwz9/f3l7hoREQAgFothzZo1eOCBB0qe/+pXv4pvfetbePDBB7Fz5054vV5cdtllSCaT09xTIiJg+/btuPnmm/Hiiy/id7/7HXRdxx//8R8jFovl2nzmM5/Br371K/zkJz/B9u3b0d3djY985CNl7DURVbKWlhbce++9ePXVV/HKK6/g/e9/P6644gq8+eabAPjMIqKZ7eWXX8b3vvc9rF69uuA4n12UTxJCiHJ3gmamTZs2YcOGDbj//vsBAKZporW1FbfeeivuuOOOMveOiKiQJEl48sknceWVVwKwRo03Nzfj9ttvx2c/+1kAQDgcRkNDAx599FH8xV/8RTm7S0SEgYEB1NfXY/v27Xjve9+LcDiMuro6PP7447j66qsBAPv27cOKFSuwY8cObN68ucw9JiICamtr8bWvfQ1XX301n1lENGONjY1h3bp1+M53voMvf/nLWLt2Le677z7+vkVFOHKcSkqn03j11VdxySWX5I7JsoxLLrkEO3bsKGPPiIimpqOjA729vQXPsUAggE2bNvE5RkQzQjgcBmAFTQDw6quvQtf1gufW8uXL0dbWxucWEZWdYRj48Y9/jFgshi1btvCZRUQz2s0334zLL7+84BkF8PctKqaWuwM0Mw0ODsIwDDQ0NBQcb2howL59+8rUKyKiqevt7QWAks+x7DkionIxTRO33XYbLrjgApxzzjkArOeWw+FAdXV1QVs+t4ionN544w1s2bIFyWQSPp8PTz75JFauXIndu3fzmUVEM9KPf/xj7Nq1Cy+//HLROf6+RRMxHCciIiIimmY333wz9u7di+eee67cXSEiOqlly5Zh9+7dCIfD+OlPf4rrr78e27dvL3e3iIhK6uzsxN///d/jd7/7HVwuV7m7Q7MAy6pQSaFQCIqiFM3W29fXh8bGxjL1ioho6rLPKj7HiGimueWWW/Cf//mf+MMf/oCWlpbc8cbGRqTTaYyOjha053OLiMrJ4XBg8eLFWL9+Pe655x6sWbMG3/zmN/nMIqIZ6dVXX0V/fz/WrVsHVVWhqiq2b9+Ob33rW1BVFQ0NDXx2UQGG41SSw+HA+vXr8dRTT+WOmaaJp556Clu2bCljz4iIpqa9vR2NjY0Fz7FIJIKdO3fyOUZEZSGEwC233IInn3wSv//979He3l5wfv369dA0reC5tX//fhw/fpzPLSKaMUzTRCqV4jOLiGakD3zgA3jjjTewe/fu3HL++efjYx/7WG6bzy7Kx7IqNKmtW7fi+uuvx/nnn4+NGzfivvvuQywWw4033ljurhERAbBmID906FBuv6OjA7t370ZtbS3a2tpw22234ctf/jKWLFmC9vZ2fOELX0BzczOuvPLKMvaaiCrVzTffjMcffxy//OUvUVVVlatrGQgE4Ha7EQgE8MlPfhJbt25FbW0t/H4/br31VmzZsgWbN28uc++JqBLdeeed+OAHP4i2tjZEo1E8/vjjePrpp/Hb3/6WzywimpGqqqpy87lkeb1eBIPB3HE+uygfw3Ga1LXXXouBgQHcdddd6O3txdq1a7Ft27aiye2IiMrllVdewfve977c/tatWwEA119/PR599FF87nOfQywWw6c//WmMjo7iwgsvxLZt21h7jojK4rvf/S4A4OKLLy44/sgjj+CGG24AAHzjG9+ALMu46qqrkEqlcNlll+E73/nONPeUiMjS39+PT3ziE+jp6UEgEMDq1avx29/+FpdeeikAPrOIaHbis4vySUIIUe5OEBERERERERERERFNJ9YcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiIiIiIiIqKKw3CciIiIiIiIiIiIiCoOw3EiIiIiIiIiIiIiqjgMx4mIiIiIiIiIiIio4jAcJyIiIiKaZZ5++mlIkoTR0dGyvP5TTz2FFStWwDCMU7bdtm0b1q5dC9M0p6FnRERERERTx3CciIiIiGgGkSTppMvdd9+N97znPejp6UEgEChLHz/3uc/hH/7hH6Aoyinb/smf/Ak0TcMPf/jDaegZEREREdHUSUIIUe5OEBERERGRpbe3N7f9xBNP4K677sL+/ftzx3w+H3w+Xzm6BgB47rnn8KEPfQi9vb1wuVxTuuaBBx7Ao48+ipdffvks946IiIiI6P9v745Bm9riOI7/8u4TMY02opKSQo2U3thuwUFEHAKW2qFgatrQBDJ1DII2mTqoi+4ODZ2uksFMujTazUBaKDaCJVhwSGuyNVQFlaRFap1eeKHVZ22rPvP9QIace869/3PHH3/O/X50jgMAAAC/kba2tvqvtbVVNputYczhcGw5VuXevXtyOp2ampqS1+uV3W5XMBhUtVrV/fv35fF4dPToUV29erXhKJT19XXF43G1t7erpaVFZ8+eVTab/WZ96XRavb29DcH4wsKC/H6/Dh8+rCNHjujMmTPK5/P16wMDA8rn8yoWi3v7sgAAAIBd+PtXFwAAAABg96rVqu7evat0Oq0PHz5ocHBQgUBATqdTjx8/1tLSkq5cuaLz588rFApJkmKxmBYXF5VOp+V2u/Xo0SNdunRJhUJBXV1d2z4nl8spHA43jEUiEfl8PiWTSRmGoRcvXujAgQP16x0dHXK5XMrlcurs7Ny/lwAAAADsAOE4AAAA8Af49OmTkslkPXwOBoNKpVJaWVmRw+FQT0+P/H6/nj59qlAopHK5LMuyVC6X5Xa7JUnxeFzT09OyLEu3b9/e9jmlUqk+/x/lclmJREKnT5+WpG2DdbfbrVKptJdbBgAAAHaFcBwAAAD4A9jt9oaubJfLJY/H03A+ucvlUqVSkSQVCgVtbGzINM2G+6yvr+vYsWNffU6tVtty1vj169c1OjqqVCqlixcvamhoaEuH+KFDh1StVn94fwAAAMBeIxwHAAAA/gD/PsZEkmw227Zjnz9/liR9/PhRhmHo+fPnMgyjYd63Pvh5/PhxvXv3rmHs5s2bCofDymQyevLkiW7cuKF0Oq1AIFCf8/btW504ceKH9gYAAADsB8JxAAAAoAn5fD5tbGyoUqnowoULO1q3uLi4Zdw0TZmmqWvXrmlkZESWZdXD8bW1NRWLRfl8vj2rHwAAANitv351AQAAAAB+PtM0FYlEFI1G9fDhQy0vL+vZs2e6c+eOMpnMV9f19fVpZmam/r9WqykWiymbzapUKml2dlbz8/Pq7u6uz5mbm9PBgwd17ty5fd0TAAAAsBOE4wAAAECTsixL0WhUY2Nj8nq9unz5subn59XR0fHVNZFIRC9fvtSrV68kSYZh6M2bN4pGozJNU8PDw+rv79etW7fqax48eKBIJCK73b7vewIAAAC+l21zc3PzVxcBAAAA4P8jkUjo/fv3mpyc/M+5q6ur8nq9yufzOnXq1E+oDgAAAPg+dI4DAAAA2JHx8XGdPHmy/nHPb3n9+rUmJiYIxgEAAPDboXMcAAAAAAAAANB06BwHAAAAAAAAADQdwnEAAAAAAAAAQNMhHAcAAAAAAAAANB3CcQAAAAAAAABA0yEcBwAAAAAAAAA0HcJxAAAAAAAAAEDTIRwHAAAAAAAAADQdwnEAAAAAAAAAQNMhHAcAAAAAAAAANJ0vMgAO7Ph7dlIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAANcCAYAAACaGxeZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3RVVd7G8eem94SEkNBCaImASBOkSBHQRJChCEiRJqCvSrOiogKiOCoooI6CJVQRUUGULgOKIAzCgEgnE5AWQEpCSCFlv39k7hkuKSQI3gDfz1p3kZxz9j6/U26WPnfffWzGGCMAAAAAAAAAAG4iLs4uAAAAAAAAAACAvxrhOAAAAAAAAADgpkM4DgAAAAAAAAC46RCOAwAAAAAAAABuOoTjAAAAAAAAAICbDuE4AAAAAAAAAOCmQzgOAAAAAAAAALjpEI4DAAAAAAAAAG46hOMAAAAAAAAAgJsO4TgAAACuuTFjxshms6lVq1bOLuWGtmzZMtlsNnl5eV3Vfnfv3i2bzSabzabExMS/vD1Ktg8//FA2m0233HKLs0sBAAAoFsJxAACAi9hD3KK+cONKS0tTYGCgbDabhgwZUuR2a9eute6Pr7/++hpWCLuMjAxNmzZNMTExKleunDw9PRUYGKioqCi1bt1ao0aN0vLly5WRkZFv++TkZL399tu66667VKZMGXl4eCg4OFg1atRQbGysxo0bpzVr1ignJ+eytbzzzjvW9W/Tpk2xj+Xs2bOaNGmS2rdvr4iICPn4+Mjb21sVK1ZU+/btNXnyZJ04caLA9kuWLFGPHj1UtWpV+fj4yMfHR5UrV1aTJk00ZMgQzZs3T6dOnSp2XQAAADciN2cXAAAAUFKFhYU5uwQ4kbe3t3r27KmpU6fqs88+08SJE+Xp6XnZdp9++qkkKTQ0VB06dLjWZTrw8/NTdHR0keq8USQkJKhdu3bavXu3tczDw0Ourq6Kj4/Xvn37tHr1ao0fP14///yzGjdu7NB+8+bN+tvf/qajR49ay7y9vZWTk6M9e/Zo9+7dWr58uSTp2LFjCg8PL7SeTz75xPp59erVSkhIUOXKlYt0LB988IGef/55JSUlWct8fHzk4eGhw4cP6/Dhw1qyZImef/55jR07Vs8884y1XVpamnr27KlvvvnGWubi4qKgoCAdOXJEBw4c0IYNG/T+++/r9ddf13PPPVekmgAAAG5kjBwHAAAoQGJi4mVfuLENHDhQknTmzBktXLjwstunpKRo/vz5kqQ+ffrI3d39mtZ3qTvvvFO7d+/Wtm3b/tL9OktmZqY6dOig3bt3y8/PT+PHj9fhw4eVnp6u06dP6/z58/r555/10ksv5RtQnzlzRu3bt9fRo0cVFham9957TydPnlRqaqrOnj2r5ORkrV69Wk899VSRPizbuHGjduzYobCwMHXv3l3GGMXFxRXpWJ566ik99thjSkpKUu3atTV79mydPHlS58+f19mzZ3X+/HktWbJEPXv2VEZGhr766iuH9sOHD7eC8Ycffljbt2/XhQsXdOrUKaWnp2vnzp2aPHmyGjduzLdeAAAA/otwHAAAAChAw4YNVbt2bUn/GxFemC+++ELnz5+X9L9gHdfOsmXLtGPHDknSrFmz9Pzzz6t8+fJW+Ovl5aXGjRvrlVde0f79+1WvXj2H9rNnz9bx48etvh5//HGVLl3aWu/n56dWrVppwoQJOnTokEJDQwutxz5qvGfPnnrooYckSdOnT7/sdCwzZszQ22+/LUl68MEHtXnzZvXu3duhFh8fH91777367LPP9Msvvyg6Otpad/r0aSuEHz58uKZOnapbb71Vrq6uknJHkNeoUUPDhg3Tzz//rGHDhhVaDwAAwM2CcBwAAOAqefTRR2Wz2RQUFKQDBw7ku80HH3wgm80mNzc3/fjjjw7rfvvtN40ZM0atW7dW1apV5e3trYCAANWrV08vvvii/vjjjwL3HRkZKZvNpunTpys1NVVjxoxRjRo15OPjo3LlyqlPnz5KSEiwtv/jjz80cuRIRUVFydvbW+Hh4Ro0aJAVFF7q0gdqfvHFF2rZsqWCg4Pl6+urBg0a6L333lN2dnbxTtpFTp48qRdffFH16tVTYGCgvLy8VKVKFQ0cONAKQJ3BHnJ///33OnToUKHb2gP0xo0bq2bNmg7r9u/fr9dff10xMTGqXr26fH195efnp1q1aunJJ5/U4cOHC+zXPtr373//uzIyMvTGG2+ofv361pzoGzZskFT4AzlzcnK0cuVKDRkyRHfccYfKly8vDw8PlS5dWnfddZc++ugjZWVlFemc7Nq1S3369FH58uXl6empSpUq6fHHH/9T36bIzs7WjBkzFBsba837HRoaqtjYWH3xxRcyxuRps3XrVkmSzWa77BQ2Li4ueaabsbePiIhQ3bp1C23v7u5uhc35OX/+vD7//HNJUr9+/dS2bVuVK1dOhw4d0sqVKwtsl56erpEjR0qS6tatq08++eSy3zioV6+ew4j0HTt2WNeuY8eOhbaVcqeNKcjKlSvVpUsXlS1b1ro/7r77bs2aNatIc65fLDo6WjabTS+88EKh2y1ZssT6u5jfPRQfH6+hQ4eqRo0a8vPzk4+Pj2rUqFHo++bSh4SuWLFCHTp0UHh4uFxdXfV///d/xToWAABwgzIAAACwjB492kgyV/KfSampqaZWrVpGkmnSpInJzMx0WL99+3bj5eVlJJmXX345T/tKlSpZ+/by8jLBwcHGZrNZy8qXL292796d777tbSdNmmRq165t9eHt7W21L1u2rElISDDx8fGmcuXKRpLx8fExHh4e1jbVq1c3SUlJBZ6Xli1bmmeffdZIMjabzZQqVcq4uLhY7WNiYkx6enqh7fOzcuVKExQUZPXj7u5ufH19rd89PDzMjBkzinAVrr4//vjDOkfjxo0rcLu9e/da9U6bNi3P+jvuuMPheIKDgx3OXXBwsNm4cWO+fdvbvvTSS6Zhw4ZGknFzc7PO2c8//2yMMWbp0qVGkvH09MzTx65du6x9STL+/v4mICDAYVnr1q3zvX4Xt50/f751bfz9/a17WpIJDQ01v/76a6Htjx07lmf9iRMnTJMmTRxqCQwMdPi9a9eued5Tr7zyirX+999/z//CFOKhhx4ykoy3t7fJyMgodvuLxcXFGUmmdu3a1jL7e6Vbt24Ftps5c6bDub0SP/74o9XHzJkzr6iPnJwc89hjj1n92N/frq6uDu/vlJSUPG0/+OADI8lER0c7LB83bpyRZCIiIkxOTk6B++7Ro4eRZGJjY/Os++STT4y7u7vD38aL77mgoCCzevXqQmt64403HLZ3d3c3jzzySPFPEgAAuOEQjgMAAFzkz4TjxuQG4PZA+oUXXrCWXxycN2vWzGRlZeVp27dvXzN9+nRz8OBBa1lGRob5/vvvTaNGjYwkU79+/Xz3aw/Hg4KCTGRkpFmxYoXJzs42WVlZZsWKFSY0NNRIMt27dzeNGjUydevWtQLVCxcumHnz5hkfHx8jyYwaNarA82IPLIcMGWJOnDhhjDEmKSnJjBs3zgryn3jiiQLb5xeO//rrr9Y5Gzx4sNm5c6d1fg4ePGgFdm5ubmbTpk2FnP1rp3v37kaSqVq1aoEh33PPPWckGV9fX5OcnJxn/eOPP24+/PBDs3//fquPzMxMs379etOmTRsjyVSqVCnfkNYejvv5+ZnAwEAza9Ysk5aWZozJDZbPnDljjCk8HN+/f7/p27evWbx4sTl9+rS1PCkpyXz88ccmLCzMSDLPP/98nrYXh9uBgYGmfv365pdffjHGGJOdnW2WLFliypUrZ52j8+fPF9j+0nA8MzPTCsZvv/12s3TpUpOammqMMebcuXPm448/NqVLlzaSzHPPPefQdtmyZQ7BbX7Be2E+/PBDq32/fv2s83gl7rzzTiPJvPXWW9ayHTt2WB+G/PHHH/m269evn/WBkP24iyspKcl4enoaSSYyMtJs2bKl2H289dZb1rkYMmSIOX78uDEm9xq8+eabVkjer1+/PG0LCscPHDhg/V3IL8A2xpjk5GTr/f/ZZ585rPv222+NzWYzHh4eZtSoUebgwYMmJyfHZGdnmx07dphOnToZSaZUqVLm6NGj+dbk4+NjXFxczODBg83hw4eNMbn3XHx8fLHPEQAAuPEQjgMAAFzk4nA8LCys0NewYcPy7cMeyri4uJh//vOfxhhjHnnkESu8vjj8Lqpz585Z4eXatWvzrLeH497e3mbfvn151n/yyScOx5VfUPfSSy9Z4ealLj4vffr0ybfGF1980Qqxjxw5km/7/MLx1q1bFxjK2g0bNsxIMh07dixwm2tp+fLl1vHnF/JlZWVZ4XD//v2L3X9mZqa55ZZbChw9fPGo8xUrVhTYT2Hh+OWsXbvWCr8vHaF9cbgdFhZmTp06laf91q1bjZubm5FkpkyZUmD7SwPsadOmGUnmtttuM+fOncu3tvXr11v398XBfk5OjmnRooXVt5ubm2nWrJl58sknzZw5c8z+/fsLPebz58+b6Ohoq72np6dp06aNee6558z8+fOtMPVydu/ebSQZV1fXPCFtgwYNjJT7rY783H777XlGnF8J+/vX/qpVq5YZPHiw+fDDD82WLVvy/UDOLjk52foWwYABA/Ld5s0337T63r59u8O6gsJxY4xp2bJlof1++umn1rcQLv5wIDMz0/q7VtC3RnJyckxMTIyRZEaOHJlvTZJMr169Cjx2AABwcyMcBwAAuMjFIfDlXvmNoLTr0qWLkWTKlStnpk6d+qenTTDmf6OXX3/99Tzr7CHSgw8+mG/bw4cPWzW89NJL+W7z008/WdtcOnXCxeclv/DdmNzRq/YRoJeGowWF4wkJCVaomV/gavfLL79Yo7ILC/mulezsbBMREWEkmb59++ZZv3jxYuv8/Pjjj1e0D/sHAMOHD8+zzh6ON2jQoNA+/kw4boyxvhnw73//22H5xeF2YVPL2O/7pk2bFtj+0nDcfmxTp04ttLZq1aoZSWbhwoUOy5OTk83gwYOtYP7SV+XKlc24ceMKDN4TExNNly5dHKYwujRkfvfddwuddsU+fUp+04JMmTKl0PDbPsVRQVMOFVVOTo6ZMGGCw/REF7+CgoLMI488Yg4cOJCn7bx584yUO5VKfuuNyf0Wi30E/8XfijGm8HD8448/NpJMQEBAviPj77rrrnzDc/u9XL58+UKnZJk9e7aRZOrWrZtvTfmF+QAAAHY8kBMAAKAAJncgQYGv6dOnF9j2448/VkREhI4ePapHHnlEkjRo0CB17dq10H1+9913euCBB1SlShX5+vrKZrNZry+++EKSCn1wY6NGjfJdHhYWZv3csGHDy25z9uzZfLepWLGiqlWrlu+6gIAANWjQQJL0yy+/FFjjxdatWycp92GRNWvWVHh4eL6v2NhYSbkPPTx16lSR+r6aXFxc1L9/f0nSl19+qXPnzjmstz+IMyoqSs2bNy+wnzVr1qhPnz6Kjo6Wn5+fw/WdMmWKpMKvb7Nmzf7UcaSnp+v999/X3XffrbJly8rT09OhhqSkpMvW0Lp168uu27x5c74P0Myvns2bN0uSnn/++QKvf3h4uA4ePChJ1r92/v7+mjZtmg4dOqQPPvhAvXv31i233CIXl9z/1UlISNBLL72k+vXr52kr5d73X331leLj4/X222+ra9euqlKlimw2m6Tch10OHTpUzZs3z/d9kZWVpZkzZ0qS+vbtm2d9z5495e7uru3bt2vTpk2XPSdXymaz6amnntKRI0f0xRdf6NFHH9Xtt99uPZz17Nmzmjp1qmrXrq0VK1Y4tLW/X6tVq6ZKlSrl27+Hh4datmzpsH1RdOvWTd7e3kpOTtY333zjsO7QoUNas2aNpLznzv634eTJkypbtmyB98XQoUMl5b0v7AIDA3XrrbcWuV4AAHBzIRwHAAC4BkqVKqX333/f+r1KlSqaPHlygdvn5OSoV69e6tChg7744gslJCTowoULKlWqlMLCwhQWFmaFXOfPny+wH39//3yXu7m5FWubzMzMfLcpX758gfu+eP2JEycK3c7u6NGjknKP//jx4wW+/vjjD6tNampqkfpev359gYHavHnzitTHxQYMGCCbzabU1FR9/vnn1vI//vhD3377rSTpoYceKrD98OHDddddd2n27Nnau3ev0tPTHa6vr6+vpMKvb5kyZYpdt92xY8dUr149DRkyRN9//70SExPl6uqq0qVLWzXYA+XCaijsHrCvy8jIUHJy8mVrOnnypLKysiRJp0+fLvQesN+TBV3/8PBw/d///Z9mz56tXbt26ezZs/r666/VuHFjSdK+ffv04IMPFlhL5cqV9cQTT2j+/PmKj4/XyZMnNXPmTNWoUUOS9K9//UtDhgzJ027JkiVKTExUQECAOnXqlGd96dKl1b59e0n/+xDlYiEhIdbxXw0+Pj7q1q2b/vGPf2jTpk1KTk7Wjz/+qF69ekmSzp07p+7duzt8yGR/v17u/V2hQgWH7YsiICBAHTt2lCTNmjXLYd2cOXNkjFGlSpWs4N3O/rfhwoULhd4XZ86ckVTwfREaGlrkWgEAwM2HcBwAAOAa+eijj6yfjxw5ov379xe47SeffKK5c+fK1dVVL7/8svbt26eMjAydPn1aiYmJSkxMtEadF2VE7vUiOztbUu7o3cuN1Le/IiMji9R3YaFaWlpasWuNjIxUmzZtJElxcXHW8jlz5ujChQtydXXNd+SwJH377bfWyPDhw4drx44dea7vo48+Kqnw6+vq6lrsuu2GDBmi3bt3q0yZMpo5c6aOHz+u1NRUnTx50qohODj4sjVcTfbrL0mrV68u0vV/7rnnitS3v7+/OnfurJ9++klNmzaVJP3000/avXt3kdqHhISoT58+2rhxo6pWrSpJmjdvXp5vDXzyySeSpOTkZPn4+DiMxLe/Fi5cKEmaO3dunnuvVq1akqTdu3crPT29SLUVh7u7u5o3b645c+bo2WeflSQlJSVp/vz5V31fBbG/L1asWKHjx49by+1hee/eva2R+nb2e6Nly5ZFui8KOnd/5j0DAABufITjAAAA18B7772nRYsWydXVVTVr1lRGRoZ69OhR4OhG+0jkQYMGaezYsapWrZo1itcuMTHxmtd9OUeOHCnS+qKOcA4PD5eUO/q6sNHKV6JVq1YFBmn2KVKKa+DAgZKkn3/+2QpZ7UF5u3btVLZs2Xzb2a9vx44dNWnSJNWsWTNPaHctr29qaqo1un3q1Knq06dPnmuUkZFR4HQ6FyvsHrCv8/T0VEBAwGX7KlOmjBWKFjQtxp/l6upqXTdJ2rNnT7Ha+/v7W6Ous7Ky9J///Mdal5iYqCVLlhS5r6SkJH355ZcOy+wfuGRmZuq7774rVm3FZZ/iSXI8D/Z7obDpdC5eX9xvMNxzzz0KCwtTVlaW5s6dK0nasmWLdu7cKSn/6Wjsfxuu1X0BAAAgEY4DAABcddu3b9czzzwjSXr55Ze1ZMkSBQUFadeuXXriiSfybXPo0CFJUr169fJdn5KSoo0bN16bgovh0KFDio+Pz3fduXPnrPmjb7/99iL1Z59DOzs7W0uXLr06RV5DnTt3tkZXf/rpp9q8ebO2bdsmSQ4B7KUud32zs7OtuZevhcTERGtakoJqWLNmjTXFSWFWr1592XUNGjTIMxI4Pz4+PlY99vD+WvDz87N+9vT0vGrtZ8yYoaysLFWoUEHnzp0r9GUPpi+dWqVr167WfP+vvfZagVMaXSonJ+eqHYf9/RofH19gGJ2ZmakffvhBUsHPLSiIq6ur9QGDfbS4/d9GjRopOjo6Txv734YDBw7ot99+K9b+AAAAiopwHAAA4CpKS0tTjx49lJ6erjvvvFOjRo1SpUqVNG3aNEnStGnT9NVXX+VpFxgYKElW0HqpcePG5ZnOwVnGjRuX7/KJEycqLS1Nbm5uuv/++4vUV/Xq1dWqVStJ0qhRo6wHQhbkas3LfKU8PT3Vu3dvSbnhnn3qnLCwMGte6fxc7vpOmTLlsqN2/wz7/guq4cKFC3rppZeK1Nd7771nzfN8se3bt1sPXHzggQeKXNvDDz8sSVqwYIG+//77Qre99Ppv27btsiPujTHWAzNdXFxUt25da92GDRsue89lZmZao50DAwNVpUoVa5096O7atav8/PwKffXo0UOS9MMPPzh8wOTt7a3XX39dkrR161Y99NBDlw3If/31V4f57RMTEwu8ty42Y8YM6+f69etbP7dr104BAQEyxmjs2LH5tn333Xetuf/tx1Ic9tHhW7Zs0a+//mqd04KmIoqJiVFERIQkacSIEZf94MbZfxsAAMD1iXAcAADgKnriiSe0c+dOBQUFac6cOdbUGd26dbNGFg8ePNgaSWwXGxsrKXee8mnTpunChQuSckOvJ554Qm+++ab14D5nCgwM1IwZMzR8+HArKDt37pzGjx+vV155RZL0+OOPq1y5ckXu891335Wfn5/27t2rxo0b65tvvnGYP/jIkSOaNWuW2rRpo5EjR17dA7oC9uuYmJhoheN9+/Z1eKDppezXd8GCBXrjjTes6XVOnz6tsWPH6umnn76m1zckJMQaHTxs2DD9+OOP1rziW7duVUxMjHbs2CFvb+/L9pWWlqZ77rlH//73vyXljmBetmyZ2rVrp6ysLFWpUqXQUfSXeuihh9SiRQvl5OSoQ4cO+vvf/+4QeKekpGjVqlV65JFHrIdj2q1cuVKRkZHq2bOnvv76a4d26enp+uGHH9S+fXstXrxYktSrVy9rug5Jmj17tiIiIjR48GAtWbLEIWA9f/68vvvuO7Vo0UJbt26VJA0dOlQeHh6SpLVr12rv3r2SpO7du1/2OFu0aGHNrX/p6PEBAwZo2LBhVk0NGjTQZ5995vDQzLS0NK1cuVJ9+/ZV/fr1HeZOP3z4sOrWravWrVvro48+0r59+6zrm5WVpZ07d2ro0KHWfO3VqlXT3/72N6u9n5+f9eFIXFychg4dqpMnT1rnYeLEidZ85f369dOtt9562eO9VN26da12AwcO1PHjx+Xu7l5g0O7h4aEPP/xQLi4uWrVqle666648327Yv3+/3n//fdWvXz/fh50CAABclgEAAIBl9OjRRpKRZMLCwi77WrdundX2q6++strOnz8/T9/nz583t9xyi5FkmjdvbrKysqx1Z86csdZJMi4uLiYoKMjYbDYjyTzyyCOmX79+RpLp169fnr4rVapkJJm4uLgCj83e9+rVq/Ndn5CQYG2TkJCQ73lp2bKlefbZZ40kY7PZTKlSpYyrq6vVrm3btiYtLa3A89qyZct89/3TTz+Z8PBwqx9XV1cTEhJivL29rWWSzKBBgwo8vr9SgwYNHOratWtXodunp6ebO+64w9refu7s17dz587mmWeeMZJMTExMnvb2tq+//nqh+1m6dKmRZDw9PfOsW79+vcP59PLyMn5+fkaScXd3N/PmzTNhYWFGkpk7d65D2127djnc276+vkaS8ff3d+gzJCTEbN26Nc++L25/7NixPOtPnz5tYmJiHM5pYGCgCQwMtM6RJOPn5+fQbtKkSQ5tJBlvb29TqlSpPMvbt29vUlJSHNqPGDEiz3a+vr4mICAgz/KBAweazMxMq639/VixYkWTk5NT6HWxe+yxx4wkU758eYf3v92UKVPy7NvX19cEBgY6LPPz8zOTJk2y2v373//OU6+7u7sJDg42Li4uDsujoqLM3r178+w7JyfHqq+g9/c999yT5xwaY8wHH3xgJJno6OhCj//NN990qKVjx46XPWfz5s2z7jf7cYWEhBgPDw+HviZMmHBFNQEAgJsbI8cBAAAKcPz48cu+7CO8Dx06pEGDBknKHRXZtWvXPP35+Pho7ty58vT01Nq1a/Xqq69a64KCgrR+/XqNGDFCkZGRcnV1lZubm1q1aqW5c+fqww8//GsOugjeeOMNff7557rzzjtljJGHh4fq1q2ryZMna9myZfLy8ip2n82aNdPevXs1YcIEtWjRQkFBQTp79qxcXV1Vo0YNPfjgg5ozZ44mTZp0DY6o+C4eGd20aVPdcssthW7v6empf/7znxo1apSqVatmjTJv2rSpPvroI3311Vd5HsB6tTVp0kQbN27U/fffr5CQEGVnZyswMFA9e/bUhg0bijT6WZLuvPNObdq0Sb1795a/v7+ys7NVsWJFPfroo9q+fbvq1KlT7NpKlSqlpUuX6ttvv1XXrl1VsWJFpaenKz09XRUqVFBsbKzeeOMNbd++3aHd8OHDtWXLFr3++uvq0KGDqlWrJpvNpuTkZAUEBKhWrVrq37+/li9fru+++06+vr4O7SdOnKh169Zp9OjRiomJUaVKlZSdna3z588rKChI9erV02OPPaYNGzbo448/tq7buXPnNH/+fEm5U6oUZX516X8jzI8cOaLly5fnWT906FAdOHBAEydOVGxsrCpUqKCcnBzrPLRv317vvfeeDh48qOHDh1vt6tatq99//10ffPCBevXqpdq1a8vb21tJSUny8vJS5cqV1alTJ8XFxWn79u2qXr16nn3bbDa9//77Wr58uTp16qQyZcooJSVFgYGBatOmjWbMmKGlS5fmOYfF0bt3b4cH0RY0pcrFunfvrv379+ull17S7bffLl9fX509e1be3t6qW7euHnnkES1atMgaeQ8AAFAcNmP++307AAAAoABjxozR2LFj1bJly2v64EgAAAAA+KswchwAAAAAAAAAcNMhHAcAAAAAAAAA3HQIxwEAAAAAAAAANx3CcQAAAAAAAADATYcHcgIAAAAAAAAAbjqMHAcAAAAAAAAA3HTcnF3A9SAnJ0dHjx6Vv7+/bDabs8sBAAAAAAAAAOTDGKNz586pXLlycnEpfGw44XgRHD16VBUrVnR2GQAAAAAAAACAIjh06JAqVKhQ6DaE40Xg7+8vKfeEBgQEOLkaAAAAAAAAAEB+kpOTVbFiRSvTLQzheBHYp1IJCAggHAcAAAAAAACAEq4o02PzQE4AAAAAAAAAwE2HcBwAAAAAAAAAcNMhHAcAAAAAAAAA3HSYcxwAAAAAAABAiZCdna3MzA7IuTsAACAASURBVExnl4ESzt3dXa6urn+6H8JxAAAAAAAAAE6XkpKiw4cPyxjj7FJQwtlsNlWoUEF+fn5/qh/CcQAAAAAAAABOlZ2drcOHD8vHx0ehoaGy2WzOLgkllDFGJ0+e1OHDh1W9evU/NYKccBwAAAAAAACAU2VmZsoYo9DQUHl7ezu7HJRwoaGhOnDggDIzM/9UOM4DOQEAAAAAAACUCIwYR1FcrfuEcBwAAAAAAAAAcNMhHAcAAAAAAAAA3HQIxwEAAAAAAADgKmrVqpVGjBhx3e/jRkc4DgAAAAAAAAC46RCOAwAAAAAAAABuOoTjAAAAAAAAAEoUY4xSL2Q55WWMKVat58+fV9++feXn56eyZctq4sSJDuszMjL09NNPq3z58vL19dUdd9yhNWvWWOtPnTqlnj17qnz58vLx8VHt2rU1d+7cYu0DV8bN2QUAAAAAAAAAwMXSMrNV8+XlTtn3zldi5ONR9Nj0mWee0Q8//KBvvvlGZcqU0QsvvKAtW7aobt26kqQhQ4Zo586d+vzzz1WuXDktWLBAsbGx2r59u6pXr6709HQ1aNBAI0eOVEBAgBYvXqw+ffqoatWqatSoUZH2gStDOA4AAAAAAAAAVyAlJUWffPKJZs+erTZt2kiSZsyYoQoVKkiSfv/9d8XFxen3339XuXLlJElPP/20li1bpri4OI0fP17ly5fX008/bfU5dOhQLV++XF988YUaNWp02X3gyhGOAwAAAAAAAChRvN1dtfOVGKftu6ji4+N14cIF3XHHHday4OBgRUdHS5K2b9+u7OxsRUVFObTLyMhQSEiIJCk7O1vjx4/XF198oSNHjujChQvKyMiQj49PkfaBK0c4DgAAAAAAAKBEsdlsxZrapKRKSUmRq6urNm/eLFdXx9Ddz89PkvTWW29p8uTJmjRpkmrXri1fX1+NGDFCFy5ccEbJNxUeyAkAAAAAAAAAV6Bq1apyd3fXxo0brWVnzpzR3r17JUn16tVTdna2Tpw4oWrVqjm8wsPDJUnr1q1Tx44d9eCDD6pOnTqqUqWK1b4o+8CVu/4/fgEAAAAAAAAAJ/Dz89PAgQP1zDPPKCQkRGXKlNGoUaPk4pI7JjkqKkq9e/dW3759NXHiRNWrV08nT57UqlWrdNttt6l9+/aqXr26vvzyS61fv16lSpXS22+/rePHj6tmzZpF2geuHOE4AAAAAAAAAFyht956SykpKerQoYP8/f311FNPKSkpyVofFxenV199VU899ZSOHDmi0qVLq3HjxrrvvvskSS+++KL+85//KCYmRj4+Pnr44YfVqVMnhz4utw9cGZsxxji7iJIuOTlZgYGBSkpKUkBAgLPLAQAAAAAAAG4o6enpSkhIUOXKleXl5eXsclDCFXa/FCfLZew9AAAAAAAAAOCmQzgOAAAAAAAAALjpEI4DAAAAAAAAAG46hOMAAAAAAAAAgJsO4TgAAAAAAAAA4KZDOA4AAAAAAAAAuOkQjgMAAAAAAAAAbjqE4wAAAAAAAACAmw7hOApnjPTz+9KpeGdXAgAAAAAAAABXDeE4Cndks7T8Bend+tKHzaWf3pHOHHB2VQAAAAAAAIDTtWrVSiNGjLim+4iMjNSkSZMK3WbMmDGqW7fuNa3jRkQ4jsuwSVXbSDZXKfFX6fsx0uQ60ketpfXvSUmHnV0gAAAAAAAAcNOw2WxauHChs8u4Ibg5uwCUcBUaSH2+ls6fknYtknZ8LR34KXdE+ZHN0opRUsXG0q1dpJodJf9wZ1cMAAAAAAAAAJfFyHEUjW+IdPsAqd+30pO7pXYTpIimkmzSoQ3S0melibdI0++TNn0inf/D2RUDAAAAAADgemWMdOG8c17GFKvUnJwcPfvsswoODlZ4eLjGjBljrTt79qwGDRqk0NBQBQQEqHXr1tq2bZu1Pj4+Xh07dlRYWJj8/PzUsGFDff/99wXuKzIyUpLUuXNn2Ww263e7WbNmKTIyUoGBgerRo4fOnTsnSZo5c6ZCQkKUkZHhsH2nTp3Up0+fYh3vjYSR4yg+/zCp0eDcV/JRacfC3BHlhzdJB9bmvpY8I1VukTui/Jb7JJ9gZ1cNAAAAAACA60VmqjS+nHP2/cJRycO3yJvPmDFDTz75pDZu3Kiff/5Z/fv3V7NmzXT33XerW7du8vb21tKlSxUYGKipU6eqTZs22rt3r4KDg5WSkqJ27drptddek6enp2bOnKkOHTpoz549ioiIyLOvTZs2qUyZMoqLi1NsbKxcXV2tdfHx8Vq4cKG+++47nTlzRt27d9ff//53vfbaa+rWrZuGDRumRYsWqVu3bpKkEydOaPHixVqxYsWfP2fXKUaO488JKCc1eUwa9L00Yrt09ytS2bqSyZb+s1paNFSaECXN6SZtnSulJzm7YgAAAAAAAOCque222zR69GhVr15dffv21e23365Vq1bpp59+0r/+9S/Nnz9ft99+u6pXr64JEyYoKChIX375pSSpTp06euSRR3TrrbeqevXqGjdunKpWrapFixblu6/Q0FBJUlBQkMLDw63fpdwR7NOnT9ett96q5s2bq0+fPlq1apUkydvbW7169VJcXJy1/ezZsxUREaFWrVpdozNT8jFyHFdPUITUbHju61S8tGNB7uv4b9K+FbkvV0+pWtvcEeVRsZKnn7OrBgAAAAAAQEnj7pM7gttZ+y6G2267zeH3smXL6sSJE9q2bZtSUlIUEhLisD4tLU3x8fGSpJSUFI0ZM0aLFy/WsWPHlJWVpbS0NP3+++/FLjsyMlL+/v556rAbPHiwGjZsqCNHjqh8+fKaPn26+vfvL5vNVux93SgIx3FthFSVWjyd+zq5Jzck/+0r6Y+90p7FuS83bynqHqlWFykqRnL3dnbVAAAAAAAAKAlstmJNbeJM7u7uDr/bbDbl5OQoJSVFZcuW1Zo1a/K0CQoKkiQ9/fTTWrlypSZMmKBq1arJ29tbXbt21YULF65aHXb16tVTnTp1NHPmTN1zzz3asWOHFi9eXOz93EgIx3HthUZLrZ6TWo6Uju/InZ/8t6+lMwnSzm9yX+6+UvS90q33S9XaSG6ezq4aAAAAAAAAuGL169dXYmKi3Nzc8jw4027dunXq37+/OnfuLCl3JPmBAwcK7dfd3V3Z2dlXVNOgQYM0adIkHTlyRG3btlXFihWvqJ8bBXOO469js0nht0ptXpaG/Vt6eI3UdJgUGCFlnpd++1L6vKf0VnVpwaPSvpVSdqazqwYAAAAAAACKrW3btmrSpIk6deqkFStW6MCBA1q/fr1GjRqlX375RZJUvXp1ff3119q6dau2bdumXr16OYz2zk9kZKRWrVqlxMREnTlzplg19erVS4cPH9ZHH32khx566IqP7UZBOA7nsNmkcvWke8ZJI36VBn4vNX5M8i8nZSRJ2z6T5nSVprWSLvMHAQAAAAAAAChpbDablixZohYtWmjAgAGKiopSjx49dPDgQYWFhUmS3n77bZUqVUpNmzZVhw4dFBMTo/r16xfa78SJE7Vy5UpVrFhR9erVK1ZNgYGBuv/+++Xn56dOnTpd8bHdKGzGGOPsIkq65ORkBQYGKikpSQEBAc4u58aWkyMd2pA77cqmj3KXPb1P8ivj3LoAAAAAAABwzaSnpyshIUGVK1eWl5eXs8u5obVp00a1atXSlClTnF3KFSvsfilOlsvIcZQsLi5SpaZS+wmSd6ncZamnnFsTAAAAAAAAcJ07c+aMFixYoDVr1ujxxx93djklAg/kRMnlEyKlnSEcBwAAAAAAAP6kevXq6cyZM3rjjTcUHR3t7HJKBMJxlFw+IdKp/YTjAAAAAAAAwJ904MABZ5dQ4jCtCkoun5DcfwnHAQAAAAAAAFxlhOMoubyDc/9NPe3cOgAAAAAAAADccAjHUXL5EI4DAAAAAAAAuDYIx1FyMa0KAAAAAAAAgGuEcBwlF+E4AAAAAAAAgGuEcBwlF+E4AAAAAAAAgGuEcBwllz0cT2POcQAAAAAAAJQ8rVq10ogRI4q8/e7du9W4cWN5eXmpbt2617CyK2Oz2bRw4UJnl/GXcXN2AUCBeCAnAAAAAAAASrCvv/5a7u7uRd5+9OjR8vX11Z49e+Tn53dVarDZbFqwYIE6dep0Vfq7mRCOo+SyjxzPSJayLkhuHs6tBwAAAAAAALhIcHBwsbaPj49X+/btValSpWtUEYqDaVVQcnkFSrb/3qJMrQIAAAAAAHDTMMYoNTPVKS9jTJHrvHhalcjISI0fP14PPfSQ/P39FRERoWnTplnb2mw2bd68Wa+88opsNpvGjBkjSTp06JC6d++uoKAgBQcHq2PHjjpw4IDDfj799FPVqlVLnp6eKlu2rIYMGWLtU5I6d+4sm81m/S5J33zzjerXry8vLy9VqVJFY8eOVVZWlrV+3759atGihby8vFSzZk2tXLmyGFfoxsDIcZRcLq6Sd6ncB3KmnpL8w51dEQAAAAAAAP4CaVlpuuOzO5yy7429NsrH3eeK2k6cOFHjxo3TCy+8oC+//FKPPvqoWrZsqejoaB07dkxt27ZVbGysnn76afn5+SkzM1MxMTFq0qSJ1q5dKzc3N7366quKjY3Vr7/+Kg8PD33wwQd68skn9fe//1333nuvkpKStG7dOknSpk2bVKZMGcXFxSk2Nlaurq6SpLVr16pv376aMmWKmjdvrvj4eD388MOScqd2ycnJUZcuXRQWFqaNGzcqKSmpWHOn3ygIx1Gy+YT8Nxxn5DgAAAAAAABKtnbt2umxxx6TJI0cOVLvvPOOVq9erejoaIWHh8vNzU1+fn4KD88dBDp79mzl5OTo448/ls1mkyTFxcUpKChIa9as0T333KNXX31VTz31lIYPH27tp2HDhpKk0NBQSVJQUJDVpySNHTtWzz33nPr16ydJqlKlisaNG6dnn31Wo0eP1vfff6/du3dr+fLlKleunCRp/Pjxuvfee6/xGSpZCMdRsnnbH8p5yrl1AAAAAAAA4C/j7eatjb02Om3fV+q2226zfrbZbAoPD9eJEycK3H7btm3av3+//P39HZanp6crPj5eJ06c0NGjR9WmTZti1bFt2zatW7dOr732mrUsOztb6enpSk1N1a5du1SxYkUrGJekJk2aFGsfNwLCcZRs9odyEo4DAAAAAADcNGw22xVPbeJM7u7uDr/bbDbl5OQUuH1KSooaNGigOXPm5FkXGhoqF5cre2RkSkqKxo4dqy5duuRZ5+XldUV93ogIx1Gy+dhHjjOtCgAAAAAAAG4s9evX17x581SmTBkFBATku01kZKRWrVqlu+66K9/17u7uys7OztPvnj17VK1atXzb1KhRQ4cOHdKxY8dUtmxZSdKGDRv+xJFcn67sowfgr8LIcQAAAAAAANygevfurdKlS6tjx45au3atEhIStGbNGg0bNkyHDx+WJI0ZM0YTJ07UlClTtG/fPm3ZskXvvvuu1Yc9PE9MTNSZM2ckSS+//LJmzpypsWPHaseOHdq1a5c+//xzvfjii5Kktm3bKioqSv369dO2bdu0du1ajRo16q8/AU5GOI6SjXAcAAAAAAAANygfHx/9+OOPioiIUJcuXVSjRg0NHDhQ6enp1kjyfv36adKkSfrHP/6hWrVq6b777tO+ffusPiZOnKiVK1eqYsWKqlevniQpJiZG3333nVasWKGGDRuqcePGeuedd1SpUiVJkouLixYsWKC0tDQ1atRIgwYNcpif/GZhM8YYZxdR0iUnJyswMFBJSUkFfr0B18i/Z0vfPC5Vays9+JWzqwEAAAAAAMA1kJ6eroSEBFWuXJk5sXFZhd0vxclyGTmOko2R4wAAAAAAAACuAcJxlGyE4wAAAAAAAACuAcJxlGxWOH7auXUAAAAAAAAAuKEQjqNk8wnO/fdCipSV4dxaAAAAAAAAANwwCMdRsnkGSjbX3J8ZPQ4AAAAAAADgKiEcR8nm4iJ5l8r9mXnHAQAAAAAAAFwlhOMo+XgoJwAAAAAAAICrjHAcJR/hOAAAAAAAAICrjHAcJZ/9oZyE4wAAAAAAAACuEsJxlHz2keNpZ5xbBwAAAAAAAAAH06dPV1BQkLPLuCKE4yj5GDkOAAAAAAAA4CojHEfJx5zjAAAAAAAAuA5cuHDB2SVckeu17j+LcBwlH+E4AAAAAADATcUYo5zUVKe8jDFFrrNVq1YaMmSIRowYodKlSysmJkZnz57VoEGDFBoaqoCAALVu3Vrbtm1zaPftt9+qYcOG8vLyUunSpdW5c2dr3ZkzZ9S3b1+VKlVKPj4+uvfee7Vv3z5JUnJysry9vbV06VKH/hYsWCB/f3+lpqZKkg4dOqTu3bsrKChIwcHB6tixow4cOGBt379/f3Xq1EmvvfaaypUrp+joaElSRkaGnn76aZUvX16+vr664447tGbNGod9TZ8+XREREfLx8VHnzp116tT1m9m5ObsA4LIIxwEAAAAAAG4qJi1Ne+o3cMq+o7dsls3Hp8jbz5gxQ48++qjWrVsnSerWrZsVYAcGBmrq1Klq06aN9u7dq+DgYC1evFidO3fWqFGjNHPmTF24cEFLliyx+uvfv7/27dunRYsWKSAgQCNHjlS7du20c+dOBQQE6L777tNnn32me++912ozZ84cderUST4+PsrMzFRMTIyaNGmitWvXys3NTa+++qpiY2P166+/ysPDQ5K0atUqBQQEaOXKlVY/Q4YM0c6dO/X555+rXLlyWrBggWJjY7V9+3ZVr15dGzdu1MCBA/X666+rU6dOWrZsmUaPHv1nT7nT2ExxPgq5SSUnJyswMFBJSUkKCAhwdjk3n8O/SB+3kQIrSk/85uxqAAAAAAAAcJWlp6crISFBlStXlpeXl3JSU50ajrsUMRxv1aqVkpOTtWXLFknSTz/9pPbt2+vEiRPy9PS0tqtWrZqeffZZPfzww2ratKmqVKmi2bNn5+lv3759ioqK0rp169S0aVNJ0qlTp1SxYkXNmDFD3bp108KFC9WnTx8dP35cPj4+Sk5OVlhYmBVkz549W6+++qp27dolm80mKXfalKCgIC1cuFD33HOP+vfvr2XLlun333+3wvLff/9dVapU0e+//65y5cpZNbVt21aNGjXS+PHj1atXLyUlJWnx4sXW+h49emjZsmU6e/ZsMc/0lbv0frlYcbJcRo6j5LMeyHnauXUAAAAAAADgL2Hz9lb0ls1O23dxNGjwvxB/27ZtSklJUUhIiMM2aWlpio+PlyRt3bpVgwcPzrevXbt2yc3NTXfccYe1LCQkRNHR0dq1a5ckqV27dnJ3d9eiRYvUo0cPffXVVwoICFDbtm2tGvbv3y9/f3+HvtPT060aJKl27dpWMC5J27dvV3Z2tqKiohzaZWRkWMeza9cuhylgJKlJkyZatmxZIWeo5CIcR8nn/d9wPPO8lJkmuRfvDxQAAAAAAACuLzabrVhTmziTr6+v9XNKSorKli2bZ55uSQoKCpIkeRczfL+Uh4eHunbtqs8++0w9evTQZ599pgceeEBubm5WDQ0aNNCcOXPytA0NDc23bns7V1dXbd68Wa6urg7r/Pz8/lTNJRXhOEo+r0DJ5iqZ7NzR44HlnV0RAAAAAAAAkEf9+vWVmJgoNzc3RUZG5rvNbbfdplWrVmnAgAF51tWoUUNZWVnauHGjw7Qqe/bsUc2aNa3tevfurbvvvls7duzQP//5T7366qsONcybN09lypQp1hTR9erVU3Z2tk6cOKHmzZvnu02NGjW0ceNGh2UbNmwo8j5KGhdnFwBcls3GQzkBAAAAAABQ4rVt21ZNmjRRp06dtGLFCh04cEDr16/XqFGj9Msvv0iSRo8erblz52r06NHatWuXtm/frjfeeEOSVL16dXXs2FGDBw/WTz/9pG3btunBBx9U+fLl1bFjR2s/LVq0UHh4uHr37q3KlSs7TMPSu3dvlS5dWh07dtTatWuVkJCgNWvWaNiwYTp8+HCBtUdFRal3797q27evvv76ayUkJOhf//qXXn/9dWuO8WHDhmnZsmWaMGGC9u3bp/fee++6nVJFIhzH9YJwHAAAAAAAACWczWbTkiVL1KJFCw0YMEBRUVHq0aOHDh48qLCwMEm5D/GcP3++Fi1apLp166p169b617/+ZfURFxenBg0a6L777lOTJk1kjNGSJUvk7u7usJ+ePXtq27Zt6t27t0MNPj4++vHHHxUREaEuXbqoRo0aGjhwoNLT0y87kjwuLk59+/bVU089pejoaHXq1EmbNm1SRESEJKlx48b66KOPNHnyZNWpU0crVqzQiy++eLVO31/OZowxzi6ipCvOE05xjcS1lw7+JHX9VLr1fmdXAwAAAAAAgKsoPT1dCQkJqly5sry8vJxdDkq4wu6X4mS5jBzH9cGnVO6/qaedW8c1tClxk4b9c5jiz8ZffmMAAAAAAAAAfwrhOK4PN8G0KnN2zdHqQ6v1+KrHdTb9rLPLAQAAAAAAAG5ohOO4PtwE4fjRlKOSpCMpR/Tsj88qKyfLyRUBAAAAAAAANy7CcVwfboJw/Nj5Y5IkF5uLfj72s6b8e4qTKwIAAAAAAABuXITjuD5Y4fiNOed4amaqzmbkTqXycuOXJUlxv8VpWcIyZ5YFAAAAAAAA3LAIx3F98A7O/fcGHTluHzXu7+6v+6Pu14BbB0iSXl7/svac3uPM0gAAAAAAAIAbEuE4rg83+Mhxezhe1q+sJGl4veFqWq6p0rLSNHz1cB7QCQAAAAAAAFxlhOO4Pvjc2CPH7Q/jLOubG467urjqzRZvqoJfBR7QCQAAAAAAAFwDhOO4PthHjmelSRdSnVvLNZB4PlHS/8JxSQr0DNTk1pPl7ead+4DOLTygEwAAAAAAALhaCMdxffD0l1zcc3++AUePHz3/35HjfmUdlkeVitIrzV6RJMXtiNPShKV/eW0AAAAAAADA1TZ9+nQFBQU5tQbCcVwfbLb/jR5Pu/HmHT+WkjvneDnfcnnWxUbG/u8Bnet4QCcAAAAAAAAKZ7PZtHDhQmeXYYmMjNSkSZMclj3wwAPau3evkyrKRTiO68cNPO+4/YGc4b7h+a63P6AzPTudB3QCAAAAAADguuft7a0yZco4tQbCcVw/7CPHU2+skeNZOVk6kXpCklTOL+/IcSnvAzqf+fEZHtAJAAAAAABuWMYYZWZkO+VljClWrV9++aVq164tb29vhYSEqG3btvrhhx/k7u6uxMREh21HjBih5s2bS/rftCLfffedoqOj5ePjo65duyo1NVUzZsxQZGSkSpUqpWHDhik7O9vqIzIyUuPGjVPPnj3l6+ur8uXL6/3333dYL0mdO3eWzWazfpekDz74QFWrVpWHh4eio6M1a9Ysh/psNpumTp2q++67Tz4+PqpRo4Z+/vln7d+/X61atZKvr6+aNm2q+Ph4q018fLw6duyosLAw+fn5qWHDhvr++++t9a1atdLBgwf1xBNPyGazyWazORz/xb799ls1bNhQXl5eKl26tDp37lysa1Fcbte0d+BqukFHjp9MPalsky03FzeV9i5d4Hb2B3Q+uORBbTi2QZO3TNZTtz/1F1YKAAAAAADw18i6kKNpw39wyr4fntxS7p6uRdr22LFj6tmzp95880117txZ586d09q1a9WgQQNVqVJFs2bN0jPPPCNJyszM1Jw5c/Tmm29a7VNTUzVlyhR9/vnnOnfunLp06aLOnTsrKChIS5Ys0X/+8x/df//9atasmR544AGr3VtvvaUXXnhBY8eO1fLlyzV8+HBFRUXp7rvv1qZNm1SmTBnFxcUpNjZWrq65x7JgwQINHz5ckyZNUtu2bfXdd99pwIABqlChgu666y6r73Hjxuntt9/W22+/rZEjR6pXr16qUqWKnn/+eUVEROihhx7SkCFDtHRp7rPxUlJS1K5dO7322mvy9PTUzJkz1aFDB+3Zs0cRERH6+uuvVadOHT388MMaPHhwgedy8eLF6ty5s0aNGqWZM2fqwoULWrJkSdEv3BUgHMf1wxo5fmOF4/aHcYb7hMvFVviXOewP6Hzmh2c0fcd01QypqXsr3/tXlAkAAAAAAIBLHDt2TFlZWerSpYsqVaokSapdu7YkaeDAgYqLi7PC8W+//Vbp6enq3r271T4zM9MazS1JXbt21axZs3T8+HH5+fmpZs2auuuuu7R69WqHcLxZs2Z67rnnJElRUVFat26d3nnnHd19990KDQ2VJAUFBSk8/H9T+E6YMEH9+/fXY489Jkl68skntWHDBk2YMMEhHB8wYIBV48iRI9WkSRO99NJLiomJkSQNHz5cAwYMsLavU6eO6tSpY/0+btw4LViwQIsWLdKQIUMUHBwsV1dX+fv7O9Rzqddee009evTQ2LFjHfq+lgjHcf24QadVsc83XtCUKpeKjYzVrlO79Olvn+rldS+rSmAVRQdHX8sSAQAAAAAA/lJuHi56eHJLp+27qOrUqaM2bdqodu3aiomJ0T333KOuXbuqVKlS6t+/v1588UVt2LBBjRs31vTp09W9e3f5+vpa7X18fKxgXJLCwsIUGRkpPz8/h2UnTpxw2G+TJk3y/H7pAy8vtWvXLj388MMOy5o1a6bJkyc7LLvtttsc9i39L/C3L0tPT1fy/7N35+FN1+nexz9Zm6SlpXtaZKkIFBGVTUZR3FCUOZ5xjs/x8RGXGVFmUHRQUHFDUERBRMUFxqOjjMvMnLlGZzxHURF3QAQBBWwBZVFp0xYKLW3SNtvzR5rQCipL21+Svl/XlStN+80vdxC1fLh737W1Sk9PV11dnaZPn6433ngj9pcFPp9P33777U/W80Pr1q37yc7y9sDMcSQOZ3KOVSmv++llnAdz06CbNKJwBAs6AQAAAABAUjKZTLKlWAy5RWdiHwqLxaIlS5Zo8eLFOv744/XEE0+oX79+2rZtm/Ly8nTRku1iAgAAIABJREFURRfp+eefV0VFhRYvXqxrrrmm1fNtNtuB7/sgnwuFQkf+i3mYWr5+9NfiYJ+L1jRlyhS99tprmjVrlj7++GOtW7dOAwcOVFNT02G9rtPpPNrSDxvhOBJHko5VOdzOcSmyoHP2yNks6AQAAAAAADCYyWTSiBEjNGPGDK1du1Z2u12vvfaaJOnaa6/V3/72Nz3zzDPq3bu3RowY0Sav+emnnx7wuH///rHHNput1RJPSerfv7+WLVvW6nPLli3T8ccff1S1LFu2TL/5zW/061//WgMHDpTb7db27dtbnbHb7QfU80Mnnniili5delS1HC7CcSSOJB2rEp05XpBacFjPiy7odFqdsQWdAAAAAAAA6DgrV67UrFmztHr1an377bd69dVXVVVVFQuqR48erfT0dM2cObPVnO6jtWzZMs2ZM0ebN2/WU089pb///e/6wx/+EPt6r169tHTpUnk8Hu3Zs0eSdOutt+qFF17QggULtGXLFs2bN0+vvvqqpkyZclS19OnTR6+++qrWrVunL774QpdffvkBne69evXSRx99pJ07d2rXrl0Hvc69996rv/zlL7r33ntVUlKi9evXa/bs2UdV288hHEficCXnWBVPnUfS4YfjUmRB5/0j7pckvbDxBb25tX03+AIAAAAAAGC/9PR0ffTRRxozZoz69u2ru+++W4888oguvPBCSZLZbNZvfvMbBYNBXXXVVW32upMnT9bq1as1aNAgzZw5U/PmzYstzJSkRx55REuWLFH37t01aNAgSdLFF1+sxx9/XHPnztWAAQP0xz/+Uc8//7zOOuuso6pl3rx5yszM1GmnnaaLLrpIo0eP1uDBg1udue+++7R9+3b17t07tjD0h8466yz9/e9/1+uvv66TTz5Z55xzjj777LOjqu3nmMLhcLhdXyEJ1NbWKiMjQzU1NUpPTze6nM5rzw7p8RMlq0O6yyMdxvyneBUOhzX8leHyBXz6n4v/R70yeh3RdR79/FH9acOf5LA49OKYF1WcVdy2hQIAAAAAALSjhoYGbdu2TUVFRXI4HEaX06bGjRunqqoqvf76621yvV69emnSpEmaNGlSm1wvEf3U75fDyXIN7RwPBoO65557VFRUJKfTqd69e+v+++9Xy7w+HA5r2rRpKigokNPp1KhRo7Rly5ZW16murtbYsWOVnp6url27aty4caqrq2t15ssvv9QZZ5whh8Oh7t27a86cOR3yHtGGomNVAg2S32tsLW2kprFGvoBPklSQdvid41EtF3ROen8SCzoBAAAAAAAMVlNTo08++USvvPKKbrzxRqPLwUEYGo7Pnj1bCxYs0JNPPqmSkhLNnj1bc+bM0RNPPBE7M2fOHM2fP18LFy7UypUrlZqaqtGjR6uhoSF2ZuzYsdq4caOWLFmi//3f/9VHH32k8ePHx75eW1ur888/Xz179tTnn3+uhx9+WNOnT9czzzzToe8XR8meKlnskY+TZLRKdBlntiNbKZaUI77ODxd0TvloCgs6AQAAAAAADPSrX/1K559/vn7/+9/rvPPOM7ocHITVyBdfvny5fvWrX+mXv/ylpMiPBPzlL3+JzZIJh8N67LHHdPfdd+tXv/qVJOnPf/6z8vPz9c9//lOXXXaZSkpK9NZbb2nVqlUaOnSoJOmJJ57QmDFjNHfuXBUWFurll19WU1OT/vSnP8lut2vAgAFat26d5s2b1ypEj2psbFRjY2PscW1tbXv/UuBQmEyR7vF95ZFwvGsPoys6ake6jPNgogs6r3jzCq0sX6nHPn9MU4Yd3UIFAAAAAAAAHJkPPvigXa67ffv2drluZ2Ro5/hpp52mpUuXavPmzZKkL774Qp988klsYP22bdvk8Xg0atSo2HMyMjI0fPhwrVixQpK0YsUKde3aNRaMS9KoUaNkNpu1cuXK2JmRI0fKbrfHzowePVqbNm2KbWtt6cEHH1RGRkbs1r1797Z/8zgy0dEqSdI57qlvXsZ5FCNVWmq5oHPRV4tY0AkAAAAAAAD8CEPD8alTp+qyyy5TcXGxbDabBg0apEmTJmns2LGSJI8nEhzm5+e3el5+fn7sax6PR3l5ea2+brValZWV1erMwa7R8jVauuOOO1RTUxO7fffdd23wbtEmXFmRe++Bf6mRiMrq2q5zPGp0r9Ead8I4SdK9y+9VaXVpm10bAAAAAACgPbXcRQj8mLb6fWJoOP7f//3fevnll/XKK69ozZo1WrRokebOnatFixYZWZZSUlKUnp7e6oY4kWSd49GZ44VphW163RsH3agR3VjQCQAAAAAAEoPFYpEkNTU1GVwJEkH090n0982RMnTm+K233hrrHpekgQMHaseOHXrwwQd19dVXy+12S5IqKipUULC/s7aiokInn3yyJMntdquysrLVdQOBgKqrq2PPd7vdqqioaHUm+jh6BgnCGe0cT5JwvC4SjrtT2/b3ocVs0ewzZuv/vfH/9N2+7zTloylaOGqhrGZD/5UHAAAAAAA4KKvVKpfLpaqqKtlsNpnNhvb0Io6FQiFVVVXJ5XLJaj26rMvQpMzr9R7wG91isSgUCkmSioqK5Ha7tXTp0lgYXltbq5UrV2rChAmSpFNPPVV79+7V559/riFDhkiS3nvvPYVCIQ0fPjx25q677pLf75fNZpMkLVmyRP369VNmZmaHvFe0kSTrHI8u5CxMbdvOcal5QefZj2vsm2NZ0AkAAAAAAOKayWRSQUGBtm3bph07dhhdDuKc2WxWjx49ZDKZjuo6hobjF110kR544AH16NFDAwYM0Nq1azVv3jxdc801kiL/UkyaNEkzZ85Unz59VFRUpHvuuUeFhYW6+OKLJUn9+/fXBRdcoOuuu04LFy6U3+/XxIkTddlll6mwMBI4Xn755ZoxY4bGjRun22+/XRs2bNDjjz+uRx991LD3jiOUROF4Q6BB1Q3Vktp+rEpUn8w+un/E/Zry4RQt+mqR+mf31y+P/WW7vBYAAAAAAMDRsNvt6tOnD6NV8LPsdnub/HSBoeH4E088oXvuuUfXX3+9KisrVVhYqN/97neaNm1a7Mxtt92m+vp6jR8/Xnv37tXpp5+ut956Sw6HI3bm5Zdf1sSJE3XuuefKbDbrkksu0fz582Nfz8jI0DvvvKMbbrhBQ4YMUU5OjqZNm6bx48d36PtFG0iicNxTH1kG67Q6lW5vv7n2o3uNVsnuEj234TlNXz5dvbv2VnFWcbu9HgAAAAAAwJEym82tcj+gPZnCrID9WbW1tcrIyFBNTQ3LOY329VLppf+Q8k+QJiwzupqjsqJshcYvGa/eGb31z4v/2a6vFQwFdcN7N2jZzmUqTC3UX//tr8p0MFIIAAAAAAAAyeVwslwm2yOxuJJnIWd5ffMyzrT2XwobXdDZvUt3ldWX6dYPb1UgFGj31wUAAAAAAADiFeE4EkvLsSoJ/kMP0XC8PZZxHkx0QafT6tRKz0o9+jkz9wEAAAAAANB5EY4jsUTD8WCT1FRnbC1HqayuTJJUkFrQYa/ZJ7OPZo6YKUn681d/1htb3+iw1wYAAAAAAADiCeE4EovNJVmblzIk+GiVaOd4QVrHheOSdH6v83XtwGslSdOXT1fJ7pIOfX0AAAAAAAAgHhCOI7GYTC1Gq1QbW8tRKq9rDsc7sHM8auLJE3V6t9PVEGzQpPcnaU/Dng6vAQAAAAAAADAS4TgST2wpZ+KG46FwSB6vR1LHzRxvyWK26KEzHmJBJwAAAAAAADotwnEkHmc0HE/csSq7fLsUCAVkMVmU68o1pIYfLuicv2a+IXUAAAAAAAAARiAcR+KJjVVJ3HA8uowzz5Unq9lqWB0tF3Q+v/F5ffT9R4bVAgAAAAAAAHQkwnEkniQIxz31kZEqRswb/6Hze52vy4svlyTd9cldsdoAAAAAAACAZEY4jsQTDcd9iTtzvKw+0jlekGZ8OC5Jk4dOVv+s/trbuFe3f3Q788cBAAAAAACQ9AjHkXiSoHO8vK5ckjHLOA/GbrFr7plzlWpL1ZrKNXpq3VNGlwQAAAAAAAC0K8JxJB5XdCFn4naOl9dHwnF3qtvgSvbrkd5D00+bLkl6dv2zWrZzmbEFAQAAAAAAAO2IcByJJxaOJ27neHSsSmFafHSOR13Q6wJd2vdSSdKdn9ypSm+lwRUBAAAAAAAA7YNwHIknCcaqeOoiSy/jZaxKS7edcpv6ZvZVdUO1pn48VcFQ0OiSAAAAAAAAgDZHOI7E0zIcD4eNreUI7Gvap33+fZLia6xKVIolRXPPnCun1alVnlVa+OVCo0sCAAAAAAAA2hzhOBKPs3msSiggNe4ztpYjEJ033jWlq1w2l8HVHFxRRpGmnTpNkvTHL/6oleUrDa4IAAAAAAAAaFuE40g8dpcUDZUTcLRKeV0kHC9ILTC4kp/2b8f+m/6jz38orLCmfjxVu3y7jC4JAAAAAAAAaDOE40hM0e5xb7WxdRyBaOd4vIfjkjT1lKk6rutx2uXbpTs+voP54wAAAAAAAEgahONITK5oOJ54neNl9WWSpIK0+A/HnVZnbP74p+Wf6tn1zxpdEgAAAAAAANAmCMeRmFou5UwwiTJWJap31966c/idkqSnv3haqz2rDa4IAAAAAAAAOHqE40hM0XDcx1iVjnDxcRfr33v/u0LhkG7/6HZVNyTerzsAAAAAAADQEuE4ElMSdI4XphUaXMnhuWv4XSrKKFKlr1J3fnKnQuGQ0SUBAAAAAAAAR4xwHIkpQWeO+4N+VfmqJCVW57gkuWwuzT1zrlIsKVq2c5me3/C80SUBAAAAAAAAR4xwHIkpQTvHPV6PwgorxZKiLEeW0eUctr6ZfTX1lKmSpCfWPqF1lesMrggAAAAAAAA4MoTjSEyxzvHEmn3tqfdIinSNm0wmg6s5Mpf0uUQXFl2oYDioWz+6VXsb9hpdEgAAAAAAAHDYCMeRmGKd44kVjpfVlUmS3Klugys5ciaTSfeeeq96pveUp96je5bdo3A4bHRZAAAAAAAAwGEhHEdiStCxKuX1ibmM84dSbamae+Zc2c12ffD9B/rzV382uiQAAAAAAADgsBCOIzE5WyzkTKCu5Wg4nsid41HFWcW6bdhtkqTHPn9M66vWG1wRAAAAAAAAcOgIx5GYojPHw0GpocbYWg5DdKxKYWpid45HXdrvUp3X8zwFwgHd+tGtqm2qNbokAAAAAAAA4JAQjiMx2ZySLTXycQKNVoku5Ez0sSpRJpNJM06boWPSjtHOup2atmwa88cBAAAAAACQEAjHkbgSbClnOBxOqrEqUV3sXTT3zLmymq1a+u1SvVL6itElAQAAAAAAAD+LcByJKzpaxZcY4Xh1Q7Uag40yySS3K3nCcUkakDNAU4ZOkSQ9svoRbdy90eCKAAAAAAAAgJ9GOI7EFescT4yxKtGu8VxnrmwWm8HVtL3Liy/XOd3PkT/k160f3qq6pjqjSwIAAAAAAAB+FOE4Ele0czzBwvGCtAKDK2kfJpNJ9424T4Wphfpu33eavmI688cBAAAAAAAQtwjHkbgSrHO8rK5MklSQmpzhuCRlpGTo4TMfltVk1dvb39bfN//d6JIAAAAAAACAgyIcR+JKsHA82TvHo07MPVGThkySJM3+bLY2VW8yuCIAAAAAAADgQITjSFyxsSqJsZCzvK45HE/izvGoq46/Smcec6aaQk2a8uEU1fvrjS4JAAAAAAAAaIVwHIkr1jmeIOF4c+d4YWqhwZW0P5PJpJkjZirfla/ttdt1/6f3M38cAAAAAAAAcYVwHInLyULOeNbV0VUPn/mwLCaL3tj6hl77+jWjSwIAAAAAAABiCMeRuBJo5rjX79Xexr2SOsdYlahBeYM0cdBESdKDKx/Ulj1bDK4IAAAAAAAAiCAcR+KKhuO+aikUMraWn+Gp90iSuti6qIu9i8HVdKxrTrhGIwpHqCHYoCkfTpHX7zW6JAAAAAAAAIBwHAksupAzHJIaa4yt5WeU1ZdJktxpboMr6Xhmk1kPnP6Acp252lqzVbNWzjK6JAAAAAAAAIBwHAnMmiJFu7DjfClnZ1rGeTDZzmzNHjlbZpNZ//rmX3r9m9eNLgkAAAAAAACdHOE4EpsrM3If53PHy+si4bg7tfN1jkcNcw/ThJMmSJJmfjpTW2u2GlwRAAAAAAAAOjPCcSS2BFnKGR2rUpjWOTvHo64beJ2GFwyXL+DTlA+nqCHQYHRJAAAAAAAA6KQIx5HYEiQcj3aOd9axKlEWs0UPnfGQsh3Z2rJnix767CGjSwIAAAAAAEAnRTiOxJYo4Xg9Y1Wicpw5emjkQzLJpH9s+Yfe3Pqm0SUBAAAAAACgEyIcR2KLhePxu5AzEAqo0lspibEqUb8o+IXGnzhekjRjxQxtq9lmcEUAAAAAAADobAjHkdhcWZH7OO4cr/JWKRgOymq2KseZY3Q5cWPCSRN0ivsUeQNe3fLBLfIFfEaXBAAAAAAAgE6EcByJzRkNx+O3czw2UsXlltnEv3JRFrNFs0fOVrYjW1/v/VoPfPqA0SUBAAAAAACgEyGpQ2JLgJnjZfVlkqSCtAKDK4k/Oc4cPXzmwzKbzPrXN//Sa1teM7okAAAAAAAAdBKE40hsCRCOl9dFOscLUgnHD2aYe5gmnjxRkvTAyge0qXqTwRUBAAAAAACgMyAcR2KLhuO++B+rQjj+48YNHKfTu52uxmCjJn84WXVNdUaXBAAAAAAAgCRHOI7EFgvH90ihoLG1/IjoWJXCtEKDK4lfZpNZD57+oNypbu2o3aHpK6YrHA4bXRYAAAAAAACSGOE4EpszM3IfDkkNNcbW8iM8dR5JdI7/nK6Ornp45MOymqx6e/vb+uumvxpdEgAAAAAAAJIY4TgSm9UupaRHPo7DuePhcHj/Qk7C8Z91ct7JumXoLZKkOavmaMOuDQZXBAAAAAAAgGRFOI7E58qK3MdhOF7bVCtfwCdJcqe6Da4mMVzR/wqN6jFKgVBAkz+YrJrG+PyJAAAAAAAAACQ2wnEkvujccW/8LeUsq4t0jWc5suSwOgyuJjGYTCbdN+I+HZN2jMrqy3T3J3crFA4ZXRYAAAAAAACSDOE4El8sHI+/zvHy+nJJUmEqyzgPRxd7F807a57sZrs++P4DLdq4yOiSAAAAAAAAkGQIx5H4EiAcL0hj3vjh6p/dX1OHT5UkPb7mcX1e8bnBFQEAAAAAACCZEI4j8Tnjd+Z4dKwKyziPzP/p83/0y2N/qWA4qNs+vE27ffH3zxgAAAAAAACJiXAciS+2kDP+Zo7HOscJx4+IyWTStF9M07EZx6rSV6mpH09VMBQ0uiwAAAAAAAAkAcJxJL54HqtSx1iVo+WyuTTvrHlyWp36tPxTPfPlM0aXBAAAAAAAgCRAOI7EFw3HffHbOc5CzqPTu2tv3fOLeyRJC75YoOVlyw2uCAAAAAAAAImOcByJL047xxuDjdrdEKmJsSpH76LeF+mSPpcorLDu+PgOVdRXGF0SAAAAAAAAEhjhOBKfKz4XcnrqPZIkp9WpjJQMg6tJDncMv0PFWcWqbqjWbR/dJn/Ib3RJAAAAAAAASFCE40h8sbEqe6VgwNhaWiirK5MU6Ro3mUwGV5McUiwpeuTMR5RmS9OayjV6Yu0TRpcEAAAAAACABEU4jsTnzGz+ICw17DW0lJai88ZZxtm2eqT30H0j7pMkPb/heb3/7fsGVwQAAAAAAIBERDiOxGexSY7msSXe+FnKGQvHmTfe5s7reZ6u6H+FJOmuZXdpZ91OgysCAAAAAABAoiEcR3KIw6Wc0bEqhamFBleSnG4ZcotOzDlR+5r2afIHk9UUbDK6JAAAAAAAACQQwnEkB2f8LeWMLuRkrEr7sFlsmnvmXGWkZGjj7o2au3qu0SUBAAAAAAAggRCOIznEcec4Y1XaT0FagWadPkuS9JfSv+itbW8ZXBEAAAAAAAASBeE4kkOcheOhcEgeb6RznLEq7WvkMSN17cBrJUn3Lr9X22u2G1sQAAAAAAAAEgLhOJKDq3msii8+FnLu8u1SIBSQxWRRrivX6HKS3g0n36Ch+UPlDXh1y4e3yBfwGV0SAAAAAAAA4hzhOJJDrHM8PsLx8vpySVKeK09Ws9XgapKf1WzVnJFzlO3I1pY9W/TgygeNLgkAAAAAAABxjnAcySHOxqqU10XCceaNd5xcV67mjJwjs8ms175+Tf/8+p9GlwQAAAAAAIA4RjiO5BAdqxIn4XhZffMyzjTC8Y50SsEpuv6k6yVJD3z6gDbv2WxwRQAAAAAAAIhXhONIDnSOo9l1J16nEYUj1BBs0OQPJqveX290SQAAAAAAAIhDhONIDvEWjtcTjhvFbDLrwTMeVL4rX9trt2vG8hkKh8NGlwUAAAAAAIA4QziO5BANxxtqpGDA2Fq0PxwvTCs0uJLOKdORqblnzpXVZNXi7Yv1t01/M7okAAAAAAAAxBnCcSQHR1dJpsjHvj2GliIxViUenJx3siYNmSRJmrNqjjbu2mhwRQAAAAAAAIgnhONIDhar5MiIfGzwaJV9Tfu0z79PEuG40a46/iqd0/0c+UN+Tf5wsmoaa4wuCQAAAAAAAHGCcBzJI07mjkdHqmSkZMhlcxlaS2dnMpl0/+n365i0Y7SzbqfuXnY388cBAAAAAAAgiXAcySRewvHmkSqFqcwbjwfp9nQ9ctYjsplt+uC7D7Ro4yKjSwIAAAAAAEAcIBxH8oiG475qQ8uIdo67U92G1oH9js8+XlNPmSpJemzNY1pbudbgigAAAAAAAGA0wnEkjzjpHC+rL5MkFabROR5P/rPvf2pM0RgFw0FN+XCKqhuM/UsUAAAAAAAAGItwHMnDlRW59xobenrqPJJYxhlvTCaT7j31XhVlFKnSW6nbP7pdgVDA6LIAAAAAAABgEMJxJI9YOB4fneOE4/HHZXNp3pnz5LQ69Wn5p5r56UwWdAIAAAAAAHRShONIHnEyViU6c5yxKvHpuMzjNPuM2TKbzPrHln/omS+fMbokAAAAAAAAGIBwHMkjFo4bN1bFH/SrylsliYWc8ezsHmfrjlPukCQ9ue5J/evrfxlcEQAAAAAAADoa4TiSRxx0jld4KxRWWHazXdmObMPqwM+7rPgy/faE30qSpi+fruVlyw2uCAAAAAAAAB2JcBzJIw46x6MjVQrSCmQymQyrA4dm0uBJurDoQgXCAd3ywS3aVL3J6JIAAAAAAADaRDgUMrqEuGc1ugCgzTibF3I21khBv2SxdXgJZXUs40wkZpNZM0fM1C7fLq3yrNL1716vl3/5MiNxAAAAAACAIUJNTQrV1ytUVxe5/8EtGPu8d//nf3A26I18PezzqXjDepksFqPfVtwiHEfycHaVZJIUjnSPd8nv8BJineOE4wnDbrHrsbMf01VvXqVvar7RhHcnaNGFi5RuTze6NAAAAAAAkGDCwaACu3crUFmlQFWlApVVCu2rVbC+XqG6A8PuluF20OuV/P42rSfk9crSpUubXjOZEI4jeZgtkjNT8lVH5o4bGY6nEY4nknR7uhaMWqCxb47V13u/1s3v36wFoxbIbrEbXRoAAAAAAIgD4VBIwepqBSor5a+sVKCyUoGqqkgI3vLxrl1SG4wzMTkcMqelyZzqkjk1VRZXqsypzbe0tP0fp6bKnOqS5YDP7b/hxxGOI7m4siPhuM+YuePldZFwvDC10JDXx5ErSCvQ06Oe1tWLr9Znns80bfk0zTp9lswmVjMAAAAAAJCswqGQgnv2tAi7W4bfu/YH37t2ScHgoV3UbJY1O1vWvDxZc3Nlycj40VDbnJp6YLDtcslkJbbtCPwqI7m4sqXdWyKd4wZgrEpiK84q1qNnPaoblt6gN7a+IbfLrUlDJhldFgAAAAAAOALBunoFKjzyezwKeCqax5xEw++qSBheVSUFAod2QZNJlpxs2XIjobc1L2//LfY4V9bsbOZ8JwjCcSQXV/NSTgPC8XA4zFiVJHBat9N072n36p5l9+i5Dc+pMK1Ql/a71OiyAAAAAABAC8G6OgU8HvnLPc0BeIX8nvJICF4R+Xyoru7QLmYyyZKd3Rxw58qWlydrbnPQHfs4T9bsLDq6kwz/NJFcDAzHqxuq1RhslEkmuV3uDn99tJ2Lj7tY5fXlenrd03pg5QPKc+XprO5nGV0WAAAAAABJLxwOKxQNvj37u76jwbe/wqNAuUeh+vpDup65SxfZ3G5Z8/NldefLmtscfrfs9s7Olslma+d3hnhEOI7k4sqO3Hs7fuZ4tGs815krm4X/oCa635/4e3nqPXp1y6u69cNb9afRf9LA3IFGlwUAAAAAQMIKh8MK7dvXHHi3DL6bH1dUKFBerpDXe0jXM6enR4Jvd75s+W5ZC9yRe3e+bAUFsubly5LGQkr8OMJxJJc4CMfdaXSNJwOTyaS7f3G3KrwVWrZzmSa+N1EvXfiSuqd3N7o0AAAAAAAMFw6HFar3Krh3j4J79jbfR26BPdHP7d3/ub17FNxbI/n9h3R9c0aGbPn5rQNvd4Fs7nxZ3W7Z8vNlTiX4xtEhHEdyiYXjHT9WpayuTJJUmFrY4a+N9mEz2/TImY/ot2/9ViXVJZqwdIJevPBFZToyjS4NAAAAAIA2Ew6HFfb5moPt5kC7RegdC7v37GkVeIcPMej+IXNGxv6O72jgne+WrcAduc/PI/hGhyAcR3IxMBz31HsksYwz2aTaUvXUuU/pijev0I7aHbrxvRv17PnPymF1GF0aAAAAAAA/Kja7u6pKgcqqyH3L2+5drQLvcGPjEb2OyW6XJStLlsxMWbpmyJqZKUvXzObHXSP3mV2bPx95bHY62/jdAkeGcBzJxWncQs5o53hBKuF4ssl15WrBqAW6cvGV+qLqC039eKoeOfMRWcwWo0sDAAAAAHQy4VBIwb17fzz0bnELNzQc1rVNdntzmB0U5CDRAAAgAElEQVQNsrvuD7tjQXfrsNvkdMpkMrXTuwXaF+E4kksczBxnrEpyOrbrsZp/znxd9851WvrtUs1ZNUdTT5nKNwAAAAAAgDYRDgQU2F3dHGxX/iDo3rX/4127DnlutySZu3SRNTf3wFtOtiyZkY5va2bXSNDtcvHnXHQqhONILq7mzvGmfVKgSbLaO+ylYws5U1nImayG5A/RrDNm6dYPb9Urpa+oMK1QVw+42uiyAAAAAABxLuTzye/xKODxyO+pUKDCI3958+PKSBAerK6WQqFDvqYlM/PgoXderqx5ec0BeA4jTICfQDiO5OLoKpnMUjgk+aqlLh0TVHv9Xu1t3CtJKkyjczyZXdDrAlXUV2ju6rmau3qu8l35uqDoAqPLAgAAAAAYJOT1RgJvT3mr4Ntf4VHAUyG/x6NQTc2hXcxsljUn5+CBd8vH2dky2TuuIRBIVoTjSC5mc2TuuHdXZO54B4Xj0WWcabY0dbF36ZDXhHGuOv4qldWV6ZXSV3TnJ3cqx5mjoe6hRpcFAAAAAGhjofp6+Ssq5C8vjwTdFR4Ffhh819Ye0rXMLpesBQWy5efLWuCWLd8tqzs/8rg59LZkZclkYb8V0FEIx5F8XC3C8Q5SVt+8jDONZZydgclk0m3DblOFt0JLv12qm96/SS9d+JKO7Xqs0aUBAAAAAA5ROBCQ31Mh//ffy79zp/ye8v1jTzyeSPC9b98hXcucmro/8G4ZfLsLZHPny+p2y9KFZjog3hCOI/nElnJ2XDgenTdekEo43llYzBY9dMZDuvada/VF1Rea8O4EvTTmJeW6co0uDQAAAAAgKRwMKlBRIf/OnWr6fmckAI/evv9e/ooKKRj82euY09JkK3DL+sPAO98d+bzbLUtaWge8IwBtjXAcyScWjld32EuW1xGOd0YOq0NPnPOErlx8pXbU7tANS2/Q8xc8r1RbqtGlAQAAAEDSC4dCClRV7e/83rlTTd9/L//Ossjj8nIpEPjJa5hsNtm6dZOtsFC2boX7A+989/6Ob4JvIGkRjiP5uLIi9x0Zjjd3jrOMs/PJdGRqwbkLdMXiK1RSXaLJH07WE+c8IZvZZnRpAAAAAJDQwuFwJPzeuTMSeLcMwXd+r0BZucJ+/09fxGaTraBAtm6Fsh9zTCQI79ZNtm6Rj625OTKZzR3zhgDEHcJxJB8DxqqU1TXPHKdzvFPqnt5dT57zpK55+xot27lMMz+dqemnTpfJZDK6NAAAAACIS+FAQIHd1QpUVSlQValAZVXzx1X7R5+UlSnc2PjTF7JYmsPvaOjdOgS35uWx4BLAjyIcR/IxIBz31HskEY53ZgNzB+rhMx/WH97/g17d8qrcqW5NOGmC0WUBAAAAQIcKNTU1B92VsbC79W2XAlVVCu7eLYXDP39Bs1lWd77shd1ka9n5fUw32bt1kzU/XyYr8RaAI8N/PZB8nNGxKh0TjgdCAVV4KyQRjnd2Z3U/S3cNv0v3f3q/nl73tApSC3TxcRcbXRYAAAAAHLVQfX2kq7vyx0LvSPAdqqk59ItaLLJmZ8uam9vqZutWuD8Ed7tlsjG2EkD7IBxH8ungzvEqb5WC4aCsZqtyXbkd8pqIX5f2u1RldWV6bsNzmrF8hvKceTqt22lGlwUAAAAAPykcCsm/c6caN21Sw6ZNavpmqwItgvCQ13vI1zLZbPvD7rzcA8LvyOfzZMnMZOQJAEMRjiP5RMNxX8cs5Iwu48x35ctsYokHpJsG3ySP16M3tr6hmz+4WYsuXKTirGKjywIAAAAASVKwrk6NmzfHgvDGTZvVuHmzQvX1P/k8k8sl28+F3rm5MmdksIMJQEIgHEfycUXHqnRMOF5WH1nGWZhW2CGvh/hnNpl1/2n3q8pbpc88n+n6d6/Xy2NeVkEaY3cAAAAAdJxwMKimb79tDr83qWHTZjWWlsq/c+dBz5tsNtn7HCdH335K6XOcrG53i9A7T5a01A5+BwDQvgjHkXyineNNdZK/QbI52vXlWMaJg7FZbHr07Ed19eKr9fXerzXh3QladOEiZaRkGF0aAAAAgCQU3LtXDZs37w/CSzepccsWhRsaDnre6nYrpV/fSBDer58c/frK3qsX870BdCqE40g+jgzJZJHCwchoFVv7dnSX1UU6xwnH8UPp9nQtGLVAY98Yq29qvtGk9yfpj+f9UXaL3ejSAAAAACSocCCgpu3b949DaR6NEvB4Dnre5HAopU+fVkF4St8+smZmdnDlABB/CMeRfEymyGiV+qrIUs709g3HozPHGauCg3GnuvX0qKd19VtXa3XFat297G49dMZDzKcHAAAA8LMC1dX754KXblLD5k1q+vobhZuaDnre1q1bJPzu11eOfv2U0ref7D17sPQSAH4E4TiSkyu7ORxv/7nj5XWRcNyd6m7310Ji6pfVT/POmqcb3r1Bi7ctltvl1i1DbzG6LAAAAABxItzUpMZt2yJBeOmmyP3mTQpW7TroebPLpZS+fX8QhPeVpUuXDq4cABIb4TiSU3TuuHd3u75MOBze3zmeSuc4ftxphadpxogZuuuTu/T8xueVn5qvsf3HGl0WAAAAgA4UDocVqKpqHodSGlmQuWmTGrdulQKBA59gMsnWvXsk/I4G4cXFsnXrJpOZn0YFgKNFOI7k5MqK3LdzOF7bVCtvwCuJznH8vH/v/e+qqK/Q/LXzNfuz2cpz5em8nucZXRYAAACAdhBqbFTj11+rsXRTZEFmcxAe3LPnoOfNXbrsnwte3C8SiB93nMypqR1cOQB0HoTjSE7OaDjevmNVoss4sxxZclgd7fpaSA7XDrxWnnqP/nvzf2vqR1OVfX62BucPNrosAAAAAEcoHA4r4PGoobQ00hHeHIQ3bd8uBYMHPsFslr1Xr+ZxKMWxsSjWggKZTKYOrx8AOjPCcSSnDhqrEh2pUpBa0K6vg+RhMpl05/A7Vemr1AfffaAb37tRL455UcdmHGt0aQAAAAB+RsjrVeOWLZEFmc2d4A2bNytUW3vQ85auXZVSXCxHv75K6ds8GuW43jI7aK4CgHhAOI7kFA3Hfe3bOR6bN57GvHEcOovZojkj5+jad67Vl1VfasKSCXppzEvKdeUaXRoAAAAAtegGLymNzAYvKVXjpk1q+vZbKRw+8AlWq1KOPVYp/fpFgvB+/ZTSt5+sebl0gwNAHCMcR3LqqM7xOjrHcWScVqeePOdJXbn4Su2o3aEblt6g5y94Xqk25gkCAAAAHSnc1KTGb75RQ+kmNZaWqKF0kxpKSxWqqTnoeUtuTmQueDQILy5WSlGRTHZ7B1cOADhahONITh0UjpfVR2aOE47jSGQ6MrXg3AW6YvEVKqku0S0f3KInz31SNrPN6NIAAACApBTYs0eNpaXNQXhpZE741q2S33/g4eZucEf/YqX0K5ajOBKIW7OzO75wAEC7IBxHcoqF4+07VsVT75EkFaQRjuPIdE/vrqfOfUrXvH2Nlpct1/Tl0zVzxEx+9BIAAAA4CuFQSE07dkRmgpeUxoLwQEXFQc+b09PlKC5WSnE/OYr7y1HcT/bjjpOZbnAASGqE40hOrszIfXt3jtfROY6jd0LOCZp75lzd9N5Nev2b15XvytdNg28yuiwAAAAgIYS8XjVu3qyGaCd4SakatmxR2Os96Hlbjx4HBOHWggIaVACgEyIcR3KKdo77vZLfJ9mcbf4SjcFG7W6IhO+FqSzkxNEZecxITTt1mu5dfq/+a/1/yZ3q1qX9LjW6LAAAACBuhEOhyJLMzZvV2DwXvLG0VE07dhx0SaYpJUUpfftGgvD+xZH7vn1lSUszoHoAQDwiHEdySkmXzFYpFIiMVsno1uYvER2p4rQ6lZGS0ebXR+fzH33+Q556jxZ8sUAPrHxAuc5cnd3jbKPLAgAAADpUsKZGTdu3q3HbNjVt366m7Tsi9zt2KOzzHfQ5ltycWBd4SnEkCLf37CmTldgDAPDj+L8EkpPJFOker6uIjFZph3C85UgVfvwObWXCSRNU4a3Qq1te1W0f3aZnRz+rk3JPMrosAAAAoE2FGhvVtGNH6/C7OQwP7tnz40+0WmXv1TMShLdYlGnNyem44gEASYNwHMmrZTjeDmLLOJk3jjZkMpl09y/uVqW3Up/s/EQ3Lr1RL455UT3TexpdGgAAAHBYwsGg/OWeVsF39OYvKzvoKJQoa36+7L16RW5FkfuUXr1k69ZNJput494EACCpEY4jeTmzIvftFI6X1Td3jqcRjqNt2cw2PXLmI/rt27/VV7u/0u+X/F4vjnlROU66YQAAABBfwuGwgnv3RsLvbdtbBODb1LTjW4Wbmn70ueYuXWQvKpK9V89Y+G0vKpK9Rw+ZU1M78F0AADorwnEkL1c0HK9ul8uX15VLYhkn2ofL5tJT5z6lK9+8Ut/Xfa+JSyfqT6P/JJfNZXRpAAAA6KRCDQ1qKClRw/oNavjqKzVu26qm7TsUqqn50eeYbDbZevaIhN9FRfu7wXv1kiUrixGVAABDEY4jebmyI/e+dgrH6yPhuDvV3S7XB3KcOVowaoGuXHylNu7eqCkfTtH8c+bLauY/3QAAAGhfYb9fjVu2yLd+gxo2rJdvw0Y1btkiBQIHPW8tLFBKr6LWo1CKimQrKJDJYunY4gEAOEQkLEhe0XC8vcaqNC/kLEyjcxztp1dGLz157pMa9/Y4fbzzY838dKbuPfVeOmwAAADQZsKhkJq2bZNv/Xo1rN8g34b1aiwpPehIFEtOjpwnnCDHCScopU+fSBDes4fMDocBlQMAcHQIx5G82jEcD4VD8nhZyImOcVLuSZozco5u/uBm/WPLP5Sfmq8JJ00wuiwAAAAkoHA4LP/OnWpYvz7SFb5+vRo2blTI6z3grDk9Xc4TBshxwkA5Thgg58CBsrrdNGoAAJIG4TiSVzuG47t8uxQIBWQ2mZXnymvz6wM/dE6Pc3TnKXdq5sqZenrd03K73Pp1n18bXRYAAADinL+iUg0bN8S6whs2bFBw794DzpmcTjmOPz7WFe4ceIJsPXsShAMAkhrhOJJXbCFn24fj0Xnjea485j+jw/zf4v8rj9ejZ9c/qxkrZijHmaMzjjnD6LIAAAAQJwJ79qhhw8bmMDzSFR6orDzwoM0mR79+cgw8Qc4TBkZGpPQ+ViYrf7YBAHQu/J8PySsWju9p80uX10XC8cJU5o2jY9006CZV1Ffof7b+jyZ/OFnPj35eA3IGGF0WAAAAOlhgzx41btqkhq9KIgsz12+Q/7vvDjxoNiuld285Bg6Uc+AJcpwwUCn9+spst3d80QAAxBnCcSSvdhyrEu0cL0hj3jg6lslk0ozTZqjKV6VPyz/V9Uuv10tjXlL3Lt2NLg0AAADtIDYjvKREjSWlaigpUUNpqQLl5Qc9b+/ZU44TToh0hQ8cKEf//jK7XB1cNQAAicFsdAE7d+7UFVdcoezsbDmdTg0cOFCrV6+OfT0cDmvatGkqKCiQ0+nUqFGjtGXLllbXqK6u1tixY5Wenq6uXbtq3Lhxqqura3Xmyy+/1BlnnCGHw6Hu3btrzpw5HfL+YKBoOB7wSU0HLpc5GmV1ZZJYxglj2Cw2PXrWoyrOKlZ1Q7UmvDtBexra/ickAAAA0LHCTU1qKCnR3n+8Ks8Ds7Tjiiu1+ZTh+mbUedp5403a9fTTqnv//VgwbuveXV3OO0+5N9+sHn96Tn1Xfqreb7+lbo/MVfZvfiPXkCEE4wAA/ARDO8f37NmjESNG6Oyzz9bixYuVm5urLVu2KDMzM3Zmzpw5mj9/vhYtWqSioiLdc889Gj16tL766is5HA5J0tixY1VeXq4lS5bI7/frt7/9rcaPH69XXnlFklRbW6vzzz9fo0aN0sKFC7V+/Xpdc8016tq1q8aPH2/Ie0cHsKdJFrsUbIp0j9vb7ptCT71HEuE4jJNmT9NT5z6lK968Qjtqd2jiexP17PnPyml1Gl0aAAAADkGwpkYNpZvUWFqihpJSNZSWqvGbbyS//4CzJptNKX36KKV/sRzF/eXoX6yUfv1k6dLFgMoBAEgepnA4HDbqxadOnaply5bp448/PujXw+GwCgsLNXnyZE2ZMkWSVFNTo/z8fL3wwgu67LLLVFJSouOPP16rVq3S0KFDJUlvvfWWxowZo++//16FhYVasGCB7rrrLnk8Htmb56pNnTpV//znP1VaWvqzddbW1iojI0M1NTVKT09vo3ePDjG3n1TnkcZ/KBWe3GaXveT1S7R5z2Y9fe7TLESEobbu3aorF1+p2qZand39bD161qOymC1GlwUAAIBm4XBYgbIyNZSWRkLwkhI1lpTIX1Z20PPmjAw5iovlKC6OhOH9j1fKsUUy2WwdXDkAAInpcLJcQzvHX3/9dY0ePVr/+Z//qQ8//FDdunXT9ddfr+uuu06StG3bNnk8Ho0aNSr2nIyMDA0fPlwrVqzQZZddphUrVqhr166xYFySRo0aJbPZrJUrV+rXv/61VqxYoZEjR8aCcUkaPXq0Zs+erT179rTqVJekxsZGNTY2xh7X1ta21y8B2psrOxKOt/Hc8dhCzjQWcsJYx3Y9Vk+c84Sue+c6vf/d+3rwswd11/C7ZDKZjC4NAACg0wn7/WrculUNX5W06ggP/cifKW3dujUH4P0jt+JiWQsK+F4OAIAOYmg4vnXrVi1YsEC33HKL7rzzTq1atUo33XST7Ha7rr76ank8kdEV+fn5rZ6Xn58f+5rH41FeXl6rr1utVmVlZbU6U1RUdMA1ol/7YTj+4IMPasaMGW33RmEcV1bk3td285j3Ne3TPv8+SYxVQXwYnD9YD418SJM/mKy/bfqb3KluXTvwWqPLAgAASGrhcFj+776Td80a+dauk2/9l2ra8rXCBxmLIptNKccdF+kI71+slObOcAs/mQwAgKEMDcdDoZCGDh2qWbNmSZIGDRqkDRs2aOHChbr66qsNq+uOO+7QLbfcEntcW1ur7t27G1YPjkJ0KWcbdo6X10e6xjNSMuSysdwG8eG8nufp9lNu10OfPaTH1zyufFe+Lup9kdFlAQAAJI1QU5Mav/pK3jVr5Vu7Rt616xTcteuAc+YuXfaPRInOB+/dW6YWP8kMAADig6HheEFBgY4//vhWn+vfv7/+8Y9/SJLcbrckqaKiQgUF+zt0KyoqdPLJJ8fOVFZWtrpGIBBQdXV17Plut1sVFRWtzkQfR8+0lJKSopSUlKN5a4gX7RCOs4wT8Wps/7Hy1Hv0wsYXNG3ZNOU4c3Rq4alGlwUAAJCQAnv2yLd2rXxrIkF4w/r1Cjc1tTpjstnkGDBAzsGD5Tz5JDmOHyBbt0LGogAAkCAMDcdHjBihTZs2tfrc5s2b1bNnT0lSUVGR3G63li5dGgvDa2trtXLlSk2YMEGSdOqpp2rv3r36/PPPNWTIEEnSe++9p1AopOHDh8fO3HXXXfL7/bI1LzFZsmSJ+vXrd8BIFSSZ6FiVNgzHy+oii3MIxxGPbh5ysyrqK7R4+2Ld/MHNeuGCF1ScVWx0WQAAAHEtHA6radu2SBC+Zq18a9eqadu2A85ZMjPlHDRIrsGD5Bw8WI4BA2SmsQoAgIRlaDh+880367TTTtOsWbN06aWX6rPPPtMzzzyjZ555RpJkMpk0adIkzZw5U3369FFRUZHuueceFRYW6uKLL5YU6TS/4IILdN1112nhwoXy+/2aOHGiLrvsMhUWRpYlXn755ZoxY4bGjRun22+/XRs2bNDjjz+uRx991LD3jg7SjmNVWMaJeGQ2mTXz9Jna1bBLqzyrdP271+ulMS/x+xUAAKCFUEODGtavl3ftOvnWrJFv7VoFa2oOOGfv3TsShJ88SM7Bg2Tv1YuucAAAkoih4fiwYcP02muv6Y477tB9992noqIiPfbYYxo7dmzszG233ab6+nqNHz9ee/fu1emnn6633npLDocjdubll1/WxIkTde6558psNuuSSy7R/PnzY1/PyMjQO++8oxtuuEFDhgxRTk6Opk2bpvHjx3fo+4UBYuF4dZtdsrwuEo7TOY54ZbfY9djZj+nqxVfr671fa8K7E/TnC/+sjJQMo0sDAAAwRKCqKtIRvmaNvOvWquGrEukHizNNKSlyDhwYGZEyeJCcJ50kKz9pDABAUjOFw+Gw0UXEu9raWmVkZKimpkbpbBNPLF+/K710iZQ/UJrwSZtc8oo3r9AXVV/okTMf0fm9zm+TawLtwVPv0dg3x6rSW6nBeYP1zPnPKMXCj/0CAIDkFg4G1fj11/KtXSvvmjXyrVkr//ffH3DOmpsbCcIHnSzX4MFyFBezNBMAgCRwOFmuoZ3jQLtrx7EqdI4j3rlT3VowaoGuXny11lSu0R0f36GHRz4si9lidGkAAABtJtzUJN+GjfKuXi3vqlXyrV2rUF1d60Mmk1L69pVz8CC5Bg+Wc9Ag2bp1Y0QKAACdHOE4klvLcDwclo7ym19/0K8qb5UkqSCNcBzxr29mX80/Z75+t+R3WrJjiR767CHdOfxO/iAIAAASVqixUb4vvpB31Sp5V62Wb906hRsaWp0xu1xynnxS86zwwXKefJIsaWkGVQwAAOIV4TiSmzMrch9slJrqpZSj+4a4wluhsMKym+3KcmS1QYFA+xvmHqZZZ8zSbR/epr9u+qvyXHm67sTrjC4LAADgkIS8XnnXro11hjd88aXCP5gXbsnMlGvoULmGDZVr6FCl9O0rk5U/7gIAgJ/GdwtIbvZUyZISCcd91UcdjsdGqqQVyGwyt0WFQIe4oNcF2u3brYc+e0jz185XjjNHv+7za6PLAgAAOEBw377I4sxoZ/jGjVIg0OqMJTdHqcOGyTVsmFxDh8reu7dMZr4/BwAAh4dwHMnNZIqMVtlXFhmt0rXHUV2OeeNIZGP7j1WVt0rPbXhOM1bMULYzWyOPGWl0WQAAoJML7NkTCcM/WxXpDC8tlUKhVmesBQWRrvBhw5Q6bJhsPXsyJg4AABw1wnEkv5bh+FEqqyuTRDiOxPWHwX9Qla9Kr3/zuiZ/MFnPjX5OJ+aeaHRZAACgEwns2tU8IiUyJqVx8+YDzth69GgekRLpDrcf082ASgEAQLIjHEfyczXPBvdWH/WlPPUeSSzjROIymUyaftp07W7YrWU7l+mGpTfozxf+WUUZRUaXBgAAkpS/oiLWFe5dvVpNW7cecMbeu3fzzPBhcg0bKlt+vgGVAgCAzoZwHMkvFo7TOQ5Iks1s07wz52nc2+O0YfcG/X7J7/XimBeV58ozujQAAJDgwuGw/Dt2yLtm/wJN/3ffHXAupV+/2Lxw17ChsmZnG1AtAADo7AjHkfxczd9ot0E4Hp05XphaeNTXAozksrn01KindNXiq7SjdocmvDtBL1zwgrrYuxhdGgAASCChpiY1bNgo39o18q5ZK9/atQpW/+AnNs1mOfr3j4ThpwyTa/BgWbp2NaZgAACAFgjHkfxi4fjRjVUJh8Ms5ERSyXJkaeGohbpy8ZXavGez/vD+H7Rw1ELZLXajSwMAAHEqsHu3fGvXyrt2rXxr1qphwwaF/f5WZ0x2uxwnnCDXkMFyDRsm5+DBsqSlGVQxAADAjyMcR/Jro87x6oZqNQYbZZJJ+anMQERyOKbLMXr63Kf127d/q1WeVbrj4zv08JkPy2wyG10aAAAwWDgUUtPWrfKuWSNfc1d4044dB5yzZGXJOXiQXIMGyzl4kBwDBshs5y/bAQBA/CMcR/Jro3A8uowzx5lDZy2SSv/s/nrs7Mc04d0JemfHO8r5LEdTT5kqk8lkdGkAAKADhXw++b5c39wZvka+dV8oVFNzwLmUPsfJOWiwnIMGyTV4kGw9evB9AwAASEiE40h+sYWcRzdWpay+eRlnGiNVkHx+UfALzTp9lm776Da9UvqK8lx5GjdwnNFlAQCAduSvqGyeFb5GvrXr1FBSIgUCrc6YHA45Tzwx0hk+eLCcJ50kS0aGQRUDAAC0LcJxJD9nNBw/us7x8jqWcSK5XVh0oXb5dmnOqjl6bM1jynHm6FfH/crosgAAQBsIB4Nq3LKl1YgU/86dB5yz5uc3j0gZJOegwXIU95PJZjOgYgAAgPZHOI7kFx2r4quWwmHpCH/kk2Wc6AyuPP5KVXmr9PzG53Xv8nuV5cjSGcecYXRZAADgMIUDAfnWr1f98uXyfb5Gvi++UKi+vvUhs1kp/fo1B+GRESnWwkJGpAAAgE6DcBzJLxqOB5ukpjoppcsRXaasjrEq6BwmDZmkKl+V/nfr/2ryh5P13PnPaWDuQKPLAgAAP8Pv8aj+k09U9/Enql+xQqHa2lZfN6emynnSSXIOHizX4EFynHiiLGlpBlULAABgPMJxJD+7S7I6pYAvMlrlCMNxOsfRWZhNZt132n2qbqjW8rLlumHpDXpxzIvqmd7T6NIAAEALoYYGeVd/rvqPP1bdsk/U9PU3rb5uzshQ6qmnynXKMLkGD1ZKnz4yWSwGVQsAABB/CMfRObiypdrvI+F4Zq8jugThODoTm8WmeWfN0zVvX6Ovdn+l3y35nV4a85JynDlGlwYAQKcVDofV9M03qvvkE9V/skzeVasUbmzcf+D/s3ff8U2W+xvHP0mTjrRNJ1M2qBwE5SAOFGTKBgXPEZClLBVkKnj8OTjiAmUoCIKIoCKOo6ggSyib4kGGoICD3QJlde82ye+P0HhwNtD06bjer1dfbe8nCRd/iM3V+/neZjNBjRoR3Lw5IS2aE9iokcpwERERkT+hclzKB1vExXI88bKenpmXSXJOMqCxKlJ+BFuDmd12NgNWDSAuLY7h64bzdoe3CfHX7dciIiLFxZGSQsb2r8nYtpX0rdvIP336kuuWSpUIbn47IS1aEHzrrfiFhxuUVERERKT0UTku5UPB3PHLLMcTMhIACLGGYPe3F1UqkRIvOiiaee3m0W9VPw4mHmTMxjG80VXDfr8AACAASURBVPYNrH5Wo6OJiIiUSS6Hg+zvv3fvDt+ylax9+8Dp9Fw3+ftju+km9+7w5rfjX6+eDtAUERERuUwqx6V88JTjFy7r6Z6RKto1LuVQdXt15rSbwwOrH+C/p//Lk9ueZHKLyZhNZqOjiYiIlAl5Z86QsXUb6Vu3kBm7HUdKyiXX/evWJaT57QQ3b46taVPMQUEGJRUREREpW1SOS/lwheX4qYxTgOaNS/l1XdR1vNrqVUbEjGDV0VVEB0Uzvul47VQTERG5DM6cHLJ27SJ9y1Yytm4l5+efL7luDg0luFkz97iU5s2xVq1qUFIRERGRsk3luJQPV7pzPF2HcYrcdtVtTLp9Ev+39f9478B7VAyqyP0N7zc6loiISInncrnIPXqMjK1bSN+6lcwd3+DKzv7lASYTgY0aeXaHB11/PSaL3qqJiIiI+Jp+4pLyISjS/flKx6qoHJdyrlvdblzIusC0XdOYtmsaUUFRdKvbzehYIiIiJY7L4SBrzx7SYtaTtj6GvOMnLrluqVDBPTe8RXNszZphiYgwKKmIiIhI+aVyXMoHW0E5fnkHcp5Kd49VqRqiW1pFBl43kLNZZ3nvwHs8s+0ZogKjuO2q24yOJSIiYjhnVhYZsbGkrYshfeNGHElJnmsmq5WgpjcS0rwFwc2bE3DN1RpPJiIiImIwleNSPhSMVcm6vHI8ISMB0M5xEQCTycRjTR/jfNZ5Vh1dxZiNY1jYYSHXRV9ndDQREZFil3/hAukbN5IWs56M2NhLxqWYw8IIaXkHoW3aEty8OX4hwQYmFREREZFfUzku5cMVzBzPd+ZzJvMMoHJcpIDZZOaF218gKTuJr09/zfCY4bzX6T1q2GsYHU1ERMTnco8dIy0mhrSY9WTt2QMul+eatWpVQtq2JbRtW2w3NsFktRqYVERERET+jMpxKR/+txx3ucCLW1jPZ53H4XJgMVmIDor2UUCR0sfqZ2VGqxkMWjOIg4kHeWjdQ7zb6V39dyIiImWOy+kke9++i/PD15N7+PAl1wMbNCCkbRtC27Yl4NprNS5FREREpJRQOS7lQ8HMcWc+5KRCYFihn1owb7xScCX8zH6+SCdSaoX4hzCn3Rz6rexHXFocI2JG8HaHtwm26rZxEREp3Zw5OWRs3056zHrSNm7Ace78LxctFoJvvtldiLdpg7WK7i4UERERKY1Ujkv5YA0Cqw3yMt27x70ox09nnAZ0GKfIH4kOimbenfPov7I/By4cYNzGcbze5nWsfrqNXEREShdHcjLpmzaRFrOe9K1bcWVmeq6ZQ0IIuaMFIW3aEnJHC/zsdgOTioiIiEhRUDku5YctClIyITMJIgv/tIJyXPPGRf5YTXtN5rSbw6A1g4g9FcvTsU/zYvMXMZvMRkcTERH5U7nx8aRfnB+euWsXOByea5ZKlQht24aQNm0JvvkmTP7+BiYVERERkaKmclzKD1skpMR5fShnwVgVleMif65hdEOmt5rOyJiRrDiygopBFRnXdJzRsURERC7hcrnI3n+A9PUxpK2LIeenny65HnDNNRfHpbQlsOF1mh8uIiIiUoapHJfy438P5fSCdo6LFF7zq5rz7O3P8uTWJ1m4fyHRQdEMuG6A0bFERKScc7lcZH37LakrV5G2di35CQm/XPTzw3bjjRd3iLfBv3p144KKiIiISLFSOS7lx+WW4+kXy/EQleMihdG9bnfOZZ7j1d2v8srOV4gKiqJLnS5GxxIRkXLG5XKRfeAAqStXkrZqNXmnTnmumWw2Qpo3J7RtG4LvuANLRISBSUVERETEKCrHpfwIujho3Ity3OVyaee4yGUY1HAQ57LO8f7B93ly65MEWYJoU6ON0bFERKQcyPn5Z1JWriRt5Spyjx/3rJttNkLatcXesRPBt9+GOSDAwJQiIiIiUhKoHJfyo2DneFZioZ+SmptKZn4moHJcxBsmk4kJN00gNSeV5UeW89imx5jddjbNqjYzOpqIiJRBuceOkbpqFakrV5Hz88+edVNgICGtWmHv1ImQlndgDgw0MKWIiIiIlDQqx6X8sHm/c7xg13hkYCSBFr2ZEvGG2WRm0u2TyMzPJOZEDKM3jObNO9+kccXGRkcTEZEyIO/UKVJXrSZ15Uqy9+//5YLVSkiLFtg7dya0dSvMwcHGhRQRERGREk3luJQfnpnjhd85firdPZtSu8ZFLo/FbOHlO15m5PqRxJ6KZfi64SzosIC/Rf3N6GgiIlIK5Z09S9rqNaSuWkXWnj2/XPDzI7hZM+ydOhHari1+YWHGhRQRERGRUkPluJQfl3EgZ8HO8aohVX2RSKRc8Pfz59XWr/LQ2ofYfXY3D659kEUdF1EnvI7R0UREpBTIT0oi7au1pK5cSeaOHeByuS+YTNhuugl7506Etm+PJTLS2KAiIiIiUuqoHJfy43LGqqS7y/HKwZV9kUik3AiyBPF629cZ8tUQDlw4wNC1Q3mn4ztUC61mdDQRESmBHGlppK2LIXXlSjJiY8Hh8FwLatzYXYh36Ii1UkUDU4qIiIhIaadyXMqP/x2r4nKByfSXTzmV4R6rUjVYO8dFrlSofyhz283lgdUPcDjlMEO+GsI7Hd+hUnAlo6OJiEgJ4MzMJG3DBlJXriJj82ZceXmea4ENGrgL8Y6d8K92lYEpRURERKQsUTku5UfQxZ3jLgdkp0BQ+F8+JSEjAdDMcZGiEhEYwfz28xm4eiBxaXEMWzuMhR0XEhmoW+FFRMojZ04O6Zs3k7pyJekbNuLKzvZc869XF3vnztg7dSKgdm0DU4qIiIhIWaVyXMoPayD4h0Buunu0SiHKcc+BnCEqx0WKSgVbBea3n8+AVQM4knKEh9Y+xIIOCwj1DzU6moiIFAOXw0FGbCypX35J2roYnBkZnmvWGjWwd+6EvXNnAq+5xsCUIiIiIlIeqByX8sUWebEcT4Soun/60BxHDhey3fPJtXNcpGhdFXIV89vP54HVD3Aw8SAjYkYwt91cbFab0dFERMRHco4cIeWzz0j5Yhn5Z8961i1VqmDvdLEQv64BpkKMvhMRERERKQoqx6V8sUVB8olCHcpZMFIlyBJEeMBf7zIXEe/UCavDm3e+yQNrHmDP2T2M2TCGWW1nEeAXYHQ0EREpIo7UVFJXriLls8/I2rvXs+4XFoa9SxfsXbsS1PgGTGazgSlFREREpLxSOS7lS8Hc8UKU46czTgPuXePawSTiG9dGXssb7d5g6FdD2X56O+M3jWdaq2lYzVajo4mIyGVyORxkbP+alM8+I23dOlw5Oe4Lfn6EtGhBWM8ehLRqhdnf39igIiIiIlLuXXY5npuby9mzZ3E6nZes16hR44pDifiMLcr9OSvxLx96Ov2XclxEfOeGCjcwq80shq8bzoa4DTy97WlebP4iZpN2EYqIlCY5R4+S8vkXpHzxBfkJCZ71gKvrEdajJ2HdumKpUMHAhCIiIiIil/K6HP/5558ZNGgQsbGxl6y7XC5MJhMOh6PIwokUuYJyvBA7x09l6DBOkeJyS5VbmNZqGmM3jGXFkRUEW4J56tandNeGiEgJ50hPJ3XVKlKWfkbWnj2edXNYGGFduhDWoweBDa/Tv+ciIiIiUiJ5XY7ff//9WCwWvvzyS6pU0bgJKWW8KMe1c1ykeLWq3ooXW7zI45sf5+OfPsZmtTHuxnH6/4yISAnjcjrJ/Pprkj/7nLS1a3FlZ7svmM0Et2hOeI8ehLRpo7EpIiIiIlLieV2Of/vtt+zatYv69ev7Io+Ib9kKZo4XYqxKhspxkeLWqXYnsvKzmBg7kUX7FxFiDeHBGx40OpaIiAC5x4+T/PnnpHz+BfmnT3vW/evWJbzH3di7d8dasaKBCUVEREREvON1Od6gQQPOnz/viywivme7vAM5RaT49Ly6Jxl5Gbz8zcu8/u3r2Kw2+jfob3QsEZFyyZGeQdqa1SR/9hlZO3d51s12O/YunQnv0YPARo10l4+IiIiIlEpel+NTpkxhwoQJvPjiizRq1Air1XrJdbvdXmThRIqcZ6zKn+8cd7qcJGS4D5KqGlLV16lE5Ff6N+hPRl4Gs7+dzcvfvEywNZieV/c0OpaISLngcjrJ3PENKZ8tJfWrtbiystwXzGaCb7+d8B53E9K2LeaAAGODioiIiIhcIa/L8Xbt2gHQtm3bS9Z1IKeUCoWcOX4h6wJ5zjzMJjMVbBWKIZiI/NqD1z9IRl4Gi/Yv4t+x/8ZmsdGxdkejY4mIlFm5cXGkfPY5KZ9/Tt6pU551/9q1CevRg7C7umOtVMnAhCIiIiIiRcvrcnzDhg2+yCFSPArK8axEcDrBbP7dh53KcL8hrGiriNVs/d3HiIhvmUwmxt04joy8DP7z0394YssTBFmCaFm9pdHRRETKDGdGBqlrviLls8/I/OYbz7o5JAR7586E9biboMaNNTZFRERERMokr8vxli1VSkgpFnRx5rjLCdnJv8wg/5WCeeNVgzVSRcRIJpOJp259isz8TFYcWcG4jeN4o90b3FzlZqOjiYiUWi6Xi6zdu0n+dCmpq1fjysx0XzCZCG7WjLCePQlt1xZzYKCxQUVEREREfMzrchwgOTmZBQsWcPDgQQCuu+46Bg0aRFhYWJGGEylyFn8IsENOqnvu+B+V4+nucrxycOXiTCciv8NsMvPc7c+RmZfJhrgNPLL+Eea3n88NFW4wOpqISKmSd+YMKZ9/QcrSpeQeP+5Zt9asQXiPnu6xKVV0ELmIiIiIlB+/P1PiT+zcuZO6desyY8YMEhMTSUxMZPr06dStW5fdu3f7IqNI0QqKcH/+k7njp9LdY1V0GKdIyWA1W5nacirNqjQjKz+Lh9c9zI+JPxodS0SkxHPm5pK6eg0nhg3jUOs2nJsxg9zjxzHZbIT17EnN9xdTd/Vqoh96UMW4iIiIiJQ7Xu8cHzt2LN27d2f+/PlYLO6n5+fnM2TIEMaMGcPmzZuLPKRIkbJFQfJx99zxP5CQkQBAlWC9SRQpKfz9/Hm19as8uPZBvj33LcPWDmNRx0XUDqttdDQRkRIn++BBkpd+RuqyZThSUjzrQU1vJLxHT+wdO2AODjYwoYiIiIiI8bwux3fu3HlJMQ5gsViYMGECTZs2LdJwIj5RcCjnn+0cv3ggp8pxkZLFZrUxu91shqwZwsHEgwz9aijvdHqHq0KuMjqaiIjh8pOSSP1yBcmfLSXnwEHPuqViRcLuvpuwHncTUFu/UBQRERERKeB1OW632zlx4gT169e/ZD0uLo7Q0NAiCybiM4UoxwsO5FQ5LlLy2P3tzL1zLg+sfoAjKUfcBXnHd6hgq2B0NBGRYudyOMiIjSV56VLS18XgystzX7BaCW3blvCePQi+/XZMfn7GBhURERERKYG8Lsd79erF4MGDmTp1KrfddhsA27ZtY/z48fTp06fIA4oUub8ox9Nz00nLTQM0c1ykpIoMjOTNO99k4OqBxKXFMWztMN7u8DYRgRFGRxMRKRa5x4+TvPQzUr74gvyEBM96QP36hPfsib1bVywR+jdRREREROTPeF2OT506FZPJxIABA8jPzwfAarXy8MMPM3ny5CIPKFLkbH9+IGfBrvGwgDBsVltxpRIRL1UKrsRb7d9i4KqBHEo+xEPrHmJB+wWE+IcYHU1ExCecGRmkrvmKlKVLydy507NuDgsjrFs3wnv2ILBBAwMTioiIiIiULl6X4/7+/rz22mu89NJLHD58GIC6detis6lElFLCs3M86Xcva6SKSOlRLbQa89vP5/7V93PgwgFGxIxg7p1zCbIEGR1NRKRIuFwusvbsIfnTT0lbtRpnZqb7gslEcPPmhPfsQUibNpgDAowNKiIiIiJSCnldjhew2Ww0atSoKLOIFI+/GKtyKl2HcYqUJnXC6zDvznkMXjOY3Wd3M3bDWGa2mYm/n7/R0URELlvembOkfPEFKUuXknvsmGfdWqMG4T17Enb3XVgrVzYuoIiIiIhIGVCocrxnz54sWrQIu91Oz549//SxS5cuLZJgIj7zF+W4do6LlD5/i/obc9rNYdjaYWw7tY3HNz/OKy1fwWK+7N8Bi4gUO1duLmkbNpK89FMytmwFpxMAU1AQ9o4dCb+nJ0E33ojJZDI4qYiIiIhI2VCo1iAsLMzzQ7jdbtcP5FK6/VU5nu4ux3UYp0jp0rhiY15r/RojYkaw7sQ6Ht/8OC80f4FAS6DR0URE/lTO0aMkf/ghKcuW40j6ZexbUJMmhN/Tk9AOHfELCTYwoYiIiIhI2VSocnzhwoWerxctWuSrLCLFIyjS/TkrCZwOMPtdcrlg53jlYN2qLFLaNKvajGktpzFu4zi+Ov4VJ9NPMrPNTCraKhodTUTkEi6nk4ytW0l8bzEZW7Z41i0VKhB2992E9ehBQJ3aBiYUERERESn7zN4+oU2bNiQnJ/9mPTU1lTZt2hRJKBGfsl0sx3FBdspvLp/LOgdAJVulYgwlIkWldY3WvNn+TcIDwtl/YT99vuzD9+e/NzqWiAgAjrQ0Et99lyOdOhM37EF3MW4yEdKqFdXmvkG9Deup+Og4FeMiIiIiIsXA62GsGzduJDc39zfr2dnZbPmfXS8iJZafFQLCICfFPVrFU5a7JWW7b2eODIz8vWeLSClwU+WbWNJlCaPWj+JQ8iHuX30/k26bROc6nY2OJiLlVM6RIyQtfp+Uzz/HmZkJgDk0lPCePYnoex/+NWoYnFBEREREpPwpdDm+b98+z9cHDhwgISHB873D4WD16tVcddVVRZtOxFdskb+U41ztWc5x5JCZ737DGh4YblA4ESkK1UOr816n9/jXln+xKX4Tj295nEPJh3jk749gNnl945SIiNdcTifpmzeT9N5iMrZt86z7161LZL++hHXvjjlYs8RFRERERIxS6HK8cePGmEwmTCbT745PCQoKYtasWUUaTsRnbFGQdPQ3h3IW7Bq3mCyEWkONSCYiRSjEP4TXWr/GzD0zefv7t5n/3XwOJx/mpRYvYbPajI4nImWUIy2NlKVLSXx/CXknTrgXTSZCWrcmsl9fbM2a6YB7EREREZESoNDl+NGjR3G5XNSpU4cdO3ZQoUIFzzV/f38qVqyIn5/fn7yCSAlii3J//lU5npzjnqcfHhiuN60iZYSf2Y+xN46lXng9JsZOZH3cevqv6s+sNrOoGlLV6HgiUobkHD5M4uLFpHyxDNf/jk75xz+IuK8P/tWrG5xQRERERET+V6HL8Zo1awLgdDp9Fkak2BTMGf+DnePhARqpIlLWdKvbjRr2GoxeP5qfkn6iz4o+zGg1gyaVmhgdTURKMZfDQfqmzSQtXkxGbKxn3b9eXSL79SesezfMNt2pIiIiIiJSEnl9IGeBAwcOcOLEid8cztm9e/crDiXic56d44mXLBeU4xGBEcWdSESKwQ0VbuDDrh8yav0oDiYeZPBXg3n61qfpeXVPo6OJSCnjSE0l+dOlJC1ZQl5cnHvRbCakTWsi+/XDdsstugtNRERERKSE87ocP3LkCD169OC7777DZDLhcrkAPD/8OxyOok0o4gueneO/KsdztHNcpKyrHFyZRR0X8fS2p/nq+FdMjJ3IoeRDjLtxHBbzZf/OWETKiZxDh34ZnZKVBYA5LIzwf9xDRJ/78K+mA+pFREREREoLs7dPGD16NLVr1+bs2bPYbDb279/P5s2badq0KRs3bvRBRBEf+IuZ45GBkcWdSESKkc1qY2rLqQxvPByA9w68xyMxj5Cam2pwMhEpiVwOB2kxMRx/4AGOdO1G8ocf4crKIuDqq6k86Vmu3riBSuPHqxgXERERESllvN4it337dtavX090dDRmsxmz2Uzz5s156aWXGDVqFHv27PFFTpGi9QfluGaOi5QfJpOJh294mLphdXly65NsO7WNviv68nrb16lpr2l0PBEpARwpKSR/8ql7dMrJk+5Fs5nQtm2I6Ncf2803aXSKiIiIiEgp5nU57nA4CA0NBSA6OppTp05x7bXXUrNmTX788cciDyjiE0G/fyBnwc5xzRwXKT/a12pP9dDqjNowimOpx7hvxX1MbTmVZlWbGR1NRAyS/dNPJC1+n5Tlyz2jU/zCwgj/5z+I6NMH61XaIS4iIiIiUhZ4XY43bNiQvXv3Urt2bW655RZefvll/P39efPNN6lTp44vMooUvYKd41m/fyCndo6LlC9/i/obH3T5gNEbRrPv3D4eXvcwE26aQJ/6fbQrVKSccLlcZGzdyoUFb5P59dee9YBrryWyfz/sXbpgDgoyMKGIiIiIiBQ1r8vxp556ioyMDAAmTZpE165dadGiBVFRUXz00UdFHlDEJzzleDI48sHP/Z9CwYGcEQHaOS5S3kQHRfN2h7eZtH0Syw4v46UdL3Eo+RBP3PIEVrPV6Hgi4iMup5O0teu4MG8e2QcOuBfNZkLbtSOiX19sN2l0ioiIiIhIWeV1Od6hQwfP1/Xq1eOHH34gMTGRiIgIvXGQ0iOooPx2QXYyBEcDkJytsSoi5VmAXwDP3/48V4dfzfRd0/nPT//haMpRprearn8XRMoYV14eKStWcOHN+eQeOQKAKSiIiF69iBzQH2vVqgYnFBERERERX/O6HP89kZGRRfEyIsXHzwKB4e5iPPMCBEfjcrl+2TmuEkyk3DKZTNzf8H5qh9Xm8S2Ps/PMTvqs6MPrbV6nXkQ9o+OJyBVy5uSQsnQpF95a4Dlk02y3E9mvLxH9+2OJ0M8AIiIiIiLlRaHK8Z49exb6BZcuXXrZYUSKlS3ql3IcyMjLIN+ZD0BYQJiRyUSkBGhZvSWLOy1m5PqRxKfH03dlX16+42VaVm9pdDQRuQzOjAySPvqYxIULyT93DgC/qCgi7x9IRJ8++IWEGJxQRERERESKW6HK8bAwFYVSBtkiIfEwZLoP5Sw4jDPIEkSQRQduiQjUi6jHki5LeHTTo3yT8A0j149kzI1jeOC6BzRKTKSUcCQnk/j++yS9+x6OlBQALFWqEDVoEOH/uEeHbIqIiIiIlGOFKscXLlzo6xwixa/gUM6LO8cLRqqEB4QblUhESqCIwAjm3TmPyf+dzMc/fcyMXTM4lHSIibdNJMAvwOh4IvIH8s+fJ3HRIpKWfIAzMxMA/5o1iRo2lLBu3TD5+xucUEREREREjFYkM8dFSqVflePJOTqMU0R+n9Vs5elmT3N1xNVM3jGZ5UeWczz1OK+1eY3ooGij44nI/8g7eZILC94m+dNPceXkABBw7bVEPziM0A4dMPn5GZxQRERERERKCq/L8dq1a//preRHjhy5okAixcZ28SDZgp3jF8eqRASoHBeR39e7fm9qhdXi0Y2Psu/8Pnp/2ZuZbWbSIKqB0dFEyr2cI0e5MH8+KcuXQ777DJHAG64n+sGHCGndSqOQRERERETkN7wux8eMGXPJ93l5eezZs4fVq1czfvz4Igsm4nOeneOXzhwPD9RYFRH5Y7dWuZUlXZbwSMwjHEs9xsBVA3m++fN0qNXB6Ggi5VL2Dz9wft480lavAZcLAFuzW4l+8EFst9yiUlxERERERP6Q1+X46NGjf3d99uzZ7Ny584oDiRSboIs7x7MuluM52jkuIoVT016T97u8z4TNE9h2chuPbXqMw8mHeeiGhzCbzEbHEykXMvfs4cLceaRv2uRZC2ndmugHhxHUuLGByUREREREpLQosnfwnTp14tNPPy2qlxPxPc0cF5ErYPe3M7vNbAY0GADAG3vf4LFNj5GZl2lwMpGyy+VykREby/EBAzne5z53MW42Y+/cmdpffE71N+aoGBcRERERkUIrsgM5P/nkEyIjI4vq5UR871fluGesSoDGqohI4fiZ/Rh/03jqhddj0teTWHt8LfFp8cxqM4tKwZWMjidSZricTtI3bOD8vDfJ3rfPvWi1EnZXd6KHDMG/Vi1D84mIiIiISOnkdTn+97///ZLZjS6Xi4SEBM6dO8ecOXOKNJyIT2nnuIgUkR5X96CmvSZjN47lYOJB+q7sy+y2s7k28lqjo4mUaq78fFJXr+HCvHnk/PwzAKaAAML/+U+iBg/CWqWKwQlFRERERKQ087ocv/vuuy/53mw2U6FCBVq1akX9+vWLLJiIzxWU49kp4MjTznERuSJNKjXh/c7vMzxmOEdTjjJg1QCmtpxKi2otjI4mUuq4cnNJ/uILLsx/i7wTJwAwBwcTcd99RN4/EEtUlMEJRURERESkLPC6HJ84caIvcogUv6BwwAS4ICtJB3KKyBWrFlqN9zq9x7iN49iRsIOR60fyxM1P0Kt+L6OjiZQKrrw8kj//nPNvvEH+qdMA+IWHEzlwABF9++JntxucUEREREREypLLmjnucDj47LPPOHjwIAANGjTgrrvuwmIpshHmIr5n9nMX5FlJ5KefIzUnFdBYFRG5MmEBYcxtN5dntz/LF4e/4Pn/Ps+JtBOMu3EcfmY/o+OJlEiu/HxSln/J+TlzyIuLA8CvQjRRgwYTce8/MQcHG5xQRERERETKIq/b7P3799OtWzfOnDnDtde6Z6lOmTKFChUqsHz5cho2bFjkIUV8xhYFWUmkpsbhwgW4iy0RkSth9bPy3O3PUcNeg1l7ZvHugXc5mX6Sl1q8RJAlyOh4IiWGy+EgdeUqzs+eTe6xYwD4RUURNXQIEb17Yw4MNDagiIiIiIiUaWZvnzBkyBAaNmxIfHw8u3fvZvfu3cTFxXH99dczbNgwX2QU8Z2Lc8eT0+IBsPvbsZh1B4SIXDmTycSw64cxpcUUrGYrMSdiGLR6EOezzhsdTcRwLqeT1NVrOHLXXZwaP57cY8fwCw+n4mOPUm/tV0Tdf7+KcRERERER8TmvW8Bvv/2WnTt3EhHxy+iJiIgIXnjhBW666aYiDSficxfL8cR091xTjVQRkaLWuU5nKgdXZvSG0Xx/4XvuW3Efc9rOoV5EPaOjiRQ7l8tF1iObgwAAIABJREFU+vr1nJv1Ojk//ACA2W4natADRPTrj1+IxqeIiIiIiEjx8Xrn+DXXXMOZM2d+s3727Fnq1dMbfSllbJEAJGeeBSA8INzINCJSRjWp1ITFnRdT016T0xmn6b+qP9tPbTc6lkixcblcpG/axLF//JP4EY+Q88MPmENCiB4xgnrr1hL90EMqxkVEREREpNh5XY6/9NJLjBo1ik8++YT4+Hji4+P55JNPGDNmDFOmTCE1NdXzIVLiBbnL8aTsREA7x0XEd2raa7K402KaVGxCel46w9cNZ+nPS42OJeJTLpeL9G3bON67D3EPPkT2/v2YbDaiHnyQeuvWUmHkI/jZ7UbHFBERERGRcsrrsSpdu3YF4N5778VkMgHuNz4A3bp183xvMplwOBxFlVPENwpmjuckAxARoHJcRHwnPDCc+e3n80zsM6w4soKJsRM5kXqCUU1GYTZ5/ftqkRIt4787ODdrJlk7dwFgCgwkou99RA0ejCUy0uB0IiIiIiIil1GOb9iwwRc5RIxRMHM8Nw1wF1ciIr7k7+fPS81fonpodebuncuC7xcQnx7P87c/T6BFBxBK6Ze5ezfnZs4i8+uvATD5+xPeuxfRQ4diqVDB4HQiIiIiIiK/8Locb9mypS9yiBijYOd4fib4aee4iBQPk8nEiMYjqB5anYmxE1lzbA0JGQnMbDOTyEDtqJXSKWvfPs7NnEXG1q3uBauViH/+g6gHH8RaqZKx4URERERERH6H1+U4QHJyMgsWLODgwYMAXHfddQwaNIiwsLAiDSficxfL8SRnjrsc18xxESlG3et2p0pwFUZvGM3ec3vpu6Ivs9vNpk5YHaOjiRRa9oEDnJs5i/SNG90LFgvhPXoQ/fBDWKtWNTSbiIiIiIjIn/F6wOnOnTupW7cuM2bMIDExkcTERKZPn07dunXZvXu3LzKK+I7NvUMz2ZUPaOe4iBS/myrfxOLOi7kq5Cri0+Ppv7I/3yR8Y3Qskb+U/eNPxI8cydGe97iLcbOZsB49qLtqJVWem6RiXERERERESjyTq+A0zUJq0aIF9erVY/78+Vgs7o3n+fn5DBkyhCNHjrB582afBDVSamoqYWFhpKSkYLfbjY4jRSkzEV6uTcdqVTlptbC482JuqHCD0alEpBxKzE5k5PqR7Du3D4vZwrO3PUv3ut2NjiXyGzmHD3Pu9ddJW7XavWAyYe/alejhDxNQu7ax4UREREREpNzzpsv1eqzKzp07LynGASwWCxMmTKBp06bepxUxUmAYmMwk+rlvotDOcRExSmRgJAvaL+DJrU/y1fGveHLrk8SlxTH8huGYTCaj44mQe+wY5+bMIfXLFeB0AhDaqSMVRowgoF49g9OJiIiIiIh4z+ty3G63c+LECerXr3/JelxcHKGhoUUWTKRYmP3IDoogy+wux8MDww0OJCLlWaAlkFdavkKNPTV467u3mLt3LnFpcUy6bRL+fv5Gx5NyKjc+nvNz3iDliy/A4QAg9M52RD/yCIHXXmtwOhERERERkcvndTneq1cvBg8ezNSpU7ntttsA2LZtG+PHj6dPnz5FHlDE15KDI4EcLCYzoVb9gkdEjGU2mRndZDTVQqrx3NfPseLICk6nn+a11q/pF3hSrHKOHiXx7bdJ/uxzyHefzRHSsiXRo0YSdN11BqcTERERERG5cl6X41OnTsVkMjFgwADyL75RslqtPPzww0yePLnIA4r4WnKQHThHuMWm0QUiUmLcc809VAmpwqMbH2X32d30W9WPOW3nUMNew+hoUsZlffcdF+a/RdratXDxaJrg22+nwqiRBN2gczlERERERKTs8PpAzgKZmZkcPnwYgLp162Kz2Yo0WEmiAznLtu3vd2dY/lHqBUTxWe+NRscREbnEoaRDDI8ZzumM04QHhPNa69doUqmJ0bGkjHG5XGRsi+XC/Plk/ve/nvWQ1q2JGjoUW5O/G5hORERERESk8Hx2IOexY8dYu3Ytubm5tGrVikaNGl1RUJGSIMk/EPIhwuT1jRQiIj5XL6IeS7os4ZGYR9h/YT9DvhrC87c/T+c6nY2OJmWAKz+f1DVruLBgATkHDroXLRbCunYlavAgAq6+2tiAIiIiIiIiPlToNnDDhg107dqVrKws9xMtFt5++2369evns3AixSHJ4j7kLtxlNjiJiMjviw6KZmHHhfxr879YH7eex7c8Tnx6PEMbDdU4KLkszuxsUj77jAtvLyQvLg4Ak81GxD//QeTAgVirVjU4oYiIiIiIiO8Vug18+umnufPOOzl58iQXLlxg6NChTJgwwZfZRIpFsp8fAJFOp8FJRET+WJAliOmtpjOwwUAAZu2ZxdPbnibPkWdwMilNHCkpnJ87l0Nt25Hw7CTy4uLwCw8neuQj1ItZR6UnnlAxLiIiIiIi5Uahd45///33xMbGUqVKFQBeeeUV5s2bx4ULF4iKivJZQBFfS7r4K6LwfBVMIlKy+Zn9eOymx6geWp0Xd7zIF4e/4HTGaaa3mk5YQJjR8aQEyztzhsRF75D80Uc4MzMBsFatSuSgQYTf0xNzUJDBCUVERERERIpfocvx1NRUoqOjPd/bbDaCgoJISUlROS6lWpIrH4CIvByDk4iIFE6v+r2oElKF8ZvGsyNhB/1X9WdO2zlUC61mdDQpYXKOHOHCggWkLFsOee5fAgdccw1RQ4dg79gRk9VqcEIRERERERHjeHUC4Zo1awgL+2VnmtPpJCYmhu+//96z1r1796JLJ1IMkp25AIRnZxicRESk8O6odgfvdnqX4THDOZpylL4r+zK15VRuqnyT0dGkBMjau5cLb71F2roYcLkAsDVtStTQIQTfcYdm1YuIiIiIiAAml+viO6a/YDb/9Xhyk8mEw+G44lAlTWpqKmFhYaSkpGC3242OI0Ws59Ku/Jx2nHnn07jt0WNGxxER8cqZjDOMXD+Sg4kH8TP5MabJGAZeN1DlZznkcrnI2LKFC/PfIvObbzzrIW3bEjVkMLa//93AdCIiIiIiIsXDmy630DvHnTqsUMqo5Lx0ACJy0iE/BywBBicSESm8SsGVeKfTOzy3/TmWH1nOtF3T2Hd+H8/d/hzB1mCj40kxcOXnk7pqNRcWLCDnhx/ci1YrYd26ETV4EAF16xobUEREREREpITyaqyKSFnjcrlIyk0BIMLhhMxEsFcxOJWIiHeCLEG80PwFbqhwA5O/mcza42s5lHyIV1u9Sp3wOkbHEx9xZmWRvHQpiW8vJO/kSQBMNhsR995L5P0DsVaubHBCERERERGRkk3luJRr6Xnp5DvdB3KGOZ2QpXJcREonk8lEr/q9qB9Vn3Ebx3E05Si9V/Rm0u2T6Firo9HxpAg5kpNJ+uADEt99D0dSEgB+kZFE9u9HRJ8++IWHG5xQRERERESkdFA5LuVacnYyAEEuCHK5IPOCwYlERK7MDRVu4OOuHzNh8wR2JOxg/KbxfHfuO8bcOAar2Wp0PLkCeadPk7joHZL+8x9cmZkAWK+6ishBDxDesyfmoCCDE4qIiIiIiJQuKselXEvKce+4i8DPvaByXETKgKigKObdOY9Ze2bx9vdv8+6Bd9l/YT9TW04lOija6HjipbzTpzn3+uukfLEM8t13OwXUr0/UkCHYO3bAZNGPcyIiIiIiIpdD76akXEvOce8cDzf7uxdUjotIGWExWxh741gaRTfiqW1PsevMLu5dfi/TWk3j7xX/bnQ8KQRHWhoX3pxP4rvv4srJAcB2881EDR1CcPPmmEwmgxOKiIiIiIiUbmZvnxAXF0d8fLzn+x07djBmzBjefPPNIg0mUhySsi/uHPe7eCt6ZqKBaUREil67mu34oMsH1A2ry7mscwxaPYj3D76Py+UyOpr8AVduLonvvsfhO9tzYf58XDk52Jo2peYHS6j57juEtGihYlxERERERKQIeF2O33fffWzYsAGAhIQE7rzzTnbs2MGTTz7JpEmTijygiC8VlOPh1hD3gnaOi0gZVDusNku6LKFjrY7ku/KZvGMyj295nMy8TKOjyf9wuVykrl7N4a7dOPPiiziSk/GvU4dqc+ZQ4713sf1dO/5FRERERESKktfl+Pfff8/NN98MwMcff0zDhg2JjY3l/fffZ9GiRUWdT8SnPDPHA+zuBe0cF5Eyyma18fIdL/P4TY9jMVlYdXQVfVf25VjKMaOjCZC5cyfHevfm5Jix5J04gV90NJWffZY6y74gtE1r7RQXERERERHxAa/L8by8PAICAgBYt24d3bt3B6B+/fqcPn26aNOJ+FjBzPGIwEj3gnaOi0gZZjKZ6NegH291eIvooGgOJR+iz4o+xJyIMTpauZVz5AhxIx7heL/+ZO/dh8lmI/qRR6i3ZjURve7VYZsiIiIiIiI+5HU5ft111zF37ly2bNnC2rVr6dixIwCnTp0iKiqqyAOK+JJnrIqtgntB5biIlAM3VrqRj7t+TJOKTUjPS2fMhjG8uutV8p35RkcrN/LPneP0v//NkW7dSY+JAT8/wnv1ou7qVVR4ZATm4GCjI4qIiIiIiJR5XpfjU6ZMYd68ebRq1Yo+ffpwww03ALBs2TLPuBWR0sJzIGdwZfeCxqqISDlRwVaBtzq8Rf8G/QFY8P0CHlr3EInZ+nfQl5yZmZybPZtDHTqS/OFH4HAQ0qYNdZZ9QZVn/421YkWjI4qIiIiIiJQbXt+r26pVK86fP09qaioRERGe9WHDhmGz2Yo0nIivFYxVCQ+p6l7QznERKUesZisTbprA9dHX80zsM/z39H+5d/m9zGg1g0YVGhkdr0xx5eeTvHQp52bNwnHuPACBjRpRcfxjBGtzgYiIiIiIiCG83jkO4HK52LVrF/PmzSMtLQ0Af39/leNS6hQcyBlpr+5eyMuAvGwDE4mIFL+OtTuypPMSatlrcSbzDANXD+TjHz/G5XIZHa3Uc7lcpG3YwJG77ybhmYk4zp3HWq0aV02fRq2PP1IxLiIiIiIiYiCvd44fP36cjh07cuLECXJycrjzzjsJDQ1lypQp5OTkMHfuXF/kFCly+c58UnNSAQi3VweTH7gckJUI1qoGpxMRKV71IurxQZcPeGrbU8SciOG5r59j77m9PH3r0wRaAo2OVyplffc9Z195hcwdOwDwCwsjesRwwnv3xuzvb3A6ERERERER8Xrn+OjRo2natClJSUkEBQV51nv06EFMTEyRhhPxpdTcVFy4d0WGBYaD7eKBshqtIiLlVIh/CDNazWDcjeMwm8wsO7yM/qv6E5cWZ3S0UiU3Pp6T4x7l2D//SeaOHZj8/YkaMpi6a78icsAAFeMiIiIiIiIlhNc7x7ds2UJsbCz+v3pjV6tWLU6ePFlkwUR8reAwTru/HYvZ4i7HM86qHBeRcs1kMvFAwwdoENWACZsn8EPiD/T6sheTW0zmjmp3GB2vRHMkJ3P+jbkkLlkCeXlgMhHWvTsVRo/CWlV3JImIiIiIiJQ0Xu8cdzqdOByO36zHx8cTGhpaJKFEikNBOR4RePFgWe0cFxHxuKXKLXzU9SOuj76etNw0RsSMYPa3s3E4f/szQHnnzMnhwoIFHGrfgcR33oG8PIJva0btTz+h6pTJKsZFRERERERKKK/L8fbt2/Pqq696vjeZTKSnpzNx4kQ6d+5cpOFEfCk5JxmAiICCcjzS/Tkz0aBEIiIlS+XgyizsuJBe1/YCYO7euYxYP4KUnBSDk5UMLqeTlGXLONypE2dfmYozNZWAa66h+vz5VF+wgMAGDYyOKCIiIiIiIn/C67Eq06ZNo0OHDjRo0IDs7Gzuu+8+fv75Z6Kjo/nggw98kVHEJ5Jy3DvHwwPD3Qsqx0VEfsPfz5+nbn2K6ytcz6Ttk9h2chu9vuzF9FbTaRBVfsvfjO3bOfPKK+QcOAiApVIlKoweTdhd3TH5+RmcTkRERERERArD63K8WrVq7N27lw8//JB9+/aRnp7O4MGD6du37yUHdIqUdJ6xKgEaqyIi8le61+3ONRHXMHbDWOLT4+m/sj9P3foUPa7uYXS0YpX940+cnTqVjC1bADAHBxM1bBiRA/pj1s9BIiIiIiIipYrX5TiAxWKhX79+RZ1FpFgVlOO/7BxXOS4i8mfqR9bnw64f8n9b/4/N8Zt5JvYZ9p7by//d8n/4+/n/9QuUYo70DM7Pmknie4vB6QSLhYjevYke/jCWyEij44mIiIiIiMhlKFQ5vmzZMjp16oTVamXZsmV/+tju3bsXSTARXyuYOR4ZcLHUUDkuIvKXwgLCmNVmFvP3zWf2t7P59OdP+TnpZ2a0nkFFW0Wj4/lEWkwMCc89T35CAgCh7dtTcdxY/GvVMjaYiIiIiIiIXJFCleN33303CQkJVKxYkbvvvvsPH2cymXA4HEUWTsSXfjtzXOW4iEhhmE1mHrzhQa6Lvo4Jmyew7/w+en3ZixmtZtC4YmOj4xWZvIQEEp5/nvR1MQBYq1Wj8sSJhLRobnAyERERERERKQrmwjzI6XRSsWJFz9d/9KFiXEqT5Gz3znHPzPGgizvIs5IMSiQiUro0v6o5H3b5kHrh9TifdZ5Bawax9OelRse6Yi6Hg8R33+NI5y7uYtxiIWroUOosX6ZiXEREREREpAwpVDkuUhb9dub4xXJcO8dFRAqthr0Gizsvpl2NduQ585gYO5Hnv36ePEee0dEuS9b+/Rzr1ZszL76IMzOToMaNqf3pp1R8dJwO3BQRERERESljvC7HR40axcyZM3+z/vrrrzNmzJgiCSVSHArGqnh2jheMVcnLhNxMg1KJiJQ+wdZgprWaxiONHwHgox8/YshXQ7iQVXp+2ejMyODM5Ckc++e9ZH//PebQUCr/eyI1l7xP4LXXGB1PREREREREfMDrcvzTTz/l9ttv/836bbfdxieffHLZQSZPnozJZLqkYM/OzmbEiBFERUUREhLCPffcw5kzZy553okTJ+jSpQs2m42KFSsyfvx48vPzL3nMxo0badKkCQEBAdSrV49FixZddk4pG7Lzs8nKzwIgIvBiOR4QCmar++usRIOSiYiUTgVzyGe1mUWwNZjdZ3fTe0Vv9l/Yb3S0v5S2fgOHu3YjcdEicDqxd+5EnRVfEtG7NyazbrITEREREREpq7x+x3fhwgXCwsJ+s2632zl//vxlhfjmm2+YN28e119//SXrY8eOZfny5fznP/9h06ZNnDp1ip49e3quOxwOunTpQm5uLrGxsbzzzjssWrSIZ555xvOYo0eP0qVLF1q3bs23337LmDFjGDJkCGvWrLmsrFI2JOe4541bTBZCrCHuRZNJh3KKiFyhVtVbsaTLEmrZa5GQkcDAVQP58siXRsf6XXlnzhA/chTxw4eTf/o01quuovqb87hq+nSsF89aERERERERkbLL63K8Xr16rF69+jfrq1atok6dOl4HSE9Pp2/fvsyfP5+IiAjPekpKCgsWLGD69Om0adOGG2+8kYULFxIbG8vXX38NwFdffcWBAwdYvHgxjRs3plOnTjz33HPMnj2b3NxcAObOnUvt2rWZNm0af/vb33jkkUf4xz/+wYwZM7zOKmVHQTkeHhiOyWT65YJn7rh2jouIXK46YXVY0mUJd1S7gxxHDk9seYJXvnmFfGf+Xz+5GLgcDhIXv8+Rzl1IW7sW/PyIGjKYOl8uJ+SOO4yOJyIiIiIiIsXE63J83LhxTJgwgYkTJ7Jp0yY2bdrEM888w7/+9S/Gjh3rdYARI0bQpUsX2rVrd8n6rl27yMvLu2S9fv361KhRg+3btwOwfft2GjVqRKVKlTyP6dChA6mpqezfv9/zmF+/docOHTyv8XtycnJITU295EPKlsRsd/kdHhB+6QXtHBcRKRKh/qHMajOLoY2GAvDugXd5eN3DJGcnG5or++BBjvXuw5nnn8eZkUHgDddTe+mnVHzsMR24KSIiIiIiUs5YvH3CoEGDyMnJ4YUXXuC5554DoFatWrzxxhsMGDDAq9f68MMP2b17N998881vriUkJODv7094+KXlZaVKlUhISPA85n+L8YLrBdf+7DGpqalkZWUR9DtvhF966SWeffZZr/4uUroUlDOeeeMFtHNcRKTImE1mRjUZRf3I+jy17Sm+Pv01vVf05rXWr3Ft5LXFmsWZmcm5Wa+T+O674HBgDgmh4qPjCL/3Xkx+fsWaRUREREREREqGyzpl6uGHHyY+Pp4zZ86QmprKkSNHvC7G4+LiGD16NO+//z6BgYGXE8NnnnjiCVJSUjwfcXFxRkeSIpaUkwRARMCvy3HtHBcRKWrta7VncefFXBVyFSfTT9J/VX++OvZVsf35aRs3crhrVxIXLgSHg9COHamzYgURffqoGBcRERERESnHLqscz8/PZ926dSxduhSXywXAqVOnSE9PL/Rr7Nq1i7Nnz9KkSRMsFgsWi4VNmzYxc+ZMLBYLlSpVIjc3l+TkS2+/PnPmDJUrVwagcuXKnDlz5jfXC6792WPsdvvv7hoHCAgIwG63X/IhZUvBzPHf7hxXOS4i4gvXRFzDR10/4tYqt5KVn8Wjmx5l5u6ZOJwOn/2ZeWfOEj96DPEPPUz+qdNYq1al2tw3qPbqDKyVdOCmiIiIiIhIeed1OX78+HEaNWrEXXfdxYgRIzh37hwAU6ZM4bHHHiv067Rt25bvvvuOb7/91vPRtGlT+vbt6/naarUSExPjec6PP/7IiRMnaNasGQDNmjXju+++4+zZs57HrF27FrvdToMGDTyP+d/XKHhMwWtI+ZSU7d45/oczx7M0VkVEpKiFBYTxRrs3GNhgIADzv5vPqA2jSMtNK9I/x+VwkLhkCUe6dCFtzRrw8yNy0CDqfLmc0FativTPEhERERERkdLL65njo0ePpmnTpuzdu5eoqCjPeo8ePRg6dGihXyc0NJSGDRteshYcHExUVJRnffDgwYwbN47IyEjsdjsjR46kWbNm3HrrrQC0b9+eBg0a0L9/f15++WUSEhJ46qmnGDFiBAEBAQA89NBDvP7660yYMIFBgwaxfv16Pv74Y1asWOHtX13KkIJy/Dc7x4MKZo5r57iIiC9YzBYeu+kx6kfV59+x/2Zz/GbuW3Efr7V5jTphda749bN/+IHTEyeSvXcfAIHXX0+VZ/9N4N/+dsWvLSIiIiIiImWL1+X4li1biI2Nxd/f/5L1WrVqcfLkySILBjBjxgzMZjP33HMPOTk5dOjQgTlz5niu+/n58eWXX/Lwww/TrFkzgoODGThwIJMmTfI8pnbt2qxYsYKxY8fy2muvUa1aNd566y06dOhQpFmldPGMVdHMcRERQ3St05U6YXUYvWE0x1KPcd+K+5jcYjKtqre6rNdzZmZybvZsEhe94z5wMziYCuPGEtG7t+aKi4iIiIiIyO/yuhx3Op04HL+dDxofH09oaOgVhdm4ceMl3wcGBjJ79mxmz579h8+pWbMmK1eu/NPXbdWqFXv27LmibFK2FBzIGR7467EqBTvHNVZFRMTXGkQ14MMuH/LopkfZdWYXI9ePZETjEQy7fhhmU+Env6Vv3kzCs5PIu/hL+tD27an05P9hrVTJV9FFRERERESkDPB65nj79u159dVXPd+bTCbS09OZOHEinTt3LtJwIr6SnF2IneMXD5sVERHfiQqKYn77+fS+tjcAs7+dzaMbHyUjL+Mvn5t39izxY8cSN+xB8k6exFK1CtXmzKHazNdUjIuIiIiIiMhf8rocnzZtGtu2baNBgwZkZ2dz3333eUaqTJkyxRcZRYqUy+Xy7Bz/zczxgnI8PxvyMos5mYhI+WQ1W3ny1id59rZnsZqtrDuxjn4r+xGXGve7j3c5nSR9+CFHunQlbdVqMJuJfOAB6i5fTmib1sWcXkREREREREorr8eqVKtWjb179/Lhhx+yb98+0tPTGTx4MH379iUoKMgXGUWKVHpeOvnOfADCA341VsU/GPz8wZHrHq3iH2xAQhGR8qnn1T2pG16XsRvGcij5EL1W9GLqHVO57arbPI/JOXyY0089TdbFcWmBDRtSZdKzBP4/e/cdV2Xd/3H8fQ7rsBERcSFo7syyTK1f29xb3JaW2VK7HWWWVjas7G5ow4amDVcuVDS3aVlWppkzR4KoCKhsZHP9/jge0vu+KwdwweH1fDx6XMg5nOvNH4W9+ZzPt3Fjs2IDAAAAAMqpyy7HJcnV1VWDBg0q7ixAqXCsVPF09ZTN1XbxgxaLfXo8/ZR9tUpALRMSAkDF1axKMy3ovECjN4/W7tO79djGxzS6+WjdX6+/zs6cqbMffSwjL09WLy9VGTVKlQYO4MBNAAAAAMAVuaJy/ODBg3rvvfd04MABSVKjRo00YsQINWzYsFjDASWhaKXKf+4bd/AOspfjGYmlmAoA4BDsFazZ7WZr8k+TtfTwUq1Y8abqb5iuSnHpkiTvO25XtRdekFv16iYnBQAAAACUZ5e9c3zJkiW69tprtWPHDjVr1kzNmjXTzp071bRpUy1ZsqQkMgLFKiXHPjkeYAv430/wrWa/pp8qpUQAgP/k7uKu5697Sh/saa6XvyhQpbh0ZXi7yHPyBNX66COKcQAAAADAVbvsyfFx48bpmWee0UsvvXTR51944QWNGzdOvXr1KrZwQElIyk6S9DeT40XleHwpJQIA/KeMb7/VqUmTVCXO/ovKbdfbNOOOPLnlfaK3EhqoRUgLkxMCAAAAAMq7y54cP3XqlO6///7/+vygQYN06hSTtij7HDvHmRwHgLInPylJJ58ap+MPP6L8uFNyq1FDtT6dqY6frlatmo2VnJOsYeuGae6BuTIMw+y4AAAAAIBy7LLL8TvvvFPffffdf31+69atuu2224olFFCS/nHnuG+I/Uo5DgClxjAMpa5YoaMdOyktKkqyWhU4ZIjqRK2Qz623KsQ7RF90+EKd63RWgVGg139+XWO3jNXZrLNmRwcAAAAAlFOy4iCHAAAgAElEQVSXvVala9euevrpp7Vjxw61atVKkvTjjz9q0aJFevHFF7VixYqLnguUNY6d45Vsf1GO+53fY0s5DgClIvfEScVPmqTMrVslSR4NGqjaKy/Ls2nTi55nc7Xp1f97VQ0DG2rqjqlaf2y9fon/RRNaTVC7sHZmRAcAAAAAlGMW4zLfk2y1XtqwucViUUFBwRWFKmvS0tLk7++v1NRU+fn5mR0HV2nkppHafHyznmv1nPo06PPfTzj1m/Tx7ZJPVenJQ6UfEAAqCKOgQMlz5ihx6jQZWVmyuLsr6PHHVXnog7K4uf3t1+4/u18Tv5+ow8mHJUlta7fVhFYTFGgLLI3oAAAAAIAy6nK63Mteq1JYWHhJ/zhLMQ7n49g5/peT446d4xmJUkFeKaUCgIol++AhxfQfoITXXpeRlSWvm25S+LJlCnr0kX8sxiWpceXG+qrTV3rkukfkYnHRumPr1H1Zd62NWVsK6QEAAAAAzuCyy3GgvCtaq/JXO8e9giSrqyTDXpADAIpNYU6OEqdNU3SvXsrevVtWHx+FvPiiQr/4XB51wi/rtdxc3DTihhGa12me6lWqp+ScZD255UmN3TxWSdlJJfQdAAAAAACcxSWX49u2bdPKlSsv+twXX3yh8PBwBQcH6+GHH1ZOTk6xBwSKW9GBnH81OW61Sj4cygkAxe3cjh2K7tFTZz/8SMrPl88996jOqpWq1LePLJe4tu1/YYocAAAAAHAlLvn/RF966SXt27ev6M979uzR0KFD1aZNG40fP15RUVF67bXXSiQkUFzyC/OVlpMmSQrwCPjrJ/qdX61COQ4AV60gI0OnXnxRxwYOUu7Ro3KpEqQa06ap5vvvya1q1WK5x19NkT+55UmmyAEAAAAA/9Mll+O7du3SPffcU/TnBQsWqGXLlpoxY4bGjBmjd999VwsXLiyRkEBxSc1JlSH7GbT+Hv5//URfx+R4fCmkAgDnlb5pk4526qyU+QskSf4RvVR35Ur5tWsri8VS7PdzTJE/fN3DcrG4aG3MWvVY3kPrYtYV+70AAAAAAOXbJZfjycnJqnrBdNeWLVvUoUOHoj+3aNFCx48fL950QDFz7Bv3c/eTq9X1r5/oOJQzLa4UUgGA88k/c0YnRo/WiceHKz8hQW6hoQr9bLaqv/KKXPz/5peTxcDNxU0jbxhZNEWelJ2ksVvGMkUOAAAAALjIJZfjVatWVXR0tCQpNzdXO3fuVKtWrYoeT09Pl5ubW/EnBIpRcrZ933igLfDvn+gox5kcB4DLYhiGUpYs1R+dOit99RrJxUWVhz2kOiuWy/uCvzeUBqbIAQAAAAB/55LL8Y4dO2r8+PH67rvv9Mwzz8jLy0u33XZb0eO7d+9W3bp1SyQkUFwck+N/u29cuqAcZ+c4AFyq3NhYxT7woE5NmKDC1FTZGjdW+KKFCh47VlabzZRMjinyuZ3m6pqAa5giBwAAAAAUueRy/OWXX5arq6vuuOMOzZgxQzNmzJC7u3vR47NmzVLbtm1LJCRQXJJz7JPjAbZ/KscdO8cpxwHgnxj5+Tr76ac62rWbzv34oyw2m4KfekphC7+SrXFjs+NJkppUbqKvOv/3FPn6Y+vNjgYAAAAAMMnfLF2+WFBQkL799lulpqbKx8dHLi4uFz2+aNEi+fj4FHtAoDg51qpU8qj090/0q26/Uo4DwN/K3r9fpyY+p+z9+yVJXq1aqdpLL8o9NNTkZP/N3cVdI28YqbtD79bErRN1JOWIxmweo3Zh7TSh5QRVsv3DzwYAAAAAgFO55MlxB39///8qxiUpMDDwoklyoCxylOOXPDmenSrlnivhVABQ/hh5eUqcNk3Rvfsoe/9+Wf38VG3yZIXOnlUmi/ELOabIhzUdVjRF3n15d6bIAQAAAKCCuexyHCjPHDvHAz3+4UBODz/Jzdv+MdPjAHCR3NhYxQwapLMffiQVFMi3fXvVXbVSAb16ymKxmB3vkri7uOuJ5k9obsc/d5GP2TxGT215qugXqQAAAAAA50Y5jgrlkneOWywX7B2PL+FUAFA+GIahlKWRiu7eQ9m/7ZbV11c13n5LNae+I9cqVcyOd0WaBF08Rb4mZg1T5AAAAABQQVCOo0K55J3jkuRbzX5lchwAVJCaqpNjxujUs8+q8Nw5ed10k+osXya/jh3NjnbVmCIHAAAAgIqJchwVSkq2fa3KP06OS5If5TgASNK57dt1tHsPpa9eI7m6qsqoUQr9/DO5Va9udrRi9VdT5BuObTA7GgAAAACgBFCOo0JxrFX5x53jEmtVAFR4Rl6eEt+ZqmP3D1b+qVNyqx2qsHlzFfToI7L8j8O5ncH/miIfvXm0xm0ZxxQ5AAAAADgZynFUGNn52crKz5J0iZPjjrUqaXElmAoAyqbcY8cUM2Cgzn78sWQY8u/ZU3WWLpXnddeZHa1U/OcU+eqY1UyRAwAAAICToRxHhZGSY1+p4mpxlY+bzz9/QdHOcSbHAVQchmEoZclSHe3RU9l79sjq56caU99R9Vcny+rtbXa8UvWXU+TfjlNqTqrZ8QAAAAAAV4lyHBWG4+3wAbYAWSyWf/6ConKcyXEAFUNBaqpOjh6jUxMmyDh3Tl4tWtgP3Wzf3uxopvqvKfLo1eqxvIe+PfGt2dEAAAAAAFeBchwVhmPfeIDHJaxUkS44kDNeMowSSgUAZUPmzz/raLfuSl9z/tDNMWMU+tlsuVWrZna0MsExRf5lhy8V7h+u01mnNXzjcE36YZIy8zLNjgcAAAAAuAKU46gwUrLta1UCbZdwGKck+Zw/kDM/Wzr/tQDgbIy8PCW+/Y5iBw9Rfny83GvXVtj8eQp6eJjTHrp5NZpWaaqFnRdqUKNBkqQlh5eo14pe2h6/3eRkAAAAAIDLRTmOCuOyJ8fdbJJnJfvHaadKKBUAmCc3JkYx/Qfo7Cef2A/d7NVT4UuXyLNpU7OjlWk2V5uevvlpzWo3SzV8auhkxkkNXTtUb2x/Q9n52WbHAwAAAABcIspxVBiOAzkr2Spd+hf5Vrdf0ynHATgP+6GbS3S0Zy9l790rq7+/akydquqTK96hm1ejRUgLLem6RL3q9ZIhQ1/u/1J9VvbR3jN7zY4GAAAAALgElOOoMIoO5LzUyXFJ8j2/WiU9vgQSAUDpK0hJ0cl/jdKpCRPth27efLPqLIuUX/t2Zkcrl7zdvDXplkn64J4PFOQZpOjUaA36epDe//V95RXkmR0PAAAAAPA3KMdRYTjK8cubHHccyhlXAokAoHRl/vSzjnbvofR16+yHbo4do9DZszh0sxjcXvN2RXaNVIewDiowCvTx7o818OuBOpx82OxoAAAAAIC/QDmOCqNorYrHZZTjfo5ynMlxAOWXkZurxLfeUuyQ84duhoUpbMECBQ3j0M3iFGAL0Bt3vKF/3/Fv+Xv460DSAfVd2Vez9s5SQWGB2fEAAAAAAP+BchwVRtGBnLYrWKvCgZwAyqmc6Gj7oZszZkqGoYDeEfZDN69tYnY0p9U+rL0iu0bq9pq3K68wT+/seEcPrH1AsWmxZkcDAAAAAFyAchwVRtFalcuZHOdATgDllGEYSl60SNE9eyl73z77oZvvTlO1l1+W1cvL7HhOr4pXFb1/9/t66ZaX5O3mrV8Tf1VEVIS++v0rGYZhdjwAAAAAgCjHUUEYhqGU7PNrVS5r5zgHcgIofwpSUnTyiX8p/rnnZWRlyatVK9VZvkx+bduaHa1CsVgs6lGvh5Z0XaIWIS2UlZ+lV356RY+sf0TxmfxcAQAAAACzUY6jQsjIy1C+kS9JCvC4nLUq53eOZyRI7IsFUA5k/vijjnbrrvT16yU3NwU/9aRCZ30qt5AQs6NVWDV8amhm25kaf/N4ebh4aNupbeq5vKei/ohiihwAAAAATEQ5jgrBMTXu6eopm6vt0r/QJ1iyWCWjQMo8XULpAODqGbm5SnzzTcU+8KDyExLsh27On6/KQ4fKYuXHvdmsFqsGNhqoRV0WqWlQU6XnpevZrc9q9ObROpt11ux4AAAAAFAh8X/LqBAch3Fe1r5xSbK6SD5V7R+zdxxAGZVzNFox/frr7MxP7Ydu9unDoZtlVLh/uL7o8IVG3jBSrlZXbYzdqJ4remrjsY1mRwMAAACACodyHBWC4zDOANtlrFRxcOwdT6McB1D2pC5fruiICGXv3y8Xf3/VeO9dVXvpRQ7dLMNcra56+LqHNb/TfNWrVE9J2UkatXmUnv3uWaXlppkdDwAAAAAqDMpxVAhXPDkuSb7V7VcmxwGUIYXnzinumWcV9/R4GefOyatlS4WvWC6/e+81OxouUcPAhlrQaYGGXjtUVotVUUej1HN5T/0Q94PZ0QAAAACgQqAcR4Xg2DleyXYl5fj5yXHKcQBlRM7hw4ru00epkZGS1aqgkSPsh25WrWp2NFwmdxd3jbpxlD5v/7lCfUOVcC5Bj6x/RK/8+IrO5Z0zOx4AAAAAODXKcVQIjsnxAI8rWKviV81+pRwHYDLDMJSyeLGie/dR7pE/5FqlikJnz1aV4cNlcXExOx6uwvXB12tRl0Xq37C/JOmrg18pIipCvyb+anIyAAAAAHBelOOoEFJyrmZy3FGOxxdjIgC4PAUZmYob97ROTXxORna2vG+9VeHLIuXd8mazo6GYeLl56dmWz+qTez9RiHeIjqcf1+DVg/X2jreVU5BjdjwAAAAAcDqU46gQkrKTJF3h5DgHcgIwWfbvvysmIkJpUVGSi4uqjBmjWjM+kWvlymZHQwloXb21lnZdqq51u8qQodl7Z6vfyn7af3a/2dEAAAAAwKlQjqNCcOwcD7QFXv4XcyAnAJMYhqHkBQsU06evcmNi5BoSotpffK6gh4fJYuVHuDPzdffV5P+brGl3TVOgLVBHUo6o/6r+euXHV4p+pgEAAAAArg7/Z40KwbFW5aomx7OSpHze1g6gdBSkp+vkmDGKn/SijNxc+dx5p8Ijl8rrxhvNjoZSdHfo3YrsFqkOYR1UaBTqq4NfqVNkJ83/fb7yC/PNjgcAAAAA5RrlOCoEx4GcV7Rz3LOS5OJh/5jpcQClIGvPXkX37KX01WskV1cFP/20an44Xa6VruC/YSj3Am2BeuOONzSr3SzVr1RfablpevWnV9VnZR9tj99udjwAAAAAKLcox+H08gvzlZqTKukKJ8ctFsmPQzkBlDzDMJT0xZeKGTBAecePy616dYXNnaPKDwyRxWIxOx5M1iKkhb7q/JUmtpwofw9/HU4+rAfXPqixm8cqLiPO7HgAAAAAUO5QjsPpOYpxSfL38L+yF/E9X46nUT4AKBkFqak6MXKkEl59VcrLk++9bRQeuVSezZqZHQ1liKvVVX0b9tXK7ivVt0FfWS1WrTu2Tt2WddOHv32o7PxssyMCAAAAQLlBOQ6n59g37u/hL1er65W9iC+T4wBKTtauXYru0VMZGzbK4uamqhMnqsa778rF/wp/oQenF2AL0MRWE7Ww80LdVPUmZRdka/qu6eq2rJvWH1svwzDMjggAAAAAZR7lOJxecvb5feMeV7Grt6gcZ+c4gOJjFBbq7KezFDPoPuXFxcktNFS1589X4KCBrFHBJWkQ2ECz2s3Sv+/4t0K8QxSXGacxm8do2LphOpx82Ox4AAAAAFCmUY7D6Tkmx69o37iDb4j9SjkOoJjkJyfrxGOPK/Hf/5by8+Xbob3Cly6R57VNzI6GcsZisah9WHut6L5CjzZ7VB4uHvop/if1juqt13567aL1YgAAAACAP1GOw+klZSdJsr8F/Yr5VbdfWasCoBic++UXRXfvoYwtW2Rxd1fIpEmq8fbbcvHxMTsayjFPV08Nv364lndfrntr36sCo0Dzfp+nzpGdtfDgQhUUFpgdEQAAAADKFMpxOD3H5PjVrVU5PznOgZwAroJRWKgzH32sY4OHKD8hQe5hYQpb+JUq9evLGhUUmxo+NfT2nW9rRtsZuibgGqXkpOjlH19Wv1X9tDNhp9nxAAAAAKDMoByH0yvaOW4rjp3j8RKHnAG4Avlnzuj4Q8N0eupUqaBAfl27KHzJYtkaNjQ7GpxUq2qttLDLQo2/ebx83X31e9LvGrxmsMZ9O07xmbwTCgAAAAAox+H0inVyPC9TykkvhlQAKpLMH3/U0R49lPnDD7LYbKo2ebKqT5kiq7e32dHg5NysbhrYaKBW9lipiPoRssii1dGr1XVZV83YPUM5BTlmRwQAAAAA01COw+k5Jsevaue4u7fk4W//mEM5AVwio6BAp997X7EPPKiC02fkfk1dhS9aqIBePVmjglIVaAvUC61f0ILOC3RD8A3Kys/Su7++q+7LumtT7CYZvCsKAAAAQAVEOQ6nl5xzfq3K1UyOS5KfY7UK5TiAf5aXkKjYBx7UmQ8+kAxD/r16KnzRInnUq2d2NFRgjSs31uftP9frt72uYK9gncg4oX998y89uuFRHU05anY8AAAAAChVlONweinZ59eqXM3OcenP1Srp7GkF8Pcytn6v6B49dO7nn2Xx8lL1N6ao+uTJsnp6mh0NkMViUac6nRTVPUrDmg6Tm9VNP8T9oF4reumN7W8oPZf1YQAAAAAqBspxOL1imxx3HMqZFneViQA4KyM/X4lvv6PjDz2kgqQkeTRooPDFi+XftavZ0YD/4uXmpSeaP6Hl3Zbrrlp3Kd/I15f7v1TnyM5aenipCo1CsyMCAAAAQImiHIdTy87PVlZ+lqSr3Dku/VmOMzkO4H/Ii4/XscFDdPaTTyRJAf36KuyrBfKoE25yMuDv1fKrpXfvflcft/lY4f7hSspO0gs/vKABqwZoV+Ius+MBAAAAQImhHIdTS8mxr1RxtbjKx83n6l6sqBxnchzAxdI3b1Z09x7K2rFDVm9v1XjnbVWbNElWm83saMAlu6XGLVrSdYmeuukp+bj5aN/Zfbpv9X169rtnlXgu0ex4AAAAAFDsKMfh1JKz7StVAmwBslgsV/di7BwH8B+MvDwlvPFvnXj0MRWkpMjWuLHCly6RX4cOZkcDroib1U33N7lfUT2i1OOaHpKkqKNR6hzZWTP3zFROQY7JCQEAAACg+FCOw6kV7Ru/2sM4Jcmvuv1KOQ5AUu6Jk4oZNEhJs2ZJkioNGqTaC+bLvXZtk5MBVy/IM0gv3fqS5near2ZVmikrP0vTdk5T92XdtTF2owzDMDsiAAAAAFw1ynE4tZRs+1qVqz6MU7pgcvyUVMghZUBFlr5hg6J79lT2b7tl9fNTjffeVcjECbK6u5sdDShW1wZdqy87fKnXbntNwZ7BOpFxQqO+GaVh64fpcPJhs+MBAAAAwFWhHIdTc0yOB3hc5WGckuRTVZJFKsyXzp29+tcDUO4U5uYqfvKrOjFipArT0mS77jqFL10qv3vvNTsaUGIsFos61+msqB5RGtZ0mNyt7vrp1E/qHdVbr/70qlJzUs2OCAAAAABXhHIcTs2xc7xY1qq4uEneVewfp5+6+tcDUK7kxsbqWP8BSv7yS0lS4AMPKGzOl3KvWcPkZEDp8HLz0hPNn9Cy7svUJrSNCowCzf99vjpFdtKC3xcovzDf7IgAAAAAcFkox+HUUnLsa1WKZXJcuni1CoAKI231akX36Knsffvk4u+vmh9OV9Wnx8nCGhVUQLV8a+mdu97RzLYzdU3ANUrNSdXknyard1Rv/XTqJ7PjAQAAAMAloxyHUyvWyXHpgkM5KceBiqAwO1unJk3SydFjVJiZKc/mzRW+LFK+d91ldjTAdC2rtdSiLos0oeUE+Xv460jKET207iGN/ma0TqSfMDseAAAAAPwjynE4NcfkeLEcyCn9OTmeRjkOOLuco9GK6dtPKQu+kiRVfvhh1f7ic7lVq2ZyMqDscLW6ql/DflrVY5X6N+wvF4uLNsRuULdl3fTuznd1Lu+c2REBAAAA4C9RjsOpJWUnSZICbMW1VuV8KcbkOODUUqOiFB0RoZyDB+USGKhaM2YoeMxoWVxdzY4GlEn+Hv56tuWzWtRlkVpWa6ncwlzN2DNDXSK7KOqPKBmGYXZEAAAAAPgvlONwasU/Oe4ox+OL5/UAlCmFWVmKmzhRcU+Nk3HunLxuvlnhkZHyue3/zI4GlAv1KtXTjHtnaOpdU1XTp6YSsxL17NZndd/q+7T3zF6z4wEAAADARSjH4bQMw1BK9vlyvLh2jheV43HF83oAyoycI0cU06ePUhcvkSwWBT3+uEJnz5Jb1WCzowHlisVi0T2h92hZ92X6V/N/ydPVU7+d/k39V/XXxK0TdSbrjNkRAQAAAEAS5TicWEZehvKNfElSgEcxrVXxY3IccDaGYShlyVJFR/RWzuEjcqkSpNDZs1TliZGyuLiYHQ8otzxcPPRQ04e0ssdKda3bVZK0/I/l6hzZWbP2zlJuQa7JCQEAAABUdJTjcFqOqXFPV0/ZXG3F86KOyfHM01JBXvG8JgDTFGZm6tT48To1YYKM7Gx539JadSIj5d2qldnRAKcR7BWsyf83WXM6zlHToKbKzMvUOzveUY/lPbT5+Gb2kQMAAAAwDeU4nFZSjv0wzmLbNy5JnoGS1c3+MdPjQLmWffCgoiN6K3X5CslqVZVR/1KtmTPlGhRkdjTAKTWr0kxzOs7R5P+brCDPIMWmx2rkppF6dMOjOppy1Ox4AAAAACogynE4LcfkeICtmFaqSJLVyqGcQDlnGIaSF3ylmN59lBsdLdfgYNX+/DMFPfqoLFZ+LAIlyWqxqmvdrlrZY6WGXjtUblY3/RD3g3qu6KkpP09Rak6q2REBAAAAVCC0AHBayTnJkorxME4H3xD7lUM5gXKnICNDcWPHKn7SJBm5ufK+/TaFL4uUV4sWZkcDKhRvN2+NunGUlndbrrtq3aUCo0BzDsxRl8guWnhwoQoKC8yOCAAAAKACoByH03JMjhfrWhXpgnKcyXGgPMnat0/RPXsp7evVkouLgp96UrU++kiugYFmRwMqrFp+tfTu3e/q43s/Vl3/ukrOSdbLP76sviv7anv8drPjAQAAAHBylONwWo7J8QCPYlyrIkl+1e3X9FPF+7oASoRhGEr6co6O9euvvNhYuVavptpzvlTloUNZowKUEbdUv0WLuy7W+JvHy9fdVweTD+rBtQ9q5MaROpR8yOx4AAAAAJwUrQCcVnJ2Ca9VSaMcB8q6grQ0nXziX0qYPFlGXp587r5bdZYuldcNN5gdDcB/cLW6amCjgVrVY5X6NugrF4uLNp/YrIgVEZqwdYJOZpw0OyIAAAAAJ0M5DqdVYpPjvkyOA+VB1u7diu7RU+nr10tubqr67DOq+cH7cgko5v8mAChWlWyVNLHVREV2i1Tb2m1lyNCKP1aoS2QXTfl5ipKyk8yOCAAAAMBJUI7DaTl2jgfainmfMDvHgTLNMAydnf2ZYgYMVN7Jk3KrWVNh8+Yq8P77ZbFYzI4H4BKF+4frrTvf0vxO89WyWkvlFeZpzoE56rCkgz7c9aEy8zLNjggAAACgnKMch9NKybGX48U/OV7NfmVyHChzCrOyFDf2SSVOmSLl58u3XTuFRy6VZ9OmZkcDcIWuDbpWM9vO1Cf3fqLGlRvrXP45Tf9tujou7ai5B+YqtyDX7IgAAAAAyinKcTgtx9uui33nuN/5cjwnTcrJKN7XBnDF8k6d0rGBg5T29deSq6uqTpyoGlPfkYuvr9nRABSD1tVba36n+XrzjjdV26+2krKT9PrPr6tLZBet+GOFCgoLzI4IAAAAoJyhHIdTyi/MV1pumqQSmBz38JXcfewfs1oFKBPO7fxV0b37KHv/frkEBCh01qcKHDSQNSqAk7FarGoX1k6R3SL1fOvnFewZrLjMOE3YOkERURHacnyLDMMwOyYAAACAcoJyHE4pNSdVkmSRRf4e/sV/g6K946xWAcyWsmSpYgcPVsGZM/KoX19hixfJ++abzY4FoAS5Wd3Uu35vrey5UqOaj5Kvu6+OpBzRiE0jNHjNYO1M2Gl2RAAAAADlAOU4nJJj37ifh59cra7Ff4OiveNMjgNmMfLzlfDaazo1YYKMvDz53ttGYfPnyb1mTbOjASglnq6eGtp0qFb3XK0Hr31QHi4e+jXxVw1eM1gjNo7QoeRDZkcEAAAAUIZRjsMpJWcnS5IqeRTzvnGHonI8rmReH8DfKkhN1fGHH1HS519IkoKGD1eNadNk9fY2ORkAM/h7+Gv0jaO1qscqRdSPkIvFRVtObFHEigg9+92zOplx0uyIAAAAAMogynE4peQcezle7PvGHfyYHAfMkvPHH4ru00eZP/wgi6enakydqiojR8hi5UcaUNFV9a6qF1q/oGXdlqlt7bYyZCjqaJQ6R3bW6z+/rrNZZ82OCAAAAKAMoUmAU3JMjgfYSqgcL5ocZ+c4UJrSN29WTJ++yjsWK9fq1RQ2b6782rczOxaAMibMP0xv3fmWFnRaoFbVWim/MF9zD8xVx6UdNX3XdGXkZpgdEQAAAEAZQDkOp+TYOR5oCyyZGzgO5EyjHAdKg2EYOjtzpk489rgKMzPledONCl+0SLZGjcyOBqAMaxLURDPaztAn936ixpUb61z+OX3424fquLSj5uyfo9yCXLMjAgAAADAR5TicUtHkeEmtVfGtbr8yOQ6UuMLsbMWNe1qJb74lGYYC+vRR7Vmz5Fq5stnRAJQTrau31oJOC/TmHW+qtl9tJecka8r2KeoS2UUr/lihgsICsyMCAAAAMAHlOJySY3K85A7kPD85nh4vGUbJ3AOA8hISdGzQfUqLipJcXFT1+ecU8uIkWdzdzY4GoJyxWCxqF9ZOkd0i9Xzr5xXsGay4zDhN2DpBEVER2nx8swx+pgMAAAAVCuU4nFLJ7xw/X44X5EhZySVzD6CCy/rtN8VE9Fb23r1y8fdX6KczFThggCwWi9nRAJRjblY39a7fWyt7rtSo5qPk6+6rIylHNDPJKqAAACAASURBVHLTSA1eM1g7E3aaHREAAABAKaEch1NKzrEX1iU2Oe7qIXmdX+nAahWg2KUsW6Zj992v/NOn5VGvnsIWL5J3q1ZmxwLgRDxdPTW06VCt7rlaQ68dKpuLTb8m/qrBawbrsQ2Pad/ZfWZHBAAAAFDCKMfhlFKyz69VsZVQOS5JvtXsVw7lBIqNUVCghClv6NT4Z2Tk5srnnntUe/58udeqZXY0AE7K38Nfo24cpVU9V6l3/d5ysbho68mt6reyn0Z9M0qHkg+ZHREAAABACaEch1Mq8clx6c9ynMlxoFgUpKXp+KOPKWn2bElS5cceVc333pWLj7fJyQBUBMFewXq+9fNa0X2FutTpIoss2hi7URErIjTu23GKSY0xOyIAAACAYkY5DqeTnZ+trPwsSSW4c1y6+FBOAFcl52i0Yvr0VeZ338lis6nGO28r+F//ksXKjykApSvUL1Sv3vaqIrtFqm3ttjJkaHX0anVb3k3Pff+cTmacNDsiAAAAgGJC6wCnk5JjX6nianWVj5tPyd2oaHI8ruTuAVQAGd99p5i+fZUbEyPXatUUNm+u/Dp0MDsWgAqubkBdvXXnW1rUZZHurHmnCo1CLTuyTJ0jO+uVH19RQmaC2REBAAAAXCXKcTid5Ow/V6pYLJaSu5Gfoxxnchy4EoZh6Oys2Tr+yKMqTE+XZ/PmCl+0ULbGjc2OBgBFGgY21Hv3vKe5HeeqdbXWyi/M11cHv1LHpR015ecpOpN1xuyIAAAAAK4Q5TicjmPfeImuVJEuOJCTyXHgchXm5OjU+GeU+MYbUmGh/CN6KfSz2XINCjI7GgD8T9dVuU6ftP1Es9rNUvPg5sotzNWcA3PUcWlHTd0xVak5qWZHBAAAAHCZKMfhdFKy7WtVSvQwTomd48AVyktM1LH771fq8uWSi4uqTpigai+/LKu7u9nRAOAftQhpoc/af6aP23yspkFNlZWfpU/3fqr2S9rrw10fKiM3w+yIAAAAAC4R5TicTtHkuEdJT45Xt18zE6WC/JK9F+AksvbsUUxEb2X/tltWf3+FzpyhwPsGlewKJAAoZhaLRbfUuEVzO87Ve3e/pwaVGigjL0PTf5uu9kvb69M9n+pc3jmzYwIAAAD4B5TjcDpFO8dtJTw57h0kWVwko9BekAP4W6lRUTo2cJDyExPlfk1dhS9aKO/Wrc2OBQBXzGKx6M5ad2phl4V68443Fe4frtScVE3dOVUdlnbQnP1zlFOQY3ZMAAAAAH+BchxOJyXn/FqVki7HrS4XrFY5VbL3Asoxo6BAiW++qbinxsnIzZXPXXcpbMECuYeGmh0NAIqF1WJVu7B2iuwaqVf/71XV9KmppOwkTdk+RR2XdtTCgwuVV5BndkwAAAAA/4FyHE7HMTle4mtVJPaOA/+gID1dxx9/XGdnfipJqvzII6r5wfty8fExORkAFD8Xq4u61O2iFT1W6IXWLyjEO0SJ5xL18o8vq8uyLlp2ZJnyC1nFBgAAAJQVlONwOkWT4yV9IKck+VazX9PiSv5eQDmTGxurmL79lLnlW1k8PFT9zTcVPHqULFZ+9ABwbm5WN0XUj9CqHqv0zM3PKMgzSCczTuq5759Tj+U9tDp6tQqNQrNjAgAAABUeDQWcTlJ2kiQpwFYak+Pny3Emx4GLnPv1V8X07afco0flWrWqas+dK//OncyOBQClyt3FXQMaDdDXPb/W2BvHKsAjQDFpMRr37Tj1WtFLG2M3yjAMs2MCAAAAFRblOJyOY3I80BZY8jdj5zjwX9LWrlPskAdUkJwsW5MmClu0UJ7XNjE7FgCYxtPVU0OuHaI1vdZoxPUj5OvmqyMpRzTqm1Hqv6q/tp7cSkkOAAAAmIByHE7FMAylZNvL8dLZOe6YHKccBwzD0NnZn+nkqFEycnLkc9ddqv3lF3ILDjY7GgCUCd5u3nqk2SNa3Wu1hjUdJk9XT+07u0+PbXhM96++X9+d+I51KwAAAEApohyHU8nIy1C+YT/oqlTKcT/WqgCSZBQUKOGVyUqcMkUyDFUaMEA1339PVi8vs6MBQJnj7+GvJ5o/oTW91mhw48HycPHQrtO79PjGx9VtWTfNOzBPmXmZZscEAAAAnB7lOJxKcnayJPvbl22utpK/IQdyAio8d04nRj6h5LlzJUnB48ap6nMTZXFxMTkZAJRtgbZAPdniSX3d82vd1/g++bj5KCYtRq/9/JraLGqjKT9PUWxarNkxAQAAAKdFOQ6nkpxjL8creVQqnRs6yvHsFCkvq3TuCZQh+adP69j9g5WxaZMs7u6qMXWqKj/4gCwWi9nRAKDcCPYK1rgW47Sx90ZNaDlBYX5hysjL0JwDc9Q5srNGbByhH+J+YC85AAAAUMxczQ4AFCfHvvFKtlIqx23+kqunlJ9l3zseWKd07guUATl//KHjDz+ivJMn5RIQoJrTp8ur+Q1mxwKAcsvLzUv9GvZTnwZ9tC1um+YemKvvTn6nLSe2aMuJLarjX0cDGg5Ql7pd5OXG2ioAAADgajE5DqfimBwPsJXCvnFJslgk3xD7x+wdRwWS+fPPiuk/QHknT8qtdqjCFsynGAeAYmK1WHVrjVs1vc10reyxUgMbDZS3m7eOph7VKz+9ojaL2ujf2/+t4+nHzY4KAAAAlGuU43AqRZPjpbVWRZL8qtuv6adK756AiVKjohQ79CEVpqXJ8/rrFbZggdzDwsyOBQBOqbZfbY2/ebw2RGzQ+JvHq7ZfbaXnpeuL/V+o09JOGrlppH469RMrVwAAAIArwFoVOJWknCRJUoBHKU2OS39OjqdRjsO5GYahsx9/rNNTp0mSfNu1U/Upr8tqK4XDbwGggvNx99HARgPVv2F/fX/ye839fa6+P/m9Nh/frM3HN+uagGs0oNEAda7TWZ6unmbHBQAAAMoFJsfhVEp957j056GcTI7DiRl5eYp//vmiYjxw6IOq8c7bFOMAUMqsFqtuq3mbPmrzkVZ0X6F+DfrJ09VTR1KO6KVtL6nNojZ6+5e3FZcRZ3ZUAAAAoMyjHIdTcewcN6ccZ+c4nFNBRoaOP/a4UhYtlqxWVX3+OVV96ilZrPwIAQAzhfuHa0KrCdrYe6PGtRinmj41lZabptn7ZqvD0g4a9c0obY/fzsoVAAAA4C+wVgVOxZSd40UHcjI5DueTFx+v4488qpyDB2Xx9FSNt9+S7113mR0LAHABX3df3df4Pg1oOEBbT27V3ANzte3UNm2M3aiNsRtVv1J9DWw0UB3DO8rmyjt+AAAAAAfG/uBUHJPjpbpznAM54aSyDx5UTN9+yjl4UC5VglT7yy8pxgGgDHOxuuiOWnfok7afaFm3ZerboK88XT11KPmQXvjhBbVZ3EZTd0xVfCbvdgMAAAAkynE4meRsM9aqXHAgJ29bhpPI2Pq9jg0YqPyEBLlfU1fhCxbI89omZscCAFyiugF1NbHVRK2PWK8nb3pSNXxqKDUnVZ/u/VTtl7TXmM1jtCNhBytXAAAAUKFRjsNp5BfmKy03TZJJO8fzs6Ts1NK7L1BCUpYs0fFHHlFhZqa8WrZU2Lx5cqtRw+xYAIAr4O/hr8FNBmtVj1Wadtc0tQxpqQKjQOuPrdeQNUPUZ2UfLT28VOfyzpkdFQAAACh1lONwGqk59mLaIov83P1K78ZunpLt/BoXDuVEOWYYhhKnTtWpCROlggL5d+uq0BmfyMWvFP99AgCUCBeri+4OvVsz283U0q5LFVE/QjYXm35P+l0v/PCC7l50t17e9rL2n91vdlQAAACg1FCOw2mk5NgP4/Tz8JOrtZTPmnVMj6fHle59gWJSmJuruHFP6+xHH0uSgh5/TNVef10Wd3eTkwEAilu9SvX0QusXtKH3Bo25cYxCfUOVmZephYcWqu/Kvuq7sq8WHlyojNwMs6MCAAAAJaqUG0Sg5CRlJ0mSKnmU4koVB98Q6fQBJsdRLhWkpurEyCd07uefJVdXVXtxkgJ69TI7FgCghPl7+OuBax/QkCZDtD1+uxYfXqwNxzZo/9n92n92v9785U11DO+oXvV66dqga2WxWMyODAAAABQrynE4DcfkeIBHQOnf3K+6/Zp+qvTvDVyF3BMndfyRR5T7xx+yenurxrvT5HPrrWbHAgCUIovFopur3aybq92s5OxkRf0RpcWHFys6NVpLDi/RksNL1KBSA/Wq30ud6nQq3fV1AAAAQAlirQqcRnJ2sqRSPozTwTfEfk2jHEf5kbVnr2L69VPuH3/INSREtefNoxgHgAqukq2S7m9yv5Z3W67P23+uLnW6yMPFQweTD+rVn17VPQvv0YStE7QrcZcMwzA7LgAAAHBVmByH03BMjptTjjt2jlOOo3xI3/SNTo4dKyMrSx4NG6rWxx/JrWpVs2MBAMoIi8Wi5lWbq3nV5nr65qe18uhKLT60WEdSjmjFHyu04o8VqutfVxH1I9Slbhf5e/ibHRkAAAC4bEyOw2k4JsdNWatCOY5yJGnuXJ0YMUJGVpa8b7tNtefMoRgHAPwlfw9/DWw0UEu7LtWcjnPU/ZrusrnY9EfqH5qyfYruXni3xn83XtvjtzNNDgAAgHKFyXE4jeSc82tVTDmQ01GOcyAnyi6jsFCJ/35TSbNnS5ICevdWyPPPyeLmZnIyAEB5YLFY1KxKMzWr0kzjWozT10e/1uLDi/V70u9adXSVVh1dpTC/sKJp8kBboNmRAQAAgL9FOQ6nkZJ9/kBOmxkHcl5QjhcWSlbelIGypTA7W3FPj1f62rWSpCqjR6vyw8NksVhMTgYAKI983X3Vt2Ff9WnQR/vP7teiQ4u0Onq1YtJi9OYvb2rqzqlqE9pGver30s0hN8tq4e9GAAAAKHsox+E0HJPjpkwpeQdLskhGgZR5WvJlRQXKjvzkZJ147HFl7doli5ubqr36qvy7dDY7FgDACVgsFjUJaqImQU30VIuntDp6tRYfWqx9Z/dpTcwarYlZo1q+tdSzXk91v6a7gjyDzI4MAAAAFGGEA06jaHLcjJ3jLq6ST7D9Y/aOowzJP31ax+67T1m7dsnq76/QWZ9SjAMASoS3m7ci6kdoQecFWth5ofo26CsfNx8dTz+uaTun6d5F92r0N6P1/cnvVWgUmh0XAAAAYHIczsPUneOSfe94RgJ7x1Fm5CUkKnbIEOVGR8s1JEShsz6VR506ZscCAFQAjSo30sTKEzXmxjFaG7NWiw8v1u7Tu7UhdoM2xG5Qde/q6n5Nd7UPb69w/3Cz4wIAAKCCohyHU8jKz1JWfpYkk3aOS/Zy/NQuKT3OnPsDF8hLSFDs/YOVe+yYXKtXU+3PP5d7rVpmxwIAVDBebl7qUa+HetTroUPJh7Tk0BJFHY1SXGacpv82XdN/m676leqrbe22ahfWTmH+YWZHBgAAQAVCOQ6nkJqTKklytbrKx83HnBAXHsoJmCgvLk7HhjygvNhYudWoodDPP5d7zRpmxwIAVHD1K9XXMy2f0egbR2v9sfX6Ovpr/Rj3ow4lH9Kh5EN6f9f7alCpgdqFtVPbsLaq7Vfb7MgAAABwcpTjcArJ2X+uVLFYLOaE8D1fjqcxOQ7z5J44qdjBg5V38qTcatVS7c9my60GxTgAoOywudrUpW4XdanbRak5qdoUu0lrj63VT3E/6WDyQR1MPqh3f31XDQMb2ovy2m0V6hdqdmwAAAA4IVMP5HzttdfUokUL+fr6Kjg4WN27d9fBgwcvek52draGDx+uypUry8fHR7169VJCQsJFz4mNjVWnTp3k5eWl4OBgPfXUU8rPz7/oOZs3b1bz5s3l4eGha665Rp999llJf3soRY5946atVJEk3xD7lclxmCT3+HEdu/8+ezFeO1S1v/icYhwAUKb5e/irR70e+qjNR/qmzzd68ZYXdWv1W+VicdHvSb9r2s5p6hTZSX2i+mjmnpk6nnbc7MgAAABwIqaW41u2bNHw4cP1448/av369crLy1Pbtm2VmZlZ9JzRo0crKipKixYt0pYtWxQXF6eePXsWPV5QUKBOnTopNzdXP/zwgz7//HN99tlnev7554ueEx0drU6dOumuu+7Srl27NGrUKD300ENau3ZtqX6/KDkXTo6bxre6/Uo5DhPkHjumY/cPVn7cKbmHhan2F1/IrVo1s2MBAHDJAmwB6lmvpz66116UT2o9SbdUv0UuFhcdSDqgaTunqWNkR/WJ6qNP93yq4+kU5QAAALg6FsMwDLNDOJw+fVrBwcHasmWLbr/9dqWmpqpKlSqaN2+eIiIiJEm///67GjVqpG3btqlVq1ZavXq1OnfurLi4OFWtWlWS9NFHH+npp5/W6dOn5e7urqefflqrVq3S3r17i+7Vr18/paSkaM2aNf+YKy0tTf7+/kpNTZWfn1/JfPO4KnMPzNXrP7+utrXb6q073zInRPxe6aNbJa/K0rij5mRAhZQTHa3YIQ8oPyFB7nXrKnT2LLkFB5sdCwCAYpGcnayNsRu1NmattsdvV4FRUPRY48qNi1av1PStaWJKAAAAlBWX0+WaOjn+n1JT7YcqBgYGSpJ27NihvLw8tWnTpug5DRs2VGhoqLZt2yZJ2rZtm5o2bVpUjEtSu3btlJaWpn379hU958LXcDzH8Rr/KScnR2lpaRf9g7KtaHLcZubk+Pkp3XNnpfwc83KgQsk5elSx9w9WfkKCPOpdo9qff0YxDgBwKpVslRRRP0Iz2s7Qpj6b9Hzr59WyWktZLVbtP7tf7+x4Rx2WdlC/lf00e+9sncw4aXZkAAAAlBNl5kDOwsJCjRo1SrfeequuvfZaSVJ8fLzc3d0VEHDxHumqVasqPj6+6DkXFuOOxx2P/d1z0tLSlJWVJU9Pz4see+211/Tiiy8W3zeHEpeSkyLJ5HLcK1BycZcKcqWMBCmAg6NQsnIOH9axBx5UwZkz8qhfX6GfzZbr+V8uAgDgjAJtgepdv7d61++ts1lntTF2o9bFrNP2hO3ad3af9p3dp7d3vK2mQU3VtnZbtQ1rq+o+1c2ODQAAgDKqzJTjw4cP1969e7V161azo+iZZ57RmDFjiv6clpamWrVqmZgI/8QxOR7gYeKBnBaL/VDOlFgp7RTlOEpU9sFDin3gARUkJcmjUSOFzvpUrpVM/OUQAAClrLJnZfVp0Ed9GvTRmawz2hS7SWtj1uqXhF+058we7TmzR2/teEvXBV2ntmFt1bZ2W1Xz4TwOAAAA/KlMlOMjRozQypUr9e2336pmzT93BYaEhCg3N1cpKSkXTY8nJCQoJCSk6Dk///zzRa+XkJBQ9Jjj6vjchc/x8/P7r6lxSfLw8JCHh0fxfHMoFck5ZeBATsl+KGdKrJR+ytwccGrZv/+u2CEPqCAlRbbGjRU661O5BJj4iyEAAEwW5Bl0UVG+8dhGrT22Vr/E/6LdZ3Zr95ndevOXN3VdlevUPqy9utbtKn8Pf7NjAwAAwGSm7hw3DEMjRoxQZGSkNm3apPDw8Isev/HGG+Xm5qaNGzcWfe7gwYOKjY1V69atJUmtW7fWnj17lJiYWPSc9evXy8/PT40bNy56zoWv4XiO4zVQ/hVNjttMLgh97b+QoRxHScnat0+xg4fYi/GmTRU6exbFOAAAFwjyDFLfhn01q90sbeqzSc+2fFY3Vb1JFlm0+/RuvbH9DbVZ1EaTfpikg0kHzY4LAAAAE5k6OT58+HDNmzdPy5cvl6+vb9GOcH9/f3l6esrf319Dhw7VmDFjFBgYKD8/P40cOVKtW7dWq1atJElt27ZV48aNdd999+mNN95QfHy8Jk6cqOHDhxdNfz/66KN6//33NW7cOD344IPatGmTFi5cqFWrVpn2vaN4OXaOB9pM3rfsOJSTchwlIGvPHsUOfUiFaWnybNZMtWbOkIuvr9mxAAAos4I8g9S/YX/1b9hfp8+d1vpj67X08FIdTD6oJYeXaMnhJbqp6k0a2Gig7qx1p1ytZeKNtQAAACglFsMwDNNubrH8z8/Pnj1bQ4YMkSRlZ2dr7Nixmj9/vnJyctSuXTtNnz69aGWKJB07dkyPPfaYNm/eLG9vbw0ePFivv/66XF3//Mvt5s2bNXr0aO3fv181a9bUc889V3SPf5KWliZ/f3+lpqbKz8/vir9flAzDMNT8y+bKN/K1PmK9QrxD/vmLSsr306T1z0vX9ZV6fmJeDjidrF27FPvQMBVmZMizeXPV+uRjufj4mB0LAIByxzAM7UzcqXkH5mlj7EYVGAWSpGre1dS3QV/1qtfL/HcjAgAA4IpdTpdrajleXlCOl21puWm6df6tkqTtA7fL5mozL8zuhdLSYVLYbdKQleblgFM5t/NXHR82TIWZmfK66SbV+vgjWb29zY4FAEC5F58Zr4UHF2rxocVFZ9h4uHioU51OGtBwgBoENjA5IQAAAC7X5XS5pu4cB4pDSrZ9pYqnq6e5xbh0wc7xeHNzwGmc++UXHX/oIXsx3rKlan3yMcU4AADFJMQ7RE80f0Lre6/Xy7e+rEaBjZRTkKOlh5cqIipCQ9YM0bqYdcovzDc7KgAAAEoAS/VQ7jmmfEzfNy5JvtXtV8pxFIPMn37W8UcflZGVJe9bWqvmBx/I6ulpdiwAAJyOh4uHul/TXd3qdtOu07s098BcbTi2QTsSdmhHwg6FeIcUrVypZKtkdlwAAAAUE8pxlHuOyfEAjzKwG9IxOZ6bLuWkSx4clogrk7ltm44/9riM7Gx533qran7wvqw2k98ZAQCAk7NYLLoh+AbdEHxD0cqVJYeXKD4zXtN2TtOHuz5UxzodNaDhADWq3MjsuAAAALhKrFVBueeYHC8TByd5+Ege53cZMT2OK5Sx9Xsdf/QxezF++22qOf0DinEAAEqZY+XKuoh1euXWV9S4cmPlFuZq2ZFl6rOyjwavHqy1MWuVV5hndlQAAABcISbHUe4lZ9vL8UoeZeQtrr4hUk6alBYnBdUzOw3KmYxvv9WJESNl5ObK5847VePdabK6u5sdCwCACsvDxUPdrummrnW76rfTv2negXlaf2y9dibu1M7EnQr2ClbfBn0VUT+ibKz5AwAAwCWjHEe5VzQ5XhbWqkj2cvzMISbHcdnSv/lGJ5/4l4y8PPm0uUc1335bFopxAADKBIvFouuDr9f1wdcr8VyiFh5cqEWHFinxXKLe+/U9ffzbx2of3l4DGg1Qk8pNzI4LAACAS8BaFZR7jp3jZWZSp+hQzlPm5kC5kr5hg06cL8Z927ZVzXfeoRgHAKCMCvYK1ogbRmh9xHq9+n+vqknlJsotzNWKP1ao38p+uu/r+7Qmeg0rVwAAAMo4JsdR7pWpnePSn4dyUo7jEqWtXaeTY8dK+fny69hB1adMkcXNzexYAADgH7i7uKtL3S7qXKezdp/ZrXkH5mldzDrtOr1Lu07vUrBnsPo06KOI+hGq7FnZ7LgAAAD4D0yOo9xzTI6XnZ3j1exXynFcgrTVq3VyzBh7Md65s6q/8QbFOAAA5YzFYlGzKs005fYpWhexTo81e0yVbZWVmJWo93e9r3sX36tnv3tW2+K2Kb8w3+y4+H/27jxMjru+E/+7qrr6PqavuS/J1jGSRjKxDttsHLB3WTYXC9mQ/B7IL8Y2l4FwhZgAySZAEpJsDsJlQsyRbHg4HgiE5Ak42CSwq9iWZFujY3Rr7unp6fs+q/aP6q7p1szIkqxRd/W8X8/Tz7e66ts93xJG6n7ro8+XiIiIqIaV42R4bddz3F0Px9lznK4u+b1/wsKjjwKKAs9rfhF9f/iHECSp1csiIiKilyBoD+KROx7Bw+MP44npJ/DVya/iROQEvnfpe/jepe/Ba/HivuH78KrRV+Fg70GYRH4lIyIiImoVfhIjw4sXtHDca22zyvEUK8dpfcnvfhcLv/0hLRh/3evQ97GPMhgnIiLqIGbJjJ/f+vNay5XlCXz7/Lfx5MyTiBfj+Nb5b+Fb57+FLksX7h++n0E5ERERUYvw0xcZWkWpIFVKAWjDcDy9CKgqIAitXQ+1ncS3vo3Fj3wEUFV0/fL/QO/v/z4EkV2uiIiIOtXe4F7sDe7Fh+/6MI6EjuCJqSfw5MyTSBQTq4PykVfhQN8ByCLbrBERERFtNEFVVbXVi2h3qVQKHo8HyWQSbre71cuhBtF8FK/4xisgQMBzv/Zce1TbVErAx4Pa8QcuAo5Aa9dDbSX+jW8g9Lv/EwDQ9f/9Knp/53cYjBMREW1CFaWiBeXTT+DJ6Sf1VoEA4LF49KD8YN9BBuVERESbhKqqKFdVlKoKyhUFpaqCUsNYvuK5dk5FqVpFuaKieMW8clXBe//zdoji5ircvJ4stw2SRKIbV2+p4ra42yMYBwCTGbAHgFxEqx5nOE418a99DaHf+30AgPeNb0TPhz8Egf+ygIiIaFMyiSbc3X837u6/Gx8+9GEcXTqqV5THCjF8+/y38e3z34bH4sF9Q1qP8kN9hxiUExHRpqeqKiqKikpVRUVRUKmqKCsKqrVz5ap2XK5fb5hbVbTXVqu1UbnivH5dQVUFqrXXN89XV86ver/m84qioqyoKNcD63XC7nJV1c/fbO945e2wimzjup42SROJbky9wsZraZOWKnXuvlo4HgJ6x1u9GmoDsa9+FUsf/RgAwPfr/z+6P/hBBuNEREQEQAvK7+q7C3f13YUPHfoQji0dwxNTT+CHMz9ErBDDP1z4B/zDhX+A2+zWNvMceRXu6rsLssSgnIiI1lcPkQvlKgplBcVK81iqKKvCYeXKkLgx7K1eJRzWryuoqmvNb/45TSG2oqKiB9rNwbZ+XK2F3LX32iwkUYBZEiFLAswmCWZJgNkkwmwSIUsro8Uk1uY1XzNLzB1eDMNxMrREMQGgjfqN17n6gNAJILXQ6pVQG2gKxh94AN2P/haDcSIiIlqTSTThUN8hHOo7pAflP5j6gR6Uf+fCd/CdC9+B2+zGK4de3aMB3QAAIABJREFUif86+l8ZlBMRGUS5qiBfrqJQqiJfrj1KWlBdqFRR1IPrKooVRRsbrhX0cFtpnlNRUCxXV50rlKvYRDkyZEmAJAqQRREmSYAkiivnJBGSKMAkCvo1kyjo51bG2nlpnfP155IASWi4Jq3/XqIo6EG1HlxfEWzrYfYV56RN1g6lFRiOk6HV26p0WbpavJIruHq1MR1q7Tqo5WJ///dY+tjHAQC+Bx9E9wd+k8E4ERERXRNJlHCw7yAO9h1cqSiffgI/nP4hooUovnvxu/juxe/CZXbprVfu7rubQTkR0XWo93guVrSwulhW9NC6HmCvDrNr58vrhd2Nz7XgOl+uotLipNpiEmGVJX00m9YKiGsh8qqwV2x+Lq2cF4W15l8RKDdcFwUtrDbVAmiTWD9uOCeJepBtEleO64GxLIp6gC1LIkQB/K5NN4ThOBla+1aO92tjerG166CWagrGH3oQ3b/JYJyIiIhuTGNQ/tsHfxvPhZ/TKsrXCMrrFeUMyonIaKqKWgud16+cLq5RHd1cVd1cXd1YWX3l6+rzb3VmLQqATZZgM0uwyvWHCItp/dEii7A2jI0htz7q11a/1mIS+X2UaA0Mx8nQ2r9ynOH4ZhX733+PpY9rwbj/4YcQfP/7+UGEiIiIbgpJlHCg9wAO9B7Qg/J6j/JIPoJ/vPiP+MeL/wiX7MIrh1+JVwy9Agd7D8Jj8bR66URkUNVa3+r1KqebqqVLVT3gLjRUT1/9eq0H9gZsRng9hHpo3RBY28wrz+uBtv5cPxZXnbPJEqwNxzazpAXXZq2lBr8fErUHhuNkaO27IScrxzez2N/9byz9wR8AAPxvfhjB972PH3yIiIhoQzQG5R88+EE8H35eb72ynF/Wg3JRELHHvwd399+Ne/rvwXhwHLLIqnKiTqaqKnKlKjLFCtKFMtKFCtKFyrrPtbH+0J7nS1UUKtrGjbea2STCahJhWaeq2npFNbXlxaqqa+Oaldm166yuJtp8GI6ToSUK7dpWpVY5nmI4vtkwGCciIqJWkUQJ+3v3Y3/vfjx64FG8sPwCfjj9QxxeOIxLyUuYiExgIjKBz098Hg7ZgYO9B3FP/z24p/8eDLmG+JmFqAVUVUVFUVGpqihVFVSqCiqKilJFqZ3X2oOkCmVkrgy3a2F2prB+uL0R7ULqVdIr1dVrVVOLa16/spraKourr9eCapEbERLRLcBwnAxNrxxvu3C8Txuzy0C1DLDX46YQ+9u/w9If/iEAwP/mNyP4vvfySyYRERG1hCRKuLPnTtzZcycAIJQN4T8W/gOHFw7j6cWnkSgm8KPZH+FHsz8CAAw4B/Sg/GDfQbjN7lYun2hDqKra1Gu6UK7qfaq1Cmmtn3X9Wv6KeaWKgnJVQaWqbeBYriqoKMrKsX5OG8tVLdzWj6+YW3++0UQBcFllOC0muKz1x8pzp9UEd+Nzy8p1m7k5uGZoTUSdhuE4GVq9crzteo7bA4BoApQKkAkDnoFWr4g2WOxv/xZLf/hHAAD/W96C4Hvfw2CciIiI2kavoxev3fZavHbba6GoCiZjk3pY/nz4ecxn5vHNc9/EN899E6IgYjwwvtKCJTAOk8ivjnTzqaoWMhcqVRRqPae1sLqqt/MoNPSm1oPq2rx8qapvvtjYv7r+vB6EN27wqN7ijRdvhCQKMIkCzJIIkyTAbBJXh9sWGU7rSpjttjY/d1llfa5NlvjdhIhoHfyEQ4bWtj3HRRFw9gKpOa3vOMPxjhb7ylew9EefAAD43/pWBN/zbn74JCIiorYlCiJ2+3djt383Hh5/GLlyDkeXjuLwwmEcXjiMy8nLOL58HMeXj+Ox44/BKTubW7C4h1p9C3SLVKoKsrWe1dliRR+1Yy10LupBdnPFdXHdyuzmwHoj2n5cC0kU9LYeeg/rKzZitMjaBoo2s9bH2mwSIUsiZEmASWo4Fmshdi3MNokizKYrz4swiYL+Grk2V5ZEyOLKsUkUWJlNRHQLMRwnw8pX8shX8gCALmubVY4DWt/xejhOHSv65S8j/Ik/BgD43/ZWBN/NYJyIiIiMxS7bce/gvbh38F4AzS1Y/mPxP5AsJvHU7FN4avYpAMCgc1APyg/0HWALljZSbxvSGGZnChVkS1qYnb3K+cZz9eeF8q3bhFEQUAuiJVjrGyjKWu9qa0NgbTVpPautqwLt+saN2utt5vrxyjxrQ49rWRJv2b0REVH7YjhOhpUsJgEAJtEEp+xs8WrW4O4D5gGkQ61eCW2QpmD87W9D8Dd+g8E4ERERGV5jC5aqUsWZ2Bm9qvyF8AuYy8zhG+e+gW+c+wYkQcKewB49LN8T2MMWLFdRqSooVGpV1LXq6XypNpa11iL1tiD1yuq1rucb2o7kSxVki1p1d6ZYQXUDSrFlSYDTYoLDYtJHh8W0atNFS+Nz08pGi+tVZjcG1mZJ5GdpIiK65fiphQwrXlhpqdKWH6Lqm3KmFlq7DtoQ0S99GeE/ZjBOREREnU0SJewO7MbuwG68ee+bkS1ncTR0VK8qb2zB8rnjn4NLduFgn9aC5VDfIQy7hg31GamqqMiVKsiXqsiVqsg2HOdKVeTLWhCtnytXkCtqx1eG3Ws9vxWbL9bZzZIeZmuBttQUbLsajp0WadX5lblauE1ERNSJGI6TYdXD8bZsqQKshOOsHO840S9+CeE/+RMAQOCRtyPwrncZ6ksfERER0Y1yyA78zNDP4GeGfgYAsJhZxH8sai1Ynl58GsliEk/OPIknZ54EAARtQdzZcyf29+zH/t792OrZ+pI/N6mqilJVQa6ohde5ktYWJKeH2Cvn8qUqcrWAOlus6Mf1OblS8/Ni5da1EbHVqqrrLUFWjiW9wro+R39uXqnMtpklvQ1JPeB2WmQ4LBLsZhMk9q0mIiJ6UQzHybDadjPOOj0cZ+V4J4k+/kWE//RPAQCBRx5B4F3vZDBOREREm1afsw+v2/Y6vG7b61BVqpiMTeotWCaWJ7CcX8b3p76P7099HwDgkruwzb0XW5zj6LfuhkcaRr6kbfqYq7UHyZUqyJYaAu1aBXc9DM+Xqqhs8C6OogDYzSbYzBLstdDaYTHpx3azBJvZBId55dgmi7CbTbCaG4NtsSHYXgmzLSa2ECEiImoHDMfJsBLFBADAa23XcLxXG1k53jGijz+O8J/+LwBA4B3vQPBd72zxioiIiIhunaqiIpErIZYtIZLRxli2iGhWO45mS4hlSohldyKa3YpsMYeKPA3JfgmSfQqSbRrpcgLPRX+M56I/BgCoVSuquVFUcltRzW2BUugHcO0tPKy1QNpuluAwm2C3aGF1/ZwWZteOLRLsstQUejfNa3jO8JqIiGhzYDhOhqW3VbG0aVsVd782phdbuw66KRiMExERUaepVBXEamF3LFNqCrmjmeJK4F17xHMlqNdVsC0B5a2o5rZCFACHBbA6FyHZLqFqvYiSdAmKVIDJdQYm1xkAgEmwos8yhhH7Htzu3ovbPGPwWG16/+zGka1DiIiI6KViOE6GZZjK8UISKOUAs72166EbFv2bv0H4f/0ZACDwznci+M53tHhFRERERKsVylU9yK6H2dFMQ1V3thZ414LwZL58Qz/HY5Phd5jhqz38zvqxBQHnynm3VdaD7LUqsStKBWdjZ3F06SiOLh3Fc0vPIVVKYbbwPGYLz+P/xACrZMW+4D6tb3nvftzuHYfVZL0Zv1xEREREDMfJuGKFGIA2rhy3uAHZDpRzWvW4/7ZWr4huQOQLX8Dyn/05AAbjREREdOsoiopkvoxoQ8gdzzUE37XAu/FarlS97p8jCIDX3hB064G3ZeXYYYavFnp77WbIknhT7tEkmrA7sBu7A7vx67t/HYqq4Hz8PI4uHcWxpWM4tnQMsUIMz4SewTOhZ4DjgCzKGA+M65t83tF9B+wyi1CIiIjoxjAcJ8PSK8fbdUNOQdA25YxdZDhuUJG//gKW/7wWjL/rnQi+g8E4ERER3Zh8qaq1MMmUEMs1hNsNYyxb0tucJHIl3Miek7IkNIXdXocZgVpVt89pbg68HWZ02c1t05pEFETs8O3ADt8OvGHsDVBVFZeTl/XK8mOhYwjnw3gu/ByeCz+HL5z4AkyCCbv8u/TK8pd1vwwus6vVt0JEREQGwXCcDKvec7xt26oADeE4N+U0msjn/xrLf/EXAIDAb7wLwUceafGKiIiIqF3UN6bUKrnLtXYlV4y58krgnS0hX77+qm4AcFlN8NdCbn+tctvnNMPXEIA3PpwWU8dsJCkIArZ2bcXWrq14/Y7XQ1VVzKZncWzpmBaYh45iIbuAicgEJiIT+NKpL2kBu3cHDvYexMG+g/ip7p+C0+xs9a0QERFRm2I4TobV9j3HAcDdp43clNNQGoPx4Lt/A4G3v73FKyIiIqKNlCtVmnp1N/bsXut8Il++zo0pNbIk6K1J/M7a2Bh8Nwbddu35zWph0gkEQcCwexjD7mG8dttrAQALmQU9LD+2dAzTqWlMxiYxGZvEV05/BZIgYbd/Nw70HsDB3oNsw0JERERNGI6TIamqikRBC8fbtuc4sLIpZ4rhuFFEHvs8lv/yLwEAwfe8G4G3va3FKyIiIqJrpSgq0sUKErkSErky4jlt08l4LdCun9OD71qLk0JZuaGf57aa4Hda4LXLTW1M/FcE4PXzrg6q6m4X/c5+9Dv78Qu3/QIAIJwL42joKJ4NPYtnQ89iNj2rV5Y/fvJxmEQT9gb26mH5vu59sEiWFt8FERERtQrDcTKkdDmNiloB0OaV4y5WjhtJ5LHHsPyXnwTAYJyIiKiVVFVFplhBIqcF2ol8CfFcGUk99NbOaddrY758w326AcAsic3h9hptTLwOGX6HBV6HfFM3pqSbp9vejZ/d+rP42a0/CwBYzCzqQfmR0BEsZhf1nuWfn/g8zKIZd3TfoYfl44FxyJLc4rsgIiKiW4XhOBlSvWrcbrK3d6WHHo6z53i7i3zuc1j+5F8BAILveQ8Cb3tri1dERETUORRFRTRbQjhdQDhVxFKqgGht08l4PQDPlfSAO5Ero3KjKTcAu1lCl02Gx26G1y6jyy6jy25Gl0079jksq9qZOMwSq7o7UJ+zD6+5/TV4ze2vgaqqmEvP6WH5s6FnEclH9OPP4DOwmWx4WffLcKD3AA71HsKYfwwmkV+biYiIOhX/lCdDihcNsBkn0BCOL7R2HXRVy5/9LCJ/9SkAQPC970XgrW9p8YqIiIiMQVFUxHIlLfBOFxBOFfTjpVQR4XQR4VQBy+niDYXdFpMIr91cC7dldNnMK0G3XYbXLsNjqwfg2ui2ybDK0gbcLRmdIAgYcg9hyD2EX9r+S1BVFZdTl3Fk8YheWR4vxnF44TAOLxwGADhkB+7suVPb4LP3IHb4dkAU+C8GiIiIOgXDcTIkQ/QbB1Z6jqdDgKoCrEZqO03B+Pveh8Bb3tziFREREbWeoqiI50oIp7Uq73CqiHAt8F5KFfTQO3wdobcgAH6HBT1uC3rcVr1iux56e+0yPHZZD8O9djNDbtpQgiBgq2crtnq24ld2/goUVcGFxAUcCR3BM4vP4OjSUaRLafx47sf48dyPAQBusxv7e/bjYJ8Wlt/edTv/xQEREZGBMRwnQ4oVYgCALmu7h+O1yvFKAcjHAbuvteuhJsuf+Qwin/o0ACD4/vch8GYG40RE1LkqVQWJ2uaU8drGlIlcCZFMCUupQkPorQXh5eq1V3oHnGZ0u6zodlvQ47Kix21Bt9uKbpcWhPe4rQg4zTCxRze1MVEQsd27Hdu92/GGsTegqlRxNn4Wzy5qbVeOLR1DqpTCU7NP4anZpwAAPqsP+3v241DfIezv3Y9R9ygry4mIiAyE4TgZUqKoVY57LW3eVkW2AjavFoynQwzH28jypz+DyKe1YLz7N98P/8MPt3hFRERE1y5fqiKWKyGerW9QudK/O147H6/18a6fSxcq1/1z/A4zgnrArY3dLi34rp8LOC3cmJI6kiRK2OXfhV3+XXhgzwMoK2Wcjp7GkdARPLv4LJ4PP49YIYYnpp/AE9NPAABcZhfGA+PYE9iDvYG9GA+Ow2fldwAiIqJ2xXCcDMkwPccBwNVfC8cXgZ5drV4NgcE4ERG1l3ypinC6YYPKbD3sLiOWW30uniuhWFFu+Oe5rSZ4HWZ4az26/U5LQ/Bdq/52WxF0WmA2MfQmqpNFGfuC+7AvuA8Pjz+MUrWEE5ETer/yieUJpEvppp7lADDgHMB4YBzjgXHsDe7FTt9OWE3WFt4JERER1TEcJ0Oq9xxv+8pxQOs7Hj6lhePUcsuf+jQin/kMAKD7A78J/0MPtXhFRETUqSpVBcuZIpZSRYSShVrP7gJCyWLDcQGpG6joBgBZEvRNKOuj1q/bDJ+jfq75uscms7UJ0U1ilsy4s+dO3NlzJ96+7+0oK2Wcj5/HieUTmIhM4ETkBC4nL2M+M4/5zDy+P/V9AIBJMGGbdxv2Bvfqofmoh+1YiIiIWoHhOBlSvXK87XuOAyt9xxmOt1xzMP4B+B96sMUrIiIiI1JVFfFcWQu3UwWEa4H3Urp2nNI2roxkilCvsW23TZbgc5jhc6xsRtkUejvMTQG412GGwyxxI0CiNiKLst6G5VfwKwCAdCmNk5GTOBE5oYfmsUIMk7FJTMYm8fWzXwcAuGQXdgd262H5eHAcAVuglbdDRES0KTAcJ0OKF2ptVYxQOe6uh+Oh1q5jk2MwTkRE1yJbrNTC7QLCqaJ+vFQLvOvnS9Vra2tiEgW9R3dvvW+3x1rbtNKKXo92zWUxMegm6kAuswt399+Nu/vvBqD95dpidhETkQmcXNZC89PR00iX03h68Wk8vfi0/tp+Rz/Gg+N6YD7mH4PNZGvVrRAREXUkhuNkSPUNObssRqgc79XGFCvHW4XBOBER5UoVLKWKCKcKWEprYzhd1IPvcKqIcLqITPHaW5z4HeamjSrrj16PBd218NvvMEMUGXoTkUYQBPQ7+9Hv7MerR18NACgrZVyIX9Cqy2sV5peSl7CQXcBCdgE/mPoBAEASJGz3bseewB69f/kWzxa2YyEiInoJGI6TIdUrxw2x8zvbqrQUg3Eios5W38yyXtW9lCpgWQ+9td7e4VQR6esIvV0Wk74pZa/biu5aAF4/7vVws0oiunlkUcaYfwxj/jG8fsfrAQCZUganoqdwInICE8ta//JIPqK3Y/nmuW8CAByyA3v8e7A3uBd3dN+BvYG9xmg9SURE1CYYjpPhVJQKUqUUAPYcp6tjME5EZFyFchXhlNbHu17ZvZSuV3ivhOHp69jM0m6W0Ou2IuiyNFV8rzy3ottlgcPCj8hE1FpOsxOH+g7hUN8hAFo7lqXcEiaWJ3AychITkQmcjp5GtpzFM6Fn8EzoGf21o+5R7Avuwx3dd2BfcB9u67qN1eVERETr4Cd/Mpx6SxUBAtxmd4tXcw3q4XhmCVCqgCi1dj2bBINxIqL2VqooWEjkMRvPYTZWH3OYjecxF8shmi1d83vZZEmr5q6H3C6LXvmttTfR+no7GXoTkUEJgoBeRy96Hb141eirAGhFQxcTFzERmcDx8HEcXz6OqdSU/vjuxe8C0Db7HA+Oa4F58A6MB8fhMrtaeTtERERtg98QyHASBS0cd1vcMIkG+E/Y2Q0IIqAqQHZ5pQc5bRgG40REracoKpbSBS34juWaQvC5WA6hVAGKevX3sMpiLey2NoTdtdFt0YNvJzezJKJNyCSasMO3Azt8O/DL238ZgPZdaSIygRfCL+D48nGciJxAupzG4YXDOLxwGIBWZHRb123YF9ynPbr3YYt7C38fJSKiTckAySJRs3hR6zfutXhbvJJrJEqAs0drq5JaYDi+wZqC8d/6LfgffFOLV0RE1JlUVUUsW8JsvDn8novnMBfPYz6eR6mqXPU9rLKIIa8dQz47hrw2DPnsGPTaMeSzYdBrh9vK0JuI6Hp0Wbtw7+C9uHfwXgBadfn5+HkcXz6OF5ZfwPHwccxl5nAhcQEXEhfwrfPfAgB4LB7sDezV27GMB8Zhl+2tvBUiIqJbguE4GU69rYrXapBwHNAC8fQikA61eiUdjcE4EdHNlS1WMBNbaXcyG8thriEEz5aqV329SRQw4LVhyGvHoB5+22phuB0Bp5nhNxHRBjKJJn2zz1/d+asAgEg+guPLWhuW4+HjOBU9hWQxiZ/M/wQ/mf8JAEAURGz3btery+8I3oFB1yB/zyYioo7DcJwMJ17QKse7LAbYjLPO1Q/geW7KuYEYjBMRXT9VVRHJlDATy2I6msN0NIeZWA7T0SxmYjlEMlfv+y0IQI/LiiFfLQBvqAAf8tnR67ZCEhmkEBG1k4AtgPuH78f9w/cDAMrVMs7Gz+qtWI4vH8didhFnYmdwJnYGXz/7dQCAz+rD3uBe3BHUNvrcHdgNm8nWylshIiJ6yRiOk+HUw3HDVY4DDMc3CINxIqL1VaoK5hN5LfyO5TATzeoh+Ewsh9yLVH977bJe6T1YC8HrbVAGvDZYTNxomojIyGRJxp7AHuwJ7MEb8UYAwFJ2SQ/KX1h+AZPRScQKMfzb7L/h32b/DQBgEkzY7tuOvYG92BvUWrIMuYZYXU5ERIbCcJwMp95WxViV433ayHD8pmMwTkS00v5EC72zDRXgOcwn8qheZedLUQD6PDaM+O0Y8dsx7HPURjuG/Xa4rfItvBMiImoHPY4evMrxKrxq9FUAgGK1iMno5EpgHn4By/llnI6exunoaXzt7NcAaPtC7Q3u1R97/HvgNDtbeStERERXxXCcDKe+IafP6mvxSq6DuxaOpxiO30wMxolos2hsf6KH4LVK8OloDpFM8aqvt5hEDPuuCL/9dozUNsA0m8RbdCdERGREFsmCO7rvwB3ddwDQ/lxazC5iYnkCx5ePYyIygcnoJOLFOP597t/x73P/DgAQIOC2rtuwL7hPC8wDe7G1aytEgX/uEBFRe2A4ToaTKBixcrzeVoUbct4Mqqoi8qlPI/LZzwJgME5EnSWZK+NMKIVzS2mcCaVxNpTG2aU00oXKVV/XZZcx4rNj2O+ojVr4PeJ3oNtlgcje30REdJMIgoB+Zz/6nf149ZZXAwBK1RLOxM5gYnlCe0QmMJ+Zx4XEBVxIXMC3zn8LAOCUndgT2KO3YhkPjBurZSYREXUUhuNkOPXKcUN9gHL1ayPbqrxkDMaJqFMUylVcCGdwNpRuCsJDqcKa8wUB6HNba6G3Qxsbjj02tj8hIqLWMUtmvZ1KXSQfaQrLT0ZOIlPO4OnFp/H04tP6vGHXsP7afcF92ObdBlnkn2tERLTxGI6T4dQ35DRk5Xg+BpQLgGxt7XoMalUw/uij8L/pgdYuiojoRSiKiplYDmdqIfjZUBpnQilMRXPr9gIf6LJhR68LO3pd2FkbR/0OWGVufklERMYRsAVw3/B9uG/4PgBARangYuKi1oqlFphfTl7GTHoGM+kZ/NOlfwIAWCUrdvl3rbRjCe5Ft727lbdCREQdiuE4GU59Q06vxUCV4zYvIFmAahHIhADvaKtXZDgMxonICJbTRT38rgfh55YyyJera8732OSmAHxnrwvbelzcBJOIiDqSSTRhh28Hdvh24PU7Xg8ASBaTOBk52RSYp0tpPBd+Ds+Fn9Nf2+voxd5AbaPPwB6M+cZgl+2tuhUiIuoQDMfJUPKVPPKVPACDtVURBG1TzviU1nec4fh1YTBORO0mW6zo4ffZ+hhKI5otrTnfbBKxrdvZEIS7sbPXhW6XBYLAXuBERLR5eSwevHzg5Xj5wMsBAIqqYCo1tdKOZXkC5xPnEcqGEMqG8MT0EwC0zT5HPaPY5d+FMd+YPjrNzlbeDhERGQzDcTKUZDEJQKs4cMiOFq/mOrlq4XhqodUrMRQG40TUSoVyFReXMzi/lMG5pTTO13qEz8Rya84XBGDEZ6+1RHHrFeEjPjtMkniLV09ERGQ8oiBiq2crtnq24r/f/t8BALlyDqeip/Tq8lPRUwjnwricvIzLycv450v/rL9+1D2KMf8Ydvl2aYG5fwwus6tVt0NERG2O4TgZSqwQA6C1VDFcpV2973g61Np1GAiDcSK6VQrlKi4tZ3E+nG4KwqejWazTFhwBp0UPv+sV4bd3O2E38+MVERHRzWSX7TjQewAHeg/o5yL5CCajkzgdPa09YqcRyoYwlZrCVGoK/3L5X/S5w65hLTD379IrzD0WTytuhYiI2gy/vZGhJApav/Euq4E246xz9WtjmpXj14LBOBFthGKlisuRLM4tZXB+Sdsg8/xSBlNXCcE9Nhnbe5zY1uPSW6Ps6HHB77Tc2sUTERGRLmAL4KcHfxo/PfjT+rlYIdYcmEdPYyG7oG/4+YOpH+hzB5wDeli+y78Lu3y7jPk9k4iIXhKG42Qo8WIcAOCz+Fq8khvAyvFrpgXjn0Lks58DwGCciK5fqaLUQvB0LQTP4Fw4jeloDtV1UnC31YTtPS49BN/e48L2HieC7AtORERkCD6rr6l/OaAVWJ2OrYTlk9FJzGXmMJ+Zx3xmHv86/a/63H5Hf1NgPuYfg89qwO+eRER0zRiOk6EkigauHHfXK8cZjl/NqmD8g4/C/8ADrV0UEbWtcrUxBM/gfFgLwqciWVTWCcFd9RC8W6sG396jBeHcHJOIiKjzdFm7cE//Pbin/x79XLKYxGRsUg/LT0dPYyY9g4XsAhayC/jhzA/1ub2O3qb+5du929Fj7+FnBiKiDsFwnAwlXtAqx7ssBgzH65Xj3JBzXQzGiWgtVUXFQiKP2VgOM7XHdDSHc0tpXL5aCG4x4fYeJ7Z3u7Ctp14J7kKPmyE4ERHRZuaxeHBX3124q+8u/VyqlMKZ6BlMxiZxKnoKk9FJTKWmEMqGEMqG8NTsU/pct9mN7d7t+mOHbwdu67oNNpOtFbdDREQvAcNxMpR6OO61elu8khsdbj2ZAAAgAElEQVTg6tPGdAhQVYDBTBMG40SbW6ZYwUw0h5lYtikAn43lMBfPrxuAA4DTYsLt3U69ArxeDd7rtjIEJyIiomviNrtxsO8gDvYd1M9lShlMxia16vLYaZyNncXl5GWkSikcXTqKo0tH9bkCBIy4R7DNu60pNO939PPzCBFRG2M4ToZS7zlu6MrxchYopgGru7XraSMMxok6n6KoCKUKWvAdbagAj2kBeCxbuurrzZKIQZ8Nwz67/ri91hal38MQnIiIiG4+p9mJA70HcKD3gH6uVC3hUvISzsXP4VzsHM7Fz+Fs/CxihRimUlOYSk019TF3yI6mKvPt3u3Y5t0Gh+xoxS0REdEVGI6TodR7jhtyUxSzA7B4gGISSC8yHK9hME7UObLFCmbjzeF3/TEXy6NUVa76er/DjKGG8HvYv3Lc67ZCFBmAExERUWuZJTN2+nZip28ncNvK+Ug+gnPxczgfP68F5/FzuJi4iGw5i+fDz+P58PNN7zPoHNTCct9KaD7kGoIoiLf4joiINjeG42Qohu45DmjV4/VwPLij1atpOQbjRMYUzRRxaiGFUwspnA2lagF4HpFM8aqvM4kCBr02DPsdGNarwB0Y9tkx5LPBZZVv0R0QERER3VwBWwABW6Bp48+yUsZUckoPy+uPcC6Mucwc5jJzTb3MbSYbtnVta2rNss27DR6LpxW3RES0KTAcJ0OpV44bsuc4ALj7gMhZILXY6pW0HINxovanqioWkwWcnE/WwnBtXEwW1n1Nl13GiM++ZgV4n8cGidXfREREtEnIooxtXi3s/jn8nH4+Xog3VZifi5/DhcQF5Ct5TEQmMBGZaHqfPkcfdvp2Ysw3hjH/GHb6dqLH3sO2ckRENwHDcTIMVVWRKGjhuHErx+ubcjIcj3zucwzGidqIoqiYimZxaiGFkwtJnF5I4eR8EvFcec35WwMO7Op3Y6zPjS2BevW3HR4bq7+JiIiIrsZr9a7a/LOqVDGTnsHZ+Fmci620Z1nILmAxu4jF7CJ+NPsjfb7P6tMD853+ndjl24VB1yDbshARXSeG42QY6XIaFbUCwMCV43o4HmrtOlos+vgXEfmrTwEAuh9lME50q5WrCs4vZfRK8FO1MDxbqq6aaxIF3N7txJ4BD3b3u7FnwIOxPjecFn6EICIiIrpZJFHCFs8WbPFswatHX62fT5VSOBc7hzOxM5iMTWIyNolLiUuIFWI4vHAYhxcO63MdsmNVhflWz1aYRH5uIyJaD3+HJMOoV43bTXZYJEuLV3OD9HB8obXraKHYV7+K8J/+KQAg+J73wP+mB1q7IKIOly9VcSaUwsmFFE4vJHFyPoWzS2mUKqs3x7TKInb2urFnwI3d/VoYvr3HBasstWDlREREROQ2u7G/dz/29+7XzxUqBZyPn9fD8jPRMzgXP4dsOYtjS8dwbOmYPtcsmrHdux07/bXQ3DeGbd5tsJqsrbgdIqK2w3CcDCNe1DbjNGzVOKBtyAls2srxxLe+jaWPfgwA4H/bWxF421tbvCKizpLMl3G6oTf4qYUkLoQzUNTVc11WE3b3ayF4PQzfGnDAJPGf4hIRERG1M6vJivHgOMaD4/q5slLG5eRlrcI8WgvNY2eQLWdxMnoSJ6Mn9bmSoFWpN1aY7/TthMvsasXtEBG1FMNxMox4QQvHDdtvHADc/dq4CcPx5D/9MxY/8hEAgO/Xfx3Bd7+7xSsiMrZ4toQT80mcXEji5LxWET4Ty605N+C01Fqi1MLwfg+GfDZu4kRERETUIWRRxnbvdmz3bscv3vaLAABFVTCXnsPp2GmcidbaskQnES/GcSFxARcSF/C9S9/T32PINaQH5mO+Mezw7YDf6udnRiLqaAzHyTD0cNxq4HBcrxxfBBQFEDdHhWbqX/8VC48+Cqgqun71V9D9wUf5AYvoOkQzRS0Ir4XgJ+aTmE/k15w76LVpQXi/B7sHtLHbzX82S0RERLTZiIKIYfcwht3Deh9zVVWxlFtqqjCfjE0ilA1hNj2L2fQsnph+Qn8Pl+zCkHsII64RDLmHMOzS3m/YNQyf1cfvdURkeAzHyTASRa3nuM/ia/FKXgJnDwABUCpALgo4g61e0YbL/OQnmH/f+4FqFZ7XvAa9v/u7/ABFdBXL6SJOzidxovY4OZ/EYrKw5txRvx17BjwYH/DoG2Z22c23eMVEREREZBSCIKDX0YteRy9eMfQK/Xy8ENdbsUxGtXEqNYV0OY3T0dM4HT296r0csqMpLB9yDWHYPYwR9wgrzonIMBiOk2HUe44bunJckgFHEMiGtU05Ozwczz79DObe+S6gXIbrv70afX/wcQibpFqe6FospQo4MbfSGuXEfBJLqeKqeYIAbAk4sKe/IQgfcMNtlVuwaiIiIiLqNF6rF/f034N7+u/RzxUqBcymZzGTnsFsShtnUjOYSc8glA0hW87qledXsplsTcH5sFsLz0fcIwjaggzOiahtMBwnw0gUtMpxr8XAG3ICWmuVbFjrO963r9Wr2TC5557H7COPQC0W4bzvPgz8yZ9AMPG3HNqcVFVFqB6EzydxckFrjbKcXjsIvy3oxHitEnx8wIPdAx44Lfz/DxERERHdOlaTFdu827DNu23VtWK1iPn0PKZT01p4np7FdGoas+lZLGYXka/kcTZ+FmfjZ1e91mayYdA12NyqpRagd9u7IQosqCKiW4fftMkwOqLnOKBtyhma0PqOd6j8yVOYfctboOZycLz85Rj4iz+HILPClTYHVVWxkFwJwk/MJ3FqIYlIprRqrigAt3c7m1qj7Opzw8EgnIiIiIjamEWyYGvXVmzt2rrqWqlawnxmXq8ybxwXsgvIV/I4Hz+P8/Hza77vkEsLzEc8Ixh1j2LYNYxRzyhbtRDRhuC3bzKMeluVjqgcB4BUZ4bjhbPnMPvQQ1AyGdj378fgpz8F0WJp9bKINkS5quDicgaTiylMLqYxuZjCqYUUYtnVQbgkCth2RRA+1ueC3cw/iomIiIioc5glM7Z4tmCLZ8uqa+VqGQvZBb3KvDE4n8/Mo1gt4kLiAi4kLgCzza+t9zgfcY+sengsnlt0d0TUafiNnAyjviGn12r0cLxPGzuwcrx46TJmHnwQ1WQS1n17MfjYYxBttlYvi+imiGVLtRA8hdO1MPxCOI1yVV011yQK2N7jwp4Bd0MQ7oZVllqwciIiIiKi9iBLsh5oX6mslBHKhDCdnsZ0SnvMpGYwlZrCYnbxqj3Ouyxda4bmw65h2GX7rbg1IjIohuNkGPW2KsavHK+H46HWruMmK83OYuZNb0I1GoVl1xiGv/AFSE5Hq5dFdN0qVQWXI1k9AK8H4uE1+oMDgMtiws4+F8b63Bjrc2NXnxs7el0MwomIiIiIroMsyhhyD2HIPYT/NPCfmq6VqiXMpecwlZrSA/OZ9Aymk9MI58NIFBNILCdwfPn4qvfttnVjxKMF5aPuUT04H3QNwiyZb9XtEVGbYjhOhlBRKkiVUgA6oOe4Ho4vtHYdN1F5cREzD7wJlaUlmG+/DcOPPw7J7W71soheVCJXagrAJ0MpnFvKoFRR1pw/4rdjrNddC8K1QHzQa2PvQyIiIiKiDWSWzOv2OM+Vc5hJz+jBeb3qfDo1jUQxgXA+jHA+jCOhI02vEwURfY4+ra+5W2vXMuQawoBzAH2OPlacE20SDMfJEOotVQQIcJsNHrrWe453SOV4ORzGzANvQnl+HuaREQx/8YsweQ1e3U8dp6qomIpmV0LwWiC+mCysOd9ulrCzd6UafKzPhR29bji5USYRERERUVuxy3bs9O3ETt/OVdeSxWRTWN74yFVymM/MYz4zj/+78H9XvdZn9WHAOYB+Zz8GnANNx/3Oflgk7q1F1An4LZ8MIVHQwnG3xQ2TaPD/bN392phdBiolwGTcf8ZVicUw8+CDKE1PQ+7vx/CXvwS5u7vVy6JNrlip4sRcEqcW6tXgaZwNpVAor10NPui1NbREcWFnrxvDPjtEkdXgRERERERG5rF4sDe4F3uDe5vOq6qKSD6yEpanpzGdnNbD8kw5g1ghhlghhhORE2u+d8AWWDc873P0sWULkUEYPGWkzSJe7JB+4wBg8wGiDChlILMEdA21ekU3pJpMYuahh1G6cBGm7m4Mf+XLkPv6Wr0s2oQyxQqOTcdx5HIMz16O4YW5xJptUayyiB29KwH4WJ8bO/tccFvlFqyaiIiIiIhaRRAEBO1BBO1B7O/dv+p6spjEQmYBC5kFzGXmmo7nM/PIV/KI5COI5CNr9jkXoL3/laF5/bjX0QtZ5PcQonbAcJwMod5WxWvtgHBcFLW+48kZrbWKAcPxaiaLmbe8BcXJSUh+P4a//CWYh4x3H2RM0UwRR6ZiePZyHEemYji1kISiNs8JOM3YN9jVtFHmqN8BidXgRERERET0IjwWDzwWD8b8Y6uuqaqKZDGpV5kvZBaajheyC8hX8gjnwgjnwng+/Pyq9xAFET32nqbQfMg1hEHXIAadgwjYAtzXiOgWYThOhhAvaJXjXRaDb8ZZ5+qthePG25RTyecx97a3oXB8ApLHg+EvPg7L1tWbohDdLHPxXC0M1x4Xl7Or5gz5bDgw6sPBUR8ObvFhS8DBD5NERERERHTTCYKALmsXuqxd2B3Yveq6qqqIFWJaaJ6dx3x6ftVxSSlhMbuIxewiji0dW/UeVsmqB+WDLu0x5BrCoHMQ/c5+WE3WW3GrRJsCw3EyhHo43hGV44BhN+VUikXMveOdyB09CtHpxNDf/A2sO3a0elnUQVRVxYVwBs9OxXDkcgxHpuKYT+RXzdve48TBLT4tEN/iQ5/H1oLVEhERERERNRMEAX6bH36bH+PB8VXXFVVBrBDDXHquqep8Lj2HucwcFrOLKFQLuJC4gAuJC2v+jG57tx6cN1acD7mG4LP6WChEdB0YjpMh6G1VOqHnOLCyKWfKOJXjarmM+fe8F9nDhyHY7Rj667+GbXxPq5dFBlepKji9mNKrwo9OxxHLlprmSKKAPQMeHKqF4ftHvPA6uLkNEREREREZjyiICNgCCNgCuKP7jlXXy9UyFrOLelg+m55tOs6Ws3rLlufCz616vc1kawrLGyvQB5wD3CiU6AoMx8kQ9A05WTneEmqlgvkP/BYyP/oRBIsFQ5/9DOw/9bJWL4sMqFCu4oXZhLZ55lQMz03HkS1Vm+ZYTCJ+atiLA1t8OLTFh5cNd8Fu5h9XRERERETU+WRJxrB7GMPu4VXXVFVFopjQw/K5dC08rx2HsiHkK3mcj5/H+fj5Va8XIKDH0aMH5/3OfvTYe9Bt79ZGRzdcsouV57SpMG0gQ0gUtMrxzuk53qeN6cXWruMaqIqCxQ9/BOnvfx+QZQx+6q/guOuuVi+LDCJVKOPYdBzPXtbapEzMJVGqKk1z3FYTDoz6cKBWGT4+4IHZJLZoxURERERERO1JEAR4rV54rd41W7aUqiUsZBaag/OGqvN8JY9QNoRQNoSjS0fX/Bk2kw3d9u6mRz1Arx/7bX7IorzRt0t0SzAcJ0OIFWIAOqly3BjhuKqqCP3+R5H87ncBScLAn/8ZnPfe2+plURuLZoo4MhXDM7U2KZOLKShq85xul0WvCj8w6sOOHhdEkZUJREREREREL4VZMmPUM4pRz+iqa/WNQuvB+Vx6DgvZBSzllvQ2LcliEvlKHtOpaUynptf9OQK0vuprheeNz52yk1Xo1PYYjpMh1HuOd17lePu2VVFVFeFPfAKJr38dEAT0//Efw/1f/kurl0VtZjGZx7OXV8LwC+HMqjmjfrteGX5oiw/DPjs/IBEREREREd1CjRuF7gvuW3NOoVLAcm65KTBfyi01PV/OLaOiVhDJRxDJR3A6enrdn2kz2ZrbtjSE50F7EN32blahU8sxHCdD0Dfk7JTKcXctHC+mgGIGsDhbu541LH/yk4h95W8BAH0f/xg8P/9zLV4RtZqqqpiO5lbC8KkoZmP5VfN29LhwcItPf/S4rS1YLREREREREV0Pq8mKIfcQhtxD685RVAWxQkwPy+sB+pXP06U08pU8plJTmEpNrft+AgT4rL6myvOgPYhuW/Nzr8XLIivaEAzHqe3lK3nkK1oA57V0SDhucQFmJ1DKaNXjlttbvaImkcceQ/SxzwMAen7nI+j6pV9q8YqoFRRFxflwBs9ejuqV4eF0sWmOJArY0++uBeF+7B/xwuvg7udERERERESdSBREBGwBBGwB7PLvWnderpzDcn553fB8ObesV6FHC1FEC1FMxibXfT9ZlBG0BfWKcz04tzU/d8iOjbht6mAMx6ntJYtJAIBJNHXWb3KuXiB6Qes7HmifcDz65S9j+S8/CQDo/sAH4HvDG1q8IrpVKlUFpxdTemX4kakYErly0xyzJOKOoS69KvynRrxwWvhHCREREREREa2wy3aMyCMYcY+sO0dRFcQLca1dSy1I19u3NDyPFWIoK2UsZBewkF24+s812a9ahe63aq1l7LL9Zt8yGRQTDWp7+macnfZPaFx9K+F4m4h/7WsIf+KPAQCBd70T/ocebPGKaCMVK1VMzCX1MPzYVAzZUrVpjt0s4c4RLw6OamH4vqEuWGWpRSsmIiIiIiKiTiEKot4HfQxj684rV8uI5CMI58PNAXpuWT+3nFtGppxBrpJ70VYugNYPvR6U62PjcW0M2AKwm7hvVidjOE5tL1GobcZp7ZDNOOv0TTnbIxxP/MN3EPq93wcA+N/8MAKPPNLiFdHNlitV8Nx0Qm+T8vxsAqWK0jTHbTU19Av3Y3e/G7IktmjFREREREREtNnJkow+Zx/6nH1XnZcr5/Sq83rrlisr0aP5KArVAvKVPOYyc5jLzL3oz7dKVj0w99l8q0P1hnDdJbsYpBsMw3Fqe/FiHADgs/havJKbzNWrjelQa9cBIPUv/4LFD38YAOB94xsRfN/7+Jt5B8gUKzgyFcPTl6J45lIMJ+eTqChq05yA04JDDZtn7uhxQRT5vz0REREREREZi122Y9QzilHP6LpzVFVFrpJDNK/1OY/mo/pxJB9pPl+IIl/Jo1AtYD4zj/nM/IuuwSya169Gt/kRsAb0nu0O2cHspQ0wHKe2lyh2aOW4u18bU1fvl7XRUk88gfkP/BagKOj65f+Bng/9Nn9zNqh0oYyj03E8fSmKp2thePWKMHygy9YUhm8J8A9jIiIiIiIi2hwEQYBDdsAhOzDsHn7R+blyriksbxxjhVhToJ4tZ1FSSljMLmIx++JdAiySBQFbQA/N621cArZAU1sXv80Pm8l2M26f1sBwnNpeved4l6XDwvE2qBxPfOc7WPzQhwFFgfsXfgG9v/d7EETjt9BQFRX5TBnZRFF7JIvIJIrIJYrIJkvIJosQJRHeXnvt4YCvzwF3wArRQC1EriUMH/HbcdcWPw5t1cLwQS83HSEiIiIiIiK6FnbZDrtsx5Br6EXnFiqFVdXo0XytIr3QXKGeLWdRrBavuSLdITv00FwP1BuC9Po5v9UPWZJvxq1vGgzHqe3Ve457rd4Wr+Qmc9Uqx1vUczz21a9i6aMfAwB4ful16PvoRyFI7b3RoqqqKOUryCa0gLsefGfjK6F3NlFELlmCckVIvJbwVKrpuWgS0NW9EpjXx65eO2Rz639tricMv+s2Hw5t8aO/i3+7TERERERERLTRrCYrBpwDGHAOvOjcfCW/Epw3hOb1R2OwXqwWkS1nkS1nMZ2aftH39lg8evsWn82Hj9z1EbjN7ptxix2J4Ti1vXrPca+l08LxhspxVQVuYWuLyBe+gOU/+3MAgPfXfg09v/3BlleMV0pVLeCuB9561XepqQK8UlJe/M0AQADsLjMcXRbt4Wk8tqBSqiIeyiK2mEM8lEUilEOlrCC2kEVsIQtguem9XD6rFpj32eFrCM6tzo37G9l0oYyjU/UwPIoT80lcmfkzDCciIiIiIiIyFpvJhkHXIAZdg1edp6oqsuXsSnBeiOiV6Y1BeiQfQSwfQ0WtIFlMIllM4mLyIgDg4y//+K24JcNiOE5tr95zvPMqx2vheLUI5OOAfeM3HFVVFct/+UlEP/95AID/bW9F8N3vhiAIUFUViqJCqaioVhT90fhcqaqolmvXasdKtT5XXfs19eP6vLLa8BoF+bTW/qSYq1zzfVjspubA22NpCr4dXWbY3ebrapGiKirSsQLiIS0s18fFHArZMtLRAtLRAmZORZteZ3PJTVXm3j5tdHot193Lm2E4EREREREREdUJggCn2Qmn2XnVjUYBQFEVpIopPUSP5CNIFpMwS+Zbs1iDYjhObS9e0CrHO67nuMkC2P1ALqptyrnB4biqKFj6o08g/nd/BxUC5Lc/ivmxV+KZTx9H6GISpWIVePFOJBtKkkU99HZ2WWCvhd3OLi3wdnRZYPdYNqTFiSAKcAdscAdsGNnjb7qWT5eaqszrwXkmVkQ+XUY+ncDC+UTTa0wWCd4eux6W+2rBuTtog1QL7RmGExEREREREdHNIAoiuqxd6LJ24Xbc3urlGAbDcWp79XC84yrHAcDVp4Xj6RDQu2fDfoxSqeDChz+BmWenEd/1EBL9d6A0KQKTF676OskkQjIJEE2ifiyZxNXPpdqxLEKSrnyNCLE2T5JESHLDa2QBVoesV3xb7Kbrrra+FWwuM2wuM/q3Nf83WCpUkFjKaWH54kpongznUSlWsTyTxvJMetX7KRYRaUHFcrWCtKAiI6qoiCqGBBFunwV7bvfh0PYgDm31oc/DMJyIiIiIiIiIaCMwHKe2pqqq3lal4yrHAa21ytLJDdmUM5ssYv5sHLOno5h++jLyuAfYcY92sQLIFgn927swuMOLgR1e2N3mWmithdyiKLRlUN1OzFYTukfc6B5p3tiiWlWQDOeRCOVw+XICFy7EkQjlYM5VYYYAsajAA8CDNSrgswBmYwgfTuKpWqsYZ9dK25jGY7vHDFHk/0ZERERERERERDeC4Ti1tXQ5japaBdDBlePATQnHS/kK5s8nMHcmhrkz8dqmknV2CEoFwaCE0Xu2YnCHF91b3Hp7D7p5qoqKF+YS+OFkGE9NhnF2qVY5bgYgA9s8NtzV14VdXQ4M28yQioq+4WgmoW0+WspXUC5WkVjKIbGUW/dnCQJgd5vh8FobQnNzU4Du6LLAbOVv9UREREREREREV2JiQm0tUdCqxu0mOyySpcWr2QAvIRyvlhWELiUxdzaOuTMxLE2loTY2rBYAdzWKrrnn4ctewq7fewTeV957kxZOjVKFMn5yLoInzyzh384uI5Yt6dckUcD+ES/uH+vG/WM92BpwvGhFfrlYrYXlxYbgfOU4mygimyxBVVRkkyVkkyWEr/J+ZqsEm7tNqsxr9974S7ByLADClefQ9OvV9Et3lfcSBAEWhwy7x6xt0tqweavdo7XJaYtfDyIiIiIiIiJqGYbj1NZihRiADq0aBwB3PRwPvehURVERmU1j7kwcc2fjWDyfQKWsNM3xBG0Y3OlF/7AV6mf+J5QXnoXocGDosc/BfuDARtzBpjUdzWrV4WeW8MylGCoNfzHhtprwih3duH+sGz+zPYgu+/XtDC1bJHT12NHVY193jqKoyKe1SvNMvDk4bwzSS4Vq7ZG/4XvtRIIowO6S9U1e6xvB1sNzR+2czSlDYIhORERERERE1JEYjlNb6+h+48BK5XhqYdUlVVWRDOf1NilzZ+Mo5ipNc2xuMwZ3eDG4U3u4/TZUIhHMPPQwimfPQvR4MPw3X4BtfPxW3E1Hq1QVHJuO46kzYfxwcgkXl7NN17cGHfjPYz24b2c39o94YdrgljWiKNQqoi3oHll/XqlQQTZRRD5dBqCuP3GDqerKj1f1E/Vj6BfUhkn6alXt/w9oeL7qfRpvrTa/kC1rf0mQKiFXq7bXfi2aq+6B1Zum1omiAJvbvKryvOnYwxCdiIiIiIiIyIgYjlNbixfiADq4ctzVq421yvFssqgF4bVAPBMvNk2XrRIGtnv1QNzX39yio7y4iJk3PYjS1BSkQADDjz8O647tt+x2Ok0yV8a/n1/Gk5Nau5RkvqxfM4kCDm7x4b6dWruULQFHC1e6PrPVBHOvCd7eVq+kfShVBfl0GdnkSmCeTRa1AD1V0tvW5NMlKIqqV+Fj+uohut1jht1jgd1ths0lw+asjzKsLjNsThm22mgyr7EZKxERERERERHdUgzHqa3VK8e9lk4Nx/sBAJVMAj/529M4fbi5vYpoEtC31VOrDPehe8QFcZ2K5NLMDGYeeBPKCwsw9fdh5ItfhHl0dKPvoONcWs7gyckwnjyzhCNTcVQb2qV02WW8stYu5ae3BeGxyS1cKd0oURL1zUqvRqkqyKW0ED13ZZCeLGnheqKIfKYMRVGRiRdX/YXWemSLBJtLhrUhQLc5zbC6ZNhdZlgbgnSbywzZwjCdiIiIiIiI6GZjOE5tLV7UKse7rB3aVsURQKrah3+Jvx+RUAgQgOCQS2+T0nd7F+RrqDAtnj+PmQcfQmV5GeaREQx/6YuQ+/tvwQ0YX7mq4MhUDE9NhvHkmTAuR5rbpWzrduL+sR7cP9b9/9q78ygt6jvf45+qerbeN5qGhm4WZTMKKCgS9wRBT5ITt4Qo9+J4k0lyDjqjxOTqScaYcz2jJ957x5goMTNzMTdnFGMSkhsTIQYRl0EFDAY1oLJvDd3Qe/ezVdX9o561u4EGoZ+ned6vc8qn6le/evrXjZbNp37P96eLGqtkUTqjYJiWqdKqoEqrjh+i27aj3o6outu8wLy3M5rYYurtinn7XTGFE6+O7SoWsRWL2OpoCQ9qLD6/qVDmbPSM4DwZpJdUBFRWE1KoxH/CRV8BAAAAAADhOPJcqqzKWTpzfPcHbXrpyKOKOCUKFRua//UZaphafVLv0fve+9r7ta/JbmtTcPJkNf77v8lXW3uGRnx2ONIV0WsftR8r1YsAACAASURBVOjPfzukdR82qzOcruXutwxdOrHGK5cytU6NNcdeFBOQJMsyVVoVUmlV6IR9XddVNGynw/POqMJdMfV2JcP0qMJ9QnU75igec9R1NKKuoyeeme4LWiqvCamsJqTymqLEa0jlI7z9YLGP8BwAAAAAABGOI8+1hRMLcp5lM8ddx9XGF3fp7Rd2Sm6JRvo/1HVfaVDZSQbjPZs2ae83vimnq0uh6dPV+LOnZFWeXT+rTyocs/X+gQ5t3tumd/e2afPeNu052pPVp7okoGumjNS8aSN1+aQRKgtRLgVnhmEYChb5FCzyqXLkifu7rjfLPDs4T89KT85G7+2MphYfjUdsHT3QraMHugd8T38oGZ4XpUP0EekQPVjMv/8AAAAAgMJAOI68liyrUh08udA4n4W7Y/rz8g+0+70jkqRP1f9NV9gPyNIjJ/U+XW+8oX1L7pQbDqv44os1dtkyWaX5uSjkUHEcVzuPdGvzHi8Ef3dfm/52sEMx2+3Xd+qoMn122kh9ZmqdZjZUUi4FeckwDG9R1ZBPFbVFJ+xvxxx1Hg2r80hYHUd61XEksd/Sq84jYfV0RBUL2zqyv1tH9g8cngeKfCofEVJZdWLm+YhQVpgeKDozvzq4risn7sqOezPl7biTmjVvxxzZcTu1H485ch1XxRVBldeEVFoVPOZ6DAAAAAAAHAvhOPJackHOs2XmePOeTq362RZ1tIRl+U1ddesUTWv9o7QhLnU2nfgNEjr//Gftv2ep3FhMJVdeobE/+pHMohMHZ2eblq5IajZ4cmZ4R0aJlKQRpQHNbKjUjLGVmtlYqeljK1lME2cly2+qsq5YlXUDlwOKR211Hg33C8294171dsYU7Y2rZW+XWvZ2DfgewRJfqlxLWU1IJeVBOU4ywM4Is2OO4vH0/rFD7/T+qTJMQ6WVwcQs+HSQn9wvqQzK5AEYAAAAAKAPwnHktbOp5vjW9Qf1yjPbZMcclY8I6bpvXKDahjLp1VFeh86Dg3qf9t//Xgfuu1+ybZXNn68x//NRGYHAGRx5fgjHbL23vz0VhG/e26Z9rb39+gV9pi4YU6GZDV4QPmNspcZWFVFjGZDkC1iqGlWiqlEDf8okFrFTs84zQ/OOFi9MD3fHFOmOq7m7U817Os/oWC2fKcvvbb7Mfb8py2fKMKXutqg6jvTKibvejPmjYR34qP97maah0upgv9A8WUqmpCIog/AcAAAAAAoO4TjyVsyJqSPaIWl4zxy3Y45ee/4jvf/qfknSuPNrNO+O8xQqScxcLhvtvQ4iHG9d8ZyafvADyXVVccMNGv3Q/5DhO/v+M3YcVztauvSXPV5plM1727T1YKfiTnZ5FMOQzqkt9YLwxDZlVJn8lFcATok/aKm6vkTV9QOH59FwvF9o3tMRPWaAndpPHvsyjvv1s1LvY/qMQT/Qch1XPR1RdWTMhO9MlJTpOBJW19GwHNtVR0tYHS1h7R/gPUyfobKq/vXXk/vFZQHCcwAAAAA4C519qRrOGu2RdkmSIUMVgYocj+bUdB4Na9XP3tPhXR2SIV3y+Qmaff347JClPBGOdxw/HD/y7/9Hhx99VJJUddttqvved2WYZ0cI3NwZScwGb9XmvW366952dUYGKo8S1MyGSl3Y6AXhF4ytUDmLZwJDJhDyqWZMqWrGlOZ6KCmGaaikMqiSyqBGn9P//xWO46qnPZKY/Z5Rhz0xO77zaERO3FV7c6/am3sltfZ7D8tnpgLzssSipf6gKV/Aki9gyR+05AuY8vc59gUsry2YmO3OJ1gAAAAAIK8QjiNvtYW9euMVwQpZppXj0Zy8vVuP6k//9r7CXTEFi3269r99SuPOr+nf8QQzx13XVcuPf6yWJ5dJkmr+/u9Vu/SeYR2yNLWH9eqHzXrt4xa9s7tV+9v6l0cJ+U1NH1OpGQ0VmtlQpZmNlaqvCA3r7xvA0DNNQ6VVIZVWhaRJ/T+F5NiOutoiiRnnfeuwh9XVGpYdd9R2qEdth3pOeRyG4ZW18QUt+QOZwXpmiG7J7zflC1rptoCZCNu9mfWmaci0EptpyLTM9LFlyEictywztZ/eTBmGuI8CAAAAQALhOPJWa8SbvVcZHF4lVVzX1Turd+ut3+2Q60ojGkp1/TcuUPmIYyyYWZaoOR5uk2K9kr8o670OP/KIjv78/0qSau+5RyO+8fUz/S2cduGYrQ27jurVD5u17sNmfXgoe6E/w5AmjUyWR6nSjIYKTakrk4/yKADOMNMyVV5TpPKage/Rtu2ouzWSLttyNKxob1zxqKNYxFY8mtwcxaJ2os1RPGorFrXlxL1yUK7r1XSPRWz1fxw4tI4XrpuZoXri1ec3FSjyKVjkUyBjSx9bChb5FSiyUu2Wn5nyAAAAAPIf4TjyVmoxztDwWYwz0hvXmqc/0M53WyRJUz89Wld9ZbJ8gePMfA9VSr4iKd7rzR6vnihJcm1bTQ8+qLbnfyVJqvvud1X9X//LGf8eTgfXdbW9uTsVhr+184jCMSd13jCkGWMrdeXkWl06oVoXjK1QGeVRAOQhyzJVPqLIe8A55eT/f+TYTio4j0dtxSLp4Dwesfucyzx2EuftVOhux125jivHduTYbnrLbHPS7W6fdRrSY/LOe+xP8NM5NtMy+gXqwUSQPnB79n4yYAcAAACAM4lwHHmrLeKVVRkuM8eP7O/Si09tUfvhXpk+Q1cunKzzLq8/8cw5w/Bmj7fulDqbpOqJcmMxHfjv96njj3+UTFOjH3pIlTfdODTfyClq743pPz9u0asfNevVD1v6lUqpKw/qykm1umpKrS4/d4QqiwM5GikADB3TMhUo8mZeDzXXTYfl7kBBeqrtOGG77cqOOYr0xhXtjadeo1nHtiK9MUV7bUXDccn1AvhwV0zhrtgpj9/yeSVl/EFL/lC6nntmW2o/MEBb0JfdP1ELnhntAAAAAJIIx5G3kjPHq0PVOR7JiX24oUlrf7FV8aij0qqgrvvGBaobXz74NyivT4TjB+VEItp/9z3qWrtW8vs15tFHVX7dgjM3+FNkO6627G/Xqx8269UPm/WXvW2yM2YpBnymLhlfrasm1+rKybWaXFdKIAEAQ8gwDFmWIWsIl+1wHVexiJ0Vovfft4/RntjC3mx2O+7IjjsKd596wN6PoXSQngzT+4TuvqCVVVbGMPvum1n13U0z2S4ZVuK8aST2jez9Ad+vT714nynLb8pKlLkBAAAAcOYQjiNvDYeZ43bc0X/++mP9de0+SVLDtCpd+9VPqaj0JGdFJ+qOO4d3a+//+qZ61r8pIxjU2Md/pNKrrjrdwz5lhzq8hTRf/ahFr3/UrNae7MBiYm1JKgy/dEKNio5XTgYAcNYxTCNVIuVUuY6raMQL0JN12tNbXLGwnar3HovYqePMLRrxytZktnlvruzjPGcYkukzvcDc5wXnps8Lzi2/154dqHv90teYMhPXZV+TeL/ENf6QpaKygIpK/QqV+uUPWjzQBgAAQEEgHEfeSi7Ima81x7vbIlr9r+/p4PZ2SdKs68fpki9MlGmewl8my0YrHja174e/Vu+uozKLizV22TKVzLnkNI/65ETitjbuak3VDt/a1Jl1vizo02XnjtCVk2t15eQRGltVnKORAgDOFoZpKJioO366uI6reMxJB+zJUD2aEaBnhOyOkyhF4yTqvCc2N6Oue6p9oP3Ma7P2nez36fOe6VrwiXG7kh1zZGes2zEULJ+pUKlfRWV+hUr8KioLeMeJLVSaDtKLygIKlfiY5Q4AAIBhiXAceStZViUfZ44f+KhVq/71ffV2RBUIWZp3x3maMKP2lN6r969/VesvP1DH+jq5zlGZFRVq/NlTKpox4zSP+sRc19XOlvRCmm/uOKreWHp2nWFI08dU6MrJtbpqcq1mNlTKx1+GAQB5zjCNVNkUKX/XvHDdRJ33uCMn7sq2vWDcjjupdjuePO9kHaf6xBzZdvJ8xrnkvu3IjnlBffJctNdWb2dUvV2x1Nfrbououy0y6LEHi32pAD0ZnnvheiAdtJf6VZQ45w8xOx0AAAC5RziOvJUMx/Np5rjrunp3zV7952+2y3Vc1Ywp0XVfv0CVdSc3Y9rp7VXHH19U67PPKvzee4lWQ6G6gEb/7OcKTZly+gd/DO09Ma3fcSSxkGaz9rVmL6RZW5a9kGZ1Sf6GCgAADGeGYaTKp+RKLOoF5eGumHoTi6r2O+7KOO6OSa4U6Ykr0hNX++HeE38RSabPUFFJIkjPCM7TAXtipnpi1nqo1C+LB/IAAAA4zQjHkbeSNcergvkRjkfDcb38f7dq+zuHJUmTL6nT1YumJmahDfI9du1S64rn1LZypZx2rxyL4fer/MrZqjL+n0KTxso4w8F4Rzimt3cc1Zs7jmj9jiP64GCH3IxPcQcsU7PHV6Vqh08dVcbMLgAACoQ/YMlfU6TymqJB9XccV5GemHo7+wTnfY8z9uNRbyZ7d3tU3e3RQY8tUOTLLudS6vcC9rJkyZfMWeoBBU7T7PTkjP541FY86ige815jyeOsV1vxmLcf63POjjmpGvHmYGrC9+3jy6gpbyWO/Uaif3Zd+lMq8wcAAFCACMeRl1rDremyKqHcl1VpberWiz/dotamHpmmocu/PEnnXzVmUH/hcm1bXevWqfWZZ9X9+uupdv+YMar8ykJV3nyzfGqTHv+11NnkFRg9jWF0ZzimjbtatX7HEa3ffkTvH2iXk13SVOfUluiKSV7d8Esn1qg4wK0BAACcmGkaiVIpg/9kWSxqH3NG+oCz1ROz06O9cUV742pvHuTsdMvoX+ql1C9/yCc75igWs/sE284xw2237y9Pec4wjayw3Oc35QtY8ge8V1/f137nE+f83qs/s61PH2b0AwCA4YwEDHmjLdymNXvWaPWu1Xq76W3Zri3TMFUTqsnpuLa/c1hrfv43xSK2SioCWvD1CzT6nIoTXhdvaVHbr36t1l8+p/iBg16jYajkyitUdeutKr3iChlWYtZ5LDE7K94rhdulolN/INAdiWvDrqN6c8dRrd9xRO/tb5fd5y90E0eUaM7EGs09p0aXTqjWyPLQKX89AACAk+EPWPJXWyqrHtzvH47jKtoTT4fnndlBet8Z673dMcUjthzbVU97VD3tUUndp2XshqE+4XJGoOwfOHhOnrd8Zkbt+Owa8QPVku9bV95J9ktdk64l328xV8dVPOoqHj3zi7mapnHssD04wBay+p0LhCz5gz75g4lzIe/nxkKvAADgTCMcR061hdv08t6XtXrXar118C3Zbnrxx/NqztNtU29Tsf/k6nmfLo7taP1vd2jzS3skSfWTKrXg789XcfmxZ0a5rqved95R6zPPquNPf5JiMUmSVVmpyltuVuXChQo0NPS/0F8khSqlcJs3e/wkwvGeaFybdrdq/fYjenPHEf11X7vifcLwcTXFmjuxRpcmtlEVhOEAAGB4ME0jVXd8sMX24lG7f430Tm8WejQcT82Izgqv/ckZ0tkzo/0Zs6hNn5GX5eZcJ72Ya3LR1XSg7mTNjo8lSrwMVPol2ZY+32dmfSx9jRK/bjqOq2jYVjRsH3+Qp8DymwMH7ANuPvmDXn/Lb8m0jIzNKzWT1WaaWceGaciyvDYj1Sc//7wBAMDpQziOIdceadfLe9KBeNyNp85Nq56m+ePna8G4BWooHyBEHiI9HVH96d/e0/4PvbrnM69t1NwbJh5z9orT3a3237+g1mefVWTbtlR7aMZ0Vd16q8qvv15mMHj8L1o2OhGOH5BGTj1mt3DM1qbdrV7N8O1H9O6+NsX6zBZqqC7SpRMSM8Mn1qi+cnB1QwEAAM4GvoClspOYnT7cGaYhy/Tqlg8F13XlxN3s8DyjFrudqsluKxZJbOGM/eNt4XhqPRw75gX14a7YkHxfAzHMdFBuWpn7Zr8A3jANmWbiGtML3LP2De9hj2F5obvXroH7ZrxXZnsysDdMr3SQYXhf3/J7D3C8V7PPa6IEjs9MveZT6O+6rhzHlR11vLJGscQDnFj6QU1qP/EqQ7KsdA1+02ekX31mur5/6jWzZr9BbX4AQArhOIZEKhDfvVpvHcgOxKdWT9WC8Qs0f9x8NZY35myMruOqvblXh3a2a/3K7epuj8oftPSZxdN07qyRA14T+fhjtT67Qu2//a2cbu/jukYopPLPf05VX7lVRed/avADKBslNf9Neu1/S80fSmNnS6MuUNj16S972rR+hzczfPOeNkXt7I/IjqksSswKr9bcc2o0tio3s+0BAABw9jMMQ5Y/EcaXnN73dl1v1ntWoB49ccAeT+3HFY95pWZSm+PKsb0213Fl265cO93mJGbeDzgex5XtuDr98+Jzq3+IniiHk2xLlALyBdJ9BgrfvcVqHdnxxIOSuJMIufsE3Kl9O9Hfyehvpx6IDCXDUHZYbp04YPf2sx+OWJkPSlLvk9kno6/PzHqgYmV+umGA85nX+YPenwkA4PQiHMcZ0x5p19q9a7V612q9efBNxZ10ID6laooXiI+fr3Hl44Z8bI7jqv1wjw7v7lTznsS2t1OxjI+DVo0q1vXfvEBVo7J/43djMXWueVmtzzyjnrffTrX7xzWq6tZbVXnjjbIqTlyTvJ/6mdKOtdKu17xNUlw+feiO0zb7HO11zlGze66i7iiNKi/S3HNqNDdRN3xsVVFezf4AAAAAToVhGN5MZ7+lotKh+7qu68p1lQ7ME5sXpqeD9azQ3XZSwXry1XUS/Zy++0q1pc9JjuPIdRKzp5PXp/Ylx00E+W7/90vup0rqHGOWdTzmtSkjgE7Oys9HJwzuE5+QsO1kbX43VZM/WUoo+TNJvca9n1Um103+HCQNk8cfpmnIF/TKQflDPq/0U9Dyyj8lSwwl9wOmfEFLgWDyOP2aLEfk1f/3+rG4LoBCRTiO06oj2qG1e7xAfP3B9VmB+OSqyZo/br7mj5+vCRUThmxMjuOqtalbLXs6dTgRhLfs7VIs0v8XIJ/fVM3YUo2ZXKlZ149XIJT+TyR26JDafvm82n75S8Wbm71G01TpZ65R1a23qmTuXBnm4H+hCMds7T3aoz3Jrfsm+WtqVdL8F53vfqyZ5seqMTo13diu6b7tqevsYKXMsbNk1M6SKmZLwVmSwUxxAAAA4FQZRrLsiSX5cz2a0y8ZuGeWKknO3vZejx2qe/3TbZkzwS3LkBUYeFZ5qi1V0sWSz2cm+meUfMkMwn1eeZoz+TM4Vnhu25mvTnb47mQvgOvY6YcmzkBtdmZgn/EgJatvxqcX7Mz3dvqdz6rx3xtXtFdSe/S0/nxMn5EKzn2pV+/vt64jSd4DJNeVklP9veP0vhIPmbxr+vRJfhvJPn2u7dvHKx+ULj90rHJFJyxlZCX30+sLmMZx3i/j0wFZnxzILN2T9Wr2uWbga4frGgau46Yf0jmJfweSDwNdt8/+sR4CDvDgUEr9fLwtswRS+jj58xuOPzsMH4br5uIDTMNLR0eHKioq1N7ervLy8lwPJ+90Rju1du9a/WnXn/TGgTeyAvFJVZNSgfjEiolnfCyO7ai1qUfNySB8d6da9nUqHu0/K8IXMDVibJlqx5VpZGOZahvLVDWqOKuuuOu66nnrLbU+86w616yRbC9Qt2pqVPmlW1S1cKH8o0cPOBbXddXcFUkH4Ed6tftod+r4UEfkmN/HiNKgLp1QpXn1Yc0N7tLI9i0y9m+SDr4r2QNcVzVeGjNLGjM7UY5luuQvjBqbAAAAAHA2s20no3RQor5/1nF2CaJ4JLF4biTdHs8sUZTRx3WIhIZKv2DdStfBz3wolPkAQtm7qQcKSj8z6d831SWzU0Y311XG7gCfeEl/MiVfpH5WydDc8h6qpQP2zDA94yFF4qGblfmQIxXIZ6xF4Mt4oOHP7D9wWJ/ZfyiD+9Qnhpz0A4vUJ5sy920360HFyMayM/bgMV+dTJZbUOH4E088oUcffVRNTU2aMWOGfvzjH+uSSy454XWE4/11RbuyAvGYk14k59zKc1OLak6sPHOBuG07aj3Y7ZVE2e2F4Uf2dXkfGezDF7RU21Cq2sZkEF6uylHFx1yExe7sVPtvf6fWZ59VdMeOVHvR7FneApvXXisjEFA4Zmtfa28q8N59xHtNHvfGjv/xvLKgT401xRpXU6yG6mKNrynRxeOrdE5t6cA32HhUOvy+tG+jtH+Tt7V82L+f6ZPqzveC8jGzveC85lzpJGa2AwAAAADOXqnFdTOD9Wh2CG8YkgzJ8P6ROPZmZUvpT10M2EeSYSp5Mt03cV2yb+rvvhn7yVnJ/WYe953FnNo/9ozlgWYzH7OUkZ3xqYHMV3ugEj7J8wN9+uDsj9oMo/+iwZmLDB9vpr+k7E9uJH6OdtyVE3PyKpg/keTDjv5he3agLmng8PpE+8kQ3Ml+2HEyvvnjq4ds0e58QTg+gOeee06LFy/WT3/6U82ZM0ePPfaYnn/+eW3btk0jRw682GIS4binK9qlV/a9otW7VuuN/dmB+MSKibpu/HWaP36+zqk857R/bTvu6OiB7lR98GQQbsf7B+H+kKURY0o0YlRQI0aYqq50VeqPSL09crp75HR3y+k5/mt461a5vb2SJKOoSLHPXqd9V16vj0tGeSF4IgBv6ggfd/EY05BGVxSpsbrY22qKU/vjaopVUeT/5E8Ze9ukA+9I+xJh+f6NUndz/36hCqn+okRgnphlXlr7yb42AAAAAADI4rqJQDPet5RP/3A9GYImniF4Eg8XvH3JyDpI7aVOZMUKyQcV/a5Vdv6Q8XAiOQM6WVrG21dq3zQNGZYh00iXuTmTM6ZT6z0kg/NEiaPUzzCWEajH0j/frLA9nrEGQSzjPZKlk5Lv1+f9s67JfAiS6JOPn7ZIPYCw0qWIzIy22x68VP6AlethDinC8QHMmTNHF198sX7yk59I8hY+aWho0F133aX77rvvuNcWcji+/W/btfZXL+hw7z61Rg/JcZ3UTbbYKteI0FiNCI5VsVWWcZXRPzDu+4DLldzkzdrNas46joYNhbsshSMBuer/lMtyoiqOHlJpzwGVde5RedtOlbbvk+l88gVVmqpG64Xxn9aL9Req5zglSkoClhprStRYnQjBa0pSAfiYyiIFhnpFcdeV2vZ4Ifn+d7xZ5gc3S/Fw/76VjV5QXn+RFEz8GSYf+5+WfQ2+PwAAAAAAQB5zHG+zbcm2Ddm25NiJYyfzOLHvePuSZJpuYn0LJWbRS6bhpvdNJWrie+392sxE38z36PMAZEBTPyeZhOPHUhALckajUW3atEn3339/qs00Tc2bN0/r16/v1z8SiSgSSdd17ujoGJJx5qPXX35Jkf0XqEIXqGKgDh1Sq7ztTPPFelTWtVdlnXu8rWuvinpbZBzncyVhy69eX9DbrKB6/UH1WoFEW0i9vkD6vC+osC+gHl9ILUUV+rCyIfVxsdHlITVUF2vcADPAq0sC+bU4hGFIVeO87fybvTY7Jh16P12KZd9GrxxL2x5ve39lbscMAAAAAACQ58zENqwC1e82SWZRrkeRt4bVn+WpamlpkW3bqqury2qvq6vT1q1b+/V/+OGH9YMf/GCohpfXzh17vj54e6sMmTJcU8lZvkZ6JQelV3tw+wTVbqJN6T6JKeRG5nXpJakzrk/0cyOy4q0y1CnbF1c0EFLT6JD2jZuiWGiG7ECRYqGQ4sEiOcEixUNFsoNFckIhOcEiGT5LluGtRm2a3keArMSraUgB01DIMFRjGLLMdJ/igKWGKq8O+NiqIoX8w/wJm+WX6md628Vf9drC7dKBv3hBedMWL0BXcvlxncZ9Da4PAAAAAAAATi+jsOqNn6yCCMdP1v3336+lS5emjjs6OtTQ0JDDEeXOZV+8XJd98fJcDwNnQqhCmni1twEAAAAAAAAFpiDC8REjRsiyLB06dCir/dChQxo1alS//sFgUMFgcKiGBwAAAAAAAAAYYgUxrz4QCGjWrFlas2ZNqs1xHK1Zs0Zz587N4cgAAAAAAAAAALlQEDPHJWnp0qW6/fbbNXv2bF1yySV67LHH1N3drTvuuCPXQwMAAAAAAAAADLGCCccXLlyo5uZmPfDAA2pqatLMmTO1atWqfot0AgAAAAAAAADOfobrum6uB5HvOjo6VFFRofb2dpWXl+d6OAAAAAAAAACAAZxMllsQNccBAAAAAAAAAMhEOA4AAAAAAAAAKDiE4wAAAAAAAACAgkM4DgAAAAAAAAAoOITjAAAAAAAAAICCQzgOAAAAAAAAACg4hOMAAAAAAAAAgIJDOA4AAAAAAAAAKDiE4wAAAAAAAACAgkM4DgAAAAAAAAAoOITjAAAAAAAAAICCQzgOAAAAAAAAACg4hOMAAAAAAAAAgIJDOA4AAAAAAAAAKDiE4wAAAAAAAACAgkM4DgAAAAAAAAAoOITjAAAAAAAAAICCQzgOAAAAAAAAACg4hOMAAAAAAAAAgIJDOA4AAAAAAAAAKDiE4wAAAAAAAACAgkM4DgAAAAAAAAAoOITjAAAAAAAAAICCQzgOAAAAAAAAACg4hOMAAAAAAAAAgIJDOA4AAAAAAAAAKDiE4wAAAAAAAACAguPL9QCGA9d1JUkdHR05HgkAAAAAAAAA4FiSGW4y0z0ewvFB6OzslCQ1NDTkeCQAAAAAAAAAgBPp7OxURUXFcfsY7mAi9ALnOI4OHDigsrIyGYaR6+EMuY6ODjU0NGjv3r0qLy/P9XAA4IS4bwEYbrhvARhuuG8BGG64bxUO13XV2dmp+vp6mebxq4ozc3wQTNPU2LFjcz2MnCsvL+fmAWBY4b4FYLjhvgVguOG+BWC44b5VGE40YzyJBTkBAAAAAAAAAAWHcBwAAAAAAAAAUHCsBx988MFcDwL5z7IsXX311fL5qMQDYHjgvgVguOG+BWC44b4FYLjhvoW+WJATAAAAAAAAAFBwKKsCzo7wEgAAC2hJREFUAAAAAAAAACg4hOMAAAAAAAAAgIJDOA4AAAAAAAAAKDiE4wAAAAAAAACAgkM4juN64oknNH78eIVCIc2ZM0dvv/12rocEACmvvvqqvvCFL6i+vl6GYei3v/1t1nnXdfXAAw9o9OjRKioq0rx58/TRRx/laLQACt3DDz+siy++WGVlZRo5cqRuuOEGbdu2LatPOBzWkiVLVFNTo9LSUt188806dOhQjkYMoNAtW7ZM06dPV3l5ucrLyzV37ly9+OKLqfPcswDku0ceeUSGYejuu+9OtXHvQibCcRzTc889p6VLl+r73/++3nnnHc2YMUMLFizQ4cOHcz00AJAkdXd3a8aMGXriiScGPP/DH/5Qjz/+uH7605/qrbfeUklJiRYsWKBwODzEIwUAad26dVqyZInefPNNvfTSS4rFYpo/f766u7tTfe655x79/ve/1/PPP69169bpwIEDuummm3I4agCFbOzYsXrkkUe0adMmbdy4UZ/5zGf0xS9+Ue+//74k7lkA8tuGDRv01FNPafr06Vnt3LuQyXBd1831IJCf5syZo4svvlg/+clPJEmO46ihoUF33XWX7rvvvhyPDgCyGYahlStX6oYbbpDkzRqvr6/Xt771Ld17772SpPb2dtXV1enpp5/WV77ylVwOFwDU3NyskSNHat26dbryyivV3t6u2tpaPfPMM7rlllskSVu3btW0adO0fv16XXrppTkeMQBI1dXVevTRR3XLLbdwzwKQt7q6unTRRRfpySef1EMPPaSZM2fqscce4/ct9MPMcQwoGo1q06ZNmjdvXqrNNE3NmzdP69evz+HIAGBwdu7cqaampqz7WEVFhebMmcN9DEBeaG9vl+QFTZK0adMmxWKxrPvW1KlT1djYyH0LQM7Ztq0VK1aou7tbc+fO5Z4FIK8tWbJEn/vc57LuURK/b6E/X64HgPzU0tIi27ZVV1eX1V5XV6etW7fmaFQAMHhNTU2SNOB9LHkOAHLFcRzdfffduuyyy3T++edL8u5bgUBAlZWVWX25bwHIpS1btmju3LkKh8MqLS3VypUrdd5552nz5s3cswDkpRUrVuidd97Rhg0b+p3j9y30RTgOAAAADLElS5bovffe0+uvv57roQDAcU2ZMkWbN29We3u7fvWrX+n222/XunXrcj0sABjQ3r179Y//+I966aWXFAqFcj0cDAOUVcGARowYIcuy+q3We+jQIY0aNSpHowKAwUveq7iPAcg3d955p1544QWtXbtWY8eOTbWPGjVK0WhUbW1tWf25bwHIpUAgoHPPPVezZs3Sww8/rBkzZuhHP/oR9ywAeWnTpk06fPiwLrroIvl8Pvl8Pq1bt06PP/64fD6f6urquHchC+E4BhQIBDRr1iytWbMm1eY4jtasWaO5c+fmcGQAMDgTJkzQqFGjsu5jHR0deuutt7iPAcgJ13V15513auXKlXr55Zc1YcKErPOzZs2S3+/Pum9t27ZNe/bs4b4FIG84jqNIJMI9C0Be+uxnP6stW7Zo8+bNqW327NlatGhRap97FzJRVgXHtHTpUt1+++2aPXu2LrnkEj322GPq7u7WHXfckeuhAYAkbwXyjz/+OHW8c+dObd68WdXV1WpsbNTdd9+thx56SJMmTdKECRP0T//0T6qvr9cNN9yQw1EDKFRLlizRM888o9/97ncqKytL1bWsqKhQUVGRKioq9NWvflVLly5VdXW1ysvLddddd2nu3Lm69NJLczx6AIXo/vvv1/XXX6/GxkZ1dnbqmWee0SuvvKLVq1dzzwKQl8rKylLruSSVlJSopqYm1c69C5kIx3FMCxcuVHNzsx544AE1NTVp5syZWrVqVb/F7QAgVzZu3Khrrrkmdbx06VJJ0u23366nn35a3/nOd9Td3a2vf/3ramtr0+WXX65Vq1ZRew5ATixbtkySdPXVV2e1L1++XH/3d38nSfqXf/kXmaapm2++WZFIRAsWLNCTTz45xCMFAM/hw4e1ePFiHTx4UBUVFZo+fbpWr16ta6+9VhL3LADDE/cuZDJc13VzPQgAAAAAAAAAAIYSNccBAAAAAAAAAAWHcBwAAAAAAAAAUHAIxwEAAAAAAAAABYdwHAAAAAAAAABQcAjHAQAAAAAAAAAFh3AcAAAAAAAAAFBwCMcBAAAAAAAAAAWHcBwAAAAAAAAAUHAIxwEAAIBh5pVXXpFhGGpra8vJ11+zZo2mTZsm27ZP2HfVqlWaOXOmHMcZgpEBAAAAg0c4DgAAAOQRwzCOuz344IP69Kc/rYMHD6qioiInY/zOd76j733ve7Is64R9r7vuOvn9fv3Hf/zHEIwMAAAAGDzDdV0314MAAAAA4GlqakrtP/fcc3rggQe0bdu2VFtpaalKS0tzMTRJ0uuvv67Pf/7zampqUigUGtQ1TzzxhJ5++mlt2LDhDI8OAAAAGDxmjgMAAAB5ZNSoUamtoqJChmFktZWWlvYrq/L000+rsrJSL7zwgqZMmaLi4mLdcsst6unp0c9//nONHz9eVVVV+od/+IesUiiRSET33nuvxowZo5KSEs2ZM0evvPLKcce3YsUKXXvttVnB+LvvvqtrrrlGZWVlKi8v16xZs7Rx48bU+S984QvauHGjtm/ffnp/WAAAAMAn4Mv1AAAAAAB8cj09PXr88ce1YsUKdXZ26qabbtKNN96oyspK/fGPf9SOHTt0880367LLLtPChQslSXfeeac++OADrVixQvX19Vq5cqWuu+46bdmyRZMmTRrw67z22mu67bbbstoWLVqkCy+8UMuWLZNlWdq8ebP8fn/qfGNjo+rq6vTaa6/pnHPOOXM/BAAAAOAkEI4DAAAAZ4FYLKZly5alwudbbrlFv/jFL3To0CGVlpbqvPPO0zXXXKO1a9dq4cKF2rNnj5YvX649e/aovr5eknTvvfdq1apVWr58uf75n/95wK+ze/fuVP+kPXv26Nvf/ramTp0qSQMG6/X19dq9e/fp/JYBAACAT4RwHAAAADgLFBcXZ83Krqur0/jx47Pqk9fV1enw4cOSpC1btsi2bU2ePDnrfSKRiGpqao75dXp7e/vVGl+6dKm+9rWv6Re/+IXmzZunL33pS/1miBcVFamnp+eUvz8AAADgdCMcBwAAAM4CmWVMJMkwjAHbHMeRJHV1dcmyLG3atEmWZWX1O96CnyNGjFBra2tW24MPPqjbbrtNf/jDH/Tiiy/q+9//vlasWKEbb7wx1efo0aOqra09pe8NAAAAOBMIxwEAAIACdOGFF8q2bR0+fFhXXHHFSV33wQcf9GufPHmyJk+erHvuuUe33nqrli9fngrHw+Gwtm/frgsvvPC0jR8AAAD4pMxcDwAAAADA0Js8ebIWLVqkxYsX6ze/+Y127typt99+Ww8//LD+8Ic/HPO6BQsW6PXXX08d9/b26s4779Qrr7yi3bt364033tCGDRs0bdq0VJ8333xTwWBQc+fOPaPfEwAAAHAyCMcBAACAArV8+XItXrxY3/rWtzRlyhTdcMMN2rBhgxobG495zaJFi/T+++9r27ZtkiTLsnTkyBEtXrxYkydP1pe//GVdf/31+sEPfpC65tlnn9WiRYtUXFx8xr8nAAAAYLAM13XdXA8CAAAAwPDx7W9/Wx0dHXrqqadO2LelpUVTpkzRxo0bNWHChCEYHQAAADA4zBwHAAAAcFK++93vaty4canFPY9n165devLJJwnGAQAAkHeYOQ4AAAAAAAAAKDjMHAcAAAAAAAAAFBzCcQAAAAAAAABAwSEcBwAAAAAAAAAUHMJxAAAAAAAAAEDBIRwHAAAAAAAAABQcwnEAAAAAAAAAQMEhHAcAAAAAAAAAFBzCcQAAAAAAAABAwSEcBwAAAAAAAAAUnP8PZ4a7R/NSK1UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for r in results:\n", + " r.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/DataVisualization/DataVisualization.ipynb b/examples/DataVisualization/DataVisualization.ipynb index ad64318db..ff92bc6a2 100644 --- a/examples/DataVisualization/DataVisualization.ipynb +++ b/examples/DataVisualization/DataVisualization.ipynb @@ -106,7 +106,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 682 ms, sys: 19.2 ms, total: 701 ms\nWall time: 711 ms\n" + "CPU times: user 2.58 s, sys: 0 ns, total: 2.58 s\n", + "Wall time: 2.58 s\n" ] } ], @@ -123,12 +124,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd1gUV9sG8HsoS+9VRcRCELBrYuxYwY4lajQKVkSNiS2WaFSsqLGX6KtBE7sREzSosWE3Jn6iJsaCodiwoID0svP94bvzsu4uRYEFvH/XtVd0zpwzz8zOjrmePfscQRRFEUREREREREREREREFYSOtgMgIiIiIiIiIiIiIipOTHwTERERERERERERUYXCxDcRERERERERERERVShMfBMRERERERERERFRhcLENxERERERERERERFVKEx8ExEREREREREREVGFwsQ3EREREREREREREVUoTHwTERERERERERERUYXCxDcRERERERERERERVShMfBMREVGhCYIAQRAQERFRLONt3boVgiDAxcWlWMYrTV5eXhAEAXPmzClSG9H7aM6cORAEAV5eXtoOhf6rQYMGEAQBK1euLNHjrFy5EoIgoEGDBlrpX1LKalxERET0P0x8ExERVUCKJJPitXv37gL7dO3aValPTExMyQdKJSbve+nu7l7g/n/88YdSH39//5IPsggiIyMxZ86cEk/SlQd536e8Lz09Pdja2qJVq1ZYtmwZUlNTtR1qsYuJidF4/oV5FdeXdu8iMjJSiufnn38ucH9FgtrX17cUoiufwsLC0K9fP1SvXh3GxsYwNjZG9erV0bx5c4wfPx779u3Dy5cvtR0mERERlTI9bQdAREREJS8kJAQDBgzQ2P7o0SMcPXq0wHHc3NwAAMbGxsUWW0Xk7OwMNzc32NraajsUAMCtW7dw8eJFNGvWTOM+33//fSlGVHSRkZGYO3cuqlWrhi+//FLb4ZQJJiYmMDU1lf6empqKhIQEnDt3DufOncP69etx8uTJMvGLCltbW7i5ucHZ2fmdxtHV1YWDg4PatqSkJGRkZEBHRwd2dnZq95HJZO90fCo6a2truLm5oXr16sU+dmpqKvr164fw8HBpm66uLiwsLPDgwQPExMTg4sWLWLNmDVasWMFnBxER0XuGiW8iIqIKzNbWFunp6Th+/DgePHgAJycntfv98MMPyM3NhYuLS74zvW/dulVCkVYsP/zwg7ZDkCje05CQEI2J74yMDOzevRuCIMDZ2RmxsbGlHCW9jcmTJ6uU00lISMDGjRsxc+ZMREdHIyAgoFBfapW0cePGYdy4ce88TtWqVREfH6+2zd/fH9u2bUPVqlX5i5UyZMiQIRgyZEiJjB0YGIjw8HAIgoAxY8ZgzJgxcHNzg66uLnJzc3Hr1i389ttv2LVrFwRBKJEYiIiIqOxiqRMiIqIKzMTEBH379oVcLsfWrVs17hcSEgIAZa68Bb27IUOGQBAE7NmzB2lpaWr3CQ0NRWJiItq0aVMmZgfT27OxscGMGTMwbNgwAMDx48crZMkToidPnmDHjh0AgK+++gpr166Fh4cHdHV1Abye+e3p6YkJEybg8uXLGDVqlDbDJSIiIi1g4puIiKiCGzp0KABoTHyfO3cOd+7cQY0aNdC6det8xypMndzffvsNAwYMQLVq1WBkZARra2vUq1cPn3/+OS5evJjv+FeuXEG/fv1QqVIlGBgYoEaNGpg4caLG2qzZ2dkICwvDqFGj0KRJE1SqVAkymQz29vbw9vbGrl27IIpivseUy+XYsWMHunTpAgcHB8hkMtjZ2aFTp06F6q9Ofotb5uTkYNOmTfDy8oKtrS309fVhY2MDNzc39O/fH1u2bCny8fJTvXp1tGnTBsnJydi/f7/afRRlThT3SkGePXuGmTNnomHDhrCwsIChoSFq1KiB4cOH4++//1bbJyIiQrp/ACAqKgrDhg1D1apVYWBgACcnJ4wcORIPHz5U6SsIghRbbGysSt1mdde5tGMsaxQL7snlcrVfeERHRyM4OBg+Pj744IMPpLIpHh4e+PLLLxEXF5fv+Hv27EHnzp3h4OAAfX19WFpawtXVFT169MC6deuQkZGhtH9hFrdMSEhAUFAQmjZtCmtraxgaGsLFxQWdOnXChg0bkJSUVPQLoUFmZib279+PYcOGoVGjRtJn39HREd26dcOBAwc09i3MooZ563gnJiYWW9x5ubu7QxAEzJgxI9/99u/fD0EQIJPJ8PTpU7X7pKenY86cOfDw8ICxsTGsra3RtWvXfJ/1lpaWUp3yly9fYtq0aXB3d4eJiYnSeRfmekVERKBLly6wtraGsbExPD09ERQUpHIf5XX9+nXI5XIAQM+ePfO9BgBgZGSkse3w4cPw9fWV/g2xs7Mr9L8heYmiCBcXFwiCgKCgoHz3DQ0NhSAIMDAwQEJCgkr7nTt3MHbsWLi5ucHExAQmJibw9PTElClT8PjxY7Vjvnmtw8PD0bVrVzg4OEBXV5elXoiI6P0jEhERUYUze/ZsEYBYrVo1US6XizVr1hQBiKdPn1bZd9iwYSIAMSgoSDx16pQIQAQgRkdHq+yraDt16pRKW2pqqvjJJ59I+wAQzczMRAsLC+nv9evXV+oTEhIixbljxw5RX19fBCBaWFiIOjo6Uj9PT0/x1atXKsfMGy8A0dzcXDQzM1Pa9sknn4i5ublqr1NCQoLYunVrpf3zxgtA7NGjh5iZmanSt02bNiIAcfbs2YVuy8nJETt27KhyPAMDA6VtxUExVkhIiLht2zYRgNi2bVuV/WJiYkRBEEQzMzMxNTVVit3Pz0/tuMeOHRMtLS2l8fX19UUTExPp7zKZTNy2bZtKv7zv1cmTJ0VTU1PpHtHT05PaKleuLD548ECpr4ODg2hubi4CEHV0dEQHBwel19KlS7UeY2lSxKHu3lMYMWKECEC0srJS2654nxXXw8bGRukzZ2FhIZ49e1Zt36FDhyrdr6ampqKxsbHStjefH4pnUps2bdSOefToUdHKykrqr6enJ9rY2EjPBADigQMH8r0ufn5+0vOkIAcOHJDGFQRBNDc3V7pHAIjDhw9X23fFihVqn2d5Xb16VRrn5cuXGtsKOidRFMX69euLAMSePXuqjcPR0VHMzs7W2N/b21t6Fqobd/78+WLDhg2lz8qbz8Dly5erHVex39q1a0VnZ2cRgGhgYCB9VhXnXdD1Wr58ucozUfG+N2rUSFywYIHa/r/99pvUZ+/evQVeR3VycnLE4cOHK90LVlZWSp+F7t27i2lpaSp9NZ3X119/LQIQXV1d8z22r6+vCED09fVVaduwYYPSM8fIyEjp3wkbGxvx3Llz+cYUFBQk7W9paSnq6emJX3zxRRGvEBERUfnGGd9EREQVnCAIUgmTNxcwTE1Nxd69e6Gjo/POZU6GDh2Kffv2QUdHB1OnTsX9+/eRnJyMxMREPHv2DDt27NBYY/rZs2cYNmwY/Pz8EBcXh8TERLx69Qpr166Fvr4+/v77byxZskSln7GxMQICAnDs2DEkJSUhKSkJycnJSEhIwKpVq2Bubo59+/Zh7dq1Kn1zc3PRu3dvnDlzBg0aNMDBgweRmpqKxMREpKSkYNu2bbC3t0dYWBimTp36TtdGYdeuXTh27BgMDQ2xefNmvHr1ComJiUhPT8eTJ08QGhqKvn37Fsux8urbty/MzMwQERGB6OhopbatW7dCFEX079+/wEVLb9y4gR49eiAxMREjR47EzZs3kZ6ejpSUFMTGxmLMmDHIysrC8OHD8eeff2ocp0+fPmjXrh3++ecfJCcnIzU1FXv27IGZmRkePXqE6dOnK+0fHx+PVatWAfhfjee8r8mTJ2s9xrLixYsXWLJkifRZnzJlitr9GjRogHXr1uHOnTtIT0/H8+fPkZmZid9//x0+Pj5ISkpC//79kZ6ertTv3LlzCAkJgY6ODoKDg5GQkIBXr14hNTUVz58/x9GjR+Hn51ekRSSvXr2Knj174uXLl/D09ER4eDjS0tLw/PlzpKen488//8SkSZNgZmb29hfmDWZmZhg/fjwiIiLw6tUrJCUlISUlBU+fPkVwcDCMjIywZcuWMlWv/01+fn4wMjJCfHw8Dh48qHaf2NhYHDt2DAAQEBCgdp+lS5fi7t272LZtG1JSUpCYmIioqCh07twZADBp0iScPn1aYxzTpk2DIAgIDw9HamoqkpKS8O+//8LExKTAczh9+jQmTZoEAOjSpQvu3bsnPf+///573Lp1C0uXLlXbt1GjRtDTe71k1YwZM3Djxo0Cj/emRYsWSb+ymThxIp4+fYoXL17g5cuXWLBgAXR0dHDw4EFMmDCh0GMq6pnfvXsXly5dUrvPixcvpAU536x//tNPPyEwMBB6enr45ptvcP/+faSlpSEtLQ3Xr19H165dkZCQAF9fXzx//lzt+FFRUZg9ezbGjh2Lx48f4+XLl0hPT8cXX3xR6PMgIiKqELSdeSciIqLil3fGtyiKYlxcnKijoyOamJgozZz+/vvvRQBix44dRVEU33rG9/Hjx6W29evXFzpOxYxv5DPDeOLEiSIAsVatWoUeV2Hfvn0iALFmzZoqbT/88IMIQKxdu7aYmJiotv+ff/4pCoIgymQy8cmTJ0ptbzPjOzAwUAQgjho1qsjnUlSK6xoSEiKK4v9mAH/zzTfSPnK5XHRxcREBiOfPn1eKXd370a5dOxGAOH36dI3HHT9+vNrZqXnvrbZt26qdhb969WppduObM1jz/jogP9qMsbQoYjQxMVGa+Z731w4NGzYUN27c+Fbj5+TkiPXq1RMBiD/++KNSW3BwsAhA7NSpU5HGzG/Gd8uWLaUZspo+i4VRlBnfBfnPf/4jAhAbN26s0lacM74tLS1VfsHw5ksx8/fN+1UURdHf318EIPr4+KiNY+bMmdLzUy6XK7UpZnwDEPfv36/SNysrS5oJ3rx5c5V2xYxvQ0ND8c6dOxqvRX7Xq1mzZtLM7qysLJX23bt3SzGq6z9lyhSl2eJ169YVAwICxE2bNomRkZEaf+0jiqL44sUL6ZcKgYGBavdRzJoWBEHlHPM7r6ZNm+Y77vr160UAorW1tdIvijIzM8VKlSqJAMQ9e/ao7Zubmyt6eXmp/TdGERMAcdiwYRrPnYiI6H3BGd9ERETvgapVq6JDhw7SDG8FxaKWioXw3pZidmmdOnUQGBj4VmPMnDlT7XZF7daoqCiNizNq0rVrVwDAvXv3EB8fr9SmmOUXGBgICwsLtf0bN24MT09PZGVl4dSpU0U6tjqWlpYAoBJLaVC8x9u2bZNq1p46dQoxMTFwc3ND8+bN8+0fExODkydPQk9PT2mG9ZsUsxePHz+O3NxctfvMmDEDOjqq/xuqeK/T09Nx9+7dgk+qHMZYnFJTU/HkyRPp9erVK6ktISEBjx8/RnZ2dpHH1dXVhY+PD4DXM7zzUtzDz54903jtiuLu3bvSMRYuXKjxs1jaFM+Oq1evlujioImJiUrvobpXTk6Oxv6K5+1vv/2G2NhYpbbc3FzpGT9y5Eipdv2bPD090bt3b5Xt+vr60i8bLly4gPv376vt36dPH7i6uhZ8sm+Ii4uT1n2YPn069PX1Vfbp378/3N3dNY6xePFiLFq0CObm5gBe/+Jj48aNGDVqFBo0aAA7OzuMHTsWDx48UOl78OBBpKWlQVdXF7NmzVI7/uTJk2FhYQFRFLF79+5Cn9vgwYMBvK6Fn5WVpdL+448/SueX99cR4eHhePz4MWrUqIF+/fqpHVtHRwefffYZAODo0aMaYyirv0ohIiIqTUx8ExERvScUiwMqktRRUVE4e/YsrKys4Ovr+05jX7hwAQDQrVu3t+pvbW2NWrVqqW2rXLmy9Gd1i1y+evUKS5cuRZs2bWBvbw+ZTCYtKpe3dEfexEdubq70E/Q5c+bA0dFR4+v27dsAoJJUehtdunSBIAgICwtD586dsWvXLjx69Oidxy2MZs2aoXbt2oiNjcWJEycAFG1Ry/PnzwN4vViih4eHxuulSJimpqaqXbANAJo2bap2e973+sWLF4U/uXIUY3GaPXs2RFGUXrm5uXjy5Al27twJURQxZ84cdOrUSeMCgWfPnoW/vz9q164NU1NTpQVDFaWF3kwYtm/fHoaGhrh69SpatWqFLVu2qJTPKQrFs0NXV1cqrVFaXrx4gQULFqBly5bSQrOK81e8z3K5XONCgsXhwIEDSu+hulf9+vU19v/oo4/QqFEjyOVylYVxw8PD8fDhQ+jr6+dbyqpdu3aFatNUGqhFixYa++cn73iFjeFNOjo6mDZtGh4+fIhdu3YhICAAjRo1goGBAYDX7/H69etRp04dlS8vFcf38PBApUqV1I5vZGSEli1bqsRbkAEDBkAmkymVNFGIioqSEv5vljlRPMMePnyY779Lii/2NP27ZG9vr/HfVCIioveJnrYDICIiotLRq1cvWFlZ4fz587h79y62bt0KAPj0009haGj4TmMrZjBXq1btrfrnV7tXUcMVgMrs1Tt37qB9+/ZKyTljY2NYWlpKs3WfPHkCAEqzNl+8eIHMzEwA6pPp6hR1trk6LVu2RHBwMGbOnIkjR47gyJEjAAAnJyd06NABQ4YMQdu2bd/5OJoMHToUU6dORUhICD766COEhoZCV1dXJfmijiJBL5fLpWtaEE3XTNP7nd97XRhlOcY9e/ZorK8bGhpa4Iz7wtDR0YG9vT0+/fRTuLm5oWnTpoiIiMCSJUvwzTffKO07depUpbr5urq6sLKykmafpqSkIDU1VWW2c82aNbF582aMHj0aFy9elBJ4dnZ2aNu2LQYOHIgePXponF38JsWzw9bWtlA1oYvLtWvX0KlTJzx9+lTaZmJiAisrK+jo6EAURamtJGd8F4eAgAAEBATg+++/x+zZs6GrqwsA2LRpE4DXz357e3uN/atUqaKxzcbGBgYGBsjMzFS6VnnlN3Z+FOMZGhrC2tpa435OTk4FjmVqaooBAwZgwIABAICsrCxcvHgR69evx969e5GUlIRPPvkE9+7dk35VoDh+fuef9/iazl8dGxsbdOnSBT///DN+/PFHpS+Xt2/fDgBwdXXFxx9/rNRP8QzLzMws1DNM0/Prbd8TIiKiioYzvomIiN4TBgYG+PTTTwEAmzdvlhZtK8xs34IUNslV3IYOHYoHDx7AxcUF+/btQ0JCAlJTU/H06VPEx8fj4cOH0r6K8h4AlEo0HD58uMAZl4rZs8VhypQpiI6OxooVK+Dr6wt7e3s8ePAAW7duRbt27fDJJ5+8VdK3MAYPHgxdXV0cOHAA3333HdLT0+Hj46NxtmNeimvm4OBQqOsliiJcXFxK5DzKY4yKBUzVvdSVQnhXjRo1QqNGjQAAO3fuVGo7duyYlPQeM2YMbty4gczMTLx48UJaMFSxmF/ez43CoEGDEBsbi++++w79+/dH1apV8ezZM+zduxe+vr5o06YNkpOTCxWntp4dgwYNwtOnT1G7dm388ssvePnypbS4ZXx8PG7evCntq+4alCWDBg2Cubk5Hj58iF9//RXA6xnDhw8fBgCMGjWqRI+vSLSXJTKZDG3atMGePXswfvx4AK/L/xw4cKDUYlB8oXjo0CGlL1gViW9FOZS8FM8wb2/vQj2/EhMT1R67LL4nRERE2sDENxER0XtEkeReuXIlHjx4gDp16qBJkybvPK6joyOA4ikHUlj379+XyiTs2rULffv2VZk1qKmWto2NjTRztzRjVqhcuTK+/PJLHDhwAE+ePMH169cxYsQIAMBPP/2EDRs2lMhxK1WqBB8fH6Snp0s1bQv7xYfiPX7+/HmZnQFblmP09/fXmLzy8vIqkWMqfoHxZikSRa1ib29vrFu3DnXq1FFJlBVUh97a2hoBAQHYvXs34uLiEBUVhWnTpkEQBJw9e7bQXxRp4z27ceMG/v77bwCvS4306NFDql2ukN/5K54dmkrIAEBSUlIxRFo4JiYmUs3n//znPwBelzHKzc1FrVq18i0VAkDpC8I3JSQkSL+OKe5ZxIrxMjIy8i0blF98hREQECD9WVG6Ku/x1dX/zkvRXtTz79q1K6ytrZGVlYU9e/YAeF3a5969exAEQW3iWxv/lhIREVVkTHwTERG9R5o0aYK6detKM0zfdVFLBUWZhoMHDxbLeIWRd6G1hg0bqt3n+PHjarfr6+vjo48+AlC6MWtSt25d/Oc//5Fq5R47dqzEjqV4z7OysmBra4sePXoUqp8ittzcXGkmaWlSlK7Jb/attmMsaxQJuzdLiCg+O5o+N6Io4uTJk0U6Vs2aNbFo0SIMHDgQQOHvYcWzozTfM8X5Gxoaonbt2mr30fTsAAArKysA+SdMf//993eIsOgUi1wePnwYcXFxUr3v/Ba1VMhv4d68bY0bNy6GSP8n75eu+cVQ1HvxTaamptKfFbW/8x7/5s2bGuu4Z2RkSIuvfvjhh0U6rkwmQ//+/QH8bzFLxX9btWql9tcmimfY7du3tb54LhERUUXAxDcREdF7Jjg4GJMmTcKkSZOkWYLvavjw4QCAv//+u8RmK79JUacVeF2v902vXr3C/PnzNfZX/Pw/PDxcZfGxNxXXIoaKmZOaGBkZAfhfkrckdO/eHVOmTMGkSZOwcuVK6OvrF6qfq6urNDP566+/LnBGa3Ev/Ghubg4AGn/aD2g/xrLk9u3b+L//+z8AUPlVh+Kzo+5zAwDfffcd/v33X7VtxX0P16pVC61btwYAzJgxo9AlUt6F4vwzMjJw584dlfbnz58r1T9/k2KxydTUVKlOf15JSUlYu3ZtMUVbOHXq1EGLFi2Qm5uLwYMHIzY2tsBFLRX++usv/Pzzzyrbc3JyEBwcDOD14rjOzs7FGrOzs7NU43rx4sXIyclR2eenn35SKjuT18OHD/HXX38VeJxt27ZJf1aU/wGAHj16wNjYGHK5HPPmzVPbd/ny5UhKSoIgCFISuygU5U4uXLiAmzdvYu/evUrb39StWzdUqlQJoijiyy+/VCrLpU5h16ggIiJ6XzHxTURE9J7p3Lkzli1bhmXLlsHOzq5Yxmzbtq20qNi4ceMwffp0pdmQz58/x+bNm6UEeXFwd3eXEjHDhg3DlStXpLaLFy/Cy8sr36TAZ599hg4dOkAURfTq1Qvz58+XFhYDXie1Tp06hbFjx6JGjRrFErOvry+GDRuGw4cPKyVwX7x4gfnz5+PEiRMAXv9EvqTo6+tjyZIlWLZsGQYNGlSkvmvWrIGpqSnu3LmDjz/+GL/88otSuYeHDx/ixx9/RPv27TF16tRijbtOnToAgOTkZCl5VNZiLAtycnJw6tQp9OrVS0pST5w4UWkfHx8fAK9nB8+bN08qMZKYmIiFCxfi888/h42Njdrxx40bh379+mH//v1Ki/2lpKTgu+++k9YOKMo9vGrVKhgaGuLu3bto0aIFjhw5ItW5z83NxR9//IHRo0fnOwu7KJo0aSKd36BBg3Djxg0Ar2e6R0REoE2bNvkm+OvUqSPdj4GBgTh37hzkcjlEUcSFCxfQrl07rZTaGT16NADgzJkzAApe1FLBwsICQ4YMwfbt26Xr/u+//6JXr174888/IQhCvl8ivosFCxYAAP7880/06tVLKsuTlZWFbdu2wd/fX6UMjUJ0dDTq1auHjh07YsuWLYiKipLacnJy8NdffyEwMBCzZ88GAHh4eKBz587SPpaWlpg+fToAYMOGDZg8eTISEhIAvP7idPHixVJJqFGjRsHV1bXI5/fxxx9L/fz8/PDixQsYGhqib9++avc3MjLC+vXrIQgCwsPD0aFDB5w9e1ZKgIuiiLt372LNmjWoX78+duzYUeSYiIiI3isiERERVTizZ88WAYjVqlUrUr9Tp06JAEQAYnR0tEq7ou3UqVMqbampqWLv3r2lfQCI5ubmooWFhfT3+vXrK/UJCQkpMM7o6GiNMR08eFDU09OT2o2NjUVjY2MRgGhiYiIeP34835iTkpLEbt26qcRsaWkpCoIgbdPT01Pp26ZNGxGAOHv27EK3KbbnPZa5ubnStr59+4q5ubkar0dhKcYLCQkpUj9FjH5+fmrbz507Jzo6Okrj6+rqijY2NqKRkZHSeYwYMUKpX957qzBxq3u/2rdvL7WbmZmJ1apVE6tVqyauWLGizMRYGhTHNzExER0cHKSXnZ2dKJPJlO7b5cuXq/TPysoSW7VqJe0nCIJoZWUl6ujoiADErl27ijNnzhQBiG3atFHq6+fnp3QNTU1NRUtLS6VtLVu2FFNSUpT6KZ5Jb46ncPToUaVnhb6+vmhjYyPq6+tL2w4cOJDvdVHEVpjn3o4dO6TzVVxLxf1hYWEhHj58WGq7evWqSv9z584p3U9GRkbSs6dq1apiaGio1Pby5UulvlevXi30OYmiKNavX18EIPbs2TPf/TIyMkRbW1tp7OPHjxdq3Pnz54sNGzYUAYgymUzl/Vy6dKna/or3q6BzWLFihdrnv8LSpUuVjmdpaSndx40aNRLnz5+vtv+lS5eU+inuG2tra6X3FoDo4eEh/vvvvyrHzsnJEYcNGybtp6OjI1pbW4u6urrStm7duolpaWlFPi+FoKAgpVj69++f7/6iKIrbt29Xur9kMploY2Oj9PkGIK5du/atYiIiInpfcMY3ERERFQtjY2Ps378fhw4dQq9evVC5cmVkZGRAT08P9erVw/jx47Fp06ZiPWa3bt1w5swZdO3aFZaWlsjJyYGtrS2GDh2KK1euoH379vn2Nzc3x8GDBxEeHo7+/fvD2dkZmZmZSEtLQ5UqVdCpUycsWrRIaUG0d7FmzRoEBwejS5cucHV1hSiKSE9PR+XKldGjRw/s378f+/btK9FSJ++qRYsWuHPnDpYtW4bWrVvD0tISiYmJ0NXVhbu7Oz777DPs2LEDK1euLPZj//TTT5gwYQI++OADZGdnIzY2FrGxsSrlT7QZY2lKTU3FkydPpNfz588hk8lQt25djBs3DpGRkZgwYYJKP319ffz222+YPXs2PvjgA+jr60MURXz00UfYsGEDwsLCVBa7VJg1axZWr16NXr16oXbt2tDT00NKSgrs7e3RsQopRwMAACAASURBVGNHfP/994iIiFCpK16QTp064e7du/j666/RsGFDGBkZITU1FVWqVIG3tzc2btxY4CKNRTFw4EAcP34cHTt2hLm5OXJycuDo6IiAgABERkZKJTg0adGiBS5cuIDevXvD1tYWubm5cHBwwIQJExAZGYnq1asXW6yFZWBggO7duwNAoRa1VDAxMcH58+cxe/Zs1KxZE5mZmbC0tISPjw9OnjyJyZMnl2TYmDx5Mk6cOAFvb29YWloiMzMTNWvWxJw5c3D+/HmN91LTpk0RExODdevWYcCAAfD09ISRkRGSkpJgaGiIGjVqoHfv3vjhhx80vie6urrYsmULfv31V/To0QO2trZ49eoVLC0t0bFjR+zcuRNhYWFSCZ+3MXjwYKU665rKnOQ1aNAgREVFYcaMGWjcuDGMjIyQmJgIY2NjNGrUCIGBgfj111+VFu4kIiIiVYIo5rNCEBEREREREZV5crkcNWrUQGxsLIKDg/HVV19pOyQiIiIirSq704mIiIiIiIioUMLCwhAbGwsDAwMMHTpU2+EQERERaR0T30REREREROXYgwcPpBnefn5+xbZwMREREVF5xlInRERERERE5VCXLl1w/fp1xMfHIzc3F7a2trhx4wYcHR21HRoRERGR1ulpOwAiIiIiUqVYOK8omjdvjtDQ0BKKiIjKmkePHuHhw4ewsrJC8+bNERwczKQ3ERER0X8x8U1ERERUBmVlZeHJkydF6vPixYsSioaIyqLIyEhth0BERERUZrHUCRERERERERERERFVKJzxDUAul+PRo0cwMzODIAjaDoeIiIiIiIiIiIiI1BBFEa9evULlypWho6OjcT8mvvG6Nl7VqlW1HQYRERERERERERERFcL9+/fh5OSksZ2JbwBmZmYAXl8sc3NzLUdDREREREREREREROokJyejatWqUk5XEya+Aam8ibm5ORPfRERERERERERERGVcQSWrNRdBISIiIiIiIiIiIiIqh5j4JiIiIiIiIiIiIqIKhYlvIiIiIiIiIiIiIqpQWOObiIiIiIiIiIjKLVEUkZOTg9zcXG2HQkTFQFdXF3p6egXW8C4IE99ERERERERERFQuZWVl4fHjx0hLS9N2KERUjIyNjVGpUiXIZLK3HoOJbyIiIiIiIiIiKnfkcjmio6Ohq6uLypUrQyaTvfMMUSLSLlEUkZWVhWfPniE6Ohqurq7Q0Xm7at1MfBMRERERERERUbmTlZUFuVyOqlWrwtjYWNvhEFExMTIygr6+PmJjY5GVlQVDQ8O3GoeLWxIRERERERERUbn1trNBiajsKo7PNZ8MRERERERERERERFShMPFNRERERERERERERBUKE99EREREREREREREVKEw8U1ERERERERERFSK/P39IQiCysvHx0fboRFVGHraDoCIiIiIiIiIiOh94+Pjg5CQEKVtBgYGWoqGqOLhjG8iIiIiIiIiIqoQRFFEWlZOqb9EUSxyrAYGBnB0dFR6WVlZAQAEQcDmzZvRq1cvGBsbw9XVFWFhYVJfTTPGIyIiEBQUhDp16qgcr0GDBpg1a5bU39fXFwsXLoSDgwMsLS0RFBSEnJwcTJkyBdbW1nByclJJzN+/fx/9+vWDpaUlrK2t0bNnT8TExBT53IlKA2d8ExERERERERFRhZCenQuPb46W+nFvBnnDWFa8aba5c+diyZIlWLp0KdasWYNBgwYhNjYW1tbWWLVqFRYvXiztu3jxYuzatQu1a9dGrVq1MHfuXPzxxx/48MMPAQBXr17F9evXERoaKvU5efIknJyccObMGZw/fx7Dhw/HhQsX0Lp1a/z+++/Ys2cPAgIC0LFjRzg5OSE7Oxve3t5o1qwZzp49Cz09PcyfPx8+Pj64fv06ZDJZsZ4/0bvijG8iIiIiIiIiIqJSdujQIZiamiq9Fi5cKLX7+/vj008/Ra1atbBw4UKkpKTg8uXLAAALCwtplviFCxewceNGhIaGwtHREU5OTvD29laarR0SEoI2bdqgRo0a0jZra2usXr0abm5uGDZsGNzc3JCWloYZM2bA1dUV06dPh0wmw7lz5wAAe/bsgVwux+bNm1G3bl24u7sjJCQEcXFxiIiIKJ2LRlQEnPFNREREREREREQVgpG+Lm4GeWvluEXVtm1bbNiwQWmbtbW19Od69epJfzYxMYG5uTmePn2qtP/Vq1cxePBgrF27Fi1atJC2jxw5EsOGDcPy5cuho6ODnTt3YsWKFUp9PT09oaPzvzmxDg4OSiVSdHV1YWNjIx3z2rVriIqKgpmZmdI4GRkZuHfvXlFPn6jEMfFNREREREREREQVgiAIxV5ypKSYmJigVq1aGtv19fWV/i4IAuRyufT3+Ph49OjRAyNGjMDw4cOV9u3evTsMDAxw4MAByGQyZGdno2/fvgWOn98xU1JS0LhxY+zYsUMlVjs7u3zOlEg7yseTgIiIiIiIiIiIiAC8nmXds2dP1K5dG8uXL1dp19PTg5+fH0JCQiCTyTBgwAAYGRm90zEbNWqEPXv2wN7eHubm5u80FlFpYOKbiIiIiIiIiIiolGVmZiI+Pl5pm56eHmxtbQvsGxAQgPv37+PEiRN49uyZtN3a2lpaZHLEiBFwd3cHAJw/f/6d4x00aBCWLl2Knj17IigoCE5OToiNjUVoaCi++uorODk5vfMxiIoTE99ERERERERERESl7MiRI6hUqZLSNjc3N9y6davAvqdPn8bjx4/h4eGhtP3UqVPw8vICALi6uqJ58+Z48eIFmjZt+s7xGhsb48yZM5g6dSp69+6NV69eoUqVKmjfvj1ngFOZJIiiKGo7CG1LTk6GhYUFkpKS+EElIiIiIiIiIioHMjIyEB0djerVq8PQ0FDb4ZQ5oijC1dUVY8aMwcSJE7UdDlGR5Pf5LmwulzO+iYiIiIiIiIiIKpBnz55h9+7diI+Px9ChQ7UdDpFWMPFNRERERERERERUgdjb28PW1habNm2ClZWVtsMh0gomvomIiIiIiIiIiCoQVjYmAnS0HQARERERERERERERUXFi4puIiIiIiIiIiIiIKhQmvomIiIiIiIiIiIioQmHim4iIiIiIiIiIiIgqFCa+iYiIiIiIiIiIiKhC0Wrie8OGDahXrx7Mzc1hbm6OZs2a4fDhw1J7RkYGxo4dCxsbG5iamqJPnz548uSJ0hhxcXHo2rUrjI2NYW9vjylTpiAnJ6e0T6VcErOzkfr7ZST+9BNX+yUiIiIiIiIiIqIKQ6uJbycnJyxevBhXrlzBn3/+iXbt2qFnz574+++/AQATJkzAwYMHsW/fPpw+fRqPHj1C7969pf65ubno2rUrsrKycOHCBWzbtg1bt27FN998o61TKlfEnBzE+fnh8cxZyH35UtvhEBERERERERERaRQTEwNBEBAZGantUN5r/v7+8PX11XYYBdJq4rt79+7o0qULXF1d8cEHH2DBggUwNTXFpUuXkJSUhC1btmD58uVo164dGjdujJCQEFy4cAGXLl0CAPz222+4efMmtm/fjgYNGqBz586YN28e1q1bh6ysLG2eWrmgY2QEvcqVAABZ0dFajoaIiIiIiIiI6P3g7+8PQRBUXj4+PtoOrcSkpaVh+vTpqFmzJgwNDWFnZ4c2bdrgl19+KbUYijtxHhERAUEQkJiYWCzj5bV//354eXnBwsICpqamqFevHoKCgvDixYtiP1ZFVWZqfOfm5mL37t1ITU1Fs2bNcOXKFWRnZ6NDhw7SPrVr14azszMuXrwIALh48SLq1q0LBwcHaR9vb28kJydLs8bVyczMRHJystLrfWXgUh0AE99ERERERERERKXJx8cHjx8/Vnrt2rVL22GVmNGjRyM0NBRr1qzBrVu3cOTIEfTt2xcJCQnaDk2FtifUfv311+jfvz8+/PBDHD58GH/99Re+/fZbXLt2DT/++KNWYytPtJ74vnHjBkxNTWFgYIDRo0fjwIED8PDwQHx8PGQyGSwtLZX2d3BwQHx8PAAgPj5eKemtaFe0abJo0SJYWFhIr6pVqxbzWZUfsuqvE9+ZTHwTERERERERUXknikBWaum/3mLtNAMDAzg6Oiq9rKysAACCIGDz5s3o1asXjI2N4erqirCwMKmvphnjERERCAoKQp06dVSO16BBA8yaNUvq7+vri4ULF8LBwQGWlpYICgpCTk4OpkyZAmtrazg5OSEkJERpjPv376Nfv36wtLSEtbU1evbsiZiYmEKdb1hYGGbMmIEuXbrAxcUFjRs3xueff45hw4ZJ+wiCgJ9//lmpn6WlJbZu3aq07datW2jevDkMDQ1Rp04dnD59Wmp7+fIlBg0aBDs7OxgZGcHV1VU6j+r/zYM1bNgQgiDAy8tL6XosWLAAlStXhpubGwDgxx9/RJMmTWBmZgZHR0cMHDgQT58+BfB69njbtm0BAFZWVhAEAf7+/gAAuVyORYsWoXr16jAyMkL9+vXx008/Feo6Xb58GQsXLsS3336LpUuXonnz5nBxcUHHjh2xf/9++Pn5Sftu2LABNWvWhEwmg5ubm0pSXBAEbNy4Ed26dYOxsTHc3d1x8eJFREVFwcvLCyYmJmjevDnu3bsn9ZkzZw4aNGiAjRs3omrVqjA2Nka/fv2QlJSkMeaCzjcoKAiVK1dW+pKja9euaNu2LeRyeaGuy9vQK7GRC8nNzQ2RkZFISkrCTz/9BD8/P6WbtSRMnz4dEydOlP6enJz83ia/FYnvrJhYLUdCRERERERERPSOstOAhZVL/7gzHgEyk2Idcu7cuViyZAmWLl2KNWvWYNCgQYiNjYW1tTVWrVqFxYsXS/suXrwYu3btQu3atVGrVi3MnTsXf/zxBz788EMAwNWrV3H9+nWEhoZKfU6ePAknJyecOXMG58+fx/Dhw3HhwgW0bt0av//+O/bs2YOAgAB07NgRTk5OyM7Ohre3N5o1a4azZ89CT08P8+fPh4+PD65fvw6ZTJbv+Tg6OiI8PBy9e/eGmZnZO12bKVOmYOXKlfDw8MDy5cvRvXt3REdHw8bGBrNmzcLNmzdx+PBh2NraIioqCunp6QBeJ5U/+ugjHD9+HJ6enkoxnzhxAubm5jh27Ji0LTs7G/PmzYObmxuePn2KiRMnwt/fH+Hh4ahatSr279+PPn364Pbt2zA3N4eRkRGA15Nut2/fju+++w6urq44c+YMPvvsM6m8S3527NgBU1NTjBkzRm27YpLwgQMH8MUXX2DlypXo0KEDDh06hKFDh8LJyUlKyAPAvHnzsHz5cixfvhxTp07FwIEDUaNGDUyfPh3Ozs4YNmwYxo0bh8OHD0t9oqKisHfvXhw8eBDJyckYPnw4xowZgx07dqiNqaDz/frrr3HkyBGMGDECBw4cwLp163DhwgVcu3YNOjolNy9b64lvmUyGWrVqAQAaN26MP/74A6tWrUL//v2RlZWFxMREpVnfT548gaOjI4DXH5jLly8rjffkyROpTRMDAwMYGBgU96mUSzIXFwAsdUJEREREREREVJoOHToEU1NTpW0zZszAjBkzALyehfzpp58CABYuXIjVq1fj8uXL8PHxkaoYAEBoaCg2btyI48ePS/kwb29vhISESInvkJAQtGnTBjVq1JCOZW1tjdWrV0NHRwdubm5YsmQJ0tLSpONPnz4dixcvxrlz5zBgwADs2bMHcrkcmzdvhiAI0riWlpaIiIhAp06d8j3fTZs2YdCgQbCxsUH9+vXRsmVL9O3bFy1atCjytRs3bhz69OkD4PWs5yNHjmDLli346quvEBcXh4YNG6JJkyYAAJf/5r4AwM7ODgBgY2Ojkjs0MTHB5s2blZLheWej16hRA6tXr8aHH36IlJQUmJqawtraGgBgb28v5S8zMzOxcOFCHD9+HM2aNZP6njt3Dhs3biww8X337l3UqFED+vr6+e63bNky+Pv7SwnyiRMn4tKlS1i2bJlS4nvo0KHo168fAGDq1Klo1qwZZs2aBW9vbwDAF198gaFDhyqNnZGRgR9++AFVqlQBAKxZswZdu3bFt99+q3LdCnO+urq60hqN06ZNw+rVq7F582Y4Ozvne47vSuuJ7zfJ5XJkZmaicePG0NfXx4kTJ6Qb+fbt24iLi5MuYrNmzbBgwQI8ffoU9vb2AIBjx47B3NwcHh4eWjuH8sSgugsAIOv+fYg5ORD0ytwtQURERERERERUOPrGr2dfa+O4RdS2bVts2LBBaZsikQoA9erVk/5sYmICc3NzqcyGwtWrVzF48GCsXbtWKYE8cuRIDBs2DMuXL4eOjg527tyJFStWKPX19PRUmm3r4OCgVCJFV1cXNjY20jGvXbuGqKgoldnaGRkZSqUyNGndujX+/fdfXLp0CRcuXMCJEyewatUqzJ07VyrBUliK3CAA6OnpoUmTJvjnn38AAIGBgejTpw/+7//+D506dYKvry+aN29e4Jh169ZVmbV+5coVzJkzB9euXcPLly+lshxxcXEac49RUVFIS0tDx44dlbZnZWWhYcOGBcYhFrJszj///INRo0YpbWvRogVWrVqltC3vfaQoEV23bl2lbRkZGUhOToa5uTkAwNnZWUp6A6+vt1wux+3bt1US34U93xo1amDZsmUICAhA//79MXDgwEKd57vQapZz+vTp6Ny5M5ydnfHq1Svs3LkTEREROHr0KCwsLDB8+HBMnDgR1tbWMDc3x+eff45mzZrh448/BgB06tQJHh4eGDx4MJYsWYL4+HjMnDkTY8eO5YzuQtKrVAmCoSHEjAxkP3ggzQAnIiIiIiIiIip3BKHYS46UFBMTE6kKgjpvzvgVBEGpHnJ8fDx69OiBESNGYPjw4Ur7du/eHQYGBjhw4ABkMhmys7PRt2/fAsfP75gpKSlo3Lix2nIXipnUBdHX10erVq3QqlUrTJ06FfPnz0dQUBCmTp0KmUwGQRBUEr/Z2dmFGluhc+fOiI2NRXh4OI4dO4b27dtj7NixWLZsWb79TEyU75vU1FR4e3vD29sbO3bsgJ2dHeLi4uDt7Z3v4pcpKSkAgF9//VUpeQygUPnKDz74AOfOnUN2dnaBs74LI+8Yipn66ra9ba3topzvmTNnoKuri5iYGOTk5ECvhCfganVxy6dPn2LIkCFwc3ND+/bt8ccff+Do0aPSNwQrVqxAt27d0KdPH7Ru3RqOjo5KtYh0dXVx6NAh6OrqolmzZvjss88wZMgQBAUFaeuUyh1BRweyatUAcIFLIiIiIiIiIqLyICMjAz179kTt2rWxfPlylXY9PT34+fkhJCQEISEhGDBggFR/+m01atQId+/ehb29PWrVqqX0UpRdKSoPDw/k5OQgIyMDwOsE+uPHj6X2u3fvIi0tTaXfpUuXpD/n5OTgypUrcHd3l7bZ2dnBz88P27dvx8qVK7Fp0yYAkGZ05+bmFhjbrVu3kJCQgMWLF6NVq1aoXbu2yox7deN5eHjAwMAAcXFxKtepMGsMDhw4ECkpKVi/fr3a9sTERACAu7s7zp8/r9R2/vz5YqmCERcXh0eP/vfLiUuXLkklcd5U2PPds2cPQkNDERERgbi4OMybN++d4yyIVmd8b9myJd92Q0NDrFu3DuvWrdO4T7Vq1RAeHl7cob1XZC4uyLx9mwtcEhERERERERGVkszMTMTHxytt09PTg62tbYF9AwICcP/+fZw4cQLPnj2TtltbW0vJ2BEjRkjJ4DcTpG9j0KBBWLp0KXr27ImgoCA4OTkhNjYWoaGh+Oqrr+Dk5JRvfy8vL3z66ado0qQJbGxscPPmTcyYMQNt27aVSmy0a9cOa9euRbNmzZCbm4upU6eqnfW8bt06uLq6wt3dHStWrMDLly+letzffPMNGjduDE9PT2RmZuLQoUPSdbC3t4eRkRGOHDkCJycnGBoaakzaOzs7QyaTYc2aNRg9ejT++usvlWRttWrVIAgCDh06hC5dusDIyAhmZmaYPHkyJkyYALlcjpYtWyIpKQnnz5+Hubk5/Pz88r1OTZs2xVdffYVJkybh4cOH6NWrFypXroyoqCh89913aNmyJb744gtMmTIF/fr1Q8OGDdGhQwccPHgQoaGhOH78eL7jF4ahoSH8/PywbNkyJCcnY/z48ejXr5/aNRULc74PHjxAYGAggoOD0bJlS4SEhKBbt27o3LmzVNmjJGh1xjeVDbLqLgC4wCURERERERERUWk5cuQIKlWqpPRq2bJlofqePn0ajx8/hoeHh1L/CxcuSPu4urqiefPmqF27Npo2bfrO8RobG+PMmTNwdnZG79694e7ujuHDhyMjI0NKXOfH29sb27ZtQ6dOneDu7o7PP/8c3t7e2Lt3r7TPt99+i6pVq6JVq1YYOHAgJk+eDGNj1frpixcvxuLFi1G/fn2cO3cOYWFh0hcGMpkM06dPR7169dC6dWvo6upi9+7dAF5/sbB69Wps3LgRlStXRs+ePTXGa2dnh61bt2Lfvn3w8PDA4sWLVcqlVKlSBXPnzsW0adPg4OCAcePGAQDmzZuHWbNmYdGiRXB3d4ePjw9+/fVXVK9eveALDSA4OBg7d+7E77//Dm9vb3h6emLixImoV6+elDj39fXFqlWrsGzZMnh6emLjxo0ICQmBl5dXoY6Rn1q1aqF3797o0qULOnXqhHr16mmcgV7Q+YqiCH9/f3z00UfS9fH29kZgYCA+++wzqVRKSRDEwlZMr8CSk5NhYWGBpKSkQn1QK5qkX37Bo6nTYPzhh6j24w/aDoeIiIiIiIiIqEAZGRmIjo5G9erVYWhoqO1wyhxRFOHq6ooxY8Zg4sSJ2g6Hyok5c+bg559/RmRkpFbjyO/zXdhcrlZLnVDZIPvvt02ZMZzxTURERERERERU3j179gy7d+9GfHw8hg4dqu1wiLSCpU4IMhcXAEDus+fILcGfFxARERERERERUcmzt7dHUFAQNm3aBCsrq1I5pqmpqcbX2bNnSyWG8mD06NEar9Po0aO1HV6FwlInYKkTALjToiVyExLgsm8fjOrW0XY4RERERERERET5YqmTsiUqKkpjW5UqVWBkZFSK0ZRdT58+RXJysto2c3Nz2Nvbl3JEZRNLnVCxkVV3QXpCArJiopn4JiIiIiIiIiKiIqlVq5a2QygX7O3tmdwuJSx1QgAAg//W+c6KZp1vIiIiIiIiIiIiKt+Y+CYAgMzlvwtcMvFNRERERERERERE5RwT3wQAkClmfMfEajkSIiIiIiIiIiIionfDxDcBAGQuLgCArJgYiHK5doMhIiIiIiIiIiIiegdMfBMAQFbVCdDTg5iejpwnT7QdDhEREREREREREdFbY+KbAACCvj5kTk4AuMAlEREREREREVFFEBMTA0EQEBkZqe1QiEodE98kUdT5zoyJ0W4gREREREREREQVmL+/PwRBgCAIkMlkqFWrFoKCgpCTk6Pt0Ark4uKClStXajsMogLpaTsAKjukOt/RMVqNg4iIiIiIiIioovPx8UFISAgyMzMRHh6OsWPHQl9fH9OnT1faLzc3F4IgQEeH81eJioKfGJLIqrsAYKkTIiIiIiIiIiqfRFFEWnZaqb9EUSxyrAYGBnB0dES1atUQGBiIDh06ICwsDFu3boWlpSXCwsLg4eEBAwMDxMXFQS6XIygoCE5OTjAwMECDBg1w5MgRpTEvX76Mhg0bwtDQEE2aNMHVq1eV2hVj5/Xzzz9DEASlbQcPHsSHH34IQ0ND2NraolevXgAALy8vxMbGYsKECdKMdaKyijO+SWLw31InTHwTERERERERUXmUnpOOpjublvpxfx/4O4z1jd9pDCMjIyQkJAAA0tLSEBwcjM2bN8PGxgb29vZYtWoVvv32W2zcuBENGzbE999/jx49euDvv/+Gq6srUlJS0K1bN3Ts2BHbt29HdHQ0vvjiiyLH8euvv6JXr174+uuv8cMPPyArKwvh4eEAgNDQUNSvXx+jRo3CyJEj3+l8iUoaE98kUdT4zn70CPKMDOgYGmo5IiIiIiIiIiKiik0URZw4cQJHjx7F559/DgDIzs7G+vXrUb9+fWm/ZcuWYerUqRgwYAAAIDg4GKdOncLKlSuxbt067Ny5E3K5HFu2bIGhoSE8PT3x4MEDBAYGFimeBQsWYMCAAZg7d660TRGHtbU1dHV1YWZmBkdHx3c9daISxcQ3SXRtbKBjZgb5q1fIiouD4QcfaDskIiIiIiIiIqJCM9Izwu8Df9fKcYvq0KFDMDU1RXZ2NuRyOQYOHIg5c+Zg3759kMlkqFevnrRvcnIyHj16hBYtWiiN0aJFC1y7dg0A8M8//6BevXowzDORsVmzZkWOKzIykrO5qUJg4pskgiBA5uKCjBs3kBUdw8Q3EREREREREZUrgiC8c8mR0tK2bVts2LABMpkMlStXhp7e/9J0RkZGJVI/W0dHR6UeeXZ2ttLfjYyKnsQnKou4uCUp4QKXREREREREREQlz8TEBLVq1YKzs7NS0lsdc3NzVK5cGefPn1fafv78eXh4eAAA3N3dcf36dWRkZEjtly5dUtrfzs4Or169QmpqqrQtMjJSaZ969erhxIkTGmORyWTIzc3N/+SIygAmvkkJF7gkIiIiIiIiIip7pkyZguDgYOzZswe3b9/GtGnTEBkZKS1gOXDgQAiCgJEjR+LmzZsIDw/HsmXLlMZo2rQpjI2NMWPGDNy7dw87d+7E1q1blfaZPXs2du3ahdmzZ+Off/7BjRs3EBwcLLW7uLjgzJkzePjwIZ4/f17i5030tpj4JiWKBS6zYmK0GwgREREREREREUnGjx+PiRMnYtKkSahbty6OHDmCsLAwuLq6AgBMTU1x8OBB3LhxAw0bNsTXX3+tlLAGXi9OuX37doSHh6Nu3brYtWsX5syZo7SPl5cX9u3bh7CwMDRo0ADt2rXD5cuXpfagoCDExMSgZs2asLOzK/HzJnpbNNHnNwAAIABJREFUgvhmYZ/3UHJyMiwsLJCUlARzc3Nth6NVGbdvI7qnL3QsLPDBpYslUk+KiIiIiIiIiOhdZWRkIDo6GtWrV1da0JGIyr/8Pt+FzeVyxjcpkTk7AwDkSUnIfflSy9EQERERERERERERFR0T36REx8gIepUrAWCdbyIiIiIiIiIiIiqfmPgmFQYuXOCSiIiIiIiIiIiIyi8mvkkFF7gkIiIiIiIiIiKi8oyJb1Ihc3EBAGRGx2g1DiIiIiIiIiIiIqK3wcQ3qZBmfLPUCREREREREREREZVDTHyTCoPqLgCArPv3IebkaDUWIiIiIiIiIiIioqJi4ptU6FWqBMHQEMjORvbDh9oOh4iIiIiIiIiIiKhImPgmFYKODmTVqgEAMlnuhIiIiIiIiIiIiMoZJr5JLcUCl1lc4JKIiIiIiIiIqEyJiIiAIAhITEzUdihEZRYT36SWrLoLAC5wSURERERERERU3J49e4bAwEA4OzvDwMAAjo6O8Pb2xvnz50vl+MWdOP9/9u48PKrqcOP4e2cmk8k2k4QQQtgSAgkgoEKVRUVc2AlqqbWLaxUFQl1wKxa31opaF9wormhdqq0rYVEUWRWqP6wIAgECYQ+ELDNkm0xm5vcHMJWCkISQm+X7eZ48ZO49c+97fQyQl5NzXnvtNcXGxtbLtYD6YjM7ABqn8NRUSRTfAAAAAAAA9W3s2LGqqqrS66+/rs6dO2vv3r1auHChCgsLzY52hKqqKtntdrNjAHXCjG8ck/1w8Z2XZ24QAAAAAACAGgoGgwqUlzf4RzAYrHHGkpISLVu2TI8++qguuOACderUSWeffbamTJmiMWPGKC8vT4Zh6LvvvjviPYZhaPHixUdc68svv1Tv3r3lcDjUv39/rV27NnRu27ZtyszMVFxcnKKionTaaadp3rx5ysvL0wUXXCBJiouLk2EYuvbaayVJgwcP1qRJk3TrrbcqISFBw4YNkyQ9+eST6tWrl6KiotShQwdNnDhRpaWlkg7OHr/uuuvkdrtlGIYMw9ADDzwgSfJ6vbrjjjvUrl07RUVFqV+/fkc9A3CqMOMbx3R4je/qggL5S0tljY42NxAAAAAAAMAJBCsqlNOnb4PfN+PbVTIiI2s0Njo6WtHR0froo4/Uv39/hYeH1/m+d955p55++mklJSXpnnvuUWZmpjZu3KiwsDBlZWWpqqpKS5cuVVRUlNatW6fo6Gh16NBB77//vsaOHaucnBw5nU5FRESErvn6669rwoQJRyy7YrFY9Mwzzyg1NVVbtmzRxIkTddddd2nGjBkaOHCgpk+frvvuu085OTmhZ5SkSZMmad26dXrnnXeUnJysDz/8UMOHD9eaNWvUtWvXOj83UBMU3zgmq9Mpa6tW8hcWqmprniJ69TQ7EgAAAAAAQJNns9n02muvady4cZo5c6b69Omj888/X7/61a/Uu3fvWl3r/vvv15AhQyQdLKzbt2+vDz/8UL/85S+1fft2jR07Vr169ZIkde7cOfS++Ph4SVJiYuJRa3N37dpVjz322BHHbr311tDnKSkpeuihhzR+/HjNmDFDdrtdLpdLhmEoKSkpNG779u2aNWuWtm/fruTkZEnSHXfcoU8++USzZs3Sww8/XKtnBWqL4hs/yZ6aoorCQlXlbaX4BgAAAAAAjZ4REaGMb1eZct/aGDt2rEaNGqVly5Zp5cqVmj9/vh577DG9/PLLGjx4cI2vM2DAgNDn8fHxysjI0Pr16yVJN998syZMmKAFCxbo4osv1tixY2tUrPfte/SM+c8//1zTpk3Thg0b5PF4VF1drcrKSpWXlyvyJ2a6r1mzRn6/X+np6Ucc93q9atWqVY2fEagrim/8pPDUVFX83ypVbc0zOwoAAAAAAMAJGYZR4yVHzOZwODRkyBANGTJE9957r2644Qbdf//9WrZsmSQdsW64z+er9fVvuOEGDRs2THPnztWCBQs0bdo0PfHEE/r9739/3PdFRUUd8TovL0+jR4/WhAkT9Je//EXx8fFavny5rr/+elVVVf1k8V1aWiqr1apVq1bJarUecS6aJXXRANjcEj/JnnJ4g8utJicBAAAAAABo3nr06KGysjK1bt1akrRnz57QuR9vdPljK1euDH1eXFysjRs3qnv37qFjHTp00Pjx4/XBBx/o9ttv10svvSRJstvtkiS/33/CXKtWrVIgENATTzyh/v37Kz09Xbt37z5ijN1uP+paZ555pvx+v/bt26cuXboc8fHjJVGAU4UZ3/hJ9tQUSZKXGd8AAAAAAAD1orCwUJdffrl+97vfqXfv3oqJidH//d//6bHHHtMll1yiiIgI9e/fX4888ohSU1O1b98+TZ069ZjX+tOf/qRWrVqpTZs2+uMf/6iEhARdeumlkg6uyz1ixAilp6eruLhYixYtCpXinTp1kmEYmjNnjkaOHKmIiIifnIXdpUsX+Xw+Pfvss8rMzNSXX36pmTNnHjEmJSVFpaWlWrhwoU4//XRFRkYqPT1dv/3tb3X11VfriSee0JlnnqmCggItXLhQvXv31qhRo+rxvypwNGZ84yf9d8Z3noKBgMlpAAAAAAAAmr7o6Gj169dPTz31lAYNGqSePXvq3nvv1bhx4/Tcc89Jkl599VVVV1erb9++uvXWW/XQQw8d81qPPPKIbrnlFvXt21f5+fnKzs4+YjZ3VlaWunfvruHDhys9PV0zZsyQJLVr104PPvig/vCHP6hNmzaaNGnST+Y9/fTT9eSTT+rRRx9Vz5499dZbb2natGlHjBk4cKDGjx+vK664Qq1btw5tjjlr1ixdffXVuv3225WRkaFLL71U33zzjTp27HjS/x2BEzGCP14wqIXyeDxyuVxyu91yOp1mx2k0gj6fNpzZR6quVpdFXyisbVuzIwEAAAAAAEiSKisrtXXrVqWmpsrhcJgdB0A9Ot7Xd027XGZ84ycZYWGyt28v6eCsbwAAAAAAAABoCii+cVz21IPLnXi3ssElAAAAAAAAgKaB4hvHZU9JkSRVscElAAAAAAAAgCaC4hvHZU9NkSRVMeMbAAAAAAAAQBNB8Y3jCj+01AlrfAMAAAAAgMYoGAyaHQFAPauPr2uKbxzX4TW+fbt2KeD1mpwGAAAAAADgoLCwMElSeXm5yUkA1LfDX9eHv87rwlZfYdA8WVu1kiU6WoHSUlVt2yZHerrZkQAAAAAAAGS1WhUbG6t9+/ZJkiIjI2UYhsmpAJyMYDCo8vJy7du3T7GxsbJarXW+FsU3jsswDNlTU1W5Zo2qtuZRfAMAAAAAgEYjKSlJkkLlN4DmITY2NvT1XVcU3zghe2rKoeKbDS4BAAAAAEDjYRiG2rZtq8TERPl8PrPjAKgHYWFhJzXT+zCKb5wQG1wCAAAAAIDGzGq11ktRBqD5YHNLnNDhDS6Z8Q0AAAAAAACgKaD4xgnZU1IkSd68PAWDQXPDAAAAAAAAAMAJUHzjhOydOkmSAm63/MXFJqcBAAAAAAAAgOOj+MYJWSIiZEtuK4l1vgEAAAAAAAA0fhTfqJHwFNb5BgAAAAAAANA0UHyjRtjgEgAAAAAAAEBTQfGNGgltcLk1z9QcAAAAAAAAAHAiFN+oEWZ8AwAAAAAAAGgqKL5RI+GpKZKkqh07FKyuNjULAAAAAAAAABwPxTdqxNa2rYzwcMnnk2/XLrPjAAAAAAAAAMBPovhGjRgWi+ydOkmSvCx3AgAAAAAAAKARo/hGjf13ne88c4MAAAAAAAAAwHFQfKPG7KkpkqSqvDwzYwAAAAAAAADAcVF8o8bCQzO+WeoEAAAAAAAAQONF8Y0as1N8AwAAAAAAAGgCKL5RY/aUFElSdUGB/KWl5oYBAAAAAAAAgJ9A8Y0aszqdsrZqJYkNLgEAAAAAAAA0XhTfqBU2uAQAAAAAAADQ2FF8o1bY4BIAAAAAAABAY0fxjVqxpxwqvvMovgEAAAAAAAA0ThTfqBV7WmdJUsX3axQMBk1OAwAAAAAAAABHo/hGrUSdfbaMiAj5du5U5dofzI4DAAAAAAAAAEeh+EatWCIjFT34fEmSZ/58k9MAAAAAAAAAwNEovlFrzuEjJEmeT+az3AkAAAAAAACARofiG7UWff4gWSIjVb17jypXrzY7DgAAAAAAAAAcgeIbtWZxOBR94YWSWO4EAAAAAAAAQOND8Y06cY4YLknyfPKpgoGAyWkAAAAAAAAA4L8ovlEnUeedJ0t0tKr37lXFf/5jdhwAAAAAAAAACKH4Rp1Y7HbFXHSRJMkzj+VOAAAAAAAAADQeFN+oM+fIEZIkz4JPFfT7TU4DAAAAAAAAAAdRfKPOogYMkMXlkr9gv8r/b5XZcQAAAAAAAABAEsU3ToJhtyvm4kPLncyfZ3IaAAAAAAAAADiI4hsnxTlipCTpwILPFKyuNjkNAAAAAAAAAFB84yRF9Ttb1thY+YuKVP7112bHAQAAAAAAAACKb5wcIyxMMUOHSpI88+ebnAYAAAAAAAAAKL5RD5wjR0g6tNyJz2dyGgAAAAAAAAAtHcU3TlrkWWfJ2qqV/G63ylauNDsOAAAAAAAAgBaO4hsnzbBa5Rx2aLmTeSx3AgAAAAAAAMBcFN+oF84Rh5Y7+fxzBaqqTE4DAAAAAAAAoCWj+Ea9iOjbV7bWrRU4cEBly780Ow4AAAAAAACAFoziG/XCsFgUM3y4JMnzCcudAAAAAAAAADAPxTfqzeHlTkoXfqGA12tyGgAAAAAAAAAtFcU36k3EGafL1ratAmVlKl261Ow4AAAAAAAAAFooim/UG8NikfPQcicH5n9ichoAAAAAAAAALRXFN+qVc8Sh4nvxYgUqKkxOAwAAAAAAAKAlovhGvXL06qWw9u0VLC9X6ZIlZscBAAAAAAAA0AJRfKNeGYYRmvXtmTff5DQAAAAAAAAAWiKKb9S7mEPrfJcuWaJAWZnJaQAAAAAAAAC0NBTfqHeOHj0U1qmjgl6vDixabHYcAAAAAAAAAC0MxTfq3cHlTkZIkjzzWe4EAAAAAAAAQMOi+MYp4RwxUpJUtnSp/KWlJqcBAAAAAAAA0JKYWnxPmzZNZ511lmJiYpSYmKhLL71UOTk5R4wZPHiwDMM44mP8+PFHjNm+fbtGjRqlyMhIJSYm6s4771R1dXVDPgr+R3h6V9k7d1bQ51PpwoVmxwEAAAAAAADQgphafC9ZskRZWVlauXKlPvvsM/l8Pg0dOlRl/7Mh4rhx47Rnz57Qx2OPPRY65/f7NWrUKFVVVemrr77S66+/rtdee0333XdfQz8OfuSI5U7msdwJAAAAAAAAgIZjBIPBoNkhDisoKFBiYqKWLFmiQYMGSTo44/uMM87Q9OnTj/me+fPna/To0dq9e7fatGkjSZo5c6buvvtuFRQUyG63n/C+Ho9HLpdLbrdbTqez/h6ohfNu3qwtozOlsDClL18mq8tldiQAAAAAAAAATVhNu9xGtca32+2WJMXHxx9x/K233lJCQoJ69uypKVOmqLy8PHRuxYoV6tWrV6j0lqRhw4bJ4/Hohx9+OOZ9vF6vPB7PER+of+Fduii8a1fJ59OBz1nuBAAAAAAAAEDDaDTFdyAQ0K233qpzzjlHPXv2DB3/zW9+ozfffFOLFi3SlClT9MYbb+jKK68Mnc/Pzz+i9JYUep2fn3/Me02bNk0ulyv00aFDh1PwRJAk58hDy53MZ7kTAAAAAAAAAA3DZnaAw7KysrR27VotX778iOM33nhj6PNevXqpbdu2uuiii5Sbm6u0tLQ63WvKlCmaPHly6LXH46H8PkVihg9XwdPPqGzFClUXF8sWF2d2JAAAAAAAAADNXKOY8T1p0iTNmTNHixYtUvv27Y87tl+/fpKkzZs3S5KSkpK0d+/eI8Ycfp2UlHTMa4SHh8vpdB7xgVMjPDVV4d27S36/9v75zwr8z8alAAAAAAAAAFDfTC2+g8GgJk2apA8//FBffPGFUlNTT/ie7777TpLUtm1bSdKAAQO0Zs0a7du3LzTms88+k9PpVI8ePU5NcNRKwk03ShaLPPPma+vYX6hy3TqzIwEAAAAAAABoxkwtvrOysvTmm2/q7bffVkxMjPLz85Wfn6+KigpJUm5urv785z9r1apVysvL0+zZs3X11Vdr0KBB6t27tyRp6NCh6tGjh6666iqtXr1an376qaZOnaqsrCyFh4eb+Xg4xDl8uDq9/ppsSUmqystT3hW/UtEbbyoYDJodDQAAAAAAAEAzZARNbB8Nwzjm8VmzZunaa6/Vjh07dOWVV2rt2rUqKytThw4ddNlll2nq1KlHLE+ybds2TZgwQYsXL1ZUVJSuueYaPfLII7LZaraEucfjkcvlktvtZtmTU6i6uFh7/jhVpV98IUmKvvBCtf3LQ6z7DQAAAAAAAKBGatrlmlp8NxYU3w0nGAyq+M23tO+xxxT0+WRLSlK7vz6myLPOMjsaAAAAAAAAgEaupl1uo9jcEi2HYRiKv+pKpbz7juwpKarOz9e2a65VwfPPK+j3mx0PAAAAAAAAQDNA8Q1TOHr0UOr778l16aVSIKD9zz6n7ddeJ9/evWZHAwAAAAAAANDEUXzDNJaoKCU/Mk3Jjz4iIzJS5d98o62XXKoDixaZHQ0AAAAAAABAE0bxDdO5LrlEqe+/p/Ae3eUvKdHOCRO1d9o0BaqqzI4GAAAAAAAAoAlic0uxuWVjEaiqUsETT6jo9b9LksI6dlRk375ydO8mR/fuCu/WTdaYGJNTAgAAAAAAADBLTbtcim9RfDc2BxYt0p4p98hfUnLUubD27Q+W4N27ydGtuxzdu8mWlCTDMExICgAAAAAAAKAhUXzXAsV34+N3u1X+zTeqXL9BlRs2qHL9OlXv3nPMsdbY2FARHtGrpyL69FFYUlIDJwYAAAAAAABwqlF81wLFd9PgLylR5YYcVW5YL+/69apcv0He3FzJ7z9qbFhysiL69FFEnzMV2aePwrt2lWG1mpAaAAAAAAAAQH2h+K4Fiu+mK+D1yrtps7wb1qty3TqVf/edvBtypEDgiHGW6GhFnH56qAiP6N1blqgok1IDAAAAAAAAqAuK71qg+G5e/KVlqvx+tcq//Y8qvv1WFatXK1BWduQgq1WOjAxF9uunhKyJskZHmxMWAAAAAAAAQI3VtMu1NWAmoEFYo6MUNXCgogYOlCQF/X55N25U+bffquLb/6j8P9+qevceVa5bp8p16+QvKlTyo4+anBoAAAAAAABAfWHGt5jx3RL58vNVunSp8u+7X7JYlDZvruwpKWbHAgAAAAAAAHAcNe1yLQ2YCWg0wpKSFPfLXyp68GApEND+mS+YHQkAAAAAAABAPaH4RouWkJUlSXJnZ6tq+3aT0wAAAAAAAACoDxTfaNEievVU1PmDJL+fWd8AAAAAAABAM0HxjRav9cSJkiT3xx+rascOk9MAAAAAAAAAOFkU32jxIk4/XVHnnntw1vcLzPoGAAAAAAAAmjqKb0BSQtahWd8ffayqnbtMTgMAAAAAAADgZFB8A5IizzxTUQMHStXVKmTWNwAAAAAAANCkUXwDhyRMypIklXz4oXy7mPUNAAAAAAAANFUU38AhkX36KHJAf6m6WvtffMnsOAAAAAAAAADqiOIb+JHWWYdmfX/wgXy7d5ucBgAAAAAAAEBdUHwDPxL5s58p8uyzJZ9P+19i1jcAAAAAAADQFFF8A/8j4dCsb/d778uXn29yGgAAAAAAAAC1RfEN/I+ofmcr8mc/U9DnU+FLL5sdBwAAAAAAAEAtUXwDx5Aw6dBa3//6l3x795mcBgAAAAAAAEBtUHwDxxDZr58i+vZVsKpKhS8z6xsAAAAAAABoSii+gWMwDEOtsyZKkkr++U/59jHrGwAAAAAAAGgqKL6BnxA5YIAizjxTQa9XRa+8YnYcAAAAAAAAADVE8Q38BMMwlJB1cK3v4nfeVXVBgcmJAAAAAAAAANSEzewAQGMWdc5AOU7vrcrV36vwlVfV5g93mx0JAAAAAAAAzUAwGNTe8r3a6t6q6kB1rd9/WsJpinfEn4JkzQPFN3AcB9f6ztKOG29S8TvvqNUN18uWkGB2LAAAAAAAADQhVf4qbS7ZrI3FG5VTlHPw1+Icub3uOl9zxkUzdF778+oxZfNC8Q2cQNR558nRq5cq16xR4auz1OauO82OBAAAAAAAgEZqf8V+5RTlKKc4J1Ryb3VvlT/oP2qs1bCqk7OTHDZHre8TbY+uj7jNFsU3cAIH1/qeqJ3jJ6j4H/9Qq+t/J1urVmbHAgAAAAAAgIl8AZ+2urf+dwb3obK7qLLomONd4S5lxGUoPS5dGfEZyojLUFpsmuxWewMnbxkovoEaiD7/fDl69lTl2rUqmjVLiXfcYXYkAAAAAAAANJDiyuIjZnBvLN6o3JJc+QK+o8ZaDIs6xnQMldsZ8QfL7jaRbWQYhgnpWyaKb6AGDMNQwsSJ2jlxoore/ofif/c72eLZPAAAAAAAAKA58Qf82ubZFiq5c4pztLFoo/ZV7Dvm+OiwaKXHpR8xi7tLXBdF2CIaODn+F8U3UEPRFwyW47TTVPnDD9o/429KmvpHsyMBAAAAAACgjjxVHm0sOrjJ5OGlSjaXbJbX7z3m+PbR7UPldnp8urrFd1NyVDKzuBspim+ghgzDUOLtk7X9d9er+N13FX/1VbJ37Gh2LAAAAAAAAJxAma9MK3ev1Pqi9aFZ3LvLdh9zbIQtQl1juyo9Pj20VEnX2K5sJtnEUHwDtRA1cKCizj1XZcuXq2D6dLV78kmzIwEAAAAAAOAY/AG//r3n38rekq2F2xeqorriqDFto9qGZnAfLrk7xHSQxbCYkBj1ieIbqKXEO27X1i+/lGfefMVfd50ievUyOxIAAAAAAAAO2VS8Sdm52Zq7Ze4Ra3N3jOmovm36hjabTI9LlyvcZWJSnEoU30AtObp1k2tMptwfz9a+vz6ujq+/xlpOAAAAAAAAJtpfsV/zt85Xdm621hetDx13hbs0PGW4xqSNUa+EXnQ4LQjFN1AHrW++WZ5581X+9dcqW7pU0eefb3YkAAAAAACAFqWyulKLdyzW7NzZ+mr3V/IH/ZIkm8Wm89ufr8y0TA1qN0hh1jCTk8IMFN9AHYS1a6e4q65S0auvat/jTyjq3HNlWK1mxwIAAAAAAGi23F63NhZvVE5Rjn4o/EGLdyxWqa80dL53Qm9lpmVqeMpwxTpiTUyKxoDiG6ijhBvHqeS99+TdtEnujz5W7Nifmx0JAAAAAACgyfMH/NpxYIdyinOUU5RzsOwuzlF+Wf5RY9tGtdXozqOVmZapVFeqCWnRWFF8A3VkjY1Vwk03at9fH1fBs8/KOWqkLA6H2bEAAAAAAACalC0lW/R1/tfKKc7RxqKN2lSySRXVFccc2y66XWhjyn5t+6lvm76yGJYGToymgOIbOAlxV16porfeUvXuPSp64w0ljBtndiQAAAAAAIBGr6iyKLQZ5Q+FPxx13mF1qEtsF2XEZyg9Lj30a4w9xoS0aIoovoGTYAkPV+ubb9aeP0xR4YsvKfYXv5AtLs7sWAAAAAAAAI2O1+/Vkh1LlJ2breW7lqs6WC1Jshk2nd32bPVo1UMZcRlKj09Xp5hOslrYTw11R/ENnCRXZqaKZr0mb06OCme+oDZT/mB2JAAAAAAAgEYhGAxqdcFqzc6drU/yPtGBqgOhcz1b9Ty4GWXqcMU74k1MieaI4hs4SYbVqsQ77tCOceNU/PbbirvqStnbtzc7FgAAAAAAgGl2HNihOblzlL0lWzsO7AgdbxPZRplpmcrsnKnOsZ1NTIjmjuIbqAdR556jyAH9Vb5ipQqmP612j//V7EgAAAAAAAB1Vh2o1r/3/FsLti2Q2+uu1XsLKgr0fcH3odcRtggN6TREY9LG6Kyks9iMEg2C4huoB4ZhKPH2O5T3i1/IM2eO4q+7VhGnnWZ2LAAAAAAAgFrJKcpRdm625m2dp4KKgjpfx5Ch/m37KzMtUxd1vEiRYZH1mBI4MYpvoJ5E9DxNzlGj5Jk7VwVPPKGOr75qdiQAAAAAAIAT2l+xX3O3zFV2brZyinNCx2PDYzU8Zbi6xnWt1fXsVrsGtB2gNlFt6jsqUGMU30A9an3brfIsWKCyr1aodPmXij73HLMjAQAAAAAAHKWyulKLdizS7NzZWrF7hfxBvyTJZrFpcPvBykzL1HntzlOYNczkpEDdUHwD9cjevr3if/NrFb3+d+17/HFFDRwgw8K6VQAAAAAAoP75Aj4Fg8Eajw8qqDUFa5S9JVsL8hao1FcaOnd669M1Jm2MhqUMkyvcdSriAg2K4huoZ63Gj1fJ+x/Iu2GDPNnZcl1yidmRAAAAAABAM+Gp8mhB3gJl52br233fntS1kqOSlZmWqcy0THVydqqnhEDjQPEN1DNbXJxa3XijCp58Uvuefloxw4fLEh5udiwAAAAAANBE+QI+rdi9QrNzZ2vR9kWqClTV+VpRYVEaljJMmZ0z1adNH1kMflIdzRPFN3AKxF99lYrfekvVu/eo+M231Or635kdCQAAAAAANCHBYFDri9YrOzdb87bOU1FlUehcl9guykzLPLgsib12y5I4bA7ZLFSCaP74vxw4BSwOh1rf/Hvt+eNU7X/xRcX+YqysLtbHAgAAAAAAx7e3bK/mbp2r7NxsbS7ZHDoe74jXyNSRGpM2Rt3iu8kwDBNTAo0fxTdwirguvVRFr70m76bNyv/Tn5V4x+0Ka9vW7FgAAAAAAOAUCgQD+m7fd9rm2Var91X6K7Vo+yKt3LNSQR3csNJuseuCjhdoTNoYDUgeoDBL2KmIDDRLRrA2W782Ux6PRy6XS263W06n0+w4aEZKlyzRjpvGH3xhGIoaMECun/9cMRdfJIvDYW44AAAAAABQb7Z5tik7N1tztszRrtJdJ3WtPol9NCZtjIakDJHTTlcwF0+MAAAgAElEQVQF/FhNu1yKb1F849TyLFig4jfeVPk334SOWWJi5Bw5UrGXXSrH6afz40kAAAAAADRBbq9bn2z9RNlbsrW6YHXoeFRYlM5ofUatNo40DEM9W/XU6LTR6hDT4VTEBZoFiu9aoPhGQ6jasUPuDz+S+6OP5Nu9O3Tc3rmzXJddKteYSxTWJtHEhAAAAAAA4ER8fp+W7Vqm7NxsLdm5RL6AT5JkMSwamDxQY9LGaHCHwYqwRZicFGieKL5rgeIbDSkYCKj866/l/vBDeT5doGBl5cETFouizj1HsT//uaIvvFAWu93coAAAAAAAQJIUDAa1dv9aZW/J1vyt81XiLQmdy4jLUGZapkamjlTryNYmpgRaBorvWqD4hln8paU68MknKvngQ1V8+23ouNXlUpt775Vr9CgT0wEAAAAA0LLtKd2jOVvmaHbubOV58kLHEyISNCp1lDLTMpURn2FeQKAFoviuBYpvNAZVeXkq+fAjuT/+WNX5+ZKkNvfco/irrzI5GQAAAAAALUeZr0yfb/tc2bnZ+jr/awV1sDpzWB26sOOFGpM2Rv3a9pPNYjM5KdAyUXzXAsU3GpOg36+9jzyq4jfekCS1mjBerW++mQ0wAQAAAAA4RfwBv77O/1qzc2dr4faFqqiuCJ07K+ksZXbO1JBOQxRtjzYxJQCp5l0u/zQFNDKG1ao290yRLT5OBU8/o8K/zZS/qFhJ990rw2o1Ox4AAAAAAM1GbkmuZufO1pwtc7SvfF/oeCdnJ2V2ztTotNFqF93OxIQA6oriG2iEDMNQwoQJssbFK//BB1Xy7rvyl5Qo+a+PseklAAAAAAAnoaiySPO3ztfs3NlaV7gudNxpd2pE6ghlpmWqd0JvfvIaaOIovoFGLO5XV8gaG6vdd96pA59+qh1ut9o/95ys0VFmRwMAAAAAoFELBoPaVbpLOcU52li0UTnFOcopytHO0p2hMTbDpnPbn6sxaWN0fvvzZbcy2QxoLii+gUbOOXyYrC6ndmZNUvnKldp+zTXq8NKLssXHmx0NAAAAAIBGoaK6QpuLN4fK7Y3FG7WxeKNKfaXHHN89vrsu6XKJRqSOULyD76+B5ojNLcXmlmgaKtas1Y4bb5S/uFj2lBR1fOVlhbVjnTEAAAAAQMuyv2K/NhRt0IaiDcopytGGog3afmC7AsHAUWNtFpvSXGnKiM9Qely6MuIzlBGXoThHnAnJAdSHmna5FN+i+EbT4d2yVdtvuF7Vu/fIlpiojq+8rPCuXc2OBQAAAABAvfMH/Nrm2Xaw5C4+WHLnFOWosLLwmOPjHfHKiMsIldzpcenq7OqsMGtYAycHcCpRfNcCxTeaEl9+vrbfcIOqNufK4nKpw8y/KfLMM82OBQAAAABAnZX5yrSxeOPBcvvQciWbijep0l951FiLYVGKM0UZ8RnqFt8tVHYnRCSYkBxAQ6P4rgWKbzQ1/pIS7bhpvCpWr5YREaH2T09X9KBBZscCAAAAAOC4arLh5I9F2CKUHpd+sOCOz1C3uG7qEtdFEbaIBk4OoLGg+K4Fim80RYHycu285VaVLVsm2WxKnvawXJmZZscCAAAAAEDSwQ0nNxVvCs3kPtGGk4kRiUqPP7Lk7hDTQVaLtYGTA2jMKL5rgeIbTVWwqkq7p9wjz9y5kqSYIRer9eTJCk9NNTkZAAAAAKClCAaD2lu+94hlSjYWb9Q2zzYFdXTtZLPY1CW2S2gdbjacBFAbFN+1QPGNpiwYCKjgySdV+OosKRCQbDbF/epXSsiaKFscf2kAAAAAANQfr9+r3JLcULmdU3zwV7fXfczx/7vhZEZ8hlJdqQqzsOEkgLqh+K4Fim80B95Nm7T38cdVtmSpJMkSHa1WN92o+KuvliU83OR0AAAAAICmyuf36bnvntPSnUu11b1V/qD/qDFWw6pUV+oRM7jZcBLAqUDxXQsU32hOylas0N7H/irv+vWSJFtyWyXedpuco0bJsFhMTgcAAAAAaErKfeWavHiyvtz9ZeiY0+4MlduHi+602DSFW5l0BeDUo/iuBYpvNDfBQEDu2bNVMP1pVefnS5IcPXoo8e67FdXvbJPTAQAAAACaArfXrYkLJ+r7gu8VYYvQH/v9Uf3a9lObyDYyDMPseABaKIrvWqD4RnMVqKxU0et/V+GLLypQViZJir7gAiXecbvC09JMTgcAAAAAaKzyy/I1/rPxynXnyml36vmLntcZiWeYHQsAKL5rg+IbzV11YaH2Pz9Dxe++K/n9ktWq2Mt/oda//71srVqZHQ8AAAAA0IhsdW/VTZ/dpD1le5QYmagXLn5BXeK6mB0LACTVvMtlwV+gBbC1aqWk++5V5+xsRV90keT3q+Sdd5X3yytUXVxsdjwAAAAAQCPxw/4fdM38a7SnbI9SnCl6Y8QblN4AmiSKb6AFCe+cqg7PP6dOb/xdYe3by7drl3bfeZeC/qN35AYAAAAAtCwr96zU7z79nYq9xTqt1Wl6fcTrSo5ONjsWANQJxTfQAkWedZbaP/+8DIdDZcuXa//fZpodCQAAAABgogV5CzTx84kqry5Xv7b99MqwVxTviDc7FgDUGcU30EI5MtLV9k8PSpL2P/+8SpctMzkRAAAAAMAM/8z5p+5Ycod8AZ+GdBqiGRfNUFRYlNmxAOCkUHwDLZhrzBjF/vpXUjCo3Xfcqaqdu8yOBAAAAABoIMFgUC+sfkF/XvlnBRXU5emX66+D/iq71W52NAA4aRTfQAvXZsoUOXr1kt/t1q5bblHA6zU7EgAAAADgFAsEA3r0m0f13HfPSZJu6n2T7u1/r6wWq8nJAKB+UHwDLZzFblf7p6fLGhuryh9+0N6Hp5kdCQAAAABQC/6AX16/V5XVlaqorlC5r1xlvjKVVpXqQNUBeao8cnvdcnvdKqksUWFFoe5Zfo/eWv+WJOkPZ/9Bk86cJMMwTH4SAKg/NrMDADBfWHKykv/6V+248UaVvPuuIs44Q7GXXWp2LAAAAADAcQSCAc1aO0svfP+CKqorav1+m2HTQ+c+pFGdR52CdABgLmZ8A5AkRZ93rhImZUmS8h94QJUbNpicCAAAAADwU/ZX7Nf4z8Zr+rfT61R6J0Qk6NmLnqX0BtBsMeMbQEjChAmqWL1aZUuXaefNtyj1vX/J6nSaHQsAAAAA8CNf7fpKU5ZPUVFlkRxWh/5w9h80LGWYDMOQoYPLlVgMS+i1IUMyJIt+dIxlTQA0c8z4BhBiWCxKfvRRhSUny7d9u3ZPuUfBYNDsWAAAAAAASb6AT0+teko3fX6TiiqL1DWuq94Z/Y7Gpo9VtD1aUWFRigyLVGRYpBw2h8Kt4bJb7QqzhinMEiarxRoqxAGguaP4BnAEW1yc2j39tIywMJUuXKjCl182OxIAAAAAtHg7D+zUtfOv1atrX5UkXZFxhd4e+bbSYtNMTgYAjRPFN4CjRPTqqTb3TpUkFTw1XWUr/21yIgAAAABouT7J+0SXZ1+u7/d/rxh7jJ4c/KSm9p8qh81hdjQAaLQovgEcU+zll8t12WVSIKBdt98u3969ZkcCAAAAgBalorpCD3z1gO5ccqdKfaU6vfXpei/zPQ3pNMTsaADQ6FF8AzgmwzCUdN+9Cu/WTf7CQu269TYFfT6zYwEAAABAi7CpeJN+PefXen/T+zJkaFyvcZo1fJaSo5PNjgYATQLFN4CfZImIUPunp8sSE6OK//xH+x5/3OxIAAAAANCsBYNB/TPnn/r13F8r152rhIgEvTDkBd3c52aFWcLMjgcATYbN7AAAGjd7p05KfmSadmZNUtHrf1fVjp1y9DxNju7d5ejRQ7bERHYEBwAAANAs+QN+bTuwTTlFOcopytFW91ZVB6trdY1gMHjwVwX/e+zw50Eddczj9Wht4VpJ0jnJ5+gv5/5FrSJancRTAEDLZAQP/w7cgnk8HrlcLrndbjmdTrPjAI3SvunTVTjzhaOOW+PjD5Xg3UNleFjHjjIs/EAJAAAAgKajzFemjcUbtaFoQ6jo3lyyWZX+ygbPYjNsuqXPLbr6tKtlMfjeCgB+rKZdLsW3KL6Bmir/9j+qWL1alevXybt+vby5W6RA4KhxlqgohXfrJkf37or82c8UM2wos8IBAAAANBrVgWp9nf+1vi/4/mDJXZyjHQd2HHNshC1CXeO6KiMuQ11iuyjCFlHr+x3+fsiQcdxjh/VM6KlUV2qt7wMALQHFdy1QfAN1E6islHfjRlWuW6/KdetUuX69vBs3Kuj1HjGuw4svKHrQIJNSAgAAAMBBOUU5mp07W3O3zFVhZeFR5xMjE9Utvpsy4jKUEZ+hjLgMdYjpIKvFakJaAMCx1LTLZY1vAHVmcTgU0bu3Inr3Dh0LVlfLu2WLvOvXq+SDD1X+73/LnT2H4hsAAACAKfaV79O8LfM0e8tsbSreFDoeFx6nc9ude7DgPlRyxzniTEwKAKhPFN8A6pVhs8mRni5HerrCOnbUtl//RqULFypQWSmLw2F2PAAAAAAtQEV1hb7Y/oWyc7O1Ys8KBYIHl2gMs4RpcIfBGpM2Rue0O0dhljCTkwIAThWKbwCnTMQZZ8iW3FbVu/eodMlSOYcNNTsSAAAAgGYqEAxo1d5Vmp07WwvyFqi8ujx07ozWZygzLVPDUobJFe4yMSUAoKFQfAM4ZQzDkHPECBW98qo88+dTfAMAAAA4LrfXrU/zPtVXu7+SL+Cr1Xs3FW/SnrI9odftottpTNoYje48Wh2dHes7KgCgkTO1+J42bZo++OADbdiwQRERERo4cKAeffRRZWRkhMZUVlbq9ttv1zvvvCOv16thw4ZpxowZatOmTWjM9u3bNWHCBC1atEjR0dG65pprNG3aNNls9PqA2ZwjRqrolVdVunixAmVlskRFmR0JAAAAQCPiC/j05a4vNTt3thbvWFzrwvvHYsJiNDRlqMakjdGZiWfKMIx6TAoAaEpMbYaXLFmirKwsnXXWWaqurtY999yjoUOHat26dYo6VI7ddtttmjt3rv71r3/J5XJp0qRJ+vnPf64vv/xSkuT3+zVq1CglJSXpq6++0p49e3T11VcrLCxMDz/8sJmPB0CS47QeCuvUUb5t23Vg0WK5Ro8yOxIAAAAAkwWDQa0rXKfsLdmat2Weir3FoXNd47pqZOpItXK0qtU1Y8NjNSB5gBw29hYCAEhGMBgMmh3isIKCAiUmJmrJkiUaNGiQ3G63Wrdurbffflu/+MUvJEkbNmxQ9+7dtWLFCvXv31/z58/X6NGjtXv37tAs8JkzZ+ruu+9WQUGB7Hb7Ce/r8XjkcrnkdrvldDpP6TMCLdG+6dNVOPMFRV90kTo8/5zZcQAAAACYJL8sX3O2zFF2bra2uLeEjrdytNKozqM0Jm2MMuIzjnMFAEBLV9Mut1GtBeJ2uyVJ8fHxkqRVq1bJ5/Pp4osvDo3p1q2bOnbsGCq+V6xYoV69eh2x9MmwYcM0YcIE/fDDDzrzzDOPuo/X65XX6w299ng8p+qRAEhyjhypwpkvqGzpUvk9Hln5ByYAAACgUfD6vaoOVJ/Se/j8Pi3dtVSzc2fr6z1fK6iD8+/CreG6sMOFykzL1IDkAbJZGlVFAQBo4hrNnyqBQEC33nqrzjnnHPXs2VOSlJ+fL7vdrtjY2CPGtmnTRvn5+aExPy69D58/fO5Ypk2bpgcffLC+HwHAT3Ckp8veJU1Vm3N1YOEXir3sUrMjAQAAAC1aMBjUM/95Rq+tfU3VwVNbfP+vvm36akzaGA3pNEQx9pgGvTcAoOVoNMV3VlaW1q5dq+XLl5/ye02ZMkWTJ08OvfZ4POrQocMpvy/QkjlHjtT+Z56VZ948im8AAADARNWBaj3w1QP6OPfjBrtnx5iOykzL1OjOo9U+pn2D3RcA0HI1iuJ70qRJmjNnjpYuXar27f/7B2BSUpKqqqpUUlJyxKzvvXv3KikpKTTm66+/PuJ6e/fuDZ07lvDwcIWHh9f3YwA4DueIEdr/zLMqW7FC1cXFssXFmR0JAAAAaHEqqyt159I7tXjHYlkNq+4fcL9Gdh55yu8bbuV7cABAw7KYefNgMKhJkybpww8/1BdffKHU1NQjzvft21dhYWFauHBh6FhOTo62b9+uAQMGSJIGDBigNWvWaN++faExn332mZxOp3r06NEwDwLghMJTUxXevbtUXa0DCz4zOw4AAADQ4hyoOqDxn4/X4h2LZbfY9dTgp3RZ18sUbg0/5R8AADQ0U4vvrKwsvfnmm3r77bcVExOj/Px85efnq6KiQpLkcrl0/fXXa/LkyVq0aJFWrVql6667TgMGDFD//v0lSUOHDlWPHj101VVXafXq1fr00081depUZWVlMasbaGScI0dIkjzz55ucBAAAAGhZ9lfs13WfXKdVe1cpOixaLwx5QRd0vMDsWAAAnDJGMBgMmnZzwzjm8VmzZunaa6+VJFVWVur222/XP/7xD3m9Xg0bNkwzZsw4YhmTbdu2acKECVq8eLGioqJ0zTXX6JFHHpHNVrOVXDwej1wul9xut5xO50k/F4Bjq9q5U7kXD5EsFnVdsli21q3NjgQAAAA0ezs8O3TjZzdqZ+lOtXK00swhM9UtvpvZsQAAqJOadrmmFt+NBcU30HC2XnGFKld/rzZTpyr+yt+aHQcAAABo1nKKcnTTZzepsLJQ7aPb68UhL6qDs4PZsQAAqLOadrmmLnUCoOVxjmC5EwAAAKAhrNq7Std9cp0KKwuVHpeuv4/4O6U3AKDFoPgG0KCcI0ZIhqGKVavk27PH7DgAAABAs7Ro+yLd9NlNOuA7oD6JfTRr+Cy1jmSpQQBAy0HxDaBBhbVpo4i+fSRJnk8+NTkNAAAA0Px8tPkj3bb4Nnn9Xg1uP1gvDHlBTjvLegIAWhaKbwANzjlypCTJM2+eyUkAAACA5mXW2lm698t75Q/6NSZtjJ664Ck5bA6zYwEA0OBsZgcA0PI4hw7V3of+oso1a1S1Y4fsHVhnEAAAAPix7wu+15r9a2r1nk3Fm/T+pvclSdf0uEaTfzZZFoP5bgCAloniG0CDsyUkKKp/P5V9tUKeefOVcNONZkcCAAAAGoUt7i16atVTWrxjcZ2vMbnvZF3X87r6CwUAQBNE8Q3AFDEjRhwsvueffPHt3bxZ/uLiWr3HlpTETHMAAAA0Gvsr9utv3/1N7296X/6gX1bDqnPbnVurZUossmhoylBd3OniU5gUAICmgeIbgCmcQ4Yo/8E/ybthg7xbtii8c+c6XWffk0+p8MUXa/9Gw1Dbhx9W7GWX1um+AAAAQH0o95Xr7+v+rllrZ6m8ulySNLjDYN3W9zZ1dtXt78gAAIDiG4BJrLGxijpnoMqWLJVn3ny1npRV62sUvvZaqPS2p6RIhlGj9wWrquTbtUv5DzwgR7cMObp3r/W9AQAAgJPhD/j10eaP9Px3z6ugokCS1Cuhlyb3nayfJf3M5HQAADR9FN8ATOMaOfJQ8T1PCVkTZdSwuJYkd3a29j3yqCSp9eTJSrhxXI3fGwwEtHPCRJUuWaKdv79Zqe+/J6vLVev8AAAAQG0Fg0Et27VMT616SptLNkuS2kW30619btWwlGG1+jsxAAD4aWzvDMA00RddJMNuV9WWLfJu3Fjj95UuW6bdU+6RJMVfc7VajbuhVvc1LBYlP/aowjp0kG/nTu266y4FA4FaXQMAAACorXWF6zRuwThlLczS5pLNcoW7dNdZd2n2pbM1PHU4pTcAAPWI4huAaazR0Yo+f5AkyTNvfo3eU7F6tXbefItUXS3n6NFKvPvuOn2DYHW51P6Zp2WEh6tsyVLtnzmz1tcAAAAAamJf+T5NWTZFV8y5Qv/O/7fsFruuO+06zb1srq7qcZXsVrvZEQEAaHYovgGYyjlihCTJM2+egsHgccd6t2zRjpvGK1hRoahzz1Xyw3+RYan7b2OO7t2VdP/9kqT9zz6n0mXL6nwtAAAA4FiW7lyqsbPHas6WOZKkUZ1HKfuybE3+2WS5wlluDwCAU4XiG4CpogcPlhERId+OHapc+8NPjvPl52v7DTfIX1IiR69eav/0dBn2k58ZE/vzyxR7xRVSMKjdd9ypqp27TvqaAAAAQJW/So9985iyFmapxFui7vHd9c7od/TIeY8oOTrZ7HgAADR7FN8ATGWJjFTMBYMlHZz1fSx+t1s7xo1T9e49sqekqMMLM2WJiqq3DG3+eI8cvXrJ73Zr1y23KOD11tu1AQAA0PJs92zXVfOv0hvr3pAkXdn9Sr058k2d1uo0k5MBANByUHwDMJ1z5EhJkueTT47aZDJQUaEdEybKu2mzbImJ6vjKy7LFx9fr/S12u9o/PV3W2FhV/vCD9j70UL1eHwAAAC3HnC1zdHn25VpXuE6ucJeeueAZ3X323azjDQBAA6P4BmC6qPPOkyU6WtV79qjiu+9Cx4PV1dp122RVfPutLE6nOrz8ksLatTslGcKSk5X8xOOSYajkX++p5L33Tsl9AAAA0DyV+8o1dflUTVk2ReXV5erbpq/ey3xPF3S8wOxoAAC0SBTfAExnCQ9XzEUXSZI88+ZLkoLBoPbcd79KFy+WER6uDn+bIUd6+inNEX3OOWp9yy2SpPw//VkVx1lzHAAAADhsQ9EGXTHnCn2c+7EshkUTT5+oV4a+oqSoJLOjAQDQYlF8A2gUnCNHSJI8n36ioN+vgiefkvuDDySrVe2eelKRffs2SI5WN45T9AUXKFhVpV0336zq4uIGuS8AAACanmAwqLfXv63fzv2t8jx5SoxM1MtDX9aEMybIarGaHQ8AgBaN4htAoxA1YICsLpf8Bfu1+867VPjSS5Kktn96UDEXXthgOQyLRcmPPqKwjh3l271bu++8S0G/v8HuDwAAgKbB7XXrlkW3aNrX01QVqNL57c/Xe5nv6ayks8yOBgAARPENoJEw7HbFDB0iSfLMmydJaj15smLHjm3wLFanU+2feVqGw6Gy5cu1//kZDXLfQFWVfHv2NMi9AAAA8P/s3XlclXX+/vHXWdjXw6aAKxjHXLLMFjOrsTQzwaWaqWwxU9tMbdFvM81M269Jy8psKrWaaZv2dARzaZnM0so2zVwAQRBUBOUAsnPOuX9/UMw4WgMK3CzX8/HwQXzu+9zn4h+Dyw/vz/ExDIOvC77m8rTL+STvE3ysPtxz5j08PeJpHP4Os+OJiIjIT+xmBxAR+VnomDGUvFN/qKTjumuJnDbVtCz+ffsS+8D97Pu/ezj47LP4nzKQkAsuaJH3MjweSlPTKFq0CHdBAfELFxJ68agWeS8RERERabxqdzW7SnaRXpxOuiudDFcGGa4MDtceBqBnaE8ePe9R+kX2MzmpiIiI/DeLYRiG2SHMVlZWRlhYGKWlpYSGhpodR6TTMjweCh56CFtICNF33IHFav4vpRQ8+CCu19/AGhpK7/fexbd792Z7tmEYVHz+OYULHqcmPb1h3Sc+noTVq7D6+jbbe4mIiIjILzMMg8LKwoZy++eiO7csF6/hPep+u8XO2MSx3HPmPQT5BJmQWEREpPNqbJer4hsV3yLyy7y1teReey3VW37AHheL43dXEpaSjE9s7Ak9t2rbNgoXLKDyiy8BsIaGEjltKq5XXsVdVESX399DxPXXN8eXICIiIiL/oc5TR1ZpFunFP5XcrnQyijNw1Rz7UHOHn4OkiCScDifOCCdOh5OEsAR8bD6tnFxERERAxXeTqPgWkV9TV1BAzu+uxH3gQP2CxULgWWcRNm4cISNHYgtu/C6f2vx8ihY+RdnKlfWP8vHBcc01RN00HVt4OK533qHgT3/GFhZG4ocfYNPfSSIiIiLH7VDVoYZiO91Vv4t7d8lu3Ib7qHttFhu9Qns1lNxJjiScEU6iA6KxWCwmpBcREZFjUfHdBCq+ReR/8ZSXc3jtWkr/uYLKr79uWLcEBBAy8iLCxo0j6Oyzsdhsx3y92+Xi0JKluP7xD4y6OgBCU5KJnjkL327xDfcZbjfZ48dTuyuLyGlTibnrrpb9wkREREQ6CK/h5bsD37F+7/qGovtg1cFj3hviG3LEDu6kiCT6hPfBz+bXyqlFRESkqVR8N4GKbxFpitr8vZSlpVL6zxXU5uY2rNtjYghLSSZs3Dj8TjoJAG91Na7XXuPgkqV4D9cfghR0zlCi77qLgP79j/n8w598Qv4tt2Lx9SVxzWp84uJa/osSERERaadyy3JJy0pjZfZK9pbvPeKaBQs9Q3tykuOkI4rurkFdtYtbRESknVLx3QQqvkXkeBiGQfWWLZSsWEHZqtV4S0sbrvn360fQ8OGUrliBu6AAAL++fYm5+26Czx32P5+757rrqfz6a8LGjydu3iMt+nWIiIiItDelNaWszVlLalYqW4q2NKwH+QRxYY8LOTXmVJwOJ33C+xDoE2hiUhEREWluKr6bQMW3iJwob20t5evWUboilfJPPwX3v+dG2mNjiZ41k7Dk5F8chfLfqn74gZzf/g4sFnovX4Z/374tFV1ERESkXajz1PH53s9Jy05jXd466rz14+OsFivnxJ1DSmIKF3S/gAB7gMlJRUREpCWp+G4CFd8i0pzcxcWUrVpN5VdfEnDqaTiumYTVr+nzIvfeeSdlq1YTdO659Hjh+RZIKiIiItK2GYbBtkPbSM1KZc3uNbhqXA3XnA4nyYnJXJpwKVEBUSamFBERkdak4rsJVHyLSFtUu2cPWZeOhbo6ur/4AsHDfn1EioiIiEhHUVBRwMrslaRmpbK7dHfDelRAFGMTxjI2YSzOCKeJCUVERMQsje1y7a2YSUREmsC3Rw8cV16J69VXKXz8cYKGDsVitZodS0RERKRFVNRV8FHuR6RlpbGpYBMG9Xu0/G3+jOgxgpTEFM6KPQu7VT/GioiIyP+m7xhERNqwqFtupnT5cmq276Ds/fcJS042O5KIiIhIs/F4PXy1/63jPQIAACAASURBVCvSstP4eM/HVLmrGq6d0fUMkhOSGdlzJMG+wSamFBERkfZIxbeISBtmj4ggcto0ip58kqInFxIyatRxzQsXERERaUsyXZmkZaXxfvb7FFYVNqz3Cu1FSmIKlyZcSlxwnIkJRUREpL1T8S0i0sZFXHctrtdfp27fPlz/eJ3IKTeYHUlERESkSQzDYH/Ffj7e8zFpWWnsKN7RcC3ML4xLel1CSmIKA6IGYLFYTEwqIiIiHYWKbxGRNs4aEED0zJnsv/deDi5eTPjECdjCw82OJSIiInJMNZ4adpXsIqM4g3RXOunF6WS4MiirLWu4x261c36380lOTOa8+PPwsfmYmFhEREQ6IhXfIiLtQNj4cRS/9BI1mZkcXPo8XebOMTuSiIiIdHKGYVBUVUSGK4P04nTSXelkFGeQU5aDx/Acdb/dYqd/VH/GJoxldK/RhPvrH/JFRESk5aj4FhFpByw2GzFz7iZv+k24Xn0Vx9VX49st3uxYIiIi0knUeerILs1u2MGd7kon05VJcXXxMe8P9wvH6XCSFJGE0+HEGeEkISwBX5tvKycXERGRzkrFt4hIOxE0fDiBZ59N5ZdfUrToKeIffdTsSCIiItIBFVcXN4wn+bnkzi7Nxu11H3Wv1WKlV2ivo0ru6IBozeoWERERU6n4FhFpJywWCzF3303O5ZdTlppG5OTJ+PfrZ3YsERERaeeKKot4M/1Nth3cRrornYNVB495X4hPyBHlttPhJDE8EX+7fysnFhEREfnfVHyLiLQjAQP6Ezp2LGUrV1K4YAE9/vY3syOJiIhIO1VRV8FL217i5W0vU+Wuali3YKF7SHecEU6SHP8uumODYrWLW0RERNoNFd8iIu1M9OxZHF67loqNX1D++QaCzx1mdiQRERFpR9xeN8syl/Hs5mc5VH0IgEHRg0hJTCHJkUSSI4lAn0CTU4qIiIicGBXfIiLtjG+3bjiuvpril1+mcMECgoaejcVmMzuWiIiItHGGYbAubx1Pfvcku0t3A9AjpAezT5/NRT0u0m5uERER6VBUfIuItEORN99EybJl1OzcSWlaGuHjx5sdSURERNqwrUVbefzbx/n2wLcAOPwc3DToJn6b9Ft8bD4mpxMRERFpfsddfNfW1lJYWIjX6z1ivUePHiccSkREfp3d4SDqpukULnicoieeJHDwYHz196+IiIj8l7zDeSz6bhFrctYA4Gfz49p+1zJlwBRCfENMTiciIiLScppcfGdmZjJlyhQ2btx4xLphGFgsFjweT7OFExGRX+a45hpK3n2P2pwccq66mu5LlxDQv7/ZsURERKQNKK0pZckPS3hj5xu4vW4sWEhOTOb2026na1BXs+OJiIiItLgmF9+TJ0/GbrezcuVKYmN1qreIiFms/v70fPUV9ky/iZodO9hz7XXEP72I4GE67FJERKSzqvHU8MaON1i6dSmHaw8DMDR2KHcNuQtnhNPkdCIiIiKtx2IYhtGUFwQFBfHtt9/St2/flsrU6srKyggLC6O0tJTQ0FCz44iINImnvJz8GbdT+eWXYLcT98hfCEtONjuWiIiItCKv4WXV7lU8/d3T7KvYB0CSI4m7Tr+Lc+LPMTmdiIiISPNpbJfb5B3f/fr14+DBgycUTkREmo8tOJjuS5ew/57fU7ZqFfvmzMV98BCRN0w2O5qIiIi0gk37N7HgmwXsKN4BQExgDLefdjvJCcnYrDaT04mIiIiYo8nF9/z585k7dy5/+ctfGDhwID4+R54Arh3TIiKtz+rrS9yCx7BHR1H88isUzp+Pu7CQmDl3Y7FazY4nIiIiLWCXaxdPfvck6/PXAxDkE8SNA27kmn7XEGAPMDmdiIiIiLmaPOrE+lOB8t+zvdvz4ZYadSIiHYVhGBT/7W8UPrYAgNCxY4n7y8NYfH1NTiYiIiLNpaiyiGc2P8PyXcvxGl7sFjtXOK/g5kE3E+EfYXY8ERERkRbVYqNOPvnkkxMKJiIiLcdisRB5443Yo6LYd+8fKVu5Ek/xIeIXPY0tOMjseCIiInICKuoqeGnbS7y87WWq3FUAXNTjImYNnkWvsF7mhhMRERFpY5q847sj0o5vEemIyj/7jPxZszEqK/Hv14/uS5dgj4oyO5aIiIg0kdvrZlnmMp7d/CyHqg8BMCh6EHcNuYvTYk4zOZ2IiIhI62psl3tcxXdJSQkvvvgiO3bUH57Sv39/pkyZQlhY2PEnNpGKbxHpqKq2biVv+k14XC58unenxwvP49uzp9mxREREpBEq6yr5MPdDXvzxRXaX7gage0h3Zg+ezcieI48aPykiIiLSGbRY8f3NN99w8cUXExAQwJlnngnA119/TVVVFR988AGDBw8+seQmUPEtIh1ZbU4Oe6ZOoy4/H1tEBN2XLCFg4ACzY4mIiMgxeLweNhVsIi0rjY/2fNQw0iTcL5ybB93Mb5N+i4/Nx+SUIiIiIuZpseJ7+PDh9OnTh+effx67vX5EuNvtZurUqWRnZ7N+/foTS24CFd8i0tG5i4rYM/0manbswBIYSJe5cwi99FJsISFmRxMRERFgl2sXqdmpvJ/1PoVVhQ3rPUN7kpKYwlV9ryLEV//fFhEREWmx4jsgIIDvv/+evn37HrG+fft2hgwZQmVl5fElNpGKbxHpDDzl5eTffjuVX3wJgMXXl+ALRxCWkkLwuedi8dHuMRERkdZ0qOoQq3evJjUrlR3FOxrWQ31DuaT3JSQnJnNK1CkaaSIiIiLyHxrb5dqb+uDQ0FD27NlzVPGdl5dHiHYOioi0WbbgYLovWYLr1VcpWb6c2l1ZHF69hsOr12CLiCB0zBjCxqXgP2DACf2AbdTWUrM7B1tIMD5xcc34FYiIiLR/NZ4a1uWtIy0rjc/3fo7H8ABgt9gZ3m04KYkpnNftPHxtviYnFREREWnfmrzje+bMmSxfvpwFCxZwzjnnALBhwwbmzJnDZZddxsKFC1skaEvSjm8R6WwMw6B6+3bKUlMpXfk+nkOHGq75JiQQlpJCWPJYfOLjf/UZ7sJCatLTqU5PpyYjk5r0dGqys8HtBouFsIkTiJ45C58uMa3xZYmIiLRJhmGwuWgzqVmprN29lsN1hxuuDYwaSHJiMqN7jcbh7zAxpYiIiEj70GKjTmpra5kzZw6LFy/G7XYD4OPjwy233MK8efPw8/M7seQmUPEtIp2Z4XZTsWEDpStSOfzxxxg1NQ3XAs84g7BxKQSddx7u/fupzsigJj2jvuzOyMBbWnrMZ1qDgvBWVABgCQgg8oYbiLxxCtagoFb5mkRERNqCvLI8VmavJDUrlfzy/Ib1rkFdSU5IZmziWBLCEkxMKCIiItL+tFjx/bPKykqysrIASExMJDAw8PiStgEqvkVE6nnKyzm89gNKV6ygctOm//0Cmw3f3r3wT0rCL8mJnzMJ/6Qk7HFxVH2/mcJHH6Vq8+b6W6OiiJ55O+ETJ2KxN3nSloiISLtQVlvG2py1pGWl8X3h9w3rgfZARvYcSXJiMmd0PQOrxWpiShEREZH2q8WL745ExbeIyNHq9u2jNG0lpamp1GZlYYuKqi+4nU78kpLwdybhm5iI9Vd+08cwDA6v/YDCxx+nLi8PAN8+iXSZM4eg887TYV0iItIh1Hnr2Lh3I6lZqazLW0ettxYAq8XK0NihjE0cy4juIwj0ab+bhURERETaimYtvidOnMhLL71EaGgoEydO/NV7ly1b1vS0JlPxLSLyywzDwKisPKExJUZtLa433uDgs8/h+Wk8SuDQs+kydy7+J5/cXFFFRERaVaYrk2WZy1i1exXF1cUN633C+zAucRxjEsYQE6hzLkRERESaU2O73Eb9rnlYWFjDrrzQ0FDt0BMR6UQsFguWE5zNbfH1JeL66wkbP56DS5bievVVKr/4kt0TLyNs3DiiZ8/Cp2vXZkosIiLS8tKy0vjThj/hMTwARPpHMiZhDCmJKTgdTv3MJCIiImIyjTpBO75FRFpbbX4+RU88SdmqVQBY/PyIuGEykVOnYgsONjmdiIjIr3tt+2vM/3o+AMPihzGp7ySGxg3FbtUZFiIiIiItrbFdbpNPVBkxYgQlJSXHfMMRI0Y09XEiItIJ+XbrRvwTj9Pr7bcIGHI6Rk0NhxYvIWvUxRS//jpGXZ3ZEUVERI5iGAaLvlvUUHpfc/I1PHvhswzvNlylt4iIiEgb0+Qd31arlYKCAmJijpxVV1hYSHx8PHXtsKzQjm8REfMYhkH5xx9T+NgCanNzAfDt1YuYu+8i+MIL9aviIiLSJni8Hh7+6mHeyXgHgJmnzWTqwKn6/5SIiIhIK2vWGd8AP/zwQ8N/b9++nYKCgobPPR4Pa9asIT4+/jjjiohIZ2WxWAi56CKCzz8f19tvc/CZZ6nNySF/xu0EnH46XebcTcCpp5odU0REOrFaTy33fHYPH+Z+iNVi5Y9n/5Erkq4wO5aIiIiI/IpG7/i2Wq0NuxmO9ZKAgACefvpppkyZ0rwJW4F2fIuItB2e8nIOPf8CxS+9hFFTA0DI6NHE3HkHvj16mJxOREQ6m4q6Cmb9axZfFXyFj9WH+efNZ2TPkWbHEhEREem0GtvlNrr4zs3NxTAMEhIS2LRpE9HR0Q3XfH19iYmJwWaznXhyE6j4FhFpe+oKCih6ahGl//wnGAb4+OC46kqibrkFu8NhdjwREekEiquLueWjW9h+aDuB9kAWjVjEWbFnmR1LREREpFNr9uK7I1PxLSLSdlWnp1P42AIqPv8cAGtICFE3Tcdx7bVY/fxMTiciIh3V/vL9TP9wOjllOTj8HDx30XP0j+pvdiwRERGRTq/Fi+/t27ezZ88eamtrj1hPSUk5nseZSsW3iEjbV75hA4WPLaBm504A7HGxxMyeTWhysg4WExGRZpVVksX0D6dTWFlIbFAsS0YuoXdYb7NjiYiIiAgtcLjlz7Kzs5kwYQJbt27FYrE0zPv+uXTweDzHGVlEROSXBQ8bRtDZZ1OamkbRU0/h3reffXP/D4/LRcT115sdT0REOogtRVu47ePbKK0pJTEskcUjF9M1qKvZsURERESkiaxNfcGsWbPo3bs3hYWFBAYGsm3bNtavX8+QIUNYt25dC0QUERGpZ7HZCJ8wnsQ1q4mceiMARc88i6ekxORkIiLSEWzYu4FpH0yjtKaUU6JP4aXRL6n0FhEREWmnmlx8f/HFFzz44INERUVhtVqxWq2ce+65PPLII8ycObMlMoqIiBzB6u9P9B134JeUhLesjINLnzc7koiItGMer4e3099mxr9mUOWuYljcMJ4f+Tzh/uFmRxMRERGR49Tk4tvj8RASEgJAVFQU+/btA6Bnz56kp6c3bzoREZFfYLHZiLn7LgBcr75Kbf5ekxOJiEh7YxgGn+V/xuVpl/PQlw/h9rq5pPclPD3iaQJ9As2OJyIiIiInoMkzvgcMGMCWLVvo3bs3Z511Fo8++ii+vr4sXbqUhISElsgoIiJyTEHDhxN41llUfvUVRYueIv7RR82OJCIi7cT2Q9t54tsn+Gr/VwCE+oZy86CbmXTyJKyWJu8PEhEREZE2xmL8fDplI61du5aKigomTpzIrl27GDt2LBkZGURGRvLWW28xYsSIlsraYhp7EqiIiLQ9VVt/JOeKK8Biofd77+Lfr5/ZkUREpA3bX76fRd8vYmX2SgB8rD5MOnkSUwdOJcwvzOR0IiIiIvK/NLbLbXLxfSzFxcU4HA4sFsuJPsoUKr5FRNq3vXfdTdn77xN0zjn0+NuLZscREZE2qKy2jBe2vsA/tv+DWm8tAGN6j2Hm4JnEB8ebnE5EREREGquxXW6TR50cS0RERHM8RkRE5LhE3zGbsg8+oGLjRso/30DwucPMjiQiIm1EnaeON9PfZMkPSyitKQXgzK5ncueQO+kf2d/kdCIiIiLSUhpVfE+cOLHRD1y2bNlxhxERETkevt26EXH1VRS//AqFCxYQdM5QLFbNZxUR6cwMw2Bt7lqe+vYp8svzAUgMS+TOIXcyPH54u/1tVRERERFpnEYV32FhmnUnIiJtW+TNN1Py3jJqdu6kLC2NsHHjzI4kIiKtyDAM9pbvJd2VTkZxBuvz1/PjoR8BiAqI4rZTb2N8n/HYrc3yS68iIiIi0sY1y4zv9k4zvkVEOoaDS5+n6IknsMfFkrh6NVY/P7MjiYhIC6hyV7HLtYt0VzrpxelkuDLIcGVQXld+xH0B9gBuGHAD1/e7nkCfQJPSioiIiEhzatUZ3yIiIm1BxHXX4nr9ddz79uN67R9E3jjF7EgiInKCPF4P3xz4hh+Kfmgouvcc3oPX8B51r91qp094H5IcSTgdTsYkjCEqIMqE1CIiIiJitiYX37179/7VeXjZ2dknFEhEROR4Wf39ib79dvbfey8Hlywh/LKJ2MLDzY4lIiLHIaskixVZK3g/630KqwqPuh7hH4HT4cQZ4awvuiOc9A7rjY/Vx4S0IiIiItLWNLn4nj179hGf19XV8f3337NmzRrmzJnTbMFERESOR9j4cRS/9BI1mZkcXPo8Xea27v+bDI+Hqi0/EDBwABYflS8iIk3hqnaxavcqUrNS2X5oe8N6mF8Y58SdQ9+Ivg1lt3Zyi4iIiMivabYZ38888wzffPMNf//735vjca1KM75FRDqW8k8/Je+mm7H4+JC4ZjU+8fGt9t77fv8HSpcvJ/Css+j2zF+xBQe32nuLiLRHdZ461uevJzUrlfV71+P2ugGwW+wM7zaclMQUzut2Hr42X5OTioiIiEhb0Ngut9mK7+zsbE499VTKysqa43GtSsW3iEjHYhgGeybfQOVXXxE2LoW4+fNb5X0rv/6a3Guva/jcv18/uj+/FHtkZKu8v4hIe2EYBtsObSM1K5XVu1dTUlPScK1fZD9SElO4pPclRPhHmJhSRERERNqiVj/c8t133yUiQt+YioiI+SwWCzF3303OFVdQmppGxOTJ+J98cou+p1FXR8GDDwIQfP75VG3dSvX27eRePYnuL76Ib7fW23UuItLWuL1uckpz2OnaSXpxOuvz15Nd+u+zgaIDohmbMJbkxGROcpxkYlIRERER6SiaXHyfdtppRxxuaRgGBQUFFBUV8eyzzzZrOBERkeMVMHAAoWPGULZqFYULHqfHiy+06PsVv/oaNZm7sIWHEzvvETwlJeTdOJXa3Fxyr7qK7i++gH9SUotmEBFpCyrqKshwZbCzuL7k3lm8k10lu6jx1Bxxn5/NjxE9RjAucRxnxZ6F3dpse3JERERERJpefI8fP/6Iz61WK9HR0VxwwQX07du32YKJiIicqOg7ZlP24YdUbNhA+ecbCD53WIu8T92BAxz8618BiLn7LuwOB3aHg55vvE7e1KnUZO4i95pr6b54MYGDT2uRDCIiZqh2V7OpYBM7i3c2FN17Du855r2B9kCcEU6cDicDowfym+6/IcQ3pJUTi4iIiEhn0WwzvtszzfgWEem4Cv7yF1yvvIrfySfT+713sVitzf4e+XfcweHVawg49VR6vv6PI97DU1JC3i23UvX991j8/en21EKCzz+/2TOIiLQWwzDYUrSFFVkrWLt7LYfrDh91T0xgDH0j+uJ0OOkb0Ze+EX3pFtINq6X5/w4WERERkc6lRQ+39Hg8LF++nB07dgDQr18/xo0bh93ePn89UcW3iEjH5Xa5yBo5Cm95OXGPzicsJaVZn1+xcSN7ptwIViu933v3mLPEvVVV5M+aRcX6z8BuJ+4vDzd7DhGRllZQUUBaVhorslaQW5bbsN41qCundzmdvo6+9Tu6I5w6lFJEREREWkyLFd/btm0jOTmZAwcO4HQ6AcjIyCA6Opq0tDQGDBhwYslNoOJbRKRjO7j0eYqeeAJ7XCyJq1dj9fNrlud6a2vZnTKO2pwcHNdcQ9c/3vuL9xp1dez7w72UpaUB0OX39xBx/fXNkkNEpKVUuav4eM/HrNi1gq/2f4VB/Y8OAfYARvYcybjEcQzpOkQ7uUVERESk1bRY8T106FCio6N5+eWXcTgcALhcLiZPnkxRUREbN248seQmUPEtItKxeaurybp4NO4DB4iZO5fIKTc0y3MPLl5C0cKF2KKiSFy9ClvIr8+qNbxeDsybh+uVVwGIvOkmomfPOuLQaBERsxmGwXeF35GalcranLVU1FU0XBvSZQjj+oxjZM+RBPkEmZhSRERERDqrFiu+AwIC+Oabb+jfv/8R6z/++CNnnHEGVVVVx5fYRCq+RUQ6vpL3lrH/3nuxhobS6x+v4XfSSSf0vNr8vWSPHYtRXd2kESqGYXBoyVKKFi4EIPy3v6XrfX/GYrOdUB4RkeNlGAb7Kvaxs3gn2w5uY03OGvIO5zVcjw+OZ1ziOJITk+kW0s3EpCIiIiIije9ymzyUOykpiQMHDhxVfBcWFtKnT5+mJxUREWkFYePH4XrjDap//JGca66l++LnCDzttON+3oFHHsGoribwjDMITU5u9OssFgtRN9+EzeGg4IEHKHn7bTwlJcQteAyrr+9x5xERaYw6Tx3ZpdnsLN7Z8Cfdlc7h2iMPqAy0BzKq1yjGJY5jcJfBGmUiIiIiIu1Ok3d8r1q1irlz53L//fdz9tlnA/Dll1/y4IMPMm/ePM4999yGe9vL7mnt+BYR6Rw8JSXk3XwLVZs3Y/H3p9uipwg+77wmP+fwJ5+Qf8utYLeT8M/l+B3nP/yWrf2AfXffjVFXR+AZZxD70IP49up1XM8SEflvZbVlpBenk16c3lBw7yrZhdvrPupeu9VOn/A+OB1Ozoo9iwt7XEigT6AJqUVEREREfl2LjTqxWv+92+PnmaQ/P+I/P7dYLHg8niYHN4OKbxGRzsNbWUn+7NlUrP8M7Hbi/vJwo8eUQP288OyxydTl5xNx4xS6zJlzQnkqvvyS/Ftvw1tZCXY7jiuvJOq2W7H/dI6GiMj/4jW85B3Oqy+5XelkFGeQ7kpnf8X+Y94f4htC34i+OB1O+kb0pW9EXxLCEvCx+bRychERERGRpmux4vvTTz9t9L3nn39+Ux5tGhXfIiKdi1FXx75776UsNQ2AmHv+j8jJkxv12qJFizj47HPYu3Yl8f2VWINO/HC3mqwsDsyfX1/GA9bgYCKnTyfiumux+vuf8PNFpOOoqKsg05XZUHKnu9LJdGVS5T72OTuxQbEN5bYzor7ojguK06G6IiIiItJutVjx3RGp+BYR6XwMr5fC+fMpfvkVACKnTSP6zjt+tQyqzckhOzkFo66O+IULCR19cbNmqvjiCw489hg123cAYO/alehZswgbl4LFqvm6Ip2JYRjsLd9bv4PbldGwi/s/D538T342v/pRJRFOkhxJOB1OTnKcRJhfWCsnFxERERFpWS1afJeUlPDiiy+yY0f9D+b9+/dnypQphIW1z2+sVXyLiHROhmFw6PkXKHriCQDCLptI7AMPYLEfffazYRjkTZtOxeefEzRsGN1feL5FdkwaXi9lK1dSuHAh7n31Ywr8+vYlZs7dBA8b1uzvJyLmq3JXscu1q34Hd/FPRbcrg/K68mPeHxMY01BuOyOcOB1OeoT2wG5t8rn1IiIiIiLtTosV39988w0XX3wxAQEBnHnmmQB8/fXXVFVV8cEHHzB48OATS24CFd8iIp2b6513KLjvfvB6Cb7wQuIfX3DUiJGytR+wd9YsLD4+JKSltvghlN6aGlyvvsrBJUvxHj4MQNC55xIz5278nc4WfW8RaVmVdZW8l/keW4q2kF6czp7De/Aa3qPu+/nAyZ9L7qSI+o8Of50BICIiIiKdV4sV38OHD6dPnz48//zz2H/aEed2u5k6dSrZ2dmsX7/+xJKbQMW3iIgc/ugj9t55F0ZtLYFDhtDtuWexhYQA4K2oIOvSsbgLCoi85WZiZs1qtVxul4uDzz2H6403oa4OLBbCJkwgetZMfLp0abUcInLi3F43yzKX8ezmZzlUfeiIaxH+EQ07uJMcSTgjnPQO642PVQdOioiIiIj8pxYrvgMCAvj+++/p27fvEevbt29nyJAhVFZWHl9iE6n4FhERgIpNm8i/9Ta85eX49e1Lj+eXYo+OpnDBAg698CI+3bqRsDLNlAMna/fsofCJJzm8Zg0AFn9/om6+ichp07DYbK2eR0QazzAMPs3/lCe/fZLs0mwAuod057KTLms4dDIqIMrklCIiIiIi7UNju9wmn5QVGhrKnj17jlrPy8sj5KedcY21fv16kpOTiYurP1n+n//85xHXJ0+ejMViOeLP6NGjj7inuLiYSZMmERoaSnh4ODfeeCPl5ceehygiIvJrgs48k56vvoItKoqanTvJuXoSh//1CYdeehmALvf+wZTSG8C3Rw+6LXySXm+9ScDpp2NUV1O08Cn2TJ2K++BBUzKJyP+27eA2pqydwu3/up3s0mzC/cK558x7WDFuBTcOvJFh8cNUeouIiIiItIAmF9+/+93vuPHGG3nrrbfIy8sjLy+PN998k6lTp3LVVVc16VkVFRUMGjSIZ5555hfvGT16NPv372/488YbbxxxfdKkSWzbto0PP/yQlStXsn79eqZPn97UL0tERAQA/5NPptfr/8Cne3fq8vLIv/VWcLsJHjGCkN/8xux4BAwaRM/XXiV23iNYAgKo/OJLsidMoOKrTWZHE5H/kH84n7mfzuXK96/kmwPf4Gv1ZcqAKbw/8X0mnTwJH5tGmIiIiIiItKQmjzqpra1lzpw5LF68GLfbDYCPjw+33HIL8+bNw8/P7/iCWCwsX76c8ePHN6xNnjyZkpKSo3aC/2zHjh3069ePr7/+miFDhgCwZs0axowZQ35+PnFxcY16b406ERGR/+YuKmLPtOnU7NyJxd+fhJUr8e0Wb3asI9Ts2kX+7NnU7soCq5Xo22cQedNNWKxN/ndtEWkmpTWlLP1hKW/sfIM6bx0WLCQnJjPj1BnEBseaajQNKAAAIABJREFUHU9EREREpN1rsVEnvr6+PPXUU7hcLjZv3szmzZspLi7mySefPO7S+9esW7eOmJgYnE4nt9xyC4cO/fsgoC+++ILw8PCG0hvgoosuwmq18tVXX/3iM2tqaigrKzvij4iIyH+yR0fT89VXiJw2jW5PL2pzpTeAX58+9H77bcLGjwevl6KnFpE3bTru4mKzo4l0OrWeWl7e9jJjlo3hle2vUOet4+zYs3lr7Fs8fO7DKr1FRERERFqZvSk35+Tk8OGHH1JbW8sFF1zAwIEDWyoXUD/mZOLEifTu3ZusrCz+8Ic/cMkll/DFF19gs9koKCggJibmiNfY7XYiIiIoKCj4xec+8sgjPPDAAy2aXURE2j9bSAgxd91pdoxfZQ0MJG7eIwSeeSYFDz5IxYYN7B4/gfgnHifwP/5hWESaX0l1CemudHYc2sGb6W+yt3wvACc5TuLO0+9kWNwwLBaLySlFRERERDqnRhffn3zyCWPHjqWqqqr+hXY7f/vb37jmmmtaLNyVV17Z8N8DBw7klFNOITExkXXr1nHhhRce93N///vfc+ed/y4yysrK6N69+wllFRERMVP4xAn4D+jP3tl3UJudTe71k4meNYvIqTdq9InICfJ4PeQeziWjOIN0Vzrpxemku9IprCw84r6YgBhmnDaDlMQUbFabSWlFRERERASaUHz/6U9/YuTIkTz33HP4+/vzxz/+kblz57Zo8f3fEhISiIqKYteuXVx44YV07dqVwsIjf+Bwu90UFxfTtWvXX3yOn59fi4xlERERMZN/UhK933mb/fc/QFlaGkVPPEHlt98QN28edofD7Hgi7UKdt46tRVvZWbyTDFcG6cXp7CrZRbWn+pj3dwvuhjPCyeCYwVzhvIIAe0ArJxYRERERkWNpdPH9448/snHjRmJj6+cTPvbYYyxZsoRDhw4RGRnZYgH/U35+PocOHWrIMHToUEpKSvj22285/fTTAfjXv/6F1+vlrLPOapVMIiIibYk1KIi4R+cTeOYZHPh/D1Px6Xp2T5hI/BNPEDj4NLPjibRJhmGw/dB2UrNSWb17Na4a11H3BNgDOCn8JJIiknA6nDgjnJwUfhLBvsEmJBYRERERkf+l0cV3WVkZUVFRDZ8HBgYSEBBAaWnpcRff5eXl7Nq1q+Hz3bt3s3nzZiIiIoiIiOCBBx7gsssuo2vXrmRlZTF37lz69OnDxRdfDMDJJ5/M6NGjmTZtGosXL6auro4ZM2Zw5ZVXEhcXd1yZRERE2juLxYLjiisIOOUU9s6cRW1uLrnXXUfMHXcQMeUGzRwW+UlBRQErs1eSlpVGdml2w3qEfwSnRJ1CUkQSSY76ort7SHeNLxERERERaUcshmEYjbnRarXy8ssvExYW1rB21VVXsXDhQrp06dKwlpKS0ug3X7duHb/5zW+OWr/++ut57rnnGD9+PN9//z0lJSXExcUxatQoHnrooSPer7i4mBkzZpCWlobVauWyyy5j0aJFBAc3fvdNWVkZYWFhlJaWEhoa2ujXiYiItHWe8goK/vxnylatAsB/0Cl0mTuXwJ9+U0qks6moq+Cj3I9Iy0pjU8EmDOq/Ffaz+TGixwhSElM4O/Zs7NYmnQEvIiIiIiKtpLFdbpOK7//FYrHg8Xgan7KNUPEtIiIdmWEYlLz1FgcefQyjshKA4IsuJObOu/BL6G1yOpGW5/F6+KrgK9Ky0vh4z8dUuasarg3pMoSUxBRG9hypsSUiIiIiIu1AsxffHZmKbxER6QzcRUUU/fUZSt55B7xesNkI/+0VRM+Ygb2VzusQaU2ZrkzSstN4P+t9Cqv+fSB6z9CeJCckMzZxLPHB8SYmFBERERGRplLx3QQqvkVEpDOpycqicMHjlH/yCQDWwEAip00lYvJkrAEBJqcTOTEHqw6yevdq0rLS2FG8o2E91DeUS3pfQkpiCgOjBmrWvYiIiIhIO6XiuwlUfIuISGdU8dUmCh97jOoffwTAHhND9KyZhI0fj8WmQ/yk/ajx1PBJ3iekZaWxYe8GPEb96D271c558eeRnJjMed3Ow9fma3JSERERERE5USq+m0DFt4iIdFaG10vZqtUUPfkkdXv3AuB30knEzLmboOHDtStW2izDMPi+8HtSs1L5IOcDDtcdbrg2MGogyYnJjO41Goe/w8SUIiIiIiLS3FR8N4GKbxER6ey8tbW4/vE6BxcvxltaCkDg0LPpMncu/iefbHI6kX/bU7aHtOw00rLS2Fu+t2E9NiiWsQljSU5MpneYDm0VEREREemoVHw3gYpvERGRep6SEg4uWYrrtdcw6urAbqfH80sJGjrU7GjSiZXWlLI2Zy1pWWlsLtrcsB5oD2RUr1GkJKZwepfTsVqsJqYUEREREZHW0GLFd15eHhaLhW7dugGwadMmXn/9dfr168f06dNPLLVJVHyLiIgcqTY/n4KHHqLi0/XYHA56L3sPn9hYs2NJJ1LnrWPD3g2kZqWyLm8ddd46AKwWK0Njh5KcmMyIHiMIsOtAVhERERGRzqTFiu/hw4czffp0rr32WgoKCnA6nfTv35/MzExuv/12/vznP59w+Nam4ltERORo3upqcq6+mprtO/A/5RR6vvYqVl8dDigtxzAMthdvJy0rjVXZq3DVuBqu9Qnvw7jEcYxJGENMYIyJKUVERERExEwtVnw7HA6+/PJLnE4nixYt4q233mLDhg188MEH3HzzzWRnZ59w+Nam4ltEROTYavPz2X3Z5XhLSwm/6kpi77vP7EjSARVUFPB+9vukZaWRVZrVsB7pH8mlCZeSnJiM0+HUYasiIiIiItLoLtfe1AfX1dXh5+cHwEcffURKSgoAffv2Zf/+/ccZV0RERNoi327diH/sUfJuupmSN94kYNAgwsePNzuWtHOGYXCg8gCbCjaRmpXKpv2bMKjfi+Fn82NE9xEkJyYzNG4odmuTv10VERERERFpevHdv39/Fi9ezKWXXsqHH37IQw89BMC+ffuIjIxs9oAiIiJiruDzziPq1ls5+MwzFNx3P/5OJ/4nn2x2LGknajw1ZJVkkV6cToYrg3RX/cfSmtIj7ju9y+mkJKYwsudIQnxDTEorIiIiIiIdRZOL7/nz5zNhwgQee+wxrr/+egYNGgRAamoqZ555ZrMHFBEREfNF3XYrVVt/oGL9Z+TPnEXvd9/BFhZmdixpYw5WHSS9OJ10V3pD0b27dDcew3PUvTaLjcTwREb2HMnYhLF0C+lmQmIREREREemomjzjG8Dj8VBWVobD4WhYy8nJITAwkJiY9nfYkGZ8i4iI/G+ekhJ2X3Y5dXv3EnzBBXR79hksVqvZscREhmGws3gnqVmpfJDzAYVVhce8L9Q3FGeEE6fDSZIjCWeEk8TwRPxsfq2cWERERERE2rsWm/EN9T/kfPvtt2RlZXH11VcTEhKCr68vgYGBxx1YRERE2jZbeDjxi54i96qrKV+3jkNLlhB1yy1mxxITFFYW8n72+6RmpbKrZFfDugULPUN7NpTczoj6ortLYBcdTCkiIiIiIq2qycV3bm4uo0ePZs+ePdTU1DBy5EhCQkKYP38+NTU1LF68uCVyioiISBsQ0L8/Xe/7M/vv/SNFi57Gf+ApBJ87zOxY0goq6yr5eM/HrMxeyZf7v8RreAHwtfpyQfcLSE5M5qzYswiwB5icVERERERE5DiK71mzZjFkyBC2bNlyxGGWEyZMYNq0ac0aTkRERNqe8Msuo2rzZkreeZd9d91F72Xv4RMfb3YsaQFew8vXBV+TmpXKR7kfUemubLg2OGYwYxPHMqrnKML8NO9dRERERETaliYX35999hkbN27E19f3iPVevXqxd+/eZgsmIiIibVeXP/6R6u07qN62jfxZs+n5j9ew+mlec0dQ7a5mV8muht3dBRUFDde6BXcjJTGFsQlj6R7a3cSUIiIiIiIiv67JxbfX68Xj8Ry1np+fT0hISLOEEhERkbbN6udHt0VPsXviZVT/+CMHHv4LsQ8+YHYsaQLDMCiqKiK9OJ10VzoZxRmku9LJKctpGGMCEOITwsW9LyYlMYVTo0/VrG4REREREWkXmlx8jxo1ioULF7J06VIALBYL5eXl3HfffYwZM6bZA4qIiEjb5BMfT9yCBeRNn07J228TMGgQ4ZdNNDuWHEOdp46s0iwyXBlHFN2uGtcx7w/3C+fUmFMZmzCWC7pfgJ9Nu/lFRERERKR9sRiGYTTlBfn5+Vx88cUYhkFmZiZDhgwhMzOTqKgo1q9fT0xMTEtlbTFlZWWEhYVRWlpKaGio2XFERETalaJnn+Xgoqex+PrS843XCejf3+xI8pNqdzWPf/M472a+i9vrPuq61WKlZ2hPnA4nzggnSY4knA4nMYEx2tktIiIiIiJtUmO73CYX3wBut5s333yTH374gfLycgYPHsykSZMICAg4odBmUfEtIiJy/Ayvl/xbbqX800/xiY+n93vvYgsPNztWp5dVksXdn97NrpJdQP3IkqSIpIaS2+lwkhieiL/d3+SkIiIiIiIijdeixXdHo+JbRETkxHhKS9l9+RXU5eUROGQI8U8txB4ZaXasTskwDJZlLmPepnlUe6qJ9I/k4XMf5py4c7SLW0RERERE2r1mLb5TU1O55JJL8PHxITU19VfvTUlJaXpak6n4FhEROXHVO3aQc/UkjKoqbFFRxM2fR/CwYWbH6lQO1x7mwS8eZE3OGgDOiTuHh899mKiAKJOTiYiIiIiINI9mLb6tVisFBQXExMRgtVp/+WEWCx6P5/gSm0jFt4iISPOozshg3113UZNZP14jcuqNRM+cicXX1+RkHd/Woq3MWT+HveV7sVvs3D74dib3n4zV8svfu4mIiIiIiLQ3GnXSBCq+RUREmo+3qooD8+dT8uZbAPgPHEj84wvw7dHD5GQdk9fw8vK2l1n03SLchpv44HgePe9RTok+xexoIiIiIiIiza6xXa62AImIiEizsgYEEHv//cQvegpraCjVW7eye8JEStPSzI7W4RysOsitH93KE98+gdtwM6rnKN5Oflult4iIiIiIdHpNLr5nzpzJokWLjlr/61//yuzZs5sllIiIiLR/oaNGkfDP5QQMOR1vRQX75sxl3//dg6e8wuxoHcIX+77g8tTL2bBvA342P+4beh8Lzl9AqK9+e01ERERERKTJxfd7773HsGMcVHXOOefw7rvvNksoERER6Rh84uLo+dJLRM2YAVYrpStWkHPZZVT9uM3saO1WnbeOp757ips+vIlD1YfoE96HNy99k8uTLsdisZgdT0REREREpE1ocvF96NAhwsLCjloPDQ3l4MGDzRJKREREOg6L3U70jNvo+crL2GNjqc3NJeeqqzj095cwvF6z47Ure8v3csOaG3hh6wsYGFyRdAWvX/o6fRx9zI4mIiIiIiLSpjS5+O7Tpw9r1qw5an316tUkJCQ0SygRERHpeAKHDCFh+TJCRl4EdXUUzp9P3k0349Y/nDfKh7kfckXqFWwp2kKITwgLzl/An4f+mQB7gNnRRERERERE2hx7U19w5513MmPGDIqKihgxYgQAH3/8MY8//jgLFy5s9oAiIiLScdjCw4lftIiSt97mwCOPUPHZZ2SPn0DcvHkEn3v0KDWBanc1j339GG9nvA3AKVGnMP+8+XQL6WZyMhERERERkbbLYhiG0dQXPffcczz88MPs27cPgF69enH//fdz3XXXNXvA1lBWVkZYWBilpaWEhupAKBERkdZQk5nJ3jvvoiYzE4DIqTcSPXMmFl9fk5O1HVklWdz96d3sKtkFwI0DbuS2027Dx+pjcjIRERERERFzNLbLPa7i+2dFRUUEBAQQHBx8vI9oE1R8i4iImMNbXU3ho4/iev0NAPwHDiT+8QX49uhhcjJzGYbBssxlzNs0j2pPNRH+ETxy7iOcE3+O2dFERERERERM1dgut8kzvgHcbjcfffQRy5Yt4+fefN++fZSXlx9fWhEREemUrP7+dP3zn4l/ehHWsDCqt25l94SJlKalmR3NNIdrDzN3/Vzu/+J+qj3VDI0dynsp76n0FhERERERaYIm7/jOzc1l9OjR7Nmzh5qaGjIyMkhISGDWrFnU1NSwePHilsraYrTjW0RExHx1+/axd+5cqr75FoCwcePo8qc/YQsOMjlZ43hra6nNycFisYDNhsVqPeIjViuWIz7asNisWPz9618DbC3aypz1c9hbvhe7xc7tg29ncv/JWC3HtVdBRERERESkw2lsl9vkwy1nzZrFkCFD2LJlC5GRkQ3rEyZMYNq0aceXVkRERDo9n7g4er70EgcXL+Hgs89SumIFVZs3E/f44wQM6G92vGMyDIOqzZspXbGCslWr8ZaVNfkZ/v36Eff0U7zu+pBF3y3CbbiJD45n/nnzGRQ9qAVSi4iIiIiIdHxNLr4/++wzNm7ciO9/HTzVq1cv9u7d22zBREREpPOx2O1Ez7iNoLPPYu/dc6jNzSXnqquIufNOIq6/rn73dBtQm59P6YoVlKamUpe7p2HdGhyMxccHw+sFj+eoj3i9Rz2revt2tlw2lreucOOOsjCq5yjuO+c+Qn31W2giIiIiIiLHq8nFt9frxePxHLWen59PSEhIs4QSERGRzi1wyBAS/rmc/X/6E4c//IjC+fOp2LiRuHmPYP+P3zhrTZ7Dhylbs6Z+J/pP41gALIGBhIwahffi4RQ6o/FawWt48RgeDMPAa3gxqP/o8boxPF68HjeG1031gQJC7l1EbFEND74GhQ9O49Lz72gYfSIiIiIiIiLHp8kzvn/3u98RFhbG0qVLCQkJ4YcffiA6Oppx48bRo0cP/v73v7dU1hajGd8iIiJtk2EYlLz1FgcemYdRU4MtKoq4+fMIHjasdd7f7aZiwwZKV6zg8Mf/wqipqV+3WKgclEj6WbGsT6xhW2UWpTWlx/UewZUG9y/zoUdeNZbAQLotWkTwua3z9YmIiIiIiLQ3je1ym1x85+fnc/HFF2MYBpmZmQwZMoTMzEyioqJYv349MTExJxy+tan4FhERaduqMzLYe+ed1O7KAsBx7bWE/OYC/JzOZt0Bbrjd1ObmUr1zJ1WbN1Py/vsYxa6G6we6+PJxPw+f9gdXyJG7sm0WG3HBcfhYfbBarFgsFmwWGxYsWC3WX1wbEDWA6Sddx6E7/o+KDRvAx4e4eY8QdumlzfZ1iYiIiIiIdBQtVnwDuN1u3nzzTX744QfKy8sZPHgwkyZNIiAg4IRCm0XFt4iISNvnrariwLz5lLz11hHrtqgo/JNOwi/JiZ/Tib8zCd/ERKx+fr/6PE9ZGdU7d1KzM52q9B2UbduKNzsHa637iPtKA+Hz/hY+HWAlpwtgsRDmF4bT4STJkYQzwonT4SQhPAE/26+/568xamvZd8/vKVu1CiwWuvzxXiImTTru54mIiIiIiHRELVp8dzQqvkVERNqPw//6hNLly6nJyKB2zx441rcyNhu+vXvhn5T0UyGehFFTS3X6Tsq3/0jVzh1YDxw65vOrfWBPNOR2sfBtHyslg3pxUnRfnA4nzoj6srtLYJcWmcNteL0c+H8P43r9dQCibruNqBm3aea3iIiIiIjIT1q0+E5PT+fpp59mx44dAJx88snMmDGDvn37Hn9iE6n4FhERaZ+8lZXU7NpFTUYG1ekZ1KSnU52ejre0cfO2C8MgN8ZCbgwciA3AntSH6D4DcUbVF919HH0IsLfub7QZhvH/2bvv6CjKxY3j391N7wmk0iEhNFEQpAiigNKLHUWxoOi1S1G8em2ADVHEhqKCV0VFRboKCgr4o0mRIoTQAyE92fSyu/P7IxpF8JJAwqQ8n3NyOMzMzjzDOSTZZ959X9LefIu0N94AIPjGGwh//HEsNts5zSEiIiIiIlIdVVnx/dVXXzFixAg6depEt27dAFi/fj2bNm3is88+4+qrrz675CZQ8S0iIlJ7GIZBXmICG9fOI/6X77HsP0KjNAOHtXQU9+EwCwVNw/Bt1ZamDduWTVnSwK9BtRpZnTF3LsmTJoNhEDBwAFEvvIDFw8PsWCIiIiIiIqaqsuK7RYsWjBw5kmefffaE7U899RQff/wx+/fvP7PEJlLxLSIiUvMZhsFv6b/x9b6vWXZgGTklOWX7ukR2oU/jPrQOaU1McAy+7r4mJi2/7GXLOPboRCgpwbd7dxq+PgOrb83ILiIiIiIiUhWqrPj28fFh+/btREdHn7A9Pj6e888/n/z8/DNLbCIV3yIiIjVXRmEGSw8s5et9XxOfGV+2Pco3iuHRwxkaPZQGfg1MTHh2ctf+zNEHHsDIz8erfXsavTMTt+Bgs2OJiIiIiIiYorxdrltFT3zppZeyZs2ak4rvtWvX0rNnz4onFREREakgh8vB/yX+Hwv2LWBVwiocLgcAHlYP+jbpy5UxV3JRxEVYLVaTk549vx4X02TObBLG3EXh9u0cHnkTjd9/D/fISLOjiYiIiIiIVFsVHvE9c+ZMnnzySa677jq6du0KlM7x/cUXX/DMM88QFRVVduzQoUMrN20V0YhvERGRmsEwDObumcsHOz4gpSClbHvbem25MvpK+jfrT6BnoIkJq07R/v0cGX0HjqQkPJo0ocncT3CrV8/sWCIiIiIiIudUlU11YrWWb+SUxWLB6XRW5NSmUfEtIiJS/WUVZvGfn//Dj0d/BCDIM4jBzQczPHo4sSGx5oY7R0qOH+fwyJsoSUzEq107Gs+Zg81Pc36LiIiIiEjdUWXFd22k4ltERKR625qylUdWP0JSXhLuVnfGdRrHdS2vw93mbna0c67o4EEO3zgSZ2Ymvt270WjmTCweHmbHEhEREREROSfK2+XW/IkvRUREpNZyGS7e2/Eet317G0l5STQJaMLcQXMZ2XpknSy9ATybNaPRu+9g8fEh7//WkTjxMQyXy+xYIiIiIiIi1Uq5i+9169axZMmSE7b997//pVmzZoSFhTFmzBiKiooqPaCIiIjUTekF6dzz/T28tuU1nIaTgc0G8vngz2kV0srsaKbzPu88Gs6YAe7uZC9bRvJzz1OTPsRnlJSQMXcuR+9/gIIdO8yOIyIiIiIitVC5i+9nn32WXbt2lf19x44djB49mr59+zJx4kQWL17M888/XyUhRUREpG7ZlLSJaxdfy8+JP+Nl8+KZ7s/wQs8X8HXXfNZ/8OtxMVG//+6V+fHHpL/zrsmJTs8wDLJXrODAkKEkPzuJnBUrOHTDjaR/MFuj1kVEREREpFKVu/jetm0bffr0Kfv7Z599RpcuXZg1axZjx45lxowZzJs3r0pCioiISN3gdDl5e9vb3LH8DlILUmke2Jy5g+ZyVcxVWCwWs+NVO4GDBxH+738DkDp9OplffGFyon9WsG0bh0fexLH7H6D40CFsISH4du8GDgcpL71Ewt1340hPNzumiIiIiIjUEuUuvjMzMwkPDy/7+08//cSAAQPK/t65c2cSEhIqN52IiIjUGan5qYxZMYa3fn0Ll+FiePRwPh30KTHBMWZHq9ZCRt1MvTFjAEh66mlyfvjB5EQnKj58mKMPPsShETdQsGULFi8v6v3rblos/45G779PxNNPY/H0JG/1Gg4Ov5K89evNjiwiIiIiIrVAuYvv8PBwDh48CEBxcTFbtmyha9euZftzcnJwd6+bi0yJiIjI2fm/Y//HNYuvYWPSRrzdvHmux3NMungSPu4+ZkerEUIffojAq68Cl4tjY8eR/8svZkfCkZlJ0pTn2D94CDnffQcWC4FXX0WL774l7MEHsfn5YbFYCB5xPU3nzcOjRQscqakcue12UqZPx3A4zL4FERERERGpwcpdfA8cOJCJEyeyZs0aHnvsMXx8fOjZs2fZ/u3bt9OiRYsqCSkiIiK1j2EYJOYm8tqW17j7+7vJKMygZXBLPh/8OUNaDDE7Xo1isViIfOYZ/Hr3xigqIuFf91AYt9eULK7CQtJmzWL/5VeQ+dFHUFKC7yU9abZgAVFTpuD+l08Q/sErtiXNvvyCoGuvBcMgfeY7HB51CyWJiSbcgYiIiIiI1AYWwzCM8hyYlpbGVVddxdq1a/Hz8+PDDz/kyiuvLNvfp08funbtypQpU6osbFXJzs4mMDAQu91OQECA2XFERERqHZfh4kj2EXZn7GZ3+m5+y/iNPRl7sBfZy465ruV1TOg8AS83LxOT1myuwkKOjL6Dgs2bcQsNpcmnn+LRsME5ubbhcmFftIjU12bgOH4cAM/WrQl/ZAK+3bqV+zzZy5Zx/MmncOXmYg0IIHLKZAIuv7yqYouIiIiISA1T3i633MX3H+x2O35+fthsthO2Z2Rk4Ofnh4eHx5klNpGKbxERkcrjcDk4aD/4Z8mdXlpy5zvyTzrWzeJGTHAMo88bTb+m/UxIW/s47XYO33QzRfHxeDRtSpO5n+AWEvI/X2M4nRQfPkJR3B4K98RRFBeHMyurQtd1ZGRQcuQIAG6RkYQ99CABQ4ZgsZb7A4ZlihMSODZ2HIU7dgAQfOMNhD36KFZPzwqfS0REREREapcqK75rIxXfIiIiZ29byjbe3PYmW1O2UuQsOmm/p82T2OBYWtdrTeuQ1rSu15rooGg8bDXvoXl1V5KczOEbbqQkMRGvdu1o8uEcrL6+ADhzcymKi6Nwzx6K9sRRGBdHUXw8RkHBWV/X6u9P/bvGEHzTTVi9zm7kvlFcTMprr5Hx/gcAeMbG0uCVaXhqaj0RERERkTpNxXcFqPgWERE5cwk5CUzfPJ3lh5eXbfNx86FVSCva1GtTVnQ3C2yGm9XNxKR1S9GBgxweORJnZibe55+PLbQ+RXviKDl69JTHW7y88IyJwatVLJ6xrXCPCAeLpfwXtFrx6dABW1BQJd1Bqdw1a0h8dCLOjAws3t6E3ncfPhd1xjMm5qzLdRERERERqXlUfFdAXS2+ixxOVu1J5VDNkhV1AAAgAElEQVR6Hndd0hxLRd7ciohInWcvsjNr+yzm7plLiasECxaGRw/n1ra30jSwKVZLxae4kMpVsH07h2+9DSP/xGlm3CIi8IqNxbNVq7Ki26NJYyx/m8quuihJSSHx0UfJX7f+z41WKx5Nm5bl92pVej9uYWH6nUZEREREpBZT8V0BdbX4Lixx0ubJb3EZsOnxvoT6a95MERE5vRJnCZ/Hfc7M7TPLFqfsFtmNcZ3GERsSa3I6+bv8LVuwL16MZ9OmeMa2wjO2JW7BwWbHqjDD6SRz7qfkrlpJ4Z44nBkZpzzOFhRUWuifUOzHntFc4yIiIiIiUv2o+K6Aulp8A1w6dRWH0vOZe2cXureob3YcERGpxgzD4IcjP/Dq5lc5klO6iGGLwBaM6zSOHg16aJStnDOGYeBITf3bXOV7KD54CJzOk473ateOBtNexqNJk3MfVkREREREKlV5u1xNtFnHRYf5cyg9n/jkXBXfIiLyj3am7WTqpqlsSdkCQIhXCPd1uI8ro6/UvN1yzlksFtzDwnAPC8OvZ8+y7a6iIori91EUt4fCPXEUxcVRsHMnhTt3cvDKq4h45hkChww2MbmIiIiIiJwreqdax8WE+/H97mTiU3LMjiIiItVQYm4ir215jWUHlwHgafNkVJtRjD5vNL7uvianEzmR1dMT73Zt8W7XtmxbSVISieMnkP/LLyROmEDeunVEPPE4Vh8fE5OKiIiIiEhVU/Fdx8WE+QEQn5xrchIREakuDMNgZ9pOFu5fyNfxX1PsKgZgaIuh3N/hfiJ8I0xOKFJ+7hERNP5wDmlvzyTtrbewz59PwdatNHhlGl6tW5sdT0REREREqoiK7zquZbg/APEpKr5FROq6xNxElhxYwuL9izmUfahse+eIzozvNJ429dqYF07kLFhsNkLvuxefizqTOOERig8e5ND1Iwh75BGCR96o+elFRERERGohFd91XItQPywWyMgrJj23iHp+nmZHEhGRcyi3OJcVh1ew+MBiNiVtKtvuZfOiT5M+DGsxjK6RXVUMSq3ge9FFNFvwNccf+ze5P/5I8uTJ5K1bR9SUydiCgsyOJyIiIiIilUjFdx3n7WGjYbA3CRkFxKfkqvgWEakDHC4H64+vZ/H+xaw8spJCZyEAFix0jujMkBZDuLzJ5ZrDW2olt+BgGr79FpkffUzK1Knk/vADB377jQYvT8XnwgvP6JzOnBwsNpvmDRcRERERqUZUfAstw/zLiu+uzeuZHUdERKpIXEYci/cvZunBpaQVpJVtbxrQlGHRwxjUbBCRfpEmJhQ5NywWCyGjbsb7wo4kjh1H8eHDHL55FPXvu5f6d92FxWY75esMl4uShAQK98RRFLen9M89eyhJTMTi6UnIqFHUG3MnNn//c3xHIiIiIiLydyq+hehwP37Yk0J8co7ZUUREpArkl+TzwsYX+Hrf12XbgjyDGNBsAENbDKVtvbaaykTqJO+2bWn61VckT3oW+8JFpM14nfz1G4iaOhWbny+Fe/dSFBdH4Z49FO2Jo2jvXlz5+ac8l1FURPqsWWR98QX177mH4BHXY/HwOMd3JCIiIiIif1DxLcSE/b7AZbIWuBQRqW32Ze5j/E/j2W/fj9Vi5bJGlzG0xVB6NuiJu83d7HgiprP5+RL14ov4dOtG0rOTyN+4kf2XX45RXHzK4y0eHnhGR+PZqhVerWLxjG2FV2xL8rdsIeXlaRQfOEDyc8+R8cnHhD08Fv9+V+jBkoiIiIiICVR8Cy3D/QCIT1HxLSJSWxiGwYJ9C3huw3MUOgsJ9Q7lxUtepHNEZ7OjiVRLQcOH433++RwbO46i3bsBcAsN/bPgbhmLV6tYPJo1w+J28q/Q/r1743fJJWR9+RWpb7xByeEjHHvoIbwvuICwRybg07Hjub4lEREREZE6zWIYhmF2CLNlZ2cTGBiI3W4nICDA7DjnXF6Rg7ZPfQfA1v9cTrCvPpYrIlKT5ZXkMWn9JJYeWApA96juPNfjOep5ax0HkdMxSkoo2rcPt/Bw3EJCzugcztw8Mj74gPTZszEKCgDwv7wvoWPH4tmsWWXGFRERERGpc8rb5VrPYSappnw93WgQ5A1o1LeISE0XlxHHiCUjWHpgKTaLjQc7Psjbfd9W6S1SThZ3d7xatz7j0htKp08JfeB+Wnz7LUHXXgNWKzkrvufAkKEkPTsJR0ZGJSYWEREREZFTUfEtAMSUTXeiBS5FRGoiwzCYFzePG5feyKHsQ4T7hPNBvw+447w7sFr0417EDO7hYUROmkTzhQvw69ULHA4y585l/+VXkDbznX9cKFNERERERM6e3gkLAC3DtcCliEhNlVOcw/ifxjNp/SSKXcX0atiLL4d8ScdwzSksUh14xsTQ6J2ZNJ4zB682bXDl5ZE6fTrxl/Qi8YknyNu4EcPlMjumiIiIiEitosUtBYDoMI34FhGpiXal7WL8T+M5mnsUN4sbD134EKPajMJisZgdTUT+xrdrF5p++QXZS5eROmMGJQkJ2L/8CvuXX+EeFUXAsKEEDh2qecBFRERERCqBim8BIOaP4lsjvkVEagTDMPhk9ydM2zwNh8tBlG8UU3tNpX1oe7Ojicj/YLFaCRwymIBBAynYvJmshQvJ+eZbShITSX97Julvz8T7/PMJHD6MgAEDsAUFmR1ZRERERKRGshiGYZgdwmzlXQm0NsstctDuqe8A+PXJKwj0cTc5kYiInIrLcPFL0i/M2TWHNcfWANCncR+e6f4MgZ6BJqcTkTPhKiggZ+VK7AsXkrf2Z/h92hOLuzt+l15K4PBh+PXsicXDw+SkIiIiIiLmK2+XqxHfAoCfpxtRgV4k2guJT8mhU9MQsyOJiMhfHLAfYPH+xSw5sISkvCQA3K3ujO80nhta3aCpTURqMKu3N4GDBhE4aBCO1FTsS5ZiX7iQoj17yFmxgpwVK7AFBREwaBAht92KR8OGZkcWEREREan2NOIbjfj+w6gPNrJ6byrPX3UeN1zU2Ow4IiJ1XmZhJt8c/IbF+xezM31n2XZ/D3/6N+3PiFYjaBnc0sSEIlKVCuPisC9chH3xIpypaUDpKPDgm26i/l1jNA2KiIiIiNRJGvEtFdYyzI/Ve1M1z7eIiImKncWsPrqaRfsXseboGhyGAwA3ixs9GvRgSIsh9GrUC0+bp8lJRaSqecXG4vXIBMLGPkzeuvWkf/A++evWkzF7Nlnz51P/rrsIvmkkVk2BIiIiIiJyEhXfUiYm/PcFLlNyTE4iIlK3GIbB9rTtLN6/mG8OfkN2cXbZvjb12jC0xVD6N+1PPe96JqYUEbNY3Nzw69kD3x4Xk7d2LSlTX6Zo715SXnqJzE8+IfThhwkYOACL1Wp2VBERERGRakPFt5SJDvMH0IhvEZEqVOwsZn/WfvZm7iUuM469GaV/ZhVllR0T5hPG4OaDGdJ8CNHB0SamFZHqxGKx4NezJ77du2NfsJDU116j5NgxEsePJ2POHMImTMC3y0VmxxQRERERqRZUfEuZP0Z8J2UXkl1YQoCXu8mJRERqtrSCtLJiOy4zjriMOA7ZD5VNX/JX3m7e9G3clyEthnBRxEXYrDYTEotITWCx2Qi6+ioCBg4g48MPSX93FoU7d3Lkllvwu/RSwsaPwzO6ej40K0lOJnvpMpw52dS/+26snpq2SURERESqhopvKRPg5U5EgBdJ2YXEJ+dyYZNgsyOJiNQ4m5I28cHOD9idvpv0wvRTHhPgEUBsSCyxwbG0DG5JbEgsLYJaaN5uEakQq7c39e++m6BrryXtzTfJ/HweuT/+SO7q1QRdcw3177sX97Aws2PizMkhZ/ly7IuXkL9hAxgGAMX79tFg+nQsNj3oExEREZHKZzGM33/zrMPKuxJoXXDz+xtYE5/Gi1efx/WdG5sdR0SkxnC4HMz8dSbvbn8Xg9IfrRYsNAloUlZuxwbHEhsSS7hPOBaLxeTEIlLbFB04SOqrr5Cz4nsALD4+hIy6maBrrsWjYYNzmsVVXEze6tXYFy8hd9UqjOLisn3eHTpQuGsXRnExQdddR8QzT+t7ooiIiIiUW3m7XI34lhNEh/mxJj5N83yLiFRAUl4Sj65+lC0pWwAYHj2ca1teS3RQND7uPianE5G6wrN5Mxq+/jr5mzeT8tJUCn79lfSZ75A+8x18OncmcPgw/Pv1w+bnVyXXN1wuCjZvxr54CdnffYfLbi/b5xHdgsDBQwgYPBiPhg3IXr6cYw8+RNa8ebjVr0foAw9USSYRERERqbs04huN+P6rTzce4bH5O7ikZSj/vV2LI4mInM7KIyv5z8//Ibs4G193X57s+iQDmw80O5aI1HGGYZCzfAWZn356wvQiFk9P/Pv2JXD4MHy7dcPidnbjYAzDoGhvPNlLlmBfugRH4vGyfW5hYQQMGkTg0CF4tmp10qjuzM8+I+npZwAI/88ThIwceVZZRERERKRu0IhvOSMxYaUjgPYl55icRESkeityFjHtl2l8uudTANrWa8vUS6bSKKCRyclERMBisRDQ7woC+l1BSWIi9sVLsC9cSPGBA2QvXUr20qXYQusTOHgIgcOH4RUbe9pzOjIzKdobT9HevX9+7duHKy+v7Birnx/+V1xB4NAh+HTu/D/n7w4eMQJHWjppb7xB8uQpuNWrR0D//pVy/yIiIiIiGvGNRnz/lT2/hPOfXQ7AjqevwN/L3eREIiLVz0H7QSb8NIG4zDgAbmlzCw92fBB3m75nikj1ZRgGhTt3Yl+wkOylS3FmZZXt84yNJXDYMAIGD8IWEEDRvv0nFtzx8ThSU095Xou7O76XXELgkCH4XdoLq5dXhTIlPfssWZ9+hsXdnUaz3sW3a9ezvlcRERERqb3K2+Wq+EbF999dNOV7UnKK+Pqe7nRoHGx2HBGRasMwDBbtX8SUDVMocBQQ7BnMlB5T6Nmwp9nRREQqxCguJnftWuwLFpYuPllSUrrDai390+U65evcGzbEs2VLPFvG4NWyJZ4xMXg0bYrF/cwf/BlOJ8ceHkvO8uVYfX1p/N8P8W7b9ozPJyIiIiK1m6Y6kTMWE+5HSk4R8Sm5Kr5FRH6XV5LH5PWTWXJgCQBdIrrwXM/nCPMJMzmZiEjFWTw88O/dG//evXFmZZH97bfYFyykYNs2AGzBwb8X3C3xjInGq2VLPKJjsPn5Vn4Wm42oqS+RkJVF/saNJIy5i6afzsWjceNKv5aIiIiI1B0qvuUkMWH+/LwvnX0puWZHERGpFnal7+KRnx7hSM4RrBYr915wL6PbjcZm/ee5a0VEagpbUBDBI0YQPGIEJcnJWKxWbPXrn7QYZVWyenrS8M03ODzqFop27+bI6DtoOvcT3EJDz1kGEREREaldrGYHkOonJrx0gct4LXApInWc0+Xkv7v+y03LbuJIzhEifCOY3W82Y9qPUektIrWSe3g4bqGh57T0/oPN35/G776De6NGlCQkcGTMXThzNRBDRERERM6Mim85SUyYPwB7k/VGQ0TqrvXH13PdkuuY+stUHC4HvRv15sshX9IxvKPZ0UREai230FAavzcLW716FO3ezdF778NVXGx2LBERERGpgVR8y0liwkpHfB/LKiCvyGFyGhGRc+uA/QD3/XAfdy6/k72Ze/H38OeJLk8w/bLpBHoGmh1PRKTW82jShEbvvoPVx4f8DRtInPAIhtNpdiwRERERqWFUfMtJgn09qO/nAcD+VI36FpG6Iaswi+c3PM/VC6/mp6M/YbPYuLHVjSy7chnXt7relI/9i4jUVd5t29LwzTewuLuT8913JE+ZgmEYZscSERERkRpEi1vKKcWE+ZOWm87e5FzaNwwyO46ISJUpcZbw6Z5Pmbl9JjnFpWsbXNrwUh7u9DDNA5ubnE5EpO7y7daNqJde5NjYcWTO/RTD5aLerbfi0bRppV+rJDmZ7MWLcWRmEnrffVi9vSv9GiIiIiJybqn4llOKCfdj3YF04lO0wKWI1E6GYbAyYSWv/PIKR3KOANAyuCXjO42nW1Q3k9OJiAhAwIABONIzSJ48mazPPifrs8/xvuACAocPI6B/f2xBZz5Aw5WXR87332NfuJC8devh9xHlFquVsHHjKusWRERERMQkKr7llP6Y53ufFrgUkVrot/TfePmXl9mUtAmAel71eKDjAwxrMQyb1WZyOhER+auQm0biHhlB5mefk/fzzxRs20bBtm0kT3kOv8suI3D4MPx69MDi4XHacxlOJ/kbN2JfsJDsFSsw8vPL9nm2aU3Rb7tJnz2HwGHD8IyOrsrbEhEREZEqpuJbTikm3B+AvRrxLSK1SGp+Kq9teY1F+xdhYOBp82RUm1GMPm80vu6+ZscTEZF/4N+nD/59+lCSkkL2kqXYFy6kKC6OnOXLyVm+HFtQEAGDBhE4fBhe7dqdtC5D0b592BcuxL54CY6kpLLt7o0bEzhsKIFDh+LRqBEJ99xL7sqVJD07icYfztH6DiIiIiI1mMXQKjFkZ2cTGBiI3W4nICDA7DjVQnpuERdO/h6LBXY90w8fDz0jEZGaLb8kn6sWXcWx3GMADGw2kIc6PkSkX6TJyURE5EwU7tmDfeEi7EsW40xNK9vu0bw5gcOG4XdpL/I3bMS+cCGFu3aV7bcGBBAwYACBw4bh3eGCE8rt4qPHODB4MEZhIVFTpxI4ZPA5vScREREROb3ydrnWc5jpJKtXr2bIkCFERUVhsVhYsGDBCfsNw+DJJ58kMjISb29v+vbtS3x8/AnHZGRkMHLkSAICAggKCmL06NHk5mp6jrNVz8+TEF8PDAMOpOaZHUdE5KzN/HUmx3KPEekbyScDP+HFS15U6S0iUoN5tWpF+KOPELNqFY1mvUvAoEFYPD0pPnCA1Fdf5eCw4SQ/91xp6e3mhl/v3jSYPp2YNauJfOZpfDp2OGlEt0fDBtS/+y4Akl96EWeOPv0oIiIiUlOZWnzn5eVx/vnn8+abb55y/0svvcSMGTOYOXMmGzZswNfXl379+lFYWFh2zMiRI9m1axcrVqxgyZIlrF69mjFjxpyrW6jV/pjne2+yfuEXkZptX+Y+PvrtIwCe6PoE7UPbm5xIREQqi8XNDb+ePWkw7WVifl5L5JTJ+HTuDIBXu3aEP/44Mat/otFbbxLQvx9WT8//eb6Q22/Ho2lTnKlppL7++rm4BRERERGpAtVmqhOLxcLXX3/N8OHDgdLR3lFRUYwbN47x48cDYLfbCQ8PZ86cOYwYMYLdu3fTpk0bNm3aRKdOnQD49ttvGThwIEePHiUqKqpc19ZUJ6f2xIIdfLz+CP+6tAWP9m9ldhwRkTNiGAa3f3c7vyT/wmWNLmNG7xlmRxIRkXPAcLmwWM9snE/uzz+TMPoOsFppNv8rvFrpd2ERERGR6qJGTHXyvxw8eJCkpCT69u1bti0wMJAuXbqwbt06ANatW0dQUFBZ6Q3Qt29frFYrGzZs+MdzFxUVkZ2dfcKXnCwmrHSBy/hkTR0jIjXX0oNL+SX5F7xsXky8aKLZcURE5Bw509IbwO/ii/Hv3x9cLpKeeRbD5arEZCIiIiJyLlTb4jvp99XWw8PDT9geHh5eti8pKYmwsLAT9ru5uRESElJ2zKk8//zzBAYGln01atSoktPXDn9MdRKfoqlORKRmyinO4eVNLwMwpv0YovzK90kgERGR8ImPYvHxoWDrVuxfLzj9C0RERESkWqm2xXdVeuyxx7Db7WVfCQkJZkeqlmLCS0d8H8nIp7DEaXIaEZGKe2PrG6QXptM0oCm3tL3F7DgiIlKDuEdEEHrvvQCkvPwyzqwskxOJiIiISEVU2+I7IiICgOTk5BO2Jycnl+2LiIggJSXlhP0Oh4OMjIyyY07F09OTgICAE77kZPX9PAjycccwYH+qpjsRkZpld/puPov7DIB/d/k3HjYPkxOJiEhNEzLqZjxjonFmZpIyfbrZcURERESkAqpt8d2sWTMiIiL44YcfyrZlZ2ezYcMGunXrBkC3bt3Iyspi8+bNZcesXLkSl8tFly5dznnm2sZisZRNd7IvRcW3iNQcLsPF5A2TcRku+jXtR7eobmZHEhGRGsji7k74f/4DQNbn8yjYscPkRCIiIiJSXqYW37m5uWzbto1t27YBpQtabtu2jSNHjmCxWHjooYeYPHkyixYtYseOHYwaNYqoqCiGDx8OQOvWrenfvz933nknGzdu5Oeff+a+++5jxIgRREVpHtfK8Md0J3uTNc+3iNQcC/YtYHvqdnzcfJjQaYLZcUREpAbzvegiAocNBcMoXejSqSkARURERGoCU4vvX375hQ4dOtChQwcAxo4dS4cOHXjyyScBeOSRR7j//vsZM2YMnTt3Jjc3l2+//RYvL6+yc3zyySe0atWKPn36MHDgQHr06MG7775ryv3URmULXCZrxLeI1AxZhVm8uvlVAO654B7CfcNP8woREZH/LWzCBKz+/hTu3EnWvHlnfJ68DRtJfOIJ0j+YTcnfpmwUERERkcplMQzDMDuE2bKzswkMDMRut2u+779ZG5/GTe9voHl9X1aOv9TsOCIip/XMumf4cu+XRAdFM2/IPNyt7mZHEhGRWiDj409InjwZa0AALb5Zhlu9euV+bdG+faS8PI3cH3/8c6PViu/FFxM4bBj+fXpj9fau/NAiIiIitVB5u9xqO8e3VA8tw0tHfB9Kz6OwRB/rFJHqbUfqDr7a+xUAj3d5XKW3iIhUmuAbRuDZpjWu7GxSXp5WrteUpKRw/MmnODB0WGnpbbMROHw43h06gMtF3po1JI4fT3yPniT++3HyNmzEcLmq9kZERERE6gg3swNI9Rbq70mAlxvZhQ4OpuXROlIj4kWkenK6nExaPwkDgyHNh9ApopPZkUREpBax2GxEPvkkh0bcgP3rrwm69hp8OnY85bGuvDzSP5hN+uzZGPn5APj17UPY2HF4Nm8GQPGhQ9gXLca+cCElx45hnz8f+/z5uEVFEjh0KIFDh5UdKyIiIiIVpxHf8j9ZLJayBS7jUzTPt4hUX1/s/YLdGbvxd/dnbKexZscREZFayPuCCwi69hqA0oUuHY4T9hsOB5mfz2Nf//6kvfkmRn4+Xue3p8knH9PojTdOKLI9mjYl9IH7abFiOU0+/oiga6/B6ueHI/E46TPf4cDAgRy8/noy5s7FkZl5Tu9TREREpDZQ8S2n9ecClzkmJxERObW0gjRmbJkBwP0d76e+d32TE4mISG0VOnYstsBAiuLiyPzkEwAMwyBn1SoODBtO0lNP4UxNw71xYxpMf5Wmn32Gz4UX/uP5LFYrPp06ETlpEjFr19Dg1Vfw69ULbDYKf91O8rOT2Ne7D7lr1p6rWxQRERGpFTTViZxW2YjvZI34FpHq6dXNr5JTkkPrkNZc1/I6s+OIiEgt5hYcTOi4sSQ9+RSpM17HvUkTMj6YTf7GjQDYgoKof889BI+4HouHR4XObfXyImDAAAIGDMCRlkb20qVkfTWfor17OfrggzSZMxvv9u2r4rZEREREah2N+JbTKhvxnaIR3yJS/WxO3syi/YuwYOGJrk9gs9rMjiQiIrVc0DXX4HV+e1x5eRy9+1/kb9yIxcODenfeQYvl3xEy6uYKl95/51a/PiG33EKzL7/A9+KLMfLzSRhzF0UHDlbSXYiIiIjUbiq+5bRiwkuL70Pp+RQ5nCanERH5U4mrhMnrJwNwVcxVtA/VKDgREal6FquViCefBDc3sFgIHDaMFt9+Q9i4cdgCKncxeIuHBw1nvIbXeefhzMriyB2jKUlOrtRriIiIiNRGKr7ltCICvPD3dMPpMjiUlm92HBGRMnN3z2Vf1j6CPIN4qONDZscREZE6xLttW5rN/4rmS5cS9eILuEdFVdm1rL6+NHpnJh5Nm+JIPE7CHXfitNur7HoiIiIitYGKbzkti8VCdLimOxGR6iUxN5G3tr0FwEMdHyLIK8jkRCIiUtd4tWyJZ/Nm5+RabiEhNHrvPdzCwiiKjyfhX/fgKiw8J9cWERERqYlUfEu5lM3zrQUuRcREJc4SVh5ZycOrHmbw14PJd+TTPrQ9V8ZcaXY0ERGRKufRsAGNZs3CGhBAwZYtHHt4LIbDYXYsERERkWrJzewAUjO0DPcHNOJbRM49wzDYlb6LRfsX8c3Bb8gqyirb1zqkNZMvnozVoue4IiJSN3jFtqTRW29yZPQd5K5axfGnniJy8mQsFovZ0URERESqFRXfUi7RGvEtIufY8dzjLD24lEX7F3HQfrBse33v+gxqNoghLYYQGxJrYkIRERFz+HTqRINXX+Hoffdj/2o+bvXqEzb2YbNjiYiIiFQrKr6lXGJ+H/F9MC2PEqcLd5tGV4pI5csryeP7w9+zeP9iNiZtxMAAwMvmRe/GvRnaYihdIrvgZtWPLxERqdv8e/cm8tlnOP7Ef0h/913c6tcjZNQos2OJiIiIVBtqDqRcogK98PWwkVfs5FBaXlkRLiJSGexFdqZumsryw8spcBSUbe8c0ZkhzYdweZPL8fPwMzGhiIhI9RN0zTU40jNIffVVkp97HltwCIFDBpsdS0RERKRaUPEt5WKxWIgO9+fXhCziU3JVfItIpUnJT+GuFXexL2sfAE0DmjKkxRAGNx9MlF+UyelERESqt3pj7sSRlkbmRx+R+Nhj2IKD8etxsdmxREREREyn4lvKLSbMr7T4Ts6F88xOIyK1weHsw9y14i6O5R4j1DuUqb2m0jGsoxboEhERKSeLxUL4YxNxZmSQvXQpRx94gCZzZuPdvr3Z0URERERMpYmapdxifl/gcm9KjslJRKQ22J2+m1HfjOJY7jEa+zfmo4EfcWH4hSq9RUREKshitRL1/HP4du+OkZ9Pwpi7KDpw8PQvFBEREanFVHxLubX8fXqTfcm5JicRkZpuU9Imbv/udjIKM2gd0poPB3xIA78GZscSERGpsa3/UpAAACAASURBVCweHjSYMQOvdu1wZmWRcOedODIzzY4lIiIiYhoV31Ju0b+P+D6QlovD6TI5jYjUVCuPrOTuFXeTW5JLp/BOvN/vfep71zc7loiISI1n8/Ol0bvv4N64MSXHjpE44REMp9PsWCIiIiKmUPEt5dYgyBtvdxslToND6flmxxGRGujr+K95+MeHKXYV07tRb2ZePhN/Dy2WKyIiUlncQkJo+PoMLF5e5K1dS9qbb5odSURERMQUKr6l3KxWCzHhpaO+92mebxGpoNk7Z/Pk/z2Jy3AxPHo40y6dhqfN0+xYIiIitY5XbCyRzz4DQNpbb5OzapXJiURERETOPRXfUiF/THcSr3m+RaScDMPglc2v8MrmVwC4re1tPNv9WdysbiYnExERqb0Chw4l+MYbAUh8dCLFCQmVev6S5GSy5n9N3vr1mktcREREqiW1DlIhMWGlUxLsTVHxLSKn53A5mLR+EvPj5wMw9sKx3NbuNpNTiYiI1A3hEx+lcNcuCn79laMPPEjTT+di9fI66/MW7NxFwp134vxL4e0WHo5nq1i8Ylvh1SoWz9hYPJo2xWKznfX1RERERM6Eim+pkNaRpcX3uv1pFJY48XLXL7IicmpFziIe+ekRViasxGqx8nS3p7ky5kqzY4mIiNQZFg8PGrw2nYNXXU3R7t0kPf0Mkc8/h8ViOeNz5q1fz9F77sWVn497o0YAlCQk4EhOxpGcTN5Pq/+8vqcnnjExJxTiXm3aYPX1Pet7ExERETkdFd9SIRdH1ycy0Ivj9kIWbjvG9Z0bmx1JRKqh3OJcHlj1AJuSNuFh9eClXi/Rp3Efs2OJiIjUOe4RETR4ZRpHbh+NfcECvC+4gOAR15/RubK/W07i+PEYJSX4dO1Kwzdex+bnhzM3l6K9eyncs4eiPXEUxu2haG88RkEBhTt3UrhzJ/bfz2Hx9MS/Tx8Chw/Dt3t3LG56SyoiIiJVw2IYhmF2CLNlZ2cTGBiI3W4nICDA7DjV3qzVB5iybDfRYX4sf+gSrNYzHzEiIrXPIfshxv00jr2Ze/F19+X13q/TOaKz2bFERETqtPT33iPl5WlY3N1p8snHeLdvX6HXZ86bR9LTz4DLhf8VVxD18lSsHh7/eLzhdFJ85AhFcXF/FuK7d+NITi47xla/PoGDBxM4fBherVqd8b2JiIhI3VLeLlfFNyq+Kyq7sITuz68kt8jB7Fs7c1mrMLMjiUg1sXj/Yiatn0SBo4AQrxDe7vs2beq1MTuWiIhInWcYBsceeICcFd/jFhlJs/lf4RYcXK7Xpb/zLqnTpwMQdN11RDz15BnN3W0YBoU7d2FfuJDspUtPmCPcMzaWwGHDCBg8CPcwvb8QERGRf6biuwJUfFfclKW/MWvNQbo1r8enY7qaHUdETJZfks+UDVNYtH8RAJ0jOvNCzxcI89EbVxERkerCmZPDoWuupfjwYXy7d6PRrFn/s8A2XC6SX3iBzP9+BEC9u+8i9MEHz2qO8LJzl5SQu2Yt9oULyV25EqOkpHSH1Ypv9+4EDhuGf98+WL29z/paIiIiUruo+K4AFd8Vl5hVwCUvrcLhMlh8Xw/OaxhodiQRMUlcRhzjfxrPoexDWC1W7j7/bsacNwabVYvfioiIVDeFe/dy6PoRGAUF1LvrLsIefuiUxxklJSQ+/jjZixYDEP7vxwgZNapKMjntdrK/+Rb7woUUbN1att3q64t/v37Uu+MOPJs3q5Jri4iISM1T3i7Xeg4zSS0SFeTN4PaRAMxac8DkNCJiBsMw+HzP59y49EYOZR8izDuM9654j3+d/y+V3iIiItWUV8uWRE6aBED6O++Qs3LlSce4CgpIuO++0tLbzY2oqS9VWekNYAsMJHjE9TT9dC4tvvuW+vfcg3vDhrjy8rDPn8+hESPI37y5yq4vUtOl5BTynwU72XnMfvqDRUTqEBXfcsbu6NkcgKU7jnM0M9/kNCJyLmUXZzPup3FM3jCZYlcxlzS8hC+HfqlFLEVERGqAwMGDCL75ZgASH51I8eHDZfucWVkcuX00eT+txuLlRaO33iRwyJBzls2jSRNCH7ifFiuWly7C2aEDruxsjtw+mpxVq85ZDpGa5N/zd/DR+sP865PNFJY4zY4jIlJtqPiWM9auQSAXR9fD6TKY/fMhs+OIyDmyPXU71y2+jhWHV+BmdWN8p/G80fsNgr1Ov0CWiIiIVA/hE8aXlso5ORx94EFcBQWUJCdz+OZRFGzdijUggMYffIDfJZeYks9iseBz4YU0/uB9/Hr1wigq4uh995O1YIEpeUSqq+9/S+b73SkAJGQU8NaqfSYnEhGpPlR8y1m58/dR359tPIK9oMTkNCJSlVyGi9k7Z3PLN7dwLPcYDf0a8tGAj7il7S2VssiViIiInDsWDw8aTJ+OrX59iuLiODZ+AodvuJGi+HjcwsJo8vFH+HTsYHZMrN7eNHzjdQKHDQOnk+MTHyN99hyzY4lUCwXFTp5evAuAC5uUDkKZ+dMBDqTmmhlLRKTaUPEtZ6VXy1Biw/3JK3by2cYjZscRkSqSXpDOPT/cwyubX8FhOOjftD/zhsyjXf12ZkcTERGRM+QeHkaDV6aBzUbuDz9QkpiIR5MmNJk7F6+WLc2OV8bi7k7k888RcuutAKS8+CIp017BMAxzg4mY7K0f93E0s4DIQC/+e/tFXBobSrHTxVOLdun/h4gIYDH03bDcK4HKqc37JYFHvtxORIAXqx+5DA+3mvE85UBqLjuO2bm8TTg+Hm5mxxGptrambGXcj+NILUjF0+bJxIsmcnXM1Rrl/Q++2XGc/yzcxQ0XNeLBPjG42WrG90QREam70ufMIeWFF/Fq04ZGs97FrV49syOdkmEYpM96j9RXXgEg8JqriXz6aSxu+l1e6p4Dqbn0n76GYqeLmTd1pH+7SA6n53H5q6spdrh488aODGofaXbMaqeg2Mn7aw/w4brDDD0/iicGtdb7GjkrOYUl7EnKYffxbHYfz+a34znsTcrBy91Kq4gAWkcG0DrSn9aRAcSE++HpZjM7cq1Q3i5XxTcqvs9WkcNJjxdXkZpTxCvXnc9VHRuaHekf7UvJZdmO4yzbcZw9STkAtG8YyOxbO1PPz9PkdCLVz+qjqxn741iKnEW0CGzB1F5TiQmOMTtWteVyGVw27UcOp5cu+NupSTCv3dCBBkHeJicTERH534oPH8Y9KgqLu7vZUU4r84svSHrqaXC58OvbhwbTpmH11O/yUncYhsGoDzayJj6NXi1DmXNb57Lydvr3e5n+fTzhAZ78MO5S/Dz1YAjA6TL4avNRpq2IIzm7qGz7fZdFM75frInJpKZwuQwSMvPLyu3dx7PZk5RNQkZBuc/hZrXQItSvrAj/4yvUXz/DKkrFdwWo+D57b67ax9Tv4mgV4c83D/asVk9M96XksHR7Est2HCcuOadsu5vVgqeblbxiJ81DfflodBeVUyJ/sezAMh5f+zgOw0Gvhr146ZKX8HH3MTtWtbYqLoXbZm/C18OG1WIhp8hBoLc7L17dnv7tIsyOJyIiUmtkr1hB4rjxGMXF+Fx0EQ3fehObn5/ZsaQGsReUMPOn/WTll9Am0p82UQHERgTUiKJ46fbj3Dt3Cx5uVpY/dAlN6/uW7SsscdJv+moOp+dzR49mPDG4TaVc0+kyeHPVPhxOF7f3aEaQj0elnLeqGYbBT3tTeeGbPWWD3xoGe9OnVRgfrjsMwNND2nDrxc3MjCnnyNYjmcz++RD5xc4KvS4zv5i4pBxyixyn3B8Z6HXCyO5WEQEUljj57fdR4KVfOf+4Nl59P4+/FOGl52gR6oe7Pj38j1R8V4CK77OXlV9M9xdWkl/s5KPRF9EzJtTUPPHJOSz9fWT33uQ/F/Zws1roEVOfge0iuaJtOGm5xYx6fwOJ9kIiArz4aPRFxIT7m5hcpHr4fM/nTNkwBQODQc0HMeniSbhbq/8IMLPdNnsjq+JSGd2jGbd0a8r9n27h16N2AEZ1a8K/B7bGy10fbRMREakMeRs2cvSee3Dl5eHZpjWN330Xt/r1zY4lNcCWI5k88OlWjmaePFKzaT0fWkcG0OaPEioqgKhAr2ozuCu3yEGfaT+SnF3Eg31iePjyk+fj/zEuhVtnb8JmtbD0gR60iji7nsMwDJ5atIv//l4UB3q7c99l0Yzq3qRaT9uwK9HO88v2sHZfGlCa+/7e0dzcrTT36z/EM23FXiwWeG1EB4aeH2VyYqkqLpfBO6sP8PLyOJyuM69BPWxWYsL9Tiip20QGlOtBkGEYHLcXnlCE7z6ezcH0PE7VzHrYrESH+Z1wndaRAQT71oyHTlVNxXcFqPiuHE8v2sWc/ztEz5j6fDS6yzm//r6UXBb/msiyHceJT/mz7Ha3WegRXZ+B50VyRZsIAn1OLO+O2wu4+f2N7EvJJcjHnQ9u7UzHxsHnOr5ItWAYBrN2zOL1ra8DMCJ2BI91eQyrRU+aT+dQWh6XTfsRw4Afx19K0/q+FDtcTFsexzurDwDQKsKfN27sSHSYRqSJiIhUhoJdu0i4cwzOjAzcmzSm8fvv49Gw+k69WNMZhsGuxGyKHE4ubBJidpwK+6P8mrY8DofLoHGIDwPOiyDu9/l5/zoFxl8Ferv/XjwF0jYqgMvbhhPgZc6gkClLf2PWmoM0DvFh+cOX/OOgin99vJlvdibRqUkw8+7qhtV65sX9a9/H8+r3pQVx03q+HEzLA0pHTk/oF8uQ9lFndf7KdiyrgGnL4/h66zEMo7RAvKV7E+69LPqEgtIwDJ5etIsP1x3G3Wbhg1s7mz6Ir6ql5hSx+3g2NquFLs1C6sR6RCk5hYyb9ytr4ksfgAw6L5KeMRV7SOrtYaNVRADNQ30rfRR2frHj9+9Bf84Tvud/jC6PCPA6YaqULs1DCPP3qtRMNYGK7wpQ8V05EjLy6TV1FS4DvnmwJ60jz82/ZUJGPlO/i2PRr4ll2zxsVnrG1GfAeZFc3jr8pLL77zLzirltzia2JWTh7W7j7Zs6cmlsWFVHF6lWDMNg2i/T+PC3DwG4q/1d3HvBvdVmdEt1N2nJb7y/9iCXxoYy57aLTtj3Y1wK4+b9SnpeMd7uNp4Z1pZrL2yof1sREZFKUHzoEEdG30HJsWO4hYbS6L338Io9eRSsnLnj9gIWbE1k/pajZYOMplzZjpFdmpicrPz+Xn4Nbh/Jc1edd0KBnZ5bVFY+/TFFwb6UXBx/GyEa4uvBA72jubFLEzzczl1xGJeUw8AZa3C6DGbf2pnLWv3ze9bErAL6vvIT+cVOpl7Tnms7NTqja360/jD/WbATgEnD2nJjlyZ8teUo05b/OVd2+4aBPDagNd1amLswbnZhCW+t2s8HPx+k2OECYOj5UUzoF0ujkFNP2ehyGTzw2VaWbD+Oj4eNT+/syvmNgs5l7CpR4nSxPzX3hJHFu49nk5ZbXHZMfT8Phl3QgCs7NKBtVECtfG+yem8qY+dtIy23GC93K88Mbct1nRpV+3t1uQyOZRWcNFXKkYz8k45948YODG5f9z6toOK7AlR8V557525h6fbjXNWxAa9cd0GVXiszr5jXV+7jo/WHKHEaWCzQOzaMQe0j6dum4k/g84sd3P3xFlbvTcXNamHadecz7IIGVZRepHpxupw8u/5Z5sfPB2BCpwmMajvK5FQ1R36xgy7P/UBOoeMf34SkZBfy8Lxt/LwvHYBhF0QxeXg7/E0aLSQiIlKblCSnkHDHHRTFx2MNCKDha9Px7dbN7Fg1Wl6Rg+92JTF/yzF+3p9W9lF8N6sFh8vAaoG3Rnakf7vIKrm+YRiVVk6dTflV5HASn/xngfhjXAoHfh/x3LSeD4/0b8WAdhFVXqQZhsH176xn46EM+rUN552bO532Ne+u3s9zy/ZQz9eDH8b1qvC83Eu3H+e+T7dgGJw0rUpBsZP31x5g5k8Hykam9mkVxsQBrc759KHFDhefbDjMjB/iycwvnUO5S7MQ/j2wdblK7CKHk9FzfmHtvjRCfD344u5utAitOZ/QzMwr/svDmpyyBzbFTtdJx1os0Ky+L/b8EtLz/izBY8P9uapjA4Z3aEB4QM0fPVzidDFt+V5m/rQfKP3k7es3dKjxU9vmFJaUfULljwU2X73+Apr9ZZ7/ukLFdwWo+K482xKyGP7mz7jbLKx5pDcRgZX/DbOwxMnsnw/x1o/7yCks/QHbM6Y+Ewe0om1U4Fmdu9jhYvwXv7Lo10QsFnh6SFtu6d60ElKLVF/FzmImrpnIisMrsFqsPN3taa6MudLsWDXK3A1H+PfXO2hSz4dV4y79x496Ol0GM3/azysr9uJ0GTSp58PrN3SgfcOaP6pERETEbE67nYR/3UPBli1gtRI2fjwht91a7Uf2VSdOl8H6A+l8teUo3+5MOmEBuIuahXB1xwb0bxfJC9/s4dONR/Bws/Lf2y+ia/PKG+lrGAZv/bif176Pp0PjIK7u2JAB50Wc0WCBqii/HE4Xn/+SwKsr4knLLR3x3LFxEI8Pal2l0798tfko4774FW93G9+P60WDIO/TvqbE6WLQjDXsTc5lZJfGTLnyvHJfb218GrfN2UiJ0+Cmro2ZNKzdKf8vpeUWMeOHeOZuOFL2QOT6zo14uG9Lwqq4QN2bnMP8LcdYsPUYSdmFAESH+TGxfyv6tA6r0P/93CIHN85az/ajdhoEeTP/nu7VvgDen5rLS9/u4btdyafc7+/pRqu/TInROjKA2HB/vD1slDhdrIlP5astx1jxW3LZCHmrBS6Ors9VHRvQr20EPh7Vf7HXv0vIyOf+T7eyLSELgJu6NuaJQW201lIto+K7AlR8V67rZq5j46EM7u7VgokDWlXaeZ0ug6+3HmPa8jiO20t/qLWODOD/2bvvsCbP9YHj34QpU2UTBJWtIoJ172pb98Bu7bLLbrtP29P29PS0tVV7uk6Hv9ZabWuXKGrde48KKiobBQl7BQIkZLy/PwIRqlZGGNrnc11e6ktInjCS972fe7wyKYzRIZbrw2U0Sry1/ox5wvPT44N5dkKwOGEWrkvVumoW7FrAobxD2MhtWDR6EeMDxnf0sq4pkiQx6eN9JOdX8s8p4Tw0qvdVP+d4VilPrzqBsrwGGysZL08MY96IXp2qN6IgCIIgXIuMGg35/3oL1dq1ALhMnozPf95G7nD5NgeCSVpBJav/FEAEU0ZzTLQfs6IUjVpFGIwSj/9wnC1nCnC2s+anR4e2OgkJTNdi/95wluUHzzc6bmct55a+3sREKxgZ5N6kvsRtHfxSa/Us3ZvJ/+3NpEZn2iCY2NeblyeFWTz7UlWjY/yS3RSra3lpYiiPjw1q8uceySzhjqWHkclgzeMjGNCEDOhTOeXctfQwVbUGpkT48MldUVhd5Tw1s0jN+w2CsA62Vjw8qjePjO6No53lgqdFlVrWncxlTUIOp5UV5uPuTnY8d1MIt9/g1+K+1SVqLbd+eYhzxVWEejnzy6PDrto2tSMUq7V8vD2NH49mmwc1+nd3aNT3uY+PC37dujQpjqGq0bExMY/Y+ByOnS8zH3e0tWJiPx9mRysY2tvtmrhW+f1UHv9YfYpKrR4Xe2ven92fSRFtU5UidCwR+G4GEfi2rG1nC3h4xR8421tz6JXxOLXyTU6SJPamFfPexiSS8ysB8HW154VbQpk5QNEmL76SJPHpznQ+3JYKmE6S3pre76pv9oJwLVFpVTy+43FOFZ2ii3UXPh73McN8RUlwc9VfTHSxseLwK+ObfHKsqtbx8upTbD6TD8Dgnt0ZGexuntqt6Nq0E1VBuFZtOZPP+pO5jAnxYFKET6vPFwRBEOpJkkTZjz9S8N5C0OuxCw3F77NPse3Rsh7H16titZb1J3OJjVeSqFSZj7vYWzMt0peYaD+i/bte8XxEozNw77KjHD1XioezHavnD8ffreUbDLV6Iy/+dpK4E6bZTS/eEgpAbHwOGUVV5tu5O9kxc4BpfX18L3/9vuFULq+sTmyX4FdBhYb/bkvllz8uYJRMrWDmDPHn6fHBuDnZWeQx3og7zYpDWQR6OLLpmdHN7iv+3C8niI1X0k/hQtwTI//yujazSM2tXx6itKqWEUFuLLt/EHbWTd8sOHa+lHc3JpGQbdpwcHeyY1I/b/M5bpi3C11sm7f5oNEZ2Hq2gDXxOexNKzYHe63lMsaGejI7WsG4ME+LbGpcKK1m9hcHKazUMqhnN1Y+OKTTZAq3R3uZrJIq1iQoiY1XNuon7etqz+gQD3NgPczH2SIDXlXVukZ9rKt1BkK9nJt9TVRTa+DfG86y6mg2AAMDuvHxnQPw6yY2Pa9XIvDdDCLwbVlGo8SED/eQWVzF61P78ODIXi2+r9NKFQs3JbM/3TSAxNnemifHBXHf8J7t8uaz8nAWb8SdRpJMk38/vCOyWW/6gtBZFVUX8ci2R0gvT8fF1oUvJnxBf4/+Hb2sa9ITP8Tze2Iedw32572YppePgunC/Psj2by94ay5vLCei701YXXZGvXZGyFezp3mxFsQWkqjM/Cf38/y/eFs8zF7GzkT+3oTE+3HiCB3sdEsCIJFVP/xBznPLMBQUoLc1RXFkiU4jRzR0cvqUBqdgZ3JhcTG57A7pcg8tNFaLmNc2MUAYlOveVQ1Ou746hDJ+ZX0dHPgt8eG496CYG91rZ7Hvo9nT928pcW3RTIzyjRvSZIkEpUqYuOVxJ1Qmns4g6l1yexoP2YM8MXTxb4u+HWGVUcvAO0b/EotqOS9jUnsSikCTG0m5o8N5MGRvVp1/paYo2L6//YjSfDjQ0MYHuTe7PsoqtRy45LdVGr0vD2jL/cM63nZ2+WrNMz+4iDK8hoiFK6semRoizamJUli0+l83t+cTFZJ42F8Mhn0cnM0BzbrA6k+rvaNApxGo8SRc6WsSchhU2I+lXWBXoDIHl2ZHa1gan9fujs2r295UyTnV3D7l4eo0OiZEO7Jl3MHtjiL3BIMRonVx3NYsu3iQNEIhSuvTm67gaKSJHE8q4zYBCUbTuZSodFfchu/bl0aZJibvpc9ujlcNjnRYJTIKqlqNGgzKa+CXJXmkts2VH9NFO598Wcl1LvxNVFqQSVP/hhPaoEamQyeGBvEggnBHfo9E9qeCHw3gwh8W159v1tF1y7seXFss19wskqq+Gh7GmsSlADYWsm5b3gAT4wLavZAjtbacCqXZ38+gc4gMTLInS/vGSiy0oQ2oarRcSqnnJFB7m2a6ZtTmcPDWx8mR52DRxcPvrrpK4K7BbfZ413P8lQ1jHx/FwajxKZnRhHu07L3kHPFVWw/W2AeSpNRpEZnuPTtWS6D3h5O5gsFd0c7ZDKQy2RYyWXIZGAllyGXyZDXHZfLZMjlpn/bWsnp5eGIt4u9yCYXOkR6YSVP/phgruCaMcCXxByVeUgYgJeLHTMHKIiJ9iPUu+XZS7V6I+mFajKK1AR5OrX49/NqJEkiPruMwgotId7O9HRzFIH7q8guqUZVoyPCr/VtEa41tXojO5MLKG8QuGuKrg423Bjm1ewsTwF0+fnkPP0MmlOnQC7H49kFuD300N/qffCvAliRfq7MilIwLdK3xdnJhRUaZn95kAulNfRTuLDq4aHN6sddXl3LvOXHiM8ux95GzhdzBzIu9NJB4WD6HdqTWkRsfA47kgrNw/vkMhgV7EFueQ1phR0b/DqYXsy7m5LMbTh8XO15dkII0wf4NjsAbjRKzPriICcvlDM90pdP7opq8bpWHjrP63FncLa3ZufzY/Fwbvz9Lq+u5favDpFaoKaXuyO/zh/Wok2Mhmr1RracySdRqTIHOovVtZe9bVcHG8Lqgpu21nI2nMxDWV5j/riiaxfz8MX2GDx57Hwpc78+glZv5PYb/Hh/dv92f92QJIk9qUUs3JRsPnfy69aFF28JZVp/33ZrPaLRGdibWsSpHNVVA9aOtlaE1n0f/bs7cL6kmqS8ClLyK80tgf7MHED3dsbRzpqU/MqrXhP1cjdtnni72LPycBZavREPZzs+umMAI1qwOSRce0TguxlE4NvyNDoDIxbupKSqlk/uimJ6pO9VP6dCo2PjqTxiE5QcPVdqPj5zgC/P3xzaqKdce9ufVswjK/+gutZApJ9p5/taHPIgdF41tQZivjhIUl5Fk/tEN1eZpowNmRtYdnoZxTXF+Dn5sfTmpfRwFmW/LbVkawqf7kxncK/u/PKo5drE1AfszNkQ+aYJ7aVVl79QaK5uDjaEebs0yrQJ9nISFS1Cm5EkiV/+uMCb686g0Rlxd7Llw9sHMDrEA0mSOJmjIjY+h3UncxsFBPv6uhAT7cf0SN9LLtAbKlFrG2UQXe5iKdzHhdnRCqYP8MXTufXDqs4XVxGboGRNQg4XSi9emNvbyBuU6Fq2HPhaVl5dy/pTeaxNUHI8y9Q/9JnxwSz4G81RUWv1zF953FzJ2Fw93Rx4eWIYE/t5/22+ZpZi1GrJf/ttVL+tBsB54kR83/kPckfL9mHubLJLqk0tCxJyGmXd+rjaMytKQUy0giBPy7RHOFdcxa1fHKSkqpbhgW58+0DT2mPkqzTcu+wIqQVqXLvYsOz+QQwM6Nakx1RV69iQaGrVUv+6AnSK4JfRKLHuZC6LtqSYg7fOdtZMivBmVpQfQ3p1b1LQsj6hzMnOmp3Pj2nVsEiDUWLm/w6QqFQRE6XgwzsGmD9WU2tg7jdHOJ5VhqezHasfG95m199FldpGGb9JeZVkFKnN1QcNOdtZMznCh5hoBYN6Nu1rZknbzhYw//vjGIwSj40N5OWJlpthdjVnclW8t/Fi9buLvTVP3RjMvcMDOsU5e3l1bePs7fwKUgvUl1SxNtTcc6TmXBONCfFgye2Rrd6sEa4dIvDdDCLw3TY+3p7Gf7en0k/hwvonR172BF1vMLIvrZjV8TlsO1uAtu5FUiaD0cEevHBzaKfJF94xTwAAIABJREFUBjp5oZz7vz1KWbWOuwb34L0Y0RZCsAxJknj+l5PE1lU4ONhasf25Mfg2YVL71RglI0fyjhCbFsuO7B3ojKaAUlDXIJbetBQPB8sNhv270epNG3zF6lo+nxPN5DYemiJJEkWV2roeeJUk51eg1ugxSBJGyfRxg1HCKEkYjZj+liQMDT5WozOQVVJt7ovYkLVcRqCHU6OS03Afl78MNgpCU1RodLwam8iGU3kAjAp258PbB1z2Z6tWb2RXiqkEf2dyoTlwbSWXMTrYnZhoP0K8nEmuu/CpvxAqrNRe9rGd7a3p7e5IUl5lo6zA0SEezIpScHMf72b1Gb1SkMXR1oreHk6kFVai0V3+gq855cDXC63ewK7kQmLjlexKufj9lMmg/gqks81RMRilNllLaVUtD3x7lJM5KhxsrRjW243mxK5PXCg3Z0lG+3fltSnhDAzobvF1NleVVn/ZYJUlyWU0K3v4SiRJovznX8h/5x3Q6bALDjb1/Q4IsMAq24bBKJn7+DaVVm9gR1LhJUPqHGytmNTGQ+oSc1TcufRQkwciZhapueeboyjLa/BysWPlg0MIaWGf4nPFpr7EpVVaFkwI6TTBL43OwIpD5/nuYFaj7GVfV3tmRCmIiVJcsTdziVrLjUv2oKrR8cbUPsxrRQvReicvlDPz8wNIEvz0yFCG9nZDZzDy6Mrj7EwuxMXeml/mDyPMu33jIlq9gbQCtTkQXl5dy43hnkwI9+rwNn+/HLvAS6tPAbRZglJDyvIalmxNYU2CEknq2Or35tIbjJwrrjJfr1woqyagu4P5/KeXe+ur4v58TZReqCbKvyt3D/a/rs+phEuJwHcziMB32yitqmXYezvQ6o2senioufeUJEmcya1gTYKSuBO5FKsvXqwGeToxO9qPmVG++Li2PuhnaQczipnz9REkCb6cO5CJ/bw7eknCdaC+7NBKLiPAzYHMoiom9vXmy3sGtvg+86vyWZu+lrXpa1Gqlebj4d3DmR08m2mB03CwEYM+WmNtgpIFP5/A28WefS+Pw+Ya6SGn0RlIL1Q3GiKTlFeJqubyZfe93R355K4o+ik6xyakcG05caGcp1bFc6G0Bmu5jBduCeWRUb2bdGFSVlXLhlO5rI5XcuJC+VVv39PNodGmTcOBSFcKWDvZWTM5wtRbfPAVMsl0BiN7UoqITchh+9nGZfUjgz2YHX0xgG4wSpwvqWr0u5WUV0HeX5QDhzUY9hXu40JYXZnvtUqSJP7IKiM2Xsnvpxq3VAj3cSEmypR1v+VMPm+uO4MkweQIb/57x4AOzWBTa/U8vSqBo+dKeW1KOHcO6mGxrGpleQ33fHOEzKIqujnY8O0DgxnQo2uz17d0Twb/t++cuVR8Yl9vXp4URi/39s9aNhol/hl3mlVHs2mPq8kbArrxyuTwJmcC/5Xq+ARynnkaQ1ExchcXFIsX4TR6tAVW2TqqGh3JDV878k2tAbR/kT15NTIZjAxyJyZawS19vdulYnV/WjEPLD+KziBx77AA3pre97K/S4k5Ku779iilVbX0cndkxbzBHVrh29aMRolj50tZk6Dk98Q8Khu8NvZTuDAr6tLqppd+O8kvf+QQ7uPC+idHWKxly2trEvnhSDbBnk5seHokr6xOJDZBiZ21nB8eGsINPTt+U62z+Xx3Oh9sTgFMm+cN3/stoX7jf028kh3JBeaN4umRvrx4S8dWvwtCZyUC380gAt9tp/5NdXyYJ+/GRLC2bjpwSkGl+TbdHW2ZHunL7Gg/+ilcOn3p5sJNyXy5J4OuDjZsfmY03q6tL5cW/r6OZ5Vx59JD6AwSr00OZ2SwO1M/3Y/BKLHs/hu4McyryfelM+rYe2Evq9NWcyD3AEbJdKHkbOPMlN5TiAmOIdwtvK2eyt/OrM8PkJBdzvM3hfDU+Gu7R7okSeSpNJcE686VVCFJpuDg0nsGtmiYkvD3ZDRK/N++TBZtSUFvlPDr1oVP74oiyr9lQauMIjVr4pWsPaGkrKrW3DvSXCbbjGBxfVZgbHwOOWWX9g6dFaWgl7ujeZDaupO5jUpq/zxIrSnKqmrN5bnJVykHlslolB315yB+Z5VZpGZtgpI1J5SNWr94u9gzI8qXWVGKSzIIfz+Vx7M/n6DWYGRYbzeW3jvQIpm9zVWi1vLA8mOcylGZj03p78N7MRGtblGTVlDJvcuOkqfS4Otqz4oHB7eqtURBhYYPt6by6/ELGCVTtc6cIf48PT64xf2Zm0uSJP7zexLf7D/XLo/X0KR+3rw8MYyerQz26woKUT7zDDUnToBMhsczz+D26CPt8jtmNEpkl1Y3aM1kes9tmA3cWqFezsREK5gxQNEh1yobTuXy1KoEJAmeuymEp/90nnQwvZiHV/xBVa2BfgoXlj8wuNNkaLcHjc6Ulb8mofGAUSu5jFHB7syKUuDuZMecr48AsPqxYRat8FBV67hxyW5KqmoJ93EhKa8CK7mMpfcMZHx40689/k4kSeKDLSl8sTvDfMzR1opJdW1YhvZqfhVFw1Zv60/mNhraOqRXd16dHE5kMzdJBeHvRAS+m0EEvttOZpGa8R/uQZJMmVH1lZC2VnJu6uPFrCgFY0I9rplMSTDtxs7+4iCJShUjgtxYOW+IKKkRWqSoUsvUT/dRUKFlcoQ3/7s7GplMxrsbk1i6NxO/bl3Y9uyYq2YSnFedJzY9lrj0OEo1F/vj3+B1AzHBMdwUcBP21mKDxpJO5ZQz/bMD2FjJOPiP8ddtO5Dy6lrmf3+cw5ml2FjJ+PD2AUxrwswG4e+tWK3luV9Osje1CIApET68GxOBaxfLBDQlSbJIcMporM9MzuH3U3lUNmgn4Ols16h9iruTHTMH+BIT7UcfX8ucK+oNRjKLq8w9yes3nIqu0LbFxd6aPr4u3NLXm2mRvp0iSCRJElvOFPDlnoxGWfmOtlZM7FcXDOjt9pdlzQ0DYH18XFg+b5BFerA31Z+zsW+7oQfL9p8zb9h8clcU0S3csInPLmPe8mOUV+sI8nRixbzBFmljBpCSX8nCTUnsSjH9njnbWTN/bCAPjuzV5m0BvtyTwcJNyQAsuS2S6QPa9n2hWK3lo21pjYL9c4cG8PT4YLo7trzs31hbS8E771L+888A2IWHY+XadtVNpVVasir17O0ewjbv/lTaXhq893W1v2TTy6+bQ7Pa4gCd4trqu4PneXPdGQDenRXB3UP8AdiYmMeCn0wbXsMD3fjqno7Z8OosSuuqm2KvUN10+w1+fHBrpMUf99c/LvDib6fM/19yWySzB/pZ/HGuN1klVcTGK1mToCS79GLffF9Xe2ZFK5gV5UeQ518P3lSW17A2Qcnq+Bwyiy4O9/Z0tmNmlGkDvq0GcgvC9UQEvptBBL7b1vyVx9l8Jh8wlSnGRPsxJcIHV4dr9wQno0jN1E/2U6Mz8OrkMB4ZHdjRSxKuMXqDkbnfHOFwZilBnk6sfWIETnXZilVaPTd9uIdclYbHxwby0mWGqFTrqtmWtY3YtFjiC+PNx93s3ZgRNINZQbPo6dqzvZ7O384Lv57kt+M5zBzgy0d3RnX0ctqURmfguV9OsDExH5kM3pjahwdGtL7HpHB92p9WzLO/nKCoUoudtZx/Te9r0ZYRbUWjM7DtbAGx8TnsTSvGYJSws5ZzS19vZkUrGBXkbrES86spVmsvqb5IL2w89MtaLmNsqAezovwYH+7ZIf1Pj2eV8u7GZHPrmIaZis0t/z6tVHH/t0cpVtfi392BlQ8OJsCt7dt3pBVUcs83R8mvqM/GHkKQpxMJ2WU8tSqBnDJTi57nbw7l0dFNa9FTb09qEfNXHqdGZyCyR1eW3z+Ibq0I0l7JwfRi3tmYxJncCsA0tPC5m0KIifZrk17lDYNlr00O5+HRbdvrtqGU/Ere25TE7gbB/sfGBTJvROuC/WW//krBv99G0l2+5Vdb0MmsSO7Vn8Kh43AcPYawHm6E+zh3+v69zVU/BFwug8/nRFNapeO1tYlIkil7/6M7O7bFUWfz58qZ7o62bHt2dJtUcxiNEvcsO8KB9JJ2/12+HkiSxPGsMlbHK9lwKrdR65pIP1diov2YFulr3pyr1OjYdDqf2PgcDmdeTFSyt5Ezsa+p5dqIIPdOM+9CEK4FIvDdDCLw3bZU1Tq2nMlncK/urS5L7ExWHc3mldhEbKxkrHl8hOh/exlZJVXkqzQM6e3W0UvpdOqzuh1trYh7cuQlmQFbzuTz6Mrj2FjJ2Pj0KIK9nJEkicTiRGLTYtl8fjNVOlOGgFwmZ5RiFDHBMYzyG4WN/NraVKofZpNRpCbQw4m+vp275VGJWsuwhTup1RuJfXx4izMBryUGo8Rb68+w4lAWAPPHBPLyxNBO/X3qCOeKqziQXowkSSCTUf/VkclAhqzu78bHqGtrMegK/aWvFeXVtXy1N5Mv92QgSRDi5cRnd0e3eEhZRyqqNAWeB/h3bXWbC0up1RtJL1Rz5FwJaxOUnGzQksPZ3pqp/X2ZHa1gYEC3Nv+9TC9U88HmZLaeLQBMF+0PjezNfcN7tqr65XxxFfcsO8KF0hrcnexY/sCgNj23+nM29soHBzeaL1Oh0fFKbCK/N2Eo65/FnVDywq8n0RkkRgW78+XcgW3at91olIg7qWTxllRzu4xwHxdenxJu0RZVO5IKeGTlcQxGiUdG9+bVyR3TPu1AejHv/inY//zNocyKUrQ4aFSblUXN6dOWXCYABRVavj1wjty678tkH2v6Jx+GtBTzbaxcXXGZMhnXGTOw79//unpvlSSJV9cksuroBazlMvMG3l2D/fnPzM4z1LazkSSJ08oK3JxsLVYlcjk6g5F8lUb0j26l+tY1sfE57E4tMg+Rt5bLGBfmiYOtFVvO5Dcafj2stxsx0QomRfiYk58EQWgeEfhuBhH4FlpCkiTmf3+cLWcKCPRwZMNToyw23OJaV1ih4aMdafx87EKLelVf7zYm5vH4D6Ys7S/mRDMpwueS20iSxMMr/mB7UiEDe9kwY2Q+a9LXkF6ebr5ND+cezAqaxfTA6Xg5dv6vb/0E7qT8SnM2Y3JeJRlFjTMZQ7yciIn2Y2YH9aW8mvrhNhEKV9Y9OeK6ukD9K5Ik8fnuDBZtMV2sx0QreH92/05RTt3RitVaPt6exo9Hs80XO82l6NqFGQN8iYlWtKr/b3uq1RvZnVJI7J8GMd09xJ/Xp/QR74ltKL2w0lxq3XBwZoCbA7OiFMRE+eHvZtlARmGlho+2X3xvl8vgjkE9WDAhBK8m9jq/6mNUaLjv22Mk5VWYZgvcO5DhgZafLdAwG3tAj658e4VsbEmS+PnYBf61/gwanRF3Jzs+vD2S0SEeV7zv7w6e51/rTUM7p0X6suS2SGyt2+d1UqMz8N3B83y2K92cffjI6N68cHNoq9dwPKuUOV8fQaMzEhOtYPGtkR26WXelYP+rk8MYFXzl7097kSSJX4/n8GbcGWp0BtwcbfnwjgGMqfvZ0aSkoloXR8W69eiLisyfZ9uzJ64zZ+A6bRo2CkVHLd+i9AYjj/8Qb94se3JcEM/fHPK3OX8S/l6K1VrWnzS1rklUqhp9rLeHo3lGiF83sdkgCK0lAt/NIALfQkuVVdUy8eO9FFRomTPEn3dmRXT0kjpUhUbH0j2ZfLP/HDU6g/n4yCB3vn9oSAeurDFJktDqjR1SGp5eWMmMzw5QVWvg0dG9eeUK2VIGo4G4lF28vnMZMsezyGSmr6e9lT03BdzErOBZDPQaiFzWOYOOeoOR1AK1Kbidf7Fcv6TBgLiGXLvY0MvdkbN5FeZhbzKZ6WdnVpSCW/p6t2m2XFPpDUbGLNqNsryGxbdFcuvfsBfiL39c4JXYRAxGibGhHnw+JxoH247/3nSEmloD3+zP5Ms9majr+kMP7tndXNYqISFJIAGmsy3TKdfFYxIGCRKyyhr1l45QuDIrSsH0AZ2jj3NDfzWIqY+PC0/dGHTZzTyhbRiNEoczS1gdr2TT6Tyqay++9w7qaWovN7lf69rLqbV6lu7N5Ot9meb7nxDuxcsTQwlug4z+Co2Oh7/7gyPnSrG1kvPRnQOYbMGfqYbZ2KNDPPhy7tVfw9IKKnnyxwTzcPb5YwJ5/uaQRht/kiTx3+1pfLIjDYD7hgXw5rS+HRIcLquqZfHWFH44kg2Yyu4/vSu6xZshqQWV3PblIVQ1Om4M8+SrewZ2mk1Pjc7A8oPn+V+DYP/oEA9emRTWYT1yKzU6/rn2NHEncgEYEeTGf28fcNlhuJLBQNWhw6jWxVG5bTtSzcUBlw6DB+M6YwaOI0cgs27G+6xMhlW3tq/+aA6NzsBnO9MJ8nRiZtT1EdAXhKtJLahk3YlctHoDU/v70t/PtVP9XgrCtU4EvptBBL6F1tifVszcb0wTt5feM5Cb+3p38Iran1Zv4PvD2Xy2M80cBBkY0I37h/fkmZ8SMEqw/bnRHZ7FeL64itgEJWsSciis0PL+7P7tevKt1uqZ8dl+MoqqGNbbjZUPDr6kZ+yFygusTV9LXHocBdUF5uMybQ+eGzaX2aHTcLbt3Nmg2SXVPLD8KBkNhrXUk8ugl7tjo6FN4T4ueLvYI5PJUNXo2JiYx5p4JUfPX+x/52BrZe5/NyzwrweltaX6FjTdHGw49Mr4Dtk86Qx2Jhfw+A/xaHRGIv1cWXb/oDbpP9lZGYwSq+Nz+HBrKvkVpmzbCIUrr0wOa1F2qkZnYHtSAWvilexJLTJXQFjJZYwOdmdWtB839/Hq0J83MYip86uu1bPlTD6x8Ur2pxfT8Azfv7sDYd7OhPm4mP72dibAzfEvX0t1BiM/Hc3m4x1pFKtNm5YDenTl1cnhDO7VvU2fi0ZnYMFPJ9h8xjRb4O0Z/Zg7NKDV99swG3t6pC+Lm5GNrdEZeHvDWXMweUCPrnx6VxQ9ujtgMEq8EXfa/LFnJ4Tw9PigDg9wbDmTz0u/nUJVo8PZzpp3YyKaPaBYWV7D7M8Pkl+hIcq/Kz8+NLRTVnOUVdXy6c50Vh4+j84gIZPB7Gg/nr85pFELm7Z2Kqecp1YlkFVSjZVcxnM3hfDYmMAmbYAY1FVUbtuGKi6O6iNHoBWX6bZBgXg+/zxOY8d2+M+hIAiCILQFEfhuBhH4Flqrvl9zNwcbtiwYfdmMjutRfZnpkq2p5JSZMlQCPRx5aWIYN/fxQiaT8ciKP9h6toD7hgXw1ox+7b5GVbWODYmmcrP6AVwNvTmtfQb1SZLE4z/Es+l0Pt4u9mx4emSjTM5qXTXvHX2Ptelrzcdc7VyZ3HMqW4/4cz7PlbsG+/NeTOeuKmg4oMzJzpo+vi70qQtwh3m7EOLl3OQL5gul1axJUBIbn8P5kotT071d7JkZpSAmWtHu/YPnfH2YA+klPDY2kJcvM3T07yQ+u4wHlx+jrFpHL3dHVswb/LfoEbkntYj3NiaRnG/K/FR07cJLE0OZ1t/XIpmdJXUlsmv+1MfZyc6aSf1MgxaH9nJrlyxSMYjp2pWv0hB3QklsvNKcpfxn9jZyQr1Mr81hda/RYd7OdHWwYdPpfBZtSeFcsWmTo5e7Iy/dEsrEft7tFkQzGCX+ufY0q46agsnPjA9mwYTgFj2+JbOxNyXm8dLqU1Rq9DjbWfOfWf3YeqaA3xPzkMng3zP6cY8FgvSWoiyvYcFPCRw7bzoHunNQD96c1rdJ78WlVbXc+uVBMouqCPJ04tdHh7XJgE5Lyiqp4oMtKebe7PY2ch4c2Yv5YwJxbsOe/UajxLID53h/czI6g4Siaxc+uWsAAwNatkmky81FtX4DqnXrqM3IaPG6HAYPxvOll+jSr2+L70MQBEEQOiMR+G4GEfgWWkurNzDrfwc5m1fBqGB3vntgcIsupvQGI7HxStafymVyhA+3DfS7JCO4M5Akib1pxSzclExSnmmwkJeLHc9OCOHWP635QHoxc74+gqOtFYdfHd+mFx31dAYje1KKiE3IYfvZQmoNptYZchmMDPZgdrSChOxylh88D7RPr8GlezN4d2MyNlYyfn50WKOBiCmlKbyw5wXOV5xHhoxhvsOYFTyLG3vciK2VLUcyS7hj6WEAVj82nIEBnXOY4v60Yh5d+QdVtQb6+LiwfN4gPJ1bvwkkSRLx2eWsSchh/ck8VDWNWysMDOhmzh4P9XZus7Yb6YWVTPhwL3IZ7H1pnOjNB2QUqbn3m6Moy2vwcLbjuwcG08f3+nwfPZOrYuGmZPalFQPgYm/NkzcGce+wnm2WiZ1eqGZtgqmPc30PWwBf1/rNH79LBuO2lsEosT+9mNj4HDGI6TpRWlVLcr5ppkJKfiXJ+RWkFFQ2+t425GJvTUVdywh3J1ueGR/MnYP9O6S1xZ8D1iOC3BgY0J0+Ps708XHFr1uXq55vGYwSb647zfeHLZeNfaG0mmd+SiA+u9x8zMZKxn/vGMDU/s3LqG4PeoORT3ak8emudCQJgjyd+OzuKMK8r/x6XV2r5+7/O8KJC+X4uNqz+rHhbTpkz9ISsst4d2OSOeDv5mjLMxOCuasNfpZL1Fpe+PUku1JMvbon9fNmYUz/VrUYag1DRQUlS5dSumIlUq2pWsNl6lQ8FizA1q91lY6SJFGTcALV+nVIGi1er72KlZNl34cEQRAEoSlE4LsZROBbsIT0wkqmfrofjc7IP6eE89Co3k3+XEmS2Hq2gEVbUkgvVJuPh3g58cqkcMaGenSaMsVTOeUs3JTMwYwSAJztrXlsbCAPDO912ewhSZKY8OEeMoqq+PeMvtw7rGebrKt++vnqur6zDXtJh3o5M3ugghkDFOYBXJIk8dnOdJZsSwVMw9jentE20+UPZhQz9+sjGCX4z8yL5dqSJPFTyk8sPraYWmMtXg5evD/6fQZ6DbzkPl789SS/Hs8hzNuZDU+N7HQbIg17pg4PdOOrewa2ySaHVm9gV7JpmN6ulELzML16Mhn0dHM0tVDxrmun4uuCr6t9q3+H3og7zYpDWdzcx4ul997Qqvu6nhRUaLhv2VGS8ytxtrPmqzYaRtdRcstrWLw1hTUJSiQJbK3k3DssgCdvDKKrQ/tkPhqNEsfOl7ImQcnviXnmPrZg6t0bE+3HtEhfc2/xlkjOryA2XsnaBCWFlVrzcTGI6fpkMEpklVSRnF9p+pNXQXJ+JdmlpuqaLjZWPDy6N4+M7t0pNjlWHDrPm+vOXNL5wcnO2twyq09dC61Qb2fzZpRWb+C5X07y+ynLZ2PrDEY+2p7K57sz6GJjxdJ7bmBkcOd+7TuYUcyCn05QWKnFzlrOP6f2Ye4Q/0veH3UGIw999wd7Uovo6mDDb/OHdXi7upaQJIltZwtYuDnZ3KKpl7sjL08M5Za+lqleaPg1tbWW88bUPsy5zNe0I+hycyn6+GNUcesAkNnY0G3uXNznP4qVq2uz7qv2wgVU69ahiluHLjvbfNxh2FB6fPUVctvOXQkgCIIgXH9E4LsZROBbsJTvD2fxz7WnsbWSs/aJEU3KfDx6rpSFm5LMWUNdHWyYHunLupO5lNf1yx4e6Mark8Ppp2jeSeqVqKp1bDmbT2GFBkkCo2Qawmasm8DW8P+SZLpwMEoSWSXV5onstlZy7hsewONjg65a9rri0HneiDtDoIcj258bY9GLAb3ByLcHzvPLHxdIa7Bp4O5kx8wBvsyKVtDHx+WKj/nDEdP3TJJgcoQ3/71jAHbWlsvezFPVMPWT/ZRU1TI72o/Ft/U39bLWqnjz4JvsyN4BwFi/sbw94m262ne97P2UVtVy45LdlFfrmr2x0ta+3pfJf35PAmBqfx+W3B5p0a/hlZRV1bI3rYizeReHZxY1CNg15NrFhjBvU3Akyr8r48O9mhXMqdToGPruDqpqDfzw0BBGBHXu4EZ7U9XoeGTFxWF078zqx60D/TrFhX9LKctr+P5wFsv2n0NbN3B1WqQvL90S2qEtXRr2A9+dWoShrh+4tVzGuDBPZkcrGBfm2aTfwcJKDetOmFpBna2r3oGL70OzohQM6NH1mv4+Cs2j1urJLFLTo5tDp2tpkZRXwaGMEpLyKjibV0Fagdpc0dWQXAa9PZwI93GhQKXh6PnSNs3GTi+sxNHOul37SLfGn7OTJ/b15v3ZF7OTjUaJ5389yZoEJfY2cn54aGinrTRrKp3ByE/HLvDx9lRzv/obArrxyuTwFj03tVZPSn4FW88UsHRfZpOz6DuK5uxZChYtovqQqXpQ7uqK+/z5dJtz918GrA0VFVRs3owqbh01x4+bj8scHHC+8UbUO3dirK7GedJEFIsXI7PqfL3fBUEQhOuXCHw3gwh8C5YiSRIPrzjO9qQCgj2dWP/UyCuWwCfnV/DB5hR2JhcCph6ED43szSNjeuNib4OqWsf/dqez/MB584VdTJSC528JRdGCUlOdwci+tCJWH1eyLamAWv3lS5yvRiaDWVEKnrsppMnZf2qtnqHv7kCt1Vs8aLhoSzL/22XqfWhnLefmvt7ERCsYFeTe5KzojYl5LPjpBLUGI8MD3Vh67w0WyXDT6g3c8dVhTlwop4+PC7GPD8fexooThSd4ae9L5FXlYS235vmBzzMnfM5Vg0s/H8vm5dWJONhasf25MR1ecmw0SizcnMzSvZkAPDCiJ69P6dMuvYevpFitJSmvou6PKRieXqg2DwusZ2ctZ0K4F9MH+DI21OOqQcLlB87xr/VnCfJ0Ytuzo0Ug8DI0OgPP/XKCjYn5gCkT+eVJLRv22FGKKrVsTMxj3cncRjMBBvfqzmuTw4nscfmNqY5SrNaaAtcJOZxWXgxcu3axYWp/H2Ki/Yj2bxy41ugMbD1bQGx8DvvSis2BcxsrGePDvJgVrWBcqGeTB/4JQkfRGYxkFlVxNk9lfr0/m1vRqOILTMORr4Vs7PZ0pX7U0f7deOf3JL7efw4ruYyv772BcWGeHb1ci1Fr9Xy1J4P/25fIvAyiAAAgAElEQVRpbvUzOcKbl24Jo6e74yW3lySJnLKaug32i+cW9ZUR9e4c1IM3pvVps1ZrliBJElX79lG4aDHaNFPrIBuFAo9nn8Vl8iRkctNrvqTToT5wAFVcHOodO82tUpDJcBw2DNeZM3CeMAG5gwNVBw+S/eh80OnodvfdeL3+T3F+JAiCILQbEfhuBhH4FiypRK1l4sf7KKrUcu+wAP79p4GOOWXVfLgt1Vw2byWXceegHjwzPviyQzEvlFazeGsKcSdyAbC1Ng3peWxsIC5NaCVxJldFbLySuBNKc5YLQJi3M5F+XZHLQSaTIQPkMhlyWd3/ZSCj/v+mj9lay5kc4UO4T/N/T96MO813Fm4TkVtew7jFu9Hqjbw0MZS5QwOa9DW5nAPpxTyywtSfOkLhyvIHBuHWYPhkS7y+9jQrD2fh2sWG9U+OxK+7PctOL+OzhM8wSAb8nf35YMwH9HVr2sAho1Hitq8OcTyrjIl9vfnynktborSXWr2Rl347ydq6n8t/TArj0dG9O+UFj1ZvIL1QTVJeJWdzK9idUkhm3cA2MLXrmdTPm+mRCoYFul3S7sZoNLXrySyu4u0Zfbmnjdr1XA8MRokvdqfzxe4MqmoNAIwJ8eDliWGdtve3qkbHltP5rDuZy8GMYur3SGQyGNKrOw+O7M2EcM9O+bPdUGpBpblVSX6Fxny8p5sDMdF+RPi5sjkxn42JeVRqL7ZKifLvSky0H1MjfDpdhq8gNJckSRRVajlblxVeVKnl1oF+9PW1TMXc9eZUTjlPrUogq6QaK7mMcaEebE8yJWR8eHskMdF+HbzCtpGv0vDfban8evwCRslUMTN3aABT+/uQVqg2B7mT8yobvV425O1iT7iPM7ff0INJET7t/AxaTjIYUK1ZQ9HHn6AvMmX920dE4DbvAWpOnEC14XcMJSXm29sGBdJ15kxcpk7Fxtv7kvur2LgR5fMvgCTh8czTuD/2WLs9F0EQBOHvTQS+m0EEvgVL25NaxH3LjgLwzX03MD7ci9KqWv63K52Vh7LMGdxTInx4/uYQentcfSjMqZxy3vk9iSPnSgHo7mjL0zcGcfeQgEsy8worNcQl5LI6Pofk/ErzcTdHW2YMUDB74F+3/2gL6YVqJny4x6KDAZ//5SSr43MY3Ks7Pz8ytNXP51ROOfd/e4zSqlp6uzuy4sHBzV5naVUt604oWR2vJFGpQiaDZfcPIsJfziv7XuFwnqnMdErvKbw+9HUcbS7NMPoryfkVTPlkPwajxLL7b+DGMK9mfb4lqLV6Hvv+OPvSirGWy3h/dn9mD7x2Lo4lSeJMbgVxJ5SsP5nXKEjo4WzHlAgfZgzwNbd42JdWxD3fHMXJzprDr47vFP1uO7uiSi2f7UzjhyPZ6I0SMhnMHGCqFOnINiH1qmv1bE8qZP3JXPakFDVqlxDZoyvTI32Z2t/HPBPgWmIwShzKKCE2PodNp/Op0RkuuY2iaxdiohXMilI06f1HEITrV6VGxz/XnjYnWAC8Njmch0d3npZqbSU5v4KFm5LZXdf25XJsreQEeTqZh2j38XEhzMelVTMVOgNjdTWl331Hyf99jbG6cQa7VffuuEydguuMGdj36XPV8+vSld9T8M47AHi/9Rbd7ri9zdYtCIIgCPVE4LsZROBbaAv/Xn+WZQfO4eZoy5yhAXy7/5w5a2R4oBsvTwxrdtm8JEnsSCrkvU1JZNQN6enp5sDLE8MYF+bJtrry9b0NytdtreRM6OPJ7Gg/Rod4WHySfXPM/foI+9OLeWxsIC9PDGvVfZ3NrWDKp/uQJFj7xAgGWKgFQUaRmnu/OYqyvAYvFztWPjiEEK+/HuhUqzeyM7mQ1fE57EouNLfVsJbL+MekMPr0zueV/a9Qqimli3UXXh3yKjMCZ7Q4UP/exiS+2puJX7cubHt2zGWHiraVokot85YfI1GpoouNFV/MjWZs6LVbBm00Shw9X8q6k7lsTMwz99UH8O/uwPRIX45nlXEos4T7h/fkX9Oblp0vmGSVVLF4ayrrT9ZVrFjJmTPUnyfHBbW6oqK5tHoDe1OLWX8yl21nCxoFhEO9nJk+wJdp/X3xd+v4wLylVGn1bD6dz+r4HDKK1IwJ8SAm2o/BPbt3aEsiQRA6F0mS+O14Dh9tT+O2G/xYMCGko5fUrg6kF7NkawoXymrM80Dqh6YGejh16LlzW9MXF1P0v/+h3rOHLpGRuM6YgdOIEchsmldBWfjRR5R8+RXI5Sg+/giXm25qoxULgiAIgokIfDeDCHwLbUGjMzDzfwcaZVz39XXh5YlhjAp2b1V2sr5uSM9HDYb02FrJG2UtRvl3ZXa0H9P6+5oHFnW0rWfyeWTlcbo52HDolfFX7H/eFPd8c4R9acVM7e/DZ3dHW3CVpoGU935zlLRCNa5dbFh2/6BLhh9JksSpHBWr43MaDSIFiFC4MjtawaQIT35MW8qy08sACOkWwqIxi+jt2rosqiqtnps+3EOuSsPjYwN5qZWbCE2VVVLFvcuOklVSTXdHW5bdP8hiGw6dQa3eyP70IuJOmAKj1bWNM2W3PzeGIE+RHdsSiTkq3t+czP70YgCc7Kx5dHRvHhzVq016oqq1epLrWh2czTX9nZxf2Wi2Qf3GxrRIX0K9/3pzSxAEQRCEK5Mkifw33qD819+Q2drS4+v/w3Hw4Jbfn8GAKm4dldu3Y9+nD64zpmPbo4cFVwzGmhoqt++gcutW5M7OuE6fhsPgweZ+54IgCELnJgLfzSAC30JbSS2o5I6vDuFsb8MLt4QyNcLHoll2aq2epXsyWFo3pEfRtQuzohTERHfO8nWDUWL0B7tQltew+LZIbm1he4y9qUXcu+woNlYydjw3tk0yNMura3lg+TESssvpYmPF53OjGRfqSb5Kw5oEJavjc0gvVJtv7+Vix8woBbOj/QjxckapVvLS3pc4VXQKgDtC7+CFG17A3toyrRPqNxFsrGRsfHoUwVfJSm+txBwVDyw/SrG6lh7du7Bi3hB6XWYQ1PWivhXGuhO57EktZEqEDx/dGdXRy7rm7UsrYuGmZM7kmgYxejjb8cz4YO4Y1KNFGXWSJFFQoeVsnsoc4D6bW8H5kurL3t7LxY6p/U3B7kg/107ft1sQBEEQrhWSXk/OggWot+9A7uREwPcrsQ9rfnKGet9+ChcvRpuS0uh4l4EDcZ0xHZeJE7Fq4TW7ZDRSfewPVHFxVG7efEmbF2tfH1ynT6frzJnY9uzZoscQBEEQ2ocIfDeDCHwLbalWb8TGStamAZYStZb8Cg3h3i6dvnz9i90ZvL85mQiFK+ueHNHsr4vBKDH10/0k5VUwb0Qv3pjWp41Wagp+PvZ9PHtSi7CWy4gO6Max86XUv2ra28i5pa83MdF+jAxyNw9F3Ja1jTcPvEmlrhJnW2f+PfzfTAiYYPH1PfTdMbYnFRLZoyuf3RXVJr2TjUaJuJNK/rnmNFW1Bvr4uLB83iA8na+93sctZTRKnf736lpiNEpsSMxj8ZYUsktNF5wBbg4Ee5o2b0yDdWnwb5n53w2PqWp0JOVVUFJV++eHAEyDx/r4utDHx8X8t393B/G9FARBEIQ2YtRoyH7oIWr+OI6Vhzs9V63C1q9piS6a5GQKP1hE1cGDAMhdXOh2xx1ozpyh6tAh6k/AZba2OI2/sVltWbSZ51DFxaFavw59bp75uI1Cgcv0aRhKSqnYtAlj5cVK3S4DBuA6cyYukye1ONAuCIIgtB0R+G4GEfgWhPZTWlXL0Pd2UKs3subx4UT5d7v6JzXw2/EcXvj1JM721ux9cRzd2ni4UK3eyAu/nmTdyYtDnwb36s7saAWTI3xwtr94sq01aFl0bBE/p/wMQH+P/nww+gMUToo2WVtOWTU3/3cv1bUGbKxkzBkSwBPjgvBwbn3v5Pp+8ou3ppjb9QwPdOOrewY2es6C0FK1eiOrjmbzyY60Kwavm0IugyBPpwYBblfCfZzbvYe4IAiCIAhgqKgga+49aFNTsQnwp+ePP2Lt5nbF2+vy8ij66GNU69aZgts2NnS/+27c5j+KdTfTdYIuP5+KDRsoX7uW2vQM8+daubnhMmXyZQdx6svKqNi4EVXcOjSnTpmPy52ccJk0EdcZM+gSHW1ubWLUaFDv3El5XBxV+/aD0dQerT7Q3nXmTBxHjEBmLYacC4IgdAYi8N0MIvAtCO3rhV9P8tvxHGZFKfjvHQOa/HkanYFxi3eTp9Lwj0lhzB8T2IarvMholFh24BwanYHpkYrLtlbJVGXy4p4XSS1LBWBev3k8GfUkNvK2DRKfza3gvU1J7Esz9U52sLXioVG9eXhUrxYHqA9nlrBoSwrHs8oAcLa3Zv6YQB4a1Qs76/YbpCn8Pai1enYkXeypLkkgITX4dx3JdLT+rKWLjRVhPs6EeDm3al6AIAiCIAiWpSsoJOvuu9Epldj37Yv/d99h5dS4RZ6hspKSpf9H6YoVSFotAC6TJ+Px3LNXzBKXJAnN2bOo4uKo2PA7htJS88fsgoNwnTEDGz8/VBs2oN6zF3R1M3isrHAaORLXmTNwGjcOuf1fVy7qi4pQrd+Aau1atKmp5uNW7u64Tp2K66yZ2IeGtuRL06aMGs1Vn5sgCML1QgS+m0EEvgWhfSXmqJj22X5sreQc+MeNTc5Q/nx3Oh9sTkHRtQs7nh/TKYJdkiQRlxHHu0fepUZfQ3f77rw38j2GK4a36zoOpBfzweZkTuaoAOjuaMsT44KYO9S/ycHq00oVH2xJYW9qEWBq5XL/8F7MH9Obrg5tm1kvCIIgCIIgXD+0586RdfccDGVlOAwbSo+vvkJua4tUW0vZz79Q/PnnGMpMSRYON9yA50sv0qV//ybfv6TToT5wAFVcHOodO5FqL60es+sTTtcZM3CZMgVrd/dmPwdJktAmJVG+du0lgXaXKVPw/tebWDl3/IBsSZIo/vxzir/4ErcHH8Tz2QUdvSRBEIQ2JwLfzSAC34LQ/mZ9foCE7HJeuDmEJ28MvurtS6tqGfPBLiq1ej68PZKY6JYNxrSkKl0V/zn8HzZkbgBgiM8QFo5aiHuX5p9YW4IkSWw+nc+irSlkFlUBoOjahWdvCmFWlMLcg/zP0gvVfLgthY2J+QBYy2XcObgHT98YjKeLyBoRBEEQBEEQmq8m8TTZ992Hsboal8mTcL5lIoUfLkGXlQ2Abe/eeL7wPE7jxrVqHpKhooKKzZtRrVuHoagYpwnjcZ0+A/vQEEs9FVOgfd9+VGvXUrljBxgM2Pj5ofhwSbMC9pYmGY0U/Ocdyn780XRALqfnr7/QpW/fDluTIAhCexCB72YQgW9BaH9rE5Qs+PkE3i727H95HNZW8r+8/b/WnWH5wfP08XFhw1MjO3xAXVJJEi/ufZGsiiysZFY8MeAJ5vWbh5W847PQ9QYjvx3P4aPtaeRXaAAI9nTixVtCuamPl/nCQllew8fbU/nteA5GyTQ0cEakL8/eFEKAm+NfPYQgCIIgCIIgXJX6wAEuzH/sYtsRTL25PZ56kq633npN9syuOXEC5fMvoFMqwdoazwXP0H3ePHO/8PYi1daS+49/ULFxE8hk2AUFoU1Lwz6yPz1XrWr39QiCILQnEfhuBhH4FoT2p9UbGLFwJ8XqWj6fE83kCJ8r3vZ8cRUTPtyD3ijx/YNDGBncMRnVYMqq/jH5R5b8sQSdUYe3ozfvj3qfaK/oDlvTlWh0Br47eJ7Pd2egqjFdbET7d+WpG4PZl1bM94ezqDWYBvdMCPfihVtCCPMWr4GCIAiCIAiC5ah+/53cF15EZm+P2wP3033eg5f0/L7WGCoqyHvzTSo3bQbAcfhwfN9fiLWHR7s8vrGqipynn6HqwAGwscF34Xs4DBpE5qTJGKuq8P73W3S7/fZ2WYsgCEJHEIHvZhCBb0HoGEu2pvDpznSG9OrOz48Ou+Ltnvghnt8T8xgT4sF38wa34wobU2lVvH7gdXZd2AXAuB7jeHvE27jauXbYmppCVaPjqz0ZdQM6jY0+NrR3d168JYyBAd06aHWCIAiCIAjC9a72/HnkLi5Yd+/e0UuxGEmSKP/tNwreeRdJo8HKzQ3fhQtxGjWyTR9XX1bGhUfnozl1ClmXLvh9+ilOI0cAUPrddxS8txArV1d6b96EdTdxji8IwvWpqbFcUfsiCEKHuXuIP1ZyGUfOlZKcX3HZ28Rnl/F7Yh4yGfxjUlg7r9BEkiSO5h3l1vW3suvCLmzkNvxj8D/4eNzHnT7oDeDaxYaXJoax98VxzB3qj7VcRoTClRXzBrPq4aEi6C0IgiAIgiC0KduePa+roDeATCaj22230Wv1b9iFhmIoKeHCww9T8MGiyw7btARdbi5Zc+aiOXUKK1dXApZ/aw56A3SbM8e0FpWKwiVL2mQNgiAI1xKR8Y3I+BaEjvT4D8fZmJjP3UP8eXdWRKOPSZLE7V8d4tj5Mm4b6Mei2yLbdW35VflsyNzA+oz1ZKoyAfB39mfRmEX0cevTrmuxJI3OgJ21vFVDhARBEARBEARBMDFqtRS+/4F5yKR9RASKJYux9fe32GNoMzLIfvAh9Pn5WHt74//N19gFBl5yu+r4eLLungNAwKofcYiKstgaBEEQOguR8S0IwjXh3mE9AVgTrzT3oa639WwBx86XYW8j57mbLTeV/a9U6aqIS4/joS0PcfNvN/Nx/MdkqjKxs7Lj1pBb+WXaL9d00BvA3sZKBL0FQRAEQRAEwULkdnZ4v/E6fp99itzVFU1iIudmxaBav8Ei919z8iRZd89Bn5+Pba9e9Pzxh8sGvQEcoqNxjYkBIP+tfyPp9RZZgyAIwrXo2huhLAjCdWVIr+6EejmTUlDJb8dzeHBkLwB0BiPvb0oG4MGRvfBx7dJmazAYDRzJP8L6jPXsyN5Bjb7G/LEbvG5geuB0bgq4CSdbpzZbgyAIgiAIgiAI1zbnCRPo3bcvyhdfpOaP4+S++CJVBw/i/c/XkDu2bKCnev8Bcp5+Gqm6GvuICHos/eqqvbs9X3ieyh070CYnU/bjKrrfe0+LHlsQBOFaJ1qdIFqdCEJH++FIFq+tOU1PNwd2Pj8WuVzGysNZvL72NN0dbdnz4lic7W0s/rjpZemsy1zH7xm/U1hTaD4e4BLAtN7TmBo4FYWTwuKPKwiCIAiCIAjC9UvS6yn+8iuKP/8cjEasfX1wHDIU+7BQ7ELDsA8Lxapr16veT8XGjShf/gfodDgOH47fp580OYBe9tPP5P/rX8idnOi98XdsPD1b+7QEQRA6jabGckXgGxH4FoSOVqXVM/S9HVRq9Cx/YBA39OzO2EW7KFbX8tb0vtw3vKfFHqukpoRN5zaxLmMdSaVJ5uOudq5M7DmR6YHTiXCPEK1ABEEQBEEQBEFolepjx1C++BL6/PxLPmbt5YVdWCj2dYFwu9BQbHv2RGZlBUDpDz9Q8J93QJJwmTwJn4ULkdvaNvmxJYOB83fehSYxEZdp01As+sBiz0sQBKGjicB3M4jAtyB0vH+vP8uyA+e4McyTvr4ufLoznV7ujmx9djQ2Vq0bR6A1aNl1YRfrM9ZzQHkAg2QAwFpuzWjFaKYHTmeU3yhsrZp+IikIgiAIgiAIgnA1BnUVVYcOok1OQZuagiY5Bd2FC5e9rczODrvgYKzd3VHv3g1At7vvwuu118wB8eaoSTzN+dtvB0nCf/lyHIcOac1TEQRB6DRE4LsZROBbEDreueIqxi3ejUwGtlZytHojX8yJZlKET4vuT5IkEgoTWJexjq3nt1KpqzR/rL97f6YGTmVSz0l0tb96iaEgCIIgCIIgCIKlGNRqtKmpaJKT0SanoElJRpuahlRT0+h27k8+ifsTj7eqGjXvrbcoX/UTtoGB9F4Ti6wZWeOCIAidVVNjuWK4pSAInUIvd0fGhHiwJ7UIrd5ItH9XJvbzbvb9ZFdksz5zPesz1qNUK83HfRx9mNp7KtMCp9HLtZclly4IgiAIgiAIgtBkVk5OOERH4xAdbT4mGY3osrPRJKegTU/Hvl9fnMeObfVjeS5YQOWWrdRmZFC6YgVuDz3U6vsUBEG4VojAtyAIncZ9wwPYk1oEwGtTwpuc2aDSqthyfgvrM9ZzouiE+biDtQM39/x/9u47PIp6beP4d9NDGjUJvQRI6Cgi0hSQrlQRESvKEXvvemxHxSO2Y0EEO6+CFOmIIIqggAWkk4TeSSghPZuy8/7xA0Inm2wyCdyf68q1uzOzs8+SEOWeZ59fd/pG9aVVRCu8HEUbmSIiIiIiIlIcHF5e+NWpg1+dOkAPj53XOyyM8CeeYN8zz3Dgo9GE9u6Nb7VqHju/iEhppuBbREqNTg3DufuqKCoH+9GqdsXzHu+yXIzfMJ4P/vkAZ54TAC+HF22rtqVPVB+61OpCoE9gcZctIiIiIiJSaoX178eRKVPIXLGChJFvUOOD9+0uSUSkRGjGN5rxLVIWHc46zPO/Pc+SPUsAaFChAf2i+tG7bm+qlKtic3UiIiIiIiKlR1ZcPNsGDoS8PGqOG0twx452lyQiUmgFzXL1uX8RKXP+3Pcng2YOYsmeJfh5+fHvK/7N1D5Tua3JbQq9RUREREREThEQ3ZCKt9wCwP7/vIrL6bS5IhGR4qfgW0TKjFxXLh/+8yHD5w/nQOYB6oXVY8K1ExgcPbhIK52LiIiIiIhc6Crffz8+4eHk7NzJoXGfFug5lmWRk5BI2pIlHPrsc1IXLkSDA0SkrNCMbxEpE/al7ePpJU+zMnElANc1uI4nWz9JOd9yNlcmIiIiIiJS+nkHBxHx9FPsefQxDo0dS1jfPvjVqnV8v8vpJHvLFrJi43DGxZEVZ27zkpJOOk9Ir55UfeUVvENCSvotiIi4RTO+0YxvkdJu4Y6FvLD0BVKyUwjyDeLFti/Sq24vu8sSEREREREpUyzLYtedd5K+dBnl2rQhqEN7nHHxOONicW7dBnl5pz/Jywu/unXxq1WLtCVLIDcX3xo1qP72WwS2aFHyb0JELnoFzXIVfKPgW6S0cuY5eeuvt5gYNxGAppWa8uZVb1IzpKbNlYmIiIiIiJRNzq3b2NqvH+TknLbPKyyMgOho/KOjCYiJxj86Bv/6UXgFBACQuXo1ex59jJw9e8DHh/BHHqbisGE4vDRJV0RKjoJvNyj4Fil9tiZv5YlfnyA+KR6AYU2G8cAlD+Dr7WtzZSIiIiIiImVb0oQJJE2ejH+dOvg3jMY/JpqAmBh8IiLOu35SXkoK+154kdR58wAI6tCBam+MxKdy5ZIoXUREwbc7FHyLlB6WZTF983RG/jmSzNxMKgZU5LUOr9Ghege7SxMRERERERHMv9uOTJ5MwmuvYzmdeFeuTPU3/0tQu3Z2lyYiF4GCZrn6LIqIlBrpOek8veRpXlj6Apm5mbSp2oYpfaYo9BYRERERESlFHA4HFQYPpu6Uyfg3qE/ewYPsvHM4ie+8i3WGESoiInZQ8C0ipcKGQxsYPGswc7fNxdvhzUOXPsQnXT+hSrkqdpcmIiIiIiIiZ+DfoAF1Jk2i/A03gGVxaOxYdtxyK9m799hdmoiIgm8RsZdlWXyz8RtunnszO1N3EhkUyRc9v2B4s+F4e3nbXZ6IiIiIiIicg1dgIFVffonq772LV0gImatWsW3AAFJ+nG93aSJykVPwLSK2SXYm89AvD/HGn2+Q48qhc83OTOkzhUvCL7G7NBEREREREXFDaM+e1J32PQEtmuNKTWXPQw+x76WXcGVk2F3aSVxZWWTFx+NyOu0uRUSKmRa3RItbithhVeIqnlj8BPvT9+Pr5ctjlz3G0Jih511BXEREREREREovKyeHA+9/wKFx4wDwKleOkB49COvXj3KXt8bhVXI9mLlJSTg3biRrYyxZsbFkbdxA9tZt4HIR1K4dNT8dV6L1iIhnFDTLVfCNgm+RkuSyXHy+7nM+/OdD8qw8aoXUYtRVo2hcqbHdpYmIiIiIiIiHpP32O/tfeYWcnTuPb/OpVpWwPn0J69cX/3r1PPZalmWRs2cPWRs35gfdGzeSu3//OZ8X8dxzVLzlZo/VISIlQ8G3GxR8i5SMg5kHeXbJsyzbtwyA3nV780LbFwjyDbK5MhEREREREfE0y7LIXLmS5OkzSJk3D1dq6vF9Ac2bE9avL6G9e+NToUKBz5mXlo5zUzzO+E044+NxxsWRFRd30rlP5FurFgGNGhHQKIaARo3wj2lE6k8LSPjPqzgCAqg77Xv869Yt8nsVkZKj4NsNCr5Fit+yvct4ZskzHMo6RIB3AM+2eZb+9ftrtImIiIiIiMhFwJWVRdovv5A8fQZpv/0GeXlmh68vwVddSVjfvgR36oSXnx8AVm4u2Tt3mmA7/mjQHRdHzu7dZ34BX1/8G9QnIKbR8aDbPyYG7+Dg0w61XC52DR9O+tJlBLZoQe1v/g+Hj09xvXUR8TAF325Q8C1SfHJduYxeNZpP136KhUX98vV566q3iCofdeYn7PoT/EMgvFHJFioiIiIiIiIlIvfgQVLmziV5+gyyNmw4vt0rLIygyy8nZ88enJs3Y2Vnn/H5PlWq4N+wIf7R0fg3bEBAdDT+UVE4jobmBZGzbx9b+/TFlZZGlUceofKIu4r8vkSkZCj4doOCb5HisT99P08tfoqViSsBuK7BdTx1+VME+gSe+QkJG2BMe/ANgodWQ1ClEqxWRERERERESlpWfDwpM2eSPHMWuYmJJ+1zBAbi36ABAdEN8W/Q8GjY3dCt0SjncmTadPY98wz4+lJ38iQCYmI8cl4RKV4Kvt2g4FvE8xbtWsTzvz9PsjOZIN8gXmr7Ej3r9jz3k6bdA6u/Nfc7PApdXyz+QkVERERERMR2Vl4e6cuW44zdiG/t2gQ0bIhvzZo4vLyK7zUti933P0DawoX4R0dTd/Ikt7rGRcQeCr7doOBbxHNy8nJ4d3Kq1xIAACAASURBVOW7jN8wHoDGlRrz1pVvUTO05rmfmLIX3msOrhzz2C8YHlqjrm8REREREREpNrkHD7K1T1/ykpKoNGIE4Y88bHdJInIeBc1yi++ymYhcdHal7OKWH245Hnrf3Ohmxvcaf/7QG2D5xyb0rtUOIptDdhos+7CYKxYREREREZGLmU/lykS+9BIAh8aNI3P1ansLEhGPKdXB90svvYTD4TjpK+aEeUtZWVncd999VKpUieDgYK677joSEhJsrFjk4jVv+zwGzx7M+kPrCfUL5f3O7/PU5U/h512Aj4llpcCKL8399g/BVU+Z+3+OhYzDxVaziIiIiIiISGiP7oT26QMuF3ufehpXZqbdJYmIB5Tq4BugSZMm7Nu37/jXb7/9dnzfI488wqxZs5g8eTK//vore/fuZeDAgTZWK3LxycrN4pVlr/DEr0+QlpPGJeGXMKXPFDrX6lzwk6z4EpwpUDkaGnSHmGsgspm6vkVERERERKRERD7/HD7h4WRv307iO+/aXY6IeECpD759fHyIjIw8/lW5cmUAkpOT+eyzz3jnnXfo0qULrVq14osvvmDp0qUsX778nOd0Op2kpKSc9CVSbLb/Doe22F1Fsdh6ZCtD5w5lcvxkHDj4V7N/8XmPz6kaXLXgJ8nNNmNOANo9AF5e4HDAVU+bbX98oq5vERERERERKVbeYWFUfe1VAJLGjyd9+R82VyQiRVXqg+9NmzZRrVo16tWrx0033cTOnTsBWLFiBTk5OXTt2vX4sTExMdSqVYtly5ad85wjR44kLCzs+FfNmgWYPyxSGCu/hi97w+grYNlH4HLZXZHHzNg8gyFzhrApaRMVAyoyptsYHrz0QXy8fNw70bqpkLoXgiOh+eD87er6FhERERERkRIU3LEj5Qebf5fue/ZZ8tLSbK5IRIqiVAffbdq04csvv2TevHl8/PHHbNu2jY4dO5Kamsr+/fvx8/OjfPnyJz0nIiKC/fv3n/O8zzzzDMnJyce/du3aVZxvQy5We1bAnMfN/bxs+PFZ+GYQpJbtOfQZORk8u+RZnv/9eTJzM2lTtQ1T+06lXbV27p/MsmDpB+Z+mxHg45+/z+HIn/X9h2Z9i4iIiIiISPELf/JJfGvUIGfvXhLeeMPuckSkCEp18N2rVy+uv/56mjdvTo8ePZg7dy5Hjhxh0qRJRTqvv78/oaGhJ32JeFT6QfjuVshzQnRvuOZt8AmALQthTHuIn293hYUSeziWG2bfwKyts/ByePHAJQ/wSddPqBxYuXAn3LwQEteDXzBcdsfp+6OvgYhmkJ1qOuZFREREREREipF3cBDVRr4ODgfJU6aSumiR3SWJSCGV6uD7VOXLl6dhw4Zs3ryZyMhIsrOzOXLkyEnHJCQkEBkZaVOFIkBeLkwZBim7oWIUDBgDrYfDXb9CRFNIPwDfXg8/PA05WXZXW2CLdy/mpjk3sT1lO+Hlwvm8x+fc1fwuvL28C3/Spf8zt5feBoHlT9/v5QWdjnV9a9a3iIiIiIiIFL9yrVtT8bbbANj373+Tm5Rkc0UiUhhlKvhOS0tjy5YtVK1alVatWuHr68vChQuP74+Li2Pnzp20bdvWxirlorfwZdi2GHyDYMg3EBBmtofHwPCF0OYe8/iPj+HTqyExtvCvlZUMK76CL3rDB61g/r8hcWPR38MpdqXu4uklT5PtyqZj9Y5M6TOFVhGtinbSvf+YPyeHN1xxz9mPO7Hre/noor2miIiIiIiISAFUeeRh/KKiyDtwkIT//MfucgrFsiyyd+8hdeFCDnz0EbsffIjNPXqw7YYbyFy7zu7yRIqdw7Isy+4izubxxx+nT58+1K5dm7179/Liiy+yatUqNmzYQJUqVbjnnnuYO3cuX375JaGhoTzwwAMALF261K3XSUlJISwsjOTkZI09kaJZPw0m327uX/8lNBlw5uPi58P0eyDjIPgEQs/XodUwM9f6fPJyYesvsOpbiJsLuWfoGq/aElrcCM0GQVAhx5Ac5cxzcsvcW9h4eCPNKzfny55f4uvtW6RzAjB5GKz/HpoNhuvGnfvYDTNh0i3gFwIPr4FyFYv++iIiIiIiIiLnkLl2HduHDIG8PKq/8zahvXvbXdJZubKycG7aRFZsLM7YOLLiYnHGxeNKTT3zE3x9CX/0USredisOrzLVFytS4Cy3VAffQ4YMYfHixRw6dIgqVarQoUMHXnvtNaKiogDIysriscceY8KECTidTnr06MHo0aPdHnWi4Fs8IjEWxnWBnHRo9yB0P88V4dQEmH43bPnZPI65Fvp+cPZQd/86WD0B1kyC9MT87VViTMhdoQ6snQzx88CVa/Z5+UCD7mZ/wx4nLx5ZQC8tfYmpm6ZS3r88k66dRNXgqm6f4zRJ2+H9S8Bywd2/QWSzcx/vcsEnHSFhHVz5BHR5vug1iIiIiIiIiJzHgfc/4ODo0XiHhVHr668IiI62tR7LsshNTMQZG0tWbBzOOHObvX27+bfzqXx98Y+KIiA6Gv+YGPzr1+fIpEmkLlgAQNBVV1Jt5Eh8KqrBTMqOCyL4LikKvqXIspJN6H1oM9S9Em6eBt4+53+ey2VGnix4EVw5EFIVBnwC9a4y+9MSTZi9agIkrM1/XrlK0Ox6E2hXbXFyp3j6IVg3FVZ/a8aJHBNYAZpeBy2GQvVLC9RdPmPzDJ7//XkcOBjTdQztqrcr4B/Iecx9Ev78BOp1hlunF+w56voWERERERGREmbl5LD9hiFkbdgAXl6EDehPlQcfxDciothf25WdTfbmzWTFxZugOy4OZ2wseaesd3eMd8WKBMRE4x8dY25jYvCvWxeHn9/J78myODJxIgkj38DKzsanShWqjRpF0BVtiv09iXiCgm83KPiWInG54LubIW4OhNaAEb+6P15k32qYcicc2gQ44LI7IHkXbF4IVp45xtsPGvaElkOhflcoyLiRxNijXeLfQeq+/O2VG0KLIRDdGyo1OGNIH58Uz01zbiIrL4t7W9zLPS3PMYfbHRmH4d0mkJMBt0yHqM4Fe95JXd9PQpfnPFOPiIiIiIiIyDnkJCSSMHIkqfPmAeAICKDisNupdOdwvIODPPIaVm4uGStWkrVunRlTsjEW57ZtkJt7+sHe3vjVrUNAdAz+MdEExMTgHx2NT5UqOAoyQvWorLg49jz6GNlbtoDDQeV77qbyvffi8ClAI5+IjRR8u0HBtxTJ4lHw86vg7Q93zDPd1IWRnQ7znoGVX528vUZr09ndZEDhu5xdebB1EayeCBtnQW5m/j6fAIhoYsaNRDaHyOakVqjNjQvuYEfKDtpXa8/orqPxcnho5tevo+CXV83rjVhSsLnmx2yYAZNuBf9QeGi1ur5FRERERESkxGSuWkXCm6PIXLkSAO9Klahy/32UHzQIh2/h1sLKiosjefoMUmbPJvfAgdP2e4WGHh9Tcqyb279Bfbz83R9leiaujAz2v/46yVOmAhDYqhXVR72Jb7VqHjm/SHFQ8O0GBd8lwJUHXt52V+F5m36CbwYBFvT9EC69pejn3DAD/hgLta4wgXfl+kU/54myUmDjTNMFvnuFmUl+Agt4LLwyC4LKEenwY1KdwVSo3hoiW0BQpaK9dk4WvNcU0g/AwE+h+fXuPd/lgjEdIHG9ur5FRERERESkxFmWRepPP3HgrbfJ3rEDAL+6dQl//DGCu3QpUMd17oEDJM+eQ/KMGThjY49v9y5fnnJXXHE04I4mIDoan6pV3eriLqzkOXPY/8KLuNLT8QoLo9prrxLStWuxv65IYSj4doOC72K2/GOY9zTUbm/GdDTuB/4hdldVdIe3wdhOkHUEWg2DPu/ZXZH7XC44vBX2rzn6tZavj6xnVIgvPpbFV/sSaO7Mzj8+tAa0fwgu/5d7ndrH/P0FzH4YwmrCg/8UbFzLqU7s+n54jZldXtySd5vXzE43s9Wb3wDlaxb/6xaH5D2weQHU7uD5iyoiIiIiIiIXCSsnh6RJkzj44UfkJSUBEHhZKyKefJLA5s1PO96VlUXqwoUkz5hB+m+/5y9E6etLSKdOhPXvR3DHjqfN4y5J2Tt3suexx8laa9YYq3DTTYQ/+YTHustFPEXBtxsUfBej7HQzzzkzKX+bbzkTfrccasI3Lw+N0ChJ2RnweXfYvxaqXwbD5oJP2f8PwT+J/3DHvDvItXJ5pu4AhjrCYJ8JxDm8Jf/Ahj2h30fuzTJ3ueCj1mYB0B4joe29hSvyxK7vq56Czs8W7jwFdSAOxg+AlD0nbHRA3Y5modBGfcA/uHhrKKqMw7BhOqydAjuWApYZcdP9VWg9vHAXMURERERERIS8tDQOjfuUw19+ieV0AhDauxdVHnkE3+rVyfj7b5JnziR13o+40tKOPy+wRQvC+vcjpGdPfCqUQENXAVnZ2SS+9z8Of/45AP4xMVR/523869WzuTKRfAq+3aDguxj9OQ7mPg4V6sClt8Kqb03weUz5WiY8bHmjOaYssCyYdjesmQhBVeCuXyGsut1VFdmhzEMMnjWYxMxEetXpxX+v/O/JH6dypsI/38CCFyDPCcGRMPATqNepYC+wcTZ8dxMEhMEjG4oWFq+fDpNvK/6u790rzCibzMNmQdA2d8P6abB9Sf4xvkHQuK8ZS1OnY+m5kONMg7i5JuzeshBcJyyIUr4WHNlp7jfoYS5iBFexp04REREREZELQM6+fRz43/skz5hhcgNfX3wqVyZ3377jx/hWq0ZY/36E9umDf926NlZ7fmmLF7P3qafJS0rCERhIhSFDCGjcmICYaPzq1tUCmGIrBd9uUPBdTFx58MGlkLQder9lxmNYFuz+C1Z9A+u+B2dK/vG1O8AlN0GjvqW7g/aPsfDDE+DwhttmQp0OdldUZHmuPEb8NII/9v1B3bC6TLxmIuV8y5354P3rYModcDAOcJjRJ12eP//Yks+6w64/oMOj0PXFohXscsGY9pC4ofi6vrf8DBNvNjPQq7eCoZPzZ5wn7TAz0ldPMKNijgmtAS1uMBdz7BgjkuuEzQth7WSI++HkRUwjm0OzQdBkIIRWhz/H5l/ECKoC/UZDw+4lX7OIiIiIiMgFJCs2lsQ3R5G+dCkAXkFBhPTqSfl+/Qhs1QpHaWmWKoCchET2PvUUGcuXn7Td4eeHf/36Jy24GRATjXdYmE2VysVGwbcbFHwXk2OzmAMrmA5fv1OC1OwMiJ1jQvCtizDLKmI6aJv0h0tvg1ptSrrqc9uxDL661nTP9ngd2t5nd0Ue8f7K9xm3dhyBPoFMuGYCUeWjzv2E7Az48VlY8YV5XO1SGPQZVDzLR592LofPe4C3Hzy8FkIii1708a7vsKNd3+WLfs5j1k2F70eAKwfqdYYb/u/MF2MsC3b9Cau/hXXTwJmcv69Ga2gxBFreBL6BnqvtVK482P6bCbs3zoSsE2qoWM/MJG86CKo0PP25Ceth6nBzAQHg8rug2yvFW6+IiIiIiMhFIGPlSvKSkghq1w6vwLL7bywrL4+UuXPJWLkSZ2wczrg4XBkZZzzWp2pVAqKj8Y+JJiAmBv+G0fjVroXD27uEq5YLnYJvNyj4LgaWBZ92hT1/w5VPmI7gc0nebbpnV317cgdtgx7Q9SWIaFyc1RbM9t9h4o0mWGx6HVz32QUxG3nx7sXct9AE+P/t+F961+td8CdvmAkzHzALfPoFwzVvm7D3VBOGQtwcuOQW6PehZwo/qev7aej8jGfO++c4mPsEYEGTATDgk4LNb8/JNF3WqyeYrmsrz2yP6gI3TS2eESjZ6fBFb9i3Kn9bSFXT1d1sEFS75Pw/ozlZ8NNL8MfH5nGVGLjuU4hs5vl6RUREREREpEyzXC5ydu8mKzYWZ2wcWXFxOGNjydmz54zHOwID8W/Q4ORAPDoa7+BS/El/KfUUfLtBwXcxOLHD95H1EBxesOdZlhmHsXK8maHtygWHl+ma7fwshFYr3rrPZt33MG0E5GVDzTZwyzTwC7KnFg/ak7aHwbMGk5KdwpDoITx3xXPunyR5N3x/F+z43TxuNtgE4AFH/y4d3AQftgYsuO9PqBLtsfpZPw0m3+6Zrm/LgkVvwK9vmMeth0OvN8GrEFemUxNg7ST4+TUzbuTYqB9Pm/0o/P0Z+IVA06Nhd+32hat5008w/R5ITzR/b69+Ea64t/TMLBcREREREZFSKy81FWd8/MmBeHw8VlbWGY/3rVHDBOHRMccDcd/q1cvUKBixj4JvNyj4LgYTb4LY2WZBy74fFO4cBzfDwpfN+AYAn0AzWqT9Q/mhanGzLFj2Ecw/Ggg36gMDx10QoyCy87K59YdbWX9oPc0qN+PLnl/i5+1XuJO58mDJO7BopOl0rlDHdMTXuAxmPggrv4KGvWDoRI++B1wu+LgdHNgI1S+D1nea75F/iPvn+eFJ+GucedzpGTM7vKgd/X98Ys7rEwj3/A6VzjNCxh2bFpiFNwFunVHwRUbPJf0gzLgf4n8wj+t1gv5jILRq0c8tIiIiIiIiFxUrL4/sHTtxxsWSFWs6w7Pi4sjdv/+Mx3tXrEho796E9etHQNMmODz0KXtXdjZpvywiecYMMv74A5/IyKMd6Pkzyn3Cq3js9aT4Kfh2g4JvDzu0BT5ohcc6fHf9CfP/DbuOLqZQrpIJJVsNA59CBrUF4cozc6z/GGMet7nbzPUuTDdtKWNZFq8uf5VJ8ZMI8w9j0rWTqBbsgW76nX+YmdHJO8HLB9o/DEs/MAsoDvsBarcr+mucatNPMOEG8+kAAN9yJvxuMQTqXnX+71dutunmX/894IDeozzXne1ywfj+sO1XqHE53DHPMz8/6Yfg47aQlgBt7oFebxT9nMdYlpndPu9Z060eWMFcvGrUx3OvISIiIiIiIhet3KQknHHxJhCPi8cZG4tz82as7Ozjx/hFRRHWrx9hfa7Ft6r7zViWZZG5ahXJM2aQ8sM8XMnJ5zzeu0KF0zrQ/evVw+FXjLmTFJqCbzco+PawY+MXGvaEod955pyWBXFzYcGLcGiT2VahLnR9ERr39/ys7ZxM+P5fsHGWedz9NdNtfgFc/bMsi3dWvMOX67/EgYPRXUfToXoHz71A5hGY/cjRIPmoGq3hzgXF9+eXtAPWTDLztQ9vyd8eUhWaD4YWN0J4o9Of50yDSbfAlp/ByxcGjDHjQjwpeTeMbgvOFDM+pOOjRTufZZlFYzfOhMrRMOLX4vkEwoF4mHon7F9jHl96qxn9cgF82kFERERERERKFysnh/Tly0mePoPUn37CcjrNDoeDcle0IaxfP0K7dcMr6NxjZ7N37yZ5xgySZ84kZ8fO49t9IiII69uHkO7dyTt82HSgH+1Ez96+3TSuncrXF/969fCrVdPtJjb/qHqE9umDf926bj1PCkbBtxsUfHtQ+kF4twnkZsHtc6COBwNVgLxc+Odr+GWkmUUMZsRFt1egTnvPvEbGYZgwxMwa9/YzYWjT6zxzbpvlunJ5ednLTN88HYCnWj/FzY1v9vwLWRas+gbmPgk56TDkW4i5xvOvc6bX3f23CcDXTTWLbh5TtYUJwJsOguAqpmv62+thzwrwDYIbxkP9q4unrlXfmvnZXr5w1y9FWzhy9UTToe7lA8MXQrWWnqvzVLnZ8Mur8Pv7gGUuZt3wf+DtW3yvKSIiIiIiIhe1vLQ0Un/8keTpM8j466/j2x2BgYR060pYv34EXXEFDm8TRuelppIybx7JM2aQ+feK/OPLlSO0WzfC+vej3OWXHz/+VK7MTJybN+OMiztpJIsrNbXI7yWwRQvC+vcjtFcvvMsXYV0yOYmCbzco+PagRf+FRa9D1ZZw16Li6/B1ppkRGks/MMEqQHRv6PgYVG9V+Nc9vM3MTT60GQLCYMgEzwXqNnPmOXny1yf5edfPeDu8eandS/Sv3794XzR5NxzZBbXbFu/rnEmuEzbNN0Fx/I/gyjHbHd7QoBsc3goH480oj5ummHnkxcWyzNz7uDkQ0RT+9TP4+Lt/niO7zExzZwp0eR6ufMLztZ7J5oUwcai5oNX8BjP3WwuOiIiIiIiISDHL3r2HlFkzSZ4+g+wdO45v9wkPJ/Saa8hN2E/qwp9P6hAPatuWsH59Cena9bwd4mdjWRa5e/eSFRdHzllmkp9Vbi5pv/9O+m+/Q16e2ebrS0inToT170dwx44aoVJECr7doODbQ3Iy4d2mkHHQLGzo6ZERZ5K6Hxa9ASu/NosqApSvZcafNBkA1S4peAi+ZyV8OxjSD0BYTROGhscUX+0lKC07jQd/eZC/9v+Fn5cfo64aRZdaXewuq+SkHzKjV1ZPMB3ex4RWh1umFX0OfUGkHYDRbSDjEHR41IzpcYfLBV/3he1LzLzwYT+At0/x1HomcT+Y8N7KM3PFe468IEb/iIiIiIiISOlnWRZZa9aYMSZz5p42s9uvfhTl+/cn9Npr8Y2MtKnKk+UeOEDynDkkz5iJc+PG49u9y5c3i3j270dAs2ZaVLMQFHy7QcG3h/z9Bcx+2ITGD64q2VDuQDwsHgWxc/I7wAHK1zYBeJP+pgv9bL9M4ufD5NsgJ8OMoRg6GULdXzyhNDqUeYh7frqHjYc3EuQbxAddPqB1ZGu7y7LPwU0mAE/aAV1fgvI1S+61N8w0M8UdXnDHj1Dz8oI/d+mHMP85M5bl7iVQKar46jybY2NWADo/D1eVUMe5iIiIiIiIyFGu7GzSfv2V1AUL8KlQgdC+fQlo3LhUB8hZcXEkz5hJ8qyZ5B04eHy7X926ZhHPvn3wrVbNxgrLFgXfblDw7QEuF3zU2owI6TES2t5rTx3ZGbB5AayfZsZb5GTk76tQ52gIPgAim+eH4Cu+NAtyWnkQ1QUGfw3+IXZU73F70/YyYsEItqdsp2JART7u+jGNKzW2u6yL2/cjYM1EqBhlAmy/AnzsKmEDjL0K8rLh2vfgsmHFX+fZLP8Y5j1t7l/zNrQebl8tIiIiIiIiImWIlZtL+rLlJM84uohnVtbxfb41auAfE01AdIy5jYnBt3p1HBo1ehoF325Q8O0BsXNh4o3gHwaPri8dwXF2Omw6IQTPzczfV7GeGYeSlw3LPjTbWt4Eff53wSzct/XIVu5acBcJGQlUDarK2G5jqRNWx+6yJPOImdOdsgcuvwt6jzr38blOGHc1JKyFBj1g6Hf2jxj5+TVY/CbggOs+LZmxRiIiIiIiIiIXELOI53ySZ8wg488/z3iMV1AQ/tHRBMRE4x8dQ0B0Q/wbNsSrXLkSrrZ0UfDtBgXfHvB5L9i5FNo/DN1etrua02Wnm/B7/TQThp8YggNc9TR0etr+QNFD1h5Yy70L7+WI8wj1wurxSbdPiAwqHTOuBNjyM4wfYO7fMh2iOp/92J9egt/ehcCKcO9yCIkokRLPybJg7uPw16fg5QM3fgcNutpdlYiIiIiIiEiZlJuUhDMujqzYWJyxcWTFx5G9aTNWTs7pBzsc+NWqhX9MDBVvv41yl1xS8gXbTMG3GxR8F9HuFfBpF/DyhYfXQGgpn0nkTINNR0PwPf9Ap6fg0lvtrspjlu1dxkO/PERmbibNKjdj9NWjKR9Q3u6y5FRzHjPBcWh1uGcpBJ7he7RjGXzZGywXDB4PjfuWfJ1n43LB98Nh3VTwLWcC/Fpt7K5KRERERERE5IJg5eTg3Lbt5EA8Lo68g/kzwmuOG0dwxw42VmkPBd9uUPBdRJNvNyFyixthwBi7q7mozd8+n6eXPE2OK4crql7B/zr/j3K+F/fHX0qt7HQY0wEObz3z3x1nKnzcHo7sgBZDYcDH9tR5LrnZZsTR5p8gIAyG/QARTeyuyvOyks2ioiW5YK+IiIiIiIjIGeQePEhWbBzOuFjCBg7Ep0IFu0sqcQXNcjUdXYomaTtsmGHut73f1lIudlPip/D4r4+T48qhW+1ufHT1Rwq9SzO/IOg/BhxesHoCbJx98v55z5jQO6wW9HrDnhrPx8fPLAZb43ITDo8fCIe32V2VZ6QfhD/Hwec94Y1aMPk2uysSERERERERwadyZYI7tKfSnXdelKG3OxR8S9Es/9iMYYjqApFN7a7mohR3OI5Xl7/Ky8texsJiUMNBjLpyFH7efnaXJudTqw20f8jcn/UQpB0w92Pnwj/jAYfp9A4Is63E8/ILMgtuhjeGtP1mdnlqgt1VFY4zFVZPhP+7Dt5qaOaY71xm9sXOhoOb7a1PRERERERERApMn9uWwss4DCvHm/vtHrC3lovMwcyDzNk6h1lbZhGXFHd8+/Bmw3nwkgdxXCCLdF4UOj1jFlxNWAezH4Zr34OZR/8+tbsf6pSBWV3lKsIt0+Cz7pC0zQTHt88+89zy0iYnCzYvgLVTIH4e5Gbl76vaEppdb9YE2LYY/vkaur1iX60iIiIiIiIiUmAKvqXwVnwBOekQ0RTqdba7mgteZm4mv+z8hVlbZ7F071JclgsAHy8fOtXoxMAGA+lYo6PNVYrbfPzNfO+xnU1XceIGyDgI4U2gy7/trq7gQiLh1unwWQ9IWAsThsDN34NfKRy3k5cL2xfD2qmwcRY4k/P3VWoAzQZB00FQub7ZVrGuCb5XfQudnzcjXkRERERERESkVFPwLYWT64Q/PjH32z0A6jAuFi7LxYqEFczaMov5O+aTnpN+fF+LKi3oG9WXHnV6EOZfikdhyPlFNoNOT8PP/zGLXXr5wsBPTChellSsZzq/v+htRoR8OxiufBzqdAQvb/vqyjgM+9earvr968xinOmJ+ftDq0PTgaa7O7L56b/PGnSH4AhISzBd4Y37lmz9F7qEDbDtV3PxJKKZudBg58+LiIiIiIiIXBAUfEvhrJ1sQqCQqtBkoN3VXHC2J29n1tZZzN4ym73pe49vrx5cnWvrXUufqD7UDq1tY4Xice0fhvgfYfef0OV5E4aXRZFNzczv8QNg+xLzFVINmg+GFkMgvFHxvbYrlXtbdQAAIABJREFUDw5tMR3n+9flB92pe08/NrAiNOlvOrtrtQWvcyx54e0LLW+C396BlV8r+PaE5N1mvMzayeb7dCKfQPNzEtHE/D2IaGK+ArVoi4iIiIiIiBScw7Isy+4i7JaSkkJYWBjJycmEhobaXU7pZ1kwui0c2AhdX4YOD9td0QXDsiw+XPUhY9eMPb4t2DeYHnV6cG29a7k04lK8HFqT9oKVlWI6k2u3K/ufokhYD399CuumQtYJo0SqtoAWN5rAObhK4c+fecSMhdm/Lj/oTtwIuZlnPr5CHTOWKbIZVL8M6l1lAu2COrwV3r8EcMDDa6F8zcLXfrHKTIINM2DNZNjxO3D0fz+8fKHulZB1xHR/n+17GFojPwSPaALVLoFKUSVWvoiIiIiIiJQOBc1yFXyj4Nttm36Cb64Dv2B4ZH3ZWMCuDMhz5fH6H68zKX4SAB2qd6BfVD861exEgE+AzdWJFFKu04wHWT0RNs0HV67Z7vCG+l1NF3h0b/A9y8+4Kw8ObzNdwcc6uBPWQ/LOMx/vWw7CG5vO82NBd3hjCPDA7/av+phZ352eMaNp5Pxyssz3f+1k8/3Py87fV7u9+SRA43753dynfr8T1pvbI2f5fldtCS2HmgspQZWK//2IiIiIiIiI7RR8u0HBt5u+6mvmsV5xH/R83e5qLgg5eTk899tz/LD9Bxw4+Hfbf3N9w+vtLkvEs9IPwrrvYfUE2Lsyf7t/GDTpB81vAIeXCTuPzeRO3Ag5GWc+X1jNo+H20ZA7omnxzodeOwWm3mk6jx9eoznUZ+PKMyNu1kyGjTPBmZK/L7wJNL/eBNXudM1nJZtu8BMvgOxblX8hxcsXGvYwnyZo0F0LkIqIiIiIiFzAFHy7QcG3GxI2wMdtTbfmQ6ugfC27KyrzMnMzeXTRo/y25zd8vHwY2XEkPev0tLsskeJ1IB7WTIQ1kyB517mPPTbz+cSAO6JJyX/aJCcL3okxIztumgoNupbs65cFO5fDtBGQtD1/W2gNaDbIdHdHNPHca6UfNJ3kq76F/Wvyt5erZIL1ljeajvCyPjZIRERERERETqLg2w0Kvt3w9+cw+xGo1xlunW53NWVeSnYK9y+8n38S/yHQJ5B3O71L++rt7S5LpOS4XGbe8+qJEDvbjFCKaHLyqJKK9UpPd/UPT8MfH0OjvnDDeLurKT1cebD4Lfj1DbBcEFDeLB7abPD5Fw/1hIT15pMEayaZhZePqdLIBODNb4CQyOKtQUREREREREqEgm83KPh2ww9PwR9joO390OM1u6sp0w5mHuTuBXcTlxRHiF8Io68eTcvwlnaXJSLnkrAePm4HXj7w6EYIDre7Ivsl74bv7zq6YCVm3EjvUeAfUvK15OXC1l9MF3jsHMhzmu0OL4jqApfdYWbKqwtcRERERESkzCpollvMLVhywUncaG6rxNhbRxm3J20Pt/1wG3FJcVQKqMQXPb5Q6C1SFkQ0geqXmdnSqyfYXY39Ns6Cj9ub0NsvGAaMhQFj7Am9Abx9oEE3uP4LeDwern0ParYxXeibf4KJQ+HTq2Hrr/bUJyIiIiIiIiVGwbe450CcuQ1vZG8dZdiWI1u4de6t7EzdSfXg6nzd62uiK0bbXZaIFFSr28ztyq/hYv3QVE4mzH4UvrsZso5AtUthxGJocYPdleULLA+XDYM758MDK6H9w+BbDvasgK/7wtf9YM/K859HREREREREyiQF31JwmUmQtt/cr9zQ3lrKqLUH1nLbvNtIzEykfvn6fNXzK2qFaoFQkTKlyUDT3XxoM+xYanc1JS9hA4ztDH9/Zh63fwju+BEqRdlb17lUioJuL8NDq+HyEeDlC1sXwbjOMOlWs9iqiIiIiIiIXFAUfEvBHQsGQqtDgGahu+uPfX8wfP5wkp3JNKvcjC96fEFEUITdZYmIu/yDoelAc3/l1/bWUpIsC/76zITFBzZCUDjc/D10ewV8/OyurmCCw6H3m/DA32YWOQ7YMANGt4EZ95t55SIiIiIiInJBUPAtBXfg2HxvjeVw18KdC7nnp3vIyM2gTdU2fNr9U8oHlLe7LBEprEtvN7cbpptPw1zoMg6bsSZzHoXcLKjfFe5ZCvWvtruywqlQx8wiv2epWezScsE/4+H9S+HH58z7FRERERERkTJNwbcU3LH53lU039sd0zZN49FFj5LjyqFrra6Mvno05XzL2V2WiBRF9UshvIkJgddOsbua4rX9dxjTAWJnmxEhPV6HoZMhuIrdlRVdRGO4cQLcuQBqt4c8Jyz7EP7XAn59E5xpdlcoIiIiIiIiheRjdwFShhyINbfq+C6Q7cnbefvvt1m0exEAA+oP4IW2L+Djpb92ImWew2EWufzhSVjxFbQebraVdS4XHNkOiRvNLO/9a0zgbbmgYhQM+hyqtbS7Ss+reTncPgc2L4SFL5v3/ctr8OdYuPJJs0imt6/dVRbOgThYPQEOboKoLtBkAJSraHdVIiIiIiIixc5hWZZldxF2S0lJISwsjOTkZEJDNbv6rN5uBKl74Y75UKuN3dWUWsnOZMasHsPE2InkWrn4OHy4s9md3NfyPhwXQjAmIkbGYXg7xnQJ/+sX0wVeVlgWpCVC4ob8r4QN5gJnTsbpx7e8CXq9aeabX+hcLtgwDX5+FQ5vNdsqRkHXl6BRn7JxgSP9IKybagLvvf+cvM/bDxr2NDPOG3Qru4G+iIiIiIhctAqa5ar1VAomK9mE3qCO77PIdeUyOX4yH636iGRnMgBX1riSxy57jHph9WyuTkQ8rlxFaNwX1k42i1yWVPCdnWE6shPXQ1YKWHmmI9tymdDWcp2y7YT7OZlwMN4E3RmHznx+b3/zez6iCYQ3gpptoNYVJfPeSgMvL2h6HTTqCyu/gkVvwOEtMOkWqHkFdP+P6RAvbXKdED8PVk+ETfPBlWu2e/lA/W5Q7RKzkGfietg403yVqwRNB0GLIWZ/WQj1RURERERECkgd36jju0B2/QWfdYWQqvBYrN3VlDq/7/mdUX+NYkvyFgCiwqJ4ovUTtK/e3ubKRKRYbVsCX10LfiHweBz4BXnu3JYFKXtg/zpIOPq1f50JYS1X0c/v8IKK9Uy4Hd7EzLsObwwV6oK3rosf50yF39+HpR9AbqbZ1rgfXP0iVIqytzbLgl1/ms7u9d+bi9THVLsEmg8xIf6J89j3rzXh+JpJkJ6Yv71ytAnAmw+GsBol9x5ERERERETcVNAsV8E3Cr4LZOXXMPMBqNcJbp1hdzWlxtbkrbz111ss2bMEgPL+5bm/5f1c1/A6zfIWuRhYFnxwqRmJ0e8juOTmwp0nL/fkcPvY/cykMx8fVMV0ZAeFmwDby9t06zq8zePj27yObnOYx16+JqwNb2y6un0DC//eLzYp+8zc71XfmAsPXj5w2Z1w1VMQVKnk6rAs8/O2dooJvJO25e8LqQYtbjCBd3jMuc+TlwtbfzHniJ1jFmoFwAF1rzQheKO+F8d4GxERERERKVMUfLtBwXcB/PgcLPsQ2twDvd6wuxrbJTuT+Xj1x0yMnUielYePw4ehjYYyosUIQv30MyRyUVnyjlkQsWYbuHO++8/ftwam3mlGkJzK4Q2VG0JkU4hoevS2GYREFL1uKZyE9bDgRdi8wDz2D4UOj8AV93j+QkJO5tGFRtcf/VpnbjMP5x/jG2RG7rQYAnU6mgsc7spKNmNQVn8HO3474dzlzFzzFkOg7lWFO7eIiIiIiIiHKfh2g4LvAvi/62DzT3Dte3DZMLursU2OK4dJcZMYvWo0KdkpAHSq2YnHWj1GnbA69hYnIvZITYB3Gpm52vcuN6NDCsKy4M9xMP95s0CmXwhUa3lCwN0UqsSAb0Dx1i+Fs3URzP837F9jHofWgC7PQ/MbzJxwd1gWJO86OdxOWA+HNp95rI3DG+p0gJZDIeZaz3ZlJ+0wY1BWTzBjdY4JqWrGoLS4seA/4yIiIiIiIsVAwbcbFHwXwLtNzT/Kh82D2m3trsYWGTkZjFgwglUHVgFQv3x9nmz9JG2rXZx/HiJygok3QexsuOI+6Pn6+Y/POAwz7oe4OeZxw57Qb3TJjsyQonO5zOKmP//H/DcSoEIdCKxg7lsWYJ1we+yJ1sn7UvaCM/nUsxuBFfM7/SOamK+SGFNjWbD7bxOAr5sKWUfy91VtYQLwpoNOnh8uZZMrz4zPOXbR5WA81LjcfIpBXf4iIiIiUgop+HaDgu/zcKbCyKMLXT25DcpVtLceG+S4cnhg4QP8vvd3QvxCePjShxnYYKDmeIuIEf8jfDvYhJSPxYKP/9mP3bEMpg6HlN3g7Qfd/gNtRpg53FI25WTBH2PM2JuzBdjn4+VrAu1j4XZEE9P1Hxxh/89GrtP8jK+eCJt+BFeu2e7whvpdzSiU6N76dEJZkH7IBNyJG/KD7sSNJ8x4P0Ht9jBwrBY7FREREZFSR8G3GxR8n8fuFfBpF/OP78fPMIP2AueyXDz727PM2TqHQJ9APu3+Kc2rNLe7LBEpTVx55pMxqXth0OfQ9LozH7PkbVg00oyvqBhljq3WsuTrleKRcRj2rDg6nuRoWO1wmPvHs2vHCUH20fvlKptZ7j5+JV6y29IPwfrvTSf4nhX52/3DoEl/aPcAVG5gX32SLy8XtvwM25fkj89J23/mY33LmRE2EU0gOBKWfwzZqRBQHvp9aGa9i4iIiIiUEgq+3aDg+zz++QZm3At1r4TbZtldTYmyLItRf49i/Ibx+Dh8eL/L+3Ss0dHuskSkNPr5NVj8JtTrBLfOOHlfyj74/l8mgAJoPgSueQv8Q0q6ShHPORAPayaaRTFTdpttPoHQ679w6a32d6pfjCzLzJ1f/R2snQTpB04/pkLd0z9ZUKHOyWNNDm+FKXfA3n/M48vuhB6vFf+IHRERERGRAlDw7QYF3+cx/3lY+gFcPgJ6v2l3NSXq83Wf8+6KdwF4vcPr9IlSx5OInEXSDvhfC8CCB1dBxbpme/x8mH43ZBwC3yC45m1oeaOtpYp4lMsFO36DxW/Btl/NtiYDoc97EBBmb22FYVmQlQyB5e2upOBS9pmge/VEM8bkmHKVodG1UPXowrnhMQW/4JabbebXL33fPA5vbD6losVNRURERMRmBc1yNaBYzu9AnLmtEm1vHSVs+ubpx0Pvxy97XKG3iJxbhdoQ1dmMFvjn/+Cqp2Dhy7DsQ7M/shkM+hIq17e1TBGP8/Iynwqr3QGW/g8W/seMQ9mzAgZ9ATVa2V1hwRzeajql10yEpO3m72zzIdDsegiJsLu602WnQ+wcM3Zm66KjI3YAb3+I7mUWIK1/NXj7Fu78Pn7Q/T/mUyzT7jaB+tjO0HMktLpdHf0iIiIiUuqp4xt1fJ/Xe83gyE64fS7UaW93NSVi0a5FPPzLw+RZeQxrOoxHWz1qd0kiUhasnwaTbzdrIoRWyx8T0OZu6PbKuRe9FLlQ7PoTptwJyTvByweufgHaPmAC8tIm84j5e7t6IuxafuZjHN4Q1cUs4hlzjb3jPo5116+eCBtmQHZa/r5abaH5DWbWemAFz75uWqIJv7csNI8b94M+//P864iIiIiIFIBGnbhBwfc5ONNgZHVz/4mtEFTJ3npKwD+J//Cv+f/Cmeekb1RfXm3/Kg51NYlIQeRmwzsxZqwJmFCo32iI6W1vXSIlLfMIzHrQhLMAUVfDgE8guErhzpebDZt/MuM8Mg5BeBOIbGrGd1SJAd+Agp8rLwc2LzSd0nE/QJ7TbHd4me7mFjdC7XYQP88EzLv/yn+uf6gJfVvcaILm4gzzLQtS9x9dmHIt7F8HO5fnz1MHM5u7xY3QfDBUrFd8tYAJ3Zd/BD+9DK4cCKsJ130Kta4o3tcFSN4DC/5tuvLB/NmYO/nHnPRPmqP3fQKh/UNm3Iuc245lZgHmljeeeYHmC1nSdlg8Co7sMiN9Cvu7RUREREqMgm83KPg+hz0rYVxnCKoCT2y2u5pitzlpM7fOu5XU7FSurHEl73V+D1+vQn5EWEQuTovegEUjoVY7EwqFVbe7IhF7WBas+BLmPQ25WeaTEAM+MSOBCvr8vf+Y8HndlPwLSqdyeEPlhmahxsimENHM3AZH5I/jsCzYt9qca+1kyDiY//wqjUzY1+x680mNUx3cnL+IZ/LO/O3la5lRKC2GQKWogr2ns8nNhoNxJtxOWAf715rbM73ngDAzQ73FEKjZpuRHjuxZCVPvNCG0wws6PQMdHzt5cUxP2jgbZt4PmUmFPIHDrK3Q+k6PlnXBcOXBkndg0etmXI7DCwaPvzguFmQcNmH/n2MhL/v0/Q5vqNzAhOBn+90iIiIitlDw7QYF3+ewaoJZlK1OR7h9tt3VFKt9afu4+YebScxIpEWVFozrPo5AHxs/ziwiZZNlwcF4qFS/+IIgkbIkYQNMGQYHYgEHdHzUhKVnmz2dvBvWHF2o8WBc/vbgCBNOhzcy5zzWBZ15+MznKVfZhFSVGsD23+DAxvx9QVXMuVoMgcjmBQuxXC7YudTUtX46ZKfm76vR2oxDcediueUy4XHCOrOeiivn9GMcXqb+Yx2okc2hTgf7u1CdqTDnMVjznXlcuwP0+zB/UV9PyMk0C6z/9al5XO0SuPKJk/+MT/q+OU6/u2EGrPza3O/8nHm+JwNLyzKfGgiqDDUv99x5S0rKPvj+X7B9iXlcqQEc2mTmxN8y7cIdcZiTBX+NM13eWclmW71O0GQAHIgv+O+WiKZHf4c0K6nKRURE5CgF325Q8H0OC16E39+D1sNNt8wFKikriVt/uJXtKduJCoviq15fEeYfZndZIiIiF4bsDPjxGdMBDlDjchj0memaBhOkbpxlxo9sW8JJoyoaXWvCpbqdwPuUddktC1L2njwOJGEdHNqcv9jjMd7+ZkZ3ixtN13lhF3089n7i5poQfMvPYOUV/lzH+IedEHAfvQ1vZO9M8fNZPdEE4NlpJpBuPdyEy0UdjZe4EabcYRbUBGj3IHT5t1lw0x2WBb+8DovfNI8vHwE93/DMiJqMwzDzAYidbTqDb5wIDbsX/bwlJX6+aW7JOAS+Qeb/85tdD5NvM+/JPwyGzTU/ixcKlwvWTYWfXzHrF4EZm9TtFbMQ7IkXRSwLUvcd/Z1yjt8tXr7Q9SW44t7SuY6BiIjIBUrBtxsUfJ/DtzeYGZe934LL/2V3NcUiIyeD4fOHs/bgWiKDIhnfazyRQZF2lyUiInLhWT8NZj4IzhQzsqPTM2acycZZkJORf1ydjibsbtQXAgrx/2bZGabDe/868wmMyg3NbO7A8p57L8ekJpgw7UCs+88Nq5EfdIfVLJvjEw5tgblP5C986R8KHR6GNveAXzn3zmVZ8Pfn8OOzZjxOUDgMGGNCyaJYPgbmPWXuNx0E/T92P0Q/0Y5lMHX4yfPWfQLhtpmlv/M7NxsWvgzLPjSPI5vBoC/MSA8wnfbjB5pPNwRHwJ3zzSz5sm7bEvMJgn2rzOOQqtDleXMhzJ1PZx373ZKwHmLnmH8nAdTvZn5Wgyp7vnYRERE5jYJvNyj4Pof/tTALvtw2G+p2tLsaj8tx5fDAzw/w+57fCfMP4+ueX1OvfDEvDiUiInIxS9oOU+6EPX+fvL1SfRN2NxsMFWrbUpoUwZZfYMELsH+NeRxSDTo/Cy2HFixYzDhsFkTdOMs8rt8V+o8p/IKop1oz2XQ4u3LNYqs3jAe/IPfO4cozM6EXjTRdvxXrwcBxZm2HzQsgoDzc8SOEx3imZk87tMXMZ9/7j3l8+QjT7Xzq6JzMI/BFb0hcb97jHfM9930oaYmx8NOL+QG1X7C5MHPFfe5fmDnVsQs1854xi+QGR8LAsVDvqqLXLSIiIuek4NsNCr7PIjsDXq8GWPD45rL7P7xn4bJcPPvbs8zZOodAn0A+7f4pzas0t7ssERGRC19ejhlBsW4qNOhmui6rtyqbHc+Sz+UyC5Eu/E/+QqDhjc0oiAbdz/793f67mTWdsqd4R0dsWgDf3QK5mWYu+9BJUK5iwZ576jzs5kPgmrfAPwSy0+HrfrD7Lwitbrqkw2p4tvaiWjsFZj1sZtMHVoB+H5nRP2eTsg8+725GglRtadb68Q8puXqLKnW/uUCx8uuji3Z6w2XD4KqnPf9vmoT1MHnY0TUJHHDl4+Z1Th3NJCIiIh6j4NsNCr7PYu8qGHsVlKsET261uxqPik+KZ9Rfo1i+bzk+Dh/e7/I+HWtceB3tIiIiIiUuJ8ssSrl4FGQdMdvqdIRuL5sLHMfk5ZpjFr95tIM6CgZ9DtVaFl9tu/6Eb643dVWJgZu/h7Dq535O/I8w/Z6T52G3vPHkYzIOw+c9TfhZORrumFfwUL04ZafD3Cdh1f+Zx7XawXXjChbMH9xswu+MQ2bxx6GTwMe/OKstOuf/t3ff4VGV6RvH72RSISQBQhICoUvvxVAUZaWoqysIghIBURcLiIjgYgFBVCxr+QkIuLroIoKIgmtDkY5LCSAdgtKLCSWQBBLS5vz+eCFFAmTIJJNMvp/rykXmzJlznhl4Y7zPe573rPS/yeYr45zZ1vAOczHlYjuXopB+Tlo0Jmcx1cj2Uu8PpeDIojsnAABlGMG3Awi+L2PL59KCIVLNTmZxGzdwMvWkpvw6RQt+XyC7ZZe3p7cmdpqov9a5wowXAAAAOC71tLTqbWndDNMKQpKa3C3dMtbM7P7q79KhNWZ7y2jptjck34Cir+v4LtPHOvmY6a0+YEH+oWhmmvTzBGntVPM4vJnU52MppF7+x008In3U3cxcr95OGvi14+1UnCluuzR/sOlzLw/ppmekzs84NhP56Ebp4ztNiNzkbqn3RyVzEcesTOnXWWaW99l4s61aW6n7RKlmx+KrI/fMer9g6a4pUqM7i+/8AACUEQTfDiD4voyfJ0ir35baPijd8Y6rqymU85nnNWvnLH247UOlZJrFs3rU6qERrUeoeoUSdisqAACAOzlzWFr2irRlriTLhN7e/maRU58K5vfM5vcUc02HpFm9pFO/m7sbo+dL1VrnPH9qrzT/wZzFEKMeNf2wrzbj+fhu6d89zIzyet2k++ZINu+iex/5yco0M+4XjzMXHCpUNb3Ir3W9nr1Lpdl9JXuGdP0Qc4GipLQlsizTv3vxixdajcgsxnnLi1KTXq6pM2G/+bdzbJN53O7vUveXL+2lXpbY7aa1VeU6ee/6AADgGhF8O4Dg+zLm3CfFfi/d9qYUNcTV1VwTu2XXD/t/0Lub3lXcuThJUrOQZhrdbrRahbZycXUAAABlSNw2E1DuXWIeV2tjZhBXqu2aes6dlD7tbcJtnwDp3tmmpcfWedK3T0npZy/0w35fanh7wY97eL30yd9ML/Hm90o9pxXPLGnLMm1Zfn5ROrHbbKt/q6m/fOXCHXvbfLMwpiR1eUG6aXThjucMRzdJP42VDq42j/0rSjf9Q2r7kOTl49raMtOlpS+ZliuSFNZU6jNTqlLftXW5yk8vmM/C08uMh+Z9XV0RAKCUI/h2AMH3ZbzXSkrYJw38b6lcnfzX47/qzZg3te3kNklSePlwjWg9QrfVvk2eHiXwFk0AAICyYP9KMyu2Zf/inw39Z2nJ0txoaf8KyeYj1eki/fajea5mJzNT+mo9wPOz50czicTKkjo+YWb8FqWjm8wM74uLb/pXlLo8L7V72HmzntdOlxb9w3x/5/9JbR5wznEddfqgtOQls5CqJNl8pfaPSjeMlPyDXVPT5fy2WFrwqJRyUvIuJ932utS8X8nvle5Mv7wnLR6bd9utr0ntH3NNPQAAt0Dw7QCC73xkpEqvRpiFhp7eI1UIc3VFBXY4+bDe2fiOFh9cLEkq51VODzd7WAMaD5CfVxm+xRAAAACXykwz/cZ3fm0ee3iamcOdR0uetms/7uY50sJHzffdJkqdhhe+1j8r7hB4yUvSqrfMZ9T3P8XbvzolwZx7/QdSVrrZ1vxe6S8vlOxFJJPjzL+v/SvNY08vswBqeFMprImZDR7eTAoIdW2dRSH3GOg6XkqOl9ZNM49vHGX+7kpK2xwAQKlC8O0Agu98xG2Tpt9gZos8s79U/EKSlJ6kf239l2bvmq0Me4Y8PTzVq14vDWs1TCH+Ia4uDwAAACWVPcu0CDmw2szOrnWDc46be7Zrz+lSy/ucc9zU09LKfxZ/CGxZ0n+fMAtJ2nylAV8577O6nMw08z5X/tP0Tpek2jeZhSurtijaczuLPUv65V3T7iP1dP77lA+9EIZfCMLDmppFV119V8S1yn3XQ4dhOXc9rHpLWjrRfN/mAemvbxfuAhMAoEwi+HYAwXc+tn4hffWwVKOD9OAiV1dzVSsOr9C4/41TwvkESVKHqh00qt0o1a9YRvvoAQAAoGT48XlpzRTJw2YWu6zf49qPlZkmrf+XtPJN14XAWZnSvIFS7HeSl58UGFG050s9I6Wa3/EV2tgsMlqva6mYmHMJy5ISj0jx26W47VL8NvNnwj5J+fxvuc3HfL6Otmms2sJcCKl3i2uC8zx97vuZiz65+9xvmCl9N9LcXdzob1LvD8tW+5f8pCVL8TvNv4n4HdLxXVL1dmZsAwAuQfDtAILvfCyZKK36p7kKf+f/ubqay0rPStc7G9/Rp7s+lSTVCaqjUW1H6YZqN8ijNP4yDAAAAPdit0sLH5O2zpW8/KVB/5Uir3f8GDu+Mq1Gzhw021wZAmekSp/2yVlYsqgFhEt/eV5qGe2es4PTzpqg82IQHr/dhJ/pZwt33HIhUrN7pBb3mjC8OP6dHN8t/buHuTBTr5u52JNf+L7za+nLh80dC7U7S/d+JvlWKPr6XM1ul07vN3+/F/+e47bljOs/G7BAqvuX4q0RAEoBgm8HEHznY260tPvbEr3wyKGkQxq9crR2ntopSbq/0f16qs1T8rG5eBV3AAAAILesDGluf+m3nyS/YDO5xJEQct8K6dgm833d2s4fAAAgAElEQVRJCYHtdumPX817K0oeNtMCxNu/aM9T0tjtJgw9G+/Y6zLPmzYj276Qzp3I2V6lkQnAm/ctuln6iUekj7pLSUelam3NRR6f8pfff98KMy7Sz0pVW0rR86WAKtd27oxUKfZ76dwpqc2gkjWDfO8yE/THbzezujPO5b9fhQjT9z28qXTqd2nXN6btzZCVeWfMO8uZQ2Z2fpNe7nlBCYBbI/h2AMF3Pia3Mf+xHbBQqtvF1dVc4rt93+mlNS8pJTNFQb5BernTy7o58mZXlwUAAADkL/2c9J+7pCMx1/Z6nwCp0wipw+NXDhMByVyQ2LtM2jJH2v2dlJV24QkPqc5NUov7pIZ3SL4BzjlfSoL071ulk7FSSH3pwR+lcpWu/rqjm6TZfaSUU1LletL9X0kVaxbsnHa7dGiNeY87v5bSksz2qi2kPjOlynWv/f04Q9w2afE4ae/SvNttvlJoowv93HMtcpr78zp3SnqvpXlPvT6QWvRzbm2ZadL7HaSEvVLH4bRUAVDqEHw7gOD7TzLTpFfCTc+1kbulwKqurihbSkaKJq2fpIW/L5QktQ5trdc7v67w8uEurgwAAAC4itQzUsyHJiR0hH9FM4s1ILRo6oJ7Sz1jguEtc6VD/8vZ7l1eavw3MxO81o3XPus390WdwGom9HZkkdWTv0uzekqJh6UKVU34Hdb48vuf2mvey9a5ZtbyRUE1pPRks4CoT4BZONPZgXFBJB6Rlr5sapQleXpLrQdINTuZGdyV6ko2r6sfZ9Xb0pIJUlCkNGyD5O3nvBpXvCkteznncd//SI3vct7xAaCIEXw7gOD7T+J3SNM6Sr5B0piDJWbhmNiEWI1eOVr7E/fL08NTjzR/REOaD5GXZwF+aQAAAACAsi5hv7R1npklfXp/zvbAahf6gd8nhTYs+PGyMqQ590m/LzZtfB5cZGYzOyrpmDTrbunELnOc/vOkGlE5z6ckSDsWmDD5yPqc7T4VpCY9Td01OkjJf0hf/V06+It5vkV/6fY3nTez/UpSz0ir35HWTsuZYd/kbumWsVKlOo4fLyPV3ImddFTq/rLU8Qnn1JmwX3q/vWmLE9leOrzWXCj4+1KpSgPnnAMAihjBtwMIvv9k23zpy4ekyCjpoZ9cXY0sy9K82Hl6I+YNpdvTFeofqtc6v6Z24e1cXRoAAAAAlD6WZWZob5kjbf9SOp+Y81zVliZIbtZHKh9y+WP8eeHWgV/nDasdlZIgfdbPBNte/lKff0uyTI17fjQLYUqm73u9W6Tm/aSGf720/7s9S1r5prTidXMXc+V6pvVJ1ebXXtuVZKZLGz6SVrwhpV64m6NmJ6nbRKl6m8Id+9dPpa+HSn5B0vDNBWsfcyWWZT7j3340i4rev8DMtj+wyrSo+fvSsrHIKIBSj+DbAQTff7L0FWnlG1LrgdLfJru0lMS0RE1YM0GLDy6WJHWu3lkvd3pZFf0qurQuAAAAAHALmWnSnkVmNvVvP0n2TLPd00uq1820Qql/66WtNn56QfrfZBNE3zdHqt+j8LWkn5PmDTIzyP8svJkJ5Jv2kSqEXf1YB36RvnxYSj4m2Xyk7q9I1//deXc0W5aZhb5kgnT6gNkW0kDqNsF8Xs44jz1Lmn6DdHynmfHd/eWrv+ZKdn9nFhT19JYe+59Upb509oQ0o7P5nBr9zbQ9KSF3fZcoW+eZGf2Z583fvSTJyvt9rj+yvwmMMHdTNLlbKl+5+OoF3BzBtwMIvv/k8wHSrv9KPV6VOgx1WRmbj2/WP1b+Q8fOHZOXp5eeav2UBjQeIA/+IwwAAAAAznfupJkBvmWOdOzXnO1+QSa4a3GfFHm9CbwXjzXP9ZwmtezvvBqyMqSFj0vb5kkBYVLzvlLze81CkI5KSTDH2vODedzgr9JdUwo/c/rAL+b9H91oHgeESTc/K7UaULD+3Y74bbFZANTmIz2xUQqucW3HST8nTY0yvdRvGCl1fTHnucMx0szbJHuGmaneabhzancXOxZKXzygXKm24zy9zcWh5v3Mn16+zqoOKJMIvh1A8P0nU9pJJ/eYRUXq3eKSEmbtnKW3NrylLCtLkRUi9WbnN9UkpIlLagEAAACAMuf4btPGZOs802f6oqAaUuKFRSW7vSR1etL557YsKWGfFFyz8EGyZUnrZpigOivd9DO/+19SrU4FP0Z6ipl1HbfNzI7fs8hs9y5v3n+HoUXXR9yypP/8Tdq/0lwAuHvGtR3n5/FmxnJQDWnoOsmnXN7nYz6Uvnta8vA0bWtqdy506Q45n2jWG4vbbhYord9DqtrC9bPP960wFx6y0s2FjVYDzPbsujwu81gmJz+y3lxI+mNLzjH9gqWmvc2FpOptXf8egVKI4NsBBN+5ZKZLr4RLVpb01E4pqFqxlzB391y9su4VSdJttW/TuPbjFOBTDIuRAAAAAADysmdJB1abVig7v5YyzpntHYaZ1hulJbT7Y4v0xWApYa8Jd28aI3UeJXnacvaxLLNAZtx2KX6bCbrjtkunflee2b4eNqnNA9LNY6SA0KKv/div0gc3S/KQHllhAmFHnIiVpnUyM7rvnSM1vP3SfSzLzI7f8plULkR6ZGXR5AF2u3TmwIXPeHvOZ33m0KX7VmloZkg37ysFVXd+LVfzxxZp5l+l9GTTBuaej/P+e3FE/M6cC0nJf+Rsr1TXBODN+0oVazqlbKAsIPh2AMF3Lsd3mRWefQOlMYeK/ZeYHw/8qNErRsuSpUdbPKrHWzxOaxMAAAAAKAnSz5k+0RmpZuarp6erK3JMWrL0/WgzA1eSat4gtYq+MNN4mwliU07l/9ryoabPeHgzqWW06Y9dnOY/JG2fL9XpIg1cWPDXWZb0yZ1mAcv6t0r9P7/8vhmp0kfdzGdRra00+PvCteSwLOmPzdLRTeYzjt9u/kw/m//+gdWksKaSl4+05ycpK+3CEx5S7RvNjPfGfyueBThP7ZX+3UM6d0KqdaMUPf/SPvfXwp5lZu9vmWtazGak5DxXs5Ppqd/k7qK7gwBwEwTfDiD4zmXHAtO7qno76eGfi/XU6/5Yp8d+fkwZ9gz1a9BPz0c9T+gNAAAAAHCuzXNMW4+Ls9dz87BJIdeZgDusaU7YXRwzu6/k9AFpclsza9uRtqRbv5C+eljy8jMtTirWuvL+CfvN7PLzZ6S2D0l3vH1t9R77VfpprAnc/8zmK4U2lMKamd7tYU2lsCZ5e6+nnjF3GGz9XDr4S852L3+p0R0mBK9zs/N7qktScrz07+7mMw9vJj3wveRXBFlR2llp1zfmQsz+lcq+q6B8FXM3QetBks3b+ecF3ADBtwMIvnNZNkla8ZrU6n7prqnFdtqdp3Zq8KLBSslMUbea3fRm5zdlu9ZbiAAAAAAAuJKTv5u+36lnTPh6MegObSR5+7u6uvwtek5aO9UExo+svPqM+/OJZg2vs/HSX16QOo8u2Hl+WyzNvkeS5fjipacPSksnStu+MI9tvlKtGy4E3BeC7srXORZYnz5oFjvdMvdC25kLyodKze4xs6TDmznnjvXziaa9Sfw2c5HgwZ+kCmGFP+7VJB4173HjJ9Lp/WZb5eukbhOkBreXnpZCQDEh+HYAwXcu8wZJOxeaXm0dnyiWUx5KOqQBPwxQwvkEXR9+vaZ1nSYfm0+xnBsAAAAAgFIhJUH6v5ZSWqLUa4YJfK/kh39I66ZLletJj/3PsbYly1+Tlk8yM8UfWixVbX7l/VNPS6veMguJZqWbbc37mcA9uEbBz3sllmXapmydK22bL6Um5DwX0UrqOkGqc9O1Hz/jvPRpb+ngahOqP/SjVKlO4et2RFaGtPFj89lfbLtTo6PUfaJZCLOkykwzrXMvtrSJu9C3vWKtXHdPNJVCGphWNtfCsswxc/eGP/mb+Vy6vyL5Bzv1LaFkI/h2AMF3LlPbSyd2SdFfStd1LfLTnUw9qQHfD9CRs0fUsFJDzewxk4UsAQAAAADIz+p3pJ/HS4HVpSc2Xr7v9B9bTMsSyy4NWCjV7eLYeex2aU4/6befpOCa0pDleVuRXJSZJsV8KK14w7RHkaTanaVuE6WIlo6d0xGZ6dLvP5sQPPaHnLD9uh5St5dMKxVH2LOkeQOl3d9KPhWkwd85voioM51Pkn55V1ozVco8b7Y16SXdMq74w/g/S46/sPhrrgVKT+6RrKyrv9bTW6rSICcIv9hOqHxI3v3SUy4E6bnOE79DSkvK/7jBNaTe/5Yi2xX+/aFUIPh2AMH3BVkZ0itVTc+wEdul4MgiPV1yerIGLxqs2NOxqh5QXbNun6UQ/5CrvxAAAAAAgLIoI1Wa3EZKOmoC3k5PXrqP3W56VB+JMQsl3jPz2s6VetqE56cPSPW6Sf3n5bRXsSxpx1fSzxOkMwfNttDGpqZ6XYu3Nce5kyZ43/CRZM+UPDzN4qtdnpMqhF/99ZYlffOktOkTyeYj3f+lCe9LgsSj0rJXpM2fSbJMcNzuYemmZ/K/EFEU4ndI27+8sEjpdrPgZ378gvPO7q5YS0rYlzcgT0vM/7UB4abPu28Fc76EveaizZ95ektVGuaE5hXCTWud0wckTy9zh0HHJ0vfwrtwGMG3Awi+LzgRK029XvIJkJ49UqT/oUrLStNjPz+mmLgYVfarrFm3zVJkYNEG7QAAAAAAlHqbP5MWPib5BUnDN18agG78RPpmuJm5PCxGCqx67ef6Y6v0UTcz6/imMVKXZ6UDv0g/vSAd22T2CQiX/vK81DJacuVaXaf2Sj+/aBaMlCTv8lKn4VKHYZLvFe4sX/qytPJNSR5S30+kxncVS7kOidsmLX5R2rvEPPYNkm4cKUU9evlZ/4Vx9rjp075ljjl3Hh6mfU7uGdthTaXAiCvnSJYlJR7OFYRvM38m7Mt///JVchY+vXiOkPqXtko5nyh9M8JciJGkOl2kuz9w/YK0KFIE3w4g+L5g59fm1p6I1tKQZUV2mix7lkatGKWfD/2s8t7lNbPHTDWq3KjIzgcAAAAAgNuwZ0nTb5SO7zChbo9Xcp47d0qa0sbM1u4xSerweOHPt3mOtPBR832tG6UDq8z3PgFmxnmHoZJP+cKfx1kOrTXB/JEY8zggTOryvNTq/kuD+XUzpB+eMd/f8Y7U9sHirdVRe5dKP40zLUAkKSjSvLf6PQo/AzwjVYr93iwi+vuSnNYlnt7m+PW6SuHNzQKwPuUKd67c0s5Kx3eaIDz9nBTW2CyE6siiopYl/TpL+v4ZKTPV9Gi/e4ZU9y/OqxMlCsG3Awi+L1j+urT8VXOVtuf7RXIKy7I0ce1EfbHnC3l7emt61+m6vur1RXIuAAAAAADc0m8/S7N7m9YcwzZIFWua7V8PMwFgWFNpyArJ5uWc8333tOnlLUkeNqnNA9LNY0rurFrLknYuNP3QTx8w26o0Mq1YrutmZiZv/1Ka/5AkS7r5Oenmf7iwYAfYs6Stn5uZ6klHc7ZXiMg1C7upCY8r173yLHy7XTq81szs3rEwbw/tam3NAqpNexdfW5XCOr5bmv+guSgkSZ1GmPYnNm/X1gWnI/h2AMH3BV8MNreGXK5PmBO8v/l9TdsyTR7y0D9v+qe61+peJOcBAAAAAMBtWZb0n7uk/SukZn2l3v+SDq83bUkk6cEfpRrtnXe+zHTp2xFmEcnOz0hV6jvv2EUpM02K+Uha8XquxTdvMu1MfviHWeOs3d+l298s3r7kzpCRKq19X9o0Szq9P/99vPzNDO2LQXj4hdYh506a8HzL3Jwe7ZIUVENq0U9qfq8UUq943oezZaRKPz5ver5LUvV2Uu8PTc9xd5OVYXrau7LFkIsQfDuA4PuC9zuaq2L955nbWJzs892f6+V1L0uSxrYfq74N+jr9HAAAAAAAlAnHfjWLT0rS35dK/33StMBodb9011SXllbipJ6WVr1lWptkpedsb9xT6vPv0h8cnk/KaRdycSHJ4zuljJSrv9angtTkLqnFfVKNju6zMOTOr6WvnzALavoGSX/7P6lJL1dXde1SEvL+/cZvM2v1PfyzVLWFq6srdgTfDiD4lpSVKb1a1fwH4MmtObdJOcmPB37U6BWjZcnSYy0e0+MtndBnDAAAAACAsuzLh80ihP4VTbjrFyw9sVEqH+Lqykqm0welJS9J2+dLdW+R7psjefm6uqqiYc+SEvabgDR7QcntUtIRM0u47i2mlUmD253bs7skOX3QjJEj683jNoOlWydJ3v6uretK7FnSqd9zQu74HebvLflY/vv3nCa17F+8NZYABN8OIPiWdPI3aUpbybuc9OxRp17hW354uUYuH6kMe4b61u+rF9q/II/SdgsRAAAAAAAlzekD0pR2ObOY73hXajvYpSWVCudOmYsF7jK72RGpp82f/hVdW0dxycqQlr0qrX5HkiWFNJBqdnDsGN7lc1rGVGkkefs5p7bUMybYjt+eE3Qf3yVlns9//4q1LvRwb5bTyz24Zulr0+MEBc1ynbTKAUq9E7vNnyH1nfaDP8OeocmbJmvmjpmSpG41u+m5qOcIvQEAAAAAcIaKtaTrh0hrpkjV2kitB7m6otKhfGVXV+A6ZSXwvsjmLXV9UardWfpqiHQy1nxdKw+bFHJd3kVEw5tKAWGXD6DtdtOHPbtNyYU/Ew/lv793OSm0ca7FSpuZx35ldLJuIRB8w7gYfIc2csrhjp49qmdWPqOtJ7ZKkvo37K+n2z4tW2nvmwUAAAAAQElyyzipcj3TsqIszmAGCqJuF+mx/0nb5knpBeh9nltqrv7aqadNhnZit2mZc1G5kLxBdfq5vP3W08/mf+ygSLPgaO4gvVLt0t93voQg+IZx/ELwXaVBoQ+15OASjf3fWCWnJ6uCTwW91PElda3ZtdDHBQAAAAAAf+LlS3sToCACqkgdhl776y1LSjqWtzVJ/A7TkzvlpLRvufnKj803p13KxVniYU3K3gz8YkbwDePEhds8qjS85kOkZ6XrrQ1v6bPdn0mSmoc01xs3vaFqAdWcUSEAAAAAAADgGh4eUlA181W/R8729BTpxK6cNibxO00f8Nz9uCvXk2zEsMWNTxxmxdiTe8z31xh8H0o6pFErRmlXwi5J0uAmg/VE6yfk7entrCoBAAAAAACAksWnnOmxX62NqyvBnxB8w6wCnZUmeflLwTUcfvkP+3/QhDUTdC7jnIJ9g/XKDa+oc/XOzq8TAAAAAAAAAAqA4Bs5C1uGXOdQ8/zzmef1eszrmr/HNPNvHdpar3d+XeHlw4uiSgAAAAAAAAAoEIJv5ATfoY0K/JJ9Z/bp6RVP6/czv8tDHhrSfIgebfGovDz5JwUAAAAAAADAtUgpkWthywZX3dWyLH2992u9uu5VpWamqrJfZb3W+TW1r9q+iIsEAAAAAAAAgIIh+IZ03CxIebWFLbec2KK3N7ytTcc3SZLaV22vSTdOUoh/SFFXCAAAAAAAAAAFRvBd1tmzpJN7zPeXCb4PJx3Wu5ve1U8Hf5Ik+dn89EiLR/Rg0wfl6eFZXJUCAAAAAAAAQIEQfJd1Zw5Jmeclm69UsVbep86f0YytMzQ3dq4y7ZnykId61uupx1s+zgKWAAAAAAAAAEosgu+y7uLCliH1JU+bJCktK02zd83Wh1s/VHJGsiSpU7VOGtlmpOpXrO+qSgEAAAAAAACgQNymT8XUqVNVq1Yt+fn5KSoqSuvXr3d1SaXDxeC7SgPZLbu+2fuN7lxwp97Z+I6SM5LVsFJDfdDtA03vOp3QGwAAAAAAAECp4BYzvj///HONHDlS06dPV1RUlN5991316NFDsbGxCg0NdXV5JduJWEnS2gpBevvbe7UrwSx0GVYuTMNbD9cdde6gjzcAAAAAAACAUsXDsizL1UUUVlRUlNq1a6cpU6ZIkux2uyIjI/XEE09ozJgxV319UlKSgoKClJiYqMDAwKIut0T57YNOejsrXqvL+UuSArwD9FCzh3R/o/vl5+Xn4uoAAAAAAAAAIEdBs9xSP+M7PT1dGzdu1LPPPpu9zdPTU127dtWaNWvyfU1aWprS0tKyHyclJRV5nSXRgTP71McnUXYPf3l52NSv4b0a0nyIKvlVcnVpAAAAAAAAAHDNSn3wffLkSWVlZSksLCzP9rCwMO3evTvf10yaNEkTJkwojvJKtFp+IbrRFiif9BSN6P2VagTXcXVJAAAAAAAAAFBopT74vhbPPvusRo4cmf04KSlJkZGRLqzIRfwC9U7/FfK2ebu6EgAAAAAAAABwmlIffIeEhMhmsyk+Pj7P9vj4eIWHh+f7Gl9fX/n6+hZHeSUeoTcAAAAAAAAAd+Pp6gIKy8fHR23atNGSJUuyt9ntdi1ZskQdOnRwYWUAAAAAAAAAAFco9TO+JWnkyJEaNGiQ2rZtq+uvv17vvvuuzp07p8GDB7u6NAAAAAAAAABAMXOL4Ltfv346ceKExo0bp7i4OLVs2VKLFi26ZMFLAAAAAAAAAID787Asy3J1Ea6WlJSkoKAgJSYmKjAw0NXlAAAAAAAAAADyUdAst9T3+AYAAAAAAAAAIDeCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FS9XF1ASWJYlSUpKSnJxJQAAAAAAAACAy7mY4V7MdC+H4FtScnKyJCkyMtLFlQAAAAAAAAAAriY5OVlBQUGXfd7Dulo0XgbY7XYdO3ZMFSpUkIeHh6vLKVZJSUmKjIzU4cOHFRgY6OpyABQDxj1QtjDmgbKHcQ+UPYx7oGwp62PesiwlJycrIiJCnp6X7+TNjG9Jnp6eql69uqvLcKnAwMAyOVCAsoxxD5QtjHmg7GHcA2UP4x4oW8rymL/STO+LWNwSAAAAAAAAAOBWCL4BAAAAAAAAAG7FNn78+PGuLgKuZbPZdPPNN8vLi843QFnBuAfKFsY8UPYw7oGyh3EPlC2M+atjcUsAAAAAAAAAgFuh1QkAAAAAAAAAwK0QfAMAAAAAAAAA3ArBNwAAAAAAAADArRB8AwAAAAAAAADcCsF3GTd16lTVqlVLfn5+ioqK0vr1611dEgAnmDRpktq1a6cKFSooNDRUPXv2VGxsbJ59zp8/r6FDh6py5coKCAhQ7969FR8f76KKATjTa6+9Jg8PD40YMSJ7G2MecD9Hjx7V/fffr8qVK8vf31/NmjXThg0bsp+3LEvjxo1T1apV5e/vr65du+q3335zYcUACiMrK0tjx45V7dq15e/vr7p162rixImyLCt7H8Y9ULqtXLlSd955pyIiIuTh4aGFCxfmeb4gYzwhIUHR0dEKDAxUcHCwHnroIZ09e7Y430aJQfBdhn3++ecaOXKkXnzxRW3atEktWrRQjx49dPz4cVeXBqCQVqxYoaFDh2rt2rVavHixMjIy1L17d507dy57n6eeekrffPONvvjiC61YsULHjh3T3Xff7cKqAThDTEyMZsyYoebNm+fZzpgH3Mvp06fVqVMneXt764cfftDOnTv11ltvqWLFitn7vPHGG3rvvfc0ffp0rVu3TuXLl1ePHj10/vx5F1YO4Fq9/vrrmjZtmqZMmaJdu3bp9ddf1xtvvKHJkydn78O4B0q3c+fOqUWLFpo6dWq+zxdkjEdHR2vHjh1avHixvv32W61cuVJDhgwprrdQonhYuS8NokyJiopSu3btNGXKFEmS3W5XZGSknnjiCY0ZM8bF1QFwphMnTig0NFQrVqxQ586dlZiYqCpVquizzz5Tnz59JEm7d+9Wo0aNtGbNGrVv397FFQO4FmfPnlXr1q31/vvv6+WXX1bLli317rvvMuYBNzRmzBj98ssvWrVqVb7PW5aliIgIPf300xo1apQkKTExUWFhYfr444917733Fme5AJzgjjvuUFhYmD766KPsbb1795a/v78+/fRTxj3gZjw8PLRgwQL17NlTUsH+275r1y41btxYMTExatu2rSRp0aJFuv3223XkyBFFRES47P24AjO+y6j09HRt3LhRXbt2zd7m6emprl27as2aNS6sDEBRSExMlCRVqlRJkrRx40ZlZGTk+RnQsGFD1ahRg58BQCk2dOhQ/fWvf80ztiXGPOCO/vvf/6pt27a65557FBoaqlatWulf//pX9vP79+9XXFxcnnEfFBSkqKgoxj1QSnXs2FFLlizRnj17JElbtmzR6tWrddttt0li3APuriBjfM2aNQoODs4OvSWpa9eu8vT01Lp164q9ZlfzcnUBcI2TJ08qKytLYWFhebaHhYVp9+7dLqoKQFGw2+0aMWKEOnXqpKZNm0qS4uLi5OPjo+Dg4Dz7hoWFKS4uzhVlAiikuXPnatOmTYqJibnkOcY84H727dunadOmaeTIkXruuecUExOj4cOHy8fHR4MGDcoe2/n9vs+4B0qnMWPGKCkpSQ0bNpTNZlNWVpZeeeUVRUdHSxLjHnBzBRnjcXFxCg0NzfO8l5eXKlWqVCZ/DhB8A4CbGzp0qLZv367Vq1e7uhQAReTw4cN68skntXjxYvn5+bm6HADFwG63q23btnr11VclSa1atdL27ds1ffp0DRo0yMXVASgK8+bN0+zZs/XZZ5+pSZMm2rx5s0aMGKGIiAjGPQDkg36AqTgAAAjDSURBVFYnZVRISIhsNpvi4+PzbI+Pj1d4eLiLqgLgbMOGDdO3336rZcuWqXr16tnbw8PDlZ6erjNnzuTZn58BQOm0ceNGHT9+XK1bt5aXl5e8vLy0YsUKvffee/Ly8lJYWBhjHnAzVatWVePGjfNsa9SokQ4dOiRJ2WOb3/cB9zF69GiNGTNG9957r5o1a6YBAwboqaee0qRJkyQx7gF3V5AxHh4eruPHj+d5PjMzUwkJCWXy5wDBdxnl4+OjNm3aaMmSJdnb7Ha7lixZog4dOriwMgDOYFmWhg0bpgULFmjp0qWqXbt2nufbtGkjb2/vPD8DYmNjdejQIX4GAKXQLbfcom3btmnz5s3ZX23btlV0dHT294x5wL106tRJsbGxebbt2bNHNWvWlCTVrl1b4eHhecZ9UlKS1q1bx7gHSqmUlBR5euaNcWw2m+x2uyTGPeDuCjLGO3TooDNnzmjjxo3Z+yxdulR2u11RUVHFXrOr2caPHz/e1UXANQIDAzV27FhFRkbK19dXY8eO1ebNm/XRRx8pICDA1eUBKIShQ4dq9uzZmj9/viIiInT27FmdPXtWNptN3t7e8vPz07FjxzRlyhS1bNlSCQkJeuSRRxQZGakXX3zR1eUDcJCvr69CQ0PzfH322WeqU6eOBg4cyJgH3FCNGjU0YcIEeXl5qWrVqlq0aJHGjx+viRMnqnnz5vLw8FBWVpZeffVVNW7cWOnp6Ro+fLhSUlI0efJkeXnR9RIobXbt2qVPPvlEDRo0kI+Pj5YtW6bnnntO/fv3V7du3Rj3gBs4e/asdu7cqbi4OM2YMUNRUVHy9/dXenq6goODrzrGq1SponXr1mnOnDlq1aqVDhw4oEceeUTdu3fXAw884Oq3V/wslGmTJ0+2atSoYfn4+FjXX3+9tXbtWleXBMAJJOX7NXPmzOx9UlNTrccff9yqWLGiVa5cOatXr17WH3/84bqiATjVTTfdZD355JPZjxnzgPv55ptvrKZNm1q+vr5Ww4YNrQ8++CDP83a73Ro7dqwVFhZm+fr6WrfccosVGxvromoBFFZSUpL15JNPWjVq1LD8/PysOnXqWM8//7yVlpaWvQ/jHijdli1blu//yw8aNMiyrIKN8VOnTln33XefFRAQYAUGBlqDBw+2kpOTXfBuXM/DsizLRZk7AAAAAAAAAABOR49vAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAACgBFm+fLk8PDx05swZl5x/yZIlatSokbKysq6676JFi9SyZUvZ7fZiqAwAAAAoOIJvAAAAoJh4eHhc8Wv8+PHq2LGj/vjjDwUFBbmkxmeeeUYvvPCCbDbbVfe99dZb5e3trdmzZxdDZQAAAEDBeViWZbm6CAAAAKAsiIuLy/7+888/17hx4xQbG5u9LSAgQAEBAa4oTZK0evVq3XHHHYqLi5Ofn1+BXjN16lR9/PHHiomJKeLqAAAAgIJjxjcAAABQTMLDw7O/goKC5OHhkWdbQEDAJa1OPv74YwUHB+vbb79VgwYNVK5cOfXp00cpKSn65JNPVKtWLVWsWFHDhw/P054kLS1No0aNUrVq1VS+fHlFRUVp+fLlV6xv7ty56tatW57Qe8uWLerSpYsqVKigwMBAtWnTRhs2bMh+/s4779SGDRu0d+9e535YAAAAQCF4uboAAAAAAFeWkpKi9957T3PnzlVycrLuvvtu9erVS8HBwfr++++1b98+9e7dW506dVK/fv0kScOGDdPOnTs1d+5cRUREaMGCBbr11lu1bds2XXfddfmeZ9WqVerfv3+ebdHR0WrVqpWmTZsmm82mzZs3y9vbO/v5GjVqKCwsTKtWrVLdunWL7kMAAAAAHEDwDQAAAJRwGRkZmjZtWnaw3KdPH82aNUvx8fEKCAhQ48aN1aVLFy1btkz9+vXToUOHNHPmTB06dEgRERGSpFGjRmnRokWaOXOmXn311XzPc/Dgwez9Lzp06JBGjx6thg0bSlK+oXlERIQOHjzozLcMAAAAFArBNwAAAFDClStXLs9s6rCwMNWqVStPP/CwsDAdP35ckrRt2zZlZWWpfv36eY6TlpamypUrX/Y8qampl/T2HjlypB5++GHNmjVLXbt21T333HPJzG5/f3+lpKRc8/sDAAAAnI3gGwAAACjhcrcWkSQPD498t9ntdknS2bNnZbPZtHHjRtlstjz7XWnxzJCQEJ0+fTrPtvHjx6t///767rvv9MMPP+jFF1/U3Llz1atXr+x9EhISVKVKlWt6bwAAAEBRIPgGAAAA3EyrVq2UlZWl48eP68Ybb3TodTt37rxke/369VW/fn099dRTuu+++zRz5szs4Pv8+fPau3evWrVq5bT6AQAAgMLydHUBAAAAAJyrfv36io6O1sCBA/XVV19p//79Wr9+vSZNmqTvvvvusq/r0aOHVq9enf04NTVVw4YN0/Lly3Xw4EH98ssviomJUaNGjbL3Wbt2rXx9fdWhQ4cifU8AAACAIwi+AQAAADc0c+ZMDRw4UE8//bQaNGignj17KiYmRjVq1Ljsa6Kjo7Vjxw7FxsZKkmw2m06dOqWBAweqfv366tu3r2677TZNmDAh+zVz5sxRdHS0ypUrV+TvCQAAACgoD8uyLFcXAQAAAKBkGD16tJKSkjRjxoyr7nvy5Ek1aNBAGzZsUO3atYuhOgAAAKBgmPENAAAAINvzzz+vmjVrZi+UeSUHDhzQ+++/T+gNAACAEocZ3wAAAAAAAAAAt8KMbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBbIfgGAAAAAAAAALgVgm8AAAAAAAAAgFsh+AYAAAAAAAAAuBWCbwAAAAAAAACAWyH4BgAAAAAAAAC4FYJvAAAAAAAAAIBb+X/ckYs2lkGs4AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1gU59oG8HuB3aX3JlIEQQRUjFiCsYCKXcHekoCaWBJLjiWWRGOLDRtqYjkqeqKxHTuWKCpib7FGjRppFqw0Qfp8f3B2PlZ2KYqs4v27rr3Czsz7zjMzO+OVZ999XokgCAKIiIiIiIiIiIiIiCoJLU0HQERERERERERERERUnpj4JiIiIiIiIiIiIqJKhYlvIiIiIiIiIiIiIqpUmPgmIiIiIiIiIiIiokqFiW8iIiIiIiIiIiIiqlSY+CYiIiIiIiIiIiKiSoWJbyIiIiIiIiIiIiKqVJj4JiIiIiIiIiIiIqJKhYlvIiIiIiIiIiIiIqpUmPgmIiKiUpNIJJBIJIiKiiqX/tauXQuJRIJq1aqVS38VKSQkBBKJBCEhIWVaR/Qxio2NFZ8fsbGxmg6HACxatAgSiQR169Z9p/tJTk4Wr/3ly5crvP278r7GRURERP+PiW8iIqJKaMqUKeL/kEskEmzatKnENh06dFBqw+TUh61atWritTQzM0NmZmax2ycmJkJHR0ds4+fnVzGBllJycjKmTJmCKVOmIDk5WdPhaJTiixVVL0NDQ3h5eWHo0KG4fv26pkN9J/z8/NQef0mv9+XLqLp160IikSAoKKjEbRUJaolE8tF/9tW5e/cuRo8ejXr16sHU1BQymQxVqlRB3bp10atXLyxduhQ3btzQdJhERERUwXQ0HQARERG9e+Hh4ejdu7fa9Q8fPsQff/xRYj/u7u4AAH19/XKLrTKqUqUK3N3dUaVKFU2HAqAgabxjxw706dNH7Tbr1q1DXl5eBUZVNsnJyZg6dSqAgsSvqamphiPSPC0tLVhZWYnv8/Ly8Pz5c9y4cQM3btzAv//9b6xYsQIDBw7UYJQFpFKp+PyQSqVv1Ze5uTlsbGyKLM/OzkZSUhIAwMzMDDKZrMg2JiYmb7VvKjttbW3x2uvq6pZ7/8uXL8fIkSORnZ0tLjMxMUFaWhoSExNx5coVbNmyBd7e3hyZTURE9JFh4puIiKgSs7S0xKtXrxAZGYmEhAQ4ODio3O4///kP8vLyUK1atWJHet+6desdRVq5zJo1C7NmzdJ0GAAgXtPw8PBiE99r165V2p7efw4ODkWuVU5ODg4fPoxvv/0W9+7dwzfffIOWLVtqvJxQ1apVy+35sX37dpXLo6Ki4O/vL27zvv1q4WNlZGT0zv7tOHLkCIYOHQoAaNiwISZNmoQWLVqIX84mJibi5MmT2L59O/755593EgMRERG9v1jqhIiIqBIzMDBA9+7dkZ+fj3Xr1qndLjw8HADemzIAVH66desGAwMDHD58GPHx8Sq3OXXqFG7dugVnZ2c0a9asgiOk8iSVStG2bVvxfs/Ozsb+/fs1HBXRuzF//nwAgLOzM6KiotCxY0elXyTZ2tqiW7du2LBhA44ePaqpMImIiEhDmPgmIiKq5Pr37w+gYESvIAhF1p84cQK3b9+Gi4tLiUnP0kxuefDgQfTu3RtOTk7Q09ODubk56tSpg+HDh+P06dPF9n/x4kX07NkTVapUgVwuh4uLC0aNGiWWL3hdTk4ODh06hBEjRqB+/fqoUqUKZDIZrK2t0aZNG2zcuFHlMb9u586dCAoKgp2dHWQyGczMzNCsWTMsX74cOTk5JbZ/XUmTW27ZsgXt2rWDjY0NpFIpTE1N4ebmhs6dO+OXX34psR53WRgaGqJHjx7FfvmxZs0apbhLkpmZicWLF6N58+awtLSETCaDra0tgoKCcODAAbXtCn9+0tLS8OOPP6JmzZrQ09ODhYUFOnbsiLNnzxZp5+fnB2dnZ/G9s7OzUt1mVSN78/LysHbtWrRp0wY2NjaQyWSwsrJCmzZtsGnTJrWfC0Vt9LVr1yI7OxuhoaHw9vaGgYEBTExM0KJFi2KP8X1ReMLCly9fFln/6tUr7N69G19//TXq1q0LKysryOVy2NnZISgoqMRk+a1btzBo0CDUqFED+vr60NPTg4ODAz799FNMnDixyAjf0kxumZ+fjy1btiAoKAhVq1aFXC6HlZUVfHx8MH78+HKvWX7t2jXMnDkT/v7+cHZ2hq6uLkxMTFC/fn1Mnz5dbT3t0k5qqKjjvWjRonKNW2H27NmQSCRwcHAotkxRdnY2LC0tS4xlz549aNWqFSwtLaGvrw9vb2/MmzdP7TPwu+++U6pTvmHDBvj7+8PS0hJaWlrivkpzvp4+fYoRI0agWrVq0NXVRdWqVdGvXz/89ddfxZ4DRX8BAQHQ09Mrdtvi1ickJGDkyJGoWbMm9PX1YWRkBG9vb/z444948eJFsf2+bvLkyZBIJKhevXqx2+Xk5IjXZenSpSrXr1ixAi1btoSVlRVkMhlsbGzQoUMH7Ny5U22/pqamkEgk2LlzJ5KSkjB+/Hh4eHjAwMCAdeKJiOjjIxAREVGl89NPPwkABCcnJyE/P1+oXr26AEA4duxYkW0HDBggABCmTZsmHD16VAAgABBiYmKKbKtYd/To0SLr0tPThR49eojbABCMjIwEuVwuvvf29lZqEx4eLsa5YcMGQSqVCgAEExMTQUtLS2zn5eUlpKWlFdln4XgBCHK5XDA0NFRa1qNHDyEvL0/leUpLSxM6duyotL2xsbEgkUjE976+vsKLFy+KtA0ODhYACMHBwWVapzjfipehoaGgr6+vtEzVuS8rJycnAYDw008/CceOHRMACC4uLkJ+fr7Sdunp6YKRkZEgkUiE2NhYMfbmzZur7Pf27duCm5ubGKtEIhFMTEyU4h86dKjKtor1v//+u+Dq6ioAEHR1dZWOXyqVCgcOHFBq16VLF8HS0lLcxtLSUrCxsRFfXbp0Udo+MTFRaNSokVJMr8fYuXNnISsrS+15W7JkidiHVCpV+lxJJBJh9erVZbga5UtxjZycnNRuc+LECTHeXbt2FVmvuPcULz09vSKfw9GjR6vs++DBg0r3tVQqFUxNTZXa/vTTT0ptYmJiiv18P336VGjWrFmRa6Z4JgAQAgMDiz0vhZ8Hqp5Rryv8mdDS0ipyDC4uLkJsbGyRdklJSeI2ly5dUtu/t7e3AEBYuHCh2nUlHZMgCMLChQvF/SUlJYnLHz9+LMhkMgGAsGfPHrXtN27cKN5rz58/L9Kvt7e38PPPP4ufbVNTU0FbW1vcZ5MmTVQ+f0eOHCkeg+K5JpFIBDMzM0FbW1s87pLO182bNwVbW1txG11dXcHIyEj8XG7btk1tezs7OwGA0L59+xLPozp79+4VDAwMlJ7Jenp64nsbGxvh4sWLRdqpO647d+6Iy0+cOKF2vzt37hTvn6dPnyqti4uLE2rXrl3sc7Zfv35Cbm5ukX4V2y1dulRwdHQU/200NjYu8hkiIiKq7Djim4iIqJIrPPJYMbJXIT09HVu2bIGWltZblznp378/tm7dCi0tLYwbNw4JCQlITU3Fq1evcP/+fWzYsAG+vr4q2z59+hQDBgxAcHAw4uPjkZycjLS0NCxduhRSqRR//fUX5s6dW6Sdnp4e+vbti7179yIxMRGvXr1CWloanj9/jrCwMBgbG2Pr1q0qR9MBwBdffIGIiAi4urri999/R2pqKlJSUpCRkYFdu3bBxcUFp0+fxoABA97q3CicOHECa9asgZaWFubMmYPnz58jLS0N6enpePbsGf744w8EBwernJTvbTRr1gyurq64d+8ejh07prRu69atSEtLQ8uWLeHk5FRsP8nJyWjdujXu3LmDFi1aIDo6Gq9evUJycjKSk5OxYMECGBoaYtmyZQgLC1Pbz7fffguZTIYjR44gPT0dL1++xLlz5+Du7o6cnBwMHjwY+fn54vbbt2/H+fPnxffnz59HYmKi+Cpc8zk7OxudOnXC2bNnUa9ePezduxfp6elITk7Gy5cvsW7dOlhbW2P37t0YN26c2hgnT56M+/fvY+fOnUhPT0daWhpu3bqFTz/9FIIgYOTIkUhJSSn2fGlCTk4ODh48KN7Pnp6eaN++fZHtTE1NMWjQIBw9ehTPnj1DRkYG0tPT8fDhQ0ydOhVSqRTz58/H7t27i7T95ptvkJWVhdatW+PatWvipJKvXr3CtWvXMGXKlBI/S4Xl5uYiKCgI0dHRkMvlmDNnDp48eYLk5GS8evUKMTExWLFiBTw9Pd/4vKjSrFkzrFixAjExMcjMzBSPYd++ffD29sa9e/fEX8y8j6ytrdG1a1cAwL///W+12ynWde/eHebm5kXW37t3D5MmTUJISAgePHiApKQkpKSkYMGCBdDW1saJEycwYsQItf0fPnwYa9euxbRp0/D8+XO8ePECaWlp6N69e4nHkJWVhS5duiAxMRE2NjbYvXs30tPTkZqaij///BNeXl7FTs7asGFDAMD+/fuxcuXKMk/Qe/v2bfTo0QPp6emoV68ezp8/Lz6TDx06BCcnJzx+/BidOnXC8+fPS9Wnq6ur+G/db7/9pnY7xbp27drB0tJSXJ6RkYF27drh2rVraNy4MQ4dOoSMjAwkJycjNTUVy5cvh5mZGTZs2IAZM2ao7X/8+PGQSCTYt28f0tPTkZKSgnv37sHAwKBUx0FERFQpaDrzTkREROWv8IhvQRCE+Ph4QUtLSzAwMFAaubdmzRoBgBAQECAIgvDGI74jIyPFdb/++mup4yw86lTV6GhBEIRRo0YJAARXV9dS96uwdetWAYBQvXr1IusiIiIEAIKtra1w//59le0TEhLEkYCvjzR8kxHfc+bMEQAIrVu3LvOxlFXhEd+CIAgzZswQAAhffvml0naKUbYbNmxQil3ViO8xY8YIAIQWLVoIOTk5Kve7fft2cVT269sorrWVlZXw+PHjIm2vXr2qdqRkSSOGFZYuXSoABb8SSE1NVbnNhQsXBIlEIshksiJxKM6bXC4Xbt68WaTtkydPBF1dXQGAsH79erVxvEuKa6SlpaU08t3S0lL8tYKVlZUwePBgpRG+ZREaGioAEFq2bKm0/PHjx+J1ePjwYan7K+76rVq1ShzVunfv3jeKVxDKPuK7OM+ePRNHyF67dk1pXXmO+JbL5UrXUNVLMfoZKkbrRkVFCQAEbW1tlc+xO3fuiJ+J6OhopXWFR5J36tRJ5THMmzdPvDZ///230jrFiG+g4BdD6hR3vlasWCF+ls+dO6eybZUqVdS2v3jxong/Kp473bp1E2bNmiUcPHhQ7TNAoXfv3gIAwc7OTuVI6L///lvs/4cffij1cS1btkwAIJiZmQmZmZkqj0vxq4n//ve/SusUz+qGDRsKr169Uhn3kSNHxNHpr4/GV4z41tXVFW7fvl3s8RMREVV2HPFNRET0EXBwcECrVq3EEd4Kikkt33ZEs2IkuZeXF4YOHfpGffz4448qlwcGBgIA7t69i4yMjDL12aFDBwDAP//8g0ePHimtW7VqFYCCUd9Vq1ZV2d7e3h7+/v4AgD/++KNM+1bF1NQUQMEI97KOTHxbwcHB0NLSwn//+1+kpaUBKDgvx48fh4mJiThyVB1BEMTrPHr0aOjo6KjcLigoCMbGxnj27BkuXryocptBgwbB2tq6yPLatWuLtbyvXr1a6mMrTHFdv/nmGxgZGancxsfHB15eXsjOzlY74V337t1Rs2bNIsutrKzE0ZxvGmN5yc/Px+PHj8XXs2fPxNrlaWlpSElJwdOnT9+ob8W9c/r0aaXPqpGREbS0Cv4X4vV76k0pPlft27dXOTpdEywsLPDpp58CKPilxruSlZWldA1VvRT3qyrNmzeHp6cn8vLyivyiByi4HwRBgIeHB5o2baq2n8mTJ6tcPnz4cJiZmUEQBGzevFnlNrq6uvjuu+9KOFLVNm3aBKBg1HODBg2KrDc1NS2273r16uHw4cOoU6cOAODZs2fYtm0bJkyYgNatW8PMzAwBAQEqn9/Z2dlireyRI0eKz+fCatSogS+//BIAsHHjxlIfV69evSCTyZCUlISIiIgi67ds2YKsrCyYmZmhY8eOSusUz7CRI0dCV1dXZf/+/v6wt7fHy5cvcfLkSZXbdOvWDW5ubqWOmYiIqDJi4puIiOgjofjJviI5cvfuXRw/fhympqbi5GRv6tSpUwCATp06vVF7c3NzuLq6qlxnZ2cn/q1qksu0tDSEhoaiefPmsLa2hkwmEydS09fXF7d78OCBUjtFMmvlypWwtbVV+4qMjAQAxMXFvdGxFdaqVSvo6uri0qVLaNq0KVavXo2YmJi37rc07O3tERAQgIyMDDGBFR4eDkEQ0KdPH7UJFoUbN26Ik7yFhISoPV9VqlQRJ1NUd84aNWqkdj+K613WCeWAgs+CIhk9adKkYq/r33//rZEYy5OTkxMEQVB6vXz5EqdOnRIn8fz000/VTir7+PFj/PTTT/D19YWFhQV0dHTEe0dRViQjI0PpvtPT00PLli0BAG3btsXkyZNx9uxZZGdnv9Ex5ObmimVs3vT58Ta2bduGrl27olq1atDX11eaNPXgwYMAgPv377+z/QcGBha5hq+/Fi5cWGwfgwcPBgCsXr1aqURQTk4O1q5dC6DgyyZ1jI2N4ePjo3KdTCbDZ599BgC4cOGCym3q1Kmj9kumkij6bNGihdptilsHAI0bN8bly5dx8uRJTJo0CQEBAbCysgJQMMltZGQk2rZti5EjRyq1u379ujiRcKtWrdT2HxAQAKCgJIy6iZZfVzihrarciWJZz549IZfLxeUPHz4UJ38dMWJEsc+wxMREAOqfYYrrRkRE9DFTPVSHiIiIKp0uXbrAzMwMJ0+exO3bt7Fu3ToAQN++fUtMepZE8T/gZanrW1hxSZPCI4tzcnKU1t2+fRstW7ZUSkzp6+vD1NRUHJX6+PFjAAX1zAv38+zZMwBASkpKqWo1l3W0uSouLi5YtWoVhgwZgtOnT4sJSSsrK/j7+6Nv377o3LkzJBLJW+9LlQEDBuCPP/5AeHg4BgwYgP/85z/i8pI8fPhQ/Lu0o4jVnbPSXO/Xr3VpJCYmiom/0ialKzJGW1tblct79epVbE30sjAwMICvry+2bdsGX19fnD9/Hl988QVu374t3hNAwUju9u3bIzk5WVxmaGgoJn/z8vLEeyQ9PV2pBvGqVavQuXNnXLlyBdOnT8f06dMhk8nQoEEDBAYGYuDAgSprSavy/Plz8Ty+6fPjTWRnZ6N79+7Ys2ePuEwqlcLc3BxSqRRAQU37rKwspWfH++jLL7/EhAkTEBcXh4MHD6Jt27YAgN27d+Px48fQ1dUVRy2rYmdnV+wzR/GLmCdPnqhcr+rXG6WRlZUljmZX96sboOBLu5JIJBI0btwYjRs3FpfdvXsXW7Zswdy5c5GSkoLFixejQYMG+PzzzwEoH09p9//kyROYmZmVGA9QcF22b9+Offv24fnz57CwsAAAxMTEiKO0X78uhb+gLW1NcXXPsDe9LkRERJUJR3wTERF9JORyOfr06QOgYGSgIulZHpO3KZIm7yphq07//v1x//59VKtWDVu3bsXz58+Rnp6OJ0+eIDExUSmJoCgBAUCpdMOmTZtKHHEpCII4cvJt9evXD3FxcVi+fDl69eoFBwcHPH36FFu2bEFQUBCaN2+O1NTUctnX6wIDA2Fubo5Tp05h6dKlSEhIgJeXl8oSA68rfM4SExNLdc7edsLUsioc45kzZ0oV45QpUyosPnWlLN7FJJna2trivf3PP//g3Llz4rrc3Fz06dMHycnJqFu3Lvbt24fU1FSkpaXh8ePHSExMxJkzZ8TtC987AODo6Ig///wTBw4cwIgRI+Dj44P8/HycPHkS33//PVxdXXHkyJEyx1yRz4+wsDDs2bMHMpkMs2bNwr1795CVlYXnz5+Lk6YqRvq+fvzvG1NTU/Tu3RtAwS9YFEqa1FLhbc+7trb2G7UrfF7fxbV3dXXFxIkTcejQIfHLKkUZkdeVdv9libN9+/awtLRETk6OWNIFANavXw9BEFC9enWlRD2g/Ay7detWqZ5h6krBvOl1ISIiqkyY+CYiIvqIKBJhixYtwv3791GrVi3Ur1//rftVjGRV/ES7IiQkJIglVjZu3KgyuaMYif46XV1dmJiYAACuXbv2bgNVwdzcHIMHD8amTZsQHx+Pu3fvYvz48ZBIJDh+/Pg7S8YW/vJj7NixAEr/xUfh0cqaOGelYWNjI/79Psb4rr9UeV3hEdSFS+qcPn0acXFx0NbWRkREBNq1a1dkhLu6e0dBS0sLbdq0QVhYGC5cuIAXL15gw4YNcHR0RFJSEvr27Vuq8icWFhbiCOuKfH4oEpH/+te/MH78eDg7OxdJaqo7B4V/haIolaHKu/hCQ50hQ4YAAPbs2YPExETExcXh0KFDAP6/FIo6Dx48KDa5r/gCsbxHEOvq6oqfu+LKybxepqqsGjRogE8++QQAxBJHgPLxJCQkqG1fODZFCZXSkEql6NWrFwDlcifr168HUDC/xOs+hOcsERHRh4SJbyIioo9I/fr1Ubt2bTEh9baTWiooRq0VLhvwrhVOVCiSGq9T1OdWRVH/dOvWrUp1cTWhevXqmDVrFvr27QsAYsLqXVBc8+zsbOjo6KhMvqhSq1YtGBsbA4DS6MWKUrhMh7oknZmZmVibWhMxvm8KJ+wMDAzEvxX3jpWVldoSD8XdO6oYGRmhb9++WL16NYCC0e2lSdzp6OigYcOGADTz/FD37Hj69CmuXLmicp2BgYGYrFeXMH38+HG5zAtQWg0aNICPjw9yc3MRHh4u1vv28PBAkyZNim2bmpqKP//8U+W67Oxs8QvG8viS9HWKPtVNMgvgjX498DpDQ0MAUKqnXatWLbHM1+HDh9W2VdwL1atXL3WZEwVFKZOzZ8/i9u3b4n8B1YnvatWqifckn2FERERvj4lvIiKij8ycOXMwevRojB49Wqx1+rYGDhwIAPjrr7+wbNmycumzJIoR2wBUJqjS0tIwY8YMte0Vk73dvn0boaGhxe4rPT39jSfvKywrK6vY9Xp6egDe7U/U69Wrh6lTp2L06NFYuHBhqUdx6ujoiEnzdevWiZODqlPeEz8qku4AlOpSv05xXQ8fPlxi4kjTk1O+S4IgYOPGjeL7wpMXKu4dRamV192/fx+LFy9W2W9J94HiMwyU/nOseH7s27cP+/btK1Wbt6U4B+qS2z/++KPaGu4SiQR16tQBUDA5piozZ86s8BIpilHfq1atEicxLm5Sy8LUPSt//fVX8T7p2bNnOUSpTDEiev/+/bh48WKR9SkpKcXWv4+MjFQqD6LK3bt3xeR9vXr1xOUymQxdunQBUFD6RtVz5Z9//hHLgil+LVMWDRs2hLu7O4CCUd+Kkd9NmjSBi4uLyjZff/01AGD79u3Yv39/sf1X5mcYERFReWDim4iI6CPTrl07zJs3D/PmzSvTz7aL4+/vL9aYHTZsGCZMmCCONhUEAQ8fPsSqVavEBFd58PT0hKOjI4CCUcyFkyanT5+Gn58fkpKS1LYPDAwUkx7jx4/H0KFDxZF4QEGC7+zZsxg3bhycnJzUTuxWFsOGDUPPnj2xbds2pf5evnyJ5cuXiwmW9u3bv/W+ijN58mTMmzcPw4YNK1O7SZMmoXr16sjNzUXbtm2xYMECpYkuU1JScODAAQQHB6Np06blGrOpqak4EjI8PBy5ubkqtxsyZAgaNWoEoGBE5Y8//qg0KjcjIwNRUVEYNmwYqlevXq4xvi9iYmIwaNAgREVFAShILhYe2d2kSRMYGBhAEAT07NlT/Nzn5eXhjz/+gJ+fn9paxqdOnUKdOnWwcOFC3Lx5U/y1hCAIOHXqFIYOHQqgYELA2rVrlyreL774Ak2aNIEgCOjWrRtCQ0PFiTXz8vIQGxuLhQsXYty4cW90PlRRTAC5cOFCbNiwQUxy379/H19//TVWrlwpTkaoiiIJunXrVoSGhooTYCYmJuK7777Dr7/+qvRlTUXo27cvTExMcO/ePTx48KDESS0VjIyMsHv3bnz11VdieZeMjAyEhYWJJZGCg4PFBG55Cg4ORo0aNZCXl4dOnTph79694mfq8uXLaN26dbGTiw4ZMgRubm6YPHkyzpw5o/Tl4tOnT/HLL7+gefPmyMrKgkQiwahRo5TaT5kyBfr6+nj48CFatWol/jsiCAIOHz6MgIAAvHr1CnZ2dmpraZdEMbL7t99+w+bNm5WWqTJ69GjUrl0bgiCgS5cu+Pnnn/Ho0SNxfVpaGiIjIzFo0CB4e3u/UUxEREQfDYGIiIgqnZ9++kkAIDg5OZWp3dGjRwUAAgAhJiamyHrFuqNHjxZZl56eLnTt2lXcBoBgbGwsyOVy8b23t7dSm/Dw8BLjjImJURvTnj17BB0dHXG9vr6+oK+vL/4dGRlZYsy9e/dWitnAwEAwMzMTtLS0lJbfv39fqW1wcLAAQAgODi7Sr7p1iuWKl6GhoWBqaqq0rEmTJsLLly/Vno/ScnJyEgAIP/30U5naKWJs3ry5yvX37t0TvL29lWI2NTUVjI2NlZa5uroWaVvctVBo3ry52rinT58u9iGXywUHBwfByclJ6NWrl9J2T58+FVq0aFHks2hqaipIJBJxmY6OTpF9KM5beHh4iedI1bWvCIr9a2lpCTY2NkovIyMjpeP28/MTUlNTi/SxbNmyIp9FXV1dAYBgaWkp7N69W+V9V/gZAUCQSqWChYWF0n1obGwsREdHK+2vuPtYEAquWdOmTcVtJBKJYGpqKkilUnFZYGBgseelcGzFfcYEQRASExPFaw1A0NbWVroXx40bJwQGBgoAhJEjRxZpn5mZKTRo0EApXjMzM7GvFStWiPfJwoULi7RXrCvpmARBEBYuXCjuJykpqdhthw0bJm77+eefl6pfb29v4eeff1Y6jsLX09fXV+VnaOTIkaU6hqSkJLGvS5cuFVl//fp1wdraWtxGT09P/Bzr6ekJ27ZtU9u+Zs2aSp9HxedG8Vku3OeaNWtUxhcRESH+uwFAMDIyUoo8EtQAACAASURBVHpvbW0tXLhwoczHpRAXF6f03JHL5SVexwcPHgi+vr5Kx2BiYiKYmJgo9WVpaVmkrYmJiQBA2LFjR7H7ICIi+hhwxDcRERGVC319fWzbtg0RERHo0qUL7OzskJmZCUNDQ9SpUwcjRozAypUry3WfHTt2RHR0NDp06ABTU1Pk5ubC0tIS/fv3x59//omWLVuWGPPGjRtx9OhRfPHFF3BxcUF+fj5evnwJa2trtGjRAnPnzsWdO3fU1kIui0mTJmHx4sXo0qULatasCR0dHXFfAQEBWLNmDaKiopTqMb9vnJ2dceHCBfznP/9Bx44dUaVKFbEUjLOzM7p06YI1a9bg9OnT5b7viRMnIiwsDPXr14dUKsX9+/cRFxdXZBJCS0tLREZGYteuXejevTscHByQlZWFV69eoWrVqmjXrh2WLl1aoZMpvgv5+fliuRLFKzs7G/b29ggMDMTmzZtx5MiRIhNXAgUjZffu3Qs/Pz8YGhoiNzcXVatWxfDhw3HlyhW1o7UbNGiALVu2YOjQofDx8YGlpSVSUlKgq6uLunXr4vvvv8fNmzfLPOLf0tISUVFRWL9+Pdq1awcrKyukp6fDzMwMPj4+GD9+PGbOnPlG50kVGxsbnDt3DkOHDoWDgwO0tLQglUrRunVr7Nq1C7Nnzy62vVwux+HDhzFx4kS4urpCKpVCW1sbHTt2xLFjx0pdYqS89ejRQ/y7pEktC5s4cSJ27doFf39/SCQS6OjooFatWpgzZw6ioqJUfobKi5eXF65evYpvv/0Wjo6OyMvLg6GhIfr06YPz58+jRYsWattevHgRO3fuxIgRI/DZZ5/B2toa6enpyM/Ph7W1NZo1a4YpU6bg77//VjuRb4cOHXDz5k0MHz4cbm5uyMnJgUQiQa1atTBx4kTcuHFDqVRQWTk6OqJ58+bi+86dO8PU1LTYNnZ2djhx4gQ2b96MoKAg2NnZ4dWrV8jMzISjoyM6deqEFStW4Pr1628cFxER0cdAIggVXHyOiIiIiIiIyt2kSZMwY8YMeHh44MaNG5oOh4iIiEijOOKbiIiIiIjoA5eZmYlVq1YBgFhrnYiIiOhjxsQ3ERERERHRByw3Nxfff/89EhMTYWFhgZCQEE2HRERERKRxTHwTERERERF9gNasWYNq1arB1NQUS5YsAQDMmTPnndbkJiIiIvpQ6Gg6ACIiIiIqKiEhAQ0aNChTGwcHB5w/f/4dRURE75vU1FTExcVBLpfDy8sLo0ePVjuJIxEREdHHhpNbEhEREb2HYmNj4ezsXKY2Tk5OiI2NfTcBERERERERfUCY+CYiIiIiIiIiIiKiSoWlTgDk5+fj4cOHMDIygkQi0XQ4RERERERERERERKSCIAhIS0uDnZ0dtLTUT2HJxDeAhw8fwsHBQdNhEBEREREREREREVEpJCQkwN7eXu16Jr4BcdbzhIQEGBsbazgaIiIiIiIiIiIiIlIlNTUVDg4OYk5XHSa+AbG8ibGxMRPfRERERERERERERO+5kkpWqy+CQkRERERERERERET0AWLim4iIiIiIiIiIiIgqFSa+iYiIiIiIiIiIiKhSYY1vIiIiIiIiIiL6YAmCgNzcXOTl5Wk6FCIqB9ra2tDR0SmxhndJmPgmIiIiIiIiIqIPUnZ2Nh49eoSMjAxNh0JE5UhfXx9VqlSBTCZ74z6Y+CYiIiIiIiIiog9Ofn4+YmJioK2tDTs7O8hksrceIUpEmiUIArKzs/H06VPExMTAzc0NWlpvVq2biW8iIiIiIiIiIvrgZGdnIz8/Hw4ODtDX19d0OERUTvT09CCVShEXF4fs7Gzo6uq+UT+c3JKIiIiIiIiIiD5YbzoalIjeX+VxX/PJQERERERERERERESVChPfRERERERERERERFSpMPFNRERERERERERERJUKE99EREREREREREQVKCQkBBKJpMirbdu2mg6NqNLQ0XQAREREREREREREH5u2bdsiPDxcaZlcLtdQNESVD0d8ExERERERERFRpSAIAjKycyv8JQhCmWOVy+WwtbVVepmZmQEAJBIJVq1ahS5dukBfXx9ubm7YvXu32FbdiPGoqChMmzYNtWvXLrI/Hx8fTJ48WWwfFBSEmTNnwsbGBqamppg6dSpyc3MxduxYmJubw97eHmvWrFHq48GDB+jVqxfMzMxgYWGBwMBAxMbGlvnYiSoCR3wTEREREREREVGl8ConD56T/6jw/d6Y1gb6svJNs02dOhVz585FaGgolixZgn79+iEuLg7m5uYICwvD7NmzxW1nz56NjRs3ombNmnB1dcXUqVNx/vx5NGjQAABw9epVXLp0CVu3bhXbHDlyBPb29oiOjsbJkycxcOBAnD59Gs2aNcPZs2exefNmDBkyBAEBAXBwcEBGRgb8/f3RtGlTREdHQ0dHBzNmzEDbtm1x9epVyGSycj1+orfFEd9EREREREREREQVLCIiAoaGhkqv6dOni+tDQkLQp08fuLq6YubMmUhPT8e5c+cAACYmJuIo8VOnTmH58uXYtm0bbG1tYW9vjzZt2iiVUQkPD0fz5s3h4uIiLjM3N8fixYvh7u6OAQMGwN3dHRkZGZg4cSLc3NwwYcIEyGQynDx5EgCwadMmaGlpYdWqVahduzY8PDwQHh6O+Ph4REVFVcxJIyoDjvgmIiIiIiIiIqJKQU+qjRvT2mhkv2Xl7++PZcuWKS0zNzcX/65Tp474t4GBAYyMjPDkyROl7S9duoQvv/wSv/zyC5o0aSIu//rrrzFgwAAsWLAA2tra2LBhA+bPn6/U1svLC1pa/z8m1sbGBrVq1RLfa2trw8LCQtznxYsXcffuXRgZGSn1k5mZiX/++aesh0/0zjHxTURERERERERElYJEIin3kiPvioGBAVxdXdWul0qlSu8lEgny8/PF94mJiejcuTMGDhyIgQMHKm3bqVMnyOVy7NixA3K5HFlZWejWrVuJ/Re3z/z8fPj4+GDDhg1FYrWysirmSIk048N4EhARERERERERERGAglHWgYGBqFmzJhYsWFBkvY6ODoKDgxEeHg65XI7evXtDX1//rfZZr149bN68GdbW1jA2Nn6rvogqAhPfREREREREREREFSwrKwuJiYlKy3R0dGBpaVli28GDByMhIQGHDx/G06dPxeXm5ubiJJNfffUVPDw8AECs0/02+vXrh9DQUAQGBmLatGmwt7dHfHw8tm/fjrFjx8Le3v6t90FUnpj4JiIiIiIiIiIiqmAHDhxAlSpVlJa5u7vj1q1bJbY9duwYHj16BE9PT6XlR48ehZ+fHwDAzc0NjRs3xvPnz9GoUaO3jldfXx/R0dEYN24cunbtirS0NFStWhUtW7bkCHB6L0kEQRA0HYSmpaamwsTEBCkpKbxRiYiIiIiIiIg+AJmZmYiJiYGzszN0dXU1Hc57RxAE1KxZE4MHD8aoUaM0HQ5RmRR3f5c2l8sR30RERERERERERJXIkydP8Ntvv+HBgwfo37+/psMh0ggmvomIiIiIiIiIiCoRGxsbWFpaYuXKlTAzM9N0OEQawcQ3ERERERERERFRJcLKxkSAlqYDICIiIiIiIiIiIiIqT0x8ExEREREREREREVGlwsQ3EREREREREREREVUqTHwTERERERERERERUaXCxDcRERERERERERERVSoaTXwvW7YMderUgbGxMYyNjeHr64v9+/eL67OysjB8+HBYWlrCwMAAnTt3xv3795X6iI+PR6dOnWBgYABLS0uMGDEC2dnZFX0oH6yMP/9E8vYdyHuZrulQiIiIiIiIiIiIiMqFRhPf9vb2mD17Ni5cuIALFy6gRYsWCAwMxF9//QUA+O6777Bjxw5s2rQJJ06cwMuXL9GxY0fk5eUBAPLy8tChQwekp6fjxIkT2LRpE7Zt24bRo0dr8rA+KA9GfodHEyciO+aepkMhIiIiIiIiIiJSKzY2FhKJBJcvX9Z0KB+1kJAQBAUFaTqMEmk08d2pUye0b98eNWrUQI0aNfDzzz/D0NAQZ86cQUpKClavXo358+ejVatW+OSTT7B+/Xpcu3YNkZGRAICDBw/ixo0bWL9+PT755BO0atUK8+fPx7///W+kpqZq8tA+GFInRwBAdny8hiMhIiIiIiIiIvo4hISEQCKRFHm1bdtW06G9M+np6Rg3bhxcXFygq6sLKysr+Pn5ISIiosJiKO/EeVRUFCQSCZKTk8ulv8K2bdsGPz8/mJiYwNDQEHXq1MG0adPw4sWLct9XZfXe1PjOy8vDpk2bkJ6eDl9fX1y8eBE5OTlo3bq1uI2dnR1q1aqFU6dOAQBOnz6NWrVqwc7OTtymTZs2yMrKwsWLF9XuKysrC6mpqUqvj5XM0QkAkMPENxERERERERFRhWnbti0ePXqk9Nq4caOmw3pnhgwZgp07d2Lp0qW4desWDhw4gG7duuH58+eaDq0ITZdR/uGHH9CrVy80aNAA+/fvx/Xr1zF//nxcuXIFv/32m0Zj+5BoPPF97do1GBoaQi6XY8iQIdixYwc8PT2RmJgImUwGMzMzpe1tbGyQmJgIAEhMTISNjY3SejMzM8hkMnEbVWbNmgUTExPx5eDgUP4H9oGQORYce3YcE99ERERERERE9IETBCA7veJfglDmUOVyOWxtbZVeijyYRCLBqlWr0KVLF+jr68PNzQ27d+8W26obMR4VFYVp06ahdu3aRfbn4+ODyZMni+2DgoIwc+ZM2NjYwNTUFFOnTkVubi7Gjh0Lc3Nz2NvbY82aNUp9PHjwAL169YKZmRksLCwQGBiI2NjYUh3vnj17MHHiRLRv3x7VqlWDj48Phg8fjuDgYHEbiUSCnTt3KrUzNTXF2rVrlZbdunULjRs3hq6uLry8vBAVFSWuS0pKQr9+/WBlZQU9PT24ubkhPDwcAODs7AwA+OSTTyCRSODn56d0PmbNmgU7OzvUqFEDALB+/XrUr18fRkZGsLW1Rd++ffHkyRMABaPH/f39ARTkIyUSCUJCQgAAgiBg7ty5cHFxgZ6eHry9vfHf//63VOfp3LlzmDlzJubPn4/Q0FA0btwY1apVQ0BAALZt26Z0vpYtW4bq1atDJpPB3d29SFJcIpFgxYoV6NixI/T19eHh4YHTp0/j7t278PPzg4GBAXx9ffHPP/+IbaZMmYK6detixYoVcHBwgL6+Pnr06FHsqPaSjnfatGmws7NT+pKjc+fOaNasGfLz80t1Xt6EzjvruZTc3d1x+fJlJCcnixfv2LFjarcXBAESiUR8X/hvddu8bsKECRg1apT4PjU19aNNfsscWeqEiIiIiIiIiCqJnAxgpl3J25W3iQ8BmUG5djl16lTMnTsXoaGhWLJkCfr164e4uDiYm5sjLCwMs2fPFredPXs2Nm7ciJo1a8LV1RVTp07F+fPn0aBBAwDA1atXcenSJWzdulVsc+TIEdjb2yM6OhonT57EwIEDcfr0aTRr1gxnz57F5s2bMWTIEAQEBMDBwQEZGRnw9/dH06ZNER0dDR0dHcyYMQNt27bF1atXIZPJij0eW1tb7Nu3D127doWRkdFbnZuxY8di0aJF8PT0xIIFC9C5c2fExMTAwsICkyZNwo0bN7B//35YWlri7t27ePXqFYCCpHLDhg0RGRkJLy8vpZgPHz4MY2NjHDp0CML/vsjIzs7G9OnT4e7ujidPnuBf//oXQkJCsG/fPjg4OGDbtm3o1q0b/v77bxgbG0NPTw8A8OOPP2L79u1YtmwZ3NzcEB0djc8//xxWVlZo3rx5sce2YcMGGBoa4ptvvlG53tTUFACwY8cOjBw5EosWLUKrVq0QERGB/v37w97eXkzIA8D06dOxYMECLFiwAOPGjUPfvn3h4uKCCRMmwNHREQMGDMCwYcOwf/9+sc3du3exZcsW7NmzB6mpqRg4cCC+/fZbbNiwQWVMJR3vDz/8gAMHDuCrr77Cjh07sHz5ckRHR+PKlSvQ0np347I1nviWyWRwdXUFANSvXx/nz59HWFgYevXqhezsbCQlJSmN+n7y5AkaN24MoOCGOXv2rFJ/SUlJyMnJKTISvDC5XA65XP4OjubDI/1fqRMmvomIiIiIiIiIKk5ERAQMDQ2Vlo0bNw6TJk0CUDAKuU+fPgCAmTNnYsmSJTh37hzatm0rVjEAgO3bt2P58uWIjIyEra0tgIJSwOHh4WLiOzw8HM2bN4eLi4u4L3NzcyxevBhaWlpwd3fH3LlzkZGRgYkTJwIoGDg6e/ZsnDx5Er1798amTZugpaWFVatWiQNOw8PDYWpqiqioKKVyxaqsXLkS/fr1g4WFBby9vdGkSRN0794dn332WZnP3bBhw9CtWzcABaOeDxw4gNWrV+P7779HfHw8PvnkE9SvXx8AUK1aNbGdlZUVAMDCwkI8VwoGBgZYtWqVUjJ8wIAB4t8uLi5YvHgxGjZsiJcvX8LQ0BDm5uYAAGtrazEhnZ6ejgULFuDIkSPw9fUV2544cQIrVqwoMfF9584duLi4QCqVFrvdvHnzEBISIibIR40ahTNnzmDevHlKie/+/fujZ8+eAAo+X76+vpg0aRLatGkDABg5ciT69++v1HdmZibWrVsHe3t7AMCSJUvQoUMHzJ8/v8h5K83xamtrY/369ahbty7Gjx+PJUuWYOXKlXBycir2GN+WxhPfrxMEAVlZWfDx8YFUKsWhQ4fEi/Po0SNcv34dc+fOBQD4+vri559/xqNHj1ClShUABRNeyuVy+Pj4aOwYPiSKUid5z54hPz0dWgbl++0kEREREREREVGFkeoXjL7WxH7LyN/fH8uWLVNapkikAkCdOnXEvw0MDGBkZCSW2VC4dOkSvvzyS/zyyy9o0qSJuPzrr7/GgAEDsGDBAmhra2PDhg2YP3++UlsvLy+l0bY2NjaoVauW+F5bWxsWFhbiPi9evIi7d+8WGa2dmZmpVCpDnWbNmuHevXs4c+YMTp48iSNHjiAsLAxTp04Vk/2lpUiwAoCOjg7q16+PmzdvAgCGDh2Kbt264c8//0Tr1q0RFBQkDqItTu3atYuMWr906RKmTJmCy5cv48WLF2JZjvj4eHh6eqrs58aNG8jMzERAQIDS8uzsbHzyySclxlFSJQuFmzdvYtCgQUrLPvvsM4SFhSktK/w5UgwULlwKx8bGBpmZmUhNTYWxsTEAwNHRUUx6AwXnOz8/H3///XeRxHdpj9fFxQXz5s3D4MGD0atXL/Tr16/EY3xbGk18T5w4Ee3atYODgwPS0tKwadMmREVF4cCBAzAxMcHAgQMxevRoWFhYwNzcHGPGjEHt2rXRqlUrAEDr1q3h6emJL774AqGhoXjx4gXGjBmDr7/+WrxQVDxtY2Nom5oiLzkZ2QkJ0K1ZU9MhERERERERERG9GYmk3EuOvCsGBgZiFQRVXh/xK5FIlOohJyYmonPnzhg4cCAGDhyotG2nTp0gl8uxY8cOyOVyZGVliSOki+u/uH3m5+fDx8dHZbkLxUjqkkilUjRt2hRNmzbF+PHjMWPGDEybNg3jxo2DTCaDRCIRy4wo5OTklKpvRbK4Xbt2iIuLw969exEZGYmWLVvi22+/xbx584ptb/DaYND09HS0bt0arVu3xvr162FlZYX4+Hi0adOm2MkvFedr7969qFq1qtK60lSgqFGjBk6cOIGcnJwSR32/niBXlTQv3IdinaplxdXaVmyjKiFfluONjo6GtrY2YmNjkZubCx2dd5ua1ujklo8fP8YXX3wBd3d3tGzZEmfPnsWBAwfEbwgWLlyIoKAg9OzZE5999hn09fWxZ88eaGtrAyj45mnv3r3Q1dXFZ599hp49eyIoKKjEDzIpkzr9r843J7gkIiIiIiIiInrvZWZmIjAwEDVr1sSCBQuKrNfR0UFwcDDCw8MRHh6O3r17Q1+/7KPSC6tXrx7u3LkDa2truLq6Kr0UZVfKytPTE7m5ucjMzARQkEB/9OiRuP7OnTvIyMgo0u7MmTPi37m5ubh48SJqFhrMaWVlhZCQEKxfvx6LFi3CypUrAUAc0Z2Xl1dibLdu3cKzZ88we/ZsNG3aFDVr1iwy4l5Vf56enpDL5YiPjy9ynkozx2Dfvn3x8uVL/PrrryrXKyaZ9PDwwIkTJ5TWnTp1Ch4eHiXuoyTx8fF4+PD/fzlx+vRpaGlpiZN+Flba4928eTO2b9+OqKgoJCQkYPr06W8dZ0k0OuJ79erVxa7X1dXFkiVLsGTJErXbODo6IiIiorxD+6jIHJ2QeeUqsuPjNB0KEREREREREdFHISsrC4mJiUrLdHR0YGlpWWLbwYMHIyEhAYcPH8bTp0/F5ebm5mIy9quvvhKToCdPnnzrePv164fQ0FAEBgZi2rRpsLe3R3x8PLZv346xY8cqlcZQxc/PD3369EH9+vVhYWGBGzduYOLEifD39xcrN7Ro0QJLly7Fp59+ivz8fIwbN07lqOdffvkFbm5u8PDwwMKFC5GUlCTW4548eTJ8fHzg5eWFrKwsREREiOfB2toaenp6OHDgAOzt7aGrq6s2ae/o6AiZTIYlS5ZgyJAhuH79epFkrZOTEyQSCSIiItC+fXvo6enByMgIY8aMwb/+9S/k5+ejSZMmSE1NxalTp2BoaIjg4OBiz1OjRo3w/fffY/To0Xjw4AG6dOkCOzs73L17F8uXL0eTJk0wcuRIjB07Fj179kS9evXQsmVL7NmzB9u3b0dkZGSx/ZeGrq4ugoODMW/ePKSmpmLEiBHo2bNnkTInAEp1vPfv38fQoUMxZ84cNGnSBGvXrkWHDh3Qrl07fPrpp28drzoaHfFN7weZY8GI75z4BA1HQkRERERERET0cThw4ACqVKmi9Cpcp7s4x44dw6NHj+Dp6anU/tSpU+I2bm5uaNy4Mdzd3dGoUaO3jldfXx/R0dFwdHRE165d4eHhgQEDBuDVq1elKjncpk0brFu3Dq1bt4aHhweGDx+ONm3aYMuWLeI28+fPh4ODA5o1a4a+fftizJgxKkeqz549G3PmzIG3tzeOHz+OXbt2iV8YyGQyTJgwAXXq1EGzZs2gra2NTZs2ASj4YmHx4sVYsWIF7OzsEBgYqDZeKysrrF27Flu3boWnpydmz55dpMpE1apVMXXqVIwfPx42NjYYNmwYAGD69OmYPHkyZs2aBQ8PD7Rp0wZ79uyBs7NzyScawJw5c/D777/j7NmzaNOmDby8vDBq1CjUqVNHTJwHBQUhLCwMoaGh8PLywooVKxAeHg4/P79S7aM4rq6u6Nq1K9q3b4/WrVujVq1aakegl3S8giAgJCQEDRs2FM9PQEAAhg0bhs8//xwvX75863jVkQivF875CKWmpsLExAQpKSkfZW3wlF278HDceOg3agSndWs1HQ4RERERERERUYkyMzMRExMDZ2dn6Orqajqc944gCKhZsyYGDx6MUaNGaToc+kBMmTIFO3fuxOXLlzUaR3H3d2lzuRotdULvB+n/Rnxnx7PGNxERERERERHRh+7Jkyf47bff8ODBA/Tv31/T4RBpBEudEGROTgCA3MRE5GdlaTgaIiIiIiIiIiJ6GzY2Npg9ezZWrlwJMzOzCtmnoaGh2tfx48crJIYPwZAhQ9SepyFDhmg6vEqFpU7AUieCIOB2g4bIf/kSLnsjIK9eXdMhEREREREREREVi6VO3i93795Vu65q1arQ09OrwGjeX0+ePEFqaqrKdcbGxrC2tq7giN5PLHVC5UIikUDm6IjMGzeQHRfPxDcREREREREREZWJq6urpkP4IFhbWzO5XUFY6oQAFK7zHafhSIiIiIiIiIiIiIjeDhPfBACQ/S/xncMJLomIiIiIiIiIiOgDx8Q3AQBkTooR3wkajoSIiIiIiIiIiIjo7TDxTQD+f8R3Nkd8ExERERERERER0QeOiW8C8P81vnMePICQk6PhaIiIiIiIiIiIiIjeHBPfBADQsbKCRFcXyMtDzsOHmg6HiIiIiIiIiIjKgUQiwc6dOzUdBlGFY+KbAAASLS3IHBwAsM43EREREREREdG7FBISAolEAolEAqlUChcXF4wZMwbp6emaDq1Efn5++O677zQdBlGJmPgmkVSc4DJOw5EQEREREREREVVubdu2xaNHj3Dv3j3MmDEDv/76K8aMGVNkO0EQkJubq4EIiT5sTHyTSObwvzrfnOCSiIiIiIiIiD5AgiAgIyejwl+CIJQ5VrlcDltbWzg4OKBv377o168fdu7ciaioKEgkEvzxxx+oX78+5HI5jh8/DgBYtmwZqlevDplMBnd3d/z2229Kfd65cwfNmjWDrq4uPD09cejQIaX1ir6Tk5PFZZcvX4ZEIkFsbKy47OTJk2jevDn09fVhZmaGNm3aICkpCSEhITh27BjCwsLEEeuF2xG9T3Q0HQC9P2SKEd9xTHwTERERERER0YfnVe4rNPq9UYXv92zfs9CX6r9VH3p6esjJyRHff//995g3bx5cXFxgamqKHTt2YOTIkVi0aBFatWqFiIgI9O/fH/b29vD390d+fj66du0KS0tLnDlzBqmpqW9UkuTy5cto2bIlBgwYgMWLF0NHRwdHjx5FXl4ewsLCcPv2bdSqVQvTpk0DAFhZWb3VcRO9K0x8k0jmqCh1wsQ3EREREREREVFFOXfuHH7//Xe0bNlSXDZt2jQEBASI7+fNm4eQkBB88803AIBRo0bhzJkzmDdvHvz9/REZGYmbN28iNjYW9vb2AICZM2eiXbt2ZYpl7ty5qF+/Pn799VdxmZeXl/i3TCaDvr4+bG1t3+hYiSoKE98kkjo6AQByEhIg5OVBoq2t4YiIiIiIiIiIiEpPT0cPZ/ue1ch+yyoiIgKGhobIzc1FTk4OAgMDsWTJEty4cQMAUL9+faXtb968iUGDBikt++yzzxAWFiaud3R0FJPeAODr61vmuC5fvowenpPFtgAAIABJREFUPXqUuR3R+4aJbxJJq9gCUimEnBzkPn4MqZ2dpkMiIiIiIiIiIio1iUTy1iVHKoq/vz+WLVsGqVQKOzs7SKVSABAT3wYGBkXaSCQSpfeCIIjLVNUZf317LS2tItsWLq8CFJRcIaoMOLkliSTa2pBVrQqA5U6IiIiIiIiIiN4lAwMDuLq6wsnJSUx6F8fDwwMnTpxQWnbq1Cl4eHgAADw9PREfH4+HDx+K60+fPq20vaIe96NHj8Rlly9fVtqmTp06OHz4sNo4ZDIZ8vLySoyXSNOY+CYlUk5wSURERERERET03hk7dizWrl2L5cuX486dO1iwYAG2b9+OMWPGAABatWoFd3d3fPnll7hy5QqOHz+OH374QakPV1dXODg4YMqUKbh9+zb27t2L+fPnK20zYcIEnD9/Ht988w2uXr2KW7duYdmyZXj27BkAoFq1ajh79ixiY2Px7Nkz5OfnV8wJICojJr5JiUys883ENxERERERERHR+yIoKAhhYWEIDQ2Fl5cXVqxYgfDwcPj5+QEoKGOyY8cOZGVloWHDhvjqq6/w888/K/UhlUqxceNG3Lp1C97e3pgzZw5mzJihtE2NGjVw8OBBXLlyBQ0bNoSvry927doFHZ2CisljxoyBtrY2PD09YWVlhXhWDaD3lERQVQDoI5OamgoTExOkpKTA2NhY0+Fo1Iv//IbHM2fCKCAA9ksWazocIiIiIiIiIiKVMjMzERMTA2dnZ+jq6mo6HCIqR8Xd36XN5XLENymRKUqd8Ns6IiIiIiIiIiIi+kAx8U1KpI7/S3wnJKicDZiIiOj/2Lvz8KjKu43j95lJJnsmmawsYSdxARdAUVyqVhZlccGtgLygILsLuKHWXREtamWxqBVFENSKFRQQBRVBQIFSpGDYkwAJAZJM9mSSOe8fyNSUAAkkOQl8P73mCpnzzJn72KbIzTO/AwAAAABAfUfxjQocTZpINpvMwkKV/3bTAgAAAAAAAABoSCi+UYHhcMi/USNJjDsBAAAAAAAA0DBRfOMovjnfKRTfAAAAAAAAABoeim8cxTfnOzXF4iQAAAAAAAAAUH0U3ziKo1lzSZInNc3iJAAAAAAAAABQfRTfOIqjWYIkZnwDAAAAAAAAaJgovnEU36iTlBSZpmlxGgAAAAAAAACoHopvHMWRcHjHtzcvT+U5ORanAQAAAAAAwO999913MgxDOfQ2wDFRfOMotqAg+cXFSZI8acz5BgAAAAAAqEmZmZkaNmyYmjVrpoCAAMXHx6t79+5atWpVnbx/TRfn7733niIiImrkXEBN8bM6AOonR7NmKtu/X6UpqQo67zyr4wAAAAAAAJw2+vbtK4/Ho/fff1+tWrXS/v37tXTpUmVlZVkdrYLS0lI5HA6rYwAnhR3fqJS/7waXKRYnAQAAAAAAqBrTNOUtLKzzR3XukZaTk6MVK1Zo4sSJuvrqq9W8eXNdfPHFGj9+vHr27Kndu3fLMAxt2LChwmsMw9B3331X4VwrV67U+eefr8DAQHXu3Fm//PKL71hKSop69+6tyMhIhYSE6Nxzz9XChQu1e/duXX311ZKkyMhIGYahQYMGSZKuuuoqjR49WmPHjlV0dLS6du0qSXr11VfVvn17hYSEKCEhQSNHjlR+fr6kw7vHBw8eLLfbLcMwZBiGnn76aUmHi/OHH35YTZo0UUhIiDp37nzUNQC1hR3fqJSjWXNJkic11eIkAAAAAAAAVWMWFSm5Q8c6f9+k9etkBAdXaW1oaKhCQ0P1z3/+U5dccokCAgJO+n0feugh/fWvf1V8fLwee+wx9enTR1u3bpW/v79GjRql0tJSLV++XCEhIdq8ebNCQ0OVkJCgTz/9VH379lVycrLCw8MVFBTkO+f777+vESNGaOXKlb5C32az6Y033lCLFi20a9cujRw5Ug8//LCmTZumLl266PXXX9eTTz6p5ORk3zVK0uDBg7V7927NnTtXjRs31meffaYePXrol19+Udu2bU/6uoGqoPhGpRzNm0mSSlMovgEAAAAAAGqKn5+f3nvvPQ0dOlR/+9vf1KFDB/3hD3/QHXfcofOqOW72qaee8u3Kfv/999W0aVN99tlnuu2225Samqq+ffuqffv2kqRWrVr5XudyuSRJsbGxR83mbtOmjV5++eUKz91///2+X7ds2VLPPfecRowYoWnTpsnhcMjpdMowDMXHx/vW7dixQ3PmzNGePXvUuHFjSdKDDz6oxYsXa8aMGXrxxRerda1AdVF8o1KOZr8V39zcEgAAAAAANBBGUJCS1q+z5H2ro2/fvurZs6d++OEHrVq1SosXL9bLL7+sd955R1dddVWVz3PppZf6fu1yuZSUlKQtW7ZIku69916NGDFCS5Ys0bXXXqu+fftWqVjv1KnTUc99++23evHFF7V582bl5uaqrKxMxcXFKigoUEhISKXnWb9+vUzTVGJiYoXnS0pKFBUVVeVrBE4WxTcq5f9b8V1+6JDK8/Nl/+0jKgAAAAAAAPWVYRhVHjlitcDAQHXt2lVdu3bVk08+qSFDhuipp57SDz/8IEkV5oZ7PJ4qn9cwDEnSkCFD1L17d3355ZdasmSJJkyYoEmTJmnMmDHHff3/FtkpKSm6/vrrNXz4cD333HNyuVxasWKF7r777uPm8nq9stvtWrdunex2e4VjofRMqAPc3BKVsoeGyv7bx16Y8w0AAAAAAFC7zjnnHBUUFCgmJkaSlJ6e7jv2+xtd/t7q1at9v87OztbWrVt11lln+Z5LSEjQ8OHDNW/ePI0bN05vv/22JMnhcEiSysvLT5hr7dq1Kisr06RJk3TJJZcoMTFR+/btq7DG4XAcda4LL7xQ5eXlyszMVJs2bSo8fj8SBagtFN84Jt+4E4pvAAAAAACAGnHo0CFdc801mjVrljZu3Khdu3bpk08+0csvv6wbbrhBQUFBuuSSS/TSSy9p8+bNWr58uZ544olKz/Xss89q6dKl2rRpkwYNGqTo6GjdeOONkg7P5f7qq6+0a9curV+/XsuWLdPZZ58tSWrevLkMw9AXX3yhAwcOKD8//5h5W7durbKyMk2ePFk7d+7UBx98oL/97W8V1rRo0UL5+flaunSpDh48qMLCQiUmJqp///4aOHCg5s2bp127dunnn3/WxIkTtXDhwhr6pwkcG8U3jsl3g8tU5nwDAAAAAADUhNDQUHXu3FmvvfaarrzySrVr105//vOfNXToUE2ZMkWS9O6778rj8ahTp06677779Pzzz1d6rpdeekn33XefOnbsqPT0dM2fP7/Cbu5Ro0bp7LPPVo8ePZSUlKRp06ZJkpo0aaJnnnlGjz76qOLi4jR69Ohj5r3gggv06quvauLEiWrXrp1mz56tCRMmVFjTpUsXDR8+XLfffrtiYmJ8N8ecMWOGBg4cqHHjxikpKUl9+vTRmjVrlJCQcMr/HIETMczfDww6Q+Xm5srpdMrtdis8PNzqOPXGgSlTdXDKFDlv6avGx/g/WAAAAAAAACsUFxdr165datmypQIDA62OA6AGHe/nu6pdLju+cUxHdnx7Uhh1AgAAAAAAAKDhoPjGMTHjGwAAAAAAAEBDRPGNY/L/rfgu279f3uJii9MAAAAAAAAAQNVQfOOY7BERsoWFSZI8adzgEgAAAAAAAEDDQPGNYzIMg3EnAAAAAACgXjNN0+oIAGpYTfxcU3zjuI7c4LKUG1wCAAAAAIB6xN/fX5JUWFhocRIANe3Iz/WRn/OT4VdTYXB6OjLnuzSN4hsAAAAAANQfdrtdERERyszMlCQFBwfLMAyLUwE4FaZpqrCwUJmZmYqIiJDdbj/pc1F847gcCYeLbw87vgEAAAAAQD0THx8vSb7yG8DpISIiwvfzfbIovnFcvlEnzPgGAAAAAAD1jGEYatSokWJjY+XxeKyOA6AG+Pv7n9JO7yMovnFcR0adePbtk1laKsPhsDgRAAAAAABARXa7vUaKMgCnD25uiePyi4mRERQkeb0q3bvX6jgAAAAAAAAAcEIU3zguwzDkSEiQJHnS0ixOAwAAAAAAAAAnRvGNE/LN+eYGlwAAAAAAAAAaAIpvnNCROd/c4BIAAAAAAABAQ0DxjRNyNGsuSSpNTbE4CQAAAAAAAACcGMU3TujIqBNPKjO+AQAAAAAAANR/FN84oSM3tyzds0dmebnFaQAAAAAAAADg+Ci+cUJ+8fEy/P0lj0ee9Ayr4wAAAAAAAADAcVF844QMu13+v+369jDnGwAAAAAAAEA9R/GNKnE0Ozznu5Q53wAAAAAAAADqOYpvVIl/s9/mfKemWpwEAAAAAAAAAI6P4htV4mjWXJJUyqgTAAAAAAAAAPUcxTeqxNH88KgTTwo7vgEAAAAAAADUbxTfqBLfjO+0NJmmaXEaAAAAAAAAADg2im9UiX/jxpLdLrO4WGWZB6yOAwAAAAAAAADHRPGNKjH8/Q+X35I8zPkGAAAAAAAAUI9RfKPKfONOUpnzDQAAAAAAAKD+ovhGlR25wWVpaprFSQAAAAAAAADg2Ci+UWX+CUeKb0adAAAAAAAAAKi/KL5RZUd2fHtSGHUCAAAAAAAAoP6i+EaV/X7Gt2maFqcBAAAAAAAAgMpRfKPK/BMSJMOQNz9f5dnZVscBAAAAAAAAgEpRfKPKbAEB8ouLkyR5Uhl3AgAAAAAAAKB+ovhGtfx+3AkAAAAAAAAA1EcU36iWIze4LOUGlwAAAAAAAADqKYpvVIs/O74BAAAAAAAA1HMU36gWR8Lh4psZ3wAAAAAAAADqK4pvVIujZUtJUvHWrSp3uy1OAwAAAAAAAABHo/hGtQQktlVAYqLMoiJlf/yx1XEAAAAAAAAA4CgU36gWwzDkumuwJCl75gcyS0stTgQAAAAAAAAAFVF8o9qc118vv9hYlR04IPeXC62OAwAAAAAAAAAVUHyj2gyHQ66Bd0qSst59V6ZpWpwIAAAAAAAAAP6L4hsnJeK222QLDlbJtm0qWLHS6jgAAAAAAAAA4EPxjZNiDw9XxK23SpKyZrxrcRoAAAAAAAAA+C+Kb5w018A7JbtdBT+uUvGWLVbHAQAAAAAAAABJFN84Bf5Nmii8Rw9J0qEZMyxOAwAAAAAAAACHUXzjlLgGD5Yk5S5cJE96usVpAAAAAAAAAIDiG6coqN25Cu7cWSorU9bMD6yOAwAAAAAAAAAU3zh1UXcd3vWd8/HHKs/LszgNAAAAAAAAgDMdxTdOWcgVV8jRprW8BQXK+fgTq+MAAAAAAAAAOMNRfOOUGTabogbfJUnKmjlTZmmpxYkAAAAAAAAAnMkovlEjwnv3kj0mWmX79yt38WKr4wAAAAAAAAA4g1F8o0bYHA65BtwpSTr07gyZpmlxIgAAAAAAAABnKopv1JjI22+TERyskl9/VeGqVVbHAQAAAAAAAHCGovhGjbFHRCiib19Jh3d9AwAAAAAAAIAVKL5Ro1z/N1Cy2VSwYoWKk5OtjgMAAAAAAADgDETxjRrlaNpUYd27SZKy2PUNAAAAAAAAwAIU36hxUXfdJUlyf/mlPBkZFqcBAAAAAAAAcKah+EaNC2rfXsGdOkllZcqeNcvqOAAAAAAAAADOMBTfqBWu33Z9Z8/9SOX5+RanAQAAAAAAAHAmofhGrQi96g9ytGwpb36+cv7xD6vjAAAAAAAAADiDWFp8T5gwQRdddJHCwsIUGxurG2+8UcnJyRXWXHXVVTIMo8LjjjvuqLAmOztbd955p5xOp5xOp+68807l5OTU5aXgfxg2m1yDB0mSsmbOlOnxWBsIAAAAAAAAwBnD0uL7+++/16hRo7R69Wp9/fXXKisrU7du3VRQUFBh3dChQ5Wenu57TJ8+vcLxfv36acOGDVq8eLEWL16sDRs26M4776zLS0ElnDfcIHtUlMr2pSv3qyVWxwEAAAAAAABwhvCz8s0XL15c4fsZM2YoNjZW69at05VXXul7Pjg4WPHx8ZWeY8uWLVq8eLFWr16tzp07S5LefvttXXrppUpOTlZSUlLtXQCOyxYQINeA/jrw1zeU9e67Cu95vQzDsDoWAAAAAAAAgNNcvZrx7Xa7JUkul6vC87Nnz1Z0dLTOPfdcPfjgg8rLy/MdW7VqlZxOp6/0lqRLLrlETqdTP/74Y6XvU1JSotzc3AoP1I6IO+6QERio4s2bVbhmjdVxAAAAAAAAAJwB6k3xbZqmxo4dq8svv1zt2rXzPd+/f3/NmTNH3333nf785z/r008/1c033+w7npGRodjY2KPOFxsbq4yMjErfa8KECb554E6nUwkJCTV/QZAk+UVGKuK3/74ynn5G5fn5FicCAAAAAAAAcLqrN8X36NGjtXHjRs2ZM6fC80OHDtW1116rdu3a6Y477tA//vEPffPNN1q/fr1vTWXjM0zTPOZYjfHjx8vtdvseaWlpNXsxqCB69Cj5xcerdPdupT/+hEzTtDoSAAAAAAAAgNNYvSi+x4wZo/nz5+vbb79V06ZNj7u2Q4cO8vf317Zt2yRJ8fHx2r9//1HrDhw4oLi4uErPERAQoPDw8AoP1B4/l0tNX39N8vdX3ldfKev9962OBAAAAAAAAOA0ZmnxbZqmRo8erXnz5mnZsmVq2bLlCV/zn//8Rx6PR40aNZIkXXrppXK73frpp598a9asWSO3260uXbrUWnZUT9AFFyju0UckSZmv/EWFa9danAgAAAAAAADA6cowLZw7MXLkSH344Yf6/PPPlZSU5Hve6XQqKChIO3bs0OzZs3X99dcrOjpamzdv1rhx4xQUFKSff/5ZdrtdknTddddp3759mj59uiTpnnvuUfPmzbVgwYIq5cjNzZXT6ZTb7Wb3dy0yTVP7HnpYuV98IXtMtFrNmye/mBirYwEAAAAAAABoIKra5VpafB9rBveMGTM0aNAgpaWlacCAAdq0aZPy8/OVkJCgnj176qmnnpLL5fKtz8rK0r333qv58+dLkvr06aMpU6YoIiKiSjkovuuOt7BQu2+/XSXbtiu4Uyc1e2+GDD8/q2MBAAAAAAAAaAAaRPFdX1B8162Snbu0+9Zb5S0okOvuuxT30ENWRwIAAAAAAADQAFS1y60XN7fEmSWgVUs1evFFSVLW399V7pIlFicCAAAAAAAAcDqh+IYlwrt3k2vwYElS+vjHVLJrl8WJAAAAAAAAAJwuKL5hmdixDyioU0d5Cwq099775C0stDoSAAAAAAAAgNMAxTcsY/j7q8mrr8oeHa2SbduU/vTTYuQ8AAAAAAAAgFNF8Q1L+cfGqulrr0p2u3LnL1DO3LlWRwIAAAAAAADQwFF8w3LBF12k2HHjJEkZL05Q0caNFicCAAAAAAAA0JBRfKNecA0epLCuXSWPR3vuu19l2dlWRwIAAAAAAADQQFF8o14wDEONJrwoR/PmKktP174HH5JZXm51LAAAAAAAAAANEMU36g17aKiaTH5DRlCQClau1MGpU62OBAAAAAAAAKABovhGvRKYmKhGzz4jSTo47U3tuu12Zc/9SOV5eTX6Pt6SEuUtXar9L01UyfbtNXpuAAAAAAAAANYyTNM0rQ5htdzcXDmdTrndboWHh1sdB5IOvDFZB996SyorkyQZAQEK69ZNEX1vVvDFF8uwVf/vbLylpSpYsVK5ixcpf+kyeQsKJEn+CQlq9c/PZAsJqdFrAAAAAAAAAFCzqtrlUnyL4ru+Kjt0SO75C+Se96lKtv13V7Z/kyZy3nSTIm66Uf5Nmhz3HGZpqQpWrVLuosXKW7pU3t/tHPeLj5fp8aj80CFF9vuT4p98stauBQAAAAAAAMCpo/iuBorv+s00TRVv2qScTz9V7hdfypuff/iAYSjk0kvkvOlmhXW9VrbAwMPrPR4VrF59uOz+5ht5c3N95/KLjVVYj+4K73Gdgi44X4Vr1ih18F2SpGbv/l0hXbrU+fUBAAAAAAAAqBqK72qg+G44vMXFyvv6G+XM+1SFq1b7nreFhSm85/Uyy8qU//U3Kne7fcfsMdEK795D4df1UNCFFx41JiXj2eeU/eGH8mvUSK3mfy57WFidXQ8AAAAAAABODxsPbNTUDVO1I2dHtV5nypTM//7alCnTPPzVt8b0HfF9/2CnB3VT25tqLH9DUdUu168OMwGnzBYYKGfvXnL27qXSPXvl/uc/5Z43T559+5Qz9yPfOnt0tMK7dTtcdnfoIMNuP+Y5Yx8cp/wVK+RJTdX+CS+p8Ysv1MWlAAAAAAAA4DSQlpemv67/q77a/VWdvm9peWmdvl9Dw45vseO7oTO9XhWuWaPchQtl+PsrrFt3BV/U6bhl9/8qXL9eKf0HSKappm9OU9jVV9diYgAAAAAAADR0OcU5mr5xuuYmz1WZt0yGDPVu3Vu3Jt4qf7t/tc5lHPmPYfi+lyTDMCocO/K8DCkqMErOAGeNXlNDwKiTaqD4hiTtf/kVZb37ruwx0Wo1f778IiOtjgQAAAAAAIB6pqS8RB9u+VBvb3xbeZ48SVKXxl00tuNYJbmSLE53+mPUCVBNMffdq/zvv1fpjh3a/9zzavLqJKsjAQAAAAAAoJ7wml59ufNLTf7XZKUXpEuSEiMTNa7jOHVp0sXidPhfFN/Ab2wBAWr80gTtvuNPyl24UGHduiq8Rw+rYwEAAAAAAMBia9LXaNLaSdqStUWSFBscqzEXjlHvVr1lt1V93C7qDsU38DtB7dsretg9OjjtTWU8/YyCO3WSX3S01bEAAAAAAABgge3Z2/Xqulf1w94fJEkh/iEa0n6I+p/dX0F+QRanw/FQfAP/I3r4cOV9+51KtmxR+lNPq+mUyb4bCwAAAAAAAOD0VOAp0LbsbUrOSlZy9uHHpoOb5DW98jP8dGvSrRp+/nC5Al1WR0UVUHwD/8NwONT4pQnadcutyl+6VLnz58t5ww1WxwIAAAAAAEANME1Te/P3Kjk7WVuzth7+mr1VaXlpla7v2ryr7r3wXrVwtqjboDglFN9AJQKTkhQzapQOvP66Mp5/QcGdO8s/Pt7qWAAAAAAAAKiGorIibc/efngHd9bhgntr9lble/IrXR8bHKukyCQlRiYqyZWkc6POVbPwZnWcGjWB4hs4hqghdytv2TIVb9yo9MefUMI7bzPyBAAAAAAAoB4yTVP7C/f7xpRszd6q5Kxkpealymt6j1rvZ/NTm4g2hwvuyCQluQ6X3ZGBkRakR22g+AaOwfDzOzzy5KabVbBypXI+/kSRt99mdSwAAAAAAIB6y13i1i73Lnm8nlM6j2maFb/X0d+n56cfLrh/K7rdJe5Kz+UKdFUot5NcSWrpbCl/m/8pZUT9RvENHEdAq1aKeeB+Zb40UfsnTlRIl0vlSEiwOhYAAAAAAIClyr3lSs1LrTAnOzkrWfsL91uWyW7Y1dLZ0lduHym7o4OiLcsE61B8AyfgGjhQ+d8sVeHatUp/7HE1e/89GTab1bEAAAAAAADqRH5pvm9n9ZE52dtztquorKjS9fEh8Qr2C672+xiqOGL2RCNnIwMjK8zjbh3RWgH2gGq/L05PFN/ACRg2mxpNeFE7b7hRhT//rOxZs+QaONDqWAAAAAAAADXKa3q1N39vhR3cydnJ2pu/t9L1gfZAtYloU2GESGJkosIcYXWcHDgaxTdQBY6EBMU9/JAynn5GmZNeVehVV8nRjDv6AgAAAACAhqnQU6jtOdsr7OLemr1VBZ6CStfHBcf5xockug7fELJZWDPZbfY6Tg5UDcU3UEURt9+u3K++UuGq1To47U01fmmC1ZEAAAAAAACOyzRNZRRk+G4AeaTkTslNOeqGkZLkb/NXm4g2FeZkJ0YmKiIwwoL0wMkzzP+9ReoZKDc3V06nU263W+Hh4VbHQT1W9Msv2n3rbZLdrtaLFrLrGwAAAAAA1Bsl5SXanrO9wqiSrdlblVuaW+n66KBoX7F9ZBd3C2cL+dv86zg5UHVV7XLZ8Q1UQ1D79gq58goVLP9BB6dPV+MXXrA6EgAAAAAAOMOYpqmDRQcrzOHemrVVu3N3q9wsP2q9n+GnlhEtlRRZcVRJVFCUBemBukHxDVRTzMiRKlj+g9yfz1f0iBFyNG1qdSQAAAAAAHCa8pR7tNO986iSO7sku9L1EQERFcrtJFeSWjlbyWF31HFywFoU30A1BV1wgUIuu0wFK1fq0PS31Oi5Z62OBAAAAAAATgNZxVm+8SRHSu6d7p0q85YdtdZm2NQ8vLmv3E6MPFx0xwbHyjAMC9ID9QvFN3ASokeNVMHKlcr57DNFDx8m/yZNrI4EAAAAAAAsYJqmMgszj7p55P7C/dU6j9f0qqisqNJjYf5hahvZ1nezySRXklpHtFaQX1BNXAJwWqL4Bk5CcIcOCr70EhWuWq2Db7+tRk8/bXUkAAAAAABQy0rLSw+PHfndyJHk7GTllOTU2Hs0C2tWYQd3kitJjUIasYsbqCaKb+AkxYwapZRVq5Xz6TxFDxsm/0aNrI4EAAAAAABqUGl5qZbvWa5lqcu0JWuLdrt3q8w8euyI3bCrRXiLCnO1E8ISZJOtWu8XFRSlYP/gmooPnNEovoGTFNypk4IvvliFP/2kQ2+/o/gn/2x1JAAAAAAAcIpM09Smg5s0f8d8Ldq9SO4Sd4Xj4Y5w38iRxMhE39iRAHuARYkBVIbiGzgF0aNGKfWnn5TzySeKGnaP/OPirI4EAAAAAABOQkZBhr7Y+YUW7Figne6dvudjg2LVs1VPdYzrqCRXkuKC4xg7AjQAFN/AKQi++CIFdeqoorXrDu/6fuJxqyMBAAAAAIAqKior0tLUpZq/fb5Wp6+WKVOSFGgP1DXNrtENrW9Q50adZbfZLU4KoLoovoFTYBiGYkaNUurgu5Tz8ceKumeo/GNjrY4FAAAAAACOwWt6tW7/Os3fMV9Ldi9RYVmh71jHuI66ofUN6tq8q0IdoRamBHCqKL6BUxS/k6EDAAAgAElEQVR8ySUK6tBBRevXK+vvf1fc+PFWRwIAAAAA4LSWV5qnJbuXaMHOBdqRs6Nar/V4PSrwFPi+bxraVH1a91Gv1r2UEJZQ01EBWITiGzhFhmEoeuRIpQ0Zouy5HylqyBD5xcRYHQsAAAAAgNOKx+vRqn2rNH/HfH2b+q1KvaUnfa5Q/1B1b9FdfVr30YWxFzKzGzgNUXwDNSDksi4KOv98Ff373zr07gzFPfKw1ZEAAAAAAGjwTNPUr1m/av6O+Vq4a6GyirN8x1o7W6tPmz66rPFl8rf5V+u8jUMbK9AvsKbjAqhHKL6BGmAYhqJHjVTaPcOUPXeuoobcLb+oKKtjAQAAAADQIGUWZurLnV9q/o752p6z3fe8K9Cl61ter96te+ts19ns1AZwTBTfQA0JueIKBbZvr+JfflHWjBmKffBBqyMBAAAAAGAJj9ejtNw0FZYVyjRNeeWVaZoyZfq+ek2vpMM3mzzy/YHCA1q4a6FWp6/2HXfYHLq62dXq07qPLm18abV3dwM4M1F8AzXk8KzvEdozYqSyPpwj1913yy8y0upYAAAAAADUKneJW8lZyUrOTlZyVrK2Zm/V9pzt8ng9p3TeDrEd1Lt1b3Vr0U3hjvAaSgvgTEHxDdSg0KuuUuC556r4P/9R1oz3FDv2AasjAQAAAABQI8q95UrJS9HWrK0VSu79hfsrXR/sFyxngFM2wyZJMmTIZthkGIYMGTIMQzbZfONKbIZNAfYAXdH0CvVq1UsJYQl1dm0ATj8U30ANOjLre8/IUcqeNUuuwYPY9Q0AAAAAaNDcJW69sOYFfZv6rYrLiytd0yS0iZIik5TkSlJSZJISXYlqEtrEV3oDQF2j+AZqWOjVVyvg7LNVsmWLsmbOVOx991kdCQAAAACAk7Ju/zo9svwR367uQHug2ka2VWJkoq/kbhvZVmGOMIuTAkBFFN9ADTsy63vvmHuV/cEsRQ0aJLvTaXUsAAAAAACqrNxbrrd/eVtv/vtNeU2vmoc31/OXPa/20e1lt9mtjgcAJ8TnTYBaEPbHPyogMVHe/HxlzfzA6jgAAAAAAFTZ/oL9Gvr1UE3dMFVe06s+rfvo414f64LYCyi9ATQYFN9ALTBsNkWPHClJypo5U+W5uRYnAgAAAADgxJbvWa5bFtyinzN+VpBfkF68/EW9cPkLCvYPtjoaAFQLxTdQS8K6dVVA2zby5uUpa9Ysq+MAAAAAAHBMpeWlmvjTRI1aOko5JTk623W2Pu71sXq37m11NAA4KRTfQC0xbDZFjxghScqa8Z48+zMtTgQAAAAAwNFSclM0YOEAzdpyeNPWgLMHaNb1s9TC2cLaYABwCii+gVoU1r27Atu1kzcvT+lPPCHTNK2OBAAAAACAz4IdC3Tbgtu0JWuLIgIiNPmayXrk4kfksDusjgYAp4TiG6hFht2uxi9NkOFwqOCHH5TzySdWRwIAAAAAQIWeQj2+4nE9tuIxFZYVqmNcR33S+xNdlXCV1dEAoEb4WR0AON0FtGmjmAceUObEicp8aaJCunSRo2lTq2MBAAAAABo40zT1a9av+jrla+V78qv12lX7Vml37m7ZDJuGnzdc95x3j+w2ey0lBYC6R/EN1AHXwDuVt/QbFa1dp/RHx6vZzPdl2PjABQAAAACg+jILM/Xlzi81f8d8bc/ZftLniQ2O1cQrJqpTfKcaTAcA9QPFN1AHDLtdjSdM0M4bblTh2rXKmjlTUYMGWR0LAAAAANBAFHoKtSxtmRbsWKDV6avlNb2SJIfNoT8k/EEtnS2rdb5Q/1Dd2OZGRQZG1kZcALAcxTdQRxwJCYp7+GFlPP20Drz6mkKvuEIBrVvXyLm9xcUq3b1bAUlJMgyjRs4JAAAAALCW1/Tq54yfNX/HfH2T8o0Kywp9xzrEdlDv1r3VrUU3hTvCLUwJAPUTxTdQhyJuv01533yjghUrtO/R8Wox50MZfqf2Y+hJT1fqkKEq3bFDkf36Ke6JxxmjAgAAAAAN2M6cnVqwc4G+2PmFMgoyfM83DW2qPq37qFerXkoIT7AwIQDUfxTfQB0yDEONXnheO3v3UfEvv+jQ228resSIkz5fyc6dSr17iMrS0yVJ2R9+qHK3W41fmiDD37+mYgMAAADAaSW7OFtPrHxCGw9stDrKUUyZcpe4fd+HOcLUo0UP9W7dWxfEXMCnfAGgigzTNE2rQ1gtNzdXTqdTbrdb4eF8PAi1z71ggfY99LDk56eWH3+kwHPOqfY5ijZuVNo9w1SekyNHy5aK/NOftP/ll6WyMoX84Uo1ff112YKCaiE9AAAAADRc6fnpuufre7Q7d7fVUY7Jz/DT5U0uV+/WvfWHhD8owB5gdSQAqDeq2uVSfIviG3XPNE3tvfc+5X39tQLatlWLT/8hm8NR5dfnr1ypPWPulVlYqMD27ZXw1nT5RUYqf/ly7bn3PpnFxQrq2FEJb06Tnf9NAwAAAICkwyNE7vn6Hu0v3K/4kHi9dMVLigyofzd3jAqKkjPAaXUMAKiXKL6rgeIbVijLytLOXr1VnpWlqKFDFDtuXJVel7tokfY+/Ijk8Siky6Vq8sZk2UNDfMcL169X2rDh8ublKeCss9Ts7bfkFxNTW5cBAAAAAA3CxgMbNXLpSLlL3GrlbKXpXacrPiTe6lgAgGqqapfLHfAAi/i5XGr07DOSpEN/f1eF6/91wtdkz5mjvWPHSR6Pwnr0UNO//a1C6S1JwR06qPmsD2SPjlbJr79qd/8BKt2zp1auAQAAAAAagh/3/qghS4bIXeJW++j2er/H+5TeAHCao/gGLBR27bVy3nCD5PVq3/hH5S0srHSdaZo6MGWqMp55VjJNRfzpDjWZ9JdjjkcJTEpSiw9ny79pU3lSU5Xyp34q3rq1Ni8FAAAAAOqlRbsWadSyUSoqK1KXxl30Trd3FBEYYXUsAEAto/gGLBb3+GPyi4+XJyVVmZNePeq46fVq//Mv6OCUKZKk6FGjFP/kkzLs9uOe19GsmZrPnq2Atm1VduCAUu4cqKING2rlGgAAAACgPprz6xw9svwRlXnL1KNFD025ZoqC/YOtjgUAqAMU34DF7OHhavTC85Kk7NmzVbBqle+YWVqqfQ8+pOzZsyXDUNwTTyhmzGgZhlGlc/vHxar5BzMVdP758rrdShl8l/JXrqyV6wAAAACA+sI0TU3bME0vrnlRpkzdkXSHJl45Uf52f6ujAQDqCMU3UA+EXnaZIvv9SZK077HHVZ6XJ29BgdJGjFTuwoWSn58av/KKXAP6V/vc9ogINZvxrkIuu0xmUZHSho9Q7uLFNX0JAAAAAFAvlHvL9cKaF/Tmv9+UJI08f6Qe6/yYbAYVCACcSQzTNE2rQ1itqncCBWqTt7BQO2+8SZ7UVIVd10OefftU/O+NMoKC1PSNNxR6xeWndH6ztFR7H3lEeYsWS4ah+GeeVuRtt9VQegAAAACwnqfco8dWPKbFuxfLkKHHOj+mO866w+pYAIAaVNUul+JbFN+oPwrXr1dK/wHSbz+WdqdTCW9NV9D559fI+c3ycmU8+5xyPvpIkhQ9erSih90jw5+P+wEAAABo2Ao9hbr/2/u1Kn2V/Gx+mnD5BPVo2cPqWACAGlbVLpfP+QD1SHCHDnLdNViS5Bcfr+azZ9VY6S1Jht2u+KefUtSwYZKkg1OmaGfvPspbulT8HRgAAACAhqjMW6Zt2ds0ZMkQrUpfpSC/IE29ZiqlNwCc4djxLXZ8o34xy8uVv3y5gs4/X34uV629T86n85Q5aZLKs7IkScEXXaTYRx5RULtza+09AQAAAOBUuEvc2pq9VclZyYe/ZidrR84OlZSXSJIiAiI09Y9TdV7MeRYnBQDUFkadVAPFN85U5fn5OvTW28p67z2ZpaWSpPA+vRX7wAPyb9TI4nQAAAAAzlTl3nKl5aUpOTu5QsmdUZBR6fogvyCdF32eHuv8mFpFtKrjtACAukTxXQ0U3zjTefbtU+brryt3/gJJkhEQINegQYoaOlT20BCL0wEAAAA4neWX5mtbzjYlZyUrOTtZW7O2alvONhWVFVW6vnFIYyW6EpUUmaQkV5KSIpPUNKypbAbTXAHgTEDxXQ0U38BhRb9sUubEiSpcu1aSZI+KUsyY0Yq45RYZfn4WpwMAAADQkJmmqT35e7Q1a6tvJ3dydrL25u+tdH2APUBtI9oq0ZWoxMjDRXeiK1HhDv7cDgBnMorvaqD4Bv7LNE3lL12qzFf+otKUFEmSo01rxT30kEKuvFKGYVicEAAAAMCpOFR0yFc878jZIY/XU6vvZ8pURkGGtmZvVYGnoNI1scGxFXZwJ7oS1Tysuew2e61mAwA0PBTf1UDxDRzN9HiUPfcjHZw6VeU5OZKkkC6XKv6pp+Ro3tzidAAAAABO5Mic7F+zf1VyVrJ+zTr89UDRAcsy+dv81TqitW8H95GiOyIwwrJMAICGheK7Gii+gWMrz83VwenTlT3zA5kejxwtW6rV5/+U4XBYHQ0AAADA7+zM2am1+9ceLrmzf9W27MrnZBsy1Dy8uRIjE9U2sq2C/YJrPVtkYKSSXElq6Wwpf5t/rb8fAOD0RfFdDRTfwImVpqVp95/6qfzgQcU88ICih91jdSQAAAAAkvbm79Ub69/Qwl0LjzoWYA84vLvalaSzIs9SkitJiZGJCvav/bIbAIDaUNUul7vVAagSR0KC4h5+SPsefkQH33xT4T17ytG0idWxAAAAgDOWu8Std355R7O3zPbN6e7cqLPOiTpHZ0WepbNcZ6lZeDP52fijPwDgzMPvfgCqLLx3b+V88g8V/vyz9k+YoISpU6yOBAAAAJxxSstLNffXuZq+cbpyS3MlSZ3jO2tsp7E6J+oci9MBAFA/UHwDqDLDMBT/1JPaeeNNyl+6VHnLvlXYNVdbHQsAAAA4I5imqcW7F+uv6/+qvfl7JUltItrogY4P6IomV8gwDIsTAgBQf1B8A6iWgDZtFDV4kA69/Y72v/CCQi69RLagIKtjAQAAAKe1tRlrNWntJG06tEmSFBMUo9EXjlaf1n0YZQIAQCX43RFAtUWPGCH3F1/Ks3evDk6frtj777c6EgAAAHBa2pmzU6+tf03fpX0nSQr2C9bgdoM18JyB3KASAIDjoPgGUG224GDFPTZee8fcq6y/vytnnxsU0Kql1bEAAACA08bBooOatmGa5m2bp3KzXHbDrlsSb9Hw84crOija6ngAANR7FN8ATkrYtdcq5A9XquD75dr//HNK+PvfmSkIAAAAnKJCT6He3/y+ZmyaoaKyIknS1QlX6/6O96uVs5XF6QAAaDgovgGcFMMwFP/EE9q5urcKflylvEWLFH799VbHAgAAABqkMm+ZPt/+uaZumKoDRQckSe2j22tsx7HqFN/J4nQAADQ8FN8ATpojIUFRw+7RwTcma/+ElxRy5ZWyh4ZaHQsAAABoMEzT1A97f9Br617T9pztkqSmoU11X8f71L15dz5VCQDASaL4BnBKou6+W+7PP5cnJVUHJ09R3PhHrY4EAAAANAj/OfQfvbr2Vf2U8ZMkyRng1LDzhun2pNvlsDssTgcAQMNG8Q3glNgCAhT/5yeVNmSIsmbNkvOmGxV41llWxwIAAADqrb35ezX5X5P15c4vJUkOm0P9z+6vu9vfLWeA0+J0AACcHii+AZyy0MsvU1iPHspbvFgZzzyr5rNnybDZrI4FAAAA1CvuErfe+eUdzd4yWx6vR5LUq1UvjblwjBqHNrY4HQAApxeKbwA1Im78oypYvlxF//qX3J99poi+fa2OBAAAANQLpeWlmvvrXL31y1tyl7glSZ3jO2tsp7E6J+oci9MBAHB6ovgGUCP84+IUPXq0Ml9+WZmv/EWh11wjv8hIq2MBAAAAljFNU1/t/kqvr39de/P3SpLaRLTRAx0f0BVNruDGlQAA1CKKbwA1xnXnALk/+0wl27bpwGuvq9Gzz1gdCQAAALDE2oy1mrR2kjYd2iRJigmK0agLRumGNjfIz8YfxQEAqG38bgugxhj+/op/+iml9B+gnE8+UUTfmxV0/vlWxwIAAADqzE73Tr227jV9l/adJCnYL1iD2w3WwHMGKtg/2NpwAACcQSi+AdSo4I4d5bzpJrk/+0zpzzyjlp98IsNutzoWAAAAUKsOFh3Umxve1KfbPlW5WS67YVfftn014oIRig6KtjoeAABnHIpvADUu9sFxylu6VCWbtyh7zly5BvS3OhIAAABQKwo9hZq5eaZmbJqhwrJCSdJVCVfpgY4PqJWzlcXpAAA4c1F8A6hxflFRih37gDKefkYHXn9dwRddpMCkRKtjAQAAADWm3Fuuf27/p6ZumKoDRQckSe2i2mlcp3HqFN/J4nQAAIDiG0CtiLj1VuV8Ok/Fv/yiXTfdpIi+Nyt69Bj5x8VaHQ0AAAA4JSv2rtCktZO0PWe7JKlJaBPd3+F+dWvRTTbDZnE6AAAgSYZpmqbVIayWm5srp9Mpt9ut8PBwq+MApw3P/v3a/8KLyluyRJJkBAUpavAgue66W/bQEIvTAQAAANVTXFasV35+RR9v/ViSFO4I17DzhumOs+6Qw+6wOB0AAGeGqna5FN+i+AZqW+H6fynz5ZdVtGGDJMkeHa2Y0aMUccstMvz44AkAAADqv53unXro+4e0NXurJGnA2QM0/PzhcgY4LU4GAMCZheK7Gii+gdpnmqbylnytzFcnyZOSKklytGql2AfHKfTqq2UYhsUJAQAAgMp9vv1zvbDmBRWVFckV6NKLl7+oy5pcZnUsAADOSBTf1UDxDdQds7RU2R99rINTp6o8J0eSFNypk2IfeVhB7dtbnA4AAAD4rwJPgV5Y/YIW7FwgSercqLMmXD5BMcExFicDAODMVdUu19K7bkyYMEEXXXSRwsLCFBsbqxtvvFHJyckV1pSUlGjMmDGKjo5WSEiI+vTpoz179lRYk5qaqt69eyskJETR0dG69957VVpaWpeXAqCKDIdDrjsHqPXXSxQ1dKiMgAAVrl2r3bfepr1jx6o0Lc3qiAAAAIB+zfpVt39xuxbsXCCbYdOYC8do+rXTKb0BAGggLC2+v//+e40aNUqrV6/W119/rbKyMnXr1k0FBQW+Nffff78+++wzzZ07VytWrFB+fr569eql8vJySVJ5ebl69uypgoICrVixQnPnztWnn36qcePGWXVZAKrAHham2HFj1XrxIjlvuEEyDOUuXKQd1/fUgTcmiw+jAAAAwAqmaerDLR+q35f9lJKborjgOM3oPkP3nHeP7Da71fEAAEAV1atRJwcOHFBsbKy+//57XXnllXK73YqJidEHH3yg22+/XZK0b98+JSQkaOHCherevbsWLVqkXr16KS0tTY0bN5YkzZ07V4MGDVJmZmaVRpcw6gSwXvGWLcp85RUV/LhKkpTwzjsKvZy5iQAAAKg77hK3nvrxKS1NXSpJuqrpVXrusucUERhhcTIAAHBEgxh18r/cbrckyeVySZLWrVsnj8ejbt26+dY0btxY7dq1048//ihJWrVqldq1a+crvSWpe/fuKikp0bp16yp9n5KSEuXm5lZ4ALBW4NlnK+Hvf1dk//6SpANvvMGubwAAANSZDZkbdOuCW7U0dan8bH565KJH9MY1b1B6AwDQQNWb4ts0TY0dO1aXX3652rVrJ0nKyMiQw+FQZGRkhbVxcXHKyMjwrYmLi6twPDIyUg6Hw7fmf02YMEFOp9P3SEhIqIUrAlBdhmEoevgwGYGBKt64Ufnff291JAAAAJzmvKZX7/zyjgYtHqT0gnQlhCVo1vWzNOCcATIMw+p4AADgJNWb4nv06NHauHGj5syZc8K1pmlW+BeQyv5l5H/X/N748ePldrt9jzRupgfUG34xMYrs30+SdJBZ3wAAAKglh4oOafaW2br9i9v11/V/VblZrutaXqePe32sc6POtToeAAA4RX5WB5CkMWPGaP78+Vq+fLmaNm3qez4+Pl6lpaXKzs6usOs7MzNTXbp08a1Zs2ZNhfNlZ2fL4/EctRP8iICAAAUEBNTClQCoCVF3363sOXNVvHmz8pctU9gf/2h1JAAAAJwGSspL9F3ad/pixxdasXeFyswySVKgPVDjO4/XTW1uYpc3AACnCUt3fJumqdGjR2vevHlatmyZWrZsWeF4x44d5e/vr6+//tr3XHp6ujZt2uQrvi+99FJt2rRJ6enpvjVLlixRQECAOnbsWDcXAqBG+blccg0YIEk6MHmKTK/X4kQAAABoqEzT1L8y/6VnVj2jqz+6Wg9+/6C+2/OdyswytYtqp/EXj9eSW5bo5rY3U3oDAHAaMUwL5wiMHDlSH374oT7//HMlJSX5nnc6nQoKCpIkjRgxQl988YXee+89uVwuPfjggzp06JDWrVsnu92u8vJyXXDBBYqLi9Mrr7yirKwsDRo0SDfeeKMmT55cpRxVvRMogLpTnpOj7X+8Vt6CAjV5/XWF9+hudSQAAAA0IGl5afpixxdasHOB0vL+O94yPiRevVv1Vq/WvdTK2crChAAA4GRUtcu1tPg+1t+mz5gxQ4MGDZIkFRcX66GHHtKHH36ooqIi/fGPf9S0adMq3JAyNTVVI0eO1LJlyxQUFKR+/frpL3/5S5XHmVB8A/XTgTcm6+C0aXK0aa1Wn38uw263OhIAAADq0OZDm7Unb0+1XpNVnKVFuxZpfeZ633PBfsHq2ryr+rTuo07xnWQz6s3trgAAQDU1iOK7vqD4Buqn8tzcw7u+8/LUeNJf5OzZ0+pIAAAAqAOmaepvG/+maRumnfQ5bIZNlzS6RL1b99Y1Cdco2D+4BhMCAACrVLXLrRc3twSAytjDw+UaPEgH35isg1OmKrxHD3Z9AwAAnOa8plcv/fSS5vw6R5J0Xsx58rf5V/n1fjY/Xdb4Ml3f8nrFhcTVVkwAAFDPUXwDqNdcAwcq+/2ZKt21S7lffilnnz5WR6qS8vx8HXrrbQWefZbCr7vO6jgAAAANgqfco8dXPq5FuxbJkKFHL35U/c7uZ3UsAADQADHYDEC9Zg8NlevuuyVJB6ZOlVlWZnGiEys7dEipA/9Ph956S3sfGKu9Dz+s8vwCq2MBAADUa4WeQo1ZNkaLdi2Sn81PE6+cSOkNAABOGsU3gHrP1b+f7JGR8qSkyv35fKvjHFfpnj3a3a+fijdvli08XLLblTt/gXb1vVlF//mP1fEAAADqpZziHA1dMlQr961UkF+Qpl4zVde15FNzAADg5FF8A6j3bCEhihoyRJJ0cNo0mR6PxYkqV5y8VSl/6idPSqr8mzRRy48/UvMPZsqvUSN5UlK1+44/KWvmTHFPYQAAgP/KKMjQ/y3+P208uFHOAKf+n707j6uqTvw//j4XLjtcQMBdFBTcHU3LrNRMc0kwWyezHMuWSU3TnGrmW01Nu1lOu01mZWN7JmRqZplLqZNbm6KCioqK7Issl3vP7w+L+Tm2cBU4XHg9Gx4jn7Pc9/2juLz9nM/nlYtf0YDWA6yOBQAAvBzFNwCvEDHuGvlERcl56JAKFi+2Os4pjm/erP3XXaeqY8fk36mTYhctkl/79grq00dxiz9U6LChktOpo488qoN/vk1V+flWRwYAALBcRmGGrlt2nTIKM9Q8qLleH/G6ekb3tDoWAABoBCi+AXgFW2Cgom6+SZKU89JLcldWWpzov4o//0KZN9wod1GRAvv0UeybC2VvHlN93Cc8XK2feUbN77tXhp+fSlav1t4xl6p00yYLUwMAAFjr+5zvNWHZBB0pPaL2Ye21cORCxYfHWx0LAAA0EhTfALxG+NVXyzcmRlVZh1Xw/vtWx5EkFSz+SAenTpVZUaGQQYPUbv4r8nE4TjnPMAxFjhun9u++I78OHVSVna3MP03UsWef84oNOwEAAGrT11lf64YVN6igokDdmnXT6yNfV8uQllbHAgAAjQjFNwCvYfP3V7Nbb5Ek5b40T+6KCkvz5M5/VYfvuUdyueQYM0ZtnntWtsDA37wmoHNndfjgfTkuv0xyu5Xz/PPK/NNEOY8cqafUAAAA1lqxb4VuW3WbyqrKdE7LczR/+HxFBkRaHQsAADQyFN8AvEr4FVfIt2VLVWVnq+Cddy3JYJqmjs6erezZsyVJkRMnquWjj8iw22t0vS0oSK0eflitZs+WLThYx7/5RnvHXKrizz+vy9gAAACWe2fnO5r15SxVuat0cezFeuGiFxRsD7Y6FgAAaIQM0zRNq0NYraioSA6HQ4WFhQoLC7M6DoDfkf/Ouzpy//3yiY5Sx08//d1Z1rXJrKrS4XvvU+FPG2zGzLpTzW688bTvV7l/vw7NmKnyH36QJEVcd52az7pThp9freQFAACoLU63UxkFGdqVv0tpeWnKLM6U23TX+PpyV7k2Ht4oSboq4Sr99Zy/ysfmU1dxAQBAI1XTLpfiWxTfgLcxKyuVPnKUnIcOKeYvf1GzGybWy+u6y8t16I4ZKvniC8lmU8t//EPhl192xvc1KyuV/fRc5S1YIEmKvuMORd1y8xnfFwAA4HTll+crLT9NaXlp1UV3emG6qtxnvjfJrb1u1W29bpNhGLWQFAAANDUU3x6g+Aa8T8EHH+rw3/4mn8hIdVz5qWzBdfuIrKuoSAf+fJvKNm+W4een1nOfVuiQIbX6Gnn//reO/uMh2du1U/yK5fwyCAAA6pzL7dL+ov3VJXdafpp25e1Sdln2L54fYg9RQkSCEiMTFeeIk7+Pv0evFxsWqz7N+9RGdAAA0ETVtMv1rcdMAFBrHGOSlTNvnpyZmcpbtEhRN91UJ69TsXu3CpcsUeGSFFUdOyZbSIjavviCgvr1q/XXCh87VtlznpIzM1Nl27YpqHfvWn8NAADQdBVVFmlX3q4T5fZPs7j3FOxRheuXNwxvG9pWiRGJSohMUGJEohIjE9UquBV/OQ8AAPN34gQAACAASURBVLwCxTcAr2T4+ip68m3Kuutu5b0yXxHXXCOfkJBauXdVbq6Kli5V4UdLVP7jj9Xjvs2bq+28lxTQuXOtvM7/sgUFKWzYUBUuSVFhSgrFNwAAOC1u060DxQdOmsGdlp+mw6WHf/H8QN9AdYrodKLc/qng7hTRiU0nAQCAV2OpE7HUCeCtTJdLGaOTVLl3r4IHXqCQQYMU0Lmz/BMTPS7B3RUVKvniCxV+tEQla9dKLteJA76+Chk0SI4xyQoZPFi2Ot50smT9eh24cZJ8HA51WruGTS4BAECNZRRkaEn6En2c8bGyj//yUiWtgltVz+D+ecmStqFtZTNs9ZwWAADg9LDUCYBGz/DxUfS0aTo0fbpK16xV6Zq11cfsbdrIPzFRAYmJ8u+cqIDOnWVv00aG7b+/1JmmqbKtW1X40RIVLVsmd3Fx9bGAnj3lGJOssFGj5BsRUW/vKbh/f/nGxKgqO1sla9YodOjQenttAADgfQrKC/TJ3k+Ukp6iH3J/qB739/FXx/COSoz8qeD+acmSMD8m+gAAgKaB4huAVwsbMVw+ry1Q6dcbVLFzp8rT0lR15IicBw/KefCgSlatqj7XFhws/4QE+XdOlE9IqIqWL5fzwIHq474tW8qRnCzHmGT5x8VZ8XZk+PgoLGm08ua/qsIlKRTfAADgFE6XU2sOrVHKnhStObRGVe4qSZKv4avz25yvMfFjNLDNQPn58OQYAABouljqRCx1AjQ2Vfn5qkjbpYq0nSpP26WKnTtVsWePzMrKU861BQUpdPhwOcaMUdDZ/U6aEW6V8rRd2jtmjAy7XZ3WrZWPw2F1JAAAYDHTNPVj7o9akr5Ey/YuU0FFQfWxrs26Kjk+WSM7jFRkQKSFKQEAAOoeS50AaLJ8IyLk2/8cBfc/p3rMdDpVuW+fynemqSJtp6qOHVPw+RcodOhFsgUGWpj2VAGJCfLv3FkVO3eqaNlyRfzxaqsjAQCAWuB0O7Xl6BYVVRZJOlFm//zPif+ZJ4/9dM7R40f1cfrHSi9Mr75XdGC0RseNVlJ8kjpFdLLk/QAAADRkFN8AmgTDbpd/p07y79RJShptdZzf5UhOVvbOnSpMSaH4BgDAi/08UzslPUXL9i5TfkX+ad/L38dfQ9oN0Zj4MTqn5TnytfHrHAAAwK/hkxIANEBhoy9R9pNPqmzLFlVmZsqvXTurIwEAAA8cKT2ijzM+Vmp6qjIKM6rHmwU0U2xYbPX3hmHIkPHf/5chGT8d++mfAN8ADW47WBfHXqwQv5D6fisAAABeieIbABoge0yMgs89V6Xr16swJVXRUyZbHQkAAPyOUmepPtv/mVLTU7XpyKbq5Up+nqmdFJekc1udy0xtAACAesAnLgBooBxjkn8qvlMUNfk2GYZhdSQAAPA/XG6XNh7ZqNT0VK3KXKWyqrLqY32b91VyfLKGxg5VqF+ohSkBAACaHopvAGigQocOlREUJGdmpsq2bVNQ795WRwIAoFEqrCjUin0rtPnoZrlNtyRVz9aWTqzTXf3n/29ckrZnb1d2WXb197FhsUqKS9Lo+NFqHdK6jpMDAADg11B8A0ADZQsKUtiwoSpckqLClBSKbwAAapHT5dS6Q+uUmpGq1QdWy+l2nva9wvzCNLLDSCXHJ6tHVA+e0gIAAGgAKL4BoAELS05W4ZIUFX+yTC3uuUeGn5/VkQAA8FqmaerH3B+Vkp6iZXuXKb8iv/pYYkSihsUOO2XzSEMnl9j/W2q3CGqh81qfJz8ffkYDAAA0JBTfANCABffvL9+YGFVlZ6tkzRqFDh1qdSQAALzOkdIj+jjjY6WmpyqjMKN6PCowSpd0uERJ8UlKjEy0MCEAAABqG8U3ADRgho+PwkaPVt6rr6pwSQrFNwAANVTqLNVn+z9TanqqNh3ZVL02t7+Pv4a0G6Lk+GT1b9lfvjZ+JQIAAGiM+JQHAA2cY0yy8l59VSWrV8tVWCgfh8PqSAAANEgut0sbj2xUanqqVmWuUllVWfWxfi36KSku6ReXMwEAAEDjQ/ENAA1cQGKi/BMTVZGWpqJlyxXxx6utjgQAQIOyO3+3UtNTtTRjqbLLsqvH24e1V1J8ki6Ju0StQ1pbmBAAAAD1jeIbALyAIzlZ2bNnqzAlheIbAABJOWU5WrZ3mVLTU7Ujb0f1uMPfoRHtRyg5Plk9onqcshklAAAAmgaKbwDwAmGjRyt7zhyVbdmiygMH5Ne2rdWRAACod+VV5Vp9YLVSM1K1/tB6uUyXJMnX5quBrQcqOT5ZF7S5QH4+fhYnBQAAgNUovgHAC9ibxyj43HNVun69ClNSFD15stWRAACoN9/nfK/3d72vFftWqMRZUj3eM6qnkuKTNKL9CIUHhFuYEAAAAA0NxTcAeAnHmOTq4jvqttt4dBsA0OgdKDqgp7c8rZX7V1aPtQxuqdFxo5UUn6QOjg4WpgMAAEBDRvENAF4idOhQGUFBcu7PVPn27Qr8wx+sjgQAQJ0orCjUS9tf0ttpb6vKXSWbYdOoDqN0WafLdFbzs2QzbFZHBAAAQANH8Q0AXsIWFKSwYUNVuCRFhSkpFN8AgEan0lWpt3a+pXnfzlNxZbEk6bzW52nGWTOUEJFgcToAAAB4E6ZKAIAXCUtOliQVLf1EZmWlxWkAAKgdpmlq+d7lSv4oWU9+86SKK4uVEJGgeUPn6aWhL1F6AwAAwGPM+AYALxLcv798Y2JUlZ2tkrVrFXrRRVZHAgDgjGzN3qon//Okvs35VpIUHRitqb2nKjk+WT42H4vTAQAAwFtRfAOAFzF8fBQ2erTyXn1VhR8tofgGAHitzKJMzd0yt3rjykDfQE3sPlETuk5QkD3I4nQAAADwdhTfAOBlHGOSlffqqypZvVquwkL5OBxWRwIAoEacLqcyCjP00Z6P9PbOt1Vlnti4cmzHsZr8h8mKDoq2OiIAAAAaCYpvAPAyAYmJ8k9MVEVamoqWLVfEH6+2OhIAAKfILctVWn6adufvVlpemtLy05RRmKEqd1X1Oee3Pl8zzpqhThGdLEwKAACAxojiGwC8kCM5WdmzZ6swJYXiGwBgqSp3lfYV7lNa/olye1feLqXlpymnLOcXzw+1h6prVFfd0P0GDWg1oJ7TAgAAoKmg+AYALxQ2erSy58xR2ZYtqjxwQH5t29bJ65gulwo/+kjFqz5X9LTbFZCYWCevAwDwLi63SxsOb1BqRqo+z/xcZVVlp5xjyFDb0LZKjExUQkSCEiMSlRiZqJbBLWUYhgWpAQAA0JScVvHtdru1Z88eZWdny+12n3Rs4MCBtRIMAPDr7M1jFNy/v0q/+kqFKSmKnjy5Vu9vmqZK165V9uwnVbF7tyTJVVSo9m++WauvAwDwLrvydyk1PVVLM5bqWNmx6vFA38CTyu2EiAQlRCSwSSUAAAAs43HxvWHDBo0bN0779++XaZonHTMMQy6Xq9bCAQB+nWNMcnXxHXnddfIJC6uV+5b/+KOOzp6t419vkCTZHA65jx9X2TebVbZ9uwJ79aqV1wEAeIecshx9kvGJUjNStTNvZ/W4w9+hEe1HKCk+ST2ieshm2CxMCQAAAJzM4+L71ltvVd++fbV06VK1bMljigBgldChQ2UEBcm5P1O7z79AIUOGyDEmWSHnny/Dbvf4fs6sLB375z9VmJIqmaYMu10R48cr6tZbdPTRx1T40UfKfXWB2vxzbh28GwBAQ1JeVa7VB1YrJT1FX2V9JZd5YnKLr81Xg9oMUlJ8kga2Hii7j+c/bwAAAID6YJj/O237dwQHB2v79u3q2LFjXWWqd0VFRXI4HCosLFRYLc2YBID6UPLll8p+ck71ciSS5BMZqbBLLpFjzBgFdOv6u39B6SoqUu7LLyvvjYUyKyslnVhDPHr6NPm1aSNJKk/bpb1jxkg2m+KXL5Nfu3Z196YAAJbIKcvRzryd+mz/Z1qxb4VKnCXVx3pG9VRSfJJGtB+h8IBwC1MCAACgqatpl+vxjO9zzjlHe/bsaVTFNwB4q5BBgxQ8cKAqdu5U4UdLVPjxx3Ll5ip/4ULlL1wov47xcowZI0dSkuwtWpx0rVlZqfy331bOCy/KVVAgSQo6+2zFzJqlwB7dTzo3IDFBwRdcoNK1a5X3+htqce//1dt7BADULqfbqb2Fe5WWl6Zd+buUlpemtPw05ZXnnXRey+CWGh03WknxSerg6GBRWgAAAOD0eDzje/Hixfq///s/zZo1Sz169JD9fx6n79mzZ60GrA/M+AbQWJhVVSpdv16FS5ao+LNV1TO4ZRgKPre/wpKTFTp0mErXrVX2U0/LmZkpSfKLj1fMnTMVMnjwr84QL/36a2VOvEFGYKA6fr5KvhER9fW2AACnqaC8QGn5adXl9q78XUovSJfT7TzlXEOGYsNi1Tumt5Lik3RW87NYtxsAAAANTk27XI+Lb5vt1A+/hmHINE2v3dyS4htAY+QqKlLRihUqXLJEZd9s/u8BHx/pp/9W+0RHKXrqVIVfdpkM399+CMg0Te297HJV7Nih6OnTFHXrrXUZHwBwBnbk7tDTm5/W14e//sXjwfZgJUQkKCEiQYmRiUqMSFTH8I4KsgfVc1IAAADAM3VWfO/fv/83j8fGxnpyuwaB4htAY1d58KAKU1JUuGSJnPszZQQFqdkNN6jZxD/JFhxc4/sUpqYqa9Zf5BMVpY6rPpPN378OUwMAPHW45LCe3fqsPs74WKZOfMxvE9KmutxOiEhQQmSCWoe0ZjY3AAAAvFKdFd+NEcU3gKbCNE1VZmTIt1kz+YR7vjmZ6XRqz8XDVXX4sFr840FFXHllHaQEAHiqqLJIr3z3iv79479V6T6xzNWoDqM0tfdUtQltY3E6AAAAoPbU2eaWkpSenq65c+dqx44dMgxDXbp00bRp0xQfH3/agQEAdc8wDPmfwX+rDbtdkddfr+zHH1fegtcUfvnlMn5hCSwAQP1wupx6J+0dzft2ngoqTmxU3K9FP808a6a6RXWzOB0AAABgHY/bihUrVqhr167atGmTevbsqe7du2vjxo3q1q2bVq5cWRcZAQANSPiVV8gWEqLKjAyVfPml1XEAoEkyTVPL9y1X8kfJevw/j6ugokBxjjg9N+Q5zb94PqU3AAAAmjyPlzrp3bu3hg8frscee+yk8bvvvluffvqptmzZUqsB6wNLnQCAZ47Onq28+a8qqF8/xS58w+o4ANCkbDm6RXO+maNvc76VJEUFRmnyHybr0o6Xytd2Wg90AgAAAF6jztb4DggI0HfffadOnTqdNL5r1y717NlT5eXlp5fYQhTfAOAZ55Ej2jN0mFRVpfbvvavAHj2sjgQAjd7ewr2au3muPj/wuSQp0DdQE7tN1IRuExRkD7I4HQAAAFA/atrlerzUSXR0tLZt23bK+LZt2xQTE+Pp7QAAXsjeooUcl4ySJOW++qrFaQCgccsty9VDGx7S2CVj9fmBz2UzbLoy4Up9ctkn+vMf/kzpDQAAAPwCj5+FvOmmm3TzzTcrIyNDAwYMkGEYWrdunR5//HHNnDmzLjICABqgyBtuUOGSFBWv+FSVBw/Kr00bqyMBQKNSVlWmN398U/O/n69SZ6kkaXCbwbrjrDsUFx5ncToAAACgYfN4qRPTNDV37lzNmTNHWVlZkqRWrVpp1qxZuv3222UYRp0ErUssdQIApyfzxkkqXb9eEdddpxZ/+6vVcQCgUXCbbqWmp+rZrc/q6PGjkqSuzbrqzr53ql+LfhanAwAAAKxVZ2t8//+Ki4slSaGhoad7iwaB4hsATk/J+vU6cOMkGUFB6vT5KvmEh1sdCQC82obDGzTnmznambdTktQyuKWm9ZmmkR1GymZ4vEohAAAA0OjUtMs9o23fvb3wBgCcmeABA+SfmKiKtDTlv/2Oom69xepIAOCVdufv1lObn9K6Q+skSaH2UE3qOUnXdrlW/j7+FqcDAAAAvE+Niu8+ffpo1apVioiIUO/evX9zOZMtW7bUWjgAQMNmGIaa3TBRWXfdrbw331TkDRNl8/OzOhYAeI1jx4/p+W3Pa/GexXKbbvkavrq689W6pectigiIsDoeAAAA4LVqVHyPGTNG/v7+1X/2xnW8AQB1I2zUKGU/9bSqjh5VUWqqwi+/3OpIANDgHXce1+s/vK4FPyxQWVWZJGlY7DBN6zNNsWGxFqcDAAAAvN8ZrfHdWLDGNwCcmdz5ryp79mz5xccrLjVFho11aAHgf5mmqR9yf1BKeoqW7V2mgooCSVLP6J66s++d6h3T2+KEAAAAQMNXZ2t8x8XF6T//+Y+aNWt20nhBQYH69OmjjIwMz9MCALxa+FVXKueFF1SZnq7StWsVMmiQ1ZEAoME4XHJYS/cuVUp6ivYW7q0ebxPSRtPPmq6LYy/miUoAAACglnlcfO/bt08ul+uU8YqKCh08eLBWQgEAvItPaKjCr7pKeQsWKHf+qxTfAJq8UmepVu5fqY/TP9amI5tk6sRDlv4+/hrSboiS45PVv2V/+drOaK95AAAAAL+ixp+0U1JSqv+8YsUKORyO6u9dLpdWrVqlDh061G46AIDXiLz+OuUtXKjjmzap7LvvFdiju9WRAKBeudwubTy8USkZKVq1f5XKXeXVx/q16KekuCQNix2mEL8QC1MCAAAATUONi+9LL71UkmQYhiZMmHDSMbvdrvbt22vOnDm1mw4A4DXsLVsqbNRIFaWkKm/BArV+ip8JAKzldDm18chG5Zbl1vlrpReka2nGUmWXZVePtQ9rr6T4JI2OG61WIa3qPAMAAACA/6px8e12uyVJHTp00H/+8x9FRUXVWSgAgHdqNnGiilJSVbRihaIPzpBfm9ZWRwLQxPzaBpL1xeHv0Mj2I5UUn6QeUT1YuxsAAACwiMeLCu7du/f3TwIANEkBXbooeMC5Kv3qa+UvfEPN77nH6kgAmohf20CyWUAzdY7sLNVx/+zwc+ji9hdrYOuBsvvY6/bFAAAAAPyu09pNp7S0VF9++aUyMzNVWVl50rHbb7+9VoIBALxT5MQbThTfi95SyZq1Hl0b2KuXoqZMYaY4gBphA0kAAAAAv8YwTdP05IKtW7dq1KhROn78uEpLSxUZGamcnBwFBQUpJiZGGRkZdZW1zhQVFcnhcKiwsFBhYWFWxwEAr2aapvZdeZXKv//+tK437HZFjB+vqFtvkc//t5EyAEi/vYFk3+Z9lRyfzAaSAAAAQCNW0y7X4+J78ODBSkhI0Isvvqjw8HBt375ddrtd48eP17Rp03TZZZedcfj6RvENALXLVVKiirQ0yYMfMe7jx5W7YIGOf71BkmRzOBR1662KuHacbH5+dRUVgJc47jyuhT8u1Ltp7560gWRsWKyS4pI0On60WofwtAgAAADQ2NVZ8R0eHq6NGzcqMTFR4eHh+vrrr9WlSxdt3LhREyZM0M6dO884fH2j+AaAhsE0TZWuXavs2U+qYvduSZK9dWtF33GHwkaNlGGzWZwQQH2rclfpoz0f6fltzyunLEfSiQ0kR7QfoeT4ZDaQBAAAAJqYmna5Hi94aLfbq3+5aN68uTIzM9WlSxc5HA5lZmaefmIAQJNnGIZCBg5U8HnnqXDxYh375zNyHjqkrDvvVN7rrytm1p0KPvtsq2MCqAemaWrtobV6evPT2lOwR5LUOqS1pvSeootjL5afD0+CAAAAAPh1HhffvXv31jfffKOEhARdeOGFuu+++5STk6OFCxeqR48edZERANDEGD4+Cr/iCoWNGqW8119X7r9eUfl33ynz+gkKufBCxdw5U/7x8VbHBFBHfsj9QU9985Q2Hdkk6cQM71t63qKrE6+m8AYAAABQIx4vdfLNN9+ouLhYF154oY4dO6YJEyZo3bp16tixoxYsWKBevXrVVdY6w1InANCwVeXk6Njzz6vg3fckl0v6qRiPnjJZvtHRVscDUEsOlRzSM1ue0Sd7P5Ek+dn8dG2Xa3Vjjxvl8GezWwAAAAB1uMZ3Y0TxDQDeoSIjQ9lznlLJqlWSJCMoSC3uu1fhl15qcTIAZ6KwolCvfPeK/r3j33K6nZKk0XGjNbX3VLUKaWVxOgAAAAANCcW3Byi+AcC7HP/mGx19YrbKv/1WkhQza5aa3XiDxakAeKrSVam3d76ted/OU1FlkSTpnBbnaEbfGerarKvF6QAAAAA0RLVafPfu3bt6Q8vfs2XLlpqnbCAovgHA+5hut7KfnKO8V1+VJDW7aZKiZ8yo8c8rANbJKcvR0oylemvnWzpUckiS1DG8o+446w5d0PoC/j0GAAAA8Ktq2uXWaHPLS3mEHADQwBg2m5r/ZZZ8IyOU/eQc5f7rFVXl56vl3/8uw9fjvZsB1LGyqjJ9kfmFUjNS9VXWV3KbbklSdGC0Jv9hssZ0HCNfG//uAgAAAKgdLHUiZnwDgLcreP99Hb7vfsntVsjQi9R6zhzZ/P2tjgU0eW7Trc1HNys1PVWf7v9Upc7S6mO9onspKS5JSfFJCrIHWZgSAAAAgDep1RnfAAA0ZOFXXCGbw6GsmXeq5LNVOnDTzWrzwvPyCQmxOhrQJO0r3KfUjFR9nP6xskqzqsdbBbdSUvyJsjs2LNbChAAAAAAaO49nfNtstt9cd9Hlcp1xqPrGjG8AaBxKN27Swdtuk7u0VAFdu6rtv16Wb7NmVscCmoSC8gKt2LdCKRkp+vbYt9XjwfZgDW8/XElxSerTvI9shs3ClAAAAAC8XZ3N+F68ePFJ3zudTm3dulWvv/66HnjgAc+TAgBQS4LPOVvt3nhdB266WeU//qh948ap3fxX5demtdXRgEbDbbp1qPiQ0vLTTnzlpWlX/q7qTSolyWbYNKDVACXHJ2tw28EK9A20MDEAAACApqjW1vhetGiR3nnnHS1ZsqQ2blevmPENAI1Lxd69OnDjJDmzsuQbE6O2r/xLAQkJVscCvM5x53Htyt9V/fVzyX286vgvnp8Ykaik+CRdEneJogKj6jktAAAAgKagpl1urRXf6enp6tmzp0pLS3//5AaG4hsAGh/n0aM6MGmSKnbvkc3hUNsXX1RQn95WxwIaJNM0dbj0sNLyTszi/rnkPlB8QKZO/ahot9nVMbyjEiISlBiZqMSIRCVEJCg8INyC9AAAAACaknrd3LKsrEzPPvus2rRpUxu3AwDgjNmbN1fswoU68OfbVLZ1qzJvuEFtnvmnQgYOtDoaYKnyqnKlF6RXL1Pyc9FdXFn8i+dHBUadKLYjE5QYcaLkjnXEym6z13NyAAAAAKg5j4vviIiIkza3NE1TxcXFCgoK0ptvvlmr4QAAOBM+4eFqN/8VHZw+XaVr1urAbZPV4v/+poDOnT26j19cnHx4IgheKq88T0v2LNGO3B1Ky0/T/qL9cpmnbkbua/iqQ3iH6nL756K7WSAbxAIAAADwPh4vdfL666+f9L3NZlN0dLTOOeccRURE1Gq4+sJSJwDQuJlOp7Lu+auKPv74tK63t2un+KUfy7AzwxXe5eusr3XP2nuUW5570niEf8R/Z3D/tFRJB0cH+fn4WZQUAAAAAGqmzpY6mTBhwhkFAwCgvhl2u1o98bj82rVV4dKlkrvmf+dbdfSonJmZKl71ucJGDK/DlEDtcbqdemHbC5r/3XyZMhXviNfo+NHVRXd0YPRJT/ABAAAAQGNzWptb5ufna/78+dqxY4cMw1CXLl00ceJERUZG1kXGOseMbwDAr8n+5z+V++JLCjr7bMW+8frvXwBY7FDJId215i5tP7ZdknRlwpWa1W+WAn0DLU4GAAAAAGeupl2uzdMbf/nll2rfvr2eeeYZ5efnKy8vT88884w6dOigL7/88oxCAwDQ0ERcfbXk46PjmzapfNcuq+MAv2nl/pW6MuVKbT+2XaH2UD056Endd+59lN4AAAAAmhyPi+/Jkyfr6quv1t69e/Xhhx/qww8/VEZGhv74xz9q8uTJdZERAADL2Fu0UOiQIZKk/LfesjgN8MvKq8r1j6//oRmrZ6jYWayeUT31btK7Gt6e5XkAAAAANE0eF9/p6emaOXOmfHx8qsd8fHw0Y8YMpaen12o4AAAagohrr5UkFS5Jkau42OI0wMnSC9J1zdJr9O6udyVJN3a/Ua+NfE1tQttYnAwAAAAArONx8d2nTx/t2LHjlPEdO3boD3/4Q62EAgCgIQk652z5dYyXefy4Cj9aYnUcQJJkmqY+2PWB/vjxH7WnYI8iAyI1b+g8TT9ruuw2u9XxAAAAAMBSvp5ecPvtt2vatGnas2eP+vfvL0nasGGDnn/+eT322GP69ttvq8/t2bNn7SUFAMAihmEoYtw4HX3wH8pftEgR46+VYRhWx0ITVlxZrAe/flDL9y2XJJ3b8lw9csEjigqMsjgZAAAAADQMhmmapicX2Gy/PUncMAyZpinDMORyuc4oXH2p6U6gAICmy1VSqj2DBsldWqp2r85X8IABVkdCE/Xdse80a80sHSo5JF/DV1P7TNWfuv1JNsPjB/kAAAAAwOvUtMv1eMb33r17zygYAADeyCckWI4xY5S/aJHyFi2i+Ea9yynL0UvbX9L7u96Xy3SpdUhrPT7wcfWK7mV1NAAAAABocDwuvmNjY+siBwAADV7EteOUv2iRSj7/Qs6sLNlbtbI6EpqA487jeuPHN7Tg+wU6XnVckjSi/Qjde+69CvPjSTUAAAAA+CUeF9+SlJ6errlz52rHjh0yDENdunTRtGnTFB8fX9v5AABoMPzj4xXUv7+Ob9ig/LffUcyMO6yOhEbM5XZpSfoSPb/1eWWXZUuSujXrppl9Z6pfi34WpwMAAACAhs3jxSBXrFihrl27atOmTerZs6e6d++ujRs3qlu3blq5cmVdZAQAoMGIGHeNJKngvffkrqiwOA0aI9M0tfbgWl2ReoXu/+p+ZZdlq3VIaz0x8AktumQRpTcAAAAA1IDHm1v27t1bn3PlPAAAIABJREFUw4cP12OPPXbS+N13361PP/1UW7ZsqdWA9YHNLQEANWVWVWnP0GGqOnJErR5/TI4xY6yOhEbkx9wf9dQ3T2njkY2SpDC/MN3c82Zd0/ka+fn4WZwOAAAAAKxX0y7X4+I7ICBA3333nTp16nTS+K5du9SzZ0+Vl5efXmILUXwDADyR89JLOjb3nwro1VMd3nnH6jhoBA6XHNYzW5/RxxkfS5LsNruu7XKtJvWYJIe/w+J0AAAAANBw1LTL9Xipk+joaG3btu2U8W3btikmJsaje61Zs0ZJSUlq1aqVDMPQRx99dNLxP/3pTzIM46Sv/v37n3RORUWFpk6dqqioKAUHBys5OVkHDx709G0BAFBj4VdeKcNuV/n2b1X23fdWx4EXK6os0lObn9LoxaOrS+9RHUYpdWyqZvadSekNAAAAAKfJ480tb7rpJt18883KyMjQgAEDZBiG1q1bp8cff1wzZ8706F6lpaXq1auXJk6cqMsvv/wXzxkxYoQWLFhQ/b2f38mP+U6fPl2pqal6++231axZM82cOVOjR4/W5s2b5ePj4+nbAwDgd/k2a6bQESNUlJqq/EWLFPjoI1ZHghepcldpw+ENSklP0ReZX6jcdeJpuX4t+mnmWTPVLaqbxQkBAAAAwPt5vNSJaZqaO3eu5syZo6ysLElSq1atNGvWLN1+++0yDOP0ghiGFi9erEsvvbR67E9/+pMKCgpOmQn+s8LCQkVHR2vhwoW6+uqrJUlZWVlq27atPvnkEw0fPrxGr81SJwAATx3fulX7rxknw89PHb9cLd+ICKsjoYFLy0tTanqqlu5dqpyynOrxThGdNK33NA1sM/C0P0cBAAAAQFNR0y7X4xnfhmHojjvu0B133KHi4mJJUmho6Okn/R2rV69WTEyMwsPDNWjQID388MPVS6ps3rxZTqdTF198cfX5rVq1Uvfu3fXVV1/9avFdUVGhioqK6u+LiorqLD8AoHEK/MMfFNC1q8p//FGFH3ygZpMmWR0JDVBOWY6WZixVanqq0vLTqsfD/cM1ssNIJccnq1uzbhTeAAAAAFDLPCq+N27cqJSUFDmdTg0dOvSkwrkujBw5UldeeaViY2O1d+9e3XvvvRoyZIg2b94sf39/HTlyRH5+for4n1l2zZs315EjR371vo8++qgeeOCBOs0OAGjcDMNQxLXjdPhv/6f8t95W5MSJMlhiC5LKq8r1xYEvlJKeoq+yvpLbdEs6sWHl4LaDlRSXpPNbny+7j93ipAAAAADQeNW4+F68eLGuvPJKBQQEyNfXV3PmzNGcOXM0ffr0Ogv38/IlktS9e3f17dtXsbGxWrp0qS677LJfvc40zd+cOXXPPfdoxowZ1d8XFRWpbdu2tRMaANBkhF1yibKfmC3noUMq+XKNQodcaHUkWOhA0QG98v0r+nTfpypxllSP94rupeT4ZA1vP5zNKgEAAACgnthqeuIjjzxSveZ2QUGBHnjgAT300EN1me0ULVu2VGxsrHbv3i1JatGihSorK5Wfn3/SednZ2WrevPmv3sff319hYWEnfQEA4ClbQIAcP23OnL9okcVpYKWlGUt1ReoV+nD3hypxlqh1SGvd0vMWfTz2Y7056k1dlXgVpTcAAAAA1KMaF99paWn6y1/+Il/fE5PEZ82apYKCAuXk5PzOlbUnNzdXBw4cUMuWLSVJZ511lux2u1auXFl9zuHDh/X9999rwIAB9ZYLANB0RVzzR8kwVLpunSr37bM6DurZcedx3bf+Pt299m4drzqus5qfpQXDF+iTyz7RlN5TFBsWa3VEAAAAAGiSalx8l5SUKDw8vPp7f39/BQYGntHGkCUlJdq2bZu2bdsmSdq7d6+2bdumzMxMlZSU6M4779TXX3+tffv2afXq1UpKSlJUVJTGjh0rSXI4HLrxxhs1c+ZMrVq1Slu3btX48ePVo0cPDR069LRzAQBQU35t2ypk4EBJUv5bb1mcBvVpd/5uXbP0Gi3es1iGDP251581/+L56tuir2xGjT9iAQAAAADqgEebW65YsUIOx38f03W73Vq1apW+//776rHk5OQa3++bb77RhRf+dz3Un9fdnjBhgl588UV99913euONN1RQUKCWLVvqwgsv1DvvvKPQ0NDqa55++mn5+vrqqquuUllZmS666CK99tpr8mGDMQBAPYm4dpxKvvxSBR8uVvS0abIFBVkdCXXINE19sPsDPbbpMVW4KhQdGK3HLnhMZ7c82+poAAAAAICfGKZpmjU50Wb7/ZlLhmHI5XKdcaj6VlRUJIfDocLCQtb7BgB4zHS7lT5ipJyZmWrxwAOKuPoqqyOhjhRXFuvBrx/U8n3LJUnntT5PD5/3sJoFNrM4GQAAAAA0DTXtcmv8HK7b7f7dL28svQEAOFOGzaaIa66RdGKTyxr+nTK8zA85P+iq1Ku0fN9y+Rq+mnHWDL1w0QuU3gAAAADQALEAJQAAtSD8srEyAgJUkZamsi1brI6DWmSapt744Q2NXzZeB0sOqlVwK7028jVN7D6RtbwBAAAAoIHitzUAAGqBj8MhR9JoSVL+v/9tcRrUloLyAk39fKpmfzNbVe4qDW03VO8mvate0b2sjgYAAAAA+A0U3wAA1JKIceMkSUWfrpQzO9viNDhTm49u1hWpV+jLg1/Kz+anv53zNz01+Ck5/B2/fzEAAAAAwFIU3wAA1JKALl0U2Lu3VFWlnGefY61vL+VyuzRv+zzdsOIGHT1+VO3D2uvfl/xbf+z8RxmGYXU8AAAAAEANUHwDAFCLmt00SZJU8N57Ovy3/5NZVWVxIngipyxHt3x2i57b9pzcpltJcUl6Z/Q76hzZ2epoAAAAAAAPeFx8HzhwQAcPHqz+ftOmTZo+fbpefvnlWg0GAIA3Ch0yRC0ffkiy2VT44Yc6OPV2ucvLrY6FGvgq6ytdnnK5Nh7eqEDfQD103kN65IJHFGQPsjoaAAAAAMBDHhff48aN0xdffCFJOnLkiIYNG6ZNmzbpr3/9qx588MFaDwgAgLcJv/xytXn2GRn+/ir54gtl3jhJrsJCq2PhV1S5q/TMlmd068pblVeep04RnfT2JW9rTMcxVkcDAAAAAJwmj4vv77//XmeffbYk6d1331X37t311VdfadGiRXrttddqOx8AAF4p9KKL1O6Vf8kWGqqyzZu1/7rr5TzKhpcNzZHSI7pxxY3613f/kilTVyZcqUWjFikuPM7qaAAAAACAM+Bx8e10OuXv7y9J+uyzz5ScnCxJ6ty5sw4fPly76QAA8GJB/fop9s2F8omOUsWuXdo/bpwq9u61OhZ+svrAal2ReoW2ZG9RiD1EswfN1n3n3qcA3wCrowEAAAAAzpDHxXe3bt300ksvae3atVq5cqVGjBghScrKylKzZs1qPSAAAN4sIDFR7d96S/bYdnIeOqT9145X2fc/WB2rSXO6nHriP09o6udTVVhRqK7Nuurd0e9qRPsRVkcDAAAAANQSj4vvxx9/XPPmzdPgwYN1zTXXqFevXpKklJSU6iVQAADAf/m1aaP2ixYpoGtXufLylHn99Sr9+murYzVJB4oP6Lpl12nhjwslSeO7jNfCkQvVNqytxckAAAAAALXJME3T9PQil8uloqIiRUREVI/t27dPQUFBiomJqdWA9aGoqEgOh0OFhYUKCwuzOg4AoJFylZTo4JSpOr5hgwy7Xa1mP6GwEcwyri/L9y3XA189oBJnicL8wvTQeQ/pwnYXWh0LAAAAAOCBmna5Hs/4liTTNLV582bNmzdPxcXFkiQ/Pz8FBQWdXloAAJoAn5AQtX15nkKHD5fpdOrQHTOU/9ZbVsdq9KrcVXp4w8Oa9eUslThL1Dumt95Pep/SGwAAAAAaMV9PL9i/f79GjBihzMxMVVRUaNiwYQoNDdUTTzyh8vJyvfTSS3WREwCARsHm56fWT83RkX+Eq+Dtd3TkgQdVlZunqMm3yTAMq+M1OhWuCt215i6tylwlQ4Ym9Zik2/5wm3xtHn8EAgAAAAB4EY9/65s2bZr69u2r7du3n7SZ5dixYzVp0qRaDQcAQGNk+Pioxf33y7dZlHKef145zz0n54EDCujZw6P7BCQmKqhv3zpK6f1KKkt0+xe36z9H/iM/m5+eGPiELoq9yOpYAAAAAIB64HHxvW7dOq1fv15+fn4njcfGxurQoUO1FgwAgMbMMAxFT50in8gIHX3oYRUuWaLCJUs8vk/w+ecrZtadCkhMrIOU3iunLEe3fXabduTtULA9WM8OeVb9WvSzOhYAAAAAoJ54XHy73W65XK5Txg8ePKjQ0NBaCQUAQFMRee218mvTRoVLUmS63TW+zqysVMnatSpdt05716+XY+xYRd8+VfYWLeowrXc4WHxQt6y8RZnFmYoMiNSLQ19U12ZdrY4FAAAAAKhHhmmapicXXH311XI4HHr55ZcVGhqqb7/9VtHR0RozZozatWunBQsW1FXWOlPTnUABAGhIKjMzlf300ypetlySZAQEKHLCBDW7aZJ8QkIsTmeNXfm7dOvKW3Ws7Jhah7TWvGHzFBsWa3UsAAAAAEAtqWmX63HxnZWVpQsvvFA+Pj7avXu3+vbtq927dysqKkpr1qxRTEzMGYevbxTfAABvVrZ9u44+MVtlmzdLknwiIxU1+TZFXHWVDLvd4nT1Z2v2Vk1eNVnFlcXqGN5R84bNU0yQ930uAQAAAAD8ujorviWprKxMb731lrZs2SK3260+ffro2muvVWBg4BmFtgrFNwDA25mmqZLPP1f2k3NUuXevJMkvNlbRM2codNgwGYZhccK6tebgGs1YPUMVrgr1jumtZ4c8K4e/w+pYAAAAAIBaVqfFd2ND8Q0AaCxMp1MF77+vY889L1duriQpsE8fxcy6U0G9e1ucrm6kpqfq3vX3ymW6NLDNQD056EkF+nrnX8YDAAAAAH5brRbfKSkpGjlypOx2u1JSUn7z3OTkZM/TWoziGwDQ2LhKSpU7/xXlLXhNZnm5JCn04ovV/O67ZG/VyuJ0teeNH97Q7G9mS5KS4pL0wHkPyG5rOsu7AAAAAEBTU6vFt81m05EjRxQTEyObzfbrNzMMuVyu00tsIYpvAEBj5Tx6VMeefVaFHy6W3G75Rker7SuvKCAxwepoZ8Q0TT2z9Rm98t0rkqTrul6nO/veKZvx659TAAAAAADej6VOPEDxDQBo7MrTdilr1ixV7NolW1iY2r74goLOOsvqWKelyl2lhzY8pA92fyBJmtZnmm7sfmOjX8ccAAAAAFDzLpdpUQAANAEBiQmKXfiGAvv0kbuoSJk33Kji1autjuWxLUe3aMKyCfpg9weyGTbdf+79mtRjEqU3AAAAAOAkHhfft99+u5555plTxp977jlNnz69VkIBAIDa5+NwqN38VxQyaJDMigodnDxFhUuWWB2rRvYW7tW0z6dpwvIJ+jbnWwX6BmrOoDm6IuEKq6MBAAAAABogj4vvDz74QOedd94p4wMGDND7779fK6EAAEDdsAUGqs1zz8oxZozkcinrrruV+9prVsf6VblluXpow0Mau2SsPj/wuWyGTVckXKGlY5dqaOxQq+MBAAAAABooX08vyM3NlcPhOGU8LCxMOTk5tRIKAADUHcNuV8tHH5FPRITyXntN2Y89LldunqJn3NFglgwpqyrTGz+8oVe/f1XHq45Lkga3Gaw7zrpDceFxFqcDAAAAADR0HhffHTt21PLlyzVlypSTxpctW6a4OH4RBQDAGxg2m2Lu+ot8IiN17KmnlPuvf8lVkK8W998vw9fjjwe1xuV2KSU9Rc9tfU7ZZdmSpG7Numlm35nq16KfZbkAAAAAAN7F499sZ8yYoSlTpujYsWMaMmSIJGnVqlWaM2eO5s6dW+sBAQBA3TAMQ1E33ySfiHAduf/vKnjvfbkKCtTqySdl8/ev1yymaWrdoXV6avNT2lOwR5LUOqS1bu99u0Z0GCGbwX7cAAAAAICaM0zTND296MUXX9TDDz+srKwsSVL79u3197//Xddff32tB6wPRUVFcjgcKiwsVFhYmNVxAACod0UrVypr5p0yKysVdPbZavPC8/IJCanz1zVNUz/m/qintzytjYc3SpLC/MJ0c8+bdU3na+Tn41fnGQAAAAAA3qOmXe5pFd8/O3bsmAIDAxVSD78Y1yWKbwAApNKNm3TwttvkLi2Vf9cuavfyy/KNiqq1+5dXlSu9IF1p+WlKy0tTWn6aduXvUnFlsSTJbrNrXOdxuqnnTXL4n7qfCAAAAAAAdVp8V1VVafXq1UpPT9e4ceMUGhqqrKwshYWFeWUJTvENAMAJZT/8oAM33SxXXp7sse3Ubv58+bVp49E9TNNU9vHs6mL755J7f9F+uU33Kef72nx1cezFmtp7qtqEevZaAAAAAICmpc6K7/3792vEiBHKzMxURUWFdu3apbi4OE2fPl3l5eV66aWXzjh8faP4BgDgvyr37VPmjZPkPHRItrAw2Vu1kgxDhmFIP3/ZbJIhGfr5z4ZcpksHSg5qW/RxzR9YeeK8/xHhH6HEyEQlRiQqMTJRCREJinPEye5jt+CdAgAAAAC8TU27XI83t5w2bZr69u2r7du3q1mzZtXjY8eO1aRJk04vLQAAaDD82rdX7KJFOjBpkip271ZFUVGNr20uafhu6UCYj/YMjlNiRKISIhOqi+7owOgTBToAAAAAAHXI4+J73bp1Wr9+vfz8Tt5sKjY2VocOHaq1YAAAwDr25jFq/8H7Ktu6TabTKZluyTQl05TpdkumJJlyV1Xps8zPtDxjmUzTrb45oRq0tlA3femnuBnPyq9dO6vfCgAAAACgCfK4+Ha73XK5XKeMHzx4UKGhobUSCgAAWM/m56fgc87+1eM5ZTm6Z+092mDfICVKl8QlafzZf1PuTVN0fNMmZd3zV8W+8boMH596TA0AAAAAgGTz9IJhw4Zp7ty51d8bhqGSkhLdf//9GjVqVK2GAwAADdNXWV/p8pTLteHwBgX6BurBAQ/q0fMfVYh/qFo+8ohsQUEq27xZea+9bnVUAAAAAEAT5PHmlllZWbrwwgvl4+Oj3bt3q2/fvtq9e7eioqK0Zs0axcTE1FXWOsPmlgAA1IzT7dQL217Q/O/my5SpThGd9OTAJxUXHnfSefnvvacj994nw25Xhw8/kH+nThYlBgAAAAA0JjXtcj0uviWprKxMb731lrZs2SK3260+ffro2muvVWBg4BmFtgrFNwAAv+9wyWH9Zc1ftO3YNknSVQlXaVa/WQrwDTjlXNM0deCWW1S6Zq0CunZV+3felmG313dkAAAAAEAjU6fFd2ND8Q0AwG9blblK962/T0WVRQqxh+jvA/6u4e2H/+Y1zqPZykhOlruwUFFTpih6yuR6SgsAAAAAaKxq2uV6vMa3JKWlpWnKlCm66KKLNHToUE2ZMkU7d+487bAAAKBhqnRV6tGNj2r6F9NVVFmk7s26692kd3+39JYke/MYtbj3XklSzksvqez7H+o6LgAAAAAAkk6j+H7//ffVvXt3bd68Wb169VLPnj21ZcsW9ejRQ++9915dZAQAABY4UHRA4z8Zr0U7F0mSJnSdoDdGvqG2oW1rfI+wS0YpdMQIqapKWXffJXdFRV3FBQAAAACgmsdLncTFxWn8+PF68MEHTxq///77tXDhQmVkZNRqwPrAUicAAJzsh9wfdNtntymvPE/h/uF6+PyHNbDNwNO6V1V+vjKSkuXKyVHkDTeo+V9m1XJaAAAAAEBTUWdLnRw5ckTXX3/9KePjx4/XkSNHPL0dAABoYDYe3qgblt+gvPI8dYnsoveT3j/t0luSfCMi1PLBByRJeQsW6PjmzbUVFQAAAACAX+Rx8T148GCtXbv2lPF169bpggsuqJVQAADAGiv3r9SfP/uzjlcd1zktztGrw19V8+DmZ3zf0CFD5Bg7VjJNZd19j9ylpbWQFgAAAACAX+br6QXJycm66667tHnzZvXv31+StGHDBr333v9j777DoyjXN45/dze9LUkgHQg9QZGigKiICiKiSNHjsQCWo2JFBAQU9IgFEAEV2xEUD6D+0KMooFKsiAVBASkm1ISSXjc92TK/PwJRpCWQZAPcn+vigszOzPssKZu9553n/R+TJ09m6dKlh+0rIiIip4ePdnzEM2ufwWW4uLL5lUzrOQ0vi1etnT/88ccoXrsW+/79ZMyYQeS//11r5xYRERERERH5qxr3+DabqzdJ3GQy4XQ6T6qo+qYe3yIicjYzDIO3trzF7I2zAbih7Q1M6j4Ji9lS62MV//wz++64E4Cmb71FwCUX1/oYf2cYBlmzZ+PMzyd87FjM/v51PqaIiIiIiIjUjTrr8e1yuar153QJvUVERM5mLsPF9PXTq0LvuzvczZMXPlknoTeAf48eBN96KwBpEyfiLCiok3H+yrZ4MTlv/If8/1vE3jvuxJGXV+djioiIiIiIiHvVOPgWERGRM4PdZWfiDxN5N+FdAMZ3Hc/ILiMxmUx1Om7YmNF4Nm+GIyODjOeeq9OxKg6kkDFlauUHnp6Ubd7M3mHDsGdk1Om4IiIiIiIi4l7VDr5/+eUXli9ffti2BQsW0KJFC8LCwrjnnnsoLy+v9QJFRESk9pU6Snn4m4f5bM9neJg8mNpzKkPbD62Xsc1+fkRNnQZmM7YlSyn48ss6GcdwuUh7/HFcxcX4dulCi48/wiM8nIpdu9l78y1UJCfXybgiIiIiIiLiftUOvp966ik2b95c9fGWLVv417/+RZ8+fZgwYQLLli1j6tSpdVKkiIiI1B5buY17Vt3DmpQ1+Fh8mH3FbK5teW291uDXpTOh/6rs9Z3+76dw5OTU+hh5775Hybp1mHx9iZo6BZ+2bYl9/z28mjfHnppK8q1DKUtIqPVxRURERERExP2qHXxv2rSJ3r17V328aNEiunfvzty5cxk9ejSzZ8/mww8/rJMiRUREpHZkFGdw+4rb2ZS1iUCvQOb2nUvPmJ5uqaXxQw/h3aYNztxcUseNx7Dba+3c5XuSyJw5E4DwcY/i1bw5AJ7R0TR//z284+Nx5uSwd9hwSn79tdbGFRERERERkYah2sF3Xl4e4eHhVR+vXr2afv36VX3ctWtX9u/fX7vViYiISK1JtiUzfPlwduXvIsw3jPn95tMprJPb6jF7eRE1/XlMPj4U//gjqY9PxHC5Tvm8hsNB6mMTMMrL8b/oIhrddNNhj3uEhtJ8wXx8LzgfV1ER+/51F4XffXfK44qIiIiIiEjDUe3gOzw8nKSkJAAqKirYsGEDPXr0qHq8sLAQT0/P2q9QRERETtkfOX9w24rbSC1OpXlQcxb0X0Cb4DbuLguf+HhiXn4JLBYKli0j8/npGIZxSufMeettyn7fjDkwkMjnnj3qYp2WwECavfUWAZddhlFezoEHHsS2bNkpjSsiIiIiIiINR7WD7379+jFhwgTWrFnDY489hp+fHz17/nlr9ObNm2nVqlWdFCkiIiInb13aOu5ceSe5ZbnEh8Qzv998ogOi3V1WlYBevYia8hwAufPnk/v22yd9rrLERLJeew2A8ImP4xkZecx9zT4+xLwym6DrBoDTSeqj48hd+O5Jjy0iIiIiIiINR7WD72effRaLxUKvXr2YO3cuc+fOxcvLq+rxefPm0bdv3zopUkRERE7OV3u/4t6v7qXYXkz3iO7Mu2oeob6h7i7rCNaBAwkbNw6AzBkzyV/8SY3P4aqoIHX8BLDbCejTG+vAgSc8xuTpSdS0aQQPHQpAxnPPkfXqa6c861xERERERETcy2TU8J2dzWYjICAAi8Vy2Pbc3FwCAgIOC8NPFwUFBVitVmw2G0FBQe4uR0REpFZ8tOMjnln7DC7DRZ9mfZh26TS8Ld7uLuu4Mqa/QO68eWCxEPPqKwRefnm1j82c9SI5c+ZgCQ6m5WfL8AitfsBvGAbZr79O9iuvAhA8dCjhjz+GyVztOQIiIiIiIiJSD6qb5db43ZzVaj0i9AYICQk5LUNvERGRM41hGMzdPJfJP0/GZbi4vs31zOg1o8GH3gBhY8dUztR2Okl5ZDQlGzZW67jSTZvIeestACImP1Wj0BvAZDLR5IEHCJ80CYC8d98ldfwEDLu9Zk9AREREREREGgRNYxIRETmDuAwX09dPZ/bG2QDc3eFu/t3j31jMR160bohMZjORzz6Df69LMcrK2H/ffZTv3HncY1ylpaROeAxcLoIGDCDoFFqvhQy9lagXplcttpn276dO+lwiIiIiIiLiPgq+z3JfJ2Qw9/s9FJRpRpuIyOnO7rIz8YeJvJtQuUDjuK7jGNllJCaTyc2V1YzJ05OYF1/Et2NHXDYb++66G3tq6jH3z5z1IhXJyXiEhRExaeIpj28dMICYV14Bkwnb4sWUbtl6yucUERERERGR+qXg+yw38ZOtPPdFArsyi9xdioiInIJSRykPf/Mwn+35DA+TB1MumcKw9sPcXdZJM/v5EfOfN/Bq1QpHRgb77robR17eEfsVr11L3sKFAEQ+9ywWq7VWxg+84nKs1w0AIHPGDC12KSIiIiIicppR8H2Wi23sB8DenGI3VyIiIifLVm7jnlX3sCZlDT4WH16+4mUGtBrg7rJOmUdwMM3emotHRAQVe/aw/957cZWUVD3uLCoi9fHHAWj0z38S0LNnrY7fZORITF5elPzyC8Vr1tTquUVERERERKRuKfg+y8WG+gOQlF1ygj1FRKQhyijO4PYVt7MpaxOBXoHM6TuHS2MudXdZtcYzMpJmb83FYrVS9vtmDowaVbXgZMbUqThS0/CMiSHs0Udrf+zoaIKHDgUg84UZGE5nrY8hIiIiIiIidUPB91kutnFl8J2crRnfIiKnm2RbMsOXD2dX/i7CfMOY328+ncM6u7usWufdujUx/3kDk48Pxd+vIXXiRAqArCCOAAAgAElEQVS/+Rbbx4vBZCJq6hQsAf51MnbjEfdgtlop37kT26dL6mQMERERERERqX0Kvs9yh2Z8q9WJiMjpZVvONm5bcRupxak0D2rOgv4LaBPcxt1l1Rm/zp2JefklsFgoWLqMAw8/DEDIbbfh17VrnY1rsVppPGIEAFmzZ+MqLa2zsURERERERKT2KPg+yx3q8Z2UXayFu0RETgOGYbBk1xLuWHEHuWW5xIfEM7/ffKIDot1dWp0L6NWLyOeerfzAbserVSuaPDKqzscNvvUWPKOicGRkkLtgYZ2PJyIiIiIiIqdOwfdZrnlI5YzvgjIHeSV2N1cjIiLHU2wv5vEfHmfSj5ModZTSI7IH866aR6hvqLtLqzeNBg0i4unJ+J5/PtEzZ2D29q7zMc3e3lUBe86cOThyc+t8TBERERERETk1Cr7Pcr5eFiKtPkDlrG8REWmYtuVs48ZlN/LZns+wmCw81Pkh3ujzBgFeAe4urd4F33gjse+9i09cXL2NGXTNNXi3j8dVXEz2G/+pt3FFRERERETk5Cj4FvX5FhFpwAzDYOEfCxn6xVD2Fe4jwj+Cd/q9wz3n3YPFbHF3eWcNk9lM+KOPApC3aBEV+/a5uSIRERERERE5HgXfUtXnO1kzvkVEGpS8sjwe+uYhpq+fjsPloHez3nw04CM6h3V2d2lnJf8ePfDv2RPsdrJeesnd5YiIiIiIiMhxKPiWqhnfSTklbq5EREQOWZ++nhuW3sDqA6vxMnsxsftEXrzsRazeVneXdlYLGzsGTCYKvlhO6ebN7i5HREREREREjkHBtxDbWK1OREQaCofLweubXueuVXeRWZpJbFAs71/zPjfF3YTJZHJ3eWc9n3btsA4cCEDmCzMwDMPNFYmIiIiIiMjRKPiWP2d8ZxfrDbyIiBulF6dz16q7eOP3N3AZLga3HswH135Au5B27i5N/qLJwyMxeXlRsn49Rd995+5yRERERERE5CgUfAvNQyt7fBeWOcgtrnBzNSIiZ6dv933LDctu4LeM3/D39Gdaz2k8ffHT+Hn6ubs0+RvPyEhCbhsOQObMmRgOh5srEhERERERkb9T8C34eFqIsvoAkKx2JyIi9arCWcG0ddMY+e1IbOU22oe258NrP+Salte4uzQ5jtC778ZitVKxazf5n3zi7nJERERERETkbxR8C/Bnn+/kbC1wKSJSX/YW7GXoF0N5L+E9AIa3H867V79Ls6Bmbq5MTsQSFETj++8DIHv2K7hK9PopIiIiIiLSkCj4FgCaH+zzrRnfIiL14/M9n3PjshtJyE2gkXcjXuv9Go92fRRPi6e7S5NqanTzzXjGxODIyiJ3/vwaH+8qK6NgxUryF3+CMz+/DioUERERERE5e3m4uwBpGFo0ruwhm5St4FtEpC6V2EuYtm4an+yqbI9xfvj5TOs5jQj/CDdXJjVl9vKiySOjSB0zlpy33qbRjTfiERp63GMMl4vSDRvI//RTClesxFVUBECapyeBl12GddBAAnr2xOTlVR9PQURERERE5Iyl4FsAiD0443tvjm7VFhGpKzvzdvLo6kfZbduNCRMjOo5gxHkj8DDr5fh0FXT11eS+81/Ktm4l+/U3iHhi0lH3q0hOxrZ0KbYlS7GnpFRt94iKxBIYRPn27RR++SWFX36JpVEjgvr3xzpoID4dOmAymerr6YiIiIiIiJwx9E5bgL/2+C7GMAy9yRYRqUWGYfDxzo+Ztm4a5c5ymvg2YVrPaXSL7Obu0uQUmcxmwsaOZd/tt5P3wQeEDBuKV2wsAM78fApWrMD26RJKN22qOsbs709gv6uwDhyI3wUXYDKbKdu+HduSpdiWLcWZlU3e+++T9/77eLVogXXgQKzXDcAzKspNz1JEREREROT0YzIMw3B3Ee5WUFCA1WrFZrMRFBTk7nLcoszuJP7JFRgG/DqpD40DvN1dkojIGaGwopCnf36aFckrALg46mKeu+Q5Qn2P3xJDTi/7RoygePX3BF7ZB+vgwdg+XULRt99i2O2VO5jN+F98MdaBAwnsfQVmX9+jnsdwOCj+eS22JUso/OorjLKyygdMJvy6das8vm9fLAH+9fTMREREREREGpbqZrkKvlHwfcjF074hJb+Uj+7twQWxIe4uR0TktLctextjV4/lQNEBPEwejOwyktvOuQ2zSWtLn2nKduwgadBgcLkO2+7drh3WgQMJuvYaPMPCanROZ1ERhStXYVu6lJJffqnabvLxIWz0aEKGD6uV2kVERERERE4n1c1y1epEqsQ29iMlv5TknBIF3yIip8AwDBb+sZAXN7yIw+Ugyj+K6b2m07FJR3eXJnXEp21bGv3zRvL/bxGWJo2xXjsA68Dr8ImLO+lzWgICaHT9EBpdPwR7Sgq2ZZ9hW7KEiqQkMqZPJ+DSnlVtVURERERERORwmnImVZqH/tnnW0RETk5GcQYPffMQL/z6Ag6Xgz7N+vDhgA8Vep8FIiZNosXSJbT59lvCx487pdD77zyjo2l87whafvE5/r0uBYeDzBdfqrXzi4iIiIiInGk041uqtDgYfCflKPgWEampYnsx87bOY8G2BZQ5y/A0ezKu6zj+2e6fWjD4LGGyWPBp27ZuxzCZCBszhqQ1P1C4ciWlmzbh26lTnY4pIiIiIiJyOtKMb6kS27gy+N6r4FtEpNrsLjuLEhfRf3F/5myeQ5mzjE5NOvH+Ne9zU9xNCr2l1vm0bYt18CAAMmbMQMu1iIiIiIiIHEkzvqVKbKgfAMnZJRiGobBGROQ4DMPgm/3f8NJvL5FckAxA86DmjOoyit7NeutnqNSpJg89RMFnn1P6628UffstgVdc4e6SREREREREGhQF31KlaYgfJhMUlTvILqqgSaC3u0sSEWmQNmdtZuavM9mQuQGAYO9g7ut0Hze0vQFPs6ebq5OzgWdEBCG33UbOnDlkzphJwKWXYvLQr3UiIiIiIiKHqNWJVPHxtBBl9QUgWe1ORESOsL9gP2NXj+XWL25lQ+YGvC3e3N3hbr4Y8gU3x92s0FvqVejdd2Fp1IiKPXvIX7zY3eWIiIiIiIg0KAq+5TCxjQ+1O1HwLSJySH5ZPs+ve57rllzHyuSVmDAxsNVAPhv8GSO7jCTAK8DdJcpZyBIYSOP77wMg65VXcJWUuLkiERERERGRhkPBtxwmNrRygUvN+BYRAafLyfxt8+m/uD/vJryLw+XgoqiL+N+A//HsJc8S4R/h7hLlLBd80014Nm2KMyubnP/+193liIiIiIiINBgKvuUwLRofDL6zNWtMRM5uGcUZ3P3l3cz4dQaF9kLaBrflzT5v8uaVb9IupJ27yxMBwOTlRdgjowDIfettHDk5bq5IRERERESkYVDwLYfRjG8REfj+wPf8Y9k/WJ++Hl8PX/7d4998eO2HXBR9kbtLEzlCYL9++Jx7Lq6SErJfe93d5YiIiIiIiDQICr7lMH/t8W0YhpurERGpX3annRfWv8ADXz9AXnkecSFxfHjth9zQ9gYsZou7yxM5KpPZTNjYsQDkffghFcnJ7i1IRERERESkAVDwLYdpGuKH2QTFFU6yisrdXY6ISL3ZV7CPocuHsuCPBQDcGn8r7/V/j1hrrHsLE6kG/wu7E9CrFzgcZL74krvLERERERERcTsPdxcgDYu3h4WoRr4cyCslObuEsEAfd5ckIlLnPt/zOU///DQljhKs3laeuegZLm92ubvLEqmRJmNGU7RmDYUrV1K6aRO+nTqd1HmcBQVkPPcc5XuSCOp3FUHXDsAzPKzW6jQMg7Lffyd/yRLKtmwlsPcVhNx+O2Zf31ob49A4xT/8QM6bc3CVl+MT1w7vdnEH/26HJTCwVscTEREREZGGRcG3HCE21L8y+M4ppluLEHeXIyJSZ0rsJUxdN5VPd30KQJewLjx/6fNE+Ee4uTKRmvNp2xbr4EHYPl5MxowZNF+4EJPJVKNzlGzcSOqYsdhTUwEo27KFzJmz8O/RA+uggQT27o3Zz++k6qs4kIJt6RIKliylYu/equ1lW7eS93+LaDLyIayDB2OynHpbobKEBDJfeIHin37+c9uWLYft4xkdjXe7docF4p5Nm2Iy64ZIEREREZEzgclQI2cKCgqwWq3YbDaCgoLcXY7bTfp0C++u3cf9l7ViXL84d5cjIlIntuduZ+zqsSQXJGM2mRlx3gjuOe8ePMy6JiynL3t6Oruv6odRXk7M668ReMUV1TrOcLnIeettsl5+GZxOPJs2Jfjmmyn8+mtKf/utaj+znx+BV12FdeBA/Lp1PWFI7CwspHDlSmyfLqHk11+rtpt8fQnqeyU+53Ygd/587AcOAODdpg1hj47Fv2fPGof2APbUVLJefhnb0mVgGJg8PQm+9VZ8O55H2fbtlCdup2z7dhxpaUc93uznh3fbtvi0jyd46DC8W7aocQ0iIiIiIlK3qpvlKvhGwfffvbVmD89+nkD/DhG8fuv57i5HRKRWGYbBou2LmLF+BhWuCsJ8w5h26TS6RnR1d2kitSJz1ovkzJmDV8uWtFy6BJPH8S/mOLKySB0/vmp2dFD/q4mYPLmqFUjFvn3Yli7DtmQJ9v37q47ziIzEet11WAdeh3fLllXbDYeD4p9+wvbpEgq//hqj/OCaISYT/j0uxDpwIIF9+mD29wfAVVFB3vvvk/3Gf3DZbAD49biQsLFj8T3nnGo9Z2dhITlz5pA7fwFGRUXl87jmGpo8MgqvmJgj98/Pp2z7Dsq3J1KWuJ3yxETKd+2qOhYqw/mISZOwDhl8UiG8iIiIiIjUDQXfNaDg+3BfJ2Twr/m/0j4yiC8e7unuckREao2t3MaTPz7JN/u/AaBXTC+eufgZgn2C3VyZSO1xFhay+8q+OPPziXh6MsE33njMfYvW/EDqhAk4c3Iw+fgQMWki1uuvP2rQaxgGpRs3Yvt0CQXLl+MqLKx6zKdDB6wDrsWemobts89wZmdXPebVqhXWQQOxDhiAZ8Sx2wg5bTay35xD3sKFGHY7AEHXDSBs1Cg8o6KOeoxRUUHeokVkv/4Gzvx8APy6diVs3KP4duhw/P+ov5/L4aAiKYmy7TvI/+gjStaurazhmmuImPwUloCAGp1PRERERETqhoLvGlDwfbhdmUX0mbUaPy8L2yZfpVlOInJG2Ji5kXHfjyO9OB0Pswdjzh/DrfG36mecnJFyFywgY8pULE0a03rlyiP6cht2O1kvv0zOW28D4N22LdGzZuLdunW1zu8qL6fo22+xfbqEojVrwOk87HFLcDBB116LdeBAfM5pX6Pvs4oDKWS99BIFn30GgMnLi5Dhwwi95x4sB39PMwyDwpUryZz1IvZ9+4DKgD1s7BgCLrvslL+vDZeLnLlvkTV7dmXrl2bNiJ45E98O557SeUVERERE5NQp+K4BBd+Hq3C4iHtiOS4D1j3em7AgH3eXJCJy0pwuJ29vfZvXN72O03DSLLAZ03tN55zQ6rVQEDkdGRUV7L7mWuz799N45EM0uf/+qscqDhwgZcwYyn7fDECjm28ifPx4zD4n93rvyMmh4PMvKPzqKywhIVivu46Anpdg8vQ8pedQumUrmS+8QMm6dQBYrFYa338f3nHxZM2aRenvv1dub9yYJg89RKPrh5ywrUtNlWzYSOrYg4t9enoSNno0IbcN1wKYIiIiIiJupOC7BhR8H6nn9G/Yn1vKB/dcSPeWoe4uR0TkpGSVZPHYD4/xS9ovAFzT8hqeuPAJ/D393VyZSN0r+OILUkaPweznR6svV+ERGkrB8uWkPfEkrqIizEFBRD7zDEFX9XV3qcdkGAZF331H5oyZVOzefdhjJl9fQu+8k9A776jqF14XnDYbaU88SeGqVQD4X9qTqGnT8AgJqbMxRURERETk2Kqb5bp1usr333/PgAEDiIqKwmQy8emnnx72uGEYPPXUU0RFReHr68tll13Gtm3bDtsnLy+PYcOGYbVasVqtDBs2jPyDPR7l5MWGVr6B3JtT4uZKREROzg8pP3DDshv4Je0XfD18efbiZ5l6yVSF3nLWCOzXD59zz8VVUkLmiy+S9sSTpDwyGldREb6dOtHyk8UNOvQGMJlMBF5+OS2XfErE05OxNGkMZjONbryRVitX0OShB+s09IbKmebRL79ExFP/xuTlRfH3a0gaOIjigz3ARURERESkYXJr8F1cXEzHjh159dVXj/r49OnTmTVrFq+++irr168nIiKCK6+8ksK/LKZ0yy23sGnTJlasWMGKFSvYtGkTw4YNq6+ncMY6FHwn5RS7uRIRkZqxO+3M+nUW9311H7llubQNbsuiaxcxsPVA9fOWs4rJbCZs7FgAbB99TP7//gcmE6EjRtB84QI8o6PdXGH1mTw8CL7xRlp/9RVt1nxP5NOT8QwLq7/xTSaCb7qJ2P/9D69WrXBkZbHvjjvJfPllDIej3uoQEREREZHqazCtTkwmE5988gmDBg0CKmd7R0VFMWrUKMaPHw9AeXk54eHhPP/884wYMYKEhATat2/P2rVr6d69OwBr166lR48eJCYm0q5du2qNrVYnR3r7hySe+ewPrj43gjeGnu/uckREqmV/4X7Gfz+eLdlbALip3U2M7ToWb4u3mysTcZ/9I+6laPVqLE0aEz19Ov49eri7pNOaq6SEjKlTyf/fRwD4dulC9IwX8IyKcnNlIiIiIiJnh+pmubW7AlAtSkpKIj09nb59/7wF19vbm169evHTTz8xYsQIfv75Z6xWa1XoDXDhhRditVr56aefjhl8l5eXU15eXvVxQUFB3T2R01RsqB8AyWp1IiKniZXJK3nqp6coshcR6BXIMxc9Q+/mvd1dlojbRb0wnYIVKwjs3RuPUK3bcarMfn5EPvMMfhdeSPqT/6Z0wwb2DB5C+LhHazyL3iM0FK8WLWp9UU4REREREWnAwXd6ejoA4eHhh20PDw9n7969VfuEHeU217CwsKrjj2bq1KlMnjy5Fqs988Q2PtTjuxjDMNQeQEQarFJHKdPXT+ejHZWzLzs16cTzlz5PVIBmX4oAWIKCCL7xRneXccaxXnMNvuedR8roMZRt2ULaxEkndR6TtzfebdviExeHT/t4vOPi8GnXDrOfXy1XLCIiIiJydmmwwfchfw9c/x7CHi2QPVFQ+9hjjzF69OiqjwsKCmjatGktVHvmaBrsh9kEJRVOMgvLCQ/ycXdJIiJH2JW3i0e/f5Rd+bswYeKuDndxf6f78TA3+Jc3ETkDeDVtSux775L1xhsUff0NGK5qH2sYBo7UNFwlJZRt2ULZli1/Pmgy4RUbi098HN5x8fjEx+MTH4dH48Z18CxERERERM5MDTYZiIiIACpndUdGRlZtz8zMrJoFHhERQUZGxhHHZmVlHTFT/K+8vb3x9la/1+Px8jATE+zHvtwSkrKLFXyLSIOzKnkVE3+YSJmzjFCfUKb2nEqPKPUuFpH6ZfLyIuzhhwl7+OEaH2u4XNj37aMsIYGyhETKEhMoS0jAmZVNRVISFUlJ8MXyqv09wsOJeGISgX361OZTEBERERE5IzXY4LtFixZERETw5Zdf0rlzZwAqKipYvXo1zz//PAA9evTAZrOxbt06unXrBsAvv/yCzWbjoosuclvtZ4rmoZXB996cYi5sqZ6gItJwfJD4Ac/98hwGBhdFXcRzlzxHY1/NhBSR04vJbMYrNhav2FiCrr66arsjK4uyxO2UJSRQnlgZilckJ+PIyCB13HhaLF2CV0yMGysXEREREWn43Bp8FxUVsWvXrqqPk5KS2LRpEyEhITRr1oxRo0YxZcoU2rRpQ5s2bZgyZQp+fn7ccsstAMTHx9OvXz/uvvtu3nzzTQDuuecerr322mMubCnV16KxP2t2ZpOUrQUuRaRhMAyD/2z+D69veh2AG9veyOPdH8ditri5MhGR2uPRpAkBTZoQ0POSqm2u4mL23TOC0t9+I+2xx2k2/7+YzGY3VikiIiIi0rC59bflX3/9lc6dO1fN6B49ejSdO3fmySefBGDcuHGMGjWK+++/nwsuuICUlBRWrVpFYGBg1Tnee+89OnToQN++fenbty/nnXceCxcudMvzOdPEhlYucJmcXezmSkREwGW4mLpualXoPeK8EUy6cJJCbxE5K5j9/YmaOgWTnx8l69eTp993RURERESOy2QYhuHuItytoKAAq9WKzWYjKCjI3eU0GN8kZnDnf38lLiKQFaMudXc5InIWszvtTPxxIsuTKnvdTug2gVvjb3VzVSIi9S9v0SLSn5qMydubFp8sxrtlS3eXJCIiIiJSr6qb5er+SDmmQzO+9+aUoOsjIuIuJfYSHvrmIZYnLcfD5MHzPZ9X6C0iZ61G//wn/hdfjFFeTuqExzAcDneXJCIiIiLSICn4lmNqGuKHxWyi1O4ko6Dc3eWIyFkovyyfu1fdzY+pP+Lr4csrvV+hf8v+7i5LRMRtTCYTkc89izkwkLLNm8l56y13lyQiIiIi0iAp+JZj8rSYiQn2BSBJfb5FpJ6lF6dz24rb2Jy9mSCvIOZcOYdLoi858YEiImc4z4gIIiZNBCDrtdcpS0hwc0UiIiIiIg2Pgm85ruZV7U4UfItI/UmyJTF8+XD22PYQ5hfG/H7z6RTWyd1liYg0GEHXXUfglX3Abid1/ARcFRXuLklEREREpEFR8C3H1SLUD4AkBd8iUk+2ZW/jtuW3kVacRmxQLAuvXkjr4NbuLktEpEExmUxEPPUUlpAQynfsIPuVV91dkoiIiIhIg6LgW44rtnHljO9ktToRkXrwc+rP3LnyTvLK8zgn9BzmXz2fqIAod5clItIgeYSGEjH5KQBy3n6bko0b3VuQiIiIiEgDouBbjiu2qtVJiZsrEZEz3crklTzw9QOUOEroHtmdt696mxCfEHeXJSLSoAVdeSXWgdeBy0XahMdwlZx5v7MZhkHeokXkLliA4XC4uxwREREROU0o+JbjqprxnVOMy2W4uRoRORMl25IZ9e0oxq4ei91l58rmV/J679fx9/R3d2kiIqeF8IkT8QgPp2LvXjJnvejucmpd9quvkf7UZDKmTGXvsOHYU1LcXZKIiIiInAY83F2ANGwxwb5YzCbK7C4yCsuItPq6uyQROUPklObwxu9v8NGOj3AaTswmM0PjhzL6/NFYzBZ3lycictqwBAUR+dxz7L/rLvLefZfA3lfg36OHu8uqFbkLFpL92msAmHx9Kd24kT2DhxD57DME9e3r5upERETkr7KLyklIKyAhrYCk7GIirb7ERwYRHxlIdCNfTCaTu0uUs4yCbzkuT4uZpsG+JOeUVP3QEhE5FaWOUhb+sZB5W+dRbK9cP6BXTC8eOf8RWjVq5ebqREROTwGXXEyjm/5J/qIPSJ04kZZLlmAJDHR3WafEtmQJGVOmANDk4ZEEDRhAyugxlG3eTMrIhym++SbCx4/H7OPj5kpFRETOLg6niz3ZxSSkFfBHWgEJaYUkpBWQVVh+zGOCfDyIiwyi/cEgPD4yiLbhgfh4atKT1B2TYRhnff+KgoICrFYrNpuNoKAgd5fT4Nw2bx2rd2QxdUgHbu7WzN3liMhpyulysnT3Ul7d9CqZJZkAtA9tz9gLxtI1oqubqxMROf25iovZM2gw9v37sQ4ZQtSU59xd0kkr/OYbDjw0EpxOQm4bTtiECZhMJgy7nayXXybnrbcB8G7blugXZ+HdShdORURE6srWFBvrknIrZ3OnF7Ajo4gKh+uI/UymyrXi4iMDadk4gNT8Uv5IK2BXZhGOo7TPNZugZZOAqlnh5zcLpluLEM0MlxOqbpar4BsF3yfy1NJt/PenZEZc2pLH+se7uxwROc0YhsGPqT8y67dZ7MzbCUB0QDQjO4+kX4t+mE1abkJEpLaU/Pore4cNB8Mg5vXXCbzicneXVGPFv6xj/913Y1RUYB00iMgpz2EyH/5aUbTmB1InTMCZk4PJx4eISROxXn+93iiLiIjUot1ZRTy/PJFVf2Qc8Zi/l4W4v8zejo8Mol14IP7eRzaXqHC42JVZVNUGJSG9cpZ4bnHFEfveeXELJl0Tj9ms13Q5tupmuWp1IicUG+oHQFJ2sZsrEZHTTWJuIjN/ncnatLUABHoFMuK8EdwcdzNeFi83Vycicubxu+ACQu64g9x580h78kl8Oy/FIzjY3WVVW+nWbRy4/36MigoCevcm8tlnjgi9AQJ6XkLLTz8hdfx4in/6mbRJT1D8089ETH7qtG/xIiIi4m7ZReW8/NVO3l+3D6fLwGyCy9qFcW60lfYHg+6mwX7VDqe9PMy0jwqifdSfAaVhGGQWlh9slVLA1hQbX2xJZ96PSeSVVDD9hvPwtGiSlJwazfhGM75P5NvtmdzxznrahQey8pFL3V2OiJwGMoozmL1xNst2L8PAwNPsyc1xN3PPefdg9ba6uzwRkTOaq7ycpOuvp2LXbgL79SP6xVmnxUzo8j172HvrUJx5efh1707TOW9i9vY+7jGGy0XOW2+T9fLL4HTi2bQp0bNm4tuhQz1VffpzugySc4pJyiqmQ4yV8CD1TBeRw2UXlbN0UypLNqWQVVhO24g/Z/i2jwwkNtQfDwWUZ4TSCidv/7CH/6zeQ1G5A4Ar4sKYcHUcbcPr/sLyJxsP8Oj/NuNwGVzWrgmv39oFPy/N2ZUjqdVJDSj4Pr7k7GIum/Ed3h5mEp7up9tNROS4EnMTGfHlCHLLcgG4usXVjOw8kpjAGDdXJiJy9ijduo3km24Ch4OQf91J2JgxR5053VDYU1NJvuVWHOnp+Jx7Ls3++18sAf7VPr5k40ZSx4zFnpoKHh6EPfIIIXfc3qCfszsUltlJTC+sutX8j7RCdqQXUmp3ApW3rT83uAODOke7uVIRcbcyu5OvEzJZvOEA3+3IwnmU/syHeHuYaRcRSHzEn20v4iKDsPp61mPFciqcLoOPNxxg1npERaYAACAASURBVKodpBeUAXBudBCP94/nolaN67WWbxMzue+93yizu+jSrBHzbu9KIz/dLSyHU/BdAwq+j8/hdBH3xAocLoOfJlxBVCNfd5ckIg3UxsyNPPDVAxTaC2kb3JbJF03m3MbnurssEZGzUu6CBWRMmQpAYN++RE1/HrNPw5vN68jJYe+tQ6lITsarZUuav/fuSbVncRYUkDbpCQpXrQLAv2dPmowciXeb1g3yeVdXcbmDA3mlAFjMYDaZsJhNmE0mzGYTFpMJsxksh7Yf3JZTVFF1+/ihfqr7c0uPOoaPp5lQf29S8isfv+H8GJ4eeI5m2Yn8hctlsHZPDl8nZtK3fTjdW4a6u6RaZxgGv+3N4+MNKXy2OZXCMkfVYx1jrAzpEkNcRCA7Mgr5I62QxPQCEtP+vHj2d9GNfImPDOSG82Pod25kfT0NqaHVO7KY+kUCiemFQOXnbVy/dgw4L8ptEx9/25vLHe+sp6DMQdvwABbc2Z0Ia/2/lrtcBkt+T2HTvnweuKI1YYGn7+8TZxoF3zWg4PvELnvhW5JzSnj/ru5c1Lp+r/aJyOnhh5QfeOTbRyhzltElrAuv9n6VQC/1WRURcSfb0qWkTZyEYbfj27EjMa+/hkdowwlrnIWF7L3tNsr/SMAjKpLY99/HMyLipM9nGAb5H3xIxtSpGOXllRstFrxiY/Fp1w7vuDh84trh3S4Oj7AmDaoFTJndya7MInZkFLI9o5CdGZX/PhR615ZIq8/BFgV/tiqIDa2cXf/KNzuZ/fVOXAa0bOLPqzd3Oawfq8jZaFdmIYs3pPDpxhRSbZUzYT0tJmbd2IkBHaPcXF3t2JdTwuKNB/hkYwp7c0qqtkdZfRjcJZrBnWNoHRZw1GNdLoO9uSV/XmRLq1y08NCFtEP+cX4Mk3VBrUHZlmpj2vJE1uzMBiDIx4MHr2jN8B6x+Hha3FwdbE8vZPi8X8goKCe6kS8L/9WNlk2O/nVYF37Ymc2ULxL4I60AgGYhfrz7r+40O7gOnriXgu8aUPB9Yre/s47vtmcxZXAHbunezN3liEgDsyJpBY/98BgOl4NLoi9h1mWz8PXQ3SEiIg1B8bp1HHhoJC6bDc+YGJrOeRPvli3dXRausjL233U3Jb/+iiUkhObvvYt3ixZH3ffQW5bqBtVlO3aQOXMmZb9vxpmff9R9LMHBeMe1w6ddXOXfcXF4tWyJydOzTgPxCoeLPdlF7MgoYkd6ITsyKv/syy3hWJ0ErL6eWMwmXIaB02Xgchk4DQOXi8pthsHf39V5Wcy0CQ+oCrfjIyvbEAT7H/928bV7chi1aBPpBWV4eZiZdE08wy5s3qAuEoh75RVXsGFf3jG/Xo+lTVgAsY2r38LInXKLK1j2eyqLNxzg9wO2qu2BPh60bOzP7wdsmEzw9HXnMKxHrPsKPUlOl8HenGLW7snlk40HWJ+cV/WYv5eFqztEMqRLNBe2CD3pGb+2EjsJ6QV8k5jJ3DV7MA5eUJt9U2fOjdaaP+5SUuEgMb2Qd9fu5ZONKRhG5evF8B7NefCK1g2upcj+3BKGz1tHUnYxIf5ezL+jGx1i6vbrJyGtgKnLE/l+RxYAgd4eBPp4kGoro0mgNwvu7EZ8pHuzw0PfwwlphXRu1uis7Myg4LsGFHyf2FNLt/Hfn5K559KWPN4/3t3liEgD8tGOj3j656cxMOgX248pl0zB06J+fiIiDUn5niT2jxiBff9+zEFBxLzyCv7du7mtHsNu58BDIyn67jvMAQE0XzAfn/btj7pvcbmDIa//RHpBGQM6RjKkSwydmzaqVhBrGAaOzEzKExMpS9xO+fbKvyuSk8HlOnGhJtMRf0x/226xWvFu1/bwAD02FpPFQlZh+RGzIHdnFeE4RmIY7OdJm7AAOvnaOceeQ7OCDIKzUrAU5hPQ81KC+l+NJfDod1MZh0JxozIM9zCbTnqxudziCh793+98nZgJQN/24Uy/4bwGF4hI/SqtcDLvxyTe+G531aJ3NWE2wY0XNGX0lW0Ja4CLqJY7nHyTkMnHG1L4bntm1fepxWzi8nZNGNIlhiviwvC0mHlq6TYWrt0LwMO92zCqT5sGe3GosMzO9oO9/f9Iq/x7e/rh7UnMJri4dWOu7xJD33PCa31W9s+7c3jkg4MX1Cxmxl8dx50XxzbY/7MzgWEYpNrKSEitfP05tL5DUk7xYRdKB3SMYtxV7Wga0nBnMWcXlXP7O+vYmlKAv5eFucMvqJNOBOm2Mmau2s5HGw5gGOBhNjH0wuaM7N0Gh9PF8HnrSEwvJNDHg3m3d6VrbEit13A0J1qfY/r153Fj16b1UktDouC7BhR8n9j8n5L599JtXNk+nLnDL3B3OSLSQMzbOo8Xf3sRgBvb3sjj3R/HYnb/bXEiInIkR24uB+5/gNJNm8DTk8hnnqbRoEH1XofhcpE6YQIFS5dh8vam2Vtz8eva9Zj7T/0igTe/33PYthaN/RnSOZpBnaNP6s26q6yM8p27qoLw8sREyrZvx1VYWONzHY3dw5P9QZHsCIwgKSiKPdZIkoKiKPaqnJEV6ONB27AAOvo6OLcim2ZFGYRkHsC8L5nyXbuOWYfJx4fAvlfSaMgQ/Lp1q9PFOw3D4L8/JTP1i0QqnC6irD68fHPnenujLw3H0Ra9ax7qR3ANLoRUOFxV7QJ8PS3cfWlL7rm0JQHe7m17YRgGG/bls3jDAT7bnIat1F71WIdoK0O6RDOgYxSNA7yPOO7lr3fy0lc7ARjeozlPDTjHbf2QobLlyIG80hr19o+LCKJ/hwgGdoomvI4vRuQVVzDu4818+UcGAJe3a8KMf3Qk9G//tyfj0IW/k73Y15CcTERX7nCxM6PoYCj6Z9D916/nv2oS6E2npo148PLWdGza6FRLrheFZXZGLPyNn3bn4GUx89JNnejfoXb6xheW2Xlz9R7e+mEPZfbKi+L9O0Qw7qq4w+5SsZXauWv+etYn5+HtYeaNoV24Ii68VmqAyu/hfbklJKb/eZEqIa3gmC3PvD3MxEUEcuclLRjY6exblFrBdw0o+D6x77Zncvs762kbHsCqR3q5uxwRcTPDMHhpw0vM2zoPgLs63MXIziM1a0NEpIFzlZWROuExClesAKDxAw/Q+MEHavzz23C5KFm3HtuSJRR98w2u0hr0oTYMDLsdPDyIefUVAi+77Ji7bk8v5JrZa3C4DB69qh27M4tYvjX9sJmK3VuEcH2XGK7uEEGgT83uOCoqd5B4aAZVagHZqVkYLidmKt8imQ0wmQwwwISBCTAffA4mk4HZgIqMTDyTd9MsP4UWtjRaFKTi4zx62OBoEo5P2zZ4FhdRvnv3sYN2iwWvZs3wbt0Kr9atMXt7Y/vsMyp27a7axTM6GuvgwTQaPAjP6Lp7w7s1xcaD728gOacEswke6dOW+y9vjcWNAZ/Un6MtevfoVe24rmPNF737NTmXKV8ksGFfZfuhxgHejOrThpu6NnVLYLkrs5CHF21iW2pB1baIIB8GdY5mSJdo2oafeK2aBT9XThAzDLj2vEhm3dgJL4/6fS7lDicLf97LG9/tJqe44qj7RAT5HNbXPz4yiBaN/ev9+9gwDN5du5dnPk+gwuGiSaA3L/2zExef5Ozdv/ZfL7U7mTrkPPqde/LrRNS3onIH2/8Wcm5PL6Sk4uiLhdaUh9lE67CAI9Z1+PuFnNNFucPJqEWbWL41HZMJnh10Lrd2b37S57M7XSxat4+XvtpZ9b1zfvNgHu8fz/nNj77IdmmFkwff38DXiZlYzCZeuOE8hnSJOekaoHKNj3k/JjHn+z3klxz994e/rs8RF+G+7+GGRMF3DSj4PrG9OcX0euE7vD3MJDzdz61XskXEvZwuJ8/+8iwf7fgIgEfOf4Q7z73TzVWJiEh1GS4XWS++RM7cuQBYB15HxDPPYPY68ezN8j17sH26BNuyZTjS0k66BpO3N5HPPot1wLXH3MflMvjnnJ9Zn5xH3/bhzDl412FxuYMVW9NZvPEAP+3Oqbpl29vDzFXnRDCkSzSXtG58WJBmGAb7c0v/MhOusu3IvtySow19UgK8PYiLCCQ+PIBOlmJaF6bSJHMfzp07KdueiCP1KP9fVQF3a7zbtMarVSu8W7fBq0XsEZ8PwzAo27yZ/MWfUPD557iKiiofMJnwu7A7jYYMIfDKKzH71P6szaJyB098upVPNqYA0KNlKC/d1KnOZ4iK+9TVoneGYbB8azrPr0isWkSxVRN/JlwdT5/4sHqZRGEYBh+s389Ty7ZRZnfh62nh6nMjGNIlhh6tQmscJC39PZUxH27C7jTo2aYx/xl6Pv71MJPdMAyWbU7jhZWJVbO6j+jtH1EZdp6ot399S0wv4KH3N7IzswiTCe7t1YrRV7bFsxoXQHKKyiv7r29MYfNf+q8fMrxHcx7vH98gFmc8xDAqZ+Mfanl1aDb+XxcSPVXBfp6HXdiIjwykdVgA3h4N5/+hNjhdBk8s2cr7v+wDYMyVbXnwitY1+tlhGAYrt2UwfUUie7KLgco7ycb3i+Oqc8JPeC6708X4jzaz+OBr4pPXtufOS46+RsnxuFwGn2xMYeaq7VUL53p5mGkbHkB8xJ+fy7iIwAb3PdwQKPiuAQXfJ+Zwuoh7YgUOl8GPE64g+ixsnC8iYHfaefyHx1mRvAITJp7s8SQ3tL3B3WWJiMhJyPvwQ9InPw1OJ35duxLzymwsjY685dmRl0fB519gW7KEsi1bqrabAwMJuvpqrNcNqPGMY3NgIJaAgOPu8+Gv+xn30WZ8PS18NabXUX//TM0v5dNNKXz82wF2ZxVXbW8S6M2150XicBpVt3wfqyfxX2dCtmoSgIel8g3voXdJBn8uHGlUTv4++O/KfwX5ehIfEURMsO9xJ4c4bTbKtm+nYvduLFYrXq1aHzXgrg5XaSmFX31F/uLFlPy8tmq7OTCQoP79aXT9EHw6dKj1EPHj3w7wxJKtlFQ4CfH3YuY/OnJ5XFitjvF3DqcLi9mku8rqSWp+KTNWba9a9M7TYmJ4j1gevLx1rQYvFQ4X7/+yl5e/3knewRmO3VqEMLF/fJ22Xigos/P44i18trnyQtQlrRsz658dCQs8tYs43+/IYsTC3yi1O+nYtBHv3N6VkDoMqn7Zk8OULxKqFt4MC/RmTN+2DO4cU+8zzk9WaYWTZz7/oyrA7Ni0Ea/c1JlmoUe2rzpW/3UPs4nL2jVhcOcYNh/Ir2qLFRcRyKu3dKF12PFfZ6rLMAxW78hi8YYUyh01m42dV1y5yGdh2dFfg8KDvA+Gm5VhdfvIoBq3f7GYTAT5epw1PycNw2DWlzt45ZtdQOXPjqAa3PGVXlDK1pTKOz1C/b14uE8bbu7WrFoXXg5xuQye/TyBeT8mAfDg5a0Z07dttT8Ha3ZmMeWLRBIOtoCKsvow9uDdNGdCy576oOC7BhR8V8/lM74jKbuY9+7qftK3IonI6avUUcro70bzQ8oPeJg9mNpzKv1i+7m7LBEROQVFP/xIysMP4youxqtFC5q++R+8mjXDVVFB0XffYVuylKLVq8Fx8A27xUJAz55YBw0k4PLLMXvXze3SecUVXDHzO/JK7Dx2dRwjerU67v6GYbAlxcbiDSks2ZRSFaT91REzISMDiY9oeDMha6riQAq2Tz/Ftngx9tTUqu0WqxU8ajDr1GzC2r8/YY8+iuk4x+3OKuKh9zdW9WuurRYKhmGQUVB+WI/ahLQCkrKL6dmmCfNu73pW39Jd1wrK7Lzx3W7m/ZBEuaOyx+2AjlE82rfdUYPIuh63Lhbb27Q/n4f+bwP7c0uxmE2M7duOEZe2rLW7mTfuy+OO/64nv8ROqyb+LPxXd6JqecLYrsxCpi3fzlcJlX2y/b0sjOjVirt6tqj1BSnry/ItaYz/eDMFZQ4CvD14bvC5DOwUfdz+6+fFWBnc+cj+699tz2TMh7+TU1yBr6eFyQPP4R/nx5xSILw1xcbU5Qn8uCvnlJ6np8VE67DAqnD70Eze2uhxfrZ658ckJi/746SO9fYwc1fPFtzbq1WN26QdYhgGr3+3mxdWbgfglu7NeGbgucd9rUpIK2Dq8kS+35EFVK758cDlrbn9olO7m+ZspOC7BhR8V88d76zj2+1ZPDf41Pooicjpp6CigAe/fpCNmRvxsfjw4uUvckn0Je4uS0REakHZ9h3sv/deHGlpWIKDCezTm4JVX+Ky/XkLuc8552AdOJCga/rjERpa5zU9tngz/7duP+3CA/ls5CU1moVV4XCxekcWXydkYPX989bvlk38a3Se001l3/V15C9eTOHKVRjl5Sd1noDevYmeOeO4LVPK7E6mLU9kwc/JuI7ybtLbw0y7iMCDt2pXhuJxkUFYfSvDhXKHs2ohtsT0P3vbHu2CxSHj+8Vx32XHvwAiNedwunh37V5mf7OL3IM9bru1COHx/vF0qsdF7/4+09zLYmZ4j+bc06vlKc/GdrkM5q7Zwwsrt+NwGcQE+zL75s50aXb0Hr6nYldmIcPeXkearYwoqw8L/tW9VmYdZxaW8dJXO/lg/X6cLgOL2cTN3ZrycO+2NAk8/YPTlPxSRi3ayPrkPAB6x4WxO6uI5L+0Aom0Huy/3jmaNsfpv55ZUMYjH26qCqoHdori2UHn1jjc3J9bwsxV2/l0U+UFRS+LmVu6N6vx59Pf20JcROUdRafLbPzTye/786suxFaXxWzi0jZNiLDWTruu93/Zx8RPt2AYlYtivvjPTke0mEm3lTFz1XY+2nCg6m6aoRc256Er2tTp3SFnMgXfNaDgu3omL9vGOz8mc3fPFky8pr27yxGRepJTmsO9X91LYm4igZ6BvNbnNTqHdXZ3WSIiUovsGZkcuO8+yv74c+aUR3g41usGYL3uOrzbtKm3Wn7bm8f1b/wEwP/u7UHX2JB6G/tM4Swqxp6SUqNjyrcnkjbpCYyKCvwuuICYN17HEnj8xf0Ky+xsTy8kIb16C7NFN/LF39vCnqziqlYFf2Uxm2jZ2P+wWfl7sop5+rM/8LSY+OT+izk32lqj5yXH9vewsb57bR/N33uLm01wadsmDO4cTd/2Efh61WxGZFZhOWP+93vV7MprOkQyZUiHqoswdSElv5Rhb//Cnqxigv08eeeObid9EaGkwsHc75N48/vdVd9XV7YPZ3y/uFpr49FQOJwuXvlmF698s7Pqgpqfl4V+50ZwfZcYLmxZ/f7rTpfBf1bvZtaXO3C6DJqH+vHKzZ05L+bEn4f8kgpe+3YX83/aS4Wz8i6EQZ2iGNO39u9CkDPHF1vSGLVoExVOF5e0bsybwyp7/ReW2fnP6t28/UMSZfbKr6drOkQyrl87mof6u7nq05uC7xpQ8F09C35O5skl2+gTH85bt13g7nJEpB7YXXbuWnkXGzI3EOITwpwr59AupJ27yxIRkTrgKikhY/p0jAo71gHX4tetGyZL/d5263C6GPDqjySkFfCP82N44R8d63X8s13xunUcuP8BXEVFeMfH02zuHDwa16zFoctlsDe3pCoIP7SYW0p+6WH7Vc7G/7NFSvvIIFqHBRxxq7dhGNz77m+s3JZBqyb+fPZQzxqHn3KkldvSGffRZmyldgK8PRh/dRw3d23aYHrLrt6Rxeyvd/Lb3ryqbQHeHvTvULkIZbfYkBO2KFmzM4tHPvid7KJyvD3M/HvAOdzcrWm9hPq5xRXc8c46fj9gw8/LwpvDzqdnmybVPt7hdPHRbweY9eUOMgsr797o2LQRj18d9//s3Xdc1XX7x/HXOUzZCsh2CzgR3HvnyHKvdo6ycmS21936ZZbbu7IyyzRXqVnuvbeAExDEAcje+6zv7w+U8s7BOHBAr+fjcT+6O5zz/V4Q53DO+/v5XBftG1T8rhtTOnEljbWnYujcyJl+zdzL1cLl9LU0pq4KJS4jHwszFW/192dc5/p3/N0p0OpZduQqX++NIutmP+5ODZ15Z0ATWnjLBTdxf4ciU3hh+SnyNHoCvB15vJUX3+yNIvXmbpq29Wry7sAmBFbAbpOHkQTfpSDBd8nsv5TMs0tP0Li2HTtf627qcoQQleDLk1+y/OJybC1sWTlwJQ2cGpi6JCGEKLGw+CxmrC0KPf65grTpzR7EVSXgEX9bcjCazzaH4WRjwZ4ZPWT7rwkUXLzI9YkvoE9NxaJOHer8uARLH59yHzczr2jAW75Gj5+7PR6O1iUOINNyNfSbf4Dk7EKe7ViXjwc3L3c9D6sCrZ6ZW8JYdvQaAAHejiwaG1ShfbzL40pKLhtC4lgfHEts+t8XT7ycajAsyIuhgV40cL195bNWb2Duzkss3n8ZRQFfNzv++0QQvvdoj1ERcgt1TFpxunj1emny9n+mNHVq2fBmfz8ebeHx0AwvNKbMPC1vrTvLtgsJAPT0c2X2yIDi3toGg8IfoXHM2XGp+AKdv7s9bw/wp7uvq/zMRamExmTw/E8nbmvd1cDFlrcG+PNIUzf5fTIiCb5LQYLvkrmemke3r/Ziaa4m/JP+RhsCIoSomrZd3cYb+98AYH6P+fSu29vEFQkhRMmdvJrGuJ9Pkn1z1db/sjRX4+tmd7MH8d8rTh1tKm77u7i3+Mx8+szZT65Gz8xhLRjbro6pS3poaa5d4/r4CWhjYzFzdaHOkiVY+5l2x9etRTgAPz3flp5+tU1aT3V0OTmHyStDCLvZD/eFbg14/RG/atF32GBQOHUtnfXBsWw+G0924d+v7a18nBge5MWglp7kFOqYujqEkOsZQNGwuQ8ebWqyXQKFOj1vrzvHhpDStR4CcLKxYEqvxjzVoc6/+gWL0lEUhRXHr/PppotodAZq21sxf0wrdHqFmVvDi58THo7WvNbXl2FB3jJMV5RZVFI2z/98knyNnmm9GzOmXZ0HesaIqUjwXQoSfJeMTm+gyYfb0OoVDr3VE++aVXNVgBCi/C5nXGbs5rHk6/IZ13wc01tPN3VJQghRYrsuJvLKymAKdQba1qvJ64/4EZmUU9x2IfwePYg9Ha1p6unIi90bVJne0reGNR6OSmFkG2+aeT6YW65f/vU0W84lEFTHid8ndZJFFiamTUoiZuILFEZEoLa3x+fbb7BpY9p2hx/9eYGfj1zF1d6KbdO6Fq/YfBBp9QZ+OxVLZFI2Pf1q07mRS7mCuN9Px/LhxvPkafQ421oye1RAtb14UKDVsysskfXBcey/lIz+ZkNoCzMVlmZqcjV67K3N+WJYSx5t6WHiaotk5GnQ6ksXvTjWsKgWFyWqk7D4LKasCiEqKee22+2tzHm5ZyOe71zvX+2WhCgLrd6AWqWSCygVSILvUpDgu+R6zd5HdEouK8a3p0vj0vX7E0JUDzmaHMZuHsvVrKu0c2/Hd32/w1xd9t56QghRmX4/Hctb686iNyj09q/Nf58I+tdKP4NB4fo/ehBfjC8azPfPHsRqFbzax5dXejYyyYcWRVEIjclgQ0gcf525Ubxl1rGGBb9P6kjjSt6yX9H2RSTx3E8nMVOr+GtyF5p6ynvyqkCflUXMSy+Tf/o0KisrvObNw75XT5PVU6DV89iiQ0Qm5fBIUze+e7r1A7dtXFEUtl9I5Mtt4USn5Bbf7uZgxZBWXgwL8sbPveTP/5xCHR/8cb54xXGnhs7MH92K2g7WRq/dFJKzC/nzzA3WB8dy4UbRqt3AOk4sHBMogwjFHeVpdHz850XWnIrBwkzF0x3qMblXI2mtJUQ1I8F3KUjwXXLjfj7JnvAkPhvSnKc61DV1OUIII1MUhRn7Z7Dz2k5q29Rm7aC1ONd4sAfoCCEeHD8ciOb/toQBMCzIi1nDW5Zqa2lWgZbw+GxWn7jO+pshUYcGtZg/OhB3x8oJiWLS8vgjJI4NIXG3hV6u9lbYW5sTnZyLh6M1617qhKdTjUqpqaIVaPX0m3+Aa6l5jO9Snw8GNTV1SeIfDPn5xE1/jZx9+8DMDI/PPsNp6BCT1XPhRiZDvj6MVq8wa3gLRrd9cFrinL6WzswtYZy6OdDR2daS7n6u7AlPIuMf/WKbeTowLMibxwM8cbW/+6r383GZTF4ZzNXUPMzUKqb3acxLPUxzMa8yhCdkEZ2cS9+mbtJWQNxXaEwGrvZWeD0gf0uFeNhI8F0KEnyX3Cd/XWTp4StM6FKf9+VDiRAPnGUXljH71GzM1eb83P9nAlwDTF2SEELcl6IozNoWweL9lwGY2LU+7wxoUq5WGetOx/LBzbYANW0smDMqgF7+bsYq+TaZ+Vq2nItnQ3AcJ66mFd9ubaGmfzN3hgZ507mhM9kFOkZ+d5SopBwautry+6RO1HwAVqjN3XmJhbsjcXewZteM7thZyS6jqkbRaol//wMyN24EoPYbb+A8fpzJ6vlu/2Vmbg3HxtKMzVO7Ut/F1mS1GMPVlFy+3B7OlnNFw/esLdRM6NKAF7s3wN7aAo3OwN6IJNYHx7InPKm4ZYaZWkW3xi4MC/Kmb1O34hYNiqLw0+GrzNwahlav4OlozcKxgbSpIu2bhBBCiPKS4LsUJPguuV+OXuXDjRfo06Q2S55ta+pyhBBGdDLhJBN3TESv6Hmv/XuM8R9j6pKEEOK+dHoD7244x9pTsQC81d+fSd0bGKX9QXRyDlNWhRRvnx/fpT5v9vczypAxrd7A/ohkNoTEsTMsEY3OAIBKVdSKYGigN/2bu/8rBL6Rkc/wb48Qn1lAKx8nVk5sj41l9Q2Ko5Nz6D//IBq9gW+eDGJgi6rRj1f8m2IwkPTVbNJ++gkA5wnjcZ0xwyStRvQGhSeXHONYdBoBPk78PqljtVzhm5arYeHuSH49fg2tXkGlgpGtvZne1xcPxzuvQk3P1bDp7A3WBccRGpNRfLu9lTmPtvRgYAsPfjl6lV1hSQD0a+bGrOEtcbKp/hfJhBBCiFsk+C4FCb5L7sClZJ5ZeoJ6zjbsfb3HA9dTT4iHVWJuIqM2XXce5gAAIABJREFUjSKtII1BDQbxeZfP5fkthKjyCrR6pq4KYcfFRNQqmDnM+G0PCnV6vtgazk+HrwLQwsuRRWMDqVeGFaaKonAuLpP1wXH8eeYGabma4q/5utkxNNCbIYGedw28bolMzGbkd0fJyNPS3deVJc+2qZahn6IoPP3jCQ5FpdDd15Wfn28rf3uqgdQlS0iaPQcAx+HDcJ08GXN390r/bxeXkU//+QfILtAxrXdjpvf1rdTzl0eBVs/Sw1f4du9lsgt1AHT3deWdgf74u5f88+jl5Bw2BBe1RvrnjAIAS3M1HzzahKc61JXnlRBCiAeOBN+lIMF3yaXmFNLxiz1odAb++0Qgg1p6mrokIUQ5afVaxm0fR2hyKL41fVkxcAU1zKXXnRCiassq0DJx2SmOX0nD0lzNorGB9GvmXmHn23kxkTd+P0NGnhZbSzP+b2gLhgR6leixNzLy+SM0jvXBcUQl5RTf7mJnxeBWngwN9KKZp0Opwqng6+k8+cNx8rV6hrTyZO6oVuVq7WIKf565wdRVIViZq9kxvRt1nat3u4qHSca6dcR/8CEYinYqmDk6YuXnh5W/H9Z+/lj5+2HVqBFqq7v3nzaGjaFxTFsdiplaxdoXO9K6bs0KPV95GQwKG0LimLMjghuZBQA09XDg3YFN6NLYpVzHPX4ljfXBsWw5F4+nUw0WjAmUIbFCCCEeWBJ8l4IE36Uzb+clFuyOxM3Bit0zelTbPowGg8KZ2Az83R2oYVn+LctCVFdfnPiCX8N+xd7CntWDVlPH4cEZEiXELcuPXuVMbCb+7vY08XCgiYcDtR6A3sgPq+TsQp5deoKL8VnYWZnzwzNt6Niw4gfxxmfmM211KCeuFPXhHtHam48fb4btHd4L5Rbq2HY+gfUhsRy5nMqtd9xW5moeaebOsCAvujZywbwcK7X3RiQxcdkpdAaF8V3q8/6jTarNys6sAi295+wnObuQ1/r6MrV3Y1OXJEope89ekhcsoDAqCvT6f9/BzAyrBvWx8vPH2t+v+J/mrq5GrWPa6hA2ht6grrMNm6d2LfVnk+jkHP4IvUFOgY6nO9atkH7hiqJwMDKFL7aGczG+qHWSp6M1Mx7xY2igl1EvWukNCiqodhfChBBCiNKQ4LsUJPgunQKtnkfmHeB6Wh4Tu9bnvUer35BLRVF4a91Z1p6Kpb6LLYvGBtLcy9HUZQlR6bZEb+Gtg28BsLDnQnrW6WniioQwvsvJOfSes/9ft7s7WNPU04EmHkVheFMPB+o622ImYUGVdj01j6eXHudaah4udpb8/Hy7Sv0brjcoLNoTycLdkRgUaOBa9D6imacjeoPCkcsprA+OY9v5BPK1f4eB7evXYliQFwNaeOBgbWG0ejaExDJ9zRmgqL/5Sz0aGu3YFemjPy/w85Gr1HexZdurXY3SN12YhqGwEM3lyxSER1AYEV70z/Bw9JmZd7y/Zf36ePzfZ9gEBRnl/Jn5WgYuOEhcRj6j2/gwa0TL+z4mI0/DX2fjWR8cS8j1v/tkm6lVjG3nw9Tejaltb22U+s7GZjBrWziHo1KBol7cL/dsxPOd6xUPoxRCCCFE6UjwXQoSfJfe3vAknv/5JGZqFVumdsXP3d7UJZWYoih8viWMHw5eKb7N0kzNuwP9ebZTvWqzUkqI8opMj+TJLU+Sr8tnYouJTA2aauqShKgQtwI2f3d76jnbcjE+i+tpeXe8bw0LM/z/EYQ/1tITRxvjhZTib/kaPXsjksjX3GGl6F1o9Qbm7LxEcnYh3jVrsHx8+wpZnVkSx6NTmbY6lISsAizN1DwW4MmhqGQSswqL71PfxZZhgV4MCfTCp5ZNhdWy5GA0n20OA+DL4S0Z1danws5VXlkFWo5eTuWlFacxKLBifPtytXgQVZOiKOgSEykID6cwPIKCiKJ/aq5dK2qPYmaG65QpOE+cgMqs/OHvsehUxv5wDEWBxU+1pn/zf7c90ugM7ItIYn1wHLvDE9Hqiz4Gm6lVdLv5O7g3Ihko+lswoWt9XujWAPsyXqi6mpLL7B0RbDobDxR93niqQ10m92okO46EEEKIcpLguxQk+C6bF345xY6LibSrX4s1L3SoNoHx13uj+Gp7BAD/eawpRy6nsvNiIgCPNHXjyxEy9Vw8+LI12Tyx+QmuZl2lg0cHFvdZjJlaVh2JB09uoY4On+8mu1DHsnHt6O5btMU+u0BLeEI2YfFZXLyRRVh8FuEJ2RTqDLc9voGLLX9M7mzUFboCLt7IYsqqYC4n55bp8X5u9vwyvh1uDsZZkVlW6bka3vj9DLvCkopvc6xhweMBngwN8iLQx6nS3h99sTWcxfsvo1bBd0+3oW9Tt0o5790YDAox6XlFz7H4oudaWHwWsel/D+B7LMCTRWMDTVilqGz6rCwSPv2MrL/+AsCmYwc8Z83Conbtch/71nOgpo0F21/tRm0HaxRF4WxsJuuDY/nzzA3S87TF92/q4cCwIC8eb+VZvLr7eHQqX2wLL14FXsvWksk9G/Fkhzol3pWQnF3Iwt2RrDpxHZ1BQaWCoa28mN7Xt0IvgAkhhBAPEwm+S0GC77KJTc+jz9z9FGgNzB0VwLAgb1OXdF+/Hr/GexvOA/D+o02Y0LUBiqKw7MhVPt8SjkZvwMupBgvHtqJ13VomrlaIiqEoCtP3TWf39d2427qzdtBaalpX7WFQpqYoSrW5uCdut+LYNd7/4zz1nG3YM6PHPXue6vQGrqbmcjE+m4s3slgfHEtSdiGPNHVj8VOtpV+qESiKwopj1/h0cxganQEXO6tSD1/zqVmDN/v5V5mV+Iqi8Ovx65y6mkb/5h709Hc1SdsORVF48/ez/HY6FitzNcvHt6dd/cp5L5On0RVfSCr6Xzbh8Vnk3mU1v6ejNW3r1+I/jzWTla8PIUVRyNzwBwmffoqSn49ZrVp4zvoCu65dy3Vcjc7AkK8PczE+iy6NXOjY0Jn1wbG3XWBztbdiaKAXQwO9aOJx59ceRVHYfiGRL7eHE33zsd41azDjEV8GB9y9H3dOoY7vD0Sz5GA0eTd/93v4ufJmP38ZMimEEEIYmQTfpSDBd9ndWj3tYmfJ7hk9cKxRNT6E3slfZ24wdXUIigKTezbi9X5+t339fFwmk1cGczU1DzO1itf6+vJS94YSdIgHztLzS5l3eh4WaguW9V9GC9cW97z/xtA43lp3lk8eb16lt89XhIORyby34Tz1XGz56bm20vu5mlEUhf7zDxKRmM0Hg5oyvkv9Uj0+NCaDUYuPotEbeKOfH6/0bFRBlT4cMvI0vLXuLNsvFO2y6uVfm9kjAyT4NCKd3sCkFafZFZaEvbU5a1/seNdwzxgMBoXvD0Yzd+clNP+zWwKKWjv4utvRxN2heKhsEw972VknACiMjibutRkUhocDUGvcOGq/Og2VZdl/PyITsxm06NBtu3esLdT0a+bOsCBvOjd0LvFAWZ3ewG+nY5m38xJJ2UUtjJp4OPBWfz+6+7oWXxDX6AysPH6NRXuiSM3VABDg7chbA/zp1FDa+AghhBAVQYLvUpDgu+w0OgP9FxwgOjmXZzvW5ePBzU1d0h3ti0hi4i+n0OoVnmxfh8+GNL/j6s2cQh3vbzjHH6E3AOja2IW5o1rham9V2SULUSH+iPqD/xz5DwbFwAcdPmCU36h73j+nUEePr/aSkqPB2kLN5qldaehqV0nVmo5Wb2Duzkss3n+ZW38lZ48MYETrqr+zRfzteHQqo78/Rg0LM46927tMF2dXnbjOO+vPoVbBsnHt6NrYtQIqffCduprG1FUh3MgswMJMxdsDmjCus8zVqAj5Gj3PLD3Oyavp1La3Yt1LnSqkvUJydiGvrQ3lYGQKAC52VjTxsKepx98hdwNXWyxKGDKKh5OhsJCkL78i/ddfAbBu0QKvuXOw9Cn7hfa1J2N4/4/zBNV1YliQNwOau5e5TzcUPaeWHr7C4v2XyS7QAdCxgTNv9vfjeloec3ZcKp4bUd/Fljf6+TGgubu8vgkhhBAVSILvUpDgu3wOR6Xw5JLjqFXw5+QuNPdyNHVJtzl9LY0nlxynQGvgsQBP5o9udc9Vm4qi8NvpWP6z8QL5Wj0udlbMGx0gYYeo9n46/xNzT88FYJTvKN7v8P59P5TN23mJBbsji/89wMeJdZM6lni1VHUUk5bH1NUhxf09m3k6cOFGFp6O1ux5vQfWFtIL/W4KtHq+2RuFhZmayb0amfxD/yu/BrP5XDxj2/kwc1jLMh/nrd/PsuZUDDVtLPhrShe8a1Zuj9b/7ZV8OSmH3k1qV4sWY3qDwrf7opi3KxK9QaGesw2LxgbRwrtqvVd40GTmaRn13VEiErOp72LLwjGBRv2ZH4pM4dU1oaTkFGJlruY/jzVjbDsfkz/nRfWVvWsXN957H0NmJmo7Ozw++RiHgQNNXdZt0nM1fLMvimVHrqHR377DwcXOilf7NGZ0Wx+52COEEEJUAgm+S0GC7/KbvDKYTWfjaeXjxPqXOlWZ9iBh8VmM/u4oWQU6uvu68sMzbbA0L9mb0aikbCavDCE8IRuVCl7q3pDX+vo+0IGfeDApisK80/P46cJPADzX7Dlea/3afQOKpKwCeszeR55GzweDmjJ/1yWyC3TM6OvLlN6NK6P0SrflXDxvrTtLdoEOe2tzvhjWkt5NatNr9j5uZBbw9gB/JnVvaOoyq6RLidlMXhnMpcQcAJP/rBKzCuj8xR50BoUtU7uWq79qgVbPqO+OcjY2kxZejvw2qWOFXQApTa/kBWNaMbiVV4XUYQyJWQVMXxPKkcupAAwN9OLTIc2xszI3cWUPh8SsAoZ9c4S4jKJhkkNaeTLjEb9yrf7W6g3M23mJb2/uhvF1s2PR2CD83O2NVbZ4iGlv3CDujTfJP30aAKeRI3B7913UNWqYuLLbxabnMW9nJOtDYrG1NGdS9waM61IfG0t5bRNCCCEqiwTfpSDBd/klZBbQe84+cjV6Zg1vwei2dUxdEtdScxn+7VFScgppU7cmy8e3p4Zl6YKKAq2eTzdd5Nfj1wFoXbcmC8cG4uVUtd6AC3E3OoOOj49+zB9RfwDwWuvXeL758yV67LsbzrHy+HVa+Tix4eVObAy9watrQjFXq/jjlc5VbndHeRRo9Xyy6SIrbz7XW/k4sWhsYHFAtO50LDN+O4O9tTkH3uhJTelJXExRFFadiOGTTRco0BqwtzInu1CHWgUrxrenUyPT9De9tVuhbb2a/DapU7mPF5uex2OLDpGep2VUG29mDW9plNWtF29ksTsskbCEopD7amoud3pnZmmmprGbHU08HMjT6NhyLgELMxU/PtuWbr7G35EUm57H+bgsGtW2pb6LXan72++NSGLG2jOk5WqwsTTj08HNGS6tgipdQmYBs7aFsyEkDij6PXqucz1e6dGo1MNBY9LymLY6hOCbu2HGtqvDh4Oalvq9lRD3ouh0pHzzDSnfLgZFwbJhQ7zmzsXaz9fUpf1LXEY+dlbmVXrGkRBCCPGgkuC7FCT4No4lB6P5bHMYNW0s2DOjh0mDocSsAkYsPkJMWj7+7vasebFjud6Ubj4bz9vrzpJdqMOxhgVrX+woq5tElVegK+DNA2+yN2YvapWajzp+xNDGQ0v02KikHPrNP4DeoLDmhQ60b+CMoii8sjKYLecSaFzbjr+mdHkg2n5cSsxmysoQIhKzAXipR9Hujn9uVdYbFAYtOkRYfBYTutTn/UFNTVVulZKZr+Xd9efYfC4egG6+rswdFcDMLeGsC47F2daSTVO74OFYuRcLNToDnWftITm7kEVjA3kswNMoxz0UmcIzS49jUODzoS14on3ZL/L+bwuQf3K1tyoeAtjUwwF/99t7JRsMCtPWhPLXmRvYWJqxcmIHWvk4let7+6d9EUm8tCKYfG3RKnMrczV+7vY3BxTa08TDAX8Phzv+XdXoDHy1PZwfDl4BoKmHA4ueCHwoZgNUZefjMvl8S1jx6nvHGhZM6dWIpzvWxcr8/q/jW8/F8+at3TBW5nwxvCWPtvSo6LLFQyz32HFuvPEGuuRkVFZWeHzyMY6DB5u6LCGEEEJUERJ8l4IE38ah1RsYtPAQEYnZjG1Xh5nDWpikjow8DaO+O8qlxBzqOtvw26SO1La3LvdxY9LyePnXYM7FZeLvbs/GyZ1L9GFRCFPI1mQzZc8UTieexlJtyVfdv6JXnV4lfvwLv5xix8VE+jRxY8mzbYpvT8vV8Mi8A6TkFDKxa33ee9S0AbBWbyhzL01FUVhzMoaP/ipaqXy/fv77LyXz7NITWJqp2T2je4UMi6tOgq+nM3VVCLHp+ZirVbzZ348JXRqgVqvI1+gZ9u0RwuKzCKzjxJoXOpa4zZQx/HXmBlNWheBqb8Xht3oZ9dzf7Iviy20RWJqpWTupY5kC5/jMfKavCeVYdBoAPfxc6dTQuXggoIvd/Qcqa3QGxv18kkNRKdS0seD3lzoZJVzeGBrHjLVn0BkUvJxqkJ6nIe8ObVYAvJxqFAfhTTwcqG1vxSebLnI2NhOA5zrV4+0B/g/EBbIHgaIo7ItIZubWsOKWRD61avBmP38GtfS44w6G/9359r+7YYSoSLq0NG688w65+w+AuTn1Vq2iRovmpi5LCCGEEFWABN+lIMG38Zy4ksao746iUsGGlzsbdQVaSeQW6njqx+OEXM/AzcGK3yd1MuqHs+TsQvrPP0BqroYXuzXgnYFNjHZsIYwlJT+FSTsnEZEegZ2FHQt7LaSte9sSP/7U1TRGLD6KWgXbX+1GY7fbdzfsDktk/LJTqFSwamIHOjRwNva3cE/ZBVq2nktgXXAsx6+k4WJnWRy83QrhGrra3TMQzyrQ8s76c2w+W7RSuWtjF+aOaoWr/d0DR0VRePrHExyKSmFIK0/mjwk0+vdWHRgMCt8diGbOjgh0BoU6tWxYODbwX6/311JzGbToENkFOp7tWJePB1deWDFy8RFOXk1nau/GvNbXuNvjFUVh0orTbL+QiIejNX9N6VKioPqW7RcSeGvdWTLytNhamvHJ4OYMC/IqU9uUnEIdT/xwjLOxmXg51WDdS51wdyz7hd6fDl/h478uAvB4gCezRwZgrlZxLS3vHz3Hi1qy3OobfSdONhZ8ObwljzRzL3MtouLo9AbWBccyZ8clkrILAQjwduTdgU1o/4/X88jEolkn99oNI0RFUwwG4l6dTvaOHVjWq0f99etQ28iFFyGEEOJhJ8F3KUjwbVyvrQ1lfXAczb0c2PhKl1L3BS2rQp2eCctOcTAyBSebonYkvm7Gb0ey82IiE38pCv1WTuhAx4aVG/oJcS8x2TG8uPNFYrJjcLZ2ZnHfxfjX8i/x4xVFYfi3Rwi+nsHYdj7MHNbyjvd7e91ZVp+MwbtmDbZO64q9dcX2t9TpDRyKSmF9cBzbLyRQqDPc8/4WZioa1bYvbhVxKxivZWtJyPV0pq4OISataKXy6/38eKFrgxIN5T0fl8mgRYcA2DSlywPV57wkkrMLeW1tKAcjUwAY1NKDz4e1wOEu//1vXSQBmD+6FUMCK34QY1h8FgMWHMRcreLw271wcyj/jp//lV2gZfDXh4lOzqVDg1qsGN/+voOPC7R6/m9zGMuPXQOghZcjC8cGUt/Ftly1pOYUMmLxUa6k5OLnZs/aFzuWunezoijM3XmJRXuigKKV2h8OanrP50RmnvZmX/K/w/DLyTm0rluTWcNb4imzMKq8PI2OJQev8N3+y8XDU/s0cePtAf6cupr2j90wlswd1apCeskLURL6jAyiBw9Bl5iI06hReHzysalLEkIIIYSJSfBdChJ8G1dydiG95uwju0DHp4Ob8XTHehV+Tr1BYeqqEDafi8fG0oxfJ7QnsE7NCjvfrdDP09Gara92k6E2okqISItg0q5JpOSn4GXnxQ99f8DHwadUx9h2PoFJK05Tw8KMfW/0uGtomFOoo//8A8Sm5zO6jQ+zRtw5IC+vsPgs1gfH8kfoDZJvrkwEaOhqy7Agbwa28CAzX3vbatTw+GyyC3V3PJ6bgxWpORp0BgXvmjVYNDaw1K8Vr64O4Y/QG3Ru5MyK8e2NMuCwOjhwKZnX1p4hJacQaws1Hz/ejFFtfO77/c/ZEcGiPVFYW6jZ8HJnmnhU7N/Zd9afY9WJ6zzawoOvnwyqsPNEJmYz5OvD5Gr0vNCtAe/eYwdQREI2U1f9vXL2xW4NmPGIn9FasMSk5TH82yMkZRfStl7RMOeSthfRGxQ+2Hi+eLDrjL6+TO7VqEy/14qiPDTPhwdJcnYh83ddYvXJGPQGBZWK4gGrXRu7MGdUgFFaxglRHrnHjnH9+XGgKHj/dxH2ffqYuiQhhBBCmJAE36Ugwbfx/XL0Kh9uvICDtTl7Xu9Rqm3gpaUoCu9uOM+qE9exMFOx9Lm2d+3Rayy5hToGLjzItdS8h7rlgag6TieeZsruKWRrs/Gt6cviPotxtSnd80CrN9Bv3gGiU3KZ0qsRMx7xu+f9j0enMuaHYygKLHmmDX2aupXnWyiWlF3An6E3WBccR1h8VvHtNW0sGNzKi2FBXrTwcrxrwKYoCrHp+Vz8n9YM19Pyiu/zaIuilcpluWgVk5ZH7zn70egNLBvXju4P+CpIrd7AnB2XWLz/MgD+7vYsGhv4rxY4d6M3KDz30wkORqZQz9mGjZO7VNjFwsx8LR0+302+Vl88lLUibTkXz8u/BgPw9RNB/xr2pygKK45f57NNFynUFfWRnzsqoEJWzobFZzHqu6NkF+jo08SNxU8F3XcVeqFOz/Q1oWw5l4BKBZ8Obs5THeoavTZRPUQl5TBrWzg7LyaWejeMEJUh8auvSPtxKWZOTtT/cyMWtWubuiQhhBBCmIgE36Ugwbfx6Q0Kg78+xPm4LIYHeTNnVECFnWv29gj+uzcKlaooeBjYwuP+DzKC4OvpjFx8FL1BYeHYQB4P8KyU84rqQVEUdoUlkZhVcPvt/77jbf9qZWHG4wGepRoGty9mH6/vf51CfSFBtYNY1HsRDpalfy1bfuwaH/xxHmdbS/a90aNE7Us+3xLG9weicbGzZPur3XAu40Uug0Fh6/kEfjsdw4FLyRhu/lgszdT0blKbYUHedPd1LdcK2ewCLZcSs1GpVAT6OJVrZepnmy6y5NAV/N3t2Ty1a6W1dCqPlJxC9kUkk6+582r4O1GA9cFxhMZkAPBUhzq8/2jTUg8rTM/VMGjRIeIy8unb1I3vnmpdIWHaj4eu8Ommi/i52bPt1a6Vsvp45pYwvjsQjY2lGRtf6Vx8QSA9V8Nb686y42IiUDTAcvbIgAq9EHw8OpWnl55AozMwqo03s4a3vOvPIKdQx4vLT3E4KhULMxXzRwf+K7gXD6fzcZlYW6hpVNv47eKEKA+DRsPVMWMovBiGbefO+PzwPSq19JwXQgghHkYSfJeCBN8VI+R6OsO+PYKiwG+TOtK2Xi2jn2PpoSt8sqloENfnQ1vwRPs6Rj/HvczdeYmFuyNxsDZn26vdpKepKLb6xHXeXn+uTI8dFujF3NGtSnTfvy7/xQeHP0Cv6Onu3Z2vun9FDfPS/x7mFOro8dVeUnI0fPx4M57tVK9EjyvQ6nn8v4e4lJhD/2bufPtUUKnCRkVR2HcpmS+3Rdy2ujuojhPDgrwZ1NIDJxvL0n47FS4jT0O3L/eSVaBj9sgARrT2NnVJd1Sg1bM7LIn1wbHsv5SMzlC2P/kO1ubMGt6SAeW4sHg2NoMR3x5FozfwZn8/Xu7RqMzHuhODQaH33P1cScnlsyGVt3JZpzfw9I8nOBqdSgMXWzZO7sz5uCymrwklIasACzMVbw9owvOd6lXKytkdF4raFRkUeLlHQ97s/+8e/6k5hTz/80nOxmZiY2nG90+3oUtjlwqvTQghyqvw8mWuDBuOUliI2ztvU+vZZ01dkhBCCCFMQILvUpDgu+K8s/4sq07E4O9uz6YpXe677bo0NoTEMn3NGQBef8SXyb0aG+3YJaXVGxjx7RHOxGbSqWFRv1/ZEixi0vLoP/8AuRo97evXouZdgtv/zYcNisLOi4kYFFj8VGv6N3e/53mCE4MZv308OkXH4w0f56NOH2GhLlsLiXk7L7FgdyT1nG3YMb17qVZWn4/LZMjXh9EZFOaNDmBoYMlC4NCYDL7YGsax6DQA7K3NebZjPYa39i73wL/KsHj/Zb7YGo6nozV7Xu9R6lXQFUVRFE5fS2ddcBybzt4gu+DvFd4tvBzxrlm6CyNONpa83KMhPrVsyl3bqhPXeWf9OdQqWD6+PZ0bGS9s3X8pmWeXnsDeypxj7/bG1srcaMe+n5ScQh5bdIj4zAIa17YjKjkHRYEGrrYsHBNY6UNQ/3nh7cNBTRnXpX7x12LT83jmxxNEp+RSy9aSn55rS4CPU6XWJ4QQ5ZG+ahUJH3+CysKCer//hrXfvVuzCSGEEOLBI8F3KUjwXXHSczX0mrOP9DwtY9vV4aPHm2JlXv5waG94EhN/OYXOoPB853p8OKipyQZqRSfn8OjCQ+Rr9bz/aBMmdG1gkjpE1WAwKIz94RjHr6TRrl4tVr3QoVRtMGZtC+fbfZdxtrVk+/Rud22LkJKfwqi/RpGcn0z/ev2Z1W0WalXZLiwlZRfQ46t95Gn0fPNk2doFLdodyZydl7C3Nmf7fXY/XE7OYfb2CLaeTwDA0lzNsx3r8nKPRtS0rXqru++mQKun1+x93Mgs4O0B/kzq3tCk9VxLzWVDSBzrg+Nu62fu4WjN0MCi3uimbl2gKApv/n6W307HUsvWkk1Tuhhtp8yEZSfZFZbEc53q8dHjzYxyzNIIjclg1OKiFe0Ao9v48J/Hm2JjWXkB/D/9d08ks3dcAmDBmFYMbuXFpcRsnvnxBAlZBXg51WDZuHY0qm1nkvqEEKKsFEUh9qWXydm3D6vGjan321rU1jKAVQghhHhNmxX5AAAgAElEQVSYSPBdChJ8V6z1wbG8trZoZXZTDwcWjg0s1wft09fSeHLJcQq0BoYGejFnZIDJV1n/evwa7204j6W5mj8nd8bfXX6PHla3egzbWJqxbVo36jiXbpVsoU7P4P8eJjwh+66tQ7QGLRN3TOR04mkaOjZk5aMrsbEo+2rc9zac49fj12nl48SGlzuV6SKSTm9g+OKjnInJoHMjZ5aP+/fuh6SsAubvjmTNyRj0BgWVCoYHeTO9ry9e1bRN0O+nY3n9tzPYW5tz4I2elR7cZ+Zr2Xw2nvXBsZy6ll58u62lGQNaeDAs0IsODZxN/hr5TwVaPcO/PcKFG1m08nFizYsdyn1BNCYtj25f7UVRYPeM7jR0NU2Y+9eZGyw5dIUJXerzmInnPiiKwsd/XeTnI1exMFPxRj8/vt57mcx8LY1r2/HL+HZ4OFbP550QQuhSU4kePAR9Sgo1n34a9/feNXVJQgghhKhEJc1yZRqIqHDDgrxZ+lwbatlacjE+i8cWHWL1ieuU5ZpLREI2z/90kgKtgZ5+rnw5omWVCHSeaFeH3v610egMvLo6lEKdvlLPvzc8iZd/Pc3ByORKPa+4XVRSDl9uCwfgvUeblDr0BrAyN2POqADM1Sq2XUjgj9C4f91n/un5nE48ja2FLfN6zitX6H05OYfVJ2MAeGeAf5l3TpibqZk7KgBrCzWHo1JZfuxa8deyCrR8tT2cbl/tZeXx6+gNCn2a1GbbtG7MHhlQbUNvgKGBXvi725NdoOPrvVGVdt6MPA2v/3aGtv+3i3c3nOPUtXTUKuja2IX5o1tx8v0+zB4ZQKdGLlXiNfKfrC3MWPxUaxxrWBAak8GnN+c0lMeK49dQlKLv31ShN8BjAZ5sfKWzyUNvAJVKxYeDmjKopQdavcLnW8LJzNcSWMeJtS92lNBbCFGtmTs74/n5/wGQvnw5OQcPmrgiIYQQQlRFEnyLStHL341t07rSpZEL+Vo9b68/xysrg8nM05b4GDFpeTyz9DhZBTpa163JN0+2xsKIPcPLQ6VS8cXwljjbWhKekM2cm9vLK0NSdgFTV4ew5VwCT/94gqeWHOdcbGalnV8U0ekNzFgbSqHOQDdfV55oV/ZBq808HZnWu6hn/YcbLxCfmV/8te1Xt/PLxV8A+KzzZ9R3rH/HY5TUl9vCi4Po9g2cy3Wshq52vDOgCQAzt4YRFp/FkoPRdPtyL1/vvUyB1kDQzdBtybNt8XM3bdsNYzBTq3hnYNH3/MvRa8T8o8VIRTkencqABQf5/XQsGp0BPzd73h3oz9F3erN8fHuGBHqZrL1GSfnUsmH+mFaoVLDi2HXWnY4t87EKtHrW3rx483QlDbSsLtRqFXNGBdDlZi/1br6u/DqhfbVqKSSEEHdj160bNZ96CoAb77yLLi3NxBUJIYQQoqqRVidIq5PKZDAofH8wmtnbI9AZFLycajB/TCva1qt1z8el5BQy4tsjXE3Nw8/NnrUvdsTRpmxD/CrSzouJTPzlFCoVrJzQgY4NyxcklsT0NaFsCInD3cGa1NxCtPqip/RjAZ68/ogvdZ2r/pDAB8GtHtcO1ubsmN4dd8fy9ZrU6Q0Mvzk4tZuvK8ueb8uVzCuM2TyGfF0+zzd/ntdav1auc5y6msaIxUdRq2D7q91o7Fb+INpgUHhm6QkORaWgUsGtvzCNatvxZj8/+jZ1M1k//oqiKApP/Xicw1GpDGnlyfwxgRVyHp3ewMLdkfx3bxQGBeq72DJ7ZEuC6tSstj/TW0NVrczVrH2xY5mGLP52KoY3fj+Ll1MNDrzZs1Q99R8WWr2Bc3GZtPRyNOqQaSGEMDVDQQFXR46kMDIKu5498f7m62r7N1EIIYQQJSetTkSVpFarmNS9Iete6kRdZxviMvIZ/d1R5u+6hO7mQLD/lV2g5dmlJ7iamod3zRr8Mr5dlQy9Afo2dWNsOx8UBWasDSUzv+Qr2sviWHQqG0LiUKng+2das2dGD4YGeqFSFfWa7T1nP//ZeJ6UnMIKreNhd+FGJgt2RwLw8eBm5Q69oah1yJxRrbAyV3PgUjI/HQ3n1X2vkq/Lp517O6YGTi3X8RVFYebWorYso9v6GCX0hqLn+JcjWmJvbY6igLuDNbOGt2DbtK480sz9gfwwqlKpile6/xF6g/Nxxt9xEZOWx+jvj7FwT1HoPbK1N5umdKF13VrV+mc6rXdjuvu6UqgzMOzbI7z/xzmSs0v3enWrrc6THepI6H0XFmZqgurUlNBbCPHAUVtb4zl7NioLC3L27iVjzRpTlySEEEKIKkQ+AQmTCPBxYvPUrgwL8sKgwPxdkYz94RhxGfm33a9Aq2fiL6e4cCMLFztLlo9vj5tD1Z7a/v6jTannbMONzAI+3Hi+ws6j1RuKj/9Euzq09HbCp5YN80a3YtOULnT3dUVnUFh29Brdv9zLgl2R5Bbqynw+vUHhRkY+esNDv0nkNoU6Pa+tOYPOoNC/mTtDWnkZ7diNatvxZn9/QGFOyGdcybxCbZvazOo2C3N1+VpZbL+QyOlr6VhbqHm1j69xCr7J06kGa17oyOyRAex7owej29Z54AO35l6ODG5V1Nd55tawMs0wuJtNZ28wcOFBTl9Lx97KnIVjA/lqZAC2VlW7nUlJqNUqFo4JpE8TN/QGhRXHrtPjq70s2h1Jnub+r1ehMRmcjc3E0lzN6DY+lVCxEEKIqsbazw/XGUW74BK/mEVhdLSJKxJCCCFEVSGtTpBWJ6a2MTSO9zacJ6dQh4O1OV8Mb8nAFh7o9AZeWRnM9guJ2FmZs/qFDjT3cjR1uSUSfD2dkYuPojcoLBwbyOMVMOjs+wOX+XxLOLVsLdkzoztONv/u2XokKoUvtoVz9mbPbxc7S6b1bsyYdnXu2R89JaeQiIRswhOyiUjIIjwhm0uJ2RRoi/pX//BMa6zMzYz+PVVHX2wNZ/H+yzjbWrJjejec7ayMenyDQeGRpZ+SaPEbKGYsG/AzQW6tynVMrd5Av3kHiE7JZUqvRsx4xM9I1T7cYtLy6D1nPxq9gWXj2tHd17Vcx8vT6PjozwusPVXU/zqwjhMLxwTiU6vsw0yrsmPRqczcEsaZm69Xbg5WvNbXlxGtfe66kvu1NaGsD4ljWJAXc0eV73khhBCi+lIMBmImTCT3yBGsmjah/urVqCxlnoEQQgjxoCpplivBNxJ8VwXXU/OYsjqEMzEZAIxt54PeoLD2VCyW5mqWPd+uUvplG9PcnZdYuDsSB2tztr3aDU+nGkY7dnxmPr3n7CdPo+fLES0ZdY+VjoqisOVcAl9tD+dqatHgvXrONrzez49e/rWJTMz5O+ROzCIiIZuUHM09z/9oCw8Wjg186NsKnL6WxsjFRzEo8N3TrenXzN3o5ziVcIrxOyZgUPQUJAzmzY7jmNitQbmOueLYNd7/4zzOtpbse6MH9tZVs3VQdfTZpossOXQFf3d7Nk/tWubnyPm4TKauDiE6OReVCl7p0YhpfRpXmYG+FcVgUNh0Lp4vt4UTm160A8jPzZ63B/rTw9f1trYuqTmFdJy5B43ewMZXOpepP7gQQogHhzYxiSuDB6PPyMB5wnhqv/66qUsSQgghRAWR4LsUJPiuGrR6A/N2XuLb/ZeLB+KpVfDtUxUTKFY0rd7AiJvDCTs0qMXy8e2NFlq98mswm8/F06ZuTda+2BF1CcI1rd7A6pMxLNgVed+e3yoV1K1lg5+7PX7uDvi72+Pvbk9Mej4Tlp1Eq1cY286Hz4e2qNb9hcsjT6Nj4IKDXE3Nq7DVpkl5SYz6axSpBak0c+jBseP9sDQ3Y/OULmXuyR0ak8GEZSdJydHw8ePNeLZTPeMW/ZBLz9XQ7au9ZBfo6O1fm6C6NfFzs8fP3R4vpxr3fa4aDApLD1/hy20RaPQG3B2smTe6VbW78FdehTo9y49eY9GeqOJZCZ0bOfPOgCbFO3++3hvFV9sjCPB2ZOPkLqYsVwghRBWRvWsXsZOngEqFdfPmRW9qS8iqQQPc3n0HM/k8KIQQQlR5EnyXggTfVcuRqBReXRNKUnYhs4a3YHTbOqYuqcyik3MYtOgQeRo9QwO9mDMyoEQh9b0cuJTMM0tPYKZWsWlKF5p4lO53NrdQx4+HrvDd/svkavQ421ri72GPn1tRwO3nbk9jNztsLO/cP3jLuXgmrwzGoMDLPRre7EH98PnPxvMsO3oND0drtr3aDccaxl01rTVoGb99PCFJITSu2Zjl/Zfzyq8X2BeRTAsvR9a/3KlUF1Kup+bx5fZwNp2NB6CBqy3bpnXD0vzBXkFsCj8eusKnmy7+63ZbSzN83e2Lg3A/N3t83e1xudkeJzm7kNd/O8P+S8kAPNLUjVnDW1LT9uHdqp2Zp+XrfVH8fPgqGr0BlQqGtvJiel9fxnxfNBdi9sgARrT2NnWpQgghqoj4D/9Dxtq1ZXqsXY8eeH/zNSq1vD8SQgghqjIJvktBgu+qJ7dQR2qOhjrO1b+X7d6IJCYsO4XeoPBCtwa8O7BJmY9VqNPTf/5BrqTkMq5zfT58rGmZj5Wv0ZOr0RWHbqWx6sR13ll/DoD3BjYpd+uN6uZwVApPLjkOwC/j2tGtnL2c72TWiVmsCFuBnYUdqwetpq5DXRKzCnhk3gEy87VM7+PLtD6N73uc9FwNi/ZEsfzYVbR6BZUKhgd582Y/P2pX8UGx1dmRyymEXM/gUmI2EQnZXE7OQau/859bFztLfN3suZSYQ0pOIVbmaj4Y1JQn29d5aHdU/K+YtDxm74hgY+gNoGg3kEGBmjYWHH2nN9YWMnNACCFEEUWnI/f4cRTNvVv3/ZMhK4v4Dz5E0WhwnTYVl5deqsAKhRBCCFFeEnyXggTfoqKtOx3LjN/OAPDuQH9e6NawTMdZtDuSOTsvUdveit0zupu0N/O3+y4za1s4wH37jD9Isgq09J93gBuZBTzVoQ6fDWlh9HNsvbKVNw+8CcCCngvoVadX8dc2hsYxbXUo5moVG17uTAvvOw98LdDqWXbkKv/dG0V2gQ6Aro1deGdAE5p6yutcZdPqDVxNySXiZhAecXNg7LW0PP75V9jPzZ6FYwPxcy9bK5sH3dnYDD7fEsax6DQAJnVvyNsDHs5dJ0IIIYwrY9064t97H1QqfL7/Hruu0kZLCCGEqKok+C4FCb5FZfhu/2Vmbi0KiueOCmBYUOm25sek5dFn7n4KdQYWjGnF4FZeFVFmiSmKwsyt4Xx/ILpa92Ivrdd/O8Pvp2Op62zD1mld79oSpqyi0qN4YssT5OvymdBiAtOCpt32dUVReGVlMFvOJeDrZsefk7vcttrVYFDYeCaO2dsvEZdRNBzQ392edwc2qZCV6aJ88jV6IpOKgnCDojC4lZesXr4PRVHYF5FMyPV0XuzeEFsr4z4HhRBCPLxutUkxc3Sk3rp1WHqb9v22EEIIIe5Mgu9SkOBbVAZFUfhscxg/HrqCuVrFkmfb0MOvdokfP2HZSXaFJdGxgTMrJ7avEi0QFEXhrXVnWXsqFkszNT+Pa0unhi6mLqvC7LyYyMRfTqFSwW8vdqRNvVpGPX6OJoexm8dyNesq7T3a812f7zBT/zsETcvV8Mi8/aTkaHixWwPeudk+50hUCp9vDeN8XBYA7g7WzHjEl2FB3piVs7e8EEIIIcSDzqDRcO3Jpyg4dw7rpk2pu/JX1NbSGk4IIYSoakqa5crUDiEqiUql4r2BTRjcyhOdQeGlFcGEXE8v0WN3XUxkV1gSFmYqPh3SrEqE3lD0PX0+tAX9mrmh0RuYuOwUZ2MzTF1WhUjL1fDO+rMAvNC1gdFD7yxNFq/sfoWrWVdxs3Hjy25f3jH0Bqhla8nMYS0B+P5gNGtPxfD8Tyd4YslxzsdlYWdlzhv9/Nj7eg9GtvGR0FsIIYQQogTUlpZ4L5iPWc2aFFy8SMInnyLrxIQQQojqS4JvISqRWq3iqxEBdG3sQr5Wz7ifT3I5Oeeej8nX6PnorwsAjO/SgEa1q1bvX3MzNQvGBNKpoTO5Gj3P/XSSqKR7f0/VTW6hjhlrQ0nJ0eDrZsf0vr5GPX5yXjLPbXuO4KRg7C3sWdBzAbWs7x2s923qxojW3igKvPn7WfZGJGOuVvFMx7rse6MHr/RsRA1LaZkhhBBCCFEaFp6eeM2dA2o1mevXk7H2N1OXJIQQQogykuBbiEpmaa5m8VOtaentSHqelmd+PEFiVsFd7//Nvihi0/PxdLRmau9GlVhpyVlbmPH9M21o6e1IWq6GZ348zo2b/aWruws3Mnls0SH2RiRjYaZi7qhWRu3BfD3rOk9vfZrI9EhcarjwU/+faObSrESP/fCxpnjXrAFA/2bu7JjejU8GN8fFzspo9QkhhBBCPGxsO3bEdfqrACR+9hn5Z8+auCIhhBBClIX0+EZ6fAvTSMkpZOTio1xJycXf3Z41L3bEsYbFbfeJTs6h//yDaPQGFj/Vmv7Nq/bwyLRcDSMWHyE6OZeGrrb8NqkTtWwtTV1WmSiKwi9Hr/F/m8PQ6A24O1izYEwr2jdwNto5wlLDmLRrEmkFafjY+/Bd3+/wsfcp1TEy8jSk52mp72JrtLqEEEIIIR52iqIQN3Uq2Tt3Ye7uTv316zCvZdxWd0IIIYQoG+nxLUQV52JnxS/j2uFqb0V4QjYTl52iQKsv/rqiKPznzwto9AZ6+LnSr5mbCastmVq2lqwY3x5PR2suJ+fy3E8nyCnUmbqsUkvP1fDC8tPFP/8+TdzYOq2rUUPvkwknGbd9HGkFafjX8ueXAb+UOvQGcLKxlNBbCCGEEMLIVCoVHjNnYlmvHrqEBOJem4Giq37va4UQQoiHmQTfQpiQTy0bfn6+LfZW5py4msa01SHoDUWbMLacS+BgZAqW5mo+frzqDLS8H0+nGiyf0J5atpacjc3khV9OkZR991YuVc2JK2kMXHiQnRcTsTRT89FjTfnhmdbUNOLK9d3XdzNp5yRytDm0cWvD0n5LcanhYrTjCyGEEEKI8jOzs8P7v4tQ2diQd+wYyQsWmLokIYQQQpSCBN9CmFgzT0e+f6YNlmZqtl9I5P0/zpNTqOPTTRcBeKl7Q+o6V68VvQ1d7Vj2fDtsLc04cjmVjjP3MPGXU+y6mIhObzB1eXekNygs3B3JmO+PEp9ZQAMXW9a/3InnOtc36kWHDZEbeG3fa2gMGnr69GRx38XYW1atgaVCCCGEEKKIVaNGeP7fZwCk/rCErB07TFyREEIIIUpKenwjPb5F1bDlXDyvrAxGUaBxbTsik3KoU8uGHdO7GXWYYmU6fS2dmVvCOHUtvfi22vZWjGzjzag2PlUm0E/ILODVNSEci04DYHiQN58MboatlbnRzqEoCkvPL2V+8HwAhjYayocdP8RcbbxzCCGEEEKIipH4xSzSfv4Zta0t9X5bi1WDBqYuSQghhHholTTLleAbCb5F1bH82DU++ON88b//9FxbevrXNmFFxhGVlM2akzGsC44jLVdTfHvHBs6MbutD/+buJgv3d4cl8vpvZ0jP02JjacZnQ5ozLMjbqOcwKAbmnprLsovLAHi++fNMD5pebdrXCCGEEEI87BSdjuvPjyPv5EksGzak3po1mNlVjUUcQgghxMNGgu9SkOBbVCXzdl5iwe5IHgvwZNHYQFOXY1QanYHdYYmsPhnDgchkbr36OFibMzTQi1FtfWjm6VgptRTq9MzaGsHSw1cAaObpwKKxgTRwtTPqebQGLR8d+Yg/L/8JwIzWM3iu+XNGPYcQQgghhKh4upQUrgwbji4pCfv+/fGaN1cWMgghhBAmIMF3KUjwLaqamLQ8vJxqoFY/uG+k4zLy+f1ULGtPxRCXkV98ewsvRyZ0rc/gVl4Vdu6YtDxe+vU05+OyABjXuT5vDfDDyty4q87zdfm8sf8N9sfux0xlxsedPmZwo8FGPYcQQgghhKg8eSEhXHvmWdBqse/bBzMXF1QqNajVoFYV/X+VCtRqVGoV3PqaClRqNVC69/fmHu44DRmCysKiYr6hUlJ0OnIPHyb/7DkoZZRg3bIF9j16VExhQgghHioSfJeCBN9CmI7eoHA4KoU1p2LYcSEBrb7oJemrES0Z2cbH6OfLzNMy9JvDRKfkUtPGgq9GBNCnqZvRz3Mt6//Zu+/oqKqvjePfmUknyYQACRB6SULvTUBAQUAhQYogiKIUARsKYv8Jgr4qYEERRSyIICItBASVqlQpirQEE3ogpJBeJlPu+8ehKkImmckE2J+1XEy595w9IQJ57rn7nOC1ra/xR9IfeBo8md5pOp2rdnb4PEIIIYQQomSdX7CAc1Omlth8vp07E/L+e+i9vUtszn/Kj40lY/kKMlatwpqSUuRxjJGRVPzfa+jLSJsYIYQQRSfBtx0k+BaidDifU8CH644wb/sJ3A06vhvZlpY1Ah02vsVqY9hXu9gSl0JIgDc/jG5H5QDH/gCRlp/Gp/s+ZXHsYiyaBT93Pz66+yNaBLdw6DxCCCGEEMI1NE0je8MG8g/HqFXPmg3NZgObdsVzDWw20DQ07cJ7Npt981itZKxYgWYy4d2iBVVnf4KhBH9etaSkkLFqFRkrojDFxFx63RAYiG/nzui9vAo9li0nm4zoVWCz4VGjBiHvzcCrfn1nlC2EEOI2IMG3HST4FqL0sNk0nli4lzUHEilXxoMVT7SnaqCPQ8Z+PeoA87afwMfDwJLRd1C/suP+f8+35LPg8ALm7p9LtjkbgA4hHZjYaiI1jTUdNo8QQgghhLh95O7Zw6nRY7BlZeEZGkrVuZ/jHhTktPlsJhPZGzeSsXwF2Vu2gNUKgM7dHd8uXTD2icS3Y8citV7J3bWLhOcnYklMROfuTtDEiZR9aIj0SRdCCGE3Cb7tIMG3EKVLboGFAZ9u5+CZTMIr+rF0zB2U8XQr1pjf7jjBqysOAPDZ0BZ0b1DREaVi02ysPrqamX/MJDEnEYDwwHDGtxxP20ptHTKHEEIIIYS4feXHxnJyxAisySm4h4RQ7csv8Khe3WHja5pG3p9/khEVReaPa7BlZl56z6tJYwL69MG/Z08MAQHFnsuSlsbZV14le8MGAHzvuotKb07FrWzZYo8thBDi9iHBtx0k+Bai9DmTnkfEx1tJyTbRrX4wnz3UosibfW6LS2Hol79jtWk83z2MJ7rUcUiNO87u4L3d73H4/GEAgn2Cebr50/Sq1Qu9Tu+QOYQQQgghhCg4fZqTjw3HfPIkhnLlqPb5nGK3CtFsNjKjo0mZ/SkFx49fet2tUiWMEREYIyPwrFWrmJVfY15NI+3bBSS9+y6a2YxbxYqETHsXn1atHD6XEEKIW5ME33aQ4FuI0umPk2kMnLODAouNMZ1r80KPcLvHOJ6SQ+SsrWTkmenTtDLvD2xa7Nsp49LieG/Pe/yW8BsAvu6+DG80nIfqPYSXW+F7HQohhBBCCFFYlpQUTo4chenwYfS+vlSZNYsybVoXaazsrVtJmj4D02G1gEPn44N/t24Y+0Ti06YNOr3zF3HkHzpEwnPjVeiu11P+ibGUHz0ancHg9LmFEELc3CT4toME30KUXiv+SGDc938C8P7AJtzfrEqhz83IM9P3k63EJ+fQpGoA349qi5d70f8hnZybzKw/Z7E8bjk2zYabzo0Hwh7g8SaPE+jluE04hRBCCCGEuBZrVhanxz5B7q5d6Dw8CHlvBn5duxb6/PyYGJKmTSdn61YA9H5+lH98FGUffBB9mTLOKvs/2XJySHxjChlRUQD4tGpF5enTcA8OLvFahBBC3Dwk+LaDBN9ClG7vro3hk03xeLjpWTSqLc2r3bgHoMVq47F5u/n1SDKVjF5EPdGeIP+ircaOT48nKi6KRbGLyLPkAdC1WlfGtRhHdX/H9VcUQgghhBDiRmwmEwnPjSd7/XrQ66n0xmQC+ve/7jnmM2dI/nAmGStXgqaBuzuBgwdTbvTjpaK/dvqKFSS+MQUtNxdDQACV/u8t/Lp0cXVZQgghSikJvu0gwbcQpZvNpvH4t3v45dA5yvt6EvVke0ICvK97zhvRh/hy6zG83PUsGX0HDUOMds15Pv88a46tITo+moOpBy+93rhCYya0nECzoGZF+ixCCCGEEEIUl2axcPb118lYugyACuOfo9yIEf9q6WfNzCR1zhzOfzMfraAAAP/77qPCuGfwqFq1xOu+HtOxYySMH4/pkGq/UvbhoQRNmIDew8PFlQkhhChtJPi2gwTfQpR+OSYL/WZvIyYxi/qV/Fkyph0+Hm7qzdzz4BUAF3oRLvr9JC8u2w/AJ0Oac2+jSoWaw2Q1sfnUZqLjo9mSsAWLZgHATedGhyod6FunL52rdi52j3AhhBBCCCGKS9M0kt97j9TP5wIQ+OijBD0/AZ1ej62ggLSFC0md/SnWjAwAfFq3Juj55/Fu1NCVZV+XraCApOnTSftmPgDu1aoR9Nyz+HXvLv8GF0IIcYkE33aQ4FuIm8PptFz6zNpKSnYBPRpU5JMhzdEfWgbLHoeaHWHIEnYcT+ehuTux2DSe7RrKM13rXndMTdPYl7yPlfErWXt8LVkFWZfea1iuIb1r96ZHzR7Sw1sIIYQQQpRKqV9+RdK77wJgjIykTIcOJH/wAeaEBAA86tQmaMIEfDt1umnC46wNGzn7+v+wJqcA4N2kCUEvTMSneXMXVyaEEKI0kODbDhJ8C3Hz2HPiPA/O2UmB1cbUVgU8dHg0WPIBSG87kS6/tyIt10yvxpX46MFm//mP+1NZp1h1dBXR8dGcyjp16fVgn2B61+5N71q9qRVQq0Q+kxBCCCGEEMWRvnwFZ199FazWS6+5VahAhWeextinDzo3NxdWVzS2nBxSv/yK1C+/RMtT++z4detKheeew7NmTRdXJ4QQwpUk+LaDBN9C3FyW7DnNtB82stLzVYJ16VCuDqTGYUXPANP/sIS04vtR7fD2MCDdUo4AACAASURBVFzz/HkH5zF99/RLz73dvOlWvRsRtSNoVbEVep2+pD6KEEIIIYQQDpG1YSMJzz2HzmCg3MgRBD78MHofH1eXVWzmpCRSPvqY9KVLwWYDg4GyAx+g/BNP4FaunKvLE0II4QISfNtBgm8hbjIFuZz98C4q5Rzmb60KOUPXkLfsGdrlbuAMQRjGbiU4KOiapx5MPchDqx/ColloU6kNkbUjubva3fi43/w/FAghhBBCiNub5fx5dB4eGHx9XV2Kw5ni4kiaPoPsTZsA0JcpowL+Rx5B7339je8dQdM0TDExZG/ahG+nTnjVr+/0OYUQQlybBN92kOBbiJuIpsGSx+DgMrL0/tybN5lEfUW8rDn86PkyVXVJ0LA/9JsL/2hzYrKaGBg9kPiMeLrX6M70TtP/YxIhhBBCCCFEaZSz83eS3n2X/IMHAXALDqbC009j7BOJznDtOz6Lw3wuicxVq8iIisJ05AgAOm9vqsz8EN+OHR0+nxBCiBsrbJYr9/MLIW4uv06Dg8tA74Zh4Dd4B9XGbNXIwofjnT8EnQEOLIF9i/516sd/fEx8RjzlvMrxSptXXFC8EEIIIYQQojjKtGlNjR8WU3naNNwrV8Zy7hxnX3mFY/f3JWvDRmy5ucWew5aXR0b0Kk6OGElcly4kTZuG6cgRdO7ueNSsiZaXx6kxY8mIXuWATySEEMJZZMU3suJbiJvGoShY/LB63PtDaDGMU+dzeX3lQbqEBzG0bXUVjG+YCh6+8PivUK42AHvP7WXY2mFoaHx010d0rtrZdZ9DCCGEEEIIUWw2k4m0bxeQ8tln2DIz1Ys6HR7Vq+MZHo5XeBieYWF4hYfjVrHif258D6DZbOTu2k1GVBRZa9deFaB7N2+OMTIS/x7d0Xt7c+all8lcvRqA4JdfJvDhoU79nEIIIa4mrU7sIMG3EDeBs/vgyx5gzoU2Y6Dn29c+zmaFeRFwYgtUbgaP/UyuZqHfyn6czj5Nnzp9mNJ+SsnWLoQQQgghhHAaa3o6KZ/NISM6GmtKyjWP0RuNeIWF4RkehldYOJ7hYXjWqYM54QwZUVFkRK/EcubspePdq1TBGBmJMaI3HtWrXzWWZrNx7q3/I+3bbwEoN2Y0FZ5++rrBuhBCCMeR4NsOEnwLUcplJcLnd0FmAtS+GwYvBoPbfx+fcRpmt4f8dGg/jql+7nwf+z2VylRiWcQyfD1uvc1+hBBCCCGEEGBJSSE/JhZTbIz6NSYG07FjYLH8+2CDAazWS0/1fn749+yJsU8k3s2aXX+FuKaRMns2KTM/AiBg4EAq/u81p/QZF0IIcTUJvu0gwbcQpZg5H76+DxJ2Q7m6MGIdeAfc+LxDK2HxULZ5e/F4xSAA5t4zlzaV2ji5YCGEEEIIIURpYisooCAu7kIgHkt+rArErenpYDDg27Ejxj6R+Hbpgt7T066x0xYtInHyG6Bp+HXvTuVp76L38HDSJxFCCAGFz3Kvs2RSCOESuefhj/lQrzcE1nJ1Na6labDyKRV6ewXA4O8LF3oD1I8gs9kQXkvZCMDgOn0l9BZCCCGEEOI2pPfwwKt+fbzq17/0mqZpWJKS0Xt5YjAaizx22UGDMAQEkPD8RLJ++olTmRlU+ehjDL5lHFG6w1kzMi4E/7FYUlIo06E9Pi1botPrXV2aEEI4nATfQpQmGQkw/35IiYU982DsdnCzb8XBLWXL+7B/MegM8MA3lzaqLKy3A3xJSnejutnMuOOH4Q4NpO+eEEIIIYQQtz2dTod7cJBDxvLv0QODvz+nnnyK3O07OPnII1T9fA5ugYEOGb8oNJuNghMnrljhHkt+bMxVfcwBUufMwb1yZfwjIzBGROBZs6aLKhZCCMeTVidIqxNRSqTEwfw+kHHq8mtdXoVOz7uuJleKWQ2LhgAa3DcDWo2w6/T1J9YzbtM49OiYl5hC07wcuHc6tB7pnHqFEEIIIYQQt7W8/fs5NepxrGlpeNSoQbUv5uIeEuL0ea3ZOZiOxJIfE3Mp4DYd+RstL++ax7tXroxnWBh6P1+yN2zElp196T3vJk0w9onEv2dPDAGFvNtWCCFKmPT4toME38LlzvwJ3/aD3BQIrA3Nh8K6SeDmBU/shLI1XF1hyUo8AF/cA+YcaDUS7ptu1+mpean0XdmX8/nnGd5wOOPMnrD2RfX1HLkRguvfeBAhhBBCCCGEsJPp6FFODh+B5exZ3IKDqTb3czzr1nXI2JqmYU5IwBQTc9UGnuZTp655vM7TE8+6dfEMD8MrLByv8DA8w8IwXJF72PLzyd6wgfSoKHK2bL282ae7O36dO2GMjMT3zjvRSd9yIUQpIsG3HST4Fi517Df47kEoyIKKjeGhZVCmPMzrDcd/g9CeMHiRq6ssOdnJ8HkXtfK9VmcYshQMhe/KpGkaz256lvUn11O3bF0W3bcID707LBgAcb9AUH0YuQHcvZ32EYQQQgghhBC3L3NiIieHj6AgPh690UjVT2fj06yZXWPY8vIwHTlyRZsStTHnlauzr+QWFHQp4PYMD8MrPByP6tXRuRX+ZylLcjIZq1eTsXIlpkOHL71uCAjA/957MfaJxKtRI3TSPlII4WK3RPA9adIkJk+efNVrwcHBJCYmAirgmjx5MnPmzCEtLY02bdowa9YsGjRoYNc8EnwLlzm8CpY8BlYTVO8AD34HXhe+B5NjYXZ7sJlh0HcQfq9ra3UWcz4k7oczf8CZvepCQOZptfJ95HrwLmvXcNHx0by85WXcdG581+s7wgPD1RvZyTD7DshJKtIqciGEEEIIIYQoLEtaGqdHjyFv3z5wc8NQpvCbXWqALTMTrhHX6Nzd8ahTB6+wsEsBt2dYGG5l7fu56UbyY4+QsTKKzJXRWJKTL73uUbMmxshIjBG9ca9c2aFzCiFEYd0ywfeSJUtYt27dpdcMBgMVKlQA4J133uHNN9/k66+/JjQ0lKlTp/Lrr78SGxuLn59foeeR4Fu4xB/fwsqnQLNBeC/o9wW4e119zC+vw9YPwFhNtTzx8HFNrY5iNUPSIRVyJ+xVvyYdApvl6uN8ysFjP0F5+24JTMxJpG9UX7LMWTzZ9Ekeb/L41QfErVMtZQAeXARhPYvxYYQQQgghhBDiv9lyczn97LPkbP61SOcbypW7EHBfbFMSjmetmujc3R1c6X/TrFZytu8gY2UUWb+su6pvuE/r1hgjI/Hrfg8GX98Sq0kIIW6Z4HvFihX8+eef/3pP0zQqV67MuHHjeOGFFwAwmUwEBwfzzjvv8Pjjj//rnItMJhMmk+nS88zMTKpWrSrBd2mhafD3z5B2HFo+BoaS+0u9xGz7CH5+VT1u+hD0/vDa7TwKcuDj1moFdMcJcPdrJVtncZmyIWbVhZB7r1rZbcn/93FlKkDl5lC5GYQ0h2ptwcto11SapjF63Wi2ndlGw3INmX/vfNz01/ia/vQKbP8YvANVy5NA2bVcCCGEEEII4RyapmE+dQrNbLbrPIO/P24XFv2VFtbsHLJ++YWMqChyd+68tCJd5+WFX9euGCMjKdOurV3tVYQQoihumeB72rRpGI1GPD09adOmDW+99Ra1atXi6NGj1K5dm71799Lsil5ZkZGRBAQEMG/evOuO+88WKoAE36XBqV3wy2twcrt63mY09HzHtTU5kqbB+smw5X31/I6noNsUuF6PtEMrYfFQMHjAmO1Qvk7J1FpcGafV6urkmKtf9zRC5aYq4L4YdhurXP9rUAiLYxczZccUPA2eLO69mFrGWtc+0GKCuV0h8S8Vrkd8BPUjizW3EEIIIYQQQtxOzGfOkBG9ioyoKAqOHr30uluFCvj36qX6gYeFubBCIcSt7JYIvtesWUNubi6hoaGcO3eOqVOnEhMTw8GDB4mNjaV9+/YkJCRQ+Yq+UqNGjeLEiRP89NNP/zmurPguhVLiVCB8eKV67uZ1eWVw37nQeIDranMUmxVWjYO936jnXSdDh3E3Pk/TYEF/1aajVhcYurzYIbHTJR2G+X0h6wz4BkPDfirkDmkOZWuCXu/Q6U5lnqJfdD/yLHlMbDWRofWHXv+EjNOw+BFI2K2etxwO3d+UDS+FEEIIIYQQwg6appF/4AAZK6LIXL0aa3r6pfc8w8NVP/A+kQ7vQS6EuL3dEsH3P+Xk5FC7dm0mTpxI27Ztad++PWfOnKFSpUqXjhk5ciSnTp1i7dq1hR5Xeny7UHYSbH4H9nyt+jzr9NB0MHR+GfZ8Bb9OAzdvGLEOKjZ0dbVFZzHB0uFwOFp9xl4fQItHCn9+ajx80k5tgjnga2hwv9NKLbYT2+C7QZCfAeVD4aFlEFDVadNZbBaG/zScvUl7aRncki+6f4FeV4hg3WqGDVNVD3WAoAYw4CuoIKsShBBCCCGEEMJeWkEB2Vu2kLF8BVmbNsGF9i6G8uWp/M7b+LZv79oChRC3jMJmuY5ddulkZcqUoVGjRvz9999UrFgRgMTExKuOSUpKIjg42BXlCXuYsmHTOzCzGeyaq0Lvut1h9FaInAXGEOj8EtS+Gyx58P1DkJd+43FLI1MWLBigQm+DBwyYZ1/oDVCuNnR4Vj1e+7IaszQ6HA3f9FGhd5XWaoNKJ4beKXkpjPplFHuT9uLj5sOU9lMKF3qD6h3fbbIK5stUgKSD8FkntSL/5rkeKIQQQgghhBClgs7DA7+77qLKRzMJ/e1XKk56HY9atbCmpHBq+AiSZsywu9e5EEIUx00VfJtMJg4fPkylSpWoWbMmFStW5Jdffrn0fkFBAZs3b+aOO+5wYZXiuqwW2P0VfNQcNr0FBdmqx/Mjq2DIYgiuf/lYvQH6zYWAapB2DJaNApvNdbUXRUEufBMJxzaDhy8MWQL1I4o2VodxULaGah+yuRT2Pd/1BSx+WK1KD7sXHo4Cn0DnTZe4iwHRA9iVuAtvN2/e7vg2Vfyq2D9QnbvVBZdaXdRFlpVPqdX5+RmOL1oIIYQQQgghbgOGgADKDhpEzWVLCRg0EIDUz+dy4qGhFJw+7eLqhBC3i1IdfE+YMIHNmzdz7Ngxdu7cSf/+/cnMzOSRRx5Bp9Mxbtw43nrrLZYvX86BAwcYNmwYPj4+DB482NWli3/SNIhZDbPbqT7X2ecgoDr0/xJGbICaHa99nk8gDPxW9fz++yf49d2Srbs4NE191oQ94B0Ij0RDrU5FH8/dG3pOU493zFZ9tEsDTYMNb8Lq50CzQfNH4IH54OHjlOlsmo25++cy4ucRpOSlUCegDot6LaJLtS5FH9QvWK387joJdAY4sBQ+u1P93gkhhBBCCCGEKBK9lxeVJk0i5MMP0fv7k7dvH8f63E+mHe1phRCiqEp18H369GkefPBBwsLC6Nu3Lx4eHuzYsYPq1asDMHHiRMaNG8fYsWNp2bIlCQkJ/Pzzz/j5+bm4cnGVjNPwVU9YNBhSjqgQuMc78ORutenhjTY6rNQEer2vHm96G4787PyaHeH3z+Gv71WQOnC+2tixuELvgfBeqjXM6vFFb8lhs0HsGti/BPIzi16P1aJWSF+8INHpRej9IRjcij7mdWSYMnhqw1N8uPdDbJqN3rV6s+DeBdQy1ir+4Hq9aifz2FowVoO04/DFPbDto5vvTgMhhBBCCCGEKEX8u99DreXL8G7aFFt2NgnjnuXsa//Dlpfn6tKEELewm2pzS2eRzS2dSNNgfh84ukmt2m73BLR/BryM9o+16jnY/YU6d9QmCHRA2OksJ3fA1/epgLr7W+pzO0r6Sfi4tWrLcf9n0GRQ4c/VNIhfD79MgnP71Wtu3hB+LzQeCLXvUr2vC6MgF5Y8CkfWqg0773sPWj5q98cprAMpBxi/aTxncs7goffgpTYv0a9uP3Q6neMny0uH6KfhUJR6Xqcb9JkNvhUcP5cQQgghhBBC3CY0s5nkj2eROmcOaBoedWoT8t57eIWGuro0IcRNpLBZrgTfSPDtVAeWwpLHwOAJo7dAhWL8ZWYpgK/vhdO7ILgRDP/Zae00iiXrnGqTkZ0IDfqqdi6ODmd/mwHr31CbMj65G7wDbnxOwh5YNwmO/aqee/qDbxCkxl0+xqecWoXfeCCEtPjvunNS4buB6vfCzUt9xvD7iv2xrkXTNL6L+Y5pu6dhsVmo6leVGZ1mUK9cPafMd8XEsOdrWPsiWPLBNxj6fl68djVCCCGEEEIIIcjZvp2EiROxJqeg8/Qk+KWXCBj4gHMWNgkhbjkSfNtBgm8nyc+Ej1upALjzS9D5xeKPmXlGhco5ySqcvf8zx4fKxWE1w7wIOLkNKtSDEevA09fx81gKYPYdkPo3tB4F907772NT42HDFDi4XD03eKhzOo4H77Jw5g/4a7G6SJGTdPm8wFrqa9xoAJSrffn1tBPwbT81t1cADP4eqrV1/GcEcsw5TNo2ibXHVf+3u6vdzZT2U/DzKMF2RucOqZXtyTGgd1MXXEJalNz8QgghhBBCCHELsqSmcuall8j59TcA/O65h0pTp2CQXEYIcQMSfNtBgm8nWfsy7JgFZWvC2B3g7uWYcY9vUeGyZlWbPbYZ5ZhxHWHNi7BztlpNPXIjlK/jvLmOboJvIlWbkZEboXLTq9/POqd6b+/5WrVcQafaonR5GQKq/Xs8qwWObVIh+OFoMOdefq9KKxWCVwiHpSPUxQz/KvDQUggKd8rHO5J2hPGbxnM88zhuOjeebfEsQ+sPdc0KgIJcdefCkTVQPhQe/1VtNiqEEEIIIYQQosg0m43zX88j6b33wGLBvXJlKs+Yjk+zZq4uTQhRiknwbQcJvp0g8YBama1ZYchSqNvVseNvnwU/vaxW4A5b7bQVx3bZvwSWDlePBy10WuuPqyx5TK3UDmkJw39RGzTmZ8L2j2Hbx2DOUcfVvQfufh0qNizcuKZsiFmtNuc8uhG0f2zuGFQfhiwBY4hjP88FUXFRTN0xlXxrPsE+wUzvNJ2mQU1vfKIz5Z6HT9pC9jlo9yR0f9O19YBqx7J8tFq132GcujihN7i6KiGEEEIIIYSwS97+/SQ8Nx7zqVPqBcMVP9dcufjpHwuhLj5zr1qVSpMn4dOqlXMLFUKUChJ820GCbwez2eCrnnBqB9SLgIHzHT+HpqnQ9+Ay8K0Ij28Gv4qOn6ewzh2EuV3VKumO4+Hu/5XMvJlnVTuZgiy4d7oKqDe/C7kp6v2QFtB1MtTsWPQ5ss6pcP2v7+Hsn1C9PQxaoNqkOICmaSRkJxCbFsuR80fYl7yPrWe2AtC+cnv+r+P/UdbLMXMV25GfYOEDgA6GrYIaHVxbz++fw48TLj8PbgT3vKE2KRVCCCGEEEKIm4g1O5vEyW+QGR1dtAH0eso/MZbyo0ejM8iCICFuZRJ820GCbwf7YwFEjQX3MvDk72Cs4px5TNkqbE4+DNXawSPRYHB3zlzXk5cOn3eB80dV4DhkScmuur24+v1K5eqo8L1ehGN7oGedUxtq6vVFOj3PkkdcWhyxabHEno/lSNoRjqQdIducfdVxOnSMbTqWUY1HodcVbS6niXoS/piv2sWM2QaeJdhv/Eqp8fBpB3WxpV5vOPormDLUe7Xvgm5TCr/CXwghhBBCCCFKCWt6OraCAvXkqsTqiidXRFmaxULKx7PIWLECAJ9Wrag8fRruwcHOL1YI4RISfNtBgm8Hyj0PH7eE3FTo9ga0f8a586XGw5zOYMqENqOh5zvOne+fbDZYNFj1fjZWUyvPfQJLtgarBeZ0gnMHwDdYbSLabKhrLgL8w+ms06w9vpaY8zHEno/lZNZJbP9smwK46d2oE1CH0LKhhJYNpW2ltoQFhrmg4kLIz4TZ7SHjJLQYBr0/LPkabNYLd1XshBod4eGVkJ8Ov05Tq8BtZkAHTQdDl1ec1pJGCCGEEEIIIUqLjKgozk5+Ay03F0NAAJX+7y38unRxdVlCCCeQ4NsOEnw70KpnYfeXahPE0VtKJnyN+REWPage9/0cGj/g/Dkv2jwNNk4FgycM/wkqu2gDjuwkOPYrhPUEjzKuqeHKcgqymbN/Dt8e+hazzXzVe4FegYSVDSMsMIzQsqGEBYZR01gTd73rg/pCO/YbzOulHg9ZAnW7lez8Wz6Ada+Dhx+M3Xb1ZqXnj8L6KaoNEICbN7QbC+3HgZf8+SaEEEIIIYS4dZmOHSNh/HhMhw4DEPjIw1QYPx69h4eLKxNCOJIE33aQ4NtBEvbA53cDmtpwsiT7H6+fAr9NVwH00GUlM/ff62BBf0CDiI+h+VDnz1nKWWwWlv29jFl/zuJ8/nkAWlVsRYeQDpfC7vLe5V1cpYOseRF2zlY95sduL7mV/ucOqRX+1oLrf9+d3g0/vwYnt6nnPuXV3QAthpWKuwGEEEIIIYQQwhlsBQUkz5jB+XnfAOBVvz4h783Ao0YN1xYmhHAYCb7tIMG3A9is8PldavPDxgOh75ySn//7oRC7Gjz91caDlZo4b7604/BZJ9VewlXtLkqZbQnbmLZ7GnHpcQDU8K/BhJYTuLPKnegc2We8tDDnwacdIfVvaDQA+s11/pyWAph7NyT+BaE94MFF1+/hrmkQ+yP88rqqEyCwNnSdpPqC34q/L0IIIYQQQggBZG3YyNmXX8aano7ex4eKk17HGBHh6rKEEA4gwbcdJPh2gF1zYfV4FTo/uRv8XLCJhDkPvu0PJ7aoDRgf+wnK1XbOPF/co8LHkBbw6Bpw83T8PDeJo+lHmb57Or8l/AaA0dPImCZjeCDsgZurfUlRnN4NX3QDzQYD5kGDPs6db+NbsPkd8C4LY3eAX8XCnWc1w955sOltyElWr7niApUQQgghhBBClCBzYiJnJjxP7u7dABj79KHia6+iL3P9FqGWlBTyY2IxxcaSHxuDKSYW89mz+LRujTEyAt/OnW+L9in5sbFkrIgic/VqLMnJ9p2s1+NRtSqe4eF4hYXiGRaOV3gYbpUq3ZqL40SJkuDbDhJ8F1N2MnzcAvIzoOc0aDPKdbXkZ8DXvVQobaym+m77V3bc+JoGUU/AnwtU64jHN4OxiuPGv4mk5acxe99sFscuxqpZcdO5MSh8EKObjMboaXR1eSXnYpsd70B4Yif4BjlnnoQ9MLcbaFbo/xU07Gv/GKYs2DoTtrwHNovaFLNWJ8fXKoQQQgghhBClhGa1kjL7U1I++QRsNjxq1CDk/ffwqlcPzWzGdPQYptiYK4LuWKwpKdcdU2804t+zB8bISLybNr2lglxLcjIZq1aTERWFKSbG4ePrjUa8QkNVIB4ehmdYOJ5166D3vH0XFAr7SfBtBwm+i2n5GNi3ECo2hlGbQG9wbT3ZyfBldzgfDxXqwaM/Oqb/sqbB1g9g3STQ6WHoitsyNDRbzSyMWchnf31GVkEWAJ2rdmZ8i/HUMNZwbXGuYClQbX7O7Yewe2HQQse3EDHnqdY6KbHQoC8M+Kp44/34PPw+Byo1hZEbQa93TJ1CCCGEEEIIUUrl7tpFwoTnsZw7h87dHY/atTHFx4PZ/O+DdTo8qle/HM6GhuFWvhxZv6wjY+VKLOfOXTrUvXo1jBERGCMi8Kha1e66LGlpKnCPicH099/ovbzxDA/DKzwcz7p10Xt5FedjF4otL4+s9RvIWBlFzpatYLMBoHN3x7dLF4yREXg3bmzXz7qa2Ywp/ujliwoxMZiOHQOL5d8HGwx41KyBT7PmVHjuWdzKlnXQJxO3Kgm+7SDBdzGc2AZf9QR0MGIdVGnp6oqUtBMq/M46C1VawcNR4HH9W5muKycVVj6p+iUDdJ0MHcY5ptabhKZpbDy1kRm7Z3Ay6yQAYWXDeL7V87Sp1MbF1blY4gGY0xlsZoj8BJoNcez4P70C2z8G32DV4qS4F3Kyk2FmMyjIgn5fQKP+jqlTCCGEEEIIIUoxS1oaZ19+heyNGy+9pvf1xTMsDK+wsMuBc5066H18rjmGZrWS+/vvqgXIL7+g5eZees+7ZQuMERH49+iB4R/5kma1UnDiBKYYFQRfbKFyZYj+L3o9HjVqXFoZ7RUehmd4OG5BQcVeZa7ZbOTu3k1GVBRZa3/ClpNz+XM0bYqxT6T6HAEBxZrnSraCAgri4i6sro8hP/YIppgYrOnpl47xqFmTal/Mxb2yA+/eF7ccCb7tIMF3EVnN8NmdkHQImj8CETNdXdHVkg7Dlz3UBpS171YbAboVoQdX/AZYPhqyz4HBQ20M2HbsbbUxYK45lyk7prDq6CoAynmV4+nmTxNZOxKDq1f4lxa/vQfrJ6s+92O2QYD9V/qv6fhW+Po+QIPBiyG0u2PG3TwNNk6FgOrw5K7buk+9y2ma+vNFp3deqxwhhBBCCCEEoBZ15WzdhmbKxzMsHPeQykUOkW25uWStW0fGiihytm9X/7YHdB4e+N59Fz5Nm2KKi7+0mlvLz7/mOO5VqqjQPTQMW27upVDcmpZ2zeMNAQEqrA8PwzM0FJ2dq8JNcXFkRq3EfObM5RpCQjBGXli5XqOGXeMVh6ZpWJKSyD94kMQpU7GcPYtbxYpU+2IunrWdsG+buCVI8G0HCb6LaNtH8POrqrfxU3sc007E0U7tgm8iwJyrWkT0m1v4ViwWE6x/Q620BSgfps6v1Nh59ZZCsedjmbB5Asczj2PQGRjWYBgjG4+kjHsxVtDfiqwW+KoHnN4FNTupVjjFbSFiyoLZ7SH9BDQbCpEfO6ZWgIIcmNkcshOh+/9Bu7GOG1v8t7x0SI6BcwfVxbmkw5B0EPIu/IP27v9Bh+duqwtrQgghhBBC3ArM586RuWoVGSuiMP399zWP0Xl74xlaF6/QK1aXh4Vh8PX917GapmFJTr7cBuXCKvGCY8fBanVIzXpfX9WrPCIC7xYt0Lm4Dab57FlOjhhJQXw8BqORqnM+w7tJE5fWJEonCb7tIMF3EWQkwKzWUJANER9B84ddXdF/i1sHCwepNhStRsC9028cKiUfgaWPQeJ+9bzlcLhnKnhcogLVvAAAIABJREFU+1anW5Gmafxw5Afe+f0dCmwFBPkEMe3OaTQPbu7q0kqvlDj4tANY8tT3WeuRxRsvehzs+Upt1DpmK3g5+M+nPfMg+ml18erpP8Dbcbew3fbM+aone9Lhq0PuzNPXPl6nB0310aPNaHUxQnqvCyGEEEIIcdPRNA1TTAwZUSsxJ5zGo3btSwG3R7Vq6AzFu2vaZjJh+jvuQquQWArij6Jdq2/2dRiMRvx7dMf3rrtKpIe4PSxpaZx6fDT5f/2FzseHKjNn4tuhvavLEqWMBN92kOC7CBY/AodWQJXW8NhPpT+g2b8Elo4ANOj0AnR5+drHaZoKGte+rMJL70CInAXh95Zoua6WXZDN5O2TWXt8LQAdQzryZoc3KeslG0zc0M7PYM1EcPNWYXW5It6a9fc6WNBPPX4kGmre6bgaL7JaYPYdKqDt8Kxq4+Mom96Gk9uh25Tb7i4Jjv0GiwaDKfPa7/tXgeD6EFQPguqr/8qHwu4v4aeX1DEN+0GfT4vWnkkIIYQQQgghbmK2nBxOP/0MOVu3grs7ld/+P4z33efqskQpIsG3HST4tlPcevi2r1qhOGrzzRNq7ZoLq8erxz3egbajr34/JxVWPgWxq9XzWl3g/k/Br2LJ1ulih1IPMWHzBE5lncJN58YzzZ/h4QYPo9eV8osbpYXNBvMj4divFy4MrS18e52L8tLgk3Zqc9Y2o6HnO86pFSB2DXw3CNy8VMsiY5Xij7nna4h+Rj02eKjNYNuOuT3ad1gtMLsdpBwBrwAIbqgC7uALAXdQPfAy/vf5f/0AK8aoO1RqdYaB34KnX0lVL4QQQgghhBClglZQwJkXXyTzxzWg0xH86isEDhni6rJEKSHBtx0k+LaD1Qyz2sD5eOcHcs6w+V3Y+KZ63PdzaPyAehy/8cIGlomgd7+8gWVpX8nuQJqm8V3Md0zfPR2zzUylMpV49853aRrU1NWl3XzST6nguiAL6vVWF1EqNlLBp+e/e7f9y9KRsH8xlKsDj//m3BY7mgZf3Qsnt0HTh6DPrOKNd3qP6nVuLVB98VNi1et1ukGfT279zRt3fwWrxqm7RZ758/oh93+JWw/fDwVzDlRqCkOWgG8Fx9d6s7LZYP8PkLAbOr9UOveXEEIIIYQQQhSbZrVy7s23SFu4EIDyTzxB+SefKPJmpOLWIcG3HST4tsPp3TD3bhXmjNtftFDHlTQN1r4IOz8FvRsM+BpO7VQbdYJqN9BvLlS6vTZPyCzI5PWtr7Pu5DoAOlftzNT2UzF63mS/v6XJHwsg6p8bRuogsBZUbAjBjS782lCtsr74F/ehKFj8sLqj4rGfoWor59d68f9rdKo9S3CDoo2TnQxzOkFmAoT3ggfmw+4v1Ca4lnwoEwT3z4Y6XR1afqlRkAMzm0H2uWvfVWKPhD2wYADkpqrvmaHLoWwNh5V604rfCL+8dnn/hbZjocf/ubYmIYQQQgghhNNomkbKrE9I+fhjAMoOfpDgV14pdq90cXOT4NsOEnzbYd8iWP441OgIw1a5upqisdnUZ9i/+OrXWzwK3d+6rTawBNifvJ/nf32ehOwE3PRujG8xniH1hsgVVEeIWw/HNkPiATh3QAWi13KxJUbFhmola24qdBwPd/+v5Gq92Le/7j0w5Af7z7daYH4fOP6bWqk+cuPlzTjPHYKlwyHpkHre7kn12dw8HVd/aXDxjpKyNeCJXcXvz50SB9/eD+knwTcYHlqq7hy4HZ07CL/8T21WDKo1jyUfPI0w/jB4lHFtfUIIIYQQQginOr9wIeemTAVNw//enlR++210Hs7fE6ng5EnMp0/j066d5CSliATfdpDg2w4b34LN70DzhyHiI1dXU3RWs9p87u+fwbssRHwM9Xq5uqoSpWka3xz6hg/2fIBFsxDiG8L0TtNpWL6hq0u7dWUnw7n9l4PwxP2qF7TtHztwBzeEkRtKNhhOjYdZrVUtD6+EWp3sO//n12DbTHAvo2oPCr/6fXOeOmbX5+p5xcbQ/0soX9cx9btadjLMbAoF2epzNeznmHEzz8KC/ur7xdMfBi2Emh0dM/bNIPOMupjw50LQbOpOnVYjoOME+PIeOH8Uen0ALR91daVCCCGEEEIIJ8v88UcSXngRzGbK3HEHVT6aib6M4xfBWDMyyFyzloyVK8nbuxeAoAnjKTdihMPnEkUjwbcdJPi2w5LhcGCJ2qyuwzhXV1M85nyI/RGqtwe/YFdXU2LMNjO/nf6NhYcXsjNxJwDdqndj0h2T8PeQ7/8SZzFBcszlMDzrLHR5FcrXKflafnwefp+j+kqP3Fj4HvcHl8MPw9TjAV9Dg/v/+9jYNbBiLOSdB3cf6PG2upB2s185Xz1BhfqVm8GIDY7dHyAvXV2oO7FVbRbaby7Uj3Tc+KVRfiZs/RC2zwJLnnqtfh91p0C52ur59lnw08sQ1EC16LnZv4eEEEIIIYQQN5S9ZSunn34aLTcXr0aNqDrnM9zKli32uJrZTPZvW8iIiiJ7wwY0s/mq93Xu7tRYsgSvsNBizyWKT4JvO0jwbYc5neHMHzDwW7Vpn7hpHMs4xvK45ayMW0lqfioA7np3JraayMCwgXLLjrh61XK/L6BR/xufkxQDn9+lNmK842m4Z8qNz8k8q9oNHdusntePhN4fqrsvbkYpcfBJG7Va/pFoqHmn4+cw58OyEXA4GtDBfTOg1XDHz+NqVjPs+Ro2vQ25Keq1qm3hnqn/7neflwYz6qlg/NE1UP2OEi9XCCGEEEIIUfLy9u3j1OOjsaano/P2xis0FM/wcLzCw/AMC8MzNAyD741XgmuaRv6Bg2SsXEnm6tVYz5+/9J5naCjGPn3wv+8+El9/nexNm/CsX4+aixaVSIsVcX0SfNtBgu9C0jR4uzqYMmDMtqJvgCdKTK45l59P/Mzyv5ezN2nvpdcDvQKJrB1J/9D+VPOv5sIKRamzeRpsnAoB1eHJXddvt5KfoULv1DjV93/oCjC4FW4em021RtkwRQXG/lWg3+c3Z3j5/VA4vBLqdochi298fFHZrLD6ORUMA3R+CTq9cGusdNY0iFkN615X308AgbWh22S1Uep/fcaVT8Heb6BBXxjwVcnVK4QQQgghhHApU3w8p8aMxXzy5DXfd69a9UIQfiEQDw/HPSQEnU6H+exZMqJXkREVRUF8/KVzDOXLY+zVC2OfSLzCL7fvtCQnc7RXb6wZGZQfO4YKTz/t9M8nrk+CbztI8F1IOakwrZZ6/PLZ224TyJuFpmnsT9nPsr+Xsfb4WnLMOQDodXo6hnTk/rr3c2eVO3HXu7u4UlEqFeTAzOaQnajakLQdc+3jbDZYPBRiVoF/CIzaDL4V7J8vYQ8sHaF6Nev00HK4an1SqXHxPkdJObULvuiqah+9FYLrO3c+TVOroTe/rZ436Attx0KVljdvAJ55FpY8Bie3qec+5aHzi9BiGBhu8OfU2b/gs46q9/ezB8GvotPLFUIIIYQQQpQOmtVKwYkTmGJiyI+JJT82BlNMLJZz5655vN7XF/eQEExHjqifrQCdpyd+d9+NsU8kZe64A53btRdzZa5ZQ8Kzz4HBQI1F3+HdqJHTPpe4MQm+7SDBdyGd+h2+6KZCrucOuboa8Q9p+WlEx0ezPG45celxl16v6leVvnX7ElE7giCfIBdWKG4ae76G6GfAOxCe/gO8A/59zG8zYP0bquf0o2uhSouiz2fKgh8nwr6Fl18LagBNBkGjAeBfqehjO5OmwVc94eR2aPYQRM4qubl3zVV9xbnwV3hgbfX1ajwQylYvuTqKKy9dfQ2TDoGbN7R7Ato/A152/F38RXc4tUOtgO/8ovNqFUIIIYQQQtwULGlpmGJjyY9RQXh+bCymuDi4om+3T6tWGCMj8OveHYOfX6HGTXhuPJk//ohHrVrUXLYUvZeXsz6CuAEJvu0gwXch/fkdrBitWhoMW+XqasQFBdYCZu6dyYKYBVhsFgC8DF50q96N++veT8vgltK/W9jHaoHZd0BKLHR4FrpOuvr9+A3wbT/QbKo3d4thjpk3br1qWxH7I1gL1Gs6PdTqAk0ehPD7inenSdY5tYGouzdUa1f8FdIxP8KiB1Vg+9QeMIYUbzx7ndwJu79UbVbMuZdfr95eheD1I8HLWLI12cOcB/PvVxcOfINVn+6LG1faY/8SWDocfCvCswduvEpcCCGEEEIIcdvRzGZMR49RcOI4XvXr41Glit1jWNLSOBoRgTU5hcBhwwh+8QUnVCoKQ4JvO0jwXUgb3oRf34Xmj0DETFdXI4CTmSd5/tfnOZSqVuA3KNeAvnX70rNmT/w8CnfFUohruhTqesFTey+Humkn1Ca3eeeh2VCI/Njxc+elwcEVsG+RWsl7kYcv1O+jQt3q7UGvv/b5VjOkHIHEA3Bu/4VfD0BO8uVjWjyqNojUG4pWo9UCs9upeTo8B11fL9o4jmDKVpte7vsOjv3KpVXgbl7qYkGTB9XFg8L2Xy8JVotqlRP7I3j6q9C7YsOijWUpgPcbQE4S9P8KGvZ1bK1CCCGEEEIIcUHWpk2cHj0GdDqqzfuaMq1bu7qk25IE33aQ4LuQljwGB5ZCtzfUrejCpVYdXcWU7VPIteQS4BnAlPZT6Fy1s6vLErcKTYOv7lV9l5s+BH1mqRW6X3aHs/ugcjPV4sTdybd2pcbDX4tVqJt+4vLrxqrQ+AEVhOelqWD7YtCdHHt5xfhVdBBYE84fAzSoFwH95l5/A8//svsrWDVOtYN55s/Ss7I64/SFr9citWL/ojJB6uvV+AG1cak93L2L9jX6L5qmNqX8Yz4YPGHocqjRvnhjXrwwW709PPqjY+oUQgghhBBCiGs48+qrZCxZintICDWjojD4lnFJHdasLHRubui9vV0yvytJ8G0HCb4L6bNOcPZPGLgA6vVydTW3rVxzLm/tfIuo+CgAWgS34O2Ob1OxjGzqJhzs9G6YezeggzFbYfsn8Oe34FNObWYZULXkatE0OLlDBeAHV4Ap4/rHe/hBcAO1iji4IVRsBEH1wKOMOn/ZSBWO17wTBi0ETzvukCjIgZnNIPvc9TcAdSVNgzN/qAD8wBLITS36WG5e0OUVaPfkf6+yt8f6N1SPeJ0eHpjvmL9PMs/A+w1Bs8KYber3XgghhBBCCCGcwJqdzbGISMxnzhDwwANUemOyU+fTLBa1ieeRI6pfeewRTLGxmM+cIeSD9/Hv0cOp85dGEnzbQYLvQtA0eLsamDJhzHYIru/qim5LMedjeH7z8xzPPI5ep2d049GMajwKQ1HbNQhxI4sfhkNRalPbzAQVVg5dDrU6u64mcx7ErlGh7tFNavPLi+F2cEMVdhurXT+kPboJFg2Bgmyo1BSGLAHfCoWbf/O7sPFNKFsDntgFbh4O+FBOZDVD3Dp10SB2LVhNRRunTlfo82nhv07XsuNTWHuhD54j+8PD5e/VFo9C7w8cN64QQgghhBBC/EPOjp2cHDYMgKpzPsP3zjsdMq7l/Hm1MecVAbcpLg6t4Fp3NUOF556j/KiRDpn7ZiLBtx0k+C6EnBSYdmHTsVcS1a3vosRomsZ3Md8xY/cMCmwFBPkE8U7Hd2hZsaWrSxO3utR4mNUaLmycStdJasPL0kLTir5JZcJeWNBfrYYuV0cF+gHVrn9OdjLMbKoC8/5fQsN+RZvbVWxWtSlpYWka/LkA1r4Ilny1CWXfOUW78LF/CSwdAWjQ5VXo9Lz9Y1zP8S3w9X3g7gPPHQbvAMeOXxhJh1WrmVbDwWj/ZjlOc+p3+P1zaDdWtSkSQgghhBBCFFviW2+R9s183CpUoFb0SgwBRfsZJHf3blLnfkHewQNYk1OueYzOxwevunXxDAvDMzQUr7BQPENDMRhLSdvNEibBtx0k+C6Ekzvhy3vAvwo8d9DV1dxWMkwZvLb1NTae2ghA5yqdmdJ+CgFeLgh1xO1pzQuw81Oo11u1pihq0FwapcTB/D6QcQr8KqnwO6jefx+/egLs+lyFhyM2OKb1x83g3CFY8igkxwA66DgeOr9U+A0z4zfAggfAZobWo6Dnu47/PtI0+KQdJB92TQua5Fj4sofa+NWvMgxddv3vpZJydh98dR8UZIF7GRj0LdS+y9VVCSGEEEIIcdOz5eVx7P6+FBw/jn+vXoRMn2bX+aajx0iaMYPs9esvv6jT4V6tKl6hYSrkDgvFKywM9ypV0N0uP38WggTfdpDguxD+XAgrxqh+uI9Eu7qa28bec3t54bcXSMxJxF3vzviW4xkcPhjdrRQ8itLPaobjv0GNjmBwd3U1jpd5Bubfr0JdrwAY8gNUvcbO3Feufn8kWv15eDspyFUrv/fOU8+rtlWbg96o13vCHvi6N5hzoMH90O9L510w2DUXVo9XK/if2FVyFyYyTsMX91xuB6TZ1PfS4MVQrU3J1HAt54/CF90hJ0mF3uYc0LurVfsN+7quLiGEEEIIIW4Refv2cfzBwWCzEfLBB/j36H7DcywpKSTPmkX64h/AagWDgYAB/Qm4/34869ZF7+NTApXf3Aqb5cqlAlE454+qXwNrubaO24TVZuXTfZ/y6E+PkpiTSHX/6iy4dwFD6g2R0FuUPIO7WiF6K4beAP6V4dE1UKU15KfDvAj4+5d/H7d+sgq963a//UJvAA8fiJgJ/b8CT384tQM+bQ+Hr3MxNCUOFgxQgWvNTnD/Z84NoxsPUrWlxsHRjc6b50o5qerCSWYClA9VgXuVVup76ZtI1VfdFbKTYH5fFXoHN4Jxf0H9PmrV/ZLH1EUCIYQQQgghRLF4N2lCuZGqx3bipElYUq7dqgTAlptL8iefEH9Pd9K/WwRWK7533UWtlVFUmjQJ7yZNJPR2MAm+ReGkxqtfA2u7to5bnE2z8fvZ3xn5y0hm/TkLm2YjonYE3/f6nnrlSsEt80LcqnwC4eEVUKcbWPLgu0GqV/NFp3apjRN1etXn/HbWsC+M/g1CWkB+Bnz/kFplbc6/+rjMsyoQzk1VG4gOWgBuns6tzdMXmjyoHpdEsGvKhoUDIOWI2gD2oWVQvg48HAV171HfS4sGwx8LnF/LlfIz4dt+kHYMAqrDQ0ugTHnVl77lY4Cmfs82vaNaxAghhBBCCCGKrMITY/EMD8eans7Z/73OP5traFYr6UuWEN+jJykzP8KWm4tXo0ZU+2YeVT+ZhWdtydqcRYJvUTjnLwTf5eR/Rmc4mnGUD/d+SPel3Rn+83B2Je7C282bNzu8yZsd3qSMexlXlyjErc+jDDz4HTQaoFZ2LxsJOz5VweAv/1PHNB0MwfVdW2dpULYGPPYTtH9GPd81F+berfpcA+Slq+A146S6U2jIEvD0K5naWo1Qv8augbQTzpvHYlKhf8Ie8A68sDnqhbYvHmVg0EIVwmtWiBoLW94vmZDZYlJhe+Jf4FNe1eVXUb2nN8B970GnF9TzTW/Bmolgs2PDUyGEEEIIIcRVdB4eVH7nbXB3J3vDBjJWRAGgaRrZmzdzrE8fzr76GpakJNyrVKHyjOnU+H4RZVpfo8WmcCjp8Y30+L4hTYO3q4EpE8buKB2bdd0C0vLTWHNsDdHx0RxIPXDpdT8PP7rX6M6wBsOo7l/dhRUKcZuy2eCnl9SGngChPeHIGnDzgqf2gjHEtfWVNnHrYPloyEkGdx/o/pZaLX9yG/gGw/CfVVBekr6JhKOboP046DbZ8ePbrLB0OBxcrnpnPxINVVr8+7iLF022zVTP2z4B90x1XrsXm1VtQnooCjx8YdgqtRHrtez8TIXeAA37Q5/Z4ObhnLqEEEIIIYS4DaR8Nofk999H7+tL5Wnvcn7eN+Tu2AGA3mik/JjRlB08GL2H/Lu7uGRzSztI8H0D2ckwvQ6gg1cSwd3L1RXdtAqsBWw+vZno+P9v777DoyjXN45/Nz1ASGhJKAHpLQFp0ovSERAEC1KsB/GAihw7FhQFAUXPEbH9FM9BBRRRxIIgIEXEgoChS69JKCGFQEKy8/vjDQmBACmbTLK5P9e11+7Mzuw+CZklueed513E6kOrSbVSAfByeNGhagf61e5H57DO+HoWcDsAEbkyy4LVr8LylzLXdRgH3Z63r6aiLCEavhxpwubzfMvC3d9BaETh17PtG5g31IzEHrfNtf9vWeltQv74wEwUOfQz0wP/Sta+CUueMY8jboGbZro+ZL6wLk8fM0lrrS5X3idyPnx5v7nCoXZXuG22Ga0uIiIiIiK5ZqWmsn/oMM5s2pSxzuHtTbnhw6l4/0g8AwNtrM695DTL9SrEmqS4Ot/mJLCaQu88sCyLTcc2sWj3IhbvW0x8SnzGc40qNKJ/7f70uqYXFfwr2FiliGThcECnx6BUBfhmHJQJhg5j7a6q6AoIgWFfws9vmJMFHl6mbYwdoTdAvV4QGAZxB2HLAtOixlV+mmzCZRxw83tXD70B2j0IpYNNy5PIzyHpJNz6P9OT3FVWTs1aV60uV98nYjD4BcFnw2H3MjOx69DPTc97ERERERHJFYeXF5VfmczeQYOxkpIo27cvlcaOxaearhq2i0Z8oxHfV7XhE/PHes3OcOfXdldTrOyK3cVTa55i+8ntGeuCSwXTt1Zf+tXqR51ydWysTkRy5ORe08IjIMTuSoqHk3sAB5SvaW8dq1+DZS9CleYwcoVrXvPC9iA3vpbZTzyn/l4Kn42Ac0mmrqGfm0kn8+v3D+DbceZxn1fhun/kbv+Dv5tJOs/EQsX6pi94blr6pCRBzFY4/rdprRLcIHfvL0WHZZn2RT5loEZbu6sRERERKZZSDh3COncO35o2/03kxjTiW1zn5B5zX76WvXUUI5Zl8dWur5j06yTOpp3F38ufbtW70a92P64LvQ5PD0+7SxSRnLI7wC1uisr/Fc3vhJ9egSN/wqH12ffgzo3I+Zmhd5encx96A9TtbvqBf3KLqevDnumTYlbPe11bF5oWJwCdHs996A0Q1gruXgyzB8LxHfBBD1NXpXpZt7MsiD8MUZshOjL9fjOc2A2kj6Pw8IKuz0HbBwuul7kUjP2/mJY8h/8wy21Gm/ZOXmq/JiIiIpIbPtWq2V2CpFPwLVd3vtVJhdr21lFMnD53monrJvLtnm8BaFelHZM6TFIrExGRwlS6IjS+Gf6aC7+/n7/g++8fTS9sgOtGQufH8/5a1VrCPT+YkPnELhMyD50PoeG5f629q+GL+wALWtwF1z+d97qCG8C9F9T1YU/o/x84cwqit5iAOyoSzp7Kfv/SweaqiKhIM6HnnpUw8F0oUynvNUnhOP43/DgBtn9jlr38IPUsrHsL9q+BwbP0O6CIiIiIFEtqdYJanVzVOx0h6i+4fQ406GN3NUXajpM7eHTlo+yL34enw5MxzcZwT/g9eDg06k1EpNAd+gP+ryt4+sK4rXlrK3LwN/jfTaY9SfhguPl914xkjjsMHw+CY9vMclB1CImAkMYmBA8Jh3I1L/9eR/+Cj26E5Hho2A9u+S+44mqi08fhk8FwZEP2z3t4QcV6pr7zdYZGmD74lgV//he+f8IEp2VCTPhd+/r81yWul3jM9Kxf/xFYaeDwgOYjoMtTcPhP0+buTKxpe3LjdGh6m90Vi4iIiIgAOc9yFXyj4PuKLAsmh0FKAvzzV/XtvAzLsvh85+dM+W0KKc4UQkqFMLXTVJqHNLe7NBGRksuy4P3rTYjb9XnoOC53+8dsgw97mVHOtbvCkLng5eO6+s7Ewvx7YPfy7J/3KQPBjbIGzMGN4HQMfNDT3NfoAMO+cO3k08kJ8PVDsP9nE3KHRmQG3ZUaXL31Rcw2+Pzu9FDfAR0eMaPRPb1dV6PkXUoS/PKWmYw2JdGsq9cbuk3I+nte3GFY8A/zcwDQ9A7oM821k7KKiIiIiOSBgu9cUPB9BYkx8GpdwAHjo1z7h7WbSEhJYMLaCSzZvwSAztU681L7lwjyC7K5MhERyZigObA6PLzxyqOikxNMW4+oSHPb8R2cPgbVWsGIheBTumBqTDp5QTuR9L7ZMdsgLTmbjR3g7W9GoIdEwN3fgl9gwdSVHylJ8MPTsH6WWa52HQz6PyhXw966SjJnGmz8FFa8DAlHzboqzaD7RKjZ8fL7rJoGK6eA5YQKdUzrk8pNCq9uEREREZGLKPjOBQXfV7D/F5jVywQGj0TaXU2Rs+X4Fh5d+SiHEg/h5fBibIuxjGg0AofDYXdpIiICcO4MTG9oRlefb9llWRB3yITb0ZtNO6+ozRC799L9KzWAu7+HUuULt+60VNNr+3xv7fOheGKUeT6oBty7BAJCC7eu3NryJXz9MCTHgW8g3PQmNLrJ7qpKFsuCXctM7/WYLWZdUHVzFUTjm3PWumffGvjiH5BwBDx9oMfLZiJV/b4jIiIiIjZQ8J0LCr6vYMPHsHA01OpiRrsJYFqbfLLtE15b/xqpzlSqlK7CtM7TaFJJI6BERIqcpc/Bz/82o1UDKl95ksaAKqalx/n2HvV6FtxI77w4fRyObTctTwo7jM+r2H0w/144/IdZbnkP9JxkRq5LwTq2A75/HPb8ZJb9gqDTYya0vlrLmoudPmGunti52CzXvxFumlF8fg5FRERExG0o+M4FBd9XsOxFWP2a+SO17+t2V1MkxCXH8czPz/DTwZ8A6Fq9Ky+0e4FA3yJ4qbmIiEDsfvh3U+CCX3k8vMxo7gv7V4dEQOkKtpXp1tLOmRYba9J/lwhuZFpmaO6QgrNvDcwZYiZA9fSB60ZCx3/lL6i2LPj1XVj6LKSlQNmqpoVNjXauq1tERERE5CpymuV6FWJNUhyd2G3uy9e2t44iYmPMRh5f9ThHTx/F28ObR1s+ypAGQ9TaRESkKCtXA25+H45uhJDGJuiuVD/3I14l7zy9zeSJ13SEL++HmK3wXhfoNdlcVZYbpSuCb4DLS8wXZ5oJmP3L2V2Jsf1bM8FoWjJUbwsD34Fy1+RnO5j5AAAgAElEQVT/dR0OaDMKqrcxE7Oe3A0f3QidnzSTmLpy8lcRERERkXzSiG804vuK3ulgLgkfMhfq97a7Gts4LScfbv6QGRtmkGalERYQxqudX6VRhUZ2lyYiIlK8JESb8HvPirzt710Kbn4PGvZzbV15dWyHCYGjt5hJIpsOMbXZFc7/ORsWPWQmo6zfBwZ/WDBtZZIT4NtH4a+5ZtnD25xQ0lUU4u7SUmHjx7B6ujmhdNNbEBRmd1UiIiIlilqd5IKC78uwLJhcDVISYfRv5o+ZEuj4meM8vfppfjn6CwC9r+nNc22fo4xPGZsrExERKaacTlj7H/hlhpmANMf7pUHqGXB4QL9/Q/MRBVfj1ViWmQvl+8fhXFLW57xLmfC76e1QszN4eBZOPT+/AT9OMMvXDjPfI88CvsBz4xxY8gwkHc/++YDKFwTh6f3zy9cu+LpEXM2yYPs38OMLcOLvzPV+gdDvP9B4gH21iYiIlDAKvnNBwfdlJETDa/XMH5fjo0rkJeG/HPmFp1Y/xYmzJ/Dz9OOp1k8xsM5AtTYRERGxQ1oqfDMWNsw2y12fNy02Cvv/5bPx8M0jsHm+Wa7VxdSyexlsmgsndmVuG1AZmtwKTW6HkAK6UszpNH23f5lhltuPNa1lCuv7Yllw6gBEb4aozRAdae5j92a/vZcfhLWGATMhsFrh1Cglx4F1Zk6BsNbmuKtYJ/+vue9n+PF5OPS7WfYvD+0fgm3fZE7c22w49J5StCZEFhERcVMKvnNBwfdl7F8Ls3pDUHUYG2l3NYUq1ZnKWxvf4oPID7CwqBNUh2mdplGnnAt+cRYREZG8syxY9kLmRJltx0D3ieDhUTjvf3i9aW0Suw8cnnDDMyZoPv/+lmW22TQHIufD2VOZ+4Y2Ma1QIgZDmWDX1JN2Dr5+0LwfQI+XoN2Drnnt/EpOgOitmUF49GazfO60eb5uD7jjs8I/cSHuK+4QvNsJkk5krqvWylx90fjm3E/uGr3VfN7sXGyWvUtB29HmGPMLNMffT6/A6tcACyrUgUEfQJVrXfYliYiIyKUUfOeCgu/L+HM2fD0Gal0PI76yu5pCczTxKI+vepyNxzYCMLjeYB5v9Tj+XgXQH1NERETyZu0MWDLePG46BPq/aSbRLChOJ6x7y7QScaZCYHUY/AGEXXf5fVKT4e8lZhT4zh/Aec6sd3hCnW7Q9DbThzuvPbhTkuDzu+DvH8xr3vQWXDskb69VWJxOc2Lgoz6QlgK3zoZG/e2uStxBajLM6mNGYAc3hsCqsGsZWGnmeQ9vqN/LfF7U6X7lyVhPHYQVk9JPKFnm+GpxF3R+HAJCL91+72pYMBISjpj36TYB2vyz8E7IiYiIlDAKvnNBwfdl/PgCrJkOLe+FvtPtrqZQLDuwjOd+fo74lHjKeJfh+XbP0+uaXnaXJSIiItnZOAcWjjbBVr1eMHgW+JRy/fskHoOvHoBdS81yw/4maPcPyvlrnD4BWxaYIO3w+sz1vmWh0U1mRGr1djkPys7Ewqe3wcFfwcsfbv0v1OuZ83rstvwlWDUNylY1c8n4au4Uyadv/wW//x/4BcH9K83EkwnRpiXRpjkQdcEVrP7lIXyQCcGrNs+86iDppBm9/dv7kJZs1jUaADc8e/WWKUknzdUX278xy3W6wYC3XXd1h4iIiGRQ8J0LCr4v47MRsHUh9JxkLulzY8lpybz2x2vM2W4uEw6vEM7UzlMJC9AM7SIiIkXaju/NqOfUsxDWBu6YC/7lXPf6e1aakZyJUaY3da/J0OLu/LXnOLYT/poLf30GcQcz1wdWN/3Am94OFetefv/4I/DxIIjZatot3PEZVG+T93rscO4MvNUaTu03bSN6vGR3RVKcbZoLX94POGDo51C3+6XbRG1OP+4+N8fzeRXqmmPO4YA1/4bkOLP+mo7Q7QWo1iLndVgW/PEh/PC0+UwqXQkGvAN1u+XryxMREZGsFHzngoLvy3i7g+nJOGSeuSzQTe2L28djqx5j+8ntANzV+C4eavYQ3gV5ubSIiIi4zv5fzOjn5DjT4mDYF1C2cv5eMy0VVr4Cq14FLKhYH26ZBSGNXVIyYNp+HFhrQrutCyE5PvO5Ks1NGBc+CEpXzFx/fBfMHghxB8zEmcMWFNykmQVt5xL49BbTRmLUatd+b6XkiIqE/+sOqWeg85Nw/VNX3t6ZBnt+MsfdtkVmvwuFRJhWJXW65v0EV8w2mH8vxGwxy23+aV7TyzdvryciIiJZKPjOBQXf2bAsmFTVTD40+neoVM/uigrEot2LmLhuImdSz1DOtxwvdXiJTtU62V2WiIiI5FbUZjMKOjHKTMw9/CuoUDtvr3XqIHxxHxxcZ5ab3wm9XimYNirnnTsDO76DTfNg148X9CX2Mv2Im95mgu65d5iJ+8rXhuFfQrkaBVdTYZg3zISPYW3g7u/VE1ly58wpeK8LxO41rUXu+Dx3P0PJCbD1azMSPDkR2jwA4YNd83N47iwsfQ5+e9csh0bAoA/d9u8qERGRwqTgOxcUfGcjIQpeqw8ODxgffeXJX4qhpHNJTPp1Egt3LwSgVWgrXun4CsGl1INPRESk2IrdB/8bYEKw0pXMyO/KTa+8j2WZ1iHRm83I0egtsHsZnI0z/bf7vWFGXRemxGPpfYnnwtGNlz5f+VoYOh/KVCrcugpC3CGYcZ0ZbNF/BjQfbndFUlw4neZE0M7vzcmukSuhVHm7q7rUjsWw8J/mhJWXP3R5ElqPAm8/uysTEREpthR854KC72zs+xk+6gNBNWDsX3ZX41I7Y3fy6MpH2Ru3Fw+HB6OajmJkxEg8PTztLk1ERETyKzEGPr7ZhNg+ATBkDtTsaJ5LTYZj283o8Iyge7OZKPJiVVvAoA+gfM3Crf9ix3aYAPyvzyD+ENTsDLd/Ar4B9tblSmvfhCXPmAkHH1xfNMNLKXpWvQrLJ4KnL9y7BKpca3dFl5cQZXqQ7/nJLAeGmQkzI27RVQ4iIiJ5oOA7FxR8Z+PP2fD1GKh9g7mM1g1YlsX8v+cz5bcpJKclE+wfzCudXqFVaCu7SxMRERFXOhsHc+6A/WtMKNagjwmQj+8EZ+ql2zs8oWI9CA2HkHCo3MRMbFeU5vtwOuHELtO+xd1O1qedg3c7m37IzYbDTTPsrkiKut3LYfbNgFV8rhRwOmHTHFj+EiQcMesqN4XuE6FWZ9e8x+njpnVQYLXsJ/gUERFxEwq+c0HBdzZ+nABrXodW98GNr9ldTb4lpiTywi8vsHjfYgA6VO3Ayx1epryfRhSJiIi4pXNnYf49sOPbrOv9gkyv3ZDwzKC7UgO1HbDbgXXwYU/z+J4lUL21vfVI0XXqILzbCc6chOYjoP+bdleUOylJsG4mrHkDUhLMujrdofuLeZuoNjUZdi42V4b8vSTz5F6Lu6HXZPD2d13tIiIiRYSC71xQ8J2NecNh29fQczK0/afd1eTLlhNbeGzlYxxMOIiXw4uHmz/MiMYj8HDoskIRERG3lpYKGz+G08cgJMIE3WWrgsNhd2WSnYVjYMNsczJi5Erw9LK7IilqUpPhw15w5E/T6/6eH4rvSavTx2HlFPjjQxNWOzzg2qFw/XgoW/nK+1oWHPrdjCDfvADOnsp8rmJ9c3ULFgQ3gsEfQnDDAv1SRERECpuC71xQ8J2Nt9ubnpd3fAb1etpdTZ5YlsWn2z/l1T9eJdWZSpXSVZjaeSpNK11lkisRERERKXynT8CMFqbneo+Xod0YuyuSombRWFg/C/zLwf2rzKSWxd3xXbBsgmlRAuBdCtqOgfYPXdrLP3af6fe/aQ6c3JO5PqAKNL0NmtwOwQ1MK5gF98PpGDOhZu8pZnS8TvqJiIibUPCdCwq+L2JZMKkKnEuCMX9Axbp2V5RrcclxPPvzs6w4uAKArtW78kK7Fwj0DbS5MhERERG5rD//B18/CD5lYPRvEFjV7oqkqNjwCSz8J+CAYfOhTje7K3KtA+tgybNw6DezXDoYujwJjQeaUPyvebD/58ztvUtDo/7Q9HYzJ8HFvf8TY8yEmruXm+XGA6Hfv8FPfw+JiEjxp+A7FxR8XyT+KExvYC63Gx8NXj52V5QrG2M28viqxzl6+ijeHt482vJRhjQYgkMjHERERESKNqcTZvWCg79Cw/5w22y7K5L8OHcGYrZC1GZzNWnUZjO4JrhRZo/90AgodZV5d47+BR90h9SzphVI58cLp/7CZlmm3eSPE7KO6M7gMBNhNh0CDfqCb5krv57TCWv/A8snmnYqQTVg8Cyo1qIgqhcRESk0Cr5zQcH3RfatgY9uhHLXwMOb7K4mx5yWk1mbZ/HmhjdJs9KoHlCdVzu/SsMK6mknIiIiUmxEbTaTF1ppMHQ+1O1ud0VyNZYF8UcgegtER2YG3Sd2geW8+v4BVS4IwtPvK9Qxo5jPxMK7neHUfqjbE4bMBQ83n6snNcW0dPnpFTOJZ6UGJuyOuCVvV0Ec/B2+uAdOHQAPL+j6HLR90P2/jyIi4rYUfOeCgu+LnL/EtHZXGL7A7mpy5FzaOcb+NJZVh1YB0Ltmb55v+zylvUvbXJmIiIiI5NoP4+GXGWYgxj/Xgbd/zve1LBO6/r0U/IPMxKYhjcBHvxe61Mm98Pv/wdFNJvA+czL77UpVzDq626e02T4q0vw7xe7Lfj8vPzMpY9o5s125a2DkT6a/d0mRchqSTkBgWP77c585BYsehq1fmeXaXWHgu1CmUv7rLArSzsGuZWZizxZ3gZ/+rhcRcWc5zXI1Vbpc6sRuc1++lr115MJ7ke+x6tAq/Dz9eKr1UwysM1CtTURERESKqy5PweYFJhRdPR1uGH/1fU7ugcgvIPJzOL7joicd5nfb0HAThJ8PYgOracK/vIicbyaaTEnIXOfwNHMDZYzaTv8+lwm59HvcsF/m47Px6e1QIjPbocRsNS1Rjmww23j5wa2zS1boDeYkgatO2PgHwS0fwfqPYPGTsHsZvNMebn4PanVxzXsUNssyJ142zTXHfdJxs/6PD2Dwh1BVLV1EREo6jfhGI74vMW+YmUCl1yvQ5gG7q7mqLce3MPS7oaRZaUzrPI1e1/SyuyQRERERya+tC+GzEeDpAw/8AhXrXLpN/FHYssAEsUf+zFzv6Qu1b4C0FBOmJkZn/x5+QVnba1SsZ1pBAGCZYC3L4/TlCx/7BZnA19M7/19zUZdyGr5/HDZ8bJbDWkOz4eb7V6khePu55n2caWZEeXQkHNsBNdpDzY6ueW2B6K0w/244th1wQMdx0OVp8Cwm4+LiDkPkZybwPrY9c33pSuDhDQlHzHHcbQK0GW1/Sxen05zMSUvJ3X6BYe4zIr8oSogC3wBdDSRSTKnVSS4o+L7IzHYQswXu+Bzq9bC7mitKTkvm1kW3siduD72u6cW0ztPsLklEREREXMGy4JNbYNdSqNkZRiw0I4eTTpoJACPnm7lpzgfQDg8zcjV8MDTsC36Bma+VeCxr7+mozWZUuDPVNbV6+pi2HCERpp1HaASENDajbN1F1GYTlh7fCTig02PQ+YniE5ZKVilJZuT3n/81y2GtYdD/QVB1e+u6nORE2P4NbJoDe1aScdx7+UH9PqYHeu0bICXRtO3c9rV5vk53GPC2fQHy2TiYOxT2rc79vh7ecN1I6PTo1SeAlZxzppkriX6aZE5cdn4CWt4DXj52VyYiuaDgOxcUfF/AsuDlypB6Bsasz35kTREy/Y/pzNoyiwp+Ffjqpq8I8nOjPy5ERERESrqTe2FmG0g9C23HmJZ8u34E57nMbcJam7C78QAoE5zz105NNqOJzwfh0ZGmtYoFZHTmcKS36UhfccljIDEGkuOzf4+g6lnD8NBwCKpRvNqrWJbp5f3DeEhLhjKhMOh9qNnJ7srEFTYvML2/k+PNyaL+M6BRf7urMpxpJjDeNBe2fg3nTmc+V6M9NL0dGt2U9SQXmJ/Z9bNg8VPms6NMaHpLl86FW39iDHx8s2nj4+VnRqTnlDMVEo6ax36B0PFRE4K76qqKkir+KCz4x6UnIsrXMlcINOxfvD6fRUowBd+5oOD7AvFHYHpD06PvmegifcnmhpgN3Pn9nVhY/Of6/3B99evtLklEREREXG3lNFjxUtZ1IeEQMRga3wzlathT13mWBaf2m3Ar47YZ4g5kv71voBkdHtwAghtBpfT7otjS4EwsLBxjRtoC1O1hRs+WrmhvXeJasftg/j1weL1Zbnkv9Hw5d5PKulJaKmz4H6x6DeIPZa4vX8uM7G5yq5ns9Gqit8Dnd6f3/C/kli4n98LsgRC71wTew76Ayk1z9xq7lsHS58zJOYDA6tD1WXOiz+72LQVp8xemnVLELdDkNvDwdM3r7vwBvnrATBjrXRr6TDMn81ZMgtPHzDZhraHHyxDWyjXvKSIFRsF3Lij4vsDe1fDfvlCuJjy80e5qLivpXBK3LLqFAwkH6F+7Py93eNnukkRERESkIKQmm5YnCUfN6M7wwSY0LurOxF7QWiUSov6CmO1ZR6tfqFQF0yf74lDcrhYHB9bBF/dB3EHTcqH7C9D6AfcO3EqytHOwfCL8/G+zHNwYbpkFleoXXg2WBTsXw9LnMyeo9QuE8EEm8K7WKvejce1o6RK12Yz0Tow2V3gM/xIq1M7baznTzIj35S+Z3uUAla+FHhPd76qL5ET4/gnY+HHmuuDG5rOnTre8j8ROTYFlL8AvM8xyaAQM/ijz6vbkBPNzv3aGufIdoNEA6Pa8OdkiIkWSgu9cUPB9gfX/hUUPmf9Yhn1hdzWXNenXSczZPoeQUiEsuGkBZX1K+L+biIiIiBR9qSmmR3bMNji2zdzHbDMjbrnMn2VlQqFCHXMlZkbw48jm8UXtWPwCoXITM8o0NOLSdhCX40yDNa+bUZBWmhkQM/hDqNo8r1+1FCe7foQvR5kRsF7+0GeqmcC0oNs/HF4PS56D/WvMsn/59N7Ld4OXb/5ff/MXsGhswbd02b8WPr0dkuPMlSnDvoCA0Py/bkoSrJsJa96AlASzrm5PEwoHN8z/69vt6CZz1cGJXWa+hvBBsHOJ+T4CXNMRur+Y+8+hE7vN6x5NH9TXepR5nex+puKPwPKXYeMngJXeY/0fZj4D9VgXKXIUfOeCgu8LLH3OnO28bqS59KcIWnd0Hf9Y8g8A3u32Lu2qtrO5IhERERGRfEhJMiNczwfhx7ab+7iDrnuPcjVNCH7h7eKWJQlRpv/t3lVmOeIWuHE6+JXwv5FKmoRo+PJ+2LPCLDe+Gfq9kfOTJ7kRuw+WvWiCaTC9sNs8AB0ecf37ndwLX9xbcC1ddnwPn99l+opXbwtD5rp+gtvTx2HlFPjjQ9MH3OEBzYbB9eNdE7AXNsuCdW/Dj89DWgoEVDFzCFzTwUxkvPo1+O098xyYn8Wuz+ZsJPZfn8M3Y82Ep/7l4KaZ0KDP1feLijS5yO7lZtkv0ITf1410zUkYEXEJBd+5oOD7AnOHmh5+vaZAm1F2V3OJxJREbv76Zo6ePsqt9W7l2bbP2l2SiIiIiEjBOBtvJuA8td+MxAbAMmFRlsfpy+cfW5Zps3B0Exz96/L9xstWyxwVXrqSGeWddBy8S0GfV+HaOzTRW0nldMLaf8OyiWbkf1ANGDwLqrVwzetfEmo6zGSV14+HoDDXvEd2UlNMS5e1/zHLwY1N65OQRvl73Y2fmn74VhrU62W+Vz6l8l/v5RzfBcsmwLZFZtm7FLR7EFrcBQGVi8dxm3gMFv4T/l5iluvfCDfNuHR09akDZiT2X/PIGInd8h7o/Hj28w2knIbvHs9smVK9nfk3Dqyau/ou7rEeVB26Pg/1e4NP6dy9lpQ8p0+A5Sya83e4CQXfuaDg+wIz20HMFhg6H+p2t7uaSzy/9nkW/L2AqmWqsqD/Akp5F+AvEyIiIiIi7iDpZHoIvsn0Gj+6ybQUyE5IuAntKtUr3BqlaDr4G8y/15w88fCCrs9B2wfz3uv93FkTdq9+Fc6mt7Go1cW0n8jt5I/5setHWHC/OdEDUKODCd4b3ZT7KxzWvglLnjGPmw6B/m+a1kSF4cA6WPIsHPotc51/eQgNh5CI9PvGZr6AojRaefcKc1VBYjR4+pqR963uu3JgHxVp+r/vXmaWfQKgw8PQ5p+ZQXRUpJnQ9MTfZjR8p8fNaO28TmjqTINNc9J7rB9NX+kwI85Dw83nZUhjcwuqUTxOOEjB27sK5txhrv64biR0elTtcgqAgu9cUPCdzumESVXMhA4P/pn3CTgKyKpDqxi9bDQOHHzY80Nahra0uyQRERERkeLpbLwZyXg0PQg/vgNqtDcjbr397K5OipIzp2DRw7D1K7NcuysMfDd3IxmdTtPOZNmLmVcgBDc2gXedrvYEhgnRphXGju/JuGrCyw8a9DUBdq0uVw5MLcu06Dg/IWjbMdB9YuFPAGtZsO1rM4I+arMZdX4xDy+oWM8EtecD29AIKBNcuLWmnTMh8s//BiwTyA/+0ATHObXnJzMS++gms1wmFLo8aV57yTOQlmxGvd/8PtTs6Jq6U07DLzPh9/+DxKjst/EJyAzBQxqb729wQ/ANcE0NUjxs/dq0VDrfngdMu5yOj5oQXP+/uoyC71xQ8J0u7jC83ggcnvBMdOGdpc6BuOQ4Bi4cyLEzxxjeaDiPt3rc7pJERERERERKBsuC9R/B4ifNKEbvUrkL9NJS4EyseRxQGW54xoTLHp4FUm6unDoIkZ/Bprlm8tnzyoSYPvdNh5iw+EJpqfDNw7AhvZ1Gtxeg/cP2j/g9d9ZMnBu12ZzYitoM0ZGZo+svFlAZGvY3o92rNCvY+k/ugS/uy+yx3uJu6Dkpby1hnE7YssCcSDm1P+tz9XqZft6lK+S/5uwkxkD0FvP9PX9/bEfWoPNC5a7JPNFw/sSDRoe7xunj8O04078/pHHWEzvZtcEpaOs/gm8eMS1OGvQ1EwMve9F0VQAIrG561IcPLvwTZG5IwXcuKPhOt3cV/LefuWznoQ12V5PFE6ue4Lu933FN2Wv4vN/n+HnpLJmIiIiIiEihit4K8+8x4Wpu+ZSBDmOhzeiC7X+dV5YFR/40AXjkfDhzMvO5kAgTDkfcYkZvfnGvmRvL4QH9/gPNh9tX99VYFsQfzgzBz4fiJ3aTMdIdzIjwprdDk9sgsJpra/jrcxMIpiSY71//N01bmfxKTTYTfa6cCskJ0GMitB5V+KFy2jnTPur89zZ6i7klHMl+e9+ylwa1wY2K5nFRVJ06ALMHXr5tV5nQC9rRpH+fK9TNe9ubK7EsWDPdhNwAzUdA3zfMib3s2uVUvtb8rNbs5PpaShAF37mg4Dvd+o/MJWx1usOw+XZXk2Hp/qWM+2kcHg4PZveeTZNKTewuSUREREREpGRKSzUjo7NrqXElQdVN6FkcpKaYPuCb5sDOxZmjeR0eULYqxB00vakHfwgN+9pba16lnIb9v8Bfc2HbN6blKQAO0yKk6RBo2C9vrTpSU8zPSPRm8/3b8qVZX72taUHi6glMU5Lg3JmCG+WdV6dPpAfhF4y+v+zocIdpNxsSnvsWNA4PKF87s6d7cTnO8ipmG8y+2ZxYCAwzk46e3GO+v9FbzOPsePpCpfoQ2sSc5HFFKxyn07TYWfeWWe4wzsyFcPHJl5Qks82af5sTQAB1e5p2T8EN8l9HCaTgOxcUfKdb8qyZ3fq6+6HPVLurAeDEmRMMXDiQ2ORY/hHxDx5q/pDdJYmIiIiIiEhJkXTSBLeb5mZOIukTAEPmuK6HtN3Oxps+4Zvmwr7Vmeu9S5nwu8ltpud5dq1pTp/IOpI8ajMc2w7Oc5nbuGKiSXeRds6cFLh4BP7pY657j6DqWUc6h4RDuZru0V7j4G/wyS1w9pTpET/8SyhbJes2yYkQs/WCEw7po/BTErNul9/gOe0cLBxjTh6Bad3TdvSV90k8BiunwPpZ4Ew1x0az4XD90xAQmrc6SigF37mg4Dvd3KHmcq3eU6H1/XZXg2VZjPtpHD8e+JG65eoy98a5+Hj62F2WiIiIiIiIlEQndpsRzHW6mZGj7ujUAfhrngnBL2wjEVDZtHoJjcja4/p8+4aLXdjOo8ltENaqcOovrhKiM0csJydeffsLpSWbkeRRmyH+UPbb+JQx7VTOB+HVWkHlYnY1/d9L4bMRcC4Jql0Hd8yDUuVztq/TafrBR2+GXctgw+z8Bc8pSfD5XfD3D2aevJvegmuH5Hz/47tg2QTYtsgse5eCdg9Cs2FmFLt6wF+Vgu9cUPCdbmZbc1Zs6BdQt5vd1fDNnm94avVTeDm8mNN3Dg3K6/IPERERERERkQJnWWYiyk1zYPMXmZOTZqdczfRANSIzWA2qrvDODkknM09MnB9VHrPdhOMXK06tNv76DL56wITVdbrDrf8Fn9J5f71LgufSJnhu9yD4lrnyvmdi4dPb4eA68PI3tdTrmbc6DqwzrVIO/Z65zjfQnDQKvWDUfqWG6gF/EQXfuaDgG3P2a1JlM0P3g3+a3lI2ij4dzcCvB5KQksCYa8dwf1P7R6CLiIiIiIiIlDipyfD3EhM+JsZAcMPMoDukUd76gEvhSUs1o/ejN0NUpLntXVl8Wm2sewcWP2EeR9wKA2aCp7drXvvi4Ll0MFz/FDQbkX1bnvij8PEgiNlieqnf8RlUb5O/GiwLti6En98wJysubBN03sV93M+fZCpbtcSeYFLwnQsKvoG4Q/B6Y/DwgvHRtvbdOpp4lHE/jWPzic00rtCYj/t8jJdHCe8DJiIiIiIiIiLiCpdrtdHuoauPeC4slgXLX4LVr5rl1g+YPtqu7lV+Pnj+cQLE7jXrKtaH7i9AvV6ZwfKJ3TB7gGkHVCYUhi8wIbQrXTgxbFRk5sj9pOPZb+8XBF2fhVb3ubaOYkDBdy4o+Ab2rIT/9TdnkB7607Yylh9YzrM/P0t8SjwBPgHM7nO6wRQAABglSURBVD2b2kH2jj4XEREREREREXE7uR3xXFicafDtOFj/kVm+4Vno+K+CHd2cmgJ/fGgmnzxz0qyr0QF6TDQTu348yExCWr6WmVSz3DUFV8uFLMtcaXHhZKjRW0xfdysNbn4fmtxaOLUUIQq+c0HBN/DHLPhmLNTtAUM/L/S3T0lL4fX1r/Pxto8BCK8QzrTO06gWUK3QaxERERERERERKRFyOuK5sKQmwxf3wbavTYuPG6dDy7sL7/3PxsGa12Hd26YdMICXn3kc2gSGfQFlgguvnstJTYZj281kmDmd5NON5DTLdfH1AVJsndxt7svXKvS3Phh/kOHfD88IvUc0GsH/ev9PobeIiIiIiIiISEFyOKDxABj9G/SaAv7l4fgOmHM7fNTXTHJaWM7GwyeDTejt6QO3fFS4oTeY3t3dJsCYP6DpEMBhQu9rOsJd3xSN0BvAyxcqNy2RoXduqHGyGCf2mPvyhdtWZPG+xbyw9gUSzyUS6BvIy+1fpnNY50KtQURERERERESkRPPygTaj4NohmSOe96+B92+A8EGmB3hwIxO4upozzfS2/vJ+OLoJfMrA7Z9CLRvzoaAwGPgOtB0NRzaYiTW9/eyrR/JEwbcYJ9OD7wqFM+L7bOpZpv0+jc92fgZAs+BmTO00ldDSRXQWYRERERERERERd3d+xHPLe2HFy7BpLmz+wtw8vEwblNBwCAlPv4+AMpVy/vpn402P6gsncIzZBueSzPOlKsKw+VClWUF8dbkXGmFuUiwp+BZwOjP7OBVCq5M9cXt4bOVj7IzdiQMH90Xcxz+v/SdeHvpxFBERERERERGx3fkRz20egJ9egf0/m/7XMVvMjXmZ25YJyRqEh4ZDhToQdyg94N6cGXSf2p/9+3n5Q7WW0PcNqFinUL5EcX9KGgXiD5t+RR5eEFi9QN9q0e5FTFw3kTOpZyjvV57JHSbTrmq7An1PERERERERERHJg8pNYcgcMwlmliA70tyf3AOJ0ea2e1nOXrNs1QuC8nAzorp8LfDwLNivRUocBd+S2eak3DXgWTA/Eknnkpj06yQW7l4IwHWh1/FKx1eoVCoXl8OIiIiIiIiIiEjhczjMKPCgMKjfO3N9cqJpVXI+CI/ebFqZpCSCpy8ENzCjwEMaZwbdmpBRComCb4GTu819AU1suSFmAxPWTmBP3B48HB6MajqKkREj8dSZPBERERERERGR4su3DIS1MrfznE44HQOlKoCnt321SYmn4FvgxPng27X9vffF7eONP99g2QFzqUsl/0pM6TSFVqGtrrKniIiIiIiIiIgUSx4eEBBqdxUiCr6FzFYnFVwz4vvk2ZO8s+kdPt/xOalWKh4ODwbWGchDzR+ivJ8uZxEREREREREREZGCpeBbMoPvfI74Ppt6lo+3fcwHkR+QeC4RgE7VOvFI80eoU04z8oqIiIiIiIiIiEjhUPBd0jmdcHKveZzH4NtpOVm0exFvbniT6KRoABqWb8i/Wv6L1pVbu6pSERERERERERERkRxR8F3SxR+CtGTw8IbAsFzv/suRX5i+fjrbT24HoHLpyjzU/CH61OyDh8PD1dWKiIiIiIiIiIiIXJWC75LufJuTcteAZ85/HHbG7mT6+un8fPhnAAK8A7ivyX0MbTgUX0/fAihUREREREREREREJGfcJvieOXMm06ZN4+jRozRu3Jg33niDjh072l1W0Xdit7m/ysSW8Snx7Di5g52xO9kYs5El+5fgtJx4eXhxe/3bub/J/QT5BRVCwSIiIiIiIiIiIiJX5hbB97x58xg7diwzZ86kffv2vPvuu/Tu3ZutW7dSvXp1u8sr2i6a2NJpOTmccJgdsTvYfnI7O2J3sPPkTo6cPnLJrj1q9GBs87GElc19ixQRERERERERERGRguKwLMuyu4j8at26Nc2bN+ftt9/OWNewYUMGDBjA5MmTr7p/fHw8gYGBxMXFUbZs2YIstUixLIvIT25iR/Qf7KjbhR1enuyM3UlSalK221cpXYV65evRoHwDOlXtRESliEKuWEREREREREREREqynGa5xX7Ed0pKCuvXr+fJJ5/Msr5Hjx6sXbs2232Sk5NJTk7OWI6Pjy/QGouyMef2EluxAsRGZqzz8fChdlBtGpRvQP3y9alXrh71ytUj0DfQxkpFREREREREREREcqbYB9/Hjx8nLS2NkJCQLOtDQkKIiorKdp/JkyfzwgsvFEZ5RZrD4aCNTwXizp6ifv2bqFelFQ3KNeCawGvw8ij2PxoiIiIiIiIiIiJSQrlNuulwOLIsW5Z1ybrznnrqKcaNG5exHB8fT1hYyexTPXXoT3aXICIiIiIiIiIiIuJSxT74rlixIp6enpeM7o6JiblkFPh5vr6++Pr6FkZ5IiIiIiIiIiIiIlLIPOwuIL98fHxo0aIFS5cuzbJ+6dKltGvXzqaqRERERERERERERMQuxX7EN8C4ceMYPnw4LVu2pG3btrz33nscOHCAUaNG2V2aiIiIiIiIiIiIiBQytwi+b7vtNk6cOMGLL77I0aNHCQ8P57vvvqNGjRp2lyYiIiIiIiIiIiIihcxhWZZldxF2i4+PJzAwkLi4OMqWLWt3OSIiIiIiIiIiIiKSjZxmucW+x7eIiIiIiIiIiIiIyIUUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuRcG3iIiIiIiIiIiIiLgVBd8iIiIiIiIiIiIi4lYUfIuIiIiIiIiIiIiIW1HwLSIiIiIiIiIiIiJuxcvuAooCy7IAiI+Pt7kSEREREREREREREbmc8xnu+Uz3chR8AwkJCQCEhYXZXImIiIiIiIiIiIiIXE1CQgKBgYGXfd5hXS0aLwGcTidHjhwhICAAh8NhdzmFKj4+nrCwMA4ePEjZsmXtLkdECoGOe5GSRce8SMmj416k5NFxL1KylPRj3rIsEhISqFKlCh4el+/krRHfgIeHB9WqVbO7DFuVLVu2RB4oIiWZjnuRkkXHvEjJo+NepOTRcS9SspTkY/5KI73P0+SWIiIiIiIiIiIiIuJWFHyLiIiIiIiIiIiIiFvxnDBhwgS7ixB7eXp60qVLF7y81PlGpKTQcS9SsuiYFyl5dNyLlDw67kVKFh3zV6fJLUVERERERERERETErajViYiIiIiIiIiIiIi4FQXfIiIiIiIiIiIiIuJWFHyLiIiIiIiIiIiIiFtR8C0iIiIiIiIiIiIibkXBdwk3c+ZMatasiZ+fHy1atGD16tV2lyQiLjB58mRatWpFQEAAwcHBDBgwgB07dmTZJjk5mQcffJCKFStSunRp+vfvz6FDh2yqWERcafLkyTgcDsaOHZuxTse8iPs5fPgww4YNo0KFCpQqVYprr72W9evXZzxvWRYTJkygSpUq+Pv706VLF7Zs2WJjxSKSH6mpqTzzzDPUrFkTf39/atWqxYsvvojT6czYRse9SPG2atUq+vXrR5UqVXA4HHz11VdZns/JMR4bG8vw4cMJDAwkMDCQ4cOHc+rUqcL8MooMBd8l2Lx58xg7dizjx49nw4YNdOzYkd69e3PgwAG7SxORfFq5ciWjR49m3bp1LF26lNTUVHr06MHp06czthk7dixffvklc+fOZc2aNSQmJtK3b1/S0tJsrFxE8uv333/nvffeo0mTJlnW65gXcS+xsbG0b98eb29vvv/+e7Zu3cprr71GUFBQxjZTp05l+vTpzJgxg99//53Q0FC6d+9OQkKCjZWLSF5NmTKFd955hxkzZrBt2zamTp3KtGnTePPNNzO20XEvUrydPn2apk2bMmPGjGyfz8kxfscdd7Bx40YWL17M4sWL2bhxI8OHDy+sL6FIcViWZdldhNijdevWNG/enLfffjtjXcOGDRkwYACTJ0+2sTIRcbVjx44RHBzMypUr6dSpE3FxcVSqVInZs2dz2223AXDkyBHCwsL47rvv6Nmzp80Vi0heJCYm0rx5c2bOnMlLL73EtddeyxtvvKFjXsQNPfnkk/z888+XvWLTsiyqVKnC2LFjeeKJJwBz5UdISAhTpkzh/vvvL8xyRcQF+vbtS0hICB988EHGukGDBlGqVClmz56t417EzTgcDr788ksGDBgA5Oz/9m3bttGoUSPWrVtH69atAVi3bh1t27Zl+/bt1K9f37avxw4a8V1CpaSksH79enr06JFlfY8ePVi7dq1NVYlIQYmLiwOgfPnyAKxfv55z585l+QyoUqUK4eHh+gwQKcZGjx7NjTfeSLdu3bKs1zEv4n6+/vprWrZsyS233EJwcDDNmjXj/fffz3h+7969REVFZTnufX196dy5s457kWKqQ4cOLFu2jJ07dwKwadMm1qxZQ58+fQAd9yLuLifH+C+//EJgYGBG6A3Qpk0bAgMDS+TngJfdBYg9jh8/TlpaGiEhIVnWh4SEEBUVZVNVIlIQLMti3LhxdOjQgfDwcACioqLw8fGhXLlyWbbVZ4BI8TV37lz+/PNPfv/990ue0zEv4n727NnD22+/zbhx43j66af57bffeOihh/D19WXEiBEZx3Z2v+/v37/fjpJFJJ+eeOIJ4uLiaNCgAZ6enqSlpfHyyy8zZMgQAB33Im4uJ8d4VFQUwcHBl+wbHBxcIn/vV/BdwjkcjizLlmVdsk5EircxY8bw119/sWbNmqtuq88AkeLp4MGDPPzwwyxZsgQ/P78c76djXqT4cjqdtGzZkkmTJgHQrFkztmzZwttvv82IESMyttPv+yLuY968eXz88cd8+umnNG7cmI0bNzJ27FiqVKnCnXfembGdjnsR93a1Yzy7472kfg6o1UkJVbFiRTw9PS852xMTE3PJmSMRKb4efPBBvv76a1asWEG1atUy1oeGhpKSkkJsbGyW7fUZIFI8rV+/npiYGFq0aIGXlxdeXl6sXLmS//znP3h5eRESEqJjXsTNVK5cmUaNGmVZ17Bhw4yJ6kNDQwH0+76IG3nsscd48sknuf3224mIiGD48OE88sgjGXN06bgXcW85OcZDQ0OJjo6+ZN9jx46VyM8BBd8llI+PDy1atGDp0qVZ1i9dupR27drZVJWIuIplWYwZM4YFCxawfPlyatasmeX5Fi1a4O3tneUz4OjRo2zevFmfASLFUNeuXYmMjGTjxo0Zt5YtWzJ06NCMxzrmRdxL+/bt2bFjR5Z1O3fupEaNGgDUrFmT0NDQLMd9SkoKK1eu1HEvUkwlJSXh4ZE1xvH09MTpdAI67kXcXU6O8bZt2xIXF8dvv/2Wsc2vv/5KXFxcifwc8JwwYcIEu4sQe5QtW5Znn32WqlWr4ufnx6RJk1ixYgWzZs0iKCjI7vJEJB9Gjx7NJ598wvz586lSpQqJiYkkJibi6emJt7c3fn5+HDlyhBkzZtC0aVPi4uIYNWoUAQEBTJky5ZJfqEWkaPP19SU4ODjL7dNPP6VWrVqMGDFCx7yIG6pevTovvPACXl5eVK5cmcWLFzNhwgQmTpxIkyZNcDgcpKWlMXnyZOrXr09aWhr/+te/OHz4MO+99x6+vr52fwkikkvbtm3jv//9L/Xr18fHx4cVK1bw9NNPc8cdd9C9e3cd9yJuIDExka1btxIVFcW7775L69at8ff3JyUlhaCgoKse45UqVeLXX3/l008/pVmzZhw6dIiRI0dy3XXX8eCDD9r95RU+S0q0t956y6pRo4bl4+NjNW/e3Fq5cqXdJYmICwDZ3mbNmpWxzZkzZ6wxY8ZY5cuXt/z9/a2+fftaBw4csK9oEXGpzp07Ww8//HDGso55EfezaNEiKzw83PL19bUaNGhgvffee1medzqd1vPPP2+FhoZavr6+VqdOnazIyEibqhWR/IqPj7cefvhhq3r16pafn59Vq1Yta/z48VZycnLGNjruRYq3FStWZPu3/J133mlZVs6O8RMnTlhDhw61AgICrICAAGvo0KFWbGysDV+N/RyWZVk2Ze4iIiIiIiIiIiIiIi6n61pFRERERERERERExK0o+BYRERERERERERERt6LgW0RERERERERERETcioJvEREREREREREREXErCr5FRERERERERERExK0o+BYRERERERERERERt6LgW0RERERERERERETcioJvEREREREREREREXErCr5FRERERIqQffv24XA42Lhxoy3vv2PHDkJDQ0lISLjqtpGRkVSrVo3Tp08XQmUiIiIiIjmn4FtEREREpJA4HI4r3u666y7CwsI4evQo4eHhttQ4fvx4Ro8eTUBAwFW3jYiI4LrrruP1118vhMpERERERHLOYVmWZXcRIiIiIiIlQVRUVMbjefPm8dxzz7Fjx46Mdf7+/gQGBtpRGgCHDh2iVq1a7Nmzh2rVquVon0WLFjFq1CgOHDiAp6dnAVcoIiIiIpIzGvEtIiIiIlJIQkNDM26BgYE4HI5L1l3c6uSnn37C4XDwww8/0KxZM/z9/bnhhhuIiYnh+++/p2HDhpQtW5YhQ4aQlJSU8V6WZTF16lRq1aqFv78/TZs2Zf78+Ves77PPPqNp06ZZQu/9+/fTr18/ypUrR+nSpWncuDHfffddxvM9e/bkxIkTrFy50sXfLRERERGRvPOyuwAREREREbm6CRMmMGPGDEqVKsWtt97Krbfeiq+vL59++imJiYkMHDiQN998kyeeeAKAZ555hgULFvD2229Tt25dVq1axbBhw6hUqRKdO3fO9j1WrVpFy5Yts6wbPXo0KSkprFq1itKlS7N161bKlCmT8byPjw9NmzZl9erV3HDDDQX3DRARERERyQUF3yIiIiIixcBLL71E+/btAbj33nt56qmn2L17N7Vq1QJg8ODBrFixgieeeILTp08zffp0li9fTtu2bQGoVasWa9as4d13371s8L1v3z5atGiRZd2BAwcYNGgQERERGa9zsapVq7Jv3z5XfakiIiIiIvmm4FtEREREpBho0qRJxuOQkBBKlSqVJYQOCQnht99+A2Dr1q2cPXuW7t27Z3mNlJQUmjVrdtn3OHPmDH5+flnWPfTQQzzwwAMsWbKEbt26MWjQoCy1gOlNfmGbFRERERERu6nHt4iIiIhIMeDt7Z3x2OFwZFk+v87pdAJk3H/77bds3Lgx47Z169Yr9vmuWLEisbGxWdbdd9997Nmzh+HDhxMZGUnLli158803s2xz8uRJKlWqlK+vT0RERETElRR8i4iIiIi4mUaNGuHr68uBAweoU6dOlltYWNhl92vWrBlbt269ZH1YWBijRo1iwYIF/Otf/+L999/P8vzmzZuvOJJcRERERKSwqdWJiIiIiIibCQgI4NFHH+WRRx7B6XTSoUMH4uPjWbt2LWXKlOHOO+/Mdr+ePXty3333kZaWhqenJwBjx46ld+/e1KtXj9jYWJYvX07Dhg0z9tm3bx+HDx+mW7duhfK1iYiIiIjkhIJvERERERE3NHHiRIKDg5k8eTJ79uwhKCiI5s2b8/TTT192nz59+uDt7c2PP/5Iz549AUhLS2P06NEcOnSIsmXL0qtXL15//fWMfebMmUOPHj2oUaNGgX9NIiIiIiI55bAsy7K7CBERERERKRpmzpzJwoUL+eGHH666bXJyMnXr1mXOnDm0b9++EKoTEREREckZjfgWEREREZEMI0eOJDY2loSEBAICAq647f79+xk/frxCbxEREREpcjTiW0RERERERERERETciofdBYiIiIiIiIiIiIiIuJKCbxERERERERERERFxKwq+RURERERERERERMStKPgWEREREREREREREbei4FtERERERERERERE3IqCbxERERERERERERFxKwq+RURERERERERERMStKPgWEREREREREREREbei4FtERERERERERERE3Mr/AwKZXPMEmDv5AAAAAElFTkSuQmCC\n", "text/plain": [ "
                                        " ] @@ -165,95 +166,1717 @@ " }\n", " \n", " " - ], - "text/plain": [ - " \n", - " " ] }, - "execution_count": 0, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" }, { "data": { - "text/html": [ - "
                                        \n", - " \n", - " \n", - "
                                        \n", - " \n", - "
                                        " - ], - "text/plain": [ + "application/vnd.plotly.v1+json": { + "config": { + "linkText": "Export to plot.ly", + "plotlyServerURL": "https://plot.ly", + "showLink": false + }, + "data": [ + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "Enzyme", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 81.97266459561997, + 72.963892318294, + 69.01841173858091, + 74.95957776080802, + 80.83770904115414, + 76.8144014218477, + 69.02638258351756, + 63, + 72, + 69.05943844186659, + 70.02023101732385, + 64.12195553469655, + 62, + 55.43499599706778, + 62, + 66, + 73.9963667219662, + 74, + 66, + 69, + 78.99997460762599, + 71.06660451436312, + 74, + 76, + 75.00084509720196, + 79, + 69, + 68.05448894896357, + 72, + 74, + 74, + 78.00025048620824, + 71, + 68, + 81, + 79.99050484314847, + 73.0488840085441, + 77, + 78, + 72, + 77, + 76, + 80, + 80, + 85, + 84, + 80, + 82, + 83.98568991510936, + 78, + 75, + 79, + 80, + 88.89977908766271, + 86.89977908766271, + 87.89977908766271, + 87.88482936718215, + 88.88482936718215, + 89.81003268305177, + 89.74926542276498, + 90.74926542276498, + 86.74926542276498, + 85.74926542276498, + 86.74926542276498, + 79, + 81, + 78.06300137891307, + 81, + 84, + 82, + 86.00312461092949, + 89.00312461092949, + 89.00312461092949, + 86.00312461092949, + 84.00312461092949, + 88, + 90, + 85, + 85, + 88, + 89, + 91, + 90, + 86.03675825917186, + 88.03675825917186, + 84.03675825917186, + 87.01455110376206, + 87.01455110376206, + 88.01455110376206, + 88.01455110376206, + 89.01455110376206, + 92.01455110376206, + 93.01455110376206, + 92.01455110376206, + 87.01940604694114, + 87.01940604694114, + 90.01940604694114, + 85, + 88, + 88.99585621126407 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "Enzyme_Substrate_Complex", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 38.027335404380025, + 47.00877227732598, + 49.98158826141908, + 43.04042223919198, + 37.121868719653875, + 41.023307619306415, + 47.97361741648245, + 53, + 44, + 46.9405615581334, + 44.97976898267614, + 49.87804446530343, + 51, + 57.56500400293222, + 50, + 46, + 38.00363327803381, + 37, + 45, + 42, + 32.00002539237401, + 38.93339548563688, + 35, + 33, + 33.99915490279806, + 29, + 39, + 39.945511051036426, + 35, + 33, + 33, + 28.999749513791752, + 35, + 38, + 25, + 26.00949515685153, + 31.951115991455893, + 27, + 26, + 32, + 27, + 28, + 24, + 24, + 19, + 20, + 24, + 22, + 20.014310084890635, + 25, + 28, + 24, + 23, + 14.100220912337301, + 16, + 15, + 15.014949720480557, + 14, + 13.074796684130387, + 13.060767260286788, + 12, + 16, + 17, + 16, + 23, + 21, + 23.936998621086936, + 20, + 17, + 19, + 14.9968753890705, + 11, + 11, + 14, + 16, + 12, + 10, + 15, + 15, + 12, + 11, + 9, + 10, + 13.963241740828142, + 11, + 15, + 11.985448896237946, + 11, + 10, + 10, + 9, + 6, + 5, + 6, + 10.99514505682092, + 10, + 7, + 12, + 9, + 8.004143788735941 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "Product", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1.007669403879756, + 4.015239553514635, + 8.063398619626096, + 16.104410673327255, + 20.148562030447046, + 24.166420052979415, + 28.22256519796708, + 30.22256519796708, + 34.22256519796708, + 36.332024128508785, + 40.39425046315374, + 43.47835008968451, + 44.47835008968451, + 48.63326800158395, + 56.63326800158395, + 58.63326800158395, + 61.642124113761334, + 66.64212411376133, + 73.64212411376133, + 78.64212411376133, + 85.64214371318313, + 90.72405740496862, + 93.72405740496862, + 98.72405740496862, + 102.73330144441518, + 106.73330144441518, + 109.73330144441518, + 113.76293950189326, + 117.76293950189326, + 122.76293950189326, + 127.76293950189326, + 131.79086911439023, + 132.79086911439023, + 135.79086911439023, + 140.79086911439023, + 144.83121809898438, + 148.86189595230354, + 150.86189595230354, + 153.86189595230354, + 157.86189595230354, + 158.86189595230354, + 159.86189595230354, + 161.86189595230354, + 164.86189595230354, + 166.86189595230354, + 166.86189595230354, + 166.86189595230354, + 168.86189595230354, + 171.8775062284965, + 174.8775062284965, + 175.8775062284965, + 177.8775062284965, + 178.8775062284965, + 181.90362364155632, + 183.90362364155632, + 185.90362364155632, + 185.90935028735947, + 187.90935028735947, + 187.92783309319637, + 189.94354777763428, + 190.94354777763428, + 191.94354777763428, + 191.94354777763428, + 196.94354777763428, + 196.94354777763428, + 198.94354777763428, + 202.96913909233257, + 205.96913909233257, + 208.96913909233257, + 211.96913909233257, + 212.98907042038059, + 212.98907042038059, + 212.98907042038059, + 213.98907042038059, + 214.98907042038059, + 219.98907042038059, + 219.98907042038059, + 219.98907042038059, + 219.98907042038059, + 221.98907042038059, + 221.98907042038059, + 225.98907042038059, + 226.98907042038059, + 227.01950701550163, + 229.01950701550163, + 229.01950701550163, + 231.0388772569087, + 232.0388772569087, + 232.0388772569087, + 233.0388772569087, + 234.0388772569087, + 235.0388772569087, + 236.0388772569087, + 236.0388772569087, + 236.04340004671138, + 237.04340004671138, + 238.04340004671138, + 241.04340004671138, + 241.04340004671138, + 241.06114891060759 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "Substrate", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 261.96499519174023, + 249.94098336089962, + 242.89599647985446, + 240.81456218696133, + 242.64854211018763, + 234.6073764683488, + 223.5776139068787, + 215.5776139068787, + 220.5776139068787, + 215.5275934182036, + 212.4855981008825, + 203.52345400904832, + 200.52345400904832, + 189.80353209421665, + 188.80353209421665, + 190.80353209421665, + 195.79104270400546, + 191.79104270400546, + 176.79104270400546, + 174.79104270400546, + 177.79099771220964, + 165.7756885347873, + 165.7756885347873, + 162.7756885347873, + 157.76728959254268, + 157.76728959254268, + 144.76728959254268, + 139.79214048402818, + 139.79214048402818, + 136.79214048402818, + 131.79214048402818, + 131.7644613577394, + 123.7644613577394, + 117.7644613577394, + 125.7644613577394, + 120.71461721629372, + 110.73282337151866, + 112.73282337151866, + 110.73282337151866, + 100.73282337151866, + 104.73282337151866, + 102.73282337151866, + 104.73282337151866, + 101.73282337151866, + 104.73282337151866, + 103.73282337151866, + 99.73282337151866, + 99.73282337151866, + 98.7029030104351, + 90.7029030104351, + 86, + 88, + 88, + 93.87366167460286, + 89.87366167460286, + 88.87366167460286, + 88.85298530831912, + 87.85298530831912, + 88.75970581835183, + 86.68322387362714, + 86.68322387362714, + 81.68322387362714, + 80.68322387362714, + 76.68322387362714, + 69, + 69, + 62.03741006421479, + 62, + 62, + 57, + 59.9831932828815, + 62, + 62, + 58, + 55, + 54, + 56, + 51, + 51, + 52, + 53, + 51, + 49, + 45.006321664050795, + 45, + 41, + 41.99518086235499, + 40, + 41, + 40, + 40, + 42, + 42, + 41, + 36.000332153376405, + 35, + 37, + 29, + 32, + 32.97810734736786 + ] + } + ], + "layout": { + "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Michaelis_Menten - BasicTauHybridSolver" + }, + "xaxis": { + "title": { + "text": "Time (s)" + } + }, + "yaxis": { + "title": { + "text": "Species Population" + } + } + } + }, + "text/html": [ "
                                        \n", " \n", " \n", - "
                                        \n", + "
                                        \n", " " - ], - "text/vnd.plotly.v1+html": [ - "" + " \n", + " " ] }, "metadata": {}, @@ -413,9 +2048,8 @@ "color": "#1f77b4" }, "mode": "lines", - "name": "Substrate", + "name": "Enzyme", "type": "scatter", - "uid": "39a848c6-9b8e-452c-a333-3583db7c4ce7", "x": [ 0, 1, @@ -520,332 +2154,116 @@ 100 ], "y": [ - 301, - 254, - 245.9358526453979, - 241.88214616399983, - 230.88214616399983, - 235.7944031835371, - 222.8064291515114, - 230.68132248751655, - 226.6543626011831, - 225.6543626011831, - 224.6543626011831, - 216.581355382266, - 216.4099208927306, - 209.3095416168595, - 205.12431365488445, - 202.0315458540818, - 200.0315458540818, - 187.0315458540818, - 187.0315458540818, - 182.0315458540818, - 176.98217429858488, - 164.0841717843794, - 166.0841717843794, - 167.0841717843794, - 171.02361463129597, - 164.968813950603, - 162.968813950603, - 158.93037715990997, - 150.93037715990997, - 150.8742179132963, - 154.76352897258332, - 147.76352897258332, - 146.76352897258332, - 144.76352897258332, - 134.76352897258332, - 129.76352897258332, - 130.76352897258332, - 134.70022122418996, - 132.70022122418996, - 136.70022122418996, - 129.60346455479737, - 121.60346455479737, - 112.60346455479737, - 117.58378553276825, - 119.58378553276825, - 107.58603932633304, - 104.59610333607324, - 102.59610333607324, - 99.53548465735197, - 99.53548465735197, - 88.53548465735197, - 86.0008106212485, - 91.99256894774707, - 84.9907190915214, - 83, - 84, - 81, - 79, - 74.98019876903368, - 73.98019876903368, - 74.98019876903368, - 74.98019876903368, - 69.98019876903368, - 68, - 65, - 66, + 120, + 90.82315227721631, + 78.82315227721631, + 74.82315227721631, + 86.82315227721631, + 72.00039671721638, + 73, + 74, 68, - 60.984395847568685, - 61, - 57.99006138571148, - 53.98840999255718, - 45.04966259561339, - 48, - 48, - 49, - 45, - 47, - 45, - 45, - 49, - 49, - 42, - 41, - 45.98693116982611, - 40.98966120310303, - 36, - 36, - 35, - 36, - 33.04780864137439, - 35.99213505122714, - 39, - 37, - 35, - 29, - 28, - 27.998121796294217, - 25, - 26, - 26, - 23 - ] - }, - { - "line": { - "color": "#ff7f0e" - }, - "mode": "lines", - "name": "Enzyme", - "type": "scatter", - "uid": "028e8f08-9826-44df-b6f2-edd78c18bc00", - "x": [ - 0, - 1, - 2, - 3, - 4, - 5, - 6, - 7, - 8, - 9, - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42, - 43, - 44, - 45, - 46, - 47, - 48, - 49, - 50, - 51, - 52, - 53, - 54, - 55, - 56, - 57, - 58, - 59, - 60, - 61, - 62, - 63, - 64, 65, - 66, - 67, - 68, - 69, - 70, - 71, + 79.89440023752442, + 78, + 59.075049588830275, + 63.19885412344462, 72, - 73, - 74, 75, + 75, + 75.99939114779121, + 76.98646647155942, + 78.96359914158123, + 68.16120303924994, + 67.02317567397726, + 75, + 84, + 76.98617271167252, + 72.02797392670142, + 79, + 76.99518796516195, + 83.99518796516195, + 81.96407316997532, + 73, + 76.99344819157017, + 80.91258296559388, + 71, + 72, + 77.00320527622038, 76, + 80, + 83, + 80, 77, 78, - 79, - 80, - 81, - 82, + 78, + 80.00555705895952, + 82.95466043696808, + 81.95466043696808, + 82.95466043696808, 83, - 84, - 85, - 86, 87, - 88, - 89, - 90, - 91, - 92, - 93, - 94, - 95, - 96, - 97, - 98, - 99, - 100 - ], - "y": [ - 120, - 75, - 71.9863360314104, - 71.98765807159235, - 63, - 70.9953510703311, - 61.0258417910442, - 74.93266953872511, - 70.93083804057554, - 73, - 76, - 74.96544669695695, - 77.88658320521958, - 75.83402599429472, - 76.73189516557014, - 76.6829680070837, - 81.6829680070837, - 72, - 75, - 74, - 75.99251438657188, - 66.2057315734516, - 72, - 77, - 83.95445613696803, - 80.92105307794243, - 81.92105307794243, - 78.90577121047833, - 74, - 78.9804654009493, - 84.91506142841816, - 78.91506142841816, - 81, + 83, + 81.00068821793141, + 80.00068821793141, + 83, + 80, + 77.0449566891996, 82, + 78, + 79.01321414975742, + 82.99823036842548, + 80.02407664352515, + 80, 75, - 72, - 75, - 81.96526161467105, - 81.96526161467105, - 89.96526161467105, - 83.90437497491938, + 76, + 83, + 81.00519212657017, + 85.00519212657017, + 80.00519212657017, 78, - 73, - 80.0016366361808, - 86, - 77.01840097403768, - 76.04013230495694, + 81.00801691162957, + 81.00801691162957, + 85.00801691162957, + 82, 80, - 84.96304262048346, - 87.96304262048346, + 81.04490873220514, 76, - 79.00516441063915, - 85.9941807832626, - 79.00785225164829, + 83, 80, - 84, - 82, + 86, + 85, 83, - 82.99640399607816, - 82.99640399607816, - 84.99640399607816, - 85.99640399607816, - 81.99640399607816, - 81.99640399607816, - 83.99640399607816, - 85.99640399607816, - 89.99640399607816, - 85.99222141230099, - 88.99222141230099, - 86.9885149452964, - 85.00853711820058, - 79.07711863074367, 83, - 86, 88, - 84, - 87, - 85, + 89, 86, - 90, - 91, - 84, - 83, - 88.99047402978229, - 86.00300395790906, - 82.00300395790906, - 84, 84, 86, - 83.08190588616893, - 86.00141263999257, - 91.00141263999257, - 89.00141263999257, - 88.00141263999257, - 82.00141263999257, - 84, - 86.01349423390961, - 85.01349423390961, - 87.01349423390961, - 87.01349423390961, - 84.01349423390961 + 83, + 83, + 89, + 88, + 88, + 87.97983976367026, + 88.97983976367026, + 86.97983976367026, + 85.97983976367026, + 89.97983976367026, + 88.97983976367026, + 86.97983976367026, + 86.97983976367026, + 84.04710965157929, + 84.00523190792808 ] }, { "line": { - "color": "#2ca02c" + "color": "#ff7f0e" }, "mode": "lines", "name": "Enzyme_Substrate_Complex", "type": "scatter", - "uid": "1b027fdf-7c27-4c46-b857-2a4065643737", "x": [ 0, 1, @@ -951,116 +2369,115 @@ ], "y": [ 0, - 45, - 48.013663968589604, - 47.01234192840765, - 55, - 47.00464892966891, - 55.9741582089558, - 41.06733046127488, - 45.001831498149556, - 42, - 39, - 40.03455330304307, - 36.113416794780406, - 38.05255721092486, - 37.10213082872458, - 37.048927158486435, - 32, + 29.17684772278369, 41, - 38, - 39, - 37.007485613428116, - 45.79426842654841, + 45, + 33, + 46.99960328278363, + 45, + 44, + 50, + 53, + 38.10559976247557, 39, - 34, - 27.045543863031973, - 30.033403059025602, - 29, - 32.015281867464104, + 57.924950411169725, + 52.80114587655539, + 43, + 40, + 40, + 39.00060885220879, + 37.013533528440576, + 35.02286732997822, + 44.83879696075007, + 44.97682432602272, 36, - 31.019534599050726, - 24.084938571581848, - 30, 27, - 26, - 33, - 36, - 33, - 26.034738385328932, - 26, - 18, - 24.060886639751658, - 29, + 34.01382728832748, + 37.97202607329858, + 30, + 32.004812034838054, + 25, + 27.03111479518662, + 35, + 31.006551808429847, + 26.087417034406123, + 35, 34, - 26.99836336381919, - 20, - 28.981599025962318, - 28.95986769504305, - 24, - 19.03695737951654, - 16, + 28.996794723779615, + 29, + 25, + 22, + 25, + 28, 27, - 23.994835589360836, - 16.00581921673739, - 21.9921477483517, + 27, + 24.994442941040468, + 21.045339563031924, + 22, + 21, 20, 16, + 20, + 21.999311782068578, + 22, + 19, + 22, + 24.9550433108004, + 19, + 23, + 21.986785850242583, + 17.001769631574525, + 18.97592335647485, 18, + 23, + 22, + 15, + 16.994807873429828, + 12, 17, - 17.00359600392186, - 17, + 19, + 15.991983088370437, 15, - 14, - 18, - 18, - 16, - 14, - 10, - 14.004182583777162, 11, - 13.003706467004584, - 13.991462881799416, - 18.922881369256345, 14, - 11, + 16, + 14.955091267794865, + 19, + 12, + 15, 9, - 13, 10, 12, - 11, + 12, 7, 6, - 13, - 14, - 8.009525970217705, - 10.987470071873215, - 14, + 9, + 11, + 9, 12, 12, - 10, - 12.91809411383111, - 8.998587360007436, - 3, - 5, 6, - 12, - 10, - 7.986505766090372, - 8, + 7, + 7, + 7.020160236329739, 6, + 8, + 9, + 5, 6, - 9 + 8, + 8, + 9.952890348420706, + 8.994768092071913 ] }, { "line": { - "color": "#d62728" + "color": "#2ca02c" }, "mode": "lines", "name": "Product", "type": "scatter", - "uid": "f9c41830-2942-42e4-8ad7-cdf2f98aac36", "x": [ 0, 1, @@ -1166,117 +2583,115 @@ ], "y": [ 0, - 2, - 7.050483386012534, - 12.091847939002923, - 15.091847939002923, - 18.174941989796753, - 22.18875781286664, - 28.24653401558663, - 28.27166240377052, - 32.27166240377052, - 36.27166240377052, - 43.31011631964453, - 47.368134014399494, - 52.41595607934574, - 57.499053212596195, - 60.54289385491239, - 67.54289385491239, - 71.54289385491239, - 74.54289385491239, - 78.54289385491239, - 85.58477979698118, - 89.68851388463831, - 93.68851388463831, - 97.68851388463831, - 100.70352717468978, - 103.72492479635716, - 106.72492479635716, - 107.74807971958609, - 111.74807971958609, - 116.78470436714905, - 119.81045473628025, - 120.81045473628025, - 124.81045473628025, - 127.81045473628025, - 130.81045473628024, - 132.81045473628024, - 134.81045473628024, - 137.83902409934467, - 139.83902409934467, - 143.83902409934467, - 144.8748941289856, - 147.8748941289856, - 151.8748941289856, - 153.89620978719552, - 157.89620978719552, - 160.9123569676684, - 162.94242526288508, - 168.94242526288508, - 176.9660865620898, - 179.9660865620898, - 179.9660865620898, - 184.97044035148045, - 185.97286280824449, - 186.98256491611846, - 188.98256491611846, - 191.98256491611846, - 192.98256491611846, - 195.98256491611846, - 199.99877014316291, - 200.99877014316291, - 201.99877014316291, - 202.99877014316291, - 203.99877014316291, - 204.99877014316291, - 209.99877014316291, - 210.99877014316291, - 212.99877014316291, - 216.0101917118171, - 218.0101917118171, - 219.01642385910102, - 221.03655098474445, - 223.0640070198747, - 224.0640070198747, - 227.0640070198747, - 228.0640070198747, - 228.0640070198747, - 229.0640070198747, - 229.0640070198747, - 230.0640070198747, - 230.0640070198747, - 231.0640070198747, - 231.0640070198747, - 231.0640070198747, - 232.06754987983092, - 233.09041860485465, - 233.09041860485465, - 235.09041860485465, - 236.09041860485465, - 237.09041860485465, - 237.12451584964913, - 237.13379343841456, - 238.13379343841456, - 238.13379343841456, - 239.13379343841456, - 239.13379343841456, - 242.13379343841456, - 244.14916587603, - 245.14916587603, - 246.14916587603, - 246.14916587603, - 246.14916587603 + 2.0219964244281114, + 5, + 11, + 17, + 23.060719259128373, + 28.060719259128373, + 33.060719259128376, + 36.060719259128376, + 41.060719259128376, + 46.129531231801565, + 51.129531231801565, + 53.15840450160545, + 59.25334931596787, + 65.25334931596787, + 68.25334931596787, + 71.25334931596787, + 73.25857306458285, + 75.28666263305529, + 77.30885561637314, + 80.42018220497715, + 84.43437846738428, + 89.43437846738428, + 95.43437846738428, + 97.48794282427711, + 100.52018443517939, + 109.52018443517939, + 113.58784316474072, + 115.58784316474072, + 116.60688426415092, + 118.60688426415092, + 118.6816464082643, + 123.73916542506991, + 126.73916542506991, + 129.73916542506993, + 133.79941995471034, + 140.79941995471034, + 144.79941995471034, + 145.79941995471034, + 151.79941995471034, + 154.79941995471034, + 156.79941995471034, + 156.79941995471034, + 160.84517851088276, + 162.88350734395175, + 163.88350734395175, + 164.88350734395175, + 167.88350734395175, + 170.88350734395175, + 172.88350734395175, + 174.91798768015582, + 178.91798768015582, + 178.91798768015582, + 179.91798768015582, + 183.94709494096577, + 186.94709494096577, + 186.94709494096577, + 190.95864252419375, + 191.96139739561127, + 195.00217144977717, + 195.00217144977717, + 197.00217144977717, + 198.00217144977717, + 202.00217144977717, + 204.0106357382095, + 206.0106357382095, + 207.0106357382095, + 208.0106357382095, + 209.02074317837605, + 210.02074317837605, + 212.02074317837605, + 212.02074317837605, + 212.02074317837605, + 216.0602580476177, + 217.0602580476177, + 221.0602580476177, + 221.0602580476177, + 224.0602580476177, + 226.0602580476177, + 226.0602580476177, + 226.0602580476177, + 229.0602580476177, + 231.0602580476177, + 231.0602580476177, + 232.0602580476177, + 235.0602580476177, + 236.0602580476177, + 237.0602580476177, + 239.0602580476177, + 239.0602580476177, + 240.0602580476177, + 240.07548951911525, + 241.07548951911525, + 242.07548951911525, + 242.07548951911525, + 243.07548951911525, + 243.07548951911525, + 243.07548951911525, + 243.07548951911525, + 244.0985653561974, + 245.10136074146965 ] }, { "line": { - "color": "#1f77b4" + "color": "#d62728" }, "mode": "lines", "name": "Substrate", - "showlegend": false, "type": "scatter", - "uid": "b72cdcb4-ca06-4b7b-8379-f2d28bdef136", "x": [ 0, 1, @@ -1382,117 +2797,116 @@ ], "y": [ 301, - 267, - 254.95439590638182, - 242.95439590638182, - 237.8872014194497, - 237.8872014194497, - 228.81787167581933, - 235.7588714894523, - 225.66740954293536, - 220.5578341074803, - 222.5578341074803, - 214.4101237000208, - 210.40530085023045, - 199.41360665737898, - 200.33072928623187, - 202.33072928623187, - 192.26864415337747, - 189.26864415337747, - 189.2017933149117, - 183.1788198724403, - 175.1788198724403, - 175.1642553713752, - 175.1642553713752, - 170.1642553713752, - 156.1642553713752, - 159.1642553713752, - 156.1642553713752, - 156.1642553713752, - 155.04122291588754, - 151.00914152455118, - 141.00914152455118, - 147.00914152455118, - 143.00914152455118, - 136.00914152455118, - 133.96773267637016, - 128.96773267637016, - 129.92557754571118, - 123.92557754571118, - 129.92557754571118, - 125.92557754571118, - 127.83342373833693, - 116.83342373833693, - 113.83838330095051, - 104.87635784651556, - 107.8840367723807, - 105.8840367723807, - 103.8840367723807, - 95.97702318653464, - 98.97702318653464, - 96.97702318653464, - 88.97702318653464, - 89.97702318653464, - 86.94850975039755, - 81.94850975039755, - 88.94850975039755, - 90.90899394557422, - 81.90899394557422, - 75.0002444300862, + 269.8011558527882, + 254.8011558527882, + 244.8011558527882, + 250.8011558527882, + 230.7408333108762, + 226.7408333108762, + 222.7408333108762, + 213.7408333108762, + 205.7408333108762, + 215.56642157572745, + 209.56642157572745, + 188.61259789475383, + 186.71650720383602, + 189.71650720383602, + 189.71650720383602, + 186.71650720383602, + 185.71067460301225, + 185.66905150609924, + 185.62399119280315, + 172.67386764344906, + 167.6828470550192, + 170.6828470550192, + 173.6828470550192, + 164.6154554097989, + 157.61118772559803, + 155.61118772559803, + 149.53871696119862, + 154.53871696119862, + 151.4885610666018, + 141.4885610666018, + 145.40724711405855, + 145.26231106284683, + 133.26231106284683, + 131.26231106284683, + 132.2052618094268, + 124.20526180942679, + 124.20526180942679, + 126.20526180942679, + 117.20526180942679, + 111.20526180942679, + 110.20526180942679, + 110.20526180942679, + 108.1650603122139, + 109.08139191611299, + 107.08139191611299, + 107.08139191611299, + 105.08139191611299, + 106.08139191611299, + 100.08139191611299, + 96.04759979784035, + 91.04759979784035, + 94.04759979784035, + 90.04759979784035, + 83.06344922623, + 85, + 81, + 78.00166656652947, + 80.99547549700792, + 74.98330258935925, 74, - 74.99337554804173, - 71, - 73, - 67.98924259519762, - 72.98924259519762, - 67.98924259519762, - 70.90619910727912, - 69.90619910727912, - 62.009307564708706, - 63, - 64, + 67, + 67, + 70, + 65.99672783813786, + 67.99672783813786, + 61.99672783813786, + 58, + 59.99790947146297, + 58, 60, - 65, - 62, + 57, 55, + 52.005393862963494, + 46, 49, + 46, 49, - 49, - 53, - 47.97390711115949, - 47, + 46, + 44, 44, + 46, + 45, 42, - 41, - 39.027261673278424, - 39, 39, - 36, + 38, + 34, + 33, 37, - 39, 36, - 34, 35, - 34.99878026593667, - 32, + 34.964608292172734, + 34, + 31, + 30, 33, + 32, 30, - 29, 30, - 29, - 24.018192998815287, - 27 + 27.024033814497116, + 26.002436522655845 ] }, { "line": { - "color": "#ff7f0e" + "color": "#1f77b4" }, "mode": "lines", "name": "Enzyme", "showlegend": false, "type": "scatter", - "uid": "755a5f15-4f83-4cb0-bc2a-fdfa653919f9", "x": [ 0, 1, @@ -1598,117 +3012,116 @@ ], "y": [ 120, - 88, - 79.96684920935859, + 89, + 63, + 71.99234224066136, + 68.00918299610323, + 61.21637906431507, + 78.96193064304667, + 70, + 70, + 67.12462929150905, 71, - 71.00117558254549, - 78, - 71.99435738973791, - 79.95713959019393, - 73.92304333972565, - 74.87854373290595, - 78.87854373290595, - 74.82969963846226, - 72.99967472691269, - 66.02768082262428, - 72.99506185661798, - 77, - 72.02135415687238, + 74, + 71.01185713562775, + 70.06009804268773, + 66.06462204288914, + 76.95340165637369, + 71.9989494612622, + 71, + 71.00961154458341, + 73.99730347200253, 72, - 75.97058132976007, - 71.02027719613147, - 69, - 73.00206925711646, - 76, - 77, + 78, + 80.939555241196, + 81.93654901289638, + 77.93654901289638, 67, + 73.99139097238759, 73, + 78, 73, - 77, - 78.94060895961823, - 76.9912674746453, - 67, - 76, - 73, - 74, - 77.99540769322364, - 74, - 77.99443803924176, - 72, + 77.9195877855539, + 76.9195877855539, + 78.9195877855539, + 77.8746445361818, + 78.8746445361818, + 68, + 72.05934385628714, + 75.00110224318597, 81, + 78.98842105957662, + 79.98842105957662, + 78, + 74.01939573282189, + 73.01243781327855, + 78.90985327343377, + 79.90985327343377, + 77.90985327343377, + 80.90985327343377, + 79, + 84, + 79, + 82.98857850110811, + 68.13323043886012, + 65, + 74.00644196574598, + 75, + 73, + 77.99151254728554, 80, - 83.93290862788551, - 72, - 74.02731648977148, - 67.06062405376255, - 74.06055782170426, + 75.99946667273707, + 68.0686034903786, + 71, 77, + 74.00569230292481, + 72, + 74, 79, - 71.17572754039759, - 78, - 80, 76, - 78, - 80.99342117125906, + 73, + 74, + 75, + 73.05741494319012, + 73, 76, - 85, - 89.96427664955827, - 81.96427664955827, - 78.01032057702449, - 78, - 80.99793432739575, - 79, - 82, - 79.01787102849757, - 85.01787102849757, - 80.01787102849757, - 82.95983972013138, - 82.95983972013138, - 76.98822828194992, - 77, + 73, + 71, + 70, + 72.10899469693834, + 68, 78, 78, - 84, - 84, - 79, 75, + 77, + 74, 76, - 78, - 85, - 81.99806704688731, - 82.99806704688731, - 79, - 80, - 79, - 77.0444227338058, - 79, - 80, 77, - 78, - 81, - 81, - 79, - 83, - 85.99901341750058, - 83.99901341750058, - 85.99901341750058, - 84.99901341750058, - 84.99901341750058, - 85.99901341750058, - 84.99901341750058, - 80.0287173907333, - 84 + 77.99258574524086, + 73.05259245499424, + 76, + 71, + 69.16155612388299, + 72, + 76.00251190057583, + 73, + 77, + 77, + 75.00152582427224, + 75, + 76, + 71, + 74 ] }, { "line": { - "color": "#2ca02c" + "color": "#ff7f0e" }, "mode": "lines", "name": "Enzyme_Substrate_Complex", "showlegend": false, "type": "scatter", - "uid": "4cbe42ab-40df-4eed-94bf-efc1c9daa54b", "x": [ 0, 1, @@ -1814,117 +3227,116 @@ ], "y": [ 0, - 32, - 40.03315079064141, - 48, - 47.99882441745452, - 40, - 46.00564261026207, - 37.04286040980606, - 43.034096250468245, - 42.0444996068197, - 38, - 42.04884409444366, - 43.00032527308731, - 48.97231917737571, - 41.00493814338201, - 36, - 40.97864584312762, - 40, - 36.02941867023992, - 39.97972280386852, + 31, + 57, + 48.00765775933865, + 50.990817003896765, + 56.78362093568493, + 38.03806935695333, + 46, + 46, + 48.87537070849093, + 44, 41, - 36.99793074288353, - 33, - 32, - 42, - 36, + 43.98814286437224, + 43.939901957312266, + 46.93537795711086, + 35.04659834362632, + 39.0010505387378, + 39, + 38.99038845541658, + 35.00269652799747, 36, - 32, - 30.059391040381772, - 31.00873252535469, + 30, + 27.06044475880399, + 26.00300622829962, + 30, 40, - 31, - 34, + 33.008609027612415, 33, - 29.004592306776356, - 32, - 28.00556196075824, + 28, 33, - 24, - 25, - 21.067091372114497, - 32, - 29.972683510228507, - 35.93937594623743, - 27.939442178295735, - 24, - 22, - 29.824272459602412, + 28.080412214446113, + 29, + 27, + 28.0449432493721, + 27, + 37, + 32.94065614371286, + 28.998897756814035, 22, - 20, + 24.01157894042339, + 23, 24, + 27.98060426717809, + 27.987562186721455, + 21.09014672656624, + 20, 22, - 19.00657882874095, - 23, - 14, - 9.035723350441733, - 17, - 19.98967942297552, 19, - 16.00206567260424, - 17, - 14, - 16.982128971502426, - 10, - 15, - 12.05803130836618, - 12, - 17.97161143818148, - 16, + 20, 15, + 20, + 16.011421498891885, + 29.866769561139876, + 32, + 22.993558034254015, + 21, + 23, + 18.00848745271448, 15, - 9, - 9, - 14, + 19.00053332726291, + 25.931396509621386, + 22, + 16, + 18.994307697075183, + 20, + 18, + 13, + 16, + 19, 18, 17, + 18.942585056809875, + 18, 15, - 8, - 11.00193295311268, - 10, - 13, + 18, + 20, + 21, + 18.891005303061654, + 22, 12, - 13, - 14.955577266194181, 12, - 11, + 15, + 13, + 16, 14, 13, - 10, - 10, + 12.007414254759144, + 15.94740754500576, 12, - 8, - 5.00098658249942, - 7, - 5, - 6, - 6, - 5, - 6, - 9.971282609266677, - 5 + 17, + 18.83844387611702, + 15, + 10.997488099424176, + 13, + 9, + 9, + 10.998474175727763, + 10, + 9, + 14, + 11 ] }, { "line": { - "color": "#d62728" + "color": "#2ca02c" }, "mode": "lines", "name": "Product", "showlegend": false, "type": "scatter", - "uid": "1be067da-ceee-499d-9006-51ad1e9a3ebb", "x": [ 0, 1, @@ -2031,116 +3443,115 @@ "y": [ 0, 2, - 6.012453302976783, - 10.012453302976784, - 15.080823372454391, - 22.08082337245439, - 25.14451050582267, - 27.16065028238366, - 31.218015978432298, - 37.283091807067706, - 39.283091807067706, - 43.381958120083546, - 46.38645569678658, - 51.405830712262315, - 57.4837699400274, - 60.4837699400274, - 65.56720922975417, - 68.56720922975417, - 72.60464139798002, - 74.64789203658292, - 80.64789203658292, - 84.66452579476451, - 87.66452579476451, - 93.66452579476451, - 97.66452579476451, - 100.66452579476451, - 103.66452579476451, - 107.66452579476451, - 110.72816720987035, - 113.75151607585204, - 114.75151607585204, - 117.75151607585204, - 118.75151607585204, - 126.75151607585204, - 132.78833261725669, - 134.78833261725669, - 137.82492578715744, - 138.82492578715744, - 141.82492578715744, - 144.82492578715744, - 146.8499882224172, - 146.8499882224172, - 151.8723451495751, - 153.8949946577726, - 157.94787355361171, - 162.94787355361171, - 166.94787355361171, - 167.03061467985538, - 171.03061467985538, - 175.03061467985538, - 179.03061467985538, - 180.03061467985538, - 186.05254928725154, - 187.05254928725154, - 189.05254928725154, - 192.05634174163313, - 193.05634174163313, - 196.0664178885714, - 197.0664178885714, - 199.07097666792544, - 201.07097666792544, - 202.07097666792544, - 204.0996051012254, - 205.0996051012254, - 205.0996051012254, - 205.12461728077773, - 206.12461728077773, - 207.14369827788752, - 207.14369827788752, - 207.14369827788752, - 211.14369827788752, - 212.14369827788752, - 215.14369827788752, - 217.14369827788752, - 219.14369827788752, - 220.14369827788752, - 222.14369827788752, - 225.14369827788752, - 227.16785821361535, - 228.16785821361535, - 228.16785821361535, - 231.16785821361535, - 231.16785821361535, - 231.18501927414275, - 233.18501927414275, - 234.18501927414275, - 234.18501927414275, - 234.18501927414275, - 235.18501927414275, - 238.18501927414275, - 238.18501927414275, - 241.18501927414275, - 244.18525242570666, - 244.18525242570666, - 245.18525242570666, - 247.18525242570666, - 248.18525242570666, - 248.18525242570666, - 248.18525242570666, - 249.19577681762468, - 250.19577681762468 + 7, + 11.051119557329988, + 18.06466022169335, + 21.182950345009665, + 27.20155797240762, + 32.20155797240762, + 34.20155797240762, + 39.32733270100704, + 42.32733270100704, + 47.32733270100704, + 49.363567928461606, + 54.46795221901716, + 58.5166814669534, + 59.55137546143773, + 63.583454585848166, + 65.58345458584816, + 70.624606624928, + 72.62892445695715, + 79.62892445695715, + 85.62892445695715, + 89.65050662017977, + 91.65145287777052, + 91.65145287777052, + 93.65145287777052, + 95.68751412422776, + 96.68751412422776, + 100.68751412422776, + 101.68751412422776, + 107.7472769520234, + 109.7472769520234, + 113.7472769520234, + 116.79293181454058, + 120.79293181454058, + 123.79293181454058, + 125.85714663504696, + 127.8932294718961, + 132.89322947189612, + 136.9029044061274, + 137.9029044061274, + 137.9029044061274, + 138.9610423404818, + 139.98637910471837, + 141.03153053794986, + 144.03153053794986, + 148.03153053794986, + 150.03153053794986, + 152.03153053794986, + 154.03153053794986, + 155.03153053794986, + 159.03451035270976, + 163.0967910453193, + 164.0967910453193, + 166.11027423617858, + 167.11027423617858, + 168.11027423617858, + 172.11805172935718, + 172.11805172935718, + 175.11968732770066, + 176.15309541300547, + 178.15309541300547, + 181.15309541300547, + 182.17442759734107, + 184.17442759734107, + 187.17442759734107, + 189.17442759734107, + 190.17442759734107, + 190.17442759734107, + 194.17442759734107, + 195.17442759734107, + 199.21385523687974, + 199.21385523687974, + 199.21385523687974, + 199.21385523687974, + 200.21385523687974, + 202.21385523687974, + 205.26940927074747, + 205.26940927074747, + 206.26940927074747, + 206.26940927074747, + 206.26940927074747, + 206.26940927074747, + 206.26940927074747, + 208.26940927074747, + 210.26940927074747, + 212.28281727358316, + 213.31361446151143, + 214.31361446151143, + 214.31361446151143, + 214.36996646519827, + 217.36996646519827, + 220.38866910387048, + 220.38866910387048, + 222.38866910387048, + 223.38866910387048, + 223.39072217562668, + 225.39072217562668, + 225.39072217562668, + 225.39072217562668, + 227.39072217562668 ] }, { "line": { - "color": "#1f77b4" + "color": "#d62728" }, "mode": "lines", "name": "Substrate", "showlegend": false, "type": "scatter", - "uid": "25467d1d-52ec-46ba-a757-aac06a72538b", "x": [ 0, 1, @@ -2246,117 +3657,116 @@ ], "y": [ 301, - 257.7725155974336, - 251.7725155974336, - 246.66224225348958, - 241.51467062614051, - 239.4431703987029, - 233.4431703987029, - 226.4431703987029, - 220.4230346475451, - 222.3222357640599, - 218.3222357640599, - 211.3222357640599, - 216.3222357640599, - 219.1337950435337, - 206.1337950435337, - 207.1337950435337, - 195.1337950435337, - 195.9679328138475, - 189.9679328138475, - 184.96547940921405, - 186.960649950393, - 179.960649950393, - 180.950669739181, - 179.950669739181, - 174.9553381692689, - 172.9553381692689, - 174.9553381692689, - 174.9553381692689, - 171.9553381692689, - 161.97669803295403, - 159.97669803295403, - 157.97669803295403, - 149.97669803295403, - 154.94530265273616, - 150.86086390877705, - 143.86086390877705, - 141.85445552908294, - 133.85445552908294, - 138.85445552908294, - 136.85445552908294, - 138.85445552908294, - 132.85445552908294, - 127.85445552908294, - 124.85445552908294, - 125.85445552908294, - 120.85104834978661, - 121.85104834978661, - 109.89939200361452, - 111.89939200361452, - 108.89939200361452, - 112.89939200361452, - 107.89939200361452, - 103.89939200361452, - 102.89939200361452, - 104.89939200361452, - 103.89939200361452, - 104.88716377969745, - 95.88716377969745, - 98.88716377969745, - 93.88716377969745, - 92.88716377969745, - 89.86385807519089, - 95.86385807519089, - 91.86385807519089, - 82.86385807519089, - 85.86385807519089, - 83.86385807519089, - 84.86385807519089, - 77.86385807519089, - 75, + 268, + 237, + 241.94122268333135, + 231.93686501507122, + 222.03495395606998, + 233.97827697171869, + 220.97827697171869, + 218.97827697171869, + 210.9771315346283, + 211.9771315346283, + 209.9771315346283, + 204.9527534428015, + 198.90846719493368, + 190.9243599898866, + 200.84306765177593, + 192.80993798862767, + 190.80993798862767, + 185.77839749413124, + 186.7713831341046, + 178.7713831341046, + 178.7713831341046, + 177.689356212078, + 176.68540372618764, + 172.68540372618764, + 160.68540372618764, + 165.640733452118, + 164.640733452118, + 165.640733452118, + 159.640733452118, + 158.50055840987625, + 155.50055840987625, + 153.50055840987625, + 149.409960297987, + 146.409960297987, + 133.409960297987, + 135.4050893337678, + 136.3701087401046, + 137.3701087401046, + 131.34885486544994, + 131.34885486544994, + 130.34885486544994, + 125.31011266391745, + 123.29721371295946, + 128.16191555316175, + 126.16191555316175, + 120.16191555316175, + 121.16191555316175, + 118.16191555316175, + 121.16191555316175, + 115.16191555316175, + 115.14751423950997, + 97.21846398576058, + 93.21846398576058, + 100.21142276064725, + 100.21142276064725, + 97.21142276064725, + 98.19515781475417, + 101.19515781475417, + 94.19298888914776, + 86.22818429422155, + 87.22818429422155, + 90.22818429422155, + 86.21254441281079, + 82.21254441281079, + 81.21254441281079, + 84.21254441281079, + 80.21254441281079, + 77.21254441281079, + 74.21254441281079, 74, - 75, - 79, - 72, - 67, + 68.01798730365144, + 68, + 71, 68, + 65, 62, - 60, + 61.05344066307062, + 57, + 66, + 66, + 63, + 65, 62, 62, + 61, + 59.979177742405135, + 54.021795267065976, 56, - 54.00407399168983, - 53, - 55, - 53, - 50, + 51, + 49.10520412019612, + 49, + 49.9838092619036, + 46, + 48, + 47, + 44.999472752516034, 42, 43, - 46.99921868069355, - 41, - 45, - 45.98470414648329, - 42, - 42, - 41, - 40, - 36.99957727465828, - 36, 38, - 37, - 33.029181865319316 + 39 ] }, { "line": { - "color": "#ff7f0e" + "color": "#1f77b4" }, "mode": "lines", "name": "Enzyme", "showlegend": false, "type": "scatter", - "uid": "8edee03a-b65e-4344-aa38-c732a093628a", "x": [ 0, 1, @@ -2462,117 +3872,116 @@ ], "y": [ 120, - 76.77251559743357, - 74, - 76.93089500023848, - 73.93017661011716, - 75.95667064756769, - 75.95667064756769, - 72, - 69.01976000296366, - 75.94196515401008, + 80.68437123980499, + 80.54323847816217, + 69.04109957902507, + 74.93410454105027, + 66.07177525914244, + 66.01958150500356, + 75.97206401337613, + 71.99167494561996, + 65.0734919290495, + 63.01246408899272, + 70.99894741608045, + 71.97230172895748, + 79.97230172895748, + 67.04623453911461, + 71, + 75, 73, + 70.02182090462705, + 72.99147988816867, + 69.01669189880847, + 76.92755001128575, 67, + 66.05269451384012, + 65.04628462453276, + 64.12252401888898, + 60, + 68.01430296032775, + 66.06937358056065, + 65.06078188513095, + 72.96956729977455, + 74.92029648897565, + 69.98380052475282, + 69.97745409573126, + 69.97089618009761, + 69.96000895144591, + 65, 73, - 83.84647261842696, - 71, + 59.03481372842271, + 66, + 63, + 69.9699193923788, + 70.9699193923788, + 63, + 67.01657786978178, + 66, 78, - 71, - 76.91255274668151, - 74.91255274668151, - 72.00126262746163, - 73.99873120895262, + 72.97502871433817, + 64.05911123165528, + 63, + 65.02700832990699, + 61, + 66, + 60, + 59, + 69, + 64.04658980105143, + 64.07171527664705, + 67, + 69, + 64, + 65, + 73, 70, - 72.9993556046099, + 75, 72, - 68.0846687523219, + 72, + 72.982236987767, + 71, + 76, 71, - 73, - 77, - 75, - 67.06462685515092, - 70, - 73, 68, - 77.98370002448802, - 77.94391441979036, - 77.94391441979036, - 78.996710368403, + 69, + 70, 72, - 80, - 81, - 85, - 80, - 78, - 77, - 79, - 75.02088174886252, - 78, - 70.09053195875886, - 74, + 69, + 70, + 73, + 73, + 74.97881237159189, + 78.97881237159189, + 78.97881237159189, + 77.97881237159189, + 75.97881237159189, 71, - 78, - 75, + 73, 74, 75, - 79, - 80, - 83.99201910310585, 75, - 79, - 77, - 80, - 80.01834277093063, - 87, - 87, - 80, - 87, - 87, - 89, - 83, - 83, - 85, - 90, - 94, - 89, - 86, - 90, - 84, - 87, - 90, - 90, - 84, - 85.0394247583622, - 85.0394247583622, - 90.0394247583622, - 89.0394247583622, - 88.0394247583622, - 82, - 84, - 88.00012792429276, - 84.00012792429276, - 88, - 90.98864316363618, - 89.98864316363618, - 90.98864316363618, - 90.98864316363618, - 90.98864316363618, - 88.00016692619768, - 88.00016692619768, - 90.00016692619768, - 90.00016692619768, - 86.0593936862994 + 76.95670951636917, + 78.95670951636917, + 72.95670951636917, + 69, + 66, + 69, + 64, + 67, + 76, + 73, + 74, + 75 ] }, { "line": { - "color": "#2ca02c" + "color": "#ff7f0e" }, "mode": "lines", "name": "Enzyme_Substrate_Complex", "showlegend": false, "type": "scatter", - "uid": "6a31cff2-aac0-4de9-86e3-82a4385cea4a", "x": [ 0, 1, @@ -2678,117 +4087,116 @@ ], "y": [ 0, - 43.22748440256644, - 45, - 42.06910499976154, - 44.06982338988284, - 41.0433293524323, - 41, - 44, - 46.98023999703636, - 39.05803484598994, - 41, - 47, - 41, - 30.153527381573014, - 42, - 35, - 42, - 36.087447253318494, - 38, - 39.99873737253837, - 37.00126879104738, - 40, - 37.00064439539008, - 37, - 40.91533124767811, + 39.315628760195025, + 39.14113276164282, + 49.95890042097492, + 43.065895458949726, + 50.92822474085757, + 49.980418494996435, + 39.02793598662388, + 42.008325054380045, + 47.926508070950504, + 48.987535911007285, + 40.00105258391954, + 38.027698271042524, + 30, + 41.953765460885386, 37, - 35, - 31, 33, - 40.935373144849066, + 35, + 37.97817909537296, + 34.008520111831345, + 36.983308101191525, + 28.07244998871426, 37, - 34, - 39, - 29.01629997551198, - 29.039785604697652, - 29, - 27.003289631597, - 33, - 25, - 24, - 20, - 25, - 27, + 37.94730548615988, + 37.95371537546726, + 37.87747598111101, + 41, + 32.98569703967224, + 33.930626419439356, + 33.93921811486906, + 25.03043270022544, + 23.049270810798898, + 27.016199475247184, + 26.02254590426874, + 25.0291038199024, + 24.039991048554093, 28, + 20, + 33.96518627157729, 26, - 29.979118251137475, - 26, - 33.90946804124115, - 29, - 32, - 25, - 28, 29, + 22.03008060762121, + 21, 28, + 23.983422130218212, 24, - 23, - 19.007980896894157, - 27, - 23, + 12, + 17.02497128566185, + 24.940888768344724, 25, - 22, - 21.98165722906937, - 14, - 14, + 22.972991670092995, + 26, 21, - 14, - 14, - 12, + 27, + 28, 18, + 22.953410198948582, + 21.92828472335296, 18, 16, - 11, - 7, + 21, + 20, 12, 15, - 11, - 17, - 14, - 11, - 11, - 17, - 15.960575241637807, - 15, 10, - 11, - 12, - 18, + 13, + 13, + 12.017763012233003, + 13, + 8, + 13, 16, - 11.99987207570725, 15, + 14, + 12, + 15, + 14, 11, - 8.011356836363824, - 9, + 11, + 9.02118762840811, + 5, + 5, + 6, 8, + 12, + 10, + 9, 8, 8, - 10.988476237438501, + 6.04329048363082, + 4, 10, + 13, + 16, + 13, + 18, + 15, + 6, + 9, 8, - 8, - 11.940606313700558 + 7 ] }, { "line": { - "color": "#d62728" + "color": "#2ca02c" }, "mode": "lines", "name": "Product", "showlegend": false, "type": "scatter", - "uid": "3190ca8a-2ecb-4c1c-b4a9-be863843186a", "x": [ 0, 1, @@ -2894,117 +4302,116 @@ ], "y": [ 0, - 0, - 4, - 12.0411683441825, - 15.118916581648762, - 20.147087456654088, - 26.147087456654088, - 30.147087456654088, - 33.186983210775544, - 38.22974724827079, - 40.22974724827079, - 41.22974724827079, - 42.22974724827079, - 50.264660587223965, - 51.264660587223965, - 57.264660587223965, - 62.264660587223965, - 67.34307556359168, - 71.34307556359168, - 74.34679159568678, - 74.35035226346045, - 78.35035226346045, - 80.35968807928235, - 81.35968807928235, - 82.43968840151632, - 87.43968840151632, - 87.43968840151632, - 91.43968840151632, - 92.43968840151632, - 94.4829553929821, - 99.4829553929821, - 104.4829553929821, - 107.4829553929821, - 112.498050797688, - 116.54270393694948, - 123.54270393694948, - 127.54582268504657, - 129.54582268504657, - 132.54582268504657, - 135.54582268504657, - 137.54582268504657, - 138.54582268504657, - 141.54582268504657, - 143.54582268504657, - 144.54582268504657, - 145.57011161320546, - 147.57011161320546, - 151.61229991813636, - 153.61229991813636, - 153.61229991813636, - 156.61229991813636, - 158.61229991813636, - 161.61229991813636, - 163.61229991813636, - 165.61229991813636, - 167.61229991813636, - 170.61654724515927, - 171.61654724515927, - 172.61654724515927, - 175.61654724515927, - 179.61654724515927, - 182.6581957205965, - 183.6581957205965, - 187.6581957205965, - 189.6581957205965, - 193.6581957205965, - 195.6581957205965, - 196.6581957205965, - 197.6581957205965, - 199.6581957205965, - 202.6581957205965, - 206.6581957205965, - 206.6581957205965, - 208.6581957205965, - 210.6581957205965, - 213.6581957205965, - 213.6581957205965, - 218.6581957205965, - 219.6581957205965, - 219.6581957205965, - 219.6581957205965, - 222.69354648726892, - 223.69354648726892, - 226.69354648726892, - 227.69354648726892, - 229.69354648726892, - 231.69354648726892, - 232.69354648726892, - 232.6944557308681, - 233.6944557308681, - 233.6944557308681, - 235.698394748021, - 237.698394748021, - 238.698394748021, - 239.698394748021, - 240.698394748021, - 240.71034123592418, - 240.71034123592418, - 240.71034123592418, - 241.71034123592418, - 241.7405530569043 + 2, + 11.05512921683403, + 12.162541311934778, + 18.233357754261718, + 22.311824055711437, + 26.33331057677725, + 33.354921285177355, + 35.379811807486895, + 36.45423676253414, + 43.46303989874845, + 50.46950923817896, + 52.521565438989, + 54.521565438989, + 54.604671521854975, + 56.604671521854975, + 62.604671521854975, + 68.60467152185498, + 73.69266526943207, + 76.70706252474521, + 78.75838842669566, + 81.78965043591705, + 82.78965043591705, + 87.84375256179852, + 88.88576367701975, + 91.98118438426447, + 94.98118438426447, + 100.01240923313709, + 101.09237702196603, + 103.15323810128086, + 110.17544427711957, + 113.19850529885719, + 116.26208390433769, + 117.30792246899917, + 117.3444357988625, + 119.38536775253814, + 123.38536775253814, + 124.38536775253814, + 129.40093705623798, + 132.40093705623798, + 134.40093705623798, + 134.43369913579656, + 138.43369913579656, + 141.43369913579656, + 146.46818130251359, + 149.46818130251359, + 154.46818130251359, + 155.48068217848282, + 155.5243528348849, + 156.5243528348849, + 162.54729549782195, + 163.54729549782195, + 168.54729549782195, + 171.54729549782195, + 171.54729549782195, + 175.54729549782195, + 176.5710468765961, + 179.60818038125552, + 183.60818038125552, + 185.60818038125552, + 187.60818038125552, + 190.60818038125552, + 192.60818038125552, + 194.60818038125552, + 195.60818038125552, + 197.60818038125552, + 199.60818038125552, + 200.62779728149846, + 202.62779728149846, + 203.62779728149846, + 203.62779728149846, + 206.62779728149846, + 206.62779728149846, + 208.62779728149846, + 210.62779728149846, + 211.62779728149846, + 211.62779728149846, + 211.62779728149846, + 214.62779728149846, + 215.64089780685697, + 216.64089780685697, + 216.64089780685697, + 216.64089780685697, + 216.64089780685697, + 216.64089780685697, + 218.64089780685697, + 218.64089780685697, + 219.64089780685697, + 220.64089780685697, + 221.65004753199736, + 222.65004753199736, + 222.65004753199736, + 223.65004753199736, + 224.65004753199736, + 226.65004753199736, + 227.65004753199736, + 228.65004753199736, + 231.65004753199736, + 231.65004753199736, + 231.65004753199736, + 231.65004753199736 ] }, { "line": { - "color": "#1f77b4" + "color": "#d62728" }, "mode": "lines", "name": "Substrate", "showlegend": false, "type": "scatter", - "uid": "753be103-4b29-40f5-99b5-cfe5704890cc", "x": [ 0, 1, @@ -3109,118 +4516,117 @@ 100 ], "y": [ - 301, - 266.9839942230035, - 248.9839942230035, - 245.9832719028824, - 235.8960908685414, - 230.86086895742733, - 224.82089779100917, - 222.72581285343597, - 208.72581285343597, - 208.62203731094846, - 199.5898044097448, - 200.5898044097448, - 195.4275060116288, - 187.4275060116288, - 179.4275060116288, - 178.41316331899733, - 176.4081252045235, - 172.40218478742216, - 168.3557781342707, - 152.59379778751676, - 153.6827933398538, - 156.6827933398538, - 148.6827933398538, - 150.6827933398538, - 151.66373151161088, - 146.66373151161088, - 140.67955050942075, - 141.6676167060558, - 137.6676167060558, - 127.66761670605581, - 129.6676167060558, - 130.61896105294002, - 123.61896105294002, - 128.50064059288238, - 118.49350236532653, - 121.49350236532653, - 117.49350236532653, - 108.49350236532653, - 108.49350236532653, - 109.49350236532653, - 102.48892064719001, - 102.48892064719001, - 97.48892064719001, - 100.40637467158282, - 93.40637467158282, - 90.40637467158282, - 97.40637467158282, - 93.40637467158282, - 86.40637467158282, - 91.32680820323155, - 82.35210434459756, - 82.34132511848881, - 81.34132511848881, - 84.34132511848881, - 75.34911603535296, - 72, - 73, - 71, + 301, + 259.684371239805, + 250.4881092613281, + 238.42179674525244, + 238.28508484397577, + 226.27839380166847, + 222.2764887856062, + 225.2269420905822, + 220.1937265138926, + 213.19279348789487, + 204.19645444067328, + 205.18893251732325, + 205.10917804547068, + 211.10917804547068, + 199.0723065017193, + 201.0723065017193, + 199.0723065017193, + 191.0723065017193, + 183.00613365876924, + 182.98321629162476, + 177.94858228848278, + 182.84487029054714, + 172.84487029054714, + 166.84346267850577, + 164.8477361878173, + 160.87483949946156, + 153.87483949946156, + 156.8579176109167, + 153.8473234026484, + 150.8472442084645, + 151.79460533240035, + 150.72227349986383, + 143.64249541913614, + 143.57411095020592, + 144.5084938004402, + 143.42757079821047, + 135.42757079821047, + 142.42757079821047, + 123.44681522293334, + 127.44681522293334, + 122.44681522293334, + 129.38397253575354, + 126.38397253575354, + 116.38397253575354, + 115.36606823881827, + 111.36606823881827, + 118.36606823881827, + 112.32859607718719, + 104.3440366524404, + 102.3440366524404, + 98.34810231941036, + 93.34810231941036, + 93.34810231941036, + 84.34810231941036, + 83, + 89, + 83.02283842227725, + 80.05742019426488, + 79, + 79, 72, - 68, + 70, + 76, 71, + 75, 70, - 66, - 62, - 65, - 61, - 62, - 61, + 68, + 67.96262008752407, + 64, + 68, + 63, + 57, 58, 57, + 57, + 53, + 54, + 57, 54, + 54.965711846233404, + 57, + 57, + 56, + 54, + 50, + 50, 51, - 55, 51, - 49, - 45, - 48, - 44, - 42, - 48, 50, - 46, - 41, - 38, - 41, + 50.947559791228805, + 51, + 45, 41, + 37, 38, - 41.99626856912035, - 33, - 33, + 32, 34, - 35, - 38, - 37, + 40, 37, - 36, - 34, - 32, - 29, - 30, - 32 + 38, + 39 ] }, { "line": { - "color": "#ff7f0e" + "color": "#1f77b4" }, "mode": "lines", "name": "Enzyme", "showlegend": false, "type": "scatter", - "uid": "ebc3eb10-1aad-4f41-b1cf-b4ba1b4a674e", "x": [ 0, 1, @@ -3326,117 +4732,116 @@ ], "y": [ 120, - 86.9862934552551, - 74.9862934552551, - 76.99954858196215, - 70.01527503598658, - 69.01944670786476, - 68.05506173324373, - 72.96520561806814, - 66, - 74.95340683275623, - 70.02882681983098, - 74, - 76.9083490761754, - 71, - 70, - 71.02265988829417, - 70.01501499569639, - 73.00035790432257, - 73.00144610908676, - 58.362614889229405, - 60.145219083758285, - 67, - 62, - 66, - 72.01126606767397, - 71, - 69.07285632527741, - 72.00810020513781, - 72, - 65, - 69, - 76.97785893565342, - 71, - 80.91260433269261, - 72.03145352563621, - 78, - 77, - 70, - 72, - 78, - 74.02374730810774, - 75, - 72, - 78.95696245460812, - 75.95696245460812, - 72, - 80, - 78, - 74, - 79.95507551672218, - 73.07149269619943, - 75.03142094822685, - 76, - 82, - 74.03843608818525, + 88.9683994431893, + 76.9683994431893, + 72.9226505665217, + 78.91470226461539, + 79.91470226461539, + 75.91470226461539, + 74.88506319063352, + 76.95479634299409, + 68, + 63, + 77.92965881874946, + 74.92965881874946, 75, + 74.99407409385968, + 79.99283025261921, + 79.92405519733613, + 74.97866430484342, + 77.96869199530218, + 81.92903645550862, + 72.01914856670106, 77, + 76, + 74.00024929285024, 77, - 78, + 80.96577039466793, + 83.96577039466793, + 75.00190463952434, + 74.99960154624499, + 76, + 73, + 80.99805785373462, + 77.96775639229148, + 73, + 73, + 81, + 75.01392360554593, + 83, + 76.03300254152418, 75, - 79, + 77.02138597123374, 80, + 80.95199009529995, + 83.95199009529995, + 75.00967679845897, + 77.99069187565473, + 73, + 79, + 74, + 74, + 77, 78, - 75, + 88, 78, - 76, - 79, - 80, - 80, - 80, - 80, - 79, + 81, + 82.99438636640181, + 81.98668853695254, + 81.98668853695254, + 84.98668853695254, + 84.98668853695254, + 81.98668853695254, + 80.98668853695254, + 88, + 85, + 85, + 84, + 83, 86, - 82, 84, - 80, 85, - 83, - 82, - 88, - 91, 87, 83, - 80, - 83, - 83, - 83, - 86.99696649095664, - 78.99696649095664, - 79, - 82, + 83.01556703541324, + 85.01556703541324, 84, 87, + 85, 87, - 87, + 85.0078631840888, + 84.0078631840888, + 82, + 85, + 88, 86, - 84, + 88, + 89, + 90, + 87.9916410118704, + 86.01326063605237, + 87.01326063605237, + 87.01326063605237, + 86, + 89.96817565612491, + 89.94964894907748, + 89.94964894907748, + 88.94964894907748, + 84.94964894907748, 83, - 82, - 84, - 86 + 87, + 92, + 87 ] }, { "line": { - "color": "#2ca02c" + "color": "#ff7f0e" }, "mode": "lines", "name": "Enzyme_Substrate_Complex", "showlegend": false, "type": "scatter", - "uid": "66d4fcd7-a088-4d21-8b6b-02628131c6b4", "x": [ 0, 1, @@ -3542,117 +4947,116 @@ ], "y": [ 0, - 33.013706544744906, - 45, - 42.00045141803786, - 47.98472496401344, - 47.98055329213524, - 47.94493826675625, - 42.03479438193184, - 48, - 39.04659316724378, - 42.971173180169004, - 38, - 35.09165092382457, + 31.031600556810705, + 43, + 47.0457488766676, + 41.00794830190632, 40, - 41, - 39.97734011170586, - 39.9849850043036, - 35.999642095677444, - 34.99855389091325, - 48.637385110770595, - 45.854780916241715, - 38, + 44, + 45.029639073981876, + 42.04520365700592, + 50, + 55, + 40.070341181250534, 43, - 39, - 32.98873393232604, + 42, + 42.00592590614031, + 36.0071697473808, + 36.06877505528309, + 40.02133569515656, + 36.03130800469782, + 32.039655539793564, + 40.980851433298945, + 35, + 36, + 37.999750707149765, + 34, + 30.034229605332087, + 27, + 34.99809536047567, + 34.00039845375501, + 32, + 35, + 27.001942146265375, + 29.03224360770853, 33, - 34.92714367472263, - 30.991899794862196, - 30, - 37, 33, - 25.022141064346577, - 30, - 20.087395667307394, - 27.968546474363773, - 21, + 25, + 30.98607639445408, 22, + 28.966997458475824, 29, + 26.978614028766263, + 23, + 22.04800990470006, + 19, + 26.99032320154104, + 23.00930812434526, 27, 21, - 24.976252691892256, - 23, 26, - 19.04303754539186, - 22, - 25, - 17, - 19, + 26, 23, - 17.044924483277818, - 22.928507303800583, - 19.968579051773148, - 18, + 22, 12, - 19.961563911814764, + 22, + 19, + 17.005613633598184, + 18.007697829449274, 18, - 16, - 16, + 15, 15, 18, + 19, + 11, + 14, 14, - 13, 15, - 18, + 16, + 13, 15, - 17, 14, - 13, - 13, - 13, + 12, + 16, + 15.984432964586757, 13, 14, - 7, 11, - 9, 13, - 8, - 10, 11, - 5, - 2, - 6, - 10, - 13, - 10, - 10, - 10, - 6.003033509043364, - 14, + 12.9921368159112, 13, - 10, - 8, - 5, - 5, - 5, - 6, + 15, + 12, + 9, + 11, + 9, 8, + 7, + 9.008358988129597, + 10.97838037581803, + 9, 9, 10, + 6.03182434387509, + 6.018526707047433, + 6, + 7, + 11, + 12, 8, - 6 + 3, + 8 ] }, { "line": { - "color": "#d62728" + "color": "#2ca02c" }, "mode": "lines", "name": "Product", "showlegend": false, "type": "scatter", - "uid": "e05e3c7b-efc5-4524-b805-9b11139292ed", "x": [ 0, 1, @@ -3758,117 +5162,116 @@ ], "y": [ 0, - 1.0022992322516298, - 7, - 13.000270902083235, - 17.102726972410775, - 21.157395591389616, - 26.25242849105153, - 33.3127190466929, - 41.3127190466929, - 50.36990142193663, - 55.43096114297132, - 58.43096114297132, - 66.50160861726276, - 69.50160861726276, - 76.50160861726276, - 78.53861119818833, - 79.55866430835857, - 86.56496262978246, - 90.61281539202066, - 91.73741062800404, - 92.79363415942531, - 96.79363415942531, - 99.79363415942531, - 101.79363415942531, - 106.82396205534218, - 110.82396205534218, - 114.88099938280969, - 116.90103339131244, - 120.90103339131244, - 123.90103339131244, - 125.90103339131244, - 132.9275479800816, - 134.9275479800816, - 139.95847277283193, - 141.99706452602405, - 144.99706452602405, - 147.99706452602405, - 149.99706452602405, - 151.99706452602405, - 156.99706452602405, - 160.02539355226827, - 161.02539355226827, - 163.02539355226827, - 167.0649019824836, - 171.0649019824836, - 171.0649019824836, - 172.0649019824836, - 174.0649019824836, - 177.0649019824836, - 178.09954396755705, - 181.14574052239047, - 183.18794069672606, - 185.18794069672606, - 188.18794069672606, - 189.21858586804717, - 193.21858586804717, - 194.21858586804717, - 196.21858586804717, - 196.21858586804717, - 197.21858586804717, - 198.21858586804717, - 200.21858586804717, - 202.21858586804717, - 203.21858586804717, - 203.21858586804717, - 205.21858586804717, - 207.21858586804717, - 209.21858586804717, - 212.21858586804717, - 213.21858586804717, - 216.21858586804717, - 218.21858586804717, - 221.21858586804717, - 221.21858586804717, - 225.21858586804717, - 225.21858586804717, - 227.21858586804717, - 229.21858586804717, - 230.21858586804717, - 230.21858586804717, - 231.21858586804717, - 231.21858586804717, - 232.21858586804717, - 232.21858586804717, - 232.21858586804717, - 232.21858586804717, - 235.21858586804717, - 235.21928378988346, - 235.21928378988346, - 236.21928378988346, - 238.21928378988346, - 239.21928378988346, - 239.21928378988346, - 240.21928378988346, - 240.21928378988346, - 240.21928378988346, - 240.21928378988346, - 241.21928378988346, - 243.21928378988346, - 244.21928378988346, - 244.21928378988346 + 1.0045206360681738, + 4, + 6.088901174960053, + 14.093228070783407, + 14.093228070783407, + 16.093228070783407, + 20.145765088347133, + 27.188016655776888, + 33.18801665577689, + 36.18801665577689, + 41.250638998987434, + 44.250638998987434, + 51.250638998987434, + 55.29050275726993, + 58.29495791781774, + 59.33868166096114, + 62.41727812919075, + 67.44547733229767, + 73.46298601839591, + 74.50738187409108, + 80.50738187409108, + 83.50738187409108, + 85.50890599510419, + 87.50890599510419, + 92.52715618330537, + 95.52715618330537, + 100.55366399992329, + 102.59719552930025, + 105.59719552930025, + 112.59719552930025, + 115.5983315065975, + 117.63785075536644, + 121.63785075536644, + 127.63785075536644, + 132.63785075536646, + 139.65691564284953, + 143.65691564284953, + 145.7198329995454, + 150.7198329995454, + 152.7812629818601, + 154.7812629818601, + 157.8272221314965, + 158.8272221314965, + 159.83843689352668, + 161.8847455734402, + 161.8847455734402, + 166.8847455734402, + 170.8847455734402, + 174.8847455734402, + 176.8847455734402, + 179.8847455734402, + 181.8847455734402, + 182.8847455734402, + 184.8847455734402, + 186.8891085419619, + 188.90131440312356, + 189.90131440312356, + 191.90131440312356, + 193.90131440312356, + 196.90131440312356, + 199.90131440312356, + 202.90131440312356, + 205.90131440312356, + 206.90131440312356, + 208.90131440312356, + 209.90131440312356, + 210.90131440312356, + 210.90131440312356, + 210.90131440312356, + 213.90131440312356, + 214.90131440312356, + 216.92462644565234, + 220.92462644565234, + 223.92462644565234, + 225.92462644565234, + 226.92462644565234, + 228.92462644565234, + 229.9371860491144, + 229.9371860491144, + 230.9371860491144, + 231.9371860491144, + 231.9371860491144, + 231.9371860491144, + 234.9371860491144, + 234.9371860491144, + 234.9371860491144, + 235.94433786949233, + 237.9733413660165, + 239.9733413660165, + 243.9733413660165, + 244.9733413660165, + 244.9851973192753, + 245.99361263586667, + 245.99361263586667, + 245.99361263586667, + 245.99361263586667, + 245.99361263586667, + 247.99361263586667, + 248.99361263586667, + 249.99361263586667 ] }, { "line": { - "color": "#1f77b4" + "color": "#d62728" }, "mode": "lines", "name": "Substrate", "showlegend": false, "type": "scatter", - "uid": "1f540caa-7caf-4467-a413-2fb76d847748", "x": [ 0, 1, @@ -3974,117 +5377,116 @@ ], "y": [ 301, - 261.78803891029975, - 239.83909935153795, - 243.792666149992, - 245.63854554729792, - 241.63854554729792, - 240.63854554729792, - 235.548327734254, - 223.548327734254, - 223.48481036188025, - 217.45635553624686, - 216.3768348701323, - 210.3768348701323, - 200.37159940847675, - 193.40376969914465, - 200.28938354455494, - 194.25375074050348, - 196.15392814182388, - 187.15392814182388, - 185.13127546356546, - 184.0972734215866, - 186.03052273282347, - 176.03052273282347, - 174.03036360005134, - 170.03036360005134, - 170.01120392684751, - 164.0211405852167, - 158.0211405852167, - 161.0211405852167, - 161.0211405852167, - 157.0211405852167, - 157.0211405852167, - 161.92503020265798, - 150.9555450378828, - 158.9555450378828, - 150.9555450378828, - 143.9555450378828, - 152.9555450378828, - 147.9555450378828, - 134.93168606944243, - 129.93168606944243, - 123.93168606944243, - 122.94634608056866, - 117.94634608056866, - 125.94634608056866, - 126.83320472202959, - 119.7733354753523, - 120.7733354753523, - 114.72468228089578, - 105.72468228089578, - 107.72468228089578, - 103.72468228089578, - 100.72468228089578, - 101.72468228089578, - 98.72468228089578, - 95.7258322647976, - 93.7258322647976, - 91.7258322647976, - 95.7258322647976, - 93.7258322647976, - 96.7258322647976, - 92.7258322647976, - 87.70770431985613, - 84.70770431985613, - 81.70770431985613, - 76.72346591624117, - 78, - 81, - 77, - 76, - 75, - 71, - 70, + 268.96387880712115, + 253.96387880712115, + 247.8292287554935, + 245.8169535577638, + 246.8169535577638, + 240.8169535577638, + 235.7347774662182, + 231.64732224178252, + 217.64732224178252, + 209.64732224178252, + 219.51435871732144, + 213.51435871732144, + 207.51435871732144, + 203.46856905289863, + 206.45694414497004, + 205.34444534654352, + 198.24451318315735, + 197.18500597535262, + 195.12784174946086, + 185.10259446046672, + 184.10259446046672, + 180.10259446046672, + 176.10131963230384, + 177.10131963230384, + 176.0488398387706, + 176.0488398387706, + 163.02423666167698, + 160.98030667854502, + 159.98030667854502, + 149.98030667854502, + 154.9772285549824, + 150.90546569850494, + 142.90546569850494, + 136.90546569850494, + 139.90546569850494, + 126.90032441656778, + 130.9003244165678, + 121.87040960139613, + 115.87040960139613, + 115.83036559031517, + 116.83036559031517, + 114.7363965359787, + 116.7363965359787, + 107.73485857240749, + 108.67924176814873, + 104.67924176814873, + 105.67924176814873, + 96.67924176814873, + 92.67924176814873, + 93.67924176814873, + 91.67924176814873, + 99.67924176814873, + 88.67924176814873, + 89.67924176814873, + 89.66926516602888, + 86.64936147541792, + 85.64936147541792, + 86.64936147541792, + 84.64936147541792, + 78.64936147541792, + 74.64936147541792, + 79, + 73, + 72, + 69, + 67, + 69, + 67, 68, + 67, 62, - 67.97839636445075, - 63, - 61.972914697640725, - 57, - 57, - 55, - 54, - 56, - 57, - 56, - 59, - 59, + 59.992254992884476, + 57, + 53, + 54, 51, 51, - 49, - 49, + 47.99530358062674, 46, - 45.01250647561321, 43, - 44.99381243387083, - 44, + 45, + 48, 46, - 42.98861032489043, - 41, - 44, - 41 + 45, + 46, + 47, + 43.98448919149245, + 38.992616127657776, + 37, + 33, + 31, + 34.956319702866125, + 32.97305797636119, + 32, + 31, + 27, + 26, + 28, + 32, + 26 ] }, { "line": { - "color": "#ff7f0e" + "color": "#1f77b4" }, "mode": "lines", "name": "Enzyme", "showlegend": false, "type": "scatter", - "uid": "a9a32359-cf5e-43f7-a283-8f15e0e03426", "x": [ 0, 1, @@ -4190,117 +5592,116 @@ ], "y": [ 120, - 82.83082124575522, - 63.178800061532385, - 70.99041244078629, - 75.90237900389529, - 72, - 75, - 74.94870828505836, + 83, + 77.97711778644666, + 68.01599946061967, 67, - 70.00617512296476, - 70.00380503190925, - 70.98584500192281, - 70, - 67.06158340221513, - 65.12596294657631, - 74.93562090154842, - 71.98940428115155, - 76.92272950459547, - 70.92272950459547, - 69.01697002326206, - 70.00288960115286, - 73.96218671791134, - 66, - 66.01582823439996, - 63, - 67.06030243534899, - 64.03363721351307, - 60, - 65, + 67.0432411240785, + 72.96146154079375, + 70.99755345470786, + 70.99863847896361, 66, - 65, + 63.08630934799146, + 73, + 74.94033491478297, + 69.01092977979023, + 65.07599742470047, + 72.98066603659741, 67, - 75.93556670756712, - 65.1165283212067, - 74, - 69, - 69, - 81, - 81, - 71.01465844502934, 71, - 67, - 68.050493372758, - 67, - 75, - 76.92599680552618, - 73.97880893975763, - 76.97880893975763, - 72.0083397494917, - 65, - 72, - 70, + 70.03898509546977, + 73.97503810461656, + 76.97503810461656, 68, + 70.04577529456087, + 76, 73, - 70, - 70.00374868257214, - 69, - 68, + 79.97387411980836, + 77.97387411980836, + 73.00702137221685, 73, - 74, - 77, + 74.00280375778941, + 70, + 71, + 72.01905997105247, + 74.98290827345923, + 68.12591932592089, + 70.05340340061893, + 64, + 70, + 71, + 71, + 72.0345380967791, + 76, + 73.99979370632468, + 75.97029140229019, 76, - 74.01666327139472, 73, - 75, - 71.03582903944506, - 74, + 68, + 71, + 73, + 79, 78, - 76, - 75, 75, - 75, - 79, + 77, 79, + 85, + 84.90006348573648, + 79.90006348573648, + 76, + 70.11589696816164, + 67, 73, - 79.98640376907751, 75, - 77.00685941119436, - 74.00685941119436, + 73, 75, - 76, - 77, + 80, 79, - 81, - 81, - 84, - 85, - 77, + 79.00022133419945, + 79.00022133419945, + 74, + 78.01872199691303, + 78, + 80.00067465897668, + 80.99589459502378, + 79.99342948038519, + 82.99342948038519, + 82.99342948038519, + 83.99342948038519, 77, + 81.9989028993136, 78, - 80, 78, - 77.03972029600457, + 81, + 79, 77, - 78.99974776432667, - 78.99974776432667, - 82.99974776432667, - 79.9959833972014, - 78.9959833972014, - 82.9959833972014, - 79.9959833972014 + 78, + 85, + 86, + 84, + 84, + 83, + 82, + 79, + 79, + 78, + 81, + 78.06719709678518, + 81, + 79, + 79.00744200494788, + 80.00062170542502, + 80.00062170542502 ] }, { "line": { - "color": "#2ca02c" + "color": "#ff7f0e" }, "mode": "lines", "name": "Enzyme_Substrate_Complex", "showlegend": false, "type": "scatter", - "uid": "60e2f153-a09f-4958-aaf7-d083409bee67", "x": [ 0, 1, @@ -4406,106 +5807,321 @@ ], "y": [ 0, - 37.16917875424477, - 55.821199938467615, - 47.0095875592137, - 41.0976209961047, - 44, - 41, - 41.051291714941634, + 37, + 42.02288221355334, + 50.984000539380354, + 51, + 50.956758875921494, + 44.03853845920626, + 45.002446545292145, + 44.001361521036394, 48, - 44.99382487703526, - 43.99619496809077, - 42.01415499807718, + 50.91369065200853, + 40, + 38.05966508521705, + 42.989070220209776, + 45.92400257529954, + 37.01933396340259, 42, - 44.938416597784844, - 45.87403705342366, - 35.064379098451575, - 37.01059571884846, - 32.0666747765561, 38, - 38.983029976737946, - 36.997110398847134, - 32.03781328208866, - 39, - 38.984171765600045, - 41, - 36.93969756465101, - 38.96636278648692, - 42, - 37, - 36, - 37, - 35, - 26.064433292432895, - 35.88347167879333, - 26, + 38.96101490453024, + 34.02496189538344, 31, - 31, - 19, - 19, - 28.98534155497065, + 39, + 36.95422470543912, + 30, + 33, + 26.026125880191632, 28, - 32, - 30.949506627242002, + 31.99297862778314, 31, - 23, - 21.074003194473807, - 23.021191060242366, + 29.997196242210595, + 33, + 32, + 30.980940028947526, + 27.017091726540773, + 32.87408067407911, + 29.94659659938106, + 35, + 29, + 28, + 28, + 26.9654619032209, + 22, + 24.000206293675316, + 21.0297085977098, 20, - 23.991660250508303, - 30, 23, + 28, 25, - 27, - 22, - 25, - 24.996251317427856, - 25, - 26, - 21, - 20, + 23, 17, 18, - 19.98333672860528, - 20, - 18, - 21.964170960554966, - 18, - 14, - 16, - 17, - 17, - 17, - 13, - 13, + 21, 19, - 12.013596230922477, - 16, - 13.993140588805646, + 17, + 11, + 11.099936514263517, 16, + 19, + 24.88410303183837, + 27, + 21, + 19, + 21, + 19, + 14, 15, + 14.999778665800537, 14, + 19, + 14.981278003086967, + 14, + 11.999325341023338, + 10.004780063952891, + 11.002465114638602, + 8, + 8, + 7, 13, + 8.001097100686382, 11, - 9, - 9, - 6, - 5, - 13, - 13, - 12, + 11, + 8, 10, 12, - 12.960279703995425, - 12, - 10.000252235673342, - 10, + 11, + 4, + 3, + 5, + 5, 6, - 9.003764367125266, + 7, 10, + 10, + 11, + 8, + 10.932802903214828, + 7, + 9, + 8.992557995052119, + 6.99937829457498, + 6 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "Product", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, 6, - 9 + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1, + 4.0116408915576045, + 8.032331393311065, + 11.032331393311065, + 15.092611792411187, + 22.175148902313975, + 25.20004679759289, + 27.20731802026376, + 32.207318020263756, + 38.26598431177688, + 42.26598431177688, + 48.32494976199581, + 51.351265025498265, + 57.41284681613967, + 60.44649228939433, + 67.44649228939433, + 74.44649228939433, + 77.52947107687042, + 82.57742869973758, + 85.57742869973758, + 88.57742869973758, + 92.65078276390363, + 98.65078276390363, + 101.65078276390363, + 106.66255112350404, + 111.66255112350404, + 115.6869155121761, + 116.6869155121761, + 120.74482808733353, + 123.74482808733353, + 125.74482808733353, + 127.77271110873937, + 128.82775808581755, + 131.91381194636602, + 133.97330138552252, + 135.97330138552252, + 137.97330138552252, + 139.97330138552252, + 141.97330138552252, + 145.02780740285922, + 147.02780740285922, + 149.06366240252405, + 152.09472628475658, + 154.09472628475658, + 155.09472628475658, + 157.09472628475658, + 161.09472628475658, + 166.09472628475658, + 169.09472628475658, + 170.09472628475658, + 170.09472628475658, + 174.09472628475658, + 177.09472628475658, + 180.09472628475658, + 182.11126093831044, + 183.11126093831044, + 185.11126093831044, + 186.16344441110533, + 188.16344441110533, + 190.16344441110533, + 193.16344441110533, + 195.16344441110533, + 199.16344441110533, + 204.16344441110533, + 204.16344441110533, + 205.1702440564294, + 210.1702440564294, + 210.1702440564294, + 213.19151378849634, + 216.19151378849634, + 218.21693794424692, + 219.22159933108745, + 219.2423280401804, + 220.2423280401804, + 222.2423280401804, + 223.2423280401804, + 225.2423280401804, + 225.24292823386546, + 226.24292823386546, + 227.24292823386546, + 230.24292823386546, + 231.24292823386546, + 231.24292823386546, + 233.24292823386546, + 234.24292823386546, + 234.24292823386546, + 234.24292823386546, + 234.24292823386546, + 235.24292823386546, + 235.24292823386546, + 235.24292823386546, + 236.24292823386546, + 237.24292823386546, + 238.24292823386546, + 238.2709288808317, + 239.2709288808317, + 241.2709288808317, + 243.2743634107284, + 243.2750761059308, + 243.2750761059308 ] }, { @@ -4513,10 +6129,9 @@ "color": "#d62728" }, "mode": "lines", - "name": "Product", + "name": "Substrate", "showlegend": false, "type": "scatter", - "uid": "3a23b9a5-45fb-472c-baa5-9eda70285e31", "x": [ 0, 1, @@ -4621,112 +6236,917 @@ 100 ], "y": [ - 0, - 2.0427823354554104, - 5.1277396202941325, - 9.036845642332251, - 13.093345248921612, - 14.093345248921612, - 18.09334524892161, - 23.13227134702388, - 28.13227134702388, - 31.201963842362357, - 37.234223699905016, - 39.29958936794234, - 45.29958936794234, - 52.36640823181303, - 57.460200887721435, - 60.51020794385958, - 64.53524502906254, - 67.56839285118603, - 70.56839285118603, - 71.60801555270652, - 73.64490719583821, - 75.6738446025127, - 78.6738446025127, - 80.68983196968476, - 81.68983196968476, - 85.76929407823759, - 88.79299463338148, - 90.79299463338148, - 92.79299463338148, - 93.79299463338148, - 96.79299463338148, - 98.79299463338148, - 102.82467172350732, - 103.91068520948919, - 104.91068520948919, - 107.91068520948919, - 114.91068520948919, - 117.91068520948919, - 122.91068520948919, - 125.94920262295892, - 130.94920262295892, - 132.94920262295892, - 134.98503598459067, - 138.98503598459067, - 138.98503598459067, - 140.02417414865593, - 145.06285233509078, - 147.06285233509078, - 149.11984527903897, - 151.11984527903897, - 156.11984527903897, - 158.11984527903897, - 159.11984527903897, - 163.11984527903897, - 163.11984527903897, - 166.12244397770928, - 167.12244397770928, - 168.12244397770928, - 169.12244397770928, - 172.12244397770928, - 172.12244397770928, - 175.12244397770928, - 178.15723519404543, - 180.15723519404543, - 185.15723519404543, - 186.1773026371054, - 187.1773026371054, - 188.1773026371054, - 190.1773026371054, - 190.1773026371054, - 191.1773026371054, - 195.1773026371054, - 200.1773026371054, - 202.1773026371054, - 202.1773026371054, - 203.1853100417322, - 203.1853100417322, - 206.21925475528587, - 207.21925475528587, - 208.21925475528587, - 211.21925475528587, - 213.21925475528587, - 213.21925475528587, - 214.21925475528587, - 215.21925475528587, - 215.21925475528587, - 216.21925475528587, - 216.21925475528587, - 216.21925475528587, - 219.21925475528587, - 221.21925475528587, - 222.21925475528587, - 222.24646857567726, - 224.24646857567726, - 224.25240390613308, - 224.25240390613308, - 226.25240390613308, - 226.26002921411737, - 226.26002921411737, - 227.26002921411737, - 227.26002921411737 + 301, + 263, + 254.96547689488904, + 241.94914496219764, + 237.94914496219764, + 233.93210568717603, + 232.81103011806698, + 228.78368567749592, + 227.77505293378866, + 218.77505293378866, + 209.80269599026698, + 215.80269599026698, + 211.68406545483103, + 203.66867997111882, + 193.6830956051779, + 198.63011616852063, + 186.63011616852063, + 183.63011616852063, + 179.5861224765143, + 178.5132029582637, + 178.5132029582637, + 167.5132029582637, + 165.48562418865853, + 165.48562418865853, + 159.48562418865853, + 161.4477299488665, + 154.4477299488665, + 146.43038693241132, + 145.43038693241132, + 142.3752781150433, + 135.3752781150433, + 134.3752781150433, + 133.3664550646899, + 135.29431636107094, + 126.33418182644336, + 126.3280957879058, + 118.3280957879058, + 122.3280957879058, + 121.3280957879058, + 119.3280957879058, + 117.30812786734815, + 119.30812786734815, + 115.27206657400802, + 115.21129409406569, + 114.21129409406569, + 110.21129409406569, + 103.21129409406569, + 102.21129409406569, + 99.21129409406569, + 102.21129409406569, + 100.21129409406569, + 97.21129409406569, + 95.21129409406569, + 94.21129409406569, + 97.21129409406569, + 95.09482292624833, + 89.09482292624833, + 84.09482292624833, + 77.06371349536673, + 72, + 76, + 75, + 71, + 69, + 69, + 68, + 66.99342168887537, + 61.99342168887537, + 56, + 56.997452264846096, + 53, + 52.97525050322609, + 51.9905585492066, + 49.97680617626844, + 51, + 49, + 49, + 41, + 45.998302705628575, + 41, + 40, + 40, + 37, + 35, + 34, + 40, + 41, + 39, + 39, + 37, + 36, + 33, + 32, + 30, + 32, + 29.039196449818945, + 31, + 27, + 25.004007475051196, + 25.999909010222627, + 25 ] } ], "layout": { "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, "title": { "text": "Many trajectories on one plot" }, @@ -4743,18 +7163,49 @@ } }, "text/html": [ - "
                                        " - ], - "text/vnd.plotly.v1+html": [ - "
                                        " + "
                                        \n", + " \n", + " \n", + "
                                        \n", + " \n", + "
                                        " ] }, "metadata": {}, @@ -4774,12 +7225,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeVyU1f4H8M8Dw8ywDauAgKIIgeC+pJgLmgIarpiamuJSqZWppaa5kpH71mKaXWhDrYSuC2pJmrnlkrhc058mi6a4CwLCAHN+f3DnuY7si47Q5/16zevi85xznu8588zcXl8O30cSQggQEREREREREREREdUSJsYOgIiIiIiIiIiIiIioOjHxTURERERERERERES1ChPfRERERERERERERFSrMPFNRERERERERERERLUKE99EREREREREREREVKsw8U1EREREREREREREtQoT30RERERERERERERUqzDxTURERERERERERES1ChPfRERERERERERERFSrMPFNREREtV50dDQkSUKDBg2MHQqRgaioKAQEBECj0UCSJEiShJUrV1brNfTj7t27t1rHpapr0KABJElCdHS0sUN56vB7m4iIiKpKYewAiIiIiEojSVKl+0ZFRSE8PLz6giGqRsuWLcM777wDAFAoFHBycoIkSbC0tCxX/+joaCQnJyMwMBCBgYGPMdLaIzExET/++CNsbW0xadIkY4fz1Fm5ciXu3buHfv36oUWLFsYOh4iIiKhKmPgmIiKip5qzs3OxxzMzM5GVlVVqG3Nz88cWF1FVLVmyBAAwceJELF26FGZmZhXqHx0djV9//RUAmPgup8TERMyfPx8eHh5PReK7UaNGUKvVsLGxMXYoAAoT3ykpKWjQoIHRE982Njbw8fGBm5ubUeMgIiKimouJbyIiInqqpaWlFXt83rx5mD9/fqltiJ5WN2/exPXr1wEAr7zySoWT3lQ7JCQkGDuEp1b//v3Rv39/Y4dBRERENRhrfBMRERERPWHZ2dnyz1ZWVkaMhIiIiIiodmLim4iIiP5xjh8/jkGDBqFu3bpQqVTw9PTElClTcPfu3VL73b9/HwsXLkRAQADs7e2hUqlQr149DBkyBIcOHap0PGfOnMG8efPQrVs3NGrUCObm5tBoNGjZsiVmzZqFW7duFelz4sQJ+aGFp06dKnX8ESNGQJIkPP/888We3759O8LCwuDm5gaVSgU7Ozt07twZa9asgVarLbZPYGAgJEnCvHnzkJeXh2XLlqFNmzawtbU1eJCiTqdDQkICJk6ciPbt28Pd3R1KpRIODg7o0qULPvvsM+Tl5ZUa/61btzB58mR4enpCrVajbt26ePHFF/HHH38AKPvhjTqdDt9++y169eoFZ2dnKJVK1KlTB0FBQdiwYQOEEKVevyyxsbEIDQ2Vx3Z2dkZoaCji4uKKtN27d2+RB/Y1bNhQnkN5HuSnf+ifvszJ/Pnz5f76V3JycrF979+/j1mzZsHX1xfm5uZwcHBAaGgofv/991KvmZOTg5UrV6JDhw6ws7ODWq2Gh4cHRowYgcTExBL75efnY926dQgMDISjoyPMzMzg4OAAHx8fDB48GF988UWJfZOTkzFp0iT4+/vDysoKFhYW8PX1xVtvvYXU1NQy1+lRkiRh1KhRAICUlJQiazZv3jy5bXh4OCRJQnh4OIQQWL9+PTp27AgHB4ciD6M8fPgwpk+fjk6dOsHDwwNqtRq2trZo3749Fi1ahMzMzBJjKs/DLQ8cOIDhw4fLY9vY2ODZZ58tc2wAuH37NiIiItCuXTvY29tDrVajQYMGCAoKwpo1a5Ceng6g8C9oJElCSkoKAGDUqFFF1udRlb0nHp5zZmYm5syZg6ZNm8La2trg3i3Pwy0r+5189+5dzJkzB61atYJGo4FSqYSLiwuaNWuGcePGcSc+ERFRbSGIiIiIaqC5c+cKAKI8/zkTFRUlAAgPDw/x7bffCjMzMwFA2NjYCBMTE3kcf39/cf/+/WLHOHHihHB3d5fbmpqaCmtra/nfkiSJyMjISs3Fw8NDHketVgt7e3shSZJ8zM3NTZw7d65IP39/fwFAvPPOOyWOnZmZKSwtLQUAER0dbXAuOztbDBw4UL4OAKHRaAyu3b59e3Hnzp0i43bp0kUAENOnTxcdOnQQAIRCoRB2dnZCkiSxZ88eIYQQSUlJBuNbWVkJGxsbg2OdOnUS2dnZxcZ//vx54erqKrdVqVRCo9EIAEKpVIotW7bI5/TXfNjt27dF586dDa736PX79OkjcnNzS3mHipebmysGDx4sj2NiYiLs7OwM7qmXXnpJaLVauc+BAweEs7OzcHR0lNs4OjoKZ2dn4ezsLNq0aVPmdTdu3CicnZ3l+9jS0lLur3+lpqbK7fXXiYmJEV5eXvJ9ZmFhIZ9TKpVi165dxV7vypUrokmTJnJbMzMzgzU0MTERq1evLtIvPz9f9OjRo8jaq1Qqg2PF+eabbwzaqVQqYW5uLv/b2tq6xHhL4uzsLN87JiYmRdZsyZIlctuRI0cKAGLEiBEiLCysyPsbFRVVZH0BCAsLC2FnZ2dwzM/PT1y/fr3YmPSf/YfH0ysoKBATJ04s8vkxNTWV/+3j4yOSk5OLHXvXrl0GsSgUCuHg4CDfNwBEXFycEEKIJUuWCGdnZ/ne1Wg0RdbnYZW9Jx6e89KlS8Uzzzwj33+2trYCgEhKShJCGH5vF6ey38mXL18W9evXL/K5fXhdu3TpUuw1iYiIqGZh4puIiIhqpMokvi0sLIRKpRJjx46VE4NZWVni448/lpNBs2fPLtL/6tWrwsnJSQAQAwYMEMeOHZOTmdevXxezZ88WCoXCIJFUESNGjBDR0dEiJSVFPpabmyt2794tnn32WQFAtGrVqki/RYsWCQDC1dVVFBQUFDv2119/LSdHH03qDx8+XAAQnp6e4ttvvxXp6elCCCEePHgg/v3vfwtPT08BQPTr16/IuPrEt5WVlbCyshJRUVFy8vrWrVvi9u3bQojCJNOwYcPEli1b5GNCCHH//n0RFRUlJ7UnT55c5BparVY0bdpUTg7HxsaK/Px8IYQQf/75p+jWrZtBYu/RxHd+fr4cZ4sWLcTWrVtFVlaWEKLwFwJffvml/L5OmjSp2PUrzdtvvy0n2GbPni3u3r0rhBDizp07YubMmXJc06dPL9L34V8I6BN9FaWf29y5c0ttp7+OnZ2d8PPzE7/88osoKCgQOp1OHDlyRPj4+MgJxkfvo/z8fNGuXTs5af3NN9/IvyT466+/RGhoqLwG8fHxBn31955arRbr16+X7z+dTieuX78uYmNjxcCBA4vE+9NPPwkTExOhUCjEtGnTRFJSktDpdEKn04lz586JF198UU7OPvyZKY+ykql6+sS3lZWVUCgUYunSpfLn4/79++Lq1aty2969e4tNmzaJa9euyceys7NFbGysvLb9+/cv9jqlJb5nzZolAAgnJyfxySefyJ8frVYr9uzZI1q2bCl/Nzz6vv3xxx9CrVYLoPAXevHx8fJ3Vn5+vjh27Jh4++23xe7du8sdj15V7omHr2FlZSVcXFxEXFycHNvly5flz2hp71VVvpPHjBkjAIgGDRqI3bt3y98p+fn5Ijk5WaxZs6bYzywRERHVPEx8ExERUY1UmcQ3ADFy5Mhi20yZMkUAEF5eXkXOjR49WgAQQ4cOLfEay5cvFwBE8+bNyz2H8rh//75wdnYWAMRvv/1mcO7KlSvyDs2Sdr8GBQUJAGL48OEGx/ft2ycn1R7eHfywy5cvy7vFT5w4YXBOn3QFILZs2VLp+R09elROzD948MDgnD5xKkmS2LdvX5G+Dx48EL6+viUmvr/66isBQPj6+op79+4Ve/1jx44JSZKEUqkscVduca5cuSIn1mbMmFFsG/09ZWZmZpAoFcI4ie86deoUO8dTp07Jbfbv329wbuPGjfK54u6xvLw8OQnapEkTg3Pjx48XAMSrr75a7jkVFBQIb29vAUCsXbu2xHZ9+vQRAMRbb71V7rGFqHjiG0CJO5fL48qVK0KlUglJkopN0peUaE5KShKmpqbC3NxcJCYmFjt2RkaGvOP50eRux44dBQDh7e1d4r1fnPIkvqtyTzx8DVNTU/HHH3+UeJ3S3quqfCc3btxYAIV/AUFERES1G2t8ExER0T/KrFmzij3et29fAMDFixcNHjyYk5ODmJgYAMD06dNLHHfEiBEAgJMnT+L69evVFS6srKzQpUsXAMD+/fsNzrm5uaFbt24AgK+//rpI32vXrsm1al9++WWDc/raysOGDUO9evWKvba7uzu6du0KANi1a1exbfz9/dG7d+/yTqeINm3awMnJCVlZWUXqAn///fcAgM6dO6NTp05F+qrVakydOrXEsfVzHD9+PGxsbIpt07p1a/j7+0Or1WLPnj3ljnvz5s3Iz8+HWq3Gu+++W2ybWbNmQaVSIS8vDz/88EO5x35cXn31VTg5ORU53rRpUzRs2BAAitSL37RpEwAgICAAQUFBRfoqFArMnTsXQGGt+tOnT8vnbG1tAQBpaWnljnHfvn24cOECHB0dMXbs2BLb6T9vJd2X1cXOzg6vvfZapfu7ubmhefPmEELg4MGD5e4XHR2NgoIChISEoHnz5sW2sba2Rr9+/QAYrsOFCxfk74rIyMgS7/3Kqso98bCQkBC0bNmywtev6ney/r68du1aha9NRERENYvC2AEQERERPSn29vbw8vIq9pyrq6v88927d2FhYQGg8EGYOTk5AFBskqc4KSkpcHZ2rlBs27Ztw9dff42jR4/i+vXrBsl3vStXrhQ5NmLECOzevRtxcXHIysqCpaWlfC4mJgYFBQVwdXVF9+7dDfodOHAAQGFyWJ9EKo7+4Xf6h9496rnnnitzblqtFv/6178QGxuLM2fO4Pbt28U+NPPR+ekfXqlP/BcnMDCw2OMFBQU4fPgwgMIH90VGRpY4xp07dwCUPMfiHDt2DADQtm1baDSaYtvY2dmhTZs2OHDggNzemNq1a1fiOVdXVyQlJclroaeP+9H752Fdu3aFqakpCgoKcOzYMTRt2hQA0KtXLyxcuBBbtmxBz549MWLECHTp0sXgs/Yo/X2Znp5eajv9/VOR96wy2rZtC6VSWWobnU6HjRs3YuPGjUhMTMTNmzfl74yHFff5LYl+HX766Se4uLiU2E7/cMuH10GfYDc1NUXPnj3Lfc3yqso98bDyfHcUp6rfyaGhoTh06BDeffddnDt3DgMGDECHDh1K/BwTERFRzcXENxEREf1jWFtbl3hOofjffxbl5eXJP1+9elX+ubw7uYtLWpdEp9Nh+PDh2LBhg0EsdnZ2csItPT0dOTk5yMrKKtJ/wIABmDBhAjIzMxEbG2uws1u/C3zYsGEwMTH8Qz/9vDIyMpCRkVHpORW3g/hhN27cQPfu3Q12farVajg6OsLU1BQAcPPmTeh0uiLzu3nzJgCUmgB1c3Mr9vidO3eQm5sLoPAXGeVRkfftxo0bpV5fz93d3aC9MZXn/n/43gfKN0/9+3n9+nWDeXbs2BGLFi3CrFmzsHPnTuzcuRNA4Zp0794dI0aMkP+iQE9/X+bl5ZXr8/bgwYMy21RFWfd3dnY2QkNDDf5aQKlUwt7eHmZmZgAK78W8vLxiP78l0a9DVlZWufo9fO/qd9g7Ojoa/CKsulTlnnhYWWtbkqp+J0+dOhUnT57Ed999h88//xyff/45JEmCv78/QkJCMHbsWPj4+FQqNiIiInq6sNQJERERUSkKCgrknx88eABR+IyUUl8l7UIuzhdffIENGzbA1NQUc+bMwYULF5Cbm4s7d+4gLS0NaWlpGDhwIABACFGkv6WlJQYMGAAA+Oqrr+Tjp0+fxsmTJwEULXPy8LzWrFlTrjlFR0cXG78+eV2SyZMn4/Tp03BwcMC//vUvXLt2DQ8ePMDNmzfl+ekT28XNDwAkSSr1GsV5+H3bsWNHueY4b968Cl+HSjd16lQkJSVhxYoV6NevH5ycnHDlyhVER0ejW7duePHFFw2S7fr3rV27duV6z0q6Z6pLWff3Bx98gD179sDc3BwrVqxASkoKcnJycPv2bfn+1u+0r0is+nWYPn16udZg7969ct/KfF6Moay1LUlVv5PNzMywadMmJCYmYs6cOejWrRssLCxw5swZLF26FP7+/li2bFlVp0dERERPASa+iYiIiErxcJmBx1FWYePGjQCAsWPHYv78+fDy8iqyO7usGsn6xPYvv/yCv//+G8D/dnu3aNGi2DID+nk9zlIReXl5iI2NBQB8/PHHGDVqVJGyDQUFBbh161ax/evUqQPAcIfno/TzfZSDg4O8i/lxzFG/W7Ws8hX685Xd3Wps5ZmnPtH7cPuHubq6YtKkSYiLi8P169dx6tQpuX73Dz/8gDVr1shtn8R9WZ30n985c+Zg0qRJqF+/fpHEc0VqnOtVZR30fW/dulWhXeblVR33RFVU13dy8+bNMX/+fCQkJODevXvYvXs3OnfujIKCAnlXOBEREdVsTHwTERERleLhGr9bt26t9vEvX74MACU+5C0zMxO///57qWN069YN7u7u0Ol0iImJkf8X+N8D3h6lr6+7bdu2yoZepodrHZc0v/379xdbDxkAWrVqBQAGu1kfVdI5MzMzPPvsswAez/vWpk0bAIX1jvV10B917949g1rg1U3/C5LHuetZP0/9Q1KLs3fvXuTn5wMo3zybNm2Kzz//XL4Hf/75Z/mc/lhaWtpjqYte3WtW1uc3OTkZFy9erPC4+nXYvXt3iZ+PknTo0AFA4S+VduzYUaG+5Vmfx3FPVMTj+E5WKBR4/vnnsX37dqhUKgghsHv37moZm4iIiIyHiW8iIiKiUlhaWmLo0KEAgEWLFiE1NbXU9o8+HLAsNjY2AFDi7sL3338f9+/fL3UMExMTDBs2DEDhTm/9zm9TU1M59ke9+uqrAIAzZ84Y7LgtTlZWVrEPoyyLRqORd78WN7/8/Hy89957JfbXl3jZt2+f/LC/h+Xm5mLp0qUl9tfPMT4+HvHx8aXGWtH3LSwsDAqFAjk5OVi0aFGxbSIjI5GbmwszMzOEhYVVaPzy0D+M7969e9U+tt6QIUMAAIcOHcJPP/1U5Hx+fj4iIiIAAE2aNEGTJk3kc/oa6yUxNzcHAIO/cOjatav8ANrJkyeXed9V9H2r7jUr6/P77rvvVmrc0aNHQ6FQ4NatW5g7d26pbbVarfyQSwDw8vJC586dAQAzZ84sVw1/vfKsT1XuiepQ1e/k0u5LlUoll2B59C9viIiIqObh/5sTERERlSEyMhKurq64desWAgIC8PXXXxsko2/evInNmzejf//+eOmllyo0dkhICADg888/x7p16+REX1paGiZPnozFixfDwcGhzHH05U5Onz6NGTNmAACCgoLg7OxcbPsuXbpg1KhRAIDXX38dkydPxqVLl+Tzubm5OHz4MKZNmwYPD49KPZzRyspK3rk6ZcoU/PLLL9DpdAAKE+69evXCsWPHSnwA3+DBg+Hv7w8hBAYMGIB///vfcn3f8+fPIzQ0tNQyEsOHD0f37t0hhED//v2xYMECg7IpWVlZ2LNnD15//XV4enpWaG5ubm546623AAALFy7E3Llz5WThvXv3MHv2bCxZskSee926dSs0fnnoE4rx8fEllnypqrCwMLlG9aBBgxATEyPX5E5KSkJYWBgOHToEAFi8eLFB3379+mH06NHYsWOHQSL1zp07WLBggbxj+IUXXpDPKRQKfPbZZ1AoFNi/fz86d+6MhIQEgzrgly5dwmeffYa2bdvi008/rdB89GuWkZGB7777rkJ9i6P//C5YsACxsbHyLuekpCQMHToU3333Hezs7Co8bqNGjTB79mwAhes6YsQInDlzRj6fn5+PxMREREREwMvLC4mJiQb9V61aBbVajQsXLuC5557Dzp075TUsKCjA0aNHMW7cuCK7mvXr88MPP5T4UNiq3BPVpSrfyR4eHpgxYwYOHz5skAS/ePEihg0bhuzsbJiYmCA4OPixxE5ERERPkCAiIiKqgebOnSsAiPL850xUVJQAIDw8PEpsk5SUJI+XlJRU5PzZs2fFM888I7cxMTER9vb2wtLSUj4GQHTv3r1C87h7967w9fU1GNfW1lZIkiQAiNdee02MHDlSABAjR44sdaxWrVoZxLJhw4ZS2+fm5oqxY8ca9LGyshJ2dnbCxMTE4PiVK1cM+nbp0kUAEHPnzi31GseOHTNYI5VKJaytrQUAoVAoxFdffSU8PDwEABEVFVWk/59//ilcXFwM+tvY2Mg/b926VT536NChIv3T09NFaGiowVw0Go3BGutjqajc3FwxaNAgg/fu0bV76aWXhFarLdK3rPutPP7v//5PqNVq+drOzs7Cw8NDeHh4iMuXL8vt9NfZs2dPiWOV9n5euXJF+Pv7y+MolUpha2trMO9Vq1aVOObD667RaAyODRw4UBQUFBTpGxcXJ98nAISZmZlwcHAQKpXKoP+CBQsqvG7PP/+83N/a2lpesxUrVshtyvuZS05OFs7Ozgb3kf7+BCAiIyNLXdvS7n2dTidmz55tcJ+am5sLBwcHYWpqarAO+/fvL9J/165dBrHo19DMzEw+FhcXZ9Dn119/la9namoq6tatK6/Pwyp7T5Q154eV9b1d2e/kh8/pP7P6zxEAIUmSwb1ARERENRd3fBMRERGVQ+PGjXHq1CmsXbsWQUFBcHR0REZGBoQQ8PLywosvvoh169ZVeBepra0tDh48iEmTJqFBgwYwNTWFQqFAYGAgNmzYgM8++6zcYz1cz1uj0aBv376ltlcqlfj8889x8OBBhIeHo1GjRigoKEBmZiacnJwQGBiIOXPm4NSpU3Bzc6vQvPRat26NI0eOYNCgQXB0dIROp4O1tTUGDRqEgwcPyjvVS+Lr64tTp05h4sSJaNCgAYQQUKvVGDRoEA4fPizvKAcK1/JRGo0GW7duRXx8PAYPHoz69esjNzcX2dnZcHNzQ1BQED788EOcP3++wnNTKpXYtGkTfvjhB/Ts2RMODg64f/8+HBwc0LNnT8TGxiImJgZmZmYVHrs8vL29sWfPHvTp0wd16tTB7du3kZKSgpSUFHnncXVwc3PDsWPHsHz5crRv3x7m5ubIzs5GvXr18PLLL+P48eOYOHFikX4fffQRFi1ahF69esHb2xtCCDx48ACurq7o06cPNm/ejO+//77YkhL9+vXDxYsXMXfuXDz77LOwsrLCvXv3oFKp0Lx5c4wdOxZxcXGYOnVqhefzww8/YPLkyXjmmWeQl5cnr1llyp94eHjg2LFjGDNmDFxdXQEAarUaoaGh2LVrl/zXF5UhSRIiIiJw6tQpTJgwAY0bN4apqSnS09NhZ2eHDh06YOrUqTh48KDB50AvKCgIFy5cwHvvvYeWLVvC3NwcWVlZcHNzQ3BwMNauXYtu3boZ9OncuTO2b9+O7t27w9bWFtevX5fX52GVvSeqU2W/k3/66SfMmDEDnTp1Qr169fDgwQMAhSViRo0ahaNHj2LSpEmPNXYiIiJ6MiQhHuPTcIiIiIiIHqOff/4ZQUFBUKvVyMjIeGxJZqLHwd3dHX///TdiYmIqXCaJiIiIiErHHd9EREREVCMJIeQHS3br1o1Jb6pR8vLycPPmTQAosRY/EREREVUeE99ERERE9NTas2cPJk2ahGPHjsklCYQQOH78OHr37o2EhARIkoRp06YZOVKi8tPpdFixYgW0Wi2USiVatWpl7JCIiIiIah2FsQMgIiIiIipJeno6Vq1ahVWrVgEA7Ozs8ODBA+Tk5AAorIO8dOlSdOnSxZhhEpXbqFGjEBMTA61WCwB49dVXi61PT0RERERVw8Q3ERERET212rdvj/fffx8JCQm4dOmSXBrC09MTnTp1whtvvIE2bdoYOUqi8rt79y6EEPD29sbLL7+MmTNnGjskIiIiolqJD7ckIiIiIiIiIiIiolqFNb6JiIiIiIiIiIiIqFZhqRMUPlzm6tWrsLa2hiRJxg6HiIiIiIiIiIiIiIohhMD9+/fh6uoKE5OS93Uz8Q3g6tWrqFevnrHDICIiIiIiIiIiIqJyuHz5Mtzd3Us8z8Q3AGtrawCFi6XRaIwcDREREREREREREREVJyMjA/Xq1ZNzuiVh4huQy5toNBomvomIiIiIiIiIiIiecmWVrObDLYmIiIiIiIiIiIioVmHim4iIiIiIiIiIiIhqFSa+iYiIiIiIiIiIiKhWYY1vIiIiIiIiIiKqsYQQyM/PR0FBgbFDIaJqYGpqCoVCUWYN77Iw8U1ERERERERERDWSVqvFtWvXkJ2dbexQiKgaWVhYoG7dulAqlZUeg4lvIiIiIiIiIiKqcXQ6HZKSkmBqagpXV1colcoq7xAlIuMSQkCr1eLmzZtISkqCt7c3TEwqV62biW8iIiIiIiIiIqpxtFotdDod6tWrBwsLC2OHQ0TVxNzcHGZmZkhJSYFWq4Vara7UOHy4JRERERERERER1ViV3Q1KRE+v6vhc85uBiIiIiIiIiIiIiGoVJr6JiIiIiIiIiIiIqFZh4puIiIiIiIiIiIiIahUmvomIiIiIiIiIiJ6g8PBwSJJU5BUSEmLs0IhqDYWxAyAiIiIiIiIiIvqnCQkJQVRUlMExlUplpGiIah/u+CYiIiIiIiIiolpBCIFsbf4TfwkhKhyrSqWCi4uLwcvOzg4AIEkS1q9fj/79+8PCwgLe3t7YsmWL3LekHeN79+5FREQEmjRpUuR6LVq0wOzZs+X+/fr1Q2RkJJydnWFra4uIiAjk5+dj6tSpsLe3h7u7e5HE/OXLlzFo0CDY2trC3t4effv2RXJycoXnTvQkcMc3ERERERERERHVCg/yCuA3Z9cTv+7ZiGBYKKs3zTZ//nwsXrwYS5YswUcffYRhw4YhJSUF9vb2WLVqFRYuXCi3XbhwITZs2ABfX194eXlh/vz5OHr0KNq2bQsAOHHiBE6dOoXY2Fi5zy+//AJ3d3fs27cPBw4cwJgxY3Dw4EF07twZv//+OzZt2oTXXnsNPXr0gLu7O/Ly8hAcHIyAgAD89ttvUMrIzrYAACAASURBVCgUWLBgAUJCQnDq1CkolcpqnT9RVXHHNxERERERERER0RO2bds2WFlZGbwiIyPl8+Hh4XjppZfg5eWFyMhIZGZm4siRIwAAGxsbeZf4wYMHsXbtWsTGxsLFxQXu7u4IDg422K0dFRWFLl26wNPTUz5mb2+P1atXw8fHB6NHj4aPjw+ys7Mxc+ZMeHt7Y8aMGVAqldi/fz8AYNOmTdDpdFi/fj2aNm2Kxo0bIyoqCqmpqdi7d++TWTSiCuCObyIiIiIiIiIiqhXMzUxxNiLYKNetqK5du2LNmjUGx+zt7eWfmzVrJv9saWkJjUaDGzduGLQ/ceIEXn75ZXz88cd47rnn5OOvvPIKRo8ejeXLl8PExAQxMTFYsWKFQV9/f3+YmPxvT6yzs7NBiRRTU1M4ODjI1zx58iQuXrwIa2trg3FycnLw119/VXT6RI8dE99ERERERERERFQrSJJU7SVHHhdLS0t4eXmVeN7MzMzg35IkQafTyf9OS0tDnz59MHbsWIwZM8agbe/evaFSqRAXFwelUom8vDwMHDiwzPFLu2ZmZiZat26Nb7/9tkisderUKWWmRMZRM74JiIiIiIiIiIiICEDhLuu+ffvC19cXy5cvL3JeoVBg5MiRiIqKglKpxJAhQ2Bubl6la7Zq1QqbNm2Ck5MTNBpNlcYiehKY+CYiIiIiIiIiInrCcnNzkZaWZnBMoVDA0dGxzL6vvfYaLl++jISEBNy8eVM+bm9vLz9kcuzYsWjcuDEA4MCBA1WOd9iwYViyZAn69u2LiIgIuLu7IyUlBbGxsZg2bRrc3d2rfA2i6sTENxERERERERER0RO2c+dO1K1b1+CYj48Pzp07V2bfX3/9FdeuXYOfn5/B8T179iAwMBAA4O3tjQ4dOuDOnTto165dleO1sLDAvn37MH36dAwYMAD379+Hm5sbnn/+ee4Ap6eSJIQQxg7C2DIyMmBjY4P09HR+UImIiIiIiIiIaoCcnBwkJSWhYcOGUKvVxg7nqSOEgLe3NyZMmIApU6YYOxyiCint813eXC53fBMREREREREREdUiN2/exMaNG5GWloZRo0YZOxwio2Dim4iIiIiIiIiIqBZxcnKCo6Mj1q1bBzs7O2OHQ2QUTHwTERERERERERHVIqxsTASYGDsAIiIiIiIiIiIiIqLqxMQ3EREREREREREREdUqTHwTERERERERERERUa3CxDcRERERERERERER1SpMfBMRERERERERERFRrWLUxPeaNWvQrFkzaDQaaDQaBAQEYMeOHfL5nJwcvP7663BwcICVlRXCwsJw/fp1gzFSU1PxwgsvwMLCAk5OTpg6dSry8/Of9FRqJJGXh6wjR3Dvhx+MHQoRERERERERERFRtTFq4tvd3R0LFy7E8ePHcezYMXTr1g19+/bFf/7zHwDA5MmTsXXrVnz//ff49ddfcfXqVQwYMEDuX1BQgBdeeAFarRYHDx7El19+iejoaMyZM8dYU6pRRH4+UkeG49qs2ci/c8fY4RAREREREREREZUoOTkZkiQhMTHR2KH8o4WHh6Nfv37GDqNMRk189+7dG7169YK3tzeeeeYZfPDBB7CyssLhw4eRnp6OL774AsuXL0e3bt3QunVrREVF4eDBgzh8+DAA4KeffsLZs2fxzTffoEWLFujZsyfef/99fPLJJ9BqtcacWo1gYm4OM1dXAID20iUjR0NERERERERE9M8QHh4OSZKKvEJCQowd2mOTnZ2NGTNmoFGjRlCr1ahTpw66dOmCf//7308shupOnO/duxeSJOHevXvVMt7DNm/ejMDAQNjY2MDKygrNmjVDREQE7nDzark9NTW+CwoKsHHjRmRlZSEgIADHjx9HXl4eunfvLrfx9fVF/fr1cejQIQDAoUOH0LRpUzg7O8ttgoODkZGRIe8aL05ubi4yMjIMXv9USk9PAEAuE99ERERERERERE9MSEgIrl27ZvDasGGDscN6bMaNG4fY2Fh89NFHOHfuHHbu3ImBAwfi9u3bxg6tCGNvqH3vvfcwePBgtG3bFjt27MCZM2ewbNkynDx5El9//bVRY6tJjJ74Pn36NKysrKBSqTBu3DjExcXBz88PaWlpUCqVsLW1NWjv7OyMtLQ0AEBaWppB0lt/Xn+uJB9++CFsbGzkV7169ap5VjWHyrMhAEB7KcnIkRARERERERERVZEQgDbryb+EqHCoKpUKLi4uBi87OzsAgCRJWL9+Pfr37w8LCwt4e3tjy5Ytct+Sdozv3bsXERERaNKkSZHrtWjRArNnz5b79+vXD5GRkXB2doatrS0iIiKQn5+PqVOnwt7eHu7u7oiKijIY4/Llyxg0aBBsbW1hb2+Pvn37Ijk5uVzz3bJlC2bOnIlevXqhQYMGaN26Nd58802MHj1abiNJEn788UeDfra2toiOjjY4du7cOXTo0AFqtRpNmjTBr7/+Kp+7e/cuhg0bhjp16sDc3Bze3t7yPBo2LMyDtWzZEpIkITAw0GA9PvjgA7i6usLHxwcA8PXXX6NNmzawtraGi4sLhg4dihs3bgAo3D3etWtXAICdnR0kSUJ4eDgAQKfT4cMPP0TDhg1hbm6O5s2b44dyPmPvyJEjiIyMxLJly7BkyRJ06NABDRo0QI8ePbB582aMHDlSbrtmzRo0atQISqUSPj4+RZLikiRh7dq1CA0NhYWFBRo3boxDhw7h4sWLCAwMhKWlJTp06IC//vpL7jNv3jy0aNECa9euRb169WBhYYFBgwYhPT29xJjLmm9ERARcXV0NfsnxwgsvoGvXrtDpdOVal8pQPLaRy8nHxweJiYlIT0/HDz/8gJEjRxrcrI/DjBkzMGXKFPnfGRkZ/9jkt7Khfsf3X2W0JCIiIiIiIiJ6yuVlA5GuT/66M68CSstqHXL+/PlYvHgxlixZgo8++gjDhg1DSkoK7O3tsWrVKixcuFBuu3DhQmzYsAG+vr7w8vLC/PnzcfToUbRt2xYAcOLECZw6dQqxsbFyn19++QXu7u7Yt28fDhw4gDFjxuDgwYPo3Lkzfv/9d2zatAmvvfYaevToAXd3d+Tl5SE4OBgBAQH47bffoFAosGDBAoSEhODUqVNQKpWlzsfFxQXx8fEYMGAArK2tq7Q2U6dOxcqVK+Hn54fly5ejd+/eSEpKgoODA2bPno2zZ89ix44dcHR0xMWLF/HgwQMAhUnlZ599Frt374a/v79BzAkJCdBoNPj555/lY3l5eXj//ffh4+ODGzduYMqUKQgPD0d8fDzq1auHzZs3IywsDOfPn4dGo4G5uTmAwk2333zzDT777DN4e3tj3759GD58uFzepTTffvstrKysMGHChGLP6zcJx8XF4a233sLKlSvRvXt3bNu2DaNGjYK7u7uckAeA999/H8uXL8fy5csxffp0DB06FJ6enpgxYwbq16+P0aNH44033sCOHTvkPhcvXsR3332HrVu3IiMjA2PGjMGECRPw7bffFhtTWfN97733sHPnTowdOxZxcXH45JNPcPDgQZw8eRImJo9vX7bRE99KpRJeXl4AgNatW+Po0aNYtWoVBg8eDK1Wi3v37hns+r5+/TpcXFwAFH5gjhw5YjDe9evX5XMlUalUUKlU1T2VGknVqDDxzR3fRERERERERERPzrZt22BlZWVwbObMmZg5cyaAwl3IL730EgAgMjISq1evxpEjRxASEiJXMQCA2NhYrF27Frt375bzYcHBwYiKipIT31FRUejSpQs8/1vyFgDs7e2xevVqmJiYwMfHB4sXL0Z2drZ8/RkzZmDhwoXYv38/hgwZgk2bNkGn02H9+vWQJEke19bWFnv37kVQUFCp8123bh2GDRsGBwcHNG/eHB07dsTAgQPx3HPPVXjt3njjDYSFhQEo3PW8c+dOfPHFF5g2bRpSU1PRsmVLtGnTBgDQoEEDuV+dOnUAAA4ODkVyh5aWlli/fr1BMvzh3eienp5YvXo12rZti8zMTFhZWcHe3h4A4OTkJOcvc3NzERkZid27dyMgIEDuu3//fqxdu7bMxPeFCxfg6ekJMzOzUtstXboU4eHhcoJ8ypQpOHz4MJYuXWqQ+B41ahQGDRoEAJg+fToCAgIwe/ZsBAcHAwDeeustjBo1ymDsnJwcfPXVV3BzcwMAfPTRR3jhhRewbNmyIutWnvmamprKz2h89913sXr1aqxfvx7169cvdY5VZfTE96N0Oh1yc3PRunVrmJmZISEhQb6Rz58/j9TUVHkRAwIC8MEHH+DGjRtwcnICAPz888/QaDTw8/Mz2hxqEn2N77y//4YuJwcmarWRIyIiIiIiIiIiqiQzi8Ld18a4bgV17doVa9asMTimT6QCQLNmzeSfLS0todFo5DIbeidOnMDLL7+Mjz/+2CCB/Morr2D06NFYvnw5TExMEBMTgxUrVhj09ff3N9ht6+zsbFAixdTUFA4ODvI1T548iYsXLxbZrZ2Tk2NQKqMknTt3xqVLl3D48GEcPHgQCQkJWLVqFebPny+XYCkvfW4QABQKBdq0aYM///wTADB+/HiEhYXhjz/+QFBQEPr164cOHTqUOWbTpk2L7Fo/fvw45s2bh5MnT+Lu3btyWY7U1NQSc48XL15EdnY2evToYXBcq9WiZcuWZcYhylk2588//8Srr75qcOy5557DqlWrDI49fB/pS0Q3bdrU4FhOTg4yMjKg0WgAAPXr15eT3kDheut0Opw/f75I4ru88/X09MTSpUvx2muvYfDgwRg6dGi55lkVRk18z5gxAz179kT9+vVx//59xMTEYO/evdi1axdsbGwwZswYTJkyBfb29tBoNHjzzTcREBCA9u3bAwCCgoLg5+eHl19+GYsXL0ZaWhpmzZqF119/nTu6y8nU3h4mNjbQpadDm5wMta+vsUMiIiIiIiIiIqocSar2kiOPi6WlpVwFoTiP7viVJMmgHnJaWhr69OmDsWPHYsyYMQZte/fuDZVKhbi4OCiVSuTl5WHgwIFljl/aNTMzM9G6detiy13od1KXxczMDJ06dUKnTp0wffp0LFiwABEREZg+fTqUSiUkSSqS+M3LyyvX2Ho9e/ZESkoK4uPj8fPPP+P555/H66+/jqVLl5baz9LS8L7JyspCcHAwgoOD8e2336JOnTpITU1FcHBwqQ+/zMzMBABs377dIHkMoFz5ymeeeQb79+9HXl5embu+y+PhMfQ79Ys7Vtla2xWZ7759+2Bqaork5GTk5+dDoXi8qWmjPtzyxo0bGDFiBHx8fPD888/j6NGj2LVrl/wbghUrViA0NBRhYWHo3LkzXFxcDGoRmZqaYtu2bTA1NUVAQACGDx+OESNGICIiwlhTqnEkSYLKU1/u5JKRoyEiIiIiIiIiorLk5OSgb9++8PX1xfLly4ucVygUGDlyJKKiohAVFYUhQ4bI9acrq1WrVrhw4QKcnJzg5eVl8NKXXakoPz8/5OfnIycnB0BhAv3atWvy+QsXLiA7O7tIv8OHD8s/5+fn4/jx42jcuLF8rE6dOhg5ciS++eYbrFy5EuvWrQMAeUd3QUFBmbGdO3cOt2/fxsKFC9GpUyf4+voW2XFf3Hh+fn5QqVRITU0tsk7lecbg0KFDkZmZiU8//bTY8/fu3QMANG7cGAcOHDA4d+DAgWqpgpGamoqrV//3lxOHDx+WS+I8qrzz3bRpE2JjY7F3716kpqbi/fffr3KcZTHqju8vvvii1PNqtRqffPIJPvnkkxLbeHh4ID4+vrpD+0dRejbEgxMnkMs630RERERERERET0Rubi7S0tIMjikUCjg6OpbZ97XXXsPly5eRkJCAmzdvysft7e3lZOzYsWPlZPCjCdLKGDZsGJYsWYK+ffsiIiIC7u7uSElJQWxsLKZNmwZ3d/dS+wcGBuKll15CmzZt4ODggLNnz2LmzJno2rWrXGKjW7du+PjjjxEQEICCggJMnz692F3Pn3zyCby9vdG4cWOsWLECd+/eletxz5kzB61bt4a/vz9yc3Oxbds2eR2cnJxgbm6OnTt3wt3dHWq1usSkff369aFUKvHRRx9h3LhxOHPmTJFkrYeHByRJwrZt29CrVy+Ym5vD2toa77zzDiZPngydToeOHTsiPT0dBw4cgEajwciRI0tdp3bt2mHatGl4++238ffff6N///5wdXXFxYsX8dlnn6Fjx4546623MHXqVAwaNAgtW7ZE9+7dsXXrVsTGxmL37t2ljl8earUaI0eOxNKlS5GRkYGJEydi0KBBxT5TsTzzvXLlCsaPH49FixahY8eOiIqKQmhoKHr27ClX9ngcjLrjm54O3PFNRERERERERPRk7dy5E3Xr1jV4dezYsVx9f/31V1y7dg1+fn4G/Q8ePCi38fb2RocOHeDr64t27dpVOV4LCwvs27cP9evXx4ABA9C4cWOMGTMGOTk5cuK6NMHBwfjyyy8RFBSExo0b480330RwcDC+++47uc2yZctQr149dOrUCUOHDsU777wDC4ui9dMXLlyIhQsXonnz5ti/fz+2bNki/8JAqVRixowZaNasGTp37gxTU1Ns3LgRQOEvFlavXo21a9fC1dUVffv2LTHeOnXqIDo6Gt9//z38/PywcOHCIuVS3NzcMH/+fLz77rtwdnbGG2+8AQB4//33MXv2bHz44Ydo3LgxQkJCsH37djRs2LDshQawaNEixMTE4Pfff0dwcDD8/f0xZcoUNGvWTE6c9+vXD6tWrcLSpUvh7++PtWvXIioqCoGBgeW6Rmm8vLwwYMAA9OrVC0FBQWjWrFmJO9DLmq8QAuHh4Xj22Wfl9QkODsb48eMxfPhwuVTK4yCJ8lZMr8UyMjJgY2OD9PT0cn1Qa5v7v+zBlQkToPL1heePccYOh4iIiIiIiIioTDk5OUhKSkLDhg2hVquNHc5TRwgBb29vTJgwAVOmTDF2OFRDzJs3Dz/++CMSExONGkdpn+/y5nKNWuqEng6qRv/d8Z2UBKHTQTLhHwIQEREREREREdVUN2/exMaNG5GWloZRo0YZOxwio2CGk2Dm5gbJzAwiNxd5V6+V3YGIiIiIiIiIiJ5aTk5OiIiIwLp162BnZ/dErmllZVXi67fffnsiMdQE48aNK3Gdxo0bZ+zwahWWOgFLnQDApd69kXvhIuqtWwurzp2NHQ4RERERERERUalY6uTpcvHixRLPubm5wdzc/AlG8/S6ceMGMjIyij2n0Wjg5OT0hCN6OrHUCVUbZUNP5F64iNxLl5j4JiIiIiIiIiKiCvHy8jJ2CDWCk5MTk9tPCEudEABAqa/zfSnJyJEQERERERERERERVQ0T3wQAUHnqE9+XjBwJERERERERERERUdUw8U0ACkudAEAuE99ERERERERERERUwzHxTQAAVcMGAICCO3eQf/euUWMhIiIiIiIiIiIiqgomvgkAYGJpCUXdugAAbVKycYMhIiIiIiIiIiIiqgImvkmmatgQAKBNYrkTIiIiIiIiIqKaLjk5GZIkITEx0dihED1xTHyTTPnfB1zm/sXENxERERERERHR4xIeHg5JkiBJEpRKJby8vBAREYH8/Hxjh1amBg0aYOXKlcYOg6hMCmMHQE8PVaPCxLeWD7gkIiIiIiIiInqsQkJCEBUVhdzcXMTHx+P111+HmZkZZsyYYdCuoKAAkiTBxIT7V4kqgp8Ykikb/nfHN0udEBEREREREVENJIRAdl72E38JISocq0qlgouLCzw8PDB+/Hh0794dW7ZsQXR0NGxtbbFlyxb4+flBpVIhNTUVOp0OERERcHd3h0qlQosWLbBz506DMY8cOYKWLVtCrVajTZs2OHHihMF5/dgP+/HHHyFJksGxrVu3om3btlCr1XB0dET//v0BAIGBgUhJScHkyZPlHetETyvu+CaZ0rOwxnfe5SvQ5ebCRKUyckREREREREREROX3IP8B2sW0e+LX/X3o77Aws6jSGObm5rh9+zYAIDs7G4sWLcL69evh4OAAJycnrFq1CsuWLcPatWvRsmVL/Otf/0KfPn3wn//8B97e3sjMzERoaCh69OiBb775BklJSXjrrbcqHMf27dvRv39/vPfee/jqq6+g1WoRHx8PAIiNjUXz5s3x6quv4pVXXqnSfIkeNya+SaaoUwcmVlbQZWZCm5IC9TPPGDskIiIiIiIiIqJaTQiBhIQE7Nq1C2+++SYAIC8vD59++imaN28ut1u6dCmmT5+OIUOGAAAWLVqEPXv2YOXKlfjkk08QExMDnU6HL774Amq1Gv7+/rhy5QrGjx9foXg++OADDBkyBPPnz5eP6eOwt7eHqakprK2t4eLiUtWpEz1WTHyTTJIkKBt5IufkKWgvJTHxTUREREREREQ1irnCHL8P/d0o162obdu2wcrKCnl5edDpdBg6dCjmzZuH77//HkqlEs2aNZPbZmRk4OrVq3juuecMxnjuuedw8uRJAMCff/6JZs2aQa1Wy+cDAgIqHFdiYiJ3c1OtwMQ3GVA1/G/im3W+iYiIiIiIiKiGkSSpyiVHnpSuXbtizZo1UCqVcHV1hULxvzSdubn5Y6mfbWJiUqQeeV5ensG/zc0rnsQnehrx4ZZkQOn53wdc/sXENxERERERERHR42JpaQkvLy/Ur1/fIOldHI1GA1dXVxw4cMDg+IEDB+Dn5wcAaNy4MU6dOoWcnBz5/OHDhw3a16lTB/fv30dWVpZ8LDEx0aBNs2bNkJCQUGIsSqUSBQUFpU+O6CnAxDcZUDUqTHxrLzHxTURERERERET0tJg6dSoWLVqETZs24fz583j33XeRmJgoP8By6NChkCQJr7zyCs6ePYv4+HgsXbrUYIx27drBwsICM2fOxF9//YWYmBhER0cbtJk7dy42bNiAuXPn4s8//8Tp06exaNEi+XyDBg2wb98+/P3337h169ZjnzdRZTHxTQaUDf+74zspCUKnM3I0REREREREREQEABMnTsSUKVPw9ttvo2nTpti5cye2bNkCb29vAICVlRW2bt2K06dPo2XLlnjvvfcMEtZA4cMpv/nmG8THx6Np06bYsGED5s2bZ9AmMDAQ33//PbZs2YIWLVqgW7duOHLkiHw+IiICycnJaNSoEerUqfPY501UWZJ4tLDPP1BGRgZsbGyQnp4OjUZj7HCMSuTl4VzLVkB+Prz2/AKzunWNHRIRERERERERURE5OTlISkpCw4YNDR7oSEQ1X2mf7/LmcrnjmwxIZmZQ1q8PgHW+iYiIiIiIiIiIqGZi4puKYJ1vIiIiIiIiIiIiqsmY+KYi/lfnm4lvIiIiIiIiIiIiqnmY+KYilJ4NAQBaljohIiIiIiIiIiKiGoiJbypC5ckd30RERERERERERFRzMfFNRSj/m/guuHkLBRkZRo6GiIiIiIiIiIiIqGKY+KYiTK2soHByAgBok5KMHA0RERERERERERFRxTDxTcXS7/rOZZ1vIiIiIiIiIiIiqmGY+KZi6et8a1nnm4iIiIiIiIiIiGoYJr6pWPKO70ssdUJERERERERE9DTZu3cvJEnCvXv3jB0K0VOLiW8qlsqzIQBA+9dfRo6EiIiIiIiIiKh2uXnzJsaPH4/69etDpVLBxcUFwcHBOHDgwBO5fnUnzqOjo2Fra1stYxFVF4WxA6Cnk37Ht/byZQitFpJSaeSIiIiIiIiIiIhqh7CwMGi1Wnz55Zfw9PTE9evXkZCQgNu3bxs7NANarRZK5oSohuKObyqWwtkZJhYWQEEBtJcvGzscIiIiIiIiIqIyCSGgy85+4i8hRLljvHfvHn777TcsWrQIXbt2hYeHB5599lnMmDEDffr0QXJyMiRJQmJiokEfSZKwd+9eg7EOHDiAZs2aQa1Wo3379jhz5ox8LiUlBb1794adnR0sLS3h7++P+Ph4JCcno2vXrgAAOzs7SJKE8PBwAEBgYCDeeOMNTJo0CY6OjggODgYALF++HE2bNoWlpSXq1auHCRMmIDMzE0Dh7vFRo0YhPT0dkiRBkiTMmzcPAJCbm4t33nkHbm5usLS0RLt27YrMgehx4Y5vKpYkSVB6eiLnzBnkXroEVaNGxg6JiIiIiIiIiKhU4sEDnG/V+olf1+eP45AsLMrV1srKClZWVvjxxx/Rvn17qFSqSl936tSpWLVqFVxcXDBz5kz07t0b//d//wczMzO8/vrr0Gq12LdvHywtLXH27FlYWVmhXr162Lx5M8LCwnD+/HloNBqYm5vLY3755ZcYP368QdkVExMTrF69Gg0bNsSlS5cwYcIETJs2DZ9++ik6dOiAlStXYs6cOTh//rw8RwB44403cPbsWWzcuBGurq6Ii4tDSEgITp8+DW9v70rPm6g8mPimEik9GyLnzBlo/7oE9DB2NERERERERERENZ9CoUB0dDReeeUVfPbZZ2jVqhW6dOmCIUOGoFmzZhUaa+7cuejRozBp8+WXX8Ld3R1xcXEYNGgQUlNTERYWhqZNmwIAPP9b1hYA7O3tAQBOTk5FanN7e3tj8eLFBscmTZok/9ygQQMsWLAA48aNw6effgqlUgkbGxtIkgQXFxe5XWpqKqKiopCamgpXV1cAwDvvvIOdO3ciKioKkZGRFZorUUUx8U0lUunrfCddMnIkRERERERERERlk8zN4fPHcaNctyLCwsLwwgsv4LfffsPhw4exY8cOLF68GOvXr0dgYGC5xwkICJB/tre3h4+PD/78808AwMSJEzF+/Hj89NNP6N69O8LCwsqVWG/duuiO+d27d+PDDz/EuXPnkJGRgfz8fOTk5CA7OxsWJex0P336NAoKCvDMM88YHM/NzYWDg0O550hUWUx8U4n0D7jMvZRk5EiIiIiIiIiIiMomSVK5S44Ym1qtRo8ePdCjRw/Mnj0bY8eOxdy5c/Hbb78BgEHd8Ly8vAqPP3bsWAQHB2P79u346aefrW7uOAAAIABJREFU8OGHH2LZsmV48803S+1naWlp8O/k5GSEhoZi/Pjx+OCDD2Bvb4/9+/djzJgx0Gq1JSa+MzMzYWpqiuPHj8PU1NTgnL4UCtHjxIdbUonkHd+XLlXoIQ1ERERERERERFQxfn5+yMrKwv+zd+fhUdb3+sfvmcnMJJM9JJkJSSAhmAhCAJEALnHHhYLYam3r2l0LVivaSt3qBu7dW+05p2qP2l+1buBSQQQREQKoLCphSwKBTBaSzGSfJPP8/oiM5oCaSMgzSd6v65oryfN8J3MPipfcfPP5pqSkSJIqKipC9z5/0OXnrV27NvR5XV2dtm/frjFjxoSuZWZm6uqrr9YLL7yg+fPn67/+678kSQ6HQ5LU2dn5lbk2btyoYDCohx9+WNOmTVNubq7279/fbY3D4Tjke02aNEmdnZ2qqqrS6NGjuz0+PxIFOFrY8Y0v5BgxQrLZFGxqUkdVlexut9mRAAAAAAAABrQDBw7o4osv1g9+8APl5+crNjZWGzZs0AMPPKALLrhAUVFRmjZtmu677z5lZ2erqqpKt95662G/11133aVhw4bJ7XbrlltuUXJysubMmSOpay73eeedp9zcXNXV1WnFihWhUnzkyJGyWCx65ZVXdP755ysqKuoLd2GPHj1a7e3t+uMf/6hZs2bp3Xff1aOPPtptTVZWlhobG7V8+XJNmDBBLpdLubm5uvTSS3XFFVfo4Ycf1qRJk1RdXa3ly5crPz9fM2fO7MNfVeBQ7PjGF7I4HHJkZkrq2vUNAAAAAACAIxMTE6OpU6fqt7/9rQoLCzVu3Djddttt+vGPf6w//elPkqS///3v6ujo0OTJk3X99dfrnnvuOez3uu+++3Tddddp8uTJ8nq9WrJkSbfd3HPnztWYMWN07rnnKjc3V3/5y18kSenp6brzzjt18803y+12a968eV+Yd8KECXrkkUd0//33a9y4cXr66ae1aNGibmtOPPFEXX311brkkkuUkpISOhzz8ccf1xVXXKH58+crLy9Pc+bM0fr16zVixIgj/nUEvorFYIaF/H6/4uPj5fP5FBcXZ3acsLL3Z3PV+NZbct92q5IuvdTsOAAAAAAAAJKk1tZWlZSUKDs7W5GRkWbHAdCHvuz3d0+7XHZ840s5R2VLkgK72PENAAAAAAAAYGCg+MaXcmR3HXDZVkLxDQAAAAAAAGBgoPjGl3LmdBXfgd0lJicBAAAAAAAAgJ6h+MaXcmR3jTrpqKxUZ2OTyWkAAAAAAAAA4KtRfONL2eLjZUtOliQFGHcCAAAAAADCjGEYZkcA0Mf64vc1xTe+kvPTXd+B3RTfAAAAAAAgPNjtdklSc3OzyUkA9LWDv68P/j7/OiL6KgwGL0fOKDWvX6825nwDAAAAAIAwYbPZlJCQoKqqKkmSy+WSxWIxORWAI2EYhpqbm1VVVaWEhATZbLav/b0ovvGVnKMOHnDJjm8AAAAAABA+PB6PJIXKbwCDQ0JCQuj399dF8Y2v5MjuKr7bKL4BAAAAAEAYsVgsSktLU2pqqtrb282OA6AP2O32I9rpfRDFN76SM+fTHd979shob5flCGbrAAAAAAAA9DWbzdYnRRmAwYPDLfGVIjweWaKipPZ2BcrLzY4DAAAAAAAAAF+K4htfyWK1ypGdJYk53wAAAAAAAADCH8U3esTJnG8AAAAAAAAAAwTFN3rEcXDO9+4Sk5MAAAAAAAAAwJej+EaPOEcdLL7Z8Q0AAAAAAAAgvFF8o0ccnxt1YhiGyWkAAAAAAAAA4ItRfKNHHFkjJatVwYYGddbUmB0HAAAAAAAAAL4QxTd6xOp0yp6RIUlqY843AAAAAAAAgDBG8Y0ec2ZnS5ICu3eZnAQAAAAAAAAAvhjFN3rMMergnG92fAMAAAAAAAAIXxTf6DFnTlfxHdi92+QkAAAAAAAAAPDFKL7RY6Ed3yUU3wAAAAAAAADCF8U3eszx6Yzvjv0VCjY1mZwGAAAAAAAAAA6P4hs9FpGYKFtioiSprbTU3DAAAAAAAAAA8AUovtErjtCcbw64BAAAAAAAABCeKL7RK87sT4tv5nwDAAAAAAAACFMU3+iV0AGXuyi+AQAAAAAAAIQnim/0ivOYYyRJLR9+KMMwTE4DAAAAAAAAAIei+EavuKacIIvLpY7KSrVu3Wp2HAAAAAAAAAA4BMU3esXqdCrmlFMkSQ3L3jQ5DQAAAAAAAAAciuIbvRZ71lmSpIY3Kb4BAAAAAAAAhB+Kb/RazGmnSna7Art3q203h1wCAAAAAAAACC8U3+g1W2ysoqdOlcS4EwAAAAAAAADhh+IbXwvjTgAAAAAAAACEK4pvfC2xZ54hWSxq3bJF7V6v2XEAAAAAAAAAIITiG19LREqKoiZOlCQ1LF9uchoAAAAAAAAA+AzFN742xp0AAAAAAAAACEcU3/jaYs/uKr6bi9ars77e5DQAAAAAAAAA0IXiG1+bY8QIOXNzpc5ONaxcaXYcAAAAAAAAAJBE8Y0jxLgTAAAAAAAAAOGG4htH5OC4k6bV7yrY0mJyGgAAAAAAAACg+MYRch57rOzp6TJaW9W4erXZcQAAAAAAAACA4htHxmKxhMadNDLuBAAAAAAAAEAYoPjGETs47qRhxUoZ7e0mpwEAAAAAAAAw1FF844hFTZokW1KSgn6/mtevNzsOAAAAAAAAgCGO4htHzGKzKfbMMyRJDYw7AQAAAAAAAGAyim/0iYNzvhveXC4jGDQ5DQAAAAAAAIChjOIbfcI1fbqs0dHqqKpS65YtZscBAAAAAAAAMIRRfKNPWB0OxZxaKIlxJwAAAAAAAADMRfGNPhNz5pmSpIZlb8owDJPTAAAAAAAAABiqKL7RZ2JOPVUWu12B0lIFdu0yOw4AAAAAAACAIYriG33GFhMj1/Rpkhh3AgAAAAAAAMA8FN/oU7FnnSWpa9wJAAAAAAAAAJiB4ht9KvaMMySLRa0ffaT2/fvNjgMAAAAAAABgCKL4Rp+KSE5W1PHHS5Ia3lxuchoAAAAAAAAAQxHFN/pcaNwJc74BAAAAAAAAmIDiG30u9uyu4rt5wwZ11NWZnAYAAAAAAADAUEPxjT7nyMiQ89hjpWBQjStWmh0HAAAAAAAAwBBD8Y2jgnEnAAAAAAAAAMxC8Y2j4uC4k6Z331WwudnkNAAAAAAAAACGEopvHBXO3FzZMzNltLWp8Z3VZscBAAAAAAAAMISYWnwvWrRIU6ZMUWxsrFJTUzVnzhwVFxd3W3PaaafJYrF0e1x99dXd1uzZs0czZ86Uy+VSamqqbrrpJnV0dPTnW8H/YbFYGHcCAAAAAAAAwBSmFt9vv/225s6dq7Vr12rZsmVqb2/XjBkz1NTU1G3dj3/8Y1VUVIQeDzzwQOheZ2enZs6cqUAgoDVr1ujJJ5/UE088odtvv72/3w7+j4PjThpXrpQRCJicBgAAAAAAAMBQEWHmi//nP//p9vUTTzyh1NRUbdy4UYWFhaHrLpdLHo/nsN9j6dKl+vjjj/Xmm2/K7XZr4sSJuvvuu/WrX/1Kv/nNb+RwOI7qe8AXi5o4UbbkZHXW1KipaL1iTj7J7EgAAAAAAAAAhoCwmvHt8/kkSUlJSd2uP/3000pOTta4ceO0YMECNX/usMT33ntP48ePl9vtDl0755xz5Pf79dFHHx32ddra2uT3+7s90PcsVqtizzhDktTw5jKT0wAAAAAAAAAYKsKm+A4Gg7r++ut10kknady4caHr3/ve9/TUU09pxYoVWrBggf73f/9Xl112Wei+1+vtVnpLCn3t9XoP+1qLFi1SfHx86JGZmXkU3hGkz407Wf6WjGDQ5DQAAAAAAAAAhgJTR5183ty5c7V161atXr262/Wf/OQnoc/Hjx+vtLQ0nXnmmdq1a5dycnK+1mstWLBAN9xwQ+hrv99P+X2URE+dKmtMjDqqq9WyaZNckyaZHQkAAAAAAADAIBcWO77nzZunV155RStWrFBGRsaXrp06daokaefOnZIkj8ejysrKbmsOfv1Fc8GdTqfi4uK6PXB0WBwOxZx+uiSp5s9/kWEYJicCAAAAAAAAMNiZWnwbhqF58+bpxRdf1FtvvaXs7OyvfM6HH34oSUpLS5MkTZ8+XVu2bFFVVVVozbJlyxQXF6exY8ceneDoleRrrpHF4VDT6tXyvfCC2XEAAAAAAAAADHKmFt9z587VU089pWeeeUaxsbHyer3yer1qaWmRJO3atUt33323Nm7cqNLSUi1evFhXXHGFCgsLlZ+fL0maMWOGxo4dq8svv1ybNm3SG2+8oVtvvVVz586V0+k08+3hU85R2Uq57jpJUuWi+9ReUWFyIgAAAAAAAACDmcUwcfaExWI57PXHH39cV111lfbu3avLLrtMW7duVVNTkzIzM3XhhRfq1ltv7TaepKysTNdcc41Wrlyp6OhoXXnllbrvvvsUEdGzEeZ+v1/x8fHy+XyMPTlKjM5OlX3vUrVs2qToU05R5t8e+8J//gAAAAAAAABwOD3tck0tvsMFxXf/aNu9WyVzLpQRCCjt3nuV8K1vmh0JAAAAAAAAwADS0y43LA63xNDgHDVKKdf9XJJUuWiR2r1ekxMBAAAAAAAAGIwovtGvkq66SpET8hVsbFTF7beLHzgAAAAAAAAA0NcovtGvLDabhi9cKIvDoaZV78j34ktmRwIAAAAAAAAwyFB8o985c3KU8vNrJX068qSy0uREAAAAAAAAAAYTim+YIumqqxSZn69gQwMjTwAAAAAAAAD0KYpvmMISEaHhC++VxW5X09ur5HvpZbMjAQAAAAAAABgkKL5hGufo0Uo+OPJk4UJGngAAAAAAAADoExTfMNWw739fkePHK9jQIO/tdzDyBAAAAAAAAMARo/iGqSwRERq+aKEsdrsa335bvpcZeQIAAAAAAAAcTkOgQWv2r9FfN/1V/oDf7DhhLcLsAIBz9GglX3utqh95RJULFyl6+omyu1PNjgUAAAAAAACYJmgEtbt+tzZVb9Lmms3aVLVJu327ZahrYkJ+cr5OSj/J5JThi+IbYWHYD76vhqVL1bp1q7y3366MR/8qi8VidiwAAAAAAACgX9S31mtzzWZtrt6sTdWbtLVmqxrbGw9ZlxGTofyUfMU6Yk1IOXBQfCMsHBx5UvLNb6nx7bflX7xY8RdcYHYsAAAAAAAAoE8YhiF/wK/K5kpVNlV2fWyuVHlDubbWbFWpv/SQ50RFRGlc8jhNSJmg/OR8jU8Zr+So5P4PPwBRfCNsOI85Rsnz5qn6t7+V996Fck2bzsgTAAAAAAAADAgdwQ6V+cu0r3GfvE1eeZu8oXL7YNHd0tHypd8jKy5L+Sn5mpAyQRNSJignIUcRVircr4NfNYSVYT/8QdfIk48+6hp58pc/y2KzmR0LAAAAAAAACPEH/Npeu13FdcUqri1WcV2xdtbtVCAY+MrnJjgT5Ha55Y52y+1yyxPt0ZikMRqfPF4JkQn9kH5osBiGYZgdwmx+v1/x8fHy+XyKi4szO86Q17p9u0q/dZGM9nZFn1qo9Iceki2WmUUAAAAAAADoX4ZhqLyxPFRyb6vdpu1127Wvcd9h17siXBoZN7Jbqe12ffZ5qitVkRGR/fwuBpeedrkU36L4Dkf+//xH+391s4y2Njmys5Xx5z/LOSrb7FgAAAAAAAAYpFo6WrSzbmdoF/f2uu3aXrf9sAdMSlJadJryEvOUl9T1ODbxWKXHpstqsfZz8qGlp10uo04QluLOPVf2jEyVz5unQEmJSr/9baU//JBiTj3V7GgAAAAAAAAYwAzDUGVzpbbXbQ+NKSmuLdaehj0KGsFD1tutdo1OGK3cxNyugjvpWOUm5ireGW9CevQUO77Fju9w1lFTo/LrrlfLxo2SxaKUG36hYT/6kSwWi9nRAAAAAAAAEMaCRlBVzVUq85epzF+mEl9JV9ldVyxfm++wz0mKTArt4s5NzFVuYq5GJYyS3Wrv5/T4Iow66QWK7/BmBALy3nOv6p99VpIUN3Om0u65W9aoKJOTAQAAAAAAwEyGYai2tVZ7Gvao1FeqMn9Z1+f+Uu3171VrZ+thn2ez2JQdnx3axX2w7E6OSu7nd4DeYtQJBg2Lw6G0u+5U5Ngx8t5zr/yvvqpASYky/vRH2YcPNzseAAAAAAAAvoBhGGrpaJGvzaf6tnr5Ap9+bO36WN9WL3/Ar+b25sM/X4ffs3twN/ce/x41tDd84etHWCKUEZuhkXEjNSJuhI5JOEZ5SXnKSciR0+bsk/eI8MSOb7HjeyBpXr9e5T+/Tp11dbING6aMP/xersmTzY4FAAAAAAAwZB2cmb2pepM2VW9ScW2xaltr5WvzydfmUyAYOKqvb5FFadFpoXI7Ky5LI+NGamTcSA2PGa4IK3t/BxNGnfQCxffA0r5vn/bOu1Ztn3wi2e3y3HqrEi/5ttmxAAAAAAAAhoTWjlZ9fOBjba7erE3Vm7S5erOqWqq+9DkR1gglOBOU4ExQvDM+9PHg59ER0b0+021Y1DCNjB2pzLhMdm8PIRTfvUDxPfAEm5u1/5Zb1PD6fyRJCd/9jjwLFsjicJicDAAAAAAAYPAwDEPlDeXaVNNVcG+u3qzi2mJ1GB3d1tksNuUm5io/JV/jkscp1ZXareR2Rbh6XWwDh8OMbwxqVpdL6Y88ogPHjlH1736n+n/+PwV27FT673+niGHDzI4HAAAAAAAwIBmGob0Ne7XOu07rK9aryFukA60HDlmXHJWsCSkTlJ+Sr/zkfB2XfJyiIqJMSAwcHju+xY7vga5hxQrtv/EmBZua5MjJUdY/n5GNf44AAAAAAAA94m3yqshbpHUV61TkLZK3ydvtfoQ1QmOTxio/JT9UdqdFp7GDG6Zg1EkvUHwPfG27d2vP93+gjspKRZ94ojIfe1QWu93sWAAAAAAAAGHnQMsBra9cr6KKIhV5i1TmL+t2P8IaoQkpEzTVM1VTPFM0PmU8M7QRNii+e4Hie3Bo/eQTlV56mYzmZiV85xJ57riDv3kEAAAAAABDgmEYamxvlK/NJ1+bT/Vt9apvqz/k6x31O7Sjbke351otVh037DgVeApUkFagSamTGFuCsMWMbww5kWPGKP2hh1Q+d67q/9+/5MzOVtKVV5odCwAAAAAAoE80Bhq1vW67iuuKVVxbrBJfSajQ9rf5Dzlw8svkJuaqwFOgqWlTNdk9WbGO2KOYHOh/FN8YVGLPOF2pv/ylqu6/X5X33S/7iBGKPf10s2MBAAAAAAD0mGEY2te4T8V1xdpe21V0b6vdpn2N+77yuZG2SMU74xXvjFeCMyH08eDnadFpOsFzgpIik/rhnQDmofjGoJN01ZUK7N6t+uee0775NyrrmacVeeyxZscCAAAAAAA4hGEYKm8s1wbvBn1S+4mKa4u1vW67GtsbD7ve7XIrLylPeYl5Gp0wWslRyd2K7siIyH5+B0B4ovjGoGOxWOS5/TYFyveq+b212nv1Ncp69l+yp6aaHQ0AAAAAAEDeJq/We9eryFukoooi7W/af8iaCGuERieMVm5irvIS80Jld0JkggmJgYGHwy3F4ZaDVafPp9LvfFeBkhJFjhunkf/7D1mjOJgBAAAAAAD0rwMtB7S+cr2KKoq03rtepf7SbvcjLBEanzJe+cn5XQV3Up6y47Nlt9rNCQyEsZ52uRTfovgezAJ79qj025eos75eseeco/TfPiKL1Wp2LAAAAAAAMIjVtdbpg6oPunZ0e4u0o25Ht/tWi1Vjk8aqIK1ABZ4CTUqdJJfdZVJaYGCh+O4Fiu/BrXnDBpV9/wdSe7uG/fSnSv3F9WZHAgAAAAAAg0BHsEN7/HtUXFes4tri0GGUVS1Vh6zNTcxVgadAU9Om6nj38Ypz0EEBX0dPu1xmfGPQc51wgtLuvksVNy/QgccekyMrSwkXzjE7FgAAAAAAGED8Ab+2127vKrfrtqu4tlg763eqrbPtsOuz4rI0NW2qCjwFOsFzgpIik/o5MTC0UXxjSEiYM0eB0lIdePQxVdx+uxwZ6XJNmWJ2LAAAAAAAEGaCRlB7G/Z228FdXFesiqaKw66PiohSbmJut0Moj0k8RtH26H5ODuDzKL4xZKT8/OcKlJSq4Y03VD7vWmU9+y85Ro40OxYAAAAAADBJU3uTdtTtCJXcxXXF2lG3Qy0dLYddPzx6uHKTPiu48xLzlBGbIauF88SAcEPxjSHDYrVq+H2LVLZ/v1q3bNHen16trH/9P9ni482OBgAAAAAAjrKGQIO2VG/R5prNoaJ7b8Pew6512pwanTBaeUl5oZ3cuUm5zOUGBhAOtxSHWw41HdXVKvn2JeqoqJBr2jSN+NtjsjgcZscCAAAAAAB9JGgEtbt+tzZVb9Lmms3aVLVJu327ZejQGiw1KvWQXdwj4kYowsp+USAc9bTLpfgWxfdQ1FpcrLLvfk/B5mY5cnKUeuN8xZx2miwWi9nRAAAAAABAL/nafNpcvbmr6K7erC01W9TY3njIuoyYDOWn5GvssLGhkjsxMtGExAC+LorvXqD4HpoaV7+r/TfeqM76ekmSq6BAqb/8paLGHWdyMgAAAAAA8GU6gh1a712vN8veVJG3SKX+0kPWREVEaVzyOOUn52tCygSNTxmv5Kjk/g8LoE9RfPcCxffQ1dnQoAN/+5tqn/yHjEBAkhQ3a5ZSr79O9vR0k9MBAAAAAICD2oPtKqoo0rKyZVq+Z7nq2+q73R8ZN1ITUiZ0Fd2pEzQ6YTTjSoBBiOK7Fyi+0b5/v6p//3v5Xl4sSbI4HEq8/DIl//SnsvHvBAAAAAAApmjvbNfairVaWrZUb+15S/6AP3Qv0ZmoM0acodMyT9OElAmMLAGGCIrvXqD4xkEtH32kqgcfUvPatZIkW3y8kuf+TInf+Q4HYAIAAAAA0A8CnQG9t/89LS1bqhV7V6gh0BC6lxSZpLNGnKUZWTM02T2ZHd3AEETx3QsU3/g8wzDUtGqVKh98UIGduyRJ9hEjlHrDDYo9ZwYHYAIAAAAA0McaA41as3+NVuxdoZV7V3Y7mDI5KjlUdh+ferxsVpuJSQGYjeK7Fyi+cThGR4fqX3hB1X/4ozpraiRJURMnKvVXv5Rr0iST0wEAAAAAMHAZhqFSf6lWla/SqvJVer/yfXUYHaH7qVGpOmtkV9k9MWUiZTeAEIrvXqD4xpcJNjXpwN8f14G//11GS4tksWj4A/crftYss6MBAAAAADBgBDoD2uDdoFX7usruvQ17u93PistSYUahzh55tvJT8mW1WE1KCiCcUXz3AsU3eqK9skpV998n/2uvS1ar0h95WHHnnmt2LAAAAAAAwlZlU6Xe2feOVpWv0tqKtWrpaAnds1vtOsF9ggozClWYUagRcSNMTApgoOhpl8sJAEAP2d2pGv7QQ7JERcn3/AvaN/9GyWZT3Nlnmx0NAAAAAICw0NTepPcr31eRt0hrK9ZqW+22bvdTolJUmFGoUzJO0fS06XLZXSYlBTDYUXwDvWCxWpV2111SR4d8Ly/Wvhvmy/KH3yv29NPNjgYAAAAAQL9r7WjVpupNWlexTkXeIm2t2apOozN03yKLxieP1ykZp6gwo1BjksbIYrGYmBjAUEHxDfSSxWZT2sKFMto75H/tNe37+XXK+MufFXPKKWZHAwAAAADgqGoPtmtrzVYVVRSpyFukD6s+VCAY6LYmIyZDBWkFmuKZoulp0zUsaphJaQEMZRTfwNdgsdk0/P77ZHR0qGHpUpXPnafMR/+q6BNPNDsaAAAAAAB9qqKxQsvKlmlNxRq9X/l+tzndkpQalaqCtAIVeApUkFag9Jh0k5ICwGc43FIcbomvzwgEVH79L9T41luyREYq82+PKbqgwOxYAAAAAAAckfKGci0rW6ZlZcu0pWZLt3uJzkRN8UwJFd1ZcVmMLwHQb3ra5VJ8i+IbRyYYCKj82mvV9PYqWVwujfjv/5Lr+OPNjgUAAAAAQK/s9e/V0rKlWlq2VB8f+Dh03SKLJrsn6/TM0zU1baqOSTxGVovVxKQAhjKK716g+MaRCra1qfyan6lpzRpZo6M14u//o6gJE8yOBQAAAADAlyrzl2lp6VItK1umT2o/CV23Wqw6wX2CZoycoTNHnqnkqGQTUwLAZyi+e4HiG30h2NKivVdfo+Z162SNjdWIv/9dUePHmR0LAAAAAICQoBFUcW2xVpWv0tKypdpetz10z2axaYpnis4eebbOHHEmh1ICCEsU371A8Y2+Emxu1p6f/EQtGzbKGh+vkU88rsgxY8yOBQAAAAAYogzD0G7fbq2rWKcib5E2VG6Qr80Xum+z2DQ1barOHnm2zhhxhpIik0xMCwBfjeK7Fyi+0Zc6G5u090c/UsuHH8qWkKAR/3hSkbm5ZscCAAAAAAwBhmGovKFc67xdRXdRRZEOtB7otsYV4dIJnhN01oizdHrm6UqITDApLQD0HsV3L1B8o691NjRozw9+qNYtW2QbNkwjn3xCztGjzY4FAAAAABiEvE1erfeuD+3qrmiq6HbfaXNqYupETfVMVUFagcYOGyu71W5SWgA4MhTfvUDxjaOh0+dT2fe/r7aPP5HF5VLqdT9X4qWXyhIRYXY0AAAAAMAAdqDlgNZXrldRRZGKvEUq85d1ux9hjVB+cr4K0gpU4CnQhJQJctgcJqUFgL5F8d0LFN84Wjrq6lR+7bVq2bBRkuQcO0Zpd97FoZcAAAAAgB7zB/za6N2oIm+R1nnXaUfdjm73rRarjht2nAo8XUX3xNSJctldJqUFgKOL4rsXKL5xNBnBoOqff15VDz6koN8vWa1KvPRSpVz3c9liYsyOBwAAAAAIM83tzfqg6oOuOd0VRfqk9hMFjWC3NXmJeaEd3ZPdkxXriDUpLQD0L4rvXqD4Rn/oqKlR5f0PyL9kiSQpIjVV7ltvUezZZ8tisZicDgCgVT4YAAAgAElEQVQAAABwtASNoBoCDapvq5evzdft4//9vL61Xrt8u9QR7Oj2PbLisjQ1baoKPAU6wXOCkiKTTHo3AGAuiu9eoPhGf2pas0YVd96p9rI9kqSY00+X59ZbZE9PNzkZAAAAAKC3mtqbVNlUKW+zt9vHyuauR01zjXwB3yE7tr9KWnRaqOgu8BTIHe0+Su8AAAYWiu9eoPhGfwu2tqrmscd04L//R2pvlyUqSinXXqukKy7n8EsAAAAACDMdwQ5trt6sIm+RKpoqugruJq8qmyvV2N7Y4+/jinApwZmgeGe8EpwJn30e+dnn8Y54ZcVnKSMmg58OBoDDoPjuBYpvmKVt1y5V3HHHZ4dfjhmjtDt/o6j8fJOTAQAAAMDQ5mvzafW+1VpVvkqr962WP+D/wrWxjli5XW65o93yuDxyu9zyRHd9THYlK9GZqHhnvBw2Rz++AwAYnCi+e4HiG2YygkH5XnxRlQ88qKDPJ1ksSvzud5Vyww2yxUSbHQ8AAAAAhgTDMLSjfodWla/SqvJV2lS9qdt4knhnvE4cfqJy4nPkjnZ3K7dddpeJyQFgaKH47gWKb4SDjgMHVPXAA/K9vFiS5MjJUeaf/yRHVpa5wQAAAABgkGrpaNF67/pQ2V3RVNHt/jGJx6gwvVCFGYXKT8lXhJXRlABgNorvXqD4Rjhpeu897f/VzeqoqpI1NlbpjzysmFNOMTsWAAAAAAxoHcEOlfpKVVxXrOK6Ym07sE3vV72vts620BqnzampaVNDZXdaTJqJiQEAh0Px3QsU3wg37VVV2vfz69Ty4YeSxaKUG36hYT/6EQebAAAAAEAP+Np82l63XcW1XSV3cW2xdtXvUiAYOGStJ9qjUzNOVWFGoaZ4pigqIsqExACAnqL47gWKb4SjYCCgyrvvUf1zz0mS4s4/X2n33iNrFP8TBgAAAAAHBToD2uDdoI1VG7W9druK64oPGVlykCvCpdzEXOUl5Sk3MVcTUyfqmIRj2GQEAANIT7tchlMBYcrqcMhz152KHDtG3nsXyv/aa2orKVHGH/8oR0a62fEAAAAAwDSVTZV6Z987WlW+Smsr1qqlo+WQNcOjhysvKa/rkdj1SI9Nl9ViNSExAKC/seNb7PhG+Gtev17l112vztpa2RITlf673yl6aoHZsQAAAACgX3QGO7X1wFa9vfdtvbPvHW2r3dbtfmpUqqYPn64xw8YoLzFPuUm5inPw53sAGIwYddILFN8YCNorKlQ+d55aP/5YstnkvvlmJV52KT+SBwAAAGBQ8gf8WrNvjVaVr9LqfatV11YXumeRReNTxocOoTw26Vj+bAQAQwTFdy9QfGOgCLa2quL22+VfvESSFP/Nb8pzx+2yOp0mJwMAAACA3mtqb1JlU6W8zd5uH0t8JdpUvUmdRmdobYw9Rieln6TCjEKdnH6ykiKTTEwOADALM76BQcgaGanh99+vyDFjVfXgg/K98ILadu1Uxh/+ILvbbXY8AAAAAOimub1ZHx34SOUN5YeU25VNlWpob/jS54+KH6XCjK5d3RNTJ8putfdTcgDAQMeOb7HjGwNT05o1Kv/FDQr6fLKlJCvj93+Q6/hJZscCAAAAMEQFjaDK/GXaXL1Zm6o3aXP1Zu2o36GgEfzS58XYY+SJ9sjtcnf7eILnBGXGZvZTegDAQMGok16g+MZAFdi7V+U/m6u2HTski0WuaVOVMGeOYs8+W1aXy+x4AAAAAAaxhkCDtlRv0aaarpJ7c/Vm+QP+Q9Z5oj3Kic85bLmd6kpVjCPGhPQAgIGK4rsXKL4xkAWbmlRx+x3yv/pq6JrF5VLcjBmKnzNHroIpslitJiYEAAAAMBi0drRq5d6VWrN/jTZXb9Zu324Z6l4pOG1OHTfsOOWn5Hc9kvPljmYsIwCg71B89wLFNwaDQHm5fIsXy/fSy2rfsyd0PWJ4muJnz1b8BRfImZ1tYkIAAAAAA03QCOqDqg+0ZNcSvVH6hhrbG7vdz4zNDBXcE1ImKDcplzncAICjiuK7Fyi+MZgYhqGWDz6Q76WX5X/9dQUbPjssJmrCBMVfOEdx550nW3y8iSkBAAAAhLMyf5mW7FqiV3a/on2N+0LXh0cP1zlZ5+h49/Eanzxew6KGmZgSADAUUXz3AsU3Bqtga6sa33pL9S+/rKbV70qdnZIki92umDPOUExhoRzZ2XKOypYtIcHktAAAAADM5Gvz6Y3SN7R412Jtqt4Uuh5tj9aMkTM0K2eWJrsny2phlCIAwDwU371A8Y2hoKO6Wr5XXpXvpZfUVlx8yH1bYqIc2dlyZGfJmZ0tx6hRcmRly5GZIYudH1UEAAAABqP2znat3rdaS3Yv0cq9K9UebJckWS1WTR8+XbNHzdbpI05XVESUyUkBAOhC8d0LFN8Yalq3bZNvyRK1ffKJ2naXqMPr/eLFERFyZGR07QwfnaOEiy6SY+TI/gsLAAAA4GsLGkEdaDmgyuZKVTZVytvs7fZxl2+XfG2+0PrcxFzNzpmt87PPV4orxcTkAAAcHsV3L1B8Y6gLNjcrUFqqtpISBUpKFdi9W22lJQqUlslobu621hIZqdT585V46fdksfIjjgAAAEA4qG6u1srylSrzlXWV3J8W3VXNVeowOr70uclRyZqZPVOzcmYpLymvnxIDAPD1UHz3AsU3cHiGYaijslKBkhK1lZSo4Y2lal63TpLkmjJFaQvvlSMz0+SUAAAAwNBU2VSpN/e8qaWlS/VB1QcydPg/3lstViVHJcvj8sgd7Zbb5ZYn2iO3y620mDQdN+w4RVgj+jk9AABfD8V3L1B8Az1jGIbq//UvVT7woIzmZllcLrlvulEJl1zC7m8AAACgH3ibvFpWtkzLypbpg6oPut2bkDJB+Sn5oYL7YLmdHJVMsQ0AGDQovnuB4hvonUB5uSp+fYuai4okSa7p0zT8nntkT083ORkAAAAw+HibvFpaulRLy5ZqU/WmbvcmpkzUjKwZOnvk2fJEe0xKCABA/6H47gWKb6D3jGBQdc/8U1UPPyyjpUVWl0upN/9KCRdfLIvFYnY8AAAAYEDzNnn1RukbWlq6VJtrNoeuW2TRpNRJmpE1Q2eNOEvuaLeJKQEA6H8U371A8Q18fYGyMu3/9S1q2bhRkhR90klKu+du2dPSTE4GAAAADCydwU69u/9dPVf8nFbtW6WgEZTUVXYf7z5eZ488W2ePPFuprlSTkwIAYB6K716g+AaOjNHZqbqnnlLVI7+V0dYma0yM3AtuVvw3v8nubwAAAOArVDVX6cUdL+r5Hc+roqkidP341ON1bva5OmvEWUpxpZiYEACA8EHx3QsU30DfaNtdoopf/1otH34oSYouPEVpd98tu5sfvwQAAAA+L2gEtXb/Wj27/Vmt3LtSnUanJCneGa/ZObN1Ue5FGhU/yuSUAACEH4rvXqD4BvqO0dmp2ieeVPXvfy8jEJA1Pl5ZT/2vnMccY3Y0AAAAwHQ1LTV6aedLen778ypvLA9dPz71eF2Ue5FmZM2Q0+Y0MSEAAOGN4rsXKL6Bvte2a5f23/RLtX78sZzHHKOs556VNTLS7FgAAABAvzMMQ0XeIj23/Tkt37NcHcEOSVKsPVazcmbp4tyLNTpxtMkpAQAYGCi+e4HiGzg6OmpqtHvOheqsqVHipZfKc9utZkcCAAAA+tXHBz7WfUX36YOqD0LX8pPzdVHuRTo3+1xFRUSZmA4AgIGnp11uRD9mAjDERCQna/iihdr745+o7umnFX3ySYo9/XSzYwEAAABHXV1rnf7wwR/0/PbnZchQVESUZufM1sW5FysvKc/seAAADHoU3wCOqphTTlHSlVeq9sknVfHrWxT58kuyp6aaHQsAAAA4KjqCHXq2+Fn96cM/qSHQIEk6L/s83TD5BnmiPSanAwBg6KD4BnDUpcy/QU3r1qlt2zZV3LxAmf/9X7JYrWbHAgAAAPpUUUWRFhUt0s76nZKkvMQ8LZi6QJPdk01OBgDA0EPzBOCoszocSn/4IVkiI9W0Zo1qn3jS7EgAAABAn6lorND8lfP1w6U/1M76nYp3xuu2abfpX9/4F6U3AAAmofgG0C+cOTlyL1ggSar67W/VsvUjkxMBAAAAR6a1o1WPbnpUs1+araVlS2W1WHVJ3iV69cJX9e28b8tmtZkdEQCAIYtRJwD6TcK3L1bT6tVqWLZM++fPV/YLz8saHW12LAAAAKBXDMPQW3ve0oMbHtS+xn2SpMnuyVpQsICDKwEACBMU3wD6jcViUdrdd6ll82YFysrkXbRIw++5x+xYAAAAQI90Bju1Zv8aPfnxk1pXsU6S5Ha5deMJN+qcrHNksVhMTggAAA6i+AbQr2wJCRr+wAPac9VV8v37ecWcfLLizj3X7FgAAADAF6ppqdGLO17Uv7f/W/ub9kuSHFaHrhp3lX447ody2V0mJwQAAP8XxTeAfhc9tUDDfvITHXjsMVXcfoei8vNlHz7c7FgAAABASNAIal3FOj23/Tmt2LNCHUaHJCnWEasLci7QpWMuVUZshskpAQDAF6H4BmCKlHlz1fTee2rdvFn7fvlLjXzySVlsHP4DAAAAc9W21uqlnS/p39v/rb0Ne0PXJ6ZM1MV5F2vGyBmKjIg0MSEAAOgJim8AprDY7Up/6EGVzLlQLRs2quaxx5Tys5+ZHQsAAABDkGEY2lC5Qc8VP6c397yp9mC7JCnGHqNvjPqGLs67WLmJuSanBAAAvWE188UXLVqkKVOmKDY2VqmpqZozZ46Ki4u7rWltbdXcuXM1bNgwxcTE6Fvf+pYqKyu7rdmzZ49mzpwpl8ul1NRU3XTTTero6OjPtwLga3CMGCHPHbdLkmr+/Bc1v/+ByYkAAAAwVBiGoZ11O/U/W/5HF7x8gX7wxg/0eunrag+2a9ywcbrzxDu1/OLlumXaLZTeAAAMQKbu+H777bc1d+5cTZkyRR0dHfr1r3+tGTNm6OOPP1Z0dLQk6Re/+IVeffVVPffcc4qPj9e8efP0zW9+U++++64kqbOzUzNnzpTH49GaNWtUUVGhK664Qna7XQsXLjTz7QHogbjZs9X4zmr5X3lF+2+6SdkvvShbbKzZsQAAADAItXW2ab13vVaVr9Kq8lXa17gvdC8qIkozR83UxbkXa+ywsSamBAAAfcFiGIZhdoiDqqurlZqaqrfffluFhYXy+XxKSUnRM888o4suukiStG3bNo0ZM0bvvfeepk2bptdff13f+MY3tH//frndbknSo48+ql/96leqrq6Ww+H4ytf1+/2Kj4+Xz+dTXFzcUX2PAA7V2dCgkgu/qfbycsXNnKnhDz0oi8VidiwAAAAMAlXNVaGie23FWrV0tITuOawOFaQV6IwRZ+i8rPMU44gxMSkAAOiJnna5YTXj2+fzSZKSkpIkSRs3blR7e7vOOuus0Jpjjz1WI0aMCBXf7733nsaPHx8qvSXpnHPO0TXXXKOPPvpIkyZNOuR12tra1NbWFvra7/cfrbcEoAdssbEa/uADKrvscvlffVXRp5yshDlzzI4FAACAAShoBPVRzUd6u/xtrSpfpU9qP+l2PzUqVYWZhSpML9TUtKly2V0mJQUAAEdT2BTfwWBQ119/vU466SSNGzdOkuT1euVwOJSQkNBtrdvtltfrDa35fOl98P7Be4ezaNEi3XnnnX39FgAcAdekSUqZN1fVv/+DKu++R9HTpsnu8ZgdCwAAAGEsaARV3lCu4rpiFdcWq7iuWJurN6u2tTa0xiKLxieP1ykZp+jUjFN1bNKx/HQhAABDQNgU33PnztXWrVu1evXqo/5aCxYs0A033BD62u/3KzMz86i/LoAvN+wnP1HjyrfVsmmTvHfdrYw//4k/lAAAAECS1NzerO1127W9bnuo5N5Rt0PNHc2HrI22R+vE4SeqMKNQJ6efrOSoZBMSAwAAM4VF8T1v3jy98sorWrVqlTIyMkLXPR6PAoGA6uvru+36rqyslOfTnaAej0dFRUXdvl9lZWXo3uE4nU45nc6+fhsAjpDFZpPn7rtU8q2L1PjWW2p4Y6nizj3H7FgAAADoZ+2d7dpSs0UbKjdoW+02FdcWa2/DXhk69Igqh9Wh0YmjlZeYp7ykPOUl5mlCygTZbXYTkgMAgHBhavFtGIauvfZavfjii1q5cqWys7O73Z88ebLsdruWL1+ub33rW5Kk4uJi7dmzR9OnT5ckTZ8+Xffee6+qqqqUmpoqSVq2bJni4uI0diwncQMDTWRurob96Ic68NdH5b33HkVPnyZbfLzZsQAAAHAUdQY79UntJyryFqmookjvV73f7RDKg1KiUpSblNtVcn9adI+MG6kIa1js6QIAAGHEYhjGoX9l3k9+9rOf6ZlnntHLL7+svLy80PX4+HhFRUVJkq655hq99tpreuKJJxQXF6drr71WkrRmzRpJUmdnpyZOnKjhw4frgQcekNfr1eWXX64f/ehHWrhwYY9y9PQkUAD9I9jWppI5FypQUqKEiy9S2t13mx0JAAAAfShoBLWjbkdX0e0t0kbvRjW0N3Rbk+hM1BTPFOWn5Cs3MVd5SXlKikwyKTEAAAgXPe1yTS2+v2h27+OPP66rrrpKktTa2qr58+frn//8p9ra2nTOOefoL3/5S7cxJmVlZbrmmmu0cuVKRUdH68orr9R9992niIie/a0/xTcQfpo3bFDZZZdLkkb840lFFxSYnAgAAABHoryhXGv2r9G6inVa712vura6bvdj7bE6wXOCCjwFKkgr0OiE0bJarCalBQAA4WpAFN/hguIbCE8Vt9+h+meflSMrS9kvvyQrs/kBAAAGFH/ArzdK39CSXUv0QdUH3e5FRUTpePfxmuqZqgJPgY5NOlY2q82kpAAAYKDoaZfLIDQAYSv1xvlqXLFCgdJS1fz1r0q9/nqzIwEAAOArtAfb9d7+97R412Kt2LNCgWBAkmSRRZPdkzU1baqmpk3VuGHjOIASAAAcNRTfAMKWLS5O7ttu1b6fX6cD//0/ijvvPEV+7jwAAAAAhAfDMLStdpsW71qs10peU21rbeje6ITRmp0zW+dnny93tNvElAAAYCih+AYQ1uJmzJDvrDPV+OZyVdx2u7L++YwsNn4EFgAAIBxUNVfptd2v6eVdL2tn/c7Q9aTIJJ2ffb5m58zWsUnHfuH5TgAAAEcLxTeAsOe57TbtXrtOrZs3q+7pZ5R0xeVmRwIAABiyWjpa9Naet7Rk1xK9V/GegkZQkuSwOnRa5mmanTNbJ6afKLuVMSYAAMA8FN8Awp7d7VbqjfPl/c2dqvrd7xR75hmyp6ebHQsAAGDICBpBbazcqMW7Fmtp6VI1dzSH7k1KnaRZObM0Y+QMxTvjTUwJAADwGYpvAANCwre/Ld+SV9SycaMq7rpLmY8+yo/MAgAAHGUlvhIt2bVEr+x+RRVNFaHr6THpmpUzS7NHzVZmXKaJCQEAAA6P4hvAgGCxWpV2150qmXOhmt5eJf9rryl+5kyzYwEAAAw69a31er30dS3ZtURbaraErsfaYzUja4Zm58zWpNRJbEIAAABhjeIbwIDhzMnRsKt/qpo//kmV9y5U9IknKiIx0exYAAAAA16gM6B3yt/R4l2LtWrfKnUEOyRJNotNJ6efrFk5s3Ra5mly2pwmJwUAAOgZim8AA0ryj38s/+uvK7Bzl6oeeFDDFy00OxIAAMCAVdlUqX9u+6ee3/G86tvqQ9fHJI3RrJxZOi/7PCVHJZuYEAAA4Ouh+AYwoFgcDqXdfbfKvnepfC++qPjZsxQ9fbrZsQAAAAaUj2o+0j8+/oeWli5Vh9G1uzs1KlUzc2Zq1qhZOibxGJMTAgAAHBmKbwADjmvSJCV+97uqe+YZVdzxG41a/LKskZFmxwIAAAhrncFOrdy7Uv/4+B96v+r90PXJ7sm6fOzlOi3jNNmsNhMTAgAA9B2KbwADUsoNv1DD8uVq37NHNX/+s1Lnzzc7EgAAQFhqam/Sizte1NOfPK3yxnJJUoQlQudmn6vLxl6m44YdZ3JCAACAvkfxDWBAssXEyHPH7Sr/2Vwd+PvjikhJlSM7S/a0NEV40mSLiTY7IgAAgKn2Ne7TM588oxd2vKDG9kZJUrwzXhfnXqzv5H1H7mi3yQkBAACOHopvAANW7BlnKPbcc9Xwn/+ocmH3Qy6tcXGyp6XJ7vEoYnia7GnDZU/zhIpxuztVFrvdpOQAAABHR9AI6v3K9/XMtme0fM9yBY2gJCkrLkuXj71cs3JmKSoiyuSUAAAARx/FN4ABLe3uu+TIzFTb9u1q93rVXlGhoN+voN+vNr9fbcXFh32eJSpK8XMuUNLlV8g5KrufUwMAAPSdzmCnPqj6QEvLlurNsjdV3VIdujctbZouH3u5Tk4/WVaL1cSUAAAA/ctiGIZhdgiz+f1+xcfHy+fzKS4uzuw4AI5QZ2OTOrwVaq/47NGxvyJUjHdUVMhobw+tjz61UMOuvFKu6dNlsVhMTA4AANAzncFOvV/1vpaWLtWbe95UTUtN6F6MPUYzsmbo0jGXKjcx18SUAAAAfa+nXS7Ftyi+gaHGCAbVvH6Dap98Uo0rVkif/mfQmZurpCuvUNw3viGr02lySgAAgO4Olt1vlL6h5XuWdyu7Y+2xOn3E6ZoxcoamD58uh81hYlIAAICjh+K7Fyi+gaErUFqq2qeeVv0LL8hobpYk2ZKSlPid7yjxe99VRHKyyQkBAMBQ1hns1IbKDaGd3bWttaF7sY5YnZF5hmZkzdD0tOmy2zi/BAAADH4U371A8Q2g0+9X/XP/Vu3TT6ljf4UkyWK3K27mTCVddaX+P3v3GR5lmbZx/D+TSe8hnZ6gQBBQQEB2UZaOL0SKIkixIKzr6oqi7ooV1xUrYkcUlSIiCChhLcGCoKhUQUiAECAkIQVSSc+U90PcrKyum4FMnpTzdxwcMPc888zJF5icuXPdXl26GJxQREREWhKHw8HWzK0s2LmA1KLU2vUAjwAGtxvM8PbD6R/VX2W3iIiItDgqvp2g4ltE/sVhtXLms8/If3sp5T/8ULvu068frWbNxO93vzMwnYiIiLQEB/IOsGDnArZnbwdqxpgMbT+U4R2G0y+qH+5mld0iIiLScqn4doKKbxH5NeV795K/dCnFnyaCzQZAQPwYIufOxS0oyOB0IiIi0txklmTywu4X+OjYRwB4mD2Y0nUKN/e4mQAPfZ0iIiIiAiq+naLiW0R+S3VWFnlvvkXBO++A3Y5baCiRDz9EwLBhRkcTERGRZqCosog3fnyDd5LfodpeDcDomNHcfsntRPtFG5xOREREpHFR8e0EFd8iUhfle/dy8v77qTpSM2fTf9RIIh98EEtIiMHJREREpCmqslWx6uAqXtv3GsVVxQD0i+zHXX3uIq5VnMHpRERERBonFd9OUPEtInVlr6ri9MuvkPfGG2Cz4RYcTOSDD+A/ahQmk8noeCIiItIEOBwOPj3+KQt3LySzJBOATkGduLP3nQxsPVCfKURERER+g4pvJ6j4FhFnle8/QNbcuVQePgyA/7ChRD70EJawMIOTiYiISGO2M3snz+58lv15+wEI8w7jtktuIz42HovZYnA6ERERkcZPxbcTVHyLyLlwVFVx+rXFnH7tNbBaMQcGEjn3PgLi47VTS0RERGqdLj/NP4/+k4TUBA4VHALAx+LDjRfdyPS46fi4+xicUERERKTpUPHtBBXfInI+Kg4e5OTcuVQmJQPgN2gQkfMewT0iwuBkIiIiYpQKawVfpn/JhtQNbDu5DbvDDoC72Z1xncbxp4v/RKh3qMEpRURERJoeFd9OUPEtIufLUV1N3pI3Of3yyziqqzH7+RHxt78SOGGCdn+LiIi0EHaHnd05u0k4mkDi8URKqktqn+sZ1pP42HhGdBhBoGeggSlFREREmjYV305Q8S0i9aUyJYWT9z9Axb59AJj9/fHq3BnPLl3w6toFz85d8LygE2ZPT4OTioiISH1JK04jITWBjUc31h5WCRDtG83o2NHEx8bTPqC9gQlFREREmg8V305Q8S0i9clhtZK/dBmnXn4ZR1nZLy9wc8MzpiOenf9dhnt16YwlVD/uLCIi0phZ7VZOl58muzSb7NJsMksy2Zy+mR9O/VB7ja+7L8PbD2dM7Bh6R/TGbDIbmFhERESk+VHx7QQV3yLiCo6qKiqPHqXi4EEqkw9ScegQlQcPYiss/NXr3cJC8e52EcHXTcZ34ECNSBEREWlADoeDvIo8skqyyC6rKbZzSnNq/5xdms2p8lO1s7p/zmwyc1n0ZcTHxPOHdn/A2+JtwN9AREREpGVQ8e0EFd8i0lAcDgfWnJyaMvzgoZ9+P0hVWhr87J9jz7iuhM76I/7Dh2Eya6eYiIiIq2SWZLIxdSMJRxNIK077n9dbTBbCfcKJ9I0kwjeCbq26cWXHKwnzCWuAtCIiIiKi4tsJKr5FxGj2sjIqDx+m+JNPKVi9unZEikdMDK1mziRw9P9hcnc3OKWIiEjzUFpdSuLxRBKOJrAje0ftutlkJtQ7tKbU9okg0jeSSJ/Imt9/+tXKqxVuZjcD04uIiIi0bCq+naDiW0QaE2tBAQXLV5C/YgX24mIA3KOjCbl5BkETJuhgTBERkXNgs9v4Pvt7NqRu4PO0z6mwVQBgwkTfyL6MiR3DsPbD8HH3MTipiIiIiPwWFd9OUPEtIo2RraSEwlWryHvrbWx5eUDNHPBWN9xA0LWTcPPzNTihiIhI45damMqG1A1sPLqR3LLc2vUOAR2Ij41ndMxoovyiDEwoIiIiIs5Q8e0EFd8i0pjZKyoofH8teUuWYM3KAsAcGEjItGmETJ2CW1CQwQlFREQal4KKAj469hEbUjeQlJdUux7gEcCojqOIj42ne2h3HSQtIiIi0gSp+HaCim8RaQocVVUUJWwk7/XXqTp+HACzjw8hN95I6Nde/LcAACAASURBVK1/wuSmeaMiItJyVdmq2JKxhQ2pG9iasRWrwwrUHEY5sM1A4mPjubzN5Xi4eRicVERERETOh4pvJ6j4FpGmxGGzcSYxkdOvLaby4EEAAq4cRfQTT2Dy0BfzIiLScjgcDvad3kdCagIfH/uY4qri2ufiWsURHxvPqI6jCPEKMTCliIiIiNQnFd9OUPEtIk2Rw+Gg6MMPyXrwIaiuxvd3v6PNiy9g9tGhXCIi0rydLDnJxqMbSUhN4Hjx8dr1cJ9wxsSMYUzsGGKDYo0LKCIiIiIuU9cu19KAmUREpB6ZTCaCxo7FEhpGxu23U/rNN6TdeCNtFy3CEhxsdDwREZF6VVJVwqa0TSQcTWBH9o7adW+LN0PbDWVM7Bj6RvbFzazRXyIiIiKiHd+AdnyLSNNX/sMPpP/xFmxFRXh0iqXdkiW4R0QYHUtEROScVdmqOJh/kL2n9rIndw9bM7ZSYasAwISJvlF9iY+NZ2i7ofi466edRERERFoKjTpxgopvEWkOKo8c4cSMm7Hm5OAeHU3bJW/g2bGj0bFERET+J4fDQXZpNntP72Vv7l72nd5Hcl4y1fbqs67rGNiR+Nh4RseMJtI30qC0IiIiImIkFd9OUPEtIs1FdWYmJ2bcTNXx47iFhND29cV4d+tmdCwREZGzlFvLScpLYt+pfew7tY+9p/ZyqvzUL64L9gymR1gPeoT1YED0ALq16obJZDIgsYiIiIg0Fiq+naDiW0SaE2teHukzZ1GRlITZ15c2r7yCb7++RscSEZEW7lTZKT478Rmb0jaxJ2cPVof1rOfdTG50DulMj9CaovvisItp499GRbeIiIiInMXlxXdVVRW5ubnY7faz1tu1a3cutzOUim8RaW5sJSVk3PpnyrZvx+ThQesFz+I/dKjRsUREpIXJKc3hsxOfkXg8kT25e3Dw7y89wrzD6BnWs3ZHd1yrOLwt3gamFREREZGmwGXFd0pKCjfddBPbtm07a93hcGAymbDZbOeW2EAqvkWkObJXVpI5Zw4ln30OZjNRf/87QRPGGx1LRESauezSbD5L+4zEtJqy++d6hPVgePvhDG43mDZ+2s0tIiIiIs6ra5drcfbGN9xwAxaLhY0bNxIVFaUPqyIijZTZ05M2CxeS9fDDFK1dR9b992MrLKDVjBlGRxMRkWYmqySLxLRENqVtYu+pvWc9d3HYxQzvMJxh7YfpQEoRERERaTBOF98//PADu3btokuXLq7IIyIi9chksRD12GNYgoPJe2MJuU8/g62ggLA5c/SNSxEROS8nS06SeLym7N53el/tugkTl4RfwrD2wxjafqjKbhERERExhNPFd1xcHKdPn3ZFFhERcQGTyUT43XfjFhxM7tPPkPfGEuxl5UQ8+IDKbxERcUpmSSabjm8iMS2RH0//WLtuwkSviF4Maz+MYe2HEe4TbmBKEREREZFzKL6ffPJJ7r33Xh5//HG6d++Ou7v7Wc9rRraISOPUasYM3IKCyHrgQQpWrsQSFUnozJlGxxIRkUYusySTxOOJJB5PZH/e/tp1EyZ6R/RmeIfhDG03lDCfMANTioiIiIiczenDLc1mc80L/2OXoA63FBFpGvKXLSfn8ccBiH7mGQJH/5/BiUREpLHJOJNBYlpN2X0g70Dtutlkrim72w9naPuhhHqHGphSRERERFoilx1u+eWXX55XMBERMVbI9GlUZ2aSv3QpWffdhyU8DN++fY2OJSIiBks/k86mtE2/Wnb3iejD8PbDGdJ+iMpuEREREWkSnN7x3Rxpx7eItDQOu53M2XdyJjERc0AAHd5diWdsrNGxRESkgZ0oPlG7szs5P7l23Wwyc2nEpQzvMJzB7Qar7BYRERGRRsNlO74BCgsLWbJkCcnJNR+Ou3Xrxk033URgYOC5pRURkQZlMpuJfupJTuTmUv7DD6TPnEWH91ZhCdN8VhGR5u540fHasvtQwaHadbPJzKWRl9bs7G43hFberQxMKSIiIiJyfpze8b1z505GjBiBt7c3fX/60fgdO3ZQXl5OYmIivXr1cklQV9KObxFpqawFBaRNmkxVWhpecXG0X74Ms6+v0bFERKSeHS08WlN2pyWSUpBSu+5mcqNfVD+GtR/G4HaDCfEKMTCliIiIiMj/Vtcu1+nie+DAgXTq1InXX38di6Vmw7jVauXmm2/m6NGjbNmy5fySG0DFt4i0ZFUnTnB80mRs+fn4XnE5bV9+GZPlnH4gSEREGpHjRcf56NhHbErbxJHCI7XrFpOFftH9GN5+OIPbDibIK8jAlCIiIiIiznFZ8e3t7c2ePXvo0qXLWetJSUn06dOHsrKyc0tsIBXfItLSle/dS9r1N+CoqCBo4kQi5z2CyWQyOpaIiDip2lbN5+mfs+bQGrZnb69dt5gtXBZ1GcM7DOcPbf9AoKdGFIqIiIhI0+SyGd8BAQGcOHHiF8V3eno6/v7+zicVERHDeffsSetnnibj9r9QuHo17m3aEDprptGxRESkjtLPpLP28FrWH1lPfkU+UDOze0D0AEZ1HMWgtoMI8NAGDxERERFpOZwuvq+99lpmzJjBM888w4ABAwD45ptvuOeee5g8eXK9BxQRkYbhP3QoEXPnkvOPf3BqwQLco6IIHDPa6FgiIvJfWO1Wvkr/ijWH1/DNyW9q18O8wxh/wXgmXDCBKL8oAxOKiIiIiBjH6eL7mWeewWQyMX36dKxWKwDu7u786U9/4oknnqj3gCIi0nBCpk2lOjOT/LffJmvuXCwR4fj+dJCxiIg0DlklWaxNWcv6lPXklufWrg+IHsDECydyedvLcTe7G5hQRERERMR4Ts/4/peysjJSU1MBiI2NxcfHp16DNSTN+BYR+TeH3U7mnXdx5tNPMQcE0GHlO3h26mR0LBGRFs1mt/HNyW9YfWg1WzO3YnfYAQjxCmFsp7FcfcHVtA1oa3BKERERERHXc9nhls2Rim8RkbPZKys5ceNNlO/ejXt0NO1XvYt7eLjRsUREWpyy6jI+OPIBK5JXkH4mvXa9b2RfrrnwGoa0G4K7m3Z3i4iIiEjLUa/F9/jx43n77bcJCAhg/Pjxv3ntunXrnE9rMBXfIiK/ZC0oIG3SZKrS0vCM60rYbbfh1aULlqgoTCaT0fFERJq17NJs3j34LmsOr+FM1RkA/D38GddpHFdfeDUdAzsanFBERERExBh17XLrNOM7MDCwtuQICAhQ4SEi0gJYgoNp+/pijk+aTGVSMhm3/hkAt8BAPLt2xatLF7ziuuLZpQueHTticteOQxGR83Ug7wDLk5bz6bFPsTpqztNp59+OaXHTiI+Nx8e96Y4XFBERERFpSBp1gnZ8i4j8lsqUFPKWvElFcjKVqanw08HGP2fy8MDzggtqi3Cvn4pxcxM+/0FEpKHYHXa+Sv+KZUnL2Jmzs3a9T0QfpsdN54q2V2A2mQ1MKCIiIiLSeLhsxvfgwYNZt24dQUFBv3jDsWPH8sUXX5xbYgOp+BYRqRt7VRWVKSlUHjxIRfLBmjL84EHspaW/uNbk5YX/sGEEjr0K3/79Mbm5GZBYRKTxKqsu48PUD1mRtIITZ04AYDFZGNFxBNPiptGtVTeDE4qIiIiIND4uK77NZjPZ2dmE/8chZ7m5ubRu3Zrq6upzS2wgFd8iIufOYbdTnZHxUxGeRGXyQSqSkrCeOlV7jSUyksD4eALHjsUzRnNpRaRlyynNqZ3fXVxVDNTM75544UQmd5lMhG+EwQlFRERERBqvep3xDbBv377aPyclJZGdnV372Gaz8cknn9C6detzjCsiIk2VyWzGo107PNq1I2DEcAAcDgcV+/ZR+MEHFP/zI6zZ2eQtXkze4sV49+xJ4LhxBFw5Cjd9s1FEWpD9p/ezLGkZm45vOmt+99S4qVwVe5Xmd4uIiIiI1KM67/g2m821h1r+2ku8vb158cUXuemmm+o3YQPQjm8REdexV1ZS8uWXFK3/gJKvvwabDaiZC+4/dAiBY8fiO2AAJkudvxcrItJk2Ow2vkj/guVJy9mTu6d2vU9EH6bFTeOKNlfgZtYoKBERERGRuqr3USdpaWk4HA5iYmLYvn07YWFhtc95eHgQHh6OWxOd36riW0SkYVhPnaIoYSNF69dTmZJSu24JCyMgfgzBkyfj0aaNgQlFROrHmaozrEtZx7sH3yWzJBMAi9nCqA6jmBo3lbhWcQYnFBERERFpmlw247s5UvEtItKwHA4HFUlJFH3wIcUJCdgKC2uecHcn5LrJtLrlFizBwcaGFBE5B+ln0lmZvJL1R9ZTWl1z8G+QZxDXXHgNk7tMJswn7H/cQUREREREfovLi++kpCROnDhBVVXVWevx8fHncjtDqfgWETGOo6qKki1bKFj5LqXbtgFg9vcn9JY/Ejx1KmZPT4MTioj8NofDwe7c3SxPWs6X6V9id9gBiA2MZWrcVEbHjMbL4mVwShERERGR5sFlxffRo0cZN24cP/74IyaTqXbe97/mf9t+mt3alKj4FhFpHEq++Ybcp5+h8uBBACzRUYTPnk3A6NGYzGaD04mInK2suoyPjn3E6kOrSc5Prl3/XfTvmBY3jQHRA2o/I4uIiIiISP1wWfE9ZswY3NzceOONN+jYsSPbt28nLy+POXPm8MwzzzBw4MDzDt/QVHyLiDQeDpuNog0JnHr+eazZ2QB4xcURfu89+Pbvb3A6ERFIKUhh9aHVJBxNqB1n4unmyeiY0UyLm0ZsUKzBCUVEREREmi+XFd+hoaF88cUX9OjRg8DAQLZv307nzp354osvmDNnDnv27PnfN2lkVHyLiDQ+9ooK8pcuI2/xYuylNcWS7xWXE3H33XhecIHB6USkpamyVZGYlsiaQ2vYnbu7dr2dfzsmdp7IVbFXEeQVZGBCEREREZGWoa5drsXZG9tsNvz9/YGaEvzkyZN07tyZ9u3bc+jQoXNPLCIi8jNmLy9C/ziLoGuu5vQrr1KwahWlX23h6NavCZowntDbbsc9ItzomCLSzKUXp7MmZQ0fpHxAQWUBAG4mNwa3G8w1F15Dv6h+mE0axSQiIiIi0tg4XXxfdNFF7N27l44dO9KvXz+eeuopPDw8WLx4MTExMa7IKCIiLZglJITIB+4nZOoUchc8x5nERArXvE/Rxn/S6sYbaDVrFmYvHRonIvXHarfyVcZXrDm0hm9OflO7HuETwYQLJzDhggmE++gbbyIiIiIijZnTo04+/fRTSktLGT9+PEeOHGH06NEcPnyYVq1a8d577zF48GBXZXUZjToREWk6ynbvIfeppyj/4QcAPLt0oc3zC/Fo397gZCLSlBVWFLIjZwffZ33Pl+lfkluWC4AJEwNaD2DihRO5vM3lWMxO7xsREREREZF65LIZ378mPz+f4ODgJntqvYpvEZGmxeFwcObTRLIffRRbfj5mPz+in5iP/9ChRkcTkSairLqMXTm7+D7re7Znb+dg/kEc/PtjcbBnMOMuGMfVF15NW/+2BiYVEREREZGfa9Diu6lT8S0i0jRV5+SQOftOyn86WDlkxk2E33knJot2ZIrI2Sptlew7tY/vs77n+6zv2X96P1aH9axrOgV1om9kX/pF9eP3rX+Ph5uHQWlFREREROS/qdfie/z48XV+43Xr1tX52sZCxbeISNPlqK4m95lnyV+6FACfPn2IXvAs7uGavyvS0uWV57EhdQPbTm5jT+4eKm2VZz3fxq8N/aL60TeyL32j+hLqHWpQUhERERERqau6drl12hIXGBhYb8FERETqk8ndnYj7/ob3JZeQdf/9lO3cybHxE2i94Fl8+/Y1Op6IGCClIIUVySvYmLqRKntV7Xqodyj9ovrRL7IffaP60tqvtYEpRURERETElTTqBO34FhFpLiqPHSPzL3dQmZICbm6E3zmbkBkzmuwZFCJSd3aHna8zv2Z50nK+y/qudr17aHdGx4ymf1R/OgZ21L8HIiIiIiJNnGZ8O0HFt4hI82EvKyN73jyKPtwAgN+QIUTPfxw3/fsu0iyVW8tJSE1gRfIKjhUdA8BsMjOk3RCmx02nZ1hPld0iIiIiIs2Iy4rvjh1/e6fM0aNHnbldo6DiW0SkeXE4HBS+t5qcf/wDR3U17u3a0eb5hXh17Wp0NBGpJzmlOaw6tIo1h9dQVFkEgJ+7HxMumMDkrpM1xkREREREpJmq1xnfPzd79uyzHldXV7Nnzx4++eQT7rnnHueTioiI1DOTyUTwpGvx6taNzDvuoPrECY5PmkzkQw8SNGGC0fFE5DwcOH2AZUnLSDyeiNVhBWoOqZwaN5Wxncbi6+5rcEIREREREWkM6m3Uycsvv8zOnTt566236uN2DUo7vkVEmi9bYSGZf/0rpV9tASBw/Hgi5s7FzU/lmEhTYbPb+DL9S5YnLWd37u7a9d4RvZkWN41BbQbhZnYzMKGIiIiIiDSUBp/xffToUS6++GKKi4vr43YNSsW3iEjz5rDbyVu8mFPPvwAOB5boKKIfewzfAQOMjiYiv6GkqoR1KetYeXAlmSWZAFjMFkZ1GMXUuKnEtYozOKGIiIiIiDQ0l406+W/ef/99QkJC6ut2IiIi9cZkNhN6yy14X9KLrPvvpzojgxM3zSDommsIv/ce3Pz9jY4oIj+TcSaDd5LfYf2R9ZRWlwIQ6BnIxAsnMqnLJMJ9wg1OKCIiIiIijZ3Txfcll1xy1uGWDoeD7OxsTp06xSuvvFKv4UREROqTb7++xHz4AbkLnqPgnXcoXLOGkq1bifr7o/gNHGh0PJEWzeFwsCd3D8uTlvNF+hfYHXYAYgJjmBo3ldExo/G2eBucUkREREREmgqnR53MmzfvrMdms5mwsDAGDRpEly5d6jVcQ9GoExGRlqd0+3ayHniQ6hMngJ9mf//tr7jp/wGRBlVtr+bT45+yImkFB/IO1K4PiB7AtLhpDIgegNlkNjChiIiIiIg0Jg0+47spU/EtItIy2cvKOPX88+QvW14z+zs8nMhH5+E/aJDR0USavbzyPNYfWc+7ye+SW54LgIfZgzGxY5jadSqdgjsZnFBERERERBojlxbfNpuN9evXk5ycDEBcXBxXXXUVFku9jQxvUCq+RURatrLdu8m6by5VaWkABF51FRFz78MtMNDgZCLNS5Wtis3pm0lITeDrzK+xOqwAhHqHMqnzJK7pfA0hXjozRkRERERE/juXFd8HDhxgzJgx5OTk0LlzZwAOHz5MWFgYCQkJXHTRReeX3AAqvkVExF5ezqkXXiT/7bfB4cAtLJSoefPwHzzY6GgiTZrD4WDf6X1sOLKBT45/QnFVce1zF7W6iMldJzOyw0g83DwMTCkiIiIiIk2Fy4rvyy67jLCwMJYuXUpwcDAABQUF3HDDDZw6dYpt27adX3IDqPgWEZF/Kduzh6z7H6Dq6FEAAkaPJuL+uVh++j9PROrmZMlJElITSDiaQFpxWu16uE84Y2LGEB8bT0xQjIEJRURERESkKXJZ8e3t7c3OnTvp1q3bWev79+/n0ksvpby8/NwSG0jFt4iI/Jy9spLTL71E3pI3wW7H7OdHyI03EHL99bj5+RkdT6TRKq0uZVPaJjakbmBH9o7adW+LN0PbDWVM7Bj6RvbFzexmYEoREREREWnK6trlOj2U+8ILLyQnJ+cXxXdubi6dOukQIhERafrMnp6Ez5mD/7BhZD30MJUHD3L6xZcoWL6CVjNnEnzdZMze3kbHFGk0skuzeXHPi2xK20S59d+bIPpG9iU+Np6h7Yfi6+5rYEIREREREWlpnN7x/dFHH3HvvffyyCOP0L9/fwC+++47Hn30UZ544gl+//vf117bVHZPa8e3iIj8Nw67nTOffMKpF16k6vhxACxhYbS65Y8EXXMNZg/NJZaWy+FwsDZlLc/sfIbS6lIAOgR0YEzsGEbHjCbaL9rghCIiIiIi0ty4bNSJ2Wz+94tNJqDmi57/fGwymbDZbE4HN4KKbxER+V8cVitFGxI4/fLLVGdmAmCJjiLsz38m8KqrMFmc/iEqkSbtZMlJHtn2CN9mfQtAj7Ae3NPnHnqG9az9TCgiIiIiIlLfXFZ8f/XVV3W+9oorrnDm1oZR8S0iInXlqKqicO1aTr+6CGtuLgAe7dsTevvtBFw5CtPPvkEs0hzZHXbeP/w+z+58ljJrGZ5untx+ye1M7TpVs7tFRERERMTlXFZ8N0cqvkVExFn2igoK3l1F3uLF2AoKAPC84ALC7vgLfkOGaMerNEsZZzJ4eNvDbM/eDkCv8F48+rtHaR/Q3uBkIiIiIiLSUri0+C4sLGTJkiUkJycD0K1bN2666SYCAwPPPbGBVHyLiMi5spWUUrB8GXlvvoX9zBkAvLp3J3r+43jq0GdpJuwOO+8deo/ndj1HubUcLzcvZveezeQukzGb9FMOIiIiIiLScFxWfO/cuZMRI0bg7e1N3759AdixYwfl5eUkJibSq1ev80tuABXfIiJyvmxFReS9+Rb5y5fjKCvDLSiIdm8uwSsuzuhoIuclvTidh7Y9xM6cnQD0iejDowMepW1AW4OTiYiIiIhIS+Sy4nvgwIF06tSJ119/HctPB3lZrVZuvvlmjh49ypYtW84vuQFUfIuISH2xnj5N+q1/pmLfPsz+/rR7fTHeF19sdCwRp9kddlYmr+T53c9TYavA2+LNXb3vYmLnidrlLSIiIiIihnFZ8e3t7c2ePXvo0qXLWetJSUn06dOHsrKyc0tsIBXfIiJSn2wlJaTfcgvlO3dh9vGhzaJX8f3pp6REmoKjhUeZ9+08dufuBqBfZD8eGfAIbfzbGJxMRERERERaurp2uU5v1wkICODEiRO/WE9PT8ff39+pe23ZsoUxY8YQHR2NyWTigw8+OOv5G264AZPJdNavkSNHnnVNfn4+U6ZMISAggKCgIGbMmEFJSYmzfy0REZF64+bnR7vFi/EdcBn2sjLSZ86iZOvXRscS+U3pxem88eMbXLvxWq768Cp25+7Gx+LDg/0f5PXhr6v0FhERERGRJsXi7AuuvfZaZsyYwTPPPMOAAQMA+Oabb7jnnnuYPHmyU/cqLS2lZ8+e3HTTTYwfP/5Xrxk5ciRvvfVW7WNPT8+znp8yZQpZWVls2rSJ6upqbrzxRmbNmsXKlSud/JuJiIjUH7OPD21efZXMO2ZTsnkzGbfeSuuFz+E/ZIjR0URqpRWnkXg8kcS0RA7mH6xdN5vMXNHmCv7W929E+0UbmFBEREREROTcOD3qpKqqinvuuYdFixZhtVoBcHd3509/+hNPPPHEL4rpOgcxmVi/fj1jx46tXbvhhhsoLCz8xU7wf0lOTiYuLo4dO3bQp08fAD755BOuvPJKMjIyiI6u2xdqGnUiIiKu4qiqIvPev3Lmk0/AzY3WTz9FwJVXGh1LWrBjRcdqy+7DBYdr191MbvSN7MuwDsMY0m4IIV4hBqYUERERERH5dXXtcp3e8e3h4cHzzz/P/PnzSU1NBSA2NhYfH59zT/sbNm/eTHh4OMHBwQwePJjHHnuMVq1aAfDtt98SFBRUW3oDDB06FLPZzPfff8+4ceN+9Z6VlZVUVlbWPi4uLnZJdhEREZOHB62feZosTw+KPtxA5t33YK+oJGj8r/8fJeIKqYWpJKYlkng8kSOFR2rXLSYL/aL6Maz9MAa3G0ywV7CBKUVEREREROqPU8X38ePH2bRpE1VVVQwaNIju3bu7KhdQM+Zk/PjxdOzYkdTUVObOncuoUaP49ttvcXNzIzs7m/Dw8LNeY7FYCAkJITs7+7/ed/78+cybN8+l2UVERP7FZLEQNX8+Jk8vClevJmvuXOwV5YRcd53R0aQZs9qtfJb2GcuTlrPv9L7adYvJQv/o/gxvP5zB7QYT6BloYEoRERERERHXqHPx/eWXXzJ69GjKy8trXmix8OabbzJ16lSXhZs0aVLtn7t3706PHj2IjY1l8+bNDDmPGan33Xcfd911V+3j4uJi2rZte15ZRUREfovJbCZy3iOYvb3IX7qMnEf/jqO8glYzbjI6mjQzxVXFrD28lpUHV5JdWrMRwGK2MCB6AMPbD2dQ20Equ0VEREREpNmrc/H94IMPMmzYMF599VW8vLx44IEHuPfee11afP+nmJgYQkNDOXLkCEOGDCEyMpLc3NyzrrFareTn5xMZGflf7+Pp6XnOs8hFRETOlclkIvxvf8Pk5U3ea6+R+/TT2CvKCb31Vkwmk9HxpIk7UXyCFckr+ODIB5RbazYqhHiFcG3na5nYeSKh3qEGJxQREREREWk4dS6+9+/fz7Zt24iKigLg6aef5rXXXiMvL6925rarZWRkkJeXV5vhsssuo7CwkF27dtG7d28AvvjiC+x2O/369WuQTCIiIs4wmUyE3zkbs7cXpxY+z+kXX8JRUUHYXXep/BanORwOdubsZFnSMr5K/woHNWeWXxB8AdO6TuPKmCvxdNM3+0VEREREpOWpc/FdXFxMaOi/dwr5+Pjg7e1NUVHRORffJSUlHDny7wOWjh07xg8//EBISAghISHMmzePCRMmEBkZSWpqKvfeey+dOnVixIgRAHTt2pWRI0cyc+ZMFi1aRHV1NbfddhuTJk0iOjr6nDKJiIg0hNBbbsHs7U3O/CfIe/0NrAUFhFx3HZ5dumAym42OJ41cta2aj49/zIqkFSTnJ9euD2w9kGlx0+gf1V/fSBERERERkRbN5HA4HHW50Gw2s3TpUgID/z0TcvLkySxcuJCIiIjatfj4+Dq/+ebNm/nDH/7wi/Xrr7+eV199lbFjx7Jnzx4KCwuJjo5m+PDh/P3vfz/r/fLz87nttttISEjAbDYzYcIEXnjhBfz8/Oqco7i4mMDAQIqKiggICKjz60RERM5Xwar3yH7kkdrHboGB+PS9FJ9+/fHt3w+P2FgVmFKrrLqMFckrePfgu5wuPw2Al5sX8bHxTImbQkxgdmVesQAAIABJREFUjMEJRUREREREXKuuXa5Txff/YjKZsNlsdU/ZSKj4FhERI5354ksKV6+mbMcO7KWlZz3nFhqKb9+++PTvh2///ri3basivAVyOBz889g/eW7nc+SW15xvEu4dzuSuk7n6gqsJ8goyOKGIiIiIiEjDqPfiuzlT8S0iIo2Bw2ql4sABSr/7nrLvv6Ns124clZVnXWOJjsK3X398+vXF74orsAQHG5RWGkpyXjLzt89nT+4eANr4teHWi29lZIeRuLu5G5xORERERESkYan4doKKbxERaYzsVVVU7N1L6XffU/r9d5Tv3QfV1bXPmzw8CIgfQ8j06XhdeKGBScUVCioKeHHPi7x/+H0cOPC2eDOrxyymxU3TgZUiIiIiItJiqfh2gopvERFpCuxlZZTt3kPZ999TsnUrlQcP1j7nO+AyQq6/Ht+BA3U4ZhNntVtZfWg1L/3wEmeqzgAwquMo7up9F5G+kQanExERERERMZaKbyeo+BYRkabG4XBQvmcP+UuXcWbTJrDbAfDo2JGQ6dMIvOoqzD4+BqcUZ+3I3sH87fNJKUgBoHNwZ+7rdx+9I3obnExERERERKRxUPHtBBXfIiLSlFVlZFKwYgWF77+PvaQEAHNgIMETJxI85TrcI7VLuLHLKsni2V3P8unxTwEI9Azk9otv5+oLr8bN7GZwOhERERERkcZDxbcTVHyLiEhzYCsppWjdOvKXL6c6Pb1m0WIhYMQIQq6fjnePHsYGlF+otFXy1v63WPLjEipsFZhNZq658Bpuu/g2gryCjI4nIiIiIiLS6Lis+E5PT8dkMtGmTRsAtm/fzsqVK4mLi2PWrFnnl9ogKr5FRKQ5cdhslGzeTP7bSynbsaN23fuSSwi/5258evUyMJ1AzaiaL9K/4OkdT5NZkglAr/Be3NfvPrqEdDE4nYiIiIiISOPlsuJ74MCBzJo1i2nTppGdnU3nzp3p1q0bKSkp3H777Tz00EPnHb6hqfgWEZHmqvzAAQqWLafoo4+guhpMJkKmTyds9h2Yvb2NjtciHS08yhPbn+DbrG8BCPcJ5+4+dzOyw0hMJpPB6URERERERBq3una5ZmdvvH//fvr27QvA6tWrueiii9i2bRvvvPMOb7/99jkHFhERkfrn3a0b0U8+QafPPyNw3DhwOMhfupSjY8dStmuX0fFalDNVZ3hqx1NM2DCBb7O+xd3szszuM0kYm8CojqNUeouIiIiIiNQjp4vv6upqPD09Afjss8+Ij48HoEuXLmRlZdVvOhEREakX7uHhRM9/nLavLcISEUF12gnSpk4j+/HHsZeXGx2vWbM77KxPWc/o9aNZnrQcq8PKoLaD+PCqD/lLr7/g4+5jdEQREREREZFmx+niu1u3bixatIitW7eyadMmRo4cCcDJkydp1apVvQcUERGR+uN3xRXEJGwgcMJ4cDgoWLaco1eNpWznTqOjNUv7Tu1j6kdTeWjbQ+RX5NMhoAOvDn2VFwe/SNuAtkbHExERERERabacnvG9efNmxo0bR3FxMddffz1vvvkmAHPnzuXgwYOsW7fOJUFdSTO+RUSkJSrZupWsBx/Cmp0NJhPBU6cSfudszD7agXy+TpefZuGuhXyY+iEAvu6+/Knnn7iuy3W4u7kbnE5ERERERKTpctnhlgA2m43i4mKCg4Nr144fP46Pjw/h4eHnlthAKr5FRKSlsp05Q86TT1L0/loA3Nu1I/ofj+Fz6aUGJ2uaqu3VrExeyaK9iyipLgEgPjae2b1mE+YTZnA6ERERERGRps+lxbfVamXz5s2kpqZy3XXX4e/vz8mTJwkICMDPz++8ghtBxbeIiLR0JVu/JuvBB2t2f0PN7u+77vzN3d/2sjKqc3Kw5uRQnZ2NNTsHa24uPpf2IWDUqIaK3ihU26r5PP1zXvnhFY4VHQOgW6tu3NfvPnqG9TQ4nYiIiIiISPPhsuI7LS2NkSNHcuLECSorKzl8+DAxMTHccccdVFZWsmjRovMO39BUfIuIiNTs/s596ikK17wPgHvbtoT95XYcVVW1xXZ1zr9+z8FeVPTrNzKZaPfWm/j279+A6Y2RWZLJ2sNrWZeyjryKPABCvEKY3Ws2V3W6CrPJ6eNURERERERE5De4rPgeO3Ys/v7+LFmyhFatWrF3715iYmLYvHkzM2fOJCUl5bzDNzQV3yIiIv9W8vU3Nbu/s7L+57UmHx/cIyNxj4zAEhGJNSeb0m3f4hYaSsd1a3FvgiPQ/heb3cbWzK2sPrSarzO/xkHNR6lQ71AmXDCB6d2mE+ChzxMiIiIiIiKuUNcu1+Lsjbdu3cq2bdvw8PA4a71Dhw5kZmY6n1REREQaFb/f/46YhA2cWvg8Zbt2YQkNrS22z/o9MhKznx8mk6n2tfbyco5fO4nKw4c5Oedu2r31JiaL0x83GqWc0hzWHVnHupR1ZJdm1673j+rPxM4TGdR2EO5mHVwpIiIiIiLSGDj9lajdbsdms/1iPSMjA39//3oJJSIiIsZy8/Mj8oH7nX6d2dub1gsXcvzqqynbsYNTL71E+OzZLkjYMOwOO9+d/I7Vh1ezOX0zNkfNZ6AgzyDGdRrH1RdeTbuAdganFBERERERkf/kdPE9fPhwFi5cyOLFiwEwmUyUlJTw8MMPc+WVV9Z7QBEREWlaPGM6EvXY38m8aw55i17Dp1cv/C6/3OhYTimrLmPVoVWsObSGjJKM2vVe4b2Y2HkiQ9sPxdPN08CEIiIiIiIi8lucnvGdkZHBiBEjcDgcpKSk0KdPH1JSUggNDWXLli2EN8FZnprxLSIiUv+y5s2j8N1VuAUF0XH9OtyjooyO9D85HA4+OvYRC3YuILc8FwB/d3/GxI7hmguvoVNwJ4MTioiIiIiItGwuO9wSwGq1smrVKvbt20dJSQm9evViypQpeHt7n1doo6j4FhERqX/2ykrSJl9HRVIS3hdfTPvlyzC5N94Z2IfyD/H494+zO3c3AG382jCzx0xGdhiJj7uPwelEREREREQEXFx8NzcqvkVERFyjKj2dY+MnYD9zhpAbbyTir/caHekXiiqLeHHPi6w5vAa7w46Xmxcze8zk+m7Xa5yJiIiIiIhII1PXLrdOM743bNjAqFGjcHd3Z8OGDb95bXx8vHNJRUREpNnyaNuWqMf/QebtfyH/rbfw6dMb/yFDjI4FgM1uY23KWl7Y8wJFlUUAjOgwgrv73E2kb6TB6UREREREROR81GnHt9lsJjs7m/DwcMxm83+/mcmEzWar14ANQTu+RUREXCtn/hPkL12KOSCAjuvW4tGmjaF59uTuYf7380nOTwagU1An7ut7H32j+hqaS0RERERERH5bve74ttvtv/pnERERkboIn3MX5T/8QPnevWTOvpP2K9/B7OHR4DlOlZ1iwa4FbDy6Eag5uPLPl/yZaztfi8Vcp49FIiIiIiIi0gT89+3bIiIiIvXE5OFB6+cW4BYYSMX+/eQ++VSDvn+1rZq39r/F6PWj2Xh0IyZMTLhgAgnjEpjSdYpKbxERERERkWbG6eL7L3/5Cy+88MIv1l966SVmz55dL6FERESk+XGPjib6qScBKHjnHYo//tjl71ltq2Z9ynrGfjiWBbsWUGYto0doD1b+30oeGfAIrbxbuTyDiIiIiIiINLw6zfj+udatW7NhwwZ69+591vru3buJj48nIyOjXgM2BM34FhERaTi5zy4g7/XXMfv60nHt+3h06FDv71FhrWBdyjreOvAW2aXZAIR4hXBn7zuJj43HbNIPvYmIiIiIiDRF9Trj++fy8vIIDAz8xXpAQACnT5929nYiIiLSwoTd8RfK9uymfOcuMmbfSYdV72L28qqXe5dUlfDeofdYlrSM/Ip8AEK9Q7k+7nqu6XwNvu6+9fI+IiIiIiIi0rg5vd2pU6dOfPLJJ79Y//jjj4mJiamXUCIiItJ8mSwWWj+7ALeQECoPHiTnH4+f9z0LKgp4ac9LDF87nIW7F5JfkU+0bzQP9HuATyZ8wg0X3aDSW0REREREpAVxesf3XXfdxW233capU6cYPHgwAJ9//jnPPvssCxcurPeAIiIi0vy4R4TT+pmnOTHjZgrXrMEtKJBWf7wFNz/nyuncslyWHljKmsNrKLeWA9AxsCM3d7+ZUR1H4W52d0V8ERERERERaeScnvEN8Oqrr/KPf/yDkydPAtChQwceeeQRpk+fXu8BG4JmfIuIiBjj1CuvcPqFFwFwCw0l7LbbCLp6AibLb39vPv1MOm/tf4sPjnxAtb0agK4hXZnZYyZD2g3RDG8REREREZFmqq5d7jkV3/9y6tQpvL298fPzO9dbNAoqvkVERIzhcDg4k7iJ3AXPUp12AgCP2FjC58zB7w+DMJlMZ11fbatmwa4FvHvwXWwOGwC9wnsxs8dMfhf9u19cLyIiIiIiIs2LS4tvq9XK5s2bSU1N5brrrsPf35+TJ08SEBDQJEtwFd8iIiLGclRVUbDqPU6/8gq2wkIAfC69lPB778W7+0UAZJdmM2fzHPad3gfA76J/x8weM+kd0duw3CIiIiIiItKwXFZ8p6WlMXLkSE6cOEFlZSWHDx8mJiaGO+64g8rKShYtWnTe4Ruaim8REZHGwVZcTN7rr5O/dBmOqioAAkaPJn3yQO5JeZrCykICPAKYP3A+l7e53OC0IiIiIiIi0tDq2uU6PQDzjjvuoE+fPhQUFODt7V27Pm7cOD7//PNzSysiIiICuAUEED5nDrEff0RA/BgAijduxGf6Xxn9cR69vC9k9ZjVKr1FRERERETkN/32yVG/YuvWrWzbtg0PD4+z1jt06EBmZma9BRMREZGWy711a3wfnctrXU9y0arddE9zEP+9g7HJGXiVbcJ+3XWY/+OziIiIiIiIiMi/OL3j2263Y7PZfrGekZGBv79/vYQSERGRlm3/6f1M3DiR9ea9PD3Vh8xHbsSjUyz24mJyn3iSo/83mpItW4yOKSIiIiIiIo2U08X38OHDWbhwYe1jk8lESUkJDz/8MFdeeWW9hhMREZGWxeFwsPrQaqZ/PJ2s0iza+bdjxf+9w9BJ9xLzwQdEPjoPt7BQqtPTSZ/1RzJm30l1Tq7RsUVERERERKSRcfpwy4yMDEaMGIHD4SAlJYU+ffqQkpJCaGgoW7ZsITw83FVZXUaHW4qIiBivrLqMv3/3dzYe3QjA4LaDeez3j+HvcfZPlNlLSzn14kvkL1sGdjtmPz/C7pxN8KRJmNzcjIguIiIiIiIiDaSuXa7TxTeA1Wpl1apV7Nu3j5KSEnr16sWUKVPOOuyyKVHxLSIiYqzjRce5c/OdHCk8gpvJjdm9ZnN9t+sxmUz/9TUVSUlkPfwIFT/+CIBXjx5EzXsEr65dGyq2iIiIiIiINDCXFt/NjYpvERER42xK28SD3zxIaXUpod6hPH350/SJ7FOn1zpsNgreXcWp557DXloKbm6ETJ9O2G1/xuzr6+LkIiIiIiIi0tBcWnwfOnSIF198keTkZAC6du3KbbfdRpcuXc49sYFUfIuIiDQsu8PON5nfsCJ5BdtObgOgd0Rvnr78acJ8wpy+X3VOLjnz53Pmk08AsERFEfngg/gP/kO95hYRERERERFj1bXLdfpwy7Vr13LRRRexa9cuevbsSc+ePdm9ezfdu3dn7dq15xVaREREmrdyazmrD61m7IdjufXzW9l2chtmk5kbu93IG8PfOKfSG8A9Ipw2C5+j7WuLcG/dGmtWFhm33krG7bdTnZ1dz38LERERERERaeyc3vEdGxvLlClTePTRR89af/jhh1mxYgWpqan1GrAhaMe3iIiIa+WU5vDuwXd5P+V9iiqLAPBz92P8BeOZ3GUybfzb1Nt72cvLOf3KK+S99TZYrZh9fAibfQfBU6bo8EsREREREZEmzmWjTnx8fNi3bx+dOnU6az0lJYWePXtSVlZ2bokNpOJbRETENfaf3s/ypOUkHk/E6rAC0MavDVO6TmFsp7H4efi57L0rDh0m++GHKf/hBwC8uncn+skn8Yzp6LL3FBEREREREdeqa5drcfbGgwYNYuvWrb8ovr/++msGDhzofFIRERFpVqx2K1+mf8nypOXsyd1Tu94nog9T46YyqM0g3Myu33nt1flC2q98h8I175P77LNU/Pgjx8aPJ/zeewiePBmTyeTyDCIiIiIiImIMp3d8L1q0iIceeoiJEyfSv39/AL777jvWrFnDvHnziI6Orr02Pj6+ftO6iHZ8i4iInD+7w86qg6tYemApJ0tPAmAxWxjVYRRT46YS1yrOsGzVOTlk3Xcfpdu+BcB34ECi/vEY7uHhhmUSERERERER57ls1InZXLfzME0mEzabzZlbG0bFt4iIyPkpqSrhvq33sTljMwDBnsFc0/kaJnWedM4HVtY3h91OwYp3yH32WRyVlbgFBRH56DwChg83OpqIiIiIiIjUkcuK7+ZIxbeIiMi5O150nDu+vIOjRUfxMHtwV5+7mHDBBLwsXkZH+1WVR46Qec+9VCYnAxA4bhwR98/Fzc9188ZFRERERESkftS1y63b9m0RERGRX7E1YyvX/fM6jhYdJdwnnKWjljKl65RGW3oDeHbqRMf3VtFq1iwwmShav55jV42lbOdOo6OJiIiIiIhIPalz8f3tt9+ycePGs9aWLVtGx44dCQ8PZ9asWVRWVtZ7QBEREWl8HA4Hb/z4Bn/+/M+cqT7DJeGX8N7o97go9CKjo9WJycOD8LvupP2K5bi3bk11ZiZp06aT++wCHFVVRscTERERERGR81Tn4vvRRx/lwIEDtY9//PFHZsyYwdChQ/nb3/5GQkIC8+fPd0lIERERaTzKqsu4d8u9PL/7eRw4uPrCq1kyfAmh3qFGR3OaT+/edPzwAwLHjQOHg7zXX+fYtZOoTEkxOpqIiIiIiIichzrP+I6KiiIhIYE+ffoAcP/99/PVV1/x9ddfA7BmzRoefvhhkpKSXJfWRTTjW0REpG4ySzK544s7OFRwCIvJwn397mNi54lGx6oXxYmJZD/0MLbCwpod4XfPITA+HrO/PyY3N6PjiYiIiIiICHXvci11vWFBQQERERG1j7/66itGjRpV+/jSSy8lPT39HOOKiIhIY7c9aztzvppDYWUhIV4hPDfoOXpF9DI6Vr0JGD4c74svJuv+ByjdupWcx+eT8/h8MJlwCwjAHBSIW2AQboGBNb+Cfv7nmsfu0dF4dupk9F9FRERERESkxatz8R0REcGxY8do27YtVVVV7N69m3nz5tU+f+bMGdzd3V0SUkRERIzjcDhYeXAlT+94GpvDRlyrOJ7/w/NE+kYaHa3euYeH03bxaxSuWsWpl17GlpcHDge2oiJsRUVU/z979x0fdWH/cfx1K8llXfYCQkLYKjKUjYqi4kJAUav+VLB1a1uq/tr6U+uo1t3a2mqrKFZbhQqCWEFFERkOlsgMIyEBMsi6zLvc+P7+uHAQQU1Yl/F+Ph55XPK9y93nQoDk/f3c50PBj95H1JlnkHr33YT36nUCKhYREREREZHDaXHwfeGFF/LrX/+aJ554gnfffZfIyEjGjBkTvH79+vXk5OQclyJFREQkNNw+N4+sfIR5O+YBcHGPi3lwxINEWCNCXNnxYzKZiP/JT4j/yU8wGhvxVVfjq6oKht++KudBHwcu/U4n3qoq3LnbqPtsKTs/X0bcZZNJuuNObKkpoX5KIiIiIiIinU6Lg+9HHnmEyZMnc+aZZxIdHc3MmTMJCwsLXj9jxgzOO++841KkiIiInHjFdcVMXzKdb8u+xWwyM33IdK7rfx0mkynUpZ0wprAwrElJWJNatrizMT+f0mefo+bDD6ma/R+cC94nceoNJEy7EUt01HGuVkRERERERPZr8XLL/ZxOJ9HR0Vi+s+SpoqKC6OjoZmF4e6HlliIiIgGGYfB18dfMyp3F4l2L8RpeYsNiefrMpxmRMSLU5bUb9WvWUvrkkzSsWweAJSmJ5DtuJ+7yyzFZW9x3ICIiIiIiIt/R0iy31cF3R6TgW0REOjun28n8HfOZtXUW+dX5weODUwbz6KhH6RbbLXTFtVOGYVDz4UeUPvsMnl2B2eBhPXqQcveviB47tlN1zouIiIiIiBwrCr5bQcG3iIh0RoZhsL5sPbO2zmJR/iLcPjcAkdZILsm5hCm9p9AnoU+Iq2z/DI+HyrdnUfbCC/gqKwGIPO00Uu69B/uAASGuTkREREREpH1R8N0KnTX4dnt9LNm6j/yyOm46o4c6z0REOok6Tx3v73yf2bmz2VKxJXi8T3wfruhzBRf1uIgom+ZRH2u+mhrK//EyFTNnYrgDJxliL7wAx8SJGB4PfpcLw+VqunTjdzUELt0ujAZX4NLlxvD7cFwygdjztVtFREREREQ6HwXfrdBZg2+Xx0f/BxbiN+Cr+84hJSYi1CWJiMhxtLViK7NzZ7Ng5wLqPHUAhFvCOT/rfK7scyWnJJ2ik6AngKeoiH1/eh7nvHlwFD+GxU2ZQupvf4PZbj+G1YmIiIiIiLRtLc1ytV2pE4uwWchMiCS/vJ5tJbUKvkVEOqjaxlr+8NUfmLdjXvBYVmwWV/S5ggk5E3CEO0JYXedjS08n4w+Pk3DD9ZS98AKNuwow2SMwR9gxRYRjjrBjjgjHFB6B2R7R7NIUEY6noJCKmTOpmj2b+rVr6PLss0T07h3qpyUiIiIiItKmKPju5HqlxpBfXk9uSQ2jeiaFuhwRETnGVhWv4r5l97G3bi9mk5lxmeO4ss+VnJ52urq7Qyyib1+6/vnPR/S50WedyZ577qFx+w7yp1xB6n2/JW7KFP2ZioiIiIiINDGHugAJrd6p0QDkltSGuBIRETmWGn2NPLv6WaYtmsbeur10ie7Ca+Nf45mznmFo+lAFpO1c1PDh9Hj3XaLGjMFwuyl+4EH2TJ+Or6Ym1KWJiIiIiIi0CQq+O7neqTEAbCvRL8oiIh3FtsptXP3+1by64VUMDCb3msw7E95hUMqgUJcmx5A1MZFuL71Iyj33gNVKzQcLyZs0mYb160NdmoiIiIiISMgp+O7keqUEgu/ckhq051REpH3zG35mbpzJlQuuZGvlVuLD4/nj2D/y0MiHiLJFhbo8OQ5MZjOJN04j619vYuvaFc/u3eRffQ3lr8zA8PtDXZ6IiIiIiEjIKPju5HokR2E2QbXLS2mNO9TliIjIESqqLeJnH/6Mp1c9jcfv4YyuZzDn0jmck3lOqEuTE8A+YADZc+cQM348eL2UPvUUhTffgre8PNSliYiIiIiIhISC704uwmYhKzHQBZircSciIu2OYRgs2LmAy+ZfxlfFX2G32nlgxAP85ey/kGTX0uLOxBITQ5fnniXt4YcwhYdT9/nn5E2cRN0XX4S6NBERERERkRNOwbfQSwsuRUTaJafbyb1L7+U3n/+GGk8NA5IGMPuS2UzpPUXLKzspk8lE/BVXkDV7FmE9c/Du20fB1GmU/vGP+BsbQ12eiIiIiIjICaPgW7TgUkSkHVqxdwWT501mYf5CLCYLtw+8nZkXzKR7bPdQlyZtQETv3mTPnk3clClgGJS/+BI7zjufyrdnYXg8oS5PRERERETkuFPwLfRKPbDgUkRE2jaX18UfvvoDN390M6UNpWTFZvHGhW9wy6m3YDVbQ12etCFmu530Rx6my3PPYk1NxVtcTPGDD7Ljwouomvsuhtcb6hJFRERERESOGwXfQu+mUSfbSmoxDCPE1YiIyPfZVL6JKxdcyZub3wTgyj5X8vbFb3Ny0skhrkzastgLLiDnw0Wk/vY3WJKS8BQWUvSb37Dzkgk4338fw+8PdYkiIiIiIiLHnIJvITspCovZRI3bS3G1K9TliIjId/j8Pv6x/h9c8/417HTuJMmexF/P+Sv/N/z/iLRFhro8aQfM4eEkXHcdPT9cRMrdv8LicNCYl8feX91N3sRJ1Hz8sU5+i4iIiIhIh6LgWwi3WshKDAQnWnApItK2FNYUcsPCG3h+7fN4DS/jMscxZ8IcxnQdE+rSpB0yR0aS+NOfkrP4Y5LuuhNzdDTu3Fx233En+ZdPoXbpUgXgIiIiIiLSISj4FkALLkVE2hrDMJizbQ6Xz7+cdfvWEWWL4vejf8+zZz1LfER8qMuTds4SHU3ybbfRc/HHJN5yM6bISFwbN1J4083suvoa6r74MtQlioiIiIiIHBUF3wJowaWISFtS3lDOzz/9OQ+ueJB6bz2DUwbzzoR3mJAzAZPJFOrypAOxOByk/OIX9Pz4IxKmTcMUHk7D2rUU3HADu6ZOxZWbG+oSRUREREREjoiCbwEOLLjUqBMRkdD6rPAzJs+fzKeFn2I1W/nlkF8y4/wZdInuEurSpAOzJiSQeu895Hz0IfHXXovJZqN+5RfkTZpM8aO/x+d0hrpEERERERGRVlHwLcCBUSfbS2s121NEJATqPfU8tPIh7vjkDipcFfSM68lbF73FtJOnYTFbQl2edBK2lBTS/u8+enzwATHnnQc+H5VvvMGO8RdQOWsWhs8X6hJFRERERERaRMG3AJCVGIXVbKLW7WWv0xXqckREOpVv9n3DlPem8J/c/wBwXf/reOvit+iT0CfElUlnFda1C12f/xOZM14hrGcOvspKih94kPwrrqR+zdpQlyciIiIiIvKjFHwLAGFWM9lJUYDmfIuInCgur4tnVz3LdR9cR0FNAWlRabx83svcc/o9hFvCQ12eCFEjR9Jj7lxSf/sbzDExuDZuZNfVV7P3f/8XT2lpqMsTERERERH5Xgq+JWj/uJNtCr5FRI67/V3er258Fb/h55Iel/DOhHcYlj4s1KWJNGOy2Ui47jpyFn6A4/LLwGTCOW8+O8dfQPkrr2A0Noa6RBERERERkUMo+JagXlpwKSJy3Lm8Lp5Z9QzXfXAd+dX5JNmT+PPZf+axMY8RGxYb6vJEvpc1MZHTUcPKAAAgAElEQVSMRx8la9bbRJw6AH99PaVPPc3OCZdSu3RpqMsTERERERFpRsG3BKnjW0Tk+FpXuo4p703htY2v4Tf8TMiZwLuXvstZ3c4KdWkiLWY/5RSy/v1v0h9/HEtSEo35+RTedDOFt9xKY0FBqMsTEREREREBFHzLQXo3dXxvK63F7zdCXI2ISMfh8rp4+uung13eyfZk/nz2n/n96N/jCHeEujyRVjOZzcRNmkjOB/8lYepUsFqpXbKEnZdMoOylv2v8iYiIiIiIhJyCbwnqnhiFzWKivtHHnqqGUJcjItIh7O/ynrlpJgYGE3ImMPfSuerylg7BEhND6v/eS4957xI5fDiG282+554j77LLqF+zJtTliYiIiIhIJ6bgW4JsFjM9kvZ3fWvciYjI0WjwNvDU10816/L+y9l/UZe3dEjhOTlkvjqDjCefwBIfj3vbdnZdfQ1FDzyIz+kMdXkiIiIiItIJKfiWZrTgUkTk6K0tXcuU96bw+qbXm3V5n9ntzFCXJnLcmEwmHBMm0OO/7+O4/DIAqmbNYseFF+Fc8D6GoTFqIiIiIiJy4ij4lmb2L7jM1YJLEZFW8/g9/GnNn7j+g+vZVb2LFHsKL5zzgrq8pVOxxseT8eijdP/n64T16IGvvJy9d99N4U9/puWXIiIiIiJywij4lmaCCy7V8S0i0ipFtUVMWziNl799OdjlPefSOZzR9YxQlyYSEpGnn072u3NJ/vldmMLCqFu+XMsvRURERETkhFHwLc30aur43l5ai9+vlySLiLTEpwWfcvl7l7Nu3zqibdE8febT6vIWAcxhYSTdeis95s8jcoSWX4qIiIiIyIljDXUB0rZ0T4gkzGKmweNjd2UDmYmRoS5JRKTN8vg8PLv6Wd7Y/AYAJyWexFNnPkW3mG4hrkykbQnLyiJzxgyq33uPksf/EFx+6Zg0CfupA7DExQXe4uOD75vDw1t030ZjI57SfXhLivGWlOApLglclpbgLS7BW15OeI8exJx/PjHnnI0lNvY4P1sREREREWkLTIY2DVFdXY3D4cDpdBKrX4YY/8elbCmu4eXrTmNc/9RQlyMi0iYVVhdyz9J72Fi+EYDr+l/HLwb/ApvFFuLKRNo2b2Ulpc88g/M/7/zg7Ux2+4FAPM6BJS4Oa3w8ht+Pt7gp2C4pxVde3vIHt9mIGjmC2PPHB0Jwh16VISIiIiLS3rQ0y1XHtxyid2oMW4pryC2tUfAtInIYC/MX8rsVv6POU4cj3MGjox7lrG5nhboskXZh//LLuIkTcc6bj7eiAl9VVbM3fD6Mhga8DQ14i4p+9D5NYWFYU1OxpqZgS03DmpqKLS0Va0oqlrg46letombRQtzbtlP32VLqPltKkdVK1IgRxI4/n5hzzsESF3cCnr2IiIiIiJwo6vhGHd/f9ZdPtvH0h7lMGtSF564cGOpyRETaDJfXxZNfP8ns3NkADEoZxJNnPElaVFqIKxPpOAzDwF9beyAIr6xsHooD1tS0QMidFgi5LXFxmEymH71v944dVC9cSM3CRbi3bTtwhdVK1PDhxJx/HjHjxmGNjz9eT09ERERERI5SS7NcBd8o+P6uRRuLufmfqzkpI5b37xoT6nJERNqEnc6d3P3Z3Wyr3IYJEz895afcNvA2rGa9eEqkPXLv3EnNokVUL1yEe+vWA1dYLEQNH07ynXdgH6gGABERERGRtkbBdyso+G4ur6yOsU8vIdxqZtPD47GYf7yDSkSkI5u/Yz6PfvEoDd4GEiISeHzM44zMGBnqskTkGHHn5R0IwbdsCRw0mYi76kpSpk/HEhMT2gJFRERERCSopVmu+QTWJO1EZkIk4VYzbq+fgor6UJcjIhIyNY013LfsPu5bdh8N3gaGpQ/jnQnvKPQW6WDCs7NJuuUWerw7l5yFH+CYOBEMg6p/v8WOCy+keuFC1CsiIiIiItK+KPiWQ1jMJnKSowHILakJcTUiIqGxfM9yJs2bxPwd8zGbzNw56E5eGvcSSfakUJcmIsdRWFYWGX94nMzXXiOse3d8+8rY84tfUnjzzTTu3h3q8kREREREpIUUfMth9U4NBN/bFHyLSCdT01jDgyse5JaPb6GkvoRuMd149fxXuWnATVjMllCXJyInSNTwYWTPn0fS7bdjstmoW/o5Oy++hPKXX8bweEJdnoiIiIiI/AgF33JYvVIDsyxzS2pDXImIyImzdPdSJs6byJxtczBh4tp+1/LOhHcYnDo41KWJSAiYw8NJvvMOsue9S+Tpp2O4XJQ+/Qx5l0+hYd26UJcnIiIiIiI/wBrqAqRt6h0MvtXxLSIdn9Pt5Kmvn2LejnkAdI/tzsMjH1bgLSIAhPfoQebrM3HOfZfSJ57AvXUr+T+5WssvRURERETaMHV8y2HtH3Wyc18dXp8/xNWIiBw/S3cvZfK8yczbMQ8TJq7rfx2zL5mt0FtEmjGZTMRNnkSPD/6r5ZciIiIiIu2AOr7lsLrFRxJhM+Py+NlVUR9cdiki0lE43U6e/PpJ5u+YD0BWbBaPjHqEgSkDQ1yZiLRl1oQEMv7wOI6JEyl+8EEad+1izy9+if20IUSPGoX91FOJGDAAS7R+dhIRERERCaWQdnwvXbqUSy65hIyMDEwmE++++26z6w3D4IEHHiA9PR273c64cePYtm1bs9tUVFRwzTXXEBsbS1xcHDfeeCO1tZpLfbTMZhM9U7TgUkQ6pk8LPmXSvEnM3zEfs8nMDSfdwOxLZiv0FpEW++7yy4ZVq9n3p+cpmHYjuacPZeeESyl64EGq5szFvTNPHeEiIiIiIidYSDu+6+rqOPXUU5k2bRqTJ08+5Ponn3yS559/npkzZ5Kdnc3999/P+eefz6ZNm4iIiADgmmuuoaioiI8++giPx8PUqVO56aab+Ne//nWin06H0zslhg17qsktqWX8yaGuRkTk6DndTh7/6nHe3/k+ANmObB4Z9QinJp8a4spEpD3av/zSMfFSaj9dQsO6dTSsW4dn717cubm4c3OpmjUrcFuHA/upA7APHEjkwIHqChcREREROc5MRhtpPzGZTMydO5eJEycCgW7vjIwMfvWrX3H33XcD4HQ6SU1N5bXXXuOqq65i8+bN9O/fn6+//prTTjsNgIULF3LhhReye/duMjIyWvTY1dXVOBwOnE4nsbGxx+cJtkN/W7KDJxZu4eIB6fzlas26FZH2bdmeZTyw/AH2NezDbDJz/UnXc/vA2wm3hIe6NBHpYDylpTR8801TEP4Nrg0bMNzu5jcymYi9+GLSH34Is90emkJFRERERNqhlma5bXbGd15eHsXFxYwbNy54zOFwMGzYMFauXMlVV13FypUriYuLC4beAOPGjcNsNvPll18yadKkw9632+3GfdAvH9XV1cfvibRj+xdcbivR6BgRab8avA08u+pZ3tr6FhDo8n501KMMSB4Q4spEpKOypaRgO/dcYs89FwCjsRHX1txgR3jDunV49uyh+r33aMzLo+sLL2BLTQlx1SIiIiIiHUtIZ3z/kOLiYgBSU1ObHU9NTQ1eV1xcTEpK818SrFYrCQkJwdsczuOPP47D4Qi+devW7RhX3zH0To0BYGdZLR6fP8TViIi03sbyjVy54Mpg6H1Nv2uYdfEshd4ickKZwsKwn3IyCf9zLV2eeZqeiz+m+z9fxxIXh2vDBvKvuALXpk2hLlNEREREpENps8H38fSb3/wGp9MZfCssLAx1SW1Slzg7dpsFj89gV3ldqMsREWkxr9/L39f/nWvfv5Y8Zx7J9mReGvcSvx76ayKsEaEuT0SEyNNPJ2vW24Tl5OAtKSH/mmup+fjjUJclIiIiItJhtNngOy0tDYCSkpJmx0tKSoLXpaWlUVpa2ux6r9dLRUVF8DaHEx4eTmxsbLM3OZTZbKJX07iTXI07EZF2orCmkKkLp/LntX/Ga3g5t/u5zJkwh5FdRoa6NBGRZsIyM8l6699EjRqF0dDA7jvvouwf/6CNrOAREREREWnX2mzwnZ2dTVpaGosXLw4eq66u5ssvv2TEiBEAjBgxgqqqKlavXh28zSeffILf72fYsGEnvOaOqFdKYNxJbklNiCsREflhhmEwd9tcLp9/Oev2rSPKFsXvR/+eZ858hriIuFCXJyJyWJaYGLq99CLxV18NhsG+Z56l6Lf3YTQ2hro0EREREZF2LaTLLWtra9m+fXvw47y8PNatW0dCQgKZmZn84he/4NFHH6VXr15kZ2dz//33k5GRwcSJEwHo168f48eP52c/+xkvvvgiHo+HO+64g6uuuoqMjIxQPa0ORQsuRaQ9qHBV8NCKh/ik8BMABqcM5rExj9ElukuIKxMR+XEmq5W0B+4nrEcPSh57DOfcuXgKC+ny5+exxseHujwRERERkXYppMH3qlWrGDt2bPDj6dOnA3D99dfz2muvce+991JXV8dNN91EVVUVo0ePZuHChUREHJjP+uabb3LHHXdwzjnnYDabueyyy3j++edP+HPpqPYvuFTHt4i0VUt3L+WB5Q9Q7irHarZyx8A7uOGkG7CYLaEuTUSkVRKuvYaw7pns+eV06letIv/Kq+j24t8I79Ej1KWJiIiIiLQ7JkNDBKmursbhcOB0OjXv+zt2V9Yz+olPsZpNbHp4PGHWNjsdR0Q6mXpPPc+ufpa3t74NQI4jh8fHPE6/xH4hrkxE5Oi4t22j8JZb8ezZgzkmhq5/+iNRI7WnQEREREQEWp7lKsWUH9Qlzk5UmAWv3yC/vC7U5YiI4PV7+U/uf7ho7kXB0Pvaftfy1sVvKfQWkQ4hvFcvsmbPwj54MP6aGgp+dhOVb73V4s83fD68lZW48/LwfGdRvIiIiIhIZxHSUSfS9plMJnqmxvBNYRW5JTXB0SciIieaYRh8vudznlv9HNurAvshukR34YERDzAyQ52QItKxWBMSyHztVYrvvx/nvPkU/+4h3Lm52AcNxud04quqOuiyCl/VgWP+6mo46EWd9sGDcVx6KbEXjMeiVzeKiIiISCehUSdo1MmPuWf2N8xevZu7zunF9HN7h7ocEemENpVv4plVz/BV8VcAOMId3DzgZq7scyVhlrAQVycicvwYhkH5S39n3x//2OrPNUdH46+vB78fAFNYGNFnn43j0glEjx6NyWY71uWKiIiIiBx3Lc1y1fEtP2p/l/c2LbgUkRNsb+1enl/7PO/vfB+AMHMY1/S7hhtPuRFHuCPE1YmIHH8mk4mkW24mLKcHFTNnYrJYscTFYXE4ml/GH/R+XByW2FhMNhueklKqFyzA+e67uLdto2bhQmoWLsSSkEDsxRfhuPRSIvr3x2QyhfqpioiIiIgcU+r4Rh3fP2bJ1lJuePVrcpKjWPyrs0Jdjoh0AtWN1by8/mXe3Pwmjf5GAC7qcRF3DbqLjOiMEFcnItL+GIaBe8sWnO/Ow7lgAb7y8uB14b16BkahXHIJttTUEFYpIiIiIvLjWprlKvhGwfeP2VvVwMg/fILFbGLTw+cTbrWEuiQR6aA8Pg9vbX2Ll9a/hNPtBGBo2lCmnzadkxJPCnF1IiIdg+H1Urd8Oc5586j5eDFGY+AEIyYTUSOGE/8//0PM2LGhLVJERERE5Hto1IkcM+mOCGLCrdS4veSV1dE3TScHROTYMgyDD3d9yB9X/5HdtbsByHHkMP206YzpMkYvwRcROYZMVivRZ55J9Jln4quupnrRIpzz5tGwajV1K1ZSt2Il0eecQ9r/3YctPT3U5YqIiIiIHBEF3/KjTCYTPVOjWVtQRW5JrYJvETmmKl2V/G7F7/ik8BMAku3J3D7wdi7teSlWs/6bEhE5niyxscRPmUL8lCk07t5N5b/+TcXrr1O7eDE7Vq4k+a47Sbj2WkxW/XssIiIiIu2LOdQFSPvQO0ULLkXk2Pt89+dMnj+ZTwo/wWq2cuupt7Jg0gIu632ZQm8RkRMsrGtXUu+9h+w572AfPBijvp7SPzxB3hVX0PDtt6EuT0RERESkVRR8S4v0So0GIFfBt4gcAw3eBn7/xe+5bfFtlDWUkePI4V8X/ovbBt5GpC0y1OWJiHRqEb170/2Nf5L28EOYY2Nxb9pM/hVXUvzo7/HV1oa6PBERERGRFlHwLS3SO3V/x7d+2RGRo7OpfBNXLbiKt7a+BcA1/a7hrYvfol9ivxBXJiIi+5nMZuKvuIKc/75P7CWXgGFQ+cYb7LzwIqoXfYhhGKEuUURERETkByn4lhbZH3znl9fh8vhCXI2ItEc+v4+Xv32Za/57DTudO0m2J/PiuBf59dBfE2GNCHV5IiJyGNakJLo89STdXnkZW/dMvKWl7Pn5z9l9y6007t5zQmowDIPGggK8lZUn5PFEREREpGPQAFVpkdTYcGIirNS4vOzcV0f/DC24FJGW21O7h99+/lvWlK4BYFzmOB4c8SBxEXEhrkxERFoietQoesybR9lLL1H+8ivUfvYZdV99RfIdt5Nw3XWYbLZj9liGx4Nr82bqV6+hfvUqGlavwVdZCRYLkUNPJ3b8BcScOw5rQsIxe0wRERER6XhMhl6nSHV1NQ6HA6fTSWysAt3vc9nfVrB6VyV/umoglw7sEupyRKQdMAyDBTsX8NiXj1HrqSXSGsmvh/6aiT0nYjKZQl2eiIgcAfeOHRQ9+CANq1YDEN67N9FnjMGalo4tLTV4aUlIwGT+8ReY+mrraPhmHQ2r11C/ejUN69djNDQ0u43JZsPweA4c2B+Cnz+emPPOVQguIiIi0om0NMtVx7e0WO/UaFbvqtSCSxFpEafbySNfPMKi/EUADEweyGNjHqNbTLcQVyYiIkcjPCeH7q+/jnPuXEqffAp3bi7u3NxDbmey2bCmpmJLS8OaltYsFDe8XurXrKFh9RpcW7aAr/koPYvDgX3wYCJPG4J98GAiTjoJb3Ex1YsWUbNwEa6NG6lf+QX1K7+g+OGHiRw6lNjx5xNz7rlYExNP1JdCRERERNowdXyjju+WmrEsj4cXbOLc/qn847rTQl2OiLRhXxR9wX3L7qO0vhSLycKtp97KjafciNWs860iIh2Jt6KC6vfeo3HPHrxFxXhKSvAWFeEtK4NW/Jph69IF+5DBRA4eQuRpQwjr0eMHu8UbCwupXrgwGIIHmc0KwUVEREQ6uJZmuQq+UfDdUsu2lXHtK1+SlRjJknvGhrocEWmDqlxVPL3qaebtmAdA99juPD76cU5JPiXElYmIyIlkeDx4S0vxlJTgKSrCW1yMp7gEb3ERnuIS8PmwDzwV+5AhRA4Zgi0t7Ygfq7GwkJpFi6heuAjXhg0HrjCbiTnnbBJuuAH74MEasSUiIiLSQSj4bgUF3y1TWu1i6GOLMZlg88PjibBZQl2SiLQR+2d5P/X1U1S6KzFh4oo+VzB9yHQibZGhLk9ERDqJ7wvBI04+mYQbbiD2/POO6SJOERERETnxFHy3goLvljEMg4EPf4SzwcOCO0dzchdHqEsSkTagsLqQR754hJVFKwHoGdeTB0c8yMCUgSGuTEREOjP39u1UzHwd57x5GI2NAFjT0ki49hripkzB4tDPsiIiIiLtUUuz3B9fsy7SxGQy0Ts1GoBtpVpwKdLZefweXv72ZSbNn8TKopWEmcP4+eCfM+viWQq9RUQk5MJ79iT9kYfpueRTku66E0tiIt7iYkqffoZtY8+m+JFHady1K9RlioiIdCi1bi8rtpcx6+tCip2uUJfToXl8fnz+Tt/P/IO0ZUxapVdqDF/nV5JbUhvqUkQkhL7Z9w0PrXyIbZXbABiWPowHhj9AZmxmiCsTERFpzpqQQPJtt5H4059SveB9Kl57DXduLpVvvknlv/5F9Nlnk3jD9dhPO01zwEVEpN1xeXzUN/po8PhweXw0NPpwe300NPoDHzcdd3n9uBoD74dZzWQlRZGdFEVmQuQRj7L1+w12ltWxtqCSNQVVrC2oJLekhv1ZrNVs4qIB6dw4OpsBXeOO4bPuPHx+gz2VDeSV15FfVkdeWR355YHL3ZUNvHPrSAZ209f2+yj4llbpnRLo+M4tVse3SGdU21jLn9b8ibe3vo2BQVx4HPecfg+X9LhEYYGIiLRp5rAw4iZPwjFpIvUrV1I+cyZ1ny2ldvFiahcvJqJ/fxKmTiX2wgswWbTLRkRE2rbSGhe/f38z87/Zy9EMMTaZIMNhJ7spCA8E4pFkJ0XTNd6OzXJgWISzwcO6wkDAvbaginWFVTgbPIfcZ5c4OwlRYXy7x8m8dXuZt24vp2fFc+PobM7tn4bFrN8dv6uk2sWO0lp2lgUC7v3hdmFFA40+//d+Xn5ZnYLvH6AZ32jGd2usK6xi4gvLsdssfHnfOcRGaDmQSGexeNdiHvvqMUrrSwGYkDOBu0+7m/iI+BBXJiIicmTcO3cG5oC/+y6G2w1AeJ8+pNx7D9GjRoW4OhERkUP5/Qb/+qqAJxZuocblDR4Ps5qJsJqxh1mIsFmIsFqICLMcOGa1NF1nps7tCwSr++qocXu/97GsZhPdEiLplhDJ3qoGtpce+ur/cKuZAV0dDM6MZ1BmHIMy40mNjQBgwx4nM5bl8d76vXh8gfixa7ydG0ZmceXp3Yg5gkzJ7zfYsa+WtQVVrN9TRXS4jcFNj5scE97q+wsln99g8eYSZizP44udFd97uzCrme4JkcEu/eykKLISA5epseGdsglNyy1bQcF3yxmGwXnPLWVbaS2PXHoS/zMiK9Qlichxtrd2L0989QSfFH4CQGZMJvePuJ/h6cNDXJmIiMix4a2spOqttyh/9TX81dUARI0eTco99xDRp3eIqxMREQnYUlzNb+d8y5qCKgBO6eLg0Yknc3IXxxF1URuGQXldI/lldcFO47yDxmm4PId2GndPjGRQt0DQPDgznr7pMc26wg+npNrFP1fu4s0vd1FZH+gQjw63csVp3Zg6KotuCZHf+7nOeg/rdlexZlclawoqWVdY1SzwP1jXeHswgB+cGU+/9FjCrG1vvWGNy8OsVbuZuSKfgop6AMwmyEoMdNxnJUaRnRxFdmIUWUmRpDvs6pL/DgXfraDgu3VmLMvj4QWb6JsWwwc/H9MpzyyJdAZlDWX8ff3fmZ07G6/fi9VkZerJU7lpwE1EWCNCXZ6IiMgx562spPzFF6n417/B4wGzGcfkSSTfeRe21JRQlyciIp1UfaOXPy3exsuf5+HzG0SFWbj7/D5cNyLruAWifr9BSY2LvLI6CsrrSYwOZ1BmHEnRR95V3dDoY+7aPcxYnhfsHjeb4Nz+qdw4ugdDusezrbSGtQWBoHttYdVhu8wjbGYGdI1jYLc4qhs8rCmoZFtp7SEjX8KsZk7p4gh2hA/KjCPdYT/i+o9Wflkdr63I5z+rd1Pb1GnvsNu4elgm/zO8OxlxoautvVHw3QoKvlunqr6RYY8txu31M/e2kQzK1JgDkY6kylXFjI0z+Pfmf+PyBbZwD0sbxv8O/V96xfcKcXUiIiLHX2NBAaXPPkfNwoUAmOx2EqdOJfHGaZijokJcnYiIdCafbinl/nkb2F3ZAMD4k9J4cEL/kAa4R8vvN1i6bR+vLMvj821lweNhVjON3sN3mR/cyd0n7dAu82qXh/WFTtYUVAZmkBdWUVV/6PzxtNgITu4SS9+0WPqlx9IvPYasxCjMx+kEgmEYrNxRzozl+SzeUhIM53umRDN1VBaTB3XFHqbdIq2l4LsVFHy33vS31zFn7R6mDOnKU1NODXU5InIM1DbW8s/N/+T1ja9T6wmcVR+QPIC7Bt3FsPRhIa5ORETkxKtfu5bSJ5+iYe1aACxJSSTfeSdxl03GZLWGuDoRkdarqm8MjrKoc3sZ3D2efmmxxy30kyNXUu3i4fc28f63RUBgYeRDE05iXP/UEFd2bOWW1DBjWR5z1u6h0esnMszCqV3jGNw9jkHdAmF34hF0mRuGQV5ZHWsLqlhbWMmaXVVsKa7Gf5gU1G6z0Ccthn7psfRPD1z2TY8lOvzI/693eXzMX7eXGcvz2FJcEzx+Vp9kpo3KZkyvJE1QOAoKvltBwXfrrcqv4PIXVxJhM/PVfeO05FKkHXN5Xby15S1e2fAKVe7ArLje8b25a9BdnNH1DP1nLCIinZphGNR8+BGlzzyDp6AAgLCeOaTecw9RZ+j/SRFprtHrp6TaRXG1iyKni2JnAxazmcsGdyEuMuyE1FDf6A3MaC6rJ6+sttns5srDdMDGRdoYnp3IyJ6JjMxJJCc5+pj929bo9be5GcsF5fUs3FiE3WYJLgvMcNjbTPjv8xu8+eUunlq4lRq3F4vZxLRRWfxiXG+ijiKIbeuq6hspq3WTnRR93Ma31Lm9bNjjZHNRNZuLathcXM3W4hrch+kyB8hMiKRfegzdE6MwAQaBnwsMY//7YGAEu7gNw8Ag8H3/4aYSKuoagUCwfvmQrlw/MoueKdHH5bl1Ngq+W0HBd+sdvOTy4UtP4jotuRRpdzw+D3O2zeGl9S+xr2EfAFmxWdw+8HbOyzoPs6lt/YAqIiISSkZjI5VvvU3ZCy/gczoBiBw+nNR77yGif/8QV9fxuDw+vsyr4Ou8CrrE2xnbJ4U0h3aMSOj4/QY1Li8V9Y2UVLsocjY0BduuZpdlte7Dfn5MuJVpo7O5cUz2MW8cW1tQyZw1e9hWWkNeWR0l1YevYb/U2HCyk6KwWcys2VVJXaOv2fXJMeGM6BEIwUfmJNEtwf6DQbjL4yO/fH+4Hgjb88vqySuvY1+Nm6zESMb2TeHsvikMzU4g3Hrixzp4fH4Wby7lzS93sWx72WFnQWclRjZbKpidFHg/OTr8hJzkNAyDb/c4uf/dDXyzO/D/zKnd4nhs0smclOE47o/fWXl9fvLL69hUVMOWoupgKF5c7Trq++4SZ+e6Ed256vRMHJFqGD2WFHy3goLvI/Pq8jweek9LLkXaG5/fx4KdC/jbN39jT+0eALlD5ZcAACAASURBVDKiMrjl1Fu4JOcSrOaO20UgIiJytHzV1ZS99BKVr/8Tw+MBkwnHpZeS/MtfYEvtWC8/P9GKnS4+2VLKJ1tKWb69jAZP8zCuf3osY/smc3bfFAZ2iz9uHYESes4GDzv31VLf6KOh0YfL68Pl8dPg8eH2HHrM5fHh9vjx+v3YbRbsYRbCrYFLuy3wFmEzE9F0XUTTdRE2M26Pn8p6D1UNjVTVe6isawx8XN9IVYOHyvrA8ar6xsOOSDicMIuZNEcEaY4I0h0RbC2uCY46cNht3HRGD24YmXVU3bten5+FG4t5ZVkeawuqDrk+ISqMrMRIspOiyU4KXGYlBYLdgx/X4/OzfreTL3aWs2JHGavyKw/pfu0SZ2dETiAIj42wkV9eFxyXkl9Wx15nywPCqDALo3omcXbfFMb2TSE19vie0NpdWc/bXxfy9teFlNYcOCEwqmcidpuVvLJaCirq8fi+/w83KsxCdnIUWYlR9EiKCnaJZydFHXEXv9vrY1tJ7YHO46JqNhdXB2dSx4RbuXd8H64e1l3/1oVIRV0jW4qq2VRUTbHThckEJpMJE4AJTJgCx6Dp8sDHmEz0T49hXL9UrBY1lB0PCr5bQcH3kXHWexj62Me4vX7m3DaSwVpyKdLm5Tnz+OWnv2SHcwcASfYkbhpwE5f1uowwy4l56aWIiEhH0Lh7D/uee47q998HwBQRQeK0aVqA2Qo+v8G6wio+bQq7NxVVN7s+NTacUTlJ7Cyr45vdVc06NOMjbZzZO5mxfVM4s3fyCRshIceWYRgUVjSwqSlc2tz0tn+JX1sUGWYhLTaiWbCd5rCTHnvg44SosGaNYX6/wQcbinnu41y2lwZ26SRGhXHrWTlcO7w7EbaWd0A7Gzy8/XUBM1fsYk9V4OsUZjFz8anpjOmVFOhYPopA1uXxsbagipU7y1m5o4y1BVV4W5D4x0ZYyU6OJjsxslkwnBYbwZqCpr/nW0vZV9O8G/2kjNhgCH5q17hjEvJ6fX6WbN3Hm1/uYknuvuC/HUnRYUw5rRs/OT2TzMTIZrffW+Uir7yOvH21gVC/PNC5vqey4QdPeMRH2shuCsMPDsUPPsFQVusOfm/vD7m3l9Ye9utqMZu48JR0/u+ifsf9pIBIe6bguxUUfB+56bPWMWeNllyKtAeF1YXcsPAGShtKcYQ7uPHkG7mq71XYre13G7iIiEioNXzzDSVPPEnDmjUAWJOTSf7Fz3FMnIjJcuJfzt/WOes9fLZtH59uKeWz3H3B+acQ6Jgb2C2Os/sEQrCTMmKD4WF5rZvPcvfxyZZSlubuo9rlDX6e2QSDM+MZ2zeFsX1S6Jce0+5ejerx+SmsqA920QaXDzb6iLPbiIu0NV2GBd6PbHrfbiO+6VhMhK1Nd4a6PD62Ftc0C7g3F9VQ6/Ye9vZpsRE47DYiwixEWAPd2hE2c1P39sFvTZ3cNgtmsynYER7oBD+oS9zjC3aHN3j8uJpuE2Y1E9/09YyPDHw9HU2XB44H3ndE2o5qTIfPbzD/mz388eNt7CqvByAlJpzbx/bkqqHdfvC+88vqeHV5HrNX76a+aTRJYlQY1wzvzrXDM0mJOT4haX2jl1X5lazYUc4XO8tp9PqDo0AODrjjI20/+vfO7zfYuLc68MqOraWs/84JrcSoMM7sk8yYXkmkxkQc9OcQRoTN/KP3X+RsCHZ3Fx3UhT4yJ5FrhnXn3P6prZ437vb6mv5uBoLwA5ctGynjNzgk7N8vNsJKv/TYpoWKsfTPiKVnSnSrToSIdFYKvltBwfeRO3jJ5Ze/HYfDrplFIm3R3tq93LDwBorqishx5PDK+a+QaE8MdVkiIiKtYhgGbq8fV1Og5fIcGHfgagq13E3XNfr8xIRbA6FV1IFw8HjMljUMg5pFHwYWYBYWAhDepw+p/3svUSNHHvPHa29Kql0s2ljMf78t4uv8SnwHdTnGRlg5o3dgfMmZvZNJjA7/0fvz+vysKajiky2lfLqllK0lNc2uz3BEcNXQTK4elklSC+7vRPH7DfY6G4LjIXYeNCqisLKh2dflSJhMgTEao3om8YtzetErNeYYVd7c+t1VrNlVGQiPm4Jkl6d50Lx/9Mj+9+sbfRQ5D985G2Yx0ys1mv5NAeD+ELAjz8P1+PzMWbOb5xdvD3ZtZzgiuPOcXlw+pCu2ptEIhmHwxc4KXlmWx+ItJcGQuE9qDNNGZ3HpwC7tOiQtq3WzZGvgRNjS3H3UfM9JECB4gmL/v+Vx9sC/7ftPAH2dX8knW0qC32MJUWFcPqQrPxmaSXbS8XkVTp3b2zTbvHkonl9ef8hJve4JkcHv7X7psfTLiCXDEdHuTtKJtBUKvltBwfeRMwyD8/+4lNwSLbkUaatK6kqYumgqhTWFZMVm8er4V0myJ4W6LBERkR/l9vqYs2YPM5blUVBRf8jc2SMRGWYJBicHX8ZH2uiaEMmFp6QTfYRzd/2NjVS+8SZlL76IvzowtiP6zDNJufcewnNyjrr29mRvVQMLNxTzwYYiVu2qbNbV2SslmrP7pXB2nxSGdI8/6vmnuyvrg+HZ8h1luDyB75Mwq5mJAzOYOiqbfulH/3ueYRis3+1k7to9LNxQTI3L06rPb/T5f3COsN1mCY5L2D86wWG3UVXfiLPBE5g/3TR32lnffPb0d5cTmkwwcWAXfn5OL7KOQehnGAYrdpTzwqfbWbGj/IjvJzEqjP4Z+wPuGPqnO+iRHBUMejsbt9fHrK8L+cun24Pdw5kJkdx1Ti8AZizLazYCaGyfZG4c3YNRPRM7XGDq8flZlV/Jp1tLWVdQRWX9gVnrLRm1st+w7ASuHpbJ+JPTQrJEcz9nvYedZbUYBE5UHM08dxE5lILvVlDwfXS05FKk7SprKGPqwqnkV+fTJboLr41/jbSotFCXJSIi8oPqG73868sC/vH5zu99KbnFbDpo/MGBcQf737dZzNS4vK1eTBcTbuWqod24fmQWXeMjf/wTDsNbWUnZX/9G5b//DV4vWCzEX3kFSXfcgTUh4Yjusz0orKhn4YZi/ruh6JBle4Mz47jwlHTOPymNbglH9nVtCZfHx8INxby6PI9vdjuDx0f0SGTa6GzO7pvS6nEguyvreXftHuas3cPOfXVHVZ/NYqJ7YtOSvKZleftHRaTGhh/x71KNXj/OBg+FlfW89NkOFm0sAQJ/T6YM6cqd5/SiS1zrx9v5/QYfby7hhSU7+KYw8GdqNZuCc9XtYeaDFkVaCLeaD1keGWG1EG6z0DXeTkrMkT/Hjszl8fHmlwX8bcl2ymobm10XYTNz2eCuTB2VTc+U6BBVGDqGYVDX6KOyLnAC6OBAvOqgE0ApseFMGdKtU36NRDojBd+toOD76GjJpUjbVOmqZNqiaWyv2k5aVBqvjX+NLtFdQl2WiMgJVePyYDKZjriDV04sZ72HmSvzeXV5HpX1gW7atNgIfnZGD87rn9os4G5th6jfbwSD8MqDApP9AUplfSMrdpQHg02L2cT4k9KYNjqbId2P7Odbd14epU8/Q+3ixQCYo6NJvPkm4q+8EksH+b1jV3kd//020Nm9/qCg2WSC07sncMEpaYw/OY10x4ndKWIYBmsKqpixPI+FG4qDY0QyEyK5YWQWU07rSkzE94/ScDZ4+ODbIuas3cNXeRXB4xE2M+f1T2PSoC7kJLcuYLNYTKTGhB91h3tLfLvbybMfbeXTrfuAwDiRnwztxu1je5LSgoV5Xp+fBeuL+OuS7eSWBJYxhlvN/GRoJj87o8cRhejy4+obvcxcsYtXluURZjFx7YjuXD00U8tbRUS+Q8F3Kyj4Pnr7l1xePqQrT2vJpUjIOd1Ofvbhz9hcsZlkezKvjX+NzNjMUJclnUBZrZuoMCv2sPY7b7ItMwyDPVUNxEWGKcj9EYUV9Ty/eBtz1u7B5zeIDreSGhtOmiOCtFg7aY5w0mIjSI2NCBxzRJAUFY65DS+G68hKa1y8siyPN1buCo5s6J4Yya1n5jBpcJcT9nJ1v9/gs9x9vLIsj2Xby4LHB3aL48bR2VxwctoRhZZ1X35F6RNP4Nq0KXDAYsE+YABRo0YRNWok9lNOwWQNzd9pj89PSbWLkmoXdW5fs/nMgfnpzWeouzz+wBx1r4/8svpmYxjMJhiWnciFp6Rx/klpLQpYT4S9VQ28vnIX//6qAGdD4IRKdLiVKad15YaRWXRPDIwCafT6WZq7j7lr9/DR5hIam0brmEyBjvFJg7ow/uS0HwzM25rVuyp45sPc4HiScKuZ60dmcfMZPQ47T93l8fHOmt28+NkOCisCs6djwq38z4juTBud3aZmpouISOel4LsVFHwfvdW7Krjsb1pyKdIW1DbWctNHN/Ft2bckRCTw6vhX6eHoEeqypBNYsH4v09/+hvgoG69PG0aftOOzVKuz2l1Zz4PzNrJ4Syk2i4lh2Ymc3TeFs/umHJP5rR3F3qoG/vzJdmavKmzVTFAIvHw/JSacjDg7J3dxMCgzjkHd4umWYG+XL83fW9XA1pKawOiBphEg9u+MBQm3mkP63Aor6vn70p28vaowGDL2TYvhtrE9ufAIQ+ZjZXNRNTOW5TFv3V4afYHaMhwRXD8yi6uGZrb6513D76f6vfco+/s/aNyxo9l15thYooYPbwrCRxHW9di8Qmt/qF3kbHqraqDI6aLY6aLIGXh/X62bo/mN0GI2MaJHIhecksZ5/dNIjmm7wWh9o5e5awMz43c0dfabTDCuXyrpjgje+2Zv8JUGAL1To5k0qCsTB2Wc8I71Y23F9jKe+SiX1bsqAYgKszBtdDY/HdMDh91GnfvAeKHSmsB4oYSoMG4cnc21w7vr9zsREWlTFHy3goLvo3fwksuHJpzE9SOzQl2SSKdU76nnlo9vYW3pWhzhDmacP4Pe8b1DXZZ0Av/8YhcPzNsQDE9iI6y8OvV0hnTvuLNsTxSvz8+ry/N59qNcGjy+w96mR1JUMAQ/LSuBMGvnWxJWWu3ihU+38++vCoMh5ZheSfzy3N70SY2huDoQ9hU7XRQ3dbfuf7/4R8K/xKgwBmXGMbBbHIMy4xnQ1dHijk/DMKis95BfXseu8jryyurZVV7H7soG+qTFcP2IrGN+kii3pIa/LdnB/G/2Bsc7fB+TCSKsB4Jwu81Cz5RoxvZNYWyfFNIcx6djd3tpDX9dsoN56w7UOCgzjjvG9uTsvilt6kTDvho3b3yxize+2EV5XWD2bmSYhSlDAjN3j+TEk2fPHmpXrKBu+QrqVq7E73Q2uz6se3esw0ewLfMkFloz+LbCi8Ghf5bf9z1rANUNnhaH2mEWM6mOcKLDbUTYzM1PkDTNZz7kuM2Cw25jTK9kEqLa1xgGv9/g8+1lvLo8jyVNo0D2S44J59JTM5g4qAsnZcS2qe/Fo2UYBkty9/HMh1vZsCfQqR8TYeWCk9NYtLEk2A2f4QiMF7rq9Ey9gktERNokBd+toOD72HhteR6/05JLkZBp8DZw++Lb+br4a2LCYnj5vJfpn9g/1GVJB2cYBs8v3s5zH+cC8JOh3dhaXMOagioibGb+ds0QxvZNCXGV7dfagkp+O3cDm5tGCQzNSuCxySdjNpn4ZEspn2wp5au8imadzdHhVs7oncTYPimc1SelTXdfHgtltW5eXLKDf36xC3dTx/DwHglMP7cPQ7NbfuLF6/Ozr9ZNsdPFrvJ61hVWsbawik17nXh8zX9cNpmgV0o0g7rFBwLxzDgSo8IpqKgjv6ye/PI68ssDAXd+WR3VLu8PPvaonolMHZnN2CNYunewNQWV/PXTHXy8uSR4rFfTkq+DR1Q0eHwt7obvlx7L2X2TGdsnhUGZ8UdUn2EY7HW6WFtQybqCKtYUVLK2sCoYyI7plcRtZ/VkeI+ENv3zo8vjY/66vbyyLI+tJTVA0xzrrAQGZ8Y3vUIgrtXjPQyfD9eGDdQuW07ZkqX4N36L2e8PXu81mdmUkMXXaf34KrUfBTGpgQduoTCLmTRHBOlNb2kOOxlxEaTFRpARZyfNEUFCZFinHfOzvbSWN7/cRb3bx4UD0hmVkxjSVxqcCIZh8OGmEp79MDf4vQyBk6i3nJXDxIFdOuUJVBERaT8UfLeCgu9j4+All+/cOvKIlwCJSOu5fW7u+uQuVuxdQZQtir+f+3cGJA8IdVnSwfn9Bg+9t5GZK3cBcNc5vfjluF40eHzc9uYalmzdh8Vs4ukpA5g0qGuIq21fql0enlq4lTe+3IVhQFykjd9e0I/Lh3Q9JJyqdnlYtq2MT7aUsmRrKWW1jcHrTCYY0DWOsX2SOa17Aqd2a3mncltXWdfI3z/fycwV+dQ3zYQe0j2eX53bm5E9k47Z47g8PjYVVbO2oCoQhhdUsruyodX3k+6IoHtiJNlJUXRPjCI1NpwPN5awaGMx+zPozIRIrm9auhfbio7ypdvK+Oun2/myaQGfyQTjT0rj1rNyGNA17rCf5/H5m81u3v9+rdvLqvwKPtlayrqDwmkIfB+e0SuZs/umcEbv7+/yrXN7Wb/bGfx6rSusCo5OONj5J6Vy21k9ObXb4WtsqwzDYPn2cl5etvOQbmEIdMsOyoxnYLfASZGTMxzf2zXb0OhjxY79f3/3saeqgUhPA6fu28HgfVsZVr6d5Ormj+FLTcdz+gg8p4/EO2AgprDDB+3R4VbS4yJIjApr0ycUJHT8foP31u9l5Y5yxvRKZvzJaUd18k1EROREUfDdCgq+j51fzfqGd9bs1pJLkRPI4/Mwfcl0luxegt1q58VxLzI4dXCoy5IOrtHr51ezv+G9b/ZiMsHvLmk+5srj83Pvf9Yzd+0eAO6/uD83js4OUbXth2EY/PfbYh56b2MwKJw8uAv3XdjvsEvIvsvvN1i/x9nUDV4SfCn7fiYT9E6JCXSmZsYxODOenOTodtXp6Wzw8MqyPGYsy6PWHeikHtDVwfRze3Nm7+QTEvDtq3EHQ921BVWs311FvcdHhsNOVlIk3ROjyEqMJCsxiqykKDITIomwHT743F1Zzz+/2MVbXxUGxwxEhVmYclo3rh+ZRfb3jNHw+Q0+2FDE35bsYOPewJ+zzWJi0qAu3HxmDjnJ0Uf9PCvqGvkst5RPt+zjs9x9wfogsMRwYLc4zu6bwulZCeyqqA+eHNhaXM13G8qtZhP90mODI2NOz0qgW0LkUdcYarvK6/hiZ/n/s3fn4VHV5/vH37MlM9kD2YGwkwTZd8UFBEUFxaWidcW6tH67KLXurUurtVbUaltba7VW/alYawVFcEVQZJMdIQHZwpKN7Mvsc35/nBAIojKQMAm5X9eV62TOOXPmmZBwJfc883wavx+q2FxS+43nbrNayMuMN4Pwbsn0S49j7a4qPskv5Yut5U3vVABz4cFTepvz+8fnptE1OQZfYSF1iz6jbuFCGpYtw/Ad9OKWy0XsyScTd8YZxI07A0d6+vF66iIiIiIRo+A7DAq+W44WuRQ5vgKhAHcsuoMPd35ItC2av074K6MzR0e6LDnBNfgC/OSVVSzaXIbdauHxaYOZOuSbC7GFQgYPzd3EC4u3A/B/43pz+6QcdR5+i10VDfxm9oamDtKeKbE8fOGAY+peLqnxsCC/lMVby7+1Uzk+2s6QxhENQ7snM7RbEkkx3z2v1zAMvIEQbp85NsPtD+L1h+iZEtsq82ANwyC/uJZ31+3l5SU7m0aH5GUm8Muz+jExL7IzoYMhg2DIOKbRAPsX3Xtx8Q62lNY17R+fk8p1Y3tyWt8ULBYL3kCQt1bt4dmFW9lR3gCAy2HjitHZ3HBaz1ZbgC8QDLF6VxULGkfs5BfXfuf5B3c9D81OYkCXxG8N/08k+7vdV+8yx7qs3lVF2WG63Q/WJcnF+Fyzk/7kXinf+TMUamigfulS6j5dSN2nnxIoLW12PDovj7hxZxB/xhk4Bw7EYjvxv+YiIiLS8Sj4DoOC75ZjGAbn/OkzCkpqtcilSCvbVbOLx758jAW7FuCwOnj6zKc5tcupkS5LTnCV9T6ue3EFa3ZV4XLY+PvVwzmjX+q3nm8YBs98upXH3i8A4PKR3XjowgEn/PzUcPiDIZ7/fDt/+mgzHn+IKJuVm8f15uZxvVs8KCyt9TTOWDa7ldftrj7sgpm9UmLJSnLh8R8Itj0Hhdwef+gwVze7VU/e362ak3ZMHb2GYfDV3hreW1/EvA3FbN9X33SsX3ocMyb2Y9JJGe2qW/1I7B+j8a/F2/mkoLRp1EiftDjOzE1j9po9lNSYQWpSjINrT+7B9FN6kHycFxcsqnazIL+MT/JLWbe7ip4psY0voJizrtPDnHN9oto/33xNYRVrdlU2dYXnZMQzvnFB2pz0+KN64cYwDLz5+dR9+il1ny7EvW5ds9Uu7ampJJx/PolTp+LM0ULXIiIicuJQ8B0GBd8ta/8ilznp8cy/VYtcirS0ryu/5rn1zzF/x3xCRgi7xc4T455gfPb4SJcmbVhprYdtZfXkZSSQGHN078YpqnZz9fPL+bq0jqQYBy9MH8mw7CNbz+G15YXc+7/1hAxzru9Tlw894bs/A8EQnoC5mKA3EGr8OLDAoDcQotrt568Lvm7qnh3TqxMPXzSwRcZUHGmNBSW1rG5ccHBNYRXbDgqYj0SUzYrTYcVisTQbhQFmQD0+N40zc9IY3j35e1/wMAyDdbureW9DEfPWF1NY0XDgcexWxvVLZeqQLh1mDu2OffW8+MUO3ly5u2msC0BGgpMbTuvJD0dlExttj2CF0pYEKiqoW7SIuoULqf/sc0J1B945EJ2XR+LUC0icPBl76re/WCkiIiLSHij4DoOC75ZV7fYz6mEtcinS0r7a9xX/WPcPPtn1SdO+U7ucyv8N/j8Gpg6MYGXS1vgCIb7aW83qxrfZr9pZyZ4qc8SFzWpheHZyU6dhv/S4I3qBcmtZHdc8v5w9VW4yEpy8fP0o+qbHh1XX/A1F/OK1NfiCIcb06sRz14wIe6HFBp85RqCs1kvf9Dh6pcQd03iJllDt9vPhxhLmrtvL2t3VeBpD7eChg36/Q3KMg3sn9+eSYV0i/oJxZb2PNburqGrw4XLYcTqsuBw2XFE2XA4bzsbPnQ4bTru1Kcw2DIMtpXV8vKmUBfmlrCysbPY1SHDaOb1fKhPy0jijX1rTwoihkMHqXVXMa+zs3v+9CuB0WBmfk8Z5AzMZn5tGXAcNeWs9ft5cuZsvd1RyRr9ULhzaJeLf99K2GT4fdYsWUT17NrWfLgR/44tSNhuxY08hcepU4idMwOpUZ76IiIi0Pwq+w6Dgu+XtX+TykmFdeXyaFrkUORZfFn/Jc+uf44u9XwBgwcLE7hO5YeAN9O/cP8LVSVuwt8pthtyFlawqrGTD3hp8geajKCwWSIuPbhqRsF+XJBfjcszZsqf0Pvxs2bW7qrjuxRVU1PvolRrLy9ePpkvS0c0R/mLrPm56aSV13gAnZSXw4nWjSI0//KKNhmGwbV9903NbXVhF/iGL5jlsFnqnxpGXmUBeZjy5GQnkZsaTGhfdqgHywWH351/vwx/87l+nomxWoh1Wou02ou1mh3S03Ua0w8rALoncOrFfUxB8oqhu8LNwSxmfbCrh081lVDUc6Aa3WGBotyT6pcezcHMZRdWepmMxUTbOzDXD7nE5qcREdcywW6SlBCorqZ0/n+q3Z+Neu7ZpvzUujvhJZ5M4dSoxI0ZgserFFBEREWkfFHyHQcF3y1u5s5JL/vYF0XYry++ZeNRvqxfpqAzDYPHexTy37jlWla4CwGaxcV7P87hh4A30SuoV4QolkirqfcxZs4dl2ytYXVhFcY3nG+ckxzgYmp3MsOwkhmYnM6hrIvFOB7sqGlhQYC5Ot2RrOd6DAvLDzWf+fMs+bnr5Sxp8QQZ1TeRf00fSOe7wQfWR2rCnmmtfWE55vY8enWN4+frRdOsUQ7Xbz9pdVY2d6mbQfejoDIDMRCcZiU6+Lqmj9qDxDwfrHBtFbmY8eRkJ5GYmkJsRT6/U2GMKUasb/HywsZj31hd9I+zOSY9v7EpOJckV1RhyW3E6bETZrCfcHOpwBUMGa3ZV8kl+KR9v+ubCiHHRdibkpXHugEzO6JfaKgtkigh4t2+nes4cambPwb93b9N+R1YWCReY88Cje/aMYIUiIiIi30/BdxgUfLe8gxe5fOD8/kwfq1+gRY5EyAjxSeEnPLf+OTaWbwTAYXVwUZ+LmD5gOt3iu0W4wtZT4/HT4A1isYAFwGJ2twNN+ywWS+PWPGazWYiNskV8NIRhGBTXeNi4t4ZNRTXsrfYwqkcnJuSlhT3K47seY/n2Cl5dXsi89cX4ggcCa5vVQl5mfNOicsOyk+neOeZ7vy5uX5Al2/bxSX4pC/LLmo2YAOidGkthRQP+oMHYPp159uoRLTZqYvu+eq5+fhm7K92kxEWRHBPF12V1HPpbSbTd7Ige1j2Zod2SGJKdRGaiq+lrsqfKTX5RLfnFNWwqqmVTcQ079tXzbVNGEl0OMhOdjeG5i6zGED0ryWVuE13NQtcjCbsnD8qgT1p4Y186ur1VbhYUlLKtrJ4xvTpzWt+UE37mu0hbYoRCuFeupGr2bGrnzSdUf2C2v3PwIBKnTiXh3HOxJ2tkoYiIiLQ9Cr7DoOC7dfz7ix3cP+crLXIpcgQMw+CDnR/wtzV/Y2v1VgBcdheX9ruUa0+6lrSYtGN+jFDIoLzeR0W9j54psRGfDxsKGWzYW90Yupaybk/1N0LPI2GzWkh0OUhyOUiMMbdJMVHmvoNvH/R5kstBgstxVIvj+QIhtpTWmiFrUY0ZdhfXNBvjsN/+xfgmD8pkQl76UYXGVQ0+/rtqD68tL+Tr0gMLlQ3oksB5AzMZnp3MwK6JxzwOwjAMNpfUNXWDr9x5YD7zeQMzePKyIUTbWzaYLKnxcO0Ly5t1/2Z3imkK74dmJ5GbkRD296rbF2RLArH8XwAAIABJREFUaS35RbVsLKohv7iG/OLaw/4bHc7+cDzeaWfNrqpvhN2TB2Vy3sBM+qQdnwUoRURaU8jjoe6TT6h6+23qF38BwaB5wOEgftwZJE6dStzpp2OJOrHGMYmIiEj7peA7DAq+W0e128/o33+Ex69FLjuaUMig1hOg2u3HFWX71vm9YlpdupqZX85kXdk6AOId8fww74dclXcVyc4j+7kJBEOU1XkpqvZQvP+jxtN4201RtYeSGk9TgNetk4vfTR3AuJxjD9TDUePx89nmfSwoKOXTgjL21TWfN223WjAwQ1hz27r1xDvtBwXkZlieGONoCtKTYhzEOx3srXKzcW8NG4tq2FpWd9h5zjarhT6pceRlxpMSF80n+aVs23eggy7abmVcTiqTB2UxITeN2O8IwQ3DYOXOSl5dVsjc9UVN40hiomxcMDiLK0ZnM6hrUst/QQ5S3eBn0ZYy3L4glwzvelQvEhzR47j9/G/VbromxzAkO4mUYxyj8l1qPH6Kq82fi6Iq8+eiqHr/1txX7wt+434Ku0WkowiUlVE9dy7Vs+fg3bSpab8tMZGEyZNJvHAqzoED1dAiIiIiEaXgOwwKvlvPr/6zljdXapHLE4E3EGRBfhmltR5q3H6q3X5q3Ga4Xe32U+PxN31e5w00BZYWC1w5OpvbJ+WS6NKs94PtrNnJn1b+iY8KPwLARjQx7gnEeMZjNY5s4UDDgFpPgNJaz7eOdjiYxWIGsB6/GaSePziL30zJIy3eedTP47vrM/i6tM7s6i4o5csdlQQOKjQ2ysZpfVMZn5vKuJw00hMOX4dhGBgGGAffBgJBgxqPn6oGP1UNPqrcfqob/FS5fea+Q283HPgePRYJTjt5mQn0z0owt5kJ9EmLazaqwTAM8otrmbuuiLnri9h+SAg+PieNyYMyOfOgELza7eft1Xt4dVkhBSUHuqDzMhO4YnQ2Fw7JarHRKXJ4+8PxvVVuKup9DOqapLBbRDokT0EB1bPnUPPOOwTKypr2R/XoQeKFU0k8/3wcXbpEsEIRERHpqBR8h0HBd+vRIpcnhtWFldz+5rpmYxaOhNNxIGBNiYvm15PzmDokq8N3CVV6Kvn72r8zq2AWQSMIhgVf1Uh8+yZiBI7+/yCb1UJGgjmvOCPRSWbj55mJrsatk9T4aLyBEE9+uJl/Ld5OyDC7nu88J5crRmW3yAJ8oZDB0m3lzNtQzIKCUnZXNp8b3Ss1ljNz0hifm8bIHp0iMnLFHwxR424MxhvD8Wr3QeH5Qfuq3X5S46ObAu68rASyEp1hfR8bhsHGohreW1/E3HVF7ChvaDrmdJgheGy0nXfX7W36mXE6rJw/yOzuHtItqcP/3IiISGQYwSD1S5ZSPXs2tR9+iOE5sKCya9gwovv1JSq7O1HZ3XB0yyYquxtW15G9gC8iIiJyNBR8h0HBd+sxDINzn/qM/OJaJg/K5PFLB2vxqnbE4w/yxIeb+edn2wgZkBIXxcgenUhsnI+c6HKQ4LSTcNBtc5+DBJedaLuNL7bu49dvb2BbmdntekrvzvzuwgH0Tu14HZTeoJd/rPk3L258Hl/IDD4DdTl4S87DRRbnDMhk0knhz4GOibaTleikc1x0WOMoNuyp5p7/rWfd7moAhmYn8cjFA8nNOLr/B/fVeXlz5W5eX17YLNiNslkZ07sz43NSOTM3je6dY4/q+icKwzD4am9jCL6+iJ0Hfa3AHKtxxehsLhzaRe+SEBGRNiVYV0/tBx9QPXs2DcuWfet59tRUHNnZRGVnHwjEu2cT1a0b1oQEDI+HkMfTuPVieNzm1ush5PY02xp+PzGjRuHMzT2Oz1RERETaMgXfYVDw3bo+3lTCj19eSSBkMLJHMs9ePYJOsVocp637ckcFd7y5rmlG8UVDu3DflP4kH8W/nTcQ5LlF2/jzJ1/jDYSIsln58Rm9+On4Ph3ihZB6r5+ZX7zOnJ3/xGepACDoycRfNoVTu4zhwqFdOKt/+jEvTng0giGDl5fsYOYHm6nzBrBZLdxwWk9umdD3iOoxDIMl28p5dVkh739V3DT7Oi7azpTGBR3H9ukckefWHhwcgtd5A0wdksWw7GR1d4uISJvn37OH+qXL8O0qxF9YiK9wF77CQkI1Na3yeLGnn0bKTTcRM2JEq1xfRERE2g8F32FQ8N36Fn+9j5+8spJaT4AenWN4YfpIenXAjt/2oMEX4LH3C3jxix0YBqQnRPP7iwYyIS/9mK9dWN7AfXM28GmBOScyu1MMv5160nFfYPFolDYuFPnNhRcPzJ42jObH6rwBXl37CStqXsLi3A1AyJ9IeuBCrhpwEecP7tpmFv4srvbw4DtfMW9DMQBdklw8dOEAxuce/t+mot7Hf1fu5rXlhc0WcBzcNZEfjsrm/MFZ37l4o4iIiJyYglVV+HbtwrezEP+uA4G4v7Cw2axwAEtUFBanE2t0NBaX65CtE2u0k5DXQ/3niyFkjgJzDR9Oyk03Env66XqhWEREpINS8B0GBd/Hx5aSWq57cQW7K90kxTh49qrhjO7VOdJlyUGWbC3nzv+uo7DCHL1w6fCu/HpK/xYdt2AYBvM3FPPgOxsprjFnRJ43MIP7ppxERmLrLLB4tHZXNjB/QzHvrS9iVWFVWPe1OCpwpr+DPX6TuSMUzbDES7jj5Bs5KTOlFaptGR9vKuG+2V+xp8qcyz15YCb3nd+f9AQnhmGwbHsFry4rZP6GYnxB8w/Q2CgbU4d24YpR2QzokhjJ8kVERKQNCzU0EPJ4sDqdWKKjsdiO7J1/vp07KX/+Bar/9z8Mvx+A6NxcUm66kfhJk474OiIiInJiUPAdBgXfx09ZrZcbX/qSNbuqcNgs/PEHg7hoaNdIl9Xh1XkDPDovn5eX7gQgM9HJIxcPbNVO7DpvgD99uJl/fbGDYMggNsrGL8/O4dqTu2O3Hf/FDvcrLG9g3oYi3ttQzNpdB8JuiwUyE8wFDS0W87aFxs/B3A8YFgOvczF1sW9jWLxYsDI+ayq/GfsLUmLabuB9sAZfgD99tIXnP99OMGQQH23n0hHdWLi5lK1lB7q7B3RJ4IpR3blgSFbYc8lFREREwuUvKaXixRepnDULo8Fs1HB0z6bzDTeQOHUq1iiNUxQREekIFHyHQcH38eXxB/nlG2t4b705UuGWCX25dWJfvVUxQj7fso87/7uuqcP3h6Oyuee8XOKdx2dRvY17a7j37fWsbuyo7p+ZwO8vHsiQbknH5fEBduyr570NRby3vogNew7MpbRaYFTPTpw3MJNzTsogLeG7O9L31O3h/sX3s6zYXOxpWNow7j/lfnol9mrV+lvLxr013PO/9aw56AWAmCgbFwzO4orR2Qzqevz+jURERET2C1RWUvn/XqXy5ZcJVpuLdNvT0+l03XSSL70Ua2zHXkhbRETkRKfgOwwKvo+/UMjgj+8X8PeFWwFz4cQ/XDKQaLvepni81Hj8/H7uJl5fsQuArskuHr1kEGP7HP+u5FDIYNaXu/jDvHyq3X7sVgu/npzHtaf0aLUXRLaW1TFvfRFz1xezqah52H1y786cOyCTSSdlHNEMbsMw+M/m//D4l4/TEGjAaXNyy7BbuCLvCqyWyHWvt4RgyODV5YV8uLGEs/qnc+GQrOP2ooiIiIjIdwnV11P5xn+o+Ne/CJSWAmBLTCT5mqvp/KMfYXW5IlyhiIiItAYF32FQ8B05ry8v5N63NxAMGYzq0Ylnrx5OcuyRv0VxX52XRZvLWFBQxvLt5XRNjuGykd2YMiiTmCiNXjicynofry4v5MUvdlBW6wXgmpO7c+c5uRFfjHBfnZf7Z3/F3PVFgPmCyO8vGogrquVeECmp8XDPW+v5OL+0aZ/NauGU3p05b2AmZ/dPp3PckS84ebgu79+N/R3ZCdktVrOIiIiIfLuQz0f17NmUP/dP/IWFAET37UPW44/j7NcvwtWJiIhIS1PwHQYF35H12ZYy/u+VVdR6A/RMieVf00fSI+Xwb08MhgzW7KpiYUEpn24uY93u6sOeFx9tZ+rQLC4fqcX29vu6tI4XFm/nrVW78fjNRQm7d47h0UsGMaYNLTJqGAbPf76dR+blEwwZ5GUm8OxVw8nuHHPM152zdi/3zf6qqat8bJ8UJg/M5Kz+6WG94LL/eidql7eIiIhIe2QEg9TMn0/JH/5AsGwfluho0u++m6TLpmmsooiIyAlEwXcYFHxH3uaSWq771wr2VLlJjnHwj2tGMLJHJ8DsAl5YUManm8v4bEsZVQ3+Zvc9KSuBcTmpjO2dwprdVby+fBeFFQ1Nxwd2SeTyUd24YPCxjWgwDIPiGg/+gEG3Tq528cuzYRh8tmUfLyzezqcFZU37T8pK4PpTezJlUBZR9rYZ0i7ZWs7PXl1Feb2PRJeDpy4fctSLbVbU+/jN2xuaOskHdknk8WmD6Zcef1TXU5e3iIiISNsVKC9n7913U7/oMwDizz6bzN/9FluiGmJEREROBAq+w6Dgu20orfVw47+/ZO3uaqJsVi4b2Y21u6u+0dWd4LRzWr9UxvVL5Yx+qd9YcDAUMliyrZzXlhfy/lfF+IPmt3hMlI3zB2Vx+ahuDOmW9J3BdZ03QEFxLQXFteQX15Df+Hm12wzdU+OjGd2zE6N7dWZMz070SYtrkSA8EAyxo7yewooG0hOc9EqJO6oxHx5/kLdX7+GFxdvZXFIHgMUCE/PSuf7Unozu2aldBPdF1W5+8soq1u6qwmKBX07sx0/H98FqPfLaP9xYwt1vrWNfnQ+71cLPzuzDT8f3wWELP/BXl7eIiIhI+2CEQlS8+G9Kn3wS/H7sWZl0mfk4McOGRro0EREROUYKvsOg4LvtcPuC3DprNe9/VdJs//6u7nE5aQztloT9CEPL8jovb63aw2srCtlWVt+0Pzcjnh+Oyub8wVlU1Hubgu1NRbUUlNSwq8J92OvZrBZsFgu+YKjZ/s6xUYzq2akpDM9Jj//OcNYwDMpqzcc9OFjfUlqHL9D82lmJTnqlxtErNZZeKbFNn2clur7xGKW1Hl5ZspNXlhVSUe8DIDbKxqUjujH9lB7fOkKmLfMGgjz4zkZeXWbOa5yYl84Tlw0m4Xu692s8fn77zkbeXLkbgL5pcTwxbQgDux5dp4+6vEVERETaH/f69ez55W34d+0Cm43Un/+czjfegMXWcmvIiIiIyPGl4DsMCr7bllDI4JlPv+br0jrG9knhjJxU0uKd33/H72AYBit2VPL68kLmri/Ce0i4fDjpCdHkZCSQmxFPbkY8ORnx9E6NA2DtriqWba9g6bZyVhVWNs3M3i8pxsHIHp0Y06szo3t2IhAyyC86EHDnF9dQecjIlv1io2x06xRDSY3nW88BcDqs9OgcS+/UOHqmxFJU7eGdtXubQvkuSS6mn9KDaSO7keg6+hEvbcWsFYX8ZvZX+AIheqbE8uzVw791VMnir/dx+3/Wsrfag8UCN53Wixln9cPpOLo/cBbtXsSdi+6kzl+nLm8RERGRdiZYV0fxAw9S8+67AMScPIasRx/FkXZ0Y/REREQkshR8h0HBd8dS3eDnf6t38/qKXeQX1xITZaNfevxBAbcZdh/pYoe+QIh1uw8E4St3VtLgC37v/awW6JkSS25GAjkZ+x8/ga7JBzq5K+t9bNtXx9ayeraV1bOtrI5t++rZWV7fNMLlUMO7J3P9qT05u3/6EXfGtxdrd1Vx8ysr2VvtISbKxmM/GMzkQZlNxxt8Af4wL5+XluwEILtTDI9PG9w0Lz5chmHwz/X/5M+r/4yBweDUwfz+1N+ry1tERESknTEMg+r/vU3x736H4XZj69SJrD88Qtzpp0e6NBEREQmTgu8wKPjumAzDoLLBT5LLEdbM6O/jD4bYsKeaZdsrWLatnC93VhJtt5GXGU9Outk5npeZQJ+0uKPuQA4EQ+yudLNtXx3byurZ2jjG5bKR5vzyE1l5nZefv7aaL7aWA3DT6b24Y1IOa3dXcdsba9lRbi5sevWY7tx1bi6x0fajepwGfwP3fXEf7+94H4DLci7jzpF34rC1/+55ERERkY7Ku20be355G978fAA6TZ9O2i9nYIk6sqYXERERiTwF32FQ8C3SvgSCIR57v4BnF20DzPndW8vqCBmQmejk0UsGcXq/1KO+/p66PdzyyS0UVBZgt9q5Z/Q9XNrv0pYqX0REREQiKOT1UvrYTCpfeQUA54ABZNx/P/a0NKwuJ1anExyOdrEYvIiISEek4DsMCr5F2qe564q4/c21TaNlLh7WhfvPP+mYZpqvKF7BbZ/eRqW3kk7OTjw57kmGpQ9rqZJFREREpI2o/fhjiu65l2B19TcP2mxYnU4sTjMIt7icWJ2uxs9dWF0u4s4cT+LUqQrIRUREjjMF32FQ8C3Sfm0pqeW5z7ZxVv8MzuqfftTXMQyD1/Jf448r/kjQCJLXKY+nz3yajNiMFqxWRERERNoSf1ERRQ88gHvFl4Q8HgiFvv9OB4kZMYKMBx8gunfvVqpQREREDqXgOwwKvkU6Nl/Qx8PLHuatLW8BMLnXZB44+QGcdmeEKxMRERGR48UwDPD7CXk8hNweDG/j1uMm5PYQ8rgxPB5CHg/+wkLK//UihtsNDgedb7ielB//2ByTIiIiIq1KwXcYFHyLdFxlDWXM+HQGa8vWYrVYmTFsBteedK3esioiIiIi38m/Zw/Fv/0ddQsXAuDonk3m/fcTe8opEa5MRETkxHakWa71ONYkItKmrC9bz+XvXs7asrXER8XzzIRnmD5gukJvEREREfleji5d6Pr3v9Hlqaewp6Xh31lI4Y+uZ8/tdxAoL490eSIiIh2egm8R6ZBmfz2b6fOnU+oupVdiL16b/Bpju4yNdFkiIiIi0o5YLBYSJp1Nr/fmknzVVWCxUPPOO2w99zwq33gDI8yZ4SIiItJyNOoEjToR6UiCoSBPrHyClza+BMC4buN45NRHiIuKi3BlIiIiItLeuddvoPj++/Fs3AiAa9gwMh98gOi+fSNcmYiIyIlDo05ERA7R4G/g1k9vbQq9fzzoxzw1/imF3iIiIiLSIlwDB9DjjVmk330XlpgY3KtWse2iiyl94klCbnekyxMREelQ1PGNOr5FOoKS+hJ+/snP2VSxiShrFA+d+hDn9jw30mWJiIiIyAnKX1RE8cMPU/fRx4A5EzxhyhRix4zGNXQoVqczwhWKiIi0T0ea5Sr4RsG3yIkuvyKfn378U0obSunk7MRT459iSNqQSJclIiIiIh1A7ccfU/y7hwgUFzftszgcuIYMIWbMaGJHj8Y1aBCWqKgIVikiItJ+KPgOg4JvkRPXwl0LuX3R7bgDbnom9uSvE/5Kt/hukS5LRERERDqQUH09NR98SMPSpdQvXUqgpKTZcYvLRcywYcSMHk3smNE4+/fHYrdHqFoREZG2TcF3GBR8i5x4DMPg/236fzz25WOEjBCjM0fzxLgnSIjSz7iIiIiIRI5hGPh37qR+6TIali+jfukyghUVzc6xxsURM2IEsaedSuKUKdgSEyNUrYiISNuj4DsMCr5FTiyBUIBHlz/K6wWvA3Bx34v59Zhf47A6IlyZiIiIiEhzhmHg3bKFhmXLqV+2lIblKwjV1DQdt0RHk3DuuSRdNg3XkCFYLJYIVisiIhJ5Cr7DoOBb5MRR56vj9kW38/mezwH45fBfMv2k6foDQURERETaBSMYxJOfT8OSJVS/8y7egoKmY9H9+pF02TQSL7gAW3x8BKsUERGJHAXfYVDwLXJiKKor4qef/JQtlVtw2pw8ctojTOw+MdJliYiIiIgcFcMw8KxdS+Xrs6iZNw/D6wXMmeAJ551L8uWX4xwwQE0eIiLSoSj4DoOCb5H2b8O+Dfzs459R7iknxZXCn8/8MwNSBkS6LBERERGRFhGsrqZ69hwq35iF7+utTfuj++eRPO0yEqZMwRYXG8EKRUREjg8F32FQ8C3Svn208yPu/uxuPEEPfZP78tcz/0pmXGakyxIRERERaXGGYeBetYrKWbOonf8+hs8HgDUmhoQpU+g0/Vqie/WKcJUiIiKtR8F3GBR8i7RPhmHw4lcv8uTKJzEwGNtlLDNPn0lcVFykSxMRERERaXWBykqq355N1axZ+HbsMHc6HHS+/kek/OQnWJ3OiNYnIiLSGhR8h0HBt0j74w/5eXjpw/x3y38BuCznMu4adRd2qz3ClYmIiIiIHF+GYdCwfAXlLzxP/cJFADiys8m4/z7ixo6NcHUiIiItS8F3GBR8i7QvNb4abvv0NpYWLcWChTtG3sGVeVdqUR8RERER6dAMw6D2o48oeehhAiUlACRMmUL6XXdiT0mJcHUiIiIt40izXOtxrElE5Jjtrt3N1e9dzdKipbjsLp4+82mu6n+VQm8RERER6fAsFgsJZ51Fr7lzSb7marBaqXn3XbaeN5nKN97ACIUiXaKIiMhxo+BbRNqNNaVruPK9K9lWvY00Vxr/PuffjOs2LtJliYiIiIi0Kba4WDLuuYces2bh7N+fUE0Nxffdz86rrsa7ZUukyxMRETkuFHyLSLswf8d8rn//eio8FeR1yuPVya+S1zkv0mWJiIiIiLRZroED6PHGLNLvvgtrTAzuVavYdtHFlD7xJCG3O9LliYiItCrN+EYzvkXaMsMw+Of6f/L06qcBGNd1HI+e/igxjpgIVyYiIiIi0n74i4oofvhh6j76GABHt25k3Hcfcaed+o1zQ/X1+EtKCBQX4y8uIVDSuC0uxl9SAoaBa9BAXIMH4xo8mKjevbFY1VcnIiLHhxa3DIOCb5G2yR/08+CSB5m9dTYAV/e/mtuG34bNaotwZSIiIiIi7VPtRx9R/NDDBIqLAYibOAF7cnKzYDtUUxPWNa1xcbgGDcI1ZDCuIUNwDRqELSnpmOo0QiGF6SIiclgKvsOg4Fuk7an2VjPj0xmsKF6BzWLj7lF3c1nuZZEuS0RERESk3QvW1bPvz09T8fIr8C0LXlrj4rBnpONIz2i+zczE8Plwr1mLe+1a3OvXYxxmbEpUjx5mCD7E7Aq3xsQQrKpq9hE45Hawqrrpc8PjITo3l9jRo4k9eQyu4SOwxcW29pdGRETaAQXfYVDwLdK2FNYU8tOPf8qOmh3EOmKZecZMTu3yzbdgioiIiIjI0XN/9RU1787FGheLIyMDe3oGjswM7Onp2OLijugaRiCAd8sWMwRfvQb32rX4duxo+WJtNlwDBxIzZjSxY8bgGjIEq9PZ8o8jIiJtnoLvMCj4Fmk7VpWs4pYFt1DlrSIzNpO/TPgL/ZL7RbosERERERE5QoHKSjzr1plh+BqzK5xgEFtS0rd/JDe/bbHZaFi9moaly6hftgx/YWGzx7BEReEaOpTYMaOJGT0G18ABWByOCD1jERE5nhR8h0HBt0jkGYbBrIJZPLriUQKhAAM6D+DPE/5Miisl0qWJiIiIiEiE+ffsoX7ZchqWLaV+yVICpaXNjltiYogZMZzY0WOIGT0aZ14uFpvWBhIROREp+A6Dgm+RyHIH3Px2yW95d9u7AJzd/WweOvUhXHZXhCsTEREREZG2xjAMfNt3mCH40mU0LFtGsKqq2TnWhARiRo4kdvRoYkaPJrpvHy2WKSJyglDwHQYF3yKRs7NmJzM+ncGWyi3YLDZmDJ/BNf2vwWKxRLo0ERERERFpB4xQCG9BAfXLltGwbDkNK1YQqqtrdo6tUydiRo0yR6OMGk1Uzx76m0NEpJ1S8B0GBd8ikfFx4cf8+vNfU+evI8WVwmOnP8aIjBGRLktERERERNoxIxDAs3GjGYQvXUbDqlUYbnezc+xpacSMHt00Izyqa5cIVSsiIuFS8B0GBd8ix1cgFODPq//MCxteAGBY2jBmnjGT1JjUCFcmIiIiIiInGsPnw71+PfVLl9KwbDnu1asx/P5m5zi6diVmzOjGGeGjcKSlRahaERH5Pgq+w6DgW+T42efex52L7mR58XIAru5/NTOGz8Bh1QrsIiIiIiLS+kIeD+41a6hfspSGZctwr18PwWCzc6J69zbng48ZTczIkdiTkyNUrYiIHErBdxgUfIscH2tK13Dbp7dR6i4lxh7Db8f+lkk9JkW6LBERERER6cCCdfW4V600F8pcuhTPpk1wcFRisRCdl2t2g48ciT2lM5ZoJ1aX09w6o7E4nViiojQ3XETkOFDwHQYF3yKtyzAMXs1/lZkrZhIwAvRK7MWT456kV1KvSJcmIiIiIiLSTLCqivoVK2hYuoz6ZUvxfb31yO5osWCJjsbqdGJxOrFGm4G4PSOdztdfT+yoUa1buIhIB6HgOwwKvkVaT4O/gQeWPMC87fMAOKfHOTx4yoPEOGIiXJmIiIiIiMj3C5SVUb9sOQ3LluJes5ZgfR2Gx4vh8RDyeCAUOqLrxJ15Jmm/uo3oXmoAEhE5FidE8P3AAw/w4IMPNtuXk5NDfn4+AB6Ph9tuu43XX38dr9fLpEmTeOaZZ0hPTw/rcRR8i7SO7dXbmbFgBlurt2K32LltxG1cmXel3v4nIiIiIiInBMMwwO8n5G0MwvdvPV4Mj5uQx0vtRx9S9Z83zTniNhtJl/6A1J/9DHtKSqTLFxFpl440y7Ufx5qOykknncRHH33UdNtuP1DyjBkzmDt3Lv/5z39ITEzkZz/7GRdffDGLFy+ORKnSkorWQtUu6HsW2KMjXY0chTlb5/DQ0odwB9ykulJ5fNzjDE0bGumyREREREREWozFYoGoKGxRURAff9hz4k4dS6drrqF05uPUffIJVa/PombOO3S64Xo6T5+ONUbvhhURaQ1tvuP77bffZs2aNd84Vl1dTWpqKq+++io/+MEPAMjPzycvL48lS5YwZsyYb72u1+vF6/U23a6pqaFbt27q+G4LDAOWPQvv3wNGEFydYPAPYfi1kJoT6erkCDT4G3h42cPM2ToHgFGGAg5/AAAgAElEQVQZo3j09EdJcambQUREREREOraGFSso+eNjeNavB8CelkbqL35O4kUXYbHZjuqahmEQKCvDnpSEJSqqJcsVEWmTTpiO7y1btpCVlYXT6eTkk0/mkUceITs7m5UrV+L3+5k4cWLTubm5uWRnZ39v8P3II498Y4SKtAG+Bnj3Vlg3y7ztTAR3BSz9q/mRfTIMuxZOuhAcrmN7rOo9sONz2LcZuo2GXuPArl8QjlVBRQG/WvgrdtTswGqxcvPgm7lx4I3YrEf3C5yIiIiIiMiJJGbkSHrMep2aefMoe+JJ/Hv2UPTr31Dx75dIu/1XxJ522neOhgy53Xi3bMGzKR9vQT6e/AK8BQWE6uvBasWRlUVUjx5Ede9ubnuYW0dW1lEH6yIi7VWb7vieN28edXV15OTkUFRUxIMPPsiePXvYsGED77zzDtddd12zzm2AUaNGMX78eB599NFvva46vtugyp0w60ooXg8WG0x6GEbeCFs/hpX/hs3zzQ5wgOhEGHyZGYJnDDiy6+8Pund8Zm4rtzc/Hp0IOedA3gXQZ8KxB+sdjGEYvFHwBn9c8Ud8IR9pMWk8etqjjMgYEenSRERERERE2qSQz0fl/3uVfX//O6HqagBiTh5D+u23E52XR6CkBE9+Pt78AjwF5ta3c+cRL6bZjMNBVLduBwLx7t2JzumHa8gQrcEkIu3OCbG45aGqqqro3r07TzzxBC6X66iD70NpccsI2/oJvPkjcFdCTApc+iL0PK35OTVFsOYVWPUSVBUe2N9lOAyfDiddDNFxB/ZX74Ydi7896LZYIXMIpPSFbQuhrvjAMUcs9DvbDMH7nt38uuEKBaGuBFzJJ2yYXuOr4YEvHuDDnR8CcHrX03lo7EMkO5MjXJmIiIiIiEjbF6yuZt/fn6XylVcw/H6wWLAlJBBsDMMPZevcGWdODtG5uThzc4jOySW6Zw8CVVX4d+7Eu2NHs61vZyGGz3fYa7lGDCf9jjtwDRrUis9QRKRlnZDBN8DIkSOZOHEiZ511FhMmTKCyspKkpKSm4927d+fWW29lxowZR3xNBd8RYhiw+Cn4+EEwQpA1FC57BRK7fvt9QiHYtgBW/Rvy50IoYO6PiocBF5vX+a6gu8ep0OM0yB4DzoQD19y9HDbOgY2zoWb3gfvZndBnohmC55xjjl85lK/e7Fiv3A6VO6CicVu53Qzpgz5wxBy4Tr+zD3+ddmhd2TruWHQHe+r2YLfauXXYrVzT/xp1DIiIiIiIiITJt3s3ZU/+iZq5c80dNhvRvXoSnXMg4Hbm5mBPTQ3rukYoRKCoCN8hoXjD0mUYjc2ECeedS+qMGUR169bST0tEpMWdkMF3XV0d2dnZPPDAA1x77bWkpqby2muvcckllwBQUFBAbm7u9874PpSC7wjw1sGcn8FX/zNvD7kKJj8ODueRX6OuFNa8aobgFduaH7NYzSC9+9hvBt3fxTBg76oDIfjBAbrVAb3HQ+ZgqNp1IOiuK/mei1qAg37MrA5zpnje+ZA7GWLb36KPISPES1+9xFOrniJgBOgS14WZZ8xkQMoRjp4RERERERGRw/Lt3Emwro7oPn2wRke32uP4i4ooe+ppqmfPNv8WdjjodMUVdP7Jj7En6x28ItJ2nRDB969+9SvOP/98unfvzt69e7n//vtZs2YNGzduJDU1lZtvvpn33nuPF198kYSEBH7+858D8MUXX4T1OAq+j7PyrTDrKijdaIbA5/4BRlwPR9slbBhml/dXb0FUHPQ83Vyw8kiC7u+7bsmGAyH4voJvP9eZCMk9oVNPSO7R/PP4LPM6m94xPw6+jsVqhvP7Q/Dv6nb/Ln43YAnvhYOjVOGp4N7P7+XzPZ8DMKnHJO4/+X7io+Jb/bFFRERERESkZXk2baL0sZnUN2Yp1oQEUn58E8lXXdWqwbuIyNE6IYLvyy+/nEWLFlFeXk5qaiqnnnoqDz/8ML179wbA4/Fw22238dprr+H1epk0aRLPPPMMGRkZYT2Ogu/jaPMH8NYN4KmGuHSY9pLZjd0elBWYIXj1LkjubobbyT3MgNsVxqvhZQWNIfgcKFrb/FiX4WYI3neS+UJAQ7n5Ub8PGioO3G4oh4aD9vkbzLEsQ6+Gsb+ApOwWfer7rShewV2L7qLUXUq0LZo7Rt7Bpf0u1WgTERERERGRdq7u88WUPvYY3gKzWcuRlUXqjFtJmDwZi9Ua4epERA44IYLv40XB93EQCsFnM2HB7wEDuo4yQ++EzEhXFlmVOyH/XTMIL1xKs5EoR8tqh4HT4NQZkNrv2K/X6JWNr/DYl48RMkL0TOzJzDNm0i+55a4vIiIiIiIikWUEg1TPnkPZU08RKDHHejr79yftjjuIHTM6wtWJiJgUfIdBwXcr89bCWz+GgsYFOkb8CM55FOxRka2rraktMb9Gm96BnV+YC2LGdD7wEdu5+e2YlMZtJ3NbtAY+exy2fdp4QQv0vwBOu82cS36UQkaIx798nJc2vgTABb0v4N7R9xLjiDn253ysggFY8hdY9ncYdBlMuA+stkhXJSIiIiIi0q6F3G4qXnqZ8n/8g1B9PQBxZ5xBp2uvwdGtG/b0dKxR+pteRCJDwXcYFHy3sndugZUvgi0KJj8Bw66OdEUntt1fwmdPHHihAaDPWWYA3v3ksC7lC/q49/N7mb9jPgC3DruVHw34UdsYbVK8Hmb/zAz89+tzFvzgeXPmuoiIiIiIiByTQEUF+/76DJWzZkEg0OyYrXNnHOnp2DMzzW1GBo7MDOzp6TgyMxWOi0irUfAdBgXfrchdBY/nQsANV/4X+k6MdEUdR8lG+PxJ2PAmGCFzX/YpcPpt0HvC9y4mWuOr4ZZPbuHLki+xW+38buzvmNJrynEo/HsEvLDoMfO5hQJmyD3sWlj+nPl9lpIDP3wNOveOdKUiIiIiIiInBO/27ex75m941q3DX1yM4fUe0f1sKSkkXnABqT/9P6yxsa1cpYh0FAq+w6DguxUt+wfMux3S+sPNX3xv2CqtoGIbLH4K1rwKQZ+5L3Ow2QGeez4cZpGS4vpibv7oZr6u+ppYRyx/Gv8nxmS2gUVIdy03u7z3mYutkHc+nPc4xKfD3tXw2hVQu9dcbHTaS9Dz9MjWKyIiIiIicoIxDINgVRWBkhL8RUWN22ICxcX4iw9sDw7H7ZmZZPzmN8SfOT6ClYvIiULBdxgUfLcSw4C/nQKlG+Hcx2D0TZGuqGOr2QtL/gpfvgD+BnNf1jC49F+Q3KPptM2Vm7n5o5spbSgl1ZXK3yb+jZxOOZGpeT9fPXz8O3OWNwbEpsHkmdB/avPzaovh9Stgz0pzkc9z/wgjr49IySIiIiIiIh3V/nDcvXIlJY/8Af+ePQDEnzWR9HvvxZGREeEKRaQ9U/AdBgXfraRwGbxwNthdcFs+uJIiXZEA1JebAfKyZ8FbDc4kuPgf0G8Sy4uWc8uCW6jz19ErsRd/n/h3MuMyI1vvtk9hzi+gaqd5e/AVMOlhc1HPw/G7zfPXv2HeHnkjnPMI2BzHpVwRERERERE5IOR2s++ZZyj/14sQCGCNiSH1ll+QfOWVWOz2SJcnIu2Qgu8wKPhuJf/7Cax9DYZcCRc+E+lq5FBVu+A/15rd0cC84dO4t2ol/pCfYWnDePrMp0mMjuAike4q+ODXsPpl83ZiN5jypyObE28Y8PkT8PFvzds9z4BLX/z2sFxERERERERaladgM8X33497zRoAnP37k/Hgg7gGDohwZSLS3ij4DoOC71bgrmxc1NID138E3UZGuiI5nIAXY/49vLR5FjM7JwNwVpfTeWT8E0TboiNXV/5cePeXUFds3h55I0y8H6Ljw7/Of28Efz106gU/fB1SIzy2RUREREREpIMyQiGq/vMmpY8/TqimBqxWkq+8ktRbfoEtLi7S5YlIO3GkWe43V7UTaQlrXzdD7/QB0HVEpKuRbxG02vljWlpT6H1VdQ0z135M9J7VkSmoYhu8cY05p7uuGDr1huvmmfO8ww29AXInw/UfQGK2ee1/ToQtH7V83SIiIiIiIvK9LFYryZdNo/d7c0mYMgVCISpffplt502m5v0PUG+miLQkBd/S8gwDVr5ofj58OlgskaxGvoU36OX2RbfzyqZXAPhV7jXcaU3DWlsEL06GJc+Y/5bHQ10pzP0V/GUkbJwNFhuMvRVuXgzdTzm2a2cMgBs/geyTwVsDr156fJ+biIiIiIiINGNPSaHLzMfo9vw/cWRnEygtZc8tt7D7Jzfj270n0uWJyAlCo07QqJMWt3MJ/OsccMSYi1o6IzgnWg6rwlPBjAUzWFW6CofVwcOnPsy5Pc8Fb625MORXb5kn9p8KF/wFnK30c+GpgS+eNoNof725r/cEmPgAZA5q2ccK+GDuDFhtBv0MuQomPQSu5JZ9HBERERERETliIY+Hfc8+S/k/nwe/H0t0NPGTziZx6lRix4zBYrNFukQRaWM04zsMCr5b2Fs3wbpZMPRqmPqXSFcjh8ivyOeWT25hb/1e4h3xPHXmU4zMOGgGu2HA8n/A+/dCyA+d+8C0lyG9f8sV4ffAl8/DopngrjD3dRluBt49T2+5xzmUYcDSv8EH94IRgqg4GHk9jPkpxKe33uOKiIiIiIjId/Ju3Urx/Q/Q8OWXTfvsaWkkXnA+iVOnEt23bwSrE5G2RMF3GBR8t6CGCnNRy6DXHC/RZXikK5KDzN8xn998/hs8QQ/Z8dk8febT9E7qffiTd62A/1wLNXvM7v0pf4LBlx1bAaGgOf/900egepe5r3NfmHAf5J1//MbibF1gBvulX5m3bdEw7Go45ReQ3P341CAiIiIiIiLNGIaBZ+1aqmbPpua9eYSqq5uOOfv3J/HCqSRMnoy9c+ewrx0oL8eTn483vwDfjh1E9+tHwuTzsHfq1JJPQUSOAwXfYVDw3YKW/BXevwcyBsGPF2m+dxsRDAX5y5q/8M/1/wRgbNZYHj39URKjv2cMTf0++O8NsG2BeXv4dTDyBkjIMkeEHOm/r2FAwTz4+LdQtsncF58F4+6CIVeCzX6Uz+wYGAZsfh8+mwm7V5j7LDYYNA1OnQGpOce/JhEREREREQEg5PNRt3Ah1bNnU7dwEfj95gGbjbjTTiPxwqnEjR+PNTq62f0Mnw/v9u14Cwrw5BeY24ICgvv2ffNB7HbzWlMvOOy1RKRtUvAdBgXfLcQwzMUJy7fAlCdhxI8iXZEAtb5a7vrsLhbtXgTAdSddxy3DbsFmPcI5aaEgLHzU/DiYLRriMyA+ExIyzW18hhlox2eY4Xh8BhSthY8egF3LzPs5k+C0X8Kom8DharknerQMA3Z8Dp89fiDgxwJ5U+DUX0KXYREtT0REREREpKMLVFZS8957VM+eg2fduqb91vh4Es45h6gePfBuLsBTsBnv1q0HQvKDWSxEZWcTnZtLVHY36pcsxbNhwzeulXjhVFzDhmFRI59Im6XgOwwKvlvIjs/hxcnm3OTb8iE6PtIVdXjbq7fzi09+wY6aHUTbonnwlAeZ3Gvy0V1sy4ew4PdQtRMaysO/v90FY34CY28FV9LR1dDa9qyEz56A/HcP7Os1Hk67DXqcqncwiIiIiIiIRJh32zaqZ8+h+p05BPYWHfYca3w80Tn9cPbLITo3B2dODtF9+2KNiWl+ra+/brzWOwSKi5v2O7p2JfGCC0icegFR3TUOU6StUfAdBgXfLeTN62HDmzB8Opz/VKSr6fAW7V7EnYvupM5fR3pMOk+d+RQndT6pZS4e8EJtMdQWNX4UQ83e5vtqisBfb44PGXYNnHGn2RneHpTmw+I/wbo3wAia+7qOMsegxKVBTGfzw9UJYjqBzRHZekVERERERDoYIxSiYcWX1Lz7LsHaWpw5/YjOMUNue1ZWWB3bRihEw/IVVM+eTe377xNqaGg65hoyhMSpF5Bw7rnYktpOE5dn40Yq/v0SdYsXY3W5sCUmYktK+uY2af/2wD5rfDwWqzXST0HkqCn4DoOC7xZQXw5P5ELQBzcthKwhka6owzIMg+c3PM/Tq57GwGBY2jAeH/c4Ka6U410IeGvNz53t9Oeqcid88TSsetlcsPXbRCdCTPIhgXhniO0Mfc6CzEHHr2YRERERERE5aiG3m9qPPqZ6zhzqFy+GUMg84HAQe8rJJEw6h/gJZ2JL/J41s1qBEQxSt2ABFf9+iYYVK476OrZOnUi86EKSp01TR7u0Swq+w6DguwUsfho+/A1kDoEfL4x0NR2WO+DmvsX3MX/HfACm9ZvGXaPuwqGO5GNTWwIrnoOSr6Chwhz10lAO7krgCP4L7T4WRv8EcifDkc5Wb0u2fwZffwgDp0HGgEhXIyIiIiIiclz4S0upmfse1bNn483PP3DAbif25JNJmHQ2cRMmYE9ObtU6gnV1VL/1FhUvv4J/166mGhImTSLp0kuxREURrKoiWF3duK065La5DVVVN+tmB4g95WSSpl1G/IQzsTiUHUj7oOA7DAq+j5FhwJ+HQ8VWc8TJ8OmRrqhD2lu3l1sW3EJ+RT52i527R9/NtJxpkS7rxBYKgqf6QBDeUN48GK/YBpvnQyhgnp+YDaNuNEe/tNU55werKoQPfgMb3z6wr9855szzbqMiV5eIiIiIiMhx5t26lZr336d2/vt4N28+cMBmI3bMGOInnU38WWe1aAju272bypdfoeq//yVUVweANTGR5GnTSL7yChwZGWFfM+T1Ur94MZWvv079Z5+bmQ5gS0kh6ZJLSLr0UqK6dmmx5yDSGhR8h0HB9zHathBeugCi4hsXtYyLdEUdzv9n777DoyrzNo5/J5PeC5BQQggBKYL0JkVRBHVVfO0rltV13V3LLmJDXV3Wsth1WVB3XRuW17L7rl0RAWnSi9ISegsklPSeKe8fz5BJIEAm7aTcn+s615l55syZ32T3RHLPM79nxcEV3L/wfrJLs4kNjuXFc19kUPwgq8sSgNx0WPUvWPM2FGeZsYBQ6PdLMwu87RmWllet8mLzLY4lL4GjGGx+0HkE7F0Gbs/X/LqMhtFTzOKfWvRTRERERERakdKdu8j/bg55386pOhPcbid06BDTDuWCcfjHxfl8brfbTfGaNWS9M5v8efMqWq0EJicTe/NNRF122QmLdNZW2f50cj75hJz/+w/Ow0fMoM1G2KhRxFx3LeHnnIPN379eXkukPin49oGC7zr65Few6b8w+Fa45CWrq2lVisqLeGnNS3yY9iEAvWJ78bexf6N9eDNZRLI1KS82i2WueA0ObfaOp5wPw39v9lYvLuJ2w5bPYc6fIHevGUsaBRc9Y1qcHN1hwvCfPgRXuXm8wwAzA7zHL6yvX0REREREpJGV7d5N3ndzyf/2W0o2V/pbz8+PoJQUbKEh+AUFYwsJNvvgIPyCQ8z+uHGcLnI/+4ySTZsqThM2ciSxN99E2KhRDbYgpbu8nPz5C8j56CMKf/yxYtw/Pp7oq64i+uqrajW7XKShKPj2gYLvOig4DC/2MiHYbxdrEb9GtPzgcqb9OI30gnQArux+JQ8OfZAQ/xCLK5NTcrth1yITgKd9Q0WP8LjuMOy3Zia4Fd+ayNwM3z5oagOI7ATjn4Az/+fEGd25++HHmWYWu6PYjLXtCaOmQJ8rwa4ZASIiIiIi0vqU7dtH/hwzE7xk48Zan8cWFETUZZcRe9ONBHXvXo8Vnl7Znj2eWeD/xZnl+daynx8BCQnYgoPxCw727IOwBYeYfVAwfiHB2CoF+/bICCLGj6/VrHeR01Hw7QMF33Ww5CX4fhp0HAS/mW91Na1CQVkBL6x5gX9v/TcAHcI6MO3saYzoMMLiysRnWTth5euw9l0oyzdj9kAIijDtUPyDISDEu/mHHHc/2BwX3g7i+0D8mRDs4++w4mz44WlTh9sJ9iAY+UcYNRkCw0793MIjsPxV89zSXDMWnWSe338SBAT7/jMRERERERFpAcrT0yndvRt3aSnukhJcJaW4SopxV9q7S0twFZeYfUkp7tJSQvr3J/raaxp8wczTcZWVkT93LjkffUzRypW1OoctNJTYG24g7tZbsEc3g3WupNlQ8O0DBd+15HLB3wdA9m64bCYMvNHqilq8pelLmbZsGhmFGQBc2+Na7hl0D2EBpwkopWkrzYf1H5hZ4Fk763au6M4Q39e0JjkWhsckn9iGxOWEde/CvMfNQpwAPS+BCU9BTBffXrMkF1a9ActmQZGnL1x4PAy/wyx22xwW8hQREREREZFqlR84gOPIEVwlJbhLS3EVF5t9SQnu4hJcpSVVAn1XaQmlm7dUtH7xCw8n9le/IvZXN2MP17pwUncKvn2g4LuWdsyHd/8HgiLNopanmx0qtZZXlsdzq57j0+2fAtApvBOPj3ycIQlDLK5M6pXLZXprlxWZnuCOYigvgfIicHj2J9wvhpx9kLkR8tKrP29gOLTrbULwhD4Q1g4WPw8HfzKPt+lh+ninjK1b/WVFJkxfOgPy9puxgDDof71ZyLNNt7qdX0RERERERJoFt9tNwYIFHP7bDErT0gCwR0URe9uviZ00qd4W6JTWScG3DxR819JHN5qF8Ib8Bn7xvNXVtFgL9y3k8WWPc6j4EDZsTOo1ibsH3E1ogP4jIccpyoLMTSYEz9ho9oe2gLO0+uODomDsQzDkNrAH1F8djjLY8DEsewUOeRdlofsEs5Bn13NP7BsuIiIiIiIiLY7b5SJ/zhwO/30mZTvNN5ztcXG0uf03RF93HX5BQbU6r6u4mNKdOwlISFAf8VZIwbcPFHzXQn4mvNQbXA74/Y9mJqnUq9zSXJ5e+TRf7vwSgKTIJB4/+3EGxg+0uDJpVpwOOLrdhODHAvGsnZA8Gsb+CcLbNtxrH1vIc/mrsPVbKhbybNvLBOBnXWN6lYuIiIiIiEiL5nY6yfvySw7PnEX5vn0A+MfH0+Z3vyX6yiuxBQZW/zy3G8ehQ5SmplKSmkZJ6hZKU9Mo27PHfGvabids1EiiJ04k/Lzz8AvWWlOtgYJvHyj4roVFz8P8J6DTULhtrtXVtDjz9szjieVPcLTkKH42P27qfRN39r+TYH/9Apdm6ugOWPEPWPcelBeasZBYGHyrmXEe2d7a+kRERERERKTBucvLyfn0U4688iqOgwcBCOjYkTZ33EHkxRdRtmcPJamplKamefapOHNyqj2XX2Qkrrw87/3wcCIunED0xImEDBqE7fi1rqTFUPDtAwXfPnK5YEY/yNkLl79q+vdKvXC6nDy3+jne3/I+AMlRyTwx8gn6te1ncWUi9aQ4x4TfK/5h+pkD+PnDmVeYWeAd6/EbDeUlUJx94uYsBf8QCAj27D2bf3D1+/psAyMiIiIiIiK4ysrI+fgTjvzjNZyHj5z6YLudwOQuBPfoSVDPHgT37Elwz574t21L6a5d5H7+OXmffU75gQMVTwno2JGoiZcRddllBHbp0qDvRRqfgm8fKPj20fbv4b0rTX/ge1MhUL2m60OJo4SHlzzM3D1mBv2tfW7ljv53EGSvXb8rkSbN6YC0r00blL0/esf9AiAg1ITSASFVg+mKMPrY46EmNC/J9YTaOVUDbkdx/dTq5w9tzoDkMWZLGgkh0fVzbqfDtKDZv8q0hjnragiJqZ9zi4iIiIiINHGu4mKy//dDjr7+Os7sbPwiIgju0YOgnj0J7tmDoJ69COqWctoWJm6Xi6LVq8n97DPyv52Dq7Cw4rGQ/v2JunwikRdeiD26nv6WE0sp+PaBgm8ffTgJUr+Eob+Fi5+1upoWIbc0l7vn3826Q+sI8AvgqVFPcVHyRVaXJdI4DqyD5a/Bxv+Aq7x+z23zM0Fy5c0eCI5ScJRAebFnX2RmiDuKvftTnbN9f28Q3nk4BIbVrJ7Co7B/JezzbAfWmtc+JjAChvwaRtwJ4e3q9t5FRERERESaCVdpKc6cHPzbtcNms9XtXMXF5M+fT+5nn1G4ZKnpXADYAgIIP/dcoi6fSPjo0SftKy5Nn4JvHyj49kF+BrzYG9xOuGM5tOtldUXNXnpBOr///vfsyt1FREAEfzvvbwxJGGJ1WSKNr6zQzNouL/YE0JW3oqoB9bFjnGUQHHViuH1sC4yA2vR1c7s94XgxlBaYgHrnQrNY59FtVY/1C4BOQ7xBeKfB4B8ELicc2gL7VpgZ3ftWQtaOE18rOMo8P+8gHNpkxvyDYcCNMPIPEN3Z9/pFRERERESE8kOHyPvqa3I/+4zS1NSKcXt0NJG/+AVRl08kuE+fOoft0rgUfPtAwbcPfvoI/ns7dBgAt/9gdTXN3pajW7hj3h0cKT5CfGg8r457le4x3a0uS0ROJe8A7FpsQvBdCyF3X9XH/UPMh4JHtkFZ/onPb9MDEoeardNQ00bFz8/MQtg2xywenL7aHOvnD2ddCyMnQ9szGv69iYiIiIiItFAlqankfvoZuV99WaWveGDXrkRNnEjUpZcQ0KFDo9flKimhZONGbEFB2KOjsUdH4xcerjD+FBR8+0DBtw++nwZLXoLBt8IlL1ldTbP244EfuWfBPRQ5iuge051Xzn+FhLAEq8sSEV+43ZC92xOCe7bCQ97HAyOg0yATcCcOM7dP18Pb7TbnWfyCCdYBsEHvy2DUFOjQv6HejYiIiIiISIvndjgoXLaM3E8/I//773GXlpoHbDZChw0j6rLLiBg/Hnt4DVta1oKrqIiCRYvJ/24O+T8sxF1UVPUAf3/sUVEmCI+JrgjE/aO9t+0xMYT064d/mzYNVmdTpeDbBwq+ffDBdbD1G7joORh2u9XVNFuf7/icPy/9Mw63g6EJQ3l57MtEBEZYXZaI1JXbDYdT4dBmM7O7XS/ws9f+fPtXw+IXIe0r71i3cTD6PkgaUfd6RUREREREWjFnQQH5c74j97PPKFq5smLcFhxMxAUXEDVxImEjhmOz1+HvuorXKqRw0ULyvp1DwSG2jP0AACAASURBVKJFuEtKKh6zt22DzT8AZ3Z2lfHT6fTKLCLOO6/OtTU3Cr59oODbB3/rZ2Y33vyF6WUrPnG73fxrw7+YsW4GABclX8STI58k0K4FFUTkFDI3mW/bbPwPuM3CLHQ+23z7JnkMRMTX/2vmZ5iWLs5S6PfLugX4IiIiIiIiTVzZ/nTyvvyC3E8/o2z37opxv6gogpKTCUxKIrBLEoFJSQQkJRGY1OW0s8Kd+fkU/PADeXPmULh4iXd2ORDQqRMRE8YTOWECwX37VrQ2cZWU4MzJqbplZ1e57/DsEx57jJAzz2yQn0dTpuDbBwq+a6isCP7aAXDDfdshvK3VFTUrDpeD6Sum8/HWjwG45cxbmDxoMn62Wiy8JyKtU9ZOWPo3WP+BWdjzmDY9vItrdhkFobG+n7soC3Yv8bZsOZLmfazv1XD5a2D3r/t7qI6z3PQzb0o97Fwus6BqYKjVlYiIiIiISCNyu92U/PwzuZ99Rt5XX+PMzT3psfY2bUwgXnnrnEhJ2lby58yhcOlS3OXlFccHJHUmcsKFREwYT3Dv3urjXUsKvn2g4LuGDqyDf54LoXHwwE6rq2lWih3FPLDoAX7Y9wM2bDw49EEm9ZpkdVki0lzlHYCVr8P27yFjA1D5P+U2SOgDyeeYILzzCAiu5r9tpfmwZ5npI75r0cnPc2gLuBzQ8xK46k3wD6q/9+FywQ/T4ccZEBQJnYZAp8Fm4c8OAyCwnnrqud1QnG1msRdnmZC/OAuKjnpuZ1ca8+yLs83s+g4Dzcz6PlfUXz0iIiIiItIsuMvKKN2+nbI9e8y2e0/FbWdWVo3OEZiSQuSE8URMmEDQGWco7K4HCr59oOC7htb/L3z6O0gaBbd8dfrjBYDskmzumn8XPx/+mUC/QJ4e8zQXJF1gdVki0lIUZcGepd6Z2odTqz5us5sQOXkMtO9nAu5diyB9DbidVY9t29M7czxppJk5nvYtfHyTaXnSbRxc8279zIIuKzL/Tdn8WfWP2+wQ39sThg81+7iUU88KL8oys+KP7jD7rB2e2zug5OSzNGokKAr6XQeDbzG920VEREREpFVz5udXCsJ3VwTi5Xv34d+uHRHjLyBywgSCunWzutQWR8G3DxR819Dcx8xX7IfcBr94wepqmoVdubu4e/7d7MnbQ2RgJDPPn8mAdgOsLktEWrL8TNi92BuEZ+86+bExXTxB9znQZfTJe4XvWAAfXg/lRebDz+s/hKA6LMibnwH/e535JpFfAFzyErQ5A/av8m556Sc+LyQGOg42IXhMkllzonLIXZx96tcNiTVhfkis+fZSaKw5Z8WYZ/zYbYCfP4LVb1X9OR7rr977svqdAS8iIiIiIiKnpeDbBwq+a+j9a2DbHLj4eRj6G6urafIW71/Mg4seJL88nw5hHXj1glfpGtXV6rJEpLXJ2ecNwjM2mlnUyWNM0B2TVPPz7FkGH1wDpXkmfL7h3yY09tXBn03onZduAubr3oeks088Ljcd0lebEHzfKji43vTcPp2I9hCbArHJZoZ4bIrZxyTXfqa6ywW7foDVb0Lq196Z8qFx0H8SDPqVeQ0RERERERFpcAq+faDgu4Ze7gs5e+FXX5nF06Rabrebdza9w0trX8LldjGg3QBePPdF2oS0sbo0EZG6SV8L711hZlbH94Ub/+vbQsepX8N/boPyQjPD+/qPILaGHwg6yiBzI+z3hOH5B01wH5tizhHn2Td0H+68g7DuXVjzdtVZ6V3HmlngPS4Ce0DD1iAiIiIiItKKKfj2gYLvGigtgOkdze37d0JYnLX1NFGlzlKm/TiNL3d+CcCV3a/kkWGPEKAQRERaisxNMPtyKDxkwuubPoPIDqd+jtsNP/7dtMzCbULiq9+GkOjGqLhhOB2wfa6ZBb5tLhULgwZFQUSCeW8hMRDs2YfEeMdOGI8BPz9L346IiIiIiEhzUdMs178Ra5Lm7Eia2Ye1Veh9EoeKDjF5wWQ2HNmA3WbngSEP8Muev9RqvSLSssSfCbd8A7MvgyNb4a2L4KbPT942xVEGX00xs6TBzIq+6NnmPyva7m9md/e4CLL3wNp3YO1sKDwMpT4upBnbFS5+ziwe2pq4XGb2f136xYuIiIiIiJyEZnyjGd81su49+OxO0xP2V19aXU2T8/Phn5m8YDKHiw8TFRTFC+e8wLD2w6wuS0Sk4WTvMeF39m6I7GjC7zbHrVZelAUf32R6jNv8YMJ0GPZbaKkfCDrKzIcBxdnerSSn6v3iHO++JMf0TD+mz5XmZ3SyRUYbi9ttWsk4Ss1s/vpYwLM0HzI3Q+YG02s+c6O5X15oes4PugV6XgL+gXV/LRERERERadE041vq16EtZt+ul7V1NEGf7/icv/z4F8pcZXSL7saM82aQGJFodVkiIg0rJglu+RZmTzTfCnrrIrjpUzMjHODIdrMYZtYOCIyAq96EM8ZbW3ND8w+EhD6+PackD36YDiteg43/gW3fw7g/myC4MdqflJfA4VRPEL0JMjaY28XZ3mPC2poAPLKjZ+sAUZ0qjVUKx91usx5I5kZPwO0JurN3nbyGXYvMFtYWBtwAA282i5OKiIiIiIjUgWZ8oxnfNfLelbD9e/jFizDk11ZX0yQ4XU5eWvMS72x+B4CxiWOZPno6YQENvLCaiEhTUngE3r3cBKYhMXDD/0FZAXx0o5nRHNUZrv/QG4hL9Q6sgy8mw8H15n6noXDpy/X3c3O7oSCzahiducnMUHc7TzzeZjftaBwlNTt/aBsIj4fc/Sdv9RLRHuL7mA8H4vtAQl/zGuveN61wCjK9x6acB4N+BT0ubv5tcUREREREpF5pcUsfKPiugRfPhLz9pq9r0tlWV2O5vLI8Hlj0AEvTlwJw+1m3c2f/O/GzaXEyEWmFirPh/ath/yoIDDdhqcsBnYbAdR9AeDurK2weXE5Y+TrMf8J8eGCzw9l3wTkPQmAtPlQtOGQW3tw2B3YvhaIj1R8XHG1C6MqhdNueZhZ3cTbkpUNuutnnpUPeARNw5x0w948Px/0CoG2PE0PusDYnr9VZDmnfwJq3YMd873h4vHcW+Mn6yIuIiIiISKui4NsHCr5PoyQPnva07nhgF4TGWluPxXbl7uIP8//A7rzdBNuDeXLUk0zoMsHqskRErFWaD//7S9PPG6DPVTBxFgQEW1tXc5SbDt8+CFu+MPejO8PFL5y+VYzbDQd/gq1zTNidvhao9M88mx/EdasaSMf3Ma1Katt33e024XjufjNjOyIB2vSoW6/urF1msdB175nFQk3x0O18szhq9wlmcVEREREREWmVFHz7QMH3aexbBW+MM7Ou7ttqdTWWWrR/EQ8uepCC8gISwhKYMXYGveLU91xEBIDyYljwV4hKhKG/abmLWDaWtG/g6/shd5+53/tyuPBpiGzvPaa0AHb+AFu/NbO7CzKqnqN9PxMUdxtnZl0HhjZa+XXmKIO0r80s8J0/eMejOsN5f4K+VzdOH3QREREREWlSFHz7QMH3aaydDZ/fDcnnwM2fW12NJVxuF6/99Bqv/fQabtwMbDeQF899kbiQOKtLExGRlqy0wCx+ufxV04s7KBLGPgzYPC1MloCzzHt8QBikjIXu481WOSRvzo7u8MwCf9/bsiXhLBj/BHQ918rKRERERESkkSn49oGC79P49mFYPguG/Q4uesbqahpdTkkOU5dMrejnfc0Z1zB16FQCtNiWiIg0loM/w5eTIX3NiY/FJMMZE8yWNNL05m6pyovNhwBLXoLSPDPWbRxc8HjLXkDV5YTt88zipz1/0bLfq4iIiIjIaSj49oGC79N493/MQlOXvAyDb7G6mka16cgmpvwwhQOFBwi2B/PYiMe4NOVSq8sSEZHWyOWE1W/Cin+YXtpnTIAzLjR9u1tbW5nCI7DoOVj1L7OQKjboPwnOe8T0LG9MLhfk7Db9zmO71u//Fjn7TK/zde+ZRcbB9GoffCuMfaTVr7siIiIiIq2Tgm8fKPg+jRd6Qf4BuHUOdB5udTWNwu12859t/+GvK/5KuauczhGdefHcF+kR28Pq0kREROSYoztg3uOw+VNz3z8ERtwBIydDcAP8m64kDzI3QebGSvvNUF5oHo/u7G0z02V07XqqO8vNAqVr3zF9248tUBoSa2Z6H1tANiTGhN+DbtFinyIiIiLSqij49oGC71MozoFnksztB/dASLS19TSCEkcJT614ik+3mz+ixyaO5clRTxIZqP9viIiINEn7V8N3f4K9y8z90Dg4ZyoM+hX4B/p+PpcTsnYdF3BvhJy91R9vDwLcVfut24OgyyhPEH4BxKWc+jWzd5t1Vda9X3WR0i6jzfvoeQkEBMOuRfDNg3Bos3m8XW+z6GnXc3x/nyIiIiIizZCCbx8o+D6FvSvgzfEQ0R7uTbW6mga3L38fU36YQmpWKn42P/4w4A/c0ucW/Gx+VpcmIiIip+J2Q9rXMPfPcHSbGYvtCuOmQaehUJxd/VaSc+JYwWFwFFf/OpEdIb6PmX0df6a5HdcNnKWwazFs+85sufuqPi82xRuCJ400IbajDNK+gjXvwM4F3mPD2kL/62HgzdUH5k4HrHkLFjxl6gXodSmMfwpikur6k6w5RxkcWGtC+I6DIaFv62u7IyIiIiKNTsG3DxR8n8Kat+GLP0LXsXDTp1ZX06AW7lvIQ0seIr8sn9jgWJ4d8yzD2g+zuiwRERHxhdNh2oT8MB0KD9f+PP4h0K6XN9xO6GNmV9ekr7bbDYfTvCH43mWeXuQeAaGmfdzBn6HoiHc85TwTdve4uGYz1YuyYMFfYfUb4HaZWeYj/wCj7oHAMN/f8+k4HWaBzV2LTMuVvcuhvMj7eEwy9J4IvS+DDgMVgouIiIhIg1Dw7QMF36fwzVRY8SoMvwMunG51NQ3C6XIya/0sXt/wOgD92vbjhXNeID4s3uLKREREpNZK8+HHv8OyV0w4GxLj2aIr3T7JFhoL0UngZ6+fWkryYNdCTxA+F/IPeh8LT4ABN8DAGyGmS+3On7kJvp1qAmkws9IveBz6XFm38NnlhIwNJuTetRj2/Ahl+VWPCY0zHwjsXwWOEu94VGcTgPeeaGaD++nbcyIiIiJSPxR8+0DB9ynMngg7f4BLZ8Cgm62upt5llWTx4KIHWX5wOQDX97ye+wbfR4A9wOLKREREpF64nGDzazqzj91u0y989xITrncfXz+LU7rdsOUL+O4Rby/yxOEw5n7fFvp0OeHgTybs3r3EtIKpLDjK9B3vMhqSR0PbXibULi2A7XNh82ew9Tvvgp8AER1MK5beE81M9/r6QEFEREREWiUF3z5Q8H0Kz/cwCyz9ei4kDrW6mnq16cgmJv8wmYzCDEL8Q5g2YhoXd73Y6rJEREREaq+8GJbNhMUvVm1DUluBEZB0tgm5u4w2fbxPF1yXF8P2eSYET/um6izxsHYmBO9zhel13lQ+kKgPznLTc70oC4qOQnGWuV3suV+UbW6X5kPCWXDGBOg8onYLsIqIiIi0Ygq+faDg+ySKs+GZLub21L1mhk8LMW/PPKYunkqJs4QukV146dyX6BbTzeqyREREROpHbjrMf9L0F/dVbLJnRvcYaN+/bjPSHaWwY4EnBP8KSnK9j7XvD6PvhZ6XNL9WKI4ys5jq+vfhyFYTcJfm+X6ewAhIGWtC8O7jIbxd/dcqIiIi0sIo+PaBgu+T2LMM3rrQ9ImcstnqauqF2+1m9ubZvLD6Bdy4GdlxJM+PeZ7wwHCrSxMRERFp2RxlsHsRbPoUNvwbHMVmvE0PsyBn36ugqbeby9plFk9d9z4UHqrmAJunj3ys6RUfEmv6oIfGevvH24Ngz1LT8/34BVg7DDQh+BkTIKFf8/tAQERERKQRKPj2gYLvk1j9Jnx5D6ScDzf+n9XV1JnD5eDplU/zUdpHAFzb41qmDp2Kv1899NUUERERkZorPAIrXoMV/4RSzyzw6M4w8o/Q/wYICLa2vsqc5aZly5q3YMd873h4PAy4EbpfAKFtTKgdHFXzHuYuFxxYB9vmwNY5cHB91cfD4825u08ws++Do1pWaxgRERGRWlLw7QMF3yfx9QOw8h8w4i6Y8JTV1dRJQVkB9y26j6XpS7Fh477B93Fj7xux6Y8HEREREeuU5MKqN2DZLCg6YsbC42HEnTD4VgiKsK627D2e2d3vQUGmZ9AGKefBoF9Bj4vqd4Z6foaZBb51jllcvqzgxGP8Q8yHAgGh4O/ZBwRDQMiJj4W1hbhuEJditpCY+qtVRERExEIKvn2g4Psk3rkUdi2Cy2bCwButrqbWMgozuGPeHWzL3kawPZinxzzN+Z3Pt7osERERETmmrMgEzEv/Bnn7zVhwNAz7HQz7rZlN3RicDtj6Dax52yzQiedPpbB2MOAGGHQzxHRp+DocpbDnR08Q/i1k7az7OUPjPEG4JwyPTTG3Y7tCYGjdzy8iIiLSSBR8+0DB90k81930LrxtHnQabHU1tbLp6Cbunnc3h4sP0yakDTPPm8mZbc60uiwRERERqY6jDDZ8DEtegqPbzVhAGAy+BXr+ourM5soznE8389pRZhZuL84yC1FWd7s4G/avhvyD3ud1HWteu8fF1vYfL82H8mKzOUqgvAjKPXtHSTWPFZv3cXSH+TlWfk/ViewEcV0hqjNEdvBsHb23Q2LUZkVERESaDAXfPlDwXY2iLHg22dx+aL+1XzOtpQV7F/Dg4gcpdhTTLbobs86fRYfwDlaXJSIiIiKn43LCls9h8QuQseH0x9vsnlA82Lu3B0Jpngm0q2sbcjJhbaH/JDO7O7Zr7d9DU1JaYGaNH93uDcOPbSU5p3++f0ilQLxSMB7TBbqMblo92X11OA1WvwXOUtOzveNAqysSERGR01Dw7QMF39XYvRTevhiiEuGejVZX4xO32817W97juVXP4cbN2R3O5vlznicisPmF9yIiIiKtmtsN2783PcBz9phZzo5i794XNj/TPiUkxrROCYmtdDvGbNGdzSxv/8CGeT9NUVGWNxDP2w95BzxbutkXHT3184Oj4Mz/gbOug87Dm8fMcJfLLFS64lXz/6/KEofD8N9Bz0vB7m9NfY2l8KhZZHbPUtO7fshtEBJtdVUiIiKnpeDbBwq+q7HqX/DVvdDtArjh31ZXU2MOl4NnVj7Dh2kfAnD1GVfz0LCHCPCz8KupIiIiIlL/3G7TC7tyEF5e6bazDIIiveF2UBT4+VlddfNTXmJapRwfiOelw4F1Zn9MTBc461qzxaVYVvJJlRXCTx+asPfIVs+gzbTRCQyHjf8BV7kZjuwEQ39jZv63tIVB8w7Cspmw+k3TGueYoEgTfg+/A8LbWlefiIjIaSj49oGC72p8dR+seh3OvhvGP2l1NTVSWF7I/QvvZ3H6YmzYmDJoCjefeTO25jDrRERERESkuXG5YPdi+Pkj2PxZ1ZYynYZCv2vhzCsab3HSk8nZZ/62WfOOt7VLYAQMvBGG3g6xnhaP+RkmDF71BhQdMWMBodDvl2ah1bZnWFN/fcnaZRaQXf+++WAIIOEs6HOl+UDg8BYz5h8MA282fwtGJ1pXr4iIyEko+PaBgu9qvH2J+UfsxFdgwCSrqzmt7JJsfvPdb0jLTiPYHsz00dMZlzTO6rJERERERFqHsiJI/Qp+/tC0EXG7zLhfAJwxAfpdB93Hg39Q49TjdsO+laadyebPwe004zHJJsTufz0En+Rvv/ISM/t7+auQWanHfLdxMPz3kHJ+82jpcsyhVFjyImz4t/fn0HkEjL4Punnei8sFW7+Fxc9D+hpzjJ+/aWEzajK06W5d/SIiIsdR8O0DBd/VeDbFzHL4zXzoOMjqak6pqLyI2767jQ1HNhAbHMvM82bSt21fq8sSEREREWmd8jNMyPrTh1WD45AY6HUZ9LgIks+BwND6f+1jAfzyV+DAWu948hjTwqP7ePCz1+xcbjfsXmIC8LSvAc+fzm3OMOF54jCzmGrFwqqhJthvKqF4+lqzQGzql96xlPNhzH2QdHb1z3G7Ydci87xdCz2DNug9EUZPgfb9GrxsERGR01Hw7QMF38cpPALPeXryPZQOQeHW1nMK5a5y7p5/N0vTlxIVFMXsC2fTNbqr1WWJiIiIiAhA5iYTgP/8MRRkeMftQSaMPmOC2aI71+78jlLYv9qEtbsXm1nex/p024PgrKth2O8hoU/d3kfWTlj5Oqx9F8ryT3GgzROCHxeIBwSbPuIxXSCum+mBHtcNopPqfzHV3UvNzO0d871jvS6F0fdChwE1P8/+1bD4RUj7yjvW7QJznqQR9VeviIiIjxR8+0DB93F2LYZ3LjH/+Jy84fTHW8TldvGnJX/ii51fEGwP5l8T/kW/tpqBICIiIiLS5LicZgZx6tewdQ7k7q36eLveJgDvPgE6DQG7f/XncTrg4Hpzrl2LYO8Ks5hpZVGJpkf14FsgrE39vo+SPFj/Aax7DwoyPQuqFnlbiPjKZjd/dx0LwmNTvLejOpnZ6W43lOZDcTYUZ3n22VCUBcU5Vcdz90PmRu+5+14No+6Bdj1r/54zN8GSl0z7l2MtbNr0MDP4jwX8ASHgH2IC/orbx4X/0YkQfyYER9W+ltZgz4+mz3xgKIyc3DQXihURsZiCbx8o+D7Oytfh6/vMPzonfWx1NSf14uoXeWvTW9htdmacN4MxncZYXZKIiIiIiJyO2w2HU01P6a3fwb7l3kAVTKDa7QIThKecZ8LcXYvMtufHE2dch7U1s8ePbTHJjd9uxFluQnBHiQnCyz37yvdLcs3M8awdcHQ7HN0J5YUnP6c9EIIizYKcLkfNa7EHwoAbYOQfzQzz+pK107M45gfexTFrIzoJEvpCfB+zT+hjxppKixgruN2wba5pMbNvuXfcZof+v4QxD0BMknX1iYg0MQq+faDg+zhfToHVb5h/KF3wuNXVVOudTe/w/OrnAXhy5JNM7DbR4opERERERKRWirJg+zzYNseEfyU5pz4+OBq6jDJ9wpPHQNsezTM0dbtNP/SKIHyHZ9sO2btODJftQRAaCyGx5sOBkGjP/ZhKW6zpPR4R33B152fCwZ/MTPvqAv6K+5VulxWYoD9vf/XnDIr0BOF9vKF4u15mxnhL5nLC5s9MS5lj/fDtgWbx1fwM8+EQmEViB95k+rNHdrCuXhGRJkLBtw8UfB/nrYthz1K4/DXz6XIT8+XOL3lo8UMA3DPoHm7tc6vFFYmIiIiISL1wOmD/StMOZescOLzF9MZOGgnJo03QHd8X/PysrrRhuZyQuw9KC0ygHRrbMkLgoizTiiVjo2f/MxxOO8kMcptpi3Ls/R8f8B+7XfmxgJBKM+9Lqgnni737Y7cDw02YHNkBIjuafUOvc+Uog58/Mi1ksnaYsYAwGHIrDL8TItubsX2rYMGTsPMHc98eBEN+bdrXhLdr2BqbA7fb+79nUATYA6yuSEQaiYJvHyj4rsTthme7mh5xt//g2+InjWBp+lLumncXDreDG3rdwANDHsDWHGd3iIiIiIjI6RVlKdBq6ZzlcGQrZGwwW+ZGsy86al1NQVGVwvBKgXjFvoMJ5X39W7SsCNbOhh9nQF66GQuOhuG/h6G3mxC/OruXwPynYO+P5n5AqDl+5B9P/pzmKGuX+dbHgXWmDdDxH1oc306ocn//oCjody0MugXie1v3HkSkUSj49oGC70oKDsHz3QEbPHzALKjRRGw8spFb59xKsaOYi5Iv4unRT+Nna+EzPURERERERFobt9sE30VHKy3kmV1pO8kin45i7yKbJyy2WXks1Cy66R8MpXmQd8C7lebWrMaAsKrBeNTx4XhHMwvdZjP1rfoXLH/FG+iHJ8DZd8GgX5kPd2ryM9m5wATg6avNWGAEjLgDht9hWt80N85y2LvMfLtj23fmA5D6kDjMBOBnXt6435QoKzS98I+1LMraCdig0yCzaG+73mbBWhGpMwXfPlDwXcnOhTD7MrMIyh9/srqaCrtzd3PTNzeRXZrNiPYjmHX+LAI060NERERERETqU2k+5B00/cgrAvF07+3c/afvQ3+Mf4gJwQsPm4AdzEKeoyZDv+tNCO8rt9sExQueNDPjwcw+P/tu6P0/EJtcv+FqWaGZgb1/FexfbdrwxKVAbFezj+sGER1q3n6o4JCZ1b1tDuxY4P25gFnMs/MI09IoNNZ8MBEQ4vnwwvOBRcUHGJU2exDsXgxr3oLUr8Ht9PxcoqHfL2HwLWYtgPrgKIPs3Z5g+7j+/PkHTv3cgDDoONCE4IlDoeNgCG9bP3WJtDIKvn2g4LuSFf+Abx6AMy6C6z+0uhoADhcd5sZvbiS9IJ3ecb15c8KbhAWEWV2WiIiIiIiItEZlRZB/0ITgxwfjx24XHan6nLa9YPQUOPMKsPvXvQaXC1K/gAXTTS/8YwJCzczihD5mkdD4PhB/JgTXIOtwu80s5X0rPUH3Ksjc5A2ST8Y/2BuEx6Z4A/HYFAhrCwfXwdbvTNh9YF3V54a2ge4XQPfxkHJe3Weu52fAundhzWzI3esd73y2CcB7XXb6DxxcTsjZa8LsrEqLzmbtMONu18mfGxLjfe9x3Uxrlv2rIH0tlOWfeHxMF+g01BOGDzH/e2mSn8hpKfj2gYLvSr6YbD4lHXUPjJtmdTXkl+Vzy7e3kJadRueIzsy+aDZxIXFWlyUiIiIiIiJycuUlZgZw3gGw+UHi8IZZlNXlhI3/Byv/aWaAV+57XVl0EiT0NSF4fB8TjIfEemZzrzaLyu5fZVrGHC+ivXeWsn+wt51H1g4z+9nlOHl9fv4nPt6+vwm6z5gAHQY23M9lx3xY/RZs/cYbVofEQv/rYeDNprVr5bYkx25n7wZX+cnPHRDmCfdTqobccSkn77nucsLhVO8HCvtWwZG0E4/zD4GzroZxf2lZ/dtF6pmCbx8o+K7kzQtNj60rNftKmQAAHF5JREFUXoezrrG0lFJnKb///vesylhFXHAc7178LokRiZbWJCIiIiIiItIkuZwmvM3cABkbzWztzI3ehTRrwh4EHfqboLvTYDMbOarjyY93lp9idvQ+wA2B4ZAyFrpPMLO7IxLq/FZ9kptuZoGvnV3zn4U9qNIs9q7eYDuuG4TH+76waXWKcyB9jTcM378KSjw95kPjYPxT0O+6+nktkRZGwbcPFHx7uN3wTBfTr+y3i6H9WZaV4nQ5uX/R/czdM5ewgDDemvAWveJ6WVaPiIiIiIiISLNUlGUC8IyNnv0GM/vYWQbRnT0ht6fdRkJf8A+sn9c9Nus9slP9nbMunA7YPtfMAt/2nemFHp1UaeZ2pb7lkR0bfyFKl8tMRPz6Pji02Yx1GQ2XvARtujduLa2d223a5hy7XgoOeRbGDTN95QNDPT3nQ04+FhqrDy0akIJvHyj49sjPgBd6mK9hPXywdgtt1INSZylPLn+ST7d/SoBfAK+Oe5Vh7YdZUouIiIiIiIhIi+Msh7IC05O6NSotAP+gptlP21kOy2bCD8+Y1jX2QBg1xbSktSinadEcZeaDoMofDmVuhKKjdTtvbFc450Hoe3Xjf4jSCij49oGCb48dC+Ddy01/qj+staSEtKw0pi6eyvac7diw8dw5zzGhywRLahERERERERERsUT2bvjqXtj+vbkf183M/k4eY2lZDSJ3P6x+E7L3eFvttO9f/0F/weFKrYA8QfeRtOr71Nv8IK676YcflQiOUigvgvJiz77ILHR77HZ5MZQVmr2z1HueuO5w7lSzsG1D9LNvpWqa5dbDUsLSYhxONft2jd9SxOV2MXvTbGasm0G5q5zY4FieGPkEYzq1wF/oIiIiIiIiIiKnEtMFJv0bNv0Xvp1qeqe/cyn0+yWMfxLC2lhdYd3tXwPLZ8GmT8HtNGMb/232fgGm9U6ipw1PpyGmNU9N2oc4HebndaxVScYGc7sgs/rjg6JMwH1s4df4PiYbCwip3fsqzYeVr8OPM+DoNvjPr2HR8zD2Ieh5qQLwRqQZ32jGd4XP/wBr34HR98H5jzbayx4sOMgjSx9hVcYqAMYmjmXa2dOIDdYKxiIiIiIiIiLSypXkwrzHYdUbgNu0qLngCRhwQ8P2kS7OMQuVZu+GiA7QcVDd+7U7HZD6BSx7Bfav9I53GQ3J58DB9bBvJRQeOvG54fHeEDxxqJkV7iyr1KbEM5v7cCo4Sqp5cRvEJnsC7r7eoDsqsWF+jiV5sOI1+HEmlHoWLo3vC2Mfhh4XqQd4HajViQ8UfHu8MR72rYAr34C+VzXKS3618yueWv4U+eX5hPiH8OCQB7mi+xXYdPGLiIiIiIiIiHjtXw1fTDYBL0DSSNP+pG2P2p+zrBCydpoZ0kd3mC3Lsy86UvXYgFDoPNy0W+kyBtr3A3sNm0kU58C6d2HFPyF3rxnzCzA9sIf/Htqf5T3W7YacPeb97ltpAvKMDSe2JLHZvTPFjxcQBvFnVprJ3Rfa9Yag8JrVW5+Kc2D5KybsL8s3Yx0GwNhHoNs4BeC1oODbBwq+Mb9Unk4yn0D9bqn5xdCAcktzeWr5U3yz+xsAzmp7FtNHTadzZOcGfV0RERERERERkWbL6YAVr8KCv5re0gD+IaYtx7HNP8T0x664fdxjZQXesDv/4KlfLzweopPM8ccH4UGRkHS2JwgfbQLm49t4ZO2E5a/B+vfN6wKExsHgX8OQ2yAivmbvu7wYDqw3Ifj+VbBvFRRkmMeiEqu2KUnoCzHJTa+lSFEW/Ph3WPEPKC80Y52GmBngXccqAPeBgm8fKPgG8g7Ai73Mp2WPHDSrGzeQFQdX8MiSR8gsysRus/O7fr/jtr634e+nlvMiIiIiIiIiIqeVsxe+fgC2flP3c4XEQlwKxKaYRTTjunpup0BQhDnG5YLDW2DXYti1CPYsMS1YqpwnBrqMMi1LohJh7WxI+xrwRI9te5nZ3WddU/v+2ce43Sa0Dwgxr9ucFB6BpS/Dyn+Bo9iMdR5hZn9X/O+QAoFh1tbZhCn49oGCb2D7PHjvCrPa7N2rG+QlSp2lzFg7g9mbZwOQFJnE9FHT6du2b4O8noiIiIiIiIhIi1aUZRZTLC82IWp5pc1RYmaFl5dUfcwe6Am4UyC2K4TWYo01lxMyfq4UhP/oncV8vG4XmMA75TzNaq4sPxOWvASr3wRn6YmPR7T3hOCVPoiITTF9yuv6wUEzp+DbBwq+gWWzYM7D0OtSuPa9ej99WlYaDy15iG3Z2wC45oxruHfwvYQGhNb7a4mIiIiIiIiISCNylsOBdbBroQnDj26H7uNN4F2XHuStQd4B+Ol/4cg2T5/17VCcdYon2CCqk/nQ4pwHocvIRiu1qahplqveEmIc2mL2bXvV62kdLgezN89m5rqZlLvKiQ2O5fGzH+ecxHPq9XVERERERERERMQi9gBIHGq2MfdbXU3zEtkBRt9bdaw4G47u9C40enS75/ZOsz5f7j6zjbrHmpqbCQXfYhxONft2PevtlDtydvDo0kfZcMSsNnxu4rlMGzGNuJC4ensNERERERERERGRFiUkBjoNMltlbjcUHfWG4e37WVNfM6HgW8xFczjN3K6HGd8Ol4O3N73NK+tfodxVTkRABA8OfZDLUi7Dpl5OIiIiIiIiIiIivrPZIKyN2ToPs7qaJk/Bt0BeOpTmgZ+/WdygDrZlb+PRpY+y6egmAMZ0GsNjwx8jPiy+PioVEREREREREREROS0F3wKHPG1OYlPAP7BWpyh3lfPWxrd49adXcbgcRARG8NDQh7ik6yWa5S0iIiIiIiIiIiKNSsG3wGHPwpa17O+dlpXGo0sfZUuWOc+5iefy2PDHaBvatr4qFBEREREREREREakxBd/infHtY3/vclc5/9rwL/758z9xuBxEBUXx0NCHuDj5Ys3yFhEREREREREREcso+JZazfhOzUrl0aWPkpplQvPzEs/j0RGP0iakTUNUKCIiIiIiIiIiIlJjCr5bO7cbDqeZ2zWY8Z1bmsvszbN5c8ObONwOooOieXjYw1zY5ULN8hYREREREREREZEmQcF3a5e7D8oKwC8A4lKqPcTtdvPT4Z/4ZOsnzNk9h1JnKQDjOo/jkeGPaJa3iIiIiIiIiIiINCkKvlu7Y/2947qBPaDKQ/ll+Xy18ys+3vox27K3VYz3iOnBb876DeOTxmuWt4iIiIiIiIiIiDQ5LSb4njVrFs899xwZGRn069ePv//97wwdOtTqspq+avp7bzq6iU/SPuHrXV9T7CgGINgezIXJF3L1GVfTt01fBd4iIiIiIiIiIiLSZLWI4Pujjz5iypQpvPbaawwbNoyXX36ZCRMmkJaWRrt27awur2nzzPguiuvON1v/w8dbP2bz0c0VD6dEpXB1j6u5NOVSIgMjrapSREREREREREREpMZsbrfbbXURdTVs2DCGDBnCzJkzAXC5XCQmJnL33XczderU0z4/Ly+PqKgocnNziYxsXeFu2uuj+KRkP1/FtKHA07s7wC+AC5Iu4Joe1zCw3UDN7hYREREREREREZEmoaZZbrOf8V1WVsaaNWt46KGHKsb8/PwYN24cy5Ytq/Y5paWllJaWVtzPy8tr8DqbovS8fVwVmAuBEeAspXNEZ64+42omdptITHCM1eWJiIiIiIiIiIiI1EqzD76PHDmC0+kkPj6+ynh8fDypqanVPmf69On85S9/aYzymrSOgVEMt4UTUV7MNRNmMbTjCPxsflaXJSIiIiIiIiIiIlInzT74ro2HHnqIKVOmVNzPy8sjMTHRwoosEhzJazcswe5nt7oSERERERERERERkXrT7IPvNm3aYLfbyczMrDKemZlJQkJCtc8JCgoiKCioMcpr8hR6i4iIiIiIiIiISEvT7PtaBAYGMmjQIObNm1cx5nK5mDdvHiNGjLCwMhERERERERERERGxQrOf8Q0wZcoUbr75ZgYPHszQoUN5+eWXKSws5JZbbrG6NBERERERERERERFpZC0i+L722ms5fPgwjz32GBkZGfTv359vv/32hAUvRURERERERERERKTls7ndbrfVRVgtLy+PqKgocnNziYyMtLocEREREREREREREalGTbPcZt/jW0RERERERERERESkMgXfIiIiIiIiIiIiItKiKPgWERERERERERERkRZFwbeIiIiIiIiIiIiItCgKvkVERERERERERESkRVHwLSIiIiIiIiIiIiItioJvEREREREREREREWlRFHyLiIiIiIiIiIiISIui4FtEREREREREREREWhQF3yIiIiIiIiIiIiLSoij4FhEREREREREREZEWRcG3iIiIiIiIiIiIiLQoCr5FREREREREREREpEVR8C0iIiIiIiIiIiIiLYqCbxERERERERERERFpURR8i4iIiIiIiIiIiEiLouBbRERERERERERERFoUBd8iIiIiIiIiIiIi0qIo+BYRERERERERERGRFkXBt4iIiIiIiIiIiIi0KAq+RURERERERERERKRFUfAtIiIiIiIiIiIiIi2Kgm8RERERERERERERaVEUfIuIiIiIiIiIiIhIi6LgW0RERERERERERERaFAXfIiIiIiIiIiIiItKiKPgWERERERERERERkRbF3+oCmgK32w1AXl6exZWIiIiIiIiIiIiIyMkcy3CPZbono+AbyM/PByAxMdHiSkRERERERERERETkdPLz84mKijrp4zb36aLxVsDlcnHgwAEiIiKw2WxWl9Oo8vLySExMZN++fURGRlpdjog0Al33Iq2LrnmR1kfXvUjro+tepHVp7de82+0mPz+fDh064Od38k7emvEN+Pn50alTJ6vLsFRkZGSrvFBEWjNd9yKti655kdZH171I66PrXqR1ac3X/Klmeh+jxS1FREREREREREREpEVR8C0iIiIiIiIiIiIiLYp92rRp06wuQqxlt9s599xz8fdX5xuR1kLXvUjromtepPXRdS/S+ui6F2lddM2fnha3FBEREREREREREZEWRa1ORERERERERERERKRFUfAtIiIiIiIiIiIiIi2Kgm8RERERERERERERaVEUfIuIiIiIiIiIiIhIi6Lgu5WbNWsWXbp0ITg4mGHDhrFy5UqrSxKRejB9+nSGDBlCREQE7dq14/LLLyctLa3KMSUlJdx5553ExcURHh7OlVdeSWZmpkUVi0h9evrpp7HZbEyePLliTNe8SMuTnp7ODTfcQFxcHCEhIfTt25fVq1dXPO52u3nsscdo3749ISEhjBs3jm3btllYsYjUhdPp5NFHHyU5OZmQkBBSUlJ44okncLvdFcfouhdp3hYtWsSll15Khw4dsNlsfPrpp1Uer8k1npWVxaRJk4iMjCQ6Oppf//rXFBQUNObbaDIUfLdiH330EVOmTOHPf/4za9eupV+/fkyYMIFDhw5ZXZqI1NHChQu58847Wb58OXPnzqW8vJzx48dTWFhYccw999zDF198wSeffMLChQs5cOAAV1xxhYVVi0h9WLVqFf/4xz8466yzqozrmhdpWbKzsxk5ciQBAQF88803bN68mRdeeIGYmJiKY5599llmzJjBa6+9xooVKwgLC2PChAmUlJRYWLmI1NYzzzzDq6++ysyZM9myZQvPPPMMzz77LH//+98rjtF1L9K8FRYW0q9fP2bNmlXt4zW5xidNmsSmTZuYO3cuX375JYsWLeL2229vrLfQpNjclT8alFZl2LBhDBkyhJkzZwLgcrlITEzk7rvvZurUqRZXJyL16fDhw7Rr146FCxcyZswYcnNzadu2LR988AFXXXUVAKmpqfTq1Ytly5YxfPhwiysWkdooKChg4MCBvPLKKzz55JP079+fl19+Wde8SAs0depUli5dyuLFi6t93O1206FDB+69917uu+8+AHJzc4mPj+ftt9/muuuua8xyRaQeXHLJJcTHx/PGG29UjF155ZWEhITw3nvv6boXaWFsNhv//e9/ufzyy4Ga/bd9y5Yt9O7dm1WrVjF48GAAvv32Wy6++GL2799Phw4dLHs/VtCM71aqrKyMNWvWMG7cuIoxPz8/xo0bx7JlyyysTEQaQm5uLgCxsbEArFmzhvLy8iq/A3r27Ennzp31O0CkGbvzzjv5xS9+UeXaBl3zIi3R559/zuDBg7n66qtp164dAwYM4PXXX694fNeuXWRkZFS57qOiohg2bJiue5Fm6uyzz2bevHls3boVgJ9++oklS5Zw0UUXAbruRVq6mlzjy5YtIzo6uiL0Bhg3bhx+fn6sWLGi0Wu2mr/VBYg1jhw5gtPpJD4+vsp4fHw8qampFlUlIg3B5XIxefJkRo4cSZ8+fQDIyMggMDCQ6OjoKsfGx8eTkZFhRZkiUkcffvgha9euZdWqVSc8pmtepOXZuXMnr776KlOmTOHhhx9m1apV/OEPfyAwMJCbb7654tqu7t/7uu5FmqepU6eSl5dHz549sdvtOJ1OnnrqKSZNmgSg616khavJNZ6RkUG7du2qPO7v709sbGyr/D2g4FtEpIW788472bhxI0uWLLG6FBFpIPv27eOPf/wjc+fOJTg42OpyRKQRuFwuBg8ezF//+lcABgwYwMaNG3nttde4+eabLa5ORBrCxx9/zPvvv88HH3zAmWeeyfr165k8eTIdOnTQdS8iUg21Omml2rRpg91uJzMzs8p4ZmYmCQkJFlUlIvXtrrvu4ssvv2TBggV06tSpYjwhIYGysjJycnKqHK/fASLN05o1azh06BADBw7E398ff39/Fi5cyIwZM/D39yc+Pl7XvEgL0759e3r37l1lrFevXuzduxeg4trWv/dFWo7777+fqVOnct1119G3b19uvPFG7rnnHqZPnw7ouhdp6WpyjSckJHDo0KEqjzscDrKyslrl7wEF361UYGAggwYNYt68eRVjLpeLefPmMWLECAsrE5H64Ha7ueuuu/jvf//L/PnzSU5OrvL4oEGDCAgIqPI7IC0tjb179+p3gEgzdP7557NhwwbWr19fsQ0ePJhJkyZV3NY1L9KyjBw5krS0tCpjW7duJSkpCYDk5GQSEhKqXPd5eXmsWLFC171IM1VUVISfX9UYx26343K5AF33Ii1dTa7xESNGkJOTw5o1ayqOmT9/Pi6Xi2HDhjV6zVazT5s2bZrVRYg1IiMjefTRR0lMTCQoKIhHH32U9evX88YbbxAeHm51eSLy/+3dT0iUXR/G8Wve8X+TfyizJprMaEYlwiFIKiKkLIOCx7JEBSsIhBKl0hZZqQS2z0psM4qYBlGLstyEggaWBoVkuLDURZqkhQ6aht7v6h1eycqezOmZ5/uBG2bOfc7cvzNwFnNxOPMLTp06pdraWt25c0dWq1Vut1tut1tms1n+/v4KCgrSu3fvdO3aNSUkJGhkZEQ5OTlas2aNiouLvV0+gJ8UGBioFStWzLpu3bqlmJgYZWdns+YBH2Sz2VRaWio/Pz+tWrVKjY2NKikp0eXLl7Vp0yaZTCZNT0+rrKxM8fHxmpqaUl5ensbHx1VeXi4/P069BP5pXr9+rerqajkcDgUEBKipqUnnz59XZmamkpOTWfeAD3C73erq6tLg4KAqKyuVmJio4OBgTU1NKTw8/IdrPDIyUk+fPlVdXZ2cTqd6e3uVk5OjPXv26NixY96e3uIz8K9WXl5u2Gw2IyAgwNiyZYvR1tbm7ZIALABJc14ul8vTZ2Jiwjh58qQRERFhhISEGKmpqcbAwID3igawoHbu3Gnk5+d73rPmAd9z//59Y+PGjUZgYKARGxtr3Lx5c9b9mZkZ4+LFi0ZUVJQRGBho7Nq1y+ju7vZStQB+1ejoqJGfn2/YbDYjKCjIiImJMYqKiozJyUlPH9Y98M/W1NQ052/5o0ePGoYxvzU+PDxsZGRkGBaLxQgNDTWOHz9ujI2NeWE23mcyDMPwUuYOAAAAAAAAAMCC44xvAAAAAAAAAIBPIfgGAAAAAAAAAPgUgm8AAAAAAAAAgE8h+AYAAAAAAAAA+BSCbwAAAAAAAACATyH4BgAAAAAAAAD4FIJvAAAAAAAAAIBPIfgGAAAAAAAAAPgUgm8AAADgD9Lc3CyTyaRPnz555fmPHz9WXFycpqenf9i3sbFRCQkJmpmZWYTKAAAAgPkj+AYAAAAWiclk+u5VUlKibdu2aWBgQGFhYV6p8dy5c7pw4YLMZvMP+6akpMjf31+1tbWLUBkAAAAwfybDMAxvFwEAAAD8GwwODnpe3759W5cuXVJ3d7enzWKxyGKxeKM0SVJra6v279+vwcFBBQUFzWvM9evXVVVVpfb29t9cHQAAADB/7PgGAAAAFsnKlSs9V1hYmEwm06w2i8Xy1VEnVVVVCg8P14MHD+RwOBQSEqK0tDSNj4+rurpa0dHRioiIUF5e3qzjSSYnJ1VQUKDVq1dryZIlSkxMVHNz83frq6+vV3Jy8qzQ++XLl0pKStLSpUsVGhqqzZs3q6Ojw3P/wIED6ujoUE9Pz8J+WQAAAMAv8PN2AQAAAAC+b3x8XFevXlV9fb3GxsZ08OBBpaamKjw8XA8fPtSbN2906NAhbd++Xenp6ZKk3NxcdXV1qb6+XlarVffu3VNKSoo6Ozu1YcOGOZ/T0tKizMzMWW1ZWVlyOp2qqKiQ2WzWixcv5O/v77lvs9kUFRWllpYWrV+//vd9CQAAAMBPIPgGAAAA/nBfvnxRRUWFJ1hOS0tTTU2N3r9/L4vFovj4eCUlJampqUnp6enq7++Xy+VSf3+/rFarJKmgoECNjY1yuVwqKyub8zl9fX2e/v/T39+vwsJCxcbGStKcobnValVfX99CThkAAAD4JQTfAAAAwB8uJCRk1m7qqKgoRUdHzzoPPCoqSkNDQ5Kkzs5OTU9Py263z/qcyclJLVu27JvPmZiY+Ops7zNnzujEiROqqanR7t27dfjw4a92dgcHB2t8fPxvzw8AAABYaATfAAAAwB/u/48WkSSTyTRn28zMjCTJ7XbLbDbr+fPnMpvNs/p9788zly9fro8fP85qKykpUWZmphoaGvTo0SMVFxervr5eqampnj4jIyOKjIz8W3MDAAAAfgeCbwAAAMDHOJ1OTU9Pa2hoSDt27PipcV1dXV+12+122e12nT59WhkZGXK5XJ7g+/Pnz+rp6ZHT6Vyw+gEAAIBf9R9vFwAAAABgYdntdmVlZSk7O1t3797V27dv9ezZM125ckUNDQ3fHLd37161trZ63k9MTCg3N1fNzc3q6+vTkydP1N7erri4OE+ftrY2BQYGauvWrb91TgAAAMDPIPgGAAAAfJDL5VJ2drbOnj0rh8Ohv/76S+3t7bLZbN8ck5WVpVevXqm7u1uSZDabNTw8rOzsbNntdh05ckT79u1TaWmpZ0xdXZ2ysrIUEhLy2+cEAAAAzJfJMAzD20UAAAAA+DMUFhZqdHRUlZWVP+z74cMHORwOdXR0aN26dYtQHQAAADA/7PgGAAAA4FFUVKS1a9d6/ijze3p7e3Xjxg1CbwAAAPxx2PENAAAAAAAAAPAp7PgGAAAAAAAAAPgUgm8AAAAAAAAAgE8h+AYAAAAAAAAA+BSCbwAAAAAAAACATyH4BgAAAAAAAAD4FIJvAAAAAAAAAIBPIfgGAAAAAAAAAPgUgm8AAAAAAAAAgE8h+AYAAAAAAAAA+JT/Aj1d3emdiwxsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1hUx/oH8O9hYReW3gQRpIgg2BU1VrBi9NoTjZpEFGNPLLHFaycxVhQ1tp+KRo1oYkmiibFEgj2xm9iVYsMKIiB9fn+QPZcNS1N0hXw/z7PP3T1nZs47wzn75L47zkhCCAEiIiIiIiIiIiIionLCQN8BEBERERERERERERGVJia+iYiIiIiIiIiIiKhcYeKbiIiIiIiIiIiIiMoVJr6JiIiIiIiIiIiIqFxh4puIiIiIiIiIiIiIyhUmvomIiIiIiIiIiIioXGHim4iIiIiIiIiIiIjKFSa+iYiIiIiIiIiIiKhcYeKbiIiIiIiIiIiIiMoVJr6JiIio3Fu3bh0kSYKbm5u+QyHScuHCBfTs2RMVK1aEoaEhJElCnTp1SvUaQUFBkCQJQUFBpdouvTx+NxUuICAAkiRh+vTp+g6FiIiIyiBDfQdAREREVBhJkl64bnh4OJN99MaKjo5G06ZN8ezZMwCAjY0NjIyMYGdnV6z6Z8+exc6dO2FlZYVRo0a9ylDLlUWLFiExMRFdu3Yt9R8ZyrqYmBisW7cOAJhsJiIiojKPiW8iIiJ6ozk4OOg8npycjJSUlELLmJiYvLK4iF7WypUr8ezZM3h6euLgwYNwdnYuUf2zZ89ixowZcHV1ZeK7BBYtWoTY2Fi4ubnpPfFtaWkJb29vVKpUSa9xaMTExGDGjBkA3ozEd+XKleHt7V3sH4OIiIiI8mLim4iIiN5o8fHxOo9Pnz5dTtAUVIboTXbhwgUAQJcuXUqc9KbyoVu3bujWrZu+w3hjff311/oOgYiIiMowrvFNRERERKQHqampAAAzMzM9R0JEREREVP4w8U1ERET/OqdOnZI3FFSpVPDw8MCYMWOQkJBQaL20tDQsXrwY/v7+sLOzg1KphKOjI7p27Yo9e/a8cDxxcXH46quv0LFjR3h5ecHU1BRmZmbw9fXFqFGjEBcXl6/OgwcPYGRkBEmS8MMPPxTa/pQpUyBJEjw9PXWeP3PmDAYMGIAqVapArVbDzMwMtWvXxuTJk/Ho0SOddaZPnw5JkhAQEAAA2LZtG9q1a4cKFSrAwMBAa5mEK1euYN68eWjTpg2qVKkCExMTWFhYoG7duoVeQyMzMxMLFy5EnTp1YGpqChsbGwQEBOC7774DULwN8F6kj8V148YNDB06FFWrVpX7Vq9ePcycORNJSUn5yru5uUGSJERGRgIAZsyYAUmS5JfmeGEkSUL//v0BALGxsVr1ixqL7777DgEBAbCxsYFarUadOnUQFhaGnJycQq8ZGRmJd999F5UqVYJKpYKdnR1at26N8PBwZGdnF1jvxIkT6Nu3L9zd3WFsbAxTU1O4urrC398fISEhuH37ts562dnZWLduHQIDA+Hg4AClUgl7e3sEBgYiIiICQogixykvzT0bGxsLAOjfv3++cdOIiYmRj8XExODGjRsYNGgQ3N3doVKptDajfPr0KSIiItC3b1/UrFkTNjY2MDY2hqurK/r06YPjx48XGFNxNrd82e+dEydOoH///vD09ISpqSksLCzg6+uLAQMGYO/evXI5Nzc3tGzZUv78z7HRtV9CSe99IPc+yjveZ86cQd++feHs7AwjIyP5OwUo3rN948YNfPzxx/Dx8YGZmRnUajV8fHwK/O7UuHz5MgYNGgQvLy+o1WqYmJjAxcUFb731FiZNmoTLly8XWJeIiIjKCEFERERUBk2bNk0AEMX5z5nw8HABQLi6uopNmzYJIyMjAUBYWloKAwMDuZ3q1auLZ8+e6Wzj6tWromrVqnJZSZKEpaWl/BmAGDp06Av1xd/fX6udf8ZlaWkpDh06lK9ex44dBQDxzjvvFNh2Tk6OcHd3FwDE9OnT852fOnWqkCRJvpZarRZKpVL+XLFiRXH69Ol89TTj7+/vL8aMGSOPibW1tVAoFGLatGlyWVdXV61xs7Ky0rpmpUqVxOXLl3XGn5ycLFq0aCGXVSgUwtraWq4/ceJEefzyXrM0+lgcW7ZsESqVSm7L3Nxc67OLi4u4ePGiVh0/Pz/h4OAg34empqbCwcFBfh05cqTI6zo4OAgLCwsBQBgYGGjVd3BwEPPmzZPL9uvXTwAQ/fr1E8OHD5frWFlZad13H374YYHXGz16dL6/oUKhkI+1atVKJCUl5au3bt06rbFXqVRy3JpXeHh4vnrx8fGiUaNG+Z6LvJ87d+4s0tPTixwrjXnz5gkHBwf52bKwsMg3bhrR0dHydTZt2iTMzMzke8fU1FS4urrKZfN+FwEQZmZmWveAJEkiLCxMZ0x5v5t0eZnvnaysLPHJJ59olTU1NRVqtVprTDX8/PyEtbW1fO6fY/PJJ59otf8i974QQhw8eFAu891338nPgYWFhTA2Nhb+/v5y2aKe7VWrVsn1NfeXiYmJ/NnCwkLs3bs3X729e/dqxWpkZJTveSjomkRERFR2MPFNREREZdKLJL7VarVQqVRi4MCBIi4uTgghREpKili6dKmcPJkyZUq++gkJCcLNzU1O8EVFRYm0tDQhhBCJiYkiNDRUTowtWrSoxH0ZPny4mD17trh48aJITU0VQgiRmZkpTpw4Idq3by8ACCcnJ/mcxpYtW+RkT0JCgs62Dx06JI/TjRs3tM4tXLhQTlh9+eWX4t69e0KI3ITZyZMnRatWrQQA4ezsnO8HAc34a/o9fvx48eDBAyGEEGlpaSImJkYu26tXL7FkyRJx/fp1OVGZnp4u9u/fLxo2bCgAiHr16umMf/DgwXKids6cOXIcDx8+lJN6moSVrkTVy/SxKKdOnZLvm6ZNm4pz584JIYTIzs4WP/zwg6hYsaIAIKpUqaKz7aKSekUpKmmqoUl8W1tbC6VSKUJDQ8XTp0+FEEI8evRIDBw4UL5HDhw4kK/+kiVL5PODBg2SxzA5OVksXLhQGBoaCgCiV69eWvVSUlKEubm5ACDef/99cf36dflccnKyOHnypBg3bpzYvXu3Vr309HTRoEED+b7YvXu3SElJkeutX79eVKhQQQAQo0aNKvG4aX6I0ZVw18ib+DYzMxONGjUSf/zxh3z+ypUr8vvly5eL0aNHi+PHj8vPYU5Ojrh586YYOXKkkCRJKBQKnT+uFPY3fNnvnfHjx8t9GDBggFbM9+/fFzt37sz3N8ublC7My9z7ea9hZmYmOnToIC5duiSfv3r1qvy+sGdkx44dctJ64sSJIiYmRuTk5IicnBxx+fJl8e6778rJ79jYWK26np6eAoBo166duHDhgnz8+fPn4sKFC2L69Oli7dq1hY4BERERvfmY+CYiIqIy6UUS35pZr7poZi17enrmOzd27Fg5+ZSZmamz/vbt2wUAYWdnV2CZF5GVlSVq1aolAIgNGzZonXv+/Lk8+3PlypU66w8aNEgAEM2aNdM6/vDhQ6FWq4UkSWL//v0662ZmZor69esLAGLhwoVa5/KO/5gxY164f8+ePRMODg4CQL5Z7bGxsfLs3JCQEJ31NUldXcmxl+1jUTQ/Snh6esqJ2bxOnz4tJ4XzzsDWeN2J78KSvZoxGDhwoNbx1NRUYWNjIwCI3r1766y7ePFiuf28yeETJ07Is4xL8kwsXbpUALn/AkPXLHIhhDh58qSQJEkolUpx//79YrctRMkT366uriX+USQvzSz74ODgfOcK+xu+zPfOlStX5Gdn/PjxxY61uInvl7n3816jYcOGIisrq8DrFPSMpKeni0qVKgkAYs2aNQXW79y5swAgRo4cKR+7f/++fP27d+8W2k8iIiIq27jGNxEREf2rTJ48WefxLl26AACuX78ubzoIAEIIrF27FgDw6aefwtDQUGf9rl27wsLCAo8ePcKpU6dKLV6FQoH27dsDAA4fPqx1ztjYGO+++y4AYMOGDfnqpqenY+vWrQCADz74QOvcpk2bkJqaCj8/P7Ru3VrntQ0NDdG7d28AwC+//KKzjIGBASZMmFCCHmkzMzODv78/gPz927ZtG3JycqBWqzF69Gid9adMmVJg26XVR10SExPl8uPGjYNarc5Xpm7duujevTsAYPPmzcVu+1VxcXHBhx9+qPNc586dAQDnz5/XOr5v3z48efIEAApcZ3nYsGGoWLEiAO1+WllZAQAyMjLw+PHjYse5evVquV1zc3OdZerXr4/q1asjIyMDBw8eLHbbL2LEiBEvtQFpx44dAeS/vwvzst8769evR05ODmxtbTFjxowXjl2X0rz3x40bB4VCUeIYfv75Z9y5cwcODg7yWve6aO73vM+2ubk5DAxy/2/wvXv3SnxtIiIiKjt0/xcUERERUTlkY2NT4AaPTk5O8vuEhAQ5mXPx4kU58RcUFCQnTHRJTk4GkLvZYKNGjUoU26FDh7BmzRocP34ct2/fRkpKSr4yujYB/PDDD7F69WocOXIE0dHRcHd3l8/t2rULiYmJUKlU6Nmzp1Y9TRLuzz//hKOjY4FxPX/+XO6TLp6enqhQoUKR/du1axc2bNiAP/74A/fv39f6caGg/p0+fRoA4OfnB1NTU53tVqlSBS4uLrh161a+c6XVR11Onz4tb67Ypk2bAsu1bdsWW7duxfnz55GZmQkjI6NiX6O0NWjQoMD7V3P/a+51jZMnTwLITZp7eXnprKtQKNCqVSts2rRJLg/k/m2qVauGy5cvo1GjRhg6dCgCAwNRs2bNApOdz549k5PvU6ZMwcyZMwvsjybWkvzdXkTTpk2LLHPz5k0sW7YMBw8exI0bN/Ds2bN8m4UWtImnLi/7vXP06FEAufefsbFxsa9bHKV57xdnbHXRPNsJCQnyjy66ZGRkANC+R0xMTNC6dWvs27cP7du3x5AhQ9CxY0fUrVsXSqXyheIhIiKiNxMT30RERPSvUdDsUQBaMyozMzPl93fv3pXfP3z4sFjX0ZXULcyECRMwd+5c+bNCoYC1tbWchElOTkZKSorOZHizZs3g7u6O6OhobNy4UWsGtGYWeOfOneXZtxqafj1//lxO/L5In4pKeufk5OD999/XmvVpaGio1b+nT58iLS0tX/804533RwldKlWqpDPxXVp91OXBgwda1y+Is7MzACArKwtPnjyBg4NDsa9R2opz/+e994H/9bOwPgL/62fecVEoFIiIiEC3bt0QHR2NiRMnYuLEiVCr1WjSpAm6d++Ofv36ac0Yjo+PlxPG/0zCF6Skz1tJFXWP79ixA71790Z6erp8zMLCAsbGxpAkCRkZGUhISND5/BbkZb934uPjAQCurq7FvmZxlea9X5wfzXTRjE9GRgbu379fZPl/Pv+rV69G586dce7cOYSEhCAkJARKpRINGjRAly5dEBwcDBsbmxeKjYiIiN4cXOqEiIiIqBDZ2dny+/j4eIjcPVIKfQUFBRW7/X379slJ72HDhuHChQtIT0/HkydPEB8fj/j4eHmZD80sy7wkScL7778PQHu5k8ePH+Onn34CAJ3LW2j6NWTIkGL1KSYmRmf8RS1TsGbNGmzevBkKhQJTp07FtWvX8vXvnXfe0dk/zWdJkgq9hq5xKc0+lpai+vEmK27s/yxXu3ZtXL58Gdu2bcOgQYNQo0YNPH/+HPv378ewYcNQrVo1XLhwQS6f93k7fvx4sf5uBS3BUloKu8cfP36MoKAgpKeno1WrVoiMjERqaiqePn2K+/fvIz4+Ht9++22Jr1la3ztvyj1XUBwvsswJ8L/xad++fbHG5p/fEZUrV8bp06exZ88efPLJJ6hfvz5ycnJw5MgRjB8/Hp6envj1119fKDYiIiJ6czDxTURERFSIvEtk5E3QlZaIiAgAQGBgIL766ivUqFEjXzJIM3uzIJrE9rVr13D8+HEAwJYtW5CZmQl7e3t5jfC8NP16FX3KS9O/gQMHYsaMGfD09My3bENB/dPMBs07+1WXgs6/yj7mnala2BIWmnOaWe5ljaafumbU56Xpp729fb5zSqUS3bt3x8qVK3HhwgU8fPgQK1asgI2NDW7duoV+/frJZfPOCn7V92Zp+Omnn5CUlARra2v8+OOP8Pf3h4mJiVaZop5fXV72e0ez/Mer+DHnTbj3S+PZNjAwQGBgIMLCwnDy5Ek8efIEmzZtQuXKlZGQkIA+ffrIS6UQERFR2cTENxEREVEhatSoAQsLCwD/S+KWJk1CsW7dujrPCyGKnHno6emJxo0bA/jfrG/N//bu3VvnxniatXWPHz/+StdILqp/ycnJOHHihM5z9erVA5C7znRBy0TcvHmzwKTsq+xjvXr15AT+gQMHCiy3f/9+ALkzn0t7fW/N9Qua8V4a/Pz8AOQmMa9evaqzTHZ2trzBZIMGDYps09bWFoMHD8acOXMAAGfOnJE3v7S2toavry+AV/O8AaU7bpp7z9vbW+cmj8D/7oGSeNnvnSZNmgDI/RclaWlpxa6X90epgsbnTbj3Nc/2nTt3SrRpaGHMzc3Rp08frFmzBgBw//79MvHjCxERERWMiW8iIiKiQhgaGmLAgAEAgPXr1xeZZCnuusQalpaWAIBz587pPL9ixQrcvHmzyHY0s763bNmCixcvyjO/dS1zAgAffPABTExMkJ2djeHDh2strfBPOTk5SExMLDIGXYrqX0hICJ49e6bzXPfu3WFgYICUlBSEhYXpLPPFF18UeO1X2UcrKysEBgYCAObNm6dznelz585h27ZtAHJ/gChtmsToi/5tiqNt27awtbUFgAKXFFm5cqU86z5vP/Ouea1L3pnRef+Vw6BBgwDkJlWLSvqW9HkDSnfcNPf31atXdSaYz549i2+++abE7b7s905QUBAUCgUeP36MadOmFfu6mrEBCh6fN+He79SpkzyrfeTIkUWu8553fIqaxV3QfUlERERlDxPfREREREWYMmUKqlSpgqysLLRv3x6hoaFaG849ffoUe/bsQb9+/dC8efMSta1ZhuTnn39GSEiIPLM5MTERs2bNwscffywnHgvTq1cvKJVKPH78WF46wsfHB/Xr19dZ3tHREbNnzwYA7N69G23btsWRI0fk5LAQApcvX0ZoaChq1KiBXbt2lahf/+zf//3f/2HVqlVy0kmzdvncuXML7J+rqyuCg4MBAFOnTsX8+fORnJwMIHdt5TFjxmDt2rX5Nu58XX384osvYGRkhOvXryMwMFCeHZqTk4OffvoJHTp0QFZWFqpUqYLBgweXqO3iqFGjBgAgKSkJW7duLfX2gdwkoCbhvXnzZgwZMkTeTDA1NRVLlizBqFGjAOTeg3nvt4iICDRt2hQrV67U+vEmOzsbv/zyCyZOnAgAaNy4sdbfcMiQIWjUqBGA3B8vJk+erDWrPzU1FZGRkRgxYgSqVKlS4j5pxu27775DQkJCievn1a5dOxgYGODJkyfo27cv7ty5AyA3ubp161a0a9eu0E1FC/My3zuenp4YN24cAGDu3LkYOHAgrl27Jp9/+PAhtmzZgm7dumnV8/LykjedXb16dYGzvvV97xsbG2PZsmWQJAmnT59G06ZN8csvv2gltaOjo7Fy5Uo0bNgQy5Ytk48fPXoUtWrVwsKFC3Hp0iV5M1UhBI4ePYqhQ4cCyN2cs2bNmqUeOxEREb1GgoiIiKgMmjZtmgAgivOfM+Hh4QKAcHV1LbBMdHS03F50dHS+8zdv3hS1a9eWywAQVlZWwsLCQuuYp6dnifqRkZEhmjdvLteXJElYW1sLAwMDAUB07NhRTJ48WQAQ/v7+hbbVvXt3rVi+/PLLIq8/d+5coVAo5DpKpVLY2toKIyMjrbY2btyoVU8z/kXFlJCQIKpVqya3Y2BgIKysrIQkSQKAGDx4sOjXr58AIPr165ev/rNnz0SzZs3k+gqFQlhbW8v1J0+eLFq0aFFof1+0j8UREREhlEql3IaFhYUwNjaWP7u4uIiLFy/qrOvv7y8AiGnTppX4uhqtW7eWr2Vubi5cXV2Fq6urWLhwoVymsPHVKOoZGT16dL571NDQUD7WsmVLkZSUpLNNzUulUglbW1v53gYgnJycxKVLl/Jd7+HDh6JVq1Za9S0sLLTuHQDC0NCwxGP222+/yW0oFApRsWJFedw0ivo+yGvChAlacVpaWsr3lru7u9i0aVOB31VFjfvLfO9kZWWJ4cOHa5UzMzMTarVaK9Z/Cg4Ols+r1WpRuXJl4erqKj799FOtci967x88eLDY391FPSMbN27U6o+hoaGwtbUVKpVKq9+ff/65zusDEEZGRsLW1lbrfrawsBBRUVFFxkdERERvNs74JiIiIioGd3d3nDx5El9//TX+85//oGLFikhJSUFGRgbc3d3RrVs3rF27FseOHStRu0ZGRti7dy+mTZsGLy8vGBkZQQiBhg0bYvny5fjhhx+K/c/t8y5rYmBggPfff7/IOuPGjcPly5cxevRo1KpVC8bGxkhMTISZmRkaNGiA8ePH4+jRo+jTp0+J+qVhZWWFo0ePYtSoUXBzc4NCoYChoSECAgKwefNmrFixotD6ZmZmOHDgAObNm4datWpBqVRCCAF/f39s374dISEh8pIMBc38fpV97NWrF/766y8MHjwYVapUQXp6OgwNDVGnTh3MmDEDf/75J3x8fErcbnF99913GD16NLy8vJCZmYnY2FjExsaW+vInoaGh+PXXX9GjRw84ODggOTkZ5ubmaNmyJdauXYt9+/blm9ncuXNnfP311+jfvz9q164NS0tLPH36FObm5mjYsCFCQkLw119/oVq1avmuZ2dnh/379+P777/HO++8AxcXF6Snp+P58+eoVKkS3n77bSxduvSFNm9s0aIFdu/ejTZt2sDS0hL379+Xx+1FzJ49G19//TUaNmwIExMTZGZmwtPTE5MmTcKZM2fg5OT0Qu0CL/e9o1AosHTpUhw+fBh9+/ZF5cqVkZmZCaVSierVqyM4OFhejiSvr776CtOnT5dnxsfFxSE2NhaPHj3SKqfvex8A+vbti+vXr2Py5Mnw8/ODmZkZEhMTYWxsjDp16mDEiBHYv38/JkyYINdp0KABtm7diqFDh6J+/fqws7PD06dP5Trjx4/HpUuXSvyvd4iIiOjNIwnxCnfDISIiIiJ6hZKTk2Fra4uMjAxERUUxWUVlyurVq/HRRx/By8sLV65c0Xc4REREROUKZ3wTERERUZkVGhqKjIwM2NjYoEGDBvoOh6hENGuCOzg46DkSIiIiovKHiW8iIiIiemM9e/YM7733Hvbs2aO1fEdsbCzGjRsnb7w4atQoGBsb6ylKopKLiYnBN998AyB3g08iIiIiKl1c6oSIiIiI3liJiYmwtraWP2vWkX727Jl8rEePHoiIiIChoeFrj4+opP766y+0aNECT548AZC7jv2FCxfg5uam38CIiIiIyhnO+CYiIiKiN5aZmRmWLl2KLl26oEqVKpAkCWlpaahYsSI6deqEb7/9Ft9++y2T3lRmZGZm4smTJ7CyskLHjh0RFRXFpDcRERHRK8AZ30RERERERERERERUrnDGNxERERERERERERGVK/w3oQBycnJw9+5dmJubQ5IkfYdDRERERERERERERDoIIfDs2TM4OTnBwKDged1MfAO4e/cuXFxc9B0GERERERERERERERXDrVu34OzsXOB5Jr4BmJubA8gdLAsLCz1HQ0RERERERERERES6JCUlwcXFRc7pFoSJb0Be3sTCwoKJbyIiIiIiIiIiIqI3XFFLVnNzSyIiIiIiIiIiIiIqV5j4JiIiIiIiIiIiIqJyhYlvIiIiIiIiIiIiIipXuMY3ERERERERERGVWUIIZGVlITs7W9+hEFEpUCgUMDQ0LHIN76Iw8U1ERERERERERGVSRkYG7t27h9TUVH2HQkSlSK1Wo2LFilAqlS/cBhPfRERERERERERU5uTk5CA6OhoKhQJOTk5QKpUvPUOUiPRLCIGMjAw8fPgQ0dHRqFq1KgwMXmy1bia+iYiIiIiIiIiozMnIyEBOTg5cXFygVqv1HQ4RlRITExMYGRkhNjYWGRkZMDY2fqF2uLklERERERERERGVWS86G5SI3lyl8Vzzm4GIiIiIiIiIiIiIyhUmvomIiIiIiIiIiIioXGHim4iIiIiIiIiIiIjKFSa+iYiIiIiIiIiIXqOgoCBIkpTv1b59e32HRlRuGOo7ACIiIiIiIiIion+b9u3bIzw8XOuYSqXSUzRE5Q9nfBMRERERERERUbkghEBqRtZrfwkhShyrSqWCo6Oj1sva2hoAIEkSVq9ejW7dukGtVqNq1ar44Ycf5LoFzRiPjIzEzJkzUbNmzXzXq1+/PqZOnSrX79q1K2bNmgUHBwdYWVlhxowZyMrKwrhx42BjYwNnZ2esXbtWq407d+6gV69esLa2hq2tLbp06YKYmJgS953odeCMbyIiIiIiIiIiKheeZ2bDd+ovr/26F2cGQq0s3TTbjBkzMHfuXMybNw9LlixB3759ERsbCxsbG4SFhWH27Nly2dmzZ2Pz5s2oVq0aPD09MWPGDPzxxx9o0KABAOD8+fM4c+YMvv32W7nOr7/+CmdnZ0RFReHIkSMIDg7GsWPH0KJFC5w4cQJbtmzBkCFD0LZtW7i4uCA1NRUtW7ZE8+bNERUVBUNDQ3z++edo3749zp8/D6VSWar9J3pZnPFNRERERERERET0mu3atQtmZmZar5CQEPl8UFAQevfuDU9PT8yaNQspKSn4/fffAQCWlpbyLPGjR49ixYoV2LZtGxwdHeHs7IzAwECtZVTCw8Ph7+8PDw8P+ZiNjQ0WL14Mb29vDBgwAN7e3khNTcWkSZNQtWpVfPbZZ1AqlThy5AgAICIiAgYGBli9ejVq1qwJHx8fhIeHIy4uDpGRka9n0IhKgDO+iYiIiIiIiIioXDAxUuDizEC9XLekWrZsieXLl2sds7Gxkd/XqlVLfm9qagpzc3M8ePBAq/yZM2fw4Ycf4quvvkKzZs3k4x999BEGDBiA0NBQKK9Z+SYAACAASURBVBQKbNq0CQsWLNCqW716dRgY/G9OrIODA2rUqCF/VigUsLW1la956tQpXL9+Hebm5lrtpKWl4caNGyXtPtErx8Q3ERERERERERGVC5IklfqSI6+KqakpPD09CzxvZGSk9VmSJOTk5Mif4+Pj0blzZwQHByM4OFirbKdOnaBSqbBjxw6oVCqkp6ejR48eRbZf2DVzcnJQv359bNq0KV+s9vb2hfSUSD/KxjcBERERERERERERAcidZd2lSxdUq1YNoaGh+c4bGhqiX79+CA8Ph0qlwnvvvQe1Wv1S16xXrx62bNmCChUqwMLC4qXaInodmPgmIiIiIiIiIiJ6zdLT0xEfH691zNDQEHZ2dkXWHTx4MG7duoUDBw7g4cOH8nEbGxt5k8mBAwfCx8cHAOR1ul9G3759MW/ePHTp0gUzZ86Es7Mz4uLisH37dowbNw7Ozs4vfQ2i0sTENxERERERERER0Wu2Z88eVKxYUeuYt7c3Ll++XGTd3377Dffu3YOvr6/W8YMHDyIgIAAAULVqVTRp0gSPHz9Go0aNXjpetVqNqKgoTJgwAd27d8ezZ89QqVIltG7dmjPA6Y0kCSGEvoPQt6SkJFhaWuLp06d8UImIiIiIiIiIyoC0tDRER0fD3d0dxsbG+g7njSOEQLVq1TB48GCMGTNG3+EQlUhhz3dxc7mc8U1ERERERERERFSOPHjwABs2bMCdO3fQv39/fYdDpBdMfBMREREREREREZUjDg4OsLOzw6pVq2Btba3vcIj0golvIiIiIiIiIiKicoQrGxMBBvoOgIiIiIiIiIiIiIioNDHxTURERERERERERETlChPfRERERERERERERFSuMPFNREREREREREREROUKE99EREREREREREREVK7oNfG9fPly1KpVCxYWFrCwsEDjxo3x888/y+fT09Px8ccfw87ODqampujcuTNu376t1UZcXBw6deoEU1NT2NnZ4ZNPPkFGRsbr7kqZJIRA6unTSNy2DTmpqfoOh4iIiIiIiIiIiKhU6DXx7ezsjNmzZ+PkyZM4efIkWrVqhS5duuCvv/4CAIwaNQo7duxAREQEDh8+jOTkZPznP/9BdnY2ACA7OxsdO3ZESkoKDh8+jIiICGzbtg2ffvqpPrtVZkiShNufjMS9/05G+o2b+g6HiIiIiIiIiIioQDExMZAkCWfPntV3KP9qQUFB6Nq1q77DKJJeE9+dOnVChw4d4OXlBS8vL3zxxRcwMzPD8ePH8fTpU6xZswYLFixAmzZtULduXWzcuBEXLlzA/v37AQB79+7FxYsXsXHjRtStWxdt2rTBggUL8H//939ISkrSZ9fKDJW7OwAgI5qJbyIiIiIiIiKi1yEoKAiSJOV7tW/fXt+hvTIpKSmYMGECPDw8YGxsDHt7ewQEBGDXrl2vLYbSTpxHRkZCkiQkJiaWSnt5bdu2DQEBAbC0tISZmRlq1aqFmTNn4smTJ6V+rfLqjVnjOzs7GxEREUhJSUHjxo1x6tQpZGZmol27dnIZJycn1KhRA0ePHgUAHDt2DDVq1ICTk5NcJjAwEOnp6Th16lSB10pPT0dSUpLW699K6eEBAEi/ycQ3EREREREREdHr0r59e9y7d0/rtXnzZn2H9coMGTIEO3fuxNKlS3H58mXs2bMHPXr0wOPHj/UdWj76Xkb5v//9L3r16oUGDRrg559/xp9//okFCxbg3Llz2LBhg15jK0v0nvi+cOECzMzMoFKpMGTIEOzYsQO+vr6Ij4+HUqmEtbW1VnkHBwfEx8cDAOLj4+Hg4KB13traGkqlUi6jy5dffglLS0v55eLiUvodKyOU7m4AgIzoGH2GQURERERERET08oQAMlJe/0uIEoeqUqng6Oio9dLkwSRJwurVq9GtWzeo1WpUrVoVP/zwg1y3oBnjkZGRmDlzJmrWrJnvevXr18fUqVPl+l27dsWsWbPg4OAAKysrzJgxA1lZWRg3bhxsbGzg7OyMtWvXarVx584d9OrVC9bW1rC1tUWXLl0QExNTrP7++OOPmDRpEjp06AA3NzfUr18fH3/8Mfr16yeXkSQJO3fu1KpnZWWFdevWaR27fPkymjRpAmNjY1SvXh2RkZHyuYSEBPTt2xf29vYwMTFB1apVER4eDgBw/3vlg7p160KSJAQEBGiNx5dffgknJyd4eXkBADZu3Ag/Pz+Ym5vD0dERffr0wYMHDwDkzh5v2bIlgNx8pCRJCAoKApC7r97cuXPh4eEBExMT1K5dG999912xxun333/HrFmzsGDBAsybNw9NmjSBm5sb2rZti23btmmN1/Lly1GlShUolUp4e3vnS4pLkoSVK1fiP//5D9RqNXx8fHDs2DFcv34dAQEBMDU1RePGjXHjxg25zvTp01GnTh2sXLkSLi4uUKvVePfddwud1V5Uf2fOnAknJyetHzk6d+6MFi1aICcnp1jj8iIMX1nLxeTt7Y2zZ88iMTFR/uP99ttvBZYXQkCSJPlz3vcFlfmnzz77DGPGjJE/JyUl/WuT36q/Z3xncMY3EREREREREZV1manALKeiy5W2SXcBpWmpNjljxgzMnTsX8+bNw5IlS9C3b1/ExsbCxsYGYWFhmD17tlx29uzZ2Lx5M6pVqwZPT0/MmDEDf/zxBxo0aAAAOH/+PM6cOYNvv/1WrvPrr7/C2dkZUVFROHLkCIKDg3Hs2DG0aNECJ06cwJYtWzBkyBC0bdsWLi4uSE1NRcuWLdG8eXNERUXB0NAQn3/+Odq3b4/z589DqVQW2h9HR0f89NNP6N69O8zNzV9qbMaNG4dFixbB19cXoaGh6Ny5M6Kjo2Fra4spU6bg4sWL+Pnnn2FnZ4fr16/j+fPnAHKTyg0bNsT+/ftRvXp1rZgPHDgACwsL7Nu3D+LvHzIyMjIQEhICb29vPHjwAKNHj0ZQUBB++uknuLi4YNu2bejRoweuXLkCCwsLmJiYAAAmT56M7du3Y/ny5ahatSqioqLw/vvvw97eHv7+/oX2bdOmTTAzM8OwYcN0nreysgIA7NixAyNHjsSiRYvQpk0b7Nq1C/3794ezs7OckAeAkJAQhIaGIjQ0FBMmTECfPn3g4eGBzz77DJUrV8aAAQMwYsQI/Pzzz3Kd69evY+vWrfjxxx+RlJSE4OBgDB8+HJs2bdIZU1H9/e9//4s9e/Zg4MCB2LFjB1asWIGoqCicO3cOBgavbl623hPfSqUSnp6eAAA/Pz/88ccfCAsLQ69evZCRkYGEhAStWd8PHjxAkyZNAOQ+MCdOnNBqLyEhAZmZmflmguelUqmgUqleQW/KHs1SJxkxMRDZ2ZAUCj1HRERERERERERU/u3atQtmZmZaxyZMmIApU6YAyJ2F3Lt3bwDArFmzsGTJEvz+++9o3769vIoBAGzfvh0rVqzA/v374ejoCCB3KeDw8HA58R0eHg5/f394/J0HAgAbGxssXrwYBgYG8Pb2xty5c5GamopJkyYByJ04Onv2bBw5cgTvvfceIiIiYGBggNWrV8sTTsPDw2FlZYXIyEit5Yp1WbVqFfr27QtbW1vUrl0bzZo1wzvvvIOmTZuWeOxGjBiBHj16AMid9bxnzx6sWbMG48ePR1xcHOrWrQs/Pz8AgJubm1zP3t4eAGBrayuPlYapqSlWr16tlQwfMGCA/N7DwwOLFy9Gw4YNkZycDDMzM9jY2AAAKlSoICekU1JSEBoail9//RWNGzeW6x4+fBgrV64sMvF97do1eHh4wMjIqNBy8+fPR1BQkJwgHzNmDI4fP4758+drJb779++Pnj17Asi9vxo3bowpU6YgMDAQADBy5Ej0799fq+20tDSsX78ezs7OAIAlS5agY8eOWLBgQb5xK05/FQoFNm7ciDp16mDixIlYsmQJVq1aBVdX10L7+LL0nvj+JyEE0tPTUb9+fRgZGWHfvn3yH+fevXv4888/MXfuXABA48aN8cUXX+DevXuoWLEigNwNL1UqFerXr6+3PpQlRhUrQlKpINLTkXnnDpSVK+s7JCIiIiIiIiKiF2Okzp19rY/rllDLli2xfPlyrWOaRCoA1KpVS35vamoKc3NzeZkNjTNnzuDDDz/EV199hWbNmsnHP/roIwwYMAChoaFQKBTYtGkTFixYoFW3evXqWrNtHRwcUKNGDfmzQqGAra2tfM1Tp07h+vXr+WZrp6WlaS2VUZAWLVrg5s2bOH78OI4cOYJff/0VYWFhmDFjhpzsLy5NghUADA0N4efnh0uXLgEAhg4dih49euD06dNo164dunbtKk+iLUzNmjXzzVo/c+YMpk+fjrNnz+LJkyfyshxxcXHw9fXV2c7FixeRlpaGtm3bah3PyMhA3bp1i4yjqJUsNC5duoRBgwZpHWvatCnCwsK0juW9jzQThfMuhePg4IC0tDQkJSXBwsICAFC5cmU56Q3kjndOTg6uXLmSL/Fd3P56eHhg/vz5GDx4MHr16oW+ffsW2ceXpdfE96RJk/D222/DxcUFz549Q0REBCIjI7Fnzx5YWloiODgYn376KWxtbWFjY4OxY8eiZs2aaNOmDQCgXbt28PX1xQcffIB58+bhyZMnGDt2LD766CP5D0WFkxQKKN3ckH7lCjKio5n4JiIiIiIiIqKyS5JKfcmRV8XU1FReBUGXf874lSRJaz3k+Ph4dO7cGcHBwQgODtYq26lTJ6hUKuzYsQMqlQrp6enyDOnC2i/smjk5Oahfv77O5S40M6mLYmRkhObNm6N58+aYOHEiPv/8c8ycORMTJkyAUqmEJEnyMiMamZmZxWpbkyx+++23ERsbi927d2P//v1o3bo1hg8fjvnz5xda39RU+75JSUlBu3bt0K5dO2zcuBH29vaIi4tDYGBgoZtfasZr9+7dqFSpkta54qxA4eXlhcOHDyMzM7PIWd//TJDrSprnbUNzTtexwtba1pTRlZAvSX+joqKgUCgQExODrKwsGBq+2tS0Xje3vH//Pj744AN4e3ujdevWOHHiBPbs2SP/QrBw4UJ07doVPXv2RNOmTaFWq/Hjjz9C8fdyHAqFArt374axsTGaNm2Knj17omvXrkXeyKRN+ffC/uk3o/UcCRERERERERERFSUtLQ1dunRBtWrVEBoamu+8oaEh+vXrh/DwcISHh+O9996DWl3yWel51atXD9euXUOFChXg6emp9dIsu1JSvr6+yMrKQlpaGoDcBPq9e/fk89euXUNqamq+esePH5ffZ2Vl4dSpU6hWrZp8zN7eHkFBQdi4cSMWLVqEVatWAYA8ozs7O7vI2C5fvoxHjx5h9uzZaN68OapVq5Zvxr2u9nx9faFSqRAXF5dvnIqzx2CfPn2QnJyMZcuW6Tyv2WTSx8cHhw8f1jp39OhR+Pj4FHmNosTFxeHu3f/9y4ljx47BwMBA3vQzr+L2d8uWLdi+fTsiIyNx69YthISEvHScRdHrjO81a9YUet7Y2BhLlizBkiVLCixTuXJl7Nq1q7RD+1dRebjjGbjBJRERERERERHR65Keno74+HitY4aGhrCzsyuy7uDBg3Hr1i0cOHAADx8+lI/b2NjIydiBAwfKSdAjR468dLx9+/bFvHnz0KVLF8ycORPOzs6Ii4vD9u3bMW7cOK2lMXQJCAhA79694efnB1tbW1y8eBGTJk1Cy5Yt5ZUbWrVqhaVLl+Ktt95CTk4OJkyYoHPW81dffYWqVavCx8cHCxcuREJCgrwe99SpU1G/fn1Ur14d6enp2LVrlzwOFSpUgImJCfbs2QNnZ2cYGxsXmLSvXLkylEollixZgiFDhuDPP//Ml6x1dXWFJEnYtWsXOnToABMTE5ibm2Ps2LEYPXo0cnJy0KxZMyQlJeHo0aMwMzNDv379Ch2nRo0aYfz48fj0009x584ddOvWDU5OTrh+/TpWrFiBZs2aYeTIkRg3bhx69uyJevXqoXXr1vjxxx+xfft27N+/v9D2i8PY2Bj9+vXD/PnzkZSUhE8++QQ9e/bMt8wJgGL19/bt2xg6dCjmzJmDZs2aYd26dejYsSPefvttvPXWWy8db0H0OuOb3gxK99yNDdKjmfgmIiIiIiIiInod9uzZg4oVK2q98q7TXZjffvsN9+7dg6+vr1b9o0ePymWqVq2KJk2awNvbG40aNXrpeNVqNaKiolC5cmV0794dPj4+GDBgAJ4/f16sJYcDAwOxfv16tGvXDj4+Pvj4448RGBiIrVu3ymUWLFgAFxcXtGjRAn369MHYsWN1zlSfPXs25syZg9q1a+PQoUP4/vvv5R8MlEolPvvsM9SqVQstWrSAQqFAREQEgNwfFhYvXoyVK1fCyckJXbp0KTBee3t7rFu3Dt9++y18fX0xe/bsfKtMVKpUCTNmzMDEiRPh4OCAESNGAABCQkIwdepUfPnll/Dx8UFgYCB+/PFHuP+96kJR5syZg2+++QYnTpxAYGAgqlevjjFjxqBWrVpy4rxr164ICwvDvHnzUL16daxcuRLh4eEICAgo1jUK4+npie7du6NDhw5o164datSoUeAM9KL6K4RAUFAQGjZsKI9P27ZtMWLECLz//vtITk5+6XgLIol/LpzzL5SUlARLS0s8ffr0X7k2+PO//kJMj3egsLGB19GX/wWQiIiIiIiIiOhVS0tLQ3R0NNzd3WFsbKzvcN44QghUq1YNgwcPxpgxY/QdDpUR06dPx86dO3H27Fm9xlHY813cXK5elzqhN4PKzQ0AkP3kCbITE6GwstJvQERERERERERE9MIePHiADRs24M6dO+jfv7++wyHSCy51QjAwNYXh32v0pEdzg0siIiIiIiIiorLMwcEBs2fPxqpVq2Btbf1armlmZlbg69ChQ68lhrJgyJAhBY7TkCFD9B1eucIZ3wQgd4PLrPh4ZNyMhrpuXX2HQ0REREREREREL0gfKxsXtjRGpUqVXmMkb7aZM2di7NixOs+9CUswT58+HdOnT9d3GKWCiW8CkLvBZcrRY8jgBpdERERERERERFRCnp6e+g6hTKhQoQIqVKig7zD+FbjUCQEAlH/vKpseHaPfQIiIiIiIiIiIiIheEhPfBCB3qRMAyLjJGd9ERERERERERERUtjHxTQAApYcHACDj1i2IzEw9R0NERERERERERET04pj4JgCAoYMDJLUayMpCxq1b+g6HiIiIiIiIiIiI6IUx8U0AAEmSoHJzAwBkREfrNxgiIiIiIiIiIiKil8DEN8k0y52kc51vIiIiIiIiIqJyQZIk7Ny5U99hEL12THyTTClvcMkZ30REREREREREr0pQUBAkSYIkSTAyMoKHhwfGjh2LlJQUfYdWpICAAIwaNUrfYRAVyVDfAdCbQ6XZ4JIzvomIiIiIiIiIXqn27dsjPDwcmZmZOHToEAYOHIiUlBQsX75cq5wQAtnZ2TA0ZBqPqCQ445tkSve/lzqJiYEQQs/REBERERERERGVjBACqZmpr/31InkUlUoFR0dHuLi4oE+fPujbty927tyJyMhISJKEX375BX5+flCpVDh06BAAYPny5ahSpQqUSiW8vb2xYcMGrTavXbuGFi1awNjYGL6+vti3b5/WeU3biYmJ8rGzZ89CkiTExMTIx44cOQJ/f3+o1WpYW1sjMDAQCQkJCAoKwm+//YawsDB5xnreekRvEv5URDKla2VAkpDz9CmynzyBoa2tvkMiIiIiIiIiIiq251nP0eibRq/9uif6nIDaSP1SbZiYmCAzM1P+PH78eMyfPx8eHh6wsrLCjh07MHLkSCxatAht2rTBrl270L9/fzg7O6Nly5bIyclB9+7dYWdnh+PHjyMpKemFliQ5e/YsWrdujQEDBmDx4sUwNDTEwYMHkZ2djbCwMFy9ehU1atTAzJkzAQD29vYv1W+iV4WJb5IZGBvDqFIlZN6+jYybN5n4JiIiIiIiIiJ6DX7//Xd88803aN26tXxs5syZaNu2rfx5/vz5CAoKwrBhwwAAY8aMwfHjxzF//ny0bNkS+/fvx6VLlxATEwNnZ2cAwKxZs/D222+XKJa5c+fCz88Py5Ytk49Vr15dfq9UKqFWq+Ho6PhCfSV6XZj4Ji1KD3dk3r6N9JvRUDdooO9wiIiIiIiIiIiKzcTQBCf6nNDLdUtq165dMDMzQ1ZWFjIzM9GlSxcsWbIEFy9eBAD4+flplb906RIGDRqkdaxp06YICwuTz1euXFlOegNA48aNSxzX2bNn8e6775a4HtGbholv0qJy90BK1CFkREfrOxQiIiIiIiIiohKRJOmllxx5XVq2bInly5fDyMgITk5OMDIyAgA58W1qapqvjiRJWp+FEPIxXeuM/7O8gYFBvrJ5l1cBcpdcISoPuLklaVG6uwMA0qNv6jkSIiIiIiIiIqLyy9TUFJ6ennB1dZWT3oXx8fHB4cOHtY4dPXoUPj4+AABfX1/ExcXh7t278vljx45pldesx33v3j352NmzZ7XK1KpVCwcOHCgwDqVSiezs7CLjJdI3Jr5Ji9IjN/GdcZMzvomIiIiIiIiI3hTjxo3DunXrsGLFCly7dg2hoaHYvn07xo4dCwBo06YNvL298eGHH+LcuXM4dOgQ/vvf/2q14enpCRcXF0yfPh1Xr17F7t27sWDBAq0yn332Gf744w8MGzYM58+fx+XLl7F8+XI8evQIAODm5oYTJ04gJiYGjx49Qk5OzusZAKISYuKbtKg8PAAAmbdvIyc9Xc/REBERERERERERAHTt2hVhYWGYN28eqlevjpUrVyI8PBwBAQEAcpcx2bFjB9LT09GwYUMMHDgQX3zxhVYbRkZG2Lx5My5fvozatWtjzpw5+Pzzz7XKeHl5Ye/evTh37hwaNmyIxo0b4/vvv4ehYe6KyWPHjoVCoYCvry/s7e0RFxf3WvpPVFKS0LUA0L9MUlISLC0t8fTpU1hYWOg7HL0SQuBqo7eQk5QE9++/h7G3l75DIiIiIiIiIiLKJy0tDdHR0XB3d4exsbG+wyGiUlTY813cXC5nfJMWSZKgdHcDAG5wSURERERERERERGUSE9+Uj8o9d7mTDG5wSURERERERERERGUQE9+Uj/Lvdb7TucElERERERERERERlUFMfFM+Kg93AEDGTc74JiIiIiIiIiIiorKHiW/KRzPjOyM6Gtz7lIiIiIiIiIiIiMoaJr4pH6WzM6BQICc1FVkPHug7HCIiIiIiIiIiIqISYeKb8pGUSihdXABwuRMiIiIiIiIiIiIqe5j4Jp3+t8ElE99ERERERERERERUtjDxTTrJG1xGx+g3ECIiIiIiIiIiIqISYuKbdFK6/5345oxvIiIiIiIiIqI3SmRkJCRJQmJior5DIXpjMfFNOind/17qJDpaz5EQEREREREREZUvDx48wODBg1G5cmWoVCo4OjoiMDAQx44dey3XL+3E+bp162BlZVUqbRGVFkN9B0BvJqW7GwAg69495KSmwkCt1ms8RERERERERETlRY8ePZCZmYn169fDw8MD9+/fx4EDB/DkyRN9h6YlIyMDSqVS32EQvRDO+CadDK2tobCxAQBkxMToNxgiIiIiIiIiomIQQiAnNfW1v4QQxY4xMTERhw8fxpw5c9CyZUu4urqiYcOG+Oyzz9CxY0fExMRAkiScPXtWq44kSYiMjNRq68iRI6hduzaMjY3RqFEjXLhwQT4XGxuLTp06wdraGqampqhevTp++uknxMTEoGXLlgAAa2trSJKEoKAgAEBAQABGjBiBMWPGwM7ODm3btgUAhIaGombNmjA1NYWLiwuGDRuG5ORkALmzx/v374+nT59CkiRIkoTp06cDyE2cjx8/HpUqVYKpqSkaNWqUrw9ErwpnfFOBlO7ueP7kCdJvRsPY11ff4RARERERERERFUo8f44r9eq/9ut6nz4FqZj/Wt7MzAxmZmbYuXMn3nrrLahUqhe+7rhx4xAWFgZHR0dMmjQJnTt3xtWrV2FkZIThw4cjIyMDUVFRMDU1xcWLF2FmZgYXFxds27YNPXr0wJUrV2BhYQETExO5zfXr12Po0KE4cuSInNA3MDDA4sWL4ebmhujoaAwbNgzjx4/HsmXL0KRJEyxatAhTp07FlStX5D4CQP/+/RETE4OIiAg4OTlhx44daN++PS5cuICqVau+cL+JioOJbyqQysMdz0+d4gaXRERERERERESlxNDQEOvWrcNHH32EFStWoF69evD398d7772HWrVqlaitadOmybOy169fD2dnZ+zYsQM9e/ZEXFwcevTogZo1awIAPDw85Ho2f/8r/woVKuRbm9vT0xNz587VOjZq1Cj5vbu7O0JCQjB06FAsW7YMSqUSlpaWkCQJjo6OcrkbN25g8+bNuH37NpycnAAAY8eOxZ49exAeHo5Zs2aVqK9EJcXENxXofxtcMvFNRERERERERG8+ycQE3qdP6eW6JdGjRw907NgRhw4dwrFjx7Bnzx7MnTsXq1evRkBAQLHbady4sfzexsYG3t7euHTpEgDgk08+wdChQ7F37160adMGPXr0KFZi3c/PL9+xgwcPYtasWbh48SKSkpKQlZWFtLQ0pKSkwNTUVGc7p0+fhhACXl5eWsfT09Nha2tb7D4SvSgmvqlASg93AEDGzWg9R0JEREREREREVDRJkoq95Ii+GRsbo23btmjbti2mTp2KgQMHYtq0aTh06BAAaK0bnpmZWex2JUkCAAwcOBCBgYHYvXs39u7diy+//BILFizAxx9/XGj9fyayY2Nj0aFDBwwZMgQhISGwsbHB4cOHERwcXGhcOTk5UCgUOHXqFBQKhdY5zVIoRK8SN7ekAqnc/058x8RA5OToORoiIiIiIiIiovLL19cXKSkpsLe3BwDcu3dPPpd3o8u8jh8/Lr9PSEjA1atXUa1aNfmYi4sLhgwZgu3bt+PTTz/F//3f/wEAlEolACA7aEw/SwAAIABJREFUO7vIuE6ePImsrCwsWLAAb731Fry8vHD37l2tMkqlMl9bdevWRXZ2Nh48eABPT0+tV94lUYheFc74pgIZVaoEycgIIj0dmXfvQelcSd8hERERERERERGVaY8fP8a7776LAQMGoFatWjA3N8fJkycxd+5cdOnSBSYmJnjrrbcwe/ZsuLm5/T97dx4eVXm3cfyemezJZLLPZE8AQWUVBFyxioCCLFqtVqvSxbcquIGtoqJtLeLaal2qtVVbq1axtgJuoCioKCgqiyggS/aVJDNZJ5OZ8/4RHU3ZEklysnw/1zXXhHPOnNzHCsWbh9+jyspK3XLLLfu91+9+9zslJibK6XTq5ptvVlJSkmbNmiWpdS73mWeeqcGDB6u6ulqrVq3SUUcdJUnKzs6WxWLR8uXLNXXqVEVGRh5wFfbAgQPV0tKiBx98UNOnT9f777+vRx99tM01OTk5qqur01tvvaWRI0cqKipKgwcP1kUXXaRLLrlE9913n4455hhVVlZq1apVGj58uKZOndqJ/1SBfbHiGwdkCQlRWE62JKmZOd8AAAAAAACHLSYmRuPHj9cf//hHTZgwQcOGDdPChQt12WWX6aGHHpIkPfHEE/L5fDr22GN1zTXX6Pe///1+73XnnXfqmmuu0ZgxY1RSUqKlS5e2Wc09Z84cHXXUUTrjjDM0ZMgQPfLII5Kk9PR0/fa3v9WNN94op9OpuXPnHjDvqFGj9Ic//EF33XWXhg0bpmeeeUaLFy9uc80JJ5ygyy+/XOeff76Sk5ODm2M++eSTuuSSSzR//nwNGTJEM2bM0Lp165SZmXnY/xyBQ7EY3x0Y1E95PB45HA653W7FxsaaHadHKbz6GtWuWCHnghuVcOmlZscBAAAAAACQJDU1NWn37t3Kzc1VRESE2XEAdKKD/fxub5fLim8c1DcbXHp3s8ElAAAAAAAAgN6B4hsHFdzgchfFNwAAAAAAAIDegeIbBxU2YIAkycuMbwAAAAAAAAC9BMU3Dirs6xXf/opK+WtrTU4DAAAAAAAAAIdG8Y2DssXEKCQlRZLUzJxvAAAAAADQwxiGYXYEAJ2sM35eU3zjkL5Z9e3dxbgTAAAAAADQM4SGhkqSGhoaTE4CoLN98/P6m5/n30dIZ4VB3xU2IFcN69axwSUAAAAAAOgxbDab4uLiVF5eLkmKioqSxWIxORWAw2EYhhoaGlReXq64uDjZbLbvfS+KbxxSeG7rBpfNbHAJAAAAAAB6EJfLJUnB8htA3xAXFxf8+f19UXzjkMIGtBbfXmZ8AwAAAACAHsRisSg1NVUpKSny+XxmxwHQCUJDQw9rpfc3KL5xSOG5OZKk5rx8GS0tsoTwrw0AAAAAAOg5bDZbpxRlAPoONrfEIYWkpsoSESH5fPIVFpodBwAAAAAAAAAOiuIbh2SxWhWWmytJ8rLBJQAAAAAAAIAejuIb7RL+dfHdzJxvAAAAAAAAAD0cxTfaJbjie/cuk5MAAAAAAAAAwMFRfKNdwgZ8veKbUScAAAAAAAAAejiKb7RL+IABkqTmXaz4BgAAAAAAANCzUXyjXcJyciRJ/poatVRXmxsGAAAAAAAAAA6C4hvtYo2MVGhamiQ2uAQAAAAAAADQs1F8o92+2eCScScAAAAAAAAAejKKb7Rb2Ndzvr1scAkAAAAAAACgB6P4RruFD2DFNwAAAAAAAICej+Ib7RaW27rimxnfAAAAAAAAAHoyim+0W3DGd2GhAs3NJqcBAAAAAAAAgP2j+Ea7haQkyxodLfn98uXnmx0HAAAAAAAAAPaL4hvtZrFYvrPBJXO+AQAAAAAAAPRMFN/okOAGl7v3mBsEAAAAAAAAAA6A4hsdEpzzzYpvAAAAAAAAAD0UxTc6JCz361Enu3ebnAQAAAAAAAAA9o/iGx0SfsQRkiTvl1/KX1dnchoAAAAAAAAA2BfFNzokLDdHYbm5MpqbVffWW2bHAQAAAAAAAIB9UHyjQywWi2KnTZMkuV95xeQ0AAAAAAAAALAvim90WOy0qZKk+vfXqqWqyuQ0AAAAAAAAANAWxTc6LDw3VxFDh0p+v2rfeMPsOAAAAAAAAADQBsU3vhfGnQAAAAAAAADoqSi+8b3ETj1TsljU+PEG+UpKzI4DAAAAAAAAAEEU3/heQl0uRY0ZI0nyvPqayWkAAAAAAAAA4FsU3/jeYs86S5LkYdwJAAAAAAAAgB6E4hvfm33KZCkkRE1bt8q7a7fZcQAAAAAAAABAEsU3DkNIfLyiTzxBEqu+AQAAAAAAAPQcFN84LI5p0yS1Ft+GYZicBgAAAAAAAAAovnGYYk6bKEt4uJr37FHT1q1mxwEAAAAAAAAAim8cHltMtGJOO1WS5FnOuBMAAAAAAAAA5qP4xmELjjt57TUZgYDJaQAAAAAAAAD0dxTfOGzREybIarerpbRUjRs2mB0HAAAAAAAAQD9H8Y3DZg0Lk33SJEmS+xXGnQAAAAAAAAAwF8U3OkXstKmSpNrX35Dh85mcBgAAAAAAAEB/RvGNThE9frxsSUny19Sofu1as+MAAAAAAAAA6McovtEpLCEhij3jDEmMOwEAAAAAAABgLopvdJpvxp3UvfmWAo2NJqcBAAAAAAAA0F9RfKPTRI4apdD0dAUaGlS3erXZcQAAAAAAAAD0UxTf6DQWi0Wx06ZJktzLl5ucBgAAAAAAAEB/RfGNTvVN8V2/eo38Ho/JaQAAAAAAAAD0RxTf6FQRQwYr/IhBMnw+1a580+w4AAAAAAAAAPohim90um9WfXteecXkJAAAAAAAAAD6I4pvdLrYqVMlSfUffqiWigqT0wAAAAAAAADobyi+0enCsrIUMXKEFAjI8/obZscBAAAAAAAA0M9QfKNLOBh3AgAAAAAAAMAkFN/oEvYzzpCsVjV+9pmaC4vMjgMAAAAAAACgH6H4RpcITUlR1LhxkiTPq6+anAYAAAAAAABAf0LxjS4TO611k0vP8uUmJwEAAAAAAADQn1B8o8vETp4shYbKu327vDt2mB0HAAAAAAAAQD9havG9ePFijR07Vna7XSkpKZo1a5a2bdvW5pof/OAHslgsbV4XXHBBm2uqq6t18cUXy+FwyOFw6OKLL1ZNTU13Pgr2w+ZwKObkkyVJbja5BAAAAAAAANBNTC2+V69erTlz5ujDDz/UypUr1dLSosmTJ6u+vr7NdZdddplKSkqCr8cee6zN+QsvvFCfffaZXn/9db3++uv67LPPdPHFF3fno+AAguNOXnlVhmGYnAYAAAAAAABAfxBi5jd//fXX2/z4ySefVEpKijZs2KAJEyYEj0dFRcnlcu33Hl988YVef/11ffjhhxo/frwk6fHHH9fxxx+vbdu2aciQIV33ADgk+6mnyhIZKV9BgZo2bVLkyJFmRwIAAAAAAADQx/WoGd9ut1uSlJCQ0Ob4M888o6SkJA0dOlTXX3+9amtrg+c++OADORyOYOktSccdd5wcDofWrl273+/j9Xrl8XjavNA1rFFRsp92miRp79+eYNU3AAAAAAAAgC7XY4pvwzA0b948nXTSSRo2bFjw+EUXXaTnnntO77zzjhYuXKh///vfOuecc4LnS0tLlZKSss/9UlJSVFpaut/vtXjx4uA8cIfDoczMzM5/IAQlzJ4thYSodsUK1Tz/vNlxAAAAAAAAAPRxPab4njt3rjZt2qTnnnuuzfHLLrtMp59+uoYNG6YLLrhAL774ot5880198sknwWssFss+9zMMY7/HJWnBggVyu93BV0FBQec+DNqIHD5MKfPmSZLK7lispq1bTU4EAAAAAAAAoC/rEcX3VVddpaVLl+rtt99WRkbGQa8dPXq0QkNDtWPHDkmSy+VSWVnZPtdVVFTI6XTu9x7h4eGKjY1t80LXSvjpbMWceqqM5mYVXnud/HV1ZkcCAAAAAAAA0EeZWnwbhqG5c+fqpZde0qpVq5Sbm3vIz3z++efy+XxKTU2VJB1//PFyu91av3598Jp169bJ7XbrhBNO6LLs6BiLxaK0xXcoNC1Nvvx8ldyykHnfAAAAAAAAALqExTCxfbzyyiv17LPP6uWXX9aQIUOCxx0OhyIjI7Vz504988wzmjp1qpKSkrR161bNnz9fkZGR+uijj2Sz2SRJZ555poqLi/XYY49Jkv7v//5P2dnZWrZsWbtyeDweORwOud1uVn93scaNG7Xnop9ILS1y3rpQCRdeaHYkAAAAAAAAAL1Ee7tcU4vvA83gfvLJJzV79mwVFBToJz/5ibZs2aK6ujplZmZq2rRpuu2225SQkBC8vqqqSldffbWWLl0qSZoxY4YeeughxcXFtSsHxXf32vvUUyq/8y5ZQkOV/dxzihw21OxIAAAAAAAAAHqBXlF89xQU393LMAwVzr1KdW+9pdDMTOW+9G/Z7HazYwEAAAAAAADo4drb5faIzS3Rv1gsFqXdsah13ndBgUpuvoV53wAAAAAAAAA6DcU3TGFzOJR+/x+l0FDVrlih6meeNTsSAAAAAAAAgD6C4humiRwxQs5fXS9JKrvrLjVu3mJyIgAAAAAAAAB9AcU3TBV/8cWKOX2i5POp6Lrr5Pd4zI4EAAAAAAAAoJej+IapLBaL0hYtUmh6unyFhcz7BgAAAAAAAHDYKL5hujbzvleuVPXT/zQ7EgAAAAAAAIBejOIbPULk8OFy/upXkqSye+5R4+bNJicCAAAAAAAA0FtRfKPHiL/4J7JPmtQ67/va6+R3u82OBAAAAAAAAKAXovhGj2GxWJS66PcKzciQr6hIxQtukr+u3uxYAAAAAAAAAHoZim/0KLbYWKX/8Y+yhIaqbtUq7TjpJBX9+teqX7tWht9vdjwAAAAAAAAAvYDFMAzD7BBm83g8cjgccrvdio2NNTsOJNW++abK7/uDmnfvDh4LcbnkmDlTjlkzFZ6ba2I6AAAAAAAAAGZob5dL8S2K757KMAw1bdyomv/+V55XX1PA4wmeixw5Uo6zz1bs1DNl438zAAAAAAAAoF+g+O4Aiu+eL+D1qu7tt1Xzn/+o/r33pa/HnljCwmQ/faIcs2Yp+oQTZAkJMTkpAAAAAAAAgK5C8d0BFN+9S0tFhdzLlsv9n//Iu2NH8LgtOUnJV16p+B//2MR0AAAAAAAAALoKxXcHUHz3ToZhqGnrVrn/+7I8y5fLX10tScp+9llFjT7G5HQAAAAAAAAAOlt7u1xrN2YCOpXFYlHk0KFy3XyTjlj9jhwzZ0iSSn/3OxktLSanAwAAAAAAAGAWim/0CZawMKXccIOsDoe8X36p6mefMzsSAAAAAAAA0KlaAi3K9+RrTeEaldWXmR2nR2MnQPQZIQkJSrnuOpX+5jeq+NOfZD9jikJTUsyOBQAAAAAAALRbwAiovKFceZ485XnytMezR/mefOV58lRYW6gWo3XSwe0n3q5Zg2aZnLbnovhGnxJ33rmqeeklNW3apPK771H6vfeYHQkAAAAAAACQJPkCPrm9brm9btV4a1pfTTUqqC1Qfm2+9nj2qMBToCZ/0wHvEW4LV1ZslmwWWzcm730ovtGnWGw2uW69VXvOO0+e5csVd+65ij5uvNmxAAAAAAAA0EcZhqHKxsrgCu3yhvJgqf3dgtvtdavOV9eue4ZYQpRhz1B2bLayYrOUE5sTfE+JSpHVwgTrQ6H4Rp8TOWyo4n98gaqffU6lt9+uAf95SZawMLNjAQAAAAAAoBdze937HT+S58lTQ0tDu+9jkUX2MLviwuMUFx4nR7hD6THpyo7NDr7SYtIUYqW6PRz800OflHzNNfK8/oaad+5U1T/+ocRf/MLsSAAAAAAAAOgFDMPQbvdurStdpy2VW4Ild4235oCfsVqsSotOU7YjW6nRqW1K7f/9OjYsVjYrY0q6GsU3+iSbw6GUX/1KJQsWqOLhRxQ7bZpCU1PNjgUAAAAAAIAexjAMFdYVan3Jeq0vbX1VNlbu99qUqJQ2Y0ey7FnKdmQrMyZTobbQbk6Og6H4Rp/lmDVTNS++qMYNG1S2+E5l/OkBsyMBAAAAAACgByirLwuW3OtL1qu4vrjN+TBrmI5JOUZjnGM0IG6AcmJzlGnPVFRolEmJ0VEU3+izLBaLXLfeqt3nnKPaFStU9+67ijn5ZLNjAQAAAAAAoBs0tTS12WCyorFCn5Z9qvWl67XHs6fNtSGWEA1PHq5xrnEa5xqnkSkjFW4LNyc4OgXFN/q0iCGDlXDxxap66imV3v57DVi2VNZwftECAAAAAADobbx+r8rqy1TWUKbS+lJVNVW1Kba/ea/x1sjj9ajJ33TAe1ktVh2VcJTGpbYW3aNTRrOau4+h+EaflzR3rjyvvipffr72/vWvSp4zx+xIAAAAAAAA+I7/LbWD7985Vu2t7vB9Qywhig2PDW4weXTi0RrrGqsxzjFyhDu64EnQU1B8o8+zxUTLeeMNKpo3X3v/8rgcM2YoLDPT7FgAAAAAAAD9TsAIqLC2UNuqt2lb1TZtq96m7VXb95mxfSARtgi5ol1yRjuVGJEYLLQd4Y79vkeHRstisXTxU6EnovhGv2A/80xFv/ii6td+oLLfL1LGo3/mFz0AAAAAAIAu1OBr0Pbq7dpevT1Ycu+o3qGGlob9Xv/dUtsZ1fpyRbtaj339dWxYLJ0O2oXiG/2CxWKR85aF2jVzpupWr1bdqlWyT5xodiwAAAAAAIBezTAMVXurlefJC772uPdoe/V2FdQWyJCxz2fCrGEaGDdQQxKGaEj8EA1JGKJBcYMUFx5HqY1OQ/GNfiN8QK4Sf/Yz7X3sMZUuWqTo44+XNYpNCwAAAAAAAA6lrrlOebV5ynPntb57vv26trn2gJ9LjkzW4PjBGpwwuLXkjh+iHEeOQqzUkuha/BuGfiXp8l/Ks2yZfMXFqnz0MaXMu87sSAAAAAAAAD1KVVOVNlVsCr6+qvlKe5v2HvQzqdGpyorNUk5sjrLsWToi/ggNjh+sxMjEbkoNtEXxjX7FGhkp5803qXDOXO198kk5Zs1U+IABZscCAAAAAAAwRUugRdurt2tTxSZtrNiojRUbVVBbsN9rEyMSlR2brezY7GDJnR2brUx7piJCIro5OXBwFN/od2JOO00xp5yiutWrVXr77cp64gnmRwEAAAAAgH6hsrGyTcm9de9WNbY07nPdAMcAjUweqRHJI3RUwlHKis2SPcxuQmLg+7EYhrHvhPl+xuPxyOFwyO12KzY21uw46AbNBQXaddZ0GV6vYk45RWEDBig01aWQ1FSFpqYpNC1Vtvh4CnEAAAAAANDreP1eFXgKWjea9Oxps/Hk/kaW2EPtGp48XCOTR2pk8kgNSxomR7jDhOTAobW3y2XFN/qlsMxMJV1xhSruv191q1dLq1fvc40lPFyhLpdC0r4uw1NTFZqWqvAjjlDkiBEmpAYAAAAAAGhlGIYK6wq1x71H+bX52uP+tuAuqS+Rof2vdbXIooFxA4Ml94jkEcp15MpqsXbzEwBdixXfYsV3f2UYhhrWrZN3+w75Skq+fhWrpbhELRUVB/1s/EUXybngRllC+LMjAAAAAADQ9ep99dpSuSU4omRTxSbVeGsOeL091N46j9uRrWx7dvDrnNgcRYdGd2NyoHO1t8ul+BbFN/YVaG5WS1mZfMVfl+Glpa1fFxaqfu1aSVL0hJOV/oc/yBYTY3JaAAAAAADQlxiGoTxPXrDk3lixUV/VfKWAEWhzXZg1LFhmZ9mzlB2brRxH64aT8eGMcEXfRPHdARTf6AjPGytUfMMNMpqaFH7EEcp89M8KTU83OxYAAAAAAOiF/AG/ShtKtce9R1sqt2hT5aYDruZOi05rHVGS0jqmZEj8EIXaQk1IDZiHGd9AF4mdMlmhaakquPJKeXfs0O7zL1Dmww8pcuRIs6MBAAAAAIAeyDAMVTZWao9nj/I9+cFNJ/M9+cqvzZcv4NvnM+G2cA1NHBqcwz0yeaSSo5JNSA/0Tqz4Fiu+8f34iotVcMWV8m7bJkt4uNLuulOxZ5xhdiwAAAAAAGCisvoybarcpG1V24KbTeZ58tTQ0nDAz4RZw5Rpz9Tg+MGs5gYOgVEnHUDxje/LX1ev4vnzVbd6tSQp+dprlfjL/2OGFgAAAAAA/UCzv1lb927VpopNrRtOVm5SaX3pfq+1WqxKj0lXVmyWcmJb53Bn21s3nHRFuWSz2ro5PdA7UXx3AMU3Dofh96vsrrtU/Y+nJUmOWbPk+t1vZQ0LMzkZAAAAAADoLIZhqLS+VBsrN2pjeWvJ/cXeL/YZU2K1WDU4frCGJg5VriO3ddNJR7YyYzJZwQ10AmZ8A93EYrPJddNNCsvJUdmiO+T+73/lKyxU+oN/Ukh8vNnxAAAAAABAB7m97uCIkj2ePdpVs0ubKjapvLF8n2vjw+PbbDg5NHGookKjTEgN4LtY8S1WfKPz1L37noquu06BujqFZmcp88+PKnxArtmxAAAAAADA/2hqaVJ+bf63Bbd7T/Dram/1fj9js9ha53B/veHkqORRyrBnMPIU6EaMOukAim90Ju+OHSr45eXyFRfL6nAo44EHFH3ceLNjAQAAAADQbxiGoRpvjcoaylRWX6ayhjKV1pcG3wtqC1RSX3LQe6REpijbka3s2GzlxOZoaOJQHZ14NKu5AZNRfHcAxTc6W0tlpQrnzFXjxo1SSIhSf3Ob4s491+xYAAAAAAD0Gf6AX5srN+vLqi/bFNvfFN1ev/eQ97CH2ZUbm9u60WRs60aTObE5yrJnUXADPRTFdwdQfKMrBJqaVHLTTfK8+pokKe5HP5Lz5ptkDQ83ORkAAAAAAL2T2+vW2uK1Wl24Wu8Xva8ab81Br0+ISJAr2iVnlLP1Fd36nmnPVHZstuLC4xhTAvQybG4JmMwaEaG0e+9V2KBBqnzwIdW88IKaPv9c6Q88oLCMdLPjAQAAAADQ4xmGoa9qvtKawjVaU7hGGys2ym/4g+ftYXaNSRmjtJi0YKn9TdGdEpWiMFuYiekBmIkV32LFN7pe3bvvqfj66+V3u2VzOJR27z2KOflks2MBAAAAANDjNLU0aX3peq0pXKN3C99VcX1xm/OD4gbp5IyTNSF9gkaljFKIlXWdQH/CqJMOoPhGd/AVFanwmmvVtGWLZLEoac4cJV15hSxWq9nRAAAAAAAwVUldSeuq7qI1Wl+yXk3+puC5cFu4xrnGaULGBJ2ccbLSY/hb1EB/RvHdARTf6C6B5maV3XGHav71vCQp+uSTlXb3XQqJjzc5GQAAAAAA3acl0KKNFRuDI0y+qvmqzXlXtEsT0ifolMxTNNY1VpEhkSYlBdDTUHx3AMU3ulvNf/+r0tt+I8PrVWhamtIfeECRw4eZHQsAAAAAgC5T3VSt94re07uF7+r94vflafYEz1ktVo1KHtU6wiRjgo6IO4JNJwHsF8V3B1B8wwxNX36pwquvkS8/X5bQUDlvuUVxPzqP/2MHAAAAAPQJhmFoW/W24KruzZWbFTACwfOOcIdOSj9JE9In6MT0E+UId5iYFkBvQfHdARTfMIvf41HxgptU99ZbkiTH2WfLddutskZEmJwMAAAAANCf+AN+VTVVqayhTGX1ZSptKG3zXtZQpjpfXYfu2RJoUb2vvs2xwfGDNSFjgiZkTNCIpBGyWW2d+RgA+gGK7w6g+IaZjEBAe//2N1X88X4pEFD4kUcq408PKCwry+xoAAAAAIA+pqqpSh+VfqQtlVtUWl+q0vpSlTWUqaKhQi1GS6d/vwhbhI5LPS44wsQV7er07wGgf6H47gCKb/QE9R+uU9H8+fLv3Sur3a6MBx9U9HHjzY4FAAAAAOjFPM0ebSjdoPWl67W+dL22V28/4LVWi1VJkUlyRbnkjHbKGeWUK9olZ5RTzminYsNiZVEHxnNapLToNEWE8LeaAXQeiu8OoPhGT+ErK1PRNdeq8bPPFJKSooGvvSprdLTZsQAAAAAAvUSDr0Gfln/aWnSXrNfWqq1t5mpL0hHxR2hMyhhlxWYFS21nlFNJkUkKsYaYlBwA2qe9XS6/mgE9SKjTqay/P6VdZ02Xr6BAlY8+qpT5882OBQAAAADogRpbGlXeUK6i2iJ9Uv6JPir9SJsqN6kl0HZkSU5sjsa5xmlc6jiNdY1VQkSCSYkBoPtQfAM9jDU8XM4FC1R45ZXa+9Tf5Tj7HIUPyDU7FgAAAACgGzX4GtpsLPnN+zczucsayuT2uvf72dToVI1PHd9adrvGyRnt7Ob0AGA+im+gB4o59QeKPmWC6levUdkddyjz8b/IYunAHDUAAAAAQI9V76tXWf23JfY3BXew6K4vU62vtl33igyJlDPKqaMTj9b41PEa6xqrjJgM/hsSQL9H8Q30QBaLRa4FC7Rr7Qeqf+891a1aJfvEiWbHAgAAAAC0U2VjpTZWbNT2qu3fFttfF911vrp23SMmNObbDSa/nsP93Znczmin7KF2Sm4A2A+Kb6CHCsvJUcJPf6q9f/mLyu5YrOgTT5Q1gp2wAQAAAKCn8fl9+rLqS22s2KhNFZu0sWKjiuuLD/oZe5g9WF67olxt3r8puGPCYrrpCQCg76H4BnqwpMt/KffSpfIVFWnv3/6m5DlzzI4EAAAAAP1eaX1psODeVLFJW/duVXOguc01Flk0KH6QhiUOU3pMeptV2q4ol6JCo0xKDwD9A8U30INZo6Lk/PWvVDRvvvb+5XE5Zs5SWEa62bEAAAAAoF/x+X1aU7hGr+95XZ+Wf6qyhrJ9rokLj9OI5BEakTRCI1NGaljiMFZsA4CJKL6BHs5+5pmK+tfzali/XuV33amMBx80OxIAAAAA9HmGYejzvZ/r5a9e1mt7XpPb6w6es1lsGhw/WCOSR2hk8kiNSB6hLHsWs7YBoAeh+AZ6OIvFIuctN2v32eeoduWbqnvvfcWcdKLZsQAAAACgTyqtL9XyXcu1dOdS7Xbbxt9BAAAgAElEQVTvDh5PjkzWtAHTNCFjgoYmDmVUCQD0cBTfQC8QMXiwEn5ykar+/g+VLVqk6Jf/K0tYmNmxAAAAAKBPaPA16K38t/Tyzpe1vmS9DBmSpAhbhE7LOk0zBs7QcanHyWa1mZwUANBeFN9AL5E0d67cy19R8+7dqnr6aSX+/OdmRwIAAACAXitgBPRR6UdaunOpVuatVGNLY/Dcsc5jNWPgDE3KnsScbgDopSi+gV7CZrcrZf58ldx0kyoffkSxZ01XqDPF7FgAAAAA0KN5mj3Kc+cprzZPeZ5vX/mefNX56oLXZdmzNH3gdJ014Cxl2DNMTAwA6AwU30Av4pg1UzXPP6/GjRtVfu+9Sr/nbrMjAQAAAIDp/AG/vqr5Sns8e5TvyQ++53nyVO2tPuDn7KF2nZF7hmYMnKGRySPZnBIA+hCKb6AXsVitci5cqD3nnSfPsmWKP/9Hijr2WLNjAQAAAIAptldv17Kdy/TKrldU0VhxwOuSI5OVHZsdfGXFZiknNkdZ9iyF2kK7MTEAoLtQfAO9TOSwoYo77zzVvPCCSm//vXL//aIsIfxUBgAAANA/VDZW6pVdr2j5ruX6surL4PGY0BgNiBugbHv2PiV3dGi0iYkBAGagLQN6oeTrrpXnjTfk3bZN1c8/r4SLLjI7EgAAAAB0maaWJr1d8LaW7lyqD4o/kN/wS5JCrCH6QcYPNH3gdJ2cfjKrtwEAQRTfQC8UEh+v5GuuVtnvblfFA39S7JlnKiQhwexYAAAAANBpAkZAn5R9omW7lmnFnhVtNqIcmTxSMwbO0JScKXKEO0xMCQDoqSi+gV4q/vzzVbPkRXm/+EIVf7xfqbf/zuxIAAAAAHBYfH6fNldu1ntF7+nV3a+qqK4oeC49Jl1nDThL0wdOV3ZstokpAQC9AcU30EtZbDa5Ft6ivAsvUs2LLyruR+cpcvhws2MBAAAAQLu1BFr0ZdWXWleyTutL1+vT8k/V2NIYPB8dGq0pOVM0fcB0jXaOltViNTEtAKA3ofgGerGo0aPlmDlD7peXqvT23yvnX8/JYuU3ggAAAAB6poAR0I7qHVpful7rS9br47KP24wwkaSEiAQd6zxWp2efrlMzT1VESIRJaQEAvZnFMAzD7BBm83g8cjgccrvdio2NNTsO0CG+8nLtOnOqAvX1ihg5Qs5f/1pRY8aYHQsAAAAAJEkFtQVaW7RW60rX6aPSj1TjrWlz3h5q17GuYzU+dbzGucZpUNwgWSwWk9ICAHq69na5FN+i+Ebv537lFZUsvFVGQ4MkyT5pklLmz1NYTo65wQAAAAD0S55mj17f/bqW7Vymzyo+a3MuMiRSo52jNd41XuNSx+nI+CNls9pMSgoA6G0ovjuA4ht9QUtFhSoefEg1L74oBQJSSIjiL/yxkq64QiHx8Yd9f7/Ho4YNGxQ5alSn3A8AAABA3+IL+PRB8Qd6+auX9U7BO2oONEuSrBarxjjHaLxrvManjtfQpKEKtYaanBYA0FtRfHcAxTf6kqbt21V+772qX/OuJMlqtyvp8ssV/5OLZA0P79C9WqqqVPvWW6pdsVL1H34o+XwKP+II5bzwvKyRkV0RHwAAAEAv82XVl1q6c6le2fWKqpqqgscHxQ3SzIEzNW3ANCVHJZuYEADQl1B8dwDFN/qiuvffV/nd98i7bZskKTQ9XcnzrlPs1KkHnZfnKy9X7ZtvqvaNFWr46KPW1ePfCAmRWlrk+OE5Slu0qKsfAQAAAEAPVdlYqVd2vaKlO5dqe/X24PGEiARNzZ2qGQNn6MiEI5nVDQDodBTfHUDxjb7K8PvlfnmpKu6/Xy3l5ZKkiBEj5Lyh7QaYvuJieVasUO2KlWr89FPpO78shB99lGInT5F98mS1lJcp/2c/lwIBpd65WHGzZnX7MwEAAADoPo0tjSpvKFdpfanKGspUWl+qT8s/1dritQoYrYtkQq2h+kHmDzRz4EydkH4CY0wAAF2K4rsDKL7R1wUaGlT197+r8vG/fmcDzNMVMXyEaleuVNPmzW2ujxg54uuye5LCMjPbnKt4+GFVPviQLJGRyl3ygsIHDeq25wAAAADQuYrqilRYWxgstcvqy779uqFMNd6aA352RPIIzRw4U1NypsgR7ujG1ACA/oziuwMovtFftFRUqOKhh1WzZEnbESYWi6LGjJF98mTZJ52u0NTUA97D8PtVcNllql/7gcIGDVTuCy/IGhXVDekBAAAAdIZvxpQs27lM26q3HfL6yJBIuaJdckY55Yp2KdOeqcnZk5XjyOn6sAAA/A+K7w6g+EZ/492xQ5WPPiZ/rUf2006TfeJEhSS3f7OZlr17tXvW2WqpqJBj1iyl3bm4C9MCAAAAOFxev1dvF7ytpV8t1dritfIbfklSiDVEmfZMuaJcckY7g+V28D3aKXuonVndAIAeg+K7Ayi+gY6rX79e+bN/2jrve9Eixf3wHLMjAQAAAPgOwzD0WcVnWrpzqd7Y/YZqfbXBc4wpAQD0Vu3tckO6MROAPiR63DglX32VKu5/QKW3366I4cMUMXiw2bEAAACAfq+wtlDLdi3Tsp3LVFBbEDyeGp2q6QOna/qA6YwpAQD0eRTfAL63xP/7PzV8vEH1772nomuvU+6SF2SNjjY7FgAAANDv1DTV6K38t7Rs1zJtKNsQPB4VEqVJ2ZM0c9BMjXGOkdViNTElAADdh1EnYtQJcDhaqqq0++xz1FJWptjp05V2913M/wMAAAC6QVVTld7Kf0sr96zU+tL1wbndFlk0PnW8ZgycoYlZExUVymb0AIC+g1EnALpFSEKC0v9wn/IuuVSeZcsUNfZYxf/oR2bHAgAAAPqkysZKrcpfpRV5K/Rx6cfBsluSjkw4UlNypuisAWfJFe0yMSUAAOaj+AZw2KLGjFHytdeo4r4/qOz3ixQ5YoQijjzS7FgAAABAn1DRUKE389/UyryV2lC2QQEjEDx3dOLRmpw9WZOyJykrNsvElAAA9CwU3wA6ReLPf66Gjz9W/eo1KrrmWuX8+0XZYmLMjgUAAAD0SuUN5VqZt1Ir9qzQp+WfytC3U0qHJQ7T5JzWsjvDnmFiSgAAei5mfIsZ30Bnaamu1u5zfqiWkhLFTj1Taffdx7xvAAAAoJ1K60v1Zt6bWpHXWnZ/14jkEcGV3WkxaSYlBADAfMz4BtDtQuLjW+d9X3yJPK++pqixYxX/4x+bHQsAAADosUrqSlpXduet0MaKjW3OjUoeFVzZzcxuAAA6huIbQKeKOuYYpcybp/K771bZHYsVMWKEIocONTsWAAAA0GMU1RW1ruzes0KbKjcFj1tk0TEpx2hyzmSdnnW6nNFOE1MCANC7UXwD6HQJP52tho8/Vt2qVSq69jpl//OfCnWmmB0LAAAAMEXACKiotkhv5reW3Vv2bgmes8ii0c7Rmpw9Wadnn66UKH7fDABAZ2DGt5jxDXQFv9ut3WefI19xsaxRUUq68grFX3KJrGFhZkcDAAAAOk3ACKiqqUql9aUqqy9TaUOpyhrKgj8uayhTeUO5fAFf8DNWi1VjnGM0OXuyJmZNVHJUsolPAABA79LeLpfiWxTfQFfx7typ4ptuUtPG1r++GZadLedNCxRzyikmJwMAAAA6zuf36YOSD7Qqf5V2uXeprL611G4xWg75WZvFpmOdx2pyzmSdlnWakiKTuiExAAB9D8V3B1B8A13HCATkfnmpyu+7T/7KSklSzCmnyLngRoXl5JgbDgAAADiEZn+z1hav1cq8lXo7/23V+mr3ucZqsSopMkmuKJec0U45o5xyRbvkjHLKGe2UK8qlpKgkhVpDTXgCAAD6ForvDqD4Brqev65OlY/8WVVPPy35fFJoqBIvvUSJl18hW0y02fEAAACAIK/fq/eL3tfKvJV6p+Ad1fnqgueSI5N1evbpGu0cLVeUS65ol5IikxRiZQstAAC6A8V3B1B8A93Hu2u3yhYvVv2770qSbMlJcl5/vWKnT5fFajU5HQAAAPqrppYmvV/0vlbkrdDqwtWq99UHz6VEpmhSziRNzp6sUSmjZLXw+1YAAMxC8d0BFN9A9zIMQ3XvvKOyxXfKl58vSYocNUrOm29W5PBhJqcDAABAf1HRUKH1peu1umC1VheuVkNLQ/CcM8qpSdmTNCVnikYkj6DsBgCgh6D47gCKb8AcgeZmVT31d1U++qiMhgbJYpHjh+co5brrFJKYaHY8AAAA9DE1TTX6uOxjrStZp/Wl67XLvavN+dToVE3KnqTJOZM1PGk4ZTcAAD0QxXcHUHwD5vKVlan8vvvkWbpMkmRLSFD2M/9UeG6uyckAAADQm9U11+mT8k+CRfe2qm0y9O1/Altk0ZEJR+q4tOM0KWuShiUNk8ViMTExAAA4lF5RfC9evFgvvfSSvvzyS0VGRuqEE07QXXfdpSFDhgSv8Xq9uv766/Xcc8+psbFREydO1COPPKKMjIzgNfn5+ZozZ45WrVqlyMhIXXjhhbr33nsVFhbWrhwU30DP0PDJJyq59VY1f7VToZmZyvnXc6z8BgAAQLv5/D5tKN+g9SXrta50nT6v/Fx+w9/mmkFxgzTONU7jXON0rOtYOcIdJqUFAADfR68ovs844wxdcMEFGjt2rFpaWnTzzTdr8+bN2rp1q6KjoyVJV1xxhZYtW6annnpKiYmJmj9/vqqqqrRhwwbZbDb5/X6NGjVKycnJuu+++7R3715deumlOuecc/Tggw+2KwfFN9BztFRWas8FP5avsFARI0Yo++9PyRoZaXYsAAAA9FDN/mZ9UPyBVuSt0NsFb6u2ubbN+Ux7psa5xml86niNdY1VUmSSSUkBAEBn6BXF9/+qqKhQSkqKVq9erQkTJsjtdis5OVlPP/20zj//fElScXGxMjMz9eqrr2rKlCl67bXXdNZZZ6mgoEBpaWmSpH/961+aPXu2ysvL21VkU3wDPYt3127l/fjH8rvdipk4URl/ekAWm83sWAAAAOghvH6v1hat1Yq8FXqn4B3V+eqC5xIjEnVi+onBVd2pMakmJgUAAJ2tvV1uSDdmOiS32y1JSkhIkCRt2LBBPp9PkydPDl6TlpamYcOGae3atZoyZYo++OADDRs2LFh6S9KUKVPk9Xq1YcMGnXrqqft8H6/XK6/XG/yxx+PpqkcC8D2ED8hVxp8fUf7sn6rurbdUtugOORfewrxFAACAfqyppUnvF72vFXkrtLpwtep99cFzKZEpOj37dE3OmaxRyaNks7JoAgCA/q7HFN+GYWjevHk66aSTNGzYMElSaWmpwsLCFB8f3+Zap9Op0tLS4DVOp7PN+fj4eIWFhQWv+V+LFy/Wb3/72y54CgCdJWr0aKXdfbeKrrtO1c8+q9D0dCX+/GeHfV/D79fev/xFntffUPJ118r+gx8cflgAAAB0icaWRr1X9J5W7GktuxtbGoPnnFFOTcqepMk5kzUyeaSsFquJSQEAQE/TY4rvuXPnatOmTXrvvfcOea1hGG1Wfu5vFej/XvNdCxYs0Lx584I/9ng8yszM/B6pAXSl2DOmyFfya5XfdZfK77lHoakuxU6d+r3v5yspUfGvfq2Gjz+WJBXOvUrp996r2DOmdFZkAAAAdIIv9n6hJduX6JVdr6ihpSF4PDU6NVh2D08aTtkNAAAOqEcU31dddZWWLl2qNWvWKCMjI3jc5XKpublZ1dXVbVZ9l5eX64QTTghes27dujb3q66uls/n22cl+DfCw8MVHh7eBU8CoLMlzL5UvuJiVT/9tIpvuFEhycmKGju2w/fxrFypklsWKuB2yxoVpYgRI9Tw4YcqmjdPhvcOOWbO7IL0AAAAaK8GX4Pe2POGlmxfos2Vm4PH02PSNTl7siZlT9KwpGGMvwMAAO1i6h+PG4ahuXPn6qWXXtKqVauUm5vb5vyYMWMUGhqqlStXBo+VlJRoy5YtweL7+OOP15YtW1RSUhK8ZsWKFQoPD9eYMWO650EAdBmLxSLnjTfIPul0GT6fCubMlXfnznZ/PtDUpJLf/lZFV12tgNutiGHDlPufl5T1t7/K8cNzpEBAxTcuUPXzL3ThUwAAAOBAtldv16IPF2nikom6de2t2ly5WSHWEJ2Rc4aemPKEXjvnNc07dp6GJw+n9AYAAO1mMQzDMOubX3nllXr22Wf18ssva8iQIcHjDodDkZGRkqQrrrhCy5cv11NPPaWEhARdf/312rt3rzZs2CCbzSa/369Ro0bJ6XTqnnvuUVVVlWbPnq1Zs2bpwQcfbFeO9u4ECsA8gaYm5c/+qRo/+0yhaWnKef5fCklOPuhnvDt2qGjefHl37JAkJfzsZ0q59hpZwsIkSUYgoLJFd6j6mWckSc4FNyrh0ku79kEAAACgppYmrchboSXbluizis+CxzPtmTp38LmaOXCmEiMTTUwIAAB6qvZ2uaYW3wf60/onn3xSs2fPliQ1NTXpV7/6lZ599lk1NjZq4sSJeuSRR9rM5M7Pz9eVV16pVatWKTIyUhdeeKHuvffedo8zofgGeoeW6mrtueAC+fLyFXH00cp++h+yRkfvc51hGKp5YYnKFi+W0dQkW2Ki0u68UzEnn7Tfayvuu097//o3SVLytdco6fLLu/xZAAAA+qNd7l1asm2Jlu5cKk+zR5Jks9h0WtZpOnfwuTou9TjmdgMAgIPqFcV3T0HxDfQezXl52nPBj+Wvrlb0KROU+fDDsoR8u12B3+1Wya23qfaNNyRJ0SedpLQ7FyskKemA9zQMQ5WPPKLKBx+SJCX+8pdKvvYa/iotAABAJ9lUsUkPf/aw1havDR5Li07TDwf/UGcPOlvJUQf/m3wAAADfoPjuAIpvoHdp3LhReZfOltHUpLjzzpPrd7+VxWJRwyefqOj669VSXCKFhCjluuuU8NPZsljbt2po79+eUPk990iSEi69RCk33kj5DQAAcBi+2PuFHv7sYa0uXC1JslqsmpAxQecNPk8npp0om9VmckIAANDbtLfLDTngGQDooSJHjlT6ffeq8KqrVbNkiUJSXbJYLKp46GHJ71doVpbS77tXkcOHd+i+iT//mSyRESr73e2q+vs/FGjyynXbre0uzgEAANDqq+qv9MjGR7Qyb6Wk1sJ7xsAZ+uWIXyrDnmFyOgAA0B+w4lus+AZ6q6pnnlHZ7b9vcyx2xnS5br1Ntph9Z3+3V82/X1LJwoVSICDHzBlKXbSozTgVAAAA7F+eJ09/3vhnvbrrVRkyZJFFZ+aeqStGXqEcR47Z8QAAQB/Aim8AfV7CRRfJV1SsqieekDUqSq7bbpVj5szDvm/cD8+RJSJcxb++Qe6XlyrQ5FX6PXfLEhbWCakBAAD6nqK6Ij228TEt3blUfsMvSZqUPUlXjLxCR8QfYXI6AADQH1F8A+jVUq6fr+jjxit80CCFpqV12n0d06bJGhGhomuvU+0bb6iwqUnpf3pA1vDwTvseAAAAvV1ZfZke3/y4/r3j32oJtEiSJmRM0JxRc3R04tEmpwMAAP0Zo07EqBMAB1b37nsqnDtXhterqOOOU8b9f5QtLs7sWAAAAKYqrS/VP7b+Q89/+byaA82SpONSj9OcUXM0KmWUyekAAEBf1t4ul+JbFN8ADq5+/XoVXn6FAg0NCk1PV/qfHlDk0KFmxwIAAOhW/oBf7xe/ryXblmhN0RoFjIAkaXTKaM09Zq7GusaanBAAAPQHFN8dQPEN4FCavvhChVdfI19BgSxhYXLdulBx555rdiwAAIAuV95Qrpd2vKSXdrykkvqS4PGxrrH6xbBf6Pi042WxWExMCAAA+hOK7w6g+AbQHn63W8U3LlDd229LkhznnCPXrQtljYgwORkAAEDnChgBfVD8gZZsX6J3Ct4JbljpCHdo5sCZOnfwucp15JqcEgAA9EcU3x1A8Q2gvYxAQHsf/6sqHnhACgQUftRRynjgfoVlZZkdDQAA4LBVNlbqv1/9Vy9uf1FFdUXB46NTRuvcwedqcs5khdvY7BsAAJiH4rsDKL4BdFT9Bx+oaP718ldVyWq3K+2uu2Q/7VSzYwEAAHSYYRj6qPQjPb/tea0qWKWWQIskyR5q1/SB03Xe4PM0KH6QySkBAABaUXx3AMU3gO/DV1qqomuuVePGjZKkxF/+UslXXyWLzWZyMgAAgEMLGAG9nf+2Ht/8uD7f+3nw+IikETpvyHmakjNFkSGRJiYEAADYF8V3B1B8A/i+jOZmld19j6r/+U9JUtTxxyn93nsVkphocjIAAID9awm06LXdr+lvm/+mne6dkqQIW4RmDJyhHw35kYYkDDE5IQAAwIFRfHcAxTeAw+Ve/opKFi6U0dioEKdT6ff/UVHHHGN2LAAAgCCv36uXv3pZT2x5Iji/2x5q1wVHXqCfHP0TJUQkmJwQAADg0Ci+O4DiG0Bn8O7YocKrr1Hz7t1SSIicN9yg+J9cJIvFYnY0AADQj9X76rVk2xL9fevfVdlYKUlKiEjQxUdfrPOHnC97mN3khAAAAO1H8d0BFN8AOou/rl4lN9+s2jfekCTZJ0+W6ze3KSSBFVQAAKB71TTV6Nkvn9UzXzwjT7NHkuSKdumnQ3+qs484m/ndAACgV6L47gCKbwCdyTAMVf/jHyq7516ppUW2hAS5brtNsVMmmx0NAAD0AyV1JXrmi2f0wvYX1NjSKEnKic3Rz4f/XNNypynUFmpyQgAAgO+P4rsDKL4BdIXGLZ+rZMECeXfskCTFTj1TzoULFRIfb3IyAADQl/gDfm2u3Kw1hWu0unC1tldvD547KuEo/WL4LzQxa6JsVpuJKQEAADoHxXcHUHwD6CqB5mZVPvKI9j7+V8nvly0xUa7f3KbYSZPMjgYAAHoxt9ettcVrtaZwjd4rek813prgOavFqmOdx2r20Nk6Kf0k9hsBAAB9CsV3B1B8A+hqjZu3qHjBjWr+aqckKXbaNDlvuZnV3wAAoF0Mw9D/s3ff4VGVeRvHv2fSeyGFhITQexcVQZoKIgrSQaTYO0WRXXFdKyoW3CgKuOqqVAUUDFYQpSooIEVaaElIQiCBFBJSZ877B25WXlY3E5KcJNyf6+KSec7MyT1/SMLNM7/nSPYR1iWvY33yenac3IHdtJde93P34+rIq+kR3YOrI68m0DPQwrQiIiIilUfFtxNUfItIVXAUFZHx5lucevddcDhwCQkh4pmn8bv2WqujiYiISDW159QePjv0GeuT15OSm3LetSaBTege1Z0e9XrQIawDrjZXi1KKiIiIVB0V305Q8S0iVSl/1y5Spz1O0eHfdn8PGEDdvz2OS6B2ZomIiMi5md1rj61l3t55bD+5vXTd3ebO5RGX0zOqJz2ielDPt56FKUVERESsoeLbCSq+RaSqOQoLyXjzTU69969zu79DQ4h45hn8rrnG6mgiIiJikbziPJYfXM7CfQtJzk0GwNVwpW+DvvRr0I8rI67E283b4pQiIiIi1lLx7QQV3yJilfydO8/t/j5yBAD/m27Cp1s3XIODcAkOxiUoGNegQAxvbx1MJSIiUkul5KawaN8iPj34KbnFuQAEeAQwvNlwRjUfRbhPuMUJRURERKoPFd9OUPEtIlZyFBSQPmsWp9//AByO//ocw8PjtyI8ENeg4P/8PjgYrw4d8OnSpWpDi4iIyEUxTZOd6TuZt3cea5LW4DDP/QzQwL8BY1uNZUDjAXi5elmcUkRERKT6UfHtBBXfIlId5O/YQeZHH1OSnk5J5mnspzOxnz6NWVT0P18b+fJLBAwcWAUpRURE5GIUO4r5NvFb5u+dz+6M3aXrXSK6MLbVWK6udzU2w2ZhQhEREZHqTcW3E1R8i0h1ZZom5tmzlGRmYs88V4SX/FaI27MyKYiPJ2/degwvLxouXYJHkyZWRxYREZH/p6CkgJ/SfmJ98nq+T/qek/kngXOHVd7Y6EbGtBpDs6BmFqcUERERqRnK2uW6VmEmERFxkmEYGD4+uPv4QFTUBddNu52ku+7i7I+bSZ48mYZLlmDz1qFXIiIiVkvLS2N98nrWJ69ny/EtFNgLSq8FewYzqvkoRjQfQR2vOhamFBEREam9tOMb7fgWkZqtJCODo4OHUJKeTsDNNxMx40UdhCkiIlLF7A47uzN2l5bdBzIPnHc93DucnlE96RHVgy6RXfBw8bAoqYiIiEjNph3fIiKXCNeQECJnvkrSbbeT/dlneF9xOYFDh1odS0REpNbLLcplY+pG1h9bz8aUjWQWZpZeMzBoH9qeHlE96BHVg2ZBzfQP0yIiIiJVSMW3iEgt4HPFFYROmkT6P/5B2rPP4dmmDZ7Nm1sdS0REpFbKLcplwb4FzNszjzPFZ0rX/dz86FavGz2ienB1vasJ8gyyMKWIiIjIpU3Ft4hILVHn7rs4u20rees3kDJxEg0+WYaLr6/VsURERGqN/JJ8Ptr/Ef/69V9kFWYBUN+vPtfUv4YeUT3oENYBN5ubxSlFREREBDTjG9CMbxGpPUoyMzk6ZCglx4/j3/8GImfO1MeqRURELlKRvYil8Ut5Z9c7nCo4BUAD/wY82OFB+jboi82wWZxQRERE5NKhGd8iIpcg16Ag6r02k8Sx48j58iu8OncmePRoq2OJiIjUSMWOYlYcWsE/d/2TtLw0AOr51uP+9vdzY6MbcbXpr1MiIiIi1ZV+UhMRqWW8O3Yk7NEpnJzxEidfnIFXu/Z4tWltdSwREZEaw+6w88XRL5izYw7JuckAhHmHcW+7exncZDBuLhpnIiIiIlLdqfgWEamFgseP5+zWreR+u4aUyZNp+OknuGiUk4iIyJ9ymA5WJa5i9o7ZHM0+CkCwZzB3t72b4c2H4+HiYXFCERERESkrFd8iIrWQYRhEPv88R/cfoDg5mdTHHydq1izN+xYREfkd0zQ5cfYEB04f4EDmAb5J+Ib4zHgA/N39uaPNHdzS4ha83bwtTioiIqPp4/oAACAASURBVCIizlLxLSJSS7kEBFDvH/8gcfRocr9dw+kPP6TObbdZHUtERMQSxfZiDmcfLi25//3f7MLs857n4+bD+FbjGdNqDH7ufhalFREREZGLpeJbRKQW82rbhrBpj3Hi2ec4+epMvNq3x7tjR6tjiYiIVCqH6WD7ie3sObWntOA+kn2EEkfJBc91MVxoGNCQZkHNaFWnFTc3vplAz0ALUouIiIhIRVLxLSJSywXdcgv5W7eS8+VXpDwyhYaffoJrUJDVsURERCrc2eKzxB2OY+G+hSTkJFxw3c/Nj2bBzWgR3ILmQc1pFtyMJoFNNLtbREREpBZS8S0iUssZhkHdZ5+jYO8+ihISSH3sMaLnzMGw2ayOJiIiUiHS8tJYvH8xy+KXkVOUA4Cvmy9dIrqcK7qDWtA8uDkRPhE670JERETkEmGYpmlaHcJqOTk5BAQEkJ2djb+/v9VxREQqRcGBAySMGIlZWEjQmDGEPvQgLoH6KLeIiNRcv2b8yry981idsJoS89wYkyjfKMa0GsOgJoPwcfOxOKGIiIiIVLSydrkqvlHxLSKXjqxlyzj+xN8BMLy8CBh0M8HjxuHRsKHFyURERMqmxFHCd0nfMX/vfHak7yhd7xzembGtxtIzqicuNhcLE4qIiIhIZVLx7QQV3yJyKcn56isy/vkOhfv2la759upF8G234X3lFfoIuIiIVEtnis7w6cFPWbRvEal5qQC42ly5ocENjGk1hlZ1WlmcUERERESqQqUW3w6Hg0OHDnHy5EkcDsd513r06OF8Woup+BaRS41pmpz96WdOf/ABuWvXwm/fCjxatiR4/DgC+vfHcHe3NqSIiAhwOOswSw4s4bPDn5FXnAdAoEcgI5qPYFTzUYR6h1qcUERERESqUqUV35s3b2b06NEkJiby/19qGAZ2u718iS2k4ltELmWFR4+SOX8+WctXYObnA+AaGkrQraMJHDkS16AgixOKiMilpshexOrE1SyNX8q2E9tK1xsHNGZMqzHc1OgmPF09LUwoIiIiIlaptOK7Q4cONGvWjGeeeYaIiAtPRQ8ICChfYgup+BYRAXtWFplLlpK5YAElJ08CYHh4EDBoEMHjx+HRqJHFCUVEpLZLykliWfwyVhxaQWZhJgAuhgs9o3oysvlIroq8SiO5RERERC5xlVZ8+/j4sHPnTpo0aXLRIasLFd8iIv9hFhWR8803nH7/Awr27i1d97v+ekInTsCjcWML04mISG1T7Chm7bG1LDmwhM3HN5euh3uHM7TZUIY0GUK4T7iFCUVERESkOilrl+vq7I2vvPJKDh06VKuKbxER+Q/D3Z2AAQPwv+km8rdu5dQHH5L73Xec+eYbzqxeTcCAmwh56CHco6OtjioiIjVYam4qy+KXsfzQcjLyMwAwMOhWrxsjmo2ge1R3XG1O/3VFRERERAQoR/E9YcIEpkyZQlpaGm3btsXNze286+3atauwcCIiYh3DMPC+/HK8L7+cggPxpM96g9xv15D9WRzZX3xJ4JAhhDxwP25161odVUREaoizxWfZkLKBuMNxbEjegMm5D5/W8azDkKZDGNpsKPV861mcUkRERERqA6dHndhstgtvYhiYpqnDLUVEarn83b+S/sYb5G3YAJzbHR44aiQh99yDa0iIxelERKQ6yivOY33yelYlrGJjykYK7AWl166MuJIRzUbQO7o3bi5uf3IXEREREZFzKm3Gd2Ji4p9ej4mJceZ21YKKbxER55zdupX02Nc5u3UrAIaXF8FjxlDnzjtwCQy0OJ2IiFgttyiXtclrWZ2wmk2pmyi0F5Zei/KNom+DvgxuMpgGAQ2sCykiIiIiNVKlFd+1kYpvERHnmaZJ3g8/kP76GxTs2gWAzdeX4NtvI3j8eFx8fS1OKCIiVelM0RnWHlvLqoRVbErdRLGjuPRajH8MfWP60iemDy2CW2AYhoVJRURERKQmq9Ti+/Dhw8TGxrJv3z4Mw6Bly5ZMmjSJxo0bX1Roq6j4FhEpP9M0yf3+e9Jff4PCAwcAcAkMJPi22/C7vi8eDRtanFBERCpLsb2YrxO+5uuEr/kh9QdKHCWl1xr4N6Bvg770jelLs6BmKrtFREREpEJUWvH9zTffMHDgQDp06EC3bt0wTZMffviBnTt3snLlSvr06XPR4auaim8RkYtnOhyc+fpr0me9SdHRo6Xr7jEx+PbqiW/Pnnh37ozh7m5hShERqQimabIqcRWvb3+dY2eOla43DmhM3wbndnY3CWyisltEREREKlylFd8dO3bk+uuvZ8aMGeetP/bYY6xatYrt27eXL7GFVHyLiFQcs6SE7M8/Jycujryft0Lxfz7qbvP2xqdbV3x79cK3Rw9cQ0MtTCoiIuWx4+QOXt36KjvTdwIQ4hXCiOYj6BvTl8aBNfMToCIiIiJSc1Ra8e3p6cnu3btp2rTpeevx8fG0a9eOgoKCP3hl9aXiW0Skcthzc8n74Qdy160jd9167BkZ5133bN0a35498e3VE882bTBsNouSiojI/5KYk8jr219ndeJqALxcvbi99e2Mbz0ebzdvi9OJiIiIyKWirF2uq7M3Dg0NZceOHRcU3zt27CAsLMz5pCIiUmu5+Pri37cv/n37YjocFOzZ+1sJvo6C3bsp2LOHgj17yJg9G5c6dQgcNozQBx/QOBQRkWoksyCTuTvnsuTAEkrMEmyGjcFNBvNghwcJ9dYnd0RERESkenK6+L777ru55557OHLkCF27dsUwDDZu3MhLL73ElClTKiOjiIjUAobNhlfbNni1bUPoQw9Skp5O7voN5K5bR96mTdhPneLU22+Tt2kT9V6biXv9+lZHFhG5pBWUFLBw30Le3f0uucW5AHSv151HLnuEJkFNLE4nIiIiIvLnnB51YpomsbGxzJw5k9TUVAAiIyOZOnUqEydOrJEH2GjUiYiItcyiInJWrybt2edwZGdj8/Eh4rln8e/f3+poIiKXHIfp4IsjX/DGL2+QlpcGQIvgFkzpPIUuEV0sTiciIiIil7pKm/H9e2fOnAHAz8+vvLeoFlR8i4hUD8WpqaQ8OpX83w5KDhw+jPDHH8fm5WVxMhGR2s80TX48/iOx22LZd3ofAOHe4UzsNJGbGt2EzdA5DCIiIiJivSopvmsLFd8iItWHWVJC+ltvcWru22CauDdpTL3XXsOzWTOro4mI1EpF9iK+PPolC/Yu4EDmAQB83Hy4q+1djGk5Bk9XT4sTioiIiIj8R4UW3506dWLNmjUEBQXRsWPHPx1nsv23XXo1iYpvEZHqJ+/HH0n5y1+wp2dgeHgQ/rfHCRw+vEaO1BIRqY5O5Z9iyYElfHTgI04XnAbA08WTIU2HcG/7ewn2DLY4oYiIiIjIhcra5ZbpcMubb74ZDw+P0t+rdBARkcrmc9VVNFqxgtS/Pkbexo2kPfkUeT/+SMSzz+JSw0dsiYhYKT4zngV7F/DFkS8ochQBEOYdxugWoxnWbBgBHgEWJxQRERERuXgadYJ2fIuIVGemw8Hp99/n5D9ioaQEt6go6r02E6927ayOJiJSYzhMBxtTNjJv7zy2HN9Sut6mThvGthpLnwZ9cLO5WZhQRERERKRsKm3Gd6NGjfj555+pU6fOeetZWVl06tSJI0eOlC+xhVR8i4hUf/k7d5LyyBSKU1LA1ZWwhx8m+PbbMGw6bE1E5I+cLT7LysMrWbBvAQk5CQDYDBvX1r+Wca3G0T60vT7NKSIiIiI1SqUV3zabjbS0NMLCws5bP3HiBNHR0RQVFZUvsYVUfIuI1Az2nByOP/kUZ77+GgCf7t2JfGkGrsGaQysi8ntpeWks3r+YZfHLyCnKAcDXzZehTYdyS8tbqOdbz+KEIiIiIiLlU6EzvgHi4uJKf//NN98QEPCf2X92u501a9bQsGHDcsYVERH531z8/an3j9fIuuoqTrzwAnkbNnB02DCi33wTz1atrI4nImK5PRl7mLd3HqsSVlFilgAQ5RvFmFZjGNRkED5uPhYnFBERERGpGmXe8W377aPkhmHw/1/i5uZGgwYNmDlzJjfddFPFp6xk2vEtIlLzFMTHkzJhIkWJiRienkQ8P52AG2+0OpaISJWzO+x8f+x75u+dz/aT20vXO4d3ZkyrMfSK6oWLzcXChCIiIiIiFafSRp00bNiQn3/+mZCQkIsOWV2o+BYRqZnsOTmkTHmUvA0bAKhz912ETp6M4aKCR0Rqv9yiXJYfWs7CfQtJyU0BwNVwpV/DfoxtNZZWdfRJGBERERGpfSqt+K6NVHyLiNRcpt1Oemwsp955FwCfHt2p9+qruOjPcxGppVJyU1i4byHLDy4ntzgXgACPAEY0G8GoFqMI8w77H3cQEREREam5KrX4zsvLY926dSQlJV1wmOXEiROdT2sxFd8iIjVf9udfcPyJJzALCnCPiSFq9lt4NG5sdSwRkQphmiY703cyb+881iStwWE6AGgY0JAxLccwoPEAvFy9LE4pIiIiIlL5Kq34/uWXX+jfvz9nz54lLy+P4OBgMjIy8Pb2JiwsjCNHjlx0+Kqm4ltEpHYo2LuXYw89REnqcWw+PkS+8gp+1/S2OpaISLkVO4r5NvFb5u+dz+6M3aXrV0VcxdhWY+lWrxs2w2ZhQhERERGRqlVpxXevXr1o1qwZc+bMITAwkJ07d+Lm5saYMWOYNGkSQ4YMuejwVU3Ft4hI7VFy+jQpEydxdutWMAxCJ06gzn33YRiG1dFERMosuzCbZfHLWLx/MSfOngDA3ebOjY1uZEyrMTQLamZxQhERERERa1Ra8R0YGMiWLVto3rw5gYGB/Pjjj7Rs2ZItW7Ywfvx49u/ff9Hhq5qKbxGR2sUsLubEizPIXLQIAL++fYl88QVsPj4WJxMR+XNHs4+ycN9C4g7HkV+SD0CwZzCjWoxiRLMR1PGqY3FCERERERFrlbXLdXX2xm5ubqW75sLDw0lKSqJly5YEBASQlJRU/sQiIiIVxHBzo+6Tf8ejZQvSnn2OM6tWkZCQQNRbb+IeHW11PBGR85imyebjm1mwbwHrk9eXrjcLasbYVmPp37A/7i7uFiYUEREREal5nC6+O3bsyNatW2nWrBm9e/fmySefJCMjg/nz59O2bdvKyCgiIlIuQcOH49G4CcmTJlIYH0/CsOHU+8dr+HTtanU0EREK7YV8eeRL5u+bz8HMgwAYGPSM6snYVmO5vO7lGtMkIiIiIlJOTo862bp1K2fOnKF3796kp6czfvx4Nm7cSJMmTXj//fdp3759ZWWtNBp1IiJSuxWfOEHyQxMo2H3uYDjvq7oQNHIUftdeg+HmZnE6EbnU5BTlsHDvQj468BGnC04D4OXqxc2Nb2ZMqzHE+MdYnFBEREREpPqqtBnftZGKbxGR2s9RWMiJ6dPJWvYJ/PatzyUkhMChQwkcPhz3qHoWJxSR2u5s8VkW7lvIB3s+IKcoB4C6PnUZ3WI0Q5oOIcAjwOKEIiIiIiLVn4pvJ6j4FhG5dBQlp5C1bClZn3yCPT3j3KJh4NP9aoJGjcK3Rw8MV6cngYmI/KGCkgI+PvAx//r1X6U7vBsHNObe9vfSJ6YPrjb9mSMiIiIiUlYVWnx37NixzPMFt2/fXvaU1YSKbxGRS49ZXMyZ774n6+OPyPvhx9J11/BwAocPJ3D4MNzCwy1MKCI1XZG9iE8Pfso/d/2T9Px0AKL9onmgwwPc0OAGXGwuFicUEREREal5ytrllml7yaBBgyosmIiISHVguLnhf31f/K/vS1FiIplLlpD96XJKTpwg4803yZgzB99evQgaNRKfbt0wbDarI4tIDVHiKGHl4ZXM3TmX1LxUACJ8Iriv/X0MaDwAN5vOFhARERERqWwadYJ2fIuIyDmOoiLOrFpN1kcfcXbr1tJ1zzZtiJ47B9eQEAvTiUh1Z3fY+SrhK+bsmEPSmSQAQr1Cubvd3QxtOhR3F3eLE4qIiIiI1Hya8e0EFd8iIvL/FR46VLoL3JGbi1tMfeq/9x7uUVFWRxORasZhOliTtIa3fnmLw9mHAQjyCOLOtncysvlIPF09LU4oIiIiIlJ7VFrxbbPZ/nTet91ud+Z21YKKbxER+SNFiYkk3XEnxSkpuIaGEv3eu3g2a2Z1LBGpJn5O+5mZW2ey59QeAPzc/bi99e2MbjkaHzcfi9OJiIiIiNQ+FTrj+/eWL19+3uPi4mJ++eUXPvzwQ5555hnnk4qIiFRj7jExxCxaxLG77qLw4EESx44jeu4cvDt2tDqaiFjocNZh/rHtH6xLXgeAt6s3Y1uNZVzrcfi7ayOFiIiIiIjVKmzUyaJFi/j444/57LPPKuJ2VUo7vkVE5H+xZ2Vx7L77yd+xA8PLi6g3Xse3e3erY4lIFcvIz+CtHW/x6cFPcZgOXAwXhjUbxv3t76eOVx2r44mIiIiI1HpVPuP78OHDtGvXjry8vIq4XZVS8S0iImXhOHuW5EmTyduwAVxdiZwxg4CbbrQ6lohUgbPFZ/lwz4e8v+d98kvyAbgm+homXzaZhgENLU4nIiIiInLpqLRRJ/9Nfn4+s2bNIkoHfomISC1m8/Ym+q03SX1sGjlffknq1KnYc7IJHj3a6mgiUklKHCWsOLSCt3a8RUZ+BgDtQtrxSOdHuCz8MovTiYiIiIjIH3G6+A4KCjrvcEvTNDlz5gze3t4sWLCgQsOJiIhUN4a7O5GvvoJLYCCZixZx4tnnsGdmEvLAA396+LOI1CymabIhZQOvbX2Nw9mHAYjyjWLyZZPpG9NX/7+LiIiIiFRzThffsbGx5z222WyEhoZy5ZVXEhQUVGHBREREqivDZiP870/gEhRExltvkTHrTeyZWYQ/Pg3DZrM6nohcpL2n9jJz60x+SvsJgACPAO5rdx8jm4/EzcXN4nQiIiIiIlIWFTbjuybTjG8RESmv0/MXcOL55wHwv+kmIl98AcNNxZhITWOaJpuPb2bBvgWsT14PgLvNnVtb3cpdbe/C310/I4qIiIiIVAeVOuM7MzOT9957j3379mEYBi1btuT2228nODi43IFFRERqouCxY3AJDCB12uPkfP459jM5RMXGYvPysjqaiJRBob2QL458wfy98zmUdQgAA4MbG93IhI4TiPSNtDihiIiIiIiUh9M7vtetW8fAgQMJCAigc+fOAGzbto2srCzi4uLo2bNnpQStTNrxLSIiFyt33TqSJ03GLCjAq1Mngm4dfW4G8L/nAJfOA/7d49IlA9egILwuu0xzg0WqSEZ+Bh/t/4il8Us5XXAaAC9XLwY3GcytLW+lvn99ixOKiIiIiMh/U9Yu1+niu02bNnTt2pU5c+bg4uICgN1u54EHHmDTpk38+uuvF5fcAiq+RUSkIpzdvp1j992PIyenXK/36nwZdZ94As8WLSo4mYj82/7T+5m/dz5fHf2KYkcxABE+Edza8lYGNx2skSYiIiIiItVcpRXfXl5e7Nixg+bNm5+3fuDAATp06EB+fn75EltIxbeIiFSUggPxZLw5C3t2Dvz7W+xv/zX592POW8c0Kdi3D7OgAGw2gkaNJHTiRFwCA6s2vEgtZXfYWZe8jgX7FvBz2s+l6x1COzCm1RiurX8trrZyTQAUEREREZEqVmkzvjt16sS+ffsuKL737dtHhw4dnE8qIiJSi3g2b0bUrFlOv674+HFOvPwyZ776msxFi8n58itCH36YwGFDMX77hJWIOOd0wWm+PPIli/Yv4tiZYwC4GC70jenL2FZjaRva1uKEIiIiIiJSWZze8f3xxx/zl7/8hQkTJtClSxcANm/ezFtvvcWMGTNo2bJl6XPbtWtXsWkriXZ8i4hIdZG3eQsnnp9O4cFzh+x5tmpF+N+fwLtjR4uTidQMRfYi1ievJ+5wHBuSN1BilgDg7+7PsGbDuKXFLdT1qWtxShERERERKa9KG3Vis9n+9LphGJimiWEY2O12Z25tGRXfIiJSnZjFxWQuXkz6G7Nw5OYCEHDzzYQ9OgXX0FCL04lUP6ZpsjtjN3GH4/g64WuyC7NLr7Wq04ohTYYwoPEAvN28LUwpIiIiIiIVodKK78TExDI/NyYmxplbW0bFt4iIVEclp05x8rXXyP7kUwBsPj6EPPQQwWNuxXBzszidiPWO5x7n8yOfE3c4joSchNL1MK8wbmx8IwMbDaRJUBPrAoqIiIiISIWrtOK7NlLxLSIi1Vn+zp2kTX+egt27AXBv3Ji6f3scn65dLU4mUvXyivP4NvFb4g7H8XPaz6WHxnq6eHJtzLUMbDyQK+teiYtNs/FFRERERGqjSi2+Dx8+TGxsLPv27cMwDFq2bMmkSZNo3LjxRYW2iopvERGp7kyHg+xPP+XkzNewZ2YC4D9gAJHPT8dwd7c4nUjl+vcokyUHlrAqcRX5Jfml1y6vezkDGg2gb4O++Lj5WJhSRERERESqQlm7XFdnb/zNN98wcOBAOnToQLdu3TBNkx9++IHWrVuzcuVK+vTpc1HBRURE5EKGzUbgsGH49elD+qw3yVy0iJyVK3Hk5hL1eqzKb6mVzhaf5YujX7D0wFL2nd5Xuh7jH8OARgMY0HgAkb6RFiYUEREREZHqyukd3x07duT6669nxowZ560/9thjrFq1iu3bt1dowKqgHd8iIlLT5G7cRPKDD2IWFuLbuzf1Xo/FpvJbaon4zHiWHFjC50c+J684DwB3mzvXN7ie4c2H0yG0A4ZhWJxSRERERESsUGmjTjw9Pdm9ezdNmzY9bz0+Pp527dpRUFBQvsQWUvEtIiI1Ue6mTSQ/8Fv53asX9d54XeW31FiF9kJWJ65myYEl/HLyl9L1GP8Yhjcbzs2NbybQM9DChCIiIiIiUh2Utcu1OXvj0NBQduzYccH6jh07CAsLc+pe69evZ8CAAURGRmIYBitWrDjv+m233YZhGOf96tKly3nPKSwsZMKECYSEhODj48PAgQNJTk529m2JiIjUOL7duhE9ZzaGhwe5a9eSMnESjqIiq2OJOOVYzjFe2/oa1y29jmkbpvHLyV9wMVzoE9OHd/q+Q9ygOMa3Hq/SW0REREREnOL0jO+7776be+65hyNHjtC1a1cMw2Djxo289NJLTJkyxal75eXl0b59e26//XaGDh36X5/Tr18/3n///dLH7v9vJ9vkyZNZuXIlH330EXXq1GHKlCncdNNNbNu2DRcXF2ffnoiISI3i07Ur0XNmc+z+B86V3xMmUm/WG9r5LdWaw3SwMWUjC/ct5IfUH0rXw73DGdZsGEOaDiHM27kNFSIiIiIiIr/n9KgT0zSJjY1l5syZpKamAhAZGcnUqVOZOHFiuectGobB8uXLGTRoUOnabbfdRlZW1gU7wf8tOzub0NBQ5s+fz8iRIwFITU0lOjqaL7/8kuuvv75MX1ujTkREpKbL++EHjt3/wLmxJz17qvyWaim/JJ+Vh1cyf+98EnISADAw6FavGyOajaB7VHdcbU7vyxARERERkUtIWbtcp/9mYRgGDz/8MA8//DBnzpwBwM/Pr/xJ/4e1a9cSFhZGYGAgPXv25Pnnny8dqbJt2zaKi4vp27dv6fMjIyNp06YNP/zwwx8W34WFhRQWFpY+zsnJqbT8IiIiVcGna1ei5845t/N73TqSJ0wgatYsld9SLaSfTWfx/sUsiV9CdmE2AH5ufgxtNpSRzUcS5RdlcUIREREREaltnCq+t2zZQlxcHMXFxVx33XXnFc6V4YYbbmD48OHExMRw9OhR/v73v3PNNdewbds2PDw8SEtLw93dnaCgoPNeFx4eTlpa2h/e98UXX+SZZ56p1OwiIiJVzeeqq0rHnuStW3+u/H7jDWweHlZHk0vU/tP7mb93Pl8e/ZISRwkAUb5RjGk1hkFNBuHj5mNxQhERERERqa3KXHwvX76c4cOH4+npiaurKzNnzmTmzJlMnjy50sL9e3wJQJs2bejcuTMxMTF88cUXDBky5A9fZ5rmn45cmTZtGo888kjp45ycHKKjoysmtIiIiIV8rrrq3M7v++7/T/k9a5bKb6kyDtPB+uT1zN87n5/Sfipd7xTWiXGtxtEruhcuNp3DIiIiIiIilctW1ie+8MILpTO3s7KyeOaZZ5g+fXplZrtAREQEMTExHDx4EIC6detSVFREZmbmec87efIk4eHhf3gfDw8P/P39z/slIiJSW/h06UL03DkYnp7krd9A8oQJOH434kukMpwtPsvH+z/m5hU3M+G7CfyU9hMuhgs3NLyBxTcu5sMbPuTamGtVeouIiIiISJUo847vAwcOsHDhQlxdz71k6tSpPP3002RkZBASElJpAX/v1KlTHDt2jIiICAAuu+wy3NzcWL16NSNGjADg+PHj/Prrr7z88stVkklERKQ6Old+z+XYffedK78fmkDUm/9957ejqIji5GSKEhMpTkqiKDGJoqRzv8yiIoJGjiB43DhsPhpLIeczTZNdGbuIOxTHVwlfcabot/Nf3PwY1nwYo1uMpq5PXYtTioiIiIjIpajMxXdubi6BgYGljz08PPDy8iInJ6fcxXdubi6HDh0qfXz06FF27NhBcHAwwcHBPP300wwdOpSIiAgSEhJ4/PHHCQkJYfDgwQAEBARw5513MmXKFOrUqUNwcDCPPvoobdu25brrritXJhERkdrCp8uVRL/9NsfuvZe8DefK76BRI38rtn8ruRMSKT5+HEzzD++T/vobnJ6/gJD77iVw5EiNTRHS8tJYeXglcYfjSMhJKF2P9otmTMtz87u93bytCygiIiIiIpc8wzT/5G+6v2Oz2fjwww8JCAgoXbvllluIjY09b6zIwIEDy/zF165dS+/evS9YHz9+PHPmzGHQoEH88ssvZGVlERERQe/evXnuuefOm8ddUFDA1KlTWbRoEfn5+Vx77bXMnj3bqZndOTk5BAQEkJ2drbEnIiJS6+Rt+Ylj992HeAQrkwAAIABJREFUmZ//h8+xeXvjFhODe/36537F1Metfn1KTpwg/c03KU5MAsA1IoLQhx4k4OabMVydOiNbarizxWdZk7SGuMNxbDm+BZNzP0J6uXpxXf3rGNhkIFfUvQKbUeZJeiIiIiIiIk4ra5frVPH9vxiGgd1uL3vKakLFt4iI1HZ5P/3EyZdfAdM8V2rHxOBePwb3mHNFt0udOn94MLRZXEzW8uVkvDWbkhMnAHBv0IDQSRPxu/56jDL8jCA1k8N0sO3ENuIOx7EqYRVnS86WXusc3pmbm9xMn5g++LhpDI6IiIiIiFSNCi++azMV3yIiIv+bo6CAzMUfcertt7FnZQHg0aolYZMn49O9+x8W51Kz2B12DmUdKt3dnZKbUnotyjeKgU0GMqDRAKL8oixMKSIiIiIilyoV305Q8S0iIlJ29txcTn/wIafffx9HXh4AXpddRtjDk/Hu3NnidOKszIJMdqXvYmf6Tnal72J3xu7zdnb7uPnQr0E/BjYeSMewjvoHDhERERERsZSKbyeo+BYREXFeSWYmp955l8yFCzELCwHw6dGdsEcewbNFC4vTyX9T4ijhYObB0qJ7Z/pOks4kXfA8b1dvOoV34qZGN3FN/WvwcvWyIK2IiIiIiMiFVHw7QcW3iIhI+RWfOEHG7DlkffIJlJSAmxt1//4EQSNGWB1NgAOnD/B1wtfsOLmDPaf2kF9y4SGnDQMa0i6kHe3D2tM+tD2NAxrjYnOxIK2IiIiIiMifU/HtBBXfIiIiF68oMZETL79C7po1AASNHk34tMcw3NwsTnbpKSgpYFXiKpYcWMLO9J3nXfN186VdaDvahbajfWh72oa0JcAjwKKkIiIiIiIizlHx7QQV3yIiIhXDNE1Ovf026bGvA+B9xRXUez0W16Agi5NdGhKyE1gav5TPDn9GdmE2AK6GK73r9+bqelfTLqQdjQIbYTNsFicVEREREREpn0orvo8dO4ZhGERFRQHw008/sWjRIlq1asU999xzcaktouJbRESkYp357jtSH52K4+xZ3OrVI2r2W3g2b251rFqp2FHMd0nfsfTAUrakbSldj/SJZFizYQxuOpgQrxALE4qIiIiIiFScSiu+u3fvzj333MPYsWNJS0ujefPmtG7dmvj4eCZOnMiTTz550eGrmopvERGRild48CDHHnyI4qQkDC8vImfMwP/6vlbHqjVSc1NZFr+M5YeWk5GfAYCBQY+oHoxoPoJukd00p1tERERERGqdSiu+g4KC2Lx5M82bN+eNN97g448/ZtOmTaxatYr77ruPI0eOXHT4qqbiW0REpHLYs7JIeeQR8n74EYCQBx4g5KEHMWwatVFem1I2sXj/YjakbMBhOgAI8QphSNMhDG06lEjfSIsTioiIiIiIVJ6ydrmuzt64uLgYDw8PAL799lsGDhwIQIsWLTh+/Hg544qIiEht5BIYSPQ//8nJV17h9IfzyJg9m8KD8US8OAMXXx+r49UoecV5TN88nc+PfF66dmXdKxnRfAS96/fGzaZDREVERERERP7N6eK7devWzJ07lxtvvJHVq1fz3HPPAZCamkqdOnUqPKCIiIjUbIarK+HTpuHRvAVpTz3FmdXfUpRwC1Gz38I9OtrqeDXC3lN7mbpuKklnkrAZNkY1H8WoFqNoGNDQ6mgiIiIiIiLVktOfM37ppZd4++236dWrF7fccgvt27cHIC4ujiuuuKLCA4qIiEjtEDhkMPXnfYhLaAiFBw+SMGw4eZs3Wx2rWjNNkwV7F3Drl7eSdCaJuj51ef/695l25TSV3iIiIiIiIn/C6RnfAHa7nZycHIKCgkrXEhIS8Pb2JiwsrEIDVgXN+BYREak6xSdOkPzQBAp27wYXF8KnTSPo1tEYhmF1tGolsyCTJzc9ydrktQBcE30Nz3Z7lgCPAGuDiYiIiIiIWKisXW65TpYyTZNt27bx9ttvc+bMGQDc3d3x9vYuX1oRERG5ZLiFhxMzfx7+AweA3c6J6dNJ/etfsf/2M4XAz2k/M2zlMNYmr8XN5sbjVz5ObO9Yld4iIiIiIiJl5PSO78TERPr160dSUhKFhYXEx8fTqFEjJk+eTEFBAXPnzq2srJVGO75FRESqnmmanH7/A06++io4HLhGRlDvpZfwvvxyq6NZxu6w889d/2Turrk4TAcN/BvwSs9XaBHcwupoIiIiIiIi1UKl7fieNGkSnTt3JjMzEy8vr9L1wYMHs2bNmvKlFRERkUuOYRjUueN2YhbMxy06mpLU4ySOG8+JV17BUVRkdbwql5aXxl2r7mL2ztk4TAc3N76Zj2/6WKW3iIiIiIhIOThdfG/cuJEnnngCd3f389ZjYmJISUmpsGAiIiJyafDu1ImGy5cTMGwomCan3/sXCSNGUhAfb3W0KrPu2DqGrxzO1hNb8Xb15sXuLzL96ul4u2mMnIiIiIiISHk4XXw7HA7sdvsF68nJyfj5+VVIKBEREbm0uPj6EDl9OlFvzsIlKIjC/ftJGDqMU+9/gOlwWB2v0hTZi3jpp5d46LuHyCrMomVwS5YMWMJNjW6yOpqIiIiIiEiN5nTx3adPH2JjY0sfG4ZBbm4uTz31FP3796/QcCIiInJp8bvuOhqtjMO3Z0/M4mJOvvQSSbffQfHx41ZHq3CbUjYx8vORLNi3AICxrcayoP8CYvxjLE4mIiIiIiJS8zl9uGVqaiq9e/fGxcWFgwcP0rlzZw4ePEhISAjr168nLCyssrJWGh1uKSIiUr2YpknWkqWcmDEDMz8fm58fdZ98koABNX8n9IHTB5i5dSY/Hv8RgECPQKZ3m07P6J4WJxMREREREan+ytrlOl18A+Tn57N48WK2b9+Ow+GgU6dO3HrrrecddlmTqPgWERGpnooSEkj5618p2LkLAP/+/an71JO4BARYnMx5aXlpvPnLm8QdjsPExM3mxugWo7m73d0EeNS89yMiIiIiImKFSi2+axsV3yIiItWXWVJCxty3yZgzB+x2XMPDiXzxBXy6drU6WpnkFefx3u73mL93PgX2AgBuaHADEztNJMovyuJ0IiIiIiIiNUuFFt9xcXHccMMNuLm5ERcX96fPHThwoPNpLabiW0REpPrL37WL1Kl/oSgxEQCvjh0JGDQI/xv64VINv3+XOEr4JP4TZu+czemC0wB0CuvEo50fpW1oW4vTiYiIiIiI1EwVWnzbbDbS0tIICwvDZvvj8zANw8But5cvsYVUfIuIiNQMjrNnOfHKK2R9vAQcDgAMd3f8rruWgMGD8enaFcPFxdKMpmmy9tha/rH9HxzNPgpAA/8GTL5sMtdEX4NhGJbmExERERERqck06sQJKr5FRERqluITJ8n5fCXZK1ZQePBQ6bpraCj+AwcQOGgQHk2bVnmuPRl7eHXrq2w9sRWAII8g7u9wP8OaDcPN5lbleURERERERGobFd9OUPEtIiJSM5mmScGevWSvWEHO559jz8oqvebZps25USg39sc1KKhSc+w5tYd3d73Lt0nfAuDh4sHYVmO5o80d+Ln7VerXFhERERERuZRUWvE9ceJEmjRpwsSJE89bf/PNNzl06BCxsbHlS2whFd8iIiI1n1lUxJl168he8Rm569ZBScm5C25u+PXqSdCYsfhceUXFfT3TZNuJbbyz+x1+SP0BAAODAY0HMKHjBOr61K2wryUiIiIiIiLnVFrxXa9ePeLi4rjsssvOW9++fTsDBw4kOTm5fIktpOJbRESkdik5fZqcz78ge8UKCvbuPbdoGES/8w6+V3e7qHubpsnGlI28s/sdfjn5CwAuhgv9G/bnzrZ30jiw8cXGFxERERERkT9Q1i7X1dkbnzp1ioCAgAvW/f39ycjIcPZ2IiIiIhXONTiY4HFjCR43loID8WS8OYszq78l9dFHafjJMtzq1XP6nnaHnW+TvuXd3e+y//R+ANxt7gxuOpjbWt9GlF9URb8NERERERERKSebsy9o0qQJX3/99QXrX331FY0aNaqQUCIiIiIVxbN5MyJffRXP1q2xZ2WRPGkyjsLCMr++2FHMikMrGPTZIB5d9yj7T+/Hy9WL21rfxtdDv+aJLk+o9BYREREREalmnN7x/cgjj/DQQw+Rnp7ONddcA8CaNWuYOXNmjZzvLSIiIrWfzcODqDde5+iQoRT8+isnnn+BiGef+dPXFJQUsPzQct7/9X2O5x0HwN/dn1tb3sroFqMJ9AysiugiIiIiIiJSDk7P+AaYM2cOzz//PKmpqQA0aNCAp59+mnHjxlV4wKqgGd8iIiKXhtyNmzh2991gmkS88AKBQwb/1+dtOb6FaRumkZ6fDkAdzzqMbz2eEc1H4OPmU5WRRURERERE5Hcq7XDL30tPT8fLywtfX9/y3qJaUPEtIiJy6UifPZuMN2ZheHjQYPEiPFu1Kr1mmiaL9i/ilZ9fwW7aifSJ5PY2tzOoySA8XT0tTC0iIiIiIiJQ9i7X6RnfACUlJXz77bd8+umn/Ls3T01NJTc3t3xpRURERKpIyH334duzJ2ZhIckTJ2HPzgag0F7I3zf9nRk/zcBu2hnQaACfDfqMUS1GqfQWERERERGpYZze8Z2YmEi/fv1ISkqisLCQ+Ph4GjVqxOTJkykoKGDu3LmVlbXSaMe3iIjIpcWenc3RYcMpPnYMn5498Jj5DI+sm8KujF3YDBtTLpvC2FZjMQzD6qgiIiIiIiLyO5W243vSpEl07tyZzMxMvLy8StcHDx7MmjVrypdWREREpAq5BAQQ9cbrGB4e5K1bz7ypA9iVsQt/d3/mXDeHca3HOV16F+zbx6n33qMkM7OSUouIiIiIiEhZuTr7go0bN7Jp0ybc3d3PW4+JiSElJaXCgomIiIhUJs+WLUm5fwCRscvo/30u6Q2jmHDfv4j2j3bqPiWZmaTHvk7WkiVgmmSvWEH0e+/hFhZWSclFRERERETkf3F6x7fD4cBut1+wnpycjJ+fX4WEEhEREalMxY5iXtjyApO9VrC6o4ENuPOTM4TnlP1HI7OkhNMLFnL4+n5kffwxmCY2Hx8KDx4icexYilNTK+8NiIiIiIiIyJ9yuvju06cPsbGxpY8NwyA3N5ennnqK/v37V2g4ERERkYqWWZDJvavvZfH+xQC4T7kfz7ZtcGRnkzJpEo7Cwv95j7zNWzg6eAgnpk/HkZODR4sWxMyfR8MVy3GrV4/ixCQSxoyhKCGhkt+NiIiIiIiI/DdOH26ZmppK7969cXFx4eDBg3Tu3JmDBw8SEhLC+vXrCauBH+vV4ZYiIiKXhv2n9zPpu0mk5qXi7erNC91f4Nr611KcmsrRIUOxZ2UROHwYEc89919fX5ySwolXXuXM118D52aFhz48mcDhwzFcXM49Jy2NpNvvoOjoUVxCQ4j517/waNq0yt6jiIiIiIhIbVbWLtfp4hsgPz+fxYsXs337dhwOB506deLWW28977DLmkTFt4iISO33dcLXPLnpSfJL8on2i+aN3m/QJKhJ6fXcTZs4dtfdYJpETH+OwGHDSq85Cgo49d57nHrnXcyCArDZCBo1itCJE3AJDLzga5VkZJB0510UHjiAS2Ag0e++i1eb1lXyPkVERERERGqzSi2+axsV3yIiIrVXfkk+s3fM5oM9HwDQNbIrL/d4mQCPgAuemzH3bdJjYzHc3YlZtAjP1q04s2o1J196qXRmt/fllxP+xN/wbN78T7+uPSuLpLvvoWD3bmy+vkT/8228O3Wq8PcnIiIiIiJyKanU4vvAgQPMmjWLffv2YRgGLVq04KGHHqJFixYXFdoqKr5FRERqH9M0WZ24mle3vsrxvOMA3Nb6NiZ1moSrzfW/v8bhIPnBh8j9/nvcIiNxq1+fs5s3A+Baty7hf/0Lfv36YRhGmTLYc3M5dt995G/dhuHlRfTst/C56qqKeYMiIiIiIiKXoLJ2uU4fbrls2TLatGnDtm3baN++Pe3atWP79u20bduWpUuXXlRoERERkYpwJOsId6++mynrpnA87zgRPhHE9o5lSucpf1h6Axg2G5EvzcCtfn2KU1M5u3kzhrs7IQ/cT+Mvv8D/hhvKXHoDuPj6Uv+dd/Dp1g0zP59j997Hme+/r4i3KCIiIiIiIn/C6R3fjRo1YsyYMTz77LPnrT/11FPMnz+fI0eOVGjAqqAd3yIiIrVDblEuc3fOZeG+hZSYJbjb3Lmj7R3c0eYOvFzLfhZJwYEDpDz8CB5NmxI29VHco6IuKpejqIiUhx8hd80acHWl3quv4N+v30XdU0RERERE5FJUaaNOvL292bVrF02aNDlv/eDBg7Rv356zZ8+WL7GFVHyLiIjUbKZp8vmRz3lt22tk5GcA0Cu6F3+5/C9E+0VbnO4cs7iY1MemkfPFF2CzEfH88wQOHmR1LBERERERkRqlrF3uH3/W9w/06tWLDRs2XFB8b9y4ke7duzufVEREROQi7D+9nxe2vMAvJ38BIMY/hr9e/le6R1Wvn0sMNzciX34Jm7cXWUuXcXzaNBz5ZwkePdrqaCIiIiIiIrWO08X3wIED+etf/8q2bdvo0qULAJs3b2bp0qU888wzxMXFnfdcERERkcqQXZjNrF9msTR+KQ7TgZerF/e0u4dxrcbh7uJudbz/ynBxoe6zz2J4eZE5bz4nnn0OR14ede66y6nZ4SIiIiIiIvLnnB51YrOV7TxMwzCw2+3lClXVNOpERESk5rA77Cw/tJzXt79OVmEWAP0a9GNK5ynU9alrcbqyMU2T9NjXOfX22wD4XnMNEc89i2udOhYnExERERERqd4qbdSJw+G4qGAiIiIi5bUzfScvbHmBvaf2AtAksAnTrpjGFRFXWJzMOYZhEPbwZFzr1OHkK6+Q+913HNmxg4jp0/G7prfV8URERERERGo8p3d810ba8S0iIlK9ZeRnELstls8OfwaAr5svD3Z4kJEtRuJmc7M43cUpOBBP6tSpFMbHAxA4fDjhj/0Vm4+PxclERERERESqn7J2uWWbWwJs2bKFr7766ry1efPm0bBhQ8LCwrjnnnsoLCwsf2IRERGR/6fYUcy8PfMYsHxAaek9qMkgVg5eyZhWY2p86Q3g2bwZDZYtJfiOO8AwyFq6lCODh3D2l1+sjiYiIiIiIlJjlbn4fvrpp9m1a1fp4927d3PnnXdy3XXX8dhjj7Fy5UpefPHFSgkpIiIil54tx7cwPG44r2x9hdziXFrXac2C/gt4rttzhHiFWB2vQtnc3Qn/y1Tqf/ABrpERFCclkXjrGE6+/jpmcbHV8URERERERGqcMo86iYiIYOXKlXTu3BmAv/3tb6xbt46NGzcCsHTpUp566in27t1beWkriUadiIiIVB/Hc4/zytZXWJ24GoAgjyAmdZrE4KaDsRll/jf7Gst+5gwnpk8n+7M4ADzbtCHy5ZfxaNTQ4mQiIiIiIiLWq/BRJ5mZmYSHh5c+XrduHf369St9fPnll3Ps2LFyxhWR/2PvvuOrqu8/jr/uSu69yc2ehBUIe+MAQRFwIGpxC2pR24r86mit1l9draMWRftzFeuqq1ardiBuRZkyVbbsEAgje+fmJned3x83BBCUBAIHyPv5eNxHcs+9ufd9kWDyvt/z+YqItHUNoQZeWPkC494bx8xtM7FarFzV8yo+uOQDLut+WZsovQFsHg/tpk4l66knscbHU79mDXmXXkr5m2+irVlERERERESap9m/Qaanp5OXlweA3+9n2bJlnHbaaU2319TU4HAc/3M2RURE5OgyDIM52+dw8XsXM23FNOpD9QxOG8y7F77LPUPuIT463uyIpog77zy6vD+DmOHDMerrKfrjw2yfdCOBomKzo4mIiIiIiBzzml18n3feedx1113Mnz+fu+++G7fbzRlnnNF0+6pVq+jatesRCSkiIiInppUlK7npy5u4ddat7KjdQZorjalnTOW1816jR1IPs+OZzpGeToeXXiT93nuxREfj/eor8saNo/I//9XsbxERERERkR/R7BnfJSUlXHrppSxYsIDY2Fhef/11LrnkkqbbzzrrLIYOHcqf/vSnIxb2SNGMbxERkaMnGA4yK38Wf1/7d1aWrATAbrVzbe9rmdx/Mm6H2+SEx6aG3Fx23fm/1Dfup+LIyiL5hl8Qf+mlWKOjTU4nIiIiIiJydDS3y2128b1bVVUVsbGx2Gy2fY6Xl5cTGxtLVFTUoSU2kYpvERGRI6/WX8v0zdN5c92b7KzdCYDD6uDCLhfy874/p3N8Z3MDHgcMv5/yN96g7JVXCZWVAWBLTSH5+p+ROGE81piYVnmeYHk5hELYU1Nb5fFERERERERayxErvk9EKr5FRESOnILaAt5c9yb/2fQfagO1ACRGJzK+53jG9xhPiivF5ITHn7DPR+V//kvZyy8TLCgAwBYfT+LEiST99BpsCQktejwjHKb+u7XUzp1L7bx51K9eDUDcBReQeustRHXq1OqvQURERERE5FCo+G4BFd8iIiKtb3XJat5Y+wafb/uckBECIDs+m2t7X8uFXS7EaXeanPD4Z/j9VH3wAWUvvoR/2zYArG43iVdfRdJ11/3oiu1QTQ3eBQsjZff8+YRKSw98R5uNhEsvIeWmm3BkZh6JlyEiIiIiItJsKr5boK0W34ZhMHtDMZuKarlmaCdio+1mRxIRkeNcKBxi9vbZ/H3t31levLzp+NDMoVzb+1qGZw3Hamn23trSTEYoRM1nn1H6wos0bNgAgCU6moTLLiP5Fz/HkZWFYRj4c3MjRffcedQtWwbBYNNjWN1uYoYPJ/bMEcScMYJQWSnFTz+Nd+68yOM5HCRMmEDK5Buxp2iVvoiIiIiImEPFdwu01eIbYMiULyiqbmD6TcMY1DHR7DgiInIcW7BzAY8ufZSt1VuByIaVF2RfwMTeE+mR1MPccG2EYRjUzplD2fMv4FsZ2TgUu53Y00+nYdMmAjt37nP/qOxsYs88k9gzR+A+6SQsB9irpW7Zckqeeoq6pUsBsLhcJP30pyT/4uctHqkiIiIiIiJyuFR8t0BbLr6v+dtiFmwu47HL+3PlyR3MjiMiIsehHTU7ePzrx5m1fRYA8dHxXNn9Sq7qeRWpbm2OaAbDMKhbsoTSF16gbtHipuOWqCjcp57aVHZHdezY/MdbtIjip56mftUqAKweD0k/u56ka6/DFts6m2qKiIiIiIgcTHO7XM22aOO6pXlYsLmM3OJas6OIiMhxpj5Yz6trXuXlNS/TEGrAZrFxTa9r+OWAXxIbFWt2vDbNYrEQM3QoMUOH4luxgtqFC3H27EXM0CFY3e5De7xhw+h82mnUzp5NyVNP07BxI6XP/IWKN/5B8qRJJF59FVan5raLiIiIiMixQcV3G5eTFikmNqn4FhGRZjIMg9nbZ/PY14+xszYyOmNIxhDuOvUuchJzTE4n3+caOBDXwIGt8lgWiwXP6NHEjhxJ9SefUPrMX/Bv20bxY49R/tprJN9wAwmXXYo1RivARURERETEXCq+27g9xXeNyUlEROR4sLVqK49+/SgLdi4AIN2dzp2n3Mm5nc7FYrGYnE6OFovVSvwFFxA3ZgxVM2ZQ8uyzBHcVUDRlCiXTppF45RUk/vSnODIyzI4qIiIiIiJtlGZ807ZnfJfVNnDSw19gscDaB8/DFWUzO5KIiByD6gJ1vLjqRV5f+zrBcBCH1cH1fa7nhn434Ha0fHSGnFjCfj9V//kP5a+9jn/btshBu524MWNIuv56XP36mhtQREREREROGNrcsgXacvENMPiPMyn3+vnw1tPpmxVvdhwRETmGGIbBZ1s/4/FvHqe4rhiA07NO565T76JTXCeT08mxxgiHqZ0zl/LXXqNu6dKm466TTyLpuuvwjB6NxaY32UVERERE5NBpc0tptpzUWJZ6y9lcXKviW0REgEjhvax4Gc+ueJavC78GICs2i7tOvYsz25+psSZyQBarFc/oUXhGj6J+7VrKX3+dqo8+xvfNt+z85lscHTqQdO21JFx6ieaAi4iIiIjIEaUV32jF9z3TV/PWknxuGZXDb8f0MDuOiIiYaEfNDj7I/YD3c99nR+0OAKJt0dzQ7wau73M9TrvT5IRyvAkUFVHx5ltUvPMO4aoqAKweD4njryTxmmtwZGaanFBERERERI4nWvEtzdZNG1yKiLRptf5aPt/2OTM2z2BZ8bKm4267mzGdxzB5wGSyYrNMTCjHM0d6Omm3/4aU/5lM1YwZTXPAy/72MmWvvEp0Tg7OXr1w9u5FdK9eOHv1wubxmB1bRERERESOcyq+hZym4rvW5CQiInK0hMIhlhQsYUbuDGblz6I+VA+ABQtDMocwrus4zup4ljaulFZjdbtJvOoqEsaP32cOeMPGjTRs3EjVjBlN93V07BgpwxsLcWevXthTU01MLyIiIiIixxsV30K3tMiqqm1ldfiDYaLsVpMTiYjIkZJbmcuM3Bl8lPsRxb7ipuPZ8dmM6zqOC7tcSEZMhokJ5US39xzwQGEh9WvXUr92HfXr1lG/bi3BXQUE8vMJ5OdT89lnTV9nT00luncv3AMHEn/RRTjatTPxVYiIiIiIyLFOM77RjG/DMOj/wOfUNAT5/Dcj6J6u04tFRE40mys2c//C+1lVuqrpWHx0PGM7j2Vc13H0TemrDSvlmBCsqKBhXWMR3liI+/PyYO8fWa1WYkeMIGHCeGLPOAOLzWZeYBEREREROao041uazWKx0DUtlhXbK9lUVKviW0TkBLOieAU3f3kz1f5q7BY7p7c/nYu6XsSI9iOIskWZHU9kH/bEROzDhhEzbFjTsbDXS/2GjdSvXUvNF19Qt3gxtXPmUDtnDvZ2mSRecQXxl12GIy3NxOQiIiIiInIsUfEtQGSDyxXbK9msOd8iIieUr3Z+xe1zbscX9DEgdQBPjXqKFFeK2bFEWsQaE4N78CDcgweR9NNraNiSR+UrWzKpAAAgAElEQVS771I1fTrBXQWUPP0MJc/+Fc/o0SROGI976FAsVo1uExERERFpy/QbgQDQLX33Bpc1JicREZHW8vGWj7n1y1vxBX0MzxrOi+e8qNJbTgjRXbJJv+t35MybS7vHpuIaPBiCQWo+/5z8n/+C3PPGUvbyywTLy82OKiIiIiIiJlHxLQDkpEWKb634FhE5Mby17i3umn8XQSPI2Oyx/GXUX3A73GbHEmlV1uho4seNo/Nbb5I9YwaJV1+NNTaWQH4+xY//mc1njmTnHb/Fu3gJRjhsdlwRERERETmKtLkl2twSYHt5HWc8Npsou5W1D47BbtN7IiIixyPDMHhu5XM8t/I5AK7qeRV3nXoXVov+XZe2IVxXR/XHH1Px9jvUr1nTdNzeLpP4ceOIH3cR0V2yTUwoIiIiIiKHo7ldropvVHwDhMMGve//lPpAmNm/HUl2SozZkUREpIXCRphHljzC2xveBuCmgTfxP/3/B4vFYnIyEXP41nxH5TvvUP3JJ4Rr95zV5hzQn/hx44g7/3zsiYkmJhQRERERkZZS8d0CKr4jLnhmPt/tqubFiSdxbp8Ms+OIiEgLBEIB7v3qXj7Z+gkWLNwz5B4m9JxgdiyRY0K4vp7a2bOpem8GtV99BaFQ5AaHg9gzRxB/0UXEnnkm1qgoc4OKiIiIiMhBNbfLtR/FTHKM65YWy3e7qtlcUsu5ZocREZFmqwvUcfuc21mwawF2q50pp09hbPZYs2OJHDOsTidxY8cSN3YswdJSqj/6iMoZM2hYu47aL76k9osvscXHE3fB+cRfdBHO/v11poSIiIiIyHFOxbc06ZbuAWBzkTa4FBE5XlQ1VHHTlzexqmQVLruLJ0c+yfCs4WbHEjlm2VNSSLruOpKuu476jRupfv99qt7/gGBxMRVv/ZOKt/5JVOfOxI4ciXvoENwnn4wtNtbs2CIiIiIi0kIadYJGnez26ZpC/ucf39IvK54Pbj3d7DgiInIQRd4iJs+cTG5VLnFRcfz17L8yIHWA2bFEjjtGKIR38WKqZsygZuYXGD7fnhttNlx9++IeOpSYoUNwDRqE1ek0L6yIiIiISBunUSfSYt3SI6uZcktqCYcNrFad4isicqzaWrWVG2feSIG3gDR3Gi+c/QI5iTlmxxI5LllsNmKHDyd2+HBCtV5q586hbvESvEuWEMjPx7dyJb6VKyl74QUsUVG4Bg0iZugQ3EOG4urXF4vDYfZLEBERERGR71HxLU06Jblx2CzU+UPsqvLRPtFtdiQREfme9eXreWfDO3y05SN8QR+d4zrzwjkv0C62ndnRRE4IttgY4i+4gPgLLgAgsHMn3iVLqVuyGO+ixQSLi6lbsoS6JUuAZ7C43bhPPonYEWeSOP5KleAiIiIiIscIFd/SxG6zkp0Sw8aiWjYV16r4FhE5RtQH6/ls62e8u+FdVpWuajreP7U/z4x6hmRXsonpRE5sjqwsEi69hIRLL8EwDPxbt1K3ZAneRYupW7KEUGUl3nnz8c6bT83nn5P11JPYk5LMji0iIiIi0uap+JZ9dEvzsLGoltziWkb1SDM7johIm5ZXlce/Nv6LGZtnUO2vBsButXN2x7O5sseVnJx+MhaLxlKJHC0Wi4Xo7Gyis7NJnDABIxymYeNGvF99Relfn6Nu6VLyLr+cDtOm4ezd2+y4IiIiIiJtmopv2UdOWmTO96aiWpOTiIi0TYFwgNn5s3l3w7ssKVzSdLxdTDuu6HEFF+dcTIorxcSEIrKbxWrF2bMnzp49iR05ku0330xgWz5br76GzIcfJv7CC8yOKCIiIiLSZqn4ln00Fd/FNSYnERFpWwpqC/j3pn/z303/pdRXCoAFCyPaj+DKHlcyvN1wbFabySlF5IdE5+SQ/e677PztnXjnz2fXb39L/bq1pN1+OxabvndFRERERI42Fd+yj27pkeJ7c3EthmHoFHoRkSOoIdTA7PzZzMidwcJdCwkbYQCSnclc2u1SLu9+uTatFDmO2OLj6fD8c5Q89TRlL71E+cuv0LB+A1n/92dsCQlmxxMRERERaVNUfMs+slNisFqguj5ISU0DaXFOsyOJiJxQDMNgZclKZuTO4LO8z6gJ7DnDZkjGEK7ocQWjO47GYXWYmFJEDpXFZiPtjttx9u7FrnvuxbtgAXlXjqf9tL/g7N7d7HgiIiIiIm2Gim/ZR7TdRqfkGPJKvWwqrlXxLSLSSnbV7uKD3A/4YMsHbKve1nQ8MyaTC7tcyLiu4+gc39m8gCLSquLGjiUqO5sdN99CID+frROuot2jjxB37rlmRxMRERERaRNUfMt+ctJiySv1srm4luE52kBNRORQ1QXqmLltJu/nvs/SwqVNx112F+d0OodxXcdxSsYpWC1WE1OKyJHi7NmTzv/+Fzt/czt1ixez81e/puGmX5Jyyy1YrPq+FxERERE5klR8y366pcUyc22RNrgUETkEhmHwTdE3vLf5PWZum4kv6Gu67dSMUxnXdRzndDoHt8NtYkoROVrsiYl0/NtLFD/+OOWv/53Svz5H/br1tHv8MWyxsWbHExERERE5Yan4lv3kpEV+CdtUVGtyEhGR40tFfQUPLHyAWdtnNR3r6OnIuK7j+EnXn2ijSpE2ymK3k3733UT36kXhH+6ndvZstl45nnZTp+Ls01urv0VEREREjgAV37KfbmkeAHJLVHyLiDTX/B3z+cPCP1DqK8VutXNR14u4OOdiBqQOwGKxmB1PRI4BCRdfTHTXHHbceiv+LVvYesUVWD0eXP374xowANeggbj69cOWkGB2VBERERGR456Kb9lP17QYAEpr/ZR7/STFRJmcSETk2OUL+njimyd4e8PbAHSN78ojZzxCr+ReJicTkWORq19fsv/9LwoeeADvVwsI19TgXbAA74IFTfeJys7GNXBgpAwfOIDobt2w2GwmphYREREROf6o+Jb9uKPsZCW42FnpY3NxLadmJ5kdSUTkmLS2bC13zb+LvKo8AK7pdQ23Db4Np91pcjIROZbZU1LoMG0aRiBA/caN+FaupH7lSupWrCCwLR9/Xh7+vDyqpk8HwOJ24+rXD9fAgSRccjFRnTub+wJERERERI4DKr7lgLqlx6r4FhH5AaFwiFe/e5Vnlz9L0AiS6krlj8P/yPCs4WZHE5HjiMXhwNWnD64+feDqqwEIVlTgW7kS34oVkUJ81WrCXi91S5ZQt2QJZS+/TOL48aTcfBP2JP2MJiIiIiLyQ1R8ywF1S4tlzoYSNhXXmB1FROSYsrN2J/fMv4dlxcsAOLvj2dx/2v0kODWTV0QOnz0xEc/IkXhGjgTACIVoyM3Ft2IFNTO/wDt/PhVvvknVjBkkT5pE0nXXYnXqLBMRERERke/TFvJyQDlpsQBsLtYGlyIiAIZh8EHuB1z2/mUsK16G2+7moWEP8cTIJ1R6i8gRY7HZcHbvTuKVV9LxpRfp+NqrRPfuRbi2lpInnyR37PlUvvceRjhsdlQRERERkWOKim85oJw0D6DiW0QEoKqhijvn3ck9X92DN+BlYOpA/j3u31zS7RIsFovZ8USkDYkZOpTsf/+bdo9Nxd4uk2BBAQV33U3eZZfjXbjQ7HgiIiIiIscMFd9yQLtXfBdU1VNTHzA5jYiIeRYXLObS9y/ls62fYbfYuWXgLbx63qt08HQwO5qItFEWq5X4cePo+vHHpN5xO9bYWBrWrSP/578gf9KN1G/YaHZEERERERHTmVp8z5s3j5/85Ce0a9cOi8XCe++9t8/thmHwwAMP0K5dO1wuFyNHjuS7777b5z4VFRVMnDiR+Ph44uPjmThxIpWVlUfzZZyQ4l0O0jzRgFZ9i0jbZBgGf1v9N278/EaK64rpHNeZN85/g8kDJmO3aosMETGf1ekkZdIkus78nMSJE8Fuxzt/PnmXXMKu++4jUFRsdkQREREREdOYWnx7vV4GDBjAtGnTDnj7Y489xhNPPMG0adP4+uuvycjI4JxzzqGmZs+Gi1dffTUrVqzg008/5dNPP2XFihVMnDjxaL2EE1q3dM35FpG2qS5Qx53z7uTpZU9jYHBpt0t558J36JvS1+xoIiL7sScmknHvPXT96EM8Y8ZAOEzVv/9D7nnnUfLMM4RqvWZHFBERERE56iyGYRhmhwCwWCxMnz6diy++GIistGvXrh233XYbv/vd7wBoaGggPT2dqVOnMnnyZNatW0fv3r1ZvHgxQ4YMAWDx4sWcdtpprF+/nh49ejTruaurq4mPj6eqqoq4uLgj8wKPQw+8/x2vLdzK5BFduPv8XmbHERE5KnbW7uTXs37NhooN2C127h5yN1f2uNLsWCIizVa3fDnFjz2Ob/lyAGzJyaTeegsJl1+Oxa4zVkRERETk+NbcLveYnfGdl5dHYWEh5557btOx6OhozjzzTBY2btyzaNEi4uPjm0pvgKFDhxIfH990nwNpaGigurp6n4vsr2vjnO9NWvEtIm3EkoIlTPhwAhsqNpDkTOLlMS+r9BaR44570CA6vfUmWU8/jaNTR0JlZRQ+8CBbxl1EzaxZHCPrXkREREREjqhjtvguLCwEID09fZ/j6enpTbcVFhaSlpa239empaU13edAHnnkkaaZ4PHx8XTooA3KDqRbmkadiEjbYBgGb657k8kzJ1PZUEnv5N68c+E7DE4fbHY0EZFDYrFYiBtzLl0//JD0++7DlpiIf8sWdtx0M/kTr8W3erXZEUVEREREjqhjtvjezWKx7HPdMIx9jn3/9gPd5/vuvvtuqqqqmi7bt29vvcAnkN3F9/aKOnz+kMlpRESOjIZQA79f8HseXfooISPEhV0u5PXzXicjJsPsaCIih83icJD002vo+vlnJE+ahCU6mrpvvmHrFVey8/Y78O/YYXZEEREREZEj4pgtvjMyIoXD91duFxcXN60Cz8jIoKioaL+vLSkp2W+l+N6io6OJi4vb5yL7S46NJtHtwDAgt0SrvkXkxFPkLeJnn/6MGbkzsFqs/Pbk3zLl9Ck47U6zo4mItCqbx0PaHbfT9dNPiL/oIrBYqP74Y7aMPZ+iR6cSqqw0O6KIiIiISKs6Zovv7OxsMjIymDlzZtMxv9/P3LlzGTZsGACnnXYaVVVVLF26tOk+S5Ysoaqqquk+cni6pXkAFd8icuJZUbyCCR9NYHXpauKi4nju7Oe4rs91P3rGkIjI8c6RmUm7qY+S/d//EDPsNIxAgPLXXmPzmPMoe+VVwn6/2RFFRERERFqFqcV3bW0tK1asYMWKFUBkQ8sVK1aQn5+PxWLhtttuY8qUKUyfPp01a9Zw/fXX43a7ufrqqwHo1asX5513HpMmTWLx4sUsXryYSZMmceGFF9KjRw8zX9oJIye9cYPLIhXfInLi+M/G//Czz35Gqa+UnIQc3r7gbYa10xumItJ2OHv1osPLL9PhpReJ7t6dcFUVxY89xpax51Pxr39pBbiIiIiIHPcshonbus+ZM4dRo0btd/y6667jtddewzAMHnzwQV544QUqKioYMmQIzz77LH379m26b3l5Ob/61a94//33ARg3bhzTpk0jISGh2Tmqq6uJj4+nqqpKY0++55Wv8njow7WM6ZPOCxNPNjuOiMhhCYQDTF06lXc2vAPA2R3P5k+n/wm3w21yMhER8xihEFXvzaDk6acJFhdHDtrtxAwdimfMuXjOOgt7UpK5IUVEREREGjW3yzW1+D5WqPj+YfM3lTDx5aV0TY3hyztGmh1HROSQbanawu8X/J5VJasAuHngzdzY/0aslmN26peIyFEV9vmoeOstqt7/gIYNG/bcYLXiPvVU4saci+fss7GnppoXUkRERETaPBXfLaDi+4cVVtUz9JEvsVktrHvoPKLsKohE5PgSCof4+9q/M235NPxhP7GOWKacPoVRHfc/40hERCIa8vKo+XwmNZ99Rv3atXtusFhwnTSYuHPH4Dn3HByNG9KLiIiIiBwtKr5bQMX3DzMMg34PfE5tQ5DPfzOC7ukesyOJiDTb91d5D283nAeGPUBGjIoaEZHm8u/YQc1nn1P9+WfUr1y1z22ugQPxjBlDwuWXYfPo50QREREROfJUfLeAiu8fd/GzC1ixvZK/XjOY8/tlmh1HROSgDrTK+39P+V8uzrkYi8VidjwRkeNWYNcuambOpPqzz/EtXw6Nv0pE9+hBp7+/ji0+3uSEIiIiInKia26Xq7kVclDd0mIB2FRUa3ISEZGD21K1hWs/uZYnvn0Cf9jP8KzhTL9oOpd0u0Slt4jIYXK0a0fSddfR+a03yZkzh/Tf34ctNYWGDRvYfuNkwl6v2RFFRERERAAV39IMObuL7+Iak5OIiPywUDjEq2te5Yr3r2BV6SpiHbE8NOwhnjvrOY02ERE5AhzpaSRdcw0dX34ZW3w8vpUr2X7zLYQbGsyOJiIiIiKi4lsOrlt6pPjeXKwV3yJybNpSqVXeIiJmcXbvToe/vYTV7aZu8WJ23n4HRiBgdiwRERERaeNUfMtB5aRGNiraUuolGAqbnEZEZI9QOMQra17hig+0yltExEyufv1o/9xzWKKiqP3yS3bdey9GWD83ioiIiIh5VHzLQWUlunA6rPiDYbZX+MyOIyJCVUMVH235iImfTOTJb5/EH/ZzetbpWuUtImKimCGnkvX0U2C3U/3+BxT+8Y8YjZtfioiIiIgcbXazA8ixz2a10DU1lu92VbO5uJbslBizI4lIG2MYBnlVeczZMYe52+eyomQFYSOyktDj8HDnKXdycc7FKrxFREzmGTWKdlMfZddv76Tyn29j88SRdvtvzI4lIiIiIm2Qim9plpy0SPG9qbiGc3qnmx1HRNoAf8jPN0XfMG/HPOZun8uO2h373J6TkMOZ7c9kQs8JGmsiInIMib/gAsK1Xgrvv5+yF1/E6oklZdIks2OJiIiISBuj4luapVta4waXRdrgUkSOnFJfKfN3zGfejnks3LWQumBd020Oq4NTM0/lzPZnMqL9CLJis0xMKiIiPyZx/JWEa2sofvzPlPzfE9hiY0m86iqzY4mIiIhIG6LiW5olJy2yweXmEhXfItL6tldv5/5F9/N14df7HE9xpTQV3UMzh+J2uE1KKCIiLZX8i18Qqqmh7PkXKHzoj1hjYogfN+6IPZ9hGAS2bcO3ejW+lavwb92K5+yzSBg/XqOwRERERNogFd/SLDm7V3wX1xIOG1it+uVBRFrHrPxZ3PfVfdQEagDok9wnUnZ3GEGvpF5YLdqHWUTkeJX6618Trqml4s032XX3PVhjY/GMHt0qjx0sL8e3ahX1q1bjW7UK3+rVhKuq9rmP96uv8C1fQcaDD2B1OlvleUVERETk+KDiW5qlU7Ibh81CnT/Eriof7RO16lJEDk8wHGTa8mm8vOZlAAakDuDRMx6lvae9yclERKS1WCwW0u+9h3BtLVUzZrDztt/Q4YXniTnttBY9TqjWS8PGjdSvXoVvZaTkDmzfvv/zRUXh7N0bZ/9+WJ0uyl5+maoZM2jIzaX9X57BkZnZWi9NRERERI5xKr6lWRw2K9kpMWwsqmVzca2KbxE5LKW+Un4373csLVwKwE97/ZTbT7odh81hcjIREWltFquVzD89TLjOS83ML9h+8y10euVlnAMGEKqsJFhcQrDkRy6lpRh1dQd87KguXXD174+zfz9c/Qfg7N4NS1RU0+0xpw1l529up37NGvIuv4L2zzyN+6STjtZLFxERERETWQzDMMwOYbbq6mri4+OpqqoiLi7O7DjHrJve/JaPVxdy3wW9uOGMLmbHEZHj1PLi5dwx5w5KfCW47C4eGvYQ52WfZ3YsERE5wsJ+Pzv+55d4Fy4ER+MbnYFAs7/elpKCq39/XP37Rcrufv2weTwH/Tr/jh3suPkWGjZsALudjPvuJXHChEN9GSIiIiJisuZ2uVrxLc0W2eCykE1F2uBSRFrOMAzeWPsGT377JEEjSJf4Ljw58km6JOiNNBGRtsAaFUX7aX8hf9KN+L79tum4LSEBe2rqnkta6r7XGy9W96GdcRjVvj2d//kWu+69l5pPPqXwgQepX7uOjPvu3Wd1uIiIiIicWFR8S7N1273BZYmKbxFpGW/Ay+8X/J6Z22YCMLbzWB4Y9gBuh8YmiYi0JVa3m05v/J2GzZuxxcZiT0k5KuWz1e0m64knKOvVm5Inn6Ty3Xdp2LSJrKefwpGWdsSfX0RERESOPqvZAeT4kdNYfG8qqkETckSkuTZXbGbChxOYuW0mdqudu069i6kjpqr0FhFpoyxWK87u3XG0a3dUV1xbLBZSbpxEhxeex+rx4Fu+nK2XX4Fv1aqjlkFEREREjh4V39Js2SkxWC1QXR+kpKbB7Dgichz4aMtHXP3x1Wyt3kqaO41Xx7zKNb2uwWKxmB1NRETaqNgRI+j87jtEde1KsLiYbT+dSOX098yOJSIiIiKtTMW3NJvTYaNTcgwAm4s17kREfpg/5OdPi//EXfPvwhf0MTRzKP/6yb8YmDbQ7GgiIiJEZ2fT+Z23iR09GsPvp+Duuyn80xSMFmy2KSIiIiLHNhXf0iJdUxvHnaj4FpEf8F3pd1zz8TW8veFtAG7sfyPPn/08Sc4kk5OJiIjsYYuNpf20v5By880AVLzxBvm/uAHfd9+ZnExEREREWoOKb2mRbum7i+8ak5OIyLHGG/AydelUrv74ataXrycuKo5nz3qWWwfdis1qMzueiIjIfixWK6m33kLWX57B6nZTt3QpWy+7nLzLr6DiX/8iXFdndkQREREROUR2swPI8aVb4waXGnUiInublT+LKUumUFRXBMAFXS7gzpPvJNmVbHIyERGRg4s75xyiu3Sh9Nm/Uj1zJvVr1lC4Zg3Fj04lbtxPSBw/HmfPnmbHFBEREZEWUPEtLdI93QPA6h1VVNcHiHM6TE4kImYq9BbyyJJHmLV9FgDtY9vz+6G/Z1jWMJOTiYiItEx0165kPfF/pJeXUzV9OhXvvktgWz6V/3ybyn++jWvAABLGjydu7HlYXS6z44qIiIjIQVgMwzDMDmG26upq4uPjqaqqIi4uzuw4x7Rw2GDMU/PYVFzL7ed051dndTM7koiYIBQO8faGt3lm2TPUBeuwW+xc3/d6JvefjNPuNDueiIjIYTPCYeqWLKHinXep+eILCAYBsMbFET9uHInjryS6m34WFhERETnamtvlqvhGxXdLvb9yF7/653LiXQ6++t0oPFr1LdKmrCtbx4OLHuS7ssjmXwNSB/CH0/5A98TuJicTERE5MoIlJVT+dzqV775LYOfOpuOuwYPxnDUaa0wsVpcTi9OF1e3C6mz83OXE6nJhce0+5sRi1TZLIiIiIodDxXcLqPhumVDY4Nwn55Jb4uXOMT24eVSO2ZFE5CioC9Tx1xV/5R/r/kHICOFxeLjtpNu4vPvlWC36JV5ERE58RjiMd8FCKt99h5pZsyEUavFjWNxu4s47j/R77sEWG3MEUoqIiIic2FR8t4CK75Z7b/lObntnBQluB1/9bjSx0RoXL3Iim7djHg8vfpgCbwEAYzqP4Xen/I5Ud6rJyURERMwRKCqmavp0GjZvJlzvw/DVE/b59nxeX49RVxf52NCw39dHdepE1pNP4Ozd24T0IiIiIscvFd8toOK75UJhg3OemMuWUi+/O68nvxzZ1exIInIEBEIBHl36KO9ufBeAdjHtuHfovYxoP8LkZCIiIscPIxzGqI8U4w0bNrDr3vsIFhRgcThIu/NOEif+FIvFYnZMERERkeNCc7tcnZsuh8RmtTSNOHlp/ha8DUGTE4lIayv1lXLD5zfw7sZ3sWDh+j7XM/2i6Sq9RUREWshitWJ1u7EnJxMzbBhdpv+X2LPOwggEKJoyhR233EqostLsmCIiIiInFBXfcsguGtiOTsluyr1+3lyyzew4ItKKviv9jgkfTmBZ8TI8Dg/TzprGHSffgdvhNjuaiIjIcc+WkED7aX8h/d57sTgc1H75JVsuuZS6b781O5qIiIjICUPFtxwyu83atOr7xXlb8PlbvrmPiBx7Psj9gOs+vY6iuiKy47N584I3tcpbRESklVksFpIm/pTO77xNVKdOBAsK2HbtdZQ+/zzGIWyaKSIiIiL70oxvNOP7cARCYUb/3xy2l/u474Je3HBGF7MjicghCoaDPPntk/x97d8BGNl+JFPOmIInymNyMhERkRNbqNZL4UMPUv3+BwC4TxtKu6lTcaSlmZxMRNoywzAo8/oprKqnoKqewiofHqeD8/pm4HTYzI63j/pAqPESpj4Qwve96/WBEPXBED5/5HpDMEznZDfDu6UQ53QcsVyGYWgPB5EjQJtbtoCK78Pz9tJ87vrvalI90cz/31HH3P8AReTgqhqquHPunSwqWATAjf1v5OaBN2O16MQgERGRo6Vy+nsUPvQQhs+HLSmJdlOnEnvG6WbHEpETVElNAwVVPgqq6imo9FFQXb9XyR25+EPh/b4uKSaKa4Z0ZOLQTqTFOU1IHhEMhflodQHPzcllfWHNIT2G3Wrh5M6JjO6ZxuieaXRNjT2sonpHRR2LcstYtKWMRblllNY20DHJTXZKTOMlluyUGLqkxpDmiVYpLnKIVHy3gIrvw+MPhhn15znsrPTxhwt78/PTs82OJCItsLFiI7+e9Wt21O7AZXfx8PCHObfzuWbHEhERaZMatuSx8/bbaVi/HoDkG35B6q9/jcVx5FYkikjb0BAMsTSvnFnri5m9vpitZXUH/RqLBVJio8mMd5Ie52Ttrmp2VvoAcNgs/KR/O35+ejZ9s+KPdPwmDcEQ/122k+fn5rLte6/BbrXgdNgaL1acDhuuvT7ffXFYLazYUcmWEu8+X98+0cXonmmM6pnGaV2SD7qwr7i6vqnkXphbRn75wf9Md3NH2ZoK8S4pMWSnRorx5Jgooh1Wom02oh1WomxWrFYV5ELBSRAAACAASURBVCJ7U/HdAiq+D9+bS7Zx7/Q1pHmimadV3yLHjZnbZnLvV/fiC/rIis3imdHP0D2xu9mxRERE2rRwQwPFUx+j4q23AHAO6E/WY48R1amTyclE5HhTVF3P7PXFzFpfzILNpXj32pvLaoE0j5OMeCeZ8ZGP7eJd+1xP8ziJsu85CzQYCvP52iJe+SqPb7ZVNB0/NTuJX5yezdm90rEdoZK2zh/krSX5vDR/C0XVDQAkuh38fHg2E07tSILbgcPWsjNWt5Z6mb2hmNkbSlicW7bPCnenw8qwrimM6pHKqJ5ptE90U+71s3hLGQtzS1mUW0bu94pzm9VC//bxnNYlmWFdU+iU7Ca/vI4tpV7ySrzkldaSV+ple4WPULj5dVyUzUq03dpUhEc7bJHrdiuuKBsD2icwLCeFUzsn4YpSHyMnPhXfLaDi+/D5g2FGPj6bXVX1PDiuD9cN62x2JBH5EWEjzLMrnuXFVS8CMCRzCH8e8WcSnAkmJxMREZHdqmfOpODe+whXV2NxOkm97dckTZyIxaZSQ0QOLBw2WLmjMlJ2byhmzc7qfW5P80QzqkdkRfPp3VKIjbYf8nOt2F7JK1/l8fHqAoKNJW6nZDfXD+vMFSd3OKzH3ltVXYDXF23l1QV5VNQFAMiIczJpRBeuOrUD7qjWeZ46f5AFm8siRfj6Ygqq6ve5PT0uuqlw381igT7t4pqK7pM7J+JpxsxwfzDM9oq6xjLcGynGG0vxKl+AhmCYQ2nromxWBnVM4PScFIZ3S6F/Vjz2Fr4ZAJHZ5NvLfawtqGZdQTUbCmtIjIlibN8MTuua3OI3GA72XGt2VvPxmgK2lNTSJTWWXplx9MrwkJ0Sc0j5zeDzh6io81NR56eyLkAwbOC07znTILrpc2vTdY26OXQqvltAxXfreGPxNn7/3hoy4pzM/d+RRNv1A7nIsajWX8vd8+9mzo45AEzsPZHbT7odu7V1fmAUERGR1hPYuZOC3/8e78LIPhyugQPJnPInortoU3mRtsowDLz+EBXeSMFW6fNTXN3AgtxS5m4ooczrb7qvxQL92ydwVuMM696Zca0+NqOgysffF23jrSX5VPkixbQn2s74Uzpw3bDOdEhyH9LjFtfU8/JXefxj0bamleqdkt388syuXDI464h2DoZhsL6wpqkE/3ZbBbsXaPdI93Ba12RO65rM0Oxk4t2tP4rKMAwCIQN/KExD42ackUuIhsCez/3BMOVeP0vzylmwuZRd3yvrPdF2hnRJZnhOMqfnpJCTtv8Mc58/xIaiGtYVVLN2V6ToXl9YQ21D8IDZEtwOzu2dzvn9Mhmek3JIJbhhGKzcUcUnqwv4eE0B28t9B7xflN1K9/RYembE0TPDQ+/MOHpmxpEUE9Xi52yp2oYghVU+dlXWU1RdT2VdoLHYDlC5V8G9+3hDcP95+Aeze9X+7nLc5bDhjLLhbFzJ79rnmA1XlLVxdM+e+w/smEDX1Ngj8CdwbFPx3QIqvltHQzDEmY/NobC6nj9e3JeJQ3Uqpsix5pvCb3hw0YNsrd5KlDWK+4fdz7iu48yOJSIiIj/CMAwq//1viqc+Rri2FktUFCm33ELyz3+Gxa43rkVOFMFQmC2lXtYVROZoV+1VtO3zuc9PIPTDVY4n2s6I7pHxHCN7pJISG31U8tf5g/x32U5eWZDXNDvbaoHOKTEkuBwkuqNIcEeR4HaQ6HYQ744i0e0gwdV4LCaKBJeDcq+fF+dt4Z1vtuNvLBN7Zni4aVQO5/fNMGUFcGWdn7UF1XRP9xy1P8+WMgyDrWV1fLW5lAWbSlm0pazpjYjd0jzRDM9JoXNyDBuLI2X31lIvB5q6EmWz0i09svq6Z4aHLaVePltTuM8bK/EuB+f0TueCxhJ877E43xcOG6zYUcnHqwr4ZE1h06x4iIyVGd0zjcEdE9lS6mV9Y/let9donu+/jp6ZcfTK9NA+wRUpgb9XFO/+3BW1Z+Z7lC2yyrrOH2RXZf1em7vWU1jt2+dYTf2Bi/8fY7daSGj8e+2wWalvfKOiPhCKXILhFo24aY6HLurDtad1btXHPB6o+G4BFd+t5/WFW7n//e9oF+9kzp2jfvQfPRE5eorrivm/b/6Pj/M+BiDNncbTo56mb0pfk5OJiIhIcwUKCii4/3688+YD4OzTh8wpU3D20P4cbcnu1b6VjasN96w6jHzskOTmnN7pxLTSmAnZV019AIfNetj7WlV4/awrrGZdQaR8XFdQzabi2qaitzmi7dbGMtlBgttBv6x4RvdM5+TOia06iqKlwmGDuRtLeGVBHvM3lR7WYw3qmMAto3IY3TNNYyFaKBQ2+G5XFQs2l7Fgcylfby3/wVXJKbFRkfEimXH0bvzYJTVmv79HwVCYpVvL+Xh1AZ+uKaK0ds/olzinnXN6Z3BB/wyG56QQbbcRDhssy6/g49WFfLKmYJ/xMe4oG6N7pnF+v0xG9kjdb2RNOGywvaKOdQU1rC/csxL9+xuatoTVEllFXh9o3veZx2mnXbyLtLhokmKimr7f9v649/dgbLT9oH9Pg6Ew9cG9yvDGYrwhGPnc5w9RHwxFPgZC+AIhfP7wfsciH8P8bFhnRvVMO+Q/k+OViu8WUPHdeuoDIUY8NpvimgamXNKPq4d0NDuSSJsWCAX4x7p/8PzK56kL1mHBwuXdL+dXg36led4iInLCqvIF+Nc32zmlcxIDOpxY/78zDIOqGTMomvII4epqcDhI+Z/JpEyahCXqyJ/6fbRV1QUor/M3FQS+wJ7Vc769CoPI8chqOn8wjMNmweWwEb179V/jar/dn0c79j9d3NV4/FiYu+rzh/hw1S6+3lre4tW+ECmUzuuTwSWDsxjWNeWIbTZ4LAmGwtTUB0lwO1rtv18obLCxqIZvt1WwLL+CZdsq2NpYurkcNhIbVynvLsSSYiIF2Pev261WNhbtKbjXFdRQWF1/wOeMibLRI8ND55QYktxRJMZEEe/aXbA5IqtJYyKrpI+HTQy3l9exo8JHlW/3iIjAvm/a+PZcr6wLNG0ueUa3FG4amcPQLkmmfz+eKOoDIZZtq+CrzaUUVtfTPd3TWHZ7SPM4W/x4obDB140l+CdrCimp2VOCe5x2hnZJZtWOyn3mosdE2Ti7dzpj+0bK7kN5A8nbEGwazbK+oIYybwM+f2NBHAhT3/R5iHp/iLpA6ICrrD3RdjITnGTEu2i31+aumQm7N3d1tdqceml9Kr5bQMV363rlqzwe+nAtWQku5tw50tR3mkXasoW7FvLo0kfJq8oDoH9qf+4Zcg99kvuYnExEROTImbm2iPveW01RdQMWC1wzpCN3julJvKv1Z7CaKVBcTOFDD1H7xZcARPfoQeaUP+Hqc/z+fz4YCrO+sIbl2ytZvq2C5dsrySv1HvUcFguNs1T3lOGufQr0yG3d02IZ2y+DnDRPqz33xqIa3lqSz3+W7TjoafZRduu+YyLcUXicdr7ZVrHPn1t6XDQXD8ziksFZ9Mw4er/vGobBllIvy7ZVsGJ7JaGwQXZKDNkpMXRJjaVjkvuQzxCu8gUaS6/GFdOFkc33GoJhYqJsZKfG0Dk5hi4pMXt9HnvQWcxVdQGWba9g+bYKluVXsmJ75Q/OOW4NHZJc9MqIzCzunRkpITskult9BvfxwjAMfIHI3OoE94n3Rt6JLBQ2+GZrOZ+sKeTj1QUU712CR9s5u3Em+BndUg77bIlDEQiFm4rw+kCYxBhHszYhlWOXiu8WUPHduuoDIU6fOpvS2gamXtaP8ado1bfI0VRQW8Dj3zzOzG0zAUhyJvGbk37DuK7jsFr0RpSIiJyYyr1+Hnj/O95fuQuAlNjoplOwUz3R/OHC3lzYP/OEWjloGAY1n3xC4R8fJlRRATYbyTfcQMrNN2E9DlZ/l9Q0sDw/UjAuz69g1Y4qfIH957nGRtubVmw3bf7l2LMZmNMR2QhsdyEdZbPiDzWuBPeHvndKeeOp5N87xdz3AysCm6N7eixj+2Zyfr9Muqfvv3HcwdQHQny6ppA3l2zj660VTcc7JLm4aEAWGfHOptW+8XudYu9y2A74XIZhsHx7JdOX7eSDVbuorNsz47dXZhyXDc5i3MB2h7TC88fU1AdYub0qsjI6v4Ll+ZX7zRfem9UCHZLce8rwlBiyU2LpkhpDRpwTq9VCOGywrbxur5XSkaJ779nALZHodjQ+XyzZKW6yU2KpbQiwbFsl3+ZXsLm4dr+viYmyMahjIoM7JjC4UyKDOiRitUKFN3I2QoU3ssldedPHQNOx3dcbAiG6psU2jpHw0LNxZrKKNzkRhcMG3+ZXsDSvnJ4ZHk7vlnJENyKVtknFdwuo+G59f5u/hYc/WkeHJBez7tCqb5GjoSHUwOvfvc5Lq16iPlSPzWLjqp5X8cuBvyQuSv+2iYgcKbsqfVTWBeiZ4Wmzq/TMZBgGH60u4P4Z31Hm9WO1wKQRXfjN2d1Zll/BfdPXsKVx9euI7qk8fFFfOia7TU7duoLl5RQ9/DDVH38CQFTXrrT708O4Bg48Ys9ZHwixKLeMhuCBNx77IYVV9ZGie3sF28v3Ly890XYGdkxgUMdEBnVMYFCHhKO28jMQ2muEyl7zVH17lea7x6vU1gdZkFvKgs2l+4wd6Zoaw/n9MhnbN5NemZ4fLcG3lNQ2re6uaCynbVYLZ/dK4+ohnTgjJ+Ww/03xB8PM3lDMf5ftYNb64qasVguc3i2VywZncW7vjBaPzAiHDbaU1rJsW+S/5bJtlWwsruH77UK03Ur/9vEM7phItMNGXqmXvNJa8kq8eH9g0zqIbHSXleCioKr+Bze3y0pwNRXJvTIjq6Yz453sqPCRV+pla6mXLY0f80q9Pzha5PuyU2IY1DGBwR0TOalTIt3TPW1iVIyIyPFExXcLqPhufXX+IGdMnU2Z18/jl/fnipM7mB1J5IQ2b8c8Hl36KNtrtgNwUvpJ3DPkHronarMrEZHWVlLTwKItZSzKLWVhblnTJkvtE11cPDCLiwdlkZMWa3LKtqG4up773lvD52uLAOiR7uGxy/vvM9e7IRji+TlbeHbOZvzBMNF2K786qxuTzuhyVDdi3z3GY+2uatonujglO6nVF4dUz5xJ4YMPESqNbCYXc+YIUiZPxj14cKs+z4bCGm55axmbDrA6tiUsFuie5okU3I1FY9fU2OPqDaSqugBfrCvikzUFzNtY2jSfGKBzspux/TK5oF8mfdrFYbFY8AfDfL62kDcX57NoS1nTfdvFO5lwakfGn9KB9LjWXYm9W4XXz4erC5i+bAfL8iubju+eVQ3sV9TvfXX35xYsVNb5qT7AKJYOSS4GddizOrpXZtwB/54bhkFJTQNbSr1sKWkswxuL6vyyOoJ7rb6PtlvpkeGhV0ZkFvHukrul44vq/EG2ltZFSvGyyPNuLfPisFkY1DGRkxrfbEmOjW7R44qIyNGn4rsFVHwfGS/MzeWRT9bTKdnNl7efiV2rvkVa3faa7UxdOpW5O+YCkOZK446T72Bs9tgT6lRuEREzVdUFWJxXxqLcMhbmlrKxaN+yz2a1EGWz7jOioX/7eC4emMVPBrQj1XN4JUqdP8iqHVWsL6jG43SQGe8kPT6y8ZI7yvxNl8Jh46gXlYZh8O9vd/DHD9dSXR/EbrVwy+gcbhqZ84Nl9paSWu57bw0LcyNlY7e0WKZc2o9TOicdkYyltQ0sz69sHPkQGeOx98pVT7SdET1SOatnGiN7pJEU0zqrmoMVFRQ//meq3nsPwpES1n3yySRPnkzM6cMP6+cDwzB4a2k+U2asos+u9fTxFVHc71SKU9o3+zE8TgcDO0RK7v4d4ok7gUY9VNcHmLWumI9XFzBnYwn+4J4SvEOSi1M7JzN3YzGltX4gsup6VI80rh7SkZE90o7qquK8Ui/Tl+9k+vIdB1x53xxOh5X+WQkM6hT57zmoY0KrjE8JhsLsqPCxvaKOzHgnnZNj9LukiIjsQ8V3C6j4PjK8DUHOeGw25V4/T1w5gEsHN/8HYhH5cWEjzNNfv8Jr654jjB+7xc7EPhOZ3H8yMY4Ys+O1iLchyFtL8nlraT4ep51rT+vMTwZkag7cMWBjUQ0LNpdit+29qZe1caOvyHVX1J5jToeNaLu1zb7psr28jo9WFzCyR+pR3TysNYXDBp+vLeLFebnklnjplLxn9uruS+eUGFOLKsMwjvjfMW9DkK+3ljcW3WWs2VW13+n7vTPjGNY1mWE5yZzSObJyd+baIt5bvpO5G0uaVivarBbO6JbCJYOyOKd3+kGL6sj4AC/L8yMb+63Ir2RDUc0Pzh6Oc9rJjHeR0ViE7/noarruiba3yp+ZYRgUVtezdlc1a3dV892uatYWVLOr0seYvhlMubjfQTeOaw07Kuq4Z/oa5m0sAaBfVjyPXd6fXpkH/74zDIP3Vuzk4Q/XUeaNlI/jT+7A3ef3PKxxGoFQmA2FNZHZxo2b4uWX1+13P4/TTu/MODYX1zY9P0RW0g7umMjonmmM7plGz4wfH5HRHP5t2yj728tUvvceBCJjNJy9e5M8eTKec87GYm1ZkVhZ4+O5p97BNX82wwpW4wn4msLHnX8+KbfcTHR29mFlPpHUNgSZtb6YT1YXMHtDMfWBPSV4mieaCad0YPypHclKcJmYMvI9sam4lvrGN+52/1tnfO8+3z/mtNvolh6rkZYiImIKFd8toOL7yPnrnM089ukGuqTEMPP2MzUbTaQVrCnO5ZaZv6MsuAGAoLcrjsrLeGnC+QzpkmxyuuarrPPz2sKtvLpg634bH6V6opk4tBPXDOmo001NkFtSy1NfbOLDVbv2K/sOxmKJrKKcdEYXLh6U1WZ+Id5eXscVzy9qmh86uGMCV53akQv7t2vx3FQzBEJh3l+xi+fm5h5wY6/vS4mNpktKDJ0bNwbLTomhS2oM6XFO4pyHX7JW1weaZrJGTkuvJa+sjq2lXqp8AaLt1sibLvbdb77seQPG5bDhbLrNitNuI2zw/+zdd3hUZfr/8feUzEwy6b1AIAGS0HsvAQXEVSzYEBFde9u1sbr+LKtrZdX9rquoKIoIiiiCawMsEJAqvSeEmoSQhJCezGTa+f1xkkkiiJmQZALcr+vKdWbOnDnnmRAmmc95zn1jdTix2pzumr0Nm9s1vF9db5ZmrU4RZoZ1CmdYpzAGJ4adcXbuyYpqvtt1nCXbjrGtXjkBP4OOCd2juapvHMM7h6PTquUCtmWXsC2rhO3ZJWzPKj5t+YCYIBPdY4Oodjg5XmrleInljPVx6zMbdEQHmYgN9iU60ERMsBqKq1++xASfGo47nC4OF1a6w+29NcuiemHtb8UF+/LmlL70iw9p1Lg85XIpfPJrFq98v49KmxODXssj45K4Y0SCx7NBS6pszFiWzoJf1RJhoWYDT/6pK5P6xTX4PiiKgsXuVJvW1WtkV1SvmV1mQQU7c0oaBJtQ937Yt30I/To0LOPhcinsyClhRXoBP+8rYO/xsgbPjQ0ycVHXSC5OiWJopzBMPk1/H7Hn5VE05yOKP/8cxaKG1YbERMLuupOgyy5D4/P7JysUlwvL1q0cXLiEqh9/INBa9/6gi4jA1KUzlevWqyu0WoKuvJLw++/D0E4mvNRXZXOQlnGCrUeLGdAxlIu7Rl4wvx+FEEKIliDBtwck+G45FdUORsxYQUmVnacu68odIxNb7Fi1P8oX6kxD0XiKopBbaiWmplv8ucLmcPDYjzP5Oe8j0DpQnAYSdJPRVQ5le1YpBp2WV6/rxZV94rw91DMqKLMye81hPtlw1B3aJISbuXtUIkVVNuauO0J+WTUABr2WSX3juG1EAklRAd4cdosqt9o5VmIhMdy/VevN/tbRk5W88XMmX207Ru3k0pFdwjEb9PXCwrrGXmrzLzVIrN/Yq1ZcsC93jUrkhoHtzyq0aesKyqxcN2s9R09WEe5voKTK7p7tG2jSM6lfO24cFE9ydNv7GbbanXy+OZtZqw5xrEQNxAJMem4Z2pEJPaI5VqI2CDt8otJde7WwovqM+9RpNQT5+hDs50OIn4EQPx+C6y1r1wf7+eBn0HOs2NKg1uqRwsoGM2G9JS7Yl+GdwxjWKZyhncKaXHP3cGElX207xlfbj7lrgYM649PfqHc3XazPXT6gpu5xn/YhRAedevxyq528UivHS63klVrJK6u9bVGXZVZKquynPO90zAadOxAvs9hJzys/7QkAnVZD5wh/usUG0i0m0F23+PEvd5JVVIVeq2H6JcncNTKxWX/HHi6s5PEvd/Lr4SIABnQIYca1vegUcXa11DcdKeLJJbvc5Wt6twsiwOTTINg+3ffhdAJNevrGh7hLPvSJD2701RHHSy2sSC9gxb4C1hwobHBMk4+WEZ3Dmdg7tklNCGs5iospnjePovmf4CpTg3af2FhC77id4EmT0JrUnzFFUbDu2kXZd99TtmwZjvx89z4qjGZ8x40n4fqr8OvfH41Oh3XfPk78900qVq5UN9LrCb72GsLvuQef6OgmjVUIIYQQ4kwk+PaABN8t6520g8xYlg7A9QPa8dwVPZp99tsPe/J45n97iA4yMffPg1rlMtsLUXZRFVGBJq8Gc2fL5VJ49IsdLNl2jBA/H4Z2CmNoYhhDO4XTKcLcZk+cfL1nO89teAab/jAABlsyTw35B1f37InV7uThhdtZujsPgOnjk7h/TOc291qyi6p4d9VBvtiS46552TUmkPvHdOLSHjHuK0LsThff7zrOB2sOszOn1P38kV3CuW1EAqldIlrlhIWiKGzNKuarbbnodRou6R7NwI6hzXblisPpYs2BQhZvPcbyPXlUO1wY9Fp6xgWpDaHiQ+gbf/qwq7nlFFfx1ooDfLElx11OYWzXKB4e14XusUGN2ofd6cJqd1JZ7eR/24/x/i+H3QFpuL+BPw9P4OahHc6rWq6gzhq9YdYGMvLLaR/qy6J7hqHRwBebc/hsU1aDuqn9O4QwZVA8l/WK8fqJgDKrnXnrjzJn7WF3rdlwfyO3j0hg6pB4As7w71RutXOksIpDNY3I3F8nKimvPnWmclOF+xtJCPejY5haXqW21Eq4v5FqR8NZ2habs8HsbfW+y31fo9HUleqpmQ2uzgrXumeM1z5u8tFhNugJaaZ6y7UURWFbdglLth7j2525FNcLpBPDzfSJD6ZvfAh92weTHB3QbLNBLTYnx0st5JVaya2ZKX68rGZZE5r/9qqbWn4GHV1rwu1uMYF0iw0kKSrgtD+/ZVY7/2/xLr7deRyAUUkR/Pv63oSf5VU7eaVWZq48wGebsrA7FfwMOh6fkMLNQzo02+8Cm8PF7DWH+O/PmafM2q5l0GkJNRsIMRsINasnb0LNBkL8DMSF+NIvPoTEcHOzjMlic7L+UCE/7ytgRXoBx0ut7sf8jXou7RHNpH7tGJwQ2qTjOSsqKPnsM05+NNfdBFMXHk7ozTfjqqyk7PvvsefkuLev1JtYG9sD64iLuefh6wkK8Dv9uHfs4MR/36Ry7VoANAYDwZNvIPzOO9FHRHg8TiGEEEKI3yPBtwck+G5ZTpfCWysO8J+f96MokBwVwMyb+tE58uxm6ID64fv5b/fy+ea6P877xQcz/47BbaLZ0/lk/oajPPXVbrpE+vP+tAF0DD+36kjXevn7fcxafei0j0UGGBnWKYyhndQZfu1DT//BrjVlFVfwl2//w0HHl2i0DnAZGRt1BzPG34mhXg1sl0vhlWXpvFfz2m4Y0J4Xru7RJi6j3Z9fzjtpB/l6R647VO3fIYQHxnRmdHLE7wb0iqKw+WgxH/xymB/25rlnIHeKMHPbiAQm9W3XIiUkSqpsLN56jM82ZZ3SwC7c38Al3aO5tEcMQxJDm9RoKT2vjMVbj/HVtmMUlNfNnPX10TVojFcrNsikhmHxwfTrEEL32MBmq3/+20AJIDUpgkfGJdG7ffBZ7dtqd/LFlhxmrTpITnHNTGKjnmnDOvDn4QlnHYa1BRXVDm56fwM7ckqJCjTyxd3DiA+re99wuRTWHCjk041Z/Lgv3/3zXzsLfMrg+Fa/kqGwopoP1xxm3vqj7pC6XYgvd49K5LoBZz8z32p3UlJlp8SiloUoqbJRXGWnuMpGqcVOcaV6v6TKRonFTmW1g+ggkxpq1wu4O4T5nTF8P9fZHC42HDqJS1Ho0z74rGpLN4cqm8M9azy3xIKvQUf32CA6hPp5FKwqisJnm7J59us9VDtcRAQYeeOGPgzrHO7xmAorqnkn7SDzNhx1nyxNTYrghat6tNjv5+yiKlbtP4HZqGsQbIeaDfgZdF45oawoCvuOl7N0t1o6p/b9FNSrEq7qG8vVfds16e9ql9VKyeLFFM3+AHtubsPjGk2sj+nOj1E92R3Xjaev7s31A9o36ntQtXkzJ/7zBlWbNwOgMZkInXoTobffjj6kZcrgCCGEEOLCIsG3ByT4bh3rDhTy18+2U1hRjZ9Bx0tX9+Sqvk0vyfDr4SIe+Xw7OcUWNBq4cVA83+7IpczqYFRSBLOnDTinZya3Jb8eLmLK+xsaXLr/5pR+pCadW7N3Plp7mGe/2QvAv67tRacIs7tx2eajxe4P1rXahfi6g/ChieGtMvO2lsXmZMbPq/gi63W0piwAInQ9eWv8y3SL7PC7z5u3/gj/+HoPLkWdIf32Tf28Fh7tyC5h5soD/LC37hLpUUkR3D+6E4MSQj0KELKLqpiz9gifb86moiasC/HzYcrgeC7uGkW3mMCzCuwURWHTkWIW/JrFd7uOu38WTD5aLu8VC8CPe/MbzIoM8fNhfLdoLu0ZzbBO4Wd8vzlRXs3XO3L5cktOgzquIX4+XNknjkn94ugZF8SRk1VsPVrMtuxith4tIT2vjN/2szPotHSPC6Rv+xC6xgQQF+zrLk/Q2O9BQbmVd9MOMX9jXaA0rFMYj45Pon+H0EbtIowfqwAAIABJREFUo7HsThff7szl7ZUHyaypHW3y0TJ5YDx3jkr0elOvprLandzy4a9sPFxEiJ8Pn989lC5nCLELyqx8sSWHBb9mNQiuBnQIYUxKJA6notagrqkvbbU7qba7amY2uxqud7gw+WjVsiE1JUVqS4gE+9Ysf3O7qNLG+6sP8dmmbHcJhS6R/tw3phOX94ptEyfJxPkjI6+cBz7dSmZBBRoN/GVMZ/56cZdGnSwsqbLx3upDfLTuCFU15bAGdgzh0fHJDDmH+li0BJdLPSG8eGsO3+083uAKi97tgri6bxwTe8d63BtDsdsp/e47Shd9iSY4mLTYPrxYFEK13khyVABvTel7xve30+5TUahav56CN97AumMnAFqzmdBbphF6663o5DOXEEIIIc6CBN8ekOC79RSUW3lwwXbWHzoJwI2D2vOPid09CqyqHU7+/eN+3lt9CEVRZ7u8fn1vhiSGseVoEVNn/4rF7uTyXjG8MbmvNNQ8S8dLLUx8cw2FFTbGd4viREU127JK0GrgsQkp3D0qsc2V1DidpbuOc9+nW1EU+Nslydw/pnODx612J1uzit1B+I7sEnfQXys2SG0IFh1kUpuDBZnct6ODTEQGnH0ZGEVR+GZnDv9c/S5W/+/RaB1oFRN3dH+IBwZMadT3+ud9+Tzw6TYsdicp0QHM+fNAYoLOLlx0uhR1tmaVTZ3BWVl7W13WzuCsv662TjfAhO7R3DemE73and0s4nKrnc835/DRusMNSkj46DR0iwmkT3u1VECf9sF0CPP7w+9XUaWNxVvVMPLgibo6uynRAdw0OJ4r+8a5S3PYnS7WHzzJ0t3HWb4nv0GDt0CTnrHdovhTjxhGdAnH5KPDanfy874Cvtyaw6r9J9yzfX10Gi5OiWJSvzhGJ0ee8WemstrBjhy16d22rGK2ZpWcsbFcmNlATLCJ2CBfYoN9iQ1WG9fV3tZrtcz+5RBz1x9xX84/sGMIj4xLZminlg2UXC6FH/fl8/bKA+yoKWGj12q4um8c94zudNZ1eluTzeHinvlbWJFegL9Rz4I7h9CzXeNKwrhcCqszT7Dg1yx+2lfg/rloTb3bB3P/6E6M7Rp1TvU5EOcWi83Js1/vYeFmtXnkoI6hvHFjn9/9fVRutfPhmiPM/uWQO9Dt1S6IR8cnM6pL+Dnxt0Zrstqd/LQvnyVbj5FW73eMXqthdHIEV/dtx8ikcPRaDRrU7139b6FGQ4P1GiC3xMqDC7e5G7LeNDiepy/vdtYnlitWreLEG/+let8+daWPD8bEREwpyRiTU9RlSgr60OY98SqEEEKI85cE3x6Q4Lt1OV0Kb/ycyZsrMlEUNWB6+6Z+JDYi9Nh3vIyHF24nPa8cgOv6t+OZid0azGhdtf8Ed8zdhN2pcNPgeF64qkezfFiqsjl4/tu9LN2dh16rweSjq/nS1tQFrfdVr2aoyUdHh1A/RiVFEBFwbl3ab7U7uX7WenbmlJISHcDi+4ah02p45qu6D7JX9I5lxjW9WqTkRHPZdKSIm2ZvxOZwMXVIPM9f+cc/E5XVDjYdKXIH4btzS/mjd0uNBsLMxgaBuMlHDTVrn1t/F3Xr6tZuzU0nU/kAna/6/U0KGMBb418ixj/Go9e8K6eU2+Zu4kR5NVGBRj68dWCjazXXKii38sOefJbvyWPDoZOnbV54Jjqthiv7xHJvaiePZ4r9EadL4ce9eSzacozt2cXuGsX1hfj50Lt9MH3qfQX7GVAUhQ2HiljwaxbLdudhc6oBsJ9BxxW9Y5k8KJ7e7YLO+DPicLr49XARS3fnsWxPHifqlSzxN+oZ0DGELUeLKbfWzcbr0z6Ya/rFcXmv2CbXDlYUhayiKrZmFbMtq4TDhZUcK7FwvMR62jIpZ9K7fTCPjktiZCsHSoqisPbASd5OO8C6g+pJUI0GUqID6RodQHJ0ACkx6u2IAONZja2i2sGRejWoQ8wGrukXd1alsJwuhQc/28a3O49j1Gv5+LZBDG7iLNT8MiuLtuRw8ERFze8OHUYfrVp/uqbWtFGvdf+uMdY8btSrJ1ZqTzSVWupKiqj3G96u/b87vHMY94/uzNBOYRIiilbzv+3H+H+Ld1FpcxLi58Nr1/Xm4q5R7serbA4+Xn+Ud1cddDfiTIkO4NHxyYztGik/q41QWFHNNztyWbz1GLuOlf7xE/5AgEnPv67pxaU9Pfvb40wUl4vyH3+i8K03qc48cNpt9BERGFNSMCUnuQNxQ0ICGr2ULxRCCCFEQxJ8e0CCb+/4JfMED322nZOVNswGHS9f04sreseedlunS2H2L4d4/Yf92JwuQs0GXp7Uk0u6n75T/Dc7cvnrZ9tQFHhgTGemX5J8VmPNzC/nvk+2ui/Tb6re7YIYnRzJmJRIesUFtemZdoqiMP2LnXy5NYdgPx++eWCEu6amoijM33CU577Zi8Ol0C0mkPem9addiPdrYv/WgYJyrnlnPaUWO+O6RfHu1P5NugqgtMrOwcIK8mpqoOaVqQ3B8kutHC+zkF9a7Q5Qm0bBJ3QNxohlaLRODBo/Hh/0GNclT2ryh/6c4ipu+2gT+/MrMBt0vHVTP8YkR/7hc5bvyWfZ7uNsPlp8Stjvb9QT7OdDqNlAsJ+BED+1wVfwb5a1zb5Cm7k53OkoikJOsYVt2SVszyphe3Yxu3PLTildA2oDOZeicORklXtd99hApgyO54resU0qC+N0KWw5WszS3cdZuiuPvLK6JmSxQSau7hfHpH7tWnRGs6IolFTZyS1VQ/DcUgu5JWqt3uM1t/PKrDhdCt1jA3lkXBIXpXg/UNqaVczbKw/y07780z4e4udDSnQgydEBdI0JICVabaxX/0SbzeEiq6iqJtxWmy0eOqEG3fVrqNcK9zdy7+hO3DQ43uNZjIqi8MTiXXy2KRsfnYb3pw1g9B/8n/I2RVGosjmxOVzN3qxRiMY6UljJAwu2svuYWurp9hEJPDS2C4u25DBz5UF3I9zECDOPjEviTz1i2vTfSG3ZgYJydx+J3HpNMRtrYMcQ/n19nxaro64oCo7cXKwZGVjT06lOz8CakY49K5vTzTDQGAwYO3fGt39//FNT8Rs0EK1B3suEEEKIC50E3x6Q4Nt78sus/HXBNjYeLgJOf0lldlEVj36+g1+PqNuM7RrJy5N6/eHs6U82HuXJJbsBeOqyrtwxMrFJY1y8NYcnl+zGYncSGWBkxjW9iAk2YbHV1V212p1YHU4sNvW+xe6kumZZZXOyM6f0lBk4YWYDqUkRjEmJZFSXCIL82lYTr9p62FoNzLt9MMNP05hq46GT3PfJVk5W2gg1G5g5pV+Ll0vwREGZlavfXsexEgt944P59I4hLTYzXVEUiipt7uZgeWXq0l4bhte/vPg3lxzbXOWsK51Jjm0LAAOjhvPSyGeJNp/+xI4nSi127p2/hXUHT6LTanj+yh5MGRzfYJtDJypYujuP5Xvy2JnT8Oe0d/tgJnSPZly3KOJD/c6Zuvk2h4t9x8vYnl3i/jpcWFfKxGzQcUWfOKYMim90iYrGcLkUtueUsOlwET3bBTEkIazNhDdOl0KZxU6wn4/XA+/fOl5qYc+xMtLzytiXV05GXjmHTlScUt8c1P83HcPMxAabyCm2kF1UddrtaoWZDTXNEs1sOlJEVpF60iMq0MgDYzpz/cD2jWoWqigKL363j9lrDqPVwFtT+vGnZpwNKcT5rtrh5JWl6cxZewRQ+xXUnjBuH+rLQxcncWWf2CY1DRanUhQFq92FgtLgqrPaj37qbdyXoikoaNB47e9RV2Ul1ZmZWGuC8Or0DKozMnBVVTXYTuPnh3noUPxTR+GfmopPVNTv7FEIIYQQ5zMJvj0gwbd3OZwu/vNTJjPTDqAo0C0mkJk39aNjmB9fbMnhua/3UGlzYjboePrybtwwsHEd5QFmrjzAq8szAHjtut5c279do8dltTv5x//qSnqM6BzOfyb3IdzDhkG1CsqspO0/QVpGAb/sL2zQkEirgf4dQtTZ4MmRdI0J8Gowtf7gSaZ+sBGnS/nDkwa5JRbumreZ3cfK0Gk1PH1ZV24Z1tHrwVq51c4Nszaw93gZCeFmvrx3WKvMPvbU9oLt/G3138irzMNH68PfBv6NycmTm/X7Z3O4eGLxLr7cmgPAvaM7MbFXLMv25LFs93H259ddyaDVwMCOoUzoEc0l3aOJPUcbD55OcaWN7TklVFY7GJMcidkol063ZVa7kwMFFew7XkZGXjnpeeWk55WdtqyN2aAjIcJMQrg/CeFmEsPNdAw3kxBmbhDi2J0uFm3J4c2fM90zIeOCfXngos5c27/dGRs8vvFTJv/3035AbY57/YD2zfyKhbgw/Lg3n+lf7KDUYicmyMRfLurCdQPO/P9PXJgUlwt7Tg7WvXupXLuWilWrcRQUNNjG2LUr/qNTCUhNxdSzJxpd2y29J4QQQojmI8G3ByT4bhtW7T/Bwwu3U1Rpw9+op3f7INYeUOu/DuigXnYZH+bZZZf1Z+jptBreuakf43+nPEp9h05UcN8nW0nPK0ejgYcuTuKBizo3W6NMu9PF5iPFpGUUsDKjoEHwCBAdaOKxCclM6tf4oL655BRXccVbaymqtHFVn1j+74Y+fxjCWu1O/v7lTr7anguotdefv6qHx01L9+dVsCe3FD+jnvHdoprcTMnmcHH73E38kllIuL+BxfcO9/hnp6W5FBdzds/hzW1v4lScxAfE81rqa3QN69oix1MUhf/+fMAd3NWn12oY1jmcS3uoM7ubenJHiNZworyajLxyjpdaaB/qR2K42eNa4NUOJws3ZfPWigPucijxoX789eIuXHWaGacfrjnMP7/dC8Azl3fjthEJzfeChLgAFZRZ2ZpVwujkiLNqnCguLIqiUL1vHxWrVlGeloZ1564G5VF0ISH4jxqJf2oq5hEj0MnnOiGEEOK8JcG3ByT4bjvyStXSJ7VlTXx0Gh4el8Tdozo1OXRWFIW/LdrJoi05GPRaPvrzQIZ1OrVsR61vduTy9y93UmlzEu5v4I3JfU9b5qM5ZRdVqbPB0wtYe7AQq1299PeFq3owdUiHFj12fRabk2vfXcee3DJ6xAWy6J5hjf5AqigKH6w5zEvf78OlqCUyZk3tT3SQ6ZRtq2wO9h0vY/exMnYfK2VPbhn788tx1KtXEO5vYOqQDkwd0sGjIFZRFB79YgeLtx7Dz6Bj4V1Dm7WURXM4aTnJk2ueZG3uWgAuTbiUfwz9B2Yfc4sf+8stOfx98U60Gg2pSRFc2jOai1KiCPJtW6V2hGgNVruT+RvUpnq1M8kTI8w8eHEXJvaKRavV8PmmbB77cicAD49N4sGxXbw5ZCGEEDUcRUVUrF5NxapVVK5Zi6u8vO5BnQ6/vn3xH52K/+jRGDp18vrViEIIIYRoPhJ8e0CC77bF4XQxc+VBtmcXM/2SZLrHnn1o6XC6uO+TrfywNx+zQceCu4bQq11wg22sdicvfLeX+RuyABicEMqbN/YlMvDU4LYlWe1OZiyrq4H53BXduWVYxxY/rqIoPLxwO19tzyXMbODrv4wgrgllLtZkFnL/p1sptdiJCDDyf9f3QafVsCe3lN3HStmdW8bBExWn619EsJ8P3WMDOXSikuM1ZQgMei1X94njthEJJEcH/OHxX12ezsyVB9FpNcy+ZcAfNnNsbZvyNvH46sc5YTmBUWfkiUFPMKlL0xtYNkVRpQ2TjxY/g5T6EALUk3Efrz/KrFUHKa6yA5AU5c8l3aOZufIALgXuGJHAk5d1leBECCHaIMVup2rbNipWraIibRW2gwcbPO4TF4d/air+o1PxGzwYrVGubhNCCCHOZRJ8e0CC7wuD1e7kz3M2sf7QSULNBj6/eyidI/0BOHqykvs/3cruY2UAPDCmMw+N7eK1BkuKovDK0nRmrT4EnF1zzsaa/cshXvhuHzqthvm3Dz6rJpVZJ6u4a95m0vPKf3ebyAAjPeKC6B4bSPfYIHrEBRIX7ItGo8HudLF0dx4frDnMjuwS93NGdgnn9hEJpCZFnDZ8mr/hKE99pTY0bWs1eJ0uJ+/teo93d7yLS3GRGJTIa6mv0SVEZo8K0VaUW+18tPYI7/9yiDJrXR+GyQPb8/KknhJ6CyHEOcKWk0NF2ioqVq2iauNGFFtdfwiNyVTTIFMNwn2iz76ZuBBCCCFalwTfHpDg+8JRUe1gyvsb2JlTSkyQiUX3DmNXTgl/+2In5dUOQvx8+L8b+jC6DcwSVhSF137IYOZKdcbK3y9N4Z7UTi1yrDWZhUz7cCMuBZ6d2I1bh599/drKagdPLN7Fd7uOEx1ookdcID1ig9xhd2Nm0iuKwtasYj5Yc5hlu/OorYTSOdKf24YnMKlfnLsUyw978rhn/hZcStsrR3Ci6gRP/PIEG/M2AnBV56t4YtAT+Pm0rbrjQghVqcXOB78cYv7GLMZ1jeKlST2brceDEEKI1uWqqqJyw0Yq0tKoWLUKR35+g8eNycn4p6YScNEYTL17y0lOIYQQ4hwgwbcHJPi+sBRV2rju3XUcPFFJqNlAUaU6A6R/hxDevLEvsU0o79FSFEXhPz9l8sbPmQBMH5/EAxc1b6CbXVTFxLfWUFJl59r+7Xj12l7N+ge/w+lqlpnz2UVVfLTuCAs3ZVNRrc7EDDUbuGlwPL3bBfPAgq1Y7S5uHNSel65uOzMz1+Wu44lfnqDIWoSv3penhzzNxE4TvT0sIYQQQogLjqIoVGdkqLPB09Kw7NjRoEGmsUtngm+YTNAVE6U5phBCCNGGSfDtAQm+Lzy5JRaufWcduTV1pO8elcj0S5Lx8VJpkz/y5s+ZvP7jfgAeGtuFh8YmNct+q2wOJr29jvS8cnq3C2Lh3UMb3czSW8qtdhZuyuajdUfIKbY0eOyilEjeu7m/10rU1OdwOXh7+9vM3jUbBYUuIV14LfU1EoNatmSNEEIIIYRoHEdxMZW//EJFWhrlK1aiWNXPBhqTicDL/kTIDTdg6tl2JlQIIYQQQiXBtwck+L4wHS6s5O2VB7i0ZzQXpUR5ezh/6J20g8xYlg7AXy7qzCPjks7qj3BFUXhgwTa+23mccH8D3/xlBDFBbWe2+x9xOF38uDefD9YcZvPRYnq3D2bBnYPbRMPG4xXHefyXx9lWsA2A65Ku47GBj2HSt26jVCGEEEII0TjOsjJK//c1JZ8vpDrzgHu9sVtXQm6YTOBll6HzN3txhEIIIYSoJcG3ByT4FueK2gaUAPekduLxCclNCr/LrXbeXXWQmSsPotdqWHDXEAZ2DG3u4baa7KIqogJNGPTen+m9ImsFT699mjJbGWYfM88OfZYJCRO8PSwhhBBCCNEIiqJg2bqV4oULKV+23N0YU+vnR+AVE9VZ4F27enmUQgghxIVNgm8PSPAtziVz1h7muW/2AnDHiASevKxro8Lv4kobP+7LZ9nuPNZkFmJzugB4/qoe3DykQ4uO+UJgc9p4ffPrfJr+KQA9wnrwr9R/0T6gvZdHJoQQQgghmsJRXEzpkq8oWbgQ29Gj7vWm3r3UWeCXTkDre+5cMSmEEEKcLyT49oAE3+JcM2/9EZ7+3x4Abh3WkX9M7Hba8LugzMryPXks25PHhkNFOF11/90TI8zcPKQDtw7rKHULz9KR0iM8tvox9hWps/Fv6XYLD/Z7EB+dj5dHJoQQQgghzpaiKFRt3KjOAv/xJ3CojdZ1ISGE3jKNkClTpBmmEEII0Yok+PaABN/iXPTpxiz+35JdAEwdEs8/r+iBVqshu6iK5XvyWLo7j61ZxfUb1dMtJpAJPaK5tEc0nSP9JfBuBt8c/IbnNzyPxWEhxBjCCyNeYFS7Ud4elhBCCCGEaAGOEycoWbyEkoULsefmAqA1mwmZciOht9yCPjzcyyMUQgghzn8SfHtAgm9xrvp8czaPf7kTRYExyRGcqKhm97GyBtv0jQ/m0h7RXNI9mg5h0pCnuVTZq3hx44t8ffBrAAZGD+TlES8TZW77jVKFEEIIIcTZURwOypYu5eR777mbYWqMRoKvuYbQ227D0C7OyyMUQgghzl8SfHtAgm9xLlu8NYfpX+ygtoqJVgODEkK5tEcM47tHERMkdQebW0ZRBtNXTedI2RG0Gi339L6Hu3rehU6r8/bQhBBCCCFEK1JcLirS0iicNQvrjp3qSp2OoMsvJ+zOOzB27uzdAQohhBDnIQm+PSDBtzjX/bAnj6935DKiczhju0UR7m/09pDOS4qisDBjIa9uehWby0akXySvjHyFgdEDvT00IYQQQgjhRWod8F85+d4sKtetd68PGDeWsLvuwrdnTy+OTgghhDi/SPDtAQm+hRB/pLS6lGfXPctPWT8BkNouleeHP0+IKcTLIxNCCCGEEG2JZdcuTr73ntoIs4Z52FBCb78dn5gYFKsVl7UaxWpRl9VWXBaruqy/3mpFYzJhHj4Mv3790Oj1XnxVQgghRNshwbcHJPgWQpzJnpN7eDTtUY5VHEOv1fNI/0eY2nWqNAcVQgghhBC/qzozk5OzZ1P67XfgdJ7VvrRBQfiPHIn/mNH4jxyJTj63CiGEuIBJ8O0BCb6FEKejKApfZn7JSxtfwu6y086/Ha+lvkb38O7eHpoQQgghhDhH2HKOUfThB5R+9z0oClqjEY2vb8OlyYTWZDpl6SjIp2LVapwlJXU71Ovx698f/zGjCRgzBkOHDt57cUIIIYQXSPDtAQm+hRC/ZXFYeHHDi/zv4P8AGN1+NC+OeJFAg7xHCCGEEEKI1qM4nVh27KBi5UrKV6zEdvBgg8cNiYnuENy3Tx8piSKEEOK8J8G3ByT4FkLUl1WWxSNpj5BRnIFWo+Wvff/Kn3v8Ga1G6+2hCSGEEEKIC5wtK0sNwVemUbV5Mzgc7sd0QUEETZpExEMPojVKw3shhBDnJwm+PSDBtxCi1oqsFTy15inK7eWEmkJ5ddSrDIoZ5O1hCSGEEEIIcQpnWRmVa9ZQvjKNitWrcZWWAmBMTibu369j7NTJyyMUQgghmp8E3x6Q4FsI4XA5eHPbm3y4+0MA+kT04bXU14gyR3l5ZEIIIYQQQvwxxeGgIi2N48/8A2dRERpfX6KfeoqgSVdLU3YhhBDnlcZmuXLdvhDigldoKeSuH+9yh95Tu07lwwkfSugthBBCCCHOGRq9noCxY0n4agl+Q4egWCwcf/JJcqf/DWdFhbeHJ4QQQrQ6Cb6FEBe0bQXbuP6b69mUtwk/vR+vpr7K44Mex0fr4+2hCSGEEEII4TGfyEjiP/iAiIcfBp2Osu++4/Cka7Ds2u3toQkhhBCtSoJvIcQFSVEU5u2dx23LbuOE5QSJQYksuGwBEzpO8PbQhBBCCCGEOCsarZbwu++iw7x5+MTGYs/K4siUKZyc8xGKy+Xt4QkhhBCtQoJvIcQFp7S6lOmrpvOvTf/CoTi4tOOlLLhsAYnBid4emhBCCCGEEM3Gr19fEpYsJmD8eLDbKZgxg+x77sFRVOTtoQkhhBAtTppbIs0thbhQZJVlMX/ffL468BUWhwW9Rs/0gdOZkjJFGv4IIYQQQojzlqIolCxcSP5LL6PYbOgjIoh99VXMQwZ7e2hCCCGExxqb5UrwjQTfQpzPFEVhc/5m5u2dR1p2GgrqW16XkC48M+QZ+kT28fIIhRBCCCGEaB3WjP0ce+QRbAcPgkZD+L33EH7ffWj0em8PTQghhGg0Cb49IMG3EOcfu9POsiPLmLd3HvuK9rnXj4wbyc3dbmZIzBCZ5S2EEEIIIS44rqoq8l9+mZIvFgHg278/oVNvwtCxI4b4eLRms5dHKIQQQpyZBN8ekOBbiPNHibWEL/Z/wWfpn1FgKQDApDMxsdNEpnadKnW8hRBCCCGEAEq/+468Z/6Bq7KywXp9ZKQagnfooC4T1Ns+7dujNRi8M1ghhBCiHgm+PSDBtxDnvsOlh5m/dz5fH/waq9MKQIRvBDem3Mh1SdcRbAr28giFEEIIIYRoW2zZ2Zx8732qDxzAduQIzuLi399Yq8UnNlYNwxMT8O3VG98+vfGJi5MrKYUQQrQqCb49IMG3EOeu3IpcXt74Mmk5ae51KaEpTOs2jQkdJ+Cj8/He4IQQQgghhDiHOEtLsR09iu3IkZqvutuuqqrTPkcXHo5v797qV5/e+PbogdbPr5VHLoQQ4kIiwbcHJPgW4ty0ImsFT699mjJbGRo0pLZPZVq3aQyIGiCzToQQQgghhGgmiqLgLCxUQ/CjR7GmZ2DZuRPrvn1gtzfcWKfDmJSkhuC9e+PXpw8+HTrI3+dCCCGajQTfHpDgW4hzi81p4/+2/B/z980HoGd4T14Y8QKJQVK/WwghhBBCiNbislqx7t2HZccOLNu3Y9mxA0de3inb6YKCMA8fTsjNU/Hr29cLIxVCCHE+keDbAxJ8C3HuyCrLYvqq6ewr2gfALd1u4cF+D0pJEyGEEEIIIdoAe14elu071DB8xw6su3ej2Gzux029exF2yy0EjBuHxkf+hhdCCOE5Cb49IMG3EOeGZYeX8ez6Z6m0VxJkDOLF4S+S2j7V28MSQgghhBBC/A7FZsOyZw8lXyyi7JtvUGpKo+ijowmdehPB112HLijIy6MUQghxLpHg2wMSfAvRtlkdVmZsmsGi/YsA6BfZjxmjZhBtjvbyyIQQQgghhBCN5SgspPizhRQvWIDz5EkANL6+BF11JaE3T8OYmODlEQohhDgXSPDtAQm+hWi7DpUcYvrq6WQWZ6JBwx097+C+Pveh1+q9PTQhhBBCCCFEE7iqqyn77nuK5s6lOiPDvd6cOoqwW27Bb+hQaYYphBDid0nw7QEJvoVom/534H+8uPFFLA4LoaZQXh75MsNih3l7WEIIIYQQQohmoCgKVRt/pWjuXCrS0qAmnjB26ULoLdPwHz0afXi4dwcphBCizZHg2wMSfAvRtlTZq3jGrofDAAAgAElEQVRx44t8ffBrAAbHDOaVka8Q7it/9AohhBBCCHE+sh05QtG8+ZQsWYJSVeVerwsPx5ScjDElGVNKCsbkZIwJCdIYUwghLmASfHtAgm8h2o79xfuZvmo6h0sPo9Voub/P/dze43Z0Wp23hyaEEEIIIYRoYc6yMkoWfUnJ4i+xHTzkngVen8bHB0OXzpiSUzClJGOsWeqCg70wYiGEEK1Ngm8PSPAtRNvwc9bPPPHLE1gcFiL9IpkxcgYDogd4e1hCCCGEEEIIL3BVVVGdmYk1PYPqjPSaZQauysrTbq+PjcF/+HD8R4/GPGQIWrO5lUcshBCiNUjw7QEJvoXwLkVR+Hjvx7y++XUUFIbFDuOVka8QYgrx9tCEEEIIIYQQbYjicmE/dgxrejrV6RlYM9SlPSenwXYaHx/8Bg3CPzUV/9GpGOLjvTRiIYQQzU2Cbw9I8C2E99hddl7a+BKL9i8C4IbkG/j7oL+j1+q9PDIhhBBCCCHEucJZUYFl2zYqVq2mIi3tlCDckJDgDsH9+vVDYzB4aaRCCCHOlgTfHpDgWwjvKLOV8Wjao2w4vgENGh4b+Bg3db0JjUbj7aEJIYQQQgghzlGKomA7dIiKtFVUrFpF1dat4HC4H9f6+2MePhz/1FT8+vdDHx2N1mj04oiFEEJ4QoJvD0jwLUTryynP4f6f7+dQ6SF89b78a9S/GN1+tLeHJYQQQgghhDjPOMvLqVy7Vg3CV6/GWVR0yja6kBD0UVH4REWhj45GHxWJT1Q0+ui6dTp/fy+MXgghxG9J8O0BCb6FaF3bC7bz4MoHKbIWEekXycyLZ5ISmuLtYQkhhBBCCCHOc4rLhXX3bncIXp2ZiVJd3ajnav380EdH49u3D/6pqZiHDUfnLw00hRCitUnw7QEJvoVoPUsPL+WpNU9hc9noGtqVty5+i0i/SG8PSwghhBBCCHEBUhQFV2kp9vx8HPn52PPycOTlYy/Ix5GXjyM/D3t+Aa6yslOf7OODeeBA/Een4j96tDTQFEKIVnJeBN/PPvsszz33XIN1UVFR5OXlAeovqOeee4733nuP4uJiBg8ezMyZM+nevbtHx5HgW4iWpygKs3bOYub2mQCMaT+GV0a+gp+Pn5dHJoQQQgghhBBn5qqsxJ5fgD0nm8q1aylPS8N+NKvBNobExJoGmqPx69cXjY+Pl0YrhBDnt/Mm+F60aBE//fSTe51OpyMiIgKAGTNm8OKLL/LRRx+RlJTECy+8wOrVq8nIyCAgIKDRx5HgW4iWZXPaeHbds3xz6BsAbu1+Kw/1ewidVuflkQkhhBBCCCFE01QfPqyWTElLo2rLloYNNAMCMI8YTsDo0fgNHgwaDYrVistajVJtxWWxqkurFaW6Wl3WPmatRqPTog0KQhcUhC44GF1QMLpg9bbWbEaj0TR53IqioNhsjS7xUp/Wzw+NXt/kYwshRHNobJbb5t+t9Ho90dHRp6xXFIX//Oc/PPnkk0yaNAmAuXPnEhUVxaeffsrdd9/9u/usrq6mut4bfNnpLlkSQjSLYmsxD618iK0FW9FpdDw55EmuS7rO28MSQgghhBBCiLNiTEjAmJBA2J9vrWuguTJNbaBZXEz50mWUL13W/AfW69VA3B2Kq7dRXGqwbq0J1K1WXNXVKBaLurTWBe00cQ6kNiCA4GuvJXTqTfjExTXzCxNCiObV5oPvzMxMYmNjMRqNDB48mJdeeonExEQOHz5MXl4e48ePd29rNBpJTU1l3bp1Zwy+X3755VNKqAhxTju2BTKWQdfLIaa3t0fjllGUwcNpD5Ndnk2ATwCvjX6NYbHDvD0sIYQQQgghhGhWuoAAAidMIHDCBBSnE+uuXZSnpVGxajXV+/aBTofWaETj66suTSY0JiNaY83S5NvgPk4nzpJSnKWlOEtK3EuluhocDpwnT+I8ebLVX6ervJyiOXMo+vhjAsaNI3TaNHz79jmrGehCCNFS2nSpk6VLl1JVVUVSUhL5+fm88MILpKens2fPHjIyMhg+fDjHjh0jNjbW/Zy77rqLo0ePsnz58t/d7+lmfLdv315KnVxoKk7Alo+g60SITPH2aJpu95ew5F5w1vxMx/SB/rdCz2vB2PiSP83pRNUJZm6fyZIDS3ApLuL845h58Uw6BXfyyniEEEIIIYQQwlsUpxONrnnKPLqs1rogvLhmWaouNVotGqMJra+p4dJkRGPy/c3ShNZgAE8Ca0WhYt06iubOpWr9BvdqU69ehN4yjcDx46WuuRCiVZwXNb5/q7Kykk6dOvHYY48xZMgQhg8fTm5uLjExMe5t7rzzTrKzs1m2rPGXE0mN7wtQWS7MvQJOZoIhACZ/Aomp3h6VZxQF1v4HfnpWvR/ZDQozwWVX7/uYoec10O9WiOvn2R80TVRlr2Lu3rnM2T0Hi8MCwLgO43hy8JOE+Ya1+PGFEEIIIYQQQrQ8a0YGRR9/TNk336LYbADoo6MJuWkKIddfr5ZeEUKIFtLYLFfbimM6a2azmZ49e5KZmemu+52Xl9dgm4KCAqKiorwxPNGcTh6EjKXgcjX/vkuyYc6f1NBbowVbOXxyLexe3PzHailOB3z3SF3oPfheuGcNPJoO41+AsC5gr4StH8Psi+DdEfDr+2ApaZnhuJwsyVzCxCUTeXv721gcFnpF9GLepfP49+h/S+gthBBCCCGEEOcRU3IysS++SOeVKwj/ywPowsJw5OVx4vV/kzl6DHn//CfVhw57e5hCiAvcORV8V1dXs2/fPmJiYkhISCA6Opoff/zR/bjNZmPVqlUMGyY1hM9ZLhesnwlvD4UFk+Hzm6G6vPn2X3wUPvoTFB+G4Hi4byN0uxKcNlh0G2yc1XzHainVFfDZFNj8IaCBCa/Apa+AVgfmcBj2F3hgE9z6PfS6AXRGyN8N30+H11PUsihZG5rczOS31ueu54Zvb+CZdc9QYCkgzj+OV1NfZf6l8+kT2adZjiGEEEIIIYQQou3Rh4URcf/9dF65gpiXXsKYnIxisVD86QIO/elPZN99D+UrVuCqV25WCCFaS5sudTJ9+nQmTpxIfHw8BQUFvPDCC6xatYpdu3bRoUMHZsyYwcsvv8ycOXPo0qULL730EmlpaWRkZBAQ0PjaxlLqpI0oyYKv7oMjvzRcH5ECkz+FsLOsD33yoFrepCwHQhLg1m8hqB24nLD0Mdg0W91u5KNw0dOtUhrEY+V58On1cHwH6H3hmtlqQ8szsRTDzs/VeuYFe+vWR6TAiIeh9+QmDeVA8QFe3/I6a46tASDAEMDdve7mxpQbMegMTdqnEEIIIYQQQohzl6IoVG38laK5c6lIS3NPuNKazfhfdBGBl4zHPGIEWpPJuwMVQpzTzosa35MnT2b16tUUFhYSERHBkCFDeP755+nWrRugvqE+99xzzJo1i+LiYgYPHszMmTPp0aOHR8eR4NvLFAV2LIClj0N1mVqb+pIXIaqHOuO7/DgYg+DaD6DLuKYdozAT5k5U9xXWBW75GgLrmqKiKLD6NVj5gnq/z1SY+Abo9Gf/+ppLwT745DoozQa/cJiyENoNaPzzFQVyNsPWj9SyLvYqdf0N89UGn41UaClk5vaZLM5cjEtxodfomZwymbt73U2wKdiz1ySEEEIIIYQQ4rxkO3KE4gWfUbZsGY78fPd6rZ8f/qNHEzDhEvxHjkTr6+vxvhWnE9uRI1jT06lOz8BZWoouKAhdcLD6FRJcdzs4GF1gIBp9G/p8L4Q4K+dF8N1aJPj2ospC+OZBSP9Wvd9+MFz1Tt3s7vI8WHgz5PwKaODiZ9RZyp7Mxi5IV0PvygJ1lvO0ryHgd+rAb5kL3z4EiguSJsC1c8Dgd1YvsVkcWqV+H6pL1eD+pi8gNKHp+7OWwY/PwJY5YApS64MHx5/xKXaXnTm75/DBrg+ocqih+dj4sTzU/yE6BHZo+liEEEIIIYQQQpy3FJcLy44dlC//gbIfluPIPe5+TOPnh3/qKAIvuQT/UaPQ+p36+dtZVkZ1RgbW9AysGWrQXZ2ZieJh+RRtYGC9MDwIv379Cb7hevQhIWf9GoUQrUuCbw9I8O0lGUvh679A5QnQ+sCYJ2D4Q2qt6voc1Wopki0fqfe7XQVXvQ0G8x8fI283fHwlVBWqM8in/U+tg30m6d/Doj+DwwrtBqkzq/1Cm/QSm8X2Ber3yWWH+GEw+ZPmGY/DBnMmwLEt6uv88/eg8zntpjanjb+t+hsrslcA0DO8J9MHTKdfVL+zH4cQQgghhBBCiAuCoihYd+6kbPkPlC9bhj031/2YxmTCf9QozMOH48jPw5qeQXV6eoNt6tP4+mJM6oIpOQV9ZCTO0lKcJSWnfLnKf79vmMZoJOiKiYROm4axS5dmf71CiJYhwbcHJPhuZdXlsOwJ2DZPvR/RFSa9BzG9zvy8zR/C94+pAXBkdzUAPtOs59ztMO8qtcZ1TG+4+avGB8ZZG+DTG8BaAuFJMHUxBLdv3HObi6LAqn9B2kvq/R7XwJVvg08z1kIrOgyzRqklZkY8DGOfPWUTi8PCwysfZm3uWgxaA/8Y9g8uT7wcreac6o0rhBBCCCGEEKINURQF6+49lC9fRtmy5dhzcn53W31sDKbkFIwpyeoyOQlDfDwane53n+M+jsNxSihuz8ujdPESrHv2uLczDxtG6C3TMI8ciUYrn3eFaMsk+PaABN+t6Og6WHK32sgSDQx7AMY81fgw9+h6+HyaWrbEN0QtRdJpzKnb5WyB+VeDtRTiBsDUL8HXw/rTBftg/jVQdgwCYtTwO6qbZ/toKodNLbmy/RP1/vCH4OJ/QEv88t2zBL64Vb09dTF0vtj9UKW9kvt/vp8t+Vvw1fvy5kVvMjhmcPOPQQghhBBCCCHEBUtRFKx791K+/AcsO3bg0y6uXtCdjC4oqEWOadm6laKP5lL+88/gcgFgSEggdNrNBF155WlLrwghvE+Cbw9I8N0KHNWw4gVY9yagQFA8XP0OdBzh+b5Kj6lNL49tAY0Wxv0Thj5QV/c7a6MaWNvKof0QtR62qYn/rqU5MG8SFGaotbBv/Aw6DGvavv6IywknD0D+btg8B478or6+y16HAbe1zDFrffOQWu/bHAH3rIWAKEqrS7nvp/vYWbgTfx9/3hn7Dn0i+7TsOIQQQgghhBBCiFZmy8mheN58ShYtwlVZCYA2KIiQ668jZMoUfGJivDxCIUR9Enx7QILvFlaSrZYNKai5hKjPVJjwctPDaAC7Fb57pG5GdM/rYOJ/IXcbfHId2Cuhwwi1PrfR/+zGX1UECyZD9kbQGeHqd6HzWDAGeNZksz5LCeTvUUPuvF3qsmCfWle8lo8ZrvsIksaf3fgbw26B9y9W/40SR3Pymtnc/fO9ZBRnEGQMYta4WXQP6+75fhVFLW1zNv/WQgghhBBCCCFEK3BWVFC6eAlF8+Zhz85WV+p0BF5yCSFTb/r9APx3sgGtvz86/7PMJIQQp5Dg2wMSfLewhTfDvq/BLxyu+C+kXNY8+1UU+PV9WPZ3UJwQ2U2tWe2wQOJomLwADM10WZKtChbdBvuX1q3T+qjlVnxD1NrhvqHgV3PfN7TeulCoLKwJuXery9Ls0x/Hx6yWU4nuCQPvbL3SKgAnMuC90eS7qrmzUzcO20sJM4Xx/vj36RLShCYfVUVqWZvMHyC2H/SYBN2vhqB2zTdmp0M9IXFkDXQZC3H9m2/fQgghhBBCCCEuSIrTSUVaGkVzP6bq11+bviOdDvPgQQRcMoGAcWPRhzay75gQ4owk+PaABN8tKG83vDsc0MC9ayGqCbOG/8jhX+CLW6DqpHq/81i4YT74+DbvcZwO+OFJ2DJXDdfPVlB7iOoB0T1qlj0hJKFl6ng30rGNM7lj15vk+PgQZQxh9qUf0zGoo+c7ytmi/pucLuBvP0QNwbtdCQHRnu+7qggO/AT7l6lLa6m63hQEd6VBaKLn+xRCCCGEEEIIIU7DuncvRR/Po/zHH1Hs9lM3OEOs1mB7nQ6/QQMJrA3Bw8JaYLRCXBgk+PaABN8t6PNpsPd/6kzf6z5queOUZMF3j6pB6p9eA72x5Y4F6gxwS5EawlqKf3O7+NT1BnNNwN2zZtldnRnehhwpPcKdP9xJXlUe7ex2ZlfoiLvrF3XGemMpCmyaDcueAJddDaEnvqHOJt+9GLLWA7VvORq1xnv3q9UQ3Bz++/s8ka4G3fuXqzO8FVfd476hatmZkqPqCYTbf2y+mf5CCCGEEEIIIUQT2Y4epWz5D5QvW4Z17966B7Ra/AYNInDCJQSMGychuBAekuDbAxJ8t5D8PfDOMNTZ3utat2yH8EhmcSZ3/nAnJ60nSQzsyPs5OUSePATJf4LJnzaulnl1BXzzIOxepN7vOhGunKnOxK5Vlgt7voI9iyFnU916jQ4SRqkzwVMuBx8/OLpGDbr3L1NPbNQX2R2SLoGkCdBuAFQUwKxRUFkAPa+HSe81vf66EEIIIYQQQgjRzGxZWZQtX075suVY9+ype0CrxW/gwLoQPPx3JoUJIdwk+PaABN8tpHa2d7er4Pq53h6N+B17Tu7h7h/vprS6lJTQFGaNm0VocTbMHgtOG0yYAUPuOfNOTmSotdwLM9QQe9w/Yej9Zw6fS7JgzxJ1Jvjx7XXrtXrQGcBeVbdOZ1SD8aRL1K/g+FP3d2QtzJ2o1nu/9F8w+G7PvhFCCCGEEEIIIUQrsOXkUL58OWXLlmPdtavuAa0W37598R81Cv9RIzGmpKCRSV1CnEKCbw9I8N0C3LO9gXvXy2zvNmpbwTbu++k+KuwV9Arvxdtj3ybIWDNDe+MsWPqYGkLf/iPE9jn9TnYtgq//CvZKCIiBa+dAh6GeDeTkQTUE37NEbf4J4B9dN6s7MVUtF/NH1s+E5f9PDc9v+dbzcQghhBBCCCGEEK3IlnNMDcGXL8e6c2eDx/SRkZhHjcR/5CjMw4aiCwjw0iiFaFsk+PaABN8t4PNbYO9XMtu7Ddt4fCN/WfEXLA4L/aP6M/PimZh96oXLigILp0L6t2qt7rtXq7W0azmq1ZB502z1fsIouOYD8I88u4EVHgCHVa2D7umZbUWBRbeppVT8o9QxN6WBphBCCCGEEEII0crsublUrF5NxepfqFy/HsViqXtQr8evb1/8U0dhHjUKY5cuMhtcXLAk+PaABN/NLH8vvFMz01Zme7dJ/5+9+wyPozzbPv7fVe/Vkixb7r0X3DuxTSAUh2IIL+UJJDQDAUMwLXmAQAymmFBsAuEhgRAgCcQJhGZT3BvGNsYF9yLJsmWrd+3uvB/ulVdy1dorjSydv+OYY2ZnZ2evlbWWdM691/3p7k95cPGDVHuqGZU+itkTZhMRHHHsgWV5pnd24T7oewVc+poJowv2wj/+B7LWmOPG/hrGPwDOoEZ9HcdVWWLatORuhnYj4PoPISjE7qpERERERERE6s1TVUXZ6tWULlpMyaJFVO3aVef+4LQ00xJl3FiiRo/GGRZmU6UijU/Btx8UfAfYkdHel8DUN+2uRo7y5sY3efqbpwGY2G4iT419itCg0BM/YO9KeON80zv74pfMCOoPfgnl+RAeb8LwbpMbqfp6OrwDXh0PlUUw7FY4/0m7KxIRERERERE5bVX79nlHgy+ibMVKrMrKI/cFxccTd+mlJFw5ldD27W2sUqRxKPj2g4LvAKoz2nuZaVchTYLH8vD06qf56+a/AnB1j6u5b8h9BNVnlPbiZ+GLx0y/b3eV2Zc+EK74CyQ00R+qWz6Gd39mti97Hfpebm89IiIiIiIiIgHgqaigbPVqShYuonjBAlw5OUfuixo5kvifXUXMhAk4goNtrFKk4Sj49oOC7wD6x/+YCQo12rtJqXRX8uDiB/l8z+cA3DP4Hq7vfX39+4F5PPDXS2HnV+b2OTfCj2dCcBP/KNUXv4PFz0BIJPxigS7EiIiIiIiISLNiuVyULFpM/rvvULp4iZn7CjMxZvwVVxA/9QpCUlNtrlIksBR8+0HBd4Ac2ARzRwKWRns3IYWVhdz55Z18e/Bbgp3BPDHqCS7odIH/Jyo9BF/PhA6jofdPA19oQ/C44e3LYceXkNARbvoaIuLtrkpEREREREQk4KoyMyl47+8UvP8+7rw8szMoiOgJ40m46mdEjRyBw+m0t0iRAFDw7QcF3wFSM9q758Vw5Vt2VyNAdkk2ty64lZ2FO4kJieH5Cc8ztPVQu8tqXGV58MdxULgXuv0YrnoH9INeREREREREmilPVRXF8+dT8O57lK1efWR/SLt2JFw5ldgLLyIoIR5HSEj9Pwku0oQo+PaDgu8AOLgZ5owALLhlKaT1sbuiFm9L3hZuW3AbueW5pESmMHfiXLoldLO7LHtkr4PXJ4O7EiY8BOPuC/xzWBa4q8FVDtUVZu2qNG1WIhPNWr9QiIiIiIiISCOq3L6d/Hffo3DePDwlJXXvdDpxhofjCA+vu46IwBkWVmsdTkS//sRf+lMcISH2vBCRWhR8+0HBdwD84+ew8QON9m4ilmUvY/rX0ymtLqVLfBfmTpxLWlSa3WXZa+1f4d/TAAf8v39C14mnfkxJLhzYADnfw4HvoSgbXBW+YPvoteU58bmCwkwAHpkEEQlmOyKx1j7vdkxrSOvbcCF5VSksnwMxadBvatPv0y4iIiIiIiJnzFNWRtHHH5P/7ntUfP/9aZ0jtH17Wt0znZhJkzRSXGyl4NsPCr7PkEZ7Nykf7viQ3y79LS7LxdC0oTw/4XliQmPsLqtp+PAuWPMGhMfDzQshoYPZ766GQ9tMuH3ge1/QXXLg9J8rOMKEytVl4K7y77GdfwSXvAyxrU//+Y8nex28fyMc3m5uR6fBiNtg8M8hXP/3iYiIiIiItARWVRWeyko85eVYFRV4KirMurwCq/KodUU5roICCv7+D9yHDwMQMWAAKffdR+SggTa/EmmpFHz7QcH3GToy2vsiuPKvdlfTYlmWxevfv84fvv0DAOd3PJ/HRz1OaFCozZU1Ia5KeON8yFoDKb0gfSDkbIDcLScIpx2Q2MlczEntC4kdISQCgsPNEhJuAu6j18FhvhHblmVGWZcdhvI803O8PN+s6+zzrg9uNi1ZwuPhwtnQ59Izf90eD6yYAwseAU+1GVXucEJRlrk/LA6G/gKG3QLRKWf+fCIiIiIiItKsuEtKyfu/1zn8xp+xyssBiJk0iVbT7yasY0ebq5OWRsG3HxR8n4GDW2DOcMxo7yWmRYM0OpfHxcyVM/n71r8D8PM+P+euQXfhdGgSx2MUZprJLssO1d0fGg2pvSG1jy/oTukJYdGNW1/uD/DBTbB/nbnd9wq44GnTHuV0lByEebfC9gXmdo8L4eIXzevd8A9Y+jwc2mruCwqDgdfAyDtMyC8iIiIiIiJSS/WBgxx66UUK3v/ADLIKDiZh6lSSp91GcFKS3eVJC6Hg2w8Kvs/AP2+A79/XaG8bFVcVM2PRDBZnLcaBg/uH3s/VPa+2u6ymLXMNrPqjaXVSE3THdwBnE7lQ4K6GhbNg8bNguSEmHabMgc4T/DvPtgUw7xYozTUj1H8807Q1qd2LzeOBHz6GJbMh6xuzz+GE3pfC6Lt0MUtERERERESOUbF1K7nPPkfJwoUAOKOiSPrlL0i8/nqcERF+n8+yLPB4cAQFBbpUaYYUfPtBwfdp0mhv2+0q3MWdX97J7qLdhAWF8eSYJ5nYvh6TNsrZYd9q+NdNkLfT3B56M0x8BEIjT/44VyUseBRWvGxup/SGy/8PUnqc+DGWBXuWmgC8ZnQ4QJeJMPpuaD+q4SbcFBERERERkbNS6YqVHJw1i4pNmwAITkmh1a/uJG7KlCMhtmVZuAsKcOXkUJ2T410fwJWzn+qcA1Tn7MeVcwDL4yFqyDlEjR1L9LhxaqEiJ6Tg2w8Kvk/TP2+E7/9pWidc9bbd1bQ4izMXM2PRDIqri0mNTOWFc1+gV1Ivu8uSQKsqhc9/A9+8bm4nd4Of/hHaDDr+8Ye2mU9i5Hxnbg+9GSY9ZvqP19f+72DpH0zvfstj9rUZDB3GQFJnSOpilqhWCsNFRERERERaOMvjoei/H5M7ezbV2dkAhHbuTHBysi/Urqz0+7wh7dsRPW4c0ePGETlkCM5QzWEmhoJvPyj4Pg25P8DLwwALbl4MrfvZXVGLYVkWb2x8g+fXPI+FxcCUgTw3/jmSI5LtLk0a0rYF8O9pUJIDzmAYNwNGT4egYHO/ZcHat+CTGVBdBpFJcMkc6P7j03/OvF2w7EVY+1cz4ebRwmJ9QXhiTSDe2Szhcaf/vCIiIiIiInLW8VRWkv/23zj0yit4ioqOuT8oKYmQ1FSC09IISUsz69ZpBKemEtK6NVZ1NSWLFlGycCFl36yB6uojj3VERhI1YgTR48xo8JDU1MZ8adLEKPj2g4Lv06DR3raocFXwv8v+l493fQzAZV0v46FhDxESFGJzZdIoyvLgo7th0zxzu805ZvR3VDJ8+Cvf/k7jYcorENs6MM9bchA2/duMJj+83SwFe4GT/PiISoHW/U2f8A6jA1PHmfC4zesozjYXDtL6abS6iIiIiIhIA3AXFFA0fz7O8PAjoXZwSgrOsLD6n6OklNLlyyhZuJDShYtw5ebWuT+sZ0+ix40lcuBAgtNaE9I6DWdMDA79ndciKPj2g4JvP2m0ty1ySnP41Ve/YtPhTQQ7gpkxdAZXdr9S/6m3NJYFG/4B/70XKgshOAIiEnyB7rm/gZF3NvxEndUVkL/bhOB5O7yBuHddcqDusZ3Gw4SHIWNIw9TiqoTi/VC0H4qyoCjbe9u7XbTf3LbcvsekD4Ix06H7T5rOpKYiIiIiIiJyDMvjoWLz5iMhePl335m/jY/ijIysO5o8LY3gNG/w7g3gg2JibHgFEmgKvv2g4NtP7//CBG8a7d1o1h5cy91f3c3hisPEh8Xz3PjnGJLWQBEsV/IAACAASURBVCGinB0KM2HerbBrkbmd0BEuf9304rZbRZEJwNe9DWv+Ah7vx9O6/RgmPHTmF8ssC/atgvXvwA+fmPYv9eFwQnQalOeBq8LsS+5uRqX3vQL0yQkREREREZEmz5WXR+nixZQsWkzljh24cnJwFxTU67HOqChC2rUjtH17Qju0J7R9B7Pu0IGg+HgNLjxLKPj2g4JvPxRmwezemNHei0wrA2lQ7299n8dXPo7L46JbQjdeOPcF2kS3sbssaQo8Hlj7JhTsM+FtWBO8cp2/BxbNgnXv+EZc95oCEx6EVt39PNduWP+eCbzzd9W9LyjMtHaJbQOx6RBTa7tmiUoxPdFLcmHlXFj1JzNqHiAuA0beAQOvhdDIM37ZeDwaSS4iIiIiItJIPOXluA4coDonh+r9ObgOeNc5OVTnmLW7sPCk53DGxdUKxE0YHtq+A6HtMtRGpYlR8O0HBd9+2PIxvPszSO0Lty6xu5pmrdpTzdOrn+adLe8AMKn9JB4f9TiRIQEI5UQa26HtsPBJ2PBPwDKjr/tOhfEzILHTiR9XUQgb58H6d2HvMt/+kCjodTH0mwpp/SEy0f+e3RWF8M3/wfI5UHrQ7ItMhuG3wJBfQkR8/c7jdkHuZshcDZnfmNHoeTtMb/Mx90DHceonLiIiIiIiYjNPWRnVOTlU7dlD1e49VO3Z7V3vwbV//8kfHBxMUFwcQfHxvnXNUvt2XBxBCb77/OlrLvWn4NsPCr79sGQ2LHgE+lxu2ipIg8ivyOfehfeyKmcVANMGTOPmfjfr6qKc/Q5sgq+egC0fmduOIBh4DYz9NcRnmH1uF+z40tvK5GNfWxIcpl94/59BzwshNCowNVWXm7YsS//gnbQTCI2BITfC8Nsg5qjZwksOekNub9Cd9S1Ul574/G3OgbH3mlYveg+LiIiIiIg0OZ7ycqr27qNq925vML77yLb78OHTPq8jPPz44fhxgvKwTp0Iiq/nAKwWTsG3HxR8++Fft5gwasLDMO7XdlfTLK3av4rfLvstWSVZRAZHMnPMTM5td67dZYkEVvZa+PIJ2D7f3A4KhcH/Y9bf/d03AhugVQ/of5UZIR7XgG1+3C7Y+IG5wHdwk7euMBPMJ3f1hd014XhtoTHQdjC0HWKWuLaw5s/w7Zu+4D6lt5lQs/dPwRnUcK9DREREREREAsZTUYG7oMC7FNbaLsBdWHjCbdxuv58rtGNHIgYMIKJ/fyIGDiCsSxccQfr78WgKvv2g4NsPr443gdXUt0ybAQmY/SX7eeabZ/h8z+cAZMRk8MKEF+iS0MXmykQa0N4V8OXjsHtx3f2RSWbCyf5XQesBjTtS2uOBrZ/CkudM0H0MB6T0hLbn+ILu5G7HD7NLDsLyl2H161BVbPYldoLRd0O/qyA4tEFfioiIiIiIiDQ+y7LwlJSYMDz/qGC80BugF9YK0w8dojo7+5jzOCMjCe/Xj4gB/U0YPmAAwQkJNryipkXBtx8UfNeTZcHv25iP9E9b5f/EdHJcle5K/vz9n/nThj9R4a7A6XAytdtUbh94O3FhcXaXJ9I4di6Ela9AcBj0uxK6TISgEHtrsizYvQRWvQruKl/QnT4Iwv38WVGeD6tegxVzzDaYyTdH3gmDrjv1hJrl+XB4BxzeXnepKAQLwALLY2o+2bbDCd3Oh3H3QUJ7v78kLUZ5vukrv3Geucg7YprdFYmIiIiISDPnys+nfP16yteto3z9eirWf4enrOyY40LatyNywAAiBgwgauRIQtu3vL/tFHz7QcF3PRXsg+f7gDMYHsqxP5Q6y1mWxVf7vmLW6llklWQBMChlEA8Oe5DuibqoINIsVZaYFijLXoSSHLMvMhlG3AYDroHSXF+onbfTt112+j3ljssZYgL3sfdCbHpgz322sizYtxK+eQM2zavVWx646A+mFY+IiIiIiEgjsdxuKrfvMEG4Nwyv2rmzzjEp995D0i9+YVOF9lHw7QcF3/W0bQG8fZnptzttpd3VnNV2Fe7iqVVPsTR7KQApkSncM/gezu94viawFGkJqitg/d9gyfNQsKd+j4lJh6TOkNTFt0QmmVHcDswah2kLU3sb722HA0oOwOLnYOdX5pxBYTDkF6b1SnSrhnmt/rIsM5K9eL9Zirzr4py6+6pLoc1g6DAGOo41LXGCgv1/vvJ8WP+euSCRu9m3P7Wv6e2+8QMzCevP3oVukwP2MkVERERERPzlLiigfMMGyteaIDz59mlEDhxod1mNTsG3HxR819Pyl+GzB6HnxXDlW3ZXc1YqrS7lj+v/yFub38LlcRHiDOH63tfzy76/JDLkFK0ORKT5cbvg+/dNP/HcLRAeb8LWpC51Q+7EThAaFbjn3b3ETC66d5m5HRIJw26BkXdAZGLgnudUqkph23zY+pm5AFCUbQJuV7n/5wqNgfYjvEH4GEjrd+JJRC3L9G//5g0TbNeM7g6OgD6XwTk/N6E6wLxbzaTOIZHwP/+FNoNO77WKiIiIiIhIQCj49oOC73r6zx3w7Zsw9j449yG7qzmrWJbFRzs/Yvaa2eSW5wIwtu1Y7htyH+1jW14vJhE5imVBVQmExTTuc+74Er56ArLWmH1hsTDidhh+q/99zOurstgE3Zv+bULvE4Xc4fEQ0xpiW5t1TGuISTOtWWLSTNutPcvNxKi7F5tR4nUeHwftR/mC8JTeUFkE3/3djO4+uNF3bEpvE3b3m2oeV5urCv421YySj2oFv1gACR0C+RURERERERERPyj49oOC73p6fbLpf3rZ69D3crurOWtsydvC71f+nrUH1wLQLqYdM4bOYGzbsTZXJiKCCcB/+MQE4Ae+N/siEmDUr2DoTYEZaV5R6Au7ty+o2z87vr2ZQLL1AF/QHZ126gk/a/O4Te27vCH4nmUm5K4tIhGqy31Be3AE9LkUBv/cTFx6sjZTFUXwxgVwYAMkdYUbP2/ckfEiIiIiIiJyhIJvPyj4rgfLgqc6QEUB3LIE0vraXdFZ4b87/8vDSx/G5XERERzBTf1u4rpe1xEaFGp3aSIidXk8ZlLHr2fCoa1mX1QrGH4bJHczYXjtJST85OcrzzeB+qZ/m5Hl7irffYmdoNcU6HUJtO5/8tD5dLhdkLO+VhC+3PQEB2jV0zu6+0qIiK//OYuy4U+ToCgTMobBdf+GkIjA1i0iIiIiIiKnpODbDwq+66H4ADzbzUyQ9mC2/tg/BcuyeGPjG8xeMxuA8W3H89Dwh0iLSrO5MhGRU/C4YcM/TACev/vEx4VEHhWGx/u2D2yCnV+Dp9p3fFJX6O0Nu1P7BD7sPhl3Nexfb9qjnEnQfnAzvH4eVBaa+S6u+POJ+4iLiIiIiIhIg1Dw7QcF3/WwcyG8ebEZpXfnWruradLcHjdPrX6Kd7a8A8A1Pa/h10N+jdPhtLkyERE/uKth3dtm1HZZHpTnmVHc5flgeep3jlY9TdDdewq06tG4YXdD2bUY/nqpGcE+/Db48Uy7KxIREREREWlR6pvlBjdiTXI2q/nYe3J3e+to4ipcFcxYNIMv932JAwf3nnMv1/W+zu6yRET8FxQCg//HLLV5PFBVbALwslpheO0lMgl6XgStmuHPjI5jYMpceP9GWDEH4trCiGmnfz6PG1yV/vU0FxERERERkVNS8C31k7vFrJtjiBEg+RX53PHlHazPXU+oM5Tfj/k953U4z+6yREQCy+mE8DizJHSwuxp79L0cirJg/m/hswchNh16/7T+j7csyF4L370HG/4JZYcgLM5M7BmbDjHpZh3bGmLbeCf9bGMm1DzeqHnLMpN5HvdiRIFZe1ww8P+ZVi8iIiIiIiItgIJvqZ/cH8y6VQ9762ii9hXv47YFt7G7aDcxoTG8eO6LDE4dbHdZIiLSUEbeCQX7YPVr8MHNEJ0K7Uee/DEF+0zY/d17vk9S1agshNxC34Xm4wkKM2F4TGszUvxI+5kCsNynrnnVq2YE/7m/gaikUx8vIiIiIiJyFlPwLfVzJPjuZm8dTdDGQxu57YvbyKvIo3VUa+ZOnEvn+M52lyUiIg3J4YDzn4KibPjhv/DOz+DGz4/9ZFRFEWz6twm7dy/27Q8Ohx4/gX5XQcYQKDlozlWUDcXZULS/1nY2lOaCu9JMOHqiSUdPOOFoIuTvMnWseQM2fgATHoJzboQg/SooIiIiIiLNkya3RJNbnlJZHszqaLYfyISwGHvraUIWZS7i3oX3Uu4qp0diD17+0cukRKbYXZaIiDSWqjIz+XPmaohrB7+YD5HJsONLWP8O/PAxuCp8x3cYA/2vgp4XQ7gfv3O4qqAkxxuG7wdniC/gjkyE8HgICT/5OXYvhU9mwIEN5narnnD+k9BpvL+vWkRERERExDb1zXIVfKPg+5T2LIc3fgxxGXD393ZX02S8v/V9frfid7gtNyNaj+C58c8RHRptd1kiItLYSg/B65MgbyckdISqEjNCu0Zyd+h/JfSdCvEZ9tUJpkXKt3+BL35nWqWAmYh08hOQ0N7e2kREREREROqhvlmuPt8qp3bI2+YkWW1OACzLYs76Obyy/hUALu58MY+MfIQQZ4jNlYmIiC2ikuGa9+FPk0xLETCjvvteDv2uhPSBx5+U0g7OIDjnBug1Bb5+Elb/CTZ/CNvmm77lo++G0MjTO3dVqZlEMyQSgvQzUURERERE7KXgW05NE1seUe2p5rHljzFv+zwAbu53M9MGTMPRVAINERGxR2InuP4/8O1bpnVIlx817fA3MhEumGUmu/x0BuxaBItmwbq/weTHoPelxw/rXZWQtwvydsDh7d5lp1mX5PiOcwZDcASEHLUcvS8sBjKGm69XVHKjvXyxmWVBRYFp1SMiIiIi0kDU6gS1Ojmlt35qepVe9AIMvt7uamxTWl3KPV/fw9LspTgdTh4e/jBXdLvC7rJERETOjGWZUd+fPwQFe82+9qNg6E1QnFM35C7MBMvTAEU4oM1g6DoZuk2GtP7gdDbA84jt8nbCBzdD5iro/VMY/8Cxk8KKiIiIiJyEenz7QcH3KTzXG4oy4YbPoN1wu6uxRW5ZLtO+mMbmvM1EBEfw9NinGZcxzu6yREREAqe6HJa9CIufA1f5iY8LizUj3JO6QFJns07sDEmdzIhuV7k5V83iqoDqsqP2edclB8zF9ZwNdZ8jKgW6TjJL53MhPK5hX7s0PMuCtW/BJ/dDdalvv8NpWgKNmwGJHe2rT0RERETOGgq+/aDg+yQqiuBJ70Rc9+0yH41uYXYW7uTW+beSXZpNYngiL//oZfok97G7LBERkYZRsA++egJyvofEDt5Qu1bIHdUq8D3Li7Jh+wLY+hns/NpMEFrDEQTtRniD8MmQ0rPp9EyX+ik9BB/+CrZ8ZG63Hw1j74HVr/v2OYNh4DUw9tcQ19a+WkVERESkyVPw7QcF3yeRuQb+dC5Ep8K9W+2uptGtPbiWO768g8LKQtrFtOOVia+QEZthd1kiIiLNl6sK9i6HbZ+bSTdrJtmuER5nRp2HRHp7hUeaCTlrto8sEd79keb4yETTUzoi0WyHx0OQprtpcNvmw7zboPQgOEPgR7+BEbebiVYBstbAV783Fz4AgkLNBKyjp0NMqn11i4iIiEiTpeDbDwq+T2Ld32DerdBxLFz/od3VNKr5e+Zz/6L7qfJU0S+5Hy/+6EUSw1veiHcRERFb5e0yoei2z80knK6KwJ07PM4E4REJ3mDcG4pHJkO7YWakeUNMUlqcAzsXmnN3GA3RKYF/DrtVlcH838Lq18ztVj3h0lehdb/jH79nOXz5OOxZYm4HR8Cwm2DUXS3yE4ciIiIicmIKvv2g4Psk5v8Wlv4BhvwSfvKM3dU0mrc3v81Tq57CwmJ8xnhmjZ1FRHCE3WWJiIi0bNXlkL/H9Iiu6RdeVbNdVquXeJkJXmv2VRRCWR6U50FZPlQW1u/5wmKh8wToep5ptXK6AbXHDVnfwrbPTIC/f33d+1v1gA5joOMYs7Yj6PV4vP3YyyEsGoLDTv9c2evgg1/CIe+nBYfdChP/14zCPxnLgl0LTQCeudrsC42BEbfBiGnq9S4iIiIigIJvvyj4Pom/XQlbP4ULnoGhv7S7mgbnsTzMXjObP2/8MwBTu03lgWEPEOzUR6FFRESaDbcLKgpqheFHrQszYcdXUHao7uPSB0G380yv8dYDwOk88XOU5ZmJO7d9bkaslx2ue3/rASYQP7Dh2Mem9vEG4WOh/UiIiD/1a/J4TDuRouxaS5bpr137gkDtyUWP7KuoO6FpUKipL2MoZAwz65i0etTghqXPm9YlHhfEtIYpc8wEpf6wLPN1+/JxyPnO7AuPhzH3mAC8pk2KiIiIiLRICr79oOD7JP4wAPJ3wfUfmVFIzViVu4qHlzzMJ7s/AeBXg37FjX1uxKEJtERERFoejxuy15oJN7d9duwo7agU34Sbnc+FsBjI2eDtTf65GbFseXzHh8WZ0ePdzoMuE32jx8vyYPcS2L0Ydi2G3M11n8fhhLR+5vewdiPAVQnF+33Bdk3IXbzfhM0NJb6dCcHbDjVBeGqfuj3S8/fAv242/dkBel0CFz5/ZqPXPR4z+eVXT0DuFrOv/WjTMiWuzemf90TcLvN7b3QqhJ+lfxO4XZC5ynwPFuyD4HAICTfrI9sRR+2L8K4joXV/0xtfREREpAlT8O0HBd8nUF0OT7QGLLh3W/PsP+lVVFXEr778Fd8c+IZgRzCPjXqMizpfZHdZIiIi0lQU7Yft802guOMrqCrx3ecMNn3CS3PrPiallwnGu042YXF9+oWXHPSF4LsXw+Ht9a/R4YToNIhN9y5tILoVhEb7gs2QiKMW777gCF8AWrgX9q2CfSvN+uCmuiE+mMe1GWxeV0QCfP0UVBWb1iQXPA39r4JADR7wuGHd2/DJ/abNTUQCXDIHelwQmPMD7F4KH93tm0w1KgWSukBSZ+/auyR2PLM2MA2h9JD5VMHWz2DHF6a1z+mKawdT/wJtBgWuPhEREZEAU/DtBwXfJ5CzAV4Zbf64uG9X4P54aWJySnO4dcGtbC/YTlRIFLPHz2ZE+gi7yxIREZGmylUFe5fB1s/NaPCacDokEjqOg26TocskiM848+cqyjYjwnctMn3Cw2NNqB3T2gTbNQF3bLoZqRzUAO3ZKooga40JwTNXwb7Vx++TnjEcLv0jJHQIfA0Ah3fAP3/uG30/9CaY9Dszevl0lR6G+b8xwTqAMwQ81Sd5gMP8u9YOw1v3h7ZDGq8Fi8djWsBs+9yE3VlrgFp/0kUkmk8VtO4H7ipvK5sKXw93V6W33U3t/RVQnG1a8gSFwo+fhHNuaLa//4uIiMjZTcG3HxR8n8CGf8L7N5qP1d7wqd3VNIgf8n7gti9u42DZQVIiUpgzcQ7dE7vbXZaIiIicTQ7vgJIDpgf4mYSwZwuPx4yM3rfKLIe2Qo+fwMg7Gj78dVXBF4/C8pfM7dQ+cPn/QSs/f3/zeEzYPf83UJ4POOCcn8OPfguOIMjbYf5dD2+vteyAyqLjny86FXpeDL2nmN+dA/11qCiCnV97J0idb77fakvrayZh7XaeGYl/Os9fXgD/nmbaywD0uxIunA2hUWdcvoiIiEggKfj2g4LvE/jycVj0NAy6Hi5+we5qAsqyLD7e9TGPr3ickuoSOsd1Zu7EubSObm13aSIiIiJyKtsWwLxbTHuZ4Ag4/ykYdF39Rigf2AT/ne7rR57a1wS8GUNO/jjLMm1F6oTh201LmtrtRaJToedF0GuKmZz0dELowkzvCPvVZr1/fd2R6KHR0Gm8t5XOJDPiPxAsC5a9AAseBctt2vVMfQuSuwTm/CIiIiIBoODbDwq+T+C9a2Hzf+C8mTDiNrurCZiskix+t+J3LM1aCsDg1MH8YcIfiAuLs7kyEREREam34gNmQs2dX5nbvabARX+AiPjjH19VCgtnmdHiHheERMGEB2HYLWfWIsZVZUZjb/q3GS1dUeC7LyrFG4JfAu1HHf95XJUm2K7dSqY4+9jjkrp4R3VPNqPKG7LX+O4l8M8bzMjy0BiY8rJ5DSIiIiJNgIJvPyj4PoGXhpqPsV7zAXT5kd3VnDGXx8Xbm9/m5XUvU+4qJ8QZws39buaGPjcQUp/JpkRERESkafF4YPmL8MVjJsyOaweX/QnaDat73NbP4L/3mok7AXpcaEaJx7UNbD2uKtOPfdO/YPNRIXhksgnBe14ElcW1RnOvM724a3MEmfYlGUOh7VCzTmgf2FpPpTjHhN97zGARhk+DSY/Wb5JWERERkQak4NsPCr6Pw10NT6SZPyDu3hj4Pwoa2ebDm3lk+SNsOrwJMKO8/3fE/9IxrqPNlYmIiIjIGctcA+/fAPm7TWg84QEYPd2Et5/OgM0fmuPiMuD8WdDjgoavyV0NuxbCxnlmJHh5/omPjUz2htxDzDp9YNPore12mZ7qy7xtDzOGwxVvBK61ioiIiMhpUPDtBwXfx5H7A7w81PQPfCDzrJ3RvdxVztx1c3lz05u4LTcxoTHcM/geftr1pzgdTrvLExEREZFAqSgyvbs3/MPcTh8Ih7ZBVYkJw0dMg/H32xMou6tNL/CN82D7AohM9I3kzhgKCR2b9u/bmz+CebeayT2jWpkJRTuOtbsqERERaaHqm+WeQTM7adZyt5h1q+5N+5fwk1iWvYzHlj9GVkkWAOd1OI/7h95PckSyzZWJiIiISMCFx8Klr0Hnc01bk+y1Zn/GMDN5ZWpv+2oLCjF1dT7XvhrORM8LIaUn/P16OLAB3rwEzv0NjLoLnBpMIiIiIk2Tgm85vtwfzDq5u711nIb8inyeXv00H+40H2lNi0rj4WEPMy5jnM2ViYiIiEiDcjhgwNVmNPXiZ6H9CBhwjcLZQEjqDL+Yby4qrPuraYGydzl0GO3feSISzESfiZ3O2gE2frMsM4FpznfmtSd1trsiERGRFkHBtxxfTfDd6uwJvi3L4qOdHzFr9SwKKgtw4ODqnldzx8A7iAppAj0SRURERKRxJHeBn861u4rmJyQCprxsJg/9772w7XOznI7YNqZdSsex0GEMxGcEtla7VRbDjq9g22ewbQGU5HjvcEC3H8OI28zrbinhv4iIiA0UfMvxHQm+e9hbRz2VVZdxz8J7WJK1BICuCV15dMSj9G3V1+bKRERERESamUHXQesBsOYNqK7w77H5uyFzNRRlwfp3zAKmz3ntIDwmNeBlN7hD203QvfUz2LMMPNW++0KiIKUHZK2BrZ+YJbUvDL8V+l4OwWH21V2eD84Q0/9eQbyIiDQjmtwSTW55DI8bnmgN7kq4c635GGITVu2p5s4v72RJ1hJCnaHcOuBWru99PSHOELtLExERERGRo1WVwb6VsGuRWbK/BctT95hWPUwA3nGs2Y5IMEtQExq75aqEPUth6+cm8M7bWff+xE7Q9TzoNtm0OAkOM+H4yrmw7m9QXWaOi0qBIb+Ac26A6FaNU3tZHnz/Pnz3nrkQASb8jkgwk6/WfL0jEiEi/th9Ma0hqYvaCImIiC3qm+Uq+EbB9zHydsILAyE4HB7MBmeQ3RWdkMfy8PCSh/lw54eEB4Xz2uTXGJAywO6yRERERESkviqKTL/wXYtg10LI2XDiY8PiILJWABuZ6A1nE3zb4XHgrgJXhQmXq71rVwVUl5vFVe7bri43x/vD44L930F1qW+fMwTaj4Ru55nAO7nLiR9flgff/gVWvgrF2WZfUBj0mwrDb4PUXv7VUx+uSjMa/bv3zLr2iPTTEZkMHb0XJzqOa1l920VExFYKvv2g4PsoP3wC71wFaX3hliV2V3NSz33zHG9sfIMgRxAvnPsCY9uOtbskERERERE5E2V5sHuJCcL3LDVtUSoK7a7q+KLToOsk6DoZOk+AsBj/Hu+uhk3/hhVzTBuUGp3Gw/Bp0GXimY2qtizYtwq+exe+/wAqCnz3pfWD/ldBn8shLNq0PCnPN1//mu3yWttl+b7tgj2+Ees1avdt7zgW4tr6X6/bZfqhF2VDyQFzzpSepr+8iIiIl4JvPyj4PsqS2bDgEfML0OWv213NCf1l41945ptnAHh81ONc0uUSmysSEREREZEG4XaZ0PZIMJtXK6DN8+0rzzcjyINCTVgaEmE+yRoSCSHedXD4UduREBRyktHKJ9if2MmEx4Fo91ETUK+YA5v/42v9EtsWkjqZADg23bu08a0jk45fd95O+O7vsP5dyN/l2x+TDv2ugH5XndmocleVaVGzaxHsXAiZq44dNZ/YqVbf9rFmRH6xN9QuyjTrwqy62yU5x7a9cThNW5XUPpDWx/RGT+tj2q3Ud4S5ZUHpIcjbAYe3w2HvOm+n+R7oOMaMWm83XCG7iMhZQMG3HxR8H+Vft8L6v8GEh2Hcr+2u5rg+2vkRDyx+AIC7B9/NDX1usLkiERERERGRACjYCyv/CN++CZVFJz82KAxiW/vC8OhU07N730rfMSFR0Oti6HelCaEbopVlffq2O4LAcp/6XM4Q85qiWkH+Hig7dPzjIhLrBuGpvc2FgoI9JtiuE3LvgMp6fGogKAwyhpoQvNM4SB/UtPrKi4gIoODbLwq+j/LqBPOLytS3zC9ITczSrKXc/sXtuCwX1/S8hvuG3IdDveRERERERKQ5qSyB7LVQvN+0eynK9i7e7ZKDwAn+nHc4TbuUfldBzwshNKoRC8e0ptmz3BeEH/D2bXcGm1HnsekQVzNyvW2t221N4F0zit6yTMuTnO/NOXK+hwPfw6Ft9QvR63CY9itJnc0I8sTOZrvssBm1vmuh+VrXFhpj+rZ3GmfC8JRe/o3w97h9LWH8bYMjIiInpODbDwq+a7EsmNkWqkpg2ipo1d3uiurYkLuBGz+/kXJXOed3PJ8nxzyJ06GZxEVEREREpIVxVfn6YdcOxmPbQJ/LzKjppqIsz0yuGZ0SmBHn1RWQu9kXhNcEr4gN5wAAH3hJREFU4xWFZtR7TahdO+RO7HjyNiaWZUaI7/zahOC7FtftiQ5mQs8Oo02IfWRy1FLvusyMfK/Zri6r2/6lVU/TUqXDGHOOyMQz/zqIiLRQCr79oOC7lsJMmN3bXIl/KMf0umsidhXu4vpPrie/Mp8RrUfw8o9eJqQJ1SciIiIiIiI2sSxwVQSuR7fHDTkbTAi+cyHsXX7shJ6nzWHas3QcZ4Lw9iMhvIVnESIifqhvlqtmVVJX7hazTurSpELvg2UHuWX+LeRX5tM7qTezJ8xW6C0iIiIiIiKGwxHYiSmdQZA+wCyjfmVG2Gd9A3tXmDYrIVHeCVQjITTSu330Pu/+qjLYs9S0fdm92PzdnbPBLMtfMv3P0weYELzjWDPJZmO3pxERaYYUfEtduT+YdXI3e+uopaiqiFsW3EJ2aTbtY9vz8o9eJipEvwSIiIiIiIhIIwkONSOz24/0/7EhEWb+rJo5tIoPmAC8JgjP2wlZa8yy9HkzwWdyN9MOJTLRTOR5snV4vH+9xxuLuxp2fGla8LgqvC1gKsBV0ybGu89V4Wsd4yoHHND3chj8cwiLtvtViMhZTMG31FUTfLfqYW8dXhWuCu744g625W8jOSKZVya+QlJEkt1liYiIiIiIiJyemFQT7Pa93NwuzDQ9xWsmAy3KhIMb/TihAyISzKjxrudBt8mQ2KlBSq+X8nxY82dY9ZrpP3869q+Dxc/CsFtg6E3qiX42sSw4uNl8QiK1D6QPNJ/IELGBenyjHt91vH4e7FsBl73u+yFsE7fHzfSvp/Plvi+JDonmzz/+M90Tm9ZkmyIiIiIiIiIBY1mQv8uMAi/Lh/I8Mznocdf5UFV8/PMkdYVu50HXydBuhBmx3tAObYeVc2Hd33z90KNaQZtzfC1gQsIhONy3HRLpvR1hluAIE/wvewnydphzhEbDOT+HEbdDTFrDv47myrLg8A7YtxJKc6F1f2gzODD95avLzUWbrZ/BtvlQuNd3X3x76HUJ9JoCbQYpBJeA0OSWflDw7WVZ8FQHM3P1LUsgra+NpVg8tuIx/rn1n4Q6Q3ll0isMSRtiWz0iIiIiIiIiTY6ryoywLskxk3Bu+9xMxOlx+Y4JjYEu55rR4F0nQXRK4J7fsswEoMvnwLbPfPtT+8Dw26DPZSbg9pfHDZv+DYufgwMbzL6gMBj4/0zP9YQOASm/XkpyTUuag5vNqPqO486OFixVZZC91gTd+1aZdXneUQc5IKUntD0H2g6BtkNNm536tM4p2OsNuj83oberwndfcDi0HgA539WdFDYuwxeCtz3n9EJwyzKfkjjwvVnKC+reh3WCbby3Heb7J62P+T7VpwnOSgq+/aDg26vkIDzTFRxOeDA7sBOD+KHcVc5z3zzHuz+8iwMHz41/jontJ9pSi4iIiIiIiMhZpaLQ9Nbe+rkJJcsO1b0/fZAZDd5lommJEpHgfwBZXQEb/gEr5tZqy+KAbj+G4beaSToDMbLXssxrWPQMZK7yPk2Q+YT66LtNaBtoZXneyUi97WdyN9e9PygUOoxuGm1laivMqhty53xX9wIImEA6fZC5+JH9rQmvjxYWa0aCtx0CGUPNdmQiuF3mvNs+M99bR39dYtuar0fX88y/f2ikCd+3z4eN80xIXl1a9/heF3tD8CHHD9urSs0FhwPfQ873cGCjWSoLz/zrdaSONpDa24TgaX0gtS8kdTYT3EqTpeDbDwq+vXYtgr9cZP7TvnOtLSUsy17G75b/jsySTAB+M/w3TO0+1ZZaRERERERERM5qHo8Z9bvtMxM87l937DEhkRCb7l3a1Npu69sXmWiC7JKDsPp1+OZ10y6j5vED/p8JvJM6N8zrsCwTRi9+1oT6NXpcCGOmm3D2dFUUwp7l3slGF5mAlaOistQ+JhzdtxLyd9e9L6mLLwRvN/L02sq4qqA420wEWlkMrkqzuCvNSGpXlVm7q3y3a+6rKISstaZFzNFiWkPGMN+S1rdufcUHTC/ufasg8xsThtceoV0jsbO5gFJRK3B2OM05u042F1JSep38Ykd1OWxf4A3BP4Wqklp1ppsQvO0Q047lgDfkztvJMf8WAM5gSO5uguroVO/zep/7VNueaji0DXI2QMGe49caHGEuqtQE4Sk9TNueiERzoagxWgfJSSn49oOCb69Vr8HH90K38+Hqdxv1qfMq8nhm9TN8uPNDAFIjU3l4+MOMzxjfqHWIiIiIiIiINFvFOaYH87bPTNh79GjwEwkKMyF4UZYJX8EE48NugkHXmTCwsWR9C0ueg80f+val9YXw+JP3Dg8J920HhZpwddciczHA8tR9juTu0HGMGbncfjREJZn9lmVC05oLCcdrK9N5vLetzGQzkanbZVrRFGaZcLowywTcR7azzAWF4wW8/nAEmaA2Y7gZqZ0xDOLa+jfy3u0yI/gzV5sgPHM1HN7uuz8iAbpMMkF353NPv01Idbm5gLFxHvzwyYl71YMJtlN7e5e+Zp3cLTDhc0WRdxT5975R5Qc3HT/8ry002oTgkQm+MDwy0bvPuw6PrdXPPqLWuuZ7Mlz9zs+Agm8/KPj2+u+9sPo1GHUXTHq0UZ7Ssiw+3PkhT69+moLKAhw4uLrn1dwx8A6iQqIapQYRERERERGRFqm63BvC1ixZR21n+UZ212g7xPTv7nkxBAXbUzfAwS2w9Hn47u9guc/sXImdTMjdYYxZYlLr97iKItj5la+tTOnBuvdHp5qv39HB+vEEhZqLC+HxJhQNDvWuw8yFh9r7gkJ9t0MiTRicPqhheo+X5ZmLDeHeFiiBbgFSXWG+hhvnweFtJtSuGWGf2geiWwX2+U7F44a8Xaa3fI43ED+0zfRHLy/gjC9QHOE46sKM9+JMsJ/rjGHQqnuAajp7KPj2g4Jvrz9faCZsmPIKDPhZgz/dvqJ9PLbiMVbsXwFA14SuPDLiEfq16tfgzy0iIiIiIiIi9eCqhOL9ZnRyeJwZVdyUFOyD/etN24/qcu+6zASqrnKz75j9FRDfzhd2x7U58zo8HjN6fNvnZjR49re++5zBpp1HXBvTOqZmfWS7LUQlawRwU+fxQEWBmVC2LM8bhtfarr2uKvF+73m/52q2PdWBremCZ2DoLwN7zrNAfbNcGy/NSZOT+4NZt+rWoE9T7anmzY1vMnf9XCrdlYQFhXFL/1u4vvf1hDhDGvS5RURERERERMQPwWGQ0MEsTVF8hlns5nRCm0FmGX+/aV9SmGlGcUe10mSJzYHTaVqZRCaefj97t6vWBZky34WZOhdr/FgndAzsa2xmFHyLUZbn+0hOcsMF3xtyN/DI8kfYmr8VgGGth/Hb4b+lXWy7BntOEREREREREZFGFZ1iFpHagoIhKAbCYuyupEVQ8C3GIRNEE5fRIG++0upSXlz7In/b/DcsLOLD4vn1kF9zUaeLcOijPCIiIiIiIiIiIhJACr7FyN1i1g0w2vvbA99y36L7OFB2AICLOl3EvUPuJTH8NGf/FRERERERERERETkJBd9i5HpHfLfqEdDT/mfHf3hk2SNUe6ppG92W34z4DSPTRwb0OURERERERERERERqU/AtRs2I71bdA3I6j+XhpbUv8dqG1wCY1H4Sj496nMiQyICcX0REREREREREROREFHyLkfuDWQcg+C53lfPQkoeYv2c+AL/s+0tuH3g7TofzjM8tIiIiIiIiIiIicioKvgUqi6Eo02yfYY/v3LJc7vjyDjYe3kiwM5hHRz7KxZ0vDkCRIiIiIiIiIiIiIvWj4FvgkLe/d3QqRJ7+hJNb8rZw+xe3c6DsAPFh8Tw/4XkGpw4OUJEiIiIiIiIiIiIi9aPgW3xtTs5gtPdXe79ixuIZlLvK6RjXkZfPfZmM2IwAFSgiIiIiIiIiIiJSfwq+pVZ/7x5+P9SyLN7c9CbPfvMsFhbDWg/j2XHPEhcWF+AiRUREREREREREROpHwbec9sSW1Z5qnljxBO9vex+AK7pdwQPDHiDEGRLoCkVERERERERERETqTcG3QO4Ws/Yj+C6sLOSer+9hZc5KHDj49ZBfc03Pa3A4HA1UpIiIiIiIiIiIiEj9KPhu6arLoWCP2a5nq5M9RXu4/Yvb2V20m8jgSGaNncW4jHENWKSIiIiIiIiIiIhI/Sn4bukObwfLAxEJENXqhIfllOawKHMRizIXsXL/SircFaRFpfHSuS/RPdG/FikiIiIiIiIiIiIiDanZBN9z5szh6aefZv/+/fTu3Zvnn3+eMWPG2F1W01fT3zu5O9RqU+L2uNlwaAMLMxeyKHMRW/O31nnYgFYDmD1hNskRyY1ZrYiIiIiIiIiIiMgpNYvg+7333uOuu+5izpw5jBo1ij/+8Y+cf/75bNq0iXbt2tldXtNWa2LLwspClmUvY1HmIpZkLaGgsuDIYQ4c9G/Vn7FtxzK27Vi6JXRTP28RERERERERERFpkhyWZVl2F3Gmhg0bxqBBg5g7d+6RfT179mTKlCnMnDnzlI8vKioiLi6OwsJCYmNjG7LUJsWyLHa8ewWLclawqE0v1lUcxG25j9wfExrDqPRRjG07ltFtRpMQnmBjtSIiIiIiIiIiItLS1TfLPetHfFdVVbFmzRruv//+OvsnT57MsmXLjvuYyspKKisrj9wuKipq0BqbKpfHxTWVP1CamADl+wHoHNf5yKjuASkDCHae9d8iIiIiIiIiIiIi0sKc9anmoUOHcLvdpKam1tmfmppKTk7OcR8zc+ZMHn300cYor0kLcQYzLiSJwooCxg66ibFdLqZtTFu7yxIRERERERERERE5I2d98F3j6H7TlmWdsAf1Aw88wPTp04/cLioqIiMjo0Hra5IcDp68+iv16hYREREREREREZFm5awPvpOTkwkKCjpmdPfBgwePGQVeIywsjLCwsMYor8lT6C0iIiIiIiIiIiLNjdPuAs5UaGgogwcPZv78+XX2z58/n5EjR9pUlYiIiIiIiIiIiIjY5awf8Q0wffp0rr32Ws455xxGjBjBq6++yt69e7nlllvsLk1EREREREREREREGlmzCL6vvPJKDh8+zGOPPcb+/fvp06cPH3/8Me3bt7e7NBERERERERERERFpZA7Lsiy7i7BbUVERcXFxFBYWEhsba3c5IiIiIiIiIiIiInIc9c1yz/oe3yIiIiIiIiIiIiIitSn4FhEREREREREREZFmRcG3iIiIiIiIiIiIiDQrCr5FREREREREREREpFlR8C0iIiIiIiIiIiIizYqCbxERERERERERERFpVhR8i4iIiIiIiIiIiEizouBbRERERERERERERJoVBd8iIiIiIiIiIiIi0qwo+BYRERERERERERGRZkXBt4iIiIiIiIiIiIg0Kwq+RURERERERERERKRZUfAtIiIiIiIiIiIiIs2Kgm8RERERERERERERaVYUfIuIiIiIiIiIiIhIs6LgW0RERERERERERESaFQXfIiIiIiIiIiIiItKsKPgWERERERERERERkWZFwbeIiIiIiIiIiIiINCsKvkVERERERERERESkWVHwLSIiIiIiIiIiIiLNioJvEREREREREREREWlWFHyLiIiIiIiIiIiISLOi4FtEREREREREREREmhUF3yIiIiIiIiIiIiLSrCj4FhEREREREREREZFmRcG3iIiIiIiIiIiIiDQrwXYX0BRYlgVAUVGRzZWIiIiIiIiIiIiIyInUZLg1me6JKPgGiouLAcjIyLC5EhERERERERERERE5leLiYuLi4k54v8M6VTTeAng8HrKzs4mJicHhcNhdTqMqKioiIyODffv2ERsba3c5ItII9L4XaVn0nhdpefS+F2l59L4XaVla+nvesiyKi4tJT0/H6TxxJ2+N+AacTidt27a1uwxbxcbGtsg3ikhLpve9SMui97xIy6P3vUjLo/e9SMvSkt/zJxvpXUOTW4qIiIiIiIiIiIhIs6LgW0RERERERERERESalaBHHnnkEbuLEHsFBQUxfvx4goPV+UakpdD7XqRl0XtepOXR+16k5dH7XqRl0Xv+1DS5pYiIiIiIiIiIiIg0K2p1IiIiIiIiIiIiIiLNioJvEREREREREREREWlWFHyLiIiIiIiIiIiISLOi4FtEREREREREREREmhUF3y3cnDlz6NixI+Hh4QwePJjFixfbXZKIBMDMmTMZMmQIMTExpKSkMGXKFH744Yc6x1RWVnLHHXeQnJxMVFQUF198MZmZmTZVLCKBNHPmTBwOB3fdddeRfXrPizQ/WVlZXHPNNSQlJREZGcmAAQNYs2bNkfsty+KRRx4hPT2diIgIxo8fz8aNG22sWETOhMvl4uGHH6Zjx45ERETQqVMnHnvsMTwez5Fj9L4XObstWrSIiy66iPT0dBwOB/Pmzatzf33e4/n5+Vx77bXExcURFxfHtddeS0FBQWO+jCZDwXcL9t5773HXXXfx0EMPsXbtWsaMGcP555/P3r177S5NRM7QwoULmTZtGitWrGD+/Pm4XC4mT55MaWnpkWPuuusu/vWvf/Huu++yZMkSSkpKuPDCC3G73TZWLiJnavXq1bz66qv069evzn6950Wal/z8fEaNGkVISAiffPIJmzZt4tlnnyU+Pv7IMbNmzeK5557jpZdeYvXq1aSlpTFp0iSKi4ttrFxETtdTTz3FK6+8wksvvcTmzZuZNWsWTz/9NC+++OKRY/S+Fzm7lZaW0r9/f1566aXj3l+f9/jVV1/NunXr+PTTT/n0009Zt24d1157bWO9hCbFYVmWZXcRYo9hw4YxaNAg5s6de2Rfz549mTJlCjNnzrSxMhEJtNzcXFJSUli4cCFjx46lsLCQVq1a8dZbb3HllVcCkJ2dTUZGBh9//DHnnXeezRWLyOkoKSlh0KBBzJkzh8cff5wBAwbw/PPP6z0v0gzdf//9LF269ISf2LQsi/T0dO666y5mzJgBmE9+pKam8tRTT3HzzTc3ZrkiEgAXXnghqampvP7660f2XXbZZURGRvLWW2/pfS/SzDgcDv71r38xZcoUoH4/2zdv3kyvXr1YsWIFw4YNA2DFihWMGDGCLVu20L17d9tejx004ruFqqqqYs2aNUyePLnO/smTJ7Ns2TKbqhKRhlJYWAhAYmIiAGvWrKG6urrO/wHp6en06dNH/weInMWmTZvGT37yEyZOnFhnv97zIs3Pf/7zH8455xyuuOIKUlJSGDhwIK+99tqR+3ft2kVOTk6d931YWBjjxo3T+17kLDV69Gi++OILtm7dCsD69etZsmQJF1xwAaD3vUhzV5/3+PLly4mLizsSegMMHz6cuLi4Fvn/QLDdBYg9Dh06hNvtJjU1tc7+1NRUcnJybKpKRBqCZVlMnz6d0aNH06dPHwBycnIIDQ0lISGhzrH6P0Dk7PXuu+/y7bffsnr16mPu03tepPnZuXMnc+fOZfr06Tz44IOsWrWKO++8k7CwMK677roj7+3j/b6/Z88eO0oWkTM0Y8YMCgsL6dGjB0FB/7+9+w1t6mzjOP7LkjaJmtqJbaO2FoN/VrWW2OJwHROcrtvYXgxF1E47UKSj1SpuuNn96XBTthcTppvoXshgqziksMnc/ENjOxkoDIp1kQqW2lWtFRdaq85Acu/Fw3N4sqrtHrvGnn4/cOjJfe4757oL183pldMTp2KxmD766COtWLFCksh7wOYGkuOdnZ3KzMzsMzYzM3NEXvdT+B7hHA5HwmtjTJ82AMNbZWWlzp49q1OnTvXblzUAGJ5+//13VVVV6dixY/J4PAMeR84Dw1c8HldRUZG2b98uSQoGg/rtt9+0Z88erV692urH9T5gHwcPHtTXX3+t2tpazZo1S01NTdq4caMmTpyosrIyqx95D9hbfzl+r3wfqesAjzoZocaPHy+n09nn056urq4+nxwBGL7Wr1+v77//XqFQSNnZ2Va73+9XNBpVJBJJ6M8aAAxPv/76q7q6ulRYWCiXyyWXy6WGhgZ99tlncrlcysrKIucBm5kwYYJmzpyZ0JaXl2d9Ub3f75ckrvcBG3nzzTf11ltvafny5crPz9eqVau0adMm6zu6yHvA3gaS436/X9euXesz9vr16yNyHaDwPUKlpqaqsLBQx48fT2g/fvy4nnrqqSRFBWCwGGNUWVmpuro61dfXa8qUKQnHCwsLlZKSkrAGXL16VefOnWMNAIahZ599Vs3NzWpqarK2oqIilZaWWvvkPGAvxcXFamlpSWi7cOGCcnNzJUlTpkyR3+9PyPtoNKqGhgbyHhimbt++rcceSyzjOJ1OxeNxSeQ9YHcDyfH58+eru7tbZ86csfqcPn1a3d3dI3IdcNbU1NQkOwgkR1pamt59911NmjRJHo9H27dvVygU0v79+5Wenp7s8AA8hIqKCn3zzTc6dOiQJk6cqN7eXvX29srpdColJUUej0dXrlzR7t27VVBQoO7ubpWXl8vn8+njjz/uc0EN4NHmdruVmZmZsNXW1ioQCGj16tXkPGBDkydP1gcffCCXy6UJEybop59+Uk1NjbZt26Y5c+bI4XAoFotpx44dmjFjhmKxmDZv3qzLly9r3759crvdyZ4CgH/o/Pnz+uqrrzRjxgylpqYqFApp69atWrlypRYvXkzeAzbQ29urcDiszs5O7d27V08++aS8Xq+i0ajS09P7zfGMjAydPn1atbW1CgaD6ujo0Lp16zRv3jytX78+2dMbegYj2ueff25yc3NNamqqmTt3rmloaEh2SAAGgaR7bvv377f63Llzx1RWVppx48YZr9drXnrpJdPe3p68oAEMqgULFpiqqirrNTkP2M/hw4fN7NmzjdvtNk888YTZt29fwvF4PG7ef/994/f7jdvtNs8884xpbm5OUrQAHlZPT4+pqqoykydPNh6PxwQCAVNdXW3u3r1r9SHvgeEtFArd82/5srIyY8zAcvzGjRumtLTU+Hw+4/P5TGlpqYlEIkmYTfI5jDEmSTV3AAAAAAAAAAAGHf/XCgAAAAAAAACwFQrfAAAAAAAAAABbofANAAAAAAAAALAVCt8AAAAAAAAAAFuh8A0AAAAAAAAAsBUK3wAAAAAAAAAAW6HwDQAAAAAAAACwFQrfAAAAAAAAAABbofANAAAAPELa2trkcDjU1NSUlPO3tLTI7/fr5s2b/fZtbm5Wdna2bt26NQSRAQAAAANH4RsAAAAYIg6H44Hba6+9ppycHF29elWzZ89OSozV1dWqqKiQz+frt29+fr7mzZunnTt3DkFkAAAAwMA5jDEm2UEAAAAAI0FnZ6e1f/DgQb333ntqaWmx2rxer8aOHZuM0CRJHR0dCgQCam1tVXZ29oDGHD58WOXl5Wpvb5fT6fyXIwQAAAAGhju+AQAAgCHi9/utbezYsXI4HH3a/v6ok5MnT8rhcOjo0aMKBoPyer1auHChurq69OOPPyovL09paWlasWKFbt++bZ3LGKNPPvlEgUBAXq9XBQUFOnTo0APj+/bbb1VQUJBQ9L506ZJefvllPf744xo9erRmzZqlI0eOWMdLSkp048YNNTQ0DPJvCwAAAPj/uZIdAAAAAID+1dTUaPfu3Ro1apSWLVumZcuWye12q7a2Vr29vXrllVe0a9cubdmyRZL0zjvvqK6uTnv27NG0adPU2NioV199VRkZGVqwYME9z9HY2KiioqKEtoqKCkWjUTU2Nmr06NEKh8MaM2aMdTw1NVUFBQX6+eeftXDhwn/vFwAAAAD8AxS+AQAAgGHgww8/VHFxsSRpzZo1evvtt3Xx4kUFAgFJ0tKlSxUKhbRlyxbdunVLn376qerr6zV//nxJUiAQ0KlTp7R37977Fr7b2tpUWFiY0Nbe3q4lS5YoPz/fep+/mzRpktra2gZrqgAAAMBDo/ANAAAADANz5syx9rOysjRq1KiEInRWVpbOnDkjSQqHw/rzzz+1ePHihPeIRqMKBoP3PcedO3fk8XgS2jZs2KDXX39dx44d06JFi7RkyZKEWKT/PJv8fx+zAgAAACQbz/gGAAAAhoGUlBRr3+FwJLz+b1s8Hpck6+cPP/ygpqYmawuHww98zvf48eMViUQS2tauXavW1latWrVKzc3NKioq0q5duxL6/PHHH8rIyHio+QEAAACDicI3AAAAYDMzZ86U2+1We3u7pk6dmrDl5OTcd1wwGFQ4HO7TnpOTo/LyctXV1Wnz5s368ssvE46fO3fugXeSAwAAAEONR50AAAAANuPz+fTGG29o06ZNisfjevrpp9XT06NffvlFY8aMUVlZ2T3HlZSUaO3atYrFYnI6nZKkjRs36oUXXtD06dMViURUX1+vvLw8a0xbW5suX76sRYsWDcncAAAAgIGg8A0AAADY0LZt25SZmakdO3aotbVV6enpmjt3rrZu3XrfMS+++KJSUlJ04sQJlZSUSJJisZgqKirU0dGhtLQ0Pf/889q5c6c15sCBA3ruueeUm5v7r88JAAAAGCiHMcYkOwgAAAAAj4YvvvhC3333nY4ePdpv37t372ratGk6cOCAiouLhyA6AAAAYGC44xsAAACAZd26dYpEIrp586Z8Pt8D+166dEnV1dUUvQEAAPDI4Y5vAAAAAAAAAICtPJbsAAAAAAAAAAAAGEwUvgEAAAAAAAAAtkLhGwAAAAAAAABgKxS+AQAAAAAAAAC2QuEbAAAAAAAAAGArFL4BAAAAAAAAALZC4RsAAAAAAAAAYCsUvgEAAAAAAAAAtkLhGwAAAAAAAABgK38B9uJC9GOrr4wAAAAASUVORK5CYII=\n", "text/plain": [ "
                                        " ] @@ -4802,12 +7253,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbUAAANcCAYAAABop0I8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd1hUx/oH8O/Csrv0poBUC4hARI0au2DFGLvGgnrFlqgxRa8l6o0iMcYWS0yuMQ2jQUVjiRo1UZRYiC0RuyZGqiV2AZG68/uD357LCrsszRX5fp6HJ+ScmTnvmZ1zFt+dnSMTQggQEREREREREREREVUBJsYOgIiIiIiIiIiIiIjIUExqExEREREREREREVGVwaQ2EREREREREREREVUZTGoTERERERERERERUZXBpDYRERERERERERERVRlMahMRERERERERERFRlcGkNhERERERERERERFVGUxqExEREREREREREVGVwaQ2EREREREREREREVUZTGoTEVG1s2bNGshkMtSuXdvYodBTZDIZZDIZYmNjjR2KTuHh4ZDJZAgODq6U9sPCwiCTyRAWFlYp7ZeFsWMy9vGN6fDhw3jttddQs2ZNmJqaQiaToU+fPsYOq0yqwvVtLJV9X6kMycnJGDlyJDw9PaFQKCCTyWBnZ2fssKq02NhY6Toxpqo4HomIqPqRGzsAIiKi0ijPP/QiIyNf2KRYeHg4gILkH5P1VFXExsYiNjYWtWvXfmGvzfI4duwYOnbsiLy8PMhkMjg6OsLU1BT29vYG1Wf/6sf7Ztk9evQIbdq0QWpqKgDA1tYWKpUKtra2Ro6M9ImPj8f27dthZ2eH9957z9jhEBERlQuT2kREVKU4OzsXuz0jIwOPHz/WW8bc3LzS4jK2uXPnAgCCg4OZnKEKV6tWLfj6+qJWrVoV2m5sbCzmzp2LoKAgvUnXyjr+82758uXIy8tDmzZtsGPHDjg4OJSqvqH9+6z4+voCACwsLIwcSYHn6b5Zo0YN+Pr6wtPT06hxGGrDhg1ITU2Fvb094uLi0KBBA2OHRAaIj4/H3Llz4eXlpTepXdXGIxERVU9MahMRUZVy69atYreHh4dLCQpdZYiobD7++GN8/PHH1fb4xnLu3DkAwODBg0ud0H4eXb582dghPLcmTpyIiRMnGjsMg2nGZseOHZnQfgFVtfFIRETVE9fUJiIiIiJ6DmVmZgIArKysjBwJkTaOTSIiIjI2JrWJiKja+/333zFw4EDUqlULSqUSdevWxeTJk/HgwQO99dLT07FgwQK0atUKDg4OUCqV8PDwwODBg/Hbb7+VOZ4HDx5g9uzZePnll2FjYwOFQgEXFxcEBgZi3LhxiImJkcpqHqCn0aFDB+khU8U9DPPYsWOYPn062rVrBy8vL6hUKtjZ2aFly5ZYuHAhMjIydMZV+CFv6enp+M9//oMGDRrA3Nwcjo6O6NGjB44fP17iuU2dOhX16tWDSqVCrVq18Prrr+P3338vsV8qKvbbt29j8uTJqF+/PiwsLIpdp33Pnj3o0qUL7OzsYGVlhUaNGmHRokXIzc0tMU5DREVFoU2bNrC2toatrS1atGiBL7/8EkIIg+qfP38eb7zxBnx8fGBhYQErKysEBgZi1qxZuHv3bpHyjRo1gkwmw+TJk/W2e+DAAchkMpiYmCA5OVnaru9BjQ8ePMA333yDgQMHomHDhnBwcIBKpYKXlxdCQ0Nx7NixInUSExMhk8mkb1f8+uuvWuNWJpNhzZo1Bh1fIzY2Fq+//jrc3NygVCpRo0YNdOrUCZGRkcjPzy+2ztMPQ4uJiZEeyqhSqeDn54e5c+ciKytLb7+V5PTp0/jXv/4ljVt7e3u0bt0ay5cvR3Z2dpHymj5ITEwEAIwcOVKrbzTbdSlt/wYHB0MmkyE8PBy5ubn45JNP0KxZM9jZ2Wk92FGtViMmJgbvvPMOWrZsCXd3dygUCjg6OiIoKAhffPGF3mvEkAdF/vTTT+jfv7/0Otrb26N9+/ZYtWoVcnJy9J53SkoKpk2bhsaNG8PW1hbm5uaoV68eevfujbVr10qvY2nvm0DBGtIRERHSfdnc3Bw+Pj4YP348rl27ZtA567v3GPJgvjt37uA///kPmjRpIq1hXbduXYwePRoXLlzQWS81NRWTJk1CQEAALC0toVQq4erqiqZNm2LSpEk4efKknl7VphkrmvHz3Xff6RxXQOX3m6HK2nfled/ROH78OEaOHAlvb29YWFjAxsYG/v7+GDVqFH7++We9da9evYpRo0bBw8MDSqUS7u7uGDt2LK5fv17qPpDJZBg5ciQAICkpqcg9QbPGPKB/PD59P16zZg1atWoFW1tb2Nvbo3Pnzjh06JBUPi8vDytXrkTTpk1hY2MDW1tbdO/eHX/88YfeeNVqNaKiotC9e3c4OztDoVCgZs2a6Nq1KzZs2GDw+yUREb3ABBER0Qtgzpw5AoAw5K0tMjJSABBeXl4iKipKmJmZCQDC1tZWmJiYSO0EBASI9PT0Yts4ffq0cHd3l8qampoKa2tr6f9lMpmYP39+qc8jJSVFeHp6Su2YmJgIe3t7YWpqKm0LCgqSyr/zzjvC2dlZ2mdvby+cnZ2ln2bNmmm1rykHQFhYWAh7e3utbf7+/uKff/4pNjZNmfXr1wtvb28BQKhUKmFhYSHtUygU4ueffy62fkJCgvDy8tIqa2NjI/3+448/SvsOHjyo8/jlif2rr76S+kulUkmvWWGFxxIAYWdnJ+RyuQAg2rdvL2bMmFHkdTCUWq0WI0eO1Bon9vb20rgbPHiwGDFihAAgRowYUWwbCxcu1BqnFhYWQqFQSP9fq1Yt8ccff2jVWbx4sQAgXFxcRF5ens74wsLCBAARHBystV1fTIX7y9TUVNjb2wulUql1jitWrNCqk5ycLJydnYWlpaUAIMzMzLTGrbOzs9i4caNBxxdCiEmTJmkdz87OTuua6dixo0hLS9MZe1BQkFi0aJGQyWRSfZlMJtXv0KGD3n7TZ+nSpVpt2draSvccACIwMFDcuHFDq46mDzSvs42NjVbfJCcn6z1mafs3KChIABDTp08XrVu3FgCEXC4X9vb2QiaTSddjQkKC1rVhZWUlbG1ttba1a9dOZGZmFhuXvus7MzNTDBgwQKstGxsbrb5r2bKluH//frFtr127VqhUKq37i6Ojo3TtAhCnT58WQpT+vnn+/Hmt+33hewcAoVQqxQ8//KD3nEu69xQei8XZt2+fsLOzk9ozMzOTXl/N+X733XdF6sXHx2vdKzXXaOF+1XVdFadv377C2dlZ6muVSqVzXD2LfjNEWfuucBxled/Jy8sT77zzjlZ5S0tLrf63tbXVqnPw4EGp7IEDB4SVlZUAIKytrbXGsqurq0hNTS1VPzg7O0vvuSYmJkXuCYsXL5bK6huPhe/Hmt/lcrnWayuXy8XOnTtFVlaW6Nq1q9TPhfvdwsJCnDp1qthY7927J9q3b6/Vd0/fa3r16iWys7NL1QdERPRiYVKbiIheCGVJaltYWAilUinGjBkjJYkeP34sPvvsMynp9MEHHxSpf+PGDeHk5CQAiH79+olTp06JnJwcIYQQ//zzj/jggw+kf3xu27atVOcxevRoAUDUrl1b7N+/X0qk5eXlicTERLFq1Soxffr0IvX0JYsK69mzp4iOjhY3b96UtmVmZoqtW7cKX19fAUD07du32LqFE0D+/v7iwIEDIj8/X6jVanHixAmpvpeXl8jPz9eqm5eXJ5o1aybV37Rpk8jNzRVCCHHhwgXRrl07raRDcedREbFbWVkJX19fERMTI8V45coVqVzhxPrrr78ujYvMzEzx+eefC4VCIcVZlqT2ihUrpPYnTpwo7ty5I4QQ4uHDhyI8PFxKqOpKNH399dfSeXz00UdSX+Tl5YlTp06Jjh07CgDC3d1d6wOZGzduSEnePXv2FBtbZmamlJT49ttvtfbpSyqvXr1azJkzR5w6dUpKMKjVanHt2jXx7rvvCplMJkxNTYsk2oUoOZFnyPFXrlwp9ekbb7wh9UlGRoZYtmyZdC0OGjRI5/Ht7OyEiYmJmDFjhvSaPHr0SMyePVtq+5tvvtEbY3F27twp1e/du7e4du2aEEKI7OxssXbtWqm/W7duXWzSXPMhUGRkZKmPXfj8SupfTVLbyspKWFlZicjISCkxfffuXXHv3j0hRMGHbkOHDhU7duyQtgkhRHp6uoiMjBSurq4CgJg0aVKxx9F3fQ8bNkwAEHXr1hVRUVHi0aNHQgghnjx5In788UdRt25dAUD06dOnSN1du3ZJScI2bdqIw4cPS9d3dna2OHz4sBg7dqy4cOGCwfFopKWliTp16ggAws3NTfz0009S2/Hx8aJly5ZSgjY+Pl7nOZd079H3Wp09e1aYm5sLAGLs2LHi4sWL0nhJSkoSEyZMkBKJJ0+e1KrbqVMnAUC8/PLL4rfffhNqtVrqlz///FMsWbJELFq0SOf561LSB03Pqt9KUp6+E6J87zvTpk2TzmPUqFFacT98+FBs3769yH2pcFLb3t5e9OrVS1y6dEkIUfCaRUdHS/eN4cOHG9wPGoU/1NfHkKS2nZ2dMDc3F6tXr5buF5cvXxZNmzaV/o6ZOHGicHBwEJs2bRI5OTlCrVaLU6dOiXr16knX69Py8vKke1Ljxo3Fzp07xePHj4UQBff17777Tvob7L333it1HxAR0YuDSW0iInohlCWpre8f5JMnTxYAhLe3d5F9o0aNEgBEaGiozmMsXbpUABCNGjUy+ByEEMLPz08ABbOhS8PQpLY+qampQqlUCplMJpKSknQeo2bNmsXOTDt79qxU5siRI1r7oqOjpX379+8vUvfx48fSP3LLch6Gxm5jYyNSUlJ0tuPv7y/9Q/7pxLwQQnzxxRdSW6VNaj958kQ4ODjoTUa8//77OsdmWlqalPDeu3dvsfVzc3OlhMKyZcu09oWEhAgAYsiQIcXWXb9+vQAgzM3Ni8xqLimBpc9bb70lAIjRo0cX2VfepHZmZqbUp7rO69NPP5X69OlZgYXvG3PmzCm2fr9+/QQA0blzZ70xFkdzPbdr167YpPWOHTuk42/evLnI/med1AYgduzYUaZjCSHEyZMnBVAwG/XJkydF9uu6vg8dOiQACCcnJ52z0FNSUqRZnpoZ10IUjHlN8rRt27almrlpyP1mwYIFAiiY3Xvu3Lki+9PS0kTt2rUFAPHaa6/pPEZJ9x59r5Xmw6oZM2borK+ZEdy7d2+t7ZqEblxcnM66ZVHSPeFZ9VtJytN3JdH3vnPlyhXpmxbTpk0zuM3CSe0OHToU+z6kuaeZm5tLHw4bqiKT2gDE999/X2T/1atXpf0AxOHDh4uUiYmJkfY//fquXbtWABANGjQQDx8+LDa+U6dOCZlMJhQKhc6Z8kRE9OLjmtpERFSt/ec//yl2e+/evQEUrGepeSAWAGRlZWH9+vUAgOnTp+ts91//+hcA4MyZM/jnn38MjsfOzg4AcPPmTYPrVBQ3Nzc0atQIQgjExcXpLPfGG2/AycmpyPaGDRuiTp06AICzZ89q7du4cSMAoE2bNujUqVORuhYWFpg2bVqlxz58+HC4u7sXu+/s2bO4ePEigIJxYWJS9M+ksWPHws3NrUwx/vLLL7h//z4AYPbs2cWWef/996FSqYrdt2XLFjx8+BBNmjRBSEhIsWXkcjmGDBkCAEXWah0+fDgAYPv27UhPTy9Sd926dQCAPn36wNra2oAzMsxrr70GADhy5EiFtamxb98+qU8Lrwdb2IQJE1CrVi0AkK7dpymVSkyZMqXYfZp7wdNjuiRnz57FpUuXABSMJ1NT0yJlevbsiVdeeQUAsGHDhlK1XxkCAgLQs2fPMtdv1qwZnJyc8PjxY8THxxtc75tvvgEADB06FB4eHsWWcXd3R4cOHQBoj+2DBw8iISEBALBs2TIoFIqyhl+s6OhoAMCAAQPw0ksvFdlvbW0t3bv27NmDR48eFduOvnuPPomJiThw4ADkcrnOMQr87z1n//79WmvIG+s9xdj9BpS/70qi733nu+++g1qthqOjo7S2fWnNnDmz2PchzT3pyZMn+Ouvv8rUdkXw9PREaGhoke316tWDt7c3AKBdu3Zo27ZtkTJBQUFQKpUAit5bNfeD8ePHw9bWtthjN23aFAEBAcjJycHBgwfLdR5ERFR1yY0dABERkbE4ODhI//B6mqurq/T7gwcPYGFhAaDgoZKah4117drVoOMkJSXB2dnZoLI9evTAb7/9hvfffx+XL19Gv3790Lp1a9jY2BhUvyRqtRobN27Exo0bER8fjzt37hT7ELzU1FSdbbRo0ULnPldXVyQkJEiJRo1Tp04BADp27Kizrr59FRV7mzZtdO7TxCiXy9GuXbtiy5iYmCA4OBhRUVF6Y9XXvoeHh85xZ2tri6ZNm+Lo0aNF9mm2Xbp0CS4uLjqP8+TJEwAF466wvn37wtraGunp6diyZYvWQxf/+ecf/PLLLwD+l+ApjWvXruG///0vDh48iL///hvp6elQq9VaZfS9LmVVuE/r169fbBlTU1N07NgRUVFRUvmnBQQEwMrKqth9mnvB02Pa0NjkcjmCgoJ0luvSpQtOnDihM7ZnSd/1oZGTk4Nvv/0WW7duxfnz53Hv3r1iH+BYmtdbM7a/+eYbnR88AJASn4XHtiaZ6OLigmbNmhl8TEPk5ORICbfOnTvrLNelSxcABfeoP/74Q0q+F2ZI3xZH0zdqtRr+/v46y2mSsY8fP8a9e/ekDx579OiBr776CiNGjMDRo0fRq1cvNG/eXHpPqwzPQ78B5e87Td2yvO9oxmWXLl10flBZEl3vtYX/PintfakiNWvWTOdDO52dnXH16lU0b9682P2mpqaoUaMGrl+/rvVQ7vz8fOnhwuHh4Zg/f77O42vO/en3OiIiqj6Y1CYiompL32xUufx/b5G5ubnS7zdu3JB+N3QGduGZ3iWZOnUqzpw5g02bNuGrr77CV199BZlMhoCAAHTr1g1jxoyBr6+vwe09HUePHj20ZjUpFAo4ODjAzMwMQME/EnNzc/H48WOd7RjSb4X7DABu374NAHpnOeubjVdRsRc3w/zpGGvUqCHNICttnPoY0gf62teMvaysrGKTKk97etxZWFigf//+WLNmDdatW6eV1N6wYQPy8/Ph4uIiJZoMtW3bNgwZMgTZ2dnSNhsbG6hUKshkMuTk5ODBgwd6X5eyKm2faso/zZAxnZeXV6bYDB1PumJ7lvRdH0BBjJ07d8a5c+ekbSqVCjVq1JBmot+5cwdqtbpUr7dmbKelpSEtLa3E8oXH9q1btwAAXl5eBh/PUPfv35cSnobeu3S9jiX1rS6avlGr1WV6z1m0aBGuXr2KgwcPYunSpVi6dClMTU3RuHFjvPbaa3jjjTfK/O0TXZ6HfgPK33fled+piHGp676k6++TZ82Q+2Zp/164f/++9F5SONmtT2n+xiIiohcLlx8hIiIqhcJfTX7y5AlEwfMp9P4EBwcb3L6ZmRmio6MRHx+P2bNno2PHjrCwsMD58+exZMkSBAQE4JNPPilT7B999BEOHjwIc3NzLFu2DElJScjKysK9e/dw69Yt3Lp1S5oZJoQo0zEqS0XFXtwSEFWFZuwNGjTIoHGXmJhYpA3NLOzY2FikpKRI2zVLj4SGhpaqj+7du4ewsDBkZ2ejY8eOiI2NRWZmJh49eoR//vkHt27dwubNm8tx1vQslfTaT5o0CefOnYOjoyO+/fZb3Lx5E0+ePMGdO3ek61Azi7Q09xDN2F61apVBY3vNmjVSXV0zRZ83Zb33aPrG2dnZoL4RQqB27dpSfTs7Oxw4cACHDx/GtGnT0KZNG8jlcvz++++IiIiAj4/Pc7H0jS7luWeXt+/K875TVcbl86bw31h79uwx6DXTtfQUERG9+JjUJiIiKoXCyz5U5ldeGzVqhLlz5yImJgYPHz7E/v370b59e+Tn50uzuUtLs6717Nmz8d5778HT07PIP7w1s8sqmma23fXr13WW0bfvWcSuifHu3bvFLqdgSJyGtF9SfV37NWOvPOMuODgYHh4eUKvV0hIqFy9exB9//AGg9EuP7N69G2lpabC3t8fOnTsRFBQEc3NzrTKVNaaA//VpSUtdaPaXZ9ZnaRUeT4VnsT/NGLGVRW5uLrZu3QoA+OyzzzBy5Mgiy+Dk5+fj7t27pW67PGO7Iq4LXRwcHKSkqr4xVnhfRb+OmvO7e/duub7t0LZtWyxcuBBHjhzBw4cP8eOPP6Jhw4Z48uQJRo0aVapnP5Tkeeg3oPx9V573ncocly8yR0dHaQY3+46IiErCpDYREVEpNG/eXHoQ2c6dO5/JMeVyOTp16oSffvoJSqUSQgjs379fq4zmH9r6ZkdqZuY2adKk2P2JiYm4evVqBUWtTbPWrb4HOh04cEDnvmcRuybGvLw8HD58uNgyarUasbGx5Wo/JSUFf//9d7Fl0tLS8Pvvvxe7T7O27O+//17mh77JZDIMGzYMwP9mZ2v+GxgYiEaNGpWqPc3r4uvrq3ON3qfHamGah6CV9ZsBmj5NTU3Fn3/+WWyZ/Px8adzpWt+1MhQeT7/++qvOcpr+qYzYytu/hRVeS1jXdXjkyBGDlsZ5mmZs79q1q9R1W7duDaAguVjadclLum8qFAoEBgYCAGJiYnS2o3kNTUxM8PLLL5cqhpJo+iY/Px979uypkDZVKhV69eolfUiRlZVVoQ9yfR76DSh/35XnfUczLvft21ema6KyVOQ9oTKYmZlJD899Vn9jERFR1cWkNhERUSlYWloiNDQUALBw4UIkJyfrLV/ahzjpm9GpVCql2W+af5hqaB4k+fDhQ531bW1tAUDnLO/333+/VLGWxqBBgwAUJL2KSwo/efIEixcv1ln/WcQeGBgIPz8/AAVfO3/6QYcA8O2335b5gYddunSBvb09AODDDz8stsyiRYukBz0+7fXXX4ednR1yc3MxefJkvUkJtVqtcyxoZmNfvHgRp06dkmZsl+UBkZrX5c8//yw2cRMfH6/3wX+GjFt9unTpAkdHRwDQ+RX01atXS2vrDhkypEzHKYvAwEDp4XTz5s3T+lq9xu7du3H8+PFKi628/ft0W5okcHHXYV5eHmbNmlWmtt944w0AwPnz57Fq1Sq9ZR8/fqz1TYoOHTqgbt26AAqWR9H3LYunGdI/gwcPBgD88MMPOH/+fJH9GRkZWLRoEQCge/fu0jVRUXx8fKQlrGbNmiU9LFOXwu85eXl5xd7HNAp/q+Lp95TyMna/AeXrO6B87zthYWEwNTXFvXv3MGfOnFJEXbkq8p5QWTT3g927d2P37t16yxrzQZlERGR8TGoTERGV0vz58+Hq6oq7d++iVatWWLduHdLT06X9d+7cwZYtW9C3b99SJ6q8vLwwY8YMHDt2TCvBffXqVQwdOhSZmZkwMTFBSEiIVr2XXnoJABAVFaXzoUndunUDUJBg27p1q/Tgu4SEBISGhmLTpk1S0rWi9e/fX5qJ179/f2zZskVK8l26dAmvvvoq7ty5o7P+s4r9o48+AlAwozw0NFRKYGdlZeGLL77AxIkTYWdnV6a2zc3N8cEHHwAAvvvuO7z33nu4d+8egIIZ2h9++CHmz5+vs307OzssX74cQMHX4l977TUcP35cSlqp1WpcunQJn3zyCQICAnTOem3QoIE0i3j8+PFISUmBqamp9GFNaXTt2hUmJia4f/8+hg4dKi2dkpOTg02bNqFr1656HxSmGbcXLlxAXFxcqY9vbm4uJbM3bNiAcePGScsoZGZm4tNPP8V7770HoOCDlaZNm5b6GOWxcOFCAMDhw4cxYMAAJCQkAChYyiMqKkq6P7Ru3Rp9+vSp8OOXt38Ls7Kykma+Tp48GQcOHJDG3vnz59G9e3ecOnUKlpaWpW47KCgII0eOBAC89dZbmDRpEq5duybtz87OxrFjxzBt2jR4eXlpPVTQ1NQUn332GWQyGY4cOYJOnTrhyJEjUmw5OTmIjY3FsGHDcPHiRa3jGnLfHD9+POrUqYPc3Fy8+uqr2LNnj9T2uXPnEBISgoSEBCiVSsybN6/U526IlStXwsrKCn/++SdatmyJH3/8UetDpOvXr2PdunXo1KkTpk+fLm1PTU2Fj48P5s2bh9OnT2s97PTs2bPStzYsLS0RFBRUoTE/D/0GlL3vgPK973h7e2Pq1KkACj6sHDNmDP766y9pf1paGqKjo9G3b98KPd+SaMZ8WloaNm3a9EyPbahhw4ahc+fOEEKgb9++mDdvntZDuh8/foyDBw/irbfekj7QIiKiakoQERG9AObMmSMACEPe2iIjIwUA4eXlpbNMQkKC1F5CQkKR/RcvXhT169eXypiYmAgHBwdhaWkpbQMgOnfuXKrzKFzXxMRE2NvbC5VKJW2TyWRi2bJlReqtW7dOKmNmZibc3NyEl5eXaNOmjVQmMTFRODs7S+XkcrmwtbWV/n/+/PkiKChIABBz5szRGdvBgwd1xq+v/t9//y08PDykdpRKpXR8hUIhfvzxR53HeBaxa8yaNUvrdbC3txdyuVwAEO3atRMzZswQAERQUFCJbT0tPz9fDB8+vMhrbGpqKgCIwYMHixEjRggAYsSIEcW2sWrVKqFQKLT60dHRUZiZmWnF/f333+uM49NPP9UqGxISojdufTFNnz5dqy1bW1spljp16oioqCid12Zubq7w9fXV6msvLy/h5eUlNm/ebNDxhRBi0qRJWtdI4dcMgOjQoYNIS0srUk9z39D3Wh48eNDge0txli5dKmQymdSGnZ2d1uvXsGFDcf369WLrenl5CQAiMjKyTMc2tH/1XTuFnTp1Susep1QqhbW1tXRNrl27Vm/M+q7D7OxsMWbMGK2xZGVlJezt7YWJiYnW9tTU1CL1v/vuO6FUKotcF4XHwenTp7XqGHLfFEKIc+fOCTc3N6msSqUSNjY2Wscq3J+GnnNhJY3FI0eOCBcXF6k9U1NT4ejoKMzNzbX6ZsyYMVKdwu9jmjoODg5a40+hUOiMXZ+Srkkhnk2/GaIsfSdE+d938vLyxFtvvVXsmNbcE1QQyyYAACAASURBVGxtbbXqGHq/KU//dOrUSapvbW0t3RMK/22hbzwa8tobck/Rd6949OiR6NGjh1bf2djYCDs7O637qVwuL8WZExHRi4YztYmIiMrAz88PZ8+exerVq9G1a1fUqFEDaWlpEELA29sbr7/+Or788stSz4T65ZdfMGPGDLRr1w4eHh7SUhTe3t4YOXIkTp48Kc08LWzYsGFYt24d2rZtCwsLC9y8eRNJSUlaS2V4eXnh1KlTGD16NFxdXQEUrK3ao0cP/Pzzz5gxY0Y5eqRkdevWRXx8PCZPnow6depACAGVSoUBAwYgLi4OvXr10ln3WcY+b9487Nq1Cx07doSNjQ2ys7Ph5+eHBQsWICYmRlpTvSxMTEywdu1arF27Fi1btoS5uTny8vLw8ssv44svvtC7VIfGuHHjcOXKFUyZMgWNGjWCUqnEw4cPYWVlhWbNmuHtt9/Gvn379H5LYMiQITAzM5P+vyxLj2gsWLAAa9euxSuvvAJzc3Pk5ubC29sbM2fOxOnTp6XXqzhyuRwxMTEYM2YM6tSpg8ePHyMpKQlJSUnIyMgwOIalS5fiwIED6N+/P5ydnZGRkQFra2t06NAB3377Lfbt26d3xnhlmjRpEk6dOoVhw4bBw8MDmZmZMDc3R8uWLbFs2TKcPHlSbx+VR0X1r0bTpk1x4sQJDBw4EDVq1IBarYa1tTUGDhyIuLg4DB8+vMyxKhQKfPXVV4iLi0NYWBjq1auH/Px8ZGRkwMnJCcHBwZg9ezbOnj0LNze3IvX/9a9/4fLly3jvvffg7+8PuVyOJ0+ewMvLC3369MG6deuk5YU0DLlvAgWzWy9cuIDw8HA0btwYcrkc2dnZqFevHsaNG4cLFy5gwIABZT53Q7Rp0wZ//vknlixZgvbt28POzg4PHz6Eqakp/Pz8MGzYMERFRUnf5gAANzc37NixA5MmTULLli1Rq1YtZGRkQC6Xw9/fH2+99RbOnz9fabE/D/0GlK3vgPK/72i+RXDkyBEMHToUnp6eyM3NhRAC/v7+GD16NLZs2VJp563LDz/8gEmTJqF+/frIzc2V7gnP05IkNjY22LlzJ3bv3o1BgwbB09MT2dnZyMzMhJubG7p27YqPP/4YV65cMXaoRERkRDIhntOnRBARERER0QshLy9P+iAlLi4OrVq1MnJERERERFSVcaY2ERERERFVKs166wDg7OxsxEiIiIiI6EXApDYREREREVWanJwcLFmyBADg4uKCOnXqGDkiIiIiIqrq5MYOgIiIiIiIXkydOnXCr7/+ivz8fADAlClTIJPJjBwVEREREVV1TGoTEREREVGluHfvnvRgwnHjxmHChAnGDomIiIiIXgB8UCQRERERERERERERVRlcU5uIiIiIiIiIiIiIqowXfvkRtVqNGzduwNramuv3ERERERERERERET2nhBBIT0+Hq6srTEx0z8d+4ZPaN27cgIeHh7HDICIiIiIiIiIiIiIDpKSkwN3dXef+Fz6pbW1tDaCgI2xsbIwcDREREREREREREREVJy0tDR4eHlJOV5cXPqmtWXLExsaGSW0iIiIiIiIiIiKi51xJy0jzQZFEREREREREREREVGUwqU1EREREREREREREVQaT2kRERERERERERERUZbzwa2oTEREREREREVHVJIRAXl4e8vPzjR0KEVUAU1NTyOXyEtfMLgmT2kRERERERERE9NzJycnBzZs3kZmZaexQiKgCWVhYoFatWlAoFGVug0ltIiIiIiIiIiJ6rqjVaiQkJMDU1BSurq5QKBTlntlJRMYlhEBOTg7u3LmDhIQE+Pj4wMSkbKtjM6lNRERERERERETPlZycHKjVanh4eMDCwsLY4RBRBTE3N4eZmRmSkpKQk5MDlUpVpnb4oEgiIiIiIiIiInoulXUWJxE9vyriuuadgYiIiIiIiIiIiIiqDCa1iYiIiIiIiIiIiKjKYFKbiIiIiIiIiIiIiKoMJrWJiIiIiIiIiIgqSFhYGGQyWZGfbt26GTs0oheG3NgBEBERERERERERvUi6deuGyMhIrW1KpdJI0RC9eDhTm4iIiIiIiIiInntCCGTm5BnlRwhRqliVSiVcXFy0fuzt7QEAMpkMX3/9Nfr27QsLCwv4+Phgx44dUl1dM71jY2MRERGBl156qcjxGjdujA8++ECq36dPH8yfPx/Ozs6ws7NDREQE8vLyMHXqVDg4OMDd3b1I0j0lJQUDBw6EnZ0dHBwc0Lt3byQmJpbyVSJ6NjhTm4iIiIiIiIiInntPcvPhP/tnoxz7YkQILBQVl0abO3cuFi1ahMWLF2PlypUYOnQokpKS4ODggBUrVmDBggVS2QULFmDDhg1o0KABvL29MXfuXJw8eRLNmzcHAJw+fRpnz57F1q1bpToHDhyAu7s7Dh06hKNHj2L06NGIi4tD+/btcfz4cURHR+PNN99Ely5d4O7ujtzcXISEhKBVq1Y4fPgw5HI55s2bh27duuHs2bNQKBQVdu5EFYEztYmIiIiIiIiIiCrQrl27YGVlpfUzf/58aX9YWBiGDBkCb29vzJ8/HxkZGThx4gQAwNbWVprdHRcXh9WrV2Pr1q1wcXGBu7s7QkJCtGZZR0ZGIigoCHXr1pW2OTg44NNPP4Wvry9GjRoFX19fZGZmYubMmfDx8cGMGTOgUChw5MgRAEB0dDTUajW+/vprNGzYEH5+foiMjERycjJiY2OfTacRlQJnahMRERERERER0XPP3MwUFyNCjHbs0ujQoQNWrVqltc3BwUH6PTAwUPrd0tISNjY2uH37tlb506dPY/jw4fjss8/Qpk0bafvYsWMxatQoLF26FCYmJli/fj2WLVumVTcgIAAmJv+by+rs7Ky1bImpqSkcHR2lY545cwZXr16FtbW1VjtZWVn4+++/S3XuRM8Ck9pERERERERERPTck8lkFboESGWytLSEt7e3zv1mZmZa/y+TyaBWq6X/v3XrFnr16oUxY8Zg9OjRWmV79uwJpVKJbdu2QaFQIDc3FwMGDCixfX3HzMjIQNOmTREVFVUk1po1a+o5UyLjqBp3AiIiIiIiIiIiomogKysLvXv3RoMGDbB06dIi++VyOUaMGIHIyEgoFAoMHjwY5ubm5Trmyy+/jOjoaDg5OcHGxqZcbRE9C0xqExERERERERERVaDs7GzcunVLa5tcLkeNGjVKrPvmm28iJSUFMTExuHPnjrTdwcFBemDjmDFj4OfnBwA4evRoueMdOnQoFi9ejN69eyMiIgLu7u5ISkrC1q1bMW3aNLi7u5f7GEQViUltIiIiIiIiIiKiCrR3717UqlVLa5uvry8uX75cYt1ff/0VN2/ehL+/v9b2gwcPIjg4GADg4+OD1q1b4/79+2jRokW547WwsMChQ4cwffp09OvXD+np6XBzc0OnTp04c5ueSzIhhDB2EJUpLS0Ntra2ePToES9CIiIiIiIiIqIqICsrCwkJCahTpw5UKpWxw3nuCCHg4+ODCRMmYPLkycYOh6hU9F3fhuZyOVObiIiIiIiIiIioirhz5w42btyIW7duYeTIkcYOh8gomNQmIiIiIiIiIiKqIpycnFCjRg18+eWXsLe3N3Y4REbBpDYREREREREREVEV8YKvJExkEBNjB0BEREREREREREREZCgmtYmIiIiIiIiIiIioymBSm4iIiIiIiIiIiIiqDCa1iYiIiIiIiIiIiKjKYFKbiIiIiIiIiIiIiKoMJrWJiKoxIQTO3TmHnPwcY4dCRERERERERGQQJrWJiKqxgykHEbo7FOFx4cYOhYiIiIiIiKqxxMREyGQyxMfHGzuUai0sLAx9+vQxdhglYlKbiKgai79d8MfCnoQ9uJ1528jREBERERERVX1hYWGQyWRFfrp162bs0CpNZmYmZsyYgXr16kGlUqFmzZoICgrCjz/++MxiqOikeGxsLGQyGR4+fFgh7RW2ZcsWBAcHw9bWFlZWVggMDERERATu379f4cd6UTGpTURUjSWlJQEA8kQetvy5xcjREBERERERvRi6deuGmzdvav1s2LDB2GFVmnHjxmHr1q1YuXIlLl++jL1792LAgAG4d++esUMrIifHuMtvzpo1C4MGDULz5s2xZ88enD9/Hp988gnOnDmDdevWGTW2qoRJbSKiaiw5PVn6/Yc/f0CuOteI0RAREREREekhBJDz2Dg/QpQqVKVSCRcXF60fe3t7AIBMJsPXX3+Nvn37wsLCAj4+PtixY4dUV9dM79jYWEREROCll14qcrzGjRvjgw8+kOr36dMH8+fPh7OzM+zs7BAREYG8vDxMnToVDg4OcHd3R2RkpFYbKSkpGDhwIOzs7ODg4IDevXsjMTHRoPPdsWMHZs6cie7du6N27dpo2rQp3n77bYwaNUoqI5PJsH37dq16dnZ2WLNmjda2y5cvo3Xr1lCpVHjppZfw66+/SvsePHiAoUOHombNmjA3N4ePj490HnXq1AEANGnSBDKZDMHBwVr98dFHH8HV1RW+vr4AgHXr1qFZs2awtraGi4sLQkNDcft2wTeYExMT0aFDBwCAvb09ZDIZwsLCAABqtRoff/wx6tSpA3NzczRq1Ag//PCDQf104sQJzJ8/H5988gkWL16M1q1bo3bt2ujSpQu2bNmCESNGSGVXrVqFevXqQaFQwNfXt0jCWyaTYfXq1ejRowcsLCzg5+eH3377DVevXkVwcDAsLS3RunVr/P3331Kd8PBwNG7cGKtXr4aHhwcsLCwwcOBAPHr0SGfMJZ1vREQEXF1dtT7AeO2119ChQweo1WqD+qUs5JXWMhERPdfUQo2U9BQAgMpUhdtPbiM2JRZdvLoYOTIiIiIiIqJi5GYC812Nc+yZNwCFZYU1N3fuXCxatAiLFy/GypUrMXToUCQlJcHBwQErVqzAggULpLILFizAhg0b0KBBA3h7e2Pu3Lk4efIkmjdvDgA4ffo0zp49i61bt0p1Dhw4AHd3dxw6dAhHjx7F6NGjERcXh/bt2+P48eOIjo7Gm2++iS5dusDd3R25ubkICQlBq1atcPjwYcjlcsybNw/dunXD2bNnoVAo9J6Pi4sLdu/ejX79+sHa2rpcfTN16lQsX74c/v7+WLp0KXr27ImEhAQ4Ojrigw8+wMWLF7Fnzx7UqFEDV69exZMnTwAUJIxfeeUV7N+/HwEBAVoxx8TEwMbGBvv27ZO25ebm4sMPP4Svry9u376NyZMnIywsDLt374aHhwe2bNmC/v3748qVK7CxsYG5uTkA4OOPP8b333+PL774Aj4+Pjh06BCGDRsmLbmiT1RUFKysrDBhwoRi99vZ2QEAtm3bhnfffRfLly9H586dsWvXLowcORLu7u5Ssh0APvzwQyxduhRLly7F9OnTERoairp162LGjBnw9PTEqFGjMHHiROzZs0eqc/XqVWzatAk7d+5EWloaRo8ejQkTJiAqKqrYmEo631mzZmHv3r0YM2YMtm3bhs8//xxxcXE4c+YMTEwqbz41Z2oTEVVT/zz+B9n52ZDL5Aj1CwUAbLy80chRERERERERVX27du2ClZWV1s/8+fOl/WFhYRgyZAi8vb0xf/58ZGRk4MSJEwAAW1tbaXZ3XFwcVq9eja1bt8LFxQXu7u4ICQnRmmUdGRmJoKAg1K1bV9rm4OCATz/9FL6+vhg1ahR8fX2RmZmJmTNnwsfHBzNmzIBCocCRI0cAANHR0VCr1fj666/RsGFD+Pn5ITIyEsnJyYiNjS3xfL/88kvExcXB0dERzZs3x6RJk3D06NEy9d3EiRPRv39/+Pn5YdWqVbC1tcU333wDAEhOTkaTJk3QrFkz1K5dG507d0bPnj0BADVr1gQAODo6wsXFBQ4ODlKblpaW+PrrrxEQEICAgAAAwKhRo/Dqq6+ibt26aNmyJT799FPs2bMHGRkZMDU1leo7OTnBxcUFtra2yM7Oxvz58/Htt98iJCQEdevWRVhYGIYNG4bVq1eXeG5//fUX6tatCzMzM73llixZgrCwMEyYMAH169fH5MmT0a9fPyxZskSr3MiRIzFw4EDUr18f06dPR2JiIoYOHYqQkBD4+fnh3XffLfL6ZWVlYe3atWjcuDHat2+PlStXYuPGjbh161aROAw5X1NTU3z//feIiYnB+++/j6lTp+Lzzz+Hp6dnif1RHpypTURUTSWlF6yn7WbthsG+g7HmwhqcuHUC1x5eQ127uiXUJiIiIiIiesbMLApmTBvr2KXQoUMHrFq1Smtb4SRrYGCg9LulpSVsbGykpS80Tp8+jeHDh+Ozzz5DmzZtpO1jx47FqFGjsHTpUpiYmGD9+vVYtmyZVt2AgACtWbLOzs5ay5aYmprC0dFROuaZM2dw9erVIrOss7KytJav0KV9+/a4du0ajh07hri4OMTExGDFihWYO3eutCyKoVq1aiX9LpfL0axZM1y6dAkAMH78ePTv3x9//PEHunbtij59+qB169YlttmwYcMis81///13hIeH48yZM3jw4IG0VEZycjL8/f2Lbefq1avIzMxEly7a33DOyclBkyZNSoxDGLiMzaVLl/DGG29obWvTpg1WrFihta3wOHJ2dgZQcK6Ft2VlZSEtLQ02NjYAAE9PT7i5uUllWrVqBbVajStXrsDFxUWrfUPPt27duliyZAnefPNNDBo0CKGhoQadZ3kwqU1EVE0lpxWsp+1p7YlaVrUQ5B6EgykHEX0lGjNazDBydERERERERE+RySp0CZDKZGlpCW9vb537n56pK5PJtNYfvnXrFnr16oUxY8Zg9OjRWmV79uwJpVKJbdu2QaFQIDc3FwMGDCixfX3HzMjIQNOmTYtdgkIzA7okZmZmaNeuHdq1a4fp06dj3rx5iIiIwPTp06FQKCCTyYokdXNzS/dcp1dffRVJSUnYvXs39u3bh06dOuGtt94qMoP5aZaW2uPm8ePHCAkJQUhICKKiolCzZk0kJycjJCRE74MkMzIyAAA//fSTVmIYKFhHvST169fHkSNHkJubW+JsbUMUbkMmk+ncVta1rUtzvocOHYKpqSkSExORl5cHubxy085cfoSIqJrSJLW9bLwAAIMbDAYA7Ph7BzJzM40WFxERERERUXWWlZWF3r17o0GDBli6dGmR/XK5HCNGjEBkZCQiIyMxePBgab3nsnr55Zfx119/wcnJCd7e3lo/tra2ZWrT398feXl5yMrKAlCQHL9586a0/6+//kJmZtF/ex47dkz6PS8vD7///jv8/PykbTVr1sSIESPw/fffY/ny5fjyyy8BQJqJnZ+fX2Jsly9fxr1797BgwQK0a9cODRo0KDJTvrj2/P39oVQqkZycXKSfPDw8SjxuaGgoMjIy8N///rfY/Q8fPgQA+Pn5FVm+5ejRozpnkJdGcnIybtz43zcejh07BhMTE+kBmoUZer7R0dHYunUrYmNjkZycjA8//LDccZaEM7WJiKopzfIjnjYF61y1rNUSXjZeSEpLwq5ruzDQd6AxwyMiIiIiIqqysrOzi6xRLJfLUaNGjRLrvvnmm0hJSUFMTAzu3LkjbXdwcJASrWPGjJESvWVdu7qwoUOHYvHixejduzciIiLg7u6OpKQkbN26FdOmTYO7u7ve+sHBwRgyZAiaNWsGR0dHXLx4ETNnzkSHDh2kZS86duyIzz77DK1atUJ+fj6mT59e7Gzlzz//HD4+PvDz88OyZcvw4MEDjBo1CgAwe/ZsNG3aFAEBAcjOzsauXbukfnBycoK5uTn27t0Ld3d3qFQqnQl5T09PKBQKrFy5EuPGjcP58+eLJGK9vLwgk8mwa9cudO/eHebm5rC2tsaUKVMwadIkqNVqtG3bFo8ePcLRo0dhY2ODESNG6O2nFi1aYNq0afj3v/+N69evo2/fvnB1dcXVq1fxxRdfoG3btnj33XcxdepUDBw4EE2aNEHnzp2xc+dObN26Ffv379fbviFUKhVGjBiBJUuWIC0tDe+88w4GDhxYZOkRAAadb2pqKsaPH4+FCxeibdu2iIyMRI8ePfDqq6+iZcuW5Y5XF87UJiKqpqSZ2tYFM7VNZCYYWL8gkR19Jdrgtb6IiIiIiIhI2969e1GrVi2tn7Zt2xpU99dff8XNmzfh7++vVT8uLk4q4+Pjg9atW6NBgwZo0aJFueO1sLDAoUOH4OnpiX79+sHPzw+jR49GVlaWlJTWJyQkBN999x26du0KPz8/vP322wgJCcGmTZukMp988gk8PDzQrl07hIaGYsqUKbCwKLpW+YIFC7BgwQI0atQIR44cwY4dO6QPAxQKBWbMmIHAwEC0b98epqam2LhxI4CCDw0+/fRTrF69Gq6urujdu7fOeGvWrIk1a9Zg8+bN8Pf3x4IFC4osYeLm5oa5c+fi/fffh7OzMyZOnAgA+PDDD/HBBx/g448/hp+fH7p164affvoJderUKbmjASxcuBDr16/H8ePHERISgoCAAEyePBmBgYFSUrxPnz5YsWIFlixZgoCAAKxevRqRkZEIDg426Bj6eHt7o1+/fujevTu6du2KwMBAnTPHSzpfIQTCwsLwyiuvSP0TEhKC8ePHY9iwYdLyJZVBJl7wrEVaWhpsbW3x6NEjgy5CIqLqIF+dj+ZRzZGrzsWefnvgbl3wqfuj7EfovLkzsvKzsPbVtWjiVPKDLoiIiIiIiCpaVlYWEhISUKdOHahUKmOH89wRQsDHxwcTJkzA5MmTjR0OVRHh4eHYvn074uPjjRqHvuvb0FwuZ2oTEVVDtzJvIVedCzMTM9SyrCVtt1Xaonvd7gCADZc3GCs8IiIiIiIi0uHOnTv47LPPcOvWLYwcOdLY4RAZBZPaRETVUFJawXra7tbuMDUx1do3yHcQAGBf0j7cfXL3mcdGREREREREujk5OSEiIgJffvkl7O3tn8kxraysdP4cPnz4mcRQFYwbN05nP40bN87Y4b1Q+KBIIqJq6On1tAvzd/RHYM1AnL1zFtv+2oaxgWOfdXhERERERESkgzFWEta3XIWbm9szjOT5FhERgSlTphS773lYFjk8PBzh4eHGDqNCMKlNRFQNaWZqe9p4Frt/sO9gnL1zFpv+3ISRL42E3IRvF0RERERERNWVt7e3sUOoEpycnODk5GTsMKoFLj9CRFQNpaSnAAA8rYtPanet3RX2SnvcenwLh1IPPcvQiIiIiIiIiIj0YlKbiKgaKmmmttJUib4+fQEA0Vein1lcREREREREREQlYVKbiKiayVPnITUjFQDgZVN0TW2N1+u/DhlkiLsRJyXBiYiIiIiIiIiMjUltIqJq5ubjm8hT50FhooCLpYvOcu7W7mjn3g4AZ2sTERERERER0fODSW0iomomOS0ZAOBh7QETmf63gUG+gwAA269ux5O8J5UeGxERERERERFRSZjUJiKqZkpaT7uwtm5t4WblhvScdOxN2FvZoREREREREZGBEhMTIZPJEB8fb+xQiJ45JrWJiKqZ5PSCmdr61tPWMJGZSLO1N1zeACFEpcZGRERERERU1YWFhUEmk0Emk0GhUMDb2xsRERHIy8szdmglql27NpYvX27sMIhKxKQ2EVE1U5qZ2gDQx7sPFCYKXLp/CefunqvM0IiIiIiIiF4I3bp1w82bN/HXX3/h3//+N8LDw7F48eIi5fLz86FWq40QIVHVxqQ2EVE1o1lT28u65JnaAGCvske3Ot0A8IGRRERERERkPEIIZOZmGuWntN9aVSqVcHFxgZeXF8aPH4/OnTtjx44dWLNmDezs7LBjxw74+/tDqVQiOTkZarUaERERcHd3h1KpROPGjbF3r/YSkCdOnECTJk2gUqnQrFkznD59Wmu/pu3Ctm/fDplMprVt586daN68OVQqFWrUqIG+ffsCAIKDg5GUlIRJkyZJM82JnldyYwdARETPTq46FzcybgAwfKY2AAz2HYwdf+/A3oS9mNJsCuxV9pUVIhERERERUbGe5D1Bi/UtjHLs46HHYWFmUeb65ubmuHfvHgAgMzMTCxcuxNdffw1HR0c4OTlhxYoV+OSTT7B69Wo0adIE3377LXr16oULFy7Ax8cHGRkZ6NGjB7p06YLvv/8eCQkJePfdd0sdx08//YS+ffti1qxZWLt2LXJycrB7924AwNatW9GoUSO88cYbGDt2bJnPlehZYFKbiKgauZlxE3kiD0pTJZwsnAyu91KNl+Dv6I+L9y5i29VtGPXSqEqMkoiIiIiI6MUghEBMTAx+/vlnvP322wCA3Nxc/Pe//0WjRo2kckuWLMH06dMxePBgAMDChQtx8OBBLF++HJ9//jnWr18PtVqNb775BiqVCgEBAUhNTcX48eNLFc9HH32EwYMHY+7cudI2TRwODg4wNTWFtbU1XFxcynvqRJWKSW0iompEs562h7UHTGSGr0Alk8kw2HcwZsfNxqYrmzDCfwRMTUwrK0wiqkTZ+dl4mPUQzpbOxg6FiIiIqFTM5eY4HnrcaMcujV27dsHKygq5ublQq9UIDQ1FeHg4Nm/eDIVCgcDAQKlsWloabty4gTZt2mi10aZNG5w5cwYAcOnSJQQGBkKlUkn7W7VqVerziI+P5yxseiEwqU1EVI0kp///eto2hq2nXVi3Ot2w5NQSXM+4jqM3jqK9e/uKDu+Z2351OzJzMxHqF2rsUIiemZmHZ2J/8n5s7rkZ9e3rGzscIiIiIoPJZLJyLQHyLHXo0AGrVq2CQqGAq6sr5PL/peDMzc0rZb1qExOTImt/5+bmav2/uXnpkvNEzys+KJKIqBrRzNQuzXraGuZyc/Tx7gMA2Hh5Y4XGZQzpOemYEzcHH5/4GImPEo0dDtEzcffJXexP3g+1UOP0P6dLrkBEREREZWJpaQlvb294enpqJbSLY2NjA1dXVxw9elRr+9GjR+Hv7w8A8PPzw9mzZ5GVlSXtP3bsmFb5pXuCAwAAIABJREFUmjVrIj09HY8fP5a2xcfHa5UJDAxETEyMzlgUCgXy8/P1nxzRc4BJbSKiaiQ57f9naluXfqY2AAzyHQQAOHL9CM7fPV9hcRnD5fuXoRZqAMDJf04aORqiZ2N/0n5p3Gu+uUFERERExjd16lQsXLgQ0dHRuHLlCt5//33Ex8dLD4MMDQ2FTCbD2LFjcfHiRezevRtLlizRaqNFixawsLDAzJkz8ffff2P9+vVYs2aNVpk5c+Zgw4YNmDNnDi5duoRz585h4cKF0v7atWvj0KFDuH79Ou7evVvp501UVkxqExFVI+WZqa2pF+QeBAGBEXtGYNOVTUW+3lZVXL5/Wfr95C0mtal62Ju4V/o9JT3FiJEQERERUWHvvPMOJk+ejH//+99o2LAh9u7dix07dsDHxwcAYGVlhZ07d+LcuXNo0qQJZs2apZWMBgoe9Pj9999j9+7daNiwITZs2IDw8HCtMsHBwdi8eTN27NiBxo0bo2PHjjhx4oS0PyIiAomJiahXrx5q1qxZ6edNVFYyUVWzEQZKS0uDra0tHj16BBsbG2OHQ0RkNLn5uWgW1QxqoUbM6zFwsnAqUzsPsx7iP0f/g19TfwUAdPXqivDW4bBWWFdkuJVu5uGZ2HltJwDAydwJ+1/fXynr2hE9L25n3kbnzZ0hUPCnn7edN7b13mbkqIiIiIiKl5WVhYSEBNSpU0fr4YhEVPXpu74NzeVypjYRUTWRmpEKtVDDXG6OmuZl/8TdTmWHlR1XYkqzKZDL5Pgl6RcM3Dmwyi1Hcun+Jen3209ucykGeuH9kvgLBAScLZwBAKnpqVX2mxZERERERFS9MalNRFRNaNbT9rT2LPeMZJlMhhEBI7D21bVws3JDakYqhu8ZjnUX11WJJFlWXhYSHiUAALxsCtYX5xIk9KLTLD0y3H84TGWmyMrPwp0nd4wcFRERERERUekxqU1EVE1oZiKXdT3t4jSs2RCbem5CZ8/OyFPnYdHJRXjn4Dt4lP2owo5RGf568BfyRT4cVA7oVrsbACa16cV2I+MGztw5AxlkeLXOq6hlWQsA19UmIiIiIqKqiUltIqJqQnpIpHXFJbUBwEZhg6XBSzGrxSyYmZj9H3t3Hh5nXe///3nPmj1pszRdsrR0h5al7JsFWQUXqOd4/KEcVPTIIiC4ALJYxYOAAgqIuHFQOYp+BQUP+74J0pZaoHubpUmapVkme2a7f3/cc08SmjSZJZlJ+3pcV6+rycz9uT+BNm1f857Xh5d3vcynn/g065vXJ/U+yWRXjyyZvoSjS48GYE3jmikxZS4Sj2eqnwFgxYwVlGSVUJZbBgy+g0NERERERGQqUagtInKAsMMru24jXn3vf0DzXXdj+v3RzxmGwX8s/g8e/tjDlOeW09jTyEVPX8Sv3/s1YTOc0P0mgh1qL56+mOXFy3E73OrVlv2aXT1y9tyzAaKhtia1RURERERkKlKoLSKSpvb8/AG2n3EmgaampKyXrPqRpltuofWBB/A9+eRejy0pXMKfPv4nzp57NiEzxN3r7ubS5y+lta81oXsm26bWyKR24RIyXBksL14OqIJE9k+1nbVsbN2I03ByWsVpwOD3gbquulRuTUREREREJC4KtUVE0pTvsccI1NbS+/bbCa/lD/nZ3bMbSGxSO+z30//BB9aaO3aO+Jxsdza3nXQbq49fTYYzgzca3uDfnvg31jSuifu+yRQIB9jWvg2w6kcAjio9ClCoLfsnu3rk6NKjmZ4xHYA5uXMA9O4EERERERGZkhRqi4ikITMYxF9fD0CwpSXh9eq66gibYbJcWRRmFMa9zsDmzZiBAAD+6upRn2cYBucvOJ//Ped/mZc/j5a+Fi574TI6/Z1x3ztZqnxV+MN+ctw50WDvyBlHAurVlv2TXT1y1tyzop+zu/VVPyIiIiIiIlORQm0RkTQUaGiAYBCAYHNzwuvZh0RW5FVgGEbc6/T9a0P05/6amjGfv2DaAv5wzh+ozKukN9jLi7Uvxn3vZLGrRxZNX4TDsP4YVK+27K92+naytX0rLsPFR8s/Gv28/YJOp78T34AvVdsTERERERGJi0JtEZE0NDQwDiQh1E5Wn3bfhiGhdm0tZnjsQyCz3FmcO+9cAJ6uejqh+yfD5rbNwGD1CECmK5NlRcsAVZDI/uWZKqt65LhZx5HvzY9+PtOVSXFmMaBpbREREZF09PLLL2MYBh0dHaneikhaUqgtIpKG/NWDoXYy6kfsSW27ciBe/UNCbbO/f9xT5HbtwVu736Ktvy2hPSRqY+tGwDokcij1asv+xjRNnqp+ChhePWIryy0DFGqLiIiITISWlhYuueQSysvL8Xq9lJaWcuaZZ/LGG29Myv2THYr/z//8DwUFBUlZSyQZFGqLiKQhf+1gBUawOfFQ257UTuSQyFBHR3SC3Flo9XLvq1d7qIq8CpYWLiVkhniu+rm495CosBlmS/sWYPikNgyG2mua1Kst+4et7Vup8lXhcXg4peyUvR5XqC0iIiIycVatWsW7777LQw89xNatW3n88cdZuXIlra2tqd7aMH6/P9VbEImLQm0RkTTkr6mO/jzY3JxwyFrbmXio3ffeewB4KirIOORgYPhE+Vg+NvdjANHJ0VTY1bWLnkAPXqeXuflzhz0W7dXubVbIJ/uFZ6qt6pETZ59Irid3r8ftUNv+/iAiIiKS7kzTJNzbm5IfsfybrKOjg9dee43bbruNU045hYqKCo4++miuu+46PvGJT1BdXY1hGKxfv37YNYZh8PLLLw9b64033mD58uVkZGRw7LHH8v7770cfq6mp4eMf/zjTpk0jOzubgw8+mCeffJLq6mpOOcUaapg2bRqGYXDRRRcBsHLlSi6//HKuuuoqioqKOPPMMwG48847WbZsGdnZ2ZSVlXHppZfS3d0NWFPfX/jCF/D5fBiGgWEYfPe73wVgYGCAb3zjG8yePZvs7GyOOeaYvb4GkYngSvUGRERkb0M7tc3+fsJdXTjz8uJaayA0QGNPIzAYYsXDPiQyY/lynNMK6GF8h0Xazqw8kx+t+RHrmtbR2NNIaXZp3HuJ16Y265DIhdMW4nIM/yPQ7tVe17yOdxrfSbh/XCSVTNPk6Wqrw36k6hEY7NjXizgiIiIyVZh9fWw5YkVK7r1o3VqMrKxxPTcnJ4ecnBz++te/cuyxx+L1euO+7ze/+U1+8pOfUFpayvXXX8/HP/5xtm7ditvt5rLLLsPv9/Pqq6+SnZ3Nxo0bycnJoaysjL/85S+sWrWKLVu2kJeXR2ZmZnTNhx56iEsuuWRYFYrD4eCnP/0pc+fOZefOnVx66aV861vf4mc/+xnHH388d999NzfddBNbtmyJfo0Al19+ORs3buSPf/wjs2bN4rHHHuOss87ivffeY8GCBXF/3SJj0aS2iEiaMQMBAvUN1gcO69t0Ir3auzp3YWKS485hesb0uNfp2/AvADKXL8dTWQmMv34EoDS7lCNKjsDEjE6QTrZNrVaovXj64hEfj/ZqN6lXW6a2jW0b2dW1iwxnBh+Z85ERn6P6EREREZGJ4XK5+J//+R8eeughCgoKOOGEE7j++uvZMOSMovG6+eabOf3001m2bBkPPfQQTU1NPPbYYwDU1tZywgknsGzZMubNm8e5557LySefjNPpZPp0699+JSUllJaWkp8/eGj4ggULuP3221m0aBGLFi0C4KqrruKUU06hsrKSU089lVtuuYU//elPAHg8HvLz8zEMg9LSUkpLS8nJyaG2tpYHH3yQP//5z5x00kkcdNBBfOMb3+DEE0/kwQcfTPQ/o8g+aVJbRCTNBBoaIBjE8Hpxz56Nf+dOgs3NeA86KK71aroih0TmlWMYRlxrmKZJ/warfiTz0OWEurqA2Ca1Ac6eezbrmtfxdNXT/OfB/xnXXhKxuW0zsO9Q+4END/BO4zuYphn3fy+RVHumynrh6OQ5J5PlHnmiyA61W/pa6Av2kenKHPF5IiIiIunCyMxk0bq1Kbt3LFatWsU555zDa6+9xltvvcVTTz3F7bffzq9+9StWrlw57nWOO+646M+nT5/OokWL2LTJGta54ooruOSSS3j22Wc57bTTWLVqFcuXLx9zzRUr9p52f/7557n11lvZvHkznZ2dBINB+vv76e3tJWuUCfX33nuPUCjEwoULh31+YGCAwsg5TCITRZPaIiJpxj4k0lNejmtGCWD1ascr2qedG3+fdmDXLkIdHRhuN97Fi/FUVFp73bULMxQa9zqnV5yOw3Dwfuv77Oqc3OlQ0zSjofbSwqUjPke92rI/MM3Bd0OMVj0CkO/NJ89j1RrVddVNyt5EREREEmEYBo6srJT8iGfgJSMjg9NPP50bb7yRN998k4suuoibb74ZR+QduUN7ugOBQMzrX3zxxezcuZPPf/7zvPfeexx55JHcc889Y16XnZ097OPq6mrOPfdcli9fzl/+8hfWrl3LfffdB+z7IMnu7m6cTidr165l/fr10R+bNm3iJz/5Scxfj0gsFGqLiKQZ+/BFT2UF7hIr1A4kEGrXdA5OasfL7tP2Ll2Cw+PBPbMUw+OBQMCaLB+nwsxCjik9BiDa9ztZmnqbaOtvw2k4WTBt5G43u1cb4J1GVZDI1LRhzwYaehrIcmVx0uyT9vnc6GGRXTosUkRERGSiLV26lJ6eHoqLiwHYvXt39LGhh0YO9dZbb0V/3t7eztatW1myZEn0c2VlZXz1q1/l0Ucf5ZprruGXv/wlYFWGAITGMYS0du1awuEwP/7xjzn22GNZuHAhDR/6d57H49lrrcMPP5xQKERzczPz588f9qO0dPLPUJIDi0JtEZE0Y1d6uMvLcUVC7UQ6te2wqiIv/kntvkj3W+Yy661shtOJu9wKw+wQfrzOnns2AE9WPRn3fuJhT2nPK5iH1zn6QS3q1Zap7ukq6wWjU8pPIcOVsc/n2qG2JrVFREREkqe1tZVTTz2V3//+92zYsIGqqir+/Oc/c/vtt/PJT36SzMxMjj32WH74wx+yadMmXnnlFW644YYR1/re977HCy+8wPvvv89FF11EUVERn/rUpwCrB/uZZ56hqqqKdevW8dJLL0UD74qKCgzD4O9//zstLS10d3ePut/58+cTCAS455572LlzJ7/73e/4+c9/Puw5lZWVdHd388ILL7Bnzx56e3tZuHAhF1xwARdeeCGPPvooVVVV/POf/+TWW2/l//7v/5L0X1NkZAq1RUTSjL82MqldUYEr8gp+sDn+UDspk9r2IZGHDvazRStIYuzV/mjFR3E5XGzv2M629m1x7ylW9iGRS6Yv2efzoqF2pFdbZCoJm2GerX4WgLMqR68esemwSBEREZHky8nJ4ZhjjuGuu+7i5JNP5pBDDuHGG2/ky1/+Mvfeey8Av/nNbwgGg6xYsYKrrrqKW265ZcS1fvjDH3LllVeyYsUKGhsbeeKJJ4ZNYV922WUsWbKEs846i4ULF/Kzn/0MgNmzZ7N69WquvfZaZsyYweWXXz7qfg899FDuvPNObrvtNg455BAefvhhbr311mHPOf744/nqV7/KZz7zGYqLi7n99tsBePDBB7nwwgu55pprWLRoEZ/61Kd45513KC+P/9+fIuOhgyJFRNKMHRJ7yisIdbQD8Xdq9wX7aO61ro23U9v0+xnYaAXCmUMOHfFUWuv5q6tjWi/Pk8eJs0/k5V0v83T106NWgSTbprbxhdrLi5fjcriivdqJvBggMtnWNa2jua+ZXHcux886fsznR+tHOlU/IiIiIpIsXq+XW2+9da9geKglS5bw5ptvDvvc0KGalStXRj8+99xzR1xjrP7sG2+8kRtvvHHY515++eURn/v1r3+dr3/968M+9/nPf37Yx/fffz/333//sM+53W5Wr17N6tWr97kXkWTTpLaISBoxAwECdfWAFRonWj9iT1/mefIoyCiIa43+LVswAwGcBQW4h7za7qmIhNoxTmoDnF1pVZA8VfXUpE1D26H24umL9/m8TFcmy4us8F692jLV2F31p5afisfpGfP5mtQWEREREZGpSKG2iEgaCTQ0QCiEkZGBq6RkMNRubo4r/LWnLxPq044cEpmxfNmwE7/jrR8BWFm2kkxXJru6drGxdWPcexuv9v52GnsagbFDbYAjS48EYE3Tmgndl0gyBcNBnqt5DoCz5o5dPQKDtUS7e3YTCAcmbG8iIiIiIiLJlNJQ+9VXX+XjH/84s2bNwjAM/vrXv0YfCwQCfPvb32bZsmVkZ2cza9YsLrzwwr1OXxUR2Z9Eq0fKyjAcjmintjkwQLizM+b17D5texozHtE+7WXLh33eU1kJQKCuDtPvj2nNLHcWH5nzEcCa1p5o9pR2eW45OZ6cMZ+vXm2ZitY0raGtv40CbwHHzDxmXNcUZxaT4cwgZIbY3b17gncoIiIiIiKSHCkNtXt6ejj00EO577779nqst7eXdevWceONN7Ju3ToeffRRtmzZwic+8YkU7FREZHL4qyOhdqSv2uH14sjPB+Lr1a7tSnxSuz8yqT30kEgAV0kxRlYWhMP4I5UpsbAnSZ+ufpqwGY57f+OxuW0zAEsK992nbTu0+FBcDhdNvU3UddVN5NZEkubpKqt65KPlH8XtcI/rGsMwmJM7B1AFiYiIiIiITB0pPSjy7LPP5uyzzx7xsfz8fJ577rlhn7v33ns5+uijqa2t1SmqIrJf8tdaIbTdVw3gLilmwOcj2NKCd0Fshyrak9rxHnYY6uiITo9nLFs27DHDMPCUlzOweTP+mmq88+bGtPZJs08i151LU28T7za/y4oZK+La43hsah1fn7bN7tVe17yOd5reoSwv/kl3kckQCAd4vvZ5AM6eO/LfrUZTllvG9o7tCrVFREQkLemdkyL7n2T8vp5Sndo+nw/DMCgoGP2ws4GBATo7O4f9EBGZKuwAeeiBjHYFSSCeSW27Uzs3vkntvvfet/ZTUY5r2rS9HrcrSOwJ81h4nB5OLT8VmPgKkuik9vTxTWrDYK+2DouUqeDt3W/jG/BRmFHIkTOOjOlau57IfmeHiIiISDpwu613nvX29qZ4JyKSbPbva/v3eTxSOqkdi/7+fr797W/z2c9+lry8vFGfd+utt7J69epJ3JmISPL4ayP1I5FDGAFcxfZhkS0xrdUb6KWlz7om3kntaJ/28kNHfNyeKPfXVMe1/tlzz+ZvO/7GczXPce3R1+JyJP+PpZ5AT3RifbyT2mD1av9iwy+ivdpDD8kUSTf2C0OnV5yO0+GM6Vo71NaktoiIiKQTp9NJQUEBzZHhnqysLP2dXGSKM02T3t5empubKSgowOmM7d8uQ02JUDsQCPDv//7vmKbJ/fffv8/nXnfddVx99dXRjzs7Oykr09vGRST9mYEAgUg3tadiyKR2iR1qxzapbU9dFngLyPfmx7Wnvg2RPu0PVY/YBkPt2Ce1AY6ZeQzTvNNo62/jn7v/yfGzj49rnX3Z0rYFE5OSrBIKMwvHfd2He7VVQSLpyh/y81LtS8BgV30synOt7zfqjxcREZF0U1paChANtkVk/1BQUBD9/R2vtA+17UC7pqaGF198cZ9T2gBerxev1ztJuxMRSZ5AfT2EQhgZGdEgG4aE2i2xTWrb1SPxTmmbpjnqIZG2aP1InKG2y+HijMozeGTLIzxV/dSEhNqb2qw+7aXTl8Z0nXq1Zap4o/4NugJdlGSVcHjJ4TFfP3RSO2yGcRhTqp1ORERE9mOGYTBz5kxKSkoIBAKp3o6IJIHb7U5oQtuW1qG2HWhv27aNl156icLC8U/YiYhMNdFDIsvLMRyDoZLdqR3vpHa8fdqBujpCHR0YbjfeJSN3UXsqrbWDDbsJ9/fjyMiI+T5nVZ7FI1se4YWaF7jx2BvxOD1x7Xc00UMiC8dfPWI7svRIK9RufIfzF5yf1H2JJMvT1U8DcEbFGXEF0qU5pTgNJwOhAVp6W5iRPSPZWxQRERFJiNPpTEoIJiL7j5SO4nR3d7N+/XrWr18PQFVVFevXr6e2tpZAIMCnP/1p1qxZw8MPP0woFKKxsZHGxkb8fn8qty0iMiHswxaHVo9A/PUjdo903H3akSlt75IlODwjB83OadNw5OYCg6F8rI6YcQQlWSV0Bbp4vf71uNbYl3gOibQdVXoUQLRXWyTd9Af7eXnXy0B81SMAboebWTmzAPVqi4iIiIjI1JDSUHvNmjUcfvjhHH649VbZq6++msMPP5ybbrqJ+vp6Hn/8cerq6jjssMOYOXNm9Mebb76Zym2LiEwIu8LD7qm2Da0fiSVYtetHKvLim9QePCRy5OoRsN4OmGgFicNwcFalFcY9XfV0XGuMxh/ys6NjBxBfqP3hXm2RdPNa/Wv0BnuZlT2L5UWj/14diw6LFBERERGRqSSl9SMrV67cZ0CjqTgROZDYk87uvUJtq37E9PsJ+3w4CwrGtV6ik9rRPu3lIx8SafNUVND/3nv4q6vjug/A2XPP5rcbf8vLdS/TG+gly50V91pDbevYRtAMUuAtoDQ79kMohvZqr2lao15tSTuv7HoFgNMqTsMwjLjXUagtIiIiIiJTiU4CEhFJE9FJ7fLhobbD48GZnw9AYJwVJN3+blr7WwEoz4091Db9fvo3WV3U+5rUhsHJ8ngntQEOLjyYstwy+oJ9vFL3StzrfFi0T3v64rgDvxUzVgBWBYlIOjFNkzca3gDgpDknJbSWQm0REREREZlKFGqLiKQBMxAgUF8PDB6+ONRgr3bLuNazD4mcnjGdXE9uzPvp37IV0+/HmZ+/1+T4h9n1I4Hq+ENtwzCiFSRPVT0V9zofFu3TLoy9esQW7dVuUq+2pJet7VvZ07eHTFcmR5QckdBadqhtf+8QERERERFJZwq1RUTSQKC+HkIhjIyMaIA91NBe7fGw+7TjmdKGwT7tjOXLx5xwtkP4gZrquO5lO3vu2QC8Xv86nf7OhNaybWqzJrXj6dO22b3ajT2N1HWrV1vSh32w6tGlR+NxjnyY63jZ3ys0qS0iIiIiIlOBQm0RkTQwWD1SPmKI7Cq2erWD46wfSbhPe4Pdpz32wXN2/UioZQ+h7p647gewYNoC5hfMJxAO8GLti3GvYwuFQ2xt2wokFmpnubNYVmT1iq9pXJPwvkSSxa4eOWH2CQmvNSd3DgBd/i58A76E1xMREREREZlICrVFRNKAv8aarPaMUvUxWD8yvlDbrhCoyNt3dcho+uxDIg8dO9R25uXhnD4dgEBt/BUkMDitnYwKkurOavpD/WS5suIO921HzjgSUK+2pI+eQA/vNr0LwImzTkx4vQxXBiWZ1vcZ+50eIiIiIiIi6UqhtohIGohOaleMHL7GHGrb9SNxhLkhnw9/dTUAGcuWjeua6GGRkeviZfdqv737bVr7WhNaa2PrRgAWTV+Ew0jsjzv1aku6+efufxI0g5TnllOWV5aUNe11VEEiIiIiIiLpTqG2iEgasEPt0Q5ldJVE6kfG26ltT2rnxj6p3ffe+9ZeystxTZs2rmuioXZNYpPa5XnlHFx4MCEzxPM1zye0VvSQyASqR2zq1ZZ0k8zqEZt9WKRCbRERERERSXcKtUVE0oC/doz6kRg6tbv8XbT1twHxTWrbh0SOp0/b5qmsBMBfnVioDYMVJE9WPZnQOvYhkYunL054T+rVlnRimmb0kMgTZydePWKzQ237RTEREREREZF0pVBbRCTFzECAQH09MHqo7Y7UjwRaWsasv7CrR4oyi8h2Z8e8n/5/jf+QSJunMjn1IwBnVp4JwLrmdTT2NMa1hmmabG61JrWXFi5NeE+gXu109sSOJ7jlrVto6mlK9VYmRU1nDfXd9bgd7uivy2Qoz7VeBKvr0rsRREREREQkvSnUFhFJMX9dHYRCGJmZ0e7sD3NGJrUJBAh1dOxzvZpOa1raDqhiYZomfRvGf0ikLVn1IwCl2aUcUXIEAM9UPxPXGnXddXQFunA73MwrmJfwnkC92unqgz0fcMMbN/DIlkc47/HzeGLHE/v9/x+7emTFjBVkubOStq7qR0REREREZKpQqC0ikmIBu3qkvBzDMEZ8jsPjwRnptw4277tXu6YrEmrHUT0SqKsj1N4ObjfexeOv7fCUW/cKdXQQ8vlivu+HfWzuxwB48P0H4zow0u7TXjBtAW6HO+H9wPBe7fru+qSsKYkJhALc+OaNhM0wWa4suvxdXP/69Xz95a8nfNBoOpuI6hGAOblzAGjpa6E30JvUtUVERERERJJJobaISIrZ0812MDya8fZq2/UjFXlxHBIZqR7JWLwYh9c77usc2dnRKfNkTGt/cv4nmV8wn9b+Vm544wbCZjim6ze1Wn3ayTgk0ja0V1sVJOnhN+//hm3t2yjwFvD38/7O1w7/Gi6HixdqX+C8v53HczXPpXqLSdcf7I/2up8wK3mHRALke/PJ9+YD6EBUERERERFJawq1RURSzF8TmdSu3HcIbYfG4w2146kf6X8v9j5tW7SCJAm92hmuDG4/+Xa8Ti+v17/Ow5sejul6+5DIZIbaMNir/ev3f8396+/n7d1v0xfs2+c13W+8Qc1/XpSU/y4yaEfHDh7Y8AAA1x59LcVZxXxl+Vf4wzl/YOG0hbQPtHP1y1fz7Ve/jW8g8XcPpIt1TevoD/UzI2sGBxUclPT1y3JUQSIiIiIiIulPobaISIpFJ7VHOSTSFg21W8ZXP5LIpHYsfdo2T2UlAP7qxCe1waoO+caR3wDgrrV3Raevx8OuH1lcOP4KlfE4pewUDAxqOmv42b9+xsXPXszxfzieC568gDvX3skru17ZK0DteORP9L79Np3P7X9Tw6kSCoe46c2bCIQDfGTOR6J1NQCLpy/mj+f8kS8v+zIOw8GTVU9y3t/O49W6V1O44+R5vWGwemS0uqJERHu1OxVqi4iIiIhI+nKlegMiIgc6O9RFI8LmAAAgAElEQVR2J6F+xDfgi4aqdjg1XqbfT//GjUCck9qVyTss0vaZRZ/hzYY3eWnXS3zr1W/xyLmPjHkwXktvC3v69uAwHCyctjBpewFYVryMJ857grca3mJt81rWNq2lubeZDS0b2NCygQd5EAODBdMWcETJEawoXcFBzbsBCHd2JnUvB7I/bP4DG1o2kO3O5oZjb9gr3HU73VxxxBWsLFvJd17/DtWd1Vz2wmWcv+B8vnnkN8nx5KRo54l7o946JPKE2cmtHrGV5WlSW0RERERE0p8mtUVEUsj0+wnUW4cOeioq9/lcV0kk1G4ZPdS2q0dKMkvGDH8/rH/LVky/H0d+Pu4xpsZHksz6EZthGKw+fjUlmSVUd1Zz+zu3j3mNXT0yN28uma7MpO3FVpFXwWcWf4bbT76d5z/9PE+d/xQ/OPEHrFqwisq8SkxMtrZv5Y9b/sg3X/kmddXvAdDerJAwGXZ17eKn7/4UgKtXXE1pdumoz11evJw/f/zPXLj0QgwMHt32KOc/fj5v7357srabVA3dDez07cRpODlm5jETco/opLZCbRERERERSWOa1BYRSSF/fT2EwxiZmdHQejR2/UhgH5PadvVIeV7sfdp9G/4FQOayZXHVGkTrR2pqME0zadUI0zKmcetJt3Lxsxfzl21/4bhZx3Fm5ZmjPt+uKUl29chIDMNgTu4c5uTO4RMHfQKAPX17eLf5XdY2rWVd0zoKeqxQe/fubSya8B3t30zTZPU/VtMX7OOo0qP49MJPj3lNhiuDbx71TU4tP5UbXr+Buu46Ln72Yj67+LNcdcRVMb/4k0pvNFhT2suLl5PnyZuQe9ihdm1X7YSsLyIiIiIikgya1BYRSaFon3Z5+ZghsHscndr2pHY8fdr9G6zwNZ7qEQB3WRkYBuHubkJtbXGtMZqjZx7Nl5Z9CYDVb66mobth1OfafdrJPiRyvIoyizi94nSuPfpa/njqg2QErM8HfB0p2c/+5K/b/8rbu9/G6/Ty3eO+i8MY/19jVsxYwV8+8Rc+s+gzgFVh8qVnvkQgFJio7SZdtHpk1sRUj8DgAbONPY0EwlPnv42IiIiIiBxYFGqLiKRQoNYKocc6JBKGdGq37MEMh0d8Tk1nIpPa8R8SCeDwenHPnAkkt4LEdulhl7K8aDldgS6ufe1aguHgiM+z60dSFWoPFdyzZ/CDru7UbWQ/0NzbzB3v3AHA5YddHtev8Sx3FjccewMPnP4A+d583m99n3vX35vsrU6IQDjAW7vfAqxDIidKUWYRma5MQmaI3d27J+w+IiIiIiIiiVCoLSKSQv7qyKR2xdgBnauoyPpJIECoY+Sp3+ikdm5sk9ohnw9/VRUAGXFOasOQCpLq5B0WaXM73Pzw5B+S7c7m3eZ3+cWGX+z1HN+Aj/puq6N8MupHxjI01Hb3+ukL9qVwN1OXaZrc8tYtdAW6OKTwED639HMJrXf8rONZffxqAB58/0HeaXwnGducUP9q/hc9gR6meaexpHDiXrAxDIPZObMBVZCIiIiIiEj6UqgtIpJC/hgmtQ2PB+f06QAER+jVNk0z2qldllcW0z763nsfsCpEXNOmxXTtUJ7KyGGRNckPtcHq+73h2BsAeGDDA6xtWjvs8S1tWwCYnTN7wjqHYxFsGQy1c/pgZ8fOFO5m6nq25lle2vUSLoeL1SesxuVI/EiQj5Z/lFULVmFicv3r1+Mb8CVhp8NtbtvMY9seI2yO/M6KWNh92sfPPj6m2pV42BUkOixSRERERETSlUJtEZEUinZqjyPUhqEVJHv3ancMdNDl7wIGD3sbr+ghkQlMacPg1zER9SO2c+edy8fnfZywGeba164dFkba1SNLC5dO2P1jMXRSO3sAtrVuSeFupqaO/g7+++3/BuDLy77MwmkLk7b2t476FuW55TT2NPKDt3+QtHXBCrT/86n/5KY3b+KxbY8lvN5k9GnboodFdmpSW0RERERE0pNCbRGRFDH9fgL1VlWGu3ycobZ9WOQIk9rVndUAzMqeRaYrM6a9RA+JjLNP2xatH5mgSW3bd479DmW5ZTT2NLL6H6sxTRMYDLUXT0999QhAcM/wFx9qGjalaCdT1+3v3E5bfxvzC+Zz8bKLk7p2ljuLW0+6Fafh5Kmqp/j7zr8nZd2G7gYuff5SeoO9ANy7/l56Aj1xr7enb0/01/bxs45Pyh73xe4rr+uqm/B7iYiIiIiIxEOhtohIivjr6yEcxsjKwlVSPK5r7OeNFGpX+axO7Mr8ypj2YZrm4CGRyZrUrq0d9TDLZMh2Z3P7ybfjMlw8V/Mcj257FIBNrelzSCR86KBIoGH31hTtZGp6re41ntj5BA7DwerjV+NxepJ+j+XFy/nqoV8F4Adv/YCG7oaE1vMN+Ljk+Uto6WthfsF8ynLL2NO3h9+8/5u413yz4U3AegdCYWZhQvsbjzm5cwDVj4iIiIiISPpSqC0iac0MhVK9hQkTrR4pL8cwjHFdE53UHqF+xA615+bPjWkfgfp6Qm1t4HbjXZJYGOyePRucTsy+vhGD92Q6pOgQLj/8cgBue+c2NrZujE6rT+RBerEItQwPtZub1ak9Xt3+br731vcA+NySz7G8OLEXXPbl4mUXc1jxYXQHurnutesIheP7vjMQGuDKl65kp28nJVkl3H/a/Vyz4hoAfvvBb2nsaYxr3dfrXwcmp3oEButHdnXtSkofuIiIiIiISLIp1BaRtBXcs4ftK0+h7mtfS/VWJkRgSKg9XnandmAfk9pz82ILtfv+ZfVpZyxejMPrjenaDzPcbtxzZgPgr57YChKALxzyBY6ZeQx9wT4uef4SwmaY4sxiijKLJvze4/HhSW1/e9uEHEi4P7p73d009jQyJ2cOlx122YTey+Vw8d8n/TdZrizWNa/jwQ8ejHmNsBnmO69/h7VNa8lx53D/afdTml3KqeWnckTJEfSH+vnpup/GvG4oHOIfDf8A4MTZJ8Z8fTxmZs/EZbjwh/00907si1MiIiIiIiLxUKgtImmr86mnCba00PXyK/vlxLa/xjqEbbyHRAK4o53ayZvU7rerR5Yti+m60UxWrzaAw3Dw3yf+NwXeAtr624D06dOGwVDbkZUFQHY/bO/YnsotTQlrm9byyJZHAPju8d8ly5014fcsyy3jumOuA+C+d+/jg9YPYrr+x2t+zDPVz+ByuLj7lLujB1oahsG3jvoWAE/sfIIP9sS27sbWjXQMdJDrzp3QafWhXA4Xs3JmAaogERERERGR9KRQW0TSVtezz1o/CQQINsb3tv10Fq0fqYhhUnuUgyL9IT913dahbrGG2n1JOiTSFu3Vrq5OynpjKckq4fsnfD/6cbqE2mY4TLC1FQDPvHkA5PTD9naF2vvSH+zn5jdvBmDVglUcM/OYSbv3Jw/6JKdXnE7QDHLtq9fSF+wb13W/2/g7frvxtwDccsIte+354KKDOXfeuQDcseaO6MGm4/F6g1U9cuysY3E5XOO+LlFDK0hERERERETSjUJtEUlLwT176F2zJvqxf1ddCnczMQZD7fFPakdD7T17hh3EWNtZS9gMk+POial6wwwE6N+4EYCMBA+JtEVD7UmY1LatLFvJV5Z/hRx3DqdXnD5p992XkM8HwSAAnnnWCw3Z/bCtY1sqt5X2HtnyCDWdNZRklnD1kVdP6r0Nw+CmY2+iJLOE6s5qfvTOj8a85tnqZ7njnTsAuOqIqzhn3jkjPu/KI67E6/SytmktL+56cdx7eqP+DWDy+rRtCrVFRERERCSdKdQWkbTU9fwLMGSa0b+rNoW7ST7T7yfQ0ACAO5ZQu7AQDAOCQULt7dHPV3UOVo+M99BJgP4tWzEHBnDk50drQxI1mfUjQ33t8K/x5mffTJtDIu3DPJ3TpuGaXghAdr+p+pExrG9eD8Dnl36ePE/epN+/IKOAW068BYA/bf0Tr+x6ZdTnrmtax3WvXYeJyWcWfYYvHvLFUZ9bml3KhUsvBOCutXcRCAXG3ItvwMd7e6x3UpwwW6G2iIiIiIiITaG2iKQlu3rEiBxcGNjPJrX9dfUQDmNkZUUPfxwPw+3GOX06MLyCpNpXDcTRp/1epE/7kENiCsP3xVNRCUCgtnbSu9CT9TUkQyjSp+0qKsKZb4WzOZFO7VjqJw40O3w7AKKd1Klw3KzjogH0TW/exJ6+PXs9Z6dvJ1978Wv4w35OKTuF646+bsxff19a9iUKMwqp6ayJdobvyz92/4OwGWZ+wXxKs0vj+2LiZIfatZ371wuKIiIiIiKyf1CoLSJpJ9jeTs/bbwOQf96ngP1vUttfG6keKS+POYgdqVc77kMiN20GIOPgg2O6bl/cM0sx3G7MQIDA7t1JW3eqsfu0XcVFOPIGQ23fgG/EkFSsbng7RD2o4KCU7uWKI65gwbQFtPW3cfObNw97IWJP3x4uee4SOv2dLC9azm0n34bT4RxzzWx3NpcdfhkA9//rfnwDvn0+P1XVIwDleVbXf11XnV6EERERERGRtKNQW0TSTveLL0EohHfRInJOOgmAQO3+9Rb4QBx92jZXsdWZbddbwJBQOy/GUHtzJNRekrzDFQ2nE3fk8Et/9eRWkKSTYIsVXDuLinDm5QNQGMgAYFu7erVHUtNZQ8gMkePOoSSrJKV78Tq9/PCkH+JxeHi17lX+tOVPAPQEerj0+Utp6GmgPLecez56D5muzHGve97885hfMJ9OfycPbHhg1OeZpjkYak9y9QjA7JzZAHQFusYM30VERERERCabQm0RSTt29UjuGafjLrPeAu+v28/qR2oGJ7VjZU9qByKT2qZpDuvUHi8zGGRgyxYAvIuTF2rDYAWJv6Y6qetOJUG7fqSwCGeBFWoXBFyADoscjV09Mq9gXlpUySyctpCrVlwFwI/W/Iit7Vu55pVr2NS2iekZ0/n5aT9nesb0mNZ0OVx848hvAPCHzX8Ytd5ja/tWWvpayHRlcsSMIxL7QuKQ4cqIvrBQ27V/vVNGRERERESmPoXaIpJWQt3d9Lz5JgB5Z5yBZ84cAMI+HyHf/jMt6K+xQiJPZeyT2u4P1Y+09LXQE+jBaTijPbjj20MN5sAARlZWXOH6vtgT6Af0pPYea5LeVVSEM1I/kt1nPabDIke2o8MKtecXzE/xTgZdsOQCjpt5HP2hfi74vwt4o/4NMpwZ3HvqvZTljf/321AnzD6BE2adQDAc5K61d434nDcarCnto0qPwuv0xr3/RJTnWt8XdFikiIiIiIikG4XaIpJWul96GTMQwDN3Lp7583FkZeGM1G3496PDIv2J1I9EQ20rNLWrR8pyy3A73eNeJ9qnvXAhhnPsPuBY2GH9gTypHT0ockintrfXD8D2doXaI7FD7Xn581K8k0EOw8EtJ95Cvjef/lA/DsPBHR+5g2XFyxJa95ojr8FhOHi+9nnWNq3d6/FU9mnb7BfJFGqLiIiIiEi6UagtImml69lnAMg984xo/YBnjhWsBNLksMiw30/1BZ+j/upr4jpAzfT7CTQ0AOCOp36kuBgY7NS2Q+3KvMqY1hnYvAkAbxL7tG2D9SMH8KR2pFPbVVSEM9+qH3H0DuAIm+zw7SBshlO5vbS0s2MnkPpDIj+sJKuE2066jfkF8/n+Cd9nZdnKhNdcMG0B5y84H4A73rlj2K+HnkAP65rXAXDi7BMTvle8FGqLiIiIiEi6UqgtImkj3NtL92uvA1b1iM1THunVTpNJ7f7336dv7Vo6n3ySrueei/l6f109hMMYWVnRgDoWrg/Vj0QPiYyhTxuGTGovXhLzHsZiT2oH6uoxA4Gkrz8V2J3aziH1IwAFfg99wT7qu+tTtbW0FAgHqOm0XgQ5KD+9Qm2wKkMe++RjfOKgTyRtzcsOu4wsVxYftH7Ak1VPRj//z93/JBgOUpZbRnlecquBYmHXqyjUFhERERGRdKNQW0TSRverr2H29+OeMwfvksGg1Z1mk9oDWwcP+Wu5627MYDCm6+1KDk95eVyH4UVD7T17MEOhuEJt0zTp32RNamdMwKS2q6QEIzMTQqG0PuQzUF+Pv7o66euagQCh9nbAmqw3XC4c2dkALHZbPfHb2nVY5FC1nbUEzSBZrixKs0tTvZ1JUZRZxMXLLgbgJ+t+Qn+wHxjs005l9QhoUltERERERNKXQm0RSRtdzz4LQO4ZZwwLe9NtUntg+2Afsr+qio5HH43p+kBt5JDIOPq0AVyFhWAYEAoRam+nqjP2UDvY0kKorQ0cDrwLFsS1j30xDGPwsMg0rSDpfv0NdnzsHKpWfZpwT09S1w62tVk/cbkGq0fyrWntBa5ZgA6L/DC7T/uggoPierFnqvr80s9Tml1KY08jv9v4O0zT5PV66x0rqawegcFQe0/fHnoDvSndi4iIiIiIyFAKtUUkLYQHBuh++WUA8s48Y9hj7rLIpHZtmkxqb7MmbDMOOQSAPffeR7ivb9zXJ3JIJIDhcuEsLASgu6GWxp5GILZO7YHNVvWIZ+5cHJmZce1jLNFQewImoRPV9eJL1F1yCebAAOGeHqsSJomifdqFhRgO649aZ54Vbs/FOvhUh0UOt8OXfodEToYMVwZXHnElAL9671esa15HfXc9LoeLo0qPSune8jx5FHgLAE1ri4iIiIhIelGoLSJpoeeNNwj39uIqLSVj2bJhj3nsULuxEdPvT8X2hrEntWdcfx3uWbMINjfT9rvfj/t6f7Udasfflesqsbq4G2o+AGB6xnQKMgrGff1gn3byq0dsnspKIP0mtTuffpq6K64Y1vUd2N2Q1HsE91iHeLqKiqKfs3u152D9f9rWofqRoexJ7fkF81O8k8n3sbkf4+DCg+kN9nLNy9cAsKJkBVnurBTvbHBau64rPd4pIyIiIiIiAgq1RSRNdD0TqR45/fToZKvNWVRk9TOHwwQakhs+xirY1kaotRWwAuHiK68AoPWXvyTU0TGuNfwJ1o8AuIutXu09u7YCsU1pA/Rvnrg+bZv99QXSKNT2Pf449VdfA8EgeeeeS/ZHTgYguHt3Uu8TihwSOSzUjtSQzAjlAFDtqyYQOjAP0RyJHWrPKziwJrUBHIaDbx71TQBa+63vLyfMTm2ftm1OrtUBX9uVHu+UERERERERAYXaIpIGTL+frhdfBPauHoFIP/McK1jx70rtW+AHtllT2u6yMhxZWeSdey7eRYsId3Wx5xe/HPN60++PBvOJhNr2pHZXgxU0xdKnDTAQmdT2Ll4yxjPj56m0vr6BNKkfaf/zn2n49rUQDpO/6nxm3fZDPPYhpA3JDbWDkVDbWTwYatud2tn9JtnubIJmkJrO9An8UykYDlLdWQ1YndrpyDRNAk1NmKY5IeuvmLGC08pPi36cLqF2ea71jhLVj4iIiIiISDpRqC0iKdfz9tuEu7pwFhWRefjhIz7HXW4FK6kPta3KCO98qyLBcDopufrrALT//vcExpj49dfVQTiMIysL55Ap3li5IpPaA03W/WIJtcM9PdFKkIzFi+Lew1js+pHg7kbCAwMTdp/xaPv9wzTeeBOYJtP+v88y8/vfx3A6cc+aCTDm/7dYRTu1h9WPWJPa4c6uaMWGDou01HbVEgwHyXRlMjN7Zqq3MyLfX//G9o+spO2hhybsHl9f8XVy3DksmLaABQXJP8A1Hnb9iEJtERERERFJJwq1RSTlup6NVI+c9lEMp3PE59iT2oHaFIfa2yOh9oLBwCn75JPJOuooTL+flnvu3ef1dpjsrqjAMIy49+EqsUJt9rQDsYXa/Vu3gmniKi4eFromm3PaNBy5uWCaKT3ks/XXv6bpllsAmP6FLzDjxhujFTfumZFQu3FiJrVdRcXRz9md2iGfLxpqb23fmtT7TlU7O3YC1iGRDiM9/2rS89prAPRv2DBh9yjPK+fv5/2d3539u4S+PySTQm0REREREUlH6fkvRxE5YJjBIF3PvwBA3hl7V4/Y3OVWsOKvS/WktjVZ610weJidYRiUXHM1AL6//jU6zT0SO9ROpHoEBkNtb0cvEFuoPbA5Uj0ygX3aEKmNqUhdBYlpmrTcdx/Nd/wIgKJLL6HkW98cFha6IqF2cILqR4Z3akdC7U4fC6ZZL4poUtti92mna/UIQP8mq4c+0Ng0ofcpzCwk2509ofeIRXme9S6Z3T271QEvIiIiIiJpQ6G2iKRU75o1hNrbcRYUkHXUUaM+z1MW6T5O4aS2aZoMbLdD7eHVAJmHHUbu6adDOEzzXXePukY01I7UqcTLVWxNABd0hfE4PMzKnjXua/sjfdoZE9inbbMrSCb7sEjTNGm58y72RCbni6+6iuIrrthr+jU6qd3UhBkKJe3+wT0tALiK9z4oMuzrVP3Ih+zwRQ6JzE/PQyLDPT34Iy/MBJsmNtRON4UZhWS6MgmbYRp6UntQr4iIiIiIiE2htoiklF09kvPRUzHc7lGf5y6zJ7XrJuygtrEEm1sI+3zgcOCZu/dkdPHXrwKHg+4XX6R33boR1wjUWDUcyZrULuiBipwynI6Ra1tG0h+Z1M6Y4EltGPw6/ZMYapumSdOtt9L6S+vgzpJrv03RV/9rxOe6iovB6YRQiGBLS9L2EBqhU9sR6dQOdXZGJ7XruuroDfQm7b5TlT2pbYf96aZ/yxaIfN8JNDdjhsMp3tHkMQwjWkFS25m6GiEREREREZGhFGqLSMqY4TBdzz0P7Lt6BMA9ezYYBmZvL6HW1snY3l7sPm1PRQUOr3evx73z5lGwahUAzT/68Yjh+2D9SIKT2oXTMR0GDhOWOMY/pW0Ggwxs2WLtd/EkhNqVkVC7enJCbTMcpvG7q2n/7e8AKL35JgovumjU5xtOJ+4ZMwAIJKmCJNzTQ7jXCqpHrh/pZHrGdKZnTMfEpMpXlZT7TlXBcJBqXzUA8wrSc1K7f+OmwQ8CAUJtbanbTAqoV1tERERERNKNQm0RSZm+9esJtrTgyM0l67jj9vlch8eDa2YpAP5dqQlW7K5s7/zRp0mLLr8Mw+ulb906ul96edhjYb+fwG4rOE10UttwuejPs4L1BaHxH/bor6nBHBjAyMpKuAJlPOz6Ef8kdGqbwSC7r7uejkceAcNg5g9+wLTPfnbM61yzIr3aSTosMhh50cXIysKRPdiNPPSgSIAFBda09raO0TvYDwT13fX4w34ynBnMzpmd6u2MqH/TxmEfBw6wChKF2iIiIiIikm4UaotIynQ98wwAOaesxOHxjPl8z5xIr3aqQu1R+rSHcs+YwfQLLwSg5a47h/U0B+rqIBzGkZWFs2j8QfRofDnWt/DygZxxXxPt0164EMM5/sqSeNnhfbClhXBPz4Teq+mHt+H729/A6WTWHXdQsOr8cV3nnmlNutsvOCRqpEMiARyRUNvs7cUMBJg/zXpxZFv7gR1q273ic/Pn4jDS868lwya1OfB6tRVqi4iIiIhIunGlegMicmAyTZPO554Dxq4esbnLy+Cf/8SfosMio5PaC/bd+1v45Ytp/9OfGNi2Hd/fHqfg/POAwQoOd0XFXgcWxqM5K0gpMKNv7BcEbAObrXDOOwl92mBNJzunTSPU3o6/tpaMJRNzOGXv2rW0//73AMz+8Y/JO+vMcV/rLrXeAZCs+pHgCH3aMDipDVYFiQ6LtOzs2AnAQQUHpXgnIzP9/sEXtJYsYWDTpgM21N7ctplHNj9CIBwgEA4QDAejPw+EAgTNIIHQ4GMAn138WZYVL0vl9kVEREREZD+kUFtEUqL//fcJNuzGyMoi+8QTx3WNp8yqy0jFpLZpmvi3jT2pDVZ4WfSVr9B8xx203HMPeed8DIfXi7/W7tNOrHoEwDfgoykrAMC0rvEfnBmd1F48MeHySDyVlfS1t+Ovrp6QUDvs97P7xpsAyP/0qpgCbQB3pH4keZPa1oGTHw61DacTR24u4a4uQr4hoXb7gR1q7/BZh0Sma6g9sH07BAI48vPJOvxwBjZtItB4YIXaFXnW96ym3iZuefuWmK5d37Kev33yb7idox8ELCIiIiIiEiuF2iKSEl3PPgtAzkdOxpGRMa5rPGVzgNR0agcbGqzD/9zucYXS0z53AW2/+x3B3btpf/h/KfziF4YcEpl4qF3lq6Ij0jpitHaM6xrTNOnfZE1qZ0zSpDZYX2/fu+9Gv/5ka/3FL/Hv3ImzsJAZ3/hGzNe7ZiY71B55UhusFzzCXV2EO33Mn2OF2s19zfgGfOR785Ny/6lmR0ck1M5Pz1C7f6PVp52xeDGuyFR/sLExlVuadLNyZnHZYZfxwZ4PcDvduBwu3A43bscoP3e6cRkuHtr4ELu6dvHIlkf43NLPpfrLEBERERGR/YhCbRGZdKZp0vmMFWqPt3oEwJ3CSe1+u3qkshLDPfbEocPrpfhrX2P3d77DngceoODTqwjYoXYSDmis8lXRlmMAJsHm5nFdE2xpIdTWBg7HmNPmyeSptEJ8u34lmQZ27KD1gQcAKP3O9TgLCmJew+7UDjY0JGVPITvULt471Hbk50F9PSGfjxxPDrOyZ9HQ08D2ju2smLEiKfefSkLhEFW+KiB9J7XtPu2MpUtxl84AINB8YE1qA3z10K/GfE22J5vv/eN7/HzDz/nE/E+Q58kb+yIREREREZFxSM8TmURkvzawZQuB2loMr5eck08e93X2pHawpYVwX99EbW9E/ughkfvu0x4q/1OfxDP/IMI+H62/+jX+mlpgMORNRFVnFe2RSe3xhtoDm63qEc/cuTgyMxPew3h5KisB8FdXJ3VdMxxm9403YQYC5HzkI+SefXZc69j1IyGfz5rGT5DdqT3SYaDOPGsaO9TZCRA9LPJArSBp6G5gIDSA1+llds7sVG9nRNF3NyxdgmuGPal94IXa8Thv/nnMy5+Hb8DHr977Vaq3IyIiIiIi+xGF2iIy6ezqkewTT8SRnT3u65wFBTgih+0F6uomZG+jGTwkcu+jwXwAACAASURBVPwTzobTScnVVwPQ9tvfRustklU/0p5rHTYZaBlfqD3Ypz151SMw+PX6q6sxzfH3f4+l409/pm/dOoysLEpvvinuwzedubk4cqxXCAJJqJXYZ/1IfiTU9kVC7Uiv9raObQnfdyqyD8mcmz8Xp8OZ4t3szQyF6N+yBYCMJUtwzygBINDUlNRfy/srl8PF1Sus74EPb3yYhu7kvBtCREREREREobaITLrOSKidd+b4q0dsnjmp6dUeiBwS6Zk//kltgJxTTiHziCMw+/shHMaRlYWzsDDh/VT7qqOT2qHWNsxgcMxr+jdPfp82WKG24fUS6uig+Y4fJSUMDDQ10/yjHwFQctWVuGfNSmg990xrAjfQkHiv9mCoXbzXY87IizKhTh8wJNRuPzBDbfuQyHn581K8k5H5a2owe3sxMjLwzJ2La4ZVP2L29hLu7k7x7qaGk+eczFGlR+EP+7nn3XtSvR0REREREdlPKNQWkUk1sGMH/u07wO0mZ+XKmK93l09+r7YZCjGwwwrfMmLsojYMg5Jrro5+7K6siHui2BYIBdjVtQtfFuBwQDhMsLVtzOsGIpPa3sVLErp/rBxZWZTedCMAbb/5Da0P/CLhNZtuuYVwdzcZy5Yx7YILEl5v8LDIxCZJzXCYYGurteYIndrOfCvUDkcmtRdMs349be/YfkBO/u7s2AlMgT7tRYswnE4cmZnRafsD7bDIeBmGwTVHXgPA33f+nY2tG1O8IxERERER2R8o1BaRSRWtHjnu2OjUaizsXm1/7eSF2oG6OsyBAQyvF3dZWczXZ61YQc4ppwDWQZOJ2tW1i5AZItOTHa24GKtXO9zTgz9yUGXG4kUJ7yFWBatWUfLtbwPQcvfdtP3v/8a9Vtfzz9P13HPgdDLz+9/DcCZeWxE9LHJ3YpPaIZ8PAgEAXNOn7/W4w+7U9lmT2nPz5+I0nHT6O2npa0no3lORPal9UH6ahtqbrADWu3TwhSB7WjugXu1xO7jwYM6Zdw4Ad66584B8AUdERERERJJLobaITKrOZ58DIO/MM+O63g6V/btqk7ansdh92p6D5sUdoJbefBMF//ZvFH7lKwnvp6qzCoDK/EpcJVbHb3CMXu3+rVvBNHEVF4/Y9TwZCr9wEUWXXgJA0/e+j+/xx2NeI9TdTeP3b7HW++IXk9YP7o5Oaic2fRuKVI84CwowPJ69Hh+sH7Emtb1OL+V51rsPDrTDIsNmmCqf9Ws5fSe1rVA7Y+nS6OdcpVaoHWxWqB2LKw6/Ao/Dw9uNb/Na/Wup3o6IiIiIiExxCrVFZNL4a2sZ2LQJnE5yTj01rjU80fqRyTsocmC7FTZ6Y+zTHspdWsrM738vKSGsHQTOzZ+Lq9jqbQ4273vKd2BzpHpkkvu0P6zoa19j2uc+B0DDddfT9eKLMV3fcuedBJuacJeXU3TZpUnbl3uWHWonNqkd7dMeoXoEwFkQmdSOdGrDgXtYZEN3A33BPtwON3Ny56R6O3sxTZMBu35kyWCo7Y5Oaqt+JBazcmZxwRKrKuiutXcRDI99DoCIiIiIiMhoFGqLyKSxq0eyjj4K17Rpca3hnmNNagfq6jBDoaTtbV8GtlphozfGPu2JEg218+YOTmqPUT/SH+nTzpjkPu0PMwyDGddfR/4nPwmhEPVXfZ2et94e17W9696l/Q9/BGDm6u/iyMhI2r5cpZGDIhPs1LZDbeco0/D2pLbdqQ2woMD6dXWgHRa502f1aVfmV+JyuFK8m70Fd++2amJcLrwLB3/vu2ZYv1aCTfv+PSd7u3j5xeR789nesZ2/bf9bqrcjIiIiIiJTmEJtEZk0Xc+/AEDeGWfEvYZ7Zim4XJiBwJhBbrJEJ7XTJNSu9lUDkUntksik9lj1I5FJ7YwUT2oDGA4HM39wCzmnfRTT76fu0kvp27Bhn9eYfj+NN98Epkn+eeeRfdxxSd2Te5bdqd2IGQ7HvU6wJTKpXVQ84uPRTu3OwVB7/jRrUnt7x4FVP2J/vfPz438HxESyq0e8Bx2EY0iVjDtSPxJo0qR2rPI8efzX8v8C4L7199Eb6E3xjkREREREZKpSqC0ik8Zfb1WGZB52WNxrGE4n7tlWADkZh0WagQADVdZktHd+6kNt0zRjrh8xg0EGtmwBIGNJaie1bYbLxewf/5is444l3NvLri9/xer9HsWeX/2KgW3bcU6fTsm3vpn0/bhLSsAwMP1+Qm1tca8TrR8ZbVI7f3inNgzWj+zo2EHYjD9Qn2p2dFiHRM4rmJfinYys364eGdKnDYMHRQZ1UGRc/mPRfzAnZw4tfS08tPGhVG9HRERERESmKIXaIjJpwt09ADhycxNax1MW6dWum/hQ219bC4EAjqysaO9yKrX2t9IV6MJhOCjPK4/WjwT2Mantr6nBHBjAyMrCHekkTwcOr5eye+8l49DlhHw+dn3pYvy79v5/OrCzitb7fw7AjOuui7u6Zl8Mjyf6AkEih0UG91gvLriKCkd83K4fMfv6CPv9AJTnluNxeOgP9VPfVR/3vaeanR1W/UjaHhK5ye7THv5CUDTUblKoHQ+3082VK64E4MH3H2RP354U70hERERERKYihdoiMinMYBCzrw8AR3Z2Qmu5y6xD5SZjUntgm9Vz7Jk/H8OR+m+Z9pT27JzZeJ1ea8KYfU9qR/u0Fy1Ki69hKEd2NuUPPIB3wQKCLS3UfuGLBIZ0FZvhMI033YQZCJB90knknXvOhO3FPdM+LDL+Xu3QGJPajtxcMAwAwj7rsEinwxkNdg+UwyLDZpgdPmtSO21D7Uj9SMbS4aG2O9K/HuroINzfP+n72h+cWXEmy4uW0xfs42frf5bq7YiIiIiIyBSUXumGiOy3wt3d0Z87c3ISWis6qT3CVG+yDWyz+7TTo/d3aPUIEJ3UDrW2YgaDI14zsNmeOE19n/ZInAUFlP36V7jLywnU1VH7pS8SbG8HoOP//T9616zByMyk9OabMSKB8ERwRSbxg7t3x72G3ak92kGRhsOBI2/0CpIDpVe7saeRvmAfLoeLstyyVG9nL8G2tugktvdDh6s6cnMxMjOt52laOy6GYXDNkdcA8Oi2R6NT+yIiIiIiIuOlUFtEJkUoUj1iZGRguN0JrRWd1J6UUNuanE2HPm0YEmrnWaG2c/p0cDrBNAm2to54zf/P3p3HyVHX+R9/VfUxPfeVyUwm1ySZHJNIMOGSDSAgCAgEAsgpouKisOKBCl7oiu66P9AVEHe9AGVB5AgB1IBAADnkhphrMrnvzH0ffVXV74/qqrln+qju6Ul/no8HD8101be+SXpmMp/61PtjdWpnLUrPojaYmdaz7rsP99SpBHfsZP91XyC4Zw+Nd/wUgLIvfxnvjOnJ3UNFpFP7UAJF7cjfwWiDIqE/gkTrGGFYZFtmFLWtPO2qgio8amJfD5LBytP2zp6NK2/wkyWKouApt4ZFSlE7XsvLl3P6zNPRDI2fv/fzid6OEEIIIYQQYpKRorYQIiX0HrNTW02wSxvAG8mFDu3bl/Ba4wnssDq106yoHenUVlTVjroINw7P1TYMY9Rs4HTjnTGdWffdi6uoCP/Gjey6cBV6Vxe+JUsoufpTSb9+f/xIfEVtIxRCi3SYu8tG7tSGAUXtzg77Y1andqbEj+zqMDtz5xam6ZDIWjN6JGvxyJ8z7kgEiXRqJ+arx3wVl+Li5QMv8079OxO9HSGEEEIIIcQkIkVtIURK6F1dQOLRIwCe6WanttbRMSjCwWl6MEhw714gfeNHoD+CZKSidripCa21FVQ1bQrzY8mqrmbmb3+LmpuL4feDy8W0H92G4nYn/drWINB4i9rh1jYwDHC5cBUVjXqcq9AsaluZ2gDzi8y/mz0dewhpobiunwp9GzfS+fzzCa9jxaxYxfx005+nvXjE1z3lkQGt9fEPFRXm17FLFlwCwM/e/Rm6oU/wjoQQQgghhBCThRS1hRApoXU716ntysvFVVoKJDeCJLh7N2gaakGBXTieSH3hPg71mEMMoy1qB7aa0SPeuXNQfb4U7DJx2Ud9iJm/+l+y5s+n/JZbRi0sOs1tdWrXx1nUbjaHdbpLS8ccyKkWFgKD40cqcivI8+QRNsLs6dwT1/WTTevsZN9nPsvBG79sP8EQLytDeW5RenZqB7ZYTzeM/N5zl1ud2sM/50Rsrj/6enI9uWxu2cyzu5+d6O0IIYQQQgghJgkpagshUkKPZGo7UdQG8M40h8uF9h9wZL2RBLZZedrVSR1QGK29nWbXeGFWIcW+YvvjVtRFuKlp2DlWnrZvUXpHjwyVc9xxzP3z05R8+uqUXdNTWQmA1tSMHgzGfL7WbA6JdI8yJNLiKogUtQc8ZaAoStoPi2x75BH0HvPzuG/DxrjXMQyDnR1mpva8wnmO7M1JWne3/YSGb7T4kUindrhBOrUTVZpdyuc+9DkA7v7gboJa7J97QgghhBBCiMwjRW0hREro3ZH4kXxnitqeSFE7uD95udppm6ddMGfQx61O7dAIndr+rVbHafoOiUwXrqIilKwsAMJxxEqEI0Vt1xh52jBypjb0D4vc3pZ+udp6MEjbA/9n/9rKaY9HQ28DPaEe3Iqb2QWzndieo6ynG9wVFbhLSkY8xhPJ1A7VS6a2E65efDVTc6ZysPsgD299eKK3I4QQQgghhJgEpKgthEgJ3YofyZ1Endrb+zu108FIedoAnrHiRyKd2lmLpKg9HkVR+odFHoo9giTcFGWntp2pPTgPPp07tTv//OdBTwJYgxTjsbPd7NKeVTALj8uT8N6c5t8y/mDV/vgRKWo7IdudzZc+/CUAfr3h13QEOsY5QwghhBBCCJHppKgthEgJJzO1ITM7tfd07AGGF7XdZWVAf1HVovf09McoSFE7KokMiwzb8SNlYx6nWp3aHYMLd9awyHTr1DZ0nZb77geg8MILAfNmiaHHN9TPKmrPK0q/6BHo70Ifq6htDYoMNzdjhMMp2deRbuW8lVQXVdMV7GLdvnUTvR0hhBBCCCFEmpOithAiJfSuSFHbofgR76zkdmrrfX2EIkMos+anSad258id2qMNivRv2waGgXvqVNyRwZpibNawyHAcwyLD0WZqFxYBgzO1oT9+5ED3AXpDvTFfP1m6X/47wZ07UfPyKP/WLSheL3pPD6F98d1QsvO007WovcXsQvctGX1Aqau0FNxu0HX7710kxqW6OGn6SQBsaYn/SQAhhBBCCCFEZpCithAiJaz4EZdTndozIkXtw4cxQiFH1hwosHMXGAaukpK0KAjrhj56p3akqK21tAz6s7CygbMkTztqnmnmsMi44keazXgO93iZ2oUjZ2qX+Eoo9ZnvtV0du2K+frK03HcvAMWXX4arqIishQuB+HO17U7tNBwSqQeDBHaa+xurU1tR1f7Ynzjy18XIFpWYX6u2tm6d4J0IIYQQQggh0p0UtYUQKaH1OJup7Z5aZg7107S4oiLGM16edm+oF03XHL/uaOp76vFrftyqm+l50we95iouNrtGYVDXqD+Sp+1bNHpxTgxmZ2rH8Z7Sos3ULhg5UxvSb1hk3/r19L37Hng8FF/9aaC/2GtlT8fCMAx2tZsF+7lFc53bqEMC27ZDOIyrsNDu2h+Nu7wckGGRTqopMd9b29q2pfTrqxBCCCGEEGLykaK2ECIlnI4fURQFz8wZAAT37XdkzYECOyJF7RHytJv7mjl3zbmc8fgZvHrgVcevPRJrSOTs/Nm4Vfeg1xRVtQupg4b5RTq1fdKpHTXPNHMAYGKZ2mMXtdWCQmB4/Aj052qny7DIlnvvA6Dw/PPtHGnf4khRO45O7aa+JrpCXbgUF1UFVY7t0yn+LZsByFpcg6IoYx7rrjCL2uFGKWo7ZXbBbLLd2fSF+9jbtXeityOEEEIIIYRIY1LUFkKkhNPxIwDembMACCVhWKTdqT1CnvYjdY/Q3NdMc18zN6y7gdveuC3pGchWUXto9IhlaK62EQ4TqKsDZEhkLNwDOrUNw4j6PL23F72nBwDXOIMirfgRIxBA9/sHvVZdZL7f0qGoHdi9m64XXgCg9HOftT9ud2rX1sb0ZwT9v6+Z+TPxurwO7dQ59pDIxaPnaVs85ZEbINKp7RiX6mJ+sXljZ2uLRJAIIYQQQgghRidFbSFESlhFbdXJonZkWGQwCcMiAzvM4tvQTu2gFuTRukcBOGHaCQA8tu0xLvnzJaxvXO/4PizjF7XNQmooUtQO7t2LEQig5OTgmTUrafs60ljxI0ZvL/oIndSjCbe0AKBkZ6Pm5ox5rJqXBy4XAFrHyMMi0yF+pPX3fwDDIO/UUwfF8GQtWACqitbSQrixaYwVhrOiR9J1SGQgEqniqxm/qG3Fj0imtrOsCBLJ1RZCCCGEEEKMRYraQoiU0JJQ1LaHRTrcqa11dxOODAocmqn97J5nafW3MjVnKv97xv/y24//lvKccvZ37eeaZ6/h7vfvJqQ5P7hyd+c4Re0ys6htdWrbedoLF6Ko8qU+WqrPh6ukBIgtgiQ8IE97vNgKRVFw5ecDoA8ZFml1ajf1NdHub4/6+k4LNzfTsWYNAKXXfm7Qa2p2Nt655vvQX7slpnV3dphDGOcWpl+etqFp+K2nGxaPn0PvicSPhCR+xFHWsMja1vgGkQohhBBCCCEyg1Q6hBApkZT4kSR1alvRI+6pU3EVFtofNwyDh2ofAuCKRVfgUT18ZNpHeOKCJzhv7nnohs5vN/6Wq9Zexc72nY7uabxObY8VPxLJ1A5stTpOJXokVvawyEMxFLWbzT/38fK0LWokgmRornauJ9ceBBpNBElYD/PqgVf5xt+/wbEPHsv3Xvte1HseS+tDD2EEg/iOXkr2sccOe93qZA7EmKttfV5Yxft0Ety9G8PvR8nJwTt79rjH93dqS1HbSQM7tWONtxFCCCGEEEJkDilqCyGSzggGMQIBwOFO7ZmRTu19+xwtfowWPbK+aT1bWraQ5cri4vkX2x8v8Bbwk5N/ws8++jMKswqpba3l0j9fygObH0A39IT30xnspLnP7AQebbhef6a2WVy1OrWzJE87Zm57WOShqM+JdkikxWUNi+wYHnESTa72jrYd/Pe7/82Zj5/JDetu4G97/kZAC/DUzqd48/CbUe97JHpPD21/fBiA0s9dO2LnuZ2rvSX6orZhGHZROx3jR+w87YULUSLxMGPxWEXthgYpvjqourgal+KiPdBOQ6/cMBBCCCGEEEKMTIraQoik0yID9ADU3FzH1vVMnw6Kgt7bi9bW5ti69pDIIdEjD255EIBz555Lsa942Hkfr/o4a1au4aTpJxHUg9zx7h3863P/yuHu6Dt+R7KnYw8AZdll5HlHvikwcFCkYRj9Bbqa8WMUxGCeaZUAhGOIH9GsonZZtEXtSKd2R8ew10Yrarf72/lj7R+57C+XserpVdy/+X6a+5opyiriqpqrOGfOOQDc/s7thPVw1Hsfqn31E+gdHXhmzyL/jI+NeIwVz+GPoVO7xd9CZ7ATVVGpKqyKe3/J4t8S2+eMu6wMFAUjFHL060+my3Jl2U+kSK62EEIIIYQQYjRS1BZCJJ0VPaLk5KC43Y6tq2Zl2REAoX3O5WoHrU7tBf2d2vU99azbtw6AKxddOeq5ZTll/M/H/odbP3Ir2e5s3q5/m4uevoindz4ddzfneNEjMCBTu6mJcFMTWmsrqOqwbnMxPjt+5HD0AwCtTG1XtJ3akViboZnaMHhYZEgP8dK+l/jaS1/jtMdO4ydv/4QtLVtwK25On3k6d552Jy9+8kW+dfy3+M7x36HAW8D2tu08sf2JqPc+kBEO0/r73wNQ+tnPjtqx7Is8ARA6cGBYhMporCL9zPyZZLmy4tpfMvm3mPngviXjD4kEULxeXKWlgAyLHElwzx52X/JJOp97LuZzrQgSydUWQgghhBBCjEaK2kKIpLPztB3s0rZ4Zzqfq+0foVP7T1v/hGZoHFdxHAtLFo55vqIoXLrwUh47/zGWli2lO9TNd1/7Lje9fBMdgeFFzPFEVdSOdGprra34N24EwDt3DqrPF/P1Mp2n0ipqx5KpHVv8iJ2pPUL8yPwi80bE5pbNnPHYGXz5pS/zwr4XCOthakpq+Nbx32Ldpeu46/S7+Nisj+FxeQAo8hVxw4dvAOCeD+6hK9gV9f4tnc/+jdChQ7hKSii88MJRj3MVFeGpNDvaraib8VjRI2k5JDLOpxusCJJQg8RkDNX997/j37SJjiefivlca1jk1hbp1BZCCCGEEEKMTIraQoiks4raTuZpWzx2UduZTu1wWxtapOvWO88savvDfh7f/jgAV9VcFfVaswtm84ez/8CNy27Erbh5Yd8LXPu3a2MubEdT1HYVFYHHLG52v/oqAL5FEj0Sj/5O7XiK2mVRHW9nao/Q5TyncA5uxU1AC9Dqb6XUV8o1i69h9crVPHr+o1xVcxUlvpIR17104aXMKZxDW6CN32z4TdT7B7Ow23LfvQAUf+qqcW+IZNkRJFuiWn9X+y4gPfO0QwcPoXd2gsczLHZoLO4KM389LEXtYbRO86aK9fU/FjWl/cMihRBCCCGEEGIkUtQWQiSd1hUpaufnO762d5Y1LHK/I+tZ0SOeykpceWZn+V93/ZWOQAfT86Zz6oxTY1rPrbq5bul1PHjug5T6Sqlrq+OGdTfQG+qNeo3dnZGidsHoRW1FVe085+5XXgHAVyNDIuPhrjCL2uGGBoxwdNnU4XgztUeIH/G6vHz7hG+zct5KfvmxX/LCJ1/gG8d9gwXFC8Zd16N6+Oax3wTgwdoH2du5N6r9APS+8QaBLbUo2dkUX3HFuMdbHc2BKHO1rfiRdOzU9m/ZDEDW/GoUrzfq8zzl5hMSIYkfGca6YaMPmKkQLetpmEM9h+J6ukUIIYQQQghx5JOithAi6fSeSPxInvPxI3an9gFnitoBK087kkVtGAYPbX0IgCsWXYFLHTljeDxLSpfwm4//hgJvARuaNvDlF79MQAuMe15ID7G/0/y9jdWpDQNytQ+ZHcZZi6SoHQ932RSz613XCTc2jnu8YRgxx4+4CkcfFAlmx/V/nPQfnDLjFNxqbDn0J884mRXTVxDWw/zs3Z9FfV7LvfcBUHTxxbiLhw9CHcpXY2ZPWwMWx2IYBjs7zPgRaxBmOol3sKq73OrUHv99kmn0BIraBd4CpudNB6RbWwghhBBCCDEyKWoLIZLOjh/JdT5+xMrUdqpTO2Dlac83C2/v1L/D9rbtZLuzubB69IzhaCwoXsCvzvgVOe4c3qp/i6+//HVCemjMcw52HSRshMl2Z1OeWz7msZ5IrrbFJ0XtuCiq2p+VHEUEid7RASHz79EaHDge1RoUOUKmthNuPvZmXIqLl/a/xJuH3xz3eH9tLT2vvw6qSslnronqGr5I/Ehg1y50v3/MY1v9rXQEOlBQqCqsimr9VApssYra0Q2JtHgqzPdJuEE6tYfSusz4Ea0n9vgR6B8WKUVtIYQQQgghxEikqC2ESLpkxo9YndrhxsZxC2vRCGwf3Kn9YO2DAKyct5LCrMKE1z+q7Cju+dg9ZLmy+PuBv/OdV7+DpmujHm/laVcVVKEqY3/Jdpf1F7XdU6fijrLAKobrz9Uev1hpdWm7CgtRo4yuGCtT2wlzi+Zy2cLLALj9ndvHfI8BtNx3PwAFZ5+Nd8aMqK7hLi/HVVwMmmbfDBrNrg4zT3t63nSy3dlRrZ9Kdqf24tiK2m7r5ke9ZGoP1d+pHX3U0kDWsMja1ujibWIR3L8/6mghIYQQQgghRHqSorYQIun6B0U6Hz/iKiqyB1CGDhxIaC3DMOzinLe6mgNdB3h5/8sAXLnoyoTWHui4iuO487Q7catunt3zLD9844fohj7isVaedjTdre6p/UMKsyRPOyGeSquofWjcY+2idpR52jAgfiRJRW2A64++ngJvAdvbtrN6++pRjwsdPEjn2rUAlFz7uajXVxTFjuvwbx57WKSVp52O0SPh5mYzZkZR8C0cP7d8IKuoLYMih7M6tY3eXgxt7JsqI7GHRbY426nd+/777Dzz4xy86euOriuEEEIIIYRILSlqCyGSzipqu/Kcjx9RFAVPZFhkcH9iESRaSwtaezsoClnz5vHw1ocxMPiXyn9hbpGzw+1Omn4St59yO6qismbHGm5/53YMwxh2nNWpPV6eNgzu1PYtii0bWAzmjnRqh6OIHwk3WXnaZeMc2c8aFKl3dIz49+6EIl8RN3z4BgDu+eAeuoJdIx7X+sADoGnknPgRspcsiekaVgSJf5xhkTvbzTxtpz+PnGDt3VtVhZob2403K6ZG7+lB644vZuNIpXX137DRe2Pv1rY6tXd37qYv3OfYvvybNgHQ9dxz9LzxhmPrCiGEEEIIIVJrQovar7zyCueffz6VlZUoisKTTz456HXDMPj+97/PtGnTyM7O5owzzmD7OI84CyHSj9ZtFtPUPOfjRwC8MyK52gkWta0ubc+smfhdOmu2rwHgqpqrEtvgKM6cfSY/WvEjAB6qfYhffPCLYcfEVNQekKntk07thHgqIp3ah6Ioasc4JBJAjcSPGKEQRp9zBbuhLl14KXMK59AWaOM3G34z7HWto4O2xx4HoPRz18a8vhXXMV5R24ofmVc0L+ZrJJt/S3xDIgHUnBzUyA2KcL3kag+kd/bfRIlnWGRZdhklvhJ0Q2d7m3P/9gu3ttr/v+H2O+LqIhdCCCGEEEJMvAktavf09HD00Ufzy1/+csTXb7/9du6++25+9atf8dZbb5Gbm8tZZ52F34HcXCFE6ujdZkEjGfEjAF67Uzux+JGBedpP73yarlAXswtmc9L0kxLe42hWzlvJd0/4LgC/3fhb7t14r/2aYRj9Re2CGIvaMiQyIf3xI9EUtZuAGIvauTngdgPJjSDxqB6+eew3ATMffl/nvkGvtz38J4zeeTDvSAAAIABJREFUXrIWLiT3pBUxr58VKQQH6urGzCi2OrXTs6htRqf4lsSWp22xh4pKBInN0DT7CR2Ir6itKEpShkVqLf1F7UBtLR1P/9mxtYUQQgghhBCpM6FF7XPOOYcf//jHrFq1athrhmFw55138r3vfY8LLriApUuX8sADD3Do0KFhHd1CiPSWzPgRAI/Vqb1v3zhHjs3O0543jz9u/SMAVyy6YtwBjYm6fNHlfO2YrwFw5/t38vDWhwFo9bfSGexEQWF2wexx1/HOmI6am4u7ogLPrFlJ3fORzh4UGUX3rWZ3akc/mFNRFDuCROtIXlEb4OQZJ7Ni+grCepifvvtT++N6IEDrg+Yg1NJrP4eiKDGv7Z09GzUnByMQILh794jHtPpbafWbhcRobs6kmj0kMo5ObRiQqy3DIm161+CoGz3OaJZkDIsMt5nvRe9cMwqn6c470ZP4tIQQQgghhBAiOdI2U3v37t3U19dzxhln2B8rLCzkhBNO4I0xMhADgQCdnZ2D/hNCTCw7fiQ/SfEjDmVqB3aYndr7ppixH7meXC6Yd0HC+4vG5z70Oa5beh0A//nWf/LUjqfsLu3KvEp8bt+4a6i5ucx9+inmPPYoipq2X94nBStTW+/oQOseu8vUytR2xdCpDQNytTs74thhbL557DdxKS5e2v8Sbx5+E4COp55Ca27GPW0aBeecE9e6iqqSFXkqYLQIkl3tZvTI9Lzp5Hhy4rpOsmhdXfbNsKx4i9oVVqe2xI9YtKFF7Tg6taG/qO3ksEirU3vK9V/EU1lJuKGB1t//3rH1hRBCCCGEEKmRtlWP+kh3XHmkA8pSXl5uvzaSn/zkJxQWFtr/zZw5M6n7FOJIYBgG7Y8/Tt+mzUlZ344fyU1Sp3akKzl04ACGrse1hmEYdqf20/oHAKyqXkWeNzl7HsmXPvwlO7/7+//4Pn/Y/AcAqgqrol7DM3067rLoBxaKkbny8gZkJY8dQdKfqR3bn7taGOnUTsHN13lF87hs4WUA3P7O7Wi6RvujjwFQcvXVKB5P3GtbHc5WNvVQ9pDIwvQdEumunIa7uDiuNTzlFQCEGxod29dkN/Q9rSVY1N7evp2wPnq8TSy0SKa2p6KCsq/fBEDzb39HuKnJkfWFEEIIIYQQqZG2Re14ffvb36ajo8P+b3+CnZtCZAL/ps0c/t6tHP7ud5OyvvXoebIytT0VFeB2YwSDhBvjKyyFGxrMfbpc/Fl7HwWFKxZd4fBOx6YoCjcfdzOrqlehGzovH3gZSM/IhkzgqTCLlePlattF7bIYO7ULzWGRWnvyO7UBrj/6egq8BWxv285f1/0v/k2bwO2m8MLEnkbwLY4UtUfp1N7ZYRa1q4uqE7pOMgTs6JH48rQB3OVmlr0Miuw3PH4kvqL2rIJZ5LhzCGgB9nTscWBnEG5rA8BVUkLBJz6Bb+lSjN5emn5xjyPrCyGEEEIIIVIjbYvaFZFiQsOQwUsNDQ32ayPJysqioKBg0H9CiLEF9+0FzMJuMlgFDleS4kcUtxtPZSUAoThvZFld2p3leWguhVNmnMKsgtTnUquKyg9O/AFnV51tf2xOoRS1J4Kdq31o9KK2EQqhRYpksQyKBHAVRIraKYrJKvIVccOHbwBg98P3A5B36kdxl5QktK7dqV1bi2EYw1634kfmFqVhp/aWxPK0YcDNjzhvqB2Jhr6n440fURWVhSULAWdytY1gED2yN1dJCYqiUH7LzQC0P/64/X1ADNbQ00BPKL6/QyGEEEIIIZIlbYvac+bMoaKignXr1tkf6+zs5K233uLEE0+cwJ0JceSxHpvXurpGLEolQg8GMUIhANQkDYoE8M6YAUBwX7xFbTNPe2uh+YO7FQMyEVyqi/88+T85q+os8j35nFgpX/MmgrvSGhY5elE73NoGhgEuF66iopjWtwdFpiBT23LpwkuZl1fF8f/sBaBohEHNscqqrgaPB72zk9DBQ8Netzq15xXOS/haTvNv2QKAb3EindqR+BHp1LYN69SOs6gNA3K1WxPP1Q63tZv/x+Wyn5TIOeYY8s88E3SdhjvuSPgaRwrDMHjz8Jt8/rnPc8bjZ3Dao6dx6+u3sr5xveP/ThBCCCGEECIe7om8eHd3Nzsig9nAHA65fv16SkpKmDVrFl/96lf58Y9/zPz585kzZw633norlZWVXHjhhRO4ayGOPGFrwJmmoff04HKw+GxFjwCoOckbEueZNRP+AcEDiXVq7ynVmVc4n49M+4iT24uZR/Xw04/+FE3XcKmuCd1LpvJMM7v/w2N0aoebzRxed0kJiiu2vycrU1vvSN1AY4/q4VvG2RT23ENHDuQsm0Oiz08oXi9Z1dUEamvx127BO2O6/VpHoIPmPjOeJd06tXW/n8Aus4vcilCJhycSP6K1taEHAqhZWY7sbzLThrynB34fiFVNifl340RRW2ttAcBVXDxomO7Ur99E10sv0fPKq3S//jp5K1YkfK3JSjd0Xtr3Er/b+Ds2tWyyP94X7uPJHU/y5I4nqS6q5qL5F3H+3PMp8sV2M08IIYQQQginTGin9rvvvsuyZctYtmwZADfddBPLli3j+9//PgA333wzN954I9dddx3HHXcc3d3dPPvss/h8voncthBHnNCAAWd6h7Ndo1bHnpqTE3PRLxbeyFDYUJyd2v4dZlF7fxlcWXMliqI4trdESEF74tjxI2NkamuRPG1XjHnakPr4EcuMV833+mtLFP57/V2OrGnFdwSG5Gr/s+mfAEzLnUauJzmZ+vEKbN8OmoaruBj3kKHUsVALC1Ei/y6JN9P/SKN1ORM/Av2d2rWtI8fbxCIcGRI5dCiot6qK4ivNGQqNt9+BoWkJXWcyCukhntrxFKueWsVXX/4qm1o24XP5uHLRlfzt4r/xwDkPsHLeSnwuHzvad3D7O7dz+mOnc/Pfb+atw2+hG/ENaRZCCCGEECJeE9qpfeqpp475A4qiKNx2223cdtttKdyVEJlnYJa21tmJZ/r0MY6OjWYNiUxSnrbFEylqx9Opbeg6/u3bUIDWynzOm3uew7sTk5Gncvyitj0kMsY8bRgwKNLhG0ljCbe10f3iiwC8stTN7v0v8vbhtzl+2vEJreurqaGD/oxqy5M7ngTg9FmnJ7R+Mth52osXJ3QTS1EUPOXlBPfuJVxfb99gy2R6p3kzU/F4MEKhhIra1UXVuFU3XcEuDvUcYnpe/N+ftEhR2zVCjvyU66+n48mnCNTV0fHkUxRdfFHc15lM+sJ9PLH9Cf6w+Q8c7jG/1uV78rl80eVcVXMVpdmlAFTmVbJs6jK+dfy3WLtrLau3r6a2tZZn9jzDM3ueYWb+TC6afxEXzLuAspyyifwtCSGEEEKIDJG2mdpCiNQJNfRnwQ59bDxRerdZzEhmnjYk1qkdOnQIxR8k5IKTj7+EHE/yYlLE5GEPAKyvx9BH7kIMN5txBu4psRdxXIWpz9TuXLsWIxQiq6aG40++FIA/bPlDwuta8R3+AZ3arf5WXtr/EgCrqhPP7nZaf552/NEjFqvTO1SfnGG7k43Vqe2OPO2g9cQfP+JxeaguqgZga0tiESRWUdtdOryo7S4uZsoXvwhA0113off2JnStdNcZ7OQ3G37D2avP5r/e/i8O9xym1FfKV5d/lecueY4vL/+yXdAeKN+bz2WLLuPR8x/lkfMe4dIFl5LnyWN/137uev8uznz8TL784pd55cArE/C7EkIIIYQQmUSK2kJkOEPXCTc22b92usCmd0fiR/KSGz1gdWprbW12d3i09rxv/vB9sFThsiVXOr43MTm5p04FVYVQyO7IHiqhTu2C1Gdqd6wxO6eLVl3Ip2o+BcCrB17lYPfBhNbNWrgIFIVwQ4Md8fDnnX8mrIdZUrqEhSULE9t4ElgFeCs6JRHuCrOoHW6Uojb0d2pbET6JdGrD4AiSRIRbIp3axcOL2gDFn7oKz4wZhBsbabn//oSula5a+lr47/f+m48//nF+8cEvaPW3Mj1vOrd+5Fb+dsnfuPaoa8nzRncTenHpYm498VbWfXIdP1rxI5ZNXYZmaLy0/yX+bd2/8Wjdo0n+3QghhBBCiEwmRW0hMpzW0gLhcP+vnc7UjhSYXXnJjR9x5eXhiuSkhvZH361tGAZvv/m4ed7sCirzKpOyPzH5KB6PWdgGwvX1Ix5jD4qMo6itpjhT279tG/5Nm8DtpuC886gqrOKEaSdgYLB62+qE1nbl5eKdNcu8zhYz+3jN9jUAXDQ//WIcjHCYQF0dYMaPJMojndqDaJFZCtbTDnpPYl3PVlE70WGRWlukqD1CpzaA6vUy9es3AdBy732EjrCMdMMw+MLzX+D+TffTE+qhuqia/zr5v/jLqr9w6cJLyXLFN+Q0x5PDhdUX8sA5D/DkBU+yct5KAO7bdB+annn55EIIIYQQIjWkqC1Ehhs4JBJAd7jAZmdqJzl+BMAzK5KrHWUEiaZr/OjNH9FbZxZKqpadkrS9icnJHhZ5aORcba0p0qkdz6BIO36kM+EBeNHoePIpAPJO/SjuSKbwZQsvA2D19tWEtFBC62fZESRb2NC8gZ0dO/G5fJwz55yE1k2G4J49GIEAak4OnkgxPhHucrN4O9rNj0xjfR9xR3Lp9RifnhmqpsR8bznVqe0eIVPbkn/22WQffTRGby/Nv/hFQtdLNwe6D1DXVodbdfOL03/B6pWrOXfuubhV50bszCuax60fuZWirCIOdh/k5f0vO7a2EEIIIYQQA0lRW4gMN/RxeccztbusonZy40cAvDPN4lQoimGRQS3IzS99Hf8Dj3BCnVlQnPPhjyZ1f2LysYvaowyLdGJQJOFwwp2s4zHCYTqefhqAolX9+danzjyVsuwyWv2trNu/LqFr+GrMjmf/li08sf0JAD5e9XHyvcl9SiMegd27AfDOm4eiJv5PIU8kfiQk8SNA/9MHngpn4kcWlixEQaGxt5FWf2v8+xpjUKRFURSm3nILAO2rn8Bfty3u66WbDU0bAFhcsphTZ56KqiTnxwCf28clCy4B4MHaB5NyDSGEEEIIIaSoLUSGCw3pLHQ8U7snNfEjAJ6ZM4DxO7V7Qj384IFrOO1Hf+Pql3S8Ycg95WTyTj4p6XsUk4t7WmRY5OFDI75uFbVdcRS1FZ8PxeMBQE/ysMju115Da27GVVJC3in9TyR4VI8dD5Jo/q2VTd23ZQvP7H4GSM/oETA7tQG8s2c7sp41KDIs8SPAgPiRaVb8SGJF7VxPLrMKzJuWiQyLtPLex+rUBshZvoz8s84CXafxjjvivl66sYraS8uWJv1aly28DJfi4t2GdxOOjRFCCCGEEGIkUtQWIsOFrfgRlwuY3PEjdqf2GJnaLR2HefCrn+DKO9Yzrx70vBym/cd/MPPXv7YLjEJYPNPMjPXwCJ3ael+fHavgLiuLeW1FUVALU5OrbQ2ILDz/vGHv80sWXIKqqLxT/w67OnbFfQ1fJH4kvHcfRk8vVQVVLJ+6PP5NJ1Fw714AvFVVjqxnF7WbmzEGzCjIREYohNFrPnkwcFBkohE7C4vNYaOJRJD0d2qXjnvs1K/fBB4PPa+9Rverr8V9zXSSyqJ2RW4FZ84+E4CHah9K+vWEEEIIIUTmkaK2EBku3GB2FlrFneTFj6SiqB3p1B6lqL3/tefZeN5ZnLKuEbcOxkdPYMHaZyi6+CIURUn6/sTk46m04keGZyWHW1oAs+NazY0vXsdVEMnVdvjzbqBwWxvdL74IQOGA6BFLRW4Fp8wwu7cfq3ss7uu4S0vt4u7sRriw+sK0/bxyvFO7tBTcbtA0+32RqbQB+dnuyKBIDMMudMerptS8aVLXWhfX+Xow2H8TqqR43OO9s2ZRcuWVADTecQeGNrkHHvrDfrtjOhVFbYCraq4CYO2utQnFxgiRqDZ/G68ceCUl8yuEEEIIkTpS1BYiw4UazGJd1vz5gPMdo1YRwZWfikGRkU7tQ4cGdUtq3T3Ufe+bdP7rlylvCtGZp+L5yXdY/Ovf45k6Nen7EpPXWJna4aYmwMzTjrd4axe1kxg/0rl2LUYoRFZNDb5Fi0Y85tIFlwLw1M6n6Av3xX0trdr8HJzXoHBB9QVxr5NsTndqKy6X3a2f6cMirad91Jwc82ZmJLNcSzCCZFGJ+d6Nt1Pb6tLG7UaNfN6NZ8r1X0QtLCSwbRsda9bEdd10sbV1K2EjTKmvlMrcypRc8+iyo/lQ6YcI6sGEbpgJkYjOYCdXP3M1/7bu33hx/4sTvR0hhBBCOEiK2kJkOCt+JGt+NZCETO0Uxo+4y8pQvF7QNLsI2f3qq9Sdezb6439BNeDdYwqY+fQaqlddnfT9iMnPKmprLS3ofv+g1xIZEmmxhkXqHckralvRI0WrLhz1mBXTVzA9bzpdwS6e3f1s3NeqKwsBcEL3VKZkx//nkkxadzdak/l3561yplMbwBPpUg81ZHauttZp5mmrhYVmxE7kKQa925mi9t7OvfSGYu/6tqNHiouiHg7qKipiyvVfBKDprrsTzgafSP9s+idgdmmn6gkKRVG4arHZrf1I3SOEtFBKriuERTd0vv3qt9nbad7IfOPQGxO8IyGEEEI4SYraQmQ4q6swa8ECAHSHYxCs7jw1N/lFbUVV8cycCYB/40YO3fIt9v/rdSgNzTQWwkNfqOb8e/9GZeWCpO9FHBnUwkKUnBxgeAeuZhW1y+Iv3qqFyY0f8W/bhn/TJnC7KTjvvNH3oahcsuASAB7bFl9HZUgLsS7LzOSubnTFtUYqWF3artJSXPnODbC1ojYyfVik3mW+l60/W7uonWBBeEr2FMqyyzAw2Na2Lebzwy3WkMjx87QHKr7ySjwzZhBuaqLrhRdivm66SGWe9kBnzT6LsuwymvqaeG7vcym9thC/XP9LXjnwiv3r9xvfn8DdCCGEEMJpUtQWIoNp3d3okZzTrOpIp3ZXl6OZg3qX2bWXivgRAO8MM1f74Ne/QcdTT6EDfz1O4fFbT+I7X3qEIl9RSvYhjgyKouCJFCuHRpCEI92+rkQ6tQuSOyiy48mnAMg79aO4S0rGPHZV9SrcqpuNzRvZ0rIl5mu9fOBlNpWYhUvP3sMYwWDsG04Bp/O0LZ5yM8rIinTKVHandoGzRW1ILIJEa7OGRI6fpz2Q6vWSvXwZ0P90xmS0odksah9ddnRKr+txebh0oRlv9OCWByXTWKTMC3tf4DcbfgPAN479BgA72nbQEUjek1FCCCGESC0paguRwawhkWpBgV24Q9McfcQ6lfEj0J+rjWGwfwrcerWLxn89j/8+53/I8eSkZA/iyNKfqz24WOlI/EgSM7WNcJiOp58GoGiEAZFDlWaXcuasMwF4tO7RmK+3evtqmgohlJsF4TCBHTtiXiMV7KK2Q3naFnd5pFM7EumUqaz3sivffG+reVZRu3vUc6JlFbWtgYexiLdTG/p/L1rkJu1k09DTQH1PPaqisqR0Scqv/8kFn8SjetjUssmOQREimba3bec7r30HgKsXX801S66hqqAKA4P1jesneHdCCCGEcIoUtYXIYKFInIKnfCqKz2fmUeNcvq9hGP3xIykqaueffRY9lcU8tkLhls+6OPaMK/mvk/8Lj8uTkuuLI4+n0ipqHxr08f6idlnca7si8SNOx/4AdL/2GlpzM66SEvJOOSWqc6yOyrW719IVjL6AV99Tzz8O/gMUhazIMEp/bXwD/ZLN6SGRFk+Fmamd8YMiradzIp3aLgc7tWtKawCobYmjU9vK1B7niYWRqJEnjfSuxAvzE2Fj80YA5hfNn5Cbu6XZpXxizicAeKj2oZRfX2SWjkAHX3npK/SF+zih4gRuOuYmAI4pPwaA9xrfm8jtCSGEEMJBUtQWIoNZHYXu8gpzoJeV7+tQFIIRCEDIHAyl5jmXXTuWP+du57PXdPHYKS6+cOyX+Pbx30ZV5EudiJ/b7tQeEj/iSKZ2JH4kCYMirQGRheefh+KJ7qbOMeXHMK9wHn3hPv6y6y9RX2vNjjUYGBxXcRxFR5lRDf4taVrU3hMpajscP+KWQZHAgPgRq1M7CfEjO9p3ENJjGzoYbm0BwF0ae1HbygfXuydnp/ZE5WkP9KnFnwLg+b3PU9+T2Td+RPJousYtr97C/q79VOZWcsdH78CtugFYNtX83vR+g+RqCyGEEEcKqfQIkcHCjWbxxR3JgrXzfR3qGrWiR1AU1JxsR9YcS0AL2PmJX1n+Fb549BdRFCXp1xVHNs+0SgDCh4YWtZuARONHkpOpHW5ro/vFFwEojCJ6xKIoCp9c+EnAjCCJJv9WN3Se2mFmd6+qXoVvsdlNm46d2oZhpCB+pCGjc4PtQZF2prbZ5ax1J97lPCNvBvmefEJ6iF3tu2I6V2ttM/dVHEenduSmrDZJO7WtyI+jphw1YXtYVLKIY8qPQTM0Hql7ZML2IY5sv/jgF7x+8HV8Lh93nX4Xxb7+DP3l5csB2NyyGX/YP1FbFEIIIYSDpKgtRAbrjx8xOwztfF+HukbtPO3cXBQ1+V9untj+BE19TUzLncY1i69J+vVEZvBMGz4o0jAMtCYHMrULk5Op3bl2LUYoRFZNDb5IHEi0zp93PtnubHa07+CDxg/GPf6tw29xsPsg+Z58zpx9Jr4as6gd2LoVQ9fj2n+yaO3t6JEbCN5ZMx1d2zPVjKExgkG09nZH155MktmprSgKC0sWArEPi7Q6tWMdFAn9g471JA10TaawHrYHv6Z6SORQn6oxu7Uf3/a4FBWF457d8yz3broXgB/+yw/tJzssM/JmMDV7KmE9bEfyCCGEEGJyk6K2EBlsYPwIOD+0zupqU/OTHz0S1ILcu9H8YebaD10rGdrCMfagyPp6uwNX7+zEiETruBwYFOl0prYVPVK06sKYzy3wFnDOnHMAouqofGL7EwB8Yu4n8Ll9eOfMQcnKQu/ttfOr04XVpe2eNg0129mnRxSvF1epOYQwk3O1NbtTe2hRu9eR9eMdFml1artLYx8UaX0Pc6LbPNW2t23Hr/nJ9+RTVVg1oXs5beZpVOZW0h5o56+7/jqhexFHlrrWOr7/+vcB+MySz/CJuZ8YdoyiKHa39nsNkqsthBBCHAmkqC1EBgs1mIUXK37EytR2qhtN7zELAK68XEfWG8tTO5+iobeBqdlTuXB+7IU8IUbjrjBv+hh9fXYHrpWnrRYWokYGrMZDHRA/4lRXs3/bNvybNoHbTcF558W1xqULzIGRz+99nlZ/66jHtfvbWbdvHQAXzb8IAMXtJmuh2U0bSLMIkmTlaVs8kquNbnVqW/EjkSHBukMF4XiHRWotkU7t4tg7te3fQ9fky9S28rSPKjtqwudLuFQXVyy6AoAHax/M6Jge4ZyBgyFPnHYiX1n+lVGPtYra0TyFJIQQQoj0J0VtITKY1antqbA6tZOTqW1lqiZLSA/ZXdqfO+pzZLmykno9kVnUrCy7GzsciSAJOxA9Av3xI+i6I/EMAB1PmvnWead+FHdJ7PnBAEumLGFJ6RJCeogndzw56nF/3f1XQnqImpIaFpcutj9uRZCkW652cO8eALxVySlqW8Miw/WZW9S28uFddvxIDuBM/AjAwmLzhkldWx26Ed2NIN3vR+81O8Xj6dS2n2KahJ3aG5onfkjkQKvmr7Ljjd6uf3uityMmubAe5pt//yYHuw8yPW/6oMGQI1k+1Sxqr29cT1gPp2qbQgghhEgSKWoLkaGMYNDuXHMPzdR2On4kL7lF7b/s/AsHuw9S6ivl4vkXJ/VaIjPZESRWUbvZmaK26vOhZJk3YZy4mWSEw3Q8/TQARTEMiBzJpQvNbu3H6h4bsXhoGAart68GzELVQHZRe/OWhPbgtP5O7aqkrO+uiBS1GzO3qG096dM/KNK5TG2AuUVz8apeekI9HOg6ENU5WmvkaQOPJ644LGtQpN7dPem6i61O7aVT0qOoXZhVyMp5KwGzW1uIRNz9/t28cfgNst3Z3HXaXRRmFY55/Pzi+eR78+kN91LXVpeiXQohhBAiWaSoLUSGCjU2AZEc2KIioL9r1LH4EatTOz95Re2wHuZ3G38HmDmKPrcvadcSmcsuah+yitrm50+iRW0YkKvtwM2k7tdeQ2tuxlVSQt4ppyS01tlVZ5PvyedA9wHeOPTGsNc3t2xme9t2slxZfGLO4PxS3+L+Tu10KgJaGd/J6tT2ROYThDK5U7vLih8x39cuh+NHPKqH6uJqIPpc7bCVp11cjKIoMV/TGhSJpmH0OpMNngrt/nb2dO4B4KgpR03sZga4suZKAP6+/+/s79w/wbsRk9XaXWu5f/P9ANy24jZ7iOxYVEVl2dRlALzf8H5S9yeEEEKI5JOithAZyuokdJeX2z/kq07Hj9iZ2skraj+z+xn2de2jOKvY7iwVwmmeaZFiZaRTW3OoUxv6s+w1B24mWQMiC88/D8WT2LDUHE8O5887H4BH6x4d9rrVpX3G7DOGdcdlLVgALhdaWxvhNMmXNgyjv6idrE5tO34kMwdF6sEght8PgCt/SKd2rzOd2gA1JeZNk2iL2lprJE87zjgeJTsbXC5zrUkUQbKxeSMAVQVVFPmKJng3/eYWzmVF5QoMDP649Y8TvR0xCW1t3coP/vEDwBwOfnbV2VGfK0VtIYQQ4sghRW0hMpRVdLGGREJ/p7YTxTUY0LGXpExtTdf47cbfAvDpJZ8mx5OTlOsI4Y50aofrh2RqlznRqe3MzaRwWxvdL74IQGGC0SMW60bRywdepr6nv1DbG+rlmd3PAHBR9UXDzlN9PrLmzgHAvyU9crXDjU1ml63LhXfG9KRcwxOJHwllaPzIwEGKVuyUVdTWHIofAVhUsgiA2tbo3lvhSPxIvBnziqL0d5w79P0xFdItT3ugq2quAuDJHU/SE3LuvSGOfO3+dr7y4lfwa35WTF/BjctujOn8Y8qPAeB15s1hAAAgAElEQVT9xvfT6kkiIYQQQsROitpCZKiQNSRyarn9MacztfVu8wfVZMWPPL/3eXZ37KbAW8DlCy9PyjWEAPBMqwQGxo+YRW1XqQNF7UKrqN2e0Dqda9dihEJk1dTgW7Qo4X0BzCuaxzHlx6AbOk9sf8L++PN7n6cn1MPM/JkcW3HsiOf6FpuDI/216ZGrHdyzBwDP9OkoXm9SruGOxI9k6qBI64aomp+PEulsVu34EeeL2tF3apvxI/F2agN2Frc1K2IySLc87YFWTF9BVUEV3aHuMYfRCjHU3R/czaGeQ8zMn8n/O/n/4VJdMZ2/pHQJXtVLq7/VjucRQgghxOQkRW0hMpQVCeCuqLA/ZmWg6k7Fj3QnL35EN3R+veHXAHxq8afI8yZ3GKXIbJ7K5AyKhIGZ2ol93lnRI0WrLkx4TwNdtvAyAFZvW01IDwHYBe5V1atQlZH/KZFV05+rnQ6Ce/cAycvTBvBEnnzRu7vRHCziThZWp7ZrwDDGgYMineqKXFC8AAWF5r5mmvuaxz3eih9xlyZQ1C6whkV2jXNketANnY1NZvxIOnZqq4pqZ2s/vPXhEYfRCjHUrvZd9vef2/7ltnEHQ47E6/JyVJmZMS8RJEIIIcTkJkVtITJUqMGMEvAMih8xMze1ri5Hig9a5Id/NQlF7Rf3vciO9h3kefLsx5iFSBZrUGS4sREjFOovajsQP2JnaidwMymwcyf+TZvA7abgvPMS3tNAH5v1MUp8JTT2NfLK/lfY3bGb9xvfR1VUVs5bOep5vhqzUzuQJvEjwT3JzdMGs4BrdfSGMzCCxHoPWzdIYUD8lKZhBAKOXCfHk0NVYRUAtS3jv7+sQZGu4viL2q48q1N7chS193TsoSvUhc/lY37x/InezogumHcB+Z589nbu5bWDr030dsQkcOf7d6IZGqfOPHXUp4SisXzqcsCMIBFCCCHE5CVFbSEyVDgSP2I9Lg/9mdpoGroD+ad2/Ehe/jhHxsYwDLtL+8qaKynwFoxzhhCJcZWUmIMXDYPQoUNoVkavI53akfiRBDq1e997D4Cc446NOzd4NF6Xl1XVZkb3I3WPsGbHGgBOnn4y5bnlo57nqzEjIkKHDqG1Jxat4gR7SGQSO7Whf05BJg6L1LvM9/CgTu2c7P7XHRyyGEsEidYSGRSZSKd25PekT5L4kX82/ROAJVOW4FbdE7ybkeV4crhovpnJ/+CWByd4NyLdvdfwHi/tfwmX4uJry7+W0Fp2rrZ0agshhBCTmhS1hchQdvzIgE5t1eezs2b1jsRzta0ChpqXm/BaA/39wN/Z2rqVHHcOV9dc7ejaQoxEUVV7WKR/yxYwDFBVXMXFCa/tRJZ9YGsd0N8d7bRLFlyCgsIbh9/g8W2PA7Bq/tjDKF0FBXhmzADAvzW67ONksjK1k9mpDeCJ3CgMZWCuttYZeTpnQKe2oqqoOeYQXydullpqSsx4m2iGRYbbzE7tRG742IMiJ0n8SDoPiRzoiporUBWVNw6/wc72nRO9HZGmDMPgZ+/+DICL5l/E3KK5Ca13dNnRqIrKge4DNPY2OrFFIYQQQkwAKWoLkYEMXSfUGBkUWT6407I/CsGBoraVr+pg/IhhGPz6n2aX9uWLLqfIV+TY2kKMxYog6dtg5tS6SkvsYXiJcBWZndqJ3EiyisZWd7TTZuTPYMX0FQB0Bbso9ZVyyoxTxj3PZ+VqT3AEiaFphPbtA8BbVZXUa7krzK+pGRk/MkKnNgwYFulgUTuuTm0nBkV2TpKidhoPiRxoet50Tpt5GgAP1T40wbsR6eq5vc+xsXkj2e5sbvjwDQmvl+fNY2HxQkC6tYUQQojJTIraQmQgra0NQiFQFNxlZYNecyIKwb5OpICh5jsXP/KPQ/9gU8smst3ZfHrxpx1bV4jx2EXtjWaxyD2lbKzDo2Z1tcabqW3oOgGrqL0oOUVtgEsXXGr//5XVK/GonnHP8S1Oj2GRocOHMUIhFI8Hz7SK8U9IgHWjMJSJ8SN2p/aQonZkWKTmYPyI1am9v2s/XcGxC81OdGqr+ZOnU7sn1MOO9h1A+ndqA/ZcjD/v/DOdQWcGVYsjR0gLcdf7dwHw2SWfZUp24rFfAMvLzVzt9xrec2Q9IYQQQqSeFLWFyEBWscU1pdTMCR7AlWCBzWIYRn/8SK4zndqGYfCrf/4KgE8u+CSl2aWOrCtENDyVkfiRzVsAZ/K0IfEbSaH9+9F7e1G8Xrxz5jiyp5GcMuMUqgqqyHJlcfH8i6M6J8vu1N6StH1FwxoS6Zk9y5Hu+rFYcwqsuQWZxO7UjrynLVZR28lO7SJfERW55p91XWvdqMfpfX0Yvb3mvkrj/57hyo98b5wEmdqbmzejGzoVuRVMzZk6/gkT7NjyY6kqqMKv+Xn78NsTvR2RZh7d9ij7u/ZT6ivlmiXXOLauDIsUQgghJj8paguRgaxii2fq8CFvTuT7Ahh9faBp5poOZWq/Xf8265vW41W9fGbJZxxZU4houSvMAprR12f+2qmithX5E2dR2x/J086aPx/FnbyBcC7VxQPnPMCaC9YwuyC6YYvZS5YAENy1y9Eu3VilKk8bwBOJHwk1ZG6ntmtop7YdP9Lr6PUWFY8fQRKKRI/obhc/2fhzLvvLZXzkjx/hu699l75wX9TXsju1u9K/U9vO007z6BGLoiicWHkiAG8dfmuCdyPSSVewy25muOHDN5DjyXFsbatTe3vbdnlCQAghhJikpKgtRAaysl6tIt1AVqa2nmD8iF3AUlWUHGd+CLF+sLlkwSWU5TgT/SBEtDzTKgf92rlO7f7POUPXYz7fv9WM9shKUp72QMW+Ymbmz4z6eHdZGe7KaWAY+DdtTuLOxhbca3Zqe6uiK8Ynwh2JHwln5KBI8/uGml8w6ON2p7bDNzYWlZrv+YHDItv8bbxy4BV+uf6XfOH5L/DZP11kfjxb45Ftj7KlZQs9oR6e3vk01zxzDYe7D0d1LSsnXJsE8SP/bPonMDmiRywnVJwAmDevhbDcu/Fe2gPtzCmcw0XzL3J07SnZU5hdMBsDg/WN6x1dWwghhBCpkbyWLiFE2rLiRzzlwx9LtqMQEowf0bsjedp5eSiKktBaAO/Wv8u7De/iUT189kOfTXg9IWJlxY9Y3GXOFLXVwkhUg2Ggd3XhKiwc+4QhArVWnnaNI/txWvbSo+k6dJi+jRvI/cgJE7KH/k7t1BW1tdZW9GAQ1etN+jXTRX/8yNBMbfPGppPxI9A/LPKtw29xyyu3sLF5I/u79g86ZlmHeaMoVJDD1YsvY+mUpXhdXv79H/9ObWstl//1cn5+6s/trs3RqHnm70lP8/gRwzDY2GQOsz267OgJ3k30jq04FgWFXR27aOptkhvXgvqeeh6sfRCAry3/Gm7V+R9bl09dzt7Ovbzf8H5Uw4+FEEIIkV6kU1uIDGTFj1jZrwM5FT9iDdNSHYoe+fWGXwOwqnqVnaMqRCp5hjzZ4FSntur1omRnA/FFkPitIZEp6NSOR/ZRRwHg37BxwvbQ36ldlfRruYqKULKyAAg3Zlautj0ocshwYJcdP+JsUXtxyWIAGnobWLt7rV3QriqoYuW8lXz3hO9yy/zrAZhXtYybj7uZs+eczemzTudP5/2JhcULafW3cu1z1/L4tsfHvJZrksSPHOo5RIu/Bbfqtov+k0FhVqG9X+nWFgD3fHAPAS3A8qnLOXXmqUm5hnUzS3K1hRBCiMlJOrWFmAQ6Ah0UZsXWvTmWcEMkfmSkTm2H4kesx8xdefnjHDm+9Y3refPwm7gVN9cedW3C6wkRDzU3F1dhIVqHecPH5VBRG8ybSeG+PvMJiejTPQi3tRGOPHmRtXChY/txUvZSs6jdt3FiitpGMEjowAEgNZnaiqLgLi8ntG8f4fp6vDNmJP2a6ULrsjK1R4kf6XG2y3la3jQ+f9Tn2d62nSVTlrB0ylI+NOVDg75ftrx+L42Aq7Rk0LmVeZU8cM4D3Pr6rTy39zl++MYPqWut4+bjb8ajehjKKtRraV7U3tBk5mkvKl6Ez+2b4N3E5oRpJ1DbWsvb9W9z7txzJ3o7YgLVtdbx9M6nAfjGsd9w5Im/kVjDIjc1byKgBchyZSXlOkIIIYRIDunUFiLN3bfpPk7600k8v/d5x9YMRYranvLhgyJVh+JHrExta0BYIqwu7ZXVK6nMqxznaCGSx13Z//5zT3Hu8fj+XO3YnpAI1JlDIj0zZ9rdsOnGt3gxqCrh+npCDanvXA4eOAC6jpKTg3tqaiINrK+t1tfaTGHdDHXlD40fMYvamsOd2gBfWf4V7vnYPVx/9PWsmL5i2A3gcEsrAO7ikmHn5nhy+OlHf8qNy24E4E91f+ILz3+BNn/bsGOt35Pe3R1X9n2qWEXtyZSnbTm+4nhAhkUK+Pl7P8fA4Kyqsziq7KikXWdm/kymZE8hpIfs2B4hhBBCTB5S1BYijfWEevjdxt8B8MLeFxxbt79Te4T4kUIrfiTBTu0uq6idWPzI5ubNvHbwNVyKi89/6PMJrSVEogZGkDiVqQ39A1pj/bzz23na6RszoObmklVdDYB/U+qLBsE9/UMik9XtN1QmDovUAwGMYBAYkBMfoeYmJ34kGlqrWdR2lZaO+LqiKFy39DruPu1uctw5vFP/Dlf89QrqWusGHWdHqhgGem9vUveciMlc1F5evhy34uZg90EOdB2Y6O2ICfKPQ//g9UOv41bdfGXZV5J6LUVR7G5tiSARQgghJh8paguRxtZsX0NX0HzUeVPzJkfW1Lp77GiQEQdFRooRCWdq9zgTP/KrDb8C4Ny55zKzIIZcBiGSwDPNHBapZGU58hSCxVVYBIDWHmOn9tZaALLSNE/b4rMiSP65IeXXTuWQSIunwurUrk/ZNSeaHVmlqqg5OYNes+NHulNf1A63RTq1S4rHPO60Wafx0CceYmb+TA52H+TqZ64e9ISUkpUFHjOWJF1ztYNakNpW82vCZCxq53pyWTJlCQDv1L8zwbsRE0E3dH7+3s8BuHzh5Sn5d5+dq90gRW0hhBBispGithBpKqyH+b8t/2f/el/XPjoCiRWaAcKNZuegmp9vFxoGsmMQ0iB+5N36d3l5/8soKHz+KOnSFhPPU2kWtd1Tpjja9ds/oDXGTu2tZjdpOndqA2QfZRbY+jZOQFE7hUMiLdZTMOEJiFuZKNZ7V83PR1EH//OyP1N7Ajq1I/EjrpKRO7UHqi6u5uFzH+bEaSfSF+7jppdv4p4P7kE3dBRFsSN+0jVXu7a1lpAeosRXwoy8yZnlbkeQ1GdOBEl9Tz3//o9/Z3fH7oneyoT7666/srV1K3mePK5bel1KrnlM+TEArG9aj6ZrKbmmEEIIIZwhRW0h0tQLe1/gUM8hSnwlTMs1C2mbmzcnvO5YQyJhQKZ2Z2dCuaFWR168Re2eUA/fe/17AFy84GLmFM6Jey9COMUTGfrnHiGPPhHxZGrrwSCBnTuBSVDUjnRq+zduSnke8UR0altfX60hnplAGyVPG/pjqCYyfmS8Tm1LYVYh/3PG/3D14qsBc6bD1176Gj2hHjuCxHraKd3Y0SNTlqYsasdpJ0w7AYC3D7+NYRiOrm2EQvStX48RDju6bqLufP9OVm9fzY/f/PFEb2VCBbQAd39wNwCfP+rzFPui+5xN1Pyi+eR58ugJ9VDXVjf+CUIM8eqBVzlvzXkyD0AIISaAFLWFSEOGYXD/5vsBuHzR5Xx46ocB2NiceB5tKJLx6pk6clHOytRG1xMqQFiPZ8ebqX3HO3dwsPsg0/Om841jvxH3PoRwUt6pp1L86asp+6qzOZ92pnYMT0gEd+yAcBi1sBB3JBYlXWVVV6P4fOjd3XaROVWsTu2sFHZqW9nrmTQo0v6aXzC8qO2y40dSXwwOj5OpPRK36ubm427mxyt+jEf18OL+F/nU2k+h52QBic+cSJbJnKdtObrsaLyql6a+JnZ3Otu53PrA/7Hn8itoe+ghR9dNREegg+f3mDE3b9e/zdbWrRO8o4nzUO1D1PfUU55TzlU1V6Xsui7VZf87+4PGD1J2XXFk8If93Pbmbezt3Mt9m+6b6O0IIUTGkaK2EGno3YZ32dKyBZ/Lx+ULL+eoKWaXoxO52nandsXwIZEAqs+H4vUCsRXYhkokU/uVA6+wevtqFBR+vOLH5HoSGzYphFNUn4+K73yH3OOPd3Rd14AnJKI1cEhkundlKh4PvsWLAejbkLoIEr2vz+6W9qS0UzsSP9LUhKFlxuPsWqdZ1HblFwx7baLiR/TeXgy/39xXcUnM519QfQG/P/v3lGWXsaN9B7WBfea6XWneqT2Ji9o+t88uML5z2Nlc7cA2sws3sGOno+smYu3utQT1oP3rgbFzmaTd387vNpiD0W9cdiM+ty+l17ciSN5reC+l1xWT34O1D1LfY/47463Db9Hub5/gHQkhRGaRorYQaej3m38PmD9QF/uK7aL2xuaNCT+Oaw0uGy1+BPq7RmOJQhgq3kztdn87P/jHDwD49OJPc2zFsXHvQYjJwh7Q2hH955y/zipqL0zKnpyWvdQstPk3JP7ESbSC+8wipKuwEHdxah5lB3BPKQWXCzSNcHNLyq47kfSuSPzICJ3a1veBVBe1rS5tJSsLNTdnnKNHtrRsKX88949UFVTR5jGLjw2N6Zd93NTbxKGeQygoLCldMupxWns7oTTPek9Wrna4qcn838j7Ih2s2b4GMIdhg1nkbuptmsgtTYjfbPwNXaEuFhYv5Ly556X8+sumLgPMYZFOx96II1erv5V7N94LQLY7G83QWLdv3QTvSgghMosUtYVIMzvbd/LKgVdQUPj04k8DsKhkES7FRYu/xe4GiJc1uMwzRiZwPF2jQ1mdbLHEjxiGwY/e/BHNfc3MK5zHjctvjPv6QkwmVuyPFsONpECkUztrUU1S9uQ0K1e7b2MKi9q79wDgqUpdlzaA4nLhLisD+ofzHumsTm11jE5tIxRCDwaHvZ60PVnRIyUlCT3NUJFbwf1n3487kn3/2Pt/oLal1pE9OmVDs9mlPa9oHnn/n73zDpOqvPv3fabPVrayCyy99yYgomIBxQJqjEZFo0GJNdb8zPuaxLyxm9iJRrGLDVFRoiggigGlSS+7dFgWlu19dnZmzvn9ceacXWDL9Jldnvu63ut6w5w559lkZ2fmcz7P/bW0fDP54G9vZN/06TEV7J6I5tVeV7gOWQmdg99VpH7+8ZSUhOycwbCjdAc7y3ZiNpj502l/YmTGSNyym4/yPor20iJKfnU+H+Z+CMB9Y+7DaDBGfA1D04diNpgprS/lUPWhiF9f0D55dfOr1LhqGJQ6iFlDZwGw5OCSKK9KIBAITi1EqC0QxBjvbH8HgPO6n0f3pO6Auh23f0p/IHivduOgyNZCbf/9vieiuVObGxrWEov3L2bJwSWYJBOPnfkYVqM14OsLBO0JfVCkj685RVGoz/U2tQfF9pBIDZvW1M7NjViwGQ2ftoZ249B1igyLbGxqNxNqxzW2pCPZ1naXqi15U6r/6pETSbenc9aACwGQ6uqYtWQWm4s3B33eUKGpR0ZkjGjxGLm+HmdeHnJlJbWrforU0vxmSPoQ7CY7Fc4KdpfvDtl53cVqmB0rgf5nuz8D4Nzu59LJ1kkfTvpJ3ifUu+ujubSI8tKGl3DLbiZ2mcjErhOjsgar0arvitxwbENU1iBoXxysOsj8vPkA3D/2fi7spb4/CAWJQCAQRBYRagsEMURxXTH/2fcfAH475LfHPTY0fSgQvFdbG1zWelPb/9boiXhq/dOPFNUV8diaxwCYPWJ2q9unBYKOhsHP3RGugiPqYD6zGWvv3uFcWsgwd+2KMSUFXC6cuZEZhqYNpYykT1tDu3HoLjzFmtrN6EckkwnJbgciOyzSU1YOqE3tUGBPVodN9jCkU91Qzewls1lXGFrvc6D44tN2N2ko167+OexrChSzwaw7jtccDY2CRHY6kb16J09p9JVA9e56vt73NQBX9LsCUMPtLvFdKHeW658FOzpHa46y+MBiJCTuHXNvVNcyuvNoQHi1Bb7xwoYXcCtuzux6JuOzx9MjqQcDUwcKBYlAIBBEGBFqCwQxxIe5H+KSXYzMGKkPStJo6tUOFMXl0r/MtTQoEpo6tUOgH4lvO9RWFIW//vRXqhqqGJI2hJuH3RzwdQWC9oimH5Grq30aLOj0+rStffrog11jHUmSsGkKks2RGRYZzaa2Kcsbap8y+hFvU7sZ/QhEZ1ikuyx0TW0Ag3fn0aSk0UzInkCdu47blt3GqoJVITl/oLhlN9tLtwMwPL2VULu40dVctzq0vupQMz5LVZCsLVwbkvM1/dnlujpkhyMk5w2UZYeWUe2qpkt8FyZkTwDAZDBx7aBrAZi3Y94p4XZeeWQloO4wGJga3V1HozPVUHtDkWhqC1pnU9Emlh5cikEycN+Y+/R/n9pjKiAUJAKBQBBJRKgtEMQIda46Ps77GIAbh9540uNaU3t76XY8ctuhV3O4i4tBUZDMZrUx2QK6UztA/YiiKE30I22H2p/s+oRVBauwGq08PulxzAZzQNcVCNorTZUNcnV1m8fX79SGRLYP9YiGfZgauDm2RijUjmJT29xZvXHoOkWa2tpN0OYGRQL6oMZIhtqhbmpr72dSnYM5583h7G5n4/Q4uWv5XVFt5u2p2IPD7SDBnEDvTi3v3Gja1HYVFNCQnx+J5QXEuGx1WOT6Y+txy+6gz+cuOn74oifKChJNPXJZ38swSI1fx67odwVxpjj2Vu7lpyOxq4gJFSsPq6H2pK6TorwSGJk5EgmJ/Or8U3JYp8A3FEXhn+v/CcDlfS+nb0pf/bGpPdVQWyhIBAKBIHKIUFsgiBE+3/M5VQ1V9EjqweRuk096vHdyb+wmOw63g32V+wK6hhaumDIzWx2aFax+RKmrA2/DqC39SH5Vvv7h8O7Rd7f6hVwg6KhIZrPuHfZUtv26q89Vh9S1F5+2hjYssn5L+IdFeqqq9ODK0qNn2K93Io36kVPDqe2pbnlQJIDRu2snsvoRtaltTG35Jq4/aD+bXF2D1WjlucnPMbXHVFyyi/t/uF/XSUQaTT0yNH3ocQHpiTRtKwPU/hy7CpIBKQNIsiRR66plR+mOoM934s8eTa92flU+6wrXISFxWd/Ljnss0ZKo60je2/FeNJYXMVweF2sK1R0DsRBqJ1oSGZA6ABBt7Y5EnauOUkfolEPLDi1jc/Fm7CY7d4y847jHhIJEIBAIIo8ItQWCGMAtu/UvLzcMvqHZye9Gg1H3TAfq1da2wbemHoEmKoQA9SMeLbQwGpFstpaPkz08tOohHG4Hp2WdxnWDrgvoegJBR8CQ7LtX2+ltalsHDgrrmkKNbZgaajccOOBTeB8MmnrEmJGOMSE+rNdqDrNXP+I6RfQjbTe1o6EfUZvaptS0kJxPa2pruynMRjNPnfUUl/a+FI/i4U///ROf7/48JNfyB1982gAerantvaldt3p1WNcVDEaDkdOyTgNCoyBxFxUd/5+j6NX+fI/6OzKxy0SyE7JPevzaQdciIbHqyCr2VuyN9PIixqbiTdS6akm1pTIoLTbey0ZljgLEsMiOgkf2MHPxTC749AJ+Kgh+54PL4+L5X54H1NlHGXEZJx0jFCQCgUAQWUSoLRDEAMsOLaOgpoAUawrT+0xv8bhgvdoub2PQ3Dmz1eP0cC1A/YiuHklIaLUR/u6Od9lYtJF4czyPnvFoqw0zgaCjo++QaON156mqwlVQAIBt4ICwryuUmFJSMOfkAODYFtzQ27ZoOOD1aUehpQ3HD4o8Fdy4bTW1tVDbE0n9SGmom9pqYO9p0jY3GUw8OulRrup/FQrqfIgPdn4Qkuv5ypYSNdQekTGi1ePcxWqoHTdB9VXXrl4T07+b47JUBUkohkWe2NT2lEanqe2W3Xyx5wsALu93ebPH5CTmcG73c4GO3dZeWaCqRyZ2mRgzn/+0YZGiqd0xWHJwCbvLd+P0OLn7+7tZX7g+qPPN3zWfQ9WHSLOlcdOQm5o9RihIBAKBILLExicIgeAURlEU3tn2DgDXDLwGm6nlZrPm1Q64qX1MbSqZMju3epzu1A6wqa2F2q2pR3aV7+KljS8B8OBpD9IloUtA1xIIOgpaqC23of1x5uUBYOqSjdF7A6o9Yfe2teu3hldBovu0e0bepw2q5glAcTrxVHTsL7aKouihtrbT50S09wO5JoJN7XJvUzstNE1t/Wc4wXtvkAz8ecKfuWHwDQA8sfYJ3tj6Rkiu2RaVzkr2V+4HGm98t4Tm1E4873wkux1PWRnOXbvDvsZAGZ+thu8bizbS4GkI6lwn60ei09ReVbCKIkcRKdYUzsk5p8Xjrh98PQD/2fcfyuvLI7W8iKKF2rGgHtEYkzkGgLyyPKob2p5vIYhdZEVm7ta5AKTaUqn31HPn8jvZWhzYZ4/qhmr+vfnfANw+8nbizHHNHtdUQbI8f3lgixcIBAKBz4hQWyCIMuuPrWdb6TasRitXD7y61WO1L6y7yndR7673+1ruY5p+pI1QOzk4p7anuvVQ2+Vx8dDKh3DJLiZ3m3ySU1IgOBUxdvLtZlLjkMjY2K7tL/YR3mGRYfZqa/oRa8+eYb1OSxisVn1A4Ynqg46GUl8PLhcAxsTY0I8oiqI71UM3KFL92eTaWhRZPu4xSZJ4YOwD/H747wF4fsPzvLzp5ZBctzW0m9zdE7uTYmu9ka4Fu+Yu2cSNUcO7utWx69XundybNFsaTo+TzcWbgzqX9hrUfhei1dTWBkRe0ucSLEZLi8eNzhzN4LTBOD1O5ufNj9TyIkZRXRG7ynchITGxy8RoL0cnIy6DnMQcFBQ2FW2K9nIEQfDj4R/ZXb6beHM8Cy5dwPis8dS6arl12a3kleX5fb43tr5BhbOC3sm9de99S2gKknfVx/sAACAASURBVG8PfBvQ2gUCgUDgOyLUFgiizDvb1Zb2jD4zSLW1/sU7Kz6LNFsaHsVDblmu39dyeUNtc+e2mtrexmhFYKG23tRObD7UfmXzK+SW5dLJ2omHJz7cqqJEIDhVMGj6kTZed/W5WqjdvoZEatiGaaH2lrCqD/Smdo/oNLUBzN75BZoupqOi34gxGpHimm+vRTrUlmvrUJxOAEwhCrU1/QiK0uzAS0mSuHPUndw9+m5Afa9bVbAqJNduCV992tDY1DalpxN/+gQAan+OXa+2JEmMy1YVJOsK1wV1Li3Q15RN0WhqlzhK+PHwjwBc0bf1UEySJL2t/VHeR0E31WMN7XUxNH1omzdjIs3oTKEgae8oisLcLWpL++oBV5MRl8GL577IiIwRVDVUMXvpbPZV7vP5fIW1hczbOQ+Ae8fci8lgavV4oSARCASCyCFCbYEgiuyr2MeKwyuQkLhhyA1tHi9JUlBebb2p3bn1QZEGTT9SXX1SG80X5FqvUzv+5FB7c/Fm3timbsv+6+l/Jd2e7vf5BYKOiK/aH2euNiSyffm0NWyDB4HRiKekBLfX8x9qFEWJelMbwNy9OwANhw5FbQ2RQB8SmZjY4k1Kg3dYZ3NhcDjwlKtNXMlmw9BC0O4vBqsVyaK2a09UkDTl5mE364OPH1n9CHWuupBcvzk2l6gN5rZCbUWW9eGIpowM4saroXbdunUobnfY1hcs47NUBUmwXm0t1NaG60ajqf3l3i9xK26Gpw+nb0rfNo+/oMcFZNozKXGU8M2BbyKwwsihqUfO6HpGlFdyMmM6q7sYxLDI9suawjVsKdmC1WjVbw7FmeN4+fyXGZQ6iLL6Mm5ZcguHqw/7dL6XNr6E0+NkbOexnN3t7DaPFwoSgUAgiBwi1BYIosi7O94F4Nzu59Ijybc2oebV9jfUVhRFD7XbGhSpO1FlOaBWnT4w7AT9iMPt4M8r/4ysyFzc+2Km9Jji97kFgo6KL9ofxeXCuVt14NoGtU/9iMFmwzqgPxA+BYmnrEwNHSVJD5ajgcXbEtcC9o6K/jc/qXmfNoAxwk1tbUhkqFraGs0Ni2yOP4z6A9nx2RTUFOge1lAjK7Luh20r1PZUVjYqYtLSsA0aiCE5Gbm2lvowD20NBm1Y5JaSLQHfHFAaGvB4/eqNTW3fQu03tr7Bvd/fG7TXWlEUPt/9OUCb6gINs9HMNYOuAdSBkbE81NMf3LKbn4+q2pszusReqK0Ni9xashWnxxnl1QgC4fUtrwPqa61peSbJksSrU16lT3IfiuqKuHnJzRyrPdbquXLLclm0dxEAD4x9wOfdpUJBIhAIBJFBhNoCQZQocZTw5d4vAbhxyI0+P09ravs7LNJTXo7i/UJrysho9ViDzaa30TyV/g+L1AaBNdWPyIrME2ue4EDVATLjMvmfcf/j93kFgo6MNvRRbuU159y3H8XlwpCQgLlr10gtLeTYdQVJcJ7cltBCZHN2NgarNSzX8AWLN1B3HezYTW1Pk6Z2S0RaP+IuU0PIUPm0NYwtDIs8kThzHH+e8GdAvYG9s3RnSNcBcLDqIFUNVViNVvqn9G/1WK2pbExOxmCxIBmNxI9TA+Pa1bGrIOmW2I3s+Gzcsjtgx7GmXcFsxtK7D9B406M1Pt/9Oc9veJ5lh5bxxxV/xC0H3mjfWLSRA1UHsJvsXNjrQp+f9+v+v8ZmtJFblsv6Y+sDvn4ssbVkK9UN1SRZktocbhoNuid2J9WWikt2sb1ke7SXI/CTzcWbWVO4BpNk4qYhN530eIothblT55KTmENBTQG3LL2FUkfzfw8UReGZ9c+goDCt1zSGpA/xeR1CQSIQCASRQYTaAkGU+GDnB7hkFyMyRjAyc6TPz9M+UOVX5/v1IUlraRvT0/XAujUM3taoHMCwSG17ufbl3+F28MCKB/h8j9pS+vvEv5NsTfb7vAJBR0Z3areiH3HmqsGYdeAAJEP7fQu3D1eDjPowNbUb9h8AwNIzej7tptfv6E1tWW9qtxJqe98PPLUR0o94ncnGtDA1tdsItQHO6nYWF/S8AI/i4W8//y2oULQ5NJ/24LTBmA3mVo/1eINdY0ZjazGuvXi1vW3tNYWBKUi0QN+UkY4pPU39t7KyVpvPuWW5PLbmMXUNSKwpXMNzvzwX0PUBPt39KQAX9LyAeHO8z89LtiYzvc90oHF3X3tHU49M7DIRo8EY5dWcjCRJjQoS4dVud2gt7Uv6XEJ2Qnazx2TEZfD61NfJis9if+V+Zi+dTaXz5O87q46sYvXR1ZgNZn1Wgq8IBYlAIBBEhvb7jVggaMfUuer4OO9jwL+WNqhfcDRVybZS39vaLq+71pzZunpEw1e/b3N4ahr1IyWOEmZ9O4ulB5diNph54swnYtKhKBBEG/01V9nyjaT63DwAbAPa55BIDdswNdR2bN+O4vGE/PxaiGyJok8bmjS1jx5FbuhYg96aoje1k1q+WdnY1A6fX7opWlPblBLqUNvb1PbRDf6ncX8i0ZLIjtIdfLDzg5CtQ1ZkFh9YDMDwdD+GRDbZqRU/QQ21HRs3ItfXh2xtoWZ8turVXnt0bUDPdxUVAerPrjf33W7dBX8iVQ1V3Pv9vTg9Ts7qdhb/OPsfgBoqf7XvK7+vX9NQw9KDSwH4Vb9f+f38mYNnArAifwWHqtr/rg8t1J7UdVKUV9Iy2rDIX479EuWVCPwhryyPHw7/gEEyMGvorFaP7ZLQhdenvk6aLY1d5bu4bdlt1LoadxJ5ZA/PrH8GgGsHXkvXBP93xwkFiUAgEIQfEWoLBFFg4Z6FVDVU0T2xO+fknOP38wPxaruPeb/UZbU+JFLDqLVGg9CPlBnrmfn1TLaWbCXZmsxrU17jkt6X+H0+geBUwBendr23qW0b1L5DbWufPkhxcSh1dTj37g35+RsOHAAandbRwpierg4plGVchwuiupZwojW1ja01tb2DgyPt1A51U9uY4G1q+3jDN92ezv1j7gdgzqY5FNSE5vfguV+eY1XBKkwGExf1vqjN493F3lA7vTHUtvTqhSkzE6WhAcfGjSFZVzg4Les0AHaU7aCqwf/PJI1N7QwMFovetnc3MyxSVmQe+u9DHK45TNeErjw+6XEu6HkBNw+7GYCHf3rYb5XM4gOLcbgd9EruxYiMEX6vv1dyL87seiYKCvN2zvP7+bFEqaOUHaU7gNgcEqmhebU3FW0SXu12xOtb1Zb21B5T6Zncs83jeyT1YO7UuXSydmJryVbu+O4OHG4HoA523VOxhyRLErcMvyWg9QgFiUAgEIQfEWoLBBHGLbv1LaQ3DL4hoK2XgXi13UWqfsTUxpBIDT3UDkI/8uqe9yioKaB7YnfmTZvH2Kyxfp9LIDhV0F5zLTm1FUXBuTMXAOvA9jkkUkMyGrEPUVVK9VtDryDRQ+0oN7UlScKsD4s8ENW1hBPt5qchseVBkXpT28eGc7C4y9XAMuSDIr3BvVzt+89xeb/LGdN5DA63g0dXPxr0wL+Pcz/m7e1vA/DIGY8wOG1wm8/Rm9rpjfoRSZKIbwcKkqz4LHom9URWZH4p9L85q4Xa2k417XdCU9Q05c1tb/LD4R+wGCw8O/lZXZV258g7mdR1Ek6Pk3u+v8evwZH6gMi+V/g8ZO5Erh98PdBYimiv/HTkJwAGpQ46boBfrDEgZQBZ8VnUuGqYnzc/2ssR+MCBygN6I1q7CeUL/VL68e8p/ybBnMAvx37h3u/vpdJZyZyNcwCYPXx2wMpEoSARCASC8CNCbYEgwnx36DsKagroZO3E9L7TAzqH1tTeVrLN5y/HrkI11DZ37uzT8Y1Obf+/PJUUq1v/y031jMocxbyL5vnUmBAITmUM2qDI2loU98nuXfexY3gqKsBoxNqvb6SXF3JsXq+2I8RebUWWaTikbtGPdqgNTRQkh9q/NqAlPNWafiR2BkV6vC1cY2paSM+rNbXlmrad2hoGycBfT/8rZoOZlQUr+ebANwFf/8fDP/L42scBuGPkHT7vftLbyunHB4lxE04HYntYJKB7tdcW+q8gcTfRjwAY07xe7ROa2muOruGljS8B8NCEh467WWA0GHnyzCfJSczhSO0RnwdH7irfxdaSrZgkE5f2udTvtWtMyJ5Av5R+ONwOPt31acDniTaaeiSWW9qg/u/9++G/B9T2b50rMtokQeC8ue1NFBTO7nY2A1IH+PXcIWlDePn8l7Gb7Kw6soorvryCIkcRXRO6cs3Aa4Jal6YgWXJgSVDnEQgEAkHziFBbIIggiqLw9ra3AfjNwN9gN9kDOs/A1IGYJBNl9WUcrT3q03O0QZGmzr7qRzS/r++htqzIvLjhRUpK8wEY1mM8c6fOJcWW4vM5BIJTFa2pDc0PoavP9ba0e/fCYLVGbF3hwj5c3Ybv2LolpOd1HzuGUl8PJhPmrv47MEONpUfHHxYpV3nnKCS2HGobE9RQW3E6UVyusK+psakd2vefxkGR/jXOeyf31rewP7n2yWaHkrVFblkuf1zxR2RFZkafGXro5gt6Uzsz47h/j5+g+qrrt23zafhltBiXHfiwyKb6EQBT2slN7cLaQv7fj/8PWZG5vO/lXNHvipPOk2xN5oVzXsBusvs8OFJraU/OmUyaPfAbLJIkcf0gta39Qe4HIR86Ggk8skdvaseyT1tjRt8Z5CTmUFZfxge5ofPhC0LP0ZqjLNq7CPCvpd2UUZmjePHcF7EYLBTVqTfC7h59NxajJai1aQqS1UdXCwWJQCAQhAERagsEEWRj0Ua2lW7DarTymwG/Cfg8VqOV/qn9Ad+92pp+xOyrfiRZGxTp2xdvp8fJgz8+yNytc7F79YO3TrwPq7H9h28CQSSQjEYMCap32FNx8hcfZ27HUI9o2L1NbWferpAOqdOHRHbrhmQyhey8gWLpoTa1Gw6eCk3ttvUjEJm2dtia2tqgyAAC4FlDZ9E7uTdl9WU8+8uzfj23sLaQO5bdQZ27jvHZ43n49If9Ulm4S5pvapuzs9UbL7JM3bp1fq0pkmhe7d3luyl1nKwNaQ13kfdn9+pHtN8Jrant8rh4YMUDlNWXMTB1IP87/n9bPFe/lH48NukxoO3BkQ2eBhbtU4O2y/td7team+Oi3heRakulsLaQZQeXBX2+SLOjdAcVzgoSzAkMz2h7uGm0MRvM3D7ydkBtAbdn7UtH5+3tb+NW3IzLGsfIzJEBn2dC9gSenfwsFoOFMZ3HcEHPC4Jem1CQCAQCQXgRobZAEEE+zP0QgIt7XxxUYwf892pr+hGTj/oRox/6kbL6Mm7+9ma+OfANJslEilsNso3egE4gEPiG7tVu5nVX7/Vp2wa27yGRGqasLIwZ6eDxUL/Dv8FrrRErQyI19KZ2B9aP+NLUlsxmJIvaeAt3qK0oCp6yMDW1tUGRfuhHNCxGC3+b+DcAPtv9GesKfQuRaxpquOO7OyhyFNEnuQ/PTn4Ws9Hs17U9xSc7tTXi2oFXO9WWSv8U9Wb+umP+he9tNbWf+eUZNhdvJtGSyLOTn8VmsrV6vik9pnDLMLV139rgyOWHllPprCQzLpMzugSv27AarVw94GoA3tvxXtDnizSaemRC9gTMBv9+f6PFtJ7T6JPch+qGat7Z/k60lxMx8sryeHT1o37fQIoGJY4SPt2tKnkCbWk35eycs1l+1XJem/IaBik0UYlQkAgEAkH4EKG2QBAhiuuK9WZNsH42aPRq+9LUlmtr9VaZr/oRgzYosg39yP7K/Vz31XVsKt5EoiWRf5/3MkaHWtU2iFBbIPALg75DoplQO1cNTmyDOkaoLUkS9mFqW8+xZXPIzttwwNvUjgGfNoBZc2oXFKA0NER5NeFB01a01tSGxvcET5hDbbm2VlecGEM9KFJralcFpuoYlTmKq/pfBcD//fx/OD3OVo93yWqLeFf5LtLt6bx8/sskWVr/7/lE5IYGPJXqritjM6F2vNerXddevNpHffdqKy5X4w0OzandpKm9eP9i3t/5PgCPT3qcnMQcn857x8g72hwc+dnuzwC4rO9lAQ0Fb46rBlyF2WBmS8kWNhVtCsk5I8XKI2qo3R7UIxpGg5E7R90JwLwd8yirL2vjGR2DJ9c+ycd5H+uO+Vhm3o55OD1OhqUPY0L2hJCcM9maHLR2pClCQSIQCAThQ4TaAkGEWLB7AW7FzciMkQxMDT6U0praO0p3tOlWdB1T3XCG+Hjda9oWjU7tlvUj6wrXMfPrmRyuOUzXhK7MmzaPscnD9Mdba+0JBIKT0bU/J9xM8tTU4jqkuuqtHaSpDY0KkvoQDovUm9o9Y6OpbcrIQIqLA1mmoaAg2ssJC9rOgjZDbW1YZE14Q21PqdoulOLiMNgDm13REsbEwJvaGnePuZsMewYHqw7y2pbXWjxOURQeX/M4q46swm6yM+fcOXRJ6OL39TxenzZmM8ZOnU56PG68GhY7d+/W3duxyPhs1f/ta8MdwF1aCooCRqN+g0NratcUFfDwTw8DcMuwW5icM9nn8xoNRp466ym6J3ZvdnBkQU0Bq4+qNwku63uZz+dti3R7Ohf3vhhoX23tivoKfWdhrA+JPJHzup/H4LTB1LnreHPrm9FeTtgprC3kl2O/ALBo76KYDvIrnZV8lPcRoL6G/VEyRZIeST0YkDJAKEgEAoEgDIhQWyCIAC7ZxYK8BYA6IDIU9EzqSbw5Hofbwb7Kfa0eq/m0TVm+tbShUT/SXGMU4KcjPzF76WyqGqoYnjGc9y96n96dejd6RptsNRcIBL6hhYInuuydu3aBomDKzMQU4uZpNLENU0Ntx9YQhtoHY6upLUkSlu6aV7vjDYtUFEVvahsSfQy1w9zUdmvN3JTQDynWfkbZz0GRTUmyJPE/4/8HgDe3vsnu8t3NHvfW9rdYsGsBEhJPnfkUQ9KHBHQ9fUhkenqzoY8pJQXrINXVX7va/0GMkWJM5zEYJAMHqg5QWFvo03N09Uh6OpJB/dqjNbWPHc7D4XYwPns8d4y8w+/1JFmSjhsc2dSTvnDPQhQUxmeN97n97SvXD1YHRi47tIzD1YdDeu5w8fPRn5EVmb6d+pIV7/tn0VhAkiTuGnUXAB/lfaQPEeyofLP/GxQUABrkBj7O+zjKK2qZj3I/otZVS99OfTk75+xoL6dVND+3UJAIBAJBaBGhtkAQAb4/9D1FjiJSbalM6TElJOc0GowMSVO/4Lbl1XYf829IJDRx+zbT1FYUhWfXP4tbdnNuzrm8MfUN3REu16hf9I3x8THbmBAIYhXdZX/C605Tj1g7iHpEwz5U1Si58vNxl5+8fd9fFLebhny10R4rTm1AD7VdHdCrLdfWgccDgDGp9d05hoTIhNqabsKYFtohkRDcoMimnN/9fCbnTMatuPnbz39DVuTjHv/mwDc898tzADw47kHO6X5OwNdqGmq3RPwEr1d79c8BXyfcJFoS9c89vra1T/RpAxi9nnV7tYvMuEyeOvOpgPUgfVP66oMj39vxHov2LsIje1i4ZyEAV/S7IqDztkb/lP5M7DIRWZF5edPLIT9/ONB82u1JPdKUM7qcwajMUTg9zlZ3V3QEvt7/NQDjs9SdER/lftSmJika1LnqmLdzHqC2tEPlvw4XQkEiEAgE4SG2//oLBB0EbWvcr/r9KqSONl+92vqQyEzfhkQCGDT9SHU1inz8l+2fjvxEXnkedpOdv5/x9+OGKnm8obZQjwgE/tOSy96pD4kcFPE1hRNjcrLeqK4PQVvbdeQIuN1IVqtfO1PCjT4s8kDHa2rL1d7fVbMZydb6gL3GpnbgLWdfCG9TW31vk+vqULxhfiBIksRD4x8izhTHluItzM+brz+2qWgTD/33IQBmDprJdYOuC2rN7qLGtnJLxHuHRdbFcFMbGr3aa476tk53kdqqNWU23tT/vPR7ABLr4Zkzngp6cHfTwZH/9/P/8db2tyisLSTJksR5Pc4L6twt8YdRfwDgP/v+Q15ZXliuESpkRWZVwSqg/YbaTdvan+76tN005P1lX8U+dpbtxCSZePKsJ+kc15my+jK+3vd1tJd2Ep/s+oQKZwU5iTl6YBzLCAWJQCAQhAcRagsEYWZP+R7WFa7DIBm4asBVIT235tX2taltyvI91NYao8jySa26N7epTsEr+19JsjX5uMc0V6oYEikQ+I/usj9B+1Ofp4YWtoEDIr6mcGPzerUdIfBq6z7t7t111UAsYOnh1Y90wKa2xzsw0ZiY2ObuHGOE9COe0jA2tZu8t2k7kwIlKz6Lu0ffDcDzG57nWO0xDlUd4q7ld9EgN3BOzjk8MPaBoK4BTZraTdrKJxI3ZgyYTLgOH6bhcOwGduOyvcMiC9eiKEqbx+uBvvdn31i0kX/kvYzs/VUdYuoeknU1HRz5woYXALi498VYjdaQnP9EhqQP4cKeF6Kg8PyG58NyjVCRV5ZHaX0pdpOdUZmjor2cgDkt6zROzz4dt+Lm35v/He3lhAWtpX1G1zNIt6dz7aBrAXhv53s+vd4iRYOngXe2vwPArKGzMBlMUV6RbwgFiUAgEISe2PnGJxB0ULSW9jk554TcI6g1tXeX78bhdrR4nEvXj/jR1LbZdCd209bo1uKtrC1ci0kyccPgG056nuwdnqWFFwKBwHf0QZFNnNqK243TG2p3pCGRGvZhwwFwbN0S9Lm0JnSs+LQ19KZ2Bwy1taa20YfdOYZ4r7oj3KF2ubepnRr6prZksSBZ1aDSE4RXW+PqAVczPH04ta5aHv75YW7/7nYqnBUMSRvCk2c+GbAWoynukrab2ob4eOzD1ddi7c+xqyAZlTkKk8HE0dqjPrVldf1IZgb51fk88MMDuPBQn+j937AsNEPwmg6O1PhVv1+F5NwtcdeouzBJJlYWrGTt0bVhvVYwaOqR8VnjQ7pbMRpobe1F+xa1Oc+mvaEoCov3Lwbgol4XAervsN1kZ3f5bn3waSywcM9Cih3FZMZlcmmfS6O9HJ/RGuVrjq4RCpIYxV1SEtQuLIFAEHlEqC0QhJGahhoW7V0EhG5AZFM6x3Um3Z6OR/GQW5bb4nF6U9uPUBvAoPl9mwRsWkv7ot4XNRvSC/2IQBA4jU7txhtJDQcPojidSHFxupu5I2EfoQZp9Vu2Bt0E05vaPWPHpw1g7q6ux1VQgOJyRXk1oUVramvqnNbQ9COeIBvObeHWmtqpoW9qQxMFSXXzg5T9wWgw8vDEhzFJJlYVrOJg1UG6xHdhznlziDPHBX1+aNrUbjnUhkavdt3PsRNenYjdZGd4uvo3Y01h2woSTT+ysHwFl35+KUWOInon9ya5szq80V1aGrK1aYMjU22pTOo6iQGp4d1Z0z2pO1f2vxKA5355LqaatE1p7z7tpgzLGMbknMntymfuK9tLt3Oo+hB2k53JOZMBSLYmc3nfywF4d8e7UVxdI27ZrX8XuWnITe3qRommIHErbqEgiUGqf/iB3WeeRfGcOdFeikAg8AMRagsEYWTRvkXUuevoldxLH7gSSiRJavRqF7e8dT/QUPtEFcL+yv18d+g7AH439HfNPkfoRwSCwGl0ajfeSKrXfNr9+yMZg29txhrWgQPBbMZTXo6roCCoczUcjM2mtikzA8luB48n6J8x1tCb2n6E2hEbFBmGpjY0ttI9QQ6L1Oif0p+bht4EQKI5kX+d9y/S7a0H0P6gtZWNrTS1odGrXbtmTcwGpADjs9XPU621kz2yh+8OfceevepAyZX12/EoHiZkT2DOeXMwe/+7CFVTW6NvSl+W/XoZL58XmcDz1hG3EmeKY1vpNpYcjD2lQVVDFZuLNwOq0qIjcOfIO5GQ+PbAt60WStobX+37CoDJOZOPu6E2c9BMJCRWFqxkX0X02+mL9y+moKaAFGsKv+of3t0Q4UAoSGKX8nffBUWh7qfY3a0kEAhORoTaAkGYUBSFj3JV9cjVA65u0zUaKG15tRWXS29p+aMfgcaQQtOPvLP9HRQUJnebTJ9OfZp9juz9km9IEPoRgcBfmnNqO3N3AmDtgD5tAIPFgs2rVanfEpyCRG9q94itprYkSXrLXgveOwra+4MhyQf9SIKmH6kL65r0QZFhcGpDk6Z2CBvnt424jb+e/lfeu+g9+qb0Ddl5ATzF3s8ArTi1AewjRiDZbHhKS3Hu3h3SNYQSfVhk4cnhu8Pt4KPcj5i+cDr3fH8Plgr1d234oLNZcOkC5k6dS05iDiZviz+UTW0Ns8Ects98J5JmT+PGITcC8OKGF3HJsbUTZM3RNXgUDz2TetItsVu0lxMSBqQO4MKeFwIwZ2PHaHR6ZA/fHPgGgIt7XXzcYzlJOZyTcw6gurWjiazIvLH1DQCuH3w9dpM9qusJhFhXkGwp3sL7O99HVuRoLyWiuAoLqfXuUupon9MEgo6OCLUFgjCxrnAd+yr3YTfZmd5netiuoze1S5pvartLSkBRwGzGmJrq17n1ULuqkqK6Ir7c+yUAs4bNavE5cq36Jd+YIPQjAoG/aPqRpqF2fa42JHJQVNYUCezDvMMiNwceassNDbiOHAFir6kNNAm1O5ZX26M7tX1paqvtv1CGwc2uSWtqp/j3nucr2rBIOURNbQCz0cyv+/+6xRvGgaIoin5j25jeeqgtWSzqwEigbnXsKkiGZwzHZrRRVl/G3oq9AJQ4Snhxw4tMWTCFx9Y8xqHqQySZEkipVcPlP0z523E6EGOa+rvhCUOoHWluGHIDqbZUDlUf4rNdn0V7OcexqmAV0DHUI025feTtGCUjKw6v0JvogbD26Fpe2fwKta7w7l5pi3XH1lHiKCHZmszELhNPevyGIeoMnUV7F1FeXx7p5eksP7ScvZV7STAnhEXrGAliWUFS767nruV38eTaJ/k+//toLyeiVH65SP2+DHgqKo7bMSkQCGIbEWoLBGFCGxA5vc90Ei3hC3iHpA0B4HDN4WY/aGrqEXNG0o3tGQAAIABJREFUBpLBv5e8sZPaGpWrqpi3Yx4u2cXozNGMzBzZ4nN0p7bQjwgEfqMNilTq6nT3cn2uVz8yqOMNidSwDfeG2ltb1ii1hevQIVAUDPHxGMPU0A0GzfPd0RpAstepbfSlqR0B/YiiKLjL1fdCU1p4Qm2Drh8JbzgfCuTqapSGBgBM6W2/LnQFSQx7tS1GC6MyRwHw6e5P+cuqvzB1wVTmbp1LpbOSrgld+dO4P7H4nI+QFAUMhpNa+41N7dDqR6JBvDmeW0fcCsArm1+hzhXenRC+oigK/y34L9DxQu2eyT31wspLG1/y+/ll9WX873//l1lLZvHyppd5Zv0zoV6iX3y972sApvaYitloPunx0ZmjGZw2GKfHyfy8+ZFeHqC6tLVm/DUDrwnrd6twE6sKkoV7FlJWr/5NXJG/IsqriRyKolD5xRfH/VtH+6wmEHRkRKgtEISBwtpClh9S777/ZkB4mwTJ1mR6JvUEmleQuAoD82kDGLwqhLqyYubvUj/EtuTS1pCrtVBb6EcEAn8xJCaCd9u6p6oKd3ExnpISMBiw9u8f5dWFD/tw77DIHTsCHqTY1Kcdqa3//mDWmtqHOlpT26uc8qGprTecwxhqy9XV4P0d8nd3kq8YEr0/R03omtrhQvNpGxITMdhsbR4fN+F0AOrWrUNxu8O6tmAYl60qSObtnMfCPQtxyS6GZwznmbOf4avLv+K6QddhLlc/j5jS0k6aR9CRmtoAV/a7kpzEHErrS2NmoN+eij0U1RVhNVoZ03lMtJcTcn4/4veYDCbWHF3Tqt+9KYqi8MWeL5ixcAaL9i1CQn2v+nT3p+SV5YVzuS3i9DhZdnAZABf1uqjZYyRJ4obBalv7w9wPafA0RGx9Ggv3LGRv5V6SrcncOPTGiF8/lDRVkBTUxMacDbfs5u3tb+v/+cfDP54yCpL6bdto2LsXyWrFOljdFanp7AQCQewjQm2BIAws2LUAj+JhbOexIXdjNoemIGku1HYXeUPtLP9DbU0/svvQJmpdtfTt1Jczu53Z6nO0beXaIC2BQOA7ksHQ2AKtrNRb2pYePTDY25870lcsPXtiSEhAqa/HuWdPQOeIVZ+2hrauhkMdq/3TOCjSj6Z2GPUjmiPZEB+PwWoNyzU0vZanqj2E2qp6xNSGT1vDNmgghuRk5Joa6rdvD+fSguLsbmdjlIwYJANTekzhvWnv8f5F7zO151SMBjXAdhcVAc3/7Fpz2x3iQZHRwmw084dRfwDgrW1v6W3LaLKyYCUAp2Wdhs3U9g2V9kbXhK5c2e9KAF7c+GKbw1UPVh3kliW38OdVf6bCWUG/lH7Mu2geU3tMRVZk/rHuH1EZ0Lry8EqqXdV0juvM6M6jWzxuas+pZMZlUlpfyuL9iyO4Qqhz1fGvTf8CYPaw2SRZ2r6JGsv0SOrBiIwRuBU3tyy5hWO1x6K9JJYeXKoP4Iw3x1NaX8qO0h3RXlZEqFyotrQTzz8f+xB1B3TDgY71WU0g6MiIUFsgCDEuj4sFuxYARMz31ppXW2tqmzMDCLW9ft+CI2qwdtPQmzBIrf/Z8NQK/YhAEAyNA1orTwn1CKhhvm2Y+nfMsSUwBYn2BSQWfdrQGGq7DhcE3EaPRbRg15emthZqe+rC19T2eNUj4WppQ+NQzFA6tcOF5tM2paf7dLxkNBI/7jQgthUk/VL6Mf/S+Xx9xdc8O/nZZrVoWku9tVC7ozS1QQ0dB6cNps5dx2tbXov2cjqsT7sps4fPxma0sbl4s65aORGXx8XcLXO54osrWFO4BqvRyj2j7+HjSz5meMZw7ht7HxaDhTWFa6LiMf5q/1eA2tJu7TO+2WDm2oHXAvDujncjGsC/s+MdShwldE3o2m5d2ifyz7P/SbeEbuRX5zNrySyK64qjthZFUXhz25sAXDvoWt2rvuJwx1eQKA0NVH2lvgaSL7ussYAg9CMCQbtBhNoCQYhZenAppfWlZNozObf7uRG55rB01Ue7rWTbSR8yNae2KSvL7/MavOGaubaBrPgspvWa1uZzdP1IvAi1BYJA0EJtuaoK50411LZ24CGRGvZhqoLEsTWwYZF6U7tnbDa1TRkZSDYbeDz6QMtoUfPjjxz9y1+QHY6gz6UPikz2IdTW9SPhc/5qQyJNYQy19aZ2e9CPlHiDXR9DbYC4CV6vdgwPiwTon9KfrgldW3xcD7UzM096zNikqR2Ndmw4MEgG7h1zLwAf531MfnV+1NZS66rll6JfADijyxlRW0e4yYjL4JqB1wAwZ+Ock3QNm4o2cdV/ruLFjS/SIDdwevbpfD79c2YNm4XZoLqruyZ05bdDfgvAP9f/M6Jqj5qGGn48/CMAF/VuXj3SlCv7X4ndZGdX+S7WFK4J9/IAdQjsW9veAuCe0fdgMVoict1wkxWfxRsXvEGX+C4crDrIrCWzKHGURGUtPx/5mdyyXOwmO9cMvIazu50NnBpe7eoVK/BUVGDKyCB+4umYRagtELQ7RKgtEIQYbUDklf2v1D+whpsBqQMwGUyUO8tPcrPpgyI7n/ylri0krwYhvl7ht4N/69PP06gfEaG2QBAI2oBWT1XVKdPUBrB7h0XWB9rUPhjbTW3JYMCiebWj/GWp+KU5VHyygJoffgj6XPqgSB+UU1pTW6mrQ/F4gr52c2iD/8La1E7UmtqxPyiysa3se6gdf7rq1XZs2IDsdIZlXZHAXdRKU9v7+6HU16PUxcZgxVAwIXsCE7tMxC27AxpgGCrWHl2LW3bTLaEbPZJi80ZjqLhp6E3Em+PZWbZTd1NXN1Tz6OpHuWHxDeyp2EOKNYUnznyCV6e8Sk5SzknnmDVsFun2dPKr8/lg5wcRW/vy/OU4PU56JfdiQMqANo9PtiYzo88MAN7b8V64lwfAy5texuF2MCx9mD5gsaPQJaELr1/wOp3jOrO/cj+3LLklKuqgN7a9AcCv+v2KZGsyk7pOQkJiZ9nOmFCjhBNtQGTS9EuRjMbjmtod5YanQNDREaG2QBBC8sry2Fi0EZNk4sr+V0bsulajVf8weqJX23Us8EGRGx27AEhyGrii3xU+PUcLtYV+RCAIDG1Aq/vYMb19bB3Q9pfN9o7NOyzSuWeP34ME5dpa3Z8bq05tAEsPLdSO7rBId2Ghuo78w0Gfy1OlNrW1nT2toYXaAHKYgkRPuRZqp4Tl/NB407Y96Ec8Jf45tQEsvXphysxEaWjAsXFjuJYWdhqb2if/7Ia4OCTvnIKO4tXWuGf0PQAs3r84ak5czad9RtczYnJwbyhJsaVw/eDrAfjXpn/x7YFvmbFwBh/nfYyCwmV9L+PLy77kkt6XtPjfRbw5Xneiv7rlVUodkdHifL3va0BVj/j6v9PMwTORkPjx8I/sq9wXzuWxr2Ifn+3+DID7xtzXIX+XchJzePOCN8m0Z7KnYg+3LLmFivqKiF1/W8k21hauxSSZ9B0DafY0hmWoRYOWtDodAXd5OTUr1J0KyTPUmzWW7t1BkpCrq3WdmUAgiG1EqC0QhJAPcz8E4Lwe55ER5/sXyFDQnFdbUZRG/Uhn//QjiqKwoPAbAFJcZuLMcW0/x+PRgwoRagsEgaHpR+rWrQdZxpiW5lcg1V4xZ2aqmiRZpn6Hf0FMwyE1JDampGBMTg7H8kJCLLgaFY9HH6boOhxcqK3Ish7s+tLUliwWMKs7fvy9ceErWlPblJoWlvMDGHT9SHtoaquhttEP/YgkScRNGA/Etle7LVrTj0BjW7sjebUBBqUN4qJeqkri+V+ej/j1FUVh1RHVp31m19aHi3cUbhh8A0mWJPZV7uOBFQ9Q7CimR1IP3pj6Bo+c8QidbJ3aPMeMvjMYlDqIGleNPhQxnJQ4Slh9VH19a78vvtAjqQeTcyYD8P6O98OxNJ3nNjyHR/EwOWcyY7PGhvVa0aR7Undev+B10u3p7Crfxeyls6l0Vkbk2ppL+6LeF5EV3/hdUVeQdGCvdtVXX4PLhW3wYGz9+wNgsNkwZav/PYhhkQJB+0CE2gJBiKhqqOLr/Wrj4TcDIj/EpKlXW8NTUYHSoLr5zM00lVpjTeEattTvVZ9b50KR5TaecXxIIUJtgSAwNDdx3fr1ANgGDuyQ7aTmsA9T/445tvjn1dZ92jHc0gYwa/qRQ9H7ouQuLQXv33NXQUEbR7eOXFsL3u25vjS1JUnCGKfeIJXDFAhrTu3w6kfaT1O7cVCkf58B4ieoCpLa1T+HfE2RQtu90dJNwaZe7Y7GXaPuwmQw8fPRn/npyE8Rvfb+qv0U1BRgNpg5Leu0iF47WiRaEpk1bBYAJoOJ3w//PZ9O/5Rx2eN8PodBMvDguAcB+HT3p+SV5YVlrRpLDizBo3gYlj6M7knd/Xqu1kz/cu+XlNerbdbCRx8j//e3hkxZtL5wPT/k/4BRMuqu+I5Mr+RevD71dVJtqews28mtS2+luiG87zEHKg/oypybhtx03GNaqL3m6Brq3fVhXUe0qFy4EFAHRDYlFgoIAoHAd0SoLRCEiC/2fIHD7aBvp76M6Twm4tfXQu2dZTtxy26g0adtTE1VG3J+8ObWN6mxef+DLPvUqtNCCsliweDn9QQCgYoWDmqvuVPBp61hG66F2v55tWPdp61h6dETAFcU9SOaZxiCb2rLXvWIZLFgsFp9eo6mIAlbU7tMbd2a0sI4KNLbSve0h1A7AKc2QPzp6rDI+q3b2sXPeSKKLOs7EloKtbWmtruDNbUBuiV20wsWz//y/EkDDMPJqgK1pT2m8xifdvl1FG4cciNPn/U0n07/lDtH3YnV6NvfxKaM6TyGC3pegKzIPL3u6bA6fbUijj8tbY2xnccyKHUQ9Z56Ptn1Ce7ycsrnzaNmxQqq/vNV0GuTFZln1j8DqJ7n3sm9gz5ne6BPpz7MnTqXTtZObCvdxm3LbqPWFZ73SoC3t7+NgsLZ3c6mb0rf4x7rn9KfznGdcbgdrC1cG7Y1RAvnnj3Ub9sGJhNJl1x83GONofaBKKxMIBD4iwi1BYIQICsyH+d9DMA1A6+JSquyZ3JP4s3xONwO9laoDWtdPZLln097R+kOfj76M7LFBBZ1q7insqrN53mqhU9bIAiWE/UZ1gGnTqhtH6Z6tR1b/Wxq7z8AgKVnbDe1dad2QQGK2x2VNbiLi/T/33XkiE+7cFpCCzt9aWlraO8P4Qq1PWVqa9CYEv5BkYrDgeJyhe06waK4XLoT1F+FkTk7W/1iL8uqCqmd4SkvB7cbJAlTWvMqGmOaph/peE1tgFuG36IPMPz2wLcRu64Wak/qOili14wFDJKBab2mBR3A3jvmXiwGC2sL17I8f3mIVnc8+dX5bC7ejEEyBDR8UZIkva39Ye6HVG9o/BtR9v68oMP4bw98y7bSbcSZ4rht5G1Bnau90T+lP3OnziXJksTm4s3cvux26lyhn0FRXFfMl3u/BNB3GTRFkiS9rf3j4R9Dfv1oow2ITDjrLP0Gp4ZWQBBNbYGgfSBCbYEgBKw+spqDVQdJMCdwSe9LorIGg2RgaJrq1dYUJK5CNdQ2Z/oXamt+tQt7XagHbHJV2243uVaE2gJBsBiTjg+1T6mm9tAhIEm4jxzVG6ZN8dTUUr9rFzUrVlD+4YcUPfMsBfc/QM0PPwCx39Q2ZWYiWa3gduM6ciQqa2ja1FZcLl3REAjakEhffNoaWlM7XD7qiDS1m7zHxbJXW9dqGI0YO7Xt9D2RuAlqW7s9Kki032tjaiqS1+N+Ipp3Xfud6Wik2lJ1pcCLG17E5Qn/DRiH28G6wnXAqRdqh4quCV31gX3PrH+GBk9DyK/xzX51Zs64rHEBzwC6sOeFZNozKXGUsGPF5/q/O3fsDGrAbIOngRc2vADATUNvIt3u3y6TjsDA1IG8NvU1Es2JbCjawJ3L78ThdoT0GvN2zsMluxiVOYpRmaOaPebsnEavdjh3DUQaxeOh8gs10NcGRDZFb2oLp7ZA0C4QobZAEAI+zFMHRE7vMz2qWy1PHBYZSFM7vyqfpQeXAqpfTQvYtPCiNTT9iFGE2gJBwGhObQDJao35oDaUGBMSsPRRW25FL7xA4d8fIf+229k34zLyxo1n19ix7J8+g/zf30rh//2d0rlzqfrqKzyVlWA0Yhs6NMo/QetIBgMWzasdpQbQiTcLglGQ6EMi/Wlq6/qR0DfPFFnGU16hrimMTm3JbEay24HwucFDgTYk0pSWhmTw/yO/piCpa4fDIhu1Ky0Hdh29qQ2q+zjNlsbhmsPM3zU/7NdbX7ieBrmBrPisU0YZEQ5uHnYz6fZ08qvz+WDnByE9t6IofLVPVYQEoh7RMBvNXDPoGgAq168B1GHNAOXz5gV83o9yP6KgpoAMewY3DL4h4PO0d4akDeHfU/5NvDmedYXruGv5XSFzW1c3VDM/T/178Luhv2vxuHFZ47AZbRTWFrKrfFdIrh0L1K5ejbuoCENyMgnnTD7pcW3XX8PBgx0qzBcIOioi1BYIguRIzRF9W9bVA6+O6lpOHBbpKvI2tTv7Hmq/vf1tZEVmUtdJDEgdoDe1fdOPeLeii1BbIAiYpioHa//+SCZTFFcTeTQFSeWCTyn/4ANqvv8eZ16e7m82JCdjHTSIhHPPJeW668j84x/p+tyz9Pn6KyzdukVz6T5h1hQkUfJqn9jMDmZYpPa+ECv6EbmqSlVOEN5QGxpv3sbysEhNNWNKD6zpGDd+PADO3bv1gZPtBT3UbmVItimtYze1AeLMcdw+8nYAXt38KjUN4b0J80P+DwCc0eWMU2bAcTiIM8dx9+i7AXh1y6uUOkL3O7qrfBd7K/diMVg4v8f5QZ3r1/1/TYJko8sh9SZl5z8/BEDVt0tweYs1/lDprOTVLa8CcMfIO04pJ3tzDM8Yzivnv4LdZGfN0TXc8/09OD3BD+KcnzefGlcNfZL7cFa3s1o8zmayMT5bfR/oSAqSyoWqeiT54ouanQFl6dYNDAaUurpmdw0KBILYQoTaAkGQzM+bj6zITMieEPVWitbU3lOxhzpXHW6vfsTko36kxFHCwj3qJGjtzr3WwPP4oh+pUUMKEWoLBIHT1KltGzggiiuJDqk33UjCueeSdOmlpM2eTdbf/kbOa6/S+z+L6L9+PQPWrKb355+R8/K/yPrLn0mb9TuSpk3Tt4vGOo0DiKLc1PYqGRqCamoHoh9RQ4pwNJzdXp+2ISEh7MOKDfqwyBhuanuDaH992hqmlBSsgwYBULtmTcjWFQm0mzetNrVTO35TG+DyfpfTI6kH5c5y3tr+VliuISsyL254UW+DT86ZHJbrnEpM7zOdwWmDqXHVMGfTnJCdd/H+xQCc2e1MEi2+/+1ujmRrMteZJ2F1Q32ciaRp04gbOxY8Hso/+sjv872+9XWqGqro26kvl/W9LKi1dRRGZY7i5fNexm6ys+rIKu75/p6gVCROj5N5O9Um/U1Db8IgtR4HaaH3isMrAr5mLOGpqaV6qbojuTn1CKjDr81dugDgEl5tgSDmEaG2QBAETo+Tz3Z/BsBvBv4myquBzvGdybRn4lE85Jbl+q0f+WDnBzTIDQxPH87YzmOBRhWC7I9+JFGE2gJBoDQNta0DTx2ftoatf39yXv4XXf/xNJn33UvKb64m4ayzsPbtizEhPtrLCxpLd2+ofShKobY37LMNVsNK1+EgmtpV2qBI/53a4Whqe7yNW2MYfdoahkStqd32e2O08HhDbWNG4E7aeG9bu251+1KQ+KIfaWxqd+xQ22ww84dRfwDgtS2v8c91/wypX7vWVcs939/D3K1zAbhxyI36gDlB4BgkAw+e9iAAn+3+jLyyvKDPKSuyHmoHox5pyoXVPQHYke3hYPUhUmbOBKBi/ifIDb77wAtqCnh/5/uAOizTaDCGZH0dgbFZY3np3JewGW2sLFjJ7CWzqXS2XTZqjkV7F1HiKKFzXGeffge0UHtL8RbK6tv/38rqb79Fqa/H0qsXtuHDWzwu2gUEgUDgOyLUFgiCYMmBJZQ7y8mKz4qZD/BNvdra1j9f9CM1DTV8lKu2Kn437Hf6tlGD5tSuaPvDk6fGG3DEi1BbIAgUQ3w8eP23Nm9LUtBx0L4ouaKlH/GGfXEj1cFQwTi1PXpT23f9iDGM+hEtnDSlhD/U1n7mmG5qa07tAPUjAHHjxgHg2LwlJGuKFI36kcwWj9Gb2mVlKLIckXVFiyk9pjBzkBo2vrPjHWYunsnBquDDmsPVh5n59Uy+z/8es8HMY5Me4/6x9wv1SIgY3Xk0F/S8AFmReXrd00H7fTcXb+ZI7RHizfGtaif8wZ6r/h7ldZWYt3MeieefhykrC09pKdWLF/t8npc2voRLdjE+azxndj0zJGvrSIzPHs+rU14l0ZLIpuJN3PjNjRTV+Tfo2SN7eHv72wDcMPgGzMbmh+g2JSs+i4GpA1FQWFmwMpClxxSVC9UdyckzZrT6d0qbZxOOUHvJgSV8d+i7kJ9XIDhVEaG2QBAEH+WpIfBV/a/CZIgN7+2wDNWrvfPIZr1dbfIh1F6wawHVrmp6JffinJxz9H9v1I/40tQW+hGBIFgkg4HEKVOwDhyIbciQaC9HEGIsmlP78GEUr/85Uigej66ksI9SQ+2GgiD0I0E1tUMfBnu8obbR28ANJ41N7Rh2amv6kfTA9CMA5m5d1XMV+ReeRBuXD/oRk3eoHbKsDpvtwEiSxIPjHuSFc14g2ZrMjtId/HrRr/ly75cBn3Nd4Tqu+eoa9lTsId2ezlsXvsX0PtNDuGoBwH1j7sNisLC2cC3L85cHdS5tQOR53c/DZrKFYnnUbdwEwK5u8OnuT3l03RMol00FoOy9eT4F8dtLt+tru3fsveKmSAuM7jyaty98mwx7Bnsq9nD919dzoPKAz89fnr+cg1UHSbIkcWX/K31+nq4gyW/fCpKGwwXUrVsHkkTyjNb/VulN7QOhDbWXHlzK/Svu597v7w3J7guBQBDjobbH4+Evf/kLvXr1wm6306dPHx555BExhVYQE5Q4SthSrDaXLu93eZRX04jW1D68b7P6D3F29riOsKloE6sKVrH04FIW7lnI+zvf5/Wtr/PChhd4fM3jumfxpiHH+9U0/YhvTm01pDAI/YhAEBTdXnieXp9/hsFqjfZSBCHG1LkzktUKbjeuo0cjem1PWRnIMkgS9pEjAHAXHkNxBaYi0IYD+9PU1nbyeMLZ1E5NCfm5T8SY4HVq18RwqO2DgqMttOd6Kir8UglEG+1nN7fys0tmc+Mw7NKOOyyyKed2P5cFly5gbOexONwOHlr5EP/z3/+h1uXf63F+3nxmL5lNhbOCwWmD+fDiDxmRMSJMqz616ZLQhd8O+S0Az6x/hgZPYK9Dl+xiyYElAFzc6+KQrM119Cjuo0fBaKTr2Mm4ZTfzd83nRuv7uE0S9du2UbtpY6vnUBSFZ9c/q66r98UMSRM381ujf0p/3p32Lt0Tu3Ok9gi//ea3bC/d3ubzFEXhza1vAqoy058hnNpu5J+O/BRSdVGkqfxSHRAZN2E85uzsVo+19Ay9fiS/Kp+/rvorAAoKL296OWTnFghOZWI61H7qqad45ZVXmDNnDjt37uSpp57i6aef5qWXXor20gQC1hWuA2Bg6kDS7YFv7Q012odB97FCAApsDq5cdCXXL76eW5fdyn0/3MdfVv2FJ9c+yQsbXuD1ra/zYe6HlNWXkRmXycW9j/+ga/A2teVKX5ra3oBDNLUFgqARTaWOiWQwYOmeA4S+AdQWWtBnTE9rDNdlGVdhYUDn03YDaTc/fSG8Tm11UKQxNRJNbTXUlmNZP6IPigz8M4qxUyck71BRd1FxSNYVbhRFaVSvtKIfgcZWv7uDD4tsSlZ8Fq9PfZ07Rt6BQTLwn33/4deLfs32kraDMZfs4tHVj/LI6kdwK26m9ZrGOxe+Q1Z8VgRWfupy87CbybBnkF+dr3un/WX1kdWUO8tJtaUyLntcSNbl2KS2tG0DBvDPaXN484I3Oa/7edTGG/mv15628MlbeGf7O1Q1NP894r8F/2Vt4VosBovufhe0TrfEbrw77V0GpQ6irL6M333zO9YcbX2Y79rCtWwr3YbNaOO6Qde1eFzZ++9z6Pe/P+49emj6UFJtqdS4athQtCFkP0ckURSFyi/UULulAZFN0Zvahw6FRE/l9Di5f8X91Lhq6J/SH4NkYHn+cp/+7goEgtaJ6VD7p59+YsaMGVx88cX07NmTK6+8kqlTp7J27doWn+N0Oqmqqjru/wSCcLC2UP09PC3rtCiv5HgSLYmc3e1sUr3lsYokI6m2VLoldGNAygBGZ45mUtdJTO0xlcv7Xs7MQTOZPXw29465l9emvIbFaDnufEbNqe3Da8mjNbVFqC0QCAQtYo7SsMimSgZJkjB3VdUSgXq1tfcFg19NbW+oXRO+QZERaWpr+pEYbWoritJEPxJ4qC1Jkh4MtxcFiaeiAry7D9r62U26V/vUaGprGA1Gbh1xK29f+DbZ8dnkV+cz8+uZvL3tbWSl+QCnor6CW5feysd5HyMhcffou3nqzKdCprEQtEycOY67R98NwKtbXqXEUeL3Ob7e/zUAF/a8MGTKxLqNagvbPmoUkiRxWtZpPH/O8yy+YjGWqy8DYMTWOl7/4R+c/8n5PLr6UfZV7NOf75bdekv7ukHX0SWhS0jWdSqQZk/jzQveZFzWOOrcddy27DaWHlza4vFvblNb2pf1vYxUW/NzJxRFoWTOv6hd8SM1P/6o/7tBMuie8xWH26eCxLFxE66Dh5Di4kiaMqXN481du4LJhFJfj9s7oyoY/rHuH+ws20mKNYV/nfcvLul9CQAvbRJlTYEgWGI61J44cSLfffcdu3btAmDz5s2sXLmSadOmtficJ554guTkZP3/cnJyIrVcwSnG2qNqqD0uKzRth1Dy0rkv8VCf2wCYOOISVly9gsW/WsyC6QtMDf2WAAAgAElEQVR4Z9o7vHL+Kzwz+Rn+fsbfeXDcg9w16i5+N/R39OnU56RzNepHhFNbIBAIQoHeAArDAKLWaFQyqCGlFmo3BBpqa4Mi/XFqJ4Svqe2OZFNb049UxWaoLdfWoTgcQHChNjQqSLTfn1hHa5QbU1KQLJZWjz0Vm9pNGZU5ik8u/YQpPabgVtw888sz3LbstpNC093lu/nNV79hbeFa4kxxvHDOC9w87GaxoyiCXNrnUoakDaHWVcvTa5+moKbAZyWnw+3QB9Nd1PuikK3J4fVpazMaNLokdOHmKx/HOnIEJhmu3tkJh9vBx3kfM+OLGcxeMpsV+Sv+P3vnHR5Hdajvd2arVl2WZMlVtuVewQVCDKYmQEJzKIFALjgQSiABTICEcn+BBELoIdwEklByIWCSkNDJxQHTjRtyQzaWm4ol1Ov22fn9sTMjyVbZMltsn/d59FiWZmfOSqudme985/v4Z9U/2dmxk1xHLpfPudy0cR0uZNmz+J+T/4eTx51MIBRg+arlvLT9pQO2q2yp5JN9n2CRLEaUzUAE9+1DaQufR307qvp9b8nYcATJB7UfHPC4gwHdpZ1zyinG5PpQSFYrdv0aKc5rtTd3vcmK7SsAuOfYeyjJLOGqOVdhlax8XPcxG746ON3vAkG6kNai9q233sp3v/tdpk2bhs1m44gjjuD666/ne98bfMnMz372Mzo6OoyPmpqaJI5YcLjQ0NNAdVc1siQzf+T8VA/nACRJwtLUDkRWEjkUFiN+JPJMbRE/IhAIBINjHxcuiwzsrU7qcXWnrbU4LFLqJYCBurqY9mcURWbHUhSZAKe2lotsSYZTO0ePH0lPUTvYFP5dy5mZyK7Is1MH4mBzakeTJW4dcXg6tfuS68jlwSUPcufX7sRhcfDJvk/4zqvf4eO6jwF4r/o9Ln7zYuq66xiTNYbnT3+eE8adMMxeBWYjSzK3LLoFgLf2vMWp/ziVk/52Eje8dwPPbn2WisaKQfO23695H0/Qw+is0cwpnGPKeEIeD97KSgBcR8wbcJvC738fgG9USPz5hCc4ceyJyJLMp/Wfcu2713LXp3cB8MPZPyTHHvmKH0EvDouDB5Y8wLlTzkVF5e7Vd/PExif6TXg8vSXcm/SNsm8wJnvMoPvybN5ifO6r6i9qf630a1hlK3s790ZVTpkOhHw+Ot96C4Dcc86O+HG2svjLInd37OYXn/4CgCtmX8Hi0YsBGJszlrMnh8fy2OePic44gSAOzFl7lCBeeuklnn/+ef76178yc+ZMKioquP766xk1ahT/9V8DzzI6HA4colhLkGD0PO0ZBTPItkd+M59Mgo3hpVLWkvhEbVmPH+nqQg2FkOTB58L0wizh1BYIBILBsY8Pi9r+6iSL2obYFxYp7WPCN7eB2uhFbVVReicycyIXIyxG/Ij5WdRBzWGmR0okEl3IVxLwPMxAMSF6ROegE7X7xOwMh+7qP1yd2jqSJHHelPM4ougIfvrBT6lqr+KqlVdx3Jjj+LD2Q1RUFpUs4sElD5LnzEv1cA9bjig+gl8c8wv+/uXfqWytpMnTxMrqlaysXgmATbYxc8RM5hXPY27RXOYVz6Mwo9CIHjl9wummueu9W7ZAMIi1uBjrqIFjQ7JPOQVrcTHBxkambmzl0TMepbarlhXbV/CPHf+gy9/FmKwxfHfad00Z0+GKRbZw59F3UuAs4MlNT/K7it/R5mvj5oU3U9ddx7/3/huAZbOWDbkf75bNxuf7i9pZ9iwWjFzA6vrVvF/7PmW5ZaY/j0TR/e67hDo7sZaW4loU+Qpr+/jx9BC7U9sT9LD8/eW4g24WjFzANfOu6ff9K+dcyatVr7Luq3V81vAZR5ceHdNxBILDnbQWtX/6058abm2A2bNns3fvXu69995BRW2BIBnoZRwLS9MrT7svgYawqG2L16mtF4CFQoR6erAM4cgz4keicO0JBALB4YYRP1JbixoMIlmTczmmxzIYTu3RuqgdffxIX1E6Kqe2NukZcrtRVdU0gUUNhYxl08mJH9GeR7o6tTVR2xJHSaSOIWofLPEj+uTNMCWRIJza+1OeX84L33qBB9Y9wIrtK4yogQumXsAti27BJttSPELB0slLWTp5Kd6gly9avqCiqYKKxgo2Nm2k1dsa/n9ThbH96KzRfNUTvic4fYJ50SPuPtEjg72PSzYbed+9gObfPkbbc8+Re8a3GZM9huULlnP13Kv5eN/HzBwx84A+H0H0SJLEdUdcR4GzgF+v+TXPVz5Pq7cVl9VFSA3x9VFfZ1rBtCH34dnSW1ro37uXkN+P3CfCacmYJayuX80HtR8MGWOSbnT8SyuIPPPMIc1Z+xNvVNyv1/yaHW07KHAW8JvjfnNAln1JZgnnTz2f5yqf47HPH+OokqNEpJNAEANpLWq73W7k/d54LBYLIRMaaAWCeNCd2keVHJXikQyOXmphHRlfI73sdCLZ7ah+P0pH56CithoMGvmdkWSVCQQCweGKtaTEeF8NNDQYjulEs38sg007rr8uelFb0cRcyensd9M7HMb5QVVR3W4kk84XSkcHKAoA1vzEO0kthlM7TUXtJt2pPbxbeTiMTO2DxakdRfyIcGofiNPq5Pajb+dro77Gs1uf5cxJZ3LulHNTPSzBfjitTo4ceSRHjjwSCJf81XTV9BO5d7TtoK47vBJnav5UyvPLTTu+xyiJHDh6RCf//PNp+f0f8GzciGfzZjJmzwbC5ZenjB++sE8QHd+b/j3yHHnc/tHtvLX7LePrw7m01VAo7L7XURT8u3fjnDrV+NKSMUu4b+19bPhqA53+zoMiMibY3Ez3Rx8BkHvWWVE91j6+DIhN1H5156u8vONlJCTuO+4+ilwDn49+MPsH/GPHP9jUtIkP6z7kuDHHRX0sgeBwJ61F7TPOOINf/epXjBs3jpkzZ/L555/z0EMPsWzZ0G/KAkEiqe2qZV/PPqySlSOKjxj+ASlADQYNl5Zt5PBOpeGw5OYSbGoi1NkBjB5wm76uPZGpLRAIBIMjyTK2cWPxV+3Ev2dv8kRtI1NbL4oMLxlXmpoJeb3ITmfE+wp16iWR0d3USk4nyDKEQijdPaZNgiqtYVFSzskZthzQDHR3eqgrPeNHohF2h0N39us53elONPEjhlO7RTi19+ekcSdx0riTUj0MQYRIksS4nHGMyxnHmZPOBKDL38Xm5s182folx401TyxTVdUQtV1HDH0vZC0sJOf00+h45VXannuOjPvuM20cgoH51sRvkevI5cZVN+IJepg1YhYLS4ZeXezfs5dQdzeSw4Fj6lS8mzbh21HVT9QemzOWCbkT2N2xm0/2fcKpZacm+qnETcfrr4Oi4Jw7B8fECVE91l5WBkCguhpVUZAsloget7N9J79c/UsArp579ZCxIoUZhVw47UKe2vIUj33+GItHL0aW0rr2TiBIO9L6L+axxx7j3HPP5ZprrmH69OncdNNNXHnlldx9992pHprgMEZ3ac8qnIXLFl/5UqIINjdDKARWK5YR8S/DlrUIEkUTMQZC0aJHJKcTySaWpwoEAsFQ2Mdpy1qrYy8gigY1FDImO3Wxz5KXZ4jKgX37otqffj6Qc6KLm5IkqTe6w8SySF3UtuYnviQSeidvVa8X1T9wOVsqCZqYqW0zMrUPvfgRw6ndKpzagkOPbHs2x4w6hktnXcrE3Imm7de/Zw9KezuS3Y5z+vRht8+/+GIAOt98i6CYQEoKi0cv5k/f+BMnjzuZ246+bdhYC+/WsEvbOW2aIWT7qnYcsN2SMUsA+KDmA5NHnBj06JG8syMviNSxlZYg2WyogQCB+oaIHuMOuI3JhKNLj+aHc3447GMum3kZmbZMtrVuY+XelVGPUyA43ElrUTs7O5tHHnmEvXv34vF42LlzJ7/85S+xJ8GBIxAMxmcN4TztRaWRF00kGyN6pLgoquywwbDoZZEdg4vaoZ6wW02URAoEAsHw6FmNgRizGqNFaW0Nx3NIElZtslOSJCOCJNpcbV3UtmRHv/xYF9LNFLX1+AgzJnIjoe+5Lh3LIs0UtfVJEKWjg5DPF/f+Ek0sTu1QVxehNJycEAjSEY+Wp+2cPTuilTEZs2fjnDsHNRCg/aWXEj08gcacojk8fMLDzCqcNey2ns3hkkjn7Nk4Jk8GDiyLhF5R+8O6D1FCiomjNR/vtm34tm1DstnIOe20qB8vWSzYxmnF3nv3DLu9qqr8cvUv2dWxi6KMIn597K+xyMO7u/OceXx/xvcBeLzi8bT/uQoE6UZai9oCQbqhqipr68NO7UUl6StqBzRR21YcX0mkjr68XOloH3QbvSzLIvK0BQKBYFjs4/UbpeqkHE93r1oKCvqtpjFytaMUtfX3/Gid2gByZniVkz4ZagZKmyZqFyTHqS1Zrcgu7XmkYVlkrys/flFbzs01hKt0L4tUVbWPU3t4UVvOyQGtqFURbm2BICJ6o0eGztPuS8HFlwDQ9sKLqIFAQsZ1KBPyemm45x46XnklIfv3aiWRGbNn4Zgczl737zhQ1J5XPI9sezbtvnY2N29OyFjMQndpZ51wApa82Lo2jLLIPXuG3fafVf/ktV2vIUsyvznuN4zIiHyS/ZIZl5Bjz2FXxy7e3P1mTGMVCA5XhKgtEETB3s69NHoasck25hbNTfVwBiXYoJdEmiRqa/EjoSHjR4RTWyAQCCLFrrt/qpMkau+Xp22MY0y4JyFQWxfV/pRObSIzBqe2JdP8+BHdqW0tSI5TG3pztZU0zNU2M1NbkiTjdZPuESShzk4jDiaS5y5JEtaCsFtbxCIIBJHhqdBLIiPvFsr55jewFBUSbGyk6513EjW0QxJVVam/407a/vK/1P/iLtMnBdRgEO8XXwDgnDULR7kmatfUEPJ6+21rla0sHr0YgPdr3zd1HGaiBoPhPG0gN4boER1D1B5mVd321u3c89k9AFx3xHUsKFkQ1XGy7dlcNusyAH6/8fcEQmLiRyCIFCFqCwRRsKZhDQBzi+bitEZeqJVsgo2aU7vEHFFbjiR+RMvU1m/yBQKBQDA4RvxITQ2qkvilpr0iZ3/nrm20LmpH69TWiyJjcWqbHz+iu2yT5dQGkLM1cb47vZzaqqL0ZoybED8CvQKxPjmSrujjk3NzkR2OiB6jR9YkoixSVVWUri78NTV4Nm2i+/33af/Xv2h5+hkaH3qY+jvupPa666i5+hq827ebfnyBwGyUzk58moM3Y17kTm3Jbif//AsAaH3u+YSM7VCl9amn6HztNQBUtxvv1q2m7t+3cyeq14ucmYl9wgQshYVYcnMhFMK/a9cB2+sRJKtqVpk6DjPx7dyF0tyMnJlJ1rGLY95PJKJ2T6CHm96/CZ/iY/HoxSybtSymY1007SIKnAXUdNXwatWrMe1DIDgcsaZ6AALBwYQuaqdznjZAQHdqmx0/MoRTW7+pl7NE/IhAIBAMh7WkfwGR7phOFIFBnNpGpnZdbE5tOY5MbTOzqPWiv2Q6tS1ZulM7vURtpbU1XBYty1g0F3K89Dq101zUHmTyZiisBQX46HX7x4MaDFJ/x514t2wh2N6G0tYOwWBk4ygqovSuX8Q9BoEgkXg2bgTANn6c0c8QKXkXnE/zE0/g2bAB7xdf4JwxIxFDPKTofv99Gh94EAjHhymtrfSsXRvVhMJweLdoJZEzZxpdTPbJ5XjWrcdXVXXA72nx6MXIkkxVexV13XWMzkrs9Uss+LZvA8AxbVq/yLVosZdpBoQ9A4vaqqryi09+wZ7OPYx0jeSexfcgS7H5Rl02F5fPvpzfrP0Nf9j0B86YdAZ2S2xdckpXF75t28hYsGDYklCB4GBHiNoCQYSoqsrahvTP04Y+RZEmObX1+BGls2PQbUKaOKEvKxcIBALB4OgFRP6dO/Hv3ZNwUXuwOArb6NiKInud2jGI2lnmx4/0OrXNEXEjQV+ZFEqz+BE9T9tSUIBkGb6kKhIMUTvNM7X18dn2m7wZCotWFqm0xu/U9mzcSMc//3nA1yWXC2teHpa8PCz5+X0+8vDv3EXnG28YvzdBetC1ciVYLGSfcEKqh5JWGHna8yKPHtGxFReTc+qpdL7+Oq3PPc+oe35l9vAOKXy7dlG3/CZQVfLOOw9H+SS+uvfXuNeuhSuuMO04RknkrN5CSUe5JmoPkKud68hlXtE8NjRu4IPaD7hw2oWmjcUs9JUvzqlTIn9M0MuK7Sto97UTDAUJhoJYW9o5HfDWVnPLezcRkEIEQ0ECoQDBUBB3wM2m5k1YJSsPLHmAfGd8q8XOn3o+z2x9hoaeBv7+5d+5aPpFMe2n8f4HaH/pJYqu/wmFV10V15gEgnRHiNoCQYRUtVfR6m3FaXEyu3B2qoczIKqq0vPRx/i+/BIAm0mZ2rImWoSGiB8xMrVF/IhAIBBEhF0TtQPV1fD1ryf0WIOJfXr8iNLRgdLdjSXCXgQ9jiq2osgExI9oRZHWEckTtS16/EjX4OfGVGBmnrbOwRI/YqxIiOK56+5+M5zavqqdAGQceSQld9weFq7z8pCdg0fWda1cGRa1W4SonS54t22j9trrwGplyscfhaMYBAC4P48+T7svBRd/j87XX6fz9dcpvmm5kWkv6I/S0UHt1dcQ6u4mY/58Su64HV9VWGD2rN+AGgwiWc2Rcrybw07tjNl9Re3JAMYx92fJ2CVsaNzA+7Xvp6Wo7dsWFrUdU6dF/JjHKx7nma3P9PuapKqcbAV7UGV9xdt8VTCw6/n6+dczrzh+97zD4uDKOVdy9+q7+ePmP3LO5HPIsGZEvR/vtrBTvenx/yHrhBOjEvcFgoONmN8J/X4/jY2NhEKhfl8fpxUfCQSHGnr0yBHFR8S8FChRqKpK93vv0fz7P+DVZtvl7GzskyaZsn+Lnqk9VPxIl14UKeJHBAKBIBJ6sxoTXxapF/ztL/ZZsjKx5OWhtLcTqK3FMi2yG0A9ciOWokhD1O42vygyuU5tbRVTujm1m8LiqFl52gDWYk3UbkpvUTsWQd9wapuQqe3bqWUNz5mDc/r0yI5foGd6xy+qC8yh+Yknwp8Eg3i2bCErwZOOBwtqMIh34yYgdlHbOXcuzlmz8G7ZQvvf/k7hlT80c4iHBGowSN3ym/Dv3Yt1VCljfvsokt2OY+pU5OxsQl1deCu39ROhYyXk9+PVzFDO2b2mLcfkYUTtMUt4eP3DrKlfgzvgxmVzxT0WM/F+GZ1Tu7arlucrw1nvZ006i3xnPlbZik22ERj1AvbqZq4rOhf3gqnYZBtW2Wp8f3TWaGYVxv+70Dmn/Bye2vIUdd11vLjtRaNAMhoC9fu0TwLU//znlK140bRJEIEg3Yj6lb1jxw6WLVvGJ5980u/rqqoiSRJKEsqOBIJUYESPpFGetqoodP3f/9H8hyfwacusJKeT/AsuoGDZMqz55hRm9caPDJWprcWPROjyEwgEgsMd+/iwEWCoAiKzMMS+AWIZbGPGhEXtujqcEYraoc44iiKzzHVqq4qC0t4OkFTXX69TO70ytfUYCzNFbdtBFj8y0Ot8MAyndmv8orJ/Z7hUzT5pYuTHL9Sd4uYXVQqix7dzJ11v/9v4v3ezELV1fDt2EHK7kbOycJTHZpyRJImCSy5m3y230vbii4z4wTIhtu1H4wMP0vPRR0gZGYx9/HEju1yyWHDNn0/3qlW41641RdT2bd8OgQCWvDxj5RaAY3I5EI4mC7ndyK7+ovXE3ImMzhpNXXcdq+tXc+K4EyM6nqqqbG/bzmf1n3HahNModkX+Xh0pwZYWlKZmkCRDnB+ORzc8SiAU4OjSo7n763f3y6GunbqNrup3ODY0iYIkuNJtFhtXz72a2z++nae2PMV5U84jyx75/XXI7w8/f0B2ufBu3UrLn58SE0iCQ5aoU+wvvfRSZFnm9ddfZ/369WzYsIENGzbw+eefs2HDhkSMUSBIOSE1ZIjaC0sWpng04Rn8jldeYdcZZ1J3w434tm9HzsxkxA9/SPm7/2Hkz27FNtK8iwSLET8yeKa20qM7tUX8iEAgEESCTVvd5q9OrFNbDYWGdLAaZZFR5GrrTu14iiLNErWVjo5wMSJgycszZZ+RoJ/vlO5DX9TWXzeBxjQXtQdZkTAUuqhsilN7V1jUdkSxUk4XrFSPh5DbHfcYBPHR8uSToKpI9vCqTD1vWNAnemTu3Ljy+rNPOw3LiBEE6+vp+s+7Zg3vkKD9X/+i9ZlnABh17z0HrPhwLQzfh7rXrjXleH3ztPsKudaCgvDKJ1XFp03W9UWSJJaMWQLAB7UfDHucr3q+4qktT7H01aWc99p5PLDuAa79z7UEQgFTnkdfdKOXbdxY43pjKDY2beTtPW8jIXHTgpsOKFbUyyKTYUDQ+dbEb1GWU0a7r53nKp+L6rF6t5bkcDDyzjsAaP7d7wZ13QvSl+2t23lh2ws09DSkeihpTdSidkVFBU888QSnnXYa8+bNY+7cuf0+BIJDke2t2+n0d5Jpy2TmiJkpG4fq99P2t7+x87TT2XfLrfh37ULOyaHw2msp/89Kim+8ISEuNVmPH+nqQt0vckinN35EOLUFAoEgEuzjywAIVFejJnClm9LeDsEgMLDQqZdU+mvrIt5nPE5tixE/Yk5sh1ESmZuLZLOZss9IkA2ndrrFjyQgU1tzPoc6Ogh5vabt12xiih8xyakd6ukhWF8PgGNi5E5tyeVC0jK3hVs7tfirq+l4/Q0AipffCGDE+gnA83kFEHv0iI5st5N3/nkAtK9YEfe4DhU8FRU03HEnAIXXXE3OqacesI1rkSZqr19vynWDd8tWAJwDuL4d5WG39lARJBAWtUPqgfeH7oCb13a+xhX/dwWn/P0UHl7/MFXtVdhkGxnWDCpbK/njpj/G/Rz2x7tNjx4ZfuWZqqo8sPYBAM4qP4upBVMP2KY3Ki55orZVtvKjeT8C4Nmtz9LhG9xYtj+BfeHzkK2khNyzziJryRLUQIB9P78NVbsWFBwcvLbzNe757B5+u+G3qR5KWhO1qD1jxgyaRTu34DBDz9M+svhIrHLyl8iFvF5an3ueqm+eSsMddxKoqcGSn0/RjTdS/u5/KLr2Rwl1p+nxI4RCgzrrdHFCZGoLBAJBZNhKS5BsNtRAgGBD4lwYermfpaBgQNE3Wqe2GgwajlK9SDga9MlPs5zaqcjTBrBoxcihtHNq68KueU5tOScHyeEI7z9NI0hUVY0tfqRPpraqqjEf37drNwCWwsKorskkSTLc2ma4xQWx0/LHP4GikHnsseSddx5YLAQbGwlozsfDHY9REhl/IV7OaaeF91lRMahh5nAi8NVX1Fx3HWogQNbJJ1F47bUDbuecPh05M5NQZyc+LQs7HvRJm4xZQ4naOwZ87IKSBWRYM2jyNFHZWgmAElL4ZN8n/PzDn3P8S8fz849+zur61aioHFl8JHd+7U7eO/897jrmLgD+uOmPbG3ZGvfz6Ivu1HZEkKe9snolFU0VZFgzuHbewD9zQ9Tes8e0MUbCN8q+weT8yXQHunl267MRPy7YEBa1raNKkSSJkrt+gZydjXfTJlqfjXw/gtSiqirv1bwHwPFjj0/tYNKcqEXt++67j5tvvplVq1bR0tJCZ2dnvw+B4FDEyNMuSX6etnv9eqpOOYWvfvlLgvX1WIuKKL71Fsr/s5LCH16RlAxr2ek0bmaVjoH/zo1M7WwRPyIQCASRIFks2MaOBRLrABrOvarnaEYqait9MqRjOQcZ8SNuk+JH2lIjahvxI53pJWorCSiKlCTJeP2kq6gd6u5G9XiAaJ3a4deNGgjEtXpAL4mMxqVtjGGEyNVONYH6etr/9S8ACq++CtnlMkQ94daGQGNj+BwhSWSYsDrbMXEiksNByO0mkOAIrnQn5PVSe+11KE3NOCZPZtSv70OSB5ZpJKuVjCOPBOKPIAm53fh27gTAOWv2Ad/Xc7UHc2rbLXaOGXUMAC9tf4mH1j3EN/7+Da5850pe2/UanqCHcdnjuGbeNby59E2ePe1ZzptyHrmOXE6dcCrfLPsmQTXI7R/djk/xxfVc+uLVRO3hOkICSoCH1z8MwH/N/C9GZo4ccDubJmoH9u1D9ftNG+dwyJJsCO3PVT5Hiyey80OgXndql4b/HTmSkbfeCkDTo781YrIE6c3ujt1Ud1Vjk218fbTodRiKqEXtk08+mdWrV3PSSSdRXFxMfn4++fn55OXlkW9SKZ1AkE4EQ0HWfbUOSE1JZNsLL6I0NWMtLWXknXcwaeU7jLj00gMKOxKNkavdOfDyJ6VbxI8IBAJBtNiTkKutO7UHc6/aRmtO7bq6iJyqejGi7HLFFPehi9pKt1lO7fCNXjJLIqE3eiVdiyItJora0Pv60V9P6YYutstZWcgZGRE/TnY6e1+TcYjKsZRE6uhO7WCzELVTRcufn4JAANeiRbg00TBjTljo82wSoranIhw94pgyxRRDjWS14pgSdtJ6t22Le38HK6qqUn/HnXg3b8aSm8uY/3kcyzCrXvVc7Z41a+I6treyEkIhrMXFA3Yx6ZM6/h2DZzHrESQv73iZp7c+TaOnkVxHLhdMvYDnTn+O1895navnXs3Y7LEHPPa2o25jhHMEVe1VPF7xeFzPRUcNBAyh3jH1wCiRvry4/UVqumoozCjkspmXDbqdtagofN8dCuGPonvEDE4YewIzR8zEE/Tw849+Tm3X8McP1IdX/tlKS42v5S49h8xjj0X1+6n/+W0JjbwTmIPu0l5UuohMm1gJPxRRi9rvvfce7733Hu+++26/D/1rAsGhRmVLJT2BHrLt2UzNH/rkmAj0E3PJHXdQcNFFyJpjOtnIWgSJMkhZpBE/kilEbYFAIIiU3qzGBIrawzq1RwFh15bS3j7s/vQVO7FEj0DvecK0osjWNiAFTu1svSgyfTK1Q2638XO1FplXGA0HgajdGH30iI7hlJHAK8kAACAASURBVI4jV9soiZwYeUlk7/G1CJRWIWqngmBTE+1/+xsQdmnr6O5V7xYhavfmaccfPaKjlyB6v6g0bZ8HG61PPUXna6+BxcLoRx/FPvZA8Xd/XAsXAOBZuy6u6Ja+JZEDYddE7cC+fYOer5eMXUKuIxerbOWkcSfxyAmP8N5573H70bczt2juAaWLfcl35vPfX/tvIJwbXdFYEfNz0fHt2g2BAHJmprEKbSA6fB38YeMfALh23rW4bIObxSRJMtza/j3Jy9XWj718wXIskoVP9n3Cmf86k4fWP0SXf/DJ9ED9PgCspSX99lN61y+QMzPxVFTQ+pf/TfjYBfGxqmYVACeMOSG1AzkIiDoceMmSJYkYh0CQtuh52gtGLsAix970HQuqouDXb5JicP6YiUUvixwgfkT1+1F94WVjlmwhagsEAkGk2MZrTu1Exo8YTu2BRW3Z4cBaXBzOjq2txTrMyrtQl1YSGWPclBE/0tODqqpD3vRGQlATAvVs5GShuxXTyamtu7SljAzkTHNXdOmvn3SNHwk2aa/zGAoyrQUFBKqr44r/8OvuwJic2mFXvXBqp4aWp59B9fnImDcP19FHG183nNqbt6CGQoNGQhwO6HnarjhLIvvinKGJ2pWHp6jd/f77ND7wIAAjb/s5mUcfFdHjMmbNQsrIQOnowLejCmcE2dEDoZdEZgxQEglgzc/HUlSI0tSMb+dOMubMOWCbAmcBby59EwmJbHv01wQnjDuBMyedyas7X+W2j27jb2f8bUiBeTh8X+p52lOHvLZ4ctOTdPo7Kc8r5+zys4fdr338eHyVlUkti9RZWLKQl854ifvX3s/q+tU8veVpXql6hR/N+xFLJy89oO8raDi1R/X7uq20lOJbb6HhjjtpeuQRsk84HntZWbKehiAKWjwtbGzaCIQnjgRDE9OZub29nQcffJDLL7+cyy+/nIcffpiOQdybAsHBji5qH1Ua2YWGmQT27UP1+ZDsdqPIK1Xo8SPKAPEjSp/Ze12sEAgEAsHw2Mdp7p/q1GVqQ3RlkXqGdOxObe08oSioXm9M++g3Ht2pnZ8ap7bq9xNKYs7mUOiitrWwMO7Jgv0xMrXT3akdg6htMYoaY3Nqq34//poaAOyTondq6xMyQeHUTjrBtjbaXnwRCLu0+/7dOMrLw7nPXV0pEbPShZDPh3erJoCaKWpPP3xFbd+uXdQtvwlUlbzzzyf/wgsjfqxks+HSHPPx5Gp7Daf2gXnaOkZZ5I6ByyIBcuw5MQnaOrcsuoWRrpFUd1Xz6IZHY94P9EbZOKcNvrq6prOGv277KwA3LbgpItNa76q6PXGNL1am5E/hyVOe5PGTHqcsp4xWbyt3r76b8147j0/qPum3rZGp3ceprZN37rlkHnMMqs/HPhFDkrZ8UPsBKiozRsygJPPA36OgP1GL2uvWrWPSpEk8/PDDtLa20traykMPPcSkSZPYsGFDIsYoEKSMgBLg88awM2FhycKkH18v5rBPmIBkSa5LfH8suXqm9oFObT16RMrIQLJGvQBEIBAIDlvsZVoBUXVNXMuIhyIwTKY29JZFRpIXqcTr1HZlgCYcmRFBoucgJ9up3XcSN13c2sEElETq2LTXTyBdRe2m2ONH9Dz2WEVl/969oCjIWVlxxZ8owqmddFr/8hdUtxvHjOlkHndcv+9JNhvOGTOAw7ss0rv1C9RAAMuIEUa5sRk4pkwBWUZpbk7b95VEUX/7HYS6u8lYMJ+S22+LehJSz9WOVdRWOjuNiRrnrJmDbuconwyAb4hc7XjJsedw1zF3AfDXbX9lTX3sWeG+7V8C4JgyuKj9yIZHCIaCHDPqmIgL+HRHcyontyRJ4rgxx/HyWS/zs0U/I9eRS1V7FVeuvJKrV17NrvZdKF1dxn25reRAMVSSJErvvgvZ5cKzYQNtzz+f7KchiAA9T/v4scendiAHCVGL2jfccANnnnkme/bs4eWXX+bll19m9+7dfPvb3+b6669PxBgFgpSxpWULnqCHfEc+5XnlST9+b/RI9K4fs5GHiB/RT55mFMcIBALB4YStpARsNlS/n2BDQ0KOoYt9tiGd2mFRO1BXN+z+QoZTOzZRW5Jlo+zYDFE72JaaTG3JYumNUkkXUbs5drfycBiZ2ukaP9IYe/yIkWkdo1Nb7z+xT5oYk0PeiB+JI9NbED1KZydt//scAIVXXTXg786pRTMczmWRevRIxhHzTF0BImdkYJ8wAQDfYVQWqQYCeDZtAmDUr36FZLdHvQ/XokUAuNeti6jgeX90571tzJghI8cMp3ZV4kRtgGNGH8P5U84H4I6P76DbH1tXhXf70E7tisYK/m/v/yFLMssXLI94v71O7dSv2LDJNi6afhFvnPMGl8y4BKts5aO6j1j66lL+59/hyQE5N3fQ1dO20aMpvvmnADQ+9HBaPCdBL96gl0/3fQqEi0IFwxOTU/uWW27B2seNabVaufnmm1m3bp2pgxMIUs1n9Z8BsKBkAbKU/Bw9X1XvTVKq6Y0fOVDUVrSbeVmI2gKBQBAVktWKXYv+SMSNhaqqve7dIRykdiN+ZHhRu9epHVv8CPS6nM0oWVQ0ITDZojb0RrAo6SJq627lBDi1e+NH0lTUNpzasWRq60WRsTmldVE7lpJI6F1loGjxMYLk0PbXvxLq7sZePonsk08ecJuM2eEc4cPZqe2pMD9PW+dwLIv0V1dDMIjscmEbNy6mfThnz0ZyOFBaWgwTVDR4Nm/R9jNwnraOY3JyRG2A5QuWMzprNPt69vHAugeifnywpQWlqRkkCcfkyQd8X1VV7l93PwBnl5/NlPzIs8j1VXXB+gZCJsSmmUGuI5ebF97Mv876FyeOPRFFVViz6U0AuvId+JXBY9Hyzj8f19FHo3q91N92e8JWCgqi57P6z/AqXkozS5maP/iKA0EvUat0OTk5VFdXH/D1mpoasmNchioQpCtrG8JLuo4qSX6eNoBvl146lHyX+P7o8SMDZWqHusNOOyFqCwQCQfTYx+llkQdeX8WL0t4OgQAwtNBpGx15prbu1NbPC7Ggny/idWqrihJ+jvRGSCSTdCuLNDK1ixIgamuTIqHOzrS5qe9LJNnxgxGvU9u/M75Sb4v2t6l0dKBqf6+CxBLq6aH1mWcBKLzyqkFLIPUSPW9lJWqaZOcnE1VVcX9eAZibp61zOOZq61Ee9vLymJ3vst1OxrzYc7W9W8KidsasYURtzakdbGhI+OSty+bi7q/fjYTEP3b8gw9rP4zq8b7t4ZJI27ixA7qU/73332xq2kSGNYNr510b1b4t+fnhHg1VDU9KpBHjc8bz6ImP8udv/JlZwXDkSKW1ibNfOdsoG9wfSZYp/eXdSC4X7nXraHvhhWQOWTAEfaNHzO5GOVSJWtS+4IIL+MEPfsCKFSuoqamhpqaGF198kcsvv5wLoyg4EAjSjXV7Wrn6ufXUtXsA8Ck+KhrDF3ELS5Ofp62qatw3SWaiu9FCA8WP9GjxI9lC1BYIBIJo0R1AibhR0l21lvz8IZc4940fGc6xo6/YkU1wascraivt7aCqIElY8vLi2lcs6GWRSlf8jnMzUDRXviUBTm05OxvJ6QTSM4IknvgR64g4ndqaU9Ieo1PbkpsLWndKUCs+FSSWthdXoLS3Yxs/jpzTTh10O9v48cg5Oah+P94hyvIOVQK1teEVBDYbzpmDZy/HinP6NOAwE7V3hkVtXTCOFSNXe030orZny/AlkRBeqWsdORJIjlt7YclCLp5xMQD//cl/0+E70Ew1GF4tT9s5QJ62X/HzyPpHALhs5mUUuaI7T0iSlFYRJAOxqHQRlxZ9G4Ceggxqumq49O1LeWn7SwNG1NjHjKF4+Y0AND74UESdKoLEElJDrKpZBYg87WiIWtR+4IEHWLp0Kd///vcpKyujrKyMSy+9lHPPPZf77rsvEWMUCJLC05/s4a0tDbxasQ+AjY0b8Yf8FGYUMiFnQtLHE2xsDGdVWyzGSTSVWPRM7aHiRzKFqC0QCATRYjOc2ubfKEUq9NlKSsBiQQ0EjLiSwTDiR2LM1IY+onZ3fKJ2UCuJtOTmpqSoWNYmc0Pd6ebUNj9TW5KkPhEk6VXqFurpIeR2A2AtiqGosSB2p7aqKPh37wbAUR6bqC3JMpaCfG0MIoIk0YS8XlqefhqAwh9eOeR7hyRJZMwOC3+HYwSJkac9Ywayw2H6/h2aUztQXZ02MU6JRheH4+1M6lsWGU2udrClheC+epAknDNnDLt9snK1dX58xI8pyymjydPEvWvujfhxei67Y4A87Re2vUBddx1FGUX818z/imlc+v14IE1FbQBF62Y585hlnDL+FIKhIHevvps7Pr4Db/DAFVb5F16Ia+FCVLdbxJCkAVuat9DibSHLlsXCkck3VR6sRC1q2+12Hn30Udra2qioqKCiooLW1lYefvhhHAk40QkEyaKp0wdAY1f4DX9NQ7h5eVHJopQs/fDrpUPjxsVUIGI2vfEjAxVFivgRgUAgiBX7OO1GqToBoraRMzy00CdZrWFhGwjUDe3WMYoi44idk7NMcmprrlaL5rRNNpYs3amdHmJMb6a2+aI29CmLTDNRW3/essuFJWvgcqyh0J3aSns7ajAY1WMDdXWoPh+S3Y5t9Oioj22MQc/1jjECRRA57X//B0pzM9ZRpeSeecaw2xtlkYehqO02SiLNjx4BsObnYy0tBXrjIw51/Fpnkp5XHSsZc+cg2WwEm5qiElr16BH7hAlGhNZQGKJ2klYqOK1OfrX4V8iSzBu73mDl3pURPc77pebUntpf1G73tvPEpicAuO6I63DZXDGNK92d2gCB+rConTl6PA8ueZAb59+ILMm8svMVvv/W96nr7t+bIskypb/6JZLTifuzz2h/6aVUDFugoUePLB69GJvFluLRHDzE3HzncrmYPXs2s2fPxuWK7Y1BIEgnmrrDonZTV/hfPU97UcmilIwnnUoiQVsaC4Q6BsrUDi+7FqK2QCAQRE9v/EiN6S6ZaCIZbGMiy9XudWrHHj9iMSt+RIuLsObnx7WfWDGc2mkQP6KGQoZzPRGZ2tBbwphu8SOBOKJHgHB0jSSBqhoZ7ZGil0TaJ0xA0iJEYsGIQBFO7SEJud00PvQwXe++G5U7VUf1+2n5058AKLziCiTb8MJBxhytLHLT4SdqexKYp61zOJVFqoEAvj17gPid2rLTiXNu+LXZE0Wutl4SmTFMSaSOLr77k+TUBphTNIcfzPoBAHevvptW79CTfWogYIzPMW1av+89sekJuvxdTMmfwpmTzox5TMa12p50FrXrAbCNKkWSJC6bdRlPnPIE+Y58KlsrueD1C/hk3yf9HmMfN47iG28AoPH+B+K+LhPEjogeiY2IRO2lS5fSqbkzly5dOuSHQHCwoovZTV0+3AE3m5o3ASkUtdOoJBJ6M7WVrq4DRBdd1BaZ2gKBQBA9ttJSsFpRfT6CX31l6r4jdWpDb672cLmKpji1M/WiyPjE4GCqndrZ+rnxwFVMyUZpbwdFAUlKWGlmusaPRPM6HwjJYsGiTYxE65T27zKn/8RSqLnFhVN7SFqff56WJ5+k9pofUX3ZMrxRunvbX3mFYEMD1qIiciO8d3VqZXq+nTsPK8FH6e7Gp7lf9VLCRHA4lUX6a2ogEEB2ubCOGhX3/vpGkESKHqPjnBmhqG04tZMnagNcNfcqJudPptXbyt2f3j3kJJZv927UQAA5MxNbn5/r3s69vLjtRQCWL1iORY594jHdndpqKERAix/RV94BHF16NCu+vYKZI2bS4evg6pVX86fNf+r388y/+GKspaWEenpwV1QkfewCqOmsoaq9CotkYfHoxakezkFFRKJ2bm6uEb+Qk5NDbm7uoB8CwcGI2x+k2xdebtrUHS6IDIaClGaWMiZ7TErGZCxNSzOnNqHQARf0SrfI1BYIBIJYkaxW7JpL2uybpaic2lp0QqC2bsjt9KiNeJzaphVFak5tPY842ejCfjo4tfUsdEt+fkTu01iwaaJxIF1F7TiyxK0jtFztKMsifTvjK4k0jm/Ej8RWVnm40Fe8c69eze5zllJ/539H9HNTg0FanvwjAAU/WBZxRrStuBhrSQmEQni/+CK2gR+EeDdtglAI2+jR2EbGNmEUCYdTWaQuDNsnTTIl3jLTELXXRbRyQVVVPFu3Ar2xOsNh10TtYFMTygArdhOF3WLnnsX3YJWsrKxeyZu73xx0W59WEumYOhVJ7pW4Hln/CEE1yOLRizlm1DHxjUcTtYONjUaHQzqhtLRAIACyfMAEb2lWKc+e9izfmfwdQmqIRzc8yvXvXU+3P3ztIskyrgULAPCs35D0sQtgVe0qAOaPnE+uQ+iq0RBRo87TWpEGwDPPPJOosQgEKaO5y2983tTlY01DeIZyYcnClORpA/g05489zqVpZiE7HEgOB6rPh9LRgaWPQ09kagsEAkF82MaPw79nD/691WQefbRp+41G7NOF9UDd4KK26vejejyAOaK20h2vUzvsatUFwWRjSaOiyN487cREj0CfTO00ix8JNsYvalsKRgBV0Tu1tfiRWEsidayGU1uI2oOhKoohuIx+7Ld0vvkmXW+9TftLL9H5xhsUXnM1+ZdcgjxIF03nG28QqKnBkp9P/vnnR3XsjNmz6GpowLN5i+GOPdRJdJ62ju7U9u3cier3p0WXUKLw7TSnJFInY948sFoJ1tcTqKszzuODEWxoQGluBovF+LkPhyUrC2tpKcH6enxVVbjmzzdj6BExrWAaV869kscrHueuT+/i9V2vU+AsYIRzBAXOAgoyCsL/VnyMBNj65JRv+GoDK6tXIksyy+cvj3sslrw8LHl5KO3t+Kurce4Xc5Jq9OgRa1HRgBPbDouD/3fM/2NW4Szu+ewe3q15lwvfuJBHTniESXmTcM0/ks7XXsO9QYjaqUDP0z5h7AkpHsnBR9Q18SeeeCIvv/wyeXl5/b7e2dnJ2Wefzbvvvmva4ASCZNHU3dsG3OUN8ll9b0lkKgi2taFoN+qOCRNSMoaBsOTk9M7S97loEvEjAoFAEB/2cePpAfwml0UaTu1iczK1+xYixjORqT821BOf20mPakiZU9soikwDp3ZzEkRtI34kzUTtOONHIDantqqqvZnaE+OMHxFO7WHxbttGqKcHOSuL7BNPJOeUU3BffDFf3XMv3q1babz/AdpeXEHxzT8l++ST+xlTVEWh+YknASi47DLkKDuhnLPn0PXOSjybN5n6nNKZ3jztxEWPAFhHjULOzSXU0YGvqgrnjBkJPV4qMaskUkd2uciYNQtPRQXuNWuHFbX1slPH5MnITmfEx3FMLg+L2juSK2oD/GD2D/io7iM2Nm3ko7qPBtzmZ58qHAE80PF3PvvrOxRkFNDlD1+vLJ28lPJ8c37e9vHj8bS349+zNw1FbS16RCteHYxzp5zL1Pyp3LDqBvZ07uGiNy7i7q/fzRLt9+rZuBE1EEjYiq9Es7tjN/d+di9fuaOL83Nandz5tTuZOWJmgkY2OB2+DjZ8FZ5MWDJ2SdKPf7ATtai9atUq/H7/AV/3er18+OGHpgxKIEg2ep42ALKXL1rDSwtTJWrrrh/bqFFRX3QnEjk3B5qaCHX2zw414keEU1sgEAhiIhFZjaqq9nFqR5CpPVoTtRsaUINBJOuBl4mK9v4vZ2XFVYpnVvxIsE13aicmQ3o4eosiU+/UVprD8SOJKomEPk7tdI0fiWDyZjB6ReXIndrBxqbwxL4sYy8ri/nY0OvUFqL24HjWrwcgY/6RxvuPa/58yv72Eh2vvErTQw8RqKmh7rof41q0iJE/u9Vwo3a98w7+XbuQc3LIv+jCqI+tl+p5tZI9M6jv8PDhl82cdcQoHNbY308TgRoK4dGydV0JdmpLkoRz+nTcq1fjraw8pEVtX1Vv/IhZuBYuDIvaa9eSt/ScIbf1bglHj0RaEqnjKJ9MzwcfGuNPJjbZxtPffJpP6z+lxdNCq7f1gI+JTV8AKnuLJLoCXXQFwufkTFsmP5r3I9PGYi8bj2fjRvxa2Wc6EajfB4C1tGSYLWF20WxWfHsFN39wM2sa1rD8/eVcNv1SvpWTQ6izE29lpVGQezDxeePnXPfudXT4YovJ+dXqX/H86c8nfaX+h3UfoqgK5XnljM0em9RjHwpELGpv2tQ7K/3FF1/QoIXQAyiKwttvv81oLYtRIDjY6CtqW1x7CKkKY7PHUpo19ExnovBps/j2OJeymo0lJ5zvpHT0F7VF/IhAIBDEh338OAACe6tN26fS3o4aCACRiX3WokIkux3V7yfQ0DCg40sXb+Wc2EsiAeTM8IRtKM74kV6ndqriRzSndlrEj+iiduzC7nDoonaoq4uQx4OckZGwY0VDNNnxgxGLU9uvlXrbx44dNPIiUvTXsIgfGRz32nUAuOYv6Pd1SZbJO+dscr5xCs1/+hOtTz2Ne80adi/9DnnnfoeiH/+Y5t//AYCCSy7BEsP1ql4WGaitJdjaaspE2n1vbeNfFfuwW2XOPiK97qN9VVWEuruRXC4cU6Yk/HiGqP1FJXwn4YdLCWowiH/3biAsEpuFa9FCWv74x4jKIr1btJLIWbOjOkZvWeSO6AdoAjaLjePGHDfg94Ktrezo+joAf77mHdplryF+l+eXU5hh3kSvLY3LIoOGUzuyAtIRGSN44pQneHTDozyz9RmernyGaeNymbAF3OvWH3Si9jt73+HWD27FH/Izu3A2PznyJ8hSRBWC+BU/N6y6gc3Nm/lP9X84efzJCR5tf1bVrAJE9EisRCxqz5s3D0mSkCSJE0888YDvZ2Rk8Nhjj5k6OIEgWfQVta2u8A1KqlzaAD7tJskRZ+mQ2ej5qUpn/9lPXZQQorZAIBDEhuHUrq5GDYX6FR3Fiu5eteTmRiS4SbKMbdQo/Hv2EKitHVDUVjq1ksjs2PO0AUNUir8oUndqpzZ+JD2KIrXfdwLjR+SsLCSnE9XrJdjUhH3cuIQdKxrMiB+JxaltlESa4Lo0nNqtraa9BxxKqKqKe50mai9YMOA2cmYmxT/5Cfnnnkvjgw/R+eabtP/t73S88iqq34/sclFwycUxHd+SnY19wgT8u3fj3bKFrOMGFtiiYV97OP6wti39SueM6JE5cwZctWM2h0NZpL+6JhzrkJGBbZR5xqmMI44Ei4VAbS2B+vpB4ydUVcWjObWds6KLWNDjUlLh1B4O3/btANjGjSM/v5R8YEJuYuI7E7Gqziz0TG1byfBObR2rbGX5guXMKpzF7R/dzsdFbUwA3BvWM2LZZQkaqfn8ZetfeGDdA6ioHD/meO477j5ctuhWu18y4xKe3PQkv/38txw/9niscuLf9yAsqOuxOkLUjo2Ir5Z2797Nzp07UVWVNWvWsHv3buOjrq6Ozs5Oli1blsixCgQJo6m7j1M7M/Witl+7SYq3dMhsLLlhEWP/+BHduReL80UgEAgE4bgprFZUn8+0aAejPC8Koc82TFlkqCv8/t+3LDgWzIgfUYPBcMcDYBmRIqd2jp6p3YWqqikZg05Qjx8pTJxTW5KktIsgCXk8xnWIKU7tKJzSulPbjNI3i+78DQYPuM4SgH/XLpS2NiSHg4xhBDnb6NGMfuhBxv/1rzhnz0bVojPzv3cRlv16oaIhY07Y3erZtDnmffSlwxNeSdPcfWC0Z6rxGCWRic3T1jHKIrdtQw2FknLMZNO3JNLMSStLVqYR2TKUWztQXU2osxPJbscZpfveoXUGKC0tBNvaYh9sAvBqorZz6tSEH8s+vgxIU1FbS1KIZcLkm2Xf5Nwp57JtTDh2w7N+Q8qvaSIhpIa4b8193L/uflRULph6AY+c8EjUgjbAZTMvI8+Rx+6O3by689UEjHZg1jWsoyfQQ2FGITMLk5/nfSgQ8bvp+PHjKSsrIxQKsWDBAsaPH298lJaWYokjV1EgSDW6U9tu8yI7wrOcC0tS12zeWzqUXqK2PED8SMjvN5a3C6e2QCAQxIZktWLXYtz8e8y5WerN045c6LON0cYwSFmk7tSWc+JzahuidhzxI/oNnGS3Y8nNjWs8sSLr4n4ggOrzDb1xgukVtRPn1IbeKJt0EbX117nkdMZ1HWI4tVujcGrrcXGT4iuJBJDtduPvSuRqH4h7nZanPW8eUoRRL64jj6BsxYuMuv9+Cn6wjBFXXhXXGPTIBrPKInVRu6UnfUXtROdp69gnTEByOAi53QSqzYvhSif8Vb2ittm4FobvW4cStT1aHrxj+rSoSwDlzExs2jVKqiJIBsO3LSxqO5IhapeFndpKSwtKnPFpZmNkapfEtgrg/Knns6sE/BZQ2tqMqJx0xRv0ctP7N/Fc5XMA3DD/Bm476jYscmy6ZJY9iytmXwHA4xWP4w16TRvrULxX8x4AS8YsiTguRdCfmH9qX3zxBW+//Tavvvpqvw+B4GBEF7VHle5DklSy5FEUuRLndBoKpbuboHaj7jDhJslMeuNH+ojafU7oukghEAgEguixabna/mqTRG09ZzgKp7YeORKoTbBTWxMfFXfsy+79u/cA4TzyeEor40F2uUArFEp1WaQhasdRlhgJ+iSJLianmr7RI/GUO+lO7WgEZd8ubWWdSSKVdYQoixwMI3pk/vyoHifJMrlnfJuRP/0plqz4rlN1p7Z38xZTXIztnrCY3dKd2gmx/Qm2thpO1Iy5c5NyTMlqNUTJQzWCRJ8E06M8zMS1MBzJ414zuKjt3RIWtTNmRlcSqWPkaqdZBIn3S82pPS3xorYlK8tYGWaWAcEMQn4/itarEWu0zYTcCcwfczRVWiS3WyvmTUfavG1c8X9X8M7ed7DJNu479j6WzVoWd8HjBdMuoCSzhEZ3Iy9ue9Gk0Q6Oqqqsql0FiOiReIha1N61axdz585l1qxZfOtb3+Lss8/m7LPP5pxzGLkzfwAAIABJREFUzuGcc4Zu2xUI0hVd1M7M3RP+N5T4k+Jg+LUbJEtRYcqcZ4Ohx4/0zdQ2SsNcrpSJCgKBQHAoYB8XdgCZ5VKLyamtObECgzm1tZU6cq45Tm0CAUL+2FyK/j17ALCXlcU1lniQZLlXoE9hrnbI6zUiKxLt1LZpkySBNHNqx1uQqQsVqttNKILJFqWjA0WbSLBPMMeEYIkhAuVwwRC1Fw6cp50MHNOmgc2G0tpKoG5fXPvyBhS8gXDMRkuaxY94KsJ52vbySUm9F3FO03K1vzhURe2wGGxGBv/+uObPB0nCv3cvga8Gfm/26CWRs6MridTRxXh/GonaaiCAf4fmgE+CUxv65mrvScrxIiH41VcASA4HlvzYO0YumHYB28aGheEe7T033ajpquGSty6hoqmCbHs2T5zyBKdPPN2UfTssDn4070cA/HHzH+n0JzYKbFvrNhp6GsiwZnBU6VEJPdahTNSi9k9+8hMmTJhAY2MjLpeLrVu38sEHH7BgwQJWrVqVgCEKBIlFVVUjU7tHDs/0Sl7zZ9AjRS8dckxK3RgGQ18WG+oTP6KIkkiBQCAwBbMLiGIpzxsuU1sxnNpxitqu3rzDWCNI0kHUBpCztdLL7tQ5tYPNYRFUstt7I1ESRG+mdpo4tfUVCXGK2nJmphFrEWwdPjNWv16zlpTE7QDWsY4IT0jov09BmEBdHcH6erBak+YcHgjZ4TCyiL1b4svV7tSiRwBaetLLqZ3s6BEd54xwrvah6NRWg0EjzkF3PJuJJScHh1a2OVAEiaooxmRBxuwYndqTJwPg25E+orZ/zx7UQKBfPEqi0a850ilXu29JZDxu5ePHHk/9pHDvQOtnH5syNjPZ3LSZi9+8mL2deynNLOUvp/7F9MjYMyaewaTcSXT6O3l6y9Om7nt/VtWsAuBrpV/DaXUm9FiHMlGL2p9++il33XUXhYWFyLKMLMssXryYe++9lx//+MeJGKNAkFA6PAECiopk6abFHz459XSUpWw8fr1EZGJ6RY8Ahlujf/xIuOQr0TfRAoFAcKhj1+NH9prk1I5B7NNF7WBjI6EBMqJDWqa2XpAYK5LFgqQJ27GWRaaLqG3J6i2LTBVKszaBUVgY9/Lb4TBE7bSLH4lP1JYkyXBrK63Di8pmlkTqGBEoERz/cEJ3aWfMnNlvQiwVOE0qi+zoI2q39vgJhdKnlE0XP2N19MaKXhbp3bYtqcdNBoHaWlS/H8npTJj4mjlErrZ/1y5UtxvJ5cI+YUJM+7fr8SM7dqRNiaBXz9OeMsXU8s2h0A0IgTQStYOaqG0tjS16RMcm25h1wrmEAFtDy6Cu/1SwqmYVy/69jFZvK9MKpvHc6c9Rnp+ACSLZwo+PDOuaz33xHE3uxF3r6Hnax489PmHHOByI+i9fURSyNfGqsLCQffvCS6/Gjx/Pdq15ViA4mNCjR7LzwiKC4i2hpdOWspO17vwxo3TIbAYWtbX4EZNcSgKBQHC40tf9owaDce8vFqe2JS/PEI0GWl6vC7dynE5tADnz0BC1ZU3gT2WmtpGnHadbORKMTO10iR9pNCd+BMBaEHmutpklkTqGqC6c2v0wRO0F0eVpJ4KMWXqudnyidnsfUTuk9v9/qjGy4hPgKB4Kx5QpIMsozc1pE29kFnr0iGPixISJr0OVReolkRkzZsQcF+mYOBEkCaW9PW0iknxanrYjCXnaOsaqujTK1A7Uh/u4bHGK2gBnz72I6uLw5PiuD9+Ie39msGLbCn7y3k/wKl6+PurrPHPqMxS7Ir+2jZYTxp7A3KK5eBUvf9j4h4Qco6GngcrWSiQkloxdkpBjHC5Yo33ArFmz2LhxIxMmTOCoo47iN7/5DXa7nSeffJKJaegsFQiGQxe1nTm78QCKexK+YIguX5AcZ3TN0Gbg26k7f9IvfsRixI/0ydTWlo1bMkX8iEAgEMSDbcwYZJeLkNuNf/duY6lvLKiq2qcoMnKxT5IkbGPG4PvySwJ1tTgm9nd06bnN8Tq1ASyuTBSaY4ofCfl8BDRjRapF7XRwausTGJaixOZpQ9/4kfQQnYJN5sSPQJ9M69bWYbf16U7tiWY6tbWiyAiOfzjhXqvlaS9IXZ62jl4W6dm6FVVRYhYIO9z9ReyWbh8Fmfa4xxcvSneP4fpM9qpROSMD+8QJ+Kt24qusNPL7DwUSWRKpk6GVqPp37SLY3NyvX0EviYzHfS9nZGAbO5ZAdTW+qqqE9zdEgu7UdiYpTxvAXqaL2nuSdszhMOJHSkvi3ldJZgndM8ZCYzVfrnqFqedeFvc+db7q+YpXd76KV/GihBQUVSEYCqKoivH/QCjQ7/9d/i5W168G4Jzyc7jja3dgkxOr0UiSxPVHXs9l/76Mf+z4B9+f+X3G54w39Rh69Mi84nkUOAtM3ffhRtSi9u23306P5qi56667+Pa3v82xxx7LiBEjWLFihekDFAgSjZ6nLdnDM5z24Hh8hMXuZIvaIa/XKOdypKFTW8/UVrq6UEMhJFnuzdQW8SMCgUAQF5Is45g2Dc+GDXgrK+MStUOdnahaAWO0Yp9t9OiwqD1AWaSpTm2tiyEWp3aguhpUFTk7G0tBam8G9PNfKIVFkcEmzamdBJFBF7VD3d2E3O6Ux0Hogr4ZApi1QBOVW4YXlf1GB0oinNrNpu3zYCfY3BwWjyQJ15FHpno42CdORHK5UN1u/Lt2xfw+vb8zu7nbz+SRwz+u6bHfEerupvjWWxISNeTfrRXWFxZiycszff/D4Zw2HX/VTryVlWQtOXTci70lkYkTta35+TimTMH35Ze4160j59RTje95dFF71sy4juEoLw+L2juqyDz66Lj2ZQY+LSkgWSWRAPZx4ag4paMDpb09JX8n+xNoMCd+RGfCsafDqj9g27IDd8CNyxb/eT6khrjx/RvZ1LQppsdfM+8arppzVcIj1nQWlCzg2NHH8mHdh/zu899x/5L7Td2/LmqL6JH4iVrU/uY3v2l8Xl5ezrZt22htbSU/Pz9pLzCBwEx0p3ZADrcG59lG06V9fVJRct3H/j17IBRCzs3Fkgaz3/tjNKCHQoS6u7Hk5Bg38SJ+RCAQCOLHOX16WNT+opLcM8+MeT+6i1bOzUV2OKJ67FBlkUZRpAlObTkzfN6IRdT29YkeSfX1pyUtiiJ1UTvx8SNyZiZSRgaqx0OwqclYip0qzIwfMZzawyytD3k8vSsFTM3UFk7t/XGvWw+EoymM69AUIlksZMyciXvtWjybNscsanfsJ2pHUhYZbGuj+fHHAci/8LsJWaVirBhN0Qps5/TpdL7+upHrfahg/FwTHOniWrgwLGqvWWuI2qrfj69SL4mMLyfdUV5O97vvGiJ9Kgm2tRnXOo7JU5J2XNnlwlpcTLCxEf/evWSkgagd3Kc7tUeZsr/ZJ53Prrv/wNivQry55e+ce8T3497naztfY1PTJlxWF2eVn4VVtmKVrFhkCxbJgkW29Pu/VbYaX5+cN5l5xfNMeGbR8ZMjf8JHdR/x9p63uXTWpcwcEd+kkE63v5vPGj4DhKhtBlGL2gNRkGKHjEAQD01dPpA9BAjfqBdnjKEGD83dyW8i73shmeqb9IGQHQ4khwPV50Pp7AyL2j1a/EiWiB8RCASCeHHO0IqyKuO7oTfytGOIo7CPCZdY+WsPFLVDHbqobUamdljUVmKIH0mXPG0A2YgfSaFTO4mZ2pIkYS0uIrC3mmBjY0pF7ZDPh6JFopmTqR2ZqOzfvRtUFUtenpHDbQaGqJ0mebXpgJ6nnQ7RIzrO2bPDovaWzeR9Z2lM++hw+/v9v6XbP8iWvfi+3NH7eVVVQt7//Cnu9jHOgYdQWaSqKPiNnHLzJsEGwrVwIW3PP98vV9u7YwdqIICcm4tt7Ni49q/Hp6SDqK27tG3jxmFJsrnKPn58r6g9d25Sjz0QZsaPADhKSvEW5+FsbGftyuf5zrxL4tImuvxdPLz+YQCunHsly2YtM2WciWZqwVROn3g6b+x6g0fXP8qT33jSlP1+vO9jgqEgZTllTMxNv9X5BxsRidpLl0Z+sn755ZdjHoxAkAqaunzI9vDNf1FGESW2PMBjOLiTibGUNcEXPPFgyckh2NQUvokcM6Y3fiRLxI8IBAJBvDin997Qq6oa802EXrIVSySD4dTeL34k5PMZkSayGaK2ET/ijvqxvaJ2al3CALLu1E6DTO1YJjFiwVZUHBa1teOmCj12RbLbkU1w8VoLtfiPYURl3YRgN/l6zTIi/PtT3e60iHZJBwxRe2H6iNp6rrZ3U+xlkQc4tSMw0+giHoBvxw6yTz455uMPeowUd/s4pk0DwhFTSlcXlkMg3jBQW4vq8yE5ndhGj07osfS/E9+OHQTb2rDm5+PVSyJnzozbNKWvTPDt2BHXNYoZ6BMfzqnJc2nr2MvG4167Ni3KIpWuLqObxFZijqgNkL/oa3hef4vsyho2Nm2Myyn9+42/p8XbQllOGZdMv8S0MSaDa+ddy7/3/JtP6z9ldf1qji6NP3ZHRI+YS0TVu7m5uRF/CAQHG03dPmR7+KZofM54irLCy7RTIWobN0kmlg6ZjZyrlUVqZWG98SPCqS0QCATx4igvB5uNUEcHQS3eIBZ6Rc7o3auDitra+z6SZLis40HODAt2scSP6DeS6eDUtmT39k2kit74keSI2nr5aCDFZZFGGWpRkSniiiVCp3bvyjpzr9fkTBeSFhckIkhA6ew0hFyXVoKXDjhnaaL2l18S8sV2v6Bnamc5wh6z5p4InNo7vuzz+Y4htowdvyFqp8Y9aM3PN3KBfYeIW7v3/m5CzMWikWIdMcKIRNInhDxbwpMv8ZRE6tgnTABZJtTZaUQ/pQrf9vDfg2PqtKQfW1+h5N+belFbd2nLubmmXJvp5C4Ki7fTalVWbI+9O29n+05eqHwBgFsX3YrNktzOsngZkz2G86ecD8Cj6x9FVdW49hcMBfmg9gNAiNpmEZFT++mnn070OASClNHU5UN2hE/KZbllFHpTJ2r7d+l5a+kraltywpNXirYEPdQtMrUFAoHALCS7HUd5Ob7KSryVlTG7uoyc4Vic2toxlfZ2lO4eY1lvb0lkNpIckS9iSIxM7YM9fiTFTm1VVZMvaheFX1epFjWMyRsTSiIBrBFmaieiJBK0aJcRI/4/e28eH0lZ4P9/6ujqM/cxmTPJ3DPMwQwMoHiAgAoiKiqsyDKCgLKugO6Ki7uuv9UVBEXh54qgq+ACixzCioq6gogcq8McDMwMc2Qmmck1udNJX1VdXfX946mnupN0ku5OHd2d5/16zStJp7vqmaTTXc/n+TyfD5I9PaQs0lhgmq/Edu8GdB1Sc7Mj0Tq54lm8CEJtLVLDw5APHiwofoA6tZc3BPFGVzgnp3bicKaobX38g6YoUDo7AbhrsPGtW4dIby8Sb72FwLZtro3DKujvyin3e2Db6VCOHkXstddQecEFSOzbDwDwb9ww52PzXi+kZcugdHRAbjsCzwJrXnsLIXGILHp4XXBqe4pI1FZPngQAeCwqiaTQhcRVPcAdR3+HW7bdghpfTV7H0HUdt++4Haqu4tyl5+LsxWdbOkanuG7TdXi67WnsG9qHPxz/A97b8t6Cj7Wnfw/GlDFUe6uxucH96JpyYO4zEgajxCHxI2Qy2FLZknZqO5yprasqZMN55lY5Sy7QHNXUGMmwpGIEy9RmMBgMa/AZ26/nUpQ1F6e2EAqZhWyZZZHUqW3VdnDBjB/Jz6mdGhszRUepucWSscwF+vNIuVQUqYXDQJIIZE6VTFMR2f34EetKIgFAoJnWIyPQNW3a+8lGPq4dwp/AyiJN4obT1F9E0SMAWXyghXvxAiNIRmOGqF1PFvdmy9TWNW2CkC23t5txUFahtHeQwvqKCnM3hhuYMVxvlYtT2xC1bS6JpNCFgNhrO6HF46ar37dh7qI2kM7VVlzM1dZVFYrx90CvmZzEayyoK8ePz9m5O1eStCTSwugRAJCWL4dQXQ1JBZb2JPF029N5H+O5E8/hr71/hcRL+NK2L1k6Piep99dj+ynbAQDf3/N9qJpa8LFe6HwBAPCuJe+CyFtScTjvyVvUbm1txfLly6f9x2CUEsmUhuGYYmZqt1a1oqHCHae2cqITSCbB+f3mtrtiRJgUP8IytRkMBsNa0hP6OYjaNJahQAerGUHSnY4gMZ3aFuRpAxlO7TxFbeqMEhsaHC+HygZ9/9NcKoqkwq5QVQVekhw5JxW81CKKH7ECscZwoalqOm5nEnoyaT4H7YhoMMsiDff9fCb2WvGVRFJolENiX2Gi9pjh1F7RQBb3hmaJH0l2d0OPxcB5PCRrXVUtd4maO0ZdLqy3qjC5WKClik7txKWitnzwIGI7dgCpFISGeogLFlhyfGml+2WRSns7Kb8MBGzPKc+GZ9kygOOgjY8jNTLi+PkzSZ40RO1F1uoHHMfBb7i113bqePzQ49D06Rd7JxNX4/j2a98GAFyz8RosrZhbSanbbF+/HTXeGnSMdeB/2v6noGPoum7maZ+79FwLRze/yVvUvvnmm3HTTTeZ//7u7/4Ob3vb2xAOh3H99dfbMUYGwzaGowp0XZvo1HZJ1DZX8Zcvt2Rbt13wLH6EwWAwbMWKCf1cHazZcrVTFju1qaidiuYnBhdT9AgACC7Hj1DxU3CoJBLIjB9xWdS2OH6EkyRz0WY6p7TS2QmoKvhAwBYTgkAjUOa5U1uLxxHfT2ITAqcXXwQFLYss2Kltxo8YovYsO0Rptri0ciWkVfaIinKbkf28wt0YRLqwK7e1QbPYje40eiqVjityyKntaWwkmc+6juGf/QwA4N+w0bKFCvr/sCMCJ1cSZp72GlfmzbzXC3EhcUbTaxK3UI1MbbHJ+vejwNatAIANPQK6I914pfuVnB/7kzd/gt5oLxYGF+KaDddYPjanCUkhXLfpOgDAD1//IeJqPO9jHAsfQ+d4JyRewtsXvd3qIc5b8va733TTTVlv/8EPfoCdxhYxBqNUGBiXwXlGwfEqRF7EotAieEG2kwxFFaQ0HQLvjFOBXvBILhWz5Eo6fmSiqM3iRxgMBsMavMZWWvXkSagjI2n3aI7ouj53p7bhfFIyRG0q2tIdO3OFDxYWP6K0dwAoHlGbN+NHItB13XGHYzpP27m4ADN+pFhEbQvzlsXaWig04ibLLlQqJEo2uVnFOrI4oQ7OnOtd7sT37gVUFWJTEzyLF7k9nClQp7bS3o7U+Hhei326rpuZ2isayeLeWEKFomqQxOwCHc3T9q1eBXg8SOx9g8RKXHjhXP4bE5CpU9tlUVtcuBB8VRW0cBjykSPwn3KKq+OZC8nubuiyDM7rNReLnSBwxjYox48j+ur/AQB8G6z7GXpXrgJAXgvdeM8DANnFPG2K1NwMtacXSsdxU/x1g2SvPZnaABA4nTi1T+niwekqHj/0ON655J2zPq5zvBMP7CO9fF/a9iX4Rb/lY3ODy9dcjocOPITeaC8ePfho3mI9jR45c+GZCHgCdgxxXmLZstaFF16IX/ziF1YdjsFwhMw87WUVyyDyImqDEjgOSGk6RmLOuQNks23cmVX8QqE5q6mxMHRdT8ePWOTcYzAYjPmOEArB07wMAJA4cCDvx2vj49Bl4vor3KlNRO1kd495G92hw1dYHT8Sy+txxebUNuO3VBV6IuH4+dUBQ9R2sEiPxo9o0WjeixJWYnX8CJCRaT00jVP7mD0lkRSxnpw/NTy/Re3M6BE3ozCmQ6ypMUXKxL59eT02IqtIaSSHd1ltAKJhoBmeIYJEPkxykb2rV8O3yhAVLXbKFovBhuO4tFu7xCNITPf78uXgBMGx804u2KQZ8FbgbW0BRBFaJGKWFDpNwti54EaeNkUqkrLIpOHU9iy0NlMbILsmOJ8PUlTGoiHgz91/Rk+kZ9bH3fnanVA0BWctPAvnLzvf8nG5hSRI+NypnwMA/Oeb/4mwHM7r8VTUPmfpOVYPbV5jWTL5k08+idraWqsOx2A4AhG1icunpbIFAOAReNQGJAxFFQyMy6g3iiPtRjFF7SJ3atNM7fAYEU1U4mznmVObwWAwLMO3bj2Sx09AfusthM7Ory2eulf5ykrwPl9B55eyxI9o4/bEj9AdP7liitqtLZaMY67wwQDA84CmITU2Dt7vrCMp7dR2Ln6EDwbBBQLQYzGoAwOQgu5EkFkdPwIQpzYAqNOIyvJR+0oiAUCopZna81zU3lm8edoU38YNSHZ1If7mPgTf9racH0dd2pLIw+8RUBuU0D8uYzAio6kq+2u2bDi1vavXAIYITgsArUBXVSjt7eQcDsVkzIRv3TrE/vKXki+LNPO0HXa/Txa1rSqJBEhMk9TcDOXoUchtbbY4hGdDPkhEbe/qNY6fm0KLqt0UtXVNMxcW7Pg9cJIE/6ZNiO3YgQvHWvCf9cfx5OEncePWG6d9zMvdL+NPnX+CyIm49Yxbi3JRci5cvPxiPLj/QbSNtuG+vffh0lWXYlwZx5gyhjFljHwuj5lfm7cpYzgyQl6z373k3S7/L8qLvEXtLVu2THhi6rqOkydPYmBgAPfee6+lg2Mw7GYgkiFqV7WYtzdUeE1Re50D79O6pkE+Rt0R7m75mw0+I37EFCI4jpTWMBjT0fEKwPFAc+6TPgZjPuNbtw7jv/tdQRN6K9yrmZnadHtxaowWRVokaofyL4rUdb3onNocx4GvqIAWDkOLjAMLrBNYc8EUdh0UtTmOg6ehAcrx40j297vyu9AVxSzoos5xKzAzradzattsQqBObXVo/orauqKQ+BEAgW3FK2r7N27C+G9/h8Sbb+T1OCpqV/k94DjOFLWnK4vUZNl83fOuXg0YU3HlxAlosgzeO3cDTrKrC3oyCc7ng2eR+3EvbpZFym1tEOrq8o7+yoZCO5McXijwLFwIz9KlSHZ2wrNokblYZxXelSuJqH2kDaF3zh5HYSXqyIh5neNd7W78COCuqJ0aGoKeTAIcZ+nibiaB009DbMcOnD1Yg/9cfhy/OPIL3LD5BngEz5T7KikF39rxLQDAFeuuwPLq4jbrFYLAC7hxy4248YUb8fBbD+Phtx7O6/FnLjwTC4LWlLYyCHmL2h/+8IcnfM3zPBoaGnDOOedgrYvbPxiMQsiMH6FObYCI2gdPjmNwltIWq0j29EJPJMB5PJCWFnczcDp+ZAwpI1+VDwaLutyS4TJKDHjkY4CmAl98Cwg6J7wwGKXKXCb0affqHERtQ9TQolGkRkch1tQgZTq1rYkfEYL5i9rqwAC0WAzgedNNXgwIoRARtV0oi1QHaa60s6+toiFq0+eb01CHOjweCNXVlh1XpE7pLE5tXdMgG25Wu0wIQi0V1eevqB3fvx96IgGhpgZSllzzYsG/kbhf42/mFz8SjhFRu9pPRCGyK3R82rJIua0N0DQIVVXm67pQVYVUOAzl2DEzqmMumOaa1taiuKY340cOHoSuaY6MKTU6ipPf+HeM/eY38G/ejJbHfj7nY9L4Ee9K501LgW3bEO7sNPPfrcS7ciXGf/97y8tKc4GWpnqWLoUQcmeXEABILWlR261s8aTh0hYbG8F5porMVuDfSnK1qw72oOHdDRiID+C5E8/hwtapef4PHXgIx8eOo85Xhxs232DLeIqBc5aeg/OWnYc/df4JFVIFKqXKiR+9lRNuq/RWotJDPq6ucW8hplzJW9T+2te+Zsc4GAxXGBiXwXuzOLWNyJGBcWdEbcUoZpFaWsCJlqUC2YJZFBkOQ4sQIYJFjzBmJNoPJI3M3MO/A7Zc6e54GIwSgE7olfZ2aLFYXrthrHBq8z4fhIZ6pAYGkezqhlhTA81qp7YhauuyTByCOUzIqFvRs2QJOEmyZBxWYJZFjucXpWIFqUHnM7WBzLJIl0TtgbSYb6WYMJNTO9nTCz0et9WEQB33qdHRnP8uyo109MhpRb113bd+PcDzUE+eRLK/H54cnZKZTm0AqAuR17KhSHandmaeNv15SKtWIr5zF+QjR6wRtduKoySSIrW0gPN6ocViUI4fh7e11dbzRV58Eb3/8lXzdSW+dy/k9vY5ndftnbi1n9oO5fhx1G6/yvJje1cR57mborabJZGAEdPG82YMV65//1aS7DHytJusz9Om+E/dTF7nunvwybqrcXfXQ3js0GNTRO2+aB/uf+N+AMAXT/8iQlL56gMcx+Huc+92bTGDMZGCljxTqRSefPJJfOMb38A3vvEN/OIXv4Bq5OoyGLOhqBoOnRyHrutuDwV942PgPSTgf7JTG3BO1DZLRIrkQnImaPyINjZm5qvyLq6SM0qAWIYwcPA37o2DwSghxPp6IlLqulmIlCt0Uj7XCZa02Igg6e4GAHN3Dl3cnCt8Rg5zrm7tdPRIsyVjsArBWNzVIi44tQecz9QGMkXtfkfPS0mL2taK+WLd9E7ttAmh2TYTglBVRTLaQbbZz0dKIU8bIK9hVATOpyxy1BC1qwOGqB0k847B6DRObTNPOy3iec2ySGtytYut24cTRXjXkLxkO8siU5Eoer/6VXR+5rOkH6C1FV5j93nkj3+c07GTPT1kEUySXNmJ61u9Gi2PPIzA1q2WH5vGqShtbY7P6RNGnrZvjbspAZwkwbPYKNV2KYJEPUlEbXGRfXmpQihkFnJeEF4CgROwq28X2kYmLmh8d9d3EVfj2NywGRcvv9i28RQTTNAuDvIWtffv349Vq1Zh+/btePrpp/H0009j+/btWLVqFfbl2fzMmJ/c9uxbeN/df8afDrvj7MmkL04KsIJiJWp86dw0Wg454FD8iGxMkrxFvMWSQuNHoOtInuwjt4Wsce0xypR4hqh99I+AknvUAIMxn/GuI5OIfCNIkhY4tYGMXO1u8l6pjRnxIxaJ2pzHA87Igs1d1CYTx2LJ06akndrOitq6oiA1OgoAENwStV2KH7HqeT6ZdPzq3UViAAAgAElEQVTHVKe23SWRAMAJwryOINFTKcR37wEA+Itc1AYA3yYS7RB/I/dcberUrszZqW2I2hnOVCoqykesccqajmIbn9v5Qh3odpVFRv+6A+0f+hBGn3gSAFC7/Sq0Pv0Uqi/7OABg/Lnn53R8uuAgtbYW/U7cfJGamwGPB1osBrWnx9FzF4tTG0gXVieMv1GnSTu17S0B859GIkikfUdx7tJzAQCPHXrM/P7OkzvxbPuz4MDhK2d+BTznfoQRY/6Q97Pt2muvxYYNG9DV1YXdu3dj9+7d6OzsxKZNm3D99dfbMUZGmXF0gGzNPXTSeTfTZEaTxH22JLRswu1OO7UVF/PW8oX3ek0RImlcxLD4EcaMxDKcZmoCOPqCe2NhMEoI37r1APJ3qVnlYPUsIQ4kpYuI2ilD1OYtytQG0m7tVCRfp3aLZWOwAsGIZHE6U9ssE7Q4VzoX6PPLbae21Vu+007tqaI2dWrb7WalpW7qNGWV5Yx8+DC08XHwwaDpDixm/Bs3AQASeeRqj5qZ2kTMrjdF7Zmd2j6bnNq6rqed2kU0F0mL2tY6tbVEAidvuw0ntm9HsrsbnsWLsexnP8OCW28F7/Oh4j3vAQDEX399Tot26Z+psyWRTsB5PPAa78MJi3YL5IKuqmbkSTG8Pvg3bQYAxF/f68r5aaa2Z6G9onbAELVju3bhsjWXAQB+dexXiCVjUDUVt++4HQDwsdUfw/q69baOhcGYTN6i9uuvv47bb78dNRltwDU1NfjmN7+JPXv2WDo4RnkSkUlUzcg0Dd9OEVdSkHnyRrCiemJempOitq7rruatFQJ16dEt6UzUZsxIfNKknEWQMBg5YU7oD+QpavfTosg5xo9Qp3ZXN3Rdz4gfsW53Dn3/yDd+xFtkojYfcsepTcsSxXprc6VzoVzjR6hLWguHoSsTr1VNp7bN12tiPRHWU0ODtp6nGIm9RqJH/Fu3ghMEl0czOz5aFrlvX84xDFMytY34keEscyN1ZMR8rksrV5m3U1E72d2dV9luNtSTJ0kBryhCWrZs9gc4hC9jt5JVERfxN95A+0cuxch/PQQAqP74x9H6y18ieOYZ5n08TU2kXFHXMf5C4UYM6qIvpoUCK6G52oqDudpKRwd0RQEfCJi7ydzEf+qpAMgCiBske434kYX2ZWoDgH/rFgBkge304Do0VzYjmoziN+2/wROHn8DhkcOolCpx45YbbR0Hg5GNvEXt1atXo6+vb8rt/f39WFmGq5AM64kaovaQy6L2YEQGL5HJwqqa5cBYD7Djx4ASTYvaDsSPqAMDZEs3zxed82w6+CpD1Dac2kIFE7UZM0AzteuMydjh3wIp1sPAYMyGbz0RteXDh6Enkzk9Rtd165zaNCuyqwt6IgEYY7DDqZ2LKKOrKpTOTgDF59TmjfdBzeGiSLfytAFAbDSc2i7Fj1hRiJoNoaoKMMRUdWTUvF3XdchHnSnTE+rI73M+OrVLJU+b4lu9GpwkQQuHkTxxIqfHhONkDmRmahtO7cEs8SPyIeLS9ixZAiGjw0asqTEjh+jzslDMxZply4qqmNS7ejXA80gNDc25kFZXFPTffTc6/uYTUNrbITY0YOn992HhN74+4edKqTjvPADA+POFR5DQ34tUphqJZHEETi7QPG3v6tXgePcjLvybNwEch2Rnp7nI7CTJXjIX9yxcZOt5PI2N8CxbBug65L1v4LLVxK390IGH8P093wcAfH7L51Htc3bHGIMBFCBq33777bjxxhvx5JNPoqurC11dXXjyySdx880344477sDY2Jj5j8HIRlROAcjuRnCS/nEZvEQukFqrWoE/3Q48+4/A3kfRYGRqj8aSkNWUreNQDJe2Z+kS8EasR7EjVJJcbTN+JMhEbcYMUKf22osAfw0QHwE6/+LumBiMEsCzZAn4UAh6Mmnu6JkNLRKBHo8DsDBTu6fHjB4Bz4MPBuZ03EwEU9SeXQxO9vQAySQ4rxdik72upHwRjExtp4sizQUMN0TtBuLU1qLRnONjrMQU9C2OH+F4HkIt2ZGayiiLTA0NQQuHAY6zfVElHT8yv5zauq4jtmsXACBw+mkujyY3OI/H3FUTf+PNnB4z2alNu3yGovIUR3I6T3vNlONQp+xcI0iUo4ajuMh2jPJ+P6TlZDdt4q0DBR8ncegQ2i+7HEP33Q9oGio/8AEs/9UzCL373dM+puJ8ImrHXv2/gl7fdE3LWAQrT1HbzHV30KmdztOe+vfgBkJFhflzcNqtrSkKUsb7oMdmpzaQEUGycxc+tPJD8ApetIfbMa6MY23tWnx89cdtHwODkY28Re2LL74YBw4cwGWXXYbm5mY0Nzfjsssuw759+/DBD34QNTU1qK6unhBPwmBkQuNHXBe1xxKmqN1S1QKMdJBvjBxHld8Dj0C28U5X2mIVclvpXfCY8SPGlicWP8KYEerUDjYCq99PPmcRJAzGrHA8b2ZG5popSkVOPhQCH5ib+OxpagJ4HrosmwuwQkWFpTEX+Ti1zTzt5uaicGhlko4fcdipPeieqC2EguZzTB1wPoLErvgRABBrjVztDKc0dbN6liwB7/NZfs5MBBo/Mji/iiKV9g6khobASRKJfygRfJtIrnb8zdzKImmmdpXh1K4NEqd2Iqkhpkw008hHDFF79SpMJp2rPTdRMR2rU3yF9Wa3xMHCyiKHH34E7R/7OOSDByFUV2Px3d/D4ru+M2sHgbRiBaTmZujJJKIvv5T3eZM9vdDjcXAeD6RlSwsae7HjNeJw5GPHoGuaI+dMHCLPA9/a4hC1AfciSFQjPYGTJDM2y04Cp20FAMR270KVtwoXtl5ofu/WM26FwBd/XBSjPMm7hveFOeRKMRi6rpvxI26L2h3hk+AEBQCHpRVLgXEjVic6AJ7nUB/yojecwMC4jEXVftvG4VTpkJUIRvwIVPK7ZPEjjBmhTu1ALbD2A8DeR4GDvwbedxvgcAYsg1FqeNevQ2znTlIW+eEPz3p/M5LBAvcq5/HA09SEZE+PmevNV1oXPQIUKGoXWfQIkH4fdLwokmZq2yDs5oLY2AilowPqwAC8ra2zP8AidFVFyijJtEXUrquFjIlObfN6bbn912umqJ6lrLKcie18DQDg37wZvCS5PJrc8W/cgBHkXhY52akdkAT4PDwSSQ1DEQVBb3qKnjg0tSSSYjpl5+jUlo85E6tTCL516zD2q1/l3S0BAOFf/Rp9//7vAIDQuedi4df/LefXC47jEDr/PAz/5KcYf+55VL7//Xmdm7rfpdZWcGLekktJIC1bCs7jgR6PI9ndDWmp/eI9jeMpFqc2QETt0SeeQMxhUZuayzwLFzrSqeHfSpzaiTfehKYo+NQpn8LzJ57HB5d/EFsXbLX9/AzGdOT9CvvuGbbpMBizIasaVI1sq3Nb1D422g4ACPKNkAQJiJDSSESIINBQkRa17YQ6taXlxXchOR18VdXEr5lTmzET1KntrwVa3wmIPmD0BNC3H2ja4O7YGIwih7rUcp3QW+1e9SxeTERtwylOYzasgr5/pCKzO5yLWdSmOeNOF0WmTFHbeac2OW8DEbXnmHebL+rQEKDrgCDY4lATZnBqSw6UvtGiyPkWP2LmaW8rjTxtCnWVJw4cgJ5MzppLHTac2tWGqM1xHOqCXnSPxjEYlbGsjuyA0DXNjHbwZhO1Taf2HONH2opZ1M5vtxIltnsPer/yFQBA7dVXo/GWL+Ut/FWcdz6Gf/JTRF58EbqigMtjocX8vZVpSSQAcKIIaflyyIcOQT7SZruorY6MmO7kbH8PbuHfQpzaiTf35f08mQuqWRK50JHzSa0tEGprkRoeRmLfPqzYuhWvfuJVy0pcGYxCKWjv5ujoKO666y5ce+21uPbaa/G9730P4XDY6rExyhDq0gZIDIndedUz0R0hZS41nsVAMgEkjOdw1BC1jXy7QZvLImlOaild9NBMbQrL1GbMSKZTWwoCy88lX7MIEgZjVmhZZOLgwZwmDlY6tYF0rjYVFGhRsFUwp/bcoGKy4EL8CJB+ntHnnVMkjcJQsb7eligasY4I5ZlObZnmDjtgQqCiemqeFUXGd5I8bf9ppZGnTZGam8FXVECX5VnzhdWUhnFjPkSd2gBQb5RFZsYeJru6oMdi4CQJUnPzlGNRUVvt70eqwLm4OjyM1OgoyYp3cLdFrtC88mRnZ86LhkpXN7r+/u+hJ5MInX8eGr/0jwU5Wf2bN0Gor4c2Po7oa6/l9VjTtFSmJZEUqxZWcmFiaWrxzD2llhYIVVXQZRkJI/PbCZK9xJDncUjU5jguHUFidB/Q2xkMN8n7KnDnzp1YsWIFvve972F4eBjDw8P47ne/ixUrVmD37t12jJFRRtCSSMpINOnSSIABmUyIFgaWApG+9DciZILYUEFEbTud2qnRUdNlJbWWUPzIpO3nPIsfYcxEbIR89BtuurUfIB8P/tqd8TAYJYR3+XJwHg+08XEku7pmvT8VOS1zai9ZDABQ2snuJqHCPVFbLmJRmzcc7Lk4zq3EjB9xW9QecNapPfLY4wCAwLZtthw/m1NbMZzaTsTFmU7t4eF544JLdneTMlhBQMDIqC0VOJ6HfyPZeTZbWeRYIm3wyRS162hZZIaZhpZESitXZI2wEEIh06VZaFmfYpQZehYtAu+3L26xUITqaoiLjP9jDrnaqfFxdN3wWaSGh+Fdvw6L77yz4IUvThBQcS4xYkSefz6vx5pO7RLqTCoEJ8siZSNP21tEedqA0X9y6mYAQHyPcxEk6fgR54qz6YIjXYDMl5HHH0f7pR91VPxnlD95v8J/4QtfwCWXXIKOjg489dRTeOqpp9De3o6LL74YN998sx1jZJQRkQynNkBavt0irPYAAJorWyaK2tEBQNPSoraNTm3q0hYXLoQQCtp2HqsRJjn1imm1nFFkqAqgGM6agCFqr7kQ4Hjg5BvAaKd7Y2MwSgDO4zGdULlEkJjxI43WiNqS4dSGUQLFV1odP2KI2pGZRW0tkYDaQyZwUmuLpWOwAloUqUUijomQuq5nZGpb48zPF7p44qRTO9nTg7FnnwUA1F79KVvOQZ3aNP4jNT5u/h8lByIazEiVZBLa2Jjt5ysGqPPPd8op5mJXKeHbQCJIZiuLpHnaIa8IUUhPxeuMssihjHjGhCFq+1ZNH7XgXUVztQsTFeWj1FFcvDtGzRiuWSJIdFVF9xf/AfKRNoiNjVh6771zLkyuOP88AMD483/MuQxR13Xz50p/P+WK+fxzQNRO58sXl6gNwFyIc7IsMnnS2fgRAAgYonZsz568y0GHf/YznPzXryFx4AAG7r7HjuEx5ikFObW//OUvQ8xYLRZFEbfccgt2GjloDMZ0RBWjWBDEse2mUzsBsmVnVe1yYPxk+ht6CogPoz5kv1PbvOBxoHTISiYXhbFMbca0xA2XNjjAZ8TWBOuBpWeRzw8968qwGIxSwksjSN46MOt9zfgRy5zaSyZ87ZZTWzlOIsP4ykoI1dWWjsEKzMLkVAp6LObIObVIBLpMrlGos9dp3IgfGf7ZfwGpFAJnnQX/KafYco7J8R8KNSE0NFieK58N3us13f/q0NAs9y4PYobzL3B6aeVpU/yGqBXbMXNMxWiMiNaZLm0g06mdFrXNUrwZ8oPnGv9As+KdiNUpFN9aI1d7loXdvm/dgehLL4Hz+bDk3nvhaZq7gzVw1lngAwGofX1I7N+f02PUnh7yPuDxOFKe6CaSMYdVjh+3/VzUqV9sTm0g4+//9T2OnZMu9HuanBO1fWvXgvP7oY2N5bWQMfSTn6Dv9m+ZX0deeAHysXY7hsiYh+QtaldWVuLEiRNTbu/s7ESFAxd5jNImIqu4Tvg13vRei43cMdec2rIqQxPIJGFDw8qJTm0AiPQ7Ej9iFrMUsTsiGwIrimTkCs3T9lcDvJC+fe1F5COLIGEwZoVmiuZSlEWd2h6rMrUXL57wtWCxU1vIVdTOiB4pxvxGzu8HBPIa51QECf1d8xUV4H0+R845GbojwClROzU2htEnngAA1H36GtvOYzq1jUxtsyTSwSI9sY4K6/NF1DZKIk8vrTxtSuCMMwBRRPLECShZ5soU6tSeLGqbmdrRqfEjM4raK+cmais0K96BWJ1CMbslZngPHH7kEYw8/DAAYNGdd8C/wZoFL97rRfBd7wIAjD+XWwSJaVpqaZm1NLTUodFXeiwGLR637Ty6qpoiqm9N8Ynavo2bAJ6H2tOLZJ8z74fJk0am9iLnRG3O44GfRq3syi2CZPC++9H/7e8AAOo/9zmE3vMeAMDwgw/aMkbG/CNvUfvyyy/Hpz/9aTz22GPo7OxEZ2cnfv7zn+Paa6/FJz7xCTvGyCgjorKKd/D7EOBkbOMPYThji52TvDXYAY7ToackrK5fNFXUjvY7Gj8iFbE7IhuTM7VZ/AhjWmJU1K6dePsaQ9TueCXDzc1gMLJBt17LOcSPJAeszdQWGxsnTMp5q53axvuHNosQnBa1p5alFQMcx5kOXqfKItUBd/O0gYz4EYcytUceewxaLAbv6tUIvuMdtp1HqEs7tUmUABX+nLteo2OYD05tdWjIdMMHtm51eTSFIYSCZgRB9JVXpr3fdKJ23aSiSC2RMN2vOTm1C4x/cGPBJl/owq589Cg0ZercMfLSy+i77XYAQMMXv4jK977X0vNXnEcjSJ7L6f7pksji/ZlaBR8KAcY1QmrEvut55fhx6IoCLhCApwjd70IoaP6dOhFBkopEzGsNK3Yk5ENgqxFBsmv2Pr2BH/wAA3ffDQBouOlGNHz+71F3zdUAgPAvfwl1eH6VITPsIW9R+zvf+Q4uvfRSXHXVVWhpaUFLSws+9alP4WMf+xjuuOMOO8bIKCOisooglwAAVHERjLgkau/rJ24GTm2EzyNOjB8BgMgAGhyJHzEmSSV20TMhfoTjwM0xr45RxlCndmCSqF23AmhcT+J+Dv+v8+NiMEoI35rVAMdBHRgwM5SzkYpEzegLq0RtjufhWbTI/Npqp3bO8SNFXBJJMcsixxwStQetXcAoBJrlrcViSM2Siz5XNEXByH89BACoveZqWx37opFprcsytGjMLImUHHSzUqe2Olj+ojaNHvGuXl2U8UK5QhdaIi/PLmpXByaJ2kEy7xg0zDTy0aOAppGixBk6ErwrlgMch9TwcN4LIKlIBGpfn3Gc4p2LiAsXkl2iqjrFkS4fOYLuL3wBSKVQ9eEPo+66ay0/f+jd7wJEEUrbUcjts0cmmCWRK8s7TxsgC7piTQ0AQB22T9ROGNEjvlWrCi7+tBvTwbzH/ggS1SiJ5KuqHO8goLtpYrund2rruo7+e+7B4Pf/AwBZbKq/4QYApGzSt3EjdFnGyH8/av+AGWVP3q8IkiThnnvuwcjICF5//XW8/vrrGB4exve+9z14vV47xsgoIyJyCiGQrUnViEwoQ3GSwyPkgsQHY2VzBqd2TEkhOqng0gq0aDRdelVimdqZ8SN8KFSUW8EZRcJ0Tm0g7dY+9BvnxsNglCB8MGiKuYm3Dk57PxoBwQeDlk5yMnO1J3cqzBU6zlQsN1HbW9SiNnWdOyNqpwbdd2oLofRzze4IkrFf/RrqwADEBQtQddFFtp6LDwRIpAyA1PCQubPOydxhwYhASQ3PA1F7F40eKc08bQoVtWN/+Qv0ZPbeoNFYdqd27aSiSPkwEW+9q1fPeJ3N+/2mczXfCBLFiMkQGuqn7MIsJjiOM7sl5IwIEnV4GJ2fvQFaJILA6adj4df/zZY5iVBZieAZZwAAIn/846z3T+/sKH9RG0gX26ZG7HPdmvnyRr56MRLYsgWAM07tZC/N03bWpQ0A/k2bAEEgUSs9PVO+r+s6Br77PQz98D4AQOMtt6D++uvM73McZ7q1Rx55BFoi4czAGWVLXqJ2R0cHfvzjH+MHP/gB2tvbsXHjRmzcuBEB5tJk5EhUVhHiiKhdw0Vcix85Hu4AAFQKhvuMitq1hrgc6UfQKyIgkXxMO9zatBxBqK01V7hLBd7rBWcsYtFJPIORlemc2gCw9gPk45HngCS7oGEwZiKXXG3V4ugRSqaobbXwkY4fKX2nthAynNqOxY/Q37d7ojY5v/0RJLqmYeiBnwIAaq/6W3CSZNu5KNStnezpRbKrC4CzucNiHfm9zg+ndmnnaVN869dBqKmBFo0ivndv1vuY8SOByZna5Lp6OKpA03TIhw4BmDl6hJIui8wvgsQsiSwB8dW31ngPNGK4NFlG1+f+HsnubniWLcPi7///tr4uhM43IkhmydXWdb1kO5MKRaghuytSNkZJJA4ZJZFrZv97cAtaFpnYvz9rTI6VJHuNPO2FzuVpU/hg0LwmnRxBous6+u/8NoZ+/GMAwIKv3GoK2JlUXHABPIsWITUygvAvn7F/0IyyJmdR+4UXXsApp5yCz3zmM/j85z+PLVu24GGjjIHByJWorE5warslavfGSIFLvdeYqI8bonbTRvIxQtxGduZqK8eMC54i3u43E1TYEIJM1GbMwExO7UVbgIpFQDIKtL/o7LgYjBIjXZR1YNr7UKesaFFJJCWzLFKwuBScunz1eBx6KpX1PqnRUTOrU2ouzkxtIB0/oo07WxQpuOjUBtLPNzud2pE//xlK21HwwSCqL7vMtvNkQjOtY7t3AZoGvrLS0Z/15LLKciU1Pg7Z2IHiP620ndoczyP49rcDACIvv5z1PtNlalOndkrTEY4nM0oiV816XhpzkbdTm85FSmDHaGZZpK7r6P3qVxHfswd8ZSWW3vdD2w1CFUa5Xfz112dcwFNPniRxWqJY1O9XViLWGK9VNmZqq4YjuJh/pp5lyyDU1EBPJiEfmP5azQqSveTnIS503qkNAIHTaK72TvM2XdfRd/vtGH7gAQDAgn/9Kmqvuirr4zlRRO128r3hBx+Ermk2j5hRzuQsan/1q1/FBRdcgO7ubgwNDeG6667DLbfcYufYGGVIJJFEEDRTO+qaqD2sdAMAFoeWAVoKiBoTMSpqG1/TXO1BO5zatESkiNvGZ4KvIqI2z0oiGTNhOrWzTDY4DlhrbCE/yCJIGIyZ8NKirBnKIu1yaktL0qK2XfEjAMllzgYtSxMbGx3PjswHIeRs/EjyJFmQ9zQ579TKxAlRe/gnxKVdffnlli+sTAd1asdeew0AMSE4GbdmllWWuVM7vns3oOvwNC+DZ4G1C3JuQCNIotPkatP4kWr/RFexJPKo9IkAgKGojMQRImr71qyZ9ZyFlkWW0lzE3K106BAGf3Avxp75FSAIWHLP3Y6I8p6mJvg2bgR0HeMvvDDt/ejvQGppnlCyXM6Y8SM2ZmrTvG7aNVCMcBxnurVje+yNIKGZ2p6Fi2a5pz34TyOFvnHDqa1rGvq+8Q2z96Lp3/4NtVdcMeMxqj76MfAVFVDa2xH5EzM3MQonZ1F73759uO2227Bw4ULU1NTg29/+Nvr7+zE0Dxq5GdahJGLwcMSJVYNxV0Tt0cQoZJ1MOFurWoDYEKBrADig8RRyJwec2mY+Ywls+cuGUElytVn8CGNGYsYFbjanNpCOIDn0LFlgYjAYWaETeuX48WkL+WxzamfGj1jt1JYkc+KvRbI7nEshegTIKIp0yKltZmouKhJR26b4kfibbxJhWRRRe9Xf2nKObNBM67ghTjgt/NGsdNXGLf3FAC2JDJS4S5sSPJs4tRP792d1ro5N49QG0hEkQ939SA2QzPxcygbT8SNHoOt6zmMtpbmI1NoKzueDHoth8D9I+VzTv/4rgm97m2NjqDjPiCB5fvoIEtmMHpndYV8uCLXEuGJXprauaeZuLaFmmvlEkeB3KFc7HT/iklN7KxG15SNHoI6M4OTX/j9S+shxWPjNb6Lm8tl3VAmhoHk/6u5mMAohZ1F7bGwM9Rlb7gKBAPx+P8LhsC0DY5QnaiLtXqrmohiJkdw4J+kY6wAAaMkqLKqsAsbJmwKC9UClMTGMkomZKWrb4NSm5SxO5jNaCS2LFJhTmzETM2VqA0DzOwBvFfmb69qZ/T4MBgNibS3EBQsAAPKh7GWRtjm1W1rA+XwQ6uvN8jwroe5rLZpdrJdLRNQWKmn8yJjt59I1Le3UcqEoKhMzU9smp/aQ4dKu+sAHHP2/irXEEagbJVZOlkSS8xvuR6MQtFxJ52mXh6jtaWyEd80aQNcRffXVKd8fjRNDT3VgqqhdFyLu7chbJE/bs3RpTrtTpNYWQBCgjY9D7evLaZxaIuFKVnyhcIIwIU+5dvv2nIQzK6kwcrVjr/7ftIvLcptR8Fmi8ZKFQKNfVJuc2qlwGDDiKUQjv7tY8Z+6GYATojZ1aruzqC3W15vXZJ2fvhajTzwB8DwWfet2VH/00pyPU3PllYAoIvbaa4jv22/TaBnlTl5Fkb///e/xzDPPmP80TcPzzz8/4TYGYyb0RHqiV8nFwOkpM1vOKdrDpKBRUxqIaE1LIkNNQNBwt0UHAE0z40esFrU1RYFyguR6SyXgjsgGzdTmWaY2YyZmytQGAFECVl1APj/EIkgYjJkwt19PE0Fil1NbqKxEy2M/R8vDD9kSvzCbqF0yTu2Qc07t1NAQ9GQS4HnLf9/5IjbaJ2ornZ0Y/9//BQDUXnON5cefCbF+4jZ3p4U/mt+txWLQ4nFHz+0UWiKB+L59AIDAtvIQtQEgePbZALJHkEyXqQ0AdUEy71CP0Dzt3ErxeEkyXx9zLYtUOjpcyYqfC4FTiQs2dM45aLzlS46fX1qxAlJzM/RkEtGXX8p6H7MkclVpzu8KgbqnUzZlaqeMZAC+qsqRkuC54N+wARAEqH19pvBsNbqmQT1JTHmii/FjNIIkceAAIAhYdOedqPrQh/I6hqepCZUXXQiAubUZhZOXqL19+3Z8+MMfNv/F43F85jOfMb/+yEc+Ytc4GeWCMnGiV4UohhyOIDGd2nI9EbWpU4GBXPsAACAASURBVLtiARA03G2aCiRGbXNqmxeSoZA5GSw1aNajUF3cK+YMl5nNqQ2kI0je+jWQx7ZZBmO+kVmUlQ27nNoAyXW1S1Sm3QypaeNHSKZ20YvaRhyXNm5/pjadLIuNja7ntnpsjB8ZfvBngKYh+M53wrcmN4HPKoTaiaK25LDzkg8GTQFHHSrPCJLE/v1AMgmhoX5CzFGpE3qHIWq/8sqUOBCaqZ1V1Dac2lyHIYzmUBJJyYwgyQX5aLqw3sms+LlQ//efw+J77sHie+4GJwiOn5/jOIQMt/b4c1MjSHRdn/BznS+Y8SM2RSXRCCa7y0CtgA8EzBz8+J49tpzDXNTmOFd7CAKnbyOfiCIW3/UdVF38gYKOU3f11QCAsd/9DkmjEJTByIecRW1N02b9l5qmtZ7BMJEnTvSquQhGYs6K2jM6tUUJ8BtvmJE+M9vO6kxtpQQvJCdT84m/Qc2VV6L68svdHgqjWNF1IE5cG2NcJcKxaXZlrDwfECRg+CgweNjBATIYpQUti0wcnM2pXVqLpTM5tXVdLxmnNs0bTzlQFJnscXfrcSZ0ESU5MJBXnu9sqCMjGH3qKQBA3TVXW3bcXBHr0ouxnM8HzyJnC7k4joNguMVTQ+UZQRLf+wYAwL95c8leD2fDf9pp4Hw+qP39kA+nReZEMgVZJTEKVVnjR8i8w9/VASC3kkgKzd7OVdRWjpI87VIoiaQIFRWofN97wXu9ro2h4rzzAQCRF1+Erkycw6p9faQbQhQhNTe7MTxXoFFJ2TLkrYCK5UIRl0RmQnO1YzZFkCSpS7uhwdVF7coPXITaT1+DZT+6H5Xvf3/Bx/GtW4fA284CUikMG0WTDEY+5OXUZjDmCp+c6MKqRgRDEWdF7WOjHeSTZANqAlKGqG2sdNIIkki/bU5t2byQLN1VfGnpUjT9yz9DWrLY7aEwihV5jOx6AHDJT/bj/ff8GVFZnXo/XyXQ+i7y+UEWQcJgTIdv3XoAZHv55Ml0KhKFFosBAMQGd+Mo8iUtasemfE/t74cejwOCUPTvNzR+RHMgfsTtPM1MqKitx2LTRsgUwsijj0KPx+Fdvw6Bs86y7Li5kimgSMtbwfHOT5torne5OrXje/cCAPybNrs8EmvhvV4EziAuxugr6QgSGj0i8BwqvOKUx9UFJXC6hqqTnQByjx8BMpzabbnFj5iOYoez4ksd/+ZNEOrroY2PI/raaxO+R0sipebmoo/JsBLBELW1cJg4iC3GdGrXFr9TGwD8p54KAIi/vteW4xfLojYvSVjwpS8h+Pa3z/lY1K09+sQTSDmw241RXjBRm+EoYnLiZKeai2DYwfiRlJZCd4SUolSJiyHwXEb8iFE+FErnalNRezAiW1poKR8lF5ylUMzCYBSMkaetCT50jOnoDSfwy9en2VZGI0iYqM1gTItn8SLwVVVAMmkKEhR1gLi0+UAAQmj2YrFigjfGq2WJH1HaOwAAniWLi14kEByNHyGvpZ5F7ovafDBoRsio/dZEkGiJBEYefgQAUHfNp11x8VL3IeCe8CfWUVG7TJ3ab6Sd2uVGyMzVftm8jYralT4x63O6LiShKToMT1IGJ0mQli3L+XyZorZulOrNhHLMELVXMlE7HzhBQMW55wIAIs9PjCCZjyWRACBUVQHG8zkVDlt+/JSxqDc5EqpY8W8honbiwAFoRtGwlagnjfixIljUtorgO98JaeUKaNEoRh9/wu3hMEoMJmozHEPXdYjqJFEbzsaP9ER6oOpJ6JqIBv8CcmPEKDYKGV/TXO1Iv5ltl0zplhZaKmXg1GYwZsXI00540rnrD//lePbt6WsuIh+7dwJj9hSrMBilDsdx8K1dC2BqWaSdedp2M1P8SKlEjwAAX0EKlKfLBrcStbe4JrX0eWdVWWT4f36J1PAwPIsWofL977PkmPkiZOS3umVCoG7xVBk6tZN9/eR5zPPwbzjF7eFYTvAd7wAAxHbuNIs+aZ52dSD7Al1d0ItW4xpIWrkCnDjVzT0d0rKl4Dwe6PH4rLm0uqpCpl0FzKmdNxU0V/v5P05YQDDjJVfOn5JIgAj9QlUVgLSr2krUYVIUKZSIU9uzeDGEhnpAVUlvgMUUi1PbSjiOM93aww89ZIvjn1G+MFGb4RgxJYUQJm4truaijsaPtI/RPO16NFb4yY2R6Zza/fCKAqqNzDurcrV1VYXSTsYx31byGfOMGM3TrjBvOtA7ht0nRqfet6IJWHw6+fzwb50YHYNRkvjWTSyLPDYQwd/+5K84sI8sloqNpRU9AgBCDqK2twRE7Uyndi5OybmQntQ6m/M8HaJZFjl3UVtPpTD8wAMAgNpPbc9L2LMSThTNMmy3hL+0U3vIlfPbSfwNsjXfu2qVubBVTkjLl0NcuBC6oiC2cyeADKd2lpJIAKgPSWgxRG3fqvyKUTlRNM0ymTne2VBOdALJJDi/vyh2e5QagbPOAh8IQO3rmyBaykeMnbjz0P1OI0hSw9bnatNjiiXi1OY4DgEzgsT6XG2aqV1OojYAVH7wgxDq66GePImx3/3e7eEwSggmajMcIyqrCHITt+BUc+MYjlqbVz0THeEOAETUbqjwkiK78cmZ2mmnNgA0hKzN1U52dUFPJl0pHWIwHMVwag9pZLJaZUziHvnL8ez3ZxEkDMas+NZPFLWf3tONl44MYucuImKUplPbEIOjWeJHSsqpbSzg6bqZb24X5qS2SAQpU9S2IH4k8sILUI4fB19VheqPfnTOx5sLgW3bwIdCCGzd4sr5RbMosvxE7QSNHtm0yeWR2APHcQieTbJmoy+TXO1RY3dq9TSidl3Ii5YxowQuT1EbyL0s0oweaXUnK77U4b1eBN9FumDGnyMRJLqum7Fg0jxzagNpF3VqxHqnNn39KxWnNpCZq22DqG3u1Gqy/NhuwksSaq/8JABg+IEHLC2eZpQ3eb+LdXZ2oqury/x6x44duPnmm/GjH/3I0oExyo+IrKIC8Qm3VSOK4Zhz20s6xjoAAJrSQERteQxQjTGFqFN7YixJZq62FZgXPK2t4ATBkmMyGEWJkando5BdEf/wXjJB+/WbvRjJlqW/9mLy8diLQGLMkSEyGKUGdWrLb70FXdNwbJC4m2nsQyk6tcslfoTzegEPEavszNXWEglzkl8sTi0r40eGfvJTAEDN3/yN6w7exffcjVUvv+TaYpFQW8ZObaNEzb+5PEVtAAgZESSRV0iuNnVqV00jalf7PaZTW1nWmvf5ci2LLIfCerepOI9GkDwHgLz2aePjpNS4BN6vrEY04prUEeud2vSYYl1pOLWBtKgd2/O65eKs2ltcO7WspPryy8H5fEgcOIDYX3e4PRxGiZC3qH3FFVfghRdeAACcPHkSF1xwAXbs2IF//ud/xte//nXLB8goH6JyCkEYTm3DDU2KIh10apuidj1xYNM8bW8lIAXI5xnxI0Ba1LbKqU0vJFn0CKPsMZzafckAeA74+GlLsWFxJRRVwxO7Oqfev2E1ULcK0JJA23MOD5bBKA2k1lZwXi+0WAzJEyfQPkCEYGGEiF6l6dQmwmVqkqitJ5NQDCNFKYgEHMdBMAoTUzaK2qrh0uYDAfCVlbadJx/ERkPUnmP8SGz3HsT37AHn8aDmk1dYMbQ5wfE8eJ/PtfNTp/ZciyJ1Xcfgffcj/KtfWzGsOaOnUogbsQ3lWBJJCb7tbQDPQ2k7imRvrylq02jDKSgyFkfJ73psYXPe5zNF7Vmc2qywfu6E3v0uQBShtB2F3N5uLiRIzc3gi7zU2A6EGhvjR6hTu6Z2lnsWD75TTgE8HqQGB5Hs7rbsuLqiQB0krxGeMnNqA2RxpPrSjwCAGUPGYMxG3qL2vn37cMYZZwAAHn/8cWzYsAGvvvoqHnnkETz44INWj49RRkRkFSHO2I5bTdq8qxHBsIOZ2mb8iGw4tceNPO1QhrPNjB8hW2itjh8xS0TYhSSj3DGc2iOoQEt9EH5JwJVnkknaI389AU3L4lxYaxRGsggSBiMrnCjCu5rseojtP4B2w6ldY+xuoOJiKcEbQrAWmShqJ7u7AVUF5/NBXLDAjaHlDY0g0WwsizS3Hi9aCI7jbDtPPniMHQLJOTq1h376EwBA5YcuMY85n6FO7bkWRcqHDmHg7rvR+7Wv2Z73ntN42tqgx2Lgg0FIy8v3elioqoJ/40YAQPSVV6Y6tXf/F3D3JqD/IABAbjsKXtcRlgIY8obyPp93FYm9UI4eha6q096PFdbPHaGyEkFDE4n88Y8Z87v5+TM140csLorUVRWpcBgAINaVjqjN+3zmzrr4HusiSJL9/YCug5MkM8e83Kjdvh3gOERefNHc4c5gzETeonYymYTXS0S+5557DpdccgkAYO3ateg1LrIZjGxEZRUh6tSmojYXwXDMGVE7okQwECdCtRk/EqF52hkrnaZTewDQdRuc2kb8yDy96GHMIwyn9qgewrom4ia85NRFqPCJOD4Uw8ttWZxnNILkyP8CqnMLXgxGKUEnSsNv7EM8mQIA1FFRu6H0hEA+SHZKTY4fkWn0SHNzyeS+ClTUttGpbZZENhVH9AiQET8yUHimttzejsjzfwQA1F19tSXjKnXMTO3R0RlFytmI7yX51XosZrr83IRGj/g2biz7KL7g2WcDACKvvILR2CRRe//TwOhxcs0DQD58GADQXrkQQ9H84xk9ixeD8/vJLpcTWXbEAdA1DfIxtmvUCkLnGxEkzz2fLolcNf/ytAFANARW1eJM7dToKOnAAszi3lLBfyrZhWJlrnaypwcAydMulkVtq5Gam1Fh/G0NM9MsIwfyniGccsopuO+++/DSSy/hD3/4A97//vcDAHp6elBXQjlHDOeJKipCnJFfneHUTiQ1xJTCL9Rz5fi4UU6nhgDNP9GpXZHhAKNObS0JxEfSorYFmdq6rrMLScb8gTq19RDWNhGhJyCJ+OjWJQCAh7MVRi4+HQg2krz74y87NlQGo5SgZZGRfQfM22oTREQtSaf2NJnapZSnTaFO7dSYjaK2madZRKJ2RlFkofmhww88COg6Queey66RDITqaoDnAV1Hag5ZtYl9b5qfJ7us2wpfKPE3aJ52+UaPUIJGrnb01f/DmBG5aIraMSMrPUwEaCpqd1QuLKjLh+P5Wcsi1d5e6PE4IIqQli7N+xyMNBXveQ8AIlrGdpD83/lqWhJqaFHkqKXHVQ3nt1BdDU4ULT223QRoWeSePZYdk8aPlWOedia1xsJ2+JfPFMVCLKO4yVvUvuOOO3D//ffjnHPOwSc+8QlsNi5GnnnmGTOWhMHIRkRW05nahqhdw5HtuUMORJDQ6BFVqQeA6Z3aohfwVRmD7ke9hfEjam8v9FiMXEguWzbn4zEYRU08HT+ydmE69/WTZ5Ln/nNv9aFndGJ5LHgeWHMh+bxcIkg6XgYeuhQId81+XwYjB6hTG0eIAOJVZQRV8v5aikWRghk/MjGyoxRFbaGC/l/sFLWJU8uzqIhEbcOprcfjBUWvqIODCP/P/wAA6j59jaVjK2U4QTDFormURcbfyBC1u91/L4rvLf+SSIp/00bwFRXQwmGEjhOhOS1qG65W4/ogU9QeylaonQOmqN2WXdSm5hqppRmcZ5psb0ZOeJqa4Nu4EdB1KMeJUYP+/Ocb6Uxti53aVNQuwagN/5YtAIDEoUPQYjFLjpneqVV+edqZ+LdsgX/zZuiKgpH/ftTt4TCKnLxF7XPOOQeDg4MYHBzET3/6U/P266+/Hvfdd5+lg2OUF1E506lNcnUruDhEqBhxIILELImUG+AVeVR4xQxRe5IIEDKc29F+S+NH5PZ2AIC0bBm7kGSUPXosHT9CndoAsGpBBc5srYWmAz/fcWLqA2kEycFnzS2HJc3z3wCOPg/s/bnbI2GUCd7VqwGeh2dsBDWJMWwNkggSWZRM13MpMb1Tm4gEpSRq8yHDqT1uX6a2SjO1i8ipzQcCZjZ6IREkw488Al1R4Nu8Cf7TTrN6eCWNua2/QFFbi8fNEjsASHa5K2qnIhEz09m/qfxFbU4USWEkgGVHSQxMdcAoEpzk1E6YonYThgrcIZoui2zL+n25zch+Xj4/HcVWU3HeeekveB5Sa6t7g3ER0cjUtjx+xBC1xRIUtT0LF5I+kFQK8X37LDmmuVOriBa17YDjONOtPfLf/w0tHp/lEeVJ4sABjD377Kzlv/OdggIKdV3Hrl27cP/992PcyAyUJAmBQMDSwTHKi4icQgjGC1LVEvP2SsQKdiPkg1kSaeRpcxyXET8yabUzaIjckbSoPRxTkEzNrVwnRduKm0qj8IrBmAtajGyVVqRqLKnxT/je376NLGz9/LXOqX9Xre8CpBAw3gP0WLdlzxViw0AX2ZKKyNwK1BgMCu/3Q1pOJs4rR7txfiO5nBvyVkLNVsBa5Jiidiw2ocQu7dRudmNYBcFTp7YTmdpFtv04HUGS32udOjKCkUf+GwBQd82nyzYntFAEmqtdoKideOstIJUyv1ZcFrUTb74J6Do8ixdDrK93dSxOQXO1V3eSyKgqvwdQYkDScG+OdkIdHjbnCccrmwrexZoWtbOLIMoxQ9ReyURtK6DZvwAxLfGS5OJo3IM6qVMjowVHUGVDNUpyhRKNufWbESTW5GonTxqL2mXu1AaAigvOh2fJEqRGRxH+5S/dHo4rjD37LLq/+A8YffIXbg+lqMlb1D5+/Dg2btyID33oQ/jc5z6HAcONcccdd+Af//EfLR8go3yIJpJpUdtXZUZ81HDjGHYifoQ6tZV6U6g2RabQJJE5ZGSSRgdQE5Ag8Bx0HRieo/iuDpIJiVA3Py7iGfMYVYGQJE7FxgULp4gU713fhPqQF/3jMv5woG/iYz0+YKUxSTj4aydGax/HXgB0Q6SLMlGbYR2+desBACvC3djkJ70UQ74KHB+KzvSwooQ6fKHr0GLkOkGLxczsyFJyagvUqW1T/Iiu60Xr1CpU1B78/n9AGxuDd+3aCQIRgyAa14z0GjJf4m+8YRyI5NEmO90VtedT9Agl9A4iaq8c7EAgGUd1wGNGtAEAEqOQ9xHRK9m0CAnRi8FC40eMokLl+HFoytRjyIZLXmJObUuQVqyA1EwWXudrSSSQztSGqlq6qJsaofEjNZYd00lMUduiski1SBe17YATBNRedRUAYPBHP8LoU08j2Te/5lJp7ag0F3WcIm9R+6abbsLpp5+OkZER+P1p591HPvIRPP/885YOjlFeyIkYRM4Qd7wVgJ+s6FYhanv8iKZrOD5GtjFrSgMaQlTUNpzak0XtDKe2wHOoC5JV97lGkNCto6W4hYrByIs4cWmndA5Ls2yRl0Qef7ONFBRlLYxceQH52PWabUN0hCPPpT9nTm2GhXjWrAVARO1GhUwgh31VONJnX+yFXXBeLyAIANIRJMoJEk0kVFVBrCmdySxfSURtzab4kdTICHRZBjiObGsuImhJaT7xI/KRIxh57DEAwIJ/+idwxvOAkUaso1m1BTq13yTb3mkEhtvxI/G9RGSfDyWRFM/ixRBbWiDoGk4daCNO7djE36f85i4AALecCKOFxo+ICxaQwlpVhdLeMeF7uq5DPmo4tVcsL+j4jIlwHIfKSz4IAPBvnb/RSbzXC97YtW9lrjZ1aou1pSnqBbakRW0rHOxJsyiy/J3aAFD90Ush1NVB7elF71e+grZ3vxvHLvkQ+u64E5FXXoEmzz0etphRjfd9kYnaM5K3qP3SSy/hX/7lXyBN2lrT0tKC7m7327QZxUsqHk5/4QkCfjJJreYitseP9Mf6EVfj4CBAV2qJU1uVTeFtSvyI6dQmIpRVudqpIbKtkG4lZTDKFsOBFEYQaxZVZb3LJ85cBp4DXj06hKMDkwSgSsOBEC28GMt1NA1o+0P660jf9PdlMPIkvMSIHwn3wDdG3suGfRU40l+CojbHmW5tU9QuwZJIABAqaKb2mC3Hp9EjYn190W1zp2WRuTq1dV1H3+3fAlIpVFxwPoJnnWnn8EoWYa5O7TdJSWTlhaSEOXnyJPRk0prB5Ymu66Zz3DcP8rQz4badBQA4Y+AQfB5hiqidOEiiSXyrVwNAwfEjHMdNG0GSGhqCFg4DHDdvs5/toP6zn0XzQ/+F2is/6fZQXIVGkKjDI5YdM10UWTqL25l4168H5/EgNTKC5IksPUJ5kIpETBe82FRcO7Xsgg8G0fLYz1F3w2dJKSvHQT58GMMPPIDOT1+Lw2eciRPXXoehBx+EfOSIpdE3xUDKdGozQ+RM5C1qa5qGVEYuG6WrqwsVFRVZHjE3uru7ceWVV6Kurg5+vx8bN27Ezp07LT8Pw370BJngJcUgwPOmqF2DiO3xI+1hUtAY4BoBCESkpgKTIJljMclwagMZonaBrgkKnZCILH6EUe4YJZEjegXWNlVmvcviaj/es5b8rT3yl0kXekHjbyQ2aNsQbefkXiCa4VhkTm2GhZyoId0UTdEhKMfIdvIhX2VJitoAwAeJw0uLkvGXqqhNiyLtcmone3sAAGKRRY8AgMeIH0nmKGpHXnwR0VdfBefxoPFLX7JzaCUNdWqrBTi1U6OjppASOvcccJIEaJrp9nOaZHc3yQb3eOBbv96VMbhF4tRtAICt/YeJ8BKb6GaVj3YAAKpOIbtw4skUYopa0Lm8K4nbW26bKGrT6BHPkiXgfb6Cjs2YCicICGzbBs7jcXsorpLO1bbQqU2LIkvUqcpLEnynnAIAiO2ZW08QLYnmKyshhEqvFLxQpCVL0HjTTWh94nGsevUVLP7uXai69FKIjY3QZRnRl19G/7fuwLEPXoK2c85Fz1f+GWPPPlsW5ZLp5z/TjmYib1H7ve99L+6++27za47jEIlE8LWvfQ0XXXSRpYMbGRnB2WefDY/Hg9/+9rc4cOAA7rrrLtSU0DZURhpdJhO8lGi8CAfIG181F8GwzfEjNE/bo5OtukTUzsjTnlxKRONIqKgdssapbb4wMac2o8wZHyGLRqMIYW3T9AuenzyL5BA+uasTcSVjwTRARe0h4nguRWj0SMs7yUd5DEiW/gUWozg4Jgvo81cDAKJ//SsAYNhXiSN99hUU2olAyyKpU9vYNi+1trgzoAIRbC6KVHvp1uPiy9M0M7VziB/RFQX937oDAFC7/SpIy5bZOrZShmZppgpwasf37QcAeJqXQaypgWcRed64FUFC87R9a9eC93pdGYNbhNdsRJIX0BAdJot2GU5tXQfkLvJ3U7l+LbyiUf4757LItgm3y0fJ197lLHqEYT00Kiw1YoNTu6Z0nar+LVsAzD1X2+zTyBLrOF8Qa2pQedFFWHTbN7HyxT9h+a+eQeOXv4zg2WeD83qh9vUh/NRT6P7iP6D7i//g9nDnhK7rZkG0yJzaMyLm+4C77roL73vf+7B+/XokEglcccUVOHLkCOrr6/Hoo49aOrg77rgDS5cuxQMPPGDe1sq2SpUuMpngpSSjEMpwR1dxkTkXMM4GzdPWFbI1tiHkBcZpnnbj1AdkFEUCFsaPGK3mQonmgjEYudJ3shcVAGRPFYLe6d9q3r2qAUtr/egcjuNXe3twmZGzbTq1NRVIjJqLYCXFkf8lHzdcCnTuAFIyWSiraXZ3XIyy4NhgFHzVYiyIj0I33CjDvkocG4xCTWkQhbx9C67CB8sjfoSn8SMRu5zaxTupTcePzC5qjzz6KJSODgh1daj77GftHlpJQx2KagE5tYk3jfzqDRsBEIeu0tEBpasLbvj8zJLIeRY9AgBhXcSJ2lacOtiG6MuvwLskLWonIwJ0JQXO64W3uRl1wQ70hBMYiipYWhvI+1y0sHCyU1uhJZErWUkkw3poWaSV8SNpp2oJzgMM0mWRe+d0nCRd1G6aH3nas0GjlryrVqHu6k9BSyQQ27kL43/4A0Yfewyx3buh6zq4yebFEkEbHzejwlhR5MzkPeNZsmQJ9u7di6985Sv4whe+gC1btuBb3/oW9uzZg8bGLOLgHHjmmWdw+umn4+Mf/zgaGxuxZcsW/PjHP57xMbIsY2xsbMI/RnHAJ40J3iRRuwb2i9od4Q4AgBwjLwjEqU1F7SxvDDR+JDoA6Lol8SO6pjGnNmPeMDJkxPvMIkbzPIcrziAi78N/zSiMFL2A14gtiZVgrnZsGOg2orJWvXfK7g8GY660D0ZwtHrxhNuioWooqobOkdLbEcBTp3ak1ONH7HVqF7WoTZ3a/f0z5lqqIyMY+MG9AICGm2+CYPzMGNmhonZqaCjvvNC4URLp30RFbfKakexypwcpYZZEzj9RezSWxO5Gkpcdffnl9LVN3UokwiS2wrtiBThRRJ2xQ7TQskjq1E6e6JywBV8+ZpRELmeiNsN6zPgRi4oi9WSSZMBnHLsUoaK2fPgwUpFowccp5vixYoD3+RB6x9lY8E9fBjgOWjhsaWmp06iGS5sPhebdzqZ8KcjGI4oirrzyStx555249957ce2118Lv91s9Nhw7dgw//OEPsWrVKvz+97/HDTfcgBtvvBE/+9nPpn3M7bffjqqqKvPf0qVLLR8XozAEKmpTocqfET9it6htxI+MjRMhfUL8SMWCqQ8IGk7tlAIkRi1xaqfCYcDIoxdL+I2ZwciFyAj5+/JWzJ4BdtnpSyAJPN7oCuONrtH0NwLG4k+0BHO1j/4R0DWgYR1QtSS9I4SVRTIs4thAFEerJoraVUvIRKcUI0ioqJ2KRqGOjJD3TKDkYiloUaQWjUK3ITrJnNQuLD6nFnVq64mEuTiRjcHvfx/a2Bi8a9ei+tJLnRpeyUIdWnoymddiia7riBtObd9GImpLS0gWvxvxI5qiIPHWWwAA/+bNBR+nNxzHZx7aiYf+rwMprXRKwcLxJHY1rgEARHfsgDZm7GhYuBnyKNnR5jVKIutCpAS20PgRsa6OiIC6buZoA4DSZojaK1j8CMN6xFoaP2KNkKjSGBOeEcdlpwAAIABJREFUh1CVvXS+FPAsaCRCtKaZu2cKwYwfmyclkYXC+/1m1BbtnClFaPQIK4mcnZxE7WeeeQZJw/r+zDPPzPjPSjRNw9atW3Hbbbdhy5YtuP7663Hdddfhvvvum/Yxt956K8LhsPmvs7PT0jExCkdQycok550UP4IowvEkkil7cnMTagI9ETIJVOJkYlA/IX4ky8TQ4wO8xptnZMDM1B6ci6hNV9uqqkhRD4NRxiQjRIiuqMmyaDSJupAXF24kf4cP/yXDrV3KZZFtRp72qgvIRypqR5lTmzF3IrKK/nF5gqjN+XxYuoSIiqVYFmk6nKNR06UtNjWBD+S/9d5NaPwIdN2MUrEStYc6tYsvU5v3+83/vzpNWWTi8GGM/PwxAMCCW28FJwiOja9U4b1e8+9DzSNXW+3rQ2pgEBAE+NatAwB4lhCzjxuitnzwIHRFgVBdDc8cFqt+t+8kfr+/D1/95X5ceu8r2N8TtnCU9jEaV9D+/9h78yi5zvrO+3uX2rfeqhftUku2JUuWDd7ANottnAMkYA+TzCRwCJMMW3AgMEBMJm9I8EAgJ+RlGDAJS2ZewoQM6wmQkLExeN/AiyzZki2pWy313lVd3V171V3eP57lVnVXdd9bdau7qvR8zvHpVnUtV1bXrXu/9/t8frERFCI9MPN55E/TtvzIURSXaFObakP6Q/S8I9v4ecfqYZF6Os19995R0dQWuA/zXmsuObW5T7unp+M/K4JXNu/V5iu1RFN7Q7x0bkBxbHyLt6RxtKQYEmkXW6H27bffjhTdOd1+++11/7vjjjtc3biRkREcWjUZ++DBgzhPp3jXwufzIRqNVv0n2Ho03YBfzwEAlABralP9iERaJ6kWDYs8nz4PEyZCagSmHkLUr8LvUazGZC2nduXtmTkMuNDUZicinTq9WSCwi6YbkPPkM6N/0F6b8B10YOSPjk1jOUcuovJhkZ3W1DYM4PR95PvVobbQjwhc4FyChqXxOJQeMixSjcdxYJh8vp7pxFCb60eyKJ0jF7c6TT0CkACSXbg2XFbgGaUSD6Xa9aS2UkGyGtM0yXBIw0DkDW9A6LprN3vzOhZLQWL/8zB//DgAoqKQ6YpaD21ql6Y2Xz+Sp+oR/9ErmnKcVh6LH5tcxlu+9Cj+209eRLaoNb2NrWQlX4YpyVg8SMKt7Eu0zTp4CEWmH9lJLkwONNnUBiqHRZJQu3SWtLTVwUG+okQgcBPm1NZdcmrrXeDTZjAFSa6ZUHtWOLXt4ttH5vB1dFN7UQyJtIutUNswDO7LNgyj7n86VSu4xQ033ICXXnqp6raXX34Zu3eLIVudRrakIyQRp5vKQm3q2u2TSdidypZb8trMpz0Y2AFA4ioR3tSO1PlgqGhWssekixrypcZ+zzV6IiLUI4Ju51wyiyjIxarefnsHXlfv7sVlwxEUyga+/wxtkIXoBaBOa2rPPEe22RsGdl5PbuNObaEfETTPGA2198bD8B8iDUx1cBD7B0mb8/R8J+pHSCO7sqnt3dOZx3utGhapzZH9h+Tz8fCg3VAH6bDIhbXDIjMPPIDsY49B8ngw+PGPbfamdTRMQcKaW3YoPE9C7cCRw/w2L3Vq64lElWt5M8g/T33aTQ6JTFDP9DtftRtvvmIEumHi64+M4w1/8yDue7F9P2OX6AX7wtGrAQCZc+T/v6HGUMoQ/Yh/kJxvWPqRJpraq0LtIg21vUI9ImgRXD/ikseY7e9YA7yTCVxlDYtsRE1mGgY02tRW23ClVrvhpXMDiuOdG2qzQqTSJwqRG9GQU3uz+PCHP4wnnngCn/nMZ3DmzBn84z/+I7761a/iAx/4wFZvmsAh2aKGCMjBm+KvbmrHQE76kk0ssVsP5tPuUcmBPA+1WWMyXEePwLzamQVEfCp8Knm7JBo8wORepAGxhETQ3ZycSaOXvq/lkL0DUUmS8PbrrYGRpmla78Fshw2KZOqRfa8DVKoaEk1tgYuML9BQeyAEH9UKqPE4DtBQ+8x8BkYHuWYB8GGB1aH2nq3boCZQWjQssjxtDYlspunaSphXe3VT2yyVMP+5vwIA9L3rd+EVM28cofJQ20FT+wQJtZlPGyAKPKYyKW9yWzt/7BgAIHBF4z5twGovHxqJ4su/8wr8z/90DXb0BjC9XMC7v/krvOebv8L0UvsNy13Ok1DbvJqsUCgmJWgFGcW5NGACik+HIpPVHUw/kmxi5hBTmRTPnCFfqVvbN7q/4ecUCNaDDXN0TT9C3dzd4BT2X3opJJ8PxvIyP8Zxgr64CLNcBiQJnqE6q8wFHN7UPtvBofaiWOVvF8eh9gc/+EF88YtfXHP7l770JfzRH/2RKxvFuOaaa/DDH/4Q3/72t3H48GHcfffd+MIXvoC3v/3trr6OoPVkixpCKJA/rHJqh5GDCq1lwyJZUzsgkcZoPOIneoDsBqF2RVNbkqyG93yDChKhHxFcLJycWUEP1QqxgbB2uOOq7Qh5FYwtZPH42WSFfmRt46+tOX0v+crUIwAQEqG2wD3GE+Si0d6BMHpuvx2BK69Ez9vehl19QXgVGYWygak2DHXWw9KPZDo+1OZNbbdDbToksl3VIwDgoSs7y6tC7cV//EeUzp2DMjCA/ve+dys2raNhoY5us6ltGgYKx08AAAIVobYkSZaCZBO92loqhTLVRwauOLLBvdeHlUv66byb1186iPs+/Fq877WjUGUJ9744hzf8zYP4xiPj0Fo0r6cRWFM7PDwI32V0YOSsD8Xz5BjHF9MgrZB/k2YHRQKWU1ubnoGeyXD9iBgSKWgVLNQ283lXVoJwp3AXNLUlrxd+umom/6xzBQnzaavxOCSPx9Vt60aYU7s8Pb3pq5LcQk+IQZF2cRxqf//738cNN9yw5vZXv/rV+N73vufKRlXy67/+6zh+/DgKhQJOnjyJd7/73a6/hqD1ZIoawlQ/Ah9tavtjAEjTKIYsUq0KtWlTW9HIiVY87ANyScDQyOvXc2qvCqHiTXq1+dW2ARFqC7qbUzMr6AF1/gbtfxCHfSpuv4qsqPjWkxOdOSgytwhM/op8v78i1Bb6EYGLjCcqmtoHDmDPP30b4ZtuhKrI2Bcn4XCnKUh4qJ3NoDRBnNq+jg21aVPbbf0IX3rcvqG25dS2LkZqqRQSX74HADD4Rx/iTXaBfdigKC1pb+VS6dwEjEwGkt/Pw02GhypIypOb19RmLW3v3r1QYrGmnitBg17mnQaAgFfBXW+8DD/54I14xa4eZEs67v7Ji7j9nkfx/ORSU6/nFqypHQt4EL6GtNUzc0EUz54DAPh6ysDSBQB0oD2aW8WqxGJQh8ixR+nMGUs/sk8MiRS0BjkUAmjgqrvQ1uaDIrsk1AteyRQkjYfanjb+/G8nlL4+yLEYYJr8mLLT0BbFoEi7OA61k8kkYjUORqLRKBKJDgoeBJtKtqgjTPUj8NKTGVmhwTbQI2WaWmJXD9M0eaitFcmS2HjEB2SoTzvYDyh1rnaGmX6Ehtr0ALNh/Qi/2iZCbUF3c2FmFh6JuucdNLUBa2DkvS/MYQn0AlgL9SP/69FxfOnnp917wrM/B2ACg5cDse3W7ZX6EbOztBCC9sI0TYxR/QgLsCvhXu25zhoWyZQIxbNjMAsFQFXh2b59g0e1J0qE7Ltcb2pz/Uj7+jS5fqTCqb3wxS/CSKfhO3gQMZeHyl8s8Kb2or3PwwJTjxw8uKbV591OmtrlTWxqF1zyaZumyYNeFvxWctlwFN9736vx6TsOI+pXcWJqBbd/+VH8+Y9eQLrQmtk9dmGhdk/Qi9BRcqEhO+tD4WUyP8of04DltU1ts4ljBnZBI3/8BNfN+PaLUFvQGiRJgkrnPWguDIu0Qr3uOHcO8FD7WceP7YSL2u2EJEnw7e3sYZFMXSsGRW6M6vQB+/fvx7/927/hzjvvrLr9pz/9KfbtE8uZBLXJFDUM8qZ2xcTtQC9QWEIPMi3RjywWFpEupSFBQi7XA2CZhtrj5A71hkQCVrMy61JTOyn0I4LuZzlXRiGdAHyA6QlC8vgdPf7gSBSv3N2LpydS+Om4jt8GWtbULmkGPvWTF2GYwG9dvRODUWfbWhOuHrm1+nYWamt5oJgG2GwBgcAhiUwJ6aIGSQJ29wfX/PzAYATADE7Pd1ioHSQBPRuG6N2xo2OX2PKm9orb+pH2b2pZTW1y7FR4+WUs/Z/vAACGPnEXJEXZsm3rZHhTO2Ev1M4/z3zah9f8jOlHylObF2rnj9FQ+8rmfNrZko5CmShF+iua2pXIsoS3X7cbtx0axn/7lxfxz89N4389dg4/fHYKO3oDiPo9iAZUxAIe+r0HUb9Kv9I/B1RE/R4MRf1Q5Ob99WXdQKaoASBN7eC+OCTVgJ6XkXvqlwBoU5uG2n0h8nfTDBMreQ2xYGP7Qt+BA8g++ijS994LmCaUWIwrIgSCVqD09UGbn+c+7GbgTe0u0I8AVqhdPHMWejoNJRLZ4BEWlTM1BPbwju5D/rnnUBwb3+pNaQiWHYlC5MY4DrU/8pGP4M4778TCwgJuvvlmAMD999+Pz3/+8/jCF77g+gYKuoOaTm2AqAlS4+iRWhNqs5b2tvA2JCdJ0yEe8QFpqgCopx4BKvQjC9bjACw02NRmw31EqC3oZk7OrvAhkZLDljbjHdfvwtMTKfyfF3Mk1M4mSLvZ5cFoS7kS2Cy9yaV886G2YQBn7iffV6pHAMAbIqtUShniCBehtqBBmHpkR28APnVtQHhgiDa1Oy3UDlW3zjvVpw0ASpicqBqZFoXabezUrgy1TdPE/Gc/CxgGIrfdhtC1127x1nUuTF1nVz9SOE5C7cCRtc1oph8pbZJ+xDQM5GlT299kUztJj8GDXgVB7/qnsfGID//9P16Ft71iB/6ffz6BiWSOt6Xtcmgkip/84Y2Qmwy2VypeN+pXIZWXERosITPtB3QdkCT4YhqwTPQjPlVBxKciXdSQyBabCrUBIPcrokXzjo627ZBZQXeg9vWiCCuQbgZrUF53hNrqwAA8O3eifOEC8seeR/jGtUrfepRnySpzz8g6hTxBFT5auC2Nnd3iLXGOUSrxYeMiO9oYx6H27/3e76FYLOLTn/407r77bgDAnj178JWvfAXvfOc7Xd9AQXeQLVU6tVc1tQH0IIuZVoTadEjknuge/Io2rONhHzBH9SPh9ZraVD+SJbqAZprapmny4T7KgPAiCbqXUzMr6JVomBbsbeg53nh4BJ/68Ys4ueID/ACMMlBc4boit0jlrJPMmaUCsKvJJ5x5lrTKvRFg1/Vrfx4eBBYzxKvdL5b/ChqjckhkLQ5Q/ciZuTRM0+yYAEMOd0+obQ2KdO/CgmmafPlxOze1mH7ELBax8qMfIfvY45A8Hgx+7KNbvGWdDWvX6jZCbbNUQuHkSQBAoEZT27tjc/UjpXPnYKTTkPx++C+5pKnnsoZE1m5p1+I1l8Rx74dfgxemV7CcL2MlX8ZKQaNfy1jJa/QruT1Nb09kSnhxZgXz6SKGY81d9GZhesSnQlVkIJdEaLhAQm2QCw2yOkWOdQrLgD+G/rAX6aKGZKaE0Xhjr+s7QH3qVGHiGxXHHoLWovRQ/YgrTm3yHN20uiBw5ZUk1H72WWehttCPOMa7l4TandjU5p/1Hg/kqChCbYTjUBsA3v/+9+P9738/FhYWEAgEEBYDXwQbkClqFU7tGqG2lMELLWxq74ruxr3UwUf0I2RZLCJD9R/Mmtp6CSgsc6d2I6G2kc3CLJLHqV30wSwQrObUbBo9oO3EBpvafo+C37p6J/7uoTEUpAD8Zp60tV0Pta19zsyyC5OxT99Hvo6+rrarPzwELI6JYZGCphijTe19A2t92gCwuz8EVZaQLemYWS5gW09gMzevYbqqqc30Iy46tY2VFRi5HABAHW7fppbs90OORmGsrGD2058BAPS9613w7ty5xVvW2ai0EGFkszAKBcj++iFr4fRpmKUS5GgUnt271/ycueqNdBr68nLTgxs3gqlH/Jdf3rRSyBoSudanvR4+VcErdjm70H7DZ3+OqaU8ppbyTYfaSzTUjgbo3z+XRGjYOp/wXXopEDgD5BeJgsQfQ3/Yh3PJHG+nN8LqENs7KlShgtbCL8A16dSuaqp20blz4MqjWPnxjx0Pi+QXtYdFqG0X3z7q1B4fh2kYkGTH4wS3DI2WIdW+vo4pp2wlDf3LapqGn/3sZ/jBD37Ah1dMT08j4/KUd0H3kC2UrVC7qqlNPqRaph+hTe24bwcME5Al6qlL22hqe/yAjw2qW2iqqa3TIapSMAg5uNaBKhB0Cydn0xVN7cYPQl+xm5x8Lkn0ZDvrvld7qSrULjT/hCzUXq0eYVQOixQIGmScDoncWyfU9qoy9tCfdZKCROmiUFum+hHdRf0Ia2kpfX3rBprtgDpIaqXGygqUgQH0v/e9W7xFnY8cDvNAeKO2duH4CQBA4PDhmifDcjDIHZ2lTWhr54+R8KbZIZFARVM75CzUboTtveSC4NRS8xe9rSGRVqjtjejw9JMLYP5LLgViO+id6bBI6tVONHF+JIdCVQN3RVNb0GqUPnL83qxTW2dNb0XpqqZq8KqrAADZJ5/ExO++C/N//ddY+b/3ojw9XXcorFkqQaNZQjvrx9oND53NYhaL3EneKehUW6t0iXqn1TgOtScmJnDkyBG89a1vxQc+8AEs0Onmn/vc5/DRj4qlhYLalAo5KBLdUVc6tbl+JINUrrkJ37VgTe2Isg0A0B/2kYEvGRtObQAI0fV+mTneClnIFB1vpxgSKbgY0A0TL1eG2g02tQGgN0hO5hZBL4K1YFhklX6k2aZ2NglMPU2+P1An1A6JUFvQPMypXS/UBiwFyek5d53OrUQKBqu8+d69e7ZsW5pFjlKntov6kU4aEuUZtI6tBj/8R1DC9X9XBfaQJInr6zbyaueP02b0kSN178O82uVN8Gozn3bgaHNDIgEgSZva8Yh9/UijbKerXKZSzYfazKkdq2hqSxLQ+2uvhByNIvJrtwE91IG2dB4AOWcB0FRTG7C82oAItQWth7WqtSab2uzindLX21EN243wXXIJfJdcAmgack8+ieTXv4GpD30IZ26+BadvvAkX3vd+LHz5y8g89BBXuJTniQpV8nq7SsXSaiRVhXcPWa1UGh/b4q1xBm9q9wttrR0c60c+9KEP4eqrr8axY8fQXxHQ3XHHHXj3u9/t6sYJugcttwwAMCFB8lSc3FToR8qaiZWCZh3wNUnZKGMyTdoOPnMYwDmuEOFN7cgGS3jDQ8DiWSAzj/h28tiSZjjeTjatXoTagm5mIplFvqxjwNt8U7svRN5fCwYNtVvQ1K7Uj0wvNdnUPns/ABMYOgxEt9W+T5jqjoR+RNAgumFiIkkUFBuF2j8FcKaDmtqSJEEOhWBkMpACAT5wsBNRuFN7xbXnLM9MA+iMlpYaJ/92vkMHEbv99i3emu5B7euDNjOzYajNm9pX1A+1vdt3oHDs+ZZ7tY18HsWXXibbc7T5pnZyM5vaNNSedqGpvZRb3dQmgUX/v7sN/X/2t+S2seqm9gD1hrMgv1F8Bw4g88ADkIJB4eMVtBzm1NabdGqzUFzt7a4QV1JV7P3B91E8cwb548dReP448idOoPjyy9CTSWQeeACZBx7g9/fs2MEvZqsjw0JF4RDv3n0onj6D4tmzCN9001Zvjm10NiRVXMSwheNQ++GHH8Zjjz0Gr7f6CvmePXswNbU5U7QFnYdeIG2xshKEt/JqKw21+2XSPEtlS66F2pPpSWimhoAaQLlIWmtMIcKbkuF1nNpAxbDIBfg9CiJ+FemChoV00dF2sh2TMiBCbUH3cmqWvM93+gtACU01tXtoU3teC5NPqhY0tZcqmtqzzepHuHrk1vr3EfoRQZNMpfIo6Qa8qswDl1rsHyKhaifpRwDwUNu7Z09Hn7gx/YibTW2tg4ZE9fzH/wAtkcDgxz4KSVG2enO6BnYMuZ5+xMjlUDxzBgDgP7xeU5sOi5xqbahdeOEFQNehxuOuuOCZU9vJoMhGYfMI3NSPVDa1AQDBivOCOvqRZvWMvksvJV9HRzt6vyroDLh+ZLFJ/Qg7d+5C/YKkqvBfdhn8l10G/OZvAgCMQgGFkydROH4c+eMnUDh+HKVz51CenOQXH70VKiGBPbzMq91hwyJZIVIRhUhbOA61DcOArutrbp+cnEQkEqnxCIEAMIukraR5wqg6DKVNThZqJ7Ml7gJtlomVCQDA7uhuJLLkYDIe8QHFNFAmr7dhqL1KFxCP+HiovX/Q/oBUq6ktlpAIupdTM+R9PuzJk1C7iaZ2Dz3xS4I5tddvpjVCquJEcT5dgKYbUJUGljgaOm1qAzhwW/37iaa2oEnGEiQk3dsfgizXDycq9SOmaXZMkCGHw8DcHF8u2qm0YlCkpR+psxKkjQhedRV2fePrW70ZXYfaR05u2bLkWhRefBEwDKiDg/AM1V/twPQjrXZqsyGRgSuPurIfYk5tp4MiG4E5td1sascC9CyoZqhNh6kuXwBg6UcSTepHIrfegr53vQuRW25u6nkEAjtw/UizTW2mX+iypnY9ZL8fwauu4s5tANBXVlB44QXknycBd89v/eYWbmFn4ttHhuOWxjpMP7IoVvk7wXGofdttt+ELX/gCvvrVrwIgy0UzmQw++clP4k1vepPrGyjoEorkRNzwrAqsuX6EhMxuDotkQyL3RPdgYYUcEMYjPiBNAyVvuMrvbZom9EQCajxuPQlrVmZpqB32YWwhiwWHB5galf2rXXi1WSBgnKRN7T65eae2qsiI+lUky0w/stDs5q2h0qltmMBcurhu+7Uu08+SE1RfFNh5bf37Vaz8EAgawY5Pm/1cloAVehF2MNregwUZMh0W2clDIgFApiUPI5eDqeuutJXZoMhOcGoLWoM6wELt+iuX8lQ94l9HPQIAXtbUbrFTO3/sGN2e5tUjQMWgyE1oam/vIftNN5zaVU1t09wg1K5uaiebPDeS/X4M3fXHTT2HQGAX5nw2lpdhlst8wK1TWNP7Ym6qKtEoQq96FUKvetVWb0rH4t1LQu3ieGc1tfVE965UaAWOK2mf//zn8eijj+LQoUMoFAr4nd/5Ha4e+dznPteKbRR0AXKJhFymd1Wbn4baUZOEYSk3Q206JHJPbA8W0jTUDvsqhkRWt7QTX/kKTt/0GqR/8QvrRj4okoRQTF+SSDsLtfmwi4v4g1nQ/ZyaJU3tsEE9sk00tQGgL+TFokknnrdEP1K9v5lptI3F1CP7Xgco6xy886b2PGAYjb2W4KKGh9rx9UNtv0fB7n5yn05SkLBGim///i3ekuZQwtYFc33FHa82D7U7wKktaA3sGJKd7NaiQIdEBtZRjwCV+pEp14e0V+LmkEjACnjjm9DUZvqRdFHDSqG8wb3XZzlPtrsn6AEKy4BJVz1XHicx/Uh6BtDLrg2KFAg2EyUW40Of9eXlhp+HN1WpzkQgaAQf1Y/oyST0paUt3hr7aItiUKQTHIfaO3bswLFjx/Anf/In+PCHP4yrrroKn/3sZ/Hss89isIOH+ghai1ymJ9XeVcoOGmoHzBxUaE23ESoZXyZX5PZEK0LtiA/I1B4Sydok+eeOWTdyB+6c9Xiggaa22DEJupt0oYwLiyQU9pXoQUOguQPRnqAXSbR+UKRKNQ4zjXq1z9BQez31CGBdJDPKQKFzDqwE7YPdpjYArsg6PeeeAqPVDH7soxj6xF2I3rbBe6nNkbxeeLYRTUjx5dNNP59ZLkObJyvGRFP74oVd9NHWcdXmbQyJBOjvkSzDLBahLbRm9VB5bg7a7Cwgywhcfnnzz6cbXOPRvwmhdtCropcOdmy2rV3V1GYtbW8EUCv+HqE4oHgB0wBWpnkbPZUrQ9PFhXBBZyApCgm2sf6+aiN0OihS6ROFMEHjyKEQn+dQ7CCvNitEilX+9nCsHwEAVVXxjne8w+1tEXQxqkZCbcm/qqntjwGQAJiIIYvFrHtthKqmdmXTeo41tasvwugLJDTTZmetG1mzMlvd1F5w2NTm+hExKFLQpbzEhkRGFUgl6qx3oamd4E1t953a7OR4/2AYp2bTmFlu4KQ1mwCmniHfrzckEiAnr4FeIJ8iF8qa/P8juPgYWyDvrX02Qu1LhsK478W5jmpq+/bt4/7DTsd/+eUoT0+j8MILCF23jpbIBto8Wd0heTxixddFDAu19Tr6ES2VQvkC8TH7Dx9e97kkjwfq8BC06RmUJ6fgaUExiZVFfAcOcLVQMzBFoSJLfO5Gq9neG0AqV8b0Uh4HR6INPw873ugJeIAcDfpWHwPIMmlrL44By5Po3bULkkRsJYu5EgYjnaGREgiUvj7oS0s8mG4E1tRWRFNb0CS+fXuhzc6iND6G4Cuu2vgBW4xpGPyCkDjms0cDE7GAl156CXfeeSduueUW3HLLLbjzzjtx6tQpt7dN0EV4NHIiLvtXHRDKCg22gR4pg8Vsc8v7GCulFSwWyM6gblM7XN3U1hLkJKE8VzHEjetH5gHT5MsdnYbauphgK+hymE/7lXG6jFmSAV+sqefsCXqwCLrPyCbImZ1LmKaJJdqcYieq00sNNLXP3A/ABIaOAFEbDcpVw2cFArsUyjqmqCLHTlP7wCC5iNxJoXY34afN1MILLzT9XEw9oo6MQJIbOnQXdAHsGLLeoMjCCdLS9u7eDSW6cQDr3c4UJK0ZFllwWT3CfNp9Ie+6g3LdZFuMKEimmhwWyZra0cqmdrDGOQFTkCxPQpEl9AWpVzvj3kpWgaDVsCBaTzXf1BaD8gTNwr3aHTIsUl9eBnSiqFJ7xUUdOzg+Mv7+97+Pw4cP4+mnn8bRo0dx9OhRPPPMMzhy5Ai+//3vt2IbBR1OUdMRMMnBoBKocZBNmwo9yLjW1GZDIgcDg1DgR7qgAWChNg2TIpZT2zQMaHSZR3VTmwZjSSYSAAAgAElEQVRQehEorjTU1DYKBRhZEuqLD2ZBt3Jqhnhjj/TTJbKBXtI6aoLeoBdJk67u0ItAyb1wbqWgQTdISH5whLxGQ01trh55g737h0WoLWiMc0nyORILeNAX2nhIGtOPnBGh9pbAQ20aNDZDeYYclwj1yMUNb2qnUjA1bc3P88ePA7A/lJF7tSdbE2oznV/gqFtDIkmw229j/+cW23vdCbXZRfSe4EahNhsWSRr3TEEiQm1BJ6H2knN7LdV4U5vrF/rEqkZBc3hHSahd6hD9CPvdl2MxSN7N+7zrZBzrRz7+8Y/jE5/4BD71qU9V3f7JT34SH//4x/G2t73NtY0TdAfZoo4wyMGgp1aoTb27PVIGCZec2pNpcoC+M7qTB9A+VUbEpwJp1tS2Qm19aYlfESvPzsI0TUiSBHgCxHlXSgOZBcQjpLntxKmt0Za25PFAjkQ2uLdA0Jmcok3tS6N0tUWg+YPQvpAXefhRkvzwmgWiAfK58x5iQyIDHgV76EC9WadObUMHzvyMfG871GbDIufWv59AsIrxBcunLUkbtxRH42FIElmyn8wUN8VBK7DwHyahdmliAno6DaWJz38+JFKE2hc1Sk8PmI9CX1qCOlA9p6XwPAm1A0fWV48wPDu2AwBKLQi1TU1Dnq5SCNgM2TeCDUxkBZPNYDsdFtmMU7tQ1lHSyAX/Kqd2LQXZ6lA75AOQQdJFPaNA0GoU2i5tVD9iFAowcjnyXCLUFjQJ09qVOqSpbc1iE2VIuziu0c3MzOCd73znmtvf8Y53YIYedAsElWSLGg+15dVObYCH2r1SBos5d0LthTxxYA8Fh3gAHY/4SBDAwqSKUFtbsPyEZqEAo3Jac5gpSOa4fiSZKfKW50bozAk2MGAriBAIOg3DMHlTe1+Inni54IvuoQOaVhSqMcm659VOUb9lX8iLbfSkddppqD31DPFj+2LADpvOXBFqCxpkLGHfpw0AAa+Cnb1BAEJBshWovb18WGThxZNNPVd5Zpo858jwBvcUdDOSqvKwiK0uZJimiTxdFeA/sv6QSIaXN7WnXNxKQvHMGZj5PORwGN7RUVeek+lHNrWpzY4PmmhqM5+2IksI+1Tb+hFANLUFnQnXjzQ4KJI/ThTCBC7A9COlCxdglNp/X8qyI7FKwT6OQ+3Xve51ePjhh9fc/sgjj+Cmm25yZaME3UWmqCEk0bCoVsuSNjpjyGDRpYO2hRwd7BiIV/u0AaupHbFODldPfq/yavNhkfPoC3khSYBhWgNrNoI1tcXVNkG3MpnKI1vS4VVkDKmkWeFKU5u6JJeYVztXezhWI6ToBbSeoAcjMTJ8KZEp8jaVLZh6ZPT1gGJz4RO7SJZdWP9+AsEqxhNWU9suB6iCRITaW4NbXm1tWjS1BQRrWGR1qK3NzkJPJABVhf/gQVvP1Ur9CFOP+I8cds0Dz4LdgU1cdcIuejejH2E+7VjAQ8ot6za1q0Nt9ncVTW1BJ8HCOK1Bp7bGfNq9vaIQJmgadTBOhhUbBsoTE1u9ORuiiVlsjnF8lPGWt7wFf/zHf4w777wT3/rWt/Ctb30Ld955J+666y7ccccd+NGPfsT/EwiA6qZ27VCb6UeyyJZ0FMp60685nye+2niwItQO+wCtBOTpB2zFoEgtUR0wVXm1+bDIBaiKzBsidr3aGp1Sr/SLq22C7uTkLGlpHxgKQynQpYauNLVpQ8msGBbpEil6Uao36EVfyAuvKsM0gbkVB23t0/eSrxuoR37wzCSu/8z9ePxsUjS1BQ3DQ+24/VB7/xD1as+lW7JNbvOzF+fwnm/+ir8/Ox23Qm1LP7Kt6W0SdDbWsMjqUDtP1SO+Awcg+/22nouH2rOzNR3dzZB3eUgkUOHU3sRQmzm159MOL3pXwHRnPQGy+gw5eh5Sq6nds4s+6AJgmnx+gmhqCzoJhTq19dRSQ4/nq5xFqCdwAUmS4N3HhkW2v1dbWxSFSKc4dmr/wR/8AQDgnnvuwT333FPzZwD55dH15sNJQeeTKWqIShuH2n0SaZKlciWM0GnjjZLIk/ArHojjpemKpnaWDmeTVf66AEi7pYLybGVTmw52o48dCPuQyJRse7X5oIv+gQ3uKRB0JqdmSGB22XDUumgUaH5aMzuZmzdIMOduU9sa2iRJEkZifkwkc5hZLmBnX3DjJ8gsANPPku/337ruXX90bBqzKwXc9YPncd9vDMALiEGRAseMLZDPSGdNbfKZ2ylN7W88Mo7Hx5K49eAcfuuanVu9OU3jeqi9TTS1L3bYSS5rcjEKJ5hP2556BADUeByS1wuzVEJ5dpbrSNwg/zwdEnmFm6E21Y+EN08/0h/ywqfKKGoGZpcL2NVv4/hgFaypHeWh9jr6kSi9cFXOAvkU/7smRKgt6CAsp3ajTW3qFO5t/lxCIACIV7tw/DhK4+3v1dZ5U1sUIu3iuKltGIat/0SgLWBUDoqEN7z2DrTROUi1BW60Ebh+JBivcmojXeHTrlgOWenUBoDybIUfPkRDbRpCMY2J/aa2kP0LuptTtKl9cCQC5NxravdSp/Zsme43XGxqs+ZUL22DMwXJzLLNJcZn7ydfh6+oUhnV4nyS7Nsmkjn84DRtw4mmtsABqWyJX4jpZv0IC39mnayYaGP4sMhz56CnG2vL6+k0DPpYz7Bwal/ssJNc1mRksKa23+aQSACQZJl7391UkOjpNEpnSXAQOOrOkEjAUnDEN7GpLUkS92pPLuUaeo6lvHURHcD6obYnYK0QXZ6kgyKFfkTQWajUqd2ofkSn586iqS1wC6up3f6hNr+oIwqRtnFHciYQrEN2Q6c2+eDrV8jBol1X9XrM50gAPRgcrHZq1xgSCQAabWrzATxVTe1qBy4LtRO2m9rkudUB8cEs6E5OzrBQu7Kp7Z5+JMH0Izk3B0WyUJucZG6LsWFQNsM0m+oR3TAxmbKC8i8/Rf5fIZcEDHHxV2CP8SRRj4zE/Ah67S+yG6Wh9kK6yC/ktDPpYneF2mpvL1Tarm50WCRraSuxGHFCCi5q2EluZVPbNAy+GiBwhbMQuRVe7cLx44BpwrNjh6uFjkSa6Uc2r6kNWAoS28cHq1ipcGoDWD/UBiq82hcwIAZFCjoQpc/Sj5im6fjxOg3DWTguEDSLd99eAOAXXNsZtspfNLXtYzvUfvzxx/GTn/yk6rZvfvOb2Lt3LwYHB/Ge97wHxaK4iixYS6aoIWLDqd1boR9phmw5i5xGAvLKQZEDYR+QWTskErBCbf9h0nDR5iqd2qypTYJux01tvoREXG0TdB/ZooaJRfJ+u2w4UuGKbP6D2KvKCPtULILuN1wcrmjpR8gJ4zBtas/aaWobOnD25+T7/euH2rMrBZR0Ax5FwtW7ezFVDsGADJiGq81zQXczvrDOkMjEGeDv3wic/cWaH4V9Km8ZnumAtna6QFYyzC13fqidypYwny4gcDk5rmhUQaLRUFvdJnzaAkClJ7laRVO7dO4cjEwGkt8P3+ioo+fz7NhOnsPFUDt/jKlH3Gtpm6bJ28qbOSgSsC56T6UaGxa5xI43Ah5y/JBnK9rqhdpUvbQ8yf3hSZtFGoGgHWAlMWgaX2nkBLbKWekThTCBO/hYU3t8vKELLZuJJtS1jrEdan/qU5/CCxUH5MePH8fv//7v49Zbb8Vdd92FH//4x/jLv/zLlmykoLPJFsoIrRtqkwP0qEk+9JptIzD1SMgTQtATrG5qc/3IYNVjtAXyGLZUuNqpzQa70aZ22Kl+hO2YxNU2Qffx8lwapkneX/1hn6tNbYAs123FoEiuHwmR5tQIDf6m7YRpU0+Tk1J/DNhxzbp3ZeqRHb1B/MVbLwckGUmT7geFgkRgEz4kslao/dTfAecfAx78q5qP3d8hChLTNHmo3elNbcMw8eYvPow3/M1DUC47CKDxUNsaEil82gJrOb5e0dRmQxn9hw5BUp2NS/LypvaUS1sI5I+xIZHuhdorBQ1lnQQRbN7GZmE1tRsLtZcrm9r5JQA0UKk3e4SH2hd4Kz1b0pEvidVdgs5A9vkgB4l/vhGvNnuMIpraApfw7twJKArMXA7aXHuff+kiO3KM7VD7ueeewy233ML//E//9E+47rrr8LWvfQ0f+chH8MUvfhHf+c53WrKRgs6mWMhAkegBXC2ndqAHABAySKjdrH5kIU/D50AcpmlaTu3Kpna4dlObDdgpz85aV/G4fmQeME3HTW02hFJ4wQTdyKlZNiSSBrUuNrUBcvK62Ar9SLa6qb3NiVObqUdGbwaU9QOE84skjNzZF8Tl22J4+3W7sWCSfZ62MrveQwUCzrqh9rlHyNcLT9LApBru1Z5r71A7V9KhG+Rzd67DQ+3ZlQKmlwtYzpeR2EaWvDYcak+LUFtgwQdFVgRFheMnADgbEsnw7CABqlv6EdM0ecgeOOr+kMiIX4Xfo7j2vHbYRi96TzUZakcDHus4xh8DFE/tB3D9yCQiPhVehZyuC6+2oJNgChJtMeX4sZZTWJw7C9xB8nrh3bULAFBqY6+2kc/DyJFClMiO7GM71E6lUhgasjzEDz74IN74xjfyP19zzTW4cOGCu1sn6Aq0PHHImpAAb40TctpU8Bs5eKBhsUn9SOWQyJWChpJmkD9HfHzYIyLW77JRLMJYIdvop8uEzVwORoYGAEw/ohWAYtoKtW0sBTTLZejLywAAdUAsIRF0H8ynfWgkCpimtazWtaa2F0muH2nloEhy0jpjx5l5+j7ydQP1CACcp2qWXX3k+f/LbZdgSSah9mPHGnPsCi4+xmiovS++6jM0mwDmXyTfmzow9sCaxx4YYk3txgYVbhaspQ0AiUwJZd3Ywq1pjnPUgQ4AY70kNCydOwc94/zCAm9qbxOhtsAKefREgpcv8sfZkMhGQm0SoLqlHylPTpKWpccD38GDrjwnYK3i3Gz1CACucGq0qW0NivRu7NMGgB7a1F66AEmSeFtbeLUFnYTl1W6gqc2cwr2iqS1wD2tY5PgWb0l9mHpH8vnEHBUH2A61h4aGMD5OfgFKpRKeeeYZXH/99fzn6XQaHk+dK86CixojT06ky0oIkKS1d/D3ACC3x5DFYrP6EdrUHggM8DY1b3akWVPbCrVZk1ryeqEOxqHEYmR76YkkvEGrYZ5dwKCDpja/Oq0oUHp6mvp7CQTtyKkZ2tQeiQCFZRKsAe41tYMeq6mt5YFSdv0H2IQ5tdmgyBHa1E5mSyiU11nim5kHZp4j3++/dcPXmaD6kd195MCkJ+jF8PbdAICnXzhle8WH4OLFMEyMJ0gYundg1WqniUer/3zmvjWP3z9ILgq1u1M7XShX/Xm+g98b7H0PAC8VlIphkS86fq7yzDQA0dQWEFhzyyyXYaTTMEslFE+SC6SBK5yH2l7q1NYTCRj5xkLbSph6xH/wIGSfewE0a2r3b7J6BLBC7amlfEMu1ir9iJ1Qu6KpDViDMZtdySoQbCYqDaT1VANNbfoY0dQWuImPDYscO7vFW1IffdEaEinVys0ENbEdar/pTW/CXXfdhYcffhif+MQnEAwGcdNNN/GfP//88xh1OJxEcHGgF2mo7alztUmWuYIkJmWa14/QpvZgYLDapw1YDtsK/QhTj6gDA5AkCeow+VmVbylEFSSZecTDJPxazpdR1Nb32+lJqh7p64Uk2367CQQdgWmaODlLmtqXDUctn7YnBKjunMz2BL3Iwo+yRJ/PhbZ2oawjT4Nrph/pCXrg95D36Lrqg+PfI19Hjlat+KjHBdrU3tkX5Lft2U0OqqJ6Cn/1b6ccb7/g4mJ2pYBC2YAqS9hB3a4cph4ZuJR8PXM/WTFRAXNqzywX1gTH7cRKRVMbAGY7eFhkZah9Zj6DwOVkXkfhhHMFiTZDLsarItQWAJD9ft7e0pJJFF4+DbNchhKLwbNzp/Pni8Ugh8k+ojzVvFc7/7z7QyIBa1DiVjS1h2N+SBJQ1AwkGzhHWaYrw3qCdkNt+u+YmQW0IvpD5O+cEMMiBR0Ea1k71Y8YuRxMeoGNtb0FAjfw7u2ApnZCDIlsBNsp29133w1VVfHa174WX/va1/C1r30NXq91tfzv//7vcdttt7VkIwWdjVQkoZdRL9QGuIKkF+mm9SPzeaIYiQfj1T5tw6ipH2GhthInOw91mPysPFvhu2WDJTNziAYsv11ig1Y5HxIppjcLupDp5QLSBQ0eRcJoPAzk6IGrSy1tgA2EkpBVyQoKN0LtJdrSVmQJUT9xYkuShG0xtsS4Tpiml4En7iHfv/I/2XqtCRpq7+63Qm2Z7n/i0hK++/Qknj3vvMUiuHhgPu1d/UF4lFWHbSzUfs1HAU8QSM8Ac9XBaSzgwVCUhCLt3NZeWRW4d7JXe6JCP3JmIcPVZk692qauo0wvsHu2bXNvAwUdjTJAFSTJJArHaTP68OGGWl2SJLmqIMk/S1YyuTkkEgAW6PE2ay1vJl5V5qs0p1LO2+yOm9rBfkClFzBXpng7vZFAXSDYKrh+xOGgSBaCS16v0C8IXMVqarevU5s1tVVxQccRtkPtgYEBPPTQQ0ilUkilUrjjjjuqfv7d734Xn/zkJ13fQEHnI9GmtuGJ1L8T9e/2SNmmm9qJPAm94oF4dVM7nwIMetLMPNkAtAXS7FYHSBvbM0Sb2rMVTW0WamcXIEkSBuhB9UbqAB5qi+VTgi7kFPVpj8bD8Kqy1dQOuOfAY3qQZYmG2rnmQ+0Ua00FPFUhwEjPBsMiX/ghsHyBrNw4+tsbvs5yvswD9MqmNtv/HIqQ0O6TP3oBhuF8SbPg4oD7tFcPiaz0aY/eDOyhq+dqKEgOUAXJ6TYOtdNd1NQ+V9HUPp/MQaVuYaehtpZIAJoGqKqYyyHgsKKEllxEng6J9DegHmF4qIKkPNlcU1tPp/nvePDqq5t6rtVsZVMbaNyrbRgmD7V7qkLtdQILSapSkFhObdHUFnQOah/TjzgLtS39Qr/QLwhchTm1tfn5hmacbAasqS2GRDrDsQ8hFotBUdZOne7r66tqbgsEDLlMTshNb7j+nWgI1iNlkMqVoDcR8FQOiqwKtTO0eR3oA1Trd1VboPqR1U3tuYqmNgvBadM7btOrzQddDIgdk6D7YEMiD45Q53WOHri62NRmepCURF/DhaZ2qnIpcAXDUTosslaYZprAo18k31/3XsDj3/B1mHpkIOxF2KdaP6AXyfb4s4j4VDw/uYzv/EoMWhbUZnyBfIbuXR1qM5/24CEgNAAcoINLT/9szXMwBUk7N7VXq1Hm0p0ZapumWdXU1gwTCyO0HeRwWGR5mvq0Bwch1Tj2FlycqAMs1E7wpnaggSGRDO92EqCWm2xq5375S8Aw4N2923UHvDUocmvONbdVeLWdkClpYKc00YCn4jhpg/OCqlCbnHOIQZGCTkLpJecCmkOntkab3aoYEtkUj5xO4P3fehrzHbzqzW2UaJSvzC+Nt6eCRFsUhchGEJJfQctRy+QETvJH69+JhdrIwDStpXqNwAZFrmlqsyGRkeGq+1tObdrUHiYH4sxjCaCiqV0dam/ktxNeJEE3c3KWDokcpqsweFPbbf0IkDDoa7jQ1F7iQyKrT463rdfUPvtzYO448YVf/fu2Xud8DZ82AD6oVs3N40O3HgAA/NX/fQnLufb1HQu2jrpDIpl6ZM+N5Ov+W8jXC08AhZWqux4YIo89PZdu2XY2y+qm9lyHNrUXMkXkSjpkydo3ni2pDQ2L1OjAavZYgQAAFNrULl+YRPEsWUbtP3y44edj+pHyVHOhdvaJJwAAweuvb+p5asEHRW5VU5vOM5h0qB9hn+t+j0wG1tvRjwDVoTY7DhL6EUEHobCmtkOntp4k5xKiqdocX7z/NH56Yhb/enxmqzelrfAxr/bZ9hwWqSesQZEC+4hQW9ByVI00lmT/Ok1t2uwc8pAQaDHb2BK7bDmLLG2Gr3FqM592uHq4W+WgSADw1Gxqs0GRNDC32dTW6KBIVeyYBF0I049c1tKmNmlTz2l0/+FqU7s61B6hTu2ZWk7tR/87+frK37X992Oh9u41oTa9SFZYwu9eO4IDg2EsZkv4m/tesvk3EFxMMKf2mqb26lC7bx/QNwoYGjD2QNVdO0M/QsIfFuDMdmi76DxVj2zrCeAQ3TdWDYt8wX6oXaahtmdE+LQFFqzBlXn4IcAwoA4PwzM4uMGj6sP0I6Um9SO5J54EAIRe5X6ozXzSnaYfqfJpA/ZD7Z5d5OvSef53FvoRQSfBmtZOndpMV8L0JQLnaLqB41PLAICZDj2WahVe7tVu16Y2/f0XhUhHiFBb0FJM04RXJyfkio2m9qBKDhYbXWLH1CMhTwghT6i2fmRNU5s6tbl+ZD2nNm1qh23qR/jVNrFjEnQXhbLOw7aDm9DUni7TUJudEDaB1dSu1o8wp/b06obo9HPA+IOApADXv9/260zQcGvX6lA70AvI5LU9+QT+4i0k7PqHJya40kUgAICSZuACbQbui1eE2pU+7d03WLczBckqr/YBqh+ZTOWRK1U3otuFlTzZrlG6rXMrnRngMJ/2nv4Q/7ucmc/Az0LtEydsP1d5moXaoqktsGANrtIZ0jQLHGm8pQ0A3h3N60e0ZBLFl18GAASvvbap7alFIs2a2lujH9neoH6EHW/0BOh2N9LU5k5t0dQWdA5sUKRj/QhraveJpnajnFnIIF/WAXTuqrdW4aNe7dJ4ew6L1Pk8NlGIdIIItQUtJV/WEQTZmarBjUPtuEJCMtakdEqlegTAKv0IDanD1W0WfaG6qa0Okqa2kclY7kvW7s7MWc8HG01tdrXtIndqpwtlnJhaxo+PTeOhlxe2enMELnB6LgPDJK1K9n5oRVObKUIWTBqcZ5v//UnRxldvaHVTm4Tas6v1I49Rl/bht1ntKRswp/au/lUNW0mqulD26v0DePORERgm8Ml/fgGmKYZGCgjnF3PQDRMhr4LBSEVDcbVPm7Gfhdr3Ew88pTfk5S7as/OW77mdYE1tFsDPLhc68r3AfNq7+oPcZX52IWuF2g6GRfKmttCPCCpY3eDyH7miqefzbCdNbSOdhr683NBz5J56CgDgu/RSqH3unowXyjrSRXLRa6ua2ttca2o34dTOFjtynyi4OGGhtpnPw8jbf9+wZrcimtoN8/wFaz9ec07QRYx33ygAoNiuTe2kGBTZCOrGdxEIGidT1BCRyAeZJxCrf0fa7OyRyMlgskFvXOWQSN0wucaENLVZqG01tU3ThLZAm9o01FbCIciRCIx0GtrcHJRwuFo/YppWqL2RU5vrR7p/x7RSKONcIotzyRwmElmMJ7OYSOZwLpFd8+/5kz+8EYe3r/P7IGh7TnL1SMSaTt6CprbfoyDgUbCouzkosrZTm+lHUrky8iUdAa8CpM4BL/yQ3OGGDzp6nYlFGm6tbmoDJNRemeJapD9580Hcf2oOT51bxI+OTeOtV2539FqC7oSrR+Ih630GrFWPMPbcAKh+8rs1fxIYOsR/tH8wjERmEafn0ziyo/32v8ypzULtfFnHSkGzwqAOwWpqBzEaZ6F2Bt6D1wCwhkUq4XWUbBRLPyJCbYHF6qJEs01tORiE0t8PPZlEaXISgZjz/UOWqUeuv66pbakFO4b0KjKi/q05dWVO7VSujFxJQ9BrbzuW8mTbY0EPoJeBIg2bNgy1d5Kvy5Pop6vKyrrZkftEwcWJHApB8nhglsvQUynIgYCtx/FCmGhqN8yxySX+/ZzQj1ThY/qR8+dhlsuQPO2zPzV1HTpd2XAxZEduIpragpaSLeoIgYTakm+dEzja1I6BDLFabFQ/QpvaA4EBJLNFGCYgS0B/qCLUjlhObWNlBWaZBFxKPM5v517tWaosYa1KLQ+UMraa2qZh8OEY3agfmVrK4+PfO4Y77nkUr7j7Plzx5/fiLV96FB/89rP4/H0v4wfPTOHpiVSFB9HLdQ8Pn24+mBRsLSdnaag9XLECowVNbYBoQhZNNwdFlvjzVhL1qwh5FQAVwyIfvwcwDWD0ZmD4iO3XKOsGpqmbe3d/rVC7evXH9p4A7nz9fgDAZ/71JLLF9lRECDYX20MiGZ4AsOcm8v0aBUl7e7VZqD0Y9fPgar4DT8bO06b27v4QdvcHocoSciUdC2rQ8bBIbXoaAKCKUFtQwepl+WwVQDMwr3a5Qa929onHAQDB61rg085Y6pGqi3ubSNTvQYTul5y0taua2uwYSZIB/wYXDqLbAEiAloe/vISwj7z2ohgWKegQJEmCQr3amoNhkaKp3TyVofbsSmeuemsV6vAwpEAAKJdRutDccGS30VMpsspSkqD09Gz15nQUItQWtJRsUUOYhtrwbawfCRs01G5UP0Kb2oOBQR4494V8UGQJSLOA2gq12ZBIORaD7LVam+owOYHUWKjtDQEeqhDIzCMeJpqChXT9pYD60hKgE59VNw67+PrDY/jOrybx7PklfpAdj/hwzZ5e/PtX7sDHfu1SfOl3rsJP/vBGHP/z2/CrP30D7rz5AADgyfHmvciCreXUDHmvXsZ82gCQpwetAXd/33uCXiTBmtrN/+7UGxQpSRJG6BLjmeUCea1nvkl+eMOHHL3G9FIeumHCp8rcwV8FX/0xz2/6zzftw66+IOZWivgfPz/j6PUE3UnNIZH1fNqM/beSr6dXhdpDJBg/PdeeofYK1Y9E/CqGmQqoA0PtSqe2R5Gxh/7bOR0WaWSzXAXh2SYGRQosKpva3r17oUTXOb62iXd7417t8vQ0yhPnAVlG8Jqrm96W1TCX9Fb5tBnMqz2ZchBqc6e2x/JpB3oBWVn/garPOl9ZvsDni4hhkYJOgilI2PBHO1iD8kRTtREKZZ2fo5E/G3xmiQCQZBnevXsAtJ9Xm/vke3shqUKo4QQRagtaSqaoISzRk9L1mtpBEoIFdNL+bLSJwJ3awTgSGStoJRuzVj+irfJpM9Y0tQEgTEOo7DTzOhUAACAASURBVAIGIuTgMl/WkS3pNbeFif6VWKytlra4xRna9vv9G/fiXz54I078xa/hl//1Vnz3fa/GX//mUXzg9fvx61dsw+HtMUT85O9/3V5ycPOrcylourFl2y5oDtM0cYo2tQ+O1Ghquxxq94W8WDTp65SzQNmZ03I1qTqDIgHLqz2zXAB++XWyOmPkKLD3tY5e4zz1ae/sC0KWazTLeFPbCrX9HgV/9utEF/GNR8YwttCe4aNg8xhbIKH2vspQu55Pm8GGRZ5/AihaJzb7+dDC9NrHtAGsqR3xezAUZX77zgq1l3Il3sxk2qH98RrDIm14tdnxhxyJ2FKVCC4e5EiEH1f6m1SPMDxsWOSU81A7++RTfFuUSGSDezuHqf76Q1vj02Zs515t+/ul6qa2zSGRDObVXrrAA/2EGBYp6CBYqUu3OSzSNM2KprYYlNcIJ2dWoBkm+kJe9NDznE4sCLQS314yLLI41l6htr4ohkQ2igi1BS2luqm9zoEuDcG8eg4eaM2H2oF49ZDIYgYo0YAosrapvTrUVodI8K3Nzlk3hqiCJDOHoNfSFNRTkHDR/0D3qUcAK2x54+FhXL4txpdGrsfBkSgifhWZooYXqZNZ0HnMp4tI5cpQZIkHZdCKJHAGXNeP9AQ9SCMAXaIhdJNebdbUXj0oErBC7flkCnjq78iNr/4gGe7ogAna1txdy6cNrNGPMG45OIjXXxpHWTfxFz+2pygQdC9jtZra9dQjjP5RoHcvYJSBsQf5zUw/cn4xh0K59sXYraSqqU1D7U5zQbKW9lDUR5z8QMWwyIpQ+8SJDZ+rPC182oLaSJLEh0gFmhwSyWD6kVIDTe3cE08AAEItUI8AVlO7qSGRz/5v4O/fCKzMNPwUbFjk1FLO9mOWWFM72ECo3VPh1Q5ZwyIFgk5B6SXnA6x9vRFGNgezSH7H3R44e7Fw7AJRj1yxI8aPpUSoXY13lITapTYbFqklaHYkfPKOEaG2oKVkihpCko1Q2xcjjjkAPcg0HmpXDIrkoXa4wqftCVVth5aoHhLJ4E3tucqmNgu1SbNyI6822zF14/KpfEnHFHUK7ovbb5ApsoRr95CDlCfH7C9FE7QX7ILEvoEQ/B66hLbSFelzdwgdWXYrIeehDfAmvNq6YfLmVE/NpjY5ad028UNyAtqzCzh0u+PXuVDR1K7Jqv0JQ5Ik/NlvXA6PIuHBlxd4I15w8ZEulPnnyx4noTZgtbXP/IzfNBAmrR3DtC5KtguGYSJDPfLRyqZ2h52ITVT4tBmjg5Z+hIXabFjkepRnRagtqI//0CFAURC64dWuPJ+XNbUdOrVN00T2ydYNiQSABG1qDzSqH8ksAP/6MeD8Y8Bz/7vh7WDDIhtpakebaWovT/K/e1I0tQUdBHNq6zad2kxTIvn9kIN1jp8F6/L8JNGWHd3Rw4+l5jps1Vur8e1jofbmN7V/dW6x7ipEq6ndfdlRqxGhtqClZIu61dT2rhNqyzLgJ0L8mNREqF2vqc3VI4NV99cWaofaNZva7LHZBet5UT/U1pOsBd59Oybmee0Jerjnzy7X7aOhtvBqdyzcp12pHslXqEdkdz9amPs6LdOwvImm9kq+DKbB7wms/d3d1uOHDAOvmvs2ueFVfwgozr1mvKlda0gkUBFqz6350d6BEF5zgOiO7j85v+bngouDcwnyOzQQ9pKl68DGPm3G/opQm/7CS5KEA7Q1fLrNFCTZksbflxG/iqEYa2p3Vitxgvu0rff9/jg59jk7n4Ha12d7WKQ2Q0JtdWR43fsJLk62f+H/xf77f8ZPzpvF0o9MORoqVp6YgDY7C8njQeCqq1zZltUkeajdYFP7kb+xVpKNP7j+fdeBN7UdOLWX+EV0r/Nh2jHW1Lb0I8KpLegkFK4fsVdkYupO0dJuHDYk8uhO0dSuh5fpR8bHN3WI5stzafz7v30c7/vW0zV/zpvaItR2jAi1BS0lWygjDObU3sCzRxUkPcggmS053snkyjlk6UFrPBjnDr54xGcNiYxUnxzqTD8yGK+63UNPIquc2qHaTe1EnQPMbl5CMpYgDbMqz6tNrttL/n88Ob4I3RDTmDuRF6ZJC6BqSCT3abt/INpHG9XLLoTaTD0S9qnwqms/AodjAfya/EsMadNkn3TV2xt6HebU3rWRfoReJFvNLQfJz+8/uTb0FlwcWPvZitUwG/m0GXtuBBQfsHwBWHiJ37yfKkjYTIR2gfm0vYoMv0fpYP1I/aZ2MltCKluyPSzS0o+IIZGCtcheLzzD7l3w8IyMALIMs1jkhQ87ZKl6JHDllZADAde2p5JktolBkcuTZD4G4/yTQLmx/cp2rh+xH2qvNOXUrgi1qX4k0WDpRyDYClg4rdlsamvCp90UK4Uy19ZdsaOHFwREqF2Nd89uQJJgrKzwLGgzOE5b9CdnVmDUyEA00dRuGBFqC1pKMZ+GLNE37XqDIgEeavdKGZQ0A7k6AxjrwVraQTWIkCeEhTTZgZOmNm07hoeqHlNvUKRKTxSMlRUYWdruqBgUCVCtCdbRj7AdUxc2tfnwMgfqEcbl26II+1SkCxpOCq92x5HIFHHfiyRovXZvxUFn3mEDyQHMfZ00aYjehH4klauvHgGAbVEf3qv+mPzh2vcAXucXbkzT5KH2hk3tUoY4/1dx82Xk589eWKp74UzQ3Yw34tNmeIPAHtrkPnMfv5k3tefaK9Su9GkDsNpFHbZkttYKjaBX5WFYlVd7g2GRZdrU9mwT+hFB65E8HqhMvedAQZJ9gqhHgq9qjU8bsI6zG2pqP/hXgF4iK1siI4BeBC482dB2sPfx7ErB9rDzJXohvadJ/Yhoags6EebUtjsokg+JFIPyGuLE5DJMk+yrBsK+jj2WajWyz8dXJxU30avNjuuLmsHLl5XoSfH73ygi1Ba0FC1HQksDMuDZwI1FQ+0BhZwUOlWQzOdIcD0YJGFQtVObNq5Xh9r06tzqYY5KOAw5RIKE8hwNxOs0tevqR7p4CcnYAm0Qxp0Hfqoi4+o95N/6yXHh1e40vvHIOIqagSt39uDq3b3WD1rY1O6l+pEFnYbaTTS12Qkme87V7Fh5BlfKYyiYHmSv/L2GXiOVK3M/8I7eOvs9b9jaJ2bXKkaGY34c3h6FaQIPvGS/NSfoHnioHW8g1AYsBcnpilB7qD31I6ypzULtoZi1EspueNQOMKf2nv7qz0b2WVnp1bYdaguntmCT8G5nChJ7wyJNw0CO+7RbF2o33NROngWe/Rb5/pY/A/a+hnzfoIJkMOKDR5GgGybm6xz7V1LWDWRpQaexpjYNtbMLGPSTgpBwags6CaWXqEV1m4MiNRrqqV24ynkzOMZ82jvJytaRmAi168G92uOb59VmKzABa0VvJRrT7/SvsxJTUBMRagtail4goXZZCQKStP6dacNzm5cs60s6DLUrh0QCqHZqp+kS/kjtUFsdqNaPAFZbW2PDIlc5cHmoXU8/0sU7Jra0qWpZvAO4gmRMeLU7ieV8Gf/w+AQA4AOv3w+p8j3dyqY2DaBndPr71sKmduCXXwYAfFd/LWbKzi/aAFawNRz1W4M0VyNJQIjudzK1vdk3XyYUJBcza5radn3aDDYs8vzjfDXAAaofOZfMoaS1T1icLlQMUwPQH/JBkSUYZv3P2HYjU9SQoIHTrlUrNPbThrzdYZGmYXCntgi1BZsF92pP2gu1i6dPQ0+lIAWDCBw+3JJtMgyTl1wcN7Uf+EvA1MkFvl3XA3tfS24fayzUlmUJwzQksqMgYeoRoMFBkYFeMuAewCDIcU+jM4cEgq2A60ecNrX7eje4p6AWz1Of9hU7yMWEoQ5VuW0GXhpqFzdxWGTlkPbzybWhNnfKi6a2Y0SoLWgpepG0wcqqjfCTNrWHvORNnnIaalP9yEBgAIWyjhXa/KoeFGn5B81ymS+HUuNrg2fPEF2GObtqyKTNQZFal+6YTNPkO+VRp03te/8U+NrNePV2sut56txiTaeUoD35h8fPIVPUcOlQBLdcVj101Wpqu38gygLo6RIL9xq/GLJuU3vuReD0vdAh4+v6mzDTYLNhQ582g60cqRNq33qQ/D9+6OUFFDVnOiZBZ1O5n+WzC+z6tBn9+4Ge3WTp/bmHAQBDUR8iPhW6YXL/czuwuqmtyBIG6WdspwyLZBez+kNeRP3VF814qL1Ah0WOjACmWXdYpJ5MwiyXAVmGOjhY8z4Cgdt4dmwHAJRshto56tMOvvKVkLwN+K5tsJQv8/krjgaTz70IHP8e+f7mPyVf99FQe/oZoLDc0PZsdzAskg2JjPhVKLJUMSjSZqgtSUAP8Wr3aeRcZDFXEvNoBB0Dc2Mby8vkM20DmFNbNLUb43na1L5iB2lqs4twyWxJnEeswrtvLwCgtEn6EWPVcffqprZpmjw76sZV/q1GhNqC1lIgobbusRF+0jCsXyZv8kab2oOBQe6g9aoyon7VCrUrmtra4iJgmoCqQunpWfN8a5raTD9SzgHFDOJh8kFRK9Q2TZNfbVO6rKm9kC4iU9QgS2vbaOuSWwQevweYehqHE/+GoFfBUq6Ml9tsGbygNrmShm88Qj74/+D1o5DlVSsv8rSF0YKmNjuRnWdN7TrDFe2Q4qF2jab2Y/8DAPB08EZMmMOYWWos1L7AQu2N3h+rVn+s5vC2GOIRH7IlHU8JVc9FxUKG7Gelyv2sE/UIQAKRA9UKEkmSsH+o/bza7CJ0xGe9L4c6zAVZy6fN2B+3mtoA4L/8EID6wyKZekQdHITkqb2qRCBwGy9vattzamcfJ6F26PrrWrZN7Hi+J+iBR3Fw2vqLTwMwgUNvBbZdSW6L7QD6RgHTAM492tD2bHMwLHK5ckgkUNHUdnCcRBUk0SI5TjBN6zhGIGh3lFiMr9TWlze+kKSLQZENs5AuYmopD0kCjmwnoXZv0AOvSvab8x1SENgsfLypfXZTXm9mpYBC2VoheWFVqG1kczCL5N9IFb//jhGhtqC1lMgJnOG109Qmb+A+mVzFWsw62/mypnY8GK/yaUuSBKTXOrX5kMj+fkjy2rcCmypfnqGP9VU7cFlTO5EprmkbG5kMzBI56Oy2QZFnaXtwZ18QPrWOWqEWL/0rWQYKQDnxXbyS+pifHBNhXSfw7acuIJUrY3d/EG8+UmM5fAud2kGvAq8iI2lG6Wu5oR9Z1fhangKOfwcA8Mtt7wAATC9vfNJaCxZuNdvUlmWJN+LvP1n7PoLuZJzuZ3f0Bqz9rNNQG7C82mfuI2kIKoZFttEFxZV89aBIwBoW2SnLZlkDZ3f/2ov4rKk9tZRHvqRzVUM9r3Z5WqhHBJuPE/2IqWnI/fKXAIDgda3zabNQ25F6ZOpp4NRPAEkGXv9fq3/G2toNerV3OAm1K3Vn5TxQpi09u01tgIfaysokvxgvvNqCTkFSFBJsw2phrwdvanfZKufNgKlHRuNhROhqMUmSMBRlq94641hqs2D6EW16BkZurQrEbcYXqldHrm5q64vkoqcUDEIOOigNCgCIUFvQYuQSOWk2bYXaJOTsAXnMYnbjZUqV8FA7EOfagHjEB+hlKwSr0I9oCXJ/daB2k5pNgddmZ60buQN3gQ+s0QxzTWuCubrlUAiy3+/o79HusCEHfEm8XU7+2Pp+6mncNkye58lx4dVud4qajq89RJxj73vtKNRabakWOrUlSUJvyINF0FDbFf3IqvbjE/cAhgbsuQn6yCsAoOGmNjtQqdXYrGKDpjYA3MxC7VNzME2x5PhiYXz13AKnPm3G3psAxQssnQcSpwFYXu3T8+3T1Lb0I9b7ki2bne2QE7GJRP33fV/Ii56gB6ZJPkM3GhYphkQKtgIeas/OwtS0de9beOEFGNks5FgM/oOXtWybWIDb70Q9cv/d5OsV/wGIX1r9sya92qypPe20qc0u/Msq4Ivaf8HYTvpkk+inwX6yQ+YMCASA1brWFzf2avOmdq8ItZ1ybJV6hMEKAp1yLLVZqL29UHpJ9lQ6d67lrzdO8xN2kWF1qK0lmLa2u8qQm4UItQUtRSnTk2ZfZOM701A7bLBQ22FTu2JQ5DF6tfLgSMRSFchqVTtC50Mia4favKk9VxE4ca/2PDyKzJ2fk6vcelw90mUtbcAacrAv7mBIZGEFOPtz8n3/fgDAzSVyQvHU+KII69qcHzwzhdmVAoajfvy7V2yvfacWNrUB4sBOmnQ/UkoDWmMndSl6say38gQ5vwQ8/f+R72/4EA/TZho8AGQHKjs3bGpXe/prceOBAXhVGRcW820VQgpay5ohkU592gxvCNj9avL9GaIgYfqRM22kH7EGRVpNbT7gqFP0I4vk32xPjaa2JElVCpLqYZFr3eblmWkAgGebCLUFm4cajxM3tq6jXFnoqEH2iScBAKFrr4GkOFi15xDHTe1zjwBjvwBkD/C6u9b+fO9rAEjAwklriLwDtvc6cGrTi+g9AW/1kEhJWudRq+Ch9gUe7CfEsEhBB8GGPuqp9ZvapmmKpnYTHLtAso8rd1YrVTtN5baZWMMiW+/VHqPH9a+9hBQk59NF5EuW55w1tYV6pDFEqC1oKapG3sCynVA7SD70gjoLtRsbFBkPxPHMBLka/IpdvZZ6JDQIVGhGWJtaqTEkEgDUIerUrmpqVzcrR+lJ6tmF6nCAX23rwkEXY/Tvus/JkMjT95JhZf37gdd8HAAwcv7H8KkSEpnSmv9/gvZB0w387YPEN/bu1+yrr5xpYVMbIKH2CkIwJBp6ZRtTkLBVFVX6kaf/JwnKBw8B+2/Fthg5aZ2x0cRaTaGs8zaEff1I/RProFfFDaNkP/Kzk85PwAWdCTv45fvZRtQjjP3VXm2mHxlLZKDpRr1HbSq1mtqszdIp7aL1nNqApSA5O189LLJ4cq1XW2NObdHUFmwikizDs20bgI0VJLkn6ZDIFqpHAKupPRC20dQ2Taul/Yp3Ar171t4n2AcMHyHfjz/keHu2VzS1NypkLOfJfi0a8FSH2k6g+hEsT/JgXzS1BZ2ESlvXWmr9praRyQB0mKRwajvDNE2uH7liR3WoPSxC7br4+LDIsZa/FisFXrmzl6v2JlNWW5tlR2JIZGOIUFvQUjwaebMqARtL7WhT21cmy2ecDIrMlXPIUlddzNvPp/++cnevFRixViSFO7XrNrVJ4KQvLcEoFKqfI0MC9NFBEjisCbXZ1bZubGqvXhZvh5M/Il8PvgW47M2AJwg5NYbfHCae4CeEV7tt+ZfjM5hI5tAX8uK3r91Z+06GYQ2KbFVTO+QBIKHgIfuJRr3aS9RxyfUjWhF44ivk+1d/EJAkjPTQpnYDB4CTqTxMEwh5lY2XS2/g1GbcfJDc7+fCq33RsKap3UyozYZFTjwKlLLYFgsg6FVQ1k1MLLbeI2iHlUJnO7ULZZ3vL2o1tQEr1D6zUD0sMn9irYLEcmpvc31bBYL1sOPVNkol5J5+BkBrh0QCVlO7305T+8zPgAtPAKofeM3H6t+Pe7UfcLw9TD+SLelcL1KPpTy7iN5EqN1j6UcGQmT/KJzagk7Crn6ErXKWg8GuU3e2mslUHqlcGR5FIqvUK+g0ldtm4t3LmtqtD7XHK8oqrPRUqSDh2ZEItRtChNqClqEbJvwGeQM7CbVVPQcvykg5CLVZSzuoBjGR0FHUDPQGPSQQYKF2ZLjqMdoCc2rHaz6nHI1CoqJ+bW5VMJ4l4RJvas9XLx/Wu/RqW1HT+bTeUbtN7XKeNwRx8DfIwM3L3gwAeJvnMQDAk+Mi1G5HDMPEPb8gLe3fu2EPgl619h2Ly4BJG58tamqzZnVWpQ2EdZQd65HiTm0aOD//HbKPiG4HDr8NADBCDwAzRY2HbXa5UKEekTZaYswd/XN8iF8t2LDIZ86nHK9gEXQemm5gIlkRajfq02YMXALEdpHVMucegSxLvK3NVjVtNaypHa0ItYdiLNRu/1YiOzGJ+FUSYNVgdLD6eCGwjlebqR88I8NrfiYQtBLPDqIYK60TaueffQ5msQhlYADe0dGWbk+CN7U3CLUNA7j/U+T7a9+N/5+9Mw+T6yqs/HlL7dVdva/qllqyZMnW7kWywdgYmwm7IQkEGAgT9pAQkiELM8lkZgJhGyAkIYSEbBDCYmMwhMRgGe+LsLVL1q5W72tVdXV3rW+bP+6971VV1/Je1avqrtY73+evyl2ruqveu/fcc38HzSV2OQzdRS4rSGp7XYKeGi9XFlmQqW11jNTUSwovlQw2uMmxI2wRz+jI0WpKaCXjdqVMUaRMTW8npW1dDLu6vad5xY7anlDjBATqLXedktppWdFT2cVMbSVMefIOeqciOaa2o5opnpER5MgB1OUPlbk3AE+IDNwAhBC3lNSeTRCTucvfhSNZ6BGO4wxmHktFUjH8iNhZ2NTmOA6ubvIYaYohTJgJRV5vczH8SJittllgnzaARsMJqBoQ9IikhNOMLj0KSAnCBezbR362660AgBujhyBAweErYYervQb16LlZnJ9ZQtAj4l23bSp+RzZZcwUA0eTnwqLaqAm9yNNjSQVlkckMWfACKFNb04Dn/prcePDDgEhew+8WySQU1rfrMTOybEkkYCySKRkgFSt6t74WH3b0NkPVgMfPO2nt9a6JhSQkRYNb5AkKp1KeNhPHAde9ilynC4yvoun/h45P2vGWq9aSntTOKopsNhaXltOlS+tWWww9sqk9UHQxizG1h+fjkBUV3p07Aaw0tdVUSk+sOUWRjuott57UnsBiSsJfPXpRX6xlYuiRwIED5Rdvq5SR1C6z8+nsj4Dpk4C7CXjZ75a+7+BB0rOzMApErLNUWVq7HFc7RneGtVSDHxFcxNgGsIEnzzHvJLUdNZAYI1guw9RmTGHH1LMuxtPeM7DSb3GKIovLQxdlM1evQlOUMveuXDn+SdBTOKm9Tr2jeskxtR3VTPG0jCDIgE/0mmBq8zzgJau5IW4ZSykZGdkc73M+SQzqDl+HwdPeSDEFy9SQLmpqFz94iBRBIs+w58gtdmNp5avheA6bVA4ztMn6SmpfnjO2zpieyJz9Mbnc8QajHGfLKwF/O9ypMO4Sz2B2KY2r4bWxDd4RkaZp+OvHLgEA3nXbRt3kLSiGHqlRShuAnn5c4OiujwrwIyyl7RI4BNwCmWTOnSM37n93zn1ZWnvSIld7NELuX5anDQAuH1nMA8oiSO7ZQY49jzoIknUvhngaag+A57nq0CNMDEFy6RFA0/DmfSSN+czl+TXBWTSS2sZxJuAR0eQhye218B5LycxiVn+LD14Xj4yiYiyaLFoWyXo8OL8ffMhEIMCRIxvl2kBwF9L4OP7sxy/hC49cwF8cuphzH70k8rba8rQBI5VcMqmtKsBjnyLXb/tNIFBm7O0JAhtuIdeHn7D8nrK52qWUm9Su0NQGdK52j0bmHs6OLUeNJIEytZXoQsn76SWRrY6pbVUnKHY1n6cNZJVuL6adAFmeXH194NxuaJkMpMnahTyuZCEFOY7DAJ0jjuUktZmp7Xz+K5FjajuqmeJpGQFqanNeE/gRQEeQtHMk+cyaw8uJJbU7/Z04OkoMtpuYqc2S2k1FTO0iTG0AcNGySGmaPodeFElery9EJqmSomEsK7GhbyFZZ0WRV+ZpSWSHSfSInAHO/ye5vuMNxs8Fl456eE+QTI4OX7GevHVUOz17OYwTYwvwiDze+/Kh0ndmSW36/a2F2iifOqzRBbIKiiKzSyI5jgPCxLRHaADw5ppHLIlllas9GiEDl8EiXN0VCuaWzxbT3RRB8uSFOdOLfY4aU8NzNpZEMg29AuBdQPQqEL6MgTY/btnUCk0DHjo+Ud0btkFGUWQu4qiLlkWu9W2zV6mpXYynDQA8z+ldFJdKlEVKU4yn3VvzFKwjR/liTO3k2BgePEaODRdnl/Tb1XgcyZMnAQD+g3Uwtc0URZ78LjB/gYxBbvuIuSceolztK9ZNbT2pXcbUXmCmdjVMbYCMUQC0K2Tu4RRFOmokCW1kblAOP8Jud5La1qSoGk5PEFN7TwlTOyOriCasIRXLaW4pjdd++Sn80zPWd7ysBXGCAPemTQBqiyAZzit/L5XUXm/eUb3kmNqOaqbltIImjg743CZLBWnSs99LJrBmESRzCcrU5tswFUtB4Dns3sASkAw/YrAp1XgcWoIcSEoB+YsmtampnT1JvZKFING3kKyzpPYV3Wwx+fe8+iThLQe6gIG8MiGKIDmQeR4+pByu9hrTV2hK++23DpZnWSYrZEVaEGNgzyj0s1dBUntFSeQ8TZ+1X7fiviypPWU5qU2OK6aS2oBpU3vPhhZ0BD1YSst44arzXVnPyimJrJanzeRpAjbeRq5fIgiSN+8j5tUPjq2uqa2omo4XyTe1G4UFyfAjg2WwQ3pZ5GxeWWQWgsQoiXTQI47qLzdlaiMchiCRMfjwfFxP+CWOHgVkGa7+fh1VUislMjISGbIlvGhRpJwBHv80uf6yj61YoC4qvSzyScLjtiAjqV36uGR3Urs5Q8YJTlGko0aS2EpM7XL4ET2p7TC1Leny3DISGQV+t6CPMbLlFnm9uN7uXW+Pnp3BS1OL+IenG9PUBgD3ZloWebmGpvZcbvl7tqnNzq3KOvWO6iXH1HZUM5GkNj14ekzgRwA96dnnJo8zu8WOFUUmkuQgcUNvs1FqV6AokqW0eb8ffKB4ssrVk5fUZgaUFAcy5ACllz9lmdoKS4Gvs6JIZtxvNlsSydAj218H8LnFFdhwM9A6BLeaxL38EYervYZ0dDSKZy+HIfIc3v+KzeUfoCe1a2hq0wHZlMSS2taT/dlJbQBGUruUqW1hAKhpmm5qb7RqapcpvuR5DndvJ0z/Q2dLG+COGls5pna1PO1sXccQJIcAAK/b1Qu3wOPc9BJemlys7rmr0HLK4GVnM7UBI2G01lmQZpLagGFqs/GCXhZ5OsvUnnJMbUerooUYXwAAIABJREFUJz4UAui4uJue25dSsj4ejz9HeNr+gwcKP4GNYuat18UTZFghHfsGYWMHu4FbP2D+yftvBlx+skA++1L5+2eJJbXHSyx6a5pmMLX97sqLIgHd1A4kybFhKS0jJdWO/+rIkZ1ixY9KdKHkPG+97nKutY5TnvbO/hAEvvDuLgNBYu9YaoTOecajSb3/oNHkoaZ2Zrh2pjbb6c5M7b4WH3gOSEkq5pbT0CQJSoyk7YV15h3VS46p7ahmWk7LCLKktsdkspea2t0ucpC0amqHY+SgraNHNC0rqd2l31+eI/cXSvC0AUDUTW0ykIQ7CIhkMMvS2oyrfXmWTGrVZBIqTYELJdAmjSjGhGLp9JJSFeDcT8j1G9648naOA3b9KgDgLeIzmIylMF6mdMdRffQ3NKX9lv39eiKppOqS1CZm13iamsVlTOBCitLjiZ7UZqZ2x9YV9+0NWcePzC2lkZJU8Jwx6S0rxvovk9QGgLu3k/s+enbWWQBax8pZPLQDPcLEuNpXnwakJEJ+F15FWe0/ODZe/fNXqEVaEukRebjF3GEpKziaWcNM7Yys6oVxm8oktbd05ie1qamdndSeIlxHV59jajuqvziOw3yQjF1f066ijy7wsoWbxPO0JLIO6JE5VhIZ8BRG8UhJ4InPk+t3fBxwm1xMBkgx9MbbyXWLXO0NreWLIlOSigzt2qk6qd0yCAAQl8YhUtPK4Wo7ahQxUxuyDHVpqej95IjDFK5EJ8dpSeSG4rtUeioI6phRNj6DvY9Gk57UvlK7tPlwnn/iFnl9njkWSUCO0G4qQYDgdKlUJMfUdlQzZTO14THL1CYnsk7RoqlN8SOjcySdrZdEJqOAQp8jqyjSKInsLPm8LKkts6Q2xwFB+hi9LDI3ecXQI5zbXTIF3miKxDNYSEjgOGOlsaRGnye/I28LsOmOwvfZTRAkd/An0Y4YnnO42quus1OLOHR2FhwHfOjOLeYeVM+ktlw5fiSq40fyk9or/529LbQoMmZ+oYUlFvpafCvMuaLKQxqV0h1bO+AWeIxGEjk7QxytHyUzCibppGOoI2ivqd25HWjuB+SU/rysMPKh45NQ1NVZKNFLIguU0bKJ2FpOak8sJKFqgM8loLOpNKpJT2rPLkPTtIJlkTJNaosNnNQ+N72I37//RFnmsKO1p/PTS7jAkx1R9/Vw2ETHe1fm4lAWFpA6exYA4D9Qv6R2R7Hv1S/+npTBhwaBm37d+gtUyNVmi9bzy+miiemFJHnvIs8h4OJtwY9wsXG0U7a4gyBx1Cjis+bDpbjaCjX2BKco0pJOliiJZKrVWGo0bJjaJ8Zitj53veTZTHqjasXUjiUlzNPj9VDWTvdsBIkSYTztVnC8Y89WIue35qhmiqckBBl+xCxTmya123gyuTPN1KZJ7avTZHuintRm6UdfKyAag2J5jpVElja1xW5ihCuRCNQ03VaTVxaZb2ozJpLQ0b6uSp5YerAv5IOv2DbQbJ39Ebm8/rWkGLKQOrYCffsgQMXrhOdx+IrDCl5t/c3jlwEAr93Va56dXoekdpNHhMhziMAm/IiqABE6gCmAH+ljSe2FlOlUNBvcmeZpA1nHk/JJ7YBHxMEtZEL86NnyJrijxhM7j7T4XWjVYvbwtJk4DrjuHnL9IuFq33V9F1r9LswupfHMJesLRXZoiSa183naQDZ+ZO1ua2UJ1o3t/rLn/E0dfvAcwQfMLqUhtrevKIs0mNp9tX3jNdS/PHsV9x8Zxz83aHnUtay/OHQB0/Rc3r4U1k3tq+E44i+8AGga3Fu2wNXVVeppbBErROwIFCiJTC0CT3+JXL/rD3PG+KbFuNojzwCK+QK1Vr8LPhcZBxdLPmbztDkpASj0GFaFqY1kBH1+Mh6Zj6/dY6IjR/kSGFebJVILyElqW1daVnB2iuDj9g6UMLVrtOstO6l9olGT2rQoUolGIUeLfz4rFUtpdzV5EPQY41zd1A4nIc/Tz76D3qlYjqntqGZKJZbBc9QMssjUDoFsT4qaMLUTUgJxiRwwJKkJ3c0efbsklljBY0/OY/Skdhk8iNDSAs5DBsryLDWR8ordhjoC4DiSAo3EM0ZJZPs6Q4/M5Tb3lpSmGTztHW8ofV9aGHmf8AwODztJ7dXU8HwcPzlJtr5/5K6VRm9R1SGpzXEcWvwuhDW66yMdIwVRFpRTFBkbI7s4BA8QGlhxX5ZqSEoKFpPyitsLSedpl0EQ5EjHj5gzqe+huAjH1F6fYg32N/Y1gxt9lvzQDp42E0OQ0LJIt8jj9buJebpahZGLKVYSuXLxk5nas2s4qT0yb5ja5eQRBWyk3O1CZZGaphlM7QbGj8wtEcPt2GhjTnKvVZ2ZjOE/T09jJkDO5dL4OIbo5/XqfAKJ5w8DAAJ1SGkD0BmtLJ2co+e/ShbU27cCu3+tshfo3kXGLZllYOKo6YdxHIc+tpuryG4ENt4I+bPQI6KXcLytyhvSd7xu85LvlJPUXltKZhT87Mw0zk4tQl2lXU9rWQZXu3B4SVNVKNGFnPs6Kq+zU0uQFA2tfpeORSqknhr0k8QSkr54BwAnxkoz09eqeL8fIh1v1SKtPZzH02ZixeLZSe311sVWTzmmtqOaSU6SybkKHnCZ5MvSdEiTRg4AZvAjLKXt4ryA6sFNG1uNtFQBnjYAyPPkMeVMbY7jIPYQ00meZgZ5brGbzy3oqc7Lc8uGYb7ODkwsQbjFTHp34iiwOAG4AsCWu0vfd+cvQ+N47OcvQVgYdrYrr6K+9sRlqBpw9/Yu3NBnEhkE1CWpDRBsSAwBaBzdKZCwtgjCktqtfjcwT9EjbZtXlpgC8LoEtNF0mFkECTO1B6wktS3gRwDytwGAF0ciphb9HDWWTlFTe2d/yF70CNPQnQAvkl0KYbIr4837CYLk4dPTiKfNLeDYKZbUbi6Q1GYTsdml9KrhUcqJYYfKlUQy6T0c+WWRZ16CEo1CS6cBjtN3ijWi2FbbUxMxSJQr7Gjt60uPXAQAbLyRLGpnJsb1ifjwfBzxw/UriQSMz1FHMC+FnYgAz/01uf7K/wEIK48dpsTzwBDF41nkave3kvN8Ma52dlI7Bz1S6Q5Ouvg+5CJJwnCDlrKtV/3Ts8P4wDeP4DVffgo3ffIRfOibR/Avz17FhZmlhjT67JZIk9pKkSSsurgIyGT84Zja5sU41rs3tJTcKdYdsr8oks15Wv0uuAQO0YTUsN1Yns0EQ5muhamthwJz/RM2VxyLJPSktlMSWbkcU9tRzSQnyXaYjBAwP4jzka0zfoU8Nmxie91sgphBgkbA+vsHW40bmandVCSpXaYoEgBcPWT1TmJc7cBKE2pLFiczGz+ynnTZSlKboUe2vRpweUvft6kb3Oa7AABv4p/FYYervSqaXEji+0dJWdxHXmmSpc2UoIPUGia1AWJGa+CRdtPvuEWuNmNqt/hdJXnaTL16sYo1U9sSfoQlteNzBIlSRhta/dje0wRVA564YL0s09Ha1ulJcu7b2VcjU9vbDAzeRq5fehQAsG+gBUMdASQlBT89M23fa5mUztQukNTuCLrBc4CiamvWxBkJsx0aJk3truJlkQw9InZ0gHcXSKc2iFggIS2rOD9dvBjM0drRibEFHDo7A54D3viamwEA0viEjh9ZGJ9E5tJlgOPgv+WWurwnI6mdZ2qf/RGQXgS6bgRuuK+6F2Fc7eEnLT2snya1iwUxYmy84XMZu9mqWfinCJIBnoyRnaLItaVLM0bPSTQh4eEz0/jTH53Bq7/0JG7+5CF85FtH8c3nR3CJ9ilca2JGdTH8CPs5Hww29Lmv3mIc6z0l0CNAbZLaIxHiC2zpDGJHLwlCHR9rzN1Zbp2rbT8y7bJeEpmX1M5iastOUrtqOaa2o5pJTZHJuSRaMHgofsQrkYN0NF6ecTefJMZWOkUmijpPGwCWWFI7N/Ekz5lLagOAiya1pekp+lwsqZ1lamclr+QwGbyuNy7SFbp9hjX3FpWmGab2jjeae3KKIHmT8AwOX3ZM7dXQ3z91BZKi4eDmNty00eLES09qt5a+X5VqDRDTK+mig7e4NVN7gSW1A27D1O7YWvT+rJl6csHcIFA3t9osFMQyrISmGBPfMmJp7UNny3O4HTWOJEXV2Yi722R7edrZYlxtiiDhOA737SVp7dVAkJRiaosCr5cvrtWySMbU3mQSO3RdZ2FTOzM8jPQlkpRt5JJIINdwO9agk9xrTV86dAEAcN++fmzZSc6L6uIi+gUJPAdsmyS3e3Zs11OXtZZeFJmPH1kkmDQMHiBp62rETO2xw0AmUfq+WeqnZZFFTe1iSe1KRU3tbo3MX+Yd/Mia0hxdgPncL+/G9z98O37/v1yPl1/XAa+LRziewU9OTeFPfnga93zxCdz654/it799DP92eLQovma9iTG1WVFkJJ7Bp//zrNFHxYryHJ62JTGO9Z4NoZL3Y6b2QkIqWm5rVSNZPUJ7aEnliQY933s2bwZQI/wIDQWuwI9QU3t6MYXMnPP5r1aOqe2oZtLSJJ0jiybL5gA96enKEFPbTFEkS2pn0kG4RR439mUd2JcZMiTX1FZYUWRn6aJIABC7Scpb1pPa9DHLRkqSITmuzMUhhxmve/2Y2pKi6iV4ZZPasy+Rre2Cx+C3ltOO10MRvNjCT2Hh8i+qfLeOrCq8nMa3fzEKAPjIKy2wtAFASgESnQjWIakNAMtCZaY2w3W0+l1AmJhHhUoimVhSe9pEsUoiI+upMktJbcFlTHTj5hAkr9pBjmdPXJhztvavI12aXUZGVtHkETGwSPmudvK0mZipPfwU+f4CePM+Ymo/c2ne1u2pZrSkM7ULIwT0hJHNBUd2SFE1jLEdGmZN7bykttjeDrGnB9A0LP/8MQCAq4FN7ZSkYDkLY3Ns1P7iJUf26shIFI+fn4PAc/jo3VvB+/3GNujpSfS3+rCHIrsCB2+r2/ti59QV+BG2UzJgQ1ll+xaguZ90bIw9b/phfS1s0bu0qd3id9tjarcQ/EiHQv7tZnayOqqfWI9Ab4sXN21sxUdeeR3+9X0HcOJPX437P3Qbfu/ebbhtczvcIo+5pTR+fGIS/+MHp3DX5x83vRuwkSW2MfwIMbW/88IovvbEFXzlMXJckanZLbY6pp5ZLadlfVFg94bSSe1mnwivi9h+do3xssc+u6mpfnI8Zstz11vuIWJqp4ftTWprmqYXReb7J61+l14cGZ8hx/X11sdWTzmmtqPaKU0OtKrbiqlNTnqCnIAbEqKJTNnCDZbU1uQm7O4PwS1mfayXVuJHNEXRT56CiaQ2Y2pLM/lM7eykNsWPzC1DWYdcpLFIArKqwecSdIOhqFhB5Ja7zReEepqgbvslAMCB5UN1N1Wudf3jM8NISSp2bwjh5ddZPKGylDYnkDKjGqqVMq5jPH0dC/gRWVH1QroWv1vnCZc0tVkRlIkJB0OPhHwuUgxlRXpZpLnk9d6BFrQH3FhKyXjhqrl097qXnAbSjY05YCWRN/Q1gx95hvzQTvQIU/eNQFMfICcBWkY52O7HzRtboWrAQ8frm9Ze1JPaLmDqJPD4ZwHJ+M51NdvPgrRLkwtJSIoGt8DrOzvKieFHZpfS+r/du5OktZefegpAY5va+ViERt2OfC3pS4+QFPav7N+g40ZcG8hClzQ+gaGOIPbMMVO7PjxtwAi2rDC1aacNguWDKWXFcUZa+4p5rna5pPZCkrz3ZtuS2sTUDmXIOMEpilxbYqY221nE5BEF3LKpDR991VZ8+wMHcfJPX43vfOAgfudVW9HidyGjqLiQhS5ZrxKoWS1TpvYVml5laV+W4F5Pc+da69R4DJoG9IW8Kz53+eI4Tp+/T9kUEMhOau+l+JNTEzHIDRi28VD8iDQ+DjVt34LhzGIaSUmBwHMr+pY4zvgZS2qLTlK7YjmmtqOaic8Qg0GzYmp7mgGOfCxDWIaianqKq5hYUluVm3PRI0BWUaSR1FYWFgBFIUVMJsooXD35Se1CTG0yCRiNJCDpRZHrZ7XtStbWGZ4vw0d/iaJHbjCJHqFy7X07AOANwnM4fMnBKtRLiykJ33h2BABJaZcqGikohszwtVZegGRSrdQsjmp0scRCUju7obtFlIHYGPmf9uL4EVYAO2UCPzIaroCnzWSxLFLgOdx1PXnMo2fNPWbd67vvAr6wA1iqPxPaLp1hPO1alUQycRww9ApyfeQ5/cesMPLBo/U2tbOS2of+FHj8z4Hz/6Hf3qOb2msvmWiUw/oglDs3UjV7XeiiE9DLs7llkVqSGGSuvsY3tQNuUsB7ZS6u84UdrT0dvhLG05fm4RI4/NbdxiKvu5/gLqTxcezkltCbiEDlBfj231SX9yUrql7u3J6PH2GmdsAGUxsANjOutgVTu9UYHxQK38SS5LhmN37EnyIoxEIdA6qqYTqWwvNXwvjeC2P43MPn8JFvHcXr/+op3PzJQ/j6U/ZvrXdEdrNG6Ge1M38BJk9el4CDm9vxu/du09O1zBBfzxJYUpuys9mYeTxKLvWkdlt90EbrQawkshxPm6nH5rJINv7Z2O7H5s4ggh4RSUnBxdnGW6QROjrANzcDqorM1ZGc2zRNgxyNInX+ApaffgYLP/gh5r/2d5j+5Kcw/jsfw8xnPwdNLWzkX6FJ+sE2P1zCStt1sI2cR7QoDUSuM3RtPVVhXbQjR+UlSMQI1cymdQHCxvO1Aokw+jwpzKXJFrtSyUcjqd2M/cVM7aykNiuJFNrawInlvwJid5GkdmaZ8PfcfnQGPWjyilhKyZBoUns94Ud0nnY59Ej4MjB7BuBFgCavTeu6VyEhhtApxzB/+hCw/70VvltHVvTjE5NYSsvY2hXEvTu6yz8gX0kbCpBMqoXiR+Y1UkhiJanNSiKbvCLEBbq9zNtS8n1bKYoctYggyJG+UGZ+MeeeHV34/tFx/PzcLP7k9TdYf831pHgYuPhTcn3iKLD9tav7fioUS2rv75CBF2vE02YaPACc/E7OdvvX7+rD//nRSzg3vYSzU4t68U+tlVMUGSNltYgZxjqbiK1FprbB07bA0QdBkMwupXFpdhn7Blt1rjZTIzO1Wbp2sD2AZEbG1XACx8cXcOc2mwxIR7ZJ0zR8gaa033rzQE6SzLWBmtoT47jBTf6m032bcWPQ2me9UkUSGWgawHMGekyXbmrbgB8BjKT25HEgGdV3jZZSd7MXPAdkFBXzy2l9RwkT6/Bo8bmACfuS2u74FHiomF/O4JvPj2BkPo6RSAIj4ThGwgmk5eIpyftfHMf77thc+XtwVFCROPmsCjy38rNaQswAvxZMbRYiY4lsNmaeWUwjLStQaB+VY+qZF+Npl0OPMNmJcsvIqj43GmjzQ+A57OoP4bkrYZwcX6jb+NEucRwHz9AQkidOYPYL/w+8xwN5dg7yHPlPk0ovzDfdew/8+/ev+PmV+cI8babBNj+gaRAXyfh/PXlH9ZaT1HZUMwkSMUI5K6Y2oA8mB7zkoFuu4XuaYkA0uQn7B7MGopkEaUcHDCMagMx42ibQI4CxDViZD0PLZAhSQ6SDV/raHMdhS2cQoioDS+Q119MWKpbU3txZJnXPCiI33WHd5BRcCG8kZtSG0R9ZfYuOKtTRETIoes3OnvIp/ELSk9q1N7Xb6GRhWqafQwtJbb0k0p9VEtl+Xcl0OWNmTsVSZdvqdVO7DkltAHj51g64BA7D83GdqXfN6uqTxnWWwG8wKaqmJ7X3a9TQrgVPm2ngILkcfxFQaKGZ36WXkNazMDKnKJIhw7IWeLrXMH5EL4etwNQGgEtzuWWRTK7ePhve3eqIJUjbA259S/LxUQdBshb17OUwfjEcgVvgV/RpMPxIZnwcfVfOAABOdRXf2WS3GF6jLeBeuQuCddoEbTK1m3uBjm0ANGOXTBm5BF43iQohSBZziiJtWPxv6gE4AZwqoxMLyCgq/uSHp/H1p4fxyEszuDCzjLSsQuA5bGz34xXbOvGugxvxx6/bgU+9eScAYCyaKDuWcWRdzJTuCLotjaMZMuJaMLVZUaQcjSIlKTmL1BPRpM7adpLa5nVijBih5UoimbptDAiMRxNQNcDvFvTFmd0D5H0cH2tMrrZnGzm/xZ98CkuPHELyxAlIk5O6oS20tMCzdSsCt9+O0H33of3974dnxw4AQPLkyYLPqfO0S5jaASkFXiHhDsEEQcBRYTlJbUc1k0smX2TBa3G1jprafR4ySCxnajP8SE+gO5cpxSbFoo9gTajkOTIYNmtqC62t4FwuaJIEaXYO7g39JB0SGyUD69ZNAAhXe+wC3bIiCBBCteUL11PM1N5SLqnNeNo73lDR67QceCdw+du4XXoec5EoOp3BTc110uJK/wrVMandGiA7NiYl+jlkW3pNiCW1SUkkNbU7Sk/Qu5rJ8SQtq4gmJLQFiidwdHOrIlObMbXNm9pNXhcObm7HUxfn8fOzszrX/5rUcJapvTC6eu+jCg3PLyMpKfC5BHRHXiQ/rAV6hKlzO2Hgp2LA9CmgnyRM3ry/Hw+fmcZDxyfwh7+03TRSoxqxpHZIVIA0nQxlfRfWclHkVTph2WhxhwYztS/nlUXK02RH2HrAj7RRU/uHxydxfMwpi1xr0jQNX6Qp7XccGNQXcZncLKk9PgFfjHwvnwpuxEdVrbIFcIua1xdH8nAOUhKgeENbF/2G7gTmLxCutskxbF+LD5OxFCYWktg3mDteXdCLIm3Cj/ACKbSMjeJ9u1343nQQg21+bGwPYFMHudzY5kd/q2/FNve0rOCPf3gaiYyCSDyD9jKIDEfWVIynXU66qV0AJbPexMw6LZnE6GRuF8x4NImNTlLbkuaX05hYSILjgJ0mTe0eGwMC2UEehq3cS+eRJxq0R6P9gx8E7/eD8/kgdnZC7OqCq7MTYmcnhM5O8O6Vc0A+EMDc2bNInTxV8DkZfmSoiH8y0OZHC+0D4puawHucY3OlcpLajmomj0JNbZ9VU5uc+Hpc5U3thJRASiEH1v39g7k36uiR7pw0pjxPTe1Oc1thOY6DyLjaOoKEPjarLHJzZ0A/MIltbeD49fP10vEjHSWMs9g4MHEEAAdsf31Fr9O09eWY5rsQ5FIYe+77FT2HI/NaTst6UpCtsFtWHZPabFvneJoODtgWZBNibM7WQHZSe0vJx3hEQS+omixSBsU0VlVS21pRJBNL1R46e40z6LPLvRo0qX16gqS0a14SycTzwAAtfBs7rP/4ldd3ocXvwsxiGs9dNr9oVI1YorFFyzI+s86tPSHyHVyL+JFspqQVXaeXS8f1n7G0Nufx6Km2RhTDj7QH3dhLjb7jYwtOQrSEjo8t4LVffgr3v1i/49eTF+dxZCQKj8jjw3etPBcy/EjmyhUgHEaaF3EyNIipOn0PWVK7o6kIekTw5ARWqlYVXO2J6MrxQSwnqW2DqQ3oXO337xLxyO/diX94zy34X2+4Ae++bRPu3NaJTR2BgtxWjyigu4kYWuyY5cg+6aa2xcWCDsqKn1tae+c2u8UHAuBcJJgycXUq57bxaNIoinTCTKbEAkmbOwIE3WZCdgYEjD4RY+zD2N7nZ5aQkpSqX6Pecm/YgO5PfAJdH/sY2t75TjTfey98e/fC1d9f0NAGAN/uXQCA5OnTBW8fNoEfaUmTebiT0q5O68d1c2SLLhx9AhePPVn+jmWUkVX4QAuPLJva5ITWKZIDZriEqT2XJINbTXHj1k1523VZYVgwlxOssCLHTvMJDxfjatMUVcGyyM4gWqmpLZhMgTeCYkkJ83RyUWylEQBw9t/J5eBBspBQiTgOF7peAwAInH+wsudwZFrZzdldTd7yDyikJDWi/LUfiDJTeyxDB1FV40fKb6XuaynfFq6oGsaiVTC12SKZhaQ2ANxDGegvjkSv3SK22DgQuWz8/0JjmtqnKE/71m4AszXmaTMxU3vUKIt0izxev5ukhB88Nl7b16fSk9pyVnor67vAWLVLKRmJTOni6HpK07SKmdpbaFJ7JBxHWiaTP99OYmq7enutF/auIUXoeKE94MYNvc1wizyiCUnfzeJopf7j1BRemlrE7z9wsi5lfpqm4Ys/Ow8A+K8HN+qIn2y5envJ4hfVcM8WSIILw1kLMbVU0aT2clZJpJ3fk00vJ0X18xeAxUlTD2Hp9vxFb1XVskxt0T5Tu4VwtfXuAQsaoIVkYwUMeEfViSWtK05qXwP4EY7jdNNuZozMpTsRBaBhPJowiiLXEbqzljLQI+Z32XaH7CvdHi2wO7U35EVH0ENxeo2JILEq706CdpJGRyFHc3ekZWRVP94W203b3+pDK915pLU4CzrVyDG1HelKJePY8NCvou+Hv4pUsrrJRzwtI0hNbXegMlO7nScD52gJU3tG52k346bBIiWReaa2VaY2ACOpPc2ec6WpfV1XQF9tE9fRahvbOtPd7EHQU4JYpKNH3ljdC+56KwBgy+LzpADOUc10wmJzdkHVMand7HOB54AIK4pMLeg84HJi+JEWnwjMXyQ/bL+uxCOIWFnkdImyyOnFFCRFg0vg0BvyFb1fUbFjVNyaqT3Q5se27iAUVcPjF6w9dt2IoUdYYq9hk9rU1A7QhdOWjbXjaTMNUq726GEgK0X75n2Epfvw6emam8iSoiJJEz1NctbxPmvXQpNHhN8tALBnMmaXZpfSSEmEYcsSm2bV1eRBk0eEqgFX58l4K3D77QCMSVKjKhwnf6O2gAdukceNfeS7ebxBtyTXQ9mm1id/chZfeuRCTZPtPz83ixPjMfhcAj50Z+EdS5zLBbHHGD/PXkcSacPhepnaNKmdn35lSe2gzcWjvlagdw+5PvyUqYf0U1M7n6m9lJb1Q2qITwIaTS1WO06iSe3KTG1iPo05SW3bVSl+pIven33W17vYDqTo5Axezb+AF7wfwW8KD2EsEodCDUEnrWpOBjrS/C7bbPw4yNZYAAAgAElEQVSIqlZ3fhmJrAzycByHvQ3O1bYqobkZ7qEhAEAqL609GklAUTX43YL+Xc+XRxSwkSPHj3RTFXNxR46p7cjQcnQefi6NAJdCZLo6LulyWkaAmtqC1yLWgLJ5WzhippbCj5ycIgYGpzbj+p68QkodP9KT82OZJrWtpKldveQ5JB0/Qk3tLBNqsC2Atgx5z1Lz+jkw6SWRpdAjy3PA6LPk+o7K0CNMN+65BafVTRChIH7s/qqey1FpVc3TBurK1BZ4DiGfCwsIQgNNaCUipR9ExZLave4kMcMBoG1z2ccxk3qyRFJ7hE7yN7T6K2MQM1M7ETZt0jPdvZ089tGz16ipzdAjO3+ZXMbnCHO1gaSqGl6iJZHbRXqO6by+9i/ctx/gXcDyNLAwov94/2ArNrb7kcgo+NmZ2qJtllOGae5NZ+GEsr4LHMetSa4242n3t6xk2JYTx3F6WvsS5Wr79uzBlp8+jN4//5S9b7TOCmcxtQHoZZHHRh2udjGxVPL+QfK7+vKjF/HJn5ytibGdzdJ+9+0bSxpx7v4N+nV5z00AjM99raUXjgbz8SP0XBewqSQyW0PWECSGqZ17XGI7p3wuAZ40/dy7g4Crwh1xTLqpbX3xdqCVmE/jUcfUtluV4kc6g+TzEEtK+o6d9SxWArk0O48D/DkAwI38VUSm5gBVJfdpYPRWvaRpGk6O06S2hVBSZ5MHHAfIqlZyF7wZFUMusuQ4m19eC/LuIkGE/LLIbPRIqd13Gzhy/ljyXsPdSDbIMbUd6UosGxOO2Fx1abd4RkaQo8aCx+KXlCa1mzQy0St14D01Q8z3Vk/HSjNpqUhSm+FHOsynPMRumtSeKo4fcYs8BkEOTIu+PIO9gaXztEuhR87/BNBUoG8f0DJY/H4m1B704Gnf3QCAzLHvVPVcjkrLanN2QdUxqQ0QJrYKHrKXvl7CHIIkGieTzEF1gvwgNAC4y6NCWFJ7qgRTe6wAW86SfG0AR5KoVjjhAHDPDnIsevz8LGRFrez1G1WaZpgPN94HuOgxKjaxeu+pAo1EElhKy/CIPLoz9NxrAo1Ttdx+I5k4anC1OY7DfXtJWvvBY7X9XTL0iN8tQMj/7Gf9f7eNBUd2SS+HrQQ5BKMskpnaAODeuLEou7FRxIIIjBe7L4ur7aiwmCn20Vdtxf9+ww0AgH94ehifePAUlCoTdfn66ZkZnJlcRMAt4IOvKN0rwbjafCCA5r27AdTP1GZGf0e+qc3G3QGbk9qAwdW+8kTO7pViMpjauUZxLk/bxoX/EB1fV5XUbqxF30aQkdS2tmjR7BPhpgui10JaW2gl34H0fAQbOTKfDiGO5WlyrudDIZ273VDKJICZM3V7ufFoEuF4BiLPYUev+d3wLoHXF16qCQhompZTFJmt3QONXRZZiXy7yLkxvyxymPonxXjaTN20Gy7idkztauSY2o50pZaNrSKJcHUsTYIfoQdMj0WDl5raAYUk11jBWyFdjpCyif5CDOflwkxteY4VRVpIatMtmNIMM8pZUWTuJLxXI4PFOdEaX3MtS09qF+FBAQBe+hG5NNkYX06x694IVePQGj4GRIZteU5HuaqkObug6pjUBgyudspF0xwmudrsONIj02NbmZJIpt6W8kltY3BXAXoEINxSNkG3WBa5b7AVrX4XFlMyXhy5xpKQ4UvA0hQpDBs4kMUbrW6nUb3F0CPbe5vBhykap6MOpjaQhSB5LufHDEHy9MU5zNbQSF5MEfOnySsa52ym5eyySJrUXkumdqQynjYTM7Uvzy2XuWdjiRX8saT2PjrJfWlqsSHLo+qhbNTGe142hM//ym7wHPCdF8bwO985hoxsz4Klqmr4Ek1p/7eXDel/o2JybyQmqv/mmzHURcyT4XoltePF8CP0nG83fgQABg4CghtYHAci5dnmjKm9mJKxlDJ2WS0kyXtv8dtYEglUmdRmTG0nqW23KmVqcxx3TXG1GVpEi0axkSPn92YuAZWiRxo2pf3g+4Gv3p5bWl5DsZT29t4meF2CpcfaMZaaW04jkVHAc2SHarZYSOpqOKHvkF3v0ssiT53K2V3FzpUl/RMA7RK53zRfYTDKEQDH1HaUpUzCMLUzUXMlKcW0nFaMpLbVlSdqantl8n7CJVavp6gBtLW9b+WNSyvxI2oqBXWJAPnFzgqS2iWKIgGgQyKT0wlu/RyYDFO7yMQ9uWCkJavlaVPdeP31eFYlaSWcesCW53SUq0qaswuq3kltP3mvCRfdcmcy2bxAtwO3p1gStjxPGyAlmkDpVIOe2GyrYjFL5/RbS2oLPIdXXk8e+/Nz1xiC5Mrj5HLgVsDlI+l7oOHKIk/TQp2dfc2kpAwAOrbV58VZWeTY4Zwfb+oIYP9gC1QN+NGJ6sYDpWSY2q6VRak5ZZFk4r+WktpXq0xqs+Kg7KR2oystK1hOk/Q9K/jb0OpDe8ANSdFwhmJ2HBlSVA2ReK4p9qs3D+Ar79gPl8Dh309O4UP/esSWBYH/OD2F8zNLaPKIeP8d5fFbLW97G1re9jZ0/cHvY1MH+ZyPRhJ12RU0v8TwI/mmdg3xI24/sOFWcp2dX0oo6BFJGhvAZBaChCW1m312m9pksRGpGJCy9l1iSe3JhaTt6f9rXZUytQGg41oytVvJuL0ptYSNHJmjt3IJhGgfldCIJZHhy8C5fyfXLx2qy0uy+ZuVkkgmtuutGlOb7U7tDfngFnOtxBa/G5vomIiZ7+tdnu3bAZcLSiQCacIYL1/W8a2l54ZNSXIsH9eqxFNd43JMbUe6pIQxQNKWpkvcs7ziaRmBKpPa7gw5GBZjas8vp5FQyOru7t4CyIsCRZHyPBlcch4P+KB5s50lteW5OWiSlMXUzjWgmlLkxDysNPb2YSZF1fRSoC3FmNoXHgZUGejcYVu68NahNjykvoy8hxPfNbUN1JE1sRKPqkoiVdXgU9c5qb3E03R5wlyZKEtqNycoO9gk3qEny9QuVqxSNX4EMI5TFpPaAHA3RZAcOltb/vGaE1tMY1vG9aR2Y5naZybIuXd3jxdYoCnzeie1Z8+SBcosvXk/SQU+eLR2CBKGH2n2isZnn6F4sr4LPWsSP2JPUvvK/HLVpU1rRWy8JvIcmn2kWJrjOOyjrGgHQbJS0UQG7M+fnZx+za5e/P27b4bXxePn52bxnn/6hb5gYFWqquHZy/P4fz89DwB47x1DCPnLL2aLra3o/T//G54tW9BHDQxZ1VYUI9otTdMwn4ex0VVL/AhgnE9McrVZWnsy63eyoBdT22xqe5oALx2zWUSQdDd74RI4SIq2pna8NLoSGVn/XlZiajMcxLVgaos0qd2djsLNkd9ZiDdMbcbcbii9+I/G9YmjdXnJE1WY2vpYqgr8CAvy5KNHmFhP07WCIOE9HnivJz04qVMGVzubqV1KnmUyB7iyTryj1ZJjajvSJSdiSIZdSIZdEOPVmSPLqQyadKZ2Zaa2kCYHw6SkIJlZmVA5NroATiSp600tvbk3KrJhOGcltZV5ih7p6CgJ7c+X0N4OuFyAphEmNzO104s5pWTeJfKez6cbkAlWQJMLSWRkFW6R19mBK3T2x+TSJvQIAHQ1eXGu9S6kNBeEyEVg6oRtz+2IqJqVfl2pBcJSB+rK1AaABY6a2ibwI5qm6aa2f4luKTaZ1O5u9oLjgIyiFuX7sxbwShObAKoytV+xrRMiz+HKXLxuW8NXXaoKDD9Frg/dRS4bMKmtaRpOUfzI/mAEgAZ4Q7UzbPIV7KKFqRow/kLOTa/f1QuXwOGlqUWcn16qycszU7vJ6zJ2V3VuJ5cFTO21UhSpaRpG5qv73g+0+uAWeKQkteYmYb2UjR7JHmOxskjH1F4pxo5u9btWFI7edX0XvvEbBxD0iHj+SgTv/PphS1u6R8MJfPGRC7jjc4/hHX9/GFfDCbQF3PiNlw9Zfp88z+kJvFqfZ5bTso5cYYl/XbXEjwBZZZFP6eV1pcTKIsezvsO5TG0bTW0ga/HWmqkt8Jz+XkfDDoLELs0vke+jzyUg4LaGggCAziYypr0WTG3G1G6XjARvUIujhSW12xosqS0lgePfMv5/8hig1haxpagaTtEE9O4B6+hIO/Ajo2XmPCwsdeIaKos0ECSnAQBLKUn/Tg+V6iQDIMRIQPOy7L4mCmNrJcfUdqRLXV7AyM/bMfpYO7xVmtrpRNYEuEJTm5MSCAhkYBgpMIg/MhIFL5LVrU5f3uA2PgdAAzg+ZyBplESa52kDAMfzcHURI1uamgY8zYTjCuipEU1RwMXIAfyC5Ea8wkTNWhJjfW5q968s4gSATNzYbnWDPegRpp2bB3FI3U/+5+T3bH3ua13Zzdm7q+JpU4azOwiI9VlhZkntiEbLUUwURcYzCiRFAw8V4sJV8kOTTG2XwKOLpm+mYiuNp1hS0lNZ1SW1GVPbOkKk2evCrUNksvDotZLWnj5JFlXcTaSgFjBKamuU1E7LCh48Op7DTq1W49EkYkkJLoHDJo2aFB3bAAuLrlVroDBXuzXg1tE2Dx6rrmejmBbZNn0Pb2AFesjkIPu70B1iSe21MfGPJiQspWVwXOXfe1Hg9QTPekGQsIW/fFbz3gEyrjs2usrc/3gYeP6rBjZrDYiZYivY0VS3DrXh395/AK1+F06MLeBtX3ses0vFDYl4WsYDR8bxtq89h1d8/jH85aMXMbGQRJNXxDsODOKBD91WMXKM7UqotanNGOMBtwBfvlEYr3FSu38/GdMkI8DMqfJ3byHHpskCpnYuU9umhf9Q5TuS9LJIh6ttm+aWyXexs8ljKSzFpCe1l9fGgm0txZLYobRx/OChooPuzBYaLal95gdkHhQaJGNRKU52vdVQV+aWEc8o8LkEXFeG1VxIdpRus0WxYmOfvdRsPz4Wy2FMr2d59bJIktRm58iOoKfk+VZNp6Etk/Ff1N2Eiej6CDishhxT25EubWEemsJDlXkEFs1t6S8mmfK5FQiAaJER5A3p2483+qmpXYCr/eLIFDiBcsz8eYNblvAKdAG8MSBmprZgoSSSSeyhXO2ZaWI45CFIlIUFQFWhgkPMHVgXiUmdp10MPXLxEUBOAa2bgO6dtr72wc1teEghCBKdV+bIFo1Hk4jEM3AJ1pqzV6jOPG3AYGrPqnSxzERSO0qNlo1iBJySJkVQLQWQRUXUGyLppqkCKVGGHukIuhH0iKafc4VYUjteGRf7VTvI4x8/b43J3bBiW8M3vQwQ6O+9xkntL/zsAn7veyfwebqF3w6doTztbd1NcEXZLoI6oUeYBilXe/Twipvesp8wXB86NlkTDitLane7EgRjBQDdN5LLrO9CNn5kLaA6rlL0SG+z13JRU7a2dBGTcL2URTI2dHseMmL3QAgcR849LJm8Knr+b4CH/wg4/LXVew95mjdRMrd7Qwu+98Hb0NXkwfmZJbz1b5/DeJYxqWkaDl8J4/fvP4FbPnUIH7//BA4PR8BxwB1bO/DlX9uLF/7nPfjzN+8qW1pVSmwR5mqNx7dh+jvpyP+dKLIx7qgFUxsABBewkY49TRS/sV2M2WZELJGd1GZl2jalUKspi6Qm1HjEMbXtUjU87ezHscWt9SyBFkH607lj6Y40GQeJjZbUfuHr5PLm/wb07SXXJ47U9CVP0EDSrv4QRMG6jWfHrrdySe0bekMQeA7zy+mC86b1KD2pfeYMNFk2SiLLoEeUCDk/yLyIuMur/24dWZdjajvSxS0b24Ga4tXB/aUkSWpnBL/1xBnHAT6ydWXASw6G+UntjKzi1AwZ0HkFPwKuvIPG0hS5DOYOeuVZAz9iVa5uYhpJ08wwz01WymGyEJD0BaDywrqYpF6ZJ/+GoiWROnrkjbYnCw8MteOUSrbIaosTpraBOjIntiVse09zVYYMkmyyVr90BcOPTMn0M2mCqc2S1Lu81CRr25yz2FVOvTQlOlUAETBqB08byCqKrMzU3k+ZtevhuGNKw0+Sy6FXGD9j27IXJ4j5YaNSkoLvvUjOOT87M2Nb+oShR3b1h7JKIuttat9GLieOAHLuufaV27sQ8rkwvZjC81eqW+wuJJZ67+HpmMPfbpShZX0XSAoOkFWt4M6teovxtDdWyNNmum6dlUUy/Eg+MqLZ69L/rcdHV3FLMjMC1xB3n5naxZLaTFu7m/DAh27HhlYfroYTeOvfPodnL8/jLx+9iDs//zje9nfP4/4j40hkFGxq9+Pjr96GZ/7wbnzzvQfwpr391Z3rqZipPVxjfAX7nbTnJf7J+Z7twqzhYroFrnZBpnaSfA9Cfrf9+JFQZfgRABhoZUltJw1ol3RTu8z3t5iYqT23mot9dZJAmdouSdHJhQDQkmH4kQZKak8cJWMmwQ3sexfQfxP9+Ys1fVnGqa50l21PiHzeqsGP6MjFtsLjH59bwPXdJHh0rXC13UND4AMBaMkk0pevGKHAMugR1vWWDDQDHKcHpRxZl2NqO9LFxw1kiCeZwfJy5QxNlTa5SkKFEz6KINnATO147sn+palFyCCT4O78lDYATB4nl4zNSaXjRzqtb1vUk9rTtERTT2qTibdCTW2piZpL62CSahyUCyR75DRw4afk+g570SMA4X7523qhahw4VTZdCFiJzk4t4oEj4+tjm9TceZIuKrG9mg0y9lTAY8vRqiS1ySR3IkOPLfHyyWTG097uoiaZSZ42U6mkNitM2Vi1qV05Uxsw0mIziylIyjpfAJIzwMiz5DrjnwJAsAfgXYCmGAubNunh09P64sj0YgovTS2WeYQ5naYlkTfmmNrbbHlu02rfSs65cpJgXbLkEQW8bjfprKhFYSRLandxdOIT7C74XXAJvG6UrgWu9tUqedpMW7rWmaldBD8CrBGuNtvZY+K8US/NmTS1AWCw3Y8HPnQ7tnQGMBlL4R1/fxhffOQCRiMJBNwC3nbzAO7/0G147ON34bfu3qobrnZpU52S2gw/suJ3wnZv+NstLUxbFjuvjDy7YqEvX4xTPVEvprae1K7A1G4j79UxTuyTXUnta4KpHQpBBQlAKRnDgmI4ErG9gZLaL/4DubzhPoIP3HAz+f8al0WyPqTdA5X1ITH8yFJKrgiTmsjI+me1WFEkYHC1j18jXG2O5+HdSXasp06dNF0SqUTI+UFuJr8vJ6lduRxT25EuIWFMquSkgPBM5UkWLU0McclV4TZHapL1uMggMZyHHzk6EgXnIq+xAj0CGGzQwYM5PzaY2tZNbVcPTWrPFElq09U20CKMy+sJP1JopfHyz4HMEtDUZ6xQ26ybN3chDIqZsNmkytYnHjyFj99/Aj8+WbvXqIuSUeDvXgl8443A54aAL94IfPvtwGOfBs79hGAZNE3fvra7mpJIICupXT9Tuy1A8CNjKTqYMoMfoab2Zp4uSFk0tfsYM7OAmcYGIKUGd6YUqC6p3RHwwC3yULW1YfrVVBNHACkB+DuArhuMn/O8kfK1OYn5b78YBQC9W+Cxc5X9nbKlaRpO06T2zt4mIHyJ3FDvpDbPAwMMQfL8ipvfso/8Th8+PVWwtLkaLaWJ+dOmFTK1c3/HLGFUDQvSLtmW1Gam9tzyulhUjehJ7QKmNt1NcmxsFbnazMxeQ6a2ztRuMtdL0RPy4nsfvI3s7gBw2+Z2fPGte/DCH9+Dz/7Kbtyyqa0itq8ZsQn6eDShFznWQnpSe4WpTf9utUKPMHXdQM4vUqIsTqDQgnIsScyilpqY2nYktR3jxC7NmcAHlVJnkIwv55bS6+IcUEqxtIIlN/kMyileD7AF0mSuLwWrwCHWU8kocOoBcv2W95LLfmpqz74EpGuzSJ2RVZydIt7H3grnb01el45KrCStPRYhf6uQz4WQvzgreg9Nkp8cq27nfyNJR5CcPKXvdF9haqeXgX96HfDUFwAY3hFH0Tzs9+vIuhxT25EuIWkMcuSkgMWZ0Yqfi5naaj4WxKzoia5LJBPHaN524yOjUXCsJDLf1FYkYJxu/2HbqqmMpHYVTG09qZ078ZbD5Lk9XeS5Gz2pHU/L+glvSz5Te/o08KOPkus73kBMkRrowFA75jS6Ha3CBKsZsYTNN5+7WrPXQDwM/OcfkSR1rTR1khSVcPTvsTgOnP8P4InPAN95B/AXO6F9bjN+d/Lj+IT4LdyRfIy8n0rbulchqd1Ck9qjaWoiJ6Nl3z9L2A6qNGlaYVJ7ukBR5GiEHKMGqzS39J0f6UXSqG5RPM+hL7SysGpdim0JH7pj5bGnBlztS7NL+MVwBDwHfOQuUjD6cxtM7ZnFNMLxDASew45gHMgskz6J1qGqn9uy2ALw2EpT+6aNrRhs8yOeUfCzl6ZtfdlFZv6o9FgS7C76XdBZkGvB1KaLWZuqTGpv7giC48gxiqWcG1l6Uju40qDdR8siT47FVo+Lrie1yy+G1ktm8SPZag968IPfvB3H/uRefPsDB/GW/Rvgd1fR6WBSXU0e+N0CVK22iTIWZOnM/xwtM1Pb+hjeknjeQFuVQZB0BDxwC7kLyjE6Zwl5eKNQ2y5TW8dsTVrGbDFM2sxiGinJ3gXKa1XVJrXZYlZSUhC3edF4rWkknEDcTc7jSkYEenZBUwFfhvwOZ4UqwyH10vF/I31S3TuNQEBzLwl5aSowdaImL3tuehEZRUWr36XvuqhE3c00IFBBAIYt6JcL8rCk9qmJWE36WNaivLuoqX3qJIaLhQJHngFGngae/1sAgEyT2m7qSzlJ7crlmNqOdIlpY/IoJwUkIpVvNeYy1NR2N1X2BNTUbuPJlzsSX5nU5kWa1PblmdrTp4ix5w0VwI9UwdSmprZUBj/SRBPdw/Pxhj6Qs60z7QF37mrs2C+Af34t+Xd37wTu/IOavYddG0KY1ehqdI2S2pqmYYFOQF64GsVZm7ACK/TYp4DDXwUe/3Rtnh8gCQEAuP61wB+NAu/5D+CXPgPseQf5W/EiuGQEt3Gn8UHxJ+h99LeBr9wKfHoAOPoN66+3CkntFh/5LEY0ttCilUStAMaiWK9Mj2kWk7A9ullcw6S2NwQIdFJUYVq7r8A26HUpVt6VjR5hYgWgscoXZfP17V8Qg/zu7d34tVvJ8x8bW1hxXrIqxtPe2hWEN3aZ/LBtCBDNJTZt1QA1tUcPA3lpMY7jcB9Na9uNIGFM7WaJfoebugFPs1EwnfVdYNtmK5mI2S0dO1TlYpbPLej4gkZfCAeyiiIDKw2ebd1B+FwCltLy6rD/NQ1IZOFH1kgqUi+KtMjkFQVe75iolziOw6b22iNIwvFiSW16PAjWOKkNGFztMmWRPM/pu7nYuZfhR9qEOAD6OfPZxAsOdAHuJoLZysNFlVOr34WAm2Bbxh2uti2qlqntd4t6cna9I0hGIglkPGQMr/CdQKATSoYH21cyoa7C2MeqVBV4gaJHbnlvbp/UhtpytRk6cteGlqp247A5TSUBAX3OU2ZBf2sXOd8vp2VcuUa6fny7dwMA0hcuQk4kwXPAYD53nO3IjM8CUgpKmIx9gz3EyxqLJNb9jo1ayTG1HekS08bJVErwkGKVm4i8RAe77grxI9Qka+XI82TjRyYXkpiKpcC7iPnY5c8b3I4dJpcDB3NSfJqmQZlj+JEKktrdNKk9NwdNlrPwI8Qol+mBKdTXBbfIIy2rDZ2YZJPOnFXGyz8HvvEmIBUjq9Pv+UlNEzPtATdmaFJbWbQ3Ici0nJYhKcYJ5F+fH7H/RTIJ4NT95Pr0Kfufn2nmNLnsvpGYpJteBhz8MPDmrwIffgb4xAQeefl38YfS+/FT/+uBDbcCLj9ZBHr0/wKSxQHOKiS1RYFHs1eEAgGKhy54JEqn7hYSEjzIoEWiaf8K8SMzi6mchSpJUXWju1q2LjiuKHbBrPoLFFatO2XiwPgL5Hp2SSSTzUntlKTg+0fJNu93HBhAX4sP23uaoGnAExeqS2sz9MiNfSFg/iL5YXud0SNMfftI4VF8FohcWXHzG/f0AQCeuTRv62ItY2oHJLpFP9hNvgsFcDxrJakdS0r6gkbV33vkIkgaXSyp3V4gqS0KPHbRLcnHVqMsMr0IKHQsKafIzog1oEqS2qsptp36arh2pjZDsqz4HNULPwIYi6bjL5AxXAlll0VKiqonbkMa7SbyhgCh+FZ9S+J5w3C/+Iilh3Icp6e1HQSJPao2qQ0AHfRzvt5N7dFwHBr9NclCO+ANEQwJgJjbj/HFBtitNPw4ELlMFpZ2vTX3NobiHK+RqU3RkXsqLIlk6q5iLGU2yCMKPHb2E5wMe9/rXWJ3N+lsUxRsjk1ioM0Pt5hntTJTGwBi45BpILKln3hMS2lZ313syJocU9uRLiFjnEzkpAAsVm5qixKdLHiqS2o3a8S4zsaPHBkhW/mCfnJg7fDlmapFeNpqLAZNIgcKoRJTu6MdEARAUchBKC+pzfAj7s4ObKaD/kaepOo8bYYeeekh4FtvJYzBLXcD7/oB4KuSyVxGIZ8LcyCvkVmYrMlrROO5J48fHJvQ04O26eyPyIQaAMKXiTFXC82cIZfZnOFsubx4fKkf31VeiSM7/xh43yPAH44QIzA+B5z8rrXXW4WkNgA9nZbx0u28ZbaSRxMZbOKmwUEjk0uL24C7mrwQeA6yqiGc1VA/uZCEomrwiHzFKZ0csWNKhaidayKpPfocoErkM9u2eeXteomWPaY2K4jsC3lx5zby97l7O7l87Fx1XN4zk5Sn3d9smNr15mkzubxA715ynS0MZ2lTux8cB8iqtgIHVo0WqantTdPfJVvYKfBd0JPai6s78R+lKe2OoAcBT/XIh+s6109ZJGNqFyqKBIB9Old7FUzt/PPEGuBqq6qG8HIGQ9wUtj7y6zUvGbNDmzqImTFcw6T2fLyI0V8v/AgAtG4CmvvJ+aZM8lIvi4wm9ZQ2AAQUaubYhR5h2vZfyOXFn1l+6AbK1R53trlXLU3TqmZqZz92vZvaI+EEXF6y4AFtVu8AACAASURBVKNozYC3BUqamtqeIMYaYfcAS2nvfTvgyQvu9de2LJKVRO6psg+pp4pdb/ouNRO7U9n7PLGa5dB1FMdx8NK09vXR0cIlkeHLxvWFEX2Xv7ezQ8fCOAiSyuSY2o50iRljICYnBbjilSdjXTIZ7PLe6kztgEpSDtmsyaOjxNQW3WQCmJPU1jSj6KpISaQQCoF3W9/ixAkCxC7yWvL0dFaSjAyyFQr7F9rb9XRzI28nvjKfxYM6+k3g/veQwf0N9wFv/w7grpIhbEKiwGPRRSYvSqxGpjY1aPpCXlzXFUQio+AHx+zdYp+L9tCA2bP2Pj9AuNKz58j17p1F73ZSL4mkK/2iGzjwQXL9ua+QrXVmlaCsyDomtQGglXK1Uy66nbdMUjuakDDEsZLIrbnbBU1I4Dl000lHdlkkG9wNtPnB8zYUc1VpausT6wKYlHWjbPRIob9ji71JbVYQ+bZbBvWSSGZqP3FhDrJSeVkaw4/s6g8B8xfIDzu2VfFuqxQ7ZxYoixQFXv/e5Rc3VyO2gOhO5ZvabNdClqkdMnZMrKZGKEe/Wp42k57UbuDxAgCkZQVLabJIUagoEgD2Uc7m8TVhaq8+VzuWlCCrGt4pHIJ35DHgic+u9lsqK4YfqampvcRM7SJJ7XrgRziu5DExW3pSO5bUU3bNXhGCvvBvs6l93b3kcuKI5c/xoJ7UbgADcY0rlpT0nZ6FdqeYFTO155fXuakdScDnIeMHRfYC3pBharuDGF/ruwditKcIAG5+78rb+/YC4Eif0ZK9u4uX0zIu0jHC7oHqktrV4EfGTOJHAIOrfWL82jC1AcC3i8y/ty2MGaHAbGWb2rExPakttLXrx2bH1K5MtW8VcdQwEiQFANkep6kcvIuVp1hcChnsCr4Km4ypqe2TSbo1m116lCa1JZCDZE5SOzpMJsGCG+jbn/OUuqldQUkkk6u7G/LUFKTpGfi23UJ+mI4BUko/MIkdHdgikcHN5bnaDfprLcbAuivyPeCxz5Af7nsX8IYvA7xQt/eR8nQAKQBLtSmKjFBTuzXgxltvHsCf/ugMvvHcCN51cGNVzDJd85dIMQTHA507gNkzBEGy4ebqnztbkWFATgKij3B5CyglKTozPGelf/+7gcc/C8yfBy4/Cmy919xr6hM2m1iRJtVKGe/LYgtagbKTuoVEBjs5uihiET3C1BPyYjKWwtRCEnvpQI0NPMwkFkxJ3/1R2bG3v/UawI8MP0kuC6FHAAM/Ehsni5xVfIezCyLfdsuA/vN9g61o8buwkJBwbGwBt2yyvqgzu5TCzGIaHAfs6G02tiSuVlIbIAbOs39ZMKkNEKMyEs9gfjmN61HhgnWW0rKCtEwWBUSdlZuX1M76LqwV/IhdPG0mZmpfaeDxAmDsehJ5Ds3ewqiFvbQs8vz0IuJp2Zaku2nlH1fXQFKbpTy3ivTzP/wkIKcBce2iSFhoo1ZM7Yys6js4ViS12XGiHvgRgJTNn/6+sQO0iNi5dzwrqR3yu4AENbbsNrWbe4Ge3YSpfekQsOfXTD+UFcyNOcZJ1WLJ6ha/Cx6x8nkR2+m33pPaY5EEQh5y3JDTAuBr0fEjC57g2ue8H/lnUgS56Q6ga/vK2z1NQNcO0m80cQTY/rqiT7WQyODkeAyJjIx4WiGXGQWJtIxEhpSGZt8WiWegaUBvyIuuJm9V/wwDP2Lt86aomo4tMtMjxOaZZ6cWkZaVqr4jjSJWFnl9dBRN+SWRUpIseDAtjOpFkWJHOwba0njhatQxtSuUY2o7AgAosgxeyk2cBRfDFT2XpmnwKHFAAFxVmtpuiRjXsaQEWVEhKRrOTC4CXAZplXzpc5LaLE3Rt49sp86SrPO084olLUjs7QGOA/LMNOBtIcVuShra4qS+hURsb8cWmazcr0oZkg3SNA3D88v4PfF7uP7ED8kPb/9t4N4/q8okqkRpXxeQAoREdfzaYorGje3Sb97fj88+fA6XZpfx/JUIbttiw0Tk2DfJ5XX3kOLS2TMGJsROMZ521/aiiw5npxYhqxraAm5saM1qzvaGgJt+HXjur4Fn/8q8qb0KTG3AwI8s8jStYAI/splnSe3KTO3eFh8wupCT1GYDjwHbTO2V6VQr6svaAq1pmj2LMmtJiYjRKl/U1Kb4ETkJJMJVbVPPLohkyRaAJPfv3NaJh45P4ufnZisytc9MksWlzR0BBLi0gUtZzaT2wAFyOXeO/K7zsEIdQQ8uzi7bliZjPG0v0nq5NJqK40eYqb2QkJCSFHhdqzNBYmaeXUntLRQ/MrGQrL/Ra6PY56I14C66c6Un5EVvyIupWAqnJmI4uNlms6+U8nf0rAFTmyWSN/EzgAqCdxt9Dth812q+rZJiSe3JWKom30MWYim4OFJP/AhATG2AFKQrMiAU/m5m91nEkuT9t/jc5BwE1GaMtPXVxNS+8FNrpnarw9S2S9WWRDJdC/iRlKRgejGJTm8MUQSgJFWa1CbHj5gnsLZNbTkDHPkXcv2WAiltpv6biKk9/mJRU3s8msAb/uppRCtgJ9+xtfpjnx4QiFn7fU8vpiApGlwCh96Qr+z9B9p8aPW7EE1IODu1pAeC1rN8O0lSuy8ehs8t596Y11ejRUahREhQkyS1ieflLDhWJgc/4ggAEF+OQZVzPw7BxFJFDawpSUUAxPhxBSrcIkNNbSFNvuCaBiwkJZwcX4CsauhsIc/vF/0IuLJWworwtAEjqV1JSSSTi5ZFSlPTxNylBpl69YTB625v1yepjdr4Ox1L4A/Uf8RHRWpov+p/rYqhDQAaNfrcyVnyQbBZbALV6nej2evCffv6AdhUGKlIwIlvk+v73gX0kBVc3YC2U7MvkcvuG4veJRs9ssLwPPBBgBOA4SeAqZPlX09KEuMQqD9Tm2IQFkAXzcoVRcYlDHG0I6CjMlO7L7RyEDiqJzZtTmpXWBTZS99jUlLWZ9HI1acBaEDH9SSpVkiiBwiS4zQWRit+qeyCyHceGFxxu8HVruxvdSYbPcJS2v72un+XchToMBZ9xn6x4ma2vXreJvwIM7WHPPQ8KXoBD/1OF/guNPtEeF1knLKaCBKW1Daz/daMWgNuHdfRyGltdi4thh5h2rtaCJI1mtTmoaJPzVrIvHRo9d6QCbUF3GjyEnOXfRfsFFscactfHNG0+uJHAJK69IRIqWiJcVt/Vp8FO/eGfC7D1K7FcZ1xtS8/Sgx3k9KLIiNr2EBsENnB085+/Nw6xo+MRxMIacsIesm5W1lK5hRFLriDiMQziKfNf5brqnM/JjtFgt3A9tcXvx8riyzC4VdVDX/wwElEExI6mzy4eWMrXrGtE6/Z2YNf3r8B775tIz505xb893u34Y9ftwOffssufPnX9uLr774Z3/nAQfzZfcXxkmbF5gpzS2lLCL0RWg68odWv4/hKieM4A0FyjXC11WATxoMkPNk/M5x7YzZ6BIAyMwIohDEvtrU6+JEq5ZjajgAAiaUoFCn3AOVOSliILVp+ruW0jCDIYMldIKkth8NYfPhhaHKJExcdAHLJBbRQ1EAknsERytPe1k/MzU5/Xup6lG6bZumK7NedJ4PhakxtsYcYrPIMTX12k0I++coxAAAfDIL3ePTtmfPLGcQazVxSJAgP/SbeI/4MKjjgdV8A7vjvq2JoAwBPDSpBk41ksI1iExCGtHjXwY0AgJ+ema7eOLn4M5I09HcA237JMJxnzthv0LP0dwmeNhtUFCwZaRkEbngTuf7cV8q/Hvtb8KJhRNVJ7G81r1EEQomktqSoWErL2MxM7UqT2iHGzFyZ1DazDc+UAivTqVbkdQn6du11WRZZDj3CxLjaVZRFsoLI/hYfXrFt5e6eO7d1gueAc9NLFf2uGU97Z3/IKIlsX0X0CBNbEB5byZBln62wbUltcuwdcNOUdrDbOM8U2LXAcZxRcLSKZZFXwyypbV+vxBbG1Z5bsu05661IvHRJJBMztY/R8VzdFM/bfbgGmNrzyxn0cWG4kDVOvLi2TW2O4/QCrOF5+4MbzNRegR5JLZBeF4CMqeohXgAG6Q6WElxttpMnJan6Tg6CH6kRUxsg5pmvFUjFgPGVi5DFxHbpxZJSTqmlI+vSk9p2mdrrOKk9Ek5gIzcD0UNMPHlhIacoMhMkIbg1m9ZmBZE3vQcQCuO1ABhoyYljBTuKvnV4BM9eDsPr4vG9D96GBz58O77xG7fiq//1JnzhrXvwf9+0E3/0mu347Vdtxfvu2Iy33zqIN+3txz03dOPg5nZbEB7tQQ8EnoOqWQspjFUw59m94driao9HkzhP5yC+y+dzb2QBFlpyr8yQ4IwQCoFzuRxTu0o1lKn9mc98BhzH4WMf+9hqv5V1p/RyDKpEPg5iL0nAyUke4RnrSbd4WkaAIycl3rvS7Jr93Ocw8bHfxeJPflL8SWhSG1IC3XSHSySewdERclDsaycH4U5fltkQDxMmMGBso86SPEdN7WqY2j00qT1NJ9pdOwAAyggp/hPbycA14BH1ldDLNRj010xSCvjuu9A1/ENImoCvd/4RcMv7VvUthZoCCDPzcmnK9ufPZmoDhG97y6ZWyKqG7/yiyrK5oxQ9svftpJCxYxvhvacXgQUbkuDZ0vEjNxS9CxtU7ClWMnL7b5HL0w8Ai2WKORlP29da9wUP9reaUejnIlEclbSQkNCCJbRy9HtIBxNWxb7PU9TA1DTt/7P33vFxXPe59zNlOxaL3UVvBEFSlMQmSpRkFVuyJMeyndixI9uxZbmmvW9ip97Eyc1N7Nw3cW6cN9exU27iLte4JI5jx1Ik2SpWpyiJpCiJBSQAkqi7KIvtszP3j985M7O9zTYIz+ejz66wi8WC2Jk55znP+T4GU9uypDY38mpH7Yz00PvcnKY2K4mcvKn083z1l0UaBZFjBRMpPW47rhyn61Qtae3jF2jBeM+wydRuJU+ba6x4MVqvntS2Fj8yajOZ2lxFUDz9LeZqx1IKFjkywkJTezOURfLPRbDMVvyWJ7W7GaKoLUztJLbxEmPvEHVvLL1InQBtLKMsshFJbZb4zyuJZH8vhy8PL9hQ6WWRjxV9itMm6cbkCdZbkp3UboCpLUqEtQMoQFGhPA5Z302xtc29PlmFH+l9BTC1uaktOcjozaysQnN060ltOUhhtrYsi1w4wbqRJODK95V+bt9lgM0NpCJGATjTTCiGv/jPlwAAH739Un1xsNmSRAH97HxVzVhquobdqVew+eYrJak9tbSBk37a3Zk8diz7wTBLak++FgCghGgeLTHviJvaF1fjSNdRQv9KVceY2k8//TT+6Z/+Cfv372/1W9mUikdXobKktmPHDgCAEpcQWareFNhIKvCypDYc+WVSydN0UMeeOVL8RRzddPEAMO6ii3xoI4UjLNnj72YDCbOpzcutencX3OqX4fiRvjqY2gMsqT3PJiH9lLxVLp4DAEimFDhHkJzplElqYh342h3AyR8hLdjxK+nfwfL2t7T6XcHvsWNRY8niDWvbpIFspjbXe1ha++tPTdd+YVmfMyYaB99Lt5IN6NtN963kaic3gJVzdL8IfmQ9kdaLS/cXSmoDlPwZvx5QFeCpfy79M1vE0wYM/Mhcig0IS5gTq7GUkdLuHgXstQ0ih9j24jmW1F6JpbHBtkmO+huAH6kxyb9pyyLXL7IJggBsu6H0c+tMavOCSEkU8I5DY0Wf99oaESQr0ZS+6LBnpNuY+LSSp83FDZwLR6iwziQjqW0NfmSdpQSHJUqt6zxtwHQsLGUdC3pSe601pjZfyOpx2yiJaZF26uOFzY8f2TfqgyQKWFhPYq5Kpmdd4pgqXvDVBviR5UgS27mpPXSFsXX99AOte1MViJsxjSiL5DtB8oxCvtjbVfsYvibxnZ8zT5S8LvNOixOsL6Gn0aY2AOxiCJJT91X1baPMPGlLA7GDZHVSe3kjCVW1HrPYDpoJxzBhMrWhKFAzNj2p3dVHIYG2TGof/gLdXvpGwDdS+rmSTOdygMoimVRVw+9953nE0xlcuz2A91430Zj3WqH0ssgqxlLTdSS1zyxFsZ7Y/DtDzi5H8bKf5g3xY8eyMb4cPzJ+HSA5kGH/9DwQ2ed1wCGLULVNOIdrgjrC1N7Y2MCdd96Jz372s/D7/a1+O5tS6di6ntS2T24HQKZ2PFwmrVlAlNRmR6qjK/9nzZHBlHihhKknCHpae4Txt47MrCAcTcEui5BtNGjMwo+U4GkD5qLIOpLaLMWeXlyEpqp6UltZpN+Jn5gAYAdDkJzpBEamkgLufgtw7hHA7sVf9f0FfqIexGSLVpHNCrjtWNTYcR+pDctQSissqd3jNibit+8dRG+XHQvrSdx/osaf+fzXAS1Dycc+k1k1wLja8xZytRdppwC6BosWKB1nPO2RHlf+tl6zeFr78BfILC8mntRuAQOYm9rndVO7uDmxEktjUuTokR01/0zO1F5kDDrOlhvsdlpXlMWNPCUOJGvDEAz7jLLITaWzj9Dt0IHyn7k6k9pGQWR/VkFkrjhX+9Ezy0ikMxW//vGLdCxOBN1UhNZOSe3gTjJgMkmjlJM/1GVMvK0QT2r3i8zUNie1PYWPBf73aFVS+9wyTypZe2008CMdsgheQJXiR9x2GbsHKPDw7EwT01t88bPv0uz/b6Eoqc3GGIFJI3nb5lxtHT8Ssn58ayT+c5PazNT2NNnUHr6SdthtLAArZ4s+bbQnG1HW8KQ2AOy8ldL9C8erSvePb3G1LZFVTO2gh75fUTWsblIkzHQoim3iPEQJEFkBbCaqQGFFkb1sYbftdg8kI8Dz36T7le5cHs3nan/psXN46mwYbruET95xoGiZcrNkoNwqH0vVgh/p7XLonQN8HrqZNbUcxZRvGKokIxMOQ7lo8tG4qd27E/CNQknQZ58ntQVB2EKQ1KGOMLV//dd/HW9605tw2223lX1uMpnE+vp61n9bKq90dFVnajt2EHM2HZOgrNZgaqcMpnZuUluNx5EJkxmWOHkSaqpE4ouZ2kM2OrDvf5EG/vtHfAgnaaDY7zaVxfDt0gV42oBRFCnVw9Tu7QVEEVAUer2eccDehQz7daWgYbbwSeqZTpikTv0EuHgEcPqA9/8HfhQh82+yL39RotnKSmo3AD+yEqUBZMBkajtkCe+8moyxr9RSGKlpBnrkyruyH9O52jnbkuoRR48MlEKP0GCibPv0JW+gyXViDXjua8Wf18qktocGxNMJNrCKhwuy6wBatNheJ08boIGZLArIqBqWNpLW87QBSpHb2TFXI4JkWJ9Yb7LJaqXoEYDOywCwVj0+y1wQ+e5r8gsizbp00IshnxOJtIrHp4ojcHKlo0dGfPS55Zy9dkhqC0JRBEmvxUWRPLXTB8ZWNpvadjdgZ+MH07Ew0GL8CF/M2mblcQ8DP3JuOdqx205D0SLYiAK6YrwFCBK++MkRXe2Q1N5IYUI3tbcbpvbUg1Q03aaaaGhSmz5HeYvvfBGi2aa2zUnGNgBMP170acM92QugPY1magO0wDt6Nd2vIq09xnZ0zW4lteuSVUltuywaXTGbtCxyOhzDNoGu5ZKPru1KKAw1RVbUQB/9G7ZdUvvotwglEtwFbK9g/AmYyiIpqT21tIG/upewI3/0xsssK5muR7UEBGotydaRY68ArvbU0gbSkg3JcQqIxjmCJLFuLMwGdgA94yb0jnF92DK1a1fbm9rf/OY3ceTIEXziE5+o6Pmf+MQn4PP59P/GxopvHd6SISWyAmjc1CbmrBIXgY3qTcSNRBpdPKltzza103MmfEQ6jeTJU8VfiJna/Ta6wPGT6VXb/FiK0WSk18UM6nQcuEhljYWS2lo6jcwKTZzrwY8Isqx/v7KwQAZA/2WmE5NhmE/2dpCpzRN5l9yORN9+fWs8L7xspQIeGxbB8SPWJ7UNpnb2VvJ3X7sNogA8diaE04tVpmbP/ZQSPXYvcPnPZz82yIocLU1qn6DbIugRwOCZ7R8twtPmEkXgVf8v3X/iHwC1SAJVT2o3f/cMX4A4F2cTCU0F4oVLx1ZjKWN7dx1JWFEUdEPt4moCMzUO7sqKp7WjtZnaHD9yYbU1pl9DpGmVl0QCdSW1yxVEmiUIQk0IEp7U3jvsA9bPUxpZtAE926p+vw1RkWK0XlNSW7Og6JYntf0am+iYTW3AhCAxzvs8XbTYKlObTTQmKjnul05WjJka9jnhtktQVE0f63SaODaiHH4EAA7ySW6zktqqaqRmOX4ktlx0MbRZWt5IYoJfn4I7gOGDNPZNrgPnD5f+5hZqO9upsBhJ6hguq7SsL44UwY8029QGTFzt4qY2TyNy9TgAJFkysVGmNgDseh3dVsHVHtOT2p15rmkXWWVqm19jM3K1VVXD+XBc7w+Q2K775JkpeoKgYbiP7cBcbaPPpKYZBZFXf6jy/qARVha58AIyyRj+23eOIpFWcePOXtx5bemwRLM0UCXKbS1mFMtWG+Y58Ariap9lC722PTTXjx9lpjbnaXv6AWc30DOGDPOOzIHIsS1Tu2a1tak9OzuL3/zN38TXvvY1OJ2VlYL84R/+IdbW1vT/ZmfrLHp7hUhbI4NKA2CfmAAAZJIS5BpwD8moKR3vyDW1s5PfJREkbIt5UMpOghwc92MxRoNbPal94Qi1oncNAv6JvJdSQmwyI8uQfGVMvTKSB2ninda52pcbpnavCT/ST4P+mVCs/ZNX3NQeOoBzoSg0Deh2yhVNThutHrcdCzp+xNqktqZpWOWmtjv7dx3pceHWy+hv/dUnqkx8PstS2nvflo/g4fiRlbOl8R7ViBsn/cVN7aPnualdJqkNAFfcSRPrlXPAS0UKXWPMRG5BUpujYlKaDNXBjudY4a3kK7G0wdSuI6kNGEmsubV4Y5LaQNGCvErFJ9abCj8SniI+tmgruhMnS5ypnVitGuPy9SdLF0Tm6pbddA368UuLFRu9xy+Q0bFvxGfwtAOTxGJsB/Gk9uyTWQxZnsBNKiqiqcpxK8XETe2eDLs+55na7P+j5qR29eVGVkpPapfDj2TSwBffAHzuNuKCl5EgCHoPR6eWRRr4kfIGz0GW1D56YbU546PEKnVFAAZ+pMRiaDOkaRpWNhIYN+NHRAnYcQv9fxsjSHxum46ZsTqtvRwpgx/p6kfTte16ui1QoMs1nGNqB0VuSgiAq4JxV63iXO2pB/N6EIppjPWAzG6mcUKTlc6oeiim3qJIYHOb2vPrCdgzG+gTyB+Q+wYBAMkzZPRJdhVDLjJM2yqpPfMEsPgCILuAA++q/Pt8o2Reqgp+eO89eGZ6BV0OGf/rjv0QKjXGG6xBH33e5io0tfmcp7fLAbe9urHqATbvPLrJ8SPRpIKFdTp+ew/R7p7E0aP0IEeP8HmobxwK48nLgfyk9taCY/Vqa1P7mWeeweLiIq688krIsgxZlvHQQw/h05/+NGRZRiaTP6lyOBzo7u7O+m9LFWidDeztIqRAAJpEHw33avXGSjpGF60MJEDOvtArc9mmZOJ4ibQqS2r7kT3Bu3JbD5bjZGDpSe1Zjh55VcGVVJ2nHQxCEOv72NsG6GKszLN/m/7LkcnhIgGUKOuY5NUcO+kOHcAUY4BP9nW1xcXXzNRWI9YWRW4kFaQzZNrkmtoAcBcrjPzuM+cRS1WYRoqvAif+ne4Xasn2BAEvsdn1hHU90jTD1C6S1F6MJHBxLQFBoJKusrK7gUMfovuP/13h57SQqW2XRXQ5aFCluNgxV4SPurKRMJLadZraQ4xXPb+W0BOb1bSAVyRzWWQN4qb28kayKs5zW4ujR0avrqzo0+EFnMxEqCKtfXoxgqfOlS+INOv6nUHYZRHnV+IVmZFr8bR+Pdgz3A0sc/RIG/C0uYavACQHLRTxgTiIhey207Vu2YKJN8ePdKXZucRbLKmdjx9ZWLcmLV6tOFN7orfMcR86Q/9+6Rhw5scVvbbRw9GZpnaoQqY2QDvZvE4ZibSKl+dr6w+oSjyl7fDROYSNL1uJIFmPKwhkluEQFGiijYqMAWAnS962sakNGLsVzlnM1Q5FixRFtgo/AgBj19Bt6FTRRSq+S4rLDxbwcflpsaJRGtxHY8p0jHYJVqCxAL3X8yuxlpxHN4PC0RQ0DZBEoeD8oVrxz/tmNLWnQwZ6BO5eSL10bU+dofGP7FTRZyNzdTWWRqRdCgWf/hzd7rujuoUpQQBGKa19/Gm6/v+Pn70sbzdHKzXYTe+lUqb2dJgv6Fc/59k74oMokIFeDcO708RT2kGPHYFDVBYaf+EFaIpiYAaDRENAz7juHZkDkVv4kdrV1qb2rbfeimPHjuG5557T/zt06BDuvPNOPPfcc5CkBg4SXmESNmjwpdltEEQRgp+ML2+k+hRLOk4rcUnJk2cwpxkwn3OtSya12aTDZzK1xwNudDlVbKTpa3pSe8ZkaheQskyD0HrQI1w8qa0sMKNs4PKCXCRz8qqtJ6mxsMGeHdyHKfZe2wE9AgDdLhuWGH5EW7fW1OY8bZdNgsuefz65cWcvJoJuRJIKvvdshXz5Y98GlARxO0euLPwcbj7PW8DVXr9IKTRBAvp2F3zK0Vk6Jnf2delmcFld8ytUjjT7JDD7dP7jLWRqA4xXCSBlZz+/SFJbWzsPh5BGRpAN1nKNGuox8CN8FX3M6qS2Jx+5UI163Da4WHFlpQmMthdHj1TC0+biae21yk3tSgsizXLbZVw3Sef9H1eAIDlxka61Iz0u+D12I6ndDjxtLtlhnLtytttzBAk3nupRJJGGABVubmpXgB/hpnZKUbESa+7EN6lkdFb9eKDM9dG8YHm6MtYt52p3YlI7pah68r63Aqa2KAoGZ7MZW5KZeZ2w+/HWf3gUCX7daKGpvbSRxIRIYxrBP2Hs1OBJ7bnnKkr5t0qN4GqrqqYztfOS2q3Ej7j8Bot9tnBae7Qneyzg05ip3Uj0CEDz0INlegAAIABJREFULB1BUtm5ZrjHBVEAEmlVLzvcUnXi5nNvl92S0j89qb0J/x4z4WjWjhQpwPAjp8jokxwqnEpE54q3RVp7Y9EIKFVaEGlSZuggAGAfTuGmS/oqDko0S2amdiULW9xkraVPxOOQsaufdu5vZgTJFLsWbu/1wL59O0SPB1o8Tpid3KR2z5juHUnmpDZbNJhp9zBkG6qtTW2v14u9e/dm/efxeBAMBrF3795Wv71NJTFGkyjNQRcUuZ8GjZ7YBjJqdav4apwGcikp/8SXvkhJbe8tNGhPnDpVvCySmWVdqpHiuWqbX09pu2QXPDYPMRFnnqQnFDW1WVK7jpJILtsgpWzTpqS2voWkO/t35skrnn5uS3H0SGAScPr097qjDUoiAUpBJJxkbggbC1nb4evVio4esRV8XBQFvIelte9+/FxliZYjd9PtwbuK89cG2PlrwQKuNk9p9+7K2xnB9TxDjxwoVxJplncA2Pd2ul8ord3CpDZgJOtjNvY7FTEnXOtnAQAR93jdaakhZqidC0V1/EHj8CO1JbUFQdAxKRdX22BiUK9U1cTTrsLU9rEFjNXK0EHVFETm6pZLDQRJOb3AedojbBdZO5raADDGuNo5Bg43mpYi9ZdFRhIKAohA1DIAhHyzqoCpbZdFHYs13+RFm9lwHJoGeOxSeeN26SXj/ukHincTmLRnhMIEPzh6EQ+fbF8zs5A4ekQSBXQ7C19Pc9UKU3s+04VnZ1Yxp3izvt4KEU/bhB7h8g4Ag/vpfoUp/1aIc7WnLDS11xNpKGzOEczF2PC/VSvwI4CBviqCIOl2yfCYwhFdapNMbQDY9TN0e+reip5uk0R959nWNvfaZCVPGzAWjDdrUtt8rpMZU1tZomNacqhAYhWjDIvTFqb2kbsJazpyiHavVakfhkcAAAelKfzlL+xri53PZvF+klgqg0gFvQjcZK01yMO52psZQXJ2yTC1BUmCk3mViWNHjaR2YAfd+sZM+BFjbs7RUOsJBWtNDm50utra1N5S8yTF6UDUnHRRdY7QNkh7XEFopboJRyZBJrQi55uiaYYfcR+6ClJPD5VFvnyy8AuxrT7OjMHovnJbAZ720otUxmLzGLzi3PfETe0+K0xtztSm30UV3NAUttqmZadFOyKpzU1tNok6wyYok73tkdQGgIybzA5RTVnKwDRKIosbFHdcNQqHLOKl+QiOzJT52RefA+aPUsJ5/zuLP2+QfU4rLBErqcXS6BEAeJ4NIg5Ugh4x67pfp9sXv098bbNanNTmf7MNiZvaoYLP646eAwAkuicLPl6NhtjWwcPnwrq5ZTl3vk78CACMsEHRhc1gai++QOgAm9tolK9EVSa1qymIzBU3tQ9Pr+hFOsV0zMzTBoyBbjvhRwCTgfNk1petTWor6BNMRWpSjhlaZIHHQJA019SeCRs87bITVHNSOx6m1G0Z3bSrD2/aP4R0RsOvfuUZPDMdruftNlX88+B3V55a5Kb2s+Wuq1aIoSuWMmRmL6nerK+3QnklkWbtvI1u2xhBsr3P+qT2Mkupdjtl2OWcKSo3tVuR1AaMc+L0YwUfFgRBR5DYJAGOFPtcN8PUnryZOifCU1nIqFIa9XNTexOME1og3dS2gKcNbG6m9nQ4ppdEIjAJyZ89b5CdKpBYy8LitFRqBjj8RbpfQ0r75fkIPvYMjVNGsYghuf2CbS67hG4n7Q6qpCxypk7kIu9z4iGrzaizy3ynO3k/rv00148fPWoURbKktir5DO/IbiwquOySfi7YQpBUp44ztR988EF86lOfavXb2HSS4uzAcdEFxT5EpnY6LiG8UGXZJiu/y9jyTVGOH7END8O5h0y4oggShh9xpIxVvSvHDZ52n4sNbPn26LGrixZtcaa2ZEFSWx7MZmrzEkpBUiGuT2U9d0d/B5naQwegaZoJP9IeSW0A8HZ1YUVj78dCrvZKBQzQHrcdb7liGADwlcenS78gL4i89E3Ezi4mPan9AiVR61EZnramadWVRJo1sIe2Qmsq8MT/yX6s5UltMsDWhNJFkcEEJXUz/vpN7WGWbFpn2+zHAm7r0xd1FkUCwAhLam+Kskie0t52PSBXsYDgY6Z2hUztagsizRoLuLGzvwsZVcMjp0onP3lJ5J4RH5BYN8pv6+S9Wy4zQ9Zk/PGE8rIFSe31RBr9AjN+vIP5TyhiavNts802tSvmaQPA4ot062ZjjlPlzUlRFPC/33EFbrqkD/F0Bh/44tN4cW697Pe1g3hSu5pFPm5qn1mKll0MqlvsM3whTeOI82k2Pm1lUjtiMrUDOdcnbmqfeaD+MUKDNMGS2ucs3Ca9zNAjvbnp11QMSLFxdMtMbbYTdO55IFXYpOJlkT6XDUKsiWMkh9coszxZWVp7q5CsPnFMiFVJ7c1sas+EYpgQeVJ7u44f4ZIcGSBuJLVbvtBy8l5g/Tz5EHveWtW3pjMqfvfbzyGccWLOxnb9XXimAW+yfpkRJOXEu2Bq3Z3Kr/fPz65uWo6/GT8CAM69zNR+/jkgwbyswHYAgLJGYztBUiGms+evW1zt2tRxpvaWGiMpyU5oHjqQ5AFKnilxEZGl6kxtIUVJ7Yw92xTVVBXpeRrA24aGTKZ2EQQDGwhKyVW889AY3rB3EJcOdutJbcPU5jzt64q+J77FyRL8yABnai9AU1VkmKktO1UI5i3HMCW1Fzfa9yRuMrWXN1KIJBQIQgMK8OqQ323HosYM2Q0LTW22taenTMnLXa+aAAD857F5PUmUp3QcOPptun/le0v/4OBOKmJLbQCr56p4xwXETe3+wqb2TDiG1VgadknEpUPe6l//ut+g22e/QiWYAKUY+P1WJbXZ3yyM0om7AYWQEoIFSVjO1OZqyDHSxc5r9SS12cR6U+BHplhJZDXoEaCqpHYtBZG5qgRBEk0q+qB377CPDGOAzNtqSoiaIXcA6GWM/lkjrW15UhtsoF8IKeApfCwMdNN7qGQiZqWmQ0ZSu6TSCUpMAtRNAFScuLXLIv7xPVfi0DY/1hMK7vr8U5YmYRulohzkEgp2OfTJ29FGp7fYoudsiv52M4k2MLU3UtgmGEZPlsauAexe2qVSQcq/FeJM7XA0Zdk2af456i2GHpGdZOC2Qj1jVOapZYDzhws+ZcRkauvlpM1IagMmBMl/VfR0jhGYbXUqtkNlNX6Ev07ROUYHayYcM53rJiEHCie1+e6Blie1eUHkwbsAW2X9Klz/+OAZHL+wDp/Lhp5dzJcocr5otfiut3Iot5SiYo73idQ479k96IVdFrGeUCxdCG0XaZqm40d4JxlPaidPnYGqgMI2NvqM696RQ4WQM0/ZMrVr05apvSUAgJyki6jgIRNW7mfGbUxCPHyhqtcSmakNe/bAU1leBtJpQBQhDwzAuZdMuHiZpDbiK/hfd+zHP77nKkiigKU4DW773LmmdmGetv6zAci9FhRF9vcDggAtnUZmZUVPaksO1UBBMG0LuiEKlOzkCZS2UmLd2BIzdEBPaY/6XXDa2qeI1e+2Y0Fjn4dI7QnWXOlJ7SJMba59oz4cGOtBKqPiW4eLmGQnvk8YHN84sP3m0j9YkoH+S+n+fB1cbSVlMHmLJLU5euSyIS8ccg1/0x23UEFSagM48mX6WmINAFukcfmLfmsjxU3tJZWxiQsktTVNw6hKu0Psg/UziwNuO+yScdm0nKcNGOnU6FLNCT2eFuOldh2rTBqYfpTub39Nyac+O7OCLz16FiE+Iawiqf31J6sviMzVa3eTKfvQy0tQi/RQnJhbh6YRy7DP6wCWeRt6m6FHuMYZV9vEkOVJ3Hon3pqmIZJIo19gZmZuSaT5a9HFrGOhVfgRPhErW5S0fJJ2tzh7gIN30tcuHDaQTWXktsv4/PuvxmVD3VjeSOI9n3+y6fzwahWqYNdTIRkIkgab2swUDWs0Ll3WurO+3gqFInGT0ZODH5FsRjHu6Qea+8YqVJdD1o24syFrFl74eSVvccSMHmklm3YbxzI9XvDh4Vaa2pe8nm6nH9V3zJYSRz20PBXbobIcP8JeJxxLIZ1pz90ZtWgtlkYiHsWQwK5/gUlI/tykNsOPtANTO3SGdshAAA59oKpvfeHiGj79AIUV/uwte+CauJoeuNCepvZghWOpC6txqBrgskk1f95tkog9w3Td3YxlkcsbKUSS2aFAeXAQUl8voKpIrNqydmTp3pFTzev+GdsytWvSlqm9JQCAnKKUhdRFA349qZ2QkFmbq+q1xDQb3OakKRTG05YHBiDIMlwsqZ08eQpqssAEmZtlORNB3dR29QFr5ymJJ0hU5lBEuqndV7+pLdhseuI7PT8PZdlIautbjpmcNknfTtWWCBJeVNg9Cnh69RThZG/7oEcA4icvgSUZI9V9HkupEqY2112sMPJrT8wULk/l6JGD7wHECk6tAxZwtZdPAqoCOHyAb7TgU/jgoaqSSLMEwWBrP/lPZDTyY9LurQ4JYaECHlqIWFDYZ7UAUzuyEcEI6NjvGr607p8pikKW6TleLrFZi3g6VU0DidoGfnxi3fH4kYvP0mKKs8coTiugWErBB770ND72Hydw/V/+GH/0b8cwrbJdORvzgFLcgM0qiLy2uoJIsw5N+OF1yAhFU0WZgRw9kl8S2a6mNjNwzEltPU1W3yJtUlGRzmjoK2Vq68eCktWlMFhhushqGUzJMsc937HVfxmdl/suI5N76sGKf5bPZcPdH7wGE0E3zq/Ecdfnn9QXYdtRYZbcr7ZjoGllkWwnT0gjXNUyu20lU1tZuwCnkIYqyMYinFmdwNXutZarzRcle3ONE75bo1XoES4enilial/OTJvtvV3NN7WDOwH/BJBJAWcfKvt0biBuJbVrk5HUrm0hPFd+tx2SKEDTDJzTZtB0OIpxgR2/Th/g8kPKTWrrRZFtkNQ+dR/dTt6Uj4UqoZSi4ne/9TwUVcPtewbx5gPDwCjzJS48A7Thbu1K8SN8l9p4ncjFA6NNLIdussyhQB4gEwQBrn00d0mE7FmYQcW0yz/X1N5CQ9WmLVN7SwAAKU2MWMlHJxyO2EjHRAhVmog2hQ5sMcfU1nnaQ0MAAHl4mFZrFQXJkwXKIjnWQIkT2oFpKWZKavME2eA+wFHYiNU0zWRq148fAcxc7XkoIfbazgxxcHPMtR1sG0pbmtom9AgAE0+7fUoiATIwDfyIdUntVW5ql8GPAMDP7h9Cj9uGC6tx/CQXMRA6A5x7BIAAXPHuyn74IOdq15HU1nnalxdNL9XM0zZr39vJdFq/ALzwbyaedmtS2oCBjLlQgo0anTsNUdCwrrnh9BUwzWrQkNnUbkRSW3YYC3o1ftZ1/MhaomhquCOko0deXXKh6F+PXMBqLA1JFJBUVHz9yRnc/A9HkRKYMbJ2vuj33nN8HmtxVhC5q3bDxCaJePUldH3JOz8wHb9ADL09w8xQ003t+ncRNERjLKl98VlCagAIeqzZIr2eoIX0kklt2W6MA0zHwoA+EWveNm0lo+oTjLJMbV4S2X8Z3e68lW6rNCf7vA585UPXYrDbiVOLG3j/F5/CRlIp/40tkM7UrjLFdXDcmOQ2FNHGTW2Gqwq1QVLbsXYOABD3jBbug+Gfm/NPWVqQbaW2swWesxaZ2kvFMDb871QIU9RM6Qt9TwOZ/GPx5kv68J1fuw4fe/PlzTe1BQHYxdLaFXC1eRpwbi2xqZLBzZLVTG1RFPTOis3E1Z4OxYzuAP92QBAgejwQbMYOWYnhR3jR6npCaXzPQjFxg5F3H1Wov/vxKbw0H0HAY8f/99a9ZP727yHUZGKt4gLXZko3tcsEBPjYp1b0CBdfxG44bqwFOqvztLO9KL0sMmTLMrUzIZpHS45MHiZxCz9Sm7ZM7S0BAMR0BgBg6yEzRe6ngaOWEWFfrdLUztBBKLpyTW16Hdswle4JglC6LNLhpQQ2YPB7YSS1+939FfG01WgMWpxMcTlozeDSNshM//l548TUw35fPqFlMrjabcjFzDO1OQ+qzZLaWfgRC5Pa0cqT2k6bhHcy3u5XnsgpjHz2q3S781aD5VtOHBcyf6yy5xcSx90UQY8oGVU30q4Y89X+c2QHcM0v0/3HPmMktVvE0waMhYjZJBtkxUJ5uI7kwsv0HHHEsi3LPAUNVIAhqFUeNnGv0dQe9DkhCJQcWbaAfdwynS3P01ZVDV949CwA4I/fdBn+5Vdehdsu64emCZjJ0Pn+T75yD+45Pl9wh0U9BZG54giSn7xc2Ch74SJParNjMcTwI+2a1A5MUjIykyJjG0Cfl467UJ1J7fU4GUKDEmNqe4ssOpkRJEw8qb3YRPzIxdUEFFWDQxYxUC6Zt8iS2n3M1N71Oro9fX/Vaa2xgBtf/aVr4Hfb8Pz5Nfzylw8jwcZr7SSe3K8WP3L5cDfskohwNNXYCRwzRUOaD6IAhMBN7dYltb0xmsgqPdsLP6FnnLj2mmos8LWZOFf7nEX4kaJJbX78e6wJptSsvssobZqOAvNH8x4WBAGHJgLwOm3GOKlZpjZg4mrfV/Zc09flgF0WkVE1zK0WOJee+THw1TuAlTIF6a9Q5TG1VRVYOFFXsSv/3G8mUzuXpw3QcWJOa8usKNJtl/XdPi1La68xU7un8p17x86v4e8fJNP6f75lr3H+ku36/LodyyL1XW9lk9r1lURy7R+lse/xi+ubbiHtrL7TPTsU6NzHTO2wHQgamLHspHZhU/vCahzKJvt3aqS2TO0tIZ1KQlBo8OMI0IBRdLkAF52U3WvVJVkcGTqwba7u7J/D8CM8qQ3A4GofL5BWFQQTV9tAkPCkdq+rtyKedmaZni96PBDd1phQ8gBPai8YJ6Z+9nvlIEh29DNTuxOS2uykvKO33ZLapqJIS5nalAQIVJDUBghPIAjAQyeX9O1YyCjAc1+n+wfvqvyH8xTA6jSxzWvRQmlT+9TiBuLpDLoccv1ImUMfAmQXTeRe/D59zd1CU5vhR6bjzGTWMnm4DnWJ2HYLtsJollrEkw2ikG1wWyqeRtuoLUVokwzj7WKhyWonKB03sBeTNxd92kOnljC1FIXXIePth8Zw7WQQn3vf1bj/d14DtXsEABBfOodf++ozuO1vHsJXn5jWTUErCiLNupmZ2scurOUZrol0BqcW6Rqwb8RHZavtbmoLgpHWnqVrLU9qr8XTSCm1D7YjelKbF0UWM7XzyyI5UzsUTSGpNMfgPWfafiuWW/zITWqPXwfY3LRIVcPOnJ39Xnz5g9fAY5fw+FQIH/7Gs2030dGT2lWa2g5ZwmUM2dCwLclqRh9DhrRuXDHWYzC1k2sl8USNkqZpCKRoB4kYLLHFvc0RJNvZrgWrktqczd6bl9Rmiw+eFie1RREY4wiSJ0o/V09qN3GcNHEjjdMiF8uea0RR0HEPeQiSjSXgOx8ETt8HPP3ZRr3bjlUspei7ZnRT+6l/Bv7xOuDw52t+Xf5am8nUng5F80xtAIapLYkQ7RqlmTUNo4EWc7X5zr5CSKgi+st7XkRG1fCz+4fwpv1D2Q/qCJL242obRZGlP28Geq0+D2Ui6EG3U0ZKUfHyfKSu12o36fjWnJ3uHLWb3pChyMb1K2M2tddmsxYh+72mBcc271NpJ22Z2ltCLLIKNU0fBWfQ2H4tBMlQ7opUPtHIqBqcKp38ZHd2MlQ3tYdNprae1M5ON+vig0G29TKWjmEjTcZAv+g0Bm2lSiKXyBjiHGwrpCe1F+aR4WiTYWIu55ZF8qT21HKbmdqpmMH+HNqPlKLqF662S2p7TEntjXnLXneF4Ud6yhRFcm0LenDTJXSMfI0lPHH6PnpP7iCw+42V/3B3AGCmW266v2JxU7u/sKnNt3jtHekub8SUkztgoFWe/wbdtkFSezGmQXPwsshs9I+0QsmJkLN+w5JrmJnawz0u2OUGXUK5wVcHaodv47y42qFc7ZknKCHsHcrasperL/yUUtrvvHoMXQ5jC//Ofi8uueRyAMDPb1fhc9lwdjmKP/7ecVz/lz/Gp+4/iX9+eApAfQWRZvV5HTjAkigP5qS1X5xbR0bV0Ntlx0C3gxazMilAdlY1eWq6+C6oGVpg8LlskNm5pB7uZyRBhkBQY1iFrsHCTyxwLPjdNv3YW2wSgoQvYpblaSc36G8LGKa27DCKTms0J/eP9uBz77sadlnEfScW8PvfPdpWaKFwjUWRAHCw0WWR8RVKOwNYQRduuqQf6/BAAdsJ2IK0diSpYFyjMbGjv8Silo6ueaAtmax8q/XZ5agl+BijKLIIU7vV+BGgLFcbAC3K8n6hZia1bU6jYPTUf5V9us7Vzt0l8aPfN5A3bbpLoJVajtD5zmWT4LGz88jJH7Hbe2p+XV7Ct1Qn3qudNB3KT2oDgOyn877k99NGSjUNpOMmrnaLxq48NVukpyhXoY0kHj9Dc48/uL1Ad8/IVXTbjkltHw8IJEsmp7k3MFZnUlsUBb3fqVj3TKeK41u354QCJTEGu5fGuwnTGEcvinSogJLIQqGJooAxdhxsIUgq15apvSVEI6tQ0zRJtfcY3F0742p74tGK01DRlIIu0IXI4ckxtRlTe93vwHdOfgdpNW2URZ4qUxbJBlfLcZp8uGQXPPMvANCI0eUtMiGGURIpWcTTBgontaVxdjHLTWqzVbvzK/H22ja8eIImep4+wDuEmXAMGVWDxy6R6dJGCrjtWNSLIuctmdxpmqab2tVMxHlh5LcOz9Lf8wgriDzwrupLE3lauxYESSxsoFi4eZKj52YpBVlzSWSurvt1AIJuELQ0qc1MbUXVoPFJY4454Vwnw3PdM2HZz72c8ZAP1MMoLycLTO2OL4s8+zDdbr+pKDrm5EIEj5xahigA77t+Iv8JDAV0Q28cj330Fvzpz12OUb8L4WgKn7r/FL51uP6CyFy99lIyXX6cw9U+ftHgaQuCACyzlHZgByBKlv18y8UNnNknAFWFKAr6+bIernYkocCFBDxsvFDUrCpwLAiCoF+jFpqEIOHbbyfKJZWWCXkET182KoEnbk/Vnri9bkcQf//uKyGJAv71yAX82Q9ONJZDXYXyzMh0Ajh/uKJrNedqP9uopDabLK5oXVAg46bdfQCElnK1lyNJ3eixlzK1t91gJG9zxpbtIJ7ciyQUS8rtONYoHz/C/katLooEgG3X0+3M48U/3xw9IkiEK2mmzAiSMtILycxJ7Zd+CLzwrwb+cf6Y8ftsCQCwtEHXnT6vg67nqgpcOEIP1lEKuBmT2jNhE1PbnNT20/xBDgSNz5qpLLIlJXmpGBBj84gKUZL/dWIBqkbhoYKmLze154+1ZFdQKQXcdtgkKiddLPKZ0zTNSGpbgFzkCJLnN1FZpJIxQoG5pjZCp+EM0HUtfsK4hmfCLKkdYD5XEQTJlqldubZM7S0hGV1FhiW1xS4joescpVVKW1zBcriykppoUoFHoIt9Ln5EYab2N1bvx8cf/zg+d+xzkIeGaAuSoiD58sv5L8hNbTagWoyRUUA8bZaSKJHSBgBliZdEWjcYtg2RqZ1emDfwI9sZN2vxxawBTcBjR4/bBk2zboumJZp7jm6HDgCCYKwy9nnqajduhPxuOxZ5UltJ0Da1OrWRVJDOaPrrV6qbd/djpMeF1Vga9z35vJHKqAY9wsWxIbWURfKUds844Owu+BSe1LbMgA3uyE6jtzCp7bJLcNrovJV2MFM7lm1qd0fPAQDi3iLM0hp01TY/fvSbr8Zf3bHfstfMUwHkQrXiZZEXOjWprfO0X1P0KTyl/fo9g4UnEz5mVq/OwOOQ8YEbtuPB37sZn3nXQUKAgLYK1lMQmatbmKn909PLWXiO4+fpnMV/rlES2aboEa7B/ZQmj68AIcL5cMOpPlM7jT6OHpFd1KFRSEVQPJWyIK3SdKXbb7nxmLvQyE3t2Sdqx00BeN3lA/jrt9O550uPncPfPnCq5teySilFNZL3fIH40b8FPncr8NBflf1+Xh714sX1xuBk2GJnWPPCY5ewb8QHm2Q2tZuf1F6OJEzpxRLXJ5uTkBJAWyJInDZJ371UL1c7kc7oSIeiRZHtYGoPH6Tyt+gSEJ4q/BxzSWSzx9Pc1J59sqwZPRbgBiIbJyTWgB/+Lt2//sNA36UANODcTxv0ZjtTeTzt0Ckgyc7r8ZXin4sy0k3tTZLUTqQzCK1vYERg51jTuY7jR6RgwFj4Saxh1N9C/AhHj9i9gLOyedOPjpNh/4a9Q4Wf4J+g80AmVV+HUgMkigL6vaXLIpc3UoilMhAE6H+besTno8/P1j+PbxddWI0jnaHOlWFfDpYydAauIOH2EkeNv7/C+9j6WXBjNbu7YMvUrl5bpvaWkNxY05PaoscwteVBMrXTcQnhhdmC35uraNJIagumSaoajSKzRiew0w66/caL30AikyhdFunKxo/wpHavq9fgrZYztTkepNe6wbA8yJLaF+egrtNARt55EBBtNLDhF0ZQqkwvi2wnrnYRnnbd7OUGyOuUoYgOrGnsghqpH0GyGqOLjNMmwmWvPCkpiQLew9La4cfvJpbz6DVAf4FtZ+U0yJPaNZjaHFlSpKE7kc7gJcYssyypDQDX/4Zxv4VJbcBgoSfsbMHDbE7EwnApdK7J+EswS2vQZUPd8JhQF5arQDletRrp4UztDjS146t6MaG+lTpHoY0k/vXZCwCAD95YrGiNJW1MzeKyJOLnDgzj+79xA/7zI6/Gt371uroLIs3aO+xDb5cDG0kFT58zDIXjekkkM9J0U/sSy352QyTbgRHGhGQMWW44LddRFrmeSKMPLKnjHShu/BTZtcBZkAtNwo/wCd9Q7oQlV9zU7ssxtQPbKZWvKsYuhBr11oOj+NjPEVrnU/ef0hd3WiW+40kSBfhcDOXFF80f/duyi3PjATcCHjtSGRUnLtZu+BcVM0SX4cO2oAeSKGAs4Da42rHmm9obS7NwCSlCoPR91S1iAAAgAElEQVRsK/3kNudq87LIs8v1Tb75IpldFuHNvb7yz1A7mNqyAxi5ku4XQ5CYTe1mq2cM6L+cdtSd+XHJp+r4EZ7Uvu9PaAdgYAdw80eNkuazWwgSs3RTm+8oOJ/DS879/wq12ZLa51fiGMYSJEGDZnNndWfIQVNSm5va8VUdu9CSoki9JHKsosWotVgaj52m68fte4vsGBeEjkCQFNv1NhMmb2DYZw1ykS9in1qMIMoWMTtdU0v0b7S915OP+gydhosntY8dg6Zp0BQFmRXyteQhFr5Zy/bZxrZM7aq1ZWpvCcnYGlSFPgpSl7FtgnOjlbiIjeXzBb83VxvJDLoEZqKYTG3O0xa9XiyAJi0ryRV8//T3S5dF5uBH9KS2s9cYNHDmZxEZpraF+JF+So9p6TT7ggzRHzRSdzmMZI4gObPYTklt1tzOTW1muO9oM542QKvJfrfNSGtbwNXWGaBVpLS57rhqFICGV0cYQ+/KGlLaADBArchYrKExnae7i5REvnDRYPgOW8AL1jV+nWFy+a1LQNeiHva3i8rMtDeb2iHiaV/UAujyNnn7b73S06m1m9rDnZzUnn6MJuSBHUW5hl9/cgYpRcX+UR8ObfMXfh3Oql67kHd8CYKAy4e787e51ylRFPDa3WS8cARJUsng5AItMO1h+Jq2L4k0a5yXRdJCMp/Ih+rEj/QLzNQuVhIJGCZWzrEw2F16Ima1eCK8LHu9WFIbsNScfP8N2/Hbt9GCyJ/94AQeOdV8hAYXR0b43TZjQscnaOko8PAnS36/IAj6RLchXG1mMIY1LyZYseFE0IMQWocfSTP8UNg2CEhlFkj552bmcWK2N1OpGPDEP5YMEmzXTe363htfJOv12LN3C2YUoyy+HZjagDHvmG5DUxsAdr2ObstwtblxMhuO02LbM1+iB978GcDmMnZK1bkQt9mUl9TmZqUgZv9/leLX1uVNYmrPhKOYYDtShMBkllHcffvt8NxwA3re8Q7AxcbwpqT2hZV48/FaVZZE3v/iAhRVwyUDXaXnztzUrnGxo5HSd70VSWpzU3XcAvQIAPR3OzHY7YSqAccvbI60Ng8F5qFHACB0Bg5/GpBEZEIhKBcvIrO6Sjv6BQHSEJtHF8GPtATD06HaMrW3BCWyAi3Dktom/Ig8wE1tCYnwhYpey5zUhsN4Lb0kcmgIK0kDZfLlE1+G4zKa/BUsi9RNbRrQ8qR2nwZAiVOSu0zSTVm2vihStNshBY3BqhwIQBBFSkcAeab2ZLsltZWU8R51U7twc2+7yO+2Y0HjXO3aWcNcYZYu89dQbNXndeCO3hlMivNQZDew5221vYnAJG3tT8eAlSrTdnpJ5OUFHzajRyzFyQgC8K5vAG//kjFxapE42zciMaPQnLhjqISz6hD8FRaBto1e6UWR5x6h2yLokZSi4u4naKveB2/YXvzz7R0iVqOatrRgtpw4guQnzNQ+tbCBdEZDj9um8yI7Bj8CAGPZxWhGUrs+U7uvElO7TFK72ETMSqUzqv67ljW1eflyofOy2dS2YLL+kVt34heupEWff3m6st10jVAoynjaHtMCkWm3Gg5/EQiXvr5xU/u5RnA2mWkd0rr1os/xgLulTG2B4QlWnRWUkQV3UJo7kzLOjc3S/X8K3PNR4FvvLfqZ5RP5c3UmtfkiWa83Z6GRX9cFsaXIsyzpBbrFTG1mwrdqN9uu19Pt6fsBtTjShye1NzbWoX7/I/TFQx8EJm6g+xM30L/78klg/WIj33FHieNBDFObmZWXvin7/6vUZktqZ5dEZodg7BMTGP/85+C59poc/AiNkSJJBWvxdDPfbtUlkRw9cnsx9AgXDwK1cVK7GMqN94lYZWoDwIEx+ns/xgo2O118QbegfxI+A1ECnNvpMxU/dszoYvP7IQTYTq3VmaxvGw9uJbWr1ZapvSVk1oyTiugxDkiZcX6UmITM2lxFr7WRSMIjsIuxw+D8pi/S98vDQ1hn3DGX7MJsZBaH/WRyJ0+dgprIOam6c5LacTIJ+mJs4jP+qrJbhAymtnWmNgDYBoyJuNTLDG6ezlrITWq3mam99BJNkJw+feurjh9pV1PbY8ci2OchUtnnsZRWualdQ1IbAN5jo+2Yz/tuyVrAqUqSbHxmqmGtqaqRCCyCH+ElHPsbUWjY1Q/seWvzWZE56mFm9SrYgDgrqU1JuCltqOa/ccvkYWm06DKl1GoQT2qvxNKIpTpsix9HS/FCrhz94OhFLEWSGOh24I37SkwmJBnoHqH7q80z/W7c1QubJGBqOYpzy1EcY2mUvbwkMr5iGGnBTjC1r6bb8BSwsain20P14kc4U7sSUzsWyjoWBspMxKzUYiQJTQPsklh6Z098FVhnAYC+3fmPT9xILN61WWNRow4JgoD3vIq2rv7kpcWWFVHru574AnEqqo/ZMHoNLSr95C9KvkZTTG349KLPiaAbIa3AdaNJcqyfox/dNVH+yYJgLCA3E0GydsFI7s4+SeWBBTQR5Ent+nYi8vNJMDdowHdpuHsBsU2mrWPXABCA8JnCO6p4srxVSe2xawCHj86bvMCwgHxuG7xOGb8lfxfiylm6Xt72ceMJLr8efMHZJi+otLGyktrpuBEyueZX6bbGUkC+oBNJKoinWnM+t1LTIVNJZKmdnZxfnViF0ybpY4ymc7X5DqMKSiI3kgoeZjuk3lAMPcLFcUXhM21XulpxUrtcn0gV4qiW7x45D1Vtj7LremTgR3K8gIyiL+g791MXSvzoMWR4F1swSL1YQD5+hC04rsbSzV/c6VC1yehgS62UtkaTD00WIMjGNki5n7b9KkkR4nplJmIyauIh2s1JbVrhV/sD0KBBgIA7L7sTAPD5he9R6jmTyS+L1JPaNNFZitEFpG+VJQbK8LSBxiS1AUAeMswUOchem6MgclrqOX5kainaHidwM09bELAaS+kT04LbZ9pAAbcdizypXUeClSscpYtELUltXHwW+9YfBADcnSjM/K1Y3JSupixy5Sylu2VnVpu4WUdZMd3+sQ5Db1QhblaHNIY6iuWb2me1Id387hh5etk2Vg1Yrwz9lKtup03nknZUWjsdN85PY9fmPaxpGj7PGMLvvW6iPOOvAFe70fI6bbh6ghJ6P35pUd9iuUfnaTP0iHe49gWxZsrlN5LHs08i2FV/mVUkoaDfzNQuJneA0vbQso7vZuJH5tfo+OnvduTzEs3iKe3uEWM7tVl2t5GAtMicPDDagyGfE9FUBo+ebr45CxhmZICX+60xY9/RDbyRFUUe+3bJhVve+zATjtWFtSkoZlqHNK+e1N7W68FyC/EjXVE6Hym+icq+gaf8T91nScq/Iv30byj8ILPdJff9KZ2fc8SZ2udC0bpwAfx8EsxFQvG/T7ugRwA6vvl4v1Bau9X4EckG7Hgt3S+DILnFewG/LP2Q/udn/3d+8fgWgiRPWUztueepK6FrgBYu6ygF9DpkONiYpp6dUO2imXAM4wJb9CkyVwGQldQGjALTpnO19aR2eVP7Jy8tIqWomAi6celgkaJrLnfA+P0vFl9kaoXKBQRmQhWWZFehN+wdgtcp4/xKHI9PdX5a+2wx/MjaLC3qSw64riK/KnH0qFESGQyaCu1ns67tHoeMXjam2kKQVKYtU3tLECI0sdTs2Vw/ORiEJgqAJsARrszUTsfI1FYgU5kK//pFMqFTvXTh6nZ04z2XvQd20Y5joeNI7qQ0XTy3LJKb2mxlcynOTO1FlnIaK21qa5kMMuzkIfdZWzBjTmrLwZyk9vLLQMZYWRsLuGGTBMTTGcw1iQFaUtw0GqSVQ26ADvuccNsbWIBXh/weu8HUtiCpvaIztas0PF/+EfDFN0LKJPC0egn+PTSsLwjUpEHG1V4oUJRaTPy5fbsL8jjX4mk9eX+gEUntNhFfkFhU2YAyahocLfOk9mDnJbVFyTB0n/pszS/DESQXVtvgnFOpLhxhE8RBI8Fg0lNnw3jh4jocsoh3X5P/eJ745CRna1+jpSNIXl7EcVZ+t5fztDsJPcLFP48zT+gD7bqS2vF0ZfgRUaJFHiBrMdOcLmo0d3N+jcyFoUp52n0lSoPN5qQFEkUBr99Dqad7jjcPsWMWv/718gVivhDnGwWGD9KuHmjAA/+z6Gv4XDZ9QvjiXMTS96fq+BGfnireZsKPaC0wtQMp+jcSgjsq+4aJV1MR+eo07ZhotNbOA0fupvvvuJvOo2uzwGN/l/fU8YAbogDEUhks1oFN4OeTvJ4D/vfxWBtMqVs8VMMKdLPUalMbAC5hCJJT9xZ/TiaN30t+BpKgYWrwduN7zNJN7Yeat6DS5spKanNO8sihuksBBUHQEST1HEvtoulQ1EhqV2JqswAb52rPhluV1C4/trzHhB6pCPHIESTn2wtBUi4gMG0xUxsAnDYJbz4wDKC16DQrFEspmGMp98lcU5t1OyEwCRdPap84AWWRFnrkYNBA3aQixg43prEtrnZV2jK1twSBpas1R7a5J0gShG5KkbnXKhv0c1M7Kbmz0AQKw49E2Uqf3+FH0BXEW3a+BQBwJEDflzhexNRmB7qe1I6t0Dbe4StKvp/MygqhGkQRUsBatp08aGw3kliLM3zjlFDPpLImHjZJ1BNCZxbbAEGiJ7Xp3+/bz9AE67WXtlESJkcBj81IalvA1F5h+JGeagzPpz4LfPPdlJKefC3+vOfPAAh46mwdK8087TNfRVKb89CLoEeOnTfSDoFakugdIs7Knk+ztCtPcqoqtDANJqa04c4ztQHgxt+h28NfqHl7vF4W2ewtnPWIo0fGrimIt/nCo5TSftuVo5XtsmhBUhswzqVPToXx4hxd3/aN5Jrapfsg2komA4ebTvUytY2iyDJbdwsUp/Z303tIKirW443F68yxpDbneBdVqZJIrp0MIzH9KGE6LBA3te97cQFKpsrCYQvEmdoBztTmPG2O/rnlf1Da/tS9VAJbRLsHaHHypfn1os+pRZkIjRs3JB/6mWE06ncjzJLaaqTJpramYVChoIdzYGdl3+PoArYxjnMzECSPsJT2thuBS34GeB1DUvz0b/LYynZZ1E2oehAk/HzCF8108ePe02bj01Jc7XYwtfkC2tzzxYs+H/0UxlJTCGtd+LeBjxR+zvh1tKCyNlt998smlKZp2Uxtbl6PMjNbNy/r42p3elJbVTVcWIlirJKktqkoEoDO1W5qUjujGOe2MkztRDqDn7xMv1dZ9AiXvtjRXmWRpQIC8VRGX8DZFrB2F/c7r6ax+T0vzGMt1rl4Dd4l4Xfb8uckbB6K4A7YJychut3QYjHEnn4aAPOO7G6jEH2tcFnkFle7Mm2Z2luCGCOTVXPmGwRSL5m1XRuVNdQqcZqMpKTskx8vilz308/wO8msft+e90GAgAfdlKJL5CW1mVkcX0EsHcNGmt5rv5KhC4Sck+jIfT/LZAZJgQAESarod6hUtkFzUpslSETRSGnlJG8NBEmLTW01Y6Auhg4gHE3hXrbi/K5Kko8tEhVFskUOC0rfuKldkemrqsC9/x34z98DNBU4eBdw57exb5Iuyk9M1cFI46b22oyeUigr/vfj35uj500lkZtZ/G93PsUSBNFlShKtn4egJJDSJMyhF15ne+4+KKldr6NFp3QMePzva3qJkZ4OLIucfYpuC6BHZkIx/NcJWtD64A0Tlb2entRurqk92evBtqAbqYyKlKLC65CNpAtD43RkUnvuefS6aOgYjqZqxmlFkuakdhmzqkBZpNMmGYtaDd79xBNMZZPaSxWY2r27aPE7kwLOPWrJ+7t6wo+Ax47VWBpPnm0+rzMfP2JKagNUdHjle+n+/R8rmva8hG3hPrlgbVKbLwo6fAM6PsYui7B10+dKiC01N4EamYcLSSiaCO9ghUltILtotJFanTVS2q/9Q7rd8zbaGZmOAfd/PO9bdARJHaY2XxwpmtRuJ/wIYJjac0eBZM64vh1M7a5+YJixfAvtDFl6GXiI8EAfS78PL0eKzKfsHmCU9SpsIUiwFk8jnaHzRbDLbpiU3LQcrc+87ON4rw5Pai9EEujNLMEuZKBJdqB7uPiTdfwIjQk4T7ipTO3IHKBlaAGnzEL7QyeXEEtlMNLjwv7RChGPo6ayyDba8WAOCOSym7mZ2u2U4bMY47hvxIdLB71IKSr+/fkLlr52MzXFSiILolv5WD+4E4IkwbmXgmjRx2khVA6w60ORecqWqV2dtkztLUGKs4PFmT9hsw/Rid0TjyGaLJ+GUhNkaqdl4+DWMhmkF2gyGvLRR67HQWbbtu5tuHX8VkwN0kQjefp0dlkkT2orcSxHaKLkggiPplXG0+YlkRbztAFAHjAuenKvaeA6wNijeVxtXhZpTTqrZoVO08TE5gGCO/CvR84jlVGxd6Qbe0fal7/sd9uxCJ7Unq97UMC3TJdNe6bjwLffCzzOtt3e8j+AN38GkGy4dpIWXZ6ohwnm8hsXtEoRJPx5nHObI14SudlNbZ6yn04ws1BNU9KDDSRmtAF43a7SHNx2lSAAr/lvdP+pz9ZULjPcaaa2ppmS2vmm9pceOwdNA15zSR92DZRhGHK1KKktCAJeu9swYS4f7jY+h52IH/FP0C4kNa2jExRVq7nAJhpPohcVFEWaH8/pUuDJ6Uab2nxrqSVJbUEAdt5K9y0yJ2VJxOsuo3+jViBI+LVUL/jjTG3fiPGkm/6AOiBmnwRO3lPwdXhS++UFCxf+MwpsKboedgWzS2W7AzSGEzNJINW8sEF8gY7/81ofen1VMPW5qX32ESDdwM/8I/8/XUsnXk2MYIA+t7d/gu4f/WbeFvrtbBfm2VAdSe0I+xzlJrXbFT/iG6EFKi0DnH86+zF+vXZbu0O0au36GbrN5WqrKvD9DwOZFEJDN+H76vWYLWUgcgTJ1EONeZ8dJG4297htcCTCDG0mGAsI/DY8VdO4jSe1O93Ung7FMC7QNVvwTxBKrJicxZLaTRy78jGib6RsIS2/zr5+z2Bl6BGAUJOijRa8Vs7V8UatVamAADdT+U5zKyUIgp7W7mQEydliJZGAgR9hmDHXfsKNakk6tnXviONucjCJY1umdlXaMrW3BClOFw3N7cp7zDlCB5ocz2ApvJL3eK60JCVsFJOprSwtAYoCyDKWPdTmzJPaAPD+ve9H2AusekBlkS+9ZLygwwuIlLJcWqVtb/18ey1PSZSQstSYkkggO6ktBU2mNjcaOSKCyTC1W5zU1nna+6AJIr7xFJ1Ef/Hq9k1pA5TK1fEj6RiQrC/Ntcq2O/lLrT5vLAFf/jngxf8AJDvwts8Br/k9HYtw7Xb6u7+8EMFqrA6utl4WWYGpnYrqbcrF8CN6SWSlCYIOVYCZ2ktxwSimjYX0gcRUJ5ZEmrX7jUD/HmKtPfXPVX/7cA+ZcOc7xdQOnQHiYUJLDe3PeiiSSONbh2ng+6Ebt1f+mkVKWJqhW0w4Jx09kkkbaKpOwo8Igm7C28On4HPRccXTldVI0zTIyRVIAtVG61svi0nHj2RjIrjJvLDWrKR2/hhJV3TZMN9KMbUBU+LWGq42ANy+jwzae1+Yb3oZdSjP1C5QttU9BFz7a3T/gT+jHWM52j1I5/BTCxHrfgeWmFU1AX392em7wb4gohpLpzaRqx2bI1N7VhiEx1HFLqL+ywHvEKDEgZniGJe6tDoDPPtVun/zH2Y/NnIlcODddP+ej2adT3lK7WwdoY2ySe12w48AhbnamtYeSW2A0DEAcOYngGIaoz79OVpgsnchctsnAQg4H44V7yeYZIXoZx9uq5RpK5RVEsnT2H27jYJNdwAIsB0YNXC1dVO7w/EjM6EYJpipXRI9AphMbc7Upmvt7EqJz6TVqrAkMqWouP9F+r3esK9C9AhAO8t5h1INn4tGasCEIDFrmi1SWsnTNuvnrxiBXRLxwsV1vVC908SRW5N9pZPaAODclz2vkXhSu0j4ZnyLqV2VtkztLUFO0YVTdOcfkPIwbR9V4hJW5ssXbQkpMhpVm7FilWY8bdvAAFZSdNLyOwxT+0DfAVw5cJWe1s4qixQEPa29tE4/vzeVACAAY1eXfT8cP9KQpPagOaltev1ipnZ/m5naQwdweHoFZ5aicNkkvOWKElvD2kB+jx1xOLEBdnEtxgisUHpSuxhvefkU8PnbKIHj7AHu+h6w/+1ZT+nzOrCjzwNNowK7msUxIgsVtKUvvgRAowleV74ZtLCewPx6AqKAtk7eWyFuWK/EUtD45DG6TH87kKndkTxtLlGkRRQAeOIfgER1rFk+MeiYpDZPaQ8fzENLfevweWwkFezs78JrdlVxPucIhHQ0r4Sl0bp2MgC3ndJJ+rG4Mk1FmDY34G3vc26eenfT7dLLeppyKVL9Yl4slUFQY+gRd2/BstsscTMrJ6k92OSk9qCvBO6Mp7R7ttF2/VKavIkW68NTRpKnTl2/IwivQ8ZiJIlnZyvEWFmkEDNf9ITtOk9q53BJb/wt2ma+eAI4+q2815kIemCXRMRSGesSeswQDcOL8d7s3R0TQY9eFllrb0EtSi3R33zRVuXxn5Xyf8Did8X08F9TSnv7a4CJG/Ifv/VPaJff+aeA49/Vv6zjR2pMamdUzUj8F2Nqtxt+BDA45+ZFhnQMUNg5qdWm9tBBWjRMRYBZZryvzhAGCABe93EMjpPhEkkqxXfejByia1ZsOW8X6itNBXnanKPNZUZNVKneTYIfmQ5Hsa2SkkjAVBRJHgHfZRhLZbDSLN7yGvM4ypREPnpmGZGEgj6vA1eN+0s+N091fC4aKY5WyzW1uZk6HmyMqe332PG6PRQQ5KGVTtMZbmrn4keUpGFSB7KT2lx6UttXOKnNTe3zK3FkmhxW6ERtmdpbgsS2QQje/O3ctgE62aTjEjZC58u+lsCKjzS7ydSeo+IF29AQVpJkKpiT2gDwgb0fwBnmEUeOPpf9oszUXozQRKk/k6Htva7yFxNlmSW1+8okwWqQ6HDAdcUVkPp6YR83XQS5qR0+m1UExVfxFtaTiCRaWIpgMrV5SvvnDgzB62zvRCtP5epp7Tq42pqmlWZqTz8GfO422iLWsw34pfsLT/AAvGqSLkp1cbUHWeK6krJInaddGj2yq99bXQqsA8XRMUlFhepmRmdsWV8dP6sNlU7id4IufwslehNrwNOfrepb+cRgfi3RGQMic0mkSRlVw5ceo90JH7hhovLtngBgcxqm6Gr5hVkr5ZAlfPiWXbh6wm+U8HL0SHBn2S2ubac+Zmovv6xPvGtJameVRHrLoEeAgkWRADDAJmILDTS1VVXD4jr9joOlkto6eqTweTlLDq+x0+zMj+t8h+wlZQm3XEb/Tve+0DwESTqjYj1BaLqAx0EpztyiSC6XH7jxt+n+T/6CJn0myZKoL/6/bBVXm5UHhzUvJnK2UI8H3QiBmSlNTGoLbKfGqrN0IrCgGsnVXpkGnvsa3b/5jwo/p3sIeDX7G973J0CKTA+e1J4OxWpK2a/EUlA18u0DuQvR7YofAYzj+Pxh2oUDGCltyVF+gavREkWjnPbkvXR8/uC3aZF3/Hrgqg/CaZP0dHDRbe6y3fhdz76yESR6UtvrMMogOUebq46yyM2EH9GT2v4yu+tyiiKdNgkDjPXctLLI3C6IIrrnGEePDFSPNuTc9RpLRBulQV/hgMA0x480KKkNAO88RNfB7z17AYl0/g6udtajp5dxjHVY5SERV85RB5fdq49h5cFBSH3GdcxIahc2tQe6nbBLIhRV0wvLt1RcHTaj2lIjJKVpQiJ6u/Mek5mprcRFJFfKg/wlltSGw3it9EUyteXhIayyrUWcqc31mtHXILqDXO3lZ5/MflFmXi/HaELbl8lUxNMGgAxPavc1ZjC87atfwc777oPoMk12u/rYdmqNiliYup02fbAy1SqutqrqpnYkcDn+8xil6H+xjQsiufwexvxSOVd7ocSzSyuayuhFL3lJ3mPfAe5+C22DGzkE/NIDJdm31zJT+8mzdXC1B9jq7eKLBbdlZ4nvACiDHjkwtrlT2gDgsUuwS3QZSzkYuzJqmNpT6pDO3e5YiRLw6t+l+4//fdZCWTn1e52QRQGKqmEx0tg0qyUqUhJ534kFzIbj6HHb8LaDpSccBdUirjYA/D8378C3f+16Hddh8LQ7CD3C1WcktXtZmnK5hol3JGGURArleNpAUaY2T2o30tQOx1JIZVQIAtDvLZHU1ksiy6BHuCzmagPA7XtoDPWj43NN27K9wtK1ogD0uBgvVGG76QoVg13zq1TCtTYDHP5i3sO7B8jUtqosUmXImpDmw7actNlE0INlPandPFPbvn6OfmTXtuq/efJmQBCBpZesL7995K9pF8nkzUYCuZCu+w1Klq1fAB77DAAqJZZFAUlFxVwNxyMvG/W77ZAl09RU09obP9K7m3bypWPA/FH6mhk9Us0CbKO0i5nap+4Djv4LnXMkB/DmT+sLq2Mc9xCugKv9Ci+L1E1tjw24cIS+OJJjautlkdWXAm4WU3smbDC1K05qJ9f0OdBos8siK8CPKBkV/3WCTO037B0q+ryi4osdc88bi2BtoIEiY6mZEEtqN9DUvmFnL4Z9TqwnlKYuyNer2XAMv/H1I1A14BeuHMXO/hymts7TntSvA4IgwGVCkMhBNm8tMkeRREHfcbvF1S6vLVN7SxBTdAGx+fJL5eR+GkQqMQnq2lzZ15IUMlwEh3FwK3MMPzI0jHCC0qy5SW1REHHDLXcBAJyzS0humLbZu+igX4yTQd2nZCriaQONLYoEAEGWIRYo2NSLovK42pTaaBmCZPUckFwHJDu+d74LibSK3QNeHBxr/0LBLocMmySYyiLLfx6LiU/EnTYRLoYHgKZRQdJ3PwRkUsClPwu87z8KIj7MetV2+nyemFvHWq3b5ALbaWunEjd4u8VUriSSrRrv3+QlkQANEJJBTb4AACAASURBVDiCJGFj55T1C/pq96ZIagPA3jso6RILAYe/UPG3SaKgJzDaHkESXzWMwRxT+ws/pZT2u68ZN47XasQnKWvldxs1XCFC43RUSSQXx48sn6IJPQyecjVaTyjoB09qV8Ck5KZ2NCepzZJcjcSP8O24vV0O2KQSQ+ZqktqAkZ48+7BlpX837e6DQxYxG47jxFx1qKJatbxh7HgSRcE4xrr68xBCAAC7G7j5D+j+w5/M68bYPUgm80vz1pja6yEaJ6wI3XlM9PGAW8ePxFebNJnWNHRF6fqU7q6iG4DL5QdGGXrvjIUIkpVzwHNfp/vFUtpcNhfwuo/T/Uc/BaxdgCyJ+hb1c8vVhzaWOcImd+dcfIWMdqA9k9qiaIRsph+n23bhaXPtuAUQJGD5ZeCHDGd280ezrkG8kGy2VCqWm9rnfgpklEa927YXN5t3SfNkwsou6j4xa2Av9fDEw+XH9Dnq6zKY2k3jSTdAM6Goiald5lznNIVwknTt0rnazTLzuKHYU9zUfupsGCuxNPxuG67dXkMJbGCSftdM0th12wYaLMDUzqiavqDQKPwIQPOUO1hau1MQJLGUgl/5yjNYiaVxYNSHP39rgZBZDk+by7WPniu63UYgks9R4it5Y6KxLa52xdoytbcEiW33sPXkD8DkfppMqooIsYKktp2Z2qLLnNRmpvbwMFaTNJE1M7W5Xn/o3VjrEiFqwEMPftl4gCe1mSFeTVKbM7WlBpnaRaVztbPZcy0vi2QpbW1gD772NP1d3nXNWHXb+VskMjDtWNTYZ2ej9qQ2Zzfq21wzaeA/PkIFVgAlkd5xN03Ay6i/24nJXuJqP32uRgSJKBkLIfMluNqaZpjaA3sKPKzp+JErOmChwgpxfMyGzH7f2acAaIiLXVhGt44o6WhJMvDq36H7j34aSFduUHMESVNb5GsR344ZmMxaSDp2fg1PnQtDFgW897qJ2l6bT1KsTjbWouUONrX9EzRRV+KYkOlct1xDmdW6KaldESeXPyexlmUAG+VGjUu08Uken/QVlKYZ1/pyJZFcA3sosZyOATOP1/kuSW67jJsuoWPn3uPNMWn1a6leElnBFu6DdxFjMrZMu09M4mWRJy0ytSPM1E45ApBytoq77BISdjImNkJNMrU3FmBX48hoAqRADUltoDEIkoc/SebxjluA8WvLP3/PWylcko4BD5DBvZ3hXabqMLWLlkQ6fYUXSdpBPGTDj+MYGwe6azC9GiFXjzFnSkWorO76D2c9paJCsqED9HdIrhsYw1egOFN7R+ol+sLwFfm9ELIDGGSJzCr5yTypnVJURJKduXiwFk/DHl+CS0hBE6SynGrIDlocAHQECTe1mzJ21bSKkto/YtfV110+kL2jpFKJopHqbyOu9oCOHzHGUvPrCaQyKmySULok2wK9/apRCALw6OlQ25u3mqbh979zFC/OraO3y47/c9dVcNoKhG3CLKnNS2OZXAcOADBICACoZJaXpa4WLovcSmqX15ap/QpXMhGDptBA3xHMN36lLg80xuV1hcsP+m0ZGszKZlObJ7WHh3RTu8eZb7g5ZAcyl0wAAJ595LvGCjVnavOktsNftp2YS1liTO1e65naJcVN7YUXsr6sm9qLLcKPsIFoyHsZXpqPwCGLeGst2/lbpIDbjgXNgqQ242nrhuePfh84cjdt633DJ4HX/zkZzRXqWp2rXQ+ChK30llq9j8xT8kMQC5onU8tRrCcU2GURl+TyvTapeFJ7TWDnHGaOzssjAITOLoo0a/8v0nkvukif1Qo12sPLItscP6LztHNS2o9SSvtN+4f01HnV4iUsazOln9cMdTJ+RJL1AfqERuYlT+pWo0hCMZnaFeBHnD4y04GstDb/PISiSaQzatXvoxLxFPhAKVM7Mk+4KkGs/O8qCA0xJ9+wj5Lv9zRpGy9nquumdrGSSLMkG3DLH9P9xz6TVdLIr1tnljaQUur/mybW2OK3p/AYUGDp3+Ra7YvkVYmlNi9ovQj4uso8uYg4umbqIWu2sIfPAs99g+7f/IeVfY8gALd/AoBASIvZp42yyBpMbY4fySuJbGf0CJduaj9B5li7JbUBA0EiSMCb/46OQZPG/DypXcJAFCVg4tV0/xXM1eZJ7eEo24mbix7hqrEU0GmT4HXKWT+r0zQTimGClUQKPWN5n7eC0ssiaWwwpuNHmmDmxcK0UxbI74JgUlVNx2PUhB7h0nnr7WNqF0K5cfTIqN+dtyBstcYCbtywg67F336mDXZUltA/PzyFHxydgywK+Ic7rypu+Ov4keyktvtVr0LvRz6MgT/+79nPL4IgGQtw/EibB5PaQFum9itc0fUVqGk6WbmChQeNQg+ZRZ618oadU6WToM2dz9TO9AcQZxeNgLNwgmHbNbcAALqnFvHTCz+lL7rJ1F4CDd77Bg5UxKlT43GoG5SIbhRTu6iKJLX5hO2ZmZWGTcJLao6Yfw9HiHX5xn1D8HUQnsHvsWGJJ7XrYGrrpjY3PE98n27f+k/Atb9S9eu9apI+z0+eracsknG1S5VF8kWS4E4qwMvRYZYUv2KsB3b5lXF652bKKi/8Ylz/GZE+45sCPwJQUdONv0X3H/3bvJK1YhrWTe02HxAVKIlcWE/gB0fp+vGhG2vYqs/VLkntaIi2FwJ56Y2OEeNqD6VpgaCWpDYxtSmNVZGpLQgmrrZhav9f9t47sI3zvv9/32EDJEiCe0iitmQptrXlFe+VxInT2pl1htPEjbN3+m2b6SS/ZrbNaKbjNEkTjzRpEid2vfeQbFmWZEm2JA5J3ODAnne/Pz7PcweSGHeHA0ASeP9DiAQOEAncPc/7eT+vt89th80iQJZLN/nnSe3OfAsqHJvjW531vJxTClfbPIzEJRvaYRUFvDwaKsuOMJ7UbvawFC2fkHkLLJafcS0lPxMhwn4xdTe6UOewIiXJ6PcXv/gvhcgwt3mzj2/tDfR9OVQmpjYztfvljvmpZK3q3EKGaTwAnNpT/Gt69JuAnAZWXzqvpDevurYAZ7+Nbt/zWfSagB+Z9zvhn/ccixILQl1nE6Oal1QvRFP77LeT+X71v9LrnaMeZpycKpQGVLjaNVO7aYox1HOZ2lVcFjkwGcYKUSNPm2tOWWRZmdo88FDXnvMa/vzgFMaCcdQ7rDh3TRGf7QWY1Oam9mQ4gXiKdu8PTtJ5fFkJedqZun47jRnu2ntywRbbP/LyOP71Htqh8flrzsDOfAgaBT8ye6wviCJab74ZdeedN/v+DdnLImtJbe2qDtejppyKhqYVU9vWML8oEgBszBB2hwN5+V6JlAS3TBcfu5sMpnQwCClIJlOYbSWyiTa4rdlPkg1nbgUArBqRcduh2+ibriZEBAEhVmjSuuy8rI+dq5SfBpaC0wmxzmAixqh4WVRoRN2KCGDnSh9a6uwYD8bx4JGxHA8ukWRZSWr/9hQZw2/ZoS3xvlDk89gxquBHjCfRJsO0QNLksdPfJ8KSYutfY+h4u1bSAOfQ0AwCMYPJKSWpfSj3fcZyo0cA4Nk+Msx29M7H+yxV8SLICXl2Mv241Dnr50tCZ/8dUN9JaUjOPy0gbmqfXsimdjqlDvAzktq/fGoAybSM7SuaimPE89RoBYoiZ4mntBuWa0IbLUgxU7slSgl6v8GkdhuYua/F1AZUBEkGdkoUBbTV822zpdmJwI+bd5eAwtPWiB7hWn0xK/07bBrvvcFlw7lraMx2TxkQJPMStlrwIwBtw77sC3R7z0+ViZwgCFjHyiLN4Gpb2LXd05Sd3e5uouuENTaR9eemi6W3+uUOxbjSLVEkTAhQfMrffxzYz1LaFxdgaWfTpZ8DbB7g9F7sCtHiTJ+BxQj+PmqZl9Rmf5cC3SYVldWhpnIHn1qYpnZdG3DjPcDO92b98bIMA1HKZyitvJC+Dj6teWF9KSmZljAZScCBBJyT7LzP//ZzxcsiR17U/btSuNqL1dT2R7BCa0kkF09qxyipnYkfKTlbXAd65NKNbXBYDXS7cHFTe+JlxcCvtBrdNiUINcYQJNxEXVEmU/vKTR1ocNkwNBPD48fKdD3WoQF/GB9ixZBv3r4Mf7c7Dz4sHlJ3k2t9/zdmN7VrTG3tqpnaVa5YaAZSkt4GuYxfRxclHj3RCALR3HyvcDyFOoGME4eHLk4cPWJpaMC0hSaHTY6mnAxn5yYy63omgP2Dz+DQxCHA1YQJC11AXJIED9/+VkAqeqSl/MxoR716gsooi7RbRVzPChH++5kyb4UPDAGRCUiCBfsT3VjV6sm/yrgA1eS2ZxRFGp+wT0c4U9sGjB+lb3p7AIexxY+OBid6m92QZDUtrVvtLN0fODVrIWSW8vC0AWDvAD1ue+/i+rsWI85FH03P/tu9nCSzbMngRwBKkJz7Ybr9+Lc1bT3vbloESe2xQ5TYdHgVrE4smcavnxkAUGRKG1AnKhE/kKgQ+gnIQI8sQp42F8Nr1AXJnCs6qa2lKBLImtQGVLN5dKZEprYWprbekkiuzNI/ExEkV22i3+m9ZUCQ+OcxtTl+JPsW7lladTElP9MJ4KGvKd9e30ELlGZwtZ1JWjxpbM2+Xbyxlca3Lna/kosltQfkduNJbcA8dA1Paa+5PLc5l0/1HUrfw+r934ALMQz6I0jp3ImoFEXOY2ovgqQ2oDKrB59emKZ2AXU2OGERBSTSEsbyGamt6wkFk4qZs0tgkWkynIAsA2daBiBIKfpd5DJCm1YCLh+d3/LtwMyilkWe1Cb8iF5Te3ZSu7PRCUEAosm0oUJqXSpQEinLsrJIfFUx6BGAFugalwOQgdPPF3cskyQIgrIbbZiNeQYYfmRFCUsiM+W0WXDt2XQ9XmiFkeF4Cu/7r+cQiKWwZXkjvnTtpvy+Ei+Hdfm0dyvkxI/Q738ynEDQaGiuSlQztatc8fAM0oypndPU7iFz1hKVMOrPbdiF4il4QCdDztROMVPb2tWFqRhNGpqcuVOktvY2WFtbIcrAijHg54d+Drh8GGemdpskQ+jI0jKbRbwk0lrukkgu3oY9+tKsb/N09KOvjJd35Y2ltAfE5YjDjrfuWL4oCiIz5fPYMcaZ2onQvJZgreJbphvddmqEB4DW4hi3PK39zAmDprazQV0IyZXW5t+f27QOYCwQw4A/AkEAtq2opqQ24UWGkrPPXwfjNAleMvgRrm3vogn+9CDw4h0F797dSAPV0wu5KPLks/S1Z7vCsv/9vtOYiiTR3ejC5WdoTPPmkquRDHPAtESsIfkXcUkkF0tqO6aPAZARSaQRSegrs4qFAqgTmAmtpSgSUE2tOaZ2u5cm/wsiqa21JDJTJeBqX35GOwQBePHUTMl3aEwypnaznqJILkEALv0C3d7/G2WsxDFtR0eLM7UlSYY3Tam/1vbsJnt7J73OeikASKVHwkksqd0nd8xPJesRT2oP7zeENwBAKe0Xf0u3tbK0s+mcDwINy2EJDeNm+91ISbLu991EmCe1c+FHFjBTG1C52gNPLryiSA2yWkR0sbFC3m3ugqAiSE5UH4KEm8znOminEnq258ZhCkIGakLfZ1RJahtYNF4IGpgMYwVjaqNJYyhBSWqTqe2wWpTF5JIjSAoktQ+cpmupy2ZRypiLUrcx3noppRRvszEPPw+UCz8CAG9i/sh9h0YxVeqFDI2SZRmfums/jo4G0VrvwA//blvhpP5kdp52XuVIanudNmUee7LG1c6rmqld5UqEpiCn8ie1rV10kklFLZgey50uDidSqGdJbThoUsJ52rbOTkzFWWImS0lkpnhae9WIjPsG7sNJOYlxdgJpsdZpLvBLc1O73DxtrraN9HVstqm9otmD89e0QJbLvBrJTO3nEstgswj4m60aklQLTE1uO8JwISawYgaDXG3O1PZ57MA4T0+uL+q17V5NE5jiyiIZVzubqZ1OqqnyLEntPf30+drQ4YXXucSM3DziSexT8dkDrxMSpRWXFH4EIGzFOR+k2499C5DSee/O8SPBeMo4GqfUmlMSKcsybn2cJo3vPq/XWMv8XDUsAK72xBIwtZvXAIIIITaDbiuZjnoRJEKYzttJi0sZKxSUktSefc6fOxEzWzwBntPUlmVgnBiLupPagPmlfyAe6w62W+feEiNIVPyIg14/x4JpLPNGzzZg4zUAZODBWwCoSe2jRSa1x6YC8Ao0MW/vzP56urrI1LZAQmimxFxtWVYSXMNiJ+pYCbsh1bUBK86n2z+9DPjTR4jZr0ePfgOQJWDtlSoqwYhsTuCKLwEA3iv+CZ3wo08nV3siyJPaixA/AjAWuQBM9amLXIsoqQ1klEUWCtusYgiSvkdL/IoWnripvdXKkpjdW/M/wGBZ5GJnag9OhPXjRzhTmxVFApkIkhIHwGbym9ocPXLxhla47EWgR7gWMFebj3kU/EiZktoAsKmrAZu6vEikJfx+3+myPW8+/eDh4/jLgRHYLAJ++Hdb85eGcyk8bR2mdp45So2rrU01U7vKlZpWuUWix5P1PtZ2mkwmoxaEJ3Kn3MLxFDxgpradDPLkECW1bZ2dmGacrCZH/hSpczMlsXfPtEKSJfxy6CE1qe3Rntjj+BFLpZLa3HicY2oDwFt30orc7XtO6t6maVjM1D4o9eKKTR3zt3kuAvEtzlMWloAxyNWeymRqm5zUPjgUQCiuL7moiO9CGD0w/2cTrwBSErBnoG0ytIdhT3ZWEU8bUN8TozERsNGFP+XpRAROeOyWpVmYueM9hC6YPA4c/J+8d3Xbrcoq/4JFkMwpiXz82AReGQvBY7coyY2ipWztKzP2KVMKfqS4c01FZXMBjcQS3OqiFKVeBIklQtfmmEPHtTkLUxuYPxEzU6F4CkF2Ls+JH5k5SbuGRNu8QiBNyiz94zsWTBBHkNxTYgTJZCZ+JDhMJqnFDrh1/G0v+RyxxY/eDQw+g/UsqT04GdG9CyBTp4dpvJqGCKs7+3XR63FjGjReHRkq8bkhPA4xGUZaFhD1LCt+p9x1twKvuh6ADDx3G/DdLcAzP6aOgkKaOAa8eDvdvuizxb0OgIo/l58LJxL4jO03usoiZVmGnyX+WxcrfsTZoPai8I6WxWpqFzIQeVL79F5ix1aRuMm8UWLX8u4CyB6DZZGL2dSOp9KIBcfhFaKQIQBNvdoeOCepDahlkSVPqObBj5iKHuHqyXhflJoXrlF84X4kEMNMNInpCM2T+XmhXHozG/Pfsfdk6VnqBfTQkTF88//II/ji6zdj2wqNu2/8bNGrWeOCDqDO68NjQHL2+73G1damJTjbr0mPpGkywmQLINqzJxptbTSZTEUsSEwP5zxWKJqAR2AXYLbVmzO1bV1dmIzRc+XDjwCAcxOlndaPUYrl94P34WU7mTItjdpPEKnxSuNHeFL78LyL1uVntKOlzo6xYBwPlKkwUh5+AQCZ2m/dMd8UXQziqIlxsPeQQa42T2o3uW0ZRlNxSe2uRheW+9xIS3IRXG22EJKNv6fwtM/Iut2Rm9rVxNMG1PfEVDipGClRby/72RJLaXM56oHdH6Dbj32z4LZ5pSxyISJIAsO03U4QlQng/S+RcXntlm7zdh1UOqmdigNTxAhH8yJOagMKgmSTna7vEzqT2o4YmdpJlw6kQCGmdsD8yT/nadc7rfDkStXyVGbLWsBi4L0qisBqltY2EUFy5WYytff0T5bUGOGs02aPXUWPeLvp/6VVreuAs99Ot+//Apo9dgXN8cqocdNsYoReT1BszPt6QhYaT/hHS5wMY+iRIbkFDV4Tysvr24G//Snw7nuAjleRGfTXTwE/ejXQ91j+xz76dVqAWHdV4bSpFgkCcNXXIEPAtZYnkRx4RtPD+ibC+M79ryCWpGvY/KQ2S88vdPwIoHK1uRaZqb28WaOB2NRLBoyUomLMKtJ4KA4fAmhLjQAQCn92+M8nj+fuyskibmob6ayotE5NRbECbPHZ2007ObRoTlEkUMakdh78yNHRIPomwrBbRVyywaTzUOdZgGAhA7OSSLwMZe564+ZpS50j99inRHrDWd2wW0UcGQniwOnKFWn2TYTx4d/ugywDb9u1HG/bpcM3MZLUdjUpgdC574laUlubaqZ2tStAyALZlns7DU9qp2IipJncg/54JKD+gxXuqaZ2J6bjGpPaDD9iGRzGmXXrEUvH8WeGRmlrzV6Ql00KU7u1QgmP5rWAaKUE1pwTlN0q4rptdPH8zbMF0kHH7gd+dGFx25RC4xCCw5BkAcHGjTh39eIabHPxVO6IVFxZpJIus6fVwUxrcaY2AOxayREkRk1tlvQZOzw/bTWWuyQyGEvi8DB9/nZUmamtpPcjCcBDpnbA0wsAaPIsYQzLzvfS4uH4EeDIn/LetbtxAZdFnmLp1LZNgJMWQwfYwG1zd4N5z5OjhKVsmuyjQjZ7vfZyxIUqljRfKxJezK9z4u2M07U5rSd9yU3t8FymNje1zU9q6yuJ3Gj8iUrA1e5udOHMngbIMnDfS8YwXYWUTEuYiVKay+exZ5REauBpz9VFn6WE9+CTwPhRU7ja0xM0/ozZ8485Yw66Zs5M5A5tmCKGHumX29FaDE97rlacA7zvEeC136aJ8dgh4BevA+58V3bDZOIV4MCddNuMlDZX19no67kWAHBJ/3dyLraOB+P4+RN9eMP3n8DF33wY//EAYZk2dNTDbZ9joISYqb3Q8SMA/R0ytYiY2oBqIBZMagPASo4gqS6u9ngwjrNFZli1rFON2Fxy+1T8ho5SQIWpvQiT2oP+iIIeEXw6Sr7nFEUCakq4pEztRBiIsjlblqT2Xw/QPPPVa1uKQ0ZlyuaigBIADC2MssjMXW/lLonMVIPbhqvZovzteyozXg/FU3jvf+1FMJbCthVN+MI12r0nACpT26dj954gZIRvZvtCf7O1B796zy584GIdJnkVqmZqV7mEEDOi85yorS0tkAUAsgDreO4VxXiYTOskbICVLsiZTG1uahdiatva2mBtawMkCe9xUBkO67JEa712DrRaFFmhwbDVriby+MQ3Q7ww8pGXx3OvQqdTwN2fAIZfAP78cePblEYIPdInd+D1O9dBFBdXQSQX5yefTrHSNwP4EVmWlW1VrfFBADI1FHuKT/TvWsXKIvsMcrWbVtJKbTquXhS5RnOb2vsGpyHJwDKfK3+h2RIUT2NHEmmk3fRZ9zvos9W0VJPaAPEHd91Etx/9Rt5zg5LUni4Nd7goceQCQ48A6ha75WYW1FQ6qa3sCFmbu1hqsYgVIi6X6HepN01Wl2DnxzodBaB1GUWRGe/1zHSR2VtV9ZVEFmNqXwpAAEZeNNwTkU1XlhhBwoucRIGdhxUuqQFTu6FHZZJPHjeFqx2dov+3VACFIrlaZt2/ZGKm9oDcPr8QsViJFsJSfeh5YMff086XQ78HvrsdeOQbQDLj3P/Iv1JKe/1rgK4tpr6MqXM+i5DsxOrEkVmGZySRwh/2ncY7b30Wu7/2AL74p5ew/+Q0LKKAC9e14jtvPgv/c/O5sw+WCANJhjFZ6PgRAFiWkdS2eci4WkTiW9xPaUkDclO7ysoiZ5na3Ro59EopoHYESRtLavvDCaSlhYGn0KoBfxi9IjuX6jK1s+FHypDU5mNChzfrIoXp6BGuBcbV7mhQS7cHJum8a+oYXIfetJ3G6398YQjRRP7eILMlSTI+fvsLODYWQrvXgf98+1Z9GMvoFBBhY1ytPHmuHOGbNW11OH9tS9XN7/WqZmpXuYQwmdqSI7f5I1itEOrowuKayj3hSrKkdlyk+8qpFFKjdH+rDvwIoKa1z/R70F2nGtmtLu0D21SliyIBdSU2C1e7t8WD89Y0U2FkrtXIQ/8DTPXT7eEXgMP5E5m5NP7KHjqcvBLXbzMw4Vwg4qncobTxpHY4kUaCccwbw6zB3CTGLU9qv3hqBmEjXG1RVCf2I3O42tzUbstWEkmfrR1aeV9LSF6nFRa2SDNz9k3Apr/BAd+VAJYwfoRr9820CDJyAHj5npx361ZM7QWY1J5TEilJMk6yVI6pLD/Oq6tUUtu/BEoiudiuls4EpUn04kfq0zTgF/Uk1jl+IBkhhjVTJxvkRxJpJTVslkZm6H2YN6k9bkJS29MCdJ1Nt48/YPw4c8TTTk8emzD9dwOo6JEmt53OwTwVbMTUBlT26mSfwtV+uYikdjJAqX6xQMrXWk8/TwVLjIJjC9V9cof5pjaX2we89luU3F5+LpCKAg/dAnx/J3DkbirGPnAX3dfMlDZTz7Je3C8RciF58jk8dHQMH/3tPmz78v346O0v4JGXx5GWZJy1rBGfv+YMPP2Pl+IXN+7EG7f0zE9pc/SI1aVuy17IauhWrzOLDD0CqNfb4UAMiVSBrh/O1R45oAursdg1HozjbIEFTrSWqxooi/R57BAEIC3JCi5xsWhgMoLlAjuX6jH1shZFqkntkvGVlevW/JT2ifEQjo4GYRUFXL5RxyK8Fimm9sJIavOAwFggjkF/CYIlOnTOqmYs87kQjKdwz6ES76Cao+8+eAz/99Io7BYRP/y7bWjTUgyZKc7Tru9UqAWaxa8f0xXs/lnEqpnaVS4xQqtxsjP/AFv00eqlZyZ3AjUdZaa2hQonU2NjtP3QZoO1pUVzUSQAODeTcZd46SXccMYNyvdb3dpMbVmWM5LaFTS1Fa72fFMbyCiM3JulMFKSgMe+RbdZMRcevAWQ9K9ajh8l4yje+ir9J+gFJDcr/huTjZvaPF3mtImwTzGjqciSSK5lPje6G11ISzKeG5gydhCexB7N4GpHp4AA29rNF0oyVK08bQAQBEEpQhxt3gFc/3OMpMkQ4d9fsnL7KJ0HAI98PWdau7tpgeJHkjFgiFj/PKk9HoojkZJgEQV0Npp4ruITluAwkDbf4CuoiSVkarP/Q11yAl6EdSW1JUlGY5rOjfYGHcknR51qbGVwtZ02i5JqM5s3yJPaL/vXmQAAIABJREFUnbnSMVIaGGdFw8WY2kBJECSrWuuwrr0OKUnGg0fMR5DMKokE1GuUV/uOulniqb6pfqwrMqkty7JS2OdszG9GOJvI/BcjE3nvV7SUpHaHwgwvmTrPBN79F+BvfwbUdwHTA8Bv3wbcegUAGdjwOuK6mqy2egeOCb0AgAcevh/v/vke/OGFIUSTaaxoduMjl67Fg5+4EP/7gfPw7vNWKuzgrOLoEU/r4tndspylzRcZegQAWurscNkskGUNC+D17WzHjgz0P16W17cQNBGM4iyRmdqFSiK5uvWXAlotInwslLHYECSD/gh6BZ7U1mFqZ0lqdzY6IQpAPCVhvFR8cV4eng09wlLa56xuRoPZ8wluag+9YGheb7ba6mmck0hLeOEk+TWVMrVFUcD1DNFaLgRJMi3hp4+dwHfup12Vt1y7GVuWF/ar5skIT5ur0jtKF7lqpnaVyxJjk0BXfvPAxrjUnkgIUo6tUOkYTT6SVjK1FfRIRwcEUcRUnCayjY78+BFATWpHDx3CG9e8EZ2eTjQ7m9Hp0TYJTk9PA0kyLizNFUxM8FRtDlP7ijM60OyxYzQQx4NzCyOP/oV4uQ4v8K67iZU4cRR48Q5dLyGWTKN+mp5/zVnn6f4vLCQJggCf244xXhQZ0j9R56kHn9uuGhJFlkRmajdDkDx9wiCCpINxtTPLIkfZ+6dh2bztcYmUhH2DNADZudLABXgJiCey+YIFN1uWfFIbAM75ECXZhp7PmfJcsEWRwy8AUpJSuCylyY3JzgYnbBYThyieVsDioG33gRIXwmWTgh8xZwGtonI2UAoFwBrhNPw6ktrhRAptAp2vHE06t/PWsbT2nLJIzn3s95tsajOmdnsuU3uqH0jFAKtTTRkbFTe1jz9o6gT3KoYg4VxQM8UXMxRTO0/iTZP473CqT2FqjwXjynld32tLwJsmc6TOl39HgLeZ3oeu5BRiyRKZC7KsJLj65Xa05DNzzZIgAK+6DvjgHuD8jxOzPMoW2y/8TImeUkCgkRZ41kr9aPbY8c5zVuD3N5+Lhz95ET52+TqsatWYXuP8/MXA0+bqPZ++Gl3YqaAEQVC52poQJCytXUVcbXdoAA1CBJLFmRUFmFUdm9lnbxKY6tP8XHzBZ7GZ2gOTKlMbTUbwI2pS22YR0dnAESQlGr/mKYnk6JGrzUaPADTvtLmBRFANPVRQdquo7CA6whaTK8HU5vrbbT0QBOqoGvCHS/Y8sizj3kMjuOI7j+KWu2nn3Q27V+BNOwyOYxSetk70CFD57p9FrpqpXeWyxBhnz+3Jez9nNw3Q3NGosuV0ruQYJbVT3NTmJZGdnZBkCTNxmmD4nIUTDC5maieOn4AzIePOa+7E/177v3BatSX30iylbWlogGivoLHF01vjL88v/gMrjNxOW3VnFUbKMvDYN+n2zvfSie68j9K/H/4qkNI+yXtw31EsY03UZ26/QP//YYGpyWMvKqk9y/DkAwkTSiK5dq2i9/czfUbLIl9FXzluBFAXRbIMog8OzSCektDktmG11sniEhNPtEwxVjpnpi/5pDZAE/7t76bbj2Rna3P8yGgwhuTcHSGVlIIe2akk8UrC0wYI7cOxCOVOQciyeq5pXgJJbUA5Z64Wh3QltYOxFFoFGgvYG/Wa2ixxO2cxc7mPxhyDJk98Cia1FZ72emIaF6Pu7TSpj06Zuh35SoYgeeTlcUQSBpBYecSvpQpKQzG1DRp6TWpSu85hVQw2I2WRA/4wfAKNSa0FTFEPS2o3CzPazDwjCk8AiSAkCDgpt5UOP5JNjjrgss8DNz8NbLkBuOIrlOQukd54NeG/VokjePqTu/HFN1DiTdCbtub4EY4eWgw6883AlV8FLv9ipV+JIXGutr6yyEdL+IoWjiKJFNYljwAApM6zAIvG8aXVAXSwcf0p7QiSxWhqS5KMqckJNAvsnG2kKDIVm9UB0N1UYlObG4hzktonJyM4cHoGogBcsclk9AgAWKxAJ8OOLTCuNlelktoAzVsuWEvX7jv2lmbM/uKpabzlx0/jpl8+h76JMJo9dnz52s34wut1FkNmqpikNt+VX8OPGFLN1K5yWeI0KRE8+c0w+7JeAIAYlTHuz5FAjRPnUrLRsZJDzNTu6kIwEURapgSMlqS2tbUV1vZ2QJYRO3IEDY4GNDgKtExnKHGaknjWtgonPBpXUGFMOq5sPZ2rt+wgBMnDL4+rW/6OPwgM7aME5u6b6Xs730eT+ulB4PlfaH4Je5+hAeeMowsWz+LbEjlXTW4bxmSWSI4HqExIh3hSu8VtUS8+JqYnz2FJ7RdPTRszETheJDiksgo5iiSLqb03Az2ie9K4RNTIzOtJ9rflf+MlXRSZqXM/REmgk09n3Qrc7LHDbhUhy2r6dEFIKYncpXyLJ7VN5WlzVSoFERqjc5UgGktvLESx3S1rhNM5F7qzKRCJoRlse3GdDqY2oJbF5UhqD5QqqZ0L2WVGSSSXxQqsuphum4ggOaPTi2U+F+IpCY8cHTftuMAc/Eg8qCbsjKZUeVJ7ehCQ0kVxtfv9EbQwU7tQyaDAdgA0I2D6e0gRG/+NyM2Iw15eU5ureTXwhu8B536wpE+zZeN6oK4dAmTY/EeNH0jBj1QQIahXVjtwzgcWLWZqmZLU1mAg9p4HQKBdSIEycm9luSIc74lgAmcz9IhFK0+by0BZZCs7R5QMu1ECjQXj6EjTe0H2tAGOeu0PdngBsDlMPKB8W9fuASOazl5wfC8rWN7R6yvd+bqb+gcwtDC42pn9IS6bJT8eqgx6MyuMvOu5U6YWpp6ejuJjt7+A13/vCTzTNwmHVcTNF63Gw5+6CDfsXqH0NBmSnyW1m1frf2wmJlFHeLEmUs3UrnJZEvShsdTnv/BYu8h4TUVFTI9lNwSEBE08JDsdKznM8CNdnZiK0ZbHOlsdbBpXtzmCJHboUIF7zlZyaAgjX/wSAMCxfoOux5ouUQTa2GsYy/7/WNniwbmrqTDydp7W5iztbe9SB/R2N/DqT9HtR78BJApf4PsmwhBGXqSHLzO35b5SavLYEYQLSZFdfHWmtafClOJdY58g9IHNbXy7dBb1NLnQ1eBEMi3j+YHpwg+YK0e9OrnnZZFKSeR8nvazffTZ2tFbnegRQN3+Ph3mpjb9jRurIakNAN4uSuABwJPfnfdjURTQxdKmC6YsUpaBwafpdoapzSfTy0ux7bFSvDqOHmlcAdgWb6fBLLEegjXCEKYiifmdEDkUnR6DRZCRhqjfrMqR1FZMbRMnvYmUpBRg8u3P82RGSWSmOILk4F2mIUgEQVC2Tt9zyFwEiT/T1J5hSB9nA+D0GjtgQw8gWoF0AggMFcXVHvCH4YM2U5v/vEUIoL9U25zZluQTEr2HWythapdT7Ryj9qLxY/Ckdt0iSmovculKaruaVC57OdPaT34X+PpK4Il/L99zAhgPxRSettCjkafNZaAskhuKE4soqT3gD6OXoUcEvQv4oqheOzLKIpdllEWWRMoOo+Wzvv1XBT2ic/Fdj5SyyIWR1M5cwF/uc1c8KHXZGW1octswGojj0ZeLX5QPxpL4+j1HcMk3H8bv99GY5Y1buvHgJy/Cp6/agHpnkXNGWc4wtQ0ktevaCGdXKUziIlfN1K5yWViSVPTmT09b22hQmYpaEPZn/6BZkpTUhmM2U9va2anwtJuc2o03XhYZPXiwwD1Vpfx+DN74HqSGh2FftQrt//T/ND+2ZOJGJE91ZdHbdmUURvY9AQw8AYg2SmBmaus7qR03NAo8++OCT/3bPYPYLPYDAFzLl4apTagJAWE7M0R0crV5incN2Pu4eQ0NpkySIAgKV/uZPoNcbT4hHD1IhaH8vcO/zyRJMp4bqN6SSC7OzuZJ7elqS2oDwJa309ehfVl/vODKIidPUJGbxT6rsIyncXg6x1TxZvFyJ7UVnvbiTO9lFUtqrxVPQZbVz14hJWdoXDAjNOhHduTEj9Ckd9DElO0oQ4/YrWJujNGYyab2GW+gLdj+Y8Ch35tzTABXMq72g4fHEE+Zx4z2swRhS50dCDBjwNuT5xEFJFrUz+hUPzYUYWr3+yNoVpLaBRZP2M+9QgSnxg0sRGtRRkmk3SLC67KW5nkWijhuYUT7+H2eOFO70KJETaaJm9qntC4QriozgkSWgeduo9v3fd7UXS2F5J8OYKMwQP/QWhLJxc3L4Rc1JzAV/MgiSmoTT5uXROpAj3BlKYvsUfAjJUhqp5O0KxaYhR8ZDcTw3AD5FleVgqfNxZPaIwdnIVcqpcyk9rIKoke4HFYLrt1CO7+KKYxMpSX88ukBXPSNh/GDh48jnpKwa6UPf/rg+fjOm89WEI1FKzRGjHRBNNazIgjqjoEaV1u3aqZ2lUtMUbrK1pjfbLa1k6mdjFqQmBrKfqwkS7g4aKU1pTC1u5SkdpNDu6ntUpLa2UsW5yodCGDw79+LRH8/bF1dWH7rz2BtWgDpVW5qj+ZOnGcWRk7f+zX65tlvm8+mtNqBi5hR//h3Zl345yqRkvC7505hs9BP3+DsrkWuJp7KtbACUJ1Jbb5lernELhgm8rS5OFfbeFlkBld7egBIhMj8m7Pye3w8hKlIEk6biM1d2vE8S00+D5lOnKVddfgRQH1vhMeAWGDej7saFpipzdEjXVtmpZd5QqwkLL+GCuFHSoA5qrjYebNHmIADCUwEtU3U0wE6XwesBhbheGIzPDux09tMC+kjgZhpRX/c1G73OrKnldJJlZNulqnt9ALnMDTEI183La29ZVkj2uodCMZTePKYwWtSFqn4EUdG2q0IUxvIWhZ5dDQIOUtXQD4NT0yiTmAmQSFT29kISSCTeWqiRBiFSbUksrnOXvEEXMmlmNoHjB9DwY/UTO1yiadiT2pNxWaWRer8jBrS2GG1iA0ycNd7gEnt5YvFKD20H3YhjYClUV180yrfKkq2p+PAqLbPxGJkag/6I0pS2xBqLUtZZA97T5ak6DwwRKlYi30Wu5+jR7Ysb0RHrk4NM9S4AnA3067h0SIWAE1SZil2JUsiM/VmVth4/+FRZSFdq2RZxgOHR3Hlvz2Kf/nDQfjDCaxq8eDHN2zDb9+3G6/qMXnezM9NDcuIpW9EldpRugRUM7WrWLIkQUySqW1vas57X2s7JaSkhAhhKvsHzZ6ipLbFUQ9ZlpE8zfEjXZiO0wWq0VmYp83F8SOJEyeQDuXfEipFozj5/psRP3wYlpYWLL/1Z7B1lHDLkB61F05q260irtvWg83CCbSMPEarfOd/NPudz3wTpeRi08CT38t5zAcOjyIcCmC1yBYhMtKQi1k+lprzC2zBQqepzY3PjgRDvZTAaNq1kj5P+0/OIJowYEwoW3cPqIshreuJu5qhPf20WHT2skbYrdV7Om9UiiITiCXTiLHzWpOnSvAjAE0G+ORfmfSp4kntBYMfySyJZIqn0ko5X0lSIo0Vxo8spaS2pxVwNUGEjNXCEPxhbZMNOUgT3pA1/5gjq7ipPSep3ei2od5J50azuJvDjKfd6c2R4PEfp4movc5UfBV2vY/S2hNHgZf+YMohRVFQ0tr3HDQPQZIVP2K0JJIroyxyVasHFlFAMJZSzgtaJMsyZvz0/5RFmxK0yClBQIoVmIcnS2Rqsy3J/XJHZXja5VbmwrxksJy4hh8pu5b56Hw3GU4gFNfQCbP8HNpVOnMSmCqDuXz4j/R19aWUfo5NA7ffoAnHWKyco7QLbshzhlJsrVmCoKa1NZZF8vPEYjK1ByYjWCEWY2ozjyBrUjsKyUSuMgA14ODtnrVj9y8H6DrwmlKmtIHZ7wsTC6KNqmMOfmQhaEOHF2f1NCAlyQoyhEuSZPhDcRwdCeKJYxP4w77T+OljJ/C1vx7GJ+7Yj2t/8CTe84u9OD4eRpPbhi++fhPu/dirccWmjtIsLBdTEsnFF8xqZZG6Vb0uSE2IRoKQk/ShdrbkT0KI9fWAjd4utrFTWe9jS9OgQnR5IQWDkCL0b1tnByZjhEjQk9S2trTA2tEByDLiR3IbwnIigVMf/giizz0H0evF8p/+BPbeXs3PU3LxpPbkibwDr7fsXI4PWP8XABBZ/8bcAwLRAlzyz3T7qe+raZY5+u9nB7FRGIQIGajvXDITA57UHuVlkSFjSe3maD99owSm9opmNzq8TiTSEvYNTuk/AC+EHD8CDO9n39s87268JHJHFaNHAI6kAabCCSWlbRUF1DmW+BbvufKxYhL/fFO7q5Gb2pXf4ggga0nk6akoZBlw2y1o9pQgZa8ktU8ZN1qMiJvazUvI1BaEjLLIIUxoTNCIrOQx4jBQ/qaY2rOLIgVBML0sUklq50ppjbEdZK0b9Bsc+eRsoKI5gKW1zXmfXsW4oPcdHtXMPy8k5VpaZy9BUrsfDqsFq1oohX9EB4JkOpKEM86K5Dwtmv4+Qh2NgdPBMSRN+v0okmUlTdovd1S8fKss8q0mNmgybNzsrOFHyq56p03pItG0QGj3AD076HY5ECQvMVP7VdcBb/olvTdGDwB/+nDJk+K+KeLDTzaeaewA3fq42osRPzLoD2OFktQuBj+iJrU7G5ywiAISacn83wW/bmWgR/yhOJ7to+vHVaXkaXMtIK52Ziq9JL02BvUmltb+0aMncMPPnsHV//4Ydnzlfqz9579i2y3348p/exRv/+kz+OjtL+CWuw/jR4+cwO+eP4X9J6dht4q46cJVeOTTF+Od5/bCZimh9VlMSSRXpQrtl4BqpnYVKxKaQZqZ2q7mAu3wggB4aXLhmsrOMHZIlKa2ub0KT9vS1ATR5cI0u0DpYWoDhcsi5XQapz/zGYQfewyCy4VlP/whnBsqXA45V55W2l4EmdJXObRSOomrLXsAAHe6rs9/zI3XEE4kGSYMyRydnIzg8WMT2CyyyUSHwUHYAhQvBRxKs8GP3qLISAKAjPoQbQcuBX5EEAQVQdJnoKW9cQVgr6fCLJ7W40Z3hp6tmdoA1ET2VCSpFIE2uqtgi/dc8YEU2+qeKc6MO10KLqFexWZUU7BHTWoPskn0sqYSFdR4u2gXTDo+D2FRMiWjajJ8KeFHAKUscrV4Gv6QNvyINUq/94TTiKnNmdpj88zeFT4an5hV9KcktXOZ2uNH6KtZ6JFM7bqJJvfjR0xLa+9c6UOj24bJcELZ4VOMkmlJ2fXU7LGrE7BiU+vcCGEmMC+LfFmHqd3vDys8bUFjGam1nhZMmuQZ8xFNkUkgTsnDQbmNGORLXRarGugwgiBJJ4Eoe596lkYgY7FIQZBo3fWiIEhKbGr7jwNjh6hMdt1VtCvk+tsAwQIcuBN45oclffrOMI1ZYu0G+4mUssi9mu7Oy2SnI0lTuxBKqVH/JDoE9rltMmBqu1hSO6Mo0moRleuw6VxtPjbLKIl84MgYJBnY3O0tD1e6i3G1F5ipvWKBJLUB4JqzuuC2WzAejOOxVyZweDiA8WAcaZbcb3LbsLatDuesasY1Z3XhxvNW4tNXrcfXrzsTD33yIvzj1RvhLbYEUovMSGo31JLaRlUztatY0eAUpCS9BSz1hdvqLc10sfEE5xfpyLIMp0QTAbu7AckhztOmrTu8KLLRoR0/AgAupSxyvqktyzJGvvBFBP96D2Czoec//gPurQuwDFEQMrjaefjgzJy+N70d/3nInj9NJQjApZ+j23t+qq42M92x9yRkGbi0gRm+SwQ9Aqic5JNJmuwaMbXbMQVrKkyDYV8RK6p5pJRFGuFqi6JqYvOUJ38PMQ3PRHFqKgpRIO5bNasxI6mtlkRWEXqEi5vafGCVIW5qD03HdPNpZ+mlP1KCNK1ha3IundoLQKZUZn278m3O8SzZRMJiA+q76Ha5UhD+4wBk2lar0WBbNOJlkcJpzQkqR4zSl0m3AaOKJzal5KwkF6CmigZNwo+MKEztAkntUpjazgZg981026S0ts0i4vKN9FnjvNBixHfECAI7/wbYtmBvsfiRXvYE/QCA9Rlcba0a8EfQDF4SqS3lK7D7NQsB9JtYOApAwUHN2NoRh7068CMA0JGBUdOr8AR9FSzEIq6pbOIIEs1c7cyyyFKmpTl6pPcCwM2CHL3nA1fcQrfv/Seg//HSPHd4Am0pmtcKPFmrV/xx/mPqgk0eNbhssFlocV/ronElNRNNoiFG1wHZ2aj+jfQoC34EmI0gMVUzzDjMSGrzLqQL15Vphwgvi/S/MsvMr4TqHVZcsqEN21Y0LRj8CAB4nTb84sad+OzVG/DN68/Cbe/egT9/6Hw88/8uxStfuRr7PncF7vv4hfjN+3bju2/dgs9dcwZuvmgN3rR9mXklkFrEA0XF+Ao1/Ihh1UztKlYsHICUogumpc5T8P52xtX2hEPztmfGkhLqQBMBu6cByWHG0+4mA4EXRfqc+i5y+ZLa49/6FqbvvBMQRXR/4xuou+B8Xccuq7ghOZbD1J7so6QBgP+yXYeRQAwPHS2QJFx9CbDifEodPvJ15dv3vzSKWx+nlNPZNtbUvZRMbZbU7ouzhZhQ9p0D2STLMqbCSawR2QTct5LKN0ugXSvpvb7v5LSx8rKOObiROfiRvSxtd0aXF/XlWIFewOL4kWA8pZhrVVUSyZUHP8ITGNFkWklY6pYsA3/8IPDQV4C9txp9lVnRI4CaDOOT6pJI4WqXacCYydNeajsHWmlX1BpBe1LbnaAJo2QkfWl1qAbXHAQJTxWZhR8ZKZTUHithUhsAdv0D4GgAxg+rZk6R4lup7zk4UjSblKNHmtx2WARkMLVNwo9EJ4HYjFIW+bIOU5uS2swU0YquyDC1B0xK+ytiE90RK42Hq8fUZjsEjRSgKeiRllms25pKL91J7e7tgNVFu5/ydAcVLY4eOeP1s7+/+/3Aq64H5DRw57vUc5GZYina41InmgrsbM4pt0/FSmpI5YqisKi42icnIwp6RDDC0way4kcAtSzSrM4MRdPzdxjtYTtgd6400PthRJ4W2p0LAMMvlOc5c0gQBNz6rh343fvPhbWUmA4D2tHrwz9cuBrXbevBRevbsLm7Ae1eZ2lxInokSaqpbQZ+JHDatLLwatECeSfUVAnFg5OQGH5ErKsreH9nD33QXLH4vAtsKJ6CBzQJdHoaFPyIlSW1laJInUltpSyyr29WWeTEj38C/09/BgDo/NIX4b3qSl3HLbvaC5jaT/w7DchWX4JN2y8CAPzm2QKmiyAAl/4L3d73K8gTx/CDh4/hvb/ci3AijYtWe+ENssTmEjK1uYGp4ke0FzuFE2kk0hLWCKw8s8V89AjXyhYP2uodSKQkvHDSwOp7Jm7E3TKPic4HXttXVDd6BAC8LpviF/ZN0HmisZqT2lmKIp02izJBMlwWGRxREzQP3jLPWNSsLCWRgDphKWlChJtuZUtqs3PwUkOPAAp+pFcYwWRQ22SzLkmmtlBvkFXJzfA5i5mmJ7Vn8iS1kzH1M9ZaIlPb1Qjs/ge6bVJa+7w1LfDYLRgJxLD/VHGJML6I4fPYKVWbjgMQCPFTjBz1dL0DgKl+bGD4kVdGQ8pW40Ia8EfgE5gJ7ta4O4LtomhGwLSFEUVskfGkQO/5lmpgagOzC6/1iuOhauiRsovvlNKMerDagRXn0O2+R0rzoqZPAkPPAxCADa+b/TNBAK75D3q/hceBO94BpMw1geVThIZ8QV5THBNfZ1kkfy6tnRWV1IA/ksHTNmpqZ09q84UW85Pa3NSmceHwTBQnJ2kH7NZy7oBdQFztmgwqcBpIxag4txgMW30nIZaklO6d6NWumqldxUpOTQDQbmrblxEfS4jKGPPPRiqE4ynUC3SxEZ1epIY5foQmOEpRpE6mtrW5mYxxWUb8MBnCU7/9Lca//W0AQNunP43G667TdcyKSElqZ0kxBIaAF35Nty/4JN7CChEePjpW2HxavhtYeyUgp/H8f30aX7/nKGQZuGH3Cvzkag8EKQW4fMWnpxaQXHYLnDYRY7woMjZD3FoNmmLpsvUWZmq3ls5oIq42rfQ/bQRB0v6qjNvz29Y5F7XaedoAYBEFNLrIxOamdnUmtdlEIjpFHNc56m7iZZEGJwaZnQDxGeC+z+s/hpRm+BHMS2pnMrVLJj7YnC6TqZ2Z1F5q8vYgbXHBLqRhDwxoe0ia3pdWb3uBe+ZQjrLI3mbabXZqKqLZ/MwlSZKVosisSW3/K4As0QTcqDmvRbvfDzi8xJE98qeiD+e0WXDxBvr93VMkgsTPSyIzedr1HYT4KVYZCJJlPjecNhHxlKQ5Qd3vD6NF4PgRraZ26ZPax9P0u68KpjagLswHTme9HuUVL0BfasimRSBuap+c1DFOWJmBICmFjvyZvi4/J3vpvd0NvPlXdE4+vRf466dNffrUIJna+6Q1xX1+9ZZFLqKk9sBkGL3FlEQCGUntMuBHZHleUSQviCz7DliOIDn9fPmesyZzxQMsvpXUKWFUokXFuNUQJLpUM7WrWNIMnbxlARAchVeerV100k9FRQTGZhsCmUltOOrmMbV5UluvqQ0Azk1kCEcPHcLMn+/GyBe/BABo/oeb0Hzju3UfryJi27QRHJ4/uH/ye1QIuPwcoPc8rGqlsgNJBu7YU9h48e+iwdu2wAPYZBnEl6/djC9fuxm2UWrqRudZS27bu89tRwBuSBb2vtW4msk5oOstLN1dwqQ2oCJInjlhoCyy/QzwRae56JGZaBJHRmjSvqO3xpsEVBP7xDhLanuqMKlt96jM6KxlkWTQGS5Cm3iFvnLzfP9/AwNP6TvG2GEgEaQi1DmceCWpXcrW9XI2i5/aCxx7gG43L0FTWxQRb6TdAY2h+bsD5ikehEumcYKtodPYcyplkbOT2h1eJ+xWEcm0XHTRnz+cQEqSIQjInsrji9Nt8xcbTZWriTAkgGlpbY4guffgSFFs/UmWHGyus6vGgFmL5xllkRZRwNo2fQiSAX8EPhg3tc1natO5+EiZFW8hAAAgAElEQVScnqO1WvAjTq+6QKE3rc3xI9kMzJpKqmVNnKkd0X6O4GWR/Y8X17eRS7nQI5nyrQT+9mcABOC524DnfqH8aCIUVwIPuiXLEIf2AQCO2dbDYbUYOw4wuyxSw++WX3+KMbUjiRR+8WS/0jdTKg36I1ghsLmY0aR2lqJIINPUNvHcHJ6gZC0EwEvXLgU90lsm9AjXYk5qp5O029zIjpylJL57z4yeLs7VLteO0iWimqldxeKmNuwiBA0TM2sbTSZTUQsi/tnMsnA0BrfALroOL5I8qd3dhUQ6gXCSGU068SMA4NpMht70nXdh6LOfBWQZTW97G1o/8hHdx6qYnF610TYzrR32A8/9nG5f8Enl22/dRfe9fc/JvIWRL56axmvumMaf0rsBAL9ceR9u2M3ZXPvp6xJCj3ARV1tA3MnYdhq52pwDuhJsEl5iJAAvi3x+cEp/e7ndow4M55h/zw9OQZaBFc1utOUqMqsyKaz1ak5qA5rKIk8bTbvw1PHGa4Ct76Dbf/mkvkksR4/0bKdEAtNMJIlAjI7DJzAlkdIsXuLB4oG7gJ+/htjA7ZuBNZeW9vkqJbZg2xYfKGyAsHR1SHairt7g1t4cprYoCooZUyyChKNHWusc2XmNSknkhqKeR5N2v58WgEYPAkfvLvpwF69vg90qot8fMW7yQL2W+jwmlkRyzS2LZAiSIyOFTe2ZaBKT4QSaBX1FkZmm9uBkpGjmuCJZVia7h5ipXTVMbUBdkNfL1VbwI2Uqa6tJUXeTC4IARBJp5XNeUJ1nUco2HlDnHmYpOAoMssXzjdfkv+/ay4BL/olu/+WTwKm9iCXTeOMPnsCV//YoBo0sWPmPw5KYQVy2Yaq+yDlDx6sAix2I+JXzWz4pTO0i8CPfe/AYPv/HQ/jm/x0tfOciRPgRthhVNFN7Dn6E7R44PR0teieWIl4SWd+hdCvt6aMdsDtXljks1HkWIIgUfAsMlfe5i9WRu4H7Pgf85VOVfiWVFe8yKoanzdVQ5u6fJaKaqV3FkgO0EirbtW2TsLVTYiIVtSA5dWrWz+KRgHpcwYHUGF3YbJ2dSkmkRbCg3l6v+3UqXO3jx4FUCt5rrkH7P/+TJiN+QSkbV/vpHwDJCF3QMkyPKze1o8ltw0gghodzFEb+cf8Qrv/hUxgNxPE77zshCxb4Tj2glrAtYVPbxwzMsINNeHQktb0IwSezFECJkQCrWz1oqXMgnpKw/+RM4QfM1YWfJrzMnHTK3hpPe56aGEM7FE/N+nfViU8mspRFdjFTe2imSFO7ZR1w6Rdoq+/oQWDPT7UfI1dJJEvgtNQ54NZ4TTKkUie1JQl48CvA795DnOF1VwM33gPYytjAXkbZOsjY7cVpZVEip5gRPS43oN5p8G/Mk5vh+dfFFQxB0l8kPmKEoUc6CpZEnpH952bK7QN23US3H/lXTem+fPI4rDizm4yD5weNc7UnFPyIw/ykdhNLak9R4fV6HWWR3LRqE/Wa2pTobsEMEqm08h4oWtEpxaAZlNtgFQU0uKro2sTLIvWm+EI1U7tSclgtaK+nc5/mBULRAvReQLfN5mof+TMAGejaqu0cc/4niLudTgC334D/eXQfTk5GkUhJuNcIduk04dIOyr3w1Xv0Pz5TVgcZ24CmVK4ZSe2H2BzyyeMGMIg6NOyfQZcwQf8wuSiy3euEVRSQTMsYC5p0bp6ezdOejiRwlF1jtpcb62j3qOOJxYYg4V7D6KGixyeLWmaa2jypXTO1dalmalexhDCdvLWa2tZWGlzKkgBhDn4kHqZBewI2JP1TgCxDsNth8flmlUSKgv63HDe1AaDu4ovR9dWvQFiMbehtrFCKm9qxGeDZn9DtCz4xaxuzw2rBddvoQju3MFKSZHzj3iP48G/2IZ6ScOmGNnz3Q9dDOPttdIcHvkTbgUZYMmYJmto8hRuwsi1iWk3tcFItiazvogR9CUVcbY4gMTCgPOstwNvvUAd6TBVLEyxgzU1mN1Z7UjtLWWRXsUntcW5qrwc8zcBljKn90FcoTaVFJ5+mr3NKIhWetq/E5i+fFMcD87a4Fq1EGLjzncCjX6d/n/cR4C2/pvK7JSpbO5naa4TT8BdIk0kBOk+Poal4UzvL7hxeMGoojZchxdTOtQuGX8Nby5DUBoBzPgDY68gYPPqXog+3dQVdN/YNThk+xiQriiwJfmROUnsdS2of1ZDUpgUNGT7wokiN28iZqe0UkvAgVvTCiCKGHkm6OxCDA811dojiIgtkFKMOXhZpMKldw49URPw6fFLPWIEjSMzmah9mfQL50COZEkXg2v8k5FdwCOsf+zCsoAXX+w9rHKdkinWAvCAVWRLJpZRF7i1412JN7bFgDIeHaYHvxHi4ZGzuREqCJTgIiyBDtrmNL0ZlFkVmGKQWUVDGr6ZxtZWSSAo68J6iVSyMVHZ1baGviw1BMnqIvsYDlDSvVvHdsc1rij9WOTGJS0iL0BmsySyJ3NR2ajN/BLsdYOlHx8Rs/EiCJbXjohvJITINbZ2dEEQRU3G6UBjhaQOA1edD8003oeG6v0X3d74NwbZIUy5tzJwfZRPiPT+lsrWW9cCG+Vvq3rqTVuoeOjqmMEJD8RRu+tVz+P5DZFjddOEq/Pgd26nQ4sLP0La2/seAZ39MKUF7vZp6WkLiKdwpka2mh7QntVeLpS+JzNRuxtV+us+clEQ8lcYLp8iMK3uaYAGL40eUf1erqc15blmS2gp+ZNpA0iUeBILss9PCBm1b30kD8XiAth8WUnCUGVWCypZkUnjavhLytAFKxHCjy8wB48xp4OdXA4f/SO3nb/gBcPmXZiFWlqRYL8EaYQgTBRJU8Wma8FBS2+B1PEdRJEA4JoC2QRejEbaTIWtSOxEGplkpJl+oLrXcPmDn++j2w/9f0WmoLcvIOCgmqT0LP1IqU3v6JJBOKUntfn8EsWR+jNeAPww34nCAmTdazRW7B7BRCrNZCBS9MKKInYdDdYSFqyr0CKCmUsePACkdTF/O1PbUTO1KiJc1n9SDcuKm9uDTmsvbCyoySXMaANio0dQGKLDyll8jYXFjGw7hi647AAB7B6YwE0nqew2nuam92iRTW3tZpGJqG8SPPHFsYta/+S5Ps3ViIoTl4CWRq4x3TfAAjywBidCsH3Esna73ZD7NKYnkPG3ehVR28cWOoUWW1M7cfT5+pHKvo5JKJ9VxoZlM7XIV2i8R1UztKpYYpSSK7NLO5BUaaXLhnp49oUxHKakdt3iQYjxtaxcVQXH8iBGeNlfbxz6KrltugehcxPxgJal9mCbGT/2A/n3BxylZMEerWuuwe5UPkkxs7ZOTEVz3n0/ivpdGYbeK+PabzsI/Xr0RFp76aVwGbH8P3b7/C/S188ysx17s4gbmONhCicak9mQ4gTUCW5ApcUkkF+dqPzcwhUSq+KKvA6dmkEhJaPbYsaqlyK2QS0iNc3AjVYsf4SkB//F55hc3tSdC8YLm0DzxkkhPGxXYAWTYvvZbAATgxd8C/U/kP8Yphh5pO2Pe7gMlqd1UYlMbyODVmTRgPPUc8JNLaBumuxl455+ALW8359gLXb6VSMECtxBHeKw/712T07QoMik0wW41eF3KwdQGMkztopnaZCBkNbX5pM3Tqr2E0Ayd80GW1n4ROPrXog7Fk9pHRwIIx42VuvnD9Dsqiald3wlYHICcBmZOot3rQIPLhrQk4/h4KO9D+/0R+DhP2+oks1qrMhAkppVFsqT2lIN+N1Vnajcso3O9lAQmdDB9FfxIGT9jNSnqYYvLuor5WjfQ3zsVBfb9ypwXcvSvgJQiNrvObf0h72p8VroZAPB2+c94X9NzSEsyHn55/oJoTiVjyi6DfbJJSW2+oD+8v+BCDy+VNZqwfuxlMrVtFponPtNXGlP76eN+9LKSSMEoegQgTJuFBVLm7KTjY0PTktrTs5Paz7LfzY5KhYWUssh9ppRCl0XR6dnhEL6bs9o0PUjnKZubxi/FqiEjqV3NSBedWnpuV02aZYmxVJVLu4lgbaGTvTs0mw+cilLqO2HJTGp3AVBNbaNJ7SWjlnWAaKV09sNfAyITQOMKYPN1OR/C09q/fmYAb/j+EzgyEkRrvQO3v283/mZrlgnkBR+ntFGaDZSWIHoEUJnaoxJbKNFoak9HMvAjZUpqr2mrQ7PHjlhSwouniscd8C1y23ubFh9XvoTy1fAjpKZeAAKQCM7jDje6bXDZKDk8PKMzrc1N7bnlqt3bgG3vpNt/+VT+0kheEjkHPQKo25xLntQGzN3ad/B3wG2vod0ibWcA730QWHFO8cddLLLYMGaja5E0lt+0khiiJmjViITIJm5qR/yANHthhjO1B/3hwqWVeTQSYEntbPgRhaddppQ2l6cZ2Pleuv1IcWntdq8TXQ1OSDKw3+A1yc+S2i0uQV1g8Jpkaosi0MQKr6f6IQiCZq72gD+MFmTwtPVcIzPKIgdMxo+M2mg8XHWmtiAA7SytrZWrLUk0PgZq+JEKiV+HT07qMBAFATj/o3T70W+ak9bm6JFCBZFZdNsTffif6Fb82kZzrE/Fvoe3Wh7AAy/pQJCMHACkJAJiA07JrYrJXJR8qygYkI4XLFDlJnokkda9ACnLMh59hT5Hb94xO41stp464cfyYksiAXoP5SiL5EltXQst+cSLIhuXI5JI4eBper6KmdptG2khNj6TFR+4IJWZ0gaqN6nN0SO+1eYECb3dAAQgFcvaH1NTdtVM7SqWJc5MDbd2E8HR2UEPCYcRTagTSjlGk4iUtQ7JIUpq2zpptYoztZscVW5qW+1qivKp79PX8z8KWHKzRa/a3IEmtw0ToQQmwwls7vbijx88D1uW5/hd1rUBu9+v/nuJmtocLXEyxQY/WVJ72VSJpPYsrrYJKQm+fbBiA68Fqrkm9tzkdtXI5lRX+ecgSARBQDebGHCkkWYpJZFZylUv/TxN0sYOAXt+kvsYOUoiAXVLaU+pmdoA0GBCCYskAQ99DbjrRhp4rr0SuPFeFZ1QRZp0E+LKMvlK/juy83TIXoSp7W4GBJG2J4dnb63uaXJBEIBwIq2YrkY0MpOnKJJP4spREjlX53yIFq2H9wMv31vUobYoXG39pnYqLWGabeFvkfwAZEpWm5mqnVMWua6jDgBwdKRwUrtZYGaI3tczy9Q2K6lN5+BB0Hi4pb4KF1v1crVj05R6AwB3LaldCS3jqAe9BuKWG2j8ERoB9v68uBcRDwLHH6TbetAjAGaiSfz4UVpQqnvN54ENr4NNjuNrtp/h9S9/BsmQRhwgQ48cFtcCEMxJagtCRio3P4LE47DCbacgwoROBMmRkSAmQnG47Rb8w4WUcn9pOIBATCd+pYAkScbTJyaVpDZ8RSIvc5RF8rGh+UntHuwbnEZKktHV4FTM87LLYlPn7IuFq8152gLD7I3r2I2zlKSURBaxoJMpqx3w0kJ4rSxSu2qmdhXLEqdJn1CvvcTK2UNmgCsWn9VALMdpopG2eZBk+BFbF30gJ2NkwjU6jeNHloz4RFiWgLoO4Oz8W9QdVgtu2E2Jpdee2Yk7bzoXnQ0FLrjnfogMJkEEenaY8aoXnHhSezDB3rsayylC4RCWCWzVc27itITatZJMnKeNlEVmSJJk7B2gpHbN1J4tXwZTu95hhc1SxZc3PrDKVxap29Rmg9XWLItBbh9w2Rfo9kNfzb5zIhUHhvbR7TlJ7bQkK+WV5U1qnzL2+EQEuOvdlJgF6Jz71t+UvHh2oSpUT+83T+BY3vtZIpTkijqKMKpEi2p0zVnMdFgt6GLXx2JMScXUzprUPkxfy1USmSlPM7Dz7+l2kWltztU2UhY5xQxtQQAaEuxv0NBjnKOaTXPKItd30Gfr6Egg50PC8RTGg3H4BF4SqdfUpvs3g5LaxaT9FbGk9ok07TAwJem52MS52iMvars/5+U7G2lyX1PZtYxdh09PRZGWdHwOrA7g1Z+k249/m1CLRvXyvZRmbl6je2fMzx7vQyCWwtq2OrzurGXAm34J6bIvIwkrLsOzkH5wLtD3WOEDsTLH59NkCptiagO6yiJbDCJIHnuF5jq7VzWjp8mN3mY3ZJlQiGbqpeEAZqJJrBRNSGoDs8siM9TDOe9mJLXjQdU0b1imokdW+iq7A1ZZ7FgkXG1uaq+6iL7qQUwtJZlZEsmlYBJrprZWVfGsvyYxQRMTS31DgXuqsvb00o0oMDahpqSEBE0iJHudih/pmp3U9jlrJtysdNe5H6IBYAF95LJ1ePiTF+F7b90Cl11D6ZirEbjx/4B3/FE3g26xiCe1j0WZqR2dItOsgLzhfoiCjLTdW9ZtrTyp/dzAFJJp46y0V8ZCmIkm4bJZcEZXdRpouZTJ0G70VGlKm0vhas83GZWySL1pFwU/kiWpDQBb3gF0bc1dGjm8n7BI7pZ5k57RQAyJtASrKBRetDNDDUXgRwJDVAj50h+oEPL13wOuuGXpF0LmUbKJ3hNNkb6897NFaZKddGos78slhas9n43KF0WM4iOCsSTCbBdaXqZ2JZLaAHDuh4nbOLQPeOX/DB9ma0ZSW695y3najS4bLLw8tqHb8GvJqrmmtoIfyZ3U5gsZy+zsb6+1JJKLM7WFGYQTaUyEjKf9AVDJXZQMpKNxduxqNLXbWVJ79KC2hRi+3bqGHqmY2r1O2CwCUpKM4RmdY4Wz305oxfA4sOdnxl/E4T/S142v17VgNhVO4NbH6Vr0scvXUe+QKEI8/8P47sof4ITUAUdkBPjFNcADX6KSt1xiSe2n4pQ+Ns/UNlAWqdvUpjn6BWvp3MODMM+azNV++oQfFqTRYwZ+BFCT2jmY2sPTMaSKmEcBUAMNzgbA6VWwLBUPC2lM8C8YcVN70xsBCISFm7ODrirEA0RmlERymYlJrBLVTO0qloUVhVkatCeobd2UGk5FLQiMqyk3kbUUS5lJbY4fYauhxRRFLhnxxIrLB2x/t6aHWEQBvS0efavHreuAlRcYeIGLQzyVOxC1Q7awQWYBrrYsy2iNUTtxqnmduamyAlrXVo8mtw2RRBoHTs8UfkAO8YHXluWN1Z1EzqKmjKR2U7XytLn4wMo/P6nd3UhGnS78SDqlHivXDgdRBF77TVBp5O3zSyMVnvaueZ89jh7pbnKpxbelVKPBoshjD7BCyBfoHP6O/wW23mD+61tsaqPUcnt8ILdplU7BEafzV8pdrKnNzK58ZZEGk9o8pe11WuG2z0GDRaeBAMNXZduxUA55WoAdLK39sPG09qYuL+wWEf5wQilp1apJZvY21znUCRdfKDJLfAv7JMOPtBN+5PR0FMEc2+f5QsYKJ/v/eHRibpgJ3sNM8cHJIrna7LWjvhOnI3ReM80UW0xq3UB9MtEpWhQspDAzx/QuStRkmiyioCyA6+JqA4RRuPDTdPuJfwPi+ZFBWZWMAq/cR7d18rR//NgJhOIpbOz04qpNHbN+tmHrq/G6xFdxt/UyADLw2LeAW69SP6uZCvuVRbUXpFWwiIJ5Y0tuXvpfURa+ckkpi9SBH4kl0wru8IK19DnaubI0pvZTx4mnbUWaMFT1XcUd0JU9qd1W71AWWkYNFmcqUtAjy5FISXie7Vjiv6OKqWsLfR15sWCJaMUlSSqOrWeHOq6uRq62gh8xMandaAImscpUc0WqWGKSVjrtjdpP4tZ2SkiloiJik6eV71uSbNAiuSBHaQBkZab2JJvIVj1TGwDWXgFc+jngLf8N2D2VfjWLVpyXnJYA2ZPb4MhUOJFGL2ghxtJWXkNCFAVlsPTkMeOr2AsmTbAA1ejKSGpXu6nNd2iwre+ZMoQfmR4ApCQlRPOVwXVvA7a9i27/5ZOzE1Dc1F4+n6fNTbWyoEcA1YALjwFJDYWZk33Ab94G/OpvCHXUuoEKIXvPK+3rXCRydmyAJAuol4O5UzqRCQiQkZYFiMWyl3lSO5wlqc1Mbb1GLddIIA9Pm/Mivd3qxLsSUtLazwPH7jd0CIfVgk3dtNtHL1eb88p9Hrtq8ntLmNSWZTS67Wj3krmTK63dzxYyum3s57qT2nT/Tvb4/okit7nz869vlcLDrcqkts2pLoZqKYvk55CaqV1RLVPKIg18Ds58C3HxI37g2R/rf/yxB4BkhPovuNGnQROhOG57oh8A8PHL10Gcs0h+wdoWJC0ufCB0I0au+E/A0UBp7B9eAOy/ffbBWFo23rAKAVDhu2mL7p5mtTegAGrCSFL72b5JJFISuhqcWN1Kc00+B3nx1DRiyXS+h2tWKi3hmb5J7BIZlqt7W/FFeTmKIsWMhZbBYjsPeElkQw8ODs0glpTQ5LZhTWtdccctVr5VhF9JJwqWiFZcM4NAIgRY7DTn4Ei2auNqJ6Nq8t/M3fENBsM3VayaqV2lktJpCNzU9mmfYFrbyEBMxy1ITqgfNGuKEi1CjN5SlpYWiA66EPOkdpOzZmpDFIELPgGsOKfSr2RRy2mzKOUpCTcztQsktafCCawRKCVkbSs/D/XV62iC9qNHTxgekO3tr/G0c8lqEVHvpGSlr1pLIrl8Gab2nCQnnxToSmrzQWrzmsITlks/RynmsZfUyaws5y+JZCgUzkwsuVxNgJ1NXvJxtRNh4IEvA9/fBRy9m8pwdt8MvOe+4suQlpB8jV6cktk4IhdTkZ2fJ9CAOleRxl4dM7uy4EdW+GgCbxQ/MqyURGbB4PBUUiV42pmqawW230i3i0hrb1lGY7LndXK1J5mp3eyxq5+fhjyLXUbUSLsCEQ8oSUaVqx3M+hD+N28Ri2NqtwiBWcczLLYlWWpapXDIW+qqdMGV71Ic1WBqh2pJ7YWgdQz5w8MUumSxAhd9lm4/+R9ALDcLP6sU9Mg1unZV/vDh44gm0zirpwGXbZyPr6l32rB7Fe3g+GNqF/D+x4Hl5wCJIPD79wG/e6/6Whl6ZKrpTAAl2GXRow1BYsTU5jztC9a2Krt8l/vcaPc6kEzLhgqCs+ngUACheAoX2ti1ceWriz9ojqJIANjArgGPHxsv7jm4Udi4DHtYcn17r2/eIkjZlVkiOrTAudocPdK6nnZn8N1r1WZqT/YBkOl96y6iBH2uavgR3aqZ2lWqcGgGUpL+/O5W7dw6S2MjYKGTvnV0QPm+Pc1M7QhNrjh6RJZlTMVpQlIztWsyU3wbYMzBJj6FTO1IAquFym0df9P2Zdi6vBHBWAof/M3ziKf0JSVOT0dxejoKiyhgy/IayiebOJam6pPaTSvIgE1G5pWo8qT20EwMktYCqImX6auWctVZpZFfAwLDlPQOjRKDuvPseQ85We6ktiBkcLWzbO2TZeDAXcB3twOPfZPKqlZdBLz/SeCqr1VtIWQutdQ5cEympG5y5HD2OzGjalxuRL2zyEUnhamdGz9iNKk9qpREZjEwFJ62vtKykui8jwBWFxkvxx4wdIitK3hZpM6kNksdN9eV0NS2u6lMGwCmCA2wniFIXh7Nbmr3MxO6UWYJP4NJbW96mh3PnKR2uI62EZuKL1hs4lxtTUltZmrXmNoV1SUb6Pf/0NEx7WOFTG2+DmheS4tSz/xI++NSCeDoPXRbB3pkNBDDL5+meenHLl+XE9l4Kft/3X94jLb4v/PPwMX/RGOmA3cAPzwfOLlHKXEc8mwCUAJTW2NZpDFTm/G016kLe4IgKIEYQwsVWfTUcT8AGedZzDS1s+NHAOC1Z5K38Kf9w8UV+SrXLbUkcudCCQstlrJIbmrzc7uS1K4y/EgmT9tMrClf2J8eLKoUvJpUM7WrVNHQDKQkffgcTdpXlgRBAOppW67Dr7Lx7Gka/AshMuq4qR1KhpCSUgBqTO2azBU3MIN2NmgL5Te1J4NRrBLYfbSYcybLZhHx3bdtRaPbhhdPzeBrf9F34d/LBqGburzwOKwF7l2d4mZ21RoHXBYbGdvAvLLIjgYnRAFIpCRMhDVOkpSSSI2fmy030MA8EQTu+xc1pd11Nm1FnyNuQC7zlaEkkisXV3t4PxVB/u49QHCIJr1v/jVwwx8UdnRNs+V1WnECZGrGc5radO4dkxuVHRWGlacokpvaE6EEQvGU7kMPBzQktStVEpmpujY1rf2IsbT2luUUNDg8HEA0oX2RVcWPOIAZtlBstqkNqLshGNeWJ0dzJ7XpPOJOsuS5XswNM7VdyWmIkDBgcGFEETO1pxz0u/F57JVPAlZKPKk9omFLfQ0/siC0o9eHeocVE6EEXjhlINmbmdZ+6rvziv9yqu9RID5D5/ksO7ty6fsPHUM8JWHbiiZcuC73e+fSjXT9eG5gCtORBL3OCz8NvPuvdL2fHgBuvRLofxwAcNxOIZhWs9FBmWWRec7f/HknNDK1xwIxHBkJQhCA81bPPgfuMpmr/dQJP9YKp2kh0OpS0+fFKEdRJABcurENLpsFg5MR7D9lvJ+Ip1+lhmXYO7BAeNpc3Vvp60Ivi1RMbVr0QQsLi/EQTLWIz7HM5GkD6pgqESrI3a+JVDO1q1TR4BTSKYYK8epLnYlNdH/3tMrOdErM1GYryXNLIl1WF5zWLIzKmmoyKF4MOGNhizIFktoJfz8cQhIJ2NUChjKru9GFb11/FgDgtif7cc/B4QKPUMWTFdtXLJCB1wJUM3tP+DxVjh8BcpZF2iwi2r28LFIDTxrISGqv1XZ/UQRe+y0AAnDgTuCp79P3c0xQy57UBjKS2szUDvuBP30U+NGFwOBTxCy++J+BDzwLbHxdWYtlF5sEQcCogxZR5LEcW09ZqnpcboS36KR27h6FeqdNWfA0gnlSk9pZxiv/P3vvHd7YeZ553+eggwBRCPY6vWmaujQaaaSRJcuyFMl2HDsuUZw4diInm1iJE2edzZf9NvGX7MZZf97EThzHjlvsuMiWi4rVJWs0RdJoNNLMcBrbDDtBkEQHztk/nvc9BwABEJUEifd3XboORNRhAc65z/3+ngne1C68vswAACAASURBVK6Rkxv7/gtgtAIjR4ELzxZ99w6XFa2NFiQUtagBxlw/0maJUfgEVN6pDehebTbEjS89PzM+v6ilF4knmTpGhYnNcSk61GZLhyUocGOhfP0Ie+8dN9H3pi592hweas9cWHpwoNCP1ARmo4ybt9DP4KlT+WfW5GTH/dTgjASAl79Y2H1O/Zi2W99ZsJ/50mwY3zlCn+UP5WlpA+QK39zqQFJR8Vx/isai5zrg4y8CV7wbUJO0QstgwWmVPtsq3tRu20mr10JT2om7bBTb1OYt7V2drrQB6gBwDQtuXx3yI55USnjROrGEgqMXZ3CjzMLNnusBYwW+RzkGRQKA3WzE27bTSYlHjhcwdDYXrMwwlPQiEI7DbjZgR0eNrMDrYKH25Bkgmv0EbsEc+ifgf24s7GRisfBQm5/kb2all/nRwk9grQW0IZEV9GkDgMkG8JlhQkFSECLUrlPC836tqS03FDcYwdhMO/72hQBUVYWiqLCp7OAxQG5UUydNP9bUI2JIpKDCcG/yNNjv1hKhtjRJwdyEuQuQDVV9bfk4uK0VH7t5PQDgT75/ouDg5ehF3iYQf0u5eODGPty+rRV3ZEy8r0u0YZHnF13VUYxXW1WL049oT7JXb5KOHqdt97WLbhaJJzHBDta6l8upDehN7ZmLtDT6C3uBV74KQKWD2k8cBW75E9qxFCyJ394HADD5z2a/wTwLteGqalMb0E+O5AwlZ4eAr9wBfOu9wAufA4ZeBhL0O8id2u2ZgyKDU7oWYaWd2hxnK7DnA3T55A+KvrskSSV5tXlTu12api9Y3YClCgO2UodFAtjY4oAkUag+tRBLuylf7dFhjUNKsuuKdWobTOTbB9AkzWE2FEcgFF/iTjkI+4EwhesjEn0e1a1PG6ATDM52AKq+4iEXQj9SM3Av9VOnsr/XLolsAA58mi6//E9AaImGcDIBnP4ZXd5+b8FP83+ePotYUsH16724cePSf/e8rf1k5r/L6gLe/RXgvi/REMkd92EsSOFvxUNtk1Ufgjn4y5w38/FQeyFakHIj1aedyeYWJ1w2E0KxJN68XKTnPIMTI7MIx5OV9WkDOQdFcu7dTfnCT09cRrIULU4ipmn5jvppBseVPR4YDTUSiTlbWelCBS4fL/1xQjPA0/8DCE5SuaSSxEL6sQXXj1hdgJN+Nmuyra2qNGdn7jIw/hYweAg486jeqK90UxtIWVGaRZMoWESN/AULlpv47AygUqhtcDQUdV9bB71p2cNhzEcTCMYScIDCEXWGPiSNrKntj9CBktsq1COCysIbCOM81M7S2kvFPEthi9++8gPe/vjOLbiq11OwXzsQiuMM84heJZraObl5czP+9Teu1prIdQ3fwZq+sOgqPizykr+AUDs4yQb2SMXvtN32mfTBKV2LQ+0RP4VRTosR7uUc8Mmb2ie/Dzz6KTqAat0JPPBz4D3/Vh2dwhom5KLfDWt4PPvBKHt/nqiEU5s3OCOzWhidCleQ5NRHvPQFYPgwcPZx4Km/oqXmn+0G/u0uvGf2KzggH0e7NT00xQTTqrh7AXNx+0xVhTtn+x8HlOKbd7pXu4hQmy2Db1VZy5H/LVUaT7p+xGY2oJedsMj0ag9M0QmMnR4WQpsayMtdLOx3a6OdfncGZ0psazP1CBytGI/QSZyK6wtWG5pX+0T+2wn9SM1w65YWGGQJp8fmtRVVRbPtXvrZR+f0VVu5GHoJCE3TyaXefQU9/NB0CN87Ro7kh+4obF4OD+ufPTOxuLEsScCe9wOfugDc/89aQ7rioTagB8EXnst5E34yLJ5UEQjnP8mmKKru0960ONyX5RSvdpkKkkPnpyFDwfUy+2xcd0tZj6eRZ1AkQJ7wRqsRE/PR0jQqc5cAqIDBgueZPeuaWvFpcyqhIDn8z0CcfX5xBWClmDwNqAqdOE49+cjb2qvVq+0fBB79U+D7HwG+8S7gyweBL1wF/N0G4P9tBv6mA/jcNuCLNwBffTvwH+/TT9JWI9R25dAkCrIiQu06JTGrn52W7MXt+Fu6SN1gDccwHoggGE3CIVG7KTFFB0am9oymthgSKagw3Jt8OcGWjM3nV3k45ums8ryzwkuESsBkkPGF9+8t2K99bJB23Nb7GqqzYy1Ye3hpNUCmUxvQm9qXCmlq88aFpzerDzsvdi9w+1+x17MBaGxfdBPesOzy2vMuGa44fAgLANi8wN2fAz72HNBX2IG0IB2bswkTKjt5PZWlrZ02KLLMprbNQ8u2Ux43lV6tqZ0lhIlHgBP/SZev+SiFwnYfLTUfegkfUR/G18x/hy1fuwL44k3Az/6YWtDMr1oTPu1UevcBZge1W0dfK/ru3Kv96tBswYO3uH7Em+ChdpVOAGU0tYHcXm3+s97iZCc5ilWPcFiQuslBj1PysEimTIF3A6ZYKOar98/uQrza0QUacAyIULsGcNvNuKqX3iNKVpDIst7WPvwlUn3l4tRPaLvlblo5UQCff+osEoqK/Zt8BYeTe7o98DaYMR9J5B6aaDACkoRJdhKvKieleKh98bmcXm2L0QCXjb4XSylI3hqdw3QwhgazQXtvz4Sv9jxcbqh9YRrbpQHYlQXA0gi07y7r8TTyDIoE6Ptx1xVsYOSJEhQkbEik6urCkUEKzmvGp83pKDPUjs7T3xrn8qtAssRVR9ngQW7r9nQ1nzYsMoeGrtZ58i/p+3byB8D5p2gQ9/Q5UgQp7PsnGais411PP6cNtwE3fbJyv/+pcFWq0I8UhJg2VqckZylsVk1S0UGCsYuFgmFganoaks+HToShJIHkDH1AcP0Id2oL/Yig0vCm9lCcndUPTdOyMmP2Jb6e0AAAIOZe+VAboGDxc+/djY987Ri+9tIArlvnxV07F4d+AHB0gP5er+4Tf0eCAuH6Ef9FQEmmKXc63RROFxVqlzpcde8HSeGRQ9kwPEOvoWc5h0QCtOx31/so/Nr/EAXwgpLxOc04q3SixTBLBzSZA6NSBkWW7dSWJFKQzI1QqO1Obwr3NFGTeihby/b0T6kB1tgF3PW39HehqsD0ecyceg5PPf4jXGPoR580Boy/Qf8d/bJ+/5Zt5b32SmM000HVqUeord15VVF339npglGWMDkfxaXZMLqWUAAlkgpmWVvQGWUhl6sKPm1AHxQZGNE+27e2OfHEW+OLQu0BpprZYCszEGVh+Dr2OINTZTa1veu1AW91rR8BgDbe1H4j922C7ESJyV4dpY2gaG7f1oIjF2fw1OkJPLCvxJWOW+8G2nZRS/+lzwNv+++Lb6MoeqhdoHrk/OQCHn6tuJY2ABhkCbduacEPXh3BU6cmcOOG3CfBqtrU7r6O5iIsjNO+VnP2f0Oz04JAOI7J+Sg2sRN72eAt7Rs2NMFsZL3FkWPAjx8E7vwbYONBXLuOVs8dG5yBoqglDa+NxJM4NujHA9yn3buPTgJUAh5qxxYoiM1ycuOe3R347rFhPPrGKP7q3h0wFaMOYQFhpKET45ejMBkk7O2psdXk/HP80qul3f/YV2k/p2kjrXyJzNLfXpH7BznRhkRekf51/vu7GkPtWBA48xhdvuVP6aS61UW/j1YXud6tblqpt1wFHB5qC/1IQYimdp2izrFQ21y8W9jEmtrxsAFzkyMIhiOwSTEkQvRYktUKg5s+IGbYwB63pcY+MASrHi9rag9HrCmtvRxNElVFa3QQAKD4Ct/xrTa3bW3Fx26hRu2n8vi1j/EhkbW2RE5Qu7i6AYMZSMa0Zgqn01OEU5u3bksNtSUJ2PkePdDIgDe1l9WnDdAB2Lv+Gbjzr0WgXQF8DRacU7lPMeOARlWh8qY23Gi0VeDgly95DS5uavc15Wlqv/p12u75df1EjyQBvo0413U//iTxcfyG40vAQ2eAX/134LqPUwNHYrvLG24t/7VXms1vp23/Y0Xf1WoyYDsbkPXq0NLDnfyhuFYotIVYS65aTe2GZgo3oWoHdZvbWFN7PHtTu8vCQ+3ymtqdZgqzcypslkIbHrVe83/X9aBIgEJNgFp+Sg7lGg+1S/35CSoO90+/fGEa85ES256SBNz6X+nykS9nn4dw6RituDQ7gfUHCnrYzz95FooKHNzagj3dxR1n6r7w8ZyrVEKxBBaiCQBVCrVNVn2Adh4FCW+J89Z4LrL6tA/9I+kgXvh7AMCOjkbYTAbMhuI4O7HE0NYcvDY0i1hCwQEzW2VaKZ82oOtHACCS3ft9w4Ym+BwW+ENxvMiC/IJhKocx0HvMzk4XrKaVm7OUlY49ACQ6cT9f5AqJeAQ49H/o8k2fBLquocvDRyv3+sbZapvWHelf963iUPvsE0AiTGH2gU/TPuLWu2n1ZtsVtJ9jcSzv0HiXcGoXgwi165V5OnhRzcUfXBpbaQcnEZYRnh5GZIGWCMVZqG1qb9fa37yp7bWK0EBQWTwNFGT7w4mUwWE5PvwXxtGgBpFUJZhaNi3TKyyMP76D+bWjCTz47cV+7Ug8iRMj9Dd2rQi1BYUiG/Tl+xnDIosaFMl3TksNtZeAezp7mpY51BZUFJ/TjHMqa+xOZgwJis5DYkqBSdUFh6WCoXaW93z+u3R5NoxYIsWX6h+gZd4AsPcDi+43NkcatdZGK+BsA3bcR23ujz0P/NkQ8EdvVvbgvVJsehsACRh9nYYYFcmVbJl6IV5trh7x2E2Q59lzNVYp1JakRQqSLayleHZ8HkrKkDDe1G4zsLC7zFC7RabHyTlsdCmyNrXrPNT2rgeMNtKLzCye9QBADzsbxJDIWmFDswPrfA2IJ3Vfc0lsvpOW68dDwC8/v/j6t36s38649N/KmbF5TT/xR28rfv9k/+ZmmA0yBqZDOD+Z/e98ap7e76wmuTKfW9lYz1zUF/OE2nxYZB79SCiWwDG2qlPzaScTwPmn6fLgS8DCBEwGWVPKHLmYRwWTh0MXpmFCAleB+7Qr+LloMJJSC8jp1TbIEt65iylIXi/yMy9AAeHZKJ0E4c31msLi1Fc3Xi6yrX38W7Rf1NgF7PxV/aTJ8OHKvDZVTWlqZ4Ta/DUHhqj5vJp482Habr9veYPrfAj9SFGIULtOkYJ0dla1FL8M2NhMO/1qUoY6MYhoiAK3cJCas6Z2XaHAndpiUKSg0niZfsQfjFEAAQDzY9lvzBQKQ2oLPI25l+6tBKl+7TcuLfZrnxgJIJZU4HNYtAFoAkFBaMMi00NtPijSH4ojFEvkf4xym9pLsGJNbUFFaWqwpITaGTMCWFA1r9ogmRtgLGapcC60UHtx46/ZYYHdbICiZih2XvsWbdfdooelKYwF6LbtrizueIuzdoeHOlr0ZcVnnyj67nzpdSFN7ekghSreBrN+oFXN74s2LJIc1X2+BpgNMoKxpPazjSaS2gk6j8RCbXupoTbdz6PS96J0p7YItRchG/QQJJeChDe1HSLUriUObqWfx5OlerWB9Lb20X9N319X1aLVI//7yX6oKvD2HW24otO19B0ycFiMuG49FUVy+cInF+hEZ7PTUr2ZH+sO0HbghZwrGLRQO09T+/DFGcSSCjrdNqzzsWHGl15JCYZV4MzPAeiDEY8MFD4gOJWXz09jl3QeFjVCfuFKz5rQvNq5P5Pu2U1Zw+NvjiESz7HyIxusqf1qgI4FuWO85ihlWGQyAfzyf9PlfX9AerJu1tQeqVBTe2GCdJ+SvFgr2NCkf/ZO9S++b60SCwL9bN9px/0r+1pS4Wq9sJ886YK8iFC7TpFDLNS2Fr+TLVutgJVa2caxQcRYqB0J04Eg92kDgD/CBkUKp7agwnD9iD8Ug8qb2jmGRaqsbXpO7dRc3LVEh9uGf3jvHgDA114awKNv6P8OPsTmmj7P8g7SE6x+tGGR6aG202rShvXlbWvHQlqrpRqhtqqqGPHT83d7Rai9mvE5LDinsFB7dpCWwHJSfNplD4nk5FmdI0kSetjvE2/wQklSgwkArvxw1occC1Bg0NZY5EDUWmALV5A8XvRdeVP7rcuBJcMB3tT22U1A4BJ9saqhdh9tWVPbZJCxvpkCG+7VHvGHoahAg9kAW4wNPyvZqU33a0hQmDI5H136xF8mkQANlgKQdK/Tv2fO2tv3WHaW8moL/UhNcvt2er995vQEkkphA2WzsvEg0HUtkIgAL/6D/vWxE/S5YbQBG29f8mHevBzAoyfHIEmltbQ5tzO1ylOns+hQkOLTruYJqY49gMVF7xujx7PepJCm9gv99J5z82affqxw7he05YpGduKAD0Y8cnG64AHBnHAsideG/biR+7T79tMw0ErCFSQ5hkUC9LnV6bYhGEvimRw/v6wwHd/xeSckCbiqt0ZXwGqhdhFN7ZM/IFWF3Qfs/RB7nKsogA4Ml7SSaxFcPeLdQPNyMlmNXu3+x3X1SDUGPpaKxamf4JkVbe2lEKF2nSKHqX2i2kobziU10v2sM6OIh+jAIhaiHXZjSlN7NsoGRVpFqC2oLG4WaisqELPnXooOAIlxag6eVzvgsZc5pKxK3Lq1BR+/hYb7pfq19VC7Rne8BLULHxaZoR8B9Lb2pdnIous0ps/R1ualBkaF8Yfimq+yy7PMgyIFFcXnMGMSLgRUO6Aq+u8OoL0vT8EFZ7lDIjlLKKd4qK3NKTj/DDB3iQ4Qtr4z633G5ugES1u2pnatw73aF54F4gVohVLo8tjgc5gRT6p483LuEAEAppkfutcaApQ4HSw7sw84rgh8WCQLtQFgS4ZXmytCepsaIGmhaHmhtjE8BTfbV8jqZs/HBFup4GjFTMICRaWSKj8RX9e07aQtD0Yy0X5+oqldS1zd64HLZoI/FMerBWiKciJJwK1/TpePfVU/MfbWI7TdeJAGsS3BP/yCWqDv3NWhvR+Uwm2sgf7KoB+zodii66s6JJIjG4C+m+hyDq82X+WRN9TO5tM+y0LtG39ff/xIAHt73DAZJIzPRbVh3YVybHAG8aRaHZ82h4fa4dxNbUmS8E7W1n6kUAWJomih9ojqw5ZWJ1y22jwm1IdFvgIUcuJBUYAXP0eXb/g9wMyKIhYn0MJWyAwfKf915VKPcFZjqM3VIzvurx31CEcMiywYEWrXKXKUBRn20oIE2UsfOPbANJJhOghKhOjXydQumtqC6mM2ynAyx13QzFo9OZrayQn6cB2UumCrtYEgKTx0x2ZcneLXjsSTeGWQ/oZEqC0oGi8LtafzhNr+PAc0fPlglX3arY2W2hvUIygK0kFJuoIkdVgkHxKputFYsaY2P5E5mfXq3sxhka+xAZG7fo2Gc2VhLED7Rauyqd16BdDYSb7aiy8UdVdJkrBX82rnV5BMs9bxOjNrRDvbyYFaLbS5ABe1L21mXu1+FmoPTNHPuM9np2XRQOkn4XgYHpxCbxOFa0V7tQd/Sduua7QQyms3V0a7s9ppZaF2rqa25tQu8aSEoCoYDTIObKGfSVkKEoCGQPbcCCSjeginqUd+Zcm7Hx+exZOnJiBLwB/eXt6MnG6vHVtanUgqKp49s/izZFlCbUAPhnN4tZdqao8Gwjg7sQBZAm7cwN77Fib05vf1v0tD/JQ40P8ErCYDdnVRA/RwkV7tQ+enYUEMu8E+49fdUtT9C8LG9SP5T7Leu5vyhqdOTxQ2xDQ4CSSjUCFhXPXiunU1fFzVsoOGvUdmc88gSOXMz0n9ZmkErvnt9Ou6r6VtJULtibdomzPUZkqS1RJqRxf0kz+1pB7hCK92wYg9rDrFGKEPRslR2hluUwsdUNqD81AidGChhOjsFndqx5U45mI0uVg4tQXVwM2GRc4Z2U5cjinRhmkK5yatvTWt8DAZZPz/798LD/Nrf/TrxzAfSaDBbMC29tpygQtWAdypPTsIJNN3+AsaFslD7Wbh0xbkx2iQ4bGbdAVJ6gHNfKp+pEKtqIb8q3N6WCA5NBMEglPAaXKJ4soP5XzI8TmmH1mNTW1JogFrAND/WNF3173a+VuYM8yp3SWzULuxs+jnKopU/Qhrq23lTe2xxU1tlNvUtrN9iWgAGzxG9vhFNrUHXqRt337h086kdTsAiQoIwSxDBzWntgi1a42DXNVxqgjVQzZS29qv/Dtw7kk6CSqb9PewPHzvGIU79+3pxIZmR3mvBcDBbbl94dxh3eyo8mcCHxY59DKQWBxcc/3JVA6nNh/guavLra1ixbmnaNu+h04Cb2MrlE5RK54XZfhq0EI5dGEaV8n9MKpxwNmhrwisJAXoRwBge3sj1jc3IJZQ8Iu3CjjZwoLBacmLOIy4ppZDbaMZaNtFl5dSkKgq8MLf0+VrP6p//zg81B6pRFObrbJZsql9Ovv1tcZZrh5Zp3+/awnR1C4YEWrXKXKMAo5SQ20782bbwxEszPmhqoC6oADQndqBKH0YSZDgMhc/xEMgWAq+nHdG5s2ELIMiIwGYQrSz429Yv1wvrWQ63DZ8jvm1+Y7qlb0e0fISFI+znRyVSmLRDlGHph9Zwaa2n8KiHuHTXhP4HBacVbOE2ilN7co5tXMPigSAvtSm9onvUkOtfY+uP8hAUVSMz7Gm9moMtQFdQdL/eGHLlVO4stCmNtOPtKosfKz28Ex3DwAJiAe1wJM3tc9PLiCeVLRhjn1eq97ULnVQpNUNyPQ7utVJAVJRwyKTcQqmAKDvJi2EqnrTc7VgcepKmWxtbaEfqVlu2dwMoyzh3MRC8asXMlm3n9rJShz4/kfoa+sPLA7jsnBhkp77pk2V8a7zsP65/knEk0radcvW1G7eSkqtRCRrm5Y//3QwhkTGawT0Y4WbU78n3Ke96W203XYP+/qTQDystZSPXCw81F6IJnBiJKD7tNfdXB1dQwGDIgFaZcTb2gUpSNh+8ECSjhmvrfUVsFxBcnmJUPvic3Qbow247ncXX89D7dHX0+edFEsyru/b5Qq1fSzU9l/MeoKm5njzR7StRfUIALjYsEgRai+JSEnqFAMbfGNsLC1sNnf1AQAs4TgW5maRjMpAksSBxlbaQZhlH0YuiwsGWSwtF1QePvRxCkxvM58l1J46CwAYV92wOlbHioFUvzYAXF2rg0wEtY0s5xwW2ekpJNSmv51q60e6RKi9JmhymHFOZfoxfkIEyBgUWWGndjxIy0cz6PXqTW311W/QF/O0tKeCUSQUFbJU5aFg1WTdzXRQOzeiey8LZFeXCwZZwmgggtFA7vcErh/xJZcp1DZa9DY482p3um1oMBsQT6oYmApqAdt6Z5JO4AGlDxqUZS0Q32Cng/+iArzR1+l30uYBWranNLWFT1ujlQ2LzObVFvqRmsVlM2nt3ifLbWsDwAHW1uZt3O33FnS3tJUZFWBPtxtNDWbMRxI4mhHwLluoLUl5FSTeBjNkic5V8sGzHEVR8SL3aW9mfzdKUm9qb2ShdvseCsjiIeD807iy1wNJopN2E3OFBZ1HL84gqVTZpw0U3NQGgHtYqP3i2alF35tFMJ/2JdWHviY7WmpdNZbq1c4Hb2lf9RvZV7l41tHnWjJGn1GlMn2eHsPsAFw92W/jbKPBp5mzVWqR6AJw9gm6vOO+lX0tuXCzUFvoR5ZEhNp1iswm3BtcpYVlxm4K3NQwYAyOIh6i0Nro80E20867P0rLWN2W1REkClYfvKk9qrDfseDUIs0CD1fOKZ3wrKJBTQ/dsRk3rG+CLAG3bxetJUGJNLFQO2NYZKebduZz6keUpL5D6ivPW5kLPqBINLXXBj6HRXdqT58Dkixg5E1tuCrn1LY4ABMLNbIoSDrcVhhlCduSZyFNngKMVuCK9+R8OO7TbnZaVu+qGJNNX8ZepILEbjZqWo98bW0eGrjiLNSqdqgNLBoWKcsSNrPX+ublOYywuQB9VtaotjRSGF4qLFDtsVJ4VpR+ZID5zHv3AbKMKdZsF/qRFPgS78ymdiKmNzMdYp+nFrl9O1eQlOnVBoDeG4ANt9FlyQBsuXvJu0TiSYyyAJbPTSgXgyzh1q1cQZIe1i9bqA3obuoswyINsoQmPiwyQ0Hy5uU5+ENxOCxG7Olmx0Ijx+hvyeoGuq6mr0mS3tY+9RO4bCZsa2sEABwpUEFy6MI0HAhhm8L2DdftL+IfWAQFDIrkbGh2YEdHIxKKikdPZp+rpMGCwctq0+qYU9R5JW1HX198bMsZPgpcfJ5WGPGBoJlIEtB9HV0uR0HCT0S2bKcTwLmea7UoSPofo9UR3vW1qR4BUvQjItReilW65y4oFylOy5cs3tKG6Zi6egEA8bAB3colxIMs1O5o127Dh0R6ravgg0OwKuFN7ctxO1syrC5ejs6WSp1TO1ZVqG0yyPjGb12Ll//8IHZ0CH2PoES4Vzuzqe2mA8KxQARJJYuqYHaIdvYMFsDdW5WXpju1SxtYLKgtfA4LLqk+xGULtXlYCKk7tT1otFWoqQ3owVdw8YAvo0FGp8eG9xqeoS9s/xV9+FQWVvWQyFRSFSRFwhUkrw7m9mrzUNseZuHBcoTaHvb+kzIscgtTkDx9egIJRYXVJKMJNMOl5JY2h92/1UDO7suBMKKJZGH31XzaNwEAplgo5hP6EZ021tQey2hqh5hjWzbq+gFBTXE7808fuTiDQLiAwXxLcdtf0OqS7fcWNNx1xB+CqgIOixFNDZXbn+f/rqdOj0Nl6iZVVXWn9nL8/fITkpdeASJzi67mK4gyh0U+z1raN2xogomfkOXqkQ23Aakrpbcyr/aZnwPJOK5lCpLMhnouDp2fxjXyGRiQpPavO0dbt1wKHBTJ4QqSnyylIGHB4CXVV9s+bY53A7WeExF9QGMmfNjq7vfl/zzuvoa2w4dLfz18BVgu9QiHz+GZ7M9/u5XmLaYe2X5fbapHAF0/EpwA4nlW1gpEqF2PJOIxgO2LWL2lLfEzskGRyYiMdeooEqypbero0G4zG6UzrKKpLagWXrZT6w8lUgaHZShIWFP7vNqhheCrBaNBRotzlYcsgpXFyzQ2GcsAm50WGGUJCUXFxHyWcRQjTAAAIABJREFUpadcPdK0Mf2gqEIkkorWEu+pUONKsLL4HGaokDFhZge6U2eoXcQ8x5Oqq3JObSDFq529NbjJLeEeA/Mb782tHgGAsdXu0+bwQWsjR7MP4ssDHxb52nD2dlxSUeEPUahtDrLwoNqDIgEKTwD9JAl0r/Yzp+kkdq+3AXKY/XvLVVew+zuTs2gwG6Cq+qqSvCQTuk+7dx8AvVUpmtopcK/91Jl05yovJNh9uVuAghWlt6kBG1scSCgqnutffDKxaDqvBB46DbzrywXdnK+a6G2yV3To+/5NzTAbZAxOh3B+knRWgXAc8SQF3MuiD3L30HudmgQGX1p0NT8xlhlqv8BC7TSf9tkMnzan53r6+4oEgIEXtVD7cAGhdiAUx8nLGT7talGEfgQA3slC7cMXZ7QT1NlQmJd4RPXVvk8boPfBzr10OduwyPE36QQFJGDfH+V/LN7UHj5S9MyNtOcDCgi1t9K2lpva0QX972TH/Sv7WvJh85DuBdD0OYLsiL2GOiQ4H4ASp50BW3NpS/wMXi/77ZHQEZ3Smtqmdj3UnonQh6TH6inr9QoEueDN65lgnDxeADCfEXBoTe1OeO0VbAkKBKsBPpk+Qz9ikCUtwMuqINGGRFZHPTIaiCChqDAbZLSKEzdrAr48etjAmiWTZ1iLWkUSMmbgrFKond3vepd8GE4pDL+lS2vO5mLNNLUbO9gyWlV3RRYIb2q/cSmAWGLxMDJ/KAZVBcyIwxDiTu3ucl/x0nj62AsY0L60helH5qOkuOltsushfqlDIjks1JaCk5q3d2imAK/26OtAbIFaxswbretHVtcJ9arS2EnfIyWRHnrwn182J6ygZjjIW82VUJAA1Mo1FLZvPpASaleSBosR12+gpjhXkPDw2GUzwWJcprlQebzazVn0I8FoAq+wlTX7N7G/m4UJYPQ4Xd54e/qDyAZgK9O8nPqJpuA4Mz6PQCh/8/7wxWmoKnDAfCr9tVaDAgdFcjrdNlzd64GqAj89kbutrbCmdsTeUfHfoaqRz6v94j/Qdsd9gG9j/sfp2EurYBbGSx86yNviBYfaZ/LfbiXR1CMbcg4QrwkkKUVBIoZF5kOE2nVIeGEWSoJC7VL1I5IsQ2qgnRApDM2pbWrX9SO8qS1CbUG18LCQ2h+KpYTaKU61RJQmMIM5tVdZU1sgKBve1A6MLJpE3ukm7Qd30qahhdpVGhLpZ0MiPTbIco0u+xMUBW+jal7tqX6tRT0re6BChtNSSf0IGxaZo6m9b+7nAIAXHHcuubRUC7Vda0CFoylIivNq9zbZ4W0wI5ZQ8Nbo4uXvXD2y2cauM9oA+zK03bSmdop+hIXanD5fgx6KVkg/guCUFnwMTBXg1c7waQNIGRQpmtoakqSHCKle7aAYErkauH0bve8+e2YSieTik1/VpNJDIlM5yLzaT2eE2suiHuFwBcnF5xdd1ZylqX344jTiSRXdXpse0vIBke27s7vpt7GBnKd/iuYGE9b7GqCqwLHB/G3tQxem4cY8NinsfbiGmtoAcO8epiA5kcOrHZmDMUafXR19myva9K8qHcyrndnUnrkAnPwBXb7pk0s/jsmme6NHjhb/OsKz+rDClu35b8uPG1Jnq9Qabz5M2x01rB7h8PKACLXzIkLtOiS8MAslTj962eEo+XEkF+1UxMMGPdTu1Jva3Kkt9COCasFDan8wJdRODTimzwOqgiDsmIB7VTm1BYKK4GihpWuqktZ0BIBO5rLOOhiO60eqFWozn3aXGBK5ZmhibdRTcXZye/K01qKeBu0HVLapzUPtLE3tyX60BY4jqUr4obL0wbeuH1kD4SMPtc89TcP3CkSSJOxlg8ayebWnWet4k5UFDa7O5TkY5IMi50c1p6TPYUlz6vY22XUnc9mhNgtVU5raPEzLi+bTJvWIoqjaiYBlDcZWA1qoneLV5n/HDWJIZC1zZY8HHrsJgXAcx/L496sB14/0VaFlyxvoxwZn4A/GdJ/2cp6Q4sMix08CC+l6l2yh9vP99J63f1OzHtJyn/bGDPWI9hw30zDdhXFg5KimIDmyhILk0PlpXC+zlnbztuoOc00dFFmgKuOuK9ohS8Drw7PZ369ZIDurNmD3+mWYBVEpeFN78hQQS/l3/fLztF+/6Q6gvcAhh93X0rYUrzZvabu6884n0W5jsgNKPO1kdM0QnQfOPUmXa1k9wnGzUDsghkXmQ4TadUjEPwlVoQ+/ckJtQxM1sBNhQ4p+ZPGgSNHUFlQL7tSeCcUAR5amNmubXpQ6AUja7QWCukGSdAVJxrDId+6i9+tvvDyIty5nNDOn2LLB5mqF2syn7V0DzVgBAP3g/3iEHexOndXej8dVOgiq6KDIhpTl1pm89g0AwLPKHrw2u3QAoutH1sDvY8deCgZj88DQYjdrPvJ5taeDFKasN7MgazmGRALklLQ00mX/oPZl7tUGgL6mBn1gaIWc2ghOauHZ4MwSTe1UnzZT3fhDMW0Ir9j3yCBrU5v9/IR+pKYxyBJu3VphBUmB8LCyx1v5pnaXx46tbU4oKvBs/8TKNLUbfJq6CAPpbe1sofYin7aSBM4/TZczfdoco1mfvXBaV5AcGcgdak8vRHF6bH55fNqAHpoq8YKH4zU7Ldi3kb4PP83S1k7O0GfHJdWnBfmrgsZ2wNlBAfbo6/S1ucvA8W/T5f0PFf5YWqh9pPjXwX3aS7W0AVqpxAsxtejV7n9cV4/wv7dapmMvsOGgvmpNkBURatch8Rl9eJBsL/1st7mVdjxjCwYko3n0IxYRaguqA29eB8JxKLy1l+rUZqH2mSStIHALp7agHskxLPK2ra14x842JBUVf/bDE/pS4uC0NtwPTUt4+kpkiIVE3R7R1F4r8KZ2f7wFqmwkv/Dl1wAAY0kKJavT1M4IVpJx4PX/AAD8Z/IAAuE4ZkO5G8uqqq6dQZEAHVBuvoMu9z9e1F25VztbU5u3jnsMLPxoXKZQW5LyerWBDKd2xULtKW2ILW+I5mTsdTqJYHUt8ml77CaYDOJwKw0eJIy/oTcxK3VSQlB1uIKE+6eXg0RS0VRpfb7q7DfwtvaTp1Yo1Ab0tvaFdK92plP70mwY5yeDkCXghg0s1L70ChD20/tQ59W5n2PbPbQ99RNc28dmKYwEEIplV0XwQZLL4tMGaHWhxDzmRShI7tlFx3qPHF/s1R4bptWH43IztrQ6F11f03RyBQnzah/6RyAZA3pupOGfhdLFQu2xN9Jb34VQ6JBITi17tTX1yP21rx4BgL0fBD70Q+DK/APP6x2xl1WHJPy0468aAclQ+vALWxcthwhP0YGsZLVAdrm06/1R0dQWVBceUqsqEDSznbqFMf0G7MO0n4Xaoi0lqEtyDIsEgP/n3h1otBpxYiSAr700QF+cZuoRVzdgrnwjCtCd2j1CP7JmsJuNsJsNiMOIhKuPvniRPMOjCu0bOK3VcGpnBCv9j1NA1tCME3Y64MsXSs5FEgjFkgDWwKBIDleQnHm04OXbALCr2w1ZosBkggX9HK4faQc74bVcTW0gb6htNshod9lSBkWWNitGg+tLQlPoY+9PwzOh/P5grh7p3UfD2CB82nlp3grIJgqsAiP0NaEfWTXs3+SDySDh4lQQ5ycXluU5L8+y4dLG6g2XPsjC+ufPTOISG6C97KG25tXOCLXZ65hiYfuLrKW9p9sNF18BdZapRzbcBhjynEDeeDtgtAL+AXTFzqPdZUVCUXE8m4oOpB5pgR89yggASVMsVQ1JSvFqFzYsEgDuvKINZoOMM+PzODM2n3bd1KULAICks3v1zXFJDbVDM8Cxf6P/L6alDdBntrMDUJNa4aBgig61eVO7xkLt6Lz+d7Ia1COCghGhdh2izrEGjrm8ac7mrj4AQGSWPkxN7a2a00tVVeHUFlQdk0FGI2v+zRrYgex8SqjNFArn1A5YjDJspmWaYC4Q1BLe7PoRAGhxWvHn79gGAPj7J/rJda0NidxUtZfEndrdItReU/C29oIz/UTKJNOPOCyVbGqz8Cs4kR7cMvUIdr8fXT5qiOfTR4yz8NZlM8FW5n5RzbD+AGAwk88yY4VGPhwWo6b1eDUj4OD6kWaFNWpXJNTW/Zx7mP97a7sTBlmqoH6EhdqJCNqsCZiNMhKKiuFsA3U5A7+kba8e9ohQOw9GM9C8hS5zBQk/KSH0IzWP02rC9etpn3u5FCQDfEik1161UHJPlxs+hxnz0QSePUPvJ8vq1AaA3huppewfSNMt8VB7LpJAJJ7E82d1n7bGUj5tjrmBdAYApNM/03Qch3N4tV86P4UbuHqkfTcpoapNCcMiXTYTbtlC34+fvJ7e1o5NDQAA7C2rUOHAvdqXXgEOfwmIh2jo48aDxT2OJAHd19DlYrzaiqI7tYtuateYfuTMY0AySqtQC/23CFYFItSuQxQWaqtlHrwZe1ngwfzcpnZ9SGQ4EUY0STv0XusqclcJVh28fT0lsd+z4CT5LRUFmKKD+fNqBzx28+qZdi0QVBKuEJm5kPXqX7umG9ev9yIcT+LPH34D6iQPtbdU5eWEYgltab4ItdcWPMCbsacfOE6objgtRgofKwUPtZMxvc01NwqcfYIu7/2Q5l4dyjPob5T5tNvXgnqEY3FqbmecebSou+5lCpLXhtMVJFw/4o6zRq2rs7zXWAx8WGRKU3tbeyO+/dHr8MUPXkUu2TALZModFGluAEz0eyOHp3BFB50Y+adncpwcSCaAoUN0mX/PobtvfWJIZHa4V3ucDYsM8qa2CLVXAwe36qqO5YCfmOTDW6uBLEu4dQv9uxaipOJY9qa2xamHmClt7UarEWamMZqYi+KX5yjUvnkzX6U6qbdvN96+9POkKEi4V/toFq/2xFwE5yeDuNHAQs1qq0c4qcMii+Ce3UxB8vplqOxkt6qqsAQp5G7rqY5Sr6p07KXt7BBw6J/o8v6HSlNndF9H2+Gjhd8nMEQ6OYO5cCUhD7WnztLxeK3w1o9ou1rUI4KCEaF2PbJAA8FUc3nLgI0dPWn/b+rUWzvcp22WzbAZ18DgJUHN4mZe7QnFAUgyDdMITtKHcCIMRTZhWG2BR6hHBPUK14/MXQJiixurkiThs+/aBbNRxgtnpzB24QRdUaWmNh8S2Wg16stmBWuCpgYKAMbMvWlfn1TdlfVpA4DRoh/4cnXB69+mz4Du64Hmzfqgvzz6kXEWareuFfUIhytIivZqs2GRgxlN7YUYABXOKBvC5eou9xUWDm9qz1xM+/KNG3zodNvII6uyA+dy9SOAHowHp/Bf794GSQK+98oIXjw7tfi2YyeA6BxgcelBLXSnts8h9j2ywr3aYyco9NCc6EI/shrgqo5XBv15ZxZUisEp1tRuqu6JcP7v4ix7qA3oCpIUr7YkSdprefr0OGZDcTgtRuzuYquhzz9F27ZdgDP935CVzXcCshGYeBM3eei9/tUhP2KJ9ADy0AXSTd1i4j7tW0r8RxUJHxZZRFMbAG7f1gKbyYChmRBOjNB9z08uoFWlfYSeddUpa1QVq0sfvBibB5o26SclioV7tUeOFK4m4+qR5i2AocB9dncvheCJMB2P1wKROV09sv2+lX0tgoojQu06RA6R/0yxlrejbWpN/9A0deqtHU09YnWLdqygqvCmtj+U1A+GFsYA1jadb+hDEgZ4G0R4JqhT7F7Ayg4QcrS11/ka8F8OUogdH2fLBflOdIXh6pGeKh+cCpafZie9Hw8Z0gPPSbgq69PmpA6LVFXgtW/S/7OBOtqgvzz6kTXZ1AaATWxY5NAhCn0LhDe1T1yaRTzFIz0TjKERIRgT7HvZuIxNbQ9ras8OZm99cfWIzVP4QXc+tGGRk7iq14sPX08naT798AmEmX9dY5CrR27QfNqA0I8sCT8BMHaSnZRg39dym/aCZaHba8fWNieSiqqpOqrJADsx2Vfl/Yb9m3xaIxpYoVCbB8cXn08LHvmqjx++dgkAcOPGJhj5a+Vh3aYl1CMcuxfo2w8A6J18Bt4GMyJxBScvp4fIL1+YRpc0gTZlnELwYgYTlkMJ+hGAZnvcvp32Cx5hCpJj58bRKlFwb/L25rxvTdNxpX75pj9K+6wpivZdgMFCw+BzHA8sQvNpX1H48xiMFL4DtePV7n+cqUc2CfXIGkSE2nWIFGLLcK3lfVDLdjtg1gNrU4euH+FDIoV6RFBtPKypPROKAc42+uL8uOYFnrH3AdAb3QJBXZJnWCTnd25ej52tFnSyRku1Qu0h7tP2iFB7rcGb2ueSbWlfr0pTG0gfFjn4SzpIMzu0Fg5fqj6Up6k9NrdGm9redbQEWE0C554q+G7rfQ1w2UyIxBWcHtWHbU0HY2iX2JBImxcwL+Pfr6uLPLOJCJ3AyEQbElmhQFRralNY9ydv34oOlxXDM2F87hcZB+h8SGSKegTQQ+1ld/KuFnio7b+ohyuVOikhWBYObuMKkup7tYdmeFO7evoRAGiwGHH9BlrtYZAl7RhjWem+FjDaSMmT4iTm7yW8gaz5tJWk3tReyqedCmv7Sqd/iqt76WTmkQyv9kvnp3Ej92l3Xg1YHMX+a0qDFzGKGBTJuZcpSH564jIURcXZc/Q9TMiW1XvSrOtq2rq6gV3vLf1xjBagYw9dLtSrzUPtlu3FPRefm1ArXu03H6atUI+sSUSoXYcYwrT0W7WVf0Aip5zBNrW3a5fFkEjBcsEb2LOheEqoPaoNiRwz0Vl5rwi1BfUM9+BlGRbJMRlk/K/bnDBIKuZUO565VJ2XMuxnTW3h015zcNXCWNgAuEhRFjM6EIGlSqE2X50zDrzKBkRe8S7twLuX/Y6NzUUQiSezPQLGArRPtOaa2kBJChJZlrQhjNyrnVRU+EMxdPBQezmHRAIUdLpZ+99/cfH1lRoSyckItR0WI/7H/dRS+8qLF3FihAUtShIYfIkuZ4Ta3Km9Ik3P1YDdq7f9LzxLW6EeWVVwVcdzZyYXaSsqiaKomkKq2voRgBQWANDUYK7sHIhCMVr0RnSKgiTzveSWzez97tKrtNrB6gK6rin8ebbeDUACRo7iQDs5xFND7cuzYQxOh7CPh9rL5dMGSm5qA+QZb7QaMT4XxZGBGUwM0zyEWEPH6g0z9/w6cO3vAO/+Svkn/rqZgmT4SGG315raRbabtVC7v7j7VYPIHHDuSbq8Q6hH1iIi1K5DDFFqJcFe/o6B1deoXTamDIrkobbHsgwTkgV1DXdlzwRTmtoL49qH6JChK+12AkFd4mVN7TyhNgBsMdJyzXNqBz7zozcRZMOSKgnXj4ghkWuPJtYkm1yIagc0ITMFhI3V8Kfzpvb0OeCtH9PlvR/WrnbbTVqYPpRDQTI2R+Fj61oOtc/9ggYaFsiVTEHy6iDty82GYlBVrFyoDehe7ZRhkRoh9roaKuDTBlL0I7pD+7atrbh3dwcUFfjU90+QmmXsDebTbiSXbQpCP1IAfDn7+adpK4ZErir2dLnhc5gxH01kHTJYKcbnI4gmFBhliRz6Veaduzqwo6MR775qBd7nONyrfTF7qN3XZNf3oc4x9cj6W0n7UCjONi3gvEWl1u7RgRkkFVKeHDo/DUDFfs2nvQKhdpGDIgHAYjTg7VfQ8eCXnjsPa4gaGpamVaoeAWiA8Tv+J9BzXfmP1VVEqB0L6Ss8i9GPAJVtaifjWWcCFUz/Y6Qe8W0uvnEuWBWIULsOkaM00ENyOMt+LJOP6UUkwNSqNyz4oEiPVYTagurCG9j+YAxwLG5qnwc1gTx2saRVUMcUoB8BQJPKAYyaenBpNoy/f6LyDQs+KFKE2msPHuBNp4Ta80baT6hKU5uHYK9/hwYSNW/Vl+mChmv1LjEskje129aafgSg1p7NQy2+kaMF320vHxY5TPtyM0Hab1xnYm7ulQy1Z5ajqa07tVP5y3u2w2M34fTYPP7l+Qu6eqQn3aetKCobrAn4nOKEek64gmSEhSsOEWqvJmRZwq1bqq8g4e/dnR6b7pCuIt4GM372B/vxp2/fWvXnygkPkAde1E5IpobamnoEKN6nnQpTkLSPPoUGswHzkQTOjJF26tCFaWyQLsOr+AGjtbgWeLnYStePAMC9u+nY79kzk+iU6OSkwdtTkZe26uFN7Ym3qMGcj8nTNITZ3qSvjCuUZvb3M3mm8KGU2VAU4Mu3Ap/bqv+uFwtXj2y/b/W29QV5EaF2HWKIxQEAstNV9mMZuykoMTZaIZn00JA7td1WoR8RVBetqR2K6RO/x99kg7EknInT17yiqS2oZ7zrabtEU5u76LftvAoA8NWXLuL4cGkHFdlQVVVrzAr9yNqD60emFmJANzWKRi30u1fVQZFxFljv/dCiA5ZeLzlYB6eDi+4eiSfhD9E+0ZrUjxiMumO1/7GC77anxw1JojBpaiFKP08AvUbWxlzOIZEcPiwyW1Obh88Vc2pnD7WbHBb8xTup5fX5p84i2P8sXZGhHgmE40iwtiP3zAuy0MaafwpbRSCa2qsOriB56tQE1HKCqzzw9+5q+7RrivY91FaOzgGjxwEAzQ79OGb/Jq5ImgIuv0aXN95e/PNsfScAQB54ETd30Ym5owMzUFUVh1J92t3XAaZl/IzUnNrF60cA4Pr1Xm1/pBNsxY1LhNoAqKHv7gGgApeO5b/txFu0bd1RfBjs3UCzMGLzVDYrlYEXaFVUJAB8+73AS18oLiRPU4/cX/rrENQ0NR1qf/azn8U111wDp9OJlpYW3HfffThzpkYmqK5iZOaVNLjKD5yNm2kar2l9+tlsoR8RLBc8rPYHY4CTed0vvUpbdw/GQ/QhvCLDXgSCWoE3tYMT+ZsZLNRev3Uv7t/bCVUF/uwHbKl9BZhaiCEcT0KSgA73GgwR6xze1A6E44htuhv46NP4oe9jAKrU1OahNgDIJmD3+xbdhDe1s+lHxtmQSItRhqsaepRaYPOdtC0i1G60mrCxmbzkx4dmtaZ2Z63qR7gmpOJO7alFV92/txM3b25GIpHI6dPm6hGXzQSzsaYPtVaWDGWLcGqvPvZv8sFslDE0E8K5iYWqPAdvavctg0+7ZpANQN9+usyc87ypbZAl3MCGWdIQYJVWPTjbFj/OUnjXAa07ATWJdzveAEBe7eGZMC7NhrHPwELN5VSPAGUNigQAo0HG3TvpmFDTZvG5DAKtdIDhJVZwaT7tItUjAGA064WachQkx79FW0cbtcaf+Azw4weBRLSw+595FEjGAN8WoGVb6a9DUNPU9J7Wc889hwcffBAvv/wyfvGLXyAej+OOO+5AMLi4bSMoHDlGobbJ4y37sRw33wzL5s1wv/vdaV/XQm2hHxFUGa4VmQnG9IBDZQPBmrfQAEmIUFtQ51hdeuAzcyH7bRRF04/AtwWfuXtb+lL7CsCHRLY3WmExGpa4tWC14bKZtMFaM6E40HkV/DHa1axOUzslBNtylx5GppBPPzIWoFC73WWFtFaXpG48SG2pydPZ1R050LzaQ37MBOngsUXljbcVCAe8vKmdTT/CQ+3qNrUBUtr89X1XYK95BA1qEHFDw6JwdlLzaYv9jrx41gGmlPat0I+sOhosRtzIAtYnT01U5Tn4e3fdre5ax73azwMAdna6cXBrCx48sEH/POU+7Y0lqEc4TEFyVYh0SkcGZnDowhQkKCmh9i2lP34plDEoknPPbpr1xfUjK3IytlbRvNqH899u/CRtS/VQa17tEkupkQDw1iN0+X3fAt7+t4AkU9D97/cACwW853D1yA6hHlnL1HSo/dhjj+GBBx7Ajh07sHv3bnzta1/D0NAQXnnllZV+aaubOC3ZsHjL3/k3d3Vh/SM/hvs970n7uubUFk1tQZXhYfVcJIF4Q2vadapvM2lJAHga1mgLTyAoFG1Y5Lns189dIo2DbAI8vWhyWPDf7tGX2l+YLL+FxYdEdtXbwWmdIMsSmhq4goSCvfkIqQUaq9LUTgm1r/xw1pv0MP1Itqb2GGtqt65FnzbH5iHnMwCcfaLgu2le7aFZTC3EIEOBO8nDgZXQj/TRNjgJRDPei0JVCrVD04CSXHR1t9eOT22hwPtQYjPGFtKHcHJdixgSuQSyTMvaOUI/sirhCpJqebUHmH6kr570I4A+LHL4MBCPwGyU8ZUHrsEn72BBoZJkTW2U5tPmsFDbPfoi3IYYJuej+PaRYWyXhuBUFwCzE+jYW8Y/pAS0QZGlh9pX9XrwB7euR7eBabNW4mRsrcK92iPHqNCSDVVNaWrvyH6bpUj1apfCyR/SvBTfFqDzKuD6jwMf+D5gcdHfxb/cCoyeyH3/SAA4z/5GhHpkTVPToXYmgQC9sXm9uRvG0WgUc3Nzaf8JdKKREJCgs1QWX/WW+fGmtnBqC6qNy2bSTrzOSm4A+lnYmGcTYgn6sBZObUHdow2LzNG6ZuoReNcDBjoJdN8eWmofSyj49A/fgKKU58wcFj7tNU8TC/IWh9pVcmpvvotaahtuy3oT3tQe8YeQyNDopDa11zRb3k7bIhQkV/ZSKeH1kVlMLkThQwBGNUGtb0cJy9zLxeqigB5YrCCp9KBIO1varypsPsdirpWowfhiYis+86OTaT7hqXnW1HaKUHtJ2lKWtQv9yKrk4Fb6ub065KchwRVEVVUMcf2Ir872G3yb6b02EcneqL38GhCeoYCPN29LoWUb4N0AKRnFh5ppP/D14VncwH3avTfSfIblhA+KjM7lDl2XQJIkfPIGNwxqnNq9jR0VfIGrnNYrAJMdiAaAqRyB88IEndiVZD2cLpZym9pcPbL3A3rLeuNB4KNPAU0bgbkR4N/u1NvcmQj1SN2wakJtRVHwh3/4h9i3bx+uuCK31+ezn/0sXC6X9l93tzgrl0poPoBknN4UGnytS9y6NJJKEoEYOwFhLV9xIhDkw2jQXaizESWtuRdooOXKZqMMm0moDgR1zlLDIjX1yCbtS3ypvc0neA4OAAAgAElEQVRkwOGLM/juseGyXgJvy3Z76uzgtI7gyoVp1ladi5ACqipObUkCfv07wAe/Tw7SLLQ1WmE2yognVYyyEJujNbXXeqi9mYXaAy8C0fmC7rKx2QGnxYhQLImXz0/rS7id7csfcHCyDYtMxvXguVKDIg0mPUDPoiCBokAaOgQAOIbtePLUOH7+xph2NT+h0yya2kvTtlO/LPQjq5IOtw3b2xuhqsAzZ7L8vZTBTDCG+WgCkgR01dt+gyTpbe2Lzy2+/ixTj2w4UN57siQB22hg5DsMumN5v4GF2svt0wb0pjZUCl5LJTBCW2eHVtYQgH5fOmkgPIaPZL8NV494NwDmEv/2tFC7BKf25Blg5CidSN+VMS/Ftwn47SeB9bfSCtP//BDw3N8tHiD55o9oK1raa55VE2o/+OCDOHnyJL7zne/kvd2nP/1pBAIB7b/h4fIOwNca4YUAFBZqm9zVUYPMx+ahqHRW1WVxLXFrgaB8vExBkubVBjBp7dOuX7O+VIGgUJo20nYmV6jNmtq+zWlf7vba8dAd9LW/+fkpTMxFMu9ZMMMzYQBAT5Ot5McQ1Da+HE3tqji1C0CWJXR76Pct06utNbXXsn4EoL9973pqLLGhY0shyxL2MAXJhakg2ldySCQn27DIEFtaDgmwV7BIkcerjfGTNMDM7MD+mw8CAP7ykZOYZbqzKeHULpzWlFBb6EdWLbdvo0LJUxVWkAxM63M4rPVYTuGB8oUsoXYlfNqcbfcCADYFXoIZcRiRwHWG0+mvYTkxWgAj208sw6uNwBBthU97MV3X0HYkV6jN1SMl+rQBoGkTAIlWFGQZvJwX3tLe9DbAmaWIafOQiuS6j9P/P/PXwPc/AsTYfl6aeuS+kl6+YPWwKkLtT3ziE/jpT3+KZ555Bl1d+d+ULBYLGhsb0/4T6IRmp6Am6cducFTHTTYTpQMMp8kJkyzOigqqj4epRfyhmD79u6EFU0l72vUCQV3TtIRTm4favFmRwm/uW4fdXS7MRxL4y0feLPkliKb22kdragdjUFUV89VsahdIL3OxDs6kDxrnTe22td7UliS9rV2EgmRvt66Q66iFUDvbsEgeOtubcrb1SyJfqD1AA9XQcwN+7+BWbGxxYGohhr/+2SkAwqldFG07AVcPOXvNdeZMXkPcvp1Cp+f7JxFNLPbQl8oQe8/uaarTfQY+oPHyq+nhbnAKuPQqXd54e/nP03El4OyAMRHETYaT2CVdgFWNUHDYmnuFfFWpwLBIzLJyo1us3F9E93W0zdXUnmBDQsv5+ZvtgLuHLhfT1k4mgNdZkXXPB3LfzmAE7vpb4J7PA7IRePOHwFfvAuYu6+qR5q1CPVIH1HSoraoqPvGJT+Dhhx/G008/jXXr1q30S1r1xKb1M+hyQ3V2HmcjbEikVQyJFCwPHq2pHddDbd9mrTXlsYuTKwKBph8J+1PajSloTe1Ni64yyBI++65dMMgSHj05hpfOFdm4ABBPKhgNsKa2cGqvWTSn9nwU0YSCeJKWgzbaVu59mHu1h3I0tdtcdbByYPOdtO1/omBH6d5efT9O04+sxJBITtamdoWHRHL442Vrlw3+krZ9+2AxGvC3794JSQK+98oIXjw7ldLUFqH2kpiswO+/AvzWkyv9SgRlcEWHC94GM4KxJN66XLl5VgNTzKddb0MiOe5u2ndTFWDgl/rXzz8NQKWVDo3t5T+PLGsKkg+73sBNXD3St5+uWwm0YZGzpT9GgIXaYkjkYnhTe6o/+zEB14+UOiSSow2LLCLUPv8UsDBOJ6v5Cfl8XPUA8OEfAzYvMHoc+JcDwMv/RNcJ9UhdUNOh9oMPPohvfvOb+Pa3vw2n04mxsTGMjY0hHA6v9EtbtcT9bOfcAEim6hxgiiGRguWGh9b+UEw/6G3bSToSiKa2QACAWnBOdvCTOSwyPEs7kABbLriY7R2N+OB11Lj4+1/0pw1GK4TLs2EoKmAxymgWA9TWLJp+JBjTfNqyBDSYV27peC87iZKqH0kqKibYQL+2ta4fAYCeGwFLIxCcoAFjBZDa1G6X2EHvSoYD/PN9JrWpzUPtCqsrcjW1FUVvavftBwBc1evFh67vBQB8+uETuDxLJ0vEoMgCMZpXztMuqAiyLGFXF4WQJy+V0azNYHCamtq99RpqA3pbO9WrzX3amyrQ0uZspVD7ZvUofrebaTtWQj3C4cMiRVO7OjQ06VrCkWPp1yXj+nDHljL0I0CKV7u/8Pu89k3a7nwvfT4UQt9NwO88AzRvo+OZ0dfp69uFeqQeqOlQ+4tf/CICgQAOHDiA9vZ27b/vfve7K/3SVi2JWVo+qpqq5xf2RynU9lhEU1uwPHgbUpzaV/8WcNffAfsfgp+F2ty5LRDUPXwHNnNYJFeSONsBa25t14O3boTFKOOVQT+e7S9uIBT3aXd77cJxv4ZpYvqRqfko5sLk03ZYjCv6M9f1I3qoPbUQRVJRYZCl+jjJYjQDG26jywUqSNx2M9Y30/eugze1G1eyqc1WbM4OAQpTHPBQ295U2efKFWpPvKn5tNG+W/vyp96+Fe0uK4ZnwsKpLahLdnZSqP1GJUNt9p7dW6/6ESBlWOTztFUU3RVcCZ82p3cfYPNADk/DNnqYvsYD9ZVA04+U09RmgyJdPeW/nrVI17W0zfRqT58ndYfZAbh7y3uOYpvawWlShwDA3jzqkWx4+oDfegLYfBf9f+sVQMvW4h5DsCqp6VBbVdWs/z3wwAMr/dJWLWqAAme1io2p2ajQjwiWF82pHYzRmf3rPgY4muEPUUtQ6EcEAgZXkGQOi8wxJDKTlkYrfuPGPgDA554orq2t+7TrQPVQxzSzpvZ0MJri017Z9+AeTT8S1H5nuXqk2WGBQa6TkywleLWv7KF9uU6ZN7VX0Knd2AHIJkCJkzMT0EPnije1c+hHuAKg53rAoP9eOyxG/PX96e5RoR8R1BNXaKF25fQjfHVNXYfafawtPfEWsMBW2oSmaeVN97WVex6DEdhyt/7/jrasOrplw1qBpramHxGDIrPCf3+GD6d/natHWraXr5/RmtpnCrv9G9+jz/j23TRzoVisjcD7vgW89+vAr32z+PsLViU1HWoLqsACfTCo5uot85uJ0IGPaGoLlgvexPYzhzZnJiT0IwJBGrmGRfKdzSVCbQD42M3rYTcb8MalAJ54a3zJ23OG/XRwKnzaaxve1J5eiGEuQk3tlRwSCQBdHhskCQjGktoQv9FAnQyJTGXT2wBIwNgJ4KUvAAWclNrb44YFMTSBBQsrGQ7IBsDDWmN8WKQWalfaqc2b2pmh9gu07d236C63bW3Fvbs7AABOixFW08opdwSC5YY3tc+OzyMSL39Y5FwkrmkE61o/0tCkh3sXnwfOMfXI+gNpJ9YqwrZ79MvrbqYhwytFuYMiw34gyk6wiFA7OzzUvvQqDWfkjDOnemuZ6hFAP65YGCvMj36cBdF7Plj6c8oGYPuv6MOlBWseEWrXGwvzAADVUr3WFB8UKZzaguWCh9YzrJnN0fQjItQWCAgvD7Uzm9pnaVtAqN3ksOAj+2hH8XNP9ENRCmtra01tEWqvaZoaqJ2aUFSMsBMZKzkkEgAsRgM62DDIoRlytI7PsVC7HnzanAYfcOPv0+UnPgM88vtAIpb3Lm/b1oq9LvqewWQHbCtcWMgcFhkirV7FQ207b2qn6EcUJWVI5P6sd/tv92zHlT1uvP86sdxdUF+0u6xoajAjoag4PTZf9uPxwb4+hxkOS50717kG5MKzKT7tCqpHOOsPkHICWFmfNlD+oEjuVHb1ABZHZV7TWqN5KzX+Ywu0EoCjhdpXZL9fMVgbdW3Z1BJe7dETwNgbgMEM7HxP+c8tqBtEqF1nSCE6MFGt1TuIE05twXLjbWCDIoPpB+dcP+IWTm2BgOBO7ZkL6S1NTT9S2FLTj+5fD6fViDPj8/jZG6MF3WdEhNp1gdkoo5E1sy9O0j5H4wo3tQF9hQBfzl6XTW0AeNt/B97+/wGSDLz2DeCb7wJCMzlv3tJoxXd+jQ3ZcnWtbHMP0L3aM5lN7WoNikxpak+8Re0/UwPQsSfr3XwOC374e/vw5+/YVtnXIxDUOJIk6QqSkTI8yIwBMSRSh4fa/Y8Dl16hyxsrOCSSY7ICB/8bubq331v5xy+GcgdF8uGHXVdV5vWsRWQD0Mm+P6lebR5wt+6ozPPwwsxSXu3j36LtlncAdm9lnltQF4hQu86Qw8sQakdYqC2c2oJlwmNPcWqnIAZFCgQZePoASLQkk4c1ybi+lL+ApjYAuOwm/M5+8nP/w5P9SCSVJe+jO7VFqL3W8bHBixenaJ9jpZ3aANDnSw+1taZ2vYXakgRc/7vA+78LmJ2k0/jXg/pqjWzwYVsrOSSSk9nU1gZFVlo/wh4vGgASNPhRa2n3XFf5Zf8CwRqgksMihU87hd4bAdkIBCcAqNSgbeyoznNd9zHgg9/Xm9IrRbmDInn433l1ZV7PWqX7OtoOs1A7PKu7yFsqoB8BUoZF5vFqJ6LAie/S5b1lqEcEdYkItesMQ4QO4lR79XYQ+KBIt0XoRwTLA9eLzEcTiCUoXFNVNcWpLQ4+BQIA1MJxsdYl92rPXACUBC05LeIg6TdvWgeP3YQLk0H86PjlvLedj8S1lRPdXjEocq3jYwqSi9M81K6Fpja1/fjJldFAGECd6UdS2XwH8FtPAO4eeg/414PA+Wey33buEm1rwUuaK9SudFPb6qYQKfU5uE+776bKPpdAsEbY2VW5YZGDvKntFU1tWBzp4Ww1Wtq1RjmDIlU1paktQu28dF9DWx5q85Z2Y5feli+XQoZFnnmUVkI524ENt1XmeQV1gwi16ww5Qm0TqaF6Owi8qe21imUjguWh0WqCzFZEz7IgOxRLagG3cGoLBCk0UcMaM8yrnaoeKUIt4LAY8fFbyNH9+af6Ec/T1h6eoQDRYzfVRGtXUF18TnrP5U7Uxhr4mfO2Hw9Kxudof6jumtqptG4HfvtpampFAsA33w0c/cri2/HWFj8htpLwwU/+i9TsirLAo9JObVlO92orCjCQ36ctENQ7lRwWOcA+P/gqm7pn/S365Wr4tGuNcgZFBoap1S4bgfbdlX1da43OqwFI9Jm6MJni066QegQoLNTm6pHd7yMtikBQBCLUrjMMMWrKSQ5nVR4/mowilKCdEDEoUrBcyLKkebN5O9vPtmajDJtJfDgKBBqZwyK1ULsw9UgqH76hDz6HBcMzYXzv2EjO2w2zgYE9wqddF6QOiwRqpalNv3tDMyGoqiqa2hxHM/DhR4BdvwaoSeBnnwQe/TMgmdBvw/UjrhrQj7h7aRv2U8McACSD3uqrJKle7cnTQHiGhmV27K38cwkEa4BKDovkJ0XFfgNj/a20tbh0ZcRahreESxkUyVvarTsAk1gdmBebW9eDjBypUqjNHj8wBEQXFl8/Nwqce5Iu7xHqEUHxiFC7zpBZqC03Vidw5i1to2SE01Sd4FwgyIbHTk3AGebR9gfpd91rN0Na6cFWAkEtoQ2L5KE2c+kWOCQyFZvZgE/cSiH5F54+m7OZNcyUD13i4LQu8Dksaf9fC+183tSeWojhciCCSJxWFtR1U5tjsgL3/zNw21/Q/x/+IvAf79MbcoEa0o9YHEBDC13mwUWDj5rVlaYhpak98CJd7hY+bYEgF2nDIsvwakfiSYyxuQd9YlAk0XM98I7/Bbz3a/XxHlROU5v7tLuuqdzrWct0X0vb4cPVCbXtXv0k8XSW+R0nvgOoCn2++jZW7nkFdYMItesMOUaBg9FVnVBb82lb3SJIFCwrXDEyy7y9uk9bqEcEgjSacjW1t5T0cO+7tgftLitGAxH8x5GhrLfhobZoXNUHTY70991aaGo7rSbtc+LIxWkAgNtuglWs5CEkCbj5j4H3fh0w2oBzvwC+cie5q7VBkTUQagO6V3vkKG0rPSSSozW1J4VPWyAoEK4gOTlSeqjNZx80Wo1w2+sgwC0ESQKu/Wj9+IZ5qJ0I68N6C4Wf8BRDIguDh9pDh3WndiVDbUA/xshUkKgq8BpTj+z5QGWfU1A3iFC7zpCYY9jkqc4BwExkBoAYEilYfjxcP8Ka2tyt7RE7wwJBOlw/MnOBPLGTpetHAMBqMuD3b6OW9z8+cx7h2OK2Nj9A7faIULseWNzUXvlQG9BPqhy+QPsqda8eycb2XwE+8igNa5o8BfzLASBOHvKa0I8AKaF2SlO7Gmih9gQwKHzaAkEhVKKpPTDFhkQ2NYiSVL1icQFgP/ti2trJODB6nC6LIZGFwXU2w4eB2AJgMOurOiuF5tU+nf71kaPU3jbagB33V/Y5BXWDCLXrCFVRIFGJFVZfS1WeYzZCTW2P1VOVxxcIcsEbeH4WavNwWzS1BYIMPL3koI2HgNHXgNg8/T8fwFYCv3p1F3q8dkwtRPH1QwOLrh/2k79YNLXrA19GU7vRVhsnF/uYguTIRRZqC/VIdjr2Ah99mgZshUkrB7uvdtyk/L2KN8qqFmqzxx14EQhN00G38GkLBHnZ2UWhdn8ZwyIHmU+ba6MEdYgsA5ZGulxMqD3+JpCIUNOblzgE+WnaCNg8AGgOCpq3VF5xw73avEjDee2btN1xH2BtrOxzCuoGEWrXEdFICEqcznjamqsTavujdPDjsYhQW7C88PBaGxTJQm2vXYTaAkEaBhMF2wBw5jHaevoAoyXnXZbCZJDxBweprf2l585jIaoPmVNVVdOPdHtrJBQTVJXMpnZjrTS1mZv1AmsBtotQOzeNHcBvPgpsu4f+nx+Q1gK8qc0PwHmjutLwx738Gm17rgOMYp9CIMhHh8sKb5nDIgdn6D1a+LTrHBtTkBQzLJJrqTqvqs6shbWIJAFd1+r/31Jh9QiQvakdCwEnf0iXhXpEUAbiL72OWJjza6G23ddalefggyJFU1uw3HDNCA+z/cytLfQjAkEWeHul/1HaNpfm007lvj0dWN/cAH8ojq++eFH7+uR8FNGEAlkCOtwi1K4HFju1a+N9uDdjpUCr0I/kx9wA/OrXgff9B3D/F1f61eh4MlaVVFs/whE+bYFgSSRJ0rzapSpIeFO7RzS165tShkXyIZHCp10c3SlDNSvt0wb04wz/RSBOQ2Bx6ie0WtTdC/Tuq/xzCuoGEWrXEeHADJQE/ciNLldVnkMbFCmc2oJlRnNqi0GRAsHS8GGRY2/Q1rep7Ic0GmT80e3k5f6XFy4gwP4WuU+73WWDySB2O+oBh8UIi1H/WdeKUztzKbtoaheALANb3wG4e1b6lehoTW1GtQdFcnpFqC0QFEK5wyIHpkVTWwDAyvKESDFNbTZrQfi0i4N7tYHqhNqOVjpJoSrADBtUf5ypR/Z8QLTqBWUhfnvqiMjMuHZZdjiq8hyiqS1YKTKd2pp+RITaAsFiMj2DJQ6JzOTune3Y2ubEfCSBL79wAQAw7GeNK+HTrhskSdIUJAZZgs1kWOFXRGS2/kRTe5XibAOMKT+7qulHUsJyow3ovLI6zyMQrDHKGRYZSyi4xOZwCKd2naM1tQsMtcN+GjoIkH5EUDgdV9LnqmwE2nZW/vElKcWrfRrwDwIXnwcg4f+2d+fRURXm/8c/d2YyG9kTkhBCALVhqQgISpFfrf2Koq3+6lqXtKCni+cU3EAtX62Cx1arVY9fFdH216KnFbG2tafalh6/FBEsYsDiBoJVWQSTANkTss3c3x83MySQQAIzuTNz369zcjKZubl5Yrwh88mT59Gka2L/8eAohNoO0r5/n3XDJbm88Qn6mKkNu0Q6smtbeo4fyWamNnCkvPiE2i6XoVvPs871mzc/04GmNu06YD05ZZ62s0SWRWb6PTIMw+ZqLEPTfQp6DwXsw7L4fzIpGUbPbu14L4qUpBFnntDeAcBJTmRZ5J66gwqbkj/NpYIMrjlHi3Zq9/OXI3vesV7njI7fvwupypculf9BumaFlB6f3WvR5xr7tkmbl1u3R5+dWH8JhqREqO0gnXX7rRtxHG0Z6dTO9jN+BIMrshDyiE5tQm3gSEeE2ic+fiTi/PGFmjA8Sy3tIT3zxqd0ajtUXlendqLM05asDvLu/x8W0amdvHqE2nHq1PYOkdK6xh8wTxvot+7LIrcNcFnkzm6jRxLlF6KwSaArT+jvosjIPG1Gjxyf0V+VvnRe/M4f6dSu3noo1J78nfh9PDgGobaDhOpqJElmWvy+7JGZ2rn+3Lh9DKA3kU7t5vaQWjtC3WZqJ06gAiSMrBGSu+sXPkMKpEDs/rrGMAwtON/qxnjuXzu0ebf178IIQm1HiXRqJ8o87YjIn7MH0tzKDCRWbRiA7ssig3nx+ziRDrKTzonfxwBSjGEY0REk7w1wBEl0SSQ/M2CgiyIj87RZEpmYIqH29n9I9bskX6Y09iJ7a0JKINR2kHCDFSyY3vg8iTNNU3WtLIqEPTL9HrldVkfH3rqDau8MSzq0QBJANy73oU7HGI0e6e5rZUM1ZWSO2jrD+k91kyRCbac51KmdWMHxyK7FY0VZfroAk1nk+5cr7VDwEQ+XPSNd9v+s8SMA+m3C8ExJA18WGV0Smc+SSMcbyExt05T2sCQyoQ3ter4RarNen3qZ5OW5AU4cobaTNDVIkkxffDpXGzsa1Wl2SmJRJAafYRjKCVr/b3+yz/qB2Otx9ZifCqCbyLLIGI4eiejerR1B15WzDO0KtbMCifXXMpFO7WFZjB5JarldndpD8q0Z2/EybKJ02pXxOz+QoiYMtxqcBroscldXpzZLIjGgmdq1O6SWA9ZfIcZj0SFOXGbJoZFekjSJ0SOIDUJtBzGarZlmYV98OlcjXdpBT1A+N4s9MPgiXdmf7LM6Q3ODXjrxgL6ccq4kQzr5v+Jy+rNOztdZJ1tjAQJpbuUN4a8mnOQbE4bp/PGFmjN9lN2l9PDNCcP0rUnF+tE5p9hdCk5E6XQrcGYeJ5CQjndZZKRTe2QundqON5DxI5HRI0UTWOqbqFyuQ93a+WV01CNmEutvQhFXrhbrhwTTH59v9DWt1sxuurRhl8hc7U+7Qu3sYGJ1CAIJ5cwfSBOvlnwZcfsQt80ao6ueWa8pI3P4BZPDFGX59cvZifeEJTvo1f9cPdnuMnCi/JnSDW/YXQWAPkSWRdY0t2tbZaMmjjj2aMpQ2NTumoOS6NSGBrYocg/ztJNCyZnS3n9LU66P719ZwVEItR3EaLV+SDADgbicP7IkknnasEtutFPb+gVOLp2hwNHFMdCWpNNLc7Rq/jksbAUAwEEiyyLf2L5P7++p71eoXdnQqvZQWGluQ8XZ8Xm+iiRyPJ3adP8mtv/6iVR2vnTyuXZXghTC+BEHcbW2WjeC8flzrtrWWkl0asM+h3dq5xBqA7YrzQsqw0+oDQCAk0SXRfZzrvbO/VZTyoicYHT5Oxyse6htmn0f19kmVb5n3SbUTmz+TOmUmXRpI6YItR3E3dYuSTLS49OZV9vWFWr7CLVhj9yubtDalg5Jii6OBAAAADB4Jgy3Qsn+LovcwZJIdBdZFGmGpPamvo+r/EAKtUvBPCln9ODUBiBhEGo7iKvdCvriFWpHFkVm+xk/AntEFkVG5Abp1AYAAAAG26ldofa2yv4ti9xZ07UkMo8lkZCUFpBcXQ1KR5urHZ2nPYUOYMCBCLUdxNXeKUlyZ8UndI50auf6c+NyfuBYDp+hzfgRAAAAYPANzw4oJ5imzrCpbZWNxzx+5346tdGNYRxaFnm0udqfsyQScDJCbQdxdYQlSZ7svLicPzJTm0WRsMvhndqHvw0AAAAg/gzD0IQS63lhf0aQ7KyxQu1RdGojoj/LIiOd2iVT4l8PgIRDqO0kHdaCBW9ufDqpmakNux3emU2nNgAAAGCP/i6LNE1TOw9Y40dK6dRGRDTU7mP8SEuNVPOpdXs4oTbgRITaDmGGw9FQ259fFJePEZmpneMn1IY9Dp+hzUxtAAAAwB79XRa5r6lNLe0huQypJCcwGKUhGfiPMX5kzybrdd4pUoAMAnAiQm2HaGluULjD+nIPGRqfUDs6foRFkbBJzpC0Hm9nB9P6OBIAAABAPEWWRW6valRbZ9/LIncdsEaPDMsKyOdxD0ptSAKRTu2+FkV+XmG9Zp424FiE2g7R3FCrcKe1DTiQPzTm5+8Id6ixw1oAwvgR2CXd51Ga+9DW68MXRwIAAAAYHJFlkR2hoy+L3NEVao/KZ/QIujnWosjIksgSQm3AqQi1HaJlf5VkWmGfOzMz5uevb7P+oXEZLmV6Y39+oD8Mw4guh/R6XAp66fQAAAAA7GAYRrRb+73P+x5BEpmnPZIlkejuaIsiTfPQ+BFCbcCxCLUdom1/tXXDMGX4/TE/f01rjSQpy5slt4sgEfaJdGfnBNNkGMYxjgYAAAAQL5G52kdbFrmzq1N7ZC6d2ujmaIsiD3xi3e/xS4WnDm5dABIGobZDdByosm6kGXEJ+iJLIpmnDbtF5mjnsCQSAAAAsNVpJcdeFkmnNnp1tEWRe7pGjwybKLnZowQ4FaG2Q3TWW53USotP52ptm7UkknnasFukU5t52gAAAIC9+rMscmcNM7XRi6MtiozM02ZJJOBohNoOEa6zQmczTjOGa1u7Qm0/oTbsFenQplMbAAAAsNexlkXWtbSrrqVDklTK+BF0d7RFkZFO7ZIpg1cPgIRDqO0QZqP1282w1xOX80c6tbN9jB+BvYoyrZnxhZmxnx0PAAAAoP+6L4vsbQRJZJ52QYZPwTg9V0WS6mtRZEerVPmBdZtObcDR+FfDKZqt34qb3vjMm4rM1M7158bl/EB/XTutVJJ0xdQSmysBAAAAMGF4ltZ+vL/XZZHR0SPM08bhojO1Dxs/UvmeFO6QhgyVsksHvy4ACYNQ2ymamyRJYb8vLqePjB+hUxt2y0v36cZzv2R3GQAAAABkhdpSH53a+/srjP0AAByRSURBVK0lkaV5jB7BYSKhdnuTFOqU3F3x1ecV1uvhUyUjPjvDACQHxo84hOug9RtwBQJxOX90USQztQEAAAAAXSLjR7ZVHrkscseBSKc2oTYO4888dLv7CJLIksgSRo8ATkeo7RCu1lZJkhmnULuuzfqTIEJtAAAAAEBESU5A2X0si9xVE+nUZvwIDuNOk7zp1u3uI0j2EGoDsBBqO0Q01B6SHpfz17TWSJJyfITaAAAAAACLYRh9jiChUxtHdfiyyKZ9Ut0uSYZUfLptZQFIDITaDuFu65AkGekZMT+3aZrRRZHZfmZqAwAAAAAOiYTa3ZdFtrR3al9jmyRpZC6d2uhFNNTu6tSOdGkPHdNzPAkARyLUdghXR6ckyZ2RFfNzH+w8qPZwuyQ6tQEAAAAAPfXWqb2zq0s7O5imrGCaLXUhwUWa5iKd2pF52sMZPQKAUNsxjHZrIYc7K/ahc2T0iM/tU8ATn5ndAAAAAIDk1NuyyJ0HrHnaI5mnjb5EOrUPHtapXTLFnnoAJBRCbYcwOsKSpLSc3JifO7IkMtuXLcMwYn5+AAAAAEDy6r4scntlk6RDndrM00afAt06tcNhac871tt0agMQobZjGB2mJMmbNzTm565trZUk5fpjH5gDAAAAAJJb92WR7+2xmqIiSyJH5hJqow/dF0Ue+Fhqa5DSglLBeHvrApAQCLUdINTZKdPaE6lAfmHMz1/bZoXa2T6WRAIAAAAAjnTqYcsiGT+CY4rO1K47NE972CTJ7bGvJgAJg1DbAZoa6xTqtL7UQwqHxfz8kU7tbD+hNgAAAADgSKcdtiwyMn5kJONH0JfundqfV1i3Sxg9AsDCr7ccoKWmWgpbs679eQUxP39kpjbjRwAAAAAAvem+LLKprVN76w9KolMbR9F9UeT+7dZtQm0AXejUdoDW6i+6bplyBQMxP3+0U5vxIwAAAACAXnRfFrlqa5VMUxridSs/3Wt3aUhUkUWRjZVS1RbrNksiAXQh1HaA1gP7rBtpkuGK/Zc8Emrn+HJifm4AAAAAQPLrvizylXetxqvSvCEyDMPOspDIIp3a1R9KZkjKGCZlDbe3JgAJg1DbATprI6F2fH5YiIwfyfETagMAAAAAehcZQfLGdus56ijmaeNoDt/bNXyKPXUASEiE2g4QqquxbqTF58td02qdn1AbAAAAANCXSKd2eygsiXnaOIZIp3YE87QBdEOo7QDhBquTOux1x+X8kU5tZmoDAAAAAPoSCbUjRtKpjaM5PNRmnjaAbgi1HcBsrLdee9Nifu5QOKT6Nuv8dGoDAAAAAPpSkhNQVuDQ81JCbRyVL0MyumIrwyUVT7a3HgAJhVDbCZqbJElhf+y3Ste318uUKUnK8mUd42gAAAAAgFMZhqHTSg49b2T8CI7KMA51axeMl3zp9tYDIKEQajuAq7lZkmT6/DE/d12rNXokw5uhNFfsO8EBAAAAAKkjsizS63FpWGbsn6MixUSWRbIkEsBhCLUdwGhtkSSFA4GYnzuyJDLXnxvzcwMAAAAAUstpXaH2yNygXC7D5mqQ8AJdoTZLIgEcxmN3AYg/V2ubdSMY+z/t2t+6XxJLIgEAAAAAx3buuEJdd9Yofa1sqN2lIBmcdaP0/h+l8d+yuxIACYZQ2wFcbV2hdnps5081dzRryb+XSJJOyT4lpucGAAAAAKQer8elxf/3y3aXgWRx6uXWCwAchvEjDuBq65AkGemZMTunaZpa9K9F2tGwQ4XBQt10+k0xOzcAAAAAAAAA9IVQ2wFcHSFJkjsz6xhH9t/yj5brHzv+IY/h0cNfe5iZ2gAAAAAAAAAGBaG2AxjtVqjtyYpN8Pzuvnf18MaHJUkLpi7QpIJJMTkvAAAAAAAAABwLobYDGB2mJMmbl3/C56ptrdWC1xeoM9yp80eer/Jx5Sd8TgAAAAAAAADoL0JtBzCtkdry5p7YdulQOKSFaxeqqqVKozJH6d6z7pVhGDGoEAAAAAAAAAD6h1A7xXW0t8nstILnYEHRCZ3rl+/9Uv/a+y/53X49cs4jSvemx6JEAAAAAAAAAOg3Qu0U11yzT2bICrWHFBYf93n+tedfWvruUknSPdPvUVlOWUzqAwAAAAAAAICBINROcU3VX0Rv+7Jzjusclc2V+vHaH8uUqSvKrtDFJ18cq/IAAAAAAAAAYEAItVNc274qSZLhMWV4PAN+/45QhxasWaC6tjqNyx2nhWcujHWJAAAAAAAAANBvhNoprr1mn3Uj7fje/5FNj+i9fe8pw5uhR895VD63L3bFAQAAAAAAAMAAEWqnuI7a/ZIkM23gX+qVO1bq+a3PS5Lu/z/3qySjJKa1AQAAAAAAAMBAEWqnuFB9raSBh9qf1n+qRW8ukiR979Tv6ZwR58S6NAAAAAAAAAAYMELtFGc21luvvf2fp93S0aIFry9QS2eLzig6Q/Mmz4tXeQAAAAAAAAAwIITaqa6pQZIU9nn7dbhpmrrvrfv0n7r/KD+Qr4fOfkge18AXTAIAAAAAAABAPBBqp7rmJklS2N+/BY8vbX9Jr376qtyGW784+xfKD+THszoAAAAAAAAAGBBC7RRntLRIksx+hNq7G3frwbcflCTdfPrNmlo0Na61AQAAAAAAAMBAEWqnOFfrQUmSGQge89hHNz6q9nC7phVN03Vfvi7OlQEAAAAAAADAwBFqpzhXa5skyRySftTj3v7ibf3vrv+Vy3DpjjPvkGEYg1EeAAAAAAAAAAwIoXaKc7W1S5KM9Iw+jwmFQ3qwwho7cmXZlSrLKRuU2gAAAAAAAABgoAi1U5yrvdN6nZHV5zF//PiP2l67XRneDM2dNHewSgMAAAAAAACAASPUTnFGe0iS5M7K6fXxhvYGPfnvJyVJcyfNVY6/9+MAAAAAAAAAIBEQaqc4oyMsSXJn5/b6+NPvPq3atlqdlHWSvj3m24NZGgAAAAAAAAAMGKF2quswJUn+3KFHPPRZ/Wd6YesLkqQ7zrhDaa60QS0NAAAAAAAAAAaKUDuFmeGwTGuktrz5BUc8/ouKX6jT7NTZJWdrxvAZg1wdAAAAAAAAAAwcoXYKa21pktlpfYmDBcN6PLZuzzqt3bNWHsOj26beZkd5AAAAAAAAADBghNoprKlyb/R2erdQuyPcoYcqHpIkXTvuWo3OGj3otQEAAAAAAADA8SDUTmGt+yutGy5TacFg9P4XP3pRn9V/phxfjm6YeINN1QEAAAAAAADAwBFqp7DWfdWSJKPb/sfa1lo99e5TkqQbT79Rmd5MO0oDAAAAAAAAgONCqJ3COmr3WzfSjOh9SzYvUWN7o8bkjNFlp1xmU2UAAAAAAAAAcHwItVNYR12NJMn0Wl/m7bXb9dL2lyRJPz7zx3K73LbVBgAAAAAAAADHg1A7hYUbaiVJptct0zT1UMVDCpthnTfyPJ1RdIbN1QEAAAAAAADAwBFqpzCzsUGSFPamafXu1drwxQZ5XV7NnzLf5soAAAAAAAAA4PgQaqey5kZJUqcvTQ9vfFiSNOfLc1SSUWJnVQAAAAAAAABw3Ai1U5jR3CRJ2hUMaXfjbg0NDNX3J3zf5qoAAAAAAAAA4PglRai9ZMkSjRo1Sn6/X9OmTdPbb79td0lJwTh4UJL0UcB6fcuUWxRMC9pZEgAAAAAAAACckIQPtV988UXNnz9fixYt0jvvvKOJEydq1qxZqq6utru0hGe0tkqSGn2mJuRP0EUnXWRzRQAAAAAAAABwYhI+1H700Uf1gx/8QNdff73Gjx+vp59+WsFgUL/5zW/sLi3htbZbHdoHfdIdZ9whl5HwX24AAAAAAAAAOKqETjnb29u1adMmzZw5M3qfy+XSzJkztX79+l7fp62tTQ0NDT1enMg0TVWF2iRJxcEiTSqYZHNFAAAAAAAAAHDiEjrU3r9/v0KhkAoLC3vcX1hYqMrKyl7f54EHHlBWVlb0ZcSIEYNRasIJmSGZeen6pNjQV0adY3c5AAAAAAAAABATHrsLiLX//u//1vz586NvNzQ0ODLY9rg8+tbyDWoPtcvr9tpdDgAAAAAAAADEREKH2vn5+XK73aqqqupxf1VVlYqKinp9H5/PJ5/PNxjlJQUCbQAAAAAAAACpJKHHj3i9Xk2ZMkWrVq2K3hcOh7Vq1SpNnz7dxsoAAAAAAAAAAHZI6E5tSZo/f77mzJmjqVOn6swzz9Rjjz2m5uZmXX/99XaXBgAAAAAAAAAYZAkfal911VXat2+f7rnnHlVWVmrSpElauXLlEcsjAQAAAAAAAACpzzBN07S7iHhqaGhQVlaW6uvrlZmZaXc5AAAAAAAAAIBe9DfLTeiZ2gAAAAAAAAAAdEeoDQAAAAAAAABIGoTaAAAAAAAAAICkQagNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAAAAAASBqE2gAAAAAAAACApEGoDQAAAAAAAABIGoTaAAAAAAAAAICkQagNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAAAAAASBqE2gAAAAAAAACApEGoDQAAAAAAAABIGoTaAAAAAAAAAICkQagNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAAAAAASBqE2gAAAAAAAACApEGoDQAAAAAAAABIGoTaAAAAAAAAAICkQagNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAAAAAASBqE2gAAAAAAAACApEGoDQAAAAAAAABIGoTaAAAAAAAAAICk4bG7gHgzTVOS1NDQYHMlAAAAAAAAAIC+RDLcSKbbl5QPtRsbGyVJI0aMsLkSAAAAAAAAAMCxNDY2Kisrq8/HDfNYsXeSC4fD2rt3rzIyMmQYht3lDKqGhgaNGDFCu3fvVmZmpt3lABgEXPeA83DdA87CNQ84D9c94CxOv+ZN01RjY6OKi4vlcvU9OTvlO7VdLpdKSkrsLsNWmZmZjrwIACfjugech+secBauecB5uO4BZ3HyNX+0Du0IFkUCAAAAAAAAAJIGoTYAAAAAAAAAIGm4Fy9evNjuIhA/brdb55xzjjyelJ80A6AL1z3gPFz3gLNwzQPOw3UPOAvX/LGl/KJIAAAAAAAAAEDqYPwIAAAAAAAAACBpEGoDAAAAAAAAAJIGoTYAAAAAAAAAIGkQagMAAAAAAAAAkgahdgpbsmSJRo0aJb/fr2nTpuntt9+2uyQAMfDAAw/ojDPOUEZGhgoKCnTJJZdo27ZtPY5pbW3V3LlzlZeXp/T0dF1++eWqqqqyqWIAsfbzn/9chmHolltuid7HdQ+klj179ug73/mO8vLyFAgENGHCBG3cuDH6uGmauueeezRs2DAFAgHNnDlTH3/8sY0VAzgRoVBId999t0aPHq1AIKCTTz5Z9913n0zTjB7DdQ8ktzfeeEMXX3yxiouLZRiG/vznP/d4vD/XeE1NjcrLy5WZmans7Gx973vfU1NT02B+GgmDUDtFvfjii5o/f74WLVqkd955RxMnTtSsWbNUXV1td2kATtCaNWs0d+5cvfXWW3rttdfU0dGh888/X83NzdFjbr31Vr3yyit66aWXtGbNGu3du1eXXXaZjVUDiJWKigo988wzOu2003rcz3UPpI7a2lrNmDFDaWlp+vvf/64tW7bokUceUU5OTvSYhx56SI8//riefvppbdiwQUOGDNGsWbPU2tpqY+UAjteDDz6opUuX6sknn9TWrVv14IMP6qGHHtITTzwRPYbrHkhuzc3NmjhxopYsWdLr4/25xsvLy/Xhhx/qtdde06uvvqo33nhDP/zhDwfrU0gohtn9135IGdOmTdMZZ5yhJ598UpIUDoc1YsQI3XjjjVq4cKHN1QGIpX379qmgoEBr1qzR2Wefrfr6eg0dOlTLly/XFVdcIUn66KOPNG7cOK1fv15f+cpXbK4YwPFqamrS6aefrqeeeko//elPNWnSJD322GNc90CKWbhwod58802tXbu218dN01RxcbEWLFig2267TZJUX1+vwsJCPfvss7r66qsHs1wAMXDRRRepsLBQv/71r6P3XX755QoEAvrd737HdQ+kGMMw9PLLL+uSSy6R1L9/27du3arx48eroqJCU6dOlSStXLlS3/jGN/T555+ruLjYts/HDnRqp6D29nZt2rRJM2fOjN7ncrk0c+ZMrV+/3sbKAMRDfX29JCk3N1eStGnTJnV0dPT4HjB27FiVlpbyPQBIcnPnztU3v/nNHte3xHUPpJq//OUvmjp1qq688koVFBRo8uTJ+tWvfhV9/LPPPlNlZWWPaz4rK0vTpk3jmgeS1FlnnaVVq1Zp+/btkqR3331X69at04UXXiiJ6x5Idf25xtevX6/s7OxooC1JM2fOlMvl0oYNGwa9Zrt57C4Asbd//36FQiEVFhb2uL+wsFAfffSRTVUBiIdwOKxbbrlFM2bM0KmnnipJqqyslNfrVXZ2do9jCwsLVVlZaUeZAGJgxYoVeuedd1RRUXHEY1z3QGr59NNPtXTpUs2fP1933nmnKioqdNNNN8nr9WrOnDnR67q3n/e55oHktHDhQjU0NGjs2LFyu90KhUL62c9+pvLyckniugdSXH+u8crKShUUFPR43OPxKDc315HfBwi1ASCJzZ07Vx988IHWrVtndykA4mj37t26+eab9dprr8nv99tdDoA4C4fDmjp1qu6//35J0uTJk/XBBx/o6aef1pw5c2yuDkA8/P73v9fzzz+v5cuX68tf/rI2b96sW265RcXFxVz3ANALxo+koPz8fLndblVVVfW4v6qqSkVFRTZVBSDW5s2bp1dffVWrV69WSUlJ9P6ioiK1t7errq6ux/F8DwCS16ZNm1RdXa3TTz9dHo9HHo9Ha9as0eOPPy6Px6PCwkKueyCFDBs2TOPHj+9x37hx47Rr1y5Jil7X/LwPpI7bb79dCxcu1NVXX60JEybou9/9rm699VY98MADkrjugVTXn2u8qKhI1dXVPR7v7OxUTU2NI78PEGqnIK/XqylTpmjVqlXR+8LhsFatWqXp06fbWBmAWDBNU/PmzdPLL7+sf/7znxo9enSPx6dMmaK0tLQe3wO2bdumXbt28T0ASFLnnnuu3n//fW3evDn6MnXqVJWXl0dvc90DqWPGjBnatm1bj/u2b9+ukSNHSpJGjx6toqKiHtd8Q0ODNmzYwDUPJKmWlha5XD0jGrfbrXA4LInrHkh1/bnGp0+frrq6Om3atCl6zD//+U+Fw2FNmzZt0Gu2m3vx4sWL7S4CsZeZmam7775bI0aMkM/n0913363Nmzfr17/+tdLT0+0uD8AJmDt3rp5//nn94Q9/UHFxsZqamtTU1CS32620tDT5/X7t3btXTz75pCZNmqSamhrdcMMNGjFihBYtWmR3+QCOg8/nU0FBQY+X5cuX66STTtLs2bO57oEUU1paqnvvvVcej0fDhg3TypUrtXjxYt1333067bTTZBiGQqGQ7r//fo0fP17t7e266aab1NLSoieeeEIeD1MmgWSzdetWPffccxozZoy8Xq9Wr16tO++8U9dee63OO+88rnsgBTQ1NWnLli2qrKzUM888o2nTpikQCKi9vV3Z2dnHvMaHDh2qDRs26IUXXtDkyZO1Y8cO3XDDDTr//PN13XXX2f3pDT4TKeuJJ54wS0tLTa/Xa5555pnmW2+9ZXdJAGJAUq8vy5Ytix5z8OBB80c/+pGZk5NjBoNB89JLLzW/+OIL+4oGEHNf+9rXzJtvvjn6Ntc9kFpeeeUV89RTTzV9Pp85duxY85e//GWPx8PhsHn33XebhYWFps/nM88991xz27ZtNlUL4EQ1NDSYN998s1laWmr6/X7zpJNOMu+66y6zra0tegzXPZDcVq9e3etz+Tlz5pim2b9r/MCBA+Y111xjpqenm5mZmeb1119vNjY22vDZ2M8wTdO0KU8HAAAAAAAAAGBAmKkNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAAAAAASBqE2gAAAAAAAACApEGoDQAAAAAAAABIGoTaAAAAAAAAAICkQagNAAAAAAAAAEgahNoAAAAAAAAAgKRBqA0AAAAMktdff12GYaiurs6Wj79q1SqNGzdOoVDomMeuXLlSkyZNUjgcHoTKAAAAgP4j1AYAAABiwDCMo74sXrxYZ511lr744gtlZWXZUuMdd9yhn/zkJ3K73cc89oILLlBaWpqef/75QagMAAAA6D/DNE3T7iIAAACAZFdZWRm9/eKLL+qee+7Rtm3bovelp6crPT3djtIkSevWrdNFF12kyspK+f3+fr3PkiVL9Oyzz6qioiLO1QEAAAD9R6c2AAAAEANFRUXRl6ysLBmG0eO+9PT0I8aPPPvss8rOztarr76qMWPGKBgM6oorrlBLS4uee+45jRo1Sjk5Obrpppt6jAxpa2vTbbfdpuHDh2vIkCGaNm2aXn/99aPWt2LFCp133nk9Au13331XX//615WRkaHMzExNmTJFGzdujD5+8cUXa+PGjfrkk09i+x8LAAAAOAEeuwsAAAAAnKylpUWPP/64VqxYocbGRl122WW69NJLlZ2drb/97W/69NNPdfnll2vGjBm66qqrJEnz5s3Tli1btGLFChUXF+vll1/WBRdcoPfff19f+tKXev04a9eu1bXXXtvjvvLyck2ePFlLly6V2+3W5s2blZaWFn28tLRUhYWFWrt2rU4++eT4/UcAAAAABoBQGwAAALBRR0eHli5dGg2Nr7jiCv32t79VVVWV0tPTNX78eH3961/X6tWrddVVV2nXrl1atmyZdu3apeLiYknSbbfdppUrV2rZsmW6//77e/04O3fujB4fsWvXLt1+++0aO3asJPUaiBcXF2vnzp2x/JQBAACAE0KoDQAAANgoGAz26IIuLCzUqFGjeszfLiwsVHV1tSTp/fffVygUUllZWY/ztLW1KS8vr8+Pc/DgwSNmac+fP1/f//739dvf/lYzZ87UlVdeeURHdiAQUEtLy3F/fgAAAECsEWoDAAAANuo+7kOSDMPo9b5wOCxJampqktvt1qZNm+R2u3scd7RFlPn5+aqtre1x3+LFi3Xttdfqr3/9q/7+979r0aJFWrFihS699NLoMTU1NRo6dOhxfW4AAABAPBBqAwAAAElk8uTJCoVCqq6u1le/+tUBvd+WLVuOuL+srExlZWW69dZbdc0112jZsmXRULu1tVWffPKJJk+eHLP6AQAAgBPlsrsAAAAAAP1XVlam8vJyzZ49W3/605/02Wef6e2339YDDzygv/71r32+36xZs7Ru3bro2wcPHtS8efP0+uuva+fOnXrzzTdVUVGhcePGRY9566235PP5NH369Lh+TgAAAMBAEGoDAAAASWbZsmWaPXu2FixYoDFjxuiSSy5RRUWFSktL+3yf8vJyffjhh9q2bZskye1268CBA5o9e7bKysr07W9/WxdeeKHuvffe6Pu88MILKi8vVzAYjPvnBAAAAPSXYZqmaXcRAAAAAOLv9ttvV0NDg5555pljHrt//36NGTNGGzdu1OjRowehOgAAAKB/6NQGAAAAHOKuu+7SyJEjo0snj2bHjh166qmnCLQBAACQcOjUBgAAAAAAAAAkDTq1AQAAAAAAAABJg1AbAAAAAAAAAJA0CLUBAAAAAAAAAEmDUBsAAAAAAAAAkDQItQEAAAAAAAAASYNQGwAAAAAAAACQNAi1AQAAAAAAAABJg1AbAAAAAAAAAJA0CLUBAAAAAAAAAEnj/wMpF+Pgj9u45gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbUAAANcCAYAAABop0I8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3xUVf7/8fek90JCQg+9K8UAS1EiRcGCICoL6mIB21oQxLKKgHUFZFGUH7qogAVQQdde6EpRei8iJBAgQIBUQur5/ZHvXBOSCUlIMhN4PR+PPB5k7j3nfubMuXfIZ858rs0YYwQAAAAAAAAAQDXg5uwAAAAAAAAAAAAoLZLaAAAAAAAAAIBqg6Q2AAAAAAAAAKDaIKkNAAAAAAAAAKg2SGoDAAAAAAAAAKoNktoAAAAAAAAAgGqDpDYAAAAAAAAAoNogqQ0AAAAAAAAAqDZIagMAAAAAAAAAqg2S2gCAS87s2bNls9nUsGFDZ4eCczRs2FA2m02zZ892digOVfb8mTBhgmw2m2JiYiql//Jw9jnj7OM708GDB3X33XerQYMG8vLyks1mU0hIiLPDKpeYmBjZbDZNmDDB2aG4nNjYWNlsNtlsNsXGxjo7nFL74IMP1LVrVwUFBVnxT5s2zdlhVWt33XWXbDab7rrrLqfGUR3ejwEAlzYPZwcAAEBZ2Gy2crf94IMPnP5HYmWZNm2akpKSNHDgQLVv397Z4QClEhsbayVMSHQWlZycrO7duys+Pl6SFBwcLB8fHwUHB5eqPeNbsi+//FKbN29W+/btNXDgQGeHU+28/vrreuKJJyRJHh4eioiIkM1mk7+/v5MjQ0lmz56t2NhYxcTEuNSHpwAAlBVJbQBAtRIZGVns42lpaUpPTy9xH19f30qLy9mmTZumuLg4NWzYkKQ2KlxwcLBatGihunXrVmi/sbGxmjhxoqSSk66VdXxXN2/ePMXHxys0NFSrV69Wy5Yty9S+tONbVRo0aKAWLVooPDzc2aFIyk9qz5kzR8OHD3d6UtvT01MtWrSw/l0dTJkyRZL06KOPasqUKdUm7kvd7NmztWLFCkkqMandpEmTMn2IBgBAVSOpDQCoVhISEop9fMKECVbyxtE+AMpn0KBBGjRo0CV7fGfZtm2bJKlXr15lTmi7orlz5zo7BJdVt25d7d6929lhlNqJEyes99qRI0eS0L4ILVmyxNkhAABQImpqAwAAAC7ozJkzkqSAgAAnRwIUZp+bEvMTAAA4B0ltAMAlb8OGDbrttttUu3ZteXt7q3Hjxho9erROnz5dYruzZ8/qzTffVM+ePRUeHi4vLy/VqlVLAwcO1A8//FDueDIyMjRlyhR17dpVoaGh8vT0VM2aNdW6dWsNHz5cCxcutPa131QwLi5OknT33XdbN+uy/xS0Z88eTZ48WX369FGTJk3k6+uroKAgdejQQc8995wSExMdxlXwplFZWVmaPHmy2rVrJ39/fwUHB6tXr17nfd4ZGRl66aWX1Lp1a/n6+ioiIkLXXXddqVaEVVTsaWlpev7553XZZZcpMDCw2BuzrV27VgMHDlR4eLh8fX3VokULPfvss0pLSztvnKXx/fffq2/fvgoJCVFAQIDatWunSZMmKTs7u1TtExIS9PTTT6tdu3ZWneXGjRtrxIgR2rlzZ5H9H330UdlsNnXs2LHEftPS0uTv7y+bzaaPPvrIerykGzVmZ2fr559/1qOPPqro6GjVrl1bXl5eioiI0LXXXqt58+bJGFOkXcOGDXX11Vdbv587bwvWvy/NjSL//PNPPfjgg2rWrJk1Nzp27KgXXnhBKSkpxbZZvnx5ofNk3759uueee1S/fn15e3urXr16GjlypA4fPlziuJ1PQkKCxo4dqzZt2iggIED+/v5q06aNnnzySR07dqzI/vYbKtrrYc+ZM6fQ2JTmxm1lGd9zb066cOFCXXPNNYqIiJCbm1uh0iUXch6W5kaRf/75px555BG1atVKAQEB8vPzU6tWrTRq1CgdPHiwxOeclZWlWbNmqV+/foqMjJS3t7dq166trl276oUXXtCBAwck/fW6z5kzR1LR8bXZbFq+fHmR/hctWqQbbrhBkZGR8vLyUmRkpG644QZ98cUXDmMqeNM/Y4xmzZqlHj16KCwsrNBrWdobRX755ZcaOHCg6tSpIy8vL4WGhuqqq67SzJkzS7x+fPrpp+rfv78iIyPl6empkJAQNWvWTAMGDNDbb7+ts2fPlji2dvaxK3guNmrUyIq9uHN0+fLluvXWW1W3bl15e3srPDxcvXv31gcffKDc3Nxij1OWOVlay5cv19ChQ9WgQQOrrEbnzp01adIkq3zZuTIyMvTVV19p5MiRat++vWrWrClvb2/VqVNHAwcO1Pfff3/e45Z2Xjry+eefKyYmRjVq1JCfn5/at2+vN954Q3l5eWV6/vbrqL30yMSJE4vM+4Jzr6QbRRY8T06ePKnRo0db14OoqCg9/PDDOnHihLV/XFycHnzwQTVq1Eg+Pj5q0KCBxowZo9TU1BJjTk5O1ssvv6wuXbooNDRU3t7eql+/voYOHaq1a9eW6fkDAC5CBgCAi8D48eONJFOat7YPPvjASDJRUVHm448/Np6enkaSCQ4ONm5ublY/bdq0MampqcX2sXfvXtOsWTNrX5vNZoKDg63fJZkHH3ywzM8jJSXFtGvXrlC/ISEhxsPDw3osKirK2n/y5MkmMjLSijsoKMhERkYW+ikoKiqqSN82m816rG7dumb37t3FxmZvO336dNOlSxcjyXh6epqAgIBCfb733nvFtj958qTp0KGDta+Hh4cJCQmx2s2YMcM6xgcffODw+BcS+5QpU0zz5s2NJOPl5WUd/8CBA9a+7733XqF5EBwcbLy8vIwk07JlSzN16tQir0NZFJyrkgq9vldddZV55plnjCTTs2fPYtt//fXXhcbc09PT+Pv7W797eXmZOXPmFGqzbt06a/v27dsdxjZ79mwjyQQEBJi0tDTr8YLnzLmWLVtW6Pl4e3sXik+SufXWW01ubm6hdtHR0SY0NNTa59x5++ijj5bq+MYYs2DBAuPt7W31FRgYWOj3+vXrm507d5YY+9KlS624AwMDC51zderUMfHx8Q7HrSTLly+35pkk4+fnV+j1Cg0NNb/88kuhNoMGDTKRkZHGx8fHSDI+Pj6Fxmb+/PnnPW5Zxtc+J3v27GlGjx5tnWOhoaHG3d3djB8/3tr3Qs7Dnj17GkmF+ivo3Xffta7H9rnk6+tr/R4UFGR++umnYtvu37/ftG3btkhs7u7u1mOPPfaYMcaYVatWlTi+kZGRZtWqVVbfmZmZZsiQIVY/bm5uJjQ0tNB1YujQoSYrK6tIXMOHDzeSzD/+8Q9zyy23FGlvv9YdOHDA6qvg9cguNTXV3HDDDYXOq6CgoEJj37VrV3Pq1Kkibe+5555C7QICAoyfn1+hx4o7ZnHsYxceHm61DQ8Pt8YtOjq60P6PP/54ia9Jr169TEpKSpHjlGVOnk92drYZMWJEkTEoGEeLFi1MbGxskbb2a4/9x9fXt8jYjRkzxuGxyzIv7exzZvjw4eaf//ynNWcKXkfsc6os5s+fbyIjI61zzN/fv8i8P3jwoLV/Se/H9hjmzJlj6tWrZ/Vnf6+UZFq1amVOnz5tfv/9d2u+BAUFFbq2du/e3eTk5BQb79q1a01kZKS1r7u7uwkMDCw0lq+88kqZxgAAcHEhqQ0AuCiUJ6nt5+dnvL29zYgRI6w/5NLT081bb71l/dE3bty4Iu1Pnz5tGjZsaP1BvnLlSnP27FljjDFJSUlm6tSpVnJs2rRpZXoeL774opFkatSoYRYuXGj1m5ubaw4fPmzmzp1rRo4cWaRdSX98FjRkyBAzffp0s2/fPpOZmWmMyU/YLF682HTu3NlIMh07diy2rf0YoaGhpm7duubLL7+0kji7d+82f/vb36xkQVJSUpH2gwYNshJVM2fONBkZGcYYY2JjY82gQYOMp6enlSwo7nlUROwBAQGmVq1aZtGiRVbshw4dMunp6cYYYzZs2GD9wR0TE2N27dpljDEmKyvLzJs3z4SEhFiJhfIktf/3v/8VSvTa592ZM2fM22+/XSjRXlxS+7fffrOSBvfff7/ZtWuXlRCIi4szDz30kJHyPzBYt25dobatW7c2ksxTTz3lML7evXsXmywpKam8du1aM2zYMPPtt9+ahIQEk5eXZ4zJ/xDjjTfeMEFBQUaSeeONN4q0LZhULklJx9+wYYN1vnbv3t1s2bLFGJN/znz11Vemdu3aRpJp0qRJkQ+pCh4/NDTUDBgwwHrNMzMzzYIFC6wkyp133llijMU5ePCg9Xq2bt3a/Prrr9a2lStXmhYtWljne3FJ84LJrfIo7fjar5/269aTTz5pjh8/bowx5uzZs4WSfRdyHpaU1P7iiy+MlP8hzdNPP21iY2NNXl6eycvLM7t37za33nqrlRSLi4sr1DY5Odn6kDE0NNS8++671jUoKyvL7Nmzx7z++utm6tSphdqVdnzHjBljJdHGjRtnTp8+bYwx5tSpU+Zf//qXNcbFnVv2YwQEBBgPDw8zZcoUk5ycbIzJT1QfOXLEGHP+pPbAgQONJNO0aVPzySefWIngjIwM87///c80btzYSDIDBw4s1O6XX36xkqKvvfaaOXnypLUtMTHR/Pjjj2b48OHm8OHDJY7Buc4XrzHGTJ8+3drnvvvuM0ePHjXGGJOWlmb+85//WNfaIUOGFGlbljl5Po899piR8j/YmTFjhjUGWVlZZtmyZdaHrR07dizy4dsXX3xh7rvvPrNs2TKTmJhoPX7kyBEzceJE69rzv//9r8hxL3RehoaGGi8vLzN16lRrziQmJhZK0C9ZsqTU42B3vg+X7EqT1A4JCTHt27c3a9eutZ7XvHnzrPfyhx9+2ERFRZlevXpZH6hmZGSY6dOnW4n9//73v0X6P3DggHXtvOWWW8yGDRtMdna2McaYY8eOmXHjxlnz54svvijzGAAALg4ktQEAF4XyJLVLSmbYV4Y1bdq0yLYnnnjCSmjb/8g616JFi6wVbI72KU7//v2NpDKvPiptUrskqamp1qqoc1eOFjyGt7e3lfgr6Pjx49bKx48++qjQtt9++80a8+JWcufk5JgePXpY+5T1eZQ2dnd3d7Nx40aH/djHv3nz5ubMmTNFtv/www9WjOVJatsTyz179iySPDHGmJkzZ1r9F5fU7tSpk8MPW+weffRRI8ncdNNNhR5/9dVXjSRTr169Yo8dHx9vrTxdvHhxoW3nWyldks8++8xKKp+rIpLa/fr1s85V+4cTBW3cuNFKfkyePNnh8a+++upix+XNN980Uv4KzbKcy8YY88ADD1jJKXtCr6BDhw5ZSf9//vOfRbZXdVJbkhk9enS5jmXM+c9DR8m0zMxMU7duXYfXB7sBAwYYqejK1ueee866NpV0fp+rNOMbHx9vzZ9nnnmm2H3s7xeenp5WkvrcY0gyb775psPjlJQk/uabb4wkU6tWLYffGDh06JD1DYBNmzZZj7/22mtGkrnmmmscHrs8zpfUPnPmjKlRo4aR8lexF8d+bkkq8iFcRc3Jbdu2GZvNZvz8/MzWrVuL3SclJcVabVzWBOnkyZONJNO7d+8i2y50Xpb0XnjFFVcYSWbEiBFliteYik1qR0ZGFkr2240bN87ap02bNtYH9AXdeeedDsfO/q2Gkj5MtH9rql27diU+DwDAxYua2gCAS9pzzz1X7OM33XSTpPwauwVviGWM0fvvvy9JGjNmjDw8PIptP3DgQAUFBSkxMVEbNmwodTwhISGSpKNHj5a6TUUJCAhQz549JUm//vqrw/1uueUWtWzZssjjNWvWVNeuXSVJW7duLbRt/vz5kqT69evr7rvvLtLW3d1d48aNq/TY+/Xrpw4dOhS7LSkpST/++KMkaezYsfL19S2yz7XXXms9x7LaunWrVe/6ueeek5tb0f+GjRw5UnXr1i22/ZYtW7Ru3Tp5enpqzJgxDo/zj3/8Q5K0ePHiQvVq77jjDrm5uSk+Pl7Lli0r0u7jjz9WXl6e6tWrV6gW84W6/vrrJeXXSq7oeX3ua+bn51dknw4dOujmm2+WJM2bN89hX//617+KfU3s14KMjAz98ccfpY7NGKNPP/1UkvTAAw+oVq1aRfapV6+eHnjgAUl/nSPO5Obmpqeeeqrc7Ut7Hp7r+++/1+HDhxUZGVns9cHOPrftr7md/Zo8YsQIh+d3eS1cuFA5OTny8fHR008/Xew+zz33nLy9vZWdna3PP/+82H1CQ0N1//33lyuGWbNmSZLuvPNOh9eHgudtwfGxv6ecOHHCYf3qyvDzzz/r1KlTkuSw/vVDDz2k2rVrS3J8bl7onHzvvfdkjNH111+vyy67rNh9AgMDNXDgQElF59b52K9va9asKTK+Fzov69evb835cw0YMEBS0ffaqjZy5EiFhYUVefzaa6+1/j169Gh5e3s73Ofc53Dq1CktWrRIkhyec9Jf14MtW7YUe28CAMDFr/i/xAEAuATUqFFDTZs2LXZbnTp1rH+fPn3aSpbt3LnT+kP9rrvuKjYJZme/qWBcXJy6dOlSqphuuOEGzZs3T2+99ZZOnDihIUOGqEePHgoPDy9V+9L45ptv9OGHH2rdunU6duxYoaS9XXx8vMP2JT0X+7jZx8hu/fr1kv66UVxxrrrqKnl4eCgnJ6fSYu/evbvDbRs3brRuvNWrVy+H+/Xq1Utr1qxxuN0R+xh4eHjoyiuvLHYfNzc3xcTE6OOPPy6yzZ4kzMvLU4sWLRwex55YSU9P18mTJxURESEpP+kVExOjpUuX6sMPP1Tv3r0Ltfvwww8lSbfffnuJ87o4qampmjlzpr755hvt2rVLSUlJxd607vDhw1YSqyJs3LjRugllnz59HO7Xt29fffrpp9q6dauys7Pl6elZZB9H87rgteDceV2SAwcOWPufL7ZJkybp5MmTOnDggBo1alTqY1S0pk2bWvOlJBd6Hp7LPrdPnz5d4vzIysqSJOvGuPZ/HzlyRJJ04403lvqYpWU/bzt16qSgoKBi9wkNDVV0dLRWrVpl7X+uTp06ycvLq1wx2Mfn3Xff1dy5cx3ul5ycLKnw+PTp00c+Pj7atGmTrrzySt17773q1atXpc8z+zjUr19fzZs3L3Yfd3d39erVSx9//LHDcSvtnHTEPnbff/99sR8s2RV8vz7XsWPHNGPGDP3000/au3evkpOTiySwz5w5o9OnT1vv1RUxLzt16uTwWuzovbaqde7cudjHIyMjrX936tSpxH3OvSn3mjVrSvVeXFBcXFyhYwIALg0ktQEAl6zAwECH2wquwC6YnLP/kSrlr3wrjeISPo4MGzZMv//+u6ZPn6758+dbqzebNm2qa665Rvfcc4+uuOKKUvdXUF5enu64445CK+I8PDwUGhpqJVuSk5N19uxZpaenO+ynNON2bkLz+PHjkuRwlaEk+fj4KCwsrNgVVxUVe0nJEXuM54uzXr16DreVxN5/eHh4savWzte/fe7l5uaWelXauXPvH//4h5YuXaqFCxdqxowZ1oc1mzdv1vbt2619ymLv3r3q3bt3oSSmn5+fQkJCrISMPd6SXpvyKOtrlpOTo1OnThWb/HA0rx1dCyo6NnsbZya1z5c8rKjz8Fz2uZ2VlVWquZ2RkWH9OyEhwfp3VFRUqY9ZWqW5dkl/vY4FX/eCypuYzc7OVmJioqT8sbUnrktS8Lxv3LixZs2apQceeEBr1qyxPpCrWbOmrr76ag0bNkwDBgxw+GFjeTl73OzscystLc1KXJfk3GvmmjVrdN111ykpKcl6LCAgQH5+frLZbMrNzbVen/T0dCupXRHzsjzvtVWtNNfN8+1z7gfZBf+fVd73OgDApYHyIwAAlEHB1VkJCQky+fenKPHnrrvuKtMxpk2bpj179uiVV15R//79FRISon379mnGjBmKjo7WqFGjyhX7e++9p3nz5snd3V3PP/+8/vjjD2VmZurUqVNKSEhQQkKCbrnlFkmyVr9WtPImTioqdnd393IdvyKVdwzsc69ly5almnfGGDVs2LBQH4MHD5afn5/S0tL0xRdfWI/bV2lfccUVat26dZniuvvuuxUfH6+GDRvqs88+08mTJ5Wenq7jx48rISFBhw8ftvatrHlVFhWdvKvIYzojtoLOd35U1jXEPrf79etX6rldnMocvwt9Dct77Sn4njN//vxSjc3s2bML9XH77bcrLi5OM2fO1JAhQ1S/fn2dOHFCn376qQYOHKiePXsqJSWlXPGdj7PGzc4+fv/+979LNXbLly+32ubk5Gjo0KFKSkpS+/bt9d133yklJUWpqak6duyYEhIStHbtWmt/Z8zLi5H9NfP19S319SAmJsa5QQMAnIKkNgAAZVDw68vbtm2rtOM0bdpUzzzzjL777judPHlSa9assWp+vvHGG/rqq6/K3Kd91feIESM0ceJENW3atMhXmwuuLqtI9tV2JZUkyMzM1MmTJ4vdVhWxF1wRWDARe66StpWm/xMnTigzM7PM/dvn3v79+8u94jkgIECDBg2S9FciOzc311p5e+edd5apv0OHDmn16tWS8mvi3nLLLapRo0ahfSprTkmFX7OS5pZ9m31VcVUoGNuhQ4cc7lcw7po1a1ZqTBeqss5D+9wuzzW1YLmS2NjYMrc/H/vrWNJrKP31Olb0a+jj46Pg4GBJF/aeU6NGDd1///2aP3++Dh48qH379unpp5+WzWbTL7/84rDudXk5e9zsLmRurVmzRnFxcXJ3d9c333yj/v37F1l17Gi+V/a8vJjZX7OMjAzt27fPydEAAFwZSW0AAMqgbdu2Vl3Vqrqxm5ubm/72t7/p888/V4MGDSTl34Tr3H2kkldH2pMLjm5YlZaWpt9++60iQi4iOjpakrRixQqHMa5cudJhPe2qiL1jx47WOBZ3I0W7pUuXlqt/+xjk5OQ4vIleXl5eoZWCBdnrgWdlZRVaZV1WBW8kmZCQoMWLF+vo0aPy8PDQ0KFDy9RXwYSVo9dm8eLFDtsXTIiWZxV3wddsyZIlDvezx9CuXbti62lXhkaNGlkJ/tLEFhYWVuGlRy50fM9VWeehfW4fPny4TDeYlKQGDRpYJSy+/vrrMrUtzXXTft6uX7/eYemPpKSkQrW3K5p9fD777DOr1vCFatKkiV599VUNGzZMUtH3lAtlH7f4+Hjt3bu32H1yc3Ota21ljJv019h9++23pSo/UpB9vtesWdNhGRVH17cLmZeVrTTz3pm6detmrW53hRvoAgBcF0ltAADKwMPDQ/fcc48kac6cOedNwJT1Jk4lreB1d3e36tae+5Vse6K9YN3Pc9lX+23ZsqXY7S+++KJSU1PLFG9pDRkyRJJ08OBBzZkzp8j2vLw8vfTSSw7bV0XsISEhuuaaayRJU6ZM0dmzZ4vss3jxYmtlclldfvnlatWqlSTp5ZdfLjY59f777ztccRwdHW0lE5999tnz1nR3NPf69OmjOnXqKDc3Vx9//LG1Yrtfv35lrl9rf12k4l+b1NTUEl/XgjfeK2nuOhISEqJrr71WkjR58uRi66pu2bJFCxculKQyJ+0vhM1ms+b9O++8U+yKziNHjuidd96ptNgudHzPVVnn4Y033mitbH3sscfOWx/33LltvybPmjVLmzZtKvVxS3PdHDx4sDw8PHT27Fm99tprxe7zyiuvKDMzU56enho8eHCpj19a9913n6T8+vWTJ08ucd/09HTrhppSye8pUn6JB6niSzP17dtXYWFhkuRwFfg777xj1U+urHNz5MiRstlsSkpK0tixY0vcNzs7u1Di2z7fjx07Vmxt5/j4eL355psO+yvvvKxspZn3zhQREaGbbrpJUv513dGHInbOvlkmAMB5SGoDAFBG48aNU5MmTZSTk6N+/fpp6tSphRKMycnJ+uGHHzR8+HBdeeWVZeq7S5cuevTRR7V8+fJCJSaOHDmiRx55xPoq7nXXXVeoXdu2bSVJn3/+uU6fPl1s3/369ZMk/fe//9W7775rJT4SEhL0+OOPa9KkSVYSoqJ16dJFAwYMkCQ9+OCD+u9//2slWw4ePKghQ4ZozZo11o0LnRX7iy++KHd3d+3evVvXX3+99uzZIyl/dfWnn36q2267TSEhIeXu/+WXX5aUvxJ82LBhVgL77Nmzmjlzph5++GGH/dtsNs2cOVPe3t46ePCgunTpos8//7xQAvDw4cP66KOP1LdvXz311FPF9uPm5matznzvvff05ZdfSip76RFJat26tfXtgXvuuUcbNmywtq1Zs0YxMTEO56MkNW/e3PqgZtasWeVaOfjyyy/L09NT+/bt07XXXmuVGcjLy9N3332n6667Tjk5OWrSpInuv//+Mvd/If71r38pJCREp06dUp8+fQp9ILJq1Sr16dNHSUlJqlGjhp5++ukKP35FjG9BlXUe+vj4aMaMGbLZbNq4caO6d++uH3/8sVBy9sCBA3rnnXfUuXNnzZgxo1D7J554Qs2aNVNmZqZ69+6t//73v1aN6OzsbO3du1cvvPCCpkyZUqid/br5yy+/aPfu3cXGVrduXT322GOS8usyjx8/3koGJiUlady4cVaiefTo0YXKTlSUm266ySob9PTTT+vBBx8slOjLysrSb7/9pqeeekpRUVGFbrr48MMP67bbbtPChQsLPZ6WlqaZM2dq7ty5koq+p1woX19fK5k9b948PfDAA1Zi+MyZM5o+fbp1f4ghQ4aU+wbI59O+fXvrODNnztStt96qzZs3W+dCbm6utmzZohdffFFNmjTR5s2brbY9evSQv7+/jDG67bbbrDHPzc3Vjz/+qJiYmBLrZZd3XlY2+7z/7rvvyl1Oq7K9/vrrCgsLU0pKinr06KH333+/0DclEhMTtWjRIt18881V+mElAMDFGAAALgLjx483kkxp3to++OADI8lERUU53OfAgQNWfwcOHCiyff/+/aZdu3bWPpJMSEiICQoKKvRY06ZNy/Q8oqKirLY2m82EhIQYf3//Qn0+/vjjRdqtWLHC2Gw2I8m4u7ub2rVrm6ioqGTCqaMAACAASURBVELP8fTp06Zly5ZWP25ubiYkJMRqd//995vhw4cbSWb48OEOY/vggw8cxl9S+8TExEJj5unpaUJCQqzn+vbbbzs8RlXEbvfOO+9Y/UoywcHBxtvb20gyLVu2NFOnTj3v/CnJs88+W+j1DA0NNR4eHkaSufLKK80zzzxjJJmePXsW2/6nn34yYWFhVnt3d3cTFhZm/Pz8CvU7YsQIhzFs27at0L7BwcEmIyPD4f4lnTNff/21Fb8k4+fnZ8Xi5+dnFi9ebG1btmxZkfb33ntvobYNGjQwUVFRZsyYMaU6vjHGzJ8/33h5eVn9BAUFGR8fH+v3+vXrm507dxZpt2zZslJdN0qK/3yWL19ugoODrT78/f0LndMhISFm5cqVxbYtaU6XVmnG1379dDTn7C70POzZs6eRZMaPH19s/x999FGheezh4WHCwsKs88/+89JLLxVp++eff5rWrVsXii00NNS4u7tbjz322GOF2pw6dcrUrFnT2h4eHm5dN9esWWPtl5mZaW677bYifbu5uVmPDR061GRlZRWJq7Sv4fnec9LT083f//73QuPg7+9fJA5JJj4+vsjx7T8BAQHWddf+06NHD5OWllZifGWN1+7xxx8v9J5W8HonyVx99dUmJSWlSLvSzsnSyMnJMaNGjSr0nH18fExYWFihWCSZX3/9tVDb//f//l+R8bNfW8LDw81XX31V4jiUZ16WZs6U5v8xjuzdu9d6Dm5ubiYyMtKa94cOHbL2K+l983zXxNLMj/Ndfzdu3GgaNmxYZP4EBAQUek369OlT1iEAAFwkWKkNAEA5NGrUSOvXr9fcuXN1ww03qHbt2tbXvhs1aqRBgwbp/fff15o1a8rU7/z58zVx4kT17t1bjRo1UlZWlrKzsxUVFaUhQ4ZoyZIlmjp1apF2V111lb799lv16dNHwcHBOnbsmOLi4hQXF2ftExISotWrV2vUqFFq2LCh3N3d5eHhoZiYGM2bN08zZ8684HEpSVhYmFavXq2JEyeqZcuWcnNzk4eHh/r166eff/5ZDz30kMO2VRn7fffdp1WrVunGG29UjRo1lJmZqaioKD3zzDP6/fffL/hGgy+99JK++eYb9erVS0FBQcrMzFSrVq3073//W0uWLLFW1jrSt29f7du3T6+++qp69Oih4OBgJSUlyc3NTa1bt9a9996rr776StOnT3fYR9u2bdW+fXvr99tuu00+Pj7lej433HCDVq5cqeuvv14hISHKyclReHi47r77bm3cuFG9e/cusf3bb7+tCRMmWKsHDx48qLi4OCUmJpY6hiFDhmjHjh26//771aRJE2VmZsrDw0Pt27fXxIkTtX37dqv0S1Xr2bOndu/erTFjxqhVq1bKy8uTMUatWrXSE088oV27dpX5Gx1lURHja1fZ5+Htt9+uffv26bnnnlN0dLQCAgKUlJQkHx8ftW/fXg8//LAWL15c7LcQGjdurE2bNmnGjBmKiYlRaGio0tLSFBkZqa5du+rFF1/U448/XqhNaGioVq5cqb///e+qW7eukpOTretmwfJDXl5eWrBggRYuXKj+/fsrLCxMqampCgsLU//+/bVo0SJ98sknlVqv3c/PT/PmzdOyZct05513qnHjxsrLy1NaWpoiIiLUq1cvTZo0SX/88Ueh+s/jxo3Tm2++qUGDBqlly5by8PCw2vTt21fvv/++li9fLn9//0qJe+rUqVq6dKkGDx6syMhIpaWlKTAwUFdffbXef/99/fzzz0VuvljR3N3d9Z///EcbN27UfffdpxYtWsjd3V3JyckKDQ1V9+7dNWHCBG3evNmqwW33wAMP6Ntvv1VMTIwCAgKUk5OjunXr6pFHHtGWLVt02WWXlXjs8szLytasWTMtW7ZMAwYMUM2aNXXy5Elr3ju6r4UzdOjQQTt37tRbb72lPn36KDw8XKmpqcrLy1OzZs00bNgwzZ8/X4sWLXJ2qAAAJ7EZ46J3iAAAAABw0ejRo4dWrVqlV155Rc8884yzwwEAAEA1xkptAAAAAJXOXr83MjLSyZEAAACguvNwdgAAAAAALl7GGC1YsECxsbGSpK5duzo3IAAAAFR7rNQGAAAAUCmef/55+fn5aejQoZLya7A7q745AAAALh4ktQEAAABUipSUFOXk5CgqKkqjR4/W/PnznR0SAAAALgLcKBIAAAAAAAAAUG2wUhsAAAAAAAAAUG1c9DeKzMvL05EjRxQYGCibzebscAAAAAAAAAAAxTDGKDU1VXXq1JGbm+P12Bd9UvvIkSOqX7++s8MAAAAAAAAAAJTCoUOHVK9ePYfbL/qkdmBgoKT8gQgKCnJyNAAAAAAAAACA4qSkpKh+/fpWTteRiz6pbS85EhQURFIbAAAAAAAAAFzc+cpIc6NIAAAAAAAAAEC1QVIbAAAAAAAAAFBtkNQGAAAAAAAAAFQbJLUBAAAAAAAAANUGSW0AAAAAAAAAQLVBUhsAAAAAAAAAUG2Q1AYAAAAAAAAAVBsktQEAAAAAAAAA1QZJbQAAAAAAAABAtUFSGwAAAAAAAABQbZDUBgAAAAAAAABUGyS1AQAAAAAAAADVBkltAAAAAAAAAEC1QVIbAAAAAAAAAFBtkNQGAAAAAAAAAFQbJLUBAAAAAAAAANUGSW0AAAAAAAAAQLVBUhsAAAAAAAAAUG2Q1AYAAAAAAAAAVBsktQEAAAAAAAAA1QZJbQAAAAAAAABAtUFSGwAAAAAAAABQbZDUBgAAAAAAAABUGyS1AQAAAAAAAADVBkltAAAAAAAAAEC1QVIbAAAAAAAAAFBtkNQGAAAAAAAAAFQbJLUBAAAAAAAAANUGSW0AAAAAAAAAQLVBUhsAAAAAAAAAUG2Q1AYAAAAAAABczM6TO3Um+4yzwwBcEkltAAAAAAAAwIX8evhXDflmiCasmeDsUACXRFIbAAAAAAAAcCHLDy2XJC2JW8JqbaAYJLUBAAAAAAAAF7Lh2AZJUlZellYdWeXkaADXQ1IbAAAAAAAAcBHJmcnal7TP+n3pwaVOjAZwTSS1AQAAAAAAABex6fgmSZK3u7ckaUX8CmXnZTszJMDlkNQGAAAAAAAAXMTGYxslSdc1uk41fGooNStV6xPWOzkqwLWQ1AYAAAAAAABchL2ednStaF1d/2pJlCABzkVSGwAAAAAAAHABZ7LPaOfJnZKkKyKvUK8GvSRJSw8tlTHGmaEBLoWkNgAAAAAAAOACtiVuU47JUaRfpOr411GX2l3k5+Gn42eOa8fJHc4OD3AZJLUBAAAAAAAAF2Cvp90xsqNsNpu83b3Vo24PSZQgAQoiqQ0AAAAAAAC4AHs97SsirrAe692gtyRpycElTokJcEUktQEAAAAAAAAny87L1tbErZLy62nbXVnvSnm4eWh/8n4dSD7grPAAl0JSGwAAAAAAAHCyXSd3KSMnQ8HewWoc0th6PNArUF1qdZEkLTu0zFnhAS6FpDYAAAAAAADgZPZ62h0iOsjNVjhl16tBL0mUIAHsSGoDAAAAAAAATlZcPW27mPoxkqStJ7bqxJkTVRkW4JJIagMAAAAAAABOlGfytPF4/krtgvW07SL8InR5zcslUYIEkEhqAwAAAAAAAE71Z9KfSslKka+Hr1qGtSx2n17180uQLD24tCpDA1wSSW0AAAAAAADAiez1tC+vebk83TyL3cdeV/u3hN+UmpVaZbEBroikNgAAAAAAAOBEJdXTtmsU3EiNgxsrJy9Hv8T/UlWhAS6JpDYAAAAAAADgJMYYbTj+f0ntYuppF2Rfrb30ECVIcGkjqQ0AAAAAAAA4yeG0wzp+5rg83Dx0Wc3LStzXXlf7l/hflJWbVRXhAS6JpDYAAAAAAADgJBuP59fTbh3WWr4eviXu2ya8jSL8InQm54zWHl1bFeEBLomkNgAAAAAAAOAkpamnbedmc9PV9a+WJC09SAkSXLpIagMAAAAAAABOsvFY/krt89XTtrPX1V52aJly83IrLS7AlZHUBgAAAAAAAJwgMSNRsSmxssmm9hHtS9WmU61OCvQM1Kmzp7Q1cWslRwi4JpLaAAAAAAAAgBNsOr5JktQ0tKmCvYNL1cbTzVNX1b9KEiVIcOkiqQ0AAAAAAAA4gb2edseIjmVq17tBb0nSkoNLZIyp8LgAV0dSGwAAAAAAAJUqJy9HP8f9rLSsNGeH4lLs9bSjI6PL1K57ne7ycvPSodRD2pe0rzJCA1waSW0AAAAAAABUqqkbpmr08tF66pennB2Ky0jLStOe03skSR0jy7ZS28/TT13rdJVECRJcmkhqAwAAAAAAoNLsOrlLH+/6WJK0Mn6lfj38q5Mjcg2bT2xWnslTvYB6ivCLKHP7giVIgEsNSW0AAAAAAABUity8XL249kXlmTwFegZKkiavm6ycvBwnR+Z8Vj3tMq7StutZv6fcbG7adWqXjqYdrcjQAJdHUhsAAAAAAACVYuEfC7UtcZsCPAP00XUfKcQ7RPuT9+uzvZ85OzSnK289bbsaPjXUvmZ7SdLSQ5QgwaWFpDYAAAAAAAAqXGJGoqZtmCZJeqTDI2oc0lgPt39YkvT25reVnJnszPCcKjM3U9sSt0kq/0pt6a8SJNTVxqWGpDYAAAAAAAAq3JT1U5SanarWYa01pMUQSdLg5oPVNKSpkjOTNXPLTCdH6DzbE7crOy9bYT5hahDYoNz9XN3gakn5pUySziZVVHiAyyOpDQAAAAAAgAq19uhafbv/W7nZ3PR81+fl7uYuSfJw89DYTmMlSfN3z9f+5P3ODNNpCtbTttls5e6nfmB9NQ9trlyTq5WHV1ZUeIDLI6kNAAAAAACACpOZm6mX1r4kSRrSYojahLUptL1bnW6KqRejHJOj19e/7owQnc5eT/uKyCsuuC97CZIlcUsuuC+guiCpDQAAAAAAgArz/vb3FZcSp3DfcD3S4ZFi9xkTPUYeNg+tjF+pVYdXVXGEzpWTl6PNJzZLqpikdq8GvSRJq4+sVkZOxgX3B1QHJLUBAAAAAABQIeJS4jRr6yxJ0lOdnlKgV2Cx+zUMbqihrYZKkiatm6ScvJwqi9HZ9pzeo/TsdAV4BqhZSLML7q9FaAvV8a+js7lntfrI6gqIEHB9JLUBAAAAAABwwYwxennty8rKy1K3Ot10bcNrS9z/gXYPKMQ7RPuT9+uzvZ9VUZTOZy890j6ivVVr/ELYbDZrtfbSg0svuD+gOiCpDQAAAAAAgAv2Q+wPWnN0jbzcvPRsl2fPewPEIK8gPdz+YUnS25vfVnJmclWE6XQVWU/bzp7UXhG/4pJa9Y5LF0ltAAAAAAAAXJCUrBRNWjdJkjTy8pFqENSgVO0GNx+spiFNlZyZrJlbZlZmiC7BGKONxys+qd0hooNCvEOUnJlsJc2BixlJbQAAAAAAAFyQ6RunKzEjUQ2DGuqetveUup2Hm4fGdhorSZq/e772J++vrBBdwoGUAzp19pS83LzUJqxNhfXr4eahq+pdJUnU1cYlgaQ2AAAAAAAAym174nYt2LNAkvTc356Tl7tXmdp3q9NNMfVilGNy9Pr61ysjRJdhX0V9Wc3LyjxO59O5VmdJ0rpj6yq0X8AVkdQGAAAAAABAueTk5eiFNS/IyOiGxjeoS+0u5epnTPQYedg8tDJ+pVYdXlXBUboOe1K7Y0THCu+7U61OkqQdiTuUnp1e4f0DroSkNgAAAAAAAMplwZ4F2nVqlwK9AjUmeky5+2kY3FBDWw2VJE1aN+mivdmhvZ52dGR0hfddJ6CO6gbUVa7J1abjmyq8f8CVkNQGAAAAAABAmR1LP6bpm6ZLkkZ1HKVw3/AL6u/+y+9XiHeI9ifv12d7P6uIEF1KQnqCDqcdlpvNTe0i2lXKMeyrtX9P+L1S+gdcBUltAAAAAAAAlNmkdZOUnp2uy2terlua33LB/QV7B+vh9g9Lkt7e/LaSM5MvuE9XsuHYBklSyxot5e/pXynHsNfVXp+wvlL6B1wFSW0AAAAAAACUyS/xv+inuJ/kbnPX8397Xm62ikkxDW4+WE1Dmio5M1kzt8yskD5dRWXW07azr9TeeXKn0rLSKu04gLN5ODsAAAAAAAAAOM+cHXP0+d7PZWRK3ebEmROSpNtb3a4WNVpUWCwebh4a22ms7v/5fs3fPV+3trhVjYMbV1j/zlSZ9bTtavnXUv3A+jqUekgbj2/UVfWuqrRjAc5EUhsAAAAAAOASlZCeoGkbp5Xrxox1/OvoofYPVXhM3ep0U896PbUifoVeX/+63u79doUfo6olnU3SvqR9kqQOkR0q9Vida3XWodRDWpewjqQ2LloktQEAAAAAAC5Rc3fOVU5ejtrXbK/R0aPL1LZxcONKqw39RPQTWnV4lVbGr9S6hHVWWY3qyr5Ku1FwI9XwqVGpx4quFa2FfyzkZpG4qJHUBgAAAAAAuAQlnU3S53s/lyTd3+5+dYio3BXEZdEwuKEGNx+sBXsWaM6OOdU/qV0F9bTtOkXmj9XuU7uVkpWiIK+gSj8mUNW4USQAAAAAAMAl6JPdnygjJ0Mta7RU9zrdnR1OEXe0ukOStCJ+hWKTY50bzAWyr9S+IvKKSj9WpH+kooKilGfyrGQ6cLEhqQ0AAAAAAHCJOZN9Rh/v+liSdG/be2Wz2ZwcUVENgxuqZ72ekqSPdn3k5GjKLzY5VjtP7pRUNUltSdbK9nUJ66rkeEBVI6kNAAAAAABwifls72dKyUpRg8AG6hvV19nhOHRn6zslSV/9+ZWSM5OdHE3Z5eblatyqcco1uepWp5vqBNSpkuPaS5CQ1MbFiqQ2AAAAAADAJSQrN0tzd8yVJN3d9m65u7k7OSLHOtfqrOahzZWRk2HV/65OPtr1kTaf2Cx/T3+N7zq+yo5rX6m9+9TuavlhAHA+JLUBAAAAAAAuIV//+bWOZxxXhG+EBjQZ4OxwSmSz2azV2p/s/kTZedlOjqj0DiQf0PRN0yVJY6LHVNkqbUmq6VdTjYIbychow7ENVXZcoKqQ1AYAAAAAALhE5Obl6oMdH0iS/tHmH/Jy93JyROd3XaPrFOYTpuNnjuvn2J+dHU6p2MuOZOZmqmvtrrql2S1VHgMlSHAxI6kNAAAAAABwifj54M+KS4lTkFeQbmle9YnW8vBy99KQlkMkSR/u/FDGGCdHdH4f7fpIW05skb+nvyZ2m+iUG3F2qk1SGxcvktoAAAAAAACXAGOM3tv2niRpWKth8vf0d3JEpXdb89vk5eal7Se3a/OJzc4Op0QFy448Ef2EagfUdkoc0ZHRkqQ9p/co6WySU2IAKgtJbQAAAAAAgEvA6iOrtfvUbvl6+Or2lrc7O5wyCfMN0w1NbpCUv1rbVRUsO9KtTjcNbjbYabGE+4arSXATSaKuNi46JLUBAAAAAAAuAbO2zZIkDW42WCE+IU6OpuzuaHWHJGnJwSWKT413cjTF+3Dnh9pyYosCPAOcVnakoOha+au1f0/43alxABWNpDYAAAAAAMBFbvPxzVp/bL083Dw0vM1wZ4dTLs1Cm6lr7a7KM3n6ZPcnzg6niP3J+62yI2M7jVUt/1pOjkjqXKuzJJLauPiQ1AYAAAAAALjI2Wtp39j4RpdItpbXna3vlCQt+mOR0rLSnBzNX+xlR7LystS9bncNajrI2SFJ+mul9r6kfTp19pSTowEqDkltAAAAAACAi9gfp//Q8vjlssmmu9ve7exwLkj3ut3VKLiR0rPT9cW+L5wdjmXuzrnaemKrAjwDNKHrBKeXHbGr4VNDTUOaSpLWJ6x3cjRAxXFqUnvlypW68cYbVadOHdlsNn355ZeFthtjNGHCBNWpU0e+vr6KiYnRjh07nBQtAAAAAABA9fPe9vxV2n2i+qhRcCMnR3Nh3GxuVm3tj3d9rNy8XCdHJO1P2q+3Nr0lSXqy05MutxLeXoJkXcI6J0cCVBynJrXT09PVrl07vfXWW8VunzRpkqZOnaq33npL69atU61atdS3b1+lpqZWcaQAAAAAAADVT3xqvH448IMkacRlI5wcTcW4scmNCvYO1uG0w1p2aJlTY8nJy9Fzq55TVl6WetTtoYFNBzo1nuJ0qtVJEkltXFycmtTu37+/XnrpJd18881FthljNG3aND377LO6+eab1bZtW82ZM0dnzpzRJ5+43s0AAAAAAAAAXM3sHbOVa3LVrU43tQ5r7exwKoSvh69ua36bJOnDnR86NZY5O+ZoW+I2BXoGanzX8S5TdqSg6Mj8utp/Jv+pkxknnRwNUDFctqb2gQMHlJCQoGuuucZ6zNvbWz179tTq1asdtsvMzFRKSkqhHwAAAAAAgEtNYkaivvgjv+70xbJK2+7vLf8uDzcPbTy+UTsSnVOq9s+kP/X25rclSWM7jXW5siN2IT4hah7aXJK07hirtXFxcNmkdkJCgiQpMjKy0OORkZHWtuK8+uqrCg4Otn7q169fqXECAAAAAAC4og93fqisvCxdXvNya7XuxSLCL0L9GvaTlH+TxqqWk5ej5359Ttl52bqy7pUuWXakIHtdbW4WiYuFyya17c792oYxpsSvcjzzzDNKTk62fg4dOlTZIQIAAAAAALiUlKwULdizQJI0ou0IlyyLcaHubH2nJOmn2J90LP1YlR579o7Z2n5yu0uXHSkoulb+hxq/J/zu5EiAiuGySe1atfK/snHuquzjx48XWb1dkLe3t4KCggr9AAAAAAAAXEoW7F6g9Ox0NQ1pqp71ezo7nErROqy1roi8QjkmR/N2z6uy4+47vU8zNs+QJD3Z+UlF+jvOU7mK6Mho2WTTgeQDOnHmhLPDAS6Yyya1GzVqpFq1aunnn3+2HsvKytKKFSvUrVs3J0YGAAAAAADgujJyMvTRro8kSfe0vUduNpdN/1ww+2rtz/Z+pjPZZyr9eGeyz+ipX55Sdl62rqp3lW5qclOlH7MiBHsHq0WNFpKk9ccoQYLqz6lXtbS0NG3evFmbN2+WlH9zyM2bN+vgwYOy2WwaNWqUXnnlFX3xxRfavn277rrrLvn5+WnYsGHODBsAAAAAAMBlffHHFzp19pTqBtRV/0b9nR1OpYqpF6N6AfWUkpWir//8ulKPZYzRhNUTtPf0XtXwqVEtyo4U1KlWJ0kXVoIkNjlWt397uxbsXlBRYQHl4tSk9vr169WhQwd16NBBkjR69Gh16NBBzz//vCTpySef1KhRo/TQQw8pOjpahw8f1k8//aTAwEBnhg0AAAAAAFAl0n75RWf37C31/tl52Zq9Y7Yk6a42d8nDzaOSInMN7m7uuqP1HZKkj3Z9pDyTV2nHmrtzrr6P/V4eNg9NjZmqCL+ISjtWZegUmZ/ULu/NIjNzMzVmxRhtTdyq97e/X5GhAWXm1KR2TEyMjDFFfmbPni0p/yaREyZM0NGjR3X27FmtWLFCbdu2dWbIAAAAAAAAVeLsnj06NPI+xT/6SKnb/BT7k46mH1UNnxoa2HRgJUbnOgY2HagAzwDFpsTq18O/Vsox1h5dq6kbpkqSxnYaqysir6iU41SmK2pdITebm2JTYnX8zPEyt5+ybor2ns7/gOVI+pEqvzknUNDFW1QJAAAAAACgGktftVqSlB13UHlnSlcvevWR/DY3N7tZPh4+lRabK/H39NfgZoMl5a+mrmhH0o5o7IqxyjN5GtBkgIa2HFrhx6gKQV5BalmjpSRpXcK6MrVdErdE8/fMlySFeIdIkjad2FSxAQJlQFIbAAAAAADABZ1Z91fiMevQoVK12ZG4Q5LUvmb7SonJVQ1rNUxuNjf9dvQ37Tm1p8L6PZtzVqOWjVJSZpJah7XWuL+Nq1Z1tM9lL0FSlqT2kbQjGrd6nCTp7jZ367pG10mSNh0jqQ3nIakNAAAAAADgYkxurs6s/6v2cVZc3HnbpGena3/yfklSm/A2lRabK6oTUEd9GvSRVHGrtY0xmrhmonad2qVQ71BNi5lW7Ve/d67dWVLpbxaZk5ejp1Y+pdSsVF0Wfpke6fCIOkTk3xtv03GS2nAektoAAAAAAAAuJnPPHuWlplq/Zx88eN42O0/ulJFRLf9aCvcNr8zwXNKdre+UJH3151cav3q8zmSXrmSLI5/s/kTf7P9G7jZ3Tek5RbUDaldEmE7VIaKD3GxuOpR6SAnpCefdf8bmGdp8YrMCPAP02lWvydPdU+0j8r8FsOf0HqVnp1d2yECxSGoDAAAAAAC4mIKlRyQpK+78Se3tidslSW3D2lZKTK6ufUR7PdT+Idlk06I/Fum2b26zyrGU1bqEdZq8brIkaUz0GGuFc3UX6BWo1jVaSzp/CZK1R9dq1rZZkqTxXcerfmB9SVIt/1qq419HeSZPW09srdyAAQdIagMAAAAAALiY9N/zE47ezZpJkrJKsVLbSmqHX5pJbUl6sN2Deu/a9xTpF6m4lDjd8d0dem/be8ozeaXuIyE9QU+seEK5JlfXN75ed7S6oxIjrnqdap2/rvbJjJN65pdnZGQ0uNlg9WvUr9D2DpGUIIFzkdQGAAAAAABwISYvTxn/V0875JbBkkqX1N5xMn9V8qWc1Jbyk7YLByxU36i+yjE5mrZxmkb+NLJU5TYyczM1atkonTp7Si1rtNT4ruOr9Y0hi2NPajuqq51n8vTsqmeVmJGoJsFN9FTnp4rs06EmSW04F0ltAAAAAAAAF5L5xx/KTU6Wm5+fAvv1lyTlHD2qvLNnHbY5dfaUDqcdliS1DmtdJXG6smDvYL3e83W90O0F+Xr46veE3zX4q8FaHLfYYRtjjF5c86J2nNyhYO9gTbt6mnw9fKsw6qrRMbKj3G3uOpx2WEfSjhTZPnfHXK06vEre7t6a3HNysWNgX6m95cQW5eTlVHrMwLlIagMAAAAAALiQM/9XesS3Y0d5RNSUW0CAJCk7Pt5hG3vpkYZBDRXoFVj5QVYDNptNg5oN0mc3fqY2YW2UkpWivxQefQAAIABJREFUx5c/rgmrJxR7E8kFexbof3/+T242N02+arLqBtR1QtSVz9/TX23C2kgqWoJk24ltemPjG5Kkpzo/pWahzYrto2lIUwV6BiojJ0N7T++t3ICBYpDUBgAAAAAAcCFnfs8vC+HXqZNsNpu8GjSQVHIJEvsNES/10iPFiQqK0of9P9S9be+VTTYt/GOhhnwzxCrXIkkbj23Ua7+/Jkl6vOPj6lqnq7PCrRLFlSBJzUrV2JVjlWNydE3UNbql2S0O27vZ3NQuop0kSpDAOUhqAwAAAAAAuAhjjM78Xz1tv875iUfPqP9Lasc5TmpvP8lNIkvi6e6pUVeM0qxrZinCL0KxKbG647s79P7295WQnqDRy0crx+SoX8N+Gt5muLPDrXT2pPb6hPy5ZozRxDUTdTjtsOoG1NX4buevJd4hgrracB6S2gAAAAAAAC4ia98+5Z4+LZuvr3zb5ieovRpE5W87GFdsG2OMVX6EpHbJOtfurEUDFuXfRDIvR//Z8B8N+HKATp49qWahzTSx28SL7saQxekQ0UEeNg8dST+i+NR4LfpjkX6M/VEeNg+9dtVrCvIKKlUfkrTp2CYZYyo7ZKAQktoAAAAAAAAuIt1eeqRDe9k8PSXJKj+S7WCl9tH0ozp19pQ8bB5qWaNl1QRajdlvIjmx20T5evgqIydDQV5BeiPmDfl5+jk7vCrh5+mnNuH5dbXn756vf//+b0nSIx0fUbua7UrVR9vwtvKweeh4xnEdSS96w0mgMpHUxv9n774D46jv/P8/Z7u6ZDVLsiT3ijEYGwgthGISSiD8kiOk3uV76Y2Q5AIJXEIu5SAhl5BykNyRcBcSkhBKArlgmsFUYxuDcZEtF/UuS1pptbuzO/P7Y3ZGK6vtrlYalffjn8i7Uz5yzJb3vOf1FkIIIYQQQgghxAwReC0WPbJ5s/WYp3r8TG2zS3tFwQq8Tu8Ur3BuUBSFa1dcyx+v/CPXr76euy+5m8rcSruXNa3OXHgmAPftv49gNMg55efwj+v+MeH9M1wZrClcA0gEiZh+UtQWQgghhBBCCCGEmAF0XSfw2msAZJ55pvW42+zUbm5GD4dH7Dcb8rT7t2+n9qKL6X38cbuXMszivMV8/ayvs754vd1LmXabFm6yfi70FfLd876LQ0muVBgfQSLEdJKithBCCCGEEEIIIcQMED52jGhXF4rXi2/9UJHVVVyMkpEBmka4qWnEfjM9Tzvc2EjTl7+C2txM32Mzq6g9n51ecjqZrkwUFL5//vcpyihK6RgAr3dIUVtML5fdCxBCCCGEEEIIIYQQEIjlaWecdhoOj8d6XFEUPFVVhGpqUOvr8S5ZYj2n6Rr7u/YDsK5w3fQuOAFaOEzTDV9C6+sDxo5QEdMvw5XBvZfdy2BkcFjXdjJOKzkNgNoTtfSF+xIaMClEOkinthBCCCGEEEIIIcQMENhhRo9sHvGcOSwyfNKwyOO9xxlQB/A5fSzLXzb1i0xS++13EHzrLRSfDwC1oQFd02xelTCtK1qXckEboCijiKqcKnR03mh/I40rE2J8UtQWQgghhBBCCCGEsNmwPO3NoxS1xxgWaeZpry1ci8uR2g35WiBAuLExpX3H0/e3v3Hi/vsBqPjRneByoYfDRNrb034uYR8rgkSGRYppJEVtIYQQQgghhBBCCJuFjx8n0tGB4vGQsWHDiOfNYZHh+rphj5t52uuKUo8eabzhBo5ccind992X8jFOFjp2jJZbbgWg8BOfIOeii3CXlwMSQTLXSFFb2EGK2kIIIYQQQgghhBA2M7u0M049FYfXO+J5T1U1AOpJ8SPWkMjC1IZE6tGoFXvS9v1/p+MXv0DX9ZSOZdKCQZq+eANaIEDmpk0Uf+HzAHgqKwFQpag9p5xeahS193buRY2qNq9GzBdS1BZCCCGEEEIIIYSwWeC1nQBknnnmqM9b8SNNTeiRCABqVOVg90EATilKragdrqtHDwZBUQDovOuntP/gh5MqbLd+5zuEDh3CWVhI+Y/uRHEZsSjuKqOoHa5vSPnYYuZZkruEfG8+oWiIA90H7F6OmCekqC2EEEIIIYQQQghhI13XCezYAYw+JBLAVVqK4vFAJILa0gLAoZ5DqJpKrieXypzKlM4dOlQDgO+UUyi56WsAdN97L63fug09Gk36eD0PP0Lvg38GRaHizh/iLimxnjO7zcMN0qk9lyiKwmnFpwESQSKmjxS1hRBCCCGEEEIIIWykNjQQaWsDt3vUPG0AxeEY6nSORZDs69wHGF3aSqzTOlnBmlhRe/UqCv/xH1n4b98GRaHnD3+g+Ws3oauJx0kEDx2i9bbbACj6/OfIOvvsYc97Yus/OUJFzH5mBIkUtcV0kaK2EEIIIYQQQgghhI2G5WlnZIy5ndXpHBsWubdzLwDrClMfEhk6aBS1vStXAVDwvvdRcecPweWi77HHaPziDWih0ITH0QYGaPriDejBIFnnnkvRpz41Yht3LFM73NAw6dxuMbPED4uU/2/FdJCithBCCCGEEEIIIYSNzEGNmZs3jbudp8rI1TY7na0hkSnmaQOE4jq1TbmXX86in/0UxeOh/5lnaPjUp9AGBsY8hq7rtHzzW4SPHcNVWkr5D+5AcYwsOZmDIjW/n2hPT8prFjPPusJ1eBweuoPd1PulE19MPSlqCyGEEEIIIYQQQtho4LVYnvbm0fO0TdawyPp6AmqAo71HgdSL2tG+PtTmZgC8K1cOey7nwgup/OUvcWRmEnj5Fer/3z8T7esb9Tg9f/gDfY89Bk4nFT+6E9eCBaNu58jIwBXL2FbrpfA5l3icHtYVGXcMpCOC5Edba7jhgdfRNOn6FqOTorYQQgghhBBCCCGETcKNTUSaW8DlIvP008fd1l01VNQ+0H0ATdcoySyhJLNk3P3GEjp0CABXWRnOvLwRz2edfRZVv74XR14eg3v2UPeRjxLp6hq2zeC+fbR993sAlNx4I5lnnDHB7xCLIKlvSGnNYuaKjyCZDE3T+cW2Izyyp5najv50LE3MQVLUFkIIIYQQwmZ6OGz3EoQQQtjEytM+5RQcmZnjbuupNjK11fp63mp7E4BTClOPHrGGRK5aNeY2GRs2UP0/9+EsKiJ08CB1H/owamsrYHR6N93wJXRVJfsd72DBx/5pwnNaueAN0qk916SrqH0iECYS69Bu6hmc9LrE3CRFbSGEEEIIIWwUOnqMmrPOpu3fb7d7KUIIIWwQ2JFY9AiAe+FCcLvRVZVjR3YBk8zTNodEjlPUBqPoXf2//4OrrIzwsWPUfeCDhOvqaPnGN1AbGnBXVFD+799HUZQJz+mJdWqr0qk955xWfBoAx3qPcSJ4IuXjdPQPDSZt6QlOel1ibpKithBCCCGEEDYa3L0LfXCQgRdfsHspQgghbGB2ameeOXFRW3G58FRUANB12BgSaeYYpyJ4aOSQyLF4lyxh8f2/xVNdjdrczNFr3oP/yafA7abix/8xanzJaNyVZvyIdGrPNfm+fJbmLQVgT/uelI/T6R+6g61ZOrXFGKSoLYQQQgghhI3U9nbjf1vbbF6JEEKI6aY2N6M2NoLTScbpGxPaxx0bFuls7gBgXWFqRW09GiV06DAwcae2de7ycqrv/y3elSvRB41iY+nXvkbG+vUJn9dj5oJL/MiclI4Iko7+oe7s5l4paovRSVFbCCGEEEIIG0ViRW3N70cbGLB5NUIIIaaT2aXtW7cOZ3ZWQvuYmdQLT+hU51aT502sQ/pkakMD+uAgitdrZXUnwlVURPX/3Efuu6+i6DOfpuCDH0jqvGZRO9rRiRYIJLWvmPnSUdSWTm2RCJfdCxBCCCGEEGI+i7R3WD+rbe14ly6xcTVCCCGm04AZPbJ5U8L7mEXhhSdS79IGCNYcAsC7YgWK05nUvs78fCruuCOl8zrz8nDk5aH19hJuaBh3SKWYfcyi9r6ufYSiIbxOb9LH6IzP1O6VTG0xOunUFkIIIYQQwkZmpzZApK3VxpUIIYSYblaedgJDIk2earOorU9uSGTNQQC8q1amfIxUeSRXe86qzKmk0FeIqqns69yX0jE6/MMHRWqanq7liTlEitpCCCGEEELYKL6orbZJrrYQQswXalsbal09OBxknnFGwvuZgxYXnoBT0tCp7Vu1OuVjpMrsNlfrG6b93GJqKYpidWvvbt+d0jE64jq1w1GNroHwOFuL+UqK2kIIIYQQQthEj0aJdHZaf47IsEghhJg3Ajtiedpr1uDMyUl4v+4CF1EFvBFYHi1K+fyhg2an9vTHf7irpFN7LjOL2nva96S0f3ynNkiuthidFLWFEEIIIYSwSaSzCzTN+rMq8SNCCDHCga4D/Mtz/8Lx3uN2LyWtUokeAdjXW0NHbDaksym1i6FRvx+1qQkAny3xI7FO7QYpas9F8cMiNV2bYOuROvuNzuwMt5H1LkVtMRopagshhBBCCGGT+OgRgEhb+xhbCiHE/PWT3T/h/47/Hzdvv5moFrV7OWljFbXPPDOp/d7qfIvWAgVIvdM5dPgwAK6FC3Hm56d0jMkwc8HDEj8yJ60uXI3P6aMv3Mex3mNJ7RvVdLoHjE7t9RXG1ZtmGRYpRiFFbSGEEEIIIWwS6TipqN0qndpCCBGvN9TLqy2vAvBW11v86dCfbF5Reqjt7YSPHQNFIXNT4nnaYPw9tBUYP4frUitqBw/aNyQSwG12ajc3o4clL3mucTvcrC9eDxjd2snoHgij6aAosK4iF5BObTE6KWoLIYQQQghhE7NT211eDsigSCGEONkz9c8Q0SO4HW7A6NruHOycYK+Zb3DnTgC8q1fjzM1NeD9N19jfuX/yndo2DokEcJUUo/h8oGmozc22rEFMrfgIkmR0xoZEFmZ5qCzIBKClV4raYiQpagshhBBCCGETs6jtW290M0W7utCkY00IISxb67YC8PFTP866wnX0q/384LUf2LyqyRuw8rQ3JbVfXV8dftVPV6FR5A/X16V0/pDNndqKouCpXARAuEEiSOaiVIva5pDIomwv5fkZADT1SPyIGEmK2kIIIYQQQthEjRW1vatWoriNAkWkvcPOJQkhxIzRG+rllZZXAHjn4ndy69tuxaE4+Nuxv/Fy88s2r25yAjuMonZWCnnaAJlLlgGg1tWj63pSx9A1jWAsU9u32p5ObQB3VTWQere5mNk2FG9AQaHB35DU3RVmp7ZR1PYB0CLxI2IUUtQWQgghhBDCJlb8SGkproULjcfaJFdbCCEAtjVsI6JFWJ6/nCV5S1hXuI73r3o/AN999buEoiGbV5iaSFcX4SNHAMg4I7k87X1d+wCoWLERFAVtYIBod3dSx1AbG9EDARSPB091dVL7ppOnstJYjxS156QcTw4rClYAyXVrm53axTlDndrt/hChyNwZEivSQ4raQgghhBBC2MTsynaVlOAqLQFAlWGRQggBDEWPbFm8xXrsc6d/juKMYur66rh37712LW1SAq/F8rRXrsRVUJDUvman9tryDbjKjIuhyQ6LtIZELl+O4nIltW86uauMona4XuJH5iozgmR32+6E9xnq1PZQmOXB4zJKl229s/Milpg6UtQWQgghhBDCJpHYYEhXSQnuUrNTu93OJQkhxIzgD/t5qfklALZUDxW1czw5/MvmfwHgv/b+F3V9qWVK2ylg5mknGT2iaioHu42C9CmFp+Cx4juS+zswh0R6bYweAYbW3yCd2nOVWdTe074n4X3iO7UVRaE8z4ggaZZhkeIkUtQWQgghhBDCBlo4TPTECSDWqb2wFJD4ESGEgKHokWV5y1iWv2zYc5ctvoxzys8hrIX57ivfTTpT2m6BHTsAyNy8Oan9ak/UEoqGyHHnUJVbhaeqCkg+viNYYxTGfTYNiTR5qsz4kQZ0TbN1LWJqmEXtA90HCKiBhPbp7DcGZhdlewGsCJJmydUWJ5GithBCCCGEEDaIdhjRI4rbjTM/H3epUdRWW9vsXJYQQswIW4+PjB4xKYrCN876Bh6Hh5dbXubvx/8+3ctLWeTECUKxIY2Zmzclte9bXbHokaK1OBQHnmqjqJ1s/IjVqb3K3k5td1kZOJ3o4bA1Y0LMLWVZZZRmlhLVo1Z0zkTiB0UClOUZRe2W3uDULFLMWlLUFkIIIYQQwgZq7Au8q6QERVFwWfEjUtQWQsxv/eF+Xmx+EYBLqy8ddZuq3Co+furHAbjjtTvoC/dN2/omI7DTyNP2LF+Ga8GCpPbd12kMiTyl8BQA3LFO7XASndrR/gHUBiPD2mtzp7biduOuqACS+x3E7KEoylCudntiudrx8SMAFflG/EiTdGqLk0hRWwghhBBCCBvED4kEcMfiR1Qpagsh5rltjdtQNZUleUtYnr98zO0+dsrHWJy7mM7BTn66+6fTuMLUBXYYedpZSeZpw9CQyPVF64G4TOokCsKhQ0aXtqukJOkhlVPBUxmLIGmQYZFzVTK52pGoRndgePxIWSx+pEWK2uIkUtQWQgghhBDCBpG4Tm0AVyx+JNLejh6N2rYuIYSwmxU9Ur0FRVHG3M7j9HDL2bcA8IeaP1idzDPZ4K5dQPJ52oORQWp7agFYV7QOAE/lIgC03l6iPT0JHSd0qAYA7+pVSZ1/qrhjudrJRqiI2cMqanfsIaqN//mmeyCMroNDgQVZHiA+U1viR8RwUtQWQgghhBDCBiOK2kVF4HBANEqkq8vOpQkhhG0G1AFebBo/eiTeWWVnccXSK9DRue3l2yYsmtktEpun4KmuTmq/g90HiepRijKKKM00LoI6MjOt95BEu7WDB80hkTOjqO2pjEWoNEhRe65aUbCCTFcmA+qAdWFmLB2xPO0FWV6cDuOCVnmeET8igyLFyaSoLYQQQgghhA2GitrFACguF65i42fJ1RZCzFfPNTxHWAuzOHcxKwsSy3z+yqavkOPO4UD3AR6oeWCKVzhkMDJI60Aruq4nvI82aBTmHJmZSZ3LjB45pfCUYd3rnqrkhkXOlCGRJnPYpVov8SNzlcvhYkPxBgCeOP7EuNt29hvRI2aeNgzFj/hDEfqC6hStUsxGUtQWQgghhBDCBmq7Ubh2x7rsYCiCRG1ttWVNQghhtyfrngSMLu3xokfiFWUUccMZNwDw09d/SnugPW3rCUaCHD5xmKfrnubet+7lWy99i4898TEu/tPFnHn/mVz64KXct+++hI6l67pV1FYyUixqF50y7HF3tTkssm7i82ualants3lIpMkdy9QO19cndXFAzC7XrrwWgF+/9WtqumvG3M4cElmU7bEey/a6yMtwA9AiESQijsvuBQghhBBCCDEfnTwoEsBdWkoQiLSlryAjhBCzRUANsL1pOwBbFm9Jat/3rnwvj9Q+wt7Ovdzx2h388O0/TGp/f9jP6+2vc7TnKHX+Ohr6Gqjz19E6MPFFxp/v+TmXLb6MsuyycbfTVRViMxMcmRlJrW+sorY5LFJNIH5EbWpCGxhAcbvxLF6c1PmnijkoUvP7ifb0zIjhlSL9Lqu+jP+r/D+eaXiGW168hd9d8TvcDveI7Tpj8SPF2d5hj5fl+egdVGnuHWTVwpxpWbOY+aSoLYQQQgghhA2s+JFYdzaAa+FC47m2qenU1jUNxSE3awohZqbnG58nFA1RlVPFqoLkMp8dioNbz76V9z/+fp44/gTvWf4ezq04d8zt/WE/u9t281rra7zW9hoHuw+i6dqo2+a4c6jKraIqt4rq3Gqqcoz/rcyp5EvbvsSutl38cOcPufPCO8ddox4IDK03I/Gidm+ol3q/UbReV7hu2HNmfEci8SOhGqND1rNiOYp7ZEHRDo6MDFwlJUTa21EbGqSoPUcpisKtb7uVXe27ONh9kP/a+198esOnR2xndmrHx48AVORncLDVL7naYhgpagshhBBCCDHNtEAAze8HTu7UNn5WW9Ofqd3wqU8Trq9n6SMPo3g8E+8ghBDTbGvdViC56JF4awrX8IHVH+C3B37Ld1/9Lg+9+yF8LmPIXCJF7OrcatYsWDOseF2VW0WBt2DM9dx85s38w2P/wNa6rbzS8gpnl5095vq0WFFb8XhQXImXY/Z17QNgUfYi8n35w56zMrUT6NQOHjSK2r6VM2NIpMldVUmkvZ1wXT0Zp55q93LEFCnKKOLrZ36dr23/Gr9845dcVHkRqxYM/7dodmoXndypnW/8dyzxIyKeFLWFEEIIIYSYZpEOI3pEyczEkZVlPe4qNTu101vU1gIB+rdtA0BtacFTXZ3W4wshxGQF1ADbG1OLHon3udM/x9a6rTT4G/jOK98h35s/bhF7U+kmNi/czKbSTZRmlY5x1LGtWrCK9696P787+Du+/+r3efDdD44aqwBxQyKT6NIG2NdpFLXXF60f8Zw7VtSOdncT7e/HmZ095nHMTm3v6plV1PZUVjG4cxfhhsSGXYrZ611L3sUTx58YM4ZkrE7t8tiwSOnUFvGkqC2EEEIIIcQ0M6NH3MXFw7r/3AtjgyLTHD8SbmiwftbD4bQeWwgh0mF703aC0SCLshexZsGalI+T5c7ipjNv4sZtN/LokUeHPbc4dzGbFm5ic+lmNi3cRElmyRhHSc5nT/8sfz/+d472HuV3B37HR9d9dNTttEBsSGRmckMi93buBWBd0boRzzmzs3EWFhLt6kKtr8e5du2YxwkeinVqr5phRe1YhIpa3zDBlmK2myiGZKxO7fI8o6jdJEVtEUcC9YQQQgghhJhmqpmnXTK8oGJlare2oet62s4XrquzftZCUtQWQsw8T9Y9CcCli1OLHol3SdUlXLfqOpbnL+e9K9/L7effztPve5q/vuevfPNt3+TypZenraANkOvJ5YaNNwDwn2/8Jx2BjlG30waN+JFUO7VPHhJpSiSCRBsYsIrG3hlW1HbHhkXGX4AVc1dRRhE3n3kzAL9845fUdNdYz3X2G59RinKGx6SZndotvRI/IoZIUVsIIYQQQohpFmk3Ch4jitqxP+uhEFpvb9rOp8YVOvRwKG3HFUKIdBiMDPJ84/MAXFZ92aSPpygKt5x9Cw9f/fCUFLFHc/Xyq1lftJ4BdYD/2PUfo26jpxA/cujEIdoH23EojjE72K2i9jjDIkOHD4Ou4youxrVgQcLnnw5DRfm6CbYUc8XlSy7nosqLiOgRbn3xVlRNRY1qdA8YRe3ikzu1zUzt3kE0LX0X/cXsJkVtIYQQQgghpllkjE5th9eLs6AAADWNudrxhY6ZFj9y80Nvcs3PXySoRu1eihDCJi80vcBgZJCK7ArWFo4dnzGTORQHXz/r6ygo/PXoX9ndtnvENslmancEOvj8058H4Oyys8l0jx5b4q6euChsDomcaV3aAJ5Yp3a0o9MapinmNjOGJM+bx4HuA/z33v+2CtpOh0JB5vBO7dJcH4oCalSnc0AuzguDFLWFEEIIIYSYZuYgyJOL2hAfQZK+XO34W9L10Mz5MtjaG+T3OxrY09DDoTa/3csRQtjkyeOx6JHqyUeP2OmUolO4dsW1AHx/x/eJasMv1mkDRsFWyZo4U7s/3M9nnv4MzQPNVOdW8/3zvz/mtp4qY/ivOl6ntpmnPcOGRAI48/Nx5OUBEG5otHk1YrrEx5Dc8+Y97Gw2YnYKszw4HMNfB9xOB6U5Rrd2c49EkAiDFLWFEEIIIeaRhw4/xMe3fpyuwS67lzKvWYMiS0cWtd2xQrfamsZO7biitjaDitpPHhj6HXsHVRtXIoSwSzASZFvjNgC2VG+xdzFp8MWNXyTXk8vB7oM8eOjBYc8NdWqPX9RWoypf2vYlDnYfZIFvAf95yX+ywDd2ZIineuJM7WDNIWBmdmrDULe2RJDML1YMiRbhZ3u/A0RHDIk0lZkRJDIsUsRIUVsIIYQQYh65+427eaXlFR6oecDupcxrasfo8SMQ16mdpvgRLRgk0tJi/VmfQYMit+4b6kaXorYQ89OLTS8yGBmkLKtszEGIs0mBr4DPn25Ehtz1+l2cCJ6wnktkUKSma9z60q280vIKGa4MfnHJL6jMqRz3nGYmdaS9fdT4Dl3XCdXE4kdWztCidpXxO5rDLMX8EB9D0hioxVO0jeKc0Yva5rDIJilqixgpagshhBBCzBOtA620DBjFzb/U/gVN12xe0fyk6/qYgyIB3AtLAVDb0hM/ojYOv5V7pmRq9wVVXjk6dMdAT0CK2kLMR1vrtgKzP3ok3vtWvo9VBavoC/dx1+t3WY8nMijyJ7t/wuNHH8eluPjRhT9iXeG6Cc/nzMvDOU58h9rUjNbfD2433qVLkv11poXbHBbZMHa3uZib4mNIPEXP4M0c/aJ+eZ45LFLiR4RBitpCCCGEEPPEGx1vWD83DzTzWutrNq5m/tL6+63Chqu4eMTzrhKjqB1JU/zIybej6+GZET/yXE0HalS3/iyd2kLMP6FoiOcanwNgy+LZHz1icjqcfP2srwPw50N/Zl+nkRWsBWJF7czRi9r3H7ife9+6F4BvnfMtzqs4L+FzuquNXO3R4jtCNQcB8C5bhuJ2J3zM6eSpNIra6jgRKonSdX3ijUTKNE3n1y8e42BrX9qOefmSyyl3b0JRohyM/gpVG/mZwOzUbpZObREjRW0hhBBCiHliT/seAByK8RHwkdpH7FzOvGXmaTtyc0ft1nPFOrUj7Wkqap80OGymZGo/ud/4/cxZUH1S1BZi3nmx6UUG1AFKM0tZX7Te7uWk1cbSjVy59Ep0dL736vfQdM2KBlEyR2Zqbz2+ldt33A7AF07/Alcvvzqp85kRJKMVhYOx6BHfDM3ThqH4kfAk40e0wUGOXnUVdR/5qBS3p8hje1u47a/7+eaj+9J2TEVRqOYj6JFMTkSO8d97/3vENlLUFieTorYQQgghxDxhdmpfv/p6AJ6qewp/2G/nkuYls6jtKhnZpQ3gjmVqp2tQpNpwcqe2/cXjcETj2Rrj7+HCVUYEi3Rt9+M0AAAgAElEQVRqCzH/PFn3JGBEj5gXXOeSG8+4kUxXJm92vsmjtY+OOShyZ+tObt5+Mzo61626jn9e/89Jn8ssap98IRMgNMOHRAK4q4xOc7W5eVIxWf3Pbydce4TAjh1EOjrStTwR59VYdNiRjoG0Htffn0Gw7d0A3PPmPdR01wx7vjwvVtSW+BERM/feNYQQ0yJ48CANn/o0g3vfsnspQgghEjAYGeRA1wEAPrz2wyzNW0owGmTr8a02r2z+MYva7lHytAFcpUantub3ow1M/gujWeBQYl3h+gzo1H71WBf+YISibC9vX2kU9yVTW4j5JRwNs61hGzC3okfiFWcW85nTPgPAj3f/mPCAEdcQf5dO7YlavvDsFwhrYS6qvIibz7w5pWxxT3WsqD1Kp3boYCx+ZNXKpI87XVwlxSg+H2gaanNzysfxbx36XGMW80V67aozhp929ocYDEfTdtyO/hCRvg1sWHAuES3CrS/eOiyGpDzfyNTu8IcIRdJ3XjF7SVFbCJGS3ocfpn/bNppuvNHqOBBCCDFz7evcR0SPUJJRQnlWuXVbs0SQTD+1LdapXTx6UduZnY0jK2vYtpNhFji8y5YBMyNT24weuWRNCfmZRr6rdGoLMb+83Pwy/Wo/JZklbCjeYPdypswH1nyApXlL6Q52U99uFFnNTO3WgVY+9dSn8If9nFZ8GrdfcDtOhzOl81iDFk/K1NYCAet9wLd6daq/xpRTFAVP5SIAwg2pRZBooRD927ZZfw4dkqJ2uvUOqtS0Dd3l13gikLZjd/aHAIXPb7iJXE8uB7oPDIshWZDlwesyyphtvfZ/lhH2k6K2ECIl0T7jjUxtaKDjZz+zeTVCCCEmsqfDyNPeULIBRVG4aulVOBQHezr2cLz3uL2Lm2eG4kdGL2oDuGIRJJG21kmdSw+HUZuaAPAuX249Zidd13kqVtS+dG0peRlS1BZiPtpaZ3TUztXoEZPb4eamM28C4ESP8ZquZGTQF+7j0099mrZAG0vylvDTi36Kz+VL+Tye2KDISEvrsNkJocOHQddxFhXhKiycxG8y9dyVY3ebJ2LgxZeG3eEUOlQzztYiFa/XnyA+qrwhTUXtcESz7thaUVjOzWfdDMDP9/ycr2//Oq0DrSiKYuVqN82iXO3OwU6ue+w6vv3yt4lq0mGeTnP3nUMIMaW0/n7r5+5f/4bBfekbEiGEECL93mg38rRPKz4NMG6JPrf8XAAePfKobeuaj6yidixmZDTuUqPgPdlcbbW5GTQNJSMDd0UFYP+gyH3NfTT3BslwOzl3eRH5mR5AitpCzCfhaJhn658FjKL2XPe28rdxafWleMNGNTDqdXHDszdQ21NLcUYxd19yN/m+/Emdw1lQgCM7G3QdtbHRenw2DIk0DQ27TK1T24wecVcaQyeDhw6nZ2HCYkaPmBq601Nc7howPpu4HAr5GW6uWHIFH1j9AQD+evSvXPnwldy1+y5K8oz/hlp6Z09R+2ev/4z9Xfv506E/8f0d35cBpmkkRW0hRErMK+DO/HzQNFpuuRVdlS+jQggxE+m6bnVqn1ZymvX4NcuvAeAvR/4inSPTaKJBkQCuUrNTe3JFbbPbzVNVheLzAqCH7O3U3hrr0r5gZRE+t9Pq1O6b5UVtXVVpvOFLdP7yV3YvRYgZ75WWV/Crfoozijm95HS7lzMtvrrpq2SoRlb2bXtu57XW18hyZ/GLS35BeXb5pI+vKMqowyJnw5BIk7vKKEan0qmtqyr+Z40LJUWf/rRxnNpa9EgkfQsU7DxuFLXN6LCG7vR0anf6jc8mhdkeHA4FRVG4+ayb+f0Vv2djyUZC0RC/2vsraj234M5/hcYT/RMccWao6a7hocMPAaCg8IeaP/CLN35h86rmDilqCyFSEh0w3kSKv3wjzrw8QgcO0H3ffTavSgghxGjq+uroCfXgcXhYs2CN9fiFlReS582jPdDOKy2v2LjC+WWiQZEAroVGF7c6yfgRs7DhqarC4TE6ou2OH9m6z/idtqw1CvdmUdsfihCJarata7IG33wT/9//TudPf2p7N7wQM505pPiS6kvmdPRIvLLsMgp0IzqhNtiIy+Hix+/4MasXpC/n2l09Mlc7WGMMifTN4CGRJo8ZP9KQfFF74NUdaL29OAsLyXv3VTgyM9FVlfDx42le5fylRjX2NPQAcOWpZUD64kc6+oMAFOd4hz1+StEp/Oadv+HH7/gx1bnVhOnDV/YIv2++gecbn5/RXc+6rvOD136Ajs5liy/jG2d9A4C737ib+w/cb/Pq5ob58e4hhEg7rd/o1PZUVVNyk5ER1/HTnxGuqxtvNyGEEDYwu7RPKToFt9NtPe5xerh8yeWADIycLrquo3Z0AONnartj0SSRScaPWJ3a1VUo3linto2DIhu6Axxs9eN0KFy02vj9c30u6/m+4OztqFObmwGjWzD41ls2r0aImUuNqjzT8AwwP6JH4nljndpBN/zbuf/G2WVnp/X4niojV1uNvfbruj7UqT2Dh0SaPLGivNrQiK4ld5HTjB7JufhiFJcL70qjiC/DItPnQEsfg2qUvAw3F6403sPTFT9idmoXZXtHPKcoChdXXczDVz/MltJPokUy6dea+OzTn+XjWz/Oga4DaVlDuj3X+Byvtr6Kx+HhS2d8ietWX8dnT/ssAP++4995/OjjNq9w9pOithAiJWamtiMri7xrribrnLehh0K0/Os3Z/TVUiGEmI/2tA8NiTzZ1cuvBuCZ+mfoDfVO67rmo2hPD8TiulxFRWNuZ+ZtTz5+xLjY7K6qQvEYXxTt7CJ+MhY9sqm6gIIso3Pc5XSQ7TUK27M5V1ttarZ+DuzabeNKhJjZdrTuwB/2U+grZGPJRruXM210XUcfNAqAd1/1a65cemXaz3Fy/EikuRnN7we3G++SJWk/X7q5y8rA6UQPhay7mhKhR6P4n34agJwtWwCsonawRora6WJGj5xRXUBVYSaQzk5t47NJ8ShFbZPb4ebqpdcxcOSrZA1egtvh5tXWV7nusev4xgvfoHVgcne3pZOqqdy5804APrT2Q1RkG3NNPnnqJ62s8FteuIXtjdttW+NcIEVtIURKrEzt7CwURWHhbbeh+HwEXn2V3ocesnl1Qggh4r3RMXxIZLy1C9ayomAFYS3M34/9fbqXNu+YX9KdCxagxOJARuNeaERzqJMsaqtW/Eg1iteMH7GvcGwWtS9dO3xIphlBMquL2i0t1s+Du6WoLcRYnmt8DjAisJwOp82rmT56OAyx7uMlC9dMsHVqPFb8iPHabxZ0vUuXjvueM1MobjfuciNfPJlc7cCuXUS7unDk5ZF11pkA0qk9BcwhkWdUF7CowIjS8Qcj9AYm/97d4TeK2kU5Yxe1AcrzfaBlMNDyTv76nr/yriXvQkfnL0f+wlUPX8Vdu+8ioKan0D4Zf6z5I8f7jrPAt4CPr/+49biiKHztzK9x+ZLLiegRbtx2o9V8IpInRW0hRNJ0TbOK2o7sbAA8lZUUf+ELALTdfgeR2K3VQggh7NUX7qO2pxaADcUjO7UVReHqZUa39qNHHp3Wtc1HZuf1eNEjAK5YUTva1YWWYga2HokQbmoCYvEjZqa2TZ3aPYEwO453A0N52iazqN0TsDfvezLM+BGAwOuvJ33rvBDzga7rPN/4PABvX/R2m1czvbTAUKHNkZExJedwxzq11aYm9HCY0KEaALyzIE/bZHabqw0NCe/j3/okADnveAeK23g/MTPEQzU1aV7h/KTrOjvrjPfwM6oLyPS4KMo2Pleko1u7M9apPVr8SLyyvFgxPRQhx1XCHRfcwf2X38/Gko0Eo0F+tfdX3PLiLZNez2T0hnr5xR5jGORnT/ss2Z7sYc87FAffOfc7nFdxHsFokM88/RkOnzhsx1JnPSlqCyGSpgUGIRYxYha1ARZ85MP41q1D6+uj9bvfs2t5QiRM13UpOog5782ONwGoyqmiMKNw1G2uXHolLsXF3s69HOk5Mulztgfaue3l26wOcTHE7NR2lRSPu50zP98qQkfaU7tQrLa2gqqieDy4SktxmJnaNhW1nznYTlTTWVWaY922bJoTndpxRW2tt5fwkcn/tyTEXHO09yhN/U14HB7OKjvL7uVMKz1W1Fa8XhTn1HSou4qLUTIyQNNQm5sJHjQKur5Vq6bkfFPBXVUJDEWoTETXNPxPxorasegRGOrUVpubicaiM0XqGk8M0tYXwuVQ2LAoH4BFBbEIku7JF7XNTu2TB0WeLMvrsj4ztPQYwyVPLT6V37zzN3zvPKMG8Xzj86iafZ8n7n7jbvrCfSzPX861K64ddRu3082db7+TDcUb8If9fOrJT9HU3zTNK539pKgthEiaNhD7UOByWUOnABSXi7Lv/Bs4nfj//ncr10yImUjXdeo//BGOvedadHX2FlGEmIh5S+NpJSOjR0yFGYWcv+h8AB6tnVy3dkSL8NXnvsqDhx7kWy99S+YsnESNFbXNQZBjURQlLlc7tYxIc3izu6oSxeGwMrV11Z5u6LGiR2CoqN03S4vauq5bRW1XeRkAgd2v27kkIWYkM3rkzLIzyXRnTrD13KLF8rSnqksbjPcOK1e7vt7qUvaumvlDIk2eytj6GxIragfffJNIWxuOzEyyzj3HetyZl2fd9RQ6JF2wk2VGj6yryCPDY1yUqVyQvlztoU7tiWNyyvON/4aae4aGVCqKwhVLryDHk0MoGrKt8/l473EeOPgAAF/d/FVcDteY22a6M/n5xT9nef5y2gfb+cTWT9A52DldS50TpKgthEha/JBIRVGGPedbs4bCj30MgNbbvk3U75/29QmRCG1ggMDOnYRqapLK7BNittnTERsSOUr0SDxzYORfj/6ViBZJ+Xy/fPOX7G438oRre2rZ1bYr5WPNRVandvH48SMwVPhWW1Mraqv1Q3nagNX5rYWmv6gdVKM8d8joON+ybmRROz9zdndqR3t6rAFwue96FwCDu+XfvhAne67BKGrPt+gRGCpqK5lTV9SGofiOYE2NdXHTN5viR2K54Gp9YvEjfbHokewLL7TuSDJ5V64AsGJYROrM6JFN1QXWY5WxXO2G7sFR90mG2aldMkGnNkBFvg+App7h53UoDk4tOhUYulNxuv1o14+I6BHOrzifc8rPmXD7PG8e91x6DxXZFdT76/nMU5/BH5YaSqKkqC2ESJo1JDIra9Tniz77GdzVVUTa22n/0Y+mc2lCJCz+dv5Eb28UIhmNJwI8e7Dd1jVEtAh7O/YC43dqA1yw6AIW+BbQOdjJS80vpXS+na07uefNewBYlrcMgN8f/H1Kx5qrzNee+EztvnAfX972ZZ44/sSwbYc6tVP7dxS2hkQaBQJrUKQN8SMvH+kiEI6yMNfH+oq8Ec/P9vgRtcno0nYWF5F19tsA6dQW4mS9oV7rQusFiy6weTXTTwuYndpT26FuFoX7n34GNA1nYSGu4vEjr2YSd2UsfqS+fsK7vXRdx791KzA8esTkk2GRabPzuNGpPayonaZO7VAkSl/QaKiYKFMbhnK1W3pHFtPXF68H7Clq72jZwbMNz+JUnHxl01cS3q8ks4R7Lr2HBb4FHOg+wBee+QKhqD1RcbONFLWFEEmzOrWzs0d93uHzUXbbtwHo+f0DBHZJp5KYeSKdcUXt+jobVyLmqhv/+Ab/9JvXeKup17Y11PbUEogEyHZnW0Xmsbgdbi5fcjkAj9Q+kvS5ekO93LT9JjRd493L3s3tF9wOwDP1z9A20Jb84ueooUztoaL2I4cfYWvdVr798rcZjAx9QXMtnGT8iNmpHStw2JmpvTUWPXLJ2pIRd3kB5FqDImdpUbvFKGq7y8vJOP00cDhQGxpQU7wgIcRc9ELTC2i6xoqCFZRnl9u9nGmnBYzGoKmMH4GhYZGDe4wLCLOpSxvAEytqa34/0Z6ecbcNHTiA2tiI4vORfcH5I573xrLEgzVS1J6MvqBKTZvRPXzG4vhO7fRkanf2G3eQuZ2KdZF7PEPxI8ERz1md2p3TW9SOalF+sPMHALxv5ftYmr80qf2rc6u5+5K7yXZns7NtJ1997quTunNyvpCithAiadEJitoAWWefRf773gtAy63/imbTUCohxhLtHMorUyV+REwBM+ev8cTkb8lM1evtRqfoqcWn4nRMPJTqmuXXAPBsw7OcCJ5I+Dy6rvPNl75JW6CN6txqvnHWN1i1YBUbSzYS0SM8ePjB1H6BOWi0ovYLTS8ARsf2Y0cfsx53lxpZoGprahcFzAt2ZoHDjB/Rw9MbP6JpOk8dMPO0F466zWzv1I40DxW1ndnZViFl8PXddi5LiBnFzNOej9EjgBVR5Mic4k7tWOSUybty9gyJBKPob3aWqw3jR5D0xbq0s88/b9S/V29cp7bM+Ejd6/U96DpULcikJMdnPV65wCguN54YnNTfb6ffzNP2jnrh+2TlsfiR5p5ROrWLjE7tur46eoLjXxRJp78c+QsHuw+S487hM6d9JqVjrClcw10X3YXH4eHZhmf59svfln+3E5CithAiaVp/rMtgjPgRU8lXvoKzuIjw0aN03XPPdCxNiIRFOiR+REyt/pDRXeEP2leks4ZEFo8fPWJatWAVaxasIaJF+NuxvyV8nj8d+hNP1z+Ny+HijgvusIZ/Xb/megAePPQganR2FivTSY9GicQuqLlKjC/sATXAzrad1jb377/f+gJjxY+kkKmta5qVR+qpjmVqxzq1tWkuau9p7KHDHyLb6+LspQtG3Wa2F7XNIZHuMqP7NPP00wEI7JaithBgxGGZF/DmY/QITM+gSBi6O8fkXT27itoA7mpz2OX4RW1/LE87Z8tloz7vXbIEXC40vz+l91Jh2HV8ZJ42GB3TDgVCEc3KxE7F0JDIiaNHzPMCNI8SP5Lvy2dx7mJg+rq1B9QB7nr9LgA+ueGTFPgKJthjbJsXbuYHb/8BDsXBw7UP8x+7/yNdy5yTpKgthEiamantyB6/qO3My2PhLbcC0PnLX8ltX2JGicR1asugSDEVBmJFbTMj0A5vdLwBwIaS8YdExjMHRj5a+2hC2x8+cZg7XrsDgC9t/BJrC9daz11cdTHFGcV0DnbyVP1TCa9hrop0doGmgcOBq7AQgB2tO1A1lZLMEjJdmRzpPcLLLS8D4I7Fj6jtyUdYRNrajI5stxv3QqM72uzUJhJBj0bT8Bsl5slY9MjbVxXjdY1+x8BsHxSpxnVqA2ScsRGAwV1S1BYCjIus/rCfPG+eFQ8w35iZ2lM9KNJVWjr0eg/4Vs2+oran0ixqjx0RGKqtJXz0KIrbTfY7Lhx1G8XjMQrbGIMzRWp21hl378VHjwC4nQ4r33oyudpmQbw4gSGRAGV5Rqd2a28QTRvZyXxqsfEas7dzb8prSsa9b91L52AnlTmVXL/6+kkf76Kqi/jW276FU3FSlVM18Q7zmBS1hRBJ0waM+BHnOPEjppwtl5J9ycUQidDyr7dO65doIcYT6YiLH2lqmvbb8cXcFopEUaPGh2y7OrXbA+009TcNmwSfiMuXXI7L4eJA9wFqusf/AjgYGeRfnv8XQtEQ51Wcx4fWfmjY826Hm/etfB8ADxx8IPlfYo6xokeKilCcRnHX7Fx8R+U7rPiX+w/cb2wXK0ZH2tuTfv+0hkRWVKC4XAA44ooc0/maZxa1t6wtHXObWd+p3TS8qJ250ShqBw8etJoBhJjPnm98HoDzK85PKA5rLhrq1J7a+BHF4cBdZeRS43LhWTb+TI2ZyBNbvzpOp7YZPZJ1zjnjfi8146BChw6ncYXzRySqsafBiPHYVD3ybqtFBbGidnfqcXtDndqeCbY0lOb6cCigRnVr33hWrvY0DIts6W/hvn33AfDlM76Mx5nY7zCR96x4D49e8yjvXfnetBxvrpKithAiadagyKyJi9qKorDw1ltxZGcTfONNTtz/u6lenhAJiY8fQdOsLjsh0qE/rjvbb1OnttmlvSJ/BdmeiV+vTQW+At5R+Q5g4oGRP3zth9T21FLoK+Q7534HhzLyo+V7V74Xl+Jid/vuCYvkc12kI1bUjsWK6LrO9sbtgFHo+cCaD6Cg8Hzj8xzvPW50czscEI0aXd5JsPK0425DN+NHYPqGRR7rHKC2vR+XQ+HCVSVjbjfri9pmp3aFUdR2l5XhKi+DaJTBN6d3WJUQM9F8z9OG6RsUCUO52t4lS4Zd0JwtzFkQ4XEytf1PGEXtnC1bxj2WlastndopOdDiJxCOkutzsaJk5OfJygWTHxaZbKe22+mgNNfo1m4aJVfb6tTu2IumaymvKxE/ef0nhKIhNpVu4qKqi9J67Orc6ok3muekqC2ESJo1KHKCTG2Tu7SUkq98BYD2H/+YyInEh48JMVXi40dAIkhEeg2Ehrpq7erUtvK0SxLL04539TIjguTxo4+PmYX9VN1T/PHQHwH43vnfozCjcNTtijOLuaT6EgB+f/D3Sa9lLjl5SOSx3mM0DzTjcXjYvHAz1bnVVtbs7w7+DsXlsoZlRdqTGxZpDsCNHximuFwQ6xDXQtPTqf3kfiPD9OylhVbhejTmc4FwFDU6tV9A000LBIj2GF1sZqc2QObGMwAISASJmOca+ho42nsUp+LknIpz7F6ObaZrUCSAJ1YU9s7C6BEYWv9Y8SPhujqjSO10kn3RO8Y9lnflCsAYFimSt7POyNPeWF2AwzFyiGNlQayoPYn4kc5+4zNJopnaMBRB0tIbHPHcioIV+Jw+/Kqf473HU17XRPZ27OXxo4+joPDVzV9NaMilSC8paos5KXLiBHX/+E/0PppYHqhIjjZgvGE5EogfMeX/w/twl5ejBwKEDsutX8J+ZlHb6gSRYZEijcwhkQB9g/Z0au/pMIraG4oTz9M2nVtxLkUZRZwIneD5pudHPN/S38K/vvSvAPzTKf/EOeXjFynev/r9gFEk7w31Jr2euWKoqG0Uqrc3GV3amxZusoZrfnDNBwEj09wf9uMyc7WTHHBlxY9UDc9iNHNWdXV6itpb9xnF+EvHiR4ByPG5Mb8LzrZubbWlBQBHTg7OnBzr8YyNxrDIwd27bFmXEDOF+T6ysXQjuZ5cm1djHzNT2zHFmdoA+f/ftWSdfz4LPvTBKT/XVPBUGvEj0Y5OtMDIYqkVPXLWmbgKxh/KZ2aKh44dk7jBFJh52icPiTRVLph8/IjZqZ1MUdsaFjlKp7bL4bJmvJh3LqabruvWTJmrll01bKaMmD5S1BZz0sDzzxN45RW6/+d/7V7KnGTFj0wwKDKe4nDgLC4y9vf7p2RdQiRKj0SIdhtdB5lnGJ100qkt0mkgHBc/Epr+Al0oGmJ/134gtU5tl8PFVUuvAkZGkES0CDdtvwl/2M/6ovV8/vTPT3i8jSUbWVmwkmA0mPAAyrnIHPjojnVqm0Xt8yvOt7Y5u+xslucvJxAJ8PDhh3GXGMXgSGtyndrma5qnenhR27wNPZH4EV3XeWp/G/VdqXVfdfaH2FVvfBm+ZIKittOhkOM1sr9nXVHbjB4pKxv2uPn+MrjnDfSIfQNjhbDbcw0SPQJDmdrKNMSPeFesoOpXvyTjtOQ/A8wEzvx8HHl5AIQbGkc879/6JDBx9AgY8ykcOTkQiRA6diy9C53jdF1n1/HYkMhR8rQhLn5kUp3aycWPQHxRe2SnNgw1dbzZOTURYE/UPcGejj1kuDL44sYvTsk5xMSkqC3mJDX2xW9YZq5IG7OoncigyHjOHKMzIypFbWGzSFc36Do4nWRsMD7wjDddXYhk2Z2pvb9rPxEtQqGvkEXZi1I6xtXLjQiS7Y3b6Rwciuv51Zu/Ynf7brLcWdx+/u24HWNHSpgURbG6tR+oeWDK8w1nqvj4kQF1gF1tRgfveRXnWdsoimJ1a//u4O9wlpbE9k28qK3r+lBR++RO7ViudiJF7ZePdvHP/7OTd/3kebbuS65THOCZA+3oOqwrz6Uif+IiTl6m8W+pJzDLitonDYk0eZcvx5GTgxYIEJQsVzFPDagD7GzbCWDFK81X0zUocq4wu7XVhuGNJ2pzM8G9e0FRyLn44gmPoygK3lWxXG2JIElKU88grX1BXA6F0yrzR93GjB9p6Q0SSTE+rKM/hU7tWPzIaJ3aMJSrPRXDIkPRED/e9WPAuGOxJHPsmSFiaklRW8xJkTbji1ekqwtdm59fnKdSdMDs1E6uqO3IMbbX+qSoLewV6TQueLkKC/EsXgyAKvEjIo3i40fsKGrH52mnmu+3LH8Z64vWE9WjPH70cQB2te3i7jfvBuDWs2+lMrcy4eNdseQKctw5NPgbeKn5pZTWNNtF2mOvPSUlvNryKhEtQmVO5YhBQFcsvYI8bx5N/U3U+YzBYmoSndqRjg4ju9XpHFFotYraCdyCva3GWO9AOMon/ncXP3vmMLquJ7yOrfuNNW9ZuzCh7c1c7b7Z2ql98t+102l1SQ7ufn3a1yXETPBK8yuomkpVThWLcxfbvRxb6YOxCMdpiB+ZCzxVxmeMkyMC/U8aXdoZZ2y05k5MxCfDIlOyKxY9sq48lwyPc9RtSnK8eFwOopo+ar71RIJq1PqsnEyndlnsYnlL7/hF7dqeWgJq6l3ko/nt/t/S1N9ESWYJH1370bQeWyRHitpiTrK++EWjRGUoYdpp/bHJ3QkOijRZndr9UtQW9jLv4nAVFVm35oebmuT2cJE2A8OK2tNfoLOK2sWTu+3YHBj5SO0j9IZ6uWn7TWi6xruXvZsrll6R1LEy3ZlW9/d8HRgZ36ltRo+cV3HeiAsPGa4M3rvivQBsD71l7JtEprY5JNJdXm5laJvMPycyKPLFWqNDf8Mi4xbwH249xBce2MNgODrebgAMhqO8UGu81k6Up20yi9qzLn4klqntrigf8VzmGRsBCEiutpinnms0okcuWHTBvB+iZs0lmob4kbnAXRn7jHDYMLwAACAASURBVH5Sp3ZfLHokN4HoEZM3VtQOSqd2UnZOED0C4HAoLMo3c7WTLx6b0SMep4Ncnyvh/cw7wJrGiB8pySxhYdZCNF1jX9e+pNc1logW4Tf7fgPAFzd+0ZqJIuwhRW0xJ8V/8TOHwYn00QbMorZ0aovZKRp7XXAVF+MqLTWKPKpqFSaEmCw7B0Xqum4NiUwlTzveO5e8E4/DQ21PLZ988pO0DrRSnVvN18/6ekrHMyNItjdup8HfMKm1zTZaOGxl+TuLi3mh6QVgeJ52vPevfj9OxclrmpH/qSYRPzLWkEgAxRvL1A6PHz9yYiDM/pY+AH71kU187z3rcTkU/vpGM/9wz8tjdkaZnj/cQVDVqMjPYE1ZzrjbmvIzjLXNuqL2GJ3aABmnG0XtwV27k+pyF2Iu0HSN5xuNIZFvr5zfedoQFz+SKUWwRJjvYWr90OeFSEcHg7t3A5Bz6aUJH8u7MjYsskaK2smwhkQuHn8Y56JJ5GoPDYn0JHXhy8zU7uwPEYqMfrH91CKjWzudwyLf6HiDnlAPed48Ll9yedqOK1IjRW0xJ6ltQ1/8zFt9RfoMZWqn2Knt70v7moRIhnmxy1lchOJw4B7j9kYhUhVf1A5HNYLqxJ2t6dLob6Q72I3b4WZN4ZpJHSvPm8dFVRcBsK9rHy6Hi9svuJ0sd3Kv/6bq3GrOLT8XHZ0/1vxxUmubbaKxO0QUt5tjdNI60IrX6WXzws2jbr8wayGXVl9KV6weHGltS7goOtaQSACHJ7H4kVeOdqHrsKIkm5JcHx84q4r7//ksFmR52NvUy1U/fZHd9WPfDfdkLHrk0rWlCX9Jzc2YpZna4xW1T10PLheR9nYre1uI+WJ/1366gl1kubM4o+QMu5dju+kcFDkXWPEjccPc/U89BbqO79RTRwznHY935QoAIm1tRHt707vQOcofVKlpNb63b6oev6hdWWB2ao9/wXs0nf3G55FkokcACjLdeF1GSbN1jNiTqcjVNgffnl9xPi5H4p3lYmpIUVvMOVo4TLSry/qzDItMLz0ctoZLJZ2pnWt8M9f8/WlflxDJsHJti4oA8FQZebYyLFKkS3z8CExvrrbZpb22cC1eZ3JfEEZzzfJrrJ9v2HgD6wrXTep416++HoCHDj/EYCT5Lz+zlRoXPfJi84sAbF64GZ/LN+Y+H1zzQU7Eitp6KES0pyehc5mvZe7ROrVj8SMTDYp88Yhx8e/c5UXWY2ctLeTRz57L6oU5dPaHeP89r/DnXY0j9o1qOs8cNH7fLQlGj8DsjB/RVZVIrJnCNUqBxZGRgW/dWgAGJYJEzDNm9Mg55efgdk48VHiuk07t5JjvYWpLC7pqvC/0bd0KQO5liUePADizs3FXVAAyLDJRr9f3oOlQuSCDktyxP6sAVE6iU7szhSGRYAwAHYogmXhYZLruljJf196+SO4+mQmkqC3mnJM7syV+JL2isegRSCVT2/hmLp3awm6RuPgRiLu9UTq1RZr0jyhqT1+R7vV2YyDdZPO0TWeXnc21K67lg2s+yIfXfnjSxzuv4jwqsivoC/fx92N/T8MKZ4f4IZHxedrj2VC8gVWl6+nLMI/RntC5VCt+pHrEc+agyIkytV+qNRoEzllWOOzxygWZ/PnT57BlbSnhqMaX//QG3/vbAaLa0JfFXXUn6B4Ik+tzsXnJ2DmcJ5uNRW21rR00DcXtti6UniwzFkES2LV7Opc2K3QOdnIiKPNv5iqzo1GKPwY9IJnayXAVF6P4fBCNojY3EzlxgsCO1wDISSJP22TlaksESUKs6JFx8rRNlQWxonYKmdpm/EiyndoAZflGsb1ljFztNQvW4FJcdAW7aB6Y/N1SDX0NHO09iktxcU7FOZM+npg8KWqLOSfSNnyQknRqp5c54ETx+VBcyd1u44gVtSVTW9jNKmoXxYra5rDIeilqi/ToDw2PG7GjU3uyedomp8PJbefcxk1n3oRDmfxHR6fDyXWrrgOMgZHzJWfYKkgXLeD1NuPCw1h52iZFUfjQ2g/RZaR3EWxumvA8uq6PGz8ylKk9dlG7pXeQo50DOBSjO/tkWV4Xd3/oDL5w0XIAfvn8Uf7ffa/RF7t48+R+47PYxWtKcTsT/zeTnzkLi9qx/09c5WUojtF/14zYsEgzB1aAqqn8fM/PueRPl3D949cTjk48uFTMLm0DbRzoPoCCMuEFvPlA1/WhTm0paidEcTjwVC4CjM/o/c88A9Eo3jVr8FRWJn08s6gtndqJ2VVnzAE5Y4LoETC6uQEaTqQSP5JapzZAeZ5x3uYxOrV9Lh+rFhh56umIINnWuA2AjaUbyfXkTvp4YvKkqC3mHLX1pKJ2pxS100kbMKJDko0eAXDmxjK1+6WoLexlXuxyFRtddebtjVLUFulycvxI3zR1avvDfmpP1AJGl+9M9Z7l78Hr9HKg+0Bah/fMZGZRuyMrSkSPUJ1bTVXuyKLzybZUb6E/z/ii98b+ZybcPnrihDH7QlFwL1o04nlHAvEjZpf2+oo8q3t6xHEcCjduWcXPPnA6PreDbTUdXPPzFznWOcDWuDztZJjn6ptFRe1IbMDwaHnapszTTwcgdPiwZLkCtSdq+eDjH+TuN+4mqkdp6m+yBqeKucO8I2V90XoKM0ZeHJtv9GAQYhdxJX4kce7Koc/oVvTIlsQHRMbzrYoVtWtq0rO4OSwS1Xi93og8m2hIJAx1anf4Q0nPkZlcp3asqD1GpjakN1dbokdmHilqizkn0mp8kTJvr5VO7fSyhkQmGT0CQ4Vw6dQWdtJ1fWT8SLVxi75aX48enb6BfmLu6g/ak6m9t2MvOjoV2RUUZxZPyzlTke/L552L3wnAAzUP2Lya6WEWtY+4jM6nibq0TW6nm8Iq44v4gYMvTNjZHq4z8rRdZQtxeEd+QVSsQZFjF7XNPO1zlo8epxHvylPLefBT51CW5+NoxwBX3rWduq4AHqeDC1Ym92/QLGr3DM6ert3xhkSaXEVF1vvM4J4907KumSiqRfnNW7/huseu40D3AfK8edag1L8d+5vNqxPpZhZ/Llh0gc0rmRnMLm2QQZHJMCMCg/v3M/DSy0Bq0SMQ16l9+DC6pqVngXPUwVY/gXCUHJ+LlSU5E26fn+km22vcxd2YZK72ZDq1K2LxI2N1akNcUbtzckVtf9jPrlZjNsaFlRdO6lgifaSoLeYcNRY/4lu9GpCidrqZRe1k87QhvlO7f97cbi5mHm0ggB77YuEqNDqH3AsXgts9bOCXEPE0XeNIzxGiWmIXPcxMbZdDAaYvUzvd0SNT6fo1xsDIJ44/Qefg3J9/Eekwitp7dOOOkGRux1+x6mwAom3tE3a2q/Vj52lDXKb2GPEjuq7z8hGjU/vcZRMXtQFOqcjj0c+dy8aqfAbCxn8j5ywvtL7gJmpWZmonUNQGyDjjDGD+5mo3+Bv42BMf485ddxLWwpxfcT4Pv/thvrLpKwBsa9hGf1gGic8VwUiQV1teBeDtldLRCKAFjM+eis83ZlSRGMldZcSM9D32OKgqnmXL8C5bltKxPIsXo7jdaIGA9dotRrfzuHEBfmNVAY7YZ9nxKIrCooJYBEl3chEkZqd2UbYnyVVCWSx+pKV37HNuKDLuXDzQdWBSUVcvNb9ERI+wOHdxQnfaiekhr6ZizjE7tX3r1wMQ7Zj7X5SnkxYbFJlK/IgjO3aVV1WNW/CEsIFZWHJkZVm3fyouF57YRHSJIBGj+fPhP3PNo9fw632/Tmj7gbBR1F6YZ3SQTFen9p72WFE7TUMip9K6wnWcWnQqES3CQ4cfsns5U05tM1576jx9+Jw+Ni3clPC+uRVLAFjgh98e+O2424atIZEjv3Dpug5uo9CsjzEo8ljnAC29QTxOR0I5mqaSHB+//8TZ/MOmRTgdCu/fnPwXvllZ1G6KFbXLxi9qZ240Ikj+f/bOPL6N8s7/n5nRZdmSbfmO7TiH49wnRwIEQiltuFpKgS39tWy30JZtd/fXY+mvBz0pLWxLT8puDyiltIXSLVdLy9EjkARCLkJCLuIktuPbsmTZujXH749nnpFsS7aOkTRynvfrxYvEsUZPEkWa+czneX+D+/flfU1GQlEUPH78cVz/zPXYP7wfdpMdX7vga7j/7fejzl6H5a7lWFi5EBEpgr/1/K3Yy2XoxJ7BPQiJIdTb67G0emmxl2MIlBAbEpkNFlU/QpVZjizVI4B6vt9OZkEwBcnMxIdEpn8e0OpSh0Vm3NQm5yPZ6EfmqfqRPm8oZWmuxdGCams1YnIMxzzHMn4OCh18y1raxoKF2ow5h9bUXrUSACAHg1oQy8gdyZ+9U5svtwNqM0FiChJGkZCmqEcoZjosspuF2ozp7B7YDQB40/1mWt9P9SN0gE0hHMGSLGlbK0uhqQ0ANy27CQDw+PHHIcqFG6ZZDKh+xFvB4fym82EV0r94MzXUAwBcEwr+2v1XDAYGU35vsiGRiqLg7z1/xzVPXoM/dP+RfC2FU3un2tLe0FaFMouQ9hoBwGoS8O0b1uLInVtxxarGjB4LAJXqoMhwTM7YyVks0m5qbyBN7fChN1O25OcaQ4EhfPyvH8c3dn0DITGEcxvOxR/e/Qdc33E9OI40/ziOw1ULrwLAFCRziUTvLP27PtthQyKzwzJ/8kBIZ5bqEYqtYwkANixyNvapofY5afi0KdSrfcaTfqgdikra7sbarEJtUh4JRCWMpyiQcByH1XWk8JitV1uSJW1OAFMqGQsWajPmHLSpbV28GJzawmQKEv2Q/bSpnbl+hOM4CA6HehwWajOKg+bTrp28rZ5u1Y/2dBd8TQzjQ5sd/f70tqvSE3Ta1E51oq0nnWOdCMQCsJvsWFK1JO/PpwdbF2yFy+bCUHAI285sK/Zy8oYcDEKeIJ97Hkdm6hFAVSQBqA8IkBQJjx1L7SGnoTYdgHvKdwof/+vH8cl/fBI9Ez3wyGQdqZzar3SS98h01SPJsJoyC8MpFRYT6C7nUhgWqSgKYnRQZPPMobZl4QII1dVQIhGEDx8uwOqKh6Io+NOpP+G6Z67Dzv6dsPAWfPbcz+LBrQ+ixTF9eOnVC68GAOwa2HVWqIjmOoqiYHsvCX/YMLU4cpAEfZydhdqZYJ43DxDIZ4q5tRVWVTGaLdYOsnMgfJyF2qnoGwthwBeGwHNY11qV9uNaXZnrR6hP22ri4chQWQYAdosJVeoN8ZkUJGtqcxsWedB9EGORMTgtTqyvX5/VMRj5gYXajDmFIorxwKqhAaY6ckFGv8bInVyc2gDAq6G2ND6u25oYjEygN7mEuqmhNgmAYkw/wphCMBZE9zi52dHn75v1+0VJRkQkA4iaCqgfoa7lNXVrIPDZhYqFxiJYcP2S6wEAjx57tMiryR/0fSdsBkKWzENtUwMJtW0hCbaIgt+/9XuExOQXbzF1UKTYVIfv7v0urn/6euzs3wkzb0aVtQqiiaTGydrCsqzg1VOkqX1he01Ga9QDnufgLCEFieTxkMY7x8Hc0DDj93Ich7INGwAAof1z16vtCXvwny/9J76w/QuYiE5gZc1K/P5dv8c/r/xn8FzyS89WZyvW1K6BrMh4vuv5Aq+YoTedY53oD/TDKlhxftP5xV6OYaBObd6e3TXU2QpnNms7YRzvfEfOzX9tWCRraqeE+rRXznPCbkk/aNaa2hnoR0YShkRm+3dLd0Xmc1gkLV5sbt4ME595+M7IHyzUZswpxNFRQJIAQYCppgamWqIXYE1t/ZADJNQWstCPAADvpE1tNgyIURzEkeT6EQvTjzBS0DnWCQXE0zceHcdEdOadJoFIXJsQd2rnP6DTfNoloh6h3NhxI3iOx+7B3Tg5drLYy8kLVD3iqQAWVC5Eq6N1lkdMRqgo124mL5cbMB4dx59O/Wna90ljY5B8PgDA+w98Er88/EuIiogtLVvw1LVP4bL5lyGqXoslc2ofGRjHWDCGcouANS3pt7P0pJS82lQ9YqqvB2eZfcCVXQ21g/tfz+u6isX+of247unr8GL3izBxJvzbun/DI1c9gkVVi2Z97FWLiILk2VPP5nuZjDxD1SMbmzaizMRayRSZObWzxrn1nRAqK1F1/Q05H8u6lITa0a4uyCk0XGc7mnokA582kODUzkA/og2JzEI9QqEKkv6x1DO7VtWuAgcOff6+rHYEUZ82231iPFiozZhTiIPEMWmqrwcnCFpoJbJhkboh0UGR5dmF2kIFa2oziktcPzIl1Fab2tGenpSDRhhnJ1OHysymIJmIkDDOYuLhKidBVyGa2gdGSmdIZCJNFU14W+vbAMzdtnaM+rQdwMUtF2d1DJOqILmuklxQ/fbob6e9Vx17k1x0eSqAfsmDNmcb7n/7/fjx23+M+c75aHW0IqaW+JM5tV85Sd4fNy6qgVkozmVCVSmF2n3p+bQpZeqwyND+/XPyc+ae3ffAE/agvaodv7n6N/jXtf8KM29O67FbF2yFwAk45D6k7YxhlCYv974MgIU/U1GYUztr6m+/HUt2vQrrooU5H8tUVwehqgqQZUQ6O3VY3dxjbxcdEunK6HEt1eocmbCY9mc41Y/UVeQSas/e1HZYHFhctRgAcGjkUEbHPzNxBid9JyFwAi5qvijrdTLyAwu1GXOKmOrTpltA46E2a2rrRdypnWNTe4I5tRnFgb4fmGprccYTxKkRsmuAOvuUcBjiMHvPYMQ57jk+6eezKUhoU7vCaoLTRgKd8Tw3td0hN85MnAGH+DCcUoIOjPzjyT/CH517O3kSh0Rmqh6h0HObC0xLYDfZ0TnWiV0DuwAQ5cPXXvka7nvmDgDAsEvAp8/5NJ549xOTBhq1OdsQo03tJPqRV9QhkRcuLrx6hFJK+hFtSGRTU1rfb1u5EpzVCsnrRfR0Vx5XVngCsQCOe8l75U8u/wlW1KzI6PG1ZbXY1LQJABsYWcp4w15NhcWGqU0mrh9hoXY26DVwlOM4WJcSr3bkrRO6HHMu4Y+IODZIymfnZjAkEgDKrSbUqGWOdNvatKld55h9t1MqmlT9yIAvdVMbyF5BQm/UbWjYgEprZRYrZOQTFmoz5hTikNrUVttMdBAcC7X1Q3NqZzEoEgAEhxMAILFQm1EkaFObr63Fdf/9Ct513w6EYxI4i0Vr28XYsEhGAse8pKlt4ckJ92xNbTokssJqgsNGEsR8N7VpiLC4ajGcFmdenysfbGzciIWVCxEUg3ix+8ViL0d3hntI2DfhNOHchnOzOoaJ3rAf9eHa9msBAA8feRi/OfobXPPENfjDiT+g0Uvav2vXb8Utq26BRZh8kTjfMT/e1J4yKDIqyth9mng0L8xhSGSuUP3IWLCEQu1ZhkRSeIsFZavJTafQ/n15W1cxOOw+DFmR0VTehIbymf3iqbh6ERkY+edTf56TTfazgR19OyArMpZWL0VjeWOxl2MotEGRrKlddDSv9vHjs3zn2cfrPV7ICmldNzhtGT++RVWQ9Kbp1danqU3W2TdDUxvIflgkU48YGxZqM+YUKZvabFCkbuQ+KJI0vOVxFmozigN9P/BYHXD7IwhEJXiDpLGYqCApNYL79kH0eou9jDmHJEs44SVNngvnXQhg9qY2DbXLrSY41KZ2vp3abwyTULvUfNoUjuNwxYIrAADb+7YXeTX6M9JNbow45y2YFjSni6mRnNvEhobwgeUfAADs7NuJe3bfg4nYBJa7luMGO9kW61y0NOkxWh2tWlM7Fpp8wflG7xiCUQmucguWNTqyWqMelKJTO139CABtWGRw39waFkmbb7QJlw2Xzb8MNsGGrvEuHPEc0WtpjAJCG42spT0dOcQGRRoFa8cSAGxYZDLi6pHMWtqUVlVBcsYzc8BMcU+Qa7BcnNrNaehHAGg7GQ+5D0GSpRm/l+KP+rFnaA8AFmobFRZqM+YUmlObNrXrWFNbb2TVqZ3toMh4U5s5tRmFRxFFSKNke/0ZxJsyoSg5sbG0tQEovWGRoTcPo/sDH0TXTTdpTSCGPvRM9CAkhmATbNg0j2yNn10/QpvaApxl8aZ2PpuHperTTuTiZuKafrX/VcRk4weamRAaIuFn68K1WR/D3EDObcTBIbQ523Bpy6UAgCprFb5ywVfw6NWPomKY3Himg2+nYjfbUWYnW2cj4cmal52d5IbfBYtrwPP6bPPOhpIKtQcGAGQWatvPIaF2aP/cCrXpbhHahMuGcnM5Lm29FAAbGFmKxOQYdvbtBMBC7WSwQZHGwabqR8InWKg9FW1I5ILMfNoUbVhkmk3tER2a2k1qqD00HoYkpz7XXly5GHaTHSExhM6x9Hzqr/S/AlEW0eZsw4LKBVmvkZE/WKjNmFPEhtWmdiNraucLKUD1I1mG2ppTe+45UxnGR/R4AEUBBAGnRZP29VCMhtql2dQOHyWNtlh3D0Z++MMir2ZuQR2xHdUdaHW0AshUP0ICOlFWtNeZ3kSlKA67DwMo3aY2AKysXQmXzQV/zI8DwweKvRzd8EV8MHvIZ97yZdkPGDI11AMAYqpq7a7Nd+Gbm7+JP133J9zYcSMEXtDeu+iuk2S4nOQcKTqlqU192hcVUT0CAFV21UNfCqF2Nk3tdesAjkO0u3vOnJ8qiqJt515bn/2NGwC4auFVAIDnTj+XdpOOYQwODB/ARGwC1dZqrK4tvdkO+UYbFMmc2kXH2t4OcBykETe5NmAAAERJxus9uTa11VA7Tac21Y/k0tRucFjBc0BMUrTjJUPgBe296ZA7vWGRL/Uy9YjRYaE2Y04hqvoR0xT9iOTxQBHz6zM9W9AGRZZnOSiygoTarKnNKAaSGiCYXC6c9sSHiYTVsNGs6UdKy6kd64s3hz2/egTBOdYALCZ0SGSHqwMtFS0A0gi1w3H9SLlFAC295surfWT0CKJyFNXWasx3pA4zjQ7P8ZriZUffjiKvRj9e7X8F1X7SHGpsy2x4XiJmdReaOESGTlZaK/Huxe/WhhZJfr+2E8U8Q6hdU0mGGkqR+DbdYFTULmSLOSQSSHBqGzzUlvwByD4fAMDUlH6oLVRWkkAFmDPv1b3+XnjCHph5M5a7lud0rM3Nm1FprcRIaETb8s0oDah39uKWiyHwQpFXYzy0QZGsqV10eLsd5vmkqMAUJHGODU4gEJXgsJrQ0ZCdhqzVpepHvOnpR+igyNocmtomgdf837MpSLRhkWl4tSVZwvZeosSju4gYxoOF2ow5gyLLEIcmO7WF6mpAEABFgahe6DGyR1GU3J3arKnNKCJURSTU1aLLHdC+HorKAOL6kVh3T0kNqYr1kZCVdzgARcHAF++AHJ55AjgjPY55iAt5WfUyNFWQMHAiNgFfxJfyMYGEpjbHcaiwUgVJfkI6uu1/bf1acFzxtBF6QBUkc8mr/dqJbbCpf/X0Zns2ULWaNDoKORqd9usxtaUt1NTMqAirryIBrByJt5n2dHkRkxQ0V5Whrcae9Rr1oFT0I7F+cjORr6yEkOHw7DJNQfK67usqBjQcWO5anrUznmIWzHhn2zsBMAVJqUEbjUw9khw2KNJY2NiwyGlQ9cj6tmoIWWrIaFO71xuc9VoqGBURVBWQdTk0tQFgnubVnvn6J5NQ+5D7ELwRLxxmR0nvhJzrGDrUFkURX/rSl7Bw4UKUlZVh0aJFuPPOOyHLcrGXxjAgktcLJRYDOE67aOR4HqYa0jgSR+bGFs9iooTDgPrvL9MLOIrgYE1tRvGgW71NdXXoGo1vi6NaCHNLC8BxkAMBSCW0HTHW2wsAqP/s7TDV1SHa1YWR++4r8qrmBrSpvdS1FGWmMrhsxDE4U1vbH42H2gDgVEO68Tw1tamqo5R92pQL510InuNxwnsCg4HBYi8nZ2RFxtG3iGNWqbDn1NATqqrAWUhgKA4PT/v1dNQjANBQ2aI+IB4av3KSvDdeuLim6DdGnCUTameuHqHY6bDIOdLUpuFALkMiE6EKkr92/xURKfVWcoZx6B7vRtd4F0ycSdtxw5gMGxRpLKxLSKgdZk1tjb3dualHABIucxwQjsmaLzsVdEikzcyj3JLb7o6mStLUHvDNMixS1Y+c9J3EeHTmPILeqNvcvBlm3pzT+hj5w9Ch9n/913/hJz/5CX784x/j6NGj+Pa3v43vfOc7uI9dqDOSEFOHRAq1NdpFHwCYaumwyOkXgIzMoC1tcBw4e3ZNLl4NteXxCb2WxWCkDb25JdTUTnK90VCbt1hgbiJt3FIaFkn1I7blK9D49a8BADwP/RKhN94o4qpKH3fIjZHQCDhw6KgmFz/NFc0AZgm1E/QjADSvdj70I4qixIdEzoEWSZWtShs0Nxfa2sc8x8CNkotEa0NTTsfiOE7Tq9GdaYnQ9yyLuqU6FY0uEnoLCY73VzpVn3Z7cX3aAFBVRs7h5nKoXbbhHABA+MgRLegqZfQOtTc0bEBjeSP8MT9e7n1Zl2My8gv9ezqn4Rw4LNlpC+Y62qBI5tQ2BFZ1WGTkOAu1Kfu6SKEnl1DbYuIxr1JVkHhm/nwb8ZNWdZ3DmvMN9Wa1qd03i36kpqxG0wm+6X5zxu/ddmYbAOCSVrb7xMgYOtR+9dVXce211+Lqq6/GggULcMMNN+Cd73wn9u7dW+ylMQxIXD3SOOnr2rBIVTvAyB7JHx8Sme0Hj+B0TjoWg1FI6PtAsLwSYsJ07HA0Hu6Y20rLqy1Ho1pr09zSDMdll8F5zTWALKP/jjuSagoY6fGWh1zotDnbYDeTG3k01O7z96V8XKJ+BAAcNvL/fAy+6/P3wR1yw8SZsLJmpe7HLwabmzcDAHb0lr5Xe3vvdlSr93DN6qDHXKB6NXojPxH6njWTTxsAml0LAACCqMAX8WEsGMWb/USnc0GRfdoAUGmPN7WNrIESBwYAZBdqm5vnkRsUoojQwfSGVRmVsBjWNE1r63IbEknhOR5XLrwSAPDnU3/W5ZiM/EJDbaYeSY3CnNqGwtqx2Z5/2QAAIABJREFUBAAQ6eyEIrGhtP1jIfT7whB4DuvmV+V0rJZq8hrv9c48LHJEbWrn4tOmxPUjs98oTkdB0ufvQ+dYJwRO0NR4DGNi6FB78+bN+Nvf/oa31C0hb7zxBnbs2IGrrroq5WMikQjGx8cn/cc4O6AXeKbGhklfN9WrofYcmTBfTOJDIrPfNsernk8lGCS6GAajgND3AU+Zc9LXQwmNRct81avdUxpNbdrS5u12CFXkJLThji9CqKlBtPMk3Pf/dzGXV9Ic98bVI5R5FSTAminU9kfI66lCDbOdNurU1r+pvX+Y6AuW1yyHzWTT/fjF4OIWcvGwa2AXolJp35TZ0bcDLvUerqku91CberXpYOxEYj1nAMTfw1Jht5PBkhYJODPeg12nRqEoQHt9hTZoqZhQp3ZUlBGOGVc5SGcZZBNqcxyHsg3rAQCh/ft0XVehOeo5ClERUVtWi6by3HYjJHL1wqsBkO3fs20RZxSXYCyIvUOkdMZC7dRo+hEWahsCy/z54Gw2KOEwYmfOFHs5RYeqR1Y0OWG3mHI6VquLFEESd8Umg+pJ9Ai14/qR2WcKpRNq08G36+rXaQO5GcbE0KH25z73Obz//e/HsmXLYDabsX79enzqU5/C+9///pSPufvuu1FZWan919o68xZMxtyBXuBNbWoLmn6ENbVzRQ6ooXaWPm0g7tQGWFubUXhoqD0oTH4NTw611aZ2iehHtGCluVnbQWGqrkbjV74CABh94AGEDh8u2vpKGdo+XFodD7XT0o9EyA276foRfW/kKYqCx449BgDY1LRJ12MXk2WuZagtq0VQDGqhfSnii/hw0H0QrgnSNjbV6xBqq21vcTiJfoQ6tdtmbmpz1vjF45nRU3jlpKoeMUBLGwDKLYI2oMrICpJc9CMAYFcVJMESHxapqUdq1+jqY1/qWor2qnbE5Bj+2v1X3Y7L0J/Xh1+HKItoKm9Cm3Pmm2pnMzTU5sqKO4yXQeAEAdb2dgBAmClINPXIOTmoRyh0WORs+hH3BAm1cx0SCWTY1FY1d4fch1LuCKM+7S0tW3JeGyO/GDrU/t3vfodf//rX+O1vf4v9+/fj4Ycfxr333ouHH3445WO+8IUvwOfzaf+dYXfdzhqofmRaU1vVj0isqZ0zcoCE0EJ5RdbH4EwmzcctTzCvNqOw0JtbPcrkNmIoQT9i0fQjJRJqq0Mizc3Nk77u3PpOOK64ApAkDHzxDihMQ5IxiUMiKVpTOzCTfkRtalvJ0Jt8NbVf7X8Vh9yHYBNs+D/L/4+uxy4mPMdrCpLtvaXr1X6l/xXIiozWCPnMpD7sXKA37mNTmtpyKKSdB802KJJPmDtyxnsaOzvJ+dEFi4vv0wZIi7myBIZFxkPt7NrJWlP79ddLeuv7GyNkdoNePu1Erl5E2tpMQWJsXht4DQCwsWlj0QfNGhk5yJzaRsPaQealRNiwyPiQyAU6hNou1ak9m35Ex6Y2DbXd/ijCsZk/U5e5lsHCWzAWGcOZiel5YSAWwJ7BPQCALa0s1DY6hg61P/vZz+Lzn/88brrpJqxevRo333wzPv3pT+Puu+9O+Rir1Qqn0znpP8bZQUxzaicPtcVh1tTOFTnBqZ0LtK0tsWGRjAJDm9qdEgm1adiYePJDfbQlE2qr+hFzS8u0X2v88pcgVFcjcvw43D/7eaGXVtKExTBOj58GQE5+KYlN7VTtjrhTmwRz+WhqK4qCnx78KQDgho4bUFtmjEBSL7RQu4SHRdJAvjlCLrSoDi0X6I17cYpTO6qWOPjKSk1DlBKzWfth19BpnBwJgOeACxYZo6kNAFUGD7WVaFS7SZptU9u2dCl4ux2y34/IiRN6Lk8XIidPouuDH4R/584Zv0/vIZGJUK/27sHdGApM353AMAa7BnYBIKE2IzmKLEOh+hE7a2obBdtSGmofL/JKiktElHB0gGiedGlqU/3ILKG2nk3tarsZNjOJNwdnUZCYBTOW1ywHEL8xm8ir/a8iJsfQ6mjFQufCnNfGyC+GDrWDwSB4fvISBUGALBvXr8coHvQCzzR1UCTTj+iGpFeo7SShtuxnoTajcMiBABS1JXMkTMLsZU3kxmdiqG1RtVWyzwfR6y3wKjNHC7WnNLUBwFRTg4Yv3QEAcP/kJwgfP7tP2jOhc6wTsiLDZXOhriweRlJnbCAWgC/iS/pYvxpql6tNbW1QpI5N7b1De7F/eD8svAUfXvVh3Y5rFC6YdwEETsBp32n0TvQWezkZIysydvaTMLBynJy3mnXQj2iDItXhsBQ6A2C2ljZAmtCyhYTGXcNdAIBVzZXagEYj4FRD7bGgMXeYxAYHAUUBZ7NBcLmyOgZnMqFs3ToAQHC/8TQ7Y088gdDefRj73eMpv2cwMIih4BAETsjLoNrmimasr18PBQqe63pO9+MzcscX8Wmqro2NLNROhRKOh2zMqW0caFM7fJY3tc94QpAVMuC8UYfZGlQ/0j8Whiilzu7calO7rsKS8nvSheM4zKtUFSS+3IZFJqpH2O4T42PoUPtd73oXvvnNb+LZZ59FV1cXnnzySXzve9/DddddV+ylMQyGoijxpvY0/Yjqn3S7U7bqGOmhx6BIAOAraFObDf5hFA56Y4uz23HST06wVqihdqJTmy8r0zQBpTAsMtpH9SPJ24LOq65CxeVvB0QRA1/4IhvQmiaJPu3EE1qbyaa1olMpSPxaUzt/Tu2fvkFa2tctuQ719tzDUqPhtDixrp4Efjv6dhR5NZlzZPQIPGEPyk128KNjAHRyatNBkcPDk5QVdAZAOqE2APBWcgHp85NCwIUGUY9QjK4fifUPAADMTU05XfCWbdgAAAjtM16oHTl6FEBcs5IMGgZ0VHfAbs5P+5QOjHz21LN5OT4jN3YP7oYCBYsrF6POnvtulLkK9WkDAGcr/kBeBsG6lOjlYj1nND3M2Uj3KLnGb6ux6xLi1jussJh4SLIy4+BGqh/Ro6kNJHq1MxgW6Z4casuKjJd7XwYAXNp6qS7rYuQXQ4fa9913H2644QZ84hOfwPLly3H77bfjtttuwze+8Y1iL41hMOTxcW1L11RnpamOXKgp0ShkFqLmhB6DIgGAp03tCTYoklE4qHpEcdVAVgC7RcB8dXtcKDa5RWApIQUJHRRpSaIfAUhzoemrXwVfWYnwkSMYffAXhVxeyUJ92onqEQr1aicbFinLCoKqo50OinSW6dvUfn34dbw2+BpMvAm3rrpVl2MakYubLwZQmgoSuuZLnecCIvl7pzvHcsFUWwsIAiBJEN2j2tfTHRJJ4S1qqCIFAD6ECw0yJJJi/FA7tyGRFPs5JNQ2WlNbURSEDx8BEN8NlIx8qkco71zwTpg4E456juKU71TenoeRHYk+bUZq4kMiy8Dxho5gzipMLheE2lpAURDp7Cz2corGaTe5xl9Qk9s1PoXnObRUzezVVhQF7gmyG0sPpzYAzKsi5zYDaQyLXFu7FgDwlucthMT49x9yH4In7EGFuQIb6jfosi5GfjH0O6rD4cAPfvADdHd3IxQK4eTJk7jrrrtgseS+PYExt6ADk4SqKvBT7n7zVit41a0usmGROUGd2kKu+hHa1J5gNxkYhYP++484iSuuraYcdgvRQyQOigQAMx0W2W3sUFsOh7UhuMn0IxRTXR0av/gFAID7/vsN6W81Gse904dEUhK92lMJROPB9fSmtj6hNm1pX7v4WjRVZDekrhSgXu3dA7sRFmdv3RgJ2i7fbFkBABBcLnA6nL9yghDXqg3HHcPRnm4A8ZkAsyFYyQWkWQSsNg/OW5CdQiNf0FB7fI6H2mVr1gCCAHFgYMZGdKERBwYg+YheSfJ6tVLDVGjDLZ+hdrWtGhc2XwiADYw0IjTUPr/p/CKvxNjIAXVIJFOPGA5bxxIAZ/ewyO5R8vpcUKvfjpsWtTjU60keMAeikrZTVq9QuykD/UhjeSNqy2ohKiKOjh7Vvv7SGaIeuaj5IpgF42jZGKkxdKjNYKSLOKT6tBsbk/66NiySebVzQg6oTu3y3EJtranNBkUyCggdFjtRRm5yLay1o0wNtadOybbMbwMQD4qMCm3Q8RUV2s27VDjf/W5UbNkCJRZD/x1fgiLq53eea8iKrDW1l1anDrWTuZ6pesTEc7CayGmW5tTWIaA7NHIIO/t3QuAE3Lp67ra0AaI0qLfXIyyFsXdob7GXkzbBWBBvut8EAKzlyA4KPdQjFDosMpYwLDKm6Ufa0joGp4baFhFY2BTS3guNQpW9VJraud1U4svLYVtGdoME97+e87r0InzkyKSfJwvcY1IMh92HAQBravMXagOTFSRMJWgcBgOD6BrvAs/xOK/xvGIvx9AoITXUZkMiDYe1g5znhY+fvaF2l6Yf0aepDQCt1TM3temQSLtF0HY25kqz2g7vS0M/wnGc9tl1yH1I+3qiT5tRGrBQmzEnoBd25inqEQobFqkPkk5ObcHhVI/HQm1G4aBNbbeV3JRZUFMOm1ltak8LtUnbMWbwprY2JLKlZVYHHsdxaLzz6+AdDoQPHoTn4YcLscSSpHeiF0ExCAtvwYLKBdN+XdOPBJI0tbUhkSbt78Sphtp6OLV/dvBnAICrF12NVkdrzsczMhzHaQqSUvJqnxg7AVmRUVtWC8c4+Ts31evnmjWrA7FFdZeaHI0iNkAcz+nqR2hr3CQpaKw1ngqMNrXHDB9q59bUBuJe7fCh6cOqikU6ofZx73FE5SgqrZVoc6Z3MyVbLm29FGWmMvT6eyeFD4zisntwNwBghWsFnJaZb6yf7VD9CGtqGw86LJI1tfXTjwBAq9rUPuNJHmpTn7ZeLW0AaMpAPwLEdxm9MfIGeZx/AG953wLP8dr5J8P4sFCbMScQh4YBpNPUZvqRXIg7tXNsajvI41lTm1FIaKg9IKihdm05yszJ9SM0GDK6U1sLtWdQjyRibmhAw+c/BwAY+eGPEDl1Om9rK2XokMgl1Utg4qe3R5rLU+tH/BHyWqpIaJ1Q/Yg/IubUMjzmOYZtvdvAgcNHVn8k6+OUEhe3qF7t3tLxaie2/GPD6vmJnk1t9QY+3aUW6+0FFAV8eTkEV3oaERpqW0TAWubVbW164TxLnNoAGTYJAKLHOH8P4SNHJ/08msSrTUOANbVrdBksNhN2sx2Xzb8MABsYaSSYTzt9NKe2nYXaRsO6VA21jx8/K3eCREUZvV4aauu3k6C1Wg21vckDZtrU1mtIJJA4KDKU1t+lNixSnQ9BW9rr6tahylal27oY+YWF2ow5QYzqRxqSXzSyprY+UKd2roMitab2BAu1GYWD/vvvUshd/IW15Sn1I+ZWEmpLXi8kAw+YjfYS/YWlJb1QGwAq3/telG/eDCUaxcAdd0CRpNkfdJZBQ+1kQyIBoNlB/rz7/H3TTpr9qjc7MdR2qqG2rBCHYLbQlvYVC6/AwsqFWR+nlNjUtAkm3oSeiR50jxtbB0TRQm3XUohqqG2uT76TLBvMVD+i3tCPdqs+7bb5aYeLIY68Ps0i4JcGZ/nuwmPkQZGKLENUm/F6hNpCZSUAQPKN5XwsvaBNbdvq1QCSD4ssxJDIRKiC5Lmu5yDKTJ9VbBRFwa6BXQBYqJ0OcpA2tZl+xGhYFy8GeB7S2NhZmRX0eoOQFaIB0TNgbnWp+pEUTW231tTWb17ePNWpHYhKaQ1nX1mzEjzHYyg4hMHAILb1bgMAXNJyiW5rYuQfFmoz5gR0Cy7dkjsV5tTWB90GRVKnNgu1GQWENrVPS+SEbUFNQlN7SqgtVJSTaegAoj1nCrjKzIj1qW3BNJvaAFE6NN35dfDl5Qi9/jp8Tz+Tr+WVLG95yRbUZEMiAaCpnDQrQ2II3sjkdqVf04/EHcU2Mw8TT8LGbBUknd5OvNj9IgDgY6s/ltUxSpFycznOqT8HQOm0tbUho9VLNZe/vk1tqh9Rm9o9mfm0AWBMJK9HswT0+o33Hldl4FBbdLuhxGKAIGit+VwQKtUb/epgxmIjut3kZgzHwXHZ2wDEP2sSKXSovWneJlRbq+EJe7SGcL4QZREfef4juOSxS3DTn27C7S/dju/v+z4eP/44Xul/BT3jPYhJxnttFpKu8S4MB4dh4S1YX7++2MsxPHJQ3e3K9COGg7fZYFmwAAAQeevsG6RO1SNtNeW67rqhTe3hici08hAAjEzorx8pswioVmdy9KehILGb7eioJk391wZew+4BolS6tPVS3dbEyD/6GNkZjCITHxSZwqmtuixpqMXIDkkbFJlbU5t3kFCbNbUZhUR0k3Bp1OpEhdWE2gqLFphMDbUBwNLWhpDbjVhPN8pWrSzoWtMlpja1Mwm1AdIudP3Lv8B9//3wv/QSqt57XT6WV7LM1tS2CBbUl9VjODSMfn8/XLa48oE6tSts8YnpHMfBYTPBG4xhPCSiqTLzNf3sEGlpv6PtHWivbs/8ACXMxS0X47XB17C9bzs+uOKDxV7OjMiKPOmmiDj8EAB9Q22zuistNkRu6Ee1IZHp+bQBYDQqoxqkqe0JezARnYDD4tBtjblSSQdFBo0XHIqqesTUUA/OlPulFG1qyz5j7AoKHyXqEcuCBbAuWQJgelN7NDSKXn8vOHBYXbu6IOsy82ZsXbAVjx1/DM+eehYXNV+Ut+d66cxLeG2QBOfeiBeHRw9P+x6e49Fgb0CLowXNFc1ormhGq6MVW1q2oMKSW/mjFKA3FtbVr4PNZCvyaoyPwpzahsba0YHoqVOIHD+Ois35e28xInRIpJ7qEYAMfK6wmuCPiOj1htBeP/l9ccQfBaCvfgQgChJvMIYBXwjLm2Z3/a+pXYNjnmN44NADiMkxtFS0YFHlIl3XxMgvrKnNmBPEaFM7lVOb6Ud0QQ6ok7tzbWo7WFObUVgUSYI06gEAeG0OLKi1g+M4TT8y1akNxAOiRK+2KIt45uQz6Bk3hms7cVBkppRfeAEAILh371npEEyFN+zFUJB8ptD2RjLosMg+/+Swhza1KxKa2kDcq51NU/u07zSe73oeAPCxNWdPS5tCh/XsHdyLYCz5Nlaj0DvRi5AYgoW3oM3ZpulHdG1qq+c64tAQFEXR3qPSHRIZk2QMh8m/eSfIRWzPhDHe0yiJ+hGjvT9pPu2m3NUjAMBr+hFjNLXDh1X1yIoV2g3TqYMiaUt7UeWigt4MuXoRUZD8redvCInpDQLLhseOPwYAuH7J9fjB236Az577Wbx/2ftxScslWFy5GDbBBlmRMRAYwJ7BPXiq8yncf+B+fH7753Hnq3fmbV0A8OixR/HgoQfz+hzpwHzamaENiixn+hEjYu0gN/DOxmGRiU1tPeE4Di3VqoLEO/3cLR9NbQBoUhUkfWPhtL6f7jbqGu8CAGxp3ZL3OREMfWFNbUbJI/kDWjhqmk0/wpraWaNIEpSgPqE2a2ozCo3k8QCyDIXj4bNW4CL1xI3qRyKiDFlWwPPxkxhtWGR3POz57wP/jZ8f+jmWu5bj8Xc9XsDfwXTkQACSl6gvsvG62lavBme1QhodRfTUKeIUZGjqiFZHK8rNqU/wmx3NODByYNqwSE0/Ypl8iuUsIz+fSMPxN5UHDj0AWZFxaculKdvjc5mFlQvRXNGMPn8f9gzuwZbWLcVeUkro66e9uh2CwmnnHXTHmB7QgFyJRCCNjcVD7TSb2gd7xxBUndr15moAA+gZ78HKGuPsSKGhtigrCEYllFuNc8mi55BIIMGpPT4ORVGKfjFNm9qJobY0Ogo5FNJapgfdJNReW7+2oGtbW7dWey946cxLuGLhFbo/x2nfaewa2AUOHD665qNorpi+E0pRFIyGR9E70Ytefy/6JvrwlvctvND9AnYN7Mrb36M37MW3XvsWAGDrgq1ocWR+Q1sPJFnC7kGyTf/8xvOLsoZSgzq1OdbUNiS2pUQ3Fz4LQ+3T7vw0tQGg1WXHscEJ9CbxalOntt5N7eYqsnMkHf0IAKyum7zbaEuLcc8xGclhTW1GySMOk0YdX1EBIcUAQxpqyz4f5EikYGubS8iBgPZjvfQj8sSE4RpYjLkJDZZCFU7IHI8FU0JtAAiLk9vaU5va+4b24YFDDwAAjnqOaoqKYhFVW9p8ZaW2+yETeIsFZevWAQCCe/bqurZShg75my08nleevKkd149MDuEcVhLSjWfY1D4zcQbPnnoWAHDb2tsyeuxcgeM4bG7eDADY3mdsr7Y2JLJ6KcTRUUCWAZ6HqaZGt+fgrVYI1dUAiOtY27GRplN7Z+coYjx5fdbyZGuuUXafUMrMAswCCQWN5tXOV6gNSZp0rlUstCGRK5ZDcDq1c7bEtrbm064tjE+bwnEcrlp4FQDgDyf+kJfnePw4uWF9ScslSQNtuo7aslqsq1+HaxZdg9vW3oa7L74bFt4Cb8SLMxP58dS/MfKG9mP6XlMMjnmPYTw6jnJzOVbVriraOkoJranNBkUaEmsH2ZkXPXkSinh2DaLtVvUjeje1gbhX+4x3esCct6Z2FblxNJBmqL3AuUDbcVRuLse5Defquh5G/mGhNqPkoYOSUvm0AYB3OsFZyGRdcYS1tbOBDonkLBbwltymFAtO1W8ly5rShMHIJ1Q9NG4jr70FteTEzWqKfwxOVZDQgCja042J6AS+uP2LUKDAwpPX/9OdT+d93TNBgyxLhj7tROznkhO34J49uqxpLkBvViytTj4kkkLDjtT6kSmhthpypzONPZEHDz0ISZFw0byLzurwgCpItvduN/TNUC3Udi2FOKSqR2prwQnCTA/LGKogCe3fD0gSOJst7Tb4zk63Fmq7eLLzymj6EY7jUFlG3muNF2oPANAv1OZtNnBWclEvjRVXQSKNjyN2hgSytuXLAcR/n/QzR5IlHHIfAlC4IZGJXN9xPQROwK6BXUld17kQjAW1z/b3LX1fRo+1CBasqFkBYHL4rCcHhg9oPz7mLd6NdTpM7dyGc2HijbOLwsjIIXW3K2tqGxJzczN4ux1KNIpod3exl1MwYpKMXjVwXlibh1DbpepHpjS1FUXRmtr1eXBqA0B/mvoRnuO1G7QXzrsQZsE8yyMYRoOF2oySJ6ZeNJpTqEcAcnFEvdqSm3m1s0Hy6zMkEgC5eDOTDwx5whiDkRhzG3oza0Qd3rSwljQHeJ6DzUw+CqcOi7TMbwUASCNufPulO9Ef6EdLRQu+efE3AQDPnnoWMal4YUusT20L5hJqn3ceAObVToTqI2ZtaqtO7ZT6kWmhduZO7QH/AJ4+SQKWs7WlTTmv8TxYeAv6A/047Ttd7OWkhL5+llYvhTiiv0+bYm4gN/KDe0i4ZJk/Py3dQSgq4fWeMUQF8vqs5FWntsGa2gBQqSp7xgw2LFLvpjYQv9kv+cZ0O2Y2hI+SoNQ8bx6EqiryY+rVVkPtzrFOhMQQys3lRRmm1VzRjCsXXgkA+MWhX+h67Oe6nsNEbALNFc1ZDaJcW0d0LInhs54cGIkft5hNbebTzhxN4WhnobYR4XheG4wbOV68f1uFpn8sBFFWYDPzuofLQGJTe3Ko7Y+IiIgyAP2b2nXq8UYD6e/Ov3HpjWgsb8TNK27WdS2MwsBCbUbJIw6pTe2G1E1tABDqSKgdY8Mis4Juic3Vpw2QmwwC82ozCgjVjwwI5KbMgoQtdlRBEp4SagtOp7bF//XX/wKBE3D3xXfj8vmXo66sDt6IFy/3vlyI5Scl1tsLILdQu2ztGsBshjg0pLXzzmYiUgSnx0hgutQ1c1O7pYK4TPv9/ZNuCARmaWpn4tR+8M0HIcoiNjZuxPr69Wk/bi5iN9txXiO5CWNUBYkv4sNAgLR4O1wd8SGRs5yfZAPdnRbcTXZZpDskcm+3B1FJhq2MOCedIAGL0ZrawORhkUZCC7WbdQy1q4iCRB4v7o1+TT2ycoX2tanDImkLeVXtKgi8vjsQ0uXDqz4MAHix+0V0j+vTqlQUBY8dIwMi37f0feC5zC+T19UTpVc+mtoxOYY33W9qP3/LWxz3b0yKYf/wfgAs1M4E6tTm7Uw/YlSogiR8/OzxanfRIZGu8klzhfSi1aWG2p7JKhCqHim3CCiz6Ps5QmfYZLIz8u3z344Xb3jxrD/XLlVYqM0oeWKqfsQ8g34EiHu1JTYsMitkv36hNgDwDnIcmYXajAJA9SMemwMOmwmu8rhCh4baoag8/YEtTQCARq+Cj635GNbVr4OJN+GaxdcAAJ46+VRe1huVoojJMwc5mke3JftBUXxZGcpWkwEpTEECnBw7CVERUWmtRIN95s+UxvJGcOAQlsIYDY9qXw9EyM2RqaG2syyzpvZwcBhPnngSgP4t7Ylt29D/pS+V3IwJzavda8xQm4ZM88rnwWlxxkNtHYdEUmhTW/IRXYU5zSGROzvJa7WpnoSoFQp5L/SEPZiIGuvzmIba4wYKtaXxcU3HZm5MvUMwU3g6LNJXXP1I+Cj1aSeG2pP1I9SnTVvJxaCjugNbWrZAgYKH3nxIl2Mech/CUc9RWHgL3tP+nqyOQf9MToydQCCmrx/9uOc4IlIEdhMJifr8fRiPFv4myBsjbyAkhuCyubCkaknBn79UoU5tNijSuNhWkmHJY489hkhnZ5FXUxi63NSnnZ+bLS3V5PXuC8UmzZRx+6MA9B8SCQBOm/HOHRj5hYXajJJHHCSDIk0z6EeAeKgtsqZ2VsgBchEn6KAfAQDBoW61LXIriXF2QJvaXqsDC2vLJ23Tt6kNgan6EUmWcNBKQql10UZ8bM3HtF+7dvG1AEi45g7pe6NMlEX881/+GVf87xUIxlI757VQO8e2oKYgYcMi40Miq5fNqnIwC2bU24lWIlFBMpFCP+LMsKn90JsPISpHsaF+g+5Da4a++S34/vcPmHjhRV2Pm28ubiFe7X3D++CP+ou8munQULvDRdpeMTXUNs+iH1EUBc+80Y8rf7gdj7zaldZzTT3nsaQ5JPKVk+T9qqWBqCVb6ra5AAAgAElEQVRMogKXzQUAeRtuly1VduM5tWlbWaiu1rVxKTjVULvITm3a1LaqPm0g3tSmw4kPuosfagPALatuAQA8c/IZjARzP7f/3fHfAQCuWHgFqm3VWR2jzl6H5opmyIqsecf1gipNzm08VxtU/Jan8I3S1wZV9UjjxrSURwwCGxRpfCqvfTdsa9dA8vnQc8utiPb2zf6gEqdLHRKZD582QM6Fa9QiUaJXO19DIoF4qB0RZUREaZbvZswFWKjNKHliQyTUnrWprTq1WaidHbKOTm0AEJyOScdlMPKJ6KZNbeck9QiQ0NSeEmo/fORhHLZ5AABbTWsmDUNaXLUYq2tXQ1Ik/PnUn3Vd64vdL+Lw6GEMh4Zxejy1O5gGDJYcmtqA8YZFiiMjcP/0Z9qNiEKiDYmcRT1CocMiE0Pt2fQj6TRH3CE3fv/W7wEAt625TdfgINbfr6lmoqdP6XbcQtDmbMN8x3yIsqg5XY2ENiRSHTIab2qnDrVPjfhx84O78X8ffR1HB8bx2J70guWp5zzp6EdkWcGRfnIjubVB1V1EI5jvII81mlebNrXHQtEiryROPnzaACDQpnYRb/TLoRCip8hnzqSmtjYosh++iE9z2q+uXV34RSawoWED1tevR0yO4ZGjj+R0LG/Yi+dOPwcg8wGRU6HDM/X2alOf9rq6ddqNM+rwLyTMp50dSog5tY0OX1aG+T/9KaxLlkAcHkbPrbfM+dygm+pHavITagNASxIFCR0SmY+mdoUtfv6difKPUbqwUJtR8oiqfsQ0yzbQeFOb6UeyQU+nNjmO6tRmTW1GAaAnpV6rAwtqU4Ta0XiofWT0CO57/T4MqmUty4Bn2jHp9uSnTj6l25BFRZm8lXooMJT0+6SJCchUO5BjuFK2fj0gCIj19WmBTTHxPPwwRr7/fXh+lVtIkQ001J5tSCSFhtp9/nibJ3WoTfUjs59g/+rwrxCRIlhduxoXzLsgrbWkS2D3bu3HkdPGHbiYCtrWNqJXe+rrRxwm7zvJQu1wTML3XjiOK36wHTs63aD3LYYn0lPCTPV0W9LQj4wGohBlBRwHVFaS90ElEsV8pxpqG8yr7TSgUzvWT5zpeQu1izgoMnL8OCDLEGprJ+0usKhNbcntxqG+fQCA+Y75WbeZ9eTWVbcCAB4//nhOKo6nOp9CVI5iRc2KnMN62mDX26tNQ/J19eu0G2eFHhYZjAVxaIQ00M9vOr+gz13qyAE11Gb6EUMjVFWh9YEHYG5pQay7Bz0f+WjRr1Ulvx8DX/86gvv26X5s2tRekCf9CAC0qgqS3oRhkTTUzkdTW+A5OKzpF0kYpQ8LtRkljRyJQPJ6AcT9kqkw1TL9SC5ItKmtV6hNm9oTrKnNyD+SejPLa3NgYe3kEzc6oIQOigyJIXx+++chyiJalxM1R7RnetizdcFWWHgLTnhP4KjnqC7rfHXg1UnHGgomD7UnbYHPcfeEUFGutfKCe4uvIIl296j/12f4V7ooiqLpI9Jtas+rIMFWYqjtD1P9yOTBN840Q21v2IvHjpNhZXq3tIH4YEEAiJ7u0vXYhUDzavdt1+1mkh6IsoiTYycBzN7U3nZ8GFt/8DJ+9PdORCUZWzrq8PvbyM0Ltz8CUUri959Con6Es1hmvbEPAMMTYQBATbkVZnVQpBKJN7X1GrinF/FBkcZpWuWvqa0q2Yro1A7RIZErlk/6Ol9ZqX3OnDj2KoB4G7nYXNxyMdqr2hGIBfD48cezOoasyJp65KalN+X8nkuHRR4cOQhZmf3fcjoMBgYxFByCwAlYWbNSu3FW6Kb23qG9EBURzRXNaHW0FvS5Sx3m1C4dzA31mP+LByHU1SJy/DjO3PavkIOpdYD5xvvrX2Ps0ccwcMeXdD3vESVZU4K05Uk/AiQOiyyMfgSI3xTPZFgko3RhoTajpKEXjJzNpg3ZSQVzaudGfFCkTvoR2tSeYE1tRn6RAwHtZDSZfsQ2RT/yvb3fw2nfadSV1eG2q74GgOwIkcPhSY+rtFbisvmXAQCe7nxal7XSlraJIw2DVE3tWG8vgNyGRCYS92oXX0ESGyBNSOoMLxR9/j74Y36YeTMWVi5M6zFT9SOKoiAQnVk/MtugyEeOPIKQGMJy13Jc0nJJRr+HdAgmNLWjXV1QZH1Cl0JxbsO5sAk2DAeHtZsQRqDL14WoHIXdZEezoxlyNArJQ3Z40FB70BfGJ36zD//y0B50jwbR6LThvz+wAb/88HlYP78aPAcoCmlUz4ZQUa7dZDa3toLjZz+lHx4nF5H1Dis4C3FcKtEo2pzEx200p3alTk1tRVHgi/hwdPQo9gzugShnf5Grhdo5zjKYCj2HlX3FOyeKHCU3VBPVIwDAcZzm1R7oJO3jYvu0KTzHa27tR448grAYTvm9ks+XNBDa2bcTff4+OCwOXLHwipzX1FHdAZtgw3h0HF2+rpyPB8Rb2ktdS2E327UbZ53ezpxez5nC1CPZozm17fkLDxn6YZk/H/MfeBC804nQ66+j9/9+Ekq0OCqs8eeeB0DO2UKv66c1GvCFEZMUWEw8mpw23Y47ldZqNdT2FkY/AqR/zs2YG7BQm1HSaOqRhvpZmxWmejXUHh0tuYt4I6C3U1trao9P6HI8BiMV1M0cEiwIm6zThqEk6kde7n1Za8neddFdcDW0gXeSBh31ECdybTsZGPns6WcRlXI72T08ehi7BnZB4ARc33E9gBma2tqQyOacnpNiP496tYvf1I6p7+uFVqHQbdztVe0w8+a0HjO1qR2KSZDVzCTR6QckOLVnaI0EY0E8euxRAPlpacf6+sgNEUEATCYo4bD2OVoq2Ew2bdu7kRQktDHZUd0BnuMhqTfQObMZisOJB7afwtu/uw1/PjQIgedw6+aF+Ot/bsFVq5vAcRwEntMu7obGUwdziVAFSTrqkcTjNjit4KzkueRoBK1O0rg0WlO7Ks1QW1EUeMNeHHYfxovdL+Lhww/jW699C//xt//Ae595Ly549AJsfmwz/ulP/4Rbnr9lkuIpU+j7kqmpKetjJCOuHyleUzt8WG1qL18x7dfoZ81EN9mNYJSmNkAGO84rnwdP2JPyBvPwvffirY2b8NbGTei++Z8x+K1vYewPTyB85Ah+/yZ5z31P+3tQZsq9RWvmzVhVuwqAfgqSRJ82ADQ7mmE32RGVo7oF5+mwe5DcFN3YyELtTFBkGYpajGBO7dLBtrQDrT/9CbiyMgR27EDf5z4HRSrs4MFoVxcix45pP/c9+YRux6bqkTaXHTyfv6GvrS7ymk/e1Lbk5Tnp7shxA+30YuQPFmozSprYoDoksmH2bbcmlwvgOECSNGUJI32oU1vQST8iONSttn4WajPyCw21vTYHquxmVNknn0DRUNsTHsWXd34ZAPDB5R/Ehc0XguM4LTBKpiC5oOkC1JfVwxfx4eXel3Na5y/f/CUAcoG+vn49gNShdpQ2tXVqC9rPOQfgOES7uhBTd8AUAzkahaT+fUkeT0G3ex7zZjYkEog3tQcCA1AURVOP8Fz8dUWhTm1/RIQkJ98+emDkAPwxP5rKm/C2+W/L+PcwGwFVPVK2ahUsrSTILEmvdrPq1e41XqhNXz/035HkqsW7738Fdz17FIGohA3zq/DHf9+ML1+zYlqbv0FtStFG9WyYMwy1qa+73mEDZyGhthKJavoRT9gDf9Q4SrBKuxpqB6ffMAzEAvjqK1/Fe556Dzb+diMu+d0luOnZm/CZbZ/BvXvvxaPHHsW23m044T2BQIycvzjM5Gb6MyefyXoLd970I87iDopUolFETpwAANhWJgm11d+vwxOCTbBhSfWSgq5vJsy8GR9a+SEAwEOHH0raXA6ou5Dk8XEE9+yB91ePYOCOO3D6vdfjo5/5B77zgIj3/KYbow/+AoFXXoHomT5HIxNok52G0bmS6NMGSEOdvtcUSkHiDXu1uQHMp50ZSijeUGVO7dLCvn49Wu67DzCbMfGX5zD49TsLqj6jLW2642v8z3/R7dy4qwBDIoF4U7vXG9L+7Nx+8rmer6a2s4wWSVhT+2yAhdqMkkYcokMiZ/ZpA6QtJVSToTY05GKkjxSgTW2dnNoOchzW1GbkGzocNpl6BKBObQV/d98PT9iD9qp2fOqcT2m/roXa3dNDbYEXcM3iawDkpiA5M3EGL3S/AAD48MoPo8FO3tMGA8lbtLE+EqxYdNKPCE4nrMuIozNURK/21NZwIdvamQ6JBICG8gbwHI+IFIE75IZfHRJZbjFNa1k7Eprb9PumQgdwratfB57T/xSNqkfs558Py0KiWCllr/YbI2/kNBxOT2jTv6O6AwDgO0M0OkdjVhwdGEeV3Yx73rsa//uvF2LFPGfSY9TTpvZEek1t6j4uW5teazaxqc1b4/oRh8UBl80FwFjDIlPpRyRZwude/hyeOPEETvpOIiSSwKiurA5r6tbgygVX4tZVt+LLm76M/7n8f/D0e57G7g/sxos3vggLb0HXeFdW6ho5EtFuuukealcVt6kdOXkSSiwG3ulMugOIfq1+DFhRsyLt3SyF4rol16HaWo0+fx9e6Hph2q9LHlJmafrmXWi6+264PvQh2DduRKzcCpMMtI0A0nN/x/B3voOeW27FiQsvwolLtmD4u9/NKsDShkUO597UDsaC2ucTbWoD8feaQg2LpC3t9qp21JbVFuQ55wpaCMlx4Gz50zww8kPF5ovQ/J3vADyPsccfx8j3vl+w5x5/noTatf/+bzC3tkIOBDDx4ou6HLvbnf8hkQAwr6oMHEd2M7r9USiKkn+nttbUZqH22YBp9m9hMIxLJk1tgHi1JY8H4vAIsDT9Nh4j0amtU1NbVTpIEyzUZuQX6tH3Wh3T1CMAYDXzMFftxpnIXph5M+65+B5YhfhJlrmNNrWTb82/tv1a/OLNX2B733a4Q+6sLvYePvwwZEXGRc0XYalrqea2HQoMQVGUaQGp3voRgChIIkePIrh3L5xXXaXbcTMhNjA91La2txfkuWkwQF2l6WDmzWiwN2AgMIA+fx+EKAmKp6pHAOJut5h4REUZE+GYFtglctB9EED+fLVaqL1xIxSZbKGNlmBTu8XRgoWVC3Hadxqv9r+KrQu2FntJ2utnmWsZFEXBz558Df8EcjPtxnNa8Pkrl6Fmlou3erWpPZRmU7vuk5+E813vhrUjvdas1tR22sBZSMCtRMjX5jvmwxP2oGeiBytqpjd1i0FlwqCnxPfBH+7/IV7qfQlWwYq7LroLy1zL0FTRNOl9OxWbmzfj72f+jue7ns9oVwYAiKrvn7PbIVRVZfi7mZli60fCdEjk8uVJtUf0s6Z2XDGMTzuRMlMZPrD8A/jxgR/jwTcfxJULr5z0+6A7NMs2bICV3tCTorj58beDd4u4q/4jWOaxInz0GMLHjyHW3QNxeBijP38A1o4OVL7rXRmtZ209+TM66TuJ8eg4nJbkN7LS4fDoYUiKhHp7PRrL49c7hR4WSX3am5o2FeT55hKJQyL11ooxCoPziq2QJr6GwS9/BaM//zmESidqPvKRvD5ntLubzDoQBDje8Q6IbjfcP7oPY08+hcprr835+Jp+JI9DIgFozu5+XxhnvEFyLqwOxM5fU5ueP7BQ+2yANbUZJU0mTW0AMNWSsIkNi8wcvZ3agkN1arNQm5FnNP2I1ZG0qR3BIKwNfwIAfHLDJ6cFHZb5ZIhaLIl+BAAWVS7Cmro1kBQJz556NuP1ecIePNX5FADg1lW3AoDW1I7KUYxFxiZ9v6Io8UGReoba51KvdvGGRcYGJjezCzUs0hfxYSBAAqtMgy7q1e7392MiQk6ey63JOwNObXDN9Ka2oihaU3t17eqM1pAO0d4+8udpMsG+fl082CnBUBswloLEHXJjNDwKDhzaq9oRjEpQ1Ped88/twHduXDtroA3Em9ojaTa1ObMZtqUdaYckw2pTu94x2akNAPOd5OZdz7jxmtqSrGi7G57qfAoPHSZO7DsvvBNXLLwCCyoXpBVoA9BugLzY/WLGDdy4eqRJ92CK3uhXgsG8DCMLiSHcs/sePHz44aS/7/ARdUjk8uVJH08/a+p8xhkSOZWblt0Eu8mOt7xvYUffDu3rSjSqncOa1B2bAPBC9wvwRsdgamzEphv/HbUf/zhafvRDtD//PDr27kXNxz4GABj69rczLmC4bC5N63Nw5GBOvy/q5V5Xt27S647egKUt7nzDhkRmT3xIZH4bsYz8Un3jjaj/7O0AgOF7vwvv44/n9fmoeqR80yaYqqtRde21AMchuGsXor25nx9T/Ui+m9oA0OJSh0V6gtqQSIfVBNsUVZ9eOGY432bMPViozShptKZ2Y/pNbYDpR7KBXhAIFToNilRDbdbUZuQb0U1uYnlsTiyonXziFpNj2D72I3B8DC5+JW5ecfO0x1vaUutHKNcuJo2Jpzqfyjgo+e3R3yIiRbCqZhXObSDBskWwaDqAqV5teXxc+/eYj1A7cqITYpHmDkzTjxQo1KYqguaKZjgsjqTfoygKQocOTQucqFe7P9CPQIS0n1OF2o4ZtkP2TvTCG/HCzJszUqCkC21pl61aBb68XNOPRLpKNNRuIaH2jr4dkJXiDn9+y0NeP23ONtjNdoyFYqgJk8ZtS3t6vmsg7tROt6mdKfS4Dc4Ep3aUvBZpAGekUNtmFmA1kUuVsWAM+4f24+uvfh0AGaR61aLMd5Rsad0Cq2DNSkGSL582oJ4TqYGl3l7tqBTFp/7xKfzm6G9w79578fu3fj/te7SmdhKfNgDEGkgz3eUHVjk7dF2fXlRaK3Fjx40AgAfffFD7ujim3hgWBG3wMwD87tjvAAA3dtwIEz/5PVuoKEftv/8bLG1tkEbccP/4xxmvh/qvcx0WOdWnTWmvbgfP8fCEPXCH8ntdM+AfQM9EDwRO0M5TGOlD9SPMp1361Nx6K2o++lEAwOBXv4bx557L23ONP0+O7biC3Iw1NzfDvoncVPI99VROx5ZkBT1aqJ3fpjYw2autqUfy1NIGmH7kbIOF2oyShgYgprT1I6ypnS10UKRu+hHW1GYUCE0/YpuuH/mfA/+D4WgnFKkM7dytST3G1KkdGxiAnKJBd8XCK2DhLegc68QRz5G01xaMBfHosUcBALesvmVSC4u2tYcCk0NtGvQKtbXgdXQzmlwuWNoXk3UVyasd6ydtafo+UyinNm26zaQe8T76KLpu/CeM/vLhSV+noXbvRC8CapvUkTLUTt0cecNNgo/lNcthEfSfBp/o0waghdpi/4DWIislNtRvgN1kx2h4FEc9R4u6Frr9nzpux4JRuMIkmDQ31Kd9HNrUHk6zqZ0JsqxgxE/1I1ZwFtWpHZnS1DaQUxuIt7U7PT341D8+BVEW8Y62d+AT6z6R1fHKzeWak/35ruczeqwWajfpH2pzCYGrngqSmBzD7S/djlf6X9E+3+7efbcWlAKAIkkIHyevYduK5KH2sVgvwqoxqWrMuM23m1fcDBNvwr6hfdrvUfKSUFuoqgLHkz+DY55jODByACbOhOs7rk96LN5iQcOXyfBoz69/o/0ZpYs2LHI4+2GRiqJowyYTfdoAUa60OclOsnx7tXcN7AIArKxZiQqLPtcBZxN0UCQLtecGdZ/5NKre9z5AUdD32f8H/46duj9HtLsbkSOqeuTyy7WvV733vQAA35NPQpGzv6E/OB5GVJJhFjjMq8r/67LVRZ4jsaldlyefNpA4KNK4n1cM/WChNqNkUWIxrXFtTlc/ojW1WaidCYqiQNI51KZNbSUSgRzJTyuNwQCA6HCCfiQh1I7JMTx8mASU4YHrIMcqkz5eqKkh2h1Z1rQfU3FanHj7/LcDyGxg5BMnnsB4dBzzHfNxWetlk36toVwNtac0taOaekT/YMV+3nkAiqcgiQ2SULtsw3oAQLRATe10hkT6/7ENABB6Y3LrbrJ+RB0UaU2+nVILtSPTmyNUPbKmNr2hf5kS92mTUFuorgavenyj3cl98UbGIli0bfA7enfM8t35hYbaVF3jC8VQqza1TfXph9r5bGqPBqKQZAUcRwYzaYMiIxEoimLIpjaghtp8BPe8/v/gjXix3LUcd110V06DVKmC5IXuFzLaWUMH9OajqQ0kzBrx6dPUlmQJd2y/A/848w9YeAt+cvlP8I62d0CURXxm22cwEiTnwtHubijBILiyMlgWLEh6rDfcBzGsfkTSPwcj0lDegHctIv5r2taWvB4AgFAd96D/7jhpaV/edvmMczAqNl8Ex9atgCRh8M5vZPR6oaH2IfchSOoMg0zpGu+CL+KDVbAm/XwqlILktUGmHskFmYXacwqO49D4lS/DedWVQCyG3v/4D0Q6O3V9Dk09snHjJG2S4/LLwVdUINbXh+Ce7AsoXeqQyFaXHQKff887bWqf8QYTmtr6FzgorKl9dsFCbUbJIrrdgKIAZjMElyutx2ihNmtqZ4QSjQIx8qGgW6hdUaFttWVtbUY+iar/3qVql3aSAwAjwRFE5SgEzgxxYhVCseQXnRzHxYdFzhD+XdtOFCR/Pv1nRKXZnagxOYZfHfkVAOBDKz8EgZ8chNKm9mBgqpKDBAqW5pZZnyNTymmoXaSmtqgOirSfS9ZRqKa2NiQyhU9bkWWEDpC23NQbG5P1IzTUTuXUJq+/ZE1t6l1dU6d/qB3t7SV/liYT7OvJDQOO42BVA6yS9WqrCpLtfcX1ak8dMuoLxuAKkWAyk1C73klaS6P+CERJX6UKbX/XlFthFnjNqQ1FAUQRrc5W8tzhUQRiAV2fOxecZQLK5j2K/uBp1JbV4keX/Qh2c27+zy0tREHSPd6d0ZC9mDooMm+htjYscmyW75wdWZHx9Ve/jr90/QUmzoTvv+37uGDeBbjrorvQXtWOkdAIPrPtM4hJMYQPq+qRpUvBCclvyB0cOYiRSnLOFusvzM3GbPmXVf8CDhy2ndmGTm+nNiTSVEWCofHouDb/4n1L3zfr8Ro+/zlwZWUI7dsH39Pp37Rur2qH3WRHIBZA51h2gRdtea+sWQmzMH24MP3MyuewSEVRsHuA3BRloXZ2UP0IZ2eh9lyBEwTMu+ce2DdtghIKYfTnP9f1+FPVIxS+rAzOK68EAPieeCLr49MhkYVQjwAkPAeAM55QQZramu7PYIMinz7Qh6MD+irGGCzUZpQwMVU9Yq6r07YTzgYbFJkd1N8L6DfkhON5LSBnXm1GvlAkCfCQlpajebKmiIbFVZZaADxCsdQh0mzDIgFgU9Mm1Nvr4Yv4sO3MtlnX9nzX8xgIDMBlc2mBeCKN5WS9U5vaVD+ip0+bUka92keP6e51TQcaGtnPPQcAII24IYf1VzFMek4phpO+kwBSN7UjJzq1m2+x3t5JbT0t1Pb3wx8mNzMy1Y9EpAiOeUnTLh9DIoOvqT7t1asnvYdrXu1SDbXVYZEHRw4iJBZHoRKRIjjtI39+NGAKdnWjQgxD5vi0Z34AJHDmOUBWSLNaT4bV9jdVnFD9CADIkSicFieqrST0M1Jbe8L+NEyOYxA4M374th9q74u5YDfbtdfOC10vpP04TT+Sh10yQGJTOzf9iKIouGf3PXiy80nwHI97LrkHl7RcAoD83n/wth/AYXbgwMgB/Nee/0L4qDokckXyIZGKouCg+yBGSqCpDZDhzXTn1EOHH9JmRAhq2/GPJ/+IkBhCe1U7zmk4Z9bjmZuaUPuJjwMAhr9zb9qfjf+fvfMOcKM80P4zTW1XZXu31x1jXDC92BjTA4aElAvc5SCQXJKPhCMkJLkLhBISklwaHHe5lAMupJAQAsE0U4LpxVQXjO21vfZWbdWuujTl++Odd9T7SFrvzvMXeCTNSCvNvPO8z/t7OJbDyiZyPi+Wq62VRCbxtKnoRFo58SMHpw5iNDgKM2fOeByGsksO0KS2URQ5m8SYTGj+2tcAAFOPP4Go253jGfkpcvhwDD1yzjkp252XfgwAMP3005B8xU1CH1J52vMrUBIJxPAjg54ghqfUpHYF8CMzqShy58AU/vWB93D9n0vrWTCUKsPUNnTESlQvHHwBN4w0qS2NGkWRhUjjadtseU8g5CPWTkxtI6ltqFySJifBKDJkMGjsSMQUUVO73kySlKFI5uXBlKudrSySYzlcvOhiAMDf9mdPcymKgnt33gsA+Kfl/wQzlzqwy8jUpviRTv2T2kJzM0zz5wOKgsDbb+v++tkkeb3aBJpl2TLNfKWc7XJp/9R+iLIIu8mOtpq2tI8JvvuO9t+y3w85znRqtjWDYzhE5SjGQuTaUmhR5O7x3RBlEfWWes0k11PJ6BEqampHDvbqvs9KqMXWglqhFgoUDPqqY7Tt9+yHpEhwmp3ab9b8BsGhDHcfRdBFeYpjGTSpprN7Wt/JHJrUbnGkmtpKZGZytR/peQRDIGm1jQ1f0XUVw7nd5wIgk4v5ICUUSYqFKcqV1HYR11guYUJRURT8/J2fa10N3z3tuxpuhWq+Yz5+sP4HYMDgT3v+hL63tgLIzNPu9/VjIjSB8TqS4q5UgW8puuqYqwAATxx4Ah43+T5zdXVQFAUPfPgAAJLSju+xyKaGK66AaeFCSOPjGL3zrryPgyJIijW1tZLIpgymtjqR1jvdi5BYnglgytNe07wm7VjFUG7JQbUoUqdgkKGZI+vKY2A9/jhAFDH5+z/o8pox9MiJCegRbZ9r1sC0YAGUYBDep54sah8UP5LcNVQutdgtMHEsRFnBrkEyhp5rRZH7R8k9Tv9koMpHMvtkmNqGjlhpNxd58rQBgGskprYcCGhGraHcokaTXugRKs6uppIMU9tQmUS5+1PmGnQ3OxK2DQfIOaTRSs4hmfAjAGCi+JEsSW0Amqn9ysArGq80nV4ZfAV7J/fCxtvwqWWfSvuYaiS1AcB6AklrVxpBQlParNMJtqZGS0OWG0FCE25H1R+V0eAIvPNOwjOupYcAACAASURBVP9H+mOmDs/y2t9qLEi+U5lN7fTFNfHokXxNlnylKAr824ipXXNisqndDeDIxY8wDKNNAgz4qmO0xaNH6N/O+S4xgdwrC1+q32wnXO0Rnbnabi2pTV6fYVkwArnpU9QC3JnE1X7H/Q5ufe1WAEB4bCNauFN0fX2KIDnsPZwXukEcHQVEEeB5LSChtyjjXvIUn9T+1fZf4Z6d9wAAbjr5Ju2alKz1netxzZprAEWBsvcAgMymNj0/WToIouZIMLVXNq3ESa0nQVRE7N5PeNBcfR3eHH4TvdO9sPE2XLTworxfjzGZ0HrTjQBIaXDog/wKoakZXYypPRWe0lYRrW5enfYxTdYm1JnrICsy9nv2F7yPfPTGEPn8Tm47WZfXUxQF4X37MPbLX+Hwv/wLpjY/psvrzmQZRZGzWw1XXgkAmPzTnzTUTCnyPqWiR847P+12hmG0tLbnrw8XtY9YUrsypjbLMuioI9//PW5y31/eokgyvvFHJN1xbsVq0EMmHr0hERFxZhzTbJFhahs6YiUOq0ntlvyT2lxtDRh1ltxAkOQvqUymtpHUNlRu0d/5hNmRUBIJxJLaLfmY2vPyM7UXOBdgddNqSIqkMTvTiZoOn1j6CTjN6QsqtaR2wK0lCRVF0coTy7UEXuNql1BAU4xEbaKSnNOFdmJWlttAoQVbdBl3OgXfVk1tnk97TNRY9UTJe6DmdbJiTO3E5MiOsfKVREb7+yEODgGCAOuaxLSfWUtqHyyoAG0miX72/d70Ja7l1t7JvQCApXVLAQDi5CTqDxDDy3vcqQW/Hk1Su736pi5p8pu+PhBLayvhmZXUHvAN4Lrnr4Moi+i2nIzI6NmY0jltZRNsGpJjS++WnI/X0CMtLRm506WKc1CmdnGm9m93/RZ3v3c3AODrx38944Qp1edXfR6X1JyK2hAgcoC3MzURCMQM2aaFKwAcGaY2AFy1kqS1R4YIz5qvq9MKIjct2oRaU2Fj2ppTTiHFcLJMSiPl3KYEXV1waPoQJkOTBe2PTibMd8xHvSV9dxDDMFpauxxlkZIsYZubFEef1Fo8T1sRRfjfeBPuO36A/eedjwObLsboz34G/4svYezuu/U63BkrDT9iMLVnpWrPPBPC/HmQp6bgebg4k5kq0tdHJs04DvZzzs74OOfFlwAsi+A77yDS21vQPmRZiWNqV271QKdqatPhZjmT2vHj8JmCIBn0xDB5kwF9EXNzXYapbeiIVdRdeFIbAPgmlas9ZiBI8pWs8roKWUadj7SkdhXYvYbmhkQVNTRpsacssaOmdmsNOYdkw48IlKk9MAAlmt1coXzsv+3/W1qjcMfoDmwb3gae4fGZoz+T8XWabQSLEhSDmI6Q34jk8UBRUyDlSmrbVFM7tGtX0ay+YhRVSyKFNoIAoe+v7EntyewlkVH3CDFxWBY1pxGTMrkssr2WTDBMi2QSpcZUGFO7nCWRFD2SzNMGAGH+fIBlIfv9R+xEL/3sq4UfSf7++F54Aayi4ICjDZauwhFBTWVKao941WImh0X7N1oWKVNTewYktf1RP7783JcxGZ7E8vrluLj9egCs7qY2AJw7P38ECeVIlws9AsQVRRYxJvrznj/jP976DwDANWuuwRUrrsj5HJZhcW0NSSsfbgS+/sq3EJVTP2d6fupeRlZ6iKOjkCMz/4b8lLZTsLx+OWx+cm332Vj8/fDfAeRXEJlOzd/8JlibDcH33sPUw4/kfLzT7MRC50IAhae13xsl6BGKMMkkjatdhrLI3RO74Y14YRfsWN6QnrmeSZLXi+knn8TADd/A3tNOx+ErrsDE//0foocPgxEEbawRGRwk/SezWFpRpJHUnpViOA71//zPAICJ3/62pO/ztJrStp14Avj69JNZACC0NKPm9NMAAJ48zkXxcntDCIsyeJZBh6ty30laFknVVEZTW+BYWAUyAT1TTO2hqZipPe6b+dfQI0mGqW3oiFUxSW0A4FUEyZF6A18NaUztWp1NbYedvL7Xl+ORhgwVJ796npg021OS2hTr0V5LTNRsSW2+uQmMxQJIUk6T9bzu82DmzOjx9GDX+K6U7ffuIiztjyz8SNbSMwtvgcvsSjjWqIq94JubwcYxcfWU0N5OjBtJQvC998qyj3SKDpHPlW9Tk9oUP1LGVKCiKFq6LVNJJOVpm5cuhWXZUWmPiRqrfmkEQB5M7bik9lhwDIP+QTBgsKJhRbFvJaMy8bQBgDWZtMmDI5Wr3WknxnE18CPx3x9qLPmeI6bZ660r4LIJBb8mTVKP6JzUHqFJ7bibSGpqKxHyfZzvIJN31UpqS7KEb734LfR4etBobcRdG+9CYy0ZJ0wF9De113euh4WzoM/blzPlSvFIFTG1pzwFPW/z/s24/fXbARCW9BdWfSH/J+8j6KH+NgHvjLyDn7z1k4TNITGkIXaOWXwqMeUUBeJQebsO9BDDMLh65dWwB8mExfPTb0NSJBzXchyW1C0p6jWFlhY0fvnLAICRH/8Ykif336pYrvb7I9lLIqnohFo5yiIpT/u41uPAs+mva/GKDgxg4ne/x+GrrsbeU0/DwFevx/TmzZCnpsC5XHB+9KPouOtOLHntNcy7716y+ikahTgyovuxzyTJQaMocrbL9bGPgXU6ET10GL7nny/6dbwqT9tx/gW593nppQCAqUceKchI7x0jkyyddVbwXOXswK66xO9/Q0157mOoaFnkdGhmcLUHPLFx3bhf3+DCXJdhahs6YkWLIgtPalNT20hq5yvZT0xnTm/8iHqzKnmNpLah8miyj9x4hxx1qE0yGmlSu8tBTApRVhDNwF1jGCZvBInD5MDGeRsBkKKzeB2aPoRnDz0LAPjsis/mPP7kssjogFoSWaaUNpVNQ5BsK+t+4iXSpHZrUlK7jKb2kH8I3ogXPMtjkXNR2sdQnrZt7bExA3ggMalNERghkOtKZvxIalKbpiAXuRYVvBw+lxRFgf+N9DxtqiOdq11Npvawf5h8fxgei1yLIIfD8L3yCgDg9bYVGtOxELU4ypvUbolPapsoU5ts63IQZvJYcAz+aOV7R+58905s7d8KE2vCnWfeidaaVjjVz7AcSW2bYMO6znUAciNIooPlxT4BAOdUV68VgB955tAzuPGVG6FAweVHXY7r1l5XEJefsqFXn074rL/f/Xs8uv9Rbfvuid0QFRGN1ka017ZXZLJRT50972zUhUha76FRcu399LJPl/Sa9Z/5J5gWL4I0OYmRO+/M+fhiTG1RFrF9jFwbMpVEUlFTe+/kXt0xUoXwtAe/+U30nHU23LffDv+rrwLRKEwLFqD+6qsw//e/w5JXXkb7D+6A49xzCQ6S47RJouTVT7NNRlHk7Bdrs6HuUwT5NH7ffUW9RqSvD6Fdu3KiR6hqN24E53RCdLvhf/W1vPdziKJHKlQSSdVVH0uFOyw8LEJ5UF6xfcysssj4pPaE30hq6ynD1DZ0RGjLrmE8+n4sHanIMqLqrD7fUqypbSS185VWFFmjs6lNk9rTBlPbUHkUGCJmMNfYkPDvESmCidAEAKDL2ab9e15lkYdypxg/uuijAIAnDz6JsBQzp+7bdR8UKDij8wwsrluc83VaVDQKLbXUSiI7C8caFCLbiaqpXcGyyFgSUjW128tfFEnTmYuciyBw6Q3I4DvvAgCsx66F0JneaKfGapQZB5A7qR3P1Kamdq4l5sUo2tdHWOVpeNpU8VztI1E0JV8NU5su91/gWgATZ0Lg9dehBAKYsLmwz9UJVxGmdrNdf6a2LCuaqd0cx9RmTWpSW8WPOEwO1JkJV7nP26fb/vPRo/sfxb07ySqW2067TUPxlNPUBoBzuwmC5OlDT2c1BDWmdgWS2vJUfhP9L/a/iG+8+A3IioyPLf4YvnniNwsumg1/sBsAsOq0j+KLq78IALjttdu0VUYaGqmRlNjS9x85QkxtlmHhCJDPxGsDGiwNOGveWSW9JiMIaL3pOwAAzwN/QnBn6oqseNGk9c6xnRDl/JbB75vch6AYRK1Qi0Wu9BOuVAucCyCwAnxRn67nwYgUwbsj5PqXi6etRKOYenQzAMC6di2ab7gBC594AouefAItN9wA23HHpWXRm9RraqRvdpvaisHUnhOq+6d/AgQBwbfeRnDHjoKf791CJldzoUeoWJMJjosIQmrq4b/mvZ+DGk+7wqZ2XFK7nDxtKhosmAlJbX9YhCduxZmBH9FXhqltaMZLlhVc+8d38a8PvKsVHUnj46SFnmXBNzYW9Hr08Yapnb+0oki9mdo0qe0zTG1D5VFUZedbW5oT/p0mny2cBU3WOrCqD5Cdq02T2ody7vektpPQYmvBdGQaW/u2AiDpx0d7SALus8fkTmkD6ZLa5U8LAoDt+OMBAKHt2yGH9MUgZFI0uShSTUWLIyNl47fm4mnLgQBCu4npYztuLUzqZEJ0YDDBAKOmtsJNApBRa06fPqFLIeOT2rQkcmXjyhLeSXppPO1Vq8BmYHmaVFM73HtkmtqdteRvMh2ZhjdS2WsJXe5P0SNeFT2yrW0FwDBw2QpfWluOpPa4PwJJVsAwQGNtOvxI7PdF09qHpnOf5/RSVI7ih2/+EADw+ZWfx4ULL9S2ldvUXt8RQ5Dsntid+RgrYGqzzvyLIl8feh1fff6rEGURF3RfgJtPuRksU9htXXRkhIyFGQaWZcvwpdVfwhmdZyAshfHV57+KidCEli6mkwyVWEGjp5RAAGyUnG+9VuDjSz+ecQKzENWcdCIcmzYBioLh227LWhq5wLkAdpMdQTGoFcvmUjxPO9ffVWAFLHaRSXI9ESTvj76PsBRGo7Uxp7Eujo2R9jdBwPzf3Y+Gq6+CeeGCnPsQOsn5ZvYntSl+xDC1Z7OElmY4P0KwIRP33lfw86cpeuS88/N+jvNjZJWN99nn8l7lc0jFj8yvYEkkkMjUjh+LlEt0deR0sPpM7fiUNmAktfWWYWobmvEKRiWERRmKArzfR9h1UcrTbmwEIxQ2ONWS2kZRZN7SiiLj8SOePuDxrwOPfw149lbg5Z8B2/4X2PEXYO/TwOHXAfcu8rjQFJBmwG8ktQ2VW+wkSc46O9sS/p0mn1trWsGysTKRrEltWhaZR1KbYzlcvOhiAMDfev4GAPjD7j8gIkewumk11javzev4KXObMrUj/ZXBjwjz5oFvboYSjSL4XmEc0GKkyDJJFAPg24hpxNXXE455GfmtyaZksoLbdwCSBL61FUJ7O/i2NoBhoASDZHJVVZO1CTzDA4wEhp/OmdQORCSIkgxJljRTuxwlkX7V1K5Jw9OmMnXTpHav7vuvhGyCTUsXVzqtrU2K1C2DIsvwPk9M7RebjwYQM2QLEU1qj/nCEDPgkAoV5XM31JggxPEzGZXLT4sigVhZZCWT2u+638V0ZBp15jpcs+aahG1OKznG6VAUsqwvWgHID0GiKAqig+QcxLe1pX1MvNx+d1H4lviiyGyp8Ud6HsGXnv0SInIEZ3adie+t+x44tvBl3GF1ws60cCFYmw0sw+L7676P+Y75GPIP4YYXbtC4zvT8ZKpQga9eEifJfYNiEnDR0R/Pq0AzXzXf8HWwNTUIbd8Oz1/+kvFxLMNqn997I/n1VNDHrW7ObwXP0rqlAPQti6Q87RNbT8y5AoAiIfmmRjBs/vYCXXUW6a/sypBKi5raRlHk7Ff9lVcCAKa3bCnoPBnp70do506AZfNCj1BZVhwN89KlUCIRTD/xRF7P6a1SUrvOJqDGRK5V5SyJpErXY1MtDXoSA0LjhqmtqwxT29CMVyAuObm9n8xAim7V/GgtrCQSIAMuwEhqF6K0RZFv3QNs+zWw7TfAyz8Fnr0FePx64KGrgT98ErjnPOAXpwI/Pwb4wTzgtnrgji7gnguAKBnccXaVH2kktQ2VSZZpckPbND8xXUd52jQJbTXlYWrPz4+pTUVN7VcGX8HBqYN4YM8DAEhKO98l4qlJbTJANpUZP8IwjJbWrgSCRJqYIGlRhoGgpurjl7qXy0DJtyTStvZYAGSpJ0VexScVOZZDizoBwQqTKfx2qnjWtjckosfTg6AYhI23YaFzYYnvJlGKoiCg8rRtGXjaQCypHe3vL1sivtzSuNreypraNHW5tH4pQjt3QhodA1NTgx2NJNXoyMBWz6aGWjNYBpAV/W56aOq72W5J+HfGTAxjJRzbzzwHOc9VMqm9tX8rAFLcmGzO0okBRUlc4aCnzus+DwDwdG96BInk8UAJkGRbrqT29tHt+MhfP4LzHzofL/a/WNBxUFMbkqSNuxKOQ5bw07d+ipteuQmiLOKc+efgx2f8GAJbXPKYrkKxLF+u/ZvD5MCdZ94JG2/Dm8NvYiQ4Ao7htBLbWFL7yDC1pclJAIBQ34BbTrsVDpNDt9cWmpvRdO1XAACjP/kpRHVf6VQoV5s+LhdPm6ocZZGF8LSjboKEFJoLQ0KautTVT/1HRvK/WMnq+cMoipz9sixfDtvJJwOShInf/T7v53mfegoAGa/xDQ05Hh0TwzBwXkrS2p6/Ppzz8Yqi4NA4+T5WmqnNMIyW1m6qRFJbK4qsflJ70JOY1B73GUWResowtQ3NeAXjTe0BYmrTpLZQIE8bMJLaxYgytROKIsMq83HeKcBJXwRWXw4cdRHQvQ5oWwPULwRsjQBHl18r5DmHXwWGCKORtZPXq3ZSO3L4MKafeUb3gh1D1ZUcCMASJTPjnQsTTWCafKbMalpWEsyCH9GKIvv782oZ73Z2Y03TGsiKjGv/fi28ES+6Hd04s+vMvN8DPT53wE3Sghp+pLxJbSCOq12BssioWhKZvPqmnEvdpyPTWrI3E34kEMfTTj6mSNJy6RYrMbsYYRI1pvRmpsCxsAhk6OUNiQnokWKSltkUPXwYotsNJgtPGwD45iZSXiXLiOY5YTPTVA2udiAawOFp8nktq1umoUeYE09BlONhN/PgucKH2RzLaMty9UKQ0KR2iyPxJlJjakdSk9r0vZVbiqJoiKYNXRtStpv42EqaciFI1nWsg4WzoN/Xjw8mPkjZTleKcI2NYM2Zb8RDYgjffvnbiMgReMIeXPPcNfjRth8hKuV33KzFoiFhJE/iMnJ/1I/rnr8O9+4i3PEvrv4ifnzGj2HiCkfcaMe7i7xXy9FHJ/z7ItcifO/072n/v7RuKWwCMSKONPyINEm6M7j6urK8ft0//iPMS5dCmprC6M9+nvFxhZjaI4ERDPgGwDJs3lgqOjGrV1LbF/Fh59hOAASnlktaUrvA+zKa1I72zfakNi2KNJLac0H1V5IVIZ4//1lDeOaShh45/7yC9+e8+GKA5xHasQPhffuyPnbUG0YwKoFjGXS4Kv99pKZ2Y23x1658NZOKIgenyDiszkaOycCP6CvD1DY04xWfnNzR74GiKCUmtYmpLU1MQBGrP3N3JEj2q0zteFNbVJfRLDkHuOCHwMd+AXz698CVjwFfeAG49l3gG/uBm0aBb7uBr+8DGlXjKEoGd5xDTWp7q2tqD37zWxj4yrVk2ZehWaOJPmJEhDgB8+c1JWyjSW2K98gHP8K3tpLl+tGoZsLm0iWLLwEA9E73AiAp7UK4p1pSO+CGND4OJRQCWFbjTpdTthOIqR18772yJ3ijQyT1x7cnLu0vZ1J77wRJ2bbVtMFpdqZsVyQJwXdVU1tNagOxYqvkpGKjhfytzFYPWDZzEt8RtxxSK2ErI3rEuno1WIsl4+MYholxtatcFilHIogUkdjrsKtJ7Qqa2nsn90KBgiZrExqsDfD9/TkAQOjE0wAATlvx3F7K1aY9IqXKnTGpncrUnu8gmKXD3sqY2genDqLP2weBFXBq+6lpH1NurrZNsGF953oAJK2drHx52ne/ezd6p3vRZG3CPyz7BwDA/R/cj888+Rn0Tedn2tFxkTwdM7UHfYP4zJOfwdb+rTCxJvxo/Y9wzZprCmZoJ0tLaieZ2gBw9vyz8S+r/gUAcHrH6dq/089AdLsTvjczVTSpzbvKY2ozPI/W79wEAPA8+CCC27enfdyqxlVgwGDAN4CxYPZQDTW+l7iWoNaUX0E7xY8M+AZ06RZ42/02JEVCl71LmzTMJnGEmtrNOR6ZKGpqi6OjFevvqIZiRZFGUnsuqHb9epgWLIDs82HqoYdyPj4RPXJOwfvj6+tRu+EMALnT2gfHyCqgDpcVJr7yVuA/njQPJ3bX44KVuVFepWomFUXSpPYxHeR+wzC19ZVhahua8QpEYsbzZCCK/slgLKndWnhSm6urAziOcFrjmKiGMkuiTO34okhRTXbxmc0STYIFqG0GLOqyTw0/ojK1q2xqhw8cAABE8mAlzzZF3SPo/9fr4FcxBbNJAwdIknba6kSNOdFgSjG1VfxIKIupzbAshC611CiPskiALGu3cOQ30mRtwkULLyrgHcRMbX/Uj6neHgAkCUVZuOWUaeFCcPX1UMLhsk/4iFpJZJKpXcZUYK6SyHBPD2SfD4zNBsuy2GO0Y0pKartM5G8lmD1Z90sRJMlJbb2VD3qEyrSQoE+qzdV23/497D/nHEw/nWosZhMti6y0qQ0Q9Ejk8GGE9/UAHIfJlWQyyFWCqU252iNefZLa1BxPTmqnY2p32ck5biw4hoA6AV1OPd/3PADgxLYTtTRwsuhnWS5TGwDO7T4XAOFqJ6/aysfUfnfkXfz2g98CAG4+5WbcePKNuPPMO+EwObBrfBc++dgn8dTBp3IeB+dKLIt8b+Q9XPb4Zdg3uQ+N1kbce/69uGDBBYW/wSRJU1PaOcyyPD1+6SvHfgWPfvRRfGnNl2LH19BAJkMURSv3ncmiSBCurjymNkCKlZ2XXEJKI2+9Le1KrlpTLRbXkTJHyinPJMrTXtOcH3oEAJxmpzaeybeMMpviedr5SMOPFJjU5lwu7d7iSOG0FyOjKHJuiWFZja098dv7c4bovFtIStt2wgkFoUfi5VILI6c2b4YSzXytpOiRSpdEUm1Y1ow/f/EULGrKb8KuFNlnUFEkNbVXqqa2wdTWV4apbWjGKxkHsL1/Km6ZW+FpRYZltQuGOGogSPKRxtSuSZPULmTpq6AO5tQbZZaa2j5fXjiHckgOBCCrN4/i2NzjrHufeQbeLVswcd991T4U3TV6iNwgheyulG2aqW0j55AYfiR7MZuGIMkT02A32TUD4soVVxa8VNwm2GA3kd/J+AGyVFzoyJ2a0kMJXO03y4sgoSVsQluyqU3ea6QcprbKHs3I036H8LStq1eB4WM4EaFDXS6ddEx2niTUWCEzVxWIFde4fR7s9+wHAKxs0tfUVhQFgTcLMLUXdAMAIlVOaod27QIUBe4f/KCg1F418CPxJaPevxP0iO344zHJEeO4mJJIqmadk9rUHG9y5GZqO81OuMzknFmJssgX+l8AAJzZmRnLRNNWnmD5bgLXdayDlbdiwDeAD8YTESR0VUYmUzsoBnHjyzdCgYJLFl2CM7pIYm7jvI34y6a/4NjmY+GP+nHDizfglldvQVAMpn0dAGCdMVN78/7NuGrLVZgITeCo+qPwxwv/qNuqDprSFjo7YyzvNFrgXJDA7GYY5ohCkEhqUWQ5TW1ALY202xHatQueBx9M+xjKx35vNHtZJN1OkSX56qg6ci2jXRHFSpIlbcUCLVHNJXGEmNp8c2FJbYZhZj2CRJEkKOrEIWMkteeMnJdcDM7lQnRgAN5nn8362FLQI1S169eDa2iANDYG30svZ3xctUoiqyG6MtI7A5LaQyp+hCa1p4JRRHUqAzdkmNqGjgAl4wC2D3gQVfEjQoHL3Kj4RloWOVLawc0RUaZ2QlGkqN5c5pPUpqIpLDWpTU1tAGlLkSohmvoHAGkOJvelKXLDR29IZpOm+sl5Qq5PTT0MBwrHjwBxpnYBqf5vnfgt3HPePfjM0Z/J+znxosfoPUwMUFNHeUsi41Wpskia+BPaEicqy4kfoTf+y+qy87RtcTxtIHNSu5Yj1yOFn8i6X5oc2ev5AAoUdNR2oNHaWODRZ1f00CGIIyMqTzu3MWJW8SPVNrVFlX8rDg4VNNGmFUX6BirWjaAl/euWwafytO1nbcRUgNw8uazFr6agiWq9ktojNKltT2Jqp8GPADGudrnLIidCE1oqlRrB6VRu/AhAJhDXdRADb8uhLQnbtKR2W/rl0ne9cxcOew+j2daMb5z4jYRtbbVtuOe8e/D5lZ8HAwYP7XsIlz9+OXome9K+FucgN7xP73gY//7yvyMqR3HWvLPwf+f/n3Yt0EOhD1JLIvOVdg48ApK10kR5mdpUfGMjmr7yZQDA5O/Tl8Plw9UOS2FtUqWQpDZAVo0ApSe13xh+AyPBEThMDu03kUta2KjAokgAENSyyOSeinTaumcEZ/1kK949nH3yeCaJprQBI6k9l8RaLKi7/DIAwMS992V8XKR/AKEdO4pGj1AxggDnpk0AgKmH/5rxcdUqiayGYviR6ia1FUXRktpHtznAqITCSSOtrZsMU9vQjFcgOal92ANRNSKLYWoDcWWRo3MvmVuM0hZF0qR2QaY2TWqrprbJFCtFqlJZpDg8FPvvOZjcpyWds/G3EKTLYZsSDcOgGMRUmKTzaRFjvqa2MJ+YPeGe9IZEOtkEG05oPQEMk5mznE0UQRLuJymmSpREUtGyyOA775S1g4AWsfEZ8CPisDvrcspCFZWj6PGQv2Em/IiW1F6bZGrTVNngIBQ5lrIwQ72uMB6IcubPiiZHDkwT42JVYxl52mvWZOVpU5lmiKktTcSMirFf/Vpb0p5LNKkdFIOYDJff7JAVOYYf4doQePttAEDtxrPgUY3XUpjalH09onNSuyU5qS2oSe1Ionk+z6GWRZaZq/1i/4tQoGB5/fKshm0lTG2A4KIAwtWOnxzRTO00q2S2DW/D73b/DgBw66m3wmFypDyGZ3lcu/Za/PKcX6LB0oAeTw8ue/wyUSmEUAAAIABJREFUPLT3oZRJGMVOjIb39pOk3edXfh4/3fDTjGiWYhX6QC2JXJHK084l+jkcEUltj8rULnNSGwBBkPA8wvt6EOntTdlOTe1dY7sylod+MP4BRFlEg6VBwyrlKzpBW2pS+7H9jwEAzu8+P6/VZYqiIDpC8SOFh43oRH20L7ep/ci7A9g/6scvXzhQ8H6qJTmgYpwYRrvnMTQ3VHf55WAEAcH330dA7WhJloYeOf54LXRXrJwqgsT7/FaIE+kDFpSp3V0l/Egl5dDwI9VNak/4IwiLMhgGaHNZUG8j51UDQaKfDFPb0IwXxY+0OcnNWO/BIW0ZV6HL3Kj4ZtV8GJt7JmahUmQ5Dj+SjqldwACNT8SPAADroFzt6ZKOs1jFF/7Nxe+D5FNN7fHxqiFgyiV5nPw9a5LY+24/mRSz8TbYBfL905jakeyfgW0NSU75X3oJgW3lRXJQUVNbGVS7BCpoapuXLgXrcEAOBDQTpByKqqa2kFQUyTc2Eu6vLOdtcOajg1MHEZWjqBFqtJRvwvG4R4hhw7IpSWehtQXgOCjRaMJkECc7oCgcwEgYCWQ+VoeVDLL7AsR4KEdJZCE8bQAwzSflgNLUlMagrbTkQIAUoQIwH70cSiCA0Z/9LK/nmjkzmq1kPDDoK396tM/bh6AYhIk1of6dg4Asw7xsGUydHfCoSe1S8CN6JrVlWcGo+jrNyUxt1WCJZ2oDsaT24enymtov9BH0SLaUNlA5U3tdZ3oESez8lGhqB6IBfOeV7wAAPr7k41qhYs+IV/vM43VK+yn4y8V/wantpyIkhXDLa7fgmy9+E74ICQ4M+4fx9OSrAABniMX3T/8+rl17bcmFkOmUrSQyl4T2Iwc/UgmmNhXndKJGnQj2qqs34jXfMR8uswsROYLdE7vTvkY8T7vQiXCK0uqZ7Mk6sZpNgWgAzx4mqIRNizbl9RzZ54OiGrd8gUxtALGukoHcpvaYj5hAW/eOJHQuzWQpwVhJZLHhBkNHpvjGRjguJr+jTGntadXUdlxwfsn7syxbCsuKFYAoYnrz5pTtiqLgkIofmT8X8CMzpChy0EPGtk21Zph5DvU1xNQ2yiL1k2FqG5rxosnJVZ1OWAQWlimCiODq67Wls4WK0/Ajsy+dqrfkQNyyufiktlSEqZ2U1AYAzk5STVKVyiIpygbAnCwOpUltSBKkKplZ5ZCiKOBUlEFdV6JRGo8eoTcYljyT2pajj4brk58EAAzdeFNB3N9iRdPkvJv8fWhSuBJiWBa2444DAAS2lQdBEm8OC0mrbxiW1Zb862mg0KX/S1xL0hpGwXdJStu8bFniChUADM9rxxmPIPGHZShRwiLOxnYmTG0F7jBJ+labpw2QJdG8OqFQrbQ2TRUxZjPabrkFADD1yCMI7sivpJSmtft9uY2RUkV52kvqliDwPDFm7WdtBBBLBLlKYWrb9WNqTwQiEGUFDAM01iab2jSpnYQfqUBSOyyF8crgKwCADV0bsj6WfpblTltZeSvWd64HQAojAYIOoAiLZFP7Z2//DP2+frTWtOLrx38dANA3EcBH7nwZn/ifV9PyMhutjfjF2b/AdWuvA8dweLL3SXzqsU/hkZ5H8OnHPo0+kPP8BY3r8jYVC5UcCCCiFmQXhx8pX9eB3tKY2q7ym9oAUHv22QCQlqHLMExOBIlmajcVhh4BgE57J2y8DRE5UjQ66LnDzyEoBtFl78qb6U3RI6zDURReQ+gkkySRPJLaYz5y7xGKyti658i4h6P4EcZmoEfmouqvuAIAOSdEkrjx0YEBhLZvLxk9Ei/npSSt7Xn4kZRtY74I/BEJDAN01c/+7yPF/fnCImS5Mmi6dBpQ0SNtLvKZU1PbSGrrJ8PUNjTjRfEjdouAFe1ONAbJAJVvLTwNQEXxI9IcTOYWKtlPEkTg+cRlc8UktampHVeSxNqJYSRXydQWE5LaR8YAWU/FTybMpkmeyUAU9gBBjDR3JxoRWklk3HL3fPEjACmE4pubETl0CGP/9d96HXJGtdpawSgKbOPkt1jJpDZA2tgBlC2ZHnWPAIoCRhDApWl9L0cpGUWPLK5bnHZ7QEWP2I49Nu12DUESd0y+sAg5Ug8ge1rYbubBCBMIK9MQWAHL6ws3lbIp0tsLcXQUjMmUF0+bytytL4JElhW8eXAC/nB+aboY+7Ye1lWr4LzkYgCA+4478uJkd9hVrrY39/dEHB8vCadDedrL7Yvhe5lgImrPJKY2xY+4SsCP0KT2mC8MqcQbMWqMN9SYIHCJw37GlFoUCVQmqb1teBuCYhDN1mYcXZ89LUxRLjQFX05RBMmW3i0Eq6CmtNnaWnCOGFrkjaE38MCeBwAAt516G2pNZCzzxsEJRCQZh8YDeGLHENKJZVhcvfJq3Hf+fWiraUOftw83vXITxkPjsNWT8akrzKd9rh4KfbgHUBTwTU3aeLgQmbRz8hHA1K5gUhsA7BvJeSD43ntpx1SUk03N63gpiqKVRBbK0wbI92pJ3RIAxSNIHjtA0CMXLbwo71RxVDW1i+05MtGkdn9/znN9/AqITL+vmSYaDmKtsx/3YChVlqVLUXP66YAsY+L++xO2TW8hhax6oEeonBdeCEYQEP7ww5QVljSl3e60wsxzuuxvJovi/hQF8FVxZcfQFDkHdLhIYKGhVk1q+/TpTTFkmNqGjgAF1ZOQVeCwssOJxiAxqoSW4gtztKLIkdlj4pVLGk+7piZxgFsUUzuxKBKYWUltaWJy1iE4ckmepab2wTE/6sLkvVmTlsOmNbVN5HIYysPU5hwOtN5MlpyP33NPWbEcAMGPuHwALyoAxxH8RQWlmdpvv12W3wfl2vOtrWDY1GGJxm/VsZRMM7Vd6U3toFoSmczTjh2TmixLSGqLkKPEOMlqalt4cFaS1jmq/qi8mKWFKPAmmXywrllT0GomvbnaW3YN41O/fA0/eDI/c4Umtfl6MjHQ9NWvgrFaEXznHXifeirn8+PLIrPJ8/Aj2LduPQa/9W95HVc67Z0gKfu1fQKUQAB8Swssx6wgrx8gBnEp+JGGWjNYBpAVYLzEm56RaRU9Yk+9VmtFkcn4ETWpPRocRSAOF6antvZtBUDQI7nMs0rhRwDg9I7TYeWtGPQPYtf4Ls24jU9p+6N+DTvyqaWfwintp2jbtvd7tP/+9UsHspp0a5rX4MFND+LseSTdu6FzAz576rUACAqoXArtJtcs89HFTahpXQdufbsO9JYiy5A8ahCmzEWRVEJrKywrVwKKAu/zz6dsz5bU7vf2YyI0QSY7G4r721AECZ14K0SjgVG8PvQ6AGJq5ytRRYMVUxIJxL5Pss8HOcv3XpRkTARiE3DPfziS15it2qJMbaMkcu6q/sorAQBTf3kI0nQMtzm9hYxt7Oefp9u+OJcLtWefBQDw/PXhhG29aknkgjlQEgmQVbgmntxXVJOrTUsi25xGUrtcMkxtQzNeNDlpM3FY1RkztfVIas8mE69coqZ2Ak8bKC2pHc/UpkntahVFxiW1IUnaDdBc0WxNaveOTKMuTL67yUk0zdS2pSa1871Bsp91FuwXnA9IEga/fWNZb+xbalrQpN7nCa2tYPjyJfjSybL8KLA1NZC9XoT37tX99SnXPhk9QlXOpPYS15KUbbLfr/FmbWszJbVTj8kXFqGopnY2BIbDKoCzkgRseXjabwDIHz1CRU3t8MFeXY7j0AQ5z384nF9fAi2J5FRTW2htRcPnrgYAjPzHj3OifqipnW1CIbBtG4a+8x1AljH92GPwvfBCXseWLGoYzX+fJBRrN56pGbPUeHVai5+s4FhGQ4W4p0s0tb3kc2txpF6rGZNqakcTb6ycZiecZicAwg/XW4qiaKY2RY/IkUjG66+jgqa2lbfijE7C+N7SuyVWEtkWw1j95K2fYNA/iI7aDlx//PUJz9/eHzPldg5M4/UD6cu6qJxmJ3664ad49hPP4q6Nd8FWR9Ku8caH3tJKIovgaQME4ceYzWrXgVvPQ9NV0tQUoJb5ci5XxfZrP4sYSt7nnkvZtqJhBTiGgzvg1sYiVDSlfXTD0TBzxeEVl9YtBRCbeCtETxx8ArIiY3XTam1iKx+JI+Q7UGzPEWuxgFMLvbMhSCb8ESgKwDBAu9MCf0TCi3tn/rhVDhqm9lxXzWmnwrxkCeRAAJ4HHwRAghqh97cDDAOHTugRKtellwIApjdvhhyHF+sdozztubNqgKa1p4PVS2oPTpFxWLuKH2moIed3w9TWT4apbWjGi+JHrCYOqzpdaAyRGwauqbjBEwDw6nPFsbG8ljXPZUnU1E7iymqmdiED76xJ7SoVRQ4n3lSIY3OLqy3H3TjPJlN78PAwOEWGwjApCS3K1KasaiCOqZ2jKDJerd/+NlinE+HduzGeoQBGD7XWtKJpipyn2PbiV6gUK4bntcRyORAkmUoiqfQ2tQPRAPq95MY5HX4kuGMHIEngW1tTGLpU2vL7/iT8SF5JbUFLaq9q1NfUVhQF/m2Up31CQc81LegGoF9S2xciNxDDeXKhpQly7o3/vTZcdRX4tjZEBwcxcd99WZ+fK6kd6etD/1euBaJRDXMz/N3bNd5pvpoKT2HIPwRGUWB+fQcAwL7xrNh2HfAjANDiIMlqakoXK3eWpDbFjyQXRQJxCJIycLU/nPgQ7oAbVt6KE1vJ5Mvhz16FfRvPSltU6qqgqQ0A53afCwB4uvdpRAfJ94muGHl14FU8uJeYEredehtqhNiEf0SU8cEQuaauW0JMut+8dCDn/hiGQUtNCxiGAecikwnlTWqrJZFF8LQBcrxa10H/zOVqU542a7eDEUr7PRYi+zkkeR949TVtDE1lE2ya8UxNbKpSeNpUNKldDH5k835SLHfxoosLep44oia1i8SPAICpM3dZ5Ki6aqWhxoQLVpLv31M7hzM+fqYovijS0NwUwzBaWnvi/t9BiUYT0SNFYKCyqebUU8E3N0OamoLv+a3av/eq+JHuOVASSUXL2atZFkmT2qn4EcPU1kuGqW1oxouaTFaBw8LGGrSEyUB/wlZ86oJXEwFKJJJg6hlKlewnF8CMpnapRZEOO9mP15fuGWWV5PNr+A1qXs0lrraiKAk3XLMJxzN2mBil0VpHys2s209SRQlJbVP+TG0qvrERLf/2LbK/u+9GuEwFezVCDbq8ZAAUba7MEupk2Y4/HkB5yiJj+JEMpna7vviRg1MHoUBBvaUe9Zb6lO0aTztDShtIz9TOFz9iMclgzWS73iWRkYO9kEbHCE97df48bQAwU/xIX58uKw98KkvbPRXOq6BHpEntutjfhLVa0fy1rwEAxn71a8Jfz6B4U1tWEgv6JK8XfV/8EiSPB5ZjjsHCzY8Ss7y/H2P/88uC3tfeSZKAPMnTCHl0DGxNDWwnEWNWURSN+1wKfgQAmu0VSGqb0zO1gRiCpNjCuWza2r8VAHBy28mwqAiz0O7dUAIBhPfuS3m8hh+pAFMbSESQjB4kBrDQ3g5vxIubX7sZAHDZUZfhxLbE1RB73V5ERBl2C49bL14BhgGe+3AEPSP5j284Z3lNbSUSQXgfWaliOXpF0a9TjhU0ekvyVJanTWVauBCm7m4o0Sj8L72Usl1DkIwkIkhK4WlTLXYtBgMG46FxjAXz7w3aO7kXeyb3QGAFjSufr+h5WWgpfgUtvaYmF+nFi/K0G2vNuOAYMn57ZrcbETG1kHUmiTK1jaLIuS3HpovANTZCHB7G9JanMf3UkwD0RY9QMRyn9ZJMbX5U+/dDKn5kLiW17WpS2xuqIlPbQ8ZhyfiRCSOprZsMU9vQjFc8foRlGbRHiQl5AMXPMrJmM1i18Ec0yiKzSvZRUzsZP1IKUzsOP1JLTO1qJLVFlafN2u0wdc8nxzGHvg9KMAjElaXNpqS2d1BN79SnFg9qpnbaosjCbo6cl1yCmtNPhxKJYOimm6DI5bm56vQRQ8rfVJvjkeWRxtV+6y3dV7dEB9WkdluOpPbwsC5M730eYpqlQ48AcTztY9PztIE4U3toSCscjMePuANuiHL6AfR45AAYVgKkWnTWdhb3JjIo8CZBj1iPPbYgnjagMs0tFiAaTWCFFyt6AxFJ4qBmklYU2ZA40eC48COwrl4NJRDA6M9/nvH5rTWt4BgOUTmaYOYoooiBr16PyP794Fta0Plf/wW+vh6t3/53AISLH+7pyft97Zkg6JEzDpLrWc26dWDVxHMgIkFUDfxSk9rNOie1mxxZmNqRNKa2mtQuB36EokfO7DqT7F+SoKjcWdGdmrykprY3LJZcnJmPrLwVGzo3AAAmD5FJDKG9HT9+68cY9g+js7YT1629LuV5FD2yqtOJhU21OHs5Mfn+9+X8JzxpGaUSCKT9u5SqcE8PEI2CdTq19HkxOiJMbcrpr7CpzTAM7CrT1vtsKoJkdXMqV9sX8WHfJLk2UdO7GNkEG+Y7yHiWnqvy0WP7SUHk+s71GnooX4kqgoYvwdQ2danX1CzJ/zE11dhkN2PtvDo0283whkS8sn9mj9vpaiCjKHJuizWZUHf5ZQCA0f+8K4YeOffcsuzPcdEmAID/hRcheTxQFCWW1J4jTG0AcFjUpHaVmNpRSYbbm4gfiTG1jaJIvWSY2oZmvGL4EXJScvnJcsKd0eJ4c1QGVzs/aUWR8UltWQZk9eJQUFJbvamOS2qzNKldBaZ2PMuXa1DLQ+cQfiS5nHO2/BYURUHYTd6LuTlxSZ8/6odXnRhLZ2qHCsCPAOTmte3WW8DYbAi+9TY8f/5zKYeeUS3ThNfrqavcEup4WY9ZAcZigTQ5iUgBBmA+ogggoS09WoVvagJ4HhBFbZlzKeqZVEsi06BHFElC8D2SlrMdl9nU5puayAoASUJ0mNzQ+8ISFLEWPCNAUqQUXipVX4AsC5eDXTkL8gpV4M3i0CMAwLAsTN3dAEjiu1T5wrEbiOGp3MasOJlYFKkdF8Og5d9JqePUww8juHNX2ufzLI8WGzFV4hEk7h/+CP6XXwZjsaDzv/8LgrpEvvass1B75plANIrhW2/Le7KG8rSX7SIGpv2sjdo2j3rTJHCMdk4pVroltVX8S4s9HVObJrXT4EfKlNR2+934YPwDMGCwrnMdgNg4A4hdl+PliEu9V+rGlCJI2GFimO3iR/HXfX8FAwa3n347bEKqQUVLIld1kpWEn1+3EADw13f68y78ZO12Ag1GebjaGk97+fKSzj+aqa1jga/eoiibSie1AcB+NkGQ+F54IWVyguJFdk/sRkgNiGwf2w4FCjpqO9BkKw1FsKx+GYD8yyIlWcLjBx4HAGxauKng/WmmdpFFkQAgdKimdpak9pgvltRmWQbnq2ntJ3cMFb3fSshgahuiqvv0p8GYzYgeIlgv23HH6Y4eobIsWwrz0qUa6mTCH4E3JIJhgHn1c2eChY4fqoUfGZ4KQVEAE8eiQTWzDaa2/jJMbUMzXvH4EcnngxAmhug2X2llaXyjamLOEiOvXJL9aYoipbibsxKLIjm7mtT2Vd7UpokwvrU19n2YQ0lteZaa2mO+CGw+Yi7UtCXeZFGj0W6yJ5gSliLwI1RCRweav/pVAKTQLpnTrofqJ8lgzF1YgEo3MSYTrGvIjXjgLX0RJOJQdvwIw3ExfqsOqUBaErnItShlW7inB7LPB9Zmg3np0oyvwbBsDIuiHpM/LAJg0WghN9qZECT7pwnOIBro0nXZtKIo8L9JmOc1BZZEUunJ1ab4ESA/U1saV5PadalIGOvq1XBcTMwW9x13ZDSgO+zEaKPM9MkHHsDk/fcDANp/9ENYV8RwCwzDoOXb3wZjsSCwbRum/va3fN4W9kzsQcukgtr+CYDjULt+vbZtKhAriSx1woIytUdLTGqPqEv2W9IktWlRpBzJzNTum9Y3qf1CPynnXNm0Eo1Wct1NMLWHUw0qgWNRo56jK8XVPr3jdDgUC+qmyDXhjoF7AQD/uPwfcVzLcWmfQ5PaqzvJifqE7jqs7nQiLMq4//X8JgcYjtNWEpbV1C6yJJLqiEhqq0ztapjallWrwDU1Qvb54H/jzYRtHbUdaLA0QJRFfDBO/h4URVIKeoRqWZ1qaueZ1H5z+E2MBEfgMDm0iaZ8pYgixHESBhFKYGoLalI7ko2prZ7LmtQJuguOIeOCpz9wIyrNXAQJXYVimNqG+Pp6OD/6Ue3/7eefX9b9OdVx0/TmzehV0SNtDovWIzQXVO2iyCF1/NvmsoBlybiQMrU9gSjEGXzuOpJkmNqGZrwCUXISspk4iKpZ5BWseH88UpIhEEtqzx0TsxhpTO2auKS2GHeTXRR+JC6pbZ8ZSW3N1B6fO98HiX7mKnNaHB2dFcWpveN+1IfIezMn3WRRUzs+pQ3E40eKw1vUXX4ZrGvWQPb7MXzzLbp+jookoWac/Gb6a6u3VM12AuVq61cWKQcCGjs2U1EkoK+Bkg0/ElR52tY1q8Hw2SdOtWNSUR3UxG21EbM7U2Hh7glSLigF58GrY3IkcvAgpLExMGYzLAXytKk0rnavDqZ2HL8wn7JIDRVQn96Aar7+ejAWC4Jvvw3vU0+lfUw8V9v/2msY/u7tAICm665Lu8TX1NmBxmv+HwBg5Ic/guTxZD3GqBzFfs9+HL+P/L5tJ5ygMZABwBMkqZtS0SOAPkltWVY0I6g5G1M7kvo9pAiDkeAIAnET0aWKmtoU7wGQfgsqUV35kCyXjRxrpUxtC2/BhSZiXvstwEFmDPMd83Ht2mvTPj4UlbDHTa47K9WkNsMw+Jya1r7/tUMI5Xl9oQgSyaM/Vzv0QWklkVTJk3ozUVIVk9oMy2oFst7nnk3cxjCaeU0RJBpPO4+SSN9LL8P77LMZt2tJ7TxN7ccOEPTI+d3nw8SZ8noOlTg2RlZvcpxWwFuMTBTpNTiUETMWS2qTYzxxQT0aakzwBKJ448BE0fsutwymtqF41V/xz2Q1DsfBfu45Zd2X48ILAYZB4K23MLCHjOvmz6GSSCCGH9FzvF2IaElkuzP2+6+zmeiCLExWqCtktsswtQ3NeGlJbROnLfOetLkQEWXsdRdvhBpJ7fxEiwQTiiJpSSTDAmwBiXktqR0zOLSbtyoktWkijG9rBd9IBuNziaktqxxz03ySyJstxakHx/yoC5PvE/2dU2mmti2DqV0gfoSK4Ti03f5dMIIA3wsvYPrxJ4p6nXQSR0bASjJEFug1Ve/vYzte5Wpv04+rTVPtbE2NtmojnfQqi5yOTGMkQBAm6ZLagTx42toxJZVFUlO7vZYc66A/9VjHgmMY9A9CURhIoU5M61hcE3gjjqdtKsyYoDKpprYepafxpTz54UdUAyqDMSK0tqLhc58DQFZEyKHU16SfvbdnD/r/9TpAkuDYtAkNX/iXjPttuPJKmJcshjQ5iZGf/DTrMfZO9SIiR3BSD7kbsW/cmLB9SqeSSCCWrHbnMSGQSROBCERZAcOQJfvJyoYfcZqdcJjI9VkvrnYgGsDrg68DADZ0bdD+XY67/mda6UKXEHsqyMU8gyGrNYbqAIZhcftpt8PKpzemdg1OQ5IVNNaa0O6MTfZfcEwrOlxWjPsjePjd/AzgWFlk9kmWQqVIEkJ7iNFpWaFTUtvt1noFZpqoqZ1poqzcolxt33N/T+nboNzs90begyRL2D66HUDupHakrw99X/gC+v/1Ou2cmSya1O6d7kVYyj4pFogG8MyhZwAAmxaVgB5pagLDFm8r8C0tJGARjWqvmazkpDbHMjh3hYog2TlzESQaU9s2d5APhjLLvHAhOn/x3+j6n19AaC5+dUM+EtratKJ3+RkSBuhunFvfw2rjRwanyO+/zRUbF3AsA5d6XEZZpD4yTG1DM17x+BE60InWE6OKLvUsRgZTOz+lLYqkpjZn1tiPeSltUSQxy6uR1KaJMKGlFVzjXGRqkwkLvrEpVpw6C34PvWN+1IWI+cslmdruAPmbt9QkYkms6tL2fJN06WRevBgNX/oi2c/3vpfxhrNQUdN0zAEMh0pnShcr6+pVYAQB4uhoVu5lIdJKIrOktAFohWaRElOB+z37AZCkvt2UaqJrSe21x+Z8rVh6vB8RUdZWDnU5iNk94E091h2jJKXNii2AbNE1OeIvgadNZepWk9o6MLW9cfiRoRymthwIkOJapMePUDVcfRX41lZEBwcxcd//pWzvrO1ETVDBqT/fCnl6GtY1a8hkU5brFCMIaL35ZgCA58EHtYmNdNozuQe1AQVLD5PzRG2yqa0ari5dTG1i3Iz5wkWXI1JDvKHGBIFLHfJrRZFpTG0gltbWy9R+feh1ROQIOmo7sNgVY9rH40fEDKa200om0CuV1AaARV4y7hmuY3DFiiuyGo474nja8d83nmPx2dO6AQC/eekA5Dz+lnSyX+9J5khvL5RgEIzNBtP8+SW9Ft/UmNIrMNNEOf3VSGoDQM1JJ4GtrYU4OorQ9u0J26ip/f7o++jx9MAX9cHG2xJ+F+k0fs89JBktSRkneZttzXCZXZAUScNtZdJzh59DUAyiy95VVEFlVO254EtAjwAqZkwdB2QqKo5nalNdoHK1t+warkiJbDEyiiINJcu+YQNq1xWG+ilWFN3W+MZWAED3HE1qVws/QpPaHa7ECXGjLFJfGaa2oRmvgGoy2UwcopSBrDZs7xgoPsXCqwVyc4mhXIzozWYCU5ua2oXwtIG4pHYMP6Iltb3eiqMvaFJbaJurTG3V+LXXzqpJnkPjAdTTpHZSAUvOpHYJpjYANH7uczAvXQppchLu799R0mtRUVN7xMVopnw1xFosMC8jCTC6hL1UicPZedpUQjsxkMUSk9r7Jgl6JJ1xEHW7yWfNsrCuzr0EXOgkxxQZGFB52kTdzhgCI1nbx4ixYZGJeezVKamtKAoCJfK0gRhTWxofL5nnG48fyZU2FifIBBBjMoGtyXzjz1qtaP7a1wAAY7/6lWbzdcEGAAAgAElEQVSoUHVYWnD9wzLqR0Pg29vQefd/asZtNtmOPx7OSy8FAAzfcguUaHrjdO/EXhy7XwGrAOZly2BSvwNUNEXs1AE/0lBrBssAsoK8SwaTNaKiS5rt6TFhjJkytdMnhbrsXQD0K4vc2rcVAElpxxu/UpypLU1Opk3h0/R7JU1tpY/8hpuXrsaXj/1y1sfSkMXKjtTig384oQt2M4/9o35s3Zt7YpJz0aS2vvgRjae9bBkYrjSmakKvwODMRJBUk6kNkPMZZe57n3suYdvRDUeDZ3mMh8bxxEGysmtl00rwWVY/iuPjmPrrw7H/z5BoZhgmb642RY9ctPCionoARDf5PgsllERSmbSyyEymNjlPNcWV3p6yqAFOq4AxXwRv9c5MBIlRFGmomnKcdx4YQUDDSB+6pwbnHn6k2kltj8rUdib+/rWySJ+R1NZDhqltaMYrHj9Ck7XOLnIj+X5fCUltAz+SlyhTm6tNw9QuhKcNxJLaYpAkTRArioQoQklzI1tOiUO0KLJN+z5Ik5Mzdimt3qJMbdbumFWm9sExP+pCFD+SwdROYmpb4kztUiZXGJMJbd+7HWBZTG/eDO/WrUW/FhVNLY06ganwFIJiMMczyifzUaqpvedDXV4vnmufTXoltWlqLRtP27xsGbja3IN+k8bUHtDQI2aexTwHMQLT4UdoUtsOgj7RK6kdOXAA0vg4GIsFllWrin4drjY2wVVKWaQoyQkTRENT2b+zEk1U1tfnNFYcF10I6+rVUAIBjP78Tu3fFUWB87//gpWHFARNQPt//WcKfiibmm/4OjinE+G9ezFx/+/SPmbP5B6coPK07WdtTNnu0RE/wrGMlkikZY+FakQtmWxJw9MGYkWRSgZTW8+ktqzIGk/7jM4zErd5fQn/ny6tTT/T6Qqa2pFDxMzfcOplMHPZJ0e2D6glkV2pprbdIuCykwjm69cv5v5dsRQ/ojNTO7RLn5JIqthqldImG8sljantqo6pDcQQJN5nE01tC2/B8nrCNX9wz4MAcvO0J+6/P2FVRbZS6ny42qOBUbw+RHBAFy28KOu+M0nDj7SUbmoLXeTaGU1TFhmVZG2ZfnxSW+BYnHM02feTO/Uv6dZDil81tQ2mtqEqiHM4ULuBXHM39r0z9/Ajlmqb2ipT25XomdCySAM/oo8MU9vQjJYkKwirS7qtQiyp3baY3BzsdXuLxgVoJt4cSuYWI8mfhaldbFIb0IxxxmYD1MSQVEEEieTzaYa90NoCzuUCWBZQFIgTMzPtobcox5Sz22eNqa0oCgbdk6hRv198UxJTO5ChKFLFjygKtHNOsbKuXIn6K64g+7v1toQUYjGihsFkHRmYUSZ0NWRZdhQAIPxhfgVUuRQdyg8/Qg1kcXAohU1aiKipvbguNalNsRO2Y3OjR4AYU1t0u+Hzk0Gr3cJrXOeRwAiiUmwQLckSdowRU7tRIKa6Xkxtv8bTXlM0T5tKD662P5x4Xc5VdhgricyMHqFiGAYt//YtAMDUww8juHMXAGDy/t8h8tBmyADuupiFp8tV0DHzdXVovuHrAIDRu+/Wvpvx2u/+EGsOEFO7Vi2Bi1cMP1La34CKljsWy9V250pqm1TzXRTTTubqmdTeMbYDE6EJ1Aq1OL7l+IRtsj/xHJkOZ0GLIj2Byt0AUlM7F6rDFxaxf5S8h5Ud6b93V57aDZ5l8NqBcewcyG5Wcw7V1NYZPxLarZZEHl1aSSQVnWycqWWRsaLIws4Feqpm/XowgoDIwYMIHziQsI3iPrxRMhbLhreRfH5M/uGPAGLmb6ZSVSBman84kXkC+omDT0BWZKxuWo15jnl5vJtUiSPU1C6dDaytfkqT1KbGD8uQkrV4fWQlGc89tXM4L7xPpUXxI4yR1DZUJXHnXgAA2DDwLrpcBQbSjnDZtaLI6uJH2jPiRwxTWw8ZprahGa34pJfNxGsDuIYFnWisNUGUFeweKm7QTxNc8tQU5Aw8SUNxTO2aOFNbKtLUji9YUhEkDMNoKXC5gmWRompYsE4nWJsNDMeBayCGylwpi4wlteNM7ZEj29Qe9YZh8ZIlx4zZnDAZoyhK5qQ2H7sclsLVpmq69isQurogDg1h9KfZy+dyiRoG0WaSNnP7q4cgseic1M4XP8K3tAAcByUahTha3O9TURQNP5KuJDLG085dEgmQQkPGYgEUBUEVU1Bj5tFgaYCFs0BWZO37BgAHpg4gIAZg421oMhOTTK/UqR7oESpqapfC1faGyfviWJK69oXFrKl0ih/h8jC1AcC6Zg0cmzYBigL3HXfA9+KLcP/gBwCAJy5owNtL2LRM81xyXnoprGvXQgkE4P7+9xO2jQXH0L5nDJYowDU3py3amwqSmxOXDvgRAGhRzehyJbXj0Szp0trU6DrsPVzU/uP1Qh9JaZ/WcRoELvHzkbyJ136KBotXpfEjcjCopVBzmdo7+qegKEC705KARohXu8uKC1eR89xvXjqQ9jFUsaJI/ZLaiqLEmdp6J7VnnqktRyIaPi+fybJyiauthe2UkwEA3meeTdi2ujmRYb2qKfMqG8+DD0KenoapuxuuT3wCQPrfCRXFj+yb3Jdx9dnm/ZsBABcvujjHu8isKMWP6JDUNtGkdhqmNi2JbKg1a9cVqtMWN8Ju5jE8HcK7ffqWq+ohoyjSULXlPvo4+HgLmoJTwPvvVftwKipHFVZ5UfnCohZeaXMmJbVraFLb8KD0kGFqG5rRougRALAIrLYkVWhtxapOkrwotiySdTrBqIm2Yk2SuaD0TG2KHynQ1GZZUi4JJJZFqggSvVNJ2RTVSiJjA3GKqhDH50ZZpMbUdsyepHYCeqSpKQFlMB2Z1tAdLbbEGzCeY2FSi9RK5WoDhJ3Y9t3bAACTf/gjAm+9VfRraTd47SQJVU2uNmVqi4NDuhguWlFkW3ZTm+F57bdarIEyHhqHJ+wBAwYLnQsTtsl+P0IfEqPedlx+pjbDMJqpE1KLM2tMPBiG0dLaA/7YsW4fJTztYxqPgUNN8uqRHCE8bVoSqYep3Q2gNPwIxbHU2QStpGc4S1mkNEHOuVx9/piA5q9dD8ZiQfDtt9F3zZcBWYbz45ei5wJi2KVjmucSw7KkNJLn4X3mWXj//ry2bc/EHhzfE0OPpMOk6IkfAfRLajc5MiW1Y4nHdKb2fDsxc0cCIyVjj57vI5/lhq4NKdvo5DlVOvyIo8KmduQw+U2zTidZyZVFtN+Fjksz6fPryHnnse1DWZE8MVNbP4NOHBoixZOCAPOi1Em9YjSTTW3K0wbHaWPMasl+1tkAUrna8biRxa7FcJgcaZ+vRCKYuO8+AED91VdpLPNsSe2FzoXgWR7eqDctCmvv5F7smdwDgRVwXvd5Bb2feGn4ER2Y2gJlaqcztdOURFKZeQ5nLSfjoyd3ZDb685UcDqP/K9di8o9/zPs5kqzg1f1jCIup40ejKNJQtdU7LeLlDjJpNrX50SofTWUVw4+IFe/uGlJT2g4LD7slcVxYX2PgR/SUYWobmtHSeNoCByUU0kwUobVVK+Mp1tRmGCbGUR47so28coqa2gmMWQ0/UsQSpjRlkayD3HDI3soltWnChW+LJXb5hgYAc2eSQ1I5pqzdMWsY873jftTRksgkni41g11mFyxpvrsWQTW1I6Wb2gBQc/LJcH2SJKqGbrypqBUhiihq3EyTiruIT/9WWpzDod1Qh/aUhiBRFEV7b0JbdqY2gLhSsuL4rRQ90mXvgpVPXAYY3LEDkCTwbW05DfaEY1KXS4sqIqZWNXCpqT3oix0rLYlc2bhSG2TrYWpHenogTUyAsVhgXbmy5Ncza0nt4k1t+r5qzbxWjjOcxZilyCe+Lv9EpdDaiobPfY78TzQK2/HHo+3mm9Fuz1zUmY8sy5ai/op/BgC4b78dcoBMwO4Z/xDHUZ52GvQIEDNc9SiKBGLYkFz4lkyiCe+WDOlhhuc1/JccTr2xcpqdsJvI9bkUrna/tx89nh5wDId1HetSttNxBmMh7zcdK7jSSe3IoV4AuVPaAPA+LYnsTOVpx+uYDidOXlgPUVZw3yu9GR/HOYm5KU/pN9EfjQuFMCUiiqg0U7vEAt9ySPJQnrYLDFvd2137xjMBhkFo+3ZE48odW2tatQl2iiJJp6nHHofodoNvaoLzkksgtKoTvO7MYwGBE7DISSYv0iFIHttPCiLXd66H05z9e5tNMaa2fvgRcXQ0pSx2TD2XZVoJcf4x5Lr95M7hko2rwJvb4H3mGYz9+td5P+dnz+zF5b9+A79/PXVVixIwmNqGqqvecT/+3kkCG94tT8+pFeoOKxmXS7KCgE73d/lqIAN6BCCrToBYAa6h0mSY2oZmtAJRcmNsM3HawImx2cDa7Vil3jzQhEwx4lTebvQIN/LKJSUS0dJbaZnaOYqT0iq+LFIVZyc3cMlLkMspUSuoixlYmrE7PjdMbVlNxnP22lmU1A6gPkTeVwpPOwN6hIpytfVIalM133AD+KYmRHp7Mf7r3xT8fNHtBiQJjMkEZ1s3gOomtQHAfJQ+XG3J49HKYfkcRZFA6anA/Z79AEgiLlkBFT2SL0+birK+lSHV1DaTwXNHbaqxSpPaq5pWxTH+Sjfo/DSlvfZYXcwqDT9y6BAUqbjfgo+a2hYeLeqSy6GsSe3C8CNUDVdfBfOyZTAvWYKO/7wLjMmU9rMvVE3XXAO+vQ3RwUGM/eJ/AADj776Beh8gWk2wnZQ+EU+T2i6dktotasJ61FtcUntEnUhozpDUBgimCQCUSOpNLsMwWlr78HTxCBJaEHls87FpDTRJRY+ZF5IkM70+x8ulmdqV4WLmy9MGCH4EAFbnSGoDsbT2H948rK1oSFY58CPiCMFE6GE+Umnn5OHhGVewPRN42lR8UxOsq4lp7fv73xO20dLU5PJUKkWWMf4bMnaov+KfwZpM2vVSHHZnNXApV3vvxN6Ef5dkCY8feBwAsGnhpkLfTux1fH5t0k9oLv17xblc2r1G8nU+ltROf43bsKwJNhOHAU8QO3Iw63Mpcpj89qXxibwMcklW8Ke3yKTfgbHUDhX6GbEGU9tQlXRoPICdjQsRqmuE7PXC98IL1T6kiskqcOBVZFGlyyLpuDetqW0ktXWVYWobmtHSktomLoHbxjCMlojpGfHBn+HGIJeokTdXGMqFSvLHlgQn4keKZGoD6ZPadpWpXcmktpua2vH4EZLUnivfBzqJwNod4Jtnh6ndm4QfiZdmatsymNoCMbX1YGpTcQ4HWv793wAA4//7v2kTiNkU6Sc3dkJ7O1pqyXFXk6kN6MfVplx7rqEhge2bSaWa2pSnna4kMqiWRObL044dE0nPM27yXmrMiUltaqz6Ij7NVF/VtEpDcugxwKY8bT3QIwD5nBlBgBKJpC1LzEde9ZpsNwtoUw1Vd1ZTW01qNxRmarNWKxb+7REsePRv4OsIuqSzlvxNSjG1WZsNrTfeCAAYv/dehPftQ83rH+D/s/fe8XJchfn3M2V7ub1IuleSVSzLKrZkybKNe5PBBkMcwo8YQzA2NtWASeL8COUNeQmYYggQyJtgTE+A0HHcwZaNkdwluahfSVe31+1tZt4/zpwzs7szu7OzM3vvlfb5fPxJ0N0ye+/OzDnPec73AYDCuRtMyzhZUtsp/EiE4kdqT1XJssI4tGZMbQDssxjhRwCgP0o4t/VwtSuhRwANP+JbTc5NfZqViiW1G1QUadXUnk7mcGyKmFZ0B2ElXbamGyu6QohnCvjvZ4zT77wFU/upgxP47lNHLBfj0WCIE+YjldjVBXg8QKHATPP5IsnG7g83FblKRZCUcLU/vvXj+Nkbf4bLll5m+LzEH/6A3OHD4MNhtL7tbQAAUf0bKtkspBnzYA/lau+bLl6A3jWyC2PpMUS9UVzUV75zwqpoSSQfDhfPEWyK4zhWwJw7XnxuTMTJed9lgB8BAL9HwGVrVATJ3vp2s+WPkWudks2ylHUlPXVwgl1rS3dfKYUClDy5LzSLIpuaKw1MJqFwPDIXk+tQ7Le/neMjapw4jpuzskhaElnK0waA9nDT1HZSTVO7qXktPX6koJqQospV7Y74sajFD1kBXh6yWRZ5kqRT3ZKsmtqc30+2KVMxprYd/Iia1NYxtecyqa0vqBMYguPUMLXpIoKeqS0nteTNQpQePyJ0Gie1e0LG7Ee/amqnc7KjxxS55hoEzjkHSjqN8Xvuqem51MD1LFnCEuZzntRe40xSW78d3oo8S5zBj6xuXV3074okIf0iKc4Jbq4tqU2Nds84+SylSW2KH9k7uRcKFCwOLUZnoJOx9eodYCuyrONpb6vrtag4QYBnGSkItIsg0Se1e2lS2wJ+pNakNpWeb126oGBXkcsvR/jyy4FCAUOf/jRW7SHH2H6lMX82L8ksedsadAbvQJPaYzaS2lOpHAqyAo4z5tBS0XS/YrIdeVm0vqR2PBfHcyPPAahkapN0o3cVMbULBospjcaP5I+Sz1vN1N6tpkKXdwQtYWd4nsMtF5K09r1PHkFBKr/fsKR2LFaWFJ1N5/Hxn72EG/9zJ/6f376CnUemqn8YAHma1O5yztTmeJ7hmuYbV7vAktrWOf1uKnIFQRYld+0q6o8JiAGc0X6G4XMURWE7vNre/n8gqGxw3udj18qCwQIQFU1ql+JHfneYoEeuWX4NvIL9a5WGHqmfp03l7adcbeOkthl+BABev4GMJf53z3BdCJLcUe1aR+9NlfSrF7RjTZTc0ylPG2gWRTY1dxqYIPP56HXXAgASf3zc0Z1A811zVRY5NGOe1KZM7elUDpLFxemmzNU0tZuqS4WJCRy79b1l5SdOibKPgl7BsNhP42rbQ5CcLBxht8RKIvXoEcC9pHaskUztcpav2EHxI6dGUaSW1I6AD4cZz3Shng+yrGBgMqnhR0yY2o3EjwDEcOu56y4AwOyvf0P4zRZFC5M8S5Yw9uZcm9o0qZ09cKCuLeesJHKxNYZ1PUltRVGYqV2KH8keOAA5kQAfDMJ3+uk1vS5NlfknyN8k7CPfoVIExp5x8jff2EWKepxKjWQPHoQ0PQ0uEEBg/bq6XkuvernaiSyZOER8mqlduShSNbUdMKDo7348NY6cVF8CpvcT/xdcIIDM8y+gf0KBxAFLrjLerq+fLNEkfr2iRZHj8WzNkx5aLtkR8sIjmA/3KX7EjLG5NEIWOJ4fex6z2donwU+deAoFpYDTWk5jBnmp6AKrTzW1pdnZIjMI0EztZE5C3sAIdlpaUntpxcftGbRWEqnXX2xego6QFydm0oapUmpqQ5JYuAAA/vDaGLbf8wR+/pxWpHdkIln6dEMVxsh9XXQwqQ1oi425eWZq06LI+WJqe5cvh3fVSqBQQOLxJyw9J/3cc0i/+CI4rxdtN91U9DO6GFxp9xdNap9InEA8R86xVD6Fh48+DAB440r76BFA21HhcRRpo5raZUlt86JIqsvWdMMn8hiYTOG1EfvzidwxzdSWqpjaqVwBD7ys/Q1K7+lySr2OCYJjLPummqpFs6k8plU02vJzz4Zv9Woo+TxiDz00x0fWOGllkY02tcn5v8TA1G5Tww+KAsw0aAfayaymqd1UXUr88Y9I7tiB6R/92JXXp+ZSwCugMEKTtZohdVY/mUTYLYvUktqnRjK3VtHJlFC6rVBy1tTWktrOlSJVkr6gTp8woQzmwimAH1FyOcYzFiIRUpy6wHcujMYzyORltGer4EfMTG2PO6Y2AAQ2rEfL9deT4/yXz1tOEbGkdl8fM7WnMlPISnNX8uLp7wcXDELJ5ZAbGLD9OgVa1tpbo6k9NFRzCmskOYJkPgmRF8uMNcrTDpx9VvGOFEvHRAwdf3wGXilfhh+hxirlaW/oJEWONDVSL1M7tZPytDc7OmH2LiemdtbBpHYlU5umKkWbSW292v3tCIgBKFCKijrtyLNkCbo++AH2vwdXtUBsNTYvZ9KakS9WMJFrUUfIC54DZAWYTNZ2ztOSSFo2aSbOR/Ejxt/Frb1bERADODJ7BDfefyMOzx6u6Tj+OPhHAMClfZeaPoaizjyLFrE0Y6lZF9UhXdxOW8mpFMNpVEtq05LIjVVKIvXyewS84zzyuv+543DZ9Yz3+9ligzQzy9LZ777vGYzEMjitM4QLVhJc2vFpazurGFPbcVN7fpZFziemNlXkShVB8sgjVR5JRFPaLW9+cxk2Rs/VNlOrv5WNG/ZPE672Y8cfQ7qQRn+kv2I5pRUVRul3yrmktkdNaudODBb9+4SFpHbIJ+KS08m473/32ENnKZJUZKhXS2o/9PJoUflcqWmmpDWetn5HUVNN1SqjXT1WdHSK3F+7Ij6EfCKibyKLWbHfnDoIEloWGWtQJwfV0Kw5fsQj8GhVd3dNNhEkdatpajdVlyjLTUqUF2M4IT1+hCUCesuT2nZLQcTOhW3iuS13ktoG+JEo2VIpx935HpVKjscZJ0+PPqDJ3lOBqa0/Z+nfd6Gb2jSx1pkjn42e31Q04UwneaWi+JGMS+3YXR/7KLhAAOnnn0f8gQcsPUfDjyxGi68FPrWcdSw1d/xSjufhX00QHpk6ECT54RrxIz09AMcRjmiNuykOzBCe9vLocniEYkQA42lvqo2nDajFVuqiX09qiuFH2nxtzFgdTg5j94RWEgk4l9RO7doJwDmeNhUrizwyYOv5lKkd9onoVREaIyb4ETmdZtdjoaPD1vvpxXGcI2WRVO3vfCdiagp39nxjTACg42lbQFBYlSjw6FCTiWM1crW1ksjK92mGHzEoigTIIuD3X/99LAotwtHYUdz4+xuxY3CHpWMoyAX2WDP0CKAfa0QgqjiLQompLfAaF3PGZVObJjWF1lYtNW2i3TaS2gBw0/nL4BV5vDQ4i2cGpst+LkTJYv/O3Udw9T2P4+fPDYLjgPdceBru//BFuPwMYnIen7JoajNUhLOmtrfOrgO3RE1tcZ4ktQEgcgUxtRM7dpjujKDK7N9Pytw4Dh03v7vs53QuRPthzEQRJPumyL36d4cIeuS6FdfVbbK6gh/pq4wfqZTUBnQIEptc7cLICGNgA9WT2r9U0SMXq2Z6afkr3XHSLIlsqh49OzCFMz/9IP7vL/fUHOoYmCT3iOUdZP7dci1BkKSeecZ2b8pCU9TvTJCkFsmyUrEoEtAQJJOJpqldr5qmdlN1SZolyVrZJVM7lSODgy4hicIQWTkXezQDhJraRyaStjiLC93Ec1uSqaldD1NbfY4ePxImpnajktrUTBNaW4sGmtRQkWZnTUuzThbJKtORD4XACcTMXejnw8BECpwiI8qKIjX8iKIoc5rUBogp23HLewAAY1/8UtVJLaBt6fYuWQKO49ix088yV/KdoXK16yiLpINpq/gRzutlk+daDRQz9AgApGlSu0aeNlBcbKU3tfXG6q6RXZjKTEHkRaztWAsAjKkdy+Rtsz8JT5uURIa2OW1qLwdgHz8S1yW1aUJlKpkzLGGlpgHn8ThSNgY4x9UGyHF97z3L8O/X8PDf8CbTx82mnC2JpKIlj7VytWm5ZE+VpDbvJa9vxtQGgDPaz8BPrv0JNnVvQiKfwAce/QDu23tf1e/uC2MvIJaLodXXapoKVfJ53a6hMEPM0fu0Xo3iaucGrJVEjsYyGI1lwXPAusXRmt6jM+zDDZvJNeI/dhik31VT+8v/8yxGY1mc1hnCz247H5+87kwEvAL62sjYZXA6Xf5cA9GktpNFkQApMQaA/In5ldQuTNfH6XdD/vXrIPb0QEmlkHz66YqPnfrOdwAAkauvhnf58rKf07lQweA80YsiSPZP78d4ahxPD5P3vW7FdbUefpnyY84vlND7af74cXZ9yRVkzKjX185w5R1JV6ztgUfgcGAsgYNjtSNI9OgRoHJSezyexY4DZLz8TnXnRTl+hBiKXLBpajdlT4qi4LO/fxW5gowf7zyGH/z5aE3PP6oGfpZ1kPGVZ/FiBLdsAQDEfv97Zw92nirCytkbl9SeTOaQK8jgOLAdi6XqCDXLIp1S09Ruqi7RkgG3TO10Xgag4B+O34b8AEkZ6JPabSEvlraTlce9NtLaYrdq4k1OQpHdZzQuNMkJciMsMxocTmrzNKndIKY2Kx0tSYgKLS2Ah0yarZTDLGRJaiqej2oT8QVvak8mEc2lIMjEOBN1qc+Z7AxDdlRLartlagNAx803Q+ztRX5oCFP3fa/iY5VcjiWhmHE6z7jadSW1GX7EWlIb0BkoNW51PzhtbGrnR0fJa/E8AmedXdNrsmNSk4o9ySmGHwE0Y/WBIySVf0bbGSxpTwfYeUlBtmDv3pPdvx/S7Cy4YBD+dc7xtAGNqV0YHS1i+loVxY9EfCJaAh74PWS4aZQ2LkypmID2dse2ZzuZ1M5LeeySDuLRTTw29povfFCjtdXBpDag4UNGa01qqyZ4T7Wktoq5qLaQ2xHowHeu/g7+YvVfQIGCLz/3ZXziyU9URCH98fgfAQAX910MgRcMH1O0aygUgqj2XBQMEqgNM7VVY8u7vEpJpIoeWdUdLjr3reo9amHkI6+OFrGx//DaGF5Wh0ORfAq3qOnsLcs1g7avjYylBi3gR6SEVgBdiuWqV/V0HbgpxtRunT9JbY7jWGFkokIXUX5oCLO/vx8A0HHLLYaPqTWp/drUa7j/yP2QFRlndZ2FpdHKrHgropx2JxdK6PdJTibZbmCKXhJ4jnFozRT1e3DhKhJo+N89tS/+60siAUCaNJ8L/OalIcgKsGlpKzao+KFEtlC02EeZ2nygWRLZlD099MooXjo+Azo8+qffvoLnjlqfox6ZJPcWmtQGwBAks6cIgoQxtRtYFDmsoke6Iz7TXpN2ZmrPHVLyZFHT1G6qLtEGb9dM7VwBPuTRmhmFlCZX81IDhA4k7HC1xfZ2gOMASWJbFZvSRM0MPmxiagv1MLW11BljaicaY9V+548AACAASURBVGqbYQ84nmdM15Odsy6rqXghEmH/xkztsYVpah+dTKJNTWkLbW3gPJq5RJPNHf4OeAXjSVHAS26JaZfwIwDZgtp958cAAJP//u/Ij5ljRPKjo4Asg/P52C4CZmon59bU9q1Rk9qv2UtqK5LEeJzUqLYiuwYKS2q3FZvaNKXtO2MNhNLrnNVj6lNN7dQ0S2oDwOIQ+VzPjJA0NUWPAEDYK7IJit3imtQulad9zjlF33UnJLS2soK1rA1uOt2CHfF7yA4DFUFCB/l6SS4kKp00tfdN70NWyiLqjWJ5dLnp42jRT2vA2TIwakqPmuBbzERN8K5oFaa2ih+Rs9WTQh7Bg8+c/xncde5dEDgBvz38W7z7gXcb4pAURWGm9iV9l5i+Jh0/coEAOFGER02gVkpquz0xzR0dAAB4ljpfEqnXqu4wLj+jG4oCfOfJw0Xs7Cme/N3uPG8R/lFNZ+vVrwY6JhI5tqvRTDSlzYfDju2GoGLX5OFhKJJ7985apTG154+pDQCRq1Su9qOPmf6+Ju+7DygUEDzvPAQ2rDd8DEtqV2BqA1pS++DMQfz60K8BAG9aab7jpBa5gR/h/X42FqVF2RNxcm3qCHnB89UXPl+/gez+ut8GgiR3XDW11R2M9P5kpF+p6JG3bFrC7v2SrBQFI2TK1A42Te2mapckK/jSgyQ88v5LV+LajYtQkBW874fPW969dZTiRzq1a390+3ZwHg+y+/cjs2+/8wc+z0Q7ORpZFElLIs3QIwDQHiLjuyZTu341Te2m6pI0Swb0cirlymA2lZMQRAaFDBlccKJQNkDdyLjaMzW/PufxsNc7FcoBaxWdbAqm+JF6TG1dUjtCXr/hSe1F5QlRytUuTCxMY9eqJPV3zRuZ2gs0qT0Sy6I9S8x6+ndkP6uCHgE0/IgRIsFJRa+9Fv6zNkJOpTD+ta+ZPo5O6DwqegQAekLzI6ntO/10AOS7YmdXQ2F8HJAkQBTL/laVRIsZczWY2pIssXK71a2ri36WUnnaQRs8bSrKlO1NTSHs10xtaqwqIKmtDV0b2M94nmOTYLtc7SQtiTx3q63nV1M9XG09UxvQtl4acbXp98eJkkgq+ruvtygSAF4afwkAWZSolCSnnOeow/gRmtSmxY9WRR/fU6FYDdAVRVrAIQEkbXrj2hvxrSu/hag3ij0Te/D2370deyf2Fj3uSOwIjsWPwcN78LolrzN9vdJxBr0vGyVQaQre9aT2UYofWV7xcbQk8qwaSiJLdctF5Dz7+XODRezsRX0k/donGl8fWgIeRNXrzYkqCBK3SiLZa4oiUCjMm7GDoig6pvb8KYoEgOCWLeCjUUhTU0i/+GLZzwvT05j52c8BmKe0AX1Se7QiBqg/0o+AGEBWyuLA9AF4eA+2L99e56dQF6bVeZOTRZEAKaMGdKa2hZJIva5a2wOB5/DqcAwDE7XtNMqruzT8a8hiAN1JVKqDY3HsOTELkedw3cbFCHoFCKrhrr+nK02mdlN16FcvnMCBsQRaAh689+KVuPuGjVjdHcZYPIsP/ugF5C2URx5lSW3N1BZaWhC65GIAQOx3J39am94rG1kUeWJG5Wm3mJ/7FKfUZGrXr6ap3VRdovgRQOOGOal0XkIQWeRTKvO3xV82qaQJmZeO2y2LVE3MBZpONdLeE7N4+JX6TS85qSIqQmZFkXaY2hQ/ok3CaCGSW4WjpWJJ7Z5yg1PoVLnaNRbRLTTJaireMKk9TyamtWoslmFJ7dIt1iMp66a2m/gRgOwI6LnrLgDA7C9+icwrrxg+jpVEqklgYP4ktYVwiKUY7aS1KU9b7O5iTHcrsoMfGUwMIitl4Rf8zOykqoenzY5Jx9QOeXWmdqT4vc7qLGYKa8U1tQ+yFVlG6tlnAQChbdtqfr4V1cPVTqhpGGrys7LI2XJTm27vnq9J7d3jpOTTjAlN5Rp+hDK1a0xqa0WRFpnaNfZInL/4fPzk2p9gRcsKjKXH8K7/fRd+d/h37OePH38cALC1dytCHvN0cGkhtadXLYqskNSmfF23pJna5vgRRVFYSeQGm0ltADh/RQfWLY4ik5cxGstiRWcIP7/9fGxeT95bjpmPbSmC5HgVBEnBBfYxFScI8KjlnvMFQSInU+z7PJ+Y2gAJ04QvJTsX4o+UI0imf/xjKOk0fGeuReh1F5i+Dk1HK6kU5Lh5IETgBaxu0xZzL+67GC0++4swVIWJSbIwLQgQO+sv+NWLjnlyqqk9HrdWEknVFvLigpXkmGotjKT4kcDZBEdmNhegBZGXrulCe8gLjtMvVGvXJ1YU2WRqN1WjcgUZ9zxCUtS3X7ISLQEPQj4R377pHIR9InYNTOFf7q88/o5n8phQDdOlHcW7BVreSHZszP7u9yc9glXfY1NJdjtujDTMktrmY7D2JlPbMTVN7abqkjyrFfu5gSBJ5yQEuSwKafJVFQ3mReuXEEP0xEwak4namUQL3cgz0gd//Dxu/f6zlliLlcSKIku3q0r1MLVpUltfFEkms0oqVdQ67pYoy9dTMal9cif3WVI7qjO1KWN+AX52WVYwFs+iLVteEgloJrAZTxsA/Or2bjfxI1TBTZsQvfZaQFEw+i+fNxxI0TQy3d4NzB+mNqAlmexsXSzQkshF1tEjgD38COVpr2hdUcT1lZNJZFRDPrjZflKbMbV1RZGAxtQGgDZfG/oifUXPY8U1NlKn2ddegzw7Cz4Ugv/MM+0cdlX5WFLbhqldltQm132jpDbd3i22O4cJoAsKU5kppPL13Qf1Se1KokWRrU4XRdpIasuywowg60zt2sdPS6NL8aM3/AiX9F2CnJzDP+z4B9zz3D2QZImhRy7tv7Tia7B+B3WBlSVQR8rNqGgDmNpSIglJxY9VYmoPTqcxncrDI3BYuyhi+rhq4jgOn7h2LfrbA7j1otNw/x0X4Zxl7RBa1MX+WXNTu7+dnFfHp6wltZ0uiaTSyiLnh6ktzZB0Lef3z8uEbOQKiiB5tJi/nE5j+oc/AgB0vOc9FXeG8IEA6YGB8bmiF0WQAMAbV7zR9nHrxRZKOjtrWpi2Im+fmtQ+rpraidpMbQC4Zj0Z3z+wd9jycxRFYTz9wCZiahcM0JSyrOBXL5CF9Tdv0sZnRruv5KRaFDkPv4dNzW/9ZNcxDE6n0R3x4W8uWM7+fWVXGF96K1lkv/epI/jNS+YhD4oe6Qh5WZCCKnzpJeAjERSGh1lI4mSVhh8xD5HM/va3OHD+BZi897uOmNtDKm5vUYWkNjW1J5tM7brVNLWbqkv6wbZUISlgVxQ/QpPaHm/5wD3i92BFFzFd99gpi+xauEaemehkttZiqVKxosgy/IizRZH6tHAj0tqUQSgaJLXFTvp9OLmT2hJlaofLk9rS9HTNqb251kQyC0lW0JFRP1cpfmQeJbWpuu/8GDifD6lnnkH8kUfKfp4fJAaBV29qzxP8CEA41IDdpLYx176atKT2sOVB54GZAwDKSyLTu3cDkgRx0SKWNLQjXjXmW3IpBHWleUtC2t9tQ9eGMoOCmtp2ktpJlacd2HIOOLH2gjor8q4gJXbZATtJbcrUJse2qMU8qc2KItucS1RGvVFEvOTaVg+CZCI9gROJE+DAYUPnhoqPpfiRFqfxIzaY2lOpHAqyAo6rbgRpTG1744WwN4yvXfY13LKBoBLu3Xsv3v/o+/HiOEErVOJpA9qOMMq0F9VzUY7FykpKG1EUmVeZukJ7e9HYpFS0x2VNbwQ+sT5T74KVndjxd5fjE9eeyQqLedWwlGYqmNo0qT1VeeEm7yJ+BJh/ZZHzladNFb7oQnA+H/LHjiG7/wD795n/+QWk6Wl4+voQ3V4dEUI7hijb2kxntJMOjKg3iov6LqrjyDW5wdOmoruf8iVJbav4EQC4+sxe8BxBBFkN+BTGxqFkMoAgwL+esMylqamyscazR6dxYiaNiE/ElWu1z290T2dJ7WZRZFM1KJUr4OuPkUDGh65YXdapcM36Xrzv0pUAgL//+W7sGzH2YAYoeqSzPBXI+3yIXH0VACD229+V/fxkEsWPxCuMHaa+/wNIMzMYu/tuDN91l+0xEdUQxY9UYGp3qEztZlK7fjVN7aZsSykUitLZ1AB1Uqm8mtSm+BExVpTwpTpL3fppqyxSTXSeTEntTIFsI0pm62NHmRdFUqa2HfxIeVKbE0VWolJpG6UTUhSFpVoMk9pqId/JtMhhJJmm43RJbaG1lbAxARQWGH5lTF3A6ZXId7YMPzKPmNpUnsWL0X7zuwEAY3d/EXLJQoKGH9ESvvT4J9OTyEuNKzwxkv8MMlHO7NtX83MpfsSzuDYzmZraSioFacZajwIriSwxtVMqeiS4yT56BAAyvgDi6nXNN6El5lp8LQiK5Lq2sbM85avhR2r/O6ZUnnbo3HNrfq5VeZerSe2BozWlViRZQVLd7UCTaz2sKNIgqa0ytYUOZzEBTiBIKHpkZetKZpKbyS38CP3dTSRykGRrfwdqgHeEvPAIlYf6GlPb/qRK4AXcsfkOfOGiL8An+PCnoT9BVmSsaVtTtGPBSAw/omLOhHCYLaTnS8y6RpjaDD1SpSRy94n6SiKriaZwaSG7kfrayHVnsCpTm4xvxS63TO3auw7clGZqzy+eNhUfDCJ0AUGLxB8lC9pKPo+pe+8FAHS852ZLi5V0UbhaUvuqZVdha+9WfOycj5kWZdcqem56XEDalOJHJlhS2/qxd0V82Lqc3FMesIggyR8j575n8WJ4KN4lm2Vpa6pfvkCO6/UbetkiFGCMFGNFkc2kdlM16LtPDWAikcXS9iDetqXf8DEfv3oNLlzViXRewu0/fM4QrUGT2ss6jBdVKIIk9uCDZXOQk0nViiLzo6PI7NkDcBwgCJj99W9w9KZ3Ij9aXoJtVUNN/EhD1TS1m7Kt0mQ2Tds4qUxOQgBZ5NNqUjsoARMHyh63QS2LtGdq02TuyWFq5yWZTXzrNrVNiyLrSGqL5UWRgLb1WHK5LFKenWXFLaJBSpQuckgnvamtJpojUfZvHM9r+JUFtshDTZyuvGpqd9owtb2NTWoDQOctt0Ds6kL++HFM/+CHRT/TF0VStfna4OE9UKBgLG1/sOWEfGuIqZ09dKjmZD9FABmdg5XE+3zsmk2T7NVE8SNlSW21JDJQB3oEIKnkkaBqyI5oW505jsPpbaRQc2tveZmj3aS2Iklsq2jwXHd42gDg7e8DRBFKKlU1CahXQnffCZcktY3SxoVp54siAc3UHkwM2n4NampXQ48AwEyKnAMtAWdMI6qOkBccRxYLrG5RpagSWjJZSbzPHlPbSG9Y8QZ875rvoTtIjK4rll5R9Tml+BEAECmCZLgYHdCq/m5nXWRq5waq87QBYPfx+ksiK0mIqqZ2RfyIVaZ2Y5LahRq6DtwUK4lsnZ9JbQCIXEnOjYTK1Y498ADyQ0MQOjrQ8pa3WHoNltQeqXx9bvO34d7t9+KG02+o44iL5eZCiZcWRQ4NQZGkmosiqd6wgSyaW+VqU/SId+lS8MEgOD+5flJEFkBCD7/bTa5LevQIoN3vElnt+sSKIoPNpHZT1jSbyuPfHz8EAPjoVavhFY3tOoHn8K9v34QlrQEcmUjiY//9EuSShW9alKovidQreO5WiD09kGMxJB5/3MFPMb/ETG2TosjEY48BAAJnnYWl//kfEFpakNm9GwN/+ZdkV2eNyhVkhk2qlNSmC3VTyVzZ366p2tQ0tZuyrdKUnBtM7VS+gCB0Se2ABIyXpwI3qpOKPSesJff0OtmY2npDLlF3UtuEqU1NbcEZpjYACGpimBYYuiWaLhHa2thkvug4TpGkNmNqR4oXLBbq+UBRO21pYtaLOvyIrMgM19EbNDdRaeKmEUxtKj4UQtdHPwoAmPjWt1hCXs7lNA6qLqnNcdy8KYv0LFlMjKh8Htkaucu0BM4O9qOWssi8lMfRGDGp9GVZiiQh/SLBIwTPqc/UTmYLGA0RQ7bUaP/chZ/DN6/4Jjb3lL+H1eKaUmVefQ1yPA4+HIZ/7Rk2j7q6OI8HXvW7VwtXm953vCLPsAy9LRoXujRtzIoiHcSPAM4ktSlPu1pJJKClh53Gj4gCzxAiYxaRYlpJZPV7NOdRk9o2mNpGWte5Dj+97qf47Os+i3ete1fVx2tFkdo4g5VFjsxhUrsCT1uWFexVcXcblriU1G6twdSugh/RUBHumNoUkTVfktoMaTTPSiL1Cl92GcDzyLzyCnKDJzD5n98BALTf9A7wfmu7IDX+vHVutFNyEz8idncDHg9QKKAwMqLhR2pgagPA9nVkvPfc0WlD9FWpcseOAwC8y8guDbrQSncTAcAf940hnilgUYsf551WXJBpiB9JNYsim6pN337iEGKZAtb0RPCms5ZUfGx7yItvvWMzvCKPR14dxb/98WDRz6sltTmeJ/0+OLkRJPTczEmy4W5cWtobufIKhM4/H8t/9lP4Vq9CYXwcR99xE2Z//eua3m80loGikHFwR8g86NCm/kxWNIRdU/bUNLWbsi25ZEukGyzkVE5CgMtqTO2gBIyX81vXLW4BzxFjqxbuJIAFm0w1k/5iXW9SW3KFqa0O7ArFpjYfpklt8622Togmv0QD9AigZ2qf3KY2xbwI0WjRvy9UU5sW0IVTxACgpZcAKYsryAXwHI/OYKfh8wE9U7uxLeAtb74e/jPPhJxIYPzrXwegJd64YJBgYXSaL1xtjuPgW0OSyLVytRl+xI6pXQO/dSA2gIJSQNgTLioJzbzyKuRkEnwwCN/pp9d8DHolsgWMqknt/IniVHB/tB8X911s+Dy7Se2UytMObtniGk+byquWRdayaMF42rrSzM6wDwLPQZIVlrqjooaBk0WRgFbUaZepXZALeHnyZQDG+Bi9FEVxDT8CaGWPY3Fr4xtqfvdYSGrTosh6+ZF6dQQ68OZVb0bQUz2dSBey9TvCRBOzrqGmdoWk9pHJJOLZAvweHqf3hE0fV48ofkSuYGovURNgsUzB9HeiKErjiiKHhqHIjb1/Gmm+M7UBYpjSguKRz/4Tsvv2gQ8G0fb2t1t/jR5rSW03xIoiXVgo4QQBXvU7lRs8gYkE2UXSWWNSu7fFj3OWke/Agy9XT2vnKH5ERQ/RRZHCpGZq/+J5Mu64/uwl4HnjnoxYkandLIpsyrrGYhl89yky3vr49jUQePOyWKqNfa347PXrAABffng/Ht+vzd+OTFZOagNAy5tIeWziD39wfQ4+Vwp7RdBam9IgiRSPs56a8OVkB4136VIs+8l/IXz55VByOQz9/V0YvfuLUCRroacTFD3S4q9Y+OsReMb7nmqWRdalpqndlG2VpkfcYGpnchKCSgaFDPmqkqR2uXkS8Ao4vYeYorUiSFg53vjJYWJmdYZcss7EKWNqh0pN7XqY2rQossTUpkltl5naBcrT7jU208ROkryQEwnImdoWSBaSKD6ILynCYqb22MIytcdiGXilPLwZMoHQJ7VpornT3wkPb244UfxIo5jaVBzPo+cf7gIAzPz0Z8js248cK4lcXDYgmi9JbQDwqwiSzGvWudpyJqMZmTXiRwCN32rF1NbztPW/x/jDDwMAQhdeCE6or+QtkdXwI7UkFasx/syU2rkTABB0kadNRU3t3JEBy8+hW6/pVmyAbJPtUQ0JPVdbzmbZpJ/uknFKfWGSMreb1D44cxDpQhphTxgrWldUfGwqJyEvkQS6G6Y2xYhYLX8eVc3vHitJbcrUzs1NSkhiSW3tXjSnSW0VQeCpYGrvHiS7AtctboFYhVluV3TBWU6lTNEwIZ/IUmBmZXjSzAyUPPl9CSVdE05J7OkBBAHI5+fFgvh8Z2pThVUESfLxJwAArX/1V2wxw4pYUnvUGl7DSVHWrMeFpDag7VBLHzvGzvdak9oA8Pr1ZIzxv3urp9nzRzX8CAAI6kIrxY/MpHL4wz7yud+yqTxBG/aV92Q0iyKbqkVff+wgMnkZm5e24sq11heM3rZ1Kd5+bj8UBbjjv17A8akUktkC2+VQydT2rVkD3+pVUPJ5xB96qO7PMB/F8xwLWpQiSBJPPAHk8/CuWAHfitPYvwvhEPq+8XV03H4bAGDq3ntx/Pb3WTL+h2cpT7v6YlaHel2bTDS52vWoaWo3ZVvlprYb+BEJ0UIKUIgZIXhlQ/wIoHG19wzWhiAR1GSunEoxE3chyyn8iKIohtuCAQCSeuEVbbBDzfAjKtu5lNXutFhJZK/xQJyPRMB5yecqTCysssRaJDGmtompPQ8mprVoNJZBW4Z8Js7rLTLrrfC0AV1Su4H4Earg1q2IbN8OyDLGvvB5HU+7r+yx8yWpDQC+M9YAALL7rCe16cISFwiUpdCtiCW1LeBHDkyTDoZVbRpPW1EUxB58AAAQ2X51ze9fqmS2gNEgmfxa5XwD9pLaSqGA1HPPAQCC2xphai8HUBt+hH6esK84Rd6jIkhGZrVrP9vW7fGU7wiqUww/Erdnar80RtAjGzo3gOcqD5fptlGPwLHriJNiSW2rprb6uK6ohaS2lxZFzk1KSE6UF1LTEufSArwWdcEgnZeQLTh/nZYSCdanUSmp/dJxih5xh6cNqAvO6kJcxbJIhiAxLoukC9RCWxt4r7O8dypOFLXSwnmAIJFmVKb2PE5qA0Dkyiu1/+HxoP1vquN69LLK1HZDbuJHAMDTT8Y+scMkPS3ynC200zWqqb3ryBQOjpnPUxVFKWJqA4DYruII1aT27/cMIy8pWLsoijW95cXB9J6eMCqKbOJHmqqiY5Mp/GQX+Q7+7fYzKiZ8jfSZN63DWX0tmEnlcfsPn8O+UTKfbgt62L3TSBzHIXodSWvPNgBBIsViiD/2mKO7w6zILEiSeJTwtCNXXF72HI7n0f2Rj2DJV74Mzu9HcscODLzt/1TdvTg0Q4IFi1qqn/fNskhn1DS1m7ItabZ4kO2KqZ2TECmoRjPPgRMATB3W8Bc6bewn5shLNSa1hXAInFrgsdCMPCM5hR9R0mlA3UZaXhTpRFK7tCiSvIfsclEkZfmKJkltjuNYyleaPDnS+0aSDcq5gIVsamfRliXfHbGrq2gwOJIif3NqBpuJMbUbnNSm6v74neA8HiT/9DRmfvpTAMUlkVQsqT0PTG3/GVpSW1GslZxoC0u9NQ/agdrwI/qkNlV23z7kjx4D5/MhfMmlNb9/qRJZSYcfqcXULk91VVPm1VchJxLgo1H2u3dTPpbUrp2pXWpqL2KmtpbUpmaB2NZm67tQSRQ/Es/HEcvVvqV29wQpBzqr2wJPO0V52l7HPwcAdNGktlX8SJziR6onG1lR5FyZ2nED/AjDKhSnKyM+bQuxG2ltih4ROjrKxz067VF52mf1u2dqc4IAXk1rVzK1+9vIpNksqe12SSSVdl2e+7JIxtR2mNPvtLx9ffCp1/GW665jCwNWJXaTsYCcSLiCgDSTnEyyOR89BqdF+xxSKue6M+wrw31YUV9bEBef3gVZAW77wbOm91tpepp8Jo6DRy2qFEqY2r9U0SN/YZDSBsAwAvqFaiXVLIpsypq++sh+FGQFF63uxPkra9+55hMFfOsd56A95MXLQzF87L9Jb8yyCiltqpbrCFc7tWtX2WKy0xq9+24Mvv8DGHjrXyGzf7+r76VXlI25dednLkeS2gDCl5eb2uy5b3gDlv3ohxAXLULuyBEM/NXbkNixw/TxFD+ypLW6T0J3W000Te261DS1m7ItabY4ES0lnR1QSbKCXEFGWE30CkEPOH8LoEjA5KGyx2+kSe0Ts5bNFSqxS+VqnwQc5YwOP1JPUpsNkHm+nAXHmNp2TO15ktQ2YWoDgNB58nwfjKTIMpuQnCxM7bF4Bu0Z1dTuLOZmW05qe+fW1Pb297OkVuaVVwAYm9r0c9DPNZfyrV4N8DykqSnL35n8cPVzsJL0RZHVrvXU1F7dqpVExh58EAAQuuhCCKW7UGwokcmzpLYcj1csdtOL8TdN2tiNVMTTrhObYkUUP5IfGrKMY6IThoi/JKmtpoaHdb0XdFu3G4VuQU8Q7X7yunbS2rQkshpPGwBm0mQy0hJwh3Fea1JbK4q0ktRWTe383Eyo6NhRv8CqJbWLF+54nmMT05gLpnbeAk+7IMl4ecjdkkgqen+WZsyvKX1txCwbnDZLartbEklVy2Kj21oITG2q7r/9OCJXX42uj9xR83OFcIidNzQ53QhR9AgfCjlyDzUSxY9I6q61zoj9XQZffutZ6I36cWg8iY/99CXIcvm4gS5oib29bKFP1OFHjk2m8OzRaXAc8KazFxu+D1uozhrhR5pJ7abMtW8kjl++SK6df7t9je3XWdwawDfevgk8BwyoJZHLTUoi9fIsWYLAlnMARUHs97+3/f7VpCgKEo8/DgDI7t+Pgb98K6a+//2GdDFoY27t/EzuegZyIgGhsxOBsyoHGALr1uG0n/0Ugc2bIcfjOH7b7Zi897uG85DhmVrwI2pS2wQ/knrmGUx+516kX3qp6mudyrJlasuyjP379+PJJ5/EE088UfRfU6eO6MSdppydZmpTYymUJ5MzPuADutQLvQFX+4xFEXgEDlPJHFshsypWDrjAjDwjFeFHaiwg00vjaYfKk2csqW2nKDKovYbuJsaS2g1ialfaMsnKQ09S/IicSADqTfhkSGrnCjImEjmGHxG6TEztoDX8SK4gQzKY9DRCHbfdVsQW9vQZmNrq55gPTG3e74d3+XIAJAFtRflhkuQTbZREApqpLScSZYXFeqXyKQzGyYR4ZetKAGRAHX+AmNrR7dttvX+pkjkJWdGHdIgsrOYGB6s8g4ilurLWzbkk42lvrfEo7UlobydpUUVBTuWNVlPCBD9Ck9qjuqS2WyWRVAxBUiNXeyYzg6MxYnJs7KpuatOkdmvQHbwDZWpbKYqUZYVxNC0xtVUkhZydG1Ob4UdC5UltOR5nhdVUsSboZAAAIABJREFUbnK1rZREHhhLIJOXEfGJWNHpjqFHRfnKpSESvfrbyaT5+NQcJ7UXW+86cFsLhakNAOHXvQ59//o122xqxtV2OV2pF/tOuYQeAQBPH0lLc+pujU4bPG2qrogP377pHHhFHg+/Mopv/OFg2WPyJegRABB0+JFfq4bj61Z2sgXaUtF7XjF+hMxHuSZTu6kK+tJD+6AohAG/sa++69YFqzrxd9doO/msJLUBoKUBCJLsgQOQxifA+f0IXXIxlFwOo5/7Fxy/9b1sscwtGeFHEo89CgCIXHYZOL66LSp2dmLpfd9Fy1/eQHCRd9+N4U9+sszYZvgRC6a2hh8xDi3EH30MY1/8ImL331/1tU5l1Wxq//nPf8aqVauwdu1aXHzxxbj00kvZf5dddpkbx9jUPJWs4ke8SzSDwUmlcmRQEFRTwULQD3SdTn44Ub5dxScKOKOXpFrslkUWToKyyCL8SK4OU5txLku24CqKxtQW7JjausFgQVt8aERSW1EUXVLb3FATVVOxMLFwjN1aRBcOOJ+vjLEpdqvnwuSk5ZbnudZ4glwjOnPqdtiSMqxamdpA48siqYRwGF13fJj9b0P8iIpRGU+PIy/PTbmbXn6Vq515zRpXmyKAzMpaq4kPBJjxX8lAOTJ7BAoUtPvb0REgj88eOIDckSPgPB6EL73U1vuXiu6ISXV0Vz0mvYy2QlaSUigg/SzhaYe2bav1MG2J47iaudpxih8pSWr3qmxBfVEkwwS0O1sSSWXX1KbokeXR5WjxVUdMUIO11Qbz1YpqSWpPpXIoyAo4zpoRxIoi5xo/EtHGGkUJ1BIEibumtmpsWSiJXL+kxRYOoRaxssiK+BGVqW2CH8mrBqSnYfiRuTW1FUlioZv5ztR2Qhqqp3GL3Cz97+J3yqsu6Htmp+Ar5GyVROp1dn8r/vnN6wEA9zyyH4++Wvz7yh01MrXJ96cwNYVfvkC+10YFkVRGPRm0CLnJ1G7KTM8fm8bDr4yC54A7rz7dkde87eIVuF7dUXCBRZRJ9JrtgMeD7GuvsQVep5V6+mkAZLdh/7e/jd5Pf4qwqp96Ckeuvx4xtcTdDWm7vMj5qSgK4pSnrZb2WhHv9WLRZz+Lnk98AhAEzP78f5AtwagMzVrHj7SH1KJIE/wI/VtUKq9uyoapffvtt2PLli3Yu3cvpqamMD09zf6booU/TZ0SooNGz2Jyg3fa1M7kSIo3WCAnOR8KAF3qyqNBUhsANvSRyWfNpjZN5i6gdKqZMkVFkfaNOVndEly2tVDPM7eT1BZ1AzsdgkSIkgmsm0ltaWaGTdwrJrVPIhyNkejCAR8tL7oROzpIOZUksbTTfNeoutV+kUwmD6X4EcqersbU9onaLXGuECQA0HrDDQhdeCF8a9cSvEeJ2v3tEDkRChRMpud+N4FvDbkuZ1+zmtQmJpVnsT1TmzxXQ5CY6cCMWhKp42nHHyTN7qELLywrSbUrmsrKdqqJOYtlkRGdqW0FmZV5+WXIqRT4lhb41tjfnlqrfMtVrvaANVM7wfAjxQZvr5puG9HjR6bI91dwKalNudq1mtoMPWIhpQ1oRZF2isysiCYDxxPZqrtI6PWwI+SFR6g+zGdM7dxcJbVpIXXxAjorHiwx61rVwquZlJtJ7aWmj6G9LRv73ONpUwmtNKldCT9Cmdppw+sILYpsHFN7bk1tKRbT+mBsFBEvNDFUz2jjktp5FXXicRFpw7e0sIWtntQUOi30A1TTX23px03nLYOiAB/5rxdxeFybt+aOE3a3/tynAZfM+CQOTyTh9/DYvt48HEHveTGDpHYTP9KUkRRFwRcfIGPnGzb3YVW3M+NSjuPw1bedjRc/dRW2rbBmagutrQhu3gwASDxhzouuR8k/EVM7dP754DgObW9/O077n5/Df+aZkGZmcOJDH8bQP/4j2y3upKIqHo4mtTN7X0ZhdBRcMIjgeefV9Focx6H9pncgsJGMEXOHNCxuLJNnC1tWiiI7qhRFWtlB1pQNU/vAgQP43Oc+h7Vr16K1tRUtLS1F/zV16ogW13hoUtthpnYqTy4IAWZqB3WmtrF5QrnaNEljVQsRuWCmrI6pXU9RJJtoBktNbd32ZztMbZ7Xnqcri6SDVzeT2hQ9InR0lCWU9aIpUOkkxY/Qc1cIlw+eOFFkfNuFcj6MxTJYN3kE5x15FoBWMAQAkixhLEWSatXwIzzPwe8ht8V0bu5MbU4Q0P8f/x9W/PIXht9TnuPRHSSTyfnA1WZJ7X3Wktp5NXkp1liKpZcVA+XgdHlJZPwhgh6JbL/a9nuXil5npe7eqsekF011SbKClIXvW5LytLdusbRN0il5ayyLTKg4lUpFkdR8KzD8iDuFbraT2uNqSWRX9ZJIQEsNtwTdMbU7Ql6y1igrphMfKloSSZEl1UTxI3OR1JZzOSh58rsrNbXp9aE0qR2dY/zIHmZqu2+Y8hQ/UoGpvaQtAI4jxepG3w3KWm6YqT083BA+qpnoYjwfjYLzuHM+zifNSVJ7lCJt3MOPcBzHuNo9qam6k9pUn7zuTGxd3oZ4toD3/uA5VhyZO6amIfVJbbVoVJ6eAhQFV5/ZW3Zf04ve0+k9UMnnAXp9a5raTRnoyYMTePrwJLwCj49c5UxKm4rjuJqRaOGLLgQAJJ503tRWcjkkn3kGABC64Hz2776VK7H8v36CjltvATgOsz//Hxx+y184zpAuLWePP/oIACB80UVscb9W0bGCPtk+rKJHWgIehCpcL6goU3vSgKmtSBLybMGtaWpXUs2zom3btuHgwXIWVVOnnlhSWx3IlnIP6xWd5HsL5OIjhEMaU3viACCVG7Z0krHnxKxhEYiZmKl9EiRz9QnTukztpAl+hCW1OUCwOWFgZZGaQU5Tk5W22dYrVlBXxUxjjPWT4PtgJLZgYZDUBhbeIk9y1zP47J/+A758FsHzzkPkmmvYzybSE5AUCSInojPQWeFViCiCZK7wI1RlHPsS0dQ5TaHPpXxnkMXG3JEByFWMMUVRUBhSk9o2mdqAtaT2wVnV1G4jpnb20CFkDxwEPB5EKrSc1yqKH1FUnEreIlM76BUgqPgCKwiS1E5iaofOPdfOYdoWNbWzRwYsPZ7+PkqLIrtVhEa2ILOUrUTxI23umNp9YWKK1FIUKckS9kzsAWDd1KafpzXgDlNbFHiGEhmNVeZqayWR1iZptChSnoOktn5nFh8qXkA3S2q7hR+R4nHGePcsNZ48ZgsSXhshY5SGJLWjqqldYVzkEwX0qAsYxw3KIjWmtnsGJKCynQUBSi43p2OnhcTTdkIaU3u4yiOdE1socZGpDWgBhUVJZ5LaAOAVeXzzxs3oifpwcCyBO9XiyLwBfoR2PQiFPAKFLN6y2Rw9Amj3vExeRl6SWUobAPhgk6ndVLEURcEXHyQhvRvPW4olFvjLbit00cUAyHiz2ni+VqV374aSSkFoby/bbch5vei+804s/d59EBctQv7YMQz89Y0Y/+Y3oRTsexl6RUvK2RMUPXKF/fkA7RTKDQywf6PoESslkYDG1DbCj+SHR6Dk8+A8nrrmTKeCaja1P/ShD+HOO+/Efffdh+eeew67d+8u+q+pU0elprbz+BFiKnlULjQfDgPRPsATAuQ8MF2eGlvdE4ZP5BHPFHDUpDTHSAw3sUBMvEoqxo/YvxFIJluCIak3OdFHMBV2RMsi9UltlR0pOfw90qugbs+slhBl34fJkzyprXLMS7WQTO3kzl04/aufQkDKYWT1RvR/69+KVtxHUuRv3hXsgsALZi/DRE3tucSPWFFPUDW150FZpNjdTbZ5SxIxjStIjscZY7La4lIl0R1COQtJ7dWtBOESe5CktEMXnM9YtU6IXmf5RWpScciagcpxnI7BWdmgU/J5pJ5/HgAQbBBPm0rP1LaCSYmbFEX6RIFts6QIElYU2eFSUjtC/iZDySFLxw4Ah2cPI5lPIiAGilL+lTSbJpORlkD1VI5ddaumTrWySMrd7rGa1KZM7bkwtek4IxQq230gUqxCg5jauQGStBK6Osuxa6peG44jLyloC3oY9sNNaUWRlZF6tCxysISrrUgSM5hpX4Zb4kQRYk9tvQJuiJraYuvJz9MG5iapnadMbRfxIwCKktqdYecWDLsjfnz7HefAK/B46JVR/PvvX4Q0Q3b4evv72eP4YBCyj1xHlwtZXLSqcjBCf8+LZwqaqS2KbEdMU01RPfjyCHYPziLoFfCBy6yNNdyW7/TVEHt6oGQySD3zrKOvzdAj551nutswdO65WPHrXyF67bWAJGHi69/A0ZveyfBA9UhfFJk7dgzZAwcAQUD4kktsv6Z3uZrUHtCS2kMzqqndYm0M1qEytadTubJAZu7oAADA098PTqg+hz2VVbOpfcMNN+DVV1/FzTffjK1bt+Lss8/Gpk2b2P9t6tSQoiiQGVNbK4q0Omm0IprUFlVziY9ECbqClkUacLU9Ao8zF9OySOsIkpMpqZ0pwY/Y/ZtoRZEmTG07PG0qltTWpRhU81yOxx39HullOanNiiIX/vfBSHJMZWpHwoY/XyimdvLpp3H8ttsg5rJ4tnsN9n/o02VbPK2WRFL5vaqpPYf4ESuin4ea9nMpjuNYWjtbBUFCz0GhpaWu5JKGHzFOasdyMZZiX9m6EoDG045evd32+xqJ7oihx5QbPGH5GkZN7ViVpHZ6716ScGltNeSsuynvsmUAx0GOxyFZWOijJr/RNu1eHYIE0PAjgkv4kUWhReDAIV1IYypjrfeF8rQ3dG6wtBAG6Ioia9zqW4soV7taWeSoanr3WExq83OIH5HiJovnADzUrBsuvsa1umVqH6uOHqHjyo19rVV30zghZmrHKpvafbQscqo4qV2YnCR8aZ5n4xo35V1c+brcCBVYUvvUMLVZUnu08fgRj8tJbY9aFtmbnGSLek5p09I2fPbN6wAAv/z9TgBkQat0x0jCT65Nb+gPQKzSUSAKPAtGJDIFyEm1JLKJHmmqRJKs4EsPkXLB91x4mqVS50aI4ziEVARJcoezCJKkWhKpR48YSYhGseTLX8LiL94NPhxG+oUXcOTNb8Hsb39b1/trRZF5VhAZ3LqV3WftqBJ+xGpSuy1EjkuSFcb7pmrytK2rZlP7yJEjZf8dPnyY/d+mTg0p6TTjIHoCarpHUaCkrKejqylFzWz1/9JtmOhUt6yYlEWepSJIaimLpCaeNDXl2DYXIymShIlvf5sl7tyQPmEqK8Umdy3SJ6iKRJnadnjaVMzU1r4vLDkpy2wg6LRo4osW65iJFg0qqZQrZRVzLSlBTO2qSe2x+WtqJ558Csdvfx+UTAYHT9uIf9r2N+jqLP88zNSuwtOmaia17cmvbiXMVCmLzA8Ts0NUF0Ptqhp+5NAMKW3pDfUi4o0ge+QIsvv2AaJY11ZDI1ET199PJuBKOm25ZDXiK2b8mSm1i3AIg1u3NpSnDZAiQWbYW+Bqs6S238DUVo3Z4dnipLZbBpRX8KIrSK5nVrnalKdttSQS0PAjbjG1AS2pPVrN1FZ/3hW1mtRWiyLngqlNxxkGC6xmBXgsqe1wUSSbPJqgR4DGlkQCgNBC7mlyBaY2APSrqfHjJUltVhLZ2dmQlNd8KItkSCOXFsrmm+jOQ3l2lu2CclOKLLPAg9v4Eai7n3pTU66Yfm/buhQ3bluKRQkSYJEX9RX9PJEtYJQn59alvdZ24WgL1XnI6aap3ZSxfvH8IA6OJdAa9ODWi1fM9eEUKXzhRQCAhIOmthSPI60SHULnVza1qVre+Eac9qtfIbDlHMjJJIb+9u+Q3rPH9jFoRZEFxtOOXHGF7dcDNFyRNDPDdnvQpPaiVmtjMJ8osOvGRAlXO980tS2r5pnRsmXLKv7X1KkhthVSECD88ApA5YI6ydWm+BEuRxJvfIvKx6NcbZOyyA1qWeSeGkxtoa0NEARAUVxFTiSffBLjX/0aRv75n117j1IWsF0ECS3+FMqY2uoFV6gnqU3xI1qqiPP5ALXUR467w9Wm2zPpdk0z8aEQOHUQejIiSGhSW1igTO3Ejh0YfP/7oWSzCF96Kf7t8luRFzwsyahXrUnt+cLUrqb5xNQGNK529rXKSW1a1loPegQAPGoiUJ6dNSyXPTB9AIAupf3QwwCA0LZtBJXioJJZ8l0Jh4OsjM0qV9tqUju1kyTJgg3maVNpXO3qpnZC/SzUsNeLJbVjGci5HFs0dKsoEtBxtWs0ta3ytAGdqR1w0dSmSe1q+JE4xY9YZGpTUzufd22XlJnYOCNUbmqLKqO+NKldD35k/2gcH/zx89h7onx8aGXy2MiSSMA6fqSvnSa1S03txpREUjFTu0LXgds61ZjafDjMdj01Iq0tTU4CktSQ9H+8jYxFe1NTjIfrtD79xnXY4iH3oaczgaI50wN7RzDtJcGePlhb9NOQYgUoKn6kaWo3pZckK/jqI2SM+r5LVrIE8XxR6ILzAUFA7vBh5AadWaBMPfMMIEnwLFvK7hNW5O1bgmXf+x7rShr/6tdsHwP7Pc9MIf38CwCAyOWX2X49gPgF9P5KF8ZPqKZ2LYx0iuYrLXumWBOKOWnKXLbiPocOHcKHPvQhXHnllbjqqqvw4Q9/GIcOHXL62Jqax2JM3pAXHAfwXmJq0wmKE0rlCgAUIE8mWUJUnfR2EfPEzNSmCZq9Q7OQLJZFcrrBWWHcPeQETTHmj9XPhjJTtlBsxtkti2RFkaWTTZbUrsPUpilvvanNcawsUoqVm1ROKE8NtSpJbUBLa5+MCBJJXTTgwwvP1E48/jgG3/8BKLkcwldcgb5//RoGk+Q7b2RqU9OXmsDVFPAusKT2PDG1/WsIFiqzf39FY4whgOosPBHCIWb4GBkoB2eKedpxlacducZZ9AigLRyGfCJjgFo3tasntZVcDqkXyAB87kzt5QBIGWg1mRVFAlpSe2Q2zVLaEEXWqeCGFodJqt+KqR3LxXBoloxnN3RusPweMYofcdHUpjiRakltrSjSYlLbq93LG83VpgtShvgRFasgJ5NFC1f1mNqf/d0r+N3uYdz0nZ04PF48XmWTRxNTO5Ur4MAYOY5GJbX5lupFkQAY3/tESVEkK4l0O1Gral4ktSlT+xTBj3Acx9LahQaY2nkVPSJ2dIAT3esQAIDpKBmHBwtZhrx0Wl6Rx7UdZEfrPqEFH//pS2wM86sXTmDWS65NVndfhdV7eiKrMbW5ULMksilN+0biODGTRtgn4l0XLJ/rwymTEI0icPbZAIDkk86ktRlP+4ILan4uJwjo/vidgMeD5FNPIblrl61joKb2msO7AVmGb+3amgx2M5UiSOhOxEUt1k3tdmZqF4/vmvgR66rZ1H7wwQdx5plnYteuXdi4cSPWr1+PnTt3Yt26dXj44YfdOMam5qEkdSukoE4uBBUj6WRZZCovwYc85DwxzPk2amqrSe2J/YBcbjyt6Aoj5BWQykk4NG79eJiJOT5W34FXUPYgMVrkRMIwXeiESnEjdpPaEmNqm5na9eBHyosiATBTW044/7tRFIWlRGkCrJJOZq62TDmmCyypHX/sDxj84Ieg5POIXHUl+u75CtLgGe7AiCFL8RxW8SN+ih/J2cP2NErU1B5PjUMyuA42Wt5VqwBRhDw7y84zIzH8iIWFpWqqxNWmpvaq1lXIHT+OzCuvAIKAyJVX1v2+eimKgmROY0hTBmilAku96HbIeIWkdnrvXijpNIS2NvhWz02ZkE9NalfDj8iyojG1jUxtltTOsl0wYlubq3ziJWHyN7Fiau8d3wsA6I/0oyNgLYWYl2TE1c/sJlO7Wy1+HK+Q1JZlBeM0qW2Zqa0Z8Y1GkLDujkj5vYgPBpmpq7+mRG2a2ofHE9hxgNzPp1N5vPPeXWwBANBNHk0SUS8PxSAr5PdqtIDqhvRJ7UqLhf0qU3twOl1UNMVMbZdLIqloge9cmtqFmVOLqQ3ouNoV7r1OiaX/G7BQMpEFJvxkwdPqQrEd8cPk+zoa6cQDL4/g3/54CCOzGTx1aAIzPtXUnrLWyRDVlT/LKZrUbpraTWl69ij5Lm1e1sbmHPNN4YsoguRJR16P8bQtokdK5e3rQ+tf3gCApLXt7Cqj4+3NgwRhUi96hB2brixSlhUMz6pFkRbxIwDQrpZFTuqS2kqhgJx63Wua2tVVs6l911134aMf/Sh27tyJr3zlK7jnnnuwc+dOfOQjH8Hf//3fu3GMTc1D0dIawU++Qrw6J3LS1M7kJASQZaa20Kq2TrctJ+iLQgaYOVb2PIHnsE5FkNjhartp5GUPHGD/f35o2JX3KC24s53UpqzLBhVFAtrEtloqyY6k6WmSQuM4eCxM8MSukz+pbcrU7tbOBae2o+clGXnJvlEcf/RRDN5xBzG0t2/Hkq98BZzXy0rTgl7BsJjOLn5kvie1OwOdEDgBkiJhMjP3iBze62XGZ6YCgqTAylrrS2oDlVOBB6dVU7ttFUtpB8/d6nh6L5WTQE+RsE/Ujsnils2ohaR2Sk2lzAVPm0rDj1TuTqEGP2BcFEmTKySp3Rj2LTO149X/JrQkshaedkxnrrq1RR6wltSeSuVQkBVwHKwzaD0eQF1UaHRS23ScoYoW0enNulaVWz5To6n9wz+T8eK5p7VjeUcQg9NpvOu7zyCWyUOanWU8TMrILNVLx7WSyEaJFVhJUsV+j0Utfgg8h5wkM/wMAORVU9szB/iRRqNsqNh15RQytSlSjyL23BRNgzfC1B5PZDESIouL+ePu7XClJbHXX3seAOBLD+3DJ365B4oCRHvV8fCUtXGWHj9CGedN/EhTej0zQK5RW5fN32sULYtMPf103eOC/MgIcocOARyH0LZttl+n8/b3gfP5kH7+eSSfeKLm54d9InyFHDaPk4JOp/p19EntiWQWeUkBzxnvHjYTw4/omNr5oSGgUADn87HdOE2Zq+bZ0auvvor3vOc9Zf9+880345VXXnHkoJqa/6LbwDgvGbRyIjGAJCeT2jkJQWQh5VXjnDK1eQHoJFvdTREkzNSesfx+LGHi0sBJkSTkdGWqNLHotDKl+JFcnaZ2aVGk5ISpraYWCsWmNmU8O7k4QpUfJosIQmcHOG/1NJ2gJvelibk3DJ0WZWoblXMB2gKPkstBdmCBoSDJuOarT+ANX9thGQmkV+yhhzB4x0eAfB7RN7weS778JXAqf31UTdr1RP1lac+8nMd4mixSWcaPLBCmtsALrABvvpRFMq72PvOySHoeehY7YGqblEVOpicxnZ0GBw4rWlYg9uBDAIDodvfQIzwH+D08vBQ/YjGpyJjaafPrdJLytLfNDXoE0Ezt/OAJVhJtJPr78AgcfGL5ELO3hdw3hmczkKbVksh2dyd2fRHyNxlKVr/nvjRBTO1aeNo0MRzxiRAF9xYdWFI7kTW9jtJFvo6QFx6Lx8Jx3JyVRdJdWYIZCouWRepMbYofyRVky9fpVK6Anz1Hxnbvu3Qlvn/zNnSGfXh1OIbbf/AcEofJDgSxq4vxiUtFQxJnNQg9AgC838/+NpXwC6LAY5G6C2JQVxapJbUbZGr39AA8DyWbhTRHgQCNqT1/DSOnZVaq6oYot9vT4/53aiKexUiQLHo6xfYtlZxMQlKxk298/Vb89balUBTg0dfIubPmjH4A2mJJNenLn5tFkU2VSlEUPHOEjH22LJ+/Zbb+tWshdHZCTqWQUvnTdpV8+s/kNdev1xZqbcjT0422d9wIABj76tegyLUFpUSBx/kzh+CX8uB6F7E5S73yLl8OAMgNDGBoRsW/RfyWx2AA0BEmvoQ+qZ07ShbivUv75yzQspBU82+oq6sLL774Ytm/v/jii+hu0KCpqbkXLa0pcLQ0kExkZQeLIlN5CQFkNPyIftLDyiKNE4Eb1EnHq8PWDTnfasJezVQwZOpR7tixotVOt4p0yosi7ZlzNBVUXhTpYlI77F5Sm6ZLrCZExY6TOKlNjQQTji3v8zHGrRM7F07MpHFoPIkDYwmMxCqXnJUq9sCDOPHRjwGFAqLXXYfFd99dxHEcrbDVfjw1DgUKPLwH7X5rg0fK1J7vpjagIUhGUu5PZK3Ifwa5LtPugFIpsqxNiB1IHZgltSl6pD/SD3F0Cpk9ewCedxw9AmgmbtgnguM4XVK7tqJIs6S2nMsh/QIZc4XmiKcNELOP83oBSaq4xZ2WRNLfR6l61aR2PFNAaoxcW8V2d8vGKFN7KDEEWTGfBMmKjD3jZFtqLUltmhhuCbpb9tQZJh0mkqyUlQlRjca1CVUtogu9crbBTG2W1DZeYPUYlEWGfSIEtZzcKoLkVy8MIZ4pYFlHEJes7sLSjiDue/dWhH0i/nRoEvf9lHBDK5ZEquWSGxqY1Aa0+3S1skiKIDmuN7VHG2tqc14vS/DOVVnkqcbUBnRJ7eEG4EfYd6oxSe1R1dR2K3CUU19XaG2FEI3i0288E5uXknPcK/DYvJGUTVvFj1DsVjyrK4oMNk3tpohOzKQxEstA5Dmc3T9/y2w5nkf4da8DACR21J6K1iv59J8A2ONpl6rjllvAh0LIvvoq4g89VPPzLxh5GQBQOP8ix7B3+qT2kHr/rQU9AmhM7WJTm+wg8SxtokesqGZT+9Zbb8V73/tefOELX8COHTvw5JNP4vOf/zxuu+02vPe973XjGJuah5JmVXyBSE4+j0hNbecStumchFYpCSgqfkSfKmWmtrF5QhtnqxUq6eVbQ14zu/9AlUfaE+VpUxWGXcKPqExtdc7HTIZaJSVNJpuOMLWpqV3M1KaMZ9kF3jhLiPZaG4ifzEWRNKktGHBMqZzE8Ryb0v7Ox6dSFR5ZrNj99+PEnXcCkoSW69+ExV/4fFkx0eisltQuFUWP9AR7wHPWbncaU3vhmNrzJqm9Rk1qm+BHpMlJIJ8HeN4Rk8WM36rnadOUdnDLFnZOO6mkztQGoBVFDg3dxQVqAAAgAElEQVRZSpFo+BHj63Rm924omQyE9nbCLZ8jcTxvqQQzljHnaQPk90R/V7FhYo64jR/pCfZA4ATk5TzGUuadGQOxAcRyMfgFP05vO93y68+mVFPbxZJIgKSMOkIUQWK8OKiVRNa26Mz5yIRKyTU4qR2vgh8xYAVzHMcwL1ZMbUVR8P2nBwAA79i2DLw6OFq/pAXffsc58AgcRl8l1wyPiak9m87jyARZ6Kc7ARsloVXjaldSfzsZVx2f0sICWlK7MUWRgIZvMVvcdFNyLqcFMk4hU5udJw0oimwkfmQikcVISDW1T7jD1KZpSM8y8r31iQK+/Y5zcMHKDnz4ilWILqL4EWumdjF+RC2KbCa1m1L1rIoeWb+khYVo5qtCFxOudrIOrraiKHXztPUS29rQ/u53AwDGv/avUArWPQ5FkrBpkPSmJLa8ru5jofIsXQpwHOREAuPHyVhlUWtt5zxNauuLIpslkbWpZlP7k5/8JD71qU/h61//Oi655BJcfPHF+MY3voHPfOYz+MQnPuHGMTY1D0UH116RTKAED5m8y0lnTe22vGpuciWDgipJbZpSGotnLHP9aFK7MDJSdfJgR7kSU9stpnZWTZjS0gH7TG2zokgH8SMlSW3KeHajRLOWkkgAEDvVosjJk8vUVhSF/X6NyrmonDS1j07WbmpnXnkFJz7+t8TQfstbsOhznwMnlA8A9fiRsp+lyOTLKnoEWDhMbUD7XPRzzrVoUjt39ChjSepFF5bEri6Gj6lHen6rXgemycLkytaVjKcd2X513e9nJLpoGKKmNt1+n8uhMF792hGpYmrTlvfguee6WqZoRawEs0JiTkuum/99aVlkepwmtd01n0ReZEz9SmWRu8d3AwDO7DgTHt7695Maq60uJ7UBbUfKeNzYfKb4kZ4ak9q8V8WPzBFT22yBld6vS8tnaSGnFVP72aPTeG0kDr+Hx1u39BX97MLVnfjSW8/CkgT5Lr4gGx/HHhU90t8eQFvIvTJQI/GsLLLyDjatLJJce+VcTkstN6goEiALiACQ/PPTDXtPKmlaRQ4KQsXxzckmylutVNLslArjjSsfnYjnNPzIcZdMbZWn7dWlIbujfvz41vPwwctXQ2gj7y9NTVmaT+rv6TJLahsv2jV16umZAbI4snX5/F90C11wAcDzyO7fb7uENnfwIKTxCXB+PwKbNzlyXO1/8y4Ira3IHTmC2V//xvLz0i+8gHAmgbgngKmVZzpyLADZ3UxRaYlDAwC0cKVVsaLIhD6pTV6raWpbU82mNsdx+OhHP4rBwUHMzs5idnYWg4ODuOOOO+Z8wtVU40RNX5+o3rA95EbvKFM7L6G1oKZ4vFzx96tL5SBN7AcMBhk0pZTJyyw5Vk1CJAJR5bxm9++v48iNlT1ATG3/+vUA3MePdKqrfgkbprZS0G2bK2VqU1NbcKMokhjoNEnspPIjFHtQW1JbsmBMLSQpmQygrmw3KqmtN7KPT6crPFJTcucuQJYR3LYNi/7ffzY0tAENP9IdKf8+1loSCQABL7ktLghTe54ltcXOTsKiV5SiUlyqPCuJdKbwhDK1penpIhOdJrXPKHQi/dJLAMchctVVjrxnqZiJq6azOI+HfT4rXG3G1DbBj6R2ElM7NIc8bSpvH2GLVirBpCZ/pEJhImX/5iZUpnab+1xJWhY5lDC/79KSyFp42gAwkyKTELeT2oC2eGeW1Gb4kVqT2ip+pNFMbbYjLGSCHzFgagNAVP1dz6Sqm9rf+9MAAOD6s5YwM1yv689egq0esoj/oxMKfvF8uXm2+0TjSyKphKi1pHZfSVJbUu/dnMcDobVxxx26gKTxUk//uWbmab1inP62tlOKQUoLVaXpacgun8N5FT/iaXRR5PAwFMn5cVn+GOXWGhfE0kVXRbcLoJIi6gJ3osnUbspANKk9n3naVGJbGwIbNgAAkk/aS2sn/0TQI8EtW8Bb6LOyIiEcRsettwIAxr/5DcgWF+PjjzwKANjZeyZiOWfvTT6Vqy0dGwAALG6pLVjAiiIN8CNNU9ua6rrjRyIRRE6hlfCmNMkxMrgWvWSAwYtqUttBpnY6V0BLXt1G6C8xtNpXALwI5BJArHyC7fcIbFI9HrfO8PWfrjJh3TC11aR2WN3Ok3cNP0L+JnQri52ktt4gMjW1HWFqF6c5XU1q05SoRUONFkUWJictp/0XgiS6YCAI4EwKsQCdqT3mLH5k0GJSmxqCgY0bKk5OKyW1makdrMHUXiBFkcD8S2oDgH+NOVebluOKDpREAoQ1S9N4dJFQURRmai97npzzgXM2w+MSU5YW8VKkBqBnfVdPlum3KpdKzmaRVjtMgnPI06aygh9JZLXSRDPRc1WeUQvdOhpnag8mzI+dJrVrNbVn1ZLPloD7CV66eDdWJandbXA9rCRWRthgpraGHzEpLe7R8CP6+zBdQKiW1B6LZfDAXnIfuOl884lh6xR5zFCoA3/38914fH/xfW/38caXRFIJLRbxIyVM7byuJLKRoaPAxo3gg0FIMzMVS4PdkMbTnr+sWjfEt7SA85NzvuAigkROp1l5eEPwI/EsJv1RwOMBCgVXkui5Y2TnkXeZsanNB4Nsp7AVrrb+nq6oc6kmU7spgKDK9o2SOdiWZfM/qQ0AoYuIZ5F4Yoet5yf/5Bx6RK+2G/8aYnc3CkPDmPnpz6o+XlEUxB97DADw5951prsj7Yqiy8RhMsa0jx/JQVEUKPk8C5B4lzdNbSuyZGpv3rwZ0+pAYdOmTdi8ebPpf02dGpJmyOBa8BIzW1CT2o4ytfMSIgUVgVGa+hI8QIfKFzVFkKiTv1q42qcTjqbTXG0ln0f2yBEA2g2iMDYGJW+t5KgWZVSmdmdYxY/kbJja6t+R83rLV1YdZWqbJLXdYGqrg2HPIqtFkSQdomSzjn6v51pyXOXhh8MVJ7qu4UemazO1qUFoJmpq9xqsittJai8kpjY16+eTqe1TESTZfeXX5QJLajtjagPlZZEjyREk80mInAjv488BAKJXb3fs/UrF8CNenaltwfyloluVjZLa6ZdegpLNQujshHfFCicOty55+snnylX4XPEqTG1AS2rzs6oB5TJTG9BM7RNx45R5Mp9kiyG1lEQCwEyaGMGNwI90V01qU/yIXab2XOFHzIoiyTVOSaWKxgVWTe2f7DqOgqzgnGVtWG/CwpZmZphhvOX8/5+9N4+To77P/J+q6uru6Z7uuUcaaUa3kEBCSEiIG6/tBLBNDE5sA7EN3sQ4YHyAvet1vEmcfWGTxIaf+WFvcPAV44PDG7CJj+Al2JwSN4hDtzQjaUZzn33X8d0/vkdV9/RR1V3d0zOa5/WShTUz3TUz3VXfer7P5/2cCd0kuOknL2PPiUnxOaIkcvkcJLWZqc3DJIXU00pN7ZNTKeiGWfOSSC5JVdFwDkOQPFdbBAk3tZXm+WEYeSVJkkRyulxMgBNxw1wKhQpuRHmllGbQskVJhsKmsqqBIMmUSGoDVumoM1Pbhh9ZZGovyqaXj9HXz5qOMNoaKwiG1VA8iBd/7jnXngXRNMRffBGANcHjleRgEO2fugkAMPqd7+RFHtqVPngQ2rFjMHwqXl6yoeB0ZLniaerwCA3TuMeP0DWYbhJMJ3V6T2MYkILBml/D56scmdpXXnklAizFceWVVxb9s6hTQwbbqZeZqS1zpraX+JGMgUZmeirBPDeLJcoieRqsUKIpn4Sp7XG6JHPsGKBpkEIhNGzZQnmypilKfLwUT5jyQqlY2r05xzEyeRetBk9qV5BKE0ztnKR2tDpJbWKaYjHudGRSbmgQ3/9CKosUPG32sy4kr0xtQkg2fmTcGX7EialNCLGS2nkYsoOJcvAj84epzb+vocQQTFLbMe9CCm6kaKi8SW2XG0tOxBEkGfZ6OThJNyS3YDlSr74KAIhcWh30CGCdX+0mrmBPO8CPRBvYqHJah2lmT4QkXmA3AzvPqQu8m99RUnt2cj1X/Nrsj7ENthrgR5Y10tfJQDw/fuTN0TdhEhPLwsvQEXLHiq1VUSTgJKnN8SMumdrqHBVFFltrgF6HuanL8UUA0NRQuihSM0z89Hk6vntdkZQ2H/H1LVmC2/98Jy5e345ExsB//eGL6B2NYzSWRv9kEpIEnDknSW22LiqR1O5oDMDvk2GYhBrbPKldg0RtrngqL757d02fV+em9ilUEskluNpVTGoL9EgN0v+8N8CvyAj2MPSVx2WRZiolpjgLlcQCgMJCLk7KIvlaIJa2MbUbCk9FLurU0YsMPXLOyvpHj3AFN22C0twMMxajOD8XSu7ZA5JIQGltRYBNcXqp5j/9U6g9PTBGRzH+k58W/dwYS2mPnnYWUr4Aph30cbgRN7XbJuk5ssslfiTgU8S6eSyettAjK1acUiitSlT4rsOmr3zlK+K///7v/75ax7KoeSS+uFaEqe09UzuZMRBmqWA5DweRcrV/WTqp7QY/soGZ2gcPghDi2aKN87QDa9dCUhT4urqgHTsGbWCgZBLVjUyTIK3T30lF+BFeEpmLHgFs+BEvktrZvxvOePY6qW2Mj9MdZklytePpa2tDJhaDMToKrF7t6THNlfjPthhPG/DO1J5MaJixvQaHZlJI6wYCvsKt34QQR6b2dEoXkwn5GLJlMbVFUWR9mMTF1NbQBlmSoZs6xlPjaG9on+tDEgvX9P79IKaZtRgTRZFd3jC1Aev1oTP8yOHJwwCAdxyh56eGbds8Y3jnUzyPiSvS40XY01xRtmFLCJ2qidg2cBPPPw8ACO0817PjrUQ8gW6Mj8OMx/NeH2IOk9qqoSOQpjf81S6KBIDuCD32Qkltjh5xm9IGbEWRNWRqD+dJapsmEUbQErdMbRZcqSVTmxBSfAOdydfVBWNqCvrQIMDWaM0M9TKVKJws/91bQxieSaO90Y/LNxc+B9i5lX6fjHs+uh3X3LsLb/ZP47ofvIBPv5NOBa7taCy6WVMtiaLIyeKmtixL6G5uwJHROI5PJLCuhoV+ueKmduKll2BmMp6xVEvJGD91TW3eF1PVpPYwNcxrgh6J0XNRRyQAVS1dUlyO+Aat3NhYlDuvtLpJals9GVZR5KKpvSjgJVYSuWMelERySYqC8EUXYfpXv0Ls6WdEEbATxZ+lPO3weedVxZiV/H50fPpmDPyPL2Hs+99HyzVXi3BcrjhPe3r7ecAMHPetOZWfMbWXx0cQUCSRvHaj1rAfsbSO8XgGzYs8bddy/Qpbs2YNxsbGZv375OQk1tTBeOyiqi9iGJYx5qdmtlwl/EiDRhc1cijPDVo7vbkplNTuFDd/zm/S/KtWAaoKMx6H1u9dkSPnaQfW0Zsjni70mqvNDW2ApnaA8ooizXiRG02BH6lGUSQ1Wr1OavOEl6+jg6bkHUrpYFzthZTUZkxtuUamdh9LaS+JBtCgKiAE6C9RFmlOTYlCHv5eySdu7DQ1qAIbwpUxMhhP0QUkL1R0IsHUngf4EVVW0R6kr9F6KYsMrF4NSZxDsw1EkYjyFD+SndTmCInT91B0QOSySz17rnzi59dwwHr9iUSzg6R2wCdDVejmqZ3xZ6bTIhVTDzxtgG6E8dRspoBhz7+HYkztpU1BRDOsf8PnKzk14oU4fmQwMQjNnJ3QKbckEgAmualdC/wI26wfyrOuGU9koJsEkmThx5xKMLVriB8hqRTAit+UIqa2KF7NSmqXxo/ct6sXAHDtzhVFN1EzfQw/wG4eGwM+/PDjO7GiNYRj4wn89SNvAAC2FMCXVFuCqc0mJIupmyFITownRVK7Wn0CxRRYvx5KWxtIMil6AWohgR+pwUZZvcm3hCW1B6u3FuApcN+S6r+m+AZde6Mf/p7SJcXlyI4eKYrja+VJ7YmSjxmxJ7UXmdqLYkppBl5n3QznzIOSSLsaL74IABB7+ilXXxffxXjaHqNH7IpecQX869bCnJrC2A9/mPdztMFBpN58E5AkZM65EAAw4zV+pLsbRFYQNDSc4c+UFYrkRvhYPINMLzO1F3najuXa1O7t7YWRp304nU7jhAN+5KLmv+wLa4upXR38CDe1lXwLgg465o6RfTTmlqNSY7r5JKkqAmxzJn3AOwTJLFObjd9rA96a2vZyu4qS2sxQVKqW1C6AH+FJbQc3b26kDzFT22Vi09fGTe3ZG3nzVWaMbUhFS5jaLN1lxuMlWWXFxEsiV7aG0dNK38fHS5ja3KBUOtohBwu/zrixky+VyDnTASWA5oBzDmpwHuFHAKsskqNW5lqSqsK/np7nUvusKRqSyYjNIdWjokj6WGyDkCW1D04cRFOMoGkv/f/RS2tjajcGLENTJLVPngTJs16yS5KkvFzt5KuvgWQy8HV0wL96lbcHXYEsXnj+xJwT/MjSaBDNacZSbm6uyWhle0M7/LIfJjHFBAcXIaSipPYkSwtHa5jUHomlZ+Fq+AZ+W9gPVXH3M5VYkpbUsChSrBdluXhpsUigWuulUqb2/sEZPH90HIos4c/PLczKBexJbevzOiIB3PcXO9EW9sNgP+ctc4AeAQAl6qwoEgB6Wug19sREIqsostaSZBnhc+mESaKGCBJjkhdFnnqmtsomoKqZ1OavKacYv0o0GqPnovbGANTl7LrjcVKbb2ipBUoiuURSO0+oL1f26SsjzkztRab2Ka83+qeQMUy0Nwawsm1+JffDF1IjOP32XsdBJyMWQ3IPXVd5XRJpl6Qo6Pjc5wAA4z+6D3qe9ygviGw46yw0sPXEdNLbpLakqtA66GOfbkyW+Oz8ame+zVgsY224LSa1HcvxqvfRRx/Fo48+CgB47LHHxP9/9NFH8cgjj+C2227D6gUynr+o4jL5wjqgQGKvINnnbVLbMAkyuomgThc1cjjPBaBtHSDJQGoKiM1OJnSUgR8BgABHkBw44PKoCyt9iHJeA+tzTW3v0uAAkNKpgaIqkrjBLg8/UiypzUxtpQpJbZbYI5kMTA/HoDVRUOfS1G5fyEnt4ulIORwW5TaVpLU5T7unNYSellDWvxWSaHxeVhzNM8h52nn4sXb0iJsdcws/Mk9MbZZCr5ekNgAEN9ANx7SNq60NDwOEQPL7oXhYDGgVRQ7AMA0cmTqCnQcIJEIQ3LKlaNLfC1n4ESsJ6uvsBFQV0HVHfNMoS3bZk9qJF14AQFPa9cDT5lJFYi5/iIGjhiL5ejCYWsN+tOn0HECaalO8J0uyxdWOZV93j88cx0R6AqqsYmPrRtePPcVujjgSo5pqb/RDkugaaSyebUAPsbVOZ55+gVKSeVFkDfEjxoy1zij2GueTHfYEarSEqc1T2n98+hJ0NRU3lLipncvUXdUexg//6zkIsY3OHXOUrlOanZva3fwaO5Gcs6JILp7Oq2VZ5CnN1BZJ7WoWRbLXVEftktodkYBVUuxg+smNMsc4t7a4ccTLjPWJ0viRgE+GT6bnMyNJr3OLRZGLepGhR85Z1VJXazon8rW3I7hpEwAg9syzjr4m8cKLgGFAXbnCU8xqPkX+6I8Q3LwZJJHA2L3fnfXx2H8+wT7v3aLHxuuiSACYbqPn4NXp0ueJfOJJ7XEbU1stUmC7qGw5hsNdddVVAGiq6Prrr8/6mKqqWLVqFe68805vj25RdSm+sJZsN/G8KNKIxz1hUXNDyc+adpXGPIlhNQi0rAbGD1MESSTbsOQ3dm7wIwAQPO00TMM7U5tkrDESkdReXh38SJIhE4KqgrCfj8BVUBRZNKldiamdP6kth8OAJAGEwJyZgRzwph2aJ7xUlyxfXzsbORxbOKa2OcPK2SLFm+slSYKvvR3a8ePQR0bK3i3uG6Op/xWtITGWeXyihKntgKcNwCqJLGZqh9z9zucTfgSwkto8mV4PCm7cgCkAqf1WUlu38bS9XND72WvEGB3F8dHDSBtpXMC89Ohll3n2PIVk4Ues5ZSkKFBZb0LmxImSxjo3gO3jkPEXGE/73PpAj3D5eQlmgTHwGPseijG1JUlCj0Lfu1qkdunX5Y3L0Tvdi/5Y9rFz9MgZbWfAr7gzpgkhmEpSc7kW+BGfIqMtHMBoLI3hmZTYvAfsJZHur5uSnzG1tRomtQXmLM86wyYrgWqtl/jPOp+pPZ3S8Mir9Hd83QXFr1uEkCymdq62dDfjFzdfiN7RODbPMX7EdJLU5tNQ4wmrKLKz9kWRgJXOS77xBoxYrChixisJpnbzqWdqC6Z2FYsiLfxI7Zja7Y0B+LvpOcAYHYWZTHqWfNb6LPxIMSkMP2KMlTar6PSVDxMJDWSxKHJRTC+xksi52hytVOGLL0LqrbcQf/ppNH/gqpKfH3+O8bQvuKDahwZJktBxyy04/olPYOL++9H68etFeNCYmUGchUQa3/VuRBmC1OuiSAAYaVqCdgDLYuUFwVrDdB02MWXhG/0rV3l0dAtfjpPapmnCNE2sWLECw8PD4v+bpol0Oo39+/fjiiuuqOaxLqpOxPEjMrv3S5CAYGpD1z1J+iQy1Cjwa/TvgiVCAkEyGxXCb+zc4EcAIHAaTWqn9ntjamf6+gBdhxwOw8dOsiKpfdLjpDYrtwuqVotuRUWRRZnaFeBH+NfmJLUlWRbP6SVXmye8eJLFqRSW1DZGFo6pzX+uWUnt8aOAOdvE9YKrLfAjbSF089Ho8eL4Eaem9rAwtQvjR7jp61QN8w0/Eqo/UzuQL6ldBZ42QEvUeAlT74GXEEkQnN5Hz4PV5mkD+U1twDJ/nTBAIzlJbTOZROp1NrZZJzxtLoEfKTAGzn8exZjaALCc0OtyIlQcg+SlOFf7xEx2yrwS9EgiY0Az6PqnqQb4EcA63+Vu2PP/v6SMpLZgatcwqS26WcLFzU6RQHXI1H745RNIZAys72zE+Wvaij62MTkpcGeFjK3TlkRw6abqlc2WEi++MhMJWnhdRHwaamR4UkzczVVSW12+nKbMDIOm9mqgU5qpvdQyfkmV2PgaK4pUa8DUthdFKk1NYpKz0JRQOeLFk/4S+BFeZuwkqQ1YG9XC1M43bbyoU0amSURJ5DnzqCTSrsZLLgEAxJ99tiRWD7DxtKuIHrErfOEFCJ1zDkgmg9F/vkf8e+yppwBNg3/NGgTWrBZTXl4XRQLA8TBdb7RNlHc/1saS2lp/P2CakEKhOSl6nq9yDTI8evQo2pnRs6hTU7yBXfbTk9px0gHZR8Dpjl4gSHjiWGU4jYJFUh0b6N8j+2Z9iDO1Y2ldmOROFNhAHzPT2+tJaVL6IEOPrFsnEorc3NYHToLk4YGXK44fCaqyKC5LaoZgQjoVZ2rnTVB5mdQ20rPMVJkliE0PTW3OGHSf1Gb4EQccvfkiczqHqX3gd8DdW4HHvzLrc70wtY8zA7unNYSeVj4a7VVSmzO1i+NH3IgXTuomgWaYJT577sW/v7rCj2yk51DtxAkx9VEuAqiUJEkSr5Ohw29g5wECmQDBTZtEYWM1FS9g4lpYFOemNk+OJF97DUTT4FuyZBYSYa6ldjP8SH9+YyHGbhSKJbUBoNOk54WZYO1MbYEfiWdvJldSEslNVVWRBKai2uosgFYT+JGyktq1Z2qLibASpcUiqT00JNZLdlPbvoYihOC+3TR5/bHzV5acCtFYStvX1VW0v2EuJUcidIINpcsi+caxPkpT2nIolH/SsUbihkZ8d/URJIQQYWqfikxtpaVFFKFrw5UVfOcTMU3o7HFrkdS2iiLp+UwVU0LemNokk7HWmiWT2jRdazgoigRop4TP1CEx82+RqX1q6+BwDNMpHSG/gjO6ql+MXQ01bNkCORqFMTWF1BtvFP1cbWgImcOHAUkS3QrVliRJ6Lj1FgDA5MMPiwksgR5597sAWLi/WFp37Y2U0mE/ve6ER8qbwuf4EWWAnuNKFdguKltltfPE43H85je/wXe+8x3cfffdWX8WtfBlTFNTW/HRm7njpIOut9kNnSemNktJKvzvQiPKRZLajQGfuMl0gyDxdXZCbmoCDIOelCsUL4nk5WmAldQ2EwlHI6VOxZEJDaqSlRyMuUxr899h3nFRwwtT27bAy0lrKyxBzNnPXogzBl0XRS5EpjZPajcyI+E4K3E6uWfW51Zqaqd1AwNT9Pe7wg1T26GpXYypzU1enmR2Ko4fAeZHWpt/f7nld3MppblZvNc4xolPpfg8LInk4niP6WOHcN5eukiN1AA9AgBxhnfKTWqLYisHN+BWUSQ9T8frlKcNZONH8m3IzjgoigSANo1unE6otTPclkfosffPWBsNST2JAxP0NVqOqT2ZoOugpgZ/zX5X/Hw3VCCp3ZnnfFhKEmdqVynhmU/WRFjx1wA30EgyKdZL3NTWDJJ1nn720BiOjMTRGPDhT88uvakl0CN1zK2UFEUEO0pxtVvDfoT8CloT9PPmKqXNFT7/PABAYlf1TW0zbiXZT0WmtiRJ4rrLy9G9lDE+Dug6wNB01ZaFH6HnJr8oi/TG1NYGBmgasqFBrHULiTO1jbExR0GkSNAnOqGARVP7VBfnaW9b0QyfyxLnepHk8wmUSOypp4t+Lk9pBzdvFvisWih09tkIv+MSwDAw8q1vg2QyNKkNIPLud9O/bX0vMY/T2m9K9Hv1DQ04SrPnqo2f6wY5eqS+Qi31LtfvrFdffRXr1q3Dtddei09/+tP46le/iltuuQVf/vKXcdddd1XjGBdVZ+KLalWlF+wThC0G/PTlZLAblUqUYOaszHAacqEyqQ6KCsmX1JYkyZZocm5qS5KE4Pr1AIDU/tlmuVulD1JTm/O0AUAOBqG00TEVL7naVlJbySorcYsgEazLfGPBXiS17egSPTttprDUlhnzxtQmpmk1tpdrajtcyM4HiZFvntQeP0L/js827oWpXWbqp38iCUKAkF9Be6Nf8D4nElrBjRZCSBn4kTxJ7UR5SW1VkaCw98184Grbmdr19BoNsomX1D56btZFUrsKpjZ7nfgPnsDmPvoziNYAPer96GkAACAASURBVAJYHOxZpjbHdDhIakcFU5u+JxLPU1M7XGc8bYBtIEgSSDIJI2eCxTSJeF+XSmpH0/QaM6zU7ma/u5H+TuxM7bdG34JBDHSGOl2fKwBgkvG0mxocV9RUrMJJbY4fcX9t5v0VtSyK5Nf4UqxlORgUJiXnBYf8iljf2BEkvCDyT89eXnJjBUBRnnY9iSNI+KRkIUmShJ6WENpSNNE916Z26NxzAUlC+uChiia+nMiYpClaKRg8ZU1ElW0AaVUoi+TvPaW9TSTCqyl7USRgKykuMCXkVpljjKfd01NyQ5IntYmmiUnWYooEVcvUVtWa/LwWVb/i6JEdK+cnT5ur8eKLAACxZ54p+nm15GnnqvNznwMATP/61xj/8U9gxmJQOtoR3ELxcn6fjKBK/SovyyKnUxp6fVFokgJkMmI61Y3aGFM7Mkp9oXpfl9SbXJvat956K/7kT/4E4+PjaGhowO7du9HX14ft27fjjjvuqMYxLqrOxJMyfj89GUwGqEkhqXRR4CV+RNKoQSE3FUhdtDNTOzGa15QTZZE5N3+lxBEk6QMHXX1dPvGkdmDd+qx/t7jaHpranKntUyBJkjBa3JraxYsiPWBqyzLgYzcduWWRzNQuNWbrVProKKBpgCyXTGPkim88QNM8TdTPpWYxtYWpPfuGs9KkNudpr2gNsfIcVRR8FUprG5OTMBP0Y2qRVK9pErFZlY+pXS5+RJIkkdaeD0ntzgZqWmimhom0s9HYWiiwMZurLRBA1UhqM1P7rFcmoRBA2bCuJotBQgji7FoVCeYmtWl6POMCPzKT0pDp7UWSjXaG6oynDVBMBU8D5qbQE5oBvq8SCRS/iQ8l6XnoJGqHfOBM7ZHkCNJs4mjPKJ1QKSelDVjImOaQu4LJStRZIKk9Iooiy0hqqzypXTtTW6wzGksjaHwcQcLWS5IkiWsJT8v3Tybx+F5qvH3sPGfvf17iXe83jzztxicli6m7pcEytWuAiSgmX0sLAqfTa0F89+6qPpcxTo2jU5GnzSWS2oPe48h48ahag+LRZMYQ19b2SA5+xKOkdoaXRJbgaQM0aS2x7g7+OiumSNCHoJERX7uoU1svspLIc+ZpSSRX+KKLAQCpN96AXuB9QAipOU/bruAZZyBy+eUAIRi+804AQOS/vBOSbFmePEiSr5OjXA1MJmFKMoYjNAyX6et1/RitLKndNknP3/W+Lqk3uTa1X3vtNXzhC1+AoihQFAXpdBo9PT34+te/ji9/+cvVOMZF1ZmMKV4USZAiKuRGtsDx0btZnvKtRMmMARACwja6leYCFwJ/GGhmC5I8CJKOAoVKpcTLIvnofLkyMxmRBgjY8COAzdTu964sMsVMuADbheRJJdf4kTg1FfMXRfJfSgVJbcBCkOTiR1iC2Jyp/HUE2NraOzog+dyl6WS/n6JosHAQJLwUS4k0AoQA4730A4lRwMxmSHtlanOWNoCSCBL+flA62osyTscTGegmgSRZzEWupJ7EZHoSgHtTG7C42vPB1FYVFW1BuvlSj1zt1H6a1LaKIr0vXOMGcoCd5louf6/nz5FPad0UTL7ZRZE0FawPDZVEOnBTu/nNl3H0w1cDmobAxo0imVZv4t9brrnARzl9siSSMAUfI0bPQ8dJ7Uzt5kAzGthm6kCMnmdESWS7+5JIwI4fqV0STyS1p63N+lKbfKUkiiLnBD9SPKkNACovi7QlUKM5ZZE/3d0HkwDnr2nD+iXOWO0iqb2qvm8euantZHO9pzWEVpHUnvuSKcHVfq66CBLB024+dU1tdSlLalcBP6IPUVO7Ful/jh4J+GTRV+HnSW2PmNr83qwUT5uLc9qddOwsmtqL4hqYTKJ/MglFlrB1RYGp83kidUknDf0Rgvizz+X9nMyhQzBGRiEFg2jYtrXGR0jV8dnP0PAcu6eN/NG7sz5ulUV6a2oDwGQLPQfztYUb8aLIrhnqN9T7uqTe5NrUVlVVjOksWbIEx9hFoampSfy3l+rv78dHP/pRtLW1IRQKYevWrXj55Zc9f55FORfHjyh+E+OIoDFKF9uSykxtD5LaCc2A39QBQl9rcnORhbngahcui3SDHwGAwGk0VZ2uED+SOXoUMAzIkcishSDnwHqZ1OYmHE+a8rJIzn11KlMkqIoltSs1tZnRmZvUZqktY8abpHalZpqPpbX10YVRFinScdEokBgH0uwmmZhAMjvpy2+Iyza1x+jvdqXd1GYIkuMTybxfw3ENnJ9YSEPM0GkLB6DmMOq4uRvyhRBR3RfRcUMuOQ/wI0A2gqReFNjAktoHDsKYmRGbKbwk10vlYmqil1/u+XPk04yNxxdSs0sClfZ2ahSaZslR8GjAhz87+Ae892dfhzk9jYatW7Hiu/fWHU+by0Kr5JjaaXqD0Bj0lTx2eYqea3p1FabHZT2FJEmSSGv3xygTXJREdpaX1J7kSe0amtoct2Rf1xTb5HMiwdSuYVGkKfodSnPVRVmk7b1kL4tMaQYeePE4AOD6C5zdCBJCLARBnSeilCZnTG0gO6mtzjF+BADC59MR9Pju3VVFZOnM1D4VedpcviXVTGqzgMiS6r+mhm0lkfxaYu+p8OJ1lDnGefrO3vuiLHKi9EQcZWrT70EOhUp89qIWsl7qo6+XM7qijpBY9a7GS2haO/b0U3k/zlPaoe3bBdas1gqsWYOmq64CAEihEELnnZf18aiYjvSOqT0wSe9Jk0uYt1OGqR1UFUQVgo4kDWXV+7qk3uTa1N62bRteeuklAMA73/lO/N3f/R1++tOf4pZbbsGZZ57p6cFNTEzgwgsvhKqq+O1vf4u3334bd955J5qb5/dO13xXlqlNomhmaBDZRw0gwxP8iI6wMDsJ5KYiIzsdNBGI0dmpaoEfmXaJH1lPk9r6yIhYKJcjO0879yafj+HzAjUvJPAjwtQuM6ldrChSMLUrTNgVSGrLPKntUVGkKIks00xbSGWRJJMBSdKftxKJABNHsz8hB0HCk9rG5GRZBWICP9LmIqnNUjileNrc1F7alAc9YuNpl2MMzif8CGCVRdZTUtu/cgWkYBAkmUSCFR/KkUhJfm454huEADDZ3YTA6tWeP0c+xW2liLKc/TqTJEm8hotxtc1UCqu/+w184q1fQSYETR/8M6y470euUUm1lDUGfjzr3/kNQqkbN5LJAOwaM6aGMRqvHfJCcLVn+nEyfhKjyVH4JB9Obz29rMfjKeGmUO1N7ZGZtNgQ4NNobWH/rE0+J5L93NSuIVM7ztcZDvAjjMWvn8xvav/mjZMYj2fQ1RTEH53uDI9gTExQY12S6nYqgotPjPFJyWLqaQ2hLVUfRZEAENp+NiRVhX7yJDK9vVV7HmOCGgGngqmd0U0kMrPX9fk2f7wSZ2qrNUDaiJJIWz+Aupz2OZiJhCNjuZS0Y/T65QQ/AtjKIh3gRxoD6mJSe1EAbDztVQvjvMQRJPFnngXJme4FIBLcc8HTtqvjs59B8Mwz0f7JT84y10U5u8f4EQAwl9PzSbrMa90GMg0ZBCQUshCoi3Ik1yvf22+/HV3MHLrtttvQ1taGm266CcPDw7j33ns9Pbh/+qd/Qk9PD374wx9i586dWLVqFd797ndj7dq1nj7PotyJM/2oqR1BO+PXKczUNj0oikxmDDRrbDRVJZACRYyQKiS1lcawSKNVwtVOH6Rfay+J5OImqzbgPX4kmIMfcV0U6YipXWlSm5niOUlthbGeDY+KIrXByhbi3NQ2xua/qW3fcJIbGy2eNleOqa00NwMM2eJk5DJX+fAj3ey/T0wUwo84K4nkPNklkdmbK9zc5WavWzX4qamdmiemNkes1FNSW1IUgXGK/eEPAKqDHgFogkpj57zEReUlbssR3yzkEzG54q/hTIFxae3kSfR95KNofPpxGJKMn194Dbpuu00YjPUqaww826yPpZ2Z2joznwxJRkxtwNBU7YzUZY10A6Q/3i9S2htbNyJY5ibtXOBH2hv9kCRANwnGE9Q4GWK9IZ15zodOJM1BUaQxwyfCHOBHls4uwOPp+Omkhvt20VTUn+9cAZ9DU5/ztH1dS+csUeZUSpSb2g6T2sn6KIoEqKnXsG0bACBRRa62YGovcFObEIIrvvU0Lvn6H9A7mn2/5cuD6fFKFn6k+qa2KIm0TZ3IgYB4PVeKICGGIa7Lfof4EZ7U1sccMrUZqlEKLZralYgQgnhax8BkEntPTs96zde7FgpPmyu0bSvkcBjG+DhSb72d9TGiaYi/+CIAIHxB7XnadqlLl2L1zx9C+41/NetjFn7Eu6T2ySm6BgswZIjW6z6pDQBrWTeStmR53U5r1qtcz0Hs2LFD/HdHRwd+85vfeHpAdj366KO47LLL8KEPfQhPPvkkli9fjk996lO44YYbCn5NOp1G2rYon/aobG5RluxJ7SkpiuVRmpxXVR0Z+D3Dj7TojN2tmpSdXUjC1J6NCunkTG2XRZEA5WprJ04gvX8/wueWV9glSiLXr5/1MbWL3lzrA14WRWbjR4SpnSfRUUiEEBjxAqxLQgCDJ7W9wo/kJLUj9Dm9S2rTny8vmnIrpZ3jR+a/qS3GvcNhSIpS0tSWZBm+9nbog4PQR0YEB96JCCHC1M7Cj7Qw/Mh4cfyI06R2vlK0cksiuQRTOzM7hVCP4uY9/77rRcENG5DaswczzNT2VaEkEgAMYuDAKhVr+tKIXPG+qjxHPlmmdv6lFE8055q/AJB45RWc+MxnYYyNgUSb8NdnXovRdZvxd/NgESvwIyfyM7VzSzNzZUxQUyDR0AgiyTg5lcSZ3U1VONLZEviRmX5oBjWkt3SUx9MGbEWRNTS1fYqMtnAAo7E0hqZTaG8MYIRt8nWWwdMGAMnPmNpaLZnazNSOlDa1rQK82Untpw+O4rXjk1AVCdfsdGZQATae9jwY8RVFkQ5NbY0ltbXm+kh6hc8/D4kXXkD8uV1oufbaqjyHMcmY2gu8KHI6qePAEH3vfOK+l/DIpy4QyUO++aOPjIBoGiTVu/OS6KepYVK7I5K9wat2d0MfGkLm+HE0bCn/vK2dHAQ0Lav4uJR4AanjokidJ7UX8SP5pBkmHntrECcnU5hKarP+TNv+W7chyiQJ+MH15+CdG+d+w66UplMa9g1SL2OhJLUlvx+h889D7PH/RPyZp9Fw5mbxseSePSCJBJSWFsrerlNx/IiXSe1+ltSOrKWTopn+fhBdd93ltSJBA2SJjurcLy1kuZ9RrKGOHDmCe+65B+vXr8djjz2GG2+8EZ/97Gdx3333Ffyaf/iHf0BTU5P401PnI4XzTYQQmGz8UfETJNUWBEI0Wav66A2tV0WRLRobTVX5/xRQOzOMZ04CjEPElY896VSBDaws8mD5ZZHpQyypvX52UpuXm+kjI56VM1lJ7fLxIySTAXT6+bNMbcN2nBWb2gWKInlSe8ajpDYbV1aXlosf4Vzp+W9qG2yjQI7SnzHGc/Ejs7/Hcssix+IZJDIGJAlY3mIlVXhq+/hEIi8XURtwmdTOY+LY8SPlaN7hR+qQqQ1ALGoN9t4p9z1YSk+deAq3X6Xjf36uFWdtu6wqz5FPfAImUsDU9gv2dLapPfHQQ+i7/uMwxsYQ2LABge//GG90rCt7gX1kJIaPfG83njtcm3OUMLVPngTRrGOecZrUZlMf6TA9Dw25xINVouURi6kteNod5af7J5P0mtgcqm26PncKjf8M802uOJHknwOmdjHMWY74lIc2OCiuG9zUfvIAvTa998wudEScr0syfb0A5pmpPV3a1G7MJBEw6XtxUPUe91SORFnkCy+AGNW5rp4qTO2RmHW+PDQcw60Pvi4wREpbG52uI8TzIIY2TJPaag2Y2vmS2oDtmppno9iNNMbTVru7IcnOrBBfKwu4ODC1o8FF/Egp3f/CMXz6Z6/ia7/Zi2///hB+vLsPj74+gCcPjOC145M4MhrHWDwjDG2fLKEx4AMhwN/+8s150XnzSt8ECAFWtYXKnqKqRzVefAkAIPbU01n/zsuAw+ef5/h9NRfiSW1vmdrUy1iypgdSMAjoelH0YCEtjdH1zGRrdSZbF7IcbR9s27bNcQT+lVdeqeiA7DJNEzt27MDtt98ujuOtt97CPffcg+uuuy7v1/z1X/81Pv/5z4v/Pz09vWhseyiSSgm2ruw3kQm0oKGR3pj6VXpz6wVTO5Ex0KwzAy5Q4rUXbAIiy4CZAcrV7rFS1fzGbzKhIa0bCPjyj4nnfVg2Op86UJ6pbaZSgtmWDz+itLRACgRA0mnoQ0NipLsScaZ2IDep7cLUtiftZxWc6DbzoWKmdoGiSJ7U9srUHuKmdpn4EV4UWQZ+o95ksvJNYSLwpHaoHUiMzkpqA+Wb2n2sJLIrGsx63y1vpgv8RMbAeDyDNttNCyEEmX6K4+GbPoXEOflLq5DUnnemdqg+Te3gxuykhlrmtEQpPbDvAWg+CZdu/iACSu0wAiWT2pypzRLNRNMw9A//iImf/QwAELn8ciy7/WsYNxUABxDPGDBMAkV2l9a+b1cfnj00hrZwABesbS/zu3EuX0eHuHZpg4Pi2iWY2sHi6UBjnJpPBpvy4mObtRBnah+bPoakQW9CKklqzwV+BKCbeW+ftM6DAj9SZlJbDtSeqS1Kix2Y2jxNSdJpGJOT8LW0iBtTruvOd2dOW0ntVa6+bi7EiyLNydKmts7Mx2k1hFjcQD3k5YKbN0NubIQ5NYXU23uz0n1eSTC1mxe2qc03spoaVCQ1A4/vHcJdjx/A5y/dAEmWoXZ2QhsYgDY46Gq6rpjMVAommxKoZVK7PWeTypoSOj7ra9xIFMQ6RI8AtqJIJ0ztoM8ytReLIvPqKbYZuX1lCzYti6KpQUVTg4oo+9v+pzmkokFVkMgY+OP/70mcmEji278/iP9+2cY5/i6K6yWGHtmxQNAjXI0XXwQASL7+OoypKbHpGn+uPnjapcSnCadT3iS1DZOIYEFXaxjpFSuQPnAAmd5e15vm7ZP0Pm6kqf4nEepNjkztq1iDaK3V1dWFM844I+vfTj/9dPzbv/1bwa8JBAII1Dkbbz5LjD7KgOwj0INtCIXpyUxW6W6qJ0xtzUCUM7UL8Eqz1LGBmtoj+7JM7aYGFX6fjIxuYmQmje4W54sLzoNNHzwEYpqudx0zR44AhEBpaoLSPttokCQJalcXMr290PoHPDK1s/EjnPUaTzs358RIcCg0+3vWbSkupcJkmkhqZxsaStS7pDYxDIsDWG5RZMfCKYoUDFOR1Gamds+5wP5fFze1h92Z2sfzlEQCdIqgMxLA8EwaJyaSWaa2MTkJkqBfZy//y6dBnkwsZmqHyjS1OVN7HiRBAOv7HIoPgRBSNxy23PFDr26w7eqd6sWuk7sgQcKHTvuQ549fTKVNbSuprY+Po/9ztyDx4ouAJKHjc59D2199EpIkIaJbr7NYSnddOrj7CN1wm0jUJmXLSzAzR45AO35cXLtiDosiOX5EYubTYA1Nbc7UntHo9aU12CqQJOVoLooiAXsJdjrr73w4JicSTG2PpsacyHRhast+P5S2NhhjY9AHB+FracnaSNi0LIqzV7gzM7U+Zmw5LIqbS7nBj2hszTPWEMVwgULmWkvy+RDauROxJ55AfPeuKpnap0hSm5nap3dF8KHtPfjCz1/H3U8cwsauKN57Zhd8S5dCGxgQuBAvxDdKpGAQcqR0sWulGo3R81B7TlJb7aHX1EI9FU6VKeO972tjTO0Jl/iRRab2LJkmEazpv73iDGztaXb0deGAD3/3J5tw409exr1PHcEHti3Hus7qvx7L1YusJPKcBYIe4VKXLYN/3VpkDh1G/LnnEH3Pe2DEYkju2QPAmsypV0U9LoocjaWhGQSyBCyJBDC4ciU1tfvcc7Ujo/T+tT9c/YDKQpMjU/srX/lKtY8jry688ELs35/NST5w4ABWzoNRwYUq3rwu+SVIEoBwG8KhBmhEgaLSlLAXTO1kxkAHS/AqQSem9kbgyO9ncbUlSUJHYwD9k0kMuzS1/StXQvL7QRIJaCdOuNrRByyetn/9uoImk7psGTW1T3rD1U7mFEWWgx8pmp7iSW0lQMFmlUiY2rlFkXSB4kVSWx8dAwwDUBRR+OhWvH3YWACmdlZSOzVN09kA0HNOaVPbZVKb87RXtM5+z/W0hjA8k8bxiQTOsi1m+Uipr6OjZHHXUBGGLC+KrJipPU+S2p1huqOfMlKYzkyjKVAbPnEpKZEI1OXLxQierwr4kQf3PwgAuKT7EnRHuj1//GIqhR/hTG19ZARHP/hB6AMnIYfDWPaNbyDyrneKzwv4FAR8MtK6iemU5sogHYulsW9whv137QxJtacbmSNHkDlxArzxIpamNwjREkxtPr6tMpNgsIb4kYg/gqg/iukMPRee1XFWRZtAU4naM7UBC7vEE9pDM7w4t1ymNt2kNjO1SWoTQlzhRwBa9myMjUE7OYjg6adnIV+uO3+lq98jIWReMbVlgR8p3RPEDcjxYBTHJ/J3V8yFwuefj9gTTyCxaxdQpBupXPEE7UJnags0RySIP9vejb0np/G9Z47iCw+9jtXtYUSXLkES2aWqlcriaXfWZNPc+h6rgx/hSW3VTVK7hSW1HRVFqgjq9HuQFvEjs3RgeAZTSQ0hv4JNy6KuvvayTUvwro2deGLfMP72F2/hZzecWzdBDrsyuonXjtPpkYWW1AaAxosuxvihw4g9/Qyi73kPEi+8CBgG1JUrSuIj51pWUaQ3pjZHjyyNBuFTZPhZWWTGZVmkmUohOEHvtXsbFt5rptqqX+ANgFtvvRW7d+/G7bffjkOHDuFnP/sZ7r33Xtx8881zfWinrIwpeoKW/Yzf1tiBcEBFAgHIPp7U9gI/oiOi05OE7ORmsYMlAkf2zfqQKIucdnezJvl88K9bCwBIl4EgSR9kJZF50CNcvDhNOzng+vHzieNHgpXgRwqVRAKAzksiPWCDFSyKZKZ2LFYxe1GURHZ20mLEMiSY2uPjIGb5xYHJPXtw8JJ3YOqXvyz7MSpVFlN7gvG0Q+1A6xr63x4ytTl+JK+pXaAs0mlJpGaYGItzpnb2azGuxUUKk7Om3Wq+4UcCSgAtAZZ6rbOyyMBGazxU9bgoMqEl8MtD9P109YarPX1sJ4qxCZhCSW2luVmMHusDJ6GuXIFVDz2YZWhz8aIvt4y/3UesG+xaJbUBwM9T6MetxFzMIVObmwJBNgVTy6Q2gKxkdiXoEd0wBUe81vgRnsjmm3sjRYpznYgXRdaKqW3GE7R4Gs6S2oA1baUzpBg39psaVLz/LHc30cbYGF3ryDLUeYAotCe183VR2MVN7bFgE05M1EdSG6CcVQBIvPwKTI8xN8QwrBL7BZ7U5ilmzpv+0ns24uL17UhqBm647yXorWzNNuhdUpun/9XO6qNHABt+ZFZSm75XtYEBEL18Hi5navtXON/Q8tmKIku9BxsDFn6EBBYOS9krvXCUrgG2r2yBqrizoiRJwv96/yYEfDJ2HRnDL1/z5v7Za705MIW0bqI17Mea9nDpL5hnarzkYgBA/OmnQQhBfBfnadd3ShuwF0V6w9QemGToEYbX9K9aBQCuk9p8sy3mC+KEuUidcCvXprYsy1AUpeAfL3XOOefgkUcewf3334/Nmzfjtttuw1133YWPfOQjnj7PopyLLxp9Kj0R+CMdkGUJCTQI/IjhRVGkZiLEsBRKgwPMRQczTkZmm89WoZL7G+fgesbVzpkYcCKe1A6sW1/wc/g4vjbgzUU5recktf3uk9ocH1M0qV1pSSRQMKltH22sdIPEKoksn+Xra22hqXTDgDE5WfoLCmjy//wb9OFhDN9xZ01HvO0yY9TsVSIRqySydTUQpjdBXia1LfzI7MWcvSzSLmFqdxdP3I7G0iAEUBUJrTkFbTylHVEjCKvlLSQb/PT941URjWaY6B2tHMtUTDyVXndcbRuCxGsW52+P/hYz2gy6G7tx4fILPX1sJ4qXwI9IkgQ/29QMX3QRVj/0EAJr1+b93GiZjL9dR6yNqLF4puTNtlcS5kK/ZWpbTO0SSW02vh1dSs8tg9Opmh03kG1qV1ISOW3bgKi5qW0rijRNIji7+YpznUgwtWt0bRKF4j4fLVVyIFEWya7rZy5vwt//yRn43vU7BDLKqfjNptrVBdlf25LPcsRNbRiGCB4UkmVqR2dtHM+l/GvXwtfRAZJOI/nqq54+tjE9LTZJxM9qgSo3xexTZHzr2m1Y2RbCiYkkHjlBryG8T8YLWUnt6pva8bSOBFt75Sa1fR0ddKrEMKCVadoT00SGbca6wY9wpjbRtJLvwcaAhR/JqIvmVK6eZ6b2zjITzD2tIXzmXXRt9dVfvy0wYPWklxh6ZMfKlrpMkleqhh07IDU0QB8ZQXr//nnD0wZsRZFpb5Pay7ipvZIntXtdPY7GTO2BxnaMJ+rvNV3vcm1qP/LII3j44YfFnwcffBBf+tKX0NXVhXvvvdfzA7ziiivwxhtvIJVKYe/evbihCiNri3Iuk40++vz0Zi7YzMbepSBkgR/xgKmd0RFmBqoccnDDw5PaU8eAdLYRmsuedCPOhE0fOOj6a9MH6dcUS2qrXZTvqQ94hB/J5DK1yzC143wkOI8haPCktgeLNB83tXOS2n6/uMnlDOhyxRNdlRTUSaoKpZkiMvSR8hEkiZdfZo8xgunHHiv7cSqRSGpHIhZPu3VNVUztovgRhgE6Pp5ratMbjVJJbZ7s7IwEIeeU6vGkcrkpbcB6/6Q8Smp/+4lD+C93/AEPvVRZuVEx8bLI+ktq03Oo0t7uqXlECMED+x8AQFPaslT7wTPOkI4UMXGX/eM/Ytkdd6DnX75T1Gzhj+E2qb3rsFVgm9FNYQZUWxytkrGNgTtOarOiyJZldP2QyBhZBnG1xU1tRVKwqW1T2Y8zyZLxkYAPPpdps0rFsuGVbAAAIABJREFUJ1SGp1MYT2SgmwSSNDvZ6FQcP0LS6ZpsMAj0SDhs3fDraSA5UfBrfKzsWWMTWJIk4eMXrsY5ZRgjfCx4PqBHAEAOBgX33CzB1dZHbKZ2HSW1JUlCiKW148/t8vSxOU9bjkYhqbXdYKq1RmKz0RzNIT++e90OhP0KXorT869+0kNTe9jCj1RbPKUdVGWEczarJFkWfSvllkXqIyMgqRTg85XsbrFLbmiAxCavjBLF8YosoZHQa1rai/ulBSRCiEhq71xdPmLhhkvWYE1HGKOxDO54zH3wrNrizPByrk/zQbLfj/C55wKgoa3M4cOAJIl/q2d5ntSeYqZ2E12X8XWFdvIkTBdBAb7Z3t/YUdOQykKR61X4lVdemfXngx/8IL72ta/h61//Oh599NFqHOOi6kgGa15X/CYMIiHaQhc4abkBiuolfsRAUKMLG0emdqjVMuZGs9PalSS1RVmkS/yIyTjc9DGKJLX54swjpnaKJbUDleBHOFM7nMfU1i1T++mDI3jHN36PB144Vt7BqvlNbQCQIzQlzhnQ5YonunxLyje1AQgetz7qztjl0icm6AWfafxH983JxUowtaO5pjbjjaenZxV3+jqZqT025hgHk9IMwcnNZ2p3t9Lf/Ykc3mdG4EeK32gU42kPJlhJZJk8bcB7pvZbA/S8+e0nDsEwq/N75yZ+vSW1wxdcgOCWLWi52ls8yOsjr2Pf+D4ElACuWjc3ZdaxDEtqF0mJBtasRtMV7yuJPxLJERdJ7aHpFA6PxCFJgI9t7ozHa5O05eWQ2nHLWHBi8gMW+7ahsx3NjB9eSwTJ8gg1tU9rOQ0h1XnPRq4mWTosWuOUNmCd+0Zm0uJn1xb2ux7l5uKGKQgBtOonhHhnRtZE2L++D/jmZiCRn1mrMia/F1gFwdSdByWRXKJEu4SpzVER48EmzKT0ukoxhs+nKb747t2ePi4/pygtzgrn5rMK8aZPWxLBN6/eipEG+jOYOl4Zd9ougR+pQVLbjh7Jl3AVU0JllkWKKY3lyyD5HFWLCfkY2ob3QhRT2KTX4kVTO1u9YwmMzKThV+SsTh23CvgUfPVKWjj7k+f7sOdE+ZO0XosQYiW1F1hJpF3hiy8CAEw8QAMmwc2b58WkTDRorbdND+7JcpPaSns7RQ+aZtYauZT4ZvtAuB0Z3XQVSFyUh0ztc889F48//rhXD7eoOhUvqVH8JiYQQWsjNZwzSoNIapN0uuIR1qRmIKjRx1DCDm86BYIke8dWJJpmykhqM0M609cHM+X8pjt9mBqGSmsrfK2Fd2lVwdQ+6YnJyZnaDbIJpKYRDlAjJZ52bs4Jpna4GH4kiN+9NYS+sQS+9PAb+N7TR9wfrGBqz04SKRF281ZhWSQvyqkkqQ0ASjsriyyRziikJEtp+5Z1QQoEkHrzTSRfeaWiYypHPPkuRyLARC/9x5bVQLAZkNniPpGdRve1tVn4lYnCKTq7OMczEvChJU/pHU9q908ksxYUTpnafINqSWT2hhdPKldiavNRdq/wI9xUODaewO/eqk6Smie1OX6lXqQ0NmL1Qw+i4zOf9vRxeUHk5asuR3NwboyMUvgRNyonqb37CD0fbVoWFQZHrUxtjggyJiZgsOksgR8JFDd5uSGgtLZiKbs+17Is8vJVl+Oi5RfhxrNurOhx+Pu62UWxp1eihg+gmwT7WVFoR57zoVNJtmJeM1N9E5S/ZgRubPI4cOJFIBMDxg7l/RpVJLUrP4fOp5JILqXZWVkkx48YrXTdkjsRNZfiXO3Um286Kr10Kp2tTXwtCzMVaZcwtfNMZVy6aSk+cOnZAABlfAwvH/Gm4Jy/pnw1YGoXMu25AmtoB8zMfz5R1uPzEX9/j/sNLVEc78DUbjDpeTSpLOzJAbd64Shdt2ztaRYBknJ1wbp2XLV1GQgB/ucjb1YtNOJWh0fimEhoCKoyNi2rf5O3XDVecgn9D8a3nw88bcAKIpgEiGcqN45PsmABN7UlSSqLq80/d7SJhslqtZ5fKPLE1E4mk/jWt76F7hIc1EXNf/GiSMVPMEEiaA3TkVVdCYmiSAAwSvDGSimZMRDQ6YJAzofByKcCZZEdZRZFAhS9oLS0AKaJ9KHDpb+AyeJpF0aPAICPMSJJKuXYMCwmbsJteuLjwDc3IQr6e3Cz22fwpHbRoshAFvv1q7/ei///8YPujHlHSe3KTG190KukNkdwlHeDkHiJmtqNF12Mpve/HwBNa9daHB+k5OJHJKkggkTy+QRL0CmChKNHelpDeZM2XU1BKLKEjGFiiBnUhBBo/ZQt7y9hag8xAywfP1aY2qEKTG2Pk9qTNjbavzx1pCopfZ7U5kn1hayx5Bge66UIn2s2XjNnxxFLOcNtOFEk4D6pzdEj569pE9fi8RqVRSqNjSKRw7FBAj9SJKlNNM06D7W2Yikb1xycqh37tyXYgnv+6B68a8W7KnqcqcTcmdqqIqON/c7f6KfJ3XJ52oCFHwEAkvG2xC+feL+DWN8dfcr6YCL/5rEoihwcrPgcOh9NbZmXRU4WTmoT0xTX6SDbzK+nskh16VL4V68GTBOJF17w7HH5+nmhl0QaJsF4vLjpe8OVO2BKMhRi4kvff9KTKRiLqV19/MgIK8IshFJqvvpqQJYR+/3vkXzrLdePn+ljpvYK96a2m6R2iBVFxuVFU9uu5z1Aj9j15fedjkjQhzf6p/DT590V81VLPKW9tacZfl/t0Xi1kr+nJ+saOh942gAQ8Mnws6k2L9B3PKnd1WQFC/yrGFf7aK/jx+Hrkng7nVYeWzS1Xcn1O62lpQWtra3iT0tLCyKRCH7wgx/gG9/4RjWOcVF1JNEu7jcxjgjaGi1TW5IBwooJS5VolFIiY0DV6IkmL9s5nwokte2FSm4lSVJZCJL0odI8bYAyqTizWPOAq82LIkOje4D0NKIpmnyNp3XHN4FWUWQR/IgSECk1Pj72zccP4B9+u8/5zSY3tfXZZoZIak/XR1Lbx9IZeplJbc7TDu3YjtbrPgYAmHn88SwebS3Ek+9yKABMs+dupakXgSCJzzbu3XK1+8YK87QBWmy0rJle/HmRlTExAZKk/+0rwTm08COzk4kcv1FRUttjpvakbfz7teOTeLmv8g2sXK2OrqaPP/waRpPepLPqVY8cegSaqWFz22Zsbt88Z8fhxMR1qogoinS+wN7Fktrnr7VM7YkaLoJzx8C5IV8MP8ITlZBlKE1N4iZgcKr6RqrX4kztWpdEcvG+EGFqV5LUliTBIibpWpjavLuDJbXtpnaeaxAAqJ3UUCOZTEUhAEKIzdReVfbj1FpKlJnaRfAjxvg4YBiAJKG5m5va9VMWCVhpPi+52sYEC9wscFN7LJ6GSQBZgjjn50pRfVAZNk4aHcZf/filitYyhBCR1ObvwWqqdFJ7NaLvex8AYPSf73H9+Bw95KYkkstKapc+/wRYUWRCrv8i2lrKC562XZ2RIP77ZTTU9o3/2F8WatRrLXSetl3hiy8GAEjBIBq2bZ3jo3EmSZIQbeDTkZVNpqU0A6NsI245S2oDgMrLIh0mtc1kUmweal002DUeWzS13ci1qX3XXXfhm9/8pvhz991341e/+hX6+vrwfpZAXNTClTll4UcmpSaEuInNUBLC1K6Qq53ULFNbZgZnSRVIavMbv7F4Grphuj4WYWrvd15EIZLa64ub2gBFUgCAdnLA9bHlKqWZkGBC0agxHZLoCVE3CdK6s+/dKVObm9o3vWMt/vaKMwAA9z51BH/zizedMaoEfiSPqR2lN7qVJLWJrlsjk0srNLU7ymdqm/E4Um+/DQAIbd+OwPr1dDfbNDHx059WdFyuj4X9PBXC3p+BKOXRA0CY3ax4UBbJk9or2wqjg3LLIjl6xNfZWbJQkCe1l+Yxtb0oigz6vUtqE0LEe+Xi9fR1dO9TZeB6Smhz+2Zs6diCtJHGD9/8oeePXy8yTAM/3/9zAMDVG73ldLsVH1v0Aj/ilqndP5lE31gCiizhnFWtVlK7lqY2m87TTpwAIUSY/JEiPw+RqGxuhiTLWBqlNwGD0/VlvDnRFCsZamqYG9OCJ7M5sz9fx4AbcQRJpfg4J8qaCCMEOPqk9cECSW3J74fC+i0q6SHRR0ZAEglAluHvLj4VVE/ikxHGdGFTW2M3xUp7G5a30Ym3esKPALDKIj3kap8qTG1u+LY1BqDIs6fguPxszbvSjOH1E1P48sNvlD3dYExMgDDOPl8LVlN2pnYhtd90I01r/+d/ivW1UwmefjlJ7Va6aWKMlw64BNj90gwqXx8sFPVPJnFiIglFlnD2Su82oD5y7kps6W7CTFrH7b/e69njlquX+jhPe+Gb2tH3vheQZUTe9S7IgfnDj48wrnalZZF8EiaoyllTe36XpjY/L8lNTWhop6+bRfyIO7k2ta+//vqsPx/72Mdw+eWXo2WB744vioonROSAiaTP4kSZKjVAiUpfUpWY2oZJkNFNKIwPLUedmtosqT3Rm2WUtoX9UGQJhJQ3yhHcwEztg86T2pmDzvAjAKB20VSqPuCFqW0gBCtlFYT1/TotizTjPEFVnKk9LUqyfPjLi1bjH//0TEgS8NPnj+G//fz10hsIxfAjLL1lVFAUqY+OAqYJ+HwiaV2ueFGkMeo+qZ3cswcwDPi6ugQruvX66wAAkz//uWCL1kIiqW2w0cnW1RQ9AhTEjwBlmNpjFn6kkISpPZFtapfiaQN2/Ei2qU0I8RY/4gFTO6WZyLANpS9cSjfe/u/eIRwZqbxQ1y5JknDTWTcBAB7a/9CCTWs/3f80BuIDaAo04fJVl8/psXiKH3GZ1ObokTOXNyESVNESqr2p7e+hpnbm+AkkNQN8L7NYcp33Evja6KJ9aRO9CTpZw6JIrzSZrI+kNu/SyDe54kbc1DZrkdTm/Q6NYcrQnrGZ1AVMbYDiKwALh1COOFNXXbYsC7tS7+KmtlkkqS0StR2dtmtsfW0YhXfuBGQZmSNHPOGjA4AxyZjaRTpsFoKK8bTt4kGOvzo9AkWW8PCr/fj+M0fLek7+XlPa2mryfhktkdQGKFebp7VH/vc/O35sQojF1C4DPaQwZrvuIKmtaszUlhbxI1wvspT25mVRT9ZNXIos4atXbYYkAb94bQDPHZq79e/wdAp9YwnIEnD2ioW9yQYAobO3Ye3vHkPX174614fiSlG+5q6wSNleEmnHbQZcMrV5SaR/5Uq0hum5bzQ+/yYY51JlgX4mJiZwxx134C//8i/xiU98AnfeeSfGHfClFjX/ZcePpP3W4pEwUxvM1DYqMLUTGR2qoUNmd8hK1OFFIdxBC+9AsoqGZFlCO8OklMPV5knt1IGDjj7fiMWhMYPa78TUZqiFSvEjmmFCNwnCsMwBRU8Kg85pWaQoisxnajNGHHx+W0qNLtiu2bkCd129VSygP3P/q8LMy6tiRZEiqV3+64gnudTOTkhKZWUkShtPartfKHGedmj7dvFv4Ysvhn/1apixGKYeeaSiY3MqYprWyLfGzOmW1dYnCPxIEVN72F1SuxB+BAB6WummBsePCFPbQTcDx4/kMmRntBkkdPrclSS1LfyI+8mOXHHjyydLOKu7Ce/e2AlCUPYNZjFduOxCbGnfgpSRwr+++a+eP3496IF9tGX9A+s+gKCvMhOvUvFzqjemNk9quzO1z19LN+wEfqRGTG0AUJdbSW1u8MuS9f7JJ24GcHNgaRNLas9DU3sumdrA7PNfZxETyIm4YUXS1X8NiWtRJAIc+UP2BxOF7yc4SqySpPZ85GkDgNLEsGxFTW16jfZ1dtqusfWV1FaamhDctAkAEN/lTVpbFxMgCztgxU3t9hLvdV6q2mPM4G/edzoA4Pbf7MXTB91PG2o15GkDwEiMG/fFDfRy0trG+Di9x5EkR2vNXClsM7ZUUSQhBD5mak8vJrWFvOZp27WluxkfPZee0//ml28KHGetxdEjG5dGxbpuocvf3Q25oaH0J9aR+HTkdIX4kQFeEtmU/f1z/Ig+OAgzWXpj2b4u4WjfRfyIO7k2tZ988kmsWrUKd999NyYmJjA+Po67774bq1evxpNPPln6ARY1r8XbyhU/gR60LkpSgBqghJ2/KzEjk5qBkI2zLDc5XKRKUhGuNjU/eMLTjQLr1gGSBGN01BFTOXOYGupKe7soFSkmtYvjRyoztTkzr1GynTy1pBiNd1oWyZPDcrhEUptdCOwptSu3Lsc9HzkbfkXGb98cxCeLsfzUoDjGXHmS1OYlkeznW4ks/EgZpraNp80lybJga4//+McgZuXmaSmZ8Tgd8wYgp3J42oAtqV0ZU5sQ4gw/0looqV2cp53SDIHzyE0m8pR2c6AZDb7yF1gNHuJHJm3GlyRJuOES+jP/Py+fwFjM2114SZJw41k3AgAe3P8gxpLlMeDrVcemj+HZgWchQcKHT/vwnB5LWjeQYdMoXuBHIi5SI4QQ7D5ilUQClqk9VsNFMDcFMieOYyZtpdbzlcNyCUwAS1RyhNBgGdfmuRY/DzXPUVK7I+f8lzu54lYc+0S0GuBH4hxz1mjxtJsZDiBR+DrLS5/1ChK+9kTUfJIoipwqvC4SyLUlS0RS+8REsirlxJWIc7UTu73hap8qTG3L8C2R1BbvkyF8/IJV+ND2bpgE+FuneECb9CHO0y4/KOBGTvAjAEtrv/e9AICRf3aW1uYlkWpXV0nMXT7xSYBSRZEkk4HM1vWTpLJQzULSC0fpumXn6sqmZwvpv122Ae2NARwZieO7VcD8OdGLrCTynFUL+1w03xV1GSQpJCupnb3+8rW0iGs2R4sUU6avFwBPatd+8nIhyLWpffPNN+Pqq6/G0aNH8fDDD+Phhx/GkSNHcM011+Dmm2+uxjEuqk5EDAPmtMXUJiHroiQHaFJb8tHFEkdYlKNkxkBYoze4ss8UhrkjFeRql18WKYdCUFfQQiwnZZFueNoAoC7zytSmC6hGyWYO6Ek0BlhSO+MQP1KUqU0fW5f9IoUdzbmhv3TTUnz/4zsQVGX8Yf8Irv/BC/kN9SJJbZkntSsoitQGabpEXVL5QpzjS4yJCRDd+QWQaBqSr78OIDupDQBNV14JORqFduwYYn+o/oYgf+9Kfj/kGTYOldfUrgw/MjyTRlo3IUt0HKuQuvkNNzPAM6xsrhR+hG9MNaiKGB/jEuiRCkoi+WMD3uBHuPHFN3/OXd2KLd1NSOsmfrzb+6b2i5ZfhM1tm2la+61/9fzx51IP7n8QAHDh8gvRE+2Z02OxT76E/ZXftHJT2wlT+9h4Av2TSaiKhB3sxmkuktocP6Kd6MdMkpdEFjd49Ql6w8fZpEtZUeRkQvOsmLVWmkzO3titpZbkpDVzk9tuJZja+fAj8TFA827jQeBHwiGg92n6j5s+QP8uhh/hSe3B8vEjIhG1an6Z2oKp7QA/4uvsQFdzEJJEN2fLQe9VU2HO1X5ulyeGu2D1nyJM7WJoDsBKamuDg5AkCX///k2IBn3oHUvg9/uHXT2nfaOk2iKEOP4eAaD9UzcBkoTY487S2plj9L1fDk8bsCaMSiW1zYR1XzNuLpraAN2sODxCQ1PVMnybGlQxmfCtJw7NyZTKqcTTns9yEyQpJjt+JFeCq91b+l5P67OwSCKkUmfX7XqXa1P78OHD+MIXvgDFNs6vKAo+//nP4/Dhw54e3KLqSzylDVBTW25st/5/kJqQwtSuCD9iIMQKNmSVAP485mohiaR2jqnNEkzltiIHeVmkE1Nb8LTXO3pskdSukKnNDYEWxXZDWkZSW5jajYWLIjOgN/GyBDT6Z6cUL17fgfv+4lw0Bnx4/ug4Pvq958WotlARprbCykGNWPmmtj5INwl8XZUZnABL/8gyQEjJhIZdqbffBkkmoTQ1wb92bdbH5FAILR/+EABg/Ec/qvgYS0nwtKNRYJyhL1rt+BFvTG2e0l7W3ABVKXyJ4aPRJ6dTyOgmtH6G7ClpalvokdxE6FCCGh2V8LQBIKhaSe1Kb7h5UpsbX5Ik4YaL6WbCfbv6PDHO7ZIkCTdtpWzthZTWTupJ/OLQLwAA1268do6PxuooaFAV+Iq8zp3KTWqEo0e29jSLsua5YGqrXV2AJIGkUogPUuOjFIrFGONJbbpRGA36EGKbAuUiSA4MzeDgUPnXinIlNqzmCD9in1SRpNLJxlLi+JFZTO3xI8CdG4CHb6jo8e0S+BFzEkhOAP5GYN0f0w8WMbVFAvVUxI9ES5va2jBDRXR2IuBTxCREvSFIGs4+G1IgAH1kBJkjlScqucnoZDpyPsup4cuZ2nyiIRzw4dqd1Mj9wbPu0Gf6cO3wI/GMIQI6Ts5nWWxtB2ltwdMu09T22fAjxdaGhOEGNFnBTKa+piTmSpynvXFpBM2h6rHZr9y6DOevaUNaN/GVR9+q6ZRKLK3j7QHqlexYTGrXtaqNHwGsjXMnXG37ZjtH5i4mtd3J9Z3Y2Wefjb17ZzfL7t27F1u3bvXkoBZVnxJJTx+BJAP+iLXA8QUb2ceoQVMJUzupGQgzo1NWTZemNk9q5+JHyk9qA0BgPeNq73eR1HbA0wYsprYxNgYzVX4SSpjaPrupnRCmtvOiSLqTnr8okj52mnFmIkEVcoEG9p2rW/GzG85Fc0jFa8cncc13d4uxQgBWUtvIAGa2sSdH6HN7ktReWjl+RFIUMS5vOEDQcHGedsP27ZDk2afblo98BFAUJJ5/Hql9+2Z93EuZzNRWIo3AJBuFykpqc6Z2HvxIp2Vql1og8pLIYugRgI7PBlUZhAD9EwnHRZE8qZ2vFI0ntSvhaQMWfgQA0sW48A40xZja9kX8ezYvRXdLA8bjGfzbKycqevx8unj5xdjUtglJPYkfvVX9DZNa6D+O/gemM9NY3rgcFy67cK4PR2wSeoEeAVya2jnoEQAWg6+Gi2DJ7xebhunjxwFY6ZdCMia4qU1v+CRJEsZbOWWRw9MpXPntZ/GBf35OmMy1kkALNcxN2aA9md0W9hfdRHQiK6md8xoaeA0wNWDfr4CYeyZvPonN8xgz2FZeCETYZqSTpHaZRZGEEDEKXG5ac66kNDNTe7o0U1vtpOtzO4KkniQHAghtPxsATWtXIjOdFslY5VQpiiyZ1Gbvk+Fhgbe77oJVUGQJzx4aw75B52g//l7jr6lqipdEhvyK42trVlo7jz9hV0akIctMarPXF9G0ouEtztBNKX5H01engqrJ07ZLkiTcdtVmqIqEJ/YN47G3yp/qcatXj03AJEB3SwO68pici6ofWUWRXuFHiiW1e4s+hhmPi9CYf8UKURTpNaJyocv1Cvizn/0sPve5z+GOO+7AM888g2eeeQZ33HEHbr31Vtxyyy3Ys2eP+LOohSV7SSQABJs6xMfUBpqsVXz05GAyLnM5suNHFJVY5qcT8aT22GFAt27MOtnNXzlFkQAQ2EDN8mrgR+SmJkgh+j1Wwonk6YamnKQ2T87FHJglxDSLF0UyUztJ6GOWGrve0t2MBz55HtobA9h7chpX/8suK42n2i4AOWltJcqS2jOVmNosqb3Um5FJX7t7rrbgaeegR7jUri5EL7sUADB+348rPMLiEkntBj9ADMDXADTaEs32pHaOcc2T2iSTEZtbhdTnoCQSoAtPjiDp7x0ASaUASSrJQOemdj5+7ECMpr0rxY8EfdalsdIkdT7urk+R8ZcX0ZT89585CsMl47KUJEnCp7Z+CgDwwP4HMJ6a30XOhBDcv+9+AMCHN3wYijz347wxwZD25li4GZzUDGhG4Y0UQohIap+31jK1eVJ7Mql5/noqJj8ri9TZplRjCVObF0X6bOYTR5CU03lx364+JDUDsbSOPzgdq4+PAQ9+DDj4uOvn4yKEiA2ruUpqtzcGwIdVOiKVl6bKAcbUzuSY2txkJiaw/zcVPw9gBR/kCWZCrb4E4Ei71BRg5DeCVFsCtZwuCn14hKYoFQX+Mori5lIcP2JOOsGPUAOyu4WVRU7UV1IbAELnUa52fHdlZZHGJOVpQ1EgRyKVHlZdyzFTu6ODjm9omkixL29uwOWb6PvnBy6KqjlTuxb4kRGHPG277Gzt0RJp7Uo3tORgEDK7XyuGIDET9J4m6QtUzOxdKHqhRqY2AKzrbMQnWX/N//r3txyHuioVL4k8ZxE9UvfyIqltmAQn2LV1eUs+U3sVgNJJbX5eUpqboTQ1oc2GH6m3Pox6lmtT+9prr8Xx48fxxS9+EZdccgkuueQSfPGLX0RfXx+uvfZabNu2DVu3bsW2bduqcbyLmkPxchpuaodbLePIH6ILSZ8wtSvEj3Cmtt9lUju6DPBHqGk3buFweFHkSJn4kcBpFCWSPnQIxChschkzM8KYdprUliTJEwQJL7VrVvIntZ3gR+wcuPymNv35pVhS2wlLdOPSKB76q/OwrCmIwyNxfPhfdlGj0Ge7Cc8xtflzmxWY2vpJ+nvwIqkN2E1tZ0ltYppI5imJzFXrddcBAKb//d8dFZGWK1HyGmCn/ZZVFKnCxZPaRgZIZxvXciBAsSUojSDhY849JUxtAOhhi4DRg70A6I14qfIePm2Ry5M9GTuJx/uoSXV66+kln7uYfIoMP0s9VloWydOcuez5D+/oQTTow9HROB7f632SZCGltd8cfRN7x/fCL/vxgXUfmOvDAWAztUuYuE5lf5xiN8GHR+IYnknD75Nx9gprvLWZGauEAJM15GqrPYxtPsBM7VL4EV4U2WIztctMaiczBn7yvHWz8DuniayDjwF7HwV2fdvV82U9t2ZAM+jNxlwVRaqKLG5+KuVpA4CkclM7Z/M/YTNv9v2q4ucBbEnt8TfoP6x5BxBsAiR59nPa5OvspMgbm1nnRryMSV2+HJI6N7+3csU3+81EAkSbfSNONE1MknEDspsXMo/XJqmd1g1847F9+PPv7sZEiakRURb5/POuukpyZfG0W4oa220dAAAgAElEQVSW1C4EOU1qS6oq1qx2/vxfXLQKAPCL1wayJyeLSB/iSJvqm9o8qc3H752Kp7Vn/u/jRdPaGYEfKR89xNPa+lgxU5uug2lSe9HUnk5p2MumA3bWyPD99DvXo7ulASenUrj1wdfwvaeP4MEXj+FXewbw+/3DeLF3HG8PTOPYWAJjsTRSHuAGX+rlPO1F9Ei9y4uiyP6JJFKaCb8ii/tZu0RSu5SpnYNE40zttG4i4TGiciHLtal99OjRon+OHDki/l7UwpI9qT1DGtAatRIRgRBdbKsqXWhXVBSpGQjrZSa1JQnooKgQO4KkUvyIf8UKSMEgSCpVtMWWp7R9nZ3iBsSJOIKkkrJIjh+JyLYbCc1WFJkufWIUmxE+n+BrZoklteMmNS6iDc4MnTUdjXjoxvPRGvbj2HgCrxyboL+rAmWR9qR2OYsMomnCfFU9YGoDVlmkPups/Dpz+DCMqSlIwSCCpxc2WRu2bkXwrC0gmoaJ+x/w5FjzSRRzqSzdZkePADQ572fv6XwIEodcbc7UXtlaejOKG98zfRRdUAo9AljcXZ7u5Prmy99Eykhhx5IduGDZBSUfp5SCqkemNk9q56Q5wwEfPnoeXcBUo6VdkiTceNaNAID7992PidSE589RKz2wn74vLl99OVqC9XGzwJM/4TydAuVIVWTBli42rszRI9tXtAj2O/96vslYy7JItZu+Z+Uheu0qhR/hnQScTfr/2Dvv+DiqQ/ufKdubuixXuTeMwRQDphiwgZDAo7wUSIGQFxLyQvsRIARIAqlAXiAQ8gjpJJAKJIS8xKYZMM3YxkCwMe6WLFu9r7bNzO+PW2Ykzc7OzO6qec/n449lWdodaXdm7j333O8B3Ce1n3irEV3xNDfS121vsVc2maSLpQPudzCwxSqPJPDXbTTEFuxrC5DUZviRYUztuOF+sHsdkLCPLsgmjsMS4kCgAqhZDIgSEKDndxYESTazzq7GK08bAEkhU9NWMdkxxXeReTyQykhhIptoN45AUvuD5l5c8OCrePCFXXh1VzueybFY61+0EGI0CrWvD4n33nP9vDpPe2KXRCbSCjdg7JQocq52s74DdNn0ciydVoZURsVjb2SfyzCpySRPwntGgKnNk+g2fj6jfLNn50xrK11dUOk8lpUcuxFHEXZamNoD1NSWvbb7jCayNu3thKYB9ZVBU3RgMRTwSrjj/MUAgLVbm/Htf2zDzY+/iy8/9hY++6s38dGHXsO597+MU+95Acd8+1ksuP1fmHvrP3HUnWtx6t0v4Hv/3OYIaZZWVLy1n5wrpaT22Bcviswjqb2zlYxjZlaFTLt1GFNbaWuzxPKyIkn29UGvBB/dMVziatuXY1N7xowZtv+UNLGkdJOLteRV0aFF+EoSAATCxIT0yeTky4upncogkqYIDFkFvA5MbcBQFmkwtWmKqbU3CdXF1mxBknjyOvnBjqxfl9xB/s9uSptJT2oXwNQWDMZAeoCbLv0pG0ltxtMOhcwTLwoZcMYVMom3k9RmmloexKI68j4ZhiAZih9hW0gzGYKlcKhMK0VoeDwFYyzK1WQirdjEjzD0SGDpUvMFAoMqL7sMAND5+99DHbr1u0BSemlSW6KPbyyJZOJcbfdlkfva7eFHAJ33mWokXGk7prYZU3tz82b8c+8/IUDAzcffXJC0FuNq540fiQ/HjzBdflI9PJKAjfs6sWlf4U3n06aehoUVC8d1Wrsz0Yl/7fkXAODj8z8+ykeji+GcciWTnYgNsq2SI69T9MiJBvQIE7snd/SPHMOTIRy8LcQ4sfp9aOk0NxWM1+W6GEtq20+TqqrGt9Bfv3oeJkX96E8peHWXjetzio5PBrpsP99QGQtgRzMdysY2NYVIajOmdjb8CEB28uxYm9fzaIrCk4yiRwNmnqLvGgpWDX/OIWKIKlYG7UQDm98CMD5NbUGS+I4ps7JInqitruIdHlNHgKmtaRp+8+penPfAemw7qJvtxo/NJEgSQsuXAwD6X3PP1c7wpPbENpJYStsri5wHayUPRe+lDVhDQRBwxYp6AMBvX9+HZMZ6fMNwNoLPB5Hib4opPant/Ho2KK1t0lGTor0Pck0NR4i4EUNnWZXGs6LIpERM7ZFEgo1FjRRPe6jOXFiLuy5egkuOn47zl07GmQtqsHxmBY6YEsXMqhCqIz4EDOGAjKqhK57G/o44fvribpx2zwv4xfo9Oc8TANja1IOBtIJYwIM51SY7nUsaU+L4kTy6WHa2kLHknFrz11uKRCDRQBwzrs3EFts9dFwiCAK/BraXTG3bctUqs2vXLlx99dVYtWoVVq9ejWuuuQa7du3K/Y0ljWsxlq7kVdGJCC+mAnRTO+AhJ18+TO14SkGMmdpeDfA4wI8AhrJIfVDD2JMZVUOHyxSbbx5JgFtxtXWe9lxHj+2ZTE3tfJLatNAuPMjUdogfYVuCzdAjAE9q92VoUtvvbPsu4yAfYok8mZnag1NEQjAISGSgobgoi2SDeE9trWlBoxtJlc7wI6wkMhtP26jI6tWQJ02C0t6Onn8Uhlk6VKx0UwQ9N01NbcrV7hvOprVjasdTGb6l1ZapXUFef4EaYiz1aaWh+BFVU/H9Dd8HAFw872IsqFiQ8zHsiA10bSU/LcSZ2iZt7zVRPy44ivzMP3+5OGntq5ZeBWD8prWf3PkkUmoKiyoXYUnVktE+HK5C40cAUrwLZE+OqKqG13dnN7XL6W6Ajv6RK5fxTCX4kUA7MdTCvuz3BM6+FQTOBwaM9wX7x/3ijlbsau1HxCfj48dNw1mLiYGz5t820rspeg1MuDe12XntZGG3GGIImqOn559SFbwUYTO0KJIZzDGKmskTQTIIc+ZRgZmn6f/JuNrx7IsTHorWSB901kGS+OADdP/tbwCA6LkfcvS9Y0V8F5sJVztNDUhPtZ6oZffYA50DrgIdudTSm8Bnf/0mvvHUe0hmVJw2rxo3n0PuwVubcif6gyeeACC/skilkwZuysfGLp5iycjTtrOQJtcy/vzga+K5S+pQG/WhtTeJf7xjPefgjPba2hFZvGvtI9cep0ltgKa1P0TO67YHh6e1eUlkngWxeml8bqZ2QibjvsM9rb1hD7mHHD9z+Lil2Pr4cdPxvYuW4P5LjsYvLj8Of/zCiXj66lPwwldW4s1bV2Hbt87Bru+ei3e+eRZeu+UMPPv/TsVDn1qGebVhdMXT+NbTW7Hqhy/iqbebLK+hbzL0yIxyiOLExiBNBEX5eNv9ubmjmZraFosYOoJkb9avMdtBxkIqpbJI+3Ls9qxZswaLFi3Chg0bcOSRR+KII47AG2+8gcWLF+OZZ54pxjGWNEbEBtGSV0WXEEPQsO06GCITVJmiDfJlakcztMncC0B2xlYzS2p7JBEV1FRyXRbJuNofbM/6NSmHJZH8+ArA1E7QRGlYMCRy0gme/rNTlKHkNLWJGd3rIqkN6Im8XEltQRAgca62863OjGteqJJIwHlRZNwGT5tJ8HhQ/slLAQAdjzxSlGIIpY9u99boZHgofgQYXBY5RNzUbsluajNuZyzgsVWexlJkgXYycfLmSGprmjasKPJvO/+GbR3bEPaE8eWjvpzzOe2KoR3yx4/QMrks58rnaZnNv947hH3t7hcDs2nltJVYWLEQ8Uwcj2x9pOCPX0wpqoI/bf8TAOAT8z8xpnipDOcUKkJSO1sb+wctvWjvTyHgkbB06nATkzWmj2RSmy1EBbvbIKmKpcnPSiKlsjIIkp6OqouR+8AhB0ntX7xMUtofP24awj4ZZy0iBs6z25pzp+JS1FRN9AAuygYB8JJIs8WqkdTVZ8zBxttW4YwF+d/rRJbUHoof6aem9jLS/4AdzwBpd/0kgI4eEUQNooQhpjZN8lkmtYdjFeyo5e57AFVF5KyzEFy2zNH3jhWxxSClxySpTe/NrCQSIOeWLApIKSqaXXbKZNOzW5txzn0vY932VnhlEd88bxF+/dnjcNo8MlbYdrAn51iGcbUH3noL6oC7NLnO1J7Y+BG7PG0mntQecp54JBGfObEeACmqtnqNWPrfU1N89Aig/4xuktqAMa39DBLbB8/VUvtpGjJPU1uuIIsn1vgRmtSWyc9xOJvaAykF7zSS69XyEU5q25UkCoj6PaiLBTCnJoJzjqjD/11zCu66eAlqIj40dAzgmt+/hQt/8goPFgzVRloSeWwJPTIuxPCpvYm06zn3zlbimczNktQG7HG1dVO7nn+uwlAWWZI9OTa1v/rVr+L666/HG2+8gR/+8Ie499578cYbb+C6667DzTffXIxjLGmMiG13FL0a+uXBg0fJG4SqCZzXm4+pnUgrCNPkrugwCQxAT2q37wAUfSDBcAUtLgf2/vnkcRNWSe0d1NR2ih/hTO08TG26PSoE86S2HVObJezFUJZ0fIZcXHvT5NIxtPwulybFhhSCZTG1AejbbF2URaYLXBIJAHIVZWq35za1001NyBw8CEgSAkuX2nr88o9+FEIggOS2bYhveDOvYzUTT2pn6EC83Ao/4o6pzUxZOyltQGdqV/SQ58uFH+lLZnhpRm3Uj75UH360+UcAgC8u/SIqA4VLgRQKP8IxBVlM/nm1EaycXw1NIxPMQsvI1n5s22PoyiOdOtJ6pekVHOg7gKg3inNmnjPahzNIDOdUWPwIK64xN6Vfo+iRY+vL4ZWHD98qQiPP1Jarq8nWdE1DzUCnJVNb6SDHL1UOnvTVxnQ8WEbJbTK/f6gH63e2QRSAy+lW+uWzKhD1y2jvT+VG+TD8CDQgOdwctCMjfmQ0Zdymmvdjeampnc6S1J5zJhCdQn5/u9e5fh6+eO5RyeNVztb/kye1sxtGHppAdZLU7nv5ZfSvXw94PKj5yg3OD3qMiJnaqhl+xJCq5V8vCphcxrjahUGQxFMZfO3Jd/Ffj2xER38KCyZF8PTVJ+PyFTMhCALm1IThkQT0JDJoylH+6q2vh1xXBy2dRnzTZlfHw8zFCZ/UdmhqZ0tqA8Clx0+H3yPivaYebNiT/VxLN9P31AiZ2mynn9trmm/OnKxp7XTBktp0LtCR/T7DmNqqj8x5rHoyJrre2t+JjKqhLubHVJMyvbEqWRLx8eOmY92NK3HD6nkIeSW83diNTzz8Ov7rN29iR7M+N9U0DRv3kfPouFJJ5LgQS2qnFQ2JtPNwg6ZpOn6kxsLUrq8HAKT27jX9f6Wvjxc8M6Y2AF4CXmJq25djU3vbtm343Oc+N+zzV1xxBbZu3VqQgyppbEox4EeS3iGJCFHEgOAjfEQASn9++BFWFCkGXKSgYtMJ1kJJAZ17+afzLYtk+JH0/oZB22eZlO5ubvh5HZrach0xtTMHD0FzmRxjmISgZkxqD7jEj2Qztcnr0pMmhp9jUzs6pBAsS1EkAIgRltTOAz9SoJJIQE9qK625TW2W0vYvWpR9gWCIpLIyxC74DwAkrV1ocaa2nAZEWd9KbpSdpLaFqc1KIu2a2rGAB1GfhFpqYOQytdn7JuqXEfBKePjdh9GeaEd9tB6XLrjU1nPaVaBASW2OH7E4V648haS1/7SxAZ1FGMCcPu10LKhYMO7S2n94nxREXjDnAgTksTUZ6i0CUzuag6n9mgVPGwDK+XbFkRsEC4IAD+Vq1/Z3IGLx++AlkUPYt1UhH2RRgKrpW+ytxFjaHzqiju/28EgizlxIESTv5TA7U4bxScKdqW3nvB5vYt0Pg4oiNU03tYNVwIKPkI/f/7vr5+GL5x4NmHkqLz8EoC+sWiS12X19aAI1m7RMBi133w0AqPjUp/I2tUZTUowxtU2KIlvMDUhmJDV05F8W+W5jNz5y/3peMvj5U2bib19egXm1enG8VxYxm27H3pYDQSIIAkInEARJ/HV3CBLG1JYnuKnd5rBE0YypzVQe8uKiZeS6/ctXsi+mc057beF2PVrJqXFvJp7WXrt2UFo7tZ+a2jPyNbVpUrs9+zWKzRF1U/vwTWobedpjabedXQW9Mq4+cy5evOl0fPqEGZBEAc9ua8HZ972EW554By09Cextj6OtLwWvLGLJ1OKz50vKX0GvBIliYtyURbb0JtGbyEAUSFFkNuVKarPPS5WVfIc6YOzIKZnaduXY1K6ursaWLVuGfX7Lli2oGaGV3JJGRyypLXlVpH3Dt9ckhAA3tbV4HJrizgyKpxSE6NZWKehiYCOKQDUxoI1cbWZqt7o0teXKSgL81zTOzjaKfU6uqxt0YbIjT20NIIrQUinLgZKVBlLEDA9gsKkd9hFzjm2XtxIviszB1O6mSW2nKbWsSe3M8DSPFHGf1Ob4kdrCmdoSM7W7u4cXaQ2RE562URWf/jQAoO/55/kAvFBSe+mChVcFymYAkon5lKepzSbN0yvtl/As8CvwqRloggDPJOvXq5mig2qjfuzv2Y/fbv0tAODG426ERyqsuVQIpnZGUflkxupcOXF2JRZPjiKRVvG717NvUXOrQWnt9x9Dt8t06kiqobcB6w+sBzC2CiKZ2M6XwuJHWFJ7+ARYUTU+OTxxlrmpzZIdI5nUBnQESV28wxI/ojD8yJDyXlEUOE7oYI5kZ2tvEn/dQnY0XXHy4N0mZ1Ou9tqth6y3kxpNbZdlkV3U1Ha6sDuWJfjI+2cQUzvVzwuiEawEFjJT+/8G7YRzIpWisIbxtNlzAKa7hZhkugMrYzOp3fWXx5HcsRNSLIaqL37B+QGPIbGyPtOiyBZqQNZUD/o8K2RmeDA3UlQND76wExf+5BXsbuvHpKgfj/7Xctz64UXwydKwr2el4LnKIgEgdBJBkLjlautM7Ym97Z8bvjZTzPIkltQ2vx5+9qR6AMDarc3Y326+4MHfU7XFn99rmqYb93nsPiFpbbKzy5jWZmPqvPEjtPiNLaaYSaNMbc1P7mt9h7GpvWGUSiILraqwD9+64Aisvf5UnLN4ElQN+P2GBpx2zzp8/W//BgAsnRozvR6WNPYkCIIB+efc1GYp7RmVIcvXnKWv01mKItMmPG0AqGRFkSMYUhnvcmxqf/7zn8eVV16Ju+66Cy+//DLWr1+P73//+/jCF76AK6+8shjHWNIYkdqjm9oaa6g3KCkEIMp6ylh1mdZOpBX4qXkqBv2uHgNVw8sia6I0qd3jnivon5+9LNItegQgTGWWrnFbFsnwI37VMDhNxxHyOsCP9FPjM2TN1O5M0aS2w5I0Zmq39yeRyqjjKqktxWKATH5eq9ZzAIhv2gjAHk/bKN+sWQidegqgaej43e/cHWgW8aS2RzMviQTyx484TGoDwEKBvL6pskqeFMwmI0/7Bxt/gIyawYopK3DKlFNsP59d+QuAHzEWkFiZ2oIg4ErK1v7Na3vzLqc00xnTzsD88vnoT/ePi7T2n7f/GRo0rJi8AtOjYy9Zya6nbNGwENKT2sMH2NsO9qB7II2wT8aSKeZJoPLg6CQ7vLQssra/wzK5zjEBFcMTleze0JzD1P7d6/uQyqg4aloZjpkx+HFOnVcNnyyioWMA2w5a3DcGJbVdmtpxVgA7cUxtztQ2LtqywkbZD3hDwPSTgEAFMNAB7HdnQqodJFEssaS2URw/YpHUZgnUlpacO9uUvj60PvAAAKDqy18eVFA6HiVFs5vavChySMCIlUU2drpLah/oGsAlP3sd96zZjoyq4dwlk/Cv607BijnD5wFMC6mpvdWOqX3CCYAgILF1K1KNjY6PT2dqT+yktnP8CDlPtFRKL+k1aG5tBKfOI+iz37y21/QxGH7EMwJJ7b5kBklaeF8Vya+roOoqY1r7Ayh9/foW/3zxI+WsKNIiqU2Z2oKfnHtukqATQamMis37yfk5VnnaTjW7OoyHPn0M/vLFE7FsehkG0gpe3kHukyWe9vhSNEc5u5WYqT3boiQS0K83Sne36UKYWUkkoIdU2kew+H28y7Gpffvtt+PrX/86HnjgAZx22mk49dRT8eMf/xjf/OY3ceuttxbjGEsaI+JFkT4VYmh4UiwlBiBKgEaNP7dc7XgqAz9lOkoh++bYIDGudptuPtdEGFPb/QXCN5eY2mZc7eSOHeRrXJjagLEs0qWpnWamtnv8CGddZkNm0MRWV4ps2XGa1K4IeuGVRGgaZZtbMLV5Ursnj6R2juSvEwmiqCc0LBAkmc5OpHbuAgAEHCa1AaDiM5cBALr/8rirlHo2caa2RzUviQSAMJ0MmyW1afpL7e83xe8AzvEjADAzQ46rp6w6x1fqSW0p9AFeaHgBsiDjpmNvKsqWRp7UzrjDAQFAF03MRnwyZMn6dnvukjpMjvnR1pfCX9864Po5s0kQBFy19CoAwKPbHh3Tae1EJoEndj4BAPjEgk+M8tGYq7coSW2aGjEZYDP0yPEzK7K+lyrDo2NqM/zIpHiHJVOb40cqho8fhu3iMVEirfCdDJ87efjCXNAr45S55DpiiSBJGcYmLpPaPRMSP2JSFMnRI5UEEyLJwPxzyee2uUOQKPveBgCIwSAQG4KcsmFqyzVkZxvS6Zw729of/hmU9nZ46+tR/omxt+PDqZwWRQJ6IXODC1N7494OnHPfS9iwpwMhr4R7/vNIPHjpspwFqQsdJLXl6mpeGNn9xJOOj/GwKYp0iB8RvV6yuxT6mHiorqCdBH98s8F0MXUk8SPMtA95JQS9+d1XfXPn6mntn/wE6QaS0pYqKiBFIlbfmlOsKDLT2Zl1RxA3tYNkjnO44kfePdCFZEZFRcib0/wbbzq2vgKPX3US/veTy1BfGYRHEnDuEYXrcSqp+GJlkT0uzs8dLWTuasXTBsg4h10/0yYIktReZmoPXmwr4Uecy7GpLQgCrr/+ejQ2NqK7uxvd3d1obGzEtddeOy5ZSSXZFy+K9GiQI8MNqJREbt4a3cKquDa1FfjSZHAlhl2a2lUUP9K2g38qX6Y2oHO1k9tNTO2d7pPagMHUdpvUpkUHviFJ7bCbosgc+JGOJDnXnW69FkWBl4Id6jaa2sMnW1KUDDydJrW1VAqZNlo8WEBTGzBsO7QoixzYTMqOvLNnu2I8hlacBO+c2VDjcXQ9/ri7Ax0iTdP4+Sh5VfOSSMASPyKGQhAC5PUyS2urqoZGur3Ziak9OUEmpK2h3AkHktRWsEv5PQBieM4qy2LQ5ynO1M4jqc24u9lKIo3ySCLHKTz88m6oqrs2biudPv10zCufh/50P0e3jEWt2bsG3cluTA5NLkoKvxDSk9oFZGoHsuNHXttNedpZ0CPA6CW1GX5kUn87wr7s73Wl3SKpTfEjhyx2Uj21pQnt/SlMKQvgQ0eYX9t1BMnwcjSuQiS1B8jv2M65PV7Emdopo6lNdyUFDddnjiD5B2FuO5R6gPTviBUmRpmNokhBlvnOITNeMFP6wAF0/PrXAICam26E4Bn/r5WUBT+iDgxApb03Qw1IltR2ih9p6U3gqkc3ozeRwdHTy/B/156Cjx47zdZcb2EdGb/t64jbGnvGLr4IAND15JOO0IWaph02TG03vGmWsM52npw2rxpzasLoS2bw542DU/Kaphk47cU3tdvoNvuqPHjaRvG09po16H3mWQD5p7QBAz4rnc4a3mJFkVKQBITshIomojhPu3588rRzSRAEfGhJHZ67YSU23766xNMeZ4rQ8Wo++JG5OUxtwJqrnS2pXREe+Y6c8S5HpvYbb7yBW2+9FTfddBPWrl2LSCSCSJ4rniWND6mJBN+SKvlU+GPD+WqKTIws1ceS2u7wI6lEEh46qBXdvr/KaAlej554ZPiR5jzwI775JAGe/OCDYSv03NSeN9fVY3sms6R2k6vvZ0ltr2I0tfWkdn9KyWmUMWRMrqLIzpQ7pjYwxLywSGqLYfLaM2yGXaVbWgFNg+D1DmO35iupmnK127Kb2m552kyCIKDiM58BAHT+9neu2fRGaYkEwBaKPFr2pDYztQc6hvFSBUGwRJAc6kkgpaiQRQF1MfvYoIo+YtY1enMPBpt7EvCUb0C30oAyXxnnRBdDAW/+TG3G3bV7nnz8uGmI+GTsbu3H8++3uH7ebBIFcVyktdfsXQMAuHDuhZDEscknLIapHclSFJlRVM6lzFYSCYxeskObRIqOJ+Vgamc6WVJ7+HWZXTMOZUlqa5qGX9CCyMtOmpE1rb5qYS1EgSREsxbjGRdR3TK1GX7ETZn1GJVghh9hKKqg4X0363TAEwJ6GoGmtxw/j3qI7GSSakwMJm5qt1ka5rJFCR5Ty733QUulEFy+HOHTT3d8nGNRrChS7Rp87Wb3ZCEQGBZKYEztg90DSCv2dh4pqoZrf78Frb1JzK0J49H/Wo4ZlfZKrwHCA62N+qBpwPuHcgcTIqtWQYxGkTl4EP2vv277edT+fj62mcj4EU3THDO1AQNXu9l8kU8QBHyWprV//epeKIY5gtLVxa8FnprcO+nylZufz0q+uXMROedsAEDbz34GIP+SSAAQ/X6yywTZESQa3c0o093GZin4w0EThaedS5Io8E6UksaP8klqM1M7V1IbcGdqV4XIdbCU1LYv26b2k08+iRUrVuBHP/oRHn74YXzoQx/CfffdV8xjK2kMiadCBA2irCFUPnzVnpvaNOHI+MxOZWRxS2GXpnaMmtp9zTxdbMSPWJZIWcg3ZzYgilA6OwcZm5nOTj648c1ylxyVJxNjIH3QvaktQYGsGkwBJYmwVz/N4zkMOpY6yFUUmdTIzTvq4iY+KUaM7MFJbRP8CEtqO8SPZJp19EihkwFyJTG1M23ZtzzHN1FT2yFP26jY+edDKitD+sAB9D7/vOvHYeIIF3r+ZjW1A+WAQN8vJtu/rUxthh6ZUh7IidowKtxBHmuXFM15Xjb1tMFXvRYAcPXRVyPmK14qws+S2nmY2t0OubsRvweXLieTrodf3u36ea10xvQzMLd8LvrSffjdtsJy2wuheDqONw6+AQBYNX3VKB9NdvUVAz/iY0ntwRPgdw90oy+ZQZF11dAAACAASURBVNQv8239ZmKm9kBayWuHgVMNVJHxQCzVD38q+6IxL4o0KXSblMPUXr+zDdubexH0Svj4cdmNifKQl0+gsyJIjPgRl0ltJ7swxotEs6JIjh8x8JM9fmDuavKxUwRJXwuULvKYYp1JAICZ2pmE6Q4ufgg5yiIH3n4bPU8/DQgCam8uDqJqNKTjRwYv9nNMRE31sJ+1OuKDTxahatnPr6G695kP8NrudgS9Ev73U8tc4SCcIEhEnw+xj5AdAN2PP2H7ORh6RAgEINKdZBNRvQbetKOkto3Fn4uOnopYwIP9HXE8t003v1lKW6qoyNl3UgixksiqApnagJ7WZgsfnmmF6edggZlMh3lZpEqLIj3c1D78ktqKqmHjXvL7meimdknjU5yp7TCp3RVP8Z0ls+2Y2rQsMjWkLFLp6eH3MM9086T2QFpBPHX4XT/cyLbz8N3vfheXX345urq60NXVhTvuuAPf/va3i3lsJY0hcZ62V0UaEmJlw9NiqoekODRmarvEj4B+nyCpEAIuGVzBSlJsBPC0NhsIpjIqegbcXSBEv59vX0sYECSMp+2ZMiU7jzqHGH4kkwdTO4ThExY/khDpHCdXA7dqxdTWNG5qp+BBwCPBKzsmGGFS1IgfsSiKZEntPmemdppOcotRbCNXMVPbPKmtxuNIbCVbqwPL3Jvaot+Pso8T/mfHb37j+nH4cdHfoeTRyIS3fIb5F4qSbiqYcbVtmNpO0CMAILeS12ufN8aNomxqwN8gSAOYGpqFi+Ze5Oh5nKqQ+BEnac7LV9RDFgVs2NOBLQ3uDDcriYKILx5JEu6Pbn0UPSlnOyGKrdeaXkNKTWFqeCpml80e7cPJqr4RTGoz9MgJsyohidnNubBPhkci/98ZH7l0R1z2o9tLzvtMU3YevMKY2pUmpnYO/AhLaX/s2Gk5dz6cvZikE9e+Z5JO1LTB+BGXSW22YOVmt9JYFTOusjK1jVp4Hvn7/aedPcmel6CmybhBrDBJf3pDgOQb/NwmsjLrNE1D8/fvAgDELrgA/kWLnB3jGJaYBT/CSyKrh++iFAQBU8oZgiQ3V/v595vx4xfIzsPvX3wk5tS4C5c4KYsEdARJ77PPmhYbmumw4WnTFHPEJ/MFdzuSa2lS+1B2HFPAK/HF9F++sod/Xl8oGf6eKobc4FVyyT9vHk9rA4VJagOARO9hrPx4qBhT20sRmrnmXhNR2w72oC+ZQcRnvRhfUkmjJYb8c1oUyVLak2N+W3MAb309ACC1d++gz7OUtlRdBWnIDvmQV/dYSggSe7LtSG3fvh033XQTZFoCeOONN6KrqwttFtvwS5o4UnuYqa2hA1FUmq2ke5mpTf7plqktxikCw6PppqdTCQIQpQVE3WSS7fdIfALa0lsYBAlTvjxtAPCwpLZL/MiA0dQW9YuskEnYLotU+i2Y2koaAEnSJuFxPZlnSe2DufAjLpPayV3ktZDrCsvTBgymdham9sDbbwOZDORJk+CZMjmv5yq/9FJAljGwcRMS77+f12OxVJfoUYHYVEC2mDRYcLUtTe1256a2pmnI0Pd7c7DCkvm5o3MHUsFXAABXL70Bslg4M9FMAQ+5PeaT1GaIAifs+bpYAOcfRd47PytSWnvVjFWYUzYHvelePLr10aI8h1uta1wHAFg5beWYTVdmFJV3GBTW1DYfYLOSSCv0CEDMq9HgavclM2imzOV0Q4Pp12iZDDeqzLBQxqT20B0bO1t6sW57KwQBfKu8lVYvIobnxn0dPP3HpaQA1XAfTDhH8GQUlReFTqiiSDP8SDZTe+5ZgOQlZdyt2+0/yZ4XoabJeW26I0wQgFDV4Oc2kcyS2iamdu+atRh46y0IgQCqr7vW/rGNAxmZ2sbzJFtJJNM0m2WRjZ1xXP9HUuT56RNm4Pyl7scxTpLaAOBftAi+BQugpVLofvoftr6Hl8+WTVz0CODe8OWLP80WxbkAPnPiDMiigNd3d+C9pm76PawkcmRM7WIktQFDWhuFYWoDgEx3G2Wy4EeYqe2j1zg3eIPxLsbTPra+3HIxvqSSRkssqe10J8UOamrbSWkDg/Ejxvu2XhI5PGgmCAIqS2WRjmTb1O7r60NZmb4S7vP5EAgE0NMztlJeJRVHvCTSq6JTi6AybJI89JKTW6VzfLdMbWZqSx6VG+WuFJtK/u7Wy08KUxZJtswaTe0UM7Xn5m9qK11dUOPOW+oTaRUhgZqCvoieVHdQFsmZ2iGTC3VGXwhIwsNZVE7FEnnNOZLaUoRMiJwktZO7dqHjl78CAISWn+Dq+KwkV5GJvdJqbmobedr5GnKe2hqEjj8eAJD497/zeixWtil6VaAiS0kkEzMU+of/jNzUbsme1J5Rad/UVtraoCWTUAUBbYFY1gm3pmn47ut3QRBUpHsWY/Wsk20/h1sVhqlNBiJ28SNMnz+F4GH++e5BdBZhMCMKIueR/3brb8dMWltRFbzU+BIAYmqPVfUn9fdEIfEjZny/VEblW3hzmdrA6HC1+xIZHAyRY0s1Npp+DU9eCgKksuGpSoYHSynqsGP/5St7AQCrF9ba4vpOLQ/iiClRqBoGbacnTzBkXOICP2J8fSZWUpuMjwYXRVLTJjTkveePAjNPIx87QZDseQkKS2pnw5yxUsp+i6Q2XbQemtRWUym0/OAHAIDKz32uKDu2RlPM1IaiQO3X75e80C/Lz8vKIhs7sy8cJzMK/vuxt9A9kMaRU2O47SML8zrWRbQscvuhXlvFx4IgoOziiwEAXU/YK8lWOulC2QTmaQO6qe20RJEntbNgepjqYgGcu4QsFP1y/V7yPc00/T8CJZGAwdSOFBZ14p83DzU334Syj30M/iVLCvKYPKmdDT9CiyL9UXKNOxyZ2hv2kOv38TNzj1tKKmk0xHZHOsWP6CWR9nYxeaZNAwQBan//IA5/an92UxsYvZ6c8SpH7IA1a9bgqaee4n9UVcVzzz036HMlTUwp3cT0kLwqOoWoKV9P8NHJJje13SW1JToYyCupDehc7R6DqR1lpnYeSe158wAAiQ/0dFJyBzG1vXkktaVIhE/yrPh32ZRIKwizpLY3MigFbdvUZvgRs6JIRb+opiDnkdQm5sXBQUzt4a+HGKGLJDaT2loqhQM33ggtmUTo5JMRu/ACV8dnJSkHfqQQPG2jOIerwdwosiulV8ePoDyXqW2R1GY/f4HwI+kDZBdFf6QCGVHOujV6XcM6bGx5A5oqIdR3ATwOmN1uVVCmtsNzZWFdFFVhL2Gg5lFsa6XVM1bztPaDbz1YlOdwqnfb3kVHogMRTwTLapeN9uFkVR/l23ll0RWCKZtYUjuVUZHMkPfd241dGEgrqAh5Mc/GAJoNgkcSP9JrTGo3muNHWKJSisUgSMO3z3tlkSf0jO/5jv4UHt9Ern+fOznHtcugsxcRM2fNUARJasi4xAV+pIv+bsM+2VF/wFiX4CXvP3Omtokx4RRB0rkP6Nyr40eymtqsLNIiqV3L8CODcW2dv/0d0o2NkGtqUHnFZ+0d1ziS6PfzRL3arb93c6EiprKktgV+5Lv/2Ia3G7oQC3jw4KXL4JPzK+mtrwzBJ4uIpxTss4E9AYDoRz4MweNBcus2jnKzEsePFLgUfKwp/6R2c87Okivo9fXvbzehpTfBgzvZFkoKrUIXRRpVefnlqLvzDghiYa7XrOw4G35EowtOwRiZSx1uTG1N0/Bmiadd0hiXjh9xdn46KYkESGcEQ8wayyL1ksh60+9jVIT2kqltS46u7pdddhkuuOAC/mdgYABf+MIX+L8vvPDCYh1nSaMsltSWvCr6JXN2neyjJ7dMJuNuTO2MosKXJIOB/JPaDD9iTGrTssge90ltP8WPpHbugpbJQNM0ztT2zTEpPnIgdtFLu+BqJ9KKIakdHpSCtosfsSyKpEltRfRAg+ja1K6jpnZzTwKqzExtk6R2lCa1e+2Z2q0P/BjJrdsglZWh7jvfKdjg1SgdPzJ8sq2l0wQ/AiBwTGFMbc9UsjCTbUu/XfGktkfNXhLJ5BY/Qiet0xyY2ilqaqeqyaTJLKmdUlK4Z+M95OOOU1AbnGL78fNRIZnabs4V9j0MYVJoiYKIG469AQDw2PuP4cWGF4vyPE60rmEdAODkKSfDI47dBGx/EXjaQx+PTYI5emRWJUQbW3jLqak9kgy+vkQGh2iSN9u1ipdEWphPdSZlkY+9sQ/JjIojpkQdTY7Polzt9TvbBt/3CpDUzue8HssSneBHAGD+uaRYuOktoMvGPWoP2YWhgtz3sxZS2zC1eQdJSys0hVyjM52daHvoIQBA9XXXQQzmEYoYw+JjIwNXmye1a0w45TDiR8yT2n9/uwm/eY1MsO/9+FJH9/FskiURCyaRhTi7CBK5vBzhVWcCALqeeDLn1x82TO0+d4YvM6S1gQGoOXZWHzWtDMumlyGlqHj+gUfQu5aUcodOLPyuRzOx4jWnafTRkMTxI8NNbU3TOH4kSJPaueZeE027WvvQ0Z+C3yNiyZTiFbqXVFI+iuab1K613/tmxtXWTW3zpLaOH3HvWR1Osu36qKqa84+iuJ/8lzS2ZTS1k17zwaPkJye3KJH3gdLv3NQeSCsIUvNU9Oab1C4OfsQzdSqEYBBaKoXU/v1Q2tvJ1mpBgG92DsMwh+TJzNTOXraVTYm0akhqhw34EUNS26JBV02l+GTWtCiSlkRmBPI7ZCwqp6qO+CAIQEbV0Kt4+DEOlRQhkyFtYABa2vqG079hA9p//nMAwKRv3QlPkRiAzNRWe3uhJge/hxLbtkEbGIAYi+XFVjfKM428h7Nt6bcrhabdJa9mw9Rm+BETU7vG3NTuTaT59ihnSW3C0xYoH9WMqf3otkfR0NuAsFyBVPvpqI1aTHi2/wv4zflA+y7bx5BNDD8yQNnJbtTFiiId4kcA3TDrHiieOXnylJPxqYWfAgDc9sptaIm3FO257IiZ2mMZPQLohnPIl1+ScagkUeDXajbIZqb2CTbQI4A+CB7RpHYijUM0qZ06kAU/0kF+DtnC1K4dUhaZyqh4hBptnzt5piOk07zaMOorg0hlVLy43XC9Sg1ZOHOT1M7jvB7L4kxt472NYajMTO1wNTD9RPLx+zYYyNTUVjLkPZ49qW2DqV1dDUgSkMkg00a+ru3HD0Lt7YVv0ULELviP3MczTiWVUa62waRMtzJURBamNsePDF843tnSh68+/g4A4EsrZ+OMBYVL5jrlagNA2UUEQdL9978PG2cNldJFTG35MMGPOE1qi4EAR9akLcoima44eSZmdR3Agkd/DACo+tJVCBYopGElTdOKmtQutGSOHzExtZNJUkgMIFxG5jGHG36E8bSXTS8v6G62kkoqpFhS28n52Z/M4EAXmavOqXZiatOd13v1pHaaMbXrrfEjpaJIeypdaUqyJcVQFJnymU9KPUFy8xZlMuF3w9QeSCkIURSF6FEBbx6m9pCiSEAfEDbnsaVfEEVuWia3b+clkZ5p0yAGAq4fFzCURR50kdTOKAjBLKk9wM2XvmT2hSfG0waymdrkd5ahCUon5XdGeSSRD1rbkyI/xqEyTnitSkeVnh40ffWrgKYh9p8XI7p6tavjsiMxEoHgIT+3MgRBwnnay5YVLCXunVbYpLbkscPUZknt7ExtpatrUJqPmdEVIS9HKNgRw48EqHk/NKndNtCGn77zUwDAsvAnAdXH8TWmevPnwJ4XgX/8Pz6pcCuW1M6LqU2NxVjAOSOyjBb+dTtMEDjV9cdcj4UVC9GV7MItL98CRR2dxemGngbs6t4FWZCxYsqKUTkGu9KT2oU3NVlypDeRQSKtYNN+ytOeZc/UHq2iyEMG/IjZNveMi6T20+80oaU3iZqIDx9e4qywThAEnE3T2mu3GnBeDD/ip4vziW7H1wqGFZpoSW3BS947Kru2qwowQJmxzGgeqgUfIX/n4mprGrk2A1CTZKFQjGTB6fCkdvYiekGS9J1DzYeQ3L0bnX/4AwCg9qabi7JTa6xIZGWRXWRcrmlazqJIhh9p7kkOuqfFUxl86dFN6E8pOGFWBf7f6nkFPVZmam9tsm9qh046EfKkSVC7u9H3/POWX8uvKyVTO6tktqshR1kkAKye4sc3Nz4Cn5JG79LjUPXf/+34+dyoJ5FBSiHXBTc/40iL3ccyJqY2S2kDQISb2pmc+JeJpA3U1C6hR0oay4r6neNHdrWSMWRlyMt3RtqRsSwSIPNoFhhlc/2h4qZ2CT9iSxN31FdSQaUaktpqwHxy7Q2QwasskQmfG/zIQFpBkJrakkcDPPngR+hFwpjUpkmwfJLaAOCfz7jaH3CediHSuZ46MnHPuMaPGJLaBqZ2yAZTm5naQiAAQTbZVk+T2mnkZ2oDOle7LUmTjib4EUGW+fZh1QJBcuhb30am6SA806dj0i23uD4mOxIEAVK1OVe70DxtgOwKAMgWWytjP5eUTnKsoiOm9vDUrlRWBtD3hhHBsr+DvHecbllmpnZsVj0AUmJlLJS6f/P96E/344jKIxBVlgPQEUKmGqATjN3rgB1rHR3LUPkLgh8h55ubRGdZkfEjTF7Ji7tPvRsBOYANhzbgF//+RVGfL5vWNa4DACyrXYaYb2xvV9VN7cImtQGdq92byGDz/k6kMiqqIz7MrrZ3LxyNYpneZAatwTJogggtkRi24AfoiTapIrv5ZOxb0DQNP395DwDgspPqXaW9zlpMEqfPv9+CVIbuuGD4EbaTS1OApP0yYkBfaJpwSW3vkKT2QBcAej0OZjEnFnyY/L3/VdOFUK62D4C+ZmiinzO7TRfPjc9lkdQGAM8kWhZ58BBa7vkBoCgIn3EGQicst/y+8S4pSk1tOi5X+/qgUSMtm6ldHvQgRHcfsZSZpmm47cl/44PmPlRHfLj/kqMLzoh3k9QWJIl3onQ9/oTl1+r4kYltnuVjans4f97a1NYUBc0334zqvnYcDFbie8suAUZocYiVRIZ9Mh97jWWx95tpUjtO5jOC14toiNzTMqqGZMb9rr/xJE3T8Mbukqld0tiXm6JIpzxtJs8QU5v9LdfUZEWlVZaKIh2pZGqXZEssESJ6VYhh88SOlya1PR73pnY8pSCUKVBSmzG1U70kjQWglg4IW/M0tX1ziamd/GAHT2oXxtRm+JEmR9+nadpg/IjPeVGkZUkkwE3tFMhFNp+U2iS2uDAg8GM0E0tyKVnKIruf/gd6/v53QJIw5e67sk+SCyi5iqbDDKaupqoYYKZ2AbdqSuEwTyCl80CQqO2H6OMFSYrfShZMbUEUTcsiGU97hktTu2rODIgCwQ0wduT2ju34686/AgBuPv5mtPaSmzpDFJhqwNBEv/Y2QHFvCOv4EXemtqZpHB3iiqlNDbOuIie1AaA+Vo9bl98KAPjJlp9gS8uWoj/nUI0X9Aig8zFDBWZqA/oguzeRxusUPXLS7Erb6I3RMLX7EhlkRBmJMrLgbYZLytBCLSv8CLsvNPck8PruDmw92AO/R8Qnl093dVxHTytHVdiH3kQGr+2m12tmagcrAYmmbBxytbt4Utv5DoyxLNFHfx5FgZbJ6KayLwZIWa5h5TOAuqWApgLb/5n9wXfTlHbNsfxTuZna5iVsTDI1tbv/+lf0vfACIMuo+cpXLL9nIojhJNgOSlYSKUajWXcLCoLAF51ZWeQf3mzAE28dgCgAD1xytPWCsUstqCNjuKbuBN+5ZEdlF10EAOh/5RXL8XCJqZ1b7DzJ5MCPtD7wAPrXr4fg9+PuFVfgrU5Vv24WWfmY9qMhhh/JdHYOS2CzpLYYDCLokcBu3T2HCYKksXMAh3oS8EgCjp42sXdQlDS+xcJ5yYxqe1euW1Pbx5ja+/ZBU9WcPG2gVBTpVCVTuyRbYuw+yatCDpsX0QRCJJHhk8nJp7pgascN+BGS1M7D1PaGgAC9odK0Nk9q54EfAQDfPGpqG/AjvrkFMLWnuMOPsAQAL4r0Oi+K5CWRwWymNvmdJWhSOx9Tm20zPxjPjh8BAClKJkRq7/CUT7qpCYfuuAMAUPXFLyJw1FGuj8eJ5Eoy4c606qm01O7dULq6IPj98C9aVNDn89BtSak8ECRKF5mYiBXm5+4gcaa2eerOrCySmdpOeNqapvHJamD6NNTFyGScTbj/tP1P0KDhrBln4aiao9BMy10tmdrM1BY9JBm48Ve2j2eoeFGkS1M7nlKQVshkJx+mdrGT2kznzz4f5848F4qm4OaXbkZPyn6yLl91J7uxqZksCq2cunLEntet+opUFAkYTW3diLWLHgFGydSmv49UDU3OmpjaSjtLamf/WeoMSe1frCcp7YuXTeUoHqcSRQGrF5GU4tr3aEqR4Ud8ER1B4pCr3ZXHYtVYFsOPALQskuE/QjnefwvOI39bIUgoekSpPY48l9/PUV7DFMrN1Ab0pHbfCy8AAMovuQS+WTl2Ik0AMVOb7aDMVRLJxBAkjZ0D+PeBbnzjqfcAADeevQAnOLjGOFHU78HUcnJv33bQ/o4I77RpCC5fDmgauv7616xfx0zticzUVlQN7dTUrnGT1J5Ek9oW+JHeZ59F+0ME9Vb3rW/huDOPBwD8cv1ex8/nRiypXRUeHwuFHKOVTg/bSaqypHYwANHQk9HrAHEwnsV42kdOLePhkJJKGouK+GS+6GT3/NzBSiKdJrWnTAEkCVoigUxLC2drZ+NpA8bxfKko0o5KpnZJtqQXRWrwxsy3N/qpqR30kJNP6XVuaifSCoLU4CRJ7TyTt0PKItmAsD+lWKaWc8lH8SPpxkYkt20jnytkUru5GZqD4lW2whjiSe2w46S2wpPaWS7UCpnIJzSKH/G7N3RqqXnRxKgjJvgRABAj5D2lDBk0aoqCppu/CrW3F/6lR6Lqqi+6Phan4knlNt3UZTztwNKlg4yBQshLESTphjyS2t3EtBEr63J/MUtqp+N6qtEgM1N7X7tzUzvT2kq2uYsiPLW1vMiqoTOOpJLEP/eS1N9H538UgM7Bz5rUVlXdnDrlBvL3uu8NTm87EDO1UxkViuqchcgS1l5J5I/lRAw/4rSV260EQcDtJ9yOqeGpaOpvwh2v3jFiDMhXDrwCRVMwOzYb06LmbLmxpP6imtrkdW/uSWBLA3k/n2izJBLQmdojWRTZRycDSi29f5mZ2h0sqZ3dfGL3hf3tcTz3PkkVXnFyfibl2RRB8szWZoI2Ytc0bwgIGLjaDjRx8SP6vUtNJnVT2awk0qiF1NTe/YI5ykVVgL0vkw8rlgCwGGcYn88KZwLAUzeJfyxGo6j60lXWxzlBJMXouIiOy9Mt1iWRTMxcfq+pB196dDNSGRVnLqjBF07Nr+A8lxa5QJAAQNnFJK3d/cST0NTh6AZNUfS5yQQ2tTv6U1A1QBB0k8OJ5FrrpHZy9x403fxVAEDFZZ9B7LyP4PIV9QCA595vxu5W9+g7uxpvSW3R5+M7Q4ciSNQ4ncMGyHiYcXv7DhNTe8Mect8ooUdKGusavOhkb661iye1s3SCZJHg8cAzlRAEUnv32Utql4oiHcmxqd3Q0IBGw4Rlw4YNuO666/Dwww8X9MBKGltSDEztULl5M7rsJyd4gJra+eNHtAKY2oO52iGfzLmC+XC15fJybu6p8TggivDOyn9iIFdXA5IEpNPItNnf9sfSpFHRyNQ2JLXpz9xvoygy62STJbVVcgMoRFK7kb1F1DSgDB/wiRFyLEOTEB2/+hXib74JIRjElLvvNmeAF0lSFZlwKwb8SLwI6BEmltRON+aR1GYp/BobhqE3DMjUODZBkHBTu0X/P5aunl5p39Rm6BF5Ui0EjwfTytnW6AG82PAielO9qA3W4rja45BRVJ7kyWpqJ7vB+a8rrgWqFxDG9ks/sH1MRhm5jm7KIlmZXDTgsY2OMIqlU1kqdCQU9oZx96l3QxZkrN23Fo/veHxEnnc8oUcAvXC3GPiRaIA85gvbW5BWNEyO+R0tFlWGmamdHsSnL6Z62WJpHR2wmyzAZTpzF0Uy/EhKUaFpwOnzqzHbQbu8mU6aXYWIT0ZLbxJbGrt0U9sTBPyU3e4QPzJhiyJlmXcmaKm0fVO7ej5QOYcsfJt1GRx6hywc+KJQA2SRNit6xPh8Ax1ksTKLmFkHAFVXXTWh07pG8aLIbmIS85LIamtTm+FHfr9hP/Z3xDG1PID/+dhSiKLz+5MT8bJIh6Z2ZPVqiOEw0o2NiG94c9j/K916yStLr09EMcO3MuR1xTznSW0TprbS14/Gq6+G2t+P4LHHcnzP7OowzlhQA00DvvToZn7NK5b0pPb4MLUBY1nk4OCEOkDGwwwFdLgltUslkSWNJzkpi0xmFOyj812n+BFgcFlkav9+ADpr20wVdDwfTymu5qGHmxzfHS+99FK8QLf6HTp0CKtXr8aGDRvwta99DXfeeWfBD7Ck0ZemKNxUlHwqIuVZBs7UgPZ7yYVB7e83TVdYKZ7KIEyT2pJHzQ8/AgBRytU2K4ssEIIEIFslRV/+gzFBlvVSl6YDtr8vkSa/54hgZGpT889QFGmNH8llapNBZ5ya2vkURTJjcr/Rq84MR5BIJkntxNataPnR/QCASV+7xXKVsxjSmdJ6iiy+aSMAIHDMsoI/n3caMQHMjCK7UuPktZMm2Ug9CoKBqz08KTc0qa2oGho7yWvnxHxLHyDoEe9kco4aeZ9P7XoKAHDe7PMgiRLa+khSSRIFvnI9TCyR7QkRFv9Z3yH/fuOnQPsu28fF5DMU07lBkDAz2m2akzO1Rwg/wrSkegmuWXYNAOCuDXdhV5fz350TpdU01h9YD2A8mdrkNSkOU5u87m/xlHaVo0UR9n5TVG3EGJ5ssi5NIeeyVVLbqtAt5JM5fgUA/uuU/BeKvbKIlQvImGXNe4eAtCGp7Ro/QpPaE8zUBgCRprW1lIOktiAACz5CPt729PD/pzxtzFgBhaUY/4MaaAAAIABJREFUrUztAH2PaKrlgoN/wXwSKKivR/knL7U+xgkkztQeih+pNQ+cME0r13nbXknETz65zDXax4nclEUCxBSMfpgUkXY9MXyBlaFHxFgsO8pmAqg1T8NXZ2oPNrU1TcPBW25BatcuyLW1mHLfvYN+j3ecvxjVER/eP9SLK37zZl6l2bnURjtTxpepTRbRlI7BASRW2spMbWNPxkRXc08Ce9vjEATgmBmHxyJjSeNbTsoi97bFoagaIj7ZGoWZRV7G1d6711ZSO+KT4ZHI+L/E1c4tx6b2v//9bxx/PGFt/elPf8IRRxyBV199FY899hh+/etfF/r4ShoDUnt7eRqiRw6iMpLFuKKmtihTI1vT+DYsuxowMLVFbyGS2oPxI4C+vS2fpDYA+ObP1z+eNzevxzJKnky2cGcccLXZCl5kUFKb4UfiPClgh6kthrK8vjSpHS9IUpuiJnoUaMheFsmT2rQoUk0kcODGm4B0GuFVZyJ28cWuj8Gt5EpqatOkdrqpCZmmg4AkIVgErrdnKk1q58PUpqaTWGfzfWpRFjnU1G7qGkBG1eCVROsSxyFiSW3PFGZqk/fEns5D3OQ8f/b5AHT0SE3Elz1VxkxtxtGfuwqYs4rsAnj2G7aPi0kUBfg95BbpZjLHkk1ujS92fnWPEH7EqMsWX4aTJp+EhJLAjS/diEQmvwVAK21u3ozedC8q/BVYUrWkaM9TSLEdL5EiMrUZ+cUJegQAfLLEj2ukuNrM5PfRa1VqyK4STVGgdBFzkhVsZRPbxbNgUgQnOfzZs4khSNa+1wwtyUztsAE/4jCpTc/J2ATDjwA6gkRLJoF+m6Y2ACwk12rsWAukh1wv9rxE/p51GtTeHJgzAJC9pJwSsCyL9NbXY+aTT2DG7x/jZvzhICnKiiJpUpsWRco58CPTDIvOt5+3CEdOHZlyRYYf2dHch7TiLOjCECS9a9YOw9BxnnbZxC6JbMsTzSHXkOuf2t/Pd+0BQPvPf47eZ56B4PFg6v0/4oENpmkVQTxyxfGI+mVs2teJqx7d5Pj1sytehDlO8CMAINN+iMxQ/IihKBIwmNp5IC/Hi1hKe1FdlCdgSyppLIsF9OyEQFhJ5OyasKsduMzAHnj7baj0/u2dnr0IXRAEVIbINbGjhCDJKcemdjqdho8mUp999lmcfz4ZyC5YsAAHHZbblTQ+xAbOgqyiU4xkZ7pJHqTggSABmkS27jstixxIKwhSA0XyCoCU50SFmdo9euqZcbWb80xqy3P1FFl6ug1WsU156pyXRTJTOywYmdp0ApNJ8EShFVObvVZZtwXTpHZCy9/UZtvM4yl1ECZlqIYmtVvu+QFSu3ZBqq5C3be+5eqmkq/kasbUJilmhh7xL1zIGXuFFEtqpw8ccMRZZ9L6u6FlyO9JmrrQ3jc5MLUZemRqRQCSg23Mw0xtih/Zm1wPRVNwZNWRmBkjyXJualuZ5kNNbQA469uAIJICs72v2D42JsbCdoUfyZO7y8zwYm/7NZMoiPjOyd9Bhb8COzp34H82/k/RnouhR06deiokcXyUCrHFwWImtZmcmtoAUB4aWa42Y4WG6ompnTnUDC2tv2+Vri4dE5DDgGKpzi+cNqtg1/eV82vglUTsaetHbw81sPNJak9Q/AgACHR8T4oiHZjak48GIpNJEScthQQAZFLA/tfIxzNP1ccZkRxbd4N08SNuzdX2z59/2GBHmKQyltQm71u7RZHzayO45PjpuPbMufjU8uwT6UJrankAYZ+MlKJid+vwng4r+ZcsgW/uHGjJJHr+8Y9B/5fhuz8m9uufr+ErhUMQIwQPydLafa+8gtZ77wMA1N52GwJLl5p+78K6KH55+XHwe0Ss296Kr/z57aJgrcYnfoQltYeY2v16USQAhOk9/XDAj5TQIyWNN3H8yEDu83NHC/Ei3KBHAMA7ox4AMLBlCwBArquD6LcOgzHPrb1UFplTjk3txYsX46GHHsLLL7+MZ555Bueccw4AoKmpCZWVxWnPLml0ZeRpdwlRBC3ajBNCAIIAaPQkdcrVjidSCGTIRFwMBoB8J7U8qa0nx2oi5Nha80xqH6jRDY3WSfYTqrnEyyIpnsGOGB4hDLOk9gDCfhtJbcbUDlmb2kl4IImC5fsglwJeiRsCiuTjxzlUUpQMxNXeXvS99BI6H30UADD5u98btYksS7MozNTeWDyeNkC3jsoytHSaT16dSGncyj8Wq6fa+yYHpvb+DuclkYBZUpt8f9z7BgCCHmFqpufqJKvtXsyYChhMs5qFwDGXk4/XfM2Sz2omZmq7w4/oTG03YtvCe5OZoqWjrFQVqMJ3T/4uAOAP2/+A5/Y/V/Dn0DQNLzQQnNl4QY8ABhPXV3gT3ljAO70iiCllAYuvNlf5CJbLaJrG7yvhybUQ/H5AVQctynL0SCyWs//gm+ctxh+vPAEXHm3zWmVDYZ+MFXPI+LSVbRUfVBRp39TWNI1vUx0JdMNIi5najooiAUAUgQUEFYFtf9c/f2AjWbAOVgHVC/kCddZxBhN7zrj9bpHDRQw/onbRoshWe0WRoijgexctwfWr541oIEAUBSyYRMZyThEkgiAgdhHZkdf1+BOD/k/pJOfthDe1C1CiqHO1m5FqPICmG74CqCpi/3kxyj72UcvvPba+Av/7yWMgiwL+tqUJd/z9vYKXSI+3okgAkDlTO0tSOzAkqX0Y4EeYqb28ZGqXNE7EemzsnJ8sqT3XraldT1EjdC5qB5/KenJKZZG55djUvuuuu/DTn/4UK1euxCWXXIKldHX3qaee4liSkiaWlC5mamvok8osB8MpiUzAVR85CZ2a2uke/evFkPPJ/DDxpPZBQCXGFOMg5Ysf2RxoQYaeQfuqCjfA80x2ntROUqZ2ENQY9kUGJaDDNpLabFtirqLIpOZBzGX5nVFsm3lGZOzv4UltMUwmQqn9+9F0660AgPJPfQrhU07O67nzkUTxI2o8DrW/X+dpH1scU1uQJP6eSLlAkKgHtgMARI9gv1AzRLehmjG1aRos094OTdFLM3Ka2mtuBdbexv/JTe2p5BytDvvgCx6C5D8IWfTgQzM/xL+2uZu89yzxJmZJbQBY+TXAFwUObgHe+aP1MQ6Rny7cuMGPdHH8iDvjy2hu2mG9FUMrpqzA5YsvBwB8/ZWv41D/8KKpfLSraxcO9B2AV/TixLoTC/rYxVR/ilxHjfznQsm4ZdctfqNyBJPayYyKtELufxG/od3dcK1iRVpWJZFM5SEvls8qfEDi7MWEK9tNF+nhDbtKag+kFaToItNEZGoLXvIzacmUnpIOVVl8h0EL6ULk9v/Ti58ZemTmqYAo5u7uYCqZ2lklRcluBjUeh5ZK8X6PXPiR0ZRbrjYAxP7jfECWkXj3XSS2f8A/r/Dy2cPE1M4jxSxPImGZ1L69OHDNNVC6uuA/4ghMuv12W2P50xfU4H8+Rub7v3ltH+5/bqfrYxkqTdO4YVMVHj8LhRLFjyg5iiJ1U3tiJ7U7+1PY3kwWLY+rL5naJY0P6UWR9k1tt0ltT13doN4CK/QIE0tqjxROcDzLsam9cuVKtLW1oa2tDb/85S/556+88ko89NBDBT24ksaGlB49qT3gsd46nBbJTVyhprbi0NRmKR5B1Pgqd14KTyL4ATUN9JE0Sw03tfPDj2zsfBs/P1vEn04WsS3m7Oe0kocytd3gR4IaNbWHJLV1/Eh2c06fbGZBaBiS2tECmDnMoEwJuZPaA5s3Q2ltg3fObNR85Ya8nzsfiaEgBDpYTe7ejdROUqRXrKQ2AHip8Zt2URapHCSTD9GJAWOV1K6sJDsoFAVKZ6e9pHbvIeC1HwOvPgAkeqCpKtJNZCcCS2qLooBYzdsAgCXlJyLGmKrQ8SOuTO1wNXAKfc88dyeQsr/9OZ+kdneeRZGyJHI28mhwtZmuOfoaLK5cjJ5UD25+6WYoauHKotY1rgMALK9bjmC+pcAjKI4f8RaPqQ24Q48AQHmQDYKL/74x7v4JeWV4p9BrVaOO/GJFWlIOnnYxdebCWggCoCbpvdplUpstVsl57lYaqxK9FD+SdogfAYAZK8j1N94ONLxOPsdKImeeCsDQ3ZELP8KM9JKpPUxiJMJ3Mab27QMo6oftohqLWjSZmNpbXZjackUFIqefDgDofkJPa7ceoCzxUlI7p1hSu/Xe+5DYuhVSeTmm3v8jRwX3/3HUFHzzvEUAgHuf/QCPvLbX9fEY1TOQ4QuF4wk/IucqiqT4EWaa9Y0jU3t/exx/2dSItxu6bOP33txLUtpzasKoHEevY0mHt6K8KNL6/FRUDbvbyPxxbk3E1XMJkgSPwci2k9TW8SMlUzuXHJvaAFlV3bRpE37605+il5qQXq8XweD4mZSWZF9G/EjaZz14TMvkPaB6yEWCGaV2lWElQh4V8BSATyzJhPMI8LJIhh9p6XGf1FZUBZubN+P5o0T85RQRe3r25nukXBw/4sDUZqZbgJnaRqZ2Oo4wNV9SiopUxhxloBdFZvm9K+T3lYKnICxRltQeQHZTm3EAAQAeD6bcc09O/lSxJQgCMXYB9K5dCwDwzprFtyIWQ55p5gVsdqS27AcASGEHOx8sTG1BlnniMtPaypnalqZ2+y7943g7Mm1thNkqSXyylVEzSPsJymVOYOWgb2f4kRqrSV02UxsAln8RKJsO9DYRY92mCsHUzudcYUV0XaNoanskD+4+9W4E5SA2t2zGw+88XLDHHo/oEcCIHykuU/tEl4nlihB5jI4RYPCx30XYJ0MUBb7zIt1oTGqTya5cPnqmdnXEh2NnlCPEEV1BPamd6Lb9OEZW/mh0OhRbnKmdTOoljXZNbUkG5p9LPt72NFlAbHyT/HvWaQAAtY/MGbJ2dzAxprbJbqHDXYIkQaRp7eSOHQAAqbJyUAJsrCmfpDYAxGhhZPdTT0FLpfD0O0149nWS2p7w+JEClCjKtWSnitrXB4giptz7Q74D0IkuXzET155JCse/8dR7+NuWAzm+I7da+8g1OeKX4feMn4VCPg4emtSODy6KZDtle5PjBz9y5W834it/fhv/8eArWPyNNTjnvpdww5/exq9e2YMNezpMUZYlnnZJ41F2iyIbOuJIZVT4ZBFTyt2TBIxGNseRWIgt9I3EeH68y/GMbN++fTjnnHOwf/9+JJNJrF69GpFIBHfffTcSiUQprT0BxRpaRa8KJWA9uVGoqa14yHqJU/yIRic8okcjk85CKDYV6Gkkf3AcN8bywY/s7NqJ3rTexL6ne0++R8kl06JItbsbSl8/pGzJaYMSaRUeZCCDDjSGJbX1gWJ/MgOvPHyLH2Nq5yqKTMLjmhNsFEvdxjUvP86hkgymds1118K/0GbRYZElV1Uh3diInn+tAVDclDZgKIt0k9RuJd8zaIEglyzwIwBJhCnt7ci0tmJfO5mQTK+0OF87dusfD3Qg3UySkZ7aWo5EebXpVWSEHqiZEHzpwa9zSz5JbQDw+IHVdwJ/vhx45UfAss8A0dwTuoA3D6Z2PL+iSPa9jZ0Do1IWadT06HTcfuLtuOXlW/DQOw/h+LrjcUxtfu/5toE2vNv6LgDgtKmnFeIwR0wM41QM/Eh9VRALJkUwuyZsXYxqoQrWlj4CSe1eg6kNAB56rUo16tcqxQF+pJg6e/EkBJrofd8b1ouoHeBHJnJJJAAIXoqOi/eR0kdAN5jtaMFHgC2PAu8/DcxZRXbJxaYB5aT0V+E7wnLcjzh+pMP66w5TSdEo1O5uJKipPZbRIwApqRQFoK0vhZbeBA+X2FX45JMhV1cj09qK3nXr8MeGGFbTXRdS2QQ3tQuAH2HhAQCo+cpXEDrhBNePdd2queiMp/DIa/tww5/eRizgwcr57t9/rb0kgZjPzzcaYvezYUWRcVoUOU7xI7tb+/D+oV5IooBYwIOO/hTeP9SL9w/14vHN5GsEAaivDGHx5CiOmBLD4slRvLqLJNZLPO2SxpOiNotcGXpkVnUYkug+0DDI1HaQ1C7hR3LLcVL72muvxbHHHovOzk4EAvpKxYUXXojnnit8kVRJoy8jU1sIWrMVVZquVmRqavc7xHLQr5c8qp40zlcxgjcYmtTuHki7SmACwKZmkig9qvooAEB7oh3dSftpLytJ4RBEWgSUOWivLDKRVhCCwRT2hgGZsaoHIEsifPQ1yVYWyV4rO0ztQpjaLKndr3r4cQ6Vb/58+ObORfTcD6Hi8svzfs5CSaoiE+405cYGi8TTZvJMnTbo+ZxIbSdbdKWYg4GmRVIb0G/EHS+u58lFy6S20dSOdw4riQSAv+38GwAg03MUDnQONuMOUVN7UsylqQ0Aiy4Api0n7Pbnv539cQxiqaGBlPOixkKYX4zH3TUw+oOZj8z6CM6ffT5UTcXNL92c9/Xu5caXoUHDospFqA3V5v6GMSJV1dBPGevFSGr7ZAn/uu5UPHjpMtePwZLaI8HUZukzVkbMUUlG/EgnLYocZfbtWYsmISSQa0m34gX8FHHkAD/CsEIT1tSm6Ditj15PBUlPtNvR7NPJLrvuBuDV+8nnZp7GcRl8R1iuxfoSU9tSrCwyyU3tsYseAcgCcX0Vec23HezN8dXDJcgyYhdcAABo++Nf8OqudsQoSmy0ryvFVDKj8DFWPknt4PLlEGMxlH30o6j47OV5HZMgCPjmeYtx/tLJyKgavvi7Tdi0z/3iE0uiV42jkkjAUBTZ2TmoOHN4UaQ902ys6JmtZM5w0uxKbLptFV675Qz87DPH4rpVc7FqYS3qYn5oGrCnrR9Pv3MQ3//n+/j0LzZwtFCJp13SeBIriszVXbQjz5JIJm99PflAEPgubCsxU7utVBSZU45N7fXr1+O2226D1zs46TljxgwcOJD/NqSSxp6M+BE5Ym1qa9TUVmUygXHK1GamNklqFwA/AuhlkdTUjgZkeKnB2+oyrc1M7VOmnoKaIEko7B1FBMlAWkGYTtYhB8g2YAN+BNCTdKzkbKh4giqUzdQmF9RkgfAjzKDsVpipbVIUGQhg1t+fwpQf/hCCNHa2JcpVg8+DwDHHFvX5zNKPtpRJQekhho1Y4SBJw03tNt7SbFQZ3Qrc99cn4c8kURX2IWjFFx6a1B5iancnu7GuYR0AIN21DA2d+nshkVa4QVxrle7KZWoLAnD298jHWx4DmrZkfyyq/JjaLKntvviInWejndRmunX5rZgRnYHmeDPufvPuvB5rvKJHjNfPcBFM7UKIMbVHgsHH8CMsjcYG6cYFuEw7xY9UFL4A0ommVwYRFsg9/9WGxOCiSM1e2XMhzuuxLMbY1XoN6BEnmBVPAJi7iny8ZzBPGwDUXrv4kRJT20pDTW3PGE9qAwVAkFx0IQAg8eorKOvvQpSa2kokZvVt41rMyPBIQl7jbu+0aZj32quo+9adBcEmiaKAH3x0KU6bV41EWsVnf/Um3j/k7nVtK0ASfTTEdx6l0/y6BhiKIilTm+NHbBTRjQUxU3v1oloIgoC6WACrF9XiulXz8PPLjsVrt5yJTbetwiNXHI+bzpmPDx9Zh3q6U/P4mRWYXOYezVBSSSOtiM2iyHxLIpl8s2cBIGNlO50GlaWktm05NrVVVYWiDJ/gNzY2IuJke3tJ40YKxY9IXhXeqPXAWaBGtCqRCaJTprbIEBjeAia1o4NNbUEQDAgS52WRmqZxU/uY2mMwM0a21RYSQcJN7SZ7Se2kMantoxdcjh8hP6NeFpklqZ2LqU2T2il4+HadfMRN7TQ1hkyS2mNVcpWeipInTYJninM2oRN5qVGktLdzTIwtde2HmiITGKncQZKLpeQ0xTTFGDr5ZHhmTIfQ34czGjZhekWOQeygpHb7MFN7zd41SKkpTAvPgpqcjIYO/b3AFp58sshX1E3FtqlnM7UBYOoxwJKPAdCANbfmNLJKTO3BCnqC+PaKb0MURDy16ym8sP8FV4+TyCTw+kFSJLdy6soCHmHxxcp2ZVHgu1/GmirDZBDcORKmdnIIfoQWRSpdXXxRm23PHvVEpaoiQJnaz+zs04si1bTpoqqZOFZooia1PTSp3U+v+3Z52kYtOG/wvw2mtsKCC7nmCzypXWJqm0mKEYM4vZ8sHsk1Y3+3yyJqam9tcmd++mbOROCYYyBoKs5s2IhoipyzreLENdGM6JF8zWhBLOz9yiuL+N9PLcOy6WXoSWTwmV9s4B0rTtRWAGb4aEj0+fh8yYgg0RhTexziR9r6kti0nwREVi3Mfk2pDPtw6rxqfGnlHDx46TKsu/F0bLvzHPzxSvdYm5JKGg0xPyNXUeTOFrJwlW9SO7BsGaqvvx51d95h6+tL+BH7cnyHW716Ne677z7+b0EQ0NfXh2984xs499xzC3pwJY0NKV1kciN5VQTKrAfOAjVUNZmkO50ytSW2wl1opjbATW1AL5xzUxa5r2cf/j977x0lx1Xg+38rdu7JSZqRRjk724BtrXHAa7yAMbAs6QFrEw7hseDHgtm3ay+7XnJ6PH7e38PAsrvwYLHZYII5TljOBgdZQsmWRiNrZjQ59HTuCu+Pe29V9XRXd3VP9XT3qL7n6Iw03TNdmqmuuvd7v/fznUnPQOZl7O7cjQ3RGpjatMAlN+YsqZ1WNEsBFjO185PazNSOZwoNOl3XDbPUdluwhantSlFklAz4YgoztSsfDNdLYqc50Q9eeGHNC8OEaNRA0mRHKtgRMzsElZrarFjKkUTZTDHGJwse5nge7e96FwDgjUNPYH0p9IiuA7OW90ayMKl974l7AQBv2PBGABym4xmkKOJhwsLTLvlzLpfUZrr6NoLmOfU4cPRXJZ9qMLWzlZnaOVUzzL7lmF/sa+cbJKkNAOd1n4f37XwfAODzT30e8xWgG5h+N/47pJQUeoI92N6+3e1DrKnY7zXkExu2KJAltVdiEBxfwhcXwiGjuC1Hd5YocyypXedtyZZ7zENDCaQQIHgNwDFXmy0wuYHgakQZRZFJajyGSu/OK6qt1wI8/fl0bgWifcZDWrkdYUweU7uk2HiALcw2OlMbME3tapPaACC/8QYAwOuHn0aQjknH9NW5awKwmNoNavgGZRE/eP/F2NYTweRiBu/5/jMV74Blz+8MN9/v0SyLNK9TDD/CmNrMNLNDPzaSHj4yCV0Hdq+NVpy4DshCw46JPHmyk4EfKZHU1nUdJ6bI2GW5SW2O59H54Q857jXooDtY4hkFGaU6ZO7ZoopN7W9+85vYt28fdu7ciXQ6jXe9610YHBzE6OgovvzlL9fiGD3VWdo8LXmSNYTbS5vaPEsJC9WZ2mKKTngkzTRnlytmasdMM5AVzlVTFslS2nu69sAn+GqT1F5TGX4knVMR5mi6VV6a1CafD9OyyGJJbT2VMjAT9kWRVqb28rfdRwMi/BKPFHx5x9kMsuJHAhdWz76tRCartgKu9txJaDlymReiFe6kKcPVbnnLW5CTfRhcnMC50yfsv09iCshaGJpL8CPDC8N4cepF8ByPt217k5H4HKEIkgm68NRbqjRP101Tu1ypWesA8JqPk78/8DcGVqeY/FXiR6xstuWYX6xkcqFBktpMHzv/Y9jUsgkz6Rl84ZkvVPz1VvRIs02CEkuSyY0oluxYiUHw0qJIAJCMaxUxtRulKBIMVwAeCzkBjx6fNtPaDhdnTPzIajW1aVFkghqPlZREMvlbgI20/NWS0gas+JFyTG36uplYyWv02Sohmo/caHSmNmDiR4amE1X32TzZfy6Sog+9SXJNUTger2QbB03nthrd1AYIiulfbr4E/W0BnJpJ4h3ffQq/PngGiuqsi4QltTubDD8CmAu1ahFTmw+SsAfrm0hmVcc/k3rpfoYe2dFb5yPxVKD5V4D/cwXw4k/rfSSrSmzRqdT7czyWRjyjQOA5rO9wCY3rUFG/CEkg8yQvrV1aFZvaa9aswf79+/HpT38aH/7wh3H++efjS1/6El544QV0N0FSwFPlYkztrCSio7V0YZDoZ6Y2meiqFRZFimliZAmS7mJRJDW1E1OGcboc/Mjzk6T++cIeUg5YU/yIw6LIVFY1k9q+JUltNQNoqiWpXWhqG+xznjfSBYVPIhfTrEtJbcZqS4OmM5rI1BY6rEnt2vK0mRirNltJWeTsENQcTWqH3TW1hUgEL+64FACw4+nflDwGq/T4jIHVkfvXGintS9dciu5QN/rbyPnHuNqsJLI7WmLCk1kkqBSgfFIbAC7/FBDuIcf2+7tsn1YtU5ulOSN+cVkt2QZTu8FMbZ/gwx2X3wGBE3Df8H24f/h+x1+r6RoePf0ogObjaQOFuI1GVNQvGeddrVP+5s/DvCdI/WQHRnZkBLqqQp2jpnZbnfEjWXKfU3g/AA73HTyTz9V2oAUXCmAbWRzty9GTdExQDX4EAK75PLDrRuCyTxqf0rJZ6FkyjiiLH/G3WlL0Xlp7qRhTm6kZkto9UR/aghJUTcfLExX27VD98uV5PLr2XOPfMTmEkfnmGTtWqmYwtQESFPrRza9CZ9iHE1MJfPTHz+OKrz6C7z02VJYlPdWk+BHAktSesZjaScbUZkWR5lihkdPaqayKx4+T8f7rdjY+zuis0x9+DpzZDzz/r/U+klUl6/vTDhHE7leDHUGjk22lxHGc2ZPjlUWWVFW/mUAggJtuugnf+c53cOedd+IDH/gAAnZGmKemF2NqL8pBIwFmJzFAkhiCQAYxlTK15Qxd4ZY09/AjgTbT4I0RM62bJbWrwI8YPO3ufFN7ZHEEOc0dA8HEjzgztdOKZp/UBoBcyjS1i1y0zS3BIfvkJEtqu2RqAyR9m9JZUrt58CPyunWAKELs7oZvy+aVeU1aFpk7XUFZ5OxJaNlqk9o0jZ6wZ5r+YuNlAIDI808Z6evCY8g3tZWpSei5HCAI4Lu78MuhXwIAbthEthUPUJQJ42pPWvAjtmIpbdGff97byRcGrvpr8vezqSYiAAAgAElEQVR9X7bd4h6Qyc8uXSF+xODuLjPN2RKQ6fdrvIHM7s7duGn3TQCAO56+AzMpZ4VuR2aOYDI1iaAYxCW9l9TyEGsiEz/SuOlAnufQRs+9Wg+C2f0kbJkYyP2sLHKELIozRELdTW16n6OL778+OI6cTM1Bh0nt+RT5ea7WpLZRFJlapqnduxv40x+SnTFU1p17tt0dxhN4M61d4h50tmqpqd0MRZEcxy2rLHIhmcMTx6dx/zrzvrHgC2FkdhWb2nEy/mmGEsXBzhDu+4u9+O9XbUZbUMLofAp3/OoIXvPFh/H3vzxsy9ueXiTX1GZMarOeCHWuSFKb+iKSwMMvkbFkI3O1H3t5CumchrWtAezo8zrSGk6jxHvwypPdlSjwCFLUpB2CxK2SyGrFvLeVKH9vZjkyte+9917kcjnj76X+eFpd0tJp6Fnyu4/JEeONbyc5SN7wpqldWRrDR01tktR2aYsHxxVwtbuMpHZlpvaZ+BmMxkchcALO7SZpke5gNwJiAIquYGSxAsOxhMQ+YmorE5PQlfKDoHSuSFJbtJiAuRQiJYoiNVbeZIceAfJMbTeKIgFSFpliSW2l8tR8vSR2dGDw//4Y6//1X1wv37GTRI2ibCX4kdkhqBQ/wkcqYGoDZZPaOVXDc1wbXujaAk7TMPdTmy1xzNRuWUe+bpIMyKTeXjw3vR9nEmcQkSJGanegjZnaDD/CTO0SEx6nPG2rzns30LMHSC8Aj3yp6FOqTWovMOMrsDxGZGuDFUUu1UfO/Qi2tm3FXGYOdzx9B/QyxZuAiR65bO1lkIXmY2gmLEztRhYbBM/VeEGEpfAiNvgRti2bb2kBJ9XZCKYLp5I/gvMGWpFVNYym6XUlveDoWxj4kWW+txtVnExNbbprDsEqmNo2YuNBLhgEJzhYFDK42t4kfqlYUST5h5C3e6yRxUztw1WY2g8cmUBO1aHu2AV5AwmTxOSQgSpbjWqWpDZTV8SH/3HtNjz1uavxhRv3YHN3GPGMgu8/fhJXfPW3+OiPn8Nzp2aNsYKm6ZhJNNf/0SqxnbzvGFNb13WCc4RpagPmTqZGNrUfYOiRnT1Nh4U7KzRKdol790P3Va4s8vgUGbts6a7PYg9b8JtNVB7EPJvkyI1585vfjDm6ffTNb36z7Z8bb7yxpgfraeWlLtCBJ6dj0d9S9kbnC5L0iCxVbmorqoYARVDwsotJbQCIku3QzNTurtLUfm6SrJTuaN+BEDXdeY7HYHQQgHsIErGrE5AkQFWhTBU3Fa3KM7VZUpvnTWM7lzST2tnCi7YyQQYzJYu8WFGkLruX1G7xW5jazTUxCZxzDuT161fs9SpOamsqMDcMjRZFCpEKV5jLmNpj8ymomo77tuwFAMz/7G5o6SILE8zU7ieYltwUYapKa9fiv078FwDg2sFr4afn6kB7Pn6EMbUdJbUrMbV5AfjjfyB/f/b7RorTqmqZ2sz4Wu77xMCPNFBRpFWSIOEfLv8HiJyIB195EL8++euyX7NvZB8A4Ir+K2p9eDXR0mLERtVKlUUa+BFrUpteq7IjI8Zkv+4pbcDAj0AO4abLiSn20gIdBjstikyu8qJIih/R0jT9Wm1Su4jYeNC2t2OpPFPbVtakttjVtWKL68vVckztXx8kHTPXn7MGrW9/OwDgTKgDp+dWcVK7yUxtJr8k4F2vWof7P/lH+OGfX4y9Wzqh6WR3zFv/8SnceOeT+MWLY5hJZJFTicHd0cRFkSrFj+jptLEziQuYc9govT+WQ7HUS6qm46GjpBT+Wg890niKnTF7wZIzRgeWJ3dUrizy+ESDJLU9/EhJORoFaZpm8LI1TbP9o6peK+dqk7pAJnqCpCEllS8M8gfJKpZfIm+8SkztVE5FKEdMMV50kakNFJRFdkeIQTZVIVP7+Yl8njaT21xtjuch9ZCBhRMESV5RpM+ykshQDEraMLWLJbWzw8MAAHlw0PY1dGpqZyG6NqHvjfqbkqldDzGmdm5kBLqTAU1sFNByUJUqk9rh0qb2KyxJvfMiSGvWQF1YQOxXvyp84gwtkWSmNjWrub4ePHDqAQDADZtvMJ7OktojdKI6UQl+pBJTGyBlZqIf0JSixkmA7kxJVYkfaVkmosBaFOkkBV0PbW/fjg+f+2EAwBee+QKmkvaLcGfiZ3B09ih4jsfe/r0rdYgFGp1P4Se/ewV/8dMX8KOnT1X0tQZ+RG5sU5sNgmttarPkmdXkz0tqz5D3Vd1LIgFz4UoO4/W7e9HX4sdkjl5XnBZFuoQWalSxokg9Qxf8qymKtJG66GBHmFWeqW0r3mpqNwF6hGmnBT9SyT1tIZXDYy+Te8uf7OlD+/vei7YvfxX/vOP1mE1ki45r6yFd1/HIsUnMxN1J1DUzbxogKKzXbuvGv978Kvzmk3vx9ov6IYs89p+ex3//yQv442+Rfo2oX4RPbFykl53EDmpqU/wIQ48AAB8wx6zs/tioTO3nTs1hNpFF1C/i4g0NcK/2lC+GHgFIf1DG2c4yT87Ektp2i04sqV1vU9sriiyt5lja91Q3aZSnLfh0ZHzlDSPBTwzVgEgGYmoi4XjgmsqqCFJjU5A1QHaxYbaFch0XCLqBlc6RlIDzFU+Dp11jUxuwcrXPlH1uOqcVJrUBc2Egl0SYMmATmUKDLnOSHDfb0llMes6KH3HH0OltsTK1PVO7lKTeXkAQoGezjtL7mB2CrmMZTG1mahfnmTJTe6AzjLZ3vZO85I9+nP9+13Vglr4n1lJTO0beb6+E00gpKQxEBnBe13nGl5hM7aX4kRqY2oD5fskULsAx/Ei60qJIZnwtc/GHIQ4UTUeiQmN9JXXznpuxs2MnYtkYPv/U522v+Y+MPAIAOK/rPLT7V27ilMqq+O2xSXz+F4dw9dcfwWVfehif+/eD+K/9Y/jr//wDnhlybpo1G35kxZLaVvxIXx/A89AzGWRefhmAOfmvqwxTOwRJ4PHe1wxiAWScobNrSAkpqoZF+v9d7nu7UWUwtZmpHXIRP8IwZ053DXmmtq3yktrdXXU8ksq0uTsMSeCwmFYwWkHB44OHCXpkS3cYW3oi4HgevTe8AXobua6MNEha+xcHzuD9//R73HbvoWV/L13XzaR2uMT4p0m0vTeKr7ztXDx561X45DVb0BGSjftTs5r2Aj3/lFly/2AlkZzfn4dYivgbGz/ywOFxAMDVO3ogCZ411HCymtoAkPDuiW6KLToVw4/MxDOYTWTBccCmrvqY2rvWRHHV9m4Mdrroi61CVXzl+sQnPoFvf/vbBZ//zne+g09+8pNFvsJTM0tdIKuBvKxBCziYlFIjOiDTCZGimJOjMkpmLUltye2kdj5+pD0oQ+Q56Dow7TBRMZOawdACQSmc331+3mOGqR1z0dTu6wMA5M6UN7VTORUhI6ltNbVpUttaFFk0qU3Sik6S2oIcgOjSoKevxY80qDnQZPiRlRYnSeY5cdoBV3v2JLSciQviI9Wa2jZJ7RlqarcH0fLWt4Lz+ZA5cgSp5583n5ScNRMFvXsAXkQuQc7D32EYAPDGTW/Mwxr1t5FzNpZWMDafMszc7lKTHsPUbq3kf0jE3i9Ze1O7WvzIctOcfok3mrYbsSySSeIl/MNl/wCJl7BvZJ+BlVmqfacpemSgtugRXddxdDyG7z56Au/53jM49+/ux5//0+/xT08M48RUAjwHXLi+DZfQRNJnfn7AcRrfKEZsElO71kztYjgWTpLIIhyA1IGDAMzJf11lMbUB4J2XDCDBk+vi9PRk2S+PWQyJ1YsfoaZ2lp43tcCPhDxTe7mymtrNUBLJJIu8YQwcObPo+Ovu+wMZB79+T1/e59l4oVG42vdRRMpzw+UXycopnlGQzpEQQGek+dAcduoM+/DJa7biiVuvwlfeeg4u2dCO9186WO/DqkpGUSTdkcRMbStPGzDHC42IH9F1PY+n7akBtdTU9u6JroqN54rhR1hJ5NrWgLF7d6X1pxcN4Afvvxhvv2ig/JPPYlXsTP385z/HZZddVvD5Sy+9FPfcc48rB+WpcaTOE0NKkDVnhUF0shgWM9CpUeUUQZLK5BCkxikvuczUNooiCX6E5zmzLDLmzNR+YfIFAMDm1s1o9eebZ9aktluYAHENM7Ud4keKJrWZqZ00BlXV4kegkp+T7HMvMdIbNZnaerYxJiWNLMnCqi2r2SFotCSSk2UjgedYDpPa6zuCENvaEH3jG8jL/uhHeccAgDDt5SAQaEc2QQYFz4A89qZNb8p/WZ+IDmrIPXuKTAwjPrF0MnZZSW1q9mcKGZ9+ub5MbY7jjO8x36BcbabNbZvxsfM+BgD48u++jPHEeN7j8Wwcz4w/AwBGKaibSmYV3PviGD5994t49RcfwnXfegxf+PVRPH58GllFw9rWAN55yQD+8d0X4IXbrsXPP3Ipvve+i9DX4sepmSS+dv8xR68Tpztdwk3C1K51W7pp8uef6wxBkjpITe32xmJqA0BrUMaWdeQ4z4yXXzxm7+uwT1y1aTaDqc0ueU7CDA6lLhIT08OPLF+83w+O3tPF7uYyoqwIEieKpXN49CUyDvmTJab20mLpeiqraHjsZXKc47H0srswWEo77BMRbHDcVTXySwLefvEAfvbh1+C/vWaw3odTlURa0KrMzdmWRAKWJGgDJrWPT8YxPJOELPD4o63Ns+vjrJGmAWPEfzDm99490VWZRZFFTG2jJLI+KW1PzlXxqHxmZgYtloQAUzQaxfR0cfPDU/NKZfgRWQMfdnCzoxfcEJ+BTksynJrayYU4eBBDWJB0QHJxm0WUmdojRolHpWWRdugRAFgfXQ8OHBazi5hJu3OzMfEjTkxtDSEUY2oz/EjKYMAuNbXVWMxIGciDNsWHug6emto+v3uLDR1hH3Ic+T2onqldVnI/5Wo7KYucHYJKk9p8tEKeNmBuO88sGCWhVjFTex3FhbS/5z0AgMX7H0COFo8apnb7RgCAHmhDLkmM4okW4KKei7A2vLbge/fT7/ncMOEUMlyQrVjJWzWmtq88fiSVrayUhaWqGT5kOWKYg2KDrUbT+3a9D+d0noN4Lo7bn7w9b4HvybEnoWgK1kfXY0PUHnNUrW764e/xiZ+8gHueG8FELAO/xOO127pw2xt24sFbrsDjn70SX3zLOXj9nj5joSDql/CFt+wBAPzgiZN4lp5vpdQs+BFWujVXa6Z2kaJIwFyA0+hur5IlxCulJUltAHj1LnJtysbnjN0ndmLva7eKkhtRBlNbBRk/uBgu0OLk5+/hR9yRQO/rzcTUBixlkWPOTO2Hjkwgq2rY1BXC1p78c8dMatcfP/Ls8GzeTsij45WXYVo1HW9uNMfZIKMrQlGgxWIGU5sLLjW1yT2jEZna99OU9qWbOxp+B9pZqZnjJHQjBoCBS8jnkp7f5qbMosjC9+fLdS6J9ORcFZvamzdvxm9+85uCz993333YuHGjKwflqXFkFEXKOuSI86Q2AGh0pVqlE5lyytBUODgdnKC7nNSmxlkuYaQ6u2hZ5KTDskhmal/Uc1HBYz7BZ5hzbnG1pT5iaisOmNqZnIowVyqpbY8fyZ4i6BGhqxOCXYJKU8DpxNjzBdz7vQg8h0CQvKaX1C4vsyzSAX5kbtjkaTtNxlnlbwV4OsBdktbWdd0wgJip7d++HYGLLgRUFXM//Sl54hJTW1FbAI2DygNzkcKUNtMAnaiypHZvS5ndAW4wtUvgRypmaqfcKYoETITJfBOY2iIv4o7L74BP8OHJsSfx85d/bjy2b4SiR/qvyMPNuCFF1fD8KXKvev+lg/jXmy/B/tuuxQ///BLcdPkGbO4O277mldu68bYL+6HrwGfuOVD2d20ypBu71IoltWvJ1M4oKrIKuS8snQzLNKnNJLS7h7GoWuweYxmn9PWQ5GcLEvjhk8Mlv3zepR0YjSyDqa1xznbnVSAtTpLaju9HIXrOePzQohK7SNCEBSCaRczUPuLQ9P3VAbLr50/29BVcx40OjgbAjzx8NB9hdGzCOV6lmEyetmdqN6p4WQYfIvcTZXYWWpIltfPnSWzRtxHxIx56pMHF0CNrzgPC9HfkLfS6KiOpXeT9eaLOJZGenKtiU/uWW27BZz7zGdx+++3Yt28f9u3bh9tuuw233norPvWpT9XiGD3VUZolqR1oc3DDE31Q6WmlUkyF06R2ZoG+lqSB4+BuUlsKmBO0GEGQsPSnE/zIYnYRx+bI9vQLei4o+hy3yyKlNRUytRl+JI+pbS2KZEntfNMmS0sifYMl0pOKafwHAu4WFUQiNEXsFUWWlczwI+WS2rq+/KQ2x9lyteeTOSOhySaVgJnWnv/Z3dCyWWD2BH2AmNq5DHnudBSQpQBet/51RV+afU+2PbknUkNTu1RS24IfqQQr5BZ+hHwPYk42On6EaUPLBnzi/E8AAL76+69iND4KRVPw6MijAGqDHhmZSyGravCJPG57w07s3dIFv+TcdP6bP9mJnqgPQ9MJfOOBl0o+1zS1G9vYXImiyLgl1bLU1Jb689l/YgPiRwAYHP4WLoGfPXu6pOkQc4mV38hi+BFd5YCgu+l6lY4FeY+p7Yp6/vp/ouuWWxC85OJ6H0pF2tFHdhOemkmWTa4upnN49GUy/rj+nL6Cxxspqc1M7Y1d5PpydHy5pjYZd3tJ7caWQBEk6twctBRlagfzTe2oYWo3VlJ7MpbG/tMkEHDNDs/UbkgxU3vtheY90QYL6ak6RQz8SOH7kzG1N3dX2EvlacVVsal900034etf/zq+//3v48orr8SVV16JH/3oR/jHf/xHfPCDH6zFMXqqo9Q5YhYJsoZwW2/5L+A4ZHgyyFRkcpFgjffllI1R3qJEzSM3k9pAQVlkJfiR/ZP7oekaBiID6A4W3+rpuqlNi7a0eNzAwBSTompQNN0sirQmtUVqBuZSCNFk4VL8iCOetmIaI0EXk9oAEG0hhiuvOkvMn82SDPxImaR2fALIJaHlyO9cqLQkkokhSJYMoBh6pCfqyzMPI1dfDbGnB+rMDBZ/85uCpHYuSa4JUy0crl5/NcJycXODcTI1einojq5EUrtwAsr+b6qmI6dWYGon3TO/mDG+0ARJbaZ373g3Lui+AEklidueuA37J/djPjOPqBwtKNl1Q0PT5B6zoTMEnq88Bd4SlPBFiiH53mNDeO6UfcmXiR9p7KS2tSjSrZ6HpWKGVEgWICz5uUv9+VghoaHwI5brjp+Z2sRgu/tZ+wXDeRff140qLi+p7W663sSPOLwfWU3tGp3DzazgBReg80MfBMc3F9+9I+xDDw2VHCuT1n746CSyioaNXSFs6yk8b4ykdp2Z2sPTCQxNJyDyHG66jMwFji3X1KYl9p6p3dgS28i4U5mZsS2KZEzteIOZ2g8eIQsx5w60oqfcONtTfWSY2hdY7onlUXmenMvEj+TPsxbTOZxZIN6El9RufFU1EvrIRz6CkZERTExMIBaLYWhoCO9973vdPjZPDSB1liY0JR2tbc62ouYEMshUmantMKmtMFNb1gCONw1Zt9RCk2OGqU2+/5QD/EgpnjaTYWrH3DG1+WAQAh0slUprp9n2byOpXZypbSS1s0qeyeHM1CbfO6sLiAbdHWC3RYmpIOgKoDaPcVcPsaS2MjVlsPuKapacg6pAjCTHJsJS2SS1Ty3haTNxkoS2d76DHMKPflxgaqcXyXk31WKPHgGAgfb8CUFPWab2cpLarCjSHj8COC+L1HXdwBS4wtQ28CO1ZSO7KYEXcMdldyAgBvC78d/htidvAwDs7d8LkXef2Tg0RcyyTV3VDzqv2t6Dt5y/FpoOfOaeF20xJGZSu7HZkww/klN1Y1eF22Kps2KlmQX4kbZGMrUtSW0/6YjxIQsfsvinJ09C1YobqMzUXs34EU4m11pNhbmo6ZI0oyjS4W4vNoFXM+bvztOqkMHVPlPa+P3VATL2vX53IXoEANa2krFCLK3UdeGXpbQvHmzHxYPkWndsfHFZC4oGfsQztRtaRlJ7dg76IsFo8kuY2mxnV6MltR84TNA+13rokcaUkgHGSdl2XlLb273kquyKIk/QuUVXxLeqx32rRVWZ2oqi4MEHH8S///u/GzfssbExxB2al56aR7l5YhYlZT86yiEAqBRqaisSmeiqTk1tOuExSiJd5q6ixVIWicqS2s9PPg/Amak9vDC8jIPMl9RHESQlyiJTWRWAbhZFlmFqa3q+QZdhpvaGQfsDoaZ2BrLrF/aOtlbzHx6CpKT4lhbDoM6Njto/kZrJmkBM3uqT2sVN7dOGqV1oTrT+6Z+CkySkDxxAaoS+99vJe+OVGTLgT7SIeFXvq2xfliW1mXpLJUh0HUjR1ILLTG1J4IwEqlOudiKrGqaYG4lOVhS50CT4EaaB6AA+dSFBkp1eJDsLaoEeAUzm3aau5aGRbnvjTnRFfDgxlcC3Hny56HOaxdQOyIKxKFOrsshSPwuhsxOc33zfitbrfL1UDD/iiwIg7/GBQBanZ1N48MhE0S83sULLX6xqVHE0jEDwI24ntcnP3zFTWw6RcizAK8ZaZTK42mfsk9rxjIJHXqLokT2F6BGAFPZ20F0pI3Xkav/2GDG1r9rejY1dIUgCh3hGWRYWxWNqN4cEitZSDz8C7b7bAQCcTVK7GLO3XkpkFDxxgpijHk+7QTX+B0DLkXtx63pzodm7H7qqaKD4otPLtBdhi5fSbgpVbGqfOnUKe/bswQ033ICPfexjmJoiA46vfOUr+PSnP+36AXqqrxRa3hiXgwjKzrZbKyI1tQVyemmLzkxtViLES5r76BEAiC7Bj9D050SsdFI7raRxcJqslDoxtcfiY0gr7qA0RAdc7XROhR9ZCBxNhPiKmdpJBGXBWCdgW+B0XUd2mBRFlk5qk8F1BpKxTcctdbVGoOn0wDxTu6Q4joNkcLVLIEjmaFKbI2Y2H12eqa3HpzC+kMazw7P4zxdG8VuaSlqa1AYAsaMD0etfDwCYfSkERPoME2luiiySrW/1Q+DtrydrWgN5a1ol8SO5JKBS085lpjbHcYYxSBaPyms+SY5FFvmKuM52MpLaTWZqA8CfbfszXNJL2tpFXsRlay6ryeuwNMXGZSS1AaA1KOMLNxIMyXcfPWGwJpl0XTfwI41uagO152rHjaR24eINx3EGgoSPRg1Wc13F0r7Wvg6eN9La79xDrpM/eLz4biu2W2I140fyiyJdZmonKH4kXMH9yEumrUoZSe0xe1P7oSMTyCoaNnSGDA53MdWbqx3PKHhmiCysX7WjG5LAG7uGloMgYfiRzkgDXDs92Uqku5CUV45CU2mPzRJMo4EfqdGuqWr06EtTyCoa1ncEPdOuUWXlaXOcdz+skaI2i07HvZLIplLFpvZf/MVf4KKLLsLc3BwClpXIG2+8EQ899JCrB+ep/tIWySQk6Y8U3fpX9GuYqS2S5ztlaussxSPpJjbDTbGkNi2KZPyw6XjWdrsxABycPghFU9Ad6EZ/uN/2eW2+NkTlKHToOBU75cohs1Z7pURSO6OoJnoEyJ+wW/AjHMchLOcPrJTJKejJJCAIBdvF86SSwXUWoutJ7b7WAFKgg/Zc/RvsG12ywdUuURZJk9qqRs7xckltRdUwOp/CM0Mz+PlzI/j2Qy/jM/e8iJ8cIr+P/3jiBbz6iw/hbf//U/jkv+3Hs5Q5bHejb6OFkbHTASi+9QCAmdQMpBny/S4Ilr71yCKPPouRXRI/wtAjvJS/S8GpSiS1AZOr7RQ/YnB3XXqfRJuQqc3Eczz+/rK/x+bWzXjHtncgItemaGWIDjw3LjOpDZDE0g3nrYGmA395dz6GJJ3TDM57yDO1jftIxOZnwa5VjDladxXDjwBGWeQN20MQeQ7PnJzFH0YXCr584WzAjzBTuxZJ7UrxI4BprHsM0VWlndSkPja+aDv+/vVBih7Z01ty/tFfZ6724y9PI6sSc3BjJzm3t/XS/9/EMkxtI6ntsY4bWUIHuUapc/PQFGpqB4ub2o2EH7n/MNmR9LodPY7n955WWFZTGwCCrOfIM7XdFCuKjGcUaJb70QlaEukt+jSHKp6VPf7443jiiScgL0ndrF+/HqOltsN7ajrpmgakiFmaCrU4/zo6YVQFcmFwih8BfR5Jai/fnCjQEvxIR0gGx5ESuNlE1pZb9+zEswBISrvUjZ/jOGxo2YAXp17EydhJbGvftuxDlvqIqZ0bK5XU1vJLIq2lQRb8CECMmMWMgkSGGDXZkySRJvWvLZ2kY0ltXTLYU26pN+pHCj6EkIGeS8IbWpWWkdQeKZHUZvgRhfxOSzG1/zC6gHfe9XTRwbYuiHinBLTrMQg8h74WP/rbAuhvC2J7b8R2y2Jgzx74N3QifXIac8cEdAH49fFf4jwaylovlU9U9bcHMUYLOkoyJa087WoG5gZTu/jkMyCT95NTU5uZz26lOVspG3m+CU1tAFgTXoP/uOE/avb9F1I5TMeJabvcpDbT375xF544Po2XJ+Nkgee67QCAxQz5HXAcHO9cqqfaamxqL9JUi11qXaILpQ1REgmYi6ZLxxe0LLJTSOH6PX2498Ux/NMTw/j628/Ne5rx3l7NpjYdB+gaB93f7ur92MCPVILD8pJpq1KDHSH4RB6pnIpTM4mCa3cio+CRY6XRI0z1TmqznWtXbus25gjbe6P4L4zhaJVJbU3Tjfuax9RubIn0/qbGEuD8zNReih8xTTNd1+tuIudUzeDAe+iRBlaBqU3HUtlFMi8XvWuDG2KLTroOLGYUI7jwMjW1N3mmdlOo4qS2pmlQ1cLJ/cjICCLVcls9NaS0xUWALlilws4TO0tNbdZ4X05ckm5NrXlSewzQVIgCj44Q42rb40KclEQyGWWRC+6URRpM7RL4kVTOktRemlQ1ktpkMh/yESOGJewclUQC+Uxtl7ded0d9SNOkdmxxeW3xZ3zIv88AACAASURBVIPkASdJbXL+adTLEqJR26fue2kKi2kFIs9hfUcQl27qwNsv6sctr9uKGy8/DwBwaZ+OY39/HR7/7FX46Ydeg6/96bn4wN6NkEX7W0j7xeSaMf/7Cei5HB7Z/x8QNUDndIjcXNn/J+Nqt4dk+MQSBuJySiKBsklthh9JO8SPmNxdl0xtg6ndPEWRKymW0u6J+lxDgrSFZNzxZoIh+T+PDuHACMGQsMXAsCzWfVLqRIw1O1ejc4cVUBYrigQAeT3ZpSF2ddXk9SuWwdRecp+kSW2k53HT5eQe/osXxwrGBfMuv7cbUawoEgB02T0Ouq7rFvxIBRNExhBNeAzR1SRR4LGdppmPFCmLfPjoJDKKhsGOIHb22Y9fAHOsUA+mtq7reTxtJvZ/O1qCGV5Kc0lzB2lH2MOPNLJYCbKSVKGzpLYNU1vVdMcBiVrq98OzWEjl0B6SceH6BtlJ5SlfqXlghna7rLmAfPS3AhydD3m7l1yTXxLgo/NZFtZI51Rj94+HH2kOVWxqv+51r8O3vvUt498cxyEej+P222/H9ddf7+rBeaqv1AWy/ZYTNKhsYuFAPDW1NUEjHx0mtXlqagu1YmqHewBeBHQVWCSNz+XKInNaDgemDgCok6m9liW17fEj6ZxqlkT6lpradNsiTWoz0yexxNT2lTW1iSlSC/yITxSQ5chxzs7Pl3m2J4nhR+yS2slZIE1+jipNX5cyEcbmybnx0dduwr6/vBL/94Ovxlfedi4+cfUWXHoOSajK6RmIQmW3i+jaOAS/CmU+idO/vAcLp44DAMSQCi63AKilt2EOtJNJQU8pnjawfFO7BFMbME3tSvEjbpXJGUztJk1q11qMp73JpZQ203W7e/GGc/qgajr+8u4DyCiqcd1sBvQIALTRlP9MjZnaERtTu+WNb0Dbe96Djg9/qCavX7Hs8CM0qY3UPM4baMUF61qRVTX8+OlX8p5mvLdXNVPbvG7pgntBFT2TAXLk51eRqe0ltVetSpVFMvTI6/f0lV1ArGdS+9BYDJOLGQRlAa/aaO5IYfiRoekEMkrlJibjabeHZEgVjr08raxEhh9J89AU8rtaWhQZkASjdLwRECQPUPTIVdu7Kx7be1ohjb1APrYNAiF6H+R5C5LLW+h1Uwz1GEuR9+fJ6QQ0nYQYvLLe5lDFV7JvfvOb2LdvH3bu3Il0Oo13vetdGBwcxOjoKL785S/X4hg91UnqAhloCrIOvQK2Ik9NIp0nAzmnpraQsia1a4Af4QUgQkzipWWRU7HipvaRmSNIKSm0+lqxsXVj2ZfYECWm9vDC8PKPF2ZSW5mchJ4rbmoR/IjTpDY1tbOVJbV1hUwWMnAfPwIAqkCMy4VYdamWs0myURQ5Al0vwqKkKW1E+oxdEqWS2szU7msNFD5IiyKRmCL7sioQt3ASbZvIeTf34x+je4F8vS9IJ3ip0mntrT1kUrihs8wCV42T2hUztV0uk2OLSMmsiqyiufI9V5Pc5Gkv1efftAsdIRnHJhbxnYePG5NRu2Ryo4kl/ObqxNQWWlvR+9f/E4Fdu2ry+hVJyZqFsjZMbaTJQj5La//o6VMGU13XdcQMtNAqTk5yANuip4vuLRQZ40COK+DNlpRnaq9aGWWRS0ztZFYx0s9/UgY9AgADFqZ20TFRDcUQDpdv7szbUdbX4kfEL0LVdJyYdLZb1SqTp+2ZKY0uhtdSMrzJ1F5SFMlxnBEqWkzXN6Cg67phanvokQaWgR65KP/z3j2xJoosKYtk6JHN3eGm2JnpqQpTe82aNdi/fz8+/elP48Mf/jDOP/98fOlLX8ILL7yA7u7u8t/AU9OIJbUFWQMfdr59WPDTiRBPJryqw6JIKZU0Xq8mSW3AgiChpnakNH6EoUfO7z4fPFf+7cKS2sOxYWj68g0oob2dMC51HbmJyaLPIfgRltRekqxiTG2KD2GmdqX4kUyamtq6VJOt17pIjjO26Jna5ST19QE8Dz2dhjpdZKV+jpra7RuhsmKuEmiosXlybqwpZWqrWSBTwe8mvQAkp9G6OQGIAuQ/nMDFL5HJptRCJ36p0lvnrt3Zg//1jvNw2xvKGGLLTmpTw98uqU3ZyakK8SNucXcjfslAhTdjWWStdYKZ2p3ubw/sCPvw92/eDQC485ET+N1Jcs42W1J7NlGb8ybeTCZ/zmIsFSS1aWcI3eFy3a5erGnxYyaRxb0vkl1SqZyKrEru6asaP5KeA8fQcZx7BXXGvSgUAsdXMPUwUmneBH61yS6p/fDRSaRzGta1B7FrTWn0CACspWOXRFY1dlOslB46WogeAYiJud0oi6x8XGuY2h5Pu+FldEboHJQUGS8uZWoDVtOsvknto+OLGJlLwSfy2LvF+S5sTyus0efJx7VLdokHPSRXLcQCeyy8cNwriWw6VbXnJBAI4KabbsJ3vvMd3HnnnfjABz6AQKCIIeKpqaXFTFNbjjg3tUU/GchxArkwOGVqSxliateMqQ0UlEV2R8ikzQ4/UglPGwDWRtZC5EWklBQmEhPLPFiA43mIfb0AAOVMcQRJOqeWSGrnF0Va8SN6LofsCPk5yBs2lDyOFE3R5zgZfqkGW9VkOinxmNplxckypF5yTmSLcbVpSaTeOmgYCaWKucYWyLmxtrWIgSEFAJl+bSUDKHoMUmcnotdeCwB49TFqarfR1yljUogCjxvOW4velhXCj2QXi6bRDaa2w5T0QtJd7q7Ac8ZgayHlcbWXaojhR2o08Lx+Tx+u39MLVdPxvx8mfMOwr/FLIgGgPUTOm9lE8fvbcmUwtX1NYPIy9IggA8KS47XgRwBy7XnfpYMAgB88fhK6rhtmmchzCDVBSWjVSs4YyE7dxZ0hbBxYEXoEMCfwnqm96rS9j4wtziykMW/h/jP0yPUO0CMA2U3FAiqnV5CrPR3PGH0LV24vDHVt7yWGfDVlkZ6p3TziZRk8NaxzCWZqF85hjbLIOpvaLKW9d0sngnITLEifjdJ1YPRZ8vcCU5st9HpMbTdl4Efo+/P4JLluezzt5lFV7tSxY8fw8Y9/HFdffTWuueYafPzjH8fRo0fdPjZPdZaR1PZp8Lc4T+HLQTJQlURmajtLass0DcxLWmGSyi21rCUfl+BHJmKFSW1N1/D8JFkpvajnooLHi0niJayLrAPgIld7TWmudqYkU9uuKFIlhraigAsEIJbZZZFOke+vC3JNtuEINJmfTHimthNJAyW42hQ/okfWmQzTSPG0UyydM5AKfS02C5NGUdeU8wOkpjbaN6L13e/Oe0juoOeoWwMyt/AjumYs/lhVaVEkM7/cwo9Yv9dKp9AaXYqq4dQMubZt7KzRPQPA392wG21BCQot7nKrkLLWaqdFyHM1Om+aKqltx9MG8ooimd5x8ToEJAFHxxfx1NCMuQMjKK3urajJGfA8xY9k3VsM0eiOPSFSqantbbVerYr6JYOHzRAkyayC3x4lYw0n6BGmenC1Hzk2BV0Hdq2JFu3+2GaURXqm9mqXECD3BF2j+JEiZnHEwI80hqntoUcaWLExID5BSiH7zsl/zLsn1kRRfz4eiCW1axWY8eS+Kja177nnHuzevRvPPfcczj33XJxzzjl4/vnnsWfPHtx99921OEZPdZI6RyZ4vKQh1N7r+OvkADHQZKkyU9uXJYNRYUWS2qMASie1X557GYvZRQTFILa1b3P8EkZZZMwlU7uPmNpFU7lg+BFnSe2QJaltoEfWry+7HTiTJsaRJtRmgC35idGQTjk7V852SQZXu5ipTQxl1UffszwPPlT8/XSGokdaApI9UsHK1XYqi6k9t7UHQ5axs9RNUwZl8COOZZjardV9vRwCBckW5Wr75eqY2i0ucndZ6tvDj+RrZC6FrKrBJ/LGFvRaqDPsw9/dsNv4d7PgR1hSeyZeq6Q2OR/tmNoNJcPULjJBWZLUBkgZ5NsuJNfZHzw+bCwoRVcxegQAkJg28CN6xr3zxsSPeKa2J1MmgoScH48cm0Iqp2KgPYDda8ujR5isXO2V0m9t0CNMBn6kmqR23GNqN5NEOd+o5oTCXS4Rf/2Z2mcWUjg4ugCOA67a7pnaDSvG0+7ZZc7jmVjQyCuKdFXWokhF1XBymowZPfxI86hiU/szn/kMPve5z+Gpp57CN77xDXzjG9/Ak08+ib/6q7/CZz/72Voco6c6SZ0lAzbBp6Ol3fnNTwyQC0BAIuaOns1Cy5beNq/rOgLZFUhqR5mpTcxAltSeLFIUaeVpi7zzSbtharuU1PZt3QIAyBwrvhsindMQZPiRMkntsGw1tU8BKM/TBoAsTdFDdI+xaZVMTe1sqvJCnbNRcj9NapfAj2giGfjwkYhtspChR4rytJmqMrVNrvfhmcP4zUXmrUbqpd/PtaQ2NaKqTWpznGl0ZQonn4EKiyIXaHO2m9xd9r28pHa+hqbJIsSGzhB4vrbp2Tec04frdpGFot4iqbxGFGNqx9IKcqr7JaOrOakNAO+/bBAA8NDRCQMz4BYrv2GVnDFN7TLjtkpUPX6EmtqpOUBzdg321Dzaycoix0hS+1cMPbLbGXqEaaWT2jlVw6MvkTGRnam9lZra47G0gSVzKi+p3URScxDE/POO5wvT2MzUZp1G9dCDNKV9wbo279xqZBklkUXQp95Cb01kLYo8NZtETtURkASssdvF7KnhVLGpPT4+jve+970Fn3/Pe96D8fFxVw7KU2MoO01MbUUS0N5SwUSEGkRB0UR6aInSZqWeSkGgxYq8pNcQP8KKIllSm9zUpxYzBa3pzNS+oOeCil7CbVPbv3MnACB16FDRx9N5SW2bosglSe24Nak9uL7sMeQyzNSuzSDIT5E1ubRnajuRkdReih/JxIEEed9qPDFqSvK056mpXYpbHaqilMRIam/AoZlDeGIHh/m1LfDv2gWxh24pdmtAtlz8CGDhahcmtQ1T22lRJGWDuml+tVJzct5LaufpxCTlaXfVPknBcRy+8Wfn4itvOwcf3Lux5q/nhlqDslEyWosFETY5jzS7qV0kqQ2Q8+rKbV3QdeC7j5JrWquLOzAaUslZsE5sLeOmqU2urXzF+BFWwqYV/H48Nb+sZZGprIqHj5Dxy/UVoEcAYKCNJrVXiKn9++FZLGYUdIRknNtffJdY1C8ZO4iOjldWFumZ2k2k+Vcg+PLHhzxfeL8NN0BR5P0eeqQ5VNLU9ooiayFrUSRDj2zuDtc8MOPJPVVsar/2ta/FY489VvD5xx9/HHv37nXloDw1hjIz5IKZkn2VFSPRSWOQz0L3kwFdOQSJukge1wHw4grgR5IzQDZpDBizqpa3tV/X9YpLIpk2RF02tXfsAAAoY2egzM0VPJ7OaQhxNkxtkZraahZQFWNQlcgoyJ4kx+crUxIJAIqRoq9NQjFI01uCmq5riqFZJA/YJLXZdjQxADVLFmn4qL2pzfAj7ie1qandsQmHpg8hJ3EY+87/wOA9d4ML1wo/sgxT20hqFzG16bUv7Rg/UgOmNsOPJL2iSKtYUntTV+142lYFZRFvv2gAbaHmMDYFnjPOndmE++cOY4M2BWOcLVhVkNQGgJsuJ/fHGfrzc3MHRkMqL6ntIlM7TkuLK01qCxLgbzGOzdPqEktqH5+M44EjE0jlVPS3BXBOf0tF36efmtorldRm6JErtnWVND0MBMlEZQgSAz/imdqNr7mTEH35O6F4odDUZkWR9cKPxNI5PD1ErqGeqd3A0lRgbD/5e1FT2yuKrIXMosh8U9tT86jimcib3vQmfPazn8Vzzz2HV7/61QCAp59+GnfffTc+//nP49577817rqfmlbJAJnhpf7CyYiQ6aQxxaaSCnRDSqbKmdo6WUkIiNADINTK1/S3EwMrGgdgofJ1b0BqUMJ/MYXIxY6SwXll8BTPpGci8jN2du8t803wNtgwCAKZSU1jMLiKyND1doYRIBPL69cieOoX0ocMIX35Z3uOpnIpQOaY2ACgpw3zIT2oPlj0GNUu+v1AjU1v2k+P2I4vxhbR3IykjVhSpTExAy2TA++jEh+Ez/FGoMZIMEsLlk9p9raWS2hWa2plFUnACQGtdj8MzhwEAu3r2kOuIsXWucIGmKtU4qe2vAD+SVTQkaaK7NeAxtWutE1MkfbtxBZLazaq2kIy5ZM51UzuraMgoZCIf8TWB0euEqZ1LAkoWEM337uWbO7G1J4yXJsi1YfWb2tOWokj3zhmVJbVL3I9sFewA0gueqb0K1d8WQNgnIp5R8P89fBwASWlXWsY60M7wI0noul7zMteHy/C0mbb1RvDQ0UkcrYCrnVFUY2eNx9RuAs2ehODPN7U5rXBxxcCP1Cmp/cixKeRUHRu7Qiuyu81TlZp+GcguAlII6CrS5+XhR2oisyhS8UztJlXFpvZHP/pRAMCdd96JO++8s+hjANmqq6oe/66ZpcfImzrtr/BNzfAjSEP1ByFgpqypnZw3TW3ysUbJO44jae2po8DCCNC5Bd0RHzG1Yxls7SETLpbS3tO1B74KyxEjcgRdgS5MpaYwvDCMPV17ln3Y/l07ial9uNDUzljxIwVJbYtZmUsb+JFsPAFlkgzK5fXl8SNajpraco1YstR893MZz9R2IKG1FXwwCC2ZRG50FL6NFIeQpltcfRFodPdDqaT2KDW1S5bsVYofYTztYAdOK4tYzC1C5mVsat1EPh9wMamdSxu8eHeS2iWY2g7wI8x05jh3kQws9e3hR/I1NMWS2t71wk4dIRlDUwnMuZzyT1h21IR8FezkqpeYqV1sF5jfkgpNLwDhLuOfHMfhpss24NZ/PwjA3R0YDSlrUtvFokjjfhSuYmwX7CC7f7xJ/KoTz3PY3hvBs6fmjDRzpegRAOhrCYDjyM7F6Xi2pgnnUzMJnJhKQOA57N3SVfK522hS++gZ5/iRmTi5VksCt/oX0VaD5obzktqcoIHLFaIUWaHyYp1M7Qc89EhzaPRZ8nHN+QBfZGxlFEXOALoO1HgB72yRNanN3qOeF9Fcqhg/ommaoz+eod380hPE8MqEi/PibMWS2khDofgRtYypnZ4jAz6Ojd9qldQGTATJAkE3dEeIUTu5aDLAq0WPMLG09nBsuLpjXCL/rl0AgPThwwWPpRXVxI8sTaHxvIkgySURpuZDeIqU8QhtbRBay/9+VWpqi3KNChOoqR1AFuOxdJkne+I4zkhr505buNrMlPVFoS7SpHYkavt9zizUAD9i8LQ34tA04cBvb98OiadvbmPrnAsGBUtpczzgs/9/lpWPGv/FTG2Z3CadJLUXUmQyGvVLrnLYvKLIQi0kc5imk/8NK4QfaUaxssgZl5PaDBMVkASIQsVDyZVXKaY2L5jXjyIIkjefvxZt1Mxe9SaTxdTW3DS16RiwYvwIYDJEkx5DdDWKcbUBssB+boXoEQCQRR59tMC31lxtltK+eLCt7PVgey/5v700ES/o7bHTNEWPdIZ9Hs+1GTQ3DMFiavOiDmQKFzEM/Ehm5cdxWUXDI/S8vXZn74q/vqcKZPC0bfq8WFJbyxU9zzxVJ5bUnk96+JFmVRPMRDzVTSkysMpFOyr7OjppFDgdOZrsZc33dkrPUwNOpgODWiW1ASC6lnxcUhY5ETMncIap3V2dqe06V5uWRaaLlEWmsiXwI0BeWSRLardME1PbCXoEAKCQn43sq5GpLTJTO4PxhZVhIja7jLJIK1fbMLUj0GLk73bFXJqm4wz9WfeVLIqs3tT+w8wfAAC7OneZjwdc5MExU9vfShZwqpVsjx9hSW0nTG1mOrud5jRMbS+pbegE5Wn3RH0EqzQ3DJx8tL4H1YBqp/zvOZdN7RjlgoaboSQSAHIl8COAbVkkQBBEf/OGndjeG8E1O1Z5ys1SFKln3bveqIll4kcAL6m9SrVzjWlqv353b9XokJXiajtFjwDAxq4QJIFDPKM4Pi6vJLLJNHsSot8cH9qb2vXDjzxzcgaLGQWdYR/OH6gwqOZpZVWqJBIgc3rmkXj3RNfEiiJH51NI5VRIAof17TUMWHpyXY5dgGeeeQb33Xdf3uf+5V/+BRs2bEB3dzc+9KEPIeNiqsNTfaVlMuAoL1NtKb29rkCW7b05iVwktETppHZ2gQwARIma2jVNapOEKxZIwrU7mp/UHk+MYzQ+CoETcG73uVW9xIaW2pRF5k6fhsr441TpnIawXVEkYP4+ckmEZDKo6pgbBwDIDkoiAQAK+dlI/hontTkvqe1Ucn+xpLaJH1FZMZdNUns6nkFO1cFzQE/UgamdnAVUB4PxIkntXR0WU5sZFKk5snVuOWKmNkt/VyuffVFkJUxthh9xO83JWP8xz9Q2NER52gZ65CfvBP75jYRH6MkQM7XdZmqziXmkGUoigdJJbQAI0HRokaQ2ALzlgn785pN/hIHVPslJTIOvKX6kmqS2V4y1mmVNal9/TuXoEaZ+ytU+PVu7pHYio+CZIXIeOjG1JYE37lHHHHK1DVPb42k3vnS9eFI7XSKpXQdTm6FHrtnR7aX/G1m5FDBBw2t2pjZgzqMSnqntlhh+hE1LN3SGmmMXoidDjn9bf/u3f4sDBw4Y/z548CBuvvlmXHPNNbj11lvxi1/8Al/84hdrcpCeVl6GccrpQHuFg0xeQJYnJllOIhPeskWRi2SwJ0n0Zl+Me+mWWmhS28CPkIHjJB1IspT2jvYdCFWZGHfb1BZaWyH1k2Ru+siRvMfSivOkNiuK7I1RnrbDpDavkp+Nz1+j3wv9fftBmNqeystIao9Yk9p0IO1vMZLagg1Te4z+nHuifkilbtzBdgAcAN1ZKoAytdW2DTgyS87VfFObGhS6Svi1y5EbJZFAyaS2vwKmNktqu29qM/yIu8ZkM4vxtDd2hYjZNUnRTJ6pnaeamdoUP9I0Se1ypnaJpPZZo2wSUFLgjKJI9/EjVTO1AS+Vtkq1oy+CXWuiePXG9mWlSFciqf3E8WlkVQ0D7QHHXQ7bKVebMcPLyUtqN5Hik0AuAcGSC+Fsktps/hVbYVNb13U86PG0m0PjBwFNAULdJiq1mNzEOHoCYCa1mTz0SPPJsam9f/9+XH311ca/f/rTn+JVr3oV7rrrLtxyyy349re/jZ/97Gc1OUhPKy+NmtqCpENqqfwmmBPI4DInklOsHFNbiTFTmxpHdhNPN2QwtSl+JEoGjlOxfFO7Wp42YJrapxZPQdHcGcCYCJJ8rnY6k0OYY0WRRQzMIviRtXGCkpAHy5dEAgCnEkPEXzNT22NqVyq5JFM7YjC17bZ7j807QI8AhDdrpAIcIEhmTwAAhn0BpJQUAmLAeD8AAESfe1vn3DK1SzG1DfyIVvDYUjE8CEtWu6VWapIvpHLQtGWm21eJTlhLIkefNx+Ij9fpiGw09RJw8J7l70qoUoyp7XZRJDO13SxEranYgpVtUpuaaTZJ7bNC9HrMSWTcpmXdO2cMpnakCvxIpWXFnppKPlHArz6xFz/90GuqRo8AwEAbGUeO1JCp/dtjFD2yrdvxsW6jXO0jDssipyxMbU8NrjkS4uDb+o1dKLygFx1LGviRFWZqHxqLYWwhjYAk4LLNnSv62p4qlBU9Uur6EvJ6JtyWX+IhWnYxbO6uYqziqa5ybGrPzc2hp8c0N/ft24frrrvO+PfFF1+M01ZzxVNTiyW1eVmDP1ohfgSAKlJTmyZAyzG1VZrU5hl+pKZJbUtRpK4XFEW6YWr3hnrhF/xQNAWj8dHlHS+VXVkkp1gG8CWT2knIIg+Z5yym9qCj1xY0MsgOBGqb1A40SVJb0RR87fdfw78d/be6HYNE8SPZkRGzgMjK1Gbbve2S2tTULlkSyeSUq51NAIuE1/4Hjbz+jvYdEJY2eLOUATOlq9UKJLUDcjX4EXeNPrYtTtOBeHblt642ohh+ZGNX2JwIAMDiRJ2OyEY/vwn4+c35x7iCag/Tosi4u6Y220Idbjr8SOVM7bNGdILM+ciYSM+4d86o8eXgR7yktqfyqnVSW9d1k6ddAVvfSGpXih/xktqNL7ozEe2DEDrIuNYOP8KSoOmchpxaPiThlh59mYzb927pNHYeempQleNpM3n3RNfFcZwx1wK8pHYzyrGp3dPTg5MnycU7m83i+eefx2te8xrj8cXFRUjSKm+FP4vETG1B1hBsr7wp2TS1yb/L4UeMramSDoAzjdhaiBVFKikgOZuHH5lNz2JogTCBz+8+v+qX4Dkegy2DAGpfFinQAiyd44v/3NjnKBe7DymElTTAcZDXrSv7uhlFhaQTsy4YrFGCnh6jn8thOp5FRilvINZT9528D/98+J/xpd99CRm1Pl0C0to1AMdBTyahzlLWaNrC1KZJbTum9tg8OR+cmdoOk3Jzw+SjvxWHFsnf80oimdxipLqW1LZnagcqwI8s0DRsa8DdpLZfEuCn6cmFpMfVVlQNwzPU1O4MLTG1z9TpqIooNU+2kwJGh8NKq73GSe2wr0nGfYapbbMw6yW1zaQ27c5wi6mt67o5xgt5pran2miAMrVH51I12dF0aCyGiVgGAUnAqzY47/HYRk3toemEo7GtZ2o3kWhSG20bILYxU1srmtQO+UxDeSW52iwotLXHS542vAxT+4LSzwuypLZ3T3RTUcvOw80O8VKeGkeOTe3rrrsOt956Kx577DF87nOfQzAYxN69e43HDxw4gE2bNtXkID2tvNQZkkYQZA0tlTK1AegUL5CjbMZyRZGgjwuSRlK7y9iCWFaij/CqACA2YuBHklkVT44+CwDY3LoZrf7lNURviLpcFrmLmNrZ4eE8nIuQI3/XpHDxn5ulKBIANqTJTVDr7gXvL4OeABBLKZBBjDR/sNb4ETKYn4w1bumspmv4/sHvAwAUXcFLsy/V5Th4nw8i3T1jIEiMpHbUYGrzkeI3ZiOpXQ4/AjhPaltLImeKlEQyBVhSu0FMbSdM7ZxqJuJtZOJH3Df6mFE+0G4ezgAAIABJREFU75naGJlLIafq8Ik81rb4803teAMlta3HVaeSOytTu9z5W4mMosjVgh/xe6Y2O0d5ihnTXcKP6KkUoJFkomBzPyopw9T2iiJXXEoGOPSfy99VtQLqjfoh8ByyqmZ05Lip39KU9mWbK0u89rX4EfWLUDUdJyZL71oFTPyIZ2o3gYyk9gYIHeQ6ZcfUFgUeQbrzbzG9cuO4GdqnwcYCnhpUyVlzDrWmTKiOBYO8okhXxZLaPEf7ejw1lRyb2nfccQcEQcAVV1yBu+66C3fddRdk2bxA/uAHP8C1115bk4P0tPJKT46Rv8hAW1sV5i6dOCoCmUSXY2ozU5uX9NrytJksCJKgLBpbqJ8c+R2A5aFHmNwuixTb2yH2kQWGzNGj5ucVmtS221ZtYWoDwHqatlXWlCihsCiWzsFHTW1BcmCAViOGH+HI4KuRudq/feW3OLFwwvg3M2/rIZmWh2ZP07LIjCWpzRim0eJJ7TMLFeBHwnQRyKGpnWvfgGOzxwDYmNpulZysBFNbNievGaX0ltFaFUUClrLIlFcWOTRNzu0NnSHwsdP5XMHFBmJqjzxr/n25CzhVik1kM4qGpIPdBk5lJrWbxdSmmC5b/EgL+XhW40doUjtIfkZuFUWqFIUFQQAXqGIXHjO1s4vEZPW0cnrxJ8Dd7wMe+XK9j6SsRIHHmlYyRq0FV/thxtPe3l3R13Ech+2Uq31sojxX20hqe0ztxpc1qd1OxqG8WJypDZiLwCuZ1J6l6LGOsGdqN7TGaDdM+yZzjmQnb/dSTcQQQQPtQQ/V04RybGp3dXXhsccew9zcHObm5nDjjTfmPX733Xfj9ttvd/0APdVHqQliDORk0SgXrEh0O7/KkUl0OaY2lyCP87Jmvz3YTbVQBAkri6SJiBenXgAAXNRz0bJfwm1TGyhEkOi6DkktM1m3MLUBsyQy3bvW0WsupHLwcTRVINZokE3NchEqRCgNy9XWdR3fPfhdAEBUJpOUwzOHS31JTSWxssiR/KS2LoSgJ8nv266Ya7Qq/EgZU3uGmP0nIh3IqBlEpAjWRYsgbgINhh8pldQWzdtkOQSJydR239SOWsoiz3axtNumbgtPW6TncSMltUd+b/49WZ+kY1AWINNzeDbh3oJIjCbNwk2T1Gb4EbuiSHoNSS+szPE0ouiCNxcg9wzNJaY226nHh8PVFQH6WwCOTjC9SfzKau4U+cgShA2u/lYyfzjtsqk9E89g/2my4HXl9sp7hhiC5OiZ0lztREYxFh+9pLaLeu6HwP1/bewYcU0Mudc2iMB55wEA/G25okxtwFwEXlFT20tqN4dY4Xk5njZwdhZFHn8IeLG2PVZs0WmLx9NuSjk2tZlaWlogCIWrF+3t7XnJbU/Nrew0Ma+yPl9VkxCemkQaT27c5ZjaQopMOAVJB6SVSGoTM5BxTrujPoBP43TiOADggp4yPCsHYqb20MKQa9u+GYKElUVmFA0hEHOS89mZ2gw/QpK5PTGSNkl0VWBqg5natU1qA0AA2YY1tZ8cexKHZw4jIAZwy4W3AKhvUlsaKJ7UVlXTaCpWzJVRVEzTLa6VFUWWGUDRie8hyn/e2bETPFfkNsNSBo2CHynB1BYFHjItvC1XFrlg4Efcvxe2UlPbw4+YSe1NVp725qvJx/gkoDUAk1/T8k3tOiW1OY5DR8h9rna8aYsiy+BHvKQ2uCBZsHULP6LRInAhVOXYjuO8ZFq9xO6x5Ra0G0SMqz0y625Z5CPHpqDrwM6+KPpaKt9tYJjaZcoiWUo7KAvVBYo8FWr6OPDLTwFP/m9g9Nnyz3eqzKL5vmjfgNa3vhVbHvhPtG5IkbF4EQM9QpOgHn7EU4GclkQCZ9/9UNeBe/4c+I8PmQutNRCbu23u9vjzzaiKTW1PZ4e0BTKQzfqrK2wU/NQkcmhqiymSquCllUpqm/gRAOiO+CEETkGHhoHIALqDlW0vLKZ10XXgwCGWjWEu405KjyW1UzSpnc6pCIEM3jm/zUV4CX6kY44kGWOdzljpsVTOYGpDqNGgSJABan76kcGZBjW1v3uApLTftvVtuGztZQCAE/MnkFbqc7wyS2ovYWprOfKz5INBcGLhxIgtGvhEHm1O+M+OmdpkV8IhlRhIOzt3Fn+ea0WR1ICqYVIbgFHSWM7UnmdFkbVgage9pDbTiSlaEtkVNtMtW/8YAAfoavnFl5XQ7Il8PnMdJx9tdKA+42JSm+FHmoKpresWprbN4q9XFGmco3yYoFjcKopkKKxiC6yOdbZN4htF7P3QCNdUB+pvq01Su1r0CNN2amofK2dqezxt9/XoVwGdGszjB9z7viylHWg38FViDw1MQQdyhTuU2f2S3T9rLU3TjcXsjpB3TjWsdL1CU/ssK4rMxMxddJO12x397letw5vOXYN3XVJkh7GnhpdnansqKlYylwtWNwkR6fZVTiAGjJqwx4/oug4xbU1qr4CpHaUp5ZiJHxGCxJBzg6cNAAExgDXhNQBcLIukpnZ26CS0ZBLpnIYwRwxK3mdnaptFkbqqopWa2jNtPY5eM7YSSW2Oy+NqTzQgU/u5iefw/OTzkHgJ79/1fvQEe9Dub4eqqzg2d6wuxyQxpvYIS2qT961KvSvehqc9Sksi17YGnO3EcGJq51JAjBzHodQZADY8baDxiiLZeyeXLJryZVztUvgRTdNrih9hCYJ5F9O2zaqhKZrU7vADZ/aTT/ZfYp6n8Qbgahspbfr+qmPJHUtozZ2tpnYuBYDulvKS2vZiSe0w+Vm4ZWoz/Bxvg8JyJAOB1Rzm6qqRNantYtFsrdTfRpPac+4ltXOqhkdfImOfK6s0tbdSU3s8lsZCid1WHk/bZc2cAA7+zPz3+EH3vrelJNKQFDBRSUUQJCvN1I6lc1A18r5tC7k/LvXkkhZOk2ssLwG9e8o/ny3yphcA9SwIusQtc8+po/bPW6Z2r23Bt995PtZ1rIAP5cl1eaa2p+Kik5BcqIqSSABSgJjhPpHcuPUkMVSLSc9mIdDHSFJ7JfEjNKkd9UEME2Pykt5LXHuZwZZBAMDwwrAr30/q7obY1QVoGtLHjuUltW0TaMyIzqWQO3MGgqogy4uYDjkzAhdTaYgcTTnUiqkNGInyADJGiWEj6a4DdwEA3rz5zegOdoPjOMO0PTRdHwQJS2or4+PQknGAJsa1NPl9CZHi58SZSnjagDNDgW4Jy/qieGmBYEh2d+4u/twgPfeWY/SpOVIcBriX1AaKprUDtDAkXSKpHc8qoHOHmpjaLR5TGwCwkMxhmhYfbeJGyUKEHAE6twARulC32ABcbWZqs9RNnfAjgGlqu8nUNvEjTTBRzloW1UWbax5LamcXAXXleKcNJcPUJtdTzS38SJxcp/nwMsZ2bu3u8VSZmKmtpPLfRw2qgXb3k9rPnZrDYlpBe0jGeQPVzYmifglr6Xjr6Lh9WaRhantJbXfEUtqsCNhNU9tSEmmI4wA/DZMUKYuM+FYWP8J2Z0V8InyiV3zXsGIp7d7dRsdUSQVa0QiBiRWTtStn6qX6HYenhpZnansqKi5FBlZaS5kGXhuJFIXhk81JkR2ChPEWdQD8SiW1WVHk4hlAVSD55iH4zwA6j71r97r2MhuitSyLPIy0oiJEk9pwwNTOniTHMRbqQCLnLHWTsKbsa5XUBiymdhYTMXcSYm7p0PQhPDH2BAROwE27bzI+v6uTmtp14moLHR3gAgFA15Ebftn4vJqhi0SR4kntMZrU7mtx+PtkCdhcwn5iS3naL3Wsg6IpaPW1Yk1oTfHnulEUaU1UsglLtRJ9JCEBFOVqsxbsUvgRlr7yS3xNWrNbPKY2AOAE5Wn3Rv0ITtGU9przAF4AIhSp1EhJ7a3XkY8NkNR209RezDQRU5stVEkhgLcZ9lqvIWdrWSQztSMkBeYaU5uO/YSQhx9pOqUs6LwmKCVjSe0z82koqjulgA8fJeiRK7Z2QeCrKDqlMhAkE/YIEs/UdlEzJ4ADtFju+q+TjxOH3Fu0LJbUBgAfM7VLJLVXCD9ilESGPZ52Q6sS9AhAxrvGQm/jX5eXrcSk+ffp+uyM9tT48kxtT8VFV5G1tspbvgEYaesQnwVkMjizM7VVamorogCOw8owtUPdxMTSNWDxDEYyxICQlE1o9VeXxCgmVhZ5MuaiqW0pi0xlVYRpUaRtUtvC1M6eHAYAjIa7HDPdkglL4qWmSW3ye/dT/AjbMtcI+t7B7wEArt9wPfoj/cbnd7aT38XhmdoxvkqJ4zjIFEGSGyYlp5BCxnZvwWa79xhNwjtOasthc0HDLq09ewIAcIhuXd/VscsebeJGUST7Wn8LGeAtRxxnLgoVS2o7wI8ws7k1UJvJA2Nqz5/lSe0hg6cdKpwIhBskqZ2Jk8kzAGy9lnxML9StwJIxtWtRFNkU+JFyJZEAIEjmPfRs5GprmrHwwkfIzhzXmdrLwY94pnZ9ZF08bgL0S0/ED0ngoGg6xl3C2DFTu1qeNhMrizxyxoGp7eFHlq9Hv0bmeFuvA3a/hSxqKmljrLpsFUtqA6apXRQ/wpLaK2Nqz8S9ksimEOuGcWpqA2fXPTFuMbWnXmoKFJanlZdnansqkK5p4LIk4cB32iQty4lODoNIQw8Ss1KNF094MrNbpWVskFYAP8LzZlp7YQSHF54CAORiO1x9GcPUdjOpvYukg9OHDiGd00z8iG1Sm5naSWSHhwEQUzvh0NROUd65xonLNw9LiR5nkMtA0XTMxBsjrX1i/gQefOVBAMDNe27Oe4wltYcWhpDMuVtM5FQSRZBkTw2TT/giUCkT385EGKP4kbVOTW2Os3C17UxtktQ+RFPKOztsSiIBM2GgpIFslT83t3jaTDL9WRVJagecJLVryNMGTLO8FI/zbBDjaRc1tSO95OPimTocmUVjL5DJdLQf6GZceb1uvGaW0mIT3OUqp2rGe6Epktrs2lwObeY/i8si0/OkZBUAF6VJbbeY2ousKHI5+BFWjNX4xuqqkZrLT5uWK4puAPE8Z4xr3OBqn55N4vhkHALP4Y+2VhnyodpmlEWWwI94RZHuyJrSvuKzZO7SQ+/FbiFI7JLafvukdniFmdosqd3hmdqNK1UhY0agQlP7LCqLtJra2UUgNla/Y/HUsPJMbU8F0uJxo1PJ1ztQ+sl2YkltLg01QExtLVEaP6IxU3slktoAMRwALMwex5G5FwEA8bntJbm5lYqZ2qPxUWRUdyaIDD+SOX4c6WTSKIo0TLmlsuJH8kxtZ//PdIoYAipf40ERZZ32BMjJ51bKZrliKe1r1l2DTa2b8h7rDnajK9AFTdfqVhYpD9CkNiuL9EeN95QQtTO1KX6ktQKcjMHVtpnYMlNbI+9zW542QBa9GO6j2gGZ26a2kdQuTFE5YWrPp8jkoSVYG1PbY2oTnaCm9tZ2AZigOySWJrXjdU5qM/RI/0WAIAI+iraoE1e73eWktnVBNNwUSW069rDbzcTEECRnY1kkw+PIEXBBct/Qci7hR+jYTwh7+JGm0lIMTxOY2oCFqz27/KABS2lfuL5t2QvWO/qI2fnSRBy6TdLQw4+4pEe/RhbptvwxsPYC8jlWwDd+YPnfX80ZnUxoG8x/jBWPl8CPxFeIqT2bIOdTR8g7nxpW08fMbpiOLc6/joWDmmAHzbK1dEzvIUg8FZFnansqkLpABrKcoCHY3V/m2TaipnYAGah+amrb4kfI53WJogpWgqkNAC3k//bo+NNQdRV6pg96rh2TLvKcO/wdiEgRaLqGV2KvuPI9xd5eCO3tgKpCO368gqS2aWqPVIAfyaTJ99driR4BjONkpvaZhfqb2qcXT+O+k/cBAD5wzgeKPoclkuuFIJH6ycJTbpSmU30RA+lTjKmt67phajvGjwCWpLa9qZ3iOJxIE9OBlWgWFceZA7L/x96bB8lxHWaeX2bdV98HGuhuNG6AuAiS4iGSIkGasiR65bUleWassNYOrRVea2JkeyLG1oxsh2K95uxamrFkz85aCmsdtsbWWNKK8oi6RYKkKYmSSAIEcQONBrobfVZX131m5v7x3svMqsqqysqrqrrzi0BUo7u6qro7K/O9733v9xk1+mRT2xj3v07M8NJiareFH7EpqS3jR6xDSPSiGH7kuOc2mbRGdwB9dEeRnNTuMFN74WfkdvJt5NaKYlQTGoyQY8cqpjZLmQV9PHyeHhhG6sGPAEpZ5HZMajOzODIMzk8WQaSiNceLICe1zeBH3KJIx6XmaQM9Y2ozrrYVSW2r0CMAsGckAp+HQ6ZYafjaXFPbAqlT2o//vvJ52dS2IKmdnCfjD2+QjEHUCjQuiuxzOKkdd5na3S95x+Gpxp0fWpIXerfBNbH22rPmmtqu6tUDsxFXTktIkBOkxy8hNjRu7EFUSe1yC1NbzNALP/OCWk08rRI1tZ/fvAwACJVPAABW09aZqRzHWY4g4ThOTmvz1y4rRZENmdr095/PorxEjM928COlIk27eJwxtUcDxDhc6YKk9hfe+gIEScDDux5uaNKyz19Y70xZpI8mtUtL9KIfiEFMkYSIJ1Z/TKQKFWSpObuz34ipvVr/tUoRSC7git8HASJGQiMYC7eYBJodkNmW1G6GH2lcPGU3foQlwAtl0dLdJL2kiiBiLk4Myj2FS+STu+4liySAqiiyg0ltSQIWfkI+ZqZ2yOQCjkmxlJZVpnZGLom051i3XHpNbYYf6VRSO7kA/NdHgFf/yvnnZliP8DB42dS2CD/CmNpuUru3VGdq90YicHKQJrUT5pLa+ZKAH82S480KU9vn4bFvlLwHrizXG56iKGHdxY+Y18ufpintd1bjHHaQOR6W3jTP5GXokcGZeiMy2Jipza6ZLn7Elax2SyKZItsIycXG9Azn55rarjTkmtqu6pS/cwsAwPtFDAwZHMipmNqlADHOhBZFkZyPDjIcS2rvQpEDXimRC8K45z4AwGraWpbzTP8MAIu52tTU9s5eU4oiWyS1S/ECIEmQojEk/RHdpna5QB/f9qQ2+buPUFO700ntlewKvn796wCAjxz/SMP7Ma72hXhnTG0/ZWqXVzfIOD0QUxVz1Se1WUp7MOyTCxB1ScaPaAygNm8DkogLdNt605JIJrNGn+VMbZbUbowf0cPUHrAJPxILeOHhuarn2m5aSORRFiQEfTz6N2jaim0tBlRFkcudK5LZvEVSJbwPmDhJPtfhlClLam/my5YU8DJTuydKIgEVfqTF2KLTSe2zfw+snAfO/jfnn5uZxeFhcAFyrZdKpYaYhHbETG2tRVbdUl9/3JIoZ1S7uLPNkto/ml1HqSJi10AIB8ZMHLsqHaZc7csaXO1kvowKPT+7uAiD2pgFzn2JfPzYH1R/bewIwPHEBDS78N2oJBJQ4Ufqx5IxOantFH7ELYrsehk1tbfTQm+GXnv2PEpu16927rW46lq5prarOmUWCSZD8nOIhgwOrFhSG0UU/YTbKzYqiqRbUz3M1HYsqT2FV4NB5CFiR2QHpqL7AQCrFieE5aR2yvqyyODNawp+pCFTm5raG2Rww09NAxynCz8iihIqJfL4vK8N/rIR0dc54KNJ7Q6b2n9z4W9QFsu4d/xe3DN+T8P7MfzIzeTNjpRF+naRwlMxX4JQ4oBAv5LU1mBqLyUNoEeA5viROGmTvxAlphAz+pvKLJLB8qR244kIM/+bMrUpr3ggbM/kgeM4eevqdjW1Z9fJtWJmOALujsZEgJnaYrlzWzIZemTiBMDOmR1Oag/SY1KSrDl2MgWW1O4VU5sltVsxtTuc1L76HXKb7cAkVcPUhiQBZfPHi0B345lKarP3kFjWPEe7skE9ih9hTO0Fk0ztF6+Qn/exQ6OtF+l16tAOEjS4rJHUZiWRg2Ef/F53em5IL6lS2pM1JqE/rDCLzSJIGpVEAir8SGOmdlpnqMisWDm0a2p3qUq5+m4YvdouRZGSpOwQnnmE3LpJbVcacq+arupUWCWICiHgNT6Qo8Z0gCuj4CUX00b4kTIz4Hxi1ffarr5deD5CBr+np05jvI+YfFYnta3GjwBA8CgxUsOLcwiLOpPaCWLI+WZmAADZktAyhZUuVuAHmdTab2qTv8WAjzxfJ5PaG4UNfOXqVwA0T2kDkFEbEiRc2rjkxMurEh8MwjtGdlSUM95qprYGw3Rxk/xeJ9pBjwDNTW1aEvkWLXttytNmCplMr9qV1NbAjwR9rZnaduNHAMUwZ/zu7aYbq8ScPDEsAIk58smdp5Q7eP3KcZXpEFdbLol8m/K5Die1fR5eXhBhxVFmlC72qqndxUzt7LqS2MquOZ9GVpvafsUAEUvmkTUs0MBHTJja/rCyi2+rT+K7RewaywpUewY/QsY2y6kCSpXGyLBWOnOVmtoHRy15XQBweIKMybTwIy5P26Q2ZoFz/0A+rk1pM1lVFsnGH82S2rVFq1CKlTPFCkQLdk21UtwtiuxuLb9JFmFiE0o3jF6xpHYnFsGdVGETEOg4ZPfD5Da3vvV/bldtyzW1XdWpHCcDuUrAxMquT5k8Fr3kIi5mG5jaNKnt89GVa4fwI0JsAi+EyeD39I4HMdZHLvorFhZFAtWmthVbeQGSzuX7+8FXKvCnqMHVgqldSpEFiuBe8noEUUKxxYA/lS8j4JipTf4WfV5yHCw7zNRWDzC/ePGLKAgFHB0+iod2PtTyezvP1aYIkqyHMLWpqa2V1Gb4kV0Dbf49m+FHNmaR4TjMSeS9o8vUZgOybsGPBBoXRerBjzCj2U5Tmz02S4VvN7Gk9oP+OfKJ4QOKEcnU6bJILVNbXsDp3CCcJbU2suYXRNjW6WjP4Ed6gKl9/QcA6DVIKGourtmqrLapLVlialuAHwG2VzFWN4hdY0cOktseSWqPRgMIeHmIkrIzrV3NrWdxK56Dl+fw8P4Ry14bw4/MrmdRrFSPJ5ipPRJ1DUhDYint/U/Vp7SZrCqLbJbUZotAmkWRZAwnSUC2ZG9aW5IkBT/iFkV2p9jOvnZT2oAqLLHFzd0MTWkH+8nP3D9N/r/uprVdVcs1tV3VSdwkE4ZKsM0kp1pePwSOXLyLlAPbiKnNktp+P73AO5TUPp+5hQ2PBzFBxH3BcYzHiMlnZVEkAEzFpuDlvMhX8ljJWVNgRsoijwAAxARN0wda4EdSxICI7FUGYa0QJEmVqe0UUzvKk+dbThYsWwRopT/++lt42//xfaymCkiX0viHyyTt8ZvHf1PXbgWGILm4cdHW19lI/klaFpnxAsE+Jakd08CPbNqAH9mYxaWAHxKAicgEhkPDrR/PbHrVwaR2iCbQO8nUVj/2dsWPsKT2XdI18gmtiQAztTtRFlkukBIqQDup3SH8CKA2tc2blAw/Euu5pHYLU7WTSe1r363+v9MGojqpzXGysW22LFISRYhZmtQ2gx+hrw3A9ijG6gbVmdrrgGg8+eyUOI4zzdV+kaa075sZtHRHyo6+IPqCXgiiJF/PmNyktglt3FRS2o83SGkD1pjakqQvqa2BHwl4efg8ZE6hBwFpRuliBWWBMdpdU7srJfO0GyMuG0pdFLmVeyaYqR2hHW+j9HrkIkhc1cg1tV3VSaIms2BmqyiAipcmhGkzdCOmtpAiBlyAYiecSmo/P/88AODRfB6+9DLG+6ipbXFS28f7MBkjpqMdZZGFBDXRGk3YveTnKqVJ2jS4dw8ilBGcadHAnSqUEeBKVY9jm2gSPEyfL18WkMrbz52TJAnPnr2DeLaEN+Y38aXLX0KmnMH+gf04PX1a12N0TVI744HkiypJbQ1T+w7Dj7RtatMBhdbEdmMWF6kJoiulDZhPr3aCqd0EP8KS2gMh+yYPLKndSVPbqYUmLbGk9s4sxfxoTQSiHUxqL50jzN/IGDAwrXyeHaO5hPb3OSBLTe2eK4rUm9SmCTuNbeO2ShSA69+n/6GLqE6jHth5mE6UrTK1xVxOnnBbZ2pvwWRapQic++/OH3vNxK6xw/vIrSR0rkS1TTGu9rxBrvaZK8RIefzQmGWvCSCG+2GZq11tejKm9qib1G5fL3+KprR/Dpi8r/H9mKkdv6G5K0+XMqtAOQuAAwam6r8uM7Xrx5IcxyFG09rpFvMvs9qgPO2w3yMj9Fx1mYyWRALK9VAoOb+zy0kxnjbrzBk5RG5dU9tVjVxT21WdOJqoFqJ9ph5HkE1tMqFpxNQWKH4k6GcYDWdM7RduvwAAOJ3LA8kFjDP8iMVJbcAernaIlkUWEj6Sivc2MNM4DhUxAqFEBjX+6WlEAgrXrZlS+TL8oPfx2LzSTxPlHiEvJ1KdQJAspwqySXgnlcTfXfw7AMCHj38YPKfvFMmS2nOpOWQ6MLjwTylJbVHyKyZCX/17+E7SIH6EDaBqJ7ZCGdi8jbcorkhXSSRgPr3aCaa2jqS2rUxtGT/SOVP7N//2Nbz9mR/ICAqnlMyVsZ4pAZAQjdM0tGZSmw58O2Fqq9Ej6h0eXZDUZmWRCQvQNWwy7uJHLNLCz8g5NdhPCkaBzpna9DzPyiLNMrXlcZ/PpxRQGtVWNrXPPAN87SPAS5/q9CtRxK6x0XHlvdFjXG0jSe1CWcCPZskxZiVPm+nQDm2utpvUNqiNm8DZFixtpugYXfiWgFWDOytZSrt/UnsHa5COuwv1SW1A6aKwewwVz7olkV2t7DqweYt8rO6G0St/BPDScNJWvCYysaR2lJ6LR6mp7eJHXNXINbVd1YnPEyNR6jdnFomUq93K1JayZGAX9NHJk89+/MhschZzqTn4wOGRXB5ILWKM4kc2c2UUmphXRsRM7bnUnGWPyZLaxU0fSnzz31k5Ry583tEh8JGIPKjKtoUfcaYoEuU8dtDUvFEeYju6vKRMLH648hwSxQQmo5N418y7dD/GcGgYOyIkIdqJskg1U1ssk78t5/OBrzERBFHCctJgUaTXr5rYqrbGb94GJAEXAuRvxgz+ljJwOGkgAAAgAElEQVTDRxUFJdHWBUztQlmQv9ZvI36knxVF5jvD1E7my/j+pRXcSRbw5oKzicIbNKV9KpYGn1sHeB8wfqz+jiyp3YmiSNnUrkmKmS1FtUCMqWllUjsasO9Yt1RsoarV2KJT+BGGHtn3JCmMAjqKHwEALsCS2iZNbbZrKBIxXjzOtFVNbVEkKW2A7PboFqkXjpvhx7pQU4M0qZ1oP6n907kNFMoixvsCMgPbSrGyyMuuqW2NWEp735PA1Nta399sWWSChpMGZ7S/3gQ/Aig7nGxPatNrvYse6VItvk5uRw4qu8Ta1XYoi8zUJLWZqb12tTOvx1XXyjW1XdWJL5ALITdoMqFATcoyR1AFQoOiSFAsicdHkQYOJLVZSvv+0E5EJQlILqAv5EXAS94SbHBplexIavump1H2ByAJHPKZ5r+zYoYMkv2TxPBhSe1WRSWpfMVBU5uarOU8JvrJczED1k5dYltAuQrOpp4FQFLaXr69FCLDblyMO8/V9lGmdjnnQYWuA2iltNfSRVRECR6ew5iRiZPWxHZjFkmewzw1ftvGj+QNIBnUW7RriwKNqhlTm+JH8g3wIyma0uY5eznDCn7EfiyPls6rjOzZdW2clF2aXSPP93j0NvnEjmMysqhKclK7A0xtZmpP3V/9eXUpaofwLUNh65naWzapXUg5yw5mpvaBdwJhFSfTKVVKigFDj1XeR03tkrmxEOtSMY0eAYAIm8D3RlpYt27/EEjfIR/Hr3f2tajVw6b2JDW1jSS1z1whP+NjB0fNL8Ro6LCb1LZOGzeBc18iHzdjaatllqvdrCQSUPAjlQI5t9bIOVObHE9uUrtLZQY9wrQdyiJlpja9BrGOh9SCJuLH1faVa2q7qleBGDfe0Z3mHocmH8scuXA3YmojRyc9PjrZ95ooqNQpxtN+Yphu9U3Og+M4hattMYJkpm8GgLWmNsfzSI6SCXBxs/mgpZQmgyj/TnJRiAQoU7vYPJGezJfhl01tu/EjLKmdww5majuAH2FJbV//ayhICYyFx/Defe9t+3E6ydX2jo6C80iAxKG4QCZkmjxtmnzf0ReE12Pg9N/A1GY87anYFPoDOhMHbDBWTGkO/JuKTbb9McBjUVpUTtc0Tmo32sHB0CN9IR943vpJMJOCH+lMUvvcgpJgnXPY1L6xRv4u93rpObTRRIAlXZ1OaicXgdQiwPH1W0nZsS6UFIPVYQ3awdTuuaJInUltSEDRoZ0IqSWaGOQID5aVPzlp3DIsDsfLxj5DhUgW4Ue0SovblpndPd2s819WPk4tGmf9Wi22YyE0qDoue8PUnhoi8wgjTG1WEvnYQWt52kwHx8l7YTlVQFKFEpOZ2q6prV8vfxoQKzSlfX/r+wPmTW05qd3I1Fad6zRMN7bDyW5TW8GPuMdTV8oKUzvSgUVwp1XL1A4PKR1P625a25Ui19R2Va8SMZcDOyZNPQwfIBNIkSODNi38iFQqgaeTJo9PJMYmb+9huZZbw/k1Mph5fPId5JPJRQCQ06srFpdFsqT2Sm4F2bJ1pkZqmExASxvNS0BKKWK0+XcQc0UvfoQURTqf1N7RRz52IqlNynoE+IdfBAD8xtHfgN8AP5xhNy5uOJ/U5jgOvigxXAs3FgBomwh3NompzZLwbUvLcNmYxQVqgOhOaQN0ux01gNtNa1vN0wZUSe36SUgrpvZmnpVE2otjYKz5ThVFnpvvnKk9S03t/WXK0Ws0EYiqktpOpqIXf0Zux4/Wm6e+MOChE8sOcbWHLTS1GQs02iumNrvmNipTZvIGlEV1p7jarCBy1z2EGdkJ85Cdz0ND8vhLZmqbLYqk4z5PxAKs3FbEj1RKwIVnqz/XDWltUWyQ1O4N84QltVfTxbZwgguJHK6vZsBzwCP7R2x5bbGgD7toUTcriywLonxudosidSoxB5yjLG29KW0A2EHDTCsXCcquXbVKant8SkhHA0HSF2SdRvaO41hR5HDUTWp3nSRJZWprFJ7r1Va8JtYqQ3ddRlWLjC6CxJWGXFPbVZXEQgEQiNEUm2pwwdYpD12tlnia1M5mIdVs6RVURjfvk5SBgI06s3AGEiQcHzmOsTHKZE0uAJIkJ7VXLE4I9wf6MRQkhrKVXO30EPkdl+PNt0qXNom54x8nKdqIIaa2zQNtNVO7nzyX3UntYkXA7FoW3r5z4P0b4MQI3nfwfYYei5nat1K3kCpps/RsU6UIf4T8LQvXyIBbM6lNTe2dAwZ3QzRIal9gJZHtmNq8RzGl2zX6WFLPKvQI0Jyp3QI/woobGfPaLjFTu1NFkeqk9s0O4Ec8EDCapsz6hkltytSu5KsxNXZLXRJZK45TbRPtjKltZVI7Xdyi+BHAea62Gj0CdMY8rOFpA9YxtQVbktpbaAJ/4wfkWIuOA5M0adoNpnYpDUh0XBkc6Lmk9mDYhwi9bi9u6keQsJT2PdODtvZjMAQJ42rHqQHp4Tm51NdVC8kp7Sf0p7QBYkb7ImSMEL/R/vO2SmoDCoJEw9R2mqnt4ke6UOllMu/hPNrdMHol48q20DWxVhl6zVGb2gxBsnbZ+dfjqmvlmtquqpS9Q3mlkNA/vdfUY3mCxCTy+eiFW5Ig5qoHl6xEqOjxguPhKE/7iekngNhOABwgFIHsOsb6iJm6ajFTG7CHq50dICZ8ea0ESdA23CRRRClB/gaBMTKQZqZ2RpepTSe1Tia1+51Jav/gxll4d/w9gju/AgAQEo8iZBB/MxgcxK7oLgDApbjDZZHFNHxRampfuQZAm6l9Z5P8Pi01teM3FFN7pA1TGzBu9NmZ1BbLQKX6/a/gR7QXjxgOxO6ktsLUdt7UXk4Wqnaw3N7IoSI4wx2uCCLm4lkc4BbhEfIEOzN8QPvOvhDAEDgZB7naCzSpPdlgci0z5DtjajOmdsICdA1jase2oqnNuNpOJLWFMnCDjEdw4ClyG+4AfoRNiCNKMpX3W8PUFtMWMrU7wRu3W2/+I7k99j4lfbZ+rXOvh4ldY70h0l3QY0xtjuMMcbVfVPG07VRtWSTjaY9E/bYizLaMEnPA2b8nHz/WRkobIIGKcTpWbbcssphW3gONktqACmengR9xyNSOu6Z292pjltwOTJsLjIW3aM8Ekygq+JGIOql9mNy6+BFXKrmmtqsqpW6TVWveLyEWqzfF2hEztUOeEuAhF3GxpixSoBOeIi0lgs+CLapNlC1n8erSqwCA01OnCSeabVdPLWAsZk9SG7DH1C5HOHBeEShLKM3Nad6nsrICqSIBnATfAPk9a+FHMqUMymK1WZbKl+EHvY8BJEdbYqa5qihyyQZTW5Ik/GTpJ/it7/0Wfv/Hvw5f/zlwnIhK+giyaw8h16I8s5lkBInTZZHFFPwRsqgh5ckEzhOrNxGUpLZZ/Agd1AsVxFPzWPJ6wYHDkaEj7T1eyGDJiZ2mNlCX1mamdkkQNY1cZjL3225qk/dgqlCGIDpbOMhS2ofGYwh4eVREyVAJlxEtJPIoCxLu89GJwK5TzTFVclmkQ1ztSgm48wb5WCupDXQ8qT1EtyDnSkJb2/G1pDC17T3eLZFQIYVdQJtJbQdS/rd/TBKx4RFggnLYO8HIlJPaQ/KnOL/FTO2ohfiR/Cb5u/a6imngyrfIx8ffD4zQhbp4F5na7BrbCda7SbXL1S5VRLxynfx8jx+yh6fNdGgHmV9dofiRtQw5R7k8bZ1iKe29p4HpB9r/fqNc7cQcuQ0NUYReAwXp/LmgldR2hqnNktrDrqndfWKm9pC58GCnx5W2q7BJ3ueAsrAKAKMsqX3F+dfkqmvlmtquqpRdvAUAkPyc6dZvjppEYa4IREhioparzf5f9tHEl55Jpwm9svgKSmIJ07Fp7O2nF5N+yg5PLmCcJbUtZmoDwJ4+601tv5RHcIAYaoUL2gWFzOz2RyvgJDLIicpJbWJu3ErdwlNfeQr/9sy/rfreZN5JprZSFDlOB/bJfLkh8qFdCaKA7936Hn71uV/Fh7/7Ybxy5xVw4FBOnsTp6J9CXP4NQApgPW18Es9M7Qtxh8siCyk5qc3EayxKsUWCnf1mk9p0YpucxwUfuYzM9M0g2opZW6uwwfQqm3CrTBjT8ngVnm4NV5vhRwCgUGlsag/YuF0ZUExzSVK4xk6J8bTvnhrAzDA5T9+MO4MgYSWRDwfJ9allsQ5DkDiV1F55ixinwQFgeJ/2fWTUTpv8eIsUC3jhpQlAMwgSQZSQo+fknsCPqDssdCW1qVHhBH5ERo88pSzSqM1Dp5jwmvgRi5jaNMjgiVqAH5EXMSXn8DB26vI3CQJhaB+w8x5l90k3JbVlU7u3ktoA2k5qv3YrgWxJwHDEj6M7zYV6WonhR66uZCBJkpzUdnnaOrRyUUlpt8PSVsuoqc142oMzze8nJ7Wb4UdsZmq7Se3ulVWm9lYvimRj+NAgCSEyjdBdTYmbdTtrXW1fuaa2qyqVVkmyTQo0Lx7UJTqBjHBFiCFaGllnahPzqEyTkHbjR16YV9Ajsmkvm9qLMlN7Nd0bSe2AkENwkJna2ung4k3yfP6YAJRJYqWWqf0Pl/8BmXIGLy28hFxZSbWkChUHmdrUUJQE9PklhKmRaJarXRSK+MrVr+AXv/6L+L0zv4e34m8h4AngXxz6Fzhc+VMU7vwrPDR1Uk7IsAZ6I2JM6QvrDpvaxTT80Wrz39PXpCjScFKbTmwzdDuYmqfdLnoEUDFSuwA/AjTkage8yqVSa5GFMa7txo/4vbzMCXWaq/3mAkmunpwawJ4Rcj53qixydo08z3GOsmZbmdpRamqnl2x8VSrJ6JG3EX62ljqcqOE4zhKuthpZFbFinGC3GHqE9+rbbeQkfkRtajMxxIZYdo4Jr2Vq+y1ialuJH/F4lb9PDyWGG+r8l8nt8Q+Q84ac1L5Otl13UlvC1KZJ7YS+pDbjab/j4KjtCJA9IxH4PBwyxQoWEnnF1HaT2vVK3CIm9rMfBT5zEvivD6lS2g8ae0xWFmk0qd0MPQKomNoa+JGAU/gRckwNR9xjquu0QVnuppPaW7BnQi0212Q76pliOwhmUBK7o4PCVVeop0ztZ555BhzH4Xd+53c6/VK2rCpxsiomWrGtmJraYRQghohZLWS08SOCl06ObcSPlMUyXlx4EQBFjzDJpva8nNResSOpTU3tW6lbEIw0bmsoKOURHKKm9kVtU1tOascqQJmYmlFqRmSLFeQrefzT9X8CAAiSgLfW35K/N5kvww+Hk9oAuHIeO+gCg1GudrqUxl+f/2u866vvwid/9EncSt1Cn78PHznxEXznfd/BJx78BG4uk+c4vCOGEZqQWTdharOk9kJmAcmigyV1xTR8kepjiq9JxhXKgszY22WaqU0NhY1ZXKTmx7ERA2UnRosi7TK1WdK8VH2e4jhOxdWuf++ypHafzaY20BmutihKMn7k5FQ/Zqip7VRZ5Ox6BkEUsbM4Rz7RMqnN8CMOJbWblUQyGUXtWKhhC01tv5dHwNtDprY/0njBQS2niiITt0jJEceTojMmX1AxRJwybmVTW2Fqy0WR3YQfAVTJtB6fxGfXgRvPk4+Pv5/cDs6QxZdyDkjf6dhLA6C6xtL3A7v2FzYJC74H1G5S+8wVYqA8fshenjYA+Dw89o2S8cbl5bRrajNJEkmxvv53wNd+C/jPx4HPnACe/d+As18kpjLHk+6K93zK+POMHSGPk11tb5ygpyQSUOFH6ucBfQw/UrTvfZQrVeQOGIYec9VFYkntRjv79GqrF0UyUztSc07mOBdB4qpOPbB3lOinP/0pPve5z+HEiROdfilbWtImOTEKIQsMTGoQRVBAJTgILwAxU22CsKJIkSIM7Exqv77yOtKlNIaCQzg5elL5ggo/MkqZ2sl8GYWygKDPukn7RGQCAU8ARaGIO5k7mOqbMvV4FUFESMorSe2LFyGJIrga1myVqU3ZouqiyG/f/DbSZSVN8MbqG7h/4n4UygJKFREBn0NJbY+PNEFLAi2LDGJ2PYvlVHvc3mw5i79686/w5StfRqZMJtTj4XF86K4P4f0H348wNc/XM0WspYvgOODguGJqr5koCe0P9GMyOomFzAIuxi/ioZ0PGX6stlRMg/dK8EQ8ELLEdK1NajP0SNjvMc5+ZoZCMUm2fG3cVJLaw0aS2l1UFAmotoxm6r4U8nuQLwvIa5jamzJ+xP7JQ3/YjzvJgvycTuhmPIt0oYKAl8fB8Rj2jJCJmlOm9o3VLI5yc+AhkBR2387m38CS2hmHmNoLPyG3U01MbaOoHQs1aEFZpFwSGeiR4aNsautMCjuV1L7+PXI79UD9eSw8TLatZ9eAkf32vg5AMc9VSW2eMbXN4kfobjxPzAL8CEBeY/x670/iL3yNjHUm7lYS2h4fMbbj1wmChI1NO6Haa2xwQBmf5eIK4qmLxZjaCzqY2iupAi4vp8FxwKMH7De1AeDIRB8uL6dxZTkl7xDclviRxC2ywHPrFWDulfoFHc4D7DwFzDwM7H6EMLSb8az1yB8muJ/1KyStHRtv/T2Agh8xkdRm+JGMjUnteIZc49W7+1x1iSRJdRxZlNTOJ0jPhKdHxmV6lW2Q1AYIgmThp25ZpCtZPXH0ZzIZfPCDH8TnP/95/Mmf/EmnX86WFpcmZoUQsSBVw5LaXAHlYBhB1ONHBDrhkXw0QeWzz9Rm6JHHJh+Dh1dd5Pt2kdvUIvqCXgR9PAplEaupIqaHrXs9Ht6D3X27cTVxFTdTN02b2oWKiCjyCPRVwPm8ELNZlG/fhn9mpup+pTnCoSVJ7Wr8SKZYwZevki2w07Fp3E7fxhtrpPAsRU0zhalt82Cb48jfv5QGyjlVUlv/pLoslPGx5z+GV5dJGej+gf34jWO/gXfveTd8fLWRe4W2zu8eCiMS8MoJGTNJbYBgOBYyC7gQv+CgqU24ff6hIPJZYuLwNSaCjB7pDxrn5QcHSJJMrADZdazEL2PN6wUPDoeGDrX/eKEuNbVL9RMRltTWwo8kqUloN35E/RybJozJdvUmTWkf29UPn4fHnhFiEDqZ1P5Fnm7XbJXSBhTDxYmkdmaNbknmmr82o8e6hRqyIKnNOKA9wdMGqpPaeuRUUvsaNbXV6BGmyChJBDrFyWTHpBZ+pGTueijQIIMl+BFg62y3Pv8Vcnv8A9WfHzlITO34dWDf6frvc0psUYddY3meLGpnVshiSw+Y2iypHc+WkCtVEPY3Pme9eIWgR05MDjjGID5EudrVSW2bd0R2m9auKjgRJt5HrqUzDwO7HyYLfwGLzh9q7ThOTe03gQM/p+979Ca1ZVO7M0WR6pJIs/1YrixWdo3sBuV4YGDa3GOp50D5BBB1ZkHOMTGmdlSjuHeUzjnXLjv3elx1tXoCP/LRj34UTz/9NH7u51pfdIrFIlKpVNU/V/rFU9NZilpQksKY2iiiGCADNVYaxCRS/Ah81d9jtSRJwvO3yVbPJ6afqP6iKqnNcVzPcLULZQERrgCOBwIzE+RzNQgSqVRCeWEBAODvU+NHyOA+KdzE+fXz8PJefPyBjwMA3lx9E6IkyniDMO8QfgRQuNqVAnb0M1NbX1JbkiR88kefxKvLryLsDeMzpz+Dr773q3jvvvfWGdoAcGmJnBsO0xb6UbpFz6ypzRAkF+PaOBhbRAfOvhFl4F+bjFukpvZOo+gRgExs2Xa37BoupOcAAPvCEwh5DTyunDLoElPbr83UBoAg3U3SPKntgKkdboAfqRSBZ3+bJAAt1rl5ytOeJIbfzAgxC+5s5lGsWINSaqRkroz1TAknZVP7ntbfFHMwqb1Iedqjh5qnx7ogqW2JqU3xI9GeS2rrHFs4kdQuF4BZgkLDgXfWfz2inGMdETOIIxpFkZbhR6wytdniUA8ztRO3gPkfA+CAY79c/bVhmszvdFlkrakN9BxXuz/kQx9dfGuFIGE87ccOOmcKMVP7ynbGj6xeIIZ2ZBR47PeBD/0T8Ae3gQ9/B3jyj4D9T9pjaAPtl0UKZWBznnzcMqnNdv1pMLWD9jO13ZLILlacjmX7J82HxTxe5Rzdy9fERsrQa01TU9tNarsi6npT+0tf+hJef/11PPPMM7ru/8wzz6C/v1/+NzVlLg273eTJk4Ef12+BWUQNojAKKPqJ4VXL1GZbUzmfRD5hU1L7SuIKlrJLCHlDeHCipliknx4j6WWgUsJYzH6utmWmNojxHjwwAwDIX6guKCzNzwOiCD7ogzcoKkltmlhJ+/8ZAPDU7qfw4MSDCHlDSJfTuLF5AymayAty1LTSU7JlVszULucxQU3tJZ1M7c+f/zy+fuPr4Dkef/bYn+GJ6SfAc41PcZdpUvvwBBl8jsTM40cABcPhrKlNfhb/6ID8KT5WvTC1tEl+jzv7TZjagKoscgUXSsRcPmakJBLoQvyINlMbIPgRQNvUZgazYaxLG5KZ2rVFkde+B5z9b8C3/oBsb7RQZ+cVnjZAtkhHA16IEjCvY2u3Gd1YJ3+LezyUQagnqS0XRTpgass87fua368LktqWFEUy/EjPJLXpe1kvfsSJpPatfwYqeSC2ExjX6CKQTW0H0siSpF0UGbCmKJIh5jyWJ7U79z4yrbe+Sm5nHqlHKcllkZ02tWuY2oDquOwd80Thaje+TlUEES9fc97UPkxNbYLZI+OzbWdqs2Np6gHg9L8H9j5mK4aySu2a2sl5gt/xBpUxRiPJTG2tpDa5dpYE0bZQQNw1tbtXjKc9ZJKnzbRVdi9piSW1Ixqm9ghlasevE/SKq22vrja15+fn8bGPfQxf/OIXEQzqS4l+/OMfRzKZlP/Nz8/b/Cq3ljwFciH0DFswsGNJba6AHE351jK1WVEkz0xtmwYzLKX90MRDCNYmjiMjgCcAQALSSxijSe2VlA1J7T5ial/bND9hKZRFRDmyCBE6Qk7utUltmac9MUw6stRJbb4AIfwaAOBXDv4KvLwXJ0YIs/6N1Tdkoy7IdSCpXc7JiXk9f4dvzn4Tf/HGXwAAPn7/x/GOyXe0/B6GH1GS2gw/Ym4Sf2T4CABgMbOITbu3sDPRgbNvh2JK1DK171iR1AaUie3SOVygSI6jO5qwhJvJSHmeKCqGk4NJbbkosgY/IoqSYmo7kNRmz1HH1GbbYjPLyqDZApUqIi7SXQ0sqc1xnJzWnl2zF0Eyu5bFIFKYBB3c7jzV+psYH7OU0fxbWqp5ytOevL/5/eSkdsLe19NEVhZFRq0ok3ZCLKmtd8HciaS2Gj2itTU87GBSu5QBBLqQW8XUZqa2SfxI1mr8yBYoxmqEHgEI5xcA1q8793q0pLVw3GNJbUDhas9vNE5qn53fRKpQQX/Ih7unBhrez2rt6AuiL+iFIEpyqd+2M7U10EeOiZna8evKdaKZGAd5cIbsWmwmOaldb2pHVRgcu9LaG1ly3h52Te3uk2xqm+RpM22Fa2IjNWNqD0wD3hAZv2zecvZ1uepKdbWp/dprr2F1dRX33nsvvF4vvF4vXnzxRXz2s5+F1+uFINSvcAYCAfT19VX9c6VfPG1j9o1YwMtjTG2oTO109VYsOcXjJwM6+OzBjzCedh16BCCTyn7K1U4uYDzG8CPWJ7VPjpGCyvNr57GSNcd7rUpqHyHIi8LFS5BUKU3Z1N5JJyPU1I4EPPD1nQXHl7C3fy/uHb+36vWdXT2LVJ4MtoJOMbWBmqQ2+bhVUvv1ldfxiVc+AQD40F0fwr88/C9bPk1FEHF1hRx7R2qS2mbxI33+PkzHCCfNsbQ2S2pPKBf+OqZ2kpnaJhcn6DYw6faPlZLI0ePGHosZfYVNYlbrUTEFSPS+QYsnoE0mIqw0tjapnS5U5GC0E0ntgRD5nW/WJrUTqkHd3D9b9nxXltMoVUT0h3zYreoYmBkm5+q5uL2m9o21DE7yrCn+QHVysJECMeVakrGRqy0KwOLr5OPJFgs7bNJeTJFtzB3Q9kxqG2VqJ+15PQBw7bvkVgs9AijmoRPbidlE2BusMv45VhRpAj8iCQKkHEnI1l6PDKvXU2krFwhygfcBd723/ussqZ2cB0r27oJpKi1T28nFFoukJ6nN0COPHhiBh3eOP8xxHA5PKHPUoG8blvpp7BJxTNExmriWgBUdY/WEytRupSZFkTzPyfguu0xtJam9zRZJekEbFD9imalN3zs9tINGtzLM1NYIWvIepUh77Ypzr8lV16qrTe0nn3wS58+fx9mzZ+V/9913Hz74wQ/i7Nmz8Hi22cXfAXFF4s6EdljQuk5TjxGuiJyHmD21TG1WFOn1UaPIhqT2ncwdXN64DJ7jGyd4GVc7tYixPjIIWLUhqb0rugunxk5BgoRvz33b1GMRU5sYlYHDR8D5fBCTSZQXF+X7yKb2JGFuM/xI2O+Bb/DHAID37n2fXCRyaoykINVJbb9EJ7WOJLXD8usc76c4kEwRZUHb8LyVuoV/88K/QVks48npJ/F79/6erqeZi+dQrIgI+z2YopOekag1+BFAQZBciF9ocU+LxEzt6V0Ax4ELh8GHq99L1iW1yeDiztJr2PR44AVwcPCgscdiSW1J1L/dn022fWHAZ/Ex6W+CH2FJ7XL1scjeJyGfBwGv/dckhaldYzYl5pSPLTS1z9KSyBOT/VWFQ3tHiElod1nk7FoGJ7k2SiKZWFrbTgTJ6iWgnAX8MYXv10jBfgD099ehtPZQmJjaCRMlo73H1Gb4Eb1MbcpFLyQtx/gAIDzNjVliau59TPs+TiZiZVNppCo1rjC1jV8P1cXgvBXl40DvT+BZSvvAO7V3GoWH6WKtpJgfnZBmUrv3TO2pwdZJ7U7wtJkYggQgKe1tV+rHFu7YseW0ZATJm63vu6GzJBJQXUe0e73YonDGrqQ23XE6HHWT2l0ny5PanUfb2SJRUK7zWvgRABih4+5119R21eWmdiwWw7Fjx6r+RSIRDA8P49gxDQ6hK1Mq5DJg/mVsal3C0f4AACAASURBVLf5B1RNInM8MXvqmdrEEPH76IXdhqQ2S2nfM3YPBoMNcAV9rCxyHuPU1F6xoSgSAH5h7y8AAL4x+w1Tj1Ms5OGnvGsuMojAQYoguaAkDko35wBQsxOQk9pXNt+CJ7gMSfTh0Ymfl+9/cvQkOHBYyCxgia6Q+sCS2s4ytUciAXh5DpKkbTRvFjbx29//bSSLSRwbPoZnHn0GHl6fqXh5mQw0D47HwNNkDtv2mSsJyJXMDTSPjnTG1PaOT2Dnp/4Mk//5P4FTbY+UJAl3GFPbIvzIBZC/yUFvP/xGeetePzEEAf1Gn108bUBhamvhRxowtTepuexESSSgYmrX4kfU2+9uvWKZIfcm5WnXbsuecczUzqpKItsxtelCnp1lkYynvesekhppJt6jpIA7NPmwoiiSTcKjvZLUpgu5upnabPeHJGim7EyLpbR3v13ZGVKriIPGrbz9f6jq05zfPFObmdqc3y/jTEyrl5nakqRCj7xf+z4cp7BCO1UWKUkt8CO9s6AgJ7U3tZPa65ki3lwguzI6YWofUpva0W2Yqu1kUhtoj6vNggOtSiKBprv+AMXUThfs2bXlFkV2qSRJWRwZtoipzRaEtlpRZG6DjMPANV70kssiXVPbVZeb2q6cVXpzHUKZHBKxXRYUbPpCkGgyrcATg6WWqc3wIwE/NRFtSGq/cJuY2qenTje+E0tqq/AjdhRFAsA7d78TXs6LyxuXcT1hnJtYzqsGS/4ogndRBImqLLJ4a458efc0+yYAwJevfhkAUEmdAC8pv/OYP4b9g2Q7z1yaPI7X0aS2wtTmeU7matciSIpCER974WO4nb6NnZGd+Isn/wIhr36z9vJSNXoEACJ+D4I+cvyvp81xte8aJn8L5/AjdKt8sA/9Tz+N6GPVCcBkviybsayA07DoxFZGj0RNnivCrLlb53ZyO01tXUntGlM751xJJAAM0Oepwo+IIrB5W/l/arE6uW1C52hSm/G0mfY4YGpXBBFz8YwxUzvqQFJ74WfkdqoFT5uJ7UzId9bUTuTKEEVjix5sEt47Se028SO+kFKKbEcnQiv0COCsecieo8ZU4llRpAn8iEDHe5ahRwDF8O9F/Mj8T4DkbXKdOfTuxveTyyI7xNUu5xXOes8ztcn4tlFSmxVE3jXRJ/fpOKnapPa2Uy+a2nqS2mr8iEbAgF0/U7bjR1xTu6uUi9OFDg4YsCA8CPQ+kquRGE87PAR4GsyvXFPblUo9Z2qfOXMGf/7nf97pl7EllV9fASRiQnv7LWDVchwELxlQFjhmatfgR5ip7aUTJ71lTjqVLCbxsxViPJye1mNqL8oDWzvwIwAwEBzAI5OPAACeu/mc4cep5MnvrsgFAI8XwaOMq02MVCGTgbBGJqz+3TPkm8p5JItJfPsmQZ+UEg8iU6w26U6NEgTJYuESeIjwSPTrjuJHyARkR399WaQkSfjDV/4Qr6++jpgvhv/y5H/BSKi9rYssqc1KIgHCN5QRJBlzf/sjQ6Qscim7hHjegYEGSxQGtDsEFil6ZDjil9nQhiWb2uR3xVArhhVqc+ucrUltlq6pT2jKTO1SbVKbmHyOJbW1iiIzK0ClAHAexfi99Yrp58oUK7i2Ss7ZJ6b6q77GTO2VVNH0zoZGWkjkMS6uYphLQ+J9wI42dmjFaC+EraY2K4nUWZTa4W2igxFy7AiiZJjlyYoie4ep3SZ+hOPsK4ssZRU0UDNTW138pLdrwKjYRLgmCcXwI2aKIkWKl+OjFu7AYxP4clYeJ/SMzpMwAY78T8oCvpaGKSe0U0ltdo3lvdU7HHrQ1J6k+JFkvoyURir2zBXyszx+yPmUNkB2CzJtT1O7g0WRALDjBLlduUBwB42kTti2k9SWBM0SyliQXIvZ9dRqsaS2WxTZZYrTgEb/pHX4xK1aFMn6cLRKIplk/Mg1e3BxrnpKPWdqu7JPxXV6AuEkcEFrTrYixYkUQSZmalNbqlQg5cmkJOyjEye9W4R16qWFlyBIAg4MHsBUrEmiVFUUyZjaqUKlzsCySgxB8tzscxAlY5NWkbLaChwZtAePEnOxcOECJEmS0SOekRF4BulFr5zH169/HSWxBF9lCmJhEtmaQdXdY3cDANYrV+CHahLgcFEkoJja6qT2X579S3zr5rfg5bz49OOflpPl7egSTWqrUzKAMqlYM5nUjvqjmOmbAeBQWls2tbUTcUtWoUcAIDICEcBFup382K6HzD0em8zoTa/KprbFJZFA86R2A/wIw4A4ltSmXORkvqyUwjL0SP8uYA9N6c+ZN7XfWkxCkoCd/UGMxaqvCQNhv2zkz63bU2h2Yy2DuylPm9txvL1zEBsI21UUmU8A61fJx7vu0/c9HU5qB7weOSEWzxozK3vP1GZJ7TbGFnJZpMWm9s2XAKFEElosjasldk6UBHvS4mo1SEqyokgrmNqeiIXjukAfMVuB3prEC2XgwtfIx43QI0xyUrtDpjY75kKDVZx1handO7/3SMArp1UXatLagijhpQ7ytAFibjLjfTTqfFK8o5KkhjtFHNPQHoK9rOQVw1FL2TWykAYOGJhu/bj+CAkZAJohCRc/sk1lNU8b6P2eiUbK0MXTSJNz89Be8j4rpYHUHWdel6uulWtqu5JV2qADVR9nWVmJRE3tEogRJGSVFWu1wR32M1Pb2qQ242k3RY8AQD81vFMLiAW8Mmpg1Sau9mOTjyHii2Apu4Q3Vt8w9BhigSa1efI7Cxw8CHi9EBIJVJaXlZLImd2yWSyVczJ6ZFB4BwCuLinATO2sdAt+TmVWeZwwtWuS2n3VSe1nrz+Lz735OQDAHz30R3hoZ/uGaqpQlpPL6qQ2oJRFrmfMo2ccQ5BIklJG0yCpfSdJfl7T6BEAiIxi3utF2sMjIErYO/l2c4/Xbnq1U0xtXwNTm5buDYScmTww87xUEZXSSrYtdmA3MPMw+diCsshzlKd9ckp7AcFuBIlhnjZgf1J78TVyO7RXQSK0UhcU+rC0ttGySJbwjgacWcQxLdnUbmNsYVdSW40eaTbG8vqVojG7U7E5bVNJZmqbwY+kyXnUUvwIx/XmduvZF8nvOjwC7Hm8+X2Hqam9fr0z6bNG11hmLpSzmunTbhUzjRcS1Yuvby0mkciVEQt4cc9uG8YTOnVikrzXp4YsCB30kkpZBXPTKVOb9wDjdLdhs7JIltLun9S3uM5xTbnaiqltfVK7WBHked1wZBum/7tZdpravdgz0Ux6ktpev8ImX7ts/2ty1dVyTW1XsipJekL0Wdi+HSCmRxnkAitmMnK6kJVGFnkvIh46sLEQP1IUivjnRWLsPDH9RPM799GkdiEJrpiWyyJXNQoKrVDQG8RTu58CYLwwUqLGW8lDfmd8IIDAfpJaLly8KJvagT17ZFP7p34ec6k5RHwRjHuIIVyb1J6MTmIkNAKJE+ALzpNPch7A40AyjyFOytUm7FKygFeXXsUnf/hJAMBvHv9N/NKBXzL0FFeWyWLAzv6gjHJgkvEjFvzdGZbD9rLIShEQadqjQVKbmfiWJLXDIzJP+5DIw9dsG7UeyfiRHmFq1+JHcs7iRyJ+D7y03JSVVCJBk9qDM8DUA+T9mrxdzdk2IMbTPjHZwNQeJuf3ubhNpva6QZ42oJjadiW1GU97UidPG2j/WLdBQ2FWFmksIcYmy1uWqQ3Yk9SWJOCqDp42k1Nc7QZFkTJT24KiSD5q7Q68ntxuff4fye2xX249lhraA3A8SZ/ZiU9qJHaNDdac9/0RgHWX9FAqcIqWRc4nqpPaDD3y8P4R+Dydmw7/h6fvwp/+0nG85/hEx15DR8Tev95ge+dnq6WHq52gpvbgjP7HVXO1a8TwI3YktVlK28tz6Av1yHV6u8gOU7uXeyaaiTG1o2PN7ycXK1+19/W46nq5prYrWQI1tSWfdYcFT5OPFY4ap4IAqUBSt6wkMusLIsyxpLZ1A5tXl15FvpLHeHgcdw3d1fzOgagygE8tylvtV2ziagMKguQ7c99BSTAwcaSmdtmr/M7UZZFKUntGXiz4x1hUfu5++repNbU5jsOpMcLV5sPULHOCpw2oktokUcPwI7dSN/C7L/wuKlIF75p5F/71qX9t+CkuU1P78ER9qpnhR6xIah8dccjUVg+YG2yxZ/iRXVaY2v4w3gqT5znq629xZx0Kt4lkkE3toeb3MyI5WVNvarMS0Ub4kT6H8CMcx8kGulwWyfAjg7vJz7CTvH/NIkjOzZMC0pNT2n9nltSeXbPH1L65ksIxbo78Z9c97X1zlCW1lyx9TbLmGU9bJ3oEUEpRO4QfAZTtyBtG8SOFXsOPMKZ2G8aqHUnt1UtAaoFcS2ceaX1/p/jFMn7EBqZ2luJHLDe1O7/joS2VcsAlGl44/oHW9/cGlBKxTiBIGi0cc5yzJaYWqVFS+8WrxDR5rEM8baZdAyH86gPT5vtOek3qXSIW7Q42JD2m9oYBUztI5xiFZN2XYnRR2A6mdjxD5pODEb9lu65dWaQNGtKwI6ldyffUDpqWyug0td2ySFdUrqntSpaUJlukJJ91k1Vmavu9ZXnQwtI7rCQyry5LsDCp/fzt5wEAj089ru/CzhAkyUWZq72SsiepDQD3jd+HsdAY0qU0Xl58uf0HKJPfX9mj/M4UU/siSjfJIMw/MwN4A1jnPfhBhNz3Awc/gAgdVKU1BlUnR08CAMTwIvmE1yEuWy1Tuy8IzpPGnPcvkC6ncffo3fiTR/4EPGf81HV5iRznh3bUp5pHo+TntMLUPjJ0BBw4rOZWsZ63cQLItjb6YwCv/Xu5Q5PaEwPWLE5coMz9o9EmnHq9anfrnFNJ7Zpt38EG+BGniyIBBUHCDHUZPzJIC4wYguSWcQTJWrqIxc08OA44vkvb1J4ZsTepjfVLCHNFCL6osiVfr2J0y2IhaX2hnCgCiyyprbMkElAltRPWvp42NBjZbkltamS1s2DO0B8aZoRhMfTIzKP6UCgyJ9MpU7sBfsSEqc3GeNYntXuMIXr1WwTZMTCt/3whp8+6yNQGVFztHiqLHCLvtwVVUnszV8JZitfqFE9726vBLhHHxcoi9SS19ZREMjUpHmeLwikb8CNuSWSXSpKAOE1qM2SGFfJHFTzoVkprM1M70srUPkxuXVN728s1tV0pylJT22+9qR3miuAiZFLJsCPM3C6oDVOLTG1REnFm/gwAHegRJrks8jbGKcvZLqY2AHh4D96z9z0ASGFku+KKxEgSfKqk9lFiaucv1iS1OQ7PDgygwnE4OXgYh4YOyaZEbVIbAE6OEK52JbQECXAwqc1MbWJE7B0LITz1t5C8G5gIT+KzT3wWAZNsbzmprWFqW4kfCfvC2NNPBsC2crWZqR3U5mkDiqltBX6kIlZwiQaKjg0fM/148sQ5r9Poc4KpDaku8SAXRZZqmdrU1HaIqQ0oprac1Gb4EZbu202ToCaS2m9S9Mi+0ai8VbZWLKk9ZwNTO5krY3eBDlJ3nmq4YNNQwQFloG81giR+nRie3pDC49Sjdncl2CAFP9L+OU4QJcXU7pmkdpfgR659j9zqQY8ASiLW7klqg6I2ltQWy8a3x4sZ8ru3zdTulQn8+a+Q2+Mf0J9Ilcsir9vzmpqpqant0A4CC8WS2vMbSlL75WvrECXg4HjUGiybq/bVYEHNcY0dIbif7CqQbjBWqA0O6JGMH6lnakdl/Ih9prZbEtllyieAIl0obyfx30rqnoleWejVI71JbXkB2DW1t7tcU9uVIrpVVAxadyHkaPIxgiKkMJlUsokOw48UfdQw8YbaNy4a6Pz6ecQLcUR9UbxtXGcyhl1kNm5ijGIoVm1MagMKguTM/BmkSvUDn2byVGji3atMGIOHDwM8D2FtHWIuB/A8fFNTEEQBX4mSgfuvTD0JAIgEiEmXLQqo1a7IfkiiF6KniJs+r75iFCtUUxR5PXkefGgekhDAu0c/gcGgOSNTFCWZqX2kKX7EOEdULZmrvW4jgoSlQBrwtCuCiBVq0luBH5lNziLPAWFRwsxd7zP9eMpW8i5gavvCZHID1HG1ZaZ2XVKbHCv9DuFHAGCAGpPJfIkw1VN0R8UgNbWnHyQ/R+ImkFw09BznFih6pAFPG1CS2vFsSUmNW6Qb6xmc5Iih45lqA/HBxHFKWrvRRNWoFn5KbnfdA3ja+LuHOo9NGIoaT2pnS8oEvHeS2szU7iB+pJAEbv+IfHzgKX3f40QiVhSU82mkBj9iQVKbBRc8MYtN7UgPMbVzG8qChh70CNMw6Udxk9rmxZjai4m83Onz4lXy+t2UdgclL6iNNL+f3fKHlZ1gjdLaGyaS2oXGRZEZG5jacdfU7k4xnnbfLiXAZZW2YlmkbqY2fe/m4lvL1HfVtlxT25UsPk9SDFLAQgOTpqPCXAEiM7WzDD9Ciw6Zqa1nS65OnV09CwC4f8f98Ok1HdgkIn5dTmrbydQGgIODB7F/YD/KYhnfv/X9tr7XU6aLA6qkNh8KIbBPYXX5du0C7/fjh3d+iEUPjz5BwDuHCVok0oTpli9yEPIELXE2EOhAUpuY2m+svgEAqGQO4dxN86bh4mYemWIFfg8vp0zVYkltK/AjAHDXMEnO25vUbm5qr6aLEEQJXp6Tfz4zYgb90Yn74WEsMzNq1+iz09TmOMX8Kmqb2o2Y2k7iRwbUSe3kAgCJGPIsRRfsAybI+xy3jKW1z9Gt2Xc34GkDxNhkC0FWp7Vn17K4m6eTgHZLIplitHgrY3HZGjO12+FpA12V1E7k2l+4Yzxtv4fvDf6rJKmY2h1Mat94AZAEkijSa4o4wS7ObwKgmKWa8ylPTW0IAqSKsTShkLEZP9ILpvalfyJFzuPHSCJUr+Skdrea2r1jHrCkdrpYQTJfhiRJsqn9+KEWhokr+9QtSW0A2EF3HS6/Wf+1YkYx2NpJagebFUVS/KMtSW0yf3HxI12muA08baatVhYpVJRrTHS8+X39EYL2AlwEyTaXa2q7ksUViJEohSxcQaQTyQgKEILEtBZr8CNlxvD2WVcSeWnjEgClrE+XVMkYhaltr6nNcRye3vs0AOAbs99o63u9FWpq1yTQGFcbAPx7ZgAA/3j1HwEAv5jJIigSU64ZfiSZL0PIk9TnG8EA4HGKqV1dFPnGGjG1hfxu/OhGvA790K4uUZ72/rGoZtv9CDXociVB8/fSrhwpi2QpkIA2fmQpSfnk/UF4ePOlMW+tvwUAODZiAXoEUCY0+Y06jnWdJMleUxtQcbWrJyJBfwOmNkWAOJnU7lMztdm22IHd1Vvbd1Ou9lz7XG1JknCO4kdONElqAwqC5KbFpvbt5TUc5ObJf4ya2mwwnLbL1G6Dpw2ojvVE62PdJjGmNktztaOeQ49UisRMBtpDm1md1G4XPQI4s52YFbUF++t2HHCqcINUMrZzScaPRLaxqS2jR97f3vex5OjmbaBs7zi0TlsMPxL0eeTF14VEHheXUlhLFxH2e3DfjE3jCFet1VWmdpOySDbGCg0qC5561AQ/Egs4gR9xaIetK31iSW07TG35mtg7i41NlYsDkMiOUz3nhxEasHIRJNtarqntShZfIKu7Usi6xLSc1EYBlSAxyxWmNjGNBB89DC1Mal+KE1P7yJCBZEziJsYjxMBatYCt3EpP7yGm9k+Xf4rlrH7zxVshxi/XzNSemcFydhkvLbwEAPhAOiOnoCP+xklttandkaR2pQBREvHmKklNDHkOolgR8eNZc5NYmac9oZ1qjvg9ciLXirT2ocFD4Dkea/k1rOZWTT+eploktRc3yYR4Z781i1VvxYmp3daCUTOx9KpQat3cXcoAIj1e7TK1Ay2S2iVR/lyhLKBYIf93NKlNn2tTbWrXMvpmKFfbQFJ7fiOPzVwZfg/f8L3CtGfYHlO7sngWXk5ENjAK9O009iCxHeTWSlO7mAZW6c6Ldk1ttitBrGhOdJ0QS28lDJjabALec+gRoHNJbVEErjNTWyd6BFAxte00tRubSgw/AgCiQQQJQ8zxVuNH2kVWdUrJRWVR8VibpnZ0jJhikqiYIU5pi5naQDVXm6W0375vGAFvD+w42api799It5vaFD3STkobUBVFNsGPWBCeqVWc4hMZasxVmyoXgJ99ge6CtFC2mto9hOTSI7YzIjwC8DrO0WzX8NpV+16Tq66Xa2q7ksXTNA4Xti4xzVKPEa6AUoAMKll6h+FHRC89DC0qicyVc7iZJIOQI8NtmNqxneQ1iBWMi8QESRcqyJWsH3SoNRGdwL3jJIn4zZvf1P19PoHhYmpM7aOK2eifmcFXr30VoiTifsmPPeWKnIKONElqpwplCDlias/5fUh4HTIxVEWR1zevI11OI+QN4fReUlz5whVzxvDlZTK4PLJDO9XMcRxGYmQgaIWpHfaFsbefDGBsQ5CwAXMDU1spiTS/MFEUiriaIIMGy5LavrD+5m422fYErGfSMclJ7dZMbYYe8fCco0Yfw48kc2Vgk5ZEMp420/RDADhSNNamqXuWprSP7OxrOelnXO25uLWmdixOFrTyo3cbfxCW1LayKPLOG8Ro6p9WTHO98gWV61yH2IeDJkxtOandM6Y2fQ97Q/omRkxWJrWX3yTHnz9K35M65YR5KJva9UxbzuMB6HXfeFKbMrUtx4/0yAT+wv8HQAKm3w4MTLX3vRynQuI5jCDJ0zKzLYIfARSu9kIijzNXXJ52V6irktonyG38en24wghPGyA7YIDmTO1iBYJo7a4tltR28SMG9f0/Br7xu8B3/oO1j7thI35kqxVFsjF7K542k2xqX7bn9bjqCbmmtitZfIkYNFxM2/AzJDmpXUTJz0xtambTFI/o46rua1ZXElcgQcJYeAwjoTYKSHgeGN4HAIikbiJMcQN2l0UCSmFkOwgSPzW1+WC1mRk4fETGEHimp/DVq18FAHyApxMUmtRmgyqtoshkvgyIYQwJ5Fg463Foq7yKqc246CdGTuDJw4SN+/zlVbnox4guLzVPagMKV3vNopQ+42rbhiCRk9oN8COyqW3eBL6ycQUVsYLBwCB2RgymZ2vFcfpZw+oEGWcepaKpRkltFX6EHYNq9Ahn1+vRECuK3MyXgAQ1tQdqTO3QgMKJbBNBwnjaJycb87SZ7MCPVAQRU3my28Y3baAkksmOpLZRnjZTqLNcbTbRTRcrKFbawzkxpnbP4Efkksg2xxbqpLZZTAxDj+x9vL3CZbkMcYMUOtqhFqYS42obNbWFLMWP2MnU7hDGR5fOf5nctoseYRo5SG6dLouUr7MaqIUeT2pfWkrh9Vvk53vsoMvT7qi6ydSOjtFFcAlYqQmg2JDUVl9DrU5rb7hFkca1chH4yefJx2ysZ5VsTWr3yO4lvcrQ64teU1vGj7hJ7e0s19R2JYunvGLeJlM77ydJUbkokuJH4KdmkEVJbZaIvWvorhb31BDlGHKqskgnECRP7X4KPt6Ha4lruLKhjwkVEKmpXZPU9kQjiD75BLw7J/DaUBJr+TUMBYfwpJdOkmuS2loDqhRNoO6WyGDzDc7YpLZtaZjad4/djbfvG4bfw2MhkceNNWPmWb4k4CZNkx7a0djUHmWmdsaan/noMEnO257UDmq/bxl+ZMICU5vxtI+OHLXWxNXb3G03TxsA/PTYqGVq06S2IEooC8zUJsfIgIM8bUDhdyeb4UcAYOZRctsmguTNBWZqt+ZHqk1tMwtOai0k8jiB6wCA2N4HjT8QM7WtTGrPG+RpM4XpsZtLWPN62lRf0AeG1meLMnqVLpD7x3olqU2vdW2b2iypLSo7mwzr2nfJbTvoEYAufnAAJPtS/SzV1cBUYlxtySx+JNocYdS2wiqMTyFp7WNbpbWrwNI5gPcCd/3Pxh5jRCkvd0xCWbn2NcOP5Na7e0GhRlNDZH7xzbeWUBEl7B2JYHrYQtSiq/bVZKdIRyQjSGrKIllSW2uM1UyBxkWRAa8HfrpL2WpTO+4mtY1JkoBv/TulhyO1CGQswkbmNpT5S7uJfz1SL4JvBbExe0RvUpsuAKcWNd9vrraHXFPblSyObqv39lloGNGt/GGugDzlMstMbYof4Xx0YGxRUpuZh22hR5jkxvnrcrGM3WWRANAf6Mc7Jt8BAHju5nO6vidITW2Phpk59Zd/iQPPP4//vvg/AAC/fOCX4WO/X1o6FA0Qky6rgVdhWIX9IMfCWSmv90cxJ1VR5BurpCTy1NgpRAJePLCXTGTPGESQXFtNQ5LIQI8Z11piZZHrVie11y9YZvpVqQVTm+FHdlmAH2Fp8+Mjx00/VpXY5DnfwuhzwtSW0zXa+BFAKYvcpO+TPqdNbcbUboYfAVRlkfpN7Yog4vwiMYpOTrU2tXcPh8FxBNVkpHxQS7fnb2OaJ0kNfvKU8QeKsqT2kgWvCmTSY7QkkqnDSW2e5zBIk/4bbf69eq4okuFH/G0mhf0RgKPvdzMIkmxcOV72t2lqe7zKec6uVCybADdg2jKuthGmtlQqyWa4J2oh0g4gi9+sWLxbk2lv0YLIfU8aZwazskgnk9rq4z2osVOHGZBixRrmvENiSe1CmXRgvMNFj3RWoqCcf7ohqQ005monjOJH6NxMAz8CAH30OsoWi61QWRDl+Zub1G5TF74GzL1MOqTY2PHOWWsemx1DsQnLvI4qbbWiyGybSe3QoIIbdNPa21auqe1KFlcmhptv0MIBBj15R1BAlm69ZUxtVhTJe5mpbU1q4tIG2bbOzMS2NKyY2iyp7YSpDSgIkudmn4MoiS3uDYSo0ewNaZuZ86l5/PDOD8GBw/sOvK+KVw00Z2qzQdFdPDG1LohZlAQH0tr0Na7zwEJmARw4nBglrLvHD5GLG+Mhtis1eqRZyljGj1jA1AaAQ0OH4OE8iBfiWMlZmBhlamFqLyWtw4+wpLZlPG0mvVvnHDG1tZnaPg8HD424Mq42e584WRIJ08zmbAAAIABJREFUKMlwIZdUfie1+BEA2P12crt+RdnO10JXVzIolEXEAl7sHWk9+A76PHIJ6ZxFCJLczZ8AAJb909rGil6xpHYuDlQsOH8l5sikweMHJk4Yewz5WO9cooZNdts1tVlRZEyvqV3KAT/434G1DjXSG8WPcJw1ZZE3ngcgAePHgP5d7X+/3WWRLbb/y0ltA/gRhh4BbMCPAIpR3I3JNElSoUc+YPxx5JDFNedS0ex6EuzX5tB7/co5uYf4rYypzfTYIdfU7qjymwDoMc2uiZ2WlqktVIDNefKxYfyIdnKUdVOw66oVStDdgxynYOpc6VApC3z3E+TjR34X2PsY+fjOG9Y8ftxG9AjQOz0TetUuUxtQcF2dGm+66rhcU9uVogoZYPhtMLXDXAEZ2dSm+BGa1Pb46VYfn/nVy0KlgNlNcvE4MmQgqU2Z2li/hnGa2HUCPwIAj04+ipg/htXcKn62/LOW9w+Dmdra2IkvXyOTqod3PYzJ2KQqBU2+j5naZUGqY6um6CBrhg9iUBBQgmQfPkMt+hrP0sn0/sH9iFEcxGk6CXn1ZlzTiG+lS7Qk8nCDkkimUYuT2iFvCPsGyHFly++QpUA0mNr5koAERQxM9JsztbPlrFzAypAqlimk0+hzBD+izdTmOE5Oa+cpqilJf7dO40fYZGWwdId8IjyimPFqhYeAMfq30okgYeiR45P94Hl9iBlLudqzL+LYlc8AABL9JhdPQkNk+z+gtKmb0QI9L0+cbI+PXPuagI5OPgYNmtpKUaTO4/1nXwBe/hTwvT9u63ksk2xqG1gwt6Is0ih6hEku5bMrqd0cP8IHKFO72L6pzcZ5XCgEzo6iaTVXu9u0fpXwU70h4NC7jT/O0F4AHEGsOGUg67nG9iBXe2IgKNdwBLw8HtrbJeng7Sr2vg30Ax5nx08NxcoiVy4oPQbJeYKj8ARIyrYdyfgR7aR2LEh+7oyFpja7pg+G/XIIw5UOvfyfCLpiYBp4+GPABC0oX7IoqS3ztG1AjwDVCEe7OjicFMO+sPS1Hsllka6pvV3lmtquAACVcglSmVwAQ8MWlqdQgyiCAtJ8tanNeIs+H00lW5DUvpq4CkESMBQcwljYwM/B2uazq9gVJoODVYeS2gFPAO/c/U4AOhAkkoQwTWr7w/VmZkko4dlrzwIAfuXgr5BPqnjVABDxKxPN2rJIlkCNeCo4WSDmLmNc2yqPD+C9eCNIjpVTowp6YM9IBLuHwygLEl653v4ET05qN+FpA8BolEzk1y1KagM2l0U2SWrfoSntaMArb3U0qovxi5AgYSIygeGQxRNCNiBrhWRgprdWgZVVkosi6ycijKut4EcoU9vhRAz7W05x1FTQQo8wzTAEib6yyHOMp60DPSI/xQg5d5sytZfeBP7ul4G/fS8mizeQlQIo3/th448HkPJfNihOW7BL4s7r5HbXvcYfQ28pqo0aoscrS3XpVabdpPb8q+R26Vxbz2OZjOJHAPNJbVEErn+ffHzgncYeQza1bTJuWyW1fawosv1rIRvn8VajR5i6ebs1K+8dOaC92KhXvhAwMEU+dmpL9RY1tQNeD8ZjZPflA3uH5Wu5qw6JvW+Nonns0NBeEqyp5IH4DfK5hIqnzbdpmTBTu5wjie8asetoykL8yEZGoyRSFIDZM/Lcz1WNNmaBH36WfPzzf0rOuzupqW0VfkQ2tfdZ83i1knc7SOYW4rtFzNSOtLGjZvQwue0F/Ei50FOdFL0i19R2BQDIpDYhVoipHRlrczW6mVRFkUmObpnPZiAJAkS6PdXnoxd7C5Lal+IKesRQkV2wT2Zp7eUIh3Ul5UxSGwCe3vs0AOC7c99FUWj8vFI5Bw9Hk/WRelP7+7e+j0QxgfHwOB6dpGVxKl41AHh4JXlam3xmRZEhroJTlIvJGNe2yxeWk9p3j90tf5rjOJymCJIX2kSQSJKEyzSpfWSieVLbavwIoCSb7TG1Gye1GU97oj9outjRNvQIoB/JwAZrjhRFZuq+FPKTS2a+Bj/iNFPb6+ERC3gxxdGBX7MCo5lHyK3OpPbZecrTntSP/ZgZJufuubgBU3vjJvDV/xX4q0eBGz+AxPvw/1Z+Hk9WPouD955u//FqJZdFLpt/LLYteeKk8cfQuyvBRg3Rhbt4m2W4SlJbp6nNku3pO/YZs81kFD8CmE9qb9wgCxfeoIlSUbuT2s2L2szgR5ip7bG6JJKpm5PaqQVy22cAOVOrYRWCxAnpMrVtPi5t0m5aDPm4y9PuvFosqHVEvAcYpzvbWFnkhkGeNlBd3q4RkogFrcePsF6TKlP72x8H/vYXgZc/bdnzbCl9+98DQgnYexo4TDCgJLXPkbGLFYGIDZvxIx6fgoXqxmtiu8oaSGrL+JHL1r8eK5VZBT51kMx7XFkq19R2BQDIb6wCEjG9AsPW40d8nIA0LV4SM1mIuZx8l4CfrlJbkNRmPG1D6BEmyjHcWVkEAKyknUlqA8C94/diR2QHMuUMXlp4qeH9illlgBQIV08as+Us/ubC3wAA3nfwffCy7fc1SW1AQZDUDqqYqR3kKzjFktprZ+0pOqxRwRfCRbrt+dRYdUnc4xRBcubKaluvZTVdRCJXBs8B+8eaJ6cU/Ih1DHFmal+KX7L+d9gsqb1pHU/7/Dox9GwxtfWW5znJ1C5qmNp0EahA8SObHcKPAKQsUja1tXjaTKwscvViS2MxXxJwdYUcT+0ktfeOkvP87FobpnZ2HfjW7wN/+TaFP3vs/XjuHV/HJyv/C6ampq1J01lVFilJiqk9buI90MNJ7XQ7pnbqDpkQMq2cb3xfu2TG1Dab1GYszh0njG+vtzsRKxe1aTNtmaltpCiS4eVs4WkD3c0QTdHjvm+n+cdiE3WnyiL1XGPlxZYuTMk30b9712F8+JE9+Ff3T3f6pbjqRlMbqOdqy0ltA6a2x0cQRICmqc0wXlaa2gw/MsxM7cXXgJ98jnx8s/Gcctvq2veAq98imLp3/19QGEVR5dxrBYJkgyb/7TK1ge7evdSOhLJyfmiHqc3wI4k5koTuVq28BRSTwOwLnX4lW06uqe0KAFBYV1Yi+bA1hY0AqiaTBYkYQWImI6NHKrwHIZ5OrH3mn5cxiw2VRDJRBMlIgWwhXXMwqc1zPN6z5z0AgG/c+EbD+5VzZICUkYII+ZUJ81puDb/+7V/HpY1LCHvDpCCSqaYoEgCiAZrULlUPqlgCNYgy7iqV4AOPjcIG5tPzxn84nboQDKDCcRjx92NXtDrp9ODeYQR9PJaSBVxZ0S5f0dKlJfL72jsabWmUsaR2viwYYndr6eDQQXg5LzYKG1jOWpAYZZIkZbAc1Epqkwu7Fab2hXWSMj82bGdSW2dRpJ3FQgxVoJXUrsGPdKookj3ntJzUbmJqR0aUbXm3f9j0MS/cSUIQJYzFAthBi3L1iCW1b8VzrRdtihngzP8JfOYk8Or/A4hlYN8TwEdeBN7/13h+hTzWA3ssmuzGLMKPJBeIwcn7lN+nEXVBUpsxtePtMrXpNumoHvzIQk0vxPJbbT2XJepkUnuRoWruMfb9gJKItWOSWi4o57iGRZEmmNpZu/EjnWfTN5SlpjZF4sWvm38sPSro2A3Vg/gRALh39yD+8BfuQsjvokc6rha7RDqmWlPbTFIbaFoWyZLamaJ1+JGqpLZQAf7H70Au5Fx6UxODsm1VKZJgBQA88FvA6MHqr++koSqzCJL8pnK822pqd/FCbztii6WcRxkv61F0nDD6JVFZROhGsTFlLt7d5nsPyjW1XQEACnE6OPVK4NrlhjUT74HooSYhCDtbzGTkFE/OF0KIo6axkYmnSiWhhGubJM1iytSmSe1olpja6WLFMnNTj35hL9n+9NLiS0gWk5r3KeWJkZlFED4P+XvNbs7ig9/8IC5vXMZQcAhf+PkvVHPFmyS1M6qfT5IkmfHmRxkBCTgaJJMYJxAkb1CT/lRsTx0yI+jz4O37yIX7hcv6J1SXl8mA8lALnjZAfifMvFyzqCwy4Alg/yCZnFqKIKkUAJH87SR/FIlCAufWzmE9TwYFclK7X79BqaWNwgbuZO+AA2fuvdVIcsIg0fx+HU5q1zK1mand34mkdsinYmrPNL8zS2vPNUeQnJ0ng60TkwNt4WqmhsLw8BzyZaExrkkoAz/5PPDZU8CZPyWG2sTdwIe+Dvza12SG4as3idn7wF6LFi6iFuFH2CR39BDgNcFQl5PaLY51G8VSXIk2TW2WKIvpSWovUlObo+OJlU6a2h1gajP++k4LTG07ErFs4st7lW3LNeL9jKndvqkt0OCC7fiRTmBtWilFdvlZih9xOqkdbLJTp0dNbVddJPa+tTOgYERyWSS9XiXmyG2rMVYjsbBJoT6p3WcDfmQjS8ZfwxE/8NPPE4xKsJ9cAyt5YO2SZc/V8/rx/03Mz+g48Njv139d5mqbnPeytH903FzHQivJ18QeT2pnaAAlMtoex57jVGWRXYwgKah8HbM7SF1VyTW1XQEAKpt0gOG1vi1ZoqxsltSWSiUICWJc5HxBhJmpbTKpfW3zGipiBf2BfkxETHDB6STCl7iBCE10rFpkburRgcEDODR4CBWxgu/e+q7mfVhSOwdiVL+28hp+7Vu/hqXsEnb37cYX3/NFHB05Wv1NzNSuKCuDzNRWm/b5soCyQHndIJPZuyNkcuaEqX2W+iV3R6c0v36aIkheuLKq+zEv06T2ER2mNqBCkNjA1f6PP/mP+OgPPvr/s/fmgZFcd73vt6r3TVtLGm0zkmbfx+MtdmKPxyEhJCQ87g0QHiQEQi4E3n1wA7ncwIXkQUIeL3kv8F64N0AgEN5lCTskMcEJsR0nscfG9njs2TwzGmkWabS1tu5Wr1X3j3N+VdWt6u7auyX19x/1SJruVnd11Tnf8z2fLz7+7Mfx+Vc/j69e/yrOzp3FXHYOkiw1vJ9sMYtLqUv46uRX8ftnP4tf6U3iRwd34KG/fytOffEU3v3Yu/GuL78LRamoFEXaTWoTT3uscwxxKwZRI5FJ3Qr4EYWpvTFZQwmv9Wr8SBOS2t1hP0bI1K6HHwEMl0Weu8UGW3ftNM7TBoCAT8TObnaMTSxsXAzAhX8C/tv9wGMfYqy8nt3AD/wx8B+eAHafVn7tZiqL28vr8IsC7hl16D12KqlNk1xKclkVHbstkNROmU1qE37EUFL7BfZ1//ewr5suqc0/Azn9heW6KpdYKg5Q015WpJiHLpra0aS65bpKQpCY2laKItlr7x5+pJWZ2k4mtbmpvTQJlJxDotWUKab2JjdP2mqeWhU/0n+YLcSmZ9mYIWUDPwLUTWrHXTG12TlixLcEfOPj7Jtv+nX1OkQ7iLa7VqeBpz7Fbr/p13V3umKQm9p28SNu87RJzbom5laAv/5x4OKXnLk/WiyNW+g+oLT9fAuXRWqDEm1T21EZbPtpa6urvJJiB0PQhXWOYAzIpVCEOiAvzrDUXNofxgD4INomU5tKIg/1HLJXipfk7cSL1zCQCOLa4jrmVnMY73VpG62Ovnf39+LyC5fx5Wtfxg/u/8ENPy/ypPa6EMHjk4/jl5/+ZRSkAk70ncBn3vgZdId1JiRVRZGAykbVmtqr6+y2TxTgk5hpd1dsFFh8EWfnHGqCriFJlnBWZIbhyciA7u+cPtAP4DxemFrCynrRUEqWktoHB+qXRJJ640HcSGUdNbXv7nsAf3vlbzGbncVsVt9gC4gBDMQGMBQbYl/jQ4j6o7ixdgNTq1OYXJ3EXLbKzE/w47LAjglREDGXncPZubOYcQg/4ip6BFDTOoU02xLoD238HVluelJbYWoXydRm57TOiI3krkUNB9cQFoqQ4IPYOVL/l0d5WeTsq+w1rPH6vXyLDbbM8LRJY70xTC5mMbmQxeu1Be+z54G/eg+7HesHTv8X4O736nKGKaV9bKQT0aBDw5MEX+C0ndTmJqVdU5smHsVM7WPdZRFT27SpTUntcINzrlRW0033/Dhw+TGWnCkV7KXczYrwGlYWzO3gR+YvsVRcqEPBmVmSm0WRBkwlO0xtKop0zdSOtehWa1kGVhxMaicGWcqykGbGdvUWeadlyNRuJ7Xbsin63MZaDD8SjLJz9sJrwLVvsOs0hPqIt3qiAnfdokjnmdpU/vzQtU+zc8bI/Wy8tXQdmHya7SC6572OPd6m1dc+wt7bkfuB4+/S/52BY2yBY20GWLujlo6b1aJHpnaMTG2PAxNn/wI4//fMSD70Dvv3R0ltMyWRpF6e1F64bP95uCVtUGJ1uvbvtWVabVO7LQCAtMY+ZLITxVxVErhJFBYKEKJRyNksSnfY6lTaH0IUlNS2ZxqTqW0bj9A1yrippXUc7F7FtcUAZj1MagPAW8ffit9+4bfx4tyLmE5PYyhemfgprzOT9h87ffiLpz4EGTLeuPON+K1Tv4WIv4aBqYMfiSv4kbLyPUIqdIT9EHiq+64OdjG+tnINK/kVdIbMJTmNanJ1EiuChJAk4aBf31jb2RPF3v44rs6l8a0rC/je4/VT+YWShGvzbIJ9cNBYUpu42k7hRwDg1u29SF/9JYjBeYiBZfiCy+hKZBCOrKAkprBWXERRKuLm2s2G7PLuUDdGO0Yx6o9j7PyXMRrowOiP/j12JnbiN575DXx54st4+tbTuL3MClOHuuzhR15dZCnLDel/pxTqZINHWWIDsg6d97S4DpT5++FqUtsYU7ssyVjlk5FmJLWJp70S7Ed3oyK6xA62A2XxCjD1DHDwbRt+ZSlTwNQiW/A6Pmze1B7vjeHJy/O4Xp3UXuCJif4jwE8+Xnf75ZkJNtF1jKcNqAPjNbumNk8a2ymJBFgCWPABcrn2se6yeuJqUaQsy4YWgSVJRrpgsChy7iKbMAYTwN43sc93foUdCwMuLYzpqVn4ETL0B0+Y2z5bLTIPc8sM32O1cFJPRkxtjgKzhh/hi6yuMbVbNKmdX+VGGJz5bAsCC1rMvMw+Py1lareT2m1ZFPUEtFpSG2Bm5sJravK0Y9j64rOS1NYztSmp7RxTO5Up4LT4Eoam/4WNM97+2+waRBisdlIbmPoOLycXgLd9svY1msoi5y8xrvaB77H2eJ4ntT0+L19/in1dvMoCDaJNHynNg1sxEyWRJOq7mW9hU3u9ndR2S21Tuy0AgMwnIJJT6TiNyNSOIQfEYkA2qyS1s4GIih+xmdSmkshDyUO27gc+P7v4LFzGkdAcvoJhzK16C/MfiA3g/oH7cebOGTx2/TG8/9j7K35eWl/FJ3u68Oed7LX74QM/jA/f/2H46l1MdJLaevgR4ml3RgIsSQggGenBaMcoplan8PL8yzg1csr236gnSoIfzRcQKNc2lB890Ierc2k8cXmuoak9sZBGsSwjEfJj2GBimfAj82nntvtOzGcgF3sw2rUTmXwJs3N53KkIXZeR7FzH3qESBpLr6IinIfuXUCivY2fHTox1jDEju2NUXVSYeAr4zp8DfcNAN5vsPjz8ML488WU8efObyJfYqvWADaa2LMsKfuRYr82Uai2JIisEyS4wBImeGUCTbdFvzaQyKpqElHIMI+BTz4lhBT8iVUxEGu4WyK8BN58Dxh+puD87GpTYOXTBPwBDFv/YG7ip/W1dU/vcbbawOd4bQ6cFk552slxfyFb+gFKL/Qcb8gQd52kDaromM299wJ1bVbmIdpPagsAMo3rHusuipHaxLCOdL9VNXi+m8zg/vYpXbq+AOkATjfAjxNMePsle7x1HWEnp7KtNMrU9LopUeNo20CMAO06Uxb5F60kxPRkwtUWe1LZSFFm8wRZmA0MOIDj0RM/bDcPfjih5Fe6y3ROjKLmPmdqLHnC1zZja66kN18i22jKkVsWPAOwa/+rfAle/zv5ttSQS0GCsNpratDjsZFI7m17Dx/x/wv7x4M+q11sqLJ67wMrpAvaCLptWUhl47JfY7bt/rPE1evAuZmrPbCZT28OF3nIJuP40v50Hlqfs/51kasetmNp80Xfxautem9pJbdfUgu92W01RliV/5aDzEwOBD+yjyEGOxgDMozjDVqcy/jAisM/ULkpFvLbEEoGHexwosuvdByxcxh5xBsAwZj02tQGGIDlz5wy+dO1L+MmjP6mk6fLlPD619M/4Tifb1vbBez6InzjyE43TdrpJbWbwaE3tlazW1OZ/tz+ME30nMLU6hbNzZ10ztYnZfTKfr2B/V+vRA/343NPX8eTleUiSDFGs/bdfmuHokcGEYSwNJbWdxI/cSDGz7+e/ax++78QQpldyeHFqCS/dWMaLN5ZwfnoFiytxLK4AADNUfKKAB3cn8Us/fJfynCpEnL6QmkB//dDrIQoirq9eg+BfRjK8AyG/9ZXzmcwMUrkU/IIfB3oOWL6fhopyU7vW1jntZNsOXqiRtIZ5Ya1icq9NahNPOxb0KWWtNfWN3wTOfBb4vt8F7n6PI0+zr8xM7RlxAPuM/IfRh4AX/qQmV/tlXhJ5YsTaLgwytScXM5U/MFiaNrOyjhupLEQBuNcpnjbADBgyBjPz1ozBWV7u2jHsTLFVo2PdZUWCPoQDInJFCalMAYlwAJIk40Yqiwszqzg/vYIL06u4MLO6ofgzGQsi5G9wvN8iU/te9nXgKDO177wCnPhhF/6iGrJjattJalMabthGSSTAFvuiSXbcWj12a8lQUptMbfPXwfy1awCA0B4b+JV6inQDEABwLJWVCbAbcrIkktTLJ+oLV527z1oyYmpvWGyxsE28re0tuva1qqkNqDsDrZZEAobwI+m8M6a2JMn40cIXsdM/j3JiGL5HPqz+sHMnw1llF9ji8si9jjzmptO/fR6YfYUtNnzXRxr//tBJ4Nxf2iuLTLFrofumdhO6DqZfrOwfmn/N/t+ZsWFqd+4C/BGGf1ueUnGyrSTtmLJtajuqtqndFgBAyLDJnxx2gXfJTaKYkIcUiUIEFPxIJhBW8SM20pcTyxMoSAUkAgnsTOgXDJoS52COlG8DuNfTokjSm0bfhI8/+3FMrEzgUuoSDiUPYSW/gp/7xs/hxeIN+GUZ71rZifcdfZ+xO1SS2qqpHVPwIxpTm/AjkQBACS1/ECf7T+Kfrv2Tq2WRlNQ+mctXPM9q3TvWg1jQhwWeIjxWx4i7eIcNJo3ytAGgN+E8fuQGRzvs6olCEAQMd0Uw3BXBO06wJFuuWMb56RW8OMVM7hdvLGF2NY9vXV3Ab3/tNfzmv9NJiNJAWVNy0hXuwvHe4zg7fxb++GUMxy2yALkopb2vex9CPhf5vxFuFtYqi/SCpw0w5q8vCJQLjKutY2rnimUsr1NJpIFzJiXspr7jmKndnWem9k3ZYJkKlUXeOceSAuHKzwyZ2sdHzKNHAGAsyYzDG4tZlCUZPlpoWuEonQbc7zMT7H0/OtzZmNlsRqKPGdvpWetcRKdKIkmNjnUPlIyFcHt5Hb/1z5cwv5bHxZlVZArlDb8nCMB4MoZDQx04PNiBtxzZ0Xhx8DYviaSJMyFbZj0uiyzawI9YTWqX8uoiiN2kNsCO3cy88xPVTOPt/0KQndskk0WR5bU1lO6w81Nor0uTStHHzs3rKWastoyp7WBJJKmXLwy4ndSWJPV4r3edFUVmoGTm+GJL29Ruy4SKORXv1pKm9vHKf9tJatcpiuxwGD+ydvMV/AffVwAA8ls/WbkzThDYIuuVx9mi63Y0tTOLannmo79qjOc+xMsipy32SeVW1e4Bz5LaHo4rJ56q/PfCZeuJdpKS1LZwXRFFFkq8c44hSFrS1NYktdv4EUfVNrXbAgCI68xwk8L2CuV0pUlql8PM1Cb8SCEQgCjwPc028COEHjmYPGivJJLEG+f7CjcAoClJ7UQwgdM7T+PxqcfxlYmvoDPUiZ/5+s9gYmUCUfjw/92ZxoL/dcbvUElqNyiKzGlM7Yya1D7Zwybory68iqJUREB0NtWfyqUwuToJADiRL1Q8z2oF/SLesLcXj1+YxROX5+qa2tqktlH1OZzUzhXLuMOPoV09+sd5OODDPaM9uGdUTYI+9do83vv55/DF52/ip0/twa5k1f/VSWoDwKmRU9zUvoShrv/F1nMnnvbRXpexAZSArbV1zitTG2Am2HpqA1c7ouBHypWLP41Eg9qZlx17ih25WwCAybLBoqWOITaoTk0AN54F9r9F+ZEsy3j5FhtoWSmJBFgZadAnolCWML28jp10nBssTTtznXjaDqJHSIkBZmqn9QtaG8qpkkiScqw30dSOB3F7eR3//KrKGg/5RRwcSOAwN7APD3Xg4ECHsvhpSLlVxtQGKpPaAOOSy7K7Oy20ciKpXeYLrAGDY6PZVwGpyBYuuuwtKAJQJ6pOm9oGitqoKNIsU7vAU9r+/n74OowvJptWNKma2q0iN0ztJN+Ls+CyqZ1fAcDH45EG14FYn2pqt9WWGdHnVfBtWFxvCcX7maFG44VuO/gRfv7TwY9oiyKNdlvUlCQh+NUPISCU8Q3cizcefvvG3xk6yUzt6W3K1f7Gx1hKtv8IcK/BMBiVRabvAKsz5nFxhK2L9VWEj1xRrAn4kYkn2deOYbZLaf41+/epMLUNBnaq1XeAm9qXdFGLTZc2KLHaNrWdlI0Gm7a2kgTaXhpxz9SOIYdiiN2/lGZmUdGvmSzbwI9cTLFJ9KEemzxtEp9EdGanAABzq94ntQGGIAGAL018Ce9+7N2YWJlAf7QfnygdwutyeRT9Jibrfs5Qk0qMQQltUluvKFJlasMfwnjnODqCHciVc7iccr6E4eU5Zvjt9ifQKUl1k9oA8OhBlsx64vJc3d+7ZCGp3ZdgCTWnTO1bS8ygj4f86IkZ3w3xyP4+PLyvFyVJxu/8q85ggZLaVab2wyMPAwB8savo77BX2nF+gaUOvTO1m5zUBtSES77S1A5X4EeY0dNlyNTmg8z5Sw2Pa6OKZJipfaVo0NQGgFEwcXnrAAAgAElEQVSe1q5CkEyv5LCQzsMvCjgyZG3g7RMFjPJFl4kFDYKEtuN3NjC1eVLb0ZJIUpyns62mIpwqiSRFGizgeKCfe+M+vOnQDvzUqd34nXfdhcc/eArnf/0t+Mf/+BD+z39/HO95cAz3jPaYM7QBvk1XZtudKcHZf5hNDLML1hcWrMiOqR1MsOcMmEtra9EjTpj3NLFzuvzJEFObXavMMrUV9IhbKW2SW4a/HbmBH6G02XrK3YUwOs4DscbFeLEmbHVva2tIe+7xaoHTrLQL2LbwI7WT2nGe1C5JMvIlyfpjAMDLf47IzBlk5BD+IPoB/d/ZzmWRMy8z/B7AyiGNspaDMaCXYxdnLKS1veJpA+r1sJhxbJ5RV4UMcOs5dvven2BfFxzwBmiMaCWpDajv14IDBrsbqkhqT7MdUm05orap3RYAQOSmNmNeOyxKags5FEKVpnmJJx/hD9tqzL24yEztw0kHeNqAgh8JZaYRRr4p+BGAlf51hjqRyqUwvz6PvV178Wdv+zOMFdlJsBww8X5pFw34BU+3KHKd3dYWRcIfhiiIONF3AgBcQZC8NM952mF+IauT1AaA0wfYZP/szWWkMvqT7lSmoDBhDwwYT2oTv3p+LQ+Z2tFsaKoKPWJGv/jd7AL9Dy/dxtW5qoExpT9ClUbkge4DCKILgliEFLpm7UkDkGQJ5xeZqX0kecTy/RiSgmRY0v+5p0ltfqwUKl9vLVN7RcGPNDC1ZVlNs8llYPaC/edXKsCfZgbtxfVu48fo2EPs69S3K75N6JEDAwnFuLeiMeJqk6ldKqipi47a+JG51RwmFjIQBOA+V5La/JyyZsFQLZdYuRLgYFKbH8O1jnUP9KbDO/CH770Xv/K2Q/j+k8PYvyMBfyM2vBFRSaR2e3MgolxTlQUCtyWV1WuIFVNbFDUlXyv1f1cr2qbsBHoE0JiHDidiFaZt7c8b4UfMMrXzVxj7OegWT5vUjGKsRnIjqR2MqedPN9PaZq6xbh2XbW19Gdgl0nRpr/W28CO1mdqxoA9EaVu1gyDJLAKP/xoA4LdLP4BSosaCGnU8LLyma7JvWckyL4eUgaPvVMfBRmUHQbLoEU8bYMca7aD24pp44xmGaezcCex/K/ve/GuAnTlzKa8yp60ixfq4qT3vfPjOtmS5cjwplZwPLGxjtU3ttgAAIk/iCDHrXOuaIqY2csgHK01tiQqnbKS0y1IZl5fYyetQ0qGkdiypDOzHhTtI50uOlXmYUcAXwNt3s21k9w3chy+89QsYiA3Ax1mh5YCJ98sfAitWgmJqK0WRhY1M7QpT28cmtyf72UTdDVObeNp3xUYqnmMtDXZGcHAgAVkGnr6iP7GilPbOnoiCWjEiMrVzRUmXM2tWVBJZCz1ST3ft7MKbD++AJAOf/lrVyrOCH6k0tQVBQLjITOj5snXkxeTKJDLFDCL+CPZ0uZ26a/2kdiTIzlc5TVFkQ1O7kFYLhwBraY9qrdyEABlZOYRZqcP4MUpJ7emzFZOal2/xkkiL6BHSbm5qXydTe20agAz4QnUnsGeus/f80EAHO+84LUpqp+/U/z09LV5lpbXBuL1tyFpFmo8fcU23OE97uIrZqXC1X/HmeWgXRa2Y2oDG1DaR1Kat3ZSKsytKajtuahthalvDj6hJbZdN7VgTGKKN5IapDahcbTfTZ8o11sB1wK3jsq2tLwO7RJouMrXDXfbGnHXwI4IgKPOStZyN+eXXPwKsp7CU2I8/Kb+l9m7QeD9fHJOtM6I3o879FXDzWeYzvPlj5v//IDe1LSW1OX7EC1NbELzdvUQ87d2PsNCCIDKEVbr+7um6ouuJGFB7TcyqT5PUdiCU5qiKWYanA9TwVLss0jG1Te22AAAiNzXFuAvMJyWpncd6MFzxIykgVPyOFU2uTmK9tI6IP4LRhAMMSxJHkBwOsnTfXBO42gDw83f/PP7gzX+A33/T76MjyN4fMrUlM0ltQdCURbIJfyzI8SM5vaJIPzNzAAVdclc/u7i/PPeyIwlmUqFcUDAXJxNj/Dk23j6lIEgu6V9EFZ62CfQIwBLsUb6LYMGBlD4ltUermdgG9YvfvR+CADz2yh28eluzyluDqQ0A+dX9AIBr6ectPSag8rQP9RyCX3S5gqERkoFK9bxiagMbmdoBC0zt6km/E1ztpUkAwC30ARCU59JQXTuBrl0sMX7jjPJtSmrfZbEkkjRWbWqvaNAjdXYoKDzt3S6ktAF7SW0qN9xxhKV3nVC0+UWRrkiW9ZPaQCVX2wsRekQQVfSWWZktiyxkGGIIcC6prUxSHUxeybLGWGrM1DZbFJm/xpLanuFHWiqpTee8+sW4pkVcbTfLIttJ7ba8kHLucel674TGTzMD+Og77d1PnaQ2oHK1KSRhWlPfAV76HwAEfG33h1GCH8l4HcThML8uTTsfTGpJFdeBr32E3T71oYYYPF0N2XjNvMSPAN5eE4mnPX4aCITVDhE7CBItT9vqeLtnNyD62fyNrsetIkppi34VK9Yui3RMbVO7LQCAWGRJP1/ChdIODVM7W83po2uvjaQ2lUQe6jkEnw2EyQbxssgjIXaSbRaCJOKP4MGhBxHwqeaZv8Qm7LKZpDagKYusxI+kdYoiO8M+dUWRmwJHe4/CL/gxtz6H6Yxzq4sXFi+gIBXQE+7BrhhPODXAjwDAoweYqf3Ua/MoSxtN9st3mOl7yAR6hKQgSBzgaitJbYum9sGBDrzjOHtd/p/HNQOGGqZ2sSwhtTgKWfbhzvotTK1OWXrcVxeYAXWk12X0CKAOxmoZfS2Q1K5kavOkdqQBI73ajHLQ1J4VmVlLfG9DGmO8dUwxrnZZkvEKL4k8vtPe+X8syfEji9xQNMiXdZWnDQAJXu5jJantdEkksHWT2iu3GA9R9AODJyp/toO/frMem9rBuHVuKyVWjSa1Z84BssSON7OFUrXkRiI2v8q2vQIN8CNszGGGqV1OZ1CaZpO00B6vTO0W2b6bT6uTVseT2myRGgtXnb1frSwltVvktW9r88jAglrTFUsCH3wVePun7d1PA1N7Zw+bk91IZXR/XlelAvDlD7Lb9/w4LvgOAkD93h7aQbRdyiLPfZGN+zp3AQ/+R2v3oZRFzpov9vPa1PZq91JmUR0b736EfXUC+0GmtlX0CAD4AkDPHvvPxQ1RQCLcpY4RWs1438Rqm9ptAQAEzmj2d7uwcs5Tj1HkkK1OTFH4M+iAqe0UeoTEGaD7fOwiNtukpLaeAmVmkgphs6Y2JbUJP6LH1OZmXUBjEvvZICnij+BgDxs4OYkgIfTIib4TEIKVz7Ge7t7VhUTYj6VsUUEoaKWURA6a34HQl2CmthNJbTv4EdIH37wfPlHAE5fn8cIUH7DQQLmqVXt2NQepHIa0PgYAePrW05YeUymJTLpcEgkYwI/w97dlmNq8KLIRfoTMKJrAzV1gkxE7WmaLFAsBNihaMZPyUcoiGVd7Yj6NTKGMaNCHff3mF3+02t3HTO2bqSwKJYmZnEDd1OJiOo8rc2zx4H43eNqApijSiqnNcRlOlUQCWzepTSntHUfUBVQSJbUXXvOuxAiwtQvMdFLbafQI4E5RJBmRgdjG90kjMWQeP1KYYOgRX18vfF32dn40VKsltSlxFerQ3T1lS4QfcTWpbeIa6/Riy/N/CLzyN87cV1utrUxj9FFLyIkSS21RpM7u1t19bA53bc6Cqf3M77KdQdFe4E0fxSLvFuqJ1Sl5pdTxdiiLlGXg2c+y2w98oHH5bS0Fo0Afm/eaSmvn02qQwvOktsuLjZPfZF/7D6sGtLLwagORlXHA1AaAPv5cWs3UpkXvcKfG1G4ntZ1S29Rui6nELraBLhcGGZTUFnJYFSsvKiIZp2YwGlW6mGIlkYd6HDa1eVJ7VGaJ5LnV5iS19RQsswGQYHbipCS1OX6ETO1CGRJPOiumdlDTyKtZjCAECRnRTogM8pP9JzcY7/Xk94k4tZ9Nrp6sQpCUJRmXZwk/YiWpzYz8BZtJbUmSFVN7tMf6cT7eG8MP3M3MwU/9y2WGf6mR1J5eZgsw8TJLRz5927ypXSwXcSnFttIf7fXA1I40MPrMpMjsqiZTm5naOQ1+pCEDmgaXQyfZQKZcUBEFVrXETO3lEEuDLhvFjwDAGHG1XwQKGZzl6JGjw53wifYmcf2JEKJBHyQZuLmUNZTUfo7ztA/sSNRPGNkR4UfSs+abxgmXMXDcueezVZPat7ipXc3TBlh6OdLDksxzF91/Lk6Y2maT2mQUDDuEHgE0mAcHJ6lKSWT98R7hR8wUReavcp622yWRgLpQ2CoIDOV853BKG1DxI6nrrLzWDZnCjzi42LJyC/jKLwJ//wG1x6WtravNwNR2ShQ4kUq6c5o9ZGrPpzf8rK6WJoGnPsluv+UTQKQbqQz77CTrJrX5tWl5ylmkVSvq2jfYWDsYB06+2959WeFqL3GedjTpzbyFHgtwf6GX0CO7T6vfcySpzRGBdk3tXuJqt5qpTUntTnUHaRs/4pjapnZbkCUJ4J5IOGnzRKInYmojjzWx8mLrI+PUYlJbkiXFeDucPGz9OeqJTyJ2FG4CkFsqqR3iSW2F/WtUVfiRRFjlJGc5gkZhBQd4+Zwgsu3kXFQW6ZSpLcsyzs6fVe+bDHSDaT5CkDxxuXJiO7WYQa4oIRwQMZo0b2wo+BGbSe25tTwKJQk+UcBgl0W2K9fPvWkfgj4Rz06k8O2ri2pSu6oocmaFvXbDIfZePX/neWQN4Fy0urJ8BQWpgI5gB3Ymdtp63oakpFeXAUmn+FCZcHvAYWzE1K7AjxhMasf7VSSD3bJIjh9JR9gih2GmNsC4dx0jbJJ18zm1JHLEPnpKEAQVQbKQqWRq1xCVRLrG0waAGL+uSSVz6ei1WZYcEUSg38FFUzrWc8vmTfZW1m1eElnN0wZY6o3S2l4gSJqS1OYpLqd42oBqaudXnTP8aMIba2BqB9l4zQxTO3+V87TdRo8AKpPyzivqgkoz5VZJJMAWBv0RhoRbtoYTayhLTG0HTO1ZtiMMUlHdrt/W1pVy/mlh/IhTCsQA8LBAfm3Dj/fw3W2mTG1ZBr7yIaC0DoyfAo7/EABgMU1J7TqmdqRLRTNsda42pbRPvlstfbaqIW5qmynY9Bo9AmgWel1OaislkafV7zmR1E7z+VLMblKbJ+vnXSxWtiJKake0+JF2UaRTapvabSGfy0IqsYtupM8NU5sZRDHksKIxtSVRRNDHEycWmdo3Vm8gU8wg5AthvHPc9lOtUM84IIgISVn0YaVpTO0NkiSEZGaw+yIWk9olZnqG/KKSzszkSyiWJWQKzFDs8HNj0R+u2IZHSe0ry1eQLphMF+jo5tpNpHIpBMQAQ8iYSGoDwCM8qf3K7RXMrakLD5c4T/vAjoSlBCrhR+bT9lARU5wvPNwVQcBn75Q73BXBj7xuFwDgU49fhpzTN7VvL7PXbiwxjuH4MIpSEc/dec7UYxFP+2jvUQhObMNsJGUiLeubSJ4ytWnLaB2mNiW1G+JHNKkkxdS2ydXmpkYuzhYbTJUMCYKa1p78Fs5xnvaJnc4kSca1ZZGEH+mojR95doKXRLrF0wYYPokSLGYQJLMcPZLcawuRtUG0MCNLxlPAra5yUZ3w6SW1AZWr7UVZJF2bbOwCM5XUXl8GUiyl7Ch+JNylLio7NVE1mJQUgoQfMX5+UUoi93mQ1E7uAU78r+z2V35RfzHUS7mZ1BZFBYlnyzSoJytJ7UIaKJhbMN8g7c4Nt/62tlpHm6Eo0imJYl2uNiW1JxeyKJUNLnBf/Cfg6tcAXxD43k8r87NUxoCpDQDD24CrPf8ae40gAK/7afv3py2L1MHI6KopprYHSe2lKZZCF/3A6OvV75OpvTajmrdmpSS1d9h7jgp+xOauWKe1rpPUbpvajqltareF9NIi5DI7FGJ9A84/ACW1hRyWoF5sC6EookKh4nfMitAjB7oPwK9JEzsifwjoYgbibmGmdZLaGiPZFzbJiq5KaguCgBhHKqTzJazl1G2tcTK1fZUDpP5oP4bjw5BkCefmz5l88htF6JEjySMI+UIbECmN1JcI4ThPmT6lSWtfmmEDyAMW0COAmtS2ix+ZIvSIxZLIav3so3sQDoh4+eYS5Br4kRmOHxnujuKh4YcAmOdqKyWRSQ9KIgFW7hHiaYrqNG0xpx4PXhZFVjO1CT9SlBSOdUP8CCW1Y32aLYw2TO3cimI+lDvZ+Wl53eTCyxg7JqTJb+Ei/5ycGHHG1B7rZcf59YUMsEpMbf2k9nK2oCCCXONpk6yURRJP28mSSICZ7MRtJyNps2v2PFssDXWq5lu1Bjwsi/Q6qU27L7pGnTVrBMF5zEbWGNNWDLFrvxn8SOGKh0ltAHjzbzDTaOYs8OIXvHnMWloxVoxrWcTVXnCJq02LN0auscG4uqvOLoJEazxsR1N78lvAX//E1sNR1dJ2wo8AKoIkt9HUHu6KIOQXUShLuLVkIMhTXAf++b+w2w99UMFkyrKMJV4Ynow3MLVp0XUrc7XP/B77euBtzpjKO46yHXuZOeO4iEW+yO2lqe1FUeR1ntIevrdy7hnpUs1oq4XGys7WPuvPD+A77QU2l2ylMmOFqd2ljhPa+BHH1Da120JuQZ3k+zvMF+o1FDG1kcMSVAOoEIogInCj2GJS++Ii52k7XRJJ4giS3eJ06yS1ualdkkUEQyZfNyUFrRrG2rJIwhjEgj74JW6UVZd7Qk1rvzRvf/taBU8b2GC8G9FpjiB5UmNqX7xDPG1rx7RT+JGb3NTeaaMkUqv+RBg//vpxhFGAKPOFhw1MbfbaDXaFcWrkFADG1ZaNJgwAvLqoJrU9U5RPpqsHZDTZFsQNqXRXFNSU+2hE+BEAKPBUTVe0wQSCJvyxXtXUvvOqdS4q52kj2otYnC0CmCqKBNSyyNsvQizn0RMLYqS7dmGcGY33sgWB23OLqmFbw+R57noKssy24NLOCNdEg20zSW03SiJJtY71zSoqiRy+m6XT9ET4kTuvGk87WZUjpjZfZDOSOlJ42g6mtEm0Td+p8ifFVKq//d8sU1vKZFCcZqmj4F4PktoAwzo9+l/Z7X/9jeZ+ntzEjwAqV9utskgzSW1BcK4ssiKp7WIRZqvqG78JnP874KX/0exn4r5kefuZ2srOv42mtigKalmkEQTJzDlmgkV7gYd+Qfn2aq6EYpldU40ntbcofiSbAl7+C3b7gZ9x5j4ryiINIkhSnKnd49ECL+BNUaTC035k488UBIlFlrVTSe1gVAkltlRZpJap3cGDNvnVDbuC27KmtqndFtYX+ElElCEGXSjq4viRsFDEsqQecrlQFFHwyZLFieeFxQsAXOBpk/gq+G5hBnOtktTmJ78MwggHfQ1+uUo6hjGVRabzJaUksjMSUPmdOo3RJ/uYAU2GtB0Rm5uM8grj3aDx8egBNrn65pV5FLnZeOkOG0AeHLSW1CaTzXZSe5FKIp3DF3zgkd0YCLH3Soa44fND+JGhrgjuG7gPIV8IM5kZXF02tnqeLWZxbZmlDDw1tZUCvaqtczTZDnfVNsycVI2iyHCg8vPmF9WdDjWlTWr37Gbnw9K6dWOCeKrdowr6xBRTG2DPIzEIUSrgbvEKTox0OoaYGedJ7dzCDfaNYLwmz1DlaXswuU3wXUimTG0XSiJJjYpRN5tuEU/7vtq/03sAEANAfgVYuenu86EdTWZ7J7Qygx+hrdxOokdITpdFGtz+T0xtuWBsJ0h+gk3ifckk/N0e7Kgh3fd+tvC0vgT8669797jVUkxtt5LaZBhYTME1kvY6a0ROHJeSVJnO3m5J7XJJ3eXRSuaLW8qvsm4LYBuZ2rXxIwCwm3O1J+Yzje+LUp3JvUBADRwReiQe8iPkbzAmHTjOAiLpO1sTffDiF9j8cccxZVeiI9IiSIxoK+JHJEmfp02yWxbpFFNb+1xaqSxSy9QOJdQAVTut7YjapnZbKC7xk5/fJW6uxnDLyGo6cT0QRhS5Db9jVLIs40KKmdqHetxKarO00W5hBplCGem8S63zZsSRCGlEKpKjhqSD9ogpSe2yWhIZCQBlMrVrJ7VfmX8FJcn6a7KSX8G1lWsV96k8R8iGi7GOj3ShJxbEWq6EF6eWkM6XcDPFjF2rSe0+DX7ETMK5Wk7jRwCWDv6Je5ghkUYEJany+c2scPxIVwQRPzO2AZbWNqJLqUuQZAn9kX70R13g7NcSDciqjT4vedpAzaJInygg6Fcvm13RQGMzWMvUFkXVILWKIOElkegaVdAnppjaAEvZ8bT268SLjvG0ATWp7ctoDJ4ar9GZ68TT9oCtSckPSoI0UiGrLjwMuJHUpgWcLWJqU1JbrySS5A+qEw23udp0jfMKP0LpLSdLIklOlz/RMdeIqU1J7WKRFYo3kKclkVr5/MDbPsVuv/CF5m2rd5OpDaj4ETeS2rJs/jrrBBZneaoSNbdwxf1dHK2k+Uvq399q/Fc3ROewQEwz1t/iCunv/CPtMZPUJvMrUYkKTWXYXKlhShvgqWM+Z95qCJJyEXjuc+z2gz9bc+xpSQo+0EBSu5AF1vgYuMfhvq96onNyNuVOCfncBZYCD0T1u1N6yUi2sDhZzLHAA8B2YNkVLQK30mKhlqkNqGltGju0ZUttU7stlFa46RJwydT2BSFz3nW5lFMmStlAGFGBm5YW8CO307exVlhDQAxgb5dLW115UnuvyAYSLcHV5tuqM3IYIdOm9sYSRi1+ZDWnMbVL/G/1bxwk7e3ai3ggjmwpiytL1idYL88zY2+0YxQ9YW7yaAe6BrnaPlFQCiOfuDyPyxw9sqMjZGyQp6PeBPt/uaJkazHDafwI6QeOMbN+RY7g715SL4hpDUZmsJMtSDw8/DAA41xthafd6xFPm1TL6PPa1K6R1AYqESQdjXjaslyZ1Absl0USfqR7TEGfLJtNagMo72IFLw+IF/HwvvoYAjPqjgbQEfZjSODXlU79ksjVXBEXplly6YFWTGrPXWRFjrE++1sh9VRrV8Jm1PqyOokZvqf+7xLKxW2uthP4EaNJ7fQ8T54LwNBd1h+vlpzCPJDIWGrE1Nbs3DOS1i5QSaRX6BGtRl8PHH8XABl47EPuTOjrqbiuLsa6hh/hr2tm3thCixkVs0CZv8dGr7NOHJeEHuk7CAg+tpC8nVJrt19Qb89f3vqGvsEFtS2lOkxtgOHXAJOmdtU5ZjFtsCSSNEyp4y1mal/8J2YQxvqAo+909r7p2j59tvHndImjR8Jd3hai0mPJZXdKyAk9MvoGXW9ALWi0YCRn5thXX7Dm7k5Tspsad0Napjagfo5Xt9E1z0W1Te22UF5hhpEccOlwEARlYhlBDkKM3c4Ewhr8iHnDj9Aj+7r3IeBrYC5ZFWcYjghzCKDUGqY2N9qyCCNs9j3TxY+oRZEruviRjUltn+jD8T6WOH3uznPmnoNGCnqkT2ME+AJsizqgGusGdJojSJ68PKeiRyymtAEgGvQraImFtMkiPq61XFHZFrjLYVM7JrP3MC1H8P9+/QryJcbXnuHokUTYj0SYvY4PjzBT+6W5l7BW0E+LaEWm9rFehwvyGqkWksHzpDZP1ui8VlpTu6uRqZ1bASRuONNWbdum9iT72j2qPP6qBVP7Qoh9fk+KV3HXoHOJKUEQMN4bwyD4e1ijJPLfJlOQZGAsGcWOjo3nGMdFprbRpPaspiTSybQPKbqF8CM0Me4eU4/zWlK42q+4+pRU/IgDSe1iFijVuQbQ39+7f0O/gSNyi6nd4L0STJra+ats11Vwr8dJbdKbf4Odu2+/ALz0/3v72LSNPxA1ju8wq1BCLbxddBhBQtdYMWD8M+MEfmSem9oDx9RE43ZCkGhN7cLa1jf0lXPPNjK1G+BH1KS2AfwImV90HuCieUbSqKm9Vcsin/nv7Ot979dFZ9rSjqNs4S0z1xjbQuiRpMfXQn9IPd7c2AVIJZF6PG1ATUcvXTe801oRoUfiO5wZcxMDvZWuJ7mqpHaCm9prWxAD1AS1Te22IK+xC61sls9sRnw7fxQ5gJvaaV8YETK1A+YnnhdTvCTSLfQIwIyQYBw+SNglzNouDXREfLKelsMW8CMbiyJjOkWRHWFtUlvfcKL07+de+Rzms9aSOhtKIpXnab4s8tS+PogCcOnOGp64xFZ8rfK0Sb02udo3eEq7JxZUDGbHxFMfOV8Mt5fX8cXnGaN2WoMeIe1M7MRYxxjKchnPTD/T8K6pJLJ5Se0aTO1mJLWrEhkRzXmycUkk/zuCcfWYVkztc9bShMtqUlvFj5hfdPmXmQTm5U6EUITP4bTOeG8Mg5TU7tBPap+Z4DztcY8mt3FKahs0DdwsiQQ0Se0tYGoTT1tvO2q1NlNSW5sWqpd6IsamG+gRwAWmtrGkNvx+pcPASFmkih9pQlIbYOO1R3+Z3f76/+HtZ0tbEunGIhiJ0tpOT9S111ijz9+RpDZHbvQd1DDDt1FZZLWpuNURJEbPPVtJDfAjxNROZQqKOV1Ta/qm9mLGbFJbUxa5VXYH3HyeYdB8QeDe9zl//9qyyEYIkmbwtEnKPMrhsshSAZj8Nru9+7T+7yQG2cKyLKmvgVFR4ISuK3ZF15PV2zV3SXguLVMb0OBHtvhipkdqm9ptQc5wUzvkUtoZgMAnljHkIUfY7VVfSMWPWEhqX1xkprZrJZEAG9zzldbdwkyLJLXZwCiDyIbiuoYig7qo/h3xiqJIhtlgSW0+uPLpD5LedeBdONRzCCv5FXz0Ox81zZ0uSkUlEVzb1DaGHwGA7lgQJ3cx0/PrF5mpfchGUhsAejlX2+pixg1eEul0ShuAchz0JZnh8ZlvXMV6oYxpntQm9AiJ0tqNuNor+RXcXGMG+ZHkNsWPEFNbLm/YLaD9zHU2SmrTZF87gevdzz6HhTV1i6JRSRKwzOP5tlgAACAASURBVAsYu0bRxYsiM4UyCiVzBvkTr83jjMQXBG8+a+55NNBYb0yDH9FPaj+rlER6tDUzwREia7PGJnFulkQCWyupbYSnTRrguz9S191tfHfC1BZ9QIgb2/VwD2RMDbtQEgk4ix/JptSJVYNCQ0EQFFyclK9vtkjZLIq3GQYrtK9JpjYA3P9TQP9h9rn6xse8e1ytqe2mOBLPcePXyjXWieOSktr9hzR/Wwsl69xUIcMYtYC6INhKW+XdUFbTMbJdpOBHVnR/HA36lRDKRCMEiYIf0U9q98QNmtr9R9jcLrdsfhzaqnqWp7SP/ZAzTGY9GS2LXGS7lppjartUFnn7BaCYYfffX2NuKAjWESSEH3EK9xfpUhd/WuWaojC1ualNz28rFrY2QW1Tuy0gwyZ/UtAae9iQ+MQyKuRQjjCDb9UXUvEjJpnasiwr+BFXTW1AQZAwU7v5SW2JGwFphM2b2nWKIrX4kY6Iv2FSO+AL4BMPfQJBMYinbz+Nv73yt6aeyuXUZeTKOXQEOzDWOVbjeRpPagPAowcqV3gPDBhMas9fBs799QazS1sWaUVulEQq4qb2QH8fRrojmF/L40+fmVTwI0NdlUiJUyOnADCutiTXNkDPL5wHAOxK7EJnyAGumRkp+JGlyu83y9QGNhhvEQ3yp7GpzZMS2uSBz6+mVY0UzmiVnmWfS0EEOkeQCAeUUN2KCQTJ3FoO56dXcVHaxb5BA3CHVJnU3micpfMlvHqbTfBe5wVPG1CT2uV8Y9agJKlJYjdKIoGtk9SWZeAWN7WNJLVjvfy9kFVDxw05YWoDQISfA2sdM7Ks4keGXDK1nSyKpMldx4i6I6WOCEEiF+pfA/PXrwOyDF93N/w9HjJEq+ULAG/7v9ntf/vjxuaDU1JKIusvFNgWH486XhbZDFNbKqvmfEVSu0UMCLc1c44tnCcGgT2Psu9t+aQ2mdrO9Xi0vBT8SG30324jXG1Zdg4/4g+qC8xbAUGycgu48I/s9gMfcO9xtFztempqUtvhnV0k4mmPP6Ls4NKV1bLINJnaDiW1AQ1XuwXOq+WSirSsZmq38SOOqG1qtwUxyyZ/cthFrik3iWLIodTJPsxz/riKHzE58ZzNzmIpvwS/4Me+7n2OPtUN6lVN7bkWwI+U1lmyPiNHbOBH6hdFVjK1a3PJ9nbvxc/d/XMAgE8+/0kl4WtEhB65q/8uiELVqUgHk2JEpw+oq/N+UVBYdQ319x8A/u79wM0zFd+mssgFq0ntlPtJbV+kEz//XewY/exT13B5ln2/2tS+u/9uRP1RLOYWFXSPnpqGHgFaJ6ktiioSqYqrXYkfMZjUrmbXWuVqE3qkcwTwBeATBYYKgjlT+6nL7HlJ3ZxhanabYAONJ6N1iyJfmFpCWZIx0h2pwOS4qkBYxUmsNeBqL11nmCdfSDWRnFaUH8vVCzibTctTbJurGFAnyY3kBVdbYWobvAbUEk0+aiW1V2+zz7nod28BxEn8CE00KU3VQKJiatdPahcU9EiTeNpajb0BOPaDAGTgKx6VRnqW1Cbj12mmNj++TZnadFxaTAQuTbJFWn+Y8fi3G36EeNrD96hYg62e1KZjxcvyvGarAVMbULnaE/W42vk1lpQF1I4QLhU/YoIjbTR1vBn03OfYAtHYw8bHIVY0yE3tmQZlkSmefu9pwvXQraQ2mdq7T9f/PatJbTK1Yw6m7JXzaguY2trPP+3eaBdFOqq2qd0WhBxL5LpraqtJ7dQPvQ89v/CL+ObgMRU/YjKpTSntPV17EPI5XAZRLc4w3C1OtwR+pJwj/EgYIb8DRZHcpMvky0rhHDO16ye1Se85/B7cu+NerJfW8avf+lWUpbKhp1KTp13jeRrRkaEO9HMO9t7+OIJGXh9ZVi94s+crfqTgR6wytV3Fj/CtjKEE/t3JYezui2E5W8S/nGeG3VBX5fsW9AXxwOADAFhau5YICXM06ZJBU0+RGkxtMrm9MrWBSq62RqaKIolpV8vUbpT2qNYSN7W7RpVvUVp8Zd04V/tJbmoP7+a7XBxOao8lyogL7PyxFto4QD0zwd5fz3jaJEo3pe/U/z1Kae84zJL1bmirJLUppT1wjC0cGJEXXG2nktq0EFJj67iScus/pF63nBadP4oZoGBuoXeDaKLZa8zUJvxII6a2UhLZTPSIVm/+GFvQuP1vwNk/c//xPDO1+eubmmBJZ6dkN6lthcs7xxfXe/cz1A/xwldvu4smahUppvbdaqJw7uLWYRzraTvjR+oktfcYSWoTeiTUueG6lsqw87PhpDawdcoiCxnghT9htx/4WXcfa4DKIufV3TnVKq4Dq7fY7WYktWMumNr5NRUzV6skkqQktc2a2jxs4hR+BNAktVtgsZB2+wXjbEcZoBZFpmeBsvFgUlv6apvabUHkkxU54oLxRlKY2jmsJAcQfs97kfcHLSe1ydQ+lHSxJJKkTWq3gKktcVN7XYhCFE0WEukkoOM86ZmuLoosc5PMX3+QJAoiPv7QxxH1R/Hi3Iv40wt/2vBpyLKMs3PM0Lur7y5Dz9OIBEHAI/vZROugUfRIek59nKrEal+CmNrmi/gANak9mrRprOiJBsihDvh9In7hzZUmxVDnRoPFCFebTO1jfS6mHWqJJjrrqcqJnddJbUBNeBYqJxkVTO2GSW0qRaqT1DYzgV2aZF+7x5RvUVp8OWtsQFQqS3j6CjO1jx7ln73MXN0Jl1l15NngdEmOY1LHCzzjNU+bRIPltQamttslkcDWYWqTqT1yn/H/Q0kqV5Pa/JxuGz/Ck9q18CNul0QCLOlH3RZ2y58oqW3U1OZJbamRqX2NmdpNK4msVscgcPrD7PbXP+r+jgiv8COdO9kOknJe7VdwQso1tsv4/6HFFqlYe9GnnrQ8bYCdE8koX3Q4id6K0ia1k3sZViy37Aw7v1VFRlv1Qv9WFhVF1imro6T2tXpJ7Ro8bQBIpU0WRQJqB8TMy84ukHmtl/+CfW66x4H93+PuYwUi6vmqViiFxumhzubsSHAjqT31HUAqsbmHZv6hKzKSF66a2yVF5z1H8SMtlNRWeNoarGesj+3yg6ya+m1ZVtvUbksxtYW4zW269URJbeSxli9hvVAGICMKbhKbTGoTPuFQjwemNt8+lBTWkF9bNF2I6LTI1C74LKTCdBLQ8RAltUtqUjtqPKkNAMPxYXz4fjaB/MxLn8FrS/VZWtOZacyvz8Mv+PUxFxaT2gDwv79xH956dAA//YjBbV/akpRUZWFKrw2mdrEs4TbnW7uJH6EB89uODuLQoFqMWY0fAYCHhh8CALwy/wqWchsn+bOZWcyvz8Mn+HCw56Dzz7mRaAAolSpNVitbo+3KUFK7wQRCj6kNsEGxGGADcTPGBOFHujcmtY2a2i/dXMZqroSuaADH9o6qA+CUg2VBK8zgmZGTuL5YOUlbL5Rx7hZ7Px/wPKnNt+w2NLVdLokE1KR2KWc/fdtMmSmJJClJ7QvuoSG8wo+4zdMGWPmSkoq1aWpTYokmno0empLahfrnlzzhR/a2AH6E9LoPsEltdhH4xm+6+1heJbVFn1Je7qjxa2Xh2B9Si1StHJdz3Gjo04w1tguCJLOgXs+HTrIxL+3AagUDxi1tx6S2EfxIP7tO3UhlkS/VMJgVnnYlekSWZSxkLJjavfsZZq+YaY0kqxVJEvDs77HbD/xMfdazU9IiSPSk8LTHoZTeeCk3TO2Jp9jX8QYpbYCdx3xBoLQOrJiY37iS1ObXluUb6u69ZokWfsOahWNRVPt+2ggS22qb2m1B5JMVIW4w2WpFxNQWcsjkS8gWSgihCJ/ADeKgNfyI6yWRABCKQ+Lb1geLN5HOl9x/zHrik/Wiz0ICTScBrVsUGTbG1Nbq+/d+P06PnEZRKuJXnv4VFOtspSH0yKHkIUT8Oua8DVN7VzKKz777ngqDt65oVR3YkNRW8CMWmNrTy+soSzJCflFBojgqSn3wAbMoCvjQd7MJYcAnYEfHxsWIgdgA9nfvhwwZ357+9oafE097T9ce/ffFbQUiAD2uNsHalKQ2Px9WMbXNJbVrMLX9ITXtYYarTcdq15jyra4om8QYZWo/eZlx607t64NPFFTmn5Ncbb71clruweRC5UDyxRtLKJZlDHaGsbPH42OMBsuNEhGUIHaLkQywxSiRHz+bNa1dKrCyM4ClDY0quZelTYuZykVFJ0UTGJML5htUL6kty2pSe9hFUxtQJ6p2TO3iurqI1mvM1BYNFEVKuRyKN1mfRmhviyS1AV4a+Sl2+9/+SD1WnVapwHa7AO4ntQEV0+FkoaLVa6zC1baQLibztl8zjuc7I7d8WSQhH3r3q8m97cDVpp0m28rU5mPJOrvh+hMhxEN+lCVZwRZuECW1E5ULZ5lCGYUSWxxOxk2Y2qJPU3y4SREk1/6VleaGOoC7fsSbx1ResxoschpLJ5u0wOtGUaRRnjbAkH00rzCzOJmm+ZKDTG3t7p9mX1NyOkltoF0W6aDapnZbEItsVVhMdDb4TRtSkto5pHMlrBfLKnoEUEvZDGg+O4+F9QWIgoj93ca20NqVSAgScQazq00ui+QmW9FvxdTmRqeWqU1FkYUSVnPMsK8sijTGSRUEAR99/UfRHerG5aXL+OzLn635uwp6pF8HPQKoxqYFU9u0tAnVpesVyUEyoxfSedMJfUKP7OyxgIkxoqqkNgC88WA/fvV7D+H/eufxmjzxUyOnAADfvPXNDT87v8CY4kd7m8DTJkWruNrlomose7mVr1ZSW1MU2dmQqV1nqy0NjE2Z2pTUHtM8B/b5XTZoaj9xiQ0cTx/gAz1i/qUc5GrzpPa03IvrVaa2ytPugeB1isVIUjubUnmIO1wsSxWE2sWom0WzrzAMQqTHHDvS52e8csAdBEmpwJAIgANM7TpJ7dQES9/4QpXGnBvS8outavEqAJn9TQa3/xN+pB5Tu3D9OiDL8HV2wpdsMbNq/BRw9J2ALAGPuVQaSWaTL+SNWacYvw6mmS2b2haPy3JJNRn69ZLaW93U1qBHSAr/dYsmtcsaTM12MrXJxCqka2I+BEFozNVe009qE3okHBARDZrsANnsZZHP/Df29e4fq5gLuSrlNatRFqkktZvA0wacT2qn54A53jc1fsrY/zFbFlnIqvO8uIOmNtA6i4V07qtGfBFOqJ3Utq22qd0WBG5q+ztMsPTMSsPUTnP8SIzQI76QqTIuQo+Md4wjajeFZVRJNokYbwGutsATaCU7Se2S+jfEuak9t5pHWWIX6I6IX/0dn/GV/95IL37twV8DAPzRq3+kmNfVqlsSCdhKapuWNqldylWUyFFSO1+STCf0p3jaYtQN9Aiga2oLgoD3P7wb//7ukZr/7eFhxtX+9u1vbyj1JJ72kaSLZl4jKUYfn2RrzaTqFW43ZYCp3bAokib61UxtoJKrbUSlgspt1eBHCIGykm3MfZ9bzeHCDEv4n9pfbWo7mdTW4EeqTO1nFZ52Eya1NBmsl9Sm8sLuMfePt8gm52rf0hgzZhco3CyL1H5m3WRqkxEwcEwt/nFLZELbYWpr0SMG3y8VP1L7/ELokeDevd4vVBnRd3+cnc9vngHO/aXz969Fj3jx95Px6yh+hBBfJucBVpPaqQnW2xKIAp271O9vF/yIrqndIuaLW1K49oK3u+6aLa3ZWietvbsRV1thalcmtReVkkgLO0LJoN2MZZFzF4GJJxiL/v6f8u5xdxxhZZHZBf2ySCpeb5aprYwVHBpXXucBqIFjxln4ZssiaaeTP+z84kSrLBbqMbUBdedFreLRtgyrbWq3BaHIjEx/p4spSG4QRRX8SBkRgUoizZl+5xfZiqEn6BGStizSAorCSYl8wl62MllXzOKN+JE8374W8AmMG2wyqU168+ib8Y7d74AkS/iv3/qvyFaVPa4V1nBliU1YdEsiActFkZZUvf1dY+5Fgj7EeDLXLIKEktq7ki6b2mGDmBWu433HkQgmsFpYxSsLakpSlmUFP3KstwklkaRqo48mQuFOtl3SKxlgatdNakuSJqmtU3yi5fIZ2QWwchOAzD4bmvtTiiINJLWffI0ZD8dHOpUFG9XUdpKpreJHtKZ2rljG2ZtsYPe68SYU6BC7bq1OIsKLkkjSZk9qW+Fpk5SySDdMbX7M+UL2zeZ6SW0yAtxGjwDOJLVNlkQCqqldrygyf5WXRLYSekSrjiHgkV9itx//tdp8dKvyqiSSlGylpLbFre5UEtl3oJKDSyn0xaubu7yunmRZY2przh2tYr64JTpGIt3ejuWaLX+IXYuA+lztRkntGkztlBWeNomOv9lXWXBiM+lZvhv44Nsrgh6uKxBRd2bpJdxpLN3TLPwIH1cW1tR5vB0ResQIT5uknMsM7rhJc1M73u/8wnCrLBbqMbUBNaldb17SliG1Te22AG5qh3pcbKPWFEWm8ww/EiX8iAn0CABcXOQlkUkPSiJJSdXUnm1yUttXYhP2siX8CDe1pRLbCgggXrVdrTMSYGkrpSjS/Or/h1/3YeyI7sCNtRv49AufrvjZK/OvQIaM4fgw+qI1Wo6bkdSmNG1VYrVPQZCYG/ARF8+VkkgAyPMLZMicqe0X/XjD0BsAVCJIbqzdwFphDSFfCHu7m2hOVBt9zeBpA5qkdmWyJhJgl81EyA+/r84lNLfMPmeAfrqB0h6Z+cbFhYCGpz1aMegjY90IU/upy4Qe0WzvczmpvbJexBKfdJ29uYxCSUJfIoTxXpsJWitS8CN1ktoKT9vFkkgSHdNOFvp4qVvc1B62YGq7mtTmprbdlDZgLKk9VGPHkZNSmNo2jhUytQ2WRAKAGCL8SJ2k9jVeErmnhUoiq/W6n2FmfnYBeOITzt63VyWRpF5+fU7fUbs17Mpr/IhSElk1ju/cyYIU5by5EuXNpKVJtmjvC1YuntJiU2Z+8y501tN2LIkkUfikTlJ7T8OkNh8nJqqT2jZM7e5x9pkvF9y5FrulzCJw7ovs9gM/6/3jD/GdltNVu5FLeR5AQfOS2qFONrcA7I8tZVnD037U+P9TdtxcNhbaIVPbSZ42qVUWC2sytflieBs/YlttU3ubq1wqQS4xgyTc68LJhESmtpBX8CNRi0ltwo8c6vHQ1OaTiDFhFnMr9tLD2UIJkmSOz6yVv8gGPDKZbmakxbXwFHQsVJmY6AjzZFuZT2ItmNodwQ587A0fAwB88fIX8e3bainhS/MN0COAbqLcFRWyKopgD79g1yiLXEibW/Ge4kntUTeS2rKsix8xqodHGILkW7e/pXyP0CMHeg4gILq8lb6eIlVM7WaZ2kq5jz5Tu8MoTzvUof8ZCkTUwZYRBAmZ2lWJFDK1l7P1Te1SWcI3r1TxtAEgyQfeazPOtIPLssLULvHJ1wRPa5+Z4OiRZvC0AbUospipPbmk5LCbJZEkWsBRtmVvImVTKofdSlKZeOUrN53/+4tkalu4RlaLUjWUsiFJZfVzO7RJktrzFpLaASqKrG1qF65wU3tvC5va/qBaGvn855xluXttaoc71cm/EwiSUkH9zHhlalNSW8vTBliCVynC3KIIEkppDxyrHBuE4iqKpdmpQjdUr2Nkq4vGk3UWofb0s+vVxFx6Y4ePJKloxBpJ7aQVU1sQNIzoTYQgeeHzLHg1eBew6wHvH592WlYntZemAMisaL5Zx7koOsfVTk2wMZoYAEYfNP7/knsBCGxsZ2QXD83DaYzupCipvTTpTVCulmoxtROU1G4XRdpV29Te5kqvLUPipna0f9C9B6piamcLmqJIE1zsVC6FOxl2Yfc0qd25EyUxiJBQRCk1ZfluJmbm8Te/+R788Z/8vrU7KJfgk9jrJltJofmCjD8GKCd3v09ESFMqqJh1SlLbHH6E9ODQg/iRg6yN+iPf/ghWeLK4IU8b0OBHXL4AkVEY7lSNiRqmthn8iCzLuEn4kR4XEqnFLCu+AiyZ2m8YegMECLiYuoi5LFshJ1P7aLKJJZGAOhirxo80Lamtz9Qm7EdN0SS/3sDWDFd7eWNJJHsenKndIKn94o1lrOVK6I4GcGJEM6iKdKuvrRMIkswCS9lBQDS5EwAwSab2dV4S2QyeNsBMA3pf9dLapYKa5hjwAMET2cT4EUJv9OyxVuAa6VINnNnzzj0vwNmkdi38yPxlZgQG4yoywU2ReWiVqS2VVQPUAn5ELuhf/6R8HoWbLJkWbFX8CGn3aeDQ97Fr50t/5tz9UrGsV/gRoBLTYVfKLgSBpfzMyCp+pFZSG9AUYW7RskgFW3TPxp+1SqrQDdG5azsmtWlHZR38yGgyClEA1vKljfONzDzb+SeIG4w/W/gRQJ373N4kZZGlAvDcH7LbD/5v3vQYVItes2p8IC3094w353mRlJ1dNjo4AOD6U+zrzvvNjaeCUaCLjf8NncdpvhSvsXvbjmJ9bI4jS872UJhVLaa2UhQ5bSzV3lZNtU3tba71hVlAZifeSLcHTG0wpnYFfsTEiZLQI2MdY4iZxJbYkuhDNs4SkqEV69v0p772e/gx4TG8+ebvWLsDDQpBsFKmIAi6vGoqiwS0pjYxtS2Uj3D9p3v+E8Y6xjC3PodPnPkESlIJ5+bPAQDu6q/B0wa8w48o6dfxmhgGFT9i3NROZQpI50sQBGCkO+LEM60UpT0En6lFIVIyksTRXmZeU4qeWPX0/aapVfAjNZjaR4Y6EfKLeN14g4kZDSb1SiJJZkztJW5qd1UmtRWmdoOiyCcvs8WLh/f1wSdWDbadRJCQwRPvx84+ZghOLmZQKEl48QZ7Lx9oBk+bpJRF6iBfFi4DUpENOjt3uv9copu4KNIOT5tEaXinudqKqe3ALhlK1RTWgLKmLJgSWoMnvOHDWjUPSctTbLHJHwa6djX+fa5GTO3C5CQgSRA7OuDvc2FC6rT2v4V9nbvg3H16ndQGNGlmB4zfit4Kk9NCK4st5aJqLlQntQHN1vWtamrrlESSFFN7Kya1+XXOyiLoZpey8682fiTk9ym4wqvVXG3i7cb6AV8lMnKRoxF74hZNbdpppceHbkVd+Ac2fosPAIe/vznPYccRQPSzJDTvkAGgjqGTTd61pJRF2kxqK+iR0+b/r5mySDeT2oLQGlztWkxtSmqXcptz12YLqW1qb3PlFiitJkOMO7BVt5YoqS3kkMmXsV4oISrwJLAJU64p6BGuUje7SCUyFtOMsozxqb8BAIxId1DO1R7c1BQ32PKyH4GgtQS1nmEc05janRtMbYuPAyDij+ATD30CPsGHx64/ht996XexXlpHPBDHns46F306Jkpum9r8veweqyzM06yWWsGPEHpkoCOsJHsdlRY9YjEN8PAwQ5B889Y3UZJKyoLRkd4jjjxFy6pVFNkiSe29/XG8/NHvxkfe0aCoVklq1zF6TJnak+xrFX6kS8PUroc1eoLztB89qPN8nDS1V9TStN2cmz2xkMG5W8vIFSUkY0Hs7XfxWtNISlmkjqmtlEQe8yZls5mT2reeZ19H7rN+HwpX20EUBOBwUluTqtEiSGirthc8bUBjas9bS/MQeiS5z5QJLwTZ+UUu6O8EyV9RedpNQQqZFSWDnUzCNsPU7nWwLNLONdYKfmTxGls8DMb1Fw8VU3sL4kfKRfV6r2tqk/myFZPaxNTehvgRuo5UY6yqtLsWV3tNvyQSAFIZNjexhB8B1NTx/EVnEHRuSpaBZ/87u33/+xlWqhkKhIF+fi3RLgbQGLpZPG1StArjaEWSBFznvUtmSiJJZsoiFaa2SwvjrbADphZTOxBR5wLtskhbapva21z5FB+I+uHuhISblFHksZYrVuJHTKSpLiyydM3hZANDyQX5+CSiL3dzI+/MgFauPoOx8iQAQBRkrEwaMLKqxQ22DGyYpX4ytdXCy0pTm98mU9tnb9BwrO8Y3n/s/QCAP3r1jwAAJ/pOwFdvYh3gRrpXSe2ecW4WCuw11kzQehPs7zeDHyH0yE7XSiLJ1DZXEqkVcbWfmXkGl1OXkSvnEA/EMdYx5sATtKHqwVjTmdobt4sa+uwp/Mg6iW5CXKzeapzArIEfoZ0VkgykCyXoaXY1h4szqxAE4NQ+PVObLzA5ktTmpnbnMMa4qT25kMGZ68y4vb9ZPG1SgidB6pnaXqBHgM2b1Jbl+mlDo3Itqc0XopxgavsC6v1oyyJve2xqkxFUylkzHigtZRKVIhJ+pEZSWymJbHX0CIkmt+lZZxaTykX1XOIpfoQbv05sp3bC1M6mKncy1BPxtPsO6C8eOplCbzXNXWRhjVCnet3VqhUShW5pOxdFhhoXRQLAnj4eBKiV1NZZOFPxIxZ31XYMssV+WQJmzlm7D69041lmIvvDwD3va+5zIa72jKYscpHwI802tR1gat85x64NwYS13hRtWWQjkantRlIbaI3FwlpMbUD9XLfLIm2pbWpvcxWXuJEScNlk4JPCGHLIFBhTW8GPmMCIkKntKU+bKzLIToo75Wms5Q0O3jVaevoPK/6duWnB1OZJ7YwcsW5q65QwJrT4kbAzTG2tfvr4T1ek6+uiRwBdRIorSmmS2v6QmhrSmHt9xNRO18c7aDW1yEsiXTO1udEatm5qH04eRk+4B5liBn964U8BAEeSRyAKTb4sKKY2n2g33dRO1/+9WjKS1A4l1An8zNnav5dbUV+HKvxIOOBDOMDes5UaZZFP8ZT28eFOJOM6Ex9Hk9rElx3BODe1ry9k8OwE52k3Ez0CqEltPfyIYmp7hODZrEnt1AQ7Hn0hNW1tRfR/5y4aN8SMyMmkNrCRq10qALPciLcy2bOiYExdkLZSFklpKTJ1DUoI1mdqF66ySXxLl0RqFYqr+JW5i/bvLz0LQGZb0d1KmemJrhuL11iizo7sXGMj3bynRTa+OFePpw2of1t2YfOdGxuJFgOH7tJHvfRxI2htumGqd9Mps52Z2rVDdUeL7wAAIABJREFUElrtqZXUXq2d1F60y9QGNAiSFi+LfP5z7Ovxd9UPjHihISqL1IzdWyap7QB+hHjaY29gi/tmZSapnSFTu9/845h6Lk1aLJTl2kxtoF0W6ZDapvY2V2mZD2YDLh8KfHIpCjICUh7L2QIigrmk9kp+BbfTLAV4sEeHw+eygjvYSXG3OIO51VyD365Sfg2DN78CAHhBYkkpyUo6jTO10wgrRpZp6eJHVIN8I37EOlNbeUhfAJ946BMIimzQdc+OBum+ZjC1AZbYBirMvV5iaptIaiumdtJlU9sKV51LFEQ8NPwQAOCrk18F0ALoEaDl8SOGZYSpDRhDkBBPO9qrsr416oqwz9VyDVP7ydfYgPGRAzUGjI4ytdWk9q4eVnyULZTxzLUml0SSlKR2VVGkLLeT2kZ1i/O0B0/Y2/7bPc4+Z+W8swU+TpvalKzJ8XPR3HmgXGBmN1073JYg2ONkUurVREkkAAhB9v7KBf1F3fxV9r4F92ySpDagQZA4YGoTeiQxZJ5HbUddo4AYYKnf1VuNf7+e7FxjRZ+mlMzgYgu97v01TO1QHOgYYbe3GoKk0Q6XcCc7lgBjZtBm0nZOalMAJdfA1OZotmtzNZLaidpJbcv4EUBTFtnipjZhz47/UHOfB6Du0pp+iY0fSwVghZUm6+7C8FJOFEXa4WkD6lhj9VbjcFDabVObe0aL19j75LWK6wy5BWxkagOVZZFtWVbb1N7mklbZypHsBvdXKw03O4Yc5tN5TVLbmPFHPO2R+Ag6zTa0O6FeNmkbFFKYXzRnQkjn/gYhOYdr0iC+FHwbACC0aGFCRUlt2Elqb0xBx/SKIsv2mdpa7e3ei89812fwoXs/hHt3NCgX88LUlsobkQ465p6a1M4bxs54hx+xbmoDKldbklnSq+klkYBq9BWz7P1vsaJIwzKS1AaMmdrKcTqq++NODVe7WsWyhKdfYwPbRw/UeC503K/etv+ZI6Z25wiCfhHDvCi1JMnoigZwYIe9Y9a2KBFRndRevc3wEqJfHQC7LVrAya04m1R2W06URALMBOznKLFZBxEkiqntELu9OqlNDM2hk96w10larrYZybK6BdhsUjvEjBIpv3EiKBUKKNy4AQAI7dtEpjaZqU4ktWkRz0ueNsDK4ui8bRfTYfcaa5arTUltvZJIksIM32LGLpmG9bBNrcB/dUOUum92wrYZMlAUCahJ7dvL61gvlNUf1GBq54plZPnvWS6KBIBhMmhb2NQurgPL3DT2aoxWT/28LHI9xczs5RsM4RKIuWfOGpXdoshSHph6ht22wtMG2FyOQj31zuP5tOpHxFx63RKDDAEkl4HUNXceo54IXSf49MMWhC5rm9q21Da1t7nkDFs1loL+Br9pU6KoYEaiQg7zaxpT22CaiorsmoEeAQBEurEiMjN9/Y65LSzrZz4PAPgH8bvQv48ZAV1rr5kvfCKmthxGxDZ+RDWv4nWLIu0ntUmvH3o93nvkvY2Zul7gR9ZmWNpO9AOdPBWkY2pTUWShJBnGzkylmKkymnQoKVgth0ztB4cehE9Qj6OjyRYwtUMd7D0B2CSIUqyeJ7X5a1vMWNvebYSpDWi4fPWS2pPsa1cNUzvKPrPL6xuNpxenlrCWL6E7GsDxEZ2EAMAGn7RQSI9lVYrJwz5T472qsXjfWA9EscllcvEaTG1KafcecPScV1faY1rLa251UVLbDk+bpHC1HSyLdC2pzd8jxZjyCD1CslLKB7AUVG6FYSJMJsjqMbULk5NAuQwxHoe/v8mTeDNSTG0HTMNmlESSnCqLtGtqm0kFljS7MmrhRwANj3ULmdqFjJpS326mtiwznAywPZPaClO7flK7JxZENx/PTSxoAhUKt3+w4vcJPRLwCRUYSdOipDahxVpRi9cAyOw81QrHUHVZZErD0252abLdosibz7FdQLH+2jtqjIjOZfWuUWm+azIQ092J6ogEobnnVS1PW+/YUPAjbaa2HbVN7e2uDDPH5JAFXpJZ8QlmDHnMr+U1+BFzpnYzSiJJiyHGYpTmTUwiZs4htnAOBdmHud3vRGjgAAqyD+Fyhq3smhFPjTqDH9FPaqumNjG1PTJ4tPIiqa0YhbvYFlpA19SOBH2K6W8EQZIrljG7yn7PNaY2bWG0URQJAJ2hTpzoY0nhnnAPBmIbeX2eSxAqESTNTmoD1hAkhpPax9nXpcnak4kl/ZJIUhf/zOrhR558jT2PU/v74KtlKAsCkHQAQSKVVZOnkyUPxjUInqbztAE16VSNH/EaPQKwtCXx9TYLO7aYU18ru0ltQOVqu2FqG9wF1lD0HtHERElqe2xqU+rJ7JZiSml3jaolzAal4Ef0TG2OHgnt2dPc8lezopTf3AXzwYJqNdPUVgwDu0ltvljjRVJ78SpLy4U66r9mThn2raSZl1mSMzG0wZysULP5r26omFXnFK1gSHqtsLGiSKAGV1vBHFUeN6m0ytO2dQ6O9qjjy+k6/S7NlBah1SrXGwVBclbD0/YISVZPdositegRO6+1kbJIum7EXe6kaOZ5tR5PG2gXRTqktqm9zSVk2UVTCnlgXHLzOooclrJFxMAHOAYnnhdSrCTycE/zTO21+BgAwL9kgv/54hcAAI9L9+K+I/uxozuBqzJPBpvdcs2Z2vaKIikFrWVqVxVFShJLMQOO4UdMSZvUtjvprCVtSSSJTO3FiYrH7eXb+uYNmNqEHkmE/OiKurRY5ABTm/TITra17ETfidYxJihlkJnXrHB7bGr7w2yrGGDe1JYkDT+yAVM70q0msGsZew3wI3Sc6eFHnuQlkadroUdITnC107PMsBD9SiKayiIB4IFm87QBNamdX6lcNPO6JJJUzZBvdd15hbEBo701dw6Y0gBf1HEUP8I/r24URRayKraCJrReKWbV1LZWEgloiyI37gLJ85LI4GZCjwB8oi2wz5yV0k2tlJ0pw7aflmkphkGTk9pmTG367PQdrG+W0N+2uIVMbYWn3WAxjBZdtpKpTeMhX8g5LNRmEgVQDJR/7u5j1y2Fq13Kq+ODRHVSm81JemIOzOGHWhxBQjs8kvua+zy0UnZaakztZAuUJmuLIq3MoakkcrdF9AjJiJFMSW0am7sl5bzaxKS2Hk8bUD/XNJ5oy5LapvY2l7jOJvVy2AtTmw1kYgIzsyMm8CPpQhpTq8zYOZhsHkur0MmMn3h60uB/yEI691cAgL8svxGP7O/DYGcYF2WW+MbseXNPQGFqhxHyO4kfqSqKLGsmsD4bnDaroucIqOkOp1VdEgmoBnd+pSI120dlkenGBRNUErkrGXXPJFbwI/aS2gDwo4d+FB+854P4z/f+Z9v35ZjI6KOFB6D2YMAtCYJ1rvb6EktkAcZSSY242sqxOqb741pM7TsrOVycWYUgAKf2GTS1F23w5lZ4YVliUNn9MM5TR4mwH4cG7R+vthXuVBfqtAiSZiS1Ac020U1iamt52k6c33YcBiCwiU3apsFIcpqprcWP3HmFLdzEd3ifzlU4mSZN7XlNws2kFKa2nql9jZ0rQpupJBJg5eSUprPL1W4J/IhTTG2L11gzpva8AZ42oB6rqevNKfZyQ41KIklkvqzcsN7p0WrKaNAjrRKe8FIh80ntiQV+HSMkgS+0YeHJkZJIUquXRSpJ7RYytYe4qT39kjp2prF0M0XzDqlkaCGlQrkV9VxlladNMoKRopLIRrta7aqZi4U5g0nt9RTbDdmWJbVN7W0uIcc+PHLEJUyCVpqkNgBECT9iIKl9KcUGwgOxAfSEm7eFXeAn6J71KWP/4cI/QMyv4obUh9WB16MvEcJgZwQXJWZqy2a3XBcIPxJBJGjT1C7VSGpH/JVGcjOS2n6Nqe0WgmRJJ6kdjKrt4jpc7YV046T2DZ7U3uUWegRQB8Zh+yZhyBfC+46+Dzs7dtq+L8dERh+9B8EE4G/C4gpxtQuNJyIVItMp3GnsedcztSVJxRTVSMZ2RdljLGcrJ/9PvcYGi8dHupCMN1i4dCKpTaa2JrX4+j1J/NC9I/jI2w/Xxp94KUHQIEi4qZ1bVc8HOzw2tSM22Yde65ZDJZGkYEw99mYdQpA4zdTWJrUpxTZ0t/fmjFWmNm39tWJq18GP5Ak/srcFkmlmRTxnu6ktxdRuQlKbEovpWXV7sxXZTmqb2EGgJLUbcFoTA+z6K5fVc/Nml1FTO9qjfta3ClOcFm23I3oE0BRF1mdqAxr8CCW1tTztqmsOmdo9TpjatIOA8FqtJtqR0kqm9o6jgBhg59CbZ9j3WsHUDoTVRX2zY8vJb7NQTs8eoMvmvJCS2qkJoLxxJykA1dR2Pamt4Xt7XcyuZWrrKdKtCdu0ESRW1Ta1t7lEarSPulRop5XC1OamtpLUbmz+XVhk6JFDPU0qieQKD7CT4kDptrEtPS8w9MgXy4/ikYPshN2XCOE1ntQu3zG55TqvFkWG/XaZ2vpFkYlwQC2JhAD4POCtV8vnZwMFwEVTe5J9reaf1SmLNIIfUUztpJumtnP4kZYUmdq03dBr9AjJalLbKE+bVK8sMj3LFpkEUS00rVJnDaa2gh7Zb+B5KMe9DQOBts51qgZPwCfikz9wAj94bwstmsS5qZ3mk8U5dn1BYqhxsafTim4y/Mit59nXYYdMbUBTFukQgsTNokiFp+0xegSwztSet44fUYoiq5LacqGAwhRb3A/t3WRJbUBNCttJaktldQLajKR2uENdhLeDIHEMP2LguDSa1BYE55Lo/5O9Nw2T5KqvvE/knrVlVWVtvVR3qzdtTUtC3ZJAQotBIDBgQJIt22AEDB7E4sGMbWAGjxc8xmMYD7bfMcJmN4IXLAnEYmFkEEICtyQk0IKkVm/qqt5r69pzj/lw7z9uZFYusUdkxv09Tz+ZXZ2VGV2VGXHvueeeEwSWpvjitCLcnc0gV2En/N8B48XZnQoZUHILLeeO20bIqb2ESkVtmKcNiKJIR0TtdRcBUNg4rrZzxAgLJ8y7go2iqjpR2/zirGvEkqJIkWLPgiBqA9bLIvV52nbp28AKICulxoaZZRK1XS6b7tvIj6Xo/UJpq0xtRZFlkQ4gRe2QE+ETFaXbg4wzcmpzh3Zay9RuPfF8dtb/kkgA6Fu/AyU1gi7koNJAoxFnngMm96GECP6lfA2uPZedsOPRCM50s8F6dO6ImIAbgTtGl+BEprauKDLBRO3eVIy5KctcvI2l/NsqWCf721HqZWoDQuTWXYBF/IhxUXvzoIsLRVr8SIeK2uRepe18VrdF24WcDmYztbWtti3ytAkqi5w+sFZApzztzMaGC0z1MrWL5QoeOsCOo2WeNsBcGQAwP6lb1DLJvI/5smbo5Y4Qmrj5FT0C6JzabSBqL0/z96PSOhfWDOSOdypXu+hw/IjeqU1bs538/xvFSqZ2fhFY5GMVS/EjXNSucWoXJiaAUgmR7m7ExgJQMGyWET6WtCNqL0+xyboScd9l1gi7wm+lbL+3wugOgmJOjKtaObUBY1vX2wXa4TG0s7GwoUfLovUh/9UNtI6RkIraNFavFFuOr8YH0ohHFeSKFZyYXxVO7TqiNhVFOhI/kuwV7zszudqVCvDQJ4FPvgj47CvtH0c9Fk6w63ok1jCGzzf0i1SxdN3fky9YKYuslIFDP2D37eZpA8YWJ5c8ErUjEWCYX1O8Pq+2ytQGdGWRLbQlSUOkqB1yIgW2BUPp8SDrlDK1a+NHDDi1n50Jhqg9MtCLCZWdeJdPtjgpPv4lAMD95UtQ6BrBxePiZJbsH8OUmoEC1dykSufUth0/ohOLe1NM1CbHpzbo8iPygdCOc6X546yQmxfOyDWidmOnthFR++gME1Q8iR/pVFGbHAbkpm9bp7ZBUbtnhDvu1LXC3hwXtZuU8tXL1H7s6BwW8yUMdiewe6OBRYHuIR63ooqfu1kWePxIA0d5YKh1avtVEgm0l1ObokeMCjNGaRen9vwxUVznh1NbE7WnjJc/0USyZ9TS4iDFj9RmalP0SGL7tuAUDJtBy9d81noZNe1M6Rlju8v8wK7wm5sHwP//VnsrjC62zBxg29pTGREB1QxNDOmAskij0SNEp5VFrugytcNIohcAP0+2iCCJRSPYkuVlkVPLYlGymVO7x6G52nqTESRLZ4A7bgT+/U/YAt/Uc+Z3EhmBrrsD5/ize7gZ+rHA4NbgZMbryyKNUKkA33of2yEbSwNbXubMcbQqi9QytV0WtQH/yiJbZWoDUtR2AClqhxylWAYARDMeOCE1p3ZNUWQLp/ap5VM4PM8ERr9F7VQ8iskIcyGuHG9yUizlgSe+CgD4avk6XL1juCpPdn0mpeVqm3KnccfoClJI2S6KFGLxReP9ePl5I3jny7igS5nafuRpE3XEd8cg0a5raK0wXFfUZgPGVvEjlYqKyTl2vJvdjB/JUfxIAIr33IDcqxUu0volamtObbOZ2rTV1qCoDYhc7RO/qP66VhLZWNTuT1OmthC1KXrk6h1DxrKsFaXuLgVTSKe2eei93Q5O7eMO52kTo1zUnt5vfZeAHk3UdugcrDm1+e8os8ncZ9spaJJaKRrKZgVgqyQS0GVqrxG127QkkhjaAShRJurqC2PN4GdJJKHlhFoUtSl6JNFj3cRATu3CYvPx2hk+Zh4+35jw00lObU3UNrjDo2Od2j6cN4NAJKLL1W49ntw6zEXtM0vAAkUc1XFqL7PrpSNObUAItEbKIg/dD3zqSuDQD5kISvMRinNzkiDmaRPrdE7t2jhLP6EFJCOLDKoKfPcDwC/uYNfFN94uDBd2aXUe98qpDbQW2N2iVaY2IONHHECK2iEnUqwAAOIZD0Sjqkxt1XCm9jcOfgMqVOwZ3YOhtP8DoqkEcyEWzzQZaD/7bWB1FtNKFg9ULlqz/X8sk8KzPFfbjDtN5ZP1JaSQilvN1F4b65GKR/HZW/firS/dwr6gObVblMu5SZ2YFMdolKcN1BW1RfxIYe3jdZxezKFQqiAWUbAu4+KCgObU7lBRu9bN45tTmyYhLmdqA43LIil+pMmWS4ofObsq3p8/2s8GihR7ZAi7ZZFapnbAndr6wWO5JCZhY7u9PxbNqT3n/WubhZzaRt2GRslsZA6WSsn+ZKNS0YnaTsWP1LhrNvjg0gbYWIn+T0bdcNP2RO1Ig/iR/CFeErmtDUsiATa2yfJjtyrCkKid8XERz278CGV92rnGJnuBKB8rNntfTvFdia3ytAlNDDlg3U0fBFTVulN77gX3Ivi8RBO1HRLK2hEaTxrInaayyMPTS83jR7RMbYfmalpZ5OONP3PlIvDvfwb88xtZHvLw+cDv3g9suYr9u51Ip0YEWdQevVB0QGUDdD3sNujUVlXg3g8Cj30egAK88dPAhW9w7jiaCcmq6l2mNuCjU5viR6RT202kqB12iuyiFR/wYEsYn4x1IYcESogpTFDXxMs6lCtl3H3gbgDAjTtvdP0QjTDftQUAEJ072PhBj7OCyDuKV6OiRHF1TVHbukwKz1a48/L0L42/OBczl9U0kpYztQ04oEnUjvopanvg1K4nFJLQvTKjTfi0osilPNQmk6ujM0yA3zCQRizq0ulVVcNTFEn47tR2OVMbaCxq03u1f0vDb81wUTtXrCBXLOPk/CqeO7UIRcGac09TaEBuRdQuFYTjIuiiNuXfLp0GZg+xnSnxbra11WvaJVO7UhHuLaed2oriXK52aRVanILT8SOEH9EjhBn3FSDETgslkUB1prb+2lfg8SPJHW3q1AbsT3AXArAzhYTf2SPsHGyWHJVE2titqSjGcrXJqT1icMfl4DnMNZhfYOfqdmXuCFu0jCbErpRWdA+zcY9aEYXZ7cxyyDO1AWFCMbDLhkTtQ2cMxo845dQe3cVyq1dmeLFpDWcngM+/BnjobwCowKVvY4L2yPm6ngI3nNr8OpYNoKgdSzJhGwhOSSRgrChSVYH7/hh45NPs77/2f4HdNzt7HEO0m+gAG0fqyS+KneGexI/oj6Xs/usRrYoiAfH5lqK2ZaSoHWLUSgUqi9RGMmtC+LAKObWVvIge0X29Hj898VOcWj6FvkQfrt98vdtHaIhchl20uhYatOfOHgaO/BgqFHy9dC12b8hooigxlknjOXJqn/6lYReKyh2jS0gh7WBR5BoCFT/iglO7UUkkwIRiurjyhmRyahdKFSzkSg2fdoKL2q7maReWITIwO9SpnQ6IqG05U5sLTlbiR6aeq17ImWvt1O5JxEAJIwurRTzAo0cu2thvbrJjx6m9eAKAys4ZQZ+4Up7r4ikRPTJ6Idsi7DXtkqk9/TyQn2fbjI2KUmZwKldbK15W2LE6QSxZ/VzrfSiJJIyW8hHkjrLocKP4EQBAkcUbqcUi8i+w81LbOrUBJsQA1p2FQYgf6V3H8nrVsrXzthNObQDoNrDYQmLXsEGndiwprnvtHEFCi4Fju41HvChKZ+Vqh70oEjAVP7JthETtReHUrokfKZQqWOTzEcfiR+IpIdDWlkU+8y3g9quAY48AyQxw8xeA131SzNXsnk+bQQs7Fnccuc4r/hS46DeBXTf5fSQCI0WRP/wL4Kd/z+6/9pPAJb/t/HEMnsMWSorLYiGYICNMote5uLhm9G9mc5RSTuyC9QLNqd3kOkvjCBk/YhkpaoeYfH4VapEpIekhD5rbKVMbORE9Eok3LX248/k7AQCv3/Z6JP10DetQ+Upxb+4Ea3OvhRdEPtO1B8cxXHf7//pMCofU9SgixoSC+UlDr61wx+gqWDu2JUiornfsRCDiR/hAqdTkOK2iObUbODNrxL1UPIreJCuCalYWOTHrgahNLo9IzN9FBzcJnFPbbKa2BVG7bz1zdqtl4DSf/JcKYhDYJFM7ElG0ssizq0UtT7s29qgl9L6fOWTu+wBdnvb64BTlNIKKIldnxbZwP/K0gWqndpC32E/uY7cb97hT1EQOxtNP2Xse2lWR6HZ2kULvZF1/cePHuY22pdiAU7tUEELnkD2nNiDKIguTk0CxCKWrC7F1a92DbYNdEUZ/zvMLRbEXQUKxR1ZLIolWiy2FFTHuop+7ETohV9ts9Ajhd6723AvAAx83v6hfDys9I50GmVByrZ3alKmdW5oTxp4ap/bcCjsfR3XjP0egRVtajCmuAt/5APD1tzBxbsMe4F0/Bi58Y/X3aU5tG+W79SgsizlyEONHAGDbdSyHOulQ5JkTtCqKfODjwIOfYPdf/XFgz9vcOY5oXMwtpmsW6LToEQ+MlQAQiQq3v5eLhWaKIhdPrnW0SwwhRe0Qszw7BbXCxIeeEesTk4pq8MOny9SmsshmK3NTK1N44NgDAICbdgZn9bN7cB0W1DQUqJqTV6NcBH5+BwDgM8usOfi689aK2mOZFIqI4ZDKT2JGIkhKeSi8OK8U74ZiVThqO6e2G/EjTZzaQP2ySMrVblIWeZSL2q6WRGp52r3BFw+tkuqH1hQPhCNTW1GEWHaSl0XOTwJQ2We2xXP1dzGnzvRiHg8dZIKXqTxtQLzv5yfNb2WfP8Zug14SCbBFE8pAPPgDdjtmcFu4G8cCsPI/szE3XjLBRe1NV7jz/Hqntp0JcYFf15yKHiFI9Mtubz4xcRsShYw4teeOsEWyRK9l4VWJC7GEcrXzB0SetuLH7ganGObi6tR+a++5IMSPAPaEXxK1bTu1W4ja088DUNkinpnroibYH7B1eL5iVdQe8lHUrlSAr70ZuP8vgMe+YP+5aCdSqJ3aFD/S2iTRl4pjpDeJEUW36BSv3nk0wzt+BrriiBgpAzeKlqv9c3Zu/MwrgJ99ln3tyvcDb/9e/blTdjsbV+UXxHjQCchk0ZUNdya7WZpFlf3kb9lnGwBe+RfA5b/r7rHo+xH0UKxUjwfGSsLrxcJKWZjRmsV89YwCUFi3jBHTgmQNbTwaldhlZeqMdj+esTZJO3z2MF761Zfi73/+960fTJnaSk7EjzQpcvrmwW+irJZxycgl2NYfnC2uo5k0Dqt8EaD2BP3894DlMyimsvhO/mIMdiewe8Pan+1IbwqKAjxTMVEWqRPW1JiNCbsRsbjMBS2jWyXdwK2iyHIJOMtX/Rs1VWuitli0GOphP4spQ05thwUVPXpRu1OJxqqFI9+d2ibExkpZ5CObydQG1uZqa3nam1suYJBT5wfPncFSvtTw3NOUnlGWLa1W6ucpNmOBT2KCnqcNsJ8lRZCQc8SPkkiAnedoF1KQc7XdFrWHz2f5uauz9rZfaiWRDp+DaTLiZ/QIIM4pRjK19dEjFhdAFUXRIkhU7tRu+5JIIruNiTCFRfMiTKUi3qd+OrUBe8KvY6J2i8UWEhBGzjf3Xmx3p3a5KK7nlp3aPsSPPPV1Ec11yubumdxZNqYA1kbLhQnNJNHaqQ0wt/YYidpNSyIdnqdRZ8SxR4F/vJb1XHQPA2++G7j+zxrv1IolxLnIyQiSIOdpBxltV1fNuHLfp4D7/ge7/yt/DLz0fe4fS6Nz2ZIFA5DtY/E41klfDNvMEBGNi7LM2pgWiSGkqB1i8jNc1I6qUGIxS8+x7+Q+LBeX8bmnPofjSy0+hJpTO49uErUblERW1AruOnAXgGC5tAFgtC+Jw+SwnqmZRDzGCiIfG3gNiojhmp3DdVfQE7EIhnqSeJZEbSPlWDwCYVVNIJ6wMYgxVBTZwU7t+UnmXosmRQxBLSR265zawwac2hMzTFBxNX6ELpBJH92CXqB3ZLRTpvbKLLTMc7OupEaidpPoEYJE7W8/wXJeG517mqIo1nO15wPiWjRKlTNEMbcl3kkURbxPgpqrvXia725RgI173XmNeEpMiO3katMCVNxhUZsmG06XZJpFc8QaELVpwcZmDqm+LBLQlURub3NROxq3LsKszPDFf6XxOMIrNOHXwiTdcad2g/cl/XyN5mkT7e7UPvMMG0+nMuZL5OhnNXPIWgmoVYqrwA8+Kv5S55tiAAAgAElEQVQ+ZVOgpPiDZMZfo4zfpIwXRQKsLHIU/PPZt1bUnllm52PHRe3h81mHRCnHTEVbrwPe9RNg+8tbf68W6WRg97FRtDxtKWqbgsaV+Xlx/nj0s8D3PsTuX/NB4Oo/8OZYtLLImsXJMDi1ac4e724d3aeVRcpcbStIUTvEFOfYCpliTc8GAEyvsgFsSS3hn578p+YPpkxtJYd0i/iRfSf24fjScfTGewNTEEmM9KZwpMImMap+oH12Ejj47wCAf1y6CkDzTNv1mZSuLNK4U3sJKSTjNj66egd0oy23gcjUdsmprQmFWxpnrtaLH+Fln9NL9ScXC7ki5lZYPMwmr+JHOpl0AERtK05t2jaWHmSOczOQqH3mGTYIpSKTJiWRRH8XGyyd4YsupvO0iToLOoYgZ0GmTUTtXp0Qld3uvLPXDF26XO0gQnnao7vcjd6gXO1TT1p/Drec2td8CLj6D4GLXShSMoOZosgpPoEcdkbUruS5U/sg2w6e2L7d1vMGAs21ZVK4o/Ndz4j/Qh1N0qcPmI9RcVrUbrRtWu/UNgMJ9vOTuhLYNoKiR9a/2HzGf996XQmohZ4Lqzx8O9t5RcaJqefZDjSraCWRIXZpAyJ+xECmNsBFbYWPCZo4tbPdDs/TojFgx/Wst+flf8Ic2r0GRUc3yiJJCJWitjlS/YDCzzmrs8Dj/wx89wPs71e+H7j2w94dC41Bat3RWqa2yahEW8dC1/znvcmuNpKnTZApaPGEe8fTwUhRO8QUz7KLpWpDIJ3JiQKCew7e09ytzQWibn1RZAM31Z0HWEHka7e9FulYuu5j/GK4Vzi1y1M6UfvnXwagIr/xpfjhVC8UBbh6R2NhaSyTwnPk1J45JLJAG8GFtWU1jXQ8av0/QA5otcy2RtZDE7U70KndKk8bEMLe0mltMYFE7akGTu2JmRX+uAR6kjZWiloRFlFb73JulkPmJiba6jW0PG0LhUj9m9nAp1xgIsDcUfH1Vt+qKwpSFOBlTc49TdEWdExOojWndhvEjwDVzhC/SiIJEpSCKmpr0SOXu/s69HswssjbCLdE7dELgF/5iP9FUN38vNio/EmPJgZYK4kklAQ7t6iFAtRSCYUj7Bqa7ARRWxNhTLq2Fvik0+/oEYAVXitRNkY0G93jVaa2Vad216AYC5Bjs52wmqcNsAu5167C5Rngwb9h92/4SzYHKK0KM4il5+QLHWHO0wZ0mdoGRe2RHoz6ET8CADd/AfjDg8DLPmBuMWbkQnZ75hnnjoXMYzZ3HIWOSESYg/Z9CvgWjxm5/DbgFX/qbScT/e5WpqvHuUs+iNqD57DYseKyiE10E3JqG5nH9kmnth2kqB1iyvPsYmlH1CandiwSQ0kt4TNPfabxg8mpjRy6FMrUXutonV6dxv0T9wMIXvQIAKTiUUwlxwEAygx3xlTKXNQGHsu+HgBw8Xg/BpoMNtZl0phCP5bjAwDU1k4hLq4uI4WULVFb9zNv5IImUTvqZ6Y2idouObUb5WkDbIJHgwEugmvxIw0ytSlPe9zN6BFACKy0lbFTIVdPLL2mIMczyKltStTmEzgrGXGKUh1BYiZ+pEt8Vi/a2G99omM1fkTL1G5Dp7ZfJZEEvdeDGj9Cova4S3nahL4s0iq0q8JP572bGHVqVypCDBi2J2pHEjx+pJBHYWISarEIJZ1GfH0ABF27kMhqVoQJSkkkwJziNJ4xmz3teKZ2Had2YVnsOrIS89SoZKwdOP44u7UiagPVrkIv+PHHmeg69iLgot8S7lg7ojotwFlZ6O8kTJoktukytct14hlm3BS1I1Fr5wT6fE89z/qL7FKpiMUsmaltHlpI+sknAajAnncAN3zMW0EbYOOxDNNNqtzaJGp3eyhqR+Nsd2btsbjFqgmnthY/Ip3aVpCidohRF9nqkZqw7iqdWWWDlbec/xYAwDcPfBMnlhp8GPkkM6GUkQF3U9XJ1L7n4D0oqSXsHt6NnQPBXJnN9W4BAETz82zAdvAHTNRJD+COBSZKXXdu85P0WIa5oI8luIjUaiLPM7WXkEbKTvxINC62JFF2di2ByNSm+BGnndovsNtWkQ414p6IH2kuam92XdTmLo9Od2rTooJf0SOAcGWaiR+x60rSi9om4kcyOqd2q3NPU6yI2oUVIY4EQeQxQpWo7VNJJJEOcPxIYVlkvLtVEkmMcqf2rIGdS43QnNo+O6rdgooiV2aab51dOM6cSJGYofNHM/SZ2lpJ5NatUMzGKQSRkQvY7bTJrchBcmoDwo1vVvykCbeTTu3aCBQSDrqGrAmbWq52m5VF5heFQ32DxYJZL53as4eBR7kx6fqPMqfnsANxElr8SMid2ilz8SPrM2mMRdi4alpZ+7Ob5VGI2Z4A5ZT3b2Y7sMt588aIeiyeYMamSNyQuUNSg/58e8lbgNd8wntBm9DO43VEbS8ztQFvz6vk1E4ZcWrz8YSMH7FEB4xIJVZRl9mF1Y6oTU7tV255JS5fdznL1n6qQba2zjk1pMyv+RrACiLvPnA3AOCmHcFzaROZTAbHVH6xmDkIPM4KIssv+g386BD7ubbKtF3HRe0D2MK+cLpFsQY5tdUUUjEbTm1FaZ1XrYnaPmZqk6BebCC8W2XWQPwIUEfUZgPHRvEjR3n8iKslkUCI4kf4JNvPHEb6GZcLxoualm22ea+7mN2+8KAQik3Gj1jO0waALC9/OzvROJ6oFnItJnrdzVx2En2526h0ajfk+GMsqqpvA9A/7u5r9Y6yz41asS6i0DWtY53afNxRKYmsxnrQxHFwW+tyohYovJi6UiigcIjFErV9SSQxeA4rjS6uiEVEIwRO1LYg/Kqqc05tWmwpF9bGK1jN0yY0p3abidonnwCgskiuXotloppT2wNH4Q/+HKgUgW0vB7Zdx742Qq/vgFNbZmqzW4NO7UhEwYYIO8cfLazdmelq/IhVIhHxnnEigoQ+84Pn2L6OhRIaz+++BXjd35rP9XeSIV33A8CuP1qmto05ixWGHTivGcVUpjYfT8j4EUtIUTvMLDNHUyVp7YJYUStapvZQegi3XXQbAOCbBxu4taNxNnkAMARqg60WAB899SgmFifQHe/Gq7a8ytJxecFIbwqHK3ybyAsPAfvvBQA8OfprWC6UMdSTwK71zU9g6zIsUuHJIs+gbZUjWtDFjyRsiNpA67zqMhfwOq0oUlV1Tu0m8SPAGlFbxI8UoNYpY5qYZZ+nTVmXxZSwOLXJ1WNkddstErqfsVG3NhVlWd1qS05tGmx1ZQ3l+NLEJtudwIs22BCWe8ZY5EulxIRtI8zrokf8coGYhRa1etdZFxycIshO7YmH2a3bLm2CFhis5mq7lakdFGJJIY7Ui3ogtOgR+7vdFD5GVPMF5A8wp3ZiWwfkaQNsmz2JpmYmuEGKHwGsCb+FZSZiAvZ7K+Kpxu9LWqCyLWq3Waa2lqdt0aUNCEfhzAFn4hwacexnwC+/AUABrv9z3etbzJzXI53aDC1+xJhTG5UyBlS26LR/Ze14f2aZGWwCJWoDzpZF0mde5mlb4/qPAr9zD/CGf2DXOj+pLYvMnRVag5fxI4DOqe3BYqGZTO1ecmpLUdsKUtQOMZFVJhaqSWvC5UJ+AaUKG2QNpgZx6eiluHzscpQqTbK1+URTOLWrRe07n+cFkVtfi6460SRBYbQvicMqF7V/8nfMybbxMtx7mrldrt45jEikubhDTu19K/wkdvrp5s313Km9pKbtObWB1qJ2EJzabhRFrs6JAWWrrWyaqM2c3RQ/UihXsJBbO7nQ4keyLr9vaetisk0csVbZei1zGe56k3/HEI2JHQNGc7XtOrUHt1VHJxiMDrhy+xBuunQj/uzXLmx57mlKJCLyWWlXQyuCJvAYYXgn8IbbgV//kv9CfJCd2hP/wW7dztMmtExOi5ONTs/UBsSC2UoTUZt+fjZLIoHqTO285tTuEFEb0IkwJpyFgXNqW8idJpd2NFE3CtA0Wq52Td671ZJIglzoMwfMRcT4jZ2SSCIzzn435YK9ssZmqCrw/Y+w+xf/dnXHBLlup59n3UFW0ETtkGdqk1PTxFgyigrKqoJfzq91KZNTm+YmgYEinc602H1sBFqky3bQ9cZL0v1sLuW3oA3onNp8bLLErxPJDFsU9RL9DphmuosTmMnUpqLI/IK5LicJAClqhxolx8RCNWWthI1c2n2JPiR4oeC7LnoXAOAbB7+Bk0t1Vpq4WKOJ2nEx8ZzNzeIHEz8AANy440ZLx+QVI71JHCFRO8//L5e+FT/az7bSGMm0HeljA5HnSmNQIzG2mjffpImXZ2qzokibH92W8SM8YiMQmdoOOrV56SN617UuH6xxaqfiUfQmWVRPbQRJsVzBibNsIUDGjzjE4Fbg9x4H9r7D3+NImMzVXrbpSopEWEkTYSB6BAASsQg+cfNFeO1uB0QWs7na81zUbpeSSOLi3wTGL/P7KILr1K6UgWOPsvteObW1yYZFl1enO7UBY2WRJAY44HDT4kdWVlE4zM4JHRM/Aui2yxt0o6pqAEVtLvwunjCc2VsVPeLEwl5XA1HbbvxI/2YmvJdywPyk9ePzGrslkQAbD1jZSWCG/f/KFi9jaeC6/1b9b/1b2NfLeeOL3LXY7RnpFPRFkUYWZ/g5Zgr9ODhdPecoV1ScXWW7LDraqT3DF+mkU7v9IXf02UnWmbJ0mv29x2OXNsBiWZQoE4/ddkWbydRO9oodwjKCxDRS1A4xkRy/SHZZE+EoT3soLVbf94ztae7W1pzafNCtc2p/+9C3UawUcWH2QpyftTj49YjRvpRwagNAsg8nNt6A508vIaIAL9vR2pGQjEUx1JNAAXHkM3yC2CxXmzK1kUY67pVT209R2wWnttE8bUAIewvHtWMQESTVA8zjc6soV1Sk4hGM9LrsmgiLqB0UKPojb1TUtunUBkQECWC75M0SpkVtLjT0bXTneDqdoDq1zzzDBv2JXmD0Qm9ec8TmdvcwiNqaeNgsfoSL2o7Ej/BdSocPQS0UoCSTiG9oswWsZlDEgtGFlNU5oMTHJb0BEbXT/aJsa8agW9upPG2i3mJLflFcH6w6tSNR4dQ040T3k8XT/P+tAOsvtvdcbua/lovAfX/C7r/k3WsXpiMRXWyARZFSxo8wKJ4HqmZSasriKQDAKXUAh6aqx59zKwWoKluLGugKmqjNxwqzh+3P3+jzTot2kvale4gbOFR2jdLytH0QtWNJMc9xO1fbTKY2IMsibSBF7RATKbCtS2q3tclfPVEbEG7tuw/evdatzSeaIxEuanM3rqqqWvTITTuDWxBJjPTpMrUB4EU34f7DbDL94k0D6Dc4yKBc7bk+voLZLEe0QPEjKaRsi9qtnNo85yrq42DJDVHbaJ42wIQmivjg30fb/GpFbYoe2TTYBcXtKAMStVNri2MkLkCr5kYmIYD9TG1AlEUC/jS+mxW1F9rUqR0UNKf2nL/HUcvEPnY7vte77avk5lk8IbZtmkGLH2mdQ9+2dLcQtVdmhbDohFObZ2rnfsniORLbtkKJBmA7s1NokTcGIxbIpd2V9X7bdDPMRpA4LmrXeV9SDE7PqL2iQCtFmHZRVeDeDwHfep/5XTQnuEt7+Dz7BgQ3818f/yITmLqywJXvb/D6Nhca6WdnZ0zUCcRTYk5lJFqAi1pn1AHMrRS1uBFARI/0p+OI2ombc4OeETamUSv2Pq/5JTG2lPEjnYF2LnseWPJR1K46Fpdztc1kagMigkQ6tU0jRe0QE8mzrUtKjzVxjETtbKp69X3P2B5cNnZZfbc2F7Wjaqnq74+dfgwvLLyAdCyNV5/zakvH4yUjvUmcQBZzKp84X3or7n+OTSKvO8/4CXqM52qfSHIRqZmorXNq248faQentovxI0bcr4qiyxZm4t5QLxuQTtfEjxzVidquE5aiyKBgxqldLgqhwCmntsH4EUfRRO1Dxh4/34aZ2kGCxJ7ColhQDAKaqO1R9AjA3Cz0PrIy2QiDU7tVpjYJCZlxR34OEe7Uzj3LnJrJTimJJPo389xigxELQYseIUj4Nfq58cKpbTdPm7BShGmX2cPAw58CHv8S8KkrgSMPGv9eJ/K0Cbec2vlF4Ed/xe5f86HGRokRkzsZ9JTywhBgZ1GjU6Bxu5GIIO7UXkywz5XerT2zxMYJgYseAdjciXK1T5voKahlhpdEdg3J906noF+cJFHb65JIws0dMHrMZGoDYvcXLehIDCNF7RATKTJhOdprTdSmTO1seu2WMr1b+9TyKfEPte4pPuG68wBzab/mnNegOx78yehIXxIqInhH4Q+wdOMdyA/vwk8PsQnmNTuNi1lUFnk4ysXTZvEjfGDoiFObxOqGojZlandYUeTcUXY7aMCpDaxxrA5zp/ZUjVN7UhO1PXjvavEj0qntCWYytTU3l2JPKBjaKRzifmy7pPf93FGgvLYUtQpV1Tm1ZfyIJVIZANxttRogt/bkw+zWqzxtwk6udihE7RaZ2lpJpDPnDiXOM7WX2c82ua2D8rSBmtxiA++5oBbjakVcBoVfL0Rtu3nahJUiTLtMPiLuL54Avvg64AcfZYvXrdBE7RfbP45h3e/ValljPX7yd+x3NbgN2PO2xo+zk5FM0SNKtPPLzY1A43YjTm3u1Kz0jAEADp0RY1Byame7A1YSSYxSWaQDorbM0+4c9GWRvju1dWWRbmImUxsQTm23s747EClqhxilyIoqon3WBrQzq2ywUhs/AgB7x/Zi79jetW7t2olmvBvz+Xnc98J9AICbd95s6Vi8JhmLYqArjsfVnTg+fA0ePTKHlUIZI71JXLjeuNhITu2nS+PsCzMHG4u4mlPbyfiRBq9VDkJRJBe1S6vOtRObydQG1ojaWvzIYrWb8ugMm+xvzrrs1K5UpKjtNWac2jSZ78rai2uIxoBbvgy86TP+CMV9G4BoEqgUgYUm5bUAG7CR4B80kaddiETF1sSg5GrPH2OZsEoU2LjH29ceNlncp6fAd/Z0sqjdKlNbK4k815GXo0xtIrmjw5zagHAWGhHugu7UNir8Utanm/Ejjjm1fYgfmeQ7Vfa8HbjkzQBU4MFPAJ9/jTBI1ENVnXVq929m1+NSDjg7Yf/5ACaY/sf/x+6/4k+BaLzxY+l3N33AmKCvR5+nHZGSgyiLNOLUZqJWvJ+Nq/RO7dllNkcLpFMbcKYsUruOdeD1Jqzo40f8zNTWH8uZZ53TGGpRVeuZ2jJ+xDTyChNiSNSO9Vsr72iUqU3cdtFtAIC7Dtwl3Nq1E81EF7596NsoVAo4f/B8XJC9wNKx+MFoHxN8Ty/kcP9+dnK+ZuewqUzl9TxT+8ByF5uoqpXGg4CCPn7E7aJIErUDkKkNiDgUO5TywmFlVdRuUBR5dMaj+JHCEgB+8ZXxI96gObUNOGucyNMmtl4L7PZpkS8SWRO90xD6TKUHqop/JSahEi0SAfyGokfW7fZeIB6x49TmE/822PFlmVaZ2g6WRAIiU5voOKc2IN5zpkTtgC3ikaNx9rAx8VFzaht0kLVCc2rrM7Udcmpnuai9fMa73Szk1N72K8Cv/V/gps8zt/GxR4DbrwKeurP+980eZou90aQzBbvRmPlomVbc/z9ZtN/45cD5r2v+2Mw4O59WisZ7NghZElkNCVvk3mwGF7V7hpnp6fDUsvZPM9ypPdgTVFHbAae2VhIpndodA/0uZw6K6ygVHHt+LDsAKEx0brTrzS6lHFDmJjij19leWRRpFSlqhxk+5k0OWhNgtEztOvEjQAO3ds3kWI2ltYLIG3fc6H7JnoMMc4HzzGIeP+Kitpk8bUA4tU8u5MXgt1Gudl5fFGk3U7tVUWQAMrVjOlHbiQiSs5MAVDY4N5p3bCB+RFVVET/itlObXNqRuL/RMGFCc9YYcWqTqG0jTzsoGC2LnJfRI46glUUGxKntR542YaeYTMaP6OJHHHJqJxJV9+Pj4448b6Cg95yRfM2gxo/0bRDiI5ViN8Pt+JHcvPhZ2XVqJ3vEz3v6oL3nMsLqWbHAMX45u931JuBdDwIbL2NO27veAXzz3WvHBuTSXndRcwe0GTSHowP5r6efAX5xB7t//UdZBnIzIpFqV6MZaEwkRW2GmfgRLmpn17FelWqnNsWPBFTUps/7wnFrhc+AELWzPkTwSdwhM870h0pRnEv8mi/F08Lg5lauNr33lajx8nKtKFKK2maRonZIqZTLoK7G1JC1E0qz+BGC3Np3H+DZ2jUf6l8sT+LQ/CGkY2m8ZutrLB2HX5BT+7Gjszg0tYxoRMGV280tEFCm9sn5VaiaqN0gV1vn1E575tT2UTiNxkRTuBNlkfqSSKOLJyTszR8DSnnh1NYVRc4sF7BcKENRgI0D6XrP4hxa9Eiv8f+DxB5mMrU7aQJH7/2ZVk5tHk/SJ0VtW1ARUlDiR2jr/abLvX9tElCWTplzZZaLIjqro0VtPs5YnV2bsVtcFREFDjncIrr4kcTWrVCiNscfQYScxEYiFoIaPxKJiK36RmI6tAIrh53aKzPsfUmLK73rnHGDexlBcuxnAFRg4Jzq7fEDm4G33Qtc/UeAEmHi8KevBk78QjzGyegRQosAceD//u9/wnaFnv964+f3EROLPnpokba7A8ZETmA0fqS4ql37No6zsdjE7AryJXa+15zaQRW10/1iTGhFMKxUdJnaUtTuGCIRIMuvUSofu/jl1Abcz9XW8rQzxufs5NReOmM+7inkSFE7pCwtzKFSYr/+npEx099frpQxl2cX3Gai9t6xvdgzugfFSpG5tWsmmnceux8AcMOWG9CbaK84hdE+NtH79hNsNf3SzQPIpM25MkgYzxUrWBnkg8Z6oraqaqKaI0WRLZ3aXBiI+uwGdrIskpxLRksiATaZiXezCcDZCQzxrX7TSwWoPINrgru01/WlkIy5PNknUbtRS73EeaxkaneEU9tg/Ijm1A6Ya7HdCJJTO7cgrkN+OLVTfWJCbMatXRDbsw27YtoRWjRTK2tF/5mDAFTmvnUiBgmAkhDjgI6MHgHYTpNEL3OQzRxq/Dh9MW7QnNqArlDRiKjtsFO7axCs8FZl5zGn8rQJM/83u2iLenXOf9EY8Cv/HXjrd9h7YPYQ8JlXAD/9eybGuSJqO+TUPvwAcOD7QCTGsrQNv76JeB49Mn6kmpRBp/Yij+yMpTE0NILeZAwVVUQdzi4FXNQGdLnaFiJIFo6xPqVInGXKSzqH2sV2P+dLTu6AqYfZPG2A/TwiMQAqsHTalcPqVKSoHVJWp8UHJTVo/oQyl59DRa0gokQwkGw+IH73xe8GwN3aSkX7+nxEwb+d+DEA4MadN5o+Br8Z6WWC9FKeWd6vPdf8zzEVj2rbx06n+erlqafWlhYUV9gEFpSpbTd+xKhT28f4EaC1+G4GsyWRAFtZ1cUwUFFkoVzBwir7vU/MeBQ9AgB5vuor87S9w4xT28lMbb8xGj8SZIGnnQiSU/vYo+x6079ZbIX0Giu52iRqR+L+9kG4TTQu3LW1udr66BGHdvPo40c6siQSYD8rbYLb5D2XX9AV4/r02WiGJvwaKIt0WtSORIV4uTwlBNARh7pyzPzf7DL5MLsdv6zxY7ZcCbzrIZZJXSkC3/8IcMeNwMkn2b9veLFzx6N3FFotNatUgPv+mN3f83Yga2KByrJTu4N2rzkBjd1zLZzaPHoEvWNQIhFsHWHj0ENn2LlHxI8EOIaQ3jOnLYjatHCV3cYWkSSdw7AuFi094O9YzSuntpmdSpEI290EyLJIk0hRO6SsTHFRW1ER6TIvxlGedn+yH9FIc3fq3rG9uHT0UhQrRXx27gnt69/t7ka+XMCOgR3YPbTb9DH4DTm1ievOtdbgS7naE5FxlruUO7s2S4m7RCtQsIKkg0WRrTK1O9CpbUbUBqocq6l4FL0pNsCiXG3PSiIBXfyIdGp7hrZd1EAG4nInidp8wjt3ZG3EgZ55Hj8iM7XtQcLSikclaM2gPO1NL/HvGDRnoAWndidHjxCNcrUdLokEqosiE53q1AaMlUXS2CzVH8z3GQm/RibpTovagK7EdEosDow45dT2KH6kXAKOcbd1q50qXYPAr/8z8Nr/w3pgDv2QRSCl+sXCsBMMbmXuvcKSWEg2y9N3AiefYDsSrvmgue+l8/HMQaBUMP590qldjdFMbRK1ecTRtiF2rqFc7cDHjwC6skgLhc/TMnqkY9E7tbut6SaO4bZTe9WCUxvQidoWz/UhRYraIaUwwyZCSgyWyhmN5GnrefdFzK1918zPcToahQrgzj4mFt2046a2KogkRvqEi3msL4Xzxqy5ZylX+/hSRZzsa8siuTNoBSkAinOiNonXelRV5JJ2klNby9Q2ET8CrIlhoLLIaS5qU/zI5qwHE1wpanuPpUztDhC1MxuZ47VcaF5YQqK2dGrbI0hObT/ztAnNGWhiQlwkUbuDo0cIvXioR3NqOydq6zO1k9s61KkNGBNhgr4zRe9mbuboLebEuMpRUVu32EILUlTCaRcqjJs74m7W6Omn2LkkmTEWnaIozPn8uz8CRng3zqaXONt7Eo2LLForAkwxB/zgo+z+Ve83v/CuxfOUWNyKUTRRuwPGRE5gNFN7QTi1AWAbObWnllGpqJhb4U7tngCL2qN0Pn3G/O4CzaktRe2OQ+/U7vFZ1Kbr5fIUsDzj/PNrmdomOyVoF9iidGqbQYraIaV4losvcWuDLnJqGxW1Nbe2WsZnM314KpnAgUQcyWgSr932WkvH4DcjvWKid+25w5aFeXJqn5rPAWO72BdrRW0uZi6r7LHOObXrOKDLOheG31u4SVS369RWVWuZ2sCaGAYqi5xaJFGbCSmeOLVpy6KMH/GOsGZqR6JiV0OjSayqCsFbZmrbIyiZ2uUiL0mDz05tErVNbAvVnNoenIv9hkSplZqJGEUzDJ0Lp6D4EfsYdqgAACAASURBVCUeR2LTuGPPGzi0rchNRMOglkQS2W2swDA/z4qmGkFZn0rE2UVyel/OHGRFr0C1iGGHvvWs46RSEnFybjD5CLsd38u2ghtl5DzgnT8E3vhp4Fc/4fxxaa5CC1vlv//fgfkJVkJ2xbvNf7+iGNvJUAtdz2jRNuyQY5PErkZo8SNM3No2zEwzh6eWsJArolxhIvFAV4BF7aGd7PyyOms+G3iGrmPOLc5KAsLgNrYrHfBf1E72AJlN7P60CxEkVjK1AbFo3sxQJFmDFLVDSnmebTtULWYzmxW1FUXBbRfdBgC4s68Ht/ezD/irtrwKfYn2dJ0OV4na1k/M6zJMYD45nwNGucujtixSVxIJAKmY3UztJg5ovXvbd6e2Q/EjS2fY/1WJABmTk/IaUbvWqe1P/IgUtT0jrJnaQOtc7eVpvqtDEY3dEmsExal96il2rkxlHBVGTUMCztJp40J/mOJHuuo4tStlXhQJR+NHohk2Xkvu2AEl1sH5prQ7YOaQ6BWpJeiidiwpFiObTdK1bdH95oTbVtCC7pEH2W3fRueKrRXFmwgSil8at7BTJZ4CLrrFnTguI4su9fjFV4FHP8Puv+6T1hf9rLz+sszUrsJs/IgmagunNkWP9KZiSNidC7pJPC3GkGbLIrXFWenU7jhiCWEu8zt+BLC3WNgKK5nagIgfkU5tUwT4bChxk8oiG9CqFh2/JGpn08YHKpeNXYYXD5yHoqLgwS4mVt608yZLrx8EkrEoXnH+KHaO9uBlO6yLWOv0Tu1R7tQ+VevUZoLaMthj0wkXndr6yVzUZxeAJr7bFLXJpd230bz7nAZlZyeAchFDfLvf9FIeq4UyznDH9mZPiiKlqO052nbRFqJ2qSAGMJ3g1AZai9oLPHqkZ8T/XR3tTlCc2pqgc4WzYpdZ9A4aoyIKLTyFIn6EYh50RZFzL7BFplhK/OwcIH3JJRj9yEew7i8+6thzBpLedWwxRy03LiMMevwIoIsgaSL8upGnDYj35bFH2a1TedqEkf+bXTSnto/xS/WwIr6cfAL4zvvZ/Ws+COx8lfXXp0UfowKlqoqdJJ2y0G8Xs/EjPIZgU7YL0YiCpXwJz55k35sNcp42YSVXO78oxLxsB8ddhRlaIOsd9fc4AHdFbauZ2rRoLp3appCidkhRl5g4VklYc93M5NhAJZsyLmorioJ3n/dm7e/bKhFcPHyxpdcPCp956x58//evQXfSunuJ4kdOzK8KUXvmAMvAI/hkfVllYnQqZlfUbubU1uVp+5117pRTWyuJ3Gz+e3vXA9Ek2/I6P6k59KcW85icYz+/3lQMmXTc3jEagQbCTjmfJK3RnNqLzXMBafKmRM3npwWVLC+Fa7TVe74NBJ52QXNqz5nPn3SSIORpE2a3u4fJqV2vKJKE2OwORxcklGgUg2/+baQuuMCx5wwkiqKLvWmwkBJ0pzagczM3EOYBF0VtLl5SL4uRTGozkKhNOxKcZv4YW6xVosCGS915DavondJGrhErs8DX3sJ2X26/HrjmQ868vtHy3vwiUOHZ52kZPwJAjN0NO7XZeSYZi2q7QR89wha+A10SSZCofdqEU5vOW90j5h2ukvbgpb8HXPhG4EU3+30k1nfAGCGn2xFlBq0oUoraZpCidljhoraatCbEmS2KJC5b/1JcusrE2pvR25YFkU5D8SOn5nNQe0bZ4E+tVBdkUfwIUkhEI4hEbP7cjDi1o8m1/+Y1ThVFaiWRW8x/byRSVRY5pMWPFDAxQyWRXd68l0nUlkWR3kGZ2mql+fuQxKWurL8OVyeh9/1Mg0xtci3KPG370KRfLbfO23QLVRVObT/ztAmzzfShErW5oUDv1Ka4CQejR0JHq4WUthC1zTi1HRaNancpjThUEkm4HT8y+TC7Hdslrv1BIbudRejl5ltnFFfKwN3vBM4eBfo3A2/6R/vjEvpdzh5uHM+jh+LY4l3h6DkwAjm1c02c2qqqE7XHtC9vHWLXtUdeYJ/dwe4AzNFaYdbdD4gFK5mn3blsuhy4+QvuxDSZRRO1XYwfMe3U1sWP+GlyaTM6ZOYtMc0Km/xVktZWes1mahNKsgd/c2YaHz8zjd+MdsgWfZtQ/MhKoYyFfFlXFqnL1dbFj6Qs5qBX0VTU5g7xWAAGTE47tc2WRBJaDMMRnaidx9FZLmoPeiSiyPgR74nrfrfNIki0PO0OOq/R+37uCFCprP33eR4/YjanXrKWeEos4vmVqz33AhNLInFg/SX+HIMecs0admpT/EgYRG1+nlnRidpTXOjzMwu93Wm1Xb4t4kdoMcjH+BFi2GlRWyfYuzHZn+Ci9vgVzj+3XWJJYICPYVst9P3or4CD/852XP7Gl50pauxdByRbxPPo0UoiZfSIBhlSyvnGCwO5s2IeRo5NANtG2CLLc6faMH5k6rn6Y8h60ILVkIwekXgAmQAWTzhvKCGntulMbb5oXsqJa7WkJVLUDinKKhPj1JS1IkCrojZiKQyqwA3LK4gkQzDxNEAqHsVAF3PMN8zV1sWPpCzmoFehd0DXTgz08SN+o4naNp3aszac2kBVtrA+fmRihi0OjXtREgnoRG3p1PaMSMRYWSQ5Jrs7qBApswmIxNjAql5hSTsIPO2E37na5NJef4k49/rJiMltoQV+nQhDpna9okjp1LaP5tqqI2rnl8SkN9BObe5mXjjWeCHWM1Hb4QWWwa3Crax/7zsFObXHL3P+uZ3AiKtw/73Aj/+a3X/d3wLrdjvz2opi7pxMkWxOCOqdgt6Q0iiChPK00wNssZuzbZjNmWnKNtjTBqL24Fa267e4wnYNGEEriZTXMYkHpDJCRG62EGyFVXJqmxS14ykxH5ARJIaRonZIieTYKrCaNi/GFcoFLBT4SrGJTG0AbFBEE864FLWJMR5BcnJ+FRi9kH3xtE7U5oOfJaScEbVJsFYrQLlY/W+UhRiE4jeniyIHrDq1dfEjXNSeWSoIp7YXJZGA2LIondreopX7NMlBXO5Ap3Y0xrYuA/XLIudl/IijdPksagcpTxsQjtPlKWB5pvXjKX4kHoKt7nSeWZ0DyiWmdGgONykGWEaLWDiydtxBC3uJ3mD3WnQNikWPRtnTbmdqA2xR1OkIj3hKXJOcjiDJLwGnnmL3NwXQqQ20jmSaOQTc/Z/Z/b3vBC66xeHXN9FzQGOirg5a6LdLJCrmwI1coTV52sS24erPUls4taMxschqNIJE3w0hkXiB2ag7o+QsitqAWDivZyiS1EWK2iElUuDCZZf5yd9sjk24Y5EY+qw4RmlrsMxY06AIkpN6p/bpX4ol+SqnthPxI7qffa0LWosfCYJTmx+DHVG7sAIsnWL3bTu1j2gDyUK5gqePswvWZs+d2lLU9hRDTm3K1O6wrba6XQproPiRvgDk4nUCWlmkz07toGy9T/YA/ZvY/XrO2VrClKndNQiA9ziszABLZ9gESomw7F2JNbqHuQinrnXDajtTAuzSJrSYjgYxEW6J2sk+IMrFNqfztAkjmeFWOP4Yi9bo2xCMrNd6aE7tOv/3wjLwtTcD+Xlg/HLgVX/p/OuPtChS1aM5taWoXUWyRVlknTxtYK2o3RZFkYAu0smAqF0pA7O8w2VIitoSj3CjLLJSZudiwHymNiDLIi0gRe2QEskzd67SbV4co+iRbCqLiGLhLUQTzjC4qQwyphe1h89jzeurs2Jwo8vUTjvh1I7G2WsAawVjLX4kCJna/D1SsiFq05a3VMb6NkhdtnAqCvSlYgBYWSTgR/yIFLU9hdxmYcvUBnSidk1ZZKUszk/Sqe0MfsaPrMyKAX2QXIpmcrW1TO0QxI9Eojpn/7SIHhnYEoxrd7uiKOI9VzvBbYeSSILckdMNYircErUVRSzsUlSF02hlkQZync0w+Qi7HQ/ITpV6NHIUqirwrd9jwmH3CHDzF93ZbTli4nxMonZ3hy3020Xb+degLJLGVX3rqr480J2oErLbT9Q28J6Zn2TGqmhSLGhLJG6jnVcdLIvUf76tiNrSqW0aKWqHlEihBABQesw7rS3naROaUzsEbiqDrOei9qn5VeZOpkE7lUXyyfoS0kg6IWorSnWutp5AZmrbELXt5mkDzIkaiQPlArBwQosgAYBYRMH6fg/yZysVoMBFbSsXSIl1wpqpDTR2ai+eYq62SAzoGfX+uDoRP53aJOhktwdLhDCT4RompzYgFtCWp8RkTJZE2mekQcRCO3UItHIzawVWDovaANDD35dOl0QSbjm1KX4pyKL20E4AClvIWtaVxD58O/D0ncyscvMX1giijkG/07kjQDHX/LEyU7s+qRZObcrU7l37O9w6JK5t2e42WbwkUfu0Aaf2NI9Lym5jC7cSiRcY6Sowyyq/xsa7rC0wkqhN4w5JS6SoHVKUYhkAEM2YF8dmVtlAJZu2KN5omdrSqU2ITG0+SKRcbcr3I6e26lCmNtBYMCZROxoAF0Aj4d0MdvO0AZYLNyCyhYd6xGBy40Aa0Yhi/bmNUtANgKVT21vCmqkNVEXvVEEDrd51cvLhFH46tbU87QC5tAGdU1uK2mvQyiKndeVacsu2bRq5UdvJqe1X/AgAvOR9wI5XAue+2vnnBtwRtSsVYPJRdj8onQL1SHTpIpm4AHP0p8D3P8Luv/IvgC1Xuvf6PSPsPaNWWv/8ZfxIfSh+JNfIqc3jEuuI2voIkrYoigTE+XTmAFAqNH8svadkhJbES8ipPT/RfEeuGezkaQO6+BHp1DaKFLVDilKsAACiGfMr6NKp7TxVmdpAda42oAmaS0gh7USmNtBE1A5SprYDTm1N1N5i71h0jtVhnVN7U9aj9zEJqtGE3F7uNWHO1M5uY7ezh0XGP6DL024D12K74KdTe+JhdhuUPG1Cc2rL+JE1dOtFbS5wDUuntm20+JEOELVnDrIi0VrcFLV33wz89r8AaYuT+VbQ/+3sJOtMcYKp51j+abxLjL+Dij7/dfEU8C+3ApUSsOtG4Irb3H1tfTxPqzgJTdTusDGRXVrGj/DzTD1Re0Tv1G4TUTuzkQn5lVLj4lpihhZnZdmxxEO6BllsE+DcYinthrK6s1rGj5hGitphpcjEieSA+RV0faa2JXbdxAZlW6+z9v0dyJgWP1Iraj/NbvP6okinnNqt4kcCIJxqorYdp7YD8SNAtaitc2p7XxJpoZxVYg9DmdqUH9lhTu3MONvSXFwBlk6Lr5NTW+ZpO4dfTu1SnpWkAcCml3j72q0YOhdsu/0MsDTV/LF0nQjLgrkmak+J4jgZP2IfchaerXFtaee8gJYI6smMM2NCuSB6RYhK2b6LzE+6s/xcqa7terDKJF/U23Ap65wJMrRwdeop4OtvZdflkQuA1/89E53dxuhCo3Rq10eLH2kgai/Uz9QGhFO7KxF1bi7oNoqi2/3SIoJE7jiS+IXTudo5GyWRgC5+RBZFGkWK2mGFGzeSg+YFmJkcG6hYdmpf9BvAex4GhuT2IoKc2kv5EhZzRRE/Mn2A5dYVRFFkKuaUqM2d2KWaXLxykDK1SXh3wKk9aCN+BKgStYd02/42eSVq01ZFGT3iPa2c2qW8mKB0WqZ2LAH0j7P7MzoBYb6N8mXbBb+c2iefYOf9riHhzA8KiS4R/dQqV1uLHwlJtBktoM0dEe4+KQbYp2tQ9AToJ7jt5NSORIBsg0JFmmwD7rmp3cbpCBIStYMWv1QPcmo//kUWG5XsA37jy94t5hmNhKJINilqV9MsfqRcApbPsPt1nNoXj/ejOxHFxeNt9rmVorYk6Ayb6G8xAmVqW73G0ud/ddaeBhIipKgdQvK5VVRKbDU/PTxm+vttZ2pL1tCViCGTZu6QU/M5NmlKD7Aitun9mltoCWmkE247tSl+JABb28ipvTrH3EVmqVSAOe5ScsypfaQmfsRrp7YUtT2nVaY2Td4isfZ0vrWiXlnkAo8fyYx7fzydiubUnvP2dSf+g91uusIbp59ZtDgIo6J2SOJHSCw6yn9/PaPtK1IGjeEaN2pxVThP20HUBoQwVCv8UvRIojf4ruRGDDUQ7K1ConaQSyIJem+qLEYSb/pHbxcjjTi1yyWx/T5IxcNBINmkKHL5DPu9KtG6u/6yPUn8x397Ob749stcPkiHobLIZpE1uQVgieeJZ6WoLfGYoDm10wPCXCgjSAwhRe0QsjIzBVTYxLV7xLyobTtTW1IXcmufmM8xYYEiSE4+CRTZZH1ZTSHpeqZ2gJzaQzvZBWFlBnjmHvPfv3iSORAjMaDP5pZhvVNbl2W32TNRm5zaMn7Ec1o5tfV52kEUBe1ST9Sel/EjjtPF822tOLUrFeuvOxFwQYcmG80mxKqqy9QOS/wIFz00l7bMIXWM2rJIcmnHu9pn4ZI+N9M1k3Q387S9gt7rFJtkh6Uz4tq2ca/953Ob4Z0A+Djj6j90r5Cz4evzz8bc0caZ5vQeg9I+nxevaJapTeJVz2jDAu6+VBzxaJvJN5qo3cSpTXnaPWMiokUi8QpN1HbIqa1lals8/ymKLIs0SaDPih/72Mewd+9e9Pb2YmRkBG94wxuwf79DKyghZvmM+HAkMuY/bFLUdgeRq81FZhK1yUEC5tR2Ln6kQV615tQOQKZ2ohu44t3s/o8/YV64oTztzDgQjdk7FsoWLq1iLCK2744PeCxqy8Ge97TK1F7hTu1Oy9MmBnVlkcSCjB9xHHJqF1dY7JRRHv408FfjwL0fMn+OVFW2hR0IXp42MWLAqV3KCedi2ERtQpZEOkftVmR99Ei7LFw2cjNronYbi407b2C3B+4DZo/Yey4aYw+f3x4/k2QvcMPHgJf9V+DaD3v/+j3DfJeIunbBhKAxUbrf/ti700g1iR9pkqfd1tA1fO6FxuNoGT0i8RO65s+94Ezch12nNiDmV9KpbYhAi9oPPPAA3vOe92Dfvn247777UCqV8MpXvhLLy8t+H1pbk5/leV1RFUrUnEC6UlzBSomJoFLUdpZ1GSYyn9TKInmuNh9wlxFFHnEXiiJrndoFdhsNgKgNAJf/Z7ZN9swvgf3/au57ncrTBqqyhbdETqEnGcMF6/rQnfRowC7jR/yjpVObRO0OjWTSnNo8U7uUF6WR7VCa1i6kMmzhDDDm1lZV4P6/BO79I/befPhTwDffxbZ+G2XmINsJE0sB6y6ydtxuQ5ONM8+y/3M9CrpxYTwsmdo1YzDp1HaO2u3y7ZSnTdD7YWp/9eemE5zawzuB7a8AoAKP/JO959LytAO6U6UeV9wGvPx/NHTzuo72+Wiw0KiVRMp54hqaxY+QeFUnT7ut6R4CukfY/UbxDlLUlvhJ9zC/JqrOxFqRqG1noZQWt2RZpCECLWp/73vfw6233ooLL7wQF110ET7/+c9jYmICjz3WeLtZPp/HwsJC1R9JNYVZJsAoFqL0qCQyFU2hKxaSiaNHrNOc2lzUHuNObZ6HmI+kAShIux4/Qk7tAMSPAOwic/nvsvs//uvGokY9yMFjN0+b4OJe99IEfvxH1+Gu217qzPMaQYra/mE0U7tjndoiTx6qKgZYsZQsgXISRRFCE4kCjahUgHs/CDzwv9jfd93IYpae/Brw9d8x7vSmPO0NlwajR6EeQ3y7/eqsiPqphRac4l3+CT1eU3u+kaK2c5DrfeE4m5y2486U7HYACtsGrT+faAVWbSxqA0zYBYDHv1Tf9WqUoMcvBZHazPlaNFFbjg/WYCR+pNNEbaB1WSRl/8s8bYkfKIruvOZAKgRdZ+04tXulqG2GQIvatczPs1WPwcHBho/52Mc+hkwmo/0ZH5clVrWUzjIHmGpBHNWXRCrtsgWzTaD4Ec2pPXweoIjf0arCRGjnndq18SOUqR0QpzYAXPEeIN4NnHyCbTc1Cjm1BxxwagNV2cKD3QnnSjuNoInaMn7Ec8xkanciA5vZuaiwxP6vmsDTRlvx24UuKots4tQuF5kj+5FPs7+/+uPATZ8DfuPLbIfN/u8CX/n1xtt89bSDoJPoEguTjXK1Kds1LNEjAMtqVHTXIBk/4hzpfqCXu7Kn9renUzueBvo3sfv6SXonOLUBYNvLgaFzgcIi8IuvWHuOYg44+Qt2P8jnwKBBZZEtndpS1F5DqplTmxcldlr8CCB2Hze6hs8cZLdycVbiF/TeaxSrZAYtfsSOU5uPNxalqG2EthG1VVXFBz7wAVx11VXYtWtXw8d9+MMfxvz8vPZncnLSw6NsD0rzfEBrQdSWedrusU4TtblzOp7mThuG86J2A6d2OUBFkUR3Ftj7dnb/gf9l3K2tidpbnDmOeoV5XkFOJOnU9h7Dmdodel6MJUXMyOxhURLZTq7FdoFEgEbxI8VV4GtvYY5sJQq86Z/ETpZzXw28+U62CHPkAeCf36gr7GoAObWDmqdNtMrVpviRsESPAEAkIt4vid7OdPf5id5Z2I6iNqCbpD8vvtYporaiAFe8i91/+HagUjb/HCd/AZQLbNcDje8kraGyyEZO7WUStRub0EJLslmmNj/PdOK5XDuf/nLtv1XKwAyPtxvavvbfJRIvoGvA3FH7z5VzwKlN4w1ZFGmIthG13/ve9+LJJ5/EV7/61aaPSyaT6Ovrq/ojqWGJrR5VLIijUtR2jzWZ2oAoiwSw4rSoHWsUP0KidsC2or/kfUxoP/4z4PD9xr5nzp34EV9E7bwUtX3DcKZ2B58X9e/9hWPsvszTdp50E6d2bgH48k3A8/eyc+EtdwC7f736MedcDfzOPcwdcuwR4AuvA5bO1H+tpSmRkz6+17n/gxvoc7XrQZ9N+qyGBTrnDO2QuyacRhNhnmvP+BFAJ2rrMkI7oSiS2H0LO9fNHQGe/zfz3z+p26kiPz/Goc/G2Yn6i/3k1O7kMZFVtEzthbUGHXJqd6SoXdNToOfsBDNUxVJARu6wl/gEaQVkiLODE5natFtMFkUaoi1E7fe973341re+hfvvvx8bN8pJtF0qS2zLk5o0H6pNmdrZlNxS5jQUP7KYK2Epz4u+aLsWgGWVRO2QZWoTvaPApbey+w98vPXjcwtiYO24qH3EXLa3E8j4Ef+ghYTiSn03GMWPdGqmNiDe+zOHpFPbTbq4e7LWqb08DXzxdcDRh5gr9813MWd2PTbuAd72r6yY6fRTwOdfDZyts2ttch+7HT4/+K5No07tMMWPAEI0ktEjzqPPDW5Xp/Zwne3UneLUBlg00Z63sfv7/sH897dD/FIQ6RpsXvwn40caQ/EjUNcaJRY72KlN59Ol08LJT9Ci2+C28HRiSIKHk6K2E5naFEO0eJL16EiaEmhRW1VVvPe978Xdd9+NH/7whzjnHIdycUOOssIuopWEeSeudGq7R08yht5UDIC+LPJF2r8vgYnMzsePtEGmNnHlfwGiCWDip8ALDzV/LF2UurK6QaRN+jcDUFiGI7lzvYKc2k79XyTG0bs/6+Ug0nuhUzO1gRqnNhe1M1LUdhzNqa2LDZk/BnzuBrZVvisL3PodYMtVzZ9n9ELg7d8DMptYVuXnbgCmD1Y/ZoKL2puucO743ULv1K63oBhWUZucPCT6S5yDnIWnngKW+W6HdlvI6+T4EWLvO1kU0wsPst+VUVS12qktMcdIk7JIimSTovZaYilW6gxUR5AUVoS7sxMztZM9fA6FtWWRdH4akiWREh8hUXv5jBhTWqGYE1GudjK1e0YBKECl1LgkXaIRaFH7Pe95D7785S/jK1/5Cnp7e3Hq1CmcOnUKq6urrb9Z0phVJmJWUuZFSxK1s2k5UHGDNbnaOqf2UsVpUZuKIhvEj0QDKGr3rQcueTO7/8BfN3+s0yWRABBPVWcLe4nm1JbxI54TS4pJSL0IkrDFj2hObblzynEog5Sc2tMHgc++Cpg5wH7eb/sesP5iY8+V3Qa8/V4gu4NFxnz+BuDU0+Lf20nUHtrJykpzZ5nTqxYtfiRkovbLPgBc+X7gkrf4fSSdB7nfyXUaTbSfSEei9tlJUabaaaJ2ZgNw4RvY/X23G/++2cNMfI0mjJ9TJQLK1a4XJ6E5tTt4TGQVRdFFkOhMEhQxEO/q3B2ZjSJIZrhTW4raEj9J9wsR2k6uNuVpKxF7kXjROBe2IcsiDRBoUftTn/oU5ufnce2112LdunXan6997Wt+H1pbE+GLAmo6bfp7Z1bZQEU6td1hrDZXu2+DdoJdUJmonXa7KDLITm0AuOr3mcB45AFg8pHGj3M6T5sY5CK5FLXDg6KIgUltfmRhBSjyFf2OFrW3sdvZIzJT2030mdonnwA+9yr2885uZ85rihMwSmYj8LZ72a6f5SngC68BJh9l79uTT7DHtIOoHU+JBcp6Iorm1A5ZpvbwucD1fyYL2dwg2cN2OhB969svd7kry8VrVeTnd5qoDQBXvJvdPvV11hVgBHJpr78kuOPdIKM5tetEQlEnRLstAnkFjePzOqe2Pk+73c4zRtGX7+qh+JEhk+MbicRpnIggoR0XqQwr9LYD7dqQZZEtCbSorapq3T+33nqr34fW1kRyXLRMd5n+XhK1pVPbHdZzp7YWP6IoWlnkQoUNup3L1Candm38SEAztYn+TcBFt7D7zdzadEEadDi2yK+ySJmp7S80Cal1atM222iis383A1sAKEB+XogiMn7EeUicPPUk8IXXsvfX2G7m0O63WKDUMwy89Ttsi31uHvjSrwE/+VugUgR6xsSW4KDTLFebrmNhc2pL3EUf69Ju0SMAG0MOccf51H4WudGJovbGPcDGvUC5APzsc8a+h3aqyOgRa2iu2zrnYy2STS621SWlK4skyKndiXnaBO0+rl2YJlE7u93b45FIanFC1HYiT5ugiDmKfZQ0JNCitsQdIoUCu9NtztGkqqrM1HaZMS1+JCe+yLNTD5VYKYvzmdqNnNoBFbUB4KoPsG09B+8Djj9e/zGzbjm1fRC1K2UhpnaycBpkNKd2Taa2Fj0y3Lnuuh24PwAAIABJREFUGoA5ZfWiTqLXmQGbpBpyai+eZBPezVeyDO0emyWk6X7gLd8Atl7HdhY88Ffs65uuaJ/3LcVB1HVqU/yI+cV6iaQh5EYF2q8kkqAt/dMH2PVL5WXHnSRqA8AVt7HbRz8jxrHNkHna9qCeg4Vja7OhS3xe0cm71+xA43j9z00ro+1gUXtEF1lD3RirZ0VngYwfkfiNo05tG3nahL4sUtIUKWqHkEihCABQus3FGCwWF1GoMEE8m5JObTdYk6kNAC/7ryi+40f4WvkaAB5kalO5Qcx8kahnZLcBL7qZ3f/xJ+o/xo1MbcAfUVsvpMr4EX9IclG71qm9HKJCJP2uB+nSdgf9+2jHq4A33+Xc4kGiG/itrwHnvVZ8rR2iRwjKcJ3av/bfwho/InGXYb1Tu11FbV1ZJGV9xlLC2NApnP96tvC6fAZ4+u7mj12dEzs+pKhtjXS/cBXrz8n6DHp5Pq5P3Uxtih8Z8/54vCK7g8VH5ueF83SGF1j3rpPzG4n/OCJqO+jUpnGHjB9piRS1Q4hSKAEAor3mPmzk0u6N9yIVZBdvG0OZ2qf0Tu1YAqvDu6Dyj6tz8SP8d1iqdWoHPH6EeNkfAFCA/d+tLj8DgHIJmJ9k9zvBqU0D31gq2IsNnYyWgdggfqTbppO2HaD3PtCeW/HbgaGdwO5bgJe8F7jlDueFp1gSuPmLwN7/xHLSz3+9s8/vJlqGq87lRWiitowfkThIu8ePADpR+0BnRo8Q0Thw2TvZ/X3/sPYcoWfyUXY7uM3+LpgwM6w7JxNaSWS2fXYBeU3d+BHu1O5t08UzI8QSTNgGxI6r6efZrXRpS4KAk07ttANObTofyKLIlkhRO4REihUAQDRj7sMm87TdZ329+BEAuQLbLqooQCLqlKjdpkWRxPBO0Xj/449X/9vCMaBSAqJJ5/Pp6IKXOyvKcNyGBr7SxeAfiUZObV5KFYZtttlt4r50artDJAK86dPAq/4nE2ncIBoDfvV/A7/3eHv9HrM7WOxUbl642ggpakvcYGgnAC7MtatTm8plZw6InUVObIsOIi9+KxBLs06Coz9t/DgZPeIMWpyELld7JUS716xCY/lcvaLIDnZqA+I9c/qX7FaWREqCBM3xzx4FKhVrz+FkprZWFClF7VZIUTuMcFE71m+uwEOK2u5Dmdrzq0WscEc9AOT47ywdj0JxyvmgL4okR4uqtkemNnH1H7LbZ+6p3v6oRY9stt88XEuiWwjllNvtNlpJpBS1fUNzajfJ1O50qpzaG/07Dkk4iafEe3CqJldby9SW290lDpLo0sq6tcLFdqN/M4uCKOWAU0+xr3WiUxtgxYQX/ya7v+8fGj+ORO1NUtS2RV2nNjd7SFG7MfXiR7RM7TZdPDOKVjBa49TOSqe2JABkNgJKlF0vl05bew4tfsRBp7aMH2mJFLXDCNdKE4PmnIWyJNJ9elNx9CRjAKojSHIl5tR2LE8bEE5ttcIa4wGgXATABe5oG8RcjF7I82HV6mxtt0oiCa8jSKSo7T8NndohciXpRe12cvhKOgcSUfTOQEA6tSXuccsdwFu/LRzP7UYkCmS3s/uTj7DbThW1AeDyd7Hb575b33hQLgLHH2P3pVPbHnWd2rr4EUl9NJMEd2qrqs6p3cFFkYDuPfMMu6VMbRk/IgkC0TgTtgHrESSOZmrz80Fhca2pSlKFFLVDhlqpQGU9kUgPjZr6Xilqe8NYnQiSVR4/koo5+JElpzbA3NqAyNMG2sOpDQBX/wG7ffpOYOYQu+9WSSRBhXmeidoUP9LnzetJ1kJFkWHO1NZ/nto1X1bS3tCEeI1TW4raEpcY2Aycc7XfR2EP2tpPDuVOFrWHzwW2vwKACjzyT2v//dRTbMybyrSv+z4oDPOf3+IJseU+TAv9VqnN1F6dA8p8l2ynx4+Mcqf21H62M5jmbVLUlgQFu7naTmZqJ3vF3F+6tZsiRe2QsbwwB7XMfu1dw+ZE7ZkcW32Xora7rKsjaueKLji1o3HWQg2IXG2KHgGCn6lNrL8E2PFK5jh/8G/Y1+Y6zKmdk6K278hMbbYVf+QCdt7QF6hJJF7Ryqkdl6K2RLIGErVpEdaJyXaQueI2dvv4l6pziwHhVt94mfPxdGEjlREL3FP8nExO7TCMiayS5A5Oem8ucrGqK9s+cy+r9G9hufflPHD4R0ClyP4uI+0kQUETtS1GjK46GD8CiN0bC8edeb4ORV7NQ8bKGZEP1GXRqZ1NydV3NyFR+9S8KHDMlVimtqOiNqDL1eavRU6BaKK9Wsuv/iN2++T/D8wdFaurg245tWX8SOhomKlNE7gQOLUB4HfuAW77aee7iSTBRHNqPye6IADp1JZImlFbwtbJTm0A2PZy5sIuLAK/+Er1v03uY7cyT9sZtIVGvntGxo+0pjZ+hByYnR49ArCFpBH+nnnmHnab3S4XmCTBwSmntlOiNkWQLEqndjPkGSRkrM7wzK6IikjKXLyELIr0hrEMy7quGz8Sd/gjS7natU7tdokeIcb3AluvAyol4KH/A8y+wL7utlN7+nmgUnbnNfSQkJqSTm3faOXUDssErmdEbDmWSLwmu52V+OQXqtvgpagtkTSmdmt/p4vaigJcwbO1H75djNNUFZjgESwyT9sZ9AuNgE7UHvTneNqBVE1R5GKIRG0AGLmQ3T73XXYro0ckQcK2qO1gpjagK4s80fxxIUeK2iEjP8MEGCUGKCaduDJT2xvqxY/k3SiKBIR4rYna/DXbcfvbNdyt/fN/BvJ8lbR/szuvNXw+u1jlzgJHf+rOa+jRMrWlU9s36mVqF5aBEv/shMWpLZH4SSwJZLex+5SrXSmLzyEtPkkkEkHYRG0A2H0Lc8rNHQGe/zf2tfljLP9ZiQIbLvX3+DoFrfiv1qkt54oNobF8bfxIWHbA0XuGxD8pakuCRJAytQGgj4va0qndFClqh4ziHB9sxM0J2hW1gtncLAApartNs0zttGvxI1QU2aZObQDY/FJg81XMrQ0APWMsA9gNYgng/Nez+0/f6c5r6JHxI/5Tz6lNLu1YSjpEJRKvqM3VJpc2ID+HEkk9Et1AZlz8PQyidqIL2PM2dn/fP7BbKspct1ueK5xiuJFTOyS716yQbODUJvGq06ntZKmNR5JI/IRE7aXTQGHF3PdWKmKxyimn9t53AO/9GXD9nzvzfB2KFLVDRuksE6ZVkzEWZ/NnUVaZsDqQCsFg2EfW8fiRqkztoluZ2g3iR6IJZ1/HK675Q3HfregRYteN7PaZe4By0d3Xkk5t/9EyEPWiti5Pu50y6CWSdkbb7s6dgSRqK9H23GUkkXiB3g3Z6UWRxN53svPCCw8Cp54SoraMHnEOiiNbOg2szLI/gBS1m0HxI6VVNn9YCJtT+4Lqv2e3+3McEkk90gOizPXsUXPfm18AwPtenBK1+9az67dciG2KFLVDRmWRbfUxK2pT9MhAcgDxSNzx45IIxrhTe26lqDm0V/lt0vFM7VqnNsWPtKFTGwDOuYY12gPulURqr3U10D0CrM4Bh+5397U0p7ZDF0iJeTSntq4oMmx52hJJECARpdapneiRi0sSSSOGdF0IYXBqA0BmA3DhG9j9fbcDE7wkUorazpHsATKb2P2JfQA3QMlxURMSOoNKflEXPxISp3bvWPU5SIrakiChKMAAjy81G0FCkTqxtDRZeIwUtUOGusQcn2oiZur7SNSWJZHu05eKoSvBHNkUQULitmdO7XY9ESsK8Kv/mwnOe97h7mtFomKy9PRd7r5WTjq1fadepvYKOy/KPG2JxEO07e77WfFbkURtl+KmJJJOoMqpHRJRGwCueDe7ferrwOmn2X0pajvLCI+EeuEhdpvsYzF9kvpEY0Ccuy5z8+HL1FYU4dbu2yDG1xJJULCaq+10nrbEMFLUDhtLTJCpJMwNNmZW2TZ7maftPoqi6HK1mdhM8SPOZ2qTqM2d2uU2ztQm1u0G3vptYHyv+6+16yZ2+9x3xMKAG8hMbf8hp3alKBZ/yKndLc+LEolnZLcDkRjbNbFwXOfUllszJZKGUG6tEhWZvmFg4x5g416gXADUCssWz2zw+6g6C+o5OMpF7a5B/46lXaDx/OossHSG3Q9LpjYgYsRkSaQkiFgVtVe5U9up6BGJYaSoHTKUVTb5qyTNOXFJ1JZObW8Qudq1Tm234kdqndrSYWGIjXvZBKmwBBz4vnuvQ6J2KkQT0aCR0DlJyK29TE5tKWpLJJ4RSwCD29j9M89JUVsiMcK63UB6ENhwafhieq64Tdwfv8y/4+hUSKA8+SS7ldEjraHx/MwhACpbqO0K0Vhy+yvY7dZr/TwKiaQ+dp3aKenU9hopaoeNVSZeqilzTlyKHxlKheiC6yNjmlO7RtSOueTUpiztds/U9ppIBNj1Jnb/qTvdex1ZFOk/0RjLSANErjaJ2mGaiEgkQYC2u089yxYVgeqFJ4lEUk0qA7z/KeDW7/p9JN5z/utZzAEAjF/h77F0IuTUpoI0OSZqDY3np/az254xNqcIC+e+GvjgC8BVv+/3kUgka7Esakuntl+E6OwpAYBIjovaXWlT3zed46K2jB/xBIofqXVqpxMux4+0e6a2H+y6kd0e+L7IvnaSckn8fsK0ZTiIaLnaXNSWmdoSiT9QrrZ0akskxkn2hHMnXjQOvPF24MVvBS7+Lb+PpvMYPheAzv0vndqtofH8NBe1w5KnrSdM2f6S9kIvaquq8e+Tmdq+IUXtkBHJFwAAatrc5E/Gj3jLWINM7aRXRZFRKWobZmw3kN3BXO77/9X55ydXMCCd2n6TqCmLlJnaEok/VDm1pagtkUhacM7VwOv/TpbSuUGiGxjYLP4uM7VbQ/EjU8+z2751/h2LRCKpJjMOKBE2t186bfz7ZKa2b0hRO2RECkzUVnrMDeoofkSK2t6wnmdqU/zIqhY/4nSmdq1Tm+JHpKhtGEURbu2n73L++ckVHEszt5HEP2gyTHEHy2yxT4raEonHkFN7ar84R0pRWyKRSPyBzsmAHBMZgUwqs4fYbW+ISiIlkqATSwB9G9l9MxEkMlPbN6SoHTIi+RK77TEXY0BObRk/4g1jnsWPNCqKlJnapiBR+9APgZVZZ587J/O0A0OC/w7yi2w7Gjm1ZX6kROIt2W1AJM4WmKa50y0uRW2JRCLxBdo9A8j4ESMkuZOzwubloYwfkUiCDO0+MSVqS6e2X0hRO2QoXByN9BpfQSpWipjLzwGQorZXUKb2zHIBuWIZuRKLH3GtKJJE7bLM1LbE8E5g7EVscPrMPc4+N7kQpajtP3qndmFJfF6kK0ki8ZZoHMhuZ/eP/YzdSqe2RCKR+IPeqS1F7dbUjun7pFNbIgkUVsoiZaa2b0hRO2QoPJs51m+8nGEuxwTtqBJFf1J+SL0gk44jFWcfz9MLOeQKPH7E8UxtcmrLokjb7LqJ3TodQUKidkqWRPqOPlObXNrxbimmSSR+QM5A2r4tP4cSiUTiD1VObbnQ35LaMb10akskwcKKqC0ztX1Ditpho8QaXBMDxlfRKU97MDWIiCLfMl6gKEpVrnauRKK2W5naFD9CmdoyfsQ0u97Ebl94CFg46dzz5mX8SGDQO7W1PG3pSJJIfEHvDATEopNEIpFIvGVoJytWA6RT2wjJWlFbOrUlkkBhx6ktRW3PkQpl2Ciym2R2xPC3kKgto0e8RZ+rTZnajju1Y7WitnRqW6Z/EzB+OQAV+OU3nHteTdSWTm3fod9BflE4tbuH/TseiSTMDJ9b/Xfp1JZIJBJ/iKeBq/8I2H0L6zyQNKfWqCKd2hJJsBg4h91aytSWyQZeI0XtEFHI51ApKQCAriHjojaVRGbTcuXdS0jUPjmfw6pr8SONRG3p1LYEFUY6GUEiM7WDQ0Ln1F5hi31ym61E4hMjtU5tKWpLJBKJb1z3YeBNnwYUxe8jCT76+JFEj4wYlEiCxiAXtRdPCp2kFdKp7RtS1A4Ry9OnAZUNNLpH1xn+vpkcE7WlU9tb1mmi9qooinQ8foQytWtE7WjC2dcJCxe8gW2/PP4zYPaIM8+pidpywOs7yTqZ2tKpLZH4w+BWIBIXf5fxIxKJRCJpB/RjeunSlkiCR3pAfE7PTrR+fDEnYlxlUaTnSFE7RKxM/T/27js6qgJ94/hzM8mkE5KQYkgoEQihCkQQRMoKBLGAsmJB6a4oKIgggmUpLh0UQdq6Cx4rFmAVFUU6COgPxQaCKCGCIMVAaOn398eQMUOABElyk5nv55w5ubll5p3BG5Nn3nnvIeeyPaT4F4rMHz8S7kendlm66txM7d+On1XWuVDbv9Q6tfMvFMlM7SsSHCXVuMGx/MOSkrnPDGZqlxt2ZmoD5YbNR6pS+8/v7QHW1QIAQHG5hNrFbzQDUEYMQwqt7lguzgiS/C5tGZKdv9nLGqG2B8k45ugsNLxNGV7F/6dnprY18ju1U46dca4ru/EjzNT+y/JHkHxXQiNIGD9SfuT/GzBTGygfIur+ucz4EQBARVDwd3pCbaB8upyLRTrnaYdIl5GzoWTwinuQrD/OhTA+l97vfITa1sifqZ1aqqF2/viRM5JpSrmE2lcs8VbHR+IP/yAd3nnl95d/oUjm7VmPmdpA+VJwrjbjRwAAFUHB3+krEWoD5dJlhdrM07YSobYHyTn+h2PB5/Iu4MGFIq2RP34kK9cxesTHZsjmVcIXX8nv1Jbp6NJ2jh8h1P7LAsKkWjc6lkvigpH5oTYzta3HTG2gfKFTGwBQ0fgESMa5RiU6tYHy6XJC7bPnOrWZp20JQm0PkpueJkkyL7Pbl1DbGqEBPvL1/vMULfEubalAqC0p52yB8SPM1L4iDf7u+Pr9e44O+CvB+JHyg5naQPni0qlNqA0AqAAM48/f6wm1gfKJTu0Kg1Dbg+SlOzo+8y4jHM3IydDJbEeoxviRsmUYhnOutlRKobbNR/LydixnE2qXmISbJG9/6Y9fpN++vrL7ItQuP5wztenUBsqFsHgppokUey2fZgEAVBxBkY6v+RejA1C+hNZ0fE1LKbpJzTlTm05tKxBqexDztCPUNu3FH6p9LMPRjWj3sivYh1CtrEW7hNqldLo652oXCLVt9tJ5LE/hGyQldHYsX+kIEmeoTWBjOWen9kkpL9uxzExtwDpeNumBNVK/Tx2dbwAAVAS3zpRumiJddY3VlQC4kJA4SYbj2mP5zUwXU/BCkShzhNoexDh9SpKU51v8wLLgRSIN/mAsc/lztSXJvzQ6taU/R5BknykwU5tO7SvWoLvj6w9Lpby8v34/GfkztXlTyXK+512Izh4s+XCuAJYyDK40DwCoWKq3klo8yBuyQHnlbZdCYh3LRY0gyR8/wkxtS/BXgAcxzp6RJOX5Ff8igPnztBk9Yo3o0h4/IhUItQuOH+FCkVesVkdHd3X6AenXLX/tPnKzHbPOJULt8sAnQDIK/G+TedoAAAAA4H6KO1f7LJ3aViLU9iBGxrkuXD//S+9YQH6ndph/WGmUhCLEFAy1vUsr1D43fiTrtJTLTO0S4+Mn1b3FsfxXR5Dkjx6RGD9SHhjGnyNIJOZpAwAAAIA7yp95X9xObWZqW4JQ24N4nQu1Tf+AYh9Dp7a1oguMH/EttZna5x4j86RknhuT4c1M7RLRMH8EyTIpN+fyj888N3rEJ0CyeZdcXfjrCobazNMGAAAAAPdT3E5tLhRpKUJtD+KVmeVYCAy69I4FFJypjbJ3VYFO7dKbqX3uTY6zaX+uo1O7ZNRsKwWES2eOSnvXXf7xzotEMnqk3Cg4VzuQn4sAAAAA4HZCazq+MlO7XCPU9iBeWdmSJCOo+AHZsYxzndp+hDdWKNOZ2vnvMEqSjZnaJcLmI9Xr5lj+KyNICLXLHzuhNgAAAAC4NWZqVwiE2h7EyHaMP/AKLv7Jlt+pHe7PBdGsEB5ol93mOE39Smv8SH5Xdv4PYy8fyYsfDSWmwbkRJDs/+PNCnMXlDLWZp11u+DJTGwAAAADcWn6onf6blJ1x8f2YqW0pkisPYmQ75iV7hRT/ZGP8iLUMw3B2a5fZ+BFGj5Ssai2l4BjHfOyfVl7esRnnZmrTqV1+2Av8WzBTGwAAAADcT0D4uU/pmtKJXy+8T15egVCbTm0rEGp7ECPLlCTZKxev69o0TeeFIunUtk5+qF3q40ecoTajR0qUl5fU4A7H8uWOIMkk1C53mKkNAAAAAO7NMIoeQZJ1UpIjZyPUtgahtifJORdqhxYvoD6Tc0YZuY6PWYT7EWpbJf9ikb6l3amdP1ObTu2Slz+CZNfHUuap4h+XP36E/0GWH8zUBgAAAAD3V1SofbZAhuJDjmIFQm0PYeblycwxJEl+VaKKdUz+6JEA7wAF5AefKHPdmlRVQlSwOiRGls4DFOrUtpfO43iymCaOqyfnnJU+n/Xna10UOrXLH2ZqAwAAAID7KyrUZp625bytLgBl40x6msxcR6jtf5mhNvO0rdU+IVLtE0op0JYuEGrzDmOJMwyp4Z3S+inSukmOr3EtpNodpdrJUlR9xz7nc14oklC73GCmNgAAAAC4vyJD7XOd2nyy2jKE2h7i9JFDzuWgiOhiHUOo7SGcF4o89y4jM7VLR6tHpLxsadcK6chOKXWz47ZqnONCkrU7SnWSpZpt/+wGdobalayrG67y/218Q/hUAwAAAAC4q+J2avvTqW0VQm0PcfbIYceClymbf/E6cblIpIfI79TOPPcD2UaoXSr8KkkdxjhuafukPSuln1ZKv6yTTv4mffWK42azS9Wvl2p3cuwn0aldnuT/WzBPGwAAAADcV8FQ2zQLf7r6LJ3aViPU9hBZxxyhtuFT/GPyO7W5SKSbyw+189GpXfpCq0vXDnDcss9KKZuknz6VfvrE8T/MX9Y4bvkItcuP/JEjlWKsrQMAAAAAUHpC4iQZUtYp6cyxwo1NzNS2HKG2h8hKO+a4Kqj3Beb2XsSxDEenNuNH3FyhUJuZ2mXKx1+q3cFxMydLx/acC7g/dYTdZq50VWOrq0S+q/8mtX/a8e8FAAAAAHBPPn6OZqb0A47ms0KhNp3aViPU9hA56WmySzJ9vIp9DDO1PUT+TO18dGpbxzCkKrUdt5aDHDO1c7OlgDCrK0M+b7vUdoTVVQAAAAAASltojT9D7dgk123M1LZc8RNOVGh56Y53kEx78f/J82dqE2q7OcaPlF++wQTaAAAAAABYwTlXe2/hbczUthyhtocwT6ZLkvLsxR+q7ZypzYUi3RuhNgAAAAAAgKuCF4s8HzO1LUeo7SlOn5QkmcUMtfPMPGZqe4pC40eYqQ0AAAAAADycM9TeV3gbM7UtR6jtKc6cliTl+RavCzc9M105eTmSpDA/xh+4NS4UCQAAAAAA4Ko4ndrM1LYMobaHMM6elSSZfsULtfO7tEN8Q2S32UutLpQD3ueF2vx7AwAAAAAAT5cfap/YL+VkuW5jprblCLU9hFfGuVDbP6CIPR2c87T9mKft9ujUBgAAAAAAcBUYcW5kqymd+NV1GzO1LedtdQEoG16ZjneUzIDAYu2fH2ozT9sDcKFIAHA7ubm5ys7OtroMACXEx8dHNpvN6jIAAPAshuHo1j68Q0rbK4Vf7VifkynlOJpH6dS2DqG2h/DKcoTaRmBQsfZ3dmr706nt9mw+kpePlHcu/CDUBoAK7dSpU9q/f79M07S6FAAlxDAMxcbGKiioeL/LAwCAEuIMtVP+XJffpS1D8q1kQVGQCLU9hpHluOijEVS8d5DyZ2rTqe0hfAKkzHM/lAm1AaDCys3N1f79+xUQEKCIiAgZhmF1SQCukGmaOnLkiPbv36/atWvTsQ0AQFm60MUinfO0K0leTHa2CqG2h/DKzpUpyVapmKH2WUeozUxtD+HjXyDUZqY2AFRU2dnZMk1TERER8vf3L/oAABVCRESEUlJSlJ2dTagNAEBZulCozTztcoG3EzyEkZ0nSfIOCS3W/szU9jAF52rTqQ0AFR4d2oB74ZwGAMAiFwy18zu1madtJUJtT5HtmKvpE1a8kJpQ28P4BPy5bCPUBgAAAAAA+DPU3iflX7PG2alNqG0lQm0PYTpGass3LKJY++ePHyHU9hA+BUaOMH4EAAAAAABAqlzN8TUzXTqb5ljO/+rP+BErEWp7gOysTJnZjo8s+leJKnL/3LxcpWU6TtBwf2Zqe4SCndqMHwEAAAAAAHCMaw2+yrGcttfxlU7tcoFQ2wOcOvK7JEeoHRgVXeT+aZlpyjPz5GV4KdS3eDO4UcG5zNSmUxsAULb69OkjwzAK3Tp37mx1aQAAAPB058/Vds7UplPbSt5WF4DSd/bwQceCYcqvcliR++fP0w71DZXNi6urewSXUNtuXR0AAI/VuXNnLVy40GWdry+fHgIAAIDFQmtIqZsLhNr5ndqE2laiU9sDZBw7LEkyvIt35XTmaXsgl/EjdGoDgLswTVNnsnIsuZn5F9IpJl9fX0VHR7vcQkMdnxgzDEMvv/yybr/9dgUEBKh27dp6//33ncderNN77dq1GjdunBo2bFjo8Zo1a6Znn33WeXy3bt00YcIERUVFqXLlyho7dqxycnI0YsQIhYWFKTY2Vv/9739d7uPAgQO66667FBoaqvDwcHXt2lUpKSmX+a8EAACAcu38Tu2z5zq1maltKTq1PUBmmqPzWj7F2z+/U5tQ24O4dGrTFQcA7uJsdq7qPfuJJY+9Y1yyAuwl96vm2LFjNWXKFE2dOlWzZs1Sz549tW/fPoWFhWnmzJmaNGmSc99JkybpzTffVN26dVWrVi2NHTtWX375pa699lpJ0rfffquvv/5a77zzjvOY1atXKzY2VuvXr9emTZvUv39/bd68WW3atNHWrVu1ePFiDRw4UB07dlRcXJzOnDmj9u3b64YbbtD69evl7e2t5557Tp07d9a3334ru51PPgElmjp4AAAgAElEQVQAALiFQuNHmKldHtCp7QFyj//hWPAuuktb+jPU5iKRHqRgp7aNUBsAUPaWL1+uoKAgl9v48eOd2/v06aN77rlHtWrV0oQJE3T69Gl98cUXkqSQkBBnd/fnn3+uefPm6b333lN0dLRiY2OVnJzsMtpk4cKFatu2reLj453rwsLC9OKLLyohIUH9+vVTQkKCzpw5o9GjR6t27doaNWqU7Ha7Nm3aJEl666235OXlpZdfflkNGzZUYmKiFi5cqNTUVK1du7ZsXjQAAACUPmZql0t0anuA3BNpskkyfYo3H5tQ2wPRqQ0Absnfx6Yd45Ite+zL0b59e82dO9dlXVjYn9cCadSokXM5MDBQwcHBOnz4sMv+X3/9tXr16qWXXnpJrVu3dq5/4IEH1K9fP82YMUM2m02vv/66pk+f7nJs/fr15eX1Z79HVFSUGjRo4PzeZrMpPDzc+Zjbtm3Tnj17FBwc7HI/GRkZ+vnnny/ruQMAAKAcyw+1T+yXcrPp1C4nCLU9QN5Jx8mWZy/eH5fHMs7N1PZj/IjHKDhHm5naAOA2DMMo0REgpSkwMFC1atW66HYfH9c5aoZhKC8vz/n9oUOHdNttt6l///7q37+/y7633nqrfH19tXTpUvn6+iozM1Pdu3cv8v4v9Zh5eXlq1qyZXn/99UK1RkREXOKZAgAAoEIJinJkJTkZ0olfmaldTlSMv3JwRcxTJx1f7cUbqs2FIj2Qy4Ui6dQGAFQsGRkZ6tq1q+rWrasZM2YU2u7t7a3evXtr4cKF8vX11d13362AgIAL3FPxNW3aVIsXL1ZkZKQqVap0RfcFAACAcswwHN3aR36U/vhFykx3rKdT21KE2p7gzClJUp5v8S5YxPgRD5Q/fsTLW/K6vI+LAwBQEjIzM3Xo0CGXdd7e3qpSpeg32R988EH9+uuvWrVqlY4cOeJcHxYW5rxg44ABA5SYmChJzrnYV6Jnz56aOnWqunbtqnHjxik2NlapqalasmSJRowYodjY2Ct+DAAAAJQT+aH2oe8l89ynBZmpbSlCbQ9gnDkjScrzLV4Hbn6oTae2B8nv1Gb0CADAIitWrNBVV13lsi4hIUE//vhjkceuW7dOBw8eVL169VzWr1mzRu3atZMk1a5dW61atdKxY8fUokWLK643ICBA69ev18iRI3XHHXfo5MmTqlq1qm688UY6twEAANxN/lztg984vtp8JR8yFCsRansAIyNDkmT6+xexp5SVm6X0LMfHKAi1PUh+pzajRwAAFli0aJEWLVp00e2maRZad/z4cedySkpKkY9hmqZ+//13Pfjggxd8/POtXbu20LrzHyc6OlqvvPJKkY8NAACACs4Zam93fGWetuUItT2AlzPULnp25B8Zf0iSvL28VclOl5HHoFMbAODGDh8+rFdffVUHDhxQ3759rS4HAAAAFU1+qP3HL46vzNO2HKG2B/DKynIsBAQVua9znrZfuAzDKM2yUJ7YAx1ffYru5gcAoKKJiopSlSpVtGDBAoWGhlpdDgAAACqa/FA7H/O0LUeo7QGMrGzH1+DgIvdlnraHik2SGvaQ4ttZXQkAACXuQuNLAAAAgGKrXN31ezq1LUeo7QG8snIdX4OLPuGOnT0miVDb49h8pO7/troKAAAAAACA8sceIAVFSad+d3zPTG3LeVldAEqfke0Itb0rFX3C0akNAAAAAAAAnKfgCBI6tS1HqO0BjGzHR269K4cXuW9+qB3mF1aqNQEAAAAAAAAVhkuoTae21Qi1PcG5UNseVnT39bEMxo8AAAAAAAAALujULlcItd2cmZcnM8eQJPmFRxa5PzO1AQAAAAAAgPMUDLWZqW05Qm03l3HyhMw8R6gdEBld5P7M1AYAAAAAAADOQ6d2uUKo7eZO/X7QuRwUUfxQO9y/6PnbAAAAsE5KSooMw9D27dutLsWj9enTR926dbO6DAAAUNqYqV2uEGq7uYxjv0uSDJspm6/vJff9/fTvOpNzRhKd2gAAoOz06dNHhmEUunXu3Nnq0krN6dOnNXLkSMXHx8vPz08RERFq166dli9fXmY1lHQovnbtWhmGoePHj5fI/RX03nvvqV27dgoJCVFQUJAaNWqkcePG6Y8//ijxxwIAALigoGjJdi5bo1PbcoTabi7j6GHHgnfR+y7ds1SS1DSyqQJ9AkuxKgAAAFedO3fWwYMHXW5vvvmm1WWVmoEDB2rZsmWaPXu2fvzxR61YsULdu3fXsWPHrC6tkKysLEsf/6mnntJdd92la6+9Vh9//LG+//57TZ8+Xd98841effVVS2sDAAAexMtLavmwVLOtFFXf6mo8HqG2m8s+fu4PIx/jkvvl5OXo3d3vSpJ6JPQo7bIAAEBZME0p67Q1N9O8rFJ9fX0VHR3tcgsNDZUkGYahl19+WbfffrsCAgJUu3Ztvf/++85jL9bpvXbtWo0bN04NGzYs9HjNmjXTs88+6zy+W7dumjBhgqKiolS5cmWNHTtWOTk5GjFihMLCwhQbG6v//ve/Lvdx4MAB3XXXXQoNDVV4eLi6du2qlJSUYj3fDz74QKNHj1aXLl1Uo0YNNWvWTI888oh69+7t3McwDC1btszluMqVK2vRokUu63788Ue1atVKfn5+ql+/vtauXevclpaWpp49eyoiIkL+/v6qXbu2Fi5cKEmqWbOmJKlJkyYyDEPt2rVzeT0mTpyomJgY1alTR5L02muvKSkpScHBwYqOjta9996rw4cdDRQpKSlq3769JCk0NFSGYahPnz6SJNM0NWXKFMXHx8vf31+NGzfWu+++W6zX6YsvvtCECRM0ffp0TZ06Va1atVKNGjXUsWNHvffeey6v19y5c3X11VfLbrcrISGhUOBtGIbmz5+vW265RQEBAUpMTNTmzZu1Z88etWvXToGBgWrZsqV+/vln5zFjxozRNddco/nz5ysuLk4BAQG68847L9mNXtTzHTdunGJiYlzewLjtttvUpk0b5eXlFet1AQAAFukwRur9vmTzsboSj1eM/l1UZDnH/5CPJLOIUHvD/g36/czvCvUNVcfqHcumOAAAULqyz0gTYqx57NG/SfaS++TX2LFjNWXKFE2dOlWzZs1Sz549tW/fPoWFhWnmzJmaNGmSc99JkybpzTffVN26dVWrVi2NHTtWX375pa699lpJ0rfffquvv/5a77zzjvOY1atXKzY2VuvXr9emTZvUv39/bd68WW3atNHWrVu1ePFiDRw4UB07dlRcXJzOnDmj9u3b64YbbtD69evl7e2t5557Tp07d9a3334ru91+yecTHR2tjz76SHfccYeCg4Ov6LUZMWKEXnjhBdWrV08zZszQbbfdpr179yo8PFzPPPOMduzYoY8//lhVqlTRnj17dPbsWUmOwLh58+b67LPPVL9+fZeaV61apUqVKmnlypUyz71BkZWVpfHjxyshIUGHDx/WY489pj59+uijjz5SXFyc3nvvPXXv3l27du1SpUqV5O/vL0l6+umntWTJEs2dO1e1a9fW+vXrdd999ykiIkJt27a95HN7/fXXFRQUpIcffviC2ytXdsyzXLp0qYYMGaIXXnhBHTp00PLly9W3b1/FxsY6w3ZJGj9+vGbMmKEZM2Zo5MiRuvfeexUfH69Ro0apWrVq6tevnwYPHqyPP/7YecyePXv09ttv64MPPlB6err69++vQYMG6fXXX79gTUU936eeekorVqzQgAEDtHTpUs2bN0/r16/XN998Iy8veo4AAACKg1DbzeWePOEIte22S+739u63JUndaneT3XbpP8IAAABK2vLlyxUUFOSybuTIkXrmmWckObqH77nnHknShAkTNGvWLH3xxRfq3LmzQkJCFBLimGu4ZMkSzZs3T5999pmiox0XyU5OTtbChQudofbChQvVtm1bxcfHOx8rLCxML774ory8vJSQkKApU6bozJkzGj16tCRp1KhRmjRpkjZt2qS7775bb731lry8vPTyyy/LMAzn/VauXFlr165Vp06dLvl8FyxYoJ49eyo8PFyNGzdW69at9fe//13XX3/9Zb92gwcPVvfu3SU5upVXrFih//znP3riiSeUmpqqJk2aKCkpSZJUo0YN53ERERGSpPDwcOdrlS8wMFAvv/yyS9Ddr18/53J8fLxefPFFNW/eXKdOnVJQUJDCwsIkSZGRkc6w+fTp05oxY4ZWr16tli1bOo/duHGj5s+fX2So/dNPPyk+Pl4+Ppfuhpo2bZr69OnjDL+HDRumLVu2aNq0aS6hdt++fdWjh+NTiSNHjlTLli31zDPPKDk5WZI0ZMgQ9e3b1+W+MzIy9Morryg2NlaSNGvWLN18882aPn16odetOM/XZrPptdde0zXXXKMnn3xSs2bN0oIFC1S9evVLPkcAAAD8iVDbzZkn0x1ffS7+T73/5H5tOrBJknRn7TvLpC4AAFAGfAIcHdNWPfZlaN++vebOneuyLj8klaRGjRo5lwMDAxUcHOwcfZHv66+/Vq9evfTSSy+pdevWzvUPPPCA+vXrpxkzZshms+n111/X9OnTXY6tX7++S5dsVFSUGjRo4PzeZrMpPDzc+Zjbtm3Tnj17CnVZZ2RkuIyvuJg2bdrol19+0ZYtW7Rp0yatXr1aM2fO1NixY51BfnHlh6eS5O3traSkJO3cuVOS9NBDD6l79+766quv1KlTJ3Xr1k2tWrUq8j4bNmxYqNv866+/1pgxY7R9+3b98ccfzlEZqampqlev3gXvZ8eOHcrIyFDHjq6fBMzKylKTJk2KrMM0TeebBpeyc+dO/eMf/3BZd/3112vmzJku6wr+dxQVFSVJLuNpoqKilJGRofT0dFWqVEmSVK1aNWegLTle77y8PO3atatQqF3c5xsfH69p06bpwQcf1F133aWePXsW+RwBAADwJ0Jtd3f6pCQpz/fi3dfv7n5XpkxdH3O94irFlVVlAACgtBlGiY4AKU2BgYGqVavWRbef36lrGIbL/OFDhw7ptttuU//+/dW/f3+XfW+99Vb5+vpq6dKl8vX1VWZmprOz+VL3f6nHzMvLU7NmzS44giK/A7ooPj4+uuGGG3TDDTfoySef1HPPPadx48Zp5MiRstvtMgzDOfojX3Z2drHuOz8Ivummm7Rv3z59+OGH+uyzz3TjjTdq0KBBmjZt2iWPDwx0/e/m9OnT6tSpkzp16qTXXntNERERSk1NVXJy8iUvJJn/en344YeqWrWqyzZfX98in0edOnW0ceNGZWdnF9mtfX74faFAvOB95G+70LpLzbbO3+dCYfvlPN/169fLZrMpJSVFOTk58vbmTzMAAIDiYmibuztzWpKUd5E/GrJys7R0z1JJ0p0JdGkDAICKJyMjQ127dlXdunU1Y8aMQtu9vb3Vu3dvLVy4UAsXLtTdd9+tgIDL6yQ/X9OmTfXTTz8pMjJStWrVcrnlj0K5XPXq1VNOTo4yMjIkOcLxgwcPOrf/9NNPOnPmTKHjtmzZ4lzOycnRtm3bVLduXee6iIgI9enTR6+99ppeeOEFLViwQJKcndi5ublF1vbjjz/q6NGjmjRpkm644QbVrVu3UKf8he6vXr168vX1VWpqaqHXKS6u6GaKe++9V6dOndKcOXMuuD3/go2JiYnauHGjy7bPP/9ciYmJRT5GUVJTU/Xbb39+4mHz5s3y8vJyXkCzoOI+38WLF2vJkiVau3atfv31V40fP/6K6wQAAPAktAO4Oa+zjj98TD+/C25flbpKf2T8ociASLWNvfRMQwAAgNKSmZmpQ4cOuazz9vZWlSpVijz2wQcf1K+//qpVq1bpyJEjzvVhYWHOoHXAgAHOgHPTpk1XXG/Pnj01depUde3aVePGjVNsbKxSU1O1ZMkSjRgxwmVcxYW0a9dO99xzj5KSkhQeHq4dO3Zo9OjRat++vXPsxd/+9jfNnj1b1113nfLy8jRy5MgLdiu/9NJLql27thITE/X8888rLS3NOf/62WefVbNmzVS/fn1lZmZq+fLlztchMjJS/v7+WrFihWJjY+Xn53fRQL5atWqy2+2aNWuWBg4cqO+//75QEFu9enUZhqHly5erS5cu8vf3V3BwsIYPH67HHntMeXl5at26tdLT0/X5558rKChIvXv3vuTr1KJFCz3xxBN6/PHHdeDAAd1+++2KiYnRnj17NG/ePLVu3VpDhgzRiBEj1KNHDzVt2lQ33nijPvjgAy1ZskSfffbZJe+/OPz8/NS7d29NmzZN6enpevTRR9WjR49Co0ckFev57t+/Xw899JAmT56s1q1ba9GiRbr55pt100036brrrrviegEAADwBndpuzsjIlCTlnbv6/PkW71osSfp77b/L24v3OAAAgDVWrFihq666yuVWcC72paxbt04HDx5UvXr1XI7//PPPnfvUrl1brVq1UkJCglq0aHHF9QYEBGj9+vWqVq2a7rjjDiUmJqpfv346e/asM5S+lOTkZL3yyivq1KmTEhMT9cgjjyg5OVlvv/22c5/p06crLi5Obdq00b333qvhw4dfsMN80qRJmjx5sho3bqwNGzbof//7n/PNALvdrlGjRqlRo0Zq06aNbDab3nrrLUmONw1efPFFzZ8/XzExMeratetF642IiNCiRYv0zjvvqF69epo0aVKhESZVq1bV2LFj9eSTTyoqKkqDBw+WJI0fP17PPvusJk6cqMTERCUnJ+uDDz5QzZo1i36hJU2ePFlvvPGGtm7dquTkZNWvX1/Dhg1To0aNnKF4t27dNHPmTE2dOlX169fX/PnztXDhQrVr165Yj3EptWrV0h133KEuXbqoU6dOatCgwUU7x4t6vqZpqk+fPmrevLnz9enYsaMGDx6s++67T6dOnbriegEAADyBYZ4/qM/NpKenKyQkRCdOnCjWHxju5rtbWsh7T7rOdmyiprPecNn28/Gf1e1/3WQzbPqk+yeKCoyyqEoAAFASMjIytHfvXtWsWVN+F/mUlqcyTVN169bVgw8+qGHDhlldDiqIMWPGaNmyZdq+fbuldXBuAwAAT1HcLJfWXDdnZDouJmQEBhXa9s7udyRJ7eLaEWgDAAC3dfjwYb366qs6cOCA+vbta3U5AAAAAK4Q40fcnFfWuVA7yPWdjTPZZ/T+nvclST3q9CjzugAAAMpKVFSUJk2apAULFig0NLRMHjMoKOiitw0bNpRJDRXBwIEDL/o6DRw40OryAAAAUE7Rqe3mvLJzZUryCq7ssv6TlE90Mvuk4oLjdF0MF6QBAADuy4ppe5caV1G1atUyrKR8GzdunIYPH37BbeVhdOCYMWM0ZswYq8sAAADAeQi13V12niRD3pVdu5LyLxB5Z5075WXQsA8AAFCSatWqZXUJFUJkZKQiIyOtLgMAAAAVDGmmmzOyHZ1JPqHhznU/HP1BPxz7QT5ePupa6+JXuQcAAAAAAACA8oZQ282ZOYYkyS88wrnu7d1vS5I61eikML8wS+oCAAAAAAAAgL+CUNuN5WRlOUNt/ypRkqT0rHR9vPdjSVwgEgAAAAAAAEDFQ6jtxk4dOeRcDoi8SpK0/OflOptzVrUq11KTyCZWlQYAAAAAAAAAfwmhths7e+SgY8Ew5VepskzT1Nu7HKNHeiT0kGEYFlYHAAAAAAAAAJePUNuNZRw9IkkyfEx52Wz66vBX+vnEz/L39tct8bdYXB0AAEDZMwxDy5Yts7oMAAAAAFeAUNuNZaUdlSQZ3o6O7MW7FkuSutTsomB7sGV1AQAAFNSnTx8ZhiHDMOTj46P4+HgNHz5cp0+ftrq0IrVr105Dhw61ugwAAADAo3hbXQBKT3baMdkkmT6Gjp09ppX7VkqS7ky409rCAAAAztO5c2ctXLhQ2dnZ2rBhgwYMGKDTp09r7ty5LvuZpqnc3Fx5e/NrLAAAAOCp6NR2Y7npxyVJpo9Ny/YsU05ejhqEN1D98PoWVwYAAMqCaZo6k33GkptpmpdVq6+vr6KjoxUXF6d7771XPXv21LJly7R27VoZhqFPPvlESUlJ8vX11YYNGyRJc+fO1dVXXy273a6EhAS9+uqrLvf5008/qU2bNvLz81O9evW0cuVKl+359338+HHnuu3bt8swDKWkpDjXbdq0SW3btlVAQIBCQ0OVnJystLQ09enTR+vWrdPMmTOdneYFjwMAAABQOmhxcWN5J084vvrY9M7udyQ5LhAJAAA8w9mcs2rxRgtLHnvrvVsV4BPwl4/39/dXdna28/snnnhC06ZNU3x8vCpXrqylS5dqyJAheuGFF9ShQwctX75cffv2VWxsrNq3b6+8vDzdcccdqlKlirZs2aL09PS/NCZk+/btuvHGG9WvXz+9+OKL8vb21po1a5Sbm6uZM2dq9+7datCggcaNGydJioiI+MvPGQAAAEDxEGq7MfNUuiTpuL+XDpw6oGCfYHWu2dniqgAAAC7tiy++0BtvvKEbb7zRuW7cuHHq2LGj8/tp06apT58+evjhhyVJw4YN05YtWzRt2jS1b99en332mXbu3KmUlBTFxsZKkiZMmKCbbrrpsmqZMmWKkpKSNGfOHOe6+vX//NSb3W5XQECAoqOj/9JzBQAAAHD5CLXd2elTkqT9/nmSpNtq3SZ/b38rKwIAAGXI39tfW+/datljX47ly5crKChIOTk5ys7OVteuXTVr1izt2LFDkpSUlOSy/86dO/WPf/zDZd3111+vmTNnOrdXq1bNGWhLUsuWLS/7eWzfvl133sn1SAAAAIDyhFDbjRlnz0iSDvhlS7KpRx1GjwAA4EkMw7iiESBlqX379po7d658fHwUExMjHx8fSXKG2oGBgYWOMQzD5XvTNJ3rLjTT+/z9vby8Cu1bcOSJ5BiDAgAAAKB8qRAXipwzZ45q1qwpPz8/NWvWzHlxIFyakZEhSTrrKyVFJSm+crzFFQEAAFxYYGCgatWqperVqzsD7UtJTEzUxo0bXdZ9/vnnSkxMlCTVq1dPqamp+u2335zbN2/e7LJ//vzrgwcPOtdt377dZZ9GjRpp1apVF63DbrcrNze3yHoBAAAAlJxyH2ovXrxYQ4cO1VNPPaWvv/5aN9xwg2666SalpqZaXVr5lx9q2w0uEAkAANzKiBEjtGjRIs2bN08//fSTZsyYoSVLlmj48OGSpA4dOighIUG9evXSN998ow0bNuipp55yuY9atWopLi5OY8aM0e7du/Xhhx9q+vTpLvuMGjVKX375pR5++GF9++23+vHHHzV37lwdPXpUklSjRg1t3bpVKSkpOnr0qPLy8srmBQAAAAA8WLkPtWfMmKH+/ftrwIABSkxM1AsvvKC4uDjNnTvX6tLKvZPZZyVJpt1bHap1sLgaAACAktOtWzfNnDlTU6dOVf369TV//nwtXLhQ7dq1k+QYLbJ06VJlZmaqefPmGjBggP71r3+53IePj4/efPNN/fjjj2rcuLEmT56s5557zmWfOnXq6NNPP9U333yj5s2bq2XLlvrf//4nb2/HFL/hw4fLZrOpXr16ioiIoPECAAAAKAOGeaGBg+VEVlaWAgIC9M477+j22293rh8yZIi2b9+udevWFTomMzNTmZmZzu/T09MVFxenEydOqFKlSmVSd3mxPLm+rt6Xp/W319SDEz+yuhwAAFDKMjIytHfvXufYNgDugXMbAAB4ivT0dIWEhBSZ5ZbrTu2jR48qNzdXUVFRLuujoqJ06NChCx4zceJEhYSEOG9xcXFlUWq5Y5qmMsMD9XOMofrVmltdDgAAAAAAAACUCG+rCyiOS13Z/nyjRo3SsGHDnN/nd2p7GsMw1P2NL5Sblyubl83qcgAAAAAAAACgRJTrULtKlSqy2WyFurIPHz5cqHs7n6+vr3x9fcuivAqBQBsAAAAAAACAOynX40fsdruaNWumlStXuqxfuXKlWrVqZVFVAAAAAAAAAACrlOtObUkaNmyY7r//fiUlJally5ZasGCBUlNTNXDgQKtLAwAAAAAAAACUsXIfat911106duyYxo0bp4MHD6pBgwb66KOPVL16datLAwAAAAAAAACUsXIfakvSww8/rIcfftjqMgAAAAAAAAAAFivXM7UBAAAAAAAAACiIUBsAAAAAAAAAUGEQagMAAKDCW7t2rQzD0PHjx60uBQAAAEApI9QGAACA5Q4fPqwHH3xQ1apVk6+vr6Kjo5WcnKzNmzeXyeOXdCi+aNEiVa5cuUTuCwAAAICrCnGhSAAAALi37t27Kzs7W6+88ori4+P1+++/a9WqVfrjjz+sLs1FVlaW7Ha71WUAAAAAHo1ObQAAADdlmqbyzpyx5GaaZrHrPH78uDZu3KjJkyerffv2ql69upo3b65Ro0bp5ptvVkpKigzD0Pbt212OMQxDa9eudbmvTZs2qXHjxvLz81OLFi303XffObft27dPt956q0JDQxUYGKj69evro48+UkpKitq3by9JCg0NlWEY6tOnjySpXbt2Gjx4sIYNG6YqVaqoY8eOkqQZM2aoYcOGCgwMVFxcnB5++GGdOnVKkqPru2/fvjpx4oQMw5BhGBozZowkRyj+xBNPqGrVqgoMDFSLFi0KPQcAAAAAl0anNgAAgJsyz57VrqbNLHnshK+2yQgIKNa+QUFBCgoK0rJly3TdddfJ19f3Lz/uiBEjNHPmTEVHR2v06NG67bbbtHv3bvn4+GjQoEHKysrS+vXrFRgYqB07digoKEhxcXF677331L17d+3atUuVKlWSv7+/8z5feeUVPfTQQ9q0aZMzrPfy8tKLL76oGjVqaO/evXr44Yf1xBNPaM6cOWrVqpVeeOEFPfvss9q1a5fzOUpS3759lZKSorfeeksxMTFaunSpOnfurO+++061a9f+y88bAAAA8CSE2gAAALCUt7e3Fi1apAceeEDz5s1T06ZN1bZtW919991q1KjRZd3XP//5T2c39SuvvNShJA8AABOsSURBVKLY2FgtXbpUPXr0UGpqqrp3766GDRtKkuLj453HhYWFSZIiIyMLzcKuVauWpkyZ4rJu6NChzuWaNWtq/PjxeuihhzRnzhzZ7XaFhITIMAxFR0c79/v555/15ptvav/+/YqJiZEkDR8+XCtWrNDChQs1YcKEy3quAAAAgKci1AYAAHBThr+/Er7aZtljX47u3bvr5ptv1oYNG7R582atWLFCU6ZM0csvv6x27doV+35atmzpXA4LC1NCQoJ27twpSXr00Uf10EMP6dNPP1WHDh3UvXv3YoXmSUlJhdatWbNGEyZM0I4dO5Senq6cnBxlZGTo9OnTCgwMvOD9fPXVVzJNU3Xq1HFZn5mZqfDw8GI/RwAAAMDTEWoDAAC4KcMwij0CpDzw8/NTx44d1bFjRz377LMaMGCA/vnPf2rDhg2S5DKnOzs7u9j3axiGJGnAgAFKTk7Whx9+qE8//VQTJ07U9OnT9cgjj1zy+PND6n379qlLly4aOHCgxo8fr7CwMG3cuFH9+/e/ZF15eXmy2Wzatm2bbDaby7b88SQAAAAAisaFIgEAAFAu1atXT6dPn1ZERIQk6eDBg85tBS8aWdCWLVucy2lpadq9e7fq1q3rXBcXF6eBAwdqyZIlevzxx/Xvf/9bkmS32yVJubm5Rdb1f//3f8rJydH06dN13XXXqU6dOvrtt99c9rHb7YXuq0mTJsrNzdXhw4dVq1Ytl1vBMSUAAAAALo1ObQAAAFjq2LFjuvPOO9WvXz81atRIwcHB+r//+z9NmTJFXbt2lb+/v6677jpNmjRJNWrU0NGjR/X0009f8L7GjRun8PBwRUVF6amnnlKVKlXUrVs3SY452DfddJPq1KmjtLQ0rV69WomJiZKk6tWryzAMLV++XF26dJG/v/9Fu6evvvpq5eTkaNasWbr11lu1adMmzZs3z2WfGjVq6NSpU1q1apUaN26sgIAA1alTRz179lSvXr00ffp0NWnSREePHtXq1avVsGFDdenSpQRfVQAAAMB90akNAAAASwUFBalFixZ6/vnn1aZNGzVo0EDPPPOMHnjgAc2ePVuS9N///lfZ2dlKSkrSkCFD9Nxzz13wviZNmqQhQ4aoWbNmOnjwoN5//32XLuxBgwYpMTFRnTt3VkJCgubMmSNJqlq1qsaOHasnn3xSUVFRGjx48EXrveaaazRjxgxNnjxZDRo00Ouvv66JEye67NOqVSsNHDhQd911lyIiIpwXmly4cKF69eqlxx9/XAkJCbrtttu0detWxcXFXfHrCAAAAHgKwyw4nNANpaenKyQkRCdOnFClSpWsLgcAAKDUZGRkaO/evapZs6b8/PysLgdACeHcBgAAnqK4WS6d2gAAAAAAAACACoNQGwAAAAAAAABQYRBqAwAAAAAAAAAqDEJtAAAAAAAAAECFQagNAADgZtz8OuCAx+GcBgAAcEWoDQAA4CZsNpskKSsry+JKAJSk/HM6/xwHAADwdN5WFwAAAICS4e3trYCAAB05ckQ+Pj7y8qJ/Aajo8vLydOTIEQUEBMjbmz/fAAAAJEJtAAAAt2EYhq666irt3btX+/bts7ocACXEy8tL1apVk2EYVpcCAABQLhBqAwAAuBG73a7atWszggRwI3a7nU9eAAAAFECoDQAA4Ga8vLzk5+dndRkAAAAAUCp4ux8AAAAAAAAAUGEQagMAAAAAAAAAKgxCbQAAAAAAAABAheH2M7VN05QkpaenW1wJAAAAAAAAAOBi8jPc/Ez3Ytw+1D558qQkKS4uzuJKAAAAAAAAAABFOXnypEJCQi663TCLir0ruLy8PP32228KDg6WYRhWl1Om0tPTFRcXp19//VWVKlWyuhwAZYDzHvA8nPeAZ+GcBzwP5z3gWTz9nDdNUydPnlRMTIy8vC4+OdvtO7W9vLwUGxtrdRmWqlSpkkeeBIAn47wHPA/nPeBZOOcBz8N5D3gWTz7nL9WhnY8LRQIAAAAAAAAAKgxCbQAAAAAAAABAhWEbM2bMGKuLQOmx2Wxq166dvL3dftIMgHM47wHPw3kPeBbOecDzcN4DnoVzvmhuf6FIAAAAAAAAAID7YPwIAAAAAAAAAKDCINQGAAAAAAAAAFQYhNoAAAAAAAAAgAqDUBsAAAAAAAAAUGEQaruxOXPmqGbNmvLz81OzZs20YcMGq0sCUAImTpyoa6+9VsHBwYqMjFS3bt20a9cul30yMzP1yCOPqEqVKgoMDNRtt92m/fv3W1QxgJI2ceJEGYahoUOHOtdx3gPu5cCBA7rvvvsUHh6ugIAAXXPNNdq2bZtzu2maGjNmjGJiYuTv76927drphx9+sLBiAFciJydHTz/9tGrWrCl/f3/Fx8dr3LhxysvLc+7DeQ9UbOvXr9ett96qmJgYGYahZcuWuWwvzjmelpam+++/XyEhIQoJCdH999+v48ePl+XTKDcItd3U4sWLNXToUD311FP6+uuvdcMNN+imm25Samqq1aUBuELr1q3ToEGDtGXLFq1cuVI5OTnq1KmTTp8+7dxn6NChWrp0qd566y1t3LhRp06d0i233KLc3FwLKwdQEr788kstWLBAjRo1clnPeQ+4j7S0NF1//fXy8fHRxx9/rB07dmj69OmqXLmyc58pU6ZoxowZmj17tr788ktFR0erY8eOOnnypIWVA/irJk+erHnz5mn27NnauXOnpkyZoqlTp2rWrFnOfTjvgYrt9OnTaty4sWbPnn3B7cU5x++9915t375dK1as0IoVK7R9+3bdf//9ZfUUyhXDNE3T6iJQ8lq0aKGmTZtq7ty5znWJiYnq1q2bJk6caGFlAErakSNHFBkZqXXr1qlNmzY6ceKEIiIi9Oqrr+quu+6SJP3222+Ki4vTRx99pOTkZIsrBvBXnTp1Sk2bNtWcOXP03HPP6ZprrtELL7zAeQ+4mSeffFKbNm266CctTdNUTEyMhg4dqpEjR0pyfFojKipKkydP1oMPPliW5QIoAbfccouioqL0n//8x7mue/fuCggI0Kuvvsp5D7gZwzC0dOlSdevWTVLx/t++c+dO1atXT1u2bFGLFi0kSVu2bFHLli31448/KiEhwbLnYwU6td1QVlaWtm3bpk6dOrms79Spkz7//HOLqgJQWk6cOCFJCgsLkyRt27ZN2dnZLj8DYmJi1KBBA34GABXcoEGDdPPNN6tDhw4u6znvAffy/vvvKykpSXfeeaciIyPVpEkT/fvf/3Zu37t3rw4dOuRyzvv6+qpt27ac80AF1bp1a61atUq7d++WJH3zzTfauHGjunTpIonzHnB3xTnHN2/erJCQEGegLUnXXXedQkJCPPLngLfVBaDkHT16VLm5uYqKinJZHxUVpUOHDllUFYDSYJqmhg0bptatW6tBgwaSpEOHDslutys0NNRlX34GABXbW2+9pa+++kpffvlloW2c94B7+eWXXzR37lwNGzZMo0eP1hdffKFHH31Uvr6+6tWrl/O8vtDv+/v27bOiZABXaOTIkTpx4oTq1q0rm82m3Nxc/etf/9I999wjSZz3gJsrzjl+6NAhRUZGFjo2MjLSI3/nJ9R2Y4ZhuHxvmmahdQAqtsGDB+vbb7/Vxo0bi9yXnwFAxfXrr79qyJAh+vTTT+Xn51fs4zjvgYopLy9PSUlJmjBhgiSpSZMm+uGHHzR37lz16tXLuR+/7wPuY/HixXrttdf0xhtvqH79+tq+fbuGDh2qmJgY9e7d27kf5z3g3oo6xy90vnvqzwHGj7ihKlWqyGazFXqX5vDhw4Xe8QFQcT3yyCN6//33tWbNGsXGxjrXR0dHKysrS2lpaS778zMAqLi2bdumw4cPq1mzZvL29pa3t7fWrVunF198Ud7e3oqKiuK8B9zIVVddpXr16rmsS0xMdF70PTo6WpL4fR9wIyNGjNCTTz6pu+++Ww0bNtT999+vxx57zHlNLM57wL0V5xyPjo7W77//XujYI0eOeOTPAUJtN2S329WsWTOtXLnSZf3KlSvVqlUri6oCUFJM09TgwYO1ZMkSrV69WjVr1nTZ3qxZM/n4+Lj8DDh48KC+//57fgYAFdSNN96o7777Ttu3b3fekpKS1LNnT+cy5z3gPq6//nrt2rXLZd3u3btVvXp1SVLNmjUVHR3tcs5nZWVp3bp1nPNABXXmzBl5eblGNDabTXl5eZI47wF3V5xzvGXLljpx4oS++OIL5z5bt27ViRMnPPLngG3MmDFjrC4CJa9SpUp65plnVLVqVfn5+WnChAlas2aNFi5cqMqVK1tdHoArMGjQIL3++ut69913FRMTo1OnTunUqVOy2Wzy8fGRn5+ffvvtN82ePVuNGzfWiRMnNHDgQAUHB2vy5MmFflkGUP75+voqMjLS5fbGG28oPj5evXr14rwH3Ey1atU0duxYeXt766qrrtKKFSs0ZswYjR8/Xo0aNZJhGMrNzdXEiROVkJCg3NxcPf744zpw4IAWLFggX19fq58CgMu0c+dOvfLKK0pISJDdbteaNWs0evRo3XvvverYsSPnPeAGTp06pR07dujQoUOaP3++WrRoIX9/f2VlZaly5cpFnuMRERHaunWr3njjDTVp0kT79+/XP/7xDzVv3lyPPPKI1U+v7JlwWy+99JJZvXp10263m02bNjXXrVtndUkASoCkC94WLlzo3Ofs2bPm4MGDzbCwMNPf39+85ZZbzNTUVOuKBlDi2rZtaw4ZMsT5Pec94F4++OADs0GDBqavr69Zt25dc8GCBS7b8/LyzH/+859mdHS06evra7Zp08b87rvvLKoWwJVKT083hwwZYlarVs308/Mz4+PjzaeeesrMzMx07sN5D1Rsa9asueDf8r179zZNs3jn+LFjx8yePXuawcHBZnBwsNmzZ08zLS3NgmdjPcM0TdOiPB0AAAAAAAAAgMvCZ1EBAAAAAAAAABUGoTYAAAAAAAAAoMIg1AYAAAAAAAAAVBiE2gAAAAAAAACACoNQGwAAAAAAAABQYRBqAwAAAAAAAAAqDEJtAAAAAAAAAECFQagNAAAAAAAAAKgwCLUBAACAMpKSkiLDMLR9+3ZLHn/Xrl2Kjo7WyZMni9z3u+++U2xsrE6fPl0GlQEAAADFR6gNAAAAlADDMC5569Onj+Li4nTw4EE1aNDAkhqfeuopDRo0SMHBwUXu27BhQzVv3lzPP/98GVQGAAAAFJ9hmqZpdREAAABARXfo0CHn8uLFi/Xss89q165dznX+/v4KCQmxojRJ0v79+xUfH69ffvlFsbGxxTrmgw8+0MCBA5WamiqbzVbKFQIAAADFQ6c2AAAAUAKio6Odt5CQEBmGUWjd+eNH1q5dK8Mw9Mknn6hJkyby9/fX3/72Nx0+fFgff/yxEhMTValSJd1zzz06c+aM87FM09SUKVMUHx8vf39/NW7cWO++++4l63v77bfVuHFjl0B73759uvXWWxUaGqrAwEDVr19fH330kXN7cnKyjh07pnXr1pXwqwUAAAD8dd5WFwAAAAB4ujFjxmj27NkKCAhQjx491KNHD/n6+uqNN97QqVOndPvtt2vWrFkaOXKkJOnpp5/WkiVLNHfuXNWuXVvr16/Xfffdp4iICLVt2/aCj7F+/XolJSW5rBs0aJCysrK0fv16BQYGaseOHQoKCnJut9vtaty4sTZs2KC//e1vpfcCAAAAAJeBUBsAAACw2HPPPafrr79ektS/f3+NGjVKP//8s+Lj4yVJf//737VmzRqNHDlSp0+f1owZM7R69Wq1bNlSkhQfH6+NGzdq/vz5Fw21U1JS1KxZM5d1qamp6t69uxo2bOi8n/NVrVpVKSkpJfVUAQAAgCtGqA0AAABYrFGjRs7lqKgoBQQEuATMUVFR+uKLLyRJO3bsUEZGhjp27OhyH1lZWWrSpMlFH+Ps2bPy8/NzWffoo4/qoYce0qeffqoOHTqoe/fuLrVIjlngBUefAAAAAFZjpjYAAABgMR8fH+eyYRgu3+evy8vLkyTn1w8//FDbt2933nbs2HHJudpVqlRRWlqay7oBAwbol19+0f3336/vvvtOSUlJmjVrlss+f/zxhyIiIq7o+QEAAAAliVAbAAAAqEDq1asnX19fpaamqlatWi63uLi4ix7XpEkT7dixo9D6uLg4DRw4UEuWLNHjjz+uf//73y7bv//++0t2gAMAAABljfEjAAAAQAUSHBys4cOH67HHHlNeXp5at26t9PR0ff755woKClLv3r0veFxycrIGDBig3Nxc2Ww2SdLQoUN10003qU6dOkpLS9Pq1auVmJjoPCYlJUUHDhxQhw4dyuS5AQAAAMVBqA0AAABUMOPHj1dkZKQmTpyoX375RZUrV1bTpk01evToix7TpUsX+fj46LPPPlNycrIkKTc3V4MGDdL+/ftVqVIlde7cWc8//7zzmDfffFOdOnVS9erVS/05AQAAAMVlmKZpWl0EAAAAgNI3Z84c/e9//9Mn/9+uHRMxEMNQFNSkPxhGYT5HwoCM4eAYgQtX7sIguSqJJrv1L1S/0XW93e69o5QSvfeotX7gOgAAuMenNgAA/InzPGPOGWutOI7j5XaMEa01QRsAgJ/jUxsAAAAAgDQe3z4AAAAAAADuErUBAAAAAEhD1AYAAAAAIA1RGwAAAACANERtAAAAAADSELUBAAAAAEhD1AYAAAAAIA1RGwAAAACANERtAAAAAADSeAIv3U2c2Za5PQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                                        " ] @@ -4830,12 +7281,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3wUxf8/8NflkkvvFQihhkDoTaWDlARCBylGIAQk0pXyQUAEIiABpCOiSChSlQRBA0qLlKCAUlRqFBJaKAECSUi9+f2R3+43lyu5FHKAr+fjcQ/I7s7s7O7s3N1752YUQggBIiIiIiIiIiIiIqJXhJmpC0BEREREREREREREVJoY+CYiIiIiIiIiIiKiVwoD30RERERERERERET0SmHgm4iIiIiIiIiIiIheKQx8ExEREREREREREdErhYFvIiIiIiIiIiIiInqlMPBNRERERERERERERK8UBr6JiIiIiIiIiIiI6JXCwDcRERERERERERERvVIY+CYiKkMKhQIKhQKxsbGlkt/69euhUChQuXLlUsmvLLVt2xYKhQKzZs0q0jqi/6JZs2ZBoVCgbdu2pi4K/X8NGjSAQqHA0qVLn+t+li5dCoVCgQYNGpgk/fPyopaLXiyPHz+WPzudPXvW1MXR6/3334dCoUDPnj1NXRSTOHv2rHydHj9+/J/bPxERvbgY+CYi0kEKMkmvbdu2FZomKChII83169eff0Hpucl/LWvVqlXo9qdOndJIExIS8vwLWQRnz57FrFmznnuQ7mWQ/zrlf5mbm8PNzQ2tWrXCokWLkJaWZuqilrrr16/rPX5jXqX10K4k8gc4du3aVej2UoD6vxqQMsbu3bvRr18/VKlSBTY2NrCxsUGVKlXQvHlzjBs3Dt9++y0ePXpk6mL+J2VkZGD16tXo1KkTypUrB0tLSzg5OcHPzw8dOnTAjBkzsH//fmRlZWmlmzVrFmbNmoWkpCQTlZ6MIQXN87/MzMzg4OAAb29vtGzZEuPGjcP333+PnJwcUxe3TP0X6rGTk5PO629vb4/atWtjxIgROHPmjKmLSUT00jI3dQGIiF4GkZGRGDBggN71t2/fxk8//VRoPn5+fgAAGxubUivbq8jHxwd+fn5wc3MzdVEAAJcuXcKJEyfQrFkzvdusW7euDEtUdGfPnsXs2bNRqVIlvP/++6YuzgvB1tYWdnZ28t9paWlITk7GsWPHcOzYMXz++ec4dOjQC/GLCjc3N/j5+cHHx6dE+SiVSnh6eupcl5KSgoyMDJiZmcHd3V3nNiqVqkT7p6JzcXGBn58fqlSpUup5p6WloV+/foiJiZGXKZVKODo64ubNm7h+/TpOnDiBFStWYMmSJWw7ytjVq1fRpUsXxMfHy8ssLS1hZmaG+Ph4XLlyBQcPHgQAnDlzRqP3fEZGBmbPng0A6NmzJ7y8vMq28FRkCoUCHh4e8t/p6em4ffs2bt26hePHj2PFihXw8vJCREQEBg8ebMKSarOyspI/4yqVylLL19h6/Lz2X5ZsbGxgb28PAFCr1UhOTsaFCxdw4cIFrFu3DosWLWIbTERUDOzxTURkgJubG2xtbXHgwAHcvHlT73YbN25Ebm5uoQGyS5cu4dKlS3jttddKuaSvlo0bN+LSpUsYM2aMqYsiX9PIyEi922RkZGDbtm1QKBSoVKlSGZWMSmrSpElISkqSX0+fPsWDBw8wd+5cKBQKXLt2DWFhYaYuJgBgzJgxuHTpEjZu3FiifCpWrKhxzPlf/fv3L3Sb5s2bl8bhUBEMHjwYly5dQnR0dKnnPXLkSMTExEChUGD06NH4+++/kZmZieTkZGRkZOCvv/7C4sWL0bRpUygUilLfP+mXmZmJoKAgxMfHw9HREQsWLMDt27eRkZGBhw8fIjU1FXFxcZg+fXqJH4jRi8HBwUGjvX3y5AmysrLwxx9/4NNPP0WFChWQlJSEIUOGYNSoUaYuroaaNWvKn3Gl4O1/af+l4d1335Wv/b179/Ds2TPs27cP1atXR25uLiZMmIDTp0+buphERC8dBr6JiAywtbVF3759oVarsX79er3bSUHRF214Cyq5wYMHQ6FQYPv27UhPT9e5TVRUFB4/fow2bdq8EL2DqfhcXV0xbdo0hIaGAgAOHDjwSg55QnT37l1s3rwZAPC///0PK1euhL+/v9xbUqlUonbt2vjggw9w8uRJjBgxwpTF/c/ZvXs3rl69CgDYtm0bJk+ejHLlysnrra2t0axZM8yZMwfXrl2Dv7+/qYpKz5G5uTkaNmyIDz/8EBcuXEDXrl0BAKtXr8bq1atNXDp6nlQqFQICAhAVFQUAEEK88L8uJCJ6ETHwTURUiKFDhwKA3sD3sWPHcOXKFVStWhWtW7c2mJcx4+T+/PPPGDBgACpVqgRra2u4uLigXr16GDt2LE6cOGEw/99//x39+vWTxwGtWrUqJkyYoHds1uzsbOzevRsjRoxAkyZNUK5cOahUKnh4eCAgIABbt26FEMLgPtVqNTZv3owuXbrA09MTKpUK7u7u6NSpk1HpdTE0uWVOTg6+/PJLtG3bFm5ubrCwsICrqyv8/PzQv39/fP3110XenyFVqlRBmzZt8OTJE+zcuVPnNtIXEamuFOb+/fv46KOP0LBhQzg6OsLKygpVq1bFsGHD8Pfff+tMExsbK9cfAIiPj0doaCgqVqwIS0tLeHt7491338WtW7e00ioUCrlsCQkJWmNJ6jrPZV3GF400ZIBardb5wOPatWuIiIhAYGAgatSoIQ+b4u/vj/fffx+JiYkG89++fTs6d+4MT09PWFhYwMnJCb6+vujevTtWrVqFjIwMje2NmdwyOTkZ4eHheP311+Hi4gIrKytUrlwZnTp1wurVq5GSklL0E6FHZmYmdu7cidDQUDRq1Ei+9728vNC1a1eDvZONmdSwLCYqq1WrFhQKBaZNm2Zwu507d0KhUEClUuHevXs6t3n27BlmzZoFf39/2NjYwMXFBUFBQQbbemlc1127duHRo0f48MMPUatWLdja2moctzHnKzY2Fl26dIGLiwtsbGxQu3ZthIeHa9Wj/M6fPw+1Wg0A6NGjh8FzAOQFWvXZu3cvevbsKb+HuLu7G/0ekp8QApUrV4ZCoUB4eLjBbaOioqBQKGBpaYnk5GSt9VeuXMHo0aPh5+cHW1tb2Nraonbt2pg8eTLu3LmjM8+C5zomJgZBQUHw9PSEUqks02EGpIkcLS0tERgYaHBbMzMzjWGIevbsCWdnZ/nvhg0barT5BevS0aNHMXHiRDRv3hw+Pj6wtLSEs7MzWrZsiaVLl+qtRwUnnnz48CEmT56M6tWrw8rKCu7u7ujduzfOnTtnsPz379/HuHHjULlyZVhZWaFChQoIDg7W+17zPMp+8+ZNjB49GtWqVYOVlRWcnJy00kRFRaFt27ZwdHSEvb09GjVqhOXLlyM3N7fQcpYGBwcHbN++Hb6+vgCA2bNn630g/+zZMyxduhStWrWCq6srVCoVypcvjz59+uDw4cNa20dGRkKhUMDe3l5vnpJ69epBoVBg4sSJ8rLC2uziXKei1GNj3jOSk5Mxffp01K9fH/b29rCxsUHNmjUxfvx43LhxQ2ea0qrjJVG3bl2UL18eAPTeEw8ePMAXX3yBPn36oHbt2nBycoKVlRWqVKmCwYMHGxwjvODErD/++CM6duwIV1dXWFtbo27duoiIiEB2drbBcm7btg2tWrXSuj/UarVRk78Wp80mIjKKICIiLTNnzhQARKVKlYRarRbVqlUTAMQvv/yitW1oaKgAIMLDw8Xhw4cFAAFAXLt2TWtbad3hw4e11qWlpYm33npL3gaAsLe3F46OjvLf9evX10gTGRkpl3Pz5s3CwsJCABCOjo7CzMxMTle7dm3x9OlTrX3mLy8A4eDgIOzt7TWWvfXWWyI3N1fneUpOThatW7fW2D5/eQGI7t27i8zMTK20bdq0EQDEzJkzjV6Xk5MjOnbsqLU/S0tLjWWlQcorMjJSbNiwQQAQ7dq109ru+vXrQqFQCHt7e5GWliaXfciQITrz3b9/v3BycpLzt7CwELa2tvLfKpVKbNiwQStd/mt16NAhYWdnJ9cRc3NzeV358uXFzZs3NdJ6enoKBwcHAUCYmZkJT09PjdfChQtNXsayJJVDV92TDB8+XAAQzs7OOtdL11k6H66urhr3nKOjozh69KjOtEOHDtWor3Z2dsLGxkZjWcH2Q2qT2rRpozPPn376STg7O8vpzc3Nhaurq9wmABDR0dEGz8uQIUPk9qQw0dHRcr4KhUI4ODho1BEAYtiwYTrTLlmyRGd7lt+ZM2fkfB49eqR3XWHHJIQQ9evXFwBEjx49dJbDy8tLZGdn600fEBAgt4W68p0zZ45o2LChfK8UbAMXL16sM19pu5UrVwofHx8BQFhaWsr3qnTchZ2vxYsXa7WJ0nVv1KiRmDt3rs70P//8s5xmx44dhZ5HXXJycsSwYcM06oKzs7PGvdCtWzeRnp6ulVbfcU2fPl0AEL6+vgb33bNnTwFA9OzZU2vd6tWrNdoca2trjfcJV1dXcezYMYNlCg8Pl7d3cnIS5ubmYvz48UU8Q8U3bdo0ef/37t0rUtqQkBDh4eGhcbz52/z27dvL2z569Eij/tja2mq0/wBE48aNxePHj7X2kz9tVFSUqFixony+ra2tNc7/8ePHdZb14sWLwsvLS97WyspK/hxibW0tdu7cKa87c+aM3v2XpOzr16+X209ra2thZ2cnHB0dNbYfP368Rj13cnISSqVSABBdunQRY8eO1dnOGEPKu+A+9fnqq6/ksuzcuVNr/aVLl+TPrdL7vtSuSK8pU6ZopHny5Il8zb755hu9+z579qycx9mzZ+Xlhtrs4l6notRjQ/sXQohTp04Jd3d3jTopfUaR3of37dunla406nhhpPcCQ+1LuXLlBADRokULnevz10+lUilcXFw03v/Nzc1FZGSkwbQ9evSQ21+pjue/RvrqtlqtFu+++67e+yMoKKjQ+6O4bTYRkTEY+CYi0iF/4FsIIT755BMBaAczU1NThZ2dnTAzMxOJiYklCnz369dP/oIyZcoUcePGDXnd/fv3xebNm8V7772nkUYKfNvY2AhLS0sxfPhwkZiYKITIC6SvXLlS/uA7Y8YMrX3+9ttvIiwsTOzfv1+kpKTIy5OTk8WyZcvkL0rLli3TSpuTkyMH/xo0aCD27Nkj0tLS5POyYcMG+QvL+++/r5W+OIHvTZs2yV+M165dKwfz1Wq1uHv3roiKihJ9+/bVyq84pGsVGRkp0tLShL29vVAoFOLff//V2G7WrFkCgBg+fLhG2XUFvs+fPy9/UXr33XfFhQsXRE5OjhBCiISEBDFq1Cj5C8qpU6c00uavW87OzqJ79+7i4sWLQgghMjMzxfbt2+VgwaBBg7T2nf8hiSGmLGNZkcqoq+4lJyeLiIgIOXA3b948nXmMHz9erFq1Sly5ckV+MJSdnS1+++03ERgYKIC8AH/BgN/Ro0fl+zwiIkIkJyfL6x48eCB++uknMWTIEHHr1i2NdIYC33/88YewsrISQN5DrpiYGJGVlSWEyLtPT58+LSZOnCgOHDhg8LwUJfB94MABMW7cOBEbGytSU1Pl5ffu3RMRERFyHdL1gORFCXw/fPhQLmdUVJTOtNevX5frQsHzJ+Xr6Ogo7OzsxIYNG+SHfPHx8aJz585yECA2NlYrbynYYWdnJypVqiRiYmLke+3ff/+Vr6Gh8xUbGysUCoUcfPvnn3+EEEJkZGSIdevWCRsbGzl4UTD9gwcP5EBD9erVxfnz5ws9lwVJ740AxIQJE8T9+/eFEEKkpKSIuXPnyucuLCxMK62+47p8+bKc54kTJ3TuNzk5WahUKp3X7ttvv5XfJz7++GP5vTQ3N1ecP39eBAUFCQDCzc1NLm/BMtna2gqFQiFGjx4t7ty5I4TIu78Ltv/P065du+Tz0K1bN3H37t0ipc8fsCsYMM4vJSVF9O3bV+zcuVMjwJ6Wlia2bt0qKleuLACIoUOHGtyHs7OzaNSokTh+/LhQq9UiNzdXHD16VFSqVEkAEHXr1tVKn5GRIWrWrCkACE9PT7F79265Pf3jjz9EkyZNNIJvBY+jtMpuZ2cn6tevL44dOybUarUQIq8eSqSH3wBESEiIXCeePn0qFi5cKJRKpVzOsgh83759Wy7PuHHjNNYlJyfLD9I6d+4s4uLi5HYpOTlZzJ07V36/WL9+vUbagQMHCgAiICBA774nTpwoAIh69eppLDfUZpfWdTJUjw3t//79+/LDlapVq4oDBw7I1/m3336T23I7Oztx9epVvfsvTh03RmGB73Pnzsll0PfZafHixWLu3Lni7Nmz8nuHWq0Wly9floPSKpVKXLlyRSutVP+cnZ2FUqkUc+bMEQ8fPpSP/4MPPpD3r+tBy+rVq+X1I0aMEElJSUKIvO8CS5cuFebm5vKDJV33R0nabCIiYzDwTUSkQ8HAd2JiojAzMxO2trYaPafXrVsnAIiOHTsKIUSxA98HDhyQ133++edGl1MKZuoLtAohxIQJE+TARlFJH0arVaumtW7jxo0CgKhZs6bO3lRCCHH69GmhUCiESqXS+tJenMD3yJEj5Q/Wz1v+wLcQ/9cD+OOPP5a3UavV8hc2qaePocD3m2++KQCIqVOn6t3vuHHjdH45yF+32rVrp7MX/vLlywWQ11OmYA9WYwPfpixjWZHKaGtrq9F7LP+vHRo2bCjWrFlTrPxzcnJEvXr1BACxadMmjXURERECgOjUqVOR8jQU+G7ZsqUA8nrI6rsXjVGUwHdhpB6JjRs31lpXmoFvJycnrV8wFHxJwV1dX7hDQkIEABEYGKizHB999JHcfkqBEokULNEXDMjKypJ7gjdv3lxrvRTssLKy0hmMkBg6X82aNRNAXs9uKdiR37Zt2+Qy6ko/efJkeb0UuAkLCxNffvmlOHv2rN5f+wiR9+BA+qXCyJEjdW4j9ZpWKBRax2jouF5//XWD+X7++ecCgHBxcdH4RVFmZqbcM3L79u060+bm5oq2bdvqfI+RygRAhIaG6j32spCbmyveeOMNuTwWFhaiVatWYtKkSWLLli2FBuGNDRgW5vLly0KhUAgLCwuNB3UF9+Hj46Oz/Tly5Ii8zV9//aWxbs2aNQLIexB48uRJnccgXc/iHIexZXd3dxcPHjzQmUdOTo7cy7dbt246t5k/f76cV1kEvoUQcu/loKAgjeXSZ76uXbvqvX+lz66VK1fWWL53714B5PUYvn37tla6nJwc+XosWrRIY11hPa4NMfY6FTfw/eGHH8rv+brumwcPHsgdNYKDg/Xuvzh13Bj6At+ZmZli3759onr16nL+hw4dKnL+QggRHBwsAIiJEydqrcvfW3zJkiU600ufDQt2LsnOzpYfKvTp00dn2vztasH7o6RtNhGRMTjGNxGRESpWrIgOHTogLS0NO3bskJdLk1pKE+EVlzRGdJ06dTBy5Mhi5fHRRx/pXC6N3RofH1/ouI0FBQUFAQD++ecfJCUlaayTxtIeOXIkHB0ddaZv3LgxateujaysLJ1jShaVNOZmwbKUBekab9iwQR6z9vDhw7h+/Tr8/PzQvHlzg+mvX7+OQ4cOwdzcHJMmTdK73eDBgwHkTaqob9zQadOmwcxM+y1cutbPnj2TJ0UripehjKUpLS0Nd+/elV9Pnz6V1yUnJ+POnTuFjmmpi1KplMfkPXbsmMY6qQ7fv3+/VMaFvXr1qryPefPm6b0Xy5rUdpw5c+a5Tg76+PFjjWuo65WTk6M3vdTe/vzzz0hISNBYl5ubK7fx7777rjx2fUG1a9dG7969tZZbWFhg6tSpAIC4uDi9Y8j26dNHHrO3KBITE+V5H6ZOnQoLCwutbfr3749atWrpzWP+/Pn49NNP4eDgAAD4888/sWbNGowYMQINGjSAu7s7Ro8ejZs3b2ql3bNnD9LT06FUKjFjxgyd+U+aNAmOjo4QQmDbtm1GH9ugQYMA5I2Fn5WVpbV+06ZN8vHlH9s6JiYGd+7cQdWqVdGvXz+deZuZmeGdd94BAPz00096yyBdO1MxMzPDvn37EBISAqVSiezsbBw9ehSLFi3C22+/japVq6J69eqYP39+kd/bi6JGjRrw9fVFdnY2Tp48qXe7sWPH6mx/WrVqJY/TfP78eY11Up3o3LkzmjZtqpXWycmpROOqG1v2ESNGwNXVVee648ePy/fuxx9/rHOb999/X+eY4M+Ti4sLAODhw4fyMrVaLbdZkydP1vkeDADBwcFQKpW4fv06Ll++LC/v2LEjvLy8kJubiy1btmilO3jwIO7cuQOlUom333671I7F2OtUXNu3bweQ99mlSpUqWutdXV3lerZz50697/vFqeNF8dVXX8HLywteXl7w8PCAtbU1AgMDER8fDwCYMWMG2rVrV6y8pffkgp9J8nN2dsaoUaN0rpM+uxU8vqNHj8qfyfV9Dxk1apTe+6s022wiIn0Y+CYiMpI0OaAUpI6Pj8fRo0fh7OxscLIWY8TFxQEAunbtWqz0Li4uqF69us510oQ4AHROcvn06VMsXLgQbdq0gYeHB1QqlTyRj42Njbxd/sBHbm4ufv31VwB5k+5JH9R1vaQvVQWDSsXRpUsXKBQK7N69G507d8bWrVtx+/btEudrjGbNmqFmzZpISEjAwYMHARRtUsvjx48DyPti6u/vr/d8SQHTtLQ0nRO2AcDrr7+uc3n+a53/y7CxXoYylqaZM2dC5P36DUII5Obm4u7du9iyZQuEEJg1axY6deqkd3K0o0ePIiQkBDVr1oSdnZ3GpFsLFiwAAK2AYfv27WFlZYUzZ86gVatW+Prrr3Ht2rViH4PUdiiVSnTu3LnY+RTHw4cPMXfuXLRs2VKeaFY6fuk6q9Xq5zopVXR0tMY11PWqX7++3vSvvfYaGjVqBLVarTUxbkxMDG7dugULCwuEhITozePNN980at3p06d1btOiRQu96Q3Jn5+xZSjIzMwMH374IW7duoWtW7ciLCwMjRo1gqWlJYC8a/z555+jTp06Wg8vpf37+/ujXLlyOvO3trZGy5YttcpbmAEDBkClUuHhw4eIiYnRWBcfHy8H/KWHcBKpDbt165bB9yXpwZ6+9yUPDw+976llydHREZGRkUhMTMSqVaswcOBA1KhRQw5o/vPPP5g6dSqaNGlSokmDc3JysG7dOnTp0gXe3t6wsrLSaM+uXLkCQLs9y09fmw/8X7tfsM2X6kRx629pld3QPSiV0cHBAY0bN9a5jaWlZbHv49J08eJF+XPeW2+9pbf++/j4yBPb5r8H8ge0pYdL+UnLOnTooPee16c0rlNxJCcny++xHTp00Ltdx44dAQAZGRn466+/dG5TnDpeFOnp6fID2/v378vXyM7ODj///HOhE/5eunQJ48ePR4MGDeDo6AilUimfX+m6Gjq/DRs21HiQmJ++4/vjjz8A5LVV+iZgVqlUejuHlFabTURkiLmpC0BE9LLo1asXnJ2dcfz4cVy9ehXr168HAAwcOBBWVlYlylvqLVGpUqVipbe3t9e7ztz8/5r6gr1Yrly5gvbt22t8ELaxsYGTk5P8xfru3bsAoNFr8+HDh8jMzASgO5iuS2n0SGvZsiUiIiLw0UcfYd++fdi3bx8AwNvbGx06dMDgwYOL3RvGGEOHDsWUKVMQGRmJ1157DVFRUVAqlVrBF12kAL1arZbPaWH0nTN919vQtTbGi1zG7du3Y/z48TrXRUVFFdrj3hhmZmbw8PDAwIED4efnh9dffx2xsbFYsGCBVk+/KVOmyMFtIC9g4OzsLH9pTE1NRVpamlZv52rVqmHt2rV47733cOLECTmA5+7ujnbt2uHtt99G9+7d9fYuLkhqO9zc3GBra1vsYy+qc+fOoVOnTrh37568zNbWFs7OzjAzM4MQQl73PHt8l4awsDCEhYVh3bp1mDlzJpRKJQDgyy+/BJDX9nt4eOhNX6FCBb3rXF1dYWlpiczMTI1zlZ+hvA2R8rOyspJ7f+ri7e1daF52dnYYMGAABgwYAADIysrCiRMn8Pnnn2PHjh1ISUnBW2+9hX/++Ufu8Sjt39Dx59+/vuPXxdXVFV26dMGuXbuwadMmjYfL33zzDQDA19cXb7zxhkY6qQ3LzMw0qg3T134V95oAwJMnT1CjRg2d60aMGFFo8EqX8uXLY9SoUXJvzJSUFOzfvx8RERE4ffo0Ll68iCFDhuDAgQNFzvvx48cICAjQ6GlraWkJNzc3+V5ITk5GTk6OwXvZmM8h+dv8jIwM+Vc2huqQofpbWmU3dL2lelu+fHmD7bIx91lpkgKQ+XvS5u8IYOz9VvAeGDx4MBYvXoxz587hzz//RN26dQHktePR0dHyNkVRWtepOO7fvy//39h6pu/cFbWOF9X48eOxdOlSAHm/irt8+TLmz5+P7du3Y9iwYYiNjUXVqlV1pt24cSOGDx+usX9HR0f5+0lmZiYeP35cqvcw8H/nt7AHIfrOfWm12UREhrDHNxGRkSwtLTFw4EAAwNq1a7Fx40YAxvX2LYyxQa7SNnToUNy8eROVK1fGt99+i+TkZKSlpeHevXtISkrS6EEmDe8BQGOIhr179xba41LqPVsaJk+ejGvXrmHJkiXo2bMnPDw8cPPmTaxfvx5vvvkm3nrrrRJ98TBk0KBBUCqViI6OxhdffIFnz54hMDDQqJ5P0jnz9PQ06nwJIVC5cuXnchwvYxmfPXumdygLXUMhlFSjRo3QqFEjAND6yff+/fvloPeoUaPw559/IjMzEw8fPkRSUhKSkpLwwQcfANC8byTBwcFISEjAF198gf79+6NixYq4f/8+duzYgZ49e6JNmzZ48uSJUeU0VdsRHByMe/fuoWbNmvj+++/x6NEjpKamym3HhQsX5G11nYMXSXBwMBwcHHDr1i38+OOPAPJ6n+3duxdAXrDyeZICPy8SlUqFNm3aYPv27Rg3bhyAvMCUFPgqC1Jw7YcfftB4wCoFvqXhUPKT2rCAgACj2q/Hjx/r3HdJron04FDXy9j7ujCOjo7o27cv4uLi0KRJEwB5wxLyrosAACAASURBVFBcv369yHlNnz4dJ0+ehIODA1avXo2bN28iIyMD9+/fl9uzmjVrAnjx7uXSKvuLeA8acufOHTngWK1aNXl5/s9md+7cMeoeKPiLxfr166NevXoAIH/OBfIeMKelpcHe3r7Iv3J8meuYqVhbW6NBgwbYtm0bevXqhRs3bqBfv346h+66ceMGwsLCkJ2djaCgIBw/fhwZGRl4/PixfH7Xrl0L4Pmd3+J+FimtNpuIyBAGvomIikAKci9duhQ3b95EnTp15C+dJeHl5QWgbH/Cd+PGDXmYhK1bt6Jv375avQb1jaXt6uoq9/4wxc8Oy5cvj/fffx/R0dG4e/cuzp8/j+HDhwMAvvvuO6xevfq57LdcuXIIDAzEs2fP5DFtjX3wIV3jBw8evLA9YF/kMoaEhOj9ItS2bdvnsk/pFxgFhyKRxqUNCAjAqlWrUKdOHa3ASWHj0Lu4uCAsLAzbtm1DYmIi4uPj8eGHH0KhUODo0aNGPygyxTX7888/8ffffwPIG2qke/fuWuPbGjp+qe3QN4QMkNejtazY2trK44d+9dVXAPKGMcrNzUX16tULHWrB0BATycnJ8q9jStKLWBcpv4yMDIM/ry/JEBhAXo94Sf7xgKX9FzY0gbS+qMcfFBQEFxcXZGVlyWP0xsXF4Z9//oFCodAZ+DbFe2lBTk5OetsqqTdnabGwsNB4D8p/fYwltWcRERF47733dPbMNPYXQEVhZWUl9zA1VEcNrSuLskv1VgokF6ecpU16QAdA4/1Pqv9Aye4B6d7asmWLPNyGNMxJnz59NIbBM4ap6hiQ92sqiaG2Kv+60m6rS2rlypWwtrbG77//Lr9H5bdr1y5kZGTA29sb0dHRaN68uTxcleR5zY0jnd/Chh3Ud3+8CG02Eb36GPgmIiqCJk2aoG7dunIP05JOaimRhmnYs2dPqeRnjPwTrTVs2FDnNvp+Nm1hYYHXXnsNQNmWWZ+6deviq6++ksfY3L9//3Pbl3TNs7Ky4Obmhu7duxuVTipbbm6u3JO0LElD1xj64m7qMr5opC/CBYcQke4dffeNEAKHDh0q0r6qVauGTz/9VB6H09g6LLUdZXnNpOO3srKSe+kVZGjIBWkSMENBiN9++60EJSw6aZLLvXv3IjExUR7v29CklhJDE/fmX6dvfODiyv/Q1VAZiloXC7Kzs5P/nz+YIu3/woULesdxz8jIkCdT0zV5oSEqlQr9+/cH8H9BN+nfVq1a6fy1idSGXb582eST55YVfdcn/8SG+tr99PR0+aGJvvbs3LlzGsNFlCapDhWn/pZV2aUypqSkyOMZF5SZmSmPVfy8paenY+HChQDygoYBAQHyujp16sgT1Zbks5k0+eXt27dx8OBB+V+g6MOclPQ6GVOPDXF1dZUntJSOQRfpPcvKygp16tQp8n6ep/Lly8u/PJo9e7bWcB/Se3KdOnV0TnIMGH5PLgnpl3EpKSk4e/aszm2ys7PljjYF/RfbbCIqewx8ExEVUUREBCZOnIiJEyfKvQRLatiwYQCAv//++7n1Vi4o/8z0586d01r/9OlTzJkzR2966UN4TEyM1uRjBZXWJIZSz0l9rK2tAWh+USpt3bp1w+TJkzFx4kQsXbpU75eMgnx9feWeWdOnTy+0R2tpT/wofRk29DNRU5fxRXL58mU5yFHwVx3SvaPrvgGAL774Av/++6/OdaVdh6tXr47WrVsDAKZNm1ZqQykYIh1/RkaGPCFZfg8ePNAY/7wgabLJtLQ0eZz+/FJSUrBy5cpSKq1x6tSpgxYtWiA3NxeDBg1CQkJCoZNaSv766y/s2rVLa3lOTg4iIiIA5E2O6+PjU6pl9vHxkce4nj9/vs6fwH/33Xcaw87kd+vWLb2TuOW3YcMG+f9SkAMAunfvDhsbG6jVanzyySc60y5evBgpKSlQKBRyELsopCBbXFwcLly4gB07dmgsL6hr164oV64chBB4//33NYZ+0MXYOSpM4cyZM4WO0yyEkB8GmJuby0NUAHkP7KR2RF+7b2VlJc9LoKs9U6vVmDp1arHKbwypTuzduxe///671vqUlBQsW7ZMZ9qyKnuLFi3k8Z/1fSZasWJFmdSlp0+fYsCAAXK7O2vWLPk9A8irA9LD+eXLlxf6CwB97+HlypWTJ4LcuHGj3PPbx8enyL+wKul1MqYeF0aau2Djxo06J5N++PChXM/69u1r9Oe6sjRp0iSoVCrcvXsXq1at0lgnvSdfuHBB5/vAsWPHnlsnlZYtW8LT0xMA8Omnn+rc5osvvtA7Efqr1GYT0YuLgW8ioiLq3LkzFi1ahEWLFmn8hLIk2rVrJ38wHzNmDKZOnarRG/LBgwdYu3atHCAvDbVq1ZIDMaGhoRpfOk+cOIG2bdsa/ID5zjvvoEOHDhBCoFevXpgzZ47GTx3T0tJw+PBhjB49Wu9kPEXVs2dPhIaGYu/evRpfgB4+fIg5c+bIvXmCgoJKZX+6WFhYYMGCBVi0aBGCg4OLlHbFihWws7PDlStX8MYbb+D777/XGO7h1q1b2LRpE9q3b48pU6aUarmlHkxPnjyRg0cvWhlfBDk5OTh8+DB69eolB6knTJigsU1gYCCAvGDNJ598Ig8x8vjxY8ybNw9jx47VmHAsvzFjxqBfv37YuXOnRlArNTUVX3zxhTymalHq8LJly2BlZYWrV6+iRYsW2LdvnzzOfW5uLk6dOoX33nuv1Hp8NWnSRD6+4OBg/PnnnwDygnCxsbFo06aNwQB/nTp15Po4cuRIHDt2DGq1GkIIxMXF4c033zTJUDvvvfceAODIkSMACp/UUuLo6IjBgwfjm2++kc/7v//+i169euH06dNQKBQGHyKWxNy5cwEAp0+fRq9eveSgTlZWFjZs2ICQkBCtYWgk165dQ7169dCxY0d8/fXXiI+Pl9fl5OTgr7/+wsiRIzFz5kwAgL+/Pzp37ixv4+TkJAesVq9ejUmTJsnBjadPn2L+/PnykFAjRoyAr69vkY/vjTfekNMNGTIEDx8+hJWVFfr27atze2tra3z++edQKBSIiYlBhw4dcPToUTmYIoTA1atXsWLFCtSvXx+bN28ucpnKyo8//ojKlSvjnXfewa5duzTai2fPnuHQoUPo1KmTfF+HhIRoDFemVCpRq1YtAHkBP133pJmZGTp16gQg72FnTEyMfK6uXLmC3r17Y//+/RoPykvTkCFDUKNGDeTm5qJbt2748ccf5aE1zp49i06dOultC8qq7EqlUp6QdNeuXRg+fLjGpN+LFy/Ghx9+qPc+K6mcnBycO3cO8+fPh7+/vxzAHDNmjMYwRJIZM2agWrVqePr0KVq2bIm1a9dqfV7avXs3BgwYgC5duujdrzTcSXR0tPwLmODg4CKP5VzS62RMPS7MhAkT4OXlhbS0NHTs2BGHDh2Se4+fPn0aHTp0QFJSEuzs7OT27kXj7e0tP/BbsGABUlNT5XVSr//ExESEhobK9TMjIwMbN25E165dn1v9tLCwkCf/3rFjB0aNGiW3Venp6VixYgUmTpwo/9KroFepzSaiF5ggIiItM2fOFABEpUqVipTu8OHDAoAAIK5du6a1Xlp3+PBhrXVpaWmid+/e8jYAhIODg3B0dJT/rl+/vkaayMjIQst57do1vWXas2ePMDc3l9fb2NgIGxsbAUDY2tqKAwcOGCxzSkqK6Nq1q1aZnZychEKhkJeZm5trpW3Tpo0AIGbOnGn0Oml5/n05ODhoLOvbt6/Izc3Vez6MJeUXGRlZpHRSGYcMGaJz/bFjx4SXl5ecv1KpFK6ursLa2lrjOIYPH66RLn/dMqbcuq5X+/bt5fX29vaiUqVKolKlSmLJkiUvTBnLgrR/W1tb4enpKb/c3d2FSqXSqLeLFy/WSp+VlSVatWolb6dQKISzs7MwMzMTAERQUJD46KOPBADRpk0bjbRDhgzROId2dnbCyclJY1nLli1FamqqRjqpTSqYn+Snn37SaCssLCyEq6ursLCwkJdFR0cbPC9S2Yxp9zZv3iwfr3Qupfrh6Ogo9u7dK687c+aMVvpjx45p1Cdra2u57alYsaKIioqS1z169Egj7ZkzZ4w+JiGEqF+/vgAgevToYXC7jIwM4ebmJud94MABo/KdM2eOaNiwoQAgVCqV1vVcuHChzvTS9SrsGJYsWaKz/ZcsXLhQY39OTk5yPW7UqJGYM2eOzvS//vqrRjqp3ri4uGhcWwDC399f/Pvvv1r7zsnJEaGhofJ2ZmZmwsXFRSiVSnlZ165dRXp6epGPSxIeHq5Rlv79+xvcXgghvvnmG436pVKphKurq8b9DUCsXLmyWGUqC/Pnz9e6PtbW1lr1C4Do1auXznO8YsUKjXPg7e0tKlWqJDp37ixvc+HCBY08VSqV/L5qZmYmVq1aJdf1gu8Vjx49MnifS/SlF0KIv/76S3h4eGgco729vfz/nTt36t1HWZRdMmbMGK02X/r81KVLFzF27Fij2hldxo8fL+eb/z3J0dFR47MUAFGuXDmxadMmg/n9+++/8nHnL6+dnZ1GXk2aNNGbR1pamnwdpNfFixf1bp+/XS7YZpfkOglhXD02tH8hhDh58qRwd3eXt7GxsdE4H7a2tmLv3r1a6UqjjhdGei8YP368we3i4+PltnXOnDka68LCwjSulaOjo1w//f39xddffy0vL0iqf4bqbnR0tN70arVaDB06VO/90aNHD/n+0dd+F7fNJiIyBnt8ExG9IGxsbLBz50788MMP6NWrF8qXL4+MjAz558vjxo3Dl19+War77Nq1K44cOYKgoCA4OTkhJycHbm5uGDp0KH7//Xe0b9/eYHoHBwfs2bMHMTEx6N+/P3x8fJCZmYn09HRUqFABnTp1wqefflqsCbd0WbFiBSIiItClSxf4+vpCCIFnz56hfPny6N69O3bu3Ilvv/32uQ51UlItWrTAlStXsGjRIrRu3RpOTk54/Pix3KvpnXfewebNm0t9EjQgb9iDDz74ADVq1EB2djYSEhKQkJCg9fNhU5axLKWlpeHu3bvy68GDB1CpVKhbty7GjBmDs2fP4oMPPtBKZ2FhgZ9//hkzZ85EjRo1YGFhASEEXnvtNaxevRq7d+/WmuxSMmPGDCxfvhy9evVCzZo1YW5ujtTUVHh4eKBjx45Yt24dYmNjtcYVL0ynTp1w9epVTJ8+HQ0bNoS1tTXS0tJQoUIFBAQEYM2aNYVO0lgUb7/9Ng4cOICOHTvCwcEBOTk58PLyQlhYGM6ePSsPwaFPixYtEBcXh969e8PNzQ25ubnw9PTEBx98gLNnz8pjspYlS0tLdOvWDQCMmtRSYmtri+PHj2PmzJmoVq0aMjMz4eTkhMDAQBw6dAiTJk16nsXGpEmTcPDgQQQEBMDJyQmZmZmoVq0aZs2ahePHj+utS6+//jquX7+OVatWYcCAAahduzasra2RkpICKysrVK1aFb1798bGjRv1XhOlUomvv/4aP/74I7p37w43Nzc8ffoUTk5O6NixI7Zs2YLdu3drDMdQVIMGDdLoZWrMGMPBwcGIj4/HtGnT0LhxY1hbW+Px48ewsbFBo0aNMHLkSPz44486e8y+KKZMmYLTp09j7ty56Nq1K6pVqwaFQoGnT5/CwcEBderUwbBhw3Dw4EFERUXpPMdjxozBl19+iTfeeANWVla4desWEhISNH6dVatWLZw+fRrvvPMOPD09IYSAjY0NevXqhdjYWIwaNeq5Hmft2rVx/vx5jB49Gj4+PsjNzYWdnR0GDhyIU6dOGbwPy7LsK1aswI4dO9CqVSvY2dkhKysLdevWxdKlS7F79+5S+dwhhJDfj+7duwe1Wo0KFSqgRYsWGDNmDHbv3o3ExMRCh9mrUqUKTp8+jfXr16NLly7w9PREamoqcnNzUa1aNfTq1QurVq0yOEydjY0N+vTpI//dtGlTvXM6FKak18mYelyYpk2b4sKFC5g6dSrq1KkDhUKBnJwc+Pr6YuzYsbh48aL8a64XVbVq1eThgT777DON4ehWr16NNWvWoFGjRrCyskJubi5q1aqFWbNm4dSpU1qT15cmhUKBdevWYfPmzWjRogXs7OyQnZ2NevXqYeXKlYiKipKHYdPX8/xVaLOJ6MWlEKIYs0QQEREREb1C1Go1qlatioSEBEREROB///ufqYtERET00qtduzYuXLiA5cuXY+zYsaYuDhH9x7y4XeKIiIiIiMrI7t27kZCQAEtLSwwdOtTUxSEiInrp7d69W55kWRqPnIioLDHwTURERET/aTdv3pR7eA8ZMqTUJi4mIiJ61YWGhmLLli0ak/AmJydj2bJlGDhwIACgd+/eqFGjhqmKSET/YRzqhIiIiIj+k7p06YLz588jKSkJubm5cHNzw59//gkvLy9TF42IiOilULlyZSQkJAAArK2tYWlpqTF/TOPGjbFv3z64ubmZqohE9B9mbuoCEBERPQ/SxHlF0bx5c0RFRT2nEhHRi+b27du4desWnJ2d0bx5c0RERDDoTUREVAQLFizAnj17cPr0ady7dw9PnjyBq6sr6tWrh7feeguhoaGwtLQ0dTGJ6D+KPb6JiOiVFBsbi3bt2hUpTZs2bRAbG/t8CkREREREREREZYaBbyIiIiIiIiIiIiJ6pXCoEwBqtRq3b9+Gvb09FAqFqYtDRERERERERERERDoIIfD06VOUL18eZmZmerdj4Bt54ztWrFjR1MUgIiIiIiIiIiIiIiPcuHED3t7eetcz8A3A3t4eQN7JcnBwMHFpiIiIiIiIiIiIiEiXJ0+eoGLFinJMVx8GvgF5eBMHBwcGvomIiIiIiIiIiIhecIUNWa1/EBQiIiIiIiIiIiIiopcQA99ERERERERERERE9Eph4JuIiIiIiIiIiIiIXikc45uIiIiIiIiIiF5aQgjk5OQgNzfX1EUholKgVCphbm5e6BjehWHgm4iIiIiIiIiIXkpZWVm4c+cO0tPTTV0UIipFNjY2KFeuHFQqVbHzYOCbiIiIiIiIiIheOmq1GteuXYNSqUT58uWhUqlK3EOUiExLCIGsrCzcv38f165dg6+vL8zMijdaNwPfRERERERERET00snKyoJarUbFihVhY2Nj6uIQUSmxtraGhYUFEhISkJWVBSsrq2Llw8ktiYiIiIiIiIjopVXc3qBE9OIqjfuaLQMRERERERERERERvVIY+CYiIiIiIiIiIiKiVwoD30RERERERERERET0SmHgm4iIiIiIiIiIqAyFhIRAoVBovQIDA01dNKJXhrmpC0BERERERERERPRfExgYiMjISI1llpaWJioN0auHPb6JiIiIiIiIiOiVIIRAelZOmb+EEEUuq6WlJby8vDRezs7OAACFQoG1a9eiV69esLGxga+vL3bv3i2n1ddjPDY2FuHh4ahTp47W/ho0aIAZM2bI6Xv27Il58+bB09MTTk5OCA8PR05ODiZPngwXFxd4e3trBeZv3LiBfv36wcnJCS4uLujRoweuX79e5GMnKgvs8U1ERERERERERK+EZ9m58P/4pzLf74XwANioSjfMNnv2bCxYsAALFy7EihUrEBwcjISEBLi4uGDZsmWYP3++vO38+fOxdetW1KxZE9WrV8fs2bNx6tQpNG3aFABw5swZnD9/HlFRUXKaQ4cOwdvbG0eOHMHx48cxbNgwxMXFoXXr1vjtt9+wfft2hIWFoWPHjvD29kZ2djYCAgLQrFkzHD16FObm5pgzZw4CAwNx/vx5qFSqUj1+opJij28iIiIiIiIiIqIy9sMPP8DOzk7jNW/ePHl9SEgIBg4ciOrVq2PevHlITU3FyZMnAQCOjo5yL/G4uDisWbMGUVFR8PLygre3NwICAjR6a0dGRqJNmzaoWrWqvMzFxQXLly+Hn58fQkND4efnh/T0dEybNg2+vr6YOnUqVCoVjh07BgDYvn071Go11q5di7p166JWrVqIjIxEYmIiYmNjy+akERUBe3wTEREREREREdErwdpCiQvhASbZb1G1a9cOq1ev1ljm4uIi/79evXry/21tbeHg4IB79+5pbH/mzBkMGjQIK1euRIsWLeTl7777LkJDQ7F48WKYmZlhy5YtWLJkiUba2rVrw8zs//rEenp6agyRolQq4erqKu/z3LlziI+Ph729vUY+GRkZ+Oeff4p6+ETPHQPfRERERERERET0SlAoFKU+5MjzYmtri+rVq+tdb2FhofG3QqGAWq2W/05KSkL37t0xfPhwDBs2TGPbbt26wdLSEtHR0VCpVMjOzkbfvn0Lzd/QPlNTU9G4cWNs3rxZq6zu7u4GjpTINF6OloCIiIiIiIiIiIgA5PWy7tGjB2rWrInFixdrrTc3N8eQIUMQGRkJlUqFAQMGwNraukT7bNSoEbZv3w4PDw84ODiUKC+issDANxERERERERERURnLzMxEUlKSxjJzc3O4ubkVmjYsLAw3btzAwYMHcf/+fXm5i4uLPMnk8OHDUatWLQDA8ePHS1ze4OBgLFy4ED169EB4eDi8vb2RkJCAqKgo/O9//4O3t3eJ90FUmhj4JiIiIiIiIiIiKmP79u1DuXLlNJb5+fnh0qVLhab95ZdfcOfOHfj7+2ssP3z4MNq2bQsA8PX1RfPmzfHw4UO8/vrrJS6vjY0Njhw5gilTpqB37954+vQpKlSogPbt27MHOL2QFEIIYepCmNqTJ0/g6OiIlJQU3qhERERERERERC+BjIwMXLt2DVWqVIGVlZWpi/PCEULA19cXo0aNwoQJE0xdHKIiMXR/GxvLZY9vIiIiIiIiIiKiV8j9+/exbds2JCUlYejQoaYuDpFJMPBNRERERERERET0CvHw8ICbmxu+/PJLODs7m7o4RCbBwDcREREREREREdErhCMbEwFmpi4AEREREREREREREVFpYuCbiIiIiIiIiIiIiF4pDHwTERERERERERER0SuFgW8iIiIiIiIiIiIieqUw8E1ERERERERERERErxSTBr5Xr16NevXqwcHBAQ4ODmjWrBn27t0rr8/IyMDo0aPh6uoKOzs79OnTB3fv3tXIIzExEUFBQbCxsYGHhwcmT56MnJycsj6Ul5LIzkbayZN4/N13pi4KERERERERERERUakxaeDb29sb8+fPx++//47Tp0/jzTffRI8ePfD3338DAD744APs2bMH3377LX755Rfcvn0bvXv3ltPn5uYiKCgIWVlZiIuLw4YNG7B+/Xp8/PHHpjqkl4rIyUHCkBDc+WgGHl6/buriEBERERERERER6XX9+nUoFAqcPXvW1EX5TwsJCUHPnj1NXYxCmTTw3a1bN3Tp0gW+vr6oUaMG5s6dCzs7O/z6669ISUnB119/jcWLF+PNN99E48aNERkZibi4OPz6668AgJ9//hkXLlzAN998gwYNGqBz58745JNPsGrVKmRlZZny0F4KZtbWSLexAQDE//KLiUtDRERERERERPTfEBISAoVCofUKDAw0ddGem/T0dEydOhXVqlWDlZUV3N3d0aZNG3z//fdlVobSDpzHxsZCoVDg8ePHpZJffjt37kTbtm3h6OgIOzs71KtXD+Hh4Xj48GGp7+tV9cKM8Z2bm4tt27YhLS0NzZo1w++//47s7Gx06NBB3qZmzZrw8fHBiRMnAAAnTpxA3bp14enpKW8TEBCAJ0+eyL3GdcnMzMSTJ080Xv9Vac5OAICnFy6auCRERERERERERP8dgYGBuHPnjsZr69atpi7Wc/Pee+8hKioKK1aswKVLl7Bv3z707dsXycnJpi6aFlN3qJ0+fTr69++Ppk2bYu/evfjrr7/w2Wef4dy5c9i0aZNJy/YyMXng+88//4SdnR0sLS3x3nvvITo6Gv7+/khKSoJKpYKTk5PG9p6enkhKSgIAJCUlaQS9pfXSOn0+/fRTODo6yq+KFSuW8lG9PLLcPQAAuYmJJi4JEREREREREVEJCQFkpZX9S4giF9XS0hJeXl4aL2dnZwCAQqHA2rVr0atXL9jY2MDX1xe7d++W0+rrMR4bG4vw8HDUqVNHa38NGjTAjBkz5PQ9e/bEvHnz4OnpCScnJ4SHhyMnJweTJ0+Gi4sLvL29ERkZqZHHjRs30K9fPzg5OcHFxQU9evTAdSOHz929ezemTZuGLl26oHLlymjcuDHGjh2L0NBQeRuFQoFdu3ZppHNycsL69es1ll26dAnNmzeHlZUV6tSpg1/yjWTw6NEjBAcHw93dHdbW1vD19ZWPo0qVKgCAhg0bQqFQoG3bthrnY+7cuShfvjz8/PwAAJs2bUKTJk1gb28PLy8vvP3227h37x6AvN7j7dq1AwA4OztDoVAgJCQEAKBWq/Hpp5+iSpUqsLa2Rv369fGdkXPsnTx5EvPmzcNnn32GhQsXonnz5qhcuTI6duyInTt3YsiQIfK2q1evRrVq1aBSqeDn56cVFFcoFFizZg26du0KGxsb1KpVCydOnEB8fDzatm0LW1tbNG/eHP/884+cZtasWWjQoAHWrFmDihUrwsbGBv369UNKSoreMhd2vOHh4ShfvrzGQ46goCC0a9cOarXaqPNSHObPLWcj+fn54ezZs0hJScF3332HIUOGaFTW52Hq1KmYMGGC/PeTJ0/+s8FvpY8PcOYMVP//piUiIiIiIiIiemllpwPzypf9fqfdBlS2pZrl7NmzsWDBAixcuBArVqxAcHAwEhIS4OLigmXLlmH+/PnytvPnz8fWrVtRs2ZNVK9eHbNnz8apU6fQtGlTAMCZM2dw/vx5REVFyWkOHToEb29vHDlyBMePH8ewYcMQFxeH1q1b47fffsP27dsRFhaGjh07wtvbG9nZ2QgICECzZs1w9OhRmJubY86cOQgMDMT58+ehUqkMHo+XlxdiYmLQu3dv2Nvbl+jcTJ48GUuXLoW/vz8WL16Mbt264dq1a3B1002NlQAAIABJREFUdcWMGTNw4cIF7N27F25uboiPj8ezZ88A5AWVX3vtNRw4cAC1a9fWKPPBgwfh4OCA/fv3y8uys7PxySefwM/PD/fu3cOECRMQEhKCmJgYVKxYETt37kSfPn1w+fJlODg4wNraGkBep9tvvvkGX3zxBXx9fXHkyBG888478vAuhmzevBl2dnYYNWqUzvVSJ+Ho6GiMHz8eS5cuRYcOHfDDDz9g6NCh8Pb2lgPyAPDJJ59g8eLFWLx4MaZMmYK3334bVatWxdSpU+Hj44PQ0FCMGTMGe/fuldPEx8djx44d2LNnD548eYJhw4Zh1KhR2Lx5s84yFXa806dPx759+zB8+HBER0dj1apViIuLw7lz52Bm9vz6ZZs88K1SqVC9enUAQOPGjXHq1CksW7YM/fv3R1ZWFh4/fqzR6/vu3bvw8vICkHfDnDx5UiO/u3fvyuv0sbS0hKWlZWkfykvJsbY/8P33sH38GLm5uVAqlaYuEhERERERERHRK++HH36AnZ2dxrJp06Zh2rRpAPJ6IQ8cOBAAMG/ePCxfvhwnT55EYGCgPIoBAERFRWHNmjU4cOCAHA8LCAhAZGSkHPiOjIxEmzZtULVqVXlfLi4uWL58OczMzODn54cFCxYgPT1d3v/UqVMxf/58HDt2DAMGDMD27duhVquxdu1aKBQKOV8nJyfExsaiU6dOBo/3yy+/RHBwMFxdXVG/fn20bNkSffv2RYsWLYp87saMGYM+ffoAyOv1vG/fPnz99df43//+h8TERDRs2BBNmjQBAFSuXFlO5+7uDgBwdXXVih3a2tpi7dq1GsHw/L3Rq1atiuXLl6Np06ZITU2FnZ0dXFxcAAAeHh5y/DIzMxPz5s3DgQMH0KxZMzntsWPHsGbNmkID31evXkXVqlVhYWFhcLtFixYhJCREDpBPmDABv/76KxYtWqQR+B46dCj69esHAJgyZQqaNWuGGTNmICAgAAAwfvx4DB06VCPvjIwMbNy4ERUqVAAArFixAkFBQfjss8+0zpsxx6tUKuU5Gj/88EMsX74ca9euhY+Pj8FjLCmTB74LUqvVyMzMROPGjWFhYYGDBw/KFfny5ctITEyUT2KzZs0wd+5c3Lt3Dx4eeUN27N+/Hw4ODvD39zfZMbxMvJo0wRMAtmlpuH/rFryec4UjIiIiIiIiInpuLGzyel+bYr9F1K5dO6xevVpjmRRIBYB69erJ/7e1tYWDg4M8zIbkzJkzGDRoEFauXKkRQH733XcRGhqKxYsXw8zMDFu2bMGSJUs00tauXVujt62np6fGEClKpRKurq7yPs+dO4f4+Hit3toZGRkaQ2Xo07p1a/z777/49ddfERcXh4MHD2LZsmWYPXu2PASLsaTYIACYm5ujSZMmuHgxb/66kSNHok+fPvjjjz/QqVMn9OzZE82bNy80z7p162r1Wv/9998xa9YsnDt3Do8ePZKH5UhMTNQbe4yPj0d6ejo6duyosTwrKwsNGzYstBzCyGFzLl68iBEjRmgsa9GiBZYtW6axLH89koaIrlu3rsayjIwMPHnyBA4ODgAAHx8fOegN5J1vtVqNy5cvawW+jT3eqlWrYtGiRQgLC0P//v3x9ttvG3WcJWHSwPfUqVPRuXNn+Pj44OnTp9iyZQtiY2Px008/wdHREcOGDcOECRPg4uICBwcHjB07Fs2aNcMbb7wBAOjUqRP8/f0xaNAgLFiwAElJSfjoo48wevRo9ug2klu1arivUsEyKwu3T59m4JuIiIiIiIiIXl4KRakPOfK82NrayqMg6FKwx69CodAYDzkpKQndu3fH8OHDMWzYMI1tu3XrBktLS0RHR0OlUiE7Oxt9+/YtNH9D+0xNTUXjxo11Dnch9aQujIWFBVq1aoVWrVphypQpmDNnDsLDwzFlyhSoVCooFAqtwG92drZReUs6d+6MhIQExMTEYP/+/Wjfvj1Gjx6NRYsWGUxna6tZb9LS0hAQEICAgABs3rwZ7u7uSExMREBAgMHJL1NTUwEAP/74o0bwGIBR8coaNWrg2LFjyM7OLrTXtzHy5yH11Ne1rLhjbRfleI8cOQKlUonr168jJycH5ubPNzRt0skt7927h8GDB8PPzw/t27fHqVOn8NNPP8lPCJYsWYKuXbuiT58+aN26Nby8vDTGIlIqlfjhhx+gVCrRrFkzvPPOOxg8eDDCw8NNdUgvHUtLS4jyeWNfeRSxISEiIiIiIvp/7N15eFTl+cbx+2SSyUwymUkmyWSBJCwJSAggi4IbRoqi4m6r/nABrVqo2rrWpYtotYIV6167YqvSohY3UOpSUEGxgiI7BEgISzayTbZJZjm/P4JTY9gFJpjv57rOlZlz3nPmOZGBy3veeV4AwJHn8/l0/vnn65hjjtGjjz7a6Xh0dLQmTpyomTNnaubMmbrsssvC/acP1rBhw1RUVCSPx6Pc3NwO21dtVw5Ufn6+AoGAfD6fpPYAvaysLHy8qKhIzc3Nnc5bsmRJ+HEgENCyZcs0YMCA8L7U1FRNnDhRL7zwgh577DH98Y9/lKTwjO5gMLjP2tatW6fq6mpNmzZNp5xyio455phOM+53d738/HzFxsaqtLS00+9pf9YYnDBhghobG/XMM8/s9nhdXZ0kacCAAVq8eHGHY4sXLz4kXTBKS0u1Y8f/vjmxZMmScEucb9rf+509e7bmzJmjhQsXqrS0VL/+9a+/dZ37EtEZ33/5y1/2etxms+npp5/W008/vccxOTk5euuttw51ad1K2rBhqi8pkaWsPNKlAAAAAAAAdAutra0qL++YxURHRyslJWWf5/7oRz/S1q1b9f7776uqqiq83+12h8PYa6+9NhwGfzMgPRiXX365fvvb3+r888/X/fffr549e2rLli2aM2eOfvazn6lnz557Pb+wsFD/93//pxEjRig5OVlr1qzRPffco9NOOy3cYmPMmDF66qmndMIJJygYDOrOO+/c7aznp59+Wnl5eRowYIB+97vfqba2NtyP+1e/+pWGDx+ugQMHqrW1VXPnzg3/Hjwej+x2u+bPn6+ePXvKZrPtMbTPzs6W1WrVk08+qcmTJ2vVqlWdwtqcnBwZhqG5c+fq7LPPlt1uV0JCgm6//XbdcsstCoVCOvnkk1VfX6/FixfL6XRq4sSJe/09jRw5Uj/72c902223afv27brwwguVmZmpjRs36tlnn9XJJ5+sn/70p7rjjjt0ySWXaOjQoRo7dqzefPNNzZkzR++9995er78/bDabJk6cqEceeURer1c/+clPdMkll+x2TcX9ud9t27ZpypQpmj59uk4++WTNnDlT55xzjs4666xwZ4/DIaIzvtE1xPZtX9igrbh4v/sIAQAAAAAA4ODNnz9fGRkZHbaTTz55v8794IMPVFZWpvz8/A7nf/zxx+ExeXl5OvHEE3XMMcdo5MiR37reuLg4ffjhh8rOztZFF12kAQMG6Ic//KF8Pl84uN6bcePG6W9/+5vOOOMMDRgwQDfddJPGjRunl156KTxmxowZysrK0imnnKIJEybo9ttvV1xc5/7p06ZN07Rp0zRkyBAtWrRIb7zxRvgDA6vVqrvvvluDBw/W6NGjZbFY9M9//lNS+wcLTzzxhP7whz8oMzNT559//h7rTU1N1XPPPaeXX35Z+fn5mjZtWqd2KT169NB9992nu+66S2lpabrxxhslSb/+9a/1y1/+Ug899JAGDBigM888U/PmzVPv3r33/YuWNH36dM2aNUuffvqpxo0bp4EDB+rWW2/V4MGDw8H5BRdcoMcff1yPPPKIBg4cqD/84Q+aOXOmCgsL9+s19iY3N1cXXXSRzj77bJ1xxhkaPHjwHmeg7+t+TdPUpEmTdPzxx4d/P+PGjdOUKVN0xRVXhFulHA6GSdIpr9crl8ul+vr6/XqjftdUzJunmttuV0t6mga8/fa3/uoLAAAAAADA4ebz+VRcXKzevXvLZrNFupwuxzRN5eXl6cc//rFuvfXWSJeDo8TUqVP12muvafny5RGtY2/v7/3NcpnxDVXt+gpMTNVOle2IwMrHAAAAAAAAOGSqqqr01FNPqby8XFdffXWkywEiguAbSuzfX8GoKEUHg6paszbS5QAAAAAAAOBb8Hg8uv/++/XHP/5RSUlJR+Q1HQ7HHrePPvroiNRwNJg8efIef0+TJ0+OdHnfKbQ6Ea1OWlpa9GXhaXLV12vrpIk64667Il0SAAAAAADAXtHqpGvZuHHjHo/16NGD1rq7VFZWyuv17vaY0+mUx+M5whV1TYei1Un04S4SXZ/dblejyyVXfb18mzZFuhwAAAAAAAAcZXJzcyNdwlHB4/EQbh8htDqBJMmfliZJspSVKxQKRbgaAAAAAAAAADh4BN+QJEX3ypEkOerrVVNTE+FqAAAAAAAAAODgEXxDkmTr2/51FKfXq/Ly8ghXAwAAAAAAAAAHj+AbkqR+hadKkmytreqdkhLhagAAAAAAAADg4BF8Q5KU1quXotPTJUn+kpLIFgMAAAAAAAAA3wLBN8KsvXtLkto2F0e4EgAAAAAAAHxbJSUlMgxDy5cvj3QpwBFH8I2wZneSJGnNu++qtbU1wtUAAAAAAAB8N02aNEmGYcgwDFmtVuXm5ur+++9XIBCIdGn71KtXLz322GORLgPYJ4JvhBW1tEiSglu2qKKiIsLVAAAAAAAAfHedeeaZKisrU1FRkW677TZNnTpVv/3tbzuNCwaDCoVCEagQOLoRfCMsOidHkpTg9aq8vDzC1QAAAAAAABwY0zTV7G8+4ptpmgdca2xsrNLT05WTk6MpU6Zo7NixeuONN/Tcc88pMTFRb7zxhvLz8xUbG6vS0lKFQiHdf//96tmzp2JjY3Xsscdq/vz5Ha753//+V0OHDpXNZtOIESP0xRdfdDj+1bW/7rXXXpNhGB32vfnmmzruuONks9mUkpKiCy+8UJJUWFioLVu26JZbbgnPWAe6quhIF4Cuw5abK0mKb2pS8bZt0vHHR7giAAAAAACA/dcSaNHIWSOP+Ot+OuFTxcXEfatr2O12VVdXS5Kam5s1ffp0/fnPf1ZycrI8Ho8ef/xxzZgxQ3/4wx80dOhQ/fWvf9V5552n1atXKy8vT42NjTrnnHN0+umn64UXXlBxcbF++tOfHnAd8+bN04UXXqif//zn+vvf/662tja99dZbkqQ5c+ZoyJAhuv7663Xdddd9q/sFDjeCb4Ql9uqltpgYWf1+NWzYEOlyAAAAAAAAvvNM09T777+vf//737rpppskSX6/X88884yGDBkSHvfII4/ozjvv1GWXXSZJmj59uhYsWKDHHntMTz/9tGbNmqVQKKS//OUvstlsGjhwoLZt26YpU6YcUD0PPvigLrvsMt13333hfV/V4Xa7ZbFYlJCQoPT09G9768BhRfCNMHdysrY5nUqurlZbSYlCoZCiouiGAwAAAAAAjg72aLs+nfBpRF73QM2dO1cOh0N+v1+hUEgTJkzQ1KlT9fLLL8tqtWrw4MHhsV6vVzt27NBJJ53U4RonnXSSvvzyS0nS2rVrNXjwYNlstvDxE0444YDrWr58ObO58Z1A8I0wt9utNc4EJVdXy15do/r6eiUlJUW6LAAAAAAAgP1iGMa3bjlypJx22mn6/e9/L6vVqszMTEVH/y+ms9vth6V/dlRUVKd+5H6/v8Nzu/3AQ3ygK2I6L8ISEhLUtGuBA6fXG+4rBQAAAAAAgEMrPj5eubm5ys7O7hB6747T6VRmZqYWL17cYf/ixYuVn58vSRowYIBWrFghn88XPr5kyZIO41NTU9XQ0KCmpqbwvuXLl3cYM3jwYL3//vt7rMVqtSoYDO795oAugOAbYYZhaMj48ZKkvjabsrOzI1wRAAAAAAAAJOmOO+7Q9OnTNXv2bK1fv1533XWXli9fHl7AcsKECTIMQ9ddd53WrFmjt956S4888kiHa4wcOVJxcXG65557tGnTJs2aNUvPPfdchzH33nuv/vGPf+jee+/V2rVrtXLlSk2fPj18vFevXvrwww+1fft27dy587DfN3CwCL7RQc6J7b2iglu2KBgIRLgaAAAAAAAASNJPfvIT3Xrrrbrttts0aNAgzZ8/X2+88Yby8vIkSQ6HQ2+++aZWrlypoUOH6uc//3mHwFpqb3P7wgsv6K233tKgQYP0j3/8Q1OnTu0wprCwUC+//LLeeOMNHXvssRozZoz++9//ho/ff//9KikpUd++fZWamnrY7xs4WIb5zcY+3ZDX65XL5VJ9fb2cTmeky4ko0+/XuqHDpEBAPd6aJ2efPpEuCQAAAAAAoBOfz6fi4mL17t27w4KOAI5+e3t/72+Wy4xvdFDX2KhASrIk6d9/+UunBQ4AAAAAAAAAoKsj+EYHNTU1Ko+OkST5i0tUWVkZ4YoAAAAAAAAA4MAQfKMDt9utBmeCJCnB61V5eXmEKwIAAAAAAACAA0PwjQ5cLpcaXC5JktPrVUVFRYQrAgAAAAAAAIADQ/CNDqKiomT07CmpfcY3rU4AAAAAAAAAHG0IvtGJtU8fSZLd51Pttm0yTTPCFQEAAAAAAADA/iP4Rieu9HQ12+2SpOiKSjU0NES4IgAAAAAAAADYfwTf6OTrC1ym+f3yer0RrggAAAAAAAAA9h/BNzrJz89Xj5EjJUkn9cqRx+OJcEUAAAAAAAAAsP8IvtFJQkKCkgoKJEn+khKFQqEIVwQAAAAAAICvLFy4UIZhqK6uLtKlAF0WwTd266sFLv3FJSxuCQAAAAAAcAhVVVVpypQpys7OVmxsrNLT0zVu3DgtXrz4iLz+oQ7On3vuOSUmJh6SawGHCsE3dmuTzydJ8peW6vdPPqlAIBDhigAAAAAAAL4bLr74Yn3xxRf629/+pg0bNuiNN95QYWGhqqurI11aB21tbZEuAThoBN/YrZXbt8sfHS3DNKXycu3cuTPSJQEAAAAAAOyVaZoKNTcf8e1Avi1fV1enjz76SNOnT9dpp52mnJwcHX/88br77rt13nnnqaSkRIZhaPny5R3OMQxDCxcu7HCtxYsXa/DgwbLZbBo1apRWrVoVPrZlyxade+65SkpKUnx8vAYOHKi33npLJSUlOu200yRJSUlJMgxDkyZNkiQVFhbqxhtv1M0336yUlBSNGzdOkvToo49q0KBBio+PV1ZWln784x+rsbFRUvvs8auvvlr19fUyDEOGYWjq1KmSpNbWVt1+++3q0aOH4uPjNXLkyE73ABwu0ZEuAF2TOzlZDU6n3DU1cnobVF5ervT09EiXBQAAAAAAsEdmS4vWDxt+xF+3/+fLZMTF7ddYh8Mhh8Oh1157TaNGjVJsbOxBv+4dd9yhxx9/XOnp6brnnnt07rnnasOGDYqJidENN9ygtrY2ffjhh4qPj9eaNWvkcDiUlZWlf/3rX7r44ou1fv16OZ1O2e328DX/9re/acqUKR3arkRFRemJJ55Q7969tXnzZv34xz/Wz372Mz3zzDM68cQT9dhjj+lXv/qV1q9fH75HSbrxxhu1Zs0a/fOf/1RmZqZeffVVnXnmmVq5cqXy8vIO+r6B/UHwjd1yu92qdybsCr7rVVlZGemSAAAAAAAAjnrR0dF67rnndN111+nZZ5/VsGHDdOqpp+qyyy7T4MGDD+ha9957r04//XRJ7YF1z5499eqrr+qSSy5RaWmpLr74Yg0aNEiS1GfXem5Se+4jSR6Pp1Nv7ry8PD388MMd9t18883hx7169dIDDzygyZMn65lnnpHVapXL5ZJhGB0mTZaWlmrmzJkqLS1VZmamJOn222/X/PnzNXPmTP3mN785oHsFDhTBN3bL7XZrm9MpSUrwNqiioiLCFQEAAAAAAOydYber/+fLIvK6B+Liiy/W+PHj9dFHH2nJkiV6++239fDDD+vPf/6zCgsL9/s6J5xwQvix2+1W//79tXbtWknST37yE02ZMkXvvPOOxo4dq4svvni/gvXhwzvPmH/vvff00EMPad26dfJ6vQoEAvL5fGpublbcHma6r1y5UsFgUP369euwv7W1VcnJyft9j8DBIvjGbrndbnnDwbdXa6uqZJqmDMOIcGUAAAAAAAC7ZxjGfrcciTSbzabTTz9dp59+un75y1/q2muv1b333quPPvpIkjr0Dff7/Qd8/WuvvVbjxo3TvHnz9M477+ihhx7SjBkzdNNNN+31vPj4+A7PS0pKdM4552jKlCl68MEH5Xa7tWjRIv3whz9UW1vbHoPvxsZGWSwWLVu2TBaLpcOxr1qhAIcTi1tit5KSktSwK/h2er1q8HrV3Nwc4aoAAAAAAAC+m/Lz89XU1KTU1FRJUllZWfjY1xe6/LolS5aEH9fW1mrDhg0aMGBAeF9WVpYmT56sOXPm6LbbbtOf/vQnSZLVapUkBYPBfda1bNkyhUIhzZgxQ6NGjVK/fv20Y8eODmOsVmunaw0dOlTBYFCVlZXKzc3tsLGOHI4EZnxjt2JiYqSMDIUMQzGBgHKTk9Xc3NzpUz8AAAAAAADsv+rqav3gBz/QNddco8GDByshIUFLly7Vww8/rPPPP192u12jRo3StGnT1Lt3b1VWVuoXv/jFbq91//33Kzk5WWlpafr5z3+ulJQUXXDBBZLa+3KfddZZ6tevn2pra7VgwYJwKJ6TkyPDMDR37lydffbZstvte5yFnZubK7/fryeffFLnnnuuFi9erGeffbbDmF69eqmxsVHvv/++hgwZori4OPXr10+XX365rrrqKs2YMUNDhw5VVVWV3n//fQ0ePFjjx48/hL9VoDNmfGOPrpg0STFZPSVJZxYM6rTYAQAAAAAAAA6Mw+HQyJEj9bvf/U6jR49WQUGBfvnLX+q6667TU089JUn661//qkAgoOHDh+vmm2/WAw88sNtrTZs2TT/96U81fPhwlZeX68033+wwm/uGG27QgAEDdOaZZ6pfv3565plnJEk9evTQfffdp7vuuktpaWm68cYb91jvkCFD9Oijj2r69OkqKCjQiy++qIceeqjDmBNPPFGTJ0/WpZdeqtTU1PDimDNnztRVV12l2267Tf3799cFF1ygzz77TNnZ2d/69wjsi2F+vWFQN+X1euVyuVRfXy/nrvYeaFfyo8lq+eADue+8U4kT/k+xsbGRLgkAAAAAAEA+n0/FxcXq3bu3bDZbpMsBcAjt7f29v1kuM76xV9bevSVJ/uJi+Xy+CFcDAAAAAAAAAPtG8I09qq6uVtGuBS2LFy/S008/vV+LHgAAAAAAAABAJBF8Y4/a2tq0orZGkhRfWye/36+ampoIVwUAAAAAAAAAe0fwjT1yu91q2NUnx97crGi/XxUVFRGuCgAAAAAAAAD2juAbexQbGytrUpJadjWQT/B6VV5eHuGqAAAAAAAA/sc0zUiXAOAQOxTva4Jv7FVSUpIanAmSJKfXq8rKyghXBAAAAAAAIMXExEiSmnetTwbgu+Or9/VX7/ODEX2oisF3k9vtltfpkqeySgneBm2trJRpmjIMI9KlAQAAAACAbsxisSgxMTE8SS8uLo68AjjKmaap5uZmVVZWKjExURaL5aCvRfCNvXK73dr+tRnf9fX18vl8stvtEa4MAAAAAAB0d+np6ZLEN9SB75jExMTw+/tgEXxjr9xut9buWuAy2efTkCFD5Pf7Cb4BAAAAAEDEGYahjIwMeTwe+f3+SJcD4BCIiYn5VjO9v0Lwjb3q37+/etx6qyoWfiB7XZ1OP+00WQm9AQAAAABAF2KxWA5JUAbgu4PFLbFXVqtVzt69ZdhsUiCgwI4dCoVCkS4LAAAAAAAAAPaI4Bv7FGWxKKZXjiSppWijqqqqIlwRAAAAAAAAAOwZwTf2acmSJSrb9XWhD2a9qOeff55Z3wAAAAAAAAC6LIJv7FNZWZnKotr/qDi9DWpra1NdXV2EqwIAAAAAAACA3SP4xj4lJSXJ63S2P25uliSVl5dHsiQAAAAAAAAA2COCb+yT2+1Ww67g21FXJ5mmKioqIlwVAAAAAAAAAOwewTf2ye12qyEhQaZhyOLzyebzEXwDAAAAAAAA6LIIvrFPbrdbIYtFTfHxkqQEr1fbt29ngUsAAAAAAAAAXRLBN/YpPj5eMTEx4T7fiY1NamxsVGVlZYQrAwAAAAAAAIDOCL6xT4ZhyO12qykxUZKUa7fpe9/7nmw2W4QrAwAAAAAAAIDOoiNdAI4O11xzjWoTElSzZo1SW9uUNmyYoqL43AQAAAAAAABA10Nyif1itVoV26evJMlfUiJJCoVCMk0zglUBAAAAAAAAQGcE39hv1j69JUnB8nLVl1foyy+/1Pbt2yNcFQAAAAAAAAB0RPCN/VJTU6PX3n9ffrtdkvTFW/P0zjvv6Msvv4xwZQAAAAAAAADQEcE39ovFYlFRUZHqHA5JUk8ZkqTNmzdHsiwAAAAAAAAA6ITgG/vF6XTKYrHI60yQJCU2NckwDNXU1KimpibC1QEAAAAAAADA/xB8Y78YhqGkpCQ1OJ2SJHNrqTIzMyVJRUVFkSwNAAAAAAAAADog+MZ+c7vdqne5JEmtK1aqd69ekqRNmzZFsCoAAAAAAAAA6IjgG/vN7XaryuNRyGpVsLJSOYGAJGnLli0K7HoMAAAAAAAAAJFG8I395na7FbJYVN+3ryTJ/uUK2e12+f1+lZeXR7g6AAAAAAAAAGgXHekCcPRwu92yWq2qH3CMktauVfOCBbroqSfldrvlcDgiXR4AAAAAAAAASCL4xgHo06ePbr/9drXW1GjrG28qUFKizNZWxdhsCgaDkS4PAAAAAAAAACTR6gQHwDAMRUVFKSohQbbjjpMkNS9YIEkyTVOmaUayPAAAAAAAAACQRPCNAxQV1f5HJu600yRJzQsWauXKlXrxxRe1YsWKSJYGAAAAAAAAAJIIvnGAPvjgA82cOVNbM9Ilw1Db6tXyFhdITOctAAAgAElEQVRrx44dKioqinR5AAAAAAAAAEDwjQPT3NysnTt3amcwqNjBgyVJWTvKJEnFxcUKhUKRLA8AAAAAAAAACL5xYNxutySptrZW9tMKJUnWL75QTEyMmpubVVZWFsHqAAAAAAAAAIDgGwcoJSVFklRWViZ7YXuf79bPP1cfj0eSaHcCAAAAAAAAIOIIvnFAevXqpdjYWDU0NKhcpmJyc6VgUH1rayVJmzZtinCFAAAAAAAAALo7gm8ckOjoaA0cOFCStHr1asWd1j7rO3HdeknS9u3b1dLSErH6AAAAAAAAAIDgGwds8K5FLdevXy/r6FMkScFlS5WZnKzc3Fw1NTVFsjwAAAAAAAAA3Vx0pAvA0Sc7O1vZ2dlKT0+X0aePLJmZCu7YoQtyein+e2MUHc0fKwAAAAAAAACRw4xvHDDDMDRp0iQVFhbKbreH2520LFwoSQoEAjJNM4IVAgAAAAAAAOjOCL5xUAzDCM/sDgffH34o0+9XbW2tGhsbI1keAAAAAAAAgG6MnhT4VjZt2iQjwaGYpCSFamv1we9/r89aWzV27FiddNJJkS4PAAAAAAAAQDfEjG8ctBUrVmjOnDn66OOPFVd4qiQprbhYUnsgDgAAAAAAAACRQPCNgzZgwABFRUWpsrJS/uHDJUnxq1ZLpqmtW7eqra0twhUCAAAAAAAA6I4IvnHQ4uLilJeXJ0laHxsrIz5eZnW1erS0KBAIqKSkJLIFAgAAAAAAAOiWCL7xrQwePFiStLaoSPaTTpQk9a+tkyRt3LgxYnUBAAAAAAAA6L4IvvGt9OvXTzabTQ0NDWouGCRJchcVSaapzZs3R7g6AAAAAAAAAN0RwTe+lejoaOXn50uS1sbZpZgYRZWVydnQoOrqatXW1ka4QgAAAAAAAADdDcE3vrUhQ4ZIkqpbWmQ7/jhJ0kkWiy688ELZbLZIlgYAAAAAAACgG4qOdAE4+mVlZen666+X0+lUo90u3+KPlVy0URm5uTIMI9LlAQAAAAAAAOhmmPGNb80wDGVkZCgqKkpxp54qGYba1q5VoKxMoVBIpmlGukQAAAAAAAAA3QjBNw6Z6OhoBRMSFDN4sCSp7PXX9dFHH2nHjh0RrgwAAAAAAABAd0KrExwyn3zyiRYtWqSxeXlK+PJLed95V0saGmSxWNSjR49IlwcAAAAAAACgm2DGNw4Zu90uv9+v1Y54SVL8li2ytrZq8+bNEa4MAAAAAAAAQHdC8I1DZuDAgYqKilJpa6uMPn1kmKYyt29XWVmZmpqaIl0eAAAAAAAAgG6C4BuHTFxcnPLy8iRJNXm5kqTelVWSpI0bN0asLgAAAAAAAADdC8E3DqkhQ4ZIklbFt7c7Sd66VZZAgOAbAAAAAAAAwBHD4pY4pPLy8mSz2VRmmjLT0hRVUaH0sjIVu1wKhUKKiuKzFgAAAAAAAACHV0RTyIceekjHHXecEhIS5PF4dMEFF2j9+vUdxhQWFsowjA7b5MmTO4wpLS3V+PHjFRcXJ4/HozvuuEOBQOBI3gp2iY6O1sCBAyXDUHVuX0lS1vYdCoVCqq+vj3B1AAAAAAAAALqDiM74/uCDD3TDDTfouOOOUyAQ0D333KMzzjhDa9asUfyuVhmSdN111+n+++8PP4+Liws/DgaDGj9+vNLT0/Xxxx+rrKxMV111lWJiYvSb3/zmiN4P2g0fPlzx8fHq5Q+ocfHHyq6s1InXXSebwxHp0gAAAAAAAAB0AxENvufPn9/h+XPPPSePx6Nly5Zp9OjR4f1xcXFKT0/f7TXeeecdrVmzRu+9957S0tJ07LHH6te//rXuvPNOTZ06VVar9bDeAzrLyMhQWlqaWpqb1ZycrFB1tdo+/1yWE06QYRiKjqbDDgAAAAAAALC//H6/NmzYoOzsbDkcDgWDQVksFhmGEenSuqwu1XD5q1YYbre7w/4XX3xRKSkpKigo0N13363m5ubwsU8++USDBg1SWlpaeN+4cePk9Xq1evXq3b5Oa2urvF5vhw2HVlRUlKIsFsWdeqokqXnBAgWDQb366qv6+OOPI1wdAAAAAAAA0LWZpqmSkhK9/vrrmjFjhl555RUtW7ZMLS0tamtro9XzPnSZqbehUEg333yzTjrpJBUUFIT3T5gwQTk5OcrMzNSKFSt05513av369ZozZ44kqby8vEPoLSn8vLy8fLev9dBDD+m+++47THcCqf2NuWHDBm2JtSpPUsvCD1R5/vlas2aN1qxZI5fL1d4LHAAAAAAAAEBYVVWVvvzyS61cubLDhF2n06mYmJgIVnZ06TLB9w033KBVq1Zp0aJFHfZff/314ceDBg1SRkaGvve972nTpk3q27fvQb3W3XffrVtvvTX83Ov1Kisr6+AKx24ZhqGlS5dqRzCovjabtHOnegcCGjp0qL744gu9+uqr7X3Ae/WKdKkAAAAAAABAl+D3+/WnP/1Jfr9fkhQbG6v+/fsrPz9fPXv2pLXJAegSwfeNN96ouXPn6sMPP1TPnj33OnbkyJGSpI0bN6pv375KT0/Xf//73w5jKioqJGmPfcFjY2MVGxt7CCrH3gwZMkTbtm1TZU6O0tevV/0f/6TTnnhcDQ0N2rhxo2bPnq2rr75aHo8n0qUCAAAAAAAAh1UoFFJTU5Pq6+vl9XrDP/1+v8aPH69gMKhgMKh+/frJ5/Np4MCB6tu3L+vlHaSI/tZM09RNN92kV199VQsXLlTv3r33ec7y5csltS+gKEknnHCCHnzwQVVWVoYD1HfffVdOp1P5+fmHr3js08CBAzV//nx9kdtXZ23eLN8nn6jlzbk655xz9NJLL2nHjh2aNWuWrrnmGjmdzkiXCwAAAAAAAByUr0LthoaGcKh93HHHKSqqfYnFt99+W0uXLlUoFNrt+YMGDVJqaqok6ayzzmJm9yEQ0eD7hhtu0KxZs/T6668rISEh3JPb5XLJbrdr06ZNmjVrls4++2wlJydrxYoVuuWWWzR69GgNHjxYknTGGWcoPz9fV155pR5++GGVl5frF7/4hW644QZmdUeY3W5XXl6e1q1bp+px45Q8d65qHp2hzFEjdeGFF2rWrFmqra3V7Nmzde211/KGBgAAAAAAQJdimqZaW1vDgXbv3r3DYfaSJUu0atUqeb1eNTY2yjTNDuf26dNHCQkJ4f2hUEiGYcjhcCghISG8OZ1O2e328HlkZIeGYX7zv8iRfPE9/EecOXOmJk2apK1bt+qKK67QqlWr1NTUpKysLF144YX6xS9+0WGG8JYtWzRlyhQtXLhQ8fHxmjhxoqZNm7bfXwPwer1yuVyqr69n5vEhtm7dOs2ePVvxdrsu/Gyp2laulO3EE+V58gnV1dXplVde0RlnnKG8vDy+tgEAAAAAAICIKisrU0lJiSoqKlRRUaHq6upwv22pfSKv0+lUKBTSggULOrRgNgxD8fHx4UC7sLBQLpdLktTY2KhQKCSHwxEOzr+tmJiYbrnY5f5muRENvrsKgu/DJxgMasaMGWppadH3R52gqDvukNralHzvvXKcf55CoVD4zR4bGyuLxRLhigEAAAAAAPBdFgqFVF1dHQ63TzzxRNlsNpmmqXfeeUeffvppp3NsNpscDofOO+88JScnS5IqKytVX1+vhIQEORwOxcXFHbJQe38QfO89y2WKLQ4ri8WigoIClZaWKrZvH8VPmaK6xx9XzYxHZBs1UtFpaeGxO3bs0Pbt2zVq1KgIVgwAAAAAAIDvkurqam3cuDEcdFdWVioQCISP9+zZU1lZWZKkzMxM5eXlKTU1VR6PRykpKXI4HLsNmD0eT3jNQXQ9BN847MaOHStJCgQCMq+4XM3vv6+2VatU/cCD8jzxuAzDUFNTk2bNmiWfz6fY2FgNHTo0wlUDAAAAAADgaGGapurq6lReXq6KigoVFBQoOTlZpmlq06ZNmj9/fofxMTExSklJkcfj6bBOYG5urnJzc490+TgMCL5x2FmtVpmmqUAgIMNiUcrUqdoxYYJ8ixer6c035TjvPMXHx2vIkCH69NNPNXfuXDkcDuXl5UW6dAAAAAAAABwhPp9PlZWVktRpoUhJSkxMDPfM9vl8WrNmTTjorqioUGtra3iszWZTXFycJCk1NVV9+/YNz+L2eDxKTExkEcnvOHp8ix7fR0pzc7M+/vhjJScnK/2TJap74gkZDocyX3lZ0R6PTNPUvHnztHbtWlmtVk2cOFGZmZmRLhsAAAAAAADfgmma8nq9qq6uDm81NTWqrq5WYWGh8vPzZZqmtmzZohdeeGGP1xkzZoxOOOEESe0tc2fOnNnhuMViUXJysjwejwYOHKjs7OzDel+RRo9venyji1i+fLkWL14sl8ulq6+6Ss3/eV9tq1ar5oEHlPp4e8uTs846S01NTSotLdWsWbN09dVXhxcMAAAAAAAAQNfk9/vl9Xrl9XqVmJiopKQkSVJJSYlefPHFDj21v66srEx9+/YNP//qvK98fVZ2TEyM2traJLWH6dnZ2eEZ3B6PR263WxaL5VDfGo5SzPgWM76PFL/fryeeeEKNjY0aM2aMBiUlqez/Jkh+v5LvmyrHuedKklpbWzVr1izt3LlTTqdTV199tRITEyNcPQAAAAAAQPcUCoUUDAbDs4vr6ur08ccfy+v1qr6+Xl6vV83NzeHxo0eP1oknnijTNFVdXa0///nPioqKCgfiX99SUlIUHx8fqVs7qjHjmxnf6CJiYmJ06qmnat68eVqyZIkGXXedEqdMVt0TT6rmt4/INnKkonctKHDJJZfon//8p+Li4vikDgAAAAAA4AgJBoMqLy/Xtm3bwlt9fb1OOeUUnXLKKTJNUy0tLfrss886nRsTE6OEhITwdSTJ5XLp2muvlcvlUlRU1BG9F3RvBN84ooYNG6ZPPvlENTU1+uyzz3TiFVeo+f3/qG31atU88KBSH39MhmEoPj5el156qaxWqywWi/x+f7f8BAsAAAAAAOBI8Hq9+te//qUdO3bsti1JXV1duM1IXFycRo4cqYSEBDmdTiUkJCghIUE2m63TgpFRUVGd2pcARwLBN46oqKgojRkzRq+88oo+++wzHXvssUq+b6rK/m+CWhYtUtO8eXKcc44kyeFwhM/z+/36/PPPVVBQwNdfAAAAAAAADpBpmmpra1NNTY22bt2qbdu2ye12a/To0QqFQoqOjtb27dsVDAZls9mUmZkZ3pKTkzvkMTExMRo9enQE76b7avQ3anXNaq2sXqkrBlwhd4w70iV1WQTfOOLy8/OVkZGhsrIyLVmyRN/73veUOPlHqnvyKdV+1fIkNbXDOZ999pkWLlyoZcuWadKkSYqLi4tQ9QAAAAAAAJG1adMmNTQ0qLGxUW1tbWpra1Nra6v8fr9cLpdOP/10Se1h97PPPqva2lr5/f5O10lNTdXxxx8ffn7eeecpKSlJbre708xtHHkhM6QSb4lWVq/UqppVWlm9UiXeEplqX7JxSOoQnRp/aoSr7LoIvnHEGYahsWPHaunSpRo2bJgkyXnlle0tT9asUc2vHwi3PPlKbm6uPvvsM1VVVen555/XxIkTZbPZInULAAAAAAAAh4xpmqqpqVFtba0aGxvV0NAQDrYbGhqUnJys888/X6ZpyjRNvfLKK/L5fLu9Vlpamk466aTw87a2tg6hd2xsrDIyMpSZmakePXp0ODc3N/fw3CD2S31rvVbVrNKq6vZtdc1qNQWaOo3rEd9DBckFSrAmRKDKo4dhmqYZ6SIibX9XAsWhFQqFOvwl3bZpk8omXC75/Uq+/345zhnfYfzOnTs1e/ZsNTc3KzMzU1dddZViY2OPdNkAAAAAAACHVGtrq37729+GF4T8ppSUFF199dXh56+99pr8fr/i4+MVGxurmJgYWa1WWa1WORwO9evXLzy2pqZGUVFR4THR0dHM5o4Q0zTV4G9QZUulKpsr23+2VGp743atqVmj0sbSTufYLXYNcA/QoORBKkgu0ED3QCXbkiW1t5zpjmvi7W+WS/Atgu9IamtrUyAQUCgUUlRUlOr/+lfVPfW0ohISlPHKy51anlRWVmr27Nny+XzKysrSFVdcIavVGqHqAQAAAAAA9l8gEFBxcbHWrVunhoYGXXrppQoGgwoGg5ozZ47q6urkcDjCW3x8vBwOh5xOp9LT0yNdPvYhEAqotLFUO5p2/C/Y/lrAXdlcqZZgy16vkZOQowJ3gQqS27c+zj6Kjtp90w6Cb4LvfSL4jpy6ujq98847amtr00UXXSQzEFD5xElqW7tW9pNPVurvHpVhsXQ4p6KiQrNnz1Zra6t69eqlK6+8UlFRURG6AwAAAAAAgD1rbW1VUVGR1q1bp6KiIrW1tYWP/ehHPwpnUaZpMhP7KNLQ1qCN9Ru1oW6DiuqKVFRfpM31m9UWatvnuS6rSx67R544jzx2j9Li0tQ/sb8GugfKFeva7xoIvvee5dLjGxEVDAa1fv16hUIhbdu2TT179lTyfVNVdvkValm0SFW33KKUBx9UVML/ehalpaXp+9//vl5++WX17ds3PFscAAAAAACgK1m0aJEWLlzYoYVJfHy88vLylJubq/j4+PB+Qu+uyTRN7WjaoaL6IhXVFYWD7rLmst2Oj4uOU5YjKxxqfzPgTrWnymZh3bojgRnfYsZ3pM2dO1fLli1TZmamJkyYIMMw1PTuu6r+1b0yW1sV3StHnkcfVUyvXh3Oa25uVlxcnKT2hRks35gZDgAAAAAAcDj5/X5VVVWpvLxcFRUVqqioUGFhobKzsxUKhbRixQq9+eabcrvd4bA7IyODkLuL8gV82uTd1D6De9cs7o11G3e7wKQkpcelK8+Vp7zE9q1fYj9lxmcqyjgyEzSZ8U2rk30i+I6shoYGPfHEEwoEArrwwgvDKwi3rlmrqttuU7CiQoYjXqm/+Y3sJ5+822u0tLToiy++0JgxY5j9DQAAAAAADpvy8nItXrxY5eXlqq6u1jejtcLCQh133HGS2tc2a2hoUHJyciRKxR6YpqnKlspwsP1VyL21YatCCnUaHxMVoz7OPspNzFWeqz3gzk3Mlcu6/21JDgeCb1qdoItLSEjQyJEjtXjxYn300Ufq06ePoqKiFJs/QBkvPK+qO36m1uXLVfnTm5V4041yTpzY4ZNR0zT1r3/9S2VlZaqvr9dFF13EJ6cAAAAAAOCgmaap6upqbd68WcXFxRowYIAKCgoUCoXk8/m0atWq8Fi73a7U1FR5PB55PB717NkzfMxqtRJ6R1DIDKmqpUpbG7eqtKFUWxq2hENub5t3t+ckxSa1z+B25YWD7t7O3ntcYBJdF//F0CWcfPLJWrZsmXbu3Kk1a9aooKBAkmRJTlbaH55VzfSH1ThnjuqeeFJtGzYo+Ze/VJTdLqm9B9YJJ5yg1157TatWrZLT6dTpp58eydsBAAAAAABHGa/XGw66i4uL1dDQED5ms9nC31BPSkrSKaecEg664+PjmYAXQaZpqra1NhxulzaWamvDVm1tbN9ag627Pc9iWJSTkBMOub9qV5Js44OK7wpanYhWJ13F4sWL9d577yktLU1XXnllp380Gl55RTUPPywFgrIec4xSZzyi6IyM8PFVq1bp7bffliSdeeaZGjly5BGtHwAAAAAAHD1CoVC4XWpTU5MeeeSRDsctFot69OihnJwc9enTRx6PJxJlHvVM05Qv6FN9W73qW+vlbfO2P971vL6tfV9zoPmArvv12dyN/sY9jrMYFvWI76HshGxlObLU19VXeYnts7hjLbHf9vYiilYntDrBUWLkyJEKhUIaNGjQbj8pTfj+9xXTu4+q7rhDbevWqezKq5T624dlGzpUklRQUKCGhgYtWrRI//73v+VyuXTMMccc6dsAAAAAAABdUENDg7Zt26atW7eqpKREcXFxuuyyy8IBeEpKimJiYpSdna2cnBxlZmZ2y1DxYHzVM3tV9SqtrF6pDXUbVNdaFw6120Jth/X1DRlKj0tXVkKWshxZyk7IVrYjW1kJWcqIy6BNSTfFjG8x47srMU1Tra2tCoU6LyTwlcCOMlXedpv869dL0dFy33mnEi6+KHz+O++8oxUrVig6OlpXXXWVsrKyjlT5AAAAAACgC1m6dKmKi4u1bds2eb0dezrHxMTopptuksVikSQFg8HwY+ydL+jTutp14aB7dfVqVfmq9npOtBEtV6xLLuuuLdYlp9UZfh4XEydDB9YyJtmWrCxHlno4ehz1s7cPBjO+mfGNo4hhGIqJiZHP51N1dbVSUlI6jYnOzFD6X/+i6qn3qfndd1Xz4INq27Be7ttvlxETo9NPP12NjY3auXOnoqKiZJomvbYAAAAAAPiO+mohyu3bt6uqqkpjx46VaZoKhUJat26dNm3aJKk9c0hJSVFGRoaysrKUnZ3dIegm9N490zS1vWm7VlWv0qqaVVpVvUob6jYoaAY7jLMYFuW6clWQXKB8d75S7alyWf8XbsdFx5HP4Igi+EaX09raqhdffFHl5eUqLCzUsGHDwj23vhJltytl2kPy9u+nuqefUePLr8i/abNSH54ui9utc889V21tbXI4HPL7/bJarRG6GwAAAAAAcCiZpqmqqipt3rxZmzdv1tatW+Xz+cLHhwwZovj4eEnSwIED1aNHD2VmZiotLY18YD+YpqltTdu0tHKpllUu07LKZapprek0LtmWrEHJg1TgLlBBcoEGJA2QLdoWgYqB3SP4Rpdjt9sVHx8v0zS1YMECrVy5UmPHju3UssQwDLmuuUYxubna+fNfqPXzz1Vx3fVKf26mrAkJ4X/MAoGAtm/frh49evAPHAAAAAAAR7l///vf+vTTTzvsi46OVlpamjIyMjq0T+3fv/+RLu+oVNFcoWWVy7S0cqmWVi5VRUtFh+PRRrT6J/VvD7qTC1TgLlB6XDozuNGl0eNb9PjuikKhkJYtW6YFCxaopaVFkjRgwAAVFhbK4XB0Gu8vLlbFlB8rWFkp26iR8jz+uIxdPY7WrVunefPmqW/fvrrssss6zR4HAAAAAABdi8/nU0lJiTZv3qzi4mKdd955ysjIUDAY1OrVq/X222+rZ8+eysnJUXZ2tlJTU2lVcgBqfDX6vOrzcNC9tXFrh+PRRrQGJQ/SCM8IDfcMV747v1v20O7q6PG99yyX4FsE311ZU1OT/vOf/+jzzz+X1P6GvvTSS5WRkdFpbNv69Sq/5ocyW1rk+P7Fct99twzD0Pbt2/XSSy8pEAho+PDhGj9+PJ9IAgAAAADQhZimqW3btqmoqEjFxcXavn27vh5ZnXLKKRo1apSk9m92S+2zvPE/pmmqKdAkb5tX9a31qm9r3775fFP9Jm2s39jh3ChFaYB7gIZ7hmuEZ4SGJA+hbUkXEAgE1NLS0mFLTExUenq6JIJvFrfEUS0+Pl7nnnuuhg8frnnz5qmlpUUej2e3Y639+yvlN79R1a23qvGVfykmp5ecl09Qjx49NH78eL3++utatmyZXC6XTjnllCN8JwAAAAAAYE9KSkr097//vcM+t9utnJwc5eTkdGh/2p0D70Z/ozbWb1RRXZGK6oq0pWGL6lrrwgH3Nxec3JtcV65GeEZohGeEhqYOlSOm8zfscegFAgE1NDSosbEx/DM9PV3Z2dmSpJqaGr388stqaWmR3+/vdP6IESPCwTf2rvv+TYGjSmZmpq699lrV19crJiZGoVBIwWBQH3zwgUaMGBH+dCfu1NFKuuVm1T76O9U++qiis3oqbvRo9evXT2PGjNF//vMf/ec//5HT6dSQIUMifFcAAAAAAHQvzc3N2rBhg9avX6/k5GSddtppCgaDSklJkcvlUkZGhnr16qWcnJxu/a180zRV1lwWDriL6ou0oW6DdjTt2Oe5sZZYuawuOa1OuawuuWJd7T937UuPT9ew1GFKik06AnfSvZimqfr6etXW1srhcCg1NVWSVFtbq9dff12NjY3hlr5fN3z48HDwHRMTI6/XGz4WFRUlu90e3hITE2UYhgzDoL3PPtDqRLQ6OdqYpqlgMKjFixdr4cKFiomJ0ahRozRixAhFR0fLNE3VPPCgGl99VYbdrvSZf5W1Xz9J0oIFC7R06VJFRUVpwoQJ6tu3b4TvBgAAAACA77ba2lqtW7dO69evV2lpabiFidPp1PXXXx9uR2qaZrdsTWqapnY07dDnVZ9rfd36cNjdFGja7XiP3aO8xDzlufLUx9VHybbk/wXdsS7ZLLQoOZKam5tVWlqqLVu2qKSkJBxaDx8+XGPGjJEkNTY26ve//334nOjoaCUkJMjhcCghIUF9+/bVwIEDZRhG+4ceZWWKj49XXFycbDZbeL267vj+2B1aneA7yzAMRUdHq3///tq4caO2bdumjz76SCtXrtSZZ56prKwsue+6U4Ht2+X7739V+dOblf73vyk6NVWFhYVqaGjQ+vXrtXr1avXp04e/NAAAAAAA+JZM01Rra6saGhrCs1wl6cUXX9TGjR37Saempio3N1e5ubkd9nen/z+vaK7QsqplWlbZvpU1l3UaE21Eq4+rj/Jcee1B966w2xXrikDF+KaWlha99NJLqqys7LA/KipKbrdbcXFx4ZnZTqdTl156qZxOp5xOp+x2+17D7F69eh2JW/jOY8a3mPF9NDNNUytWrNC7776rpqYmxcTE6PLLL1dqaqqCXq/KJ01SoGSLrPn5SvvTHxVltysQCGj16tUaPHiwoqOjFQwGtW7dOjkcDsXHx4d/dueeYQAAAAAA7MnGjRu1detWeb3eDltbW5sk6fbbb5fVapVpmpo/f76WL1+urKws5ebmqm/fvkpMTIzwHRx5Nb4afV71uZZWLtWyymUqbSztcNxiWDTQPVAFyQXKS8xTv8R+6pXQS9FRZBORFgqFVFlZqZKSEkkKL7JqmqaeffZZNTY2KjU1VTk5OerTp4969eolm83WrT7IOdL2N8sl+HO1qDIAACAASURBVBbB93eBz+fT7NmzVVJSIpfLpSuuuEJxcXHyb92q8okTFaqrV9zY7yll2jQZuz5R+0p5ebmef/75Tte02WxyOBwaNWqUhg8fLqn907yKigo+eQMAAAAAdAtVVVVavXq1Ro8eLdM0ZZqm5s2bp+XLl+92vM1m05VXXhkOtxsbG2WxWGS3249k2RFX11qnL3d+qaWVS/V51efaWN9x1nuUonRM0jEa4Rmh4Z7hGpwyWHHRcRGqFl9XU1OjiooKVVVVqbKyUmVlZfL5fJIku92uG264IRxql5eXy+12y+VyEXQfQbQ6Qbdis9n0gx/8QH/605/U2toqr9eruLg4xWRlKfWRGaqYPFnN772vumd+r6Qbb+hwrmEY6tOnj5qamtTU1KTm5maFQiH5fD75fD41NzerpaVFhmGorKxMzz//vC666CINGjQoQncL4P/Zu/PwKus7///Ps+bknOzLyb4nQEIgJIBFUBEQUUEtVqpUxjptrTLaOm1n2vlOO850Ztr+ukzHLtPdVrG2VmsRUVArqOxLWEISCNlD1pN9Oydnve/fHyl3TQElQDhJeD+u61xJ7i2fO9dJcp/Xed/vjxBCCCGEEGLiKIpCdXU1hw8fpr6+HgC73a4VgaWlpaGqKuHh4WMeYWFhmM3mMccKCwu72sO/qvyKn+bhZm0Cypr+Gmr7a+lyd52zbW5kLgvsC1hgX8C8uHmEm8ODMGJxltvtpquri/7+/jEZz5///GfOnBlbkW82m0lPTycrKwu9Xk9ISIiWJ4nJS4JvMW1YrVY+8YlPoCgK4eF//edhKSkm9sl/o+fJf2fw17/GlJFO2J13ausTEhL42Mc+pn2tqiput1sLwSMjI7V3tbu6Rv9xbdu2jfT0dCIjpa+WEEIIIYQQQojpweVycezYMQ4fPszAwAAwWiyWk5MzpmJ71qxZzJo1K1jDDJoh7xC1A7VjQu76gXo8iue822eEZ2gV3SXxJUSHRF/lEYuzHA4HDoeDwcFBrZL77CSUADNmzCAkJASA5ORkfD4fdrudhIQEkpKSSElJwWg0SlX3FCPBt5hW4uPjtQk1FEXB6/ViNpsJW7MGX9MZBp9+mp7/+m+MySlY5pec9xg6nY7Q0NDz3oZVUFDA8ePH6ejoYPPmzXzyk5+UP3pCCCGEEEIIIaa87u5ufv7zn+P3+4HRO6vnzp3LvHnzrrmiL0VVaBluGVPBXTNQQ4er47zbhxpCyY3KJTcyV5uAMicyB5vJdpVHPjmNjIzg8/kuuD4sLEyb6NHtdmu94s/HZrNhMBi0bfv7+xkeHmZoaEh7nP36gQce0LKd8vJyjh07ds7xIiIiiI+Px+fzYbPZ0Ov1rFy5UpuUUkxtEnyLaUen0xESEkJFRQXbt29n7dq1pKSkELXxUfxNjbje3kHXP/0Tic8+iyk9bVzHNhgMrF69mk2bNtHU1MS+fftYsmTJBJ2JEEIIIYQQQggxMQKBAF1dXSQmJmp3TkdGRmIwGCgpKWHWrFmYTKZgD3PCOX1O6gbqtJC7pr+GuoE6RgIj590+yZpEblQueZF5oyF3VB4pthT0Ov15t79WqKpKR0cH1dXVtLW1cf/992vB8a5duzhx4sQF9924caPWEmffvn0cOXLkgtt+5jOfITp6tHL+0KFDHDx48ILbDg0NacF3YmIi2dnZhIeHExcXR2JiIgkJCdhsNgm5pzEJvsW0pNPpqKqqYmRkhFdeeYW/+7u/IyIigtivfx1/ewfeyko6n3iCxGefwTDOCU1jYmJYtmwZb731Fu+88w7Z2dkkJSVN0JkIIYQQQgghhBCXT1VVenp6aGlpoaWlherqanw+Hxs3bsRoHI2H7r//fkJDQ6dtCDjsG6aip4LK3kqq+6up7a+lxdly3m1D9CFkR2ZrFdx5UXnkRuZKX+73UVWV1tZWqqurqampGdM6pK2tjZSUFAD0er32HPsw493WZrNp/eUjIiKIiIggPDyciIgI7Ha71ot74cKFXHfddeM/STGl6VRVVYM9iGC72JlAxdTi9Xp5+umn6ezsJCEhgfXr12MymQh0d9P+4IMEOhxYFi7E/uMfoRvnu9iqqvLKK69QW1tLXFwcn/3sZ6+Jd8KFEEIIIYQQQkwtJ0+e5OjRo7S2tuJ2u8ess9ls3HPPPSQmJgZpdBNHURUaBxsp7ymnoreC8p5yGgcbUTk3Bou3xI9Wcb8v5E4LS8Ool3rRC6murubtt9/G6XRqy0wmE9nZ2eTn55OXl4fFYpnwcZx9k2a6vlkjzu9is1z5DRbTltlsZv369fziF7/A4XDw5ptvsnr1agxxcdif+gEdn/oU7sOHab9/PVFPfJ7QG2+86D+UOp2OVatW0d7eTnZ2NvL+kRBCCCGEEEKIYAkEAnR0dNDa2kpraytLly4lKioKRVHo6+ujrq4OAKPRqE3Wl5qaSnZ2ttYveaob8A5Q2VOpBd2VPZU4/c5ztkuxpVAYW8is6FlayB0VEhWEEU8dgUCAM2fOEBYWRnx8PABWqxWn00lISAg5OTnMmjWLvLw8rcJaiMlAKr6Riu/prqGhgd/+9rcoisJNN93ERz7yEQBG9u+n+6tfRekfnak6ZMF8ov/xC4QU5F/0sT0ejzbr73S+HUwIIYQQQgghxOThdDqpr6/Xgu729nYCgYC2/vbbb6ewsBCAvr4+GhsbSU5OJi4ubtoE3X7Fz9Guo7zT8g5Huo7QNNR0zjYWg4WCmAIKYwuZEzuH2TGzibXEBmG0U4/L5aK+vp76+noaGxvxeDwUFRVx6623AqN3wjc3N5OdnY3JZJI8RFxVF5vlSvCNBN/XgkOHDrF9+3YA1q9fT2pqKgDK0BADv/kNg7/7Pfxl1mDb7bcT9dhjGJPH17dbVVUMBsNVuZVHCCGEEEIIIcS1weVy0draSnR0NHFxcaiqyunTp/nDH/4wZjuLxUJSUhJJSUnMmDFDq8ydTvyKn9LOUna27OTd1ncZ8A6MWZ8Wlsac2Dla0J0dkS3tSsZBURQOHDhAfX097e3tY9ZZrVbmzp3LsmXLMBgM6PV6CbtF0EirEyHeZ+HChTgcDlRVHTMRpT48nOjPf57wdevo/8lPcb7+Os7t23Hu2EHE/fcT+elPoQ//8Ikr+vr6eP3114mIiOC+++6TP/5CCCGEEEIIcY1RVZWBgQFUVSU6OhqAjo4OfvnLX2I2mwkJCSEkJASLxaJ9npmZyfz587X9T5w4gdlsZmBggLa2NlpaWujr6wNg8eLF3HjjjSiKQmxsrBZyJyYmkpSURHR09LR8LepTfBx2HGZHyw52te5i0PfXCRSjzFEsTVnKjck3Mid2jrQsGSev10t3dzfJycnA6GSRlZWV9Pf3A2C328nJySE3N5e0tDSMRuO0fI6J6UuCb3FN0Ol0rFmzBkVR8Hg856w3JiUR91//Sfgn1tP/1A9wHz7M4KZNDG/ZQuTDnyF83boPnADT6/XicDhob2/n2LFjlJSUTOTpCCGEEEIIIYQIokAgQHd3Nx0dHbS3t+NwOOjo6MDtdjNv3jxuv/12FEXBZrMB4Ha7z5lYEkZfq86ePRudTofH4+GVV1457/eLjo7GZDKhKAowOinlhg0bJu4Eg8wb8HLIcYidLTvZ1baLId+Qti46JJplKctYkbaCeXHzpKL7Ivl8PoaHh3E6nbS3t1NfX09LSwtGo5HHH39ca4GzaNEiAPLy8qbtmyni2iGtTpBWJ9can8+Hx+PhxIkTzJ07F71eP2a9qqq49+6l76kf4KuvB8CYmkrU5z+HdcWKC/7RP3jwILt27cJkMvHII48QGyt9w4QQQgghhBBiOvB6vZjNZmD0NeV3vvMd/H7/Odvp9XpmzpzJmjVrtGXDw8N4PB68Xi8ej2fM57GxsWRlZQGj4fjWrVvxeDyEhoaOqegODQ29OicaRMO+YQ46DrKrdRe723aPmZgy1hLLspRlLE9dzrz4eRh006NP+ZXg8Xi0QPv9H5csWaI9Z3fu3MmRI0fOu390dDT33nuv1v9dWpiIqUBanQhxAQaDgS1btlBbW8vAwABLly4ds16n0xF6ww1YFi1i+NVX6f/pz/C3tND95a8QMncu0V/4AiFFc8857sKFC2loaKC5uZk//elPfPrTnz4nVBdCCCGEEEIIMbmpqkp/fz9NTU00NjbS2NhIbGws69evJxAIoCgKYWFhuFwu7Hb7mMf5Jo8MCwsjLCzsQ7+vxWJh3bp1E3Vak46qqpwZPsPe9r3sadvD8e7jBNS/TtAZb4lnWepo2D03bq6E3X/j+PHjHD16lJ6envOunzNnDnFxcQDaXGRGoxGbzUZ0dDTZ2dlaL3jJLsR0JRXfSMX3taiiooKXX34ZgFWrVjF37rlB9lmKy8XgpucY3LQJ1e0GnY7Y//pPwu6445xtBwcHeeaZZ/B4PNx4440sX758ws5BCCGEEEIIIcSVU15eTl1dHY2NjQwMjJ00MSQkhMcff1wLCJ1OJ1arVSpjx8kb8HK06yh72/eyr30fLc6WMevTw9K5IfkGlqUsozC2EL1OAllFUWhvb6epqYmioiKtfc7Zu84BzGaz9gaLzWYjLCyMBQsWEBUVpbXR0el0WCwW7Tksz10xlUnFtxAfoLCwEIfDwZ49e3jzzTfR6/UUFhaed1u91UrUo48Q9rF76Puf7+N66y16nvx3dCYTtpUrx2wbERHBypUree2119izZw+5ubmkp6dfjVMSQgghhBBCCHGRBgYGaG5uprCwEFVVUVWV48ePU/+Xdpd6vZ7ExETS09NJTU0lJSVlTFXs2fBRfLjOkU72te9jb/teDjsOMxIY0daZ9CaK44tZkrSEJUlLSAtLC+JIJwdVVenr66OxsZGmpibOnDmD1+sFICoqioKCAgBmzZpFTEwMWVlZhIWFodPpLhhmmz5gzjIhpjMJvsU1a/ny5bjdbkpLS9m+fbs2qciFGOPjifvmN+gJDcW5ZQvd//pVdAYD1r+p6s7Pz6euro7e3l6MRvkVE0IIIYQQQohg83q9NDU1UVdXR11dHd3d3QAkJiZitVqB0ddydrudtLQ0kpOTtf7IYnycPidl3WWUdpZyuPMw1f3VY9bHWeK0oHthwkKsRmuQRjr5tLW1sXXrVgYHB8cst1gspKenExERgclkwmAwYLVaSUpKCtJIhZgaJJUT1yydTscdd9yBqqocOXKE7du3o9fryc/Pv/A+ej2xX/sq+P04X3+drn/5f8R/77tYb7ppzHa33norBoMBg8GA3++XAFwIIYQQQgghgqCmpob9+/dz5swZAoG/9o/W6XQkJiZqLUsArZJWjI874Kaip4LSzlJKO0s52XtyTK9uHToKYgq0sHtm1Mxrts2Gz+ejq6uLjo4OHA4HDoeDmTNncv311wOjd5EPDg5iMBhISUkhMzOT7OxskpOTMRqN1+zPTYhLJWmcuKbpdDpWr16NoihUVFQQHh7+4fsYDMT+x7+j+v243nyTrn/+Mvbvf5/QJYu1bd5fGeDxeGhoaMBqtRIdHU1oaKj8sxJCCCGEEEKIK2x4eJi6ujrS0tKIjo5GVVWcTicNDQ3AaKiYmZlJZmYmGRkZ2oR/Ynz8ip/K3kqOdB6htLOU8p5yvIp3zDYpthTm2+czP34+1yVcR4wlJkijDT6Px8POnTvp6Oigp6eHv51q7/05REREBA888AApKSlYLBbJDoS4TDK5JTK5pRjtodXV1XVRM21r+/h8dP/rV3Ht2AFmM/YfPEXoRz4yZptAIMDevXs5ePCgtiwkJITo6GhiYmKIiopi4cKFREVFXbFzEUIIIYQQQohrhdvtprKykuPHj9PSMjpR4tKlS7nuuusAcLlcVFVVkZmZSXR0tASJl6jD1cE7Le9w0HGQ413Hx/TpBoi3xDPfPp8F9gXMt88n2ZYcpJFefaqqMjQ0RGdnJ11dXXR1dREREcHNN98MjE5O+cMf/hCfzweA1WolISGBxMREkpOTSU5O1iahlOenEBdHJrcUYhx0Oh12u51AIIDH46Gzs5PBwUFyc3MvvI/JRNw3v0HXl/2MvPceXV/4AvYf/QjL/PnnHDslJYX+/n6cTicej4eOjg46OjoAmDlzJjabDZ1Ox6FDhygtLSUmJoaSkhLy8/PlH58QQgghhBBCvI+iKNTX11NWVsapU6fGtDBJSEggNDRU+9pqtVJSUhKMYU55bc42drTs4J2Wd6jsrRyzLsocNVrR/ZewOz0s/Zp77frOO+/Q0dFBV1cXHo9nzLqYmBgt+Nbr9axYsYKwsDCSkpKIjIxEr9dfcz8vIYJBgm8h3sdgMOByuXjxxRfxeDzcfffdHxp+x3/7/6Prn/6JkT176fz8E9j/78dY5s3TjnfjjTdq2/t8PgYGBujv79c+RkREaO/8dnZ20tfXR19fH3V1dSQnJ7Ny5UoyMzMn9LyFEEIIIYQQYqrw+Xy8+OKL2uuouLg4Zs+eTUFBwbju4hXnahluYWfLTna07KCqr0pbrkNHcXwxNyXfxAL7AnIic9Dr9EEc6cRwuVwMDQ0xPDzM8PDwmM/NZjN33XWXtm1TUxNdXV3AaLgdExOD3W7HbreTmJiI2WzWAu6P/M3d4UKIq0NanSCtTsRYiqLw8ssvc/LkSfR6PR/96EfJycn5wH1Uj4fOL3wB94GD6Gw2En7yf4TMmTPu7+10Ount7aWpqYnS0lLtQi43N5cVK1aQmJh4SeckhBBCCCGEEFPRyMgIFRUVtLS0cNddd6EoCn6/nx07dqCqKoWFhdjtdqmevQxnhs6ws2UnO1t2crr/tLZcj57i+GJWpK3g5pSbibXEBnGUV4bf78fhcNDR0cHAwACqqrJixQpt/aZNm3A4HOfd12g08sQTT6DXjwb+p06dQlVVEhMTiY+Px2w2y/NQiKvkYrNcCb6R4FucS1EU/vjHP3Lq1CkMBgMf/ehHyc7O/uB9RkbofOIf8ZSWogsLI+FnPyXkMmYFdzqd7N+/n7KyMhRFIT09nYceekj+kQohhBBCCCGmJVVV8Xq9OJ1Ourq6OHHiBKdPn9ZamTz44IMkJCQEeZRTn6Iq1PTXsLd9LztadlA7UKutM+gMzI+fz7LUZdyccvO0mJSyvr6epqYm2tracDgcY1rjmEwmnnjiCe119ubNm2lrayMsLIzw8HDtY0REBBEREWRlZWE0GqUftxBBJsH3OEjwLc4nEAjwxz/+kaqqKgwGA2vXriUrK+sD91FGRuh8/HN4jh1DHxFBws9/hnnmzMsaR19fH3v27KGkpISUlBRMJhN+vx9VVbFarZd1bCGEEEIIIYSYaH6/X2sXcfbhdDoZHh5mwYIFJCQkoKoqR48e5bXXXjtnf7vdzuzZs5k9e/aY/t3i4qiqSsNQA0c6j1DaWcrRrqMMege19QadgQX2BSxPXc7SlKVEh0QHcbSXLhAI0NnZicPhoKioaEyYXVv713DfarWSnJxMTEwM4eHhLFiwAIPBoG1/tj2JBNtCTF4SfI+DBN/iQgKBAC+99BKnT5/GaDTy8Y9/nJSUlA/cR3E66XzscTwnTqCPiiThF7/A/AF9wi/Fe++9x/Hjx1m8eDHXX389ZrP5ih5fCCGEEEIIIS6Wx+MZM49RXl4e0dGj4emxY8d49dVXL7jvmjVryM/PB6C2tpbNmzdjMpkICwsjOztba2UiLp6qqrQ6WyntLNXC7l5P75htrEYrxfHF3JxyM0uTlxIZEhmk0V6ewcFBKioqaGpqoqOjA7/fD8BnP/tZIiNHz6miooL29nZSU1NJT08nJiZGJpcUYoq72CxXJrcU4gMYDAbWrVvHH/7wB0ZGRoiPj//QffQ2G/Yf/RDHPzyGt7ISx6MbSfjFzzF/SKuUi6WqKq2trXi9Xt59910OHz7M0qVLKSkpwWAwXJHvIYQQQgghhBAXcubMGfbt26cF3W63e8x6o9FIaGgoiqJgMpmA0ddWNptNe1itVmw2GzExf22lkZmZyRNPPCGFPZfA4XJwpOuIFnZ3uDrGrA/RhzA3bi4L7AuYb59PfnQ+Rv3UjYRaW1s5cOAADQ0NvL+e02KxkJSUhN/vx2g0YjAYWLhwoYTcQlyjpOIbqfgWH87v9+Pz+bR/qF6vF4PB8IFBc2BwkM5HH8VbdRpdaChR//APhN/3cXTGy7+4UFWVqqoqdu/ezcDAAABRUVEUFRUxd+7cMRePQgghhBBCCHE5VFXF7/djMplQFIWqqipeeumlMdtYLBatD3JxcTGZmZkA+Hw+/H4/FotFwscrqNfdy9Guo5R2llLaWUrzcPOY9UadkcLYQubb57PAvoDCmELMhqn9hoKqqtpz6PTp09qdBGlpaRQUFJCRkYHdbpdqbiGuAdLqZBwk+BYXKxAI4PF4eOutt2htbWXVqlUkJydfePv+frq+9E94jh0DwDxrJjFf+9plTXr5t+MpKytj//79uFwuAG644QaWLVumzTR9uRRFQVEUjFcgsBdCCCGEEEJMHYqiUFlZye7du8nNzeWmm25CURSGh4epqanRgu7IyEip0p5gQ94hjnUf0yq63z8hJYAePfkx+cy3z2d+/HyK4ooINU79fuh+v5/a2lrKyspIT0/n+uuvB0ZfC+/fv5+ioiLsdrsE3UJcYyT4HgcJvsV4OJ1OfvKTn2hB87x587jpppsICQk57/aqojC8ZQv9T/0AZWgI9HrC7/s4URs3og8LuyJj8nq91NTUcOrUKZYvX671LKutreXw4cPMmTOHgoKCi5oMU1VVHA4HDQ0NNDY20tTUxC233EJRURGBQACfz4der8dms12RsQshhBBCCCEmF0VRKC8vZ/fu3fT09AAQHh7Oww8/LO0Vr5IR/whl3WVaRffpvtMoKGO2yYvM01qXFMcXE2a6Mq8vJ4Oenh5OnDhBZWUlIyMjAERGRvLwww9jNBoxGo1S2S3ENUyC73GQ4FuMl9Pp5M0336S8vBwAm83GihUrmDFjxgX/8QZ6euj7/v/i3L4dAEN8PDFf/jKhy5dN2D/rLVu2UF1dDYzOTH12cphZs2aNCerdbjdlZWVa0H32wuKsOXPmcNttt9HT08OWLVuIiIhgw4YNV6yqXAghhBBCCBF8Z+8o3bNnD319fcBoC5MFCxZQUlJywWIf8eEUVWHIN8SAZ4BB7yAD3oHRh2f046B3UPu839NPw2ADftU/5hgZ4Rla0F0SX0J0SHSQzmbinDx5kuPHj9Pa2qotCwsLY86cORQXFxMXFydhtxBCgu/xkOBbXKr6+npee+017aIwOzubVatWEfYBldwjBw/S+81v4W8e7cEWetNNxHz5yxiTk674+IaGhqiqquLUqVM4HA5tudFoJC8vj3vuuQeDwYDL5eJ73/uett5kMpGWlkZaWhrp6elan7Tu7m5++9vf4vP5WLp0KTfffPMVH7MQQgghhBAiOHbs2MGePXsAsFqtLFiwgOLiYmlj8iGcPiedI510jnTicDlGP3eNft010kX3SDeD3sFzKrY/TKI1kQX2BVrYbQ+1T9AZBIfH46GpqYnc3FytqOqtt96irKwMnU5HTk4O8+bNY8aMGRiNRgm8hRAaCb7HQYJvcTn8fj+7du1i7969hISE8KlPfepDW4oobjeDv/41A888C34/OouFqI2PEr5+/RWZ/PJ8ent7OXXqFKdOnaKvr4+EhAQeeughFGX04uvPf/4z4eHhpKenk5CQcMFbGCsqKti+fTs6nY4NGzaQnZ09IeMVQgghhBBCTAxFUXA6nQwPD2Oz2QgPD0dRFHp6enj++ecpKSmhqKhIAu/38St+KnorONJ5hA5XB52uThwjDjpdnTj9zos+jtVoJdIcSYQ5gsiQSCLNf3m87/MIcwQZ4Rkk25KnVdirKMqYtpptbW2oqsr69etJTU0FoKWlhfb2dubMmUN0dPS0On8hxJUjwfc4SPAtroTOzk56enrIyMgARntl9/X1ERMTc8F9fPUN9HzjG9rkl6aZM4n96r8SUlg4YeNUVZXOzk68Xi9paWmXdIw33niD8vJybDYbjzzyCOHh4Vd4lEIIIYQQQojxOhtoBwIBoqKitOXbtm1jYGCAoaEhhoeHGR4e5mwUkJeXx9q1a7WvFUWRloZ/MeAd4EDHAfa272V/+34GfYMX3DbcFI491I7dah/9+L7P40LjiDJHEWGOwGy49t5McDgcHDp06LxtNaOjo1m+fDkzZszAYDBI324hxEW52Cx3YkpLhbgG2e127HY7iqLg8Xiorq7m1VdfpaSkhBtuuOG81RKm7CwSfvkLnK9upe+pp/CdPk3HJx8ifN06oj73OPoJmEBSp9ORkJBwWcdYsWIF7e3tdHd38/LLL/Pggw/KxbEQQgghhBBXmaIotLW10djYSENDA83Nzfh8PtLS0njwwQdRVRVVVTl16hTDw8Nj9tXpdFitVoaHh3G73Vr/7mv5ul5VVeoG69jbvpc9bXuo6KkY054kwhzBooRFZEVkaaF2gjWB+NB4rMYPvuv3WqIoCl6vF4vFAoz2jq+qqgLAbDaTkZFBdnY2OTk5xMbGXtPPOSHExJKKb6TiW1x5qqryxhtvcOjQIQDi4uK4//77CQ0NveA+gd5e+v73KZyvvw6AKSuL+P/9Pqb09Ksy5vHq6enhueeew+fzcfPNN7N06dJgD0kIIYQQQohrxssvv0x1dTVer3fMcp1OR2JiIhs2bNCWlZWVAaOTBNpsNsLCwrBarRI4Am6/m9KuUva172Nv+146XB1j1udG5rI4aTFLkpZQGFOIUS/1gxcyODjIiRMnKC8vJycnh1tvvRUYDcIPHDhAVlYWaWlpmEwmqeoWQlwWaXUyDhJ8i4lSU1PDq6++yvDwMCkpKaxbtw6TyfSB+4wcPETPk08S6OpCFxZG/Le+ReiSxVdpxONz8uRJysrKuPPOO4mPj5eLFyGEEEIIIa6gs20KGxsb6e7u5o477kBRmvybpAAAIABJREFUFBRF4YUXXqC+vh6LxUJqairp6emkp6dLBe0H8Ct+zgydoWaghpr+Gk73n6asqwyP4tG2CdGHsCBhAUuSlrAkaQmJ1sQgjnjyUxSFhoYGysrKqK+v11rmREVF8ZnPfAaz2SwTUwohrjgJvsdBgm8xkTo6OnjmmWfweDzk5uZy9913f+iFqL+ri+5//jKeEydApyPqc48T8clPTsqLBVVV0el06PV6QkJCJuUYhRBCCCGEmEo6Ojo4dOgQp0+fxuVyacsfffRRbX6d9vZ29Ho98fHxEnSfx6B3kJr+Gi3krumvoWGwAa/iPWfbhNAEbki+gcVJi1kQvwCL0RKEEU89R48e5dChQwwNDWnL0tPTKS4upqCgQCq7hRATRoLvcZDgW0y0hoYGnn/+eQKBAEVFRaxcufJDLwBUr5feb3+H4c2bAbCuWkXsk/+G/gPapQRbS0sLubm5cuEthBBCCCHEJWhsbOTdd9+lqalJW2Y0GrWK7jlz5mC1Si/pv+UNeDnadZTj3cep7a+lZqDmnJYlZ1mNVnIjc8mLyiM3Mpe5cXPJiciRgPYinI2Pzv6sdu/ezYEDB7BYLMyZM4eSkhISEhLkZymEmHAyuaUQk0hWVhb33HMPL7300kVfqOrMZmK+9lXMs2bS+93v4nrzTXyNjdj/53sYk5MneMTjd/aiZ/HixaxcuTLYwxFCCCGEEGJKUVWVoaEhmpqa0Ol0zJw5k6KiIlJSUjAYDMEe3qTTOdKp9eU+7DjMSGDknG2SrEnkReWNPiJHPybbktHrpFDnYiiKQldXF62trbS0tNDS0sKqVavIyckBoKioiLi4OAoLCzGbzRJ4CyEmHan4Riq+xdXjcDiIiIhgvL927iNH6fryl1H6+tBHRRH/nW9jWbBggkZ5aU6fPs2rr74KwPr165kxY0aQRySEEEIIIcTk1dnZycGDB4mLi2PhwoX4fD4CgQAHDx6ksLBQa2kiRgXUACd7T7K3fS972/dS3V89Zn28JZ7rEq9jVtQsrZo73Cw/w/FyuVyUlZXR2tpKa2vrOZOnzpw5k7vuuguTyYTBYJC7fYUQQSGtTsZBgm9xNSmKgtvtxufz0dnZSUpKykXt5+/ooOuLX8JbVQUGA9Ff+iLh9903qd5V37FjB0ePHsVisfDII48QFRUV7CEJIYQQQggxaSiKQk1NDQcPHqShoQGA8PBwPvvZz0qAeB5D3iEOOA6wt30v+9v30+/t19bp0DE7ZrY2CeWMqBmT6rXRVDAyMkJbWxtGo5GMjAwAnE4nP/nJT7RtzGYzycnJpKWlkZ6eTlpamlR3CyGCTlqdCDFJnb2gffHFF+ns7OTjH//4RYXfxsREEn79NL3//Q2c27bR953v4q06Tez/+xd0ISETPeyLsnTpUtra2ujo6OCPf/wjf//3fy+3ZQohhBBCiGuex+PRJgLs7x8Nb3U6HXl5eZSUlFzTIaLT56RzpJPOkU4cLsfo565OmoaaKO8pJ6AGtG1tRhvXJ17PkqQlXJ90PdEh0UEc+dSjqioOh4O6ujrq6+vp6Bjtg56RkaEF3zabjeLiYmJjY0lPTycxMRGj0XhNP0eFEFOXVHwjFd/i6lMUhd///vfU1tZisVj4xCc+QWxs7EXtq6oqQ88/T99TPwBFwVxYSPz3vovRbp/gUV+c/v5+Nm3ahMfjYdGiRaxatSrYQxJCCCGEECKoNm/ezIkTJwCwWCzMnTuX4uLia+L1p8vvoqqvipbhFi3Ufn/IPewb/sD9M8MztaruorgijHqp37sUb7/9NtXV1TidzjHLo6Ojyc7OZuXKlVrrEp1OJ0G3EGJSk1Yn4yDBtwgGr9fLs88+S1tbGxERETzwwAOEhYVd9P4jBw/S/ZV/QRkcxBAXS9x3v4ulqGgCR3zxampqeOWVVwB49NFHSUhICPKIhBBCCCGEuHq8Xi9+v5/Q0FACgQCtra1s3bqV+fPnU1BQgMlkCvYQJ4SiKjQPN1PRU0F5TzkVPRXUDdShoHzgfjajjQRrAvZQ+5iPJfElpIRdXGtI8VcDAwO0trZSUFCgLXvppZdobGzEZDKRmZlJbm4ueXl5REZGSpsdIcSUI8H3OEjwLYLF5XLx9NNP09vbS1xcHOvXr8disVz0/r6WFrq++EV8tXWg02FZuBDbmjVYVyxHHxo6gSP/cHv27CE+Pp78/HxCQkKkYkAIIYQQQkx7Xq+XQ4cOsW/fPmbOnMmtt96qTWyvquq0uyYe9g1T0VNBRW8FFT0VVPZUMugbPGe7hNAEsiKytFDbbrVr4XZ8aDxhposvABLnUhSFtrY26uvrqauro7u7GxgtQjo7SWpLSwuKopCVlSU9uoUQU54E3+MgwbcIpv7+fn71q1/hdDpJS0vj3nvvxWi8+Nv3FJeLnv/+b1xvvKkt04WGYr1lBWFr1hAyfz66IL+Dr9fraW1tJTY2Via8FEIIIYQQ047X6+Xw4cPs27cPl8sFQFxcHA8++OC0mvPGHXCzu203BzsOUtFbQeNgIypjI4UQfQizYmZRGFNIYezowx46OdoyTjdtbW0cO3aMhoYGRkZGtOU6nY6UlBRWrlxJUlKS1sJECCGmCwm+x0GCbxFs7e3tPPvss+j1etavX3/R/b7fz9fainPbNpxbX8Pf0qItNyQmYlu9mrA1qzH9ZcKSq83tdvP000/j9Xq56aabWLx48bR6ASCEEEIIIa5NXq+X0tJS9u7dqwXeUVFRLF68mPz8/GkRNiqqQll3GdubtvN289s4/WN7RKfaUrWAuzCmkLyoPOnDPUEGBgYwGo3YbDYATp06xWuvvQaM9o7PysoiLy+P3NxcwsLCpKpbCDFtSfA9DhJ8i8mgsbERs9l82RXRqqriKSvD+drrON96C3X4r5PFmOfMIezONVhvvRXDVXyuDwwMsH37dpqbmwGIjY1l9erVZGVlXbUxCCGEEEIIcaW9++67vPfee8Bo4H399ddTUFAwLQLvM0Nn2N60ne1N22l3tWvLk6xJrEhbwby4ecyOmU2MJSaIo5zeVFWlvb2duro6amtr6e7u5sYbb2TRokXAaIHRgQMHmDFjBhkZGRiNRgm7hRDXBAm+x0GCbzFZqKqK2+1GVVWGh4fHNdnl+ShuNyPv7cL5+muM7D8AgcDoCpMJ69KbCF1yA8bMDEyZmRgiI6/AGVyYqqqcPHmSd999V6uGmTNnDrfeeutln6cQQgghhBATyev10traSktLC5GRkcyZM4dAIMDg4CB/+MMftEkrp3rgPeAdYEfzDrY1baO8p1xbbjVaWZG6gjsy72Be3Dz0uql9npOZoijU1NTQ0NBAXV2d9toJRluYFBUVsWrVKgwGg7QwEUJcsyT4HgcJvsVkoqoqVVVVbN68maVLl1JcXHxFjhvo7sb5xhsMb30NX03NOev1UVGYMjMwZmRiysjAlDX60ZiSgu4KzjrvdrvZvXs3x48fB0ZvyXv88ce12/WEEEIIIYQIJlVV6e3tpbm5mZaWFlpaWujs7NQmqUxPT+e+++4bs/1UrrL1KT72d+xnW+M29rTvwaf4ANCj5yOJH+H2jNtZmrwUi9ES5JFOP8PDw3R0dOD3+5k1axYw+nz60Y9+hMfjAcBsNmstTPLy8ggPD5/SzzchhLgSLjbLlcZbQkwyOp2Ojo4OfD4fb7/9NhaLhfz8/Ms+riEujogNG4jYsAFvdTXObdvxnj6Nr7GRgMOB0t+P53g/nuNlY3c0GjCmpI6G4dlZhH10Lab0tEseh8ViYeXKlRQWFvLnP/8Zu92OXq8nEAhI328hhBBCCHHVeb1e+vr6SEhIAEaDx6effnrMZIEA4eHhJCcnk56ePmb5ZA8hFVWh191L50jn6MPViWPEQadr9Ov6wXoGvYPa9rmRudyRcQer0lcRFxoXxJFPLyMjI3R0dIx5DP+lLWVkZKQWfOt0OvLz8zEYDMyYMYPMzExMJtOkf54JIcRkJBXfSMW3mHxUVWXbtm2Ulpai1+tZu3Yt2dnZE/b9lJER/E1N+Jqa8DU24WtsxN/UiK/pDOrfXPDrLCFEff7zhH/84+gu87Y6RVHw+/2YzWYAhoaGOHr0KMuWLcNikYoSIYQQQggxMfx+P7W1tVRUVHD69GmsViuPPfYYiqKgKAqvvPIKLpeL5ORkkpKSSE5OJjw8PNjD/kDdI93sbt/NmaEzWsDdNdJF50gnATXwgfvGWmJZlb6K2zNuZ0bUjKs04qnH5/Nhet/dsJWVlfT09OD3+wkEAmM+KorCPffco227adMmHA7HmOPpdDpiY2NJSkri9ttvx2g0otfr0ev1EnQLIcQHkIpvIaYwnU7HHXfcgdvtpqKigi1btrBu3TpSU1Mn5PvpQ0Mxz5qF+S9VBmepqkqgsxNfYxP+pkacb+/AU1pK33e+i2vHTmL//UlMlzEmvV6vhd4Ab731FvX19dTW1vLZz36WkJCQSz62EEIIIYQQ76coCk1NTZSXl3Pq1CncbveY9U6nU7v+vPvuu6dE8Ng50sk7Le+wo2UHJ7pPoHL+ujY9emJDY7GH2rGH2kmwJox+brWTaE0kPzofo17igfMZHh6murqaqqoqhoeHefjhh7XnRlVVFfX19Rfc9/1tcBITE/F6vSQmJpKUlERKSgpJSUlYLJYp8VwTQoipSCq+kYpvMXkFAgFeeOEFamtrMZvN3H///dotmMGgqirDL79M3/8+hToygi40lOh/fIKwj33ssqu/Ac6cOcPrr7/O8PAwRUVFfPSjH70CoxZCCCGEEALeeOMNDh48qH0dFhbGrFmzyM/PJyEhYcqEjw6Xg50tO9nZspMTPSfGrJsTO4fCmMIxwbY91E6sJVaC7XFwuVxUV1dz+vRpmpubeX9s8tBDD2G32wEoKyujp6cHo9GI0WjEYDBonxuNRgoLC8e0c5TJKIUQ4sqQyS3HQYJvMZn5fD6ee+45mpubmTNnDrfddluwh4SvtZWer38dT+kRACzXXUfsk09iTE667GM3NzfzwgsvALBu3ToKCgou+5hCCCGEEOLa0tXVRUVFBfn5+djtdvx+P/X19WzZsoUZM2aQn59PamrqlAkhz4bdO1p2UN5TPmbd3Ni5LE9dzvLU5SRYg1ckM10cPXqUnTt3jgm7k5KSyM/Pp6CggJiYmCnzJokQQkxXEnyPgwTfYrJzu93s27eP6667btJcnKuKwtCLL9H/wx+iut3orFaiv/gFwtauvewLwffee49Dhw4RGhrKxo0bJ30/RSGEEEIIEVx+v5+Wlhbq6+uprq7WeinPnz+f5cuXA6OtTlRVnTITqjtcDt5ufpsdLTuo7K3UluvQMTduLitSV7AsdRn2UHsQRzl1qarKyMgIDQ0NxMfHa1XcZwtxEhIStLA7Li5Owm4hhJhEJPgeBwm+xVTh8/nw+XyoqorP5xvTHztoYzrTTM9//Aee48cBsCxaROyT/4YxMfGSj+n3+/ntb39LV1cXOTk5PPDAA3KhKYQQQgghzuF2u/njH/9IU1MTfr9fW67X68nKymLu3Lnk5uYGcYTjE1AD7O/Yzyt1r7C3fS8KCjAads+Lm8fy1OUsS11GfGh8kEc6efl8PpxOJwaDQSugcbvd7Nq1C6fTOeYRCIxO+llcXMwtt9wC/KW94/Aw8fHxk6boSAghxFgyuaUQ05DJZEJRFLZt20ZnZyf33Xdf0MNvU3oaCb/8BUMv/IH+H/8Y94EDtH3848R88UvY7r7rkgJro9HI6tWree655xgYGGB4eFiqvoUQQgghrmGqqtLb20tDQwM+n49FixahKAp6vR6Hw4Hf78dqtZKRkUFGRga5ubmEhoYGe9gXrWuki60NW9nSsIUOV4e2fF7cPG5Ju4VlKcuIC40L4ggnH1VV6e/vp62tjfb2dtrb2+nt7cXr9QIwd+5cVq1aBYy+EVJWVnbe48TExBAdHY3JZNJ6cNtstqt2HkIIISaOBN9CTDEul4uamhpGRkbYvHkzH/vYxzAag/urrDMYiHjgE4QuWUzPf3wdz4kT9Pznf+LcsYPYf/saRvv4b7+Mj4/n3nvvJTk5GaPROGZGdCGEEEIIMf35fD6qqqqor6+nvr6ewcFBAEJDQ5k7d652bXjbbbcRFhY25dpRKKrCIcchNtdvZnfbbgLqaPVxhDmC1Rmr+Wj2R8mMyAzuICeRkZER3G430dHR2te/+tWvzrvt2dcPZ5nNZm644QZsNhthYWFjHmazWSq7hRBimpJWJ0irEzH1tLa2smnTJrxeL7m5udx9992T5mJNDQQYfP55+n/yU/B60UdEkPD0rzDn5FzWcY1GY9Cr24UQQgghxNWxa9cu9u/fj9vt1pYZDAaSk5PJyMhgwYIFmEymII7w0vW4e3it8TW21G+h1dmqLS+KK2Jt9lqWpy4nxBASxBEGn9vtpre3l46ODq2au6+vj8zMTNatW6dt9+tf/xqz2UxycjIpKSkkJSURERFBSEiI9vpoKr0ZIoQQ4uJIj+9xkOBbTEUNDQ08//zzBAIBZs+eze233z6pLup89Q10f+1reKuqMOXmkLhpE3qL5ZKOpSgKhw4dwmAwsHTp0is8UiGEEEIIEWyBQACdToder0dVVXbs2MHevXuJjIxkxowZZGRkkJqaOmXDblVVOdJ1hM11m3m39V386mg/8jBTGHdk3MHa7LVkR2YHeZRXj9/vZ2BggIGBAfx+PzNmzNDW/eY3v6G7u/u8+yUlJbFhwwb0ej0GgwGdTqd9FEIIce2QHt9CTHNZWVnce++9vPjii1RWVmIymVi2bFnQ256cZcrOwv6jH9J2/3p8tXX0/+CHxHzly5d0rMbGRnbv3o1OpyMnJ4fU1NQrPFohhBBCCBEMg4ODHDlyhKNHj7J69WqysrIIBALMmTOHxMREMjMzJ82djZeqqq+K/zn2P5zoOaEtmx0zm7XZa1mZthKL8dKKQ6YKVVU5dOgQ3d3d9Pf3MzAwgNPp1NaHh4ePCb4tfymWsVqtJCQkaNXcqamp2Gy2Kf98EEIIcfVIxTdS8S2mtuPHj7NlyxZCQkLYuHHjpKuCGdm7j87PfQ6A+Kf+F+tNN13ScbZu3UpVVRXR0dE8+uij0vZECCGEEGKKUlWV+vp6SktLOX36tNaLOT8/nzVr1gR5dFdOv6efn1b8lC31W1BRsRgsrM4c7d09I2rGhx9gijo7EWlsbKy27Le//S3t7e1jtjObzURGRhIVFcXatWvR6/XodDqcTicWi4WQkBB0Op1UcwshhDiHVHwLcY2YN28eOp2Onp4eLfRWVZWtW7eSnp5Ofn4+ISHB6xEYumQx4Q88wNDzz9PzH1/H/IcXMMbHj/s4K1eupKWlhb6+Pt58803uvPPOCRitEEIIIYSYKIqicODAAY4cOUJvb6+2PC0tjXnz5pGXlxfE0V05fsXP5vrN/Lzi5wz5hgC4Ne1WHp/7OAnWhCCPbmIoikJzczM1NTXU1NTgcrl47LHHtOrt6667jv7+fqKjo4mKiiImJgar1aqF3e8nBS5CCCGuFKn4Riq+xfSgqiqqquL3+2lsbOT3v/89MDop5MyZM5k7dy4pKSlBqZhQvV7aH/wkvupqLIs+gv3HP0Z3CbcoNjY28tJLLwGwfv36MbdECiGEEEKIyU1RFH7xi1/gcDgwm80UFhZSVFREXFxcsId2xZR2lvL9Y9+nbrAOgLzIPL5U/CWK44uDPLIrz+fz0dTURE1NDbW1tWMmIjWZTNx7771kZGRgMBikD7cQQogrSia3HAcJvsV043K5OH78OEePHqWnp0dbHhMTw5w5cygsLMRqtV7VMfnqG2jf8ACq20P0F/6RiL/7u0s6zs6dOzly5Ag2m41HH32UsLCwKzxSIYQQQghxudxuN2VlZZSXl/PAAw9gMBjw+/1aNXB+fv60quztcHXww7IfsqNlBwAR5gg2Fm7k7uy7MegMQR7dlaGqKoqiYDCMns+xY8d4++23tfWhoaHk5uYya9YscnJyMJvNEnYLIYSYEBJ8j4ME32K6UlWV5uZmjhw5wqlTp/D5fACsW7eOzMzMqz6eoZf/RO83vgFGI4nPPENIQf64j+Hz+Xjuuefo7+/nnnvuoaCgYAJGKoQQQgghxktVVVpbWzly5AgVFRX4/X4AbrnlFoqLp1/FM4A74Ob508/zbNWzeAIe9OhZm7OWRwofIdIcGezhXRZVVenp6aGlpYWWlhaam5tZsGABCxcuBGB4eJjnn3+evLw8Zs2aRUZGBkajUcJuIYQQE06C73GQ4FtcC9xuN+Xl5dTW1nLXXXdpF6R1dXVER0cTExMz4WNQVZXuf/4yrp07Maank/S759FfQuV5V1cXAPHx8VgsFpnZXQghhBAiiLxeL2VlZRw5cgSHw6Etj4uLo6ioiIKCAq3X83Shqirvtb3HU8efot01OmljcVwxXyz+4pSeuNLr9VJeXk5zczMtLS2MjIyMWZ+bm8vatWvR6XQYjUb0ev15+3QLIYQQE0kmtxRCjGGxWFi4cCELFy5EURQCgQBDQ0Ns27YNr9fLvHnzWLx4MaGhoRM2Bp1OR8y/fQ1PRQX+M2fo+973iH3yyXEfJ/59k2N6PB4sFotcbAshhBBCBInL5WL79u2oqqrNL1NUVERycvK0u0YLqAEOdhzkd9W/43DnYQDsoXY+X/R5bkm9ZUqcr6qqjIyMMDg4yODgIGazWbsbVKfT8d577xEIBIDR+YKSk5NJS0sjIyODtLQ0QkJCpsR5CiGEEBJ8C3ENOluZYTAYSE1Npba2lqNHj1JZWcn1119PcXExRuPE/HkwREYS99//heORRxl+ZQuW66/HtnLlJR+vtbWVsrIy1q5dK5XfQgghhBATrKuri8rKSgYGBrjzzjvx+/2YzWZKSkqIiIhg9uzZE1pIESw97h62NmzllfpXtApvs97MAzMf4JOzPkmocfKcs6IouN3uMXP67Ny5k56eHgYHBxkaGtJaIMJoUclDDz0EjE5KWVJSgtVqJSMjg5SUFEwmkwTdQgghpiRpdYK0OhGirq6Ot956i87OTgAiIyNZunQpM2bMmLCL3L4f/x+Dv/41+vBwkl74PcakpHEfw+v18vOf/xy3201eXh433ngjqampcmEuhBBCCHEFdXd3U1lZycmTJ7XrRYCNGzdO64nGFVWhtLOUP9X9iV1tuwioo1XQ4aZwVmeu5r68+0i2JQd5lKOcTicVFRVUVFTQ19dHXFycFmYD/OY3v6G7u3vMPjabjYiICKKiolizZg0mk0lalwghhJgSpMf3OEjwLcRoZcixY8d49913GR4eBuDTn/70hPX+Vn0+Oj79abwVlYQUF5Pwi5+jM4x/xvuTJ0/y+uuva18nJyezaNEiCgoKtBnnhRBCCCHE+FVWVrJr164xYbderyczM5OZM2cyY8YMzGZzEEc4Mfo8fbzW8Bqv1L9Ci7NFWz43di5rs9eyPG05FkPwe5arqkpLSwvHjx+nuroaRVG0dVarlcceewwYbV9y8uRJFEUhMjKSqKgoIiMjtUpuCbmFEEJMNRJ8j4ME30L8lcfjYe/evbhcLpYvXz5meUhIyBX9Xr7mZtrXfwLV5SJy46NEPfzwJR2ns7OTo0ePcvLkSa0fYXh4OHfffTc5OTlXcshCCCGEENNWb28vFosFq9WKoigcP36crVu3otfrycjIYNasWeTm5k67iSphNEQ+1n2MP9X9iXdb38WnjLYCsRlt3J5xO2tz1pIbmRvkUY715ptvcuLECe3rpKQk5s2bR15eHhEREVobQAm2hRBCTDdTIvj+1re+xZ/+9CeqqqoIDQ1l8eLFfPvb32bmzJnaNm63my996Uu88MILeDweVq1axU9+8hMSEhK0bc6cOcPGjRt55513CAsL45Of/CTf+ta3LrpHsQTfQpxLVVX8fj8+n4/e3l42bdpEcXExiYmJGAyGMX3C7Xa7FoqPjIwwMjKirbdYLB9YCTT82uv0PPkkGAwk/OqXWIqKLnnMTqeTsrIyjh07hsvl4uGHH8Zut2MwGFAURSrAhRBCCCH+xtDQEOXl5ZSXl9PR0cHy5ctZsGABqqri8Xiorq4mNzd3WvbtVlWVhsEG9rTv4fXG12kcatTWFUQXsDZnLSvTVk6a/t3t7e1ERERgs9kAqK6uZtu2beTn51NSUkJaWprMeSOEEOKaMCWC79tuu43777+fhQsX4vf7+dd//VcqKio4efKk9s9848aNvP766zzzzDNERkby+OOPo9fr2bt3LwCBQIB58+aRmJjId7/7Xdrb23nwwQd5+OGH+eY3v3lR45DgW4gLU1WVHTt2aL9z57NhwwaS/tKj+9ChQ7z33nvaOqPRyIYNG4iPj7/g8bu/9jVc29/AkJxM8u9/hz48/LLG7Pf7aW1tJSMjQ1u2detWfD4fixYtIicnRypfhBBCCHHN8ng8VFVVceLECRoaGjj7klCn01FSUjLmrr/pxhPwcLTrKHvb97KnbY82USVAqCGUVRmrWJu9llnRs4I4yr/yer1UVVVx/PhxHA4HS5YsYfHixdp6RVGw2WxybSuEEOKaMiWC77/V1dWF3W7nvffe46abbmJgYID4+Hh+97vfce+99wJQVVVFfn4++/fvZ9GiRWzfvp01a9bQ1tamVYH/7Gc/4ytf+QpdXV0X1XNOgm8hPpiqqpw+fZrDhw/j8XhQFAVFUQgEAiiKwt13301cXBwApaWl7Nu3D0VR8Pv9qKpKfn4+a9asueDxlaEh2j/xAP7WVqy3rSLuG9+4ohfvLpeLn/70p1rfw7i4OD7ykY8wd+7cadmXUgjx/7N33+FRnmfe979T1UZdGlUkJCQEQgiQhEAGTDPYyCHusXGJS3jiOI5jb3bzJLtPdt9ksymbzSbZZO3EJXE3LjFuodhYNFNME0gCVRBo1Ea9jkbT7vv9Q2FiBReaNCNxfo5Dx4Gue0ZzjmTPzP3wpDt/AAAgAElEQVSbc85LCCHEZ3G73fzqV7/Cbrd71xITE8nOziYrK4vg4GAfVjc2Ouwd7G3dy97WvRxsO8iwZ9h7zKg1km/OZ2nSUlZNWYXJ4PvNOlVVxWq1epvCnE4nADqdjry8PK655hr0er10dwshhLhiTcjg++TJk2RmZlJRUUFOTg7bt29n5cqV9PT0EBER4b1camoqjz32GP/wD//Av/3bv/Huu+9y7Ngx7/HTp0+Tnp5OaWkp8+bNO+d2HA4HDofD+31/fz9TpkyR4FuIi/RZDyMtLS0888wzaDQa1q9fP+r/47/nKCvHun49eDxE//uPMH1OUH4xent7KS0tpaKiwnvyEBAQwJw5c5g/f743uBdCCCGEmCxUVaW1tZXTp09z1VVXeRsX3nzzTTo6OsjOziY7O/tzX6NNRIqqUNVTxZ6WPext3UtNb82o47GBsSxKXMSihEXMN8/3m1EmMPI3e/nll2lt/VsnekREBHPnzmXevHmEhoZKd7cQQogr3vkG3+c3BHscKIrCY489xqJFi8jJyQHAarViNBrPeSEWFxeH1Wr1XuaT877PHj977NP87Gc/40c/+tHlvgtCXLE+68V3UlIS6enp1NfXc+TIEVauXPmZPyNgTi7hD36dvid+T/d//oLA+fPR/93/25ciIiKCFStWsGjRIioqKjh69Ci9vb0cPHiQiIgIoqKipGtGCCGEEBOeqqp0d3dTWVlJeXk5nZ2dwEjzUFRUFDAyctJoNE6KAFVRFZptzdT11o189dVxvOs4PY4e72U0aMiOymZRwiIWJyxmesR0v7nvbrcbi8VCWloaGo0GjUZDTEwMHR0dZGZmMmfOHDIyMmSvGiGEEOIi+E3w/fDDD3P8+HH27Nkz5rf1z//8z3znO9/xfn+241sIcfktWrQIp9NJWlraF142/P77sX+0B2dFBd0//09if/Xfl/2kJCAggIKCAvLz82loaKC8vJwZM2YwPDyMVqulrq6Ojo4O8vPzCQ8Pv6y3LYQQQggxViwWCx9//DEWiwWbzeZd1+v1ZGRkjPqE3tlNySeaIfcQp/pOjQq5T/WdYsg9dM5lg/XBLIxfyKKERRTFFxEdGO2Dij+dqqq0tbVx/PhxqqqqGB4e5p577iE+Ph6AJUuWsHr1apndLYQQQlwivwi+v/Wtb/GXv/yF3bt3k5yc7F2Pj4/H6XTS29s7quu7ra3N+6IgPj6egwcPjvp5bW1t3mOfJiAgYMK+2BNioklLS2Pq1KkMDw9/4WU1Oh3R//oDWu+8C/uuXQyVlBByzTVjUpdGo2Hq1KlMnTrVu+bxeNi7dy9tbW3s2bOH6dOnM3/+fNLT0+WkQwghhBB+weFw0NTUhMViITMzk6SkJBRFwWazUVVVBYzMgk5KSiI7O5vp06dPyHMfl+LiRPcJjnYcpaanhrq+OpoHm1E5d8SeUWskPTydzPBMMiMymR4xnZzoHAxagw8q/2w2m43KykqOHz/u7cQHMJlMDA4OYjAY0Ol0k3LOuhBCCOELPg2+VVXlkUce4a233mLnzp3ndITm5+djMBgoKSnhlltuAaCmpgaLxUJRUREARUVF/OQnP6G9vR2z2QzAtm3bCAsLIzs7e3zvkBDiHGc/sqnVar2bS34eY0YG4ffdS98zf6TnF78gsLAQ3TjO3l+wYAHHjh3DYrFQU1NDTU0NkZGRFBQUMHfuXDkREUIIIcS4cjgc1NXVYbFYaGxspK2tzdu97XQ6veNL4uLiuPrqq0lKSiI+Ph693i96nM6bR/VQ01PDkfYjHG4/zLHOY6M2oTwrJjCGzIhMMsMzyYjIIDMikxRTCnqtf9/f+vp6Nm7c6P3b6XQ67yiTadOmodfrpdFCCCGEuMx8urnlN7/5TV555RXeeecdsrKyvOvh4eEEBY1sMPLQQw+xefNmnnvuOcLCwnjkkUcA2LdvHzDSoTl37lwSExP5xS9+gdVq5Z577mH9+vX89Kc/Pa86zncguhDi4g0ODnLgwAHCwsKYNWvW515WdThoWbcO95kGTDfdSPS//us4Vfk3XV1dHDt2jOPHj3s3w8zMzGTdunVyUiKEEEKIcdHR0cGLL77IwMDAqPXw8HCSkpLIysoiIyPDR9VdGkVVONV3isPthznScYSjHUcZdA2OukyEMYJ8cz6zomaNhN0RmUQGRPqo4kvj8Xh48cUX0ev15ObmkpOTI6NMhBBCiIt0vlmuT4Pvz3qSf/bZZ7nvvvsAGB4e5h//8R/ZsGEDDoeDa6+9lieeeGLUGJOGhgYeeughdu7cSUhICPfeey8///nPz7vLQYJvIcbewYMH2bJlC+Hh4axfv/4LN5IcLj1K2/r1AMQ9/RSB+fnjUeY5nE4n1dXVHD16lEWLFpGRkYFer8dms1FbW0tubq73jTohhBBCiMvJ6XTy9NNP43K5yMjIICkpiaSkJEwmk69LuygtthY+tn48Ena3H6HX2TvquMlgIi82j3xzPgXmAtLD0tFqJubm4y6Xi2PHjpGXl+fdmNLtdmMymWRDdSGEEOISTYjg219I8C3E2HO5XPz617/Gbrezdu1aZsyY8YXX6fqPnzC4cSP61FQSX92AxofzKc8+VJ59w27Pnj3s378fvV7PrFmzKCgoICkpSbp2hBBCCHFJ6uvrSUlJAfDudxQSEoLB4F/zqs/XgHOAD5s+ZPOZzZR3lY86FqQLYm7s3JGgO7aA6ZHT0Wl0Pqr08mlubmbLli309PSwePFiioqKMBqN6HQ6ea0ohBBCXAbnm+X69yA0IcSkYTAYKCwsZNeuXRw8eJCsrKwvfOEf+ei3se/ejbuhgd5n/kjkw98cp2rP9fe1RkVFERMTQ2dnJ2VlZZSVlWE2mykoKCA3N3dCbiIlhBBCCN8ZGhpi69atVFRUsGTJEhYuXAhARESEjyu7cG7FzcdtH7PlzBZ2t+zGqYyMjdOgYV7sPArMBRSYC8iOyva7DSgvhcvlYu/evRw+fBhVVTGZTMTHxxMYGChd3kIIIYQPSMc30vEtxHgZGhri17/+NW63m6985SukpqZ+8XVKttPx3e+CXkfCSy9jnJ45DpWeH1VVaWlpoaysjJqaGtxuNwAhISE89thjE25TKSGEEEL4RlVVFZs2bcJms6HRaFiwYAFLlizxdVkXRFVVantr2dywmfct79Pj6PEeSw9Lp3hqMdemXIs5yOzDKsdOS0sLW7Zsobu7G4BZs2Zx7bXXYjKZpMtbCCGEuMyk41sI4XeCg4OZN28ehw4d4uDBg+cVfAevXEHQ8mXYd+yk6z9+TPyzz6LR+cdHYDUajXfW5ooVKzhx4gRlZWUkJSXhdDpRFAWdTsf7779PSkoK6enpBAcH+7psIYQQQvgJm83Gli1bOHHiBADR0dFcd911JCYm+riy89dh7+B9y/tsPrOZU/2nvOuRAZFcm3ItxanFTI+YPqnD37KyMrZt24aqqoSEhHDdddeRnZ0tXd5CCCGEj0nwLYQYV0VFRRw+fJgzZ87Q3t6O2fzFXT9R3/seLYcO4Tx+goHXXyds3bpxqPTCBAYGkp+fT15enrfz2+1209zczKFDhzh06BAA8fHxpKenk56eTkpKyoSd1ymEEEKIS1NfX8+bb77J0NAQGo2GwsJCrrrqqgnxibFh9zC7Wnax+cxmDrYdREEBwKg1siRxCcWpxSyMX4he6//35XKYMmUKOp2OzMxM1qxZI13eQgghhJ+4Ml6JCCH8RmRkJLNnz0ZRFIxG43ldR282E/ntb9P905/R+7+PE7x0GfrEhDGu9OJoNJpRYbbRaCQ/P5+GhgY6OzuxWq1YrVb27duHTqdjzZo15Ofn+7BiIYQQQviCyWTC4XAQExPDmjVriI+P93VJn0tRFY52HGVzw2a2N21nyD3kPZYbnUvx1GJWJq8kzDj5R0e6XC4aGxtJT08HRvZ++drXvobZbJYubyGEEMKPyIxvZMa3EONNVVVcLpe3M/q8rqMotK3/PziOHSNo8SJi/+d/JlwnzeDgIBaLhYaGBhoaGhgYGOD2229n6tSp6HQ6Tp8+TWlpKfHx8ZjNZuLi4oiMjJQTKCGEEGKCUxSFhoYGzpw5w9KlS/F4PLhcLpqamoiPj/frLu+GgQY2n9nMVstWrENW73piSCJrUtdQnFpMsinZhxWOH1VVqaurY+fOnfT19bFu3TqSk5MxGo3odLoJ99pUCCGEmKhkxrcQwm9pNBr0ev0FBd8arZboH/yAlnXrsO/Zy9AHHxBy7bVjWOXlZzKZyM7OJjs7G1VV6enpITw8HEVRUBSFmpoa79dZer2e2NhYzGYzy5YtIyIiwof3QAghhBDny+l0curUKWpqaqitrcVutwMwbdo0YmJiAEhO9s/AuM/RxweNH7ClYQsnuk94100GEyuTV1I8tZg50XOuqKC3q6uLkpISGhoaAAgNDcXtdhMYGChNCkIIIYSfkuBbCOETWq2Wrq4uDh06xNKlSwkKCvrC6xjS0wj/2gP0/eFJun/xXwQuWIBuggbBGo2GqKioUWuzZ88mLCyMzs5OOjo66Orqwu1209raSmtrK1dddRVOpxOtVsuBAweora0lLi6OmTNnkpaW5qN7IoQQQohPamxsZO/evZw6dWrUm/xBQUFkZGT4bVjs9DjZZ93H5jOb2du6F7c6UrtOo6Movoji1GIWJy4mQBfg40rHl8PhYO/evRw9etS7cXlhYSGLFy8mKCjIb/+eQgghhJDgWwjhI6qqsnnzZqxWK+Hh4RQVFZ3X9cLvv5+hD7bhqq+n59e/IeZHPxzbQseR2Wwetdmnoij09fXR0dFBd3c3ISEh3hPohoYGLBYLFouFQ4cOcffddzNt2jRflS6EEEJcsXp6etDpdISFhaGqKkNDQ95Pb4WHh5ORkUFmZiZJSUl+2Rncbm/njZNv8E79O/Q5+7zrWRFZrEldw+qU1UQHRvuwQt9RVZVXXnmFzs5OADIyMli1ahWxsbESeAshhBATgMz4RmZ8C+ErFRUVbNy4keDgYL7+9a+P2hTy8zjKyrE+8ACoKubf/56gBYVjXKn/6ezspK2tjerqaurr6wkJCeHBBx8kNDTU16UJIYQQk5LH46G7u5v29nY6Ojpob2+nvb2drq4uFixYwLJly1AUBY/Hw8GDB5k2bZpfB6RV3VVsqNvAh40f4lE9AMQGxnJd6nWsSV3DtHB5Qx2gvLycQ4cOsXLlSmbMmOGXb14IIYQQV5rzzXIl+EaCbyF8RVEUfvvb39LX18eqVauYO3fueV+3++f/ycDrr6NPTibh9dfQBgaOYaX+y+Vy8dJLL9HZ2UlaWhr33HOP355gCyGEEBOBoij09PTg8Xi8n8RyOBz84he/QFGUcy6v0WjIzs6muLh4vEu9YB7Vw0ctH/FK7SuUdZZ51+fFzGPd9HUsTlyMTqPzYYW+NTg4yEcffUR6ejpZWVnedb1ej9Fo9GFlQgghhPgk2dxSCOH3tFotRUVFbN26lUOHDpGbm3veXTQR33qYoZ07cTc10ffUU0R++9tjXK1/MhgMrF27lhdffJHTp0/z0UcfcfXVV/u6LCGEEGJC6erq4ujRo5w6dYrOzk7cbjfp6encfvvt3k2og4KCcDqdxMTEEBMTQ3R0NDExMcTHx5/XXiW+ZHPZeO/Me7xe9zrNtmZgZHb3qimruGP6HcyMnOnjCn3L4/FQWlrKvn37cDqdWCwWMjIyCAwMRK/XS1OBEEIIMUFJ8C2E8Kl58+axa9cuent7qaurG9Vd83m0JhNR//x9Ov7hO/S/+BK62FgMKanoEuLRx8WhDQkZ48r9R0xMDNdccw27d+8mJiYGVVXlBE0IIYQ4D2VlZZSWlmKxWEat6/Ujp0mf3Jzy3nvvJTg4eEI9x7bYWrzzu21uGwBhxjBuSr+JWzNuxRxk/oKfMHl1dXVx5swZGhsbaW5uZmhoCID4+HhWr16NyWSaUH9rIYQQQpxLgm8hhE8ZjUbmz5/P7t27OXjwINOnTz/vk4zgpUsJXnUNQ9s+pOe/fjnqmDY0FF38SAiuS4hHHx+PLi4OfXwC+vg4dLGxaM5zpvhEkJOTQ2ZmJoGBgTidToxGo5ysCSGEEJ9DVVWOHj2KxWJBo9GQnp5OdnY2cXFxhIeHn/MptJAJ8qa6oiqUdZbx+snX2dm0E4WR8SypoanckXkHxanFBOqvrBFxHo8Hq9VKbGysd2RJRUUFhw4d8l4mODiYq6++moKCAnS6K3fcixBCCDGZSPAthPC5wsJCysvLyczMRFGUCzrZiP7BD9AnJ+OqO4m7rQ2P1YoyMOD9ctXVfer1NIGBhKz9EmHr1mGYOvUy3RPf0Wg0BP51zrnH46G3t5eIiAgJv4UQQgjAbrdTXl5OWVkZd9xxB4GBgbjdbvLz80lJSWHWrFkTeoNoj+qhvLOckqYSdjTtoHO403us0FzIHdPvoCi+CK3mytiY0el00traSmNjI01NTbS2tuJ2u7n11ltJS0sDYOrUqXR2dpKSkkJqaipJSUkYDAZ57SSEEEJMIrK5JbK5pRD+QFEUhoeHL8/PstlGQvBWK+42Kx6rFbfVits6Eoy729rA5fJePmjxIkLvuovAwsJJcbJTU1PD1q1bWb58OQsXLvR1OUIIIYRPqKrK6dOnOXr0KFVVVXg8HgCuvvpqFixY4OPqLp1H9VDWWUZJYwk7mnfQNdzlPRaiD2HllJXcnnk7GeEZPqzy8nM6nQwODnq/zGYzMTExADQ1NbFp0yYGBgb4+9PcoKAgVqxYQU5ODjqdDq1Wi1arnRSv/YQQQogrjWxuKYSYULRaLQaDAdcnAumL/lkhIRjT0yE9/VOPq4qCo7SU/pdfwb57N/Y9e7Hv2YshI4OwO+8kZM11aAICLrkOXxkcHMTpdPLhhx+SkpJCYmKir0sSQgghxs3Q0BAffPABZ86coa+vz7seGxtLbm4u2dnZPqzu0nhUD8c6jlHSVMLO5p2jwm6TwcTSxKWsSF5BYVwhRp3Rh5VeOI/Hg81mY3BwEJPJ5D2JbW9vZ+fOnd6g2+FwjLre0qVLvcG3wWCgv78fgNDQUJKTk70d3WazWYJuIYQQ4gojHd9Ix7cQ/kJRFMrLy+nq6qKoqGhcbtNlsTDw6qsMvvMuqt0OgDYyktBbbyX0K7ehi44elzouJ1VVefvttzl58iSRkZE8+OCDBEzgIF8IIYT4ew6HA6vVSmtrK62trURFRXH11VejKApOp5Nf/vKXKIqC0WgkOzub2bNnExcXNyFDT4/q4WjHUW9nd4+jx3ss1BDK1UlXszJ5JYVxhRi0E2P/kp6eHg4ePDiqc/vs5pIwuiu/ra2NF154YdT1DQYDoaGhmEwmZs+eTU5ODhqNBrfbTXt7O+Hh4d457RPxby6EEEKIz3e+Wa4E30jwLYS/sFqtPPnkk2g0Gr761a9iNpvH7baVgQEG3nqLgVdfw2O1jiwaDIRcdy1hd92Fcfr0cavlcrDb7Tz//PMMDAwwa9YsbrnlFjnxE0IIMWGpqsrHH39Ma2srLS0tdHV1jToeFxfHV7/6Ve/3x44dIzQ0lJSUFAwTdDNrVVXZa93L/5b/L6f7T3vXwwxh3rB7ftx8vw67VVWlubmZ2tpaUlNTmTZtGvDpYTaMfALQZDKRl5fH/Pnz0Wq1OJ1O6urqCAsLIzQ0lLCwMAIDA9FoNPLaRgghhLhCSfB9AST4FsJ/vPHGG1RWVpKcnMwdd9wx7ic0qtvN0I4dDLz8Co7ycu96QEEB4Q/cT9AEmpnd1NTEq6++iqqqrF27lry8PF+XJIQQQoxit9vp6+ujr6+P3t5e77/7+voIDAzkzjvvRFVVVFXliSeeoKfnE93OoaHExcURFxdHQkKCd9PCyaCqp4rflf2OIx1HgJExJsuTlrNyykrmm+ej1/rvxMqzYXdNTQ21tbUMDg4CkJmZyY033giMzOk+fPiwN8w+G2iHhISg1Y5swCmhthBCCCE+i8z4FkJMSKtXr6a2tpampiaqq6uZOXPmuN6+Rq8nZNUqQlatwlFRQf/LrzBUUoLj8GHaDx8mpLiYyO/+E7rw8HGt62IkJyezePFiPvroI7Zs2cKUKVOIjY31dVlCCCGuUC6Xi+7ubuLi4oCRgPSZZ56hu7v7Uy8fFBQ0auPrOXPm4Ha7vWF3SEjIuNQ9nlpsLfzh+B943/I+AEatka9kfoX7ZtxHqDHUx9V9PkVR2LFjx6iwG8BoNJKRkcGsWbMICAhAq9USHBzMNddc48NqhRBCCHElkOBbCOFXwsPDWbx4MTt37mTnzp1MmzYNo9E3mzMFzJ5N7M9/httqpf/FFxl47XVsmzdjP3CA6H/+PsErVvikrguxYMECGhsbiY6OnpQBgRBCCP9mt9upq6ujurqakydPYjQaeeSRR/B4PACEhYUxPDzs7fgNCwsjPDyc0NBQwv/uTeb58+f74i6Mi35nP89VPcfrJ1/HpYxs9H1dynV8I+cbJIQk+Li6T6eqKp2dnd431bVaLS0tLQwODnrD7pkzZ5KZmYnRaJQObiGEEEKMOxl1gow6EcLfuN1uHn/8cXp7e1m4cCFLlizxdUkAOCoq6PrRv+OqrwcgeNUqor7/PXSRkT6u7PN5PB50Oh0AAQEB3n8LIYQQY6G/v5/q6mpqamo4c+YMiqJ4j4WGhrJu3TpvqK0oine0xZXI6XHy5qk3+VPln+h39QNQYC7gkdxHmBE5w8fVfbrBwUEqKiqoqKhgYGCAhx9+mMDAQADq6+vRaDRkZGRI2C2EEEKIMSMzvi+ABN9C+J/q6mpee+01dDodX//61zGZTL4uCQDV6aT3qafpf/558HjQRkQQ9b3vEbx61YQ4uVMUhYGBARIS/LN7TAghxMRz9nTi7PPgBx98wP79+73HY2JiyMzMJDMzE7PZPCGeL8eaqqp82PQhT1Q8QYutBYD0sHS+lfstroq/yu9+R4qicObMGcrKyjh16pT3bx4QEMDNN9/M1KlT0el0aLVav6tdCCGEEJOPBN8XQIJvIfyPqqps2rSJtLQ0v9ysylFZRdcPf4jr5EkAgpYvJ/qfv48uJsbHlX02u93O22+/TXt7Ow8++CBRUVG+LkkIIcQE1tHRQUVFBZWVlaxevZq0tDQ8Hg+NjY3s2rWLzMxMMjIyiPTzT0aNt6MdR/lt2W+p7KkEICYwhgdzHqQ4tdgvN61sampi06ZN9Pf3e9eSkpKYO3cuOTk5BAQESNgthBBCiHElwfcFkOBbCP/ldDpxu92+LuNTqS4XfX/8E31/+iO4PWjDwoj8p38i5PpivzwBVBSFV199lebmZiIjI7nnnnskjBBCCHFB+vv7OX78OBUVFVitVu/6nDlzWL16tQ8r829dw128b3mfzWc2U9dXB0CwPpi7s+7mzul3EqQP8nGFf6MoCna73bs3yODgIE8++SRGo5FZs2aRl5dHfHz8FT2iRgghhBC+JcH3BZDgWwj/paoqdrsdm81GYGCgX86ndtbW0vXDH+KsrgEgaMkSov7fv6A3m31c2bn6+/vZsGED/f39hISEcPfddxMfH+/rsoQQQvg5u93O66+/zpkzZ7xrWq2WtLQ0ZsyY4Z3pLP5m2DPM7ubdbG7YzAHrARRGZp0btAbWTl3L+lnriQ6M9nGVfzMwMEB5eTkVFRVERkZy++23e481NTWRkpIi3d1CCCGE8AsSfF8ACb6F8G+HDx9m27ZtFBUVUVhY6OtyPpXqctH/wov0PvUUuFxoTCFEfuc7mG64we9OEAcHB3njjTfo7OwkICCAO+64g6lTp/q6LCGEEH7E5XLR3t5OUlISqqridrv5/e9/T09PD8nJycycOZOsrCyCgvynU9kfKKpCWWcZmxs2U9JYgs1t8x6bHT2b4tRiVk5ZSbgx3IdVjtbf38/+/fupqKjwzu4OCgpi/fr1hIaGemd3CyGEEEL4Cwm+L4AE30L4t6NHj/Luu+9iMBhYv36932x0+Wmcp07R9aMf4Tx+AgCNyYRx+nSM0zMxTs/CMH06xmnpaAICfFrn8PAwGzdupLm5GZ1Ox2233UZWVpZPaxJCCOFbqqpy+vRpysvLqaqqQqPR8Mgjj3jfwG1qaiIsLExeL38Ky4CFLQ1b2NKwhdahVu96QnAC16VeR3FqMSmhKT6s8Fw2m40DBw5w7NgxPB4PAMnJycybN49Zs2ZhNBr97s17IYQQQgg4/yzX/3ZPEUKIvzN37lyOHDlCc3Mzu3bt4vrrr/d1SZ/JOG0a8X/6E/2vvELfk0+hDg7iKC3FUVr6twvpdBimTsXw1zB8JBSfji56/D7uHBgYyG233cZf/vIXmpqaCAkJQVVVOcEVQogrlMVioaSkBIvF4l0LCwujq6uLmL9u3JycnOyr8vyGW3HTNdxF21AbbfY2Wm2tfNTyEeVd5d7LBOuDWZm8kuKpxcyNmYtW45/d0nV1dRw5cgSAKVOmsHTpUtLS0qS7WwghhBCThnR8Ix3fQkwEzc3NPPPMMwDceeedJCUl+biiL6a6XLhOn8ZZW4uzphZXbS3OulqU3r5PvbwuJhrjzGxCv3IbgVddNS4htKIo9Pb2EhUVhUajITAwUMJvIYS4gnR1dfH+++9TVzey4aJerycnJ4fs7GwSExOvqOcEVVXpdnRjHbKOBNtDbbTb22kfaqfNPvJ9p73TO6v7k7RoWRC/gDWpa1iauJRAfaAP7sHnczqd9PX1ERsbC4DH42HTpk3MnTuXzMxMv9xHRQghhBDi08iokwsgwbcQE8M777zDsWPHiIuL4+67756QHUmqquJpb8dZW4urtg5nbQ3O2jrcFgt84uHYOCOLsAceIHjFCjTjeD8tFgsNDQ2sXr36igo7hBDiStXe3s4f/vAHAHJzcykqKiI0NNTHVY2vFlsLWxu2srlhM42DjV94eZ1GhznIjDnYTFxQHDMiZ3BtyrXEBMWMQ7UXzu12U15ezrRSSFAAACAASURBVP79+zEYDHzta1/zzu02Go0T8vWUEEIIIa5sMupECDHpXHPNNVRVVdHW1kZFRQVz5szxdUkXTKPRoI+LQx8XB0uWeNcVux1X3UlsH25j8M2NOKtr6Py/30M/dSrh999HyHXXoTEYxrQ2u93O22+/jcPhYGBggJtuukm6v4QQYpIZGBjg9OnTzJ49G7fbjclkYtWqVaSkpBAZGenr8saNzWVje9N2NjdsprTjb+PItGiJDoomLijOG2zHBY/+d1RgFDqN/z8/KorCiRMn2LdvH/39/QCEh4czMDBAXFycPMcLIYQQYtKTjm+k41uIiWT//v1s27aNoqIiFi1a5OtyxoSnt5eBDa8y8OqrKAMDAOgSEgi/96uYbrhhTDfGrKysZMuWLSiKQnp6OrfffjtGo3HMbk8IIcT4GB4eZu/evXz88cd4PB7uv/9+osdxbwl/4FE9HG4/zOYzm9nRvAOHxwGABg355nyKU4tZnrycYH2wjyu9NB6Ph5qaGvbt20dPTw8AJpOJRYsWkZeXJ8/rQgghhJjwZNTJBZDgW4iJw+Px0NnZeUV8DFsZHGTgz2/S/9JLKN3dwMgc8NC77ib01lvQhoSMye2ePn2ad955B5fLRUJCAnfddRchY3RbQgghxpbL5eLAgQPs3buX4eFhABITE1m1ahVms9nH1Y2P+v56tpzZwhbLFjrsHd71FFMK10+9nutSryM+ON6HFV5ebW1tvPDCCwAEBQWxcOFCCgsLCQgIkDFmQgghhJgUJPi+ABJ8CzHxOBwOPB6Pr8sYF8rwMINvv0P/C8/jsbYBoA0LI3TdOkLvuB1dePhlv83W1lbefPNN7HY7UVFR3HPPPURERFz22xFCCDE23G43paWlfPTRRwwODgIQExPDkiVLmDZt2qQPQHsdvXxg+YBNDZuo7qn2rocZwliVsori1GJmRc2aFL+HtrY2Ojo6yMnJ8a69/fbbxMXFsXDhQoKDgyfF/RRCCCGEOEuC7wsgwbcQE4+iKFgsFiorK1m6dOl5ndANDg5itVqxWq04nU5mzZpFXFzcOFR7eaguF7bNW+h77jncDQ0AaIKDCbv7bsL/z3o0l3lWZ1dXF3/+85/p7++noKCA4uJiNBoNO3bsoLq6GkVRzvlSVZWHHnqI4OC/fUxcTraFEGL8OZ1OfvOb32C32wkPD2fRokXMnDlzUm9k6PQ42du6l80Nm9nbuhePOvIGuU6jY1HCIopTi1mUsAijbuKP+lAUhbq6OkpLS2lqakKv1/ONb3yDoKAgtFotBoMBrVYrz8FCCCGEmJRkc0shxKTmdDrZsGEDTqeT+Ph4ZsyY8amXs1gslJaWYrVaGfjrvOyzjhw5wpe//GWysrLGo+RLpjEYMN3wZUK+dD1DJSX0/elZXLW19D31FK4zZ4j58b9f1g0wo6OjufPOOzlw4ABXX301drsdgJ6eHtrb2z/zejabzXuivXPnToxGI8uWLUOvl6ccIYQYK52dnZSXl7Ns2TI8Hg8ej8e7F0Zubu6k3chQVVWOdx9nS8MWtlm20e/q9x6bETmD61OvZ1XKKiIDJsfGnXa7nfLyco4ePep9XaPVasnMzERRFAIDAyf1mxtCCCGEEBdCUgghxIQUGBhIUVERu3btYufOnQQHB9Pe3o7VamXu3LkkJycDIyeIdXV13utFR0cTHx+Px+PBYrGQlpbmPTYwMIDJZPL77iiNTkfI6tUEr1qFbdMmuv79xwx98AHt/f3E/vcv0QYFXbbbCg0N5Zprrhm1VlBQ4O0a1Gg0aLXaUf8O+uvtd3Z2cujQIQBqa2u58cYbSUxMvGy1CSHElU5VVSwWC/v376empgYAs9lMeno6APPmzfNleWOq1dbKVstWNp/ZjGXQ4l2PDYplTeoa1qSuIT0s3YcVXn4nT57kvffew+12AxAcHMycOXMoKCggMjLS71+/CCGEEEKMNxl1gow6EWKicrlcPP744/T19Y1aX7x4MUVFRcBI93FVVRVJSUkkJiYSGBjoPTF0OBxotVpcLheqqvL888/j8XgoLCwkOzt7wnTH2ffvp+Mf/wl1eBhjTg7m3/4POj+Zx11bW8u2bdsYGhpCo9GwePFili5dOmF+t0II4Y8URaG6upp9+/bR3NzsXc/IyOCqq66aUGO8LsSga5AdTTvY3LCZ0o5S73qgLpDlycspTi0m35yPTjM5nmMURcFut3s3mB4cHOTJJ58kJiaGgoICcnNzMRqNEngLIYQQ4oojM74vgATfQkxctbW1vPbaawQFBZGQkEBCQgIZGRkkJiZ6u5C/6IRQVVXa29t59tlncTgcwEin8ydPKv2do7yC9kcfRenrw5CejvmJx9Gbzb4uC4ChoSFKSkqorh7ZXMxsNnPTTTcRHx/v48qEEGLiGRgY4Nlnn6WnpwcAnU5HTk4OBQUFREVF+bi6y8vpcVLbW0tFVwXlXeXsbd2LwzPyPK1BQ4G5gOLUYpYlLyNYH/wFP23icDqdVFRUUFpaSlhYGLfffrv3WH9/P7GxsfIGshBCCCGuaBJ8XwAJvoWY2DwejzfgvpSup+HhYQ4dOsSBAwew2WzAyEiVvLw85s2bN2rDRn/krK+n/ZsP42lvR5eQQNwTj2NITfV1WV41NTVs27YNu91OcHAwjz766IR4U0EIIXxtYGCA0NBQVFXF7Xbz9NNPMzg4yNy5c5k3b563I3giU1WVNnsbx7uOU9FVwfGu49T01uBSXKMuNzV0qneUSVzw5Ops7+3tpbS0lIqKCpxOJzDyOmT9+vWEhYWh1+ulu1sIIYQQAgm+L4gE30KIT3K5XBw7doz9+/d7O+puueUW78xUf+ZuaaXt4YdxNzSgjYzE/L+/I2DmTF+X5WWz2fjwww/JyMggJycHo9EoXWtCCPEphoaGqKio4NixY3R1dfHoo4+i1WpRVZXu7m5CQ0MxXMYNjcfbsHuYqp4qjncf53jXyFfncOc5l4swRpATnUNOdA4L4hYwM3LmpAt/rVYrH3/8MSdPnuTsqVlUVBQFBQXMmTOHoKCgSXefhRBCCCEuhQTfF0CCbyHEp1EUhRMnTlBdXU1xcfGEOen0dHfT/q1HcFZXowkJwfzrXxFYUODrsrzOPu2c/X2ePn2arq4uFi9ejFar9WVpQgjhUx6Ph5MnT1JWVkZNTQ2KogCg1Wq59dZbSfWjT/FcjE57Jzuad7C9aTtlnWV4VM+o4zqNjsyITHKiRoLu2dGzSQpJmjDPvxfr+PHjbNmyBYCpU6cyf/58srKy5I1hIYQQQojPMObBt9PppL293fuC/KyUlJSL+XE+JcG3EOKLKIqC0+nEZrPx0UcfsWzZMr8e06EMDtL+ne/gOHwEjEZif/ZTgpcv93VZ53A4HPzxj3/EZrORkJDADTfcMGk3ZRNCiM9z6tQp3nrrLe+oLYC4uDhycnKYOXMmQUFBPqzu4rXb29nZtJOSphLKOstQ+dupR0xgjLebOycqh5mRMwnUB/qw2rFns9koKysjLCyMnJwcANxuN7t372bevHkkJiZO+qBfCCGEEOJSjVnwXVdXxwMPPMC+fftGrauqikajwePxfMY1/ZcE30KI86GqKi+88AJnzpwhLi6OW2+91a/nfqsOBx3/8i/Yd+wErZbof/1XTDd82ddljaKqKpWVlZSUlOBwONBoNBQWFrJs2TICAyd3+CGEuLLZ7XbsdjtRUVEoikJ3dzePP/44wcHBZGdnM2vWLMx+sknxhWobamNH8w5KGkso7yofdSwnKoeVU1ayNHEpiSFXRsirqiqtra2UlpZ6O/nDw8NZv349Op0Og8GATqe7In4XQgghhBCXw5gF34sWLUKv1/P973+fhISEc16gzZkz5+Iq9iEJvoUQ56upqYlXXnkFu91OZGQkt912G+Hh4b4u6zOpbjddP/kptnfeASDi0UcJv/erPq7qXIODg3z44YfU1dUBEBISwqpVq8jNzZUgQAgxaaiqisVi4ciRI1RWVpKWlsYtt9zi/QRlU1MTCQkJE3LEhXXIyvam7Wxv2k5FV8WoY7nRuaxIXsGK5BWTbkPKz+N2u6murubo0aNYrVbvekJCAvn5+eTm5sqGlUIIIYQQF2HMgu+QkBCOHDnCjBkzLrlIfyHBtxDiQnR0dPDSSy/R39+PyWTitttuIyYmxtdlfSZVVen97e/of/55AMLuvZeIbz/ilyfap0+fpqSkxLup6AMPPMCUKVN8XJUQQlyaoaEhysrKOHLkCF1dXd71uLg47rrrrgkZdAO02lopaSphe9N2TnSf8K5r0JAbMxJ2L09afkWF3Z+0ZcsWjh8/DoBOp2PmzJkUFBQwZcoU2dNCCCGEEOISnG+Wq7/QH5ydnU1n57k7rgshxJUiNjaWBx54gJdeeonOzk42bNjAzTffTFJSkq9L+1QajYbIR7+NNiKC3v/5H/qffx7Vbifye//X78LvtLQ07rvvPo4cOUJPTw/R0dE4nU4MBgOqqkpQIISYcHbs2MHevXu94wANBgMzZ85kzpw5xMfH+7i6C9dia/F2dv992D03Zu5I2J28nNigWB9WOf5UVaWhoYGIiAgiIiIAmD17NhaLhXnz5pGXl0doaKjfPe8KIYQQQkxmF9zxvX37dn7wgx/w05/+lNmzZ2MwGEYdn4gd09LxLYS4GHa7nZdffpnm5maio6O57777/D6YHXz7Hbp+/GNQVSK+/Qjh993n65LOS39/P6+99hpLlixh3rx5EhwIIfyWzWbDYDBgNBpRFIVDhw6xdetW4uLimDNnDjNnzvTrzZE/TYutZaSzu3E7lT2V3nUNGubFzvN2dscE+e+nn8aCoijY7XZqamo4evQo3d3d5OXlsXLlSgC0Wi06nU7GmQghhBBCXGZjNurkbKjz9y/eZHNLIcSVyOl08t5777FgwQKioqJ8Xc556d+wgZ7/+iUAMT/9CSHXXefjir7Y9u3bOXLkCABJSUkUFxeTmJjo46qEEGKEqqqcOXOGI0eOUFVVxerVq8nNzUVVVZxOJ93d3ROuu7vF1kJJYwklTSVU9VR517VomRs7l5XJK1mevJzowGgfVnl5dXR0YLVacTgc3i+n00lISAhLlizxXu7555+np6cHl8s16voGg8EbfEvYLYQQQggxdsZs1MmOHTsuqTAhhJhMjEYjt9xyCx6PB4fDAUBPTw+RkZE+ruyzha1bh7ullYGXX6bz//shuthYAvPzfV3W51q6dCkmk4l9+/bR3NzM008/TX5+PitXriQoKMjX5QkhrlC9vb2UlZVRVlbm3ZsAoLGxkdmzZwMjzxMTJfRuHmxme9P2Tw2758XOY+WUlSxLWjapwm4Aj8fDSy+9RHt7+6cej4mJGRV8u93uUaF3dHQ0eXl5zJkzh+DgYAm8hRBCCCH8xAV3fE9G0vEthLgcFEWhqqqKjRs3UlhYyOLFi/325FdVFDq/932GSkrQhoYS/+yzGNLTfF3WFxocHGTnzp1UVY0EMkFBQaxZs8YbMAkhxHhQFIWXX36Z+vp675rRaPTO7o6LmzibOTYONlLSOLJBZU1vjXddi5Y8cx4rk1eyNGnppAq7bTYbTU1NZGVledfeeOMNLBYLycnJhISEEBAQ4P0KDQ0lNzfX+5ze3d2NVqslMDCQgIAA9Hq93486E0IIIYSYTMas4xtGulv++Mc/eoOHWbNm8cADDxAeHn5x1QohxCSg1Wrp7e1FURQ+/vhjhoaGuOaaa9DpdL4u7RwarZboH/87no4OHOXltD3yCAnPP4cuxr/ns5pMJr70pS8xZ84cPvzwQzo7O7FYLMyaNUtCByHEmFFVFavVSkJCAqqqoiiK9zEnJSWFnJwcMjMzJ8zsbsuAhZKmEkoaS6jrq/Oua9GSb85nRfIKliUtIypwYozwOh8Oh4Pa2lqqqqqwWCyoqso3vvENQkNDAVi1ahWhoaGYTKYvfNN6Ir2xIYQQQghxJbvgju/Dhw9z7bXXEhQURGFhIQCHDh3CbrfzwQcfkJeXNyaFjiXp+BZCXE5Hjhxh06ZNnH14DQ4OxmQykZ2dzfz584GRbsEzZ85gMpkIDQ0lMDDQJ93hnp4erPc/gNtiwThjBnHPPI02OHjc67gYHo+HY8eOMWfOHPR6vTdw0usv6j1dIYQ4R3d3N2VlZZSXl9Pb28tDDz2EyWQCoKurC4PBMGFeO57uP832pu1sb9rOyb6T3nWdRkeBuYAVyStYmrSUyAD/HdV1oVwuF/X19VRVVVFfXz9qL6KEhARWr15NcnIyOp3Obz+hJYQQQgghzjVmm1suWbKEjIwMnn76aW+44Ha7Wb9+PfX19ezevfvSKvcBCb6FEJdbZWUl7733HsPDw961wsJCli5dCow87jz55JPeYzqdDpPJRFRUFFdffTVms3ncanU1NmK9736Unh6CFi8i9le/QjMBw2NFUXjttdeYMmUKK1askABcCHFRbDYbNTU1lJWVYbFYvOtGo5Hrr7+ejIwMH1Z3YSwDFt63vM/2pu3U9/9tLItOo6MwrnAk7E5cSnjA5PzU5vHjx9myZYv3++joaLKzs8nJySEmJkY+KSSEEEIIMUGNWfAdFBTE0aNHmTFjxqj1yspKCgoKGBoauriKfUiCbyHEWFAUBZvNRn9/P/39/YSFhREbG4uiKHR2dvLuu+9is9nOedzU6/UUFxePmj061hwVFbQ9+CDqsAPTzTcT9f/+ZcJ1v506dYqNGzcCIx9Dv/nmm8f1DQQhxMTX0NDAc889N2pt6tSp5OTkkJGRgcFg8E1hF8CluNjVvIuNpzZypOOId12v0VMYV8jKKStZkriEcOPkC7vdbjeDg4NEREQAI+NNXnrpJTIzM5k9ezbx8fF+OX5MCCGEEEJcmDGb8R0WFobFYjkn+G5sbPTOyBNCCDEy8zs0NJTQ0FCSkpJGHUtOTuab3/wmqqricrkYGBigv7+fPXv20NDQMO5vwgXMnk3MT35Cxz99l8GNG9EnJRJ+//3jWsOlmjZtGjfeeCPvv/8+bW1tPPXUU6xcuZKFCxdOuBBfCDF2VFWltbWV+vp66uvrSU5OZunSpXg8HiIiItDpdERFRTFz5kyys7MnzOvb5sFm3j79Nu+dfo8eRw8wMrN7QfwCVk9ZzZLEJYQaJ8Z9uVBnN5fes2cPRqORe++9F61WS1BQEA8//DAajUaeB4QQQgghrkAX3PH97W9/m7feeotf/vKXXHXVVQDs3buX7373u9xyyy385je/GZNCx5J0fAsh/IWiKDQ3NxMdHe1d83g849ah1v/qq/T84r8AiPnJfxCyZs243O7lNDg4yPvvv099/cjH+tPS0rjxxhvl8V2IK1hvby+nTp3i9OnT1NfXY7fbvcfMZjP33nuv9/vh4WECAwN9UeYFcytu9rTu4a1Tb/Fx28fe9ZjAGL6c9mVuSL+B+OB4H1Y4tlRV5fTp0+zatYvOzk5gZBPkO++8E7PZLN3dQgghhBCT1JiNOnE6nXz3u9/lD3/4A263GwCDwcBDDz3Ez3/+cwICAi6tch+Q4FsI4W9UVcXhcNDa2so777zDmjVrmDJlyrjcdvevfsXASy+DwUDcE48TmJ8/Lrd7OamqyrFjx9i5cydut5vU1FTuvfde6fgT4grgdrvp7e0lJiYGGHk8+O///m9sNpv3MkajkZSUFFJTU0lNTR31ZuNEYB2y8k79O7x3+j06hju86wviFnDztJtZnLAYvXZy73PQ0tLCrl27aGpqAiAgIICFCxeyYMECn20YLYQQQgghxseYBd9nDQ0NcerUKWDk4+XBwcEXV6kfkOBbCOGPVFVlw4YN1NXVodFoWLZsGfn5+WN+Mq8qCp3f/z5DH5agDQ0l7tk/YUxPH9PbHCvd3d1s3bqV1atXYzabMRqNspmZEJOIqqp0d3fT1NREc3Mzzc3NWK1WAgICeOyxx1AUBUVR2Lx5M729vd6gOyEhYcJ1A3tUD/ut+3nr1Fvsa92HggJAZEAka6eu5Yb0G0g2Jfu4yvHR0tLCyy+/DIxsDp2Xl8eSJUswmUwSeAshhBBCXAHGPPieTCT4FkL4K5fLxbvvvsvx48cByMrK4rrrrsNoNI7p7aoOB20PPYTjWBm6hATin3sWfWzsmN7mWFFVdVQQUlpaSmxs7LhuHiqEuPy2bdtGaWkpw8PD5xwLCgrivvvuw2QyAec+DkwkQ+4hNp3ZxKu1r9Jka/Ku58fmc9O0m1iWtAyD1v833bxUbrcbvX6ki/3sG8ORkZEsW7aMqKioCfv3FUIIIYQQF+6yBt8333wzzz33HGFhYdx8882fe9mNGzdeeLU+JsG3EMKfqarKwYMH+eCDD1AUhejoaG688UaioqLG9HY9vb1Y77sft8WCcUYW4Q8+iHH6dHTx8RM2YGhvb+eFF15AVVVmzJjBmjVr5HFfCD/ndrupq6ujsrKStWvXotVqURSF7du3c+DAAfR6PWazmYSEBO9XeHj4hH2cOqttqI0/n/wzb9W/xYBrAIBQQyhr09ZyY/qNpIam+rjCsTcwMEBdXR11dXV0dnayfv1671hFjUYjI02EEEIIIa5Q55vlntfwv0+ePISFhckLTCGEGEcajYYFCxaQkJDAG2+8QVdXFy+++CJ33XWXd4btWNBFRGD+3W+x3nc/zuoaOv7hOwBow8MxTp+OIWs6xqwZGLOmY0hNRWPw/47DiIgI5s+fz6FDh6iurqa+vp7ly5dTWFgoI1CE8COqqtLY2EhZWRmVlZXeru60tDRmzJgBQG5uLllZWcTExEy4sSWfp6qnildrX2Vb4zY8qgeAZFMy6zLXcf3U6wnSB/m4wrHV09NDXV0dtbW1tLa2jjpWVVVFfn4+BoNBHrOFEEIIIcQXklEnSMe3EGLiGBgY4I033kCv13PLLbeMyxuRzlOn6H/hBZzVNbhO14Pbc+6FjEaM06ZhnJGFcXrWX0PxLLRB/hnQdHR08MEHH9DS0gJAfHw8X/rSl0hKSvJxZUJc2QYHBzl48CAVFRX09vZ6100mE9nZ2eTm5hIZGenDCseGoirsad3DhtoNlHaUetfzYvNYN30dixMWo9VM/qC3srKSTZs2jVpLTEwkKyuLGTNmEBMTI4G3EEIIIYQYuxnfK1asYOPGjURERJxzgzfeeCPbt2+/uIp9SIJvIcRE4vF4cDgc3u/7+/vp7+8nOXnsNzVTnU6cp07hqqnFWVuDs7oGZ10dqs12zmU1gQEEL19ByNovETh/Pho/68hUVZXy8nJ27dqFw+HwboYXGBjo69KEuKJ8cv52R0cHTzzxBAAGg4GsrCyys7OZMmXKpAw87W47fznzF16te5WmwZH53TqNjlVTVnHH9DuYGTnTxxWODVVVsVqt1NbWEhcX5+3iHxwc5Mknn2TKlCnesDsiIkI+bSqEEEIIIUYZs+Bbq9VitVoxm82j1tvb20lKSsLlcl1cxT4kwbcQYiJSFAWn08mWLVsoLy9nypQpFBUVkZKSMq4hgaoouJubcdbWjnSF19TgrK7G09npvYwuLo6Q4mJMa7+EYerUcavtfNhsNnbu3ElCQgJ5eXkYjUZ0Op0ELUKMIbfbTU1NDWVlZRgMBm666SbcbjeKorBjxw7i4+PJyMjAMAFGKF2Mdns7b5x8g7dPvU2/qx8Ymd9907SbuC3jNsxB5i/4CROPqqq0t7dTXV1NdXU1/f0j9zslJYXbb78dAJ1Oh9vtJjg4WB6DhRBCCCHEZ7qsM74BysvLvf+urKzEarV6v/d4PGzdulU+Ii6EEONIq9ViNBoxGo1otVoaGxtpbGwkMTGRoqIi0tLSxiU40Gi1GKZMwTBlCiErVwIjAYfz+HEG//IXhra+j6etjf5nn6X/2Wcxzp6Nae1aQq5djTY0dMzr+yIhISFcf/31nH0f2Ol00tDQwJEjR7j++usn5VgFIXxBVVWampo4duwYJ06c8H5yRafTMTAw4N20cPny5b4sc0xVdleyoXYDJU0lo+Z335F5B9dPvZ5gfbCPK7z8VFXlwIEDnDhxgu7ubu+6wWBg2rRpzJw5c9Qbjmf/OxBCCCGEEOJSnXfHt1ar9QYon3aVoKAgfve73/HAAw9c3grHgXR8CyEmur6+Pvbs2cOxY8dwu90AxMXFsXjxYtLT031am+pwMLR7N7b3/oJ9/37w/HVGuNFI8LJlmNZ+icAFC9Doz/u92DGlqirPPfccnZ2d6PV6lixZwqJFiybV5nlCjLejR4+yZ8+eUcFnaGgos2bNIjs7m+joaB9WN7Y8qoddzbvYULuB8q6/NZLk/f/s3Xd8lfXd//HXWcnJ3pOwsklCWAGUEUCGgIAMByB1a6211lur/d0dd+vdYYftbetCW7WtypY9ZYiMEGYIBANJSAIEMsjOyTk567p+f0RPpS4CSU4Ofp6PBw/Ndc658j45me/zPZ9vxFDmJ81nTOwYdJob6/uL2WzG1/ffJf6KFSs4d+4cOp2OhIQE0tLSSElJwdvbW1Z2CyGEEEKIDuv0USfnzp1DVVXi4+M5dOgQERERrsu8vLyIjIz02FJAim8hxI2ipaWF/fv3c+zYMex2OzfddBNjx451dywXZ20trVu2YNqwAXvJWddxXXh4+yiUO+/A0ANePVRfX8/27ds5f/480L652sKFC/Hz83NzMiE8g9VqRavVYjAYUFWVnJwcduzYgcFgIDk5mfT09G4fy9TdTHYT68vWs6J4BZXmSgD0Gj2T+0xmftJ8UkNS3Zywc5nNZoqKiigsLOTixYt897vfJeDTV/WUl5djNpsZMGCAjDERQgghhBDXrctmfN+IpPgWQtxoWltbOXDgAEOGDMHHxweAiooKmpqaGDBggNs3iVNVFdvp07Ru3Ejrli0ojU3tF+j1BNx1F0EPP4TuPzZRdkfGwsJCdu7cSVtbGyEhISxatIjQ0FC35hKip1IUhfLycvLz8yksLGTKlClkZGSgI1jrHgAAIABJREFUKApms5nS0lKSk5Px8vJyd9QuddF0keUly9lQtgGzwwxAkFcQcxPmckfCHYT7hLs5YedpbW3l7NmzFBUVce7cORRFcV122223kZGRgV6vl30ThBBCCCFEp+ry4vuTTz7h/Pnz2Gy2K47PmjXrWk7nVlJ8CyFuVKqq4nQ6sdvtLFmyhIqKCoKCgpgyZQr9esgmk6rdjmXfPlpWrqQt9yAAGn9/gh56iMD5d6Nx87zX+vp6Vq1aRVNTE76+vjzyyCMEu7mUF6KnUFWVyspKCgoKOHXqlGvDQoC0tDRuu+02N6brPqqqcrz2OMuKl7Hn4h4U2gvg/oH9mZ80n6l9p2LUGd2csnOVlZWxatWqK45FRkaSlpZGeno6YWFhUnYLIYQQQogu0WXFd2lpKXPmzOHkyZNoNBrXvO/PfrF1fja71YNI8S2EuNE5nU72799Pbm4uFosFLy8v7rvvvh5X4Fpyc2l46S/Yi4oA0EVHE/z97+M3bSoaN65SN5lMfPDBB0RERDBjxgyZSysE4HA4eOONN6itrXUdMxqNpKamkp6eTkxMzA3/dWJ2mPnw/IesPruaM41nXMdvirqJBckLGBk10uM/BqqqUlVVRUlJCcHBwQwcOBBoH2fz6quvEh4eTlJSEunp6URGRrr9FUVCCCGEEOLG12XF98yZM9HpdPz973+nf//+HDp0iLq6Op555hlefPHFHjVL9mpJ8S2E+LawWq289957VFRUEBMTw4IFC3rc/gyq00nr5s00vvY6zupqALxSUwl+6of4jBjhtlw2mw2dTodOp0Or1eLl5SUFj/hWaWxs5Pz582RmZqIoCk6nk/fff5+LFy+SkJBAamoq8fHx6HvIRrVd6WzTWVafXc3mc5td40y8td5M7TuV+cnziQ9076bC18vpdHL+/HlKSkooKSnBZDIBEB0dzXe+8x2gfeN7m81GQECAx5f7QgghhBDCs3RZ8R0eHs6uXbvIzMwkKCiIQ4cOkZKSwq5du3jmmWfIy8u77vDdTYpvIcS3SWNjI2+88QZtbW2MHDmS7Oxsd0f6UkpbGy1LltD0zj9QW1sB8BkzmuAf/hCvhAT3ZlMU1q9fT1xcHGPHjpXSR9ywTCYTp06doqCggIqKCgAef/xx10avDQ0N+Pn53fBzuwFsThu7KnaxunQ1+bX5ruNx/nHMjZ/LjH4zCPIOcmPCjnM6nZhMJoKC/p37o48+4sSJE1eMMzQYDPTv35+UlBQGDhyIXq+X73tCCCGEEMJtrrbL7fCSHKfT6dqhPTw8nEuXLpGSkkLfvn05c+bMN9xaCCGEuwUHBzNjxgxWrVrFwYMH6du3L3379nV3rC/QGo0EPfgg/nPm0PS3v9GyahWWffux5BzA//ZZBD32GPqICLdkKy0tpbi4mOLiYpqbm5k+fbqs/hY3DKfTSUFBAfn5+ZSXl/P5NRJ9+vTBbDa7iu+QkBB3xew2FaYK1pauZUPZBhptjQDoNDqyY7OZmzCXrMgstJqe/fVfU1NDbW0tjY2NNDU10dTURGNjIy0tLej1ep566ilXkd3c3IzNZsPX15fExERSUlJISEjAy8tLym4hhBBCCOFROlx8Z2RkkJ+fT//+/Rk5ciR/+MMf8PLy4s033yQ+3rNf1imEEN8W6enplJaWYjKZiIqKcnecr6ULCSH0uecImD+fxpdfwbxzJ6Y1a2ndspXA7ywi8IEH0Bq7d9O4xMREJk6cyM6dOzl69Cgmk4l58+ZhMBi6NYcQXeHo0aNs2bLF9XZMTAwDBgwgJSUFf39/NybrPg7Fwf7K/aw+u5rc6lzX8UifSG6Pv53b+99OhI97nni7Gk1NTVes4s7JyaG4uPhLr6vRaLBYLPj6+qLRaBg+fDg33XQTvXv3RqfTSdkthBBCCCE8VodHnWzbto3W1lbmzp1LSUkJM2bMoKioiLCwMJYvX84tt9zSVVm7jIw6EUJ8GzmdThRFwW63uztKh7Tl59P4fy9hPXECAENyMhF/+AOGPr27PcuZM2fYtGkTTqeTuLg4FixYgK+vb7fnEOJ6NDc3YzKZiImJwel00traynvvvUdqaioDBgzocZvgdpUmaxNHLx/lSM0R9lzaw2XLZQA0aLgp+ibmxM9hdMxo9NqeOcO8paWFwsJCCgsLqamp4bHHHnO9SvPgwYOUlZURHBxMcHAwISEhrv8GBASg1Wql4BZCCCGEEB6jy2Z8f5n6+npCQkI89hdmKb6FEN9mVqsVh8NBXV0d4eHh7o5zVVRVxbxzJ/Uv/A6loQGNvx/hzz+P74QJ3Z6loqKC1atXY7VaCQsLY9GiRd+aolB4tpqaGnJycjh58iTh4eHcd999rstUVfXY3+uultlh5vjl4xyuOczRmqMUNRah8u9fi4O9gpnVfxaz42fTy7+XG5N+NYvFQlFREYWFhVy4cMF1XKvVMnPmTAYMGODalBe44R9TIYQQQgjx7dBlM76/TGhoaGecRgghhBtotVo2bNhAcXExixYt6vGjT6C9vPGbNAnvzExqf/z/sObnc/mZHxF4770EP/F9NPruW5EZFxfHwoULWbVqFU1NTTQ0NBAUFCQFk+iRVFXl3LlzXxh94eXlhcViwcfHB7gxC1Kr00pBXQFHao5wpOYIp+pP4VSdV1wnPjCerMgssiKzuDn6Zrx0PXfTzvLycj744AMURXEdi4uLIz09nbS0NAICAm7Ix1EIIYQQQoirdVXNwNy5c6/6hKtXr77mMEIIIbqf/tOSWFEUNmzYwL333ouXV88tez5PHxlJ1Jtv0PDXl2l5/32a//UvrAUFhL/w227d+DI8PJx77rmHuro6oqKisNlsGAwGFEVxfXyFcLfy8nK2b9/OpUuXXMeSk5MZPnw4sbGxbkzWderb6tl0bhOHqg6RX5uPVbFecXkvv15kRWYxLHIYWZFZhBnD3JT0m1VXV2M2m+nfvz/QPntdo9EQERFBWloaGRkZhIWFSdkthBBCCCHEp67qr/HPb44jhBDixqLRaLj99tt5/fXXaWhoYOfOnUybNs3dsa6axmAg9Jmn8R6USd3z/4v12DEqF95DxO9ewDhsWLflCAgIcM3TdTqdnDlzhh07djB69GiGDRsmBbhwu7a2Ni5duoReryc9PZ3hw4cTEhLi7lhd4mzTWZYVL2Prua3YFJvreJgxjOGRw11Fd6xfzy/8a2tr2b9/P0VFRURFRbmKb6PRyPe+9z1CQkLQarVuTimEEEIIIUTP0ykzvj2dzPgWQggoKyvj3XffRVVVZsyYwYABA9wdqcPs585x+dlnsZecBZ2O4O9/n8D77nXLCsjVq1dz9uxZAPz9/Rk1ahRZWVkYDIZuzyK+naqqqmhsbCQ5ORmbzYbT6eTo0aMMGDAAPz8/d8frdIqqcKDqAMuKlnGo5pDreHpoOtP6TiMrMot+Af08ZkV0Q0MD+/fvp7Cw0HVswIABzJw5E29vbzQajcfcFyGEEEIIITpTt25u6emk+BZCiHYfffQRe/bswcvLi/vuu88jN2lULBbqf/sCrZs2AeAzfhzhzz+P9tPV2N3F4XBQUFDAwYMHaW5uBsDPz89VgHvKOBnheSwWCx999BFHjhzB29ubhx56CF9fX3fH6jJtjjY2n9vM8uLllLeUA6BFy/i48SxIWsDAsIEeVRA3NTVx4MABCgoK+OzX9KSkJMaNG0dsbKxH3RchhBBCCCG6QpcV3/379//aX7hLS0s7croeQYpvIYRopygK//jHP7hw4QKxsbEsXLjQI0sWVVUxfbCa+j/+Eex29HFxRPzxD3ilpHR7FqfT6SrAm5qaAIiPj2fRokUe+bEVPZeqqhw/fpwdO3ZgNpsBSElJYeLEiTfkCu8aSw2rSlaxpnQNzbZPn1zS+3F7/O3cmXinR4wx+TLFxcWsXbsWaP9eMW7cOHr37i3fL4QQQgghhPjU1Xa5HR44+tRTT13xtt1uJy8vj61bt/Lss892PKkQQogeQ6vVMm/ePN5//32ys7M9tmjRaDQE3DEPr7QBXH72ORwVFVTd/wChP/4x/rNv79YsOp2OQYMGkZGRwalTp8jNzSUzM5O2tjbXBpiqquLt7d2tucSN5dKlS2zevJmLFy8CEBYWxsSJE+nbt6+bk3W+wvpClhYvZceFHThVJ9C+SeXdSXczo98M/AyeVfK3trZSW1vreqwSExMZOnQoGRkZ9O3bV+Z3CyGEEEIIcY06bdTJq6++ypEjR3jnnXc643TdSlZ8CyHElRRFwWazoSiKu6NcN2dTE3U//zmWffsB8Js1i9Bnf4TWTStgnU4nWq3W9aTCoUOHOHToEKNGjWLUqFFScokOa25u5i9/+QuKomAwGBg9ejRDhw5Fp9O5O1qncapO9lzcw9LipeTX5ruODwkfwoLkBYyJHYNO41n312KxcOjQIfLy8tDr9TzyyCN4e3uj0+kwGAzyvUAIIYQQQoiv0O0zvktLSxk8eLBrjqknkeJbCCG+SFEU2traqK+vx9vb26NHJaiKQvPb79D4+uugquiiown7xf/gM3Kke3OpKkuXLnWt0h0wYABz585Fr+/wC7LEt5SqqjidTjZt2oTVamX8+PH4+/u7O1anMdlNbCjbwPLi5VSaKwHQa/RM7jOZ+UnzSQ1JdXPCjmttbeXIkSPk5eVht9sBiImJYebMmURFRUnhLYQQQgghxDfo9uL7D3/4A6+99hrl5eWdcbpuJcW3EEJ8uVOnTrFu3Tri4uKYN2+ex44++UzbkSPUPf+/OD4tmv3nzCHkqR92+8aXn6coCidPnmTHjh0oikK/fv2YP3++jD4RX6miooJt27YxY8YMAgMDUVUVVVU9/uvz8y61XmJ58XLWl63H7GifVx7oFcjc+LnckXgHET4Rbk7YcSaTiYMHD3LixAkcDgcAkZGRZGdnk5qaekOt0BdCCCGEEKIrdVnxPWTIkCv+sFJVlaqqKi5fvsxrr73Go48+eu2p3USKbyGE+HI1NTX87W9/w+FwEBQURGZmJhkZGR69olQxm2l8+RVali8HQBcVRdjPfobP6FFuzVVeXs7atWux2+1ERUWxaNEij/44i85XU1PDxx9/zCeffAJAUlISs2fPdnOqzqOqKvl1+SwtWsqei3tQaB+11C+gH/OT5zOtzzSMeqObU167+vp63nrrLaB9hfeoUaMYMGCAFN5CCCGEEEJ0UJcV388///wVb2u1WiIiIhg/fjypqZ73clOQ4lsIIb7OyZMn2bhxIzabDWjfODI+Pp7MzEwSEhI8dpVp29Gj7au/KyqAT2d/P/O0W1d/V1dXs2rVKsxmM6GhoXzve9+TsSeC2tpaPv74YwoKClzH0tPTGTdunEePIPqMQ3Gw48IOlhUvo7Ch0HV8ZNRIFiQvYGTUSLQazxv/UVtbS0VFBYMHD3YdO3DgAL169SIpKUkKbyGEEEIIIa5Rt4868WRSfAshxNez2WwUFBSQl5dHxadFcUxMDIsWLXJzsuujWCw0vvoaLUuXts/+jogg9Gc/xXfsWLdlamhoYOXKldx0000MHToUg8HgsU8uiOu3bds2Dh48yGe/riUnJzNq1CgiIjxv1Md/qm+rZ33ZelaVrOJy22UAvLReTOs7jflJ84kPindzwmtTXV1Nbm4uRUVFaDQaHnroIUJCQtDr9ej1epnhLYQQQgghxHXq0uLb6XSyZs0aCgvbV+WkpaVx++23e+yqNCm+hRDi6tXU1HDs2DEiIyNdr/Rpa2tj48aNpKenk5SU5HE/D9qOH6ful8/jOH8eAL8ZtxHyox+hc9PPBLvdjsFgAECn06HX62V16LeQqqrs37+fnTt3kpiYyKhRo4iKinJ3rOtic9rYW7mXLeVbyKnKwak6AQgzhnFHwh3MSZhDiHeIm1Nem4sXL5Kbm0tpaanrWFJSErfccguRkZFSeAshhBBCCNFJuqz4PnXqFDNnzqS6upqUlBQAioqKiIiIYMOGDWRkZFxfcjeQ4lsIITpOVVUURcHhcHD48GF27twJgNFodBXgvr6+GI1GfH19e/yqZcVioWnxYprfe7999Xd4GKE//Sm+48a5NZfZbGb58uVkZ2czcOBAt2YRXaupqYm9e/eSkJBAYmIidrsdu91OXV0d0dHR7o53zVRVpaC+gM3lm9lxYQfN9mbXZWkhadyZeCeTek/CS+flxpTXrrGxka1bt3LhwgWgfRxUamoqo0ePJjY2tsd/7xNCCCGEEMLTdFnxffPNNxMREcE///lPQkLaV+Q0NDRw//33c/nyZXJycq4vuRtI8S2EENensbGRo0ePkp+fT0tLyxcuf/DBBwkLCwPgxIkTFBUVYTQa8fHxcf3Xx8eH3r17u31DR2v+CWqffx5HeTkAvtOmEvqjH6ELcc8q1H379nHgwAEAbr31Vm666Sa35BBdp6Wlhb1793Ls2DGcTidhYWE88MADHl+YVrZWsuXcFjaf28wF0wXX8QifCKb1ncb0vtPpH9jfjQmvnaqqrsfHZrOxePFi7HY76enpjB49msjISI9//IQQQgghhOipuqz49vHx4ciRI6Snp19xvKCggOHDh2OxWK4tsRtJ8S2EEJ3D6XRSUlJCXl4e1dXVWCwWrFYrjz/+uGsTvh07dpCXl/elt9fr9dx5553ExcV1Z+wvUK1WGt94g+Z/vQuKgsbfj8BFiwhcuBBtNxfzqqqyc+dO18ds1KhRTJo0SUq1G4DVauXjjz/m8OHDOBwOAHr37s2YMWPc/jVwrVrtrXx08SM2lW/i2OVjruNGnZEJcROY3nc6wyKHodN45uielpYW8vLyqKys5K677nJ9HZaWlhITE0NoaKh8bQohhBBCCNHFrrbL7fAQ1uTkZKqrq79QfNfU1JCYmNjxpEIIIW4YOp2OlJQUUlJSXJvxOZ1OVxGkqipDhgyhV69emM1mLBaL67+NjY1YLJYrRjooiuKWubgab29CnnwS31tuoe7Xv8FeVETT4jdoWbaMwPvvJ+DOO9H6+HRPFo2GiRMn4u/vz969e8nJyaG1tZVZs2bJzGAPVlpayrp162hubh/70atXL8aMGUOfPn3cnOzaVJurWVywmF0Vu2hztrmOD4sYxm39bmN8r/H4GfzcmPD6VFdXc/jwYc6cOYOiKABUVFTQt29f9Ho96enpUngLIYQQQgjRw3R4xffmzZt57rnn+OUvf+l6uXVubi7/+7//y+9+9zvGjBnjuq6nrJ6WFd9CCOF+qqrS3NyM0WjE6XSiKArvvvsuffr0YcSIEa4V492eS1Ewb99B4+LFOM6dA0AXHk7QQw/hP2c2Gq/um0t84sQJPvzwQ1RVJSkpiTvvvNO1CabwLIWFhaxYsYKgoCAmTpxIfHy8Rxanqqqyrmwdf8n/C2aHGYA+/n2Y3m86U/tMJcYvxs0Jr52iKJw9e5ajR4+65ndD+6r84cOHk5qaKl9/QgghhBBCuEGXjTr5/Oqyz6/g+8+3NRoNTqezw8HdQYpvIYToWRRF4ZNPPuGDDz4AwGAwMHjwYIYPH+6+AtzhoHXzZhrf/BvOS5cA0EVHE/zoo/jNuA2NvsMvoromJSUlbNiwAX9/f+6//37Xz62ioiJiYmIICAjwyAL1RqeqKvX19YSGhuJwOLDb7RQUFJCcnIxXNz550pkqWyv57dHfcqj6EAAZoRk8NfgpMkIzbojPwfLyclauXAm0//6bkpLCyJEj6d27t7zaQgghhBBCCDfqsuL7448/vurrjhs3riOndhspvoUQoudRVZXi4mJ2795NZWUl0F6ADxkyhOHDh+Pr6+ueXHY7prVrafr7WzgvXwZA36cPwY99F98pU9B0QyFWUVGBv78/wcHBQPvPsTfeeAMAf39/YmNjiY2NpVevXsTGxrrtYyXa1dXVsXHjRqqqqnjooYc8/vFQVIW1pWt5+cTLmB1mvLXePDbwMe5OutsjZ3ebTCYqKio4f/48Xl5ejB8/Hmj/HrRkyRJ69+7NiBEjCAkJuSEKfSGEEEIIITxdlxXfNyIpvoUQoudSVZWioiJ2795NVVUV0F6A33///a7i1x2UtjZMq1bR9PY7KI2N7bkSEwj+3vfwGT++Wwuyqqoqtm7dSm1tLV/2Y338+PFkZ2dLadfNnE4nOTk5fPzxxzidTvR6PbNmzSIhIcHd0a7ZpdZL/Prwrzl6+SgAg8IH8bOsn9EnwHNmk3++6L5w4QL19fWuy3x9fXn88cfRaDRotVp0Oh16vV6+doQQQgghhOhBurT4bmxs5K233qKwsBCA9PR0HnzwQYKCgq49sRtJ8S2EED2fqqqcOXOG3bt3YzAYmD9/fo8oo5TWVpqXLqX5X++imkwAeKWnE/b8L/GKj+/WLHa7nerqaqqqqlz/GhoamDlzJqmpqWi1WkwmE6dOneLmm2/22BEbnqCiooINGzZQU1MDQL9+/Zg8ebJbn6y5Hoqq8MHZD3j1xKtYnBa8dd58f+D3uTPxTrSanj32o62tDaPR6Hr7vffec72K5DORkZH06dOHfv36kZSUhMFg6BHfX4QQQgghhBBf1GXF95EjR7j11lvx8fFhxIgRABw+fBiLxcKHH37I0KFDry+5G0jxLYQQnkNVVVpbW9Hr9SiKgs1mo6CggCFDhri1qHI2N9P8r3dpWboU1WJBGxxE1Guv4ZWa6rZM0F766XQ61yZ8mzZt4pNPPsHf35/x48czZMgQmVfciVRVZdu2bRw8eBAAHx8fJkyYQFpamscWqRWmCn5z5Dccu3wMgKERQ/lp1k+J849zc7Kv53Q6OXDgAIcPH+b73/++64mePXv2UFZW5iq6+/Tpg7+/v8c+PkIIIYQQQnzbdFnxPXbsWBITE/nb3/6G/tONvBwOBw8//DClpaXs2bPn+pK7gRTfQgjhmRwOB8uXL6ekpITk5GSmTZvm9lXMzro6av7rv7AVnELj70/UK6/gnTnQrZk+7/Tp0+zZs4empiYAIiIimDx5MomJiVL8dQJVVdm8eTNHjhwhLS2NCRMmeOxMb0VVWFGygtdOvobVacVH58MTmU8wN2Fuj1/lXV1dzZYtW7j86Rz+u+++m759+6LT6dBoNDK+RAghhBBCCA/WZcW3j48PeXl5pP7HCrZPPvmErKwszGbztSV2Iym+hRDCc+Xl5bFx40YURSEqKoo5c+YQEBDg1kyKyUTND5/CmpeHxteXyL+8hHHYMLdm+jyHw8Hx48c5cOAAbW1twL9HccTGxl7XuRVFQaPRfCtKRavVypkzZygoKGDw4MEkJyfjcDiwWCxUVlbSr18/d0e8ZmXNZbxw9AXya/MByIrM4qdZPyXW7/o+P7qa0+kkNzeX3NxcFEXBx8eHyZMnk5mZiU7neRtvCiGEEEIIIb7oarvcDi/XCQwM5Pz58184fuHChQ4XDXv27GHmzJnExsai0WhYu3btFZfff//9rj+eP/s3derUK65TX1/PPffcQ2BgIMHBwTz00EOYPp2xKoQQ4sY3ZMgQ7r33Xnx8fKiurubdd991bYLpLlp/fyJfeRnjyJGoZjM1T/wAS06OWzN9nl6vJysri0ceeYThw4ej0+koLy/n1KlTX7o55tcxmUwcO3aMjRs38uabb/Kb3/yGf/3rXyiK0kXp3ctut/PJJ5+wYsUKXnzxRdasWUNxcTHHjx/HZrOhKAre3t4eWXpXmCr45+l/ct+O+5i/bT75tfn46n358dAf80r2Kz2+9K6pqeG9994jJycHRVFISkrikUceYfDgwVJ6CyGEEEII8S2k7+gN7r77bh566CFefPFFRo0aBcD+/ft59tlnWbBgQYfO1drayqBBg3jwwQeZO3ful15n6tSpvPPOO663vb29r7j8nnvuobKyku3bt2O323nggQd49NFHWbJkSQfvmRBCCE/Vt29fHn74YZYuXUptbS1Lly5l+vTppKSkuC2T1seHyJf+j8vP/RjL3r3U/NfTRPz+d/iOH++2TP/JaDS65nwfPHiQrKwsLBYLBoOBpqYm/Pz88PHxAdpXctfV1XHp0iUiIiKIjY1FVVWqqqrYsGHDFectLy/nwIEDjB492h13q0s4nU7WrVvHmTNnsNlsruMhISGkpqYyYMAAN6a7dudbzrOrYhc7K3ZS1FjkOq5Fy5jYMTw9+Gli/GLcmPDq5ebmUlNTg9FoZPLkyQwaNEgKbyGEEEIIIb7FOlx8v/jii2g0Gu69914cDgcABoOB733ve/zud7/r0LmmTZvGtGnTvvY63t7eREdHf+llhYWFbN26lcOHD5OVlQXAyy+/zPTp03nxxRev++XaQgghPEdoaCgPP/wwK1eu5OzZs+zatYv+/fu7dea3xtubiBf/SO3PfoZ5+w4uP/sc4b/+NX63TnFbpi8TFBTElCn/zmSz2Vi9ejUNDQ2kpaVRV1dHZWWlq/AdMWIEISEhqKpKWFgYffr0ITo6mujoaJqamvj444/ZvXs3qamphIWFuetuXRdVVampqSEqKsq1Cr62thabzUZgYCCpqamkpqYSGRnpcWNdzrWcY+eFneys2ElJU4nruE6jY1jkMG6Ju4XxvcYT4h3ixpRXR1VV18d/4sSJGAwGbrnlFoKDgz3ucRFCCCGEEEJ0rg4X315eXvzlL3/hhRde4OzZswAkJCR02cZNu3fvJjIykpCQEG655RZ+/etfu/6IPnDgAMHBwa7SG2DSpElotVoOHjzInDlzvvScVqsVq9Xqeru5ublLsgshhOhe3t7eLFy4kB07dpCQkOD2jS4BNAYD4b/5DXVe3rRu2kTtT3+Kam3Df9Ysd0f7SmazGbvdTltbG8eOHXMdNxgMREVFERgY6CqDvb29ufvuu13XUVWVsrIyLly4QFlZmUcW3xUVFWzbto1Lly7x5JNPYjAYAMjOzkan07lGtHmS0uZSdlXsYteFXZxtPus6rtPoGB45nFvibmFcr3EEewe7MeXVczqdHDx4kMbGRqaT3ClmAAAgAElEQVRPnw5AQEAAc+bMQavt2RtvCiGEEEIIIbpHh4rv8vJytm/fjs1mY/z48QwcOLCrcgHtY07mzp1L//79OXv2LD/5yU+YNm0aBw4cQKfTUVVVRWRk5BW30ev1hIaGfu181xdeeIHnn3++S7MLIYRwD61Wy5QpU1AUBavViqqqlJeXEx4ejr+/v1syafR6wp7/JRpvb0yrV1P3y+dR29oIuOsut+T5Jn5+ftx3330UFhZSU1NDREQE0dHRhIaGfmOpqNFouPXWW7FarURFRaEoiscUkY2NjezYsYNTp04B7UV/dXU1cXFxAPTp08ed8TrMoTj46OJHLC1ayqn6U67jOo2OEVEjmBg3kexe2QR5BbkxZcddvnyZLVu2UF1dDUBmZib9+/dHr9d73BMSQgghhBBCiK5z1cX3Rx99xIwZM7BYLO031Ot5++23WbRoUZeFmz9/vuv/Bw4cSGZmJgkJCezevZuJEyde83n/+7//m6efftr1dnNzM717976urEIIIXoWrVaL0Wjk3LlzrFmzBh8fH+bOnfuFJ0y7i0arJfSnP0FjNNKyZAn1v/s9SlsbQffe65Y830Sr1ZKenk56enqHbxsc/O9Vw1arFaPR2KMLyba2Nvbu3cvBgwdxOp0AZGRkMGbMmA5v3N0TtNhaWFu2lpXFK6m2tJfDeo2ekdEjmRg3kbGxYwn0+uqdz3sqm83G4cOHyc3NRVEUjEYjkyZNIiEhQWZ5CyGEEEIIIb7gqovvn//850yePJnXX38do9HIz372M5577rkuLb7/U3x8POHh4ZSUlDBx4kSio6Opqam54joOh4P6+vqvnAsO7S/L/s9NMoUQQtx4NBoN/v7+BAYGUl9fz5IlS5gxYwaJiYluyxPyzNNojEaa336bxpf+gtrWRtAjj/ToYvh6VFdXU1xczKRJk3rkfbTZbLz66quYTCagfVX3+PHjiYqKcnOyjrtgusDy4uVsLNuIxdm+UCHEO4R5CfOYmzCXMKPnjZ2B9rEmeXl55ObmuhZgJCQkcNttt8ksbyGEEEIIIcRXuuriu6CggJycHGJiYgD44x//yBtvvEFdXV23ze+sqKigrq7OleHmm2+msbGRo0ePMmzYMAB27dqFoiiMHDmyWzIJIYTo2cLDw3n44YdZsWIF5eXlrFmzhmHDhpGdnY1e3+GtLq6bRqMh5InvozUaaXztNZoWv4Ha1kbwD35wwxV4FouFJUuWYLfbiYmJISMjw92RvkCn05GYmMj58+cZP3488fHxHvU4qKrKscvHWFq8lH2X9qHSPns9MSiRu5Pu5tY+t+Kt8/wn+/Py8rBYLAQHB5OdnU1mZqas8hZCCCGEEEJ8LY362e5U30Cr1X5hpnZAQAD5+fnEx8df0zs3mUyUlJQAMGTIEP785z8zYcIEQkNDCQ0N5fnnn2fevHlER0dz9uxZnnvuOVpaWjh58qRrxfa0adOorq5m8eLF2O12HnjgAbKysliyZMlV52hubiYoKIimpiYCAz3vpb9CCCG+mdPpZNu2bRw+fBhoL8Rvu+02t40+AWh+fwkNf/oTAP6zbyfgrrswJCej8ZCZ2Fdj3759HDhwAD8/Px5//PEu2wz7alVVVbFjxw4mTZpEcHAwiqJgs9nQ6XQeVaTaFTvbz29nWfEyzjSecR0fFT2KBckLGB453KMK/M9TFIWioiKSkpJcj0lxcTFtbW0MHTrUtdmoEEIIIYQQ4tvparvcDhXf//znPwkK+vcGSAsWLOCll1664uXAs2bNuuqQu3fvZsKECV84ft999/H6668ze/Zs8vLyaGxsJDY2lilTpvCrX/3qivdXX1/PE088wYYNG9BqtcybN4+//vWvHdrATIpvIYT49igqKmLdunWYzWbGjh3LTTfd5NY8Las+oP63v3W9rQ0KwnvoUIzDh2McMRxD//4eW2BC+wiyf/3rX9TV1ZGZmcmcOXPckqOlpYVdu3Zx/PhxoH1Uxty5c92S5XqYHWaWFy9nZclK6trqAPDWeXNb39u4O+lu+gX2c2/A66CqKkVFRezfv5+6ujomT57M4MGD0Wg0eHl5odVqPfprQQghhBBCCNE5uqT4/iYajca1KZQnkeJbCCG+XUwmEwcOHODmm292/XxTVdVtpZr54z2YVq+m7dgx1NbWKy7ThoVhzMrCODwL4/Dh6OPiPK78u3jxouuVWPfcc0+3zli3Wq3k5ORw4MAB7HY7AKmpqWRnZ1/xZH5Pp6oq285v45UTr3C57TIAEcYI7ki8gznxcwjy9pz78p9UVaWsrIx9+/ZRXd2+GafRaCQ7O5vhw4ej0+k87nNeCCGEEEII0XU6vfi+kUnxLYQQ306KomC1WrHb7axcuZKhQ4eSkpLitjyqw4GtsJC2w4dpO3wE6/HjqFbrFdfRRUe3rwYfnoXP6NHoQkLclLZjdu7cybFjxwgKCuLxxx/Hy8ury9/n8ePH2b59O2azGYDY2FgmTJhAbGxsl7/vznSm4Qwv5r3IiboTAPTy68Uj6Y8wqfckDFrPHvtx4cIF9u7dy8WLFwEwGAxkZWUxatQo/Pz8pPAWQgghhBBCfMHVdrndv6uXEEII0UNotVqMRiNHjhyhoqKCiooK0tPTmThxomsvie6k0evxHjgQ74EDCXrwQVSbDevJgk+L8MNYT57EWVVF64YNtG7YAF5e+E+fRsDChXh14yrqazF27FhKSkpoamri0KFDjBkzpsvfp9lsxmw2ExISQnZ2NklJSR5VpDZaG1lcsJi1pWtRUTHqjDww4AEWJC+4ITasBMjNzeXixYvo9XoGDx7MmDFjCAwM9KjHSQghhBBCCNEzyYpvZMW3EEJ82zmdTnbv3s3+/ftRVZWgoCCmT59OXFycu6NdQbFYsB4/TtuRI1j252AvKnJdZhw5ksB7FmIcNarHbo5ZVlZGXV0dQ4cO7ZLVvOfPn0dRFPr06YPNZsNms1FYWEhaWppHbVzpUBysKV3DGwVv0GJvAWBK7yk8kfkEUb5R33DrnsnhcFBaWsqpU6cYO3Ys4eHhAFRWVlJQUMDYsWMJCQmRwlsIIYQQQgjxjWTUSQdI8S2EEALg3LlzrFmzhqamJjQaDSNHjmTUqFE9sjRVVRVrfj4tS5Zg3vURKAoA+n59CVywAL8ZM9D6+Lg55VfT6XSdtqq+traWnTt3cvr0aUJDQ3nggQeuam+SnuhozVH+fPzPlDSVAJAUlMQzQ55hSMQQNyfrOFVVqays5NSpU5w+fZq2tjYARo4cSXZ2NlqtFr1eLzO8hRBCCCGEEB0ixXcHSPEthBDiM1arlc2bN3PiRPs85SFDhjBp0iQ3p/p6jkuXaF62DNPataim9s0xtYGB+M+bS8Bdd6GP6nmrhO12OzU1NSQlJV3zOUwmE7t37+bYsWOuzUkHDhzI+PHj3TKq5npUmat4Of9ldlTsACDQK5DHMh5jdvxsdJqe98TL17HZbBw9epRTp07R0NDgOu7v7096ejqDBg0iKirKY5+cEEIIIYQQQriXFN8dIMW3EEKI/1RQUMCOHTuYP3++62fDvn37KCwsJCQk5Ip/wcHBBAUFub3IU1pbMa1fT8vSpTgq2jcLRK/Dd9IkAhcuxDsjw635PmM2m3n//fdpbm7m0UcfJaqDxbzNZiMnJ4ecnBzsdjsAiYmJZGdnExYW1hWRu4zVaeW9M+/xz9P/xOq0okXLnIQ5fDf9uwR5B7k73jVxOBy8/vrrtLW1YTAYSEpKIjMzk/j4ePR6vazuFkIIIYQQQlyXLiu+L1y4gEajcc09PXToEEuWLCEtLY1HH330+lK7iRTfQgghvozT6URRFFe5um7dOoo+N1f787RaLY8++igBAQHdGfFLqU4nlr17aX5/CdajR13HvQcNIviHT2IcPNiN6dpHYKxdu5aSkhJiY2N56KGHOvSkQW5uLtu2bQMgJiaG8ePH97h57N9EVVX2XNrDS/kvcan1EgCDwwfzzJBnSA5OdnO6jlEUheLiYpKTk12l9rFjx/D29iYtLQ1fX18pu4UQQgghhBCdpsuK77Fjx/Loo4/yne98h6qqKlJSUkhPT6e4uJgf/OAH/M///M91h+9uUnwLIYT4Jqqq0tLSwuXLl6mrq6O+vp76+noaGhpc4xyeeuopV4FbW1tLWFiY2ws/a2EhLUuX0rp1GzgcoNEQsHAhwY9/z60zwFtaWnj77bex2WxMnjyZUaNGXfVt7XY7+/btIzg4+Iqy1VOUNZfx5+N/5lD1IQAifCJ4MvNJJvee7HH3RVEUNm/eTGFhIaNGjWLMmDHo9XpZ2S2EEEIIIYToMl1WfIeEhJCbm0tKSgp//etfWb58Ofv37+fDDz/kscceo7S09LrDdzcpvoUQQlwPRVFoaWnBz88PVVXJzc1l9+7dZGdnM3z4cHfHA8Bx+TKNr7xK64YNAOh79ybsl7/AOMR9mybm5+fz4YcfYjAYeOyxxwgNDf3K61qtVrRaLRqNBpvN1o0pO4/JbuLvp/7OipIVOFUnBq2BRSmLuDf1Xnz1vu6O12FOp5NNmzZx5swZtFotM2fOZNCgQVJ4CyGEEEIIIbrU1Xa5HR5GarfbXRtG7dixg1mzZgGQmppKZWXlNcYVQgghPJdWqyUoKAi9Xo/BYMDX1xdFUdi7dy81NTXujgeAPiKC8Od/SeRf/4IuMhLHhQtUP/wI9X98EcVicUumzMxMevfujd1u55133qG8vPxLr2e321m6dClLlizBZDJ1b8hOoKgKG8o2cMeWO1havBSn6mRs7FiW3bqMxzIe89jSe8OGDa7S+/bbb5fSWwghhBBCCNGjdLj4Tk9PZ/Hixezdu5ft27czdepUAC5duuRxG0oJIYQQXWHo0KEkJye7VsQ6HA53R3LxGTOG2JUr8Lv9dlBVWpYupfLu+bQdy+v2LBqNhunTpxMWFobJZGLPnj385wvRHA4Hy5Yt49y5c1y6dImmpqZuz3k9CuoKeHjXw/z6yK9psDbQN6AvL419iRdHv0icv2fNJf+Mw+Fg3bp1FBcXo9PpmDt3LgMHDpTSWwghhBBCCNGjdHjUye7du5kzZw7Nzc3cd999vP322wD85Cc/4fTp06xevbpLgnYlGXUihBCis7W2tvLaa69hNpsZNmwYt9xyi7sjfYFlfw51v/41zurq9tnf8+8m+Iknun32t81mY9++fYwcORJ/f3+8vb3RarU4nU6WL19OcXExBoOBO++8k169enVrtmtV11bHqydfZVP5JgB89b48nPYwdyXdhUFrcHO6a6eqKqtXr6a0tBS9Xs+cOXMYMGCAlN5CCCGEEEKIbtNlM76h/eWtzc3NhISEuI6Vl5fj6+tLZGTktSV2Iym+hRBCdIUzZ86wbNkyAO6880769evn3kBfQmlpoeH//g/T2nUA6OPiCPvFLzAOG+rWXDk5OVRUVHDu3Dn0ej3z5s2jT58+bs10NRyKgxUlK/j7qb/T6mgF4La+t/H4wMcJ9wl3c7rOkZ+fz0cffcS8efM8cnNRIYQQQgghhGfr0uLb4XCwe/duzp49y8KFCwkICODSpUsEBgbi7+9/XcHdQYpvIYQQXWXjxo0cPXoUf39/HnjgAYxGo7sjfSlLTg51v/p09Te0r/7+wQ++dvW3YrHgrKnBUV2Ns6YGZ3UNzsuX8R46BL8pU645y+nTp9nw6SacGo2GuXPnEh8ff83n6w52xc7HFz/mb6f+RnlLOQADQgbwzJBnGBg20L3huoDZbCYsLExKbyGEEEIIIUS3u9ouV9/RE587d46pU6dy/vx5rFYrkydPJiAggN///vdYrVYWL158XcGFEEKIG8mUKVO4cOECGRkZrs2heyKfUaOIXbGchpdewrRmLS3LlmPZt4+gxx4Dmx1HTTXO6hocNTU4Py26lebmLz1Xy8qVaIOD8Rkx4pqyhISEoNVqURQFVVU5ceIEsbGxPfJJg0utl1hXuo71Zeupt9YDEOIdwuMDH2dGvxloNR3eTqXHsVqtfPTRR2RnZ+Pr64tOp5PSWwghhBBCCNHjdXjF9+zZswkICOCtt94iLCyM/Px84uPj2b17N4888gjFxcVdlbXLyIpvIYQQXUlRFOx2O06n091RrorlwAHqfvUrnFXV33hdjY8Puqgo9FFR6CIjcdbU0HbwINqwMGKWvI8+IuKaMlRVVZGfn8+pU6dwOp0EBQUxa9YsoqOjr+l8ncmpOsmpzGH12dUcqDqASvuvUmHGMG7vfzsLkxcS4BXg5pSdo62tjVWrVlFZWUnv3r1ZuHAh3t7eUnoLIYQQQggh3KbLRp2EhYWRk5NDSkoKAQEBruK7vLyctLQ0zGbzdYfvblJ8CyGE6GqqqtLW1obVasVms/X40WCKyUTja6/RlnccXVgY+qhIdJFR6KIi0UdGtpfdkZFo/P2vKEEVi4Wq++7HXlKC97BhRL3+Ghr9N7/ATFVVWlpavvBzuKqqivXr19PU1IROp2Py5MkMHOie0SE1lhrWl61nfel6qi3/flJgROQI5iTMITs2G722wy+m67EsFgurVq2iqqoKo9HI/Pnz6dOnj5TeQgghhBBCCLfqslEniqJ86Yq1iooKAgJujNVNQgghRGfTaDQ0NDSwcuVK/P39ufvuu9Fqe+4YDK2/P6HPPdfx2/n4EPGH31O56DtYjx6l8Y03Cfn+4197G1VV2bt3L3l5edxxxx306tXLdVl0dDT33nsvW7ZsoaSkBF9f3w5nuh6KqnCo+hBrStew99JenGr770BBXkHM7D+T2fGz6e3fu1szdQez2czKlSupqanBx8eH+fPn07t3bym9hRBCCCGEEB6jw8X3lClTeOmll3jzzTeB9j/kTSYTv/jFL5g+fXqnBxRCCCFuFD4+PpjNZhobGzl8+DAjR450d6QuYejXj7Cf/5za//5vmt96C+PgQfiMHv2V1z9w4AAHDx4E4PLly1cU3wBGo5HZs2dz8eJF4uLiXMdbW1vx8/Prkvtgdpj5oOQD1pSu4WLrRdfxweGDmZswl/G9xuOt67kz26/Htm3bKC4uxmKx4Ovry4IFC+jVq5eU3kIIIYQQQgiP0uFRJxUVFdx6662oqkpxcTFZWVkUFxcTHh7Onj17iIyM7KqsXUZGnQghhOgueXl5rF+/Hq1Wy6JFi4iKiurwOWw2GyUlJYSGhvaImddfpe6FFzCtXIU2OIiYJUvQ/0fWxsZG9u7dy+nTpwGYMGECWVlZV3Xu5uZm3n77bVJTU12bLnYGVVX58MKHvJz/MpfbLgPgb/Bnet/pzImfQ3xQfKe8H3cym81UV1dTVVVFVVUVjY2N3H///a5ie926dRQVFREQEMD8+fOJiYmR0lsIIYQQQgjRY3TZjG8Ah8PBsmXLOHHiBCaTiaFDh3LPPffg4+NzXaHdRYpvIYQQ3UVVVVasWMHp06cJDQ3l3nvvxWAwXPXtHQ4HixcvxmKxoNFoGD58OKNHj0Z/FXO0u5tqtVL1wIPYTp/GOzOTqL+9icZgwGKxcODAAfLy8lAUBYDs7OwOrYA/fvw427dvB9pX0o8bN46MjIzrKmiLGov4U96fOF57HIBefr24f8D9TO49GR+9Z/6O85nTp09z5swZqqqqaG5u/sLljzzyCMHBwQBUV7fPL4+NjcXLy0tKbyGEEEIIIUSP0qXF941Gim8hhBDdyWw28/rrr2MymRgyZAiTJk362uuWlZWRnp7uOrZx40YuXLiAyWQC2jeenjZtGjExMV2evaPsFRVULrwH1WQi8DuLCPmv/6K4uJi1a9cC0K9fP8aNG3dNrxi7ePEiH374IbW1tQDExcUxefJkwsPDO3SeJlsTbxS8wZqza1BQ8NZ588CAB1iYvNAjx5l89jmTnJzselLl448/5tChQ67rhISEEB0dTUxMDLGxscTFxUnJLYQQQgghhPAInVp8r1+/nmnTpmEwGFi/fv3XXnfWrFkdT+tmUnwLIYTobsXFxSxZsgSAO+64g/79+7suU1WVc+fOcfLkSYqLi3E6ndx///1EREQA4HQ68fX1paioiE2bNtHa2opGo2HkyJHcfPPNPW71d+vOXdQ++ywAEX/+Ez7jxvHhhx+SnJx8xf2+Fk6nk6NHj5KTk4Pdbker1TJy5EjGjBnzzbdVnawrXcfrBa/TbGtfBT0pbhJPDnqSKN+Oj6BxF0VRqKqqoqysjLKyMiorK4ErP68uXbrExYsXiY2NJTY2Fl9fXym5hRBCCCGEEB7parvcq/rLePbs2VRVVREZGcns2bO/8noajQan09nxtEIIIcS3TFJSEiNGjODy5cuuQrulpYWCggJOnjxJU1OT67pRUVHY7Xa8vLzQ6XSuwnLAgAH06dOHzZs388knn3D48GHS09MJDQ11y336MhcuXGD3pYv0Sk8j4dQn1P3il0QveZ9bb721U86v0+kYMWIEKSkp7Nq1i5KSEtf4lK+TX5vPn/L+xJnGMwAkBCbw9JCnyYq8uhnjPUFtbS25ubmUl5djsViuuCwiIgJFUdDr9eh0OhISEkhMTHRTUiGEEEIIIYTofjLqBFnxLYQQwj2cTieqqmKz2aioqGDZsmV89mPZy8uLtLQ0hgwZQlxcHFqt9mvPVVBQgMlkIjMz03VMVVW3reqtq6tjz549lJSUAOCl1TL78BEoKsIrLY3ot99C4+XV6e/37Nmz9OnTxzXio76+HoPBQEBAAAC1llpePvEyW89vBdo3rnw0/VHmJcxDr+1ZK+W/zOcf09raWt555x2g/fOlX79+xMfHk5SUREhIiKzoFkIIIYQQQtyQOnXFtxBCCCE6n06nA9oL8JiYGHx8fAgNDWXQoEGkp6djNBqvurzMyMhAVVUcDgd2u52LFy+ya9cupk6d6lpR3h1aW1vJyckhPz/fVdJmZmYyevRovBc2U7nwHmyffELD/71E6I+f6/T3n5CQ4Pp/RVHYtGkTdXV1jBozitN+p3nn9DuYHWY0aJjVfxaPZTxGqLHnrJD/Kna7nb1796KqKhMnTgTaZ7uPGTOGvn37usp+KbuFEEIIIYQQol2HV3w/+eSTJCYm8uSTT15x/JVXXqGkpISXXnqpUwN2B1nxLYQQwp0+W/VttVrx9/f/xtXd30RRFN5++20uXryIVqtl9OjRjBgx4rrP+01aW1t56623sFqtQHsJPW7cOMLCwlzXsezbR82TPwQg/Hcv4DdlSpfmWbNmjWvmdbO+mbKAMoy9jTw9/GnSQtO67H13poqKCrZs2UJjYyMADz74INHR0eh0ui5/TIUQQgghhBCip+nUzS0/r1evXqxfv55hw4ZdcfzYsWPMmjWLioqKa0vsRlJ8CyGEuNG0tLSwYcMGiouLAYiOjmb69OlXlNBdYfv27VRWVjJhwgR69+79pddpePllmt/5Bxo/P2Lefw9Dnz6dnqPN2caGsg28W/guvpd9GdgwEC+lfbSKTqcjJSWFESNGdOtq+I6y2Wzs3buXY8eOAeDv78/UqVMZMGCAFN5CCCGEEEKIb60uK76NRiMFBQVf2CCppKSEjIwM2trari2xG0nxLYQQ4kakqir5+fls3boVq9WKTqdjwoQJDB48uNNGYpw/f57g4GDXz0+Hw4FWq/3aYlZ1OKj+7mNY8/IwJCcT/Y930BqNnZLHZDex+uxqlhQtocHaAECYMYz5/eeTak2lsKCQmpoaAO644w769+/fKe+3s124cIGtW7e6VnkPHDiQKVOm4OfnJ+NMhBBCCCGEEN9qXTbjOzExka1bt/LEE09ccfz/s3ff8VXV9x/HX+fem9x7M282mwwgzCQgOyDICLJEEFBAqdY9qvZX+2ut1lG1dtlatXW1PzegyJApMgRly0gISEgYWYTs5Gbedc75/RG5LYrKSHIDfJ6PRx4J997c876XjJv3/d7Pd+3atcTHx59/UiGEEEK0CEVRSElJIS4ujpUrV3Ls2DE2bNhAcHDwd57APl8ej4cvv/ySPXv20KVLF2bPno2iKJhMP/7QQjGZiPzD85y6aQ7u7Gyq/vwXIn77+EXlqXZW82HOhyw+uphady0A7QPac0vPW5gSOwWz0QzAoAGDKC4u5siRI8TGxno/f9u2bVRXV5OcnEzHjh1/tFzWNA273U5lZSUVFRVUVVVRUVGB1Wrluuuu885vvxAul4tPPvmExsZGgoODvau8pfAWQgghhBBCiHN33sX3//zP//DAAw9QVlbGmDFjANi4cSMvvPDCJTnfWwghhLjchYaGMm/ePLZv305BQcEZG0BeiLKyMlatWkV5eTkAYWFhqKp6TqX3aaaoKCJ//xyl991P3bJlGEJDCL39dgyBgeeXpbGMBdkLWHpsKQ616VVnscGx/KTnT0jrkobJcGYmRVFo37497du3956mqirp6ek0NDTw9ddfExkZSVJSEn369EFRFHRdx/LNivTi4mLWrFlDVVUVmqadcd1Go5FZs2ZdVOkN4O/vz5gxYygoKGD8+PGyylsIIYQQQgghLsB5jzoBePXVV3nuuecoKioCIDY2lqeeeor58+c3e8DWIKNOhBBCXCk0TcPlcnnfFxUVnbHy+Yfous6ePXv48ssvUVWVgIAArr322osq0qvffBP7q68BYIiIwHb33QRdPw3lR0r0k3Unee/Ie6zKXYVbcwOQaEvk1l63MrrjaAzKuc/A1nWd4uJiMjIyyMrKwu1uur7TpXdqairDhw8HoKqqin/9618AmEwmwsLCiIiI8L5PSEjA379plrjH4zmnJwNcLhdffPEFXbt2pXv37k33hcGA2WyWwlsIIYQQQgghvqXFZnz/t7KyMqxWK0FBQRd6FW2CFN9CCCGuJLqu43a7Wb58OYcPH2bYsGEMHz78B+dy19fXs2rVKvLz8wFISEhgwoQJBJ7nCu2zZWnYtInql17GU1AAgF9cHLYHH8R69cjvFL9uzc3LB17m46Mfo+oqAMmRydzW6zaGxisB00wAACAASURBVAy96KLY6XRy6NAhMjIyvCvak5OTSUtLA5qeOMjLyyM8PJyQkJDvPV5ZWRlLlixhwoQJPzhHPC8vj3Xr1mG32wkMDOTOO+8kMDAQo9EopbcQQgghhBBCnEWLFt8ej4fNmzdz7Ngx5s6dS3BwMEVFRYSEhFySJbgU30IIIa40mqaxdu1a9uzZAzS9emvKlClYrdazXt7tdvPee+9RU1PDNddcQ1JSUrMWs7rbTe3HH2N/8020ajsA5quuIuznD2Pu3RuAkoYSHt3xKIcqDwEwNGYot/a6lf5R/ZsthzePrlNTU4PFYsFsNp/353/66adkZmZiMBiYOnUqPXr0OOP80tJSvvzyS44fPw5ASEgIEydOJDExUQpvIYQQQgghhPgBLVZ85+Xlce2115Kfn4/T6SQ7O5v4+HgeeughnE4nr7322kWHb21SfAshhLhSpaens3r1ajweDyEhIUybNo127doB4HA48Pf3964ELysr8473aClabS32t96iZsFCcLkACJh4Lbmzh/NY7t+xu+yE+IXw5JAnGdF+RIvluFiqqrJ69WqOHDmCoihMmjSJ3r17U1NTw9atWzl0qKm8P70B6dixYwkICJDSWwghhBBCCCF+RIsV39dffz3BwcH8+9//JiIigoyMDOLj49m8eTN33nknOTk5Fx2+tUnxLYQQ4kpWXFzMhx9+SHV1NUajkd69e9PQ0EBubi6pqakMGTKk1TN5ik5R/c9/Ur9mDQBuI6wdqHBwYk+eHPsnOgR2aPVM50vTND799FNvyZ2WlkZkZCQLFiwAIDExkVGjRtGuXTspvIUQQgghhBDiHLVY8R0REcH27dtJTEwkODjYW3zn5uZ6/1C+1EjxLYQQ4krmcDjIzMxk8+bN3/k9HhMTw7x58zAaja2ey+60848lvyBpcTr98poerighwdjuuJPg2bNQvtlEsi1zOp2sXr2aY8eOAXDNNdfgcrno1q0bXbt2lcJbCCGEEEIIIc7TuXa5pvO9Yk3TUFX1O6cXFhYSHBx8vlcnhBBCCB/SdZ1//vOf1NbWek8LCQmhT58+JCYmEhERATTt76FpGpqmoeu69/1/7+1ht9txuVyEh4dfdFH+deXXPLrjUYr9ivn0ZivPcgPdFm7Dffw4VX/9K7UffUj4r36FNTX1oo7TUlRVJTMzk+3bt+NwOEhOTiYjI4OcnBzmz5+Pn5+fryMKIYQQQgghxGXtvIvvtLQ0XnzxRd544w2gaTZlXV0dTz75JJMmTWr2gEIIIYRoHo2NjWRlZZGbm8u0adPQNA2Px0NcXBxFRUX06NGDxMREIiMjvZ/zwQcfUFRUdNbr8/f356GHHvL+e926deTl5REWFsZNN910QRte67rOsuPL+Gv6X3FrbjoFdeIPw/5Ad1t39GkPULdiBfbXXsNTeJLSnz1IwPhxhD3yCKaoqPO/Q1qArutkZ2fz5ZdfUlVVBUBoaCi9e/emXbt2JCYm4vF4MBqN3tnpQgghhBBCCCGa33mPOiksLGTChAnouk5OTg4DBw4kJyeHyMhIvvjiC6Kjo1sqa4uRUSdCCCEuZ6qqsmXLFrZt24amaQDMmzePDh2a5mR7PB5MprM/F75w4UIKCwvPet63i++VK1dy9OhRPB4PUVFR3HTTTVgslnPO2ehp5A97/8Cn+Z8CMKrDKJ4Y/ARBfmcW6FpDA9WvvUbtgoWgaShBgYTd/wBBM29A8cFIFmgqvHNzc9m2bRunTp0CICAggGHDhpGcnHzWFfD5+fkkJibKuBMhhBBCCCGEOA8tNuMbmv5AXrRoEQcOHKCuro4BAwYwb948rFbrRYX2FSm+hRBCXK4qKytZunQpJ0+eBCAqKorExET69u17TiPKHA4H0PQKL4PBgMFgQFEU79u3VVdXs2DBAurr6+nUqRMzZ848p7Ee+bX5/Hr7rzlWcwyjYuS+fvcxr8e8HyyFXVlZVDz3e1zfbB7p37cPEY89hn9i4o8er7k1Njby+uuv43a78fPzY9CgQQwaNAj/75lDvmvXLr744guSk5O57rrrZPW3EEIIIYQQQpyjFi2+LzdSfAshhLjc6LpORkYGa9euxeVyYTabSUtLo2fPni1+7NLSUhYuXOjdxHHatGk/WOxuKtzEM189Q4OngQhLBM8NfY7+Uf3P6Vi6qlK7+GOq//EP9Pp6MBoJmTuH0LvvxhAQ0Fw36Ts8Hg/Hjh0j8b9K9i+//BK3282QIUMIDAz8wc8/dOgQa9euRdd1unbtSt++fYmPjyc8PLzFMgshhBBCCCHE5aBFi+8jR47w8ssvc/jwYQB69erFAw880Cp/TLcEKb6FEEJcblRV5Y033qC0tJTOnTszadKkVv0dV1BQwOLFi1FVlWHDhjFixIgzztd0jZ3FO1mUs4hdJbsA6B/Zn2eHPkukNfJsV/mDPGVlVP3lLzSs3wCAsV0M4b/6NQGjrr74G/NfnE4n6enp7Nmzh4aGBubMmUOnTp0u6Lqys7NZuXKld/wMgM1mY8CAAYwcObK5IgshhBBCCCHEZaXFiu8lS5Zw0003MXDgQIYNGwbAzp07+eqrr1i0aBE33HDDxSX3ASm+hRBCXE50XUdVVYqKijh27BiDBg3yySiNnJwcdu/ezfTp0wn4ZvW1w+NgTd4aPsz5kNzaXAAMGJibOJd7+96LyXDe+26foXHrVir+8EfUbzbktF5zDeH/+0tMMTEXdb11dXXs3buX9PR0XC4XACEhIYwbN46EhIQLvt6KigqOHDlCXl4eRUVFaJrG4MGDGTNmDEajEVVV2bp1KwkJCXTq1Ol7Z7ELIYQQQgghxJWixYrvhIQE5s2bx+9+97szTn/yySd5//33OXbs2IUl9iEpvoUQQlzqVFVl8+bNmEwmhgwZcsYqYl/SdR1FUShtLGXx0cUsP76cGlcNAIGmQKbFT2NWt1l0COzQbMfUGhuxv/kmNe+/Dx4VJSAA2333Enzjjee9+aXT6WTz5s0cOnQIVVUBiIyMZPDgwfTs2fOsm1ZeKJfLRUFBATabjYiICACOHz/OkiVLAPDz86Nr167Ex8eTkpJyye6tIoQQQgghhBAXo8WK74CAAA4cOEC3bt3OOD0nJ4fk5GQaGhouLLEPSfEthBDiUlZRUcHSpUspKipCURRuv/12wsLCfB0LgK8rv2ZRziI2FGygS00XNEXDE+NhdvfZTImdQpBfUIsd25WTQ+Vzv8d54AAA/n36EPnM7/CLjT3n69A0jX/961/Y7XY6duzIkCFDiI+P/8FNN5vTqVOn2Lt3L3l5eWc8xgoPD2f+/PmEhoa2Sg4hhBBCCCGEaCtarPieNGkSs2bN4rbbbjvj9LfeeotFixaxbt26C0vsQ1J8CyGEuBTpuk56ejpr167F7XZjsVhIS0s7Y8NFX/BoHr4o+oKF2Qs5UNFUOkc3RnN1ydWgwLTrp9GjW49WyaJrGnXLllP90ktotbUoFjNhDz9M0KxZZy2vPR4PBw8eJCkpyTse5vjx4/j7+1/wLO/moOs6ZWVl5OXlsW/fPu9jl7vuuss7RkYIIYQQQgghrgQtVny/9tprPPHEE8yePZuhQ4cCTTO+Fy9ezNNPP02HDv95qfJ11113gfFblxTfQgghLjWNjY2sXLnSu9F0ly5dmDRpEsHBwT7LpOkaS44t4YMjH3Cq4RQAJsXE+C7jubHbjZzYeYJDhw5hMpmYNWtWqxbJntJSKp58Cseupo00LcOHE/HkE5iioryXyc/PZ/369VRWVjJ27FgGDBjQavnOR01NDR9++CEJCQmMHz8ef3//VluBLoQQQgghhBC+1mLF97lujqUoincWZlsnxbcQQohLzZtvvklRUREGg4ERI0b4bAPL0+rcdTy16ym+PPUlADZ/G9MTpjMzYSaR1kigaQ758uXLOX78OGazmZtuuono6OhWy6hrGrUffkj1Sy+jO50YbKFEPPY4+tAhbNmyhUOHDgFNY93GjRvn85XzP8ThcGA2m1EUBZPJhJ+fn5TfQgghhBBCiCtCixXflyMpvoUQQrR1lZWV2Gw27xPLW7du5cCBA0yZMoV27dr5NFt+bT6/3PZLcmtz8Tf480DSA0yLn4bFaPnOZd1uN4sXL+bkyZMEBgYyd+5cbDZbq+Z1HT9O+WOP4z5ypCl/t27sSUnG4+dHSkoKI0eOxGL5bva2yuPxsG7dOlJTU8945Z0QQgghhBBCXI6k+D4PUnwLIYRoi3RdJz8/n507d5KVlcX06dO9m0u73W7val9f2n5qO7/d9Vvq3HVEWaP40/A/0Tu89w9+jsPhYOHChZSXl2Oz2Zg/fz5ms7mVEjfR3W7Sf/0oYZ9/jgI0hoQQ9Jvf0CltfKvmaA5ffPEFu3btwmw2M2/ePDp37uzrSEIIIYQQQgjRYs61yz3n10Tv2LGDVatWnXHau+++S1xcHNHR0dx11104nc4LTyyEEEIIoGkkSGZmJm+++SZvv/02WVlZABQWFnov4+fn59PSW9d13sl6h//Z+j/UuetIikjinXHv/GjpDWCxWJg1axahoaH069cPf3//Vkh8JsXPjw7/+0u2TrwWNSICa00N6qOPUvXyy+hud6vnuRhDhgyhY8eOOJ1O3n//fXJzc30dSQghhBBCCCF87pxXfE+cOJHRo0fzq1/9CoDMzEwGDBjArbfeSq9evfjzn//M3XffzVNPPdWSeVuErPgWQgjRFmiaxo4dO9i1axe1tbUAmEwmevfuzcCBA4mIiPBxwiaNnkae3fMsGwo2AHB9/PU80v8R/Ax+53U9LpfrjNI7IyMDo9FI9+7dW2QF+LFjx6isrGTQoEFnZDC5XFT++S/Ur1wJgF9iIpHPPoN/QkKzZ2gpLpeLZcuWkZ+fj8lk4sYbb/S+OkAIIYQQQgghLifNPuqkffv2rFy5koEDBwLw2GOPsWXLFrZu3QrA4sWLefLJJ/n666+bIX7rkuJbCCFEW6DrOv/3f/9HYWEhAQEBDBgwgOTkZAICAnwdzauovoj/3fa/5NhzMCpGHun/CDMSZlz09WqaxquvvkpDQwMmk4n4+Hh69uxJfHw8fn7nV6j/t9PjYvbu3cuxY8cwGAzMnz+fqKio71y2YeMmKp57Fq3aDv7+hD34MwInT8YQFIRiNF7MzWsVbrebFStWcPz4cYxGI7NmzWrTG3QKIYQQQgghxIVo9uLbYrGQk5PjnRs5YsQIJk6cyGOPPQZAbm4u/fr1865Qu5RI8S2EEMIXNE1j//799OvXD0VRcLvd5ObmUldXR8+ePX0+v/vb9pTu4Tc7foPdZSfMHMYfhv+BlMiUZrlul8vFV199RVZWFpWVld7T/fz86N69O/369aNLly7nfH0Oh4NDhw6Rnp7uvT6DwcDAgQMZNmzY945X8ZSVUfH073Bs3/6fExUFQ0hI01toCIaQUAyhIRhDQ70fG0JCMdpCMbZvj398/IXdCc1AVVVWrlxJTk4OVquVBx988JLaqFMIIYQQQgghfsy5drnn/Bd1TEwMJ06coHPnzrhcLvbt28fTTz/tPb+2tvaiVmQJIYQQV5KysjJWrFhBYWEhJSUljB49GoDY2Fif5jobXdf56OhH/D3j76i6Ss+wnvxp+J+ICYhptmP4+/uTmprK8OHDKS0tJSsri6ysLGpqavj666+xWq3e4lvXdXRdx2A4+1YleXl5LF26FI/HAzSV53369GHAgAE/Oi7GFBVF9MsvUffxx1S//gZaZSXoOprdjma3Q8GP3xbriFRsDz3kk1EpRqOR6667jvXr19OnTx+g6f5SFKXVswghhBBCCCGEL51z8T1p0iR+/etf88c//pHly5cTEBDAyJEjvecfOHCAhEtoFqYQQgjhC6qqsn37drZs2YKqqvj7+xMeHu7rWN/LqTr5474/sjp3NQDXdrmWRwc+isXYMquIFUUhJiaGmJgYrr76aoqKisjKyvKWuNBUbH/66aeMHj2axMREPB4PdXV1hIWFAdCuXTsURSEyMpKUlBT69OlzXhtoKopC8KxZBM+ahe52o9XUoH5TfGs1Nd4SXLXXoNXY0ew135xejevoURq3bqNx+w6Cpl1H6D33YDrLWJWWZDAYmDBhAtD0qgKHw4HT6cRqteLv7y8luBBCCCGEEOKKcM6jTsrLy5kxYwZbt24lKCiId955h+nTp3vPHzt2LEOHDuW5555rsbAtRUadCCGEaA3FxcV88sknFBcXAxAfH09aWhrBwcE+TnZ2JQ0lPLrjUQ5VHsKAgZ8l/4w53ef4vDhdv3496enpAISGhtLY2IjNZmP+/PnebNXV1YSGhrZ6Vnd+PtUvv0LDxo0AKBYLIbfcTMj8+RgCA1s1y2klJSUsWrQIl8uFwWAgICCAgIAArFYrAQEBpKSk0KNHDwAaGxspKCggICCAqKioFtlkVAghhBBCCCEuRrPP+D7NbrcTFBSE8VubPFVWVhIUFHReK6raCim+hRBCtLTMzEyWL1+OpmlYLBbGjBlD7969fV4if5uu6+wt28uyY8v4/OTnqLpKiF8Izw17jsExg30dD13XOXbsGJs2bcJut3tPt1gs3HrrrW3mSQRHRgbVf3sR54EDABgiIrDdfRdB11+P0sqz23fv3s327dtxu91nPX/8+PEMGDAARVEoKCjggw8+AMBqtTJnzhzv/i5CCCGEEEII0Ra0WPF9OZLiWwghREurrKzk9ddfJzY2lnHjxhHoo9W/38fusrMmdw3Lji8jrzbPe3pKZAq/HfRbOgV18mG6JidPnmTz5s0UFRV5T7NYLDgcDgCioqKYMGEC7du391XEM+i6TsOmTVS/9DKegqbh4KbYWMIeehDr1Ve3/mp0t5vGxsbvvHXu3Jmob8axFBYWsmnTJmpra2loaMDPz4/Zs2fTrVu3Vs0qhBBCCCGEEN9Hiu/zIMW3EEKI5uZ2u8nOzqZ37964XC5UVcVutxMaGurraF66rnOw8iDLji1jQ8EGnJoTgABTABO7TuT6+OvpYevh45T/kZ2dzSeffILJZCI5OZkhQ4YQERFBeno669evx+FwMG7cOPr37+/rqGfQ3W5qlyzF/sYbaNXVAJgHDCDs4Ycw9+3r43Rn53K5+OSTT8jNzcVgMDBjxowz5qwLIYQQQgghhK9I8X0ertTi2+lR2XykjNzyeu66Or7NvdxeCCEuVXl5eaxYsYLKykpmzpxJXFycryOdod5dz7r8dSw7vozs6mzv6d1DuzMjYQYTukwg0M/3K9ILCwupr68nMTERaCrqd+/eTUpKCjab7YzfW3V1dezevZshQ4Z4T29oaCAgIMAn2c9Gq63F/vY71C5YgO785kmGtDSCpk5Bd7vRnU70Rge604nmdKA7mj7WHc7/fOx0omsqgZMmETh2bIvmVVWV1atXc+TIERRF4frrrycpKalFjymEEEIIIYQQP+Zcu9zWHTIp2hRdh3ve24sOjIq10rNrB19HEkKIS1ptbS2bNm3ybrwYFBTUpp5UzKnOYdnxZazNW0uDpwEAs8HMuM7jmJEwgz7hfdpE3pMnT7Jt2zby8vKwWq3ExcXh7++Pv78/o0ePPmvGoKAgxowZg6ZpuFwuHA4H77//PlFRUYwbN65NzP42BAcT9rMHCJ41k+pXX6V+1WoaPvuMhs8+O+/ravx8M47p0wl75BcYrNYWSAtGo5EpU6ZgNps5evQoERER6LreJr5GhBBCCCGEEOLHSPF9BbP4GQlWHNToFjbvOyLFtxBCXCC328327dvZtm2bdwPBpKQkRo8ejdls9nE6qHPX8df0v7I6d7X3tK7BXZkeP51JsZMI9W8b41eKiorYtm0bubm5ABgMBnr06IGiKFit1nMqXA0GAxaLhfz8fGpra7Hb7eTl5TFy5Ej69++PwWBo4Vvx40zt2hH59NOEzJtH9etv4CkoQLFYUCwWDBZz08dmC4r59MdmFKsFg9mMYjbjLiyk9oMF1C1bhjMjg8g/PI9/C83gNhgMpKWlMXz4cIKDg3E4HJjN5jZxPwohhBBCCCHED5FRJ1y5o04ArnliESdcwUzp4OCVB2/wdRwhhLgkvfXWW+Tn5wPQvn17xowZQ4cObePJxP1l+3l699OcajiFAQPXdLqGGQkzuCrqqjazcreiooLNmzdz/PhxABRFoV+/fowYMYLIyMgLzllcXMyqVas4efIkAJ06dWLGjBlt4smIi9W4ezcVjz+OWl6BYjYT9stHCJo+vVX+T0+cOMGJEyeYNGmSFOBCCCGEEEKIViejTsQ56RikcKIS8qqdvo4ihBCXJE3TSElJobq6mquvvpqePXu2iULZpbp449AbvH/kfXR0OgR24KnBT5EcmezraEDTKnk/Pz+g6T48fvw4iqLQp08fRo4cSVRU1EXfj+3ateP2229nz549bNiwgcLCQhYvXsysWbMu+fLbOngw7RctovyJJ3Fs307ls8/h2LWbiMcfw9CCY10aGxtZsWIFLpeLhoYGZsyYgckkDyeFEEIIIYQQbY+s+ObKXvH99NureSsLYox17Hx2dpsoa4QQoi2rrq5m48aNdO3alX79+qGqKrquo6pqmykAj9mP8eSuJ8mx5wBwXdx1PJz8sM83rCwvLyc7O5sjR44QHBzMzJkzveft37+fhIQEYmJiWuR3UVFREe+99x4Oh4OkpCQmTJjQ7MfwBV3TqHn/fapfeQU8KqaOHYl8/veY+/ZtsWNmZ2ezatUqVFUlLi6Om266CX9//xY7nhBCCCGEEEL8t3PtcqX45souvldt3c8Dq4rwx8O+x8cSFBTk60hCCNEmOZ1Otm7dys6dO/F4PAQEBHD33Xe3mbIbQNM1FuUs4p+Z/8StubH52/jNwN8wquMon+TRdZ2ysjKys7PJzs6moqLCe56fnx/3338/ZrMZk8mE0Whs8SdfT506xWeffcaUKVOwttCGkL7iPHiQ8kd/g+fkSTAZsT3wACE334zSQqNIcnNzWb58OW63mw4dOnDzzTdfdvepEEIIIYQQom2S4vs8XMnFd3FZBcNe2IGOwsKb4hiW0tvXkYQQok3RNI2MjAw2bdpEXV0dAJ07d+aaa64hJibGx+n+o7ihmN/t/h17y/YCkNo+lccGPkaEJcJnmVavXs3XX3/t/bfRaCQ2NpbExER69uxJUFBQq7/SSNd1XC4XqqoCoKoqRqOxVTO0FK22lopnn6Vh/QYALMOHE/m7pzGGh7fI8YqKiliyZAkOh4OoqChuueUWgn9kzIqu67jdblkhLoQQQgghhLhgUnyfhyu5+NY0jZTHllGjW3go2cDP50z0dSQhhGgzqqqqWLx4MadOnQLAZrMxevRounXr1mZGQ+m6zrr8dfx5/5+pc9dhMVp4OOVhro+7vtUzNjQ0EBAQ4P33vn372Lx5M3FxcfTq1YsePXoQGBjo8/vudPn91VdfcejQIWbNmoXFYvFppuai6zp1y5ZR9ee/oDudGCMjiXj2GayDB7fI8crLy1m8eDF1dXUMGzaMtLQ0ADZt2kRFRQUOhwOHw0FjY6P3Y5vNxv3338/ph6CVlZVERkbKRplCCCGEEEKIcyKbW4pzYjAY6BETzJ5iN34RXXwdRwgh2pSysjKKi4sxm80MGzaM/v37t6nRJnaXnT/t+xMbCppW+PYJ78NTg5+iS3Dr/zwvKSnh448/ZtCgQQz+pmRNTk6mf//+BAQE+Lzs/m+KoqCqKtu3b6exsZGPPvqI2bNnXxblt6IoBM+YgTkpifJfP4r7+HFK772PkJ/+FNudd6A080rryMhI5s6dy969exk+fDhOZ9Nm2dnZ2ZSUlJz1cxobG72XKy0tZeHChSQkJMhGmUIIIYQQQohmJSu+ubJXfAO88NkRXt50lJn92/OXGwf4Oo4QQrQJp1cFf/3113To0OFHRzi0tl0lu3hm9zOUOcowKkZu7307P+n5E0yG1i8O8/PzWbZsGS6Xi+joaG699VYsFkubKrvPpri4mHfffZfGxkZiYmIum/L7NK2xkaq/vEDdsmUAGGNiCL3jDoKum4ri59eixz506BBOpxOz2YzFYvG+P/2x3zfHz8nJYeXKlaiqSteuXZkzZw5ms7lFswkhhBBCCCEubTLq5Dxc6cX3iowiHly4n5ROISy7f0SbLyqEEKIlZWZm0rFjRwICAtA0zddxvsOhOvjHgX/w0dGPAOgS1IWnhzxN73Df7NGQnZ3NqlWrUFWVzp07M3v27Etqo+Rvl9+zZs267DZprP/sM6r++jfU0lIATJ06EnrnnQROnIjSBlZY5+XlsXz5clwuFzExMdx8882X1NeQEEIIIYQQonVJ8X0ervTie8/RU8z81z7MBo1N9w+gY8eOvo4khBCtTtd1tm7dyqZNmwgLC+OWW25pcytPs6qyeHLXk+TW5gJwQ8IN/CzpZ1hNvilqMzIyWL9+Pbqu0717d2644YY2d5+di5KSEt59910aGhqIjo5m9uzZl135rTud1C5Zgv2tt9EqKgAwxXbFdvfdBIwfj+Lj+dqnR+U0NDR4v//CwsJa/LiNjY0UFxd73wYOHEinTp3QNA1FUXC73Zfk17QQQgghhBCXMym+z8OVXnznHD9B2huH0FF4eXwoU8eO8HUkIYRoVZqmsXbtWvbs2QPA4MGDufrqq9vMK2BUXeW9rPd449AbqLpKhCWCxwc+zvD2w32WadeuXXzxxRcAJCUlMWXKFO/4ikvRf5ffaWlpJCcn+zpSi9AaG6n98CNq3nkHzW4HwK9bN2z33oN19Giffs2f3kzWbrcTGBjIbbfdRkRERLMeo7q6mvT0dG/Rbf/mPjht1KhR3hn1e/fuZc+ePUyfPp3Y2NhmzSGEEEIIIYS4cOfa5fp2eY9oE9pHRxGiOAA4kFvq4zRCCNG63G43ixcv9pbeY8aMYdSoUW2m9D5Zd5J7Pr+HVw++iqqrjO44mgVpC3xaegPeknvo0KFcd911l3TpDRATNdirkAAAIABJREFUE8P8+fMZM2bMZVt6AxisVkJv/QkdV64g9N57UIICcR89StkvHqH45lto3LYNX62JCAsLY+7cuURFRREZGYnVar2oLG63m4yMDIqKitB1HU3TqKurY8uWLRw5csRbeoeGhtK9e3dSU1Pp0qVpY1hN08jIyKCmpoZ33nmHDRs2oKpqs9xOIYQQQgghROuQFd/Iim9d1xnz2wWc8NgYFVLBO7+Z7+tIQgjRKhoaGli4cCGFhYUYjUYmT55MYmKir2MBTT+bV+au5G/pf6PB00CAKYBf9v8lE7tObDOl/KlTp4iLi8Pg4zEZzen0pqaqquJyuaitrW32VcdtiVpTQ81771O7YAF6YyMA5uRkbPfdi2XQIJ9kcjqdKIqCv78/BoMBs9l8Xl/zZWVl7N27l4yMDBwOB71792by5MkAeDwe1q9fT3R0NNHR0URFRX3vhqYul4tNmzaRmZkJQLt27ZgxYwZRUVEXfyOFEEIIIYQQF0xGnZyHK734Bpj7/AK220PpbixnzVNzL/mVe0IIcS6WLFnCwYMHMZvNzJgxg06dOvk6EgCVjkqe3/s8XxQ1jRJJiUzhycFP0iGwg88yuVwuvvzyS4YPH47VakVRFCwWS5sp4ZuTruvU1dXx0UcfUVhYSEREBPHx8SQkJNCxY0efF/26rjf7/a5WVVHz9jvUfvQRutMJgGXwYMIe+QX+3bo167HOh67rbN68mZiYGAYOHPi9l3O73Rw+fJi9e/eSn5/vPT0kJIT+/ft7x5dciOzsbNatW4fD4cBkMjF+/HgGDRp0WX7tCyGEEEIIcSk41y7X1IqZRBsWH2Flux2qNQvFxcV07tzZ15GEEKJF6brOmDFjqKmpYezYsURGRvo6EgBbi7by7J5nqXJWYVJM3NP3HuYmzsWoGH2WqbGxkaVLl1JUVER5eTk33XTTZVt6AyiKgsvlwmQyYTAYqKiooKKigq+++gqLxUJcXBw9evSgR48erZapsbGRnJwcsrKyKCgoICEhgeuvv77Zrt8YFkbYzx8m+OZ51Lz1FrVLluLYvZtTc+YSPGsmoffcg9EHiwNOnDjhHUNUV1f3vWOI3n77bYqKioCm/7+EhASSk5OJjY296CcqevToQYcOHVi7di25ubmsW7eO2NhYoqOjL+p6hRBCCCGEEC1LVnwjK74B3l+5kce3OfBD5b3roxk6dKivIwkhRIuorq4mNDTUO86irWjwNPD3jL+z/PhyABJCEnhqyFP0sLVeuXo2tbW1LF68mIqKCiwWC7NmzSIuLu6yLb2/7XThnJ2dzbFjx3A4mvbE6NGjB9OmTfNerrKykrCwsGa9X5xOJ0ePHiUrK4vc3Fw0TfOed/XVVzNkyBCgZVaAe4qKqPrbizRs3AiAwWbD9sD9BE2bhmJsvSdhdF1n27Zt7NixA4CBAweSlpZGVlYWvXr1wmAwoKoqW7duJT09naSkJPr27UtwcHCLZNm/fz8ej4fBgwfj5+eHyWS6Yr4XhBBCCCGEaCtk1Ml5kOIb9u7PYOaH+egYeG6Iwrzpk3wdSQghmtXp0mr16tVce+219OnTx9eRvDIrMnlq91MU1hUCMLfHXO7pew9mo9mnucrLy1myZAk1NTUEBQVx44030rFjxyu26FNVlYKCArKzs2nfvj0JCQlAU+n973//m9DQUOLi4oiIiCA8PJywsDBCQkIu6P7SNI3XXnuN+vp672lRUVH06tWLLl260K5dO+/15uTksH//flJTU+nYsWPz3NhvNO7aRdWf/4L7+HEA/Hv1Iux/f4mllTcA3bdvHxu/KeGNRiOqqjJ16lR69uwJNM3uNhgMrT6Gpry8nIyMDCZMmIC/v3+rHlsIIYQQQogrlYw6EeelZ49udAotocDuJjIhyddxhBCiWVVXV7N69WqOHj0KQF5eXpsovh2qgzcPvcmCIwvQ0IixxvDE4CcYGP39s4xbg8vlYv369Rw+fBhd1wkLC2Pu3LlERERcsaU3NBWusbGxxMbGAk3ltKqqlJeXYzQasdvtpKenf+dz0tLS6Nu3L9C0oWpFRQVhYWEEBgaiKAoej4fc3Fzy8/O55pprUBQFg8FAXFwcRUVF9OzZk759+xITE3NGsavrOh6Ph507d1JcXExeXh5xcXGkpqbSvn37ZrnN1iFDsCxcQO3ixVS/9jquw4cpue2nBE6ejO3Bn2FqpY0eBwwYgNVqZc2aNaiqSnBw8Bmv2DCZWv8hraZprFy5kvLyck6cONGm9gkQQgghhBBCyIpvQFZ8n3bf+3tZc7CYR8YlcP/YxCu63BBCXB40TWP37t1s2rQJt9uN0Whk+PDhDBkyxOc/4zIrMnnmq2fIq80DYGLXifwi5RcE+zf/iIbzpes67733HiUlJcTHxzN16lRsNpuvY7VpTqeTnJwcCgoKqKyspLKykurqajRN44YbbiA+Ph6Aw4cPs2rVKgD8/f2x2WzY7Xac32woecstt3hXc+u6jtlsxvgjo0WqqqrYsmULBw4c4PTDuoSEBFJTU4mJiWm226hWVlL9yivUfbICdB0lIIDQO+8kZO4clFbaFLu0tJTGxkY6d+7s801GAfLz81mzZg21tbUYDAZuuOEGevfu7etYQgghhBBCXNZk1Ml5kOK7yd/WH+HvG49yfXI7Xpid8qN/aAshRFtWWlrKJ5984t3wrlOnTkyYMIHw8HCf5nKoDt44+AYLsxeioRFhieDRqx5lZIeRPstUVFTE3r17SUtLw2xuGq9y8uRJ/P3920zBeClSVZWqqioCAgIwmUzouk5mZiZbt27FbrefcdmgoCASExMZNGgQUVFRKIpy3k/OVFRUsGXLFg4ePOgtwAcPHsyoUaOa7TYBOA8dovKPf8J18CAApq5dCX/kF1hTU5v1OJcKh8PBp59+Sk5ODoqiMG3aNJJbeRSMEEIIIYQQVxIpvs+DFN9N/rVuL89+Xkx7s4vXb0ggKUlGngghLl35+fm89dZbmM1mRo0aRVJSUptb5T2p6yQeTnmYUP/QVs+i6zoFBQXs2LGD/Px84D8bJppMJvz8/Hx+f12uTo8oqays9G4a2qVLF4xGY7Pc5+Xl5WzevJlDhw4xffp0unXr1gypz6RrGvWrV1P10stoFRUAWEeOJOyRX+DXuXOzH6+t0zSNzz77jMzMTAAmT57MwIG+HVkkhBBCCCHE5UqK7/MgxXeT1xd+wvMZJkyo/DXVwHVTp/g6khBCnJfa2lrv7F+n00lmZiZxcXEEBQX5NJdDdfD6wddZmL0QHZ1ISyS/vurXPlnlres6J06cYMeOHd7V8AaDgT59+pCamkp0dLQU3peJ8vLyM2ZhFxYWYrPZmvX7Qautxf6vf1GzcCF4VBSzmdA77yDklltabfxJW6HrOhs3bmT//v106tSJW2+9VV49J4QQQgghRAuQzS3FeevRIQxDhh0PRrILS30dRwghzlljYyPr168nMzOTn/70p4SGNq2g7tevn4+TwYHyAzzz1TPk1zWtqp7UdRI/T/k5If6t/0SrqqosXLiQU6dOAU0bLyYlJTF8+PArfuPKy1FkZCTQVMjm5uby8ccfExgYyOzZs73fIxfLEBxM2M9/TtC066n84x9xfPUV1a/8g/q1nxL+2G+wpKQ0y3EuBYqiMHbsWMLDw+nTpw8ulwuz2SyjgoQQQgghhPARKb6FV0xUJCFKCdV6AEdL61BVVVYqCSHaNF3XOXz4MGvXrqWurg6Ao0ePctVVV/k4GTg8Dl4/dOYq70evepQRHUb4LJPRaMRms1FeXk5ycjLDhw/HZrNJ4X2ZUxSF0NBQAgMDqa6uZuHChcyePbtZ5937xccR/dqr1K9ZS9ULL+A+doySn95O0IwZ2B78GcYr5BV1iqIwYMAAoOnnk9PppKioiPj4ePk+E0IIIYQQopXJqBNk1MlpJSUl3PTSZ5xQwxloKuQfP7uemJgYX8cSQoizqqioYP369Rw5cgSA8PBw0tLS6NwG5gtnlGfwzFfPUFBXAMDkrpN5OOXhVl/lres6hw4dIjY21jveoq6uDovFQnBwsBRxV5iamhreffddKioqCAgIYNasWURHRzf7cdTqaqpfeom65Z8AYAgPJ/yRXxAwYcIV9zW3e/dutmzZwuDBg7n22muvuNsvhBBCCCFESzjXLldeeym8wsPDsSmNAFTpFu9L4YUQoq1ZsWIFr7zyCkeOHMFgMDBs2DB+8pOf+Lz09mge/pn5T+7+/G4K6gqIskTxwogXeGLwE61eetfV1bFs2TLWrl3Lp59+iq7rmEwmoqKiCAkJkQLuChQSEsJtt91GTEwMDQ0NfPjhhy3yu95osxHxxBPEvPkmpthYtMpKyn/zGKX3P4C7oKDZj9eW+X0z53z37t2sWLECTdN8nEgIIYQQQogrhxTfwsvPz4+OQU1FSLVmleJbCNFmOBwO7wZ9qqp6n9FNSEhg/vz5jBgxApPJt9O7ihuKuXfzvbyT9Q46OpO7TmbBhAWMaN/6o02OHDnC22+/zbFjxzAajXTp0gWz2Yy/v78U3le4wMBAbr31Vjp27IjD4eDDDz+krKysRY5luWoAHRYtJPS+e8HfH8fOnZyafSP2//s/dLe7RY7Z1vTv35+JEyeiKArp6eksXbrU+7NMCCGEEEII0bJkxrc4Q3yEFarBrlvwqLIqSQjhWyUlJezevZvMzEymTJlC9+7d0XWdpKQkunfvTlhYmK8jAvBF0Rc8s/sZatw1BJoCeWzgY4ztPLbVczQ2NrJhwwaysrIAiI6OZurUqXTs2FEKb+FlsVi45ZZbWLhwISaTqVlnfX+b4u+P7Y47CExLo/L3z+PYvfuK2/yyb9++mEwmVq9ezaFDh/B4PMycOdPnT9YJIYQQQghxuZMZ38iM7/9WUlbOiBd341Z11v1sKD06hEtZIoRoVZqmkZWVxe7du8nLy/Oe3rdvXyZOnOjDZN/l1ty8cuAVFuUsAqBXWC+eG/ocHYM6tnqW0tJSPv74Y+rr61EUhaFDhzJ69Gj8/f1bPYu4NLjdbjRNa7UVyLqueze/1KqrAQicOhVzv74YQkMxhIZitIVhsIViDA1FMZvP7XrdbtSyMjwlJailZailJXhKy1BLS5veKirwi4sjYNxYAkaPxhAc3JI383sdPXqUFStWoKoqCQkJzJs3Tx5jCSGEEEIIcQHOtcuVpSbiDDFRkcRHBnKkpI6jpfV0bx8mf5QJIVqFpmls27aNPXv2UFNTA4CiKHTv3p0BAwbQqVMnHyc8U2FdIY/vfJzDVYcBmNtjLvf1uw8/g59P8thsNvz8/AgPD2fKlCnExsbKz2/xg07Pn1ZVFYfDwaZNm2jfvj29e/dukeMpikLQ5ElYU4d7N7+sX7mS+pUrz355iwWDLRRDqA3jN8W4wWYDXUMtKUUtK8VTWoZWWfmjx/YUFtL45ZdUmExYhw4hYNw4rKNHY2zFBQ/dunVjxowZLF++nK5du6Kqqqz6FkIIIYQQogXJo23xHd2jg5qK77J6VFXFYJBR8EKIlqcoCtnZ2dTU1BAQEEBSUhIpKSkE+2h15g/ZULCB5/Y8R4OngRD/EJ4Y9AQjO4xs9RynTp2iXbt2KIqCv78/M2fOJCIiAovF0upZxKXLaDRy/Phx9u3bBzStBE9OTm65432z+WXglKnUr16NWlWJVm1Hs9tR7U3vUVV0hwO12IFaXMKPTgT398cUHYUxKhpjTDSmb94bo6Mxhobi2Lefhg0bcB87RuPWbTRu3QamZ7EMHkLguHFYrxmNMTS0xW7zabGxsdx+++0EBwfjcrkApPwWQgghhBCihcioE2TUyX9zuVz879ubWH5cpae1hl8Mj2T8+PG+jiWEuExVVlYSEhKCoii4XC5OnDhBfX09iYmJbbIMcqgOXkx/kWXHlwGQFJHEs0OfJSYgplVzqKrKli1b2Lt3L2PGjOGqq67CaDTK5pXigum6zpo1a9izZw8A11xzDQMHDvRZFr2uzluCa9XVqNV2NHt1UykOGKNjMEZHYYqJwRgVhcFmO6evfffxE9RvWN9Ugh899p8zTEYsgwZ7x6EYW2n/AIfDwVdffcXYsWPb5M88IYQQQggh2iIZdSIuiMlkovZkNpBAqcPIqVOnfB1JCHEZ0nWdXbt2sXHjRgYPHkxqairQtBqyrcqtyeWxnY9x1H4UBYVbe93KHb3vwGRo3V+lHo+HlStXcvToUQDsdjv+/v5SmomLoigKkyZNws/Pjx07dvD5559jt9vp1asXMTExGI3GVs2iBAc3zeJu5hFHfvFx2O66C9tdd+E+cYL6jRtpWL8Bd04Ojh07cOzYQeXvn8cyaBC2e+7BnNSvWY//33RdZ+nSpZw8eZKqqipmz54tr7ITQgghhBCiGcmja3EGg8FArK1pIzS7buVUcQmapvk4lRDiclJZWcnbb7/NunXr8Hg8FBUVtfmfM2ty1/CTDT/hqP0oYeYw/n7137mn7z2tXnq7XC6WLl3K0aNHMRqNTJ8+ncmTJ0vpLZqFoiiMHz+e0aNHA7Bv3z4++OAD0tPTvZfxeDytthlmS/OLi8N2xx10+HARHZYtxXbfffj16AGqimPnTopvu42K559Hq61tkeMrikJqaipGo5EjR46wfPly5IWYQgghhBBCNB/5S1l8R3xMKMYSDRUDJfUqNTU12Gw2X8cSQlzidF1n9+7dbNiwAY/Hg5+fH6NHjyY5ObnNjueoc9fxwv4XWJO3BoBB0YN4esjTRFgiWj2Lw+FgyZIlFBUV4efnxw033ECPHj3a7H0nLk2KojBq1CgiIiLIzMwkPz//jI1lDx8+zIYNG+jQoQOdO3emS5cutGvX7pJ/8sWva1dC77id0Dtux52fj/3f/6Z+5SrqFn9M4+efE/bLXxIwblyzf7917dqVqVOn8sknn5CZmYnZbGbSpEnyfS2EEEIIIUQzkBnfyIzvb1u3bh2Pbq6hUg9gjP9RfjknjV69evk6lhDiElZdXc3y5cvJy8sDoEuXLlx77bWEtsJmchdqZ/FOntvzHKWNpRgwcFffu5jfcz5GpfVGPpymaRoffPABxcXFmM1mZs+eTVxcnJRjosVpmoau62iahqqqfPrpp2RkZJxxGZPJRPv27encuTPJyckEBQX5KG3zcnz1FRXP/R5Pfj4AltRUwn/9K/w6dmz2Y3399desXr0agNTUVMaNG9fsxxBCCCGEEOJyITO+xQWLiIjAZiihUg2gWrNy6tQpKb6FEBdF0zTvSuVRo0aRkpLSZkvbOncdf8/4OytOrACgU2Anfjv4t6REpvgsk8FgICkpiZqaGm688UY6d+7cZu8/cXk5PXPaaDTi5+fHddddx9ChQ8nNzSU3N5eCggIaGhooKCjg5MmT2Gw2+vTp4+PUzcMyaBAdPlyE/a23sb/1Fo5t2zg1axahd91NyLy5KH5+zXas3r1743K5WL9+Pdu2bSMwMJBhw4Y12/V/H13XaWhowOFwEBHR+q9kEUIIIYQQoiVJ8S2+IyIigjClEYBq3UJxcbGPEwkhLkWNjY1YrVY0TcNqtTJlyhQiIyPb9Oikbae28fze5ylrLENB4cbuN3Jv33uxmCy+jkZycjJ9+vQhODhYSm/hMwaDgXbt2tGuXTuGDh2KpmmUl5dz/PhxwsLC6Ny5s68jNivFbMZ2z90ETkij4vfP49y7l+qXXqJ+7VoiHnusWTe/TElJwel0sm/fPjp37oymac262eXOnTspKSmhrq7O+1ZfX4+u6wQFBfHQQw+h6zq6rrN+/XpsNhvDhw+XnzdCCCGEEOKSJcW3+I6mFd9NxXetIZjwcCu6rssfPkKIc6KqKnv27GHTpk3MnDmTjt+MBejWrZuPk32/GlcNL2a8yOrcplEDnYM68/igx326yruyspKNGzcyefJkAgICMJlMWK1W+Vks2hSDwUB0dDTR0dHouo7L5UJV1cvucYNfXBwxb7xO/cqVVP3tRdw5ORTfdhtBM28g7IEHMAQHN8txhgwZQnJyMhaLBafTicViuaD7saCggNzcXEaMGIHH40HXdQ4fPkz+N2Nbvk3XdZxOJ4qiUFBQwJ49ewAoKipi2rRp+Pv7X9TtEkIIIYQQwhdkxjcy4/vbdF3nwPFTTHtzP35Ghb2PXk1QQECzrjoSQlx+NE3j4MGDbN68maqqKgB69erFlClTfJzsh209tZU/7PkDZY6mVd5zeszh7j53+3SVd2lpKYsXL6ahoYGePXsyY8YM/JpxrIIQLUXXdfLz81m1ahUTJkygQ4cOvo7U7NSqKqpefJH6lasAMEZGtNjml3l5eSiKQs+ePX/0spqmcfjwYXbu3ElhYSEAt912G5GRkQAcPHiQuro6AgMDz3izWq0Yjf/Zu0DXddLT09m0aROaphEVFcWNN94oo1CEEEIIIUSbca5drhTfSPF9Nqqq0efJdTg8GqvvG0JiBxsmk7xAQAjxXbquk52dzaZNmygtLQUgICCA4cOHt+lZ3jWuGv6W/jfW5K0BoEtQF3476LckRSb5NFdRUREff/wxTqeT6Oho5syZ06bHwwjxbUuXLiUzM5OQkBDmz5+P1Wr1daQW8e3NL839+2MZNhRzv36Y+/TBcJGbfBYXF7NgwQIA5syZQ0JCwlkvd3o8yq5du7Db7UDTTPbevXszdOjQC/75UVhYyIoVK6ivr8dsNjN9+nQSExMv7MYIIYQQQgjRjM61y/XpEt4vvviCqVOn0qFDBxRFYfny5Wecr+s6TzzxBO3bt8dqtTJu3DhycnLOuExlZSXz5s0jJCQEm83G7bffTl1dXWvejMuS0WggPioAgOySWrlPhRDfa/ny5SxatIjS0lLMZjMjR478f/buOzyq61r4/3e6eu8NUEdCSCBRRUeYGtMSwIViO8ZxEpfkliT3vf4lfn++SW5uboodJ7ZTwMY2mGKbZmOqIAhEEZJoQiCh3nudPuf9Y9AJClUgNMLsz/PMI2nqHs3MmXPWXnstnn/+eUaNGjVog95Hqo/wxFdP8EXZFyhR8lTsU2x4bIPDg97l5eVs3rwZo9FISEgIK1euFEFv4aEzb948vL29aW9v54svvuDrmmPR0/zSc+1a0Ggw5ubS9sc/Uf/id6mYOo3qZctpeuO/6NyxA3NpaZ//DwEBAURFRWG1Wvnkk09uWqaksrKS3/zmN+zdu5e2tjacnZ2ZMGECL7zwAnPmzLmv7UdYWBirVq0iNDQUo9HIpk2bOHr06D3fnyAIgiAIgiAMNIem8HZ1dZGcnMyzzz7LkiVLbrj8V7/6FW+++Sbvv/8+w4YN47XXXmP27NlcvHgRJyf7EvSnnnqKmpoa9u3bh9ls5plnnmHt2rVyhoxwb65evYqToQXQsGHHfkwjPFi+fLmjhyUIwiDRU7/XZrMRGRlJQUEBo0ePZuzYsfL2eTBqM7Xxm9zfsKd8DwBD3Yfyn2P+kyTf/mtQd6+uXr3K9u3bsVgsREREsHz5clxcXBw9LEHoMycnJ5YtW8Zf/vIXrl69ysmTJxk3bly/3HdLSwtNTU34+fnh6enp8Mk1ufnlgvno//53jGfPYTx7FmtNDeaiIsxFRXR++ikASg8PtElJ6EYmoRs58o5Z4Uqlkvnz52MymSgtLeXjjz9m9erVeHl54exs77/i4+ODWq3G3d2d1NRUEhIS+rUskpubG8uXL+fQoUPk5ubi6enZ7003BUEQBEEQBOFBGTSlThQKBZ999hmLFi0C7EGVkJAQ/uVf/oV//dd/BaCtrY3AwEDWr1/PihUrKCgoICEhgVOnTpGWlgbAnj17mDdvHpWVlXddV1KUOrlRfn4+/3dLNjmWMIapmlkU0MzLL7/s8ANMQRAcq6GhgYMHDzJ06FBGjRolN03r7u7G1dXV0cO7reO1x3nj1Bs0GhrtWd5xT/F84vPoVDpHDw2bzca6detobm4mKiqKb33rW+h0jh+XINyPnJwcdu3ahUKhYPny5YSHh9/3fVZVVbFp0yZsNhs6nQ5/f3+5uWZAQAC+vr6DojSbpaEB07lzciDcVFCAZDT2vpJCgeucOfj85/9BeZtyMGazmS1btlBVVYVKpcLT05O1a9ditVoB+2SAl5fXA99Hq6+vJyAgAACtVotCoehVG1wQBEEQBEEQBsrdxnIdf2RwCyUlJdTW1pKRkSGf5+npybhx4zh+/DgrVqzg+PHjeHl5yUFvgIyMDJRKJSdOnGDx4sU3vW+j0YjxuoOP9vb2B/dEHlI+Pj54K/UAtNicaG1tRa/Xi+xDQXhEtba2kpmZydmzZ5EkiYqKChISElCpVCgUikEd9DZYDLx19i22Fm8F7Fner415jRG+Ixw8sn9QKpUsXbqUnJwcZs+ejVardfSQBOG+jR49mrKyMs6dO8fOnTtZvXr1PW0relaYAISEhJCcnEx+fj5Go5HKykq5kSNAQkIC8+fPB+wTSuXl5QQEBAz4/ova3x/1jBm4zJhhfw5mM6YrVzCePXvtdA5rdTVdX36JuawM/9/+BrW//03vS6PRsHTpUj755BPq6upobW2lurqawMBAALy9vQfkOfUEvcE+Cbpp0yYyMjJISnL8ihlBEARBEARBuJlBG/iura0FkHfqewQGBsqX1dbW9toJB1Cr1fj4+MjXuZlf/OIXvP766/084q8XX19fvBT2wHe75IxNUlBbW0tkZKSDRyYIwkCSJImjR4+SmZmJzWYDICYmhkmTJj0UmX4FLQX87MTPKO0oBWBZ9DK+N/J7OKkcX47l6tWrNDY2MnbsWAC8vLyYN2/eQ/F/FYS7oVAoWLBgATU1Nbi6ut5TRnJtbS1ffPEF3/jGN/D390epVLJgwQLmzZtHfX09tbW11NbWUldX1ysjGex9YLZs2QJAXFwcc+bMcdikkkKjQZeQgC4hAVasAMCQc4aGf/tXTBcvUrtyFQG/+y3a+Pib3l6n07F8+XKKiooYMmQIbvfZOPPwJzDRAAAgAElEQVR+5eTk0N7ezqeffkp1dTWzZs0S5U8EQRAEQRCEQWfQBr4fpJ/85Cf88Ic/lP9ub2/vl+W3XycuLi74u6hQG61YUNEu6aipqRGBb0F4hJjNZrZv386FCxcAGDJkCJMnTyY4ONjBI7szi83ChsIN/PnCn7FKVvyc/HhtzGuMDxrv6KFhNBo5dOgQ586dQ6FQEB4eTlhYmFw6QBC+TrRaLatXr0atVsuTZ3dDkiTy8vI4dOgQVquVw4cPs3z5cvlzolQqCQkJ6VXWzmazYbVa5f4DJpMJLy8vWltbKSwspKWlhSVLluDu7v4gnmqfOaWOJuj992l49QeYS0qoffY5/P7rDVymT7/p9XU6HYmJiQM8ypubNm0aarWaEydOkJ2dTU1NDUuWLBElAwVBEARBEIRBZdCmZgQFBQFQV1fX6/y6ujr5sqCgIOrr63tdbrFYaG5ulq9zMzqdDg8Pj14n4Ua+vj54KQwAtErO1NTUOHhEgiAMpJqaGi5evIhSqeSxxx5j2bJlD0XQu6qzihczX+Sd8+9glazMCJvBx499PCiC3mVlZaxfv55z584B9lIQISEh6HQ6EfQWvrbc3Nx6vcc7Oztve32TycSuXbvYv38/VquV6OholixZcsfPiVKpRKPRoFar0Wq1REdH8/LLL/PMM8/g4uJCfX09H3744Q37lo6kCQ8naP06nMaPRzIYaPjXf6Nt/XoGSQueW1IqlUyZMoXHH38cjUZDWVkZb731Fvv378dgMDh6eIIgCIIgCIIADOLA97BhwwgKCuLAgQPyee3t7Zw4cYIJEyYAMGHCBFpbW8nJyZGvc/DgQWw2G+PGjRvwMX/d+Pn54XVdne/BdKAoCMKDJUkSwcHBPPbYYyxfvpzk5GRHD+mOJEliR8kOnt73NGebzuKiduGnY37Kz8f/HE+dp0PHZjKZ2LdvH5s3b5abcDz55JPMnz8f59s0tROEr4ueRohfffUV69evp6Oj46bXa2hoYMOGDVy6dAmlUsn06dNZsWLFPZf2UCgURERE8Nxzz+Hr60tnZycbN26kqKjofp5Ov1K6uxPw5u9xX7YMJInWN9+i6WevI5nNjh7aHcXFxbFy5UrCwsKwWCxkZWWRm5s76AP3giAIgiAIwqPBoaVOOjs7ex14lJSUkJeXh4+PDxEREbz66qu88cYbxMTEMGzYMF577TVCQkJYtGgRAMOHD2fOnDk8//zzvPPOO5jNZr7//e+zYsWKXktfhXtjb3BZB1awugWQmOjVq8GUIAhfP/n5+YSGhuLu7o7VamXkyJGOHtJdaTG28IvTv+Bw9WEAUvxS+OnYnxLi6vjvAkmS2Lhxo7xCKSUlhVmzZolmwcIjR6lUUl9fj16vZ8eOHaxYsaJXTfu6ujo+/vhjLBYLbm5uLFq0iMjIyH7Z7/Dx8eHb3/42mzdvpqSkBKvVet/32Z8UajU+P/4R6qFDafn1r+nauRNLVRX+//MrVAPUvPJe+fr6smLFCoqLi8nLyyMxMRGDwYBWq6W7uxs3N7d+23fU6/V0d3fj4+Mj9kcFQRAEQRCEO1JIDkzJyMzMZPpN6hiuXr2a9deWef70pz/lvffeo7W1lUmTJvHHP/6R2NhY+brNzc18//vfZ+fOnSiVSpYuXcqbb77Zp8ygnuy7trY2UfbkOmazmYMFdbzwcT5R/i7sfHEcOp1ONF4ThK8hm83Gvn37yM7OxsfHh5UrVzqsCVxfZdVk8capN2g2NqNWqHlhxAs8FfcUKsXg2Vbl5+dz/Phx5s2bR1xcnAjYCI+slpYW3n33XYxGI2lpab32A202G5s3b0alUrFw4UI8PT37/bNitVopLi4mLCysX++3P+mzjtHwkx8jdXahDgsj4Pe/QzNsmKOH1Wc2m41169ah0+mYNWsWw/rwHCRJoq6ujkuXLjF69Gjc3NywWq2cOXOGPXv24OrqSkREhHwKCgoSzTUFQRAEQRAeIXcby3Vo4HuwEIHvWyttaGfa//4dtVLB6Z9MwdVJh0ajcfSwBEHoRwaDga1bt1JcXAzYy0ilp6cP+uCs3qLnrbNvsa14GwDDPIbx+tjXifOOc/DIoLq6GpvNJgfXer5qXVxcBv3/VRAetIKCAjZv3gzYmySOGjUKtdq+CNFkMuHq6vrA9zVsNhtGo5H29naOHDlCRkYGOp3ugT5mX5iKi6l/5VWs1dUo3Nzw/59f4fyQlfGrq6tj48aNmK+VbImOjiYjI4PAwMCbXt9ms1FWVkZhYSGXLl2ira0NgFmzZpGSkgLA8ePHOX78+A0Z+1qtlrCwMObPn4+Pj88DfFaCIAiCIAjCYCAC330gAt+3ZrFYGPl/99NtsrLhyTjCPdQMHTrU0cMSBKGfNDU1sXHjRpqamlCr1XJG8mBmsVnYVbqL9y68R5OhCYDlMcv5btJ3cVI5OXh0cPr0aTIzM3Fzc+OZZ57B2dkZrVYrshEF4TpfffUV2dnZAIwcOZLZs2ejVCoHtNFrT0ZyZWUlvr6+LFmyBC8vrwF57LthbWmh4V/+BWNePqhU+Pzo33H/5jfv6raS1YqtowNbWxsKZ2fUAQEPeLQ319XVxfHjx8nPz8dmswH2ck/Tp0+X97nb29s5ePAgly9fRq/Xy7dVq+37nKNGjeq172mxWKitraWyspKqqiqqqqowGo0AvPLKK7i4uKBSqcjLy6OxsREnJ/v3Qs/7SqFQoFQqSU9Pl++zoKCA5uZmFAoFXl5eDB8+XExSCoIgCIIgDGJ3G8t1aI1vYfDbt28fngoD3Wj565YvGBei4cUXX3T0sARB6AfFxcVs2bIFo9GIu7s7ixcvvmUm3mAgSRJZtVm8ffZtrrZfBSDENYQfp/6YcYGOz4SUJIkjR45w8uRJAMLCwtBoNAMayBOEh0VGRgaVlZVUVlbKAceB/qwolUrmzp0rT/599NFHLFq0iNDQ0AEbw+2ovL0JfOcdmv7/N+javZvmn/8C05UinFKSsba1Y2trw9behq21DWt7O7a2Vmytbdja27F1dMB1uS26lGRc5y/A9bFZKN3dB+w5uLq6kpGRQWpqKn//+98pLCwkLy+P8+fP88ILL+Dr64tKpeLcuXPYbDacnZ2JiooiOjqaoUOH3jTzX61WExYWJq+osdlsNDY20tjYiFarxWKxYLFYyM3Npaqq6qbjUiqVpKWlyX+fOXOmV9+htLQ05s2bJ7bdgiAIgiAIDzmR8Y3I+L6d9evX89EVBVesfqSoq0nV1fLjH/9YlDsRhIecJEmsX7+e8vJyuWmwq6uro4d1S5daLvFm/pvkNOQA4KH14Nnhz7I0ailaleNrkdtsNvbu3cu5c+cAmDp1KpMnTxY9EQThNsxmM2VlZURERDi0p0BbWxsbN26krq4OlUrF3LlzGT58uMPG888kSaL9b+toffvtPt9W4eaK1K2Ha9nWaLW4TJ2C6/z5OE+YgGKA9+eqq6s5fPgwCoWC5cuXy4Hl3Nxc/Pz8CA0N7bfVMQUFBVRXV2O1Wrn+cKenUfvs2bPl806fPk1dXR1Wq5XCwkIAJk6cyKxZs/plLIIgCIIgCEL/EqVO+kAEvm9t586dfHCiilOWcCI1bUxVX+G5554b1E2hBEG4M5vNRnNzMydPnmTSpElyfd3BpqarhnfOv8Oe8j0AaJValsUsY3X8ajy0g2N7bTab2bVrF0VFRXIwZezYsSJTUBAeIiaTia1bt3LlyhUA0tPTmTBhwqD6HHcfPEj7Rx+DSoXKyxOlhydKT0+Unh6oPL1Qenmi9Ljud3d3FBoNloYGur78kq5duzAXFcv3p/T2xnXOHFwXzEcbHz9gz1WSJEwm06CqqX69/Px89u7dC8D06dOZMmWKg0ckCIIgCIIg/DMR+O4DEfi+tWPHjrFuzwn2mWLx01r4hiqPefPmMWbMGEcPTRCEe9DY2Ii3t7dcD3Ww6jB1sP7SejZf2YzJZgJgTsQcvjPiOwS7Bjt4dL0dPnyYkydPolKpePzxx0lKShpUwTJBEO5Oz8qNEydOEB4e3isjuT9JkkRpaSlnzpzB39+f8ePHD0jGuyRJmC9fpnPXbrq+/BJbc7N8mSYqCtf583GdN9dh9cAHk1OnTpGZmYmzszPf/e53cXNzc/SQBEEQBEEQhOuIGt9Cv/D19cVLYW801GxSY3VSUFNT4+BRCYJwLy5evMiWLVuYMGEC6enpgzI4a7aZ2Vq0lb8V/I12UzsAqf6pvJT8EsO9B0/pgetNmDCB2tpa0tPTiYmJGZT/V0EQ7kypVDJnzhz8/Pzw8fGRP8t6vZ7u7m58fX3v+zEaGhrYv38/lZWVAFy9epWCggIyMjKIioq67/u/HYVCgTYuDp+4OLxfeRlDdjadu3bTnZmJubiY1jffpPWtt3AaOxb3J1bg8ghnOvckeAwbNgyVSiWXRxEEQRAEQRAeLiLwLdyWr68vrgozGqyYUdEmOVFXV+foYQmC0EdNTU1s374dAIvFMugO4CVJ4mDlQd4+9zZVXfZmZMM8hvH9kd8nPWjwBen1ej1OTk72QJJWyxNPPCGaWArC10RaWhqSJGGxWDCbzWRnZ5OTk0NSUhLp6en3lf2rVqupqqpCpVKRmJhIaWkp7e3tfPrpp8TGxjJ37twByf5WqNU4T5qE86RJ2Do66Nq/n65duzHm5mI4cQLDiRM4T5uKz7//O+qgoAc+nsGoJ/gtSRIGgwGFQoGTk5ODRyUIgiAIgiD0hQh8C7fl7e2NUqnAS6GnQXKj1eZEfX09VqtVNG0ThIeE2Wxmy5YtmEwmwsLCmDx5sqOH1EursZWfn/45h6sPA+Dn5MfaxLXMHzoftXLwfU3V19ezZcsW0tLSGDduHGq1Go1GI4LegvA1olAo0Gg0qFQqurq6kCSJs2fPUlBQQFpaGmPHjr2rAHVdXR3l5eVyENXb25t58+YRGRmJt7c3JpOJw4cPk52djcFgcEjzcKW7O+6LF+O+eDHmqio6N2+hfePH6DMPU33iJF4vvoj7iuUoBmkviIFQVlbG9u3bWbJkCTExMY4ejiAIgiAIgnCXRI1vRI3vO3n77bf5stGb83pP5g1R8Pz4YBITEwckI0kQhPu3Y8cOcnNzcXFxYfXq1YOqVumxmmO8cfoNmgxNqBVq1gxfw9NxT+Osdnb00G6qoqKCTz/9FJPJhL+/P8888wzOzoNzrIIg9J/S0lL27dtHdXU1AC4uLkycOJGRI0feNBGgoaGBrKwsuVnmmjVr8Pf3R6PRoFarb5goq62tRaFQ4O7uDoDRaKS1tZXAwMAH/MxuzlRURPPPf44xLx8AbXwcPv/n/6BLTHTIeBxt9+7dXLx4EbVazdNPP82QIUMcPSRBEARB6BNJkmhqaqKsrIyysjJUKhXp6en4+fk5emiCcE9Ec8s+EIHv27PZbLybeYX/3ltERrwfby5LQqPROCQrSRCEvsnLy5NLnCxbtmzQHKwbLAbeOvsWW4u3AvayJq+PfZ047zgHj+zWioqK2LlzJxaLhbCwMJYvXz6oJhEEQXiwJEni4sWLHDhwgJaWFgDGjx/faxVNc3MzWVlZXLp0ST5v+PDhTJ8+HT8/vzuuDLFarZhMJvbu3Ut+fj6pqamkp6c7JNlAstno/PxzWn//JraODlAocF++DK/vfhflI7bts1qtfPbZZ5SUlKDValm9ejUhISGOHpYgCIIg3JIkSRiNRrlMV1NTE3/4wx96XUehUJCamsq0adNwdXXtl8dtbW3F09MTsK88Pn/+PN3d3UycOBGlUtkvjyEIIJpbCv1IqVQSE2DfCBY1dAH2YLggCINbe3s7u3fvBmDSpEmDJuh9qeUSPz3xU0o7SgFYFr2M7438Hk6qwVs79dy5c3z11VdIkkR0dDRLly4VtV4F4RGjUChITEwkPj6e06dPc/z4cUaNGgVAd3c3mZmZXLx4kZ6ckri4OKZMmUJwcPBdl0JSqVTodDpMJhOSJHH69GkuX748IM0v/5lCqcR9yRJcpk6l5Te/pevLL+nY9AndBw7i/e//hsuMGY9MiSeVSsXChQvZunUrlZWVfPjhh6xZs4aAgABHD00QBEEQAHugu66uTs7oLisrIyIigiVLlmC1WnFycsLLywt3d3fCwsJoaGigqKiI06dPc/bsWb71rW8RHR19z4/f1dXFkSNHOH36NN/4xjeIjY2lq6uLvXv3YjQauXDhAgsXLiToEe0dcjuSJJGbm0t2djZOTk4EBQURGBjI0KFD+6W5+qNOZHwjMr7vRnlDG1P+9yhKBWx7IgKTvptx48Y5eliCINxBT9Bk4cKFDg9QWCUrHxZ+yHvn38MiWfBz8uO1Ma8xPmi8Q8d1J/n5+ezduxeAESNG8Pjjj4sVL4IgYLVakSQJs9mM0WjkvffeQ6/XEx0dzZQpUwgLC7uv7e7ly5f54osvaGtrAyA2NpYZM2bI5VAGmj47m+Zf/BJLRQUAzpMm4fPjH6EegMxnSZKwVFaidHdH5eX1wB/vVoxGI5s3b6a2thY3NzeeeeYZfHx8HDYeQRAEQSgtLSU7O5uysjIMBkOvyzw8PFi7dq28PyJJUq99k/LycjIzM2lpaeH555+/1uNN2af9F5PJRHZ2NllZWZhMJgBGjhzJ7NmzkSSJ8+fPc+jQIYxGI0qlkvT0dKZMmYL6Ee4dcj2DwcDOnTu5ePHiDZdNnz6d9PR0lEolHR0d5OXlERgYSFBQEB4eHg4/vnc0UeqkD0Tg+/YaGhr4/PPt/LokEKNNyULdBXyUel599VV5CYsgCIOPxWKRswYd/aVY3VXN6ydfJ68xD4BpodP4j9T/wFM3+Lchly9fZvv27YwdO5bHHntMNPYVBKEXSZKwWCxcvHgRT09PhgwZ0m/bXLPZzKFDh8jOzkaSJDQaDcuXLyc4OLhf7r+vbAYD7X/7G23r3weLBYWTE54vvIDHk0+g6McJQclsxlRYiDEvD0NuLsbcPGytraBS4ZSaisusWbjMmI7K27vfHvNu6fV6Nm3aRGNjI6NGjeLxxx8f8DEIgiAIAtgn4f/whz/Q2toKgEajISwsjPDwcMLCwggKCrrjsUtP7e+eWt9KpZIjR44QFxd32xXDNpuN3NxcMjMz6ezsBCAwMJCpU6fecLvOzk72798v9z7x9fVl4cKFhIeH3/Nz/zqwWq288847NDY2ypMC7u7uNDQ00NDQwPjx4+X/UWFhITt27JBv6+TkRGBgINOnTx80K7sHmgh894EIfN9eW1sbv/vd79htjKfe5saiwBa824vJyMggPT3d0cMTBOGfFBYWEhISMigCtJIk8WX5l/z6zK/psnThonbhhyk/ZMHQBQ4Pxt9MS0sLZ86cwcPDgzFjxgD2nbqCggJSU1NFXTpBEByitraWnTt3Ultby/e//310Oh0ABQUF6PV6oqKiBjQZwXy1hKb/+i+MubkAaKKjcU5PRxUYiDowAFVgEOrAAJTe3ijuYrtp6+rCeO4cxlx7oNt0/jzSP2WtodGA2fyPv3uC4BkZuMycMaBB8M7OTk6dOsWUKVNwcnISq4AEQRCEAXN9CM9isVBYWEhRURFJSUkEBgbe9/FKSUkJW7fa+zDFxcUxa9asm5bb2LZtG+fPnwfA09OTyZMnEx8ff9tjvMLCQvbv3093dzdKpZKXXnoJLweu5HI0SZI4fvw4p06dYsGCBbdNbKisrCQ/P5/6+nqam5vl8sNPPvkkkZGRg+LYf6CJwHcfiMD37UmSxM9//nMOd4dy2erP49E6fKuyCA4OZu3atY4eniAI16msrGTdunW4uLiwcuVKhzZfbDO18aucX7G/cj8AI31H8rOxPyPULdRhY7oZSZKoqKggJyeHoqIiAFxdXVm7di1arRaNRtPnJX+CIAj9TZIkqqur8ff3l8usbNiwgdraWgD8/PyIjo4mKiqKoKCgBz5RJ9lsdO3YScvvf4/tWjmWG2g0qAMCUAUGogoMQB0QKAfHJYsFY14+xrw8TJcvg9Xa66ZKT090ycnoRo3CKSUF7fB4LHV1dB84QPe+/ZgKCq67svJaJngGLjNmoBrg8iONjY3k5+cTExNDZGSkQ5qRCl8/FouFAwcOoNfrB0XJOkEQHK+xsZFdu3aRmJhIUlLSA+m91tXVRVZWFmfPnkWSJJRKJWlpaUydOhVnZ2cUCgU2m40rV66wfft2JkyYQHJy8l2XLtHr9WRmZqLT6ZgxYwZarRaVSvXIbOPa29vR6/X4+flhMpmw2WyYzeY+7TtYLBaamppoaGggNjYWV1fXR3ISXgS++0AEvu/sT3/6E4eq4aQ5gilRXkTXHECSJF566SVR21AQBonu7m7ee+892traiI2N5fHHH3fYDsSpulO8fup1GvQNqBQqvp3wbVbFr0KtHDy13CwWC5cuXeL06dM0NDTI5w8bNoyxY8cSExPzSM6cC4LwcLBarRw7dozLly9TVVXVKwPMxcWF+Ph4Zs6c+eDH0dJC1xdfYqmuxlpXh6W+DmttHdamJujDYYYqJASnlBR0KSnoRo9CM3TobbPFzZWVdO/fPyiC4EePHuX48eOAvRFmREQEMTExxMTE4Ovr+8gczAv9p7W1lc2bN1NTU8OkSZOYPHkyGo1GvJcE4RFlsVg4evQoR48exWq14ubmxtq1ax/osUpjYyOHDx/m6tWr8nnp6elMnjwZ67XJapPJdM+TvdeX4+xZdZuRkYGzs/Mtb2Oz2SgrK6O9vZ2Ojg75p4uLi1zipadky2BUWFjI9u3b0el0rFq1Sl7Bd780Go0IfIvA9+2JwPedbd68mQPnK/nKFEeEjzPP+JdRXl7O9OnTmTJliqOHJwiPPEmS2LhxI1euXMHLy6tfv0j7os3Yxu/P/p7dpbsBCHcL5/Vxr5PokzjgY7mTAwcOcObMGcC+s5CYmMjYsWMJCgoSB5aCIDxUurq6uHz5MpcvX+bq1auYTCbi4uIcWn9aMpuxNjTaA+F1dVhq67DW9/ysB6sVbVISTqNHoUtJQR0YeM+PZQ+CH6B7/35M1zeHUipxnjoVj6efQpeS8sC27VVVVVy6dIni4mK5GWkPb29vVq1a9Ugv5Rb6pri4mG3btqHX61EqlSxfvpywsDAA6urqaGhoIC0tTZRfe4i0trbS0NBAVFSUeN2EPispKWH37t00NTUBEBkZSUZGxoCVOCstLSUzM5OGhgZ0Oh3f+c53+nVlkyRJfPLJJ1RUVODq6sqECRMwm81yUDsgIICMjAwkScJqtfLLX/7ylpnuYWFhrFmzRl6tW1JSQkBAAK6urv023nthsVjYu3cvp06dAuy10BctWtRv8UcR+L59LHfwpN4Jg5qPjw9eSnsJgIpmPZET4ygvL+fChQsi8C0Ig8DRo0e5cuUKarWahQsXDnjQW5Ik9pTv4Xd5v6PV1IoCBUuilvDSyJdwVt961n4gma/Vhu3ZKUhKSuLKlSuMHj2a1NRU3NzcRMBbEISHkqurK6NGjWLUqFFYLBZKS0tRq9UoFAokSaKzs5PLly8zatSoAdvOKTQa1CHBqEMefCNOTVgYnmtW47lm9Q1BcP2hQ+gPHUKbkIDH00/hMnNmvzbiBAgNDSU0NJQZM2bQ0tLC1atXuXr1KpWVlej1ejQaDSaTCZVKRU5ODgDR0dF4e3uL7x1BJkkSR48e5dChQ0iSRFBQEAsXLpQP5m02G19++SUNDQ3k5OQwZ84chg0b5uBRC7djNBo5cuQIJ06cwGq1kpCQwLe+9S1HD0t4SHR3d7N3717y8/MB+3f9zJkziY2NHdDvjqFDh7Jq1SpKSkrw9vbu93JeCoWCyZMns2fPHpqbm9m/f3+vy/V6PXq9Xv67ZyLQ3d0dd3d3XF1daW9vp6amhvDwcIxGI2A/9vvggw8A8PLyIjQ0lLCwMEJDQwkODr7r0iz3q6Ghga1bt1JfXw9AWloakydPHrDHF0TGNyAyvu9Gbm4u27fvYJNpNAabko9WJXFw2/vyEhtHz6AJwqOspKSEDRs2IEkSc+bMISkpaUAfv7Kzkv8+89+crDsJQJRHFD9J+wlJvgM7jttpaWlhx44dBAYGMmfOHMDesVylUsnBIUEQhK8jk8nEunXrqK2tZcSIEcyaNeuROdgyXb1Kx0cf07l7N5hMAKgCA3Ffvhy3JYtRPeD9fpPJRHNzM0FBQYA9sPnuu+/S0dEB2A/EIyMjiYqKYtiwYbdd3i3cntlspra2lurqaqqrq+nq6pJr4D4M73eTycRnn33GpUuXABg5ciQzZ87sNXabzUZeXh5ZWVkYrjV/jY+PZ/bs2WJFwSDT81odPHiQrq4uANRqNYsWLSIqKkoOHCoUCrEPKtxSVVUVf/3rX5EkiZSUFKZMmeKQFb0DxWKxcOrUKWpqanB1dZUD297e3nKwuy+amprYvn27nCl/PaVSyeTJk5k2bZr82A0NDfj6+vZbYF+SJM6cOcOePXuwWCy4uLgwd+5cIiMj++X+rycyvkWpkzsSge87q6ioYNu2bWzvjKSkU8UvFw0nPVSDj4+P3PxNEISBJ0kS69ato6KighEjRjB37twBe2yLzcJHlz/irxf+itFmRKvU8lzCczwV9xQa5eDZJhQWFrJnzx5MJhPOzs48++yz+Pj4iKWmgiA8EiRJ4sSJE+zduxdJkggJCWHRokWPVNKCtaWFjq1b6fhkM7bmZgAUzs64Pf447k88gSYifGDGYbVy+vRpSkpKqKqq6rVUW6FQkJiYyNKlSwdkLA+z6+vCWiwW/vKXv1BfX8/NDmuHDRvGypUrH1hwsbGxsV/2KaxWKx988AFVVVXMnDmT5OTkW15Xr9eTlZVFXl4ekiShUqmYOHEikyZNEo1VB4GysjL27NkjNx729vZm+vTphIeH96rTnp2dTVlZGTNnziQiIsIhY+3q6qKzs5OAgAARgHcwSZKoq6ujvLycMWPGIEkSJpOJkydPEhISQkhIiKOH2CddRoNcnu0AACAASURBVAvnqjuoajUwKcqHQA/HBeyNRiM1NTW9Tt3d3cycOZPRo0ejVCqpq6tj/fr1AHh6euLn5yef/P39CQwMxMnJCbBPVLa3t2M0GjEajRgMhl4/4+PjCQoK6lWKdMiQIcybNw83N7d+f35mqw2dVouT7tHb/ovAdx+IwPfdsVgs/Mdn59icU8230yP44cwowL6jLjJUBMFxOjo6OHLkCJMmTRqwSahzTef4Zc4vKWqzl0AaEzCGH6X+iHC3gQke3A2r1crhw4flZeWhoaEsWbJELC0XBOGRVFRUxNatWzEajXh4eLB48WICAgIcPawBJZlMdO3ZQ/uHH2Eusn9/oVDgPHUKHk89jW70wJWCMZlMVFRUUFZWRmlpKU1NTaSmpjJz5kxUKhWSJPHZZ58xbNgwIiMj8fPzeyS/uyRJoqmpicrKSqqqqqipqcHZ2ZkVK1Zgs9mw2Wy88847tLa24uLiQnBwMEFBQSiVSnJzc5kyZQojRoxAo9Fgs9kwGo24u7vf01gMBgOtra1yQMNoNPLWW2+hVCoZMWIEycnJcnZ/X54f2DPW29raaG9vJzj47soDNTQ0cPDgQcrLywFYvHgxSUlJj+T7ZDDZv38/WVlZ6HQ6JkyYwOjRo29oQGi1WnnnnXfo7u4GICYmhhkzZvT5/XOvampq+PLLL6moqADAz8+P8ePHM3LkSIcmtEmShCRJj0Ryis1mo66ujtLSUsrKyigrK5NXcjz33HP49LExs9FipdtkRW+2YTTb0JutGC3XfpptGCxWDGZbr/M0aiVDfJwZ4uNChI8TOvW9Ncq0SRKlTd3kV7aTV9nO2ao2rtR3YbsWaVQrFcxOCGD1+DBGhDg+3iZJEh0dHWg0GjmO1VNH/fqSKtfLyMhgwoQJAFy4cIFPP/30lvc/d+5cRo4ciSRJdHV1UVBQwOjRo+9r22y1SVS3GShr6qasWX/t1E1pk57qVgOfrB1L2rDB29TzQRGB7z4Qge+7Y7PZ+MuRIn6+5wrTYnz54xMjAfsXt1qtFsFvQRgAJpOJ/Px8zp8/z1NPPSU3+RgoneZO/nTuT2wr3oaEhKfWk1eTX2XukLmD6kCrvb2dHTt2UFNTA8CYMWPIyMgQmVCCIDzSGhoa2LhxIy0tLWg0GubNm0dsbKyjhzXgJEnCcPIkHR99hP5olny+Nj4ej5VP4/LYYyhU9xYAuFcdHR1IkiQfi5SVlbF582b5cm9vb77xjW88MjWdy8rKKCgooLCwkNbW1l6X6XQ6XnrpJXm/o6amBjc3txt6dVgsFpRKpRxEO3PmDJmZmSQnJzNx4kR8fX3vOA6r1UpRURFnz56lsLAQLy8vnnvuOSRJorGxkU2bNvUKlAQEBJCcnExSUtJtA+xWq5X9+/cjSRLTpk27ZaO2O5EkiStXrnD58mXmz5+PSqVCq9ViMBhwcXG5p/sU+sZkMtHV1YWXlxcWi4Wuri6ysrIYN27cbV+D9vZ2jh8/zrlz5+QJkMTERKZPn35X7827ZbPZqKioQKlUEh4ejs1mo7m5mbfffhsAlUolH0s4OzuTmprKuHHj+iUztb29nUuXLtHR0cHMmTPl89evX097eztWqxWLxYLVapV/DwwMZO3atXIAvKOjA3d390F1nHG/8vLy+Oqrr+RAdw+NRkNYWBiTJ08m8C4bPjd0GvnV3mK+OF/H/QT2FECwpxNDfJwZ6utyLSDuzBBfF0K9nNCo/jEZ0W4wc7aynfyqdvIr2zlb1U67wXLDfQZ76vBx0XKhpkM+b3S4J6vHhzMjzg+VcvC9pt3d3TQ3N9PU1ERTUxPNzc00Nzcza9Ys+fu3pKSEnTt3otPp0Gq16HQ6+aTVaklISLin0iwA9R1GrjZ2U3otwF3ebP9Z0aLHbL31K/zrbybxzTTHrBxxJBH47gMR+L47kiRxoqiOFX/NwVmjJPMH6RRfOs/f//53Ro8ezaxZsxw9REH42mptbeXkyZOcOXNGbtgx0PW8M6sy+XXur2nQNwAwb8g8Xkl+BS/d4KorabPZWLduHc3Nzeh0OubPn8+IESO+VjvMgiAI90qv17NlyxZKSkrw8/Nj9erVj0R23a2YS0po/3gjXbt2IV37ftXExOD9g1dxHj/eYePqCRiVlpZSWVmJ1WpFoVDIWWdft+80i8Ui17OWJIn333+fsrIywB6Y68nk7jl5eXn1+X+wc+dOuYY2wPDhw0lPTyc0NLTX9SRJorKykrNnz3LhwoVegW1fX19WrFghBzStVislJSVcuHCB4uJiOYCoUCiYN28eaWlpN4yjs7OTrVu3ys9v9erV/br6wmg08uc//5nw8HCmT58+YFnEjxpJkjh79iwHDhzA3d2dJ5988p4+ly0tLWRlZVFQUADY3zsLFixg9OjR9zw2k8lEcXExhYWFXL58Gb1eT1RUFEuXLpWD7AUFBYSGhqLT6Th37hxnzpyhra0NgDVr1hAREXFPz6exsZFLly5x6dIlqqqqAAgKCmLlypXydd59913a29tvensfHx+ee+45wL5P/9577+Hk5MSYMWMYOXJkv9W4tlqtVFdXo9frMZvNWCwWzGYzQ4YMwd/fH7BPFp86dUq+vOekUChQKpWkpKQQHx8PQHNzM0eOHJEv6/mpVCppaWlh3LhxDBkyBJvNxuXLl9m6dStarZawsDDCw8MJDw8nMDDwrr+PbZLE5pxqfnvgKh3GfwSdtSolThr7SadW2X9XK3HS9Pyuki/vNlkpa9ZT2tRNp/HWiVRqpYJQLyfCvZ2pbjNwtbH7huvo1EoSg91JCfMgOcyT5DAPAtztr9XFmg4+OFHBF+frsVxLAw/1cuLpsWEsHRWMm67vfRhsksTVRnuW+YWadty0apLDPUgO9cTP7eFKdLLaJDKvNLIhu5KTZa23vJ5WpSTcx4khPi7/NEHhQqiP6yOZ4CUC330gAt935/Dhw5w4cZLPjYlUd0m8NjeWFLd2du3ahZeXFy+//PLXbidcEBxJkiTKyso4ceIEhYWF8o6ql5cXqampjBgxYkC+4Gq6avht3m85XH0YgDC3MH48+seMCRzzwB/7XpWUlJCVlcWiRYvw9/cX2yZBEITr2Gw2Dhw4QGJiomiKd421pYWObdvo2PAhtmvNJ50mTMD71VfQxsQ4dGwmk4n9+/dz4cIFABISEli8ePFD0bTxdjo7OyksLKSwsJCSkhK+973v4ezsjNVq5dy5c1RUVBAdHc3QoUP7bX+nsrKSkydPUlxcLJ83ZMgQJk2aRHR0NABfffUV2dnZ8uWurq4MHz6chISE29ZCNhgMXLp0iQsXLlBdXc2aNWsIDAxErVbT2NhId3c3arWarVu3ysvsH8Sqi6KiIj7//HN5vzE+Pp5p06bddQbpw66pqYmCggJMJpN8MpvN8u8TJ04kJiZGzpbftGkTKpUKFxcXnJ2de50SExPlRnRGo5Ha2lqcnZ3p7u5m3759VFdXA/aawCtWrLivWEJ9fT1Hjx6lpKSEZ599loCAANRqNUePHqWurg6VSiU3Zb/+59SpU+X35KVLl8jJyaGkpKTXilAnJydiY2N57LHHbvn+tdlsFBUVUV5eTkZGBmBvyJmTk4Onpyfx8fG3DcoeO3aM3NxcGhsbe50fEhJCUlISI0eOlM+rrq6W69P/80mj0cjB7bq6OjZu3IjZbAZAq9WSnJzM2LFj8fO7t7IOVVVVHDlyhJKSEvl+rzdnzhxSUlIAKC0tZdOmTbe8r+nTpzNmzBj5fj/66KNbXnfs2LFMnToV+Efj44CAgHuaeL5c18nPdheSV2mfPEgMduf/mxdLQrD7PWVRS5JEc7eZsqZuSpv115XT6KasSY/BcuOKlHBvZ5LDPEgO9SAlzJPYQNdeWeE3U99hZOOpKj7JqaZVb//fu2pVLB0VzNNjwwjzvnUFgTa9mXNV9lIq+ZVtnK3q6BXwv16olxMpYR6MDPUkJcyDuCA3tHcYmyN0Gi18mlvDR6cqqWixZ/8rFRBxLZjdE9zu+TvIQ3fL11c0txSB7zsSge+7c/jwYTIzM2nxT+HzcjVxga5sWpPMH//4RywWC88999w9L+kQBOFGTU1N/OEPf5D/HjJkCKmpqURGRg5IILfJ0MS6gnV8VvwZFsmCSqFiZdxKnkl4BieV0wN//L7o7OykpaWF8PB/1BjXarUPfVBAEAThQeqpeSxJEhcuXCAiIuKe6x8/SD0ZuCqVSg4G9SebzUZDQ4M9O7Gjg4gTJ+jaug0sFlAqcXv8G3i++CLqa1mAjiBJErm5uRw6dIjo6Gi++c1vDrqDXEmSsNlsclak1WqVl3+DPTBcU1NDVVUVhYWFVFZW9rr9/PnzSUhIGJCxNjY2cvLkSQoKCrDZbMTGxrJs2TJsNhtXrlzh888/JyYmhoSEBIYMGdLn4FRbWxuenp7y37t27ZIzesGeOb5w4cJ+LWlxvebmZo4dO9brMRMSEpg2bZqczfp1UV9fj7OzM25ubkiSREFBAVu3br3l9TMyMhg1ahQA5eXlfPLJJ7e87qxZs0hNTUWhUFBRUcGHH37Y63KNRsOECRNITU3tt+1Sa2trrwnJLVu2UFpaetPrKhQKfvSjH8m/b9u2jcuXLwP2RJno6Giio6MJDQ29pwCrXq/n3XffxWw24+HhwdixY0lNTUWr1VJeXs6QIUMA+2d/586d5OXloVQqiYiIICYmhujo6PsumWIwGLhw4QK5ubm0tLTI5w8bNoyMjIzbNn00GAyUlJTg6elJcHAwkiRRXl7O+++/D4CLiwseHh6o1Wr5lJycLE92tLa2cv78+V6X9/Rg6GkW3fN56ujooKCgQN4O2mw2+XpOTk4MGzbsnoP1PbpNVv50pJT1xyuwShIuWhWvTI/kyTGhD6xsiE2SqO8wUtZkL7fh46olOcwDX9d7n4zUm63sPFvHBycq5OxxpQJmxPmxalw4o8I9KW7oIr+qnbzKNvIr22+aZe6kVjIixJ2kUA86DBbyKtspbui6oeSLVqUkMdhNzkRPDvMgyMNxx7Jlzd18dLKKz/Jq6DLZJ6g8nNQsSw3hibRQgj37PjYR+BaB7zsSge+7c/78ebZt24ZPUBh/qAjBaLGx8dnRlJ05TGFhIePGjWPOnDmOHqYgPLS6urooKytj+PDh2Gw2zGYz27Ztw8XFhdTU1PveWbpbbcY2NhRuYHPRZoxW+7LvtIA0fpjyQ6I8owZkDH1RVlbGrl27sFqtrFq1Ch8fH7Ra7SO9dF94NNhsNjmz6p8nwxQKBTqdblAGMYV/1A329/fvcwOr/iZJEhcvXmTr1q24urqyePHiu26u9yDH1NHR0Wu//K9//SvNzc0olUoCAgIICQkhODiY4ODgeyp7Afba0EePHqW6uhqTySSf7+Pjw4K0NJQff0z3vv0AKJyc8Fi5Eo/Vq1A6sHZydXU1fn5+8uSuWq1+oN93kiTR3d1NW1sbra2ttLW1ERUVJZfmKC4uZsuWLXJ93n82e/ZsudxHeXk5GzZs6HV5UFCQHJxzRAPP9vZ2cnJyiI+Pl9/3PcH7/lxVd/DgQc6fP4/RaCQ2Npa5c+cOyKq9xsZGjh07RmFhIQBKpZJXXnnloT/mbWlp4fz585w/f576+nomTZrExIkTkSSJhoYGTp8+jVarRaPR3PAzMDAQb29vwF5iR6/XY7VaMRgM6PX6Xj8jIyPlUjEVFRVyXWaLxUJ8fDyTJk3ql1rYt1NUVERbW5tcB/v6kyRJvWpnZ2dno1AoiIqKwtfX974/TwaDgdOnT5Ofny834tRoNKjVavR6PStXrpQDynV1dTQ1NREVFdVv5Uiu17MSNjc3l+LiYiRJYs2aNYSFhcnbQEmSqKmpobi4mOLiYioqKpAkieTkZGbPni0HpXNycoiIiLjtCo7B5vCVJt748jJVrfbM4Fnx/vxkTrRDA7j3yyZJZBU380F2BVlX/zGpoVUpMVlvnmWeci1wnRLmSUzAjVnmHQYL56rttcfzK9vIr2qnTX/jd1Ogu46EYDdiA9yIC3IjPtCNCB9nlA/o/SBJEidKW9lwopLMy41ycD7Sz4WV48J4fGQQzpp77y0iAt8i8H1HIvB9d2pqanjvvfdwcXGhInQ6O87WsTgliNXxKrZv3467uzuvvvqqCDYJQh8ZDAaOHTtGdnY2VquVF154Qd6JliRpwHbIOs2dbLqyiY8LP6bL0gXACJ8RvJj0ImkBN9aodDRJksjOziYrKwtJkvDz82Pp0qUEBgY+NDuxgtAXkiRhNBrR6XTyQfr//u//3vL6PeUQemRmZhIfHy9WZzmQwWAgJyeHEydO0NHRgVqtJiMjg7Fjxzp0u9Xc3MymTZtoaGhApVIxbdo0Ro4cOaCrZvR6PWVlZZSUlFBSUoLBYGD27NkkJiYCkJWVRU5Ojtzn4npeXl58+9vflv+H19eLBnuzqqqqKqqqqggPDycqyj6JW1tbKwditVotoaGhNDQ00NnZiVqtZtWqVbhVVtHyu99hzM8HQOnri9d3voPbwsdROHhVkSRJ7N69G39/f6ZNm3ZP7yFJkuTn29OovqqqikOHDtHW1kZbW9sN5QBmzZrFqFGj5EDU9U04r6dUKpk6daoc+K6vr2fXrl14enoSFRVFVFTUIzU5Z7FYaG1t7ZeAZF/V19eTlZWFRqNhwYIFcvDSYDDIr/vtdHR00NjYSHNzMy0tLTQ3N2MymXB3d8fDw4Px48fL92OxWFCpVP3+HDs7O7l48SLnzp3rtVpApVKRkpLCjBkz+vXxvs5a9Wa5nEWX0UpKuAdxgW63DPpZLBYKCgo4ffq0POHu7OxMRkaGXON6ILW1tVFcXCzXQVcoFOzbt4/z58/fsL3y9vYmMTGRCRMmDPg4+0N9h5FffHWFry7aeywFe+r4zzmxTI8bmISogXKlvosNJyrYcbYOk9WGs0bFyFB3e5Z2qD3Y7XMPWeaSJFHWrLcHwqvayKts53JdJ7abREGdNUpiAtyIC7QHwuMCXYkLdMP1HmqQ9zBarOw6V8+GExVcru+Sz58c7cOqceFMjPTul22lCHyLwPcdicD33TEajfzyl78EYMqSNTzz0Xmc1EoOvDyOD/76LiaTiTVr1shLngRBuD2TycTJkyfJysqSu3oHBgYyZ86cfm1ydCcGq4GtRVv54NIHtJnsTW2iPaN5ccSLpAenD8ogcltbG19++SUVFRUAJCUlMXfu3Ls6eBOEh5HJZOLzzz+nra2NZcuWodFoMBqN/OUvf+Gfd+V6/o6NjWX27NmAPVOtp05lZGQkU6ZMEd/XA0ySJN566y15qbZGo5EP0KOioli0aNEDzxy8HaPRyLZt27hy5QpgXwI+evRoUlJSHti2tb6+ntOnT1NeXk7Htbra11MqlfzgBz9AqVQiSRLr1q2jqakJJycnfH19sVgsNDY2EhYWxrJly+Tb/fnPf0apVOLn50dTUxNNTU3yZUlJSfIKRZvNRl5eHqGhofj7+6NUKunu7mb37t04OTmxYMECFAqFPev54EFaf/8mlmsBN01kJN6vvoJT+oP/njSbzXKNX3d3d/l9cn3QOTo6miVLltzyteru7qakpITW1lZaWlpobW2VT1arlccee4y0tDS5FMA/16p1dXXFw8MDT09PEhIS5MkDk8lEZ2fnTesPD8b9h0edzWaTk5RaWlpYv349I0eOZNKkSYB9EqznNGvWLPmzt23bNrnG/M28+uqrODs7o1Qq2bNnD3l5eXh4eODu7o6np6ccIHdyciIxMVGemGpubsZgMPQqJaFWq+XAfM97yGaz8etf/7pXo9GIiAiGDx9ObGwsTk6DK+vVZLXR0GGktt1IXbv9p1qp4PHkILycByY4ZW9c2C03LyxrstdsLm3Sy/WVr+fprGbsEG/GDfNi3FBvIv1cbvgMS5Ik1+cOCQm564Q3k9X2QGssG41GufyqVqtlyJAhDB06lGHDhvUqOXS9ihY9+woacNao7A0CfV0I9tQ9sIzfvrLaJD7JqeJ3B6/SabSiUihYOS6M700biqv261vKsVVvpqnTxFBflwdWvqXLZKGgppNLdZ0UXjtdqe/CeJNa5gDh3k7EBboR7u2MApAASbL/RJLsf8vnSfTslpssNg4UNtLSbf+8OWuULEoO5qmxoUT6ufbrcxKB79vHcr++nxih3+l0Otzc3Ojs7CTCxUKUvwvFDd18WdBIdHS0PAMvDqQF4fYsFgtnzpzhyJEjdHXZZ359fX2ZNGkSMTExA3agaLaZ2VGyg79d/BuNBnv2RoRbBGtHrGVm2EyUisG5euPs2bMcPHgQs9mMRqMhIyODtLQ0sdpE+Nrq6Ohg48aN1NTUoFKpqKmpISIiAp1Ox/e+9727ug93d3dGjBjBxYsXuXr1KlevXiUiIoIpU6YMWN+AB60nAHf9qaOjg+7ublJSUnr1ABgotbW1ckM5i8VCQkIChYWFjBkzhvj4eM6ePcvhw4cpLi6mpKSEESNGOOy10Ol0PPHEE5w4cYJjx47R0dHB0aNHKS4u5umnn+6Xx+js7KS8vFyu41xSUnLLYJqHhwe+vr4YjUa54WFsbKy85L6qqgq1Wk18fHyvutB6vZ7W1lbAHlTr4evrS2hoqBywBXtgvSdjsIeLiwvf/OY3sVgs8mthNBoxpKQQsm0rHVu30vbenzFfvUr9y6/gNGYM3j94Fe0Dynqsq6tj+/bttLXZJ6YnTpxIenq6PNYeRUVF/M///A8eHh44Ozuj0WgYO3YsiYmJSJJEfX39LeseKxQKuv4fe28eHsV9p/t+ete+77uEdgxik8S+Y4xZjY0dbziJ7cTOcpI5k7nnnLnn3jPnzjMzf5xnMknssZ04TrwlYCfYBmzAGAxCCBAICQmBVoSW1tpqtdTqfam6f7S6rDYSICEBdvQ+Tz+lrqruLlVVV//q/b7f9zWbpUJMREQEDz30ECEhIRJ5OZ76X61WT5tdj93l5kLrIBfbh0gI82NlZiSxIVNvofC3hNFjpaamJmlMWllZecO68+bNkxT5YWFhhIeH+0zVajUmkwmz2YxSqZSsbry2HAaDwceT2YvRVhglJSXU1NSMu70///nPCQwMxOVyMWvWLPR6PXl5eeTk5NyTQqEgigzbXBgsTnTDdrpHiO3er5HcerNjzNe/WnKd3cXJPLc4mWC/qaViqrVDHKjp5ZrOTOuAhb7hsbfBi5hgNWkRAagUMqq0HjuIL+p1fFHvURZHBakpTvOQ4MXp4SSF+SGTyUhMTBzz/WxON+0DVikUsXWEaG8bsNJvcpAS4c+qrEhWZUayKDUMtXLqxu0ajYZnnnkGp9NJXFzcuPcETrdASZOeDyo6OdNiGNML2hMk6AkVlKaR/kQFqu/K77MoilzpHuafDzVyuctTEJ6TEMw/bckhL+7b3yET5q+a9uJQoFrJotQwFqV+5aXvEgTa9FaJCPc8zPQO2+kw2KTwyckgPlTDU4VJPDY/ntAp+t8MBgN6vV4KZZ7BzTGj+GZG8T0R/PGPf6S9vZ3NmzdzcTiEf/u8ieyYQH7zcJzkTZycnPytuIGewQymC8PDw7zyyis4nU5CQ0NZtmwZeXl5d424dYtujrQd4c0rb9Jt6QYgPiCe5/OfZ1PqJpTy+7smeuLECSoqKkhKSmLLli3fKH++Gcxgouju7mbPnj0MDw/j7+/Pjh077siqZGhoiPPnz3P58mXcbk+gTkJCAk888cQ3YgzU09NDc3MzJpOJtWvXSh65hw4d4sKFC+O+7gc/+AHR0dFSKNV0eyI3Nzdz5swZWltbeeyxx0hPTwc83t5yudznmtXf309TUxNLlixBLpdPeUbByZMnMRqNxMTESI/AwMCbXjddLhe1tbWcPXuWhQsX8sADDwCe4sLAwIDkeXs7GBoaoqmpicbGRk94JPDCCy8QHh5OX18fn3/+OQCJiYnExcURGRlJRETEuMoll8tFfX09lZWV9Pb2SvOLi4tZuXIl4FE3d3d309/fT2RkJAkJCT4k8UQgiiL79++ntbWVDRs2MHv2bIThYYbe+gPGPXvA6QSZjMAtmwn78Y9RTmHHVm1tLV988QUulws/Pz/UajVFRUVSMF93d/cNYXujUVhYyOrVqwFP0WH//v2EhoYSFhYmqbe9alyFYvLeolOJXqOdkiY9JU16zl0fwOr0VeDlxgWxMjOSVVmRzE0MmTZF4N8KtFotZWVltLe3o1QqCQsLkx6LFi2alBWNy+XyKT56p8PDwzidTnbu3Cld47788ksaGxulQFSXyyV1LdlFBRsfexYXCmxOAYvDhVMQsTkFbE63Z+oSsDvdWF0CdqeAzeXGLYj4qRT4q+RolAr8VHL8VZ6p38hzP5UCP6Vc+tvuEhi0OhmyOhm0OBm0uqS/h6ye597lY1kkjAWVQkZciIbYYA2xIX406zxEGniC7L6/NIWnixLvSL3rEgS+qOvn3XMdVHcab1geHqCSyNuUUWRuSoS/z+c63QJXuoYpbzVQ3jpIVcfQDerX+FANxWnhLE4PJ1ij9FWTD1jpMd5oQzUeAtQKlqSHsyorkpVZkcQET29Bq3PQxr6qLvZVdaMzfVUQWJwejr9KQduAhfYBK66bHNwAtYK0SH9SIwJIG1GIe5XikyVqHS6BZp3Zh2yt7zVJntRBGgV/t3YWjy9MuKfXOrvdTkdHBx0dHchkMoKCgggKCiIqKuquZVDdDnp6eoiMjJxS5bPB4qCh13OMeox2ZIBMxshUhgzga8+9y5HJyI0NYk1OJMopGtf19fVRXl5OQ0MDarWaH/7wh1KI9P3yO343MWN1MgHMEN+3j2PHjqHVaj1BewkprP6PM1LIZUGSp43ob/VLN4MZjAevB2ZaWhputxun00l5eTlKpZK5c+fe1e9L23Ab/+3Mf+O68ToAkX6RfC/ve2xP345aMf0hS5OBKIo4HA5JHeR0Oqmrq2PRokV31X92BjO426ivr+ejjn0HbwAAIABJREFUjz7C6XQSGRnJzp07CQsLu/ULbwPDw8NcuHCB6upqAgMDpYHz/dw50dzczJ49exAEz834iy++SHh4OKIocvr0ac6ePYtSqSQwMJCgoCACAwMJDAwkIiLCR9V78OBBXC4XRUVFZGZmTlnhzOVycfnyZc6ePYtO51HMyWQyli9fzuLFi2/7fUwmEwcPHuShhx4aV1l3s21obW0lMzNTCuh78803JU9WLwICAoiOjiY+Pl6ywxkLoij6BKlVVlZy/PhxkpOTKSoqIj09fcz9ZzQauXr1Ko2NjT7kNIBSqeTRRx8lJSVlQv/bWNvW1dVFZWUlDQ0NPProo1KBwRvCNlmyezS8NkNtbW2Axypl3bp1qFQqXF1dGF59FcsRD3kv89MQ8uzuOw7AdLlcHD9+XFLCZmRk8PDDD99gYyIIAna7HafTyfDwMCdOnKC721PQzs3NpaioSOo4uF/hFkQudxo9ZHeznvoek8/ymGA1i9PDadVbudxp9FFohvmrWJ4ZwcrMSJZnRtw1C4lvI+x2O2r13VG0fh2iKKIdtNHQa6Kux0RDzzD1vSa6hm6fSL3b8FcpiA1RExusIS7Ej9gQzSiS2/N3eIDKZ38KosjROh2vnrxOS7/nGhURoOKFZSl8Z1EifhMItjPanPy1sps/XdDSPbKfVAoZD8+OZUlG+B0TsnaXm2qtkfLWQcqvG6jpNN6UFPYixE8pffZo1XRssIZq7/e8SU+/yVeNnhcX5FGDZ0XyQMLUFLRcgkBp0wAfXOyktHlAunZEBqp4ZF48uxYkkBzu77N+95CdNr2F1hFCv31k2jVku2nBI8xfJZHiqV5yPNK3wKA3O2jo8bXXaOm3jLlfFTIZG/Oj+b8ezLytooDb7aaurk4io29V3L5dDA0N8emnn9Ld3X2DrR5AQUEBDz74IOC5hvz5z3+WSHHvOCwkJIS4uLgp69DwdjA1NDQQHBwsFYLtdju/+c1vfAKwExISSExMJDg4+BsvktJqtZSXl9PS0iLNy8jI4KGHHiIyMvK+Hr9PJ2aI7wlghvieGGw2m3TT+T8+qWN/TQ+PzIvjX7blAZ4bmruRUj6DGdzv8Kr+vDeiTz311IRJjKmE1qTlpRMvobPpCFGHsDt3N7tm7cJPeX/5Io6GyWTi6NGjWK1WnnzySeRyueT9+E0fwMxgBjfDpUuX2L9/PwCpqals27ZtWjxMzWYzRqOR+Ph4AMnLtaCggDlz5tw3A+m2tjbef/99XC4XSUlJJCQksGDBAkmN6A08vBVxY7FYeP3116VxTEREBIWFhcybN++O9u+JEyeorKzEZDJJ2zF37lwWLlw44bHl4cOHqa2tlYIBly9ffsvjYDQaqaio4OLFi1gsFp5//nnJfqKxsZG+vj76+/vp7+/3sR6IiorihRdeQC6XI5fL+fDDDxEEgczMTBYsWOCjmhJFkS+++ILy8nJp/0VGRlJYWEheXh4ymUwq5DY2NkrnL3gIaC8ZnZyczLZt26aElPbCZDL53OiXlJRw8eJF8vLyWLZs2R2P7wVB4OzZs5w5cwbw7Lft27dL+9h++TKG//gP7Jc8AZiKqCjCfvQjArduQTaJ4nZ5eTmnTp0CYNmyZSxZsuS2fvMEQaCsrIzz58/zxBNPSN0hLS0tWK1WSU1/r8fpQ1YnZdcGKGnSc/ragOR/Ch6V3NzEEEkJmhcXJP3vA2YHp0deV3ZtAKPNJb1OLoN5SaGsyIxgVVYUObFTQ/zcTTjdAp2DNklB26q30Kq3YHG4CfVXjTyUhN3wt5KwAM+8YI3yvlbB25xumvrMEvlX3+OZmh3uMdcP95MR6qciOECDn0qBZpRK208pR6OS469UoFHJRxTcChRymaQItzrd2F0CVqeA3TVq3sjU5vKox1UKucdiIUA1YrWgJPRrz71/h/qr7simwy2IfFbby3+WtNJh8HiWRwep+cHyVHYtSLjpe7cNWHivXMvHl3qwOj37LCJAxROLEvnOogSig6ZHOW1xuKnqGKL8uoHzbYM43AJpEV7Fs7/n70h/wvxvPT4XRJG6bhMlTf2UNOmp7Rr2KWhFBKhYkRnJkoxwYoI10nkeFqDCTym/5fv3GG3sq+pmX1W3jwq9OC2MJxYlsjYnasJ+4w6XQIfB6qNw9xDkt2cpI4jcQPZ7EeKnJCc2SHrkxQUxKzoAjXJivx0HDhygoaEB8ASPetXY3kd8fPy4YitRFNHpdLS1taFSqZg3bx7gKcK+8soruFwuwsPDSUlJQa1WS50cubm5EvGs1+v5wx/+MO72zZs3jw0bNkifB9z2NXo02d3Q0CDZmUVGRvL9738f8HTPffjhh5KN6GgEBQVRXFx8g7XZNwF9fX0cO3ZM6piTyWTk5OSwdOlSkpKSvnG/c1ONGeJ7ApghvicGh8MhebhVtg/yzNtV+CnlfPnzJfR3tXPt2jW2bt06o8Scwd809Ho9Bw4coL29HfCQIOvWrZPaxe82us3dvHTyJXosPaSHpPPaqteI8JseT86pQn19PV988QU2mw25XM5TTz1FWlraTEfJfQy73U5JSQnh4eEsWrTob34wdifQ6/W89dZb5OTksG7durtGQNfU1EjWE0qlkoCAAAIDA6VpYWGhRKaZzWYGBgYICAggICAAPz+/aTnm3d3dvPPOO9jtdjIyMtixY8cdXQcMBgNVVVXU1tZKhLlKpWLu3LkUFxcTHR19w2vsdju9vb309PTQ3d2NzWbj8ccfRxAEBEHg3XffRavVEhQUxMKFCykoKJC6VCYKq9XKF198Id3AJicnj6n293YTXbhwgbq6OulGMjg4mI0bN0rq56/D6XQyMDCATqdDJpMxe/Zs6f1+/etfSz7PgYGBLFmyhMLCQh+idHBwkHPnzlFVVYXD4bmRVyqVFBYWSgF5TqeTgwcPEhsbS319PQMDA8hkMpYuXcrixYvv6HwWRRG7y2tx4LE2sI+2PHAKXC07wrCuy7NtGn8KVj5EUnycRFxNlrRqa2vj008/xWKxoFKp2LhxI3l5edJ2WY4fZ/A3v8Gl9dygqrKyCP+vf4d/cfGEPsflcrF//34WLFgw7nG8GYaGhnwC3f76179y/fp16XlwcDARERFEREQQGRlJQUHBtF9j+obtHKvXcfSqjovtQ7hH3YKG+ClZNiuCVVmRLJ8VQUTgrYl5lyBwqcPIqRGleFOfL9kRF6Jh14IEHl+YQORtvN/dgiCKkqq0bcBK64BFItI6DTaf/TIZyIAQfyVL0iP40ao0MqOnNkDNi9ouI5e0xq8sRyQS2UMwW52e76N3ns3lxuoQ6DGOrZxVKWRkRgeSGxdEZqQ/PfUXcevb0Mg85K5KpSIlJUUKLAwPD5+W/+tuwukWOFDTw2unWiXVdlyIhpdXprGjIA7VCDkriiIX2gZ555yWk439EkmcFRPI7uIktsyJnTBJej9Bb3ZQ2qyXClom+9hFEPB4cIcFKCUfaE9xQikVhirbhyhp6pfOsfAAFTsK4ti1IIG0SN9iq1ar5eLFiwQHB5OdnU1iYuKkxjBmh0vyNh+tEm8bsN5Q1EuO8Cc3NohcL9EdF0R8iGZSn9vb2yt1uIHH5uPTTz9lcHBwTHX2j3/8Y6ngfO3aNaxWK4Ig0NbWRnt7u1ScHk0mg+d3LyYmhvDw8Bt+J7yfI4qiZIfitTXyPgYHB+nv72fNmjUsXLgQ8ORv/OlPfyIxMVF6xMXFjckfnTt3jsuXL0tkN3jGHBkZGeTl5UlhuTKZDEEQGBwclGxZtFotfX19iKLI+vXrJZK+v7+fzz//nPj4eOLi4oiLiyM8PPy+vG8xGAy89dZbyOVyZs+ezdKlS2dsPkdhhvieAGaI74nB7XbT3d2N2WwmKSmJ7W9coFln5v9+KJPBCwewWCw8+eSTZGdn3+tNncEM7gmuXr3K/v37cTgcKJVK5s+fT1FR0ZSq2yaCPmsfL594Ga1ZS0pQCm+seYNIv8h7si23A4vFwrFjxyTSJyYmhq1bt056QDqDu4OhoSH27NlDb28vycnJPPPMM/dcVfhNg9vtRqFQ4Ha7sdvtN6hY7wbsdjuXLl2ioqJCugkajUcffVQK4a2treXgwYPSMoVCwbx583jooYemrPit0+l4++23sVgsJCcn8+ijj06Zd6PD4eDq1atUVVVJViDr169n6dKlyGQyqqqqaGpqoqenZ8yAtp/97GfSOd7Q0IAoimRlZU1JcU4URa5cucLx48clq6dNmzYxd+5cZDIZer2eDz/8kL6+Puk1ycnJzJ8/n6ysrEmRmKIo0tnZSXd3N5WVlRiNHr9Yf39/Fi9eTHFxsQ+Zb7Vaqaio4Pz585hMJmJjY9m9ezcKhQK5XE5NTQ1HjhzB5XIRGBjIli1bJmVv4nAJ7K/p4d3yDrQG2w2+s+P8N8TIzSxVtREut+IQ5ZxwzKJL8JDB/iqFD3kyWtWZGO7PxrxoAjVjn8Mmk4lPP/2Ujo4OgoOD+f73v+9zrRMdDoY/+ICh37+FMOwJJvNfvpzwn/8cVcbYJLb3eOfn508LAX369Gm0Wi16vf6G77VGo+GnP/2pdJ0xGAw3DbOcCLqHbByr1/H5VR1VHUM+qs5Z0QGszopiVVYk85JD7tj/tHPQRmmznlNNes5dN2AbOU/UCjlb5sTybHESObF33moviiK1XcMcuNzDsbp+hu2uW79oFBwu4aaWEf4qOSkjNgleFW2In4qhEX/pIclresSDetQ8y9dU0zJgy5xYfrQqjdSIOx+DiqLIuesGfne6jfLWwVu/YBxEBKjIjfNVuMb6Q0jwV8fn/fffp6enh8TERAYGBnzO26ysLHbs2CE9dzgcd3W8IYrilP4uO1wC+6q6+e3pVkk9nBzux8sr0wB4t1zrYwG0MjOC3YuTWZI+PlHnzU/wZkp8ffrAAw+QOxLIazabOXv2LP7+/tLDz89P+jsgIGBKPZNvBqdboKpjiJImPTWdRgatTgYtnnP9dqxWvChMDePxhQlsyI0et9DZ1NTEJ598Ij0PDAwkOzub7OxskpKSpuRaPGR10qr3nLuZMYF35OfuhcPh4PTp01RWVpKdnc22bduQyWSSXZ3D4UCn09Hb20tfXx86nQ6z2czu3bul9/h6MRQ8xaXk5GTS0tIoLi6WyOSpONdtNhsulwu1Wo0gCFRXV3PkyBGfdRQKBXFxcSQlJbFs2TJpLHXo0CGuXLniQ3ZnZ2fj7+9/W9vmcDjQarWEhYUREBAgff7Ro0d91tNoNBIJPnv2bCIj7+69ssvlYnBwEK1Wy+DgoJTPAXDlyhVmzZp135Lz9xIzxPcEMEN8Twz19fV88MEHhIWF8fzzz/OnC11SyOWPMoaorr7EnDlz2Llz573e1BnM4K7jyy+/pLS0FICkpCQ2b958T68repuel0++TNtwGwmBCbyx+g1iA+4vv09BELhy5QoXL17EZrNhNpulNvrc3FweeeSRGQJ1khAEAavVitVqxW63T5vVTmdnJ3v37pVsHp577jliYmLw8/O7b6wy7nfo9Xr27t3L2rVrSU1Nvdebg9vtZnh4GIvFIp1DFouFnJwcSUlaV1dHaWkpVqtVUv4CxMfH88QTT/goTicLvV7Pu+++S0BAAE888cS0XAtEUaSjo4Oamho2bNggZZUcOnRI8lgGj0p2dEBkenr6tJMBg4ODfPbZZ3R1edTLmzdvZuHChZKXpcvlIi8vjwULFoypVJ8s3G43V69e5dy5c5LKasOGDWNabrhcLrq7u4mKipJU/4Ig8Mc//hGtVkt6ejoPP/zwhIu/Foebv1R28cez7eO2kitkMh+LAz+V3GOFoJSjUSnQyFxE66oIdg0iIKPMkUqz+9ZBXEEaBY/NT+DpoiQSw260wBEEgTNnzpCWliZ1QBgMBnQ6HampqWg0GtyDgwy9+SbDf/kLuNygUBC0cydhL/0QxSi1qtVq5dChQ7S0tPgEdE4XrFYrAwMDDAwMoNfrEUWRNWvWAJ7C19tvv41Go2HLli2TCi3rHLRytM6j7P562N68pBAezItmfW40SeH+47zDncPmdPNFvY73y7Vc7hqW5henhfFscTKrsiInbAfSOWjj4OUeDtb0cl1/Y1FwIlDKZaREfOUDPHoaEzx5n22HW8BoddE5aOWtM+0cq/cU9BQyGY/Mi+OllWkkhE7c0kkQRU409vO70jZpfyrlMpbPivDYT4yESPp7v39fD5Ic+T76KeUkhPkRHeT5H91uN01NTVRXV9Pd3c1LL70kWU719vYSEhJCREQEoijS3d1Nc3MzLS0t5OfnM2fOHOArNWRCQgLp6emkpaURGxs7pWOP4eFhurq66O7upqurC5PJxIsvvigdJ5vNhkYzOdXuaNicbj682MWbZW3ozU6fZX5KOdsL4ni2OImMqBtV/NeuXQNg1qxZgEfNvGfPnnE/a8WKFVL2RE9PD++999646xYVFbFq1SrAsy8+++wz1Go1CoXihkdaWpq0DXa7nZqaGhQKBSqVivT09En7PIuiiMXh/qrQY/EUfUYXfgYtTmKCNTwyL27MfaTT6RgcHCQrK0t6z9LSUkwmE83NzVIHGHjsuXbu3CnZwN0PEEWRpqYmjh8/Lo23c3Nz2b59+y3PP1EUpYcgCJw6dYq2tjZEUSQ1NZX09HSSk5PvmpWkd9zQ3t5Oe3s7Wq3Wp7j17LPPSiHaPT09GI3GCZHdN4MoihiNRlpaWqRif29vrxT4DviEknd2dtLW1kZ8fDxRUVFoNJop2U+NjY20trZiMBgYHByUxAZePP/881JQp0KhmCG8x8EM8T0BzBDfE4PD4eBXv/oVVquVLVu2kJCWKYVc/npLEpeOf4JareYXv/jFXasOz2AG9wtqa2vZt28fRUVFrFix4p6SfoP2QX508kdcM14j1j+WN9a8QUJgwj3bnrHgcDh4//330ev1Yy7Pzc1l586dyGQyRFHkl7/8pRSUEhISQnh4OAsXLpyywJRvCrwBdmazmYKCAmn+0aNHpXZFq9WKzWaTlqlUKv7hH/4BuVw+pXYxdXV1fPTRR7hcLqKioti5c6cP4dnT0zNuAN63Cf39/Rw/fpzOzk6CgoIIDQ0lJCSE0NBQQkNDiYuLG1c90traygcffIDNZiMqKornnnvuG1cwcLlctLe3c+jQIaxWK0FBQfz0pz+9Y6La4XBgMBhQKpU3BPvdLkx2FzIYV8E7Hq5fv05/fz8xMTFER0ffs64dQRAoLy+nrq6OZ555Bo1G4wmD02olsnk6P7u+vp7q6moee+wx1Go1KpUKnU5HSEgIgYFj2yi4XC76+/tpaGiYsO3RkNXJny908l65lkGrh/yJDdbwvSXJrM2J8iG4Vbfh0+pyuThy5Ah1dXVoNBqeeOa72FCOECcjqtlRJEr59UGJ2FTIZKzPi+K54mTmJd+8kFNWVsaZM2eQy+UkJCSQkZFBeno6YRYLg7/5DdaTJQDIggIJ/f73CX70UXQWC/v372doaAilUsmGDRvumSUaeGyF9u3bh9VqRaFQsGrVKhYsWHDL49c+YOVoXR9H63TUjiKaZcCClFAezIthQ14UcSF3N1NEFEWqtUbeLdfyRZ1OshFJDvfjmaIkHpkXT9BNrgtGm5OjV3UcqOmhon1Imu+nlLMuN4otc+LIiJrYdUEhlxETrL5jhfvt4ErXMK+cbOFU8wDgsRPZtSCBHy5PJfo2AvNcgsDhK328ebqdZp3HSkajlPPYgni+tyRlUiQ6eAp6NTU1XL582Yfs2rFjB7m5uSiVSkmZPBa8obte5eahQ4d8lqtUKuk3uLi4WCpOORwOnE4nAQEBtzyn6+vraWhooLu7m+Hh4RuWv/jii5L91IcffojRaCQvL4/8/Pw7tmGxONz8+YKWd85pUSlkPLkokV0LE8YNqqytreXIkSMoFAqefvppEhMTsVgsdHZ2IgiCRHZ695soisTFxRETEwN4OvYuXbrkU+ge/Vi+fDlFRUXArUnyxYsXs2LFCsBjZ/HWW29Jy9RqNcuWLWPBggV3dYwzODjI6dOnqaurw9/fnxdffFEiL72qZpfLxbVr16RQZqfTyY9//GOpy8mrjk5JSbknlotDQ0McP35cKnCEhYXx4IMPkpOT840bL44FQRAYGBiQbFfS09PJy8uTCirTfQ/hcrno7e2ls7OTrq4uVq5cKY2tSkpKOH/+/A2vUavVqNVqnnjiCSnvo6GhgaamJmmZSqXCarViMBgwGAw899xz0jl17NgxqqqqbnjPiIgI8vLyWLRo0ZQQ/d92zBDfE8AM8T1xlJSUcPLkSaKiovjud7/LP+6vZ39NDzsK4kjuOonJZGLXrl3k5+ff602dwQymHXa7HbVajcvlwul0otPpplR5NxkYHUZ+UvITGgYbiPKL4o01b5AclHxPt2k8fPLJJ3R0dLB48WLUajXNzc3ExcVhNpuJi4tj7ty5gKe9/PXXX7/h9X5+fjz44IPMmzfvWz04cDqd0qC8oaEBh8OBSqXiF7/4haTi+Mtf/uKT9u2FRqPBz8+P559/XhpENjY2kpubO+kCpSiKlJWVcfz4cQDS09PZunUrJpeMALUCf5WCM2fOUFZWxvLly1m7du23+vjodDpee+21cZcvWbKEtWvXIpfLMZlMfPTRR4SGhqJWq6msrEQQBOLj43nkkUfGJRPBs9+7huyE+SsnTOTeDQwNDbF//37mzp3LggULJqWCs1gs9Pb2kpSUJPlNTwZag5XXS1s5UN2LWxQJVCuIDdEQE6whbmQaG6whJkRNbLCG2BANkYFq5Pfpeeq1wrnXEEWRt99+m6GhIRYuXMiyZcsIDAzk/PnzDA8Ps2LFCh/l1O1CZ7Lz7jkteyo6JcuG5HB/XlyWwra5cXcUJieKIqdPnyYlJeWWHRWCKFLaPMC75zo4e/0ri5u5iSE8tziJDXnRY5KWFy9epKqq6gZbnMDAQNLT01kaEoLlP1/DUV/v2Sa5HH1kBD2xcZgyZ7HqhReIS7g3xWmnW6Bv2EHfsJ1B4zCNFacw9nl8yjXhcQTMKsKp0Nzg42xzCrQbrD42DHKZx2bgwbwY1udG3RbBOhYGBwe5fv06ra2tdHZ2kpmZybp16yb9m9U9ZGPPhU4+rOySQjED1Qp2zo/n6cIkUiI8hTWHW6CseYADl3s40aDH4fZ0oMmAorQwts2NY0Ne9E0J8/sNVR1D/OZEi2RPolHKeaowkeeXpozpp253ufmkuoe3ytrRDnoK6EEaBU8uSmT34uRJe6br9Xq+/PJLWltbpXmBgYHS70VkZOSkxgl6vV5Sg7e2tvp0II1Wbl65coVDhw6hVColAYX3YTabWbFihURKnThxgoqKCsATJhcdHU1CQoLkR+wljc1mM6+++qrPb1V8fDx5eXnk5ube9Pf8TiGKIufPn5eCcPPz89m+ffuUdUaNVgh7BSgWi4WWlhYcDgdutxu3243L5ZIKEV6rDPCow0+ePInb7cZgMEjWXDExMWzYsIGEab7emUwmzp49S01NjdRJmp2dzcaNG29qGeFyuejp6SEmJkbKNXvvvffo6enBz8+PWbNmMWvWLFJTU6e18OxFe3s7H330EU6nE7lcLnUG3Y3P/luG99y/evUq9fX1dHd3j+mf/oMf/EAS/IxHknsxWsne0tJCV1eXT95GUFDQTYt+M7gRM8T3BDBDfE8cNpuNX/3qV9jtdnbs2IHJL4an/1iJn1LO/7fITV31RfLz89m1a9e93tQZzGDaIIoip06doqKigt27d0/r4HYiMDlN/JdT/4UrA1cI14Tzxuo3SAtJu9ebBXhaV8vKyli/fj3BwcFUVFRgtVpv8I4dC4IgMDQ05BOY0tDQIA2k169fz7Jly6Z0ew0GA3/961+RyWQkJCRIj6ioqLumsGhpaaGyslJSoHgRFBREXFwc27dvl7alo6MDm812g0fj17e1ubmZjz/+mIiICLZv3z4p311RFNm7dy+NjY0sWLCANWvW8HldP//9k6uEB6h48+kChtrrOXHiBMCUk99T7bE5EVgsFi5evIjJZOLBBx/E6XQiCAKVlZXExMRgt9sxGo0YjUaGh4cxGo0UFBRIIYJjtSDn5uby0EMP3ZTU6Ry08S+HGznZpEcpl1GYGsbq7EhWZkVOiX/rVMHtdksDd5lMhslkIiQk5LbCHu12O++88w69vb1s27ZNakmeCLqHbLxR2sbHl7on5AkKnvb9qCA1CaF+5McHU5AUwtzEEJLCpie4c7rRPWSjqc88Yj/ga0GgUcnxV8lRKyZ2k+Ut3PT29gKekKmYmBjJjuXpp5+eEKHROWjlD2c62FfVLZGM2TGB/GB5Kg/mj00y3w4EQWB4eJjg4OAxr9d9fX2EhYXdlCRq6DXxbnkHn17uxen2nEtxIRqeLkpi14J4Qvxu/L56Cdvr16/T3t6O0+lEo9Hwk5/8BBlgPnSIrldfRdOn83mdPDgYv6Ii/BYvxn/JYpRTRAp5Se0eo41eo51uo53ekUeP0UaP0U6/yYHvN0UkV6GjUNWBUiZiE5WUOVJpF8ZWsipkMorSwngwP5p1OdFEBd0Z8dbS0sK+fftumB8TE8P27dtvCHqdCCwONwcv9/BeuZaWfo/aWAasyYkiLkTDodo+qdMAIDM6kG1zY9kyJ/auK9anGueuG3jlRAtVWk9LfYBawe7iJL67JJkQPxVmh4sPL3bx9tkOdCYPeRweoGJ3cRJPFiaOeb5/HTabjf7+fslbODIykkWLFgGea8dvf/tbBEEgLS2N+fPnSwX4qbq+ulwu9Ho9g4ODDA0NkZmZSUBAgEQSnzx5ctzXPv7441JhrLOzk87OTpKSkkhMTLxpeLPNZqOuro7Lly/T2toqEWMymYzCwkLJJmQqIYoiJ06c4OLFiwAUFhaycePG+6I4OhZEUeTixYscP35c6kb83ve+Nyk7pVvBZrNx/vx5Ll68KBHXaWlprF69mpQslSFGAAAgAElEQVSUlAmda6Io4nK5OHz4MA0NDT4dCjKZjPj4eHJzc6XQxumAw+HgD3/4A6GhoWzatIn4+Phv5Hjk2wBBEHA4HNjtdmkaHR3tcx/W1dXls1yj0RAZGUlERAQJCQnStWTmGE4NZojvCWCG+J4cjh8/zunTp4mNjeWZZ55hx28raNaZ+enSWExVn6FSqfj7v//727rRncG3Ey6XC0EQvpX+zBaLhY8++khqOVu9ejWFhYX3eKvA4rLws1M/o0ZfQ4g6hNdXv05maOa93iwMBgOnT5+mfkTplp+fj9Vq5fr168hkMr773e9OavArCAIVFRVcunSJZ599luDg4Cm9gXI6nbzxxhsMDAz4zFepVMTFxZGTkzPlZLvD4UAul6NUKhFFkZMnT0pqnpCQECl4JyEhYdL/5/Xr1zly5IjkEVhcXMzatWsn9F31ekA3NzeTn5/P3opO/vlQo0SehPgpef3Jubh7m6aU/NZqtRw7doz29nYyMzN58sknpff7/PPPUSqVBAYGEhAQQEBAgM/fd2q/1d/fz7lz56iursblciGTyXjxxRcn7GVtNptpb2+XiPGYmBjmzJkzvvpIEHivXMurJ69jdY4d7JcW6c+qkaC4BSmhqG/DAuJuwGq18t5776FSqfjOd75z07Agp9PJn/70J9ra2vD39+fJJ5+cULiQbtjOb0+38ZfKLomkXJYRzk9Wp5MZE0if0UP+9Q076B220zc8QgCOTG8k/75CRICKgqQQ5iSGUJDomd6u4lMURQatTtoHrLSNPNoHrHQNWsmKDeLpwkSyYqbWrqmpz8zvy9o4VNsn2TuMBxlIHr0eclzOrKhAVmZFsjIzktiQG8dxoihy/fp1zp49KxHeCoWC1atXM3/+/Nv6jl/Tmfl9WTufXu6VtrEgMYQfrkhlVdbklJ8Wi4XW1lZJ+Wm1Wtm8efMNHYh6vZ4///nPhIWFsXPnzlsWrvtNDvZWdLK3opMBi4cU9VcpeGSex3N3vMKTy+VCq9ViMpkkCxNRFPnd736Hq7ub5UHBJPT1YTt/HuFr/p7KlBTkhUU0Js/mc1UiV4bcjHUoxXHOWlGEYZvrpuf1aKgUMmKDNQRqlCOe6XKCsRJruIzaYcQVHA9pRSPFE4VUTAn1V7E0I5zwgImN9URRpK+vj9bWVlpbW0lJSWHJkiWApwD22muvERsbS0JCghT+abVa8ff35/vf//4dWw8JosiZawO8d15LabPvb3xUkJrND8SydU4seXFB3yqCQhzpaPjNyRaudnvGAMEaJRvyojlWr5PU8HEhGr63JIXHFsTjrxqfTBUEgbKyMnQ6HTqd7gaf2uTkZL7zne9Iz69evUpKSgrR0dF3fb+KoojT6WRoaEgixr1TjUbDggULiImJ8SncThTDw8PU1tZy+fJluru72bhxo9S56HQ6MRgMklp8snC73Rw+fJi6ujrAcw9yr+0Vbxcmk4mjR4/icDjYtm3btHxGf38/f/zjHwGP+n716tVkZmbe8f5xu920tbVRX19PS0uLZNOYm5vL1q1bAc85Vl9fT0pKyoQEUXa7XRL3DA0NYbFYWLZsmXQOmkwmIiMj79vCxgxmcK8wQ3xPADPE9+RgNpv59a9/jdPp5LHHHqNMp+Jfj3hCLjfJLqFWq3jssceIjb2/gvRmcHfQ39/P73//exwOB4sWLWLt2rXfmpYsrVbLX/7yF4xG433hyemFzWXj707/HZW6SoJVwby66lVyw3Pv6TaZTCbOnDnD5cuXpTbDlJQU+vv7sVgsKJVK1q5dy9y5c+/oBujrFgCnT5+moKBgQtcfURRpbGykoqKCXbt2IQgCgiDQ29srqZd6enro7e2VlNf5+fls27ZNuknas2cPsbGxxMXFSQS8d1l4eLhE7ntDXUYv1+l01NXV0dzczLZt28jOzsbtdjMwMMDly5fJzs4mLi5uym4UbTYbJ06coLa2FvD4BW7fvl1qUR0Ler2e6upqVqxYIe0DURR5/VQrr5a0ArBrQTxNfWYuaY34KeX8x64HCBy6fsfkt8Fg4Pjx41y5ckWal52dzfbt26Xt+Pd///cbWhC9SE1NZffu3dLNbGlpKf7+/oSHhxMeHk5oaOiYNxRegu/cuXM0NTVJ82NiYli0aBG5ubnTeiNSrR3inz5rpKHXQ1AsTAnlnzbnoJDLONnYT0mTnovtQz7K5kC1gmWzIliVFcmKzMg7Vl/eCfr6+ti3bx8mkwmNRiN5uH4dbrebvXv30tzcjFqt5jvf+c5tf3/1Zge/L2tnb0UndpfnOlOUGsZPVqezKPX2laEuQaDf5KDXaKfdYOVy5zDV2iHqekw3KMdlwKzoQAqSPET43MQQIgLVdBisIwS3hfYBK+0jz71k0nhYnB7Os0VJrJxE6N5oVGuH+N3pdk409kvzZkV7CEKb09ei4nbV8DmxQazKimRlZgQFSaE+2yeKIu3t7TQ1NTFnzpxxj5koinQb7VRrjdR0GqnWDlGtNUqE7NKMcH6wPJXC1LBJXRvq6upoaWmhu7vbZ5lcLvfxmm9oaMDpdBIaGsr+/fuxWq2Ehoaya9eu2/LltbvcfHq5j3fLO2jq83gey/B8L+clhTJ35Hy4mb2Hw+Hg2LFjzJ49W1KXim43jqtXsZ49h6G0DOquIBe+KnK5ZHKuRqRxIS6P87F5tAfHwgT2k0ohIy5EQ1yIH7EhGuKCNcSFeux94kfmhQeoxrT5cbvdlJeXM2/ePIlsnmzHjfd6Wl9fL+VUeBEfH8/TTz+NXq+nq6uL9vZ2Ojs7MRqNBAUFsXv3bj7++GNSU1PJzs4mPDx8yoQVLf1mPrjYhcXhZmNeNIszwu+KB/e9hCiKHG/o55WT16VzGTxF1BeWpbJlTuxtF1Bfe+01n2MZEhJCdHQ0MTExJCYmkpOT4zPe+VtBf38/fn5+KBQKSfH85Zdfkp2dzdKlSydti1hZWcnx48eRy+Vs2rSJhQsXfuP262iLFJPJxOeff86qVasmJIIRRRGDwUBraysDAwOsX79eWlZWVkZcXBz5+fnTNkYzGAw0NzcTEhJCcrLHTnI06e4NwU5PTycsLAyj0UhkZKR0P1xfX8/Zs2cxGo0+9jxeeIsm3iDRb9oxnsEM7gZmiO8JYIb4njyOHDlCdXU1a9euJSkjWwq5/ONTsynOjEGhUMwovv8GIIoinZ2dDA8Pk5ubiyAIOJ1OXn31VWkgHBgYyIYNG+6Y4LyXEEWRCxcu8PnnnyMIgkQU3qlyYypgd9v5h7J/oLy3nABlAK+sfIUHIu8tGX/27FnKy8slgjQ9PZ3g4GBqamoAiIyMZOvWrVPuh15XV8enn36KXC5n6dKlrFq1CqVyfGWmKIq0tLRw4sQJOjs9nqZr164dt21REAQMBgM9PT3jDnbHQmFhIRs2bAA8iqBXXnll3HXnz5/vM4CfTly/fp3PP/9cCm9auXIla9asuWG90QGM3v0jiCL/eqSJP1/w7LeXV6bxk1VpWJ0Cf/fXWkqbB1DIZPzL9lwSHFof8nvdunW3tX1Wq5VTp05x/vx5qXjywAMPUFRUhEajkYJNveSM1WrFYrFIIU3eaWZmpkSSC4LAL3/5Sx+SXCaTERISQlhYGLNmzZLCmaqqqjhw4IC0XmZmJosWLSIpKWlar2XDNhe/+rKFvRWdiECov5JfrM/kkXlxN5BTwzYXZ1oGKGnSU9qsR2/+qk1fBjyQEMzKrEjmJ4cydwJK5amCyWTi4MGDaLVaAFasWMHq1asl9ZUgCOzbt4+rV6+iVCrZtWuXFEZ2MwxanPzhbDt/Ot+J1enxhJ6fFMJP12SwOH1y4WKiKGI0GrFYLMTGxiKXy7G73NT3mL4ibTuNdA7abv1mX0NciIaUcH9SI/1JCfcnOljDlw39HKvX4eWgk8P9eLrQE7oX7Hf7ivKyawO8WdbOhTaPh68M2JAXzQvLUnggYeyxrdMtYB/l12x1CtidAmaHi8r2IUqa9NR0Gn3UwqH+SpbPimBlViTLZ0WMq/I1O1xc6RoeIbk9+81rnTAa63OjeHFZKnMSb3/8bbVaEUVRImEbGhp8vqPR0dFkZGSQmZkpBZG5XC5cLhdvv/02/f39qNVq0tPT6ezsxGQy4e/vz86dO2/bokUURc5eN/DOuY4b1MLgOdZem5y5iSHkxwePq5q1Ot2UXzdQ0qTnVLOe7iE7AU4rBbprLNA1UKxvJtroa4viionDvrAY+8JiHLPnIdOMfRwC1UriQjVEBExdJ5Qoinz22WeEh4ezZMmS21ZRCoLA/v37aW5uluapVCqSk5PJyMigq6uLlpYWn1Bm8BQv5s+fz9q1ayXbgt/+9rfY7XYpRDQ7O/uO7E/+liGIIoev9FF+3cDSWRFsyI2+afFNq9Vy5swZduzYIRUeKioqUCqVxMbGEhsbK4VHflPH+9MBQRA4fPiw5BsOTJoA975Xfn4++fn53+j97Ha7+eSTT6itrUUul7No0SKWLFkyblHLarXS3t4udYqM7jB4+eWXJY9klUp1V9XRXj/otrY2jh49KlmBfR2PPvooGRkZgKf74bPPPpOW+fv7ExISQnBwMKGhoeTn5/9NhMPPYAZ3ghniewKYIb4nD6vVKgVeAPzj/jo+qfaEXP7r9jyAmTTabzF0Oh2XL1+mtrYWg8FAYGAgL7/8snS8BwcHGRwc5Pjx45JVRGpqKg8//PB9QRZPFBUVFdIAJSsri02bNt0XhR2n4OR/nPkflHaX4qfw49crf828qHnjrm+xWPDz85v2lshTp05RXl5OQkICK1as4Ny5c7S1tQEwd+5c1q5de8fWE2PBZDJx7NgxSZ3rJdjHCjRra2vjxIkT0napVCoWLFhAYWEh/v7+E/pcq9VKc3MzPT096PV63G63TzBQfn6+ZIczPDzM3r17pWWiKOLn50dWVhbZ2dl3vQXYbrdTUlJCdXU1O3fulJLUvdtQVVXFp59+6hPAqPLz5x8/qePQlT5kwD8+lMXj82MpLS0lODiYgvkL+H8ONnDwsmfw/98fzCRf2cuJEydYt24dS5cuva1z8Msvv6S0tBTwXD9Wr1494euHKIq43W6pAOJwOCgtLfVpc/YSKgB5eXmSkt9qtfLmm2+SnZ3NwoULb0sVeicQRZHP63T825EmiSjcPjeOf9gwa8wQsq9DEEVqu4YpadJT0tQvtbJ7IQMyYwIpSAzxqJWTQsmICpj2QEe3283JkyeprKwEYNasWTz66KP4+flx8OBBqqqqkMvl7Ny5UwoiGw9Gm5N3zml591wH5pEQxAcSgvnp6nSWz4qY0HfHarXS09NDd3e3NPV6eMbHx/Pkk0+OefPcb3JIyuWaTiOXu4axOtzEh/qREuHveUgkdwDJ4X74jUN8dg7a2FvRyV9Ghe4FqD02Gk8XJpEWObalg1sQOVqn4/dlbdSNhAsq5TK2zY3j+aUppEfdue+7weKgtHmA0mY9pc0DPsp1ucwT+LgyK5JFKWG0G6wSyd3UZ+LrgnKlXEZObJBECC9MCSUx7Paus263m6qqKhoaGuju7mbp0qUsXboU8HSvHDlyhFmzZpGVlUVYWNiY1xaXy8Xp06eprq5mcHDwq+1SKnG5XCgUCrZu3TphX/n2ASsX2gwSyd+sM9/wvytkMnLiAiUiPDM6kMudw5Q09VPeOih1KoAneLA4LYxVWVGszIokMcwPZ0cH1rIzWE+fxlZRAaPUgTI/P/yKi/Ffvhz/FctRTvP4anRGQXx8PJs3byY0NFRScI72QvbaOXmXXbhwgY6ODqmo9Mwzz6BSqRBFkU8++YSrV6+iUqmIj48nKSmJpKQk4uPjfUgwo9HI3r17GRoa8tmuyMhIMjIyyMnJIT4+flr3wd8qLl26xPHjxxEEgaKiItavX49SqZy5z5sAent7OXnypGT9B5CTk8PSpUtvqnb2Fui8v0cKhQK1Wv2t2PcGg4EjR47Q2NgIeDoG1q1bR2amr1VjWVkZZ86c8ZmnUChITEwkIyODefPmjZvpcLfhtQK8du2aVNALDg5mzZo1UgeE2WxGp9MRFhZGaGioFAb+bTimM5jB3cIM8T0BzBDfdwZRFLFarYAnNdwbcnnyvy7FT+4hGybi0TmD+xtDQ0OSd93oarZKpSIzM5N169bdQBi63W4uXLjA2bNncblcKJVKfvazn0lKzW8KLBYL77zzDrNnz75v2gpdgov/ee5/cqLzBBq5hl+u+CWLYhb5rON2u9FqtdLgy2AwEBQUREFBAXPnzp2S42C1Wrl48SKpqamSAtpms9HR0UFmZiYymYyqqipOnTrFxo0bx7Q6mGo0NjZy7Ngxqetg0aJFrF+/Ho1Gg8vlYu/evZJHu0KhYN68eRQXF983IaX3Av39/dKNl1wup7e3l8bGRulGwxvA6BTl/PwvtZy+NoBSLuPfduSxITucjz76iI6ODsBTHHpo0yZ+dbKdd8s9St8Xl6Xw1ANBkh3CWAUY729KQECA5CP+8ccfU1RUdEtCdLIQRRGz2SwR4cHBwT6Bn1+30pkuaA1W/vlwo6QgTY3w539tzpm0ehmgb9jOqSY9564bxlUqB2kUzB3xri4YsWsI8795UUoURUktbHW6R1TDAqmR/jf1g71y5QpHjx7F5XJRUFDAtm3bOHDgADU1NWzdupWcnJxxP6+xz8zhK33sreiUCNic2CB+ujqdNdm39oR2Op1Sq7EXr7/+uuR174VcLkehUDBnzpzb7kxwCyJuUbwjb3Vv6N7757Vc030VoLUyM4Jni5NZmhGOTCbD4RLYX9PDW2faaR/wjL/8VXIeX5DAc0uSpy2AzyUIVGuNnBpRJjf0mm+6/mjVc8GI6nk88v9m6Ovr4/Dhw1KQMXiKU1u3bkWhUKBQKCZkoeC126iqqqK+vt6n6AXw2GOPkZycjCAIWK1WiWC63fwIr9p9dIdA/xhq99GID9WwKiuSVZmRFKWH39xT2WrFdv481tLTWEtLcet81eCqnBwCVizHf/kK1LPzkU3Dtevq1ascO3YMu91+w7KXXnqJ4OBgAD799FPJh3gsfPe735XUrn19fbjdbmJiYm55vfUew4MHD95gEVBcXMzKlSsn+i9NK6xWK/X19Vy5cgWdTkdWVhZLliyZlvsjURTRarUEBwdPmQre7XZz/PhxqqurAc9YYNu2bRMWCMzgK/T09FBSUiIR4JmZmTzyyCNjrqvT6fjrX/9KWlqaFII9lXk29wvq6+s5fPiwpOIOCQnhkUcekcQOXoV0VFQUaWlpZGRkkJ6eLhHG9yu81one69r9vK0zmME3DTPE9wQwQ3zfORwOBw0NDQQFBfGDj9to6jPzwvwQ5NdKSUlJ4ZlnnrnXmziDKcKRI0coLy8HPORAeno6eXl5zJo165Zei0NDQ3z55ZeEhYWxZs2ab4RnWX9/PxEREVKb9N0iwG4HWpOWX1f/mlNdp1DJVfyfZf+HJXFLfNZxu928/vrrUnHq67jZQPt2YLFYqKiooLKyEqfT6RNi5HK5GB4elhSyXnLxbhY8bDYbJSUlkr1Kamoqzz33HAB79uzh2rVrzJkzh8WLF89c/78Gk8nEH/7wB4nYWLJkCcuWLWPI6uKlPTXUdBrxV8n59a4HWJ4ZiV6vZ8+ePbjdbukRHR3NI488wgeXB/nVly0APDY/nv93czbKETX1tWvXKCwsRCaTSS2icrmcp556aly/7m8bnG6Bd8918J8lrdhcAiqFjBeXpfLi8hQ0yqm93uhMdg8Z1+Eh5Gq7jGMGZqZF+hMf4ofd9RWx7Z3anG5srrFDNjVKOUVpYR4SLytyTEWvV/G2bds2goKCJM/7r9tMiKJIXY+Jz6/2cbROR9vAV9exzOhAfrI6jfW50TdVqzscDsrKyujo6ECn0+Hn58ePfvQj6Xfn448/Rq/XExcXR0JCgqQwdTgckictePzt9Xo9WVlZ0/6b5bXReL9cS0mTXrIayYgKYFVWJJ/V9tI37CH7Qv2VPF2YxDNFSYQFTH0Hzc3QY7RxqsljsVPbZSQtMsBDco+Q3TE38bm+HQiCwPnz5ykrK0MQBPz9/Vm2bBl5eXnjqronCqvVyuXLl6mqqsLf3x+Hw8Hjjz9OW1sbH3300Q3rKxQKVCoVGo2GhIQEtmzZcsvP8Pqb13QaqRkhw5t1ZjKjA6XvSVZM4KQ9s52NjVhKS7GWnsZRW8voBExFVBSBmzYRuGUz6gkq2W8Fo9HI4cOHaW9v95n/wgsvEBgYyOnTp7l48SJKpZLQ0FCUSiUKhQKlUklQUBBJSUlkZWXdUUil2Wzm4MGDUsE1KiqKBx98kMTERMCjJO3v75+win8q4Ha7uXbtGleuXKGlpUWy6vJi+fLlUpjnVEIURd555x36+/t54IEHWLp06R2Nb8xmMwcOHJCsqlauXMnKlSvvm7HwNx09PT2cPHmS4uJiSRRgMpmw2WxERUWh1Wr56KOPsNvtREVFSUHu9/O9053Abrdz6tQpzp07hyAIrFy5kuLiYuArX/DQ0ND7QtU9gxnM4N5jhvieAGaI7zuHtxU9MzMTc2Ih/3qkifQIDassZSgUcv7+7//+jtPXZ3Bv4LVikMvlOBwOOjs7OXnyJHl5eWRnZ09K7eF9P/CQCaWlpTz00ENERERM9ebfEWpqajhw4ADLli2TBl3TCafTiclkkm6qx2sfbRlq4e36t/mi/QsEBBQyBf+25N/IUeRw7do1jEYjmzZtktb/4IMP6O/vJyMjg4yMDJKTk2lra6OqqoolS5ZIKtqhoSGuXbvG7Nmzb2nhYjabuXDhApcuXZI8vGNiYliyZAlZWVkYDAYOHjyI3W5n9+7d9zzY1Euobty4kdTUVCkQB5h264r7BTqTndZ+C9mxQYTeQs0LHvXdgQMHMBqNbNy4kdmzZ9NjtPHC+9W09FsI9VfyxpNzKUgK9XmNKIooFAo++OADLBYLAQEB7NixgzO9Mv73Zw0IosfX99+25fDXD/bQ19dHUVERRqNRUj6pVCp27959310TJgqX4PFMtru+ejhcAraRqd0lYLQ5+W1pG40j4WJFqWH8r805U2JTcbvb2NRnplrrsWmo7hyiVT92oWw8qBQySaH69RDH0eTevOSQWwbGiSNWLUfrdByt66PD8JVCXa2QsyIzgs1zYm/pQwuewty+ffvo6emR5gUEBPC9731P8gEFj9XFeDfRgiBgt9vZs2cPHR0dzJo1i/Xr19+18WLbgIU/ne/k40vdkq0LQGywhu8uSeaxBfEEqqfWs32ywYVTjZMnT3LhwgXAU6R9+OGHCQubePjl7cLlcmG326UOpWPHjt10/aSkJJ588km6urqorq7GbDaTn59PTEwMYWFhN82WmC64DQasZWUeNfjZM4imr1T5qpwcgjZvJvChjSgmECB3K5jNZqlLQqlU0tLSwrFjx6TciNzcXDZt2jRt+0MQBEpKSiTv5NTUVLZs2YJarebPf/4zvb29LFy4kFWrVt1VstZms/Haa6/hdnu+tzExMTzwwAMkJCRQWVkpdaABdHd3I5fLJxTI7YVer+fSpUusWLFCEqBcuHCBkydPAp5iTUFBAcXFxRMWHuh0Ovbt28fw8DBqtZpt27Z94z2l71eIoojT6cTlcvHFF19w6dIlMjMzaW1txeVykZiYyBNPPCF1U3zbodPpaG1tJTk5mZiYmBkLkBnMYAZjYob4ngBmiO87R39/P//5n/8JwM7vPMNj7zVidwk8HduN2tjJ5s2bWbRo0S3e5f6GKIo0NjYyODjIwoUL78kNzd2Gw+Hgs88+w+VysXnz5mn5jA8++ID29nYUCgXLly9n+fLl93zfiqJISUkJJSUlgMeyYfv27VMaDGU2m+nr6yM1NVW6ETt8+DC1tbXSenK5HI1Gg1qtRqPRkL0ym4+7Pqakq0RaJ98vn2XyZTjaHJKlB3wV8ML/z957h0d13/m/r+mjGfVeUUEggQSSAAFCiN5sWgDjGDtu6dms7272t+Umu/vbZLO72Xv37v42ccomdmLHmBgDphN6M0L0IhCSUAOhgtqMpNH0du4fozmWQAIJJMDOeT3PeWbmzGlzZs6Zc97fz/f9xif+DMVr3+/JrVKpyMrKIjc3d8DAnQsXLlBcXCx2D4+JiWHWrFmMHTsWmUxGWVkZR44cweVyERAQwLp1654Jv82+DS5fdJweLxV3PwuWu9poornbJyAqZDJyk4JFMTI9avBKQ39QrUaj4VaHla9vusrdbgcxQRre+UoOScFKjEaj+P329Zzs6urio498wvbzzz9PVlYWhyva+evtN3B5BKYnh/K18W7OFp8Q1yeTyZg8eTKzZs0a9Abd6vRwo9lEh8XJ2Eg9KZG6x7KXGAlMdhfHbnZw4EYb15t7sLt8wrZnGJdYoQEq/nbJWFZPjn3qN3ddVhfXmkx02Vzo1Ao0SjkBKgValRytSkFA76NWKUejkotitiAI1LRbOVndwclqA1cbTP32QbBWSeHYcOaOi6Ao/bNgRK8gcK3RxMFesftu92f2CVqlnDnjIlg6MYo56RHohxjMaTKZ2Lp1K0ajkYCAABYtWkRycrJYKTycfezxeDh+/DhnzpzB6/WiUqkoLCxk6tSpT+ycYna42XG1hcsNXcweG8HKyTGP9buvrq7GbDZjsVgwm839nkdHR7N+/Xpx2iNHjuDxeNDr9QMOo5HVAD6P1I8++ojZs2eTl5f3xIPKLBYLnZ2dGI1Gcejq6sJkMjFz5kxiYmKIjY3l8uXLHD16tN/8/rDcsLAwZs+eLZ4j3W43crn8ifxuBJcLW3Ex5r37sJ06BX5LF4UC7cyZBK5YTsDcuchHqGHabDZz9OhR0ac3JCSExYsXj5pF1b1UVFRw8OBBXC4XY8eOZfXq1Zw6dUpsPImLi2PVqlWjcq/X2dlJeXk5BoOBVatWieOPHj2KUqlk8uTJxMXF9fve/UKny+Vi06ZN3L17l7Fjx4WurCEAACAASURBVFJQUPDQayZBELh9+zaXLl3i1q1bACxcuJApU6aIwX5NTU0cPXpUrMh/lAyTnp4ePvjgAzQaDevXryc29un/P33R8Xq9bNu2rZ9FkD8TQ7KWkZCQkOiPJHwPA0n4Hhm2bdvGjRs3yMzM5Iw3nZ2lLRTGKxjfeY7k5GTeeOONp72Jj4zJZGLfvn3ixXxMTAzr1q0bdgr35wmDwcCWLVtoa2tDJpPx6quvPlIlysMwGo0cPnxYvDAPCwtj5cqVT+xG6V7cbje7du0SBej8/HwmTZpEWFiYeMPS2NhIcXExgYGB9w16vZ6goCBRvPd4PBiNRtra2mhra6O9vZ329nYxPK2vv+XFixdFQbnvqbld005laCWtAT5PdRkysjXZRN+KJsz5WbWySqUiJSWFsWPHkpGR8VDrmXspKyvj/PnzGAwGcVxiYiK5ubmMHz9eFB3KysrYv38/cXFxzJo1S0wcdzqdHD58mPLycgCSkpJYsWLF587L/fPI3W47pb0id2ljN+V3zTg9/btVy4CoILVokeAnLkTDnHSfCD5jEG/Z600mvv3RNTqtLlIjdLzzlRzCNbB161YMBgMvvPACycnJ9wUtOZ1OysvLGT9+vDju3K1O/vzj61icHibEBvLdbLh69hQpKSnMnTu3n+epIAjcNtgoberurUY2UdXaPzRPKZcxNkrH+OhAMmJ8w/gYPZH60Q196it2l9R14r43ze4eVAoZWqUCtVKORilHq5L7nivkZMUH8d25KaIQ/EWh2+bidK2RE9UGTtUY6LZ9Vg0uA3ISfSF/xbVGWkyfid0BKgXzxkewZEIURekR6NTDEzydTifvvfceJpOJoKAgNmzYMCKCTWtrK3v37hW7/EdHR7NkyZJnomFvIMxmM+fPn+fOnTuEh4f3E+R+/vOfD2qBFRkZyZtvvvlI07a3txMWFvZIDdidnZ1UV1czffp0cZy/AfhZE9v6Bhc3Nzdz6dIlbty4IVb39uWVV14RbXyuXLnC8ePHCQ0NJSoqiujoaHEYzXwJT1cX1sOHMe/dh/P6dXG8LFCPbuEiAlcsRzl5Mja7Hb1eP2xhvrm5ma1bt4oWQfn5+cyaNWvUGkUGo729nQMHDrBy5UrR37qyspJDhw7hcDjQarUsX76ctLS0x16X3W7n5s2b3Lhxg6amJnH8V7/6VSIiIkRrl4c1tDkcDnbv3k1FRYV47ZeamkpBQYFo2eLH5XJx48YNLl++3O9aLT09nVmzZpGcnHzfd1dbW8uxY8dobm4GYO7cuf2OsXu5t8dHW1sbkZGR0rXcE6a5uZmSkhICAwNZuHDhEz+WJCQkJD4PSML3MJCE75GhtbWV//mf/wFgxvMv8e1PalArZLyguoxW7uWVV14hLS1NvJgyGo0D3kj534+NjX3q1ZmCIHDx4kWOHDmC0+lELpejVqux2+1otVr+8i//8qGWEJ9HysvL2bVrF06nE71ez8qVK8XAwtFAEARu3rzJsWPHsFgsyGQy1qxZw6RJk0ZtnQNhsVj4+OOPaWhoQC6Xs3jxYoKDg9m5cycTJkxgyZIlyGQyrl+/zoEDBwZdznPPPUd2djYAZ86cobi4+L5pZDIZ4eHhLFmyhMTERMBX5eH//TudToqbitlUs4kb3TcAUMgULBmzhNczX8fb7uX27ds4HA4CAgJITU0lMTHxsavlBUGgoaGBq1evUl1dLXpSFhQUMHv2bHE7GxoaGDNmjLi9ra2t7Nmzh87OTmQyGbNmzWLmzJlP/Rj+otJpdbKvrI2L9V2UNppo7bk/YCw0QEVOos9vNychmEkJwQRqlDR22vi0xsDJagPnb3fh6OPVPJA/c0mdkbc+LsPm8pAdH8T/bJhMgNzD1q1baW1tJSAggJdeeomkpKQHVo7b7XbMZjOnT58mdkI+391SjtHqYkx4AL/ZMIkxEXpMdhfXm3oobewWhfx7rTPAF5oXE6ShtsOC2XG/0AQQrlMxPsYvhusZHx1ISoRu2CJqX7ptPrH7YPn9Yve4aD1LJ0QxZ1wEIQEqNEqfsK3tfXyQD/WfAh6vwLUmEyerDZys7rgvGFGvVjBvfCRLJ0ZRODb8geF+Q+HixYuUlpayYcMGIiIeHnw5VARB4PLlyxw5cgS73deLYv369aSkpIzI8kcCm83GuXPnuHLlitgz516Beu/evbhcLrHRNjg4mMDAQIKCgggKCiIwMFAUdy9fvnxfZbh/SEhI4MUXXwR8x/mvfvUr3G43qampjB07lrS0tIdWKQqCQGlpKSdOnMDlcrFmzRrGjRuHRqP5XP2HdHV1sXnzZlpbW5HL5eTn5xMaGkpGRoZ4rXjs2DEuXbo04PyBgYGsXbtWLDJwuVyDWp4NFUEQRMHXT9WJE1j/uB/9xYuou7rE8Ra9jvqUFIr+8R8J7G2sPHbsGFVVVWK4p1qt7vd8zpw5aLVaXC4X77//PgEBASxZskQMo3sa3Cvcbt++HZPJhNPppLu7G/AFYM6ePfuRfl/Nzc1cuHCB2tpasaFDJpORnJxMdnY2EyZMGFIvu3tpb2/n1KlTlJWViQJ4cnIyRUVFYu7AO++8IxZOqNVqJk2axPTp04mKinrg+gRBoLKykvPnz7N69WqxMMIfdu4XVR0OB3v37iU7O1sMGtZoNJKft4SEhITEM4kkfA8DSfgeOT766COqqqrIysrm13ciqG6zsDi8k0RbLQB///d/L077ySefiH6uA/E3f/M3aLVaZDIZHR0dqFSqEUsnHypGo5Ff/OIXeL1e4uLiWLZsGVqtlv3795Oens6UKVM+dzdmD8Lj8XDkyBHOnj0L+Kp9V65c+cSqPBwOB4cPH6aiogKZTMYrr7zC2LFjn8i6/SGQBoMBjUbD6tWrsVgs7N+/H6/Xy5gxY1i7di0qlYru7m6am5tFEeDebuJf+tKXRBGktraWvXv39qvsioqKIjIycsDqDa/g5WTTSd6vfJ/Kzl6/Y7mKlSkr+UrGV0gITLhvntHCbDZTWlrKtWvXkMlkfOMb3xj05mfXrl1UVVURFBTEihUrRDF/OPTY3VidHmQyXzUoMl91OyCOk/nH9b5WymXo1E8/IFUQBFp7HFS2mKlsNdNicjB1TAjzx0cSOERrhqGs49Kdbj6+1MyhijZcnj4BZjIZGbF6chJCRLF7TNjDb7xtLg/nb3VyslcI72sxAb4wvTtGG26vwMzUMN5+MRu51yX2BtHpdLz00kskJiY+dF1er5ff//733Llzh8jISPLnP8/3dtfR1GUnQq8iVKeirt3KvRclGqWcrLgg8XNNTggmNlgr7pPmbgdVrWZutpm52WqmqtVCvdHKYAXYwVolscEan3gerCUuWENM7+vYYC2xIZp+outQxO6lE6MZGzV61Zrg63LuPxZnzZo1qut6EtzttvNpjYHbHVbyU8IoHBv22EGeA3lTj1a+iNls5uDBg7S0tPDaa6+J50aDwUBoaOhTEYocDgcXLlzg0qVLOJ2+nh1xcXHMmDFD/P/p65P6uIKqIAi43W4UCgWCIGA0Gvnggw/62W7JZDISExNJT09n3LhxhISE9FuOyWTiwIED1NfXA5/1FHqYkPes4nQ62b59Ozdv3gRg2rRpzJ07V7xO9Hq99PT09OsJ1traKmZO/Pmf/7nYUHDy5EmuXr1KdHQ0MTExhIaG4vF4RB/goqIicR+dPXuW+vp60TrDP9jtdrxeL3/1V38l/ib37t3rs1EQBCLb20m5dZukO3dQuT9rZFRnZxO4YjmnBIEb94RX9qXv9ppMpn7e+c8CdrtdbIwBnx2Xx+MRQwKHUizgr+z377+qqip27doF+BqUsrOzxZ6BI/Gb9WffXL9+Ha/Xy6pVq0QReufOnbS1tTFt2jTy8vLQ6XTDXqfX68XpdOLxePj973+PzWZj1qxZJCQksGvXLtEe6lvf+hZBQUHP1PcpISEhISHRF0n4HgaS8D1yNDU18e677yKTyQidvpr/OtFIcqiKdbqbeL0evvnNb4rTHj58mLq6ukGX9dWvflUUBnfs2EFNTQ2hoaGkpKSQmppKSkrKqHxf/htnv/fe6dOnUalU5Obmihd//sPGf7HZ1taG2+0mPT19xLfnSbJ161bRpmL69OkUFRU98QteQRA4fPiwKCDr9YP7D4/0ei9cuEBJSQnr1q2jrq5ODAYaTjDTvb8NfxX3wz6DIAgcazzGO+XvcMvk82vUKrSsHbuWl8e/TFTA49vqeAUBo8VFp9VJcsTQfZE9Hg/23u7Pg2G1Wjl16hRz5swZsgehVxAov9vDyWoDn1YbKGvuuU/0HAoKmYzgACUhAUpCtCrfY4Cqd1B+9tjnvdAAFUFa5UPD8QbC6fFS227hZquZm71Cd2WruZ+Ngx9/GN+yrGjmjRu6P3Ffumwudpe2sOVyM3UdVnH8xLhAlk6IJi8phIlxQY9VyQx+f2YLn1b7RPArffyZl0yI4v9dMxG3086WLVtob29Hp9OxYcMGEhIShnyMNjQ08PHHH2OxWAgICKBoyQr+6VibGOwIkBSmZXJCCLm9Qvf4mMBhexnbXJ7e78jSK4b7hPGBvqOBCNYqiQvRoFcrudZkuk/sXjYxmqUTo0iLHF2x2+v1cuvWLUpLS6mrq0MQBNRqNd/5zndQq9U4HA7++Mc/UlBQQGxs7Khuy7NOTU0NZ8+e5YUXXkCr1aJWq59IXoTdbkcmk4nnybfffhu5XE54eDiRkZFEREQQGRlJVFQUISEho/qfevr0aUpKSgCfDcucOXPIzMx8oiK81+ulqamJyspKqqqq6OjoEN+bMWMGc+bMEae7ceMGx44dw+l0olQqmTNnDrNmzfrcV5cKgsDx48c5deoUCoWCV1999aHWeE6nk46ODtESBXwWgn7/5oH43ve+J/7GRTF7EPrmfpSXl9Pa2iras+n1enRKJcrLV3AeOoj97DnwW7Yolcin5+OdMxfX5Ek4e0VTp9OJy+Vi5syZz/z3ZbFYuH79OqWlpZhMJnF8cnIyM2bMIDk5ecD5TCYT5eXloo1jYWEh4LPEKykpISsri4SEhFE7pjs7O7l06RIFBQX9egOOlK9+R0cHH3zwgRhC6icoKIh169b169UnISEhISHxLCIJ38NAEr5Hlo0bN9LT08Ps+Yt5cVMNdreXP7w5hdykkIfPPAjbtm3j9u3b3PtzDQ8PZ+zYsTz33HMjcnHW1NTE3r17Wb58OREREfetbyAcDge///3v6e7uZsaMGSxatOiphzM+CoIgUFdXxyeffMLSpUsZN27cIy/LKwj02N2Y7G4CVAoiA4fnW9u3ukYmk41qVb3D4RAFJH8VTHFxsdgVeerUqcyfP39UL/5LO0r5WenPKDP6fMUDVYGsT1/PS+NeIlQztF4Obq+XDrOTVpODFpODth7fo/91a4/vuV/ASwzV8o/Pj6coPeIhSx6YxsZGampqmDdv3rDm67G7OV1n5NNqA6dqjBgs/f2mlXIZggACQu/j6BKkUfYTzYN7hfFgrV8gVxKoUXK3205lq6+iuLbdOqCfs0ImIy1KR0ZMIBF6NSerO7ht+MzOSaPsFcEnRjN3fAR69eDnCUEQuNLQzZbLzRwsbxftSAJUCpZnR/Pi1Hiy40f3/6rb5qKkzojV6eVLObE4HXY2b95MR0cHer2el19+mbi4uGEfG93d3WzevJmWlhbkcjmF8xZR44kgIUTL5MRgIvSj53PdY3f3Hhd2WnqPDf/ru73Prc77rVOepNgNvuru69evc+3atX6iRFJSErm5uWRnZ6NQKDh06BDnz58HYPLkyRQVFY1ahfNI4HK5xArXlpYWWlpasFqtTJky5bGq2G/cuMH+/fsRBIGCggIWLlz4xMU4j8dDY2MjmzZtwuVyDThNbm4uixcvBnziWX19PeHh4Y8siLvdbqxWq3jtarfb+eSTT8RsimdBkDQYDKIIXlRUJAq7N2/eZPfu3YCvKn3lypVfuOC869ev43Q6mTBhwiPN7/F4MBgMYmW4yWRCqVSiUqlQqVQUFRWJAmhjYyM9PT2oVKp+02i1WnQ63bCuSz0dHVgOHMS8bx+u3sp1AHlICPqlS9GvWI46K+tz9131bUisrfX1RF20aJHYQ2HWrFm4XC6qqqooLy8Xs2fgM6ugofp2jySCIODxeEYlFNXlcon5MlarlYSEBNatW0doaOjn7vuVkJCQkPjTQxK+h4EkfI8sNpsNmUyG1+vlB7sq2FnawpdyYvm31Y924e/H6XTS2NjInTt3aGhooLW1FUEQSExM5Ctf+Yp4IXrw4EGCg4OJj48nLi6un6/hg5Z9/Phxzp07hyAIJCcni56VD8PlcnHy5EmuXLkC+Kqs1q1b91T9DYeKIAi0t7cTFRXVT/gdKBTR6fbyaY2Bth4HJrsbk81Nj8P3aLK7fON6x5sdblGwlAFfnhbPXy5II1g7/AoVQRA4duwYISEhYqXYSOD1ejly5AiVlZW88sorYpXygQMHuN4b/DRv3jzy8/NHbJ33cqfnDr+4/gtONJ0AQIGGANsCAqzzkQtDq5oWEDDbPbSbHYNaO/RFhk+AtfcKqc9nRfN3S9OJChyaV73X6+XcuXOcPn0aQRBYuXIlmZmZg2+fIFDbYeVktYFT1QYuN3T3E411agWFaeHMGRdOUXoE0UEDb4cgCAiA/x/LL4y7vb5Glm6bi26bm67eR99rF9193uv7aBlA3BwOwVolGTGBZMb6PKQzYwIZG6XrZ9UgCAJVbRYO3GjjQHkb9cb+Ivic9AiWZfk8of0iuMnuYs+1VrZcbqa6TxV0RkwgX54az4pJMSNmnTJcPB4Pu3btorW1lZdffvmxRCqn08mOHTtEu6uZM2dSWFj4THSp9ovjLSY7nVYX2fFBT0Ts7sunn37KuXPnANBqtWRlZTF16tT79rnJZOLw4cNiGK9Go6GwsJC8vLynvi/72o50dnayc+dODAbDgA3KCxcuZMqUKYBPzPV6vUMO57106RLHjh0DICsri9WrVz/VEDCv10t3dzetra39Ao0NBgNz584VP2dLSwsbN24EQKlUEhYWRkREBOHh4URERBAfHz/oNanH46GsrIwzZ84QHBzMhg0bkMlkyOVyVCrVMyF4D4RfwPN4POJ/bWFhIbNnz/7CBrcJgiDaSrS1teFwOEY1M2WkcVZVY9m3D8v+/Xj6VO8rk5MJXL4c/fPPo4x/NsNdH0R3dzfXr18nLS2NTZs2Ab5iGqPR2G+6xMREJk2aRFZWFh0dHWK2ir/q3e12M2HChCeeSTPSOBwOGhsbSUpKGnYwuoSEhISExNNCEr6HgSR8jzz+ILOrDd28/N5lNEo5J743i5CAkbuxsdvtNDY2olAoSE1NBXwXbj/72c/6Tee/gYyLiyM5OblfN1LwdY/et28fXb0BPxMnTmT+/PnDrpqrra3lwIEDWK1WlEolixcvJj8//5mtmLDZbOzcuZNbt27x2muvER4ePui0pY3d/P3uyn42C0NB20dgjdCr+dslY1mRHTOsfXL79m22bt0KQFFR0YhUX9/rwdk3jLKuro5du3axdOlSJk6c+FjrGYwuRxe/Lf8tn9R+gkfwgCDD2ZWPs2MRgvvRz0EKmYzoYDWxQT7v4hjRx1jTO05DZKAap9vLz0/cYuP5RryCr+r5ewvTeHFq/AMD+MxmM/v27ROroCZOnMjixYvvu0nyCgLnb3dxuKKdT2sMNHXZ+72fGqFjzrgI5qSHMzU5dNg2FiOBy+PtFcx9DTddvY9+YdzUK5j7GnbcRAaqRYE7IzaQuGDNsH6HgiBQ2WrmYHk7B8rbuNNHBNcq5cwZF4FOreDAjTbxmNEq5TyXHc2LU+KZnBD8TJxL3G43DoeDyMjIx96evnYAWVlZYs8dt9vNJ598Igbu+cP2goKCCA4ORqMZ3r5/lhEEge7ubioqKkhMTBQFsa6uLvbv3y9Wd6vV6gd+5vr6evbv309rayvgq05csGDBoF34R/ozWCwWjEYjBoNBrOZOTk5m/vz5gO+c+9Of/hQAvV5PbGwssbGxxMXFodFoiI6OFitSr127xrFjx5g4cSI5OTli0N9A6z19+jRnzpwBfL1znnvuuWdW9PULvnK5HK/XS319PYcOHaKzs1MMyOtL34bXrq4url69KvZEO3funHjNEhgYKP6HP6uffSD8DRwqleoLczwPhv84/93vfofFYmHRokXk5OQ87c0aFoLHg/38eSx792E9fgzB/lkehCY3B1V6OqqkJJSJieIgH6Lt2dOmvLycQ4cODdhT46tf/SqxsbEIgkBJSQknT54ccBkzZsxgyZIlT73BUUJCQkJC4k8JSfgeBpLwPTr09PRw6dIl/uWil5oOG8smRvOTL2U+dnjVg7Db7ZSWltLS0kJra6uY3u4nJyeHlStXijeeH330kdjdMTg4mCVLlogi+qNgNps5cOCA6MmYnp7O+vXrn6nqCbfbzdWrVzl16hQmkwmFQsHy5cvF4Jy+2F0e3j5xi9+fbcArQIRexdQxoQRrlQRplQRrlQT32kMEaXx2EcFalfieWinn3K1O/vmPVdwy+ETzGSmh/O/nM0iNHHrDwrlz5/j0008BKCgoYPHixY98o2yz2di0aRNNTU0oFAqWLVvGhAkT+i3PYrE80M/6UXF4HLx34w9sqvoAp+DbH25zBo7W59ESz5IJUSzMjHygBcZA6NQK4oI1hOvVw/KsLr/bww/33aSs2WelkJMQzI9WZDA+5v4w07q6Ovbv34/VakWlUrFo0SKxscCPweJk59W7bL1yt5+wq1LImJESRlF6BHPHRTAm/PNxMzxaCIJARYuZg+VtHChvp6HT1u/9cdF6XpwSz8rJMY/US2Ik8Iei9fT0UF9fz8yZM5HJZGIX+pEUqsrKyuju7iYvLw/wVQe/++67g04/efJkli5dKr7u7Oz8XHTL9nq9tLS0iBXA/sHh8AlI6enprFmzBkCs2h2OiOL1erl06RLHjx/HZrORlZXF888/P6Lb73A4xN4xbrebzZs3YzQaxc/Ql4SEBF5++WUA5HI59fX1/Xyu7/2+/NXA9wZfx8XFkZOTQ2ZmplgVLAgCR48eFXtaFRYWMn/+/M+V8OvH4/FgNBrp6Oigvb2djo4ODAYDs2fPFhsuKisr2bNnT7/5dDodM2fOZPr06Q9tGJF4+rhcLnbu3CnmqEydOpW5c+d+Ln+zXosF69GjmPfuw3Hx4qDTKSIjfSJ4UhLKpERU/ueJiciDghAcDgS73Tf0Pvc6HAj23vGOPu+5XGinTUM9fvyofCaDwcDu3bvp6OhAqVSiVqtRq9WiBQ/ArVu3qKqqEt9Tq9XivY5Op+Mb3/gGoaFDs6eTkJCQkJCQeHwk4XsYSML36LBx40bq6urQpU/n1zcE3F6BKUkhvP3lbMJ0T0YItlqt/bxEMzIyxCre1tZWPvjgA8B3AzJ79uwREagFQeDy5cucPHmS1NRU1q9fj0qlwmKx0NHRIVYuPmkx3OFwcOnSJc6cOYPZbAYgJCSE1atXD1hRd/lOF/+wp1L0KF45KYbvLx1HqG74QpzT7eV3Z+7w61P1ONxeVAoZX5s1hm/OTkarGtpN3+XLlzl69CgA06ZN4/nnnx/2jX5PTw8ffvghbW1taLVa1qxZg06nY9++faxYsYKwsLBhf7ahYHG6ePvCdvY2vY9L5utG67HH4WpbQUFcPisnxzJ/fORjhxM+Ch6vwEcXm/jpsTosTg8KmYzXZybynTkpYhDjlStXOHLkCABRUVGsWrVK7CEg9FZ3b7nczOGKdtHGRK9W8FxWNPPGRzIzNeypfLbPA31FcIvTw/LsGHITR6e62+Vy0dTUhMViwWazkZaWJn6Pt2/f5sSJE9jtdmw2G253/xDI2bNni36yo7FtgiCIg81mo7q6GpPJhMlkoru7m56eHnp6erDZbMycOZOioiLA9//961//mqCgIDH0ODk5eUgWV6OFv7qzvb0dmUwmhh57PB7++7//G6/X2296uVxOXFwceXl5Yojy4+xjq9XKyZMnmTp1qhhm52+w6iscezwenE4ngiD0a+i7desWNpsNp9OJ2WzGYDBgNBrp7OwkKSmJ9evXi9P+8pe/xGKxIJPJCAkJITw8nJiYGOLj44mPjxcbJIbbO+LWrVtcvHiRmzdvivtLo9GQlZXFggULsFqtYp7IokWLKCgo+MJVWvqPB39Y5LVr1zAYDFitViZMmMCMGTMICAiQBO/PEYIgcPLkSbFqWKPRMGbMGFJTU5kwYcKIXxf2tRsaLdzNd7FfuICrsRF3QwPu3kfvPYGJI4W2sJCQN99EOyVvVJbv9XqHfS65efMmgYGBJCQkPLFQXQkJCQkJCQlJ+B4WkvA9OlRUVLBlyxbUajW5y17ib3dW0eNwMyY8gP/ZMJmUiKcbwNXa2kppaSnZ2dn32Z+MBO3t7ej1enQ6HXK5nIqKCjHICXw3PH278Ofn55OYmAj4BBJBEEbs4lkQBH7xi19gMBgAX2L79OnTmTRp0n2+mlanh58er+PDc40IQHSQmh8uz2De+MjH3o6GThv/sr+KUzU+8TcpTMs/PDf0gMXS0lIOHToE+ELC/NX7Q6Grq4uNGzdiNBrR6/WsX79etDyx2+2kpqbywgsvDDp/e29YpM9n2nfa9Icv3uc/3fva7PCwtfxTLpk3IdM2AuB1hRDtWs2XM1byfHbssIM/RwOXy0VFXQNbTpXR2dFKlNxCpWoc31kxk7njIqitrWX79u3k5eUxb948lEolnVYnO0tb2Hq5uV+A46T4INZPiee57OhhV65LjDyCINDQ0EB5eTk3b97E6fwsTPRei59PPvmk37xyuRytVktkZCQrV64kMvLxzwGPQ1+vXLVa7fNQr6pix44d/awiZDIZ8fHxpKamkpmZOWoNWn5sNhvNzc3i0NLSIu7nmJgYXnvtNXHaLVu2AL4siJiYGGJjY4mKihqVNwOqzgAAIABJREFUBgVBEHC5XLjdbnbu3ElDQwNKpRKn04nL5RLPY7Gxsbz66qvifL/+9a8xmUwDLjMsLIyvf/3rgO/30dDQgE6nIzIyUhTtRvJzmM1mLl++zJUrV+jq6up3njYYDLS3t5OXl/cnJf4+CTFTYnQpLy9n3759WK2+nl8KhYK33npLvB4zGo0EBQUNy/fcbDaLhR6tra20trayaNGixwoqfxw83d2iCO4TxT8Txvt6hQOgViPXaJBpNMi0WmTa3keNFplWi1yjwetwYD9zBvwNYbm5hHz1TbSFhc/c8XDr1i0CAgJIS0t72psiISEhISHxhUYSvoeBJHyPDoIg8Ktf/Yr29nZmz55NVPpkvvPRNZq67IQEKHn7xUlMS/7T6RJYWVnJ6dOnMZvN/cQnP+vWrWPcuHHIZDJqamrYsWMHSUlJpKamkpqaSnx8/LCqUHp6esRqP4/Hw6effkpZWRkzZsxg4sSJA3avPX+7k3/cU0lDp8+TeU1uLH+3JH1E7RYEQeBwZTs/OVBDa4+ve/ySCVF8f+k4YoIfHrB448YN9u/fD8Drr78+ZA/bnp4e3nvvPbxeL+vXr8doNLJ7927cbjexsbGsW7fuPl/3pi47hyvaOFTRztXGgYWgwZCpjGhj9qAMqvCN8GrICfwSfzXtDTJjBvdTHwp+n2Wn0ylaDAQEBBAQEDBkAa2zs5OLFy9y9+5d2tra7gucu+qK44o7gaUTo/jrBSnoZC5CQ0O5WO+r7j5U0Y7L45tHp1awYlIML06JZ2Jc0GN9ttHiXrHoT0E8am1tZefOnf1EzKCgIMLDwwkICCAnJ4eUlBRkMhk2m42WlhZ0Oh0BAQHodDq0Wq14znmW95XT6eTWrVvU1NRQV1fXL5xs1apVoo2TxWLBbrej1+sf2SdcEAR6enr6XSv85je/uc9WSy6Xi/kSy5YtQy6Xi8NwK6AfF7PZzG9+8xt6BqnAjI6O5vXXXxdf7927F4vFglqtFkXtyMhIoqKiCAsLe+yK9EdBEARqampQKBSi7YBcLv9C+b1L/Gnh8XhoamqipqYGu93OvHnzxPfef/99jEYjiYmJpKSkkJqaOmCuQnt7O6dOnaKlpQWLxcK9FBQUMHv2bMD3f2A2m0lLS3vqx4zXZkOw233itlqNbIh2L647DZg++ADznj3Q68etGj+ekDffRLdo4ZCXM5p0dHTw4Ycf4vF4eO6555g2bdrT3iQJCQkJCYkvLJLwPQwk4Xv0uH79Otu3b0er1fKtb30LkxP+/OPrXGsyoZTL+JdVmayaHPu0N/OJ4+9C3nfIzMwUf3+nTp3i7Nmz/ebRaDQkJyeTlpZGdnb2oB7UnZ2dnD59mqtXr7JmzRrRs9ztdovCy71YHG7+62gdH11sAiA2WMOPVmQMuRL7UbA43Pz85G0+PNeIRxDQqRX8X/NSeXl6AsqHCPw3b97E4/EwceJENBrNAz0yvV4vMplMtHm4du0aNpuNqqoqBEEgNTWVVatWidWKDZ02DlW0c6i8jevNnwlFMiAmWINcJkMm87323Tve+xocAaex6HchyB3IkDMnZjl/l/8dIgIevD9bW1upqanB4XCIg1KpZMWKFeI0H374IXfv3h1wfoVCwfe+9z3xpra4uBiDwSCK4lqtVhQ1dTodGzduFOfV6/WiPUF4VAw7qmx8cL4FjyAQqFGwNjeO4lpjv4DTiXGBvDglgeXZ0aItyrOGIAjU1dVRUlLC0qVLiY6OBnz7xmQyMX/+fNGzeCSw2+2UlJRQVVVFTk4O06dPf2IerlarlZ6eHtG6yOl08stf/hKZTEZmZiaTJ08mJSXlqQiXTxKj0Uh1dTW1tbUsW7ZMtD0pKSnh9OnTgO9Y0el0Yq8cvV5PYWEhQUG+hpuenh5cLhdqtZr29naxmtt/7L311lviPty7dy+tra3Ex8eTmJhIYmLiqFVxPypOp5OWlhbkcnk/f1q1Wn3f7+FZ2ebB8Nu0KBSKZ35bJSSGiv93bbPZePfdd+/rdREYGEhERAQZGRliMKbRaOS3v/0t4Dtu/VZDcXFxYqi7Wq3G6XSyceNG7t69S0pKCvPnz3/qPXgeB3d7Oz0ffkjPtk8QbL4eZ8qkJILfeJ3A5cuRPcVcHZfLxcGDB6mo8BU95Ofni42fEhISEhISEiOLJHwPA0n4Hj28Xi8///nP6ezspKioiJkzZ2J3efi/d1ZwqKIdgD+bk8J356ZIN7B9EAQBo9FIfX099fX1NDQ09AsP++Y3v0lMTAwymQyDwSB2Xy8uLqasrEys3s3NzWXx4sUPXFdJnZH/vecmzd2+Ku/1U+L5m8VjCXxCQmZli5kf7btJaZPvJi8zNpAfLs9gcsLQj8Wenh6xmqm7u1scjEYjCQkJvPjii3i9Xmw2Gz//+c/F+bKzs1myZAmN3Q4OlbdzsKKN8rtm8X25DKaNCWXJxCgWZ0YRFfTgivRmSzP/evFfudjmC3vKiczhB1N/QEpwygPn6+rqori4WLxR6otWq+Wtt94SX3/88cfcuXMHALVajUajEX2RAwIC+M53viNO+4c//IGmpqYB1xkaGkpqaipJSUnExcURFBR03zFY2WLmh/tucq3psxvwAJWC5dnRvDg1nuz4Z/d82VfwbmlpASAzM5NVq1Zht9v5xS9+gcfjQafTsXjxYsY/ZmCW1+ultLSU06dPY+u9EQ8JCeGNN94YVT9/t9tNbW0t5eXl1NXVERERwRtvvCG+39LSQnx8/J9sZazfI9nj8bBv3z5u3rw5YBAjwLe+9S3xGuDEiRNcuHBhwOlUKhVvvvmmWP0MoFQqJWFDQkJiRPB6vXR0dIgNeA0NDWLuQmZmJitXrgR857erV68SFxdHXFwcWq12wPO8y+Xi+PHjnD9/Ho/Hg0wmIzc3l8LCwhFt+H3SeLq66Pl4Cz2bN+Pt7XWjiI4m+CtfIXDtGuS6p2OpKAgCZ8+epbi4GIC0tDTWr1//VLMnJCQkJCQkvohIwvcwkITv0eXatWvs2LEDlUrF1772NYKCgvAKAv99tI53S3wC3spJMfx4ZSZqpSQcDITX66WtrY36+nra2tpYsWKFeHOze/dubt682W/61NRUZs6cKXqGD0SP3c1/HK5h2xVfBWNCqJZ/XpFBQdrj2XA8Cl5B4JMrd/nPI7WY7G6Uchl/uySdV/ITHirWmc1mPvroI7q6ugad5sUXXyQ5ORlBEDh+/DiBgYE41KHcMKk5WNHOzdb+Yvf0lDCWTIhiUWbUkDy4BUFgR90O3r72Nla3FY1Cw59N+jNeTH8Ruezhv+kdO3ZQU1MDwLhx4wgPD0ej0aBWq9FqtUyYMEGc1mq1ilWbfYU2QRBwu939PEHr6uro6uqiubmZ6upq3G43MTEx9PT0EBsby5o1ax4q1nm8AlsvN3PsZgcLMiJZMSnmiTWKPAr+YLySkhKxOlelUpGXlydW9MpkMu7cucPu3btF3/uMjAwWLlw4aE+KB3H79m2OHz9OR69vaUREBNnZ2cTFxZGUlCRul9frHbHqb79VTWVlJXa7XRwfExPDSy+9RGBgoFQROwB+3+uenh6xt43FYsFsNjNjxgwUCoV4nigtLcXpdBISEiJWcyclJREbG4tSqZT2rYSExBPB5XJx+/ZtjEaj2DPrUXruGAwGDh06RFVVFeBrWC8sLBRDdT+veK1WzNu3Y9r4IZ52X1GNPCSEoA0vEfzqq8ifkrhfVVXFH//4R1wuFxEREWzYsIGIiNHrSSkhISEhIfGnhiR8DwNJ+B5dBEHgd7/7HXq9ngULFoi+0wDbLjfzo31VeASBqWNCePvFSYTqhu4nbbA4OV1r5NNqAxfvdJEQomXdlHiWTYxGp376Xn9Pgu3bt1NXV4cgCIwfP56ZM2eKVgcD0WV18fGlJjZdaKLD7PMafzk/ge8tTBtSGOGZM2cwm83izVdoaOiICUAGi5N/2V/FwXLfjcvKSTH8cEUGAarBv8umpiZOnDgBQHBwMMHBwdjtdsrKyvB6vYwZM4a1a9eKgnBbj4Mf7r3JiWqDuAyFTMbM1FCWTIxmYUYk4fqhV+jeW+WdG5nLP+T/A0mBSYPO43A48Hq9YqVVW1sbn376KUVFRQ/87oaL1+vl9OnTom1OdHQ0a9asQa/XI5PJxBtdvx3MF0HI69uIoFKpxKq24ODg+z6f2+3mxIkTlJSUIAgCWq2WhQsXMmHChCHvi1u3brFt2zbAJyLMnj2b6dOno1KpxMYIl8vFlStXuHr1KsuWLSMuLu6xPqO/ksz/9x0YGEhWVhaTJ08mNjb2cy1gPCv4963H43kqvtwSEhISo0VtbS0HDx6kvVckXrFiRb8G9s8rgtOJed8+TO+9j7vRFyiuGjuWyJ/8G+r09KeyTa2trezYsYOenh4KCgpYvHix9F8iISEhISExQkjC9zCQhO/Rx+Vyid3N76Wk1shfbivD7PCQHB7A/7w8meTwgbsnerwC15tMnKoxcKrWSFnzwGFdgRpf2N4Lec9u2N5I4nQ6cbvd94Uz9qWuw8IH5xrZXdqC3e0FICksgH9ZmUF+StiA87jdbiorK8nKyhIv1H/3u9+JVbLgC1X0+0nGx8cPOWxyMARB4INzjfx/h2vxCAIZMYH87MVsksKGVrHjD7/0NwQsX74cpVKJIAj88UYbP/5jlVhVPjM1jKW9YvdwGlz82zncKm+3201paSlnzpwhIyPjoTY0j4PZbGbPnj009t785ebmsmzZMjSaz+xaPB4PdrudAwcOoFAoWLhw4RPzox4p/H9h/t/nhQsXKC4uJi8vj1mzZhESEvLQm8zm5mZ27dpFW1sbSqWSr3/966LX82Dr9C9TEAQ2bdpEfHw8c+fOJTAw8L71uVwufvnLX9LV1YVMJiM/P5/CwkKUyqFXznu9XlHQ9ovtqampzJgxg7S0NKkCWUJCQkJiyHi9Xi5evEhFRQXr1q0T/1/cbvew/pueRQSPB+uRI3T+53/i6TAg02gI+1//i8B1a5/K/6TZbObSpUsUFRWhVCr/ZK3HJCQkJCQkRhpJ+B4GkvD9ZPD7EA9EdZuF73x0jeZuO6EBKt7+cjZTx4QCvirg4hojp2oMnK4z0m1z95t3QmwgRekRzEwN43qTiW1Xmmno/Kzrf1ZcEC9MiWN59uNZNAiCQGuPA5dHIDF0YB/FZw1BECip6+SDcw2cqjGK4yfEBvL6zCSWZUWjVtwv0gqCQEVFBadOncJkMrFy5UoyMzNRKBRUV1fT0NBAU1MTLS0t/RozwsPD+drXvia+rqurIzw8nNDQ0GFv+/nbnfzVthsYrS6CtUr+Y+3Eh4ZtXrlyhSNHjgCQlZUlBgp1Wp388x8/qySfEKPnL2aEUTgp7ZGE3uFWeQuCQHl5OadPn6a714cyMjKS1157bVSE5tu3b7Nv3z6sVitqtZply5aRk5MzYCVwY2OjGI41ZswYVq1a9Ux6fnq9XtGSou9w584dpk2bRkZGBvBZI9tweyJ4PB6Ki4tRKpXk5eUNug3Xrl3j2rVrbNiwQexFIJfLH3ojazabOXDgADdu3AB8x8qyZctISEgYdB5BEKivr+fcuXMkJCQwe/ZscXxXVxfx8fGfi/OQhISEhMSziT9U0+l04nK5eO+995DJZCiVSpRKJQqFQnzMyMggOzsb+CzI2S/kpqSkEB0d/Uz9J3mMRjr+6YfYe0ONdQsXEv6P/4DiKd/rOZ1Otm/fTm5uLpMmTepnUSchISEhISExdCThexhIwveTw2AwcPToUZKTk5k0aVK/99rNDv5883WuN/egUsh4IS+e682m+6q6g7VKZqWFU5Qezuyx4fcFDnoFgXO3Otl25S6HK9pxe30/8QCVguezo3khL47JCffbHvTF4nBT3Wahqs1CVZuZqlYzVW0WTHaf6B4ZqCY/OZT85FCmJYcyNlI3Ihf7bq+XeoONxk4b0cEaUiJ0D7T5GAy7y8Pe6618cK6RmnYLADJgfkYkr89IZFry4KJgfX09J0+epLW1FfDZKCxevJisrKz7RFqXy8Xdu3dFITw4OJg5c+YAPpHwZz/7GS6Xi5ycHObMmTPsYJ8Wk52/2FLG9eYeZMBb81L5ZlEy8gG2vaGhgc2bNwMwZcoUFixYgEwm49jNDv5pbyUGiwulXMbXZyWiu30KS4+Jt956SxSDm5ubCQoKemil73CqvP1+059++qnYpViv11NYWEh2dvaoVVeXlpZy6NAhoqKiWLt2rRiEOhiVlZXs2LEDp9NJaGgoa9euHXUfSkEQsFqtOJ3OfoNf3A4PDyczMxPgvlDSe4mNjeXVV19FpVI9duWz3wPa7XbT2NhISUkJS5Ysobu7m2PHjok+3gsWLBAtTYZjLVJRUcG+ffuwWHzH5dSpUykqKup34ysIAtXV1Zw7d04M5tTpdHz7299Gq9VK1d0SEhISEiOKIAhcuXKFPXv2DDrNjBkzxGu8zs5O3n333X7vBwUFkZ6eztixYxkzZswz0YNM8Hrp2bSJzrd/Dm43ithYIn/yb2hzcp7aNl2+fJmjR48CPou0nJwc8vPzJf9vCQkJCQmJYSIJ38NAEr6fHCUlJRw+fBidTsfXv/71frYLADaXh7/bUc6Ryo5+4/1V3UXp4eQkBqMcotBktDjZda2FbZfvcstgFcdnxOh5IS+e57OjMVpcVLVZqG4zc7PV99jYZR9weQqZDLkcXJ7+h024TsW0XhE8PzmUcdH6AcVZP4Ig0GF2UtVm4WaruVdkN1PbbsXp8fabNjZYQ2qEjtRIHSkROlIjfI9xIZr71tFudrD5QhObLzXTaXUBoFMrWJsbxyvTEwa1kAHo6Ojg5MmT1NXVAaBWq5kxYwYFBQVotUOrcBcEQQzxM5lMbN++naamJt926HQsWLCAzMzMYYl2TreXfztYzZZLzQDMHx/Jv39pAkHa/tX7giBw9OhRNBoNs2fPxuzw8JOD1ews9QmHY6N0/GT1BGrOH6O6upqAgAC++93vitvyzjvv0NXVRXBwMImJiSQmJpKQkEBERAQymeyBVd5utxuz2UxPTw96vZ7wcF9AaN+bG41Gw/Tp05k6deqoVPfca79RVlZGTk7OkBsbWlpa2Lx5M93d3Wg0GlauXElqauqwt8Pr9XL37l1qamowGo39RO20tDTmz58P+CqefvrTnw66nPHjx7N69Wrx8/zXf/0XgiAQGBhIYGAger2eoKAgQkJCmDRpEmFhYSMqBrvdbt555x3a2tqQy+V4vb7j0u/jnZ+fj1o9dC/4vlitVg4ePMi1a9eQyWS8+uqrxMTE4PF4qKys5Ny5c6KdkFKpJCcnh4KCAsLDwyXBW0JCQkJi1Ghra8NiseByufB4PLjdbnGIiooiPj4eQRCwWCxcuHABt9tNd3c3t2/fxuVyicspKCgQeyk9Czhu3KDj+9/H3dgECgWh3/42wW+8juwpiPM2m43r169z9epVsRcg+ILp8/PzycjIkLI6JCQkJCQkhoAkfA8DSfh+cng8Hn71q19hMBiYNm2aKIL1xSsI/Ka4nroOKwWpYcxODycqUDPA0oaOIAhcutPNtivNHCxvx+H2PnSe6CA146MDGRetJyPG95gW6ROOrzf1cKG+i/O3OyltNIme2X5CApRMHRPK9F4x3O0VxKpxv8DeZXMNtFp0agVJYVpaTc5BpwHQKuUkRwSQEqEjJVxHa4+DfWWtoigfF6LhK9MTWZcXR7D2wUKrIAh8+OGHtLS0IJfLxQrtofgjP4xbt26xb98+UchLTk5m8eLFhIUN7Cs+GJ9caebHf6zG6fGSHB7Az16cxNjIADwejygk+8XfM3VG/n53JS0mBzLgzYIk3pqfyuUL5ykuLkYul/PSSy+JNhMul4vNmzfT2trKvafEgIAA5Olyttm2YXFb0Mg1LFQvJNuZLYrdfS188vPzmTdvHuATON977z0mTpzIzJkzR81CpL6+nlOnTvHCCy+g1WqRy+Wo1eph3zhZLBY2b95MY2MjMpmMRYsWkZubO6z533//faxW64Dv3ytm/+d//icqlQq1Wi0OOp2OwMBA4uPjyc3NFUM4rVYrOp1OrCB7EgKwwWBg9+7d3LlzB5lMRl5eHvPmzRvQx/tRqKqqoqWlhWnTpgFw8uRJzp8/D/ganqZMmcLMmTMHDOaUkJCQkJB4VnA6ndTV1XHz5k2qqqpYu3atGORcW1vLxYsXxWrwR7G/Gwm8ZjOGn/wE6/4DAGinTyfix/+MMirqqWyPIAjcvn2bK1euUFtbC/iubd56660RDY6XkJCQkJD4oiIJ38NAEr6fLDU1NWzatAm5XM4bb7zxxLv2ddtc7LneyrbLzVS1WQhQKRgXrWd8tJ7xMYG+x+jAIYcdOj1eyppMXKjv4mJ9F5cbTNhc94d43otcBikRut51BzI+xveYEKoVK7m7rC5uGazcMli53WEVn98x2kQLl3vJSwzmtZlJLMyMfGBlvNPpRCaTiaJxfX09V65cYf78+cTGxo549WxxcTHFxcWiUP2Nb3wDvV4/rOVcbzLxF1vLaDE50KtkfCOpjXCtnDVr1qBQKLA6PfzX0Vr+cMFXZZ4UpuXfVk9g6phQamtr2b59OwBLly5l8uTJ9y3f6XTS3NxMY2MjTU1NNDU3UaYvozysHAGBSRGT+OuJf82ejfd3BVYqlQQFBTFx4kRmzZoljne5XKPm3+h0Ojl79iznzp0DfLYZS5YsQaVSPfL353a72bt3L9euXeOFF14gJSVlwOlsNht1dXXYbDZRuBUEgXfffRebzUZaWhpJSUlotVo0Gg1qtZrg4OD7qpZlMpn4+lm8yRMEgaqqKkJCQh5qGfOoy/f7q3Z2dvLRRx8xdepU8vPz0ev1z+Q+kZCQkJCQGAyv1yv+t3k8Hvbv38/169fF9yMjI0lJSSEyMpKIiAhiYmKemC2KIAhY9uzB+O//D4LdjjwsjMh//hEBhYVPZP2D0d3dTWlpKTabjaVLl4o+62fPniUpKYnk5GTpekBCQkJCQuIeJOF7GEjC95PnD3/4A9XV1aSmprJu3bqncjEnCAJdNhchAaoH2pIMF5fHS/ndHi7Wd3GhvosrDSbUSjkZMXrGRfuE9YyYQNIidWgfwb8bfF7gTV32PmK4r+J4Xa9/+YPo7OyktLSUsrIypk6dSkFBAQAKhWLYfsXDxWAwsHfvXsLCwli0aNEjLcNocfI3W0sJarlEgqIHZDK+/OUvYyCY7++q4I7Rty82TEvgrxaloVcrMRqNbNy4EafTSW5uLosXL37oemxuGz8+/2OONvmsStaNXcf3cr+HAgUlJSWiH3hgYCBBQUFDtoMZCdxuN1evXuXs2bNitfnkyZNZtmzZiFSVC4LA3bt3CQsLEyvgBUHAZDJRU1NDTU0NDQ0NCIKAWq3mu9/9rug73d3dTXh4+GOJ73+K+L3FAWnfSUhISEh8YTAYDFRWVlJVVSVeO/TlrbfeEm3ZqqqqsNlsREREEBkZOexsmKHiunWL9u//AFdVFQBBX3mFsLfeQvYMBU329VEPCQkhOjqayMhIcYiKinomw8glJCQkJCSeFJLwPQwk4fvJYzAY+OUvf4nX62Xt2rWMHTv2aW/SFxqPx0NNTQ1Xr17lzp074viYmBhef/11NBrNE/MTFAQBt9uNx+PB6/ViNBo5f/48c+bMQacb3IPcj9VqZdsnn9Da0oJLkHPUmY4uIpZbHVa8gs8T/ccrMykcGy7O8/HHH3Pnzh0SEhL48pe//NDKomZLM397+m+p7q5GKVPy11P+mjVpax77s48EZWVlFBcX09PjC30NCwtj7ty5TJo0acS/Q0EQcDgcdHR08Nvf/va+9yMjIxk3bhwFBQVidbIk2EpISEhISEgMhMVioaqqiubmZjo6OrDZbLz22mvi+1u2bKG+vl58rdfriYiIICIigqysLNE+ZSQQHA46f/pTejZ/DIB64kTCf/B9FFFRyLVaZFotPMUw6e7ubs6ePUtFRUU//3Q/hYWFYpC71WqltLRUFMVDQ0Mln3AJCQkJiS88kvA9DCTh++lw+PBhSkpKSExMZMOGDY+1rMbGRg4cOEB4eDjz5s0TwwUl4OzZs1y+fBmLxSKOS0tLIy8vj4yMjFGz4XgY/m6wGzdu5M6dO2i1WubNm0d2dvagNxkmk4mtW7diNBoJCAggfsoC/vVkh2gts3pyLN9fln6fp7nZbObo0aMsWrToofYql9ou8YMzP6DL2UWYJox/n/Xv5EYO3ed6tDl27BiXLl0iKCiIwsJCpkyZMqrfod//va6uDplMRmJiIuPGjSMjI4PIyEjpxkpCQkJCQkLikfCHovuD0YuLi2loaMBgMGAymfpNq1Qq+da3vjWkIonhYD1xAsOP/hlvn6BJEYUCmVaLTKNBptWKgrh/kAcEEDB3Dvrly0dNIHc4HLS2tmI0GjEajRgMBoxGI0VFRUycOBHw2RVu2bKlz2YryMnJ4fnnn39iNjISEhISEhJPGkn4HgaS8P10cDgclJSUkJeXh1qtfuTlXLt2jcOHD+P1+gIm5XI506ZNo6Cg4LGW+3nF6/X2q7w9dOgQpaWl6HQ6cnJyyMvLIzIy8pmpzG1oaGDPnj20t7cDkJiYyOLFi4mMjOw3ncFgYOvWrfT09BAUFMT69euJiIigpt3C+2caWJARyYKMyIFWMSQEQWBb7Tb+z9X/g0fwkBGawX8U/gcxupjH+nyPgz/4SK/XEx0dDfiqpSoqKpgxYwZqtfqJfI9+P++kpCSCgoKemd+OhISEhISExBcPQRCw2+10dHTQ1tZGbW0t4eHh/TJURhL3/8/encdXUd/7H3+dJTlZyUY2SEIIISGBLCxhjewIiCgqVSla3Or9ee1mvfd2vbf111p7axf9WZfW2toqKooKIouKbAFCSIBISAhZgOz7vpx1Zn5/HDgSlSVwQgJ+no9HHklm5sx8T3IgM+/zmc+3vp6jhjxMAAAgAElEQVTW3/wGy+EjaBYLqOrFH3QO06RJhPz0p3jEjR6Q8V1MbW0teXl5tLa20tbWhsPhAJwTyt99990D1jJGCCGEGEwSfPeDBN+D52wrBbWfJ5hn2e12Xn31Vdrb20lISEBRFNfM6L6+vtx9993XXPV3d3c35eXlroknz34MGzaMoKAg4PN+wOf2Au7q6qKgoICjR49yyy23MGLECABXdUhSUtKQ7R2sKArZ2dns2bMHu93+lW9e1NfX89ZbbzFs2DBWrlx50X+rpaWlKIrCuHHjLnp8m2Lj6SNP88GpDwBYErOEn0z5CV6GwbtQqK6uJisri+rqakaNGsWdd97pek0YDIYh+XsUQgghhBgIiqJgt9tRVZX6+noKCgqYM2eO24tcNE0DhwPNYkG1WNC+8OFaZrXiqKqi87XXnWG50UjAfWsY9sAD6AcxaNY0jZMnT7Jp0ybsdjuhoaF8+9vfHrQ7PIUQQoiBIsF3P0jwPbhUVcVsNlNTU0NUVFS/H9/c3Ex5eTmzZ8/GYDBw4sQJPvroI4xGI9/61reumVYMPT09ZGVlUVRUhKIoX1qfmprK4sWLAbBYLDz33HMArmDcbDa7JgxKS0tj8eLFGI1G16SD14L29na2bNlCaWkpAAsWLGDSpEmu9TU1NQQHB190Mp/m5mZef/117HY7t912G/Hx8eff1tzMj7N/TEFLAXr0PJr6KKsTVg/az6yxsZGsrCxOnjwJOG9XnThxIosWLRqyb1wIIYQQQgy0s/PEvPzyyzQ1NTFs2DBuvPFGRo8enEprAEdtHa2//S3mvXsBMEZHE/zTn+A9bdqgjQmgoaGBd999l7S0NObOnXtNXQ8IIYQQl0KC736Q4HtwORwOXn31VWpqali9erWrUvl8WltbaWhoICkpCXC2NjGZTH1O5hwOBx0dHfj4+Liqo/fv309GRobbewO6i81m4y9/+QsWi4WIiAh8fHyw2+2uj6SkJGbMmAE4q7tfeumlL+0jKiqK9PR0JkyYcNXaYAyE48ePk5eXR1JSEoGBgYwYMQJN0y7p+VgsFl577TXa29uJiYlh5cqV5+1vWNhayI/2/YgmSxP+Hv78evqvmR4x3d1P55J0d3eze/duioqKANDpdKSkpDB79myCg4Ov2d+lEEIIIYQ7lZeXs2nTJjrO9OWeMGEC8+bNG7SWHpqm0btjB22/exrlTOs+36VLCXr8hxgG8c7T3t5evL290el0GAwGPDw8rpmCICGEEOJiJPjuBwm+B9+GDRv47LPPiIiI4J577jlvyHfq1CnXrXt33nknsbGxFwx4z1aG7N69m3379mEymcjMzCQ9PX1QT/xUVaW0tJSysjJuuukm1/iPHz9OUFAQsbGxXxrfuf9UVVXFbrdjtVqx2+3YbDY8PT0JDg6+bk5oDx48yNatW/Hy8uKee+5h06ZNJCQkkJGRcd4gW1VV3nvvPU6dOsWwYcO49957z/tGx+bTm/ntod9iU23E+sfy9KynifGPGcindEGHDx/m008/BWDcuHHMnj2biIgICbyFEEIIIb7AZrOxfft2cnNzAWeLw0WLFjF27NhBG5Pa3U37Cy/Qte5t0DT0/v4Efv97+K1YgW6Qz89tNhvr169n8uTJTJw4cVDHIoQQQriDBN/9IMH34Ovu7ua5557DZrOxdOlSJkyY0Ge9pmkcOnSIXbt2oWkaI0eOZOXKlQQEBFxSMFhRUcGWLVtobGwEYPjw4SxcuJDo6OgBeT7nY7fbKSgoIC8vz1WlsnLlSkaPHo2Hh4fchojzd7179252794NQHp6OhEREWzbtg2A4OBgFi1aREzMl0PqPXv2kJOTg9Fo5Jvf/Cbh4V+emFLRFP589M+8UfIGADeMuIFfTv0lfh5+A/isvkzTNMxmsyuYVxSFbdu2MWXKFGJjY7/2rwMhhBBCiIupqKjggw8+oLW1Ffj8vHowWYuKaP31k9iKiwEwpacR/LOf4TlmzKCNKS8vj507dwIwZ84c5syZc9nnmmazmcLCQhobGzEajRgMhj6fY2NjiYiIcG1bWVnZZ/25X/v4+GAymYDPi3zkHFgIIcSlkOC7HyT4Hhr27dvH9u3b8fHx4aGHHnKdBDkcDj755BOOHTsGQEpKCsuWLXOtv1SqqpKbm8uuXbuwWCyAs7J2ypQpREZGuvfJfEFPTw9HjhwhPz8fs9kMgLe3NxMnTmTq1KkMGzZMTvJw/o62bt1KXl4eADNnzmTmzJkAFBUVsWvXLnp7ewFISkpi7ty5+Pk5A+vi4mI2bdoEwM033+xqhXOuXkcv/5PzP2TVZgHwQNIDfHv8t9Hrrm4VTktLCzt37qStrY37778fo9GIXq/H09PzuqnYF0IIIYS4GhwOBzt37qS6uto1Gfhg0xwOuta9TfsLL6CZzWA0MOzebxHw0IPoLzJXzYCMR9PIysoiJycHcBaW3Hzzzee9i/JC8vPz2bhx43nXL1y4kIyMDACqqqp4/fXXz7vt3LlzyczMBJwT2f/tb3/rE4ybTCaSk5OZMWPGkG1XKYQQYnBcapZrvIpjEuKCpk+fzuHDh2ltbSU7O5u5c+fS09PDxo0bqampQafTMW/ePGbOnHlZJ2l6vZ5p06YxYcIEduzYweHDhykuLsbX19cVfCuKgtlsdoWp7tDc3Mxrr72Gw+EAICAggKlTp5Kenu7quyecFSHr1693Teq4cOHCPrdijh8/njFjxpCVlUV+fj7Hjx/n5MmTZGZmMnHiRJqbmwHIyMj4ytC70dzIf+z9D060n8BT78l/Z/w3N8bceHWe3BlWq5X9+/dz+PBhVFVFr9dTV1fHmDFjMBgM8loQQgghhOgno9HIokWLUBQFh8OBoijY7XaysrKYMWPGRSdFHwg6o5Fhq7+Jz4L5tD79NOadu+j8xz/o+egjfJcswSsjA1NaKvqr1Jdcp9Mxe/Zs/P39+fTTT8nPz6erq4tvfOMbFywmam1tJT8/n6CgIFJTU1EUhdjYWEaMGEFUVBSapqEoSp+ffWBgoOu6R6fTERkZ6Vp37naKoqDT6bBarQCu4haHw4HD4cBqtdLT08PevXvJyclh2bJlpKWlDfwPSwghxHVFKr6Riu+hpLS0lDfeeAO9Xs/999/P6dOn+fTTTzGZTNxyyy0kJSW5LRysra0lOzublJQUoqKiADh9+jTvvPMOYWFhjB49mri4OEaMGHHRKlyLxUJdXR11dXXU1tZiMplYvnw54KywePXVVzEajUybNo3x48fj4eHhludwPfnkk0/Yv38/Hh4eLF26lMTExPNuW19fz8cff0xDQwMxMTGu6p7Tp08TExPzpd9XSXsJP9z7Q5rMTQSZgnh61tOkhKQM9FNy0TSNY8eOsWfPHtdJ/ZgxY1i4cCHh4eESeAshhBBCuImiKGzevJkjR47g5+fHTTfdxKhRowZ1TL27dtH6v79DaWj4fKGHB6bUVLwypuA1JQNTygR0V+EaoaysjE2bNuFwOAgPD2f16tX4+/u71ttsNoqKisjPz6eiogJwtom87777BvSc9WwB0rkBeWtrKzk5OTQ2NvKtb32LqKgojEZn7Z6cPwshxNebtDrpBwm+h5a1a9fS1dXFkiVLCA0NJSsri7S0tAGb6E/TNFRVRVVVsrOzXf3vzjKZTMTGxhIXF0d8fLxrxvjCwkKqqqqora2lpaXlS4/57ne/i06nc1Uy+Pv7X1al+teBpmn09PSwadMmZsyYQVhY2EUfo6oq+fn5xMbGEhwcfN7t9tbu5ecHfo5ZMRPrH8sfM//ISL+R7hz+BVmtVt5++23q6+sBZ4/yBQsWMG7cOGlrIoQQQggxAGpqanjvvfdcvb8zMjLIzMx0haaDQe3tpffTT7Hk5mI5mItyZu6hs3ReXpjS051BeEYGnuPGoRug8dbW1vL+++8DsGbNGkJDQ6murubw4cMUFRVhs9lc28bGxpKSkkJiYuKghM2aplFfX9+nNeXOnTvRNI1Zs2YRFBR01cckhBBi8Enw3Q8SfA8tZrMZnU6HqqoAeHp6XtWT1O7ubsrKyigtLeXkyZOufuDgPDE8G8quW7eOyspK17rAwEAiIyMZOXIk0dHRjBgxQtpXXICmaRQWFpKcnIzNZnP9vt25/3Vl63g2/1lUVDLCMnhqxlP4e/pf/MFuHse7775LTU0NM2fOZMaMGXh6el7VMQghhBBCfN3YbDa2bdvGkSNHAAgLC2PZsmUMHz58kEfmPD90VFVhOZiLJS8PS24ualtbn210fr54TZyE98yZ+CxdgsHN16ltbW1YrVYiIiIwGo1s3LiRoqIiwHldk5KSwvjx4/tUgw8FPT09vPTSS6iqik6nIzU1lRtuuIGQkJDBHpoQQoirSILvfpDge+jRNA2bzeaa3GSwKIpCdXU1paWl1NXVcfvtt7uC7IKCAjo6Ohg5ciRRUVH4+/u7KrzFhdlsNjZs2MDx48eZMWOGa1Ibd3GoDv6U/yfWl68H4JbRt/CjST/CqB/4N1BsNhuHDh0iNTUVX19fADo6OvDy8iIwMFBeH0IIIYQQV9Hx48fZtGkTZrMZo9HI8uXLiY+PH+xh9aFpGvbyclcIbs07hNrV5VqvM5nwuXER/rffgWdqyoCcT1ZUVFBUVERKSgojR44c0ues1dXVZGdnc/r0acDZ9mT8+PHccMMNl3TnqBBCiGufBN/9IMG3uFRnJ3DR6XTo9fohfUI4VLW1tbFu3ToaGhrQ6/UsWrSI1NRUt+2/297Nzw/8nOz6bAC+k/od7km4Z8B/V5qmUVRUxJ49e+ju7iYtLY0bb7wRg8GAp6envFaEEEIIIQZJV1cXGzZsoLa2lvvvv9+tE9kPBE1RsJWUYMk5SM/WrdhLS13rPOLj8b/jDnxvWop+iFVjX221tbUcOHCA8vJy17IVK1a4JsHUNE3OwYUQ4jolwXc/SPAtxNVx6tQp3nnnHcxmMz4+Ptx6662uiUXdob63nsf3Pk5ZRxkmg4knpj7BvKh5btv/+VRXV7Nz505XH++AgADmzp1Lamqq9PEWQgghhBgCNE2jpaUFX19fzl4CNzY2DvkKYU3TsBUco+vd9fR+/Ama1Qo4e4L7LF6M/8o78ExO/loHvA0NDRw4cIBTp07x8MMP4+fnh16vJysri+PHjzNixAjXR0REhLQdFEKI64AE3/0gwbcQA0vTNHJzc9m2bRuaphEeHs6KFSvc+u+tqLWIx/c+Tqu1lRCvEH4/6/ckBye7bf9fpb29nd27d1NSUgI4+9HPmDGDGTNmYDKZBvTYQgghhBCi/zRNw263c/z4cTZs2EBaWhpz5869JsJQpbOTns2b6X73PewnT7qWe45LxO/2O/BdugT9mVZ7X0e9vb34+Pi4vn/nnXdc7VDO0ul0hIaGMmLECJYsWSLn7EIIcY2S4LsfJPgWYmC1tbXx/PPPoygKSUlJLF68GA8PD7ftf2f1Tn5x8BdYFSvxAfH8IfMPRPhEuG3/5/Ppp59y+PBhdDodKSkpzJ07V/p4CyGEEEJcA3bt2sXu3bsBCAoKYuHChYSFheHt7T3kz+U0TcOan0/3u+/Rs3072GwA6Hx88F2yhGGrv4nH6NGDPMrB19vbS0NDA/X19a6P7u5uwFmw8thjj2EwGNDr9ezbtw+r1Up0dDRRUVFDvh2OEEJ83Unw3Q8SfAsxsBRF4dChQ/T29pKRkeG2iwlN03i95HWeP/o8GhozImbw6+m/xs9jYE5UVVXFYrG4KknMZjMfffQRs2fPHvKTAAkhhBBCiL7Ky8vZsGGDKwwF8PDwICEhgZtuusm17NSpU/j6+hIQEDDkKoSV9nZ6PvyQrnffw1FR4VxoNDJszRoCHnwAvZfX4A5wiOnu7qa+vh6z2UxKSopr+V//+lc6Ojpc3wcFBRETE0NUVBQxMTFDviWOEEJ83Ujw3Q8SfAvhfvX19WiaxvDhw7Hb7W7fv0N18LvDv2PjqY0A3DHmDn6Y/kOMeqPbjwXOme537NiBr68v3/jGN1wTnHp6ekofbyGEEEKIa1Rvby8fffQRJ0+edAXgycnJLFu2DHAWcPzpT39y9QX38vIiICCAgIAAYmNjSUpKGhJtUjRNw3roEJ3/+hfmvfsAMEZFEfzTn+A9ffogj25o0zSNwsJCampqqK2tpbm5uc/6sLAwHn74YfR6PTqdjpqaGoKCgvq0VRFCCHF1SfDdDxJ8C+Fex48f5/3338fb25vVq1e7/VbBLlsXP83+KQcbD6JDxw/Sf8Bd8XcNSMW1qqrs3buXnJwcwHmxc9999zF8+HAMBoPbjyeEEEIIIa6+s72/29vbAWfFr6qq9PT08M4779DR0YHZbP7S40aPHs3KlSuv9nDPS9M0zDt30vq7p1EaGwHwWbqE4B/+EENIyCCP7tpgsVioq6ujpqaGmpoawsLCmDdvHuC8NnjmmWdQFAU/Pz/CwsIICwsjPDycsLAwQkND3drSUQghxFeT4LsfJPgWwj00TSMrK4udO3cCEBsby/Lly/Fy4y2WtT21PJb1GKe7TuNt8OZX03/FDSNucNv+z9XT08OHH35IZWUlAGlpaSxYsAA/Pz9payKEEEII8TWiaRoWi4X29nba2tpobGzk6NGjZGZmMm7cOMBZPV5VVUV8fPygF0ioPT20v/AiXevWgaqi9/cn8Pvfw2/FCnRyt+Jla2trc70R8lWSk5NZuXIlOp0OVVUpLi4mPDycoKAguUtUCCHcSILvfpDgW4grZ7fb2bRpEwUFBQBMmjSJefPmufUEr6ClgP/c95+0WdsI9QrlD5l/IDEo0W37P1d1dTWbNm2iu7sbDw8Pli5dSlpampywCiGEEEIIwBmGK4ri+sjJyWHPnj34+fmRmppKWlraoE+SaC0qovXXT2IrLgbAlJ5G8M9+hueYMYM6rmudzWajubmZpqYmmpubXV9PmTKF6Wday7S3t/Pyyy8Dzsk04+LiGDt2LPHx8W7PHTo6OmhoaCAsLIzAwEC37lsIIYYiCb77QYJvIa5MV1cX69ato6amBr1ez4IFC0hPT3frMbZXbeeJg09gU20kBiby+8zfE+Y9MJPMqKrKP/7xD1pbWwkJCeH2228nMjJSqryFEEIIIcRX0jSN7Oxs9u3bR29vLwB6vZ6xY8eSnp5OdHT0oJ1Lag4HXevepv3FF9F6e8FoYNi93yLgoQfRe3sPypiuR5qmoWmaq1Cmvr6ejz/+mJaWFhwOR59tz7ZPOXu3QH+P09TURGVlJZWVlVRUVNDZ2QnA8OHD+fd//3e5bhFCXPck+O4HCb6Hnry8PNra2li4cKH80b4GbNy4kfz8fLy8vLj11luJiYlx2741TeOfxf/kxWMvAnBD5A383+n/Fx/jwE4m09jYyKFDh1i6dKlMXCOEEEIIIS6J3W6nqKiIvLw8qqurXcvDwsK49957XaGoxWLBZDJd1WsdR309rU8/jXnnLgCMUSMJ/vGP8Z4580vbqr29KA0NOBobz/n8+ddoGqYJ4/FMScGUkoLH6NHSQuU8VFWlsbGRkydPcvLkSerq6gC4/fbbSUxMxGAw0NLSQm1tLfHx8V+6S0DTNNfrRNM0nnnmGVfQfZZOpyMoKIjExEQyMzPR6/VomsbatWuJj48nKSmJsLAwubYWQlw3JPjuBwm+h5bTp0/zz3/+k9mzZ3PDDTdgNBoHe0jiAjRNo7Ozk82bNzNnzhyCgoLctm+7auepQ0+x+fRmAFaNXcV3076LQef+nolNTU00NTWRnJwMOE8eTSaTtDYRQgghhBCXpa6ujtzcXI4dO8bYsWNZtmwZAIqi8Mc//hGDwYCfnx++vr74+fm5vg4PD2f06NEDNq7es5NfNjQA4D1vLobAQBwNjSiNDSgNjahdXf3ap87PF9OECZhSUjClpuI5YQKGgIArGqemqtdlmN7b28vp06eJj4/H09MTgKysLA4cOABAZGQk8fHxAFRVVWG1WnnwwQdRVRVFUXjzzTepq6sjMjKSqKgooqKiiIyMxNPTs09IXlZWxvvvv+86bnBwMElJSSQlJTFixAgJwYUQ1zQJvvtBgu+hQ1EUXnrpJZqbm0lLS+PGG2/E09NTwu8hRtM0SktLiY+Px2azoaqq24/RYevgx/t/zOGmwxh0Bh6f+Dh3jLnD7ccBKCoq4uOPP0ZRFFatWkV0dDSenp5yMiiEEEIIIa6Y2WzGbDbj4+ODqqp0dXXx0ksvnXf7pKQkbr75Ztf3lZWVbm+Vovb00P7iS3S99Rac51xe5+eLMSwcQ1gYhvBwjGFhGMLDMIZHoNltWAsKsBYUYDtWiGaxfOnxxlGjMKU6K8JNKSnovH1QO9pROzpQ2jtQOzpQO9pROjpQz3yvnFmmtnegWa14JCTglTEF76lTMU2ciN7X120/g6Hks88+4+jRo9TX13/l+kcffdR1F2p3dzfe3t4XnUDVYrFQVlZGaWkpp06dQlEU17phw4axfPlyV8AuhBDXGgm++0GC76EjKyuLHTt24OPjw4MPPoiXlxc9PT3k5OSwePFiPDw8BnuIX3t2u50PPviAY8eOMX/+fCZPnuz2Y1R1V/HDrB9S2V2Jj9GH38z4DTMiZrj9OA6Hg507d5Kfnw/AqFGjWLFiBQEBARJ6CyGEEEKIAaFpGjabja6uLrq7u+ns7KS7u5vu7m66uroYOXIkqampgPNu2HfeeYfo6GgWL17s1rsrAazHj9O7bRs63zMh95lg2xAWiv4SJ+bUHA7s5eXOIPzoUawFx3BUVLh1nAAYDJjGj8eUkYFXxhRMqanovbzcf5xB1NPTw6lTpzh9+jR6vZ6RI0cSFRVFcHDwFV2f2Gw2Tp48SUlJCSdPnsRut/Pggw8SFhaGwWCgoaEBRVGIioqS6yAhxDVBgu9+kOB7aGhra+OFF17A4XCwbNkykpOT0TSNN954g9raWkaPHs2qVask/B5EXV1dvPXWW9TW1qLX61m4cCFpaWluPUZ+cz7/te+/6LB1EOETwR8y/0B8gPsrETo6Ovjggw9cVRUzZsxg3rx58voSQgghhBBDgqZp5Ofns3XrVux2O0ajkVmzZjFlypQh345PaW/HduyYqyrceqwQVBV9QACGgAD0gQHoAwKdX7u+D8AQEOj6WmcwYD16FMvBXCy5uTjO6ZkOgKcnptRUvKZm4JWRgSk5GZ2cy1+U3W6nurq6TzudjRs3UlJSQkBAAElJSUyYMEHaoQghhjQJvvtBgu/BdzbgLisrIyYmhjvvvNP1R7a6upr169djt9sHPfy22WyuPmxfN/X19bzxxht0dXUN2CSW75a/y5/y/4RDc5AclMzvM39PiFeI245x1qlTp/jwww+xWCx4eXlx8803k5ycLCd2QgghhBBiyGltbWXTpk2cPn0agIiICBYvXkxYWNjgDuwqc9TWYcnLxZKbh+XgQZSmpj7rdd7emCZNwitjCl5TMvBMTEB3kXYgwumjjz7i+PHj2O1217LAwEDGjx/P+PHjiYyMHMTRCSHEl0nw3Q8SfA++oqIi3nnnHQwGA/fddx/BwcF91p8bfsfFxXH33XcPWPjd2tpKU1MT7e3ttLe309HR4frabDbzk5/8BA8PD3Q6XZ/JQ65nJ0+eZN26ddhsNkJCQrjtttvcepulxWHhqUNPsa1yGwALohbwPxn/g5dxYG5dzMnJYc+ePURERHD77bczfPjwr8XvUQghhBBCXJs0TePIkSN8/PHHWK1W9Ho9s2fPJiMjY7CHNig0TcNRUYEl11kNbsnLQ23v6LON3t8f0+RJeGVk4DVlCh5jxlyXk2W6i91u59SpU5w4cYLy8nJXCB4ZGclDDz005O8yEEJ8vUjw3Q8SfA++pqYmPvzwQ0aOHElmZuZXblNVVcW7777rCr9XrVp1RZNe1tTUUFRURFtbG3fccQd6vR5N09iwYQMFBQXnfdxDDz1EUFAQer2e7du309PTw4QJE0hISLgu22R0dXXx7LPPoigK0dHRrFixAi839tKr7KrkJ9k/oayjDIPOwKMpj/LNhG8OaBCtaRqfffYZkydPxmQyDdhxhBBCCCGEcKfOzk42b95MSUkJt9xyC4mJiYM9pCFBU1XspaXOavC8PCyHD6F19/TZRh8UhNeUya4g3DhqlBS/nIfdbufkyZMUFxcTHR3NpEmT0Ol0OBwO3njjDcaPH09qaqrkJ0KIQSPBdz9I8D34HA4HVqsVTdMu+E7yueF3eno6t956a7+Oo6oqx48f58CBA1Sf0yPubJgNcPDgQYqLixk2bBgBAQGuj7Pfn211oigKzz//PFarFQAPDw8SExOZMGEC8fHxF51l+1qhaRr79++nurqapUuXXtGbDV+0u2Y3Txx8gh5HDyFeITw5/Ukmhk502/7Pqq6uZv/+/axYsQJPT090Oh0mk0mqFoQQQgghxDVH0zQqKioIDw/n7OV8fX09wcHBX9u2jF+kORzYioudIfjBXKz5+WgWS59tDKGheE2Z4gzCp2ZgHDFikEZ77SgsLGTLli2u7+Pi4khLSyMpKem6LAITQgxdEnz3gwTfg0dRFPR6PWaz+ZIfU1VVxSeffMIdd9zhmoX6YsxmM4cOHSI3N5fOzk4A9Ho9iYmJREZGkpSUhI+PT7/Grmkazc3NHD9+nOLiYjo6Pr+1zsvLi2nTpjF37tx+7XOoUFUVs9mMt7e36w0Jd7Z1cagO/nLsL/zrxL8ASBuexm+m/4bh3sPdsv+zNE0jLy+P3bt3o2kaU6dOZcGCBa5WNUIIIYQQQlyrNE1DURTa29v5+9//jqenJ4sXL2bUqFGDPbQhR7PbsR475mqLYv3sKJzTzxrAOHKksz94RgamKVMwhoYO0miHLqvVyokTJygsLOxTSObp6UlycjJz5swhMDBwEEcohPi6kOC7HyT4HhyqqvKPf/yDsLAwMjMz+9VyQlVVV7Xu2crdCwWZZWVlrF27FgAfHx/S0tJIT7W58DQAACAASURBVE/Hz8/vyp7EGZqmUVdXR3FxMcXFxfT09DBjxgzmzp2LwWBAr9fjcDiuiXfB7XY777//Pk1NTaxatcqtbU0AWiwt/PeB/+ZQ0yEAVo1dxXdSv4NR775KcgCLxcLWrVspKysDICkpiZtvvrnfb3AIIYQQQggxlNXU1PD222+7Cnzi4+OZMGECcXFx181dqO6mWixYjx51VoPn5WEtLARF6bONx+jRzmrwjAxMkydhkEC3j/b2dgoLCyksLHQVgT366KMEBwej0+lQFMWtdwsLIcS5JPjuBwm+B0dubi5btmzBZDLxwAMPXHYIXVpayvHjx1m5ciVGoxFN0ygrK6Onp4e0tDQcDgc2m41NmzYRFxfHuHHjBvQPsKqqVFdXExgY6Ho9nT59mq1btzJ//nzS09OHbLWx2WzmrbfeorKyEoPBwO23305sbKzb9n+0+Sg/zf4pTZYmfIw+/HzKz1kQvcBt+z+roaGBDz74gPb2dgwGA/Pnz2fatGly4i+EEEIIIa5LFouF7du3c+jQIdcyb29vkpKSmDZtmtsKfq5Xak8P1vx8LAedk2XaTpyAc6MSnQ7PxARnCD5pMoaQYHQmEzovL+eHyYTeZIIzbRW/TjRNo6amhrq6OtdkqzqdjvXr12Oz2UhLSyMtLe2aKAITQlw7JPjuBwm+r77u7m7+/Oc/Y7VaWbhwIRMnXl5fZ4vFwl//+lesVivx8fEkJCSQk5NDS0sLXl5e/Nu//duQ6HP33nvvUV5eDjhnxV6yZAkxMTGDPKq+2tvbWbt2Lc3NzZhMJm677Taio6Pdsm9N03in7B2e+ewZFE0h1j+W3878LaOHjXbL/s9VXl7Oxo0bURSFYcOGcdtttzFKJq4RQgghhBBfAw0NDRw5coRjx47R09ODXq/nkUcecd31qCiKFINcAqWjA+uhQ87JMnNzsZ88eWkP1OnQmTzPhOHOQFxnMmEMD2PYmjV4TZ48sAMfIiwWC88//zyqqgIQFRXFmjVrpAJcCOE2Enz3gwTfV9+7777LsWPHiIiIYPXq1Vc0yWBFRQXvvfceDofDtczT05OUlBRmzJiBt7e3O4Z8RRwOB4cPHyY7OxubzQZAcnIyixYtGhI90Orr61m7di3d3d34+/tzxx13EOqmnna9jl6eynuKj6s+BmBh9EJ+NuVn+BgHpuVId3c3//znP4mMjOTWW2/F399/QI4jhBBCCCHEUKUoCuXl5TQ2NjJp0iTX8jfffBODwcD48eMZO3bskCgSuhYozc3OiTJzc7EWFKB296BZrc4PiwXOBLwX4z1nDkHf+y4eo91fADTUdHd3U1RUxIEDB7BarSQnJ7Ny5UopSBJCuMV1EXz/8pe/5IknnuizLDExkeLiYsD5LuLjjz/OW2+9hdVqZfHixbzwwguEh4f36zgSfF9d5eXlvP766+h0Ou69995+/76+SkVFBRs2bMDHx4fJkyczYcKEIXkS19PTw969ezl69CgABoOBRYsWMW3atEEbU2VlJWvXrsVmszF8+HBWrlzptrC4oquCH+3/Eac6T2HQGfhe2ve4K/4ut5/s9Pb29und3dHRcckTnwohhBBCCHE9OzsJZltbGy+88IJruYeHBwkJCSQnJzNixIghef10LdA0DRwONIsFzWpFdQXi1jPLLPTu3En3+xucfcQNBvxuW0Hgv/0bhpCQwR7+gKuoqGD9+vWoqsqsWbNYuHDhYA9JCHEduG6C7/Xr17N9+3bXMqPRyPDhwwF45JFH2Lx5M6+++ioBAQF85zvfQa/Xs2/fvn4dR4Lvq8fhcPDiiy/S2trKpEmTWLDgq/s76xoK0HdWo4yeD8ZLm/RSUZSLTnI5VDQ2NrJjxw6qqqpYsWIF48ePx2Aw9GvsNpuN5uZmGhsbaWxsRK/XM3Xq1H6/hjs7O3nllVcICAhgxYoVbpvMcsvpLfzu8O8wK2aGew3nNzN+Q9rwNLfs+yxN0ygpKWHbtm0sWbKExMRE9Ho9JpPpmngdCCGEEEIIcTW1traSn59PQUEB7e3tfdbNmjWLmTNnAs5rjfr6ekJCQvDx8ZFzazewnzpF2/97DvPu3QDofHwYtuZbDLvnHvRD4C7lgXTs2DG2bt0KwPLly/vchSCEEJfjugm+N2zYQH5+/pfWdXR0EBoayhtvvMHKlSsBKC4uJikpiezsbKZPn37e/VqtVqxWq+v7zs5OoqOjJfi+Cmpra3nttdcwGAw8+OCDmExfCLU1DePhV/DY8Ut0moLmHYRj/DdwpK1GC0kYnEEPEE3TqKqqIjo6Gp1Oh16vp7y8HD8/P0aNGuXazuFw0NzcjJ+fn2tSmsLCQtavX/+lfRqNRmbOnMmsWbMuWLGhaRqapqHT6bBYLLS3t+Pr6+uWnmu9jl6ePvw0Wyq2ADA5dDK/mv4rQrzcV81gs9k4ePAgx48fd52wx8XFMW/ePEaOHCkn5kIIIYQQQlyApmlUVlaSn59PaWkpPT09LFmyhJSUFACqqqp46623APDy8iI4OJiQkBDXR1hYmEyYeZkshw7T9swz2AoLATCEhhLwyP/Bb/lydJd5x6qmaSjNzRgCA9EN0Ukk9+7dy7Fjx1i5cqXrGlgIIS7XdRN8P/300wQEBODl5cWMGTN46qmniImJYceOHSxYsIC2trY+PZJHjRrFD37wAx577LEL7veLLVQACb6vAk3TaGlpob29nREjRvRdae/F86P/wlj0rnNbUwA6a4drtRI1FUfqapTE5eBxZe+I67pq0VfuR99ahjIiAzX2BjAM7q19FouFl19+GYvFQkJCAgaDgcbGRlpbW9E0jUWLFjFlyhRUVaWuro5//etf+Pj4MHz4cEJCQmhsbKSmpgaAe++9l9GjR3/lyURdXR2bN29m/PjxpKen487/AkrbS/nZgZ9R0VWBHj0PjX+I+5Luw6BzT8sRh8NBfn4+2dnZWCwW1/KJEyfS2NhIc3MzDz30kOuuECGEEEIIIcSFaZpGb28vOp0ODw8PVFWlrKyMTz75hI6Ojq98zIwZM8jMzLzKI71+aKpK7yef0Pbcn1FqawHwiB9D0Pe/j9fMmRcMhVWzGXt5ObYTJdhKSrCXlmArLUPr6QG9HmNkJMaYGDxiYjCOisEj2vnZGBl52cG6O2iahsViwdvbW+7SFUJcsesi+N66dSvd3d0kJiZSV1fHE088QU1NDceOHWPTpk3cf//9fSq3AaZOncq8efP43//93/PuVyq+B4/NZuszCeVZuo4qTO8/gL7xGJrOgH3eL3BMuh/9qV0YP3sdQ/l2dJoCgGYahmP8Shypq9HCki/puGeDbkNlNvqq/ejbT/dZr5mGoYxZhJK4DCV27hUH65fDbDazZ88eCgoKvhRGe3l5MXXqVFcvcEVRsFqtffpan237UVNTw/z589Hr9Xh4eNDV1UVgYCBms5mdO3eSl5eHpmn4+fnx8MMPu6UPtqZpvHfyPZ7JfwabaiPUO5RfTfsVE0MnXvG+AVRVpbCwkH379tHV1eVabjAYWLp0KQkJCaxbt46amhpCQ0N56KGHpEehEEIIIYQQV0DTNOx2u6u9YktLC83NzbS0tHD77be7rp0rKiqor68nJSWlz/WJuDjNZqPr7bfp+NsrqJ2dAHhNnUrQD76PR2IiSmOjM9wuKcVWUoKttARHZdUlT6bZh9GIMSoKj5gYPEbFYIyOwXPsWDxTUwYlgK6trSUsLEwyGCHEZbkugu8vam9vZ9SoUfzxj3/E29v7soPvL5Ie3wOvuLgYTdP6tPA4S396N6YPHkFnaUPzCcF6y19RY2b22UbXVY/h2FsYj76BvqPKtVyJnIgj7R6UcbeCp+/n23fWoK/KPn/QrdOjhqeiBY9BX7EXfU/D5+s8fFDiFjpD8LgFffbbb6qCrqcRzSvwksP0xsZGiouLXdXcw4cPx9fX97JORrq6uvjb3/5GSEgIHR0drirppKQk5s6d65bbE7tsXTyZ9yQ7a3YCMCtyFv+T8T8EmgIv8shL09HRwfr162ltbe2zPCAggNtuu43Q0FDAOWv4v/71L3p6emTGcCGEEEIIIQaQpmk4HA7sdjvr16/n1KlTGAwGEhISSE9Pv+L2gw6Hg46ODnQ6HQaDAaPR2Ofz9Xaer3R20vnKK3S+tQ7sdtDp0A8bhnqeint9cDCeCWPxHJuAR0ICnglj8YiNRWlvx1FZhb2you/nqiqw2b5yX6aJEwl67AeYJkwYyKfYR2lpKZs2bSIsLIz77rvvqhYtWa1WPvvsM4qKivDx8SE2NpbY2FhCQ0Ovu9eVENez6zL4BsjIyGDhwoUsWrTosludfJEE3wPLbDbz/PPP09PTw/Llyxk3bpxzhaZhPPgCHnt+g05TUSLSsK14BW3YyPPvTFPRn96D8ehaDKXb0KnO6nHN088ZfmvaBYNuNWYmSvRM1KipYPL/fJ81eRhKNmM48SH6rtrPH2f0Qhk9FyVhGUr8jWD6iteHrRddRyX69tPo2ivQtVeg76hA11aBrrMKnWJD8/BGGT0fJeEmlDELv3o/AyA3N5ddu3a5vjeZTCxZsoSEBPf0Sz/WcoyfH/g5db11GHVGHk19lFVjV7n1hEFVVf7+979jsViYNm0anZ2dtLe3s2zZsi9NxFldXc26detQVZVFixa5JucRQgghhBBCuJ+maRw5coS8vDzq6upcy0NDQ0lPTyc5Ofmicw+1t7fT3NzMqFGjXNvu2LGDQ4cOnfdxd999N9HR0YBz/qP9+/djNBrx8fEhLi6O+Ph4goKC3PQsrx57TQ3tzz9P77aPnAsMBjxiY/E4E3J7JozFMyEBQz9bO2qqilLfgL2qEkdFBfbKKhyVFVhy89DOFBP63Hgjgd95FI+oKHc/rS9pa2tj7dq1mM1mEhISuOuuu9Dr9QN6zKamJnJzc/nss8+wfeFNAG9vbx5//HH0ej06nY7Ozk78/f0lCBdiCLsug+/u7m5iYmL45S9/yZo1awgNDeXNN9/kjjvuAODEiROMGzfuopNbfpEE3wNr27Zt5OTkEBISwpo1a5ytNWw9eG79IcYTHwDgSLkb26KnwOh1kb2do6cJ47G3MX62Fn37qT6rNJ0eNSINNXrGl4PuC9E09PWffR6CnxOga3oP1NjZqOEp6DqrnQF3ewW6nsYL7xIdOj7/Z+bczw04xt6EMnYx+AxcP+qmpib++c9/Oo975p+6p6cn06dPZ/LkyZc9maWqqbxR8gYvFLyAoimM8B3Bk9OfJDn40lrPXEhdXR2HDh1iyZIlGI1Guru7aWlpISIiApPJhKqq6HS6856EHD58mE8//RSdTsc999xDXFzcFY9JCCGEEEIIcWHV1dXk5uZSVFTkam8ZFRXFqlWrAOecRg0NDTQ3N9PU1ERzczPNzc3Y7XYAVq1aRdSZ0LWgoIAdO3ag0+lQFOVL7TJXr17tmjPqi8U+Z4WEhBAfH8/EiRPx97+Ea8EhxF5ZhdrTjWdcHDqTacCO46ivp/3FF+n5cDNoGhiN+N91FwEPPoAh0D138J5PTU0N69atQ1EUpk6dytKlSwf0eO+99x4FBQUABAcHk5aWhsPhoKqqCh8fH5YtWwaATqfjxRdfxG63M2rUKEaNGkVsbCzh4eEDHs4LIS7ddRF8/8d//AfLly9n1KhR1NbW8otf/IL8/HyKiooIDQ3lkUceYcuWLbz66qsMGzaM7373uwDs37+/X8eR4HvgdHd38+yzz+JwOFi5cqVzwsW2U85+3s3FaHoP7At+hSP9W3C576ZqmrOtSfFG8PRDiZmJOvISg+6L7FfXVITxxGYMJR+ibyk9/6amANTAUWiBsWiBMaiBsa6vNf9IdI1FGEu3YCjZ0mc/mk6PGjXdWQk+dsmFq90vxG4GnQ7NYKKxsZHw8HDXqsLCQqKjo2lvb2fnzp00NjqD+uDgYO67775+9/hus7bxxMEnyK7PBmBh1EJ+MuUn+HlcWdsUu91OVlaWq7Jj/vz5hIeH88EHHxAYGMhdd911SWPVNI2tW7dSWFhIYGAg3/nOd9zSx1wIIYQQQghxcb29veTn53Po0CEyMjJITU0F4MiRI2zfvv1L2xsMBkJCQpg3bx6xsbGucNFgMKDX69E0DU3TUFXV1V7Fy8sLg8GApml0dXXR3t6Ow+GgubmZEydOUFVVhXqmD/bDDz9MQEAA4Lz29/b2xsPD4yr9NK4NthMnaHv2WSwHcgDQ+/sz7IEHGHb3XQMavBcXF7Np0yYAlixZ4prT6kr19vZy+PBhEhISCAkJcQXcOTk5TJw4kVGjRp23kKqnp4eXX37Z9YbMWSaTidjYWObMmUNkZKRbximEuHzXRfB99913s2fPHlpaWggNDSUzM5Mnn3ySMWPGAM53jB9//HHefPNNrFYrixcv5oUXXiAiIqJfx5Hge+B8/PHHZGdnExkZyerVqzGc3IHpw0fRWTvQfMOw3vqysxr7GqBrKcFwYjP6zhrUwBhnsB0QgxoUC16X/m64rqUEQ8lWjCWb0TcU9FmnRE50huBxC0GnQ9fbgs7ciq63Bcytzq/Pfpy7zG6m0RDJFp+VVPZ4uu6I+CJN0ygsLCQrK4vk5GTmzJnTr5/BocZD/CLnFzRZmjDpTfwg/QfcFnfbFd8CVl1dzbZt22hrawOcPciDg4PJzs5GVVWGDx/ON77xjUvuSW6329m2bRszZ84kIiJCTmyFEEIIIYS4yjRNQ1EUV2BdXV3Nli1bCA0NJTQ0lPDwcMLDwwkJCcFoNLq1rYTZbKakpIS6ujpmz57tWv7uu+9SVVVFbGws8fHxxMXFyYSc5zBnZ9P2zLPYS53FWobISAIf/Xd8lyxBN0DVzgcOHCArKwudTsddd91FYmLiZe+rtraWgwcPcuzYMRRFIT09nUWLFvV7P6qq0tDQQFVVFVVVVVRXV7vaoyQkJHD33Xdf021QLnYXtRDXgusi+L5aJPgeGL29vTzzzDPY7XZuv20FiY2b8Nj7e3RoKCOmYLv1ZTT//r1Jcb3RdVRhKNmCoXQL+urcPi1RLpWKjt1MZy9TUXUGjDhYNrKDxMUPooWM/crHnP2jfbaHXm1tLQcOHGD27NkMP0+/uLdK3+LZ/GdRUYn1j+XJGU8SHxDf7/Gey263s3fvXvLy8gDw8/Nj4cKFlJaWUlhYCEBiYiJLliy5oglPTCaTVH0LIYQQQggxSM5WbJ+t5r6agdvZY9vtdv7617+6im3OjmPEiBGMHj2auLi4PnfOfl1pikLP5s20v/Aiypm7hT3HjSPosR/glZHh/uNpGh999BEFBQWkpqayYsWKfr0+Tp8+TUNDAwUFBdTU1LiWh4eHk5GRQVJS0hWPUVVVGhsbOXLkCJmZmfj7+7uuTy+3fejVZrFYKCsr48SJE5SWlqJpGgsXLiRjAH6nQlwNEnz3gwTfA+PTTz9l7969RIUGsmbYPoxlzgk67Onfwr7gV2C4ejM3XxO6GzGWbXO2Q6nOAQ9vNO9g1wc+IWe+DkHzcX7uxpcPsoupqmsCIMG7jSW97xJEJxo6lMRl2Kd/Dy085YKHXrduHZWVleh0OlJSUpg1a5arulrVVJ47+hxvlLwBwLJRy/jPSf+Jt9H7ip/yli1bXAH3hAkTmDhxIh999BGNjY3odDpmz55NRkbG+U98VAfG3L9gPPQ3lPErsd/wY9B/OeCurKzEYrGQnp5+xWMWQgghhBBCXJtUVaWuro7i4mJKSkpcbSABYmJiuOuuu1zf22y2Kyq+udapZjNdb75Jxz9eRevpAcA7MxP/1d/EOHIkxrAwdG76+SiKQlFRERMmTMBoNOLp6em6BrRYLDQ3N9PS0kJLSws2m40lS5a4WuD87W9/c02sajAYSExMZOLEiURGRg74GyybN28GYOnSpZd8d/LVZDabOXr0KCdOnKCiosLV/uesFStWkJyc7ArvpQJcXEsk+O4HCb4HRnFxMTt27OBOn/0MP70JzeCJbdFvUVJXDfbQrgsVFRV8+OGH9Pb24uHhweLFi0lKSkJfexjjgf/neqMBQImbj33691CjvrpnWmtrK3v27KH0zC1tRqORKVOmkD45nd8e/S3bq5y9+B5NeZR7E+912x/EtrY21q9fz/z584mLi+PNN9+kpqYGb29vV3//89E1FuK59YcYGo72eZ7W5S+C6fN/x3V1daxduxa9Xs+aNWtcs78LIYQQQgghvt7a2tooKSmhrKyM2NhYJk6cCDj7PL/00kuMGDGCuLg4Ro8eTWho6EWvgzRNo7e3l+7ubtdHQkIC3t5XXjQ0WJS2Njr++jJd764Hh9JnnT44GGNYGIaIcIxh4RjCwzCEh2MMD3d+vsxwPCcnh9OnT9Pc3Exvb2/fY+r1PPbYY667B3bv3k1raysjRoxgwoQJ+Pr6Xv6T7Ye2tjZeeeUVNE3Dy8uLBQsWMHny5EENjzVNw2w2u9r3tLe38+yzz7rWn53wdcyYMTgcDmJiYlzjzc3NpaGhgczMTNfEsUIMZRJ894ME3wPD4XBg7WjE58WJ6BwWLCvXosbNvyrH1jTNeXyrFYvFgtVqxWq1otfriY2NdW134MABEhMTCQoKuirjcqecnBz27NnD8OHDufXWWwkODu6zXtdUjEfOcxiOb0CnOd/ZVaKmYZ/xfdTYuV85mWhNTQ27du2itrYWm95GTkQODZ4NGHVG/jvjv1kyaskVjbm2tpbq6mqmTv28r/u5tzy2tLSwc+dOFi9efP6Z1x1WPLKfwZjzZ3SqA80UgCNtNcbDf0fnsKCGjMV6+z/RgkYDztfCxo0bKS0txd/fn29/+9vX3KzuQgghhBBCiIF1tiXK2erjjRs39lnv5+dHXFwc0dHRjBkzBtOZSR+Lioo4fPgw3d3d9PT0fKmq9pvf/CYjR468as9joNgrKuj468tYCwtRGhrQrNZLepw+JAS/m24i4N8eRn+J/dQ/+OADTpw44frez8+P4OBggoKCCA4OJi0tbUjM49TQ0MBHH31EQ0MDANHR0Sxfvvwr59saKIqiUF5ezokTJygpKSE8PJw777wTRVFcbWSCg4OJj48/b+6hKAovvfSS602G0aNHk5mZyejRo6UKXAxZEnz3gwTf7qdpGhaLBcOhV/Dc/jPU4eOw3L/jK8PWKzlGZ2cnZrO5z4Sm//jHP2hra0NRlC89Zvjw4dx///2u71955RV6enq46aabiI+/sn7VV5umaRw5coSUlJQL/tHXtZ3GePB5jMfeRqc4e3ur4SnYp38PJeEm0PWdpETTNHKKcvhlwS9pM7Thpffi95m/JyP88nt/ORwO9u3bR25uLpqmsWrVKqKiomhqaqK2tpa0tLRL2o++Jg/PbT9E3+KsTHck3IRt4VPgF4au/jNM792PvrsOzSvIOXHqqFkAWK1WXn/9dVpbW4mJiWHNmjWusF0IIYQQQgghvqilpYXS0lLKysqoqKjA4XC41p29ngE4fPgwn376aZ/H+vj44Ofnh7+/P7NmzSIiIgJVVdmzZ48rPL+WaZqG2tGB0tiIo77+zOcGlMaGM58bvxSOGyLCCf7Rj/GZM/sCe3aqrKykp6fHFXYP5ZYzqqpy5MgRsrKysNvt6PV6Zs2axezZswe0/3d3dzeHDh0iLy+P7u5u13Jvb28eeeSRfs9x1dzcTE5ODsePH+dsTBgZGUlmZibjxo2T62cx5Ejw3Q8SfLtXXl4eFouFCePHM2ztEvTNxdgWPolj0gNXtF+LxUJdXR11dXXU19dTV1dHb28voaGh3Hfffa7tXnnlFVpbWwFnjyqTyYTJZMLLy4vg4GCWL1/u2nb9+vWcPHkSgGnTppGZmTlg/6F3dXVx+vRpvLy8XB/e3t6YTKZLere6qqqK7OxsVqxYcVl/+HVddc5+2J/9C53dDIASkY7tlr+gBca4tivrKOMHWT+gydxEgDGA5+Y8R2Kwc2bt8vJyKioqXOM/92fr5eX1lRNj1tXVsXXrVlpaWgBITk5m3rx5lJaWsmPHDhRF4e6773adOH4lWy8eWU9hPPQKOjQ031BsC3+Dknhz3+26GzC9fz+GuiNoeiP2Bb/GMXEN4Dxxfe2117Db7UybNo0lS66sel0IIYQQQgjx9WC32zl16hSlpaVUV1czZ84cRo0ahU6no729naamJvz9/Rk2bBh+fn4YjUZ0Op2rWlbTND777DM2btyIXq9n/vz5rrYq16uz4bj1yBFa//BHlNpaALznzSP4v/4T43U2kWhnZyfbt2+nvLwcX19fHnnkkQFru7Jr1y727t3rKvbz8fEhISGB+Ph4oqOjryhw7+joIC8vj6NHj7re7Jk+fTqLFy92y9iFcBcJvvtBgm/3sdlsPPvss/T29nLn9FEkZX8fzejFvul/x2H0ZcqUKa5gua6u7v+z9+bhUVxn3vZd1Zv2HQkJJEBIQmwCJPbNGDCLwZglBoyXxLFxYjt+Z8bJzJtvMslkMpNkxjOTL7YzsT22Y+I42GAWg8HsqxH7JgmDkIQkBAihtVtqqbda3j8aFciAkYQAAee+rrq6+1TVqVPqUtep33nO76GxsRGz2YzJZLrmNTQ01Nj2s88+o7S09JrjybJMXFwcTz31FGazGVmWqaurw2w2G8Ls1R2Ob07TUVWVzZs3c/DgQcCf0GTmzJm3fIPSdZ3CwkJiYmIMC5KioiJWr1593e3NZjOTJk0iIyMD8E+Z2r9/v3H+tbW1RuKVLl26MHHiRJKS/GK13W7n+PHjBAcHk56efnMbj6YaLEc+wHz0AyRPPXpABJ4Zb6H1nszhysP8Q/Y/0Kg00jO0J2+Mf4OuQf5oekVR+OCDD6ivr79utcHBwbz88svG51WrVlFTU4PD4UDXdYKCgpgyZQpJSUls3ryZ/Px8AHr27Mmjjz56w7+5fPYrrBt/guwo87djwHy8D/8SAm9gT+NzYd30E8wnV/k/DnkO38R/AZOFgoICY8rinDlzjL+3jQJJjgAAIABJREFUQCAQCAQCgUAgENxOfD4fn3/+OSdPngRg0KBBTJo0qc2RufcimsuF4733qP/4Y1BUpKAgIl56idAF85FuY1T0nUbXdQoKCjCbzfTu3RuTyYTL5eLMmTMkJSURExPTLuuQZtsSs9mMpmkcPnyYDRs2EB8fT2ZmJn369Onw66ipqYmjR49y7NgxnnzySWJjY7FYLBQWFlJSUkL37t1JTEwkPDxc2KEI7gpC+G4DQvjuOPbt28fmzZsJDw/nlYQ8LCdXUBI+mo/qRwLw4x//2BBzv/jiC0P8vB6vvvoqAQEBAKxbt45Tp04RERFBfHw8CQkJdO/enfj4+BYZn9tLbm4u69atw+fzERoayqxZs9qd0MHhcLBt2zbj5jZ//nxMJhPnzp1j//79uN1uY3G5XMY0ohkzZtCvXz/AH1m9atWqGx5j8uTJRoRAWVkZy5YtA/zCfnJyMhkZGSQnJ39r9LpUfx7rmhcxXTwGwLrB8/hFw3F8mo/BMYP5zzH/SZj1yv+Dx+MhNzeXxsZGwzP9av/0oKAgFi1aZGz/4YcfUl1dDUDfvn2ZNGkSDoeDtWvX4nA4kGWZsWPHMnz48Ot/f24H1h2/wpy3FAAtrBveKa+3zide1zEfeAvr7t8CoPYYh2fWuxAYye7duzlw4ACDBg3i8ccfN6I0zGZzp8zELRAIBAKBQCAQCO4PdF1nz549bN++HYBu3brx+OOP37GEjHcbb2Ehtb/+DZ7cXACs6elE/dPPsF1+Dr4fycnJYfPmzQAEBASQmJhIYmIiSUlJJCQkfOvs78bGRo4ePcqhQ4cYO3YsGRkZaJqGz+ejqqrqjiShVBSlRQT5hg0bOHHihPE5JCSEbt26kZiYSPfu3enevfsDMZgjuPsI4bsNCOG7Y1AUhTfeeAOn08n0h0cxbPczSIqbJeanOavG0qdPHx5//HFj+927dxteaaqqXvP6ox/9CIvFgizLNDQ0YLPZCAkJaRHB3ZFUVlayfPlyampq6NOnD7NmzWrT/qqqcvjwYfbu3YuiKMiyzPDhw5kwYYKR+ORqmpOneL1empqajAh1Xdepq6vjyJEj5OTkGEk5e/fuTVxcHLquk5ycbPia19XVcfz4cSoqKjh//rxRf0hICAMGDGDIkCE3FnQVD+btv+ST4pX8V7Q/gnpi1zH8cvRvsZmubXNbqK2tpampCZvNRpcuXTh69Cg7duxA0zTCwsJ47LHHbnijNhVuxLL5p8iN/iQhviHP4Rv/j2BrmzBtKtyIdd0rSL4mtIheeOYtQY1MobCwkLS0NCRJQpZl1q1bx9dff01oaCgJCQktlqBWJmARCAQCgUAgEAgEgtZQUFDAypUr8Xq9hIaGMmfOHOLuM+uPG6FrGs7Vn2N/8020hgaQZUIXzCfipZeQ78NApIKCAo4dO0Z5eXkLn3jwz2B/9tln6dGjB+DXCCRJoqKiggMHDpCXl2fYmSQmJrJw4cI73v5vUlxcTElJCeXl5VRWVl6TzPXHP/4xwcHBSJLEpUuXOr1Hu+DeRQjfbUAI3x3DoUOH+PLLLwkNDeXlLImAHb+kKSyZ/6x/nPCICF599dVvHfn75qXY/KN/J6fNeDwetm/fzsiRI68rVt+I8+fPs3nzZsPHOjExkWnTphEfH9+u9p88eZKVK1eiaRqRkZHMmjWL2NjYm+5XW1tLbm4uJ06cwOXy+3g///zzht3KN1F1lTdy3mBZoT9i/GlHPT/2BqDMehet+/A2t/vbOH78OFu2bCE1NZVp06YZ0fxXI9WVYtn9a8yn1wGgRSbjnfbfaIkj231cqfIktlXfRa4/j24NxTPrnWuixlevXs2ZM2euuQYBIiMjefnll41R7rKyMlRVxWKxXHcRo9sCgUAgEAgEAoHgZlRVVfHpp59SV1fHvHnz6NWr191u0h1Framh9ne/o2nDRgBMXboQ+Q9/T9DEifeldYaqqlRWVnLhwgVjaWxs5NVXXyUwMBCTycSuXbvIy8ujoaHB2C8uLo6srCz69OlzW5Nltgefz8elS5coLy+nvLwcj8fDggULAP9s9E8++YTq6mpGjBjB8OHDCQwMvMstFtxPCOG7DQjh+9ZRVZU333yT+vp6Jk2cyOjjryHXFHCwywI2VHe755IhaJqGx+NB0zT27NlD//79bygeX21LEhQUxMMPP8yQIUNuSQB1OBz87//+L4mJiUydOrVNIjz4v4+ioiIuXrzIhAkTjPLNmzdjtVrJyMggODyYXx78JdvP+6fZ/U3vJ/n+0ZXItUX+xJATfo6StRhuodPh8XiMtuu6TklJCb169bq2I9NYhWXv/4855y9ImoIumVCGv4Rv9Gtg6YCbY2M1tjXPYzp/EF2S8T38z9ecm9frpbKykoqKCioqKrh06RK1tbXExMTw3HPPIcsysizz3nvvGRYu3yQsLIy/+Zu/Afw3+hUrVmA2m+nbty+9e/duVRLTzkTz4JOu66iqyvHjxwkKCqJv3773ZWdUIBAIBAKBQCC4k7jdboqKikhOTr5tx9A0jYaGBmN29dUzrQMCAujatetd7du79u+n9je/Rbk8ezlw7Fiifvp/Md8BG4+7ia7rNDQ0tNCgPvnkE86fP48sy6SlpZGZmUlCQsI9+eyl6zpLliwxnp2tViuZmZmMHj365nnJBIJWIITvNiCE71vn6NGjfPHFF/7sxTMGE7xsHro5kP/SF9OkmXnhhRfo1q3b3W5mm9B1nf379xti8fTp00lLS7tmO1VV+eijj0hISGDy5MmGHUt70TQNt9tNfX09oaGhHXaTa2xs5J133vGL+rKHo4lHuSBdwCJb+MWwXzAlaQp4nP7EkPn+BJBKn5l4p/0ObG27MXk8Hnbt2kVxcTHPPffcjYV7TwOWg3/EfPh/kXxNAKi9JuAd/zP0uAFtPkePx2PY41yD6sW6+aeY8z4BQBm4EO/D/wwBEd9an9PpJDo62ihbvXo1dXV1KIqCz+czFoCoqCief/55Y9slS5ZQVVUFgMViISUlhX79+pGamtrmwYw7SXNSlu3btzN//nyCgoJoaGjg/fffx+fz0aNHD6ZNm2bY7QgEAoFAIBAIBIL2o6oqHo+Huro6srOzeeSRR771ecHtdlNQUIDD4cDhcGC326mvr8fn86GqKoMHD2biRP8sV6fTydtvv33DujIyMu56kJrmdlP/pz/hWPJnUBQkm42gSZMInjmDgGHDkB6QWbVut5vKykqioqLui/xTmqZx+vRpDhw4YDwXm0wmMjIyGDt27A2DCwWC1iCE7zYghO9b59KlS+zYsYNu3box6uKHmE+upLL7NN6+0I/o6Gheeumle9ICor6+nhUrVnDu3DkAhg0bRt++fTl69ChTpkwxzknTNMPHqj1omsb69evp3bs3PXv27KjmX3OM4uJituRsYbl3OU3mJiyahdeSX2PusLlXNtR1zEf/hGXHvyBpPrTI3nhmv4/eJb1VxykqKmLLli04nU6gZdJOA8WN+difsex/A8lVB4AaPwTf+J+h9RjTquMoisLu3bvJysoiPDwcgK1bt1JQUMDAgQMZMGAAkZGRLXfSdcxH3vOfm66hW4JRhnwP39AXIeTmVjI3ojkiWlXVFh3U8+fPU1BQQGFhIfX19Ua5yWQiMzOTRx99tN3HvF1UVlayadMmiouLgSsdYa/Xy8GDBzl06JDhTZeZmcnEiRMfmGQ8AoFAIBAIBALB7UJVVd5//30qKiqIiopi5MiROJ1O7HY7DoeD5ORkhg4dClyZIXwjBg0axJQpUwBwuVy88847mM1mTCaT8Woymaiurmbq1KkMHDjwjpzjzfAVl1Dzm9/gOXrUKDN16ULwo48SPHMG1t6972LrBO2lefb3gQMHjLxkjz76KEOHDr0no9kFnQMhfLcBIXzfOs0j1HpTDUFvZyGpHuoXrCG/IQiTyURWVtbdbmK7UVWVrVu3sn///hblDz30ECNGjMBqtd6SqK9pGmvXriUnJwez2czixYtv2+ju1nNb+dWhX+FRPURJUQw9P5RwJZzp06fTv3//FtvK5UewrnkRuaEc3RKId8rrqP2/c8O6Gxsb2b59O/n5+QBEREQwdepUkpKSrjpZFdPXK7Bk/ydy/QV/UVRvfOP/P9TUR1ttq2K321mzZg2VlZXEx8fz9NNPYzKZePfdd6mrqzO2S0pKYuDAgaSlpbXwQ5NLd2Pd8UvkqlMA6CYbSsaTKMNfRg9PbFUb2oKu61y6dImCggIKCgqoq6tjxIgRTJgwAbPZjK7rHD9+nPT09Ls27cvlcrFz504OHTqEruuYTCaGDh3KyJEjWyQjqa+vZ9euXcb3bLPZGDduHCNHjrwnB7cEAoFAIBAIBILOwoULF1i2bFkLj+dm+vbty8yZMwH/M+SqVasIDw8nIiKCyMhIIiIiCAgIwGw2Y7PZCAgIuEZUvPqzJElUV1cTGhpqJFB0uVx33YdZ13W8eSdwrl9H06bNaFcFEFnT0wmeOYPgadMwtSNaWK2txVtQgLegAOVsGZbUFIKnTsX0zYApwW3j/Pnz5ObmMnXqVGMgprS0FKvVSo8ePb5VCNd1ncbGRmNxOp00NTURHR1N7969rz/zW3DfIoTvNiCE71vH7XajaRrmQ+9i3fFLtNgBuL+7GSTJSPp3r/P111+zdu1avF4vqampTJ06laioqFu2NVmzZg25ublIksTMmTNJT29dZHVbUHWVd0+8y5/z/wzAyLiR/GrEr9i/cz+5ubkEBwfzwgsvXJttuaka27pXMJXuBsA36BmUId9DD+0KAZGGUP3111+zfft23G43kiQxbNgwRo8efeV713VMRZuxfPVb5OrT/nMPicc35seoAxeA3PokHWfOnGH9+vV4PB4CAwN57LHHSE9PR5IkFEUhPz+fY8eOGRHL4Bdns7KyGDPmqmhyXUc+sxXL/jcwlR/xF0km1H5z8Y38EXr0tbY2HYGu69TU1GC1Wo3fm6t94rt160Zqaiq9e/cmISHhjty8jx49ytatW42EqKmpqTz00EPXRsxfxfnz59m+fTuXLl1ClmV+8IMftCoBq0AgEAgEAoFAILgxDQ0NbNq0CbvdTkREBOHh4URGRhIXF0d8fDyyLCNJUodFyuq6jqIo1NfX89FHH9GzZ08mTZrUKRIp6l4vrj17cK5fj+urPXB55ikmE4GjRxM8cwZB48cjfcMWRvf58JWU4i0sxFdQgLewEG9hIVpNzbUHMZsIHD2G4BmPXrcuwe1F0zTef/99HA4H3bt3Z8CAAXg8HkPc7tWrF1lZWei6Tl1dHW+99dZ16wkJCWHs2LGMGDHiDp+B4G4hhO82IITv9nPy5EmKiooYOnQoEeHhBHwwDrn2DN4p/4Ey+FkAAgIC7puRt2YPte7du9/yOWmaxueff05eXh6yLDNz5kz69OnTQS29gtPn5BcHfkH2xWwAnu7zNC8PfBmTZELXdXbv3k2/fv3o0qXLDRqqYtn7Oyx7f9eiWDfZ0EPi0EPiWNUwmJMNocQGyzw6JIG4bj3QQ7qih3RFvpSLZfdvMF045N8vIALfiFdRMp9rU+JKTdPIzs42Iu/j4+OZN2/eDQcf7HY7R48eJScnh/r6ekaMGMH48eONunw+n9+WRNeRz+3zC+CXBX4dCTVtOsqIV9HiB7e6je2lpKSEvXv3Ul5e3qI8MDCQXr168dBDD91WUXnbtm3s2bOHmJgYJk6cSI8ePVq1n67rfP311zQ0NDBq1ChkWcZqtdLU1NSqWQunT5/m/Pnz1NTUUFNTQ11dHUFBQcTFxREbG8u4ceOuHYwRCAQCgUAgEAgEHU5OTg6ff/45ALGxscyaNetbA2HuNGpdHU2bt+Bcvw7via+NcikkhOBHHsHcIwlfYZFf7C4uviKSX40kYU5MxJqWirl7d9wHD+E9efKauoJnzsA2eLCw4bgDeDwedu/eTV5enjHz4GoGDBjA9OnTAfD5fPz+978nKCjIWGw2G+fPn8flcvHQQw8xZswYTCYTmqZdY0UquL8QwncbEMJ3+9B1nXfeeYfKykpGjx7NuESJgE/noVuC2dD/9wRHxpGRkdGpbpadBU3TWL16NSdOnECWZR577LHrJs68Vc42nOXvs/+esw1nsck2fjbsZ0xN+vbEJY2Njdf1bJaLt2HZ81/IjjJ0Vx0+LNjw+vchkOP0ZyRHMaFdt17dHICS9QK+ET+CgPA2nYfL5WLt2rWUlZUBfm/pqVOntkoUVVWVM2fOEBkZaZxXcXExa9euZfLkyQwYcCWJpnzxOOb9b2Iu3HBl/57j8Y38G7TEUa22YmkvDQ0NFBcXU1paytmzZ/F4PAC88MILxMXFIcsyFy5cwO1206NHj3aJwrquU1tbi6IodOnSBZ/Ph8vlIj8/nwEDBtzygM6lS5f4+OOPycrKYvDgwdjtdkPYdjgcPPPMM0Y7li9fTkFBwXXrMZlM/OQnP8FkMiHLMrt27cLhcBAbG0tcXBxxcXG3nEhWIBAIBAKBQCAQXKGoqIhVq1bhcrmw2WxMnz6d1NTUu92sa/CVlOBc/yWNX36JWlFx3W2kkBCsqalYU1OxpF1+TUlB/oaVi7e4mMb162n8cgPqpUtGublbN7+3+IwZWJI63g5T0BKn08mxY8eoqqpqIWzHxsa2sE/VNO2aZ9bmZ/5u3boZz/ynTp1i48aN9O3blyFDhtCzZ0/x7HifIYTvNiCE7/aRn5/PsmXLsFqt/OAHPyBsy2uYT63G1W8B/5nfHV3Xefnll28cSfwAc/ToUb744gtkWWbWrFm3pTORfTGbn+//OY1KI7GBsbw+5nX6Rvb91n3KyspYtWoVEydOJCMj47rbVFdXs2njBkJsZuaM6o3kvITkrLiyNFRcLruI5GtCl0woGYtQRr/mt0hpB4qi8Ne//pW6ujqmTZvG4MGD2yXQNieh3LhxI0eO+O1N+vfvz+TJk1uIyFL1aSwH/gfTyVVIun/UWU0Yitp/HnpQDHpgFHpQNHpAJARGgqnjrXw0TePixYtcuHCBYcOGGTfpNWvWUFBQgMlkIikpid69exMdHY3b7cZkMrVITPPll19SXV2N2+1usei6Tnx8PE899VSH3/z37t1Ldnb2Dde/9NJLRjR4bm6ukbwnKiqKiIgIGhsbqaqqwu12M3r0aGO/JUuWGJnAmwkMDKRr164MHjy4Q0T7u0GzPU9OTg4+n4/Zs2cTERFxt5slEAgEAoFAIHhAcTgcrFixwkhCOHToUMaPH98p8/nomobn6FEaN2xEczZguSx0W1PTMMV3bdOzjq5peI4cwbluPU3btqE3NRnrbBkZfiuUKVMwhbctiOt24s3Pp37pUlz79iMHBiCHhSOHhyOHh2EKj0AOC0OOCEcOC8cUcXldWLi/LCQE6R58fmotGzZs4MSJE8bniIgIMjIyGDx4sAjOvE8QwncbEMJ329F1nffee4+LFy8ycuRIxmX1I/DtTCTVy7Hhb7D20Fni4+NZvHixGFW7DoqisG7dOpKTk0lJSenQunVd56PTH/F23tvo6AyKGcRvR/2W6IDom+7bnNwQYOrUqS3Eb1VVOXDgAPv370dVVaxWK9/73vcIv9GNX9fB6/S/t7U9YWPzT1Pz9WO329F1nYSEhFu+ppotXnbt2oWu60RHRzNr1ixiYmJabCc5zmE++EfMuZ8gqZ4b12cLQw+MRA+MgsAo470eFI3aayJ63IAb7ttWdu7cyenTp6m/KslLMxEREfzwhz80znHJkiVcuipq4Wp69uzJzJkzb0vymrKyMnbv3k1dXR2RkZFERkYSFRVFZGQkycnJ7YpULy4u5tKlS1RVVVFVVUVdXZ1xjYSGhvKjH/0Ii8Vyz/ze2O129uzZw9dff43b7TbKw8LCeOaZZ665FgUCgUAgEAgEgjuFqqps2bKFAwcOAPif+ceNa1Md9fX1XLhwAYfDgcViaRHFGxgYSFBQUKcNXNFcLlw7d+Jc/yXu/ftBuzyr2WwmcOQIgiZPJnDCBEx3QT/SVRXX7t3UL/0Ez+VgrvYgR0YS8thjhMyde19GtOu6zsWLF8nLyyM/Px+v12us69mzJ3PnziU0tO06haDzIITvNiCE77ZTWFjI0qVLsVgsvPjii4Sd+DPWnb9CjcvgQ8t3uXDhAhMnTmzzzfF+5mq/qmYLi47Grbj518P/ytZzWwGYmzyX14a8hkVuXUSyruvs2LHDiIaeMmUKgwYNwuv18vnnn3P27FkAevfuzeTJk2/b/4vX62XTpk1ERUUZCSmtVmuHJ1gpLS1l5cqVOJ1OzGYzkydPbhExbeCsxHLsQ6SqU0iuWmPBZUfi5j+haveRKENfQE2ZBvKtR0o0J/YoLS2ltLSUpqYmAgICCA0NZerUK1Y2RUVFhpd5c2b35vdtSTgrl+3FVLwdpd9c9Nh+t9z+jkBRFGpqaiguLiY4OJiMjAwkScJkMrFv3z4yMzM7rCPT0NCAJEkEBwffkrCu67qxf1VVFX/84x8Bv3Dfv39/CgoKqK2tJSQkhB/96EfCj04gEAgEAoFAcFc5deoUu3btYv78+QQEBLRYpygKdruduro6amtrqaurIzMz08hNlJOTw+bNm29Y9/Tp0w3byfLycg4dOmQI45GRkfTp06dTRJkrVVU0bdqEc916fFfbNJpNBAwfQdDkSQRNmIDpNs/a1JxOnGvX0vDppyjnLxhtCJo8mdA5c8BqRbM70OodaA4HqqMezWFHc9SjOfzlqt2BVl/fIpodIGDECELmzSXooYeQ2vCceK/g8/koLCzkxIkTnD17lsTERBYtWoTNZrtnAqcE1yKE7zYghO+2oes6f/rTnzh//jxDhw7l4QkTCHh/LHJdMY7x/8rvv6oD4NVXXyUqKuout7ZzoKoqK1asQJZlpk+ffltGti82XuQf9v4DBfYCTJKJnwz5CXN7z21zPd8Uv8ePH09+fj6VlZVYLBamTp1Kenr6bbtB1NTUsGbNGmpqajCZTCxevJguXbrctmgAp9PJ6tWrKS4uBuCJJ56gZ8+erdtZU8HjQGq6WgyvuyKO1xVjOrMVSfMnVtHCuqNkfh8lY1Gbfc7vBpLjHJad/4r59BdGmdr7EXwj/w9at6F3sWU35tSpU6xbtw5Zlhk4cCCjR49uU2JQXdex2+0EBwdjtVrRdZ1du3axa9cuAgMDiYmJoUuXLsYSExNDWFjYDf8fFEXh9OnTHD9+HJvNxuOPP46iKOi6TnZ2Nt27dycpKQlJkmhqamLFihVkZWWRkZGB1WoVHTGBQCAQCAQCwV1F0zQURTH6sOvXr6e8vByHw3HNttOmTTMCiS5cuMCuXbuIiIhAVVWamppaLN/5znfo1asXACdOnGDDhg0t6urZsyePP/54p0p27ysuoXHbVpq2bMVXVHRlhclEwLBhfhH84YcxdaCVhu/CBRo+XYZzzefozkYA5LAwQubNJXT+fMxxcW2uU/d4cO3fT8OKlbj37vXP1gbk6GhCHn+c0LlzMCckdNg5dCYcDgeSJBnan67rlJeXd0ove8G3I4TvNiCE77ZRXFzMX/7yF8xmM4sXLyas5jgBy55At4awZ8QHbN9zgO7du/P9739fiDb4ha8VK1Zw+vRpTCYTixYtomvX9nld34jDlYf52b6fYffaibRF8ttRv2VIlyHtru+b4jdAUFAQ8+bN6/C2Nx+vtLSUnJwczpw5g6ZphISEMHv2bJKTk2/7daTrOl999RUVFRXMmDGjQ48nNZRjPrYEc87HSC7/oJBuCUTpPx8l63n06E54g/W5MB98G8uBt5AUN7oko3UbjnzhIJLun+anJo7GN+r/oPUYf9uTfraFc+fOsWfPHsOTECAlJYUxY8bQo0eP6363DofDiJ4vKSnB4XAwd+5c0tLSUFWV8+fP88knn9zwmPPnzzcGg5oTedpsNk6cOMGJEycMKxOTycQrr7zyrZHcVydrMZlMmM3mThHpIhAIBAKBQCB4sGm2vtyyZYtRZrVaDUvDqKgo0tLSiI+PR5ZlJEkylqtpzrsEfltLXdepqqqipKSExsZGnE4np06dwufzERsby7x584wcQZ0JX2kpTVu30bh1a8tIcJOJgKwsgiZPJmjiw5jaEQyo6zqeY8dpWLqUpp07DasVc88ehC1aRPCMGdck6WwvSnk5DatW07h2DWp1jb9QkggYNYrQ78wjcOxYpA6eed2Z2Lp1K8eOHaN///5Mnz7dSI7Z2fH5fOTn5zNgwIAHVncTwncbEMJ322hqaiI7OxtN0xg3bhzWNT/AfHotvsHP8qdLA6ioqGDKlCmMGjXqbjf1rqMoCp999hkFBQWYzWZmz55tjGp3BE1KE/+T+z+sOLMCgD4RfXh9zOt0Dbp1cVrXdXbu3Mnhw4ex2Ww888wztyUJRFVVFatXr24RMdCrVy9mzZpFeHj4Hf0R1zQNn8+Hqqq43W6Ki4vp27dvx7TB58J0chWWI+8jV+cbxWqvCfiyXkDr9TBId9njTtcxFazHsuNfkOv9wrGaOArvpH9Dj+2HVFvsT/r59WdIms+/vusglJH/BzV12t1v/1U0T5csuKoTGh8fz3e/+11sNht1dXXs2bOH0tJSamtrW+wryzLjxo1j+PDhRpnP56Ours4Qtqurq6mpqaGuro7nn3+eyMhIJEli//797N69u0V9zVYmAwYMaNP/kNPp5LPPPmPy5Mn06dOnnX8JgUAgEAgEAoGgYygpKaGmpoaoqCiio6MJCQkxRO6OpDnwpKmpiYSEBBYtWtSpxT1fWRlN27bRtGUr3vwrz3rIMpbkXkgBgUgBNuSAACRbAJLNhhTQ/HrlvWwLQNdUGtetx3vqlFFNwMiRhD21iIBRo25bQkrd56Np926cK1fi3n/AKDfFxhIyezYhc2a3K7q8M9Oc++vQoUPouk5gYKCR66yzXm91dXUcPnyYY8eO4XK5WLBgAWlpaZ3WL/92IoQWDbRkAAAgAElEQVTvNiCE77ahadqVZGyN1f6klpqPxmc2sfZgCSUlJbzyyis3Tnr4gKAoCsuXL6ewsBCz2cycOXNab6HRCg5dOsSvD/+ai00XAXi81+O8Nvg1AswBN9nz5jQ1NREUFISu63z99dekp6d3mL+2pmk4nU7jf83n8/H2228D0L9/fzIzM40ogbuBruv4fD5WrFhBYWEh/fr145FHHum4KXa6jlyWjfnI+5iKNhse4VpUb5TM51EGzAfrnR9llqrysW77OaayPf72hCbge/ifUfs8dk1Et1R/AfOhd/xR7Ir/t0CLTsM38lXUvrNB7jwRAc0dgxMnThAXF8fTTz+NxWLBbrfzhz/8AfBHmnTt2pXExESSkpLo1q1bq79vVVVbdPaPHj1Kbm4uTqeTnj17MmDAAJKSktp1Pe/YsYPDhw8jyzJz5swxPBAFAoFAIBAIBIL7nZqaGlasWMGUKVOIu4cEV9/58zRt3UbT1q14T55sdz2SzUbwo48SuuhJrL17d2ALb46v7BzO1atxrl2LVueftYwsY4qL8wv0AQF+wd4WcEXAvyzmywFXvQ8NJWjSpHZFvd9JKioq2LhxI1VVVYA/p9nMmTOJuM2+7a1F13WKi4s5ePBgi8Cu8PBwHn74Yfr169emHF73C0L4bgNC+G4bPp8Pn88f7Wk+8Aesu36NGj8EzzNfAn7BNzQ0tNOOkN0JFEVh2bJlFBUVYTabmTt3Lj169OiQup0+J2/lvsXnxZ8DEB8Uzz8O/UeGxw2/yZ6t48iRI+zZs4cFCxbQtWtXrFYrsizjdrupqqriyy+/JDIy0lgiIiKIjIwkKCjoW79zp9NJXl4eubm5mM3mFlY4FRUVJCQkdJrkErqus2fPHnbs2IGu60RFRTFr1iy6dOnSoceR6koxH/0T5rxPkLxO/7FNVrCGoFsCwRwA5sDL7wPRzQFwubzF+pBYtC590br0A1sbEzq67Viy/wvz0SVIuopusqEMfxnfiB+BNejb922qxnLkfcxHP0Ty1AOghSehDH8ZZeACf/s6CU1NTbhcLqKjo42yvXv3EhcXR/fu3TtlIklVVdmwYQOnTp1CkiRmzpxJZmbm3W6WQCAQCAQCgUBwR9B1HUVRDP2hsbHxnrGiAFDKL+IrO4vu8aC7PegeN7rbje7xoLndl8s8RpnucaN7vNgyMgiZO6dDvcLbg+710rRjBw0rV+I5fOTmO1wHKTCQ0IULCXv2GUydODhSVVUOHTrE3r17UVUVi8XCd77zHdLS0u5206irq+PNN980Pvfs2ZMhQ4aQnJyMLMtYLBYhfAvh+9sRwnfrKSoqwm63k5CQQER4GAHvjUa2n8Uz7XeoGU8CfpuAb2Z8ftC4cOECS5YsQZIk5s6dS1JSUofUu79iP785/BsuuS4BMK/3PF4Z+ArBllu/+V9tbQIwcuRIJk+ebPgLa5pGTk4Oa9euve7+VquVSZMmGVGpLpeL2tpa3G43ubm5nDlzhuafm4CAAJ555hm6dOmCyWTqtNNyzp49y8qVK2loaMBsNjN06FCioqJITk4msIM81QDwODGfWIb5yAfI9pJbqkoLT0Tr0g89tj9abD//+4ge19qQaCqmvE+w7v6tPyknoKROx/fwL9Ej2ni9euoxH/szlsPvIjX5feH04Fh8Q19EGfT0PZHIs7OiaRpbtmwhNzcXgKlTpzJy5Mi73CqBQCAQCAQCgeDOoSgKJSUlfPbZZ4wbN46srKy73aQHDuXiRdSamisivtuN5nG3FO7dLUV8b/5pw/pFCgkm7KmnCXtqEXIn9Gxvpra2lo0bN1JTU2NYWt7pnEtVVVWUlZWRmZmJqqooisKaNWsICgpiyJAhRH0jgl4I30L4vilC+G49n3zyCQUFBTzyyCNkRjgIWL4Q3RpK1Xf34NXNREVFYbVaO8wW415FVVUjmWViYuIt19fgbeD3Ob9nXek6ALoFd+NnQ39GVmzH3PAVRWHDhg3kX74pjR8/nvHjx1/zA+90OikrK6O2ttZY6urqqK/3R/s+/vjjxohoQUEBa9asabF/9+7dGTx4MP379+800d03o7GxkVWrVlFcXGyUPffcc8TExAB+a4uTJ08SGhpKaGgoYWFhxmtYWFjbIhJ0DclxHnxNSIoLfC5Q3Jffu0Fx+a1FfFdeUVzIjvNIVSeRG8qvX60l+HJEeF/02P7owTFY9r2BfCkPAC06Fe+kf0PrOb79fygAXxPm3E8wH/yj0RbdEoQyYIE/kWfUnZ2id7/wzUGpCRMmMH78+Hvi/0cgEAgEAoFAIOgItmzZwt69ewEYOnQoEyZMEP3hTo6u67h278b+x7fxFRYCIIeHE/bdZwldsKDDEnR2NLquU1dXZwjMZrOZvLw8goKCjGSuHWaFil8/qq+v5+LFixw+fJiSkhIkSeLFF19slUYphG8hfN8UIXy3nj/84Q/U1NQwf/58Uo/9K+aC9fiGPMfOoBns3buXzMxMZs6c+UDegLxer+Fd7fV6O6zePeV7+Pcj/06VuwoJifmp83lpwEsEmjvmJuF2u/n88885d+4csiwzffp0srKyWv0dNk8/q6mpISQkBKvViqZpnDx5kp07d6JpGunp6WRlZREXF9dpo7u/DV3XOXr0KKWlpdTX1zN79mzDGmPz5s3k5OTccN/HHnuM9PT0O9NQVx1y1Snkyq+Rq04iVZ5Erj6NpHquu7luC8M35icoQ74Hpg68UapefyLPw/+LXHUlKYuaPBnf0MVoPcZd4xsu+HZ0XWffvn1kZ2cTGRnJ4sWLO3bWgUAgEAgEAoFA0IlptqPcvn07AOnp6UyfPv2BD7q7F9A1jaatW7G/8y5KaSkAclQU4c89R+h35iG103ZSc7nwlZZijou7rT7iRUVFrF69ukVZSEgIUVFRREVFkZGRQa9evQD/dfpNLcXn82G323E4HMTHxxvBcXl5eWzdupWGhgaulmYlSSIlJYXx48dfE919PYTwLYTvmyKE79ahaRq//vWv0TSNl56ZS5ePJyBpCk3f28YHX+yjtraWmTNnPpDTjrxeL0uXLqW6upoFCxa08BFuLw6vg98d+x0byzYCkBiSyD8N+ycGxwy+5bqbaWxsZPny5VRXV2O1WpkzZw59+vTpsIGLb/543y80n5eu61RXV1NZWYnD4aC+vr7FYjKZ+P73v290xlRVvePTpNAUpNozLQXxulLUpNH4xv5fCI65fcduTuR5+D1MZ7ZcSeQZ0wdf1mLUfnP9nuWCVpOTk0OvXr0ICwsjICDgnhxIEggEAoFAIBAI2kuz/aamaSQmJjJ79uwH3mr1XkFXVRo3bMTxv++inL8AgCk2lvDnv0/I7NlINxBvdV1HrarCV1CAt6AA7+kCvIUFKGXnQNPAZCJw1EiCZ8wk8KHxyB18PRQXF3Py5Ensdjt2ux2Xy9Vi/dSpU8nMzESSJM6dO8fKlSuJjIxE0zQcDgdNTU3GtvPmzSM1NRVd1zl16pRhJWsymQgPDyc1NZVBgwYR3gY/dCF8C+H7pgjhu3XU1tby1ltvYTab+fuRMtav/h01YShlj7zPRx99hNls5m//9m/vqWQTHYHH42Hp0qWUlZVhtVp54oknSEhIuKU6d17YyX8c+Q9qPbXIyDyZ9iQvDniRAFPH/oBrmsbq1auprKzkiSeeIDEx8b4SqO8muq6jqiq6ruPz+VBVlY8++oikpCRGjRpFUNBNEkd2Epr99FJTU2+pHqm2+EoiT5//xq8HRqIMfhZl8PfQQ7t2RHMfOHbu3Em3bt1IT0/vlAk6OwNut5vCwkIKCwsxmUz07du3UySpEQgEAoFAIBC0jzNnzrB8+XK8Xi8xMTEsWLDgnnm+EoDu8+Fctw7He++hVvjzl5kSEohYvJigKY+gnDvnF7gLCvBdFrk1u+O6dcmhoWgNDcZnKSSY4MmTCZ4xE9uQwUi3IVDI7XZjt9upq6vDbreTmppqWKHm5eWxcePGa/axWq2EhYUxduxY49na5XJht9sJCwsjKCio3VqMEL6F8H1ThPDdOgoLC1m6dCldYqL5ofcdZMc5PI++wY7arhw4cIC0tDQWLlz4QAmnHo+Hv/71r5w7d65DRG9VV/n98d+zvGg5AD1De/JPw/6JgdEDO6rJ1+D1elFVlaioqAfqu7uT6LrOyZMnWbFiBeC/6Y0YMYKsrKxOfYMqKSlh27Zt1NXVsXDhQsOvvqioCFVV6d27d9unFrodmPM+8SfyrD8PgC6bUdNnoWQtRovvuBkNKG4klx3cdiR3HZLbDi47kupFNwfA5UW3BPpfzQFgCQBzYIv1HWoD04HU1NTwpz/9CfD7zqWmpjJgwABSU1M79XV1J3A4HJw+fZrTp09TWlqKpmnGuv79+zN79mxj9kVFRQVdu3YVv38CgUAgEAgE9xAXL15k6dKlxMfHM2vWLGRZxuv1ous6VqtV9O3uAXSvl4ZVq6n/0weo1TXfvrHJhKVHDyxpqVjT0rCmpmHtk4YpJgbf2bM0rl+Pc/2XqBcvXtklIYGQGY8SPGMGlqSk23w2frxeryGIm0wmI/fX7ZyVIIRvIXzfFCF8t479+/ezadMmxnfz8fD5t9BtYTS9dJT3lvwVh8PB7NmzGTRo0N1u5h3D7Xbz17/+lfPnz2Oz2XjiiSeIj49vf32qm18e+CU7LuwA4Nk+z/JC/xewmTo2irOiooLCwkLGjh2LJEkiGekdpKioiK1bt3Lpkn9UOyQkhLFjx9K/f/92WVYUFxdTUFCA1Wpl0KBBHWKxA2C329mxYwdFRUUABAcHM23aNFJSUlBVlSVLllBdXU1gYCB9+/ZlwIABxMXFte0gmoKpaJPfBuX8AaNYly1++5MWgrT/FctlQfrq9ZIZydMAl4VtQ9x21/kTgHYAumxGj0pB7TEGLWksauIoCGj91LNvRVOQKk9iKj8C6Cj95kJARKt2dTqd5OTkkJ+fT21trVFutVrp06cPo0aNuqXfpHsVRVF4/fXX8fl8Rll0dLRx/fbo0YPk5GQAqqur+fDDDwkODiYlJYWUlBR69+4t/NMFAoFAIBAI7gEcDkcLwe+rr75i//79gL9PbLPZsNlsxvtJkyYRGRkJQHl5OSaTqe3PMZ0Aj8dDXl4eNpuNgQMHGmUrV64kIyODvn373nmLzVtAc7lwrliB48MlaHY7UkiIX9xOS8WSloY1rQ+W5F43tTDRNQ3PsWM4162naetW9MZGY50tI4PgmTMIeuQRTG2wEbkXEMK3EL5vihC+W8f69es5fPgwP4zcQ1ztQXyZz1PW/xU+/vhjLBYLr7322gPjreV2u/n444+5cOECAQEBPPHEE3Tt2n6rBofXwU/2/ITcmlwssoVfDPsFU5KmdGCL/Vy6dIlly5bh8XiYNGkSI0eOFKL3HUbXdXJzc9m+fTv19fUAxMTEsHDhwuuKbYqiUFVVxaVLl6ioqGDs2LGEhIQAkJ2dbWQ2B+jRoweZmZkkJye3S0j3+XwcPHiQgwcPoigKsiyTmZnJhAkTjKlXiqKwY8cOcnNzcTqdxr6xsbEMHDiQvn37tlk0lCpysBx5H9OpNUia7+Y7tAFdkiEgAj0gEj0wwv/eZPUn/PS5/VHhiht8rivvFde3iua6JKPFZaD1GIuaNAat23CwtnJqZVMNpvIjyOWHkS8cRq44juS74hGnW0NQhnwP39AXIbhL685R16msrCQ/P5/8/Hzjupo3bx59+/ZFlmV8Ph9ms7nTeoI3NDSgKApmsxmTyWS8yrJ8w2gdTdM4d+4c+fn51NTUsHDhQlRVRVEUPv/8cxobG0lJSSE1NdV4wPkmp0+fZsOGDS1EckmS6NatG6mpqWRkZBAR0bqBCIFAIBAIBALB3UFRFLxeL9u3b+fIkSM33O755583kgU2i+S9evVi5MiRdO/e/U41t93U19dz5MgRcnNz8Xq9hIaGsnjxYsxmM4cOHWLHDn8QXUhICJmZmQwaNOie0mh0jwfV4cDUpcstR+xrLheu3btxrluPe98+vxc4gMVC0LhxBM+cQeCYMTf0Fb+XEMK3EL5vihC+W0d9fT0XC46Rtn4Okq7i+v5Odpy4yKFDh+jbty9PPPHEAzOdyO1285e//IXa2lrmz59/S6PE5Y3l/N1Xf0dpQykhlhBeH/06WbEdnyC0srKSZcuW4Xa7SUhIYNGiRQ+cH3tnollk3rNnD7GxscyfPx9JknA4HJSUlBhCd3V1dQubhjlz5pCSkgL4p/edOXOG6upqioqKjKSb4eHhDBkyhMzMzDaN9C9dupQLF/xJRpKSkpg6dSrx8fHX/b9WVZUzZ85w7NgxCgsLUVUVgD59+jBr1qz2/VG8TUge+xUR+vIrPheScnWZ63KZG1QfekAYBESiB0SgB0agB0T4PwdGgDUEpHaIvboOqsd/TK8T+eJx5LN7MJXtQa4903JT2YKWkOmPBu8xBi0+E8w20FSk6tOYLhxCLj/iX+qKrz2ULRwtIRPJWYFcdcpfZg5AGfgkyvCX0MMT29BsnfLyck6fPs348eONga3s7Gxyc3Pp27cvERERRufIarVisVhISUkxvufm5CsWiwWz2Xxbf9d9Ph8bNmzg2LFj113/wx/+kC5d/AMA+/bt49ChQ4Yw3tDQ0CKxzAsvvGAI3JqmtVrkV1WV8+fPU1xcTElJCTU1V6ZZPvnkk6SkpCDL8nUztAsEAoFAIBAIOgfNz0I+nw+3243H48HlcuH1enG73bjdbtLT0w2B8PDhw2zbts3YLzExkZEjR9KjR49O1+erqKjg0KFDnD592mhvVFQUw4YNIzMzE4vFgsvl4vDhwxw8eJDGy5HOFouFgQMHkpWV9UAHcyhVVTRt2oRz3Xp8BQVGuRwRTvDUaQTPnIG1X79O9723FiF8C+H7pgjhu3Xouo738F+wrX8VtesgPM9uNBLfhYeH07Nnz7vdxDuGoijU19fjdDqNJAbt4XTdaf5uz99R464hNjCW34/7Pb3De3dgS/1UVVWxbNkyXC4X8fHxPPXUU0L07iQ0NTXR1NRkJGM5efIk69evb7FNYGAgcXFxxMfH079/f+Li4oxI2Oabc11dHQcPHuT48eO43W6io6N57rnn2nTzPnXqFLt27WLixIkMHDiw1aJ5Y2Mjubm55OTkMHbsWMNGQtd1XC7XfZdoRmq4iFyWjaksG/nsV8j1F1qs180BaDHpyLVFSF7nNftr0aloCcNQu2WhJWShR6f6xXldw3RmK+Z9b2C6eNRfl2xG7TcP34hX/Nu1k7/85S9UVFRcd50sy/z0pz81rpXPPvuMgqs6hJGRkUyZMoX09PR2H/9GbN++na+++grwd9gUReHqbsnVYvauXbs4ePBgi/0DAgJITk4mNTWVXr16dUiHr76+nuLiYs6ePcuMGTMM8T87O5uKigqGDBlCnz59xGwZgUAgEAgEgnucmpoa9uzZQ25urhFsFB8fz+jRo41nmrvN3r17yc7ONj4nJSUxfPhw0tPTr/u8pigKeXl57Nu3j6qqKsDf33/ppZfuu+ey9uAtKMC5bh1NGze28BU39+xJyMwZBE+fjvku2EVqbjfek6eQbFbk8HBM4eFIISGtep4XwrcQvm+KEL5bh6ZpqJt+juXAH/ANfhbflP8w1tlstnvKQ6o9eDweCgsLSU9Px+v13nJ9By4d4Kd7f0qT0kRKeAq/G/s74oI63l+spqaGTz/9lKamJrp27cpTTz1lWGUIOg+6rqMoCpWVlWzZsoX4+Hji4+Pp1q0bERER32r5cDVer5ecnBysVquRLdrr9bJ+/Xr69+9vRK96vV72799PdHQ0/fv3N9ogyzIBAQHtHu1WVRVVVfF6vWzatIlz587x5JNPEhoa2q76Oj26juQouxwNno2pbA9SY9WV1dYQtPhMtIQs1G5D0RIyb+7hrevIZdlY9r+J6axfFNaRUPvMwDfiVfSuGW1upqqqlJSUUFpaisfjQVEUfD4fPp8PSZJYuHChse2KFSsoKSm5po5BgwYxbdq0Dpsuqes6jY2NLF++nFGjRtGjRw/g8r3msmWJzWYzIredTicNDQ3GOovFQteuXe/IvUfXdd59910aLmeMDwwMZODAgQwePPiB9FEXCAQCgUAguJ+w2+1kZ2dz/PhxFEVh4MCBTJs27a60pbmP3ixSNyfxTE9PZ8SIEXTv3r1VMxt1XefMmTPs3bsXq9XaYlbuhQsXiI+P77Q2iHcCXVFwHziIc/06XDt2ons8/hWSRMDQoQTPeJSgSZOQb2PAoOZy4crOpmnrNlxffYV+1WxWAMwm5DC/CC5HRCBHXH4fHoEcHu7/HBFB8JBMAuPbb717ryKE7zYghO+bY7fbOXr0KFkF/0l4xV68k3+Nkvl9Y31gYOA9Oy2kNfh8Pj7++GPKysqYOHEiWVm3ZkXyZemX/Nvhf0PVVbK6ZPH6mNcJsXS8GO31evnggw9wOp3Exsby9NNP378C5H1C809yR/w/aZqGoigcOXKEzZs3AxAWFkZ6ejqnTp2ioaGBoKAgFi9eTFBQEBaLpcP+j51OJx988AF2u53IyEgWLlz4YAy46DpSTQFyVT5adCp6TB+Q2y/MyuVHMe9/E3PRJqNM7fUwvlF/g9Z9REe0+Lo0Xzter5fDhw9z6NAhAFJTU3nyySfbfZ1omkZeXh4DBw7E6/Wiado9YyFSV1fHiRMnOHHiRAt/+7i4OEaMGMGQIUPuYuu+nfLycs6cOUNycjLdunUD/DOBsrOzURSlxdI8sDBixAgGDx4McM98RwKBQCAQCAS3QkNDA3v37mXAgAHGrMPq6mouXbpk5M7pKFRVxeFwUFNTQ21trfFaXV1Nv379mDLFn/NLkiQ8Hg/h4eHt7o8pimL07+vq6nj//feN58L09HRiY2Mf6L6e5nTStG07zvXr8By+4hEvBdgIengiwTNnEDB8OFIHBNxojY249mTTtHUrruw96G6Psc4UEw1mM5rd3qL8ZsS/+QYRUzo+R1xnRwjfbUAI3zfn5MmTfPbZZ/ydvIQwtRbX/OX8de85kpKSGDVq1H0tpqqqyqeffkpRURE2m40FCxa029Nb13X+nP9n3j7xNgBTEqfw82E/x2qydmSTW3Dy5EkOHz7MokWLxPX9gGK32zl06BDHjh1r4YkcHh7O5MmTb1vWb7vdzocffkh9fT3R0dEsWLBAWOy0E6nqFJb9b2HKX4Ok+6dhqt1HoAx+FjVpLITEdvxBnZcwlWWD6uVs+Cg2b93GY489RlxcHDabrc2dY6fTycqVKyktLWX8+PGMGHH7hPvbiaZpnD17lry8PIqKilBVlSFDhvDoo49iMplobGykqqoKs9ls+KRfvVit1jsSXaPrOiUlJWRnZ1Nc7PeWnzx5MkOHDkXXdc6dO8fSpUtvuP+4ceMYOXIksixTW1vLypUrSUtLIy0tjaSkpPt+lpdAIBAIBIIHF13XUVUVn8/H2rVryc/PJzw8nKysLMLCwoxE7DabrYU20NTUhCRJLRK1e71eamtrURTFSKCp6zpvvvnmDWeSx8TE8Nxzz2G1WjGZTB0mSuu6zqlTp/jiiy9wu91GeUREBOnp6fTp04cuHZBY8l5GKS+n8csNONevRzl71iiXw8Kw9OyJOSkRc1ISlsQkzEmJWJKSbhoVrjU00PTVVzRt24Z7774r0eWAuVs3giZNImjyJKz9+xt/e83tRnM40BwOVLvd/95uR3U40OyOy+vsqHYHsT//J0IHDbo9f5BOjBC+24AQvm/OV199xe5tm/hH/oCEzulZ6/n0i20EBgbyt3/7t1itt0+4vZtomsbKlSs5efIkFouF73znO+3O9qxoCv997L9ZVbwKgKf7PM0rA19Bbk/ivTbSfFMWPNh4vV7y8vLIy8sjMTGRMWPG3PYs37W1tSxZsoSGhgZiYmJYsGDBXfOWc7vdbNmyBYfDQXJyMmlpabfk0X83kOpKMR/8H8wnliOpVzrKWnQqatJYtB5jUBNHQWBU2yt31WI6tw/5rN+yRa4pNFYpfefgefQNJNMV77icnBwSEhIMi5Jvo6ysjBUrVtDQ0IDFYmHatGktPcNVH8hm6EydbF3zJ1e13Ph6dblcnDp1isTERCMJ5+nTp1m7du0N95k1axaDLndMi4uLWbt2LVFRUfTv359+/frd8uCQpmnk5+eTnZ1NeXk54I8USklJYfDgwUY+joaGBk6dOmU8mDUnDW1+jYyMNJIgHThwgN27dxvHsNlspKSkkJaWRkpKivCLFAgEAoFAcF+iaRrZ2dns37/fSAB/NVFRUTz//PPG5w8//JDq6mrjsyzLhnd4ly5d+N73vmesW7JkCXa7naioKKKjo4mOjiYmJub/sffe4VFcedr2XR2VMwqgABJIiCCQBEIi2QRjg8cGjANOk2c9nndnJ+56d7+d2d1v59ud6NlZe78Ze2xje0zw2OPAGGwwOeckIQTKQllCrVZLnavO+0ejAlkCJBA22Oe+rrpa3VVdfbrUXX3qOc95fowYMYIRI0bc1HoyXq+Xs2fPcvr0aSorK/H7/fq6FStWXHe+uRCC7u5uOjo6sNlsuFwuxo8fr7vnbyeEEHhLSuj+YAPOzZvR7PYrbmuIjcWcclEQ7xXGk5PxlpcHYkwOHACfT9/elJJCyMKFAbF7/PgbHmiQGd9S+L4mUvi+Nu+//z4txzfxN6xGBMfw7rjfUFxczJQpU1i6dOnnckRQCMH69es5ceIERqOR5cuXM2bMmOval9vv5l8O/gu7G3ejoPDDqT/k4XEPD3OLA9jtdjZv3szixYsJCwv7wp4EJbcO7e3tvPbaa3rkzsMPP0xwcPCn3g5N01i9enWfIo+xsbG6i/V2cjcojiZMx1dhrNqO0noahUs/5QIFET8RNXUWatrsQCSKdYBZOZ5uDPUHMdbtwVi754r7UdrLUDQ//nGL8d73ezBZaW5u5o033kAIwYwZM5N0uUYAACAASURBVFiwYMGA5xkhBAcOHGDLli1omkZsbCxLly4lNjb24gYa5j2/xnT492ANR72Yh66NzEdLnAqWYRJUhQC3DaW7FcXVgeK2gcsW+NtlQ3FdvO++9BjuThShoSZODTjrxy8dVHsqKirYtWtXv+iQ3guK++67Txf9PymSK4rC6NGjmTRpEtnZ2UP+nmiaxosvvkhLSwsAJpOJyZMnM336dCIjI4e0r8vxeDzU1NRQWVlJVVVVn5kjiqLwta99jZSUlOvev0QikUgkEsmtTG/837lz5/D5fHofLzIykhUrVujbvfTSS9hstn7PDwkJISEhgYceekiv3eTxeAgJCRl0LaebhcfjoaysjNOnT9PQ0MBTTz2li+4nTpzA6XQyfvx4YmIuGWtcLhc+n0/Xz7xeL2vWrKGzsxPfZQIvBMT/wsJCZs2a9em9qWFG+Hz4Kivx1dXhrzuP7/zF27o6tAH+3wNhHjOGkIULCFmwEPO4scP6P/+iaj5S+B4CUvi+Nq+88grRdZtYzkf4kwv5dfs8PB4Pjz32mF5A7/OEEIJNmzZx8OBBFEXh/vvvJzMz87r21enp5Ed7fkRJRwkWg4V/n/HvzE+eP8wtDtDV1cW6deuw2+1kZGTwyCOPfCFPgJJbj9bWVl577TXcbjcrVqzQXac3EyEEVVVVpKam6t+DlpYWamtrqa+vp7q6WndgAGRlZfUp+nLb4LIFnNp1ezHW7sFw4Vyf1UIxoiVOQUubhZaQg6G1BEPtXgxNx1GE2mdbLTYzIJan9jrHozFUbMb6/t+gqB7UMfPwLHsJj2Zk+/btFBcXA4EBhGXLlvWZEePxeFi/fj2lpaUAjB8/nrvvvvvSDCGfE8vG72E6+8GAb0soRsSIbNSRl8RwEZ1+dVe4y4bBVo1iq8Jgq0GxVaHYqgOPea7s0hgMwhqBf+JD+Kc+GchuH+rzL06ZVRRFjwlxu910dnZy/vx5ysrK+gzKGAwGvvrVr15TUPb5fJjNZoQQaJrGBx98QFlZGbm5ueTl5Q27G1vTNJqamqiqqqKiogK73c7f/u3f6lNx33//fWprawkNDdWXkJAQ/e+pU6fqUS+apmEwGFBVFY/Hg9frxePx4PF48Pl8ZGRk6K974sQJmpub8Xg8JCQkUFBQ8IUuyCSRSCQSieSz55NyWm9/rLeQfG9B9pCQEBRFueVNNr1GjV7jxiuvvEJHRwcQiF8xm83YbDbcbjdjx45l+fLlQN/oFoPBQGRkJDExMfh8Purq6pg3bx7Tpk37zN7XzURzOPCdP4+/ru6SMF5Xh7++HuOIEYQsmE/IwoVYrtNFPxik8C2F72sihe9r86tf/YqZPR8xiyNcSF/O89VjCA0N5Xvf+97n9gu2e/dutm3bxuLFi5k0adJ17aPWUcuP9vyI893niTBH8OvZv2ZK3M3JXnI4HKxbt47Ozk6ioqJ48skn+4zKSiSfNS0tLbS3t1/3zImhYLPZ2Lp1K9XV1RQVFTF79mwMBkOffGWXy8XZs2cpLS2lurqa2bNnM336dH3d/v37ycrKYuTIkbd8J7UP3a0Yz+8LiOB1ezF01lxxUy0qLSByp85GTZ3VJyu8vr6enTt34nA4eLxoFPHbvofic6GmFOF54HWwhlFZWcmmTZvo6elBURRmzZrFHXfcgclkoqGhgVdeeQWAefPmkZube+k4drdgfecrGJtPIgxmvIt+gYgdi6HxKIbGY4FbR2O/9oqgaLSRuahJ+YioFJTOOgy2KhRbTUDcdl/dcSGCoxFBMYHb4BgIjr74dzQiKPri/ZiLS2BKpun0XzCd/FOf46jnq2feC6bhi5Gy2WycPXuWsrIyurq6+M53voPVasVoNHLmzBkMBgOZmZmYzWZ6eno4dOgQhw4d4rHHHiMuLg4hBE6nU88S/zRwuVx9nOlr166lvr5+wG0NBgPPPPOMfuH3l7/8hXPnzvUZgOrFaDTyzDPP6BeUb731FhUVFfr6z/OMM4lEIpFIJJLPGlVVOXnyJKdPn6ampqZffy0lJYWVK1eiKAoGg4H6+nrCw8OJiorCbDbrfbTKykoSExP1+7W1tbhcLrKysmQ/bpiQwrcUvq+JFL6vjsvl4pe//CWPinfJpJpjSY/z1+YE8vPzuffeez+XJytN03C73bS1tem5rUNlX9M+fnLwJ3T7ukkKSeK/5/w3oyNGD29DL9Ld3c26deuw2WxERkby5JNPXooSkEhuIYQQeL1eVFWlq6uLoKCgYRXovF4vBw8e5PDhw6iqitFoZMaMGcybN++qhWE8Hg9+vx+TyYSqqpSUlPDhhx8CEBYWRmZmJtnZ2SQlJd125zylqx5D3UUhvK0ULW687uoWkf3dxKqq8te//pXy8ksZ35GRkXxtwXgi/vpNFK8DNSkPz0OrISgKl8vF1q1bOXPmDACjRo3i61//On6/nxMnThATE8PIkSMvtaelBOs7X8HgaEQER+NZ9gpaSmH/djsaL4rgxzA0HsHQUozid/fb7pNoYYmI6DGIqDFoMWMQ0WPQotMRUWlXzeu+KkLDULsb04nXMZZv0p3yIjgG/+SV+Kc8gYge3gGdnp4ePe9bCMFLL71EZ2cnZrOZ1NRUamtrdVdOXl4eCxYsGNbXv156enro7u7G6XT2W1RV5Utf+pK+7Zo1a2hoaNDv93barVYrFouFJ554Qh+oKikpoaOjA03TOHLkCEIIcnNzue+++26776REIpFIJBLJ7YTT6eTcuXMYDAY9k7y32P1g+2GqquJ2u3UX+ciRI7nzzjsZNWrUkNvTO2sQAn3E/fv3k52dTXZ29hdSB5HCtxS+r4kUvq9OQ0MDL730Et/nFSJFJ2+YHqVSTeLJJ5+87qIHtypnz54lLS0NIUS/aUuDRQjB6nOr+d9T/4uGRk5sDj+f+XNig4b/BCyE4OTJk+zduxen00lERARPPvnkbVewT/LFQghBS0sLa9euJSoqigceeOCGf6iFEJw7d47t27fjcDgAGDNmDIsWLSIhIWFIwpgQgrq6Og4fPkx5eXmfautRUVFkZ2eTm5t7w0UIb2Xef/99ysvLmTx5MrW1tdjtdtLS0nh49jiC334cxW1Di5+I+6F1EBo435w7d46PP/6YoqIi8vPzBzyHGss3YfngOyg+J1rMWDwr/oSIHj24RqleDK2lGJoCjnDF0YyISkOL7hW3A2L3sOWCXwHF0YyxeA2mk6v7uNLV0XMDLvCMRWAc3o6n3+9n3759lJWVYb+ssE5iYiIzZsxg7Nixt2Xsh9frxe12Y7FY+szGuBalpaVs3LgRIcTnehBeIpFIJBKJ5POEz+dj9+7dHDhwQM8Cz8rKYu7cuXpR9YHwer3U1dVRXV1NdXU1ubm5+kzd7u5ufv/73+vbJiQkkJ2dzfjx4wkPH6DO0S2GEIKmpqY+RqHu7m5CQ0MH3b+VwrcUvq+JFL6vjqZptDfWEP9SLgDvZT5Lh1vhK1/5ip5T+nmgpKSEv/zlLyQmJvLII49clwvVo3r4zyP/yUd1HwGwdMxS/j7v7zEbbt5J6K233qKmpoaYmBgeeeSR26pAn+SLS319PX/605/wer2MHj2a5cuX31Dl8v3797Nnzx4AIiIiWLhwIRMmTLjhc5TP56OyspLi4mLKy8v1DtrTTz9NWFgYgO4sv13x+/0cP36crKws/TfQbrejaRojR46ktbWVl19+GZ/PR0FBAXdOiCfoz4+g9LQFxOtH/owITwICM4SCgoL6n4OEwHT4D5h3/AcKAnX0XDz3vwhBkRdXi9vvvKX5MVZtw3TidQxV2/TCoMIagQhLQARFQVAUIigSERQViFLp/Tu4d11gITgalGuLvkIImpubqaurIzExkdTU1NvvuA0TvbMyoqKi+MY3vqF/HyUSiUQikUgktzZdXV1s27aNkydPAoE4vLy8PIqKiggKCkIIQXt7uy5019fX94laGT16tF4oVFVVKioqKC4u7lfDKTU1lYULF96yLvCamhp27dpFS0sLX/nKV4iPj0dVVV599VWCgoKYP38+SUlJ19yPFL6l8H1NpPB9bXw1BzG/uggREofrbwPFzIKDgz83F9zl5eWsW7cOTdOYMmUKd91115DfW5urjWf2PcPpjtMYFSM/mPoDHsx4cNiP0YULFwgODtYLlrW3t1NXV0dBQcGnlukqkQwHtbW1rF69Gp/PR3p6OkuXLh2U+O33++np6cHn8+mzG+x2O6+//jp5eXnMnj17YPH1BumteN7a2tqnKvmf//xnhBBkZ2eTmZlJUFDQoPepaRoejwe3243ZbO4jpnd2durTBz+5WCwWrNYby5YWQnD27Fl27dqF3W5nwoQJ3HvvvRiNRsxmcx/3bWlpKVu2bGHZsmXExcWhdFRiffNhDI5GtKg0PI+8NWBsSuDNeLFs/idMxWsA8E39Mr4FP9Nd0ceOHWPPnj1861vf6pMV/VnS3NzM0aNHqaqqIiEhEO2Vnp5+xc+UYj+P6eQbmE6tQXG2D/n1tKgxeO/6/9DGzLvRpt9eCA28TrBen2hdVlbGqFGjCA8PJygo6LZ0vUskEolEIpF8UWlubmbTpk3U1NQA8MADD5CRkYHP5+P555/XY/0gEL2Ynp5ORkYGY8aMGVCP6unpobi4mJKSEhoaGjAYDDz99NO6dmK32wkNDb0hw9Vw0NzczM6dO6mrqwMCwvU999xDTk4OjY2NvPHGG7rhauLEicyZM+eq7nUpfEvh+5pI4fva+A6twrzx+6ips/CsfBuDwTAkcedWpqamhtWrV+P3+8nOzmbJkiVDvnguuVDCM/ueod3dToQlgv8q+i+mxQ9v1WKn08m+ffs4ceKELs4DWCyWq2YXSyS3MtXV1axZswa/309GRgZ33313nwiRQ4cO0dHRQXd3t764XC4AYmJi+MY3vqFvq2nakKaE3QhCCFRVxeFw8Nxzz+mxHkajkTFjxpCZmYmiKMTGxpKQkABcKrjpcrlwu9360ktBQQF33HGHvu1LL710xde/PNNZVVU2btxIbGwssbGxxMXFER0dfdXzWENDAzt27KCxMRDVERoayty5c8nPz7+ie93n8+kdMAiIvdY3H8LQWYsWPjLg/I7J6Psklw3re9/EeH4fQjHgm//v+PO+AYqCEIK9e/eyf/9+UlJSePDBB/VO6OnTp0lLS/vUXbxCCN555x2qqqr6rYuKiqKgoIApU65SoFj1olyoQHF3BgptujpR3PbA3+7Oi4/bUVy99+0oXof+dP/4ZXjn/3ufIqOfCUKgdDeD6kWEJQ5PAU9PN4b2MxhaS1FaT2NoK8XQdgbF50RNnY1/6pOo4+4B4/UP4Nrt9j7Fkz4PaJpGa2srtbW11NXV0dnZSV5eHnl5eZ+r9ymRSCQSieSLiRCC8vJyysrKWLBggd6/ee+991BVlfT0dMaOHUtcXBwGg2HQ/Z+Ojg7q6urIysrSr9XWrFlDe3s748aNIzY2lpCQEEJDQwkJCSEsLOymR1l2dHSwZ88ezp49CwSc7rm5ucyePZvIyEj9vdntdrZu3UpxccB0ajabKSgoYPr06QMK3FL4vrqW+9kOc0huC7Zt20ZG5TbSAFdYGooQt/W0/stpbGxk7dq1uui2ePHiIYveG2s28l9H/wuv5iU9Ip1fz/o1o8KGXqDhSvTGEOzfvx+PxwMERHCj0YjFYpEXvpLbmjFjxrBy5UrWrl1LZWUlr732Gt/5znf09WfOnKG1tbXf84xGo34eMhgMQ8oHHg4URcFkMhEdHc13v/td3VnQ1tZGRUUFFRUVABQVFenCtxCC6urqAff3SQe3oij6NL+Blsu/9zabjbKysj77MxqNREdHExcXR1ZWFpmZmQB0dnaya9cuvbPV24maOXPmNWfxmM1mjEYjbreb+vp6oqKi4dH3sP75YQwXyglauxz3w28iRmQH3kNHJda/fBmDrQphCcNz3x/QMgJivaZpbNmyRZ/emJycTFBQEKqq0tHRwcaNGzEYDIwbN46pU6eSkpJy0851bre7T3GemJgYampqyMrKIicnh5qaGk6cOEFnZyft7ddwcxstiPgJDMlR4HFg3vMrTMdexlT2Hsbqbfjm/jP+qU8OKv7khvG7UdrPBYTo1lL9VnHb9E1ESBwiPAktfCQifCQiPOnSbcSovuK4EIGCqq2nUVpLMbSdDuy3s+aKTTDW7cFYtwcREnepWGhU2pDeRllZGR988AGzZs1i/vz5t/1vY2lpKSdPnqSurq7PABlAU1MTo0aNIjEx8TNqnUQikUgkEsnwoCgKmZmZZGZmoqoqPp8Pg8HAww8/fEMGv5iYGGJiYoDAtYfL5aKrqwuPx0NJSUm/7UeNGsVjjz2m31+/fj2KovQRxqOjo4mJibmuWaqqqrJu3Tp6enoAmDBhAnfeeWdgNu0n3mNkZCQPPPAABQUFfPTRRzQ0NLB3716Ki4t5/PHHZcTfEJGOb6Tj+2oIIfj5z3/Og551jKOGD1hAsXU6P/jBD257x3dbWxurVq3C5XKRmpo65AJ7qlB5/tTzrDkXmL4/d+Rc/q3g3wg1D88oYe/I586dO+ns7AQgPj6eBQsW3LaFzCSSK1FeXs67776Lpmn83d/9nf748ePH8Xg8hIeHEx4eTkREBOHh4YSEhOjfgVtJ4GpqaqKkpISamhpMJhMTJkwgJycHRVHw+XycPXuWkJAQgoKCCAkJ0f82mUxXfR9X+6m22+0UFxfT1tZGe3s7Fy5c6OPMnjVrFjNnzgTQi8kATJ48mXnz5hEVFTWkY3jy5EnWr19PQkICK1euxOTtJOjPj2JoLUEEReN5aA14e7C+/00UdydaRDKeFa/rgrjf72fDhg2cO3cOgLvuuovCwkIMBgNCCBoaGvQOXi8xMTFMnTqViRMnDttvz4ULFzh69CilpaWsWLGClJRAVEvvwOLlx8Xj8XDixAlSU1OJjAzkktfX13Pw4EHy8vIYPXr0DX8OleaTWDb9A8aWUwCoI6fhvfuX+nG7YYSAnlYMvW7riyK3cqECRaj9N1eMYDSj+N0D7GyA3YfEIkLjUboaUDxdA26jhSUi4iegjZiAFj8RLX4CGCyYStZhOrUWpefSIJc6+g78U55AHXv3oIqFHjt2jK1btwIwd+5c5s379GJjhBB0dnbicrkwmUx9FqvVelWzgM/no6GhgdraWvLz8wkNDUXTNPbs2cOOHTuAwMDYqFGjSE5OBgIXTrNmzcJsNl/z3CGRSCQSiUQiCaBpGtXV1ZSXl+NwOHA6nfT09NDT00NKSgr3338/EOjbPfvss33ywi8nNTWVRx55RL9fXV1NaGgo0dHRfTQlj8fTx6x49OhRampqmDdvHqNGjRpUH04IQXFxMVu2bCE6OpqHH3643/Ok41tGnVwTKXxfGYfDwbPPPsv3xR+JxMEqHsYRM5nvfve7t/2FVn19PW+++Sbh4eE8/PDDQ8rHdngd/OTgT9jfvB+Ar2V/jb+Z+DcYhtGdd+TIEbZv3w5ciiHIzc39Qp7QJF8MVFVFXDaj5HY/x3xWaJqGzWajtbWVtrY2UlJSSExMRAiB1+tl06ZNzJo1a9CdrU/S0dHBH//4R9xuN5MmTeKee+5B8dixvv0ExsajCHMoqB4UzY86Mh/P8lUQOgIIVGR/9913qaurw2AwcN999zFlypQB29HU1MThw4cpKSnRhXyz2cyDDz6oC4BDpdd139vp7CU/P5+FCxfq2eZXOy6apuHz+Xj33Xd153xsbCy5ublMnDjxxmotaCqm46sw7/o5iq8HoRjxT/82vpk/BEvI0PfX04axahvGqi0Yz+9HcV4YcDMRFHVRjL4oSI+YgIjLBKMV3DYURxNKVyMGRyOKozFw//LbT4jjwmBGxI4L7G/ExIv7nQAhcVduq+rDWLkZ04k/YazZeWlfofGXXOBXypG/yOW/m3feeaceHTRcCCFwOBxYLBZ9AKakpIT169f3GWy6nHvvvZe8vDwgcFH0zjvv6KK40WjkwoUL+kXV/fffT1ZWFhCo31FTU0NycjLx8fFXHOy+cOECu3fv5t5779UHZSQSiUQikUgkg0cIgaZpKBfjGFVV5fTp0/T09NDd3U1PTw9dXV3YbDYcDgfZ2dl86UtfAgLXBr/97W/1/lxERATR0dFERERQXl7OokWL9P7djcxU9nq9dHd3ExwcjBACl8vFnj17KCoq6ie4f1GQwvcQkML3lampqWHtqy/yT/wvAL/gaUZn5/YZ3bpd8fv9dHR0YDAY9GIHg6HWUcuP9/yYuu46rEYr/zr9X1mQsmDY2+dyuXj11VeZPHkys2fP/lwVE5VIJJ8+vTEpwA3PGKmoqGDNmjUIIViwYEFA2PN0Y33nKxjP7wPAn70c7+JnwXTJoX327FnWr1+P2WzmgQceICsr65rnNbfbzYkTJzh69Cjd3d18+9vf1jt2H374IZ2dnXr0Te9iMBgIDg5m/vz5+n6OHTvGsWPHsNkuRXiMHTuWgoIC0tPThxzh1d7ezsGDBzl16hRerxcAq9XKhAkTGDlyJBMmTNC3/WQ8zbVQHI2Yt/4E07mNAGiRKXgX/pceFXNFhEBpKcZYuQVj1RYMTSdQLgteEYoBEZ2uu621ERMC0SxhSXC9vy9CBMTxrkaUnhZEWCIidtygsrp9Ph92u53Y2Ng+x0fprA0UCy1epxcLFShoY+7EP/XLqBkLwTBwWt+hQ4fYuTMgnM+fP585c+Zc19vq6emhtbVVX9ra2mhtbcXj8XDfffcxadIkNE2jpqaGN998E6PRSEhICKqq4vf78fv9aJrGkiVLmDhxIhCY2fLee+/1e62wsDCSk5P1WJ+hsHbtWurr67FarSxatIjc3FzZV5BIJBKJRCK5CQgh8Hg8eL1eXYDu7u7m7bffpqOjQ4+mvZyxY8eyYsWKYYvmFELg9/v56KOPOHbsGIWFhcyfP18K31L4vjpS+L4yR48e5fhfX+SbrMNljOCX2jdviovq08TtdmOxWPplZg6GvU17+cmBn9Dj7yEhOIFfzfoVWdFZw9Iup9NJaWkp+fn5+kVrb86vvIiVSCS3Gvv27ePjjz9GURQeeugh0tLSwOfCvPfXiIhR+HO/NqCYeuTIEVJTU0lLSxvSuU0Igc1mIywsTK/wvmrVqivmboeFhfH000/r91evXk1jYyMWi4XJkydTUFDAiBEjbvj86na7OX78OIcPH9ZF9ZSUFFauXKlv8/vf/x4hBOHh4YSFhREWFqb/HR0dzahRA9eFMFZsxrzlnzF0BWJf/Fn34Zv//yLCL8t29vZgrN2FsWILhqqtGHpa+uxDS5iMmr4QNX0eWvxEMF+Hc/wmUVxczEcffcSkSZNYtGhR/8EH1Yux4qILvHaX/rAWkYxvzjOoEx4YMAf9wIED7N69G4CFCxcya9asK7ZBVVXa29sJCgrSHdPl5eWsWbNmwO0VRWHOnDnMmDEDCIj3XV1dAxaU7XX+9D7u9Xqx2+19xPHIyMghxw1dzoULF/jwww9pamoCICMjg/vvv1/2ZyUSiUQikUg+RTRNw+l06tGTHR0dxMbGMnny5JsiStfX17Nz506WLFlCeHg4JtMXr4SjFL6HgBS+r8zmzZtx73uR+/mYOlM6q9RlrFy5Up+qcbtRW1vL2rVrueuuu8jOHnxuqiY0Xi59mZdLX0YgmBI3hZ8X/ZyYoJhhaVdTUxPvv/8+DodDd2x92sX6JBKJZCgIIXj33XcpLi4mKCiIJ598kqioqH7bXbhwgZCQEL0IjMlkwmw235Dg3DsFsaqqCrfbjaqq/Raj0Uh+fr7+nAMHDmA2m5kyZQohISHDPqAohODs2bNUVFQQFRWlx1uoqsqzzz57xed9MiOwH94ezHt/jenIH1GEirCE45v996AoGCu3YDi/H0X1XmqHOQR19FzU9IVo6Qv6iuSfMR0dHXqGIgQGDZ577jkgcByWLl16xQx3xVaN6eRqTCXr9MgWLX4S3nk/RUvr7+ret28fe/fuJTc3l3vvvRej0YjT6aS5uZmWlhZ9aWtr0zOz586di6qqdHV18Yc//IGoqCji4uL6LNHR0bfchYWmaRw5coQ9e/agqipWq5W7776bqVOnyoFziUQikUgkks8xvZLuF7HPJ4XvISCF7yuzbt060speoIhjHCSXj5R5/OAHP7gtj1N3dzcvvPAC3d3dfTKZroXdY+dfD/2rnuf9QPoD/DD3h5gNNz5qJ4Tg5MmTbNu2DVVViYmJYcWKFSQlJX0hT1wSieT2wufzsWrVKpqamigqKmL27Nl91jc0NPDOO+/ohVhCQ0O/UMX4euNlHA4Hdrsdh8NBV1cXDodDXxITE5k7d+4196W0lGDZ/A8Ym473W6dFjUbNWICacRdaciGYrDfj7Vw39fX1HD58WB8U+MY3voHBYMBgMFBbW8s777yD1+vVfwMHGkDR8bkwHX0J84HnULwOANQx8/De+ZN+hUCrqqoYM2YMBoMBp9PJ888/P+AuLRYLU6dO1WezCSHw+Xw3ltc+3GgqhuodGFpOoo5bPGDR00+6v5cvX05OTs5Nb1pXVxctLS243W59+q/X6yUvL0/vL54+fZojR47o6z0eD8HBwcyZM4dJkyZ9Yc4JEolEIpFIJJLhYbBa7q1lWZHccnR0dDCNgLOqlVgiIiIICwv7jFs1dDRN4+2336a7u5u4uDgWLVo0qOed6TjDP+3/J5qcTViNVv4x/x9ZkrZkWNrk8/nYsmULJSUlAIwbN46lS5cSGho6LPuXSCSSm43ZbGblypUUFxczderUPuuqqqr6FP0zGo1fuOw5RVFQFIXIyMirFh70+/14vV5OnTqFoihMnjy53zYiYRKex/+K6cTrmI69jAhLDESYZCxExGRcf0b3TULTNCoqKjh8+DCNjY3647Gxsfj9fiIiIjAYDGRlZfHVr36VtWvX0tHRwerVq1m2bNkV418wB+Mv/C7+nEcxQZOVtgAAIABJREFU7/9vTMdfw1i9naDqHaiTH8E3+x8Q4UkApKenAwEh22q1YjabCQ0NZcSIEcTHxzNixAhGjBhBZGRk34xxRRma6C00lM46QCCiRg/r/0Lpqsd0ah3G4rUYHIHjKPb+Bv/ULwec/8GXZp7Fxsby2GOPcfjwYaqqqkhPT8fn82E0GmlubiYmJuaKjvrr4ejRo+zatYuurq4B148aNQqLxYIQgs7Ozj4FZSFgSHjnnXc4cOAAK1asICZmeGbRSSQSiUQikUgkvUjHN9LxfTV8Ph/KbydicrZwaNJ/4IieyPz58287Z87HH3/Mvn37sFgsPPnkk9e8uBJC8H71+/z6+K/xaT6Sw5L5edHPGRc1blja09nZyfvvv09rayuKojB37lzmzJkz5OJqEolEcisghMDr9aKqKgClpaV8+OGHaJrGmDFjePDBB4dURPiLyPnz51m1ahVCCD1D+nb7re2lqqqKrVu30tnZCQQGPSZMmEBhYeEVZzR1dXWxZs0aWlpaMBqNPProoyQlJV3ztRRbNeZd/4Xp7F8BEKYg/NP+Bt+MvwVreJ9tfT7fjQ++eBwY2koxtJ1BaS299LfPCQQKkarpC1DTF6Clzry+THXVh7FqC6aTqzFUbdMLlIrgaLQREzDW7Q3cD4rGN/vv8U99sl+xz8sLqrpcLt3tHhISQkxMDHFxccTExBAbG0tiYuKA/SIhBB0dHTQ0NFBfX099fT2LFy9m5MiRaJrGyZMn2bBhA4qiEBsbS0hICBaLBYvFgtlsJj8/n9jYWCBgpGhpadHXWywWqqqqOHjwIBaLhaeeeorQ0NDPfcRbT08PtbW11NfXM2HCBJKTkwFobm5m//79aJqGEKLPraZpTJs2TY8Z9Pv9eq787XqOkEgkEolEIrlRpONbMiwYvA6MzkChrEnzH8IQcvt1ss+cOcO+ffsAuOeee64pertVN7869is+qPkAgLkj5/LT6T8l3BJ+1ecNhc7OTlpbWwkODmbp0qVkZmbedsdVIpFIeul1yNrtdn73u9/pj2dnZ7Ns2bJbKzLiFiU5OZmioiL27dvH7t276enpuWUHmlVVxeVy4XK5cLvdOJ1OQkNDdRHPbDbT2dlJUFAQubm5TJ8+/ZoFHCMiIvj617/O22+/jc/nIz4+flBtEdFj8C59EX/jMcw7/h1j/SHMB/4H08k38M36Ef4pT4DRordr0GgqSmcNhrYzGFpLUdouitz28wO3w2gFBAb7eQzHX8V8/FWE0YqWWqQL4SJ6zFVfUumsw3RqNcbiN/sUKVVTZ+HPeRw1czGYgjDU7sWy9V8wtJdh2fLPmE68jnfBf6ClXYoauvxYd3d3ExoaSk9PD06nE6fTSX19vb5++vTp3H333SiKgtvt5uOPP6anp4f6+npcLlefNlZXV+ti9ujRo1m5ciUJCQnX/I7HxMT0638lJCQwefJkOjs7MRqNuN1uTCYTR44cITc3V68LcDvTK3TX1NRQU1NDW1ubvq43Qx4CMTWnTp264n7S0tJISUnBYDDQ0NDAG2+8gdVqJSEhgaSkJBITE0lKSiIuLk6aKK4Dn8/H8ePH8fl8FBQUfOFmJ0kkEolE8nlGOr6Rju+r4a/eh+m1xWhhibi/cxyTyXRbCRidnZ384Q9/wOPxMG3aNObNm3fV7Ru6G/jH/f/Iuc5zGDDw9OSneSLrCQzK8DuQSkpKyMjIICYm5pYUNiQSiWSo7Nq1i+3btwOQl5fHkiVLpAgzRPbv38/mzZsBGD9+PIsXL/7Uiyk6nU4qKiqwWq26y9Tr9fLqq6/icrnwer39npOZmcnSpUuBgFO4rKyM7OxsgoODh/Qbp2kaHo9HL9TT63wd1OdICIwVmzDv/BmGjsrA86PG4Lvjn9FGTgN3J4rbhuLuBFcnysX7uO0ofe53ovS0ofjdA7cxfCRixAS0+Gy0ERPQRmQH4mb8Xgx1ezFWbcVYtQVDV0Pf50Wno6bPD7jBUwrBFASqF2P5Jkyn3sBYs+vSWwmJwz/pEfw5jyFi0gdohB/TyTcw7/5loM2AP3MJvnn/hohMGbDdXq8Xm83WZ+no6GDq1KlMmjQJgMbGRlavXq0/x2g06uLqyJEjSU5O7ht5p3oxNJ3A0F6GmpSHiJ94Q1EvpaWlbNiwgaCgIObOnUtBQcGndg7x+/0cOHCA2tpaQkNDCQ8PJyIigtjYWD0251pc7rSvqanhtdde67dNXFwcycnJTJ48mcTEQPHZzs5OysvLURQFg8HQ7zYpKUkfcDhz5gwffvihPsPmcoxGI0uXLtXjkrxeL5qmDWvEzecJVVU5duwYu3fvxuEI1AxITEzkW9/61ud+9oFEIpFIJLc7srjlEJDC98CUlpbi3vsCeQ2v0h0/HeeDa4iJifnUL8BvBE3T+Pjjj6mvr+fhhx++6sXTnsY9/Nuhf8PhcxBtjeZnhT9jWvy0YWmH2+1my5YtzJo1i+joaACsVqsUhCQSyecKVVXZuXMnoaGhTJs2TZ7jrpPi4mLee+89NE0jNTWVZcuWYbXe3IKVLpeL8vJyysrKqKurQwjRT8z+zW9+w+XdxuDgYH1JSUlh7ty5GAwGTCbTDf/vNU3D7XazefNmbDYbS5cuHbx4p/kxnVyNee+vUZzt190GYQpCixvfT+QmOHoQTxYoF85hrNqGsWorhvqDKJr/0mpzMNqoAgytJSjOC/rj6ug78E95AnXsIt2pflVcNsx7foXpxGsoQkMYrfgLnsY347tgGXrMSmdnJyUlJYSEhJCUlER8fHzf/6Xmx9B8KiDw1+3F0HAIxXfJFa5FjUbN+hJq5r1oiVOGLIKfP3+eLVu20N4e+L9FR0dz1113MX78+JtmEhBCcO7cOTZt2oTNZuu3Pjk5mS9/+cu6EP3KK6+gKAoRERGEh4cTHh6O3W6npqaGcePGMW/ePDRNw+l08txzzxETE0NqaiopKSkkJycPS+yTqqpcuHCB1tZWWltbaWlpobW1Fa/Xy6OPPqq7w4uLi9mwYQORkZF6tn1CQgLx8fHExcXdVn364UTTNE6dOsXOnTv1SKbea8CioiKmTp2KxWKR4rdEIpFIJLcwUvgeAlL4HpiNGzcSc+iXFHKcA+SxO3QJP/rRj26rTmBvwTBVVa94Ea4KlT+e/iOrzqwCYHLsZP6z6D+JDx7cNOtr0draynvvvYfdbicpKYknnniCoKCg2+o4SiQSieTTpaKigrfeeguv18uiRYuYMmXKTXmd4uJiysrKqK2t7SNqJyQkkJOTQ35+vl6ks6GhgeDgYEJCQggODtaFwJslSHZ0dPDCCy/g9XqJjY3lgQceICoqavA78HRjPvx7TEdeBJ8LgqMQQYGFi7ciOAoRFN3nPkHRiOCYgHPaMEyDNx4HxtrdARG8ahuG7mZ9lRaagJqzEv/kxxBRqde1e6XtDJatP8VYtyewz/CR+O74F9TsZTdWbFNTUVpPY6zbFxC66w+geLv7bCKCY9DixmNoOtbHJa9FJKNm3oua9SW0kXkwyNlzmqZRUlLC7t27cToD2empqaksWrToykVPbwAhBK+99hq1tbWEhYUxbdo0VFWlu7sbh8NBXFwcc+bM0dv27LPPcqXLp95+Xi8ej+emD1pd/j46OzsJDw/XBe09e/awf//+AbdXFIUvf/nLjB49GgC73Y7P59O/20ajEaPRqH/PP09s2rSJAwcOABAaGkphYSE5OTkIITCZTPr7raqqoq2tjdmzZ8v4E4lEIpFIbjGk8D0EpPA9MG+88QZFFb8ggzrWcxf2jKU88cQTt0Xnt66ujqSkJHw+31W3s3ls/PTATznUegiAh8c+zN9N+TvMhhvv3GqaxuHDh9m3bx9+v5/IyEiWL19OamrqbXEMJRKJRPLZ0tDQQGlpKTNnzhy23w2v19snsmzNmjU0NAQiOeLj4xk/fjwTJkxgxIgRt8QAbVNTE2vXrsXhcBASEsLy5csZOXLk0HaiqQHR9Sb+9vb09KBpGuHhg6gHIgRKWynGun2IyFTUjAX9ilMOhM/no6mpiZEjRw7s1BUCY/lGzNv/Xc8iV0dNx1f0fbAOoX8rVAwtxQFX9/kDgWiYy1dbI1FTi9BSZ6GmzkLEZQWOr7cn4HA/+wHGqi16wU8ALSwJNXMJata9aKMKBjWg4PV6OXToEIcPH8bv9w9rBIXH4wHAYrHox/XMmTMUFhZeNdJP0zSam5txOBx0d3fr4njvrIfhcnQPJ263m/b2dtra2mhvb9cXt9vN008/TVhYGAaDgV27dl1RJDcajXz729/W41b27t3LsWPHMBqNBAcHk5OTw5QpU25ZcVgIgd/vx2w2o2kaTU1NrFmzhunTp5Obmztgu30+Hy+//DIOh4OoqCgWL15MZmbmZ9B6iUQikUgkAyGF7yEghe+B+d3vfsfXbb8gnB5eZiUpM1ewaNGiz7pZ16ShoYFVq1aRkJDAihUrrjg1+kzHGZ7Z9wwtrhaCjEH887R/5u7Uu4elDS0tLWzatImWlkBxqvT0dJYtWza4C2KJRCKRSC4ihMDn8+kzmOx2OyNGjBj0871eL11dXTQ3N1NWVsb58+d56qmndHGurKyMzs5OJk6ceMuI3Z/Ebrezdu1aWlpaMJlM3HHHHaSlpeki3KeJqqq0t7fT2tpKcnKyHl9WUlLChx9+yMSJE5k9e/aw9ic1TeP06dPs2bOHnp4evvnNb17d+e5zYTryAuYD/9MnhuR6EZYwtORC1NRZqKkzAzneF4Vrp9NJTU0NHR0dZGVlXfps+lwYa3YERPCKzX1c4iJ0BP5xS1DH34+WUnTNAQmHw8Hu3buZPHkyKSkpGI1Guru72bdvHzk5OUMyFAghOHXqFFu2bCE7O5s777zzuo7JFVF9gYx4V8fFxQYuWyBb3tkRyGN32VA8DrSESagZd6ElFwwu1mYYEULQ09NDaGiofuy2bdvGqVOnrmgaeeqpp/TP9fbt2zly5Eif9cHBweTn51NQUHBL9XdramrYtm0b0dHRLFmyRM9Gv9psULgUgbNt2za6uwOf33HjxrF48WL9e/9p0NzcjNPpJCUlZdgHFoQQtLS0UFpaSmFh4S03aCORSCQSydWQwvcQkMJ3f/x+P7/52U94hv8fgJ/zf7h3xaN6sZxbFafTyYsvvojdbmfs2LEsW7ZswIuhHQ07+OnBn+JRPaSGpfKLmb8gPXJwhYuuRX19PevWrUMIgdVqZcGCBeTl5cmsW4lEIpFcN263mzfffJOGhgaWL19OWloaQgicTiddXV1ER0frA73l5eXs27ePrq4u3O7+BRrvu+8+srOz9SzuW1Hs/iRer5e33nqLiooKAKZPn66Lll1dXbz66qt9Ylh6b4ODg/WijHBJuDabzZhMJsxmM2azGaPR2K+/4PP59Ozk3hzl9vZ2NE0DYP78+eTn5wMBcepPf/oTEHDH5ufnM2PGjBsuKlhdXc2OHTv0zOvU1FQeeeQRfX15eTlpaWkDupQVRyPm3b/AUH9oyK8rotJQU2ehpc5CS8wZ0JG+YcMGSktL9ftGo5G5c+fq8Tg6fg+Gml2Yzn2AsXwTiseur1ITcvAX/R3quMWDjkKBQBHYPXsCsS6RkZFMmjSJKVOmXHVQqKmpiQ8//JDz5wNu+JiYGL7yla9cf8616sVYsRlT8TqUjoqAsO11DHk3whKGOvoO1IyFqOkLIHTwA1s3AyEEmqahqmqf29DQUP1c0dXVhcPhQNM0WlpaOHbsGHZ74P9qsVj44Q9/+KlFvFyJ+vp6tm/fTlVVFQBms5mnnnqK4ODgIe3H6/Wyf/9+jhw5gqZpmEwmZs+ezaxZs25aRrrP56OkpIQjR47Q2NgIgMlkYsyYMWRmZpKVlXXdgwtCCJqamigtLeXMmTN0dHQAcPfddzN16lRMJhN2ux2Xy8WoUaPkLFWJRCKR3LIMVsv9YlY0kVwTm83GCALFluyE4VGsJCUlfcatujpCCN59913sdjtRUVEsWbKkX2dNCMHa8rX8z8n/QSAoSiziZ4U/I8wcNmztGDlyJAkJCURERHDPPfcQFRUlO40SiUQiuSEURdHd32+//TZRUVF0dXXh9wcKJi5btoxx48YBAYdwa2ur/lyr1UpUVBRjx45l4sSJJCQk3BZi9+VYLBYeffRRdu3aRWVlZR+3t8vlwuPx4PF49EJ1lzN9+nRd+HY4HLz++uv9tlEUBbPZTG5uLnPnzgUCNTrWrl3bb1ur1Up8fDwhISH6wEFaWhpf//rX2bJlC3V1dRw6dIhTp05RWFhIbm7ukAWylpYWdu7cSW1trf6aRUVFFBYWYjKZdFH+vffeIyQkhGnTppGbm9tHABfhI/Eu+d2QXncgvF4vNTXnqKmpYf78+fp76XWHjhgxAqvVqguNlZWVLFmy5JIwZ7Kijb0L79i7QPViqNuLqewDjGfewdhyCuN730SLHYdvxt+iZi8H47VdrWlpadjtds6ePYvdbmfv3r3s3buXxMREcnJyyMvL04VXp9PJtm3bOHr0KBAQQAsLC5k2bdp1CZdKZy2mk29gKnkTpaet33qBEsiMD45GBEcHMuNDYhBBF+8HRyOMVozn92Os2oribMd0bgOmcxsAUBOnBkTwjIWIhMlDGhAYDhRF0fO9r0RERIR+gZmSkkJeXh4VFRUcPXqUqKgoVFXF6/ViMpmoq6sjNTX1Uzvn+Hw+Nm7cyIkTJwAwGAzk5ORQVFQ0ZNEbAueeO+64g0mTJunf7x07djBq1CjGjh073M0HoK2tjfXr1wPocTLd3d2Ul5dTXl6OEIL8/HwMBgN+vx+DwXDN49vd3c3+/fspLS3tc57sFdSjoqLQNA2v18uuXbs4deoUiYmJTJs2jcmTJ181AkgikUgkklsZ6fhGOr4HoqysjIp1/w9fYgsVpPGX4Mf58Y9/fEu7lnfu3MmOHTswmUw8/vjjxMf3LU7p1/w8e+JZ/lL5FwBWZKzgh1N/iGkQuZpXw+v1cvjwYQoKCvQpiD6fj/Dw8NtOWJBIJBLJrYvf7+edd97hzJkzfR4PCwtj3rx5ZGdnoygKPT09NDc3Ex0dTVRUFEFBQTe1COVnhRBCz+612Ww4nU56enpwOp19lrFjx+rZvB0dHbz55pv4fD58Pp/u3u7lcie51+vllVdeIT4+nvj4eJKSkkhKSiI6OvqKBf964xG2bNmiu7STkpJ4/PHHB33829vbWbUqUHDbaDTqYnxYWJi+DyEEVVVVfPDBB7qIFRwcrAvgN+K2FUJgs9moqqqisrKS+vp6/Tg9+OCDjBkzBggIaSaTSR/gP3LkCJs3b8bv91NUVMTs2bOv/kLOdsxHX8Z07BUUTxcAWmQK/oL/g3/yI2C6tlve5/NRVVVFaWkpVVVVaJqG2Wzm+9//PsHBwdTU1PDnP/9Zn/kwfvx47rzzzqG7ZVUfxsrNmE78CWPNzkvHKjQef86jqGPmI0JiA8K2NXLwRVGFhqH5JMbKLRgqt2BsOdV3dWg8avoC1IwFqKmzA1ntt/j3+PIIkZaWFl5//XWioqKYMWPGDX82r0VHRwfr1q2jrS0wIDFp0iRmzpxJZGTksOxfCEFZWRkNDQ0sXLgQg8GAxWJhx44dREdHk5KSQmxs7JDOtaqq6gM4hYWF+P1+fD4f69evJyEhgcmTJxMcHEx7ezuVlZVUVlZy//33Ex4ejqIoHD9+nL179+rnuYyMDIKCgvQZQaGhoQgh6O7u5re//a1ewDM9PZ2srCzS09P7idoff/wxxcXFeiyM1WolJyeHadOm9bu+kkgkEonks0JGnQwBKXz359ChQ4iNf88MTrCffMrSnuSrX/3qLXvRfOrUKd59910AFi9ezKRJk/qs7/Z18y8H/oX9zftRUPjelO+xctzKG34/VVVVbN68GYfDwYwZM5g7dy4Wi2XAKdMSiUQikdwomqZRW1uL3+8nKiqKyMhITCbT51LYvln0dn2FEKiqis/nw+Px4PP5sFgshIWFIYRAURRd4B7qsdU0jePHj7Njxw7d9d37mgPtS9O0PoPlb7/9NkFBQcybN4+4uLgrvr6maZw4cYI9e/Zgs9kACAoKIj8/n2nTpl3VpamqKna7HavVSmhoKBAoDr5x40Ycjr6RHVFRUWRkZJCXl6fPGBioTW1tbezZs4eFCxcO3izh6cJ0/DXMR15AcQZmG4rQeHzTnsI/9ctgHdysPKfTydmzZ/F4PBQWFgKB2QAvvvgiERERLFy4kJSUlMG16SKK/XzA3V28DqUnMItCoKCNuQP/lCdQMxaB0YzX68Xn8xESEnJj38PuFoxVWzFWbsFYswvF19NvE2EKAlMwwhwcGBwwB+uPYQpCmC+uNwVBSBxaTDoiOh0tJh2CrpINfxM4e/Ysmzdv1gcerFYrubm5zJgx4+o59ddJd3c3L7zwAkIIvvSlL5Gamjrsr/FJXC4Xzz//vH4/KCiI5OTkPstAYn9XVxdHjx7l2LFj+iDS008/PeR4pHfffVePgIKAwz05ORmbzUZ0dDSPP/44qqoihGD//v3ExMQwZsyYazq4nU4nJSUlnDx5so9DfMKECTz00ENDaqNEIpFIJDcDKXwPASl8D4z/lSWY6vZSNflHdI9bRk5OzmfdpAHx+Xw899xzOBwOcnNzWbhwYZ/1Lc4Wfrjnh1TYK7AarfzHjP/gjlF33NBrOp1Otm/frmdbRkZGcs8995CVlSWFB4lEIpFIJEDANd6bmSyE4MyZMxQXF3PHHXeQkJCAqqqcOHGCo0eP8vjjj+sCtKIoulN/MGiaxqlTp9i9ezcdHR2EhITwrW99C4vFgtfrpbGxEZvNpi8dHR3Y7XaEEMybN49p06YBlxy6RqOR5ORkMjIyyMzMHHLhU1VV8Xg8qKrKhg0byMvL0+NmrojPial4HaaD/4vBEcg1FkFR+PO+gS//6xAcM+jXv5zW1lbi4uIG337NH8juPvkGhuodKFwcKAkdgX/ySvw5TyCi+gqqpaWlbNiwAYPBQGhoKGFhYfptWFgYmZmZejyPpmmDG0zxezDUHwyI4JVbMHRWD/m9fxIRHIMWk6EL4SI6HS06HRE9Gsw3p7Chz+fj9OnTHD16VM+TNhgM5OfnM3/+/BvOwe91mGuahsfjoampifDwcP27dLPp6enh8OHDNDY20tLSosdP9TJlyhSWLl2KoiioqkpZWRklJSWcPXtWH4QLCQnRHdVDjWNRVZWGhgYqKyupqqrSjzEEBhq+/e1v31BMiRCCmpoaTp48SUVFBYWFhcydOxez2Yzb7aampoZRo0YRGRkpr4EkEolE8qkihe8hIIXvgRG/GovS04b7iQ0YUgtu2Ww3IQQNDQ0UFxczd+7cPp2uM7Yz/HjPj2l3txMbFMtvZv2G7JjsG3qts2fPsnXrVpxOJ4qikJ+fz7x582QldIlEIpFIJAPSG8nyhz/8QRemsrKyaGlp0d2UM2fOZM6cOVgsluuOStM0jZKSErxeLxMmTAACRR3feOONAbc3m83MmDGDoqIiDAYDmqbR3NxMUlLSkIT3gRBCsHv3brZv346iKMyYMYOZM2de2wmuejGWvoP5wPMYbJWBfZlD8E/9MurYuy85nXtdzRcdztfMBle94OpEcdtQXB0o7k5w2VBcNhR3J4qrA9ydGBqPYehuvvS00XPxT3kSdezdfV7D5/PpEXfHjh1j69atV3zp5cuX63nQpaWlfPTRR0ycOJE5c+YMvv/o6Qa/C8XvBr8LfBf/vuwWv/uyv10o3c0YOqpQbFV93tNAaOEjEdHpiMhkRFgSWngSInwkIjwJEZ4UcIvf4Oehurqaw4cPU1dXR2hoKN/5zncIDg6+7s9ZW1sbb731FjNnztTjjD5LVFWlra2NxsZGfSksLCQnJwdFUWhpaeG1117Tt09OTiY3N5dx48YNW5ykzWajrq6OsLAw0tLShrUAp8PhwGg06p/Zc+fO8f777wPohYR7l1GjRl13AU6JRCKRSAaDFL6HgBS++yN6LqD8Kh0A5/fKsYTH3LTK5deL0+kkODgYt9vNQB/jXY27+MmBn+BW3WREZPCb2b8hKfTGCnQePXqUbdu2ARAXF8eSJUsYPXq0dDhIJBKJRCK5Jh0dHWzdulWfMQYBt+fs2bOZNm2aLqQOB70xLk6nk9WrVxMTE0N0dDSxsbHExMQQGxtLZGTkFWNLhgOPx8PGjRs5dSqQXZ2YmMi9995LTMwg3NuaivHcRswH/gdDa8k1NxeK8WL0R9DF6I8gMFrA04Xi6hwwNuSK+wqJu+jufjzghr583cXIiLNnz7Jy5UqCg4OxWq1omobD4dCX7u5u/bagoIDo6GggECe4c2cgJzwoKIg5c+aQk5Nz8+vCeHtQbNUYbFUoHZUXb6sCt+7+RWE/iTAFBYTwsERdDBfhI9GiUtFSZw0qk72Xuro6PB4P48aNQ1EUTCYTp06dIicnZ9DfgRMnTrBx40Z8/5e9Nw+Po7rzfj9VvWrf9321JVmLd7wFGxvb2AYcBzN2CJCEZSBkmeSded9752Zyk/feyc0wNzNvSCZDCBPIAoEEggN4Ae8GvEteZcuStVp7S+rW0upWd1fV+0ery2pkg2TLxsD5PE89VV1VfU7V6e7qqu/5ne/P6yUmJoavf/3r19yGUm8txpO/B8WDUroZNaXimsq5EmPtjS5cuMD+/fvJzc2loqKC+Pj4Kavnk6C2tpbDhw9js9nG5UsAf06A4uJiJElieHgYQAQKCQQCgWDKEML3JBDCdzAjIyPs/s3/w5qun+O2JNC6cQe5ubm3VKLG8+fPs2XLFtavX09WVlbQNk3TeKXuFX526mdoaMxPms+PF/yYcNPEPCI/zNiInv7+fl544QXmzZun+3kLBAKBQCAQTIa2tjY++OADYmNjWbBgwfV7Q38EE7bWuIGcPXuWrVu34na7MRqNLFu2jPLy8okdk6YhN+7BdPw5JMely1HNgehdv398AAAgAElEQVTnSaBJMlij0Kwx/kSU1hi0kOjR19EQEosamY6a/QW/aP4hVFVlz549nDhxAoBVq1Yxb968Cd8jByL/m5ubeffdd/UkjMnJyaxYsYKUlOsL0LhmXH16ZLg02I402IE82IE02OF/7er7yLdrlih80+9GKbkPNW3epCPDA1YxERER3H777cycOfOqberxeNi+fTsnT54EICsri7Vr107e2kRTkRv3Yap8HkPj3qBNStpcfLMfQym8C+RbK/BnyhnuxVT5X8iXDqHkLMU386tgnVwyUJ/Ph81mo7OzU596e3t55JFH9GTAR44cYd++fcTFxZGbm0teXh7Z2dk3NNnpp5mTJ0/qSVPXrFlDQkLCJ31IN42BgQF27txJU1MTixYtmtQ1ViAQfL4QwvckEMJ3MO3t7Zx47pusZTd1ZLM//Vs88sgjt0xUc01NDX/+859RVZWysjJWrVqlb/OpPv795L/zWv1rAHwx94v8/cy/xzjJm1ZN02hububQoUNYrVa++MUvXq7D59MzqQsEAoFAIBAIPp7+/n62bNlCU1MTAMuXL2fWrFnXV6imgTLiF8O9bhgriHtdoHrBHIEWMip0WyJBujYBxefzsW3bNi5cuADAihUrdIuYa0FVVY4ePcrevXvxeDwAeqL0Ww6fG2moSxfFpTGiuNx5SvdkB1Cjs1CKv4Sv5D60mJwJFV9bW8vevXsZGBgAIDY2ljvuuEOPFg4QsDax2WxIksSiRYuYP3/+5D4DzzDG6j9jrHweuc+fFFJDQilYBeZwDOf/iqR6/ecSkYpv1tfxlT9w0xOD3mikwU6Mx57FeOp3SF6Xvl4zR+Cb9VW8sx+HsGuPSPd6vXriZYBdu3bpHUYBZFkmLS2NvLw85s+ff91+759GfD4fLS0t1NfXM2PGDJKTk1EUhXPnzvHGG28AYDAYuOOOO1iwYMFn+vlT0zQOHz7Mvn379GsiQFpaGvfccw+JiYmf4NFNDpfLRXNzM42NjTQ3N2MwGJg5cyZlZWUicE4gmEKE8D0JhPAdzJkzZ3C9/hTzOMVBZtM353usW7fukz4swD9E8E9/+hOqqlJUVMSaNWv0m12n18n3D3+fg50HkZD4Ztk3eaDwgUndIGiaRkNDA4cOHaKjowMAo9HIY489RkxMTNANnEAgEAgEAoFg4gSEjd27d/PVr35VtzxxOByYTKYpTUg4PDyMzWYjKSnpugU1j8fDG2+8QUtLC7Iss3btWmbOnDkl94SDg4Ps3LmTM2fOcNdddzFjxozrLvOmoqnILQcxVr+G4cLbQZYySuoclJL78E2/B0JiPrIYn8/HqVOnOHz4sG6LkZyczPLly8nLy8PpdPLMM8/g9XoJCwtj3bp1ZGZmfmSZY5EGWjFWvYjx9Eu6tYtmDsdXuhnf7EfQokdHkA51YTr5O4wnf4s03OvfzxSCr+R+/35xBZNpnVsOydGM8ch/YDz7KpLiFxfVxBn4itZjrP4zco+/Y0czWvGVPYBv3hNokR+TmHaCuN1uWlpaaG5upqmpSc9vYDAY+N73vofFYkGWZVpbWwkLCyMmJuZjf2Nutztocrlc+Hw+PdFsdna2vm9bWxuapiHLMgaDAVmW9eXQ0NCbIkhqmobNZtOTkTY1NekJURcuXMiiRYsA/zXn0qVLnDhxgsZGf2LbzMxM1q9fr9smfRZ59dVXqampISUlhYKCAg4fPozH40GWZe677z6Kiq49V9eNxOVy6UmpAU6cOMGbb745bj+LxUJFRQWLFi0SHvgCwRQghO9JIITvYPbt20fWvqfIoZUtrCJ93X9nzpw5n/RhUVtby6uvvoqqqkyfPp21a9fqordjxME393+Tuv46LAYLP5r3I5alL5tw2ZqmcfHiRQ4dOkRXVxfgF7zLy8tZuHDhhG68BAKBQCAQCAQfj8PhIDQ0VBd83nzzTerq6igoKKCsrIysrKzruu9SVZWf//zneDweTCYTpaWlzJ49m+joyUftOp1OXn/9dbq6ujCZTGzYsIFp06ZN+X1he3s7sbGxuldyY2MjVqv1k7M/uRa8wxjqdmCsfg25aT+S5j8XTTah5K1AKbkPJXc5GK9ub+HxeDh+/DjHjh3D4/GQmprK17/+dSRJ4p133qGrq2vi1iaahtx+HOPx5zHUbkXSFADU6Gx8sx/BN+NvwHIV8cnnxnD+r5gqf43cXa2vVnKW4Z3zGGr20utK9nmzkXouYDr8cwznt+jtoKTPw3vbd1BzlvnPRVMxXNyJ8fDPMHT4o7M12YhSch/eeU+hxeVP6TE5HA6am5txOp0sXLhQX//iiy9is9mIjo7WrwUBYTspKUkf7atpGj/+8Y9RFOWK5aenp/PQQw/pr5955hmGhoauuG9UVBTf/va3dVuoU6dOYTQaiY2NJTY2dlKWLJqm4XK5GBoaQpZl3cvdbrfzwgsvMDg4GLR/QKAvKioiJydnXFmnT59m7969uv3m2rVrKS8vn/Dx3MoMDQ0hSRKhoaF4PB7sdjtNTU2UlpYiSZLeMdjR0cEjjzxCVFTUlCWCvR7cbrfegdPU1ERnZycrVqxg7ty5KIqCw+HgtddeIzMzk4yMDIaGhjhx4oTe2fPEE0+QmJgo9AWB4DqZqJb7GTctE1wLfX19zMUf4WAjjrm3wA13XV2dHuk9bdq0INHb5XPxvfe/R11/HTGWGH66+KeUxJZMqvzq6mq2b98OgMlkoqKiggULFhAdHS3+kAQCgUAgEAimkIAAbTKZ8Hq9OJ1OVFXlwoULXLhwgaioKEpLSyktLSU8/Oo5WgLiQ0NDAw6Hg82bNwN+C4XMzEza29sZHh6mqqqKqqoqCgoKmDNnDmlpaRO+vwuIWKGhoWzcuPG6RfmrkZqaCviTkg4ODrJ9+3acTidlZWUsWbLkqkkBXS4XDoeDgYGBoGlwcBBJkli5ciVJSUmAP7rc5XIRFRV1Y7yVTaEoxRtQijfAUBfG82/4RfDuaox12zHWbUezxqAUrkHJX4mStRhMwedlNptZuHAhFRUVHDlyhLy8PEZGRgBYsmQJwMdbmwQE+OO/xtB5Ul+tZC7GN+cxv/guf4x4ZrSilP4Nyoz7kS8dwnj8OQwX38XQuBdD417U2Hx8sx9FSZs7mlQ1xJ9U1RQCBsstI4rLHScxHn4GY912fZ2Ss9QveGfcFryzJKMUrELJX4nc8gGmw89gaH4P45lXMJx5FWXaOry3fQstqXRKji06OnpcZ5TP58NqtSLLMg6HQxcKx253uS5bs1gsFjweDxaLBavVisViwWg0oqoqCQkJeL1efd+IiAgMBgOqqqIoCqqq6svR0dG43f6cAZIksXPnTpzOy6MXAhHocXFxpKamMm/ePH9bKgpbt25laGhInwLXM4CCggI2btyIpmlYrVY8Hg9Go5H09HSys7PJzs4mPj7+qtcUSZIoLy8nKyuL7du309raiqZpqKr6qfa9VlWVY8eOsXfvXvLz81mzZg0AkZGRlJWV6ftFRETwxS9+kaGhIaxWKyMjI8iyzNmzZyktLb2pHvE+n48TJ05w4sQJOjs7+XD8qM1m0ztzo6KieOSRR4K2z549m6amJtrb24mIiMDlcmEwGNi3bx9RUVFUVFR8Lu1+BIKbgYj4RkR8f5jfP/vvPNj5QwCeNv4d3/0f359whvUbxRtvvMHp06cpLCxk3bp1ek+vT/Xx9x/8PYc6DxFpjuS5Zc+RE/nxfoJer5f+/n69B97r9fLb3/6WadOmsWDBAuHhLRAIBAKBQHATaW9vp7Kykurqal3olCSJWbNmcccddwCXbQIaGxtpaGjQrQsCPProo3oyPUmSMBqNNDY2cujQIRoaGvT9Juul3dfXh9FoJCkp6abcHzqdTt555x3OnDkDgNVqZc6cOboovmTJEr1D4MCBAxw5cuSqZX39618nLi4OgEOHDvH+++8DfsEwMjKSqKgoIiMjiYyMpKio6CM7Gq4VyXbeb4VS/Tqys0tfrxksqFmLUPLuRMldjhaVcW0V+EaQO6owNH+A3PIBcnul7tOtGSwoxRvwzn4ULbH4+s7D3oSx6jcYz/wRyXPlyGHwe4ZjtIyK4SHBwrg5DDUqCy02Fy0mFzUmFy0684rJVK8H+dIhTId+hqFpv77OV7gG723fRkueeLSw3F7lF84vvqOvU3LvwHvbt1HT50/pMY8lYPXR0dGByWTCYrFgsViIiIggPf2y9YqiKFMSAezz+TAa/TGBqqqyY8cO7HY7DodDt94JkJmZyQMPPKDv+2//9m9BAnuAkJAQsrKyuPvuu/V1NptNt8+cLAFLzry8PMDfceh0OomKivpUPbdeunSJbdu20dnZCfgtjTZt2jRhvaGmpoa33nqLyMhI1q5dS2Fh4Y08XB2Hw8EvfvELfYRBTEwMGRkZelT3tVw7BwYGeO6559A0DZPJRHl5OXPnzv1U+ZkLBJ8kwupkEgjh+zKapvHHH3+DL3tfxk4kf0r5Po8//vgn+mcaiLSprKykoqJCv7lRNZX/eex/sr15OxaDhf+4/T8ojfvoCASHw8GJEyc4c+YMYWFh+tBJSZIwGAyYTKZP1Y2DQCAQCAQCwWcJj8dDdXU1VVVVtLa2smzZMt1yb+/evRw/fjxo/7i4OHJzc8nPzyc7O/uq93Ld3d0cOnSIM2fOsHnzZt1CxOl0YjAYgiLtLl26hNPpZPr06YBfYPokgkCam5vZunUrNpstaP3mzZt18e/UqVMcOnSIiIiIICE7KioKgJycHAwGA5qm8cEHH1BZWRkUMTuWr33ta3pQyIULF2htbSUpKYmkpCTi4uKuP8JUVZBb3sdQ9w6G+p3IA63Bm+On+y1R8lagps6GqyWnV33Inaf9ZTV/gNx21J/QdOwukWl+j+qKByH02pM0XpGRQYxnX8V45hUkZ7c/karXpVuITBZNMqBFZaDF5KCOFcRj89AiUv3R6ZoGniG/P7mrD8ntQHI5kNx2cNlHX4/OB9qQbef0spXiL+Kd/020+GnXfMqS7bzfKqXmr7qFjRpXgGaNHiPwh4DJ6hf4RwV/zTQ6D4j/kemoicX+RLOfEkZGRnA4HLoQHh4eHuTFX1VVhdFoJCwsTJ9CQ0OvS5CXLx3GePJ3YArx28zE5o7bx+l08sILL5CZmcndd989pTkSbgTDw8Ps3LmTkyf9ozCsVitLliyhrKxsUteWlpYWduzYQX9/PwAzZsxg9erVU37+qqrS2NhIXl4eiqLg9Xp5//33sVgsFBYWTolHt8fj4dy5c5w4cYKenh59fXZ2NsuWLZtUHgOB4POIEL4ngRC+L+N2u/ngf32V5e7t1JLDuYofsn79+k/kWLq7u4mPj8fj8ejDxcby89M/5w8X/oBBMvD0oqdZnLL4iuVomkZTUxNVVVVB0T5RUVF8+ctfJjY2FoPBIARvgUAgEAgEgluIrq4uQkJCMJlMaJpGXV0db7/9NpmZmeTl5VFQUDBpQXZ4eBiz2YzX60XTNHbu3El1dTUzZsxg9uzZ2Gw23n77bTRNY9OmTeTk5FxTdOZUEbAEqK+vJzQ0lKioKEpKSvT8M5Ik6ec/kXtZTdN0Ic/hcNDf36/PV61apQv827Zto7r6sre10WgkISGBxMREkpKSKCoqur5kgJqG1FuLoX4nhvpdyG3HdEEV8Fui5C5DyV2BknM70kA7hoDQ3Xp4XMS1FhqPkrkYJWsRauZif7LKm31vr3jB5wafG8nrAp9rdO72L/vc4B5AdjQi9TUi2xuQ7A1I3uGrFqkZzH4fcnc/kuqb8KFoBjO+0k345j3ljyifIiR7E8aj/4Hx7J/05JjXghqViZpYjJZQgppUgppQ4o/4/zw/j2kacsMeTId/hqHt2OXVkgFlxv14F343aFREbW0tb731FqqqEhISwrp16yguvr5RDZNleHgYn8+HoijjJpPJRHJyMuDvTHz55Zd1O5nS0lK+8IUvXNXC6ePweDx6R56maYSEhLB69WrdG/x6UFWVM2fOsH//fux2Ow899JBuF3Wj0DSNS5cuUVVVxcWLF/UkrBs3btQ7YAUCwXiE8D0JhPAdjPrW3yFXvkBf8UMML/wfQcPJbhaNjY28/PLLFBUVsWrVqnF/YC/XvszPTv0MgB/M/QFrs9desZz6+nr27t2L3W7X12VnZzNnzhwKCws/cQsXgUAgEAgEAsFHE/C09Xg8SJKExWK5bnFD0zQUReE3v/kNHR0d47bn5+dz33333VQP2VuBQFvX1tbS0NBAV1cXXV1deDzBIud3vvMdXfhuaWlBlmVSU1OvPSrcZff7Z9fvwtC41x/Z/FHHaY1GyViAmrUYJXMRWlzhp1M01TSkoS6/AG5vQLY3IvXV+0VxR/M4cVkzWNBCYiAkBs0a7Y+4DolBs8aghVx+raTOhfCJ2SUMDAzwyiuvMH36dObPnz+x7/xQN3LXGSTfqLDvHRX2fS4kr3+Oz+1fNyr+Sx6n/xwH26/cFOYI1MRi1MQS1MQStIRi1Phpft/0zzKqgqF2K6bDz+iJVDWDGd+M+5GHujDU7/Svk034yr6Mb8F30CL8I1a6urrYvn27PipkxowZFBUVERkZGfQMb7PZMBgMGAwGjEajPgVsoQJomsb58+cZHh7G6XTidDr15eHhYVJSUrjnnnv0ff/1X/9Vt6b6MGlpaTz88MOAP2r+2WefJTQ0lDvvvJO0tLQpabqOjg7eeecd/fzvvPNOPVGqqqp65+BEUFWV6upq9u/fT2+vP99ZSEgIq1atoqCgYEqOdyIMDAywb98+urq6ePDBB4mOjv5U+7kLBDcSkdxScO3YagAIy55NxA3u3bwSPT09vPLKK/h8PpxOJ4qiBEXa7GjeoYve3yz95jjRe2yyD6PRiN1ux2w2U1paypw5c26aP6NAIBAIBAKB4PoJWNKFhEydABbwAH/ssceor6/n8OHD1NfXA1BWVsa6des+lwESgbYuKiqiqKgI8N9b9/X10d7eTkdHB06nMyja+7333qO9vR2LxUJ2dja5ubnk5ORMznogJOZyYkzVh9x2HEPDbr8lSs8FNFMYasYClMxFKFmL0BJLQPoMiEGShBaRjBaRDJkLCTJLURWkgTbwDEFINJo15oaIwJGRkWRkZHDkyBFOnz7NggULguwlr0h4Imr48mur0GVH7j6HbKv2z7urkXprkTyDGFqPYGi97FmvIYE1yi/yh8TAqNjvX74s9uuvR61X9Mj7scK7zwXeMesDkfnKCJopFC0iFS0iZXRKBfMNtg5RPBiqX8d05BfIdv+oZM0Uiq/iYXxzHvd/JwC5vRLTe09jaD6A6eRvMZ55BV/FQ3hv+xZJSUl85Stf4dChQxw5coSzZ89y9uxZcnNz2bRpE+D/Tf/617++og85wLRp07j//vvRNA1N03jjjTf0JI0fxmAw6FHbgdeyLAfNA8thYWF6nbIss2nTpikXcVNSUnjwK1+h8sgHHD/8PiEWEy6XC1mWaWpq4i9/+QspKSmkpKSQmppKSkoKcXFx48T+c+fOsX//fl1At1qtzJs3j5kzZ17fyJZrIDIykrvvvpvh4WGsVitutxuLxYKqqp/L/ySBYCoQEd+IiO8gNA3t6VwkVx+uh3Zgzpo3JQlDJorb7eb555+nt7eX9PR0Nm7cGCR6H+48zPfe/x6KprCpYBN/V/53+h9XfX09x48fJykpiaVLl46ejr/Xuri4mJCQECF4CwQCgUAgEAiuiM1mo6+vj/z8/Jt6//tpJCCSKYrCm2++SX19/Tjv8OTkZAoLC5k//zqTILr6wBwBBiH6TAXDw8McOHCABQsWEBUVhaZpXLx4kQMHDtDX1wf4LSGXLFnC9OnTb87zk+JF6ruI3H12VAw/h9x9FsnVd+PrvgqaJfKyEB7uF8XVMcK4FpHi9yqfbPt4hzGefhnj0f/Uo981azTe2Y/im/U1CIm94tvkloOY3n9a7xjQTCH4Zj2Cd96TEBJLe3s7R44cweVykZqaqj8PA/znf/4nHo9HtyEZS0pKCl/5ylf011u2bEHTNEJDQ/UpJCSE0NBQIiIi9GS54L8OTPX3Q3I0Y2jYjdx5CrzDwSMIdOugMXZCY/z9VXMEyoyN+Mof5FC9g/fee29c+WazmZSUFD3y3Ofz8cwzzzA4OIjFYmHu3LnMmjXrlhrtc/LkSaqqqti8eXNQ+wtuPJqm0dPTQ01NDb29vfpoiUDuj7CwMGbPnq3vf+nSJXw+n749KioqKIeIYGoRVieTQAjfl3n3jZdYeeobaEicveddZsyce9PEYk3TeOWVV6itrSUiIoIHH3wwKFLkXN85vrHvG7gUFyszVvKj+T9CHo30OHHiBLt27QL8Q5KefPJJLBaLPoRLIBAIBAKBQCAQ3BgURaG1tZW6ujouXrxIV1cXAAUFBUH5gmpra0lMTMRisWCxWD7x+3S3201dXR01NTUkJiZy++23f6LHcyPRNI3q6mr27duHy+UiLy+PDRs2YDab9QSolZWV7N+/H6fTCUBSUhJ33XUXCQkJn8QBg6sXydXnT+TpsoPbn9DTn+TTPprg0+EXyN3+ZXxuMFovJ9UMJNYcTbo5fp0FaWQIaagdabDDP40MTOwQTaFBQnhgro6JHsca4xfH3f0YT7yI6fhzuqCvhiXhm/sEvvKvgCV8Qm0iNx/wR4B3VPlXmcPxzXkc75zHwRo1gSI03Zfb5/MhSdInmxhT8SK3HsXQsMvv9993cWqKTZ2DPW89jaEVdNjsdHZ2YrPZ9Gj2r371q6SkpKCqKqdOnWJgYIDZs2dfv0jpGUZyNI6xLWoESUJNmYmSOhstfro/Ye0E8fl8/OY3v6G/vx+r1cp9991HXl7e9R2jYMJomsZPf/pT/Zr4YaKjo3nyySf11y+88AKdnZ1B+8THx5OWlkZaWhpz5swRwZhTiLA6EVwT7hb/H6idSGobL1E6a95Nq3vfvn3U1tZiMBhYv3590B9wy2AL333vu7gUF/OS5vGDeT/QRe/m5mZ2794NQHl5OYsXLyY8PFxcUAQCgUAgEAgEgpuAwWAgKyuLrKwsVqxYweDgILW1tYSHXxbz7HY7f/3rX4PeZzKZsFqtWCwWysvLmTVrFuCPSj5+/LgukMfHx5OcnDwliUZ9Ph/19fWcP3+ehoYGPQJ2rJjU39/Pzp07yc7OJisri/j4+Cl5tujq6iI+Pv6mjyjo6+vj3Xff5dKlSwAkJCSwaNGioBGxkiQxd+5cysrKOHToEAcPHqSnp+eTi3yVJAiNRwuN56ZH6o0MIQ11IA0GxHD/XA4I44PtfsHdO4zUVw999VctSjNa0SJSkZw2JM8g4E/u6Zv/FL4Z9/tF+A/h9XrxeDzjBWlJQs2+nZGsLyDX78L8/tPI3WcxHfw3jJX/hXfeEyjT7kaLzr6quCpJkh6NOmE8w8idJ5E7qpDbq0BV0GJy0GJyUGNz0WJy/SL/RO2HnDYMDXv8Ynfjfr1dwJ/MU02fh5K52O9f/+GOCtPYzotQNKOV0+fr2LX3PbK0FpZFNpE2eApD+3Hi248TZ43GV3IfvrseRInJp6enh66uLmJjY3URvLS0dOJtAaB4kBzNyH0NSPZGJHv9qNDdgDw0PmcEAGde8Z+fKRQ1ZSZq6izU1DkoKbMgLP6qVRmNRr785S+zZcsWOjo6eOmll1i9ejXz5t08nebzgKIoNDY2UlNTQ1tbG48++qg+QqKwsBCHw0F6ejqqquL1evH5fPh8PqxWa5A1UGRkpL7d6/UyPDxMT08PPT09tLS0UFFRgSzLyLLMsWPHsFqtpKen6wmrBTcGIXwLdDRNw9zfCICNOD0L883A4XDw/vvvA7By5cqguntcPXz7wLdxeBxMj5nOTxb8BJPs/6O22+28+eabaJpGUVERd999txiaKhAIBAKBQCAQfIJERETow78DCTNHRkZISEjA4XDo3r9erxev18vg4GBQAs2hoSGOHDkSVKbBYCA5OZn09HQKCwsn/azi9XrZtWsXtbW1QXXFxcVRVFRESUkJBoMBRVFoamqisbGRxkb/s1FYWBhZWVm6ED5W0A/g8/lwOBzY7Xb6+vqw2+0MDw+zYcMGfZ/33nsPt9vN2rVriYmJmdTxXws+n4+jR49y+PBhPW/SokWLWLhw4VW9iy0WC0uXLmXOnDk0NzcHRdFVVVWRn5//saOkFUVhYGAAh8NBf3+/PsmyTHh4OHPnztVF3ZGRESRJuuleyh+JJRzNUoAW9xFJDb3DSIOdo6L4mGjxwQ7kwXa/cD7ci+RzI416eKvx0/DO/xZK0b0gX1mKaWtrY/v27URERHD//ffrYtiZM2fIysryt70koebfiTtvOYbabZg++P+Rey5gfu9f4L1/QTOFoMYXoSYW+5OEJhajJhSDJeLjz13TkOyNyO3HkdurMLRXItnOI2nKR7/NaEWLztaFcDUmZ3SeC2HxyJ2n/RHdDbswdJ4Kfm9oHErOHSh5K1Cyb59Q5PpYkjJUMBymQcmmYTCbWPMi7k53kGnbizzQiqnyeUyVz6Okzyel/EESi9bCx2kGqoI00KpHbUv2RmR7vV/o7r+EpKlXbwtrzGg75KDG5CIpI8jtVcgdJ5A8QxhaPsDQ8sHlqqKzUFNno6bO9keFJxQHWTuFh4ezadMm3nnnHc6dO6cnNF29erXQPq6DkZERLl68SE1NDXV1dUGJWhsaGvQkrMuXL5+wKH3vvfcGvR4eHqazs5OOjg5MJpP+36dpGrt379b/i0JCQkhNTSU9PZ2ysjJiY69seSS4NoTVCcLqJIDD4eDi/7qbOZzmfeaS+tBz5Obm3pS6NU2jrq6OpqYmFi9erK8f8g7xxN4nqOuvIz08nV8v+zWxVv9FwO1289JLL9HX10dKSgoPP/zwLeXFJRAIBAKBQCAQCIIJWC2MjIzgcrlwu92MjIwQGRlJdHQ04H8uOXbsGG63WxcOhoeH9TJuv/12PQXuR8cAACAASURBVOLR6XTS0tJCeno6ERERQfUEnvMCr1944QV6e3uJiIigqKiIsrIykpOTg8QjTdPo6+vTI8IDnq1jue+++8jJyQHgwIED1NTUMDAwwJUerb/1rW9htVrRNI233nqLCxcuYDKZWLZsGWVlZTc0yu/YsWPs27cPgOzsbNasWTPp6PXA59XU1MTLL7+M0Whk1qxZlJeX43Q66e/vx+FwMG/ePD0if/v27Zw9e/aqZT7xxBP6Z7Vv3z6OHTuG2WwmLCyM8PBwwsPDCQsL0z+nT9SK43rwuXVxHElGTZ931ahon8/HwYMHOXr0KJqmER4ezgMPPEBkZCR2u53nn38egLS0NKZPn860adMut4uqYKj5K8aqF/ze6GN8r8eiRmV+SAwvQQuJQe48hdxeiaG9Erm9CsltH//e8ORRcXYOmKz+6OZRQVjqb0ZSr5wQE0CTjeO2K0llqLnLUfJWoKZUTDpZbW9vb5DftcPhQFEUtm7dqlstJScmcHdxGImXtmKo36mL1VpIDL6S+/GVPwCmUL+o3TcqagcEbkcLknrlhKAwanMzKuxrsaNCf2weakzOVX3aURWk3trRtq7ydy701o0v22hFKd6A5/b/K6gsTdM4evQoBw4cACAnJ4evfOUrn7hl1FTi8Xjw+XyEhoZOWZmapuFyuTAYDLpeVFVVxbZt24I878PCwsjPz6egoICMjIwpGWF0NTweD++99x4dHR10d3cHHYckSdx2222sXLnyhtX/WUFYnQgmTV9fHwn0AtBNPLNTUm5a3V6vl/T0dNLT0/V1I8oI//DBP1DXX0esJZZnljyji94ALS0t2O12IiIi2LhxoxC9BQKBQCAQCASCW5yxVgtXipwGSExMZO3atfprVVXp7e2lubmZlpYWsrKy9G1NTU1s27YN8CdlTEtLIzw8nNraWpxOJ0899RQmkwlJkli6dClWq5WcnBxkWb6iACxJEnFxcSxevJjFixfj9Xppbm6mvr6exsZGbDYbKWOek0ZGRujv7wf8ifNiY2OJiYkhNjaWuLg43a5FkiRWr16N2+2mubmZd999l4aGBlatWjWlIs9YKioqqKur04Xqa4kODXxeERERZGZm0tLSwtGjRzl69GjQftOnT9ejFKOiojAajURHRxMVFaXPAQYHB3VbyoAgBX4hyOPxYLcHi675+fn68sWLF3E4HCQnJ5OUlDQ5u45PAqMVLSYbLSb7I3fr6upi27Zt9PT0AFBcXMzq1av130dvby8ZGRlcunSJtrY22tra2LNnD1lZWRQVFVFQUICleANK8Qa/uGpv8CcItVUjd59Hsp1DHmxH7m9B7m+Buh0feTyawYKaXIaaMssvdqfNRotIvfobFO9odHQDsr3hQ9HRrUiqD80UhpJzO0ruCpTcOyA8aVJNGWBkZIRdu3ZRU1PDAw88QHJyMiaTiZSUFCRJ4vHHH+fYsWPs3buXzm4b+6NjuHfDi0iD7RhO/xHj6ZeRB9sxHf8VpuO/+th20GKyg6LX/fYueRCWOPnEprIBLaEIJaEIpXw0oai7H7njRHDHw0g/xtMvY6jbgWfZ/41SshEkCUmSmD9/PrGxsWzdupWMjAxUVf1UCt+KotDT00N3dzfd3d3YbDa6u7ux2+3MmzePlStXIssyw8PDvP3220RERBAZGanPA8tjR4p4vV56enro7e2lt7eXvr4+fdntdrNu3TrKyspQVZXIyEgURSEmJoaCggIKCgr079DNwGw2s3z5cr0tbDYbHR0d+v+M1WrF6/ViNBqFBcoUICK+ERHfAY4dPcqMbesIYYQ/Rj3Fpr/75xv6I9M0jR07djBz5sxx7a5oCt8//H32tO4h1BjKs0ufZVrMtHFlNDQ06Ddh4oIgEAgEAoFAIBB8PlBVFVVVqa6u5tChQ3R3d4+LuDYajdx///1kZmbqSe+v95nB5XJhMplQFAVN0+jp6WFkZIS4uDgiIiI+tg5N0zh48CB79uxBVVVCQ0O56667rnukrdPp5OTJk3R0dLBhwwZdDDOZTFMmnmiaRm1tLbt376anp4eIiAhd2F6wYAFxcXFIkoSqqhNq78Dn5Xa7GRwcDJqGhoYYHh5m9erVehlbtmyhrs4fIStJku79HpgSExP18/Z6vTidTpxOJ8PDw0HLJpOJpUuX6sfx+uuv09fXR0hICKGhoYSEhOhTWFgYM2bM0Pf1eDx6R8r1oigKR44c4dChQ/p3YdWqVcyYMeOKYmZ/fz9nzpyhuro6KIHePffcw7Rp45+Vg3D1IXefHxXDzyF3VyP11iIpHtSoDNQUv8Ctps5GTSwBw3jrGZfLRX293888Nzd3Yh02o1HvWmTqFcucDG1tbWzdupX+/n4kSWLFihXMnz//ih06Q0ND7N69m9tuu00fXeDxeDAZJIyNezGe/D1yw26/GB2VqduS6NHbMbl+sX8SiSinBE1Fbj2Ceec/IvfUAKBkLsJz50/Q4i53AgW0K0mS9MhkRVEYGRkZN8XGxpKamhrULiMjI36rW7MZk8mE2WzGbDaTlpZGQYHf4kdVVZqbm/VtgUS4gd+10WjUO58Cv+UP/y40TcPhcCBJkj6ip7u7m1/96leo6pXtYpYuXcrcuXMBf6fQ7373u6s214IFC7jzzjsBqK+v56WXXrrqvkuWLOG2227Tz62vr0+/Zl0RTUMa6kIa/c1Izm5/Z5YpFEwhfo95U4g/ae7oOn1bYF1I7KQ7SNrb20lISNDbtr6+noaGBpYsWSIsUD6EiPgWTJqhznpCGEFFwpRScsOF5H379nH06FHOnj3LY489pvfWjSgjPF31NHta92CSTfzron8NEr3H9mrm5+frERQCgUAgEAgEAoHg80EgQVh5eTnl5eW43W5aWlpoaWmhv7+fnJwcpk+fHpTAcSoICQkB0MWmsSNWJ4IkSSxatIjc3Fz+8pe/0NPTw9tvv83jjz+O1To+0eHH0d3dTWVlJefPn9eHy1dXV1NRUYHZbJ7Sc5ckiWnTpjFt2jR8Pp8uOF5rHYH3BUTmxMTEcftomqb7xOfk5KBpGh0dHTidTmw2GzabjTNnzmAwGPjOd76jv+/FF1/E4XBcsd6IiIgg4dvhcOjThwkPDw8Svv/85z/T2dlJeno6+fn55Ofn69Hsk0XTNGpqalBVlYKCAtasWUNUVNRV2zMqKkofiWCz2Th79ix1dXVBnSZHjhyhu7ubadOmkZOTczkqPiQWNWsRataiywUqXvA6wRp91WNUFIWLFy9y7tw5GhoadLFSkiTS0tIoKyujpKTk6ic5GvV+PaiqyuHDhzl48CCaphEVFcU999xDTk7OVdsqPDyce++9F03T8Hg8KIrCu+++i8Ph4M477yTpvpXgcfrFeMMtNHJAklEzFuB++F2Mx3+F6YOfYmj5AOuLy/HN/xbe274JRmvQd254eJjf/va3V/2+z507l/j4eH2ExcmTJ69afUVFhT6ixu12f6ToXFpayvr16wF/R9NPfvITpNHI9IA4rqoqiqIwa9YsVq1ahaqqWCwWVFXFbDYTHx9PfHw8CQkJ+vLYDpWwsDCWL1/O0NCQ3iEWWPZ6vZjNZn3USFhYGKGhocTExOijbgLL0dHRQSNEZFkmPn5MUlHFg9RTi2zzdwrJtvP+ziFX30d8WB+PGp2Dd9F3UYo2TLgTJdBJAf5rxIEDB+jp6eHUqVOUl5fzhS984abkiPgsIYRvgU7kSDsAdqJITM24oXWdP39e96ZaunSpLnrXOmr54ZEfUj9Qj4TEj+b9iDmJc/T3NTc3s3fvXu69915iY2OF6C0QCAQCgUAgEAiwWq0UFhZSWFj4SR/KhEhJSeHxxx9n165dJCQkTEr01jSN+vp6KisraWlpCSpz7ty5lJSU3PBkkTfS/3YsY4W0BQsWsGDBAlRVZWBggLa2Ntrb22lvb0eSpKDI37CwMIaGhnQxLCwsTJ8iIyP1KHhJkti0aRNDQ0N6RLjL5WJ4eJjh4eFx7ehyuVBVVe9k2bNnD4mJibpdQkJCwkeeT0A4lmUZo9HImjVrcDgck7aiSUhIYNmyZSxbtkwXF71eL2fPnqWvr4+amhpMJhP5+fm6CD7uMzOYwHB10TvAu+++i9vt1uuVZZmuri5aW1tJTk7WhW9FUejt7SUhIWHKntH7+/vZunUrbW1tABQVFbFmzZqr2iR9GEmSsFgsOBwO6uvr8Xg8/P73v6eiooLFixdjNd9CovdYDCZ887+JMu0ezDv/DwyNezEd/CmG81vwrPyXoA6Mc+fO6aK30WjEbDZjsVj0eWRkpJ6nwGw2s2TJEsxmM7Is4/V6dZshr9dLWlqavm9gJEtgm8fjCYrS1jRN/14EkjSO7ajST8Vg0L27wT8K5cknnyQsLCzoeyINtGE8/jOk/kuoSWWoqbMITy5j1qxZ45on0KExlqioKJ566qmPb1tnT9DIB9l2Dqm37oo+9Zok+73bE0rQotL9Ixi8LvC5/AluvWPn/vWSdxi8Ln9SU0cjlq3fRj30M7yL/h5l+j2T8rOXJIlVq1Zx8OBBGhsbOXnypBDArwFhdYKwOgmgHfol0jv/JyM5d+K693l9KMpUY7PZeP755/F4PMyePZs77rgDVVN5ufZlnj37LF7VS4wlhn+a+08sSrl8Qbfb7fzhD3/A7XZTUVHB3Xff/an0sxIIBAKBQCAQCASCAJqmMTIygqqqNDY20t3dzdy5c6/6rNPR0cEf/vAHwC+MFBYWMn/+fLKysj63z0cfFtwURdHtVuDao9LHlg/+JJQOh4Pa2louXLhAa2urvi09PZ3NmzcHvWdsvXa7nR07dpCTk6NbLkylFY2qqrS3t3P27FnOnz/PwMCAvs1kMlFSUqLbQlzp/Lq7uzl37hwdHR1s3rxZP6YPPvgARVEoLS0lJSUFWZZ1cT09PV2PnG1sbOS1114jKiqK/Px8CgsLSU1Nva7vZGVlJXv27MFsNnPnnXcya9asay5vYGCAd955h3PnzgEQGhqqn1NmZuatmzNM0zBceAvz7n/y220AvpKNeJb9AEL9be/1epFl+Zp8/Cd3KJo+AXp9mqYxPDwc9DsMfP8DFlBXQ+44gfHYcxguvIWkKUHbNNmEmlgyasMzBzV1Nlpk+sTsQ1QfUl/9qN/9OeTus5ctS650bpZI1IRif32BJLDx0/zWJdfCyBDGEy9gOvqfesJYNX6aXwAvXDPphK7t7e26AA7+zrNly5axePHiazu+zwAT1XKF8I0QvgNob34bqeq3eBd8B2n5D25IL77b7ebXv/41fX19ZGRksHHjRmwjNn509EdU2aoA+ELqF/jHOf9IjCUm6H0vvfQSfX19pKSk8PDDD9+6f0wCgUAgEAgEAoFAMAk0TWNoaIhf/epXOJ1OMjIyWLNmDZGRkQwMDNDZ2RkUzf7aa6+RkJDA3LlzP9qnVnBDGRoa4sKFC9TU1JCdnc3MmTMBv/3Eiy++SG5uLgUFBQwMDLB//368Xi9Wq5W//du/JTIy8oZ1VKiqSltbmy6CDw4OMmPGDO666y7A/31ramoiKiqK2tpazp07R29vr/7+zZs3k56ejtFoDIqOvxKapqEoCseOHWPPnj16ZC/4xeW8vDwiIyOZPXu2/gzf2tpKb2+vblkU8I4OLKelpWE2m9E0jf379zN79mwSExOn5HteX1/P9u3br3i+AD09Pbjd7lsvgerIAKYD/x/GE79FQkOzxuBZ+k8opZsmn2hzMrj7ke2NSI5mtIhk1JSZ1+3XjurDULsd4/HnMLQf11crGQtRshYjd53G0F6J5LSNe6sWloiSOksXwtXkMlC8evS23H0OqbsaubcWyece/34ktOhs1MTiUYF7VOieqKA+WUYGMVb+GtOxXyGN+Duj1MQSvIv+ASV/5aTrbGtr4+DBgzQ1NfGlL32JadOmfW6TYArhexII4duP9vydSK1HGVn3S0yzNk/5n7Cmafzxj3+krq6OyMhIHnzwQd7reY+nq55myDtEiCGE71Z8l3ty7gn60aqqyuuvv05TUxMRERF87WtfE0M6BAKBQCAQCAQCwWcKTdM4ceIEO3bswOv1YrFYyMjIoL6+HqPRyBNPPIHVatXFwc+r2HGrEhCAFUXh1KlTbN++fdw+GRkZ3H333cTHx9+0z05VVVpbWzEYDMTGxqJp2hWTBhoMBvLy8pgxYwaFhYXX5BE/MjJCXV0dNTU1XLx4kZGREX3bk08+qVuU7N69m6qqqquW8+ijj+rP/BaLZcojmRVF4fTp0zQ3N9PR0cGXv/xlXeTetWsXJ06cQJZlEhISSElJISUlhdTUVGJiYoLaxOl0MjIygtfrDZp8Ph+qqgb5wzc2NtLf368L/AELn8CUl5c3IQ1Gbq/C/O5/R+6u9p9L+m14Vv0LWtx12Dx5hpEcjch9DUj2BmR7A5K90T8f7g3aVTOFoKbNQ8lajJq5CDWpFOQJBk26+zGe/iPGqv9CHmj1lyebUIq/iHf2YwyEZjEwMOAfWSBJSP2XkNsrR6fjft/tD1mSaJJhXKT45WMNHY3iHo3gTixBTSgCc9jk2+h6cfdjOv4cxuPPIXmGAFCSy/Eu/gfUnDsmLYB3dXXpnUFms/mm2U/dSgjhexII4RtqL1wg849LsDLCudt/TdHSjVP+RzwyMsLLL79Me3s792y8hxdaX2DnpZ0AzIidwQ/n/5CM8PHe4oE/RZPJxAMPPEBmZqa4wRMIBAKBQCAQCASfSXp7e/nLX/5Ce3u7vi4zM5PVq1eTlJT0ubUz+TTh8/lobGykpqaG2tpavF4vixYtYuHChTfcjuKjCFhRnD9/nh07djA0NERmZiYlJSUUFxeP812+HgJtUF9fz8jICEuXLsVisaBpGqdOnaK+vh5VVXWP8rHLGzZsIDo6esoTtF6NgD2Hoijs2bOHs2fP4nQ6x+0XFhbGN77xDf31q6++GuSzPxZZlvlv/+2/6a/feOMNLl68eNVj+O53v6uLl8ePH8dmszFz5kySk5PH76z6MB5/HtMHT/v9pQHNaAVTCJoxBIwhYLL61xlD/ElGTcFzyeNEsjf6he6hzo9un7BE1KhMZEfjeCHcHIGacRtK5iKUzEVoicXjbDwkexPGyucxnnkFyetvVy0kFl/Fw3hnfhUtLIGzZ8+ye/duvF4voaGheiLdtLS0y9c8rwu56zRyWyVyR6V/7uzyN0lkmt+LOzEgcBf7E6tOwFLE6/Xidrt1v/ORkRF92ePxUFRUpCc2ttlsdHV1YTKZrjiFhYV99G/c1Yfp2LMYK//L7wcOKKmz/QJ41heuKeo8UPfnDSF8TwIhfMPxPW8y58CDqEgcWPInli5fOeV1BIbv7ardxS/qf0G3qxuDZOCR4kd4ePrDGK/QS3j27Fm9p3z9+vWUlZUJ0VsgEAgEAoFAIBB8plFVlYMHD2K325k5c+Z1eyULPjkCfseBKN9bBVVV8Xq9N01c/jShqir9/f20trbS2tpKW1sbXV1daJrG9773PX2/LVu20NLSgtFovKIIun79ev13e+TIETo6OnSB/8PT5s3+UfeqqvLcc88xODgI+JPWVlRUMH369HFRvVL/JUy7vo+x/t3rPmctJAY1JhctJmd0nosak4MWkwuW0WSimorUcwFDywfIze9juHQYaaQ/uBxrDErmAtTMxaiR6RhPv4Th4rtI+KVHNX4a3tmPoRRv0P2zjx49yv79+wH0NggQHh7OI488cuWEvZqGNNTpF/OtV89RpygKNptNT4Zrs9nYsGEDUVFRABw4cIAjR45c9f0PPvig3gFx5MgRDhw4cNV9/+Zv/obMzEy9Xo/Ho4vmQQz3YDryS4wnXtAtWZT0eSg5dwS3vTn0qnUFEML3R2u5n79YeMEV8XWcBaCPaJJSx0ddXw/Dw8OEhIQwMDzAL8/+kpdrXwYgIzyDH83/ESWxJVd9b3Z2NikpKeTn5wvRWyAQCAQCgUAgEHwukGX5c5207LPErdphIcuyyJt1FWRZJiYmhpiYGEpLS4HLiU0DbSZJEps2bdKXA1xNs1i6dOmE6tY0jS996UscO3aMmpoaOjo66OjoYN++fcyYMYOKigqio/0irxaVgedLv8Xj6kPyOME7DD63Pwrc50byucDrBp/LL66OXZZNqLGXBW5CrmwnqygKTfX1NDU16e1hSiiC2Y+CqiB1n8XQchBDy/vIlw4jue0Ya7dB7bbgcnLvwDv7MdTs28dFNZeUlFBVVcXMmTNZuHAhTU1NVFdXU1tbS2RkZJDoffLkSRISEkhNTUWSJLSIlCsed0dHBxcuXKC9vZ2urq4g73nw55ELCN9msxlZljGbzUGTxWLRlwO/46ioKHJycvB6vXg8nnE2N2MF6D179tDQ0MD69etJSkoKPsDQeLzLfoB37hOYjvwc48nfY2g9iqH1aNBuangyWkzOmA6J0Xl01rUn3vycISK+ERHfAEd/9jDz7Fs4Rz6pf7dbv5BeD5qmUVlZyTvvvENiSSJbta3UD9QDsCF3A98u/zYhxiv/UBVF0YeH+Hy+jx8uIhAIBAKBQCAQCAQCgUDwGWFoaIjKykqqqqoYGPAnRiwpKWHNmjU3tF5VVWlububChQvU1dXhdl9OErl8+XJmzZp15TcqXuTOU8gt72NoOYjUV4+SuxzfnEeDPMh9Ph+1tbUUFxcH1flhqx2v18vAwAARERH4fD5cLhe//OUvUVWViIgI3Q4FoL29nYKCAl3MrqqqYvfu3XpZFouF1NRU0tLSSE1NJTMzE4vFgiRJqKqqj8gI1D+ZoMuArBqwEpIkCZfLxfPPP4/D4cBoNLJ69WqKioquWoY02IGh+s/IvRdH/dXrkVz2q9eJhBaZihaTi/aFf8CYd/uEj/ezgrA6mQRC+IbT/+/tlPlOctC4mNv+8a3r7pUeHh7mrbfe4lzNOeoi6zgXew4FhRhLDN+f830Wpy5GVVUGBgaw2+309fXpk91ux2Aw8NhjjwE3JpmFQCAQCAQCgUAgEAgEAsGtjqIo1NbWcuzYMRYuXEhqaioAPT091NfXU1paSmjox1tiTISOjg5ef/11XC6Xvi4sLIy8vDx6enq4//779ajmvr4+IiIiJmWz0dPTw9tvv43NZmPdunUUFRVNKDmjpmn09fWxd+9e6urq8Hg84/ZZtWoVZWVlej1VVVWkpaWRnp5OYmLiTbcbcrlcvPbaazQ0NAAwb948lixZMnG9ze1Atjci9TX45/ZA8tFGpJEBfTffl1/HWLjiRpzCLY2wOhFMGI/HQ4zPnxDAG5N/3ReCxsZG3njjDdrcbRxPOU6fpQ+AWZGz+Ofb/5lYaywAr7zyCm1tbVcsQ5IkfD4fISEhQvQWCAQCgUAgEAgEAoFA8LnEYDBQVFREUVERmqbh8/nwer1UVlZy+vRp3n//fSIjI4mMjCQ6OpqoqCiioqLIz8//SFFa0zTa2trw+XxkZ2cDEBcXh9frJSQkhMLCQkpKSsjOztaF6YA3vKIobNmyBbfbzbx58ygvL//Yuk6cOMH+/ft1rcdisWC1WickBEuSRFxcHPfddx9er5e6ujqqq6upq6vDZDKRmppKREQERqMRg8FARkaG7rX9SRESEsIDDzzArl27OHToEEePHtUFf6vV+vEFWKNRU2ZCykyUses1DVy9l0XxpNIbdQqfCYTwLaCvt5cE/Jl5zenl1yx8K4rCvn37OPD+AWqjajmXeg5VUjFrZsp6yshpySFqRZS+f1RUFJ2dnURHRxMbG0tcXByxsbHEx8cTHx9PWFjYLeuHJhAIBAKBQCAQCAQCgUBwM5EkCZPJhNFoJCcnh66uLrq6unA4HDgcDlpaWvR9v/Od7+jLBw8epKOjQxfFh4aGuHDhAoODgyQmJurCt9ls5qGHHiI5ORmj0ThOHzIYDMiyTF9fH16vF6fTyd69ezl69OhVBXCn08mOHTv0yOfs7GzuueceoqOjr0l/MplMFBcXU1xcfMsmjw0gyzIrV64kJSWFN998k8bGRv70pz/x4IMPXvvxShKExqOGxkPaXOTPYWLLySCEbwEMtGHFg4JMZM7May5mcHCQd6ve5VDKIewWvxdR8nAys3tnEylHkpKegsfjITw8HEmSuOuuu1i/fv0VL6YCgUAgEAgEAoFAIBAIBILxSJJERUUF5eXlOBwO7HY7drtdF8BdLldQUsjW1laam5vHlWM2m0lISAD8NrOyLJORkfGxdcfFxfGtb32LkydP8t577zEwMHBFAbyxsZFt27YxPDyMwWBg6dKlLFiwYMpG9n9agiVLS0uJj4/n1VdfZdGiRUIDu4kI4VtAsuwAQIrLo2B6yTWV4VE8/LHxj7yT9A6KpmBWzZT3lpPpzKSkuIQVK1aM680bexEWCAQCgUAgEAgEAoFAIBBMHEmSiImJISYmZty2QLJFTdNYunQp3d3dujhuNBopLCyksLAQs9l8TUKs0Whkzpw5VFRUjBPA4+LiyMnJAfw54BISErj33ntJTU393Iq+KSkpPPXUU4A/cSeA3W6/psh3t9tNZ2cn6enpk/JY/zwihG8B2M4DoMZP+9iEAmMZGRlh27ZtRORG8GzTs1xwXAAg1ZXKzJ6ZZMRksPLeleTnX79vuEAgEAgEAoFAIBAIBAKBYGJIkqRrMdnZ2bqdyVTzYQG8vr5erysnJ4f169czffp0LBbLDan/00RApJb/d3v3HhxVffdx/LO7ucLmAiHZsJAAMk1IqpCYQESq9RINWJ0HBAsSBZlenGmQS4RO1AJhbKHa6QzlItCOE6wNAvYpTsXKDBMBQQFDLBYFgjcICpsIIdmEQAK75/nDcaf7GCBKyEnOvl8zO5P9nd/Jfk9mvofwyW9+x25XXV2dysvLNWDAAN13332X/flcunRJdXV18ng8OnXqlE6dOqWzZ7/eZaGwsFCDBg3qsvp7IoJvyF97SHZJRkJ6hwPqL774Qq/+76vaa+zVkcYjkRMxCAAAFCxJREFU8tv8io2I1bzseYo7GSdHhkOjR49mVTcAAAAAAIDFfROA5+bmyufz6eLFi7LZbBo+fDiLIf8fh8OhhoYGtbW16ZNPPlF5ebnGjx+v+Ph41dfXy263q2/fvpKk06dPq7y8/FvfIy4uTq2trT1muxezEHxDp/6zXQMkfdIUroyr3IwuXbqkd999V6+985oqEyrVEPn1Nil5ffO0aMwiJUQlKHxoOPt2AwAAAAAAhCCHw9Fp+3hbVUZGhh577DFt3LhRZ86c0V//+ldJX2+DMnz4cBUUFEiSEhMTFRMTo8TERLndbrndbg0YMCDw/Dyytysj+A5xLefOqZ9xWpLkT0i77Ly2tjbt379fO/bu0L8d/1Z1/2oZNkMRvghl12frrvC7lNgrUREREfy1CQAAAAAAALiCgQMH6he/+IU2bdqkL7/8UtLX26EYhiGbzSaHw6GIiAjNmTOHkPt7IvgOcfXH/qOBuiif7EpMv6XdOYZhaOfHO/Wnf/9JJ/qckN/ulyQNODdAIxtH6o5Rd+hHP/oR+zUBAAAAAAAAHRQbG6sZM2bo2LFjioqKUlJSErsodCKC7xB3tnqPBko6oz5KSEoOjDc3N6v6WLWOOo7q1aOv6uOGjyXn18fi2uKU0ZCh21y3aeyksUpMTKQhAQAAAAAAgO/I4XBo6NChZpdhSZYJvletWqU//OEP8ng8GjFihFasWKFRo0aZXVa3d+nkfyRJ9WEuJdrtamxs1Kadm7TlxBYd73VcPrtPkhTpiFSuM1eRRyKVlZyl3LG5yszMZM8mAAAAAAAAAN2OJYLvjRs3qri4WGvWrFFeXp6WLVumgoICVVdXKykpyezyurWopmOSpJrIwVq3/im9e+5dnY08G1jdneRI0qM3Papxg8Yp2h4t3SXFxMSwwhsAAAAAAABAt2UzDMMwu4hrlZeXp5EjR2rlypWSJL/fr5SUFD3xxBMqKSm56vler1dxcXFqbGxUbGzs9S63W3ljSa5ejklQtbNOl+yXJEl2w66BLQM1xjlG/5PzP0pPT5fD4SDsBgAAAAAAAGCqjma5PX7Fd1tbm6qqqvTUU08Fxux2u/Lz87Vnz552z2ltbVVra2vgvdfrve51dkdfek+oZECrpJOSJOdFp7LsWZpy4xTlZOaod+/ehN0AAAAAAAAAepweH3yfPn1aPp9PLpcraNzlcunIkSPtnrN06VItXry4K8rr1gZExOkWm1ONLZG6K3WyCm9/RM7eTsJuAAAAAAAAAD1ajw++v4+nnnpKxcXFgfder1cpKSkmVmSSqFiteWS3HHYeUAkAAAAAAADAOnp88N2vXz85HA7V1tYGjdfW1io5ObndcyIjIxUZGdkV5XV7hN4AAAAAAAAArMZudgHXKiIiQjk5OaqoqAiM+f1+VVRUaPTo0SZWBgAAAAAAAAAwQ49f8S1JxcXFmj59unJzczVq1CgtW7ZM586d04wZM8wuDQAAAAAAAADQxSwRfE+ePFlfffWVFi5cKI/Ho6ysLG3duvVbD7wEAAAAAAAAAFifzTAMw+wizOb1ehUXF6fGxkbFxsaaXQ4AAAAAAAAAoB0dzXJ7/B7fAAAAAAAAAAD8N4JvAAAAAAAAAIClEHwDAAAAAAAAACyF4BsAAAAAAAAAYCkE3wAAAAAAAAAASyH4BgAAAAAAAABYCsE3AAAAAAAAAMBSCL4BAAAAAAAAAJZC8A0AAAAAAAAAsBSCbwAAAAAAAACApRB8AwAAAAAAAAAsheAbAAAAAAAAAGApBN8AAAAAAAAAAEsh+AYAAAAAAAAAWArBNwAAAAAAAADAUgi+AQAAAAAAAACWQvANAAAAAAAAALAUgm8AAAAAAAAAgKUQfAMAAAAAAAAALIXgGwAAAAAAAABgKQTfAAAAAAAAAABLIfgGAAAAAAAAAFgKwTcAAAAAAAAAwFIIvgEAAAAAAAAAlkLwDQAAAAAAAACwFIJvAAAAAAAAAIClEHwDAAAAAAAAACwlzOwCugPDMCRJXq/X5EoAAAAAAAAAAJfzTYb7TaZ7OQTfkpqamiRJKSkpJlcCAAAAAAAAALiapqYmxcXFXfa4zbhaNB4C/H6/Tp48qZiYGNlsNrPL6VJer1cpKSk6ceKEYmNjzS4HQBeg74HQQs8DoYe+B0IPfQ+EllDvecMw1NTUJLfbLbv98jt5s+Jbkt1u18CBA80uw1SxsbEh2ShAKKPvgdBCzwOhh74HQg99D4SWUO75K630/gYPtwQAAAAAAAAAWArBNwAAAAAAAADAUhylpaWlZhcBczkcDt1xxx0KC2PnGyBU0PdAaKHngdBD3wOhh74HQgs9f3U83BIAAAAAAAAAYClsdQIAAAAAAAAAsBSCbwAAAAAAAACApRB8AwAAAAAAAAAsheAbAAAAAAAAAGApBN8hbtWqVRo8eLCioqKUl5en9957z+ySAHSCpUuXauTIkYqJiVFSUpLGjx+v6urqoDkXLlxQUVGREhIS5HQ6NXHiRNXW1ppUMYDO9Pvf/142m01z5swJjNHzgPV8+eWXeuSRR5SQkKDo6GjddNNN2r9/f+C4YRhauHCh+vfvr+joaOXn5+vjjz82sWIA18Ln82nBggUaMmSIoqOjNXToUD377LMyDCMwh74Hera3335bDzzwgNxut2w2m1577bWg4x3p8fr6ehUWFio2Nlbx8fH62c9+pubm5q68jG6D4DuEbdy4UcXFxVq0aJHef/99jRgxQgUFBaqrqzO7NADXaOfOnSoqKtLevXu1bds2Xbx4Uffee6/OnTsXmDN37ly9/vrrevXVV7Vz506dPHlSDz74oIlVA+gMlZWVWrt2rYYPHx40Ts8D1nL27FmNGTNG4eHhevPNN3Xo0CH98Y9/VJ8+fQJznn/+eS1fvlxr1qzRvn371Lt3bxUUFOjChQsmVg7g+3ruuee0evVqrVy5UocPH9Zzzz2n559/XitWrAjMoe+Bnu3cuXMaMWKEVq1a1e7xjvR4YWGhPvroI23btk1btmzR22+/rV/+8pdddQndis347z8NIqTk5eVp5MiRWrlypSTJ7/crJSVFTzzxhEpKSkyuDkBn+uqrr5SUlKSdO3fq9ttvV2NjoxITE7V+/XpNmjRJknTkyBFlZGRoz549uuWWW0yuGMD30dzcrJtvvlkvvPCCfvvb3yorK0vLli2j5wELKikp0TvvvKNdu3a1e9wwDLndbj355JOaN2+eJKmxsVEul0vr1q3TlClTurJcAJ3g/vvvl8vl0osvvhgYmzhxoqKjo/W3v/2NvgcsxmazafPmzRo/frykjv3bfvjwYWVmZqqyslK5ubmSpK1bt+q+++7TF198Ibfbbdr1mIEV3yGqra1NVVVVys/PD4zZ7Xbl5+drz549JlYG4HpobGyUJPXt21eSVFVVpYsXLwbdA4YNG6bU1FTuAUAPVlRUpJ/85CdBvS3R84AV/fOf/1Rubq4eeughJSUlKTs7W3/5y18Cxz///HN5PJ6gvo+Li1NeXh59D/RQt956qyoqKnT06FFJ0gcffKDdu3dr3Lhxkuh7wOo60uN79uxRfHx8IPSWpPz8fNntdu3bt6/LazZbmNkFwBynT5+Wz+eTy+UKGne5XDpy5IhJVQG4Hvx+v+bMmaMxY8boxhtvlCR5PB5FREQoPj4+aK7L5ZLH4zGjTADXaMOGDXr//fdVWVn5rWP0PGA9n332mVavXq3i4mI9/fTTqqys1KxZsxQREaHp06cHeru93/fpe6BnKikpkdfr1bBhw+RwOOTz+fS73/1OhYWFkkTfAxbXkR73eDxKSkoKOh4WFqa+ffuG5H2A4BsALK6oqEgffvihdu/ebXYpAK6TEydOaPbs2dq2bZuioqLMLgdAF/D7/crNzdWSJUskSdnZ2frwww+1Zs0aTZ8+3eTqAFwPmzZtUnl5udavX68f/vCHOnDggObMmSO3203fA0A72OokRPXr108Oh0O1tbVB47W1tUpOTjapKgCdbebMmdqyZYu2b9+ugQMHBsaTk5PV1tamhoaGoPncA4CeqaqqSnV1dbr55psVFhamsLAw7dy5U8uXL1dYWJhcLhc9D1hM//79lZmZGTSWkZGhmpoaSQr0Nr/vA9Yxf/58lZSUaMqUKbrpppv06KOPau7cuVq6dKkk+h6wuo70eHJysurq6oKOX7p0SfX19SF5HyD4DlERERHKyclRRUVFYMzv96uiokKjR482sTIAncEwDM2cOVObN2/WW2+9pSFDhgQdz8nJUXh4eNA9oLq6WjU1NdwDgB7o7rvv1sGDB3XgwIHAKzc3V4WFhYGv6XnAWsaMGaPq6uqgsaNHj2rQoEGSpCFDhig5OTmo771er/bt20ffAz1US0uL7PbgGMfhcMjv90ui7wGr60iPjx49Wg0NDaqqqgrMeeutt+T3+5WXl9flNZvNUVpaWmp2ETBHbGysFixYoJSUFEVGRmrBggU6cOCAXnzxRTmdTrPLA3ANioqKVF5err///e9yu91qbm5Wc3OzHA6HwsPDFRUVpZMnT2rlypXKyspSfX29Hn/8caWkpGjRokVmlw/gO4qMjFRSUlLQa/369brhhhs0bdo0eh6woNTUVC1evFhhYWHq37+/tm7dqtLSUj377LMaPny4bDabfD6flixZoszMTLW1tWnWrFlqaWnRihUrFBbGrpdAT3P48GG99NJLSk9PV0REhLZv366nn35aU6dO1T333EPfAxbQ3NysQ4cOyePxaO3atcrLy1N0dLTa2toUHx9/1R5PTEzUvn379Morryg7O1vHjh3T448/rnvvvVePPfaY2ZfX9QyEtBUrVhipqalGRESEMWrUKGPv3r1mlwSgE0hq91VWVhaYc/78eeNXv/qV0adPH6NXr17GhAkTjFOnTplXNIBO9eMf/9iYPXt24D09D1jP66+/btx4441GZGSkMWzYMOPPf/5z0HG/328sWLDAcLlcRmRkpHH33Xcb1dXVJlUL4Fp5vV5j9uzZRmpqqhEVFWXccMMNxjPPPGO0trYG5tD3QM+2ffv2dv8vP336dMMwOtbjZ86cMR5++GHD6XQasbGxxowZM4ympiYTrsZ8NsMwDJMydwAAAAAAAAAAOh17fAMAAAAAAAAALIXgGwAAAAAAAABgKQTfAAAAAAAAAABLIfgGAAAAAAAAAFgKwTcAAAAAAAAAwFIIvgEAAAAAAAAAlkLwDQAAAAAAAACwFIJvAAAAAAAAAIClEHwDAAAA3ciOHTtks9nU0NBgyudXVFQoIyNDPp/vqnO3bt2qrKws+f3+LqgMAAAA6DiCbwAAAKCL2Gy2K75KS0t166236tSpU4qLizOlxl//+tf6zW9+I4fDcdW5Y8eOVXh4uMrLy7ugMgAAAKDjbIZhGGYXAQAAAIQCj8cT+Hrjxo1auHChqqurA2NOp1NOp9OM0iRJu3fv1v333y+Px6OoqKgOnbNq1SqtW7dOlZWV17k6AAAAoONY8Q0AAAB0keTk5MArLi5ONpstaMzpdH5rq5N169YpPj5eW7ZsUXp6unr16qVJkyappaVFL730kgYPHqw+ffpo1qxZQduTtLa2at68eRowYIB69+6tvLw87dix44r1bdiwQffcc09Q6P3BBx/ozjvvVExMjGJjY5WTk6P9+/cHjj/wwAPav3+/Pv300879YQEAAADXIMzsAgAAAABcWUtLi5YvX64NGzaoqalJDz74oCZMmKD4+Hj961//0meffaaJEydqzJgxmjx5siRp5syZOnTokDZs2CC3263Nmzdr7NixOnjwoH7wgx+0+zm7du3S1KlTg8YKCwuVnZ2t1atXy+Fw6MCBAwoPDw8cT01Nlcvl0q5duzR06NDr90MAAAAAvgOCbwAAAKCbu3jxolavXh0IlidNmqSXX35ZtbW1cjqdyszM1J133qnt27dr8uTJqqmpUVlZmWpqauR2uyVJ8+bN09atW1VWVqYlS5a0+znHjx8PzP9GTU2N5s+fr2HDhklSu6G52+3W8ePHO/OSAQAAgGtC8A0AAAB0c7169QpaTe1yuTR48OCg/cBdLpfq6uokSQcPHpTP51NaWlrQ92ltbVVCQsJlP+f8+fPf2tu7uLhYP//5z/Xyyy8rPz9fDz300LdWdkdHR6ulpeV7Xx8AAADQ2Qi+AQAAgG7uv7cWkSSbzdbumN/vlyQ1NzfL4XCoqqpKDocjaN6VHp7Zr18/nT17NmistLRUU6dO1RtvvKE333xTixYt0oYNGzRhwoTAnPr6eiUmJn6vawMAAACuB4JvAAAAwGKys7Pl8/lUV1en22677Tudd+jQoW+Np6WlKS0tTXPnztXDDz+ssrKyQPB94cIFffrpp8rOzu60+gEAAIBrZTe7AAAAAACdKy0tTYWFhZo2bZr+8Y9/6PPPP9d7772npUuX6o033rjseQUFBdq9e3fg/fnz5zVz5kzt2LFDx48f1zvvvKPKykplZGQE5uzdu1eRkZEaPXr0db0mAAAA4Lsg+AYAAAAsqKysTNOmTdOTTz6p9PR0jR8/XpWVlUpNTb3sOYWFhfroo49UXV0tSXI4HDpz5oymTZumtLQ0/fSnP9W4ceO0ePHiwDmvvPKKCgsL1atXr+t+TQAAAEBH2QzDMMwuAgAAAED3MH/+fHm9Xq1du/aqc0+fPq309HTt379fQ4YM6YLqAAAAgI5hxTcAAACAgGeeeUaDBg0KPCjzSo4dO6YXXniB0BsAAADdDiu+AQAAAAAAAACWwopvAAAAAAAAAIClEHwDAAAAAAAAACyF4BsAAAAAAAAAYCkE3wAAAAAAAAAASyH4BgAAAAAAAABYCsE3AAAAAAAAAMBSCL4BAAAAAAAAAJZC8A0AAAAAAAAAsBSCbwAAAAAAAACApfwfcYvaqF2YvXoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1gUx/8H8PdR7uhwcAgiiKDYERU1QY1g74JBxRIVS2yJJfGbqCQqamyxoiaWqCRRYgtiLxEVu4ndGLtBsGFBei/z+4PfTm65wtEtn9fz3KPs7uzO7s7s7X12dkbCGGMghBBCCCGEEEIIIYQQQt4RepWdAUIIIYQQQgghhBBCCCGkLFHgmxBCCCGEEEIIIYQQQsg7hQLfhBBCCCGEEEIIIYQQQt4pFPgmhBBCCCGEEEIIIYQQ8k6hwDchhBBCCCGEEEIIIYSQdwoFvgkhhBBCCCGEEEIIIYS8UyjwTQghhBBCCCGEEEIIIeSdQoFvQgghhBBCCCGEEEIIIe8UCnwTQgghhBBCCCGEEEIIeadQ4JsQQiqQRCKBRCJBVFRUmazv559/hkQiQY0aNcpkfRUpMDAQEokEgYGBxZpHyPvo4cOH/Prx8OHDys4OAbB8+XJIJBI0bty4XLeTmJjIz/3Vq1crPH15eVPzRd48kyZNgkQigZ+fX2VnRSMqz5V/nip7+4QQQt5MFPgmhBA1goOD+Q8YiUSCrVu3Fpmme/fuojQUnHq71ahRg59LuVyOzMxMrcvHxcXBwMCAp/Hx8amYjOooMTERwcHBCA4ORmJiYmVnp1IJD1bUfczMzNCgQQOMHTsWN27cqOyslgsfHx+N+1/U5015GNW4cWOdAxxCgFoikbz3ZV+T+/fvY/LkyWjatCmsrKwglUpRtWpVNG7cGAEBAVi1ahVu3rxZ2dl8b125cgVjx45Fw4YNYWFhAZlMBkdHR3h6emLIkCFYv349oqOjVdIdOnQIwcHBOt3DkMqjHDRX/shkMtja2qJu3bro27cvFi5ciJiYmMrOboU7f/48goODsWbNmsrOSrnYtWuX2vNvaGgIhUKBjz76CAsWLEBSUlJlZ5UQQt5KBpWdAUIIeRuEhoaif//+Guc/ffoUhw8fLnI9derUAQCYmJiUWd7eRVWrVkWdOnVQtWrVys4KgIIfpRERERgwYIDGZX755Rfk5eVVYK6KJzExEbNmzQJQEPi1srKq5BxVPj09Pdja2vK/8/LyEB8fj5s3b+LmzZv46aefsHbtWowYMaISc1nA0NCQXz8MDQ1LtS5ra2vY2dmpTM/OzkZCQgIAQC6XQyqVqixjaWlZqm2T4tPX1+fn3sjIqMzXv2bNGkycOBHZ2dl8mqWlJVJSUhAXF4dr165h+/bt8PDweG9bslamGTNmYO7cucjPz+fTrKysEB8fjydPnuDy5cvYtGkTfH19sWvXLlHaQ4cOISQkBL6+vlrvYcibw9zcnN8j5ufnIykpCa9evcKdO3fw+++/Y9q0afDz88MPP/zwxtwjCezs7FCnTh04OjqW6XrPnz+PWbNmwcPDA2PGjKnw7VckGxsbGBgUhGgyMjIQHx+P06dP4/Tp01i1ahUiIyNRt27dSs4lIYS8XajFNyGEaKFQKGBqaorIyEg8evRI43K//vor8vLyiuxy5Pbt27h9+zZatGhRxjl9t8yfPx+3b9/G/PnzKzsr/JyGhoZqXe7nn38WLU/efE5OToiLi+Ofly9fIisrCwcPHoSrqyvy8vIwbty4N+LtjWrVqvHrR7Vq1Uq1rp07d4r2W/js3LmzyGVCQkJKuyukmMzNzfm5L+uAx7FjxzB27FhkZ2ejRYsW2Lt3L9LS0pCYmIjU1FQ8e/YMv//+OwYOHFguQXei3caNGzFnzhzk5+ejU6dOiIqKQmZmJhISEpCRkYGYmBhs2rQJvXr14sEy8nabPXs2v96+ePECWVlZeP78OXbv3o3evXsDACIiIuDu7v7GvYUxbdo03L59G6tWrXovt18WIiMj+flPSkpCfHw85s6dCz09PTx58gQBAQGih2CEEEKKRoFvQgjRwtTUFH369EF+fj5++eUXjcsJQdE3pRsAUnb8/f1hamqKo0ePIjY2Vu0yZ8+exe3bt+Hi4oI2bdpUcA5JWTI0NESXLl14fc/OzsbBgwcrOVeElI8lS5YAAFxcXBAVFYUePXqI3kiyt7eHv78/wsLCcPz48crK5ntLOD9eXl44dOgQvL29IZPJ+Pzq1avjk08+we7du7Fp06bKyiYpZ1WqVEGvXr2wc+dO7N27F8bGxoiPj0f37t2Rnp5e2dkj5cja2hpBQUGYNGkSAOD69eu4ePFiJeeKEELeLhT4JoSQIgwbNgxAQYtexpjK/NOnT+Pu3btwdXUtMuipy+CWf/zxB/r37w9nZ2cYGxvD2toajRo1wvjx43Hu3Dmt67906RL69euHqlWrQiaTwdXVFV9++SXvvqCwnJwcHDlyBBMmTECzZs1QtWpVSKVSVKlSBZ07d8aWLVvU7nNhu3btgp+fHxwcHCCVSiGXy9GmTRusWbMGOTk5RaYvrKjBLbdv346uXbvCzs4OhoaGsLKygpubG3r16oUffvihyP64i8PMzAx9+/bV+vBj48aNonwXJTMzEytWrIC3tzcUCgWkUins7e3h5+eHQ4cOaUynXH5SUlLw7bffom7dujA2NoaNjQ169OiBP//8UyWdj48PXFxc+N8uLi6ifiTV9Ueel5eHn3/+GZ07d4adnR2kUilsbW3RuXNnbN26VWO5EPpG//nnn5GdnY1FixbBw8MDpqamsLS0RLt27bTu45tCecDC1NRUlfkZGRnYs2cPPv30UzRu3Bi2traQyWRwcHCAn59fkcHy27dvY9SoUahduzZMTExgbGwMJycnfPjhhwgKCsLt27dFy+syuGV+fj62b98OPz8/VKtWjfcP6+npialTp5Z5n+V///035s2bh7Zt28LFxQVGRkawtLREs2bNMGfOHI39aes6CJzQj/fy5cvLNN+CBQsWQCKRwMnJSWs3RdnZ2VAoFEXmZe/evejQoQMUCgVMTEzg4eGBxYsXa7wGFh6ILSwsDG3btoVCoYCenh7fli7H6+XLl5gwYQJq1KgBIyMjVKtWDYMGDcI///yj9RgI6+vYsSOMjY21Lqtt/qNHjzBx4kTUrVsXJiYmMDc3h4eHB7799lu8fv1a63oLmzFjBiQSCWrWrKl1uZycHH5e1LXwzMnJwdq1a9G+fXvY2tpCKpXCzs4O3bt3V+kSRJmVlRUkEgl27dqFhIQETJ06FfXq1YOpqWmF9hOfk5ODW7duAQB69uxZ5HeL8vm5evUqJBIJf0Nj9+7dKv0HKx+D169fY9OmTQgICECDBg1gZWUFIyMjuLi4YMiQIbhy5YrG7RYux/v370fHjh1hY2MDY2NjuLu7Y+HChUXeC+zcuRM+Pj6wtLSEubk5mjZtihUrVhTZhVhZ5l1THRSUtJ6Vpe7du2PFihUACr4XVq9erXHZmzdvYsyYMahduzZMTU1hamqKhg0b4uuvv0ZcXJzK8m3atIFEIsHw4cO15uHSpUu8HCl/r2gbXDI1NRXh4eEIDAxEo0aNoFAoeF/1ffv2VXtfLFz7vvjiCwDAtWvXVMqx8jnSZXDLc+fOYeDAgXBycoJMJoO1tTW/X83NzVWbpvBAxmfPnoWfnx/s7Owgk8ng5uaGoKAgtfcKZaVLly78/5rKW0m/kwHxdS8jIwNz5sxBgwYNYGJiArlcjs6dO2v97QIASUlJmDp1Ktzc3GBkZAQ7Ozv4+vri7NmzKtvQ5ODBg+jbty8cHR0hk8lgZWWFli1bIiQkpEzv7Qkh7xlGCCFExcyZMxkA5uzszPLz81nNmjUZAHbixAmVZYcPH84AsNmzZ7Pjx48zAAwAi46OVllWmHf8+HGVeWlpaaxv3758GQDM3NycyWQy/reHh4coTWhoKM9nWFgYMzQ0ZACYpaUl09PT4+kaNGjAUlJSVLapnF8ATCaTMTMzM9G0vn37sry8PLXHKSUlhfXo0UO0vIWFBZNIJPxvLy8v9vr1a5W0Q4cOZQDY0KFDizVPON7Cx8zMjJmYmIimqTv2xeXs7MwAsJkzZ7ITJ04wAMzV1ZXl5+eLlktLS2Pm5uZMIpGwhw8f8rx7e3urXe/du3eZm5sbz6tEImGWlpai/I8dO1ZtWmH+b7/9xmrVqsUAMCMjI9H+GxoaskOHDonS9e7dmykUCr6MQqFgdnZ2/NO7d2/R8nFxceyDDz4Q5alwHnv16sWysrI0HreVK1fydRgaGorKlUQiYRs2bCjG2ShbwjlydnbWuMzp06d5fnfv3q0yX6h7wsfY2FilHE6ePFntuv/44w9RvTY0NGRWVlaitDNnzhSliY6O1lq+X758ydq0aaNyzoRrAgDm6+ur9bgoXw/UXaMKUy4Tenp6Kvvg6urKHj58qJIuISGBL3PlyhWN6/fw8GAA2LJlyzTOK2qfGGNs2bJlfHsJCQl8+vPnz5lUKmUA2N69ezWm37JlC69r8fHxKuv18PBgc+fO5WXbysqK6evr8222bt1a7fV34sSJfB+E65pEImFyuZzp6+vz/S7qeN26dYvZ29vzZYyMjJi5uTkvl+Hh4RrTOzg4MACsW7duRR5HTfbv389MTU1F12RjY2P+t52dHbt06ZJKOk37de/ePT799OnTGre7a9cuXn9evnwpmhcTE8Pc3d21XmcHDRrEcnNzVdYrLLdq1SpWvXp1/t1oYWGhUobKU3Z2Ns/ruHHjipX2xo0bzM7Ojl+TZDKZ6JpvZ2fHDh48yJcXyqLyvYfytcPAwICFhoaq3ZZyOf7mm29E9UB5ndrqqvL2C9ehbt26sfHjx2tcR1nlXVsdZKx09awoynVB3fWusNzcXP5d6+7urnaZxYsXi+4DjYyMRN87NjY2KvXrp59+4scwPT1d4/YnTZrEALDGjRuLpisfz8KUr8MAmKmpKTMyMhJNmz17tihNUlISs7Oz48fZwMBApRyvW7dOp+0zxlhwcLBoe1ZWVszAwID//cEHH7BXr15pzLuHhwdbs2YNL5tWVlai+93mzZurvS8qSkRERJFl5/Dhw3yZn376Se0yJf1OVk67YcMGfu2UyWSia7u+vj7bsWOH2vSxsbHMxcVFdF8jrFNfX5+FhYXxvyMiIlTSZ2RksP79+6vUZeUy3LhxYxYXF6fjUSWEkP9Q4JsQQtRQDnwzxticOXMYoBqITU1NZWZmZkxPT4/FxsaWKvDdr18/frM6ZcoU9ujRI8YYY/n5+ezx48csLCyMjRkzRpRGCL6ZmJgwmUzGRo4cyWJjYxljBQHZVatW8R+A06dPV9nm+fPn2cCBA9n+/ftZXFwcD+rGx8ezkJAQ/kM/JCRE7XHy8/NjAFitWrXYb7/9xpKTkxljBTewu3fvZq6urgwA8/PzU0lbksD3qVOn+DFauHChKAj16tUrdvjwYTZ06FD25MkTtfktDuXAN2OMB5oLn7uff/6ZAWAdOnQQ5V1d4DshIYHVqFGDAWDt2rVjJ0+eZJmZmYwxxhITE9nSpUt5gHj58uUq6YXyI5fLWf369dmxY8dYXl4ey8/PZ3/99RerU6cOL7eFH1YUFTgVZGVlsebNmzMArGnTpmz//v0sLS2NMVZQ3n/55RdWpUoVBoBNmjRJ43GTy+WsWrVqbNeuXSw7O5sxxtjt27fZhx9+yINjiYmJGvNRnrQFvrOzs9nhw4f5+a5fvz7LyclRWS4iIoKNGjWKHT9+XPRD+enTp2zWrFm83qkLmgvr7tSpE/v777/59IyMDPb333+z4OBgtnHjRlEabecvJyeHtWrViv9QXbhwIXvx4gVjrCBAEh0dzdauXcumTZum9bgUN/Dds2dPtnbtWhYdHc3PcUZGBjtw4AAPTLdt21Yl3ZsS+GaM8R/avXr10pi+Xbt2DAD75JNP1K5X+HEeGBjInj59yhgrqCtLly7lAZJhw4aprFcI0gjfIbNnz+YPCdPT0/l3gLbjlZmZyerWrcuAggDznj17eN2/fPkya9asmSj4UTi9cA2XSCRs7dq1agPB2ty5c4cHV5s2bcouXLjAGCv43jpy5Ai/Hjg4OKgElLTtl5eXFwPARo8erXHb/v7+as9dWloaq1+/PgPAWrZsyY4cOcIyMjIYY4wlJyezNWvWMLlczgCw4OBglfUKwRkzMzPm7OzMDhw4wI/Lv//+y8t6RWjcuDGv17t27VJ58FqUogKBgkWLFrEpU6awixcv8u/x/Px8dufOHfbpp58yAEwqlbK7d+9q3IYQLP7uu+94OU5ISGBffPEFP8/h4eEq6X/55Rc+PzAwkD179owxVvBgfdGiRUxfX5+XYXX7URZ5L6oOlraeFaW4gW/GGBs1ahSvu4XrlnBfYmxszGbOnMkeP37MGGMsLy+PXb9+nXXv3p0BYLa2tqKHRklJSTwYvWXLFrXbzc3NZXZ2dgwAW7p0qWietvK2adMm9tlnn7FTp06JGkPExsayqVOn8gBnVFSUSlrlwLM2RW1fOMYDBw7k5zYjI4OtXbuW73eXLl00bt/CwoLp6+uzCRMmiMrpwoULef6XLFmiNY/q6BL4Vq5HR48eVbtMSb+TGfvvuieXy5mrqys7ePAgy83NZfn5+ezatWs8vUKh4Petgry8PNayZUt+jMLCwvj2Hzx4wHr06MFMTU35g2Z1gW/hvszJyYlt3LiR3x9mZmayQ4cOsXr16jEAzMfHR7eDSgghSijwTQghahQOfMfGxjI9PT1mamoqarm3ceNGBoB17NiRMcZKHPiOjIzk83788Ued86nc6lRdAJkxxr788ksenC6uHTt2MACsZs2aKvP27dvHADB7e3v+o6qwR48e8dYihW/mSxL4XrhwIQ8YlrfCge/vvvuOAWBDhgwRLSe0sg0LCxPlXV3g+3//+x8PeqsLpjLG2M6dO/mPi8LLCOfa1taWPX/+XCXt9evX+TKFW3LpGvhetWoVAwreEhCCCIVdvHiRSSQSJpVKVfIhHDeZTMZu3bqlkvbFixf8B+bmzZs15qM8CedIT09P1HJMoVDw1lu2trZs9OjRoocrxbFo0SIGgLVv3140/fnz5/w8CEFSXWg7f+vXr+cBkP3795cov4wVP/CtzatXr/iDM+XgPmNlG/hW15K18EdoLagu8B0VFcWAghZp6q5j9+7d42Xi5MmTonnKAfWePXuq3YfFixfzc3Pnzh3RPOWWqoVbOup6vNauXcvL8l9//aU2bdWqVTWmv3TpkqjVpUKhYP7+/mz+/Pnsjz/+0HgNEAgPDhwcHNS2hL5z5w5f/zfffKPzfq1evZoHYQoHWYS0QuvV33//XTRPuFa3aNGCB7wLO3bsGA94Fm6NLwSAjIyM1AZLK9LevXtFLUqrVavGBg4cyJYsWcJOnDihtVUuY7oHvosyaNAgBqh/i0W5HGsK2rZv354BYH369BFNz83NZU5OTlrr0IIFC/j6S7IfuuZdWx0sbT0rSkkC3z/88ANPIzxwYqwgECs82FH3oIGxgkClj4+P6B5HEBAQwACwrl27qk174MABfs0s3Pq2NOVNeFvA399fZV5pA985OTm8nHXr1k3tA6Rff/2VH88jR46o3T4ANnHiRLXbFt4YaNasWVG7qkJb4Ds+Pp7NmzePB9ZdXFyK/YCSMe3fyYz9d92zsLBgMTExKvMfPnzI87Bv3z7RvL179/L8q3t7KicnhzVr1owvUzjwfebMGX69v3//vtr8v3z5kllbW5fJ/Qkh5P1DfXwTQogOnJyc0KFDB6SlpWH79u18ujCoZVH9IRZF6CO6QYMGGDt2bInW8e2336qd7uvrCwC4f/9+sQdB6t69OwDgwYMHePbsmWje+vXrAQCDBw9GtWrV1KZ3dHRE27ZtAQCHDx8u1rbVsbKyAlDQz2ZR/X6WtaFDh0JPTw+///47UlJSABQcl1OnTsHS0hIff/yx1vSMMX6eJ0+eDAMDA7XL+fn5wcLCAq9evcKlS5fULjNq1ChUqVJFZbq7uzvvy/v69es675sy4byOGzcO5ubmapfx9PREgwYNkJ2drXHAuz59+qBu3boq021tbeHl5VWqPJaV/Px8PH/+nH9evXrF+y5PSUlBUlISXr58WaJ1C3Xn3LlzorJqbm4OPb2C26/CdaqkhHLVrVs3dOvWrUzWWVo2Njb48MMPARSMg1BesrKyROdQ3Ueor+p4e3ujfv36yMvL48dR2fr168EYQ7169fDRRx9pXM+MGTPUTh8/fjzkcjkYY9i2bZvaZYyMjPjAZcW1detWAEDXrl3RvHlzlflWVlZa1920aVMcPXoUjRo1AgC8evUK4eHhmDZtGjp16gS5XI6OHTuqvX5nZ2fzvlonTpzIr8/KateujSFDhgAAtmzZovN+BQQEQCqVIiEhAfv27VOZv337dmRlZUEul6NHjx6iecI1bOLEiTAyMlK7/rZt28LR0RGpqak4c+aM2mX8/f3h5uamc57LQ48ePbB7925+XX/y5Al+++03TJ48Gd7e3pDL5ejdu7fasR3KknA901aX5XI5xo0bp3Zer169AKhe88+cOYNHjx4B0FyHJk2apLZs6UqXvBdVB0tbz8qDtbU1/79yP/rh4eFISEiAm5ubxvsSPT09fPLJJwBU780GDx4MoGC8mefPn6ukFQZR7dSpE+zs7Eq3E0p0OU8ldfbsWV7OZs6cqba//MGDB6N27doANF+rJBIJgoKC1M4T7rVLe1/ToUMH2Nvbw97eHpaWlrCxsUFQUBDy8/NhbW2Nbdu2QV9fv9jr1fU7efDgwahevbrKdGdnZ3h4eABQ3ccdO3YAADw8PFSuxwBgYGCAadOmadzmTz/9BKDgvlHT2A4KhYLf35TF7wlCyPuFAt+EEKIjYZBLIThy//59nDp1ClZWVloH0tGFMPBLz549S5Te2toatWrVUjvPwcGB/1/dIJcpKSlYtGgRvL29UaVKFUilUj5okImJCV/uyZMnonTCjfO6dev4Tbq6T2RkJAAgJiamRPumrEOHDjAyMsKVK1fw0UcfYcOGDYiOji71enXh6OiIjh07Ij09nQewQkNDwRjDgAEDNAZYBDdv3uQ/TgMDAzUer6pVq/IBkjQdsw8++EDjdoTzXdwB5YCCsiD8oJk+fbrW83rnzp1KyWNZcnZ2Bit4+41/UlNTcfbsWT6I54cffqhxUNnnz59j5syZ8PLygo2NDQwMDHjdqV+/PgAgPT1dVO+MjY3Rvn17AAWDVc2YMQN//vknsrOzS7QPubm5uHDhAoCSXz9KIzw8HB9//DFq1KgBExMT0aBjf/zxBwDg8ePH5bZ9X19flXNY+LNs2TKt6xg9ejQAYMOGDcjPz+fTc3Jy8PPPPwMoeNikiYWFBTw9PdXOk0qlaNWqFQDg4sWLapdp1KiRxodMRRHW2a5dO43LaJsHAC1btsTVq1dx5swZTJ8+HR07doStrS2AgkFuIyMj0aVLF0ycOFGU7saNG3ywsQ4dOmhcf8eOHQEA//77r8aBlgtTDmgLgTZlwrR+/fpBJpPx6U+fPuWDv06YMEHrNUwY3E/TNUw4b5WtZ8+euHfvHo4cOYKvvvoK3t7esLS0BFDw4GfXrl1o2bIllixZUqrt3L59GxMnTkTjxo1haWkJfX19XpcHDhwIQHtdbtKkCaRSqdp5mq75QvnVVodkMlmR56K0eS+qDpZFPStrwkPawoR7s9jYWK3l/3//+x8A1fIvDGidl5enEgBOSUnB7t27AYA/0CqOx48fIygoCC1atIC1tbXoO7Nly5YACr5XNQ0yWVLK5UzdgwuBcK3SdK12cXFR2+gA+K+MZ2dnIy0trcR5jY+P5w9tk5OT+fSWLVvi7t27WvMPlP47uST3bpcvXwZQ8CBZE3WDqAuEMrt161atZXbnzp0Ayub3BCHk/aK+uRkhhBAVvXv3hlwux5kzZ3D37l388ssvAICBAwcWGfQsivAD3NnZuUTptf1gU25ZnJOTI5p39+5dtG/fXnQTbGJiAisrK94qVWjxo3wjn5OTg1evXgEoGMU9KSmpyDwWt7W5Oq6urli/fj3GjBmDc+fO8YCkra0t2rZti4EDB6JXr15qW/OUheHDh+Pw4cMIDQ3F8OHD8euvv/LpRXn69Cn/v66tiDUdM13Od+FzrYu4uDge+NM1KF2RebS3t1c7PSAgACEhIcValyampqbw8vJCeHg4vLy8cOHCBQwePBh3797ldQIoaMndrVs3JCYm8mlmZmb8h2ZeXh6vI2lpaVAoFHy59evXo1evXrh27RrmzJmDOXPmQCqVonnz5vD19cWIESNErfm0iY+P58expNePksjOzkafPn2wd+9ePs3Q0BDW1tYwNDQEACQmJiIrK6tUQYCKMGTIEEybNg0xMTH4448/0KVLFwDAnj178Pz5cxgZGWkN8jg4OGi95ghvxLx48ULtfE2BlKJkZWXx1uya3roBCh7aFUUIPAnBJ6Dg4e727dvx/fffIykpCStWrEDz5s15S1Hl/dF1+y9evIBcLi8yP0DBedm5cycOHDiA+Ph42NjYAACio6N5K+3C50X5AW18fLxO29F0DSvpeQEKWi+vW7dO7by7d+/CwsKiWOvT19dHhw4d+AMGxhhu3LiBsLAwLF++HFlZWfjf//6HFi1aaH0zQZNff/0VI0eOFF2TLS0t+b1NVlYWEhMTtdblklzzhTJUVB3SVobLIu/aznVZ1rOypPwQSagbwH/3GsLbMEUpXP4NDAwwYMAALF++HJs2bRK1ZA8PD0d6ejosLCx4C2ddRUZGws/PT3QezM3NYWxsDIlEgtzcXF5n09LS+MOdslDccqbpWl3Se+3iuHLlCho3bgyg4A2ckydP4uuvv8bZs2cxadIk/Prrr2r3oay+k0tSj4V7WuWGNoVZW1vDyMiIPyxVJpTZlJQUrW9oCcri9wQh5P1CLb4JIURHMpkMAwYMAFDQMlAIegotwUtDuIktr4CtJsOGDcPjx49Ro0YN7NixA/Hx8UhLS8OLFy8QFxcnCiIoty5S7rph69atRba4ZIzxlpOlNWjQIMTExGDNmjUICAiAk5MTXr58iZBHKAsAACAASURBVO3bt8PPzw/e3t6iVjJlydfXF9bW1jh79ixWrVqFR48eoUGDBkW2wAHExywuLk6nYxYYGFgu+6FLHs+fP69THoODgyssf5q6stDlwUtx6evr87r94MED/PXXX3xebm4uBgwYgMTERDRu3BgHDhxAcnIyUlJS8Pz5c8TFxeH8+fN8+cIt86pXr47Lly/j0KFDmDBhAjw9PZGfn48zZ87g66+/Rq1atXDs2LFi57kirx8hISHYu3cvpFIp5s+fj3///RdZWVmIj49HXFwc4uLieOs5TS0T3xRWVlbo378/AIiClcqvX2t7EFHa416S19YB8XEtj3Nfq1YtBAUF4ciRIzzgIXQjUpiu2y9OPrt16waFQoGcnBze1QQAbN68GYwx1KxZUxSoB8TXsNu3b+t0DdPURUVJzwsAJCcna7xeKb9VUFISiQTu7u5YsGCBqFXuhg0bir2uR48eYfTo0cjJyUH37t1x5swZZGZmIjExkddl4byXV10uafktq7xrO9flXc9K6tq1awAK8iR0hQP8Vwf69++vU/lXfngrELo7uXz5Mv755x8+XXjTom/fvjA2NtY5r2lpaRg0aBDS0tLg5eWFyMhIpKam8noSFxcn6r6issvZm3KeFQoFPv74Yxw9ehSWlpbYvHmzxof8lfmdLKyvqOOmabtCmV2zZo1OZVboYosQQnRFgW9CCCkGIRC2fPlyPH78GA0bNkSzZs1KvV6hJavwinZFePToEe9iZcuWLWqDO0JL9MKMjIx4a5y///67fDOqhrW1NUaPHo2tW7ciNjYW9+/fx9SpUyGRSHDq1KlyC8YqP/z46quvAOj+4EO5tXJlHDNdKPfX+SbmsbwfqhSm3IJauUudc+fOISYmBvr6+ti3bx+6du2q0kpKU90R6OnpoXPnzggJCcHFixfx+vVrhIWFoXr16khISMDAgQN16v7ExsaGt+aqyOuHEIj84osvMHXqVLi4uKj86NV0DJRbxqlr/SUojwcamowZMwYAsHfvXsTFxSEmJgZHjhwB8F9XKJo8efJEayBBeIBYmhbE6hgZGfFyp+3V9cLdVBVX8+bN0aRJEwDgXRwB4v0R+s9VRzlvQhcqujA0NERAQAAAcXcnmzdvBvBfcE7Zm3KdXb58ucbrVWn6q1and+/e/Fwonx9d7dq1C5mZmXB0dERERARatmwp6j4GKPp6VlJCvnWtQ4VVRN4rqp4VR15eHg8UN2rUSHTvJtSB0pT/pk2bomHDhgD+q3uPHz9GVFQUAPV1T5tjx47hxYsXMDIywv79+9G+fXuYmpqKlimvMgboXs6E81uc61RFcHZ2xsyZMwEUvE2irkV6ab6TS0s4vspvNhb2+vVrZGVlqZ1XFmWWEEK0ocA3IYQUQ7NmzeDu7s4DUqUd1FIgtFpTfkWxvCkHKoSgRmFC/9zqCH1u7tixo0xasJVGzZo1MX/+fN6XpxCwKg/COc/OzoaBgYHOPwAbNmzIX29Xbr1YUZS76dD0w08ul/O+qSsjj28a5SCH8o90oe7Y2tpqfPVdW91Rx9zcHAMHDuQtNp8/f67Tj0ADAwO0aNECQOVcPzRdO16+fMlbJBZmamrKg/WaAqbPnz+v0H48mzdvDk9PT+Tm5iI0NJT3912vXj20bt1aa9rk5GTex2lh2dnZ/AFjWTwkLUxYp6ZBZgGU6O2BwszMzABAFFRs2LAh707i6NGjGtMKdaFmzZo6d3MiELoy+fPPP3H37l3+L6A++FajRg1eJ9+na5hwfSoc9BWu+9qCfUIdbNiwIa+XhRX3eqYrofxqq0NZWVkaByCtqLxXVD3TVWhoKL8+Fn4zTLg3++eff3Djxo0Sb0OoX2FhYcjPz+f/Ojs7o02bNsVal3CeatSoofEaoO086VKOtVEuZ8KYGNryoMtbfBVt7NixsLe3R0pKCr777juV+aX5Ti6tpk2bAgB/MKKOtnlCmY2IiCjxeCeEEKINBb4JIaSYFi5ciMmTJ2Py5Mm8r9PSGjFiBICCHyqrV68uk3UWRbn/RHU3w5purgXCYG93797FokWLtG4rLS2tTG5mNbUWEQiv3pbmFfWiNG3aFLNmzcLkyZOxbNkynVtxGhgY8KD5L7/8wgfz0aSsB35U7lNW3avNAuG8Hj16tMjAUWUPTlmeGGOiLgSUB14T6o7QdUFhjx8/xooVK9Sut6h6oPz6uK7lWLh+HDhwAAcOHNApTWkJx0DTD+lvv/1WYz+nEokEjRo1AlDQZ6w68+bNq/AuUoRW3+vXr+eDGGsb1FKZpmvljz/+yOtJv379yiCXYkKL6IMHD+LSpUsq85OSkrT2fx8ZGSnqHkSd+/fv8+C9EOAACgbu7N27N4CC1+zVXVcePHjAuwUT3pYpjhYtWqBOnToAClqeCq1PW7duDVdXV7VpPv30UwDAzp07cfDgQa3rf9OvYcrdP2hy6tQp/kaK8vkB/rvua7vmC3X55s2bagcVPH36dLk9VGvVqhXvV1lTHVq5cqXGQVErKu+lrWdl6cCBA5gwYQKAgsEWC7+R0q9fP/5WwWeffVbkd46mY/vJJ59AT08Pjx8/xvHjx3ndGzx4cLG7AhHO08OHD9V2RXfv3j2N3SgBupVjbVq1agUnJycAwKxZs9R+t/z222/8jYmSXKvKm5GREb788ksABV1yFX5oXJrv5NLq06cP37a6e5Dc3FwsXLhQY3rhe/bp06e8ZbsmmZmZyMjIKEVuCSHvIwp8E0JIMXXt2hWLFy/G4sWLy+x1yLZt2/I+Zj///HNMmzaNtzZljOHp06dYv349D3CVhfr166N69eoACloxK/+YO3fuHHx8fDT+IAIK+rsWgh5Tp07F2LFjeUs8oCDA9+eff2LKlClwdnbWOFhQcXz++efo168fwsPDRetLTU3FmjVreIClW7dupd6WNjNmzMDixYvx+eefFyvd9OnTUbNmTeTm5qJLly5YunSpaKDLpKQkHDp0CEOHDi3RAGXaWFlZ8ZaQoaGhaoMEQEHw74MPPgBQ8AP322+/Ff3ASk9PR1RUFD7//HPUrFmzTPP4poiOjsaoUaN4C6WAgABRy+7WrVvD1NQUjDH069ePl3vh9XMfHx+NgYGzZ8+iUaNGWLZsGW7dusXflmCM4ezZsxg7diyAgkG23N3ddcrv4MGD0bp1azDG4O/vj0WLFvGBNfPy8vDw4UMsW7YMU6ZMKdHxUEcYAHLZsmUICwvjP6gfP36MTz/9FOvWrRMNuFaYEFjYsWMHFi1axAfbiouLw6RJk/Djjz8WewDA0ho4cCAsLS3x77//4smTJ0UOaikwNzfHnj17MHLkSP4qeXp6OkJCQniXSEOHDuUB3LI0dOhQ1K5dG3l5eejZsyf279/Py9TVq1fRqVMnrQOZjRkzBm5ubpgxYwbOnz8verj48uVL/PDDD/D29kZWVhYkEgkPvAiCg4NhYmKCp0+fokOHDvx7hDGGo0ePomPHjsjIyICDg4PGvrSLIrQ83bRpE7Zt2yaaps7kyZPh7u4Oxhh69+6NuXPn4tmzZ3x+SkoKIiMjMWrUKHh4eJQoTxWle/fuaNiwIRYuXIgrV67w6zZjDE+ePMGCBQvQs2dPAAWBsXHjxonSC91VXLhwAVevXlW7DaEux8bGYvjw4fxhXmZmJn799Vf06NGjzLtnEejr62P27NkACrotGTlypGhA7aVLl2Lq1Kkat19ReS9tPSutV69eYe/evfD390ePHj2QkZEBhUKBAwcOqPS1bWlpieXLlwMATp48CW9vbxw/flxUdu7fv49Vq1ahcePGCAsLU7tNBwcHtGvXDkDBPZ7Q13dxuzkBgHbt2kEqlSIzMxMBAQH8QU1ubi52796Ntm3bqrytoEwox7GxsTo9DCpMX18f8+bNA1Dw4GDw4MH8HjszMxPr16/HyJEjARSUqfbt2xd7GxVh7NixkMvlyMrKwty5c0XzSvudXBrdu3fHhx9+CKBgHJ5t27bx7UdHR8Pf3x///PMPpFKp2vTe3t6828AFCxZg6NChor7lc3JycOnSJUyfPh0uLi548OBBuewHIeQdxgghhKiYOXMmA8CcnZ2Lle748eMMAAPAoqOjVeYL844fP64yLy0tjX388cd8GQDMwsKCyWQy/reHh4coTWhoaJH5jI6O1pinvXv3MgMDAz7fxMSEmZiY8P9HRkYWmef+/fuL8mxqasrkcjnT09MTTX/8+LEo7dChQxkANnToUJX1aponTBc+ZmZmzMrKSjStdevWLDU1VePx0JWzszMDwGbOnFmsdEIevb291c7/999/mYeHhyjPVlZWzMLCQjStVq1aKmm1nQuBt7e3xnzPmTOHr0MmkzEnJyfm7OzMAgICRMu9fPmStWvXTqUsWllZMYlEwqcZGBiobEM4bqGhoUUeI3XnviII29fT02N2dnaij7m5uWi/fXx8WHJysso6Vq9erVIWjYyMGACmUCjYnj171NY75WsEAGZoaMhsbGxE9dDCwoKdPHlStD1t9ZixgnP20Ucf8WUkEgmzsrJihoaGfJqvr6/W46KcN21ljDHG4uLi+LkGwPT19UV1ccqUKczX15cBYBMnTlRJn5mZyZo3by7Kr1wu5+tau3YtryfLli1TSS/MK2qfGGNs2bJlfDsJCQlal/3888/5sp988olO6/Xw8GBz584V7Yfy+fTy8lJbhiZOnKjTPiQkJPB1XblyRWX+jRs3WJUqVfgyxsbGvBwbGxuz8PBwjenr1q0rKo9CuRHKsvI6N27cqDZ/+/bt498bAJi5ubno7ypVqrCLFy8We78EMTExouuOTCYr8jw+efKEeXl5ifbB0tKSWVpaitalUChU0lpaWjIALCIiQus2KkLh86Cnp8fkcjmTSqWi6XK5nB08eFAlfVpaGnNycuLL2djYMGdnZ+bs7MwOHz7Mlxs9erTKsRLKcP369dmGDRv49MJ0KccREREa0zMmrneF61C3bt3Y+PHjNW6jvPMuKE09K4pyXTA3N+ffR7a2tqJ7QKEM+Pv7s2fPnmld5+rVq0XlRPiuKVx2Vq1apXEdv/76q2jZDz74QOs2tR3P+fPni9Zlbm7O8+Lg4MB+//13rddpT09P0TkWyvGGDRt02j5j/93bK9cb5e/IDz74gL169UolnfK1XpMrV67o/D1TmFA/dCk7wj4YGhqyf//9l08v7XeyLtc9bekfPnwo2r5UKuXbNzAwYFu3buX3uequVVlZWWzkyJGi82NiYsKsra2Zvr6+aPqNGze0HiNCCCmMWnwTQsgbwsTEBOHh4di3bx969+4NBwcHZGZmwszMDI0aNcKECROwbt26Mt1mjx49cPLkSXTv3h1WVlbIzc2FQqHAsGHDcPny5SJbvZiYmGDLli04fvw4Bg8eDFdXV+Tn5yM1NRVVqlRBu3bt8P333+PevXsa+0IujunTp2PFihXo3bs36tatCwMDA76tjh07YuPGjYiKilIZNOlN4uLigosXL/LWaFWrVuVdwbi4uKB3797YuHEjzp07V+bbDgoKQkhICJo1awZDQ0M8fvwYMTExKgMeKRQKREZGYvfu3ejTpw+cnJyQlZWFjIwMVKtWDV27dsWqVasqdDDF8pCfn8+7KxE+2dnZcHR0hK+vL7Zt24Zjx46pDFwJFLSU3b9/P3x8fGBmZobc3FxUq1YN48ePx7Vr1zS21m7evDm2b9+OsWPHwtPTEwqFAklJSTAyMkLjxo3x9ddf49atW8Vu8a9QKBAVFYXNmzeja9eusLW1RVpaGuRyOTw9PTF16lTe4q0s2NnZ4a+//sLYsWPh5OQEPT09GBoaolOnTti9ezcWLFigNb1MJsPRo0cRFBSEWrVqwdDQEPr6+ujRowdOnDihcxcjZa1v3778/0UNaqksKCiIt1yUSCQwMDDgLXWjoqLUlqGy0qBBA1y/fh2fffYZqlevjry8PJiZmWHAgAG4cOECb7WpzqVLl7Br1y5MmDABrVq1QpUqVZCWlob8/HxUqVIFbdq0QXBwMO7cuaNxIN/u3bvj1q1bGD9+PNzc3JCTkwOJRIKGDRsiKCgIN2/eFHUVVFzVq1eHt7c3/7tXr15FtuJ1cHDA6dOnsW3bNvj5+cHBwQEZGRnIzMxE9erV0bNnT6xdu7ZUfSBXhGfPnuG3337DqFGj0KJFC8jlcqSkpEAikaBq1aro0KEDFi1ahHv37vEWn8pMTExw4sQJDBkyBNWrV0dycjJiYmIQExOD9PR0vtzq1auxdu1aNG3aFEZGRsjLy0O9evUQHByMCxcuqAx8XdZWrlyJ7du346OPPoKZmRmys7Ph7u6O5cuXY8+ePaIxKgqrqLyXpp4VR0pKCv8+SkpKgrm5OerUqYM+ffpg4cKFiI6Oxu+//y4ayFWdMWPG4N69e/j666/RpEkTmJiYIDExESYmJvD09MQXX3yBEydO8LeM1Pn44495//4AdHoDRpOpU6dix44daNWqFUxMTJCbm4saNWpg8uTJuHbtWpFvkB08eBDjxo1DzZo1kZmZycuxuq5TNAkODsaZM2fQv39/VKtWDampqTA1NUXr1q3x448/4tSpU+XWKrqsTJgwAWZmZsjJycGcOXP49NJ+J5eWs7Mzrl69iq+++oqfS6lUCj8/P5w+fRp9+vRBamoqAKi9fkulUvz00084d+4chg0bhlq1agEoqA8KhQLe3t6YO3cu/vnnHzRo0KBc94UQ8u6RMFbBHSgSQgghhBDyBpo+fTq+++471KtXDzdv3qzs7BBCCCFvvQsXLqBFixaQSCRITEys8K7MCCHvN2rxTQghhBBC3ntCX68AtLaCJIQQQoju5s+fDwDw8vKioDchpMJR4JsQQgghhLzXcnNz8fXXXyMuLg42NjYIDAys7CwRQgghb4WLFy9i3LhxOHfuHB/olTGGv//+G/369UNERASAgi5vCCGkohlUdgYIIYQQQgipDBs3bsTs2bPx6tUr/mN94cKF5donNyGEEPIuSU1NxerVq7F69WoABf14C2PDCGbMmIGePXtWVhYJIe8xCnwTQgh5Jz169AjNmzcvVhonJydcuHChnHJECHnTCIP9yWQyNGjQAJMnT9Y4iCMhhBBCVLm7u2P+/Pk4evQo7t27h5cvX4IxBmdnZ7Rq1Qrjxo1Dq1atKjubhJD3FA1uSQgh5J308OFDuLi4FCuNs7MzHj58WD4ZIoQQQgghhBBCSIWhwDchhBBCCCGEEEIIIYSQdwp1dQIgPz8fT58+hbm5OSQSSWVnhxBCCCGEEEIIIYQQQogajDGkpKTAwcEBenp6GpejwDeAp0+fwsnJqbKzQQghhBBCCCGEEEIIIUQHjx49gqOjo8b5FPgGYG5uDqDgYFlYWFRybgghhBBCCCGEEEIIIYSok5ycDCcnJx7T1YQC3wDv3sTCwoIC34QQQgghhBBCCCGEEPKGK6rLas2doBBCCCGEEEIIIYQQQgghbyEKfBNCCCGEEEIIIYQQQgh5p1DgmxBCCCGEEEIIIYQQQsg7hfr4JoQQQgghhBBCCCFvLcYYcnNzkZeXV9lZIYSUAX19fRgYGBTZh3dRKPBNCCGEEEIIIYQQQt5K2dnZePbsGdLT0ys7K4SQMmRiYoKqVatCKpWWeB0U+CaEEEIIIYQQQgghb538/HxER0dDX18fDg4OkEqlpW4hSgipXIwxZGdn4+XLl4iOjoabmxv09ErWWzcFvgkhhBBCCCGEEELIWyc7Oxv5+flwcnKCiYlJZWeHEFJGjI2NYWhoiJiYGGRnZ8PIyKhE66HBLQkhhBBCCCGEEELIW6ukrUEJIW+usqjXdGUghBBCCCGEEEIIIYQQ8k6hwDchhBBCCCGEEEIIIYSQdwoFvgkhhBBCCCGEEEIIIYS8UyjwTQghhBBCCCGEEEJIBQoMDIREIlH5dOnSpbKzRsg7w6CyM0AIIYQQQgghhBBCyPumS5cuCA0NFU2TyWSVlBtC3j3U4psQQgghhBBCCCGEvBMYY0jPzq3wD2Os2HmVyWSwt7cXfeRyOQBAIpFg/fr16N27N0xMTODm5oY9e/bwtJpajEdFRWH27Nlwd3dX2Z6npydmzJjB0/v5+WHevHmws7ODlZUVZs2ahdzcXHz11VewtraGo6MjNm7cKFrHkydPEBAQALlcDhsbG/j6+uLhw4fF3ndCKgK1+CaEEEIIIYQQQggh74SMnDzUn3G4wrd7c3ZnmEjLNsw2a9YsfP/991i0aBFWrlyJQYMGISYmBtbW1ggJCcGCBQv4sgsWLMCWLVtQt25d1KpVC7NmzcKFCxfQvHlzAMD169dx5coV7Nixg6c5duwYHB0dcfLkSZw5cwYjRozAuXPn0KZNG/z555/Ytm0bxowZg44dO8LJyQnp6elo27YtPvroI5w8eRIGBgb47rvv0KVLF1y/fh1SqbRM95+Q0qIW34QQQgghhBBCCCGEVLB9+/bBzMxM9JkzZw6fHxgYiAEDBqBWrVqYN28e0tLS8NdffwEALC0teSvxs2fPYs2aNQgPD4e9vT0cHR3RuXNnUTcqoaGh8Pb2hqurK59mbW2NFStWoE6dOhg+fDjq1KmD9PR0BAUFwc3NDdOmTYNUKsWZM2cAAFu3boWenh7Wr18Pd3d31KtXD6GhoYiNjUVUVFTFHDRCioFafBNCCCGEEEIIIYSQd4KxoT5uzu5cKdstrrZt22L16tWiadbW1vz/jRo14v83NTWFubk5Xrx4IVr+ypUrGDJkCH744Qe0bt2aT//0008xfPhwLF26FPr6+ggLC8OSJUtEaRs0aAA9vf/axNrZ2aFhw4b8b319fdjY2PBtXrp0Cffv34e5ubloPZmZmXjw4EFxd5+QckeBb0IIIYQQQgghhBDyTpBIJGXe5Uh5MTU1Ra1atTTONzQ0FP0tkUiQn5/P/46Li0OvXr0wYsQIjBgxQrRsz549IZPJEBERAZlMhqysLPj7+xe5fm3bzM/Ph6enJ8LCwlTyamtrq2VPCakcb8eVgBBCCCGEEEIIIYQQAqCglbWvry/q1q2LpUuXqsw3MDDA0KFDERoaCplMhv79+8PExKRU22zatCm2bduGKlWqwMLColTrIqQiUOCbEEIIIYQQQgghhJAKlpWVhbi4ONE0AwMDKBSKItOOHj0ajx49wtGjR/Hy5Us+3dramg8yOXLkSNSrVw8AeD/dpTFo0CAsWrQIvr6+mD17NhwdHREbG4udO3fiq6++gqOjY6m3QUhZosA3IYQQQgghhBBCCCEV7NChQ6hatapoWp06dXD79u0i0544cQLPnj1D/fr1RdOPHz8OHx8fAICbmxtatmyJ+Ph4fPDBB6XOr4mJCU6ePIkpU6bg448/RkpKCqpVq4b27dtTC3DyRpIwxlhlZ6KyJScnw9LSEklJSVRRCSGEEEIIIYQQQt4CmZmZiI6OhouLC4yMjCo7O28cxhjq1q2L0aNH48svv6zs7BBSLNrqt66xXGrxTQghhBBCCCGEEELIO+TFixfYtGkTnjx5gmHDhlV2dgipFBT4JoQQQgghhBBCCCHkHWJnZweFQoF169ZBLpdXdnYIqRQU+CaEEEIIIYQQQggh5B1CPRsTAuhVdgYIIYQQQgghhBBCCCGEkLJEgW9CCCGEEEIIIYQQQggh7xQKfBNCCCGEEEIIIYQQQgh5p1DgmxBCCCGEEEIIIYQQQsg7hQLfhBBCCCGEEEIIIYQQQt4plRr4Xr16NRo1agQLCwtYWFjAy8sLBw8e5POzsrIwfvx4KBQKmJqaolevXnj8+LFoHbGxsejZsydMTU2hUCgwYcIEZGdnV/SuvJUYY0i/fBmJ4eHIT0+v7OwQQgghhBBCCCGEEEJImajUwLejoyMWLFiAixcv4uLFi2jXrh18fX3xzz//AAAmTZqEiIgIbN26FadPn0Zqaip69OiBvLw8AEBeXh66d++OtLQ0nD59Glu3bkV4eDgmT55cmbv11pBIJIgZ9xmeffMtHp07V9nZIYQQQgghhBBCCCFEo4cPH0IikeDq1auVnZX3WmBgIPz8/Co7G0Wq1MB3z5490a1bN9SuXRu1a9fG3LlzYWZmhvPnzyMpKQkbNmzAkiVL0KFDBzRp0gSbN2/G33//jcjISADAH3/8gZs3b2Lz5s1o0qQJOnTogCVLluCnn35CcnJyZe7aW+OVTAYAeHDyVCXnhBBCCCGEEEIIIeT9EBgYCIlEovLp0qVLZWet3KSlpWHKlClwdXWFkZERbG1t4ePjg3379lVYHso6cB4VFQWJRILExMQyWZ+y8PBw+Pj4wNLSEmZmZmjUqBFmz56N169fl/m23lVvTB/feXl52Lp1K9LS0uDl5YVLly4hJycHnTp14ss4ODigYcOGOHv2LADg3LlzaNiwIRwcHPgynTt3RlZWFi5duqRxW1lZWUhOThZ93ldZtgoAQG7Mw8rNCCGEEEIIIYQQQsh7pEuXLnj27Jnos2XLlsrOVrkZM2YMdu3ahVWrVuH27ds4dOgQ/P39ER8fX9lZU1HZ3Sh/8803CAgIQPPmzXHw4EHcuHEDS5YswbVr17Bp06ZKzdvbpNID33///TfMzMwgk8kwZswYREREoH79+oiLi4NUKoVcLhctb2dnh7i4OABAXFwc7OzsRPPlcjmkUilfRp358+fD0tKSf5ycnMp+x94SkmqOAACD588rOSeEEEIIIYQQQgghpcQYkJ1W8R/Gip1VmUwGe3t70UeIg0kkEqxfvx69e/eGiYkJ3NzcsGfPHp5WU4vxqKgozJ49G+7u7irb8/T0xIwZM3h6Pz8/zJs3D3Z2drCyssKsWbOQm5uLr776CtbW1nB0dMTGjRtF63jy5AkCAgIgl8thY2MDX19fPHz4UKf93bt3L4KCgtCtWzfUqFEDnp6eGD9+PIYOHcqXkUgk2LVrlyidlZUVfv75Z9G027dvo2XLljAyMkKDBg0QFRXFrvcdewAAIABJREFU5yUkJGDQoEGwtbWFsbEx3NzcEBoaCgBwcXEBADRp0gQSiQQ+Pj6i4zF//nw4ODigdu3aAIDNmzejWbNmMDc3h729PQYOHIgXL14AKGg93rZtWwAF8UiJRILAwEAABePqff/993B1dYWxsTE8PDzw+++/63Sc/vrrL8ybNw9LlizBokWL0LJlS9SoUQMdO3ZEeHi46HitXr0aNWvWhFQqRZ06dVSC4hKJBGvXrkWPHj1gYmKCevXq4dy5c7h//z58fHxgamoKLy8vPHjwgKcJDg5G48aNsXbtWjg5OcHExAR9+/bV2qq9qP2dPXs2HBwcRA85evXqhTZt2iA/P1+n41ISBuW2Zh3VqVMHV69eRWJiIj95J06c0Lg8YwwSiYT/rfx/TcsUNm3aNHz55Zf87+Tk5Pc2+G1auzZw+DBMXicUedwIIYQQQgghhBBC3mg56cA8h6KXK2tBTwGpaZmuctasWfj++++xaNEirFy5EoMGDUJMTAysra0REhKCBQsW8GUXLFiALVu2oG7duqhVqxZmzZqFCxcuoHnz5gCA69ev48qVK9ixYwdPc+zYMTg6OuLkyZM4c+YMRowYgXPnzqFNmzb4888/sW3bNowZMwYdO3aEk5MT0tPT0bZtW3z00Uc4efIkDAwM8N1336FLly64fv06pFKp1v2xt7fHgQMH8PHHH8Pc3LxUx+arr77C8uXLUb9+fSxduhS9evVCdHQ0bGxsMH36dNy8eRMHDx6EQqHA/fv3kZGRAaAgqNyiRQtERkaiQYMGojwfPXoUFhYWOHLkCNj/P8jIzs7GnDlzUKdOHbx48QJffPEFAgMDceDAATg5OSE8PBz+/v64c+cOLCwsYGxsDAD49ttvsXPnTqxevRpubm44efIkPvnkE9ja2sLb21vrvoWFhcHMzAzjxo1TO9/KygoAEBERgYkTJ2L58uXo0KED9u3bh2HDhsHR0ZEH5AFgzpw5WLp0KZYuXYopU6Zg4MCBcHV1xbRp01C9enUMHz4cn3/+OQ4ePMjT3L9/H9u3b8fevXuRnJyMESNG4LPPPkNYWJjaPBW1v9988w0OHTqEkSNHIiIiAmvWrMHJkydx7do16OmVX7vsSg98S6VS1KpVCwDQrFkzXLhwASEhIQgICEB2djYSEhJErb5fvHiBli1bAiioMH/++adofQkJCcjJyVFpCa5MJpNB9v99W7/v7Jp5IhOAWUoKUpOTYW5pWdlZIoQQQgghhBBCCHnn7du3D2ZmZqJpU6ZMwfTp0wEUtEIeMGAAAGDevHlYuXIl/vrrL3Tp0oX3YgAAO3fuxJo1axAZGQl7e3sABV0Bh4aG8sB3aGgovL294erqyrdlbW2NFStWQE9PD3Xq1MH333+P9PR0BAUFAShoOLpgwQKcOXMG/fv3x9atW6Gnp4f169fzhpOhoaGwsrJCVFSUqLtiddatW4dBgwbBxsYGHh4eaN26Nfr06YNWrVoV+9h9/vnn8Pf3B1DQ6vnQoUPYsGEDvv76a8TGxqJJkyZo1qwZAKBGjRo8na2tLQDAxsaGHyuBqakp1q9fLwqGDx8+nP/f1dUVK1asQIsWLZCamgozMzNYW1sDAKpUqcID0mlpaVi6dCmOHTsGLy8vnvb06dNYu3ZtkYHve/fuwdXVFYaGhlqXW7x4MQIDA3mA/Msvv8T58+exePFiUeB72LBh6NevH4CC8uXl5YXp06ejc+fOAICJEydi2LBhonVnZmbil19+gaNjQU8RK1euRPfu3bFkyRKV46bL/urr62Pz5s1o3Lgxpk6dipUrV2LdunVwdnbWuo+lVemB78IYY8jKyoKnpycMDQ1x5MgRfnKePXuGGzdu4PvvvwcAeHl5Ye7cuXj27BmqVq0KoGDAS5lMBk9Pz0rbh7eJfcOGuK+vD4O8PDy+fBn1lCoGIYQQQgghhBBCyFvF0KSg9XVlbLeY2rZti9WrV4umCYFUAGjUqBH/v6mpKczNzXk3G4IrV65gyJAh+OGHH9C6dWs+/dNPP8Xw4cOxdOlS6OvrIywsDEuWLBGlbdCggai1rZ2dHRo2bMj/1tfXh42NDd/mpUuXcP/+fZXW2pmZmaKuMjRp06YN/v33X5w/fx5nzpzBsWPHEBISglmzZvFgv66EACsAGBgYoFmzZrh16xYAYOzYsfD398fly5fRqVMn+Pn58Ua02ri7u6u0Wr9y5QqCg4Nx9epVvH79mnfLERsbi/r166tdz82bN5GZmYmOHTuKpmdnZ6NJkyZF5kPXHhlu3bqFUaNGiaa1atUKISEhomnK5UhoKKzcFY6dnR0yMzORnJwMCwsLAED16tV50BsoON75+fm4c+eOSuBb1/11dXXF4sWLMXr0aAQEBGDQoEFF7mNpVWrgOygoCF3/j707D4+qvPs//jmZSSaZLJMM2cjKlkDCYkEqoIK4sIhVKe644b5rH0Wr7e9Rqz51hbo9VruhrQqtj6CICoqAgGyCRaXITkiArJB1Jsss5/dHZMqUJAQIGZb367rOlck59znnewKB6/rMPd/7/POVmZmp2tpazZgxQ4sWLdLcuXPlcDh000036YEHHlCXLl3kdDo1efJk9e/fX+edd54kafTo0crPz9e1116r559/Xnv37tXkyZN1yy23BP6g0Lao6GjVxcYqvqpKZf9cS/ANAAAAAACOX4bR4S1Hjpbo6OhAF4SW/OeMX8Mwgvohl5SU6KKLLtJNN92km266KWjshRdeKJvNplmzZslms6mxsTEwQ7qt67d1T7/fr1NPPbXFdhf7ZlIfTHh4uIYPH67hw4fr4Ycf1lNPPaUnnnhCv/zlLxURESHDMAJtRvbxeDztuva+sPj888/Xjh079PHHH2v+/Pk699xzddddd+mFF15o8/zo6OC/Ny6XS6NHj9bo0aP19ttvKykpSYWFhRozZkybi1/u+3l9/PHHSk9PDzrWng4Uubm5Wrp0qTwez0Fnff9nQN5SaL7/NfYda2lfW722941pKZA/lOddvHixLBaLCgoK5PV6ZbUe3Wg6pItblpaW6tprr1Xv3r117rnnauXKlZo7d27gHYLf/e53Gj9+vC6//HKdccYZstvt+uijj2SxWCQ1v/P08ccfKzIyUmeccYYuv/xyjR8//qB/kREsons3SVKWJeRrnQIAAAAAAOAgGhoadPHFF6tPnz6aOnXqAcetVquuv/56TZs2TdOmTdOVV14pu/3QZ6Xvb9CgQdq8ebOSk5PVq1evoM1xmK1z8/Pz5fV61dDQIKk5QC8uLg4c37x5s9xu9wHnrVixIvDa6/VqzZo16tOnT2BfUlKSJk2apLffflsvvvii/vCHP0hSYEa3z+c7aG0bNmxQRUWFnnnmGQ0fPlx9+vQ5YMZ9S9fLz8+XzWZTYWHhAT+n9qwxOHHiRNXV1em1115r8fi+RSbz8vK0dOnSoGPLli1TXl7eQe9xMIWFhdq9+9+fnFi+fLnCwsICi37ur73P+/e//10zZ87UokWLVFRUpCeffPKI6zyYkM74/vOf/9zm8cjISL3yyit65ZVXWh2TlZWlOXPmdHRpJ5WsYcNU8c+1spaWhroUAAAAAACAk0JjY6NKSkqC9lmtViUmJh703Ntuu01FRUX64osvVF5eHtjvdDoDYezNN98cCEG/+uqrI6736quv1vPPP6+LL75YTzzxhDIyMlRYWKiZM2fqwQcfDGqN0ZKRI0fqqquu0uDBg9WlSxetX79ev/rVr3T22WcHOjecc845evXVVzV06FD5/X798pe/bHHW8//+7/8qJydHeXl5+t3vfqfKyspAP+5HH31Up556qvr27avGxkbNmTMn8HNITk5WVFSU5s6dq4yMDEVGRrYa2mdlZSkiIkKvvPKKbr/9dq1bt+6AsDY7O1uGYWjOnDkaN26coqKiFBsbq8mTJ+u//uu/5Pf7deaZZ6qmpkbLli1TTEyMrr/++jZ/TkOGDNFDDz2kBx54QLt27dLPf/5zpaWlacuWLXr99dd15pln6r777tODDz6oyy+/XIMGDdK5556rjz76SDNnztT8+fPbvH57REZG6vrrr9cLL7ygmpoa3Xvvvbr88ssPaHMiqV3Pu3PnTt1xxx169tlndeaZZ+rNN9/UBRdcoPPPP19Dhw494npbwxRfKKJ788IGnu0FB3ycBAAAAAAAAB1v7ty56tq1a9C2f5/utnz55ZcqLi5Wfn5+0PnLli0LjMnJydHpp5+u3r17a8iQIUdcr91u1+LFi5WVlaUJEyYoLy9PN954o+rr69vVcnjMmDF66623NHr0aOXl5emee+7RmDFj9I9//CMwZsqUKcrMzNSIESM0ceJETZ48ucWZ6s8884yeffZZnXLKKVqyZIk+/PDDwBsGEREReuSRRzRgwACNGDFCFotFM2bMkNT8xsLLL7+sN954Q2lpabr44otbrTcpKUlvvvmm3nvvPeXn5+uZZ545oMtEenq6fvOb3+jhhx9WSkqK7r77bknSk08+qUcffVRPP/208vLyNGbMGH300Ufq3r37wX/Qkp599lm9++67WrlypcaMGaO+ffvq/vvv14ABAwLB+fjx4/XSSy/p+eefV9++ffXGG29o2rRpGjlyZLvu0ZZevXppwoQJGjdunEaPHq1+/fq1OgP9YM9rmqYmTZqk0047LfDzGTVqlO6++25dc801qqurO+J6W2OYJJ2qqamRw+FQdXX1SdkbvOqbb1Q88Wp57HZlL1xw2B9PAQAAAAAA6CwNDQ3avn27unfvrsjIyFCXc8wxTVN9+vTRbbfdpvvvvz/U5eA48fjjj+uDDz7Q2rVrQ1pHW7/f7c1ymfEN1cTESJLC3W7t2rAhxNUAAAAAAADgSJSVlWnq1KnatWuXbrjhhlCXA4QEwTfUJT1dbnuUJGnP99+HuBoAAAAAAAAciZSUFD3zzDP6wx/+oISEhE65Z0xMTKvbkiVLOqWG48Htt9/e6s/p9ttvD3V5J5SQLm6JY4PdbldtnEN2d71qmfENAAAAAABwXAtFZ+O2WmOkp6d3YiXHtieeeEKTJ09u8dix0IL58ccf1+OPPx7qMjoEwTdkGIYakxKlkhKZRUWhLgcAAAAAAADHmV69eoW6hONCcnKykpOTQ13GSYFWJ5AkGekZkiTbnj3yer0hrgYAAAAAAAAADh/BNyRJUb16SpJiq2tUXl4e4moAAAAAAAAA4PARfEOSFNOnT/PXujqV7toV4moAAAAAAAAA4PARfEOS1O3UU+W32RRmmuput4e6HAAAAAAAAAA4bATfkCQlJCQoqmcPSZJ3x44QVwMAAAAAAAAAh4/gGwER3ZuD76bt22WaZoirAQAAAAAAwJEyDEMffPBBqMsAOh3BNwLcCQmSpK1ffqmGhoYQVwMAAAAAAHBimjRpkgzDkGEYCg8PV48ePTR58mS5XK5Ql3ZQI0eO1C9+8YtQlwEcFME3ArY1NUqSzJ27VFpaGuJqAAAAAAAATlxjx45VcXGxtm3bpqeeekqvvfaaJk+efMA40zTl9XpDUCFwfCP4RoCtR3Ork9jaWpURfAMAAAAAgOOMaZpye9ydvh1Oy1ibzabU1FRlZmZq4sSJuvrqq/XBBx9o0aJFMgxD8+bN0+DBg2Wz2bRkyRJJ0u9//3v17NlTERER6t27t/72t78FXXPz5s0aMWKEIiMjlZ+fr88//zzo+L5rV1VVBfatXbtWhmGooKAgsO+rr77SWWedJbvdroSEBI0ZM0aVlZWaNGmSvvzyS7300kuBGev7nwccS6yhLgDHjtjcXJmSbE1N2r1tmzRkSKhLAgAAAAAAaLd6b72GvNv5ecbKiStlD7cf0TWioqLk8XgC3z/00EN64YUX1KNHD8XHx2vWrFm677779OKLL+q8887TnDlzdMMNNygjI0Nnn322/H6/JkyYoMTERK1YsUI1NTWH1ZJk7dq1Ovfcc3XjjTfq5ZdfltVq1cKFC+Xz+fTSSy9p06ZN6tevn5544glJUlJS0hE9N3C0EHwjwJmaqj3R0YpxueTatCnU5QAAAAAAAJwUVq1apXfffVfnnntuYN8TTzyhUaNGBb5/4YUXNGnSJN15552SpPvvv18rVqzQCy+8oLPPPlvz58/XDz/8oIKCAmVkZEiSfvvb3+r8888/pFqee+45DR48WK+99lpgX9++fQOvIyIiZLfblZqaeljPCnQWgm8EOJ1OFcTFKcblkm/HDvn9foWF0Q0HAAAAAAAcH6KsUVo5cWVI7nuo5syZo5iYGHm9Xnk8Hl188cV65ZVXtH79eknS4MGDg8b/8MMPuvXWW4P2nXHGGXrppZcCx7OysgKhtyQNGzbskOtau3atLrvsskM+DzjWEHwjIC4uTrVxcepaXKzIPXtVW1srh8MR6rIAAAAAAADaxTCMI2450lnOPvts/f73v1d4eLjS0tIUHh4uSYHgOzo6+oBzDMMI+t40zcC+lvqM/+f4fRMc9x+7f3sVqbnlCnAiYDovAsLCwuTv2vwxldjaGlVUVIS4IgAAAAAAgBNTdHS0evXqpezs7EDo3Za8vDwtXbo0aN+yZcuUl5cnScrPz1dhYaF2794dOL58+fKg8fv6cRcXFwf2rV27NmjMgAED9MUXX7RaR0REhHw+30HrBUKN4BtBTrngAklShgxlZmaGuBoAAAAAAABI0oMPPqg333xTr7/+ujZv3qypU6dq5syZmjx5siTpvPPOU+/evXXdddfp22+/1ZIlS/TrX/866Bq9evVSZmamHn/8cW3atEkff/yxpkyZEjTmkUce0ddff60777xT3333nTZs2KDf//73gQmS3bp108qVK1VQUKCKigr5/f7O+QEAh4jgG0Gyfuz95C8ulre+PsTVAAAAAAAAQJLGjx+vl156Sc8//7z69u2rN954Q9OmTdPIkSMlNX+Sf9asWWpsbNRpp52mm2++Wf/zP/8TdI3w8HBNnz5dGzZs0CmnnKJnn31WTz31VNCY3NxcffbZZ/r222912mmnadiwYfrwww9ltTZ3TJ48ebIsFovy8/OVlJSkwsLCTnl+4FAZZksNgE4yNTU1cjgcqq6uVlxcXKjLCSnTNLXptCHy19Yq7R9/l2PAgFCXBAAAAAAAcICGhgZt375d3bt3V2RkZKjLAdCB2vr9bm+Wy4xvBHG73WpI7CJJWvTOu/RsAgAAAAAAAHDcIfhGkIaGBu368XXjtm3au3dvSOsBAAAAAAAAgENF8I0g8fHxqo1zSJLiampUWloa4ooAAAAAAAAA4NAQfCOIxWKRv2tXSVJsLcE3AAAAAAAAgOMPwTcOYM3OkiTF1tSqjOAbAAAAAAAAwHGG4BsHsPfoIb9hKNzrVe2OHaEuBwAAAAAAAAAOCcE3DuBMTlZdTIwkyV9UpKamphBXBAAAAAAAAADtR/CNAzidTtXGxUmSEhsaVV1dHeKKAAAAAAAAAKD9CL5xgOzsbHU743RJ0tCsTMXHx4e4IgAAAAAAAABoP4JvHCAyMlLO/v0lSZ6CAvn9/hBXBAAAAAAAgH0WLVokwzBUVVUV6lKAYxbBN1pk69FDEsE3AAAAAABARysrK9Ntt92mrKws2Ww2paamasyYMVq+fHmn3L+jg/M333yTjgE45hB8o0WFXp8kyVdSqr/96U8yTTPEFQEAAAAAAJwYLrnkEn377bd66623tGnTJs2ePVsjR47U3r17Q11akKamplCXABw2gm+0aHNpiRpsNklS/ZatcrvdIa4IAAAAAACgbaZpyu92d/p2KBMGq6qqtHTpUj377LM6++yzlZ2drdNOO02PPPKILrjgAhUUFMgwDK1duzboHMMwtGjRoqBrffXVVzrllFMUGRmpIUOG6Pvvvw8c27Fjhy688EIlJCQoOjpaffv21SeffKKCggKdffbZkqSEhAQZhqFJkyZJkkaOHKm7775b999/vxITEzVq1ChJ0tSpU9W/f39FR0crMzNTd955p+rq6iQ1zx6/4YYbVF1dLcMwZBiGHn/8cUnNwflDDz2k9PR0RUdHa8iQIQc8A3C0WENdAI5NTqdTtXGxiixvVGxNjUpLS9Xjx/YnAAAAAAAAxyKzvl4bB53a6fft/c0aGXZ7u8bGxMQoJiZGH3zwgYYOHSrbjxMPD8eDDz6ol156SampqfrVr36liy66SJs2bVJ4eLjuuusuNTU1afHixYqOjtb69esVExOjzMxMvf/++7rkkku0ceNGxcXFKSoqKnDNt956S3fccYe++uqrQKAfFhaml19+Wd26ddP27dt155136qGHHtJrr72m008/XS+++KIeffRRbdy4MfCMknTDDTeooKBAM2bMUFpammbNmqWxY8fq+++/V05OzmE/N9AeBN9okdPp1Pa4OCWVVyiuluAbAAAAAACgI1itVr355pu65ZZb9Prrr2vQoEE666yzdOWVV2rAgAGHdK3HHnssMCv7rbfeUkZGhmbNmqXLL79chYWFuuSSS9S/f39JCsp1nE6nJCk5OfmA3ty9evXSc889F7TvF7/4ReB19+7d9eSTT+qOO+7Qa6+9poiICDkcDhmGodTU1MC4rVu3avr06dq5c6fS0tIkSZMnT9bcuXM1bdo0/fa3vz2kZwUOFcE3WuR0OvVtbJwkKbamRuXl5SGuCAAAAAAAoG1GVJR6f7MmJPc9FJdccokuuOACLVmyRMuXL9fcuXP13HPP6U9/+pNGjhzZ7usMGzYs8NrpdKp379764YcfJEn33nuv7rjjDn322Wc677zzdMkll7QrWB88ePAB+xYuXKjf/va3Wr9+vWpqauT1etXQ0CCXy6Xo6OgWr/PNN9/INE3l5uYG7W9sbFSXLl3a/YzA4SL4RosSEhJUG9ccfMfV1OpfZWUhrggAAAAAAKBthmG0u+VIqEVGRmrUqFEaNWqUHn30Ud1888167LHHtGTJEkkK6hvu8XjafV3DMCRJN998s8aMGaOPP/5Yn332mZ5++mlNmTJF99xzT5vn/2eQvWPHDo0bN0633367nnzySTmdTi1dulQ33XRTm3X5/X5ZLBatWbNGFosl6Ni+VijA0cTilmiRzWaTNyVFkhRTW6uK8nL5/f4QVwUAAAAAAHBiys/Pl8vlUlJSkiSpuLg4cGz/hS73t2LFisDryspKbdq0SX369Ansy8zM1O23366ZM2fqgQce0B//+EdJUkREhCTJ5/MdtK7Vq1fL6/VqypQpGjp0qHJzc7V79+6gMREREQdca+DAgfL5fCorK1OvXr2Ctv1bogBHCzO+0SpbVqZ8YWGy+nzKsNnU0NAg+3HyrikAAAAAAMCxaM+ePbrssst04403asCAAYqNjdXq1av13HPP6eKLL1ZUVJSGDh2qZ555Rt26dVNFRYX+3//7fy1e64knnlCXLl2UkpKiX//610pMTNT48eMlNfflPv/885Wbm6vKykotWLBAeXl5kqTs7GwZhqE5c+Zo3LhxioqKanUWds+ePeX1evXKK6/owgsv1FdffaXXX389aEy3bt1UV1enL774Qqeccorsdrtyc3N19dVX67rrrtOUKVM0cOBAVVRUaMGCBerfv7/GjRvXgT9V4EDM+Earfn7JJYrIzpYknd9/QODdQAAAAAAAAByemJgYDRkyRL/73e80YsQI9evXT//93/+tW265Ra+++qok6S9/+Ys8Ho8GDx6s++67T0899VSL13rmmWd033336dRTT1VxcbFmz54dNJv7rrvuUl5ensaOHavevXvrtddekySlp6frN7/5jR5++GGlpKTo7rvvbrXen/zkJ5o6daqeffZZ9evXT++8846efvrpoDGnn366br/9dl1xxRVKSkoKLI45bdo0XXfddXrggQfUu3dvXXTRRVq5cqUyMzOP+OcIHIxh7t8w6CRVU1Mjh8Oh6upqxf3Y1xrNdtx9t9zzv1DCAw/Ief11hN8AAAAAAOCY0NDQoO3bt6t79+6KjIwMdTkAOlBbv9/tzXKZ8Y02RXTvIUny7Cg4pIUUAAAAAAAAACBUCL7RKpfLpc2uOklS4bLl+utf/xriigAAAAAAAADg4Ai+0aqwsDCtraiQJEXt3as9e/bI6/WGuCoAAAAAAAAAaBvBN1oVFRUlT1JS8+uGBoXV16vixyAcAAAAAAAAAI5VBN9oU1xqqtxRUZKk2NpalZWVhbgiAAAAAACAfzNNM9QlAOhgHfF7TfCNNjmdTtXGxkqSYmtqVFpaGuKKAAAAAAAApPDwcEmS2+0OcSUAOtq+3+t9v+eHw9pRxeDElJCQoNq4OKWUlSmupkbl5eWhLgkAAAAAAEAWi0Xx8fGBT6fb7XYZhhHiqgAcCdM05Xa7VVZWpvj4eFkslsO+FsE32uR0OlUSFydJiq2pVWFZmUzT5D8SAAAAAAAQcqmpqZJEa1bgBBMfHx/4/T5cBN9ok9PpVE1cc6uTBLdb2dnZBN8AAAAAAOCYYBiGunbtquTkZHk8nlCXA6ADhIeHH9FM730IvtGmtLQ0XfaLX6hs0ZeKrqnR6HPPZdEIAAAAAABwTLFYLB0SlAE4cbC4JdpktVoV36uXjEib5PXKu3u3/H5/qMsCAAAAAAAAgFYRfOOgwiwWWbO7SZIat25TTU1NaAsCAAAAAAAAgDYQfOOgvvvuO5Vamz8utPDttzV79uwQVwQAAAAAAAAArSP4xkGVl5er+MfFLGOqq1VRUUGfbwAAAAAAAADHLIJvHJTT6VRNXJwkKbamRm63W3V1dSGuCgAAAAAAAABaRvCNg0pISFDtj8G348fAu6SkJJQlAQAAAAAAAECrCL5xUE6nU7WxsZKkiIYGRTQ2qqysLMRVAQAAAAAAAEDLCL5xUHFxcZLNJle0XVJzu5PS0tIQVwUAAAAAAAAALSP4xkEZhvHjrO/mdidxNTWqqKgIcVUAAAAAAAAA0DKCb7RLQkKC6uLjJUlpflOnnXaaTNMOzNa1AAAgAElEQVQMcVUAAAAAAAAAcCCCb7TLJZdcotN+/nNJUq+oKOXm5srr9Ya4KgAAAAAAAAA4EME32iUiIkK2Hj0kSZ4dOyRJXq+XWd8AAAAAAAAAjjkE32g3W4/ukiTvrl1yVVVp+fLlWr9+fYirAgAAAAAAAIBgBN9ol/r6en24eLG8ERGSz6cfFi3SkiVLtGTJEmZ9AwAAAAAAADimEHyjXWw2mzZv2aLqmBhJUk+bTRaLRaWlpSosLAxxdQAAAAAAAADwbwTfaJewsDDFx8erNi6u+fviYuXn50uSVq5cGcrSAAAAAAAAACAIwTfaLSEhQbVxsZIkT0GBBg4cKEnasGGDqqurQ1kaAAAAAAAAAAQQfKPdnE6nan6c8e0pKFBKSooyMjJkmqZWrVoV4uoAAAAAAAAAoBnBN9rN6XSqxuGQJDVt2ix/XZ0GDRokSVq7dq08Hk8oywMAAAAAAAAASQTfOAROp1O1sbFyJyRITU1yL/pSOTk5io+PV7du3VRfXx/qEgEAAAAAAACA4Bvt53Q6ZQ0PV3mfPpIk17x5CgsL04033qgLLrhAERERIa4QAAAAAAAAACTDNE0z1EWEWk1NjRwOh6qrqxX3Yw9rHMg0Tfl8Prk2b9bun0+QLBZlfDZPloSEwJjIyEiFhfF+CgAAAAAAAICO194sl4QS7WYYhiwWi8KzsxWRlyf5fHLPnx84Xl5ertWrV4ewQgAAAAAAAAAg+MZhih47RpLkmjtPklRZWak333xT8+bNU3V1dShLAwAAAAAAAHCSI/jGIVmzZo3eeustbUxKkgxDjf/8p7wlJUpISFBGRob8fr++/vrrUJcJAAAAAAAA4CRG8I1D0tjYqLKyMpV6vbINHChJcn32mSRp0KBBkqR//vOf8ng8IasRAAAAAAAAwMmN4BuHxOl0SmpubRI9dqwkyf1ju5NevXopNjZWbrdb69atC1mNAAAAAAAAAE5uBN84JF26dJEk7dmzRxEjR0pWi5o2bJCnoEAWi0U/+clPJEmrVq2SaZohrBQAAAAAAADAyYrgG4ckKSlJ0dHR8ng8Kq6rVdTQoZL+vcjlgAEDZLFYVFJSosLCwlCWCgAAAAAAAOAkRfCNQ2IYhnJyciRJ27Ztk31Mc7sT17x5Mk1TdrtdeXl5stvtqq6uDmWpAAAAAAAAAE5SBN84ZLm5uZJ+DL5HniXDZpN3xw41bdggSTrrrLN02223qVevXrQ7AQAAAAAAANDpCL5xyHr06KGEhARlZWXJb7MpasQISZJ77lxJkt1ul9VqlSR5vd6Q1QkAAAAAAADg5ETwjUNms9l0zz33aPTo0bJarYoeO0aS5Prsc5l+f2Cc3+/Xhg0b5PF4QlUqAAAAAAAAgJMQwTcOi2EYCgtr/usTdcYZMmJi5CstVeM/1wbG/OMf/9DMmTO1bt26UJUJAAAAAAAA4CRE8I3DZhiGdu7cKY8k+znnSJJc8+YGjnfr1k2StGrVKnp9AwAAAAAAAOg0BN84bH/96181ffp0FRQUBNqduOfPl/lja5MBAwbIYrGopKRERUVFoSwVAAAAAAAAwEmE4BuHLTMzU5K0bds2RQ4erLAuXeSvqlbDypWSmhe5zMvLkyStWLEiZHUCAAAAAAAAOLkQfOOw5eTkSGoOvmWxKHrUeZIk19x5gTGDBg2SJG3cuFE1NTWdXyQAAAAAAACAkw7BNw5bdna2IiIi5HK5VFpaqugxYyVJ7kWL5K+vlySlpKQoIyNDfr9fK3+cCQ4AAAAAAAAARxPBNw6b1WpVjx49JElbt25VxID+sqSlyXS7Vb90aWDcqaeeKkkqKSmR3+8PSa0AAAAAAAAATh4E3zgi+7c7MQxD0WOaF7l0zZ0bNOaqq67ShAkTCL4BAAAAAAAAHHUE3zgi+4LvkpISuVwuRY9tDr7rl34lf22tJMkwDGVkZMgwDHk8HpmmGbJ6AQAAAAAAAJz4CL5xRGJjYzV27FhdffXVioqKUkROjsJ79pQ8HrkXLDxgfH19vbZu3RqCSgEAAAAAAACcLAi+ccSGDBmi9PR0hYU1/3UKtDuZNzdo3J49e/TGG2/ovffek9vt7vQ6AQAAAAAAAJwcCL7RIaxWa+C1fcxoSVLDqq/lq6gI7Hc6nXI4HGpqatLy5cs7vUYAAAAAAAAAJweCb3SI7du3a968edq5c6fCMzMV0a+f5PfLNX9+YIxhGBo2bJgkadWqVcz6BgAAAAAAAHBUEHyjQ6xfv17fffedNm3aJEmBRS7dc+cFjcvNzVViYiKzvgEAAAAAAAAcNQTf6BC5ubmSpG3btkmS7KNGSWFhavzuO3l37w6MMwxDp59+uiRmfQMAAAAAAAA4Ogi+0SF69OihsLAwVVZWqrKyUtakJEWeeqokyTWPWd8AAAAAAAAAOg/BNzpEZGSksrKyJO036/vHdieuT+cGjd0369swDNXX18s0zc4tFgAAAAAAAMAJjeAbHSYnJ0eStHXrVkmS/dxzJatVni1b1PTjvn1yc3N1yy236JxzzpHP5+v0WgEAAAAAAACcuEIafD/99NP66U9/qtjYWCUnJ2v8+PHauHFj0JiRI0fKMIyg7corrwwaU1lZqWuvvVYOh0MOh0PXXnutqqqqOvNRoH/3+d65c6eamppkiYtT1BlnSJJc/7HIpWEYcjgckiSPx8OsbwAAAAAAAAAdJqTB95dffqm77rpLK1as0Oeffy6v16vRo0fL5XIFjbvllltUXFwc2N54442g4xMnTtTatWs1d+5czZ07V2vXrtW1117bmY8CSV26dFFCQoIcDoeqq6slSdE/tjtxz5vbarhdXl6udevWdVqdAAAAAAAAAE5s1lDefO7c4N7P06ZNU3JystasWaMRI0YE9tvtdqWmprZ4jR9++EFz587VihUrNGTIEEnSH//4Rw0bNkwbN25U7969j94DIIhhGLr11ltlmmYg5I4aMUJGZKS8O3epad062fr3Dzpn165devfddxUREaGePXvKbreHonQAAAAAAAAAJ5Bjqsf3vlnCTqczaP8777yjxMRE9e3bV5MnT1ZtbW3g2PLly+VwOAKhtyQNHTpUDodDy5Yta/E+jY2NqqmpCdrQMSIjI2WxWALfh0VFKWrkWZKkmr/+7YBZ32lpaUpMTFRTU5OWL1/eqbUCAAAAAAAAODEdM8G3aZq6//77deaZZ6pfv36B/VdffbWmT5+uRYsW6b//+7/1/vvva8KECYHjJSUlSk5OPuB6ycnJKikpafFeTz/9dKAfuMPhUGZmZsc/0EnMYrHI6/WqsbFRkhR3zTWS1SL3F1+o7v33g8YahqHTTz9dkrRq1Sq53e5OrxcAAAAAAADAieWYCb7vvvtufffdd5o+fXrQ/ltuuUXnnXee+vXrpyuvvFL/93//p/nz5+ubb74JjDEM44DrmabZ4n5JeuSRR1RdXR3YioqKOvZhTnLLly/Xq6++qjVr1kiSbPn5SrjnHknS3hemqGnDhqDxubm5gVnfK1as6PR6AQAAAAAAAJxYjong+5577tHs2bO1cOFCZWRktDl20KBBCg8P1+bNmyVJqampKi0tPWBceXm5UlJSWryGzWZTXFxc0IaOY7fb5fF4tG3btsC+2GuuUdSIEVJTk8of+qX8dXWBY/8567u+vr7TawYAAAAAAABw4ghp8G2apu6++27NnDlTCxYsUPfu3Q96zr/+9S95PB517dpVkjRs2DBVV1dr1apVgTErV65UdXV1IExF58rJyZEkFRcXy+VySWoOt7v85nFZunaVd+dO7XnyyaB+3/tmfTc2NtLrGwAAAAAAAGiFz+eTz+cLdRnHPGsob37XXXfp3Xff1YcffqjY2NhAT26Hw6GoqCht3bpV77zzjsaNG6fExEStX79eDzzwgAYOHKgzzjhDkpSXl6exY8fqlltu0RtvvCFJuvXWW/Wzn/1MvXv3DtmzncxiY2OVmpqqkpISbd++PdCz3eJwKOmZp1Vy001yfz5fdae+p9jLL5f071nfn3/+uWw2W5utalpzOOcAAAAAAAAAxxrTNPXtt9+qpqZGtbW1QV9dLpcuvfRS5efnk4W1wTD3n3bb2Tdv5Q9m2rRpmjRpkoqKinTNNddo3bp1qqurU2Zmpi644AI99thjcjqdgfF79+7Vvffeq9mzZ0uSLrroIr366quKj49vVx01NTVyOByqrq6m7UkHWbhwoRYvXqzevXvroosuCjpW8/Y7qpw6VQoPV+q0abLl50lq/oX2eDyKiIhQRESErNa235cxTTMQrm/fvl07duxQSkqKrrvuOoWHhx+1ZwMAAAAAAAAOh8fjUWVlpfbu3RvYKisrVVNTo6SkJF166aUyTVOmaWrKlClqaGho8TrnnHOOhgwZooiIiE5+gtBrb5Yb0hnfB8vcMzMz9eWXXx70Ok6nU2+//XZHlYUOkJOTo8WLF2v79u3y+XyyWCyBY7FXT1TDN2tUv+hLVTz8S3V95x2FxcbKMIzAL6vH45HFYgl6c8Q0TblcLsXExAS+f/vtt+V2uwNjdu7cqU8++UQXX3xxJz0pAAAAAAAA8G8NDQ2BcFuS+vbtK0ny+/2aMmWKGhsb2zx3n9zcXPn9fsXGxiomJibwNSYmRna7/eg+xAkgpME3Tlzp6emy2+1yu93atWuXsrKyAscMw1CXxx9X8VUT5d25S3ueeFKJzz0bCLlN09SmTZvk9XqVk5MTmNG9fft2maape+65R36/X36/X7169ZLL5VJWVpYiIyP16aefau3atcrKytLAgQND9fgAAAAAAAA4Sbjdbm3bti2wVVdXB44lJiaqZ8+egVnc+2YqJyQkKD4+PrDFxcUdMHt5zJgxnf0oJxSCbxwVhmFo6NCh8ng8LbacscTFKenZZ1Ry401yf/GFav/+D8VdeYUkadu2bfrwww9lGMYBnwqwWCzas2ePHA6HpAP/AaipqdFXX32lFStWaMCAAUEzzQEAAAAAAIAj5ff7FRYWFvj+z3/+c2B29z52u13x8fFKTEyU3+8P7L/qqqsUHh5Ob+5OQPCNo2b48OFqbGxsdZVZW79+SvjFfap8YYoqp06VbUB/2fLz1aNHDyUlJam8vFyGYSg1NVVZWVnKzs5WWlpam/27hw0bJovFop/85Cfyer0E3wAAAAAAADgipmmqrKxMW7du1bZt21RSUqJ7771XkuTz+ZSVlaWwsDB169ZN3bp1U1pammw2W4vXOhl7codKSBe3PFawuOXR4/V61dTU1Opx0zRVPnmy6hcukjU9XV3fbe737XK5VFFRodTU1Fb/oWiP9iySCQAAAAAAgJNbU1OTLBZLYBLlrl27tHXrVlVUVGjbtm1yuVxB4ydOnKj09HRJB84A7yxWq/WkDNKPi8UtceJramrS+vXrFRUVpe7dux9w3DAMdXnsMRVv3CTvrl3a85snlPj8c4qOjlZ0dPQR3ds0TS1fvlyRkZH66U9/ekTXAgAAAAAAwLHN7/erqalJjY2NgS05OTkwqXLXrl3asGGDXC7XAZvH49GkSZOUnp4u0zRVUFCghQsXBq4dHh6ujIwMdevWTdnZ2UpMTAwcC0XojYMj+MZRtXbtWn3++efq1q1bi8G3tF+/7xtulHvBAtXOmKG4q6464ntv3bpVCxYsUFhYmLp27aqMjIwjviYAAAAAAAA6xr4FH30+nywWSyBArqysVHl5uRoaGoJC7H3byJEjlZCQIEn6+uuvtXjxYjU2Nsrj8Rxwj2uuuUZZWVkyTVM7duzQ0qVLW62nqqpKSUlJkqSkpCQNGDBAMTExyszMVFpaGl0FjjP8aeGoysnJ0eeff66ioiI1NTW1+vELW9++SvivX6jy+RdU+bsXZRswQLa+fY/o3j179lROTo42b96s9957T7fddpvsdvsRXRMAAAAAAADBTNPUnj17VFxcrN27d6u8vFxNTU2aMGGC4uPjJUnLli3TihUr5PP5ApvX6w1c4+abb1ZqaqpM09S3336rL7/8stX79e3bV5GRkTJNUw0NDaqrqws6brFYFBERoYiICHm93kAg3qVLFw0cOFB2u13R0dGy2+1Br/fPrTIyMphEeZwj+MZRlZiYqPj4eFVVVWnHjh3KyclpdWzslVeqcc03ci9YoPJfPqyu774jyxH0XDcMQ+eff77Ky8tVVVWlWbNmaeLEiayaCwAAAAAA0AG+//57rV69WiUlJS2u8VZdXR0Ik91ut2pra1u9Vn19vRobGyVJ0dHRSk1NVUREhGw2W+DrvtdxcXHat2xhnz59lJmZGQi621rvLTMzU5mZmUf62DhOsLilWNzyaPv000+1atUqRUVF6ZxzzlFeXl6r4bO/tlbFE6+Wd9cuRZ11lhKfelJhR9jru7S0VO+88458Pp/OOeccDR8+/IiuBwAAAAAAcCLbN5Pa7Xarvr5e5eXlKi4uVnFxsX72s58pMTFRfr9fq1at0vz58yU1L7SYnJyslJQUJScnKzIyUtnZ2YH+2nV1dXK5XIEFJPe1Ntn3Ojw8nMmKh4jFLdvOcgm+RfB9tNXW1urtt99WWVmZJKlXr1666KKLAqvk/qfG9etVcsONkscjI9Im+znnKvrCnyly8GAZrZxzMN99953mzZsnwzB07bXXttpvHAAAAAAA4Hi0r1e21+uV1+uVzWZTeHi4JMnlcqmiokJer1dNTU2qr6+X2+0OBNs//elPlZaWJql5FvesWbPUWmQ4duxY9e/fX1JzL+7du3crJSVFTqeTRR47GcF321kurU5w1MXGxurWW2/VkiVLtGTJEtlstlZDb0my5ecr6ZmnVfnKK/IW7JDrk0/k+uQTWVJSFH3BBYq58GcKz84+pBr69++vnTt3av369SotLVW3bt14FxEAAAAAABy31qxZE1jU0ev1yufzBR2/7LLL1Lt3b5mmqc2bN+vDDz9s9Vrp6emBXtz7FpyUpPDwcEVFRcnhcCglJUUpKSnKysoKnJeQkBBYZBI41jDjW8z47kylpaWKjIwMvONYV1cnv9/f4s/dNE01fb9OdXM+knveZ/Lv1wcqon9/xVx4oaLHjFZYbGy77u3xeFReXq60tDSFh4cHagAAAAAAADjW1dbWKiwsTNHR0fL7/Vq/fr3ef//9VsdfeOGF6tOnjyRp27ZtWrhwoSwWi6xWq6KiooK2nj17KikpSVJzftLY2KjIyMhWe2Xj2MCMb1qdHBTBd+fz+XxqbGzUzJkzVVRUpJEjR2rAgAGtzsI2GxvlXrxYro8+Uv3yFdK+dzEjImQfOVIxF/5MkUOGyDiEf5AJvwEAAAAAwLHM6/Vq48aN+vbbb7VlyxadfvrpOuOMMwJtTQoLCxUfHx8ItPd9DQsL45PuJwGCb1qd4Bi0bwGDhoYGNTU16bPPPtOGDRs0ZsyYwEdr9mfYbIoeNUrRo0bJV1Eh16efqu6jj+TZslXuzz6T+7PPZEnsIscttyj2sssOev+KigrNnj1bo0ePVm5u7tF4RAAAAAAAgENmmqaKi4v1z3/+U+vWrVNDQ0Pg2J49ewJtSCwWC2uYAW1gxreY8R1Kfr9fK1as0MKFC+X1ehUeHq4RI0Zo4MCBB31n0jRNNW3YINecOXJ9Olf+qipJUsq0vyjylFPaPHfBggVas2aNIiMjddNNNykxMbHDngkAAAAAAOBwmKapadOmqaioKLAvNjZWffv2Vb9+/einjSDM+KbVyUERfIfenj17NHv2bBUWFkqSMjIydOGFFyomJqZd55sej/Y88aRcH3+s8NxcdX37b222PfF6vZo+fbpKSkpksVg0cOBAnXnmmXI4HB3yPAAAAAAAAK1xuVwqLi7W7t27VVxcrAkTJshiscjv92vOnDn617/+pZycHPXr109ZWVkKCwsLdck4BhF8E3wfFMH3scE0TX399deaP3++7Ha7Jk2adEi/vL7KSu3++QT5a2qU8OBkxV11VZvja2pq9MknnwTeRd0XgA8fPpy/BwAAAAAAoMOUlJRo8+bNgbC7uro66Pi1116r1NRUSVJdXZ2sVqsiIyNDUSqOcV6/V8XuYhXWFiqvS54y4jNCXVKnI/g+BATfx5bKykrV1tYeVvuR2v97X3t/+1sZMdFKe/99WX9ckbgthYWFWrZsWSAAv+yyy5SXl8ciEAAAAAAA4JCYpqmKigpt3bpV+fn5io2NlWmaWrp0qRYuXBg01ul0KiUlRampqerTp0+7P/WOE5/f9Ku8vlxFdUUqrC1UYW1h4PUu1y75TJ8k6bEhj+nSPpeGuNrOx+KWOG4lJCQoISFBPp9PjY2NWr9+vaKjo5WdnX3Qc2N+Pl51sz9U07p/qfLFF5X0P/9z0HOysrKUlZWloqIibdiwQdnZ2aqvr1d4eLgKCgqUnJxMCxQAAAAAANCi2tpabdu2LbDV1dVJkmw2m3r37i1J6tq1q/r06aPU1FSlpKQoJSVFNpstlGUjRLx+r6qbqpu3xmrVNNWoqrFKO107VVRbpKK65q3R19jqNWxhNmXGZspqEO22hZ8OjlkWi0W7d+/WJ598IovFogkTJhw0/DYsFjkffkQl114r96dz1TB+vCJ/+tN23S8zM1OZmZmB710ul2bOnCmPx0MPcAAAAAAAEGTXrl368MMPVV5eHrTfarUqPT09qFVJenq60tPTO7tEdBLTNLWnYU9gVnZ5fXlQuL3/a5fX1a5rWgyL0qPTlRWbpcyYzKCvSVFJCjPCZG1jfTsQfOMY161bN/Xs2VNbtmzRzJkz2xV+2/LzFHPppap77z3tfeZZdZ0xXUZ4+CHf2+12KykpSUVFRVq9erW++eYbDRo0iAAcAAAAAICThGmaqq+vV0VFhbZv367ExETl5+fL5/PJZrMFQu/U1FRlZ2crOztb6enpBJInqOqmahXVFqmw7t/tR/bN0nZ73e2+jiFDseGxirPFyRHhkCPCobToNGXGZiorJkuZsZnqau8qaxh/j44EPb5Fj+9jndfr1d///ndt2bJFVqtVl1xyibKysto8x1dT07zQZWWl4u+9V45J1x/2/YuKirRs2TIVFhZKap6JftlllwU+rgQAAAAAAI5Ppmmqqakp0HbE5/Np7ty5qqqqUnV1taqqquTxeALju3fvrksv/XdP5a1btyotLU1RUVGdXjuOHtM0VVBboNVlq7V+7/pAyF3dVN3qOWEKU9forsqKzVKKPSUQaDtsjgNex0bEymJYjrhOq9WqiIiII77O8YbFLQ8Bwfex73DC77qPPtKexx6XERmptJnvy/rj6siHq6ioSEuWLNGuXbtktVp15513KiEh4YiuCQAAAAAADo/f71dZWZmqqqrk9Xrl8/kCX2NjY5WXlxcYO3/+fDU2NgbG1NXVqaqqSjU1NerRo4cuv/xymaYpv9+vqVOnqqmpKehe0dHRysjIUI8ePdSvX7/OflQcZaZpardrt1aXrdaa8jVaXbZaexr2tDg2KSopMCt7/6/pMekKDzv0jgNHguCbxS1xArBarbriiis0Y8YMbd26VTNnztT111/fZvAc/bOfqW7WB2pcu1aVU6Yq6fnnjqiGzMxMXXHFFZo9e7YyMzMVFRUl0zRlGMYRXRcAAAAAAByc3+9XWFiYJKmpqUlTp05VY2PLCwBmZ2erR48ege/XrFmjhoaGFsdWVVUFBd3Dhw+X1WpVXFyc4uLiFBsbq/DDaKGKY1tZfVlz0F22RmvK1qjYXRx0PCIsQgMSB2hg4kB1j+uuzNhMZcZkKsrK7P7jBcE3jhtWq1VXXnmlZsyYofj4eMXHx7c53jAMOR95WMUTr5b7iy9U/9UyRZ1x+hHVYLFYNH78eBmGIb/fr6amJkVERBB+AwAAAADQgUzTVHV1tYqKigKb3W7XxIkT5fP55Pf7FR0dLdM01aVLF1mtVlkslsCWlJQkn88XuN7gwYPl8/kC46KiouRwOALB9v4GDRrU2Y+Lo6TB1xBYXLKmqUYV9RX6tuJbrS5brcK6wqCxFsOivs6+Gpw8WKcmn6r+XfrLZrGFqHJ0BFqdiFYnxxufzxfowdUee6dOVe3b78iakaG09/4hw9Zx/2g1NDRo3rx5GjVqlBITEzvsugAAAAAAnGxM09TXX3+tHTt2qKioSLW1tUHHw8PDde+99wZmfdfW1io6OjrwPU58jb5GldWXqcxdprL6Mu1t2BsItaubqgMh9759jb6WPxEgNffk7p3QOxB0n5J4iuxWeyc+zZGj1QmtTnCCsViam/8bhiGXy6VPP/1UAwcOVEZGRovj42+7Te55n8m7c6eq33pL8bfe2mG1LFiwQJs2bVJJSYluuOGGg85CBwAAAAAA/9bY2BhYWFKS1q9frx07dkiSwsLClJycrPT0dKWnpystLS0o5P7Pmdo4vu0fapfWlwbC7X1fS92lqmqqOuTrWgyL4iLiAotL9knoo1OTTtXApIGKi2AC7ImMGd9ixvfxbOHChVq8eLHCw8N16aWXthp+u+Z9popHHpFhs6nre/9QeCvjDpXL5dKMGTO0d+9eJSQk6MYbb1RMTEyHXBsAAAAAgBNRU1OTNmzYoHXr1mnbtm266667FBUVJb/fr+3bt6u0tFTp6elKTU2lt/YJyG/6tcu1S5urNjdv1Zu1pWrLAT22W2Oz2JQSlaIUe4qckc7mQPvHUDsQcO/3fbQ1+oRtUcuM77azXIJvEXwfzzwej6ZPn67t27e3GX6bpqmyO+9Sw8qVijrzTCW99GKH/aNXW1ur6dOnq7q6WklJSbrhhhsUFcVCBwAAAAAA7OPz+bR161Z9//332rhxozweT+DYuHHj1Ldv3xBWh6PF7XVra/XWoJB7a/VWub3uFsfvH2onRyUr2Z4c+JoSlaJke7LiwuNO2CD7UBF8E3wfFMH38c3j8ejdd99VQUGBoqKidOutt7b4S+8pKNDuy6+QvF4lTZ0i+8iRHVZDZWWlpk+fLpfLpbS0NF133bzjSksAACAASURBVHVBH9UCAAAAAOBkVVhYqBkzZqi+vj6wLyEhQXl5ecrLy5PT6QxhdThSpmmqqqlKhbWFKqorUmFtoXbU7tCW6i3aVbdLpg6MHiPCItQ9rrty4nOaN0eOejp6yhHhINQ+BATfBN8HRfB9/PN4PHr99de1d+9eDR8+XEOHDm1xXOWr/6uav/xFltRUpb3/fwrrwJnZFRUVgf/I+/TpoyuuuKLDrg0AAAAAQGdyu90qKSlRSUmJSktLVVJSoq5du+riiy8OjHnhhRdaPb9bt2669NJLZZqmamtr9corrygyMlJ9+vRRfn6+UlJSCDiPM3WeukCwXVRXpKLaf7+u9dS2el5iZKJ6OXoFhdxZsVmyhrH04JEi+GZxS5wEwsPDddZZZ2nWrFn6+uuvNXDgwBZnXDtuulGuTz+Vr7hY1X/6sxLuubvDakhMTNSll16qTz75RKeffrp8Pl9gIU4AAAAAAI51Xq9X7733nkpKSlRTU3PAcYfDETRr2+1uuV3FvmP7xoaHh+uaa65RYmJi0OKUOHZVNlZq3Z51zdveddpWvU17G/e2eU6qPVWZMZnKis1SZkymejp6qpejl5yRzOhHaDDjW8z4PlH4/X699tprampq0vjx45WamtriOPeiRSq//wHJalXa32covHv3Dq9j33/kNpuN8BsAAAAAcMwwTVNFRUX617/+pZKSEsXGxmrChAny+/3y+/16+eWX5XK5JEnx8fFKTk4ObElJSUG5SUVFRav3CQ8Pl8PhOOrPgyPn9Xu1pXqL1u1Zp+/3fK91e9Zpp2tni2OdNqcyYzOVFZMV+JoVm6X0mHRFWiI7uXIw45sZ3zhJhIWF6aqrrpLNZmvzHeSos85S1Jlnqn7pUu199jkl//61Dv141f733rhxo7Zv365x4/4/e/cdX+V93v//dfbUPjo6mkhGAzQwICAsD8DYGIJXHK+kwUmI02a4SbPapv11Je03jdOmI67duontNnHixKPGBgxmg1mSGEISICPQls7ROhpnn3P//pC5bYVhiWENrufjcT8knftz3+dzQOOc97nu67NaLuESQgghhBBCCDFuIpEINTU1HDx4kPb2dvV2m81GIBBQv165ciUWi4XU1NSPXLvK4XBct/mK66c70K1Wc1d3V1PXW0cgGrhgXG5cLmUpZZSmlFKUWER2XDZ2g30cZizElZHgW0wpKSkpRKNRgsHgJcdoNBqSvvsdAocPEzh0CM8ffwNDXi66tDT0Lhc6Vzr6dBfaxMSrCquHhoZ4/fXXCYfDRKNR7rrrLlnwUgghhBBCCCHEx+7QoUPs3r1breTW6/XMmDGDnJwcnE4niqKor38LCgrGc6riGglGg7QOttI02ETTQNOIhScv1rLEbrBTklxCWUoZZSllFCcXE2+UrghicpPgW0w551uL1NTUkJ+ff9Gw2ZCVRcL69fT97Gf49+7Fv3fvBWM0JtOHwnAX+vc3Q/50TKWlHzkPm83GHXfcwaZNmzhy5AinT5/mtttuo7y8XHqaCSGEEEIIIYS4rs6H2YqiEAgEGBoawm63M2fOHGbNmoXVah3vKYqrpCgKbUNtNA40qqF202ATzQPNdPg6ULh4d2MNGvLi89Rq7tKUUnLjctFqJKsQU4v0+EZ6fE9FL730EqdPn2bJkiUsXrz4omMURSFw+DDhM2eIdnQQ6egg0t5BtKOD6GX6lAHEPfwwSd/6EzT6j37v6MyZM+zYsYPe3l5g+FKwlStXUlBQIO1PhBBCCCGEEEJcM7FYjLq6Og4dOsS8efMoKioiEong9/tpbGykoKBA1qGaxIbCQ9T11lHdXa324vaGvJccbzfY1R7c2fbs4Z7ccTnk2HOwGWwf48zFtTQ0NITH48HpdBIfHy89vi+T5UrwjQTfU1FNTQ2/+93vMJlMPPHEE5jNY1tgQQmFiLjdaiAe7egcDsbbWgkcOAiAeckSUv/h79HaP7q/VTQa5dixY7z77rv4/X60Wi1f//rXSUxMvKLHJ4QQQgghhBBCnOf3+6msrOTw4cP09/cDkJWVxaOPPjrOMxNXSlEUmgeb1ZC7uruaBm8DMWIjxhm1xpHB9vtBd05cDonGq2vhKsbfwMAAra2tuN1uPB4PbrebwcFBANauXUtpaakE37K4pbjRFBcXk5qaisfjobKykiVLlozpeI3RiCErC0NW1gX7hrZto/sv/5LAvn10fOELOH/6L+gz0i97Pp1Ox9y5cykuLubgwYNoNBqMRiOhUAiDwUAwGBxzOC+EEEIIIYQQ4sahKAp+v39Ei5INGzZw9uxZ+vr6OF/XaLVaufnmm5k9e/Z4TVWMUVSJ0unrpGmgidqeWk70nLhkNXe6NZ3SlFK1F3dBYgEGrWEcZi2uhqIoKIpCLBZTP3Z3d+N2u8nPz8f+fpFlbW0tu3fvvuD4pKQkYrGYtNL9CBJ8iylJo9Fw22238bvf/Y7KykrKy8uvWbBsW7ECvcuF55vfJPzeGdrXrcP5Tz/BVFb2kceazWZuu+029etIJEJraysvvfQSCxcuZMmSJbIAphBCCCGEEELcwPx+P319fXR1ddHd3T1i0+l0/Mmf/IkalPX19altNVNTUykvL2fmzJnoR9GWU3y8FEWhO9Ct9uA+v+hk82AzLYMthGPhC44xaU3MSJ4x3Is7eTjsdlgc4zD7G1MkEuHkyZM0NTURjUYv2G677TYyMjIAOHXqFLt27VL3nQ+0z29r1qyhsLAQgJMnT7Jhw4ZL3q/FYqGoqAgAl8tFeno6TqeTtLQ0XC4XLpcLs9ks1fyjIL8JxZRVXFyM0+nE7XZTUVHB0qVLr9m5TSUluF54Afc3vkm4vp7OJ75Myt/+DbaVK8d8rpqaGsLhMHv27KGqqoply5YxZ84ceddOCCGEEEIIIaaIiooK2traCIfDBINBQqHQiO0b3/iGOvaNN97g5MmTFz2PRqOhv79fLexauHAh8+fPJzk5GZvNJkHYBOH2uznRfYL6vno16G4ebMYX8V3yGKPWSKY9k/yEfKnmniAOHDjA/v37L7nf5/vg/zMcDuP1Xrrfeiz2QYuaS/2cWq1WnE4nZrMZvV6PVqulsLCQGTNmyM/2FZIe30iP76mstraW3/72txiNRr785S9f83YisaEhuv7sz/Hv3QtA4le/SvwXPj+mX0iKolBfX8+uXbvo6+sDht+pf+CBB3C5XNd0vkIIIYQQQgghrr1oNEpnZyfNzc20tLTQ1dXF+vXr1crsV155hdOnT1/y+G984xsYDMMB56ZNm2hoaCApKYnk5GSSk5PVzxMTE2VxygkmFA1xqu8UJ7pPqAtOdvo7LzpWi5YMWwbZcdlk27PV3tw5cTmkWdPQaeT/drwoikJLSwtGo5G0tDQAvF4vv/nNbyguLsZms6HX69HpdGi1WvR6PVlZWcTFxQHDC056vV50Op06RqvVotFo0Gg0WK1WtRd3JBIhFAqp+zQaDTqdDoPBoH4tLk8WtxwDCb6nLkVReOaZZzAajaxatYqkpKRrfx/RKL3/9M8MvPQSALa1nyTl+99HM8bFBaLRKEePHuXdd98lEAjgcDj4oz/6I6n8FkIIIYQQQogJqLm5mdOnT9Pc3ExrayuRSGTE/vXr16uvQU+ePElvby9GoxGDwYDRaFQ3g8FAamqq+tpPURQJviYoRVHo9HeOCLlP9Z26oE2JFi35ifnMTJrJtLhp6qKTmfZMqeCeYMLhMHV1dVRVVeHxeJg+fToPPPAAgBpi63Q6+ZmcYGRxSyEYvnzk8ccfB+B6vcej0elI/s63MUzLoefHTzG04U0irW2kPvVjdImJoz6PTqdT+7E999xzdHV1cfr0aWbMmHFd5i2EEEIIIYQQYnQURaGxsZGcnBy0Wi2xWIy6uroRbRDMZjMZGRnqdr4SFBjT6zoJ2CaG/lA/TQNNai/us/1nqemuwRPwXDA20Zg43If7/UUnZybPxKq3XuSsYqLwer0cOXKE6upqAoEAAHq9HrvdrlZfSyHi5CfBt5jyLBYLsVhM/UV2vcQ99BD6rCw8f/qnBKuq6Fj3OM5/+SmG3NwxncdqtbJs2TLMZjPTpk27PpMVQgghhBBCCPGRent7OXr0KMeOHcPr9fLwww+Tk5MDQE5ODoODg2RkZJCZmUlycrKE1pNMIBqgZbBlOOB+P+RuHmimaaCJvlDfRY/RaXRqH+7zQXemLVP+7ye4D19JsWPHDioqKtR9CQkJzJkzh7lz52K32+X/cgqR4FvcELRaLcFgkMOHD1NeXo7FYrku92NZvBjXL36B+8k/JtLcTMfjnyf1x/+Ief78MZ2nrKwMGP7FHI1GpYebEEIIIYQQQnxMQqEQtbW1HD16lMbGRvV2k8k0YvG6nJwcNQQXE4+iKHhDXtx+N26fG7ffTaevU/3YOtRKh6/jsudINacOtymJyyHHnkNxcjEzkmZg0V+fTEFcud7eXlpaWhgaGrrods8995CXlwegtiDKzc2lvLycoqIitce+mFok+BY3jNdff52mpiYUReGWW265bvdjnD6d9BdfwP0n3yJUXU3nV79K8p//OXH33XdF5xsaGsJut8slNkIIIYQQQghxnfX19fH0008TDn/Qs3natGmUlZWRn58v4dgEE1Wi1PbUcqr31Ihg2+134/F5CMaCH3mOOEPccLD9frh9/vMse5a0K5kgYrEYfX19dHV10d3dTXd3N11dXaxcuZLMzEwAWlpa2Lx58yXP4fP51M+Li4vJy8vD5XJJdfcUJ8G3uGEsWrSIpqYmKisrKS8vx2q9fn/AdCkppD37DN1//Tf4tmyh52//jtCJGpK/8200JtOoz3PkyBH27dvHqlWrmDVr1nWbrxBCCCGEEELciLxeL52dnRQWFhKLxbBYLMTHxxONRiktLaWkpOSyC6eJj19/qJ8DHQfY176P/R378Ya8lx2fZEoizZqG0+Ic3qzDHzNtmeTE5ZBgTJDwc4KIxWLEYjH0+uG48uzZs+zatYuenh6i0egF4z0ejxp8Jycnk5eXh91ux2azYbfb1c/j4uJISEjAaDSi0WiwWCwkjmFNNjF5SfAtbhhFRUW4XC46OjqoqKjg1ltvva73pzWbcfz9D/FOvwnvM88y+OqrhOrqSP3xP6LPyBjVOfx+P36/n927d1NaWipV30IIIYQQQggxCtFoFK1WqwaaZ8+epa2tjaGhIXw+H0NDQwwMDNDZ2YnRaOSrX/2qGrY99NBD2Gw2CUMnCEVRaOhvYF/7Pva176O6u5qo8kEIGmeIY7ZjNum29BHBdpo1DYfZgVFnHMfZi48SCAQ4ffo0J0+epKWlhTvvvJPS0lIAdDodHs/wYqJ6vZ6UlBQcDgcOh4PU1FQyMzMxmUxoNBry8/MpKCgYz4ciJiAJvsUNQ6PRcPvtt/PrX/+aqqoq5s2bd12rvgE0Wi2JX/oSppISur7/F4Tq6mj/zGdx/OAHWJYs/sjjy8vLqaiooLu7mxMnTkjVtxBCCCGEEEL8nmAwSEVFBadPn1b7+QYCAb7zne9gNA6HnsePH+fo0aMXPT4tLY3BwUG1AtRut39scxcXF4gGqHRXsq99H++2v0u7r33E/pvib2JJ+hKWpC+hLKUMvVbirckkFApRX1/PqVOnOHv2LLFYTN3X3d0NDGc46enpPPjggzidTpKTk0e8mSXEaMhvBnFDKSwsJD09nfb2dg4fPsxtt9026mNDoRBnz54lHA5TWFioPoEaDcvixaT/8pd4vvtdQrW1uJ98koQnniDhS+vRXKaK22QyMW/ePPbt2ydV30IIIYQQQgjxIT6fj4MHD3Lo0CECgcAF+3t7e9VF7NLT0wmFQlitVqxWKzabDavVSkpKCgkJCR/31MVFdPg61KruCncFwegH/blNWhPlznKWpC9hcfpiMmyju4paTDyDg4P813/9F5FIRL0tNTWVGTNmMHPmTJxOpxpwWywW+fkUV0WjKIoy3pMYb/39/SQkJOD1eqV31w3g9OnTvPTSSxgMBp544olLVn1HIhH8fj9xcXEADAwM8MwzzwCQkJDAnXfeSW5u7pjuWwmF6HnqKQZ/9woA5sWLcfzg79BdprdUMBjk2WefJRgMcv/990vVtxBCCCGEEEIA7777Llu3bgWG+/uWl5eTkpKihttms1mqQyewSCxCdXc177a/y772fZzpPzNif5olbbiqO2MJ81LnYdabx2mm4kpFIhHOnj1Lf38/5eXl6u0vvPACkUiEGTNmUFpaSlpamhT5iTEZbZYrFd/ihlNQUEBWVhbJycl8+H0fRVFwu92cO3eOxsZGWltbyc7O5sEHHwQgLi6O/Px8Ojs78Xq9/Pa3v6WkpIRly5ZhsVhGdd8ao5GUP/9zTLNm0fPDvyfw7ru0f+azpP74HzEVF1/0GKn6FkIIIYQQQojhCm6/3096ejqRSITi4mJOnTrF7NmzKSgokNdJk0BfsI/9HfvZ176Pgx0H6Q/3q/u0aClzlKktTKbHT5c3LiaR3t5euru7GRoaYnBwkN7eXhoaGggGg+j1esrKytTFJT/zmc9gs9nQ6XTjPW0xxUnFN1LxfSOKxWKEw2Gi0SgnTpygoaGBpqYm/H7/iHGJiYmsX78evV6PTqdDq9USCoXYtm0bFRUVAFitVlasWEFRUdGY/iiHTp/G8+3vEGlpAYOB5O9+F/sD91/0HB+u+l63bt2YK82FEEIIIYQQYrLyeDzs3buX6upqnE4nf/AHfyCB6CShKAr13nq1hUlNdw0xPujnHG+MZ7FrMYvTF7PQtZAEo7S1mGhisRhNTU0jQu3zHx999FHM5uFK/C1btnDs2LELjrfb7cyYMYMlS5YQHx+PRqORn19x1aTiW4jL0Gq1GAwGotEotbW1NDY2AmAwGMjJySE3N5ebbrpJvdzmw7+UzWYza9asoaysjA0bNtDV1cW2bdvIy8vDZDKNeg7GwkLSf/m/dP3VX+HfuYueH/6Q4PHjJP/Zn6I1j7yEy2QysWrVKpKTk3E6ndfmH0EIIYQQQgghJrC2tjb27NnDyZMn1dssFgvBYFAN28S1E1Wi9AZ6cfvdw5vPTae/E7fPrd42GB4c0zkjsQi+iG/EbfkJ+WpVd2lKKTqNVP1OVFVVVezfvx+fz3fR/UNDQ+rPYkpKCi6XC5vNhs1mIy4ujry8PHJzc2VRSjFupOIbqfi+kQWDQU6cOEFvby833XQTWVlZGAyGUf9CjkQi7Nmzh6SkJAoLCwHU9imjPYcSi9H/4ov0/fvPIBbDUFhI6o//EUN29iWPMZlMckmQEEIIIYQQYkpqaWlhx44dNDQ0qLcVFBSwcOFCXC7XOM5saugN9lLlrqKmp2ZEsO3xe4gq0Wt+fyadiQXOBSxOX8yS9CWkWdOu+X2Ia2NwcBCj0YjRaATgyJEjvPPOO1gsFrKzs4mLi8Nut2O324mLiyMrK0vtpX8+A5GAW3wcRpvlSvCNBN83srGG1Jc7TzgcJhKJUFtby5EjR1i1ahUpKSmjPkfg8GE8f/bnxHp60NjtOH/yFOb58y86tr+/X13pWAghhBBCCCEmu1gshlarHW6NUV/PSy+9hEajobi4mAULFuBwOMZ7ipPWQGiAI11HqHRXUuGu4D3ve5ccq0VLiiUFp8VJmjUNp8U5vFmHP8YZ49Aw+tfPGjS4bC7MOqnQn6jC4TDvvfceNTU1nDt3jjvuuIPZs2cD4Pf7aW9vp7CwcExFgkJcbxJ8j4EE3+JaiUQi/OxnP6Ovrw+dTsfChQv5xCc+Merq7IjbTdd3v0fw+HF0qalkvPYqWqt1xJjt27dTVVXFfffdx6xZs67HwxBCCCGEEEKI687v93PixAmOHj3KtGnTWLZsGZFIhGg0yv79+ykpKSExMXG8pznp+CN+jnUdU4Puk70nR/TVhuF2I7Mds8myZ6mhttPiJMWcgl4rXXGnOkVRaGlpoaamhlOnThEKhdR9s2fP5q677lLXOpOwW0xEEnyPgQTf4lrq6+vjzTff5MyZMwA4HA7uuusuMjIyRnW8EgzS9ulPE2lpJf7xdSQ9+eSI/fv372fv3r2kpKTwla98Raq+hRBCCCGEEJOGoig0NDRw9OhR6urqiEaHW2vEx8fzxBNPSMg2RoFIALffTdtQ23DY7amkpruGiBIZMS7HnsM85zzmOecx1zmXJFPSOM1YjLdIJMIvfvEL+vr61NsSEhIoKSlh1qxZpKamSs4gJjwJvsdAgm9xrSmKQnV1NW+//TY+nw+dTsd9993HTTfdNKrjfbt24/nmN0GvJ+Pl32DIzVX3BYNB/vM//5NAIMD9998vVd9CCCGEEEKISWH//v0cPHgQr9er3uZwOCgrK6O4uBjr713teqPzRXwjFpY8/3mnr1O9rT/Uf9FjXVaXGnSXO8txWpwf8+zFeItGo7S3t9PU1ERfXx+rV69W973yyiu0tLQwY8YMZs2aJQtQiklntFmuXL8ixHWg0WiYNWsW06dP5//+7/+or6/n9ddf5/Of/zxJSR/9zrrl1luwLF2Cf+8+en78FM5//zf1D5DJZGLevHns3buX3bt3U1paKu/GCiGEEEIIISY0RVHo7u7G6/ViMpmYOXMmZWVlpKWl3ZBh21B46IIQWw25fW46/Z0MhgdHdS6LzoLT6mRG0ozhoDu1nAxbxg3573ojUxSFrq4uGhsbaWxspLm5mXA4rO6/9dZbsdvtAKxatYq4uDhMJpN8n4gpTYJvIa4jm83Gww8/zO9+9zscDseoQm8YDs6Tvv1t/AcPEdi/H/+uXVhvv13dP3fuXCoqKuju7ubEiRNS9S2EEEIIIYSYUFpaWti5cyfLli3D4XAQjUa5+eabSU9Pp6CgAL1+6scR3YFuTnSfoL6vnk5/pxpou31uhiJDozqHTW/DaXWSZkkb0Yv7w5/bDXYJL28Q0WiUYDBIIBAgEAiQnJyM2Ty8cOi2bds4cuTIiPEWi4WcnBxyc3OxWCyYzWY0Go1cXSFuGFP/L40Q40yn0/HpT38aRVEIBoPA8DuxH/XExJCTQ/xnP0v/L35Bz1M/wbxwIdr3/6BJ1bcQQgghhBBiImpvb2fHjh3U19cDw0U9999/PwApKSmkpKSM5/Sum3AszOm+01R3V3Oi+wQnuk/Q7mu/7DFxhriRIfb7H9OsaaRaUtVQW0xNsVgMn8/H0NCQ+nFoaIiZM2eqrRtOnjzJgQMH1LD7w4tQAjz44IPk5eUBkJGRQXV1NVlZWeTm5jJ9+nTS09OlhYm4oUnwLcTH4HwobTKZGBgY4LXXXqO8vJz8/PzLHpew/osMbdxItK2N/hdfJPGJJ9R956u+BwYG6OzsJD09/bo+BiGEEEIIIYS4lM7OTnbu3MnJkyeB4cC7pKSERYsWjfPMro9OXycnek6oIffJ3pOEYiNDSQ0apidMZ2bSTDJsGRdUbFv1UnU7VYVCITweD319fWqYHRcXB0B1dTW7d+/G5/Nd9Fin06kG3+FwGI/Hc8EYk8mkVnrD8M9bcXExZWVlGI1GCbqFeJ8E30J8jHQ6HUePHqWpqYmWlhbuueceCgoKLjlea7GQ9I1v0PVnf0b/L57H/slPos/IAIb/0N13332kpqbKZUpCCCGEEEKIcbNp0yYOHTqkfl1cXMzixYtH3epxMgjHwuxr38fW5q0c7zqO2+++YEyCMYHSlFJKk0spSyljZvJMqdi+QXR2dnLq1Cm6urrweDz0949cdNThcKjBt0ajUUNvjUaDxWLBZrOpm91uR6fTATB9+nQeeeQRzGYzFotF3T5cxS0htxCXJsG3EB+zW2+9FY/HQ21tLW+88QZr166lsLDwkuOtd67E9MrvCFZU0vOTf8L5k6fUfdnZ2cDwJVLRaFT94yiEEEIIIYQQHwdFUUhISACgqKiIJUuWTJl2JoqiUNdbx1vn3mJL8xb6Qx+EmTqNjvyE/OGg+/2wO9ueLSHkFKUoCv39/Xg8Hrq6uujq6qK8vFy98rqrq4uDBw+OOMZms5GSkqIG2jqdDo1GQ1FREZmZmdjtdmw2mxpiX+x7x2Qy4XA4PpbHKMRUpFEURRnvSYy3/v5+EhIS8Hq96uUkQlxPsViMV199lZqaGrRa7UeG36H33qP90ccgGsX5s3/H8nuXCyqKQktLCwUFBdLrWwghhBBCCHFdhMNh2traOHr0KNOnT6eoqIhwOEwkEqG3t5fU1NTxnuI10enrZFPjJjY1buLcwDn1dofZwV05d7E0Yykzk2Zi0VvGb5Liuuvq6qKyslINun+/v/by5cspLy8HoKenh4qKCpxOp7rZ7fZLBtpCiKsz2ixXKr6FGAdarZYHHngAgJqaGrXyu6io6KLjjfn5xD38MAO/+hU9P/4xGb/5DRqDQd3/2muvcebMGWbOnMm9996LyWT6WB6HEEIIIYQQYmpSFAW3201ra6u6ud1uztfONTU1kZeXh0ajQa/XT/rQ2xfxsbN1JxvPbaTCXYHC8OM06Uzcnnk7q6etZn7afHQaucp2qgiHw3R3d+PxeNRK7rKyMmbOnAlAMBjk+PHj6nitVktKSgoOhwOn00lubi5GoxGtVktmZiZZWVnj9VCEEJcgwbcQ4+R8+K3RaDhx4gTbtm0jLy8Po9F40fGJX36Coc2biZxrpP9XL5Gw7nPqvqKiIhoaGqirq6Ojo4NPf/rTstilEEIIIYQQYlTOt3Ho7+9X2ykqisKLL754wQJ8drudzMxM5s2bN+krWWNKjCpPFRvPbWR7y3b8Ub+6b27qXO6edjfLs5ZLn+4pxOv1snv3bjo7O+nt7b1gf0pKihp8p6amsmjRIrWC2+FwYDAYJv33vRA3Eml1grQ6EeMrFouxefNmiouLcTqdlx07+MYbdP/136CxWsl47VX0H6qqaG1t5c0336S/vx+dTsfKlStZsGDBNfmj7Pf71RWjFUWRdipCCCGEEEJMUtFolO7ubtxut7q1trYy69q/dwAAIABJREFUODiI3W7n61//OtFoFEVRePPNNxkaGsLlcpGenk56erq6QN9kMhAaoGmwieaB5gs+DkWG1HFZ9ixWT1vN3dPuJsOWMY4zFldKURQGBwfp7Oyks7MTt9tNVlYW8+fPB2BoaIinn35aHW+1WnE4HKSmpuJ0OsnKyiItLU1tUSIhtxAT02izXAm+keBbTAzRaJRgMAgMB80Wy4X94pRYjI7Pf4FQdTW2u+/G8cMfjNjv9/vZvHkz7733HjBcCX7vvfde9FyjndOhQ4fYtWsXa9euJS8vD4CqqioikQi33HKLLKgphBBCCCHEBBSLxejp6aGnp2fEekIvvPAC586du2C8RqMhNTWVRx999JJXoU5kUSXKGe8ZmgeaaR5spmmgSf3YF+q75HF2g52V2StZPW01ZSllEnROQkNDQ1RWVqpB9+9fpZCXl8eDDz6ofl1VVUVqaippaWnEx8dLwC3EJCQ9voWYZHQ6HSaTiTNnzvDqq69y1113XdDzW6PVkvy979HxB3/A0KZN2D/1Kcxz56j7LRYL9913H1VVVezcuZOGhgYGBgYwm81j+kOuKAr19fVs2bKF7u5uAI4dO0ZeXh4DAwPs2rWLSCRCbW0ta9euVS+HFEIIIYQQQoyPUCjEsWPHaG5uxu1209XVRTQaBeBb3/oWer2eWCxGUlISbW1tOBwOdUtLSyMtLQ3Dh9YRmize877HxnMbebvpbboCXZcc5zA7yInLIdueTXZcNjn2HLLjssm2Z2PQTr7HfSNTFAWfz4fNZgPAZDJx9OhRtZBMo9GQkpKifl9nZ2djMpnQarVoNBqWLl06ntMXQnyMpOIbqfgWE8vGjRs5fPgwBoOBdevWkZSUdMGY7h/8kMFXX8VQUED6L/8Xjf7C97A6OjoYGBigoKAAnU6H0WgcVfjtdrt5++23aWhoAIYv/brlllsoLS1Fq9WiKAonT55k+/bt6jvpCxYsYMWKFZOyMkQIIYQQQojJ7ujRo2zduvWCSleDwUBKSgpr164lMTERGF7QT6/XT+oK1+5AN283vc2mxk2c7jut3m7T28iLzxsRbOfYc8iyZ2Ez2MZxxuJa6Ovro66ujtraWmKxGOvXr1e/j6urq1EUhfT0dNLS0jCZTJP6e1wIcXnS6mQMJPgWE0ksFuOFF16gqakJl8vFY489dkE7kWhvL233P0Csv5/k732PuIcf+sjzNjU1UVVVxX333YfVar3omH379rFt2zYURUGn01FeXs7ChQsxmUwXjPX7/ezYsYOamhoA4uPjWbNmzYjLKIUQQgghhBDXl6IoHDlyhA0bNpCQkEBZWRmpqak4HA4SEhKmTPgXiAbY3bqbjY0bOdR5iKgyXM2u1+hZmrGU1dNWszh9sVRvTzF+v5+TJ09SW1tLW1uberter+fxxx/H4XCg1+vVam4hxI1Bgu8xkOBbTDT9/f0888wz+P1+5s+fz+23337BmIGXX6bn//0IbVwcGa+/hu4ileHnxWIxnnvuObxeL3FxcTzwwAPk5uaOGKMoCqdPn+bXv/41BQUF3HbbbRetNv99Z8+eZevWrXi9XnQ6HV/72tfUahIhhBBCCCHEtRUIBDh48CAJCQmUlpYSDoeJRqOcOnWKwsLCKbUGT0yJcazrGBsbN7KteduIhSjLUspYPW01K7JXkGBMGMdZiuulsrKSnTt3EovFgOEWJjk5OZSUlFBcXIzVapWwW4gblATfYyDBt5iI6urqePnllwF48MEH1YUlz1OiUdo/+weET53Cfv/9pPzlX1z2fG63mw0bNtDT04NGo+H222/H5XLh8/koKysjFAqhKAqdnZ2kpaWNaa6hUIh9+/ZhNptZtGgRBoNh0l8+KYQQQgghxETi9/s5cOAABw8eJBgMEhcXx5e+9KUpFXQDhGNhanpqONBxgM2Nm2n3tav70q3p3D3tbu6edjc5cTnjOEtxLUUiETo6OmhtbSUrK4vMzEwAGhsbefnll3E6nZSUlFBWVkZiYqK8zhRCSPA9FhJ8i4nqzTffpLKyEqvVyuOPP64u3nFe4OhROr/wRdBocL34AqaSksueLxQKsXXrVmpra9XbjEYj69evv+DcV6uzs5P9+/ezevVqqQAXQgghhBDiCvl8Pvbv38+hQ4cIhUIApKSksGjRIoqKitBqteM8w6sTiUU43XeaCncFFe4KjnUdIxANqPuteit3ZN/B6mmrudlxM1rN5H68YvhNnNbWVnXr6OhQF2KdN28ey5YtA4avSvZ6vbhcrkn/fS6EuLZGm+VeuCKeEGLCuOuuu2hqaiI9Pf2iC0eaZ8/GtmYNQ2+9Rc+PfoTr+efRXOYJgdFoZM2aNUybNo133nmHWCzG7Nmz0V9kccyroSgKW7dupb29naeffprly5ezYMECebIihBBCCCHEGBw7doy33nqLcDgMQGpqKosWLaKwsHDSVr3GlBjved+j0l1JpbuSKk/ViBYmAEmmJOamzuX2zNu5NfNWzDrzOM1WXC1FUQiHw+rr2f7+fp599tkLxlmtVrKyssjIyMBgMKDT6dBoNNe8QEsIcWORim+k4ltMbMFgEI1GQyQSuej+iMdD2wOfQhkawlhaStI3v4F5zpyPPO/Q0BCKomC326/1lAHo7u7m7bffprW1FYDMzEzuuecenE7ndbk/IYQQQgghJptIJEJ3dzcej0fdZsyYQVlZGbFYjObmZl544QWcTieLFy8mPz9/UgberYOtHOg8QIW7gkp3Jd6Qd8R+u8HO3NS5zHPOY55zHjfF3zQpH+dEF4vFOHv2LD6fD7/fTyAQIBKJqJvD4WDBggXq+F/+8peEQiGi0SiRSIRoNKr2287IyOBTn/qUOva5557D7/df9D6nTZvGfffdBwwH4f/xH/+ByWQiMzOT7OxscnJycDgcskClEGLUpOJbiCnCZDKhKIr6JGNoaGhEWK1PTSXlL75P99/+HaETJ+j84nqsy5eT+OTXMeRcuu/d9X7nPCUlhUcffZRjx46xa9cuWltbefbZZ1m6dCm33HLLNa8yF0IIIYQQYiJSFIVYLKb24u7v72fz5s14PB66u7v5/Vo0g8FAfn4+AE6nk8cee4yMjIxJFwgOhAbY2ryVTY2bON59fMQ+i87C7NTZlDvLmeecR2FiITrN1OpVfj1Eo1ECgeE2MOdfz0WjUY4cOUIgEMDv96vb+XA7NzeX1atXq+d49dVXL3n+3NzcEcG3x+NRrzb4fefb7pwXDAbVuf2+jo4OFEVBq9Wi1+v5yle+gtlsliuChRDXnSRPQkwC5yu+X3nlFbxeL+vWrRvR+sR2112Yy8vpe+ZZBl9/Hd/27fh27yLu0w+R8KX16K5Bj+3YwACBI0cwzZo16vNpNBpmz57N9OnT2bp1K2fOnGH37t0kJSUxe/bsq56TEEIIIYQQE0EkEuH06dMMDAzQ39/PwMCA+nl/fz9lZWWsWbNGrZatq6tTjzUajTgcDhwOBykpKerCfuf9/tcTWSQW4UDnATae28ietj2EYsPhqBYts1NnM985n3nOeRQnF6PXShzxYYqiqG9u+Hw+tmzZQiAQGLGdD6FnzJjB2rVrgeHXXDt27LjkeQcGBtTPtVotOTk56HQ6rFYrZrMZo9GITqdDr9eTlJQ0okDpU5/6FBqNBr1er27n38DR6/UjXpOuW7fugjdxzktISMBkMqmP72JtPIUQ4nqQvzRCTBJ6vZ7e3l76+/t55513RrxrD6BzOEj5i+8T98jD9P7LvxLYt4+Bl15icMMGEtZ/kfiHH0ZjMo3pPqO9vfh27sS3bTuBQ4cgEsGQPx3XCy+gtVhGfZ64uDjuv/9+Tp06xalTpygoKCAYDGI0Gidd5YoQQgghhLhxRaNR6urqqKqqwuVycccdd6AoCsFgkN/+9reXPM7r9RIMBoHh5/UrV64kISEBh8OB3W6f9M+JT/edZuO5jWxu2kxvsFe9fXr8dFbnrmZVziocFsc4znDiON/epqura8SWnZ2tvsYzmUw0NDSoCz5e7BznabVaysrK0Ol0WCwWbDYbVqtV/Wi329XQWaPR8Pjjj4/6+62oqGjUj0taWgohJiLp8Y30+BaTx7lz53jxxRdRFIXVq1dTUlJyybH+Awfo/eefEq6vB0CXkUHS17+G9c47L/tEJ+Lx4N+xg6F3thGsqoL3q1IA0OsgEsV27704/ur/u+rHEwqFePXVV1m6dCmFhYVXfT4hhBBCCCGuh/7+fiorK6mqqmJwcBCAvLw8HnzwQXXMb37zG8xmM3Fxcdjtdux2+4jPDQbDeE3/uugOdLO5cTMbGzfynvc99fYkUxJ35dzF6mmrKUycvItwXguRSEStoI7FYjz//PP09PRctDLa6XSybt06YLiKu66uDq1Wi8ViuWA7H2KfHyuEEDea0Wa5EnwjwbeYXHbu3MmuXbswGAysW7eOpKSkS45VolGG3nqLvp89TdTjAcBYWkLSN785YgHMSHs7vm3b8W3fRvDYcfjQrwXjjCKsK+7AumI5Ebcb91e+CrEYKX/7N9g/+cmreiz79u3j3XffBaCkpIS7775bVu0WQgghhBATRmNjI4cOHaKurk4NK202GzfffDNFRUU4HFO/ijkQCeD2u4c3n5tOfyfHuo5xsOMgMYaLZAxaA7dk3MKaaWtY6Fp4Q7YxiUQiuN1u2tvbaW9vp62tjfj4eB555BF1zHPPPUdvby8mk4nU1FQcDgdOp1PdbDbbiFBbCCHExUnwPQYSfIvJ5HylQHNzMy6Xi8cee0zts3bJY/x++n/5S/p/8TzK+yttW5Ytw1Ragm/7DkI1NSPGG0tLsd6xAuvy5Riyskbs6/vP/8T7zLNozGZc//s/GG+66YofSygUYt++fVRWVqIoChaLhbvuuotZs2bJkz0hhBBCCDHufvvb31JbWwtAVlYWc+bMoaCg4COff08mbUNttA21qaG22zcccnf6OnH73XhD3kseW5pcyprcNdyRfQfxxhvztfTevXs5e/Ysbrdb7eF+nsFg4Mknn0Sr1aLVavF4PNjtduLj49FqtfKaRwghrpAE32MgwbeYbLxeL8888wyBQIAFCxZw2223jeq4aFcXfc/+J4OvvTayhYlGg2nOHKwrlmNdtgy9y3XJcyjRKO6vfZ3AwYMYbroJ1/+8OKZ+3xfT3t7O22+/jef9qvTCwkIefvhhWeVbCCGEEEJ8bLq6ujh8+DDz5s0jKSmJSCRCU1MTNTU1zJkzZ0r1MO4OdPN209tsPLeRem/9R4636CykWdNwWpw4rU6y7FmsyFpBTlzOxzDbiSEUCnH69GmamppGrLf0yiuv0NDQAIDVaiU9PZ2MjAwyMzPJzMxUq7iFEEJcOxJ8j4EE32Iyqq2tZdu2bXzyk58kLS1tTMeGzpzB+9//TWxgEOttt2K9/XZ0Y7hMM9rTQ/sjjxLt6sK29pM4/uZvxjr9C88ZjXL48GHeffddotEod999NwsWLLjq8wohhBBCCHExwWAQt9tNZ2cndXV1ang5d+5cVqxYMc6zu/aC0SB72vbw1rm3ONh5kKgyvHCiXqMny56F0+ocDrYtTjXkPv/Rbpj8C3BeiVgsxrlz56itraW+vl5dVPIP//APiYuLA4bXYQqFQmRlZZGUlCSV3EII8TGQ4HsMJPgWk1U4HCYcDo/LfQcqK+n88h8O9/v+q7/Cfu891+S8VVVVNDQ0sHz5cjIzM+VJoxBCCCGEuCqxWIxAIIDVagWGK3f/4z/+g76+vgvGTp8+nfLycqZNm/ZxT/O6UBSF493H2di4kXea32EwPKjukzYll9bd3c3Ro0c5efIkPp9PvT0pKYni4mIWLFiAzWaTkFsIIcbJaLPcG2/FCSGmEIPBgEajIRQK4fF4SEpKUlcNv97M5eUk/uEf0vf00/T86P9hLCnGmJ9/1eedM2cOc+fOBYarwD+uxyOEEEIIISa/YDBIa2srnZ2dajW3x+Nh2rRpPPLII8RiMWKxmFo8YrfbSU1NxeVyUVZWRkJCwjg/gmujbaiNjY0b2XRuEy1DLertLquLu6fdzeppq2+oNiWjoSiKGmJ3dXVRVVUFDLcvmTFjBmVlZWRnZ0+p/u5CCDHVSaIkxCSn1+s5dOgQ27Ztw2g0MnPmTEpKSnC5XNe9+iD+C58ncOQIgf378Xz3e6T/7/+gfb+S5kp9eM6hUAiNRiNPLoUQQgghxGUpisLPf/5zWlpaLrq/u7ubUCikfv3ggw8SFxeH5SrXqplIvEEvO1t3sqlxE0e6jqi3W/VWlmUtY820NcxJnYNWI+vonDc4OEh9fT21tbXk5eWxePFiYLjyv6SkhOLiYvLz89WCIyGEEJOLBN9CTAGJiYlYrVYGBwc5cuQIR44cITk5WX2ydr1a+Gi0Whw/+DvaH32MyLlz9Pzw70n5wd9dkyeFPp+PvXv34vP5eOyxx67BbIUQQgghxGQWDodpa2ujubmZlpYWAoEAn/vc54jFYkSjUfU5aEJCAk6nk9TUVHVLTEwcca6pslBlb7CXna072d6ynUp3pdq3W4OG+c75rM5dze2Zt2PRT52A/0opikJTUxMdHR3q1t/fr+4PBoMsXrwYrVaL1WrlU5/6lITdQggxyUnwLcQUUFxcTFFREWfOnOH48eOcOnWKnp4e9uzZw549e/j85z+PYwyLV46FLikJxz/8PZ1PfJmhTZswlc8l7oEHrvq8gUCA6upqYrEY9fX1FBQUXIPZCiGEEEKIyeT06dM0NDTQ0tJCe3s7sVhsxP6+vj7MZjMAd9xxB2azGbvdPh5T/dh0B7rZ1bqL7S3bqfJUqWE3QGFiIXdk38GqnFWkWdPGcZbjKxwO43a7GRoaorCwEBi+snTz5s0jwm6AtLQ0SkpKKC0txWKxSNgthBBTiATfQkwROp2OwsJCCgsLCQQC1NTUcPz4cQYHB0lJSVHHnThxArvdTk5ODlrtpS9zDIfDnDt3Dr/fr27BYJDS0lIyMzNHjDXPmUPiV79C37/+Gz3/+GNMpaUY33+CeaWSk5OZM2cOlZWVbNmyhenTp192vkIIIYQQYmpRFIUjR45w8uRJ9TabzUZGRgaZmZlkZGRgMBjUfder0GMi6PJ3saN1B9tbtnPUc5QYH7wBMCNpBiuyVrAsaxnZ9uxxnOX46e/vp6mpiZaWFjo6Oujq6kJRFMxmMwUFBWqYnZ+fz9DQEOnp6er3kYTdQggxdUnwLcQUZDabKS8vp7y8XO2THYlECIfDbN++nWAwiN1ux+VyjQi2S0pKWLZsGTB8qd/rr79+wbnPnTvH+vXrL+i7Hf+5zxGsqsK/d98H/b6vstpm8eLF1NbW0tXVxeHDh/nEJz5xVecTQgghhBATV0dHBwcPHmTp0qUkJCQQDoeZO3cuZrNZDboTEhJumJDS4/ewo2UH21q2cazrGAqKuq84qZjl2ctZkbWCDFvGOM5y/L3xxhucOnXqgtttNhsul4tIJILFYkGr1bJmzRo0Gs0N8z0khBA3Ogm+hZjijEYjAAaDgWg0SnFxMbW1tQwODvLee++NGOvz+dTPLRYL6enpWCwWrFYrFouF2tpa+vv7qampYdasWSOO1Wi1pPzt39L+2GNEmpro/sEPcfzD31/Vk0qz2cySJUt455132LlzJ2VlZVivcvFMIYQQQggxccRiMU6ePMnBgwdpamoChq9kXL58OQCZmZkXXG04lXX6OtnRuoNtzds43n18xL7S5FKWZy1nedZy0m3p4zTD8eHz+WhubqapqYnm5mYee+wxtcVNUlISGo0Gl8tFTk6O+j2TkJCAVquVkFsIIW5gGkVRlI8eNrX19/eTkJCA1+u9bosACjGRhMNh6uvr6e/vx2q1qltcXBxWq3VEFcSHnyju37+fLVu2UFRUxD333HPRcwePHafjS+shEiX5z/6UuE9/+qrmGovFeOGFF+jq6mL+/PmsXr36qs4nhBBCCCHGn8/no7KykoqKCrXnslarpbCwkPLycjIybpwq5g5fh1rZXd1dPWLfrJRZath9I/XsHhoaorW1lZaWFpqamvB4PCP233///eTn56PRaAgGgxgMBvV1jBBCiKlvtFmuBN9I8C3EaIXDYRoaGsjKyrrsk8r+//kfev/5p2Aw4Hr+F5hmzryq+21sbOTll1/GarXy5JNPYjKZrup8QgghhBBi/MRiMf75n/+ZwcFBAKxWKzfffDOzZ8+e8gtTntc21KaG3TU9NertGjTMcsxSe3Y7Lc5xnOX1oSgKg4ODeL1e+vr66Ovrw+v1Mnv2bLW6v66ujjfffHPEcQ6Hg2nTppGbm0tubi42m02CbiGEuEGNNsuVVidCiFEzGAzq4pmXe88s7rOfJVB1BP+uXXR973uk/fd/o09NveL7nTZtGnfeeSeFhYXX5Mlte3s7NTU1zJkzZ8TCn0IIIYQQ4voIBoOYTCZisRiRSIQZM2bQ3NzM3LlzmTFjBnr91H5pGlNiw2F36w62N2+ntrdW3adBw2zHbFZkr+D2zNtJtVz58+aJRlEU9fl7U1MTW7duxev1Eo1GLxibnp6uBt/JycmkpaWRnp6uBt3x8fESdAshhBgTqfhGKr6FGKtIJMLAwAB9fX2kpV38kstofz/tjz5GtL0djdVKwvr1xD/2KJr3e45fDbPZjFarHfNxiqJQVVXFpk2biEaj6HQ6brnlFpYuXXrBYp1CCCGEEOLqKYpCdXU1mzdv5oEHHlBbmESj0SnTfzmmxOgN9tLp68Ttd+P2uXH73R987Xfj8XsIx8LqMVq0zE6dzYqs4bDbYXGM4yO4NmKxGF1dXbS2ttLa2kpbWxuLFi2irKwMgNbWVn71q18Bw+0U4+PjSUxMVLfp06fjcrnU7wtZhFIIIcSlSKuTMZDgW4ixaWpq4le/+hVms5kvfvGLlwyNww1n6frrvyZ04gQA+pwckr/9LSxLl17xfSuKQmNjI0VFRWMKqxVF4Y033uDo0aMAxMfHq/0kHQ4HDz30EKlXUZUuhBBCCCFGGhoa4q233qKurg6AwsJC7r333nGe1dUJx8Ic7DzI7tbdnO0/i8fvwe13E1UurGD+fTqNjjmpc1iRtYLbMm8jxTz5rzz0+XwcOXKE1tZW2tvbCYVCI/aXlZWxatUqNBoNkUiE9vZ2kpOTSUhIUKv8JdwWQggxVtLqRAhx3bhcLnQ6HV6vl7q6OkpLSy86znBTHq7nf8HQW2/R+6//RqSpCfeTf4xl6VKSvv0tDDk5Y77v8y+eVq5cyeLFi0d9nEajwWw2o9FouOWWW1iwYAF1dXXs2LEDn8+H0WgccSmmEEIIIYS4cidPnmTDhg34fD60Wi2LFy/mE5/4xHhP64qEoiEOdh5ke8t2drftZjA8eMEYLVpSLCk4LU6cFidp1rThz60ffO0wO9BrJ9ZL8K6uLo4dO0ZycjJz5swBhgtGNmzYgKIoxGIxYLiaW1EUFEXB5XJxyy23qOd499131c+NRiPp6elkZWWRnZ1NVlYWFotFfY4dFxf3MT46IYQQN7qJ9VdXCDEpGI1GFi1axLZt29i/fz/FxcWXbD2i0Wqxr12LddkyvP/1HP0vvYR/7178Bw4Q/5nPkLD+i2httlHfd3Z2NnV1dezevZubb74Z20ccG4vF0Gg0hMNhlixZwvTp09VLbIuLi8nLy6O3txeDwYDf78dgMNDc3ExeXp6E4EIIIYQQYxQIBNi8eTPHjh0Dhq+sW7169SXb401UwWiQAx0H2N6ynT1texiKDKn7HGYHy7KWMdsxWw24U8wpEy7Uvhyfz8e+ffs4duwYiqJQWFioBt8ajYZTp05d8tgPP0e2Wq3MmzeP5ORksrOzSUtLQ6/Xy/NoIYQQE4K0OkFanQhxJUKhEP/yL/+Cz+fj7rvvvmTV9+8LnztHz1M/IfB+ZYjOkULik3+MbfXdaEbRtzsWi/Hiiy/i8XiYO3cua9euveg4RVHYvXs3Z86c4eGHHx71k+/a2lreeust8vPzWbNmDYmJiaM6TgghhBBCQHV1Na+++ioajYYFCxawePHiSbNwZSAaGBF2+yI+dV+qOZVlWctYkb2CWSmz0GrGvt7MRBCNRqmqqmL//v0Eg0EApk+fzqxZsygqKlKfM1dUVKDRaC7ot63RaIiLiyM3NxetVjtivxBCCPFxkR7fYyDBtxBXZu/evWzbto2kpCS+8IUvjHrBSUVR8O/ZQ+9TPyHS0gKAadYskr77HUzFxR95fHNzM7/+9a/RaDR8+ctfvqCCyO/389prr1FfXw/A2rVrmTFjxqjmVlFRwa5du4jFYhgMBm6//XYWLlx4RYtpCiGEEELcSBRFIRAIsG3bNoqKisjMzBzvKX2kLn8XlZ5K9rTtYV/7vhFht9PiZHnWclZkraA0pXTSht3nNTY2smXLFvr6+gBwOp2sWLGC/Px8ea4rhBBiUpHgewwk+BbiyoRCIX7605/i9/tZvXo1JSUlYzpeCYXo/+Uv8T733yh+P2g02O+9h8SvfQ1dcvJlj/2///s/Tp8+TW5uLp/73OfUKpP29nZefvll+vr60Ov1rFy5ctTV6Od1d3ezZcsWWt4P5V0uF2vXrlVbpAghhBBCiGFNTU1s27aNBx98cEwLj48Xb9BLlaeKCncFFe4Kzg2cG7HfZXWxPGs5y7OWU5JcMunD7g9raGjglVdewWq1cuuttzJ37lwMBsN4T0sIIYQYMwm+x0CCbyGu3J49e9ixYwcLFy5k6dKlV3SOiNtN37/+G0MbNwKgTUrC9fP/xjBt2iWP6evr4+c//znRaJSHHnqImTNncvToUd566y0ikQgJCQnce++9V9xPUlEUqqur2blzJ8FgEI1Gw6JFi1i5cuUVnU8IIYQQYioJBoPs3r1bXdhwzpw53HHHHeM8qwsNhgc52nWUSnclFe4K6vvqUfjgJbAGDYWJhSxIW8CyrGUUJxVPmbYdQ0NDeDwecnNzgQ/jhrteAAAgAElEQVSe35aVlWG1WqfM4xRCCHHjmRTB9z/8wz/w6quvcvLkSSwWC4sXL+ZHP/oRRUVF6phgMMi3v/1tXnrpJfx+PytWrODpp58mKytLHdPU1MRXv/pVtm/fjsVi4bHHHuOpp57CaDSOah4SfAtx5YLBIF6vF7vdftXnChw9Ss8Pfki4oQF9Viau55+/bOX37t27qa+v584778TtdrN9+3YAbrrpJtasWYPZbL7qOQ0ODrJjxw7OnDnDJz/5SUpLS+VSUCGEEELckKLRKGfOnOH48eOcOnWKSCQCQGlpKcuXL8dkMo3zDCEcC3PUc1St6K7rrSOqREeMuSn+JuY551HuLGdO6hwSjAnjNNvrIxKJUFlZyYEDB9BoNKxfvx6r1YrBYJCFJ4UQQkwJkyL4XrVqFY888gjz588nEonw/e9/n+rqampra7HZbAD80R/9ERs2bOD5558nJSWFb33rW/T09FBZWYlOpyMajTJ79mxSU1P5yU9+Qnd3N+vWreOBBx7g/2fvzuOjqu/9j79mzWTfV0JWCEkIENawGwFZlN2FRYto3a1tr9ZW2/7aaxetbW/1tr22aqu4FBBFFgEFIbIFCJBAEkgggRAgZCH7ZJv9/P6IjEZcCCTMAJ/n45GHzTlnznwyfZDMec/nfL5/+9vfLqkOCb6FuDIX5jn2xK8Te3091Uvvw3buHPq0gYS/+ipqT8+vPdZqtaJWq9FoNDQ3N/PWW28xYsQIxowZ0+Nv6Ds6OvD8vA6DwSDhtxBCCCFuOP/85z+pqalxfh8UFMTEiRPp37+/C6sCi93C/pr9ZFVksbNyJy3Wli77o72jGR423Bl2BxuCXVRp77FarTQ0NFBdXU1OTg7Nzc3AFyP7IiMjJfAWQghx3bgmgu+vqq2tJSwsjB07djBx4kSam5sJDQ3lnXfeYcGCBQBUVlbSt29fNm3axLRp0/j444+ZOXMmZ8+edc7fXblyJUuXLuX8+fOXFGRL8C3ElbPZbFRVVdHR0dHljozLYS0vp/q++3E0N+OZeROhf/oTqkuYGfnlcLo3GY1GzGYzsd8yikUIIYQQ4lpWV1dHUVGRc5SdzWZjy5YtFBcXk5KSQmpqKuHh4S4LU812Mzk1OWw7u41dlbtos7U59wV5BDE6YrQz6I7winBJjb3BZrPR0NCAXq8nICAA6LxGXr58eZcmFB8fHzIzM0lPT78mZq8LIYQQ3XGpWa72Ktb0nS58Kh30+WiD3NxcrFYrU6dOdR4TFRVFWloae/bsYdq0aezdu5e0tLQui85NmzYNs9lMbm4uN99880XPYzabMZvNzu+NRmNv/UhC3DBKSkp4//33CQoK4r777ruijmhdXByhL/2FmkcepWP7Dhr/9GcCf/bT77ywuhqhd319PStXrsRut/P973+f0NDQXn9OIYQQQoiroaWlhSNHjlBYWEhVVRUAoaGhzg/7x40bR2ZmpsvufDPZTeyr3kdWRRa7KnfRbmt37gs1hHJz9M1Mip7E4JDBaFTXftjb3t7O6dOnqa+vp66ujrq6OpqamlAUhREjRjivdQMCAlAUBYPBQHBwMAkJCYwePRpPT0/p8hZCCHFDc5vgW1EUnnzyScaPH09aWhoA1dXV6PV6AgMDuxwbHh5OdXW185ivLl4XGBiIXq93HvNVL7zwAs8991wv/BRC3LgSExMxGAw0NDRw/PhxUlJSruh8hvR0Qn73W+p+9gwtq1ahiYrEf8mSK65TsdtpfvNN2j/dSsAPHsdrwoRuPd7f35+AgABnZ82DDz6Il5fXFdclhBBCCOEqZ86cYdeuXZw8edLZNaxWq4mLi0On0zmPc8UMb5PNxJ7qPWyr2EZ2ZTYd9g7nvjDPMCZFT2JS9CQGBQ9Crbp+RtHV1dXx7rvvYrVaL9p34f8HlUqFWq3G39+fH/3oR/j6+qJWqyXsFkIIIT7nNsH3D37wAwoKCti9e/d3HqsoSpc/5l/3h/2rx3zZs88+y5NPPun83mg00rdv38uoWghxgYeHB6NHj2b79u3s3buXAQMGXHE3kPeUKdj/68c0/uUlml7+X7ThEXhPm/rdD/wGtupq6n75/zDn5QFQ+9RThDz/PN5TplzyObRaLfPmzePdd9+lqamJFStWcO+996LVus2vUyGEEEKIS3b27FnefPNN5/dRUVGkpKSQnJzs0g/3jzceZ03ZGjaf2dylszvCK8IZdg8MGnhdhd12u905liQ4ONjZyR0VFUVoaCihoaGEhYXh5+d3UcB9YeyJEEIIIb7gFknNE088wfr169m5c2eX2cARERFYLBYaGxu7dH2fP3+esWPHOo/Jycnpcr7GxkasVutFneAXeHh4uMWK40JcbzIyMti3bx/19fWUlJSQnJx8xef0vftubFVVtKxYSd2vfoUmJATD8GHdPk97Vhb1v/ktDqMRlZcXHgMHYjpwgLpnnkX5bzM+M2+75HN5eXkxf/58li9fTkVFBevWrWP+/PnSXSOEEEKIa8KFdVEURSEsLIzo6GiCgoIYNWrURXfbXtW6bB18evZT1pat5WjDUef2SK9IJvedzKToSaQGpl5377laWlrYv38/J06c4L777kOv16NSqVi0aBF+fn4yo1sIIYS4TC4NvhVF4YknnmDNmjVs376d+Pj4LvuHDx+OTqfj008/5a677gKgqqqKI0eO8Mc//hGAMWPG8Pvf/56qqioiIyMB2LJlCx4eHgwfPvzq/kBC3OAMBgMZGRns2LHD2fV9pRcmKpWKwCefxFZdQ8dnn1H75JNEvPkmuoT4734w4DCZaHzpJVrf/wAAfWoqIc8/j7ZPFPW/+z1t69ZR/+tfo5jN+N4+/5LrCgkJYfbs2XzwwQccOXKE4OBgMjMzL+dHFEIIIYS4Kurq6ti+fTtlZWU88sgjzjvWFixY4LK53QAnmk+w5uQaPj79sXORSq1KS2Z0JvMT5jMsdNh1F3ZDZ+Cdk5NDQUEBdrsdgNLSUgYPHoxOp5NxekIIIcQVUilfXvr5KnvsscdYvnw569atY8CAAc7t/v7+zkXqHn30UTZs2MCyZcsICgriJz/5CfX19eTm5qLRaLDb7aSnpxMeHs6f/vQnGhoaWLp0KXPnzuVvf/vbJdVxqSuBCiG+m8lk4uWXX8ZsNjN79uwu/7avhMNk4vwjj2IuKEATGUnkW8vQhIR862MsJ09S9+yzWE+cBMDve98j4AePo/p8VqXicND4pz/T8t57AAQ+9RR+dy/uVl35+fls2bKFiIgI7r///i5zMIUQQggh3EFjYyM7duygoKDAOcN71qxZPXJ33uUy2U1knc1iTdkaCuoLnNujvaOZmzCX2+JuI8gQ5LL6epPRaGTfvn0cOXLEGXj36dOHCRMm0K9fP+nwFkIIIb7DpWa5Lg2+v+lT+zfffJOlS5cCnSHa008/zfLly+no6GDy5Mm88sorXWZynzlzhscee4ysrCw8PT1ZvHgxf/7zny95nIkE30L0rO3bt7N//34yMzOdi9X2BHtjI9VL78N29iz65GTC//U66q/phFEUhdYP19D4P39GMZlRBwUR8pvn8Px8RNJXj236698wvvUWAAGPPYb/A9/vVl1Hjx6lf//+eHh4YDAYrsuOJCGEEEJce4xGIzt37uTQoUM4HA4A+vXrx7hx4wgLC3NJTeXGctaUrWFT+SaMViMAGpWGiVETmZc4j5FhI6+rud1f1dbWxquvvuoMvPv27cv48eNJTEyUwFsIIYS4RNdE8O0uJPgWomdZLBasVmuvBMDWM2epXroUR1MTnuPHEfqXv6D60sKSdqORht/9jvat2wAwjBlDyG+eQxMc/I3nVBSF5tdfp/mfrwLgd//9BDz+2GXVr9FoUKlU6PX6bj9WCCGEEKKndHR08NJLL2G1WgGIi4tj/PjxzvGQV9uR+iO8dvQ1cmq+WJ8p0iuSOQlzmBU3ixDPb7+Tz90pikJHRwdGoxGj0UhLS4vzv62trSxatMj53nLdunWYTCZn4O3KMTNCCCHEtehSs1y3WNxSCHF90ev16HQ6TCYTPf3Zmi6mL2H/+zI1Dz9Mx+5sGl74A0G//AUqlQrT4cPU/fwX2KurQash4Ac/wO+ee1B9x8WESqUi4KGHUBkMNL38vxjfeAPFZCLwqSe7FX4risLOnTs5fvw4DzzwAAaD4Up/XCGEEEKIS9Lc3ExZWRlDhw5FURS0Wi1JSUk0NzczYcIEoqOjXVLX8cbjvHb0NXZX7QZAjZpxUeOYlzCP0RGj0aiurS5nm81GVVUV586dIyMjw/lecePGjRQXF3/j49ra2vDx8QFg9uzZeHp6SuAthBBC9DIJvoUQvUKlUqHVaikqKqKkpIQxY8YQFNQzcxo9Bg0i5Pnnqf3J07SuWYMmIhxUKppffQ3sdrTR0YS88DweAwd267z+S5agNhho+MOLtCxfjmI2E/TsM98ZnF9gMpkoLCykpaWF9957j3vuuUduWRVCCCFEr2loaKC4uJji4mLOnTsHQGhoqPM919SpU513o11tZc1lvHb0NT479xnQGXjfGncr30/9PlHeUVe9nstlsVg4d+4cFRUVVFRUUFVV5RxTkpaW5gyzvb29nf/18/PD19cXPz8//P398fPzw9vbG71ej1qtlsBbCCGEuEpk1Aky6kSI3nL06FE++OADoDMIT0tLY+zYsT3276zlvVU0vPhil23et95K0LPPoP784uNytK5bT/1vfwsOB9633Ubwr3/VZZzKtzl//jzLly/HarWSnp7O7NmzZea3EEIIIXpMc3Mz+fn5FBcXU11d3WVfdHQ0mZmZLhtnAnCm5Qz/Lvo3m89sRkFBhYqpMVN5IPUBYnxjXFbX5cjJyWHXrl0X3cHo7e1NdHQ0U6ZMwc/PD5VKhcViQavVotPpUKlU8v5PCCGE6EUy6kQI4XIDBw4kODiYbdu2ceLECQoLCykqKmLo0KFkZGTg9TULU3aH74K7sFVWYnznHVReXgQ98ww+M2+74rp95sxGZfCg7pf/j7aNG1HMJkJ+/3tUOt13PjYsLIxZs2axZs0aDh8+jIeHBzfffPMlL7YrhBBCCPFliqJgt9vRfv4hfHV1NZ991tlFrVKp6Nu3L0lJSfTv39/ZfewKlW2VvFH0BptOb8KudHZE39znZh4c+CCJ/okuq+u72Gw2ysvLOXXqFBUVFUydOpU+ffoA4Ofnh6Io+Pv7Ex0dTUxMDLGxsYSEhKBWq7uE27pLeJ8ohBBCiKtLOr6Rjm8hrobTp0+zbds2zp49C3TOAZ89ezbx8fFXdF7F4cC0dy+6hAS0Pdzd1L59O7U/ewasVjzHjyf0T39EdYkBdm5uLllZWQB4enoyc+ZMUlNTe7Q+IYQQQly/LBYLR44c4cCBAyQkJJCZmYnNZsNqtbJhwwYSExNJTEy84kaCK3W+4zzLipexrmwdNsUGwLjIcTw08CGSA5NdWts3sdlsnD59mmPHjnHixAksFotz38SJE52zu61WKzabjYCAAOniFkIIIdzIpWa5EnwjwbcQV4uiKJSWlpKVlUVDQwMPPvigcx7i1eRwOGhtbb2kf+8de/ZQ+9RPUMxmDCNHEvLHF9H4+1/S8xw/fpzdu3fT0NDAkiVL6Nu3r8vmbAohhBDi2lBXV8fBgwc5fPgwZrMZgJCQEO677z4XV9ZVTXsNK0pWsPrkaiyOzuB4VNgoHkp7iEHBg1xc3Terq6tj+fLlztcWwMfHh6SkJOLi4oiNjcXHx0fmcAshhBBuTILvbpDgW4irS1EUampqCAgIwOFwAPDJJ5/Qp08fBg4c2OsXGna7neXLl5OUlERGRsZ3Hm/KzeX8j36M0t6OJiqK0D/9EY+UlEt6LofDwdmzZ4mNjQU6b0nOycnB29ubYcOGyeKXQgghhAA6PzDPycnh1KlTzm0BAQGkp6eTlpaGp6enC6vrZFfs7K3ey9qTa8muysZB5/u4ISFDeHjgwwwPG+7iCruy2+2cOXMGs9lMcnKyc9srr7yCRqMhOTmZ1NRUYmNjLxpdIoQQQgj3JcF3N0jwLYTr2O12Tp48yYoVKwAICgpi/PjxJCUl9ejFh8PhQFEUNBoNra2t7N+/n7y8PO644w7i4uK+8/GW48epffppbBXnQK8n6Jmf4Tt3brfraG5u5l//+hcOhwN/f38yMzMZPHiwdBUJIYQQNzBFUVi/fj2HDx9GpVKRmJhIeno6cXFxbhHG1nbUsv7UetafWk91+xcLag4LHca9yfeSEZ7hFnVC53u+06dPc/z4cUpLSzGZTPj5+fHQQw85azQajYSEhMideEIIIcQ1SoLvbpDgWwjXslqt7N+/n+zsbDo6OgCIiIhg4sSJzk7pK9HQ0MCmTZuIjY1lwoQJAGzevJmCggI8PT1ZsmTJJf3btxuN1P/q13Ts3AmA9+zZBD3zM9QGwyXXYrPZKCgoYO/evbS3twOdYX9mZiZpaWly8SWEEEJc5xRF4fTp0xw8eJAxY8YQFhaGzWajurqa48ePM2TIEPwvcaxab3IoDvbX7GdN2Rp2Ve5yLljpp/djZtxM5ibMJdb3yt+n9RSTyURhYSGHDh2iubnZud3Ly4sBAwYwadIkPD09pbNbCCGEuA5I8N0NEnwL4R5MJhPZ2dnk5ORgtVoBiIuLY8aMGfj4+HT7fIqikJuby65du7DZbBgMBh566CH8/f2x2+288cYbVFdXExkZycKFC9Fqtd99TocD47JlNL3yD3A40A0YQOgfX0TXt2+3arNarRw6dIj9+/c7w/7Q0FDmz59PREREt39WIYQQQri3xsZGjhw5QmFhIbW1tQAMGjSI6dOnu7iyrupN9Wwo38DasrVUtlU6tw8JGcK8hHlMip6Eh+bSFvu+mj755BMKCwsBMBgMzjEmcXFxaLVaCbuFEEKI64gE390gwbcQ7qWlpYWdO3eSl5eHr68v3//+97s9C7upqYmPP/6YiooKAGJjY5k1axZBQUHOC5/GxkZee+01TCYT6enp3HLLLZd8/o6c/dT9/Oc4GhtR+fgQ8tvf4nXTxG7VCGCxWMjNzeXAgQM4HA4eeeQR/P39UalU7Nmzh9bWVkJDQwkLCyMkJMQt5nsKIYQQ4tLY7XZyc3MpLCx0vicB0Ol0pKamkp6eTlhYmAsr7KQoCrm1uXx48kN2nNuBTbEB4KPz4dbYW5mXMI8E/wQXV/kFRVEoLy/H39+foKAgAGpqati0aRPDhw8nPT0dDw8PCbuFEEKI65QE390gwbcQ7qmhoYGmpiZnB7Tdbmfv3r2kp6d/Ywe4oigcPnyYHTt2YLVa0el0ZGZmkpGR8bXheUlJiXO++K233srAgQMvuT5bTQ21P/0Zls+7i/zuv5+ARx9BdRkLVppMJqqrq7vMG1+2bJmzI+wCHx8fQkNDCQ8PZ9q0ad1+HiGEEEL0Lrvd7nzP4XA4+Otf/+ocvRETE0NKSgoDBgzAw8P1XdMOxcHOyp0sK15GcWOxc/vAoIHMT5zPlOgpGLSXPtKtt1ksFoqKisjNzaWhoaFLx7xGo0Gr1crC4UIIIcQN4FKz3O++r18IIVwkKCiIoKAgFEXBarVy+PBh9u7dy8GDBxk+fDijRo266KKxtbXVGXr37duX2267jbCwsG/s+ElKSmLChAns2rWLc+fOdSv41oaHE/Gv12l86SVaVr6H8Y03sBw5Qsjzv0fzeffRpTIYDBctsjly5Ehqamqor6+nvr6elpYWWltbaW1txWg0kpmZiVqtdn5JV5MQQgjhGjabjdLSUmdn9+OPP46iKDgcDkaNGoXNZiM5OfmyRrf1BpvDxpazW3j72NucMp4CwEPjwW2xtzEvcR5JAUkurrCr5uZmDh06REFBAWazGQC9Xo+npyc6nU5GmQghhBDia0nHN9LxLcS14vTp02zZsoXKys55k56enmRkZDB06NAu87kLCgqwWq2MHTv2krp+HA4Hx44dIzY29rIvmto++YT63/wWxWRCExZG6Isv4jFk8GWd65uYzWYaGhqoq6tDpVKRlpYGQH19PUVFRUydOlUu+oQQQoir5MK4jYKCAoqLi52BLMCdd9550Qfa7sBsN7OxfCNvH3ubqvYqoHOcyZ397mRB/wUEegS6uMKLZWVlkZeXx4XL1oCAAIYPH87QoUPx8vKS9z5CCCHEDUhGnXSDBN9CXDsURaG4uJht27bR0NDg3P7lC0ytVotOp+v2hZDVasVqtTovrLr7eMvJk9Q+/TS28tOg1RD45JP4LljQqxdkZrOZf/7zn1gsFubOncuQIUN67bmEEEII0amsrIyNGzd2eS/i6+tLcnIyKSkp33q3mSu0WdtYU7aG5SXLqTfVAxDoEciipEXcnng7Pjr36ESHzlF3/v7+zuaF7Oxs9uzZQ0xMDCNHjmTAgAHodDoXVymEEEIIV5Lguxsk+Bbi2uNwOMjLy2PHjh20trYSFBTE/fffj8FguOzZjoqiYDQa+eijj+jTpw8ZGRndr6utjfrnnqN96zYAvCZPJujnz6IJ7L0Oqn379rFr1y68vLx4/PHH8fLy6rXnEkIIIW5EF8au6fV6FEWhqqqK119/Hb1eT0pKCqmpqfTp08etwm6AZnMzq06sYlXpKoxWIwDhnuF8L/l7zIqb5Tbzu81mM8eOHePIkSNUVlYyZ84ckpI6x620trZitVqJiopyu9dXCCGEEK4hwXc3SPAtxLXrwiJHERERhIeHX/EFUX5+PmvXrkWlUnHnnXcSGxvb7XMoikLL8hU0/u/LYLOjDgwk6OfP4j158hXV9k3sdjtvvfUW9fX1pKenM2fOnF55HiGEEOJGYzKZKCgo4ODBg0RERDBz5kxsNhvQuUB2XFwcer3exVVerLq9mvdK32PNyTV02DsAiPGJ4d6Ue5kWMw2d2vUd04qicObMGY4cOUJJSYnzdVWpVIwbN47x48ej1WplHRMhhBBCXESC726Q4FsIcYGiKKxdu5aCggK8vLxYsmQJvr6+l3Uuc1Ex9f/9a6wnTgLgNXUqQT/7aa90f1dUVLBixQoA7r33XrecKyqEEEJcKyorKzl48CBHjhzBarUCnQtRP/roo13WFXEXdsXO0fqjZFdls7tqNyeaTzj3DQgYwL0p95LZJxON6vLuiutpJpOJt99+m+bmZue24OBg0tLSGDJkCAEBARJ2CyGEEOIbSfDdDRJ8CyG+zGq18q9//Yvz588TFRXFwoULL398isVC0+v/wrhsGdjtqIOCCP75s3hNmtSzRQObN2+moKCA4OBgHnnkEbe8MBdCCCHcWVFREbt376aqqsq5LSQkhCFDhpCamorB4B6jQQCMFiP7qveRXZXN3uq9NFu+CJHVqBkaOpR7BtzDmIgxLg+R29vbqa6uJiEhwbnt3Xffpb6+npSUFIYMGUJMTMxlv98SQgghxI1Fgu9ukOBbCPFVDQ0NvPbaa5jNZoYNG8bkKxxTYi4qov5Xv8ZaVgaA1/RpBP30p2gCAnqiXKCze+rf//437e3tTJ8+/bJmlAshhBDXO4fDQV1dHdXV1VRXVzN8+HCCgoJQFIXdu3fz2WefodFoGDBgAEOGDHGb2d2KonCq5RTZldlkV2VTUF+AXbE79/vqfBkdMZrxkeMZEzEGfw9/F1bbObe7tLSUY8eOUV5ejlqt5rHHHnN+eNDc3ExgYCAeHh5u8foKIYQQ4tpxqVmutAMKIcTXCAoKYu7cubz33nvk5eURFRVFSkrKZZ/PIzWVyOX/oenV1zC+9Rbtn2zGdOAgwb/4OV6ZmT1Ss8FgYMqUKTQ3NzNw4EAURZELSSGEEDe85uZmSkpKnEH3+fPnnfOkAQICAvD09AQgJSUFh8NBWlqa2ywWXdxYzMbyjeyu3E1Ve1WXfQl+CYyLHMe4yHEMCh6EVu3ayzur1UpZWRnFxcWUlZVht38RzIeEhNDW1oavry9ardZtXl8hhBBCXL+k4xvp+BZCfLNt27aRn5/PnDlziIyM7JFzmo8cof7X/4311CkAvGfMIPCnT6Px79nOLK1W65YLbgkhhBC9yWaz4XA40Ov1KIpCaWmpcx2MC3Q6HWFhYYSFhZGSkkKfPn1cVO3Xsyt2dlXuYnnJcvLr8p3b9Wo9w8OGO8PuKO8oF1Z5sdzcXLKyspzfBwUFkZKSQlpaGmFhYajVahdWJ4QQQojrhYw66QYJvoUQ38ThcNDe3u68UGtra0OlUl1xl5JiNtP06qsY334HHA40IcEE/eIXeN10U0+UDXRe+Le1tfVYYC+EEEK4M6vVSl5eHtnZ2aSnpzN27FgcDgdtbW18/PHHhIeHO8Nud108sc3axkflH7GqdBXn2s4BoFFpmNJ3ClP6TmFk2Eg8tZ4urrJTTU0N+fn5xMTEkJycDEBrayvLly8nOTmZtLQ0IiMjZW63EEIIIXqcBN/dIMG3EOK7WK1WrFYrO3bs4ODBgyQmJpKWlkZ8fPwVXdCZCwup+/V/YysvB8BrxnQ8R49GExiIOjCw878BAag8Pbt1gd7c3MwHH3xAR0cHjz/+ON7e3pddoxBCCOHOzGYzBw8eZO/evbS1tQGdYzWWLl3qluH216lsq+T9E++zrmwdbbbOn8FP78e8hHnc0e8OwjzDXFxhJ0VRKCsr4+DBg5w5cwaA2NhY7rrrLqDzbjONRoNarb5mXnshhBBCXHtkxrcQQvQgrVaLSqWivr4eh8NBaWkppaWleHl5dbmFt7s8Bg0icvl/aP7nqxjffZf2jz+h/eNPLjpO5eGBOjAATUAA6oAvAnFNYCD6wYPwHDWqy/E+Pj6o1Wo6Ojr49NNPmTt37mX/7EIIIYQ7MplM5OTkkJOTQ0dHBwD+/v5kZGQwcOBAtw9eFUWhsL6QFaUr2F6xHQcOAGJ9Y1nYfyG3xt6KQWtwcZWdbDYbR48eJTc3l/r6egBUKhXJycmkp6fj4eEhYbcQQggh3I50fCMd30KI7qmqqiI/PzpJ25UAACAASURBVJ/CwkLa29ud27/c8XQ5zAWFtKz+AHttHY6mRuyNTdgbG8Fi+c7HBv/2t/jcdmuXbRUVFc6Zpvfeey9xcXGXXZsQQgjhbjZs2EBubi4AgYGBjB49mpSUFLcfrWFz2MiqyGJl6UqONhx1bh8VNoqFSQsZEzEGtcq9ZmGvXr2asrIyAPR6PYMHDyYjI4Pg4GAJu4UQQghx1cmok26Q4FsIcTlsNhsnTpzg8OHDlJaWkp6ezuTJk4EvbgWOi4u7ogtwRVFQOjqwNzbiaGrC0diI/fMvR1MT1hMn6NidjcpgIOLdd9AnJHR5/ObNmykoKCA4OJhHHnkErVZu9BFCCHFtamlpweFw4Ofnh91up6amhvXr15ORkUFSUpJbL5xospvIPZ9LdlU2O8/tpNZUC3QuVjktZhoLkxbSz7+fi6v8QkNDA15eXhgMnR3nx48fZ/v27QwfPpzhw4fj5eUlgbcQQgghXEaC726Q4FsIcaXa2tqwWq0YDAYcDgdnz55l5cqVhIWFMW/evF773aLY7Zx//AeY9u9Hl5BAxDtvo/b8YtErk8nEv//9b9rb27npppvIzMzslTqEEEKI3tLa2srOnTvJy8tjwIAB3Hbbbc59iqK4bQBb015DdlU22VXZHDh/ALPd7NwX6BHIHYl3MD9xPkGGIBdW+QVFUaioqODAgQOcPHmSiRMnkpGR4dyv1WrR6XRu+3oLIYQQ4sYhM76FEOIq+vLikQ6HA5PJhMFg4Pz587zzzjvMnTuXPn369PjzqjQaQn7/O6oWLcZaVkbDCy8Q/NxzzotSg8HApEmT2LBhA7t37yYtLY2QkJAer0MIIYToaR0dHWRnZ5OTk4PNZgM6L3Lsdrvzbip3CmHtip2ihiJ2V+4muyqb0ubSLvvDPMMYHzmecZHjGBk+Eg+Nh4sq7cput3P8+HFyc3Oprq52bm9qakKr1aLVat26m14IIYQQ4ptI8C2EED1MrVYzZMgQYmJiWLlyJefPn+e9995j6tSppKWl9fjzaYKDCXnheWoefoS2DRsxDBuOz9w5zv3JyckcOXIERVFwOBw9/vxCCCFET7JYLOTk5JCdnY3Z3NklHRkZyYQJE4iJiXGrsLvV2sq+6n3srtrN3qq9NFmanPtUqBgUPIhxkeMYFzmOfv793Kp2gP3795Obm0trayvQ2dU9cOBARo8eTXh4uNvVK4QQQgjRHTLqBBl1IoToPRaLhQ8//JDjx48DMHz4cDIzM3ulc6r5jTdo+vv/ofLwIOKtt9An9e9Sx4Xbkw0GwyU9f0tLC3v27KGurg6TycTYsWNJSUnp8bqFEEKIL8vOzmbr1q0AhISEMGHCBBITE90qhG21tvJe6XssL1lOq7XVud1H58PoiNGMjxzPmIgxBHgEuLDK77Zx40aKiorw9vZm6NChjBgxAj8/P7d6rYUQQgghvkpmfHeDBN9CiN6kKArbt29n586dANx+++0kfGURyh55HoeD8z/6MabsbLQxMUS++w5qH5+LjlOr1eh0OoxGI3V1ddTV1VFbW0t9fT39+/dn7NixOBwOmpub+fvf/97lsdOnT+8y71MIIYS4Ug6Hg7a2Nnx9fbHb7bS2trJq1SrS09NJSUlxqzEbJpuJ90++zzvH3qHZ0gxAtE80N0XdxPio8QwOHoxW7X431SqKwqlTp8jNzSUzM5PQ0FAAamtrqa2tZfDgwTK/WwghhBDXDAm+u0GCbyHE1XD06FEqKiqYMGFCrz2HvamJqsWLsVfX4DV1KiEvPN/lItZkMpGVlcXRo0e/9vH9+/dn7ty5QOdF8o4dOwgMDKS6upqCggIAxo4dy5QpU+TiWAghxBVRFIXjx4+TlZWFRqNhyZIluOulicVuYW3ZWt4sfpMGcwMAsb6xPDjwQSZHT0atcp9w/sssFgtHjx4lLy+PhobOugcPHsy0adNkfrcQQgghrlmyuKUQQriZgQMHkpqaisViwW63097eTm1tLbGxsT32HJqAAEJf+APVDz5A+5YttA4biu9ddzn3NzQ0UFxc3HmsRkNgYCDBwcEEBQURHBxMWFiY81iVSkVmZibQeZHs7+/Prl272LNnD+3t7cyZMwchhBDicpSVlZGVlcW5c+eAzsWY6+vrCQoKcnFlXdkcNj4q/4g3i96kpqMGgCjvKB5IfYBpMdPcsrsboLGxkYKCAvLz851z0vV6PYMHD2bUqFF4enrKB9hCCCGEuO655zs1IYS4TqlUKvR6PWazmXXr1nHu3Dluvvlmhg0b1mMXoB5DBhP4wx/R+Je/0PA/f0GfNgiP1M7Z3FFRUTzwwAM4HA78/f0vuctLpVIxevRofHx82Lx5M1FRUdjtdjQaTY/ULIQQ4vrX2NhIbm4uJSUl1NbWAqDT6Rg+fDgjR47EYDC4uMIv2BU7m09v5l9F/+JcW2c4H+oZyv0p9zMrfhY6tc7FFXZlNpvx8PBwfv/hhx86O7wDAgIYMWIE6enpeHl5SeAthBBCiBuGBN9CCHGVqVQqtFotQUFBVFRUkJWVRW1tLVOmTEGr7Zlfy753L8Z0KI+Oz7ZT97OfEbn8P6h9fQHw9/e/7POmpaXRt29f/P39MZvN6PX6HqtZCCHE9cVsNmOxWPD19UVRFIxGI9nZ2UDnehNDhgxxfqjqLhyKg6yKLF4/+jrlLeUABHoEsjRlKfMS5uGh8fj2E1wlFouFiooKysvLOX36NM3NzTzxxBPOD6Tj4+Px9fVlxIgRDBgwAJ3OvYJ6IYQQQoirQWZ8IzO+hRCuoSgKe/fuZevWrSiKQp8+fZgzZw7e3t49cn670Uj13fdgO3cOz5szCf3zn3u8y6u1tZWPP/6YmTNnEhwc3KPnFkIIce1pbGykpKSEkpISysvLGTx4MNOnT8dut6MoClu2bCEmJob4+Hi36PBWFIXzHecpbSqltLmUrWe3cqL5BAB+Oj++l/w97ux3J55aTxdX2rkQZUlJCadPn6aqqgqHw9Fl/z333ENUVBQajQa1Wo1Go5HubiGEEEJcl2Rxy26Q4FsI4UolJSWsXr0ai8WCj48Pw4YNIyMjw7n/ww8/RFGULgt+XfjfERER37pYprmoiOr77gerlcAnn8Tvnrt7tPa1a9dSWlqKp6cnixcvJjo6ukfPL4QQwr0pisLZs2edYfeFESYX9O3bl4ULF7qouq6sDiunjKc6Q+6mUkqaSihtLsVoMXY5zkvrxd1Jd7MwaSE+OvfpRs/JyWHnzp3O7/39/YmNjSU+Pp74+Hj8/Pwk6BZCCCHEDUEWtxRCiGtEUlISDzzwACtWrKCxsZGqqqou+8vKyrjczyg9UlMJeupJGv7wIo1//V88Bg3CY8jgnigbgFtuuQWj0UhNTQ1vv/02d9xxB0lJST12fiGEEO7HarV2GZ2xfv166uvrgc5xXtHR0SQmJpKYmOiyxSodioP8unyKG4s7A+6mUsqN5dgU20XHalQaYn1j6R/Qn+TAZG6LvQ1/j8sfC9YTampq2L9/P2lpacTHxwMQFxfH+fPniYuLIz4+npCQEFQqlYTdQgghhBDfQDq+kY5vIYR7MJlMFBcX4+Xl5bzIBSgoKOhy3JcvcH19fYmJicHhcNDR0YFer79owUlFUah79ue0b9mCJiKcyOXL0QQE9FjdFouFdevWUV5ejkqlYtasWQwdOrTHzi+EEMK1FEVxjtkoLS2lpqaGH//4x6hUKux2O3v27KGhoYHExESXjzDpsHWwsXwj75W+x5nWMxft99H50N+/P/0DvvhK8Etwi9ndF7rnc3JyKC8vB77omNdqtWi1Wgm6hRBCCCGQUSfdIsG3EOJapigK9fX1rFy5kpCQEGbOnIlare5yjKOtjap7voft9Gk8x48j9OWXUX3lmCtht9vZvHkzR48eBeDmm29mwoQJcnEuhBDXKKvVyqlTpygtLaW0tJTm5uYu+xctWuRW461q2mv44MQHrC1bi9HaObrEW+vNyPCR9A/oT1JAEv39+xPhFeF2f5sUReHEiRPk5OQ47/pSqVQkJyczZswYoqOj3a5mIYQQQghXklEnQghxg1CpVBiNRhobG6mvr0er1TJjxowuF8lqb29CX3yR6nvvpWN3No1//jP+Dz+Mxr9nbuXWaDTMmDEDHx8fcnJyKCgoYNSoUW6xcJkQQojuy8nJYdu2bc7vtVotMTExJCQkkJCQgH8P/f24UkUNRawoWcG2im3YFTsAfbz7sKD/AmbGzcRb1zMLRvem9evXU1JSAnS+zmlpaYwZM4bQ0FAJvIUQQgghroB0fCMd30KI60NxcTHvv/8+iqIwZMgQbrnllosumFvWrqXhN78FQGUw4D1rJn6LF6OLje2xOvLz852LbOl0OpqamqitrWXAgAEXjWERQgjheiaTiYMHD9K3b1+io6OxWq3U1NSwevVqEhISSExMJCYmpstcb1eyOWzsqNzBypKVFNR/MQ5sWOgwFvZfyPio8WhU7vv3xmKxoFar0Wo7e5COHj3Ktm3bGDp0KKNGjSIgIEACbyGEEEKIbyGjTrpBgm8hxPWisLCQDz/8EIARI0aQmZl50cVz25YtNL+5DOvx485tnhMm4HfP3XiMGNHjF9tbt27l0KFDeHl5MWjQINLT04mIiOjR5xBCCNF9RqORffv2kZubi8ViIT4+njvuuAPAuaiyOwWwrdZW1p9az6rSVVS1d44E0aq03BJzCwv7LyQ5MNnFFX49u91OTU0NZ8+e5dy5c5w9e5YJEyYwbNgwABwOByqVCi8vL7d6vYUQQggh3FWvBt8Oh4MTJ05w/vx5HA5Hl30TJ07sfrUuJsG3EOJ6kpeXx0cffQTAmDFjGD9+/EXHKIqCOTcX47v/oWPXLvj8T4FuwAD87l6M97RpqHqosy8nJ4e8vDxaW1ud2yIiIhg6dCiDBg3C09OzR55HCCHEpamtrWXPnj0UFBQ438uHhIQwatQoUlNT3S58LTOWsebkGjaUb6Dd1g6Av96f+YnzuSPxDkI8Q1xc4cUsFgsHDhygoqKCqqoqrFZrl/0xMTEsWrQInU6HWq12u9dcCCGEEMKd9VrwvW/fPhYvXszp06f56kMvrOx+rZHgWwhxvcnJyeGTTz7B39+fe++9Fw8Pj2881nr6NMblK2j76CMUkwkATUgIvnfdhc/t89EEBl5xPQ6Hg/LycgoLCzlx4oQzaPH39+eHP/zhRYtxCiGE6B0ff/wx+/fvd37ft29fRo0aRXx8vFuFrxa7hc/Ofcaak2s4VHfIuT3eL56F/RcyPXY6Bo17rCNhMpk4d+4cNpuNAQMGAJ1/9/72t79hsVgA8PT0pE+fPvTt25fY2Fj69OnjHHUihBBCCCG6p9eC7/T0dJKSknjuueeIjIy86A2yuyx00x0SfAshrkcHDx4kJiYGHx+fSzre3txM64cf0rLyPey1tQCoPDzwnjkTv8WL0MXH90hd7e3tFBcXU1hYSHx8PDfddBNarRaVSsW+ffsYOnToJdcshBDi2ymKgqIoqNVqHA4HBw8e5OOPPyYpKYmRI0cSFRXl6hK7ONt6lrVla9lwagNNliYANCoN4yPHMz9xPhnhGW4T0NfX17Nt2zZOnz4NQEBAAA8++KBzf05ODgaDgdjYWMLDw6WzWwghhBCih/Ra8O3t7U1+fj79+vW74iLdhQTfQojrlcPhwPR5F3dLSwu+vr7f+RjFaqXt009pefc/WI4dc273mjKZgEceRZfQMwE4dM49vbDgZVlZGatXr0aj0ZCWlsbo0aNlFrgQQlym1tZWjh49yoEDB8jIyGDw4MHY7XZsNhtGo5GgoCBXl+hkc9jYWbmTNSfXsP/8F93oYZ5hzEmYw+z42YR5hrmwwq5sNhv79u0jJyfHeQdTYGAg0dHRTJ8+Hb1e7wy5JegWQgghhOh5l5rldvv+uoyMDE6cOHFdBd9CCHG9UqvVGAwGDh8+zKZNm5g+fTqpqanf+hiVTofPrbfiPWMG5rxDGP/zLh07dtK+dRvtWZ/hPWMG/g8/hC46+orruxB6A+j1eqKioqisrCQ/P5/8/Hzi4uIYM2YM/fv3l/BACCG+g8Vi4dixYxQWFnLy5EnnWMK8vDwGDhwIgFardZvQu6qtinWn1rH+1HrqTfUAqFAxOmI08xPnMzZiLFq1e40DqaysZNOmTTQ2NgKQkJDAtGnTCAkJkbFdQgghhBBuptvvJJ944gmeeuopqqurGTRoELqvLH42ePDgHitOCCHElVOr1VRXV2O329m0aRNarZakpKTvfJxKpcIwfBiG4cOwlJbS9M9/0vHZdto2bqRt8yf4zJ6D/4MPoA0P75E6o6Ojufvuu6msrOTgwYOUlJRQXl5OeXk5QUFB3HfffTICRQghvoaiKKxfv56jR492WUQxMjKS1NRU0tLSXFhdVx22DvZU7WHj6Y3sqdqDQmc4H+QRxOz42cxJmEOUt3uNX/kyjUZDU1MT3t7e3HLLLaSlpXX5EFcIIYQQQriPbo86+bpOBpVKhaIosrilEEK4KUVRWLduHfn5+ajVaubNm0dCQkK3z2MuKqLplX9g2rOnc4Nej+/tt+N//31ogoN7tGaj0UheXh75+fkEBASwdOlSdDodGo0Gm8120QevQghxo1AUhfPnzxMeHo6iKDgcDt5//32OHz9OQEAAqamppKamEtgDixP3hDZrG9lV2Wyr2Mbe6r2Y7WbnvpFhI5mXOI+JURPRqd3v97qiKNTU1HQZvVVaWkpiYiLe3t5yN5IQQgghhAv02ozvC4u3fJPY2NjunM4tSPAthLgROBwOVq9eTVFRERqNhttvv/2yf2eb8g7R9MormPPyAFAZDPguWojfkiVoeniRY4vFQktLC8GfB+sWi4XXXnuNfv36MXr0aLdbmE0IIXpLQ0MDBQUFFBYW0tDQwMMPP+x871pTU4Pdbv/axeddodXayu7K3WRVZLGveh9mxxdhdx/vPkyOnsys+FnE+Ma4sMpvV19fz5YtW6isrGTJkiWEhoai0WjQ6/Vu8RoLIYQQQtyoei34vh5J8C2EuFHY7XZWrVpFSUkJOp2OO++8kz59+lzWuRRFwZSTQ9Mrr2A5chQAlY83fvfcg9/ixah7aSxJcXExGzZscH4/ZMgQbrvtNukAF0Jct5qbm9m2bRuFhYXObTqdjhkzZjBgwAAXVtZVq7WVnZU7yTqbxb6afVgdX4xd6evTl8nRk5kUPYmkgCS3Do6/unilVqtlxowZDBkyRMaaCCGEEEK4gV4Nvk+ePMnLL79McXExKpWKlJQUfvSjH5GYmHhFRbuKBN9CiBuJzWZj+fLlnDp1iuHDhzNp0qQrOp+iKHTs3EnTK//AWloKgDrAH7+778FrymR0vXAnUHV1NQcPHuTYsWMoikJYWBgLFixwmwXbhBCiJ1gsFrKzs9mzZw82mw2AuLg4UlNT6d+/P3q93sUVgtVh5dOzn7L17FZyqnOwKTbnvljfWCZFT2Jy9GT6+fdz67D7gjNnzrBly5Yui1dOnz6dkJCQa6J+IYQQQogbQa8F35s3b2b27Nmkp6czbtw4FEVhz5495Ofn89FHH3HLLbdccfFXmwTfQogbjdVq5eDBgwwePLjHLuQVh4P2T7fS9Oo/sZV/MRZLGxOD5/jxeE4Yj2HYMFQ92Jl9+vRpNmzYQHt7Ox4eHsydO5fk5OQeO78QQrhSe3s7f//73+no6CA6OppJkyYR3kMLCl8pRVHIqsjilcJXqGircG6P94t3dnYn+CW4bVisKApGoxE/Pz9njdu2bSPv8xFe3t7eTJkyhUGDBkmXtxBCCCGEm+m14Hvo0KFMmzaNP/zhD122P/PMM2zZssX5ZvFaIsG3EOJGZbPZsFgs2O122tvb8fX1veJzKjYbbZ98QtvGTZhyc8H2RfefyssLQ0YGXhMm4Dl+HJqQkCt+vpaWFtavX09lZSWpqanccccdbhu0CCHEd6mqqiIiIgJFUbBYLBw9ehS1Wk1SkvuMBymoK+CvBX+lsL5z9EqwIZj5ifOdYbe7sVgs1NbWXvRlsVh48MEHCQgIAGDv3r3s3r2b9PR0Jk+eLItXCiGEEEK4qV4Lvg0GA4WFhfTv37/L9pKSEgYPHozJZLq8il1Igm8hxI3MZDKxevVqampqWLRoEf49uDilo7UVU85+2nfvpmP3bhz19V3261NSnN3g+tRUVGr1ZT2P3W7nwIEDDBs2DL1ej4eHh3ToCSGuKY2NjWzdupWioiLmzZtHv379XF3SRc60nOGVwlf47NxnAHhqPLlnwD0sHrAYL62Xi6v7ejk5OezcufNr96nVam6//Xbi4uJQq9XO6xh/f38JvIUQQggh3NilZrna7p44NDSUw4cPXxR8Hz58mLCwsO5XKoQQwqUcDgeNjY20tLSwatUqFi1ahE8PLUyp9vHBa/IkvCZPQnE4sBw7RseuzhDccvQoluJiLMXFNL/+OuqgIHzmziXg4Ye6PQ5Fo9EwevRo5/cmk4lt27YxZMgQYnthxrgQQvQUs9nMrl272LdvH3a7HZVKxfnz590q+G4yN/Hvon+z+uRq7IodNWpmxc/ioYEPEeJ55Xfu9JTm5mYKCwtJSUkhODgYwPlhrre3N2FhYc6v8PBwQkND0el0zpDbYDC4rHYhhBBCCNHzut3x/Zvf/IaXXnqJZ555hrFjx6JSqdi9ezcvvvgiTz31FL/85S97q9ZeIx3fQogbndFo5M0336SpqYng4GAWLlyIl1fvdu/Z6+royN5Dx+7ddOzbh9LWBoA+NZWQF55H17fvZZ87Pz+fLVu2oFarueWWW8jIyJDuPSGEW3E4HBw+fJisrCzaPv/9FxMTw6RJkwgNDXVxdZ1MdhOrSlexrHgZbbbOGsdGjOWJwU+Q4O8eI03sdjsnTpygoKCA8vJyAOfCzSqVCrvdjt1ux9fXF5VKJX8LhBBCCCGuA7026kRRFF5++WX+53/+h8rKSgCioqJ4+umn+eEPf3hNvpmU4FsIIaCpqYk33niDlpYWwsLCWLBgwVXrflOsVtqzsmh44Q84jEZU3t4E//KXeE+belnns1gsbN68mWPHjgGQmprK7Nmz8fDw6MmyhRDisq1YsYKSkhIAAgMDyczMJDEx0S3eSzsUB5vPbOYfhf+gpqMGgKSAJH44+IeMDB/p4uo6NTY2UlBQwJEjR2hvb3duj4mJYeTIkaSkpKBWq93i9RRCCCGEED2r14LvL2tpaQHokcXQXEmCbyGE6FRXV8eyZctoa2sjMjKSu+66C71ef9We31ZVRd0vfoH5cD4APvPmEviTn6D29Oz2uRRF4dChQ3z22Wc4HA6Cg4NZsGCB23RSCiFuXIqiUFpaypo1axgzZgxDhw51i3UJFEVh//n9/F/B/3G86TgAYZ5hPJr2KNNjp6NWXd46DD3N4XDwj3/8wxl4e3l5MXjwYIYOHUpoaKiE3UIIIYQQ17mrEnxfLyT4FkKIL9TU1LBs2TLsdjt33XUXUVFRV/X5FZuN5tdeo/nfb4CioEtIIOQPL6C/zHm3586dY/369bS2tqLT6Zg3bx4pKSlAZ8dgR0cHarUatVqNRqPp8r+9vb0lQBFC9Ii2tjZqamqIi4vDbDajKApWqxVdN9c06A0Wu4UtZ7ewsmQlpc2lAHhpvViaspQF/Rdg0Lhu9rXVaqWiooKKigrGjx/v/J28Y8cOamtrSU9PJzk5ucusbiGEEEIIcX3r0eB72LBhbNu2jcDAQIYOHfqtbyrz8vIur2IXkuBbCCG6OnfuHB0dHVc99P6yjpz91P+/X2Kvq0fl4UHg0z/BZ968ywo22tra2LBhAxUVFSxevJiYmBhUKhXr16+nsLDwGx/3X//1X87wW612j05HIcS15+TJk6xduxaLxcKSJUsIDAx0dUkANJga+PDkh3xw8gMazY0AeGg8mBM/h/tT7yfQ4+rXqSgKjY2NnDp1ilOnTnH27FlsNhsAd955J3FxcahUKjQajYTdQgghhBA3qEvNcrWXcrI5c+Y456LOmTNH3mAKIcR1rk+fPiiKgtlsxuFw0NDQgEajwc/P76r9DfDMGEXkypXU/b9fYdq7l4bf/R5Tzn6Cf/kL1N0cseXt7c2dd95JdXU1kZGRWK1WAPR6Pb6+vjgcjq/9stlsmM1mAM6cOUNSUpIE4EKIS2az2di6dSs5OTkABAcHY7fbXVwVnGg+wcqSlWw+sxmLwwJAqGcod/W7izkJc/DX+7ukrlOnTvHpp5/S3NzcZbuvry/x8fF4e3vj4eEhs7uFEEIIIcQlkVEnSMe3EEJ8E0VROHPmDKtWraK9vR2tVktAQECXr6ioKMLDw3uvBocD4zvv0vR/fwebHW2fPoS88DweaWm99pxftWvXLvbt20dGRgbTp0+/as8rhLh21dbWsnr1ampqOheHHDp0KDfddJPLRps4FAd7qvewsmQlB84fcG5PDUxlYdJCJkdPRqu+pJ6YK6YoCvX19Zw6dYqIiAj69u0LQHV1Ne+88w5qtZro6GgSExPp168f4eHhEnYLIYQQQginHu34/rKEhAQOHDhAcHBwl+1NTU0MGzaMsrKy7lcrhBDCLalUKqxWK56enphMJmw2G3V1ddTV1TmPGTFihDP4bm9vZ9OmTQQGBhIYGEhERARhYWFotZcfpqjUavzvXYJh2FBqn/05tnPnqL7/fgJ+8AP87rkH1VXowL6wIGZOTg7BwcGMHDmy159TCHHtOnjwIJs3b8Zms+Hp6cmMGTNITEx0SS0dtg42nd7Ee6XvcbrlNABq1GRGZ7Ko/yIGBQ+6aoFyc3MzRUVFFBUV0dDQAEBaWpoz+I6IiOCOO+4gPj6e/8/efcdHVef7H39NyUySSUgPpIeSQAihBKRJC4gYOoiAWNd2d9e617Lu3t911XXv3abL7l7XVVddV6RJEZAgTQFDN5QkEEhPCKT3NpOZOef3R2RWrAnJZAJ+no9HHsKZrxDEbQAAIABJREFUme/5BDCZvM/nfL4eHh4SdAshhBBCiC7pdBJRWFj4jbdoWiwWSkpKuqUoIYQQvcegQYN4+OGHURSF2tpaampqHB+1tbWEhIQ4nvvluayXabVagoKC6NevH3FxcY6Ao7OMCQmErllN9Usv0bJ7D3Ur/4z52HECf/0iOifPyx0yZAi1tbWkpqayY8cO/P39XRZiCSF6v5qaGmw2G9HR0SQnJ+Pl5dXjNZS3lLMhdwMf5n9Ig7UBAJPexIIBC7ht0G2EmnpmDwdFUcjIyODMmTNcvHjRcVyn0xEREUFERARubm7odDo0Gg3x8fE9UpcQQgghhLj+dTj43rp1q+PXO3fuxMfn37P/7HY7e/fupX///t1bnRBCiF7h8kZigYGBBAYGfu1xVVVRVZXAwEBmz55NTU0NFRUVlJWV0dLSQnl5OeXl5QQGBjqC79raWk6ePEm/fv0ICQnB19f3e7v7tN7eBP72tzSN3UztH/+I+dAhSu+4k+BXXsYwZIhTPvfLxo8fT3V1NVlZWXzwwQfcf//9jk5wIYSw2+1otVpsNhsTJkzA19eX+Pj4Hu9azqrJYk3OGvZc2INdbW9WCTOFsSxmGXOj52JyMzm9BlVVHZ+3RqMhLS2N6upqACIjIxk2bBhDhw7F09NTurqFEEIIIYTTdHjG9+XNvDQaDV99iZubG9HR0bz88svMnTu3+6t0MpnxLYQQzqEoCnV1dVy8eJFLly4xdOhQx6is9PR0du7c6Xiu0WgkISGBadOmdSgIacvNpfKpp7EVF6NxNxLwq19hmjXLaZ8LtG9Ut27dOi5duoSvry8PPvggnp6eTj2nEKJ3s9ls7N27lwsXLnD77be7JMi1q3YOXDzAmpw1nK467TieGJTI8pjlTAqdhE6jc2oNqqpy8eJFzpw5Q2FhIffdd59jnnlmZiatra0MGzYMf39/CbuFEEIIIUSXdDTL7fTmlv379+f48ePf2PF3rZLgWwgheo6qqiiKwoULF8jMzKS0tJTy8nLHGK3hw4dz8803dygYURobqfzFLzEfOgRAn3vvwffhh9HonBfwtLS0sGrVKurr65k/fz6jRo1y2rmEEL1bVVUVGzdupKysDIBFixYxaNCgHjt/k7WJbQXbWJ+7nkvNlwDQaXTMjJjJ7bG3M8TPuXfCALS1tXHs2DHOnj1LfX294/j8+fMZMmQIer0enU7naKIRQgghhBCiq5wWfF+PJPgWQgjXstlspKen89FHH6GqKomJicyYMaNDr1XtdupefZWGf74LgPuNNxL0P79B6+3ttHqrqqqorq5m8ODBGI1GdE4M2oUQvY+qqpw4cYKPP/7YsYHlLbfc0mOh96XmS6zPWc/Wgq0025oB6GPow+IBi1kyaAlBHj0zhqm2tpbNmzc7xpgYDAZiY2MZPnw40dHR6PV66e4WQgghhBDdrqNZbqc3twRobm5m//79FBcX09bWdsVjjz322NUsKYQQ4gdMr9eTmJiIVqtl69atnbqrSKPT4ffYYxhiY6l+8UXMBw9SetfdBL/yCm4DnLP3xJdnnVssFgwGA3r9VX1LFUJcY1paWti2bRvnzp0DICoqitmzZzt9A0tVVcmozmBNzhr2lexDQQEg2juaZTHLmB01G3e9u1Nr+LLm5mZWrVqF2WzGZDIxffp0hg4ditFolLBbCCGEEEL0Cp3u+D558iSzZ8+mpaWF5uZm/P39qaqqwtPTk+DgYPLz851Vq9NIx7cQQvQe1dXVeHp6fm0/iY5oO3eOiv98EntZGRqTicCXXsJz6hQnVPlvjY2NbN68mSlTpjB06FCnnksI4Xpr1qwhOzsbrVbLlClTGDNmjFODXpti45OST1ibs5YzNWccx8f2HcvtMbczvt94tBrXjBH59NNPuXjxIkuWLMHPz08CbyGEEEII0SOcNupk2rRpxMbG8tprr+Hr68vp06dxc3Pjzjvv5PHHH2fx4sVdLr6nSfAthBC9i6qqmM1mmpubycnJYcSIER1+rb22lsqnn8Fy4gRoNPj85Mf43H+/0wKZ1NRUDh8+jF6v59577yUsLMwp5xFCuJ6qqpSWlrJ161ZmzZpF3759nXauhrYGPsz/kA9yP6CitQIAg9bArMhZLI9dziCfnpslfpnVasVqtTo29VUUBTc3N4xGY4/XIoQQQgghfricFnz7+vpy9OhRBg8ejK+vL4cPHyYuLo6jR49yzz33OG77vJZI8C2EEL1PW1sbb775JlVVVUyZMoVx48Z1+LWq1Urty6/QuH49AJ4zZhDwwvNovwhrupOiKGzatImCggK8vLx44IEH8PHx6fbzCCFco6amhoKCAkaOHInFYgHaA3BnXUwraixiXc46thdux2w3A+Bn9GPJoCUsHrAYf3d/p5z3+zQ2NvLhhx+i0+lYtmwZer0eo9Eom1YKIYQQQoge57QZ325ubo43+n379qW4uJi4uDh8fHwoLi6++oqFEEKILzEYDCQkJPDpp59y4MABdDodY8aM6dBrNW5u+D/7c9wGx1Lzv7+lZe9erEVFBL3yMm7h4d1ap1arZd68eaxevZqqqirWrFnDfffdh8Fg6NbzCCF6lqqqnD59mh07dtDW1oaXlxcREREA3R56q6rK8YrjrM1Zy8HSg47jg3wGcXvs7dwccTMGneu+ppSUlLBlyxZaWlpwd3enrq6O8PBwGW0ihBBCCCF6tU4H36NGjeLzzz8nNjaWpKQknnvuOaqqqnjvvfdISEhwRo1CCCF+oKZMmYLNZuOzzz7j008/RafTMWrUqA6/3nvRItwGDKDq6aex5uZSdtfdBP72f/HoRPd4RxiNRhYvXsyqVasoLy9nw4YNLF++XDohhbhGmc1mtm/fTmZmJgARERFOuZPDYrews3gn63LWkVufC4AGDZNCJrE8djmjg0a7PFw+ffo0e/bsQVEUAgMDWbJkCcHBwS6vSwghhBBCiO/T6VEnn3/+OY2NjSQlJVFZWck999xDamoqgwYN4p133unUHNbeQkadCCFE76WqKnv27OHQoUMAzJo1i+HDh3dqDVtFBZVPPkXbmfaN4dzHjsVrya14Tp2Kxs2t22q9ePEi69atw263s2LFCgYOHIhGoyEjI4O0tDSMRiPu7u4YjcYrfj1kyBC8vb27rQ4hxNU5ffo0JSUlZGdn09DQgEajYdKkSYwdO7ZbL2Q1tjWyLmcdG/I2UGupBcBd587c6Lksi1lGpHdkt53ratntdj755BNOnToFQGxsLAsWLHDM9xZCCCGEEMJVnDbq5Mu3mQcFBZGSknJ1FQohhBAdoNFouOmmm7DZbBw7doydO3diMBgYMmRIh9fQBwfT7x9vUvP739P04RbMx45hPnYMbUAAXgsW4L14EfrQ0C7XGhYWxpw5c9ixYwdGoxGzuX0+b3l5+XeOAwsICMDd3R2dTidd4kI4SWtrK9XV1VRVVVFdXU11dTXNzc3ce++9KIqCqqqkp6eTn58PgI+PD3PnziW0G742XNZia2F9znreP/8+DdYGAPp69OW2mNtY0H8BfQy9pwFjz549pKenAzBp0iSmTZuGTqdzcVVCCCGEEEJ0XKc7vq9H0vEthBC9n6qqbN++ndzcXJYuXYqvr+9VrWO7dInGzR/SvOVD7FXV7Qc1GtwnTsR7ya143HgjGn2nrwtfeQ6bDa1W6wixa2pqqKysxGKxfONHUlKS4/P5/PPPMZlMJCYmyigBIbrB9u3bOXv2LC0tLd/4+COPPIKHhwcAGRkZ1NbW4u/vT2xsbLfN6jfbzWzK28S/zv3L0eHdv09/7ou7j+nh09Fru/Y1xxlqampYv349M2fOZNiwYfL1SAghhBBC9BodzXI7FHyPGjWqw292T5w40fEqewkJvoUQ4tqgqipNTU3d0nWoWq20HDhA04aNmI8edRzXBQfjtWgRXosWog8O7vJ5OqO6upp//vOfKIpC//79mTdvHn5+fj1agxDXotbWVoqLiykqKqKkpIQ777wTnU6H3W5n165dpKWlAeDl5YW/vz9+fn74+/vj7+9PZGQk+i5e7Po2bfY2thZs5Z2sd6gyVwEQbgrnwfgHmRk5E52md3RQq6pKYWEhxcXFTJ069YrHPDw8JPQWQgghhBC9SrcG3y+88EKHT/yrX/2qw8/tLST4FkKIa4vdbsdisZCbm4uiKMTGxnZpPWvxBZo2baJp61aUurr2gzodHpMn4X3rEtwnjEfTAyNIFEUhLS2N1NRUbDYbbm5uzJgxg7Fjx0rwJMSXNDc3U1BQQFFREcXFxVRUVFzx+LJly4iMbJ+TXVdXh8Viwc/Pr9s6uL+PTbGRUpTC22ffprSlFIB+nv24f+j9zI6a3Ws6vM1mM5mZmZw8eZK6L7723XPPPQQHB2MwGJx2QUAIIYQQQoiu6Nbg+3onwbcQQlx7CgsLee+991AUhalTp3LDDTd0ORxW29po+eQTGjdsxPKlO5gMQ4cS/OeV6AICulp2h9TW1vLxxx9TUlICQEREBAsWLCCgh84vRG9jt9sBHHd7HD58mF27dl3xHH9/f8LDwwkPD6d///4u2YTRrtrZXbybN8++SUlT+/+/ge6B3Bt3Lwv6L8Cg65ng/fuUl5dz6tQpzp49i81mA8BgMDBs2DAmTJhAQECAXGwTQgghhBC9lgTfnSDBtxBCXHsURSElJcUxwiAhIYGZM2d22+Zrbfn5NG3cRNO2rahNzegjIgj+26u4hYV1y/rfR1VVTp06xf79+7FarXh4ePD4449jNBp75PxCuJrVaiU/P5+srCzOnz/PLbfcQlxcHHa7nbKyMj7++GNH0B0eHo7JZHJZrYqqsO/iPt448wYFDQUA+Bp8uSfuHhYPXIy7zt1ltX1VQUEBGzZscPw+MDCQ0aNHM3z4cBlrIoQQQgghrglOC761Wu13viG+3JFzLZHgWwghrl1Hjhxh165dqKrq6Iy+vFFdd7AWX6D8pz/FfukSusBAgv/2KoZBg7pt/e9TX1/Prl27GDBgAGPGjMFgMHRbuC9Eb2OxWMjJySErK4ucnBysVqvjsfj4eGbPnu3C6r5ZWkUaf03/K1m1WQB4u3lz5+A7uW3QbZjcXBfGX9bY2Eh9fT3h4eFA+3v1N998k7CwMMaMGUN0dLR8TRFCCCGEENcUpwXfW7ZsueL3VquVkydP8u677/LCCy9w//33X13FLiTBtxBCXNuys7PZuHEjbW1t+Pn5sXjxYvz9/bttfVtlJRUPP4w1Nw9tnz4E//nPGEcM77b1v8/lb9WXLzxfunSJkpISJk+eLIGVuG60trbyyiuvOEZvAHh7exMbG0tMTAxhYWFoe2DWfkflN+TzavqrpJamAuCp92R5zHJWxK7A2+Dt4uraZ5sfPHiQrKwsvL29efDBB69oYHF3d5fubiGEEEIIcU3q8VEnq1evZt26dV8Lxq8FEnwLIcS1r6ysjDVr1tDQ0MDkyZMZP358t65vr6+n8vEnsKSno3F3J+gPf8Djxondeo6OsNlsvPPOO9TV1dG3b18WL15McHBwj9chRFeoqsr58+e5ePEi06dPx263Y7PZ+Ne//oXZbCY2NpbY2Fj69u3b68LZanM1b5x5g635W1FQ0Gl0LBywkAeGPoC/e/ddcLtaTU1NHD58mPT0dBRFAf69T4Cvr+/33r0phBBCCCFEb9fjwXdeXh7Dhw+nubm5O5brURJ8CyHE9aGxsZHjx48zbtw4pwQ7SmsrlU8/g/nQIdDrCHzxRUy33NLt5/kuqqpy7tw59u7dS2trK3q9nptuuomxY8dKmCV6PVVVycrK4sCBA5SXl6PVann44Ydxd2+fgW02mzEajb3y33KLrYXV51ez6vwqWu2tAEwNncrDwx8myjvKxdW1/9kdPXqUEydOOLrmo6OjmTZtGhEREb2qW14IIYQQQoiu6NHgu7W1lV/84hfs2LGD8+fPd3W5HifBtxBCXF/sdjsWiwWr1Up6ejqJiYndFqSpVitVz/2Klp07QaPB/+fP4L10abes3RlNTU18/PHHFBS0b6Q3cOBAFixYgLe360csCPFVqqpy9uxZDhw4QEVFBQAGg4FRo0YxduxYR/DdG9kUGx8VfsQbZ96g2lwNQLx/PI8Of5RRQaNcXN2/lZSUsGbNGgBCQkKYNm0agwYNksBbCCGEEEJcd5wWfPv5+V0RHqiqSmNjI56enqxatYr58+dffdUuIsG3EEJcf+x2Ox988AHnz59n0KBBzJkzB4PB0C1rq4pC7e//QOP69QD4/Pg/8HnwwR7vUlVVlZMnT7J//35sNhseHh48+OCD+Pn59WgdQnyXsrIyNm3aRGVlJdAeeI8ePZrRo0d360a03U1VVQ6WHeT/0v+Pgob2C0xhpjAeTniY6eHTXd6VbrfbKS8vJzQ01HHsk08+ITo6mri4OJn/L4QQQgghrlsdzXL1nV145cqVV/xeq9USFBTEuHHj5AdtIYQQvYZOp2Po0KHk5uaSm5vLmjVrWLx4cbd0RGu0Wvx+/gxaX1/q33iD+r+/jlJXh99TT6Hpwe5KjUZDYmIikZGRbN++HW9vb9zd3VEURbo8Ra9hMpmor6/HaDQ6Au/e3OENcK72HH85/RfSKtMA6GPow/1D7+fWgbfipnVzaW2KonD27FkOHTpES0sLDzzwAF5eXmi1WpKTkyXwFkIIIYQQ4gvdNuP7WiYd30IIcf0qKipi/fr1tLS04OXlxeLFi+nbt2+3rd+wdi21v/8DAJ7JtxD4/PNo3Ho+GLPZbNhsNkegqCgK9fX1hIWF9Xgt4odLURQyMjIoLCxkzpw52Gw2FEWhqKiIfv36YTQaXV3it1JVleMVx1mbs5aDpQcBMGgNLItZxj1D7sHb4NoxQoqikJuby8GDB6mqqgLaLyrMnz+fgQMHSuAthBBCCCF+MJw647u2tpa33nqLrKwsNBoNcXFx/OhHP8Lf3/U72V8NCb6FEOL6VlNTw5o1a6iqqsLNzY1Zs2YRFxfXbes3paRQ/fzzYLPjMelGAn/3O7QuHuGwfft2srKymDp1KpMnT5YOcOFUjY2NnD9/nkOHDlFbWwvAsmXLiIyMdHFl389it7CzeCdrs9eS15AHgAYNsyJn8eNhPybEFOLS+pqamjhw4AD5+fm0trZvqunu7s64ceMYN24c7u7uLh+7IoQQQgghRE9yWvC9f/9+5s+fj4+PD2PGjAEgLS2Nuro6tm7dytSpU7tWuQtI8C2EENc/s9nMBx98QH5+Pp6enjzwwAPd2n3amppK5TPPoJotGEeOwHvZMkADl/Ooy8HUl/6rufygBrS+fhhHjeyWAMtut5OSksK5c+cACA8PZ/HixZ0aSaaqKlartdvmoovrT3V1NWlpaeTl5Tk2rATw8PDghhtuYNSoUb3630+1uZoNuRvYnL+ZWkt7WO+h82Be/3ksjVlKhFeES+pqaWmhsbHRcWdKW1sbr776quOOjlGjRjFx4kRMJpME3kIIIYQQ4gfJacH3sGHDmDhxIq+99prjlkq73c5Pf/pTDh48SGZmZtcqdwEJvoUQ4odBURT27t1LZGQkERHdH2qZT52i8vEnUBobr+r1xlGj8P/5MxhiY7tci6qqnD17lj179tDW1obBYCA5OZmBAwdeMec8MzOT0tJSWlpaaG5uvuJDVVWeffZZdDqdBGw/cKqqUllZiU6nIyAgAFVVKSoq4t1333U8p2/fvsTFxTFixIheHXhn12WzNnstuy7swqpYAejn2Y+lg5Yyv/98l4w0qaurIzc3l5ycHC5evEhgYCD33nuv4/H09HQCAwOJiopCr9fL/49CCCGEEOIHzWnBt4eHB6dOnWLw4MFXHD9//jwjR4503IJ5LZHgWwghflhUVcVisaAoCnl5eZhMJvr169cta7fl5FD399dRGhvg8nfYy99qv/rfy09Qoe38OVSzBbRavG69Fd+f/gSdj0+X66mvr2f79u1cvHgRaN+U+tlnn0Wj0aCqKhs2bCA7O/tbX//oo4/i7u6O0Wikra0NDxePcBE9p7m5mfz8fPLy8sjLy6OpqYlRo0Zx8803oygKiqKwe/duIiMjiYqKwtPT09Ulfyu7aif1Uiprc9ZyovKE4/jwgOEsj1nO1LCp6LWd3vO9SyoqKsjOziY3N5fKysorHgsODmbFihV4eno6LjxJ2C2EEEIIIUS7jma5nX6Hn5iYSFZW1teC76ysLEaOHNn5SoUQQogeptFoMBqNlJaWsm3bNhRFYebMmSQkJHR5bUNMDMEv/7HTr7OVlVH7p5W07N5N0wcf0LJ7F74PP4LXwgVourBpnY+PD8uXL+fYsWMcPnwYRVFoampyjHkZMGAA3t7emEwmPDw88PT0vOLD7YuNOsvKynjvvfcYO3YsU6dOlY30rlN2u5309HROnjzJhQsXrnhMr9djt9tRFAVov4gya9YsV5TZYbWWWnYW7+SDnA8oaS4BQKfRMT18OrfH3k68f3yP1aIoyhUB9rFjx8jKygLavyZFREQQExPDkCFD8Pf3l7n8QgghhBBCdFGnO77XrVvHM888w6OPPsr48eMBOHLkCK+++iq//e1vr9gsbPjw4d1brZNIx7cQQvwwmc1mNm3aRE5ODgAjR45k+vTpLg11zcePU/P7P2DNa99kzzBkCP4//znGEV3/nvrV4K0zDh8+TGpqKtA+0mLhwoXd1iUveg9FUfjzn/9MQ0MDAEFBQfTv35/o6GjCwsLQ63u2K/pqtNnbOFh6kJSiFA6WHsSu2gHo49aHhQMWsmTQEvp69u2RWqxWK0VFReTk5JCXl8fSpUsJDg4GIDc3l4yMDAYPHkxsbCze3t7S1S2EEEIIIUQHOG3Uyfd1n1y+dVqj0WC32zuztMtI8C2EED9cqqqyf/9+9u/fD0BoaCgLFizAy8vLdTVZrTR+8AF1f/87alMzAKa5c/B77DF0gYEuq+v8+fPs3r2b1tZWtFotU6ZMYfLkydKZeo1qbGzk9OnTZGdnc9ddd6GqKjabjVOnTmGxWBg6dOgV8+B7M1VVOVNzhpSiFHZf2E1DW4PjsSF+Q5jffz6zo2bjoXf+qB6z2UxeXh65ubkUFBRgtVodj02aNIkJEyag0+nQ6/VotVoJu4UQQgghhOgkpwXfRUVFHX5uVFRUZ5Z2GQm+hRBCZGdns2nTJiwWCyaTifnz5xMeHu7Smuw1NdT+9f9o3rIFAI3JhO9/PIT3smVovhhB0tOam5vZtWsXubm5AISEhLBo0SKCgoJcUo/oHLvdTnZ2NqdOnSInJ4fLbwMXLFhAbDdsqtrTylrK+LjoY1KKUihq/Pd71CD3IG6JuoXZUbMZ4DOg5+opK+P99993jIMB8Pb2JjY2lsGDBxMdHS2bUwohhBBCCNFFTgu+r0cSfAshhACorq5m3bp1VFZWMmbMGJKSklxdEgCWjAxqfv8H2s6cAcCtf3/8nnkaj3HjXFKPqqqcPXuWvXv3YrFYuPHGG5kxY4aEeb1YfX09R44cIT09nZaWFsfxsLAwEhISGDx4MAaDwYUVdlyztZl9F/exvXA7JypPoH6xSaxRZyQpLInZ0bMZEzwGnca5I4sURSE/Px+bzcaQIUOA9gsLr776Kl5eXsTGxjJkyBDCwsKks1sIIYQQQohu5NTgOy8vj5UrV5KVlYVGoyEuLo7HH3+cgQMHdqloV5HgWwghxGVtbW0cOnSI0aNH96oNHFVFoWnrVur+8leUujoATMnJBDz/K5d1fzc1NXHs2DGmTp2KXq/HYDBIwNdLlZWV8frrrwNgMpmIj48nISEBf39/F1fWMZdHmWzK38TeC3sx282OxxKDEpkdNZvp4dMxuZmcXkt1dTWZmZmcOXOG5uZm+vTpw0MPPYRGo0Gr1WI2m+nTp4+MABJCCCGEEMJJnBZ879y5k/nz5zNy5EhuvPFGVFXl0KFDnD59mm3btjFz5swuF9/TJPgWQgjxVYqiYLFYsNls7Nmzh5EjR9K3b89siPdd7A0N1P/97zSu/wAUBY8pUwj6w+9dFn5fUZvdzvr160lISGDs2LGuLucHS1VV8vLyqK6u5oYbbsBqtWK329m3bx/h4eEMGDDgmgllW2wt7Czeyea8zZyvO+84HuEVweyo2SRHJRNiCnF6HW1tbZw/f5709HQuXbrkOO7p6Ul8fDxTp07Fw8PjmvlzFUIIIYQQ4lrmtOB71KhRzJo1i9/+9rdXHH/22WfZtWsXJ06cuLqKXUiCbyGEEN9EVVV27drFkSNH0Gq1jBs3zrExnau1Hj5M5X8+iWqxtIffv/8dGhePqsjMzGTHjh0AJCUlMWXKFJfW80Ojqirnz5/nwIEDlJaWotPpeOihh1y6UevVyq3PZVPeJnYU7aDF1j6axaA1MCNiBosGLGJ4wPAevbNg165dnD59GmjfyH3AgAGMGDGCwYMH4+bmJnc5CCGEEEII0YOcFny7u7uTkZFBTEzMFcezs7MZPnw4ZrP5W17Ze0nwLYQQ4ts0Njayfft2zp9v7zYNDAwkOTmZfv36ubgyaD1yhMqf/Wd7+D15cnvntwvDb1VVOXLkCKmpqQDMmDGDSZMmuayeHwpFUThz5gypqalUVFQA4ObmxvDhwxk/fjyenp4urrBjLHYLn5Z8ysa8jaRXpzuOR3hFsHjgYuZEzcHH6OP0Otra2jh58iT9+/cnODgYgIsXL7Jjxw6GDx/OiBEj8PX1lbBbCCGEEEIIF+loltvp+zGDgoI4derU146fOnXK8cNBRx04cIB58+YRGhqKRqPhww8/vOLxe++9F41Gc8XH+PHjr3iOxWLh0UcfJTAwEJPJxPz58ykpKenspyWEEEJ8I29vb5YtW8bixYvx8PCgqqqKVatWsX//fmw2m0tr8xg/nqCVf0JjNNL62WdUPv0Maluby+rRaDRMmDDBEXbv3buXQ4cOuayeH4JLly7x6quvsmnTJioqKjAYDIwfP56N7aInAAAgAElEQVSHHnqI6dOnXxOhd0lTCX9N/yvzPprHr479ivTqdHQaHUlhSfzflP9j/S3rWRG7okdC7/Lycv71r39x4MCBK97vRkZG8vDDDzNt2jT8/Pwk9BZCCCGEEOIaoO/sCx588EEeeugh8vPzmThxIhqNhtTUVH73u9/x5JNPdmqt5uZmRowYwY9+9CNuvfXWb3zOLbfcwjvvvOP4veErnWxPPPEE27ZtY+3atQQEBPDkk08yd+5c0tLSesWt6EIIIa59Go2GhIQE+vfvT0pKCllZWRw7doyWlhaSk5NdWpvHuHEErfwTlU/8rD38fuppgv74B5d2fk+YMAFFUTh06BC7d+9Gp9Mxbtw4l9VzvVJVFS8vLxoaGnB3d2f06NEkJibi7u7u6tK+l6IqHCo7xPqc9RwtP+o4HuwRzMIBC5nffz5BHkE9Vo+qqqSlpbF//34URcHb25vIyEgMBgM6nU6CbiGEEEIIIa5BnR51oqoqK1eu5OWXX3Zs7hMaGsrTTz/NY489dtU/GGg0GjZv3szChQsdx+69917q6uq+1gl+WX19PUFBQbz33nssW7YMaO98ioiIICUlhVmzZnXo3DLqRAghRGecPXuW3bt3s2TJEvz8/FxdDgCtR49S+cTP2seeTJrk8vBbVVVSU1M5cuQIRqORRx555JqcNd3bXLx4kWPHjjF//nysViuKolBUVERISMjXmgN6I7PNTEpRCmtz1lLUWASABg3j+41n8cDFTOw3Eb22030ZXdLc3MzHH39Mfn4+AIMGDWL+/Pl4eXlJ4C2EEEIIIUQv1NEst9M/WWg0Gn72s5/xs5/9jMbGRqD9NnBn2bdvH8HBwfj6+jJ16lR+85vfOEaqpKWlYbVaufnmmx3PDw0NZdiwYRw6dOhbg2+LxYLFYnH8vqGhwWn1CyGEuP4MHTqUwYMHo6oqbV+MFjl69ChhYWGEh4e7pKb2zu+VVP7sCVpTU6l86imC/vhHl4XfGo2GSZMmodPp6N+/PzqdDlVVJUjsgtzcXNavX4/VaiUhIYHQ0FAAoqKiXFzZ96tqrWJD3gY25m2koa39fZeXmxcL+i9gyaAlhJpCXVJXeXk5GzdupLm5GZ1Ox/Tp0xk3bpzcNSiEEEIIIcR1oFPB99GjR9m6dStWq5WbbrrpisDZGZKTk7ntttuIioqioKCA//7v/2b69OmkpaVhNBopKyvDYDB8rduub9++lJWVfeu6//u//8sLL7zg1NqFEEJc3y4HY1qtlvz8fA4cOABAYmIikydP/tbuW7vdTltbG21tbVgsFsev9Xo9ERERXQqGPcaNJehPl8Pvg+3h9x/+gMZovOo1u0Kj0TBx4kSgvQP88gbYHh4eLqnnWpaens6WLVtQFIWoqCgCAwNdXVKHZNdlsyZ7DbuKd2FT22fih5nCWBazjLnRczG5mVxan6+vL3q9noCAABYsWEB4eLhcnBFCCCGEEOI60eFRJ5s3b+a2227D3d0dvV5PY2MjL7/8Mk888UT3FPINo06+qrS0lKioKNauXcvixYtZvXo1P/rRj67o3gaYOXMmAwcO5O9///s3rvNNHd8REREy6kQIIcRVaW1tZefOnZw+fRoAHx8fgoKCHOH2HXfc4QjKP/roI7Kysr5xnaCgIBYuXIivr2/X6jl2jMonnkA1W3C/8UaC/+i68PvLSktL2bBhA7NmzWLkyJGuLueacXlWOkBcXBzJycm9uiNZURUOlh5kTfYa0irTHMdHBI5gRewKJodORqdxXf1NTU2YTCZHwF1bW4u/v79ckBFCCCGEEOIa0dFRJ9qOLvg///M/jpnbdXV1vPDCC7z00kvdUmxHhYSEEBUVRU5ODgD9+vWjra2N2traK55XUVFB3759v3Udo9FInz59rvgQQgghrpaHhwcLFy5kxYoVeHt7U19fT25uLsXFxZSXlzvGocC/N2nW6/V4enri5+dH3759MRgMWCyWbpmD7TF2LEErV6JxN2I+eJCKp55G/cpFYlc4f/48ZrOZLVu2OC4SiG+nqiq7du1yhN6jR49mzpw5vTb0brW1sjFvI8s+XsZTB58irTINnUbHzRE3886Md3gj6Q2mhU1zaeh97tw53nrrLU6ePAm037EREhIiobcQQgghhBDXoQ53fPfp04fPP/+c2NhYoL1r2mQyUVZW1i2323ak47u6upqwsDDeeOMN7r77bsfmlqtWrWLp0qVAezdZeHi4bG4phBDCJcxmMxkZGSiKgtFoxGg0Eh0djZubGwA2mw2dTodOp3N0nGo0GlpaWqiqqnJ8T1UUhd27dzNixAj69et3dbUcP07F44+3d35PnEjwy3/8xs5vta0N28WLWC9cwHahBNuFC1/8+gKq1YrXrYvps2IFWk/Pq/xT+eI8qsru3bs5ffo0Go2GRYsWkZCQ0KU1r2cXLlzg7bffBmDq1KnccMMNvW4Mh6qqZNZkklKYwu4Lu2m0tu//4uXmxaIBi7ht0G309fz2ZoSe0tbWxieffEJGRgYAkZGR3HHHHbi5ufW6P1MhhBBCCCHEd+toltvh4Fur1VJWVubYWBLaN7U8ffo0AwYMuKoim5qayM3NBWDUqFG88sorJCUl4e/vj7+/P88//zy33norISEhFBYW8stf/pLi4mKysrIcG2r+5Cc/4aOPPuKf//wn/v7+PPXUU1RXV5OWltbhjigJvoUQQvQWqqpis9lIS0tj586dAMTGxjJp0iQCAgI6vZ7588+peOwxR/jtveTWLwXbJViLi7GXlcH3vB3Q+vnhc/99eN96a5fGplzuYk5PT0ej0XDrrbcSHx9/1etdz+x2O4cPH8ZgMDBs2DBXl3OF8pZydhTtYHvhdoqbih3Hw03hLI9dzpzoOXjqu3ahpLuUl5fz0UcfUVNTA8CECRNISkpyXIwSQgghhBBCXFucEny/++67+Pj4OI7dfvvtrFy58oqxIvPnz+9wkfv27SMpKelrx++55x5ee+01Fi5cyMmTJ6mrqyMkJISkpCR+/etfExER4Xiu2Wzm6aefZvXq1bS2tjJjxgz+9re/XfGc7yPBtxBCiN6mpqaGTz/9lMzMTKC9Kzw+Pp6JEyde8b24I9rD78dRv9hc8ptoPD3RR0TgFhGOPiLii19HYCsvp/71N7BduACArl9ffB/6D0xz56DRd2qPbAdVVfn444/JzMxEo9GwZMkShg4delVrXW+am5ux2+14enpeMSKnN2i1tbLv4j5SClM4XnEclfa3kO46d5LCk5gTNYfRwaPRajo8Sc+pGhsbSU1N5cyZM6iqipeXF/PmzSMmJka6vIUQQgghhLiGOSX4/j4ajQa73d7xKnsJCb6FEEL0VmVlZXzyySeO/S10Oh0jRoxg2rRpnZr1bE5Lo/ZPK0FV20PtyIgrAm6tv/+3hoGq1UrTtm3Uv/Em9ooKAPRRUfj+5Md43nQTmg68R/gqRVHYsWMHZ8+eZcCAAdxxxx0deq9xPautrWXVqlXodDqWL1+Ou7u7q0tCURVOVZ1ie+F2Pin5hBZbi+OxxKBE5kTPISksCZObyYVVfrP6+nr+8Y9/oCgKMTExzJkzhz59+kjoLYQQQgghxDWu24Pv65kE30IIIXq7CxcusHfvXoqKioiIiGDZsmU9HuApZjNNGzZQ//bbKHX1ABiGDMb34Ydxnzix0/UoisLnn3/OqFGjMBgMuLm5UVhYiN1uJyYm5gcVhJeVlfH+++/T1NREnz59WLp0KX5+fi6pxa7ayavPY//F/aQUpXCp+ZLjsTBTGLOjZzM7ajahplCX1PdtampqKCwsJDEx0XHsxIkThIWFERUV9YP69ySEEEIIIcT1TILvTpDgWwghxLUiLy8PvV5PUFCQy2pQmppoeH81DatWoTY3A2AcORLfRx7BPXFUl9ZetWoVpaWlmEwmhg8fzsiRI6/YX+R6VFhYyNq1a7FYLAQGBnLbbbfh5eXVY+evs9SRWZ1JZk0mGdUZnK05e0Vnt6fek5kRM5kdPZsRASN6Xcd0dXU1hw8f5ty5c6iqyj333ENwcDB6vR69Xi+BtxBCCCGEENcZCb47QYJvIYQQ1xpFUTCbzRw9epT+/fu7JBy219bS8M93aVy/HtViAcD9xhvxe/QRDLGxnV5PURT279/P2bNnaWn5d/AaGhrKyJEjGTZsGB4eHt1Wv6s1NTVx5swZdu/ejd1uJzw8nEWLFjl1xIlNsZFXn+cIuTOqMyhpKvna8zz1nowIHEFyVDJTQ6firnf92JWvqqqqcgTelw0cOJAZM2bQr1+/XhfQCyGEEEIIIbqHBN+dIMG3EEKIa9GBAwf49NNP8fX15a677nLZTGhbRQX1b/6Dpi0fgs0Oej3+z/4c78WLr2o9u91Ofn4+mZmZ5OfnoygKALGxsSxfvvyaDTRbWlrQarWOv6fjx4+TkpICQExMDHPnzkV/lRuGfpfsumz2XNjj6OY227++yWm0dzTxAfEkBCSQEJBA/z790Wk6PkO+JzU3N7N3717Onz/vODZo0CAmT55MRETENfvvQwghhBBCCNExEnx3ggTfQgghrkWtra28/vrr1NfXM3DgQBYtWuTS0M9afIHalX+idd9+ALyXLsXvyf9E4+Z21Ws2NzeTlZVFRkYGEydOZPDgwej1ehRFobCwkCFDhnRX+d2ura2NoqIiCgoKKCgooKysjFmzZjFq1CgURaGmpobt27cTExPDDTfc0K0jOcx2M59c+IRN+ZvIqM644jGT3sSwgGEMCxhGQkACQ/2H4mPw6bZzO5vVauWNN96gpaWFmJgYJk+eTHh4uATeQgghhBBC/EBI8N0JEnwLIYS4Vl26dIm3334bu93O5MmTGT9+vEvrUVWVhrfepu5vfwPAOGY0Qb/7HboubtR4+e3K5XDzk08+IS0tjbi4OObMmYPJZOpa4d2ktbWVo0ePUlBQQElJiaNb/bLExERmzJjhtPMXNxazOX8zHxV+RENbAwA6jY6pYVOZ0G8Cw/yHEd0nGq3m2pl7XVFRQWZmJklJSY6//9zcXPz9/QkLC5PAWwghhBBCiB+Yjma5nb6f9sKFC2g0GsLDwwE4duwYq1evZujQoTz00ENXX7EQQgghOi00NJTk5GQ++ugjUlNTCQkJISoqymX1aDQafB64H7eYQVT91//D8nkapXfdTfArr2CIjenSul9mNBrRaDRkZWVRVFTEnDlzGDp0aFfL7xYHDhxwBPU+Pj5ERkY6PpyxaaVNsbH/4n425W/i84rPHcdDPENYOGAh8/rPI8A9oNvP62zl5eUcOnSI3NxcAMLCwhwd/wkJCRJ4CyGEEEIIIb5Tpzu+J0+ezEMPPcRdd91FWVkZgwcPJj4+nuzsbB577DGee+45Z9XqNNLxLYQQ4lqmqipbtmzh9OnTeHh4cPfdd/eK72dteXlU/uw/sZWUoHF3J+DXL2Lqxm7n8vJyUlJSqKqqAiA+Pp7Zs2fj6enZbef4PqqqUlhYSHR0NFarFZvNRmpqKt7e3kRFReHr6+u0c5c2l7KlYAtbC7ZSba4GQIOGG0NuZPHAxYzvN77Xzun+LmVlZRw+fNgReAMMGTKEKVOmyKaVQgghhBBCCOeNOvHz8+PIkSMMHjyYv/zlL6xbt46DBw+ya9cufvzjH5Ofn9/l4nuaBN9CCCGudVarlbfffpvKykrmzp1LbGysq0sCwF5fT9Wzv8B89CgAPg8+iM9/PISmm+ZZ22w2Dh8+zNGjR1FVFU9PT5YuXdojXe+1tbVs2bKFoqIili1bRmRkpNPPCXCk7Agf5H7AodJDKLSPUglwD2B+//ks6L+AEFNIj9TR3SwWC9u3bycvL89xLC4ujkmTJhESEiKBtxBCCCGEEAJw4qgTq9WK0WgEYM+ePcyfPx9o78QpLS29ynKFEEII0RVubm4sXbqU+vp6goODXV2Og87Hh+C//oXalX+mcfVq6t98k7bcXAJffAFtN8zl1uv1TJ48mZiYGFJSUmhqasLDwwNFUbp1s8gvU1WVtLQ0du3ahdVqxc3NjaamJqec68uarc38/sTv+bj4Y8exMcFjWDxwMVNDp6LXdvptXa9iMBhobm5Go9EwZMgQJk+eLB3eQgghhBBCiKvW6Y7vcePGkZSUxJw5c7j55ps5cuQII0aM4MiRIyxZsoSSkhJn1eo00vEthBDieqGqKhaLBUVRUFW1V4WGTVu3Uv2b/wGrFbdBAwl65RXcvtgzpDvYbDaqqqro168f0B6kVlZWEhLSfR3Q9fX1bN261XGHW3h4OMnJyU4daQJwrvYc/3XkvyhpKkGLliWDlrBk0BKivF03z70rFEWhqKiI9PR0brnlFkdTRVlZGZ6envTt27dX/dsVQgghhBBC9B5OG3Wyb98+Fi1aRENDA/fccw9vv/02AL/85S85d+4cmzZt6lrlLiDBtxBCiOvJ5bnTKSkpzJ07l6CgIFeX5GA5nU7l009hr6pG6+ND4O9+i8fYsU45V35+Phs3biQhIYHk5GQ8PDy6tF5GRgbbt2/HYrGg1+uZMmUKiYmJTg1oVVVlXe46/nr6r9hUG309+vLi+BcZGTjSaed0poaGBjIzM8nIyKChoQGASZMmMWHCBNzc3NDr9RJ4CyGEEEIIIb6T04JvALvdTkNDA35+fo5jhYWFeHp69qrbqztKgm8hhBDXmzVr1pCdnY2fnx933XWXo6O2N7BVVFD55FO0nTkDOh1+Tz6J97Kl3R54Hj16lM8++wxVVfHy8mLevHldmn2enp7O5s2bCQ0NJTk5GX9//26s9uvqLHW8dPwlPiv9DICpoVP5rxv+Cx+Dj1PP293sdjv5+fmkp6dTUFDA5beeRqOR+Ph4xo0bR1BQkATeQgghhBBCiA5xavBts9nYt28feXl5rFixAm9vby5dukSfPn3w8vLqUuGuIMG3EEKI601LSwuvv/46DQ0NxMTEsGDBgl4VLCpmMzUv/YbmlBQATLNn4//zZ9B6e3freS5evMiOHTuora1Fo9GwbNkyBg8e3KHXqqpKY2Mj3t7e2Gw22trayMnJYdCgQU6bH37ZicoTPHf0OSpbK3HTuvH4iMdZMnBJr/o77KiWlhZee+01FKV9I86IiAhGjBhBfHw8RqPxmvychBBCCCGEEK7jtOC7qKiIW265heLiYiwWC9nZ2QwYMIAnnngCs9nM3//+9y4X39Mk+BZCCHE9Kikp4Z///Cd2u52pU6cytgMjRZqbm6moqCAoKMhxMdtut2M2mzF1w2aUX6aqKo2rVlH757+AoqDr14/AX/8a99GJ3Xoeq9XKrl27OHv2LAaDgXvvvfd7535bLBY+/PBDLly4wH333Ye7u3u31vRt7Kqdd86+w1tn30JBIco7ipfGv0Ss79V3qvckm81GTk4OZWVlJCUlOY7v3r0bg8HAqFGjZH63EEIIIYQQokucFnwvXLgQb29v3nrrLQICAjh9+jQDBgxg//79PPDAA+Tk5HS5+J4mwbcQQojr1fHjx0lJSUGj0bB06VIiIyMdjzU1NVFeXn7FR2NjIwDJyckMGzYMgOzsbLZu3cqAAQOIj49n4MCB6PX6bqvRfOoU1c89h63kImg09LnrLnx/+hM0BkO3ncNut7NhwwaKi4vx9vbmxz/+MZ6ent/43La2Nt5//32Ki4vRarVdHpHSUeUt5Tx/7HlOVJ4AYE70HJ4a9RSe+m+uszdpaGggLS2NzMxMzGYzAPfffz/+/v7odDr0ej1arVYCbyGEEEIIIUSXdTTL7fRPrampqRw8eBDDV34YjYqK4uLFi52vVAghhBBOM2bMGEpKSkhPT2fbtm3cfffdeHt7U1BQwIYNG77xNZdnV2u1WrRaLaWlpaiqSl5eHnl5ebi7uxMXF8ewYcO6pXvXfeRIQtasofbll2n6cAsN//oXrUeOEPjSrzEMGtSltS/T6XQsWLCA1atXExcX963BvdVqZc2aNRQXF2M0GlmyZAmhoaHdUsN3Sb2UyovHX6S+rR5PvSc/T/w5t0Td4vTzdlVVVRXHjh0jKyvLMcrE29ubhIQETCYTHh4eEnYLIYQQQgghXKLTwbeiKNjt9q8dLykpwbub53IKIYQQoms0Gg1z586lrKwMT09PdDodgGMzwYCAAPr27Uu/fv0IDQ2lX79+Xwsrk5OTGT16NKdOnSIjI4OmpiZOnjzJyZMnCQwMZMWKFV3ePFNrMhHw3HN4TJ5M9a9fwpqdTekdd+L36CN4r1iBphtmaru7u3PXXXfh5uaGzWZDq9VeEYDbbDbWrl1LYWEhBoOhR0LvNnsbr2a8ytqctQAM9h3MS+NfItI78nte6XpfvXgSGRnJ2LFjiY2NRa/XS+AthBBCCCGEcKlOjzpZtmwZPj4+vPHGG3h7e5Oenk5QUBALFiwgMjKSd955x1m1Oo2MOhFCCHG9a25uRq/XoyiKo5Pbbrd3enNBu91OXl4ep06dIicnh6CgIO68807H45cuXSI4OLhLo1Ds1dVUv/AirampABjHjCHwxRfQ9+t31Wt+k7a2NvLz80lMTMRms7F+/XpycnJwc3NjyZIlhIeHd7xmu53U1FSys7O56aab6N+///e+5kjZEf58+s/kN+QDcHvM7fw04acYdN034qU7qapKc3OzY/a7zWbjzTffJCQkhIkTJxIZGen0TT+FEEIIIYQQwmkzvi9dukRSUhI6nY6cnBzGjBlDTk4OgYGBHDhwgODg4C4X39Mk+BZCCCE6r7W1lbq6Ovz8/FAUBbPZzN/+9jc8PDyYPn06sbGxV931q6oqTZs2U/vyy6hmMxovLwJ+8Sym5ORuqd1ms7F69WrKy8uZPXs28fHxvPvuu9TU1HDrrbdeMQv9+9TX17Nt2zZKS0sBMJlMPPTQQ98a/mfXZfPX9L9yrPwYAD4GH5674TkmhU7q+ifmBIqikJ2dzdGjR7Fardx3332OgFtRFEwmk3R3CyGEEEIIIXqM04JvaP9Bd82aNZw4cQJFUUhMTOSOO+7Aw8OjS0W7igTfQgghRNcoisKFCxfYsGEDTU1NAERHR3PTTTfh5+d31etai4up+n//TVtmJgCes2bh/4tn0XXD9+vDhw+TmpqKRqNh+fLlBAQEUF1d3alO75ycHHbs2IHFYsFoNBIREcGNN974jY0A5S3lvH7mdVIKU1BRcdO6cdug2/hR3I/oY+h97z9sNhuZmZkcP36curo6ANzc3FixYgVhYWEyzkQIIYQQQgjhEk4Nvq83EnwLIYQQ3cNqtfLZZ59x6NAh7HY7Op2O8ePHM3bs2Ksef6LabNS/9Tb1//gH2O3ogoMJeOF5PMaN61KtdrudjRs3UlRUhMFg4I477iAwMLDDr92/fz9paWkAhISEMG/ePHx8fL723GZrM++df4/V2aux2C0AzIyYyU8TfkqoyfkbZ36ZzWbDYrHQ1taGxWLBbDZjsVjw9/cnKCgIaO9gP3ToEAUFBTQ3NwPg4eFBYmIiY8eOxdvbWwJvIYQQQgghhMt0a/C9detWkpOTcXNzY+vWrd/53Pnz53e+WheT4FsIIYToXlVVVWzfvp3CwkIAAgICuPvuu7s0+9uSmUnV//tvbMXFABhHjMA0dy6mm2ei7eQG26qqsmPHDs6cOYOvry91dXX06dOHO++8E5PJ9L2vVxSFtWvXcvHiRcaMGcOUKVMcG4deVlxSzJ4ze1hvWU+tpRaAkYEjeWzEY8T7x3eq3q4qKytj9erV37hBOcCECROYNKl91Ep1dTVvv/02AN7e3owdO5bExMSvbXoqhBBCCCGEEK7QrcG3VqulrKyM4ODg79y0SKPRfOsPVL2ZBN9CCCFE91NVlYyMDHbt2sWQIUOYPn16l9dUWlupXbmSpo2bQFHaDxoMeE6bhte8ebiPH4fmKwH0N9W1a9cu0tPT0Wg0zJo1iyNHjlBXV0dISAjLli3Dzc3tW197OfxtbGykoqKCgQMHfu05u7N3c3LbSbSqlkNBh9D31fPI8EeYEjrFqeGx1WqloKCA7OxswsPDGTlyJNB+IeLLG5AbDAaMRqPjIz4+npEjR6LRaLBYLJw8eRI/Pz/i4uJwc3OTwFsIIYQQQgjRa8iok06Q4FsIIYRwntbWVr78dqOyspILFy4wcuTI77yg/l1slZU0p+yg+aOPsOblOY7rAgMxzZ6Nad5cDF8JpKE9lN6zZw+nTp1Co9EwZ84c4uLiqKmp4f3330er1TrmfV9xPpuNTz/9FJ1O950BflZNFn9J/wsnKk8wonoEMY0xaPQa7rrzLvoG9b2qz/X7XA67z58/T15eHlarFfj/7N15fJT1uffxz+yZZJKQkEBCyAYhhEBYA7KEfZFFdhAFitQea0+PtVZ7Tn2eekqtteexVqv1oNW6i6BFFEQ2WYXIGsIayL4QyEL2dTLbfT9/pE5JQSV7gOv9evHS3DPzu6/Jnu99zfVrHL+ycuVKd2hdX1+Ph4cHJpMJrVbrPi6hthBCCCGEEOJWIsF3M0jwLYQQQrQ/VVWx2WysW7eOK1euEBQUxPTp0wkKCmrVmvaLqdR9sZW6nTtRKqvctxljYxtHocy8G123bqiqyv79+91zuWfPns3Agf8cOXLlyhUsFst1c7orKir4/PPPuXr1KgAPPvjgdcH4xYqLvHvxXQ5cOQCASWtiWdQyul3oRsHlArp168YPfvADPDw8Wvxcb/Tcd+7cSVpamjvsBvDx8SE6OprY2FjCw8PRaDQSbgshhBBCCCFuG+0WfD/66KNERUXx6KOPNjn+v//7v2RmZvLSSy+1rOJOJMG3EEII0TFUVeX48ePs27cPu92ORqNh6NChjB8/HpPJ1Lq1HQ6shw5R+8UXWBMTwfmP8Wt6Pebx48keEMOhisZZ2zNnziQuLu4717PZbGRnZ7Nr1y4cDgdms5k5c+YQGRnpfi6nS0/zzsV3OFZ8DAANGmaFz+Ing35CT8+e1NfX88EHH1BdXfimDr0AACAASURBVE1kZCSLFi1qcZc7QENDQ5Pw/LPPPiMzMxMfHx/69+/PgAEDCAsLa9LRLYQQQgghhBC3k3YLvkNCQvj8888ZMWJEk+PJycnMmzePy5cvt6ziTiTBtxBCCNGxampq2LVrFykpKQAEBgaybNkyzGZzm6zvqqigbudO6rZ+gT01FQBVo+HgxAkMXrXKPfv622RkZLB9+3bsdjsAvXv35p577sHb2xtVVTlSdIR3Lr7D2bKzAOg0OmaEzWBVzCr6+PRpslZxcTHr16/H6XRy1113MWHChGY/H6vVypEjRzh79iwPPPAAfn5+7rUBCbuFEEIIIYQQd4x2C749PDw4f/48UVFRTY5nZmYyaNAgGhoaWlZxJ5LgWwghhOgcWVlZfPbZZ9TV1dGjRw+WLVvWpuNAFEXBmZVF5V9fx7p/P/j4ELJ+Pfpewd/5uC+++IKLFy8CMGbMGMaOHYuqUTlw+QDvpr5LemU6AEatkbmRc1nZfyW9vHp963oXLlxg27ZtREdHM3fu3Jvu+na5XJw+fZrDhw+7f8caP348CQkJ6PV6GWMihBBCCCGEuOPcbJarb+7CUVFR7Ny5k0ceeaTJ8R07dtCnT59veZQQQgghxPX69u3LqlWreO+99zAYDG0W4qqqSnJyMmfOnGHlypUE/uFZih78EfaLFyn5r/8i6K030XzHaJWZM2cSFBTU+K9XENsvbef91PfJq8kDwKwzs6jvIpZHLyfAHPC99cTGxuLp6emeuX0z9WdlZXHgwAEq/jGeJSAggKlTpxIdHd2qcSlCCCGEEEIIcSdodvD9+OOP88gjj1BSUsKUKVMA2Lt3Ly+88MItOd9bCCGEEJ2rR48erF69GpPJhF7f7F9NrlNVVcXOnTu5dOkSAGfPniU+Pp7A55+ncMUK7BcuUP78n+j+1K+/dQ29Xs+gYYPYmrOVdTvWUVRfBICPwYd7+93LvVH34mvy/dbH30hERIT7/1VVxeFwYDQar7ufqqps3ryZzMxMADw9PRk/fjwjRozAYDA065xCCCGEEEIIcadq9l+XDz74IDabjWeffZZnnnkGaPxD7rXXXmPVqlVtXqAQQgghbn+BgYGoqordbsflcpGSkkK/fv1uGAx/G1VVOXfuHPv378dut2MwGJg4caJ7nre+VzABf3iWq4/8jNpPP8U0OA7LvHk3XCvpahJrjq2htKEUAH+TP8v7L2dRn0V4Gbxa9Vztdju7du3CarWyZMmS67q3NRoNQUFB5OTkEB8fz/jx4/H09JSRJkIIIYQQQgjRDM2e8X2tkpISzGYzFoulLWvqcDLjWwghhOgaVFXl0KFD7N+/n969e7N48eKbCr9ra2v58ssvycrKAqBXr17Mnj3bvQnktSr/9jeqXvsrGpOJoHfexhgT0+T8f8/8Oy+feRmX6iLYM5iV/VdyT+Q9eOjaZvZ4aWkp69atw+FwMHLkSMaNG0dSUhIhISGEhYUB4HA4sNvtBAQESOAthBBCCCGEENdot80tAZxOJwcOHCArK4vly5fj7e1NQUEBPj4+t2QILsG3EEII0XVcvnyZdevWYbPZCAsLY9GiRd874mP79u2kpKSg0+lISEggPj7+W+dgq4pCyWO/wJqYiD4khKAP16Hz8cHmsvFc8nNsy90GwKzwWTw54sk2C7yvlZaWxueffw40bhze0NBAYGAgq1atwmAwYDQaJfAWQgghhBBCiBtot+A7Ly+PmTNncunSJWw2G+np6fTp04fHHnuMhoYG/vrXv7a6+I4mwbcQQgjRteTn57Nu3Trsdjvh4eEsXLjwO8Pvuro6tm/fzqRJkwgMDPze9V3V1RStXInz8hXMCePgf37Nk0f/DynlKWjR8uiQR7mv333tFj6rqsqGDRu4cuUKACaTiWnTpjFs2DB0Ol27nFMIIYQQQgghbgc3m+XeuBXqO/z85z8nPj6eiooKzGaz+/jChQvZu3dvy6oVQgghhLhGaGgoy5cvx2AwkJeXx5YtW3A6ne7bs7Ky2Ldvn/ttLy8vli5delOhN4DOx4fA559HYzJhTfyav//mXlLKU/Ax+PDShJe4P/r+Zofe9rQ0qt57H1dl5Xfez+FwsHXrVnfoDWCz2UhOTqaqqqpZ5xRCCCGEEEIIcWPNDr4TExN56qmnrpu3GR4e3uQPOCGEEEKI1ggPD3eH3zk5OXz++efYbDZ27drFp59+ysmTJ8nMzGzx+sb+/cl7aCYAc/bXMrOwJ+9Me4e7et7VrHVcFRWUPfsHCpevoPLllyl+6Mc4S0pueN+GhgY+/vhj0tLS0Gq13H333cyaNQuTyURFRQXQ2A0uhBBCCCGEEKJ19M19gKIouFyu645fvnwZb2/vNilKCCGEEAIgIiKC++67jw0bNuDn58cHH3zgDojj4+MJDw9v0bpOxclLZ15io/c2HhqmYfoplR99WkPQEi3c5HYlqtNJzSebqHrtNZSaGgA0Xl44srIo/reH6PnX19AHBzd5jNFoxGw24+HhwYIFCwgNDQUaQ/7y8nL3vG+j0Uh9fb38biWEEEIIIYQQLdTsju/p06fz0ksvud/WaDTU1tayZs0aZs+e3abFCSGEEEJERERw1113kZycTEVFBRaLhWXLljF58uTv3fTyRiptlfzs4M/YmLkRAM2jD2EcGItaXU3Jf/4Xqs32vWs0nDhB4fLlVPzxjyg1NRiio+n5t78RvGE9ul69cObnU/Sjf8Nx6RLwzy5urVbL3LlzWblypTv0BvD29naH+KqqkpKSwssvv0xiYiKKojT7OQohhBBCCCHEna7Zm1sWFBQwefJkdDodGRkZxMfHk5GRQUBAAAcPHqRHjx7tVWu7kc0thRBCiK5r06ZNnD9/HoDo6GgmTpxIcnIyERER7u5ps9mMyWT63rnc6ZXp/NfX/0VhfSGeek9+O+q3TAyZiLOwkMIVK1Aqq7AsXED3//7vGz7eWVBIxcsvUb97DwBaX1+6/cdPsSxciOYfm1I6i4sp/vd/x5mbh7Z7d0p/9ghXTSZmzJhx03PDd+zY4X7OISEhLFiwgICAgJt6rBBCCCGEEELczm42y2128A1gtVrZsGEDycnJKIrC8OHDWbFiRZPNLm8lEnwLIYQQXZOqqqSnp7Np0yamTp3KwIED2bBhAwUFBdfdV6PRYDabeeCBB7BYGueVpKamUlRUhIeHB8UexbyY/SINrgZ6e/Xm+XHP08e3j/vx1qNHufofj4Cq4v+b/8Z7wQL3bUpDA9Xvv0/1u++iNthAq8V7yRJ8//0n6Hx9r6vFVVZG8U9/iiMjE5vRyMHJk5j64x8TGRl508/7/Pnz7Nu3D7vdjk6nY/LkyYwZMwatttkv2Gs2VVVRVbVDziWEEEIIIYQQzdGuwfftRoJvIYQQouuw2+0UFxcTEhKC3W5HURSsVqv7Antubi4nTpygvr4eq9VKQ0MDDofD/fjHHnvMPQLl2s5pFZWDPQ/SJ6IPz4x+Bl/j9YF11VtvU7l2LRiNBL39NsYBMdTv20fFi3/GVVgIgGnECPz/8z8xRvf71ufQ0NDAto8/JvKDdXQvL0fx8CB47f/iMWxYs94X1dXVfPnll+Tk5ADt3/1ts9k4deoUx48fx2azMW/ePPr3798u5xJCCCGEEEKIlmjX4DstLY1XXnmFixcvotFoiImJ4ZFHHiEmJqZVRXcWCb6FEEKIruHKlSts2rSJ+vp6HnjgAXxv0E19I06nE6vVitVqJTAwEI1Gg6qqbDqyiUMXD2GqMxFoCwQT/ORHP8Hb68abRqqKQsnjT2A9eBBdcDCG3r1pOHECAF3Pnvj94jE8p0//zpElFRUVfPrpp5SXl2NWVeacOYP2YioaDw8C//xnzHeNatb75F+7v5csWUJsbOxNj01pjr1795KYmNjk2NixY5k6dap0fwshhBBCCCG6hHYLvj/55BPuv/9+4uPjGTNmDABHjx7lxIkTrF+/nqVLl7au8k4gwbcQQgjRuRRFITExkQMHDqCqKt7e3ixYsICgoKAWrZdTncMLp17gxNXG0LqXRy+mFEyhobqBfv36MX/+/G8NjpWaGgpXrMR5+XLjAaMR3wdW4bN6NdrvGet2+fJlNm/ejNVqxdvbm0WLFhHg7U3JE7+k4ehRMBoJ/ONzeE6Y0OznVF1dTXp6OvHx8Wg0GnQ6HXv37kWn0zFw4EB69erVrDBcVVXy8vIwGo0EBwfjdDopLy/nk08+YdiwYZSVlZGcnAxAWFgYS5Yswdv7xhcMhBBCCCGEEKKjtFvw3adPH1auXMnvfve7JsfXrFnDBx98QHZ2dssq7kQSfAshhBCdp7Kyks8++4xLly4BEBMTw/Tp0/Hw8Gj2WrWOWt668BYfZ3yMS3Vh1Br5QcwPWNV/FVVlVaxbtw5FUZgxYwZDhgz51nXs6RmUPPkkxqi+dPv5zzGEhHzrfRVFcXdD5+TksGnTJnr27MnChQvds8ZVu52SJ5/EeuAr0OsIePZZvKZPb/bza1Kj3c7atWtxOp0A+Pr6MmDAAAYNGvSdIbjT6eT8+fMcO3aMoqIi+vTpw+LFi923q6rqfmxqaiq7du3CbrczevToZm3QKYQQQgghhBDtod2Cb09PT86ePUtUVFST4xkZGQwZMoT6+vqWVdyJJPgWQgghOkdiYiKJiYnYbDYMBgPTpk1j4MCBzQ5XVVVl56WdvHL2FcoaygAY32s8vxjyC0Is/wytT5w4weHDh7n77rtbPKJNVVWuXr1KTk4OOTk5qKrK8uXL3bfn5OTQu3dv95xx9+McDkrXrKF+5y7Qaum+5jdY5s5tUQ0ALpeLrKws0tLSyMrKajLn3NfXl7FjxzJq1D/HqtTW1pKUlERSUhJ1dXUA6PV6Bg4cyLRp0751lEl5eTlHjx5lxowZGI1GTCaThN9CCCGEEEKITnOzWa6+uQtPmjSJQ4cOXRd8JyYmMn78+OZXKoQQQog7ht1uR6fTodPpUBQFu92OzWYjODiYOXPm4Ofn1+w10yvTeT75ec6WnQUg1BLK40MfZ2zw2OvuGx8fT0xMTLNHdtTX15Obm0tOTg65ublNLvRrNBoaGhrcHeqRkZE3XENjMBDwzDOUm83UfraZsjW/RbVa8b733mbV8g2dTkd0dDTR0dE4HA5ycnLcIXhVVRVWqxW73Y5er+fQoUMcOnQIl8sFgMViYfjw4QwePNi9aei38ff3Z/bs2UBjd3t9fT1Hjx5lzJgxeHp6tqh2IYQQQgghhGhvzQ6+582bx69+9StOnjzJ6NGjgcYZ3xs3buTpp5/m888/b3JfIYQQQtzZVFXlypUrJCcnk5KSwty5c4mKikJRFAYNGkSPHj2IiIho9uaJVfYqXj//Op9lfYaCgofOgwdjH+T+fvdj1Blv+BiNRtMk9HY4HNd1Zt/I7t27SU9Pd79tMBgIDw8nIiKCyMjImx7LotHp8H/qKTQeZmo2bKD8/z2HUl+PzwMPtKqL2mAwXBeCfzO32+l0YjKZcLlcBAcHEx8fT79+/dDpdC061+HDhzl8+DBnzpxhyZIlhIWFtbhuIYQQQgghhGgvzR51crN/lGo0GndXUVcno06EEEKItldfX8/Zs2c5deoUV69edR+Pi4tj5syZLV7XpbrYmrOVV8+9SpW9CoBpodN4dPCj9PTsedPr5OTksGPHDmbPnk1ERIT7eGVlJYmJiUyZMsXd0Xz27FmSk5OJjIwkMjKSkJCQFgfH0HgxoHLtq1S//TYA5okT6f7fT6Hz92/xmt/F4XBQUlJCr169Wr1WSUkJW7ZsoaKiAq1Wy7Rp0xg9erSMPxFCCCGEEEJ0iHab8X07kuBbCCGEaDtOp5MtW7Zw8eJF90VwvV5PdHQ0gwcPpnfv3i0OSc+VneNPp/5EakUqAH18+vDEsCeI7xHf7LV2797N6dOn8fLyYvXq1RgMBo4fP86xY8dwuVwMGTKEGTNmAE03fGxL1Rs2UPHSy+BwoPXzo/tvfoPnxAltfp62Zrfb2bVrF6mpjR+HmJgY5s+f36INSYUQQgghhBCiOST4bgYJvoUQQoi2oygKb731FgUFBfTo0YPBgwczYMCAVoWiZQ1lrD23lm252wDw0nvx40E/ZknfJei1zZ7cBjR2QX/wwQeUlZURFBREfX091dXVAISFhTFt2jS6d+/e4ppvlj0jg9JfP4UjMxMAy8KF+D3xONouPj9bVVVOnTrF/v37URQFPz8/li1bRs+eN991L4QQQgghhBDN1ebB97FjxygvL2fWrFnuY++//z5r1qyhrq6OBQsW8Morr2AymVpffQeT4FsIIYRouUuXLvH111+zYMECNBoNiqJw+fJlDAZDq0NQp+JkY+ZG/pbyN+qcdQDcE3EPP437Kd09Wh9KZ2Zm8tlnn7nf9vb2ZvLkyURHR3fo6A7Vbm8cfbJuHagq+t69CXjmGUxDBndYDS1VWFjI559/Tn19PQ888AAhISEy9kQIIYQQQgjRbto8+J41axaTJk3iV7/6FQDnzp1j+PDhrF69mgEDBvD888/z8MMP89vf/rZNnkBHkuBbCCGEaL6SkhL27t1LWloaAGPGjCEhIaHN1k+6msSfTv2JnOocAAb4DeCJYU8Q1z2uzc7xzbgTaNyfZMWKFQQHB7doLVVVsdlsrepsb0hKovQ3a3AVFYFWi++DP8T3oYfQ3MQGnJ3JarVSVFREZGQkGo0Gk8mEqqqtmoMuhBBCCCGEEDfS5sF3cHAwW7duJT6+cYbmr3/9a7766isSExMB2LhxI2vWrOHChQttUH7HkuBbCCGEuHk1NTUcOHCAU6dOuWdfx8XFMW7cOCwWS6vXL6ov4uUzL7Pv8j4Auhm78dO4nzI3ci5azc1tsv1tVFXF4XBgNBqBxsB29+7d1NfXk5+fT2BgICtXrkSvv/nxKXa7nQsXLnDq1ClKS0uJi4tj0qRJLQ7AlZoayv/4PHXbGse6GGNjCfj9Mxiu2YCzq7ty5QpffPEF8+bNo2/fvp1djhBCCCGEEOI20ubBt4eHBxkZGYSGhgKQkJDAzJkzeeqppwDIzc0lLi6OmpqaNii/Y0nwLYQQQnw/VVU5cOAAhw8fxul0AhAVFcWECRPaZBa2zWXjw7QPeTf1XWwuG1q0LI5azI8H/hgfY+t/PpeWlrJ37140Gg1Lly5Fo9Gg1WoxGo3U19fz2muvERkZybRp09zB+HeprKzk1KlTnDt3DpvN1uQ2X19fHnzwwWYF6P+qbvduyp/9A0p1NRoPE34/fwzLvUtviTEimzZtIjs7G4Bx48YxefJk6f4WQgghhBBCtImbzXJv+q+xnj17kpOTQ2hoKHa7neTkZJ5++mn37TU1NRi6+MtwhRBCCNE6FRUVOJ1OevXqxcSJE+ndu3er11RVlcTCRP58+s9cqbsCwNCAoTwx7Amiu0W3ev26ujqOHTvGqVOnUBQFvV5PRUUFwcHB7jDWYrHwk5/8BIPBgKIoN7VuWloaSUlJAHTr1o3hw4fTo0cPdu3aRWxsbKtCbwCv6dMxDRlC2W+fpuHoUcqfe476gwfp/ts16AMDW7V2e5s3bx779u3j7NmzfP311+Tk5LBkyRL8/Pw6uzQhhBBCCCHEHeKmO74ffvhhzp07x3PPPcfmzZt57733KCgocHdEffjhh7z00kucOHGiXQtuD9LxLYQQQlxPVVVSUlLo1asXvr6+2O12KisrKS4upl+/fm3SeXyu7BxvXXiLI0VHAAj0CORnQ37GjNAZrV6/rq6O48ePc/r06SYd6jNmzCAgIOCG66uqitVqvW4kit1u5/z58/j5+REZGQk0jknZsWMHw4cPp3///u4Q3eFwoCgKLpcLgOLiYmpra1s88kNVFGr+/ncqX/4Lqs2G1tcXv8cew2v2rC4/+zstLY1du3Zhs9kwGo3cc889xMW1bEa70+nkypUrOJ1OIiMj0WpbN/ZGCCGEEEIIcWtq81EnJSUlLFq0iK+//hqLxcJ7773HwoUL3bdPnTqV0aNH8+yzz7a++g4mwbcQQgjRyG63k52dTXp6OhkZGdTW1hITE8PcuXPb7BxOxclXBV+xIX0D58rOAaDX6FkevZwfxv4QT71nq89RVFTERx99hMPhABr3KpkwYQLR0dHfG5hWV1ezZcsWACZPnsypU6c4f/48drudkJAQli9fDoDBYECv139rQP9NiP7OO+9QWlrKwIEDmTJlSotnfzuycyh96insqakA6Hr1wveBVVjmzUNjMrVozY5QVVXFtm3buHKlsZt/xYoVREVF3fTj7XY7H330Efn5+e4LGN26dWPcuHEMHTq01Z31QgghhBBCiFtLmwff36iqqsJisVw3p7G8vByLxXJTMzG7Ggm+hRBC3MlUVeXEiROkp6eTm5vr7lQGMBqNjBo1itGjR7e6A7vWUcvWnK18nPExhfWFABi0BmaGzWRVzCrCvMNa/Ty+qVFRFN566y08PDwYP358k47s73P16lXeeOONJu8HAH9/f4YPH86oUaO+M/C+ltPpZM+ePRw7dgwALy8vZsyY0azg91qqw0H1+g1Uf/ABSnk5ALqA7nivXIn3kiVoPVt/0QDAVVEBLhe6gIA2WU9RFA4fPkxpaSnz58/HZDJdF1i7XC6uXLni/hycNGmSu3N+7dq1VFdX4+np6b6gAI3vz+nTpzNkyJA2qVMIIYQQQgjR9bVb8H07kuBbCCHEnURRFEpLS+nRo4f77TfeeIPi4mKgcWPGvn370qdPH0JDQ1vdUVtUX8THGR+zJXsLdc46ALoZu7E4ajGL+y6mu0frNsa0Wq2cOHGCzMxMVq1a5a7XarXSrVu3Fm2qePz4cXbs2AFA3759iY+Pp1+/fi3eoPHSpUts2bKF8n+E1bGxsUyZMgWz2dyi9RSrldotn1P9/nu4iho/blpfX7zvuw/v+5ah8/Vt1nqqomBPTcV6KBHr14nYUy4A4Dnzbro9/BMMYaEtqvO681xzccLpdHL8+HFMJhO5ubnk5+e7O/RNJhOPPPKIuzs/Ly8Pi8WCv78/DoeD8+fPc+LECaqrq5k3bx5xcXHodLpbYuNPIYQQQgghROtI8N0MEnwLIYS43SmKwsWLF0lLSyMzMxO73c5jjz2GTqdDVVXOnTuH1Wqlb9+++Pv7t0mAmFKewob0Dey7vA+X2tg9HeEdwf3R9zMzfCYeupaN/PhGQ0MDSUlJnDx5ErvdDsCcOXOIi4vDYDC0aga0qqrk5ubi5eVFYGBgm7w/HA4H+/fv5+jRo6iqipeXF8uXL6dbt24tr9PhoG7bdqrefRfnpUsAaDw98V66FJ8Vy7+zY1upqcF67Fhj2H34MEpZ2Y3vqNNhmTcX34ceQh8U1OJam9Stqmzbto2LFy82OW42mwkNDSUsLIy4uLjvvOjicrnIyMhwj6/RaDScPn2a8vJyxo4dKxtpCiGEEEIIcZuS4LsZ7tTgW1VV9qddJaO4lhWjw7GYZEamEELcjnJyctixYwclJSXuYx4eHixdupSgNgoyv+FSXRy8cpD16es5W3bWfXxUj1HcH30/o4NGo9W0blPCGwXegYGBjB8/ntjY2BZ3ZXeU/Px8tmzZgtls5r777muTUF11uajfs5eqt9/GkZEBgMZkwjJ/Pj6rVqHvFdy4YWdOjrur23b6NDj/Oc5F4+mJefRoPBLGYR43DqWsjMpXX8Wa+HXjHQwGvJcsxvfBB9F1b12XvqqqnD59mnPnzuHj40NYWBihoaHfuunozXC5XLz++uvU1dWh0WgYOHAgCQkJ9OzZs1W1CiGEEEIIIboWCb6b4U4NvgGGP72DcqvC2gURzBk9sLPLEUII0Yaqq6vZuXOnu6vWbDYTFxdH37596dWrV6s6om/kaNFRXjz9Ink1eUDjhpV3h9/Nff3uI7pbdJuco66ujjfffNMdeAcEBJCQkMCgQYO6fOB9LafTSV1dHQaDAWjsBi8rK2v1hQhVVbEeOkTVW29jP9e4cSh6HeYxY7FnZeEqKGhyf31EOOaEBMzjEvAYPgzNP+q5VsOZM1SuXYst6SQAGg8PvO+/D59Vq5o9UqU9qarK5cuXOXbsGDk5Oe7jUVFR3HXXXURGRt5SnyNCCCGEEEKIG5Pguxnu5OB73FMfc8Vp4b5IB//v4QWdXY4QQog2VF5ezquvvoqiKAwdOpRx48a1eKb0dymoK+Cl0y/xVcFXAPgYfVjcdzFL+i4hwNz6zRGtVmuTujdu3EhdXR1jx451z3a+Vamqit1uZ9euXZw5c4aEhARGjRrV6i5wVVVpOHGC6rffoeH48X/eYDTiMWIE5vEJmMeNwxB6c7O7VVWl4fhxKteuxX4+BQCNxYLPD1bis3w5Wi+vVtXb1oqLizl+/DhpaWl886vumDFjmD59uswBF0IIIYQQ4hYnwXcz3MnB9+JnP+JkjTd3+VTz8f+9v7PLEUII0QqqqlJQUECvXr1wuVw4HA7OnTtHz549CQwMbPPzNbgaWJe6jvdT38em2NBpdCzrt4wfxf4Ii8HS6vWLi4s5duwYWVlZPPTQQ1gsjWs6HA4sFsstHXhfS1EUNm3axIULjRtKhoWFMWfOHPfzbS3b2XNYjx3FGN0fj1Ej0bbi4oeqqlgPHqRy7as4MjMB0Hbrhu8PV2NZuhStR+vmtre1iooKTp48SVpaGvPnz6d3797odDouX75McnIysbGx9OvXD6PR2NmlCiGEEEIIIW6SBN/NcCcH30+8tplNeQbCDTV89cx9nV2OEEKIFiouLmbnzp3k5uaycuVKgoOD2+1cqqpysOAgfz79ZwrrCwGI7xHPE0OfoI9vn1avnZ+fz7Fjx8jNzXUfnzlzJsOGDUOv17f5iJauQFVVTp06xc6dO3E4HJjNZmbPnk2fPq17f7YXVVGo372bytf+6t5UUxcYiM/qB7DMn4/W07OTK2xKURQ0Go272/vLL7/kzJkzAOh0Ovr27UtsbCzR0dHt0VRxlwAAIABJREFU8qoIIYQQQgghRNuR4LsZ7uTg+51tiTx9qAqLxsbZZxfclmGCEELczqxWK/v37ycpKQlVVdHr9UybNo24uLh2Od+lmku8ePpFjhQdAaCHuQePDXmMKb2ntGqEhKqqZGZmcuzYMQoLG8N0jUZDTEwMY8eOJSQk5I4YUVFSUsKmTZsoLi4GYMSIEUyYMAG9vmtuQK06ndR9sY3KN97AVVQEgNbbG8uiRXjftwx9F91Ysri4mNTUVNLT06msrHQf12q1REREsHTpUjy6WPe6EEIIIYQQopEE381wJwffqTmXmfn6GUDl0KPxhPZq3aZaQgghOoaiKCQnJ7Nv3z6sVisA0dHRTJo0Cd922HCw3lnPOxffYX3aepyqE4PWwIroFawesBqzvvUdsvX19bz++us4nU70ej1xcXGMGTOGgICAOyLwvpbT6WT37t0cP34cDw8PVq9ejbe3d2eX9Z1Uu53aLVuo/nC9uwMcvQ7PadPwWbkSU2xs5xb4LVRVpaSkhIyMDNLT0yktLcXX15eHH34Yg8GATqcjMzOTwMBAunXr1tnlCiGEEEIIIZDgu1nu5ODb6XQy8KkvsGHgj1P9uHf62M4uSQghxE3YsGED6enpAAQEBDBlyhTCw8Pb/DyqqrLn8h5ePvMyJdYSAMYEjeHxoY8T5h3W4nVdLhd5eXlNRnkcOnQIgLvuugtfX987LvD+V2lpaTgcji477uRGVEXBeiiR6g/XYUs66T5uGjYMnxXLMU+ciKYLz2YvLy+ntraWsLDGz22Xy8XatWux2Wz07NmTAQMGMGDAAAIDA+/4z08hhBBCCCE6iwTfzXAnB98Ao3/9MUUuCyv6OHj2xws6uxwhhBA3oCgK0DiKQVEUjh8/zoEDB0hISGDo0KFtPqpKVVVOl57mjZQ3SC5JBqCXVy8eH/o4CcEJLQ79XC4XFy5c4MiRI1RVVbF8+XL3GJNvOmwlUPwnVVVxOp04HA6ysrK4ePEi06dPx2QydXZp38uemkr1h+up27UTnC4A9L1D8F6+HMu8eV1uDviNVFdXs337di5fvsy1vzL7+/sTExNDXFwcQUHyajkhhBBCCCE6kgTfzXCnB9//9te97Mlt4IejglmzaHhnlyOEEOIaLpeLs2fPkpiYyNixYxk4cCCKouByubDb7W2+EV9BXQHbc7ezPW87V+quAGDSmnhgwAOs6L8CD13L5h7/a+AN4OnpyYwZMxg4cKAE3t/DZrPxyiuvUFdXh6+vL3PmzCEkJKSzy7opzqtXqfn479Ru2oRSXQ2AxmLBe/FivJfdi/4WCI7r6+vJysoiIyOD3NxcXK7GID8hIYHJkyc32ThTCCGEEEII0b4k+G6GOz34fufrHJ7eeoFpMQH87YFR8oebEEJ0AU6nk9OnT/P111+7N98LDg5m5cqVbX6uWkct+y7vY1vuNk6XnnYf99R7MrX3VB6MfZBeXr1atLaiKKSkpFwXeI8aNYqRI0diNpvl585Nys/PZ9OmTe7349ChQ5kwYcIt0f0NoFit1H3xRdM54Fothj59MMb0x9g/pvG/0dFou/BMc7vdTnZ2NhkZGYwePZrAwECgcWPSkydPMmvWrDa/ICWEEEIIIYT4Jwm+m+FOD74PZZTwg7eOE9ndk71PTGzzl8sLIYS4eQ6Hg+TkZL7++mtqamqAxqB45MiRDB06FKPR2CbncakuThSfYHvedg5cOYDNZQNAg4aRPUYyO2I2k0ImtXrjSpfLxZtvvkl1dbUE3m2goaGBHTt2cPbsWQC8vLyYOnUq0dHRt8z789vmgF9L37t30zC8f390AQEdXOnNU1WV9957j5KSEiwWC/PmzaNfv36dXZYQQgghhBC3JQm+m+FOD75ziyuZ9Oev0aCy798HExne8s3KhBBCtM4nn3xCSkoKABaLhVGjRjF48GAMBkObrJ9dnc323O3szNtJSUOJ+3iEdwSzI2YzM2wmPT17tnh9l8tFWloa/fv3R/ePTQwvXLhAXV2dBN5tKDs7m23btlFeXg7AqlWr6Nmz5R+3zuIsLsaemoo9NQ17WuN/XUVFN7yvLiCgMQQfPBjLnDnog4M7uNrvVlhYyPbt290fk/j4eKZPn95mF6uEEEIIIYQQjST4boY7PfguLS1lzJ++xoGe5yZ5s2zmhM4uSQgh7gh2u528vDx8fX0JDAzE5XK5A8277rqLQYMGodfr2+Rc2VXZ/D7p96SUp7iP+Rh9mBE6g9kRs4n1i211IJ2fn8+uXbuoqKhg1qxZDBo0SDatbEdOp5ODBw9SVVXF3Xff3dnltBlXZSX2tLQmYbgzLw+u/ZVVq8U8bhyWJYsxjx2L5h8XWTqbw+Hg0KFDnDzZ2Mnu5+fHwoULCQ0N7eTKhBBCCCGEuH1I8N0Md3rw7XK5GP3UJ5SoFlZEWHn2J0s6uyQhhLgtqapKUVERWVlZZGVlcenSJRRFYeTIkUyePJlvfiQritKmY6fOlZ3j8UOPU+2oRqfRMTZ4LHPC5zAueBxGXeu7UW02GwcOHHCP3/D09GTSpEkMGzZMAu8OoCgKTqcTp9NJdXU1W7duZfLkyfTq1bK57F2RUl+PPSMD+8VUrPv303DihPs2XVAQlkULscyfj/4f87Y7W15eHjt27KCmpgaNRsPq1asJC5NX1AkhhBBCCNEWbjbLbZs2MnFL0+l0BJiclDRAdpm1s8sRQojbjt1uZ+vWrWRnZ1NfX9/kNh8fH0wmE9deh27L0PtI0RGePPwkDa4G4rrH8dzY5+ju0b3N1s/IyGDPnj3U1tYCMHjwYKZPn46Xl5cE3h1Eq9ViNBrR6/Vs376dgoICPvzwwxZtfulyuaiqqsLb27vNxuu0Ba2nJx5DhuAxZAg+9y3DkZtLzaefUrf1C1xFRVS9+hpVb7yB58RJWJYsxmPkSDSduGdJeHg4P/zhD9m7dy81NTV0794dl8vlHv8jhBBCCCGEaH/S8Y10fAM89MLH7C6xEKkrZ8/vlssfZkII0UKqqpKdnU1tbS1DhgxBURRcLhevvPIKNTU1GAwGwsPDCQ8PJyIiAj8/v3YLiHdd2sXTx5/GpboYEzSG/xnzP63erPJahw4d4ujRo0DjSIdZs2YRFRUlgXcnqqur48svv/zezS/r6uooLi6moqKiyb/q6mpUVeW+++5zj+coKioiJyeHiIgIgoKCutTHV7XZqNuzl9pNn2A7fcZ9XN+7N5bFi7HMm4vOz68TK2wcSfPNyCKXy8WFCxcYOXLkTV/gUlWVuro6ysvLsVqtRERENOtihhBCCCGEELcbGXXSDBJ8wx/XbefV8yp+mnp2/Hw8QUFBnV2SEELccurr69m8eTMZGRmYzWYeeeQR923p6el4enoSHBzcIRcXN2Zu5IVTL6CiMiN0Br8Z9RsM2rbt4C0qKmL9+vXEx8czadIkPDw82nR90XL/uvllUFAQs2bNIiAgAIDTp0+ze/fuGz7WYDAwe/ZsoqOjAfjqq684fvw4AGazmYiICPc/i8XSAc/m5tgzMqjd9Cm127eh1tY1HjQY8Jw6Be+FCzGNGNGpXeAAX375JWfOnKF3794sXLgQf39/oDHcdrlc7oC8srKS3bt3U15eTnl5OXa73b2Gv78/K1euxK+TA30hhBBCCCE6iwTfzSDBN3xx4CiP7CxDh8Lf7+3NiOHDOrskIYS4pVy+fJmNGzdSXV2NTqcjNjaWyZMnd3hnpqqqvHnhTd688CYAS6OW8vjQx9FqWh/4VVZWUlhYyIABA9zHrFYr/v7+XaoLWDT6ZvPLw4cP43K53BuOQuPn6+7du/Hz88Pf3x9/f3+6d++Ov78/Pj4+aLVaNBoNiqKQkpLCuXPnyMvLaxLAAgQGBrJkyZIuFYArVit1u3ZR+8km7BcuuI/rgoLwmjMHy5zZGCIiOqW28+fPs3fvXux2OwaDgcjISCorKykvL2fUqFHuWf9VVVWsXbvW/TiNRoOPjw8Oh4P6+nqmTZvG2LFj5etOCCGEEELckST4bgYJviEjM5OZb17AhY5nxxpYMW9GZ5ckhBC3BFVVOXr0KHv27EFRFPz8/Jg3bx49evTo8FoUVeGFUy/wSdYnADw08CF+NOBHrQ7HFEUhOTmZxMREXC4XDzzwAIGBgRiNRhmNdQsoKSkhJSWFiIgIQkJC0Gg07mC7OZ8bTqeT/Px8MjMzyc7OpqioCE9PT37605+61zlw4AB2u53u3bu7/1kslk4LaG0XLlK7aRN1u7/8Zxc4YBw0CMucOXjePQNdt24dWlNVVRU7d+7k0qVLTY5HR0czf/58oPH7SnJyMt26dcPPzw8fHx/0ej21tbXuUSl6vR6j0SjhtxBCCCGEuONI8N0MEnxDQ0MDs18+SHaFg1eWDWLusPDOLkkIIbo8RVHYuHEjqampAMTExDBjxoxOmb/rUBw8ffxpdufvRoOGXw77JUuilrR63ZKSEnbt2kVhYSEAoaGhzJkzhx49ekjgdoerq6ujpKSE4OBgXC4XAK+//jrV1dVN7mc0GunevTvBwcFMnTrVfVxV1Q77HFIaGrAePEjdF9uwHjkC/6gXvR7z+AQsc+ZgTkhAYzR2SD2qqpKenk5dXR1+fn5069YNHx+fZl9IcjgcFBYWEhMT006VCiGEEEII0fXcbJar78CaRBfm4eFBXHgg2RUFZJfUd+gfo0IIcavSarXusGry5MkMHTq0U753Wp1Wnjz8JEeLj6LX6Fkzag0zwlr3yp2KigpOnjzJmTNnUBQFk8nEpEmTGDlypHR5C6Bx40wvLy+gMchVVZXJkydTUlJCSUkJZWVlVFRUYLfbKSwsvO5r47333kOr1RIfH8+AAQPa9WtH6+GB14wZeM2YgausjLqdu6jb9gX21DSs+w9g3X8Ara8vnjNmYLlnDsZBg9q1Ho1GQ//+/Vu1hsvlYvPmzeTm5jJ16lTGjRsnv7sJIYQQQghxDQm+hVu/Ho3zObNK6yT4FkKIb6GqKna7HaPRiN1uJyEhgdjYWAIDAzulnip7FY8fepzz5efx0Hnw3NjnGB00ulVrulwu1q9fT319PQBRUVHMmjULPz8/+dkgbuibsSlDhw5tctzhcFBWVkZJSQlarRatVouiKDidTkpLS1FVlW3btnHhwgWmT5+Or69vu9eq694dnxXL8VmxHHtmJnXbtlO3fTuukhJqN26kduNG9OHhmMcn4DFyJB7DhqHtQjPMv6HVagkMDCQ3N5e9e/dSXV3NzJkz0XbyBp5CCCGEEEJ0FTLqBBl18o33953hN19eJshoZ8MPhxIZGdnZJQkhRJfS0NDA1q1bqa6uZtmyZZ0eMF21XuXRg4+SU52Dj8GHF8e/SFz3uGav43K5yMrKol+/fu5gOzExkeLiYkaNGkVUVJR0eYs2pSgKZWVlpKSkuGfHGwwGxo0bx4gRIzr8a0t1uWg4cYK6L7ZRv28fakPDP2/U6TDGxjaG4CNHYhoyGK2HR4fW912SkpLYv38/0DhuafHixej10tsihBBCCCFuXzLjuxkk+G70weYv+e+jDvS4eHOWL5MmTuzskoQQossoLCxk48aNVFRUoNVqWbZsGb179+60ei7VXOJnB39GUX0RgeZA/jL+L/Tx7dOsNRoaGjhz5gzJycnU1tayePFi+vRpXEOv12MwGKTDW7S70tJStm7d6t7ssWfPnixcuBBvb+9OqUepq8OamEjD8RM0nDiB8/LlpncwGjENHozHqH8E4bGxaAyGTqn1G6mpqWzfvh2Xy0VoaCj3338/ZrO5U2sSQgghhBCivciMb9Fs/UP80VKIEx3p+SVM6uyChBCiC1BVlaSkJHbt2oXL5cLHx4d58+YRHBzcKfWkV6azKWsTu/J2YXVZCbOE8ZcJfyHY6+br+WZ+9/nz53E4HAB4enpis9kwGo3odDoJvEWHCQgIYPXq1SQnJ7N7925cLheenp6dVo/Wywuvu+/G6+67AXAWFNKQdIKGE0k0HD+Oq6QEW1IStqQkqngNjdmMafhwzOPG4b14UaeE4DExMXh6erJ582by8/PZuHEjq1at6vA6hBBCCCGE6Eqk4xvp+P5Gbm4uC15PolI1szigmBd++WBnlySEEJ3K5XKxZcsWzp07B/xz1rVHB485aHA1sDd/L5uyNpFSnuI+Psh/EM+Pex5/D/+bWsdms7F9+3YyMzPdxwIDAxk5ciSDBw/GaDRK4C06VU1NDTU1NXTr1g1o/BosKCggNDS0kytrpKoqzkuXaDhxgobjx2lISkKprHLfboofQeBzz6Hz8+uU+kpKSti6dSv33HMPISEh6PV6+ZoWQgghhBC3Hen4Fs3m7+9PN62VSpeZ/Co7DocDQye/dFcIITrTl19+yblz59BqtUyYMIH4+PgODZHyavL4LOsztuVuo9pRDYBeo2dS70ks7ruYYQHDmlWP0WikqqoxpOvTp4/M7xZdjre3N97e3iiKgt1u58iRIyQmJhIbG8vkyZM7tRMcGjfxNISHYwgPx3vJElRFwZGZifXwEarefBNb0kkKV6ykx4svYIyJ6fD6AgMDWb16NVqtFofDgaIoKIoiY0+EEEIIIcQdSYJv4ebt7Y2/zk6uCyoUD4qLizt1fq0QQnS2YcOGkZaWxpQpU4iKiuqQczoVJ18VfMWnWZ+SdDXJfTzYM5gFfRYwN3Iu3T26t2htjUbD9OnTsVgsBAUFSSeo6LK0Wi0mkwmn0wnAhQsXyMnJYfLkycTGxnaZz12NVosxOhpjdDTmCeMp+cXjOPPzKXrwQbr/5jd4zZzZ4TVduzFoXl4eGzdupFevXvTr149+/frRo0ePLvP+E0IIIYQQoj3JqBNk1Mm1fv7Ce2wpCSBQW8tri/oSHx/f2SUJIUSnUBSFhoYGnE4nen37Xycuqi9ic/ZmPs/5nLKGMgA0aBgXPI5FfRcxOmg0Ok3zO7NramrIzs5m8ODBaDQaPDw8mgRjQnR1+fn5bN26lZKSEgDCwsIYPHgwffv2xWg0dnJ1Tbmqqyn9v7+m4fBhAHxWraLbzx5B00mvqti9ezenT59ucszb29sdgvft21de3SeEEEIIIW45N5vlSvCNBN/X+sv7n/DiBTNGnPxtVjcmTpzY2SUJIUSHysrKQqvVEhQURHv/iLS5bBwsOMi23G0cKzqGggKAv8mf+X3mMz9yfrM2rfxXTqeTjz76iMLCQsaNG8ekSZM6JMQXoq25XC4SExM5dOgQLpcLgDFjxpCQkNDJlV1PdbmofPVVqt95FwCP0aMJ+J8/oPP17ZR6qqqqyM7OJicnh7y8PHcXPcCPf/xj96s/7HY7BoNBusGFEEIIIUSXJzO+RYvcO3MSL108hl3VEzFgSGeXI4QQHaqwsJC///3vuFwuli1bRkhISJufQ1VVzpWdY1veNvbk76HWUeu+Lb5HPIv6LGJiyET02tb9iFZVlT179lBYWIiHhweDBw+W0FvcsnQ6HRMnTiQuLo6TJ09y4cIF+vfv7749JyeHCxcuEBMTQ0RERKfOrdfodPj97GcY+/en7LdP03D0KEU/WEXgiy9g7KCRSdfy9fVl2LBhDBs2DKfTSX5+PtnZ2ZSWluLj44PVakWr1bJ161YKCgqIiopi+PDhBAe3/KKbEEIIIYQQXYF0fCMd3/9q0vP7yS2r562VQ5gyMEQ6f4QQd4TKykreeustamtrCQsLY8mSJW0anhXWFbIjbwfb87aTX5vvPh7kGcSs8FnMDp9NmHdYm53v9OnT7N69G41Gw9KlS4mJiZHv5+K2oaoqqqridDpxuVx8/vnnpKamAmAymYiOjqZ///6Eh4d36mgfe3o6Vx9/AldBARqzmYDf/Q7PqVM6rZ5vo6oqr732GnV1dQDo9XoefvhhAgICOrkyIYQQQgghriejTppBgu+m/u3d4+xJLeHXM/vxowlRMgtWCHHbs1qtvP3225SWlhIQEMDy5csxmUytXrfeWc/+y/vZlruNkyUn3cfNOjOTe09mTsQchgcOR6tp2++zV65c4aOPPkJRFCZOnMjEiRMl9Ba3LVVVuXz5MmfPnuXixYvu8BbAbDYTHR3N1KlTO60L3FVRQemT/4eGEycA8H3o3/B9+GE0Xez3K7vdTn5+PkeOHKGwsJCwsDBWr14t3zuEEEIIIUSXI6NORIu4XC6MDeUAfHEoiYSeLgYMGNDJVQkhRPtxOp18/PHHlJaWYrFYWLJkSatCb1VVSS5JZlvuNvZd3ofVZXXfNiJwBHMi5jC592Q89Z5tUf51amtr2bJlC4qi0L9/f8aPHy/BlbitaTQaQkNDCQ0NZebMmeTm5pKSkkJqaipWq5WCgoImobeiKB16UV/n50ePtf9LxUsvU7N+PVV/exN7WjoBv38GrcXSYXV8H6PRSN++fQkICOCdd97h0qVLnDx5UjY6F0IIIYQQtywJvkUTWq2Whqu5QCjFVi2FhYUSfAshbluqqrJ582by8vIwGo0sWbIEb2/vFq9XaavkD0l/4KuCr9zHelt6Myd8DrPCZ7Vqo8qblZ+fT319PQEBAcybN69TZx0L0dF0Oh19+/alb9++zJkzh6ysrCabOdrtdt566y2ioqIYOnQogYGBHVKXRq/H/5dPYIzpT9nvn8V68CCFqx4g4PfPYIyJ6VLd376+viQkJLB//3727NlDdHS0vCJSCCGEEELckiT4Fk1oNBoi/D2gHioVD4qLizu7JCGEaDeKogCNF/0WLFjQqhDscOFhfp/0e8oaytBr9MyJmMM9EfcQ1z2uQzuuBwwYgNlsxt/fH0/P9ukqF+JWoNPpiI6OBhovcrlcLi5evEhtbS2nT5/m9OnThISEMHToUKKjoztk81fLPfdg6NOHkid+iTM3l6KVP0BjsWAaNAhTXBymwYMxDhqIzte33Wv5LsOHDyc1NRVFUaivr5fgWwghhBBC3JJkxjcy4/tfrf/7Jv5vsgcAP+mZzZO/+FknVySEEO1DURSsVitXr16lZ8+eLVqjwdnAK2df4ZOsTwCI9Ink6VFP09+vf1uW+r1UVXUH7FqtFpPJJCNOhPgXqqqSnZ1NUlIS6enp7otfZrOZuLg4RowYgaUDxo+4ysoo+8MfaDhyBLXBdt3t+ohwTHGD/xGGx2Ho2xdNB796o7a2Fk9PT7RaLR4eHrLnixBCCCGE6DJkxrdosV49umPRlFOrmsirsGOz2dpkkzchhOgqiouLCQwMxGazodFoWhx6p1aksubYGnJrcgG4N+pe/mPwf+Ch82jDar9fQUEBu3fvZt68efj7+0voLcS30Gg07lEo1dXVnDx5klOnTlFTU8Px48cZOnSo+77tOQtc1707PV54AdXhwJ6Zif3cOWznzmM7exZnfj7O3DycuXnUbd3aWLfZjHHgQEyDB2OZNxdDWFi71HWtay8A2O12jEajhN9CCCGEEOKWIh3fSMf3vzr7/9m787io7nvx/6+ZAYZ92IZNXBCRRdG4i7gvMS5Ro4mNMdbUNLVNmzTJr+1t07u06fc2y71tb26TppqkN6tZ3KKJ+4KJRsEFkSiKKMgm+z4wzHbO7w/CaYgaQUGIeT8fj3kgZ86c85lBDue8z/vzfmdl8ZP3T1OimJjgfolnfzif/v379/SwhBCiSxQVFfHWW28xaNAg5syZc0PlDVyqi3dy3mHN6TW4VBchniH825h/Y3z4+G4Y8TezWCy8/fbbWCwWhgwZwuLFiyU4JUQnuFwucnJyuHz5MhMmTNCWv/322zgcDsLCwggPDycsLIzQ0FA8PDy6dzy1tdhOn8aW9UVrQPzMGdSmpn+u4GbAb8m9mH70CIbAwG4dC7Q2AD5y5Ag2m40FCxZ0+/6EEEIIIYS4Hsn4FjcsODiYAL2VEsVEneJFWVmZBL6FELeF6upq3nvvPZxOJw6H44YCxJebLvP7o78nsyoTgKl9pvL0qKcxGW99TV6Xy8XWrVuxWCwEBwczZ84cCXoL0UkGg4HExEQSExNRVRWn04nNZqOiogJFUaiuriY7O1tbPygoiJiYGKZOndo94wkMxHvSJLwnTQJAdblw5Odjy8qieX8qLYcP0/jBB1i2fYLpoYfwe+AB9J7dN8ukoqKCtLQ0AIYMGUJMTEy37UsIIYQQQoiuJFfH4gpBQUEE6FoAaHLzlyCKEOK2cP78eV5//XWsVivh4eHMnz+/U8c3VVXZXrCd5buXk1mVibebN/86+l95Lvm5Hgl6A6SmplJSUoKHhwdLlizBx8enR8YhxO1Cp9Ph7u6Oj48Pjz/+OEuXLmXixIkMGjRIK/1RU1NDQ0OD9hpVVXnrrbfYtWsXLS0tXT8mgwGPQYPwW7yYsJf+SujfX8EjPg7V0kTdSy9zefFiLJ98gvplvfKuFhkZqZWA+eSTT3A4HN2yHyGEEEIIIbqalDpBSp1czf6sfFatyybc30jqkyl4eXn19JCEEOKGOJ1O9u7dS3p6OgChoaHce++9nQoS19vreeHEC+wt3gvAsOBh/G7s7+jj26dbxnw9qqqSlZXF7t27AViyZAlDhgyRut5CdCNVVWlsbOTy5ct4eHgQGRmJoijU1tby2muvARASEsJ9993X7Q0yVUWhacdO6l5+GVdZGQDucXEEPvFzvMaN6/L92Ww2/u///o/GxkbGjx/P7Nmzu3wfQgghhBBCdFRHY7mSyiuuatSg1mBOWYONxhYHcn9ECPFttXHjRi3oPWrUKJYvX96poPex8mMs372cvcV7MegMrB6ymlemvtJjQW+AwsJCLeidkpIiQW8hbgGdToe/vz/x8fEMHDgQT09PvLy8tGC3j48PVVVVrFu3jrq6uu4di16P77y5RG7aSMDjj6Hz9cGRk0PFTx6l/GePYc/N7dL9GY1GZs2aBUB6ejolJSVdun0hhBBCCCG6Q48Gvj/77DPuvvtuIiMj0el0fPTRR+2eV1WV3/3ud0RGRuLl5cXUqVM5c+ZMu3Vqa2tZsWIFJpPfhesyAAAgAElEQVQJk8nEihUruv1i47vA5O2B2be1edOFCgtOp7OHRySEEJ2nqipjxozBx8eHxYsXM3369A43s1RVlTfOvsFjnz1GpbWSfr79eG36a6xKXIWb/ta0yFBVlZKSElJTUzl69Ki2PCoqCl9fX0aOHMm0adMk6C1ED9HpdBiNRhITE1m1ahUBAQHU19ezbt06Kisru33/ek9PTA89RJ8tW/Bbdj+4GWg5fJjSZQ9Q/cwzOLtwDDExMcTHx6OqKlu3bsXlcnXZtoUQQgghhOgOPRr4bmpqYvjw4bz00ktXff6FF17gz3/+My+99BLHjh0jPDycWbNm0djYqK3zwAMPkJmZyc6dO9m5cyeZmZmsWLHiVr2F21ZhYSEBOisAa97bwrlz53p4REII0TE2m438/HwURaGlpYXw8HAeeeSRTjVkszqt/Gvav/LK6VdQUVkQvYC3Zr1FYlBiN468laqqFBcXs2/fPv7+97+zbt06jh8/TmZmpjb7xsPDg8cff5z58+djMBi6fUxCiOsLCgpi1apVmM1mmpqaeO+997h8+fIt2bchMJCgX/6SyA0b8Z45AxQFy0dbuLxwEXWvvILS1NQl+5k+fTqenp7U1tbesvcmhBBCCCHEjeo1Nb51Oh2bN29m0aJFQOuFf2RkJE888QT/8i//ArQGM8LCwnj++edZvXo1Z8+eJTExkbS0NMZ9Wc8wLS2N5ORkzp07R1xcXIf2LTW+r3TmzBl+sS6ds64whrqV8fMp/bQprkII0VuVlJSwceNGGhsbWbFiBSEhIZ3exuWmy/zq81+RW5+LQWfgFyN+weKYxd0w2isdOnSIrKwsmr4SpPLw8NAyLRMSEnBzc5MMbyF6MavVqmV833///YSGht7yMdhOZVH7P/+D7dQpAPRBQQT8eDW+ixah6+Csl2u5dOkSgYGBBAQE4OnpKccjIYQQQghxy3U0lntr5mrfgPz8fMrKyrjzzju1ZUajkSlTpnD48GFWr17NkSNHMJlMWtAbYPz48ZhMJg4fPnzNwLfNZsNms2nfNzQ0dN8b+ZYKCgoiQN8CLqhTPCkvL+/pIQkhxDWpqsqRI0fYt28fiqLg7++Pw+Ho9HaOVxzn6SNPU2+vJ9AYyHMTnuOOkDu6YcStXC5Xu4zt5uZmmpqaMBqNxMTEkJCQQGxsLB4eHhJcEuJbwsvLixUrVlBZWUlgYGCPjME4fBhh/3id5v37qfvfv+IsKqLmj8/SsO49An/+OF6TJ9/wMWXAgAFA63HX4XDg4eHRhSMXQgghhBCi6/TawHfZlx3qw8LC2i0PCwujoKBAW+dqWTShoaHa66/m2Wef5fe//30Xjvb2ExwcrJU6qVc9qagoQFVVCbwIIXodi8XCRx99xMWLFwEYPHgws2fPxtPTs8PbUFWVDy98yIunXsSluogPjOeFCS8Q5h12/RffAJvNxqlTpzh+/Dj33HMPERERAIwYMYLBgwcTExMjwW4hvsU8PDzo06cPLpcLm81GUVER1dXV3HFH991I+zqdTofPjBl4T55M48ZN1K9di/PSJSqffArjyJEEPvkExiFDbmofeXl5OBwOkpKSumjUQgghhBBCdJ1eG/hu8/WL/q8HX68WFLhegPY3v/kNTz31lPZ9Q0MDffv27YLR3j48PDzo42eAamhUjdQ2NNHc3IyPj09PD00IITQXL15k8+bNNDU14ebmxvTp0xk2bFinAsY2l43nM55n26VtANzV7y5+M/o3eBo6HjjvqKamJjIyMjh58qQ28ygrK4vIyEjc3d3p16+fBLuFuI0YDAZaWlrYtGkTdrudlpYWxo0bd0t/z3Xu7vjf/z18582l/o03aFz3HraMDMpWfB/v2bMJ+NlPce/Tp9PbLSgo4MMPP8TDw4N+/fphMpm6YfRCCCGEEELcuB5tbvlNwsPDAa7I3K6oqNCywMPDw69agqOysvKKTPGvMhqN+Pv7t3uIK/UJMWHEAeioV43fmEUvhBA9obCwkKamJkJCQlixYgXDhw/vVECpwlrBTw78hG2XtqFHz8+H/5zfjf1dlwe96+rq2LNnD2vXriUtLQ2bzUZQUBBz5sxh3rx5eHp6Su1uIW5TgYGBjB07FoCDBw9y4MABeqLFjt7Pj8DHHiNy8yZ85s8DnY7mXbu4vHgJNX/+M676+k5tr2/fvkRERGC329m2bVuPvCchhBBCCCG+Sa8NfEdHRxMeHs6ePXu0ZXa7nU8//ZQJEyYAkJycTH19PUePHtXWSU9Pp76+XltH3Ljg4ODWOt9AneIlgW8hRI+qra1l3759nDx5UisfMGbMGKZOncqDDz7Y6UaWWVVZPLT3Ic7UnMHf3Z//mfw/PDD4gS4PPquqyocffkhmZiZOp5OIiAjuueceHn30UcaOHSslTYS4zel0OmbMmKE1CT9+/Dg7duxAUZQeGY9beDghzzxDxLp38Rw3DhwOGt95l8sLF9Hw9tuodnuHtqPX65k9ezZ6vZ7c3FwyMzO7eeRCCCGEEEJ0To+WOrFYLFy4cEH7Pj8/n8zMTIKCgujXrx9PPPEEf/zjH4mNjSU2NpY//vGPeHt788ADDwCQkJDAXXfdxSOPPMKaNWsA+NGPfsT8+fOv2dhSdFxrg8sayhU/9AGR+Pn59fSQhBDfMS6Xi3PnzpGRkUFeXh7QelNu8ODB6HQ69Ho9Y8aM6fR2t+Rt4YWMF3CqTmL8Y3gh5QWifKO6bNwlJSVERESg1+vR6XSMHDmS/Px8kpOTiYmJadfQUgjx3TBhwgS8vb3ZunUrZ86cwWazcffdd+Pm1jOn4x5xcYT+7WVaDh+h9sUXcVy4QO1f/oeGDz7E9PAqvKdPx3Cd8iVms5lx48Zx5MgRtm7ditVqJTk5uVtuIGZmZlJVVYXJZMJkMuHv709ISAju7u5dui8hhBBCCHH70Kk9OC/xwIEDTJs27YrlK1eu5I033kBVVX7/+9+zZs0aamtrGTduHC+//DJDhw7V1q2pqeHxxx9n69atACxYsICXXnqJgICADo+joaEBk8lEfX29lD35Crvdzv99folnd+UyMz6Ev35vGF5eXj09LCHEd0B1dTUnTpzg1KlTNDc3a8sHDBjAsGHDtMB3ZzkVJ3/O/DMbL24EYGqfqfzH2P/A2827S8bd1NTE/v37OXfuHPPmzSMxMRForfPr7u6OXt9rJ1oJIW6Rc+fOsWHDBlwuF3PmzGl3XttTVJeLpk+2Ufe3v+GqrGxd6GbAc8xYvGfOwHvqVAyBgVd9raIo7N27l1OnTgEwcuRI5s+f32XB7+bmZjZv3twuWabNypUrtd4I58+fJycnp11gPCAggMDAQJlVI4QQQghxm+loLLdHA9+9hQS+r+3AuTIeeuMEA0O8+eTRcXh5ecnFgxCi23344YecPXsWAF9fX5KSkkhKSrqp5mmXGi7xh2N/4HTNaQB+NORH/CDhB+h1Nx+MVlWV7Oxs9u/fT0tLCzqdjokTJzJp0iSp3S2EuEJ+fj579uxh2bJl2gyQ6zVnvxUUq5XGD9fTtH07jtzcfz6h1+M5alRrEHzaNAxfKy2lqioZGRmkpqYydepUUlJSumRmS1VVFW+//TYNDQ24ubmRmJiI1WqlsbGRhoYGVqxYoZ27f/rpp+3KH7bp378/ixcvlnN8IYQQQojbiAS+O0EC39dWUtNEygsHMOjgwM9GEBRgwsfHp6eHJYS4zVRXV2MymdDpdDgcDvLy8sjIyGDYsGEMHDjwpjKlXaqLdefXsfb0WuyKHR83H3437ndMjpzcJWNvaGhgz549WikWs9nMvHnztCxEIYS4GkVRcLlcOBwOXC4X7733HvHx8YwYMaJXlENyFBTQvG8fzXv3YT937p9P6HQY77ijNQg+fTpuX2koX1FRgdlsRqfT4eHhgcFguKnjoN1u5/XXX8fpdLJgwQLMZvM11y0qKqKoqEgLijc0NFBXV4eiKHh5efGTn/xEyvYJIYQQQtwmJPDdCRL4vrZdu3bx2AE7dlXPIuNpVi66kxEjRvT0sIQQt5Hi4mLeffddoqOjmTt3bpeWA/l6lvf4sPE8PfppwrzDrvPKjjl37hy7du3CbrdjMBiYMGECEydOxMPDo0u2L4S4/amqyrFjx9ixYwfQ2mNl+vTpREdH9/DI/slRUvLPIPjp0+2eMw4bhvfMGfguXIj+K4Flm83Gpk2bmDp1KjExMR3eV0tLi3YMtdls1NfX4+npeUPH1draWrZu3Up4eDhz5szBaDTKDUkhhBBCiNtAR2O5PdrcUvR+5eXlmDBSiS/1qhfl5eU9PSQhxG3k0qVLvPfee9jtdhoaGnA6nV0SNL5alvcTdzzB3QPu7tKgh4+PD3a7ncjISObNm0dERIQEVYQQnaLT6Rg9ejQ6nY7U1FRqamrYsGEDMTExTJs2jcBr1Na+ldz79MH0/e9j+v73cZaW0rw/leZ9e7GdysKW1fqwfPwJYa+uxfDlhUdaWpp2Y3POnDkdakRcXFzMhg0bGD58OOPGjQO4qaSUwMBAli9fjqqqKIqC1WrF6XTicrl6xecqhBBCCCG6l2R8Ixnf3+STTz7hxSPV5LpCGOFWwqJYIytXruzpYQkhbgO5ubl8+OGHOJ1O+vfvz6JFi7ok6H2p4RLPHHuGMzVnAEgOT+Y3o37TJVneiqJQUVFBeHi4tqywsJCYmBjc3d1vevtCiO82q9XKgQMHOH78OIqioNfrGT16NJMmTeqVzXGdlZVY96dS//pruKqq8UhKIuyVv6H39sbpdLJr1y6ys7MBGDt2LLNnz77q+1BVlbS0NPbu3YuiKAQFBbFy5Urc3Lo2R0dVVdavX09ZWRkLFizQGhALIYQQQohvl47GcnvfGbToVYKDgzHprADUqV5UVFQg90qEEDcrOzub999/H6fTSUxMDIsXL77poLdLdfF2ztus2LOCMzVn8HHz4bejf8tfJv6lS4LeFRUVvPvuu7z//vvU1dUB4O7uTlxcnAS9hRBdwsvLizlz5rB69Wqio6O1m229dSaJm9mM3/eWEvq3v6E3mbB/8QWVTz6FarPh5ubG3LlzmThxIgBHjx5l3bp12Gy2dtuwWq188MEH7N69G0VRiIuL48EHH+zyoDe0llGx2+3YbDbWr1/Ptm3bcDqdXb4fIYQQQgjRO0jGN5Lx/U3Onz/PC+9sZ689lkBdM4s8s3nyySflcxJC3LCsrCw++ugjVFUlPj6euXPn3nQjt/yGfP5w7A/dkuXtdDpJS0sjPT0dRVEwGo3cfffdJCQk9MoMTCHE7UFVVXJycvDz89PKcjQ3N3P+/HkiIiIICQnpFU0w29jOnKF89Y9Rm5vxmjoF8/PPo/vypmBOTg7bt2/H6XRiNpt54IEHCAgIoKSkhA0bNlBXV4fBYGDatGnccccd3Rrod7lcHDp0iKNHjwIQFhbGfffdR3BwcLftUwghhBBCdC2p8S26RFBQEAFfZnw3qJ4oKpSWlkrgWwhxw3x9fdHr9SQkJFxz2ntHuVQX63LWsfbMP2t5P3nHk8wfMP+mAyeKonD27FnS0tKoqakBYNCgQcyZM4fAwMBem4EphLg96HQ64uPjgdZgrd1u59ChQ5w6dQoANzc3QkNDiYiIIDw8nIiICAICAnrs2GQcMoTQ//kL5T97DOuBT6n+/TMEP/N7dHo9cXFxmEwmNm3aREtLi1Zv++2338Zms2EymViwYEG7MlLdxWAwMGXKFPr27cv27dspLy9nzZo1zJ8/n2HDhnX7/hVFobq6moCAAJktJIQQQgjRzSTwLb5RYGAgvnoHBly4MNCoGikrKyMuLq6nhyaE+BZSVZWIiAhWrFhBSEjIDQdo6u31pJWl8UHuB92S5a2qKu+++y5lZWUAeHt7M2vWLJKSknpVhqUQ4rvBYDBgNBrx9/dnwIABlJaWYrPZuHz5MpcvX9bWW716tZacUFtbi4eHBz4+Pt06tnPnznHgwAHuuOMOxo8fj/mF56n8xS9o2r4dnY83Qb/+NTqdjvDwcFasWEFLSwuenp7odDqmTJlCfn4+d911F56ent06zq8bOHAgK1euZNu2bRQVFXHgwAHi4+O7pNfE1VgsFnbs2EF+fj5WqxWz2czy5csxmUzdsj8hhBBCCCGBb3EdBoOB4KBAgsodVDoNhA5Kok+fPj09LCHEt4iqqhw+fJhBgwbh7++PqqqYzeZOb+NS4yUOXT7EodJDZFVloaAA4OvuyxPDn7jpLG+Hw4Gbmxs6nQ6dTkd0dDT19fWMHj2asWPH4uPjI1neQogeo9frmT59OvDPrOHi4mJKSkooLS2lqakJPz8/bf3U1FQuXrxIUFAQs2fPJioqqsvHlJmZyZ49ewA4ePAgQUFBDJ48mZA//IGqp3+LZf0G9L5+BD72MwD8/Py0MSqKwrBhwxg2bFiPHVv9/PxYunQpR44cYdCgQTidTvR6PcXFxVRWVhIUFNTa78Zk6tQYm5qayM/PR1VVhg4diqqquLm5kZubi8PhAKCyspLXX3+d5cuXExZ28zdshRBCCCHElaTGN1Lj+3pcLhePv3eSbafLeXL6QB6Z2B9vb++eHpYQ4ltAVVX27NnDkSNH8PHxYdWqVR3O6rO77JysOsmhy4f4vPRzSppK2j0f4x9DSmQK98bce1NZ3jabjZMnT3LixAnmzp1LdHR06/7tdjw8PPDy8pKAtxCi11MUBVVVURQFRVF49913KSoqAlqD5jNnzmT48OFdus/i4mLWr19PQEAAVVVVeHh4sGLFCoKCgmjcuIma//xPAAIefwzTQw916b670969ezl58qT2vcFg0ILgQUFBpKSktDsXttvtFBYWkpeXR35+vjZbKCgoiIcfflhbLzs7m4CAALy9vdm0aRPV1dUYjUbuv/9+BgwYcMvenxBCCCHEt53U+BZdxmAwMMjcOk32YlUT0BrMkkCQEOKbqKrKtm3bOHHiBADjxo27btC7uqWaw6WHOVR6iKPlR2l2NmvPuevdGR06mpSIFFIiUoj0ibyp8VmtVk6cOEFGRgY2mw2A06dPExMTg7u7uwS8hRDfKm39EtrKMa1atYrm5mY+/vhjzp07x+7du6msrGTatGldVrIpKiqKhx56iNDQUN555x0KCwvZsmULy5cvx2/JYhSLhboXX6Tuf/+K3scHv/vu65L9djez2UxMTAy1tbXU1dXhcrmorKyksrISgLFjx+JwONDpdKSmppKWloaiKFdso3///iiKov1sEhMTteeXLVvGpk2buHz5Mtu3b2f16tVSSksIIYQQootJ4Ft0SGyYLwAXKiwUFhYSHh5OQEBAD49KCNFbKYrCli1byMrKAmD27Nnf2DSs2FLMfx7/TzIqM9otD/YMZmLERFIiUhgTNgZvt5ufbWKxWDh27BinTp3SppwHBQWRnJzM8OHDpdmYEOK24e3tzdKlS/nss884cOAAJ0+epKqqioULF+Ll5dXp7dntdnbu3Mm4ceMICwtDp9MRGRmJTqfjvvvu4+9//ztVVVWkp6czadIkTCu/j2Kx0PD669Q89zw6bx98583thnfaSlVVnEVF2E6fxn76NI6CQrynTcV3yZJO3cgcPny4lh2vKAoNDQ3U1tZSW1tLQ0MD7u7u2t+P0tJSFEXB39+f/v37079/f/r163fd2upeXl4sXbqU/fv3M27cOBwOB3q9Xm64CiGEEEJ0ISl1gpQ6uZ6Kigre2LSDv10KwV2nsNyYwbx5cxkzZkxPD00I0QvZbDY2b95MTk4OOp2OefPmkZCQcM31Py35lGeOPYPFYQEgITChNdgdmUJcQBx6nb5Lx/fWW29RXl4OQGhoKMnJyQwdOhQ3N7kXLIS4fZ07d47NmzcTFBTE/fff3+mbfE1NTWzatImysjICAgJ45JFHrpgZU1BQwIkTJ5gxY4a2fVVVqX3hv2j84AMwGDD/93/hPWVKl7wnV23tl0HuM61fz5xBaWi4Yj2f+fMIevpp9N3QQLO2thadTtfpOuBXo9PpqK6upk+fPhIAF0IIIYT4BlLqRHQZd3d3msoK0BOEQ9XTpHpoQSMhhPi61NRUcnJyMBgM3H333cTGxl51PafiZM2ZNbx17i0AkoKTeGbcMzddwuTr2u7vtgURRo8ezcmTJ0lJSSEuLk6mlgshvhPi4+N5+OGH0ev1nQ5619XVsX79eurq6vDy8mLBggVXLQfVlu3c0tLS7tgb+MtfoDRZaPpkG5X/8mtCX3wRr3FjOzUGpakJ+4ULXwlyn8ZZXHLlih4eGOPj8RgyBJ2nJw1vvUXTJ9tw5OVj/u//wi08vFP7vZ7AwMAu29aFCxfYvHkzSUlJLFiwQP4+CSGEEELcJAl8i+symUy4u+nx19moU72oUz0l8C2EuCpVVUlJSaG0tJRJkyYRGXn1IHZ1SzX/lvZvnKhsrf/9vdjv8diwx3DXd22ZkaqqKvbu3Ut8fDx33HEHAEOGDGHEiBESUBBCfOeEhoYC4HQ6sdvtHDp0CFVVmThx4jUzjMvLy9mwYQPNzc2YTCa+973vER4efs31dTodRqMRq9XK8ePHSUxMxMfHh+B//3eUpmasqalUPvUUYa+8gkfSUJS6OlxVVVd/VH75tboa1Wq96v7cBgzAmDQU45AheAxNwiN2ELqvBPY9x46l6je/xp6dTemDKzD/1wt4jhhxk59k97B++R6zsrKwWCwsXboUo9HYw6MSQgghhPj2klInSKmTjnj55ZdZX+LPJSWIMW5FDDNWsnr1au0CSgjx3aWqKufPnyc2Nha73X5Fg6+vO1V1iqePPE1VSxVeBi9+O+a3zOo7q0vHZLfbOXz4MCdOnEBRFHx9fVm9ejVeXl4S8BZCCFprU69duxaAmJgY5s2bd0WQ9dKlS3z00Uc4HA7MZjPLli3rcIbz9u3bOXbsGH379mXp0qXo9XpUu52KJ56gJS0d2spLOZ0dHrM+OBjj0C+D3ElDMSYmovfzu+7rHCUlVD71/+HIzQU3A0G/+hV+997b4f3eShcvXuTjjz/G4XAQHh7O8uXL8fX17elhCSGEEEL0Kh2N5UrgGwl8d8R7773HB2csZDojGRVoY1jLF0RFRbFq1SqpQSjEd5jdbmfLli1kZ2czbdo0Ro8efc11VVXl/dz3+WvWX3GpLgb4DeC5Cc8R7R/dZeNRVZWcnBxSU1OxWFprhg8aNIg777yTkJAQOV4JIcRXZGZm8sknn+ByuQgODuaee+5pF9jetGkTFy9epF+/ftx3332dCsBWVlby2muvYbfbGTt2LFO+rOutWK1U/PRn2DIztXX1ASYMISHXeJhbv5pD0N9AQ842itVK9e9+T/OePQD4Ll5M0L/8ql12eG9RWlrKxo0bsVqtBAQEsGLFCoKCgnp6WEIIIYQQvYYEvjtBAt/Xt2vXLtYdyuFTRwxJET4kNx3G4XAwd640uRTiu6q2tpb333+fiooK9Ho9M2fOZPjw4Vddt8nRxP87/v/YX7wfgFl9Z/H06KfxdvPu0vHs3r2bwsJCAAICApg5cyYJCQno9V3bIFMIIW4XxcXFfPjhhzQ2NmI0Grn77ruJjm69IWm320lPT2fq1Kk3VHLjzJkzbNiwAYCFCxcyePBgAFRFwZGXh97HB0NIyC0LPquqSsMbb1D30sugqhiHDyfkhedxM5tvyf47o7a2lvXr11NfX4+3tzc/+tGPMJlMPT0sIYQQoldQVZWamhpKSkowGo3ExMTg5ibVnL9LJPDdCRL4vr7jx4/z9sf72WIbgr+nGy9N9+LTTz9l4sSJTJ06VbIohfiOycvLY8OGDVitVry9vVm4cCFRUVFXX7c+j18f+TUFjQW46dz4+fCfc9+g+7r8uFFWVsbbb7+Nm5sb48ePZ+LEiVIbVQghOqCxsZEPPviAkpLWZpE/+MEPCAkJAcBoNN5UiaidO3eSnp6Oh4dHr8lctn7+OZW/eRrVYsFgNmP+039jHDq0p4d1haamJjZu3Eh4eDh33XUXRqNRzrmFEEL0iPr6ehwOB0FBQT2WVJSfn09RURHFxcUUFxdrvTGgNenpsccek4Sn7xAJfHeCBL6vLz8/n/WbPuKVylhUdKT+fDxuzmaCg4Nxd3fHvRdOExVCdD1VVTly5Ah79+5FVVUiIiJYuHAhfteosbqrcBd/PP5HWlwtmL3MPJv8LEnBSV0yFpfLRXV1dbteA6dOnSImJgaz2SzBASGE6ASn08m2bdvIzMxk0qRJJCcnYzQab/oC0uVy8eabb1JUVERISAjLly/Hw8Oji0Z94xwFBa11v/PzwcOD4N8+je/dd/f0sK5gt9txc3NDr9ej1+sl+C2EEKJHvPfee5w/fx6DwYDZbCY0NFT7Ghoaislk6rK/T23Z3DU1NcTGxmrLXn75Zaqrq7X1DAYDYWFhNDQ0EB0dzV133YWbmxsGg4EjR44QFxeHuRfO6hJdQwLfnSCB745xOp3M+PNnFNRY+ceKOxgf/c8akJ6ennJnTYjvgIqKCv7+97+jqipDhw5l1qxZV51SZnfZefHUi2y42DrFfWzoWJ4Z/wyBxo41Rfs6p9NJZWUl5eXl2qOqqgpVVXnooYcIDg5Gr9fj4eEhxyIhhLhBqqpy7tw5DAYDsbGxXXYB29jYyJo1a2hpaWHJkiX079+/S7Z7sxSLhap/+3esn34KgN+y+wl84oleWfcbWm8ipKenM3HiRDw9PXt6OEII0eNUVeX8+fMEBwcTHByMqqrU1tby5ptvYjAYrvoYMmRIu3KtpaWlhIWF9dg1hKIoqKra7uF0OnE4HADtylxdvHiR5uZmHA5Hu4eiKERFRREbG9sl78PpdHL69Gmio6Px8/PD4XBoM34VRbnqax555BEiIiLQ6XSUlpbS3NysBZ3tdjsOhwO73Y7dbmfQoEHaOca5c+coLS3VnmtsbNSyud3d3XnyySeB1p/1Z599Rn19PZGRkURERBAWFobBYEBRFMuvodsAACAASURBVOx2u/a3sbS0lHfeeQeA8PBwkpKSSEpKumayVm+gqipNTU14e3vL9WwHdTSWKwVwRIfp9XoGhvhQUGPlYmWTFvguLy/nyJEjLF68WE7ChbjNBQUFMX36dABGjBhx1aDI2Zqz/PHEHzlfdx6AHyT8gEeGPIJB17Gp8g6HA51OpwXUMzMz2bdv31VPsjw9PSkvLyciIkJqugkhxE3S6XQkJCR0+Xb9/PxYunQpLpeLsLCwLt/+jdL7+mL+039Tv/ZV6teupfG997Hn5hL45JMYu+FzuFk7duzg7NmzlJaWsnz5crkwFkLccidOnMDpdDJs2DC8bqLh8M1SFIXs7GwOHjxIRUUFQ4YMYe7cuQBYLBYaGxuv+drQ0FCtREZjYyNr167Fy8uLQYMGMXjwYGJiYm7qvSmKwtmzZyksLKSoqIiampp2Qe2IiAgeeughbf0XX3yRhoaGq24rLCyMH/7wh0BrYHTbtm3U1tZedV1vb2+eeOIJdDodOp0Op9PZ6euj5uZmjh8/ztGjR2lqamLMmDFMnToVgP79+/PUU09RV1dHVVUV1dXVVFVVUVlZSX19Pb6+vlitVnQ6HWlpaWRlZV1zP7/85S+1sZ05c4bTp09fsY7BYCA0NJTGxkatufbkyZOvuj29Xt8uFqXX6xk0aBB5eXmUlZVRVlbGnj17iI6OZtiwYSQkJPSKkph2u528vDwuXLjAhQsXqK+vx2QykZKSwogRI+T6tovIpyg6TKfTEWP2JvU8XKxqAloPvp988gk1NTXs379f+2MjhLh9XLhwAZPJREBAAA6Hg5EjR151vSZHE2vOrGF97noUFPzd/fmPcf/BxIiJ192HxWIhLS2NoqIiqqurWbBggdYEzd/fH0VR8PLyIiwsjPDwcCIiIoiMjCQwMBC9Xi/TvoUQopfr168fqqrS0tKiXfz3hmO3Tq8n4Mer8RgcS9W//we24ycoW/4gHomJ+C5ZjM9dd6HvweDOV40ZM4YLFy6Ql5fHzp075bxbCNFtmpubKSoqoqKigkmTJqGqqhZszsvLY9++fQwfPpzx48cTHBx8y8blcrnIysri0KFD1NTUAODu7o6fn5/2dyUgIIDvf//7uFwuFEXB5XJpD0VRCAgIoK3wQWVlJUajEavVyhdffMEXX3yBTqejb9++xMbGMnToUAICAq45HlVVqa6upqGhgYEDB2p/37Zv305zc/NVX+NwOGhpabnue23rr2G327VlERER+Pn54e7ujpubm/ZVURS8vb21DHC9Xs8rr7xCYGAg8fHxxMfHf+P7qKys1ILVTqcTAF9f3yuyaHU6HYGBgQQGBmolSKA12N92M1ZVVby8vAgKCqK2thadTqeVx217tLS0aIHqvn37tnvOy8uL8PBwQkNDb7jHSFhYGPfccw9Wq5WcnByys7MpKSkhPz+f/Px8fHx82mWd9wRVVXnxxRev+H9SX1/P9u3byc3NZdmyZb3iXOnbTkqdIKVOOio1NZV1hy+wpzGSsf0DeGPlCAAuXbrE+vXrAXj44Yev2eBOCPHtYrPZ2L17NxkZGQQFBfHggw9e8874pyWf8t8n/5sKawUAd/W7i58P/zlBnt/cxMzlcpGRkcHhw4fbndRNnDiR5ORk9Ho9LpcLm82GyWSSILcQQnzLKYpCQUEB+/btY8aMGd2WAd4WVOjMbERHXj51r75K87598OWFv87HB5+5c/BbsgSPL2/I9qTz58+zZcsWAObMmcPYsWN7eERCiG87VVWpqqqiqKhIe3y1jvKjjz6Kj48PANnZ2aSnp1NVVaU9HxcXR3JyMv369evW8/TMzExSU1O17GhPT09GjRrFyJEjb2rmuaIolJSUkJeXx8WLF9u993vuuYehQ4ei0+mw2WzodDoqKyu1bO7CwkKam5vx9fXlpz/9qTZD9cCBAzidTqKiojCbzdo1TNus1rbPE/7596rteUDr7XCjKioqePPNN9stCwsLIz4+nri4OMLDw7V9bdy4sV3GdVhYGKNHjyYuLu6mmlsDveYmN0BdXZ2WiX/fffeh1+txd3cnLy+P4OBgral3V7PZbFpWd3V1tXZTxuVysWnTJioqKhg4cCDR0dFERkZy9uxZjh49ysyZM4mNjcXd3R2Xy4WqqlJh4WukxncnSOC7Y/bu3cuWgyf52JaIt4eB1Ccm4OfZOmlg27ZtZGdnYzabWb169U0fIIUQPaugoICPPvqIuro6AEaOHMnkyZOvaGRb3lzOn07+iU8vt9ZH7ePTh1+N/BXjw8dfdx+XLl1i//792slleHg4EyZMICoqCn9/fwlyCyHEbUhVVdasWUN5eTkAQ4cOZeLEiV1Wd9PpdHLy5EnS0tJITExkxowZnd6Gq7YWy9aPsWzahLOoSFvukZSE35LFeM+a1aNZ4GlpaRw8eBCdTscDDzzAoEGDemwsQohvv507d5Kenn7F8uDgYPr06cP48ePb1ZlWVZWioiKOHTtGXl6etnzEiBEsWLCgW8aoqioHDx4kNTUVHx8fxowZw/Dhw7ulWXJ9fT0XL14kPz+f+fPna02Fjxw5wsGDB69Y383NjYiICO65555eUT6jTV1dnVZCo7i4mK+G/iZNmsS0adNQVZWdO3dy7NgxBg0axOjRo4mKivrOXIPZ7XbWrl2L1WolMTGRyZMn3/QN+bYbSefPnyc3N5eioqJ2JTt/+MMfEhgYqO3f3d39is/b5XK1uxZOS0vj6NGjjB07lvHjx+Pt7X1TY7xdSOC7EyTw3TEnT55ky5atbFPuoNLuxmNTo/nJ5AFA61Sof/zjH1itVqZPn86kSZN6drBCiBvicDjYv38/aWlpQGuZkTlz5tCvX79267lUFxsubODvp/9Os7MZg87Ag3EPsipxFZ6G69+JVhSFN998k6qqKry9vZkyZQqjRo2Sm2ZCCPEd0NjYyM6dO8nOzgZap6mPHj2asWPH3nAQQ1VVsrOzOXTokJYNaDabWbFiBQaD4YayzlRFoeXYcSybNtKcmgpOFwB6Pz985s3Fd8kSPGJibmi8N0NVVXbs2MGZM2cwGo08/PDDWgMxIb6rbDYbBw8epKCggPDwcFJSUr6xtEN3amtW2HZe29a0rq1OcU9rG59er8dut/PFF1+wa9cuwsPD6dOnD3369CEyMrJDda6rq6s5fvw42dnZzJ07l4SEBNzd3bXGjDeaodrc3Ex6ejp9+vRh4MCBWnmQs2fPMnTo0B6pfbx582YuXLiAp6cnUVFR9OnTh6ioKK3BYm/W3NysZR3n5+dz77330rdvX6C15KTD4dCCsd8ljY2N7N27lwsXLmjL4uLimDx5MpGRkTe0zb179/L555+3WxYYGEh0dDQDBw6kb9++nfr/q6oqH3zwAUVf3oh3d3dn1KhRTJgwoVc367wVJPDdCRL47piCggLeeOMNyjz6sKM+An9PN/b+PBlfY+sv7enTp9mxYwdubm78+Mc/vqW1voQQN89isWjBaICkpCSmTZt2ReZCTm0Oz554lrO1Z1vXC07i16N+zSDTN2ecOZ1OdDqddmJYWFhIbm4u06ZNw8fH5zuTWSCEEKJVUVERu3fvpri4GAAfHx9mzJhBXFxcp7aTn5/PZ599RkVFa7ktX19fJk6cyMiRI9Hr9VitVrZu3YrZbGbChAk39PfGVVWFZetWGjdtxnX5srbceMdwvKZMRe/jg87TE52XJ3pPL+3fOs8vv//y3zqjEV0XNKV0Op18+OGHVFVVsWTJkna1VsV3l8Ph4Ny5c7i5uTF48OBeH4zrCqqqkpWVxd69e7FYLNryRx99lMDAQAwGA4WFhdjtdvr3739DN9csFgvl5eV4eXlpwTCr1cqrr76K0+lsV0O6rSTBsGHDtOxnh8PB888/z8CBA0lJSSE6OrrHznsbGxvZvHkzoaGhTJkyBVVVrzhHvxHNzc14enpq5TnS09NJS0tjxIgRjB8/noCAAJxOJ83NzbhcrnZB1kOHDlFfX09zc7P2qKmpwel0EhYWxooVK3rFdYKqqjQ3N+Pt7d0rxnOjHA4HBoNBGiR/RUVFBWlpaeTk5GjLYmJiuPPOOwkNDb3qa6xWKxcuXOD8+fOMGzeOiIgIXC4XOTk5bNmyhX79+mklTG72poKqquTm5pKWlqbNmDMYDIwcOZKUlJR2MzK+Szoay5XmlqLD2gLZobYSooMHkl9t5d2jxayeNACAIUOGcObMGQoLC0lPT5eGO0J8y3h7e+Pj44PVamX27NnEfC2Lzeq0svbMWj7I/QCX6sLX3ZefJv2URQMXoddd+8RJVVUuXrzI/v37GT58OOPGjQNg4MCBxMXFfatPHIUQ4rvMbreTm5tLfn4+iYmJDBw4sFOv79u3L6tWrSI7O5u9e/dSV1fXbjpwR2RkZLBv3z4APDw8GDduHMOGDcPhcFBYWEhkZCQlJSXk5uaSm5tLQ0MDd955Z6cDPIaQEEyrVuH/0EO0pKXRuHET1s8+w5Z5ClvmqU5tS+flhfesWQT98hfov1LntTPc3NxYtGgRVquV4OBgnE5nj2RA9qb6rd9lVquVY8eOkZ6erjVK8/HxYf78+cTHx/fw6LrP5cuX2bFjh3bzLCAggNGjR9PU1ISPj4/WP+bgwYNcvHgRvV5Pnz59iI6OJjo6mqioqHa/N4qiUFZWRkVFBeXl5dqj7TNNSkpi7ty5WqPe2traa47Nbrdjs9m07QLk5eWRl5enZaQnJibe0uDjxYsX2bx5M01NTRQXFzNy5Eh8fX275Njx9dILBQUF2O120tPTOXr0KO7u7trPIzw8nIcfflhrBJmRkXHVzzI0NFS7bugNdDpdu9rc31ZfL10pWv+vLViwgOrqatLT08nOzubixYs4HI52jTurq6vJycnh/PnzFBYWauVjfHx8CApq7W01YMAAfvazn3VpGR6dTsfgwYOJjY0lPz+fI0eOcPnyZY4dO4bD4WDBggXyt/gbSMY3kvHdUaqq8txzz2G32+mTsoj/t7cYk5cbex9PxufLrO/a2lry8/O544478Pb2lruIQvRyFRUVBAQEYDAYsNlsWCwWDAbDFVMbD5Ue4r8y/ouy5jIAZkbN5Mk7niTE65ubgNTU1LB//37y8/MBCAoK4uGHH26XESKEEOL6bDYb1dXVmM3mXnHRum/fPtLS0nB+2QQSYMqUKUyZMuXGMqpdLrKystple+fn5+Pn56c1nHK5XDQ1NdHQ0EBTUxONjY3U1taSnZ1NUlISkyZNoqamhrfeekvbhtFoZMKECXh4eLB7925UVaVfv34sWrTopmuxOisradr6Mfa8i6gtLajWFtQWK2pLC0pLy1eWtaB+GQD7Krd+/TA/9yweXRSYdDgc+Pv737KL38uXL/PGG2+QkpLC5MmT5aK7B1itVj777DMyMjK0oKK/vz+KomCxWFi1ahXh4eG4ubnR0tKC0Wi8bc6/LBYLf/nLX1AUBXd3d5KTkxk1atRVg7j79+/Xbnx9lZubG9HR0SxbtkxrXvjcc89ddX+BgYHExsYyZcoU4J9B8rbM2bZmhAaDAYPBgJubW7tjdV1dHcePH+eLL77Qjpsmk4nk5GRGjBjRLbWq2yiKQmpqKocOHQIgJCSEBQsWdOsMbVVVuXTpEseOHaOgoEBbrtPpMJvNrFy5Ult29OhR7HY7Xl5eeHt74+XlhY+PDyEhIXJcET2irq6O/Px8RowYAbRmV2/dulUr0dYmJCSEmJgY4uLiuq1Z99W01dlPS0tj1qxZmM3mbj2G9FZS6qQTJPDdcWvXrqW0tJS7Fyzkqb01XKq28tSMgfwwpf8V6+r1eq0RhBCid1EUhcOHD3PgwAGGDRvGzJkzr7qeQ3Hw55N/ZlPeJgAivCP45chfkhKR8o3bt9vtpKWlcezYMe0u+ZgxY5g8eTJeXl5yXBBCiOtoamqisLCQwsJCCgoKKCsrQ1VVJkyYwMyZM2/pcdRms3H+/HliY2MxGo24XC4OHz5MamoqJpOJ4OBgrcHZwIEDWbJkyQ03XlJVFZfLhcVi4dVXX8VqtRIbG0tdXZ1WyuTrxo4dqwWjamtree211/D29sZgMNDY2Ai0ZmPFx8eTlZWFw+EgJCSEJUuW3LJzf1VRUG02VKsVe24upb/9Vww1NeDuTuATP8fv/vtv6mdaUFDA1q1bmTRpEhMmTOjCkbfXllmuqio2m41XXnmFhoYG4uPjueeee3rkwltVVaxWK9XV1drDYrHQt29f4uPjb+smYC0tLbz44ou0tLRgNpsZO3Ys8fHxqKpKcXEx/fv/8xpt27ZtlJSUMGrUKEaOHPmtzFxtm2HQVp5j586dWK1WpkyZct1at6qqUl9frx1TCwsLaW5upm/fvixbtkzL3HznnXdwd3fHbDYTEhKC2WwmODi4y/5vNzc3k5mZSUZGBlarFYCVK1fSv3//bjmu19fXs3HjRq0+8PDhw5k2bdotvYFaX1+Poih4eXlJfEB8K9XX1/Pqq6+i0+no27cvMTExxMTE9Fgfga9zc3OTwLcEvr+ZBL47bvv27ZSWljJ+/HiyGrz4zZazBHq7s/vx8fh4tL+77nA4KCgoYNiwYT00WiHE1VRXV/PRRx9p00JjYmJYtGjRFRlA1S3V/ObIbzhVdQodOh4Y/ACPDHkEL7dvbnRz8eJFtm/fTktLCwDR0dHMmjWL8PBwOdEVQojrKCoqYuvWrVq/ha8yGAz88Ic/xGQy4e7uTkNDA0ajsVsCWC0tLeTk5GjTfV0uF/PnzychIQFoDcxbLBZCQ0PR6XScPn2aPXv24HQ6SU5OZtasWTd1zG9sbOSTTz7h/PnzV33ebDYTFBSEn58fAwYMIDo6GmgNbimKojW0PHv2rFY/FuDuu+9m//79WimEJUuWdGuWlsVi4fTp0+Tm5rJs2TLc3NxQFIX/+9//JWHffvqUlADgHDWSqGefxRjyzTOpruX48eOkpqYCcP/993e6Tvr1WK1WPv/8c7KysnjkkUe0UjGZmZns378fl8uF2Wxm2bJl3dYgzW63U11djV6v135mFouFl19+WTvn+LqYmBiWL19+25x/FBcXc+bMGWbNmoXT6cTpdHL69Gm8vb2/sW600+lk7dq1NDU1Aa0JSgkJCYwZM4Z+/frdks8nNzdXm7ViNpvx8/Pr1H7z8vLYvXs3CxcuJCAgQCuTcaNjV1WVqqoqnE4nERERN7SNm+FwODh9+jSXL19m3rx56HQ63N3dycnJISIiQiubcDNcLhcvvfQSdXV1eHh4MHv27Nu69I0Q3aW5uZnKykrCw8NverZYd5DAtwS+r0sC353T0tKCoig4FYV5Lx+lqNbKL2bGsGpCP20dh8PBm2++SW1tLQ8++OAVtYKFELee0+nk8OHDHDx4EKfTiYeHB9OnT2fo0KFXXDScrTnLrw7/igprBb7uvjwz7plvzPJ2uVzaRXBdXR2vvfYaJpOJGTNmkJCQ8K1trtRWm9BkMslNPCFEl3G5XNTU1FBUVERBQQEDBw4kKSkJRVGoqqpizZo1QOsU2qioKO3h6+vb7ni9adMmCgsLGTlyJBMmTLjp81ibzcaZM2c4d+4cFy9ebFdvOygoiOTkZBITE6/5+srKStLS0pgzZw5GoxEPD48bDkpVVVVpmeR79+6lrKy11FZbQ7YBAwZ0eFsul4tTp05RVVXFnXfeSWNjIxs2bKC2tpbvfe979OnT54bGeC2qqlJQUMCpU6e4cOGC9jm23ThwuVycPXuW0198gXH/foafzMSgKDT7+FC14kFiFywgPDy80/vcvXs3WVlZeHh48IMf/KDT27gah8NBeno6n3/+uRZcnjlzJiNGjEBVVaqrqykuLubgwYO0tLRoddZDQkIwmUxaxrHL5eLzzz/XGgEqiqI1AlQUhfDw8Ha1fNetW9euaWB9fb3WuLAtu1xRFBRF4S9/+QtOpxM/Pz8CAwMJCgrCaDRq09SHDRuGXq+nqamJrVu3kpiYSEJCwrfmuk9VVS5cuMDnn3+ulYy49957tZs9HeVwOMjJySEzM5PS0lJtudlsZtKkSSQlJWn7Azr9u+tyuaiqqmpXG3vu3LkEBASgKAqHDh3i008/1dY3Go1aRnVoaChDhw69atZ2XV0du3fv5uzZ1qbqsbGxLFq0qFNj+7awWq2sWbMGh8NBQkICI0eOJDw8/IabwKuqysmTJzl27Bjz58/vtptSQoieJYFvCXxflwS+O8dut2t1yTZllvKvW88R7OPO7seT8XL/Z3Br3759ZGRkEBAQwKOPPtrt06naLipul7p1QnSlsrIy1q9fT01NDQD9+vXjrrvuumoH6B0FO3j2+LPYFBsD/AbwQsoL9Pe7spxR24X9sWPHcHd3b3cRUlZWRt++fTv8e9/U1MS+ffswmUxMnDix1wTKjx8/zrZt2wBYunSplukoRFdQFIXi4mIMBgORkZG3TUaiuJLdbufo0aNUVFRQUVFBVVUVLpdLe37w4MEsXLgQaD225uXlERkZeUW/ha9yOBy8//77WkBYr9czfPhwJk6c2OFMwYaGBqxWK2FhYaiqSlNTE3/605+054ODg4mLi2Pw4ME3VGu1rWnZuHHjOnxBZrFY2LVrF2fOnGHFihXa2HJzc4HWoFdX/K5UVlby1ltvERUVxeTJk7sk49NqtZKVlcWpU6e0DHOAiIgIhg8fTlxc3BWfQ11dHTk7duK3di0+9fUoOh3Vs2Yy6j//E10n/xa6XC7Wr19PUVER/v7+PPLII/j6+t7Qe3G5XJw8eZJPP/1UCziHhIQwefJkBg4ciE6n49y5c3z88cfX3EZCQoJ2buByuXjhhReuuW5MTAxLlizRvv/Tn/7U7nekjZeXFzExMcyZM0dbVlNTg5+f31XPOb6aEfzVrHiAqKgoLQh+renqbXXlLRaL9rWlpYXk5GRtnbYSPCEhIV12HeJwOCgqKuLy5cucPn2a8vJyoPX3PDExkfHjx99UELO8vJzMzEzOnj2Lw+Fg6tSpTJgwAZ1Ox6VLl/jggw/w8fFp92hrgh4TE6Nl3BcWFpKRkUFZWRmVlZVXNKdduHAhgwcPBlrPDdPS0qiurqa2tpavhyFWrVpFREQEer1em2ni4eFBRkYGTqcTnU7HiBEjSElJwdPT84bfe29WV1fHvn37tNJRbTw9PTGbzYwbN44hQ4YA175BUVtbi8ViITIysl1zTblGFuL2JYFvCXxflwS+O8fhcFBaWkpgYCAKOua9nE5xXQv/cucgVo7vq61nt9v5xz/+f/beO7yN807XvtEBEgQJgiApFrGIRZQoqlC92erFitwtOXYsK47sxOucfJvdPXtynbObbHZzdjfZk2QTx8462diO3B3LslWoZnWJoqxCiSqsIsUmNhAgKlHn+wPEiBQpUaSoYhn3dc0FYDAABoPBzDvP+7zP70/YbDZmz57NkiVLbts6hXIg9Xo969atC4sHYcJcQ2gosEwm48EHHyQvL6/f/8QX8PG7st/xXuV7AMwbNY+fzPgJWkXfi+aQU+3EiRO0t7cDwQux7373u0RHR4vFfW4Wv9/Pa6+9JorySUlJPP744yMyxPNWCGWG/uIXvwBAqVTyne98B6PReFfXK8xXG4/HQ01NjVgRPpTvOWbMGB5++OFBM0rvF0IRFGVlZSxatEgsXvhVxul00traKorbMTExzJ07F0EQ8Hq9/PznP+8jCikUChISEkhNTSUtLY3U1NQbvPvAhDogjx07Jua3SiQSxo8fz7x584iPj++3jnV1ddTW1lJbW4vJZCItLY2nn35aFBm3b99OTEyMKHbfCocPH6a4uBiDwcCaNWtuePwUBIHS0lJ27dpFd3c3EomEhQsXMmXKlFtah+tx8eJFioqKxO89evRoDAYDixYtGnY70mQy8ac//QkInjPGjx9PQUFBv99hIPx2O43/8I/Q44hVT5+O4Z9/SpvXy7Fjxxg/fjxjxowZsHBfb1wuF++88w4Wi4XY2FiWLVsmCo8ejwe73Y5Op7vh+/h8Pv7rv/5LjNuJjo5mzpw55OXl9Tm/C4LA5s2baW9vRy6XI5FIcDgcYmdKdna2KBCHHOmhwn+hIoChW71eL64nwIULF5BIJEilUqRSKZGRkej1+ht2Bg2GzWYTj71NPREzIUaNGsWjjz4q7qOff/45FRUVOJ3OAd/r7/7u75BKpQiCwOeff055eTkKhYLExESSkpLEyWAwDLo/2e12rly5glKpJC0tDUEQsFgs/OY3vxGXUSgUTJw4kalTp47oeSI0yqN3FvrFixfZunXrdV+zYsUKJk+ejEQi4fz582zevFl8TqlUilEm8fHxZGRkDHh9HRr1Espk7+joYOXKlWLnxc6dOzl79qy4/OjRo1m4cOHXpg3W0dHBiRMnaGhowGKxiPOXL1/OxIkTkUqlNDY28uGHHxIXF0d8fDxxcXEoFAr27t2LXC7nueeeG3bHV28EQaDT6aXV6qbF6qbV6karlrFkrBG14t4wqoRw+/y4vAHc3gDdPj/d3gDdXj9uXyA4X5wXvO/2BRgdq2FWRixR6hsfW2+FW4nkCRPmZggL32Hhe1DCwvfQ+PDDDykvLxd78P9yqpl/3FpBnFbJru/P7HMCrK6u5tNPP0UikbBhw4bblp/2l7/8hfPnz/PAAw8wd+7cQS8KwoS53/H5fFy4cIH8/Hz8fj9er5empibi4uIGzCXr8nTxf479H463Hgdgfd56Xhz/IlLJ1Qvc7u5uzpw5w6lTp0T3l0KhYMKECcyYMQOj0TjsYZgnT56kuLgYp9MpDpV+6KGH7ni8SHl5OceOHWPNmjWik8bv9/PRRx/R2NiIwWBgw4YN92S2W5h7n+LiYr744os+Lka1Wo3H4yEyMpKXXnqJiIiI+/7iqL29nR07doiOtu9///tERkYilUo5dOgQNTU1jBo1iqSkJEaNGoXRaLwnz+uCILB7925R7A4dF0MkJCTw3HPPchpFhwAAIABJREFUiY/379+PWq0Wh/brdLoR/a0bGxspKSkRt+vSpUuZOXMmEomEffv2UVFRIbpGe5OcnMzTTz99W/a7xsZGtmzZgt1uR6FQ8I1vfEOMU+iNyWRi69at1NXVAcE4k2XLlo1IVMeN6Orq4siRI5w/f16cp9PpyM/PZ86cq/FeO3bsoLOzU8xU9nq94q1Wq+U73/mOuOyePXtISEgY0N19M9i3bKHzX/8NobsbqV7P5UceprgnYkSpVJKVlUVeXh5paWnXHR3V2dnJO++8g9vtZsWKFWLUR21tLR988AEAWq0WnU5HTEwMOp2O6OhosrKyiIuLIxAIsHnzZmpqapg1axYFBQXif7CiooKMjIzrfrdQ/EnvTpN70W1qs9moqqqisrKSxsZGpFIpr7zyCmq1GkEQ2Lp1KxcuXACCnUm9Hc+RkZEsWrRI3Abbtm2juroaj8fT73MiIiL44Q9/KP5WXV1dXLlyhStXrtDS0kJzc7N47MjJyREjXARB4J133iE6OpqkpCTy8/PvmMvZ5/PhcDhwOp19ptC8yZMni/FAVquVc+fOiUL3SB3X6uvraWxsxGq1kpGRQU5Ozn1/brweXq8Xs9mMyWQiKSlJHK155swZdu3aNeBrkpKSWL169U11knTYPbRYu2npJWwHb7tptQXve/39JSN9hII1hUk8PTUZY9Tdaxf7AgF2Xmjnj0cuU9HqGNZ7yKUSpqRGMz/bwAPZBjLjbq0t1mTp5nidmeN1FkrqzHTYPYyO1ZAWqyEtNoJ0QwTpBg3phgiM2uFHgoUJEyIsfIeF70EJC99DY/fu3Rw9epT09HSefPJJPP4AK18tobmrmx8ty+JbM/o6lj777DMqKytJSEjoUwxnpKisrOT9999HIpGIQ2LVavU918AOE+ZOUV1dTVFREZ2dnTzyyCNkZ2ffePmuav7nkf9Jk6MJjUzDP0z/BxalLOq33KlTp/jiiy+A4AXzlClTmDp1ar/M2ZvB4XBgs9mIj4/H7XYjCAI+nw+n08m2bdvEwpsFBQWsXLnytgvNDoeDoqIiUfyYN28eM2fO7PP8n//8Z+x2O2PHjuWpp54KN1LDXBdBEGhvb6eiooKxY8cSFxeH3+8XnXEhgSkrK4uUlBQxuzbk+JXL5VRXVw84MuOrjNvt5sCBA5SUlIjFBydOnMjChQvF7/nhhx9SX1/f53WhQnaJiYmsWLFCdARWVlZitVrxeDx9Jq/Xi0wmY/Xq1eJ77N69m/b2diIiIsQpJGRFRESQkpLSb1v7/X5MJpPo4G5ra0Mul/P444+L2cKvv/46ZrNZfE10dDRGo5G4uDgSEhL6OFjvFK2trZw+fZpFixahUCiQy+V8/PHHVFdXA8E4htGjRzN69GhSU1Nvu5jmcDjYunWr+LtOnTqVZcuWiULqsWPH2LNnD36/H7lczpw5c5g6deodbce1t7ezfft2MbJCKpWydu1aUdx76623xBFO1xIZGcnLL788ouvjrauj/X/9CG9PYc+uhQspzszA6rgq6qjVarKzs1m4cOGAF7t2u53a2lpSU1PFGI/y8nKKiorEyMJreeihh5gwYQJ+vx+n09nnQtrn8/HFF19w9uxZxo4dy6pVq27q+NTa2srnn3/OypUrRzxLfaRwOBy0traSmZkpzjObzfh8PiIjI9FoNIN+V0EQ6OzspKWlhdbWVvHWYDDw3HPPIZFIkMlkvPnmm2I8UQiJREJsbCwZGRksWLDgtnzHMPcffr9fFMRDU1dXFxkZGcycOfO619weX4ATly0cqDZxoMpEfadr0M+SAAatkkSdivgoFeUtdpq7gh1ycqmElfnxPDcjlXGj7tyoNY8vwGdnW/jjkXoazH2/g1wqQSWXolbIUCukqORSNApZz7ye+XIpcpmEsiYbtaa+IzuSY9Q8kG1gfpaB6ekxgzrb221uSuosHK8zU1JnpsE8cLHdgdAoZKIInh6rIc0QFMYNkQqUcilKWXD9lXIp0vuoTRhmZAkL32Hhe1DCwvfQMJvN4tC7DRs2EBMTw4cnm/inbZUYtUp2/Y+ZqORXTw52u5233noLl8vFAw88wIMPPjhi6+J2u3nttdewWq1MmzZNfO9QZmq4qGaYrxMWi4WdO3dSXl4OBC/Gly5dSlZW1nVfs7dxLz89/lNcfhdJkUn8Ys4vyIoeeHmPx8OmTZsoKCigoKAAhUIxLFHu8uXLfPLJJwA899xz4tDaEIFAgOLiYoqLi9FqtWzYsOG2xT8IgsC5c+coKirC5XIhkUiYNm0as2fP7pcV2tTUxAcffEAgEGDJkiXMnj17RNYhEAiwa9cu0UU3bdq02zY6JsztxWazcfToUSoqKkQxdM6cOeK+4vV6sVgsg2Ylnz17lp07d5KcnMyKFSvuWbHoZhEEgbKyMnbv3i06G7OysliwYEG/XF2LxSIKRqEpVFBPrVbzgx/8QLyYf+utt2hubh7wM1UqFT/4wQ/EkRvvvfdev2iDEDKZjL//+79HKpUikUjYsmUL9fX1WCyWfnm1KpWK73//++LvFxqKbzQaMRgM9+xFx+XLl3G5XKSmphIZGXnHPz8QCHDkyBGOHTsGBN2ITz31FNHR0Rw/fpyioiLS09NZsmTJdbOW7wQnTpzg8OHDeL1eAAoLC5k7dy6NjY14vV6xI0Eul4v3FQrFiMQJXIvgdmP+1a+xffQRAMr8fHyvvEKFtUuM4NDpdLz44ovi/mg2m4mOjr5hp0Eoxstms2G1WsXJZrMxffr0AV32VquVzz77TBRs586dK44mGIxNmzZRU1ODTCZjyZIlAzr+71cCgQBOp1PcP/x+P6+//jparZaEhARxMhqN9+yxI8z9QZvNzcGqoNBdXGvG6bk68kwqAaNWRYJORaLu6m2iTkVClIoEnRpjlBKl7OpxxRcI8EV5BxtLGjnVcLWewdTR0Tw3M5UFOXHIpLdHpHV6/Hx8qpk3i+tpswVHWcRoFDw3I4UnpiQRrZGjkA2t4/Ryp5ODVZ0cqjZRUmfu43BXy6XMyNAzP8vA/GwDyTFqzE6P6OY+XmfhUkdf4VwmkZCfFMX09BhmZOgZrdfQYHZxudNFnckZnDpdNJm78Q9BjlPIgoK+Si5F0SOIhyaNQkZ+UhQzM/QUpsX0qb0W5v4nLHyHhe9BCQvfQ+edd96hpqaG6dOn88ADD+DxB1j+22O0WN387+XZPDM9pc/yFRUVlJWVsXz58mHHIQxEUVERx48fJzo6mvXr16NQKKirq+OTTz5BqVSyYcOGu54THCbM7cbn83H06FEOHTokFv8pLCxk9uzZ13VKB4QAb5x/gzcvvgnAtPhp/Gzmz4hWXS12aTabKSkpYfHixcjlcmQyGQqFYtguPEEQOHz4MPv27UMQBAwGA48++uh1izM1NjYikUhITk4WP1sikYzY8cNqtbJt2zYqexx1RqOR5cuX33Bo/enTpzl16hSPPvooycnJt7wuXq+XTZs2iZ0VAI899hjjxo1DKpXicDgQBOFrk/v8VcZisfD222+LWZwymYy0tDQKCgoGHXVxLaWlpezfv18U3yZNmsSiRYtui7h2JwiJPSaTiZiYGBYtWtTHWXkjBEHAarWKAnjv+KMDBw5gNptRKBQoFAqUSqV4X6VSMXHiRHHZy5cv09XVhcvlwul09rmVSCQ8++yz4rK9RXKlUklcXJwYTxIXF0dqaup95cS/k9TU1LB9+3Z8Ph/r1q3DaDTi8/m4dOmSWDDxbtPd3c2+ffs4d+4cADExMTzzzDP9OmnvFM69ezH9008J2GxI1CpiXv4rItc8RdOVK3R3d4ujCkL1MmQyGbm5uYwdO3ZEiubW1dWxdetWXC4XarWaVatWkZGRcdOv93g8FBUViefayZMns2DBgnumiHWYMPcjAUGgrMkaFLurTVy40jeKy6hVirEeszL0RKqGHyd2tsnKxpIGdl5oxxcISkupeg3PTk/hsUmJt/TevelyeXnvyyY2ljRicQXbRwlRKtbPSuWJKUlEKEfmmOL0+DlWa+ZgtYmDVSZarO4+z8dHKUXBPYQEyBulZXqanhkZegpHR6O9ie/t8QdoMnf3COFO6kwuLvfct7p8uH0BhiPWKWQSJqVEMytDz6xMPeOTopAP4/pNEAQaLd1UtNopb7FT1eYgJkLB0jwj09NjhtzBMNhnXbhiZ+fFNupMTtINEYxN0JKToCXdoBnW+t8NXF4/FqcXi8uLxenFHxBQ9xptoJRLUctlqBRS1D2dFiPR9gkL32Hhe1DCwvfQKS8v58MPPyQiIoKXXnoJuVzOByea+On2ShKiVOz8/kyU8r4Hp1BRB5lMNiKxBU1NTfzxj38E4MknnyQ9PR0IioDvv/8+LS0tJCQk8MILLwxY5T1MmPuFd999VxzCnpqayqJFi25Y/MfutfOTkp9w6MohAJ7OfppXCl5BLr3aQGtra+Pjjz/G6XRSWFgoDksf7onZ4XDw6aefUlNTA8D48eNZvHjxkE7QZWVlVFVV8cgjj4yIABiqDSCVSpk1axYzZswY9EI8FMkS6gBQqVTD3iYul4sPPviA+vp6ZDIZ8+fPp6uri3nz5onb5ejRoxw5coSkpCRycnLIyckhMTHxnhCHIHi8tVgsmM1mOjs76ezsxGKxoNfrWbBgwdcmC7236K3X65k/fz7p6em31AC12+0cPHhQjN9RqVTMnz//pvbTkSDUPLyV/VupVCKVSvF6vVRXV9PS0sLUqVPvybzu3phMJpxOJ9HR0URFRd0z/7f7ha6uLtrb2284GuleoLa2lp07d5KYmMjDDz98V/cDX/MVTP/8z3SXlACgKijA8ON/RNFLgG5vb+f999/H7b4q0mi1WjIzM8nMzCQtLW1IxyRBEDh+/DiHDh1CEAQSEhJ4+OGHxXzhoSAIAsXFxRw5cgQIFpKcNGkS2dnZX5vzRJgwI40gCDg9/h6BzUeXy0u73cOxWjOHqk10Or3ishIgPymKB3PieCDbwNhE7YjHZrRYu3nvyyY+OtmMtTsYp6RVyXh8chLPTk8mOWZ4hWnb7W7+fKyR9080iU71VL2GDXNGs7ogsZ/mMJIIgkBlm0N0y5c2dtGj7ZMdH8mMdD3T02OYlhZDtGbk9QZBEPAGBLy+AO5ek+ea+x5/ALPTy4l6C8WXzP3Eeq1KxrQ0PTN7hPAxA2SYu7x+qtocoshd0RqcHL1GB/QmWiNnUa6RZeOMzMzQD0sEFwSBsmYbuy60setiO42WgSNilDIpWfER5MRryU0ITZHoI26/0Otw+8T8+zabWxS0La7gf87i9NLVHfwPWlxe3L7A4G96Db2d+72jeEJRPZqe24Hmh9z+k9P0jE0a2Ex2PxMWvodAWPgeOoFAgF//+tfYbDZWrVpFXl4eHl+AZb89RqvNzT+uzGHt1OsPzbZYLCQlJd3SOoTc3uPGjeOhhx7q85zVamXjxo04nU7y8/N57LHHwheuYe476uvr2bVrlxipsHDhQsaOHXvDff10+2n+9eS/ctl2GaVUyY8Kf8TK9JV9lmlqauKTTz7B7XZjNBp5+umnr+vKvhlC0SY2mw25XM7ixYuHPNTZ4/Hwxhtv4HK5iIiIuKns8t4EAgExCzg+Pp5AIEB7eztFRUUsXLiwTxGuodDW1kZKSsqQhTyr1cq7775LW1sbKpWKRx99VMx37k1RUZHoOgyh0+nIyckhNzeXzMzM256D6/F46OzsxGw299m/tm7dysmTJwd8jUwm4/nnnyclJWXA5+839u/fz4EDB9Dr9axZs2ZEHfpNTU188cUXYlHC/Px8Hn/8cSAY92W320Xncm8Xs8vlYvHixaKoFMrmDRVNEwShz/0XXnhB/B/s37+fQ4cOIZfL0ev1xMbG9pmSk5OvK1YJgsDp06f54osvmD17NpMnTx6xbREmzJ3G7Xbj9/tFt7fT6aStrU00W9xJBEHAvnkz5l/9CsHuAKWSmJdeRPetbyHpOQf5/X7q6uooLy/vV2xx9uzZYsHOkBnlRjidTt58802xLb148eJbNpJUV1ezbds2cb2ef/55saP+ZtYpTJivA75AgNoOF5Vtdpot3UFxzRUU1YL3rwrdIYf1QGhVMuaMieWBbAPzsgwYIu+MG9Tp8fP52RY2ljSK2dlSCaTFRhCtkROjURAToSBaLSc6QkGMRkG0RtH3OY0ci9PLn4428MnpK3j8QTExJz6SF+emsXSc8a44gC0uLxUtdrLiI+/Y9hwqgiBwudPFsVozxZeCmeOhjogQRq2SmRl60mI1VLc7qWi1c7nTyUC7k0ImIcsYSW6Clpz4SOo6Xey52N6nY0WnlrMwN45l4+KZlanvE4tzLaHRCDsutLPrYhtXuq6K9Gq5lPnZBial6KjrdFHZaqei1YHLO7D4btQqRSE8KVotisOaa277iMdyGQpZcASx0+MPFnbtctNic9PSFSzoeqXraqFXm3vgmhg3Qi6VEK1REBMRjN1xewN0+/w9twHc3sCQIm5uhn98aCzfnvf1i/kNC99DICx8D499+/Zx8OBBsrKyePTRRwF493gjP9tRRaJOxY7vz+x30BMEgZ07d1JWVsazzz57SxncPp+P0tJS0tPTBxx+Wl9fz0cffYQgCCxbtqxPobowYb7KnDp1ilOnTolD8Y1GI2vWrEGjub6Tot3Vzm/P/pad9TuDr9EY+fnsnzMudlyf5erq6ti8eTNer5fk5GTWrl17y+7qkLM6NjaW1atX39CNfiM6OjrYsmULHR0dAMyaNYtFixb1c7/W1dXR0dEhOpBNJhNmsxm/38+oUaN4/vnnr1vYayiUlpayZ88eJk2a1KeI3s1QXV3N+++/T0REBE888cQNt4nD4eDSpUtUV1dTV1cnrrtareav//qvh521PhhWq5UdO3Zw8eJFcd4rr7xCZGQkgiCwf/9+jh8/jkKhICYmRpyUSiVRUVFMmDABmUyGUnn/V6v3eDwcPHiQCRMm3JZYmlBG9qFDh3jsscdISUlBoVCwbds2Tp06dd3XbdiwAb1ejyAIHDx4kJIet+hArF+/XhS+Dx8+THFx8XWX/fa3v01SUhJSqZTKykpqa2uJjY0lMjKSo0ePirnbSUlJfPOb37zvf/8wXx+2bNlCeXk5EyZMuGujWnwtLZh+9n/p7nFPK/PyMPzkxyiv6Qz2+XzU19dz6dIlLl26xOrVq8Uor4qKCg4dOiS6wa/XgdvQ0EBnZycFBQUj9j/u6uri3LlztLW18cgjj/TpTLXZbOTk5JCdnR2+JhuEq27f/q7DLpeXZL2ahblxRCrv7RE2X1Xsbh9yqWTQooeDYXF6RWdtec9tTbtTFHpvBpVc2iMYy4lWKxg3KooHcwxMTo0e0SiKoRIQBA5Vd7KxpIGjl8yDv+AGTEzW8dK8NB7INoTbFEPEHxC42GIThfBTDV3XdSUbIhWikDw2UcvYBC3phoh++5EvEODk5S52Xmxj98UOTI6rnayiCJ5nZFZmLEq5lIAgUNrQxa6L7ey62N7Hka5RyHgwx8DSPCPzsgz9ImsCgkCjuZvKtqsu9IpWR7+CpkNBKgm6yLtv0p0dpZKTGK0iXqskJkJJTERPJ01PR83V+3KiNQoilbJB91NfICAK4d3eAG6fv+c2QLc3eL+7132X1x+837N8t9ePq9frnps1mqX5X+2aQMMhLHwPgbDwPTysVquYyRhqLLt9fpb+5hjtdg8/eSiXpwr7u7p3795NaWkpUVFRfO9737uhWHc9BEGgu7ubwXbfEydOsG/fPiQSCd/61reGlEkYJsy9hsVi4b333qO9vV2cN3bsWObOnXtdR7Y34OWDqg/404U/4fQ5kSDhkcxH+F7+9/rkeQNUVlaydetW/H4/6enpPPnkk0PONPX7/bhcLtxuNwaDQXRaHzlyhDlz5txy9pjX62X//v2UlpYCkJCQQFZWFosXLxadq6+++qrogu+NVColISGhT5bvrVBbW8tf/vIXAFatWkVhYeFNvU4QBDweDxcvXiQhIWFIw8a9Xi/19fVUV1ejUChYuHAhUqkUpVKJz+cbkWw3QRA4efIke/bsEYfMazQaYmJiWLFiBQaDAUDMH4+MjLxh4661tZWjR4+yevXq+yqr3G63o9FoCAQCYhb37cbn8/URpw4dOsSpU6fQaDSo1ep+t5MnTxYLGdrtdux2u5iTHyrkGJp0Op3YieTxePD5fLjdbiwWixhnE7p95plnUKvVAOzZs4fTp0/3WU+lUsmcOXOYPHlyOMc3zF3D2u3l09IWpqRGMyH51tv3gUCAffv2iZ1NWq2WpUuX3pVC6oIg4Ni2DfMv/oOAzQZyOdHfeYHo9euRDODKvja6aMeOHZSVlYnPKxQK0tLSMBqNGI1GcnNz78wX6cHv9/Pqq6/2cagnJiaKEV9StRaz09tPEAhd8IdEA5c3gLtHGPD4AyikUjQKKaoe559KHhou3nO/17Dy0HDx0PNK2cjkrt4KLq+fHefbOFnfNWS3LwQFpSV5cayekMiMDP1tKzZ4L+ELBLB3+4nWDD+e71r8AYHqdgenG7o402jldGMX9Z1B0U2jkBKtUaCPuDqFhDDxcY84JpdKqG539IqRcNBqcw/4mRFKGTnxkaTFRvS8n7zHQdpfZPsqFDFssrhosnTT1du57vTS1e0L3rp6RUe4vGJxydmZel6cm8a0tJi7/n+8X3D7/JxusFJ8qZM2m4csY0RQ7E7UYtQOvTPXHxA4VW9hZ4+o3WG/ehyPUsmZlh7DuWZrn1z0CKWMBTlxLBtnZO6Y2GF1IDk8PqrbHJS32qlsdWByePqKxL6r4nC314/LM7DLWquSkahTXy3oqlORqFMzqleh15HKqb+dhDO+w8L3oISF7+ETqgzfm40lDfzrzmqSotUUvTKjXw+hx+MRs1AnTJjAY489NqTPKy4uZvz48Tc13FIQBLZt28bFixeZMmUKq1atCp80w+ByuWhubu5zsXrlyhXxhKFSqcRs2nuFkpISdu7cKV68RkVFsXr16n6RQYcPHyY+Pp6cnBxKWkv45elfUmerAyA/Np+/nfK35Onz+r2/2+3mjTfeEAtlPfbYY6KTTRAEWlpacLlcfQrSHThwgObmZpxOpzh1dwez2dRqNT/84Q9vmyBYVVXFjh076O7uRqPR8Morr4jP7dy5E7vdjl6vJyYmBr1ej16vR6fTjfhveuzYMQ4dOnRT0R6VlZXExsai1WoJBIae/3Yj6uvr+fzzz1m+fDkTJkwY9nHOZrPxl7/8hfr6eiCYw7p06VLi4+OH9X6CIPDnP/+ZtrY2IiIiePjhh8VCbHeakRxGb7VaeeuttzAajaxatequibv3QjTApUuXqK+vx2w2Y7VaSUxMZM6cOV/ZQpxh7g/2VnTw0+0VtNk8SIA1U5P4/xZmolPfegZrY2MjRUVFYiHbcePGsXDhwmEZOW4VX3s7nf/2b7j27QdAkZ2N4Sc/RpXX/zzfG7fbzeXLl0U3uMPhEJ9TKBSsW7fuliLOhoPVaqWyspLKykpxRFuIGl8sB703VxB3pJDA1UzVnuHxvTNVQ8Pos4yRLMkzMsYYOWKfXdXm4KNTTXx+pnXQYfZKmVQUQEOCqFYt41R9F5c7r16jxUcpWZWfwOqCRHIS7tzxWRAE6kwuShu7ONtkxR8QSDNEkG7QkGGIIEWvuWEswo2wdgdjJyp6cokrWoPF99y+ABFKGekGDWmxEaTHakgzRJAWqyHdEDFoFnOXy8uZRitnGrsobbRytsl63ZzjkSAlRh2MkUgIOmxzE7Sk6NUjnsH9VUEQBFzeYOdVzG3IzQ5z+/AHBE43BJ3guy60095LBNeqQmJ3PHPG6FHJ73zb2eu/6pbu9gXQRyhuqgjpV4Gw8B0WvgclLHzfGm63G5/PhyAISKVSur1+lvzmGCaHh3/+Ri6PT+7v+m5qauL9999HEASeeOIJxo8ff1OfVVpaymeffUZ0dDQvvPDCTYkNXq+X8vJy8vPzUSqV4UKXX3NsNhtvv/02MTExPPXUU6Jo9Itf/KKfSCuXy1GpVKSlpfHEE0/cFYHJ4XBQVFQkFriTSqXMnTuX6dOn91ufqqoqNm/ejEvuoiWvhZO2YP6yXqXnlYJXWJm2Eqnk+hcXjY2NXLx4kZUrV4r/k/b2drZs2UJDQwMqlYq/+Zu/EZ3VH3zwAXV1dQO+l0aj4eWXX76tnQc2m43z58+jVCqZPHnyXfl9BEFg8+bNVFdXo9Pp2LBhw4CC36lTp9i6dSs6nY5nn312yE76wdi8eTNVVVUAZGVlsWrVqmEVIPN4PLz++us4HA7mzZvH5MmTb/k3NJlMbNmyRRypMGPGDBYvXnzHChy2trZy+vRpzp49C8DMmTOZMWPGsCMKQqK32WwmOjqab37zm2GRN0yYewSz08P/3VHFtnNtABgileIQ7Ditkh8ty2L5uPhbPl94vV4OHz7MiRMngOAoh7Vr15KQkHBrX2AYCIKAc9duOv/93wlYLCCToVu3jpgXNyC5iYtgQRBoa2sTO7FSUlKYNWvWHev877B7ONPUxZkGK2earJxrtoLXzWiZhTSZmVFSK6d9SdRIU1ErZETIIVHShUsdh1Ih71PwS9VLoFbKpHj8wWHjLq+/15Dyq8PJXV5/j4v86vzh5q5mGSNZmhcs9JZlvPFIqIFw+/zsutjOhyeaOdXQJc5PiVHzUH4CCTqV6PYNZSEH3b4DO9MFQeBsk5XPz7ay/XwrXa6rAnpugpaHCxJ4aELCsByeN8Lu9nG2ycqZRiuljUGH9LX5wr2RSiA5RkO6IShKp8dGkNYjiifoVEglEgKCQH2nq1fMQTAWpHc28FCI0SjEzxvdI4Y73D5KG62cbujiUoez32silDImJuuYlKJjUmo0Bck6ZFIJZqdXnLpc3j6PgwXwrj52+/xkxgWzkscmaMlJCN4fKeHNbDZTV1eHQqHAYDAQGxsbLh4b5q5AZNsrAAAgAElEQVQREIIi+InLFnITtMzuiT0Jc3sIC99h4XtQwsL3rXHy5EkOHTrE7Nmzyc/PB+Ct4np+vruGlBg12/6qv+sbEPNGNRoN3/ve9wYdAu9wOPjd736Hy+Vi/vz5zJgxY1jrq1QqkckGz13qjc/no6KiAovFwuzZswHuusvuTtPc3CwOqU9LSyM1NfUr15gKid4mk4nRo0eLwrcgCPzhD3/A4/Hgdrv7uXEzMjJ44okngGDRvv379zN58uRhu2BvBovFwuHDhykvL8fhcCCRSCgoKGD+/PlixMC1uLwufrr9pxzoPoBf6keKlCezn2TDuA1EKfv/vwRBwGaz9TnuqdVqpFIpfr+fw4cPc+jQIfx+v9iIfuaZZ8SL4aqqKpxOJxqNhoiICDQajRixcC+55W83brebjRs3YjabSUtL47nnnhO/fyhbef/+/QBMmDCBpUuXjvj28fv9HD9+nOLiYvx+P0qlkkWLFjFt2rRBj1UtLS3Ex8eLESxXrlxBo9EMSzi/Hj6fjwMHDogRAYmJiTzxxBNibMrtoKmpiaKion7OQQju588888yQi29arVbefvttOjs7iY6OZu3ateF2QxgArnQFh3DnJER+bV16dxNBENhxoZ2fFVXS6fQilcD6WaP5qwfSOdNo5Z+2V1BnCrpf546J5R9W5pCqv3WHdnNzMzt27MBut/Pyyy+LHXrV1dWoVCpSUlLuWHvRbzbT+e8/x7lrFwCKjAwMP/4xqoKhFZMeCt1ePyV1Fjw3mZMaotXm5kyPKNpo6e73vFYloyBZx8SUaMYbVYxLiiJRH2zHXLx4ka1btxIZGUl+fj4TJkwYUXe6t5dYHopR6b4mWzUkmNvdPjE3t3fsSGZcBEvzjCzNiyc34cYieJ3JyYcnm/nsTAsWV9CAIZNIWJBr4KkpScweE3vLxxSPP8DBKhOfn21hf6VJXFepBGZnxrK6IJFFY+OGHJkREARqO5w9ruigO7q6zcG14oJKLmX8qCgmpehQKWRcNjmp63RSZ3LhvIGTWi2XkhSj5kqX+7rF7ZKi1T1CciS5iVpy4rWMilbRZOmmzuTics/n1PfcXi9a5FrSYjVMSolmYoqOyanRZBkj77moGEEQuHLlCtXV1VRXV2Mymfo8P23aNB588EEAuru7OXfunFik+naMggwTJszdIyx8h4XvQQkL37fGoUOH2Lt3L0lJSTzzzDNAsJrz0t8U0+n08rPVY3l00qh+r/P7/WzcuJH29nays7N5+umnb9gw3LRpE2VlZcTHx/Otb31rWCdrj8fD9u3byc7OZtq0aYMu39LSwunTpykrK8PlciGTyfje975HREQEcrmcY8eOYTQag/mD92njwePxsHnz5j4F7iAo/CckJFBQUMCsWbOG/f6BQICuri7a29vp6Oigo6OD6Oho5syZM6KO0N6it06nY82aNcTExAy4rM/nw+PxiJNMJhMFuoqKCj7//HMA8vPzefDBB0dUvPN4PGJhOZ/PR2pqKt3d3axYseKGTrLDVw7zq9O/otHRCEBcdxyTTZN5aMZDzJw5s99/SxAE9u3bx7lz51i7di3x8fGiYN3Q0NDHoZuZmcmSJUvCx8cb0NHRwTvvvIPX6+WRRx5h4sSJBAIBtm/fzsmTQef9zJkzmTt37m0VQUwmEzt37hTF3tTUVFavXi0WLeyNx+Nh7969lJSUsHjxYiZPnnzb1itEdXU1O3bswOVyoVAoeOGFF0bMISkIAm63G7VajSAIdHR08NprryGVShkzZgwFBQW43W6OHj2K2+3mpZdeQqPRiCOHBvtdrhW916xZM6KdA2G+WnTYPRyvM1NSZ+ZYrUUsspQco2ZVfgLfKEggM27kog/CXJ92m5ufbq/ki4pg4ePs+Ej+5Rtj++R6e3wB/njkMm8crsfjD6CSS/nuvDTWzx497JiFEIIgYLFYRPFVEAT++Mc/YrFYiIqKIjc3l7y8PBISEvALApWtDi622EmOUVM4euSLzzn37sX0r/9GoEcE08ydg+7b30Y9adKIfk5Vm50ffnKemvb+7tihIAGy4iOZmKxjYkpQ7M6Mi7iu2Hv27FkOHTqE03n1c1NTUykoKCA7O/umoxD9fr/YzmxtbWXHjh0IgsC4ceOYMGHCkKJrulxe9lea2HWxjcM1nWI+McDoWA1L84wsHxdPXqIWiUSCxx/gi/IOPjrZREmdRVw2UafiySlJPD55FPFRt8dcYnF62XGhjc/PtlDaaBXnh7KqAUKbXoKkz+PgPMR5XS7fgG7ulBi1+FtOStGRm6AdcD8XBIEOu4c6k5Nak4s6k1MUqhvMrj6dCSq5lOz4yKuF93oc00ONL3J6/NR3uqjrdHLZ5ORyp4vLJicKmZSCFB2Te8Tu2Mh7X0Dq7Ozkv//7v8XHUqlU7NDv7Oxkzpw5FBQUAMFCtR988IG4rFwuR6/XExsbS0xMDDk5OWLxW4vFQkVFxYD1QCQSCcnJycMuVB8mTJjbQ1j4DgvfgxIWvm8Nu93Or371KwKBAOvWrRNdsP99tJ7/t6eGVL2GbX81HfkAwnBbWxuffvopixYtIj8//7ricVVVFe+99x4SiYRnn31WPDEPldLSUnbv3o1UKmXdunWMHj263zJOp5OysjJKS0tpaWkR52u1WvLz8yksLCQiIgK73c7vf/97BEEgKiqKyZMnM2XKlPtOCAkEArz55ps0NjaSl5eHVCqlsbGRrq7gMMzCwkLRwer3+9m5cyejR48mLS2NmJirhUh8Ph8SiUQUmS5cuMDBgwcxmUz4fP0bzStXrrypzombYSii92CYTCYOHz5MZWUlgOjEfuCBB4btOPL5fDQ0NFBdXc2pU6fEnOzU1FTmz59PQkLCdWN9muxN/LL0lxy+chgAo9rI9wu+T2RDJMXFxQBMnTqVBx98UPwtAoEAO3fu5Ny5cwAsW7aM6dOnI5VK6erq4j//8z8RBIGIiAgWLlzI2LFjv3YjHIZDRUUFdrudKVOmoFQq2bRpE+Xl5QAsWrSIKVOm3JH1EASB06dPc/DgQbxeL6tXr2bSpEl9fsOqqiq2bdsm/o8nTZrEkiVL7sj62Ww2tm3bhkwm48knn7zlEQJ2u50zZ85w+vRpDAYDjz/+uHhMuXjxIqNHjxYLPMLVzrbeItWHH35IdnY206dPH3Aki81m46233qKzsxOdTsfatWvvu2N9mBvT5fLy5WULJXVmSmotVLc7+jwvk0hQyiW4vFedr/lJUXxjQgIrxicQp721ixGnx8/5ZisVbQ6iVHISdCoSooKFlyKUd7+wWUAQ7rjTXRAENp9p4d93VWPt9iGXSnhpXhob5qZdV8yuMzn5p20Votg4xhjBTx7KpXD08NoEA+HxePjiiy+orKzsU6zRLdNQ7dVT4dHTJQRFVa1KxtwxBh7MMTAvKxZ9xMhctPotFsy//k8cW7dCzyg21ZQpRH97PepZs27pnC4IAh+dauY/isoZ31zOOGcrLfnTaDMk3/R7RKnlPY5uHROSdESph2Z08Pv91NTUcPbsWWpra8X5KpWKDRs29BGtnU6naKzobbKYOnUqc+bMAaCrq4s33nhDfI1MJiM3N5fJkyczatSoIW0vW7eP/VUd7LrQzqHqTjz+q8eElBg1U9NiOFRtwuQIurulEpifZeCpwiTmZRnuqKu4zuRkS1krW862DOi8vxnUcinjk6JEd/TEFN2IxKf4AgGaLN00mbtJ0KlIM2gGvJb8OtDd3U1NTQ3V1dUolUpWrFghPrdx40aio6PJzc0lOztbLDguCII4gjUQCNDc3ExxcTEmkwmz2Yzf39dBv2zZMlEk7128fSAWLlwoFnT3+/34fL6v1ChgQRDo7u7G4XDgcDjQ6XS3vaZBIBC4b01yYe4NwsJ3WPgelLDwfet8/PHHXLhwoY944vD4WPqbY5idXv7tkTxWFwwsVvv9fjF6RK1W92tcejweXnvtNbq6uigsLGThwoXDXk9BEPj888+prKxEq9Xy4osv9otYOXr0KLt37waCDd+srCwmTJhAWlpanxOWw+HgxIkTohscgiJoVlYWU6dOJSsr6yt5grPZbBw9epR58+ahUCjwer20tbUhlUr7uEZtNhtNTU3o9XrRsXmtmyAqKgqj0YjFYsFsNrN27VoyMjIQBIFz586xZcsWILid9Xo9BoOBmJgYHA4Hy5cvR6lUIpffWlX2kRS9e9Pa2sqRI0eoqakBgi6LSZMmsXz58iHlyAuCwC9/+Uvsdrs4TyaTsXLlSnJzc6/73QNCgNdK3+Hdqj8QkHiQSeR8M+dp1uetJ1IRFPlOnDjBvn37APjmN79JcnIyLpeLHTt2UF1djUQiYcWKFUydOlVsJPv9foqKinC73SxYsOCOFOtyeHx8dLKZj042E6WW881pyawcn/CVzoHbu3cvJ0+eRCaT8dBDD5Gbm3vH18FqtXLu3Dkxq1WpVGKz2di7dy9lZWUAREdHs2TJEjIyMgZ8j6o2B8dqzShkkj45qn1uFdK+GavygfNGexMIBPB6vX0KqJaUlCCXy5HL5chksj73s7KyxIgfq9WKw+HAarVSWlpKRUWFWPRVpVLx3e9+d0gNv8rKSj777DMgmE0/a9asfgJ4fX0977zzDhqN5oaid5PFxY7zbczLMtzR4mEjSUAQ2FvRwZ+O1nOpw8no2J7iYIa+t0MVqkaSO1HU0+Hxcaq+i5JaMyV1Fi5csfUbvj82UcuMdD0z02MoTItBLpWwr7KDLWdbOVzTKboVZRIJs8fo+caERBbmxg0qVAcEgTqTM1hcrSlYWK2q1XHd7GGd+qoQnqgLiuGJojCuJlGnQqsaWsTb9RAEgVabm/IWO+Utdi622ClvtXGly83isUZ+/FDOoIXjRoImSzf/tK2CwzWdAIwfFcW/rB5L7k387wRBYEtZKz/fVU2nMyg+Pj55FH+zeMwtFVLz+gNUtTko7SmIV9ZgRrC2kiHrZLSsC7kkKEJdEuJxJhRQ0+4QPx+CTtpJKTrmZxt4MCeOnPih50T3W6f6Bqxvv419yxbo6RBUjh2L7oVvE7FgAZIhtlO77C7++7XP0B49wOwrZUR5e4onSiRELFtKzEsvoUhLu6V1Hiqhc11ZWRk6nY6nn35anL9x48Y+zvDe5OTk8PDDDwPBfaKmpgan00lpaSmtra3icvHx8SxbtmxYphuH28eBKhO7LrZzsMpEd69IGKNWyROTR/H4lCSSogeOsLtTCIJAdbsTt8/f87hn/jXLXItKLmOMMWLERy2ECXLx4kXOnj1LQ0ODuP0VCgWvvPKK2EaSSqVDjvD0+/10dnaKnUBdXV3k5eWRnBzsvGpra+PLL78Ua/oEAgHx8wOBAAUFBWKx+3PnzrFnzx7y8/OZMmUKsbGxI7wVbh5BELDb7WJEZOj6NHT9b7PZRLG7t/AfFRXFSy+9JG7DkWhjuFyuPtdQn332GQ6Hg6ysLLKysu7qdgpzfxIWvsPC96CEhe9bp7a2lj//+c8oFApefvll8U/3h8OX+dXeS6QbNGz53oxBXQxut7uPSxiCAtKhQ4fQ6XSsX7/+lv/QHo+Hd955B5PJREpKCunp6SQlJZGTk4PP58NqtbJp0ybGjx9PXl7eoMKfz+ejqqqKM2fO0NDQIM5fsWLFTeXr3iu4XC6OHDlCSUkJPp+PGTNmMH/+/CG9R2dnJ2VlZTQ2NtLS0tIvK7u3Q8But9Pa2kpsbCzR0dHX7STw+/1UVFRQWFg4rG3Z0NDAxo0b0Wg0IyZ696a5uZkjR45QV1dHYmIi69evR6FQ9FtXp9NJbW0t1dXVdHZ2sm7dOvx+PxaLhY0bN2Kz2YCggD5r1ixmzpx53W1yoeMSf3vwx5j8Qde5zzEGuflxfvfYIqam9f1+ZWVleL1eJk2aJA4P7u7uRiaTsXr1ajIzM9mzZw9z5swhKipKbNzeif3W4vLy7vFGNpY09hsqG6dV8vTUZNYUJn0lhptei9PpZNOmTcyfP3/AkSV3A5fLxauvvgoEO+kKCwuZM2fOgMfU2g4nvztQS9H5tn5i32BIgDHGSNbPSmXVhISbuiDeuXOnWHxyIF588UWx4+3AgQMcOXKkz/OjRo2ioKCAsWPHDvkcEQgEKC8v5+jRo5jNZqC/AO71eqmtrUWr1V73GNJkcfHsm6fF/NBJKTqenJLE8vHxQ85NvRt4/QG2n2vjD0cuD1jY61oMkco+Yni6IYK02AgSdEqiVLfWYQlB1+TlzqvD0Ot6bi93urB2+1DJezpc5LJrOmWkaBSyPp0yKrks6PDqVdiuuyej1+UN4Pb5g7e9snvdA2QWZ8ZFMCNdz4yMGKalxdzQndvp8LDjQhtbzrZypql3nICMJXlxfGNCIjMz9MikEiwuL2d7RO6yHqF7oPiARJ2KvMQo3D4/LVY3LVb3DfNxexOhlJGo6y2Mq8XHiT2PrxXHfYEAdSYXF1tsotBd3mrH7PRe93OSotX8v8fHMTHl9oyICAgCH51s5j/21OD0+FHKpHz/wXTWzUodshvU4vLyqy9q+PjUFQD0EQr+55IsVhck9NkOgiDg8gbEYnVmpwezK3Q/ONW0OzjXbOsjbMLV4+HEpAiylFakXU3MnzWdtLQ0AoLAieoWjl6s52CLlPIWe5/XJupUPJhj4IHsOGakx6C+heOIr7UV6zvvYv/kE4SeUWXy9HSiv72eyGXLkNygw14IBHCXnqF+0xbce79A1311PaVxcSjHjKG7pKRnhpTIhx4i+sUNKJJv3gE+EgiCgNPpFEf4BAIBfv3rX+P3+4mJiSEuLq7PFBsbO+BoOkEQxKjDiooK/H4/L730kmiU8fl8w4ric3r8HKo2UdpopXB0NA9kG8KCcZgB8fv97N27l9LSUnFeXFwcWVlZ5ObmkpqaKkaQ3C1CZplNmzb1icPMyMigsLCQ9PT0O7Z+Pp+Pc+fO8eWXX2KxBEfzpKSkiJ1gAK+99hoOR9+RWmq1Go1GQ3p6OosXLwaCx40//OEPxMfHk5mZSUZGxk3pQ263m/r6eurq6qitrcXv9/Pd734XiUSC3+/nt7/9LV7v1XNnbGwsY8aMISsri6SkpK+kWS7MvUVY+A4L34MSFr5vHUEQePXVV+ns7GTp0qVMnDgRCDodFv+mmC6Xj79fmsW6manXfY+Kigp27tzJ/PnzxQKSEHRWFxUVMXbsWLF3+XrrADdXdLKzs5ONGzeKQ1BTU1NZu3btTX3XG2EymThz5gyVlZU8//zzaDQa5HI5p06doqOjA6PRKE6hoWh3G4/Hw7Fjx8TcWwiKSA888ACpqdf/vQbD6/Vy5coVLBYL0dHRGAyGIX9nQRDYvn07Fy5cICcnh0cfffS6hR1vtB7XClaCIHDF6iaxp1r8SNDY2Cjm3kGw4XTs2DGkUik1NTU0Nzf3WX7dunVUVVXx5Zdfig2hvLw85s2bd103qcfv4x/2/5H9HRtB6kPwK0mXrEFqn8nZJhsKmYSfrc5j1YT+mcm9s8kNBgPLly/Hbreza9cuXC4Xo0ePZs2aNSOyLQaj3ebmrWMNfHiyWRRt0mI1vDB7NGanl3e/bKTNFvxvKmVSVhck8K0ZqWTHf7XycofSgWB3+2i2dJMeF3HLebPXIxT1ZDQaWbZsGaNG9a+9UN/p4vWDdWwpayEUrTknU0+EUk6376pg2FssDAmJvbM4Q4yKVvHtWaN5fPKo64o2gUCAkpIS0YHj8/nw+/197q9atQqtNujkLCkp4dSpU6ITvKCgYMAM86ESCAS4ePEixcXFogBeWFjIkiVL+g0JvpZ2m5tn3zpNg9mFIVJBl8snbg+dWs43ChJ4akoS2fH3ngu82+tnU+kV/nS0geauoCAWpQqOvFiSZ6S5q1sUnutMwexVk8Nzw/eUSSToNHJiNApiNHJiIhREaxTEaBRE9zyO6XmsUcrEz7jcS9zuvIG4eqdIilYzMyModM9I1w87c7fO5GRrWStbylrFLHAIOj4jVTKx6GJvQvEBE3sK/BUk60jQ9f98u9tHi9VNa48Q3mZz9zzuprXnfperv4g+EL3FcVu3j8o2x4AdADKJhExjBGMTtIxN1JKXGIVUAv+wpZwGczdyqYQfLMhg/ezRIxp/Umdy8o9byjlRH4xompIazT9/YywZcRG39L4n6y3807ZKMb5mQlIUWpW8j7g90HYYCF1PhMeklKu/241GR2zfvp3z58+Tm5vLuMKZnGzxcqDSRHGtuc9nquVSZmXqWZmfwMLcoRchDOE3m7F98AG2Dz4k0NPhLhs1iuh1zxG5ejXSnjaWIAh4zp/HsXMXzt278be1ie9hV0WiWLiI0Y+tQjVpEhKZDE9FBZbXf4/r4MHgQnIZ2kceIfqFF5CPUB2H4dDe3k50dPSwxQCXy0VjYyPZ2dnivI8//hi/38+kSZPIzs6+bhRdmDDD5fjx4xw4cACAGTNmMGXKFOLi4u5JcVQQBC5dusSxY8eorq4W58fGxjJlypR+UXsjicfjobS0lBMnToiitkQiITIyklGjRvHII4+IueTl5eXIZDKioqKIiopCq9WKRqWQq93v91NfX897773X53OMRiOZmZlkZmb2Eanb29uprq6mrq6O5ubmPoYvqVTKCy+8IHaw2Ww2KioqqKyspL6+vs+yGRkZPPHEE7dlG4UZGdxuN/v27aOmpgatVovBYBBHqycnJ/dLELgbhIXvsPA9KGHhe2QoLi5m165dxMfH89xzz4knuT8eucwvv7gEwGOTRvG/V2QP2GA/c+YMu3btQiaT8eKLL4pZ4W63e1DR4YuKdv5lexUJOhX/9c2Cmxpme+nSJXbs2EFCQgL5+fkjGkVwbY7Xhx9+SH19fZ9l1Go1cXFxGI1GVq1adVcaM6GGVWgYqNFoZN68eWRmZg7YSGmyuDBGqW6bMDcQZ8+eZc+ePfj9fvR6vViI8UbYbDZcLhd6vb5P7zoE3WI/2nyRLWWtxGgUTE+PER18GYaIEWucFRcXc/jw4T7z4uLiSE9PJz09HavVyq5duwBISkpiwYIFJCUlXff9tpWX8W+nf4ZHHsyyVHhy+fvJP+Ib4/Lo9vr5X5svsutisBjl/1iQwUtz0xAEQdyvQjnGnZ2d6PV6VCqVGNNiNBpZvnz5sLPzb5ZGs4v/PlrPp6UtYuZlboKWF+emsTTPKI4I8foD7LzQzp9LGjjXbBNfPztTz3MzUpmbFXtHsmQFQaC00crWslbkMgmLc+OYMjpmxPI3fYEAxZfMfH62hT3lHbh9AZQyKeNHaYMFoVJ1TEyOHlDsGi5WqxWtVtvveNNk6ea/DtXxaWmLGKewICeOVx5MJy/x5hpzXn/QJetw+9l6rpW3ihtEgdQQqeBbM1J5emryXY3IuBl6C+But5unnnrqhkWcLC4v694+TVWbg5QYNe+sn4JEAp+WtvCXU819clMnp+h4qjCZZeOMt+TeHAls3T7eP9HExpIGMWvWEKlk3cwU1k5NRqu6/u9kd/u4bAoWBwuJ4Zd77tvdN+dAvhkMkUrSYjWk9TjL02KDznJDpBK3r7drO9j5EnJrhzpneru7pZJgXI9KIUPT4wLXKKSoFFI0clnwViHrcZLLiFTKiIkY2cgOQRA422Tl87OtFJ1vw+K6en5KN2iYmBzMyC1I1pEdHzliblCX1y8K4y3Wblq63LTY3LR0BcXxK13uAR3mEHSoj02IJG9UlCh0ZxkjB9x/bd0+frKtgqLzQZF07phY/vWRPAy3OGqn1ermjcOX+fhUM76AgEYh44eLMnl6WvKInQs8/gBvFzfw+sG6fq7tEAqZhNgIJTERCvS9phiNgqQYNZNSdKQbrl+U8VoEQWDPnj2cOXMGQRCQy+VMmzaNGTNm4EPK8Voz+6tMHKgy0WJ1i6+LVMpYOs7IwwWJTE2LGdY2CNjt2P7yCdZ33xWLYEoNBnRPryXgcOLctQtfT5FkAIdczZGkfJyzH2T9y4+i0w5sQnCXlWF5/fd0HzsWnKFUEvX440Svfx7ZCHRQ3g6cTicNDQ00NDTgdDqJjY3FYDCQmJjYL/fX4XDw+9//XhStIiIimDJlCoWFhbdFcAhFsLS2tpKWlhZ2hn5N8Pl8bNq0icLCQvLz8+8Jo9TNYDKZKCkp4cyZM3g8nttuqvn0009FsT0qKorp06czZcoUcbT2cLZbIBDgypUrVFVVUV1dTXNzc5+Yn9mzZ4u1AUKxhiH0ej0ZGRlkZmaSnp5ORMTA15Xd3d1UVlZSWVlJdXU1M2bMYMaMGeJz27ZtY8yYMSQlJaHVatFoNF+ZfeB+xGQy8cknn4h1ka5lxYoV5OfnA8Eo1HPnzomieGxsLFqt9o78fmHhOyx8D0pY+B4ZnE4nO/5/9t47vKk7z/5/SbJsufdu3BvGpplu09Ig1IQSwqQAmbCZzWaS2Z3d2fadnZ397s6W387sd3Z3MglpE8gkhNAhCcWEAKY7tnE3Bvci2bLlIllWu/f3h9CNhW3AxqYkPs+jR7Z0Ve7VvZ9yPud9zpEjpKenExkZKV3gNkHk7TO1/O5ULSKQFOLJf62bRHyQs3pTFEX27NlDTU0NYWFhrFmzBn9/f6dgoJuhN1n5t6PX2FvYIj02NcqHd5+f+kCEPTlQWVmJWq2mvb2d9vZ2urq6pE7U09OT1157DblcjlwuZ8+ePXR3d7N48WISExPH9HsdOHCAwsJC/Pz8yM7OvmWI4c68Jv7pi6skBHvwvxsyiAm4O4XVcKBWqzlw4ADd3d0olUpWrlxJRkbGoNs6PL17e3vZsGHDAMLqP49f4/3zDYO+NtjLldlx/sy+QYZH+Y/c37q2tpb8/HxcXV0lsluhUEiDMUEQOHDgAGlpaSQnJw953Bs6DfxlzlvU2PYik1tBcGNx0Gb+aeEmXF2+PccFUeTXOdf54HwDcgQ2RBuJsGl44YUXpE6wpaWFXbt2SdeUQqEgKyuLGTNmjKliqarVwKp4GbYAACAASURBVLtn6/iipFUiVadF+fAn82NZkBgw5L6Lokh+QxfbLzRyorJNUiDHB3nwwuwoVk0OGxMLiU6jhUNFaj7LbxkQYBfoqeSx1GAenxjMrFi/EQUtXdXoOVCk5nCxhjb9t+2bu1LuFIznQJiPG1OifJga5cvUKB8mhnmPmv/5zYQS2MmqHy+KIyPy7vpDk9XGvkI1752rp+kG+evlpuAHM6N4YXbUXZNhYw1BEKivryckJAQPj8HbO4PJyks7Cilu7iHE25Udm6czoV+7IYgi56t17Pqmma8qtdL576NyYdXkMNZPj7jnlQztBjPbLzTwSV6TRFJH+ql4aW40T08Nu2tC3mS10dlrpctoodNx67XSabR8+1i/53vNNkK93W5YpXxLckcHuN+SfH/YYbYJXK7tRBBFMiJ97spbejTQa3aQ432ou02olAomhnkRHeA+LGJVFEV2F7TwqyNVmKwCQV6u/MfTacyJG35wWLvBzLu5dXyS1ywtlmYnBPAPy5Lvqn++FZo6jZy51oGHq8KZ3PZQ4qEcHZ/0m6HRaDh58qRkl+ft7c3ChQulMZkoilRqDBwrb+VQsUZqT8FeVbMyI4xVk0MHjKvvBEJfH4aDB+n6cDu2lhbn59xUXAibxPGwDEoi0vjrFRNZM/XOgh778gvofPNNTPn5AMhUbnhveBafTS+iGGXLuZGiq6uLvXv3otVqB32+f26R2Wzm0qVLBAUFoVKpaGhooLi4WFKZenh4MHfuXKZMmTKq46mcnBwKCgqk/z08PEhMTCQ5OZno6Ohxtfl3CM3NzU5BqnK5HDc3t4eS8Ozr66OgoICAgACpeliv13Po0CHCw8OJiIiQSN3hoKenBxcXF2kuVVtbS05ODnPmzGHq1KmDWk3eLQwGg0SCV1dXs2bNGkmoVF9fT35+PvHx8SQkJBAYGDjshSmr1YrFYkGhUGCz2SgtLeXzzz932kYul+Pp6YmXlxfz5s2TKuANBgOtra14eXnh5eU1aFbaOO4eJpOJDz/8EFEUeeKJJ5DJZJI/fkdHB48++qjkJ19QUEBOTo7T6z09PUlNTSUtLY3Q0NBR+Y3UajWFhYX4+/tLiybjxPc48X1bjBPfowdRFKWgx5txoUbHX+0to91gxl2p4B9XJLMyw1lhqtfr+eCDD+i74T+YkJDAihUrBr2I8+o6+dsD5TR19iED1mdGcKS0le4+K9kJAfzvsxn3VJk8HFitVjo6Omhvb8dqtTqRuG+99RY9PT0olUpefvnl26qb7+Y7aLVaampqSE9Pv+XgOa+uk5d2FDqV7v/nmjSyEwPH5LsNht7eXg4fPkxdXR1gL/17/PHHnb737YIsP7rUyK+OVAHwz6tSiQv04GKtjos1OgoauqWJtQORfipmx/pLqvCRKm87Ojr4+uuvaWtr46WXXrqj8EujxcZ/nT7PvqbfIne3VwsEydP59cJ/JDVoaAua949cpvrKeXzldnXY/IWLmTNrhvS8RqPh4MGD+Pn58dhjj41pinlxUzfbcus4UfntpDI7IYA/yY4hM9p3WB1/o87IR5ca2VPQguGGPYqfu5JnMiNYnBxIapgXbi4jnwCKosg39V18lt/M0bI26VxQuchZOsl+DX5VqXVSRfq5K3k0NYgnJgYzO87/lu2NVm/mixIN+4vUTj6ufu5KlmeEsHpyGJPCvanrMN4ItLOHo13V6LnZQUSpkJEW5s2UKB9SQr0I97V79Yb7ut3xMWjTm3jvbD07+xFKs2P9eH1xPNMmjK43r8Um8GWp3Tv6epu9ukTlImft9HC2zI2+76FeI0WfxcYrHxdxua4TP3cl2zdPIzF4aOKprcfE3sIWdhe0OBFX0yf4Mj8xAJtg96B2+EubLAJ9Vhtmq0Cf5dvHHY+5uSjwc3fB11154+Zyw0pk4N++7kp0vRY+OF/PnoIWyUIhIdiDrVkxPDkpZNxrdhyjiqpWPX+xp5Trbb3IgB/Nj+FPF8be0WJhp9HCB+fq+ehSE0aLvb2fPsGXNxbHMTN27Pqs+wlRFLl69Spff/013d12T/hHH32U6dOnO20niCL59V0cLFJzpKzVqcIiI8KblZPDWDYpZNjZGKLFguHoUfT7DyDz8eHryKn8W1cwJhc3kkI8+fXaSbds34bap75Ll+j83ZuYS0oAkHl64vODjfg8/zzyOywNd2S9mM1m3N3dnW4qleq2ftsmk4nGxkbq6+vx9PRk1qxZ0vs6fHeDgoKYMGECvr6+Uujf5MmTpfG5Wq1mx44d0nvK5XL8/Pxwc3Ojs7NTmvv0t3scDdTV1bFnzx7i4uJoaGiQLAnBXjn6yiuvfC+Jju8SRFHk0qVLnD59WspXUiqVdzRXeBjgCDM/ffo0586dc3rO19dXIsGTkpKGtIvQ6XRcvHiR0tJSZs2axfz58wG7otvFxeWeHSubzSbZooBdQDTaXuvt7e2UlJRQVVWFTqcbEM67evVqkpOTAWcbS8f3CQkJITw8nPDwcGJiYqTMg3EMDz09PU5Kba1WS0BAwKC2rf1DYBsbG6moqJDEjp2dnU4VA+vWrSMuLm5E38lsNlNRUeEUwOzl5cUrr7wikd7fx4qgceJ7GBgnvkcXZrMZq3Xwktk2vYmf7S3jYq09eGL99HD+dkmSk8KsoqKCQ4cOAXbv7Q0bNjg1MGarwP98XcP75+oRsXtw/uvqVGbG+lPQ0MXLHxVitAg8OSmE/3g6bdRsCe4VOjo6OH78OPX19QQFBbF169ZRHdRqNBqCgoKcBs+3grq7j/Xv5NFusPBoShBavZkrTd3IZfDnj8Tz0rzoe7a6LAgCubm5XLx4EQ8PD7Zu3SoR27cjvY+Vt/Lnn5UiAj95JJ4/yY5xem+T1UZhQ7dEhBc39wzwLA7zcSPcx41QHxWh3q6EOv2tItjb1Yn87O3t5dy5c1y5cgVBEJDJZKxdu/aWHZ4oinxRqubfLr6LyesIMrkVuahiU/Kf8cqU9UMea51OJ3mPARhFJXmWSOQB0bz13BTCfO6OXLQJIt193yo3O3v7qzktdBpvKDj7Pe7w6QZ4PDWYrdnRpEfcXRurN1nZW9DCR5canSwkXOQyJoZ5kRHpI1kFRPvfvjRQ12vmwBU1uwtanAL9UkI9eWZ6JCsyQiVrDotN4FJtJ8fKW8mp0DoFvPmoXFicbCfB5yX44+aiwGS1cfJqOweuqMm91iGpfV3kMhYnB7FqSijzEwNvSZgbzFZKmnq40tTNlUY7GX6rYLkADyVhvm6E+6ik+/B+/7vI5fzhfD0fX26SyvmnT/Dl9cVxzBpjQkkQRb6q1PJObh3FNyxsXOQyVk4O5eV5MXft03svYbYJvLGrhFNV7Xi6KvjDi9OYFHFnJI4gipy93sFn+c2crGyXzot7iYwIb/5kfgyLk4PuiW3QOL6fMFps/OpIFXsK7ErizGhf/r81aUP2R3qTle0XGvjDhQaJ0E2P8Ob1RXFkJQxdHfRdgsViIS8vj+LiYjZt2oSbm33BfbDMiD6LvY85VKTmzE19zPzEAFZODiMrPgCFXIbjpTLo97fM/kC/x1u67ON0RyDrhswI/vqJxLuqBBFFEWNuLp1v/h5LZaX9QRcXlHFxuCYn45qchDI5GdfkZBSDLMYLgsC77747ZJm5p6cnr776qvT/xYsX6e7uRqFQ0NTUhEajkYiHwMBAXnrpJWnb+vp6KYPmVtBqteTl5aHVamlvbx9QjRoTE4PZbObZZ5+ViHij0ThsBWZtbS16vV4qmwe7etbf3x+bzUZNTQ3l5eVUVlYSEBDgFN539uxZ/P39SUhIkM6bcTzYsFqtHD16lLKyMgCmTJnCihUrRhSe+qCjo6ODmpoaGhsbaWpqoq2tzen5Z555hpgY+9ysra2N7u5uVCoV+fn5VFZWStdwYmIia9eu/V6QfKIoYrVa6enpkW4RERF4enpKi6W5ubno9fpBhYcrV64kNTUVgM7OTjo7OwkPDx9vH24BURQpLS0lJyeHhQsXMm3aNORy+YjPN4vFwrVr1yguLqaxsZGtW7dKor0rV65gtVpJSUm5ZfVDW1sbV65cobS01KlqOyUlhczMTGJiYr7X1T/jxPcwME58jy40Gg0XL14kJCSEyZMnD3jeJoi8ebqWt07brU9SQj35r3XpxAZ+S3rk5ORQU1PDunXrnBSplRo9f7O/jEqNvbTw6alh/O2SJKdy6Nxr7by6sxirILIhM4J/WDa0jcRw0Gu28e/HqjhW3oaLXIZK8gKVo3JR2O+VClQu8gFeodH+7mQlBBDkdWcEtsFg4MMPP8RgMJCens6aNWtGZR9aWlp47733iI+PZ/ny5bddITdZbbzwhwJKmntICfXkj1sycZHL+L9fXpUmssvTQ/inlaljYjkxFK5evYqbmxsxMTEolUqMRiPbt28fkvT+pr6TH+64gtkm8OyMCH7+5O3PCYPZSn59FxdrdFys7aSspYfbNZYyIMDTlTAfN2KU3YR0FCGz2UlK0ScMMTwd3L7t2MSb7gEK1Fepln2Awt1e8pzoOZ1fL/wFYZ6D+2+Lokhubi6XL1/GZrMhl8uZPn06/nEZvL63Eq3eTIi3K7/fOPmOvZodaNObOFGhJaeijUu1nYOGF94KCpmMFRmh/DArethKsdvBJthJ1P1X1BQ1dUkexf3h564kI9KbyZF2ItxhJyCKIpfrOvksv5lj5W1YbPb9clcqWJ4ewrrpEWREeN/yHLEKAnl1XRwvb+N4RRvafpYlnq4Kpkf7UtjQTY/p20XAyZE+rJ4cxpOTQkbsHSyKIg26Pgobuyhq6qa2vZeWLrs9wWA2KbdCRoQ3ry+OZ168/z0llERR5HyNjndy66RFUBmQHOpFSqgnSSFepIR4khLqRZCX6119N4PJag9M7LD7UPt7KFk1OeyurLBsgsjP9pXxZWkrbi5y3nluCjNiRla639pjYl9hC7XtRtyUclQuclxd5Df6kRv9yY0+ReWi+PY5FzlGi01acLLfHHYi39qIOP52XLtz4vz5k+wYZsf6fS9IxHE8GPi8RMMvDlfSa7bh567kV6tTWZT8rd9zr9nGJ5cbefdcvRTEmRLqyY8XxbM4OfB7ea7abDZpIiuKInv37iUyMpLo6Gh8fHwGqM7aDWa+KGnlYJGa0paeod72juHt5sL/XZXCExNHr+pQFAR6T56k6623sdxYpL8Z8qAgrFFRaD09SV26BLfUVJQxMZSUl1NVVUVfXx9GoxGj0UhfXx+iKOLj48Mrr7wivcdHH31Ey022LX5+fkRHRxMdHX1LW7872g9RpKenh/b2djQaDcXFxaxfvx5fX3slW0dHB6Iosn//fry8vFiwYMGgYdL9odfrOXnyJBUVFSiVSn74wx9KoZyDkS02mw29Xo+7uzs2mw2DwcCbb76JKIooFApiYmJISkoiMTFxSKuuewWH4tdBtjnIXl9fX/z8/PDz88PX1/ee+eA+KNDr9ezfv5+WlhZkMhmPPvooc+bM+d4QWEajUfLWb2pqYtWqVZLQ6+TJk+Tl5Tltn5CQwLx584iNjf3OE97DhSiKWCwWurq6aG5upqGhgebmZlauXImvr72K8+LFi5y+ET4cGBhIREQE4eHhkp2ft7f3A3FczWYzFy5coKWlhVmzZo1YHT0S9PX1cezYMSpvLNDGxsaycePGUbPQcVQMWK1WbDYb77zzDl1dXchkMqKjo0lLSyMpKWnAwsTRo0cpKioC7H3Z1KlTmTZtGt7et56rfl8wTnwPA+PE9+ji0qVLfPnllwQGBrJly5YhL8hz1zv42b4yOnoteLgq+KcVKSxLHzz53SaI/OFCA/99shqLTcTfQ8kvV6TwWOrggWNflmr4yz1liMAr2TG88Uj8Xe3TtTYDf767RCrTHykyIryZnxjIgqRA0iO8b6m0a2ho4NNPP0UURZYvX86MGTOG3PZO0NfXx7Zt29DpdCQmJkpJ10NBFEX+/mAF+6+o8XV34bOXZ0iemqIosjOvmX89WoVVEEkN8+J/nskg0u/eWxaIosiBAweoqqoalPS+3mbguQ/y6e6z8khKEL9dnz6iKoAuo4Xa9l7U3SZae+whYZpuE5qeb+/tBKpIhouaTJcmZDLoENy5ZJlAi3C7tkVEGZCLW/ARZHIbSpkHfzH1JzydsGrI30mv15Obm0t1dTUGg4GYmBgeffRRAgPtFjRNnX386SdFXGsz4OGq4DdrJ7Eg6db2NE2dfZyoaONYeRsFDV0DyH5H4Jsj0MvXXYmfh91Wwc/d7oPq+DvCzw1/j7EvwRVFkabOPoqauqVbWYt+gHUN2APkBBHqO75VRkwM8+KZzAiWp4eOyFPYJogUNHRxvKKNY2VtaHq+raYI83Fj1eQwVk8OG1NFsyiKdBmttNwIrut/byfG7eepTRSZGObFjxfFsTBpaEJJFEXq6uooLi6mra2NoKAgwsLCiIiIICQkZNSqUK40drEtt56TVwf3WPVzV35Lhod6khziRWKIp9NCm9km0KgzUttupLa9VyK5a9t7nTzUHQj0dGVrVjQbZkQM2x5HFEV+cbiS3QUtuMhl/O7ZDObfQ8unkUAURXotNixWccQLLvX19Wg0GgICAggICMDX1/eBmCA9KLBYLFRXV9Pb28vkyZO/N8TFcFDX0ctP95RS1mK3eto0O4o/WxTHvkI123LrpCDcuEAPXlsUx5K04FGrRujr63tovXIBrl+/zt69e50ec3FxwcfHBx8fH9LT05k4cSJgn1iXN7ZzrKqbwyWtTqGYd4rpE3z596cnEuk3Nj7qoihia1FjrrqK+epVLFerMFVWYm1qQjbYtNTVFdf4eNymTcU9OxtVZiYyV1dEUcRkMmE2m53mbyUlJXR2dmI2mwkNDWXChAljOr+7WY2/f/9+qqqqJH92gJSUFLKzswkICHB6rSAIFBYWcubMGcxmMzKZjGnTprF48eJBS+qH+ny9Xs+FCxeoqKigo6NDek4mkxEVFcWMGTPGPDeo//dpa2ujvr6e+vp6GhoamDJlCosWLQLsyt/33ntvwOsUCgW+vr5MnjyZmTNnAvbj097eTkBAwAPVrhoMBpqbm3F3d3fKtbpTqNVq9u3bh16vR6VSsXr1alJSUh7aNmo04LCKcFT3FhcX093dTXJyMvPmzRvRcf6+o/8xPX/+PPn5+UNWzrzyyitSO/nNN99w7dq1AdZSjltISMiYWKhcu3aNEydOSHZfYF/wWLx48Zhac4J9nPvFF1/Q09ODXC4nKyuL+fPnj5mNjtVq5fLly5SUlNDc3Cw9rlAoCA0N5bHHHpN8w9VqNRcvXiQzM5OEhIQHqi18EDBOfA8D48T36KKvr4/f/OY3WCwWNm7cSFRU1JDbtvaY+Ku9ZVyus6v+NmRG8DdLEp3IiEadkb89UM439faGenFyIL9ckXpb9fSn3zTxy8+vAvDXTySyac7Qvsi3wsEiNb/8vBKjRSDYy5V/WplKuI8bRosNk1XAaBEwWW30WRw+rDb7Yxb7vdFio6S5Z4ACJ8BDSXZiAAuTApkXH4DvIMFWjtVZV1dX3njjjRGrNkRRZPfu3ZSVleHj48OmTZtQqW5NUjv8sOUyeOe5KcyNDxiwTV5dJz/5rISOXgv+Hkr+a92kMbdLuBk9PT28//77qFSqAaR3W4+Jje/n09zVx5RIH95/ceqYKdNFUUTXa6Gl00huzud0tzYhD4pDiJiM7Cb/N9lNf5gFPRcNb9FssYdAZQbN4Rez/45Qj8EXgoxGI9988w15eXlYLHals1KpZM2aNURHRztt291n4Y1dJVys7UQhk/HzZck8kxnhtE1tey/HytvIqWijpNn5PM2I8ObxicE8khJElL/7A+ubfzPMNoFKtd6JDK/rR3Z7uCpYnh7KM9Mj7tii4k4giCLFTd3k1XeRHu7NzFi/B8ZKwiaI9PRZ8XV3ue3kobW1lQ8//HDQ52QyGXPnzpVS7R3edndDhKq7+yhv0VPZqueqxsDVVj217b0D/M3BftlEB7gT7quiqbOPpk7joNs5EOChJDbQHpb4TX0nDTq7RU6ItyuvZMeydlr4HYWFiqLIfxy/zocXGpDL4NdrJ7EkbWwyGO4nTCYThw8fJisri7Awe6XJzQFrCoUCf39/iQjPzMy876rC+wWbzcZbb70l+XDGxsayevXqcd/dQWC2Cvz6xHV2XGwE7HkFjoqbKD8Vf7YwjuUZISMKDR4KNpuNTz75BA8PD5YsWfJQ+p06Sq+Li4vp6uqip8e5n160aJFEFGo0GrZv345CocDHx4fQ8Aiy5i/ETXVDQSb2qzYTQUTEMRMUsbevg41HxwpqtZqCggIqKirAaMSnq4tgvYE4mQz/ri6EmhrEmzxuZe7uqGbPwj07G/fsbFzGKAtnJBAEgf3790u2c/0hk8mYPHky8+bNw8vLi5aWFo4fPy55tYaFhbF06VKio+/OQlCj0VBeXk5FRYX03kuWLJGqcB2K+ZtJ+LuBzWajpKREIrtv9iWeMGECzz77LHK5HKPRSFFRETqdTrJf6O7ulhYJsrKymDdvHmC38Xv33XdxcXEhNDTUKRhxKD/osYDFYqGxsZG6ujpqa2slmw6VSsVrr70m/V6lpaXI5XKCg4MJCAgYdFxkNpt5++236evrIzAwkHXr1o1a4N13DQ6byPFjMzpwLJI5VPZNTU20t7djNBp57bXXpHHLl19+ScmNXIbB0N+WZrRgsVh45513MBgM+Pj4EBcXR3FxMYIgIJfLWbdu3ah/JtjbrtzcXC5dugSAv78/q1atIiYm5p6ddx0dHRQVFVFSUkJ7ezsAGRkZLF26VPKxd3G5/dzt+4px4nsYGCe+Rx8HDx6koKCAiRMnsmLFiltuaxUEfvd1Ldty6xCB1DAvfrN2EjEB7uy7ouZXR6roNdvwcFXwN08ksnbanSXKA7x9ppbfnqwB4FerU3lqyq1LDfujz2LjX/p5U86N8+c/1qQROMzAIAfaekycud7B6ap2zlV3OAUSyWUwNcqXBUmBLEgMJCXUU1KKHD9+nPT0dCZMmDBiT67Lly/zxRdfIJfL2bhxo5RGPRQu1er44Y4r2ERRWjTQ6/UcO3aMiRMnSsoigJauPn68q5iyFj0KmYy/XpLIczPv3aq8KIo0NTURGBgopXyD3Sv0xQ8LqFDriQlw5+OXpkvq45KSEi5evEhSUhLTp08fdqr47dDX18f169eZNGnSbbct0hbxfy78HzRGDUq5kjemvMG6hHVDHr8LFy5w9uxZKVglPDzcTrrrdLzwwguDroibbQL/eLiS/VfUALycFc2ySaEcr2jjeHkb19oM0rZyGWRG+/FYajCPpQYR/pAGDw6Gzl4LRU3dGMw2FiQF4On63fNQHAksFgtVVVXo9Xop9Avg008/JSAggMTERLRaLU1NTTQ3N2MwGJwCvNRqNTt37iQsLEwK1ImIiLjr66rPYqNa20ulRs/VVgNXNXqutuoHtbXxcFUQG+hObIAHMYEexAa6ExPgQUyAuxOJY7EJ7L+i5venayUlZLivGz+aH8tTU8JuGfD45qka/vdULWAPx10z9c77k4cFBoOB3bt309raip+fH1u3bkWpVFJUVMS1a9dob29Hp9MNyPF47bXXpPZXp9OhVCpHvV19EGCz2aivr6exsVEK1wL7mKelpQWj0YjFYiE0NJS1a9c+lCTrvcBXlVr+7kA53X1Wwnzs19/TU299/Q0HjrJvV1dXmpqa+PTTT7HZbHh4eLBs2bJ7Wjo9FrDZbPT09NDV1UV3dzfh4eEEBdmtY6qrq9m7d69TmJa/vz9r164dE8WcwWCgtrbWabxTV1eHyWRCoVAMuCmVSolwdZCaDoSGhjJt2jRSU1MllZ0oCFibmjBXVNB34QLG3LPYbvIGVqak4DE/G/fs+bhOSkP2AKjhHJ7gZWVl2Gw2p+c8PDzYtGkT27Ztw2az4eLiQnR0NElJSfj4+ODh4YGHhweenp64u7vf1aJyR0cH5eXlTJw4URK8fPPNN3z11VcEBgaSnJxMUlISISEhtxy3m81mjEYjvb290r0gCBKZLooiv//97zEY7ONJpVJJZGQksbGxxMfHEx4ejkKhGPQzHKpUnU6HTqfDx8cHPz8/u7VbQwN79uwZNJfI29ub7OxsJz/0scDRo0cpLS0d8DsGBQURFBTEypUrpce2bdsmKWoVCgWBgYEEBwcTHBxMaGioJE4pKyujvLycp59++jvZV47j4YFDvOLoM0RRpKWlBa1W63S9OxbMVCoVK1eulK7lqqoqgoODnYRndwqHRafjvSorK9FoNCxYsAB3d3e0Wi1Hjhyhvb2dLVu2jIn6WqPRsGPHDkRRZPLkySxZsuS+CTkcx/7atWuEhISQlJQ06uGp30WME9/DwDjxPfpobm7mnXfeQaFQ8KMf/eiOGpDca+389f5ydL0WPF0VZET6cKFGB9jLLv/1qYlM8B9e2WV/hZ5CJuP/PTOJR1MGt0fpj9r2Xv58dwmVGgMy4M8WxvLK/NhRC8q02AQKGro4XdXO6WsdTsQjQKi3G3/+aDyrJjv7Oru6ug478MTh622z2Vi8ePFtLVOaOvt45t08dL0WVmSE8u9PTUQmk0mrvwqFgueee04qvwE7QfUPhys5XGxXljw9NYx/WJY8LBsBs1WgqtVAuboHD1cFj6YGDduGQHovm8CrnxRxrlpHoKeSj1/KlM6dhoYGdu3aJRHH6enpPPnkkyP6HAcaGxu5du0aCxcuvOPOSRAFPqr8iLdK3sIm2ojyiuJXc35Fin/K4PtkNnPq1CkKCwsBu3LokUceYc6cOYC94+4/qb259FYURX5/ulYi7vrDRS5jTpy/pOwe6eLOOB4eiKKIWq2muLiYiooKTCYTLi4uvPrqq7i5uTkRFTefR11dXSgUCtzc3LDZbOTn55OTkzPgM3x8fIiIiGDGjBm39TcdDrR6M1db9Wi62WQnkwAAIABJREFUTUT5qYgN9Bi2F7jZKrC7oJm3z9RJdigT/FX86YJYVmSEDlCc7rjYwL8evQbA3y5J5IXZI6sgepDR3d3Nrl270Ol0eHh4sGHDBiZMmDDguAqCQGdnJ21tbWi1Wrq6uli8eLFENn700Uf09vayfPlyYmNj78/OjCIEQaChoYGKigqqqqqkAKmXXnqJwEC7XZDFYsHT05OWlhY+/vhjjEYjvr6+rF+/fszLcx9WtPWYuNLUzfzEgBH39UMhNzeXq1ev8vTTTxMYGIhOp2Pv3r1otXZLpenTp7NgwYIxK2G+33D4P7e3t3Ps2DF6enokO4Wbq8LuBpWVlRw/fhylUunksb1jxw7UavWgr1GpVPz4xz+W/t+1axeenp5MmzaN8PDbC1tEUcRSWUlvbi7G02cwl5ZCv6ms3M8P96wsuxp83lzk91AVPBj0ej0FBQUUFBRgMpkkH/CtW7dy6tQp9Ho9bW1tA4L+HFCpVPzVX/2VpHptaGhApVIRFBQ0bDJEFEVsNhs5OTlcvnxZGgcD+Pr6kpCQgKenpzSuBNizZw/19fUDFjsd363/b3n+/HkEQSAuLo7o6OhR88V12J00NDQ4BSOKosiqVatISbGPmxsaGvj666+dLNkcSkkXFxcCAwMl8t/hsdt/nNPd3U1dXR319fUsWbJEmm+dOHGC/Px8vL29iYmJIT4+nvj4eIkzcJCGNpuNI0eOoNFoaGtrkyoyHQgLC+OFF16Q/h/JnG4c43gQ4PDt1+v1bNu2DYvFQlpaGnPmzLnjSpLGxkaOHz/OzJkzpcUrFxeXAe2GQ6WuVCol25Zjx44xZcqUEc0tdDodtbW1TJkyRVpUzMvLw8/Pj/T09HEbv4cQ48T3MDBOfI8Ntm3bRktLCwsXLnRSEd4Kmm4Tf7m3VLI1cZHL+PGiOF6aFz1i0rm/V7WrQs7bP5jM7LihJ6Jflmr4+SF7CFOgp5L/eDptUJuP0URTp5Ez1+xq8As1Ovqs9sHoPyxL5tkZkdJ2ra2t6HQ6pk2bdkfvKwgCv//979FqtXfk62202Hj+g3zK1XrSwr34aPN0VEoFOp2O9957T1oN9vf358UXX3Qq5RZFkQ8vNPCfOdcRRLtFxn8/k0Goz0CVeq/ZRqVGT1lLD2XqHsrVeq61GpzCEwM9lTw7I5JnZ0QOi4gVRZG/O1DBgSI17koF2zdNk6wsenp62L59O729vcTGxmI2m3niiScIDrYvhuh0Ovr6+obVkV65coWcnBwEQWDZsmUDVN6FhYVS0JCjfeno6+CXl37JBc0FAJ6Y8AR/k/k3eCoHqgPNZjONjY3k5ORIKpLg4GDWr19PYGCgUwctCAImk4mamhpOnTrF6tWrB6zAH7ii5ueHKlDIZWQnBPD4xGAWJQfio/puEgDjcEZvby9lZWUUFxdLJBDYSeqMjAxmz5497IApm81Ga2urNCFtbm5Gq9VK7UX/ksiGhgaqq6ulUuX7rYjts9j49Jtm3j1bJynJ4wI9eHVhLE9OCkEuk7GnoIWfH6oA4LWFsby68NZq0d7eXk6fPs3ixYtHXKVzr9HR0cFnn31Gd3c33t7ebNy4kbCwsGGdB6Io0tnZyc6dO2ltbQVg9uzZZGdnP5QTCa1WS2FhIZWVlU5l+x4eHqSkpDB79myCg4MHlGFrtVr++Mc/0tnZSUBAAFu2bHko9/9hRXl5OYcPHwZg+fLlZGZmSosTx48f5/Lly4Bdrbl8+XJCHiCbjLFA/wC9oKAgNm3adNfnY19fHzk5OZSXlwMQGRnJxo0bpevg6NGjaLVaBEHAarUiCAI2mw2r1YpKpeKll16S3uvmRfrhwqbTYTx7FuOZXIznzyPq9d8+qVDgNmWKnQRfMB9lXNx9U86ZzWZKSkqYNGkSRqNRUjTLZDIuX75MR0fHAGWlY7utW7cCdsHDhx9+iEajQaVSERkZSVRUlHS7nYVhfxiNRiorKykvL6e6uloitt3c3Hj99del7T777DNqa2sBu4LZw8MDd3d3SZW+YsUKiTy+l8pEk8kkVXu6ubkhCAIXLlzgzJkzQ75m/fr10mLslStXOHbsmPSci4uLE7m/YcMGaZHIYcMSEhJyx/voULCr1Wo0Gg0ajYbAwECys7ORyWS4ubmN9wvjeOjR3t7O559/Tk2NvbpeJpORmprKnDlzpCqkm2E0Gjl16hTFxcWAPWjzhz/84R1dEzabjUuXLknXbnp6OgsWLLjlXMJsNlNfX09NTQ01NTXSXPoHP/gBkZF2jkWpVI5biTzEGCe+h4Fx4ntskJ+fz6FDh/Dz8+Pll1++48bEKghsO1NHUVM3bzwSz8Swu1drWAWBP/+slBOVWjxcFfzhxamkRzj/1iarjX8/do2defaAgZkxfvznmjSCvYdPXBgMBqqqqggJCZFsRURRRKvVSiTrUDBZbfzmRLXkgfn3S5N4blYU7e3tbN++HUEQ2LRp0x2rdmpra8nJyeHpp592sgK5GaIo8tf7yzlcrCHAQ8murTOIuGFz8fnnn1NWVsaECRPo7Oykp6fHyS+wP85Vd/AXu0vp7rMS5OXKvz01ERe57AbJbSe7a7S9A0ITAXzdXZgY5i2FSAK4KuSsnBzKi7OjSAq5fTng//uqmm25dShk9uA5R5ij1Wpl586dtLS0EBwczJYtW3B3d5cmZlarlS+++ILS0lImTJggJUkPdd7abDa++uorSYEdGRmJv78/JpOJp556Sjqmb731FvobE7GAgACESIHdxt10Wjtxk7vx02k/ZVXcwABLh6dnTk6OpBrx8fFhyZIlpKamDjk46L/YoVKpWLFixYCybl2vGTcXBR6u978ceBz3FufPnyc3NxewT/SSkpKYOnUqCQkJozpp7evro7GxkYaGBqZPny4pK0+ePEleXp60na+vr0SCx8XF3Td1bK/ZxieXG3nvXAOdRvv1lhjsyWOpQWzLrUMQYdOcCfzs8YRBj5FDOSaKIp988glNTU1ER0ezbt26Bz6EprW1lc8++4ze3l78/f35wQ9+ICmZRwKLxcKRI0fIz7dnFkRERLBy5cpRGV/19PSQl5eHQqFgwYIF0uMNDQ14eXnh4+Nzx8dbFEV6enok+5aOjg4SEhKk9rKqqor9+/cDdmVjcnIykyZNIi4u7rYTJL1ez6effsqCBQukidU4xh4tLS3s3LkTq9XKzJkzWbp06YC+8urVqxw8eBCDwTCAsP2uwmq18tVXXzFz5sy7bmNramo4cuQIer0emUzGnDlzmDt37gPRzokWC6aiIjsJfuYMlhtkjAOKiAg8srNxn5+NasYMZA/4wqQgCJjNZonQFkWRXbt20dLSMkBNDPYQuOeff37Yn2M2m6mqqqK6uhoXFxcWL14sjQd0Oh0ymQxPT08nYupBu2ZEUaS7u5va2loaGxvRarXS2N5qtWKxWFi5cqUkbHHYvfSHTCYjLCyM2NhYpkyZQlBQ0KiT+Q7a5UE7fuMYx92goaGB06dPc+3aNemxlJQUFixYIAmwRFGkpKSEU6dOSZVzkydP5tFHH8Xb2/uOr4nu7m6OHz8ueZC7uroyb948pk+f7tQPNTY2cvbsWRobG52qW+RyOVFRUcyfP5+YmBhp0W4cDy/Gie9hYJz4Hhs4wjuSkpKYO3fufS8pNVlt/OjjIi7WduLvoWTH5mnEB9lXCOs7jPzFnhLKWuwE5SvZMfzZothhBSzp9Xqqqqq4evUqDQ0NiKLoZKNRW1vLZ599RmRkJNOmTSM5OXnIiYIoivw65zrvn28A7OGcL86O4tChQ1RWVuLt7c0rr7xyW7WkIAj09fXdkaLmD+fr+Y/j11HIZLz3whQppFIQBD777DPq6+vZvHmzVHKYlpY25Hs16Iz8+NNirrYahtwm2MuVtHBvJoZ53bj3JsLXza7MsgkcL2/jwwsNFPcLW8yK9+fFORPITggYdH925jXxT1/YA01v9uB1lCqqVCo2b97sZNXi2M9Dhw5RVFQkdZBBQUHMmjWL1NRUp9+qt7eXvXv30tJi93+Xy+VOneqrr76Kp6cnVquVCxcuUFtbS4u6hTKfMsr8ykAGPhYfnvN5js0rNg/Yj7a2Nk6cOEFDQ4P0WEZGBk888QSenp63/S27urrYtWuXlBK9YMECZs2a9UAPtAVBoKOjA7lcjp+f30M9CHGElLi5uREYGEhISMiIvO/uFmazmbKyMgICAqSFsp6eHg4cOEBGRgYZGRl3dD6NBhylwJWVlVRWVtLU1OSkOHfAYR9xv6A3WfnoYiN/uNBAd9+36q9108L55YqUQY+VxWJh165dJCYmMmvWLNrb2/noo4+wWCxMnDiR5cuXP9DX3qFDh6ioqCAkJISNGzeO2rlaUlLCoUOHJOLmySefJDExcUTv1dXVxaVLlyguLsZms0k+jGA/z3/7299K2zoIcMctKiqKhIQEADo7Ozlz5syQXuWzZs1i4cKFgJ0sPHHiBCkpKSQmJg67bN9R+m422610DAbDfalw2L9/P1qtlvT0dKZNm/bQVCEMFz09PezYsQODwUBCQgIbNmwYctyp1+v54osvmDdv3qgG/D1MuHbt2rCyY25e7Pf392fZsmW3zYy5n7A0NdlJ8Nxc+vLy4Ma1CCBTuaGaNduuBp+fjUvo4GHiDyIEQaCtrY3m5mbp1tnZycSJE1m5cqVE1hYWFpKRkXFL0cv3BTfTHf2rEMxmM1arVVKyP8j99TjG8SCjubmZU6dOcfXqVeRyOS+//DK+vr6S7VZjo13UFxQUxNKlS4mPjx/x9VZfX8+XX34p2Wr5+vqyZMkSqcK0qamJjz/+WHouPj5eEje4u7uPX+ffIYwT38PAOPE9dnAQrw8KDCYrW3YUUtLcQ5iPGx9tmU5pcw9/f7AcvcmGn7uSf396IvMT74x4EQRBKoV2NOYOhIWFkZGRwcyZM5HL5Zw7d46vv/5aIkg9PDyYMmUKU6ZMGTSZXBRFfnuyhm25dQD89NF4XpgZzvbt29HpdCQkJPDcc88N2nA7Utx9fHwGDPYGw7nqDv7kj1cQRPi7pUk8PytqwHdpa2uTEo5FUZRWa4eCwWzlHw9XcqS0jVAfN9LCvUgL82ZiuDdpYV53pKQXRZHCxm4+vNBATkUbDieU+CAPXpw9gVWTQ1Ep7YT0ico23thVgiAObkfQ0dHBgQMHeOSRR0hNTR2yw+vs7OT8+fMUFBQ4Ka3nzZtHRkYGGo2GnTt3SmSGA97e3iQkJJCQkEB0dLSTb5/WqOXnF35OvtaugEwyJTFJPYk5mXNYvHgxYCfPvvzyS1xcXCgtLQXsityUlBRSUlJIT08fVidttVr5/PPPpUlqcnIyTz75pJM9zf1GWVkZLS0tqNVqWltbJRJKLpcTFhbGc889J23b0dGBh4fHsEp57zUcCx2XLl1yCkGaNGkSy5YtA+zkwYULFwgKCiIwMBB/f/9RV8q1t7dTWFhISUkJZrOZmJgYnnnmGQDJ6/JBWFgwGo00NDRIN71ez5YtW6TzPDc3F5lMRnJy8oj8TO8G3X0WPjzfwM5vmnkkJYh/XJ4yqN2WIAjs37+f69evo1KpePnllwkICOD69et88sknCIJAZmYmixcvfmAH2WazmTNnzrB48eJRD9nq6Ohg9+7dtLS0jEhdq9PpuHjxIqWlpVLfGRkZyaJFi4iOjkYQBGmhr7u7e1Af2v4keXd3N2+//bb0nGOhLSAggMDAQOLi4oiPj5eIo5ttTEYCRyDmzp07mTVrFnPmzBn1c0EQBFpaWqivr0etVjvZmjkqtsBuYzBt2jQyMzPvW3jTWMBisfDJJ5+g0WgICgpi8+bNd7TI4LAHE0WRixcvEhAQQFJS0h1/rmMs1N3dLQWbJiUlOQV1qdVqLBaLdHOoTy0WC0uXLh2yHHwsUVNTw549ewgICODpp5++IxW4KIrs3buX6urqh9IjXTAa6bt0GeOZMxhzc7HdsGNyQJmUhHt2Nh4LF+KaMbzx1oMAg8GA1WrF19cXgLNnz3Lu3DkiIyMHWBOOYxzjGMdYQq1WU1dXR0ZGBmBXX3/yyScolUqysrKYO3fuqLRJoihSUFDAiRMn6O3tdRrvCYJAUVERCQkJg9rSjeO7g3HiexgYJ77HFmazWUrjfhBKIXW9Zl74QwHV2l78PZToeu3k5rQoH/5z7STCfW9NrJlMJieFzPvvv097ezsA4eHhpKSkkJaWNsB/GeznWl5eHvn5+VLyuUwmIzExkSeffHKA8kYURX53qpY3T9cC8PriONakePDHP/4Rq9XKokWLJHVa/++3bds2uru7eeqppwbYXNyMRp2R9e/m0WW08tSUMP5l1eCksIuLi1MnZbPZ0Ol0XL58mezs7CF/W6sgDEs5f6vv+cdLjewuaMFgtpOK/h5KNmRGkBHhw0/3lNJnFVg/PZx/XD64MlMUxTtWc/T29nL58mUuXbpEb28v2dnZzJ07l5qaGnbv3g3YvbZTU1NJSEgYkpi7qLnILy7+Ap1Jh7vCnZ9l/oxlMcvo7OxELpdLbY6jIsCB5ORkFi1aRFBQ0F35juXl5fHll18iCAJBQUFs3LjxnpLHoijS0dGBWq3GaDQ6hat+8MEHTqpfpVKJKIpYrVYiIiKciO93331XCt0LCAiQbkFBQURHR9/3tqW2tpbjx4/T2dkJQExMDN7e3mi1WtLS0sjMzATspPT7778vvU4mk+Hv709gYKBEvEVFRQ36GbeCIAhUVVVRWFhIfX299Li/vz/Tp09n9uzZD7x/nYO0dCiwfve730kLTAEBASQnJ5OcnExISMgDsR+iKHLs2DGKiopwcXFhw4YNJCR8a4VSVFTEvn37AIaVdXEv0NraKk0EYGxDtmw2GydPniQ9PX1YY6yzZ89y/vx5afE2OjqarKwsEhISBr3eBUHAYDDQ2dlJZ2cnXV1ddHZ2EhkZKYWfAVy+fJmgoCCCgoLw9/cftQC2W+HMmTNSWf3UqVN59NFH72rxybEYXV9fT11dHY2NjU6LsZs2bZK8q7u6uqirqyMvL08aqyiVSiZPnszMmTMHXXh/2JCTk0NBQQHu7u5s3rx5WL7doihSW1vL9u3bAftCyeLFi3F1dZVCIh1kItj71JqaGrq7uwddbHnjjTeksZIjFHwovP7669K47/Tp09TV1REeHi7d/P39x+Tc1Gg07N27F71ej7u7O6tXr2bChIGBvQ5/bsf+6PV6tFrtQx9aK4oilqoqyRLFVFzsFJCpTEjAa+1avJYvu+/hmCNFa2srO3fuxGQyERcXxw9+8IPxIMVxjGMc9xSO0HOr1UphYSHJycl3ZaU3FIxGIxcvXkQulzNnzpx7njkwjvuLceJ7GBgnvscWVquVkpISDh48iEwmw9XVVboplUpcXV1Zu3atNJGtqKhAp9Ph7u5OcHAwwcHBo65UaOnq47kP8iUf6ZfmTuCNR+JRKoaeiIqiyFdffUVJSQmvvvqqpHQpLi7GZDJJZPedNLJWq5Xy8nIuX75MQ0ODpFByvFYQBKdJ8Vuna/nvr+1ehX+2MJYFAXqOHDmCTCbj+eefJz4+XvqOe/fupaSkBG9vbzZt2nTLEsdes43nPviGSo2BjAhvtm+ehpvLt4RCaWkpcXFxUpjNzSnLb775JlqtltmzZzv5rY4l9CYrewpa+OhSI02dztUEC5MC+Z8N6RLRrtfr6ejokGweVCrVsMkGi8VCQUEBSUlJ0gS1rKyMsLCwW5ZIWwUr75a9yx/K/4CISKJvIv8y51+I9YkddPuysjKOHDmCzWbD19eXV155BZVKNSqddn19Pbt27SIuLo6lS5fe9XuKoojZbMZoNGIymZxsY8rLy1Gr1fT19dHV1YVGo5EIGRcXF15//XXpWr948SIGg4GIiAgiIyOlxYOuri76+voICgqSPNgdizmDITg4mBdffPG+qpgddhFeXl489thjpKenS/vpsPkQBAGtVsu5c+dob29Hq9UOqBxwLLCAXe164MAB/Pz88Pf3x8/PT/r7Zj+8vXv3cv36dcBOpickJJCZmUlSUtJ9XxQYCSwWCyUlJZSVlVFTU+OkoPfz8yMzM5Pp06ffx2/4raJOJpPx1FNPkZGRMeDaOnfuHMePHwdgxYoVTJw48a4/11HNAUgEWWho6B33kyUlJRw5coS5c+eSlZWFm5vbPTlHRFHEZDIhCAK5ubkEBgYOOB79bbkqKys5ePAg8fHxZGVlERsb+0BUKowUFy5c4OjRowAkJSWxfPnyO1bMGo1GXFxcpO0d515/qFQqoqOjiYmJIS0tDR8fHyeFkyiKlJWVcebMGakqbOrUqTz++OOjtYv3DXq9nkOHDrFw4UKnxac7hcMD+/z58wCSBZQjn+MnP/mJdOyPHDkihXI54OnpiaenJ0qlkjVr1kjjrvLyclpaWqTxrmPMq1QqUalUxMfHIwgCgiDw8ccf09TU5PS+KpWKsLAwwsPDR91HW6/Xs2/fPtRqNXK5nCeeeEJS54GdOP3iiy8ICQmRKpa+q7DpdBjPnberwU+fQuyzzw1kKjc8lizFe+0aXCdNeuhIlObmZnbt2oXFYiE1NZX169c/1G3oOMYxjocT49724xhLjBPfw8A48T22qK6u5pNPPhm0BBnsjeBPf/pTqTHcv38/VVVVTtsEBAQQEhJCSEiIU1Da3aC2vZd3ztbxRGowC5NvX2raf6K5YcMGYmNjUSgUd62iVKvV6PV6ySfRbDbz/vvvM3nyZGbPni1NdN49W8dvTlQD8KP5MSQaKyktLSEtLY1169Yhk8n45ptvOHz4MDKZjI0bN94yVEsURX66p4wjZa0Eeir5bOsMwny+VQK3trby4Ycf4urqyquvvuqkeHKgtLRUUj8/88wzkq/WvYBVEPiqUsv2C43kN3SREeHNBy9OkwIbbTabFGb55JNPMm3atBGpXYxGI4cPH2bRokV37M+q7lXz8ws/p6i9CICn45/mJ1N/gkoxuNK6qqqKQ4cOYbPZiI6OZv369aPuvdzd3S0pqsGuQHR4gMO3gxLH/bPPPutkOVFbW0tfX5906991/PSnP5UmU4cPH6a8vNzps11cXAgJCSE8PJz58+fj4eGBXC4f1mq8KIr09fWh1WqlW3t7Ow0NDUydOpWsrKwRHpmRQRAELBaLtBii1+vJy8tj4cKFd1xVIAgC3d3dtLa20tbWRnt7OykpKZLy7vr16+zdu3fQ1yoUChYtWiSRv47AmMmTJ5OZmTkmior7hb6+PiorKykrK6O6uhqr1UpWVhbz5s0D7OrF3bt34+Hhgaen54D7iIiIUffxLSwslAjtxx9/nLlz5w55vI8ePUpFRQXr168fNf/sY8eOceXKFel/mUxGcHCwRISnpaUNSpL1D/TKyMhg1apV91QFKIoi169f549//CNgV9c+8sgjaLVazp8/T1RUlKSMd1SLREVFfWfO5dLSUvbt24fNZiMyMnLQ0Gm9Xk9raysajUa6dXd3s3r1apKTkwF7hcn+/fuJiooiJiaG+Ph4wsPDUSgUtz1Woihy7do1cnNzWbp0qdS3d3R0SJVBDyvu1rezurqaffv2SYQ32NvaLVu2SOrrhoYGad7g5+eHj4+PVDUw0s8WRRGdTkdjYyONjY00Nzej0WikcbOHhwevvvqq9P5arRY/P7+7vnYdFmuVlZUAzJw5k+zsbPLy8jh79iyCIODu7s6WLVtQKpV0dHRIt8jISKmi0Gw288EHHxAaGkp4eDgRERHDWox7kCD09KD//HP0e/ZiubGYDOCamoLX2nV4Ll2C/D549Y8UtbW17N27F5vNxpQpU1i9evV3pj0dxzjGMY5xjGOc+B4GxonvsYfNZsNkMtHX14fFYpHuTSYTVqtVUn05vJpaWlro6emhtbVVsgQBe3nu66+/LpFsly9fxmQyERwcTGhoKL6+vmMyoCsuLubIkSPA7UmOkcIRhFVUVMShQ4cAe/jDkiVLJFLcEUAJsGVOFI8EdkthVR0dHbz77rtYrVYWLFjA7Nmzh/wsvcnKu2fr2ZZbh4tcxgcvTiUz2pmQ2bdvH9euXSM1NZVnnnlmyP09dOgQ+fn5eHp6snnz5vviG9qoMxLi44ZrP8W+gxhyc3Nj8+bNhIWFDft91Wo1n376KZ2dnYSFhfH888/f9nc/1XSKf778z3RbuvFw8eDvZvwdj08YWlFXXFzM0aNHEUWRpKQk1q5dO6bhY45rcc+ePVRXVw+53V/+5V9K+3rw4EFpYtwfDtXa5s2bJXV6aWkpbW1tuLu74+XlRXh4OCEhIWNms+Eg4R1dWWNjI+Xl5WRlZY3ZuajRaDh27Bi+vr6sWrUKsJMjrq6uo7KPjn3R6/U0NTVJRINOp0On09HV1YUgCCxfvlwKmRVFUbIj+i5Pak0mE1evXiUkJESyaLjVAgHAokWLmDlzJmBXdpaVlTFp0qQRqyc7Ojp4//33EUWRuXPn8thjj91SRSeKIr29vXf1uzQ1NeHp6SkR53q9npKSEjQaDc3NzU5EnUql4rXXXpM+r6KiAqVSSUtLi6RozczM5Mknn7wv1QCCIHDy5Elyc3MBO1npyIzw9PTkRz/6kaSK/S6eyzU1NXz66aeYTCYCAwN55pln8PLyorGxkYMHDzqNefrDYZfjONfkcvldHyPHAp7NZpNEB0lJScyZM0fqMx3tq+NzBUFArVZjNpsxm81YLBbMZjOCIJCQkHDPgnzVajUdHR1SGziSiq7BYDQaqaurw93dHV9fX7y9vaX3vZfno9VqRa1W09jYiNVqlRY5BUHg7bffxmazMWnSJDIyMu5qsUIURc6dOycJO/z8/CTLLh8fH7y9venq6nJqY8C5WqC+vp5PP/3U6fn+i3ETJ04c1ErlQYYoipgKC9Hv2YshJ0cKxpR5eOC57Em8167FtZ+F0oOMq1evcvDgQURRZPbs2SxduvR+f6VxjGMc4xjHOEYF48T3MDBOfD8iB9yRAAAgAElEQVS4EEWRnp4eKQDPZDKRnZ0tPd/fXxvsZd9PPfXUqAZ0OUKARFFkzpw5PP7442NaKiiKokSG9vb2AnaSIjs7G1dXV3ZcbORfj9oV8ZvmTOBnjydgsVjYsWMHHR0dxMfHs2bNmgETtM5eC19d1XK8vI1z1R1YbPZL/x+WJfPsDGdluFqtZseOHchkMrZu3Up4ePiQ39disbBt2za0Wu2Qn32vUVRUJJWUr1u3jrS0tGF/J8cChCMs6Kmnnrqlb6jZZuZ/iv6HXdd2AZDmn8Y/z/lnIr2GVt1fvnyZr7/+GrCrL1euXHlPwqIEQaC6upqenh4AJ6Wa475/AGhzczMGgwE3NzfJ9sbd3d2JdLnfv7nDR+79999Ho9Hg5uZGVlYWU6dOHTVyz2QycfbsWfLz8xFFEVdXV374wx8SGBh4TwlEh7++SqWSbCq+j+XLDkLObDbT0dGBXq9Hr9djMBike4PBwPTp00lISAAgPz+fEydO4Ovry7x580hLSxvRsSssLESj0bBq1ao7/u0di07V1dVSoOLtYDabyc3N5ZtvviEmJob169dLiyyO7y2KIl1dXZJaVBRFp+yHt99+28kmKCsri8WLF993C5zr16+zb98+DAYD/z97dx4X1X0v/v81wywM+76KoCKICyii4IJxiTFijDFqXGJiTJOmzbe5v7a/e9vb9TZN2t6ut7f5pk2bpppEjXFJjLuJ+44oILggqIAIiAzbwOwz53z/QE4kbmBUFj/Px2MewJlzznwGZphz3uf9eb9VKhWDBw9m/PjxhIeHd/n/k/utpqaGlStXEhwczNNPP42HhwcNDQ3885//BCA4OJiwsDAiIiKIiooiIiJCmUlyP343LpeL9evXU1RUpCzz9vZW6u0nJSUxY8YMZd3/+Z//uel+tFqtUurpfmpubmbFihW0tLSQlZVFampql7+eHwRJkqitrVWee5uoqCiSk5NJTEy8qyzryspKVq1apfys0+mYMGECO3fubLfe9T02+vXrp/z/dLlcVFdXt8tYv358U6ZMUQL3jY2NnDp1Silj2FYCpu1mMBi6XS1qd0MD5s2baV7/Ca7remjohg7Fd+4cvKZORX2bsoLdQVuJq2nTpjFq1KiH8phBEARB6H1E4LsTROC752mrl5uTk0N1dTU1NTXU1tYiSRL+/v7MnTv3nkxtr6mp4aOPPsLpdDJ48GDlBPVBMJvNbN++XWmM5O/vz2OPPUZcXBwf5VTyxrZiABaP7sM30wJZvXo1KpWKpUuXKpmutc12dhYZ+aKolpyyRtzXvd37BXuxIC2axaOjbziRbssGvr6Myu3U1NTw7rvv4na7mTx5stLIrytUVVWxevVq3G43mZmZTJo0qVOBArfbzRdffEF2djYA/fr1Y8aMGbetlX6p+RI/PfpTzjW2ZkUvSljEq8NeRau+fRB7//79ZGdnM2rUKKZNm/ZQnLjfbxcvXmT79u3U1tYCrWWSJk+efMcmr7cjyzLFxcXs3r1bOZkfNGgQjz32GAEBAb0+SNcbtAXJCwoK2Llzp5JVGxQUxPjx40lISOj03/FuamOfPn2a9evX4+fnx6JFi257kba8vJwdO3bQ1NQEwNChQ8nKyupQ7f+2z0in08nWrVupqqqiqamJiRMnMmbMmG4T9GjLXO/fv3+7ZpsPg6amphsaMFVXVxMZGXnP+jt01tWrV9m/fz9nzpxpV85q4MCBPPXUU0Dra+uf//ynMsOk7WYymbhy5Qpjx469r6WnnE4nq1ev5sqVKwQHB7N06dIOlyHrLdxuNyUlJeTm5nL+/Hnlb6XVannssceULPivamho4OLFi5SWlhIcHMykSZOU/b3zzjuEhITQr18/kpKS8PX15ciRIwQEBBAcHExoaKhSSqYj/3+uvxg3ZMgQgoODgfYzKG/mySefVJrRlpSUsGvXLiUo7u/vT3h4uHJ70DMMZVnGlpNDy/pPsOzZDa7W3hPqgAD8Fi3Cd/4z3boZZkNDA4GBgcC9myEhCIIgCF1JBL47QQS+e4e6ujpWrlypNMacN29eu6Z7nSXLMitWrODKlSvExsayaNGiLqlXWFxczObNm2lubiY+Pp7Zs2cDsOZEFb/Y0hpondrPkyHWU8yYkQXeQXxxtpYvztaSf9nE9W/wQRE+TB0UytSkUAaE3LwOcVVVFStXrkSlUvHKK690+Hd47Ngxtm3bRlBQEC+88EKXBHFbWlr48MMPaWlpYeDAgcyfP79T47BaraxevZpL1zJ6xowZw9ixY297crCtfBu/PfFbrG4rAboAfj7654yL7NhJvyzLlJWVkZSUJE5A7iFJkjh+/Dh79+5VSij079+fSZMm3fGCmMvlwm63K4GUtqZj1dXVQOs08KlTpzJo0CDxN+uhHA4H2dnZHD58GJuttUFuWFgYmZmZSqPgr2ppaWH37t1MnToVg8GATqe7q6xEs9nMe++9R0NDA6GhoSxcuPCG0kZ2u529e/dSUNDaI8DPz49p06Z97decaC7UPV3f0LO7MJlMNDU1odPp0Ov1yg3av36u/16SJPLz80lMTFSWu1yue5q9K8symzdvpqioCIPBwJIlS77WcV5v0NzcTF5eHvn5+TQ0NPDcc88pZWpMJhPV1dVUVFRQWlqqlDCB1mSKl19+GZVKhUajUWYxqVSq+/KabLsYV1paSn5+Po2NjTidznY3h8PB008/rfwfvlOQ/PpyXzabDbfb/cAugriNRlo2bqR5/Se4rx0fqLy98Z03F79nn8XjWqC/u7JYLBiNRgYNGtTVQxEEQRCEuyYC350gAt+9h9lsZuXKlVgsljtm03WEyWRi//79zJgxo0szimw2G3v37mXEiBFKXVu3281nhVf52cYiZGBCfBBGs4Mz1e3rMKZE+zE1KZRHB4XSN+jOUzHXrl1LWVkZQ4cO7VTZElmWOXLkCElJSfe1RvXtZGdns3///rvOAnO5XCxfvpza2lpmzJhBfHz8Lde1uCz8IfcPbCnfAkBqaCqvp79OmOHW5VDcbjfHjh0jLS1NKRPSVZl9DwOr1cq+ffvIyclBkiSysrIYMmQI0NocrLGxUamb3dDQQGNjIyaTib59+zJ//nxlP3/961+xWq2kp6czYcIEPD1v3qRU6FmsVitHjhwhOzsbh8NB//79mTNnzg3r2Ww2PvroI4xGI/Hx8TzzzDNfqyRRQ0MD7733HmazmZiYGObOnasEB+vq6lizZo0ys2D48OE8+uijHW6YKghdra38kN1uZ+XKlfTt25fMzMyvHQB3OBwcPnyYnJwc1Go18+fPZ+DAgeJ9cY0sy1y+fJmwsDDc7tZM5O3bt1NYWKiso1ar6dOnD/379yc+Pp6IiIhONZm+X9pORSVJAlCC71arlfr6eqUnkNFoVGZ5NjQ08PzzzysXPvLy8ti5cyc+Pj5KRnhkZCRxcXH3tzyhy4X5888xLVuuNMNU6fX4zJqF3/PPobnWo6c7sVqtrFy5ksbGRubNm6f0WRIEQRCEnkYEvjtBBL57F4fDgclkumdTINumWHYHbSeUbrebLVu2tGanRqbwyx2lSNfeyWoVpPUNYGpSKFMGhRDh1/EgndvtZteuXZw5c4aXXnrptjWtb6WtJujdkCSJuro6JePWz8+vUxnbbc1RBwwYcNu65F/dpo3D4aCpqQmHw3HbzODixmJ+evSnlDeXo0bNN4Z8g6VJS/FQ3XqsDoeDzz77jLKyMhISEpg9ezZ6vb7LTzgfBrW1tZw4cYLMzEzl9/32228rNfS/Kjg4mBdffBFoDRRcvHiR0NBQQkJCxN+rFzKbzRw8eJCEhAQliNJWLzwkJIR169ZRUVGBt7c3zz///F39X/yqqqoq3n//fRwOBwkJCcycOVOplfvBBx/gdrvJysoiPj5evOaEHunUqVOsX78egNDQUJ544omv1YTxgw8+oKamBoBp06aRnp4u3hu3IMsyLpeLFStWKBdzBw4cSL9+/XrNRTSr1apcTHG73ezbt4+jR4/esF5UVBQzZ8687+d3siRhPXCApvf+heNaiUI8PPCe/jh+L7yA7hazibqCLMtKKUUPDw8WLlyo9MEQBEEQhJ5EBL47QQS+e6e2RmKnT5+mpaWF0aNH3/FgX5Iktm7dysCBA0lMTFSaiHW3k4Ta2lreeecdJEnC09MTn8SxnDLpGdM/iEmJIQR7f72SLDabjcDAwLt63rIsY7PZyMvLw2AwKLUab8bhcFBdXU1lZSWVlZVUVVW1C5ovXLiQPn36AK21HouLi/Hx8VFu3t7eyvdtJ0BqtbrDAWWXy8WWLVswGAxkZmZyp3+Hsiyz/sJ6/vfk/+KQHIQaQvll+i9JDU297XZWq5VPPvmEqqoqtFots2fPbtc8Ungw2moeu91u1q1bh8ViITAwkMDAQKVhV3BwMD4+Pt0iC054sNqCRU6nk507d5KXl0dAQACNjY3odDqeffZZYmJi7tnr4uLFi6xcuRJJkpg+fbrSELChoYGgoKDb9hUQhJ7g7NmzbNq0SQlSPvLII4wYMeKO7yG73c7Zs2cZOnSo8tmenZ1NQUEB6enpjB49WpSa6qCHqcSR3W6nqqqK6upqqqurKS4uxuFw4OXlxTe+8Y0HMltLlmXsx4/T9K9l2K71igEwTJqE/4tL0V+bddbVJEli48aNlJSUoNVqee6554iJienqYQmCIAhCp4jAdyeIwHfvdX2AODU1lcmTJ9/y4F+WZXbv3k1ubi4ajYZXXnmF4ODgbnuyUF1dzcaNG7ly5QoAsbGxPP744/fkNfx1s9wLCgr49NNP0el0LFmyhICAAKC1FqVer1dqpR86dIjDhw/f8NheXl6YzWaWLl2qbNvWCPJmrq+V29Z86U6ampr4+OOPqa6uRqVS8eKLL942y9vkMPGr479ib+VeAMZHjudno35GgD7gto/T0tLC2rVrMRqNeHp6Mm/ePPr169dtX1cPg+unU4u/g/BVkiSxadMm8vPzgdaLafPmzWtXu/heacuKnTBhAunp6d32Yqsg3K3m5mY2bNjAxYsXgdaG0Y8//vgNpehkWaa6upqTJ09y7tw5nE5nuxrOKpUKnU4nmkALHVZXV8fatWsZMGDAfW24eiv206dp+tcyrHv2KMs809PxW/I8mvBwZLsdyW5HttmQbXZku631e7u99T5luR2VXo9hTAb6lBRU96huvsvl4pNPPqG8vBxPT0+WLFmi1IcXBEEQhJ5ABL47QQS+e7cjR47w+eefA5CYmEhWVtZNa00eO3aMffv2Aa1d5YcPH97tgw+SJHH48GH27duHy+VCp9MxZcoUhgwZ0qmxy7LMwYMHSUxMJCwsrMPB49uNa9myZUq9yeDgYCorKzGZTMyaNYuEhAQAysrK2L59O9HR0fTp04e+ffsSERGhNFpq+/ckyzIVFRVUVFTQ3NxMc3OzUoqgpaUFt9tNWloa06dPv2MWmCRJnDp1ih07dmCxWDAYDDzxxBPExcXdcpuzDWf50eEfUW2pRqPS8J3k77Bg4II7/o4aGhpYu3YtTU1NeHt7s2DBAqKjo7v960oQBLh69SrHjh1jwIAB93WGxrlz52hqamLkyJEiqCf0SrIsk52dzc6dO3G73e0addtsNs6cOcPJkycxGo3KNsHBwWRmZjJkyBA8PDzE56ZwV1wuF7Is43Q6gdakB41G80D79jguXMC0/H3M27fDtfrrd0vt54fnuLF4TZiAYexY1Nf6/tz12BwO1qxZQ3V1NX5+fvyf//N/lOQUq9WKXq+/q9kVDodD6aOi0WjalVI5ePAgoaGhDBw4UMzcEARBEL4WEfjuBBH47v0KCwvZsGEDkiQRExOj1Fduc/bsWTZv3gzApEmT2tUC7gmMRiMbNmygsrISLy8vXnrppU41mCwvL2fNmjVoNBpee+21e/I+aGxs5J133sFutyvLVCoVjzzyCKNHj1ZOZNu+3m1ZFVmWsdvtd8wEc7vdFBQUcPDgQerr6wEIDw9n1qxZ+Pv733L/n5V+xh/y/oBTchLtHc2vMn5FUlDHGgF99NFHXL58mYCAABYuXEhoaGiPel0JgiAIwr1SU1PDli1bePzxxwkICMBsNvOPf/wDl8sFgEajITExkdTUVGJjY8WFIOGekSQJi8XChx9+iNlsZubMmQ+8tIerqoqm9z/AsmMHyDIqvR6Vpycqz2tf9Z6o9HrUnp433Oe+Wov10EGkxqYvd6jxQD98RGsQfMIEtH3v7vm0NXAGeOmll5Rj8nfffRej0Yi3tze+vr74+vri4+ODr68vQUFBJCcnA63Hynv27FGahDc0NGA2m5X99+3bl0WLFiFJEs3Nzfz9739HkiQCAgIYNWoUI0aMEKW9BEEQhLsiAt+dIALfD4cLFy6wZs0aHA4HoaGhzJ07Fx8fHy5dusS6detwu92MHDmS6dOn98iTLUmSOHDgAMHBwfTvRBMdWZZZtWoVVVVVpKam8sQTT9zTGrbHjh0jNDSUmJgYYmJi8PT07JLgr8vl4q233sJkMmEwGEhLS2PkyJG3LOlic9n4Xd7v2FK2BYDMqEz+a9R/4avreHbN5cuX2bVrFwsWLCAwMPCePA9BEARB6MnaerBA6wViu91OSkoKycnJ+Pj4iAvEwn3R2NjIypUrMRqNqFQqMjMzO9T/p7uQ3W7shYVY9+/Hum8/ztLSdvdr4uKUILg+eVinSqKYzWYuXrzIsGHDlGW3awIeGhqqBMkB/vKXv9DS0tJuHb1eT0BAAJGRkUydOhUAi8VCTk4OBQUF2Gw2oLXEYXJyMunp6YSGhnZ4zIIgCIIgAt+dIALfD4+qqipWrVqF2WzmkUceITExkffffx+73U5CQgJz5879WrWtuwNZlnE4HLjdbs6cOUNFRQWTJk1Spi5+VWlpKevWrUOj0fDqq6/2mgCtw+GgoKCAESNGAOB0OiksLMRisZCSknLL3wdARUsFPzr8I0qaSlCj5tvDvs3ixMWoVbefknn+/HmsVmu7EweNRnPbxxIEQRCEh03bsYrdbsfb27tHJhwIPY/D4WDz5s0UFhYC0L9/f7KysnpkxrGzogLr/gNY9+/HlpcLri/LqKj9/fF5ciYBr76KqhMzQK/XliVvNpvblRdsaWnB29ub8ePHK+seO3YMAH9/fwICAvD3979tM1Gn08nZs2c5ceJEuxJHs2fPVjLJBUEQBOFOROC7E0Tg++FSX19Pbm4uY8aMAWDv3r1UV1ezePHiB9Lx/UGxWCy89dZb2Gw2AgICyMrKIjo6ut06siyzYsUKrly5QlpaGllZWT0m8+VW7HY7OTk5HDlyBIvF0q45Vkfsq9zHL3N+SYuzhUB9IG9mvElaWNptt7FarezatYuzZ8+i0Wh44YUXCAkJEU3qBEEQBEEQuhFZlsnNzWX79u24XC78/PyYOXMmUVFRXT20uyY1N2M9fKQ1G/zQISSTCQDtwIGE/uY3aPv36+IR3pwsy1y+fJkTJ05QVlbGK6+8go+PDxqNhrq6Onx9fXvkRQlBEAThwRCB704Qge+Hk9PpVJrdqNXqXhX0bnPx4kU2bNhAc3MzKpWK0aNHM27cOCWz6sKFC3zyySdotVpeffVVAgICunjEd89qtZKdnU12drYyfdLf35+JEycqzTRvxyW5+Pupv/PBuQ8ASA5O5ldjfkWYIey22507d46dO3disVhQqVSkpaUxefLkXvl6EgRBEARB6A2qq6tZu3YtDQ0NREdHs3Dhwl6RrCC7XFgPHKDuzV8hNTSg8vQk6Ic/xPvJmd36+dnt9nb9iVauXMnVq1dJTk4mIyNDlEERBEEQbiAC350gAt8PL7fbjSzLaDpRB6+nsVqtbNu2TZnWGRYWRlZWFiEhIXzwwQdcvXqV0aNH8/jjj3frA+Jbcblc7Nu3j2PHjuFwOAAICgoiIyODpKSkDnWMr7PV8dOjPyW3NheABQMX8Frya2jUt35dmM1mdu7cSXFxMQDBwcHMmDGDuLi4Hvl7FARBEARBeJjY7Xa2bdtGenq60ujc4XD0ihJ1rtpa6n72c2zXypB4PT6N4B//GLWPTxeP7M7sdjsfffQRtbW1yrLExETGjRv3wJuSCoIgCN2XCHx3ggh8Cw+D06dPs2XLFqxWKxqNhm984xsUFxeTl5fH0qVLe+xr3263s3z5cq5cuUJoaChjxoxh4MCBHQp4A5w0nuTHR36M0WbES+PFT9J+wqMxj952G6fTybvvvovZbEalUpGens7EiRPbZaoIgiAIgiAI3Z8kSdjtdmRZ5tNPP6W5uZnk5GSSkpJ69LGdLEmYli+n8W/vgNuNpk8fQv77N+g7UQKwq7SVQTl+/Djnz59Xlvft25fJkycTGxvbhaMTBEEQugMR+O4EEfgWHhbNzc1s3LgRf39/Jk+erCw3GAw9NkvZ5XJRX19PVVUVAwcO7PDzkGWZ1SWreavgLdyymzjfOP577H/Tz69jdRAPHTpESUkJM2bMoG/fvj329ycIgiAIgvCwk2WZlpYW3nrrLaUUolarZdCgQaSkpBAREdFjj/VsJ09i/PFPcFdXg0ZD4L+9hu+iRag6mCTS1erq6sjJyeH06dNIksSsWbNITk7ucJKLIAiC0DuJwHcniMC38DCRZRmXy4XL5UKWZXQ6XY8r9VJXV0dZWRnJycnKyUlnmBwm/vvEf7Pr8i4ApsZM5cdpP8ZL43XLbc6cOUNwcDDh4eFAa3aQTqfrFdNhBUEQBEEQhNZSdvn5+eTm5lJfX68sb5tVmJiY2IWju3tuk4n6N97Esqv12Ndz3DhCfvk6HoGBXTyyjmtubqawsJCMjAzUajVqtZrTp0/jdDpJTU0Vx+SCIAgPGRH47gQR+BYeRrIsI0kSarW6R2WwVFZWsmrVKiwWC08++WSnTkAqWir4uORjNpduxuq24qHy4Lsp32Ve/Lxb/g6cTie7du2isLCQsLAwFi9ejF6vR6vV9qjfmyAIgiAIgtAxsixTXl7O8ePHKSoqwu12M2XKFFJTU4HWBAiVStWjjgVlWaZl/Xrq//BHcDjwCAkh5Fdv4jlqVFcP7a64XC7effddWlpaMBgMjBo1ivT0dLy8bp3IIgiCIPQeIvDdCSLwLQg9w/nz51mzZg1Op5OIiAiefvppvL29b7uNLMvkGfP4qPgjDlQdQKb1X168fzz/OfI/GRY87Jbb1tfXs3HjRqW5ztixY5k4cSJarfbePSlBEARBEASh27JYLOTn5zN48GAlq7igoIATJ06QkpLCkCFDelQtcEdJCcb//BHO0lJQqfB/6Rv4v/wyqh42A9TtdlNYWMixY8doamoCWsvTjBgxgtTUVGWWZm8iyzI2mw2LxaLcwsPDCQgIAMBms5GTk0NMTAxRUVH3PAvebrdz5coVNBoNUVFRPerCjyAIvY8IfHeCCHwLQvd38uRJNm7ciCRJxMXFMWvWrNsezDklJzsrdvJR8UecazynLB8bMZaFCQsZFTbqtgdrRUVFbN++HafTiZeXFzNnziQxMVEc4AmCIAiCIDykJEnC5XLx4YcfcvnyZaA12Dp48GCGDx9OWFhYF4+wYySrlYY//IGWTzcAoB8+HN8F89HGxqKJiUHdg7KmJUmiuLiY7Oxsrl69qiyfOHEijzzySBeO7N4oLS1l69atWCwWrFYrXw3fTJ8+neHDhyPLMufPn2fdunUAqFQqIiIi6NOnDzExMcTExODv739X5zKff/45JSUlGI1GZVlUVBSZmZni/EgQhC4jAt+dIALfgtB9ybLM4cOH2blzJwBJSUlMnz4dDw+Pm67fZG/i04ufsu78OmptrZnaeg89WbFZzB84/47NK10uF3v27CE/Px+AmJgYZs+eTUBAgDioEwRBEARBELBareTn53PixAnq6uqU5dHR0YwYMYKkpKQuHF3HmXfsoO7NXyGbze2We4SGoontizamb+vX2NjW7/tEo+qmtbTbytPk5+dz4cIFFi1aRHR0NBqNhtraWurq6khMTOz2MzfdbjcOhwO9Xo/D4aC0tJQ1a9a0W0en02EwGJQSL4MGDQJaS0KeOHGCqqoqmpubb9j3k08+yfDhw1GpVDgcDtRqNRqNBpfLRU1NDVVVVVRVVVFfX8+SJUuU0pjr1q2juLgYAF9fX6xWKy6XC2g9V1q6dKk4TxIE4YHraCy3Z81nEgThoVNRUaEEvdPS0pg4ceJND6zKm8tZXbyaLeVbsLvtAIR4hjAvfh6z+8/GX+/focdTqVRKaZMxY8YwadKkbn+ALAiCIAiCIDw4BoOBMWPGkJGRQWlpKTk5ORQXF1NZWYlOp7sngW+Hw0F9fT1ut5vIyEjUavU9GHl73tOmoRsyBNOy5TgvXsRZXo7U2Ii7thZ3bS324yfab6BWo4mMRNO3L9q4OPTDhqIbNgxNNyh7oVKpiIuLIy4uDpvNhl6vR5IkHA4HR44cobCwEL1ez+DBg0lJSaFv374dGrPNZsNoNGI0GgkJCaFPnz737TnYbDbWrFmD3W7nmWeeQavVEh4ezvz585VAt8FguGUCUHR0NNHR0UBrQKgtkF1ZWcnVq1cJDg7GarWiVqvJy8tj165dBAQE0NDQgCRJ7fZVU1ODv3/r+dPIkSMZNmwY4eHheHt7Yzabyc3NJTc3lz59+mC329FqtajVatxuN5oeVjZHEITeTWR8IzK+BaE7kySJnTt3otPpGD169A33V5ur+WPeHzlQfUBZlhCQwMKEhUyNmYpW3bGgtSzLysFvc3MzdXV1JCUldflBvCAIgiAIgtD9mUwmjh8/TmRkJLGxsUDrMeXOnTsZPnw4cXFxtz2uPH36tJJtW19fT0tLi3Kfr68vL7zwAp6envf9ebhNJlyXLuEsv4TrUjnOSxW4ystxXrqEbLHcdBt1cDD6YUPRDxuGPjkZ3eDBqA2G+z7WjsrOziY/Px+TyaQsCwgIIDk5mZSUFIKCgoAvM/mNRnt+3GIAACAASURBVCN1dXUYjUbM12XDp6WlMWXKFCRJoqmpiT179vDEE0/ckxiCyWRi5cqVXL16Fa1Wy/z584mMjPza+23jdDrRaDTKa3DHjh0UFBQo93t5eREeHk5ERAQRERH07dv3jjXC7fbWZKO2GvdlZWVs3bqVjIwMRo0a1aNq3wuC0POIUiedIALfgtC92O12JElCp9MpB1Q3s69yH2/mvInJaUKFivFR41k4cCGpoakdDli73W727dsHwOTJk4HWWo3XHxgKgiAIgiAIQke0lYdwuVzs27ePI0eOAK2B1qFDh+J2u2loaMBisTB//nxlu7Vr11JWVtZuX15eXrjdboKCgli8eLGy/NKlS0RERNzz5oW3I8syUl0dzvJLOCsu4Swuxn7qFI6ic3Ct7IXCwwNtfDz65GFKMFwTE9Olx9ayLHP58mVOnz7NuXPncDgcQOvf5Tvf+Q4qlYrm5mb+/Oc/37Ctj48PQUFBDBw4kNTUVADWrFlDeXk5BoOBWbNmkZiYeNdjq6mpYeXKlTQ3N+Pt7c2cOXPue3NOWZZpbGyksbGR4OBgfH19v/bfZ9OmTRQVFQHg6enJqFGjyMjIwKsH1YwXBKHnEIHvThCBb0HoPlpaWli1ahUeHh7MnTv3pmVGHG4H/7fw//JxyccADAkaws9H/Zw4v7hOPVZTUxObNm2iuroagKVLlxIdHX3L6YOCIAiCIAiC0FFGo5Fjx45RUFBw02SO1157TcniLiwsVIKQISEhhISEKIHvpqYmfH19cbvdWK1W/va3v6FWqxk0aBBDhw4lOjq6y4LKks2G49w5HIWF2AsKsBeewl1Tc8N6an9/PDMy8FuwAH1KcheM9EtOp5Pz589z+vRpoqKiGDt2LNAaDN66dSt+fn4EBQURHBxMYGDgTTOXGxoa2LRpEzXXnmt6ejpTp07t9HnExYsXlfImwcHBzJkzRykx0tO43W7Onj1LdnY29fX1QGtCUWpqKmlpaYSEhHTxCAVB6E1E4LsTROBbELqHmpoaVq9eTWNjIwaDgQULFtxwgFTRUsFPjvyEc43nAFiUsIhXh73a4ZImbc6fP8+2bduw2Wx4enoyY8YMhgwZIrK8BUEQBEEQhHvKbrdTWFhIcXExBoOBoKAgQkJC6N+/PzqdDrVa3aFjUFmWqaio4NNPP6WxsVFZHhgYyLBhwxgyZAg+Pj7386l0iKumBnthYWswvLAQ+5mzcC3DGkA3dCh+zz6L1+RJqLq4l8715Q47y+VysX//fk6caK2FHhkZydy5c5XSKXdy9uxZ1q1bhyRJxMTE8NRTTz2Qcjb3myzLlJSUcPToUeXCQL9+/Vi8eDEqlUpprvkgZywIgtD7iMB3J4jAtyB0vVOnTrFx40acTif+/v43PWj8ouILfn3811hcFvx0fvzXqP9ifNT4Dj+GLMuUlZWRn5/P+fPngdYD1NmzZxMSEiKC3oIgCIIgCEK313ZMm5eXR1FREU6nE2ht8Dhz5syvVXbjfpCdThxnztL86aeYt22Da+P1CA/Hd/58fJ6ejUcPPg+/PqFGp9Px3HPPdagJZl1dHe+99x6xsbFMnz691zWFlGWZ8vJyjh8/Tv/+/ZUyMTabjbfffpuYmBji4+OJj48nPDxcnIsJgtApIvDdCSLwLQhdR5Ikdu3axeHDhwGIjY1l5syZGK5riGNz2/if/P9hw8UNAKSEpPBG+huEe3Wu9p0syyxbtoy6ujoAUlNTmTZtmsg2EARBEARBEHokm83GqVOnOHnyJFVVVXzrW9/C29sbaJ1NqdPpCAwM7OJRfsldV0fzuvU0r12LdK0chsrTE++ZT+C3cCHauLiuHeBdMplMbN68GZfLxeLFi/Hy8kKtVt+wXluGuSRJ2O12Ghsb8fPze6iCvkVFRWzatKndMh8fHwYMGEB8fDwDBgxody4oCIJwMyLw3Qki8C0IXWfr1q3k5OQAMHr0aDIzM9sdJJaaSvnp0Z9yvuk8KlS8kPQCLw1+CY369hkRbZkwp0+fZtq0aUqt8IKCAmpraxk5ciSRkZEP1UGmIAiCIAiC0HuZTCYMBgMulwtZllm9ejUVFRXExsaSkpJCfHx8t+llI9vtmHfswLRyFc6SEmW5Yfw4fJ99Fs/Ro3vccbokSVitVuXCg0ajobm5meDgYAAcDgfr168nNTWVmJiYrhxql2toaKC0tJSysjIuXbqkzFoAmDVrFikpKahUKsrLyyktLcXb2xsvLy+8vb2V7w0Gw00vLtzK9WVtLBYLLS0tBAUF9bpMe0F4WIjAdyeIwLcgdJ2rV6/y4YcfMmnSJAYNGtTuvi1lW/hd7u+wuW0E6gN5Pf110sPTb7u/lpYWCgsLKSgowGQyATB9+nSGDh2KWq1Gq9V2uI6iIAiCIAiCIPQ0sizjcDj4+OOPKS0tVZZ7eXkxdOhQkpOTu00WuCzL2I8fx7RyFdYDB+BaeEIbPwDfRYvwyszE41rguKc5ePAgOTk5TJs2jUGDBrFq1Sqqq6vx8vLi5ZdfFrNOr3G5XFRWVlJaWkppaSnPPPMM3t7eqFQqDh06xKFDh266nUqlYsmSJfTt2xeVSsXJkyfJz8/H6XTe9Pbiiy8SGRmJLMscOnSIPXv24OvrS1ZW1g3noYIgdH8i8N0JIvAtCA+W0WgkODgYh8OB2+3G5XK1u9JucVn4fe7v2Vq+FYBRYaN4Pf11gj1vftDblt198uRJzp8/T9u/Nb1ez5AhQxg1ahRhYWGdyggQBEEQBEEQhJ6uvr6eEydOcPLkScxms7I8LS2NSZMmdeHIbuS8dInmj1bTsnEjstWqLFcHB6MbOBBdQgLahGtfY2O7vDHm7UiSxKeffsrFixcB0Ol0OBwOvLy8mD17NlFRUV08wp7hwoULXLhwAYvFgsViwWq1YrFYsNlsALz44otKRv3Ro0c5cODALfe1cOFCpfZ6Xl4e+/btUzLNBw8eTFZWlpKtLwhC9ycC350gAt8Pn5qaGo4fP85jjz2GSqUS05seEEmS2LlzJ0ePHmXevHnExsbesM75pvP85MhPKGsuQ42abw79Js8Peh4P1a2nZTY2NvLuu+8qP0dHRzN8+HCGDh2KXq8X2d2CIAiCIAjCQ83lclFcXExubi4XLlxgxowZDB48GACr1UpNTQ1hYWF4eXl18UhBam6mZcMGWj7biLO0VMkCb0erRTegP9qBCegSEtAlDESbkICHv/+DH/AtyLJMTk4OBw4cQJIkAgMDmTNnTrfJtu/J3G43Vqu1XS312tpajEYjWq0WjUaDVqtVbhqNBi8vr3alfpxOJ4cPHyYnJwdZljEYDEybNo3k5GRx/igIPYAIfHeCCHw/PGRZJi8vj23btuFyuZg0aRJpaWnodDoR/L7PLBYL69atU6ZbZmZmkpGR0W6dfZX7+Hn2z7G5bYQaQnkj/Q1GhI645f6uPzDfuHEj3t7ejBw5koiICJHdLQiCIAiCIAg30dDQgKenJ9B6fnTs2DH27dsHgK+vL+Hh4YSFhREeHk54eDg+Pj5dFgiUrFac58/jKC7BUVyMs6QYR8l55Ouy16/nERGBYUwGhsxMPEePRt0NAvlXrlyhtLSUlJSUbnFhQWjvypUrbN++ndraWgDGjh3L1KlTu3hUgiDciQh8d4IIfD8cHA4HmzdvprCwEIB+/fqRlZWFwWDg8OHDaDSabjfd735yOp0PLNu9urqajz/+mKamJrRaLdOnTycxMVG5X5ZlVhWv4q2Ct5CRSQ9P55fpvyRAH3DDviwWCwcPHuTMmTMsXboUf39/VCoVWq0WDw8PcXVeEARBEARBEDpAlmUkSWLXrl0UFRXR0NBw0/WWLFlCWFgYgLJOQEBAlx13y5KEq6oKZ3Fxa0C8pBhncQmuysr2K2q1eI4ciSFzPIbx49E+5A0lhVtzu93k5ORw7NgxFi9eTHh4OBqNRpxbCkI3JgLfnSAC371fTU0Na9eupa6uDpVKRWZmJqOvdQovLy9nzZo1AMydO5chQ4Z08WjvH5vNRlFREWfPnuXChQv4+vry7W9/+742VikoKGDTpk24XC4CAgJ46qmnCA0NVe53SS5+n/d7NlzcAMCcAXP4/vDvo1G3D8i73W7y8/M5dOgQdrsdgMmTJ5ORkSEOSgRBEARBEATha7LZbFRVVVFdXc2VK1eoqamhsbGR1157TSkRsX37dgoLC/Hy8iIjI4Phw4e3Kx/RlaSWFuwnC7AeOoj1wMEbAuGauFgM41uD4J4jRnTrGuFC17Db7ej1eqC1eWZhYSH9+/cnJCSki0cmCMJXicB3J4jAd+92+vRpNmzYgMvlwsfHh5kzZypNLdrs2bOH48ePo9VqWbp0KZGRkV002nvP5XJx6tQpzpw5w4ULF5Akqd39M2bMIC0t7b48dktLC3/84x+B1gz7J554QplWCdDsaObHR37MsavHUKHiu8O/y/z4+TcEscvKyti9ezd1dXUAhIWFMXXqVPr37y9KmgiCIAiCIAjCfeJyuVCpVEiShCRJbNq0iaKiItxuNwBBQUFMmjSJ/v37d/FI25NlGVdpGZaDB7AePIg9Px9cbuV+lY83howMDOPHox8+Ak14GKprAU9BAKiqqmLlypV4eHgwYcIExo0b120u8giCIALfnSIC371bZWUly5Yto2/fvmRlZd20rpokSaxfv56ysjL8/Px4+eWX8fHx6YLR3htut1v5UHa73fzxj3/Eeq0zenBwMImJiWi1WvR6PUOHDsXX1/eePG5TUxOXLl1i6NChSJKEy+Vi9erVREREMG7cuHZB6ipzFd878D3KmssweBh4I+MNMqMy2+1PlmW2bNnC2bNnATAYDGRmZpKWloZWZGgIgiAIgiAIwgPncrnIy8tj7969WCwWoDXJZeLEid02M1ZqbsZ69CjWgwexHjyEdJOyLuqAADzCwtCEheERHo5HWCiasHA8wsOU5eoefI4odI7JZOLzzz9XelSFhYUxa9YsoqKiunhkgiCACHx3igh89z5tU5RcLhcOh0PpUn67chg2m40VK1bQ0NBAnz59eOGFF3rUFV2LxUJRURFnzpyhvr6eb3/727jdbiRJ4siRI8iyTEJCwk0PRj09Pe86c9rtdlNSUkJubi4lJSWoVCq+9a1vKRcOnE7nDUHqAmMBPzj8AxrsDYQaQvnT+D+REJBw0/0fPHiQo0ePkpqayiOPPNKlzXUEQRAEQRAEQWhltVrZv38/x44dQ5IkxowZw/jx47t6WHckSxKOM2ewHjiI9dAhnBcuIF8rpXgnKi8vPMLC0Kek4DV+PJ4Z6ai9ve/ziIWuIssyZ86cYc+ePUoimU6nIzAwkFdeeQVoLYmybds2Ghoa0Gq1N9z8/PwYNmzYfS0vKggPIxH47gQR+O49ZFkmLy+PL774ggULFrSrJd0RdXV1rFixAofDwYgRI3jyySfv00jvHbvdzhdffEFubi7Xv52ff/55wsPDO7QPtVrdrgRJRzQ0NJCbm0t+fj4tLS3K8r59+zJ58mRCQ0OpqKhg/fr1REZGMmjQIBISEjhQe4A3ct7AITlIDEjkj+P/SKjhy7/TuXPn8PX1Va6kO51OzGYzkZGRIuAtCIIgCIIgCN1MXV0d+/fvZ9KkSUpwr7m5GS8vrx6RSCTLMpLJhLvmKu7aq7hqaq77/iruq603qbn5xo01GjzTRrbWDs/MFA00eymz2czu3bspKioCWpu7vvzyy8r977//PlevXr3ptjqdjn/7t3/Dy8tLnM8Kwj3UKwLfv/jFL3j99dfbLQsPD+fKlStA6wfU66+/zj/+8Q8aGhpIT0/n7bff7nRzQhH4vr+sVitHjx7Fw8MDX19ffHx88PHxwdfXFy8vr3tWo9nhcLBlyxYKCgoASElJ4bHHHuv0fi5evMhnn33Go48+yqhRo7p1DekLFy6wceNGTCYT0Dr9KiEhgcTERIKCgu64vSzLFBQUkJuby4IFCwgODu7Q4xYVFfHxxx8rP3t5eTF06FCSk5MJDAy8Yd2tW7ficrsoCijidMBpAMZHjOfNMW9i0BiUsWRnZ3PgwAHCw8NZvHgxGo0GnU7Xrf8GgiAIgiAIgiC0lo90Op24XC4lmWjSpEn069evVwT8JIsF99WruCorsR45ivXAAVwVFe3W0cTF4ZXZGgTXp6SIBpq9jNVqxWazIctyu/PtixcvYjabcTqdynvA6XTicDgICAhg9OjRAHh4eLB161YGDBjA4MGD0Wg0XfVUBKHH62gst9u/y4YMGcLOnTuVn6+/Yvy73/2OP/3pTyxfvpyEhATefPNNpk6dqmSMCt1DS0sLRqORs2fP8tXrLCqVCm9vb1555RWlNMb58+epr6/H09NT+bC4/jZ9+nQlELp7927OnTuHw+HAYrHgcDhQqVRkZmYqHy6d1b9/f6XGt91ux9PTs1seqFVWVrJixQoA/P39mT59OjGdzDBQqVSUlJRgNBrJzs4mKyvrtuvLsowkSURGRqLVaomOjiY5OZn4+PhbZnNEREQweuxo/l76d4o1xQAkNCUQWRHJ3pa9TJ8+HVmW2b17N7m5uQDExMSg0+nEdDBBEARBEARB6CHUajV6vR6TyYTJZMJisbB+/Xri4uKYNGlSt63/3VFqLy/UcXFo4+IwjBsH//7/4ywvx3rgAJb9B7Dn5+EqK8NUVobpwxWofHwwjBmDITMTz1FpoFIh2+zIdhuy3Y5sa/tqR2pbdu1n2W4HDzUefn6o/f1bb37+qP398PD3R+Xt/bXOUWVZBocD2eHo9LYqgwHVQxqwNRgMGAyGG5Z3tLlreXk5BQUFFBQUsGPHDoYPH05aWtoNyWOCINw73T7je8OGDeTn599wnyzLREVF8d3vfpcf/vCHQGvJh/DwcH77298q9ZZuxm63Y7+uhpfJZCImJkZkfN8nsixz9epVjhw5gslkwmw209LSojRCAfj+97+Ph4cHKpWKzZs3c+bMmVvu77vf/a4SEN22bRuFhYXKfT4+PsycOZM+ffrcs/HbbDZUKlW3+jCSZRmXy8W6devw8fEhMzPzroPEpaWlrFu3Dp1Ox/e+972bljyprq4mJyeHRx99VFlms9luWR6lpaWFlpYWIiIiaLQ38sPDPyTfmI9apWaO/xyCKoKoq6tj6NChTJ06lW3btinTxiZOnEhmZqbI8hYEQRAEQRCEHuqr9b9VKhXDhg1j9OjR3eq86l5SGmgeONDaQLOx8f49mMajNRDu54dHwJdBcSS5NbBusyPZrg+mt31vu/a9A+4yFKTy8cF39lP4zl+AJiryHj+x3s1isVBQUEB+fj7N15XOGThwIKNGjWLAgAHiPFgQOqjXlDr5/e9/j7+/P3q9nvT0dH7961/Tv39/Ll68yIABA8jNzWXEiBHKNrNmzSIgIID333//tvv9agkVQAS+75O2BpNfJUkSFosFi8VCWFiYsvzEiRNUVFTgcDjQarXodDqlMYROp2PUqFFKkLe2thaz2aysExgYeE+nCxmNRtavX49Op+Oll15Cr9ffs313lt1uZ+/evYwfPx4PDw8kSUKSJNRqNerqfDzOf44rYTpy+LBO7VeWZf71r39RX1/PY489xpgxY9rdX1tby/Lly7FYLGRkZJCZmXnHfe7atYvc3Fxi02L52Poxl82X8dH68OsxvyY9PB1ZljEajbhcLvbv38+lS5dQq9VIkoROp2PYsGFMmTLlplfTBUEQBEEQBEHoGerq6vj8888pLi5WlnWmF1FPJbvdOE6fwXLgANaDB3GeOwceHqj0elSenq1f9XrUnnpUes/2yz1b78PtRmoy4TY1ITU2IZlMSE1NHW7Eed95eOA1eRK+ixahT07ulrOkuytJkrhw4QL5+fmUlZUpyxcuXEhCQkLXDUwQepBeEfjetm0bFouFhIQEampqePPNNykqKuL06dOcO3eOcePGUVlZqTTBA/jmN79JeXk5O3bsuOV+Rcb3gyHLMocOHaJfv37d86q+2Yjm5Ie4E7KQQxJvukpLSwsffPABZrOZhIQEFixY0CUf6BcvXmTjxo00NTWRlJTEE088odzncfYzdFv/P1Tu1te0OzwZV8pi3EmzQe/Tof3n5eWxc+dOAgMDee2115TnWF9fz7Jly5Ts7WeeeeaOwf/m5mb+8t5fKPQrpMy3DBmZSK9I/pT5J/r7tZ8Ctm3bNk6dOoVWq2X06NEUFBQoV769vb2ZMWMGSUlJHf49CYIgCIIgCILQ/ZSVlXHo0CGamppYsmSJcr5RW1tLcHBwr89yld1uVPeo0adksyE1NSE1mZCaGnFfC4hLJhOo1NcC6p6tAXQlyO7Z+r3ntfuuBd5Vd5HYZT16lOaVq7AdO6Ys0w0dgt+zz+I1ebKoa95JDQ0N5OXlcfnyZZ577jnUajUajYaNGzfS0NBAeHg44eHhhIWFER4eLpLDBOGaXhH4/iqz2cyAAQP4wQ9+QEZGBuPGjaOqqorIyC+n17z88stUVFSwffv2Du9XNLe8PyorK/nnP/+JRqPh1Vdf7dJs6a9SNVej/3ge6voLyDof7LOXIcWOv+m6VVVVrF69Grfbzfjx45kyZcoDG6fdbueLL77gxIkTQGst78cff5y+ffuCLKM59ja6fb8CQAoZhKr+AirJCYCs9cKd9BSulMVIEcPhNgF7h8PBO++8g91uZ/78+QwaNIimpiaWLVtGU1MTISEhLFiw4I4fslaXlTe2vcFey17cajcAk/tM5j9G/AdBnjc22zSbzWzYsIEpU6YQERGBLMtcunSJXbt2UVdXB8DgwYPJysrC29u7879AQRAEQRAEQRC6jbaeTG29nN555x08PT0ZOXIkw4YNEz1+ehBHcQmmjz7CvG0bXJvh7REeju/8Z/B5+mk8RGylU2RZbpdk949//IOmpqYb1vP19aVPnz4888wzt9xWEB4GvTLwDTB16lTi4+P5j//4j7sudfJVIvB9f3z22Wfk5+czePBgZsyY0altVQ2lqOtKcA94FFT39uq/ynQZ/ep5qBvLkFVqVLKE7KHDMeMt3IOevOk2p0+fZuvWrQDMmTOHoUOH3tMx3cz1Wd4AI0aMYMKECa0Hg5IL7c6foM3/AADnyJdwTvoF2BrQnFqHpmAF6voLyr6k0MG4UhbjGvw0ePrf9PH27NnD8ePHiYuL4+mnn2b58uXU19cTGBjIwoULbxt4dstutpZt5W+Ff6PO3hqwHugzkB+M+gHJIcnt1rVYLHh5eSk/3+xD2uVyceTIEbKzs5FlmdDQUL71rW/1+kwQQRAEQRAEQXgYtCW8fPzxx1itVgD0ej0pKSmkpqbi6+vbqX1dfz4hgoAPlru+nuZ162hesxapvh4Alacn3jNn4rdwAdq4uK4dYA9lNBoxGo3U1tZSW1uL0WhUYgMREREsWbIEtVqNSqXivffeIyIiggkTJhAUdGPCmSD0Rr0y8G232xkwYADf/OY3+dnPfkZUVBTf+973+MEPfgC0Xj0OCwu7Y3PLrxKB73vParXypz/9CZfLxaJFi4iOju7YhrKE5vi7aPf/BpXbjmvg4ziy3upwyY47UTVVoF89B3VTBZJ/DPa5K9Ee/B2ac5uRUeGc8gaukd+46bZ79+4lJycHDw8PUlNTycrKuidjupmCggI+/fRT4CtZ3gAOM/qN38Lj4s7WMU9+HVfay+13IMuoLx9Fc3IlHuc2K2VQZI0n7kFP4kp+Fil6VLss8KamJnbt2sWIESM4fPgwVVVV+Pv7s3DhwtseeB6rOcZfTv6FkqYSALyd3jyifoSfPfOzGwLV5eXlSoZ3Ry4e1NTUsG3bNsaOHcugQYPQ6XQi+C0IgiAIgiAIvYTD4SA/P5+jR4/S0NAAgFqtJikpiXHjxuHv35q0c+nSJRoaGmhpaaGlpQWz2ax8VavV7c7/t2zZgtFoJDIykqioKKKioggMDBTB8PtMdjgwb9+OaeUqnCUlynLD+PH4zHkaQ0bGXZVWEb5kt9sxGo243W4lPuByufjzn/+sXPBJSUlhwoQJ3bPcrCDcQ70i8P3v//7vzJw5k759+3L16lXefPNN9u3bR2FhIbGxsfz2t7/lN7/5DcuWLWPgwIH8+te/Zu/evZw7d65TV4hF4Pvey87OZvv27YSEhPDCCy906CBD1VSBbut38ag43G65FJyAffYy5KD+t9iyY1QNpehXz0XdXIUUEId9wTpkv2iQ3Gh3/RRt3nIAnBn/hjPzP28oDSJJEp999hnnz58nKSmJWbNmodFoUKlUnDlzhgEDBtxVva2WlhYuXLigdDqXZRmz2cy7777LgAEDeOSRR76c8tdSg+f651DXFCJrPHHM/CvugdNv/wC2RjSn16M5uQK1sejL5xOcgDPjO7iHzLthk8uXL7Njxw7mzJlDQEDATXd7sekifyn4C0euHAHAR+PDgNoB9G/qz6L5i74M1F9TVFTEli1bkCSJ2NhY5s2b16HXRVsDzzYXLlzA7XaTkpIiDl4FQRAEQRAEoReQZZmioiIOHz7M5cuXAXjppZeU4N1HH32kLP8qlUrF97//feWc4WYlIjw9PYmMjKRPnz5kZGTcx2ciyLKM/fhxTCtXYT1wAK6FnFTe3nhNmIDXo1PwHDMGtadnF4+0d5Blmerqag4fPkxpaSnQevFo+PDhZGZm3vJ8XhB6ul4R+F6wYAH79+/HaDQSGhpKRkYGb7zxBoMHDwZa3+Cvv/46f//732loaCA9PZ23336702UoROD73pJlmb/+9a8YjUYeffTRdqVobrEBHqfXotv5U1SOZmStF45Jv0AOG4xuw0uoW64g6/2wz/wrUv+7q6+tqjvfWtO75QpS0ADs89ci+35ZGx5ZRnPkz+gO/g4A17AFOKb9HtSaG55bZWUlOp2OsLAwAK5evcr777+PSqUiNjaWpKQkBg0adMvXksvloqKigvPnz3PhwgVqamoACA4O5sUXX1TWs9vt7eqiF+tm5gAAIABJREFUq4zn0K97FrWpEtkrGPvTH+AMT+HUqVMkX+ui3dTURF1dHf373+QigSyjrs5tzQIv2oDK2Tql0P7Ue7gTbsxe/2rAuU2drY5/nP4HGy9uRELCQ+XB3Pi5TPOdxv7P9xMYGMiCBQvabZObm8uuXbsASEhIYMaMGWg0mhv2fSdms5lly5ZhtVqJj4/niSeeULJABEEQBEEQBEHo+SoqKigvLyc1NVVZduDAAWpra/Hx8VFuvr6++Pr64uPjg5+fn1L2oampicuXL3P58mUqKyu5cuUKLpcLgLCwMJYsWaLs9/DhwwQEBBAfHy/qi98HzkuXaF67DssXX+C+elVZrvLywpCZifejj+I5dgzqu0ggk91uXOWXcJQU4yguRmoyofb3Q+3vj4d/AOoA/2vf+6MOCEDt64vqLs5Be5KqqioOHTpEWVkZ0BoAf/bZZ28eHxCEHq5XBL4fFBH4vrfKy8tZvnw5Wq2Wb3/727dvamkxotvxAzQl2wBwR4/CkfW/yIH9Wu9vqUG/4SU8qo63lvWY8CNc6d+5baPGr1IZz+H58TxU5lqk4ARs89eCT9hN1/U4uRLd5z9AJUu4B0zF/uQ7oPW66bptLl26xO7du6mtrW23PCoqikGDBpGcnKwEZzdu3MipU6dwOp3t1g0PDycuLo7x/4+9946O6srTtZ9TURFJoAhKSARJBAlETgZswDZgEwwYG5xT55k7M9096+ueOz1zv+m53TNtt8fd7W4csI0NGEy0jWVEzkYiCwkFklDOoXKds+8fhQ7IEgaRwftZq1apTqp9SlUnvPvd72/cuE7FZsO53VjXvYjiavYJ9098jNotji+++IKCggLS09MZPXo0H330EU6nk/nz5xMbG3vlRrtaMG//d8xHP0JYQ2hZtImv9uUxcuRIrFYrhw4dIiQkpF2nhVfz8tGpj/iw4EPsXjsAE3tN5EeDfkR88KVhVna7Xf8dCSHYvXs3+/fvB3w55ZMnT77uuBJN0zh48CB79uxBVVUsFgtTpkwhMzNTur8lEolEIpFIJJL7CCFEu7zu673e93q9VFZWUlpaislkYsCAAfr0P/7xj2iahtlspn///gwYMIC4uDh5b3GTEZqG+/gJbFuysWdvQa2s1Ocp/v74jxtHwEMP4j9uXKciuNbSgruwCHdRIZ7CQtyFRXhKShAuV5faYQgOxhASclEUD8UvI4OgObMx3mexIGVlZezZs4e6ujpefvll/P39MZlMCCFkdKjkvkEK311ACt83l+PHj7Np0yb69u3LtGnTrricsfhrLF/9A4q9FmEw4xn3j3hH/AgMRmpra6muriY1NRVFdfuiSI4uA8DbfybuR94Ay3cL0gBK9Un8Pp2PYq9Di0jDuWAlBIR/5zrGoiwsG19D8TpRew7DNfcD8L96gYjGxkaKioooKiqirKxMn75w4UKSk5PRNI3PP/+cY8eOERgYSGJiov64vNhjh/ac+BTLV/+IonlQY0f6Yl/8Qtm8eTNHjx7FYDAwd+5c+vfvz6pVqzh16hRWq5WnnnqK8PDv2FfVjfWTWVBxlBV+iyl29SAkJISRI0fy9ddfExwczCuvvILBYMCtuvnV/l+xo3wHAAO6D+Cn6T8lIzzjipsXQvDll19y8uRJAMaNG8eoUaNuykVkXV0dmzZtoqKiAoDExES9sK1EIpFIJBKJRCKRXIk2Qd1ut7N3717y8/NpbGzU53fr1o0BAwYwcOBAeX9xCxBC4D5xAnv2FmzZ2agX7+kAFD8r/mPH4TdqFGp1lU/sLixst8zlKH5+mPv0wdKvH8aICLTmJrTGJtSmJrSmJrSmRtTGJkRr6xXbo1itBD76CMFPPYUlOfmm7++dxGazERgYCPhMZMuWLSMhIYFx48Z1KR5YIrkbkcJ3F5DC981FCEFLSwtut7tzQdfVimXr/8Z0/BMAtPD+uKa/hYjyRdTY7Xbef/997HZ7u6gU05EPMWf/CkXzoEWk+gTg0IQrtkOpPIbfp0+iOBvQogbhnL/imgRsAMOFb7CueRbF2YjWvQ+u+csR3b7DQf0t2nK7z5w5w8yZMzEajYBPsFVVlYiIiKsLwEJg2vs6lj2/B8CbMgv3o6+DyY+dO3dy4MABAB577DEyMjJQFAWPx8OHH37IhQsXCA4O5umnn/7OE5qoP8MX7/2OfJGEySB4Yv5CYmJiePvtt3E4HDz22GMkJCfwi72/YH/VfiwGC/+c+c88nPAwBsXXU9zU1ERZWRkpKSkdeo/37dvHnj17mDJlCunp6df8+V0LmqZx6NAhdu3ahdfrJSwsjFdfffW7RxhIJBKJRCKRSCQSyWUIITh//jxHjhzh5MmTuN1uACZOnMjw4cOva5tOp5OGhgbq6+tpaGhA0zSGDh1KUFDQzWz6PY8QAnd+PvbN2dizs/FeZiD7NsboaCz9+mHp1xdzv35Y+vbFFBuLcvFe+zvfx+tFa26+KIo3ojU1oVZV07phA+78fH05v1Ej6fbUU/iNGYNynzmjT58+zWeffQaAyWQiPT2dmJgYunfvTvfu3enWrZsc6SC5p5DCdxeQwvfNxev16hcL38ZQuh/Llz/F0FSKQME7/DU8438OpkuFLTZs2MCpU6cAsFqt+tAcAMOFA1jXv4xiq0H4heF67G20xAkd36fiMNZPF6K4mlBjhuKa9wn4dS0LWqk9hXXVU75imEHRuOYtR0SkdGkb143q9kXAnFgJgGfkj/FM+GdQDHzzzTfs2OFzXk+dOrWDi9put/Pee+9RV1dHeHg4Tz31VKdisBCCTZs2kZeXh1F4eZL1xM77T7TeE9m1axf79+8nMjaSfdH7OFx7GH+jP/817r8YFjms3XaysrI4duwYgwYNYurUqdjtdv2CTtM0amtr9Tz0W0FDQwOffvopffv2ZcqUKVL4lkgkEolEIpFIJNeF2+2moKCAY8eOMXXqVP2+Jj8/n+LiYgYMGEBiYqJvVKzbTUNDA263m7i4OH0b77zzDg0NDR22HRgYyOOPP06vXr1u2/7cSwghcBcUYM/eguv4cUy9emHp1xdLv36Y+/bFeAu0GiEEriNHaPn4E+zbt4OmAWBKTKDbwoUEzphxXfnjdyNCCM6dO8eePXsoLy/vMH/OnDkMHDgQRVGorq7m3LlzuigeEhIiI1Ikdx1S+O4CUvi+OQghOHv2LFFRUR1nel2Yd/8O0zd/QUGgdYvF/egf0eLHtFusoKCAjRs3oigKsbGxZGRk0L9//3bCrtJSjmXdSxgrDiMUA54Hfo13+Kt67reh7CDWVU+huFtRew3H9cTHYL2+YTxKcxnWVQsx1BUhrCG45ixFi7tFVcA1FaWhBEN1PqajH2E8v8e3f1N+izfjGQCOHTtGVlYWAA888AAPPPBAp72yjY2NvPPOO9hsNuLj45k7d267YpJCCD0qRVEU5sY3MuDsu4iAcBzPbaFF+PPWkrfYGbmTems9gaZA3hj/BoPDB3d4n3fffRdN05g5cya5ubm43W4WLVqE2Wy+NZ9TJ1xeCNTPz0+elCUSiUQikUgkEskNIYTA6/WiqirLly/n/PnzAPqoZrvdV/eoe/fuvPjii/p6y5Yto6KigqCgIMLCwggLC6O8vJza2lrS0tKYPn367d8ZyVXxlJXRsmIlrevWIWw2AAzduhE0ZzbB8+djio6+wy28ObTpNqdPn6axsZGGhgaamppYtGiRruXk5uaydetWfR2DwUBYWBh9+vRh0qRJ0mwmuSuQwncXkML3zaG4uJiPP/6Y6OhoFi1adKkISfMFrJ89g6HGN4TIO+hJ3JP/rYMY3drayvvvv4/T6WTMmDE89NBDuN1uVFXt+GZeJ5avf6k7or2ps3E//F8YKo9iXb0IxWNHjRuNa+5HYAm8sR1zNGBd8yzGsoMIoxX39DdRe08CS1CXimy2w9mEoeYkhmrfQ6nJw1B7CsXr1BcR5gBcj/0NLflBfdqpU6f4/PPPGTZsGNOmTftOgbeiooKlS5cSFhbGE0880S525uDBg2zfvh2AGTNmkNonEb9l0zHU5KMmTKDisT/x3BcvUCWq8Mefvzz0F1LDUju8R5vbOzw8nObmZtxuNxaLhfnz5xMTEwNCgLv1ujseroe2C9S2gqISiUQikUgkEolEciOUlZVx+PBhTp48icPh0KcHBAQQHh7OggULMBgMGAwGWlpaCAgIwGq1oigKiqLgdrvZvn07I0eOvK0GIUnX0Vpbad24kZbly/FeuBi9YjQS8NBDBC/4DgH8CtqAITAQw10ecaNddLq36QunTp0iLy+PxsZGGhsb22kyISEhLF68mB49etyRtkokbUjhuwtI4fvmsHLlSgoKChg6dCgPPnhJrLWsewlT4ReIgB64p/0Xat+HO11/37597N69m8jISF588UUsFgtCCBwOB06nE4vF0l7oFQLT4fcxb/kXFKGihaegNJ71FaVMmIBrzvtgvnoBzGvCY8ey4QeYSr6+9PYGM/iHIvxCEf5hCL8w8O9+6bV/GFycrjjqMVTnoVSfxFCTh6G58+wyYQ5Ai0hFixyAd8jznUar1NTUEBsbq+eGfxdtWd/fvrhyu92sXr2ajIwM0tLSAFDqCvH78GGqNTcvJaVy1tuMVbUysWYiv3jhF3pRjDbaXOWXH0J69uzJ9OnTfUVgHPVYv/gpxtNbUKMzUFMeR02Zieh2E4f2aV4MZQcxnN+HljSZ5uA+bNiwAZfLxcsvv4zFYrl57yWRSCQSiUQikUi+13i9Xs6dO4fZbKZHjx74+/vr4va1oGkaLpcLTdPYt28f6enpHe6zJHcHQlVx7NpF8yef4MrJvf4NGY34DRtGwEMPETB5EsawsJvXyNuApmm0trZSWVnJ9u3bMZvNPPfccwQEBMhMcMkdRQrfXUAK3zdOc3Mzb7zxBkIInn/+ecLDwwFQqk/iv/RBBArO57cgIjq6htsQQnD8+HFiY2OJjb1USPLo0aNkZWUxevRoMjMzO6xnOL/Xl/vtqAdA7T0J16x3wfzdWVyNjY3s3buXxMREUlNTr37Q1ryYt/0rpqMft3NmXy9at15oEQMQkWlokQPQItIQYYmgtHdxV1RUEBgYqH83rVbrNYnebQghcDqduFwumpub9f+NEKLDPlfl/pUfnvorF8xmIi2hTHfNpm+PvowaNarDBdmaNWsoKSkBQFEURo8ezejRo31Oh4rDWNa/3KnAr/YajpryON7+MyCok1icq+Gox3h6G8aSbIxntqG4mnz7Yw2hft4a3l+3HZvNRnp6OrNmzer69iUSiUQikUgkEonkFiGEYMeOHezYsYPg4GBmzZpF9H0So3G/4i4ooHn5cuxbtyE8no4LfJesdvnyRiN+mZmXRPDu3W9+Y28hbrcbm81G2EXx3mQyUVdX5xvtLZHcZqTw3QWk8H3jbN++nR07dhAbG8vChQv16Zb1L2M69Tne/o/hfvyvV92Ooij4+fm1E2RzcnL44osvsFgsvPjii51WwlaaSrFs/mdEUBTuh/4DTN+dOeV0Olm2bJledCQ9PZ2pU6de6+6Cx47iaABHA4qzEcXR4BPe2/52NoCjEcXpmy7MgYjIAWiRaWgRaWiRaeAXetW3qa6uZsWKFVgsFp588kmioqK6JHq30djYyJIlS7Db7cycOZOUlI5O8vMt5/nxjh9T5agi1uPhby0K3RdvRgnoeDKur6/n3XffBXxFWh577DFfZ4UQmA4vxbz1f6NoHrTQ3rin/R5DXSHGgvUYLnyDgu+QI1DQ4kajpjyGt/90CAjvvPFCoNQVYizZjLFkM4ayHBShXZrtH4awBGNoOo8WkUbRA39h5ZoNCCGYNWsW6enpXf68JBKJRCKRSCQSieRWUVNTw4oVK6ivr8dkMjFt2jR9JK7k/sJzvhT7lmzsm7NxFxRcmmEw+ETwKQ8RMHnyPSeCA+zfv5/du3czZswYJk6c2K6umERyq5HCdxeQwveNoWkab7zxBi0tLb686FSfq1upycf//ckX3d5bO43tEEKQk5PD4MGDsVqtnbqZNU3j3Xffpby8nNTUVGbMmHHD7V29ejXnzp0jICAAj8fDvHnz7rrq2g0NDSxfvhybzUbPnj15+umn2+V0Xyt1dXV89NFHNDX5nNEGg4F58+YRHx+vL1PSVMKPd/yYelc9iUHxLCkrI7r+DN4+03DPfr9DXll1dTWbNm3Cbrfz/PPP4+fnB24blqx/wpS/FgBvv0dxP/I6WC/9ppSWCoynNmIs2ICx/NJwMaEY0RLG4k15HLXvI2D2x1C6z+fqLtmMoam03ftrEamoyQ+hJk9BixmKYqvB78OpKLYavGlz2Ba6kL379mE2m3nllVd0l7vE95s7duwYmqbRs2dPIiIiZDFQiUQikUgkEonkNuN0Olm9erU+inbYsGE88MAD8tr8PsZTWop9yxafCJ6ff2mGwYB16FAC20TweyA/WwhBVlYWx48fByAyMpJZs2bdkPu7oaGBxsZGYmNjZRa+5KpI4bsLSOH7xigoKGDlypX4+/vz2muv6b18l9zeM3E//rdO1z1y5AibN28mLCyMl19+GX//zuNJysvLWbJkCQALFixoJ9p2lezsbA4fPozZbGbRokVERERgMpnwXByC9M0332A0GsnIyLgud/XNoKWlheXLl9PU1ERERASLFy8mOLjrBSLLy8v5+OOPsdvthIWFERoaypkzZ7BarSxcuJCIiAjyG/L56c6f0uxupl9oP96c8CbdGy/gt2wGiurGNfnfOBf9CIcOHSIsLIzx48cDvhOdx+PBYrGg1BViXfcShroihGLEM/FXeIe9+p3FP5WmUowFGzEWrMdYdUyfLgwmMJpRPJeKxgijFS1hLGryFNSkBxEhcR22Zyjdh3XFPBSh4pr873xcHERpaSlRUVG89NJLsvf5IgcOHOCrr77SX//gBz8gIiICRVGoqakBoEePHvKCWyKRSCQSiUQiucVomsbWrVvZs2cPAAkJCcycOfOK98WS+wdPWRn27C3Ys7Nx5+VdmmEwYB08GP9xY/EfOxZzv353dZZ2YWEhmzdvxm63YzAYmDBhAuPGjbuqliKEoKamhpCQEKxWK0IIdu3axbZt2zCbzSQnJ5Oamkq/fv18RjuJ5FtI4bsLSOH7xti4cSOHDh1ixIgRPPDAA8AltzeA4/ltnbq9GxsbWbp0KR6Ph8mTJzNu3LjvPKB/8cUX5OTk0KNHD5599tnrEqUPHz5MdnY2ALNnz2bQoEH6e7YdeJcsWYLX66VHjx5MnjyZxMTELr/PtdAmHAN6Ecbm5maOHz9OQUEB9fX1hIaG8swzz+gZWl3hzJkzrFixArfbTVRUFHPnzsVqtbJq1SouXLhAUFAQ6Y+m86tDv8LmtTGg+wDeGP8G3Sy+34Ap910sW36FMFh4k2dpFD7hfcGCBSQmJuqVn40n12LJ+kcUjx0tKBr3Y2+jxY7sUluVhjMYCzZgKtiAoeYkAFpgFNpFV7eaMB4snbvd7XY7u3btonfv3qQ1bcOy7V8RBhONj3/EkqwTOBwORowYwSOPPNLlz/B+o7KyknfeeQdVVYmMjMRut/Paa6/pBXk2btxIfn4+FouF6OhoevXqRc+ePenZsydhYWF39QWXRCKRSCQSiURyr5KXl8f69evRNI2FCxfelszkhoYGampq6N69O927d5fGlzuIt7wcW3a2TwQ/kddunjEiAv+xY/AbOxb/ESMwXIch7lZjs9nYvHkzRUVFAMTExDBnzpx2I6/b9JazZ89y9uxZzp07h91uZ9asWfTv3x9N0ygvL2fNmjU4HJdMcAaDQa/LNmjQIKzW7461lXx/kMJ3F5DC942haRpFRUWEhITon59l/SuYTm28ottbCMHKlSspLS0lNjaW55577qpCtsPh4K233sJut/PAAw8wYsSILrc1Pz+fTZs2MXbsWCZOnNhByNM0jdzcXLZt26YfbPv27cvEiRMJDb16JndnNDQ0kJeXh81mw263t3v2er1MmDCBkSN9QnFVVRUffvghAEFBQSxevJjIyMjr2s/PPvsMVVWJj49n1qxZ+gnC6XTyySefkG/LZ2/UXryKlyHhQ/jvcf9NoPmyApZCYF77AjuLW9it+Nrn7+/PkCFDyMzMxM+kYN72r5gPLwVAjR+Ha+afITDiuj6nNpT6EvC6fIVQr0Fo/eyzzzh9+jQAT8ydS/8Tv8NUsB4RGMmpiUvYevAkM2fOpFevXt/rizm3282SJUuora0lOTmZ2bNnA7T7DXz++ecUFxfrHTKX4+fnx0svvUSPe2DYnUQikUgkEolEcq9RWVlJZWUl/fr1A8DlcuH1egkMDLzKmtdOS0sLubm5lJSUUF9fr083m81ERkaSkZEhs8bvMN6KChx79uDYsxfngQMIp/PSTJMRa3oG/mPH4j9uLObk5LvGnCSEID8/n+zsbLxeLy+88AIxMTHU1dWxdetWXei+HLPZzPjx48nMzGy3nerqagoLCykqKqKurk6f97Of/YyQkBAURcHj8cg4lO8516rlyrH/khtGVVXi4i5FTyg1BZhObQTAM+Z/dbrOoUOHKC0txWw2M2PGjGtyb/v7+/PQQw+xYcMGWltbr6utqampREdHEx0d3ekJwmAwMHz4cAYMGMD27dvJycmhqKiI06dPM2LECEaMGKG7s9twu93U1dVRW1urP1JTUxk4cCDgu2DZt2/fFdt0eW9mcHAw6enp+vP1iox2ux1VVenbty8zZsxoF/Ph5+dHxLgIlhxZgqZopIek88b4N/Az+eHxeDCZTCiKgldV+dwwk3zFlznXXxRxyt6HvXv34qgsZLp9FcaKwwB4Rv8dnrH/CIYbj4YR3ZO7tPyECRN04Xvj558TMv//o2dtAYbaU/Q9+v8T+/SnGMxW3G43Vqu1yxcGbrebvLw8vUimoihUVlbS1NREbGxsp8VW70aysrKora0lKCiIhx9+uNPPYcaMGWiaRl1dHVVVVfrFd01NDdHR0fj7++P1ejEajXfNBZZEIpFIJBKJRHI/0Haf6vF48Hg8FBUVsWnTJkJCQvRRmG01eq519LPT6cThcOgjiIUQHDx4EPDd+/bo0YPGxkY8Hg9lZWWkpFwaqV1XV8fmzZv1dkVHR+uio+TWYYqJIfiJJwh+4gmE243z0CEce/bi2LMb79lzuHJzceXm0vjmmxijonQR3H/0aJQ76IZWFIW0tDTi4uKoqKggNDQUp9OJoijkX8wzN5vN9OrVi7i4OOLi4oiOju7wXVYUhaioKKKiohg/fjz19fUUFRXR2NiIxWLB4XBgMBhYsWIFTqeTlJQU+vTpQ2RkZAetRiIB6fgGpOP7elFVVX9c/jW65PaegfvxJR3Wq6+v54MPPsDr9TJlyhRGjx59zSdPIYR+EL1WnE4nXq9XFyg7K6B5Jaqqqvjqq684e/YsJpOJF154gZCQEJqbm9m8eTN1dXV60cjLSU9PZ+rUqQB4PB62b99OYGAgQUFB+nPb43Ix9mZcRAghcDqdlJSUkJiY2MHlvLxwOW8cfQOAzOBMXn/odawm3wly27ZtFBcXk5aWxpkzZ6ioqMCgKMwQWQwRJ1jPVFoJ5EnLVozuJoRfKK7pb6ElP3jD7b4RNE1j5cqVXLhwwRcPM2MsoStnobhb8GS+hOfBfwd81dNjY2Ov6f/f2trKgQMHyMnJwel0MnfuXJKSkgDYsmULhw4dAiAsLEw/ccfFxd2VxSLdbjfvvPMONTU1zJ8/n4SEhC6tr6oqHo9Hz1ZzOp18+eWXTJo06a4rCiuRSCQSiUQikdzrqKrK1q1b2bt3b4d5JpOJqKgopk2b1qlRqr6+npKSEkpKSrhw4QKJiYk88cQT+vydO3cSHR1Nnz59CAwMRNM0ampqKC8vp2fPnoSEhCCE4MSJE2zatKndtv38/IiNjWXQoEEkJSXddfc99zueCxdwXhTBnQdzEC6XPs8QGkLQzMcImjsXc3zHmlh3kkOHDhEVFdWp0H09uN1u3nrrLVRVbTe9e/fuREdHk5SU1M5FLrk/kVEnXUAK39fHiRMn+Pzzzxk+fDijR48GfG5v//cnAeB4fqsvruJbrF27luLiYhISEli8ePF1Hfjcbjder/eqy2maxmeffUZdXR2zZ8++rurAbUN2GhsbycjIAHzC3//8z//oywQEBBAeHk54eDiRkZHExsbqrvK2x61ECMGePXtIT0/HZDLR2c9aExp/PPpHVhStAGB+n/n8XcbfYVSM+jaWLFnSTsg3GAyMHz+eMep+LLt+ixcjJnwnFzU6HffjSzotNHmrqaqqwuPxEBsbC/hGA9jtdr398fHxLMjoRsD6FwBwzfgzB+xxbN++nZEjRzJt2rQrbru2tpa9e/dy7Ngx/UQaFhbGpEmTSE72udEPHDjAyZMnqa2t7bC+1Wrlpz/9KQEBvkxyVVXvWJHUNoQQtLa2cubMGfr06XPD27tc+B88eDAPPfTQdRVflUgkEolEIpFIJFfG4XBQWlrKhQsXKCsro7y8HOfF6Isf/vCHegxKbm4upaWl1NbW0tDQ0G4bUVFRPPPMM5hMJoxGIwaD4ar3p0IIGhoaOH36NOXl5VRUVFBTU9NOaJw+fbqMRbmDaE4nrtxDOPbsxr5tO2pVlT7Pb9RIgp94Av8JE1BM92fQg91up6SkhOLiYsrLy9vFqPTv3585c+bo3/VPPvmEHj166OJ7ZGSkjEm5D5DCdxeQwvf1sXTpUs6dO8eYMWMYO3YsAJb1r2I6teGKbm/wHaC2b9/OxIkT2xU76ApCCMrLyzl48CCTJ09uF+VxOW0CndlsZtGiRcTFxd2QCK2qKm63G4Djx4/TvXt3IiMjCQoKui0Cd2c4HA69KGF0dDRPP/10h553l+riN9/8hi0XtgDwk8E/4el+T3dor9vtpqCggGPHjlFRUaFPDw3pxrPG9YTWXYw2yXgWz+TfgOn2D6VqJpynAAAgAElEQVSy2+189NFHtLa2Mnv2bNLS0vT9rays5P3338ftdjNr1izSKj/DvO+PCLM/p8b9iZXbTwCwcOFCPTuvDafTydq1ayksLNSn9ezZk+HDh9OnT59O3QxOp5OKigr9IrS8vBx/f39effVVDAaDPgSrrq5OH67V9ujRo8dtc0i0DZe8WbS2trJz507yLlYfN5vNjBs3jtGjR9/VFxBut5udO3diMpmYOHHinW6ORCKRSCQSiUTSJTRNo7a2loqKClJSUtA0DSEEn376KefOnQN85qW4uDj69u1L3759CQ8Pvyn3HV6vl4qKCvLy8igsLOTZZ5/Vr/1LSkr0IoQyCuX2I7xeHHv20rJ6Nc69e+GizGeMiCBo9myC5szGdB21w+4lbDYbNTU11NTUEBYWphu+GhsbWbKkozbV1hE0fPhwJk+erG/jk08+0eeZTCb9b7PZTO/evRk8eDDg06RaWloICgqSIx/uEFL47gJS+O46NTU1/PnPf0ZRFF599VWCg4NRagrwe38yCuKKbu82FEXBz8/vuk+Kmqbx5ptv0tTUxPjx4xk1alSHZY4cOcLmzZsBmD17NoMGDbrvTsJnzpxh7dq1tLS0YDAYmDZtmp4t3kaTu4mf7/k5R2qPYFJM/MuIf2FafEfHc1FRET179tRdA3V1dRw+fJi8vDzcbjdj0vsxUdmPFjcGNWXmbdm/b6NpGp9++imlpaWEhYXxwgsvdMjYLigowGazkZqaCpqKdfXTGM/uQAtN5Kv4X3LweKEuToeEhOjrqarKkiVLqKqqok+fPgwfPlx3lHelfa2tre2OI3/+85+x2WwdljWZTMTHx7N48WJ92s0u0LFz506EEGRmZt6Sk3FFRQVbt26lvLwcgJCQEKZOnXpXOj8KCwv58ssvaWpq4plnnqFnz56YzeY71mElkUgkEolEIpHcDIQQnD17lgsXLhASEkJycjIBAQG39Bq3TXD3eDyoqsp7771HfX09ISEhpKenM3DgwJtalFNy7XjKymhds4bWdevR2tz/RiP+E8YT/MQT+I0cifI9EmrbYmBramqorq6mpqamnTt8+PDhuimqqamJv/3tb1fc1pAhQ5g2bRqKouByufjDH/6AoigEBgbSrVs3goOD9UdsbKwelSq5NUjhuwtI4bvrfPXVVxw4cIA+ffowe/Zs4DK3d7/puGe90255VVU5e/YsSUlJuuh9o0Lc0aNHWbduXbvs7TbOnTvHqlWrEEIwfvx4Jk2adF+JW9/OfAsLC2PGjBlER0e3W67CVsHf7fo7zracJcgcxP8d838ZFjms3TJCCL755ht27txJTEwMCxYsIDAwUHfRu1wujh8/Tq9evfTP+MKFC+zZs4cRI0bc1l79rVu3kpubi9ls5rnnnqNnz56dLteWcy6EAEc9fh9Mw9B8AU/SQ7zTOpnqmlqioqIwGo26Q17TNMrLy/Hz86N79+43rc0ul6vdSbampoba2lo8Hg9xcXEsXLgQRVEwGo38+c9/BnwFOzMyMm7ocz1//jxLly5FCNEun/xm0xYFtHPnTlpaWhg6dCjTp0+/a3q9W1tb+eqrr3R3ekhICI8//jhRUVEAbN++HZvNxuTJk6+7mKxEIpFIJBKJRPJ9xeVykZ2dzfHjx3FdzJw2GAz069eP9PT0Gx51fTVUVeXUqVM0Njbq0aOyCCcItxv7tm20rP4MV26uPt0UG0vQ3LkEPvoIxpAQuGgG+j7hcDhwu92oqorFYtHNdG63m9LS0nb17Lxerz7yPzo6mt69ewO+LP333nuv05hZ8InkjzzyiB57WlZWRmxs7Pfus76VSOG7C0jhu2t4PB7+8Ic/4HQ6eeKJJ+jduzdK7Sn83pvkc3s/twUR2d7xuXfvXvbs2cPgwYOZMWPGTXG1CiFYunQp58+fp2/fvsyaNQuAhoYGli1bhtPpJDU1lblz597xjOWbSXNzMytWrNCjSAYPHsykSZM6VDAubCzk73f9PbXOWiL8I3hj/Bv0CWmf76xpGtnZ2Rw9ehSAzMxMpk2bdsX/j6ZpeL1eVq1aRXFxMQDh4eEMHz6c1NTUW/o55+Xl8eWXXwLX5uBvGwa4adMmpg2OJurzxSiqi+bMn/DW8QA9+mPy5Mk3p/CFEKB5wOsEjxPF6wTVCeYAhF93MPvDxfYKIfTq6ZEXh5y53W7++Mc/6ptLSUlh5syZelZ4V3A4HPz1r3+lqamJtLQ0pk+ffuP7dxXcbje5ublkZGTg7++PyWSitLQUt9tNQkLCde3HjSCEIDc3l+zsbFwuF4qikJmZydixY/XfisPh4O2338br9WIwGBg6dCgPPPBAh1EEEolEIpFIJBKJ5LtpM0wdOnSoXWxmZmamHiVxszlz5gybNm3qMMLWYrEQGRnJ2LFjiY+PvyXvfS/hPn2a1tWraf38c0Trt0YjGwwofn4oVqv+bPDz8/3t1zbN99o6cCBBj81EuYvjLW8nmqZht9tpbW3t8EhISPCNQscXyfrRRx8RFBRESkoKqampJCYm3jVmsXsVKXx3ASl8d40jR46wfv16QkJCePnll1EUBcuG1zAVrO/U7V1VVcWyZcvQNI2ZM2cyZMiQm9bLVV1dzdtvv93O1bpu3TqKioqIiYnh2WefxWq9/TnUtxK3280777xDa2sr06ZNo2/fvh2WOVB1gF/u/SV2r53kbsm8Pv51ogKiOmxnw4YNnDlzBoAHH3yQMWPGXNPBt6Ghgf3793P48GFdQA4KCmLo0KGkp6fj5+d3E/b0ElVVVXzyySd4vV5Gjx7NlClTruk7tGrVKk6ePEloaCgvDrUStOUXCBTOjfsvtp73uRAGDhzYodNAx1aLoSYPQ/VJDNV5KK2V4L0oanuc4HX4/r74UIR2xbYIoxXhHwb+3RH+Yb6HXxj4hyEuTnObgsm/0EjWkTI0IQgKCuLxxx/vUkFKIQSrV6/W9/vZZ59tv39uO6acvyKColHT5tzSnPbVq1fr36+oqCh69+5NYmIiCQkJN/078m2ys7PZs2cPANHR0UydOlV3eV9OdXU1u3bt4vTp04Avr3zUqFGMHTv2vjt2SCQSiUQikUgkt4OysjJycnLIy8tj9uzZJCQkAL77yNraWpKSkq7bNCWE0O8F6+vreffddwkKCiIhIYHa2lpqa2v1IpwLFizQhe+CggL27dtHZGSk/oiOjv5eXfNrDge2rCxaV3+G++TJ69qGKT6esJ/8BP/J99eo+ltJQUEBX3/9tT4iAsDf35+UlBTS0tLo3bv3fWXWvF1I4bsLSOG7a7z77rtcuHCBCRMmMHLkyO90e6uqyrJly6iurqZfv37Mnz//pv+gs7Ky2L9/P6GhoTz//POoqsq2bduYNGkSYWFhN/W97hQOh0M/IbtcLurq6toNybmcL899yf85+H9QhUpmRCa/G/s7gsztl2tubmbNmjXU1NRgMpl47LHHGDhwYJdPXA6Hg5ycHL755htaW1sBiIyM5Nlnn73OPe2ctoiTpKQkFi5ceMVipt/GZrOxZMkSmpqaiIuLY1FoLpZjyxB+oTifyUKEXuz9Vz0o9SUYqvMw1OTrYrdiq77uNguTH5j8wGNHUd1dWtfecwwrHOMobfQCMGLECKZMmXJN+33o0CE2btyIwWDgqaeeIiYmRp+nVB7DuvGHGBpKANACo/AOewVvxmKwBnepjdfCjh07KCkpoa6urt10RVGIi4vjueeeuyUXS0IIamtr+eCDDxg5ciRDhgy5aodOaWkpO3bs0N0pAQEBtzQiRiKRSCQSiUQiud9xOp0YjUZUVUXTNLZt20ZOTg4BAQGkpqYyaNAgIiIirmlb5eXlHDx4EKPRyIwZM/TppaWl9O7dW6/f4/V6qampobKykuTkZMxmM0II/b2/TXh4OL169WLkyJHt4lPvd4THg3A60ZxOhNOJcLl8zxf/9k2/NE1raqRlzVq0+noArIMHE/r3f4dfevod3pN7A1VVOX/+PIWFhRQVFeFwOPR5ixYt0mOBq6ursdlseL1ePB5Pu2dN0xg9erS+3oEDB+jVq1eXa5PdL0jhuwtI4btr1NbWcvDgQYYNG0ZgYOBlbu9Hcc96t92yBw4cYOfOnfj5+fHKK6/cEiHa5XLx1ltv0draysSJExk+fDhGoxGLxXJf9ECWlJSwbt06hg0bxvDhw6+4nBCCDwo+4C8n/gLA1Lip/Hr4r7EYO7qZV65cyfnz5wkICGDevHkkJCTc0Gfl9Xo5fvw4+/btIz09nSFDhujTa2t9edo3sn0hBEeOHCE9Pb3LMRRVVVW89957uN1uhgxKY3rNnzBWHEYLT0GLTvc5uesKOxWnBQoirDdaZBpaRBoiNBHM/hdFbSuY/C8J3CY/hPni30arHmuCED7x21EPjnoUR4Pv4WxAsdeD8+JrRz04GjDUnkJRXWjWEA71XMwXZy3ExMTw3HPPXdmZfpHa2lr+9re/4fF49I4pXxs0TDl/w7zjP1A0D1pQNCgGDC2+opTC2g3vkOfwZL4Egdd24dkVWltbKS0t5fz585w/f57Gxkbi4+N58sknMRqNGI1G1q9fT2hoKDExMYSGhhIaGtqlArhnzpzh7NmzTJgwQe9J93q919xJAr7vWVFRETt37qS1tZWXX36Z7t27y953iUQikUgkEonkBtE0jV27dnHw4MF20SRRUVEMHDiQ1NRU/P39O6xTXFzMwYMHKS/33bsYDAZee+01unXrhtlsvqYRy0IIWlpaKCsro7KyksrKSqqqqmhqatKXefXVV3U9qKioiObmZnr16kVkZKSMpLiIZrPR/OGHNH+0DOF0AhAweTKhP/kx5ouufsnV0TSN0tJSCgsLKSsr45lnnsFgMGA0Glm5cqU+avrbKIrCL37xC8D3nV67di19+vRhyJAhXbrvvV+QwncXkMJ31/B6vbjdPpGwvds7GxE5QF+uvr6epUuXoqoq06dPJzMz85YJ0SdPnqSiooLhw4djsViwWq33vOjt9XrZsmUL+/fvByAiIoLFixd3KsJ5NS//ffi/WXN6DQCL+y/mh4N+iEHp/ATd2NhIVlYWM2fOpEePHjftsxJCtCsEcfz4cb766it69OhB//79SUlJ6VIBwcuHsZlMpqsKv1fi1KlTrFixAoBHxg5m+KF/QLG3dyELc+AlgTsyDS1yAFp4Cliuvxp5a2srdrtdL4rh9XoJCwsjNDQU8DnSCwoK9HmqqhLsLGf4hXew1PqKMTbGTcE+6d8IjU7URWKj0djp/ywvL4+1a9cSGxvLvHnzfMvYarB++TOMZ7YB4O37MO6H/xssQRhPrsV84C0M9b68dmG04h30JN4RP0CE3roLl5aWFpxOp+7usNlsemHPy7FYLISGhpKamqpX2gbf0MmQkBACAwNxOBxs3ryZI0eOAO2HM14vmqZRXV2tF4s1GAxs2bKFpKQkUlJS7vlji0QikUgkEolEcqdQVZWioiIOHz5McXExmuaLiwwODubVV19FURTcbjcnTpwgNzeXxsZGAIxGI6mpqYwaNYqePXve8DV5mxh+/vx5KisrGTt2rF6ocM2aNZSU+EbJms1mYmJi6NWrFzExMVit1nYO2xMnTtDS0qI7cy936ZrN5ttSb+l2462poentt2ldvwE0DUxGgufMJeSVlzF2736nm3dPk5WVRVlZGSaTqdPHI488on/3CwsLCQ0NpWfPntetldzLSOG7C0jhu2u43W68Xl8Eg2XDDzAVrOvg9hZCsHLlSkpLS0lMTGTRokW33DWpaRoej+e+cHpXV1ezZs0aqqqqAMjIyGDixImdFp1s9bTy6/2/Zm/lXhQU/mHIPzCvz7x2ywghqK6ubpdxbLFYbmmvoKZpbN26lf379+sZa+AbSpaSkkL//v3p/h0nxby8PIqLi3nkkUfw8/O74c6MvXv3snnzZhRFYdGkVOIrNiFCEy6K3QN8sSdX6CjoCk1NTRw9epSSkhJqa2s7zL/cid1W5OLb+JmNPB1XRq/TK1GEihYUg/vRN9ASJ7Bz504qKyuZPXt2h6F4qqpSWlpKQEAAQUFBGE5vxfrlz1DstQiTH57Jv8GbvviSGx1AaBiLszDtfwtjxSHfJMWAmvI4npE/ateZdatwuVwUFhZy/vx5GhoaaGpqwm636/MzMjKYOnUqBoMBl8vF66+/Dvg6QxRF0XPmMzIymDBhwk3P6btw4QLLly8HfI6UiRMn0r9//3v+OCORSCQSiUQikdxJbDYbR48e5ejRo8TFxelFMHNycti2zWfc8fPzY8iQIQwfPpzQ0NBbeg0uhEDTNA4cOEBJSQllZWXtcpkBQkJCeOWVV/TXH374oX7f/m38/f358Y9/rL/euHEjHo+HuLg44uLi7nk3ubu4mMY3/wfH7t0AKIGBhDz7LMFPP4XhW+79a0EIAZqGIkfcdokbMQney0jhuwtI4fvayc/Pp6WlhdjYWMK8VVd0e4MvemD79u3Mnz//mnO7vu80NTWRnZ1Nfn4+qqoSEBDAww8/THJycqfLn2s5xz/t+SfOtZzDarDym5G/YVLspHbLqKpKdnY2x48fZ86cOSQlJWG1Wm9bfIPD4SA/P5+TJ09y5swZvUdfURR+9KMfdRjOBu2LWU6aNInx48fflB799evXU1paypw5c25a7I7T6cTtduvHjurqaj744APAt48BAQGYTCbdqT1kyBDSL+agtbS0sH379nY9uOXl5fowvgVjk+l34r8wNPqGOjkGP8NbBRHYPQKr1cr06dMZNGiQ7kzQc8K8Lsw7/wNzzt8A0CJScc38CyK8/3d9QBhK92E+8JbuDgdQe0/CM/LHaHGj2wvmtxiPx0NLSwtNTU0EBgYSGRkJ+ArirFy5kpaWFn3Z8PBwpk6dSq9evW5JW9qy7HNzc3WRPTo6mokTJ9KvXz8pgEskEolEIpFIJDeIx+NBCIHX68XlcrFy5UoGDx5MRkYG/v7+d+Sau20k6Llz5ygtLaW6upqAgADmz58P+O739uzZQ0tLC2azWX+0CZEWi4WBAweiaRper5c333xTv58AdPd4XFwc8fHx7Yxq9xLOgwdpeP0N3AUFABgjIgj9wQ8InDlDF7GFEGiNjajV1XirqlCrqvBWVV989r1Wq6sRqopfZib+Y8fiP36cjFC5BqTwLYXvqyKF72vngw8+4OzZszz66KMMOf0nTPlr8fZ9BPfs9664zp06Sd0LCCFobW0lODgYIQQOh4PXX38dr9dL7969efjhh6+Yab23Yi+/PvBrWj2tRPpH8vuxvyclLKXdMk6nkw0bNnDu3DkApkyZwqhRo+5Yr7Ldbic/P5+8vDyEEMybd8mZvnnzZrp160ZCQgLr16+nubmZpKQknnzyyU6d7teDqqo4nU79+3jmzBkcDgcBAQEEBgYSGBh41e+rEIKGhgZKSkooKSnhwoULpKSk6AVWhBBkZ2cTFxdH37592/3/ruV3oGkae/fupbCwkPnz52PwOjFv/zfMR3xiuic0iY2mGRyv87n109LSaG5uZtKkSURHR6PUFWPd+AMM1Sd8yw99Ec/EX/myx68RpeoE5m/+jLFgPYrwdVSoMUPQ4seihfVGhCWhdU+GgPDbKoZfjqqq7SJTbkdHjsPh4ODBgxw6dEi/YI2JiWHBggXfq0I4EolEIpFIJBLJraLNdQ3cV7V2NE2jrKyMs2fP6kJ6W4QsQHx8PAsWLNBfq6p6T+2/0DTsWVk0vPUn1IoKAMy9e2Po0eOSqP0t9/y1YIqLw3/cOPzHj8Nv6FCU76HAezWk8C2F76sihe9r5w9/+AMtLS08N2MM8Rvn+dzez25GRA0EfCcpu91OYKAvF/l2OovvFdpiR44dO8aJEycICAjg+eef1+NjTpw4QXh4+BULQgohWHZqGX86/icEgsE9BvOfY/6THn7ts7MbGxtZs2YNdXV1mM1mHnvsMQYMGHDXdEKoqqr36Dc3N/OXv/yl3fzQ0FBefPHFLhezvBbastdWr17doXBEm0s7ICCgXab66dOnOXv2LCUlJXrOXBu9evXi6aef1l3dBoPhhj/nNldA26Pg87cYVvY+Bls1wmCiJHYuy0t7ouF7n6jISJ7PMGHZ+msUjwPh3x3XI2+g9Zly3W1QGs9h+uYvmI6vQFE7XqQISzBa9yREWNJFMfzSM9b791hqt9s5ePAghw8fJiAggFdeeQU/P7+7cpiizWajuLiY4uJiTCaT3kEjj8sSiUQikUgkEsmdQ1VVKioqdCE8Li6OYcOGAT7DzbvvvkufPn1IT0/3GZzukvv4qyFcLlo+/ZSmd95Fu2yUbhuG7t0xRUZijIrCFBWFMeryv6PA48GxZy+O3btxHjoEF3USAMXfH7+RI3xC+LhxmC6OCv6+I4VvKXxfFSl8Xxtut5vf/va3APyybxHWwo0d3N75+fl8/fXXTJw4kczMzO/lj+9KNDY2cvz4cY4fP05NTY0+3Wq18uKLL+qdBd+FU3XyHzn/Qdb5LAAe7/04/zT0nzAb2juiy8rKWLduHXa7naCgIJ544gni4+Pv2pOl0+nk6NGjnDx5kvPnz2OxWFi8eHG7oiE3G4/Hw7Zt2ygrK8Nut2Oz2S5FheDLQP/Zz36mv75cJDcYDMTFxdGnTx/69etHeHj4LRM9VVUlKyuLgwcP0iNAYVHoIULLfFEkzvCBfOp5kAa3iZeijhN49mvfOgkTcD/6R0Rw9M1phK0GU+EXKHXFGBpKUOpPozSVonDl04cIjECLGoRnxI/Q4sfcnHbcCJqKYqtBaa1EGIyIyIE37Fa32+00NTURExOjT/v8888ZOnQoycnJd2w4Znl5OUVFRRQXF+uxOeArzPOTn/xEF72PHj3K8OHDv5cVwCUSiUQikUgkkruJNqe7pmkcOnSIr776Sp8XERFBeno6aWlpN72e0a1CbWrCvnUritWqi9qmiAiULrRfs9lwHjiAY/duHLv3oH6rhpa5f3/8x43DL32wb/vR0ShBQXet7nGrkMK3FL6vihS+r43Kykr++te/0svSyouuJR3c3g6Hg/feew+73c7YsWN58MEHv3cHnCuxdetWdu3apb82Go0kJSWRlpZGUlLSNQlPVfYqfr735xQ0FGBUjPyvjP/F3OS5HT7j+vp6li5diqqqREZGsmDBAsLCwu6Z/0VraytCCIJu8wmrzX1us9mw2Ww4nU7i4+MRQiCEYMeOHdhsNpKTk0lOTiYgIOC2ta+srIy1a9dSV1cHQvBonI3MquUY3C0Ikx/CLxRDayXCYMIz/pd4R/zgphTq/E68TpTGcxgaTqPUn9EFcUPDaRRbdbtF1YQJeMb/HK1n5i1qiwultQqltQKl5bLH5a9bq1DEpSKranQG3lE/Qe378E37rI4dO0ZWlq9TqlevXvTq1atd1t/AgQP1c0xTUxMNDQ2YzWYsFku75cxm83V/tz7++GOKi4vbTYuKiiIpKYnevXvTs2dPFEVh37597N69mx49ejBr1qxb2sl0sxBCYLPZ8Pf318X7xsZG6urq9FEaAQEBNy0aSSKRSCQSiUQiuRMIITh37hy5ubl6/S/wCZwpKSmMHTv2e6ddCU3DfeqULoK7T5yATuRMJSAAY2QkpugojJGXXOWmqOiLz1EYgoPvwB7cOqTwLYXvqyKF72vj5MmTrFq1iqf8ttHXcRhv34dxz35fn//FF19w8uRJwsPDefnll7+XP7zO0DSNEydOsHbtWuLj40lLS6Nv3774+V175vLR2qP8cu8vqXfVE2IJ4bejf0tmZOciohCCzZs3Y7PZmD17NgEBATdrVyR3EK/Xy5YtW9i/fz8APYMET/nvIrA6BwAtNBH3zL+gxWTcyWb6cLVgqC/BeGIlpqMfo2i+PGw1eQrucT/XO8uuGyEwlOdgPLEKY/HXGGydV1HvsJpiQARGoTgbULxOALQeffGM/DFq6mww3phgarPZ+Oabbzhy5IgeXXQ5zzzzjF6A85tvvmHLli1X3NaiRYtISkoCIC8vjz179nQQyE0mEzU1NSxcuBCLxYKqquzevZuDBw+SmJhIUlISiYmJncYFFRcX8/XXX2Oz2VAUhVGjRjFp0qS7QjSur6/nwoULNDY20tTU1O5ZVVWef/55YmJiEEKQk5PD5s2b261vMpkIDAwkICCARx55hLi4OMBXeLa4uBiv14uqqh2ex4wZoxdiPnXqFPv27UMIweDBg8nMvEWdNhKJRCKRSCQSyXdgt9s5evQoubm51NXVYTAYeO211/QR40KIe8bkdjNRGxp8kSh79+A5fQa1ugqtsema1lUCAzHFxmKOj8MUn4A5Pg5zfAKm+DgMoaH33OcphW8pfF8VKXxfG7t27eLglvX8Pe9cdHt/jYgaBPiKBK5evRrwiTu9e/e+k029K2hzJrpcLjweD06n87ryqtefXs/vDv0Or/DSJ6QPvx/7e3oG9my3jNfrRdM0/WCnaRpWq/WuELEkN5ezZ8+ybt06mpqaQAieTlNJCFHwjPgxLsw4nU6cTicul0t/drlcKIrSTrxzOp1YrdZbflJXmkox730d44lPdce1t/9MPOP+EdGjX9e21XgeY95qTHmrMDSebTdPGK2I4GhEUAwi+FuPtmmBEWAwga0Wc+4STIeXoriaAdC69cI7/Ad4By8E8411FrW2tpJ/Mg+ny63nyXs8HsaPH68XwTx69Cg5OTl4vV59/uVi+VNPPaWL5Dk5OWzbtu2K7zdjxgxSU1MBXyRVW9b81XA4HGzbto28vDwAevToweOPP64LxbeLM2fOkJiYCPgu3Pft20d2dnanyyqKwuzZs0lOTgZ8NRFycnJwOBzY7Xa9EFIbCxcuJC4uDkVRyM3NveJ2AebNm6efu44ePaq79wHGjRvH5MmT77mLYIlEIpFIJBLJ/YEQgvPnz1NeXk56ero+/bPPPsPf35/U1FTi4uK+1zGGmsOBWlODt7LSV1CzqhpvVRVqVSS15loAACAASURBVJXvuboarem7xXFDt26YLhPCzQkJmOLiMcfF3rUxKlL4lsL3VZHC97Wxfv167Ic/YyHr0SIH4HzOJyC43W7ef/99mpubyczMZPr06XflweB2kpuby9dff82cOXOuW0Tyal7eOPoGq4pXATA5djL/Mvxf8Df5t1vO5XKxbt06DAYDc+fOxWg0YrVa78pCe5Kbg9vtJisrixMnTvD888/rx62lS5e2y4+/nICAAH70ox8Bvo6R5cuXYzabmT59+jXly98oSn0J5j3/jTF/HQoCoRhQ0+bgGfMPiLDEK6/oasZYsBFT3iqMFw7ok4U5ALXfdLwD5qJFDgT/7l3P7HY1YzryIeacv6HYfJ+bCOiBJ/MlvEOeB7+Qa9uO5kWpPYWxPBdD+SEM5TkoDWfQ4sbgGf1TtPhx19Q2IYQugF9eGLi5uZna2lp93uVielBQEMnJyTf0PywpKSErKwubzQbAo4/+P/bePDyK68z3/1Rv2oUkJLQgtCNAMkIghBCrDRgwYAzGxoC3eM84ydiZzGTml3tnbm4mczN2ZpLc2PFy48R2YsdgFmMbbFaz7wKzCJCE0L4hCbWWllq9VJ3fH40KZKENi82cz/PU09VVp+ucru7qPvU97/m+88jMzLzm4/WV1tZWNm3aRG5uLrNmzWLs2LGARwg/dOgQgwYNIjAwUH8MDAwkICCgW1FfCIHT6cRut+tLVFSUPrvm3LlzFBQU6AMDRqMRk8mkr48cOZKgoCDAY6FSU1NDbW0thw55vneZmZncd999d/z/m0QikUgkEonk5iKEQFVV6uvrefvtt/XtFouFhIQEkpKSSEhIuG38wG8kmt2OWlODq7wcd1kZrrIy3KVluMrLUGt6mUlsMmIIHIRx0CAMgwIxDArCMOgbz4MGYQy8Yn3QoH75ml8LUviWwnevSOG7b7S0tGDf9iuGnPgD7lGLcd7/BgDbt2/n2LFjDBo0iOeff/6Ot9Y4ceIE69evB2DixIlMnTq138dodDTyswM/42jdUQCeT32ep0c93UVwaW1tZe3atVy4cAGLxcJjjz1GdHS0FGbuEFpaWjCbzXqU68qVK6mursbLywtvb2+8vLz0dV9fX2bNmoWiKFRXV/Phhx/idrvx9fVl3rx5N2yWhlKXh3nvq5jOfQmAUIyoo5fhmvQyIvCSz7TmxlC8yyN2F27WbUkEClrcVNypD6MOnweWAfqtcdkx5X6M6fAfMDSVe+qy+OMe+z1cGc+B/zeyhbfWXRK5LwndNcdRXG3dHl6NHIc7+yXUxHu/dULN60V7ezs7duwgLy+PJ598koiIiOsWLSKEIDc3l02bNtHW1oaiKEyaNIlJk26BJKhX4euvv9YjxUePHs2iRYvkwKJEIpFIJBKJ5KYjhKC8vJzjx49TUFCgB7IAGAwGJk2aRHZ29k1s4e2FZrfjrqjwiOFlZbhKy3CXleIqK0draLjm4yreXh4hPDDQI5QHDcIQOKjzepDnuTk+HuOgPgZgXUIK31L47hUpfPcNIQTqmucwnV6Nc8pPcU/6MUII9uzZw+HDh3n44Yf16fZ3KqdPn2bt2rUIIRg7duw1JfjMqc3hl0d+SXVbNb4mX34+4edMHzq9S7mmpiZWr16N1WrF19eXpUuXEhMTI0XvO4yO7N/gieQ2Go36d6Cn70JtbS1r1qzRI8QnTJjAlClT+mSRMRAoNSew7H0VY9FXAAijBfeYx8BgxnR2nR6BDaANTsZ918OoKQ8iAqK6O+S3R3NjPPsp5kOvY6jPu9QuL9yjlyFCEj0id/VRXRy/EmHxR4schxY1jvawNApr7SS37Mc3f+1lP/GwUbgm/j3qiPvBcGPOc39pamrS7ViMRiPFxcUkJiYOmG1Sc3MzGzdupKCgAPBkqJ87dy4REREDcvzrxZkzZ/jiiy8QQvDYY4/pVisSiUQikUgkEsmtgKZpVFZWcvbsWQoKCrh48SLz588nJSUFAKvVSl5eHsOHD2fw4ME93is6nU7a2tp0+8wOC83g4OA7NtBOa29Ha2rSF7WpCa3x0vPmJtSrrjfDpcSk/cEUF4vX6DS8Ro/GKy0Nc2ICSg/36VL4lsJ3r0jhu29omob4f3djrDmBY9E7qMnz9X1NTU1ERETckT+AHeTl5bF69Wo0TSMtLY3Zs2f363zUtNXw+xO/Z3uFJ+FdtF80v578axIGJXQpW1dXx5o1a7DZbAQGBrJs2bI7/vxL+o/L5WLTpk0cO3YMgMjISBYsWKDbPdwIDBWHMe95BWP5/k7bhU8I7pTFuFMfRoSn3dhIaaFhLNyK6dBrGKuOdt2NgggdgRY1DjUqAy0qAxGSBAYjra2trFmzhtraWsLDw3n8wblYOvzEnTYAtKB4XBN/iJr6EBhv3Q5KZWUlf/vb3wgKCiIjI4OUlBRCQkKu+Xh5eXmsX78eh8OBwWAgOzubrKysGzbY8m0pLCzEZrORnp7eyYrm29DhaW6325k0aRI+Pj69v0gikUgkEolEIumFuro6fH19MRqNaJrGoUOH2L17NwBBQUEMHTpUz0XmcDhYunSpbhG4efNmTp48edXjduQFGjx48A17L7crQgiEzYba3OwRwhsb0ZqbPcJ4c4eI3uwR0ZsaUS82oFZXdzmO4uuLV2oqlrQ0vEbfhdfo0RiDg/X9UviWwnevSOG7dxoaGjh29Cj3HHwMo9qO/ZldnRLTWSyWOzqJQmFhIStXrkRVVUaNGsW8efP6PBXeoTr4MP9D3st7D4fqwICBBxMf5IW7XiDQ0vX7WFlZybp162hvbyc0NJTly5cTHBwsRW/JNXP69Gk+//xzHA4H0dHRLF++/Ia3wVC6F9PRd8DohZq6BDX+HjD2HGV87Ngx9u/fT3R0NJMnTyYsLGxgGyUEhvIDmI79GUV1okaNQ4vKQItIB6+ALsWbm5tZvXo1DZemwT322GNERkZ6drY3Yjr2Z8w576C0WwHQAqJwT/g73Gkrek+o2d6IoaEIxXre89hQhMFaBA5PklMQnsdL64rQrtjWsQ4oCmrSbFyT/gExqOf8A2VlZWzcuBGbzaZvi4iIICUlhdTU1H6L4JWVlfzpT38iIiKCOXPmDPznNZC0N2LKXY0x/3OPl3zmC12KOBwOvL29v5VYLYRg5cqVFBQU4Ovry8yZMxk7dqz8PZdIJBKJRCKRDBhCCM6ePcuxY8coKSlBvUoU8nPPPacHQO3atYtjx451stC0WCxUVlZiNBr5/ve/r88IdTqdd6Toer1QrVYcubk4Tp7CeeoUjtxcRFtXW03TsGF4paXhlTYa/8mT8UtKugmtvblI4bsfSOG7d06dOsW2te/xY95BGEyUPnaQ7Tt2c++99zJkyBC8vLzu6Bv1NWvWcPr0aZKTk7n//vv7JHoLIdhdtZvfnfgdVa1VAKSHpvOTsT8hOSi529fV1NSwatUqQkNDWbZsGQEBXQU4iaS/WK1WPv/8c+65555rHr13u91UVlZSUlJCcXExBoOBGTNmEB0dPaBt1TSNHTt26JHqAE888QTh4eEDWk9/sFqtfPzxxzQ3NxMQEMDy5csJCwvD6XQCHj9+Pz8/cLZiOvFXTIffwtDqSZ4ifAfjGv887ruWobTVY7AWoTScx2AtRrEWYWg4j2K/dk+5qyEMZtxpK3Bnv4QIiOy2nMPhIC8vj/z8fMrKyriyy/D000/3mLxX0zSqqqoYOnSonpSzoqKCqKioW9MjWwgMlUcwnfgrxvwNukUNgGPOr1HHPKY/t9vtfPTRRxgMBh5//PE+/w53+JvHxsbi5+eH0+mksrKStWvX0t7uqW/o0KHMnz//8qCJRCKRSCQSiUQyQDgcDs6dO0ddXR0WiwUfHx98fHyIiYnRdR0hBAaDoYuFpt1up6amhsjISI8jgBD8+c9/xt/fn/T0dIYPH35r9vNvY4Sq4ioqwnHyFI6TJ3GcOoW7pKRTmZCXXyb8+10Ddb7rSOG7H0jhu3d27txJxc73eIxPUAcn847lWWpqahgxYgRLly69o3/chBC0tbWRk5PDuHHj+jT9vbSllN98/RsOXjgIQJhPGD9K+xGzh/XNHqWmpoaIiIg7PpGoZOBRVRWHwwF4ErVGRUX1GJnrcDg4ffo0JSUllJWV4XK5Ou2fMGEC06d39ai/VpxOJxs2bOD8+fMAZGdn4+3tzfjx4/Uy27Ztw+12k56efkO8o+vq6li9ejWtra0EBwezYsUK3TdPVVUKCgpYt24dM2fOJC0tzfMid7snoeahP2BoKutTPZp/JCIkAS044dJjIviGgGIAFISiAIrHFubSNjptU1BsdZgP/R5jiWeaozB64R77JK6sH4FfaI/1t7W1UVhYSH5+PvX19bzwwgsYjUZMJhOHDx9GVVVSUlIIDQ2lvr6ezz77jMrKSp544on+RXcLAY5mFFuNZ2m59Gi7gGKr9jy21KC42tAi01FjJqPFTEaLSAPDNcw8am/EdHoNphMfYKjP1zdrQ1LRQpIw5X2KUIw4HnwfLXEm4JkFtXLlSv0zf/zxxwm+Yrph17ckKCwsZPv27Vy4cIExY8Ywe/Zsfb+qqhw7dox9+/bhcrlQFIXx48dzzz33SPsTiUQikUgkEsktR4en+LvvvqsHx/j7+zNmzBjS0tLw9/e/yS387qI2NeHMPa0L4YN/8CKBmZk3u1k3HCl89wMpfPfOunXr8Dv5HnPYRV3YJN6on4iXlxfPP//8t/J8vZ1pbGwkMDAQp9OpJxfsjVZXK38++2dWFqzELdyYDWZWJK/ge6O+h6+pexH72LFjREREEBXlSew3UP6yEsnVEEJw/vx5/va3v2E0GrnnnnsYM2YMiqLgdDp1sQ+gvb2d119/Xe/s+Pr6Eh8fT0JCAi0tLWRkZAzYwFhLSwvr1q2jtrYWk8nE/Pnz9XYJIVBVFZvNxh/+8Afcbjfg8S1PT09nxIgRA5ag8ZusWrWKsrIywsLCdOuhK/nyyy85fPgwANOmTWPChAmXB7g0N8az6zEffA3DxQKEdxBaSCIiOAEtJAERnOh5DIoHy8ANdBnK9mPe+yrGikMACLMP7oxncWX+Hfh0L+B24Ha7dXsrIQRvvvmmnkU+NDQUq9WKqqqYzWbmzZtHcnI3s1icbRiLv8J4fitKY9llsfuKaOu+Iiz+aNFZqDGTUWMmIYbc1X0SUSEwVB31RHfnfabXJ0zeqKMW4R7zOFrkWAAsX7yE6fRqhNkHx7J1aJHpgOc/4OOPP6apqQl/f38ef/xxhgwZ0qWq8vJytm/fTmlpqed4FgsTJ04kKyurS1mbzcbOnTs5e/YsAIsWLSItLe2OnlElkUgkEolEIrl1aWxs5MiRIxw/fpy2S5YcBoOB5ORkJk6cqAfAdNwvyn7twCM9vqXw3StS+O6dd955h3EV7zKOXPYYsvlKZDNnzhyysrLuyB+umpoa3n//fUaNGsXMmTN7PQdCCDaVbeL1k69T314PwOTIybw85mViAmJ6fN3evXs5ePAg3t7ePPXUU4SGht7REfaSG4PNZmP9+vV6ZHV8fDyqqlJRUUFERASPPvqoXnbbtm0EBgaSlJREZGRkp2lxmqbhcDhwu91s2rSJrKwsQkN7jizujhMnTrBlyxZ8fX1ZsmQJ8fHxXa49IQRlZWUcPnyYvLw8fVDK29ub0aNHM2bMmB4jc6+F1tZWdu7cydy5c69qeSGEYNu2bezf70ngOX78eO6+++7ObRcCnK3gdQMjI4TAULLLI4BXf+3ZZAnAlfl93OOfu6qP+dVQVZUzZ86Qn59PaWmpfs7j4+OZPXt21/9Vhw1j0TaM+RswFm3vVuQW3kEI/3CEf4RnCYi4vO4fgTAYMVYcwlC2D2PZARRHU+fXew1CHTYRLWYSasxkRNgocLRgOrPWE91dd1Yvq4WNwj3mcdypS8DrG+1VnXitfRxjyW6Ebyjtj21EBHl+t202G6tXr6a+vh4fHx8effRRhg4dCkBtbS1fffUV+fmeKHKj0ci4cePIysrqNYq7rKyMs2fPMnv2bIxGIxaLBbfbfUd2aCUSiUQikUgktz4ul4vTp09z5MgRqqo8Vq6PPPIIMTGefvOOHTvIycnBaDTqs0Y71o1GI4sXL9bv0xobG2lvb2fIkCFS++gDUviWwnevSOG7d1555RWW298jhirWMI+qkGx+8IMf3JFRx3V1dbz33nu0tbURFRXF0qVLe4wkLWgs4NfHfs3Ji56syNH+0fw4/cdMiZzSYz2aprF161Y9m/LUqVOZPn36HXnOJTcHIQQHDhxg+/btnWY1BAUF8cwzz2CxWDAYDBiNxh4Hf64Ufs1mM3PnzmXkyJHX1KZDhw6RmppKWFhYrwNONpuNo0ePcuzYMZqbmwGYMmUK2dnZ11T3lTQ1NTFo0CD9eV8S/O7fv5+tW7cCkJqaypw5c77V9dzhH/6tOzlCYCzcgnnvqxjqzng2eQfjynoR99in+xVpbrfbKS4uxtvbu/PAhKMZY+FWjAUbMBbv7CR2a4NiUJPno0WkXRK6IxH+Q3pP+HklmopSdwZj2T6MZfsxlB9EcbZ0fps+weCyd47uHvkA7vTH0SLHXbKF6QZHC94fLcZQexotJJH2Rz8DnxD9Pa9Zs4aamhosFgsrVqwgNjaWrVu3sn//fhRFYfTo0WRnZ19zH8PhcPDuu+8ycuRIZsyYgbe3d6+vEULgcDhoaWmhubkZt9tNQkLCdZv5IJH0l0OHDlFdXU16ejqxsbF3ZCCFRCKRSCTfRSorKzl9+jSTJ0/W/9+3bdvG119/3e1rnn32WV343rlzJ0eOHMHb25uYmBhiY2OJjY0lKChI9heughS+pfDdK1L47pm2tjZ+/eqr/JQ38MHBWzxOSMo0li5derObdsNpaGjg3XffxWazER4eztKlS3sUIDaXbeYXh3+BW7jxNnrz1KinWJG8Aoux5x8lt9vNxo0bKSgoQFEU7r33XrKysuRop+SmUFlZyfHjxwkKCiIpKUmfddCfTofNZmPNmjW63UNGRkafBnJyc3NJSkrSr7O+CMzfpMNn++jRo8yePVv3mysuLqa6urrfHnRnz57liy++YPbs2YwePbpf1kPHjx/ns88+QwhBYmIiCxcu7Nf7aW9v59y5c3p0tRCCqKgo4uLiSE5OvuZoegCEhjF/A+a9v8bQUOjZ5BuKa/zziMFJnghs72DwDkL4BIGpF/G1vRFj4RZM+RswlOxCUZ36Li0oHnXkAtzJCxDho3sWna8FzY3hQu6laPB9GCoOobg8Uy+10BGXorsfAu9BvRzIE71iNptRWqrx+mABhpYq1KGZOJauArMnctvpdPLJJ5/Q1NTEo48+SlBQEC0tLWzfvp2JEydec8LYDnJzc/nyyy8B8PPzY9asWcTHx9PS0kJ7eztJV2Rx37BhAyUlJTQ3N3fx3O8YtJKei5Kbgcvl0n/vXC4Xb7/9Ng0NnsS9QUFBpKWlMWbMmDvWQk8ikUgkku8aQgjd4sThcOB0OlFVFVVVcblc+rrb7SYqKkoP0Ni2bRvHjx/XA306GDRoELGxsdxzzz13pNDbHVL4lsJ3r0jhu2fKy8tZ9afX+EfeRkPhV/yQKffcO6AJ624HGhoaeP/992lubiY0NJRly5Z1O11dCMEH+R/w+qnXAZgaOZV/GvdPhPuG91qPw+Fg/fr1lJWVYTQauf/++6XHq+Q7gaZpbN++Xbf8iIqK4oEHHriqCKdpGjt37uTo0aPExMTw0EMP4evr+61nPAghcLvduN1uVq5cSVlZGYqikJSU1Keoww67FfBEbS9atKjfQnxeXh5r164lOTmZefPm9fnavnjxIu+99163OQWujGZ3Op04nc5rEzg1FePZdZj3/TeGxtJuiwmzz2UhvEMMvySOG+rPYijZg6JdFl61kETUEffjHrEAEZYy8GJ3T6guDBdOIQymfgntVVVVfP7558yYMYPhw4ej1Ofj/eFCFEcz7uT5OBe+rfuIu91u2trarls/orS0lG3btulCYQdms5mf/OQngOf7vWbNGt2iCDw5IQICArDb7YSFhbF06VK8vLxuiYHUjutRRqF/txFCcObMGbZs2cK9995LYmIimqZRVVVFbm4ueXl5nW5sY2JiyMjIuJwMWCKRSCQSyR1Hh81mUVERxcXFVFZWomkavr6+vPjii/o91JkzZxBCYDab9cVkMmE2m/Hy8rojAj6k8C2F716RwnfPaJpG84kNBH36OO2+Q9mQ8AsyMjKIj4+/2U27YVwpeg8ePJhHHnkEPz+/q5ZVhcpvj/+W1YWrAVg2fBkvjXkJg9I3kWH37t0cOnQIs9nMkiVLSE5OlqK35DtFXl4en3zyCU6nE19fXxYtWqT7IoNHtN2wYYMu3k2bNo1p06YNqM2PEIKTJ0+Sk5NDRUWFvj0oKIgxY8YwevToLgNbhw8fZteuXQCkp6ezYMGCa25TdXU1gYGB3V7bDoeDwsJCnE4nY8eO1dv89ttv4+XlxciRI0lNTcVsNlNYWEhRURETJ04kPNwzuHb27Fk2bNhAaGgo8fHxxMXFER0d3T+RXnVhzF2FqXAL2K0oditKuxXaG1FE3xL6aqEjUJMX4B55P2Jw8o0Vu68Bh8PB9u3byc7OJjg4WJ9m6eXlxRNPPEFQUBCGsv14rV6OojpxZTyHa+Yvblj7VFUlJyeHgwcP4na78ff3x8/Pj2XLlumfbXV1NS6Xi4CAAPz8/PRO8DcHQ9xuN3l5eYwfP/66iuButxur1UpISIh+vRw5coQjR45gtVpxu90kJiYybdo03QPyZlNeXk5OTg5jx44lLi7uZjfntubChQts2rSJkpISAIYNG8ayZcs6lXG5XBQWFpKbm6uXS0lJYfHixbqVlhBC9oUkEolEIrmDcTgclJaWYrPZGDVqlB5N/sYbb+hJNb9JeHg4TzzxhP783Xffpa2tDbPZTHh4+HfGQkUK31L47hUpfPeOe/+bmLb8C+7E2TiXvH9NdgO3M2fPnmX16tUEBwfzyCOPdDtq2K62828H/41dVbtQUHhpzEssT17er7pcLhcbN25k8uTJxMTE3NY/wBJJd1y8eJGPP/6YpqYmHn/8cd3PzWazsXbtWmprazEajcyfP5/09PTreh3U1NRw5MgRcnNz9ajD6Oholi/3XLtCCPbt28eBAwcAmDBhgp508NsghMDpdOJyudi5cyepqalcvHiR/Px8iouLUVUVHx8fXnzxRd1axul0EhAQcFWhUgiBpmmoqsru3bvZt29fp/0mk4lhw4aRnJzMyJEjr71zJDRw2lDsjSj2Bo8QfmnB3oBib0T4DkZNvs8jdt8m1NXV8emnn2K1WomMjOSxxx7DbDbz/vvvU1lZSUREBCtWrPAk4DnzCV4bXgTAec/PcWe+cO0Vayqojn55mmuahqIo3+q62Lx5MydPniQyMpIFCxYQFRV1zccCjw1PUVERdXV1WK1WfWlp8XitP/vss4SFhem5AzoGka4kLi6O6dOn31S/56qqKt555x2EEBgMBubNm0dGRsZNacvtjN1u15NYCSEwmUxkZWWRmZnZY4R/S0sLZ86cYejQoURHRwOe4IPVq1eTlpZGRkYGQUFBN+ptSCQSiUQiuUURQmC329m8ebNu8dexuN1uXC4XQ4YM4ZFHHtFf88Ybb9Da2trlWIGBgYwYMYK77777Br6DzjidTj3RZ3+RwrcUvntFCt+94/7sZUzH3sWV9UNc0/8H3t7et8Q06RuBEAKXy0V+fj7h4eHdit6Njkb+cd8/curiKSwGCz+f8HNmDpvZpzqKioo6JYLrmJ4jRW/JdxmXy0V1dbXuS11bW8uaNWtobW3F19eXJUuWdE6QeJ1xOBycPHmSo0ePMm7cOO666y4Azp07x/r16wFP9Pn06dMH7PdPCMFXX33F3r17u+wLCQlh5MiRTJo0CR8fn37X2draSmFhIefPn6e4uBibzabvuzJ5zO1EfX09tbW1tLW1oWkaI0aM6JRk9FrpsGHoiJRevHgxcXFxKIpCY2Mjb7/9Nu3t7WRkZDBjxgwATIfewLLr3wFwLPx/qCPv73uFQmCoOYHxzBpMZ9ejtF1EeAUi/CMQAZGexT8SERCBFhClb8cn5OpR80KAs6WbwQir51FTcY9+xGP1gse2Z9euXTgcDgAyMzP7nDjzcrWXo3A7knleDYvFwqJFi4iNjQWgsbERq9VKUFAQQgh94EnTNLy8vHj55Zf71Y6BpMMGyWq16rYy2dnZ3HvvvfI/uY+cOXOGDRs2YLfbAUhOTubuu+++5mt1165dHD58GPB8l5566ikiIiIGrL0SiUQikUi+W3TInFfKnUIIGhsbcTgc2O12ysrKOlmojBo1igULFuhl9+7dqw/ED6So3NGO2tpa6urq9KWpqYkVK1Z0mgndV6TwLYXvXpHCd89s27aNcSf/jZDm09RP/SVeE76Hv7//d/4G0Gq1oigKvr6+uN3uHstW2ip5ec/LlNnKCDAH8OvJv2Zs2Nhe61BVla+++orjx4+TnZ3NlClT+pUoTyL5LqBpGg6Hg9zcXL744gsGDx7M0qVLCQsLuym/M1dGTrvdbnJyctixYwf33nsvEydOHPBBP5vNxgcffMCFCxcIDg7WbUwiIiIG7LdA0zQuXLhAQUEBdXV1zJs3T9+3efNmzGYzqampDBkyZEDOeVVVFXV1dV06nR2PKSkpurBZUVFBVVUVDoeDtra2TovdbufJJ5/UBbMrBTAARVFITExk3Lhx1zRDRlVVduzYoWeYj42NZfHixV1saPLy8li1ahUAixYtYvjw4SAE5m3/A/PX7yKMXjiWrkQbNrHH+pTmCoyn12I6vUZPINofhNELERCB8A8HTbvCfqYJRai9vx4F95jHcE39Z/AdTGtrKzt27ODs2bOAJ3Hm3LlzSU1Nveq5FEJQXV1Nfn4++fn5zJgxg/j4eFRVpaysjM2bNxMVFUVQuD2tQQAAIABJREFUUJC+DBo0CB8fn14/m+bmZg4dOkRgYCBZWVkYjUZMJhPl5eXXPQI8Pz+f2NhYjEajHiVkNBrZv3+/LuaPGDGCBx988I68qegvBQUFfPTRR4SGhjJjxgx9wONacbvdFBYWcvjwYS5cuEBgYCDPPvssAQEBA9RiiUQikUgkdyodFipms5mIiAiEENTX1/Puu+8CYDAYiIqKIjo6Gi8vL8xmM9HR0YSFhQGeSG2r1drJY9xsNmM0Gmlvb8dgMOj9x7y8PDZt2tQlAX0Hc+fOZfRoT5DK6dOnqa+vJyMjo1efcil8S+G7V6Tw3T1CCP7zP/+THzl+jz9t/JEVxGQvYs6cOTe7adcVq9XK+++/j6IoPPLIIz1+L842nOXHe3+M1WElwjeC3079LQmBCb3WYbfb+eyzzygrKwMGPpJUIrmd0DSN99/32Ch1l/DyZiCE4PTp05hMJkaMGHHdxDdVVWlsbCQoKOiGDHxpmobb7aalpYU33nhDT5gZGhpKamoqKSkpPX4GqqrS0NBAbW0tFy5coK6ujsWLF+sdrq+++oqjR492+/pnnnmGkJAQAPbs2cPBgwe7LfvYY48RGRkJeDqAubm5+Pr6YrfbKS29nHwzNDSU5cuX9zlSuLW1lU8++YTq6mrAE9V7zz33dGvDsHnzZg4ePNjJ7xtNxbL+GUyFmxHeQbQ/+mlXexdHC8b8DZhOr8FYfjkiWpi8UZPm4k59CG1oBkprLUpLDUpLNYqtWl832Ko929rqe31P3SYc9QlBaSzBlL/BU85rEK4p/4R77JNgMFFaWsrWrVuxWq0AzJ49W0+U6na7KS4uJj8/n4KCAt26BGDMmDHMnj3bc8zr4MFcVFTE2rVriYyMZPr06QOe88LpdLJ582aOHTtGampqpwGhDs6cOcOmTZtQVZUJEyZw3333DVj93wVaW1spKyvDYDCQnJyM0+lEVVUKCwtJSEgY0D6N3W7ngw8+oLGxkejoaJ588sk7ynZPIpFIJBLJ9UcIQW1tLQcOHKC4uJjm5uYuZWbOnMm4ceMATxDPRx991KWMwWBA0zTuu+8+fSZxeXk5K1euxGQyERoaSlhYGEOGDCE8PFx3FxBC4HA4+OMf/0hjYyNGo5HRo0eTmZnZrd2bFL571nJlb1HSIzabDaOjCX88yQLqCWH8kCE3uVXXl8bGRt5//32ampoIDg7u8aZtX/U+fnbgZ7Sr7SQHJfObKb8hzCes1zrq6+tZt24dTU1NmM1mFi5c2G2EnURyJ2AwGHjqqaduuQRmiqLoHZXridFoZPDgwde9ng46Ig8GDRrEww8/zIkTJzh37hz19fXs2rWL3bt3ExMTQ2Zmpp7IuKSkhLy8PGpra6mvr0dVO0cY19fX6z7RoaGhJCUl6Z/lN/2oLRaL/jw8PJyUlBR8fHzw9fXFz89Pf/Tz8yMoKAiz2YyiKIwfP57MzEz9OLW1tRw6dIhTp05hsVg6id7t7e09iuBeXl764/33309KSkqP371Zs2ZRXl6Oj4/P5eMajDjvfwNl1VKMVUfxWv0o7Y9tAN/BGIp3YTq9GmPhZhR3u34cddgk3Hc9jJo8H7wuR6wK76CePdFVJ4rtwiVh/AIYTZ7XeAcjfILBexCYehb93eUHsGz/Vwy1p7Fs/5+YTvwV58x/JzZ2Kt/73vf0c9khYNrtdv7whz90ikoxm83Ex8eTmJhIYmKivv16XLfNzc2YzWaqq6tZuXIl4eHhTJs2jVGjRn3r+mpqali7di319Z4BhY4bjW8eNyUlhcDAQPbt28fEiRNxuVwDakVWVVXF7t27O0XJBwUFERwcrH9HbxWEEDQ1NVFaWkpZWRmlpaVcvHgR8FzTzzzzjD5glpSUNOD1+/j4sGTJEj744AMqKir49NNPefDBB2+p/wyJRCKRSCS3N4qiEB4ezqJFi9A0jYaGBs6fP09NTQ0ulwun06kH8ICnf+Tn56f7incEFHU8NjU1AZ77r+joaF544QUGDx7cY3/Sx8eHuXPnsmfPHiorKzl+/DgnTpxg1KhRZGVl6Vahkr4hI76REd89UVpayvZ3/4OnWUUTgfxOeZbnnnvuWyfBulVpbGzkvffe00XvZcuWdRv1+GnRp7xy7BVUoTIhfAK/yv4V/ubeo1TPnz/Phg0bcDqdDBo0iIceeoihQ4fKGzeJRHJTsdvt5ObmcvLkSSoqKgCYMWOGntivw/KlA4vF0ilCYfjw4XrizRv9e2a322lubiYwMFBPdPP2228TGxvbyQalI/t7x4Bmc3MziqL02eKlY7piF/urtnq8P1iIobEYLSgOxWnrFKGtDR6OO/Uh1JQHEYHRA/re+42mYjr5IeY9/4li90R4u5Pn4brn54hBw3C73XoUrRCCd955B7fbTVJSEklJSQwbNuyGRtm2tbWRk5PDsWPHdAE+JCSE5ORkZs+e3e/vmhCCgwcPsn37dlRVxd/fn3nz5vVqx3GlKG4wGGhsbOy3z7Tb7ebkyZOEh4cTERGBy+Xi1KlTfPHFF1ct7+3tzfz58/XBt5aWFmpqahg2bNgN8UD/5kDAJ598wsmTJ7uUCw0NJTo6mvHjx9+Q3AElJSWsWbOG5ORklixZ0mOyTIlEIpFIJJLryTd9xFVVxel04nQ6sVgsuuXftdwfCSEoKSlhz549FBcX69unTp3KxImXLRZlxLeM+JZ8Cy5evEgYnmieOoIxGo26l9F3jW9Gencnegsh+OOZP/KnM38CYH7sfH42/meYDL1fTq2trXz22We43W6GDRvGkiVLBiQxm0QikXxbfHx8yMzMJDMzk4sXL+pRBR3ExMSQnZ1NREQEkZGRhISE3BSR+2r4+Pjg4+MDeGxY8vPzcblcFBYWUlhYSGhoKOnp6RQXFxMaGsq0adMACAsL65e1jLe3dycP+I7OFr6hOB7+G94fLsDQWAKA8B2Me9Qi1JSH0CLGXD0p5TXgdDo5f/48NpsNt9utR5eMGjVKt4Spqqpiz549nfYbDAbuuusuz7TM9Cdwj7gf877/xvT1e5gKvsBY9BXuzL+DiT+ko3uoKArLly/Hz8+vb5+zsw2EG0w+YBwYMdLX15dp06aRmZnJ0aNHOXbsGA0NDZSVlenvy2g0cuTIEUJDQxk2bFi3Qmhrayvr16+nsNDjr56UlMScOXPw9fXttR1Xvv9Dhw6xa9cuZs+eTVZWVq/nxuFwcPToUQ4cOIDNZiMxMZEHH3wQgKioKGbNmkVTUxPNzc00NTXR1NSE3W6nvb0dRVFoa2vDYDBQUFDAhg0bMBqNJCQkkJKSwogRI/Tv/rdFCEFdXR1FRUWUlJRQVlbGc889h7+/P6qqEhQUhMFgIDw8nOjoaKKjoxk6dOiA1d9X4uLiePTRR4mIiNAHam6F3yGJRCKRSCR3Hlf2QRRFwWAwYDab8fPzG5Bjx8fHEx8fT0VFBXv37iU/P5/o6MuBNB2R5ZLukRHfyIjvnti6dSsB+/4PEznGAcZxIuIRXnjhhe/cDUaH6N3Y2Nij6O3W3Pzq6K/YUOLxSX161NM8n/p8v87H6dOnqaysZN68eXfkqJxEIrm96OhMXWukws3iShuUK606TCYTzz33HKGhodfsP+xwOPj0008pKiq67PcNKHVnMZ38G2rsNLT4uwdM/AVP7olDhw6Rl5d31YQ4s2fPZsyYMQAUFxezZs2aqx4nMDCQefPmMWzYsEttzsOy/V8xlu0FQAuIwnX3v6GOXHh1sd7tQGkswWAtRmkowmA9j9Kx3npBLyYMJo/1itkHYfIBkzfC7NN1m1cA2tBM1Pi7wbf3aZsOh4OSkhKMRqNup+FwOHjttdcQQmA0GomOjiY+Pp6EhASioqL0wQ2bzcZbb72Fw+Hg7rvvJj09/Zoixrdu3cqJEycAGD9+PPfdd99Vv0utra0cOnSII0eO0N7usbvx9/cnMzOTjIyMHut2Op00NTUxaNCgTgmR9uzZQ2Njo17OYDAQHx9PSkoKqamp/bZHaW1tpbCwkKKiIoqKirDZbJ32z58/n5SUFMBznhVFGZi+ixDgaALvq3tV9gdFUfRZdBKJRCKRSCTfZRoaGvD399dnoLa1tREYGHhHaksyuWU/kMJ396xatYqMs/9BEqV8xr2401boUUrfJWw2G++99x6apnUrere6WvnZgZ9x8MJBDBj4acZPWZywuE/HttvteqS8oih4eXnJJJYSiURyA7Db7Rw7dkxPtvnAAw/o1ifXiqqqvPvuu1RWVhIREcGKFSuuS1LSK60mampq+Otf/wpAcHAwERER+rRGk8lEcnKybptls9n07PRmsxmTyYTVamXXrl20tbXx9NNPd7akEALjuS8w7/jfGJrKPe8xeiLujGdQbDUo1mIMDedRrEUozZUoYuAjSwQKWuRY1ISZqIkzEeGjQenb/2RLSwt79uyhtLS0i3BrsViYMmUKU6ZMweFwUFZWhpeX17eavSaE4MiRI+zatQuAxMREHn744U6i8549e9i9e7d+UxISEsKECRNISUn5Vt8VIQQXL17Uk412eJQD/PCHPyQkJARFUdA07ar9DKfTiaZpulXKyZMn+eSTT/T9JpOJ6OhoYmJiGDZsGOHh4QP+3VasJVg2/ghjVQ7uEQtxTflJz/72PeByufjyyy+pqqri2Wef/db9eE3TsNvt+Pr63hYDfW63G6fTicPhwOl0EhYWpn/uZWVl2Gw24uLi+jSrQSKRSCQSye1DRxLM9vZ2/Pz87kjrNyl89wMpfHfPW2+9xfKaXzKIFv7MIyTPeoIpU6bc7GYNOC6XC6vVihCCgICALvvr7fX8w95/IL8xH2+jN/8x8T+YEtX7eSgvL2fDhg0oisLjjz9OQEAAXl5et8XNlEQikXzX6E4MvBaampp46623aG9vJyMjgxkzZgzIcTVNo6SkhFOnTuHj48Ps2bMBT+d27969JCUlERcXd01ipNPppKSkhGHDhul+hDk5OcTGxnqEYJcd05E3MR98rVNCzm8iLAFowfGIkEREcDxacAIiJAEtON4T0e1uR3HZwd0OLrvnWC47uDvW2/RtSmsdxpJdGGpzO9fhF4YaP8MjhMdPB6/e+2dCCKxWq558saysjPb2du69917S09P7fb56o6CggI0bN+J2uwkLC2PFihUEBQUhhODw4cNs2rSJiIgIsrKySEpKui4D3hcvXqSgoACr1cq8efMATxT42rVrcblcpKSkEBERQWlpKUVFRZSVlTF9+nQmTpyIqqq0trayZs0a4uLiiI2NZejQodfPw10IjKc+wrL9X1FcbZc3KwbUlCW4Jv8EEdSz1/o3cTgcfPjhh1y8eJHIyEieeuqpa7rxE0Jw7tw5tm7dSn19PaGhoaSlpZGWlnZLRZLv2LGDEydO6GL3N6c3/+hHP9L7sVu3buXIkSMAREZGkpCQQEJCAjExMTfUp18ikUgkEonkeiCF734ghe/ucbc2YPp1PAC7Jr7P8LQJ35nEllarlaqqKpKTk686bbyDkuYSXt7zMtVt1QR7BfObKb8hJSSlx2NrmsaBAwc4cOAAQghCQkJYunRpnxOoSSQSieTWJy8vj1WrVgGeSPLk5GuLWgWP5VZubi65ubm0tLQAYDabefHFF/H29sZkMmE0GgfkP6Qj8U55eTl/+ctfUBSFu+66i8mTJxMQEIDSXIF5z6sY6s6gBcUighM84nZwPFpIoseSZID/y5SWagzFOzCe34axZDeKq/VyexUjWvQEjwieMBMROqJP9QshqK2tJSAg4LpFvNbU1LBu3TpaW1vJzMxk1qxZurd6ZWXlt55dcC04nU5ee+21bj0fR44cyf33339D20RbPZbN/4Tp3CYA1GHZuLJf8njMX9omDCbco5fhzn4ZETi0z4e2Wq18+OGH2O12Ro0axcMPP9yvc26z2Vi3bl2npFFX8sADD1yXgZPuEEJQXV3NmTNnyM/P53vf+x4WiwW328327dv12StX0jH7Y8WKFfpsjtOnT3P48OFOswI6ysbExPDQQw/dcH92iUQikUgkkoFCCt/9QArf3aOVH8Hwp1kIvyHYf3ACLy+v6zKd+0ZTUlLCxx9/jN1uZ+HChYwYMeKq5U7Un+Af9/0jzc5mov2j+b9T/y/R/tFXLdtBc3MzGzdupKKiAoC77rqL++67T04zlUgkku8gW7Zs4cCBA3h5eXXy++4rJSUlHDp0iLKyMn2bt7c3qampjB07lsjIyOtmjdXQ0MDWrVvJy8sDPILY+PHjmTBhQr+9ogcU1Ymh4jDGou0Yi7ZjuHiu027hNQjh5Q9mX49XuNnHs272AZMPwux7aduldZMPwisQfIIR3kEIn2CET7DHX7oPial7o6WlhXXr1qGqKk899dQtMcDd1NREQUEB+fn5NDU1ERUVRVxcHHFxcQQFBd3QNhqKtuP15Y9RWusQBjOuqf+CO/MFMHj6k4bq45j3voqxeAcAwmjBnf44rqy/B/8hfaqjvLycjz/+GE3TmDp1ar9mYLjdbt58802amprIyMhg7NixlJaWcvr0aSoqKnjuuecIDg7GZDJRXV2N0+kkPj5+QK9LIQSVlZWcOXOGM2fO0NTUpO+77777uOuuuwCPyG+327FYLJ2WntrSYX3UsdhsNnx9ffnhD3+oD6jl5ORgMplITEy8pSLcJRKJRCKRSLpDCt/9QArf3aMe/SvGz3+IGjMFx7LVeHt73/be1Dk5OXz55ZdomkZERASLFy++qqf3VxVf8b8O/S+cmpPUkFT+e8p/E+wVfJUjXubcuXNs2rSJ9vZ2LBYLc+bMIT09/bY/ZxKJRCK5Olf6fUdGRvLoo492ERWdTie1tbXU1tZy4cIFsrOzdYH88OHDuld0XFwcY8aMYdSoUVgslhsmTpaXl7NlyxZ9wNbX15fs7GzGjBlzSwx2K42lGIu+8ojgZft6tGHpL8JrkEcI9w7yCOP6Mhht6AS06Al9SlKqaRoOh6PvEbS2CxhL94DRgjosG/yu3XP8lsXVhnnnLzF//S4AWugIHPNfR4TfddXihopDmPe8grH8AADC5I173DO4sl4En5Beqzt16hSbNnmixx988EFGjx591XIOh4OcnByysrIQQuByuaiursbX17eL6Guz2Tr1EdetW8f58+fx9/dn9OjRjBkzhvDw8N7PRQ+UlZWxdu1ampub9W1ms5nExESSk5OJj48fsIRVHR7xLS0txMfH69veeOMN2to89jPBwcHExsbqy40eKJFIJBKJRCLpC1L47gdS+L46Z8+exbD9fzOi/kvqExajzX2VsLCw27bzq6oqmzZtIicnB4BRo0YxZ86cq3pBrjq3it8e/y0CwdSoqfwy65d4m7x7rePTTz+loKCAiIgIFi1aJK1NJBKJ5A6gqamJDz74gJkzZxITE0NjYyOFhYXU1NRQW1vLxYsXO5VfsGABo0aNAuDChQsUFxeTlpbG4MGDb9p/hhCCs2fPsn37dhoaGvD19eXZZ5/VI7//+Mc/6sk2DQYDiqLo61FRUdx77736sfLy8vD39yc8PHzgE+247ChNZR4PcVebxzf80rrn0Q7uy+v6PkcT2K0o7VYUuxXF0dx7XXj8zNX46agJs1ATZly7QK2pGGqOe6xcirZjuHCq8+7Byagxk9FiJqHGTOqT0DvgCE33ZcfiD6Zrj/pXak7iteEHGBoKAXBlPItr2s88kfg9tkFgKNvrEcCrPJYewuKPe/zzuDJf6NXrfefOnRw5cgSLxcJLL73Uabadpml8/fXX7Nixg9bWVmbMmEFGRkaf35MQgh07dnDmzBnsdru+PTw8nLi4OCIiIjpZonz55ZcIIXQ//SsfhwwZwoQJE9A0jaamJl577TUsFguJiYmMGDGCuLi4G5akyu12c/DgQUpLS6muruabt4bDhw9n+fLl+m/TlUl3JRKJRCKRSG4WUvjuB1L4vjqbN28m7sC/MIIiNjIDy+QXO93Y3k60tbWxevVqSkpKAJg2bRoTJkzo0nHXhMbrJ1/nw4IPAXgw4UF+MvYnmPo4Fbq9vZ1jx44xbdq0AYvOkUgkEsmtj6ZpOJ1ONE2joKCATz/9tNP+DiE4IiKCUaNGER4e3klAvlVQVZWcnBwMBgOpqan69v/6r//qIoh1EBcXx8MPPwx4zsPvf/97XC4XiqIQGhpKREQEkZGRREREEBoaekOjyJ1OJ1arleDg4M7/y5ob2hs9IvilhQ5R3N6A0lyJsXQ3SlvnQQs1Ih01cRZawky0iDRQepjRZbdiLN7psWwp3oFib+h8rPA0FKFiqD3d5aVaWApqzCS0mCmowyaCdx/sJ4QGrXUYWqpRbNUoLZeWtnqPmO2yo7jtXROOXpl4tONQRgtaeBra0PFoQ8ejRo0H/z5ENmsqpsN/wLz31yiaG80/Aue836HFTe/9tZ3ei8BQtB3Lnlf0xKfCOwjXxL/HPf553SalS/WaxubNmxk9ejSxsbH6Z15YWMjWrVupq6sDICgoiBkzZpCYmNi/duG5RoqKijhz5gznz59HVVUAkpOTWbx4sV7ulVde6fYY8fHxPPTQQ/rziooKIiIibnrSSYfDQWVlJRUVFZSXl1NTU0NGRgZ33303BoMBVVV5++23iY6O1iPChwwZImc2SiQSiUQiueFI4bsfSOH76nz00UfMyf9nQmjiPR4mY8lL3U4bvdU5ceIE69evx2w2s2DBApKSkrqUcapOfnHkF2wt3wrAi6Nf5IkRT3QrSAghyM3NpaKigrlz5+qRb15eXreUiCGRSCSSG4MQArvdTktLC9u2bdPF3qioKAIDA285kbsnhBBomqaL3VVVVZ22qaqqR7N6e3vria/b2trYuHEjVVVVtLa2djluUlJSJ3GwoaEBf3//AR0srqysJCcnh7q6OqxWKwA+Pj48+OCD/UvQrakYak5citLe1iVKW/iFocbPQE2chRo3HSz+KLWnL3uTVx1FEZcTTAqvQNS46Z7y8fdcjh63N2AsP4ChbD/Gsn0Y6vM716MY0IbchRYz2WO9ojovi9q6yF2FYruAormv7aT15XQMGoYWdVkIF0NSOnmkK03lWDb+EGPFYQDcIxbgnP3Kt4teFxrGc196kq1eLAA8iTGdC15HBPT+WTY0NLBjxw6KiooAj3/+pEmTSE9Pv/oAjOZGsZYg/MPBK6DX49vtdgoKCrBarYSFhXUaLNq7d2+nsh3XvqIoBAUFkZLSc6L0a0ZzY6jMwVi0HaW5EkxeCJM3mLy/se6DMHldWvf2bDf7oIWPBrMnUt7lcuF2u3ULn+LiYtasWdOpOm9vb9LS0pgwYQKDBw++Pu9JIpFIJBKJ5BtI4bsfSOH76rz52m/5/sWfowD/xQs8+YN/Iizs9vOgFELgdDrZs2cPw4cPv+p7aHG28NP9P+VY3TGMipH/mfk/mRc7r9tjOhwOtmzZoicEW7x4MaNGjcJkMt02ooZEIpFIBp4OMfh2ErmvB0IImpqaqKyspLKykqqqKj16dPLkyYDHP/nNN98EPJ7Gvr6++Pn56Y8JCQn6QLWqqjQ3N+Pr64sQgrq6uk5LVlYWw4cPB7qKcyaTCbfbjclkYt68ed0mtO4NpaUGQ/FXlyK4d6G4Lgv7wmAC7yBPdPUVaKEjPUJ3wgy0qPF98guntQ5j2X4MZfs8j9bzfW6jUAwIv3BEQOTlxS8MzH66sInZx5MU1OTtSQjakRS0I1GoyQulqQJD1RGPgFqZg1Kf10nEBxBmH7TIcWhRGQjvYMz7/xvFaUNY/HHO+g/U1IdhoK4BTcWYuwrL9n9FcbUhvINx3vdb1OFzenxZeXk5a9asQQjB2LFjyc7Oxtv76tZ1hvIDWLb8s55MVfiFoQUnIIIT0UISECEJnudBcd/KBua60FaPsXgHxvPbMRbv9Fj7XCNaYDTOB/6IFpneZZ+qqlRXV1NRUaEvLpdL379w4ULGjh17zXVLJBKJRCKR9BUpfPcDKXx3RdM03vnlSzyv/YU2vPmd+e/553/5l1siyVVfEEKQk5NDamoqBoMBTdO6LXuh7QIv73mZouYifE2+vDLpFSaET+i2fHV1NZ9//jlNTU0oisLUqVOZNm3abXNuJBKJRCK5GWiahsvlwmg0oqoqpaWlrFmzppNwdiXZ2dlMmTIFAKvVyjvvvNPtsa8sa7fbOXPmDOHh4YSHh+Pl5cXatWspLCzE39+fZ5999tv7J6tODBWHPNHg57fr4rQw+6DGTEVLnImaMAMRGP3t6gGUlupL0eD7MdR8jfAKQPhHIQIiLonbUVeI3EM6RWEPGI4WDNVfe4TwqhxPNPtVfNLVoZk457+OCIoZ+DYASkMRXp9/X4++d417Gtfd/+qJWv4GTqeTlStXEhwczNSpU/WEsl1ou4hl579jyl0FgDCYUbSrfycBBApiUDQiOAEtJNHzGD4aLSqjWwuWAUdoKBdyMRZd+v5Vf43C5Vs64ROMGn8P2pDRoDlRXO2gOsDdfmm93bPubodL+xR3u2cGgb0BYbTgmvEL3OlP9Dh4oWkapaWlfP311xQXF/Pcc88RHByM2WzWB6qk9Z9EIpFIJJLrgRS++4EUvrvS0NDAjt//gCV8QSlD2Rr9DzzzzDO3RfSay+Xis88+Izc3l9jYWB566KFuvQfPNZ7jx3t/TJ29jjDvMH4z9TckByVftawQgiNHjrBnzx40TSMwMJAHHniA+Pj42+K8SCQSiURyq6FpGg6HA5vN1mlpbW1l2LBhxMTEIISgpqaGlStX6iJ5YGAgYWFhDBkyhPDwcKKjowkKCtJ9069Wz5YtWxgxYgTh4X3wqu4nirUYxXbBEyXbh2TYtz1CQ7l4ThfClYuFqMPn4s78/vUXf1Un5t2/wnzkLcDjh+5Y+CZi8NX7b90iNIynVmHZ+e8o7VYECu70x3FN+/9AMaJYizA0FF16PH/5ubPl6ofzG4I7eT7qiAVo0VkDfx4cLRhLd3uiuouE/r+fAAAgAElEQVS2o7TWdtqtDbkLNXEmasIstMix11Z/exOWL1/GdG4TAO6UJThnvwoW315eCK2trfj5+enP165dS2VlJenp6WRlZREcHNz/9kgkEolEIpF0gxS++4EUvrtSWFhI1QcvMo1DHGU0leN+ysKFC292s3qlubmZlStXUl1djcFgYObMmaSnd52qKYRgS/kWXjn6Cq3uVuID4/nd1N8R4RvR7bG3bNnCiRMnABgxYgQLFizA39//ur0XiUQikUgkHjq6qw6HA03T8Pb2viY7mQ6hXQhBRUUFQ4YM+U5GpAohKC4uJjo6Wn9/Fy9e5OzZs/pgQYfv/O2KoegrvL54CaWtHmHyxjnzl6hpK/pkr6LU5WHZ+s+6H7k2JBXn7Fc8Uds9IQS0XcRgPY/SUITBWoTSUIix7EAnexGPCD4PdcT91yyCK82VGKqOYqj0RNgbLpzqFIkuzH6ocdNQE2aiJcxABET2u46rIgSmw29i3v1/UISKFjoSx6J3ECF9TwTqcrn4y1/+QkPD5YSuycnJZGVlyYARiUQikUgkA4IUvvuBFL67cvz4cSzrnyWFc2ziboLv+xlZWVk3u1k9UlFRwapVq7DZbPj4+LBw4UJiYrpOta1qreLVY69yoObA/8/ee0fHcZ15m09VB+QMNHIOJBIDCOZMkaJFUhQVLVsjS2tJlsYzsrVer72eszvf+ebseMbz7Z7PHnusaK3GYyUrUaQsUiLFIOYIEoFEIkBkNHLuWFX7RwFFtgCQBAlSpHWfc+p0ddXtW7eqq6urfve9vxeAudFz+bel/0ao9crffVNTEx988AGrVq1i4cKFwtpEIBAIBII7EE3TqKur45133iEqKooHHnjga+nIHvOCn27a29vZv38/jY2NLFmyxPBULykpYffu3UY5f39/QwSPjY0lNTWVwMCrR/beKKqq+ozE++r7KTHUgd+nz2O6+CUA3hn34l7/P8A/bOLy7hEsR/4n5hMvIaleNEsgnmX/O955T9+YRYziRr54AHP1J5hqdiI5+4xVWlAM3uwNeiR48qKJt+N1IdvLkEdtZOSWU8hDbeOKqRGZelR35lrUxAXX5TXu8Xjo7OzEbrfT3t5OV1cXjz32mPEdtLS0EBoaSlhvGX7b/xZpuEP3bb/nf6LM2HTN29E0jYsXL3Lq1Cnq6+uN5dHR0WzZsoXExEQABgcHaW1txWKxjJvMZjN+fn53/D33wMAAdXV11NfX09bWRnR0NAsWLCAtLe3rbto3HlVV6ejowM/PT4xKEAgEgjsMIXxPASF8T4z622Lk7hqqF/6KyPkPER0d/XU3aVJaWlp444038Hq9REdHc//994/zcvSqXv5c+2deLn8Zp+LEIlv4fu73eXzm41jk8V6fY4m5Lq/H5XIRHh4uIlUEAoFAILiDaWxs5J133sHhcBAaGsqDDz44rfc5qqoyMjLC4OAgHo/HpyP+448/pr29naGhIUJCQsjPz6egoICwsEnE2mukr6+PAwcOGIm3TSYTCxcuZPXq1UiSRF1dHeXl5YbY+dX8J48++ijJycmAnsRwrI7ppK6ujn379vHII48QHByM0+nkzTffpLi4mFmzZl3f/ZWmYj7+EpYD/4KkevXkjPf+HjVxvk8x+cJurLt+gTzQDIA3+1t47vq/0UITp2PXLqG4kRsOYq76BFPNDl8RPDBKF8FzNiC5hy6L5i5FUty+uyWZUG35qInFqAnzUBPno4UlX1eT6urqqKqqwm6309XVxVcf/5588kliYmI4f/48n376KXFxcTz66KOYHF34bXsOU/NRADzFP8Cz8v+8tiStl9HT08Pp06cpLy/H4/Fw7733UlBQAEBVVRUffvjhpJ/dsGED8+bNQ5Ik3G43XV1dJCQk3Pb34t3d3Rw7doz6+nq6urrGrb/33nspLCzEZDLR29tLe3s76enpt6Tz6U6jvb2d1tZWbDbbtI3S0TSNP/7xj7S0tBgWWtnZ2SxdupSUlJTb/vwSCAQCgRC+p4QQvidA8aD9cxyS6sXx3EmsMRm3bbSFpmm8+OKLdHZ2kpqaypYtW8bdEFX1VvHLU7+ksld/GJwbPZdfFP+C1JDUCev0eDzs3r2bqqoqHn/8caKiorBarZhMJnEjJBAIBALBXwHd3d28+eab9Pb24ufnx3333Udq6sT3BVdiLKF2e3s7g4ODDA4OMjQ0ZAjLoaGhPPvss0b5N998k9bW1nH1pKSkMHv2bGbOnDml7TscDo4cOUJJSYmxzfz8fFatWkVUVNSE9y0ejwe73U5bWxvt7e20t7fz0EMP4eenRxAfPHiQuro6NmzYMC0dAmN5Uvbv3w/A3Llzueeeezh48CBffqlHa6ekpLB+/frJk1BeBbmtBOv2v0Xua0CTTHiW/RTvwueRhu1Yvvi/MFd/CoAamojnrn9GyV5/xfr6+vqorq7G6XTicDhwOp0+09KlSw3xVlEU6urqyMrK8j3eige58SDmyjERvHfyYxQYhZIwKnInzEONm3NN3toT0dHRQUxMjNGWw4cPc+jQIWN9YGAgsbGxxMXFkZCQQHp6OgEBAfT29vLqq6/icrmYN28ea9asAdWre6of/72+S4nzcW9++bqsVVwuF+Xl5SQmJhIXp9sLXrx4kYMHD+LxePB4PHi9XrxeLx6PB1VV2bhxI3l5eQBUVlayfft2QkJCyMnJYebMmaSlpWE234SErlPA6/XS3NyMn58f8fHxaJpGS0sLf/jDHwCQJIm4uDhSU1OJj4+no6ODOXPmGCL30aNHOXDgAABxcXFkZGSQkZFBSkrKjSfivQZ6enqorKzE4/EY58zYa05OjpEXobe3l/Pnzxs2UwEBAeTm5k67XdTg4CABAQGYTCbcbjdffvklhw8fNtZHREQQExNDbGwsNpuNrKws/P3H51ZQFIX29naam5tpbm5GURQeeughVFVFVVX+8Ic/0NHRgdVqxe2+1PGUkJDAypUrycmZYt6ASdA0jb6+PhFRLhAIBNOMEL6ngBC+x6N1VCL9fiGaJQjHCzUEBAbe1oJve3s7e/bs4Z577jEe2gCcXievnnuVt6vfRtEUQiwhPD/ree5NvxdZmnhYbU9PDx9//DFdXV1IksT69euZP3/+9Q/DFQgEAoFAcFsyMjLC22+/TXNzM7Iss379ekPMnIy+vj46OzvJzs42lv3pT3+irc3XmkKSJIKDgwkLC+M73/mOkXiztbUVSZIICQmhqamJM2fO0NDQAEBWVhb333//lPZh586dlJWVAZCWlsaaNWtISkqa8n2bpmmoqorD4eDFF19kZGQEk8nEihUrjIjb68Hj8fD5559z7tw5AGbNmsXGjRuxWq2oqsqRI0fYt28fXq8Xi8XCihUrmDt37vVtzzWI9fOfYz7/EQBK3Gzk7lokzzCaZMI7/1k8S/63CQXl9vZ2goODDdubixcv8t577026qRUrVhg2gGPCZWZmJnfffffE1jmKB7npMObK7cj1eyEgEiVhHmriPNSE+WjhqdfkT34lenp6OHDgANXV1dx7771GJ0pbWxt1dXXEx8eTkJBAWFjYpIlgKysreffddwF86jDV7MD6lx8juQfRAqNx3fsSaurSG2rv1RjryBm7Bz958qQhko9htVrJyspi5syZzJgx46Z79quqalwDOjo6aGxspKGhAY/HQ0FBARs2bEDTNDRNY9++fSQlJZGcnDyhMDvGmTNnKCkpGRcZbjKZSE5O5v77779pz6hnzpzh448/nnT9hg0bmDVrFqDngHr//fd91gcEBLBw4UIWLFhAQEDADbXF6/Uav6WlS5dSXFwMQHl5OefOnaOzs5ORkZFxn3v22WeJiYlBlmVqamqora01osTHRq+Afjx/9KMfGR0lLS0t+Pv7ExkZSW9vLydPnqS8vBxFUVi6dCmrV6++7sAvRVG4ePEilZWVRgfaCy+8YARSCQQCgeDGEcL3FBDCty+KorDvxZ9wV9cb9Idk0/vg+7e1B53X6/XppR/jmP0Y/3rqX2kd1qOq1iat5Sdzf0KUf9SkdVVVVbFz507cbjeBgYFs3ryZnJyc21r0FwgEAoFAcP14vV4++ugjQ5h96KGHSE9PN9aPjIwY4lZDQwP9/f3Isszzzz9viGwVFRWMjIwQERFBaGgooaGhhISEGALL1e4jent7KSkpISEhwbBF6e3tZevWrRQUFJCXl0dQUBCgC28ej8fo6O/r6+OTTz5hxYoV5OTkTEtH/cDAANu2bePChQsAJCcnc88990zZjmVwcJCtW7fS3t6OJEncddddLFq0aJzw09XVxbZt22hqagIgKSmJb33rW9cXIalpmCrew7rrF0geXSRTEufjvvtXaDG544orisKRI0c4evQoGRkZ3H///UiSRG9vL0eOHMHf35+AgIBxU3h4OMHBwUiSxOHDh9m7d6+ReHXNmjXk5eXdsvvHwcFBDh8+TFlZmeEdv2jRIkO4m2oi2F27dnH48GEsFosx8hFA6q3H7+NnkDsq0CQZz/L/A+/Cv4NJgkluBl6vl8bGRmpqarhw4QLDw8PGuueff56IiAgkScLj8SDL8nWLjF6vl56eHjwej+FHrqoqv/rVryZ87ggMDCQ3N1ePkr9OhoaGfK41g4ODWCwWfvzjHxuCaWNjIyEhIcZ3cj3bcDqdREVFoaoqPT09vPTSSyQnJ/v8vsfE+8LCQpKSkgCw2+2cOHHCKNPa2kp/v57U1Wq18p3vfOe6nhk1TaOyspJdu3bR26uPikhNTeXhhx8ed96OjIzQ1dVFZ2cnXV1ddHd38+ijjxrXvU8++YTz588b5f39/UlISCAhIYH4+HiSk5OveE4MDw9TUlJCUVERgYGByLJMY2MjLS0tLFiwwLgOT4TL5aK2tpbKykpqampwuVzGOovFwqOPPkpcXBxWqxVJkoQALhAIBDeIEL6ngBC+fenq6qLsd4+zmsOcIY/elb9k9erVX3ezxnHgwAEjcuVy+lx9/Prsr9nRsAOA2IBYflb0M5YlLJu0LkVR2L9/P6dOnQL0B67777/fuHkWCAQCgUDw14umaezevZvOzk42b96MLMtUVFRw8uRJOjo6fMrKskxCQgIbNmwgKioKk8k0afTs9bRD0zS8Xi/79u3jyJEjxjYzMzNJS0ujpKSEmJgYNm3aZKyzWq3TPjJtzMJl165deDwerFYrd911F/n5+de0r11dXfz5z39meHgYf39/tmzZcsVggjE7lN27dxvRs/fcc891t1/quYDl6L+jJC1EKXx0QnG2s7OTTz/91PiOZ86cyX333Yefn9+Uv0+73W6I/KBH769bt+6mJk51OBwcO3aM06dPG5GtWVlZrFq16oZ8sFVV5Y9//CMNDQ1ERUXxN3/zN5ciqT0OrLv/AXPZOwAoGXehJC+ZUv1aQDhq8mK08LQbinLXNI22tjZqa2vp7+/n3nvvBfTfxHvvvUddXR0mkwmr1eozhYeH89BDDxn1nDhxgpGRETweD11dXXR1ddHT04OmacTHx/Pkk08a9hivv/46/f39REZGEhUVRWxsLGlpaURHR1/5eGsakr0MuaMcNWkRWmTGVfett7eXnp4esrKyjGV/+MMf6O3tJTY2lvz8fPLz84mMjLxqXQ0NDZw8eZLz58+Tnp7Ogw8+aHi9Dw8PX1HQnQxVVamqquLo0aMMDw/z7LPPEhgYiNlsRlXVaxJ27XY7O3fu5OLFiwAEBwezYsWK6+44Kisro7OzE5vNRmJi4rTkZhobFWQ2m5kzZw6LFy+e8JgfOHCAPXv2GO8DAwPJysoiKyuL1NRUoyO0traW/fv389hjj131uxMIBALB5AjhewoI4duXqqoq3G8/TiFV7GI5iY/8m+Gtd7tQWlrKRx99hCRJfP/73ycyMhJN09jRuINfn/k1/e5+JCQeznqY5wqeI8hy5Zu506dP88UXXwAwf/581q1bd0s89QQCgUAgENw+jHkLa5pGSUkJu3fvBiA6OprU1FQyMjJIS0sjICDgpneMOxwOSktLOXv27DgbFX9/f5555pkrWlZMF93d3Xz00Ue0tLRgsVh4+umnr0nMdbvdvPnmm4AeRW+z2a6pnb29vezevZs1a9YY1gljUczThaqqnDhxgoMHD6KqKgEBAaxbt47Zs2ffUAeCoiiGb/lY9PemTZt8RhBMJ++++y6NjY2AHrSxatUq0tPTp6UTZGhoiJdffpmhoSHuuusuioqKfNabSt/CuusfkBTXJDVcHTUkATVlKUrqMtSUJWihSTfabEC31/nd736H1+udcH1ERATPPPMMoI/GeP311+ns7BxXzs/Pj7i4OB555BFj2cjICP7+/td2jF1DmBr2Y7rwBXLdHuRhOwAaEkrmOrzFP0BNWXLN4r/L5WLbtm00NDT4JCiNi4sjLy9vnAjudDo5e/Ysp06d8tm/xMREvv3tb09bxPFXPaw1TeNPf/oTsbGxLFu2bNI8ASdPnuTTTz9F0zRMJhMLFixgwYIFN92uZipomkZVVRXHjx/Hbrcby3NychgeHmbhwoXk5ubi9Xrp6Ohg69atZGdnk5WVRXx8/LjzRFVV/vM//5Ouri4CAwP57ne/a4woEAgEAsHUEML3FBDCty9Hjhwh/bPHiaOTt9jCt370P2+r3ujm5mbeeOMNFEVh4cKFrFixAofXwS+O/IIj7XpkVFZYFv9Q/A/kR+ZfU52KovDxxx8za9YsCgsLRZS3QCAQCATfUDRNw+Vy0d/fT0tLCxkZGYSGhn6tuT7a29spKSmhoaGB5ORkVqxYYdhs3ApUVeXgwYNYrVbD73eycpfbagwMDBASEnLd0aQulwtVVdm+fTsxMTEsWLDghsW6wcFBPv74Y6MzISsriw0bNkxLZOgYY9HfnZ2dPPHEE9dtS/FVFEVBVVUjOKOhoYG9e/eyatUqZsyYMe3WCWOWG5N5vEv2csxn/wvJ65xSvVJfA3LraSTV47NcDU/ThfDRiWDbdbddURQ8Hg9utxu32+0zbzKZyMi4FHF97Ngx+vv7kSSJqKgoYwoKCpryOSH1XMB0YTemui+Qm4767KNmCUSNnoGpreTSPtvy8cx7BiV3C5j9JqpyHCMjI4alRmNjoyGCz5492xixMtYBM+aHbrFYyM3NZc6cOUaySh+cfSBbwBJ4w17zLS0tvPXWW8b73Nxcli1b5jNKV9M07HY7r776KtnZ2axcuXLKVkq3Ek3TaGpq4vjx49TX1xvLZ8yYwebNm40y13K+DA8P88EHH2C327FYLDzyyCNGVL9AIBAIrh0hfE8BIXz78sn2bXzr1JOYUXjZ7295+mf/fNt4kPX39/Pqq68yPDxMVlYWW7ZsQdEUfnropxxpP4JVtvJU3lP8zYy/wSxPnuG9paWFkpIS1q1bZ3hkms1mLBaLEL0FAoFAIBDclkx35PP1bN/tdqMoCk1NTVRUVLB69Wr8/PxwOp1s376d1NRUFixYAHDtkbFX2F5tba0hooWFhZGenk5KSgopKSnXlUzP7Xbzxhtv4HA4WLt2LUVFRTflPldRFJqbm7HZbIYwabfbrzny/XKcTif19fUcPHiQvLw8li7Vk0rKsozFYrmp9+mapuF0Opn2R0bPCHLLSUyNB5EbDiG3n0HSVJ8ialQOSspS1NSlqFE5aP4REBAOV7jHv+V4XcjNR3Wx+8IXyH31PqvV8HSUzLtQMteiJi0Csx9SzwXMp17DXP4ukscBgBYUg2fOk3jnfA+CJo6QnoiRkRFqamqoqqpiwYIFpKWlIcsypaWl7Nixg6ioKObMmUN+fr7xzGPg6MFcuQ1TxfuYWnW7R022QEA4mn8E2ugrARFo/uFoARHgP7YuAi04Fi0yc0Iboba2No4dO0ZNTY2xLC4uzrDicbvdaJpGf3//bS14T0RnZyeVlZWEhoaSmZl5XXZGbrebrVu30tDQgCzL3HfffVfsVBQIBALBeITwPQWE8O3Lh3/4f3mg6Z/wYOLNlP/BE//L928LMdjtdvP6669jt9uJiYnhu9/9LmaLmX868U/saNiBn8mP3634HbOiJ75pUFWVmpoaTpw4YUT5rFy5kgULFuDn53fbiPsCgUAgEAgEtzNut5vf//73hmi1dOlSjhw5Qm9vL1arlWeffXba8qRomsbZs2f57LPPcDp9I4tjY2NZsWLFVRPqDQ4O+kTI2+12QkNDiYyMvOn3uJqm4fF4aGho4O233yYzM9PH+1tVVZxOJ4GBgcZnDh48iN1uZ2BggIGBAZ9kiuHh4Tz99NP4+/vfsntXVVUZGBjgyy+/ZMmSJT5tnTZcg8jNxzA1HMTUeAi5o3zSoppfqC68+oePirIRaAGRuigbMCrK+oUhqW7wOMHr0KPSPQ7wOo15yeu4bJkDFM8kG5zkcVnzItvLjSSqoAvHavIi3fs8c60uDE+Goxdz6ZuYT72OPKQ/m2gmP5S8B/EUP4MWM/Oqh20y3G43drudpKQk33Pc68JUt1sXuy98MS7qfqpogVEoyXrnhJKyDC0i3SdivKuri2PHjnH+/Hmj8+R73/vexFHn3zAURWHHjh1GMs5169axZMnU/PIFAoHgm8y1arm3UXe54HbB1K33zHcRSUxs3G0hemuaxocffojdbicwMJAHHngAq9XKb0t/y46GHZgkE79c/MsJRW+3201ZWRmnTp0yMo+bTCby8vLIycm5JT6dAoFAIBAIBH8tWK1WtmzZwtatW+nv7+fTTz8FIDQ0lAcffHBak4NLksScOXOYOXMmFy5coL6+nosXL9Ld3Y3dbjcSxgE0NTXR1NREamoqcXFxyLJMWVkZe/bsYcWKFRQVFSFJEqmpqbfMukaSJKxWK319fUiSRG1tLc3NzURHRzMwMMDg4CChoaH84Ac/MD7T0NBAa2urTz1BQUEUFRWxaNGiW37vKssyn376KTU1NfT29vLggw9e1/Ebs4twOp1kZGT4fHf4haBmrkXNXIsHwNGDqekIcsMhTE1HkAbbkFz6fbzkGkByDQAN07J/N4oaFIuacRdK5hqU1JXgd40RwAEReBf+Pd7iZzFV/wXzyVcwtZVgLnsLc9lbKKkr8BT/ADVj9YRR1VfCarWSnJysv9E05NaTmCrex1y5DcnZd6nttgK8+Q/hzb0frMFIzl5w9iE5evVyjl4kZy+So2/0fQ+SU5+X+huRRroxV22Dqm16fT6+7UuJjk5k48aNLF26lNOnT2OxWAgPD7/KAfUiDdn173y4Ay0kATV6BlimPsLjdsZkMrFx40YCAwM5deoUXV1dKIpyXR1aYyNMGhoaCAoKIiUl5eoJVwV/FQwNDdHa2kp3dzfR0dEkJyfj7+//dTcLgMbGRioqKkhLS2PmzJk35Xysr6/HarX6JHTu6emZ1vsQwZ2PiPhGRHxfjqIoHPl/vs0yxy7KmIFr0+8pLi7+upuFoihs376d8vJyvv3tb5OYmMhb1W/xm7O/AeAf5/8jG9M2jvuc2+3mlVdeweHQhxEGBAQwZ84c5s+fP61ejgKBQCAQCATfNFwuFzt27ODs2bMkJSXx4IMPEhYWdkvur/r7+6mvrycnJ8dYtmvXLs6cOQPonsZhYWF0dXUBkJaWxqOPPorVav3a7v/a29vZunWrT5I80O32XnjhBcMfvbKyErfbTXh4OGFhYYSFheHn5+fjn36rsdvtvPbaa3i9XpYsWWLYrUwFTdN444036OrqIjg4mPnz5zNr1qxrT2aoekdF2b5RMbb3MmG210ekxTUAJqsulpr90cz+YAnQX80BYPG/NG/2R7ME6OWZ5PhOctzV8DS02IJrEqbHnksyMjJYuXLleO/7UYHafPJVTNV/Maxf1JAEtIgMtJD40SkBLSQedfQ9AVETtk/qvYjp3AeYK95H7rt4qc3B8Sh5D+DNf+iGospR3MhtZ5AbD2JqOIjcegpJcfsUUcPTUVKXoqYs033bAyKQhkdF7YFWpMHLp9Flw/ZxtjeaJKNFZKDa8lFteagx+Wi2PLTguGv3JNc0GOlG7q1D6q3TX3vqkHvr0cz+qClLUFKXoybOv6Ui+5ilU2ZmJrIsX7NF1NDQEFVVVdTW1lJfX4/L5Zto9sEHHyQ/Px9JknC5XJhMJt/OpltEVVUVR44cQZZlbDYbsbGx2Gw2bDabka9AMDVOnDhBXV0dra2tDAwM+KwzmUz8/Oc/N46t2+3+2hLGlpeX88EHHwCQnJzM+vXrpy2Za19fH59//jnnz5/HZrPx+OOPI8syHo+HX//61/j5+ZGUlERycjLJyckkJiaOt3sS3PEIq5MpIIRvX9QPn0MufZvu2T/EtPrnV++VvxVtUlUcDgc9PT1ERUWxs2En/+34fwPg7wv/nsdnPm6U7evr82nz9u3bsdvtzJ8/nzlz5uDv7y8Eb4FAIBAIBIJpYnBwkMDAwK/NNk7TNDRNo7y8nHPnztHQ0GDYophMJpYvX86SJUtuC5FFURTOnz+P1+s1RO3Q0FDj2N3O96hnz55l69atADz00EOkp6dfsXxfXx9nz55l8eLFhvBSVlbG7t278Xq9gB6UUlRUxNy5c6/Ls326GHsknq7j39PTQ3V1Nf39/axfv95Y/uabb9La2oq/vz8rVqxg1qxZEycO7W/CfPp1zGffRHIPXrntJj+0kDi04FFhPDgWufUUppYTl8pYAlFyNuLNfwg1ZSnIN+G3eg2+7ZpkQtKUq1alyRZ9nwKjkUcjyycsFxCBGjMqhtvyUWNy0UISkPubkHrrkHrrkXsu6K+9daMjBa6ybZMfamLxqL/8ctT4ObfUV15RFE6cOMGyZct8BEuv14uiKIZ4d+bMGT7++GNjfUBAACkpKYyMjNDW1sbTTz9NSEgIsixz9OhRDh48SGJiopEj4VZEBmuaxpEjR9i1a9eE6yMjI7n//vtJSkoCwOPxYDKZvtZk0l/F4/EYyWTXrVtnjLjxer2YTKab9r/ndDppa2szoh7jJ64AACAASURBVLk3bdoE6LrIu+++S21trVE2KiqKyMhIurq6CAgI4LHHHkOSJGRZNnJajH3vKSkpxMTETPt/TXd3N8ePHyciIoLi4mK8Xi9er5cPP/yQpqYm45pfWFjIXXfddd3e/m63m0OHDnHo0CEURTFGha1cuRKLxUJbWxvvvvuukdh3DEmSsNlsLFq0iDlz5tzw/gpuD4TwPQWE8O2L9soqpNYSXFtew1z4wNfqfd3T00NYWJiRAAXgaPtRfnLwJyiawqPZj/LCbD1C5uLFixw9epSmpiaeeuopIiMjAf3PKjg4WHh4CwQCgUAgEHwDUFWVtrY22traSEpKIjY29rYWlO8kPvnkE06dOoW/vz/f+973xokXmqbR2NjI6dOnDWFm7dq1zJ07F1mWMZvNhm/74cOH6e3tBfQI/TE7mpuFx+Ohs7OTgYEB+vv7DQ/1sSk3N5e7777bKFtbW2sISleLlNU0jY6ODqqrq6mpqaG7+5JQ+7d/+7cEBwcjyzLNzc3s2rWLjo4OAOLj41m3bt3kntfuYeT2s3o09FCb/joaHS0PtsFwJxITP85rkoyauhxv/kMo2RvAOt6bfWBggNbWVmbOvBT53d3djdfrJTw8/MYiJF0DyE3HMDWO+bZX6O2SzWjBcaPR64n6a2iC8V4NSdATfI5F0WsaDHcgd1Qgd55D7jiH3FGB1HPhmkR0n2OCpG8rIhM1MgMtIh01IgPJ0YOp4QByw0HkoXbfz1iDUZMWoaQuQ0ldrkfJT8V6RlV0L3m4Jhuczz77jNLSUuLj49m4cSPNzc3U1tZy8eJFIz+VoigMDQ2xdetW0tPTSU9PJzY21hCMv2qZsm3bNqqqqsZty2azkZKSwurVq6fFu9/hcHD8+HFsNhvZ2dl4PB5cLhclJSUEBgbS2dlJZ2cnXV1djIzo3vjPPPMMkZGRyLLMoUOHOHz4MDExMcTGxpKUlERqaipRUVG39BrucDiorq6msrKS2tpaQ7Rdv369kYT0wIEDnDt3jsWLFzNv3rxp6VgdGBigtLSUsrIy4xoxxnPPPUdISAiA0akWFxdHbGysTweJx+Mx2uLxePjtb3+Lovj+Tvz9/UlOTiY3N5e5c+ded3s1TaOurs4nkW1wcDA/+MEPfM6/wcFBDhw4QEWFfg0wm80sXryY1atXX/P3qmkaFRUV7Nq1y4hyT0lJYc2aNcTExPiUVVWVzs5OWlpaaG1tpbW11bC8XbduHfPmzcNkMuFyuTh//jyFhYUiGvwORQjfU0AI35ehaWj/kojkHsbx1H78k2Z/bQ8KfX19vPrqq8THx7Np0yasVisVPRX83b6/w6E4uDv5bv77wv+OLMmcPXuWzz//HNB789avX8/cuXMxm823VY+xQCAQCAQCgUBwp+L1enn99ddpa2sjLi6O73znO5jNZjweD+fOneP06dOGvQzoFjNLliwhIyNjXBCKqqqUl5dz8OBBOjs72bhxI3l5eTfUtt7eXrq7u+np6WFgYID09HRmzJgB6FYz//Vf/zXp59esWcO8efMA3drlj3/8o7EuLCyMqKgoY0pKSiIiIgLQo9gPHz7sYzkgyzKpqank5ORQWFhIYGCg8UylqirHjh1j7969eDweJEmiqKhoXITvNaG4L/lhD14SxrXQBJSZW9BC4sZ9pLu7m5qaGqqrqw3bnR/+8IeG9cqOHTsoL9eTiwYEBBAeHm5MERER5OTkXJ/I5+hF8rrQgmKmJ+Lc60TqqtKF8M6KUUH8HJKrHy3IhhqRPipwp+s2KREZaOGpV7Yx0TSkngujUesHMDUe9vFEh7GEnkvAGgJeB3hGkDwOPYmqR39/KXnqiI/9ixo9Q48kT1mi1xEQMa4Jra2tfPjhh4ZV5+Xk5ORw3333TflQaZpGb28vLS0tNDc309LS4tPp9MILL2C1WjGZTDQ0NBAcHDwlsbm/v5+jR49y6tQpPB4PMTExPPHEE1f8/PDwMF1dXaSkpBjlPvnkEyPZ5+UEBgaSkpLCxo0bjcTAN4Ouri527NjBxYsXUdVLoxXCwsLIysqioKAAm82Gpmm8/vrr9PT0GO1buHAhCxYsuO4o+gMHDrB3714ul+fCwsKIjY0lLi7OuI5MFbfbTWtrq/Hdt7W1GdHQeXl53HfffYZe8s477xAdHW0I6jExMRN2+nk8Hs6ePcvx48fp7Ow0lmdkZFBUVERaWtqE3317ezt79+6lubmZ3NxcHnhAD7K8lvOsurqat99+G9DziaxatYqcnJxrPkeHhoZoaWkhPj7e0PxOnDjBvn37sFqtzJo1i+LiYpF49w5DJLcUXBf7P3mble5hVGQuDpjI/ZpEb5fLxdtvv83IyAiDg/rwvobBBn5y4Cc4FAcLYhfwjwv+EVmSKS0tNUTvgoICVq1aRWRkpIjsEQgEAoFAIBAIphGz2cwjjzzCyy+/zODgIP39/QQHB/Pqq68aQp3FYqGgoID58+cTFxc36T25LMvMmjWLwsJCamtrSUpKMkSf06dP09bWxsKFC4mOjvb5nKZpRp39/f3s2bOH7u5u+vr6+GpMl8ViMYTv0NBQQkJCCA0NNWxmwsLCDC/1iIgITCYTqqqiaRoJCQl0d3fjcrno7++nv7+furo6ACPyFvSgm4GBASwWiyG05+TkEBQUNOG+y7LM4sWLycvLY+fOnVRWVlJZWXldvumYrGhhyWhhyVcs1t3dTUVFBTU1NYZYN0ZSUhJOp5OwsDBUVcVsNhMYGMjIyAgOhwOHw0FbW5tR/nJf/R07dtDQ0IDFYsFsNmOxWHzm77nnHqPDo6ZZT96YmRmFZTqEb7M/WtxslLjZGPGsmgZe5/V7dEsSWlQW3qgsmPskqApSRwWmhoOYGg8gNx8bTei5/bqql7uqkLuq4PTrevS5LR8lZakuhicvAr8QEhIS+O53v8v777/P4OAgSUlJRlT3V38L175bEpGRkURGRlJYWAjownNLS4vxu3W7dYF++/bt9PT0EB4eTnZ2NtnZ2aSlpU3Y2dHZ2cnhw4cpLS01hOKYmBgWLlx41TYFBQWN87nfsGEDS5cupbOzE7vdTktLC21tbYyMjFBbW4skSXg8HmRZ5uTJkzidTlJTU0lMTLymzhhN0/B6vbjdbtxuNw6HA03TSExMRNM0LBYL9fX1aJpGdHS0sf82m83ntyxJEk888QTl5eUcP36c/v5+9u7dy+HDhykuLmbx4sXjPfy/0o6mpibjWqSqKlFRUUZbCgoKyMrKmpYofKvVSlpaGmlpaYA+GqCjo4OWlhbCw8ONaPaenh4uXLjAhQsXfPYzOjqa2NhY8vLyyM3NBfRRCadOnQL0a2xhYSFFRUVGZ+BkxMXF8eijj1JbW4vNZsPtdiPLMsPDw/T19ZGZmTnuOEmShKZppKamGhY98+fPn3LnW3BwsPFfMEZgYCARERH09vZy8uRJTp48SVJSEsXFxeTn538tnvj9/f0EBgbeFtZsf02IiG9ExPflfPb7n7G+42U6iKJyzRusWLHilrehsbGRnTt30tbWRlBQEI8//jhOs5Nn9jxD20gbuRG5/MfK/yDIEkRZWRk7d+4EYN68eT43VwKBQCAQCAQCgWD6aWhoICgoyBBmPvroIzo7O5k3bx5z586dVPS9Gqqq4nK5ePHFF43gl6ysLCIiIuju7qa7u5ucnBxWrVoF6JYEv/vd74zP+/n5ERkZSXR0NOHh4SQnJxvRh2Oet3DtXt6qqjI0NERHRwddXV10dnbS3d3NwoULSU1NBXQv3paWFrKzs40kpFOhuroat9tNRkYGoIs9Q0NDhq3B9aCqKoqiGOLJ5c9Ml0ejz5w5c8KEtJqm4XQ66enpobu7m97eXnp6enC5XGzevNko9/7771NfXz9pO376058adX/88cdUV1djsVjIzs4mNzeX1NTUO+vZTXEjt55GbjkBmgKWQDRzgC60WwL1JKkTLTMHgGcEU/NR5IZDuvVLd7VP1ZpkQo2bhToqhHvi56GZA26p+ObxePjoo49obm72sccwm82kpqZSWFjI7NmzAdi7dy9ffvmlUSY5OZmFCxdOGu17vXi9Xux2O/39/T4jQl5//XXDUkiWZRISEoiOjsbj8RAeHs7atWuNsi+99BJ9fX0+9qljJCUl8dhjjxnC/blz54iPj7+qiDuGqqpUVlZy7NgxY7RLcXExGzZsGHcc+vr6KC0t5ezZs/T09LBo0SKWL19u1NPf33/N251uHA4HtbW1hh1NR0eHkSsDYOnSpaxYsQJJkmhubmbbtm0UFRVRUFBwwzYh27dvp7KykqysLO6++24iIyM5ceIEp06d4oknnjCu25d3ek4XY/ZcZ8+epaamxjgPgoOD+dGPfnTLBOjW1la++OIL6urq+P73v09SUpII5LwGhNXJFBDC9yX2/vIhVrt3cY5sTN95c1yv2M2kp6eH3bt3G8ObrFYrjzzyCMFRwTy37zlq+2tJDk7mldWvEOkfSUtLC2+99RYARUVFbNiw4c66cRIIBAKBQCAQCO5QNE0zokVdLhfBwcHTJhK0tLRw4MCBCX2J09PTeeihhwBdwD579iyRkZHExMQQGhqKLMs3XTAYS6g61obp2J6iKLhcLs6dO8dnn33G4sWLmT9//qTPN2PHf3BwkIGBAeN1YGCAxsZGFi5cyPz58wFd1Nq1axczZswgOzv7ujsmxrY7NvX29jIyMmJE0Xo8HmPyer0UFxcbnxsTsvr6LlmHBAYGMmPGDHJzc0lMTLyu9tyxDHVgajqMqeEgcuNh5D7fDgRNtqBFZaEFRKIFRKD5R0BAhD4fEPmV9xHgHz417/Er4Ha7aWxspK6ujrq6OqMTatasWWzatAlZlqmurubPf/4z2dnZLFiwgISEhIkrUzzIF/frNjxe56gljFOPzPc69GUeh25d43WM2sQ40ZBQcu/HO+dxsPpGT2uaxpkzZ2hubqa5uZmhoSGf9bGxsXzve98z3r/yyiuGx/MYY6MTbDYbDz744A3bo2qaRm1tLcePH2fTpk2EhYVhsVjo6+ujurra8Gm/fPtz585l5cqVN7Tdm8VYB9yYCJ6amkp8fLzP+um47mmaxt69eykpKUFVVSRJIjQ01Pi+Vq1aZVzHbjZDQ0OUlZVRWlpKQkICmzdvxmw2YzabaWhoIDk5edr1pu7ubvbs2cO5c+cA/Zr4wx/+EEmSMJvNHD58GIvFwqxZs26oM/SvFSF8TwEhfOu4XC7K/+Uu5lHGfhYy539977qz7V4Pb7/9NtXV1UiSRGFhIUuXLsUcYObHX/6YM11niPKP4rU1r5EQpP+paprGrl27kCSJTZs2CdFbIBAIBAKBQCC4hVwu/t4MOjs7OXHiBKqqEh0dTUxMDDExMQQHB0+b4Hw7oWka7733nhEIFBkZyZIlS/B6vQwMDBAVFWUkohwaGuLFF1+ctK6xDgKz2YzJZLolHQJXY8ziobS0lPPnzxsJDuPi4nj88ce/1rZ93UgDLciNo9HgDQeRB1un9HkNCQLCUWNnoWSuRclYixaRdsPt0jSN7u5u6urqSEhIICkpyVje19c3eYSysw/z2T9hPv3/TXlffLbvH4Fn3lN4i74/oSe6pmn09/cbArjFYhlna9Hd3Y0sy1gsFqxWKxaL5Zb9FrZu3WokfgQ9IWN+fj45OTlT9/S/k9A03YO/7TRaTB5q3Gy4wjHv6elh//79RlLkgIAAli9fTmFh4S3P2TY28iggQLdM6u7u5vXXXyc4OJiCggIKCwuJj4+/oXNocHCQffv2UVJSYvyP5uXlsWzZMkODc7vd/P73vzdyQWRlZTF37lxycnKE9jWKEL6ngBC+ddra2vC8vIYUWvnE/wE2/OwPN/UioygKXq8Xq9WKoii0trayb98+Vq5cSUxMDIqm8IvDv2B/636CzEG8tPolcsJzfHoXNU3D399f/PAFAoFAIBAIBALBHY+maUYOozFheIwZM2YYViOqqvLrX/8aPz8/w788LCyM0NBQ4uLiSEtLw2w2f+1i92QoisKFCxcoKysjISHBsNBwOp2899575OTkkJub+818Ptc0pL4GpL56JEevMeEcm+/Rk4WOvXcPTViNGpmJkrEWJXMtatICMN18oVXquYD51GuYy9/Vk30CWmA0SnzRqP1LAJrZH8z+YA5As4y+mv3BmA9AHmzBfOJl5F7dV1+zBOGd8z0885+F4DsjAaGqqmzfvp3+/n6ys7PJy8u7pYGFE6JpSL11yC0nkUa6UGMLUePngt80RBN7HHrnzYXdmOq+QB5oNlapYSkoMzahzNiEGjdnUhG8qamJ9vZ2CgsLrztR6HRz4cIFdu7c6XM9HvPLLywsJCoqakr1DQ0N8e///u9GktHMzEyWL19OTEyMTzmPx8P58+cpKyujtfVS51FgYCCFhYXMmzdv3Ge+aQjhewoI4VunvKyMzA/uIgAX2xN/zqanf3FTbpQ0TaOqqopdu3aRlpbG2rVrx3ltaZrGv57+V7bWbcUqW/nNit9QFFNEZWUlNTU1hq2Jv7//Le8BFAgEAoFAIBAIBIKbycjICPv27TP81ENDQ0lMTGT27NlGtPtYMso7Pfpd0zRUVcXr9VJSUsJnn31mrIuIiCA2NhabzYbNZiMhIeGGPYVvdzo6OqioqEDTNAoKCrDZbFf+gOIGRx/SsF1PxHlhN3LLcSTVaxTRrMEo6at0ITxjDQRNo2CmaciNB7GceAVT3W5jsRqTh6f4Byi59+lC95Sq1JA0FVP1X7Ac/Xfkjgp9uckPb+G38S74O7TwlOnbh6sx3IWp6TByZyVq3CyU1OXjLFhuSzwjyO1nkVtOIrecxNR6Qu9EuQwNCS16BmpCEUrCPNSEeWhR2ddknSP1N2Gq+0I/5xoP6dY1Y/Wa/VFjC5E7yo1OEAA1NBElZxPKzHtR44uuGAk+KZqGNNiC3HEOqfMckrNfT247ukc+82iXZo0ZCS08BTUmH9WWN+FogstRFIX6+nrOnz9PbW2tkRQU4LHHHiMrK+sqzb2UqFNRFN577z2GhoZYuXKlMYriSnR3d1NeXk5FRQXDw8MALF++nFWrVn2j9TAhfE8BIXzrHN61lSWHnkBF4osF/8W6DfdO+zZaW1v5/PPPaWhoAPSkAU899ZTPMB+n18lvS3/L+xfeR0LiXxb/C6uTVlNVVcX27dvRNI1169axaNGib/SPXCAQCAQCgUAgEPx1czMSut3OjIyMUFFRQVlZGU1NTePW33fffeTk5AAYyTdtNhuhoaFXPE6qquJ0OnE6nTgcDhwOhzE/JjCPJWsdHh7G4/Hg7+9/XQlLb5S33nqLlpYW431ycjJFRUVkZWVd+/OvawBT/X5MdXr0rTTS7bNaiZujR4Knr0aNSB/1CJ/ifnqdmM59hOXUq8iduj2PhoSSuQ5v8TOoKUunXOeePXuoq6tjaGiI2bNns3z5cswmE3LdF1iO/AZT60l9O5IJJXcLnkXPo0XfhLxkjl5MTUeQGw9jajyI3OWbb0AzWVGTF0+rrcx0IA22jorcJ/TXjnKfDhAYFaTjZqMF2ZDbzyD3j/+dadYQ1IS5qPHzUBLn6QJ1QASoXuSWE5gufIGpbve446KGJBjHRE1dCpZAPbFr3R5MVZ9gurALyTPiWz5noy6CJ8ybWGx3jyB3VSJ1nkPuOIfceQ658zySa2B6DtpoO7SYXFRbniGGaxEZII93FnC73dTU1FBZWUlbWxvPPfccVqsVk8lERUUFiqKQl5dHQEAAqqpSUlLCoUOHeOyxxwgMDETTNNxu93VZ7qiqSn19PWVlZaxevZqwsDBkWcZqtX4jtTEhfE8BIXzrlH78H8wq+Qe6Cadpy8fMmTNn2uru7+9nz549lJaWAnpm6OLiYhYsWODTY3/MfoxfnfoVLcP6H/3Pi37OA5kP+IjeBQUFbNmyRdibCAQCgUAgEAgEAsFfKcPDw7S0tNDW1kZ7ezt2u52HH37YsIs4cuQIBw8eBMDf3x+bzUZERARutxuHw8HmzZuNZ83PPvvMeBadiKefftrwq/7yyy85duyYsc7Pz88Qwf39/bn77ruNsjfSMaFpGq2trZSVlbFixQpDeK+oqKC2thZJkqiurjZGR4eGhjJ//nyKioqmuCEVuf2sHpV7YTcm+/jjoFkC0IIT0ELiL5sSdEFw9D0BkbqQPdyJpeQ/MZ/5T6SRLuPz3oJH8c57Gi0y46pNGhoaoqmpie7ubpYtW2Ysf/fdd2lsbDTe22w2Nm3apNtJaBpy0xEsR/8d08X9Rhlv9rfwLvoxavwN6BeuAeSmY5gaD2JqPIzUUYGEr1SmxuShxuQit55E7mvwXReRiZJ516itzMLrs5VR3EiD7UiDreAeQlJc4HXpy70u8Hnv1CP9x9a5+pHbzkzop64Gx6EmzkdNLNZfbfm+7RvqwNR2Grn1lD61n/GJ0L60jxlII91IrkuJQjVJRk0sNix1tOiZV+7s8Dgw1e/VRfDaz5E8w5e1Mx5lxgbUhGKknrpLAndv/bjvAkCTzWhR2agxeWjBsYDku21jXvKdRwLVg9RTqwvp/Y1MhGb2R42eiWbLQ7Xlo0bNQAuKHk0sGw4mKx6Px0jqrGkar732Gn19fciyTGZmptE5BzBv3jzWrFkz+bG5Acxm81+3Z/wkCOF7Cgjhe5Tjr8KnP8Wdfhfeh/9k/PHeKFVVVbz//vvGcJC8vDyWL1/uc6x7Xb385uxv2NGwAwBbgI2fFf2M5QnLqa6uZvv27aiqSn5+Pvfdd9+0ZYwXCAQCgUAgEAgEAsGdwZgtiqqqHD9+nLNnz9Ld3Y2qquPKPvPMM4SHhwOXxOwx8TogIMB4lSSJtWvXGiL5/v37OX36tI+dweVcLpIfO3aMc+fOkZiYaExhYWFXFMNHRkY4d+4cpaWlhii2evVqiouLkWXZSEgqSRJ9fX2cOHGCkpISHA4Hs2bNYv369Td0DBmy6xG4dbsxNR8bFw0+GZrJDy0kHmmwFUlxA3qkrLfoKbyzv6tHjU+2yaEhGhsbaWpqoqmpid7eS3YbP/zhDwkK0m1DGhoajO93x44dOBwOzGYzq1evNmx+AOS2M5iP/RZz9adGPaqtAM0/bLx3uNn/Mm/xy3zGTRbkzvN6MlF7KZLmew6pUdkoKUtRU5aiJC+GwFEvZ01D6qm9FPXcfGy8rUzailFbmbsg2AaqF2nIrh+7gVb9dWwaaNUF6+HOCQXeqaBJJjRbHkriglGhuxgtJHFqkfeqF6nzPKbWMTH8NHLvhUvb8I9AyVit71/6qqvahEyKx4Hp4n5MVdt1EXwSr3oALciGGpOrdz7Y8nSxOyprenzrXYO6yD5qmyJ3nEPuOj+h+O/TJksQWkAEBESgBUSg+oVjH/TQ1ueie0RlBH9c+CH7BTGjYA5ZubMw+Qf7notm/+uzevkKQvgWwvdVEcK3jvaXnyKdeBXPwr9Hvvufpi2iur29nXfffZegoCDWrFlDXFzcpW1qGjsadvDrs7+m392PhMTDWQ/zXMFzBFmCqKmpYdu2baiqSl5eHlu2bBGit0AgEAgEAoFAIBAIAD0JnN1up62tjb6+PkPQnjFjBv7+/kiShNfrxWw2I8uyIZ5OJk6PSSQejweHw4HL5fKxRsnOzsZsNqMoCh988AF1dXU+nw8KCjJE8NmzZ2OxWNA0jYaGBkpLS6mpqTGEerPZzMyZMykuLiY5OXlSuwK3201ZWRmxsbFERkYC+nP2/v37KSoqIjMz8/qtDjwOpKF2pMG2UTG2zWdeHmw1IrvHUBLm4S3+AUrOBpDNV6x+omh7SZKw2WykpKSwaNEiQkNDDbF/jIGBAbZu3Up9fT0ADz/8MGlpab71dFVhOfYfmM59iKQp17f/o6jh6SipY0L3El2wvhZcg7qAW/eFbisz3OmzWguywUjXOGF9IjSTVY+w9wsDsx+Y/MDsh3b5vMlqzGPyQzNbwRygi8Lxc26O97ijB7ntDPiF6skwJ7AAuSG8TkwXv8RUtR2p5wJaZJYhcKsxeRAUPb3buxqqgtR3cdRapUIXxXsujCaZ7bvhDooxNKTLkrrqHTQ+HTZm/9FOHH/fZWOiuUVfLqUswppQMC1tupMQwvcUEMK3jvbGJqSLB3Bt+A3W+U9Mm5eZy+VieHgYi8XiI6Y3DzXzq1O/4njHcQCywrL4xbxfUBCl/2CdTievvPIKLpeL3Nxc7r//fiF6CwQCgUAgEAgEAoHga0fTNAYHB30ime12uyFqWywWnn/+eUwmEyMjI7z44ovGutjYWObMmUNBQQFBQUFTevYeSwS6bds2Kir0pI9hYWHMmTOHwsJCAgICpn9nva7RiOUWNL8wNFvepEXb2toICwszRpCP2ZbGxsaSnJxMamoqqamp17TfmqZx5MgRWltbueeeeyYtLw00I9vLwOMEr1O3AvE4Rucd4HUgja7D6xhd70QLSzbEbi0k4fqPj9FgFbm9FHk04aOp/cylVbIZLTgOLTQBLSQRbcxGJnTMUiZRjyr/Bnn635FoKjj7kRy9SM5ecPTi6bcz1NmI7OwnMgBjXV9HM36ySqCZS+eix4Gkeqa1Sd71v8K8+LlprfNOQAjfU0AI39DS0kLYq/MJZpiqFS8xY813bqg+VVXp7OwkKioKt9vts86renmr+i1eq3gNl+rCT/bjqfyneCznMcxf6S1ubGykoqKCzZs3C9FbIBAIBAKBQCAQCAS3LW63m+bmZhobG3G5XCxfvtxY99lnn2EymZgzZw5JSUk3nIyur6+P48ePU1JSgtPpBECWZdLT08nNzWXGjBm3LOGdx+OhsrKSM2fO0N7ezrJly1i8eLGxXlXVKQv8l6OqKh6PB0VRcDgclJSUsHDhwts/79dwJ/JAC2pIPARGT3+k9BQZ+54KCgqM72Lnzp0MDAyQmppKSkoKsbGx03LeOJ1O+vv78fPzIzg4GLP5yiMD7hQcDgd2u532CAVMFgAAIABJREFU9nYj98DAgJ5oMyYmhieffBKApqYm3nnnHQCio6NZt24dSUlJeiWqd7STxqFbqoy9ekYuddx4L+/EcV7WieP0KSN5nKjzn8aSe8/XcTi+Vq5Vy/3rOPMEN0xfWz2J6IkFes0xN1zfnj17OHLkCOvWrWPWrFnG8oqeCn558pfU9tcCMN82n5/P+znJwcmAfiHu7OwkIUHvbU1JSSE7O/v2/0MTCAQCgUAgEAgEAsE3GqvVSkZGBhkZeoJHTdPQNA1FUdi8ebOP1cqNEh4ezt13382qVasoLS3l5MmT2O12Lly4QFdXFzNnzjTK3kgSzivR09PDmTNnKC8vx+VyAWAymXC5XJjNZsNe5kaRZRk/Pz+8Xi9bt26lpqaG2tpaNm3aZFi/3JYExaAG3bi+Mh20tbXx6aef0tPTgyzL5Ofno2kaFy5cYGRkhIYGPWGn1WolOTmZlJQUUlJSsNkmt3xRVZX+/n56enoICwsjOlq3JGlsbOTdd9/1Kevv709QUBDBwcHk5+eTn58PXLIqCg4OJigo6JYEPLrdbh9PbLvdzsjICB6PZ9wEsGTJEqPsm2++6eNRP0ZkZCSxsbFIkoTZbCYzM5NNmzbxxRdf0NXVxdtvv01BQQErV67UR0P4BYNfsGGaciMRyX8tnQo3C3F0BAC4mnXPrT5CsCVdPQvzlSgvL+fQoUMAxkVr2DPMS+Uv8V7te2hohFnDeGH2C9yTemm4kt1u5y9/+QuDg4M8+eSThIWF4efnJ0RvgUAgEAgEAoFAIBDccUiShCRJNzXy2mq1UlxcTHFxMXa7nbKyMsPbHPj/27vz6Kjq+//jr1mSmYRMJglZJoEEiAIJIpBF0hjcqEBRUXq0UhewPbVqDyqI9aBiKy6Vqr+qrRQKtrWtrUvrAZeCCJYUZBWhoWExamIICQmBELKSDJm5vz/45uoUkCiYIZPn45w5yXzuvZP3hLwvyWs+87ny+Xz605/+pLS0NA0bNkwpKSmnHYIbhqGlS5eqtPTzix52LreSnZ0tl8v1jQTtdrtdWVlZqqys1P79+/WXv/xFl112mUaMGPGNfL1Q4PP5tGnTJm3cuFGGYZjhc0REhAzD0LRp01RWVqby8nJVVFSora1NpaWlKi0tVVJSkqZNmybp2L95SUmJamtrdejQIR06dEj19fXm8j35+fkaM2aMJJkXlY2IiNDRo0fV0dGhtrY2tbW1qa6uTmlpaWZ99fX1euWVV8z7kZGR8ng8SklJUXJyspKTk80Lz34dhmGovr5eVVVV5q2trU3Tp0839yksLNTevXtPeLzNZgsIvj0ejwzDkMfjUXJyslJSUpSSkmJeKPeLcnJylJGRoffee898gejTTz/VxRdffNo/s4ZhqK6uTm63m+D7FPjuQJLkq9klSTqoOKV84eKTX1VNTY3efPNNSdLo0aOVmZmpooNF+tmmn6n2SK0kaeKAiZoxcoZiHceu/msYhrZs2aJ169bJ5/MpMjJSLS0t8ng8/OcFAAAAAEAXJCUlKSkpSdLna4GXlpaaQWVRUZHcbrcyMjI0bNgwc4ZuJ6/Xq5aWFvOCnl/82NbWptzcXEVFRclisZhriZ9zzjnKzs7WkCFDuiWAy8zMVL9+/bR06VKVl5dr5cqV+uyzzzRhwoQzur65YRg6fPiw2tralJycbI4vX75c7e3tcrlccrlcioqKCvj8bFqita6uTsuWLdP+/fslSRkZGbriiivMf0OLxWL+zOTn58vn86m6ulqfffaZysvL5flCNnT06FEtW7bMDLo72e12xcbGyul0ymq1ymq1Ki4uTvfdd5+cTqekY8uDNDU1mbfExETZbDbz3RBut1stLS3q6OhQa2urysrKzIvGfjFQ93q9ampqUlxc3Cmzoh07duiTTz5RVVWVjhw5clzNXxQbG2u+SyEsLEzh4eGy2+0KDw9XWFiY+U4Ni8WiyZMny263m/dPpU+fPrrmmmuUlZWlZcuWqba2Vps3b9awYcO+8s+K3+/Xvn37zHc8HD58WNdcc42GDTv5mvtgjW9JrPEtSUW/vEKj2tbrQ3uesh9c8bVekW5tbdULL7ygw4cPa+DAgbr22mu1omKFntj6hI76j6pfn36anTNbeUl55jFNTU1avny5KioqJEnnnnuurrzySrndbkJvAAAAAABOg8/nU2lpqYqLi1VSUmIu3yAdm6V9/fXXmzN0161bp40bN570sW688Ub169dP0rEcxWazKT4+Pih/uxuGoQ0bNmj16tXy+/2yWq26/fbbFRUVJenYGsvNzc2Kjo5WdHS0GfaeiM/nU11dnfbv36/a2lrt379fBw4ckNfrVXx8vH74wx+a+y5cuFDNzc0nfJyYmBj9+Mc/Nu9v2rRJ0rFgNTY2VjExMQFLbHyTduzYoVWrVqmjo0NOp1Pjxo3TqFGjvlLWYxiG/H6//H6/qqqqVFhYqLi4OMXHx6tv375KSEhQTEzMaS/h07kkUFtbmw4ePKjKykpVVlZq3759GjdunAYNGiRJ+uSTT/TGG2/I4XAEzLb2+Xzat2+fxowZYz6/d955Rzt27JB0bNa2x+NR//79lZqaqtTUVPPnpLPu7vgZ9vv92rx5s6Kjo83n1Ll+/almtRcXF2vt2rVqbW01x2w2my666CIVFBT0ylnfrPGNLjMMQ672KklSW/TAr9Xwfr9fr7/+ug4fPqyYmBhdedWVWrxrsV7c/aIk6bJ+l+nh0Q8rwv75K7AlJSVauXKl2traFBYWprFjx+qCCy5gaRMAAAAAAM4Am82mIUOGaMiQIfJ6vSopKVFxcbFKS0vV0NCglpYWM/h2Op0KCwuT0+k84c3lcslut8tms5nrGQeLxWJRQUGBBg0apCVLlujQoUPH1k7+P9u3b9fu3bvN+1arVS6XS263W9HR0Ro7dqwZNr700ks6cODAcV+jc9avdOz7aLVaNXHiRDU0NKipqUmNjY0BM5ldLlfA8du2bVNLS0vAmMvlUmxsrFJSUgIufnqm12GPjo5WR0eHBg4cqEmTJik2NvYrP77FYpHNZpPNZtPAgQMDXgA4kzpnT0dGRppri0ufB++dH1taWmS329Xe3q7y8nKVl5cHPM6QIUPMWeqd72hIS0tTSkqKwsPDgz650mq1Kj8/X4ZhqKOjQ0ePHtX27du1ceNGXXbZZcrIyJDFYtGRI0dUWlqqlJQUcw17h8Oh1tZWOZ1Opaena8iQIRo8ePAJl1hBIGZ8ixnfzc3N8v2/DLnVpA+GP6bR1939lR+jqKhIb775psLCwnTdDdfpt2W/1erK1ZKkH2T8QLcPv11WS+Ari4WFhfrwww/l8Xh09dVXs7QJAAAAAADdoLW1VXv37lVycrIiIyNlsVhkGEbA7N2e8ve53+/XoUOHFBMTY4ak69ev12effWaG01+MviwWi+655x5z0t0///lPlZWVKTExUUlJSeb6zQkJCeayFl2p4ejRo7Lb7eYM5rVr16q+vl719fU6dOiQ2trazP3T0tI0ZcoU8/6iRYvMZUI6Z4d3fu5yuU45U7tzaZbY2FhzrKqqSunp6SE1ubCjo0M1NTXau3evqqqqtG/fPlmtVvXr10+jR482l1Hp6lIkweTz+fTHP/5R+/btkySlpqZKkiorK2UYRsAyL50XAR04cKDCwsLO+ufWHbqa5RJ8i+D7UE2F4n53viRp16TlGpZT8JUfw+fzae3atbJEWbSgeoF21++W3WLXnNw5umLgFeZ+nW9Bko6dsLZv3668vLxue7sPAAAAAADoHTqD8IaGBh0+fFgNDQ1qbW1VTk6OpGOzcDs6OuRwOE57yY5T1dHS0qK6ujrV1dXJ4XDonHPOkd/vl9fr1a9//euTHvu/IfnOnTvNmeNRUVE6cuSIVq5cqfLyct1yyy2KjY0116vuDQHpmZ4t3506Ojq0bt06rV+/Xh0dHeZ4QkKCsrKylJub22OC/O7GUifosjjfsbf0+PskavCI0V/5eMMw5PV6FTs0Vveuu1e1R2rlDnfryQufVFZC1rHH9vu1YcMG7d27V1OmTJHVapXD4dCYMWNoXgAAAAAAcMZ1LtcRFxdnLhvxv7pjIp7FYlFUVJSioqI0YMCAgG1Op1MzZsxQXV2dDh48aF6MtL6+XocPH5bb7Tb3PXr0qJYvX27et9vtslqt8nq9slqtqq6ulsfjCalZ3qfSkzMlu92uSy+9VCNGjNCHH36oyMhIDR06VH379v1a197D8Qi+IR0okSQZfQd/pZNjc3Oz1qxZo4svvljr96/Xzzf9XEd8RzTQNVC/GvMr9Y/qL0nmRRCqq6slSZ9++qmGDx9uvmoFAAAAAADQG1mtVsXExCgmJkbnnHNOwDafz6f29naFh4ebF4BMT083Q/HOWcLx8fGaNGmSUlNTyVl6oLi4OI0fPz7YZYQkgm/IX/uRrJL8fYfI3sUTpM/n0z/+8Q/tqdijVfWrtNq3WoYMXZB4gZ7If0JR9iiVlJRoy5YtZuDtcDg0fvx4jRgxgleuAAAAAAAAvoTNZgu4aGdcXJymTp0qwzDk8/lUX1+vlpYWJScnmxfrBPA5gm+obPNynSvp43qLzuti8L1ixQqVV5Rre8J2lfpKJUnfTf+ufpr1U3V4O/T73/9eDQ0Nko6dqDMzM3XJJZeob9++vPoIAAAAAADwNVksFtntdiUkJCghISHY5QBnLYLvXs4wDHON7/bogV06Ztu2bdqwbYM2Jm3UgYgDssiiO4ffqZsybjp28nXaFR0dLa/Xq1GjRumCCy5QTEwMgTcAAAAAAACAbkHw3cs1HqpVjI7NzO6bUfCl++7cuVNbtmzRjqodWp+8Xs1hzYqwRehq29WqW1mn1rRW9enTR5J05ZVXKjo6Wk6nk8AbAAAAAAAAQLci+O7lDny0UW4ZapVTSYPOC9hmGIakY2+hqW6u1t92/E0fHvlQtSm18ll9chku5VXkyXfUJ598Ki0tVVZWlsLCwgLWoAIAAAAAAACA7hQywfeCBQv09NNPq7q6Wuedd56ee+45XXTRRcEu66zXXPahJKnO0lf9nU5JUktLi4q2F+nd4ncVPjRc2xq26ZPDnxw74P/y7L5tfZV/IF8R/ghlZGYoLy9PqampXLQSAAAAAAAAQNCFRPD92muvaebMmVqwYIEKCgq0aNEiTZw4Ubt27VJaWlqwyzu7HSyRJB0OS9bBj4q0ZNsS/afhP6p2Vsvr9Ep7ju1mkUXD44bLKDPkafEowZKgUdmjNHr0aC5YCQAAAAAAAOCsYjE617PowfLy8pSdna2FCxeaY5mZmZo8ebLmzZt3yuMbGxvldrvV0NCg6Ojob7LUs4phGHr3l/la5ozRzsh2HXTUybB8/uMQ5gtTmj9NUwumKt+TrxhHjIqLi+V2u5WWlqaIiAgCbwAAAAAAAADdpqtZbo+f8e31erV161bdf//9AePjx4/Xhg0bTnhMe3u72tvbzfuNjY3faI1nqw5/hx72NKvV2mKORXuj1d/bX6OiRyk7JVtp/dM0ePBgWa1WWSwW5eXlBbFiAAAAAAAAADi1Hh98Hzx4UD6fT0lJSQHjSUlJqqmpOeEx8+bN0yOPPNId5Z3Vwqx2XRoer5Jmn85xjtJ3Mq9Wzrk5crvdZtANAAAAAAAAAD1Njw++O/1vSGsYxkmD2wceeECzZs0y7zc2Nio1NfUbre+sZLHolzcWEnADAAAAAAAACCk9PviOj4+XzWY7bnZ3bW3tcbPAOzkcDjkcju4o76xH6A0AAAAAAAAg1FiDXcDpCg8PV05OjlatWhUwvmrVKl144YVBqgoAAAAAAAAAECw9fsa3JM2aNUtTp05Vbm6u8vPztXjxYlVUVOiOO+4IdmkAAAAAAAAAgG4WEsH3lClTVFdXp0cffVTV1dUaPny4li9frgEDBgS7NAAAAAAAAABAN7MYhmEEu4hga2xslNvtVkNDg6Kjo4NdDgAAAAAAAADgBLqa5fb4Nb4BAAAAAAAAAPgigm8AAAAAAAAAQEgh+AYAAAAAAAAAhBSCbwAAAAAAAABASCH4BgAAAAAAAACEFIJvAAAAAAAAAEBIIfgGAAAAAAAAAIQUgm8AAAAAAAAAQEgh+AYAAAAAAAAAhBSCbwAAAAAAAABASCH4BgAAAAAAAACEFIJvAAAAAAAAAEBIIfgGAAAAAAAAAIQUgm8AAAAAAAAAQEgh+AYAAAAAAAAAhBSCbwAAAAAAAABASCH4BgAAAAAAAACEFIJvAAAAAAAAAEBIIfgGAAAAAAAAAIQUgm8AAAAAAAAAQEgh+AYAAAAAAAAAhBSCbwAAAAAAAABASCH4BgAAAAAAAACEFIJvAAAAAAAAAEBIIfgGAAAAAAAAAIQUgm8AAAAAAAAAQEgh+AYAAAAAAAAAhBR7sAs4GxiGIUlqbGwMciUAAAAAAAAAgJPpzHA7M92TIfiW1NTUJElKTU0NciUAAAAAAAAAgFNpamqS2+0+6XaLcapovBfw+/3at2+fXC6XLBZLsMvpVo2NjUpNTdXevXsVHR0d7HIAdAP6Huhd6Hmg96Hvgd6Hvgd6l97e84ZhqKmpSSkpKbJaT76SNzO+JVmtVvXv3z/YZQRVdHR0r2wUoDej74HehZ4Heh/6Huh96Hugd+nNPf9lM707cXFLAAAAAAAAAEBIIfgGAAAAAAAAAIQU29y5c+cGuwgEl81m06WXXiq7nZVvgN6Cvgd6F3oe6H3oe6D3oe+B3oWePzUubgkAAAAAAAAACCksdQIAAAAAAAAACCkE3wAAAAAAAACAkELwDQAAAAAAAAAIKQTfAAAAAAAAAICQQvDdyy1YsECDBg2S0+lUTk6O3n///WCXBOAMmDdvni644AK5XC4lJiZq8uTJKikpCdinvb1dd911l+Lj49WnTx9dffXVqqysDFLFAM6kefPmyWKxaObMmeYYPQ+EnqqqKt18883q27evIiMjNWrUKG3dutXcbhiG5s6dq5SUFEVEROjSSy/Vzp07g1gxgNPR0dGhhx56SIMGDVJERITS09P16KOPyu/3m/vQ90DPtnbtWk2aNEkpKSmyWCx64403ArZ3pcfr6+s1depUud1uud1uTZ06VYcPH+7Op3HWIPjuxV577TXNnDlTc+bM0X/+8x9ddNFFmjhxoioqKoJdGoDTtGbNGk2fPl2bNm3SqlWr1NHRofHjx6ulpcXcZ+bMmVq6dKleffVVrVu3Ts3Nzbrqqqvk8/mCWDmA07VlyxYtXrxYI0aMCBin54HQUl9fr4KCAoWFhemdd97Rrl279Ktf/UoxMTHmPk899ZSeeeYZzZ8/X1u2bJHH49G4cePU1NQUxMoBfF1PPvmkfve732n+/PnavXu3nnrqKT399NN6/vnnzX3oe6Bna2lp0ciRIzV//vwTbu9Kj994440qKirSihUrtGLFChUVFWnq1Knd9RTOKhbDMIxgF4HgyMvLU3Z2thYuXGiOZWZmavLkyZo3b14QKwNwph04cECJiYlas2aNLr74YjU0NCghIUEvvfSSpkyZIknat2+fUlNTtXz5ck2YMCHIFQP4Opqbm5Wdna0FCxbo8ccf16hRo/Tcc8/R80AIuv/++7V+/fqTvmPTMAylpKRo5syZmj17tqRj7/xISkrSk08+qdtvv707ywVwBlx11VVKSkrSH/7wB3Ps2muvVWRkpF566SX6HggxFotFS5cu1eTJkyV17f/23bt3a9iwYdq0aZPy8vIkSZs2bVJ+fr4++ugjDR06NGjPJxiY8d1Leb1ebd26VePHjw8YHz9+vDZs2BCkqgB8UxoaGiRJcXFxkqStW7fq6NGjAeeAlJQUDR8+nHMA0INNnz5dV155pS6//PKAcXoeCD1vvfWWcnNz9b3vfU+JiYnKysrSCy+8YG7/7LPPVFNTE9D3DodDl1xyCX0P9FBjxozRv/71L3388ceSpO3bt2vdunW64oorJNH3QKjrSo9v3LhRbrfbDL0l6Vvf+pbcbnevPA/Yg10AguPgwYPy+XxKSkoKGE9KSlJNTU2QqgLwTTAMQ7NmzdKYMWM0fPhwSVJNTY3Cw8MVGxsbsC/nAKDnevXVV7Vt2zZt2bLluG30PBB6ysrKtHDhQs2aNUsPPvigPvjgA919991yOByaNm2a2dsn+n1/z549wSgZwGmaPXu2GhoalJGRIZvNJp/Pp1/84he64YYbJIm+B0JcV3q8pqZGiYmJxx2bmJjYK3/vJ/ju5SwWS8B9wzCOGwPQs915553673//q3Xr1p1yX84BQM+0d+9ezZgxQytXrpTT6ezycfQ80HP5/X7l5ubqiSeekCRlZWVp586dWrhwoaZNm2bux+/7QOh47bXX9Ne//lUvv/yyzjvvPBUVFWnmzJlKSUnRLbfcYu5H3wOh7VQ9fqJ+763nAZY66aXi4+Nls9mOe7Wntrb2uFeOAPRcd911l9566y0VFhaqf//+5rjH45HX61V9fX3A/pwDgJ5p69atqq2tVU5Ojux2u+x2u9asWaPf/OY3stvtSkpKoueBEJOcnKxhw4YFjGVmZpoXqvd4PJLE7/tACLnvvvt0//336/vf/77OP/98TZ06Vffcc495jS76HghtXelxj8ej/fv3H3fsgQMHeuV5gOC7lwoPD1dOTo5WrVoVML5q1SpdeOGFQaoKwJliGIbuvPNOLVmyRKtXr9agQYMCtufk5CgsLCzgHFBdXa0dO3ZwDgB6oG9/+9sqLi5WUVGRecvNzdVNN91kfk7PA6GloKBAJSUlAWMff/yxBgwYIEkaNGiQPB5PQN97vV6tWbOGvgd6qNbWVlmtgTGOzWaT3++XRN8Doa4rPZ6fn6+GhgZ98MEH5j6bN29WQ0NDrzwP2ObOnTs32EUgOKKjo/Wzn/1M/fr1k9Pp1BNPPKHCwkK9+OKLiomJCXZ5AE7D9OnT9be//U2vv/66UlJS1NzcrObmZtlsNoWFhcnpdGrfvn2aP3++Ro4cqYaGBt1xxx1yuVx68sknj/uFGsDZzeFwKDExMeD28ssvKz09XdOmTaPngRCUlpamRx55RHa7XcnJyVqxYoXmzp2rxx57TCNGjJDFYpHP59O8efM0dOhQ+Xw+3XvvvaqqqtLixYvlcDiC/RQAfEW7d+/Wn//8Zw0dOlTh4eEqLCzUgw8+qBtvvFHjxo2j74EQ0NzcrF27dqmmpkaLFi1SXl6eIiIi5PV6FRMTc8oeT0hI0ObNm/Xyyy8rKytLlZWVuu222zR69GjdddddwX563c9Ar/bb3/7WGDBggBEeHm5kZ2cba9asCXZJAM4ASSe8vfjii+Y+R44cMe68804jLi7OiIiIMK666iqjoqIieEUDOKMuueQSY8aMGeZ9eh4IPW+//bYxfPhww+FwGBkZGcbixYsDtvv9fuPhhx82PB6P4XA4jIsvvtgoLi4OUrUATldjY6MxY8YMIy0tzXA6nUZ6eroxZ84co7293dyHvgd6tsLCwhP+LX/LLbcYhtG1Hq+rqzNuuukmw+VyGS6Xy7jpppuM+vr6IDyb4LMYhmEEKXMHAAAAAAAAAOCM432tAAAAAAAAAICQQvANAAAAAAAAAAgpBN8AAAAAAAAAgJBC8A0AAAAAAAAACCkE3wAAAAAAAACAkELwDQAAAAAAAAAIKQTfAAAAAAAAAICQQvANAAAAAAAAAAgpBN8AAADAWaS8vFwWi0VFRUVB+folJSXyeDxqamo65b7FxcXq37+/WlpauqEyAAAAoOsIvgEAAIBuYrFYvvT2gx/8QKmpqaqurtbw4cODUuOcOXM0ffp0uVyuU+57/vnna/To0Xr22We7oTIAAACg6yyGYRjBLgIAAADoDWpqaszPX3vtNf385z9XSUmJORYRESG32x2M0iRJlZWVSk9PV1lZmfr379+lY95++23dcccdqqiokM1m+4YrBAAAALqGGd8AAABAN/F4PObN7XbLYrEcN/a/S538+9//lsVi0bvvvqusrCxFRERo7Nixqq2t1TvvvKPMzExFR0frhhtuUGtrq/m1DMPQU089pfT0dEVERGjkyJF6/fXXv7S+v//97xo5cmRA6L1nzx5NmjRJsbGx6tOnj8477zwtX77c3D5hwgTV1dVpzZo1Z/i7BQAAAHx99mAXAAAAAODU5s6dq/nz5ysyMlLXX3+9rr/+ejkcDr388stqbm7Wd7/7XT3//POaPXu2JOmhhx7SkiVLtHDhQg0ePFhr167VzTffrISEBF1yySUn/Bpr165Vbm5uwNj06dPl9Xq1du1a9enTR7t27VJUVJS5PTw8XCNHjtT777+vsWPHfnPfAAAAAOArIPgGAAAAeoDHH39cBQUFkqQf/ehHeuCBB1RaWqr09HRJ0nXXXafCwkLNnj1bLS0teuaZZ7R69Wrl5+dLktLT07Vu3TotWrTopMF3eXm5cnJyAsYqKip07bXX6vzzzzcf53/169dP5eXlZ+qpAgAAAKeN4BsAAADoAUaMGGF+npSUpMjIyIAQOikpSR988IEkadeuXWpra9O4ceMCHsPr9SorK+ukX+PIkSNyOp0BY3fffbd+8pOfaOXKlbr88st17bXXBtQiHVub/IvLrAAAAADBxhrfAAAAQA8QFhZmfm6xWALud475/X5JMj8uW7ZMRUVF5m3Xrl1fus53fHy86uvrA8ZuvfVWlZWVaerUqSouLlZubq6ef/75gH0OHTqkhISE03p+AAAAwJlE8A0AAACEmGHDhsnhcKiiokLnnntuwC01NfWkx2VlZWnXrl3HjaempuqOO+7QkiVLdO+99+qFF14I2L5jx44vnUkOAAAAdDeWOgEAAABCjMvl0k9/+lPdc8898vv9GjNmjBobG7VhwwZFRUXplltuOeFxEyZM0K233iqfzyebzSZJmjlzpiZOnKghQ4aovr5eq1evVmZmpnlMeXm5qqqqdPnll3fLcwMAAAC6guAbAABhSxMMAAABLklEQVQACEGPPfaYEhMTNW/ePJWVlSkmJkbZ2dl68MEHT3rMFVdcobCwML333nuaMGGCJMnn82n69OmqrKxUdHS0vvOd7+jZZ581j3nllVc0fvx4DRgw4Bt/TgAAAEBXWQzDMIJdBAAAAICzw4IFC/Tmm2/q3XffPeW+7e3tGjx4sF555RUVFBR0Q3UAAABA1zDjGwAAAIDptttuU319vZqamuRyub503z179mjOnDmE3gAAADjrMOMbAAAAAAAAABBSrMEuAAAAAAAAAACAM4ngGwAAAAAAAAAQUgi+AQAAAAAAAAAhheAbAAAAAAAAABBSCL4BAAAAAAAAACGF4BsAAAAAAAAAEFIIvgEAAAAAAAAAIYXgGwAAAAAAAAAQUgi+AQAAAAAAAAAh5f8Dbg8eS1zMJygAAAAASUVORK5CYII=\n", "text/plain": [ "
                                        " ] @@ -4856,10 +7307,22 @@ { "data": { "text/html": [ - "" - ], - "text/vnd.plotly.v1+html": [ - "" + " \n", + " " ] }, "metadata": {}, @@ -4884,10 +7347,9 @@ "color": "#444" }, "mode": "lines", - "name": "Substrate Upper Bound", + "name": "Enzyme Upper Bound", "showlegend": false, "type": "scatter", - "uid": "c5fb9775-a997-4c0f-b921-765295547754", "x": [ 0, 1, @@ -4992,115 +7454,114 @@ 100 ], "y": [ - 301, - 266.6187219169669, - 253.47371846421404, - 246.06146034553035, - 243.36656586425693, - 240.7946276468649, - 236.50767210632142, - 235.32482237893052, - 227.50362008650177, - 226.11483208605162, - 225.38606277296998, - 217.79749399817388, - 217.4499214913436, - 213.7358960119373, - 206.70423256944238, - 208.11258147913938, - 199.6423806949503, - 196.8329245076321, - 192.41645843193618, - 190.1264214602212, - 187.0720359920518, - 183.03133793742091, - 180.79128864304073, - 178.21973533702396, - 173.89273672756232, - 172.06312193450893, - 171.03917616543853, - 168.51611908540366, - 166.6385319153461, - 162.87200798636832, - 159.9272675131349, - 157.91683074084455, - 157.51201959575582, - 152.71148867819213, - 153.56350526733712, - 145.77232622932465, - 142.31826692481044, - 145.3477703886314, - 144.6858938449649, - 139.22988455838143, - 137.9855973652744, - 129.53122739876943, - 125.35878412001618, - 122.19447317936452, - 126.98082832227571, - 123.0187798609767, - 119.09314226314274, - 114.46326734770147, - 112.48515987424081, - 106.7430528731328, - 108.0502776959517, - 104.02715223006575, - 101.37207466247489, - 100.33329751187102, - 100.79279031997909, - 100.11796934283589, - 98.06737333318497, - 92.1670859112958, - 94.78564899579943, - 91.70942933237745, - 92.49304557839208, - 89.4239289778349, - 89.5138668440969, - 86.83472653230959, - 80.5748846812742, - 80.731958680339, - 80.05477127070242, - 80.63042878053456, - 75.74329870588495, - 74.12400879264068, - 72.72954140168017, - 72.94746293045945, - 73.70687856354878, - 68.29526197637537, - 62.95628777186613, - 65.70491527597996, - 60.9386273190299, - 60.20136655088702, - 58.31736960514588, - 58.48557558782487, - 55.15430821141545, - 53.02764002809351, - 53.08131723539603, - 54.87164819389061, - 53.04212805677374, - 53.41427358718505, - 50.88101376568429, - 47.17055564414803, - 47.96432357104713, - 44.45415427378378, - 45.8154468287292, - 45.14916770757503, - 43.017528807224274, - 41.966533331199926, - 42.65386689908546, - 41.586651818838305, - 41.292977828469006, - 39.240517215363575, - 38.41721582889959, - 39.586075861367036, - 37.28704901496614 + 120, + 90.42211885069165, + 81.80293092867205, + 73.8648337893924, + 82.45599476832442, + 75.58665664152055, + 77.66286696235359, + 75.46223812377171, + 74.57928235118759, + 67.4089068752173, + 74.6993304894917, + 77.55562181029156, + 76.25495368188164, + 77.12636617812086, + 72.85073190205414, + 78.30467481907102, + 78.02409735102675, + 75.23129973052195, + 76.72557710479728, + 79.84719601182914, + 74.7237399699877, + 78.21481117679998, + 78.64654874228644, + 82.74453369085533, + 78.78091882631448, + 79.5660247064948, + 83.12555973748042, + 76.19095434007772, + 81.10253560434597, + 79.45229110774935, + 75.92692845505152, + 79.41714505641328, + 80.16922217468874, + 76.20095333020625, + 76.04420077279217, + 78.15797643575891, + 75.42505546121143, + 80.90760519153437, + 82.5819817739679, + 79.38784701147036, + 79.78666703515205, + 79.84610657768317, + 79.07819745227681, + 82.31418708663877, + 81.2415133398637, + 81.4884824476166, + 81.05249268640937, + 81.998162185826, + 82.94647630910562, + 84.25767588763065, + 81.65201210991191, + 83.05334591718851, + 84.85251018478925, + 80.66075057122536, + 84.12036298090108, + 84.70377686139749, + 81.79063700523311, + 81.99315120813903, + 84.17774381517417, + 82.11272474564038, + 80.25553643277816, + 78.6698666550155, + 82.93534100123922, + 83.07848499328774, + 83.1885201696718, + 83.9945806449559, + 82.21258476657702, + 82.71835145306424, + 81.60701246129315, + 82.6733082521969, + 85.21646909307293, + 82.97918438503457, + 82.51171055120628, + 83.50233691702573, + 82.60126668853891, + 85.79788326751745, + 84.38228005267811, + 85.35399568487863, + 85.49037698422529, + 82.98745597737187, + 82.09541646435073, + 86.14132151144902, + 87.39149794123942, + 84.95253249262207, + 85.38665181883832, + 88, + 87.87059478809572, + 86.27063662552082, + 87.55434062286643, + 87.60210347076072, + 87.81570335897074, + 86.12082679125672, + 88.54297710775036, + 87.61022157929375, + 87.8527762606676, + 89.06111808870665, + 87.10938303778187, + 84.461795576803, + 86.10558173311883, + 87.65480716299, + 85.02196500584624 ] }, { "fill": "tonexty", "fillcolor": "rgba(68, 68, 68, 0.2)", - "name": "Substrate", + "name": "Enzyme", "type": "scatter", - "uid": "4340d2fe-af0f-4100-8553-6c6cb569e26b", "x": [ 0, 1, @@ -5205,107 +7666,107 @@ 100 ], "y": [ - 301, - 261.50890974614737, - 248.29717154475094, - 244.2549444753491, - 238.3637309250859, - 237.124837901283, - 230.10538291286815, - 230.23150099267235, - 221.0037894758707, - 220.12825602911045, - 216.516118483743, - 211.85607082524476, - 209.7883596777564, - 203.13120974757555, - 196.88402273908468, - 198.03972340947993, - 191.619172199204, - 188.16484715011057, - 184.34219565178714, - 177.58018367736366, - 175.3803421765717, - 172.38447863576496, - 169.38248259352255, - 168.38245076696813, - 164.76746065672046, - 162.75266858594108, - 159.75781971717691, - 157.94774559836532, - 155.32313910726776, - 150.5097629524148, - 148.4876251642722, - 148.07789403364905, - 145.0586719571373, - 143.03483175612718, - 139.40823459218797, - 135.00823459218796, - 132.79852189011734, - 130.7858603404387, - 131.5858603404387, - 128.7810885467506, - 125.74239010776994, - 119.54239010776993, - 114.9463140225179, - 113.13346393210365, - 114.53499971727668, - 110.31214076842255, - 109.50217972103512, - 104.53044573463151, - 102.30859135999594, - 100.4926780663257, - 96.09773729459889, - 93.98864664215645, - 92.98129562022875, - 91.18092564898362, - 90.18434001405215, - 89.30684364279726, - 86.90439799801385, - 82.52264809491625, - 83.11863896270575, - 80.9173140723141, - 81.31863896270575, - 80.11397782180443, - 77.50820075185567, - 75.91216099804893, - 72.51216099804893, - 72.09870461974224, - 72.354011436494, - 69.97151229749366, - 67.37277161503818, - 65.9980122771423, - 63.39768199851144, - 61.409932519122684, - 62.8, - 58.8, - 55.2, - 54.99567927289015, - 53.8, - 52.79458293952814, - 50.7947814222319, - 52.6, - 50.8, - 47.600814798337964, - 46.4, - 47.0028385686209, - 45.99793224062061, - 45, - 42.2, - 41.59925371382407, - 41.19984373613871, - 38.40956172827488, - 39.59842701024543, - 40.19694082929666, - 39.40225734830997, - 37.8, - 36.99876248677417, - 35.6, - 34.799539814190496, - 33.19772206497809, - 32.6, - 32.20363859976306, - 31.205836373063864 + 120, + 86.49518459204212, + 75.46238159700287, + 71.35904882480881, + 75.13622841579704, + 69.24929888587357, + 73.37153519069186, + 73.1709361317435, + 71.58902195351553, + 66.23962424411171, + 67.99863473490173, + 74.78572124696598, + 70.38584043738959, + 71.44843673497601, + 69.03618562011278, + 75.18537958911807, + 73.78460093171967, + 73.19561109052692, + 73.20511520230836, + 76.37129141237553, + 71.6344163218752, + 73.3901451370526, + 73.79706610715138, + 76.39789856391735, + 73.99380126982034, + 72.81802849201333, + 74.98620709737277, + 73.20368338744619, + 75.21283261839352, + 74.00553176257914, + 73.37783101706569, + 76.16627806396687, + 75.96055752784892, + 73.36700138107446, + 72.39429200844006, + 73.20332352565705, + 70.41465349236663, + 76.2002204486372, + 74.01356325398937, + 74.19768421191533, + 73.80886902551791, + 76.39398387847577, + 75.58821978536506, + 75.18805527396565, + 75.97815367572852, + 75.77104111721133, + 75.97290274208038, + 77.37697639755439, + 75.41182224633106, + 76.6, + 76.00553930956768, + 75.3978533438079, + 76.42664608777201, + 72.4, + 75.21027973098911, + 78.77888997042767, + 75.38666836474809, + 75.81262610212852, + 77.02016317470793, + 75.40204637064295, + 73.41105840546624, + 73.3973377073905, + 77.4, + 77.40113846058496, + 78.60103842531403, + 78.80103842531403, + 78.60108269215392, + 78.3964916643933, + 76.60160338232592, + 78.80534778170852, + 79.20160338232591, + 77.21161792043335, + 77.20229232608742, + 78.41078104960073, + 77.59868589607704, + 78.59868589607704, + 77.79868589607705, + 79.02179893938766, + 78.6013532166805, + 79.59733511113613, + 79.99576247431837, + 81.59576247431838, + 82.19576247431837, + 79.79576247431837, + 79.4, + 82, + 82.19851714904817, + 80.60884669337293, + 82.00265212721047, + 81.1939940304843, + 81.0263052552609, + 79.58730985600789, + 80.5901054640742, + 78.78589774254955, + 80.58589774254955, + 79.59933716190658, + 79.386202907404, + 79.99596795273405, + 80.39745635372363, + 80.20954627140085, + 80.00117072267062 ] }, { @@ -5320,10 +7781,9 @@ "color": "#444" }, "mode": "lines", - "name": "Substrate Lower Bound", + "name": "Enzyme Lower Bound", "showlegend": false, "type": "scatter", - "uid": "b39f9d88-c552-40a1-9ed1-eeaed79a2697", "x": [ 0, 1, @@ -5428,107 +7888,107 @@ 100 ], "y": [ - 301, - 256.39909757532786, - 243.12062462528783, - 242.44842860516786, - 233.36089598591485, - 233.4550481557011, - 223.70309371941488, - 225.13817960641418, - 214.5039588652396, - 214.14167997216927, - 207.64617419451605, - 205.91464765231564, - 202.12679786416922, - 192.5265234832138, - 187.063812908727, - 187.9668653398205, - 183.5959637034577, - 179.49676979258905, - 176.2679328716381, - 165.03394589450613, - 163.6886483610916, - 161.737619334109, - 157.97367654400438, - 158.5451661969123, - 155.6421845858786, - 153.44221523737323, - 148.4764632689153, - 147.37937211132697, - 144.00774629918942, - 138.1475179184613, - 137.0479828154095, - 138.23895732645354, - 132.6053243185188, - 133.35817483406223, - 125.25296391703881, - 124.24414295505129, - 123.27877685542424, - 116.22395029224596, - 118.48582683591248, - 118.33229253511976, - 113.49918285026547, - 109.55355281677042, - 104.53384392501961, - 104.07245468484278, - 102.08917111227764, - 97.60550167586841, - 99.9112171789275, - 94.59762412156155, - 92.13202284575108, - 94.2423032595186, - 84.14519689324607, - 83.95014105424715, - 84.59051657798261, - 82.02855378609621, - 79.57588970812522, - 78.49571794275863, - 75.74142266284272, - 72.8782102785367, - 71.45162892961206, - 70.12519881225074, - 70.14423234701941, - 70.80402666577395, - 65.50253465961444, - 64.98959546378828, - 64.44943731482365, - 63.465450559145474, - 64.6532516022856, - 59.312595814452756, - 59.00224452419139, - 57.87201576164391, - 54.06582259534271, - 49.872402107785916, - 51.89312143645121, - 49.30473802362462, - 47.443712228133876, - 44.286443269800344, - 46.661372680970096, - 45.38779932816926, - 43.27219323931792, - 46.714424412175134, - 46.44569178858455, - 42.17398956858242, - 39.71868276460397, - 39.1340289433512, - 38.95373642446747, - 36.58572641281495, - 33.51898623431572, - 36.02795178350011, - 34.43536390123029, - 32.36496918276598, - 33.38140719176166, - 35.244713951018284, - 35.78698588939567, - 33.63346666880007, - 31.34365807446288, - 29.613348181161697, - 28.30610179991199, - 27.1549269145926, - 26.782784171100406, - 24.821201338159085, - 25.124623731161588 + 120, + 82.5682503333926, + 69.1218322653337, + 68.85326386022521, + 67.81646206326965, + 62.911941130226595, + 69.08020341903013, + 70.8796341397153, + 68.59876155584347, + 65.07034161300612, + 61.297938980311756, + 72.0158206836404, + 64.51672719289753, + 65.77050729183117, + 65.22163933817141, + 72.06608435916512, + 69.54510451241258, + 71.1599224505319, + 69.68465329981944, + 72.89538681292191, + 68.54509267376268, + 68.56547909730521, + 68.94758347201632, + 70.05126343697937, + 69.2066837133262, + 66.07003227753185, + 66.84685445726512, + 70.21641243481466, + 69.32312963244107, + 68.55877241740893, + 70.82873357907985, + 72.91541107152047, + 71.7518928810091, + 70.53304943194267, + 68.74438324408796, + 68.2486706155552, + 65.40425152352182, + 71.49283570574002, + 65.44514473401085, + 69.0075214123603, + 67.83107101588377, + 72.94186117926836, + 72.0982421184533, + 68.06192346129252, + 70.71479401159334, + 70.05359978680605, + 70.89331279775139, + 72.75579060928277, + 67.87716818355649, + 68.94232411236933, + 70.35906650922345, + 67.74236077042728, + 68.00078199075477, + 64.13924942877465, + 66.30019648107715, + 72.85400307945785, + 68.98269972426307, + 69.63210099611801, + 69.8625825342417, + 68.69136799564552, + 66.56658037815431, + 68.12480875976551, + 71.86465899876079, + 71.72379192788217, + 74.01355668095626, + 73.60749620567216, + 74.98958061773082, + 74.07463187572235, + 71.59619430335869, + 74.93738731122014, + 73.1867376715789, + 71.44405145583214, + 71.89287410096856, + 73.31922518217573, + 72.59610510361517, + 71.39948852463664, + 71.21509173947598, + 72.6896021938967, + 71.7123294491357, + 76.2072142449004, + 77.896108484286, + 77.05020343718773, + 77.00002700739732, + 74.63899245601466, + 73.4133481811617, + 76, + 76.52643951000063, + 74.94705676122503, + 76.4509636315545, + 74.78588459020789, + 74.23690715155105, + 73.05379292075907, + 72.63723382039804, + 69.96157390580535, + 73.3190192244315, + 70.1375562351065, + 71.66302277702613, + 75.5301403286651, + 74.68933097432843, + 72.76428537981171, + 74.980376439495 ] }, { @@ -5541,10 +8001,9 @@ "color": "#444" }, "mode": "lines", - "name": "Enzyme Upper Bound", + "name": "Enzyme_Substrate_Complex Upper Bound", "showlegend": false, "type": "scatter", - "uid": "f885becc-87eb-4540-906b-e9f7716dc883", "x": [ 0, 1, @@ -5649,115 +8108,114 @@ 100 ], "y": [ - 120, - 87.16856980850666, - 78.31565622490945, - 76.368087998781, - 75.18169386012752, - 76.49328058965804, - 75.84609104416323, - 77.70712696852904, - 72.212430703436, - 75.85863814449765, - 77.03672037861809, - 75.3957771359235, - 77.03775428852495, - 79.28469527111804, - 74.97041848517983, - 77.98835224927937, - 77.57729219228641, - 76.4424274261339, - 75.76008479768802, - 74.37879961649975, - 75.30269784880056, - 73.1356756732548, - 74.87522088624259, - 76.52298117596489, - 77.98168049047521, - 77.1833857493694, - 78.07487436402742, - 79.86551378374293, - 77.577024260967, - 76.7382845956717, - 78.26060321866493, - 78.5333125401111, - 78.2260279573319, - 82.11024481738669, - 77.7038986722194, - 77.66372938899244, - 79.15212779994616, - 80.42778009547544, - 82.84288603000883, - 86.0794488350079, - 85.42903933166883, - 78.98693797647189, - 76.22653640866471, - 79.77872096882449, - 82.33231788115059, - 77.54371044701173, - 79.55941886036751, - 79.15627825598882, - 81.20954812221622, - 84.7546546916769, - 77.192284681514, - 78.54460230736937, - 83.12683796908159, - 80.16484275390637, - 82.763740786625, - 86.72179177301945, - 84.20400941393328, - 81.07725107158896, - 81.38567338982168, - 81.46157344811004, - 82.68122227157392, - 84.05051949185254, - 84.336322373137, - 85.90473100859364, - 82.34185665676071, - 86.73491800485894, - 88.26779511889869, - 86.68769118183302, - 85.68620688314631, - 84.72209620079309, - 84.53299690537699, - 86.56973431824534, - 90.15580467734554, - 86.9496835316263, - 87.2464865831324, - 86.73129665597904, - 86.33431361950186, - 86.83975048785895, - 88.10536863036158, - 90.90589955682472, - 90.31228271597445, - 86.22425004080259, - 84.21842687840906, - 88.57330629104578, - 87.17615752424581, - 86.07515032624661, - 84.98567765543683, - 85.84568169796866, - 86.36645394193121, - 83.31134701280799, - 86.46462885700191, - 90.39978556980336, - 90.41044498311201, - 90.15350558448677, - 89.1415877849013, - 88.84109487355026, - 86.9243545173273, - 87.13119191621567, - 88.43085567358862, - 88.23113882282264, - 86.21706656153665 + 0, + 37.4317496666074, + 50.844994405452525, + 50.31839710533865, + 50.57342732923239, + 54.66616355081459, + 48.00845797864527, + 46.28626236656096, + 47.79425050222611, + 51.43642545901982, + 53.24212135865843, + 40.64735530066023, + 51.48926368942424, + 49.623489791498294, + 46.03625689760416, + 38.67599303384817, + 41.167717069909024, + 39.92938989127306, + 38.938860158616706, + 35.105406491184326, + 42.644190691103624, + 41.53664958364395, + 38.39943818390664, + 37.00750060807952, + 36.33983383930923, + 39.77441628282234, + 36.83800458071601, + 34.091489013376446, + 33.87066305089179, + 33.651531287615995, + 35.21999167282947, + 31.595836658893905, + 29.78827583120739, + 33.34884288299701, + 34.02057443427126, + 33.59009979393946, + 33.73856304743029, + 28.632717288964823, + 31.53356724754948, + 28.254046240578063, + 28.827376203998472, + 25.455581796485585, + 27.119884695084487, + 27.849464542841538, + 25.17696018774288, + 23.759155923255175, + 27.692099788303082, + 23.051905442253076, + 25.611660275228406, + 24.917406628984583, + 23.128484752713877, + 24.598430484560204, + 25.904023745296577, + 29.099019513592786, + 27.06231207031766, + 20.554766653242982, + 23.59016315250353, + 21.595787349149703, + 21.620929008813533, + 23.409787426155113, + 23.687668240042573, + 22.224807680927192, + 20.898888751680797, + 18.55155408349285, + 18.34498168999496, + 16.6591260281974, + 16.399950202245, + 17.281486401044862, + 18.731054541416928, + 17.28145989918723, + 15.4591260281974, + 17.703282601859673, + 17.678189866773067, + 15.078999060139987, + 18.219950248448356, + 17.26939798987516, + 18.47213595499958, + 15.978623732997566, + 17.672790327309418, + 12.753211840938894, + 14.286335345030997, + 13.011094017053559, + 11.438181191654584, + 13.985677655436824, + 13.024807680927193, + 11.72574776766556, + 11.985281335179312, + 13.715522168136271, + 11.119201433252773, + 13.149714878539074, + 14.259925617257068, + 12.975538825054443, + 11.983923993082229, + 14.342700063175652, + 11.280350850198277, + 14.45577120817626, + 13.224503363228028, + 11, + 9.087201828663485, + 11.997467838342473, + 9.918933318620377 ] }, { "fill": "tonexty", "fillcolor": "rgba(68, 68, 68, 0.2)", - "name": "Enzyme", + "name": "Enzyme_Substrate_Complex", "type": "scatter", - "uid": "e16bfca0-667c-4823-96a6-f41be387959b", "x": [ 0, 1, @@ -5862,107 +8320,107 @@ 100 ], "y": [ - 120, - 81.91792605968877, - 72.8236557515113, - 73.58170281891584, - 70.7698012465089, - 73.1942936851527, - 70.40638631231872, - 74.96074460640912, - 69.37472827665297, - 73.75601816852739, - 73.58223511692923, - 72.3561982674684, - 74.15892140166153, - 72.75395256751223, - 71.17058399375289, - 75.52824975938526, - 73.3417482881608, - 74.16712803111992, - 73.96146193802477, - 68.88022494721692, - 69.82787085608712, - 70.03399750969588, - 69.79987112092198, - 71.60316564688, - 70.81007819139278, - 72.59627110265828, - 72.20550932334659, - 72.98277428312323, - 72.98812179192365, - 70.8072719461491, - 71.18301228568363, - 74.3785840728143, - 73.78711334151342, - 76.00256653567746, - 75.39415512773004, - 74.18878288395807, - 75.59822968152895, - 75.39305232293421, - 79.19305232293421, - 79.99598401194007, - 79.57220618218253, - 74.4, - 73.01556197250589, - 74.00384462891029, - 78.00350405526248, - 75.59305590568526, - 77.40378824894292, - 75.24901368778282, - 76.59427647399504, - 76.78362362744113, - 75.01429853923989, - 75.4073170717732, - 76.99752039090433, - 77.00157045032965, - 77.60768721763705, - 79.79360506642608, - 78.79125915053282, - 76.2020641154049, - 78.19928079921563, - 77.99886766469479, - 79.99928079921563, - 80.80294935340176, - 80.0061876591941, - 80.40285500491515, - 79.40285500491515, - 80.59841455113092, - 82.5912487432419, - 81.99608993885019, - 80.9984442824602, - 80.59770298905929, - 80.60170742364012, - 81.41542372614873, - 85.2, - 83, - 81.2, - 81.9972807538155, - 81.8, - 83.40137188223886, - 82.80098529161633, - 85.19961340937746, - 84.2, - 82.60788495167245, - 81.80788495167243, - 83.41486430439006, - 83.60848574325425, - 83.40848574325426, - 82.2, - 81.99939329819134, - 82.19941888304989, - 81.01640676209233, - 83.00028252799851, - 85.39801116072576, - 85.80575790342678, - 85.39781384422587, - 84.9977633970912, - 84.9974808690927, - 85.20248446838691, - 84.40173159496184, - 84.60173159496185, - 84.80767238960838, - 84.01377426348208 + 0, + 33.504815407957885, + 44.43280299503924, + 48.199261519272305, + 43.81293215295056, + 49.13364156704953, + 44.2114052622312, + 43.81200432117958, + 44.810978046484465, + 49.56037575588829, + 47.40136526509828, + 40.01427875303402, + 44.2000913263603, + 42.346023610815486, + 43.96381437988722, + 37.014620410881946, + 38.01396511880418, + 38.20438890947307, + 37.79488479769164, + 34.019740280996814, + 37.96059129904811, + 35.4098548629474, + 34.60293389284862, + 31.790012484321853, + 33.79350853275895, + 34.38197150798666, + 31.801721805522483, + 32.99631661255383, + 30.386204974638872, + 31.193505830453255, + 31.222168982934313, + 28.411552953098827, + 28.02336002926187, + 29.816916176036322, + 30.380636898796304, + 28.99667647434295, + 31.185346507633387, + 24.999779551362806, + 26.98643674601062, + 26.402315788084678, + 26.788815186397432, + 23.60601612152424, + 24.405764093110697, + 24.202342745094345, + 22.621846324271484, + 22.401861624869053, + 22, + 20.40499425713237, + 21.988177753668943, + 20.6, + 21.194460690432315, + 21.402284299778376, + 20.173353912227974, + 24, + 21.189720269010884, + 17.22111002957234, + 20.59222160567957, + 19.784711605262004, + 17.97717453268258, + 19.19529133674755, + 20.786279301924274, + 20.6, + 16.4, + 16.398861539415037, + 14.998961574685968, + 14.6, + 14.799955733160107, + 14.8035526024466, + 16.398396617674088, + 13.996255600617394, + 13.4, + 15.388382079566643, + 14.99784260570793, + 13.591511276486694, + 14.2, + 13.2, + 14, + 12.578201060612331, + 12.798646783319516, + 11.404237525681623, + 11, + 9.4, + 8.8, + 11.2, + 11.4, + 8.8, + 8.601482850951829, + 9.991153306627073, + 8.395676075163607, + 9.008658096726164, + 9.167688775223404, + 10.404032047265947, + 9.205862488659852, + 10.803705341409486, + 9, + 9.986560580642966, + 9.999694835145553, + 9, + 8.598511599010424, + 8.390453728599137, + 8.198953618414382 ] }, { @@ -5977,10 +8435,9 @@ "color": "#444" }, "mode": "lines", - "name": "Enzyme Lower Bound", + "name": "Enzyme_Substrate_Complex Lower Bound", "showlegend": false, "type": "scatter", - "uid": "b80e263e-4989-41fe-b4a7-94529de5b999", "x": [ 0, 1, @@ -6085,107 +8542,107 @@ 100 ], "y": [ - 120, - 76.66728231087087, - 67.33165527811315, - 70.7953176390507, - 66.35790863289029, - 69.89530678064736, - 64.9666815804742, - 72.2143622442892, - 66.53702584986995, - 71.65339819255713, - 70.12774985524037, - 69.3166193990133, - 71.28008851479811, - 66.22320986390642, - 67.37074950232594, - 73.06814726949115, - 69.1062043840352, - 71.89182863610593, - 72.16283907836151, - 63.381650277934085, - 64.35304386337367, - 66.93231934613696, - 64.72452135560137, - 66.68335011779511, - 63.63847589231034, - 68.00915645594715, - 66.33614428266576, - 66.10003478250354, - 68.3992193228803, - 64.8762592966265, - 64.10542135270234, - 70.22385560551751, - 69.34819872569494, - 69.89488825396823, - 73.0844115832407, - 70.7138363789237, - 72.04433156311174, - 70.35832455039298, - 75.54321861585959, - 73.91251918887224, - 73.71537303269622, - 69.81306202352812, - 69.80458753634707, - 68.22896828899609, - 73.67469022937438, - 73.64240136435879, - 75.24815763751832, - 71.34174911957682, - 71.97900482577386, - 68.81259256320536, - 72.83631239696578, - 72.27003183617704, - 70.86820281272706, - 73.83829814675293, - 72.4516336486491, - 72.86541835983272, - 73.37850888713237, - 71.32687715922083, - 75.01288820860958, - 74.53616188127953, - 77.31733932685734, - 77.55537921495097, - 75.6760529452512, - 74.90097900123666, - 76.4638533530696, - 74.46191109740289, - 76.91470236758512, - 77.30448869586736, - 76.31068168177408, - 76.47330977732548, - 76.67041794190325, - 76.26111313405212, - 80.24419532265446, - 79.0503164683737, - 75.15351341686761, - 77.26326485165197, - 77.26568638049814, - 79.96299327661877, - 77.49660195287107, - 79.4933272619302, - 78.08771728402556, - 78.9915198625423, - 79.39734302493581, - 78.25642231773435, - 80.04081396226269, - 80.7418211602619, - 79.41432234456317, - 78.15310489841401, - 78.03238382416856, - 78.72146651137668, - 79.5359361989951, - 80.39623675164816, - 81.20107082374155, - 80.64212210396497, - 80.8539390092811, - 81.15386686463513, - 83.48061441944652, - 81.67227127370802, - 80.77260751633507, - 81.38420595639413, - 81.8104819654275 + 0, + 29.577881149308364, + 38.020611584625954, + 46.08012593320596, + 37.05243697666873, + 43.60111958328447, + 40.41435254581714, + 41.337746275798196, + 41.827705590742816, + 47.68432605275675, + 41.560609171538125, + 39.38120220540781, + 36.91091896329636, + 35.06855743013268, + 41.891371862170274, + 35.35324778791572, + 34.860213167699335, + 36.47938792767307, + 36.65090943676657, + 32.9340740708093, + 33.2769919069926, + 29.283060142250847, + 30.806429601790594, + 26.57252436056419, + 31.24718322620867, + 28.989526733150992, + 26.76543903032896, + 31.90114421173121, + 26.90174689838595, + 28.735480373290514, + 27.224346293039154, + 25.22726924730375, + 26.25844422731635, + 26.284989469075636, + 26.740699363321344, + 24.403253154746444, + 28.632129967836484, + 21.36684181376079, + 22.439306244471762, + 24.550585335591293, + 24.750254168796392, + 21.756450446562898, + 21.691643491136908, + 20.555220947347152, + 20.06673246080009, + 21.04456732648293, + 16.307900211696918, + 17.75808307201166, + 18.36469523210948, + 16.28259337101542, + 19.260436628150753, + 18.20613811499655, + 14.44268407915937, + 18.900980486407214, + 15.317128467704107, + 13.887453405901699, + 17.59428005885561, + 17.973635861374305, + 14.333420056551624, + 14.98079524733999, + 17.884890363805976, + 18.97519231907281, + 11.9011112483192, + 14.246168995337225, + 11.652941459376976, + 12.5408739718026, + 13.199961264075213, + 12.32561880384834, + 14.065738693931246, + 10.711051302047558, + 11.340873971802601, + 13.073481557273615, + 12.317495344642793, + 12.1040234928334, + 10.180049751551643, + 9.13060201012484, + 9.52786404500042, + 9.177778388227097, + 7.9245032393296135, + 10.055263210424352, + 7.713664654969003, + 5.788905982946442, + 6.1618188083454175, + 8.414322344563175, + 9.775192319072808, + 5.874252232334442, + 5.217684366724345, + 6.2667844451178745, + 5.672150717074442, + 4.867601314913253, + 4.075451933189741, + 7.8325252694774505, + 6.427800984237475, + 7.2647106196433215, + 6.7196491498017235, + 5.517349953109671, + 6.774886307063078, + 7, + 8.109821369357363, + 4.783439618855801, + 6.478973918208387 ] }, { @@ -6198,10 +8655,9 @@ "color": "#444" }, "mode": "lines", - "name": "Enzyme_Substrate_Complex Upper Bound", + "name": "Product Upper Bound", "showlegend": false, "type": "scatter", - "uid": "6a0cb838-4b5e-42d4-9908-5f4e455f0b3b", "x": [ 0, 1, @@ -6307,114 +8763,113 @@ ], "y": [ 0, - 43.33271768912912, - 51.97209873653049, - 47.842687818798034, - 51.90195193646667, - 47.1557684796349, - 51.90809410473798, - 43.3077003433556, - 48.12922817445569, - 43.65166019736984, - 43.26778649403453, - 44.809583538165384, - 42.654718458149674, - 46.82242401484099, - 44.19495982966204, - 38.455760902984586, - 42.0007267103807, - 40.229703826023766, - 38.26636079924991, - 45.005695057046424, - 43.07435613266853, - 43.03143952300838, - 41.449696659053075, - 38.9793354695174, - 42.64296558078326, - 37.3004600165272, - 38.018839443860884, - 37.82502504171177, - 36.12470223908471, - 38.98264242536922, - 39.750034339612135, - 34.518249477795166, - 35.990610281260025, - 34.30400768113286, - 31.285804838153368, - 34.755804677345544, - 31.964479613295993, - 33.2196631280187, - 26.985677655436824, - 27.112872323901154, - 26.47881539446796, - 31.855133376499413, - 32.44935862886598, - 33.72917910376709, - 26.626699739620715, - 29.087261347953742, - 27.414558506753345, - 31.07476790316386, - 26.657370461526632, - 29.69423015420632, - 25.89595101059261, - 26.514354462108006, - 26.99277251117473, - 26.598249289321068, - 24.4716762655164, - 23.829433151537618, - 22.1638754509098, - 25.732797615592133, - 21.828638093868395, - 22.387473946897526, - 19.756809750418043, - 19.560480462222067, - 18.923190093982747, - 19.577708763999663, - 19.280350850198275, - 19.266209791333104, - 16.25329983228432, - 16.224113220599396, - 17.28193472919817, - 17.239549893318916, - 16.413717073979655, - 17.651552453733807, - 12.966479394838265, - 13.36619037896906, - 18.28952211790544, - 15.240733815896021, - 16.74400902933387, - 13.929598407897176, - 14.000193435436346, - 13.04093010681705, - 15.93534100123922, - 15.268877028769838, - 14.45472369909914, - 13.584903471594185, - 11.616326842347679, - 13.25329983228432, - 16.108131845707604, - 15.285834403299738, - 13.399971217849169, - 14.204719815944388, - 11.419909315570195, - 10.659005373676976, - 10.57821231867747, - 10.016609194718914, - 10.756896797354123, - 9.788854381999831, - 9.623713980730939, - 9.921568629034486, - 9.788854381999831, - 9.081725262721827, - 10.651916305843415 + 2.097753617541247, + 8.86967868745935, + 11.920657237865768, + 18.44396167666328, + 22.92866536025076, + 28.400595466626903, + 34.05238923360919, + 35.979490040552854, + 39.858643223330176, + 44.86345678550339, + 50.57163915173319, + 52.73212988323407, + 57.08514157683631, + 62.00665182915662, + 64.65430278584796, + 68.96272741975883, + 73.39786125719911, + 76.45652417067332, + 80.05369980015146, + 83.32492463495788, + 87.0407292401843, + 91.42671543356221, + 96.62185622384227, + 98.78338139959351, + 102.76307755417436, + 108.95305270882733, + 113.06759463787559, + 114.55773149585146, + 117.21933381149226, + 120.40917695463834, + 122.02540255661302, + 124.98746076674585, + 127.11905405325392, + 131.00554132485132, + 134.72041662399877, + 140.30878945930448, + 143.99074068174738, + 145.41280552919267, + 150.33957863312537, + 152.9735216386698, + 155.0654828382813, + 156.56107135616264, + 159.25774363000644, + 161.00528866055913, + 162.31770449693298, + 163.14606466988363, + 167.059789251903, + 170.95846317918742, + 174.05813435034025, + 176.00751286611663, + 178.52615545087576, + 180.1286399977974, + 181.76392599080154, + 184.63563714898277, + 187.28092467557468, + 188.31301739937965, + 190.5236369765835, + 192.43348985067664, + 194.6938499679746, + 196.4684265511076, + 199.2783690743113, + 201.22620033614487, + 204.94535007985365, + 207.284198207539, + 208.5167238917138, + 209.4894379915685, + 211.77817579648774, + 212.35401494991748, + 213.26276072789997, + 215.94893690627697, + 216.87661897651637, + 218.03457448573687, + 220.8154238970941, + 222.8925215652645, + 225.49990363134563, + 225.9741329962788, + 228.03539412045268, + 229.26692658460672, + 229.5310991950464, + 230.35644555357112, + 232.72221967869936, + 233.74723511164242, + 233.74723511164242, + 235.67272476696965, + 236.92119947942538, + 237.06893708951864, + 237.7329949561558, + 239.19084836407052, + 240.2932023448937, + 242.34390863409755, + 242.50723616962935, + 242.9171136719811, + 243.9922680676615, + 244.1275378005801, + 244.4317034492426, + 244.72047050738257, + 245.20016371191045, + 246.6718974881374, + 247.43227678629822, + 248.01442169231842 ] }, { "fill": "tonexty", "fillcolor": "rgba(68, 68, 68, 0.2)", - "name": "Enzyme_Substrate_Complex", + "name": "Product", "type": "scatter", - "uid": "e6de48fa-fa35-42f6-ae4e-6ac1127c223b", "x": [ 0, 1, @@ -6520,106 +8975,106 @@ ], "y": [ 0, - 38.08207394031122, - 46.77360293953973, - 45.218297181084154, - 47.230198753491095, - 44.005706314847295, - 46.38494781719483, - 41.039255393590885, - 46.203233549130836, - 41.42859049941773, - 40.99347362965195, - 41.81951047911278, - 39.44107859833846, - 40.42336407353169, - 41.39622120510605, - 36.618129273728776, - 38.39484531325594, - 37.030752825110405, - 37.00559451223064, - 41.319775052783086, - 39.57212914391287, - 38.566002490304115, - 38.200128879078015, - 36.19683435312001, - 36.789921808607225, - 34.59462012473532, - 34.778701292241905, - 33.601436332465255, - 33.21187820807636, - 35.1927280538509, - 34.216987714316375, - 31.004428212869318, - 31.212886658486582, - 28.79743346432254, - 29.002584877167557, - 29.8, - 28.201770318471052, - 28.006947677065785, - 24.2, - 23.39706831099413, - 23.620846140751684, - 28.2, - 29.584438027494105, - 28.196155371089695, - 23.78788843565915, - 25.80694409431472, - 23.39621175105708, - 25.346748100168714, - 23.40572352600497, - 23.008984896655562, - 24.385701460760117, - 23.792682928226796, - 21.802479609095666, - 21.39842954967034, - 20.592312782362953, - 18.20639493357392, - 19.00159617937883, - 21.197935884595104, - 19.00071920078437, - 19.200413134520847, - 17, - 16.196331445813875, - 16.79309314002154, - 16, - 17, - 15.80444045378423, - 13.6, - 14.19515880439173, - 14.8, - 15.200741293400915, - 14.998292576359882, - 13.98457627385127, - 10, - 12.2, - 14, - 13.202719246184495, - 13.2, - 11.598628117761129, - 12.000386590622536, - 9.6, - 10.4, - 11.99211504832756, - 12.6, - 10.993020647282377, - 10.597494014374643, - 10.6, - 11.8, - 12.000606701808673, - 11.79997441514145, - 12.583618822766223, - 10.399717472001488, - 7.802271367272764, - 7.39225325729897, - 7.6, - 8.000050447134669, - 8, - 7.794996400705775, - 8.200752873425053, - 8, - 7.594256521853336, - 8.188121262740111 + 1.605303412099257, + 6.213354021678327, + 9.666978687507177, + 15.684715488009909, + 19.148266704608815, + 23.972792956282127, + 28.792602080530674, + 32.00748474301271, + 36.44752467974204, + 41.274780959822166, + 46.48859929635038, + 49.52382532600786, + 54.16895419969194, + 58.21561037563716, + 60.63016930129453, + 64.84532987480529, + 68.86209391817422, + 72.91577658731669, + 76.5370514632418, + 79.77846113249173, + 84.18755278681743, + 87.60654003229516, + 91.81785453319223, + 93.43696962761506, + 97.06850580080476, + 101.4757180500962, + 105.305669206841, + 107.33036907048218, + 109.55793202125867, + 114.57432582198552, + 116.59411765061517, + 119.83181762910735, + 122.26112570995875, + 125.48563914804109, + 128.7177743325356, + 133.1344302741335, + 135.74164684150333, + 138.75734417358245, + 142.75927916042872, + 144.982466360359, + 146.18901877627073, + 148.21700919300184, + 150.63744103353017, + 152.8632764725397, + 154.8725382085224, + 157.2725382085224, + 160.27503838371624, + 163.08377251499667, + 165.48377251499667, + 167.8952571148249, + 170.29585307777685, + 173.30830921629877, + 175.10830921629878, + 177.3168273066326, + 179.7210068310477, + 180.7281982790349, + 183.5394899952481, + 185.15047766409057, + 187.55895959459244, + 189.16564121165342, + 191.76564121165342, + 193.96564121165343, + 196.76990764852053, + 198.971600506207, + 200.771600506207, + 202.17296043527182, + 203.9768838153204, + 204.5789053033537, + 206.3831592497671, + 208.1831592497671, + 210.19612960882495, + 210.8017242946988, + 212.81377301036574, + 214.21377301036574, + 216.21377301036574, + 217.01377301036572, + 219.02488381713928, + 220.22751577656874, + 220.8301358816404, + 221.4301358816404, + 222.8301358816404, + 223.4301358816404, + 223.4301358816404, + 225.0301358816404, + 226.6301358816404, + 227.23281748220757, + 228.04040728386877, + 229.2462079831736, + 230.04803792820172, + 231.25930832893906, + 232.06235462323858, + 233.2684663416248, + 234.07014940494304, + 235.07014940494304, + 235.67574953433626, + 236.0761601486875, + 237.47616014868748, + 238.27684705466686, + 238.68160476112377, + 239.48216383817822 ] }, { @@ -6634,10 +9089,9 @@ "color": "#444" }, "mode": "lines", - "name": "Enzyme_Substrate_Complex Lower Bound", + "name": "Product Lower Bound", "showlegend": false, "type": "scatter", - "uid": "a3ece140-2248-4121-af02-a78c4b72abe6", "x": [ 0, 1, @@ -6743,106 +9197,106 @@ ], "y": [ 0, - 32.83143019149332, - 41.575107142548966, - 42.593906543370274, - 42.55844557051552, - 40.85564415005969, - 40.86180152965168, - 38.77081044382617, - 44.27723892380598, - 39.20552080146562, - 38.71916076526937, - 38.829437420060174, - 36.22743873852724, - 34.02430413222238, - 38.597482580550064, - 34.780497644472966, - 34.78896391613119, - 33.83180182419704, - 35.744828225211364, - 37.63385504851975, - 36.06990215515721, - 34.10056545759985, - 34.950561099102956, - 33.41433323672262, - 30.936878036431192, - 31.888780232943446, - 31.53856314062293, - 29.37784762321874, - 30.299054177068005, - 31.402813682332578, - 28.68394108902061, - 27.49060694794347, - 26.43516303571314, - 23.290859247512227, - 26.719364916181746, - 24.844195322654453, - 24.43906102364611, - 22.794232226112868, - 21.414322344563175, - 19.681264298087104, - 20.762876887035407, - 24.544866623500585, - 26.71951742612223, - 22.663131638412302, - 20.94907713169758, - 22.526626840675696, - 19.377864995360817, - 19.61872829717357, - 20.154076590483307, - 16.323739639104804, - 22.875451910927623, - 21.071011394345586, - 16.6121867070166, - 16.19860981001961, - 16.712949299209505, - 12.583356715610226, - 15.83931690784786, - 16.663074153598075, - 16.172800307700346, - 16.01335232214417, - 14.243190249581955, - 12.832182429405684, - 14.662996186060331, - 12.422291236000337, - 14.719649149801723, - 12.342671116235357, - 10.94670016771568, - 12.166204388184063, - 12.31806527080183, - 13.161932693482916, - 13.58286807874011, - 10.317600093968732, - 7.033520605161735, - 11.033809621030938, - 9.710477882094557, - 11.164704676472969, - 9.65599097066613, - 9.267657827625081, - 10.000579745808727, - 6.159069893182949, - 4.864658998760781, - 8.715353067885284, - 10.745276300900859, - 8.401137822970568, - 9.578661186401607, - 7.946700167715679, - 7.491868154292398, - 8.715379000317608, - 10.199977612433733, - 10.962517829588057, - 9.37952562843278, - 4.945537360868553, - 4.206294195920469, - 5.1833908052810855, - 5.243204096915214, - 6.2111456180001685, - 5.9662788206806106, - 6.479937117815621, - 6.2111456180001685, - 6.106787780984845, - 5.724326219636808 + 1.1128532066572672, + 3.557029355897305, + 7.413300137148585, + 12.925469299356537, + 15.367868048966871, + 19.54499044593735, + 23.532814927452154, + 28.035479445472568, + 33.0364061361539, + 37.686105134140945, + 42.40555944096757, + 46.315520768781646, + 51.25276682254757, + 54.42456892211771, + 56.60603581674109, + 60.72793232985173, + 64.32632657914934, + 69.37502900396005, + 73.02040312633213, + 76.23199763002557, + 81.33437633345056, + 83.7863646310281, + 87.01385284254219, + 88.0905578556366, + 91.37393404743516, + 93.99838339136508, + 97.54374377580642, + 100.1030066451129, + 101.89653023102507, + 108.73947468933271, + 111.16283274461733, + 114.67617449146884, + 117.40319736666358, + 119.96573697123085, + 122.71513204107245, + 125.96007108896254, + 127.49255300125927, + 132.10188281797224, + 135.17897968773207, + 136.99141108204822, + 137.31255471426016, + 139.87294702984104, + 142.0171384370539, + 144.72126428452026, + 147.42737192011182, + 151.39901174716118, + 153.49028751552947, + 155.20908185080592, + 156.9094106796531, + 159.78300136353315, + 162.06555070467795, + 166.48797843480014, + 168.45269244179602, + 169.99801746428244, + 172.16108898652072, + 173.14337915869015, + 176.55534301391268, + 177.8674654775045, + 180.4240692212103, + 181.86285587219925, + 184.25291334899552, + 186.705082087162, + 188.5944652171874, + 190.65900280487503, + 193.02647712070018, + 194.85648287897513, + 196.17559183415307, + 196.80379565678993, + 199.5035577716342, + 200.41738159325723, + 203.51564024113353, + 203.56887410366073, + 204.81212212363738, + 205.53502445546698, + 206.92764238938585, + 208.05341302445265, + 210.0143735138259, + 211.18810496853075, + 212.12917256823437, + 212.5038262097097, + 212.93805208458141, + 213.1130366516384, + 213.1130366516384, + 214.38754699631116, + 216.33907228385542, + 217.3966978748965, + 218.34781961158174, + 219.3015676022767, + 219.80287351150974, + 220.17470802378057, + 221.6174730768478, + 223.61981901126848, + 224.14803074222456, + 226.012761009306, + 226.91979561942992, + 227.43184978999244, + 229.75215658546452, + 229.88179662119632, + 229.9309327359493, + 230.94990598403803 ] }, { @@ -6855,10 +9309,9 @@ "color": "#444" }, "mode": "lines", - "name": "Product Upper Bound", + "name": "Substrate Upper Bound", "showlegend": false, "type": "scatter", - "uid": "c2feafcb-3cdd-4f74-9ae9-5b5c1a97f6eb", "x": [ 0, 1, @@ -6963,115 +9416,114 @@ 100 ], "y": [ - 0, - 2.215357254073609, - 6.998609960570713, - 12.708031320111104, - 16.365470522791828, - 21.963815364696778, - 26.670619565187753, - 31.761269618782535, - 37.25561819520966, - 44.69073808616372, - 48.70352240644478, - 51.949401817180146, - 58.2032324193691, - 62.389073628310456, - 68.61667303716297, - 71.10759872692056, - 73.9694620655849, - 79.59678213559559, - 83.39564725267657, - 85.30815414111589, - 88.58389319368641, - 92.68105144131998, - 95.99727972173771, - 99.61322191723481, - 103.94308683692822, - 107.32751843619602, - 110.911979205636, - 113.10878801206948, - 116.9945911540348, - 120.75878609099884, - 122.72861073963296, - 127.08564049373682, - 129.37061684465857, - 134.8047321212236, - 138.5063077221458, - 141.28615313384552, - 143.64240431631413, - 145.493453255367, - 147.53133222992255, - 151.76504594337936, - 153.82319747855706, - 154.98185162692113, - 158.3005675397184, - 161.2101696033756, - 165.37308250215025, - 167.62179226504887, - 169.63449430623822, - 172.22839663679022, - 177.43658974001065, - 180.1005886765071, - 182.19678448129815, - 185.02531447358155, - 188.04728032668712, - 189.5777770870948, - 191.3325742458385, - 194.73275279098647, - 195.68473579685894, - 198.49394421885745, - 200.28441551312085, - 201.4706865214876, - 202.93163470817072, - 204.1044877145234, - 205.62075618065245, - 206.58226028815295, - 208.15714938429903, - 209.24078656735063, - 211.055196916139, - 213.28092350512534, - 215.0373370281753, - 215.9749294758048, - 219.01019216275805, - 220.72863407426533, - 222.37614362738552, - 224.1194672927587, - 226.58619217211236, - 226.95676126392226, - 228.61781805447092, - 230.28066867379846, - 231.57750837145971, - 231.72726285429803, - 232.02734903261376, - 232.99702494525107, - 233.47427835753336, - 234.11033180447404, - 235.1171353952847, - 235.87128372616397, - 237.7240007647926, - 238.29942058238404, - 238.9413837460818, - 239.88263052219065, - 240.1416996980988, - 242.06298566378558, - 243.6928459872824, - 244.1031333058628, - 244.75846241689007, - 246.6260804301846, - 247.30215744793472, - 247.83907946116736, - 248.65558636356317, - 249.33372948996066, - 249.7437692297368 + 301, + 269.7901349989766, + 257.0607709846323, + 246.14287830757974, + 247.56201690667527, + 240.40921981350917, + 237.6845197780291, + 231.91883293310437, + 228.8848097351457, + 217.9871787583683, + 213.93814887067995, + 217.05630349164855, + 213.55500173189054, + 210.0503724787084, + 200.547234622359, + 204.80321081349265, + 201.36917432015147, + 194.96686892845455, + 192.16210489256378, + 191.26313580781542, + 182.54816511189895, + 183.41095578697545, + 178.53105265014187, + 176.45747835242005, + 174.04558001762345, + 169.83034208430303, + 169.7347268593346, + 163.28192753314468, + 162.96055693057437, + 159.38621504726189, + 155.53622921403357, + 156.00053132144447, + 152.31861335874686, + 146.77734951734067, + 144.72056302213608, + 141.06547851874063, + 134.6736162113922, + 138.73632594093613, + 131.95532631238436, + 128.31412186673336, + 126.49913692822167, + 128.88649547504542, + 124.73532416220291, + 120.7741563187696, + 122.14663985835122, + 119.58375242858355, + 117.82347890594066, + 116.09003815207933, + 112.34574819847654, + 113.11390615951335, + 108.25074958945754, + 106.67670795654357, + 98.20045752967192, + 93.61471838828679, + 97.72519801581586, + 97.09090809532759, + 93.0493489951386, + 92.25035384201065, + 93.69879803945508, + 88.82092289150368, + 82.31868107125571, + 81.68057190249894, + 84.58738721431182, + 80.16741558186638, + 78.4058771937899, + 76.28215680593121, + 77.22265241556354, + 74.9785597208475, + 72.05378231319744, + 71.6131929118994, + 70.40285656000464, + 64.57217831158358, + 64.02432525263127, + 64.73790469210003, + 62.4027022093287, + 59.86515131944607, + 57.86260011349906, + 58.706855081348394, + 54.68948819128829, + 59.48033654046739, + 59.89949493661167, + 58.67112743381895, + 59.77914401186244, + 57.189355675444396, + 55.654014708917735, + 55.19756061276768, + 55.41221020419509, + 51.88544974819127, + 51.66681400575183, + 49.40806207047738, + 48.4438251171534, + 45.68454802133245, + 44.916775353120265, + 41.21406006418364, + 42.572670690062, + 40.838669834011704, + 39.84618580843564, + 39.693280212272605, + 39.129799874962664, + 37.353606673660096, + 37.54228582669242 ] }, { "fill": "tonexty", "fillcolor": "rgba(68, 68, 68, 0.2)", - "name": "Product", + "name": "Substrate", "type": "scatter", - "uid": "84ec7956-9984-4f11-a63a-344757ffad39", "x": [ 0, 1, @@ -7176,107 +9628,107 @@ 100 ], "y": [ - 0, - 1.409016313541408, - 5.83813526185669, - 11.23651722611554, - 15.097532022887691, - 19.13071873184329, - 23.565225903063308, - 28.399852429668233, - 32.42433039733903, - 37.8712733446816, - 41.689937260397066, - 45.1304744397825, - 49.5571069889324, - 55.19089284558156, - 60.041858648966354, - 63.46802870484233, - 67.89373460186233, - 72.31730682584535, - 75.93436381193816, - 78.17660073357854, - 81.40431309045762, - 85.03417414096026, - 88.03604130412464, - 91.03923877755905, - 93.8643070791995, - 97.68447902524355, - 100.30062660176584, - 102.90926438811216, - 105.72199267113334, - 108.5426407721354, - 111.34779084596167, - 114.95309376371549, - 117.75942918174067, - 122.18583591842828, - 125.40984820519994, - 128.80984820519993, - 132.6177905887995, - 134.82350446141237, - 137.82350446141237, - 141.43120794410635, - 144.04906024233532, - 145.44906024233532, - 148.66069830009323, - 151.47739301941778, - 154.08796879858562, - 156.10388365312502, - 158.91763294945537, - 161.74261883569025, - 165.55874968432084, - 167.56567808133553, - 170.5749173923022, - 172.98422818504744, - 175.58909959787948, - 177.79104001945427, - 179.19716905371848, - 182.1984472843289, - 183.59929674973347, - 185.60131197912114, - 187.00455302453003, - 189.0054647804008, - 190.6054647804008, - 192.61379447548828, - 194.42647840541548, - 196.2264784054155, - 198.6264784054155, - 200.23549432993792, - 201.83549432993794, - 203.44159484309074, - 205.04159484309076, - 205.8428412725475, - 208.4468666976762, - 211.05235790470223, - 213.45235790470224, - 215.25235790470225, - 217.05235790470223, - 218.0539593856276, - 219.0539593856276, - 221.66074832833837, - 222.86558031548392, - 223.26558031548393, - 224.26558031548393, - 225.8726504688184, - 226.2726504688184, - 227.27679125291516, - 228.2813649979199, - 228.8813649979199, - 230.4813649979199, - 230.8815045822871, - 231.281686431007, - 232.88850587996586, - 233.69036139771896, - 235.29114920114952, - 236.29663859554057, - 237.29663859554057, - 237.69782566163175, - 238.89782566163177, - 239.90328944673547, - 240.3048145083323, - 240.90481450833232, - 241.70691938671592, - 241.91296175091193 + 301, + 265.88988117994285, + 250.2437241632253, + 242.98850979981262, + 240.9578408463593, + 231.96064806271087, + 231.32471654880638, + 226.69290310337823, + 222.46704239441175, + 213.2666267017941, + 210.23800515661569, + 212.0099080670535, + 204.77459071103573, + 201.58343822653615, + 195.37296767070367, + 199.34378833416437, + 194.11466264184943, + 189.89350968900743, + 186.24494222217334, + 185.8039270652514, + 178.60192609695338, + 176.18297957968025, + 173.36105844135392, + 171.759731456135, + 167.74710782895323, + 163.33360014777685, + 161.12466609296294, + 156.09839832366436, + 156.0874934853843, + 152.86642470415455, + 147.42786192049334, + 148.19651713876488, + 145.3354571310108, + 140.88923287412314, + 137.08408253724446, + 135.05527087840701, + 128.05326842917572, + 131.2462723104431, + 126.04413823235332, + 122.2398874574224, + 119.62788507109467, + 121.21531653365871, + 118.38156202381693, + 115.95878743819426, + 114.91110567491323, + 112.69998231406149, + 110.69998231406149, + 109.29248788173527, + 104.8955759967859, + 103.69557599678589, + 100.68963070652538, + 97.68675044379502, + 95.90094039304515, + 90.10094039304515, + 90.63308156981834, + 91.7951021705849, + 87.39568911691815, + 85.19968579544295, + 84.98074165650935, + 80.96513059078498, + 77.3755091539279, + 74.7755091539279, + 76.64563685884431, + 73.84250888256216, + 72.84185445018973, + 71.24185445018972, + 69.6405387879648, + 67.43371723784205, + 64.84209077685475, + 65.04199933553137, + 63.4, + 59.398647561375505, + 58.59656270841822, + 57.39644000784639, + 55, + 54, + 52.4, + 51.81068813261412, + 50.198721257251066, + 50.39314236924668, + 50, + 50.2, + 50.2, + 47.8, + 46, + 47, + 46.59583554848103, + 44.20125689171169, + 44.19852322553156, + 42.38951195824576, + 40.82104082403922, + 38.59292165843455, + 38.38802579295394, + 35.39461159527224, + 36, + 34.40783928996379, + 33.799894550503204, + 33, + 32.60080149501024, + 32.20478856494395, + 31.00048730453117 ] }, { @@ -7291,10 +9743,9 @@ "color": "#444" }, "mode": "lines", - "name": "Product Lower Bound", + "name": "Substrate Lower Bound", "showlegend": false, "type": "scatter", - "uid": "1ea85e41-3c73-4302-8ac2-0ee8e10b01ae", "x": [ 0, 1, @@ -7399,112 +9850,917 @@ 100 ], "y": [ - 0, - 0.6026753730092073, - 4.677660563142668, - 9.765003132119976, - 13.829593522983554, - 16.297622098989805, - 20.459832240938862, - 25.03843524055393, - 27.593042599468397, - 31.05180860319948, - 34.67635211434935, - 38.31154706238486, - 40.91098155849569, - 47.99271206285266, - 51.46704426076974, - 55.828458682764115, - 61.81800713813976, - 65.03783151609511, - 68.47308037119974, - 71.04504732604119, - 74.22473298722883, - 77.38729684060054, - 80.07480288651156, - 82.46525563788329, - 83.7855273214708, - 88.04143961429108, - 89.68927399789568, - 92.70974076415484, - 94.44939418823188, - 96.32649545327196, - 99.96697095229038, - 102.82054703369415, - 106.14824151882277, - 109.56693971563298, - 112.31338868825408, - 116.33354327655434, - 121.59317686128486, - 124.15355566745775, - 128.11567669290218, - 131.09736994483333, - 134.27492300611357, - 135.91626885774951, - 139.02082906046806, - 141.74461643545996, - 142.802855095021, - 144.58597504120118, - 148.2007715926725, - 151.25684103459028, - 153.68090962863104, - 155.03076748616397, - 158.95305030330627, - 160.94314189651334, - 163.13091886907185, - 166.00430295181374, - 167.06176386159848, - 169.66414177767132, - 171.513857702608, - 172.70867973938482, - 173.7246905359392, - 176.54024303931402, - 178.2792948526309, - 181.12310123645315, - 183.2322006301785, - 185.87069652267803, - 189.09580742653196, - 191.23020209252522, - 192.61579174373688, - 193.60226618105614, - 195.04585265800623, - 195.7107530692902, - 197.88354123259435, - 201.37608173513914, - 204.52857218201896, - 206.3852485166458, - 207.5185236372921, - 209.15115750733293, - 209.49010071678427, - 213.04082798287828, - 214.15365225950814, - 214.80389777666983, - 216.5038115983541, - 218.74827599238571, - 219.07102258010343, - 220.44325070135628, - 221.4455946005551, - 221.8914462696758, - 223.23872923104722, - 223.46358858219017, - 223.62198911593217, - 225.89438123774107, - 227.23902309733913, - 228.51931273851346, - 228.90043120379875, - 230.49014388521834, - 230.63718890637344, - 231.16957089307894, - 232.50442144553622, - 232.77054955549724, - 233.15404265310147, - 234.0801092834712, - 234.08215427208705 + 301, + 261.9896273609091, + 243.42667734181828, + 239.8341412920455, + 234.3536647860433, + 223.51207631191258, + 224.96491331958364, + 221.4669732736521, + 216.0492750536778, + 208.54607464521993, + 206.53786144255142, + 206.96351264245843, + 195.9941796901809, + 193.1165039743639, + 190.19870071904833, + 193.8843658548361, + 186.8601509635474, + 184.82015044956032, + 180.3277795517829, + 180.34471832268738, + 174.6556870820078, + 168.95500337238505, + 168.19106423256596, + 167.06198455984995, + 161.44863564028302, + 156.83685821125067, + 152.5146053265913, + 148.91486911418403, + 149.21443004019423, + 146.34663436104722, + 139.31949462695312, + 140.39250295608528, + 138.35230090327474, + 135.0011162309056, + 129.44760205235283, + 129.0450632380734, + 121.43292064695923, + 123.75621867995005, + 120.13295015232228, + 116.16565304811142, + 112.75663321396766, + 113.54413759227201, + 112.02779988543094, + 111.14341855761893, + 107.67557149147524, + 105.81621219953942, + 103.57648572218231, + 102.49493761139121, + 97.44540379509525, + 94.27724583405843, + 93.12851182359321, + 88.69679293104647, + 93.60142325641837, + 86.58716239780351, + 83.54096512382083, + 86.4992962458422, + 81.7420292386977, + 78.14901774887524, + 76.26268527356362, + 73.10933829006628, + 72.43233723660008, + 67.87044640535686, + 68.70388650337681, + 67.51760218325794, + 67.27783170658955, + 66.20155209444823, + 62.05842516036606, + 59.88887475483659, + 57.630399240512055, + 58.47080575916333, + 56.39714343999536, + 54.225116811167425, + 53.168800164205166, + 50.054975323592735, + 47.5972977906713, + 48.13484868055393, + 46.937399886500934, + 44.91452118387984, + 45.70795432321384, + 41.30594819802597, + 40.10050506338833, + 41.72887256618105, + 40.62085598813756, + 38.4106443245556, + 36.345985291082265, + 38.80243938723232, + 37.77946089276696, + 36.5170640352321, + 36.73023244531129, + 35.37096184601415, + 33.19825653092504, + 31.501295295536647, + 31.859276232787614, + 29.575163126360835, + 29.427329309938006, + 27.977008745915874, + 27.753603292570766, + 26.306719787727395, + 26.071803115057815, + 27.055970456227797, + 24.45868878236992 ] } ], "layout": { "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, "title": { "text": "Michaelis_Menten - BasicTauHybridSolver - Standard Deviation Range" }, @@ -7521,18 +10777,49 @@ } }, "text/html": [ - "
                                        " - ], - "text/vnd.plotly.v1+html": [ - "
                                        " + "
                                        \n", + " \n", + " \n", + "
                                        \n", + " \n", + "
                                        " ] }, "metadata": {}, @@ -7552,22 +10839,22 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 13, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANXCAYAAAD6gEkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeVxN+f8H8Ndpve0LLWiRNqFCKBpkLGVJaCzDyL6EMMa+pcZu7PswE0ORJYasM9YUYxlhvnZTWRtZKkn7+f3RrzOuSkVcmtfz8bgP937O53w+78+5J4+Zdx/vI4iiKIKIiIiIiIiIiIiIqIJQUnQARERERERERERERETliYlvIiIiIiIiIiIiIqpQmPgmIiIiIiIiIiIiogqFiW8iIiIiIiIiIiIiqlCY+CYiIiIiIiIiIiKiCoWJbyIiIiIiIiIiIiKqUJj4JiIiIiIiIiIiIqIKhYlvIiIiIiIiIiIiIqpQmPgmIiIiIiIiIiIiogqFiW8iIiKiD0QQBMyYMaNM52zYsAGCIOD8+fMfJqhSzB0fHy+1eXh4wMPD46PHQh9f9erV0bdvX0WH8VmZOHEiBEFAWlraO4+RkZEBQRAwd+7cUs0nk8neea53VZYYiYiIiD4VTHwTERERvUVBMlgQBJw6darQcVEUYW5uDkEQ0KFDBwVE+PmYMWMGBEGAkpIS7t27V+h4amoqNDQ0IAgCRowY8UFjiYmJwYwZM5CcnPxB5ymr+Ph46X4reOnq6qJu3bpYsWIFcnNzFR3iWxV8xyW9PvYvU9zc3NCgQYMij12/fh2CIGDFihUfNaYPbdeuXWjatCmMjIygpaUFa2tr9OjRA7///ruiQyMiIiL6KFQUHQARERHR50AmkyEsLAxffPGFXPuJEydw//59qKurFzrn1atXUFH5vP9z6/Dhw+U+prq6OrZs2YLx48fLtUdERJT7XMWJiYlBUFAQ+vbtC319/Y82b2l9/fXXaNeuHQAgJSUF+/fvR0BAABISErBgwYIPMueNGzegpPR++2K6dOkCGxsb6XNaWhr8/f3RuXNndOnSRWo3MTF5r3kqEplMhlevXkFVVbXcxpw5cyamTZuGli1bYsqUKZDJZLh9+zYOHz6MHTt2oFWrVuU2FxEREdGn6vP+PzEiIiKij6Rdu3bYvn07li1bJpfMDgsLg4uLC548eVLoHEWUJChvampq5T5mu3btikx8h4WFoX379ti5c2e5z/m5qV+/Pr755hvp87Bhw+Dq6oqwsLAPlvgu6pc3ZeXk5AQnJyfp85MnT+Dv7w8nJye59RCQl5eHrKwsyGSycv27IiMjA3PmzIG3tzf27NlT6Pjjx4/Lba4P7eXLl9DS0lJ0GERERPSZYqkTIiIiolL4+uuv8fTpU/z2229SW1ZWFnbs2IGePXsWeU5RNb4fPHiAAQMGoGrVqlBXV4eVlRX8/f2RlZUl1y8zMxNjxoyRyhR07twZSUlJcn1+/fVXtG/fXhrL2toa33//fZHlMP744w94eXlBT08PmpqaaN68OaKjo0tcd1E1vpcvX47atWtDU1MTBgYGaNCgAcLCwkocq0DPnj0RGxuL69evS22JiYk4evRosdcyMzMTgYGBsLGxgbq6OszNzTF+/HhkZmbK9Ssok7J7927UqVMH6urqqF27Ng4ePCj1mTFjBsaNGwcAsLKykspvvF7bfPPmzXBxcYGGhgYMDQ3Ro0ePQuVZPDw8UKdOHVy9ehUtWrSApqYmqlWrhvnz5xeK/+7du3LrLStBEGBiYlLoXxCU9h64desWfH19YWpqCplMBjMzM/To0QMpKSlSn6JqfCcnJ+Pbb79F9erVoa6uDjMzM/j5+RX5i553cfToUfj6+sLc3Bzq6uqwtLQs8nt1c3ODl5dXofN79OiBmjVrlkssBa5duwZBELB69eoi4xUEAbt27ZJrT0xMRJcuXaCjowMjIyOMHTtW7me6oEb22LFjERISAgcHB6irq+P48ePF1s8+duwYXFxcIJPJYGdnh5CQkFLFn5iYiPT0dLi7uxd53NjYuFD/vn37wsjICDKZDHXr1i3x53nz5s0QBAF//PFHoWNLly6FIAi4ffu21PbXX3+hc+fOMDQ0hIaGBho1aoQDBw7InbdmzRoIgoCYmBgMHjwYlStXlvvXA0RERERlxR3fRERERKVQvXp1NG7cGFu2bEHbtm0BAAcOHEBKSgp69OiBZcuWlTjGw4cP0ahRIyQnJ2Pw4MGoWbMmHjx4gB07diA9PV1ud3VAQAAMDAwQGBiI+Ph4LFmyBCNGjEB4eLjUZ8OGDdDW1saYMWOgra2No0ePYvr06UhNTZXbFXz06FG0bdsWLi4uCAwMhJKSEkJCQvDll18iKioKjRo1KvV1WLduHUaOHImvvvoKo0aNQkZGBi5fvow//vij2KT1m5o1awYzMzOEhYUhODgYABAeHg5tbW20b9++UP+8vDx07NgRp06dwuDBg+Hg4IArV65g8eLFuHnzJnbv3i3X/9SpU4iIiMCwYcOgo6ODZcuWwdfXF3fv3kWlSpXQpUsX3Lx5E1u2bMHixYtRuXJlAICRkREAYNasWZg2bRq6deuGgQMHIikpCcuXL0ezZs1w8eJFudIoz58/h5eXF7p06YJu3bphx44dmDBhAhwdHaX7BAD8/Pxw4sQJiKJYqmuUnp4uJZdTU1Nx4MABHDx4EJMmTZLrV5p7ICsrC56ensjMzERAQABMTU3x4MEDREZGIjk5GXp6ekXGkJaWhqZNm+LatWvo378/6tevjydPnmDPnj24f/++dN3eR3h4OLKzszF8+HAYGBjgzJkzWLhwIR49eoRNmza99/ivy8nJKTJh/2addwcHB7i4uCA0NBT+/v5yx0JDQ2FgYFDoPi0o8TJ37lycOnUKCxcuRGpqKn788Ue5fgcOHEBoaKi0XjMzsyJj/fPPP9G2bVtUrVoVwcHByMzMxPjx41G1atUS11m1alWoqKjg119/xZAhQ95ayqfgO7537x4CAgJgbm6O8PBw9OrVCy9evMCQIUOKPM/HxwcymQzbtm2Dq6ur3LHw8HC4uLhISevY2Fg0bdoUVlZWmDRpEjQ0NLBlyxZ06NABe/fulUr6FBg0aBCqVKmCoKAgZGRklLheIiIiomKJRERERFSskJAQEYB47tw5ccWKFaKOjo6Ynp4uiqIodu3aVWzRooUoiqJoaWkptm/fXu5cAGJgYKD02c/PT1RSUhLPnTtXaJ68vDy5+Vq1aiW1iaIofvvtt6KysrKYnJwstRXE8bohQ4aImpqaYkZGhjSura2t6OnpKTdeenq6aGVlJbZu3brQWuPi4qS25s2bi82bN5c++/j4iLVr1y72er1NYGCgCEBMSkoSx44dK9rY2EjHGjZsKPbr108UxfzrNnz4cOnYpk2bRCUlJTEqKkpuvDVr1ogAxOjoaKkNgKimpibevn1bart06ZIIQFy+fLnUtmDBgkJrFUVRjI+PF5WVlcVZs2bJtV+5ckVUUVGRa2/evLkIQPzll1+ktszMTNHU1FT09fWVO7+gb0ni4uJEAEW+/P395b5DUSzdPXDx4kURgLh9+/a3zm1paSn26dNH+jx9+nQRgBgREVGo75txFCcpKanQz0FJ8QcGBopKSkpiYmKi1Obq6ip6enoW6tu9e3fR3t6+xDhcXV2Lva4Fr9fvj6VLl4qCIIh///231Pbq1StRT09PHDJkiNQ2YcIEEYDYrVs3ufn69+8vCoIgXr9+XToXgKiioiLeunVLrm/BsTlz5khtXl5eopaWlvjw4UOpLTY2VhQEQVRXVy9xvePHjxcBiNra2mL79u3F2bNni7GxsYX6zZ07VwQg7tixQ2rLzMwU69evL+rr64svX74sNsbOnTuLZmZmcvdCQkKCKAiCOH/+fKnN3d1ddHFxEbOysqS2nJwc0cXFRXR0dJTaVq9eLQIQv/zySzE3N7fENRIRERGVhKVOiIiIiEqpW7duePXqFSIjI/HixQtERkaWepdzXl4edu/eDW9vbzRo0KDQcUEQ5D4PHjxYrq1p06bIzc1FQkKC1KahoSG9f/HiBZ48eYKmTZsiPT1dKqsRGxuLW7duoWfPnnj69CmePHmCJ0+e4OXLl2jZsiVOnjyJvLy8Ul8DfX193L9/H+fOnSv1OUXp2bMnbt++jXPnzkl/Fnctt2/fDgcHB9SsWVOK/8mTJ/jyyy8B5JeEeF2rVq1gbW0tfXZycoKuri7+/vvvEuOKiIhAXl4eunXrJjeXqakpbG1tC82lra0tV7taTU0NjRo1KjTX8ePHS73bG8j//n/77Tf89ttv2LlzJ4YPH461a9dizJgxcv1Kcw8U7Og+dOgQ0tPTSx3Dzp074ezsjM6dOxc69ub9+q5ej//ly5d48uQJ3N3dkZeXh9jY2HKZo4CdnZ10TV9//fzzz4X6fv3111BRUZEr+REZGYmUlJQia5UPHz5c7nNAQABEUSxUzqN169Yllu/IzMzEkSNH0LVrV1SpUkVqd3Z2RosWLUq11nnz5mHjxo1wcnLCgQMHMHnyZNStWxeNGjXCrVu3pH779++HpaWl3INH1dTUEBAQgOTkZMTExBQ7R/fu3XH//n25Ptu2bYMoiujWrRsA4NGjR4iOjpbK6hT8PD1//hyenp64cuUKnj59KjfukCFD3vshq0REREQAS50QERERlZqRkRFatWqFsLAwpKenIzc3F1999VWpzk1KSkJqairq1KlTqv4WFhZynw0MDADkl9Yo8L///Q9Tp07F0aNHkZqaKte/oHZzQZKrT58+xc6VkpIijV+SCRMm4Pfff0ejRo1gY2ODNm3aoGfPnlI94aysLDx79kzuHCMjIygrK8u11atXDzVr1kRYWBj09fVhamoqJbLfdOvWLVy7dk0qRfKmNx/W9+a1A/Kv3+vXrji3bt2CKIqwtbUt8riqqqrcZzMzs0JJYAMDA1y+fLnEud7G1tYWrVq1kj536dIFgiBgyZIl6N+/PxwdHQGU7h6wsrLCmDFjsGjRIoSGhqJp06bo2LEjvvnmm2LLnADAnTt34Ovr+17rKElcXBymTZuGffv2FSo58nr98fKgo6Mjd00LFFV73cjICF5eXggNDcWUKVMA5Jc5sbKyKrJ29pv3i52dHQDI1Y0H8r+Lkjx69AjZ2dlF3oP29valqs0P5JfX8fPzQ0pKCk6fPo2QkBBs27YNPj4+uHTpElRVVZGQkAA7O7tC97CDgwMAyP2i7U0dOnSApqYmwsPDpWsSHh4ONzc3WFpaAvj3759x48ZJdfXf9PjxY1SqVEn6XJprRERERFQaTHwTERERlUHPnj0xaNAgJCYmom3btm+tn/s+3kwUFyjYNZycnIzmzZtDV1cXwcHBsLa2hkwmw59//okJEyZIu7gL/lywYAHq1q1b5Jja2tqljsvBwQE3btxAZGQkDh48iJ07d2LVqlWYPn06goKCEBMTU2hXalxcHKpXr15orJ49e2L16tXQ0dFB9+7di93lmZeXB0dHRyxatKjI4+bm5nKfS7p2b5OXlwdBEHDgwIEix3nzWr3PXGXVsmVLrFixAidPnoSjo2Op7wEAWLhwIfr27Ytff/0Vhw8fxsiRIzFnzhycOXOm2DrTH1p2djZatmyJ9PR0TJ48Gfb29tDU1ER8fDwGDRokF39xO8yLepBrefHz80PXrl3x559/wsrKCvv378f48ePfa7f76zvcPxY9PT14eXnBy8sLgiAgPDwcf/75Z6Ha3GWlpaUFb29v7NixA0uWLEFCQgLOnz+PxYsXS30KvsPJkycXu1v9zV9UKeIaERERUcXExDcRERFRGXTu3BlDhgzBmTNn5B40WRIjIyPo6urir7/+Kpc4jh8/jqdPnyIiIgLNmjWT2uPi4uT6FZT80NXVLXK367vQ0tJC9+7d0b17d2RlZaFLly6YNWsWJk2aBGdnZ/z2229y/U1NTYscp2fPnpg+fXqJDzK0trbGpUuX0LJly3IrsVHcONbW1hBFEVZWVtKu3U9FTk4OgPwHEgKlvwcKODo6wtHREVOnTkVMTAzc3d2xZs0azJw5s8j+1tbW5Xa/FuXChQuIi4tDeHi4VBoDAPbu3Vuor4GBQaF/SQC8fUfy+/L29oa+vj5CQ0Nhb2+PrKws9O7du8i+t27dkitLcvPmTQAo8hc+JalSpQpUVVXlSpIUuHHjRpnHe12DBg0QHh6OR48eAQAsLS2lWF9XsAu+YOd2cbp3747w8HBERUXh9OnTUFJSkvsuC/7+UVdXL7e/f4iIiIhKi8XTiIiIiMpAW1sbq1evxowZM+Dt7V3q85SUlNCpUyfs3bsX58+fL3S8rDuEC3Yav35eVlYWVq1aJdfPxcUF1tbW+OGHH6SE6euSkpLKNO+b9XjV1NRQq1YtiKKI7OxsGBgYoFWrVnIvmUxW5FjW1tZYsmQJ5syZg0aNGhU7Z7du3fDgwQOsW7eu0LFXr17h5cuXZVoDkJ+8B1CovEaXLl2grKyMoKCgQt+JKIqF1l9ad+/eLbKkRlkUJISdnZ0BlP4eSE1NlZLmBRwdHaGkpITMzMxi5/P19cWlS5ewa9euQsfKY0d7UfHn5eVh2bJlhfpaW1vjypUrcuVqzp49W+TPUnlRV1dHt27dsHXrVvzyyy9o2LBhsb8MWblypdzn5cuXAwC8vLzead6WLVti+/btUoIaAC5dulSoxnxRUlNTi6zBL4oiDh48CCC/ZAoAtGvXDgkJCXLfcXZ2NlasWAF9ff0iy7q8rm3bttDR0UF4eDjCw8PxxRdfoGrVqtJxc3NzuLm5YeXKlUX+XVPWv3+IiIiIyoI7vomIiIjK6G31st9m9uzZOHz4MJo3b47BgwfDwcEBjx49wvbt23Hq1KkylU1p0qQJDAwM0KdPH4wcORKCIGDTpk2FEpJKSkpYv3492rZti9q1a6Nfv36oVq0aHjx4gGPHjkFXV7fIHbbFadOmDUxNTeHu7g4TExNcu3YNK1asQPv27aGjo1PqcQqMGjWqxD69e/fGtm3bMHToUBw7dgzu7u7Izc3F9evXsW3bNhw6dKjIB4a+jYuLCwBgypQp6NGjB1RVVeHt7Q1ra2vMnDkTkyZNQnx8PDp16gQdHR3ExcVh165dGDx4MMaOHVvmdfr5+eHEiROlThj/+eef2Lx5M4D8h1YeOXIEO3fuRJMmTdCmTRsApb8Hjh49ihEjRqBr166ws7NDTk4ONm3aBGVl5bfW8B43bhx27NiBrl27on///nBxccGzZ8+wZ88erFmzRkrAvytHR0dYWFhg5MiRiIuLg5aWFrZt24YXL14U6jtgwACsWLECnp6e6Nu3Lx4+fIh169ahVq1ahZL65cnPzw8//vgjHj58iKVLlxbb79q1a+jSpQtatWqFqKgobN26Ff3790fNmjXfad7vv/8e7u7ucHd3h7+/PzIzM7F06VLUqVOnyB3ar0tNTUWjRo3g7u6ONm3awNzcHM+ePUNERARiYmLQo0cPqYb38OHDsX79evTs2RMBAQEwNzdHeHg4zp8/j9WrV5dYdkQmk8HHxwebNm1CWlpaoV8AAMCaNWvQrFkz1KlTBwMHDoSVlZX00Mtnz57h7Nmz73SNiIiIiErCxDcRERHRR1KtWjX88ccfmDZtGkJDQ5Gamopq1aqhbdu20NTULNNYlSpVQmRkJL777jtMnToVBgYG+Oabb9CyZUt4enrK9fXw8MDp06fx/fffY8WKFUhLS4OpqSlcXV0xZMiQMs07ZMgQhIaGYtGiRUhLS4OZmRlGjhyJqVOnlmmcslBSUsLu3buxePFi/PLLL9i1axc0NTVRo0YNjBo16p1KkjRs2BDff/891qxZg4MHDyIvL09Kvk6cOBF2dnZYvHgxgoKCAOTvXG3Tpg06duxY3ssr0pYtW7BlyxYAgIqKCiwsLDBu3DhMnz5dqoVe2nvA2dkZnp6e2Lt3Lx48eABNTU04OzvjwIEDcHNzKzYGbW1tREVFITAwELt27cLGjRthbGyMli1blktdcJlMhsjISIwaNQozZ86EpqYmvvrqK/Tv3x8NGzaU61u3bl2EhIQgKCgI3377LerUqYOtW7di7dq1iI2Nfe9YiuPu7g5ra2skJCSgR48exfaLiIjA+PHjMWHCBKirq2P06NGYN2/eO8/boEED7N+/H+PGjcPUqVNhYWGBefPm4ebNmyUmvo2NjbFmzRrs27cPP//8Mx49egRVVVXUrFkTixYtQkBAgNRXW1sbJ0+exMSJE/Hzzz/jxYsXcHBwwObNm9GrV69Sxdq9e3ds3rwZysrKRT7s19nZGefPn0dQUBDWr1+P58+fw8TEBPXr1/+gf28QERERCeKHePIOERERERFRBeDg4IAaNWpg3759ig6FiIiIiMqANb6JiIiIiIiKcOrUKVy/fh1+fn6KDoWIiIiIyog7vomIiIiIiF5z+fJl/Pnnn5g3bx7S09Nx+/ZtqKqqKjosIiIiIioD7vgmIiIiIiJ6TVhYGAYMGAAlJSVs2bKFSW8iIiKizxB3fBMRERERERERERFRhcId30RERERERERERERUoTDxTUREREREREREREQVioqiA/gU5OXl4eHDh9DR0YEgCIoOh4iIiIiIiIiIiIiKIIoiXrx4gapVq0JJqfh93Ux8A3j48CHMzc0VHQYRERERERERERERlcK9e/dgZmZW7HEmvgHo6OgAyL9Yurq6Co6GiIiIiIiIiIiIiIqSmpoKc3NzKadbHCa+Aam8ia6uLhPfRERERERERERERJ+4kkpW8+GWRERERERERERERFShMPFNRERERERERERERBUKE99EREREREREREREVKGwxjcREREREREREVUoubm5yM7OVnQYRPQOlJWVoaKiUmIN75Iw8U1ERERERERERBVGWloa7t+/D1EUFR0KEb0jTU1NVKlSBWpqau88BhPfRERERERERERUIeTm5uL+/fvQ1NSEkZHRe+8YJaKPSxRFZGVlISkpCXFxcbC1tYWS0rtV62bim4iIiIiIiIiIKoTs7GyIoggjIyNoaGgoOhwiegcaGhpQVVVFQkICsrKyIJPJ3mkcPtySiIiIiIiIiIgqFO70Jvq8vesub7kxyiEOIiIiIiIiIiIiIqJPBhPfRERERERERERERFShMPFNRERERERERET0mTt+/DgEQUBycrKiQyH6JDDxTUREREREREREpGBJSUnw9/eHhYUF1NXVYWpqCk9PT0RHR3+U+cs7cb5hwwbo6+uXy1hE70JF0QEQERERERERERH91/n6+iIrKwsbN25EjRo18M8//+DIkSN4+vSpokOTk5WVBTU1NUWHQVQi7vgmIiIiIiIiIqKKSRSBly8V8xLFUoeZnJyMqKgozJs3Dy1atIClpSUaNWqESZMmoWPHjoiPj4cgCIiNjZU7RxAEHD9+XG6s6OhoODk5QSaTwc3NDX/99Zd0LCEhAd7e3jAwMICWlhZq166N/fv3Iz4+Hi1atAAAGBgYQBAE9O3bFwDg4eGBESNGYPTo0ahcuTI8PT0BAIsWLYKjoyO0tLRgbm6OYcOGIS0tDUD+7vF+/fohJSUFgiBAEATMmDEDAJCZmYmxY8eiWrVq0NLSgqura6E1EJUH7vgmIiIiIiIiIqKKKT0d0NZWzNxpaYCWVqm6amtrQ1tbG7t374abmxvU1dXfedpx48Zh6dKlMDU1xeTJk+Ht7Y2bN29CVVUVw4cPR1ZWFk6ePAktLS1cvXoV2traMDc3x86dO+Hr64sbN25AV1cXGhoa0pgbN26Ev7+/XNkVJSUlLFu2DFZWVvj7778xbNgwjB8/HqtWrUKTJk2wZMkSTJ8+HTdu3JDWCAAjRozA1atXsXXrVlStWhW7du2Cl5cXrly5Altb23deN9GbmPgmIiIiIiIiIiJSIBUVFWzYsAGDBg3CmjVrUL9+fTRv3hw9evSAk5NTmcYKDAxE69atAeQnrM3MzLBr1y5069YNd+/eha+vLxwdHQEANWrUkM4zNDQEABgbGxeqzW1ra4v58+fLtY0ePVp6X716dcycORNDhw7FqlWroKamBj09PQiCAFNTU6nf3bt3ERISgrt376Jq1aoAgLFjx+LgwYMICQnB7Nmzy7RWordh4puIiIiIiIiIiComTc38ndeKmrsMfH190b59e0RFReHMmTM4cOAA5s+fj/Xr18PDw6PU4zRu3Fh6b2hoCHt7e1y7dg0AMHLkSPj7++Pw4cNo1aoVfH19S5VYd3FxKdT2+++/Y86cObh+/TpSU1ORk5ODjIwMpKenQ7OYtV+5cgW5ubmws7OTa8/MzESlSpVKvUai0mDim4iIiIiIiIiIKiZBKHW5kU+BTCZD69at0bp1a0ybNg0DBw5EYGAgoqKiAADia3XDs7Ozyzz+wIED4enpiX379uHw4cOYM2cOFi5ciICAgLeep/XGNYyPj0eHDh3g7++PWbNmwdDQEKdOncKAAQOQlZVVbOI7LS0NysrKuHDhApSVleWOaSuqJA1VWHy4JRERERERERER0SeoVq1aePnyJYyMjAAAjx49ko69/qDL1505c0Z6//z5c9y8eRMODg5Sm7m5OYYOHYqIiAh89913WLduHQBATU0NAJCbm1tiXBcuXEBeXh4WLlwINzc32NnZ4eHDh3J91NTUCo1Vr1495Obm4vHjx7CxsZF7vV4Shag8cMc3ERERERERERGRAj19+hRdu3ZF//794eTkBB0dHZw/fx7z58+Hj48PNDQ04Obmhrlz58LKygqPHz/G1KlTixwrODgYlSpVgomJCaZMmYLKlSujU6dOAPLrcrdt2xZ2dnZ4/vw5jh07JiXFLS0tIQgCIiMj0a5dO2hoaBS7C9vGxgbZ2dlYvnw5vL29ER0djTVr1sj1qV69OtLS0nDkyBE4OztDU1MTdnZ26NWrF/z8/LBw4ULUq1cPSUlJOHLkCJycnNC+fftyvKr0X8cd30RERERERERERAqkra0NV1dXLF68GM2aNUOdOnUwbdo0DBo0CCtWrAAA/Pzzz8jJyYGLiwtGjx6NmTNnFjnW3LlzMWrUKLi4uCAxMRF79+6V2809fPhwODg4wMvLC3Z2dpHpJywAACAASURBVFi1ahUAoFq1aggKCsLEiRNhYmKCESNGFBuvs7MzFi1ahHnz5qFOnToIDQ3FnDlz5Po0adIEQ4cORffu3WFkZCQ9HDMkJAR+fn747rvvYG9vj06dOuHcuXOwsLB47+tI9DpBfL040H9Uamoq9PT0kJKSAl1dXUWHQ0RERERERERE7yAjIwNxcXGwsrKCTCZTdDhE9I7e9rNc2lwud3wTERERERERERERUYXCxDcRERERERERERERVShMfBMRERERERERERFRhcLENxERERERERERERFVKEx8ExEREREREREREVGFwsQ3EREREREREREREVUoTHwTERERERERERERUYXCxDcRERERERERERERVSgKTXyvXr0aTk5O0NXVha6uLho3bowDBw5IxzMyMjB8+HBUqlQJ2tra8PX1xT///CM3xt27d9G+fXtoamrC2NgY48aNQ05OzsdeyucpOxs4fhz46SdAFBUdDREREREREREREVG5UGji28zMDHPnzsWFCxdw/vx5fPnll/Dx8cH//vc/AMC3336LvXv3Yvv27Thx4gQePnyILl26SOfn5uaiffv2yMrKQkxMDDZu3IgNGzZg+vTpilrS5yU7G2jRAhg4EHjyRNHREBEREREREREREZULhSa+vb290a5dO9ja2sLOzg6zZs2CtrY2zpw5g5SUFPz0009YtGgRvvzyS7i4uCAkJAQxMTE4c+YMAODw4cO4evUqNm/ejLp166Jt27b4/vvvsXLlSmRlZSlyaZ8HTU3AwiL//Y0bio2FiIiIiIiIiOg/rG/fvhAEodDLy8tL0aERfZY+mRrfubm52Lp1K16+fInGjRvjwoULyM7ORqtWraQ+NWvWhIWFBU6fPg0AOH36NBwdHWFiYiL18fT0RGpqqrRrvCiZmZlITU2Ve/1n2dvn/8nENxERERERERGRQnl5eeHRo0dyry1btig6LKLPksIT31euXIG2tjbU1dUxdOhQ7Nq1C7Vq1UJiYiLU1NSgr68v19/ExASJiYkAgMTERLmkd8HxgmPFmTNnDvT09KSXubl5Oa/qM8LENxERERERERFVUKIoIjf3pUJe4js8T01dXR2mpqZyLwMDAwCAIAhYv349OnfuDE1NTdja2mLPnj3SucXtGD9+/DiCg4NRp06dQvPVrVsX06ZNk87v1KkTZs+eDRMTE+jr6yM4OBg5OTkYN24cDA0NYWZmhpCQELkx7t27h27dukFfXx+Ghobw8fFBfHx8mddOVN5UFB2Avb09YmNjkZKSgh07dqBPnz44ceLEB51z0qRJGDNmjPQ5NTX1v5v8Lkh837yp2DiIiIiIiIiIiMpZXl46oqK0FTJ306ZpUFbWKtcxg4KCMH/+fCxYsADLly9Hr169kJCQAENDQyxduhRz586V+s6dOxdbtmxBzZo1YWNjg6CgIJw7dw4NGzYEAFy8eBGXL19GRESEdM7Ro0dhZmaGkydPIjo6GgMGDEBMTAyaNWuGP/74A+Hh4RgyZAhat24NMzMzZGdnw9PTE40bN0ZUVBRUVFQwc+ZMeHl54fLly1BTUyvX9ROVhcJ3fKupqcHGxgYuLi6YM2cOnJ2dsXTpUpiamiIrKwvJycly/f/55x+YmpoCAExNTfHPP/8UOl5wrDjq6urQ1dWVe/1n2dnl/8kd30REREREREREChUZGQltbW251+zZs6Xjffv2xddffw0bGxvMnj0baWlpOHv2LABAT09P2iUeExODtWvXIiIiAqampjAzM4Onp6fcbu2QkBA0b94cNWrUkNoMDQ2xbNky2Nvbo3///rC3t0d6ejomT54MW1tbTJo0CWpqajh16hQAIDw8HHl5eVi/fj0cHR3h4OCAkJAQ3L17F8ePH/84F42oGArf8f2mvLw8ZGZmwsXFBaqqqjhy5Ah8fX0BADdu3MDdu3fRuHFjAEDjxo0xa9YsPH78GMbGxgCA3377Dbq6uqhVq5bC1vBZKdjxfecOkJMDqHxytwQRERERERER0TtRUtJE06ZpCpu7rFq0aIHVq1fLtRkaGkrvnZycpPdaWlrQ1dXF48eP5fpfvHgRvXv3xooVK+Du7i61Dxo0CP3798eiRYugpKSEsLAwLF68WO7c2rVrQ0np332yJiYmciVSlJWVUalSJWnOS5cu4fbt29DR0ZEbJyMjA3fu3Cnr8onKlUKznJMmTULbtm1hYWGBFy9eICwsDMePH8ehQ4egp6eHAQMGYMyYMTA0NISuri4CAgLQuHFjuLm5AQDatGmDWrVqoXfv3pg/fz4SExMxdepUDB8+HOrq6opc2ufD3BzQ0ABevQLi4gBbW0VHRERERERERERULgRBKPdyIx+SlpYWbGxsij2uqqoq91kQBOTl5UmfExMT0bFjRwwcOBADBgyQ6+vt7Q11dXXs2rULampqyM7OxldffVXi+G+bMy0tDS4uLggNDS0Uq5GR0VtWSvThKTTx/fjxY/j5+eHRo0fQ09ODk5MTDh06hNatWwMAFi9eDCUlJfj6+iIzMxOenp5YtWqVdL6ysjIiIyPh7++Pxo0bQ0tLC3369EFwcLCilvT5UVLKT3Zfvpxf7oSJbyIiIiIiIiKiz05GRgZ8fHxQs2ZNLFq0qNBxFRUV9OnTByEhIVBTU0OPHj2goaHxXnPWr18f4eHhMDY2/m+XEqZPkkIT3z/99NNbj8tkMqxcuRIrV64sto+lpSX2799f3qH9t9jZ5Se++YBLIiIiIiIiIiKFyczMRGJiolybiooKKleuXOK5Q4YMwb1793DkyBEkJSVJ7YaGhtJDJgcOHAgHBwcAQHR09HvH26tXLyxYsAA+Pj4IDg6GmZkZEhISEBERgfHjx8PMzOy95yB6VyzoTP/W+eYDLomIiIiIiIiIFObgwYOoUqWKXJu9vT2uX79e4rknTpzAo0ePCj337tixY/Dw8AAA2NraokmTJnj27BlcXV3fO15NTU2cPHkSEyZMQJcuXfDixQtUq1YNLVu25A5wUjgmvomJbyIiIiIiIiIiBduwYQM2bNhQ7HFRFAu1JScnS+/j4+NLnEMURTx8+BDDhg0rcv43HT9+vFDbm/OYmppi48aNJc5N9LEx8U1MfBMRERERERERVXBJSUnYunUrEhMT0a9fP0WHQ/TBMfFN+TW+ASAxEUhNBfhPUYiIiIiIiIiIKhRjY2NUrlwZP/74IwwMDBQdDtEHx8Q3Afr6gLEx8Phx/gMuGzRQdERERERERERERFSOiiqVQlSRKSk6APpEsNwJERERERERERERVRBMfFM+Jr6JiIiIiIiIiIiogmDim/Ix8U1EREREREREREQVBBPflK8g8X3zpmLjICIiIiIiIiIiInpPTHxTPju7/D9v3gTy8hQbCxEREREREREREdF7YOKb8tWoAaioAOnpwIMHio6GiIiIiIiIiIiI6J0x8U35VFXzk98A63wTEREREREREdEn7fjx4xAEAcnJyYoO5T9nw4YN0NfXV3QYJWLim/7FOt9ERERERERERB9d3759IQhCoZeXl5eiQ/sgkpKS4O/vDwsLC6irq8PU1BSenp6Ijo7+aDGUd+K8vJPBFy9eRNeuXWFiYgKZTAZbW1sMGjQIN5m3KzUVRQdAn5CCOt/c8U1ERERERERE9FF5eXkhJCRErk1dXV1B0XxYvr6+yMrKwsaNG1GjRg38888/OHLkCJ4+faro0ArJysqCmpraR50zMjISvr6+8PT0RGhoKKytrfH48WNs374d06ZNQ3h4+EeN53PFHd/0r4Id30x8ExEREREREVEFIIoiXma9VMhLFMUyxVqw8/n1l4GBgXRcEASsX78enTt3hqamJmxtbbFnzx7peHG7xo8fP47g4GDUqVOn0Jx169bFtGnTpPM7deqE2bNnw8TEBPr6+ggODkZOTg7GjRsHQ0NDmJmZFUrO37t3D926dYO+vj4MDQ3h4+OD+Pj4YteZnJyMqKgozJs3Dy1atIClpSUaNWqESZMmoWPHjgCA+Ph4CIKA2NhYufMK1vO66OhoODk5QSaTwc3NDX/99Zd0LCEhAd7e3jAwMICWlhZq166N/fv3Iz4+Hi1atAAAGBgYQBAE9O3bFwDg4eGBESNGYPTo0ahcuTI8PT0BAIsWLYKjoyO0tLRgbm6OYcOGIS0tDUD+7vF+/fohJSVFuu4zZswAAGRmZmLs2LGoVq0atLS04OrqWmgNr0tPT0e/fv3Qrl077NmzB61atYKVlRVcXV3xww8/YO3atVLfEydOoFGjRlBXV0eVKlUwceJE5OTkSMc9PDwQEBCA0aNHw8DAACYmJli3bh1evnyJfv36QUdHBzY2Njhw4IB0TsFO+H379hV7XYvy66+/on79+pDJZKhRowaCgoKkWI4fPw41NTVERUVJ/efPnw9jY2P8888/bx33fXDHN/2LiW8iIiIiIiIiqkDSs9OhPUdbIXOnTUqDlppWuY4ZFBSE+fPnY8GCBVi+fDl69eqFhIQEGBoaYunSpZg7d67Ud+7cudiyZQtq1qwJGxsbBAUF4dy5c2jYsCGA/FIaly9fRkREhHTO0aNHYWZmhpMnTyI6OhoDBgxATEwMmjVrhj/++APh4eEYMmQIWrduDTMzM2RnZ8PT0xONGzdGVFQUVFRUMHPmTHh5eeHy5ctF7pTW1taGtrY2du/eDTc3t/fe1T5u3DgsXboUpqammDx5Mry9vXHz5k2oqqpi+PDhyMrKwsmTJ6GlpYWrV69CW1sb5ubm2LlzJ3x9fXHjxg3o6upCQ0NDGnPjxo3w9/eXK72ipKSEZcuWwcrKCn///TeGDRuG8ePHY9WqVWjSpAmWLFmC6dOn48b/59W0tfPvuxEjRuDq1avYunUrqlatil27dsHLywtXrlyBra1tofUcOnQIT548wfjx44tcb0E5lQcPHqBdu3bo27cvfvnlF1y/fh2DBg2CTCaTku4Faxk/fjzOnj2L8PBw+Pv7Y9euXejcuTMmT56MxYsXo3fv3rh79y40NTVLdV3fFBUVBT8/PyxbtgxNmzbFnTt3MHjwYABAYGAgPDw8MHr0aPTu3RuXLl3C33//jWnTpmH79u0wMTEp7VdddiKJKSkpIgAxJSVF0aEoVmKiKAKiKAiimJ6u6GiIiIiIiIiIiMrk1atX4tWrV8VXr16JoiiKaZlpImZAIa+0zLRSx92nTx9RWVlZ1NLSknvNmjVL6gNAnDp1qvQ5LS1NBCAeOHCg0Hg7d+4UZTKZeOrUKamtbdu2or+/v/Q5ICBA9PDwkIvB0tJSzM3Nldrs7e3Fpk2bSp9zcnJELS0tccuWLaIoiuKmTZtEe3t7MS8vT+qTmZkpamhoiIcOHSp2vTt27BANDAxEmUwmNmnSRJw0aZJ46dIl6XhcXJwIQLx48aLU9vz5cxGAeOzYMVEURfHYsWMiAHHr1q1Sn6dPn4oaGhpieHi4KIqi6OjoKM6YMaPIGArOf/78uVx78+bNxXr16hUbe4Ht27eLlSpVkj6HhISIenp6cn0SEhJEZWVl8cGDB3LtLVu2FCdNmlTkuPPmzRMBiM+ePXvr/JMnTy507VeuXClqa2tL32Hz5s3FL774Qjpe8P317t1banv06JEIQDx9+rQoiqW7rm+utWXLluLs2bPl4tu0aZNYpUoV6XNmZqZYt25dsVu3bmKtWrXEQYMGvXV9b/4sv660uVzu+KZ/GRsDenpASgpw5w5QxD+BISIiIiIiIiL6XGiqaiJtUprC5i6LFi1aYPXq1XJthoaGcp+dnJyk91paWtDV1cXjx4/l+ly8eBG9e/fGihUr4O7uLrUPGjQI/fv3x6JFi6CkpISwsDAsXrxY7tzatWtDSenfysgmJiZyJVKUlZVRqVIlac5Lly7h9u3b0NHRkRsnIyMDd+7cQVRUFNq2bSu1r127Fr169YKvry/at2+PqKgonDlzBgcOHMD8+fOxfv16qeRIaTVu3Fh6b2hoCHt7e1y7dg0AMHLkSPj7++Pw4cNo1aoVfH195a5hcVxcXAq1/f7775gzZw6uX7+O1NRU5OTkICMjA+np6XI7pV935coV5Obmwq7guXr/LzMzE5UqVSryHLGUJXKuXbuGxo0bQxAEqc3d3R1paWm4f/8+LCwsAMjfMwXfn6Ojo9RWsOP6zfvobdf1TZcuXUJ0dDRmzZolteXm5spdHzU1NYSGhsLJyQmWlpaF7r0PgYlv+pcg5D/g8ty5/HInTHwTERERERER0WdMEIRyLzfyoWhpacHGxuatfd4sMyEIAvLy8qTPiYmJ6NixIwYOHIgBAwbI9fX29oa6ujp27doFNTU1ZGdn46uvvipx/LfNmZaWBhcXF4SGhhaK1cjICGpqanJ1ul8vayGTydC6dWu0bt0a06ZNw8CBAxEYGIi+fftKyffXk8DZ2dnFX5hiDBw4EJ6enti3bx8OHz6MOXPmYOHChQgICHjreVpa8vdMfHw8OnToAH9/f8yaNQuGhoY4deoUBgwYgKysrGIT32lpaVBWVsaFCxegrKwsd6ygFMqbCpLk169fl0s+v6uSvtOCxPnr91FZpaWlISgoCF26dCl0TCaTSe9jYmIAAM+ePcOzZ88KXefyxodbkjzW+SYiIiIiIiIi+uxkZGTAx8cHNWvWxKJFiwodV1FRQZ8+fRASEoKQkBD06NFDrq71u6hfvz5u3boFY2Nj2NjYyL309PSgoaEh1/bmzvDX1apVCy9fvgSQnzQHgEePHknHX0+gv+7MmTPS++fPn+PmzZtwcHCQ2szNzTF06FBERETgu+++w7p16wBAqj+em5tb4jovXLiAvLw8LFy4EG5ubrCzs8PDhw/l+qipqRUaq169esjNzcXjx48LXR9TU9Mi52rTpg0qV66M+fPnF3k8OTkZAODg4IDTp0/L/XIgOjoaOjo6MDMzK3FNJSnpur6ufv36uHHjRqE12tjYSL/EuHPnDr799lusW7cOrq6u6NOnz3sl20uDO75JHhPfREREREREREQfXWZmJhITE+XaVFRUULly5VKdP2TIENy7dw9HjhxBUlKS1G5oaCgleQcOHCglL19/cOO76tWrFxYsWAAfHx8EBwfDzMwMCQkJiIiIwPjx44tMwD59+hRdu3ZF//794eTkBB0dHZw/fx7z58+Hj48PAEBDQwNubm6YO3curKys8PjxY0ydOrXIGIKDg1GpUiWYmJhgypQpqFy5Mjp16gQAGD16NNq2bQs7Ozs8f/4cx44dk9ZvaWkJQRAQGRmJdu3aQUNDo9hd2DY2NsjOzsby5cvh7e2N6OhorFmzRq5P9erVkZaWhiNHjsDZ2Rmampqws7NDr1694Ofnh4ULF6JevXpISkrCkSNH4OTkhPbt2xeaS0tLC+vXr0fXrl3RsWNHjBw5EjY2Nnjy5Am2bduGu3fvYuvWrRg2bBiWLFmCgIAAjBgxAjdu3EBgYCDGjBkjV67mXb3tur5p+vTp6NChAywsLPDVV19BSUkJly5dwl9//YWZM2ciNzcX33zzDTw9PdGvXz94eXnB0dERCxcuxLhx49471uJwxzfJK0h837yp2DiIiIiIiIiIiP5DDh48iCpVqsi9vvjii1Kff+LECTx69Ai1atWSG6OgvAQA2NraokmTJqhZsyZcXV3fO2ZNTU2cPHkSFhYW6NKlCxwcHDBgwABkZGRAV1e3yHO0tbXh6uqKxYsXo1mzZqhTpw6mTZuGQYMGYcWKFVK/n3/+GTk5OXBxccHo0aMxc+bMIsebO3cuRo0aBRcXFyQmJmLv3r1yu7mHDx8OBwcHeHl5wc7ODqtWrQIAVKtWDUFBQZg4cSJMTEwwYsSIYtfp7OyMRYsWYd68eahTpw5CQ0MxZ84cuT5NmjTB0KFD0b17dxgZGUk7tkNCQuDn54fvvvsO9vb26NSpE86dOyfV4C6Kj48PYmJioKqqip49e6JmzZr4+uuvkZKSIl2HatWqYf/+/Th79iycnZ0xdOhQDBgwoNhfEJTV267rmzw9PREZGYnDhw+jYcOGcHNzw+LFi2FpaQkAmDVrFhISErB27VoAQJUqVfDjjz9i6tSpuHTpUrnEWxRBLG3F9AosNTUVenp6SElJKfaH8j/j8mXA2RkwMACePs2v+01ERERERERE9BnIyMhAXFwcrKys5GoLUz5RFGFra4thw4ZhzJgxig6HPkHHjx9HixYt8Pz5c+jr6yssjrf9LJc2l8tSJySv4CEKz58DT54A/19TiYiIiIiIiIiIPl9JSUnYunUrEhMT0a9fP0WHQ/TBMfFN8jQ1AQsL4O7d/DrfTHwTEREREREREX32jI2NUblyZfz4448wMDBQdDhEHxwT31SYvf2/ie8y1JIiIiIiIiIiIqJPE6sdU2l4eHhUmHuFD7ekwviASyIiIiIiIiIiIvqMMfFNhdnZ5f9544Zi4yAiIiIiIiIiIiJ6B0x8U2EFO76Z+CYiIiIiIiIiIqLPEBPfVFhB4vvOHSAnR7GxEBEREREREREREZURE99UmLk5oKEBZGcD8fGKjoaIiIiIiIiIiIioTJj4psKUlABb2/z3LHdCREREREREREREnxkmvqlofMAlEREREREREVGFEx8fD0EQEBsbq+hQiD4oJr6paHzAJRERERERERHRR9O3b18IggBBEKCmpgYbGxsEBwcj5zN4/lr16tWxZMkSRYdBJEdF0QHQJ4qJbyIiIiIiIiKij8rLywshISHIzMzE/v37MXz4cKiqqmLSpEly/XJzcyEIApSUuKeVqDj86aCiFSS+b95UbBxERERERERERO9IFIGXLxXzEsWyx6uurg5TU1NYWlrC398frVq1wp49e7Bhwwbo6+tjz549qFWrFtTV1XH37l3k5eUhODgYZmZmUFdXR926dXHw4EG5Mc+ePYt69epBJpOhQYMGuHjxotzxgrFft3v3bgiCINe2d+9eNGzYEDKZDJUrV0bnzp0BAB4eHkhISMC3334r7Vgn+hRwxzcVraDG96NHQGoqoKur2HiIiIiIiIiIiMooPR3Q1lbM3GlpgJbW+42hoaGBp0+fAgDS09Mxb948rF+/HpUqVYKxsTGWLl2KhQsXYu3atahXrx5+/vlndOzYEf/73/9ga2uLtLQ0dOjQAa1bt8bmzZsRFxeHUaNGlTmOffv2oXPnzpgyZQp++eUXZGVlYf/+/QCAiIgIODs7Y/DgwRg0aND7LZioHDHxTUXT1weMjYHHj/N3fTdooOiIiIiIiIiIiIj+E0RRxJEjR3Do0CEEBAQAALKzs7Fq1So4OztL/X744QdMmDABPXr0AADMmzcPx44dw5IlS7By5UqEhYUhLy8PP/30E2QyGWrXro379+/D39+/TPHMmjULPXr0QFBQkNRWEIehoSGUlZWho6MDU1PT9106Ublh4puKZ2+fn/i+cYOJbyIiIiIiIiL67Ghq5u+8VtTcZRUZGQltbW1kZ2cjLy8PPXv2xIwZM7B9+3aoqanByclJ6puamoqHDx/C3d1dbgx3d3dcunQJAHDt2jU4OTlBJpNJxxs3blzmuGJjY7mbmz47THxT8eztgago1vkmIiIiIiIios+SILx/uZGPqUWLFli9ejXU1NRQtWpVqKj8m7rT0ND4IPWzlZSUIL5RkDw7O1vus4aGRrnPS/Sh8eGWVLyCB1zeuKHYOIiIiIiIiIiI/gO0tLRgY2MDCwsLuaR3UXR1dVG1alVER0fLtUdHR6NWrVoAAAcHB1y+fBkZGRnS8TNnzsj1NzIywosXL/Dy5UupLTY2Vq6Pk5MTjhw5UmwsampqyM3NffviiD4yJr6peAUPuGTim4iIiIiIiIjokzNu3DjMmzcP4eHhuHHjBiZOnIjY2FjpAZY9e/aEIAgYNGgQrl69iv379+OHH36QG8PV1RWampqYPHky7ty5g7CwMGzYsEGuT2BgILZs2YLAwEBcu3YNV65cwbx586Tj1atXx8mTJ/HgwQM8efLkg6+bqDSY+KbiFez4vnkTyMtTbCxERERERERERCRn5MiRGDNmDL777js4Ojri4MGD2LNnD2xtbQEA2tra2Lt3L65cuYJ69ephypQpcglrIP/hlJs3b8b+/fvh6OiILVu2YMaMGXJ9PDw8sH37duzZswd169bFl19+ibNnz0rHg4ODER8fD2traxgZGX3wdROVhiC+WcTnPyg1NRV6enpISUmBrq6uosP5dGRn5z+JIScHuHsXMDdXdERERERERERERMXKyMhAXFwcrKys5B7oSESfl7f9LJc2l8sd31Q8VVWgRo3893zAJREREREREREREX0mmPimt+MDLomIiIiIiIiIiOgzw8Q3vR0fcElERERERERERESfGSa+6e2445uIiIiIiIiIiIg+M0x809sVJL5Z45uIiIiIiIiIPhOiKCo6BCJ6D+XxM8zEN71dQeI7Ph7IyFBoKEREREREREREb6OsrAwAyMrKUnAkRPQ+0tPTAQCqqqrvPIZKeQVDFZSxMaCrC6SmArdvA3XqKDoiIiIiIiIiIqIiqfwfe3ceHlV99n/8nQBhT9hBZSkiqMimQgEXiiKLgKgVBWW1fWrlB1qrLRREbW0Vt1q11kdbn6JsgrgrIqggVgQXQHZQUUBkVTBBgQDJ/P74NgQEMQlJziR5v67rXHPmzMnMPX9AZj65z/0tXZoKFSqwbds2ypQpQ2KiPZ9SURKLxdi1axdbt26lSpUqB/6YlRcG3zq6hITQ9f3BB2HOt8G3JEmSJEmKUwkJCRx33HF8/vnnrFu3LupyJOVRlSpVqFOnzjE9h8G3ftzBwbckSZIkSVIcS0pKonHjxo47kYqoMmXKHFOndxaDb/04F7iUJEmSJElFSGJiIuXKlYu6DEkRctCRflxW8G3HtyRJkiRJkqQiwOBbP65Jk3C7ejXEYtHWIkmSJEmSJEk/wuBbP65x43C7Ywd89VW0tUiSmqlmOAAAIABJREFUJEmSJEnSjzD41o+rUAHq1w/7zvmWJEmSJEmSFOcMvpUzzvmWJEmSJEmSVEQYfCtnDL4lSZIkSZIkFREG38qZgxe4lCRJkiRJkqQ4ZvCtnLHjW5IkSZIkSVIRYfCtnMkKvtesgf37o61FkiRJkiRJko7C4Fs5U68elCsH+/bB2rVRVyNJkiRJkiRJP8jgWzmTmAiNG4d9x51IkiRJkiRJimMG38o553xLkiRJkiRJKgIMvpVzWcH3xx9HW4ckSZIkSZIkHYXBt3LOjm9JkiRJkiRJRYDBt3LO4FuSJEmSJElSEWDwrZxr0iTcbtoEaWnR1iJJkiRJkiRJP8DgWzlXpQrUqhX2nfMtSZIkSZIkKU4ZfCt3XOBSkiRJkiRJUpwz+FbuOOdbkiRJkiRJUpwz+FbuGHxLkiRJkiRJinMG38qdU08Nt++/D7FYtLVIkiRJkiRJ0hEYfCt3OnaEChXg889hwYKoq5EkSZIkSZKkwxh8K3cqVoSePcP+lCnR1iJJkiRJkiRJR2Dwrdy74opw+/TTjjuRJEmSJEmSFHcMvpV73btDpUqwfj28917U1UiSJEmSJEnSIQy+lXvly0OvXmHfcSeSJEmSJEmS4ozBt/Ima9zJ1KmQmRltLZIkSZIkSZJ0EINv5U23bpCcDF9+Ce++G3U1kiRJkiRJknSAwbfypmxZuOSSsO+4E0mSJEmSJElxxOBbedenT7h95hnIyIi2FkmSJEmSJEn6L4Nv5d0FF0DVqrB5M/znP1FXI0mSJEmSJEmAwbeORVISXHpp2HfciSRJkiRJkqQ4YfCtY5M17uTZZ2H//mhrkSRJkiRJkiQMvnWszjsPqleHbdvgrbeirkaSJEmSJEmSDL51jMqUgcsuC/uOO5EkSZIkSZIUBwy+deyyxp089xzs2xdtLZIkSZIkSZJKPINvHbuf/Qxq1YLt2+HNN6OuRpIkSZIkSVIJZ/CtY1eqFPTuHfYddyJJkiRJkiQpYgbfyh9Z406efx7S06OtRZIkSZIkSVKJZvCt/HHOOXDccZCaCjNnRl2NJEmSJEmSpBLM4Fv5IzERLr887D/9dLS1SJIkSZIkSSrRDL6Vf7LGnbz4IuzZE20tkiRJkiRJkkosg2/ln3btoF492LkTpk+PuhpJkiRJkiRJJZTBt/JPYiJccUXYd9yJJEmSJEmSpIgYfCt/ZQXfL78Mu3ZFW4skSZIkSZKkEsngW/mrTRto2BC++w6mTYu6GkmSJEmSJEklkMG38ldCQnbX95Qp0dYiSZIkSZIkqUQy+Fb+ywq+p02Db7+NthZJkiRJkiRJJY7Bt/Lf6afDSSfBnj1h1rckSZIkSZIkFSKDb+W/hATo0yfsO+5EkiRJkiRJUiEz+FbByAq+p0+HtLRoa5EkSZIkSZJUokQafI8ZM4Y2bdpQuXJlatWqxSWXXMLq1asPOadjx44kJCQcsl177bWHnLN+/Xp69OhBhQoVqFWrFr///e/Zv39/Yb4VfV+zZnDKKbB3L7z4YtTVSJIkSZIkSSpBIg2+58yZw9ChQ5k/fz6vv/46+/bto0uXLnz33XeHnPerX/2KTZs2HdjuueeeA49lZGTQo0cP9u7dy7vvvsuTTz7JE088wa233lrYb0cHc9yJJEmSJEmSpIgkxGKxWNRFZNm2bRu1atVizpw5dOjQAQgd361ateKBBx444s9Mnz6dnj17snHjRmrXrg3Ao48+yogRI9i2bRtJSUk/+rppaWmkpKSQmppKcnJy/r2hkm7FCjjtNChTBrZsgapVo65IkiRJkiRJUhGW0yw3rmZ8p6amAlCtWrVDjk+cOJEaNWrQrFkzRo4cya5duw48Nm/ePJo3b34g9Abo2rUraWlpLF++/Iivk56eTlpa2iGbCkDTpmHkyb598MILUVcjSZIkSZIkqYSIm+A7MzOTG264gbPPPptmzZodOH7VVVcxYcIEZs+ezciRIxk/fjz9+/c/8PjmzZsPCb2BA/c3b958xNcaM2YMKSkpB7Z69eoVwDsS4LgTSZIkSZIkSYWudNQFZBk6dCjLli3jnXfeOeT4Nddcc2C/efPmHHfccXTq1Ik1a9bQqFGjPL3WyJEjufHGGw/cT0tLM/wuKFdcAbfcAm+8AV99BTVqRF2RJEmSJEmSpGIuLjq+hw0bxiuvvMLs2bOpW7fuUc9t27YtAJ9++ikAderUYcuWLYeck3W/Tp06R3yOsmXLkpycfMimAtKkCbRqBRkZMGwYfPtt1BVJkiRJkiRJKuYiDb5jsRjDhg3j+eefZ9asWTRs2PBHf+ajjz4C4LjjjgOgffv2LF26lK1btx445/XXXyc5OZmmTZsWTOHKnVGjIDExjDs580xYtCjqiiRJkiRJkiQVY5EG30OHDmXChAlMmjSJypUrs3nzZjZv3szu3bsBWLNmDX/+859ZsGABa9eu5aWXXmLgwIF06NCBFi1aANClSxeaNm3KgAEDWLx4MTNmzGD06NEMHTqUsmXLRvn2lOXyy2H2bKhbFz7+GNq1g7//HWKxqCuTJEmSJEmSVAwlxGLRpY8JCQlHPD527FgGDx7MF198Qf/+/Vm2bBnfffcd9erV49JLL2X06NGHjCdZt24dQ4YM4a233qJixYoMGjSIu+66i9KlczbCPC0tjZSUFFJTUx17UpC+/hp+8Qt46aVwv1cv+Pe/oXr1aOuSJEmSJEmSVCTkNMuNNPiOFwbfhSgWg4cfht/9DvbuDV3gEydChw5RVyZJkiRJkiQpzuU0y42LxS1VgiQkwHXXwfz5YeHLDRvgvPPg9tvDApiSJEmSJEmSdIwMvhWN00+HBQtg0CDIzITbboNOneDLL6OuTJIkSZIkSVIRZ/Ct6FSqBE88AePGQcWKMGcOtGwJr7wSdWWSJEmSJEmSijCDb0VvwABYuDB0gX/9NVx0Efz2t5CeHnVlkiRJkiRJkoogg2/FhyZNYN48uOGGcP+BB+C00+Dqq+HBB+HttyE1NdoaJUmSJEmSJBUJpaMuQDqgbFn429/CrO/Bg2HNmrAdrGHD0BneqlX2VrduWDRTkiRJkiRJkoCEWCwWi7qIqKWlpZGSkkJqairJyclRlyOAHTvCzO+PPgrbokWwfv2Rz61ePTsEb9MGzj47hOGSJEmSJEmSipWcZrkG3xh8Fxnbt8PixdlB+EcfwYoVkJFx+LkNGoQAPGtr1gxKlSr8miVJkiRJkiTlG4PvXDD4LsL27IHly0MIvnBhmBO+eDFkZh56XnIytGuXHYS3bQuVKkVTsyRJkiRJkqQ8MfjOBYPvYmbnTnjvPZg7N2zz54djBytVClq2hPPOg1tvDcG4JEmSJEmSpLhm8J0LBt/FXEYGLF2aHYTPnXvovPABA2DcuOjqkyRJkiRJkpQjBt+5YPBdAm3YANOnwzXXQGIirFoFjRtHXZUkSZIkSZKko8hplptYiDVJ8aNuXfjVr6BnzzAP/I47oq5IkiRJkiRJUj4x+FbJdttt4XbCBFizJtpaJEmSJEmSJOULg2+VbK1bQ/fuYQ64Xd+SJEmSJElSsWDwLd16a7gdNw4++yzaWiRJkiRJkiQdM4NvqW1b6No1dH3feWfU1UiSJEmSJEk6RgbfEmTP+n7ySVi7NtJSJEmSJEmSJB0bg28JoH176NwZ9u+361uSJEmSJEkq4gy+pSxZXd9jx8K6ddHWIkmSJEmSJCnPDL6lLGefDZ06ha7vMWOirkaSJEmSJElSHhl8SwfL6vr+979h/fpoa5EkSZIkSZKUJwbf0sHOPRc6doR9++Cuu6KuRpIkSZIkSVIeGHxL35fV9f1//wcbNkRbiyRJkiRJkqRcM/iWvq9jR+jQAfbuhbvvjroaSZIkSZIkSblk8C0dSVbX97/+BRs3RluLJEmSJEmSpFwx+JaO5Lzz4JxzID3drm9JkiRJkiSpiDH4lo4kISG76/uf/4RNm6KtR5IkSZIkSVKOGXxLP6RTJzjrLNizB+65J+pqJEmSJEmSJOWQwbf0Qw7u+n70Udi8Odp6JEmSJEmSJOVI6agLkOJa587Qti289x7cey/89a9RVyRJkiRJkqRiIBaDL7+EVatg377c/3zr1lCzZv7XVVwkxGKxWNRFRC0tLY2UlBRSU1NJTk6OuhzFm+nToXt3KF8ePv8cateOuiJJkiRJkiQVIenpsHw5LFkCixdnb9u35/05X30VLrww/2osKnKa5drxLf2Ybt2gTRv44AO4777Q+S1JkiRJkiQdwebNh4bbixeHru6MjMPPLVUKmjSBChVy/zr27x6dHd/Y8a0cmDYNevYM/wt9/jnUqhV1RZIkSZIkSYrQvn0h0P5+yL1165HPr1YNWrY8dGvaFMqWLdy6izo7vqX81L17GJz04Ydhzvfdd0ddkSRJkiRJkgrJV18dGm4vWQIrVsDevYefm5gIjRsfHnKfcAIkJBR+7SWVHd/Y8a0cevll6NULKlYMXd+uHiBJkiRJklSsZGTAxx8f3sW9ceORz09OhhYtDg24mzXL2+gS5Ywd31J+69kTzjwTFiyAP/8ZHnoo6ookSZIkSZKUR998c/hik8uWwZ49Rz7/xBMPDbhbtYIGDezijld2fGPHt3LhjTegc2coUwZWroRGjaKuSJIkSZIkST9i584Q6yxalB1yr1t35HMrVIDmzQ8NuZs3dzHJeGHHt1QQLrgAunaFGTPg5pth8uSoK5IkSZIkSdIRZGTAm2/C+PHw3HOwa9fh59Svf/gs7kaNwpxuFW12fGPHt3Jp8WI4/XSIxeD996FNm6grkiRJkiRJ0n8tWwbjxsHEiYfO5j7pJOjQITvgbtECqlaNrk7ljR3fUkFp2RL69w9/Lhw+HGbNcpiTJEmSJElShLZsgaeeCoH3okXZx6tVg759YeBA+OlPjXBKEju+seNbebBuHTRpAnv3wrRp0L171BVJkiRJkiSVKLt3w0svhbB7xoww2gTC0mw9e4awu3t3SEqKtk7lLzu+pYLUoAFcfz3cdx+MGBHmfpcqFXVVkiRJkiRJxdaOHdkLU374YQi909KyH2/bNoTdffpA9erR1an4YMc3dnwrj7ZvD6sdfPMN/PvfcPXVUVckSZIkSZJU5GVkwJo12SF31vbFF4efW78+DBgQtpNPLvxaVfjs+JYKWrVqMGpUmPN9661hYFT58lFXJUmSJEmSVKSsXAmzZ2cH3EuXwq5dRz73Jz/JXpjy/PPDYpWJiYVarooIg2/pWFx3HTz8MKxfDw89FMaeSJIkSZIk6ai2bYPJk8N87g8/PPzx8uWhWbMQcmdtLVpASkrh16qiyVEnOOpEx2jcOBg0KPzPu2aNQ6QkSZIkSZKOYM8eeOWVEKVMnw7794fjpUuH7u0zz8wOuRs3djk1HZmjTqTC0q8f/PWvsGQJ3HEH3H9/1BVJkiRJkiTFhVgM5s0LYfeUKWGptCxt2mQvRlmzZnQ1qniy4xs7vpUPZsyAbt0gKQlWrYKGDaOuSJIkSZIkKTKffQbjx4dtzZrs43XrZi9Geeqp0dWnosuOb6kwdekCnTrBm2/C6NEwcWLUFUmSJEmSJOXZ/v0h5pg6FbZvz93PbtoE8+dn369YEXr3Dt3dHTu6GKUKhx3f2PGtfLJgAbRunb1/xhnR1iNJkiRJkpRLS5aEsSSTJoUAO68SEuCCC0LYfemlIfyW8oMd31JhO/NMuPJKeOopGDECXn896ookSZIkSZJ+1ObNIegeNw4WL84+Xr069O0LzZvn7vnKloXOneGEE/K3Tik37PjGjm/lo88/h5NPhn37wtzvLl2irkiSJEmSJOkwu3fDiy+GsHvmTMjICMfLlIGLLgqd2hdeGJYzk+KJHd9SFBo2hKFD4YEHYPjwcE2Pg6skSZIkSVIB2LcPMjNzfn4sBu+/H8LuqVMhLS37sfbtQ9h9xRVQrVr+1yoVNju+seNb+eyrr6BRo/DbY9y4sEyxJEmSJElSPvjmmxBajx8P//nPsT1XgwYh7B4wABo3zp/6pIJmx7cUlRo1YOTIsI0eDZdfDuXKRV2VJEmSJEkqovbtC+NIxo0L40nS0/P+XJUrh67ugQPhnHO8UF3Fl8G3VBB+8xt4+GFYvz7c/u53UVckSZIkSZKKkFgMFi0Knd2TJsHWrdmPnXZa3seSVKgApU0EVQI46gRHnaiA/Pvf8MtfQtWqsGZNuJUkSZIkSTqKL7+EiRNDd/fy5dnHa9WCq64KgXerVpCQEF2NUpRymuUafGPwrQKSkQEtW4bfUldeCXffDfXqRV2VJEmSJEkqQJmZ8O678Mknufu5XbvCGJM33gjd3gBly8LFF4ewu0sXKFMm/+uVihqD71ww+FaBefVV6NEj7CckwAUXwNVXwyWXQPny0dYmSZIkSZLyzSefhLEk48fD2rXH9lznnhvC7t69oUqVfClPKjYMvnPB4FsF6rnn4KGHYM6c7GMpKdC3LwweDG3ben2SJEmSJElF0PbtMGVKCLvnzcs+XrkynHUWlCqV8+dKSIA2bWDAADjxxPyvVSouDL5zweBbheKzz+DJJ8O2bl328VNOCQH4gAFw/PGRlSdJkiRJkn7c3r0wfXqYwf3KK+E+QGIidO0aOrV79QqLSErKfwbfuWDwrUKVmQlvvQVPPAHPPAO7d4fjWb8hr746/IYsWzbKKiVJkiRJ0n/FYvDBB6Gz+6mn4Ouvsx9r2TKE3VdeCccdF12NUklh8J0LBt+KTFoaTJ0KY8fC3LnZx6tVg4cfDr81JUmSJElSJNavhwkTQnf36tXZx+vUgX79wsXbLVtGV59UEhl854LBt+LCJ5+ELvBx42DDhnDswQfh+usjLUuSJEmSpJJk586wXNe4cTB7duj2BihfHi69NHR3d+oEpUtHW6dUUhl854LBt+JKRgbceGNYEBNg9Gi4/XYXwJQkSZIkqYBkZISQ+8knQ+i9a1f2Yx07hs7u3r3B2EiKXk6zXP82JcWbUqXggQegZk245Rb4y19g2zb4xz9ytxy0JEmSJEk6qhUrQmf3hAnw5ZfZxxs3Dp3d/fvDT34SWXmSjoHBtxSPEhJCp3fNmjBkCDz2WFg5Y8IEF72UJEmSJOkYbNsGkyeH7u4FC7KPV60KffuGwLttWy+8loo6g28pnv3611C9elgx45lnYPt2eOEFqFw56sokSZIkSYprsRisXQuLFx+6ffZZ9jmlS0P37iHs7tnTXjOpODH4luJd797hz86XXAKzZsF558H06aEbXJIkSZIksWsXLFt2aMC9ZAmkpR35/DPOgEGD4Mor/XotFVcG31JR0KlTWGXjwgvDdVjnnAMzZ0KDBlFXJkmSJElSodq8GT766NDtk08gM/Pwc8uUgaZNoWXLQ7caNQq/bkmFy+BbKipat4Z33oEuXeDjj+Gss0L4fdppUVcmSZIkSVK+y8gIX38PDrgXL4YtW458fq1ah4bbLVrAKadAUlLh1i0pPhh8S0XJySfD3LnQtWtYevrcc2HaNGjfPurKJEmSJEnKs507w2iSrDElH30ES5fC7t2Hn5uYGL4et2oVtqygu06dwq9bUvwy+JaKmrp14T//gR49YP58uOCCsPDlhRdGXZkkSZIkSUeVkwUnD1ahQgi1s0LuVq2gWbNwXJKOxuBbKoqqVYM33ggLX772GvTqBU88Af36RV2ZJEmSJElAWHBy6dJDO7mPtuDk8ccfHnI3agSlShVu3ZKKh4RYLBaLuoiopaWlkZKSQmpqKsnJyVGXI+Xc3r0weDA89VS4f+mlcNdd0KRJpGVJkiRJkkqOWAw2bDi8i/uTT8Jj31emTFiuKmsOtwtOSsqNnGa5dnxLRVlSEkyYAPXqwX33wfPPw8svw5AhcOutfmqQJEmSJOWrPXvCklMHB9xLlsD27Uc+//sLTrZsGRacLFOmcOuWVPLY8Y0d3yomli+H4cPh1VfD/eRkGDUKfvMbKFcu2tokSZIkSUXW3r2ht+qVV2DVKsjIOPycUqVCoP39kNsFJyXlt5xmuQbfGHyrmHnzTfjd78IS2AD168Odd8KVV4alryVJkiRJyqHvvoPLLoMZM7KPVa16eMDdtKk9V5IKh8F3Lhh8q9jJzAwjUG6+OQxaAzjjDPjrX6Fjx0hLkyRJkiQVDdu3Q48eMH8+VKgAjzwC558PdetCQkLU1UkqqXKa5dr+KRVHiYkwcCB8/HHo9q5cGRYuhPPOg169YOXKqCuUJEmSJMWxDRvg3HND6F21KrzxBgwaFJaYMvSWVBQYfEvFWfnyMHIkfPopDB0ahq69/DI0bx4WwNy6NeoKJUmSJElxZvVqOPvssIjlCSfAf/4D7dtHXZUk5Y7Bt1QS1KoFDz8cFsC8+OKwEsmjj0LbtvD111FXJ0mSJEmKEx9+COecA+vXQ5MmMHcunHZa1FVJUu4ZfEslycknwwsvwJw50LAhrF0L/fodeUluSZIkSVKJ8uabYULmV19B69bwzjvQoEHUVUlS3hh8SyVRhw7w4othFMqMGfCXv0RdkSRJkiQpQs88A927w7ffQqdOMGsW1KwZdVWSlHcG31JJ1bw5/POfYf9Pf4LXXou2HkmSJElSJB57DK64Avbuhd69Ydo0qFw56qok6dgYfEslWf/+YZHLWCyMPFm7NuqKJEmSJEmFJBYLFwBfe23Y//WvYfJkKFs26sok6dgZfEsl3d/+Bm3awPbt4U/7e/ZEXZEkSZIkqYBlZsINN8Att4T7t9wC//u/UKpUtHVJUn4pHXUBkiJWtmwY5nbGGbBgQfjk8+ijUVclSZIkScqhjAzYty90bWdtmZmH3j94y8iAG2+EiRPDzz/4IFx/fbTvQZLym8G3JKhfP3ziufDCMNytfXsYNCjqqiRJkiRJR5GZCffeC7ffDrt25f7nS5eGJ5+Eq67K/9okKWqOOpEUdO0Kf/xj2L/2Wli8ONJyJEmSJEk/bPNm6NYN/vCHvIXederAyy8beksqvgy+JWUbPTp0fe/ZA5ddBt98E3VFkiRJkqTvmTkTWraE11+H8uXhX/+C1FRIS4OdO+Hbb0MYvnt3+HqXng5798L+/WHMSWYmbNoUgnNJKq4MviVlS0yE8eOhQQNYswYGDw4D4CRJkiRJkdu3L3R4d+0KW7dC8+bw4YfwP/8DyclQuTJUqgQVK4ZAvFy5sKxTUhKUKRMWrkxMhISEqN+JJBU8g29Jh6pePSx2mZQEL74I99wTdUWSJEmSVOJ9/jmcey7cfXe4P2QIvPceNG0abV2SFK8MviUdrnVrePjhsD9qFMyeHW09kiRJklSCPf00tGoVgu4qVUKv0iOPhK5uSdKRGXxLOrL/+Z8w6iQzE/r2hS+/jLoiSZIkSSpRdu2Ca66BPn3C/O727eGjj8KSTJKkozP4lnRkCQnwj3+EFVO2boUrrggD5SRJkiRJBW7ZMmjTJixcmZAQLsadMycsySRJ+nEG35J+WIUK4Rq6lBR4910YPjzqiiRJkiSpWIvF4LHHQui9YgXUqQMzZ8Idd4QFKiVJOVM66gIkxbmTToInn4RLLoEHHoDPPgszwE8/PWzHH++S4JIkSZKKpYwM+OSTMF5k8WJYtSr3F8LGYofe/tixHTvggw/CfteuMG4c1KqVt/olqSRLiMUO/m+2ZEpLSyMlJYXU1FSSk5OjLkeKT6NHhxaD76tZMzsEP/10OOMMaNQIEr2gRJIkSVLRsXMnLFmSHXJ/9FEYN7J7d+HXUro0jBkDN97oVytJ+r6cZrkG3xh8Szn27rswfz4sWhS2lSvD4pffV7lymA1++unQoUNYecWucEmSJElxYv9+mD07fL3JCrrXrDnyuRUqQIsW4StOs2ZQsWLuXy/r69DBX4uOdqxNGzj55Ny/jiSVBAbfuWDwLeXR7t2wdGkIwRcuDLdLl8KePYee9+qrcOGF0dQoSZIkSf+1eHEYHTJxImzZcvjjJ5wArVqFkDvrtlEjKFWq8GuVJB1ZTrNcZ3xLyrvy5eGnPw1blv37w+C7RYtg7NjQRjFxosG3JEmSpEhs3AiTJoXAe+nS7OM1aoSvKVkBd8uW4ZgkqXgw+JaUv0qXDtf/NWsWFsY86yx48cXQHV6+fNTVSZIkSSoBdu2CF14IYffrr2dPaExKgl69YOBA6NYNypSJtk5JUsEx+JZUcNq1g/r1Yf36MO7kssuirkiSJElSMZWZCW+/HcLuqVPh22+zHzvrrBB2X3EFVK0aXY2SpMJj8C2p4CQkQJ8+cO+9MGWKwbckSZKko9qxA55+GmbMgL17c/ezS5eGnpssDRuGsLt//3AxqiSpZIk0+B4zZgzPPfccq1atonz58px11lncfffdnHzQ0sV79uzhpptuYvLkyaSnp9O1a1ceeeQRateufeCc9evXM2TIEGbPnk2lSpUYNGgQY8aMoXRpc30pclnB9yuvhJaLSpWirkiSJElSHNm3D157LXRqv/RS7gPvg6WkhK7ugQPh7LNDL44kqWSKNBmeM2cOQ4cOpU2bNuzfv59Ro0bRpUsXVqxYQcWKFQH47W9/y7Rp05g6dSopKSkMGzaMn//858ydOxeAjIwMevToQZ06dXj33XfZtGkTAwcOpEyZMtx5551Rvj1JAGecEdorPv0UXn4Zrrwy6ookSZIkRSwWgwULYPz4sPDkV19lP9a8OVx1FRzU75Yj1atD584uLSRJChJisVgs6iKybNu2jVq1ajFnzhw6dOhAamoqNWvWZNKkSfTu3RuAVatWceqppzJv3jzatWvH9OnT6dmzJxs3bjzQBf7oo48yYsQItm3bRlJS0o++blpaGikpKaSmppKcnFyg71EqkUaPhjvugIsvDivMSJIkSSqRNmyACRNCd/fKldnHa9eGfv1Cp3bLltHVJ0mKfznNcuNqFkhqaioA1apVA2DBggXs27ePCy644MA5p5xyCvXr1z8QfM+bN4/mzZsfMvqka9euDBkyhOV9JcVaAAAgAElEQVTLl3P66acf9jrp6emkp6cfuJ+WllZQb0kSQN++IfiePh2++QaqVIm6IkmSJEnAnj1h1EhB2rsXpk0LYfesWaHbG6BcObjkkhB2d+4MTiuVJOWnuPm1kpmZyQ033MDZZ59Ns2bNANi8eTNJSUlU+V5IVrt2bTZv3nzgnNrfu/4p637WOd83ZswY/vSnP+X3W5D0Q5o1g6ZNYcUKePFFGDQo6ookSZKkEi0Wg5tvDsvx7N9fuK/doUMIu3v3DjO5JUkqCIlRF5Bl6NChLFu2jMmTJxf4a40cOZLU1NQD2xdffFHgrymVeH37httC+DcuSZIk6Yft3w+/+AWMGVN4ofdJJ8Htt8Nnn8GcOfDLXxp6S5IKVlx0fA8bNoxXXnmFt99+m7p16x44XqdOHfbu3cs333xzSNf3li1bqFOnzoFz3n///UOeb8uWLQceO5KyZctStmzZ/H4bko6mTx+49VZ4442wck2NGlFXJEmSJJU4u3eHnpSXXoJSpeCf/wwLSRa0cuUK/jUkSTpYpB3fsViMYcOG8fzzzzNr1iwaNmx4yONnnnkmZcqU4c033zxwbPXq1axfv5727dsD0L59e5YuXcrWrVsPnPP666+TnJxM06ZNC+eNSPpxTZpAq1ahpeS556KuRpIkSSpxUlOhW7cQepctGz6W/+IXIZQu6E2SpMIWafA9dOhQJkyYwKRJk6hcuTKbN29m8+bN7N69G4CUlBR++ctfcuONNzJ79mwWLFjA1VdfTfv27WnXrh0AXbp0oWnTpgwYMIDFixczY8YMRo8ezdChQ+3qluJN1riTKVOirUOSJEkqYTZvhp/9DN5+G5KTYeZM6NUr6qokSSo4CbFY1nrKEbx4QsIRj48dO5bBgwcDsGfPHm666Saeeuop0tPT6dq1K4888sghY0zWrVvHkCFDeOutt6hYsSKDBg3irrvuonQOl4ROS0sjJSWF1NRUkpOTj/l9SfoBn38OJ54IiYnw5ZfwA+OIJEmSJOWfNWugS5cwX7t2bXjttXAxpiRJRVFOs9xIg+94YfAtFaJ27eC99+Dvf4dhw6KuRpIkSSrWFi+Grl1hy5bQgzJzJjRqFHVVkiTlXU6z3EhHnUgqgfr0CbeOO5EkSZIK1H/+E8abbNkCLVrAO+8YekuSSg6Db0mF64orICEhfOr+4ouoq5EkSZKKpZdeCuNNUlPh3HNhzhw47rioq5IkqfAYfEsqXCecAOecE/anTo22FkmSJKkYeuIJ+PnPYc8euOgimDEDqlSJuipJkgqXwbekwte3b7idPDnaOiRJkqRi5t574eqrISMDBg2C556D8uWjrkqSpMLn4pa4uKVU6LZsgeOPh8zMsMT8iSdGXZEkSZIUV957D95/P3c/s2QJPP542L/pJrjnHki03U2SVMzkNMstXYg1SVJQuzacfz688UZY5HLkyKgrkiRJkuLCqlUwYkSY0Z1X99wDv/99/tUkSVJRZPAtKRp9+uRf8L1iBXz1Ve5+pm5dO80lSZIUN7ZsgT/+Ef71rzCmpFQpuPBCqFAh58+RmAiXXx7me0uSVNI56gRHnUiR2L49dH7v3w8rV8Ipp+TteUaNgjFjcv9zCQkwdmwYfChJkiRF5Lvv4P77Q5f2t9+GY716wd135/0jsiRJxZmjTiTFt2rVoEsXePXV0PV92225f46//S079G7SJITZOZGeDmvXwrXXQsuW0KpV7l9bkiRJOgYZGaEP49ZbYdOmcOynPw2LU3boEG1tkiQVB3Z8Y8e3FJnx42HgwNDKsmJFzoNrgIkToX//sD9mDPzhDzn/2czM0EYzbRo0bAgLFkDVqrmrXZIkScqDWAymT4fhw2H58nCsYcPwkfaKK3L3kViSpJIop1mu6ztLis7FF0PZsmEFn6VLc/5zr70GgweH/RtuCKv/5EZiYgjdTzwRPv88BOiZmbl7DkmSJCmXFi6ECy6AHj1C6F2tWriIceXKsASOobckSfnH4FtSdJKToXv3sD9lSs5+5r334LLLwmzwq66Cv/41b98QqlaFZ5+FcuXCuJU77sj9c0iSJEk5sHEjDBgAZ54Js2aF3o/f/x4+/TT0cZQtG3WFkiQVPwbfkqLVp0+4nTw5XPd5NKtWhfaYXbuga9cwFDHxGP4ba9UK/vd/w/5tt4VOckmSJCkfTZsGLVrAhAnhfr9+sHp1WMzSaXuSJBUcg29J0erZEypUgM8+C7O2f8iGDSHs/vpraNMGnnkGkpKO/fUHD4Zf/zqE7v36hUUvJUmSpGOUng433hg+7n79NZx+Onz4YQjAGzSIujpJkoo/g29J0apYES66KOxPnnzkc3bsgG7dYP16aNIktM1UqpR/NTz4YAjTt2+H3r1hz578e25JkiSVOJ9+CmefHeZ3A/zmNzBvXhh1IkmSCofBt6To9e0bbp9++vBFJnftCsH48uVw/PEwcybUrJm/r1+2bOggr149dJ1fd13+Pr8kSZJKjIkTQ3f3ggVh8coXX4QHHnCOtyRJhc3gW1L0unULC11+8UVohcmyf3+YAT53LlSpAjNmFNx1ofXrw1NPhYUyH38c/u//CuZ1JEmSVCx9+y1cfTX07x/2O3SAxYuhV6+oK5MkqWQy+JYUvXLl4JJLwv6UKeE2FoNrroFXXgmPv/wyNGtWsHV07gx/+UvYHzr06DPHJUmSpP/66CNo3RqeeCKsvf7HP8KsWVC3btSVSZJUchl8S4oPffqE26lTISMDRo2CsWOhVKkQhp9zTuHU8Yc/hNEq6elw2WVhJSJJkiTpCGIxePhhaNcOVq+GE04Igfdtt4WPsZIkKToG35LiwwUXhCGImzeH60Pvuisc/+c/C/f60MREGDcOGjWCdeugX78QxEuSJEkH2b4dLr00LA+Tng49e4bO75/9LOrKJEkSGHxLihdJSfDzn4f9yZPD7Zgx8ItfFH4tVarAs89C+fJhrvjttxfO66anhznnkiRJiluxGLz1FrRqFRauTEqCBx+El16CGjWirk6SJGUx+JYUP/r2zd7/zW9gxIjoamnZEh57LOzffjtMm1Zwr5WRAU8+CY0bh8U7n3224F5LkiRJObZ7N3zwQVj7/LrrQjd3tWpw3nmhX6Fx47A2+/XXhzXSJUlS/EiIxWKxqIuIWlpaGikpKaSmppKcnBx1OVLJlZEBw4ZBSgrceWcYOxK1oUPhkUdCF/iCBXDiifn33LFY6CgfMQKWLMk+/pOfwKpVULZs/r2WJEmSflAsBhs3wuLFh24ffwyZmYefX7o0DBgQOr0rVy78eiVJKslymuUafGPwLeko0tNDa89770H9+nDttWEGeb16x/a8CxfC8OHw5pvhfpUqYWHNBx+ETZvgb3+DG2449volSZJ0iL17YcWKEGwvWZIdcn/11ZHPr1EjXAx48HbqqWHEiSRJKnwG37lg8C3pqDZsgHbt4Msvw/2EhHB968CBYS55btp8Pv8cRo+GSZPC/aSkcN3sqFHhutnHH4df/Srsr1kTAnFJkiTlydath3dxr1wJ+/cffm6pUnDyydnhdosW4fa44xxjIklSPDH4zgWDb0k/Ki0NnnkGxo2DOXOyj1eoEMLvgQPh/PPDN6Yj+frrML7l4YdDmxGEzvE//zmMNsmyf3/4hrViRRiBctddBfaWJEmSipPMTHjnnbA0S1bIvXnzkc+tUuXwLu7TToNy5Qq3ZkmSlHsG37lg8C0pV9auhQkTQgj+ySfZx48/PoTZAweGb04QVkT6+99D6J2aGo5dcAHcfTecccaRn/+VV+Cii8KM748/DiNWJEmSdESffALjx4dt7dpDH0tICAtQZnVvZ2316tnFLUlSUWXwnQsG35LyJBYLs7/HjYPJk2HHjuzHzjgDunULj23YEI61bAn33ANduvz48553XugsHzQInniiwN6CJElSUbR9Ozz9dPioNW9e9vHKlcPFeGedFT56NWsGFStGV6ckScp/Bt+5YPAt6Zilp4fraseNC7cHD46sVw/+8hfo1++HR6F83/vvQ9u2oRVp0aLwzU2SJKkE27sXXnstfNx6+eXs6XGJidC1a7jorlevMIlOkiQVXwbfuWDwLSlfbdsGU6bArFmh3WjYsLwNjOzbNzxP167hW54kSVIJE4vBhx9mX2D31VfZj7VsGcLuq66COnWiq1GSJBUug+9cMPiWFJfWrIFTT4V9+2DmTOjcOeqKJEmSCsUXX2QvqbJqVfbxOnXCkioDBoS53ZIkqeTJaZZbuhBrkiTlRqNGMGQIPPQQjBgBnTqFa3klSZKKoZ074bnnQtg9e3bo9gYoXx4uvTR0d3fqBKX9FitJknLAjm/s+JYUx7Ztg5NOgrS00PbUr1/UFUmSJOWbjAx4800YPz6E3rt2ZT/WsWMIuy+7DPyaJkmSstjxLUnFQc2a8Ic/wKhRcPPN4ZtfXuaFS5IkxZFly0Jn98SJsHFj9vEmTWDQoPC3/gYNoqtPkiQVfQbfkhTvfvMb+Mc/YN26cHvTTVFXJEmSlCuxGKxfD88/HwLvRYuyH6tWDa68MnR3t2kDCQnR1SlJkooPR53gqBNJRcDYsfCLX0CVKmHRy2rVoq5IkiTpiPbsgeXLYfHi7G3JEtixI/ucMmWgZ88QdnfvDklJ0dUrSZKKFkedSFJxMnAg3H9/uC54zBi4996oK5IkSSVcLAabNoVQ++CQe/XqMLv7+0qXDh3d/ftDnz5QvXrh1yxJkkoOO76x41tSETF9enZL1OrV8JOfRF2RJEkqIfbuhZUrD+/i3rbtyOdXrw4tWx66nXoqlC1buHVLkqTix45vSSpuunWD88+HWbPglltg/PioK5IkScXQtm2HBtyLF4fQe9++w89NTISTTz485D7uOGd1S5KkaNnxjR3fkoqQBQugdeuwv3AhnH56tPVIkqQib9MmeOQR+OCDEHJv3nzk81JSDg+4TzsNypcv3HolSVLJZse3JBVHZ54JV10FkybB8OHw+utRVyRJkoqonTvhvvvCtmtX9vGEBGjU6PCQu359u7glSVLRYcc3dnxLKmI+/xxOOSUM25wxA7p0iboiSZJUhOzfD48/Dn/8I2zZEo61bx/W0m7ZEpo3h0qVIi1RkiTpB+U0y00sxJokSfmhYUMYOjTsDx8OGRnR1iNJkoqEWAxeeikE20OGhND7pJPgmWdg7ly49toQgBt6S5Kk4sDgW5KKoptvDoM2Fy+GiROjrkaSJMW599+Hjh3h4oth1SqoUQMeegiWL4fLLnOEiSRJKn4MviWpKKpeHUaNCvsjR8KaNdHWI0mS4tJnn0HfvtC2Lbz9NpQrFz46fPopXHcdJCVFXaEkSVLBMPiWpKLquuugSRPYuBHOOgsWLoy6IkmSFCe2b4cbbwzLgkyZEjq6Bw2Cjz+GO+8MF45JkiQVZwbfklRUlS8Pc+ZAq1awdSv87Gfw+utRVyVJkiK0Zw/cdx80agR/+xvs2wedO8OiRfDEE1CvXtQVSpIkFQ6Db0kqyurUCeH3+efDt99C9+7O/JYkqQTKzAwfAU45BX7/e/jmG2jRAmbMgJkzoWXLqCuUJEkqXAbfklTUJSfDq6+GAZ7790P//nD//VFXJUmSCsns2dCmTfgIsG4dnHACjB0bpqB16RJ1dZIkSdEw+Jak4qBs2dDmdcMN4f5NN8HvfhfavyRJUrG0fDn07Bku/Fq4ECpXhjvuCHO8Bw+GUqWirlCSJCk6Bt+SVFwkJoZO73vuCff/+lcYMAD27o22LkmSlK82bYJf/SqMMpk2DUqXhmHDYM0aGDUKKlSIukJJkqToGXxLUnGSkBAGe44bF74FT5oEPXrAzp1RVyZJko7Rzp1w221w0knw+OPhwq6f/zx0fv/971CzZtQVSpIkxQ+Db0kqjgYMgJdfhooV4Y03oGNH2LIl6qokSVIe7N8Pjz4KjRvD7bfDrl3Qvj288w48+yw0aRJ1hZIkSfHH4FuSiqtu3cJqVzVqhMGfZ50Fn34adVWSJCmHvv0WnnwSmjeHIUPC37AbNYKpU2HuXDj77KgrlCRJil8G35JUnLVpA+++Cw0bwmefhfD7ww+jrkqSJP2AjIxwsdbAgVC7dlikctUqqF4dHnoIVqyA3r3DdDNJkiT9sNJRFyBJKmCNG4fw+8IL4aOPwtiT++6DK6+ElJSoq5MkSYQ53ePGwYQJsHFj9vHGjWHQoLB4pb+2JUmSci4hFovFoi4iamlpaaSkpJCamkpycnLU5UhSwUhLCytgvflmuF+2LFx8cZgH3rUrlCkTbX2SJJUwW7fCU0+FwHvhwuzjVatC376h67ttW7u7JUmSDpbTLNfgG4NvSSVIenq4TvqJJ8K10llq1gzfsAcMgNatj+0b9t69sHp1aEurX/+YS5YkqTjZsyesPz1uHEyfHkabAJQuDT16hLC7R4/w92lJkiQdzuA7Fwy+JZU4sRgsWgTjx8OkSaHlLMspp4QAvF8/aNDg6M+xcSMsWRK2pUvD7cqVsH9/CM+vvhr+/Gc4/viCf0+SJMWpWCxMHRs3DqZMgdTU7Md++tMQdvfpE9ajliRJ0tEZfOeCwbekEm3/fpg5M4TgL7wQWtGy/OxnIQTv3h3Wr88Ot7O2HTuO/JyVK8POnWG/QgX43e/g97+HSpUK/v1IkhQn1qwJM7vHjQtrTGepVy/8eh0wIPy9WZIkSTln8J0LBt+S9F9pafDss+Eb+ltv/fj5pUrBySdD8+bQokXYmjcPI07mzQuB97x54dzatUP399VXh+u5JUkqhr75Bp5+OvwqnTs3+3ilStC7dwi7O3aExMTISpQkSSrSDL5zweBbko5g/XqYODF0gq9cGYLrg8PtFi3g1FOhXLkffo5YLATpI0Zkt7o1bQr33gsXXuhqXZKkYmHfPpgxI4TdL70UltSAEG537hzC7ksugYoVo61TkiSpODD4zgWDb0k6ilgMvvvu2MaU7N0LjzwSOr63bw/HOnWC++6DVq3yp05JkgrZsmXw+ONhuYxt27KPN2sGgwbBVVe5zIUkSVJ+M/jOBYNvSSokO3bAnXfCQw+FMDwhIazo9Ze/QN26UVcnSVKOTZgAgwdDRka4X7t2CLoHDoSWLb2oSZIkqaDkNMt1spwkqfBUrRrGnKxaBX37hm7yJ5+Exo1h9OgwY1ySpDj34INhfElGBnTrBq++Chs2wP33hwuZDL0lSZKiZ/AtSSp8DRvCU0/Be+/BuefCnj1wxx1w0klhJMq+fVFXKEnSYWKx8HfaG24I92+4AaZNC8tWuG6zJElSfDH4liRF56c/hTlz4PnnQ9f3tm0wdGgYjvrCCyFhkCQpDmRkwJAh4e+0EG7vvz8sYClJkqT448c0SVK0EhLgkktg+XJ4+GGoWRM+/hguvRQ6dID586OuUJJUwqWnhwldjz0Wgu7HHoNRoxxpIkmSFM8MviVJ8aFMmdDt/emnIU0oVw7eeQfat4crroA1a6KuUJJUAu3cCd27wzPPQFISPP00XHNN1FVJkiTpxxh8S5LiS3JyuH78k09g8ODQTjd1Kpx6ahim+vXXUVcoSSohtm2D886DWbOgUiWYPh0uuyzqqiRJkpQTBt+SpPhUty6MHQsffQRdu4YFLx98EBo1gnvuCQtiSpJUQNavh3POgQULoEYNmD0bzj8/6qokSZKUUwbfkqT41qIFvPYazJwJLVtCaiqMGAEnnwwTJrgApiQp361YAWedFZacqF8/TN5q3TrqqiRJkpQbBt+SpKKhc+fQdvfEE6EbfP16GDAgdIFLkpRP5s+Hc8+FL7+Epk1h7tzwt1ZJkiQVLQbfkqSio1QpGDQotOANHx6O/elPsH17tHVJkoqFGTOgU6fwa6VdO3j77fC3VkmSJBU9Bt+SpKKnfHm4805o3hy++QbGjIm6IklSEZaRAY8+ChddBLt2haUl3ngDqlePujJJkiTlVUIslrfhqJ988gmzZ89m69atZGZmHvLYrbfemi/FFZa0tDRSUlJITU0lOTk56nIkSTk1fTp07w5JSbB6NfzkJ1FXJEkqQmKxsIzE8OGwbFk4duWVYapWUlKkpUmSJOkH5DTLzVPw/a9//YshQ4ZQo0YN6tSpQ0JCQvYTJiSwcOHCvFUdEYNvSSqiYrFwTfrs2dC/P4wfH3VFkqQiYuHCEHi/+Wa4X7Uq3HorXH89JHpdrCRJUtwq0OC7QYMG/L//9/8YMWLEMRUZLwy+JakI+/BDaNMGEhLC4pennx51RZKkOLZ+Pdx8M0yYEO4nJYWwe9SoEH5LkiQpvuU0y81TL8OOHTu4/PLL81ycJEn5pnXrcF16LAbF5A+ykqT898034ddEkybZofdVV4VJWffea+gtSZJU3OQp+L788suZOXNmftciSVLe3HEHlCkDr78O/n6SJB1k71544AFo1AjuuQfS0+G888IFQxMnujyEJElScVU6Lz900kknccsttzB//nyaN29OmTJlDnn8+uuvz5fiJEnKkYYNYejQkGwMHw4XXOCAVkkq4WIxmDoVRo6Ezz4Lx5o2DeF39+5hQpYkSZKKrzzN+G7YsOEPP2FCAp9lfbIsIpzxLUnFwFdfhXa+tDQYNw4GDIi6IklSIYrFYO1aWLw4bNOmwQcfhMfq1IHbb4err4bSeWr9kSRJUrwo0MUt/z979x6nc53/f/xxjfMQQohIiYqYlBLZTuTQaUltOmlVmw5KSSUdbQe2tvqltNV2VDpo0Wk3nZBITjFCB6SoUMgMBmNmrt8f7y9jopoZM/OZw+N+u31u5vpcn7mu17W7XZvn9bper9LG4FuSSonhw0NrX+PGYWhr5cpRVyRJKgRpabBgQXbInZwM8+eHzz53VrVq+CLQwIFQrVo0tUqSJKlg5TbL3eN+h+25eczvCkqSojZgAIwcCcuXw6OPwqBBUVckSdpDmZnw0Ufw6afZIffixZCVteu1FSpAy5bQujUcfnjYfVy/ftHXLEmSpOjlu+N71KhR3H///SxevBiA5s2bc8MNN3BhCfxquR3fklSKPPssXHwx1KwJS5dCrVpRVyRJyodFi+D55+HFF+HHH3e9v25dSErKeRxySAi/JUmSVHoVasf3gw8+yG233Ub//v059thjAZg6dSqXX345a9as4brrrstf1ZIk7ak+feDBB8N34IcNg/vvL9rnz8yEGTPgqKNMXyQpj9asgZdfDoH3nDnZ52vVgq5dQxf39pDbTm5JkiT9nnwvtxw6dCh9+vTJcf7555/nzjvvZNmyZQVWYFGw41uSSpn//Q9OPRUqVoSvv4b99y+65+7bF557Dk48EV5/Hfz/FUn6XenpYRHlqFHhz23bwvny5cNbeZ8+4c9KlaKtU5IkScVDbrPchPw8+MqVK+nQocMu5zt06MDKlSvz85CSJBWc7t1D8JyeDrfdVnTPO2VKCL0BJk0KNfz0U9E9vySVEPE4zJoFV18NDRrAmWeGzwq3bYMjj4SHHw7jTV5/Pdxn6C1JkqS8ylfwfdBBBzFmzJhdzr/66qs0a9Zsj4uSJGmPxGJw333h5xdfhHnzCv85t22DK68MP596KuyzD3z2GXTsCN9+W/jPL0nFWEYGLFwIo0fDDTeEBZRHHx32EK9dC/vuG85//jnMng3XXBPeRiVJkqT8yteM76FDh3LOOecwZcqUHTO+p02bxocffrjbQFySpCLXti307g2vvAI33QTvvlu4zzdiREh1atcOw2nXroUuXWDxYujQAd57Dw47rHBrkKRiYMMGmD8/fOa4/ViwALZsyXld5crQsydcdBF06hRGm0iSJEkFJV8zvgHmzJnDQw89xBdffAHAoYceyvXXX0+bNm0KtMCi4IxvSSqlvvkGDjkkdGO/+24IogvDDz+E59m4EZ56Ci65JPt8164hEK9ZMwyv3c2oMEkqqTZvDpOd5s7NDrmXLNn9tdWqhaWUhx8eur3//GeoUaNo65UkSVLJl9ssN9/Bd2li8C1Jpdi114ZhsYcfDnPmQEK+pnz9vnPOgTFjoH17mDo153OsWwennw6ffAJVqsB//gOnnFLwNUhSEYnH4dNPw0qDV1+FlJRdr2nYMLzt7nwceGDhvAVLkiSpbCnw4Ds1NXXHA6Wmpv7utSUtPDb4lqRSbM0aaNoUUlPhhRfgggsK9vE/+ABOPjmkOXPmhHTn19LS4Kyz4J13wnf5n3224OuQpEK2YkV4G33uuTDFabtGjeC447ID7qQk53NLkiSp8BR48F2uXDlWrlxJ3bp1SUhIIBaL7XJNPB4nFouRmZmZ/8ojYPAtSaXc8OFw883QuDF89VUYLFsQtm6F1q3h66/h6qvDnO/fsm0b9O0bNrsBPPRQ6EaXpGIsLQ3Gjw9h94cfhm5vgMTE8HneX/8Kxx9vJ7ckSZKKTm6z3FyvkJk4cSK1atUCYNKkSXteoSRJRWXAAHj0UVi+HEaOhOuvL5jHfeCBEHrXqwd33fX711aoAKNGQZ06YfTKddfBzz/D3XfDbj5MlqSoxONhatPzz4cpThs2ZN93/PEh7O7VC/baK7ISJUmSpD+Urxnfy5cvp1GjRrt0fcfjcVasWEHjxo0LrMCiYMe3JJUBzz4LF18clkxOnQotW+7Z4337LbRoETa75WWESjwOw4bBLbeE25ddBo89BuXK7Vk9kpRP8Th8911YTDlrVpjbvXRp9v0HHAAXXQR9+oSfJUmSpCgV6nLLncee7Gzt2rXUrVvXUSeSpOInMxOOOQZmz4a994b//jcso8yvHj3gjTdC++OkSXnv2n7ySbjiCsjKCq2To0dDpUr5r0eSciE9Hb74IoTc8+bB3LmQnAzr1+e8rlo1OPvs0N3dsaOjTCRJklR8FPiok51tn+X9axs3bqRyQc1NlSSpIJUrB+++C6edBtOnQ6dOMHYsdO+e98d6++0QepcvH7q18zOq5LLLoHZtOO+8UMeaNfDvf0OzZnl/LEnajfXrQ6i9PbkBuSUAACAASURBVOSeNw8WLgwrB36tQoXwRZjDD4eTToIzz4SqVYu+ZkmSJKmg5Cn4HjhwIACxWIzbbruNxMTEHfdlZmYyY8YMDj/88IKtUJKkglKrFrz/fmhjfOcdOOOMMAIlt2NKIIw2ueaa8PN114VxJ/nVq1eo489/ho8+Co91xRVw++1hFrgk5UJWVhhNkpyc81i+fPfX16wZAu6dj0MPhYoVi7ZuSZIkqTDlKfieO3cuEDq+P//8cyru9G/HFStWJCkpiUGDBhVshZIkFaSqVUO39sUXw4svwoUXhiWT112Xu98fNgyWLYP99gsB9Z466SSYOTMs3HznHXjkkbBR7uabw1LOKlX2/DkklRobNsDnn+cMuD//HDZt2v31jRtDmzY5Q+7993enriRJkkq/fM347tu3Lw8//HCpmYftjG9JKoOyskLY/P/+X7g9eDDce+/vp0GLF8Nhh4Uhua+9BmedVbA1ffgh3HBDGLoLIVy/++4QzjtgVypT4vGwQzc5GebPzw65d146ubPKlcPbU1JS9tGqVVhpIEmSJJUmhbrcsrQx+JakMioeh3/8I3RXQ+gCf+KJMLt7d9d27x7mhHfpAhMmFE7LZFYWvPQS3HJL9pyCpCS4/344+eSCfz5JkUtLgwULcnZxz58Pqam7v75hQ2jdOmfI3azZ7t+6JEmSpNKm0IPv2bNnM2bMGJYvX056enqO+8aNG5efh4yMwbcklXFPPQX9+oXQ+c9/hpdf3nXEyNixocO7YsWQUBX2EsotW2DEiNCFnpISznXtCvfdFxIvSSXWxo3hbWf69BByL14c3n5+bfvCye3h9vaw2xUAkiRJKssKNfh+5ZVX6NOnD127duW9996jS5cufP3116xevZqePXvy7LPP7lHxRc3gW5LE669D796wdSscdxy8+SbUqBHu27gxbH77/nu49Va4666iq2vt2vB8jz0G27aFLvO//jWca9iw6OqQtMcyMuDpp+GOO2D16pz31a2bs4M7KQkOOSSE35IkSZKyFWrw3bp1a/r168dVV13FXnvtRXJyMgcccAD9+vVj3333ZejQoXtUfFEz+JYkAfDRR3DGGWG+QFJSGGdSvz7cdFPotD7gAFi4MJqFk0uXhpEsr70WblepEsahDB4M5coVfT2Sci0eh7ffDm8lX3wRzjVtCn/7W1g2mZQU3mokSZIk/bHcZrn52pS1dOlSTj31VAAqVqzIpk2biMViXHfddTz55JO5fpwpU6Zw+umn06BBA2KxGK+//nqO+//6178Si8VyHN26dctxzbp16zj//POpXr06NWvW5JJLLmHjxo35eVmSpLLu+OND+F2vXpg/cOyx8NZb8OCD4f4RI6IJvSGkZGPGwKefQseOsHlz6D7v2nXX1lFJxcbs2XDiieEztS++gNq14eGHYdGiEIR37WroLUmSJBWGfAXfe++9Nxs2bACgYcOGLFiwAID169eTlpaW68fZtGkTSUlJjBw58jev6datGytXrtxxvPzyyznuP//881m4cCHvv/8+b7/9NlOmTOGyyy7Lx6uSJInQfjltGhx4IHzzTUirMjLCn6edFnV10K4dTJkCzz8PiYnw4Yeh5smTo65M0k6WLYNzz4Wjjgqfp1WqFILuJUvgmmvCugBJkiRJhSdfu9+PO+443n//fVq1asXZZ5/NgAEDmDhxIu+//z6dOnXK9eN0796d7t27/+41lSpVov5vtMF88cUXTJgwgVmzZtG2bVsAHnnkEU455RT++c9/0qBBg9y/KEmStmvaNITf3bqFzu8qVUKLZnERi0GfPtC2LZx9dmgd7dQJhg6FIUMgIV+fa0sqAOvWwT33wKOPQnp6+Mf1wgvDWP7GjaOuTpIkSSo78vU340cffZTevXsDcMsttzBw4EBWr15Nr169ePrppwu0wMmTJ1O3bl0OPvhgrrjiCtauXbvjvunTp1OzZs0doTdA586dSUhIYMaMGb/5mFu3biU1NTXHIUlSDvXrhzbNwYNh3Dho0iTqinbVogXMnAkXXQRZWXDbbdC9O/z8c9SVSWXO1q3wwANw0EFhOlJ6OnTuDHPmhC9oGHpLkiRJRStfHd+1atXa8XNCQgKDBw8usIJ21q1bN84880wOOOAAli5dypAhQ+jevTvTp0+nXLlyrFq1irp16+b4nfLly1OrVi1WrVr1m487bNiwEreAU5IUgRo1YNiwqKv4fVWrwnPPwQknwJVXwnvvhdEnr7wCf/pT1NVJpdrateFLIZ99BiNHwrffhvOtWoV9uF27ho5vSZIkSUUv18F3Xrqif2+bZl5s7yoHaNWqFa1bt6Zp06ZMnjw5TyNVfu3mm29m4MCBO26npqbSqFGjPapVkqRI/fWv2aNPvvwybNO7+2648UZHn0h7KDMTFi8OIffOxw8/5LyuQYPwj12fPlCuXDS1SpIkSQpyHXzXrFmT2B+0rMTjcWKxGJmZmXtc2O4ceOCB1KlThyVLltCpUyfq16/PTz/9lOOajIwM1q1b95tzwSHMDa9UqVKh1ChJUmQOOwxmzYLLL4fRo+Hmm+Hjj2HUKKhdO+rqpBJh2zaYMQPmzcsOuBcsgM2bd3/9gQdCUlL4gkW/fmHnrCRJkqTo5Tr4njRpUmHWkSvff/89a9euZd999wWgffv2rF+/njlz5nDkkUcCMHHiRLKysmjXrl2UpUqSFI1q1eCFF8Lok6uvhv/9L4w+efVV6NAh6uqkYikeD7O4R42Cl1+GNWt2vSYxMYwwSUrKPlq1ggL6oqMkSZKkAhaLx+PxqJ5848aNLFmyBIA2bdrw4IMPcuKJJ1KrVi1q1arF0KFD6dWrF/Xr12fp0qXceOONbNiwgc8//3xHx3b37t1ZvXo1jz/+ONu2baNv3760bduWl156Kdd1pKamUqNGDVJSUgpsTIskSZGbPx/OOivMaChfPswrv/56hw5L/2fFivDliFGj4Isvss/vsw8cc0wIt1u3Dn82ber4EkmSJKk4yG2Wm6/ge8qUKb97/3HHHZerx5k8eTInnnjiLucvuugi/vWvf9GjRw/mzp3L+vXradCgAV26dOGuu+6iXr16O65dt24d/fv356233iIhIYFevXoxYsQIqlWrluvXY/AtSSq1NmyAyy4Lyy4B2rWDf/4TOnaMti4pIhs2wLhxIeyeNCl0ewNUrgw9e4b53J07h8+KJEmSJBU/hRp8J+xmSdbO878La8Z3YTH4liSVavE4PPEEDBoEmzaFcz16wPDhcPDB0dYmFYHMTJg4MYTd48ZBWlr2fccfH8Lus85ybIkkSZJUEuQ2y901wc6FX375Jcfx008/MWHCBI466ijee++9fBctSZIKQSwWFl4uWRK27yUkwOuvQ8uWcOWV8KtF0VJpsWAB3HQTNG4MXbrAiy+G0LtZM7jrLli2DCZPhosvNvSWJEmSSpsCnfH90UcfMXDgQObMmVNQD1kk7PiWJJUpX3wR0sC33gq3q1ULtwcODBv8pBJs9eqwoHLUKJg7N/v83nvDueeG7u6jj3bUvSRJklRSFWrH92+pV68eX331VUE+pCRJKmiHHgpvvhkGHLdtCxs3wm23hTbYZ54JcyGkEmTLFhgzBk47DRo2hOuuC6F3hQphqs/YsbByJYwcGcbcG3pLkiRJpV++Or7nz5+f43Y8HmflypUMHz6cjIwMpk6dWmAFFgU7viVJZVZWFrz6KgwZAt9+G84ddhjcdx9062ZCqGIrHodp00Jn95gxkJKSfd/RR4fO7nPOgTp1oqtRkiRJUsEr9OWWsViMX//qMcccwzPPPMMhhxyS94ojZPAtSSrztm4N7bB33w2//BLOdeoE//wnHH54tLVJO1myBF54IRzLlmWfb9wYLrwwHO5slSRJkkqvQg2+v/vuuxy3ExIS2GeffahcuXLeKy0GDL4lSfo/69bBvffCI49AejqULw8TJoQQXIrIL7+Eru5Ro+CTT7LPV6sGZ58duruPOy7sbZUkSZJUuhVq8F3aGHxLkvQry5ZB//7wv/+FWRGffQaNGkVdlcqQbdvCZy6jRoWR9Onp4XxCApx8cgi7e/RwH6skSZJU1hT6cssPP/yQ0047jaZNm9K0aVNOO+00Pvjgg/w+nCRJKk4OOAD+8x9o0wbWrIGzzgrjUKRCFI/DnDkwYAA0aABnnBH+Z5ieHkbP338/rFgRAvHzzjP0liRJkvTb8hV8P/bYY3Tr1o299tqLAQMGMGDAAKpXr84pp5zCyJEjC7pGSZIUhSpVYOxY2HtvmDkTrrsu6opUSn3/PfzjHyHcbtsWRowIn7fUqwcDB8LcuTB/PgwaFAJxSZIkSfoj+Rp1st9++zF48GD69++f4/zIkSO59957+eGHHwqswKLgqBNJkn7HO+/AqaeGdtznnw8zJqQ9EI+HsHvSpDDKZOLEcA6gcuUwwqRPnzDSpHz5aGuVJEmSVLwU6ozvatWqMW/ePA466KAc5xcvXkybNm3YuHFj3iuOkMG3JEl/4M47YejQkEpOnw6HHx51RSohtmyBRYsgOTn7mD8/7FHd2XHHhbD7rLOgRo1oapUkSZJU/OU2y81XD80ZZ5zB+PHjueGGG3Kcf+ONNzjttNPy85CSJKk4u/32MO7knXegVy+YPTuMQJF2smpVzoA7ORm+/BIyM3e9tlw5aNkyBN0XXBDGykuSJElSQclX8N2iRQvuueceJk+eTPv27QH49NNPmTZtGtdffz0jRozYce0111xTMJVKkqToJCTAiy/CkUfCN9+E1tw33gjnVWbF4zBvXhhXMmYM/Pjj7q/be29ISsp5tGgRvkAgSZIkSYUhX6NODshlS04sFuObb77Jc1FFzVEnkiTl0mefQYcOsHUr3HUX3Hpr1BUpAj/+CKNHh8B7wYLs87EYNG+eM+Bu3Rr22y/cJ0mSJEl7qlBnfJc2Bt+SJOXBM8/AJZeEJHPCBOjSJeqKVAQ2bYLx4+GFF+CDDyArK5yvVAnOOAMuvBA6dYLExGjrlCRJklS6FeqM751tz81jtvFIklQ2XHxxWHD51FNw7rmhC3z//aOuSoUgKwsmTw6d3WPHws77yzt2DGH32Wc77l2SJElS8ZPvwZyjRo2iVatWVKlShSpVqtC6dWteeOGFgqxNkiQVV488EuZ9r1sXthNu2RJ1RSogmzfDrFkwZAg0aRK6uJ9/PoTeBx4Id94JS5bAxx/DZZcZekuSJEkqnvLV8f3ggw9y22230b9/f4499lgApk6dyuWXX86aNWu47rrrCrRISZJUzFSuHFqAjzgCZs+GAQPgiSeirkp5EI/DypWQnJzz+Oqr7DEmADVqwDnnhH2mHTo4q1uSJElSyZDv5ZZDhw6lT58+Oc4///zz3HnnnSxbtqzACiwKzviWJCmf3n0XuncPKeozz0DfvlFXpN1IT4dFi2D+/Jwh95o1u7++dm049li44AI4/fTwOYckSZIkFQeFOuN75cqVdOjQYZfzHTp0YOXKlfl5SEmSVBJ17QpDh8Ltt8MVV0BSUugCV7GweTPccAM8+SRs27br/QkJ0Lx5+K9t56NBAzu7JUmSJJVs+Qq+DzroIMaMGcOQIUNynH/11Vdp1qxZgRQmSZJKiFtugRkz4L//hV69YM4cqFUr6qrKvEWLwoiSBQvC7Ro1dg24W7aEKlWirVOSJEmSCkO+gu+hQ4dyzjnnMGXKlB0zvqdNm8aHH37ImDFjCrRASZJUzCUkwAsvQNu28M030LMnvPYa1K0bdWVlUjwOTz8N11wTOr7r1QvLKbt0sYtbkiRJUtmRkJ9f6tWrFzNnzqROnTq8/vrrvP7669SpU4eZM2fSs2fPgq5RkiQVd3vvHZZdJibClCnQujW8/37UVZU5KSlw7rnwt7+F0LtLlzDLu2tXQ29JkiRJZUueOr6zsrK4//77efPNN0lPT+ekk07i3//+N1X8jqwkSTr88DDypHdvWLgwpK433gh33QUVK0ZdXak3c2b4j37ZMihfHu65BwYNCg35kiRJklTW5OmvQvfccw9DhgyhWrVqNGzYkBEjRnDVVVcVVm2SJKmkOeywkMBefnm4fd990LEjLF0abV2lWFYW3H8/HHtsCL2bNIGpU8NnDobekiRJksqqWDwej+f24mbNmjFo0CD69esHwAcffMCpp57K5s2bSSjBf7NKTU2lRo0apKSkUL169ajLkSSpdBg3Di65BNavh732gn/9C84/P+qqSpXVq+Gii+Ddd8Pts8+GJ5+EmjWjrUuSJEmSCktus9w8pdXLly/nlFNO2XG7c+fOxGIxfvzxx/xXKkmSSqczzwwDpv/0J9iwAS64IKS0GzZEXVmp8MEHkJQUQu/KlUPg/eqrht6SJEmSBHkMvjMyMqhcuXKOcxUqVGDbtm0FWpQkSSolGjeGiRPhzjvD3I1Ro+DII2HOnKgrK7G2bYMhQ8II9dWroWVLmD07LLR0gaUkSZIkBXkadZKQkED37t2pVKnSjnNvvfUWJ510ElWrVt1xbty4cQVbZSFz1IkkSUXg44/DqJMVK6BCBRg+HK691kHUefDtt3DeeTB9erjdrx88+CAkJkZaliRJkiQVmdxmuXkKvvv27Zur65599tncPmSxYPAtSVIRWbcOLr0Uxo8Pt7t1g+eeg3r1Ii2rJBg7NoxMT0mBGjXg3/8OM70lSZIkqSwplOC7tDL4liSpCMXjYSD1tdfCli0h9B41Kszu0C42b4aBA+Hxx8Ptdu3g5ZfhgAOirUuSJEmSolAoyy0lSZL2WCwWZnTMng2HHRYGVXftCjfdBOnpUVdXrCxaBEcfnR16Dx4cJsYYekuSJEnS7zP4liRJ0WjZEmbOhCuvDLfvuw86doSlS6OtqxiIx+Gpp6BtW1iwAOrWhXffhWHDwnh0SZIkSdLvM/iWJEnRqVIFRo6EceNg771h1ixo0wZGj466ssikpMC558Lf/hbGnJx8MiQnOwlGkiRJkvKifNQFSJIk0bMnHHkkXHBBmOVxwQXw3nvw6KOw115RV5c7W7fC4sVhlEu5crk/qlQJv0NogO/dG5Ytg/Ll4Z57YNAgSLBVQZIkSZLyxOWWuNxSkqRiIyMjpL1//ztkZUGzZmGT45FHRl3Z7sXj8OmnYTnnK6/A+vV5f4wjjiBr7HgeeK0xQ4aE/wiaNAkv+5hjCrxiSZIkSSrRcpvlGnxj8C1JUrHz8cdw3nnw/fdhqPXw4XDttcWn9XnZMnjhhXAsWZJ9vnp1qFgRMjN3f2Rl7fJQP7EPfSqN4d2tJwBw9tnw5JNQs2YRvRZJkiRJKkEMvvPA4FuSpGJo3Tq49FIYPz7c7tYNnn8+bHqMQkoKvPZa6O7++OPs81WrEu91Ft93/xvf1j+GTMqRlZWdc+98ZGbEycrMIisji6yMOCnLU7j9dliVuQ+V2czDg1fyt3sP3D75RJIkSZL0KwbfeWDwLUlSMRWPwxNPwHXXwZYtUK9e6LI++eSief6MjDBrfNQoeOMN2LKFLVRiES1JbnEuyY1OJTmtOfMXlmPduvw/TcsqS3l18xm0rPpdWPTpJktJkiRJ2i2D7zww+JYkqZhbsADOOQcWLQq3r7kGTj8dWrcu2A7wjIywoDI5mfgn01n10kSS1zYkmSSSSWJ+paP4cltTMrN2HblSrlyYzV2xYpjIkpAQzm3/+bfOHX003D5wI4kX9gohe4UKIWjv3bvgXpckSZIklRIG33lg8C1JUgmQlgYDB4YO8J3VqwetWoUQfPtx6KFQufLvP9769ZCcDMnJpM9dyJczU0leXIXkbS1CyE1rfqLebn+1Vi1ISsp55OYpf1d6Olx0UViSGYvBI4/AVVftwQNKkiRJUulj8J0HBt+SJJUgb70Fzz0Hn38eFkvu7l9lypWDgw/OGYhv2QLJyayZ+Q3J8+Ik/1R/Ryf3IlqwjYq7PEwsFqd5M0g6PJYj5G7YkMKZw52VFbrZR44Mt++4IxwO/ZYkSZIkwOA7Twy+JUkqoTZtgoULQwg+f344kpPhl192XPIt+/MiF/AJHUgmiR9puNuHql5lG61bZJDUrvKOoPuwwyAxsahezP+Jx+Hvf4c77wy3r7wSRowIYb4kSZIklXEG33lg8C1JUikSj7N56Y+Mf/Jnnhlfkw+XNNnlkqYNN5N0RDmS2lYkKSk0hDdpUswaqx97DPr3D0H4OeeEud8Vd+1KlyRJkqSyJLdZbvkirEmSJKnQxOMwZw4880yMl15qSEpKdmd3p07Qsye0aROmn+y1V5UIK82lK6+E2rXhwgvh1Vdh3ToYNw6qVYu6MkmSJEkq9gy+JUlSifbzzzB6NDzzTJh4st3++0PfvmFfZJMmkZW3Z845B/beG848E95/PyT4//0v1KkTdWWSJEmSVKwZfEuSpBInIwPeey+E3W++Cdu2hfOVKkGvXnDxxXDiiZCQEG2dBaJLF5g4EU45BWbOhD/9Kbz4Ro2irkySJEmSii2Db0mSVGLE4/DoozB8OPz4Y/b5tm1D2N27d2iQLnWOPho+/jiE4F9+GTq/p06FunWjrkySJEmSiiWDb0mSVCKsXRtGl7z1Vri9ffx1375hOWWpd+ih8MknoeN78WI49dTQCb7XXlFXJkmSJEnFTmn4ArAkSSrlpk0LiynfegsqVoSHHw4d3w89VEZC7+0aNQpjTurUgdmzw+zv9PSoq5IkSZKkYsfgW5IkFVtZWWGsyfHHw4oV0KwZzJgB11wTAvAyqXlz+N//oGpV+OCDsL0zKyvqqiRJkiSpWDH4liRJxdJPP4V9jjffDJmZcN55MGcOHH541JUVA0cdBePGQYUK8MorcO21YQB6SbFtGzz2WNhEOmtW1NVIkiRJKoUMviVJUrEzeXIIuN99F6pUgaeeghdfdJx1Dl26wPPPh58feQSGDYu2ntyIx2H8eDjsMLjqqhDed+gADzxg17okSZKkAmXwLUmSio3MTBg6FDp1gpUrwz7HmTPhkksgFou6umLo3HPDwHOAW24JnxAUV59+GhZznnkmfP017LMPdO4MGRkwaBCcdlpo85ckSZKkAmDwLUmSioWVK+Hkk+HOO0Pzb9++YQrGYYdFXVkxd801YR4MQL9+8MYb0dbza0uWwNlnQ/v2YUtplSpw663h/HvvweOPQ+XK8M47oc1/4sSoK5YkSZJUChh8S5KkyL33HiQlwaRJYWfjqFHwzDPhZ+XCPffAxReHTwx694aPP466IlizBgYMgBYt4D//CS37F18MixfDXXdB9erhXL9+oa3/0EPDpx+dO4dgPCMj6lcgSZIkqQQz+JYkSZGIx+G772DIEOjWDX7+GVq3DgssL7ww6upKmFgMnngCzjgDtmyB00+Hzz+PppbNm+Ef/4CmTWHEiLDIsnt3SE6Gp5+Ghg13/Z1WrWD2bPjb38L/MO65B044AZYvL/LyJUmSJJUOsXg8Ho+6iKilpqZSo0YNUlJSqF69etTlSJJU6mRlhckWn32WfcydC+vWZV9z+eXw4INhEobyafPmsPRy6lTYd1/45BNo0qRonjsrK2wgvfVWWLEinDv8cPjnP8PQ9tx69VW47DJITYWaNUPrf8+ehVOzJEmSpBInt1muwTcG35IkFaSMDPjyy11D7o0bd722fPnQ7HvzzWEMtArAL7/AccfBggXQvHkIwffZ5/d/JzMzfDKRnByO+fNh7dq8Pe9PP8HSpeHnRo1C1/b550NCPr5g+M03YWTLrFnh9pVXwgMPhFngkiRJkso0g+88MPiWJGnPTZ8Ot98ectYtW3a9v3LlMMf7iCOyj5YtoVKloq+11PvhBzj22DBLpm3bMDy9WrVwX2pqCLa3h9zJySEkT0vb8+etUSPMrrn66j1v3U9PD93j998fbrduDa+8EmaBS5IkSSqzDL7zwOBbkqT8++YbGDwYXnst+1y1atCmTc6Q+5BDQoe3ishXX0HHjmHJ5DHHQP36IeRetmz311epAocdFj6dSEqC/fYLs8Nzq1w56NABatUqmPq3mzAB+vQJQ+ATE2HoUDj++FCrc3EkSZKkMsfgOw/KavCdlbWVtWv/x+bNi2nU6AZiefnLrSSpzPvllzDN4pFHQnNuLAZ9+8KgQXDwwfmbcKECNnMmnHQSbNqU8/x++2UH3NuPgw4K4XVxtHJl2Hj64YfZ5xISwiiXX7+OBg3yFthLkiRJKlEMvvOgrAbfmZmb+fjjakAWHTqsomLFelGXJEkqAdLT4V//gr//PXs55cknhx2GrVtHW5t2Y9o0GD06OyRu3Rpq1466qrzLzITHHoM33wyd6z//vPvratfeNQxv3dpPYiRJkqRSwuA7D8pq8A0wY0YzNm9eQlLSRPbe+8Soy5EkFWPxOIwfDzfdFPYgArRoEQLvbt1sslURisdh1aqcc8qTk8N4l8zMXa9v2xZefjl0tUuSJEkq0XKb5Tpps4xLTGzB5s1L2LRpocG3JOk3zZoF118PH38cbtetC3fdBRdf7NxuRSAWg333DUe3btnnt2yBhQuzg/D588P/eGfPDkPnn3gCzjsvurolSZIkFRn/qlrGVa3agrVr3yQtbVHUpUiSiqHvvoMhQ+Cll8LtypVDAH7TTbDXXtHWJu2icmU48shwbPf993D++TBlSvjzgw/CYPqqVaOrU5IkSVKhc9hhGZeY2AKATZsMviVJQTwediJeeWVYUrk99O7TBxYvhrvvNvRWCbLffjBxItx5Z5jz/eyzIRifNy/qyiRJkiQVIoPvMq5q1ZYApKUtjLgSSVLUvvsO7rkHDjkE2rULCyy3boUTToA5c+D550OGKJU45crBHXeEALxhwzAL/Jhj4NFHwyc9kiRJkkodg+8yLjHxECDGtm1rSE//OepyJElFLDU1NMCeeCI0aQK33gpffw1VqoSpEO+/H7LCI46IulKpABx/fOj0Pu208KnO1VdDz56wbl3UlUmSJEkqYAbfZVy5colUrtwEJmxbSgAAIABJREFUwDnfklRGZGTAhAkh2K5fPyyonDw57As88cQQhK9eDS++CJ07h/NSqVGnDrz5Jjz8MFSsCG+8AYcfDlOn5v8xU1Jg06aCq1GSJEnSHjP41o5xJ875lqTSbf58GDQIGjWC7t3D7O7Nm8Mc73vvhW+/Dd3df/2rM7xVysVicM01MH06NGsGK1aEbvC77oLMzN/+vawsWLIExo6F22+HP/85fFWiZs0QqN98cwjBJUmSJEUuFo872DA1NZUaNWqQkpJC9erVoy6nyC1dehMrVtxHgwZX0bz5o1GXI0kqYJs2hYzvmWeyz9WuDeeeGxZWtm1rV7fKsA0b4Kqr4IUXwu0TToDRo6F6dfj8c0hOzj4+/xw2bvz9x6tdO4Til18eOsolSZIkFajcZrnli7AmFVNVq7YAHHUiSaXRwoXwl7/AokWQkBAaVC+6KHR8m8lJhK83jBoV5vpceWWY+3PggWEG+O5UqgQtW0JSUvbRunUYlXLTTfDllzBgADzyCAwbBr16+cmSJEmSFAE7vrHjOzV1Np99dhQVKtTj2GNXRV2OJKkAxONhVnf//mGcyb77htEmJ5wQdWVSMfb113DOOWEBJoR/cHYOt5OSwmyg8r/RO5KRAU8/DXfcEQblA7RvD/ffD8ceWzSvQZIkSSrlcpvlGnxj8J2RsZGpU8Mw12OPXUOFCrUjrkiStCc2bIArrgjTGgC6dAlTHOrWjbYuqUTYti18VaJhQ9hnn/w9xoYN8M9/hiMtLZzr2ROGD4fmzQuuVkmSJKkMym2W63JLUb58NSpV2h9wwaUklXTJyWFm9+jRUK5cmLTwzjuG3lKuVagAhx+e/9AbwviUoUNh8WK49NIwZ2j8+DAipX9/+PnngqtXkiRJ0m4ZfAtwzrcklXTxODz+OLRrF6Y17LdfGFU8eHDI3CRFoEED+Pe/Yf58OPXUMApl5Eho2hTuvTdsnpUkSZJUKPyrsACoWrUlAJs2LYy4EklSXqWkhLHEV1wR9vGddloYUdyxY9SVSQJCp/fbb8PEiXDEEWEUyi23hGD80kvho48gKyvqKiVJkqRSxeBbACQmho5vR51IUskye3bI0V57Lezbe+ABePNNqO26Bqn4OfFEmDUrzCI68EBITQ3LME84Idy+7bbwlQ1JkiRJe8zgW4CjTiSppInH4eGHoUMH+OYb2H9/mDoVBg6EWCzq6iT9poQEOO+8MP/7o4/gkkvCTPDvvoO774aDD4b27eFf/4J166KuVpIkSSqxDL4FZHd8p6evZNu2XyKuRpL0W7KyYNKkMM7k2mth2zbo2RPmzg3zvSWVEAkJcNxx8NRTsGoVvPwydO8ezn/6KVx5Jey7L/TqBW+8AenpUVcsSZIklSgG3wKgfPm9qFSpEWDXtyQVR19+CUOGQJMmcNJJ8L//QcWK8MgjMHYs7L131BVKyrfEROjdO/yD/cMPYWZRUlIIu8eNgx49wjzwq6+GZcuirlaSJEkqEQy+tYNzviWpeFmzBh59FI4+Gg49FIYNgxUroGZN6NcvzPfu39/RJlKpUr9+mFk0bx4kJ8OgQeHc2rXhDeGQQ8I5x6BIkiRJv8vgWztUrdoSsONbkqK0dWt2g+e++4YGz1mzwuLK008PSyxXroTHH4dWraKuVlKhat0a7r8/fOI1YQJ06hS6wB94AA46KPy5dWvUVUqSJEnFksG3dti+4HLTpoURVyJJZUs8vvuRvhkZcOSRYYnlDz/Am2/CWWdB5cpRVyypSJUvD127wvvvwzvvhE+9fvkldH4fckiYD56VFXWVkiRJUrFSPuoCVHw46kSSCt/WrbBoEcyfH6YYbD/Wrs2+pmFDuOACuPBCaNkyulolFTOxGHTrBiefDKNGwa23wrffwnnnwYMPhu7wE06IukpJkiSpWIjF4/F41EVELTU1lRo1apCSkkL16tWjLicyGRkpTJ1aE4COHddTvnyNiCuSpJJt9eqc4XZyclhSmZGx67WJiaHTu08fOPFEKFeu6OuVVMKkpcFDD8Hw4bBxYzh32mnwj39AixbR1vZbfvgBXnkF1q+HW27xKyySJEnKs9xmuQbfGHzv7JNP9iM9/QfatPmEGjXaR12OJJU4H30UMqfPPgvB9+7svTckJeU8WrQw/5GUTz/9BEOHwhNPQGYmJCTApZfCnXeG+UlRS0mBsWNh9GiYNCnMdwLo2TMsLvCTPkmSJOWBwXceGHxnS07uwi+/vM/BBz/FvvteEnU5klRiZGTA3/8Od9+dnenEYtCs2a4h9377hfskqUB99RXcfDOMHx9uV60K114bQvAmTYq2lq1bwzzy0aPhrbdyLuHs0AHmzAnnLrssbOv1TVGSJEm5lNss1+WWysE535KUdytWhPEkd90VQu++fcOyyg0bQg41Zkz4Rv9pp0GjRuY7kgrJwQfDuHHw8cdwzDGwaRPccw8ccECY/f3MM5CaWnjPn5UFU6ZAv36h07xnT/jPf0LA3aJFqGXZMpg2DV56KbwZPvkk3HFH4dUkSZKkMsuOb+z43tmPP/6br7++jL337kpS0oSoy5GkYu+NN0LQ/csvsNdeYdLAuedGXZWkMi8eDyH4Y4/lHC9SuXIIpPv0gc6dofwe7rqPx2HBghBkv/QSLF+efV+DBuEN8YILwtddfv2p3+OPwxVXhJ8ffRSuumrPapEkSVKZ4KiTPDD4zpaSMo25cztSqVIj2rdf/se/IEll1JYtcMMNIasBaNs27Gtr2jTauiRpF8uXh5Ejo0aFDbvb1a8P558fQvDWrf/4cdauhc8/z3ksXBi+3rJd9ephU+8FF8Dxx//x/O6hQ8Ms8lgMXn0Vzj47Xy9RkiRJZYfBdx4YfGfbtu0Xpk2rBUDHjimUL1+2//OQpN356is45xxITg63r78e7r0XKlaMti5J+l3xOMyeHQLwl18OQfZ2rVuHAPy886BmTVi0KGfAvWABrFy5+8etWBG6dw9h96mnQpUqeavpqqvgX/8Kj/POO3DSSXv2OiVJklSqGXzngcF3Tp980oD09JUcccSnVK/eLupyJKnYiMdDXnTVVWF0bp064Xb37lFXJkl5lJ4OEyaEN7G33gq3ARL+bwVQVtbuf++AA6BVq+zjsMOgeXOoUCH/tWRmhk8Tx44NM6MmT4Yjjsj/40mSJKlUy22Wu4dD/VQaJSa2ID19JZs2LTL4lqT/s2EDXHklvPhiuH3SSfDCC2GErSSVOBUrwhlnhGPdurCFd9QomD493F+nTs5wu1UraNkyBNMFrVy58Oa6dm0Ivbt3h08+cXaUJEmS9ojBt3ZRtWoL1q//kLS0RVGXIknFwpw50Ls3LFkSmiH//ncYPPiPR9dKUolQqxZcfnk4fvghvLnVq7frMsrCVLkyvP46nHACzJsHXbrAtGlhDrkkSZKUDwlRF6Dip2rVlgBs2mTwLalsy8yEhx6C9u1D6N2oEXz0Edxyi6G3pFKqYcMQNhdl6L1djRphxveBB8I334TO79TUoq9DkiRJpYLBt3aRmNgCgE2bFkZciSRF58MPw4jZgQNh2zbo0SM0IXbsGHVlklSK1a8P774LdeuGN90ePWDr1qirkiRJUglk8K1dVK0agu+tW78jI2NjxNVIUtH68ks4/XTo3Bnmz4eaNeGxx2DcuDANQJJUyA46KHR+V6sGkybBBReEr+BIkiRJeWDwrV1UqFCbChXqApCW9mXE1UhS0Vi7Fq65Juxve/vtMMrk6qvDiJMrrojmW/+SVGYdcUSY+V2xIvznP+ENOh6PuipJkiSVIAbf2q3tc77T0hx3Iql0S08Pc7wPOggeeQQyMkLH94IFMGIE1K4ddYWSVEZ16gQvvBA+eXzsMbjySli8uHCe64cf4L774MYbIS2tcJ5DkiRJRap81AWoeEpMbMH69ZNccCmp1IrH4Y034IYbQlc3QOvW8MADYcyJJKkY+Mtf4KefwldwHn88HO3bQ58+4b49mUG1cSOMHw+jRoXFDts7yhMSYPjwgqlfkiRJkbHjW7u1fc53WprBt6TS57PP4KSToGfPEHrXqwdPPRXOG3pLUjHTv38Ye9KtWwilp08PM6j23RfOOgvefDN8fSc3MjNDyH3RRWGRZp8+8MEHIfRu0yZc88ADsMh/B5YkSSrpDL61W9tHnWza5KgTSaXHypXQty+0bQuTJ0PlynDLLeGb85dcEuZ6S5KKoT//OSy8/P57+Oc/w1d00tNh7NhwX4MGoSt81qzdzwJftAgGD4YmTcInnKNGwaZN0LQpDB0KS5eGTz/POCPMvLrqKmeKS5IklXCxeNx/o0tNTaVGjRqkpKRQvXr1qMspFtLTf+aTT+oCMf70pw2UK1c16pIkaY9s3BgWV377bbh93nkwbBg0bhxpWZKk/EpODjPAR4+GVauyzx9ySOjkPvXU8CnnqFEwZ072/TVrwjnnhGvat8+5vfjbb6FFC9i8OTzueecV1auRJElSLuU2y42043vKlCmcfvrpNGjQgFgsxuuvv57j/ng8zu23386+++5LlSpV6Ny5M4t/tdBm3bp1nH/++VSvXp2aNWtyySWXsHHjxqJ8GaVSxYr7UKFCHSBOWtpXUZcjSXvs738PeUbjxvDppyHPMPSWpBIsKSl0f69YEbrBzz03fJXnyy9hyJBw/4ABIfQuXz50c7/2Wvj6z+OPQ4cOOUNvCB3ht9wSfr7+ekhJKfKXJUmSpIIRafC9adMmkpKSGDly5G7vv++++xgxYgSPP/44M2bMoGrVqnTt2pUtW7bsuOb8889n4cKFvP/++7z99ttMmTKFyy67rKheQqmWmOi4E0mlw8KF8NBD4efHHoN27aKtR5JUgMqXD/O/X3oJVq+Gp5+G448P97VtCyNGwI8/ho3GZ50VwvHfM2gQNG8eusjvuKPw65ckSVKhKDajTmKxGOPHj6dHjx5A6PZu0KAB119/PYMGDQIgJSWFevXq8dxzz9G7d2+++OILWrRowaxZs2jbti0AEyZM4JRTTuH777+nQYMGuXpuR53s3tdfX8mPP/6Lxo0Hc+CBw6IuR5LyJR6HE0+Ejz4KY2B/9eUiSVJplZUVlmHmx/vvQ5cu4fc/+yx0j0uSJKlYKBGjTn7PsmXLWLVqFZ07d95xrkaNGrRr147p06cDMH36dGrWrLkj9Abo3LkzCQkJzJgx4zcfe+vWraSmpuY4tKvExBYAbNrkVntJJddLL4XQu0oVePjhqKuRJBWZ/IbeACefDGefHcLzK68Mf0qSJKlEKbbB96r/W1BTr169HOfr1au3475Vq1ZRt27dHPeXL1+eWrVq7bhmd4YNG0aNGjV2HI0aNSrg6kuHqlW3B9+OOpFUMqWkhBGtALfeCvvvH209kqQS5MEHoWpV+OQTeP75qKuRJElSHhXb4Lsw3XzzzaSkpOw4VqxYEXVJxVLVqmHG95Yt35CZuTniaiQp7267LYx7bd48OwCXJClX9tsP7rwz/HzjjbBuXaTlSJIkKW+KbfBdv359AFavXp3j/OrVq3fcV79+fX766acc92dkZLBu3bod1+xOpUqVqF69eo5Du6pQoS7ly9cC4qSlfRV1OZKUJ3PnwvbdySNHQqVK0dYjSSqBBgyAli1hzRq45Zaoq5EkSVIeFNvg+4ADDqB+/fp8+OGHO86lpqYyY8YM2rdvD0D79u1Zv349c+bM2XHNxIkTycrKol27dkVec2kTi8V2jDtJS3POt6SSY+eRrH/5C+y0LkKSpNyrUCH7U9QnnoBZs6KtR5IkSbkWafC9ceNG5s2bx7x584Cw0HLevHksX76cWCzGtddey913382bb77J559/Tp8+fWjQoAE9evQA4NBDD6Vbt2787W9/Y+bMmUybNo3+/fvTu3dvGjRoEOVLKzUSE8O4E+d8SypJnn0WPv0UqlULI1olScq344+HCy+EeDx8qpqZGXVFkiRJyoVIg+/Zs2fTpk0b2rRpA8DAgQNp06YNt99+OwA33ngjV199NZdddhlHHXUUGzduZMKECVSuXHnHY4wePZpDDjmETp06ccopp9CxY0eefPLJSF5PaWTHt6SSZu1auOmm8POdd0LDhpGWI0kqDe6/H2rUgNmzYU/+rjF5Mlx6KTzwAKxcWWDlSZIkaVexeDwej7qIqKWmplKjRg1SUlKc9/0r69Z9wPz5J1OlSnPatXPOt6Tir1+/kEm0bBnmfFeoEHVFkqRS4dFH4eqroWZN+OorqFs397+7aFH4VPbtt7PPJSRAly7Qpw/8+c+QmFjwNUuSJJVCuc1yi+2MbxUPVauGUSebNy8hM3NLxNVI0u+bORP+/e/w82OPGXpLkgrQFVdAmzawfn32V4v+yMqV4RPZVq1C6F2uHFx0EXToEBZRTJgA550H9evDxReHjvCsrEJ9GZIkSWWFwbd+V8WK9SlfviaQxebNX0ddjiT9pszMkEnE42EU63HHRV2RJKlUKVcufKoK8NxzMG3ab1+7cWOYt9WsWfgaUlYW9OgBCxdm/+7XX8Ptt0OTJrBhQ1hQceKJcMABcOutoatckiRJ+Wbwrd8Vi8VITAxzvjdtcs63pOLriSfgs8/CCNb774+6GklSqXTMMWFGN4RFlxkZOe/PyAhBd7NmMHQobNoE7drBxx/D+PFw8MHZ126/ZulSmDIlPG716rB8OdxzDxxySHi+xx4LCywkSZKUJwbf+kPZCy4XRlyJJO3e6tUwZEj4+Z57oF69aOuRJJViw4ZBrVowf36Y+w3h60Zvvw2tW4fRJqtWQdOmMGYMTJ8OHTv+9uMlJMCf/hRmda1aBa++CqeeGjrMZ8yAq66Cxo3h3XeL5vVJkiSVEgbf+kOJiWHOtx3fkoqrG2+ElBQ44gi4/PKoq5EklWp16sDw4eHn22+H//4XTjoJTj8dvvgCateGhx8OCy3PPhtisdw/dpUq8Je/hBD9hx/goYfCfPC0NOjVKyyzkCRJUq7E4vF4POoiopbbTaBl1bp17zF/flcSEw/h6KO/iLocScrh44/DPO9YLDTVtWsXdUWSpFIvKyssqJwxI/tcpUpw7bUweDDUrFlwz5WeHkL1994Lofq0aTlHpkiSJJUxuc1y7fjWH9o+4zstbTFZWVsjrkaSsm3bFkasQhiNaugtSSoSCQlh9nb58uGT1z59wrLK4cMLNvQGqFgRxo6Fo44Ks767dAnd4JIkSfpdBt/6Q5UqNaRcuepAJmlpi6MuR5J2eOQRWLAgNMANGxZ1NZKkMuWII2Du3DDe5PnnwxzuwlKtWhip0rx5WH7ZrRv88kvhPZ8kSVIpYPCtPxSLxXZacOmcb0nFw3ffwR13hJ+HDw/htyRJReqww4pu7Mg++4QFlw0ahE99Tz8dNm8umueWJEkqgQy+lSvbx5244FJSlNLT4Y03wn6v5s1h40Y45hi4+OKoK5MkqQg0aQITJoRxKtOmwTnnQEZG1FVJkiQVSwbfypWqVVsCkJa2MOJKJJU18TjMmgVXXx2a3Hr0gHHjQgjepg0891wYtSpJUpnQqhW8+SZUrgxvvQX9+oX/s5QkSVIO5aMuQCWDHd+Sitry5TB6NIwaBV9+mX2+fn04/3y48EJISoquPkmSIvOnP8Grr0LPnvDMM1CvHtx7b9RVSZIkFSsG38qV7TO+N2/+mqysbSQkVIi4Ikml0YYNoZt71CiYNCm7ga1KlfB3+z59oFMnKO//e0mSyrozzoAnn4RLLw0bnuvVgwEDoq5KkiSp2DA6UK5UqtSIcuWqkZm5kc2bF+8IwiWpIPzyCwwcCGPGQFpa9vkTTghhd69eUL16ZOVJklQ8XXIJ/PQTDBkC114bFmCed17UVUmSJBULBt/KlVgsRmJiCzZsmMmmTYsMviUVmB9/hK5dYcGCcLt58xB2X3AB7L9/tLVJklTsDR4Mq1bBiBFw0UVQpw506RJ1VZIkSZFzHZhybXvYnZbmnG9JBWPxYjj22BB677svTJkS5nnfcouhtyRJuRKLwUMPwbnnQkYGnHkmzJwZdVWSJEmRM/hWrmUvuFwYcSWSSoO5c6FjR/j2WzjoIPjkk7CrKxaLujJJkkqYhAR47jk4+WTYtAlOOQW++irqqiRJkiJl8K1cq1q1JWDHt6Q999FHYX73Tz9BmzYwdSo0aRJ1VZIklWAVK8LYsdC2LaxdC926hT8lSZLKKINv5dr2ju+0tK/IysqIuBpJJdUbb4SZ3qmpcPzxMGkS1KsXdVWSJJUCe+0F//sfNG0avlJ1/vmQmRl1VZIkSZEw+FauVa7cmISEROLxbWzevCTqciSVQM8+G0aPbt0KPXrAhAlQo0bUVUmSVIrssw+MGwdVqsC778LQoVFXJEmSFAmDb+VaLJbggktJ+Xb//XDxxZCVBX37wmuvQeXKUVclSVIp1Lo1PPlk+Pmuu+Dtt6OtR5IkKQIG38qT7AWXBt+Sciceh5tughtvDLdvuAGefhrKl4+2LkmSSrULLoCrrgo/X3ghfPNNwT7+Dz+EhZoTJzpLXJIkFUvGDsqT7I7vhRFXIqkkyPj/7J13eFvV+cc/Gp6S95Bsx/HKsuPY2ay2oQXCbCkQRggxLW2hFGgLZbVAgZYVVoEWKC0dOCGEhjQUykiA0h+FANl2nNgZHvGUZFuekjXv/f1xZcUmCbFsyXLC+TyPH8f3Xp3zyo6ke77nfb+vB378Y0XoBnj0UUX4FggEAoFAMA48+SRs2waffQaXXAKbNikWKGNl2zaleWZHx6FjWVlQWnroq6QEpk0DjWbs8wkEAoFAIBCMAiF8CwJCpysFoKvrP3i9DjQa4VMgEAiOjMMBS5fC66+DWg0vvqhYnAgEAoFAIBgnIiMVb7G5c2HnTrj+eqXhhko1+jH/8x+48ELo74f8fOVYXZ2SAd7SojTXHCQ6GoqLhwvic+eCXj+25yUQCAQCgUAwAoTwLQiIpKQziIqahNPZjMXyMhkZPwh3SAKBYALS26usif/7X4iKgjVrlGaWAoFAIBAIxplJk5QP4rPOgpdeglNOgeuuG91Y69bBlVeCywXf+hasXw/x8coH/65dUFFx6GvXLrDbYetW5WuQ6GjlpqCsTIlJeJ8JBAKBQCAIESpZluVwBxFuent7SUhIoKenh/j4+HCHM+FpanqC2tpbiY0tZMGCKlQqYRUvEAgOsW8fXHopVFZCXBy88Qacfnq4oxIIBAKB4CvOo48qTTciI+F//4OFCwN7/J//rPiXSZJim/Lyy8ru9tHweqG2drgYvmOHkhU+iMEAy5YpInhp6eiel0AgEAgEgq8cI9VyhfCNEL4DxePp4dNPs/F6+5g16y1SUs4Ld0gCgWCCsGqVsia22SA9Hd55R6loFggEAoFAEGZkWRGs16+H7GzYvh1SU0f2uIcfhrvuUn6+9lp47rnReXfLsuIPXl4Or7wy3CO8pEQRwK+8EjIyAh9bIBAIBALBV4aRarkiVVcQMFptAhkZ1wLQ1PR4mKMRCAQTgf5++N73YPlyRfQ+/XQlqUuI3gKBQCAQTBBUKsXfe+pUaGpSGnF4vV/+GEmCm28+JHrfdRf88Y+jb1ipUsH8+fDMM9DaqpSFLVmiZKFXVsKttyrWLOecA6tXK1YpAoFAIBAIBKNECN+CUTFp0s9QqbR0d39IX9+2cIcjEAjCSGWlsoZ96SWlieX998P770NmZrgjEwgEAoFAMIyEBPjnPyE2Vvmw/vWvj36t2w1XXw1PP638/NRT8MADY2uMOZSICPj2t5XmmyaTIqifeqoitm/YoFigGI1wzTWwd29w5hQIBAKBQPCVQgjfglERHZ1NWtrlgOL5LRAIvnrIMjz/vGIRunevInT/5z/KGnq0iWACgUAgEAhCTHExvPii8u+HHlKyrr+I3a40oFy1Smk+uWoV/OxnoYspKUlpuPnJJ7B/v3IzkZcHfX1KlvrJJ8PHH4dufoHgOMfpNLFv3w309W0PdygCgUAwoRDCt2DUZGf/AgCL5R84HAfDHI1AIBhPuruVBpY/+Qk4nXD++UrPqkWLwh2ZQCAQCASCY7J0Kfz0p8q/y8rgwIFD56xWOOssePttiIlRhPFly8YvtilTlPKx2lqlCeeppyo3HmedBf/+9/jFIRAcR+zbdy2trc+xe/cSvN6BcIcjEAgEEwYhfAtGTVzcHBITzwC8NDc/He5wBALBOPH55zBnDqxbp1QpP/EEvPnmyPpjCQQCgUAgmCA89pgiKvf0KE0v7XZoaVF2sTdtgsRExQ7l3HPDE59KBV/7Grz3nrLD7nAoWejl5eGJRyCYoHR0vEln55sAOBz1NDY+HOaIBAKBYOIghG/BmMjOvhWAtrY/43Z3hzkagUAQSiRJWSN/7WvQ0AD5+UpF8i23BM/uUyAQCAQCwTgRGan4axsMSsOOK6+E006DqirFv2ww2zrcxMbC+vVKZrrXq/iOP/lkuKMSCCYEXq+dAweU6o34eOX12ti4Art9XzjDEggEggmDEL4FYyI5+Wx0umK83n7a2v4c7nAEAkGIsFiUZKvbbwePBy6/HLZvhwULwh2ZQCAQCASCUZOZCa++qjTn+Ne/4OBBmDpV2dkuLg53dIeIiFC8vm+5Rfn5F7+AX/5SaTgiEHyFaWx8GIejgaioSZSUbCA5+Vxk2cX+/Tcii9eHQCAQCOFbMDZUKhWTJik3oM3NTyNJrjBHNHLs9n2Yzavxem3hDkUgmNB88gnMng3vvgvR0fCnP8Err0BCQrgjm5i0t6/jk0+M1NffgyR5wh2OQCAQCARfzqJFSkkXwNy5ShPJ3NywhnRE1Gp4/HF42Gfj8Mgj8KMfKTvyAsFXELt9H42NjwIwZcrTaLV6pk79PSpVFF1d79He/lqYI5yYeL12Dh58kE2bMjhw4BaxQSAYMx5PL93dH9PS8ix7917Ltm0n8dFHOj7+OJWdO7/FgQM309b2d/r6diBJznCH+5VDJYtXOb29vSQkJNDT00MiqbHsAAAgAElEQVR8fHy4wznukCQnn32Wi8tlYsaMcozG5eEO6ajYbDW0t6+lvX0tNtsuAOLi5jNr1ttERqaFOTqBYOLx1luwZIliq1lUpCSFTaQEsImGLEt8/vk0HI5aAOLjT6OoaDXR0ZPDHJlAIBAIBMfgwAHIyVGyqyc6L74I112n+LB997vKjnx0dLijEgjGDVmWqaw8m66u90hOPodZs95G5fMebGi4n4aG+4iMzGThwhq02rgwRzsxkGUvJtNL1Nffg8vV6j8+efJd5Oc/EMbIBMcLsizhcNTT31/h/7LZKnE46kc8hkqlJTZ2BjpdKXr9oa/ISEMIIz8xGamWK4RvhPAdDA4efJj6+l+h05Uwf/5O/4fuRMBmqx4idlf5j6tUWtTqaLzefmJiplNaulGIUwLBEF55RbHT9HjgggtgzRrQ6cId1cSms/Mddu06D41GD6jxenvRapOYPv0vpKVdFO7wBAKBQCA4cVi/HpYuBacTTj9dsWoRazlBALjd3TQ1rcDttvrEp9nodLOOC6HYYlnLnj2XoVJFsWBBFbGxU/znvF4HW7YU43DUMmnSLUyZ8kRQ5pRlLwcPPoQsu5k06edERCQHZdxQI8syVusG6upu9ye/RUfnkpJyAS0tfwBgypRnmDTppnCGKRgnens/p7n56YAr/93uDmy2XXi9fUc8HxU1aZiYrdOVIEn2IQK58t3j6Tri4yMi0oc8VvkeGzsDtfo42IwOE0L4DgAhfI8dt9vKp59ORpJslJRsJDn5rLDGY7Ptob19LRbLWuz23f7jKpWWpKSzSEtbQmrqd3G5LFRWLsbpbCIyMovS0o3odEVhjFwgmBg8/zzccINinblsmWKreTwkgIWbysrzsVrfZtKkm8nKupE9e66gr28LAJmZN1BQ8DgajchIEwgEAoEgKPz3v/Cd70BfH8yZA++8ozTrFAiOQU/PZ1RXL8XhaDjsXEzMFJ/wNNsvREVFZU+Y5C6Pp4/Nm2fgcrWSk3MveXn3HXZNZ+e77Np1LqBh/vwd6PWzxjSnLMvs338Tra3PAqDVJpGTcxdZWTeiVkeNaexQ0te3k7q62+jqeh8YjPtusrJuQK2OoqHhARoa7gFUFBauxmC4IrwBC0KGLEs0NT1GXd1dgHfU46hUkeh0M4cJ1Hp96Yg2gmRZxulsHiaE9/dXMDCwHzhcmlXmKjosOzwiImXU8Z9ICOE7AITwHRz27/8ZLS3PkJS0mNLSDeM+v81Wg8Wyhvb2tdjte/zHVaoIn9h9KampFxIRkTTscQ5HM5WVi7Hbq9Fqk5k16y0SEk4e7/AFggmBLMNDD8Hddys/33ADPPOMYqsp+HLs9gNs3jwNkFm4cD+xsVOQJBf19XfT1KR4p+p0JRQVvYpONyO8wQoEAoFAcKKwfTuccw60t8OUKbBxI+TlhTuqExZZlunv34kkDZCQcGq4wwmYQfGrvv5uZNlDdHQ+aWlLsNl20d9fMcwCYyhabZI/K1yvn0Nq6oVoteFpeHPgwK00Nz9BdHQ+CxZUodHEHPG6qqoldHSsIz7+NObM+QiVavQ39A0Nv6Gh4V5ARUzMFJ9Qp2RO5+U9SHr6FWMaP9g4HI3U19+D2bwSkFGpIsnKuomcnF8NEyhlWebAgZ/S0vIHVKoIZs16K+xJfKHG5TLT31+BSqUhIWERarU23CGFHKfTRE1NGV1d7wGQlnYpSUmLAxpDo9Gh080iNnZ60LOwvV4bNlvVYRYqR8suj4zMGiaEJyQsIirKGNSYjgeE8B0AQvgODgMD9Xz++RRAYv78CvT6knGbt77+LiyWV/zHVKpIkpMXk5a2hJSU7xwmdn8Rt7uTysrz6ev7HLU6lpkz15GSck6oQxcIJhSyDLfdBk/4qiHvuQfuvx8mSHLLhOfAgVtobv4dycnnUlLy9rBznZ3vUlNThtvdjlody9Spf8Bo/N6EyRwSCAQCgeC4Zv9+WLwYGhogIwM2bIBZY8twFQzH4WjGYnkZk6ncn2Q0bdofycy8LsyRjZzDxa/LmT79hWECtsvVPiQbcyf9/RXY7dXI8vAmqhERqeTk/JrMzOtQqyPH7Tn091exdetswMusWW+RknLeUa91OJrYvLkQSbIxffrfyMj43qjmbGl5nv37fwLA1KnPkpl5HSZTOfX1d/s3CuLi5pOf/xhJSaePao5g4fH0cPDgwzQ3P4UsK00E09OXkpf3IDExR94Qk2WJPXuupL39VdRqHbNnf0h8/ILxDDskSJIbu73msOxit9vivyYiIh2DYRkGw3L0+tkn5NrEat1IdfVy3G4LanUMU6f+HqPxmgn/XBU/8YOH/f0cjrrDri0qepX09MvCEGV4EcJ3AAjhO3js3n057e3/wGAoo7DwpZDO5XZ3cvDgA7S0PIssuwEVKSnnk5Z2Gamp3wl4B97rtVFVdQldXRtQqbTMmFGOwbA0NMELBBMMr1fpEfWXvyg/P/kk3HxzeGM6nvB6bWzalIXX23PURYjT2UZ19XK6uz8AID39SqZNex6tVnzuCAQCgUAwZlpb4eyzoaoKEhPhtdfgjDPCHdVxjcfTT0fHeszmcrq6PmCwFF+l0vqEYDUzZ64lLe3ikMwvy3LQxKmxiF+S5MRm2+MXoDo732ZgYB+g2KLk5T1MWtolIRfSZFlm585F9PT8j9TUiygu/ucxH9PY+Dh1dbcREZHGwoU1AftyK17ilwPyYbYqXq+d5ubf0di4wp+ZmpJyAfn5K8bdPlSSXLS2/pGGht/g8XQCkJCwiIKCx0YkYkuSk127LqCr630iIlKZM+djYmOnhzrsoOF2d34hW7gCm20Psuw6wtUqYmKm4fFYcbvb/Ud1umIMhjIMhmVERWWOX/AhQpLc1NffQ1PTCgB0ulkUFa057q1tPZ5ef4XK4Fdh4UpiY6eGO7RxRwjfASCE7+DR27uZ7dtPQqWK4OST64mKygr6HF7vAC0tz3Dw4MN4vT0AJCUtJj9/BXFxs8c0tiS5qKn5ni97XOVrcnFjEKIWCCYuTqfi471unWJp8uKL8P3vhzuq44vW1j+xb991REcXcNJJ+45a6inLXhobH6W+/h7AS3R0AUVFa4iPnz++AQsEAoFAcCLS1QXf/jZ88olyU/Poo3DLLaJ8LQBk2Ut3938xmcppb1+HJB1qAJeQ8A2MxjJSUy+hru4O2tr+hEoVRWnpBhITFwUxBpnGxodpaLif+PhTMBrLSEtbMqpkgVCIX5LkwWT6C/X19+J2mwGIjz+FgoLHQ2r/YjKVU1NzNWp1LAsXVhMdPXkEsbrZunUOdvtuMjN/zLRpz494Pqv1fXbtOg9ZdpOZeT1Tpz57RHHf5bLQ0PAb2tpe8G+IZGT8gNzc+4mKygjkKQaMzbYbk2klZvMqXK4WAGJjC8nPX0FKygUBbUZ4PH1UVHyLvr6tREXlMHfupgkvANvte6mr+yUdHeuPeF6jiUevL/lC08ViNJpYJMlNV9dGTKZyOjr+5c+QBzVJSWdiMCwnLe0iNBrd+D2hIDEwUM+ePUvp6/scgMzM6ykoeOKotkCC4xMhfAeAEL6Dy44d36Cn539kZ99BQcEjQRtXlr2Yzauor78bp7MZAJ2ulIKCR0lODsyf6cvnkThw4Gf+Ds85Ob8mN/e+CV8KIxCMhv5+uPhieO89iIyENWvgoovCHdXxhSzLbN1ais22i4KCJ8nOPnaqfE/PJvbsWYrT2YhKFUF+/iNMmvTzCeWNKBAIBALBccnAAFx/Pbzkqz694gplV193/Ik344nNtgeTqXyYgAhKRrOSBXrVMKsIWfaye/eldHSsR6OJZ/bs/xtzEpIyrsSBAzfT0vLMsONqdTSpqRdhMJSRlHTmiHyJQy1+eTx9NDU9TlPT40iSHYDU1IvJz38k6NmXbnc3mzdPx+22kJf3MDk5d474sd3dH7Fz5yJAxdy5nxEfv/CYj+nt3UpFxTfxevtJS7uUoqJXUKk0X/oYu30fdXV3+kVYtVpHdvatZGffilarH3G8x8LlMmM2v4LZvJL+/u3+4xERBvLyfoPReM2ofatdrnZ27DiNgYH96HTFzJ790TFtU8OBstlwP62tLzDYqDE6On+IuK18j47OHZGO4XZ3096+FrO5nJ6ej/3HNRo9qamXYDSWkZh4+nGxVrFY1rJ37w/xenvRahOZPv1F0tIuCXdYghAghO8AEMJ3cOnoeIOqqgvRaBI45ZQmtNq4MY0nyzJdXRuprb0dm60SgKiobPLyHsRgWBaSN19Zljl48AEaGn4N4Nvh/v0xP+wFguMJqxXOPx8++0xZC77+Opx5ZrijOv4YXEyo1bGcckrziG+O3e4u9u79IR0dSplqQsLXSUo6y3/DGhU1WWy4CU5o2ttfx2JZQ3LyOaSlXTLm+wWBQCDwI8vw3HPw85+DxwMlJbB+PeTnhzuyCYXLZcFiWYPJVE5//zb/ca02kfT0KzAYyoiPP/mo9yNer4PKyrPp6fmIyEgjc+Z8QkzM6H/HSvXt97FYVgOQl/cQAGZzOXZ7jf+6iAgDBsMyjMYy9PrSI45lsfyDvXt/NC7il9PZSkPDvbS1/RWQUKm0ZGb+mJycXxMZmRaUOfbtu5HW1meJjZ3B/PkVAfuKV1dfjdlcjl4/l3nzNn/putZu38eOHafhdneQmHgGJSVvoVZHjXiu7u6Pqau7jd7ezwDl75WWdskQUXYWGk1sQPF7vQN0dPwLs3klVusGBsVelUpLcvJ5GI1lJCefj0YTHdC4R2JgoIEdO07F5WojIeFrlJRsnDCZwuNhLzMwUIvZvAqTqXyYn3RUVDbJyWcPyR4vCUqDV7e7a5iPtddrQ6crDnhN5PXaOXDgZtra/gRAfPypFBWtJjo6Z8wxCiYmQvgOACF8BxdZlti8uZCBgX0UFPyO7Oyfj3qsvr4d1NXdTlfX+wBoNAnk5NxFVtZNQflQOxZKI48bAJm0tEspLFwZ0Ie+QDBRaWtTekBVVUFSErzzDpx0UrijOj7Zvfsy2tvXkpFxLdOnvxDQY2VZprX1jxw4cPOQ8kIFrTYRna5kWOaGTjdzwtx4CwSjxesdoLb2F7S2Hiq3VqtjSE29GKOxjKSkM8RGs0AgCA7/+x8sWQIWi3LDs2aNcgP0FcbrddDZ+W/M5nKs1nf8TRsVAfF8jMYyUlLOH/Gax+3uZufORdhslcTETGHOnE+IjEwfRVw2du9egtX6rq/f0t8xGJYByv1SX982zOZyzObVfg9nAJ2uBKOxjPT0K4mKyvCJXz+nre3PwPiKXzbbbmprb8dqVZqcazTxTJ58J5Mm/XxM9299fdvYtm0BIFNa+gFJSd8KeAyXy8znn0/H6+1h6tRnycr6yRGvczpb2L79NJzOg+j185g9+8NRbUzLskx7+zrq6u7E4aj9wlkVMTFTD8tOjoqaNEzglGWJ7u6PMJtX0t7+Gl5vr/9cXNxCnwXO5URGpgYc37Ho79/Fzp3fwOPpJiXl28yc+c9RZ5EHA1n2YjK9RH39Pf6Gonr9PAoKHg9ZQ1FZlunt3YTJtJL29lfxeLoPuyY6OneYjYqSZZ53xOREWfYyMFA7zIe8v78Cp7PpS+M4tCY6ZNmi2LUcek3ZbLvZvfty7PbdgIrJk39Fbu59Yf2bCUKPEL4DQAjfwWfQ7zYqajInnVQb8BvOwEAtDQ33YTavAkCliiQr6yZycn4VcEOOsWKx/IPq6quQZTdJSWcyc+Y/RVaaICS43d309W0hKenMkGb61tcrmd11dZCRARs3QnFxyKY7oXE4mvnss1zAy/z5Fej1JaMax27fT2fnG/4bQbu92te094uoiY2d7l8kKAtLNSqV2icUDv0+/N+gQa2OJCZmGlFRWSKbXBAWbLZq9uy5HJttF6A0ee3r2+pvEgYQGZmJwbAMg6EMvX70b06S5MJur8ZuryE2tnDUr89joSwMP8XlakOnKyYmZooQ7o/BwEAdHk8XcXHzwh3KuCNJLjo7/43bbQ3ocRERyaSkXBBwlqcAaG6GSy6BzZsV3++HHoLbb/9K+X5/mYAVF7cAg2E56elXjDo72elsY8eO03A46tHr5/rE0pGvq91uK7t2XUBv76eo1THMnLmOlJRzj3itJLmwWt/FZCqns/PNIc371CQnL8bhaMRu30M4xa+urv9QW3ub34YjKmoSubn3k56+NGABXJYltm8/hb6+zaSnL6WoaPWo42ppeY79+29Ao0ngpJP2EhlpGHbe7bayY8c3sNt3ExMzlTlzPh7VJsZQJMlFR8d6+vq2+u9z3W7LEa/VapP94qZaHYXFsgans9F/PioqB6NxOQbDVePSeLK7+2MqK89CkhwYjdcwffqL437/LMsyVusG6upu9987RUfnkpf3EOnpl4+b9YjX66CrawO9vVuOKVhrNHp0ulk+ETyfgYEDPqF7l98S6IscEtBL0Gji/M0bv3xNNA2drpSoqCxaW59DkhxERhopLFxFUpJobPxVQAjfASCE7+Dj9Q7w2Wc5uN3tFBa+gsFwxTEf4/H0YLGsxWxeSU/PR/7j6enLyMt7gJiY3BBG/OVYre9TVfVdJMlGXNwCZs/+8Lhs8iCYuHi9drZvPxWbrWLEPtGB0tEBq1bBihVgMinVvu+9J6p+x0J9/T0cPPgACQnfYM6c/wvauIOC3Re7s7vdHUEZX6tNQa8vGZZlo9MViYoWQciQZRmT6a/s338TkjRAREQ6hYUrSU5e7Mvk24LJVI7F8goezyFBUK+f4/OWXXrYAn0oLlf7sOyhIy2WdLrSIVmBxjE/J7v9AGbzSszmlTgc9f7janWMv0Q32OXAxzNutxWL5VXM5lX09m4CICfnXnJz7/3KbMR5PH3s3n2xv5IxUGJippCf/wipqRd/ZX5nQcPhgBtvhL/8Rfn50kvhr38FffB8hyciAwN1QywLDmXdRkVNwmBYjsGwHJ2uMChz2e37ffYY7SQmfouSkrdHdF/hdLZQUXE2dvtutNokZs16i4SEU0Y0p9vdRXv7PzCZyv3vK8CEEL9kWcJieYW6ul/5xVuNJp60tCUYDMtJTPzGiETLwYQyjSaOhQv3jqlZpCx72bbtJPr7t2EwLKewsNx/zuu1U1FxFr29m4iMzGDOnE0hW3+7XObD7nHt9hp/9cFQlN/ZpRiNZSQkfG3cPaYVG9eLAS+TJ99Jfv7D4zZ3X99O6upu839maLWJ5OTcTVbWjRPint3tttLfXzns3stm231YFetQAr1HCmRNlJx8DjNmvDTmzRrB8YMQvgNACN+hoaHhNzQ03OvzEdt6xBt0SfL4Owl3dv4LSXL4zqhITj6bvLwHJkw2UG/vFiorz8Xj6SQj40dMn/6ncIckOEGQZZmamqsxm1cCSiMYpVN79pjHliT4z3+Unk7r14PLlxRTXKxkemeEttH6CY0kOfn008m43RaKitaSnr4kpPPJsozLZRoi7lXi9fYiy15kWQIkZNnr/36kY16vnYGBAwz6Ig5FpdISGzvjsHLFLxMbBYKR4PH0sHfvdbS3vwpAUtJiCgvLj/h/S8mGfRuzuZzOzn8PEa41JCefjdFYRmzsTH8m0OBiy+VqO+LcGk0CsbHT6O+v+EJW4NkYDMtJTb0wIJ/Ro4ksGo2emJjp2O17kKSBIz42kHLgEwVJctLZ+RZm80o6O98a8vdUAcoSZKL1UZFlb0hicbk62LXrPPr6tqBW60hK+ibK72Fk9PZ+7s+SjI8/hYKCx0lIODXocQaKx9N/RLEqmKhU6oCyh4+KLMOf/gQ33QRut3IztH49TJky9rFDhCx78Xj6AnqMJDno7HzzsCZ1arWOtLQlIW1S19e3jZ07Tx9xQ0S7fR8VFWfhdDYSGZlJaelGdLqZo5rbbt+P2bwKt7ud3Nz7Joz45fU6aGn5Ay0tf8DpPOg/HhWV7atuWn5Ub2aXq53Nm6fj8XQxZcpTTJr0szHH09u7he3bTwJkZs/+L4mJi5AkN1VVF2G1voVWm8js2R+h188a81yBIElObLY9Q4TNTlJSLiAl5dtht/lra/sre/f+ACBkCUpDcTgaqa+/x7c2lMNa/R4okuRhYGCfX6R2OOqJiSnwC92xsVPH/Bn7xTWRzVZNfPzJZGZee0LfUwkORwjfASCE79DgcnXw2WfZSJKD0tIP/d5TsizT37/TlyW1Grfb7H9MbGwhRuPVpKcvIzp6UpgiPzpdXR9SUXEGIDNz5j9JS7so3CEJTgAGyw5BQ0zMFAYG9pKaejHFxetGPWZzM/ztb0oyU0PDoeNz58IPfwjLl5/wSU4hx2x+merqq4iMzOLkk+tRqyPCHdKI8Hod2O17DvPX83i6jnh9TMw0iorWEBc3Z5wjFZwI9PZuZs+eK3A46lGptOTlPUh29q0jWpi43Z1YLK9iMpXT1/f5Ma+PiZlymLA82BDp6IJ13JBMsq8fMS5JcmO1vovZXE5HxxvDBPSkpLMwGstITf0uGk2sz7/ywGGZSU5n8xFjVsqBB6svBr/PQqs9ft+gZVmmp+cTnyfrP4ZZKihZ98tJT19KR8d69u+/CaWPyhIKC1eFNYPN4+ljz56l9PR8REHBE2Rk/DBoWdUORyMVFYsZGNiLVptCScnbxMcvDDi+pqbHaGp6wl8qnpp6Mfn5jxAbOzUocQaCLEvs2/cTXxOx0C8n4+NPo6DgsRFnAn8pmzYp1icmEyQmwurVcO6RbTXGE7e7G5utcth7h81WNSQxaDSoSEo6E4OhjLS0i8alYtVqfZ9du85Dlt1kZt7g29g6/LXU17eNyspzcLs7iImZSknJxrBW+IYaWZbo6fkYs3klFstavN4e/zm9fq4vA394dVNNzQ8wmf6KTlfKvHlbg2bZsm/f9bS2/pHY2CLmz9/O3r0/wmxeiVodTWnp+yQknBaUeU4kDh58hPr6XwKQlHT2sM/+YHBo43+lz8JH2ShOT19KXt6DxMTkBWUegeBEQgjfASCE79Ax+KGaknIB06a9gNn8MmZzOTZblf+aiIhU0tOv9HXlnjvhSzdra++kqWkFWm0yCxZUEhWVFe6QBMcxPT2fsnPnImTZ7WtOchZbt84FvMya9W9SUs4f8VhuN/z730p297vvKtneAAkJcNVV8IMfwByhXQaN7dtPobf3M3Jzf0tu7t3hDmdMyLKM09l8mFXEwMB+QEajiaO4+PVRNVMSfDWRZYmmpieor/8VsuwhOjqXoqI1xMeProuu3b4Xk2klFsvLuN0dfu/IQ1Y9IxeLB7MCzeZyHI4G//FD3qHLiYmZ6mukthKLZfWwklqdbpZvk/7KEZecu92d9PdX+l5jlccoB1YRE1NwVBF/omK37/P9XlcNs36JjMzyZTVedVgGocWy1tdHxUVi4jcpLn49OJm9AeJytfuysbf6j6WlXcb06X8as0WNzbaHysqzcTqbiYrKpqRkw5isJZzOVurrf43J9DdAQqXSkpn5Y3Jyfj1qf+ZAkWWZ2tpf0Nz8u3GZbyipqZf4xP4xZmm3tipNLz/9VPH6fuAB+OUvx8X3W5YlBgbqhn3eKn65B4/94BGi0xX7bKKuDMtaxWL5B3v2XAHI5Ob+htzce4ad7+r6D1VVF+L19qPXz6Wk5J0Jk6E9HigNRt/EbF45rMGoUt20GINhOZGR6VRUnAnAnDmfBLXCw+3uYvPm6bjd7eh0pdhsFYCG4uLXSU29IGjznEjIskx9/a9obHzEf0yj0fusa8pITFwUcLbxcKu3NcOatiYkLKKg4DHi4xcE7TkIBCcaQvgOACF8hw67fR+bN89AyQRRA4oSp1JFkpp6IQbDcpKTzzluMiVB2Y3dvv1U+vu3kZh4BqWlG0VJjWBUuFxmtm6di8vVSlraEoqK/oFKpaK29jaamh4nOjqXBQt2HzOTYN8+xbLy738Hy5BeMYsWKdndl1wCMeGtEDzh6O3dyvbtC1CpIjjllKYT1g7E7baye/cldHf/F5UqgsLClaSnXx7usAQTHJfLQnV1GV1dGwBIS7uUadP+REREYlDGl2U5KAKwkn33CWZzORbLP/B6e/3nIiMzhtmnREQYMBiW+TbpS8c8NwyWA+89LDvc5TId8XqtNhG9fjapqRf5mtCFXySSZZmOjtdpbFwxLCtfo9GTmnoJRuNyn6XC0cuahwtgs5k1652geLCPlC9mY2dkfJ/m5qf8GzaFha+QkHDyqMbu6fmMXbvOx+OxEhtbSEnJhqDYmAH091dRV3cHVuvbgOKDO3nynUya9POQ2wI0Nj5KXd0dAMyY8RLp6UtDOp/LZaah4b4viP3X+8T+1NEP7HTCz34GL7yg/Dx7NiSHzkagY1o7jac1Y8uw49Uc2QM3Kir7C963pURH5xKILQ4wIdZWzc1/4MCBmwCYNu0FMjOvBcBieY3q6mW+Da9vUVy8PiwbXhMFl6uD9vZXMZlWHrG6yWi8hhkz/hL0edva/s7evd/3/zxjxksYjWVBn+dEY2CgFpNpsL9Hnf+4Yl0z6Js/40vHcDga/d77AwN7/ccjIzP89jehasgtEJxICOE7AITwHVqqqi6ho+OfgFKmaDSWkZZ2KRERSWGObPTY7XvZunUukmQnP/8xJk++NdwhCY4zJMlDZeVZdHf/l9jYQubO/RytNg5Q/DK3bCnC6Wxi8uRfkp//0GGPt9ngtdcUwft//zt03GCA730PrrkGpk0bpyfzFaSm5vuYTH8nPX0ZRUWrwh1OSPF6HdTULKe9/TVA5fOY/Gm4wxJMUKzW96mpWY7LZUKtjmbKlGeCahkRKrzeATo738BkKsdq3QB4UaujSU29CINhOUlJZwWtxPxYuFyWw6yIlEadh3yUVSotycnnYjAs9/mfRo9LbEPp6dlEbe1tQ6xjDmUqBuqd3te3ncrKc3G7LURH51NaupGYmILQBD4Em20PFRWLcblafNnYG9HpZtDb+7nPoqfBZ9HzANnZtwWU6GC1bqCq6uud/NsAACAASURBVGIkyU5c3EJKSt4mIiIl6M+hq+s/1NbeSn//DkBpWpib+1uMxuUh8SofKpYVFDxOdvYvgj7H0VDE/tuxWt8BBsX+XzJp0s/GJva/+CLccMOhRihBxhsBtddD6xCHRJULdF2J6BPnoZ9+LrqEeej1JRPevzdQBpuAg5qZM9fidnewb9+PAZnU1EsoKnp5QjTpmyh8sXImIiKVBQv2hKSaQ5YlKioW0939wbi/lk8EZFmmt3eTL1v71WHWNXFxCzAYynyb1MrmnMfTS3v7Oszmcrq7/+u/Vq2OITX1YozGMpKSzpgw/S4EguMBIXwHgBC+Q4vb3UVHx3oSEr4x9rLECURr65/Zt+9aVKoI5s79XPjfHoGBgVqczhYSE78R7lAmHINZ3RqNnrlztxyWGdDe/jq7d1+EShXB/Pk70emKkGXYvFkRu9esgT5fryO1Gs47T8nuPu88iAh/kk9ADDazsdtriI2dgV4/e0KLZC5XO59+mo0sO5kz59NRZwIeT8iyl/37f0Zr67MAZGffQX7+wxP67xQO7Pb9dHV9gFLdpGIwQ0/5PamOeiwmpoCEhK8d19VDbreVpqbHaGxcAcjExs5k5sxXR92kLJy4XGb6+yuIjz9pzDYXwUKSXNjt1XR3/x9m8yr6+rb4z2k0CaSnX47RWEZ8/Kkhf13abDXU1/+Sjo7XAWXRPmnSLUyadNOYql/s9gNUVi72iT0GSkreCem91eHZ2BuH9ZdRmrJeS3v7PwBISjqLwsKVI3qOZvMr1NRcjSy7SUpazMyZ60Lq2y7LEmbzaurr78LpbAQUP/UpU54MqkVVR8e/qar6LuAlO/tWCgoeC9rYgdDV9QG1tbcNE/vz8h7AYLhq9KLRgQOwdeuxrwsQm6aFPYnPYItQ/i6TTIvIeMlMzMYa1D5LOpKT4YoroKwMFi4cF7uV8UKWZfbtu462tj+jUmn9G3gZGdcybdpzQuQ7CkpPrO1ERKQHrUrkSEiSG6ezWfhHj5FD1jXldHa+w2ATeWWT+nw0Gh0dHeuHNb9OTPymz3v/En/yk0AgCAwhfAeAEL4Fo0GWZXbvvoSOjvXExs5g3rxtQWtucbzjdLbR0HA/bW0vMhqv6hMdi+U19uy5FICZM18jLe2Sw66RZZmqqgvp7HwTSfoOO3e+zl//qmL37kPXFBQomd1XXw1Zx4HV/GAH7uGNmyqx22uGZTLGxs7EaCzDYFg2IT30B5vb6PXzmDdvy1dG/JVlmcbGh6mvvwsAg6GM6dNfnBDl1OHG5bLQ0HA/ra0vMLjYCZSoqMn+8tax+P+OJ5Lkwmp9B5OpfFgjpoyM65gy5UnxmRhCbLZqX5PwlcMaZ0ZHFwzxKc8P6pxOp4mGhvv8n+2gJiPjB+Tm3kdUVGaQ5mijsvJcbLYKX2+Bf5GU9M2gjD2U4dnYJ1FS8tYRs7FlWaat7S8cOPBTJGmAiAgDhYXlJCcvPurYir3DTwGZ9PQrmDHjJdTqyKA/hyPh9Tpoafk9Bw8+6M8+zM6+lby8B8ccQ0/PJioqzkSSBjAYypgx429h3aw7mthfUPAYyclnhS2uQWRZxmT6O/v334gk2YmISKOwcCXJyWcrF+zaBStXwqpV0HbIVolp0xQB/KqrICcnPMEHGUnysGfPpf7NssmT7yIv77dfmfsnwVcLl8uCxbIGk6mc/v5tw87FxEz3r3Gio0+M17dAEE6E8B0AQvgWjBa3u5MtW0pwuVrJzPwx06Y9H+6QworH00Nj42M0N/8OSbL7jyclnUlp6XthjGw4siwjSc6wlIbbbNVs374Qr7ef7OzbKCh49IjXeb3w5ptmnnpqE598cj4ej7JgjYlRejFdcw184xtKtvdERJI82O27fQJ3pb9c3+1uP+L1Wm0SMTHT6O/fOaTZm4qkpDN9ZfMXhTRbbqRIkofPPy/A6Wxkxoy/YzReHe6Qxp22tr+xd++PAC/Jyecyc+ZaNBpduMMKC16vnebm39HYuAKvVynBSEj4OhERgyXJMiCj3GoNfjHsmCx76e39dJi/tF4/D6NxOenpSyeEj/NQvqwRk14/m5ycu4+4mScIDbIs0d39X0ymctrbX0OSbP5zCQlf82WTLRmTvZzH00dT0+M0NT3hHz8l5Tvk5z+MTlc05udw+Hw97Np1IT09/4dKFUlh4cukpy8J2vjDs7HPprh43THfw2y2PezZc7m/OXt29h3k5f122MafLMs0NNzHwYO/ASAr60amTHk6LOKw291Jff3dtLb+EVDK7ouK1ox6M8Rm282OHV/H4+kiOfl8iovXT5hNT0Xsf4aDBx/yi/1JSWdTUPBo2DxyPZ5e9u27HotlNQCJiWdQWLjyyM1wvV744ANFBP/nP8F+6P6Z009XRPDFiwMr51OpIDV1QmWOe70ODh58AJ2uEINhWbjDEQjGBZttN2bzK0iSg/T0y4mLmy82fASCICKE7wAQwrdgLFit71NZqWSWKJ2wLwxzROOPJDlpaXmegwcf8Isg8fGnMmnST9mz50pAYsGCPWHPYrTbD/gz5FyuNqZPf3Fcb749nj62b1+I3V5DYuI3KSnZeJhnbF0d/O1vSqPK5kNJfMyYsYMbb5zGVVfpSJgYlfdHZWCgjl27zsdurznCWTWxsdN8TZtK/A2coqKyUKlUuN3dtLevxWxeSU/PIfNytVpHWtrFGAxlJCV9M2ylsYMWNFptCqec0hyWzZOJQGfnW+zefSmSNEBc3AJmzXorJP6TExVZ9mIylVNffw8uVwugiNUFBY+NKjtV8Zd+E7N5JVbru0MqIDQkJ589xDM5fF1qRSOmiY/Xa6O9fT1mczldXe9zaKMFoqPz0etL0OlK0OlmodeXEBNT8KXvpZLkpq3tzzQ03I/brXROjos7iYKCx0hM/HqIn4uD6uplvh4xKqZOfY6srB+Pedzh2dhLmTHj7yPOhPZ6B6itvWWImHwSRUWvEBOT57ODutF/Ljf3fnJy7gm7wNHe/jp7916Dx9OFRhPP9Ol/CrhBscPRyPbtp+JytRAffzKlpR9MyGoOt7uTgwcfoKXlWV/1iQqj8Wpyc387zMIm1PT2bvX5w9cCGvLyfsvkyXeMbAOkr08Rv8vL4cMPYSzL9KIiWLECzj9/QgngAoFAIBAECyF8B4AQvgVjZdCvWatNYcGCXUfO6DgBGSwzbWi4B4ejAYDY2Bnk5T1MauqFqFQqqqouoqPjdbKybmTq1N+Pe4xudxft7f/AZCof0oDrEFOmPD0ujfoUa5xL6ehYR2RkFvPnbx+WydnfDz/9qSJ6D5KcDFdd5WXhwiVkZb1ORsa1TJ/+QshjHQtDG5RpNHHo9XPQ60t9AncJOt3MES+YBwbqfQ1+yhkYOOA/HhmZhcFwFUbj8nH3D96580y6uz9g8uQ7yc9/eFznnmgo/rgX4PF0EhMzlZKSDV8Jj0irdQO1tbdhs+0CICoqh/z8h0hPvyIomZ0uVzsWyxrM5pVf8HGOIy1tCQbDchITF41LFqloxHT84nS2YDavxmwu92cpfxG1OgadrhidrsQviuv1s9Bqk2lvX0d9/a8YGNgPQEzMVPLzHyY19eJxE3Nl2cu+fT+hre1PAOTk3Etu7r2jmj+Y2djt7euoqfkBXm8PGk0806Y9T0fH67S3r0UR6Z8lK+v6gMcNFQ5HI9XVy+jp+RiAjIwfMmXK0yP6LHa5Otix42sMDOwlNraQOXP+F5IGncFkYKCWurpf+b3ZFQ/6m5k8+Q602tCt82RZorn5Kerq7kSW3URF5VBUtJqEhFNHN2BjI7z8spIJXl09+sBOPx0efxzmzRv9GAKBQCAQTECE8B0AQvgWjBVJcrJ9+8n09+8kKWkxJSXvjGoxJUkezGalM3Ra2hKMxu8flhE8EZBlma6ujdTW3oHNVgFAZGQmubn3YzR+b1jMXV0fUFFxJhqNnlNOaQnpomMQSXJjtb6L2VxOR8cbyLLLd0ZNUtJZGI1l9PZ+RkuLIsSPh9dgY+Pj1NXdhkoVwezZHw1riFhRAZdfDnv3Kkk5Z50FP/gBXHghREVBd/dH7Ny5CIA5czaRkHBKyOIcC1br++zefRFebz96/WxmzXqHqCjjmMdVuqZ/htm80met0OU/p9fPJj7+1CHienHIbDdstmq2bCkC1Jx8cp3w5gPs9r1UVJyN03mQyEgjJSXvoteXhjuskNDXt5O6utvp6lJsm7TaRCZPvousrBtDlvlvs9X4Nn9W4XQe9B+PisrGYLgKg6HssMa4Y0WWvXR1vY/JVC4aMZ0guFwd2Gy7fP0VlO82W9Wwv+1QtNpEPJ5uACIi0snNvZeMjB+Fxdrii4J1YuIZJCSc5nvPn010dO4x77eUbOybaG1V7OiCkY09MNBAdfWV9PZ+6j+mUkVQWLiK9PTLRj1uqJAkDwcP/oaDBx9AaT5bSFHRq+j1s476GK/Xxs6dZ9DX9zlRUZOYM2dTSJvsBZve3s+prb3VL/hHRKT5/i9fG/T/yy5XOzU138NqfRuA1NRLmD79z2OyGBoT3d3w8MPw9NPg9NnHXXklPPgg5OaObWxZhk8/VbzJBwaUOcT6WSAQCARhQAjfASCEb0EwsNmq2bZtHpI0QEHBk2Rn3zzix8qyTEfHv6iv/xV2+6GsjtjYmRQUPEpy8rlhL5cdpLd3K3V1d9Dd/R8ANJoEJk++k0mTfnrE7CFZltmypQi7vYapU/9AVtYNIYlrsPu54jv7yjAvaZ2uGIPhagyGK/0NuGRZ5uDBB2louAdQmrFNm/ZsSDIXu7o+pKLiTEBi6tTn/eXasgzPPQe/+IWyLpk0CVavhq8foYK8puYaTKa/odOVMG/etgm3IWI2r6am5nvIspvExG9RXLw+JJsckuSks/MtzOaVdHa+5W+mdwgVMTFT/BYqg4J4VFT2mF9D+/bdSGvrs6Smfpfi4vVjGutEwulspbLyHGy2XWg08RQXvx6SZnThwuFoor7+bszmlYCMShVJVtaN5OTcRURE8rjEIMsSPT0f+zZ/1vp9bEHx7jUYykhPv4LIyNRRz9HfvwuzuRyz+WVcrkON1kQjphMTWfYyMFDr68EwKIpX4nDUAaBWx5KdfSvZ2bdOiE2OlpZn2b//JobatwC+yqLB9/vZQzZAFVsgSXJSXV3my/4Nbja2JLlpaLiPxsaHUatjKS5+neTkM4Mydqjo6vqQ6upluFxtqNXRFBQ8SWbmjw/7fJQkN1VV38FqfRetNpk5cz4Ou13daJBlmc7ON6itvcNv0aRULzxCaupFQbm3Hvo7VamimDLlKTIzr5sY9+2NjXD33UrWOEBkJNx0E9x1FyQFKMrX1Slid3k51NYeOn7GGfDWW0qmhkAgEAgE44gQvgNACN+CYNHS8kf2778elSqSefM2jyjzsbv7f9TV3eHPGtJqk0lPX4rF8goejxWAxMRvUVDwGHFxc4MSp9vdRUfH67hcrb4GaxJKk7Xh30Hyn5dlCYej1t+RXRF/biIn55fHLHtVFqw3Ehs7gwUL9gR1MSBJHlpanqat7a/Y7Xv8xyMiDEN8Z0uPOmdr6wvs23c9IJOWtoTCwlWo1cG7eXc4mtm2bS5udzsGw9XMmPE3VCoVXV1KVvd6n3767W8rNicpR/lVulwdbN48HY/HSkHBE2Rn3xK0GMdKU9OT1Nb+AoC0tMspLHwpqL/Do+F2d2K1bvA10KzAZqvA5TId8VqtNslXxl9KfPxJpKR8OyAxx+Pp5dNPs/B6+yktfZ+kpDOC9TROCNzubqqqvutvRjdt2gsYjVdPjIX/KHE4GmltfZ7m5qeQJAcA6elXkJf3UFgtXbxeB52db/g2f94BvACoVFqSk8/HaCwjJeX8Eb0GnU4TFstqzOaV9Pfv9B8f/BwyGpcTF7fwuP47CgLD4+nDbt9LTEzehLO06O+vpLv7Q997/k5stt1DKrqGoiY2djp6fSlOZws9Pf8LaTa2zVaNRhM3rj7SY+Hw7OSLmT79RX92sixL1NRcjdm8CrU6htLSDyZspdlIUfzqX6Sh4T6/X318/GkUFDw2qufm8fRhs+2io+N1mpoeZ6RZ9GFjxw647TaliSYoovfdd8MNN3y5YN3dDWvXKmL3xx8fOq7TKWWJb7yhePVddpmSuaERtlcCgUAgGD+E8B0AQvgWBAtZlqmq+i6dnW8QG1vEvHlbj9qMrL9/F3V1v8RqfQsY9CC8hcmTb0OrTcDt7qKx8SGam5/xL+wMhuXk5T1AdPTkgGOTJDddXRsxmV7y2X84R/ksVb44fjPi7D+Pp88nGvYFXTSsq7uLxsaHAFCro0lN/a6vAeJZI86Ktlheo7p6GbLs8mUrvx6UDDdJcrJjxyL6+j5Hr5/NnDmb0Ghi2LQJli5VEnEiIuCxxxR/72NpS21tf2Hv3h+iVutYuLA67CXHsixRV3eHb9EHWVk/Y8qUJ8fFe/houFyWYUJ4f38Fdnv1kGaBCmp1NCkp3yY9/UpSUs49pkjY3Px7Dhz4KbGxhSxYsFsIgUfA63VQU7Oc9vbXACUTOT9/xXGV/e1ymbFY1mKxvDKsJ0BCwjcoKHic+PgFYYzucFwuCxbLK5hM5fT3b/cf12qTSE+/HIOhjPj4k4f9f/V6B+jo+BdmczlW60YOCecRpKR8G4NhOSkp54244Z9AEC4kyY3dvtcnglf4BfGhFV+gNEc+HrKxxxPFj/pp6uru8PlRT6ao6BXi40+htvZWmpufBDTMmvUGKSnnhTvcoOHx9NHU9ChNTU/4rX7S0paQl/cwsbFTDrtelmUcjoZh9xT9/RX+yohBFN/0p0JmtRYUZBnefRduvx2qfL7/ubnw0EOK357ad+/mdsPGjYrY/a9/HbJKUangzDOhrAwuukgRv99/H847T3nMDTfA738vGmkKBAKBYNwQwncACOFbEExcrna2bi3B5TKRmXkD06b9Ydh5h+Mg9fW/9pfNg4bMzB+Rk/PrIzbFHBhooL7+LiyW1QCoVFFkZ9/M5Ml3otUmHDOevr6d/vL1wSwXAJ1uli+TTw2ofcKI2vezatgxUKFSqVGro0hLuxS9viTg38v+/TfR0vKHoNpEOBxNbN48DUlykJf3MFlZ14/od3Ikuro+oKrquz5/6nmUlLxDZGTamOLbt+8GWlufQ6tNYt68rURF5bNiBdxzD3i9MGUKrFkz8n5DsiyxY8fX6e3dRGrqxRQXrxtTfGNBklzU1FyDxfIyAPn5K8jOvm1CCsKS5MRmq/YtWnfS2fk2AwP7/Oc1mgTS0i4hPX0pSUnfPMzuRpYlNm8uZGBgn69M/ifj/RSOG2TZS2PjIzQ2PoLX2w9AcvI55Oc/MmG9v93ubjo6/onF8gpdXf9BqYABUJGYuIhJk24mJeXbE/L/9lBstt2YTCsxm1fhcrX4j8fETMFgKCMubj7t7etob1+L19vrPx8ff7LPKuWyCZfhKxAEiizLuFwmvwjucpkwGr9HXNzscIc2Ient3cqePVfgcNQCGlJSzqOz800AZswox2hcHt4AQ4TT2UJ9/b2YTH8DJFQqLZmZ15Oefjk2254hQnflsPfLoURGZqHXl5KRcQ1paZeM7xMYC14v/P3vys1om8/WasECuPVWxbt79WqwHFovUFQEV1+teIRPOkJVw6uvKtkcsgy//a2SSS4QCAQCwTgghO8AEMK3INhYrRuorDwHgOLiN0lNvQCXq4PGxodoaXnWn8GdlnYpeXkPEBs77Zhj9vZu9TXp+T8AIiJSycn5NZmZ1x2WmaeUr7+MyVSOzVbpPx4Rkeaz/7j6S+0/QoHNVsOWLYUEszFgdfX3MJtfIiHhG8ye/d8xP5/e3q3s2nUubncHMTHTKC3dGHCcLleHLwPzJfr7twEqZs16C7f7XJYvV5JjAJYtg+efh7gAE8v7+3exdescwMusWf8mJeX8wAYIAh5PH7t3L6GrayMqlZbp0/+C0Vg27nGMFsUPfgdm82osljXDRMLISCNpaZdhMFzpt3iwWt+jsnIxGk2cr0Fr+P1uJzoul5mDBx+gtfWPvmx7FQbDMnJzf0tMTG64w8PrtdHR8SYWyxqs1neG2SXExS0kPX0p6emX+XsCHE8ozSk/xGwup719HZJkP+yaqKgcjMblGAzLR/T5IxAITlw8nl727bven2ABUFDwONnZvwhjVOODUn15B1brO0e9RqWKRKcrGtY3RKcrGVNPhQmBzQa/+x2sWKHYlQwlLU0RusvKYM6cY2dx//73SukiwAsvwLXXhiZmgUAgEAiGIITvABDCtyAUHDhwM83NTxERkUZm5vU0Nz/lzxpJTPwW+fmPBFw2rzTp+Td1dbdjt9cASjZffv4jJCefR2fnG5hM5VitGzhUvh5Jaup3MBiuJjn57KB3sg+Eioqz6Op6n8mT7yQ//+ExjdXfX+ETgGXmzv2c+PiFQYnRbt9LRcVinM5GIiMzKS3diE4380sfI0kuOjvfwmR6Cav1Lb+thkqlJT9/BdXVt7B8uZJAExsLzz6rJM+MVqevrb2dpqbHiI7OZcGC3UdsKhoqXC4zlZXn09+/DbU6lpkz15GScs64zR9slKaB/8NsfoX29rV+X32A6Oh80tOX0tu7ie7uD8nKuompU58JY7THHwMDtdTX343FsgZQ3o8yM68nJ+euMVdUBIokObFaN2CxrKGj41/DBGGdrtgndl9BTEz+uMYVSjyefjo6/onJ9BJ2ew3JyedgNJaRkPD1sFoSCQSCiYUsy5hML9HQcB8ZGd8nN/fecIc0rnR1fUB9/T04HPXodLOGNciOjZ0R1nvnkGM2w/33Kw0qTz5ZEbsXL1a8+ALh7rvhwQcVy5TXXlPsUAQCgUAgCCFC+A4AIXwLQoHX62D79pOGZVzr9XPIz3+EpKSzxpSdLEkeX5Oee/32JSpV5LCsRaV8/WrS0y/3NywKNx0d/6Kq6rtotSmcckozGk30qMeqqDibrq6NpKVdzsyZa4IYpdKQsrLybOz2PWi1Scya9dZhzY9kWaavbysm00vDGpEC6PXzMBqvJinpCn772zRWrFCOl5QoFaEzZowtPo+nny1binA6m5g8+Zfk5z80tgFHyMBALRUVZ+Nw1BIRkcqsWW8FbcNhIiBJLrq63sNsXu0TRm3Dzi9YUI1ON8Y/3leUvr5t1NXdSVeXUvKg0cSRnX072dk3h8QTVWk8Vkl//84hX7uG9TYY3NhIT78Cvb446DEIBAKBQPCVQZaVTO8XX1QaZm7YAIsWjX48rxdWrlS6wM+dC8uXQ36QN6btdnj9dVi3DhIS4Kqr4PTTD/mdCwQCgWBCI4TvABDCtyBU2Gy72bFjEVptAnl5D5KefllQs+yUJj2P0dT0OJI0QFTUZAyG5RiNZROyfF2WvXz2WT5OZyMzZvwdo/HqUY1jtW6ksvJsVKoIFi6sCUmGptttZdeu8+nt/cyX2fwaKSnn4nS2YDav8mVQVvuvj4zMxGC4CqOxDJ1uJg0NiuXhZ58p53/yE3j8cYg5cq/TgBncRFCpIpg/fyc6XVFwBj4KfX3bqKw8D7fbQnR0HiUlG4iNnRrSOcPJISuMV7Ba3yEt7TKKilaFO6zjHqv1Perq7qC/fwegWMvk5NxLRsYPRpVRp/j5tn5B4N7JwMCBI14fGZlJevrlpKdfQVzcggnv2y0QCAQCwXGDxwOXXqqIyfHx8NFHUDqK/h4bNihNOCsrhx//2teUjPRLL4XExNHFKElKXOXlsHbt4TYvkycrIvvVV8PUE/c+VyAQCE4EhPAdAEL4FoQSSXKhUkWEVGBxudpxOlvQ60smfPl6Y+MK6uruRK+fx7x5WwL+vciyl61b52GzVTBp0s+ZMuV3IYpUET93716C1fr/7N13dFTl2sbhXzq9BEiooXeSUKQjKCBVkd4J6EEURRFRPFix63c4iKiICkpC7yDSxYL0noTeuwk9gfRk9vfHe0hEEDPJJBPgvtaalczee/Z+xsIa7nn2867ExcWdAgWaEBX1O2ZRUnB1zU3Rol0oXjyIwoVbpy6KuGAB/OtfEBVlPpdPmQJduzq+vvDwTly6tJT8+RtQo8Zscucu7/BrWJaNyMiZHD489H8Lf9bG338FXl7FHX6tnMqybDn+/6u7iWXZOH9+LsePv058/DEAcuWq+KeRQi5/+nPB5X8PUn+afS4kJ1/h+vVQkpIu3PY6ZuGx2jc9cueuoH+XIiIiWSUuDtq2hd9/h+LFYeNGKJ/Oz6ehofDKK7BmjXleqBA88wzs2GEWybkRW3h5weOP2zeW5eBBE3ZPnw6nTqVtL1fOdHqfP29uy4yKStvXuLEJwHv1ynjQLiIiWUbBtx0UfItkn8TEi2zaVBrLSqBu3c0UKNDQrtdHRARz4MAg3NwK0qjRUTw8imRRpYbNlsiBA4M4f35W6raCBZtTvHgQxYr1wN097c+M+Hh46SWzaCWYUYmzZpnP1FkhPv4kW7fWxGaLwcXFg5Iln/nf7GTfTJ/7xjz548dfJyYmHDCz6WvVWnTTexbJKJstkXPnvuHkyXf/NrxOH1fy5Kn+l5A7MNtniIuIiAhw9So0bw7h4VCpEmzYAD4+f3/86dNmRvi0aSbc9vCAYcPg9dehyP8+5585AzNnQnAw7NuX9lofH3OL5e0W4rx0CWbPNoH31q1p2wsUgJ49zWuaNk0bbRIXBz/8YI5fudJ0h0Na0D5woAna3d0d889JREQyRcG3HRR8i2SvAweeICJiKr6+/alefVq6X5eSEsfWrVVISDhDhQqf4Oc3KgurTGNZNs6c+QybLRYfnz63Ha1y4IBpCLlxV+arr8J779m/NpC9rl8P5ejRV7hyxXTHuLrmpUyZkZQpMzLDAfXVq79x7NhrREdvBMDNrSB+fqMoU2Ykrq5eDqtdBMzIpkuXlpKScmOmusWNuyrMRxTrpu03Pra4ueUhb94A8uatiZubg2YIiYiISOadO2dCrrBmBgAAIABJREFU5RMnoF49+OUXyJ//5mOiouDjj2H8eNM9AtC7N3z44d93iVsW7NplwumZM+HCn744r1nThNnly5t9y5ZBUpLZ5+YG7dqZ/Y899s+zByMiYMYME7SHh6dt9/WFfv1MCB4QYNc/kmwRF+e4uYoiIjmcgm87KPgWyV7Xru1gx44HcHHxpHHjU+nuUD558mOOHx+Nl5cfDRoczNTimI5iWeYz8XPPmTVyfHxMw0qbNtlbx5Urazl2bDTXrm0DwMOjKH5+r1Oq1NB0h9XXru3k2LHXuHJlFWBGuZQq9QJ+fqPw8PDOstpFRERE5B5z6JAJvy9ehFatTBDt5QWJifD11/Duu2YfmA7x//wHGtixaHpSEqxebULwJUsgIeHWY+rUMWF3nz4mtLaXZcHu3ebD/l+D9j59zG2eBQvaf15HsyzTcfPee2Y++gcfOLsiEZEsp+DbDgq+RbLfzp2NiY7eTPny71O27Ov/eHxi4kW2bKlISko01aqFULz4gGyo8s6uXTOLVk7/35qHrVqZ34s7afy1ZVlcvLiQY8deJy7uIABeXn6UL/8uvr79U2eQ/1VMzAFOnHiTCxfmA+Di4k6JEk9RtuybeHmVyLb6RUREROQesn07PPywWUSyVy+zMOW//w1H/rcIdbVq8Mknpgs7M+shXb1qFqucNs10a3fubBap9Pd3zPsAE7SvXGlC8MWLISXFdJfPnm1fYO9oNhu88AJ8+aV57uoK27ZB3brOq0lEJBso+LaDgm+R7BcZOYP9+/vj6VmKRo1O4Op653l5hw8P5+zZCeTLV5t69XY4fYG6XbvM5/fDh83dk+++a8abuN0+W85WNlsyERFTOXFiDImJZwHIk6cGFSp8SJEinVIXDoyPP8WJE+8QETEVsAEu+Pj0pXz5d8idu6LT6hcRERGRe8SaNdCxY9rYETC3SL7zDgwefHfOzN682XR8nzhh6v/gA3j55bR54dklMdF0tM+ZY744qFkT9uyBhg3NwqLZXY+ISDZS8G0HBd8i2c9mS2DTJj+Sks5To8Y8fHy6/+2xsbFH2LatOpaVTEDAGry9W2djpTezLPjiC/PZNjERypQxdz42a+a0kv5WSkocZ89+walTH5GcfAWAAgUaU7bsG1y5soazZydiWYkAFCnSifLl3ydfPgd2xoiIiIiIzJ4Nffua+dMjR8Irr9w68/tuc/UqPP00zJ1rnj/yiBm7kl23fl6/Dt26mXEvHh7m2i1aQNWq5rbUb76Bp57KnlpERJxAwbcdFHyLOMfx429y8uT7FCzYgjp1fv3b4/bu7cmFC/Pw9m5HQMCK7CvwLy5fhiefNGMEwSzw/t134J3Dx18nJV3l9On/48yZ8dhscTftK1ToIcqX/5CCBRs7qToRERERuecdPgyFCkGxYs6uxHEsC6ZMMaNG4uJMJ3tICLRtm7XXvXjRdNFv3Qp58sCiRWkLDI0fDyNGmL+gHDwIRYtmbS0iIk6S3ixX976IiNOUKPE04EZU1G9cvx5+22OiojZz4cI8wIUKFT7J1vpusCyzGH3t2ib09vSECRPMZ8ycHnoDeHgUokKFD2nY8CglSw7FxcWdfPnqERCwisDAnxV6i4iIiEjWqlz53gq9wYwXGTwYduyAgAA4fx7atTMd7YmJWXPNU6fgwQdN6O3tDT//nBZ6AwwbZmq5fNnMUxcRuc8p+BYRp8mVqzTFinUB4OzZL2/Zb1kWx469AkDx4oPIly8gW+s7fRo+/tiMy2vZ0jyvVAk2bYLnn8/cGjzO4OVVgipVJtKsWTT16m3D27tN6rxvERERERHJgOrVYcsWeO4583zsWDMH8ehRx15n/35o2hQOHIDSpWH9ejPP+8/c3WHiRPP7lCnmLy4iIvcxBd8i4lSlSg0DIDJyGklJV2/ad/HiEqKi1uPqmpty5d7NlnquXTOLtbdqBWXLwujR5jNmrlwwZAjs3Hn3L5Lu5pZbgbeIiIiIiKPkymUWAlq0CAoXhm3boE4dsxiQI2zZYsL0M2fMHO8NG0zgfjtNm8ITT5jfhw6F5GTH1CAichdS8C0iTlWwYHPy5q2FzRZLRMTU1O02WxLHjr0KQOnSI8iVq3SW1ZCSYhacHzDArEczaJC5a9CyzBoxU6ZAZCR8/fXdvw6PiIiIiIhkkc6dITTUjCO5dg369TMh9PXrGT/n6tWmK+fyZahf33R6+/nd+TWffGIC+NDQtA5wEZH7kBa3RItbijjbuXNfc+jQM+TOXYkGDQ7i4uLK2bNfcfjws3h4FKVhw6O4uzv+/829e836M9Onw7lzadsrV4agIOjfH8qVc/hlRURERETkXpacDB98AO++CzabCapbtoTAwLRHehYLmjPHdOckJcEjj8DChZAvX/pq+PpreOYZKFDAjEcpUSJz70lEJAdJb5ar4BsF3yLOlpx8nU2bSpOSEoW//woKFmzKli2VSEo6T6VKn1O69DCHXev8eZg1ywTeO3embff2ht69TeDdoMHdN79bRERERERymHXrTNf3mTO37itV6uYgPCAAqlQBNzez/8svzcJClgW9epl5jF5e6b92Sgo0bmzGrvTrZ7p9RETuEQq+7aDgW8T5jhwZwZkz4/H27kj+/HU4efJ9cueuTP36e3F19cjUuePj4YcfTNi9cqX5DAjg4QEdO5qwu0MH+z5HioiIiIiI/KNr1+Cnn8zYkbAw8/PYsdsfmysX1Kpl5i/++KPZ9uyzMGFCWiBuj+3bTVePZZlZjg8/nPH3ISKSgyj4toOCbxHni409zNatVQAXXF29sNniqVlzPsWKdcvQ+SzLrPkSEgJz50JUVNq+hg3NHYO9e0ORIo6pX0REREREJF2ioyE83ITgNx7h4RAbe/NxY8bAW29l7nbUZ5+Fr74yi2Hu3g2enpkqXUQkJ1DwbQcF3yI5Q1hYey5fXglAgQKNqVNnAy52fsg7cgSmTTOP48fTtvv5mbB7wACzELqIiIiIiEiOYbPB0aMmBN+7Fx54wNyemllXrpi/AF24YBa9HDUq8+cUEXEyBd92UPAtkjNcurSM8PBHAahTZwMFCzZJ1+uuXDFd3SEhsHFj2vZ8+aBHDzPKpHlzcHXNiqpFRERERERysOBgGDQI8uSB/ftNV5CIyF0svVmuezbWJCJyR97e7SlT5lU8PX3SFXrbbDB+PLz+upnjDSbcfuQRE3Z37mw+24mIiIiIiNy3goJg8mRYvx5GjIAFC5xdkYhItlDHN+r4FrkbXbhgmhaWLzfP/f1h4EDo2xdKlHBqaSIiIiIiIjlLeDjUqQMpKbBiBbRr5+yKREQyLL1Zrm78F5G7zi+/QGCgCb29vMxaLaGhMHKkQm8REREREZFb+PvD8OHm92HD0m6ZFRG5hyn4FpG7RnKyWdS8VSv44w+zMPm2bfDMM5lb6FxEREREROSeN2YMlCxpFtH85JP0vcay4Nw5WLkSxo6FJUvMNhGRu4BGnaBRJyJ3g1OnoF8/M5YOYPBgM987b17n1iUiIiIiInLXmDMHevc2t87u3QsVK6bti483i1+GhkJYWNrPixdvPkfPnvDNN1CwYPbWLiLyP+nNchV8o+BbJKdbtAj+9S+4cgXy5zefsXr3dnZVIiIiIiIidxnLgjZt4Kef4OGHoW3btJD7wAEzA/yvXF2halWoVMnMB09OhvLlYdYsaNgw+9+DiNz3FHzbQcG3SM4UHw8vvwxffmme168Ps2dDhQrOrUtEREREROSudfCgmfmdlHTrvsKFzYJKAQHmZ2Ag1KgBuXOb/Vu2mC6kEyfA3R0+/NAstuSqSboikn0UfNtBwbdIznPgAPTqZZoPAF55Bd5/Hzw9nVuXiIiIiIjIXe+rr+Dbb6FKlZtD7lKl/nkBpatXYcgQmDfPPG/bFoKDwdc36+sWEUHBt10UfIvkHJYFU6eahcZjY6FYMQgJgXbtnF2ZiIiIiIiIAOYvbpMnwwsvmFt1fX1h+nRo3drZlYnIfSC9Wa7uRRGRHOPaNejfH5580oTerVqZUXMKvUVERERERHIQFxd46inYvh1q1oTISDM7/LXXbj9CRUTECRR8i0iOsHMn1K0LM2eCm5sZFbdqFZQo4ezKRERERERE5LZq1oStW+Hpp00X+EcfQYsWZga4iIiTKfgWEaeyLJgwARo3hiNHoEwZ+O03GD3aBOAiIiIiIiKSg+XJA5Mmwdy5ULAgbNoEtWvDggXOrkxE7nMKvkXEaS5fhi5dYPhwSEyExx+H3buhaVNnVyYiIiIiIiJ26dEDdu2Chg0hKgq6d4ehQyEmxtmV3SwuDvbsMbPJReSepuBbRJxi40bTBLBkCXh6mq7vRYvA29vZlYmIiIiIiEiGlC8Pv/8O//63eT5pEhQvDk88Ab/8AjZb9tZz6RL89BOMHWsWlKpZE/LlA39/6NQp++sRkWzlYlmW5ewinC29K4GKSObZbPDJJ/Dmm5CSApUqwZw5Zr63iIiIiIiI3CNWr4Znn4WjR9O2+fmZAHrAAKhWzXHXsiwzV3z3btN1fuPnmTN3ft2ECfD8846rQ0SyRXqzXAXfKPgWyS6RkebzzZo15nnfvqYBIH9+59YlIiIiIiIiWcCyYMMGCAkxM8CjotL2NWgAQUHQqxcULZr+c167ZkaVhIebR1gYhIbefO4/q1gR6tQxtxzf+LloEQwbBrlzm5C8SpXMvU8RyVYKvu2g4Fsk6/30k/liPzLSfLb44gtzt5uLi7MrExERERERkSwXFwdLl5oQfOVKcwswgIcHdOxouqQ6dgQvL7M9ORmOHDHB9p9D7uPHb39+Dw+oVevmgDswEG6X89hs0Lat+Ytqo0ZmPIu7e9a8bxFxOAXfdlDwLZJ1kpNhzBj48EPzZX+tWma0SY0atz9+0+lNFPAqQE2fmtlap4iIiIiIiGSTyEiYPduE4Dt3pm0vXBgeftiMLdm7FxISbv/6EiXMnO6AgLSfNWqYBaTS6/Rp8xfU6GjzF9bRozP1lkQk+yj4toOCb5Gscfq0GWeyfr15/tRTMH485Mlz++P3nN9D4KRA8nrk5djwYxTNY8ftbiIiIiIiInL32bMHpk2D6dPh3Lmb9+XJY8LpGwH3jYc9o1HuJDgYBg0y3eLbtpkOcRHJ8RR820HBt4jjLV1qPj9cvmxmeH/7rRnddieDFg8iODQYgNHNRvNhqw+zvlARERERERFxvpQUWLvWzNyuXNkE3BUqgKtr1l3TsqBLF1iyxITr27bZ1zUuIk6h4NsOCr5FHCcxEf79b/j0U/O8Xj0z2qRixTu/7mz0Wcp/Vp4kWxIA+TzzcXz4cXV9i4iIiIiISNaJjDRd5RcvwmuvwQcfOLsiEfkH6c1ys/BrMxG53xw9Ck2bpoXeL75oFvD+p9Ab4LMtn5FkS+JBvwepU7wO1xOvM27TuKwtWERERERERO5vvr4waZL5/eOPYcsW59YjIg6To4PvMWPG4OLictOjWrVqqfvj4+N57rnnKFKkCPny5aNbt25ERkY6sWKR+9fcuVC3LmzfbtYjWbLEBOA3FuS+k+iEaL7e8TUAo5qO4q0WbwHw+dbPuRR7KSvLFhERERERkftdt27Qrx/YbBAUBLGxzq5IRBwgRwffADVr1uSPP/5Ifay/sUoeMGLECJYuXcq8efP47bffOHfuHF27dnVitSL3n7g4eOYZM787Otp0fO/eDZ06pf8c3+z4huiEaKoXrU6Hyh14vOrj1C5eW13fIiIiIiIikj0+/xxKloRDh2D0aGdXIyIOkOODb3d3d4oXL576KPq/lXujoqKYMmUK48aNo2XLltSrV4/vv/+ejRs3snnz5jueMyEhgejo6JseIlll3cl1HL502NllZIn9+6FhQ/j6a3BxMePQfv0V/PzSf47ElETGbx4PwMtNXsbVxRUXFxfebvE2ABO2TlDXt4iIiIiIiGStwoVhyhTz+4QJ8Msvzq1HRDItxwffhw8fpmTJklSoUIF+/fpx6tQpAHbs2EFSUhKtW7dOPbZatWr4+fmxadOmO57zo48+omDBgqmPMmXKZOl7kPvXlJ1TaDG1BbW+qsWnmz7FZtmcXZLDBAfDAw9AeDj4+MCqVWYNEHd3+84ze89szl47S4l8Jejn3y91u7q+RUREREREJFu1awdDhpjfn3jC3NYsInetHB18N2zYkKlTp7Jy5Uq++uorjh8/zoMPPsi1a9eIiIjA09OTQoUK3fQaX19fIiIi7nje0aNHExUVlfo4ffp0Vr4NuU9tO7uN55Y/B5iu5pdWv0SHGR2IuH7n/z5zuuvXzcizQYPM2LNWrSA0FB55xP5zWZbF2I1jAXih4Qt4uacNBHdxceGt5pr1LSIiIiIiItlo7FgoXx5OnoSXXnJ2NSKSCTk6+G7fvj09evQgICCAtm3bsnz5cq5evcrcuXMzdV4vLy8KFChw00PEkS7EXKDb3G4kpCTQqWonJnaYSC73XKw6uorASYEsP7zc2SVmyO7dUK8eTJsGrq7w/vum07t48Yydb9XRVYSfDyefZz6eeeCZW/Y/Xu1xAn0DuZZ4jU83f5rJ6kVERERERET+Qf78MHWqmec5ZQosW+bsikQkg3J08P1XhQoVokqVKhw5coTixYuTmJjI1atXbzomMjKS4hlN4UQcINmWTO8FvTkdfZrK3pUJ6RzC0PpD2TFkBwG+AZyPOU/HmR15ceWLxCfHO7vcdFu+HBo1Mut8lCplZnm//jq4uWX8nP/Z+B8Anqr7FIVyFbplv6uLa9qs7y0TuBx3OeMXExEREREREUmP5s1hxAjz++DBcEl3IIvcje6q4Pv69escPXqUEiVKUK9ePTw8PFi7dm3q/oMHD3Lq1CkaN27sxCrlfvfa2tf4+fjP5PXIy6JeiyiYqyAANYrVYMvgLQxvOByAz7Z8RsPJDdl3YV+GrxUVH8XknZNpMbUFVb+oyqg1o9h7fq9D3sefHTsG/fpBQgJ06GA6vx98MHPn3HFuBz8f/xk3FzdebPTi3x53U9f3JnV9i4iIiIiISDb44AOoXh0iIuC555xdTcZYFpw4AUuWwLvvQvfuULmy6Wrbvt3Z1YlkORfLsixnF/F3Xn75ZR577DHKli3LuXPnePvtt9m9ezf79u2jWLFiDB06lOXLlzN16lQKFCjA888/D8DGjRvtuk50dDQFCxYkKipKY08kU+btnUfP+T0BmNt9Lj1q9rjtccsPL2fQ4kFciL1AbvfcfNr2U4bUG4KLi8s/XiPZlsyao2sIDg1mycElt+0ar1eiHkGBQfSp1YdieYtl6j3Fx0PTprBzJzRsCOvWgadnpk4JQO/5vZmzdw79/Psxvev0Ox67cP9Cus3tRn7P/Jx48QTeub0zX4CIiIiIiIjInWzfbkLilBSYPRt69XJ2RX8vLg727DGLcN14hIVBVNTtj/fwgI8/hhdfNLNMRe4i6c1yc3Tw3bt3b9atW8elS5coVqwYzZo144MPPqBixYoAxMfHM3LkSGbNmkVCQgJt27Zl4sSJdo86UfAtjrDvwj4afNuAmKQYXmnyCv/3yP/d8fiI6xEMXDyQ1UdXA9C5WmcmPzaZInmK3Pb4sMgwgncHMyN8BpExkanbaxSrwcDAgVQoXIEZ4TP48dCPJNuSAXB3dadD5Q4MDBxIx8odb1o8Mr2GDIFvv4UiRUz47edn9ylucfzKcSp9XgmbZWP307sJLB54x+Ntlo06X9chLDKMNx58g/davpf5IkRERERERET+ydtvm25pb2/45RcICHBuPZYF587dHHCHhpq5pDbbrcd7eECNGhAYaB41a8I338DChWZ/hw5mpnmxzDXNiWSneyL4zi4KviWzouKjaDC5AYcuHaJl+Zas6r8Kd1f3f3ydzbLx2ebPePWnV0myJVEyf0mmdZlGy/ItAYi8HsnM8JkEhwYTGhma+rqieYrSt1ZfBtYeSJ3idW7qFL8Ye5HZe2YTHBrM9nNpty555/amd83eDKw9kPol66eruzw4GAYNMmt6rFwJbdrY8Q/lDl5Y8QKfb/2cRyo8wuoBq9P1GnV9i4iIiIiISLZLSjJd3zt3ms7oQYNMEF6qVNZfOyEB9u0zndt/Drn/buZ4sWJpAfeNR7Vqt962bVkwaZKZY56QACVKwIwZ8PDDWf+eRBxAwbcdFHxLZtgsG13ndGXJwSWUKVCGHUN22D1eZNcfu+izoA8HLx3EBReeeeAZTkadZNWRVaRYKQB4unnyWJXHGBg4kHaV2uHh5vGP5913YR8hoSFMC5vGuWvnUrdXK1qNoIAgOlXtRNWiVW8b0oeHm9EmcXEwZoz5ktsRLsVewm+8H7FJsawZsIbWFVqn63V/7vp+s/mbvPvwu44pSEREREREROROzp0zI0HmzTPPc+eGkSNh1CjIn98x10hOhvXrzXiV0FCzuNaBA2b7X7m5QdWqt4bcxYubzrX0CguD3r1h/37zujfegLfeAvd/buQTcSYF33ZQ8C2Z8cG6D3jjlzfwcvNi/ZPreaDkAxk6T0xiDCNWjeDbnd/etL1R6UYMDBxIz5o9M9zlnGJLYe3xtYSEhrBw/0LikuNS9+Vyz0WAbwC1fWtTp0QdahevTdlcAbRokofDh6FtW1i+3HEjv95f9z5v/vImtYvXZueQnenqPL9hwb4FdJ/XnQJeBTg+/Li6vkVERERERCT7bN4ML78MGzaY5z4+plNs8GAzUiQjwsIgJARmzoQ//rh1f6FCtwbcNWtCrlwZfhs3iYmB4cNhyhTzvFkz0/3tiDmnIllEwbcdFHxnvRRbCm6ubs4uw+FWHllJhxkdsLCY0mkKT9Z5MtPnXLBvAZ9v/Zxmfs0ICgyiSpEqDqg0TXRCNAv2LWB6+HS2nNlCTFLMzQdYwLz5sK8beYpe5JWps2larSp1StShaJ6imbp2fHI8ZceX5XzMeWZ0nUFf/752vd5m2ag9qTbh58PV9S0iIiIiIiLZz7Jg8WJ49VU4fNhsq1oVPvkEOnVKX8d1RIQJukNCTHf3DUWKQMuWaQF3QACUKWNfF3dGzZ5tFvm6dg0KF4bvvoPOnbP+uiIZoODbDgq+s9Znmz/jxVUv0rxscwYFDqJ7je7k93LQrUBOdOzKMR745gGuxF/h6XpPM+nRSc4uyW42y8aRy0fYHbGbXX/sYnfkbtbPqc/1pe+CayI8+SCU3pp6fJkCZRjVdBTP1X/Ork7tG77Z8Q1P//g0fgX9OPL8kXSNa/mrP3d9nxh+gsK5C9t9DnudjjpN93nduZ54nX7+/egf0B+/gnfnt99nos+w4vAKWpRr4fAvVURERERERO4bSUlmkcgxY+DiRbPtwQdh7Fho0ODW4+PiYMkSE3avWpW2EKWHBzz2GAQFQfv2t87jzk5Hj0KfPrBtm3k+bBj85z+O6y4XcRAF33ZQ8J11YhJj8Bvvx+W4y6nb8njkoXuN7gwKHESLci1wdXHQDI1sFJsUS9PvmrI7YjcNSzXkt0G/4eXu5eyyMm3DBnjoITNCbOibeynzyA/sitjF7ojdHL58OPW4R6s8ynedvrNrlrnNslH9y+ocunSIT9t+youNXsxQjX/u+n6r+Vu88/A7GTpPeu2/sJ8209twJvpM6jYXXHi4/MMMDBxI1+pdyeeZL0tryKxLsZeYv28+M/fM5PeTv2Nhkcs9F/9t81+GPjA0Q19iiIiIiIiICBAdbbq9x42D+HizrVcv+PBDKFcOfv8dpk0z88Gjo9Ne16iRCbt79jSd3jlFYiK8/roJ8MF0ns+ebRbJFMkhFHzbQcF31vly65cMWzGMCoUrMLjOYKaGTuXQpUOp+8sVKsfAwIEMDBxI+cLlnVhp+lmWxcDFA5kWNg2fvD7sGLKD0gVKO7usTDt/HurUMWt29O5t7rr6cx56LeEa3+/+nlFrRpGQkkCJfCWY1mUarSq0Stf5Fx9YTJc5XSiUqxCnR5zOVFg8f998eszrkeVd31vPbqXDjA5cirtEtaLVGN5wOHP2zuHXE7+mHpPXIy/danRjYOBAHir3UI75Iud64nWWHFjCrD2zWHV0Fcm2tAVRyhUqx4mrJwDoWLkj3z3+HT55fZxUqYiIiIiIyD3g9Gl4803T0W1ZppO7eHGz/YayZU3Y3b8/VMnhd+CuWGFqvXgR8uSBoUOhbl0ThFetqgUwxakUfNtBwXfWSLGlUOWLKhy7cowvO3zJs/WfxbIsNp/ZzNTdU5m9dzbRCWnfdrYo24Inaj9BtxrdcnQH7Rdbv+D5Fc/j5uLG2qC1tCjXwtklZVpKilnEcu1a8yXutm2Q72/+FYRFhtF7fm/2X9yPCy6MajqK9x5+7x/HljT9rikbT29kdLPRfNjqw0zVa7NsBE4KZM/5PVnW9b3m6Bq6zOlCTFIMDUo1YFnfZakzzk9cPcG00GmEhIVw5PKR1NeUKVCGAQEDGFh7oFPGiCQkJ7Dq6Cpmhs/kh4M/3LSIaZ3idehTqw+9avWidIHSfLH1i9QvMXzy+vD949/ToXKHbK9ZRERERETknhIaCq+8AmvWmOf585uu7qAgs3Cka85olkqXc+dgwAD4+eebt3t5mQU2/7roZuGsH0UqAgq+7aLgO2vcmMXsndub0yNOk8cjz037Y5NiWXxgMVN3T+WnYz9hYf5TzOuRlx41e/BU3adoUqaJM0r/W+tPrefh4IdJtiUzrs04RjQe4eySHOKNN+CDDyBvXti6FWrUuPPxsUmxvLTqJb7e8TUA9UvWZ1a3WVT0rnjb4zec2kCz75vh6ebJieEnKJG/RKZrvtH1XdCrICdePEGhXIUyfc4b5uyZw4BFA0iyJfFIhUdY2Gvhbb+MsSyLTWc2Ebw7mDl75xCVEJW6r1HpRgQFBDGo9iBye+R2WG1/lWJL4beTvzEzfCYL9i/gavzV1H2VvCvRt1Zf+vj3oVrRW29LC48Mp+/Cvuw5vweAYfWH8X+P/F+W1isiIiIiInJf2LA6StBdAAAgAElEQVTBdEs/8ojpmL5bpaSYUScbNphQPywMrl+//bFlytwchAcEQKVK4OaWvTXLPU/Btx0UfDueZVk0ntKYLWe38MaDb/Bey/fuePzpqNOEhIYwNXTqTR20HSt35OPWH1PLp1ZWl/yP1p1cx+OzH+dq/FV61+rNzK4z74nZyMuWwaOPmt9nzjTrWKTXwv0LGfzDYK7EXyGfZz4mdpjIgMABtxzXeXZnlhxcwr/q/IvJnSY7pO4/d32/3eJtxjw0xiHnnbhtIsOWD8PComfNnoR0DknX/Pa4pDiWHlpKcGgwq46sIsVKAaBNxTas6LciS0agxCTG0GJqC3b8sSN1W8n8JelVsxd9/ftSr0S9f/xvND45nn//9G8+2/IZADWK1WBm15kEFg90eL0iIiIiIiJyl7PZ4PhxE4L/+XHixO2Pz5MHatW6NRBX/iaZoODbDgq+He/PHb6nXjyFbz7fdL3Osiw2nt7IlF1TmBY2jWRbMq4urjxR+wneeegdShUolcWV397cvXMZsGgAiSmJNCnThNX9V5PXM69TanGkEyfMiK4rV+C55+CLL+w/x+mo0/Rf1J91J9cB0M+/HxM7TqSAl/l/6eDFg1T/sjoWFvue3Uf1YtUdVv+8vfPoOb+nQ7q+Lcvind/e4Z3fzNiUZx94lgntJ+Dmav830xHXI5gRNoM3f3mTuOQ4vmj/Bc81eC7Dtf2dZ5c9y1fbvyK/Z3561+pNn1p9aF62eYZqXnlkJYMWDyIyJhJPN08+avURLzZ6McfMLBcREREREZEcLCoKwsNvDsPDwyEu7vbHly9/66iUcuXurlEw4jQKvu2g4NvxuszpwuIDixlcZzDfdvo2Q+c4dOkQr619jQX7FwCQ2z03LzV+iVFNR6WGqlnNsiw+3fwpI1ePBKBr9a5M7zL9nhgFkZBgxott3w4NGsC6dWZMV0ak2FL4aP1HjPl1DClWChUKV2Bm15k0LN2QIUuH8O3Ob3msymP80OcHh74Hm2Uj4KsA9l7YS8NSDRn6wFC6Vu9Kfq/8dp/nhRUv8OW2LwEY02IMb7V4K9Md/Z9v+ZwXVr5AbvfchD4TSuUilTN1vj9bcXgFHWaamdw/Dfgp3YuM3smFmAv864d/sfTQUgBaV2hNcOdgSuYvmelzi4iIiIiIyH0mJQWOHLm1O/zMmdsfX6wY9O5t5qHXqweOuss+IQF+/NEsPPrLL1C69K2he4kSjrueZDkF33ZQ8O1Yhy8dpuoXVR3W4bvp9CZeWfMKG05vAKBonqK81fwtnn7gaTzdPB1R8m2l2FJ4adVLTNg6AYAXGrzAuLbjMtRNm9NYFjz7LEyaBN7esHOnWVw6szae3kjfBX05GXUSd1d3Xm36KmM3jiUhJYF1g9bxYNkHM3+Rv1h5ZCWPzXqMZFsyAHk88tC1eleCAoJoWb7lP/77SkxJJGhREHP2zsEFFz5v/7nDurNtlo0209qw9vhaGpduzO9P/O6Q/34uxl7E/yt/Iq5HMLzhcMa3G++Aag3LsvhmxzeMWDWCuOQ4vHN7M/mxyXSp3sVh1xAREREREZH72KVLZlb4jZnhoaGwd68JqG+oXt0E4P36mdnh9rIs2LzZhN1z5phb3e+kaNFbw/Dq1cEz63InyTgF33ZQ8O1YN8YvPFrlUZb2WeqQc1qWxQ8Hf+DVn17l4KWDAFQsXJGPWn1E9xrdHT5rOy4pjv6L+rNw/0IA/tvmv4xoNOKemOltWTBqFIwda77MXL4c2rVz3Pmvxl/lmR+fYc7eOanbGpVuxMYnN2bZP78TV08wPWw6IaEhHL58OHV7yfwl6e/fn6DAIGr61LzlddcTr9NtbjdWH12Nh6sHIV1C6F2rt0NrOx11mlpf1SI6IZqPWn3Ev5v9O1PnsyyLHvN6sGD/AqoXrc6OITuy5A6EAxcP0HdBX3ZF7AJgcJ3BTGg/4Z6420FERERERERymKQkWLvWBNWLFkF8vNnu4gItW5oQvGtXyJfvzuc5fhymTTOPI2lryFGqFPTvD926wYULN3egHzpkZpf/lYeHCb8rVrR/gc7q1c31qlSx73WSLgq+7aDg23EuxFzAb7wf8cnx/DrwV1qUa+HQ8yfbkpmycwpv//o2kTGRADQs1ZD/e+T/aF62uUOucSn2Ep1md2Lj6Y14unkS0jmEXrV6OeTczpacDEOGwPffm+fjx8Pw4Y6/jmVZTN09ledXPE9MUgyLey3m8WqPO/5Ct7nulrNbCAkNYfae2VyJT/tGt26JugQFBNHHvw8+eX24GHuRjjM7svXsVvJ65GVhr4W0qdgmS+oK3h3MoCWD8HD1YNtT2zK1cOS00GkELQ7C3dWdLYO3ULdEXQdWerPElETe/PlN/rPxP1hYPFrlURb2XIiHm0eWXVNERERERETuc9HRMH++CcF/+y1te548JvwOCjJh+I0wOioK5s0zx//+e9rxefOaoDsoCB566O/D69hY03F+o/v8xiMqKvPvpVEjc/1evcwt9+IQCr7toODbcd797V3e/vVt6pWox7antmVZh+/1xOuM3TiWsRvHEpMUA0Cnqp14rdlrNCjVIMPXPXblGO1ntOfQpUMUylWIJb2XOCxQd7b4eOjTBxYvNn/WT54MgwZl7TVPR53mZNRJmvk1y9oL3UZCcgLLDy8nJCyEZYeWkWRLAsDNxY32ldtz5PIRDlw8gHdub5b3XU7D0g2zrBbLsugypwtLDi4hwDeArYO34uVu/0D1U1Gn8P/Kn+iEaN5/+H1eb/56FlR7q9VHV/P47MeJT46nf0B/gjsHa9FLERERERERyXonTsD06SbUPpx2hzclS5qQ48wZWLLk5g7x1q1hwADo0uWfO8T/jmXBqVN3nkn+d5KSYPVqWLXKzDkH0z3+2GMmBG/fXiNUMknBtx0UfDtGXFIcZceX5ULsBWZ1m+XwkRG388e1P3jnt3eYvHMyKZb5w6RcoXL0qNGDnjV7Uq9EvXSH4NvPbafjzI6cjzmPX0E/VvRbQY1iNbKy/GwTHQ2PPw6//moWsJwzxzy/X1yMvcicPXMICQth69mtqdtLFyjN6v6rMz2HPj3Ox5yn5sSaXIy9yOhmo/mw1Yd2vd5m2WgV0opfT/xK49KNWffEOtxd3bOo2lstPbiULnO6kGKlMLzhcD5t++k9MfpHRERERERE7gKWBVu3mgB81qxbZ3bXqAEDB0LfvmbxypwgIsLUGhICu3enbS9SJG0Rz/r1tahmBij4toOCb8f4Zsc3PP3j0/gV9OPoC0ezNZQ7cPEA7697n8UHFqd2gAOUL1SenjV70qNGD+qWqPu3Qd3yw8vpMa8HsUmx1C5em2V9l1Eyf8nsKj9LnT9vvkzcuRPy54cffjB3+NyvDl48SEhoCMevHufj1h/jV9Av2669cP9Cus3thquLK+ufWE/jMo3T/dpxm8YxcvVI8nrkZfczu6nkXSkLK729G2NWAN57+D3eaP5GttcgIiIiIiIi97mEBLNg2cKFZlHKAQOgTp2cHSCHhZm549Onm0D8hqpVTQDevz/4ZV8+cbdT8G0HBd+ZZ7NsVP+yOocuHeLTtp/yYqMXnVJHbFIsKw6vYO6+ufx46Edik2JT91UoXIGeNXrSs2ZPahevnRqCf7vjW4YuG0qKlUKbim2Y32M++b3yO6V+Rzt5Etq0Mes0FCsGK1dC3awbCS3pELQoiGlh06jsXZldT+8ir2fef3zNnvN7qPdNPRJTEvn60a8ZUm9INlR6e59t/owXV5n/vyd2mMjQ+kOdVouIiIiIiIjIXSU5+eZFPOPi0vaVLw+BgTc/ypUDV40a/SsF33ZQ8J15Pxz8gcdnP05Br4KcHnE6RwTHMYkxrDiygrl7TQgel5z2h0kl70r0qNGDxJRE/rvpvwAMqj2Ibx795p5ZuG//fhN6nzljvjRcs0aLCecEV+Ov4v+VP2eizzCs/jA+7/D5HY9PSE6g4eSGhEaG0rFyR5b2Wer0ESNv/fIW7617DxdcmNltZraMNRIRERERERG5p0RHw4IFJgT/9dfbH5M/PwQEpAXhAQHg728W7ryPKfi2g4LvzGv+fXN+P/U7rzZ9lY9bf+zscm4RkxjDssPLmLt3LssPL78pBAd4u8XbvN3ibacHio6ydSt06ACXLkH16mZNhZwy4kpgzdE1tJnexvw+YA2tK7T+22NH/zSajzd8TJHcRdjz7B6K5yueXWX+LcuyGLZ8GBO3T8Td1Z2lfZbSrlI7Z5clIiIiIiIicne6dMkspHnjERYGe/dCYuKtx7q4QKVKJgh/6SVonP4xqvcKBd92UPCdOVvPbqXh5IZ4uHpwfPhxShUo5eyS7uh64nWWHVrG3H1z2XZ2G2+3eJt/1f2Xs8tymJ9+gs6dISYGGjQwY6+KFHF2VfJXzy17jonbJ1K6QGnCh4ZTKFehW45Zf2o9Laa2wGbZWNBzAV2rd3VCpbdns2z0W9iP2Xtmk8cjD2sGrKFJmSbOLktERERERETk3pCUBAcP3hyIh4ZCZGTaMStXQtu2zqvRSRR820HBd+b0mt+LuXvnEhQYRHDnYGeXc1+bPx/69TNfCLZubcZF5cvn7KrkdmISY6j9dW2OXD5y2/93riVcI3BSIMevHmdg4ECmdp7qnELvIDElkcdnP87KIysplKsQ6watw9/X39llOVxUfBR5PfNm64K9IiIiIiIiIrcVGZkWgj/55H3Z7ZjeLFfT0SVTjl85zvx98wEY2Xikk6u5v337LfTsaULv7t3hxx8VeudkeT3zEtw5GFcXV0JCQ1h8YPFN+0esGsHxq8cpW7Asn7X7zElV3pmnmyfze8yncenGXI2/StvpbTl25Zizy3KICzEXmLhtIg9+/yCFPilEj3k9nF2SiIiIiIiICPj6mkXdXnnlvgy97aHgWzJl/Obx2CwbbSq2IcA3wNnl3JfCwuC552DIELAs83P2bPDycnZl8k+alGnCqCajABiydAjnY84DZrHYKbum4IILwZ2DKZiroDPLvKO8nnn5se+P1PKpxR/X/6DNtDZEXI9wdlkZci3hGtNCp9F+RntK/LcEzy1/jvWn1gOw+MBiDl065OQKRURERERERCS9FHxLhl2Ou8yUXVMAeLnxy06u5v4SEQHjxkHt2mYtg4kTzfbRo2HSJHBzc259kn5jHhpDgG8AF2Iv8PSPT3M+5jyDfxgMmLsoWpRr4eQK/5l3bm9W919N+ULlOXrlKO2mt+Nq/FVnl5Uu8cnxLNq/iJ7zeuIz1oegxUGsPLKSFCuFeiXq8d82/6Vl+ZYATNk5xcnVioiIiIiIiEh6acY3mvGdUR/9/hGv/fwaAb4B7H56Ny4uLs4u6Z4WGwtLlsC0abBqFdhsZruHBzz2GAweDO3bO7dGyZjQiFDqf1ufJFsSlbwrceTyEfx9/Nn21Da83O+e1v2jl4/S9LumRMZE0syvGav6ryKPRx5nl3WLZFsyvxz/hVl7ZrFw/0KiEqJS91UtUpU+tfrQx78PVYpUAWDJgSV0ntMZn7w+nB5xGk83T2eVLiIiIiIiInLf0+KWdlDwbb+E5ATKfVaOiOsRhHQOYUDgAGeXdE+y2eD33yEkBObNg2vX0vY1bgxBQWaut7e382oUx/jw9w95/efXAfBw9WDbU9sILB7o5KrsFxYZRvPvmxOVEMVD5R7ijQff4KFyD+Hm6rzbEC7FXiI0MpTQiFBCI0NZeWQlkTFpq2CXLlCa3jV709e/L7WL177lS7yklCT8xvsRcT2CBT0X0LV61+x+C/e0Pef3sPbYWkrmL0lg8UAqFq7o1P9eREREREREJGdT8G0HBd/2+37X9zz5w5OUzF+S48OPqwPSwQ4dMp3d06bByZNp28uVgwEDzKNyZaeVJ1kg2ZZM8++bs+nMJj5p/Qmjmo5ydkkZtv7UetpMa0NcchwApfKXon9AfwYEDKCmT80su26KLYXDlw+nBtw3wu6z187ecmyR3EXoUaMHffz70MyvGa4ud5789dra1/ho/Ue0r9Se5f2WZ9VbuG+cjjrNrD2zmBE+g7DIsJv25XbPTS2fWgT4BhDoG0iAbwABvgEUzl3YSdWKiIiIiIhITqLg2w4Kvu1jWRb+X/mz98Leuz6gy2ksC956C95/P21bgQKmq3vAAGjWDFw1mf+eFZ0Qze6I3Tzo9+BdPzooPDKcidsmMnvv7JvmfdctUZeggCD6+PfBJ69Phs9/Nf4q4ZHhN3Vy7zm/JzVs/6sKhSsQ6BtIoG8gDUs3pFX5Vni4eaT7ekcvH6XS55VwwYUTL57Ar6Bfhmu/X12Ju8L8ffOZET6DdSfXYWE+fni4etCyfEuuxF8hPDL8b/8dlilQJjUED/AN4IGSD1DJu1J2vgURERERERHJARR820HBt31WHllJ+xntyeeZj9MjTlMoVyFnl3RPSEmBYcPM4pRg5nUPHAidOkHu3M6tTSSjEpIT+PHQj4SEhbD88HKSbckAuLm40a5SO4ICg+hUtRO53HPd9vUpthSOXjlKWGRYasAdFhnGyaiTtz0+j0ce/H38Tchd3ATd/r7+FPDK/J/trUJa8fPxnxnTYgxvP/R2ps93P4hPjufHQz8yI3wGyw8vJzElMXVf87LN6e/fn+41uqd2c//133fY+TDCIsM4cfXEbc9fr0Q9BgYOpI9/H4rmKZodb0lEREREREScTMG3HRR826d1SGvWHl/LiEYjGNd2nLPLuSckJpqQe/ZscHEx4feQIc6uSsSxLsRcYM7eOYSEhrDt3LbU7QW9CtKjRg/6B/TH1cXVhJ6RaV3csUmxtz2fX0G/1C7uwOJmJEZWzoeeFT6Lvgv7UqZAGY4PP6451H8jxZbCryd+ZUb4DBbsX0B0QnTqPn8ff/r596OPfx+7uuaj4qMIPx9+0xcgO/7YkfpFioerBx2rdGRg4EA6VO6g8VsiIiIiIiL3MAXfdlDwnX57zu/B/yt/3FzcOPrCUcoWKuvsku56sbHQvTusWAEeHjB9uhltInIvO3DxANNCpzE9fDqnok7d8dgbM59vzHu+EXJn990m8cnxlBpXistxl1nRbwXtKrXL1uvfDTac2kDQ4iCOXTmWuq1MgTL09e9LP/9++Pv6O+xaF2IuMDN8JsGhweyK2JW6vWieovSp1YeBgQOpW6LuXT82SERERERERG6m4NsOCr7T7+vtX/PMsmd4pMIjrB6w2tnl3PWuXoVHH4UNGyBPHli4ENq2dXZVItnHZtlYd3IdIaEhLD6wmHye+VIXNbwxqqSSd6Uc01394soX+WzLZ3Sr3o35Pec7u5wcI8WWwge/f8A7v72DzbJROFdhetToQb+AfulaPDSzwiPDCQkNYXr4dCKuR6Rur1msJgMDB9I/oD8l8pfI0hpEREREREQkeyj4toOC7/QbvmI4E7ZOYGTjkYxtM9bZ5dzVIiNNyB0aCoUKwbJl0KSJs6sSkTsJjwwnYFIA7q7unBlxBt98vs4uyelOR52m/6L+rDu5DoCgwCC+aP8F+b3yZ3stybZk1hxdQ3BoMIsPLCYhJQEAVxdX2lRswzP1nqFT1U7qAhcREREREbmLpTfLzdoWLLnn7L2wF4AaxWo4uZK724kT0KyZCb19feG33xR6i9wN/H39aViqIcm2ZEJCQ5xdjtMt2r+IwEmBrDu5jnye+ZjWZRrBnYOdEnoDuLu6075ye2Z3n03EyxF8/ejXNCnTBJtlY+WRlXSe05lGUxrx8/GfnVKfiIiIiIiIZB8F32KXfRf2Aeb2ccmYffugaVM4cgTKlYP16yEgwNlViUh6PVX3KQAm75rM/XrTVFxSHM8ue5auc7tyJf4K9UvWZ9fTu+gf0N/ZpaUqlKsQQ+oNYcOTGzg07BCvNn2VPB552Hp2K61CWvHItEfYfm67s8sUERERERGRLKLgW9LtStwV/rj+BwDVi1V3cjV3p61b4cEH4dw5qFnThN6VKjm7KhGxR69avcjnmY9Dlw7x+6nfnV1Otttzfg/1v63PV9u/AmBUk1Gsf3I9lbxz7h9mlYtU5uPWH3PshWM83+B5PFw9+OnYT9T/tj495vXgwMUDzi5RREREREREHEzBt6Tb/ov7AShdoDQFvDQL3V4//wytWsHly9CggRlvUqqUs6sSEXvl88xH75q9AZi8c7KTq8k+lmUxafsk6n9bn70X9uKb15dV/VfxySOf4Onm6ezy0sU3ny8T2k/g4LCDBAUG4YIL8/fNp+bEmgz+YTCno047u0QRERERERFxEAXfkm57z2u+d0YtXgzt28P16yb8XrsWihRxdlUiklFP1TPjTubtm8eVuCtOribrXY67TLe53Ri6bCjxyfG0q9SOsKFhtKnYxtmlZUj5wuUJ7hxM2NAwOlXthM2yMWXXFCp/XpmXV7/MpdhLzi5RREREREREMknBt6Sb5ntnzPffQ7dukJgIXbvCsmWQL5+zqxKRzKhfsj7+Pv7EJ8czM3yms8vJUutOriNwUiCLDizCw9WDcW3GsazvMnzy+ji7tEyr5VOLJb2XsPHJjTQv25yElAT+u+m/VJhQgfd+e4/ridedXaKIiIiIiIhkkIJvSbd9F03wrY7v9Dl0CDp1giefBJvN/JwzB7y8nF2ZiGSWi4tL6iKX3+789p5Z5NJm2Th6+ShLDizh/XXv031udx4Ofpgz0Weo7F2ZzYM3M6LxCFxd7q2PD43LNObXgb+yot8K6hSvQ3RCNG/9+hYVJ1Tki61fkJSS5OwSM2z/hf2M/mk0XeZ0YdL2SVyOu+zskkRERERERLKFi3Wv/G09E6KjoylYsCBRUVEUKKDZ1X+n9LjSnL12lg1PbqBJmSbOLifHunIF3n0XvvgCkpPB3R1Gj4Z33gEXF2dXJyKOcjnuMiX/W5KElAS2PbWNB0o+4OyS0s2yLCJjItlzfg/hkeHm5/lw9l7YS2xS7C3HD6o9iM/bf04+z3v/dhWbZWPe3nm88csbHLl8BIDK3mZxzC7VuuByF/xBfiHmArP3zCYkLITt57bftM/TzZPHqjxGUGAQ7Su1x8PNw0lVioiIiIiIZEx6s1wF3yj4To+o+CgKfVIIgCuvXqFQrkJOrijnSU6Gr7+Gt94yC1gCdOwIY8dCtWrOrU1Eska/hf2YGT6Tp+s9zaRHJ2XLNWOTYlMD66iEKFJsKdgsGzbLRoplfr/dNptlIzYplv0X97Pn/B4uxl687fm93LyoUawG/r7+1CpWiyZlmtDUr2m2vLecJCklick7JzPmtzGcjzkPQNMyTfnPI/+hcZnGTq7uVgnJCfx46EdCwkJYfng5ybZkANxd3WlfqT0PlHyA+fvmE34+PPU1RfMUpU+tPgQFBlGvRL27ItQXERERERFR8G0HBd//bPOZzTSe0piS+Uty9qWzzi4nx1m1Cl56CfaZaTDUqAHjxkHbts6tS0Sy1q8nfuXh4IfJ75mfP0b+QV7PvA47t2VZnIk+Q2hkKGGRYYRGhhIaEcrhy4exWbZMn9/VxZVK3pWo5VMLfx9//H38qeVTi4reFXF3dXfAO7g3XEu4xn82/oexG8cSlxwHQPca3fmo1UdU8q7k1Nosy2LTmU2EhIYwZ+8crsZfTd33QMkHGBAwgN61et80jz00IpSQ0BBmhM8gMiYydXv1otUJCgyin38/yhQsk63vQ0RERERExB4Kvu2g4PufTdk5hcFLB9O6QmvWDFjj7HJyjAMHYORIWL7cPC9SBN57D556yow4EZF7m2VZVPmiCkcuH+G7Tt/xRJ0nMnSeZFuyCbcjQk3A/b+w++/mMfvk9SHANwDfvL64urji5uqGK//76eJqtrm4pe3733MPNw8qe1fG39ef6kWrk9sjd2be/n3l3LVzvPXLW3y/+3tslg13V3eGPjCUt1q8RdE8RbOtDsuyOHrlKDPDZxISGsLRK0dT95XKX4oBAQMYEDjgH9fjSLYls+boGkLCQlh8YDHxyfEAuOBCy/ItGRAwgG41ut0X421EREREROTuouDbDgq+/9nIVSMZt3kcwxsOZ3y78c4ux+kuXzYzu7/8ElJSTMj9wgvw5ptQSFNgRO4rH6//mNFrR9OkTBM2PLnB7tfvjthNnwV9OHDxwC373FzcqFa0GoHFAwn0/d+jeCDF8xV3ROmSAeGR4bz606usOLICgAJeBRjdbDTDGw53+BcJcUlx7L2wl7DIsJsel+IupR6T1yMv3Wp0IyggiIfKPYSbq5vd14mKj2L+vvlMC5vGbyd/S92exyMPXat3JSggiJblW2bo3CIiIiL/z959x9d89n8cf2WLETPDXrWCnChqldJGVelQeyVFy92plJZqS2+qqvPWoq27Q4hRo1aLqs1NrUpCEHsnEdmRfb6/P86vp3duVEKSk/F+Ph55cL7zc8J1xPtc53OJiOQ1Bd+5oOD7zroHdWfDqQ183fNrRrYcaetybCYjA+bOhSlTLItYAjz5JHz0ETRsaNPSRMRGIpIiqPFpDbKMLI68cISmHk1zdJ5hGMzeP5txv44jLSuNcs7laFmtZbaA29vdm1KOpfL5Gcjd2HxmM+M3jeePiD8AqOlWk2kPT2OIzxDs7exzdS3DMLgQf+GvcDvK8mv49fBbtrVxsHOgc53OBJgC6NWkV57Oyj4Xd46FIQsJDA7kZMxJ6/Zq5aoxpPkQ/E3+Of47LiIiIiIikh8UfOeCgu87q/15bS7EX2DnsJ08WOtBW5djE0lJlp7d//mP5XGzZvDZZ+DnZ9u6RMT2ei3txarjqxjTdgyfdvv0jsfHpMQwfPVwVp9YDUDPhj35/qnvC7Rlhtw7s2FmUegiJm2ZxIX4CwDUq1iPSq6VAEugbWBk+xW4adulhEvEp8Xf8h6VXStbZ/z7ePrg4+lTIG1qDMPg98u/ExgcyJIjS4hNjbXuu7/q/fj7+DOw+cBs/cOlaMoyZ3Eq5pT1jZfj14/TrkY7RrcZrVn+IiIiIm+N38MAACAASURBVFIoKfjOBQXffy8xLRG3GZbvy/U3rlv/Q1+SZGTAE09YFrGsUAFmzIARI9THW0Qsfg7/mZ6Le1LZtTKXx17GxdHltsfuurCLQSsGcTHhIs4OznzU9SNeeeAV7OzsCrBiyUupmanM+n0W03dOv22AfSdO9k40cW9iCbc9fKwht1dZL5v/3UjLTOPnkz8TGBzIzyd/JtOcCVhmnj9232P4m/x5stGT+nRCERB9I5qQyBBCI0Otny44EnXE2uP9v3Wq3YmFvRZqsVMRERERKXQUfOeCgu+/t+/yPtr8uw1eZb24+vpVW5dT4Mxm8PeHoCAoXRq2bIE2bWxdlYgUJlnmLGp/XpvLiZdZ0nsJ/Zv1v+Ux03dOZ8r2KZgNMw0qNWBJnyXcX/V+G1Qs+SEmJYbfL/2O2TBbw2o77LCzs8OO/398i9+7l3GncZXGODs426z2nIq+Ec3SI0sJDAlk3+V91u3lXcrTr2k/Xm/3Oo2qNLJhhfKnTHMmv57+lW3ntllnc19NuvXPcaWdStPMoxk+Hj5ULVeVz/d+TmJ6IhVLVeTbJ7+lV5NeBVy9iIiIiMjtKfjOBQXff++Hwz8wbPUwHq77MJv9N9u6nAJlGPD665aWJo6OsGYNdO9u66pEpDB6d+u7TN0xFb96fmwauinbviuJVxi8cjDbzm0DYKjPUGY/PptyLuVsUKlI3jgefZwFwQtYELKAiwkXAXB1dGVW91mMaDHC5jPVSyLDMDgccZgFIQsICg0iKjnqpmPqV6xPc8/m2T5ZUK9ivWxtTU7HnGbAigEcuHIAgBdavcAnj36S7y12RERERERyQsF3Lij4/nvjfx3Px3s+5pUHXmFW91m2LqdAzZwJb75p+f2CBTBkiG3rEZHC61zcOer9qx4GBqdfPU29ivUA+OXkLwSsCiD6RjRlnMowp8cc/E3+Nq5WJO+YDTPbz23n/Z3vs/ms5Q3y/k3783XPrylfqryNq8s9wzCIT4unQqkKti4lx64kXiEoJIjAkECORB2xbncv7U6vxr1oWa0lPp4+NHVvmuM33NKz0nl7y9t89J+PAGjm0YwlvZdocVMRERERsbmcZrn2BViTFFFh0WEAeLt727iSgvXDD3+F3p98otBbRP5enQp16Fq/KwDf/fEd6VnpvL7xdXos6kH0jWh8vXw5NOqQQm8pduzt7OlStwu/Dv2VGY/MwMHOgaVHl9Li6xbZ2qEUdqdjTjNl2xTu++I+Kn5YkRZft+DTPZ8SkRRh69JuKTk9maCQILot7EbNz2ryxm9vcCTqCC4OLvT17svagWu5PPYyXz/xNSNbjqRtjba5+pSJs4MzM7vOZOOQjXiW8eRI1BFaz2vNNwe/QfNmRERERKQo0IxvNOP7Tur+qy7n4s6x/dntdKrdydblFIi1a6FXL8jKgjfegA8/tHVFIlIULDu6jH7L++FV1osabjWsbQJefeBVZnad+beLXooUF3su7mHgioGcjz+Po70j0x+ezuvtX8fervDNt4hLjePHoz8SGBzI7ou7b3mMg50Dj9Z/FH+TP081esqm7T7+nF0fGBLI8rDlJKUnWfc9WOtBhvoMpa93Xyq6VszT+0YmRRKwKoCNpzcC0Me7D9/0/CbP7yMiIiIikhNqdZILCr5vLyk9iXIfWGYHXRt/jSqlq9i4ovy3ezf4+UFqKgQEwPffg9qUikhOpGelU/3T6kTfiAagkmslvn/qe55s9KSNKxMpWHGpcTy/9nmWhy0HoFv9bgT2CsSjjMddXS89K50NpzYQFBpE9I1omns0x+RpwuRlwtvdm1KOpXJ8rYysDDae3khgcCBrTqwhLSsNsMxc96vnh7+PP51qd2Jd+DoCQwLZe2mv9Vw3Fzf6evfF3+TPg7UezNcw3zAMriZdJSQyhOCIYIIjg9l1YZe1nzpAvYr18PfxZ4jPEOpXqp9vtYAldP9sz2dM3DyRDHMGtcrXYtEzi+hQq0O+3hfgUsIlxm8az6mYUwDWGecGf/035r//S/PndldHV97o8AZPN34632ss6nZd2MX0ndMJMAXccoHm4uxs7Fmm7ZjG+fjzNPNodtevLSIiIlJwFHzngoLv2ztw5QCt57XGo4wHkeMibV1Ovjt6FB58EOLioEcP+OkncHKydVUiUpS8t+09pmyfQsdaHVnUexE13GrYuiQRmzAMg3mH5jF6w2hSM1PxKuvFgl4L8Kvnl+PzD149SGBwIIuPLLa+ofS/HOwcaFylMT6ePtbAyuRpwqusl3WBTcMw+CPiDwKDA1kUuohrN65Zz2/q3pQAUwCDmg+iulv1m64ffj3cuojn+fjz1u11KtRhqM9QhvoMpUHlBrn51twkPSudY9eOERwZbA25gyODb/mcK5SqQP+m/RnqM5T2NdsX+CKiB64cYOCKgZyKOYW9nT1THprCWx3fyrY4Zl5adXwVI9aMICYl5q7Ot8OOOT3m8I9W/8jjyoqHLHMWH+z6gMnbJmM2zNjb2bOi34oS8WZBTEoM7+94ny/3f0l6VvpN+x3sHGhUpZHldeU2ry0iIiJiGwq+c0HB9+0FBgcSsCqAznU6szVgq63LyVcXLkD79nD5MrRrB7/9BqVL27oqESlqDMPgePRxGlZumG9BkEhRciTqCP2X9yfsWhh22DHxwYlM6TwFJ4dbv7N8Mf4iQaFBBAYHciz6mHW7V1kvBjcfTFP3poRGhVpD4usp1295HffS7pi8TDSq3Iht57Zx9NpR6z6PMh4MajYIf5M/vl6+OQqxzIaZned3siBkAT8e/ZHE9ETrvrY12vJovUdv+5xud71TMacIjgzm2LVjZJgzbjrG3s6eRpUbWQM3Xy9fOtfpbPNZqIlpibz4y4ssDFkIwEO1H+K7p76zLuqbF1IyUhj36zjmHJgDQKtqrXi749vZvsd2/PXn9t9/hn9uXx62nH//8W8A/tn5n7zd6e08DSwNw2Bt+FrcS7vTrma7PLtuQbmSeIUhK4ew9ZzlZ/xGlRtx4voJXBxc+HXor8W2xWFqZiqz981m2s5pxKXGAeBXz49+3v04Fn0sx68tJk8TQ32GYvIyFWT5IiIigoLvXFHwfXsTfpvAh7s/5MVWLzK7x2xbl5NvoqMtM71PnABvb9i5EypVsnVVIiIixcONjBuM2TCGbw59A0C7Gu1Y3HsxtSvUBixB6spjKwkMCWTr2a3ZWlX0atILfx9/Hqn3CI72jtmuaxgGlxMvZ2sHEhwZTPj1cMyGOduxLg4uPN34afxN/nSt1zVXIfWtns+aE2sIDA7k19O/kmVk3fW1/lTepbw1TPtzdmlT96Y27Sl+JwuCF/DiLy+SlJ6Ek70TL7Z+kbc7vX3PrfGORh1lwIoBHIk6AsD49uOZ9vA0nB2cc3UdwzCYvG0yU3dMBeCVB17h88c+z5MWNTEpMYxYM4JVx1fhYOfAmoFreLzB4/d83YLyy8lfCFgVQPSNaMo4lWFOjzkMaj6Ivsv6sur4Ksq7lGfHsB34ePrYutQ8YzbMLDmyhElbJnEu7hwAzT2aM7PrTLrV75btTRHDMLiSeOWmT2H872uLk70TM/xm8Frb1wrlOgYiIiLFlYLvXFDwfXtPLH6CdeHrmP34bF5s/aKty8kXycnw8MOwbx/UrAn/+Q/UUGcCERGRPLfs6DKeW/scCWkJVChVgSkPTeHA1QOsPLaSGxk3rMd1rtMZfx9/env3xs0l9z+b3ci4wdGoo9bZ1E3cm9DHuw8VSlXIy6cDQERSBEuOLCHsWliuz63pVtMadtcqX6tItk84ef0kr6x/xbrwpZuLGxM6TGB029GUdsrdR+cMw+Drg18zZuMYUjNT8SzjSWCvQB6t/+g91Tjr91mM3jAagIHNBvLD0z/kOkT/b7su7GLQikHZ+q27Orqy2X9zoZ/5nZ6VzsTfJvLp3k8B8PXyZUnvJTSq0giwzLTvtrAbOy/sxKusF/8Z/h/qVqxry5LzxLZz2xj36zgOXj0IQLVy1ZjWZRr+Jv9cfTrrz9eWkMgQVp1YxbrwdQB0v68785+ej3sZ93ypX0RERLJT8J0LCr5vr/6s+pyJPcPWgK10rtPZ1uXkuYwMePJJ2LDBMsN71y5o0sTWVYmIiBRfZ2PPMnDFQH6//Hu27Q0rN8Tfx5/BPoOpU6GObYqTu/bbmd94Y9Mb/BHxBwDVy1Xnn13+SYApIEfBYkxKDM+vfZ6Vx1YC8Nh9jzH/6fl3vSDq/1oUuoiAVQFkmjPpVr8bK/qtoIxzmVxdI8ucxfSd05myfQpmw8x9le5jYa+FvLf9PdafWk/FUhXZNXwX3u7eeVJzXjsVc4qBKwZy4MoBwDIDfmbXmTe1zolLjaPT950IjQrlvkr3sXv47jz7cyhoYdfCePO3N60BdVnnskzoMIEx7cbk+o2Z//XnGzWvbXiNtKw0qpatysJnFvJw3YfzonQRERH5Gwq+c0HB963dyLhB2ellMTCIHBdZZH/gvR2zGfz9ISjI0st7yxZo08bWVYmIiBR/GVkZTN42mSVHltD9vu74m/x5oPoDRXLGs/zFbJhZHLqYSVsmWRcCbebRjBmPzODxBo/f9s93x/kdDF45mEsJl/K1dcT6k+vp/WNvUjJTaFujLT8P+plKrjnrbXcl8QqDVw5m27ltAAz1Gcrsx2dTzqUcyenJ+C3wY++lvdRwq8F/hv+HmuVr5mnt92px6GJGrRtFYnoilVwr8d2T3/FU46due/yVxCt0+K4D5+LO0bJqS7YGbKWcS7kCrPjeXE28ypRtU/j3H//GbJhxsHNgVMtRTO48Oc//TxMaGUr/5f05Fn0MO+yY1HESkztPvqk1k4iIiOQdBd+5oOD71g5dPUTLb1pSpXQVro2/Zuty8lRoKIwda1nA0tER1qyB7t1tXZWIiIhI0Zeamcqc/XOYtmMasamxgKV9zUy/mbSu3tp6XKY5k2k7pjF1x1TMhpkGlRqwpM8S7q96f77VtufiHnos6kFsaize7t5sHLKRGm5/3+Pu5/CfeXb1s9n6Yfub/LMdc/3GdTp+35Fj0cdoUqUJO4ftpHLpyvn2PHIqOT2ZV9a/wveHvwegY62OBD0TlKNgPvx6OB2+60D0jWj86vmxbuA6XBxd8rvke5KUnsTH//mYj//zMckZyQA83fhpZjwyw9rOJT8kpyfz2obXrIupdqjZgUW9F1GrfK18u6eIiEhJltMsVytwyG392auysH5c825ERMDIkeDrawm9nZ1h/nyF3iIiIiJ5pZRjKca2G8vpV08zvv14XBxc2HZuGw/8+wEGLB/A6ZjTXIi/QJf5XXhv+3uYDTPP+j7LoVGH8jX0BmhXsx07h+2kernqhF0Lo8N3HTgRfeKWx6ZlpjF241h6Lu5J9I1ofL18OTTq0E2hN0Dl0pWtIfqx6GP0XNyT5PTkfH0udxISGUKrea34/vD32GHHu53eZUvAlhzPRm9YuSG/DPqFMk5l+O3MbwSsCrhp0djCItOcyTcHv6HBFw14b/t7JGck06Z6G3Y8u4Of+v+Ur6E3QBnnMsx7ch6Ley+mnHM5dl/cje9Xvvx07Kd8va+IiIj8PQXfclvW4LtK0Q++U1Jg+nRo0ADmzbO0OenXD44fh0GDbF2diIiISPFT0bUiM7vOJPyVcPxN/thhx9KjS2kyuwnN5zZn14VdlHMuR9AzQXz/1PeUdS5bIHU19WjK7uG7aVi5IRfiL/Dg9w9a+17/6VTMKTp814HP9n4GwKsPvMreEXtpWLnhba9bs3xNNg7ZSMVSFdl7aS99l/UlIysjX5/LrWSaM5n1+ywemPcAx6OPU61cNbYEbOG9Lu/luv1G6+qt+an/TzjZO7H06FJGrx9NYfrAsGEYrD2xFp+5PoxaN4qIpAjqVazH0j5L2TNiDx1rdyzQegY0G8DhfxymdbXWxKbG8syPz/DyLy+TmplaoHUUNmbDzKLQRey/vN/WpYiISAmj4Ftu6+i1o4DlPwdFldkMixZBo0YwaRIkJcEDD1gWsVy6FOoW/UXqRURERAq1WuVrMf/p+fwx6g+61e9GhjmDhLQEHqj+AIf/cZhBzQt+FkLtCrXZNWwXLau2JPpGNF3md2Hzmc0ABIUE0eLrFhy8epBKrpVYPWA1/+r+rxy1+fB29+bnQT/j6ujK+lPrGbFmRIHNkjYMg3Xh6zB9ZWL0htGkZaXRs2FPgv8RfE+L1Het35XAXoEAfLn/S97f+X4eVXxvDlw5QJf5XXhyyZMciz5GJddKfN7tc469dIx+TfvZbM2AehXrsWv4Lsa1GwfA7P2zafPvNhyPPm6TegqDNze9yeCVg2n/XXuCQoJsXY6IiJQg6vGNenzfToMvGnAq5hSb/TcXydXJd++29PHet8/yuGZNmDEDBgwAe73lIyIiImITW89u5XTsaQJMATg5ONm0lsS0RHot7cXms5txdnCma72u/HzyZwA61e5E0DNBd+wBfis/h//MU0ueIsvIYly7cXz06Ed5XXo2B64cYPym8dbFNyu5VmJql6m80OqFPAuAZ/0+i9EbRgPwTc9veL7l83ly3dw6F3eOtza/xeIjiwFwcXBhdJvRTOw4kQqlKtikpttZf3I9AasCuHbjGqWdSjPrsVkM8RlS6Hul56WP//Mx4zeNz7bt826fM7rtaBtVJCIixYEWt8wFBd83S8lIoewHZTEbZq6+fhWvsl62LinHzpyBN9+E5cstj8uWhYkTYcwYcHW1bW0iIiIiUrikZaYx5KchLA+z/PBob2fPu53e5e1Ob+Ng73DX1w0MDiRgVQAAH3X9iHHtx+VJvf+toEPgSZsnMX3XdOzt7Fnedzm9mvTK83vcTkxKDNN3TueLfV+QnpUOwFCfoUx7eFqhXkTyauJVhvw0hC1ntwDgaO9IkypNMHmZ8PHwweRlwuRpwrOsp40rzXv/PQZmPDKDq0lX+dfv/wJgUsdJTO0y1WYz80VEpGhT8J0LCr5vFhwRjO/XvlRyrUT0+Ogi8QNJXBy8/z7MmgXp6ZZZ3SNGwD//CV5FJ7cXERERkQKWZc5iwm8T2HZ+Gx93/ZiH6jyUJ9f979mu85+ef8uFMe9GbEos7+98v8BDYMMweH7t83z7x7e4OLiwccjGPPte3U5aZhpf7rO0WIlNjQXgkbqP8FHXj2hRtUW+3juvZJmzmLl7Jh/v+ZiYlJhbHuNZxtMagps8TZi8TDSq3Mjmn4q4W//9qYexbcfy8aMfA/DBrg+YtGUSACPvH8mcHnPu6Q0mEREpmRR854KC75stCl3E4JWDebDWg+wcttPW5dzRunUwfDhcu2Z53LUrfPIJNG9u27pEREREpGQb9+s4PtnzCQ52DqwesJoeDXvc9bXSMtOYvX8203ZMs1kInGnOpM+PfVh9YjWlHEvdVSuY3IhNieV6ynUAmnk0Y6bfTB6777EiMTHnfxmGwcWEiwRHBBMc+f9fEcGcijmFwc3/LXd2cKaGWw3s7XLXp/H+qvcz1Gco3ep3s0lwvufiHh4JfISUzBSG+Axh/tPzsz2Hbw5+wws/v4DZMNO7SW+CngkqUe1fbiUxLZHQqFCCI4IJiQzhyLUjtKvRjpldZ9q6NBGRQknBdy4o+L7Z21ve5v2d7zPy/pF8/cTXti7nttLSYMIE+Pxzy+MmTSyB92OPQRH8WVhEREREihmzYebZVc+yIGQBro6ubPbfTLua7XJ9jR+P/shbm9/ibNxZwLYhcEpGCt2DurP9/PYCuV/VslWZ2mUqz/o+WyxnByelJ3Ek6ki2QDwkMoSk9KR7uq57aXcGNR+Ev8mfFl4tCuTvSdi1MB787kFiU2Ppfl93Vg9YfcvwfUXYCgatHER6VjoP132YVf1XUc6lXL7XZ2tmw8yZ2DOERIZYQu4oy69/juv/9euQX+lav2sBVykiUvgp+M4FBd83e2bpM/x0/KdCvfDIqVOWhSoPHrQ8fu01y+KVLiV7soCIiIiIFDIZWRk8vfRpfjn5CxVLVWRky5HYkfMQcvPZzey/sh8oPCGw2TBz8MpBa6uV/OJg74DJ04SrU8larMdsmDkXd46riVdzdV5qZirrwtex6MgiopKjrNubujfF3+TP4OaDqe5WPa/LBeBi/EXaf9eeSwmXaFO9DZv9N1PGucxtj99ydgtPLXmKpPQkWlZtyS+Df8GjjMdd3TslI4U1J9Zw7cY1nr//+UI1g/y3M7+xPGw5wZHBhEaGkpyRfMvjqperjo+nDyZPE+Ex4aw8thJfL18OjjyY61n/OXE+7jx7Lu2hr3ffYvmGkogUbwq+c0HB980afdmI8OvhbBq6Cb96frYu5yaLFsGoUZCUBJUqwQ8/wBNP2LoqEREREZFbS05Pxm+BH3sv7b2r88s6l+XNDm8ypu2Yvw0TRcDyZsumM5sIDA5k1fFVpGWlAWCHHY/UewR/H396NelFWeeyeXK/6zeu0/H7jhyLPkbjKo3ZNWwXlUtXvuN5B64coHtQd6JvRNOwckM2DtlInQp1cnRPs2Fm14VdBAYHsixsGQlpCYCl1cuS3ktoULnBvTylexYcEcwbv73Br6d/zbbdxcGFZh7NrCG3j6cPPp4+2b5f0TeiqT+rPglpCSzotYAhPkPytLa0zDSaz23OyZiTjG8/Xi1VRKTIUfCdCwq+s0vLTKP09NKYDTOXx16mWrlqti7JKjkZXnkFvv/e8rhjR0sIXiN/WwuKiIiIiNyzuNQ45uyfQ/SN6FydV8m1Es/f/zyeZT3zqTIpzuJS41getpzA4EB2Xvhr/aYyTmXo7d0bfx9/OtfpfNezfv/7TZ0abjXYPXx3rhZZDb8eTtcFXbkQf4Fq5aqxcchGmnk0u+3xJ6+fZEHIAhaELOBc3Dnr9trla5OYnkhMSgxlncsyt8fcPA+Mc+Ji/EXe3vo2C4IXYGDgZO/EiBYjeKjOQ5g8TTSo3ABHe8c7XmfGrhlM3DyRWuVrceLlE5RyLJVnNU7bMY13tr5jfby873J6e/fOs+uLiOQ3Bd+5oOA7u9DIUHy+8qG8S3li34wtNAvHhIRA//5w/DjY28M778Dbb4PjnX9mEBERERERKfHOxJ5hYchCAoMDOR172rq9hlsNBjcfjL/JH2937xxfLyMrg6eWPMX6U+upWKoiO4ftpKlH01zXdTnhMt0WduPotaNULFWRdYPW0b5me+v+mJQYfjz6I4HBgey5tMe6vZxzOfo17Ye/yZ8Haz3IlcQrDF45mB3ndwAQYArgy8e/zLOZ7X8nLjWOGbtm8Pnez60z7Ps37c/7D79P/Ur1c329lIwUGn7ZkEsJl/i468e83v71PKnzTOwZms5pSmpmKh1qdmD3xd2UdS7Lvuf20cS9SZ7cQ0Qkvyn4zgUF39ktObKEgSsG0r5me3YP323rcjAM+OorGDPGsphltWoQFASdO9u6MhERERERkaLHMAz2XtpLYHAgS44uIS41zrqvZdWW+Jv8GdhsIO5l3G97jf9duPU3/9+yhdW5FZMSQ89FPdlzaQ+ujq4s6bMEwzAIDAlkXfg6az95BzsHut3XjaE+Q3mq0VM39X/PMmcxbcc0/rnjn5gNMw0rN2Rpn6X4evnedW1/Jz0rnbn75zJ1x1Sup1wHoFPtTnzU9SMeqP7APV37+z++Z/ia4VQoVYHTr56mkmule7qeYRg8sfgJfj75Mw/XfZiNQzby6IJH2XpuK42rNGbfc/tKxCKjIlL0KfjOBQXf2b279V2m7pjKcy2eY96T82xaS2wsPP88rFhhedyjh6Wfd5UqNi1LRERERESkWEjLTGNd+DoCQwL55eQvZJozAXC0d6T7fd3xN/nTs2HPm1ptjP91PB/v+RgHOwdWD1hNj4Y97rmW5PRk+i7ry/pT62/a5+vli7+PPwObD8SrrNcdr7Xj/A4GrRjE5cTLODs488mjn/BS65fy7BPNhmGwLGwZEzdP5EzsGQCaVGnCh34f0rNhzzy5T5Y5C9+vfTkSdYRx7cbx0aMf3dP1Vh9fzdNLn8bJ3omQF0JoXKUxUclR3P/1/VxOvEzvJr1Z1ndZofnUd2ESFBLEjN0zSM1M5c8YzcDI9nvgpsc13GowqNkg+jfrT5XSCjJE8oqC71xQ8J1dnx/7sOLYCj599FPGtBtjszr27IGBA+H8eXBygg8/hNdeA/0bLCIiIiIikveuJV9jyZElBIYEcuDKAev2CqUq0L9pf/xN/rSr0Y5P9nzC+E3jAfjhqR8I8A3IsxoysjIYtnoYQaFBeJX1YkjzIQw1DcXH0yfX17p+4zrDVg9jbfhaAJ5q9BTfPvltjhbe/Ds7zu9g/Kbx7Lu8DwCvsl681/k9hrcYnqP+3bmx/uR6Hl/0OM4OzoS/HE7tCrXv6jrJ6cl4z/HmQvwFJj44kemPTLfu23tpL52+70SGOYOPun7EuPbj8qr8YmF52HL6LetnDbPvhpO9Ez0a9mCoz1B6NOiBi6NLHlYoUvIo+M4FBd/ZNZndhOPRxy0fe6r/qE1q+PxzGDcOsrKgfn1YsgRatbJJKSIiIiIiIiVO2LUwFgQvYGHoQi4lXLJur12+NufjzwMw028m4zuMz/N7G4bB6djT1KlQ556DZMMw+GLfF4zfNJ70rHRquNUg6JkgOtXulONr3Mi4QWhkKMGRwawNX8u68HWAZYHQNzq8wdh2Y/Otj7hhGPgt8GPL2S0M9RlKYK/Au7rOxN8mMmP3DGqXr03YS2GUdiqdbf/c/XN58ZcXsbez57ehv9Glbpe8KD/H4lPjCYkMITgy2NL2pmFPWni1sPns8y1nt9A9qDvpWemMaDGC4S2GA2CHpa4/67vVYwODPRf3EBgSyKGrh6zXrFiqIgOaDcDf5E+b6m1s/hxFiiIF37mg4Psv6VnplH6/NFlGFhfHXKSGW40Cr2HOHHjpJcvvBw609Pcu4X8sIiIiIiIiNpFlzmL7+e0EBgeyPGw5yRnJAIxt64nMsgAAIABJREFUO5aPH/24yIR2f1z9g/7L+3My5iT2dvZMfmgykzpOwsHewXqMYRhcSbxCcGQwwRHBHI48THBEMOHXw7PN9nWwc2Bky5FMfmgynmU98732g1cO0mpeK+yw4+DIg7So2iJX5x+7dgzTVyYyzBmsHrCaJxs9edMxhmEwbPUw5gfPx720O4dGHcqXPMBsmDkbe9b6PQ6OtHydizt307He7t4M9RnK4OaDqVm+Zp7Xcid/XP2Dh354iMT0RHo36c3SPkuz/X3JjSNRR6xvJF1JvGLd3qBSA/xN/gzxGUKdCnXyqHKR4k/Bdy4o+P7L0aijNJvbDDcXN+LejCvwH2KWLYP+/S0LWr77LkyZotYmIiIiIiIihUFyejKrjq8iJTOF4S2GY29nb+uSciUxLZGX179MYLBl1vRDtR9imO8w60zj4Mhgom9E3/JczzKe+Hr54uvly7O+z9K4SuOCLJ1BKwax+Mhiutbryq9Df83xeYZh8EjgI2w9t5WeDXuyduDa2x6bkpFC++/aczjiMG2qt2H7s9vvqSWHYRgcunqI/Vf2W7/HIZEhJKUn3fL4Gm41MHmacHF04efwn0nLSgMss6e71O3CUJ+h9G7Su0AW4DwVc4oO33UgKjmKznU6s37w+pv63N+NLHMWW89tJTA4kBXHVnAj44Z1X6fanfD38ad/s/759gkCkeJCwXcuKPj+y7Kjy+i3vB9ta7Rlz4g9BXrvLVuge3dIT4cXXoDZsxV6i4iIiIiISN4KDA7kxZ9ftM5e/28Odg40qtIIXy9fTJ4m668FMbP775yNPUujLxuRYc7IVVvSRaGLGLxyMKUcSxH2Yhh1K9b92+PPxJ6h1TetiE2N5YVWLzCnx5y7qvfglYOM3zSeree23rTPxcGFph5NMXmaLF9eJnw8fajkWsl6TFxqHMvDlrMgZAE7zu+wbnd1dKVXk14M9RmKXz2/PO+pDhCRFEGH7zpwJvYMvl6+bH92O24ueZ8VJaUnsfLYSgKDA9lydov1UwUeZTyY8tAUnrv/OZwcnPL8viLFgYLvXFDw/Zcp26bw3vb3GO47nG+f+rbA7nvoEDz0ECQlQZ8+lp7eDnf3CSIRERERERGRvxV+PZzxm8YTmxL7V8DtZaKpe1NcnVxtXd4tjd04ls/2fobJ08ShUYfuOOM+PjWexrMbE5EUwbQu05jUaVKO7rP+5Hp6LOqBgZHrxUvPxZ1j0pZJLApdBFhC7s51OlsDbpOniUZVGuUqsD4Xd46gkCACQwIJvx5u3e5ZxpNBzQfhb/LH5GnKk0+sx6fG89APDxEcGUy9ivXYPXw3XmW97vm6d3Ip4RJBIUHMOzSP07GnAWhUuREf+n3Ik42eLDIthUQKioLvXFDw/Zd+y/qxLGwZH3f9mNfbv14g9zx1Cjp0gKgo6NIF1q8HFy1wLCIiIiIiImJ1/cZ16s+qT3xaPIFPBzLUNPRvjx+9fjSz9s2iYeWGhPwjJFdtS97b9h5Ttk+hlGMp9ozYg6+X798eH5sSy/Sd05m1bxbpWekADPEZwrQu06hdoXaO7/t3DMNg/5X9LAhewOIji7mect26r1W1Vnzo9yEP1334rq+fmpnKYwsfY/v57XiW8WT38N3Ur1Q/L0rPsYysDL45+A1Ttk+xtt3pWKsjH3X9iDY12hRoLbmRlpnG0WtHLS1tIv7q216vYr1sb3o0cW+Cs4PzXd3DMAzOx5/P1hv+ePRx2lZvyyfdPqFCqQp5/KykMFPwnQsKvv/SbE4zjl47yvrB63nsvsfy/X4REZbQ+8wZ8PWF7du1kKWIiIiIiIjIrXy460MmbJ5ATbeahL8Sftu+039c/YNW81phNsxsGroJv3p+ubqP2TDzxOIn+OXkL9StUJcDIw9ka0Xyp7TMNObsn8PUHVOJTY0F4OG6D/NR14+4v+r9uX+COZSelc6GUxtYELKANSfWWMP2Hg16MLPrTLzdvXN1vSxzFn2X9eWn4z9Rzrkc25/dnutFRPNSQloCH+76kE/3fkpqZioA/Zr2Y/rD0ws8jP9fEUkR2cLn4AhLAJ1lZN3xXCd7J5q4N8nW5sbkacK9jHu2425k3OBI1JFs9wmJDCEhLeGW161ToQ6Ley+mbY22efIcpfBT8J0LCr4tMrIyKDO9DBnmDM6/dp5a5Wvl6/3i4y3tTYKDoV492L0bvPL/E0QiIiIiIiIiRVJKRgoNv2zIpYRLzPSbyfgO4286xmyY6fBdB/Ze2kv/pv1Z0mfJXd0rNiWWVvNacSb2DN3v6866Qeus7VUMw+DHoz8ycfNEzsadBaCZRzNm+s3ksfseK9DWHNeSrzF1x1TmHphLpjkTezt7RrQYwXud36Nquap3PN8wDEatG8W8Q/NwdnBmw+ANdKnbpQAqv7NLCZd4Z+s7zD88HwMDJ3snXmz9Iu90eofKpSsXSA2hkaEsObKE/Vf2ExwZTFRy1C2Pq1iqojXINnmaqFexHqdiTmULyOPT4m95btWyVfHx9MHNxY2QyBBOxpzEbJhvOs7J3glvd2/rfaqVq8akLZM4E3sGR3tHpnWZxvgO44vcwruSewq+c0HBt8Wxa8fwnuNNWeeyJExIyNd/qFJTLQtZbtsGnp6W0Lu+bd+0FBERERERESn05h+ez7Orn6VCqQqcfvX0TTOx/33o3zy/9nnKOZfj+MvHqVau2l3f63DEYdp9247UzFQmPzSZKZ2nsOP8Dsb9Oo79V/YDltByapepPOv7LA72tlus6+T1k0zYPIGVx1YCUMapDOPbj+f19q9T1rnsbc97Z8s7TNs5DTvsWNZ3Gb29exdUyTkWHBHMm7+9ycbTGwEo71Ketzq+xattXr3trP97EZkUyaLQRQSGBHI44nC2fXbY0bByw2wht8nLRPVy1f82RzIMgwvxF6wh+J+B+KmYU7c83qOMByZPy8Knf96jcZXGN7VKiU+NZ9S6USw9uhSArvW6sqDXApsvSCv5S8F3Lij4tlgRtoI+y/rQulpr9j2/L9/uk5UF/frBypVQrpylvUkL232CSERERERERKTIyDJn0eLrFoRGhfJ6u9f5+NGPrfuib0TT6MtGxKTE8Fm3z3it7Wv3fL/A4EACVlkWuOxcpzPbzm0DoKxzWd5o/wZj242ljHOZe75PXtl9YTfjNo1j76W9AHiV9WJql6kM8x12UzD/xe9f8OqGVwH4qsdXjGo1qsDrzY1NpzcxftN4giODAahVvhZTu0ylR4Me9zwDPCUjhTUn1hAYEsjGUxutrUuc7J3o2bAnj933GL5evjTzaEZpp9L3/Fz+lJSeRGhkKMGRwSSlJ9HcozkmL1OuFhU1DIPv/viOV9a/QkpmCp5lPFnQawFd63fNszqlcFHwnQsKvi3+uf2fTN42mWd9n+X7p77Pl3sYBrzwAnz9NTg7w4YNlgUtRURERERERCRnNpzaQPeg7jg7OHPi5RPUqVAHgOfWPMe3f3yLj6cPB0cexNHeMU/u99LPLzHnwBwAHOwcGNlyJJMfmlxoZ9UahsHysOVM2DyBM7FnAGjq3pSZXWfS/b7u2NnZsfTIUgauGIiBwXud3+Pdh961cdU5k2XOYmHIQt7e+jaXEi5Zt1cvV/2mWdgNKjX421n4ZsPM7gu7CQwO5MewH7P10G5TvQ3+Jn/6N+1fYG1V7lXYtTAGLB9AaFQoAG92eJOpXabi5OBk48okryn4zgUF3xYDlg9g6dGlt+0TlhemTIH33gM7O/jxR+jTJ19uIyIiIiIiIlJsGYZB1wVd2Xx2M4ObD2bhMwvZc3EP7b9rD8CuYbvoUKtDnt0vPSudUetGkZ6Vzjud3qFxlcZ5du38lJaZxtwDc/nn9n9aF998pO4j9PHuw6vrXyXDnMFLrV/ii+5fFGhf8ryQkpHC53s/59s/vuV07OlbHuPq6Eozj2bZFpL08fTh2o1rLAhewIKQBdYe7QC1y9dmqM9QhpqG0rByw4J6KnkqJSOF1399nbkH5gLQtkZbFj2ziLoV69q4sryXkZWBvZ29TVsM2YqC71xQ8G3hM9eH0KhQ1g1cR4+GPfL8+nPnwosv/vX7f/wjz28hIiIiIiIiUiIcvHKQVvNaAbDvuX08v/Z5giODGe47nG+f+tbG1RUusSmxTN85nVn7ZpGelW7d3te7L4t7Ly7ywWFCWoK1Xcif/bNDo0K5kXHjjueWcy5HX++++Jv86Vi7Y7FZGHJF2ApGrBlBfFo85V3KM++JefRt2tfWZd216zeu39QfPexaGHtH7KVF1ZLXP1jBdy4o+IZMcyZlppchPSuds6PPWj8mlVeWLYP+/S2tTiZPtsz8FhEREREREZG7N3jlYBaFLqKSayViUmKoWKoiJ14+gXsZd1uXViidizvHW5vfYvGRxXSr343VA1bj4uhi67LyRZY5i9Oxp7MFpcERwVxMuIi9nT3d6nfD3+TPk42ezNOe3YXJubhzDFoxiD2X9gAwquUoPuv2Ga5Orjau7PayzFmEXw+3/nmFRIUQHBHM5cTLtzz+h6d+IMA3oICrtD0F37mg4BtORJ+g8ezGlHYqTeLExDx9h2/tWktLk/R0yyzvOXMsrU5ERERERERE5O6djT1L49mNrbOYv+75NSNbjrRxVYVf9I1oKrlWKjazm3MjNsXS8qWia0UbV1IwMrIymLxtMjN2zcDAoEmVJnSs1TFX1yjjXMbaMqapR1NKOZbKk9riUuMIiQzJ9ubEkagjpGam3vL4ehXrZevhbvI0UadCnSLXpicv5DTLzZtVDqTIC7sWBkCTKk3y7IU/IwMmTYKPPrI87t0bvvxSobeIiIiIiIhIXqhbsS4vt36ZT/d+ygPVH+C5+5+zdUlFQpXSVWxdgs2UlMD7T04OTkx/ZDoP132YISuHcCz6GMeij9319RzsHGhUpdFNAbRXWa/bBtBmw8yZ2DM3zb4/H3/+lseXdipNc4/m2a7f3LM5bi4lc7LuvVDwLcBfwXdTj6Z5cr1z52DgQNi71/L4lVcsAbhD0W6bJSIiIiIiIlKoTH9kOo2qNOLJRk+WyBnMIjnhV8+PkBdCCAoJIjkjOVfnWvtrRwYTkxJD2LUwwq6FsfjIYusx7qXdrSG1ydNEckZytn7rSelJt7x2rfK18PH0yRak169Yv8j3nS8sFHwLAEevHQXAu4r3PV/rp59g+HCIi4MKFeDbb+GZZ+75siIiIiIiIiLyP1wcXdTeRCQHPMp4MKbdmLs+3zAMLidezjZzOyQyhPDr4Vy7cY3fzvzGb2d+u+W5Lg4u1nYpfwbkPp4+JW4GfkFT8C3AXzO+vd3vPvhOS4Px4+GLLyyP27SBJUugTp08KFBERERERERERMRG7OzsqOFWgxpuNejRsId1+42MGxyNOmptYRIaFYqrk2u2WdwNKzfE0V4xbEHTd1zIMmdxPPo4cPetTk6dgv794dAhy+Px4+H998HJKa+qFBERERERERERKVxKO5WmdfXWtK7e2talyP9Q8C2ciT1DWlYaro6u1C5fO9fnL1kCI0dCYiJUrgyBgfD44/lQqIiIiIiIiIiIiEgOaNUDsbY5aVylca6a56ekwKhRlkUsExOhY0c4fFiht4iIiIiIiIiIiNiWgm+xBt+5aXNy7Bg88AB88w3Y2cE778CWLVCjRn5VKSIiIiIiIiIiIpIzanUihEX//8KWVe68sKVhwPz58NJLcOMGeHpCUBA88kh+VykiIiIiIiIiIiKSM5rxLRyNOgqAt/vfB99790KnTjBsmCX09vOD4GCF3iIiIiIiIiIiIlK4KPgu4bLMWRyLPgbcPvg+fRr69YN27WDXLnB1henTYeNGy4xvERERERERERERkcJErU5KuPPx50nNTMXFwYV6Fetl23f9OkydCnPmQEaGpZf3sGHw3nvq5S0iIiIiIiIiIiKFl4LvEu7PNieNqzTGwd4BgNRUmDXLMqs7Pt5y3GOPwcyZ0Ly5rSoVERERERERERERyZli0+pk9uzZ1KlTh1KlStGmTRv27dtn65KKhLBr/7+wpbs3ZjMsWACNGsGbb1pCb19f2LQJ1q9X6C0iIiIiIiIiIiJFQ7EIvpcuXcrYsWOZPHkyhw4dwmQy0a1bN6KiomxdWqEXFm0Jvktd6EGrVuDvDxcuWFqZzJ8PBw9aFrEUERERERERERERKSrsDMMwbF3EvWrTpg2tW7fmyy+/BMBsNlOzZk1eeeUVJkyYcMfzExISKF++PPHx8bi5ueV3uYVK08n9CVsUAKceB8DNDSZOhNGjLYtYioiIiIiIiIiIiBQWOc1yi3yP7/T0dA4ePMjEiROt2+zt7fHz82PPnj23PCctLY20tDTr44SEhHyvszA6fsJM2NRFYDjg6Gjw4ot2vP02uLvbujIRERERERERERGRu1fkW51ER0eTlZWFp6dntu2enp5ERETc8pwPPviA8uXLW79q1qxZEKUWOtXqJOHZ4hBuLTYSejSLf/1LobeIiIiIiIiIiIgUfUU++L4bEydOJD4+3vp18eJFW5dkE24ublzY05r4Q91o3LDIT/4XERERERERERERAYpBq5MqVarg4OBAZGRktu2RkZF4eXnd8hwXFxdcXFwKorxCz9nZ1hWIiIiIiIiIiIiI5K0iP+Pb2dmZli1bsnnzZus2s9nM5s2badeunQ0rExERERERERERERFbKPIzvgHGjh1LQEAArVq14oEHHuDzzz8nOTmZYcOG2bo0ERERERERERERESlgxSL47t+/P9euXePdd98lIiICX19fNmzYcNOClyIiIiIiIiIiIiJS/NkZhmHYughbS0hIoHz58sTHx+Pm5mbrckRERERERERERETkFnKa5Rb5Ht8iIiIiIiIiIiIiIv9NwbeIiIiIiIiIiIiIFCsKvkVERERERERERESkWFHwLSIiIiIiIiIiIiLFioJvERERERERERERESlWFHyLiIiIiIiIiIiISLGi4FtEREREREREREREihUF3yIiIiIiIiIiIiJSrCj4FhEREREREREREZFiRcG3iIiIiIiIiIiIiBQrCr5FREREREREREREpFhR8C0iIiIiIiIiIiIixYqCbxEREREREREREREpVhR8i4iIiIiIiIiIiEixouBbRERERERERERERIoVBd8iIiIiIiIiIiIiUqwo+BYRERERERERERGRYkXBt4iIiIiIiIiIiIgUKwq+RURERERERERERKRYUfAtIiIiIiIiIiIiIsWKgm8RERERERERERERKVYUfIuIiIiIiIiIiIhIsaLgW0RERERERERERESKFQXfIiIiIiIiIiIiIlKsKPgWERERERERERERkWJFwbeIiIiIiIiIiIiIFCsKvkVERERERERERESkWHG0dQGFgWEYACQkJNi4EhERERERERERERG5nT8z3D8z3dtR8A0kJiYCULNmTRtXIiIiIiIiIiIiIiJ3kpiYSPny5W+73864UzReApjNZq5cuUK5cuWws7OzdTkFKiEhgZo1a3Lx4kXc3NxsXY6IFACNe5GSRWNepOTRuBcpeTTuRUqWkj7mDcMgMTGRatWqYW9/+07emvEN2NvbU6NGDVuXYVNubm4lcqCIlGQa9yIli8a8SMmjcS9S8mjci5QsJXnM/91M7z9pcUsRERERERERERERKVYUfIuIiIiIiIiIiIhIseIwZcqUKbYuQmzLwcGBzp074+iozjciJYXGvUjJojEvUvJo3IuUPBr3IiWLxvydaXFLERERERERERERESlW1OpERERERERERERERIoVBd8iIiIiIiIiIiIiUqwo+BYRERERERERERGRYkXBt4iIiIiIiIiIiIgUKwq+S7jZs2dTp04dSpUqRZs2bdi3b5+tSxKRPPDBBx/QunVrypUrh4eHB08//TQnTpzIdkxqaiovvfQSlStXpmzZsvTu3ZvIyEgbVSwieWnGjBnY2dnx2muvWbdpzIsUP5cvX2bIkCFUrlwZV1dXmjdvzoEDB6z7DcPg3XffpWrVqri6uuLn58fJkydtWLGI3IusrCzeeecd6tati6urK/Xr12fq1KkYhmE9RuNepGjbsWMHTzzxBNWqVcPOzo5Vq1Zl25+TMR4TE8PgwYNxc3OjQoUKjBgxgqSkpIJ8GoWGgu8SbOnSpYwdO5bJkydz6NAhTCYT3bp1Iyoqytalicg92r59Oy+99BJ79+5l06ZNZGRk8Oijj5KcnGw9ZsyYMaxdu5Zly5axfft2rly5wjPPPGPDqkUkL+zfv5+vv/4aHx+fbNs15kWKl9jYWDp06ICTkxPr168nLCyMTz75hIoVK1qPmTlzJrNmzeKrr77i999/p0yZMnTr1o3U1FQbVi4id+vDDz9k7ty5fPnllxw7dowPP/yQmTNn8sUXX1iP0bgXKdqSk5MxmUzMnj37lvtzMsYHDx7M0aNH2bRpE+vWrWPHjh2MHDmyoJ5CoWJn/Pdbg1KitGnThtatW/Pll18CYDabqVmzJq+88goTJkywcXUikpeuXbuGh4cH27dvp1OnTsTHx+Pu7s6iRYvo06cPAMePH6dJkybs2bOHtm3b2rhiEbkbSUlJ3H///cyZM4dp06bh6+vL559/rjEvUgxNmDCB3bt3s3PnzlvuNwyDatWq8frrrzNu3DgA4uPj8fT05IcffmDAgAEFWa6I5IGePXvi6enJt99+a93Wu3dvXF1dWbhwoca9SDFjZ2fHTz/9xNNPPw3k7N/2Y8eO4e3tzf79+2nVqhUAGzZs4PHHH+fSpUtUq1bNZs/HFjTju4RKT0/n4MGD+Pn5WbfZ29vj5+fHnj17bFiZiOSH+Ph4ACpVqgTAwYMHycjIyPYa0LhxY2rVqqXXAJEi7KWXXqJHjx7ZxjZozIsUR2vWrKFVq1b07dsXDw8PWrRowbx586z7z549S0RERLZxX758edq0aaNxL1JEtW/fns2bNxMeHg5AcHAwu3btonv37oDGvUhxl5MxvmfPHipUqGANvQH8/Pywt7fn999/L/Cabc3R1gWIbURHR5OVlYWnp2e27Z6enhw/ftxGVYlIfjCbzbz22mt06NCBZs2aARAREYGzszMVKlTIdqynpycRERG2KFNE7tGSJUs4dOgQ+/fvv2mfxrxI8XPmzBnmzp3L2LFjeeutt9i/fz+vvvoqzs7OBAQEWMf2rX7e17gXKZomTJhAQkICjRs3xsHBgaysLN5//30GDx4MoHEvUszlZIxHRETg4eGRbb+joyOVKlUqka8DCr5FRIq5l156iSNHjrBr1y5blyIi+eTixYuMHj2aTZs2UapUKVuXIyIFwGw206pVK6ZPnw5AixYtOHLkCF999RUBAQE2rk5E8sOPP/5IUFAQixYtomnTphw+fJjXXnuNatWqadyLiNyCWp2UUFWqVMHBwYHIyMhs2yMjI/Hy8rJRVSKS115++WXWrVvH1q1bqVGjhnW7l5cX6enpxMXFZTterwEiRdPBgweJiori/vvvx9HREUdHR7Zv386sWbNwdHTE09NTY16kmKlatSre3t7ZtjVp0oQLFy4AWMe2ft4XKT7Gjx/PhAkTGDBgAM2bN2fo0KGMGTOGDz74ANC4FynucjLGvby8iIqKyrY/MzOTmJiYEvk6oOC7hHJ2dqZly5Zs3rzZus1sNrN582batWtnw8pEJC8YhsHLL7/MTz/9xJYtW6hbt262/S1btsTJySnba8CJEye4cOGCXgNEiqBHHnmE0NBQDh8+bP1q1aoVgwcPtv5eY16keOnQoQMnTpzIti08PJzatWsDULduXby8vLKN+4SEBH7//XeNe5Ei6saNG9jbZ49xHBwcMJvNgMa9SHGXkzHerl074uLiOHjwoPWYLVu2YDabadOmTYHXbGsOU6ZMmWLrIsQ23NzceOedd6hZsyYuLi688847HP6/9u4mJMp2jwPwf475kQ2lRFlGQxhpSERtEoqIiKJlliAVWK2ECl3kqqiMwPYZREFMEpVB1KIP2tmyD4IXBMNNhYu0oIgSQ0OfsxPkxDnnLXmnnq4LbpjnmZuZ3724F/Pj4Z6//oorV65ENpstdDzgJxw5ciSuX78et2/fjurq6hgdHY3R0dEoKiqK4uLiKCsri7dv38aFCxdi3bp18fHjx2htbY3ly5fH6dOnCx0f+JtKS0tj8eLFM8aNGzeipqYmWlpa7HlIoVwuF2fOnIk5c+bE0qVL49GjR9HZ2Rlnz56NtWvXRiaTicnJyejq6or6+vqYmJiItra2GBsbi+7u7pgzx6mX8Lt5+fJl9PT0RF1dXZSUlERfX18cP3489u3bF9u3b7fvIQVGR0djYGAgRkZG4tKlS9HQ0BBz586NiYmJqKio+J97fNGiRfH06dO4efNmrF+/Pt68eROtra2xY8eOOHjwYKGX989L+KN1d3cnuVwuKSkpSTZs2JA8efKk0JGAWRAR3x35fH56ztevX5PDhw8nlZWVSXl5edLY2JgMDw8XLjQwq7Zs2ZK0t7dPX9vzkD737t1L1qxZk5SWliarV69OLl++POP9qamp5OTJk0lVVVVSWlqabNu2LRkcHCxQWuBnff78OWlvb09yuVxSVlaW1NTUJCdOnEjGx8en59j38Hvr6+v77m/5AwcOJEny/+3xDx8+JHv37k2y2Wwyf/785NChQ8mXL18KsJrCyyRJkhSocwcAAAAAgFnnjG8AAAAAAFJF8Q0AAAAAQKoovgEAAAAASBXFNwAAAAAAqaL4BgAAAAAgVRTfAAAAAACkiuIbAAAAAIBUUXwDAAAAAJAqim8AAPhNPX78ODKZTHz69KnQUQAA4Jei+AYAgF9QJpP5r6OzszM2btwYw8PDsWDBgkLHBQCAX0omSZKk0CEAAICZRkZGpl/funUrTp06FYODg9P3stlsZLPZQkQDAIBfnie+AQDgF7RkyZLpsWDBgshkMjPuZbPZ/zjq5OrVq1FRURH3799CKg04AAACNklEQVSPurq6KC8vj6amphgbG4uenp5YsWJFVFZWRltbW0xOTk5/1/j4eHR0dMSyZcti3rx50dDQEI8fPy7QygEA4OfNKXQAAABg9oyNjcX58+ejt7c3vnz5Ert3747GxsaoqKiIhw8fxqtXr2LPnj2xadOmaG5ujoiIo0ePxsDAQPT29kZ1dXXcvXs3du7cGf39/bFq1aoCrwgAAP4+xTcAAKTIt2/f4uLFi7Fy5cqIiGhqaopr167Fu3fvIpvNRn19fWzdujX6+vqiubk5hoaGIp/Px9DQUFRXV0dEREdHRzx69Cjy+Xx0dXUVcjkAAPBDFN8AAJAi5eXl06V3RERVVVWsWLFixnngVVVV8f79+4iI6O/vj8nJyaitrZ3xOePj47Fw4cJ/JjQAAMwyxTcAAKRIcXHxjOtMJvPde1NTUxERMTo6GkVFRfHixYsoKiqaMc+fZwIA8LtSfAMAwB9s/fr1MTk5Ge/fv4/NmzcXOg4AAMyKfxU6AAAAUDi1tbWxf//+aGlpiTt37sTr16/j2bNnce7cuXjw4EGh4wEAwA9RfAMAwB8un89HS0tLHDt2LOrq6mLXrl3x/PnzyOVyhY4GAAA/JJMkSVLoEAAAAAAAMFs88Q0AAAAAQKoovgEAAAAASBXFNwAAAAAAqaL4BgAAAAAgVRTfAAAAAACkiuIbAAAAAIBUUXwDAAAAAJAqim8AAAAAAFJF8Q0AAAAAQKoovgEAAAAASBXFNwAAAAAAqfJvxrE0HrDKczUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANVCAYAAAC3SOgDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXxN1/7/8ffJLKNESJAYEzGFtuaqIUXNQrXVUkOCGqrla6qqmoeUUkNrKhJF6e1FW5RLzVMNLTXV0DShJSgVIaYM+/eHX04dSSQheip9PR+P/XDO2muv9Vn7nHMfj/vJ6mebDMMwBAAAAAAAAABAHmFj7QAAAAAAAAAAAMhNJL4BAAAAAAAAAHkKiW8AAAAAAAAAQJ5C4hsAAAAAAAAAkKeQ+AYAAAAAAAAA5CkkvgEAAAAAAAAAeQqJbwAAAAAAAABAnkLiGwAAAAAAAACQp5D4BgAAAAAAAADkKSS+AQAAMhEVFSWTySSTyaQtW7akO28YhgICAmQymVS/fn2LcyaTSSNHjszRfFu2bJHJZNJ///vfhw/6IcXGxspkMikqKsrclrb+2NjYXJmjfv36MplMKlWqlAzDSHd+27Zt5vt9bxyPw+eff66pU6c+1jkeRtp34N7D09NTNWrU0MKFCx/r3CVKlFCXLl0eaYx7fzMPOkqUKJErMWfXkCFDZDKZdP369QzPBwQEqEmTJjked926dTKZTFq9evUjxffqq6+qbNmyWfa7deuWTCaTIiIisuwbGxurHj16KDAwUPny5ZOXl5cqVaqkHj16KC4uLscxzp49WyaTSefPn8/xtQAAANZgZ+0AAAAA/unc3Nw0f/78dMntrVu3Kjo6Wm5ubumu2b17t/z8/P6mCB+P5s2ba/fu3SpcuHCujenm5qaYmBht2rRJDRo0sDi3YMECubu7KyEhIdfmy8znn3+uI0eOqF+/fo99rocxfvx4hYSESJIuXbqkzz77TF26dFFCQoLeeuutxzLnypUr5e7u/khjpH1n7lWrVi299NJLGjBggLnN0dHxkebJa8aOHavExMRcGy8mJkZVqlSRj4+PBg0apMDAQMXHx+vo0aP6z3/+o9OnT+fq7xoAAOCfiMQ3AABAFtq1a6clS5bok08+sUgMzp8/X7Vq1cowUVuzZs2/M8THomDBgipYsGCujlmsWDG5ublpwYIFFonva9eu6csvv1SHDh306aef5uqcT6LAwECL71CzZs20b98+LV269LElvp9++ulHHiOz74yPj0+e+E3kths3bsjZ2VkBAQG5Ou7s2bMVHx+vI0eOqEiRIub2Nm3aaNiwYUpNTc3V+R6ntHsEAACQU5Q6AQAAyMJrr70mSVq6dKm57erVq1q+fLnCw8MzvCajUidnz57VG2+8IX9/fzk4OKhIkSJ66aWXdOHCBYt+SUlJeu+991SkSBG5u7urYcOGOnHihEWfDRs2KDQ0VH5+fnJyclJAQIB69OihS5cupYvl1KlTat++vQoVKiRHR0eVK1dOn3zySZbrzqjUyYEDB9SiRQvzWEWKFFHz5s31+++/ZzlemvDwcK1YsULx8fHmtmXLlkm6W/IhI9lZQ1qZkKVLlz7w/tWvX19r1qzR6dOnLcpvpLlz547Gjh2rsmXLytHRUQULFlRYWJj++OMPi/lKlCihFi1aaN26dXrmmWeUL18+lS1bVgsWLMj2vcguGxsbubq6yt7e3qL9k08+Ud26dVWoUCG5uLgoODhYEydOVFJSkkW/7HxuGZU6iY+P14ABA1SqVCk5OjqqUKFCatasmY4fP54r6/r+++/1yiuvqHjx4nJyclLJkiXVsWPHdN+nIUOGyMnJKd31j6P8RkpKiooXL67Q0NB05+Lj4+Xi4mKxe126m5x9++23VahQIeXLl08NGjTQ4cOHLfq8+uqr8vb21oEDB9SgQQO5urqqWbNm5nP3lzq5cuWKwsPD5enpKVdXV7Vo0UK//vprttZw+fJl2dvby9vbO8PzNjaW/zdw+fLlql69upydneXu7q7GjRtr3759D5yjZ8+e8vDw0I0bN9KdS/vfpnsT7IsXLzbP4ebmpmbNmuXoHgEAAOQUiW8AAIAsuLu766WXXrJIaC5dulQ2NjZq165dtsY4e/asqlWrppUrV6p///5au3atpk6dKg8PD125csWi79ChQ3X69GnNmzdPc+fO1alTp9SyZUulpKSY+0RHR6tWrVqaNWuW1q9fr+HDh2vPnj167rnnLJKex44dU7Vq1XTkyBFNnjxZq1evVvPmzfX2229r1KhROboPiYmJatSokS5cuKBPPvlEGzZs0NSpU1WsWDFdu3Yt2+O8+uqrsrW1tfhDwvz58/XSSy9lWGojp2vI6v7NnDlTtWvXlq+vr3bv3m0+JCk1NVWhoaGKiIhQ+/bttWbNGkVERGjDhg2qX7++bt68aTHXTz/9pAEDBuj//u//9PXXX6tSpUrq2rWrtm3bZtGvRIkSOaprnZqaquTkZCUnJ+vChQuKiIjQkSNH9Prrr1v0i46OVvv27bVo0SKtXr1aXbt21aRJk9SjRw9zn4f93K5du6bnnntOc+bMUVhYmFatWqXZs2erTJkyD1UjOiMxMTGqUKGCpk+frvXr12vChAmKiYlR9erVdfXq1VyZ414pKSnm+3rvcS9bW1u9+eabWr16tU6fPm1xbsGCBbp586Z69epl0T5w4EDFxcUpMjJSc+fO1a+//qp69erpt99+s+h348YNtW7dWk2aNNGqVas0bNiwTONs0aKFli5dqnfffVcrV67UU089pRYtWmRrnbVq1dKdO3f04osvasOGDZnWNk9b00svvaRChQrpiy++0Keffqrz58+rTp062rt3b6bXhYeHKyEhQStWrLBo/+OPP7R27Vp17tzZnGAfPny4OnXqpGeeeUb//e9/FRUVpUuXLql27do6derUQ90jAACALBkAAADIUGRkpCHJ2Ldvn7F582ZDknHkyBHDMAyjWrVqRpcuXQzDMIwKFSoY9erVs7hWkjFixAjz+/DwcMPe3t44duxYpvOlzdGsWTOL9v/85z+GJGP37t0ZXpeammokJSUZp0+fNiQZX3/9tflc48aNDT8/P+Pq1asW1/Tp08dwcnIy/vzzT8MwDCMmJsaQZERGRqZbf0xMjGEYhrF//35DkvHVV19luoYHqVevnlGhQgXDMAyjc+fORtWqVQ3DMIyjR48akowtW7YY+/btSxdHdteQk/vXvHlzo3jx4uliXLp0qSHJWL58uUV7WlwzZ840txUvXtxwcnIyTp8+bW67efOm4eXlZfTo0cPi+tKlSxulS5fO6haZ13D/YWNjY7z33nsPvDYlJcVISkoyPvvsM8PW1tZ8X7L7uRUvXtzo3Lmz+f3o0aMNScaGDRuyjPtBJBlvvvlmtvomJSUZV69eNRwdHY05c+aY29955x3D0dExXf9Zs2YZkoy4uLgHjvvOO+9keF/vPRo3bmzu/+effxrOzs7GO++8Y25LTU01SpcubTRt2tTctnbtWkOS8eyzz1rMd/LkScPW1tbo06ePua1du3aGJOPzzz9PF1+7du2MoKAg8/uVK1cakizugWEYxvvvv29IMiZMmPDA9aakpBhhYWGGyWQyJBkmk8moUKGCMWDAAOPMmTPmfklJSUbBggWNKlWqGKmpqeb2K1euGJ6ensbzzz9vbsvoXpcvX96ij2EYxpQpUwxJxsmTJw3DMIxffvnFsLW1NQYNGmTRLz4+3vD29jY6deqUrXsEAACQU+z4BgAAyIZ69eqpdOnSWrBggQ4fPqx9+/ZlWuYkI2vXrlVISIjKlSuXZd9WrVpZvK9UqZIkWew+vXjxonr27Cl/f3/Z2dnJ3t5exYsXlyT9/PPPkqRbt25p48aNatOmjZydnS12uDZr1ky3bt3S999/n+01BAQEyNPTU++8845mz56tY8eOpetz707l5ORki13q9woPD9f+/ft1+PBhzZ8/X6VLl1bdunXT9XuYNWTn/mVm9erVyp8/v1q2bGkx11NPPSVfX19t2bLFov9TTz2lYsWKmd87OTmpTJky6eb65Zdf9Msvv2Q5f5oPPvhA+/bt0759+7RhwwYNHjxYERERGjRokEW/AwcOqFWrVipQoIBsbW1lb2+vTp06KSUlRSdPnpSUvc8tI2vXrlWZMmXUsGHDbMedUwkJCeZSKmnfYw8PD92+fdv8Pc5N27ZtM9/Xe4/7H0Tr6emp119/XfPnz9ft27cl3b0f0dHR6tOnT7px27dvb/E+MDBQVatW1ebNmy3aTSaT2rRpk2WcadfdP+797zNjY2OjBQsWKDo6Wh9//LE6d+6smzdvavLkySpfvrz5v3A4fPiw/vjjD3Xu3Nmi3E/+/PnVunVrbd++PV3ZnHuFhYVp8+bNFuWQoqKiVKdOHQUGBkq6e99SUlLUqVMni9+Ui4uLateune43ld17BAAAkBUS3wAAANlgMpkUFhamxYsXm8s91KlTJ9vX//HHH+mSa5kpUKCAxXtHR0dJMpfZSE1N1QsvvKAVK1Zo8ODB2rhxo/bu3WtOAKf1u3z5spKTkzVjxgzZ29tbHGl1czOqCZ4ZDw8Pbd26VU899ZSGDh2qChUqqEiRIhoxYoQ5ORYeHm4xz70PsLxX3bp1FRgYqDlz5mjRokUKDw+3SLyleZg1ZHX/HuTChQuKj4+Xg4NDuvnOnz+f5Vxp82VnrgcpVaqUqlatqqpVq6phw4aaMGGCunXrpsmTJ5vra585c0Z16tTR2bNnNW3aNG3fvl379u0z1z5PiyE7n1tGcvKdfVgvvfSS5s6dq169emn9+vXau3ev9u3bJw8Pj0e+hxl5+umnzff13iPtO3Kvt99+W5cuXdIXX3whSfr4449VunRpNW3aNF1fX1/fDNsuX75s0ebp6ZlhrfL7Xb58Wa6urnJ1dc1yngcpWbKk3nzzTUVGRio6OlqLFi1SYmKi3nnnHfM8klS4cOF01xYpUkRJSUkZPrw3TceOHWVra6uFCxdKkn788UcdOnRIYWFh5j5pzzAIDg5O95v6+uuv0/2msnuPAAAAsmJn7QAAAACeFF26dNHw4cM1e/ZsjRs3LkfXFixYMEcPgHyQI0eO6KefflJUVJQ6d+5sbr9/R7Gnp6dsbW3VsWNHvfnmmxmOVbJkyRzNHRwcrGXLlskwDB06dEhRUVEaPXq08uXLpyFDhmjkyJEWO2Ld3NwyHSssLEzDhg2TyWSyWMfjXsODeHt7q0CBAlq3bl2G5x+0nsetUqVK5vtetmxZffXVV0pMTNSKFSvMu/0l6eDBg+muzepzy0hufmczcvHiRW3YsCHdTvbr16+nq+/t5OSk5ORkpaamWjyYMSd/uMmpChUqqEGDBvr4449Vu3ZtrVu3TpMmTcrwDzQZPVzz/Pnz6f4wktG1GSlQoICuX7+u69evWyS/H/Uhnq+//rrGjRunI0eOmOeRlGHN9nPnzsne3j7DuvtpfHx81KxZM0VFRWn48OGKjIyUq6urXn75ZXOftAdsrlq1KsPE/f0P2szuPQIAAMgKiW8AAIBsKlq0qAYNGqTjx49nmqjNTNOmTbVo0SKdOHFCQUFBjxRHWmLo/l2qc+bMsXjv7OyskJAQHThwQJUqVZKDg8MjzXt/DJUrV9ZHH32kqKgo/fjjj5Jy9hDHzp07a8+ePSpXrpyKFi2aYZ/HtYbMdmW3aNFCy5YtU0pKimrUqJErc+WWtIR2oUKFJGX8PTAMQ59++mmmY2T2uWWkadOmGj58uDZt2qTnn38+N5aQLhYp6++xdPd7lZKSoqNHjyo4OFjS3bWuXr061+O6V9++fdWqVSt1795d+fLly7S80eeff27xh5lTp05p//796tmz50PNGxISounTp+vzzz/XG2+8YTFPdsTFxWW4izshIUHnzp2Tv7+/pLt/EClYsKCWLFmiPn36mD+ThIQEff3116pbt67s7e0fOFdYWJjatGmj//3vf1q6dKlefvlli2R906ZN1b9/f/3666/ZfjgnAABAbiDxDQAAkAMREREPdd3o0aO1du1a1a1bV0OHDlVwcLDi4+O1bt069e/fX2XLls32WGXLllXp0qU1ZMgQGYYhLy8vrVq1Shs2bEjXd9q0aXruuedUp04d9erVSyVKlNC1a9f0yy+/aNWqVdq0aVO25129erVmzpyp1q1bq1SpUjIMQytWrFB8fLwaNWqU7XHSFClSRF999VWW/XJzDWmCg4O1YsUKzZo1S1WqVJGNjY2qVq2qV199VUuWLFGzZs3Ut29fVa9eXfb29vr999+1efNmhYaGPlT94YCAAEnpd+Vn5tSpU+bSNVevXtV3332n+fPnq2rVquYSO40aNZKDg4Nee+01DR48WLdu3dKsWbN05coVi7Ee9nPr16+fvvjiC4WGhmrIkCGqXr26bt68qa1bt6pFixYKCQnJ8X24V8GCBVW9enWNHz9eHh4e8vPz06ZNm7R48eJ0JT5atWold3d3de7cWSNHjpQkzZ8/XxcvXnykGLLSvHlzlS5dWps3b1a3bt3k6emZYb/ffvtNL7/8ssLCwnT58mUNHz5cbm5uGjx48EPN27JlS9WsWVP9+vXT1atX9dRTT2nbtm1asmRJtq5///33deDAAbVr106VK1eWk5OToqOjNX36dF27dk1Dhw6VJNnZ2SkiIkJdu3ZV69at1a1bN928eVMTJkxQYmKixo8fn+VcLVq0UKFChdS9e3ddvnzZosyJJJUpU0bDhg3TwIEDdeLECb3wwgvKnz+/zp8/rz179qhAgQJ67733cn6TAAAAskDiGwAA4G9QtGhR7d27VyNGjFBERIQuX76sggUL6rnnnpOXl1eOxrK3t9eqVavUt29f9ejRQ3Z2dmrYsKG+++47iwctSlL58uX1448/asyYMRo2bJguXryo/PnzKzAw0FwjO7sCAwOVP39+TZw4UefOnZODg4OCgoLSlVzJbbm5hjR9+/bV0aNHNXToUF29elWGYcgwDNna2uqbb77RtGnTtGjRIk2YMEF2dnby8/NTvXr1zLuNcyo5OTlH/dMSk5Lk4uKi4sWL6/3331f//v1la2sr6e4fQJYvX65hw4bpxRdfVIECBdS+fXv179/fog71w35ubm5u2rFjh0aOHKm5c+dq1KhR8vT0VLVq1Sx2IT+KL7/8Un379lX//v2VkpKiunXr6rvvvlO9evUs+nl5eWnt2rXq37+/XnvtNRUoUEA9evRQ48aNMy2BkxtsbGz08ssvKyIiIsOHWqb58MMPtWXLFnXu3FnXr19XzZo1NXXq1HS/x+yytbXVmjVr1L9/f40bN07JycmqU6eOVq1apYoVK2Z5fXh4uBYvXqzFixcrIiJC165dk5eXl6pVq6ZJkyZZ/MEjPDxc7u7umjhxol555RXZ2dnp2Wef1Zw5c1S9evUs57Kzs9Prr7+uKVOmKCAgIMNnH4waNUrBwcGaMWOGFi1apDt37qhw4cKqXr26QkNDc3ZzAAAAsslkGIZh7SAAAAAA4J/GMAwFBwfLy8tL27Zts3Y4AAAAyAF2fAMAAADAPa5evaqjR49q5cqVOnr0qNauXWvtkAAAAJBDJL4BAAAA4B67d+9W06ZN5e3trfHjx6tJkybWDgkAAAA5RKkTAAAAAAAAAECeYmPtAAAAAAAAAAAAyE0kvgEAAAAAAAAAeQqJbwAAAAAAAABAnsLDLSWlpqbq3LlzcnNzk8lksnY4AAAAAAAAAIAMGIaha9euqUiRIrKxyXxfN4lvSefOnZO/v7+1wwAAAAAAAAAAZMNvv/0mPz+/TM+T+Jbk5uYm6e7Ncnd3t3I0AAAAAAAAAICMJCQkyN/f35zTzQyJb8lc3sTd3Z3ENwAAAAAAAAD8w2VVspqHWwIAAAAAAAAA8hQS3wAAAAAAAACAPIXENwAAAAAAAAAgT6HGNwAAAAAAAPIUwzCUnJyslJQUa4cCIIdsbW1lZ2eXZQ3vrJD4BgAAAAAAQJ5x584dxcXF6caNG9YOBcBDcnZ2VuHCheXg4PDQY5D4BgAAAAAAQJ6QmpqqmJgY2draqkiRInJwcHjkXaMA/j6GYejOnTv6448/FBMTo8DAQNnYPFy1bhLfAAAAAAAAyBPu3Lmj1NRU+fv7y9nZ2drhAHgI+fLlk729vU6fPq07d+7Iycnpocbh4ZYAAAAAAADIUx52hyiAf4bc+A3zvwIAAAAAAAAAgDyFxDcAAAAAAAAAIE8h8Q0AAAAAAAA84bZs2SKTyaT4+HhrhwL8I5D4BgAAAAAAAKzs4sWL6tGjh4oVKyZHR0f5+vqqcePG2r17998yf24nzqOiopQ/f/5cGQt4GHbWDgAAAAAAAAD4t2vbtq2SkpK0cOFClSpVShcuXNDGjRv1559/Wjs0C3fu3JGDg4O1wwCyxI5vAAAAAAAA5E2GISUmWucwjGyHGR8frx07duiDDz5QSEiIihcvrurVq+vdd99V8+bNFRsbK5PJpIMHD1pcYzKZtGXLFouxdu7cqcqVK8vJyUk1atTQ4cOHzedOnz6tli1bytPTUy4uLqpQoYK+/fZbxcbGKiQkRJLk6ekpk8mkLl26SJLq16+vPn36qH///vL29lajRo0kSVOmTFFwcLBcXFzk7++v3r176/r165Lu7h4PCwvT1atXZTKZZDKZNHLkSEl3E+eDBw9W0aJF5eLioho1aqRbA5Ab2PENAAAAAACAvOnGDcnV1TpzX78uubhkq6urq6tcXV311VdfqWbNmnJ0dHzoaQcNGqRp06bJ19dXQ4cOVatWrXTy5EnZ29vrzTff1J07d7Rt2za5uLjo2LFjcnV1lb+/v5YvX662bdvqxIkTcnd3V758+cxjLly4UL169dLOnTtl/P+Evo2NjaZPn64SJUooJiZGvXv31uDBgzVz5kw9++yzmjp1qoYPH64TJ06Y1yhJYWFhio2N1bJly1SkSBGtXLlSTZo00eHDhxUYGPjQ6wbuR+IbAAAAAAAAsCI7OztFRUWpe/fumj17tp555hnVq1dPr776qipVqpSjsUaMGGHelb1w4UL5+flp5cqVeuWVV3TmzBm1bdtWwcHBkqRSpUqZr/Py8pIkFSpUKF1t7oCAAE2cONGirV+/fubXJUuW1JgxY9SrVy/NnDlTDg4O8vDwkMlkkq+vr7lfdHS0li5dqt9//11FihSRJA0cOFDr1q1TZGSkxo8fn6O1Ag9C4hsAAAAAAAB5k7Pz3Z3X1po7B9q2bavmzZtr+/bt2r17t9atW6eJEydq3rx5ql+/frbHqVWrlvm1l5eXgoKC9PPPP0uS3n77bfXq1Uvr169Xw4YN1bZt22wl1qtWrZqubfPmzRo/fryOHTumhIQEJScn69atW0pMTJRLJjvdf/zxRxmGoTJlyli03759WwUKFMj2GoHsIPENAAAAAACAvMlkyna5kX8CJycnNWrUSI0aNdLw4cPVrVs3jRgxQtu3b5ckc5kRSUpKSsr2uCaTSZLUrVs3NW7cWGvWrNH69es1YcIETZ48WW+99dYDr78/kX369Gk1a9ZMPXv21JgxY+Tl5aUdO3aoa9euD4wrNTVVtra2+uGHH2Rra2txztVaJWmQZ/FwSwAAAAAAAOAfqHz58kpMTFTBggUlSXFxceZz9z7o8l7ff/+9+fWVK1d08uRJlS1b1tzm7++vnj17asWKFRowYIA+/fRTSZKDg4MkKSUlJcu49u/fr+TkZE2ePFk1a9ZUmTJldO7cOYs+Dg4O6cZ6+umnlZKSoosXLyogIMDiuLckCpAb2PENAAAAAAAAWNHly5f18ssvKzw8XJUqVZKbm5v279+viRMnKjQ0VPny5VPNmjUVERGhEiVK6NKlSxo2bFiGY40ePVoFChSQj4+P3nvvPXl7e6t169aS7tblbtq0qcqUKaMrV65o06ZNKleunCSpePHiMplMWr16tZo1a6Z8+fJlugu7dOnSSk5O1owZM9SyZUvt3LlTs2fPtuhTokQJXb9+XRs3blTlypXl7OysMmXKqEOHDurUqZMmT56sp59+WpcuXdKmTZsUHBysZs2a5eJdxb8dO74BAAAAAAAAK3J1dVWNGjX00UcfqW7duqpYsaLef/99de/eXR9//LEkacGCBUpKSlLVqlXVt29fjR07NsOxIiIi1LdvX1WpUkVxcXH65ptvLHZzv/nmmypXrpyaNGmioKAgzZw5U5JUtGhRjRo1SkOGDJGPj4/69OmTabxPPfWUpkyZog8++EAVK1bUkiVLNGHCBIs+zz77rHr27Kl27dqpYMGC5odjRkZGqlOnThowYICCgoLUqlUr7dmzR/7+/o98H4F7mYx7iwP9SyUkJMjDw0NXr16Vu7u7tcMBAAAAAADAQ7h165ZiYmJUsmRJOTk5WTscAA/pQb/l7OZy2fENAAAAAAAAAMhTSHwDAAAAAAAAAPIUEt8AAAAAAAAAgDyFxDcAAAAAAAAAIE8h8Q0AAAAAAAAAyFNIfAMAAAAAAAAA8hQS3wAAAAAAAACAPIXENwAAAAAAAAAgT7Fq4nvWrFmqVKmS3N3d5e7urlq1amnt2rXm87dv39Zbb70lb29vubi4qFWrVvr9998txjhz5oxatmwpFxcXeXt76+2339adO3f+7qU8uXbulKKipGvXrB0JAAAAAAAAAOQKqya+/fz8FBERof3792v//v16/vnnFRoaqqNHj0qS+vXrp5UrV2rZsmXasWOHrl+/rhYtWiglJUWSlJKSoubNmysxMVE7duzQsmXLtHz5cg0YMMCay3qyvPyyFBYmHT9u7UgAAAAAAAAAIFdYNfHdsmVLNWvWTGXKlFGZMmU0btw4ubq66vvvv9fVq1c1f/58TZ48WQ0bNtTTTz+txYsX6/Dhw/ruu+8kSevXr9exY8e0ePFiPf3002rYsKEmT56sTz/9VAkJCdZc2pMjIODuv9HR1o0DAAAAAADgX6xLly4ymUzpjiZNmlg7NOCJ9I+p8Z2SkqJly5YpMTFRtWrV0g8//KCkpCS98MIL5j5FihRRxYoVtWvXLknS7t27VbFiRRUpUsTcp3Hjxrp9+7Z++OGHTOe6ffu2EhISLI5/rbTE9y+/WK0aJeoAACAASURBVDcOAAAAAACAf7kmTZooLi7O4li6dKm1wwKeSFZPfB8+fFiurq5ydHRUz549tXLlSpUvX17nz5+Xg4ODPD09Lfr7+Pjo/PnzkqTz58/Lx8fH4rynp6ccHBzMfTIyYcIEeXh4mA9/f//cX9iTonTpu/+S+AYAAAAAAHmMYRhKSUm0ymEYRo7jdXR0lK+vr8WRlhszmUyaN2+e2rRpI2dnZwUGBuqbb74xX5vZjvEtW7Zo9OjRCg4OTjdflSpVNHz4cPP1rVu31vjx4+Xj46P8+fNr1KhRSk5O1qBBg+Tl5SU/Pz8tWLDAYoyzZ8+qXbt28vT0VIECBRQaGqrY2Ngcrx3IbXbWDiAoKEgHDx5UfHy8li9frs6dO2vr1q2Z9jcMQyaTyfz+3teZ9bnfu+++q/79+5vfJyQk/HuT3+z4BgAAAAAAeVRq6g1t3+5qlbnr1LkuW1uXXB1z1KhRmjhxoiZNmqQZM2aoQ4cOOn36tLy8vDRt2jRFRESY+0ZERGjp0qUqW7asAgICNGrUKO3bt0/VqlWTJB06dEgHDhzQl19+ab5m06ZN8vPz07Zt27Rz50517dpVu3fvVt26dbVnzx598cUX6tmzpxo1aiR/f3/duHFDISEhqlOnjrZt2yY7OzuNHTtWTZo00aFDh+Tg4JCr6wdywuo7vh0cHBQQEKCqVatqwoQJqly5sqZNmyZfX1/duXNHV65cseh/8eJF8y5vX1/fdDu7r1y5oqSkpHQ7we/l6Ogod3d3i+Nfi8Q3AAAAAADAP8Lq1avl6upqcYwZM8Z8vkuXLnrttdcUEBCg8ePHKzExUXv37pUkeXh4mHeJ79q1S7Nnz9by5cvl6+srPz8/NW7cWJGRkeaxIiMjVa9ePZUqVcrc5uXlpenTpysoKEjh4eEKCgrSjRs3NHToUAUGBurdd9+Vg4ODdu7cKUlatmyZbGxsNG/ePAUHB6tcuXKKjIzUmTNntGXLlr/npgGZsPqO7/sZhqHbt2+rSpUqsre314YNG/TKK69IkuLi4nTkyBFNnDhRklSrVi2NGzdOcXFxKly4sKS7D7x0dHRUlSpVrLaGJ0paqZMLF6Tr1yVX6/wVFAAAAAAAILfZ2DirTp3rVps7p0JCQjRr1iyLNi8vL/PrSpUqmV+7uLjIzc1NFy9etOh/4MABderUSZ988omee+45c3v37t0VHh6uKVOmyNbWVkuWLNHkyZMtrq1QoYJsbP7aJ+vj46OKFSua39va2qpAgQLmOX/44Qf98ssvcnNzsxjn1q1bio6OzunygVxl1cT30KFD1bRpU/n7++vatWtatmyZtmzZonXr1snDw0Ndu3bVgAEDVKBAAXl5eWngwIEKDg5Ww4YNJUkvvPCCypcvr44dO2rSpEn6888/NXDgQHXv3v3fvYs7J/LnlwoUkC5flqKjpcqVrR0RAAAAAABArjCZTLlebuRxcnFxUUDaf52fAXt7e4v3JpNJqamp5vfnz59Xq1at1LVrV3Xt2tWib8uWLeXo6KiVK1fK0dFRt2/fVtu2bbMc/0FzpqamqkqVKlqyZEm6WAsWLPiAlQKPn1UT3xcuXFDHjh0VFxcnDw8PVapUSevWrVOjRo0kSR999JHs7Oz0yiuv6ObNm2rQoIGioqJka2sr6e5fmdasWaPevXurdu3aypcvn9q3b68PP/zQmst68gQE3E18//ILiW8AAAAAAIAn0K1btxQaGqqyZctqypQp6c7b2dmpc+fOioyMlKOjo1599VU5O+d8V/q9nnnmGX3xxRcqVKgQm1Dxj2PVxPf8+fMfeN7JyUkzZszQjBkzMu1TrFgxrV69OrdD+3cJCJD27KHONwAAAAAAgBXdvn073fPs7Ozs5O3tneW1PXr00G+//aaNGzfqjz/+MLd7eXmZHzLZrVs3lStXTpLMdbofRYcOHTRp0iSFhoZq9OjR8vPz05kzZ7RixQoNGjRIfn5+jzwH8LD+cTW+YQVp/wkNtZcAAAAAAACsZt26debn2KUJCgrS8ePHs7x269atiouLU/ny5S3aN2/erPr160uSAgMD9eyzz+ry5cuqUaPGI8fr7Oysbdu26Z133tGLL76oa9euqWjRomrQoAE7wGF1JL7x1wMu2fENAAAAAABgFVFRUYqKisr0vGEY6dri4+PNr2NjY7OcwzAMXbhwQT169Mhw/vtt2bIlXdv98/j6+mrhwoVZzg383Uh8468d3yS+AQAAAAAA8qSLFy9q0aJFOnv2rMLCwqwdDvDYkfjGX4nv33+Xbt2SnJysGw8AAAAAAABylY+Pj7y9vTV37lx5enpaOxzgsSPxDcnbW3J3lxISpJgY6f8/5AAAAAAAAAB5Q0alUoC8zMbaAeAfwGSi3AkAAAAAAACAPIPEN+7iAZcAAAAAAAAA8ggS37iLHd8AAAAAAAAA8ggS37grLfEdHW3dOAAAAAAAAADgEZH4xl3s+AYAAAAAAACQR5D4xl1pNb5jY6WkJKuGAgAAAAAAAACPgsQ37ipcWMqXT0pJkU6ftnY0AAAAAAAAQKa2bNkik8mk+Ph4a4fyrxMVFaX8+fNbO4wskfjGXTY2f+36ps43AAAAAADA36ZLly4ymUzpjiZNmlg7tMfi4sWL6tGjh4oVKyZHR0f5+vqqcePG2r17998WQ24nznM7GXzgwAG9/PLL8vHxkZOTk8qUKaPu3bvr5MmTuTZHXkfiG3+hzjcAAAAAAIBVNGnSRHFxcRbH0qVLrR3WY9G2bVv99NNPWrhwoU6ePKlvvvlG9evX159//mnt0NK5c+fO3z7n6tWrVbNmTd2+fVtLlizRzz//rEWLFsnDw0Pvv//+3x7Pk4rEN/6StuObxDcAAAAAAMgDDMNQ4p1EqxyGYeQo1rSdz/cenp6e5vMmk0nz5s1TmzZt5OzsrMDAQH3zzTfm85ntGt+yZYtGjx6t4ODgdHNWqVJFw4cPN1/funVrjR8/Xj4+PsqfP79GjRql5ORkDRo0SF5eXvLz89OCBQssxjh79qzatWsnT09PFShQQKGhoYqNjc10nfHx8dqxY4c++OADhYSEqHjx4qpevbreffddNW/eXJIUGxsrk8mkgwcPWlyXtp577dy5U5UrV5aTk5Nq1Kihw4cPm8+dPn1aLVu2lKenp1xcXFShQgV9++23io2NVUhIiCTJ09NTJpNJXbp0kSTVr19fffr0Uf/+/eXt7a1GjRpJkqZMmaLg4GC5uLjI399fvXv31vXr1yXd3T0eFhamq1evmu/7yJEjJd1NnA8ePFhFixaVi4uLatSokW4N97px44bCwsLUrFkzffPNN2rYsKFKliypGjVq6MMPP9ScOXPMfbdu3arq1avL0dFRhQsX1pAhQ5ScnGw+X79+fb311lvq16+fPD095ePjo7lz5yoxMVFhYWFyc3NT6dKltXbtWvM1aTvh16xZk+l9zciqVatUpUoVOTk5qVSpUubvTtqYDg4O2r59u7n/5MmT5e3trbi4uAeO+yjsHtvIePKw4xsAAAAAAOQhN5JuyHWCq1Xmvv7udbk4uOTqmKNGjdLEiRM1adIkzZgxQx06dNDp06fl5eWladOmKSIiwtw3IiJCS5cuVdmyZRUQEKBRo0Zp3759qlatmiTp0KFDOnDggL788kvzNZs2bZKfn5+2bdumnTt3qmvXrtq9e7fq1q2rPXv26IsvvlDPnj3VqFEj+fv768aNGwoJCVGdOnW0bds22dnZaezYsWrSpIkOHTokBweHdGtwdXWVq6urvvrqK9WsWVOOjo6PdE8GDRqkadOmydfXV0OHDlWrVq108uRJ2dvb680339SdO3e0bds2ubi46NixY3J1dZW/v7+WL1+utm3b6sSJE3J3d1e+fPnMYy5cuFC9evXSzp07zX/AsLGx0fTp01WiRAnFxMSod+/eGjx4sGbOnKlnn31WU6dO1fDhw3XixAnzOiUpLCxMsbGxWrZsmYoUKaKVK1eqSZMmOnz4sAIDA9Ot53//+58uXbqkwYMHZ7jetHIqZ8+eVbNmzdSlSxd99tlnOn78uLp37y4nJydz0j1tLYMHD9bevXv1xRdfqFevXvrqq6/Upk0bDR06VB999JE6duyoM2fOyNnZOVv3NaOYX3/9dU2fPl116tRRdHS03njjDUnSiBEjVL9+ffXr108dO3bUTz/9pNjYWL333ntaunSpChcunJOPO0fY8Y2/kPgGAAAAAACwitWrV5uTwmnHmDFjLPp06dJFr732mgICAjR+/HglJiZq7969kiQPDw/zTvFdu3Zp9uzZWr58uXx9feXn56fGjRsrMjLSPFZkZKTq1aunUqVKmdu8vLw0ffp0BQUFKTw8XEFBQbpx44aGDh2qwMBAvfvuu3JwcNDOnTslScuWLZONjY3mzZun4OBglStXTpGRkTpz5kymu5rt7OwUFRWlhQsXKn/+/Kpdu7aGDh2qQ4cOPdR9GzFihBo1aqTg4GAtXLhQFy5c0MqVKyVJZ86cUe3atRUcHKxSpUqpRYsWqlu3rmxtbeXl5SVJKlSokHx9feXh4WEeMyAgQBMnTlRQUJDKli0rSerXr59CQkJUsmRJPf/88xozZoz+85//SJIcHBzk4eEhk8lk/gxcXV0VHR2tpUuX6ssvv1SdOnVUunRpDRw4UM8995zFZ3GvU6dOSZJ53szMnDlT/v7++vjjj1W2bFm1bt1ao0aN0uTJk5WammruV7lyZQ0bNsz8+eXLl0/e3t7q3r27AgMDNXz4cF2+fDnd/X/Qfb3fuHHjNGTIEHXu3FmlSpVSo0aNNGbMGIvd6WPHjpWXl5feeOMNdejQQR07dlSbNm0euMZHxY5v/CUt8f3rr1JKimRra914AAAAAAAAHoGzvbOuv3vdanPnREhIiGbNmmXRlpacTVOpUiXzaxcXF7m5uenixYsWfQ4cOKBOnTrpk08+0XPPPWdu7969u8LDwzVlyhTZ2tpqyZIlmjx5ssW1FSpUkI3NX/tkfXx8VLFiRfN7W1tbFShQwDznDz/8oF9++UVubm4W49y6dUvR0dHavn27mjZtam6fM2eOOnTooLZt26p58+bavn27du/erXXr1mnixImaN2+eueRIdtWqVcv82svLS0FBQfr5558lSW+//bZ69eql9evXq2HDhmrbtq3FPcxM1apV07Vt3rxZ48eP17Fjx5SQkKDk5GTdunVLiYmJcnHJeGf/jz/+KMMwVKZMGYv227dvq0CBAhlek90SOT///LNq1aolk8lkbqtdu7auX7+u33//XcWKFZNk+Z1J+/zuLXvj4+MjSem+Rw+6r/f74YcftG/fPo0bN87clpKSolu3bunGjRtydnaWg4ODFi9erEqVKql48eKaOnVqttb5KEh84y/+/pK9vXTnjnT2rPT/fyAAAAAAAABPIpPJlOvlRh4XFxcXBaRtSszE/WUmTCaTxe7e8+fPq1WrVuratau6du1q0bdly5ZydHTUypUr5ejoqNu3b6tt27ZZjv+gOVNTU1WlShUtWbIkXawFCxaUg4ODRZ3utCSrJDk5OalRo0Zq1KiRhg8frm7dumnEiBHq0qWLOfl+bxI4KSkp8xtzn7RkcLdu3dS4cWOtWbNG69ev14QJEzR58mS99dZbD7z+/kT26dOn1axZM/Xs2VNjxoyRl5eXduzYoa5duz4wrtTUVNna2uqHH36Q7X0bTNNKodwvLUl+/Phxi+Tz/QzDsEh6p7VJsmjP6jNN63vv9ygz98+XJjU1VaNGjdKLL76Y7pyTk5P59a5duyRJf/75p/78889M/2CQWyh1gr/Y2kolS959TbkTAAAAAACAJ8atW7cUGhqqsmXLasqUKenO29nZqXPnzoqMjFRkZKReffVVi5rOD+OZZ57RqVOnVKhQIQUEBFgcHh4eypcvn0Xb/TvD71W+fHklJiZKups0l2Tx4MN7E+j3+v77782vr1y5opMnT1qUCfH391fPnj21YsUKDRgwQJ9++qkkmeuPp6SkZLnO/fv3Kzk5WZMnT1bNmjVVpkwZnTt3zqKPg4NDurGefvpppaSk6OLFi+nuj6+vb4ZzvfDCC/L29tbEiRMzPB8fHy/p7v3atWuXxR8Hdu3aJTc3NxUtWjTLNWUlq/t6r2eeeUYnTpxIt8aAgADzHzGio6P1f//3f/r0009Vs2ZNderUKVvJ9kdB4huWqPMNAAAAAADwt7t9+7bOnz9vcVy6dCnb1/fo0UO//fabpk+frj/++MM8xp07d8x9unXrpk2bNmnt2rUKDw9/5Jg7dOggb29vhYaGavv27YqJidHWrVvVt29f/f777xlec/nyZT3//PNavHixDh06pJiYGH355ZeaOHGiQkNDJUn58uVTzZo1FRERoWPHjmnbtm0aNmxYhuONHj1aGzdu1JEjR9SlSxd5e3urdevWku7W5f7f//6nmJgY/fjjj9q0aZPKlSsnSSpevLhMJpNWr16tP/74Q9evZ14Sp3Tp0kpOTtaMGTP066+/atGiRZo9e7ZFnxIlSuj69evauHGjLl26pBs3bqhMmTLq0KGDOnXqpBUrVigmJkb79u3TBx98oG+//TbDuVxcXDRv3jytWbNGrVq10nfffafY2Fjt379fgwcPVs+ePSVJvXv31m+//aa33npLx48f19dff60RI0aof//+FuVqHtaD7uv9hg8frs8++0wjR47U0aNH9fPPP+uLL74wf2YpKSnq2LGjXnjhBYWFhSkyMlJHjhxJV2ont5H4hqW0xHd0tHXjAAAAAAAA+BdZt26dChcubHHcW6M7K1u3blVcXJzKly9vMUZaeQlJCgwM1LPPPqugoCDVqFHjkWN2dnbWtm3bVKxYMb344osqV66cwsPDdfPmTbm7u2d4jaurq2rUqKGPPvpIdevWVcWKFfX++++re/fu+vjjj839FixYoKSkJFWtWlV9+/bV2LFjMxwvIiJCffv2VZUqVRQXF6dvvvnGYjf3m2++qXLlyqlJkyYKCgrSzJkzJUlFixbVqFGjNGTIEPn4+KhPnz6ZrvOpp57SlClT9MEHH6hixYpasmSJJkyYYNHn2WefVc+ePdWuXTsVLFjQvGM7MjJSnTp10oABAxQUFKRWrVppz5498vf3z3S+0NBQ7dq1S/b29mrfvr3Kli2r1157TVevXjXfh6JFi+rbb7/V3r17VblyZfXs2VNdu3bN9A8EOfWg+3q/xo0ba/Xq1dqwYYOqVaummjVrasqUKSpevLikuw+/jI2N1dy5cyVJvr6+mjdvnoYNG5bpTv7cYDKyWzE9D0tISJCHh4euXr2a6Y/yX2P6dKlvX+nFF6Xly60dDQAAAAAAQLbdunVLMTExKlmypEVtYdxlGIbKli2rHj16qH///tYOB/9AW7ZsUUhIiK5cuaL8+fNbLY4H/Zazm8vl4ZawRKkTAAAAAACAPOfixYtatGiRzp49q7CwMGuHAzx2JL5h6d5SJ4YhZfK0VgAAAAAAADw5fHx85O3trblz58rT09Pa4QCPHYlvWCpRQrKxkRITpQsXpEyeMAsAAAAAAIAnB9WOkR3169fPM98VHm4JSw4OUrFid19T7gQAAAAAAADAE4jEN9KjzjcAAAAAAACAJxiJb6RH4hsAAAAAAADAE4zEN9K79wGXAAAAAAAAAPCEIfGN9EqXvvsvO74BAAAAAAAAPIFIfCO9tB3fp05JeeQprgAAAAAAAAD+PUh8I71Spe7+e/Wq9Oef1o0FAAAAAAAAucpkMumrr76ydhjAY0XiG+k5O0tFi959TZ1vAAAAAACAx65Lly4ymUwymUyyt7dXqVKlNHDgQCUmJlo7tCzVr19f/fr1s3YYgAUS38hYWrkT6nwDAAAAAAD8LZo0aaK4uDj9+uuvGjt2rGbOnKmBAwem62cYhpKTk60QIfDkIPGNjPGASwAAAAAA8IQzDCkx0TrHwzw2zdHRUb6+vvL391f79u3VoUMHffXVV9qyZYtMJpP+97//qWrVqnJ0dNT27dslSbNmzVLp0qXl4OCgoKAgLVq0yGLMU6dOqW7dunJyclL58uW1YcMGi/NpY8fHx5vbDh48KJPJpNjYWHPbzp07Va9ePTk7O8vT01ONGzfWlStX1KVLF23dulXTpk0z71i/9zrAWuysHQD+odjxDQAAAAAAnnA3bkiurtaZ+/p1ycXl0cbIly+fkpKSzO8HDx6sDz/8UKVKlVL+/Pm1cuVK9e3bV1OnTlXDhg21evVqhYWFyc/PTyEhIUpNTdWLL74ob29vff/990pISHiokiQHDx5UgwYNFB4erunTp8vOzk6bN29WSkqKpk2bppMnT6pixYoaPXq0JKlgwYKPtnAgF5D4RsZIfAMAAAAAAFjN3r179fnnn6tBgwbmttGjR6tRo0bm9x9++KG6dOmi3r17S5L69++v77//Xh9++KFCQkL03Xff6eeff1ZsbKz8/PwkSePHj1fTpk1zFMvEiRNVtWpVzZw509xWoUIF82sHBwc5OzvL19f3odYKPA4kvpGxtMQ3D7cEAAAAAABPKGfnuzuvrTV3Tq1evVqurq5KTk5WUlKSQkNDNWPGDB07dkySVLVqVYv+P//8s9544w2Lttq1a2vatGnm88WKFTMnvSWpVq1aOY7r4MGDevnll3N8HWBNJL6RsbQa3xcvSgkJkru7deMBAAAAAADIIZPp0cuN/J1CQkI0a9Ys2dvbq0iRIrK3t5ckc+LbJYPFmEwmi/eGYZjbjAwKjd/f38bGJl3fe8urSHdLrgBPGh5uiYy5u0tp9ZjY9Q0AAAAAAPDYubi4KCAgQMWLFzcnvR+kXLly2rFjh0Xbrl27VK5cOUlS+fLldebMGZ07d858fvfu3Rb90+pxx8XFmdsOHjxo0adSpUrauHFjpnE4ODgoJSUly3iBvxOJb2SOOt8AAAAAAAD/WIMGDVJUVJRmz56tU6dOacqUKVqxYoUGDhwoSWrYsKGCgoLUqVMn/fTTT9q+fbvee+89izECAgLk7++vkSNH6uTJk1qzZo0mT55s0efdd9/Vvn371Lt3bx06dEjHjx/XrFmzdOnSJUlSiRIltGfPHsXGxurSpUtKTU39e24A8AAkvpE56nwDAAAAAAD8Y7Vu3VrTpk3TpEmTVKFCBc2ZM0eRkZGqX7++pLtlTFauXKnbt2+revXq6tatm8aNG2cxhr29vZYuXarjx4+rcuXK+uCDDzR27FiLPmXKlNH69ev1008/qXr16qpVq5a+/vpr2dndraI8cOBA2draqnz58ipYsKDOnDnzt6wfeBCTkVGxn3+ZhIQEeXh46OrVq3KnlvVfRo2SRo6UunaV5s2zdjQAAAAAAAAPdOvWLcXExKhkyZJycnKydjgAHtKDfsvZzeWy4xuZo9QJAAAAAAAAgCcQiW9kjsQ3AAAAAAAAgCcQiW9kLi3xffasdPOmdWMBAAAAAAAAgGwi8Y3MeXlJHh53X//6q3VjAQAAAAAAAIBsIvGNzJlMlDsBAAAAAABPHMMwrB0CgEeQG79hEt94MBLfAAAAAADgCWFvby9JunHjhpUjAfAo0n7Dab/ph2GXW8Egj0pLfEdHWzcOAAAAAACALNja2ip//vy6ePGiJMnZ2Vkmk8nKUQHILsMwdOPGDV28eFH58+eXra3tQ49F4hsPVrr03X/Z8Q0AAAAAAJ4Avr6+kmROfgN48uTPn9/8W35YJL7xYJQ6AQAAAAAATxCTyaTChQurUKFCSkpKsnY4AHLI3t7+kXZ6pyHxjQdLS3yfPi3duSM5OFg3HgAAAAAAgGywtbXNleQZgCcTD7fEg/n6Ss7OUmqqFBtr7WgAAAAAAAAAIEskvvFgJtNfdb55wCUAAAAAAACAJwCJb2SNOt8AAAAAAAAAniAkvpE1Et8AAAAAAAAAniAkvpE1Et8AAAAAAAAAniAkvpG1tMQ3Nb4BAAAAAAAAPAFIfCNraQ+3/PVXKSXFurEAAAAAAAAAQBZIfCNrfn6Sg4OUlCT99pu1owEAAAAAAACAByLxjazZ2kqlSt19TZ1vAAAAAAAAAP9wJL6RPdT5BgAAAAAAAPCEIPGN7Emr882ObwAAAAAAAAD/cCS+kT1pO75JfAMAAAAAAAD4hyPxjewh8Q0AAAAAAADgCUHiG9lzb41vw7BuLAAAAAAAAADwACS+kT3Fi0u2ttLNm1JcnLWjAQAAAAAAAIBMkfhG9tjb301+S5Q7AQAAAAAA/4+9O42Oqsz2MP6EMIMEwiiDCoiIItgqgopoC42K84xIFFtxRLRBtNVWsO0rtmI7t7PIrDggOCGTjSOKKCCICIgXaECUIQFUEpK6H94LMRI1CUlOVfL81jqrTp06VO36Qqr+tc9+JSmuGXyr4JzzLUmSJEmSJCkBGHyr4H4+51uSJEmSJEmS4pTBtwquZctwa8e3JEmSJEmSpDhm8K2Cc9SJJEmSJEmSpARg8K2C+3nwHYtFW4skSZIkSZIk/QqDbxVcixaQlAQZGfD991FXI0mSJEmSJEn5MvhWwVWtCk2ahH0XuJQkSZIkSZIUpwy+VTjO+ZYkSZIkSZIU5wy+VTgG35IkSZIkSZLinMG3CsfgW5IkSZIkSVKcM/hW4bRsGW6d8S1JkiRJkiQpThl8q3Batw638+fDxo3R1iJJkiRJkiRJ+TD4VuG0bQsHHQQ//ABPPBF1NZIkSZIkSZK0C4NvFU5SElx/fdh/4AHIzIy2HkmSJEmSJEn6BYNvFV7PntC4MaxZA+PGRV2NJEmSJEmSJOVh8K3Cq1wZrr027A8bBrFYtPVIkiRJkiRJ0s8YfKtoLrsMataEBQtgypSoq5EkSZIkSZKknQy+VTS1a0PfvmF/2LBoa5EkSZIkSZKknzH4VtFdey0kJ8O0aTB3btTVSJIkSZIkSRJg8K3dsffecO65Yf/ee6OtRZIkSZIkSZL+n8G3ds/AgeH2fMKZMQAAIABJREFUuedg5cpoa5EkSZIkSZIkDL61uw49FP74R9i+HR54IOpqJEmSJEmSJMngW8Xg+uvD7RNPQHp6tLVIkiRJkiRJKvcMvrX7TjgBDjgANm+GJ5+MuhpJkiRJkiRJ5ZzBt3ZfhQq5Xd/33w+ZmdHWI0mSJEmSJKlcM/hW8ejVCxo1gv/+F8aPj7oaSZIkSZIkSeWYwbeKR5Uq0L9/2B82DGKxaOuRJEmSJEmSVG4ZfKv4XH451KgB8+bB9OlRVyNJkiRJkiSpnDL4VvFJTYVLLgn7w4ZFW4skSZIkSZKkcsvgW8XruuvCYpdvvQXz50ddjSRJkiRJkqRyyOBbxat5czj77LB/773R1iJJkiRJkiSpXDL4VvG7/vpwO3YsrFoVbS2SJEmSJEmSyh2DbxW/Dh2gSxfYvh0eeijqaiRJkiRJkiSVMwbfKhk7ur4fewwyMqKtRZIkSZIkSVK5YvCtknHSSdC6dQi9n3466mokSZIkSZIklSORBt9Dhw6lQ4cO7LHHHjRo0IDTTz+dxYsX5znn2GOPJSkpKc/Ws2fPPOds3LiRtLQ0UlJSSElJIS0tjU2bNpXmW9EvVagAAweG/fvvh6ysaOuRJEmSJEmSVG5EGnzPnDmTq6++mlmzZjF16lS2b99O9+7d2bp1a57z+vbty5o1a3Zujz/+eJ7He/Xqxdy5c5k8eTKTJ09m7ty5pKWlleZbUX7S0qBBA1ixAl58MepqJEmSJEmSJJUTFaN88cmTJ+e5P3z4cBo0aMCcOXPo0qXLzuPVq1enUaNG+T7HokWLmDx5MrNmzaJjx44APPnkkxxxxBEsXryY1q1bl9wb0G+rWhWuuQZuvRWGDYOePSEpKeqqJEmSJEmSJJVxcTXjOz09HYDU1NQ8x8eMGUO9evU48MADuf7669m8efPOxz788ENSUlJ2ht4AnTp1IiUlhQ8++CDf19m2bRsZGRl5NpWQK6+EatXg00/h7bejrkaSJEmSJElSORA3wXcsFmPAgAF07tyZtm3b7jx+wQUXMG7cOP7zn/9w66238tJLL3HmmWfufHzt2rU0aNBgl+dr0KABa9euzfe1hg4dunMeeEpKCs2aNSv+N6Sgbl3485/D/pVXhsUuJUmSJEmSJKkERTrq5Of69evH/Pnzee+99/Ic79u37879tm3b0qpVKw477DA+/fRTDjnkEACS8hmfEYvF8j0OcNNNNzFgwICd9zMyMgy/S9LgwTBxInz1FVxyCYwf78gTSZIkSZIkSSUmLjq+r7nmGiZNmsTbb79N06ZNf/PcQw45hEqVKrFkyRIAGjVqxLfffrvLed999x0NGzbM9zmqVKlCrVq18mwqQfXrwwsvQKVKYZHL+++PuiJJkiRJkiRJZVikwXcsFqNfv368/PLLzJgxg+bNm//uv1m4cCFZWVnsueeeABxxxBGkp6fz8ccf7zzno48+Ij09nSOPPLLEalchdeoE990X9gcNgnffjbYeSZIkSZIkSWVWUiwWi0X14ldddRVjx45l4sSJtG7deufxlJQUqlWrxrJlyxgzZgw9evSgXr16fPHFFwwcOJBq1aoxe/ZskpOTATjxxBNZvXo1jz/+OACXXXYZe++9N6+++mqB6sjIyCAlJYX09HS7v0tSLAa9e8PYsdCoEXz2WbiVJEmSJEmSpAIoaJYbafD9azO4hw8fTp8+fVi5ciW9e/dmwYIFbNmyhWbNmnHSSScxePBgUlNTd56/YcMG+vfvz6RJkwA49dRTefjhh6ldu3aB6jD4LkVbt0LHjrBwIXTpAtOnQ8W4GTUvSZIkSZIkKY4lRPAdLwy+S9nixdChA2zeHMae3H131BVJkiRJkiRJSgAFzXLjYnFLlTOtW8Pw4WH/nnvg5ZejrUeSJEmSJElSmWLwrWicdRYMHBj2+/SBr76KtBxJkiRJkiRJZYfBt6IzdCgcfXQYeXLWWWH+tyRJkiRJkiTtJoNvRadSJXj+eWjYEBYsgCuuAEfOS5IkSZIkSdpNBt+K1p57wvjxkJwMo0fDY49FXZEkSZIkSZKkBGfwreh16QL//GfYv/Za+PjjaOuRJEmSJEmSlNAMvhUfBgyAM8+ErCw4+2z4/vuoK5IkSZIkSZKUoAy+FR+SkmD4cGjVClauhAsugOzsqKuSJEmSJEmSlIAMvhU/atWCl1+G6tVhyhS4/faoK5IkSZIkSZKUgAy+FV/atoUnngj7d9wBHTvC449Denrxvs5PP8HEiTBwIHzxRfE+tyRJkiRJkqRIJcVisVjURUQtIyODlJQU0tPTqVWrVtTlCGDwYLjzTti+PdyvWhXOOgv+/Gc49lioUITfbLZtC53k48eH0Hvz5nC8RQuYNw9q1iy28iVJkiRJkiQVv4JmuQbfGHzHrXXrYPRoeOYZWLgw9/g++0CfPmHbe+/ffo7MTJg2LYTdr7ySt3O8adPw+Lp1cNVV8MgjJfAmJEmSJEmSJBUXg+9CMPiOc7EYfPJJCMDHjoWMjHA8KQm6doWLL4YzzoBq1cLxrCyYPj2E3RMmwKZNuc/VuDGccw6cey506gRvvw3duoXHpk7N3ZckSZIkSZIUdwy+C8HgO4H8+GMIs595JoTbO6SkwPnnh9B7wgTYsCH3sUaNcsPuI4/cdUxKv36h27tZM/j88/BckiRJkiRJUiF89BHcdlvhl5OLxcL28/2CHLv33tAPWt4YfBeCwXeC+uYbGDEChg+H//3fvI81bAhnnx3C7qOOguTkX3+erVuhfXtYtiz8b/HMMyVatiRJkiRJksqOr7+Gm24KwwdK07//DVdeWbqvGQ8MvgvB4DvB5eSEkSXPPQeVK4fAu0uX3w67f+n99+Hoo8PPZa++CiefXHL1SpIkSZIkKeGtXw//+EcYJJCVFabyXnghXH55iKgKIykpd/vl/V9uOx5v2BDq1Cne95QIDL4LweBbAAwaBMOGhdEoCxZA3bpRVyRJkiRJkqQ489NP8NBD8D//A+np4Vj37nD33WGogEpWQbPcCr/6iFTe3HEHtGkDa9eGud+SJEmSJEnS/8vJgdGjoXVruOGGEHq3awdvvRU2Q+/4YvAt7VC1apgZnpwcxqa88ELUFUmSJEmSJCkOzJgBHTpAWhqsWAFNmoRl5z79NHR7K/4YfEs/16ED3Hxz2L/ySvj222jrkSRJkiRJUmQWLoSTToKuXUPIvccecOed8NVX0KdP4ZaYU+mqGHUBUtz529/CApdz54bVCCZMyF05QJIkSZIkSWXS5s3w+ecwb17u9vHHYcRJxYpwxRVw221Qv37UlaogDL6lX6pcOYw8OewwmDgxDG9KS4u6KkmSJEmSJBWDWAy++SZvwD1/Pixblv/5Z50Vurz3269Uy9RuMviW8tOuHQwZArfcAtdcA3/8IzRtGnVVkiRJkiRJKoQffoAFC3YNuTMy8j+/SZOwSGW7duH2sMNg331Lt2YVD4Nv6dfccEPo+P74Y7jkEpg82ZEnkiRJkiRJcSgWg1Wr8obb8+bBkiVhVMkvVaoEBx4Ywu0dW7t2UK9e6deukmHwLf2aihXDyJM//AGmTIEnn4TLLou6KkmSJEmSpLi1YQN8+SVkZRXu38Vihb+/YkXeoHvDhvyfu0GDvAF3+/aw//4h/FbZZfAt/Zb99w9DnAYMCFu3btCiRdRVSZIkSZIkRSo7G5YuzTtCZN680HUdleTkEOX8MuRu1Ci6mhQdg2/p91x7LbzyCrzzDvz5zzBjBlSoEHVVkiRJkiRJpSIjI3d0yI5twYIwPzs/zZpBzZqFf51fTpj9vfv16uUNuA84AKpWLfzrqmwy+JZ+T4UKMHx4GPQ0cyY89FAIwyVJkiRJksqQnBz45ptdu7iXL8///GrVoG3bXedkp6SUatlSvpJisV9OyCl/MjIySElJIT09nVq1akVdjuLVY4/BlVeGnw4XLICWLaOuSJIkSZIkqUi2bg3xxs8D7vnzYfPm/M9v2nTXESL77hvGi0ilqaBZrh3fUkFdfjm8+CJMnw533AHPPht1RZIkSZIkSb8pFoOVK3OD7R0h95Iluy4YCVC5Mhx44K5d3HXrln7t0u6w4xs7vlUIs2fD4YeHnzMXL7brW5IkSZIkxY2ffoKFC3ft4t64Mf/zGzXKDbZ3hNytW0OlSqVbt1QYdnxLJaFDBzjxRHjzTbjzTnj66agrkiRJkiRJ5UwsBmvX7jqLe/FiyM7e9fyKFaFNm11HlTRoUPq1S6XFjm/s+FYhzZoFRxwR/mp89RU0bx51RZIkSZIkqYzKzIRFi3YNub//Pv/z69bdNeBu0waqVCnduqWSYse3VFI6dYLu3WHKFBg6FJ54IuqKJEmSJElSGfDdd7sG3IsWQVbWrudWqAD77bdryN24MSQllX7tUryx4xs7vlUE778PnTuHru+lS2HvvaOuSJIkSZIkRSAWg9Wrd52rvWpV4Z4nJwe2bs3/sZSUvHO427cPC1BWr7779UuJxo5vqSQddRR07QrTp8Ndd8Gjj0ZdkSRJkiRJKmHbtuU/dmT9+uJ7jX333bWLe6+97OKWCsuOb+z4VhG9+y506RKWOl62DJo1i7oiSZIkSZJUjLZtg9dfh1degc8+gy+/hO3bdz0vORlat84bVrdsGcaRFEbDhlCzZvHULpVVdnxLJe3oo+HYY+E//4F//hMefjjqiiRJkiRJ0m6KxWD2bBg5EsaNgw0b8j5ep86uHdkHHABVq0ZTr6T82fGNHd/aDf/5D/zxj1C5Mnz9NTRpEnVFkiRJkiSpCFatgtGjQ+C9aFHu8caN4YILwkXf7dtD06aOHZGiZMe3VBqOOSZ0fr/7buj6fvDBqCuSJEmSJEkF9MMPMGECjBgB06aFbm+AatXgjDPgoovCEl/JydHWKanw7PjGjm/tpunToVs3qFIFli+HPfeMuiJJkiRJkvQrcnJC/9qIEfDCC7BlS+5jXbqEsPvss8GISIpPdnxLpeW44+Coo+D99+Huu+G++6KuSJIkSZKkMi09PYTWo0bBwoWF+7eZmbB5c+79Fi3gwgshLS3sSyob7PjGjm8VgylT4Pjjw0oWy5dDo0ZRVyRJkiRJUpmSlRW+fo8cCRMnwrZtRX+uWrXg3HNDd/dRRzmzW0okdnxLpelPf4JOnWDWLBg2LGySJEmSJGm3xGIwd24Iu8eOhXXrch874IAQXJ9wAlSqVLjn3WefMMdbUtllxzd2fKuYvPkm9OgB1auHru8GDaKuSJIkSZKkhLR6NYwZEwLvBQtyj9evD716hdEkf/iDndpSeWTHt1TaTjgBOnSA2bPh3nvhn/+MuiJJkiRJkiKRlQVLl4aFI2OxsKDkz2/zO5aTEwLvsWNh2rRwH6BKFTjttBB2d+9e+O5uSeWTHd/Y8a1i9NprcMopUKMGfPMN1KsXdUWSJEmSJJWoDRtg3ry828KFYRHJ3dG5cwi7zzkHatcunlolJT47vqUonHQSHHoozJkD//oX3Hln1BVJkiRJklQssrNhyZK8Aff8+bBqVf7n16wJqalQoUIYSZKUlLv/y9sd+1Wrhq/WvXtDixal+/4klS12fGPHt4rZpEnhGqyaNUPXd926UVckSZIkSVKRbdgA/frBK6/Ajz/mf07z5tC+fd5tn31CmC1JxcmObykqp5wCBx8clp2+/364446oK5IkSZIkqUjefTcsJrmjq7taNTjooLwB90EHQUpKtHVK0i/Z8Y0d3yoBEybAmWdCrVqh67tOnagrkiRJkiSpwLKzw/TOIUPCIpOtWsGzz0LHjpCcHHV1ksqzgma5XnAilYTTTgs/eWdkwAMPRF2NJEmSJEkF9t//QrducNttIfS+6CL49FM48khDb0mJw+BbKgkVKoRPCBDGnWzaFG09kiRJkiQVwOuvh/El//kP1KgBI0eGTu+aNaOuTJIKx+BbKilnngkHHgjp6fDQQ1FXI0mSJEnSr9q2Df7yFzj5ZFi/Hv7wh9DlnZYWdWWSVDQG31JJqVABbr017N97L6xeHW09kiRJkiTlY8mSMMbk/vvD/euugw8/hP32i7YuSdodBt9SSTr7bDjssND1fckl4FqykiRJkqQ4Mno0HHJI6O6uWxcmTYL77oMqVaKuTJJ2j8G3VJKSk2HEiPCJYfJkeOqpqCuSJEmSJIktW6BPnzDKZMsW6NIF5s6FU06JujJJKh4Voy5AKvMOOADuvBMGDoQBA8LS2M2bR12VJEmSJCnBxWIhrH7ppXChcWFMmQJffRWmdN52G/ztb6F3S5LKCoNvqTRcey288gq8+274Sf3tt8OnC0mSJEmSCmn1ahgzBkaOhAULiv48TZrA2LGh21uSyhqDb6k0JCfDs89Cu3bwzjvwwANhuWxJkiRJkgpg69bQTzVyJEybBjk54XiVKmE8yf77F+75atWCiy+GevWKv1ZJigdJsZir7WVkZJCSkkJ6ejq1atWKuhyVZY8/DldcET6ZfPYZtGlTPM/744/hGrV27SApqXieU5IkSZIUqZwc+M9/Qtj90kthFvcOnTvDhRfCOedA7dqRlShJpa6gWa6zFqTSdNllcPzxsG0bXHQRbN+++8+5ciUceigcfDBcc03uz/6SJEmSpIS0aBHcfDPssw907QojRoTQu0ULGDIEli4NkzT79jX0lqRf46gTqTQlJcHTT0PbtjB7Ntx1V1hBpKi+/BK6dw/hN8Ajj8CGDeFTUaVKxVOzJEmSJJUx338fll+aNSvqSnYVi4WvdTvUrg3nnQdpaXDkkV7kK0kF5agTHHWiCIwZA717Q8WK8PHH8Ic/FP45Pv4YevSA9euhdWu46ioYODB0kffoAS+8ANWrF3/tkiRJkpTAVqwI/UOLF0ddya+rWBFOPDGMMjn5ZKhaNeqKJCl+FDTLNfjG4FsRiMXg7LPh5ZdD9/cnn4S53wU1dSqccUZY3aRDB3jjjbAiyZtvwllnhZnfnTvDq6963ZskSZIk/b9Fi0LovWoVNGsWepLicXHHhg0hNTXqKiQpPhl8F4LBtyLx3Xdw4IHh9sYbw9iTghg/PnSLZ2VBt24hPN9jj9zH338fTjoJ0tOhfXuYPBkaNSqZ9yBJkiRJCeKjj8LFsRs2QJs28NZbIfyWJCUWF7eU4l39+vDEE2H/nnvggw9+/988+ij07BlC73POgddeyxt6Axx1FLzzTmgRmDcvdH4vX1789UuSJElSgpgyJSwSuWEDHH54WBjS0FuSyjaDbylKp58ehrbl5MBFF4XRJfmJxeD228Mc71gMrrwSxo379fEo7dqFzu/mzWHZshCGL1hQcu9DkiRJkuLUc8+FOdlbt4YxJ9OnQ926UVclSSppBt9S1B54AJo2haVL4a9/3fXxnBzo3x+GDAn3Bw+GRx6B5OTfft6WLeG998IM8TVroEuX+FyyXJIkSZJKyCOPQK9e4aLZ884LyyDVrBl1VZKk0mDwLUWtdm145pmw//DDof1gh8xMuOCCcDwpCR56KATgSUkFe+7GjWHmTOjUCTZuDNf2TZ1a7G9BkiRJkuJJLBa+OvXrF/avvhrGjoXKlaOuTJJUWgy+pXjwpz+FMSYAF18cFqbcsgVOOSVcl1exYlhuvF+/wj93aipMmxau6fvhh7Dw5QsvFG/9kiRJkhQnsrPDV6fbbw/3hwwJPUQVTEAkqVxJisVisaiLiFpBVwKVStTWrdC+fZjJfe658L//G5Ydr14dXn4Zjj9+954/MxPS0mD8+NAx/vjj0Ldv8dQuSZIkSXEgMzMso/T88+Frz8MP5/YYSZLKhoJmuf7eKcWLGjVgxIjw6Wz8+BB6p6bCjBm7H3pDuKZv7Fi4/PJwrd9ll4UWiKys3X9uSZIkSYrYli1hEcvnn4dKlWDcOENvSSrPDL6leHLUUXD99WG/aVN4913o2LH4nj85GR59FG6+OdwfMiQsfjlxYgjDJUmSJCnBbN8OCxbkLmlUowa89lpYzFKSVH456gRHnSjOZGfDm2+GwLt+/ZJ7neHD4cYb4bvvwv1jjoF774VDDy2515QkSZKk3bBxI8ybF7b588PtwoXw00/h8bp14fXXi7d/SJIUXwqa5Rp8Y/CtciwjA+66C/71L9i2LRzr3RvuvBOaNYu2NkmSJEnlVnZ2WP5oR8i9Y1u5Mv/za9QIYffDD0ObNqVbqySpdBl8F4LBt8q9FSvglltg9Ohwv2pVGDAA/vpX2GOPaGuTJEmSVKZlZMDnn+cNuD//HH74If/z994b2rfPu7VoARUc5ipJ5YLBdyEYfEv/75NPYOBAeOedcL9Bg7AA5qWXQsWK0dYmSZIkKaHFYrB8+a5d3MuX539+1apw0EHQrl1uwN2uHdSuXbp1S5Lii8F3IRh8Sz8Ti4XFLm+4AZYsCccOOADuuQdOPBGSkqKtT5IkSdJuWbcuBM5z58IXX0BmZsm+XiwWLjKdPx82b87/nCZNdu3ibtUKkpNLtjZJUuIx+C4Eg28pH1lZ8NhjoeN7/fpwrFs3ePRR2HffaGuTJEmS9Lt2zMmeOzfvtmZNdDVVrhz6an4ZctetG11NkqTEYvBdCAbf0m/YtCksdvnAA6EVpHXr0KpRuXLUlUmSJEn6mUWLwtTCHQH355/D1q27npeUFLqp27cPo0Rq1iz52urXD6+3//5QqVLJv54kqewy+C4Eg2+pAL7+Go48Er79NgThN90UdUWSJEmSgG++CWvVjx2762NVq4a52AcfnLuVVtgtSVJJMPguBINvqYBGj4a0NKhWLQwD3GefqCuSJEmSyq2NG0NPyoMP5s7p7toVDj00N+Ru1cp16iVJZUtBs1z//EkquAsugKeegpkz4brr4JVXoq5IkiRJKne2bYN//xvuuCOE3wDHHRfWoz/kkGhrkyQpXlSIugBJCSQpKXzCrlgRJk6EV1+NuiJJkiSp3IjF4LnnoE0bGDAghN4HHgivvw7Tphl6S5L0cwbfkgrngANg4MCw378//PBDtPVIkiRJ5cA770DHjnD++bB8Oey5Z7gYc+5c6NEj9KhIkqRcBt+SCu/WW6FZs7CKzp13Rl2NJEmSVGYtWgSnnQbHHAOzZ4dFKf/+d1iyBC65xPndkiT9GoNvSYVXowY88EDYv+ceWLw42nokSZKkMubbb+GKK+Cgg2DSJEhOhiuvhKVLQx9KjRpRVyhJUnwz+JZUNKefHq6pzMyEfv3CwEFJkiRJu2Xr1tDR3bIlPP44ZGeHju8FC8JyOw0bRl2hJEmJweBbUtEkJcFDD0HVqmElnfHjo65IkiRJSljbt4eZ3a1aweDBIQA//HCYORNeeQX23z/qCiVJSiwG35KKrkULuPnmsP+Xv0BGRrT1SJIkSQkmFoPXX4eDD4a+fWHNmvAx+/nnYdYs6NIl6golSUpMBt+Sds+gQbDvvuET+pAhUVcjSZIkJYw5c6BrVzj5ZFi4EFJT4b774Isv4Nxzw0WWkiSpaAy+Je2eqlXhkUfC/oMPwrx50dYjSZIkxblvvoHeveGww+Dtt6FKldBPsnQpXHdduC9JknaPwbek3de9O5xzTlh556qrICcn6ookSZKkuLNxYwi4W7eGMWPCsd69YfFiuPtuqFMn2vokSSpLDL4lFY/77oOaNeGDD+DZZ6OuRpIkSYob27aFj8v77gvDhkFmJhx3XBh1MmoU7L131BVKklT2GHxLKh5NmuTO+L7hBli/PtJyJEmSpKjFYmGRyjZtYMAA2LABDjwwLGY5bRocckjUFUqSVHYZfEsqPv37Q9u2IfS++eaoq5EkSZIi88470LEj9OwJy5fDnnvCk0/C3LnQo4cLV0qSVNIMviUVn0qV4NFHw/6TT8JHH0VbjyRJklTKvvwSTjsNjjkGZs8O0wD//ndYsgQuvRQqVoy6QkmSygeDb0nFq3Nn6NMnXNd55ZVhwUtJkiSpjPv22/Dxt21bmDQJkpPhiitg6VK49VaoUSPqCiVJKl8MviUVv3/+E2rXhs8+y+0AlyRJksqgrVvhjjvCwpWPPRb6Pk49FRYsCB+FGzaMukJJksong29Jxa9BAxg6NOzfcgt8/nm09UiSJEnFLDsbnnoKWrWC226DLVugQweYORMmToT994+6QkmSyjeDb0klo2/f8Mk/IwMOPjjcX7066qokSZKk3TZ5MrRvHz7irlkDzZvDc8/BrFnQpUvU1UmSJDD4llRSkpNhwgQ46yzIycnbDrN5c9TVSZIkSYX2449hjveJJ8LChVCnDvzrX7BoEZx3HlTwG7YkSXHDP8uSSk6TJvDii/D++3DEEfDDD2EAYqtWYQDi9u1RVyhJkiQVyJdfQqdO4WMswLXXwrJl8Je/QJUq0dYmSZJ2ZfAtqeQdeWQIv198Maz6s2PJ+4MOCkvex2JRVyhJkiT9qhEj4NBDYf58qF8/jDq5//7Q8S1JkuKTwbek0pGUFMaeLFwIDz4IdeuGtpnTToNjj4XZs6OuUJIkScpj82a48ELo0ydcvNi1K8ybB8cfH3VlkiTp90QafA8dOpQOHTqwxx570KBBA04//XQWL16c55xt27ZxzTXXUK9ePWrUqMGpp57KqlWr8pyzYsUKTjnlFGrUqEG9evXo378/mZmZpflWJBVU5cpwzTXhutC//hWqVoV33oHDD4eePeHrr6OuUJIkSWLu3NDlPWpUmN39j3/AW2/BnntGXZkkSSqISIPvmTNncvXVVzNr1iymTp3K9u3b6d69O1u3bt15znXXXceECRN47rnneO+999iyZQsnn3wy2dnZAGRnZ3PSSSexdetW3nvvPZ577jleeuklBg4cGNXbklQQKSkwdCh89VVoo0lKguefh/33h8GDHX8iSZKkSMRi8PDD0LEjLFkCTZvCzJlwyy1h/XZJkpQYkmKx+EmXvvvuOxo0aMDMmTPp0qUL6enp1K9fn1GjRnHeeecBsHr1apo1a8Ybb7zB8ccfz5tvvsnJJ5/MypUrady4MQDPPfd2NdNFAAAgAElEQVQcffr0Yd26ddSqVet3XzcjI4OUlBTS09MLdL6kEjB3LgwaBNOmhftvvQXdu0dbkyRJksqVjRvhkktgwoRw/5RTYPjwMKVPkiTFh4JmuXE14zs9PR2A1NRUAObMmUNWVhbdfxZ+NW7cmLZt2/LBBx8A8OGHH9K2bdudoTfA8ccfz7Zt25gzZ06+r7Nt2zYyMjLybJIidvDBMGUK9OsX7t96q13fkiRJKjUffhg+kk6YAJUqhcUrJ0409JYkKVHFTfAdi8UYMGAAnTt3pm3btgCsXbuWypUrU+cXS2U3bNiQtWvX7jynYcOGeR6vU6cOlStX3nnOLw0dOpSUlJSdW7NmzUrgHUkqtKSkcA1ptWrw8cfwxhtRVyRJkqQyLicH7roLjj4aVqyAli1DCH7tteHjqSRJSkxxE3z369eP+fPnM27cuN89NxaLkfSzTyBJ+Xwa+eU5P3fTTTeRnp6+c1u5cmXRC5dUvBo1yu36vu02u74lSZJUItatgwcfDAtY3nQTZGfD+efDp5+GY5IkKbHFRfB9zTXXMGnSJN5++22aNm2683ijRo3IzMxk48aNec5ft27dzi7vRo0a7dLZvXHjRrKysnbpBN+hSpUq1KpVK88mKY4MGgQ1aoRvHZMmRV2NJEmSyoiffoIXXoBTT4UmTUJX99y54YLDp56CMWPAr4eSJJUNkQbfsViMfv368fLLLzNjxgyaN2+e5/FDDz2USpUqMXXq1J3H1qxZw4IFCzjyyCMBOOKII1iwYAFr1qzZec6UKVOoUqUKh/ozvZSY6teH/v3D/uDB4fpTSZIkqQhiMXj/fbj88nBx4bnnwquvwvbt0KEDPPRQGHFyySWONpEkqSxJisWimyNw1VVXMXbsWCZOnEjr1q13Hk9JSaFatWoAXHnllbz22ms8++yzpKamcv3117N+/XrmzJlDcnIy2dnZHHzwwTRs2JB77rmHDRs20KdPH04//XQeeuihAtVR0JVAJZWiDRtgn31g8+bQlnP22VFXJEmSpATy9dcwalTYli3LPd6sGaSlhW3//aOrT5IkFU1Bs9xIg+9fm8E9fPhw+vTpA8BPP/3EoEGDGDt2LD/++CNdu3bl3//+d54FKVesWMFVV13FjBkzqFatGr169WLYsGFUqVKlQHUYfEtxavBg+Pvf4YADYP58SE6OuiJJkiSVok8/DQF2YaxbB+PGwXvv5R6rWTP0UVx4IRxzDFSIi6GfkiSpKBIi+I4XBt9SnNq0KXR9p6eHby89e0ZdkSRJkkpBLAZ33BH6IIqqQgXo1i2E3aefHpaQkSRJia+gWW7FUqxJkgqndm0YOBBuuw2GDIFzzrHrW5IkqYzLyQmLTj78cLjfqRNUrlzwf1+pEhx/PPTqFRawlCRJ5ZMd39jxLcW1jAxo3jzM/B41Cnr3jrqigsnIgLvugoMPDisoSZIk6XdlZkKfPuFiv6QkePBB6Ncv6qokSVI8KWiW62QzSfGtVi0YNCjs3347bN8ebT0FsW4d/PGPMHQonHdeWDlp8+aoq5IkSYprW7fCqaeG0LtSJRg71tBbkiQVncG3pPjXrx/UqwdLl4au73i2fDkcdVRYial27TCaZfRoOOSQcEySJEm7WL8eunaFt96C6tXhtddc3kWSJO0eg29J8a9mTbjxxrD/979DVla09fyazz8PoffSpWFRzo8/hpkzoVmzcKxTJ3jggbBakyRJkgBYtQqOPho++ghSU2HGDOjePeqqJElSojP4lpQYrroKGjaEb76BZ5+NuppdvfcedOkCa9ZA27bw/vvQqlUIwufOhTPOCIH9ddeFa3i//z7qiiVJkiL35Zdw5JGwaBE0bQrvvgsdO0ZdlSRJKgsMviUlhurV4aabwv4//gHbtkVbz8+9+ir86U+waVMIut95Bxo3zn08NRVeegkeeQSqVAnX7rZvH7rBJUmSyqnZs6FzZ1i5Elq3Dn0DBxwQdVWSJKmsMPiWlDguvzwEyitWwNNPR11NMGJE6Ob+6Sc46SSYMgXq1Nn1vKSk0LX+0Ufhm93q1XDccTBkSGIs2ClJklSMpk0La4GvXw+HHRY6vffaK+qqJElSWWLwLSlxVK0Kt9wS9v/nf0LYHKVhw6BPH8jOhgsvhAkTQmf6b2nfHubMgT//GXJy4Pbbw0pOq1aVSsmSJElRe+EF6NEDtm4NH4NmzID69aOuSpIklTUG35ISyyWXhMUiV6+GJ56IpoZYDG64AQYNCvcHDoThw6FSpYL9+xo1Qsf6mDGwxx5hNEr79jBpUsnVLEmSFAcefRTOOy8sfXLOOfD66+HjkCRJUnFLisVisaiLiFpGRgYpKSmkp6dTq1atqMuR9HueeCKMPWnUCJYt+/0u6+K0fTv07Zu7wObdd+cG4EWxdCn07Bm6wAH694d77oHKlXe7VEmSpOKUlRUWoZw3L2xLl4YL3wrqxx9h+vSwf8UV8PDDkJxcMrVKkqSyq6BZrsE3Bt9SwsnMDHOyv/kmjBsZOLB0XvfHH0OL0quvQoUK8NRTcPHFu/+8mZlw881w773h/p135i7kKUmSFIHvv88NuHdsX3wRwu/dddttYZmTpKTdfy5JklT+GHwXgsG3lICGDw9zsuvXh6+/hpo1S/b1Nm2CU06B996DKlVg/Hg49dTifY1HHoF+/aBlS1iyxG+DkiSpxGVnw1df7Rpyr16d//m1aoUJbe3bQ5s2YQmWwthvP+jceffrliRJ5ZfBdyEYfEsJaPt22H//MOrkrrvgxhtL5nUWLoSRI2HUKFizJnzbe/VV6NKl+F9r61Zo2DDcfvABHHFE8b+GJEkqtzZtgvnz8wbcCxb8+nrhLVvmhtw7tr339rd5SZIUrYJmuRVLsSZJKj4VK8LgwXDhhWHO9pVXhlC6OKxbB+PGhcD7009zjzdpElZgat++eF7nl2rUgDPPDCH7qFEG35IkqUhyckJvwC+7uFesyP/8GjXgoIPyBtwHHeSik5IkKbHZ8Y0d31LCys6GAw+ExYvhxBPhpJPCN7V27Qofgv/0U+jkHjkS3nwzd6WmihXD8154YbitUqX438fPTZ0K3btDamroMHeRS0mSVECLFsGIETB6NPz3v/mfs/feueF2u3bhtmXLsHyJJElSInDUSSEYfEsJ7MUX4Zxzdj3evHnut7kdW/Pmeb/VxWJhpMjIkfD885CenvvY4YeHsPu886BevZJ/HztkZ8Nee4XBmhMmwOmnl95rS5KkhLN+fbhQbcQI+OST3ONVq0Lbtnk/CrVrB7VrR1erJElScTD4LgSDbynBzZgB06fnXse7alX+5+2xR+51vCkpYYHKr7/OfbxZM0hLC9v++5dO7fm54Qa4554w9uSll6KrQ5IkxaXMTHjjjRB2v/46ZGWF4xUrQo8ecNFFpXOhmiRJUhQMvgvB4FsqY9avz125acftwoWwbduu59asCWefHbq7jzkmPq7z/fzz0JJVuTKsXQt16kRdkSRJilgsBnPmhLB73LjwcWeHQw8NH2XOPx/q14+uRkmSpNLg4paSyq+6deGPfwzbDllZ8NVXuV3ha9bACSeEUSLVq0dXa352dKXPmxe60i+/POqKJElSMcjKgnffhY0bw/1Y7Le3HeesXBnmdn/xRe5z7bkn9O4dAu+2bUv/vUiSJMU7g29J5UOlSmEhzAMPhF69oq7m96WlheB71CiDb0mSEtiOTu2RI0On9vffF/25qlaFM84Io0y6dg2jTSRJkpQ/R53gqBNJcWjNGmjaFHJyYOlSaNky6ookSVIhrFwJY8aEwHvRotzjDRtCq1ZhPynp17efP169OpxySljP268rkiSpvHPUiSQlsj33hG7dYMqUcG3z4MFRVyRJkn7H5s3w8ssh7H777dxxJTs6tdPS4E9/slNbkiSpNMTBKm6SpHylpYXbUaNyvzlLkqS4kp0NU6eGP9uNGkGfPjBjRvjTfcwx8PTTYa3qsWPhxBMNvSVJkkqLH7skKV6dcQbUqAHLlsGsWXDEEVFXJElSmbRhQ1hP+t13Q5ANeX9z/q39Dz+E1atzj7VqFRac7N0b9tmnRMuWJEnSbzD4lqR4VaMGnHlm6PgeNcrgW5KkYpSZCZMnh7Ekr74a7hdVnTpw/vkh8D788NwZ3ZIkSYqOi1vi4paS4tjUqdC9O6SmhgUvK1eOuiJJkhJWLAZz5oSwe9w4+P773Mfat4ezz4aUlLz/5pch9i/vN2sGxx8PVaqUTM2SJEnKy8UtJaksOO44aNw4XEP9xhtw+ulRVyRJUsJZuRLGjAmB96JFuccbNYILLgjzudu3j64+SZIkFT+Db0mKZ8nJ0KsXDBsWxp0YfEuSVCCbN8PLL4ew++23c2dzV60altG48ELo1s3FJiVJksoqR53gqBNJcW7+/NCGVrkyrF0bBolKkqRdZGfDjBkh7H75Zfjhh9zHjj02hN1nnQV+5JckSUpcjjqRpLKiXbuwzZ8P48fD5ZdHXZEkSXFlwYIQdo8ZE6aD7bDffiHsvuAC2GefyMqTJElSBAy+JSkRpKXBoEFh3InBtyRJfPttWKBy5Ej47LPc46mp0LNnCLwPP3zXxSglSZJUPjjqBEedSEoAq1dDs2aQkwPLlkGLFlFXJElSqfvxR5g0KfwOPHlyGG0CUKkSnHRSCLt79IAqVaKtU5IkSSWnoFluhVKsSZJUVI0bhxW4AEaPjrYWSZJK2ezZ0LcvNGoUurlffz2E3h07wiOPwJo1MGFCWLTS0FuSJElg8C1JiSMtLdyOGgVerCNJKgeWLYNzzgkjS556CjIyYK+94JZb4MsvYdYsuOoqqFs36kolSZIUb5zxLUmJ4owzoEYNWLoUPvoIOnWKuiJJkkrEhg1wxx2hmzsrCypUgF694JJLoEuXcF+SJEn6LX5klKREUaMGnHlm2B81KtpaJEkqAdu2wb33QsuWcP/9IfQ+4QSYOzf86Tv2WENvSZIkFYwfGyUpkewYd/Lcc5CZGW0tkiQVk1gMnn8e2rSB66+HTZugXTt46y1480046KCoK5QkSVKiMfiWpERy3HFhocsNG0ISIElSgnv/fTjiiLBo5fLlsOee8Mwz8Omn0L171NVJkiQpURl8S1IiSU4OQ04BRo6MthZJknbD0qVw9tnQuXNYuqJGDbj9dliyBC6+OPzJkyRJkorK4FuSEs2OcSevvQYbN0ZbiyRJhZCZCfPmwXXXhbEmL70UZnb37RsC79tuCwG4JEmStLsqRl2AJKmQ2rUL2/z5MH48XH551BVJkrSLdetCyD1/fridNw8WLQoLVu5w4olw993Qtm10dUqSJKlsMviWpESUlgaDBsGoUQbfkqRIbd8Oixfnhts7trVr8z8/JQUOOwxuvBH+9KfSrVWSJEnlR1IsFotFXUTUMjIySElJIT09nVq1akVdjiT9vtWroVkzyMmBZcugRYuSeZ3sbBgxAiZOhDvuCJ3mkqRyLzsbpk0Lv79OmAA//LDrOUlJ0LIltG+fd9trr/CYJEmSVBQFzXLt+JakRNS4MXTtClOnwujRYShqcYrFYPJkuOEGWLAgHNu4Ed55p3hfR5KUUD7/PKytPGYMrFmTe7xGjfDb6M8D7oMOgpo1o6tVkiRJ5ZvBtyQlqrS0EHyPGgX9+0Pt2sXzvJ99FsaoTJ8e7tepA1u2wLvvwkcfQceOxfM6kqSE8O23MHZsCLznzs09npoKPXuGP0eHHx4WqZQkSZLihR9PJSlRnXFGaLFbuhQaNYJzz4XXXsu7alhhrFgBF14Ihx4aQu/KlWHgwDBKpVevcM6wYcVXvyQpbv34Izz/PJx0EjRpAgMGhNC7UqXw52fChNDx/cgj0KmTobckSZLijzO+cca3pAT2xhthdbAd40gA6teH888PIfYhh/z+INVNm2DoUHjgAdi2LRzr1Qv+8Q9o3jzc//zzcA17hQrw1VdhaKskqUz59ttw0c9LL8H48ZCRkftYx47hz8p550HdutHVKEmSJBU0yzX4xuBbUoKLxWDevNyhq+vW5T52wAEhqbjgAmjaNO+/y8yERx8Ni1auXx+OHXss3HMPHHbYrq9z4olh7ne/fvDQQyX2diRJJSsrC778Mvzp+Pn28z8fEBahTEsLW+vW0dQqSZIk/ZLBdyEYfEsqM7ZvhylTQgj+yiu5HdxJSWExzLS0cI365Mlw001hjAlAmzZw993hmvZf6xCfPh26dYPq1cNYFFv+JCnurV+/a8D9xRfht89fSkqCVq2gc+fwm+nRRzvCRJIkSfHH4LsQDL4llUmbNsGLL4YQ/N13c48nJ0N2dthv1Aj+/ne4+GKo+DvrHcdiYXTK3LlhDMott5Rc7ZKk3fLZZ2ES1tSp+T++xx5hglX79rlb27Zh6QhJkiQpnhl8F4LBt6Qyb/lyGD06hOBLl4ZkY9CgsHhlzZoFf54xY6B3b2jYEL75BqpWLbGSJUmFt2IF/O1v4b/8HZ/yW7TIDbd3hN377GM3tyRJkhKTwXchGHxLKjdisTDYtWFDSE0t/L/PygoLW65cCU8+CZdeWvw1SpIKrSDrFEuSJEllQUGzXPs8JKk8SUoK87yLEnoDVKoE110X9u+9F3Jyiq82SVKhZWaGsHvffcNSDdu2hXWKZ88OF+kYekuSJKm8MviWJBXOpZdCrVqhc/yNN6KuRpLKpVgMxo8Pv2Ved11YxLJNG3j1VZgxAw47LOoKJUmSpGgZfEuSCqdWLbj88rA/bFi0tUhSOfTee3DEEXDeefD112Gd4ieegPnz4eSTw8U9kiRJUnln8C1JKrz+/aFiRZg5M1xPL0kqcYsXwxlnwNFHw0cfhXWKhwyBJUugb9/w37IkSZKkwOBbklR4TZvC+eeHfbu+JalErVsHV18NBx4Ir7wCFSqEC2+WLoXBg6FmzagrlCRJkuKPwbckqWiuvz7cvvgiLF8ebS2SVAb98APceWdYuPLf/4bsbDjlFFiwAB57LIw4kSRJkpQ/g29JUtG0awfdu0NODtx/f9TVSFKZkZMDI0ZA69Zwyy2weTMceii8/TZMmhQWsZQkSZL02wy+JUlFt6Pr++mnYcOGaGuRpDJg+vQQcvfpA6tWwV57wZgx8PHHcOyxUVcnSZIkJQ6Db0lS0XXrFjq/t24N191LkopkwQLo0SP8tzp3LqSkwD//GRa07NUrzPWWJEmSVHB+hJYkFV1SUm7X94MPwrZt0dYjSQlmzRq47DJo3x7efBMqVoT+/cPClTfcAFWrRl2hJEmSlJgMviVJu6dnT2jSBL79NlyPL0n6XVu2wO23Q6tW8OSTYa73WWfBF1/AAw9AvXpRVyhJkiQlNoNvSdLuqVQJrrsu7A8bFtIbSdIuYjGYPRuuuQb22QeGDAmTojp1gvfegxdfDEG4JEmSpN1n8C1J2n19+8Iee8CiRTB5ctTVSFJcWbEChg6FAw6Aww+Hhx+G9euhRQsYPx4++ACOOirqKiVJkqSyxeBbkrT7UlLCkFqAe+6JthZJigObN8Ozz0LXrqG7++ab4csvw8zu888P87wXL4ZzzgnLJUiSJEkqXkmxWCwWdRFRy8jIICUlhfT0dGrVqhV1OZKUmFauDO2L27eHa/kPOyzqiiSpVGVnw/TpMHIkvPwy/Phj7mPHHgsXXhjmePtxU5IkSSq6gma5FUuxJklSWdasWVjocvRouPdeGDcu6ooklXOZmTBjRlh7t6QtXBjW9129OvfYfvuFsLt3b9h775KvQZIkSVIuO76x41uSis3cufCHP0ByMixdGq7vl6RSFIvBJ5+Erutx48Is7dKUmhpGmaSlhXnejjGRJEmSipcd35Kk0nfwwdCtG0ybBg88APfdF3VFksqJFStCx/XIkWGW9g4NG4b/mko6gE5NDfO6e/SAypVL9rUkSZIk/T47vrHjW5KK1VtvwQknhOSnefPC/dtOnWDIEDvFJRXI5s3w0kswahS8/Xbo9oawgOQZZ4QxI926QUVbPSRJkqQyo6BZrsE3Bt+SVKxisXB9/yefFO3fV64M11wDt9wCdeoUb22SEt5vLSB5zDEh7D77bBeQlCRJksoqg+9CMPiWpGKWkQHz5+e2XxbEli1hUczp08P9OnXgb3+Dq6+GKlVKpk5JCWPr1jA96dFH8y4g2apV7gKSXiwiSZIklX0G34Vg8C1JcSIWg8mT4YYbYMGCcGyffeDOO+G886BChUjLk1T6tm+H4cPhtttg7dpwLDUVevYMgbcLSEqSJEnlS4kH39OnT2f69OmsW7eOnJycPI8988wzRXnKyBh8S1Kcyc6GZ5+FW2+FNWvCsQ4d4J57wiwDSWVeLAZvvAE33ggLF4ZjzZvDHXeEUSZeCCJJkiSVTwXNcovUOnf77bfTvXt3pk+fzvfff8/GjRvzbJIk7ZbkZLjkEliyJKRcNWvC7Nlw7LFw6qmwaFHUFUoqQXPmQNeucPLJIfROTQ1jThYtggsuMPSWJEmS9PuK1PG95557cvfdd5OWllYSNZU6O74lKc59+y3cfjs88UToBk9OhksvhSFDoFGjqKuTVEy++Sasazt2bLhfpQr07w833eRat5IkSZKCEu34zszM5MgjjyxycZIkFUrDhvDvf4e536edFsLvxx+HffeFkSOjrk7Sbtq4EQYNgtatc0Pv3r1h8WK4+25Db0mSJEmFV6Tg+9JLL2Xsjm8lkiSVlv33h1degXfeCSvabd0KF10E/8fencdpOe9/HH/d0zIzbVNJGy0kijQhjsq+pKSIY1fCsWVLyE+dqBNFhEO2jnAqHGQ71ug4oiIHLXJIKpVI2maampqauX9/fE/LaDEzzcw1y+v5eNyPua7rvu/r+tyNUfO+P/fne999UVcmqQA2bAgjTJo1Cz/GWVlwwglh1MnYsdCkSdQVSpIkSSqtKhbkSevXr2fUqFFMnDiR1q1bU6lSpVz333///YVSnCRJO3T00fDJJ2HVu/vuC62iy5fDsGEQi0VdnaTfsXRp6OweORIWLAjHDjoodHd37uyPsSRJkqTdV6Dge9asWbRp0waA2bNn57ov5m8qkqTikJAA994Le+4ZAvB77gnh9+OPQ8UC/fUmqQitWwevvx46uSdMgJyccLxBA/jLX6BXL390JUmSJBWeAv168e9//7uw65AkqWD69YM99oArroDRo2HFCnj+eUhKiroyqdzLyYGPPw6j+F96Cdas2Xpfu3bQowf07AlVq0ZXoyRJkqSyabf7an788UdisRh77bVXYdQjSVL+XXYZ1K4N558fZoB37hxaS3exurOkovPdd6Gze+xYWLhw6/EmTULQ3aMHNG8eXX2SJEmSyr4CLW6Zk5PDX/7yF1JSUmjSpAmNGzemZs2aDBkyhJzNn1uVJKk4de8O774L1avDhx/C8cfDsmVRVyWVGytWwGOPhU7uAw6AO+8MoXf16uG9qUmTYP78MNbE0FuSJElSUStQx/eAAQMYPXo0d999Nx06dCAejzNlyhQGDRrE+vXrueuuuwq7TkmSft9xx4XQu1Mn+PJL6NAB3n8fmjaNuDCp7MjJCQtSzpyZ+/bDD1sfk5AAp5wSuru7dYMqVSIrV5IkSVI5FYvH4/H8Pqlhw4Y8/vjjdOvWLdfx119/nd69e7NkyZJCK7A4pKenk5KSQlpaGjX8WLwklX7ffQcdO4Z204YNw0p6rVpFXZVU6mRkwFdfwaxZWwPuWbPC8R1JTQ1h9wUXQP36xVurJEmSpPIhr1lugTq+V65cSYsWLbY73qJFC1auXFmQU0qSVHj23x+mTAktp19/DcccA2++Ce3bR12ZVCLF47Bo0fZd3PPmhft+q3JlOOigEHRvvrVuHdaZlSRJkqSSoEDBd2pqKiNHjuShhx7KdXzkyJGkpqYWSmGSJO2WvfaCjz6Crl1h6lQ46SR4+eWw8KVUjmVmhveDtg24Z82C1at3/Pj69XMH3Kmp4b2lSpWKt25JkiRJyo8CjTqZNGkSXbp0oXHjxrRr145YLMbUqVNZvHgxb7/9NkcffXRR1FpkHHUiSWXY2rVw9tnwzjtQsSI8/DC0aZO/c7RoATVrFk19UhH79Vd45pkw9n7mzDAJKDt7+8dVrAgtW24fctetW+wlS5IkSdJO5TXLLVDwDfDTTz/xyCOP8O233xKPxznwwAPp3bs3DRs2LHDRUTH4lqQybuNG6NULnnuuYM9v1gy++cYWV5U6EyfCRRfBL7/kPl6nzvYBd4sWkJgYTZ2SJEmSlFdFHnyXJQbfklQO5OTAoEHw/PNhO6+WLIENG+Cll+CPfyyy8qTCtHEj3HEH3H13mNF94IHQo8fWkLtBA4jFoq5SkiRJkvKv0IPvWbNm0apVKxISEpg1a9YuH9u6dev8VRsxg29J0k4NHAh33gnHHQf//nfU1Ui/64cf4IIL4JNPwv6VV8L990OVKpGWJUmSJEmFotCD74SEBJYuXUrdunVJSEggFouxo6fGYjGydzQ4sgQz+JYk7dSPP0LTpmEo8ldfQatWUVck7dTLL8Nll0FaGqSkwN/+FkbcS5IkSVJZkdcst2JeT7hgwQL23HPPLduSJJULe+8Np58Or7wCjz4ablIJk5kJffvC44+H/T/8IUz12WefaOuSJEmSpKgk5PWBTZo0Ifa/YZALFy5kr732okmTJrlue+21FwsXLiyyYiVJisS114avY8aEVlqpBPnvf+GII7aG3v/3f/Dxx4bekiRJksq3PAff2zr++ONZuXLldsfT0tI4/vjjd7soSZJKlOOOC6sDrl0bwm+pBIjH4cknoW1bmD0b6taFCRNg2DCoVCnq6iRJkiQpWgUKvuPx+Jbu722tWLGCqlWr7nZRkiSVKLEYXHNN2H7kkZA4ShFKS4Pzz4fLLw9jTk4+GWbOhI4do65MkiRJkkqGPM/4BjjzzDOBsIBlr169SExM3HJfdnY2s2bNon379oVboSRJJUGPHmGGxJw58K9/wWKqzcAAACAASURBVEknRV2RyqnPPoPzzoMFC6BiRbjrLrj5ZkgoUDuDJEmSJJVN+foVKSUlhZSUFOLxONWrV9+yn5KSQv369bniiisYN25cUdUqSVJ0qleHnj3D9iOPRFuLyqVffoHevaF9+xB6N20aZnn362foLUmSJEm/FYvH8/957cGDB3PzzTeXmbEm6enppKSkkJaWRo0aNaIuR5JUUn3zTZj1nZAQksfGjaOuSOXA2rVw//0wfDhkZIRj554bFrOsWTPa2iRJkiSpuOU1yy1Qf9Add9xRZkJvSZLyrGVLOOEEyMkJqaNUhLKzYfRo2H9/uP32EHq3bQsffgj/+IehtyRJkiTtSoE6vgHGjx/Piy++yKJFi8jKysp135dfflkoxRUXO74lSXn2yitw1llQpw4sXgxJSVFXpDImHod33w0jTGbPDseaNoVhw+CccxxrIkmSJKl8K9KO74ceeohLLrmEunXrMn36dI444gj22GMP5s+fT+fOnQtctCRJJV63brD33rB8Obz0UtTVqIz58suwbuqpp4bQu1YtGDECvv02LGhp6C1JkiRJeVOgX58effRRRo0axciRI6lcuTL9+vXj/fff5/rrryctLa2wa5QkqeSoWBGuuipsu8ilCsmiRdCjBxx2GHzwAVSuDDffDPPmQd++kJgYdYWSJEmSVLoUKPhetGgR7du3ByA5OZk1a9YA0KNHD55//vk8n+ejjz6ia9euNGzYkFgsxmuvvZbr/l69ehGLxXLdjjzyyFyP2bBhA9dddx116tShatWqdOvWjR9//LEgL0uSpLy5/PKQTE6bBp9/HnU1KsVWr4Zbbw1zvMeNC8cuuADmzIF77w0d35IkSZKk/CtQ8F2/fn1WrFgBQJMmTfj0008BWLBgAfkZGb527VpSU1MZOXLkTh/TqVMnfv755y23t99+O9f9ffr04dVXX+Uf//gHkydPJiMjg9NOO43s7OwCvDJJkvKgbl04++ywbde38mnTpjDD+4ILoGFDGD4cNmyA446D//wHnn02zPSWJEmSJBVcxYI86YQTTuCNN97g0EMP5bLLLuPGG29k/PjxfP7555x55pl5Pk/nzp1/dyZ4YmIi9evX3+F9aWlpjB49mrFjx3LSSScBMG7cOBo1asTEiRM55ZRT8v6iJEnKj2uuCQnl88/DfffBHntEXZFKuFmzYMyY8J/N0qVbjx98MAwdCl26QCwWXX2SJEmSVJYUKPgeNWoUOTk5AFx11VXUrl2byZMn07VrV67aPPe0kHz44YfUrVuXmjVrcuyxx3LXXXdRt25dAL744gs2btxIx44dtzy+YcOGtGrViqlTp+40+N6wYQMbNmzYsp+enl6oNUuSyoEjj4RDDw2rEY4eDf36RV2RSqClS+G550LgPXPm1uN77AHnnw89e0LbtgbekiRJklTYChR8JyQkkJCwdUrKOeecwznnnFNoRW3WuXNnzj77bJo0acKCBQsYOHAgJ5xwAl988QWJiYksXbqUypUrU+s3AzDr1avH0m1bqX5j2LBhDB48uNDrlSSVI7FY6Pq+7DJ47DG46SaoUCHqqlQCZGbC66+HsHvCBPhfrwCVK0PXriHs7tQp7EuSJEmSikaeg+9Zs2bl+aStW7cuUDG/de65527ZbtWqFW3btqVJkya89dZbuxypEo/Hie2ideq2226jb9++W/bT09Np1KhRodQsSSpHzj8fbrkFfvgB3n47pJoqt+bNg2HD4KWXYNsPk7VrF8Luc86B2rWjq0+SJEmSypM8B99t2rQhFov97uKVsVisyBaWbNCgAU2aNGHu3LlAWGQzKyuLVatW5er6XrZsGe3bt9/peRITE0lMTCySGiVJ5UhyMlx6aZjx/cgjBt/l2HPPwZVXQkZG2G/aFHr0CLfmzSMtTZIkSZLKpTwH3wsWLCjKOvJkxYoVLF68mAYNGgBw2GGHUalSJd5///0to1Z+/vlnZs+ezfDhw6MsVZJUXlx9NYwYEWZazJ1rylnOrF0L118PTz0V9o85BoYMgaOOgm2mwkmSJEmSilmeg+8mTZoU+sUzMjL4/vvvt+wvWLCAGTNmULt2bWrXrs2gQYM466yzaNCgAT/88AP9+/enTp06dO/eHYCUlBQuu+wybrrpJvbYYw9q167NzTffzMEHH8xJJ51U6PVKkrSdffeFU0+Ft96CRx+FBx6IuiIVk9mzw/iSb74JI99vvx0GDnTUuyRJkiSVBLH4780u2YExY8bs8v6ePXvm6Twffvghxx9//HbHL774Yh577DHOOOMMpk+fzurVq2nQoAHHH388Q4YMyTWPe/369dxyyy0899xzZGZmcuKJJ/Loo4/ma2Z3eno6KSkppKWlUaNGjTw/T5IkAN55J4TfKSmwZAlUrRp1RSpC8Tg8+WTo9F6/Hho0gGefhR38k0aSJEmSVMjymuUWKPjedp42wMaNG1m3bh2VK1emSpUqrFy5Mv8VR8jgW5K0W3JyYP/9w+qGTzwBV1wRdUUqImlpYZb3Cy+E/U6d4O9/h7p1o61LkiRJksqLvGa5BZo+uWrVqly3jIwM5syZw1FHHcXzzz9f4KIlSSqVEhKgd++w/cgjoSVYZc7nn8Ohh4bQu2JFGD48TLgx9JYkSZKkkqfQll1q3rw5d999NzfccENhnVKSpNLjkksgORlmzYIpU6KuRoUoHg+j29u3h/nzoUkT+PhjuOUWF7CUJEmSpJKqUH9dq1ChAj/99FNhnlKSpNKhVi248MKwPXJktLWo0KxYAd26Qd++sHEjnHkmTJ8ORx4ZdWWSJEmSpF2pWJAn/fOf/8y1H4/H+fnnnxk5ciQdOnQolMIkSSp1rrkmrHr48svw889h1UOVWh9/DBdcAD/+CImJcP/9cPXVEItFXZkkSZIk6fcUKPg+44wzcu3HYjH23HNPTjjhBEaMGFEohUmSVOq0aRPmYUydCnfcERa6NCUtdbKzYdiw8C3cvG7pCy+Eb68kSZIkqXQoUPCdk5NT2HVIklQ23HornH46/O1vsGkTjBoVVkJUqbB0KVx0EfzrX2G/Rw949FGoVi3auiRJkiRJ+bPbM77j8TjxeLwwapEkqfTr1g1Gjw6rHj79dBgKnZkZdVXKg/ffh9TUEHpXqQLPPANjxhh6S5IkSVJpVODge/To0bRq1YqkpCSSkpJo1aoVTz75ZGHWJklS6XTppfDKK5CUBG+8AR07wqpVUVelndi0CQYMgFNOgWXL4OCD4fPP4eKLo65MkiRJklRQBQq+Bw4cyA033EDXrl156aWXeOmll+jatSs33ngjf/7znwu7RkmSSp/TT4cJEyAlBSZPhmOPhZ9+iroq/cbixXD88TB0KMTjcOWVMG0atGwZdWWSJEmSpN0RixdgTkmdOnV4+OGHOf/883Mdf/7557nuuutYvnx5oRVYHNLT00lJSSEtLY0aNWpEXY4kqSyZNSu0Ei9dCk2bhjB8//2jrkqEZvxevWDlSqhRI4xlP+ecqKuSJEmSJO1KXrPcAnV8Z2dn07Zt2+2OH3bYYWzatKkgp5QkqWxq3RqmToX99oMffoCjjoIvvoi6qnItKwv69g3j2FeuhMMOgy+/NPSWJEmSpLKkQMH3RRddxGOPPbbd8VGjRnHhhRfudlGSJJUp++wDU6bAoYfCr7/CcceFFRRV7ObPhw4d4IEHwn6fPuFb06xZtHVJkiRJkgpXgUadXHfddYwZM4ZGjRpx5JFHAvDpp5+yePFievbsSaVKlbY89v777y+8aouIo04kScUiPR26d4cPPoDKlWHcODj77KirKjdefBEuvzx8G2rVgmeeCV3fkiRJkqTSI69ZboGC7+OPPz5Pj4vFYnzwwQf5PX2xM/iWJBWbDRvgootg/HiIxeCRR+Dqq6OuqkzbtCl0dj/ySNjv0AGeew4aN462LkmSJElS/hVp8F3WGHxLkopVdjZcey08/njYHzQIbr89BOEqVOvXwwUXwKuvhj/e226DwYOhYsWoK5MkSZIkFURes9zd/rXvxx9/JBaLsddee+3uqSRJKh8qVIBHH4V69UIKO2hQGD59xBH5O0/r1nD00UVSYlmQng6nnw4ffgiJifD882HSjCRJkiSp7CtQx3dOTg533nknI0aMICMjA4Dq1atz0003MWDAABISCrRmZmTs+JYkReaRR+C666CgH8A65RQYPjyE4Nril1+gc2eYPh2qV4d//jOsKSpJkiRJKt2KtON7wIABjB49mrvvvpsOHToQj8eZMmUKgwYNYv369dx1110FLlySpHLlmmtgn31g7NgwAiWvNmyAd96BCRPgvfegVy/4y19g772LrNTSYsEC6NgRvv8e9twT3n0XDj006qokSZIkScWpQB3fDRs25PHHH6dbt265jr/++uv07t2bJUuWFFqBxcGOb0lSqTRvHvTvDy++GPaTk+HGG+HWW6Gc/n321VehCf7nn6Fp0/CeQPPmUVclSZIkSSosec1yCzSTZOXKlbRo0WK74y1atGDlypUFOaUkScqvZs3ghRfg00/hqKMgMxOGDoX99gsjVDZujLrCYjVlChxzTAi9W7UK+4bekiRJklQ+FSj4Tk1NZeTIkdsdHzlyJKmpqbtdlCRJyoc//AE++gheew0OOAB+/RWuvRYOOgheeaXg88NLkbfegpNOgtWroUOH8MfRsGHUVUmSJEmSolKgUSeTJk2iS5cuNG7cmHbt2hGLxZg6dSqLFy/m7bff5uijjy6KWouMo04kSWXGxo3w5JMwaBAsWxaOdegA994L7dpFWlpRGTsWLrkkjEjv0iVMfqlSJeqqJEmSJElFoUhHnRx77LF89913nHnmmaxevZqVK1dy5plnMmfOnFIXekuSVKZUqgRXXx1Wdvzzn8Pc7ylToH17+OMfYdGiqCssVA88AD17htC7Rw949VVDb0mSJElSPju+161bxy233MJrr73Gxo0bOfHEE3n44YepU6dOUdZY5Oz4liSVWUuWwB13wNNPQ04ONGgAEybAwQdHXdluicdhwAAYNizs33gj3HcfJBToLX1JkiRJUmlRJB3fd9xxB8888wxdunThvPPOY+LEiVx99dW7XawkSSoie+0VRp/MmBHC7p9/DitATp4cdWUFtmkTXHHF1tB76FAYMcLQW5IkSZK0Vb46vps1a8Zdd93FeeedB8Bnn31Ghw4dWL9+PRUqVCiyIouaHd+SpHJh1Sro2jWMPklKgvHjw1DsUmTyZLj5Zpg2LQTdjz8Ol18edVWSJEmSpOJSJB3fixcvzjXD+4gjjqBixYr89NNPBa9UkiQVj1q14L33Qti9fj2cfnpYGbIUmDMHuneHo48OoXfVqvDSS4bekiRJkqQdy1fwnZ2dTeXKlXMdq1ixIps2bSrUoiRJUhGpUiWsALl5RciePcMKkSXUsmXQuzccdBC89lro8r7iCpg7F848M+rqJEmSJEklVcX8PDgej9OrVy8SExO3HFu/fj1XXXUVVatW3XLslVdeKbwKJUlS4apUKSx2WacO3H8/9O0bEuahQyEWi7o6ANatC6Xdcw9kZIRjXbuG/ZYto61NkiRJklTy5Sv4vvjii7c7dtFFFxVaMZIkqZgkJMB998Gee8Jtt8Hdd8Py5fDYY1AxX/88KFTZ2fD3v8PAgbB5klrbtnDvvXDccZGVJUmSJEkqZfK1uGVZ5eKWkqRy7ckn4corIScnDNJ+7rmw+GUxisfh3XehXz+YPTsca9o0NKGfe27I6SVJkiRJKpLFLSVJUhn0pz/B+PGQmBjmf3fuDOnpxXLpeBw+/xxOPhlOPTWE3rVqwYgR8O23cP75ht6SJEmSpPyL7rPMkiSp5OjePbRcd+sGH34Y5oq88w7Uq1dol8jMhK+/hpkzt95mzYLVq8P9lSvDdddB//5Qu3ahXVaSJEmSVA4ZfEuSpOC440Lo3akTTJ8ORx0F770H++yTr9PE42E+97YB98yZ8N13YZrKb1WqBGefDXfeme9LSZIkSZK0QwbfkiRpq0MPhSlToGNH+P77sN+kCcRiYeZILLbT7ZWbanDjgut5a83RrMisusPT16kDbdpAaurWW4sWodtbkiRJkqTCYvAtSZJya948hN+nnBKGbm+eRbILk+nABTzOYhoDkBDL4YAWCbkC7tRUaNAgZOWSJEmSJBUlg29JkrS9hg3DqpOffAJZWWFGSTwebttsZ2/M4e5XmnPHP1qSnZNA81q/8sSqczgy+SuS35gGzZpF/UokSZIkSeWQwbckSdqxxMQw93snli6FHj1g4sSwf+GF8Ngje1D9DODDFdCrV5gZXqFCMRQrSZIkSdJWCVEXIEmSSp/33w+jSyZOhCpV4KmnYOxYqJ6SAE8/DdWqweTJ8MADUZcqSZIkSSqHDL4lSVKebdwI/fuH8d/LlsHBB4eJKJdcss3s7qZNtwbeAwbA119HVa4kSZIkqZwy+JYkSXmyaFGYfDJsWBjxfdVVMG0atGy5gwdfdhl07hzmg/fsGRJzSZIkSZKKicG3JEn6Xa+9Bm3awNSpUKMGvPgiPPYYJCfv5AmxGDz5JNSqBV9+CUOHFmu9kiRJkqTyzeBbkiTt1IYNcP310L07rFoFhx8O06fD2Wfn4ckNG8Ijj4TtO++EL74o0lolSZIkSdrM4FuSJO3QvHnQrh08/HDYv+mmsF7lvvvm4yTnnRdS8k2bwsiT9euLpFZJkiRJkrZl8C1JkrbzxRch9J4+HfbYA958E+67DypXzueJYjF49FGoVw/++18YOLBI6pUkSZIkaVsG35IkKZcPPgiLWP76Kxx6KMycCV267MYJ69SBUaPC9ogRoW1ckiRJkqQiZPAtSZK2ePll6NwZMjLghBPg3/+GvfYqhBN36wa9ekE8DhdfHC4gSZIkSVIRMfiWJEkA/O1vcM45kJUFZ50Fb78NNWoU4gUefBAaNYL586Ffv0I8sSRJkiRJuRl8S5JUzsXjMHQoXHEF5OSEry+8AImJhXyhlBR4+umw/dhj8N57hXyBnYjHw2zx3r3tNJckSZKkcsLgW5KkciwnB/r2hQEDwv6AAfD441ChQhFd8MQT4dprw/all8Lq1UV0oW08/TTceWcI2088EVasKPprSpIkSZIiZfAtSVI5tXFjGLf94INh/8EHQz4cixXxhe++G/bbD5YsgeuvL9pr/fAD9OkTtitVgs8+g2OOCdeWJEmSJJVZBt+SJJVD69bBGWfAuHFQsWL4esMNxXTxqlXh73+HhAQYOxZefbVorpOTA5dcAmvWQIcO8OWXYaXO//437M+dWzTXlSRJkiRFzuBbkqRyZuVKOPnksHhlcjL8859w4YXFXET79nDLLWH7yith2bLCv8bIkfDhh1ClCjzzDLRqBVOmQPPmsHAhHHUUzJhR+NeVJEmSJEXO4FuSpHJkyRI49liYOhVq1oSJE6Fz54iKGTw4hNG//go9eoTZK4Vlzhy49dawfd99YbQKQJMmMHkytGkTwvZjj4WPPy6860qSJEmSSgSDb0mSyonvvgsTPmbPhoYNQ97bvn2EBSUmhlEnycnw3nthLElOzu6fd9OmMLx8/frQ2n7VVbnvr1s3dIIffTSkp0PHjvDWW7t/XUmSJElSiWHwLUlSOfDll2Gyx8KFYdLHlCmh2TpybdrA+PFQoQI8+yzcfDPE47t3zuHDYdo0SEmB0aN3vFpnSgpMmACnnRYC8tNPD9eXJEmSJJUJBt+SJJVx//43HHdcmChy6KFh0kfTplFXtY1TT4Wnnw7bDzwA995b8HPNnAmDBoXthx6CRo12/tjkZHjlFbjoIsjODl8ffrjg15YkSZIklRgG35IklWGvvAKdOsGaNXDCCSEEr1s36qp2oEePMIsbwmzuZ57J/zk2bICePcOs8DPOCOf8PZUqwd//DtddF/avvz7MHt/drnNJkiRJUqQMviVJKqP+9jc4+2zIyoIzzwxjrGvUiLqqXbjppjDqBOBPf4I338zf8wcPhlmzoE4deOKJHY842ZGEBPjrX8PzIXSM33BD4cwblyRJkiRFwuBbkqQyJh6HoUPhiitCdnv55fDii5CUFHVleXDPPaFrOzsbzjkHpk7N2/M+/TQ8F0Lond+29lgMbr9966iThx/e2j0uSZIkSSp1DL4lSSpDcnKgb18YMCDs9+8fcuAKFaKtK88SEuDJJ8Pc78zMsPjk11/v+jnr1sHFF4cXf+GFob29oK69FsaN27rY5pVXFvxckiRJkqTIGHyXc8uXv8nixSPYtCkt6lIkSbtp48aQ/z74YNh/4AG46668T/woMSpVCi3qRx4Jq1bBKafAokU7f/xtt8F330HDhoWzOOWFF8Krr4Y/uKefhs8/3/1zSpIkSZKKlcF3Offdd1cxb97NrF37TdSlSJJ2w7p1YT3HceOgYkUYOxb69Im6qt1QtWqY8d2yJSxZEsLv5cu3f9wHH8BDD4Xt0aOhVq3CuX7XrnDRRWG7Xz8Xu5QkSZKkUsbgu5yrUqU5AJmZ30dciSSpoFauhJNPhrffhuRkeP31rZltqbbHHjBhAuy9N3z7bRh7snbt1vvT0+GSS8L2lVdCp06Fe/0hQyAxEf79b3j33cI9tyRJkiSpSBl8l3PJyfsBkJk5N+JKJEkFsWQJHHtsWAOyZk14//0wHrvMaNQohN+1a8O0aXD22VsXnLzxxjACZZ994N57C//aTZrAddeF7X79woKbkiRJkqRSweC7nEtO3tzxbfAtSaXNd99Bhw4we3YYb/3xx2G/zDnwwDD2JDkZ3nkHLr0U3ngDnnoqzOF+5hmoXr1ort2/fxifMns2jBlTNNeQJEmSJBU6g+9ybmvw7agTSSpNvvgCjjoKFi6E5s1hyhRo1SrqqopQu3YwfjxUqBAGmZ91Vjh+441wzDFFd91atWDAgLA9cGAYpi5JkiRJKvEMvsu5bUedxF24S5JKvHgc/v73MN7k11/h0ENh8mRo2jTqyorBqaeGLm8I405atoS77ir6615zTRh7smQJ/PWvRX89SZIkSdJuM/gu55KTmwGwadNqNm5cEXE1kqRdWbMGevaEXr3CGo8nnxzWXaxbN+rKilHPnjBqVGh3f/55SEoq+msmJW0N2IcNC+84SJIkSZJKNIPvcq5ChSokJu4NOOdbkkqyL74I3d3jxoVpH3feGcZd16gRdWURuPzyMNA8NbX4rnn++XDIIeHdhzvvLL7rSpIkSZIKxOBbzvmWpBIsHocHHwwjrr//Hho1gkmTwtjpChWirq4cSUiAe+8N2489BvPmRVuPJEmSJGmXDL6Va863JKnkWL4cunUL6zdu3Ajdu8OMGdChQ9SVlVMnngidOoVvxuYFLyVJkiRJJZLBt7bp+Db4lqSSYtKkMMnjzTchMREeeQRefhlq1466snLunnsgFoMXXoDPPou6GkmSJEnSThh8y1EnklSCbNoEgwbBCSfATz/BAQfAtGnQu3fIWxWx1q3DApsA/fqFWTSSJEmSpBLH4FtbRp2sWzeXuL/AS1JkfvwxTNMYPBhycuDSS8OilsW5hqPyYMiQ0IY/aRK89VbU1UiSJEmSdsDgWyQnNwMgOzuNjRuXR1yNJJVP//xnCLg/+giqV4dnn4XRo6Fq1agr03YaNYI+fcL2rbeGNn1JkiRJUoli8C0qVEgmMbER4JxvSSpuGzbADTfA6afDypVw2GHw5ZdwwQVRV6Zd+r//CwPX//tfeOaZqKuRJEmSJP2GwbcA53xLUhTmzoX27eGhh8J+374wdSrst1+0dSkPataEgQPD9u23w9q10dYjSZIkScrF4FvA1jnfdnxLUvF47jk49NDQ3b3HHvDmmzBiBFSuHHVlyrOrr4Z99oGff4YHHsj/8zMzYfz40DG+cmWhlydJkiRJ5ZnBt4CtHd/r1hl8S1JRWrsWLrsMLrwQMjLgmGNgxgzo0iXqypRviYkwdGjYHj4cli37/efk5MDHH8Of/gT168PZZ8Mll4Tts86C11+HrKyirVuSJEmSygGDbwFQpYqjTiSpqM2eDUccAU89BbFYmJDxr3/B3ntHXZkK7JxzoG1bWLMGhgzZ+ePmzg3f8GbNwrsdo0dDejo0bgytW8PGjfDKK3DGGdCwIVx7LXz2GcTjxfdaJEmSJKkMMfgWkHvUSdxfsiWpUMXj8Le/weGHh7UQGzQIgffgwVCxYtTVabckJIRub4DHHw8B92YrV4Zj7dvD/vuHYPyHH6B6dbj0UvjwQ1iwAGbODLebbw6d3ytWwCOPwB/+AC1bhq7yRYuieHWSJEmSVGrF4qacpKenk5KSQlpaGjVq1Ii6nEhkZ6/n44+rAHHat/+FypXrRl2SJJUJaWlw5ZXwwgth/5RTYMwYqOv/ZsuWLl3g7behe3fo1St8k994Y+vYkoQE6NgRevaE00+HKlV2fJ5Nm8K7ImPGwKuvhjngED4icNxx4flnnRXCc0mSJEkqh/Ka5Rp8Y/C92SefNGHDhkUccshkUlI6RF2OJJV6n38O554L8+eHzu6hQ+Gmm0IGqjJm9mxITQ0zvLfVunUIqy+4ILT650d6Orz8MowdC//+99bjyclw991w/fW7X7ckSZIklTJ5zXL91VtbbF7g0jnfkrR74nF44IEw4WL+fGjSJKxneMstht5lVqtWobUfwriSm24Kq5bOnBm28xt6A9SoERa+/OCDMCLlrrvggANCF/hNN+UeqyJJkiRJysVfv7XF5jnf69b5i7QkFdSSJdCtG/TtG9YrPPNMmD4djjwy6spU5B5+GL76ChYvhvvuCx3ghaVJE+jfH775Bk49NYxE6d+/8M4vSZIkSWWMwbe2qFJlc8e3wbck5deaNTBwIDRvDm++CZUrh/UJx4+HWrWirk7FokKF0PldlCuWxmJwzz3howPjx8OnnxbdtSRJkiSpFDP41haOOpGk/Nu4ER59FJo1gzvvDFMo2reHadOgd++QU0qFBLEqKgAAIABJREFUqlWrsIAmQL9+YbaOJEmSJCkXg29tsXnUSWbmXFzzVJJ2LR6H116Dgw+Ga66BX38N3d4vvwyTJ0ObNlFXqDJt8GBISgrD4994I+pqJEmSJKnEMfjWFklJ+wIxsrPXsHHjsqjLkaQSa9o0OOYY6N4d5syBOnVg5Ej4+usw09subxW5vfeGG28M27feGmZ+S5IkSZK2MPjWFhUqJJGY2BhwgUtJ2pF58+Dcc8NClZMnh4bb/v3D8WuugUqVoq5Q5cqtt8Iee8C338LTT0ddjSRJkiSVKAbfymXruBPnfEvSZitWQJ8+0LIlvPhi6Oju1QvmzoW77oIaNaKuUOVSSkpYURXg9tth7dpo65EkSZKkEsTgW7lUqbJ5gUs7viUpOxtGjAgLV/71r2Ehy44dYfr00GC7995RV6hy7+qrYd99YelSuP/+qKuRJEmSpBLD4Fu5JCcbfEsSwJIlcNJJcPPNkJYGrVvDhAnhlpoadXXS/1SuDEOHhu3hw2GZa3RIkiRJEhh86ze2Bt+OOpFUfr31FrRpAx9+CFWrwqhR8OWXodtbKnHOPhvatoWMDPjLX6KuRpIkSZJKBINv5bJ1xvdc4vF4xNVIUvHKyoKbboLTToPly0P4/eWXcPnlUKFC1NVJO5GQELq9AZ54IgyflyRJkqRyzuBbuSQn7wskkJ2dQVbWL1GXI0nF5vvvoX37rWOSr78ePv0U9t8/2rqkPDn+eOjSBTZtgv79o65GkiRJkiJn8K1cEhISSUpqDDjnW1L58dxzcMgh8MUXULs2vP56WMwyMTHqyqR8uPvu0P09fnx416agVq+Gnj3hiCPg3nvhp58Kr0aAeDzU17s3HH443HknrFtXuNfYfJ1334Vjjw2v5fLLYeRI+PjjMLhfkiRJUpkWizvPgvT0dFJSUkhLS6NGjRpRlxO5mTNPZtWqiRxwwFM0aHBJ1OVIUpFZuxauuw6efjrsH310CMH33jvauqQCu+wyeOqp8B/zpEkQi+Xv+Z98AuefDwsXbj2WkBBWeu3ZE844Iwy+L4gffoCxY8Ptt+NYGjYM88l79SqcuUIzZsAtt8DEiTt/TNOmYdXa1NStt333Da9XkiRJUomV1yzX4BuD79/67rve/PTTYzRufBv77js06nIkqUjMnAnnngtz5oSca+BA+POfoWLFqCuTdsOPP0Lz5rB+ffjoQrdueXteTk6YE/7nP0N2dgiAe/eG116DyZO3Pq5aNfjjH0MIfuyxvx8Sp6WFDvQxY+Cjj7Yer1IFzjordHw/8AAsWBCOt2oV6ujUKf+hPcCiReE1jBsXOr4rV4Zrr4U//AFmzQo/+DNnwuLFO35+tWpw8MHhIyDXXw8HHJD/GiRJkiQVKYPvfDD4zm3x4geYN68ve+75Rw466KWoy5GkQhWPw6OPhkUsN2wIjabPPgvHHRd1ZVIh6d8fhg2DFi3gq69+/92cpUuhR4+t3dHnnhsWyUxJCfvz5oUgecwYmD9/6/MaNQrP69EjXGuzTZvg/ffD4197LYTwEILsE08MoXn37iFkhvCD+OijMGQIrFoVjp14YgjADz00b685LS285gcfDOeD0Ll+112wzz7bP37lytxB+MyZ8PXXW58LIZwfOTJ0oRckhJckSZJUJAy+88HgO7fly99k9uyuVKvWhrZtp0ddjiQVmpUrwySI114L+6edFsac1KkTbV1SoUpLg2bNYMUKGDUqzLbemQkTQhC9bBkkJ8PDD8Oll+446I3HYerUEGi/8ELuOdmHHw4XXhg6rp99Fn7ZZoHsli3h4ovD/buaI7RqFQwdCg89BFlZ4dhFF4XwunHjHT8nKwseeyyE5itWhGPHHhtmkx9++M6vtSObNoWPgMyaBU8+CR98EI6ffz48/jj4b0RJkiSpRDD4zgeD79zWrv2W//ynJQkJVTn66DXE7HKSVAZMmRLyq8WLoVKlkItdf72NnCqj/vpX6NMH6teH77/ffi73xo1hJMjw4WH/4IPhH/+AAw/M2/nXr4c33ggh+DvvhPEo26pTBy64IITqhx6avx+0H36AAQPCwH0Iq8zecAPcdhvUrBmOxeNhhMptt4WOdAgB+/Dh0KXL7v9g5+TAPfeEGUjZ2eGNhH/8A9q23b3zSpIkSdptBt/5YPCdW05OFh99lAzk0K7dTyQmNoi6JEkqsOxsuPtuuOOOsL3ffiG/OuywqCuTilBWVgiC588Pi0YOHLj1vgULwrtA06aF/auvhhEjQsd3QSxbFn6oXn0V9twzjD7p1Cm8w7Q7Pv88LFD54Ydhv3bt8DratAmB96efhuP16oXXeOmlhT+kf+rUEOAvXBhez913hzcUXABTkiRJiozBdz4YfG/v00/3Zf36BbRpM4maNY+JuhxJKpCffw4Z3L/+FfYvvDBMRahePdq6pGLxwgtw3nlhlva8eVC3Lrz4Yhh9kp4euqeffDIsMllSxePw1lvQrx98803u+6pUCcH4zTdvnRdeFFatCn9mL78c9jt3hr//PYT8kiRJkopdXrPcSNtVPvroI7p27UrDhg2JxWK8tnno6v/E43EGDRpEw4YNSU5O5rjjjuPrr7/O9ZhVq1bRo0cPUlJSSElJoUePHqxevbo4X0aZlJy8HwCZmd9HXIkkFcy770Jqagi9q1SBZ56BsWMNvVWOnH12GM2RkREWvLziirBwZXo6tGsHM2aU7NAbwsiS004Lc7dHjQqjWxISwmv5/nsYNKhoQ2+AWrXgpZfCu2aJiWG0S2rq1hngkiRJkkqkSIPvtWvXkpqaysiRI3d4//Dhw7n//vsZOXIk//nPf6hfvz4nn3wya9as2fKYCy64gBkzZvDuu+/y7rvvMmPGDHr06FFcL6HMSk5uDkBm5tyIK5Gk/MnKCs2hnTvDr79C69bwxRdhbT3neatcSUjYOsN79Gj429/CD0H//jBpEjRpEm19+VGxYui6XrAgfJTjiSegQTGOYovF4Kqr4D//CSNkfv4ZTjopjF7ZtKn46pAkSZKUZyVm1EksFuPVV1/ljDPOAEK3d8OGDenTpw+33norABs2bKBevXrcc889XHnllXzzzTcceOCBfPrpp/zhD38A4NNPP6Vdu3Z8++23HHDAAXm6tqNOtrd48YPMm3cjdeqcRatW46MuR5LyZP78MLr4s8/C/jXXwH33QVJStHVJkTrttDAupH59GDcOTjwx6opKt7Vrw5zvJ58M+x06hIU4GzeOti5JkiSpnMhrllvIKwAVngULFrB06VI6duy45VhiYiLHHnssU6dO5corr+STTz4hJSVlS+gNcOSRR5KSksLUqVN3Gnxv2LCBDRs2bNlPT08vuhdSSjnqRFJp89JL8Kc/bR1d/NRT0L171FVJJcC4ceEH5PTTw5xv7Z6qVUP3/IknhpErU6aEBTfvuw+aNs3fuerVgwMOKPxFOSVJkiSV3OB76dKlANSrVy/X8Xr16rFw4cItj6m7g1/g6tatu+X5OzJs2DAGDx5ciNWWPVWqbB518j3xeJyY8wEklVDr1sGNN4bxvwDt24fmy9I0xUEqUjVrhjEhKlznnQdHHBG+/uc/cNllBTtPUhIcfHAIzw85JHxt3ToE7JIkSZIKrMQG35v9NnD9bQi7o0D294La2267jb59+27ZT09Pp1GjRoVQbdmRlLQPkEBOzlqysn4mMbFh1CVJ0na+/jqs1ff112EE7223weDBNk9KKib77guTJ8OQIfD665CTk/fnxuOwaFFYfPQ//wm3zWIx2H//EIJvG4j/piFEkiRJ0s6V2Gigfv36QOjqbrDN4kXLli3b0gVev359fvnll+2e++uvv27XKb6txMREEhMTC7nisiUhoTJJSU1Zv34+mZlzDb4llTjjx0PPnpCZGbKgcePCWnOSVKwqVw7B95Ah+X9uTg7MmwfTp8OMGeE2fTosXQpz5oTbCy9sffxee8HIkfC/NXEkSZIk7VxC1AXszD777EP9+vV5//33txzLyspi0qRJtG/fHoB27dqRlpbGZ5tXMQOmTZtGWlralseo4JzzLamkeuwxOOecEHp37AgzZxp6SyqFEhKgefPwP7ShQ+Htt+Hnn8Pt3Xdh2LDwsZYDDghd4EuWQI8esGBB1JVLkiRJJV6kHd8ZGRl8//3WUHXBggXMmDGD2rVr07hxY/r06cPQoUNp3rw5zZs3Z+jQoVSpUoULLrgAgJYtW9KpUycuv/xynnjiCQCuuOIKTjvttJ0ubKm8S05uzqpV77Fu3dyoS5EkIEwGGDIE7rgj7F91VWh+rFAh2rokqVDVrx9up5yy9VhGBnTuHEarXHIJfPBBCM4lSZIk7VCk/1r+/PPPOeSQQzjkkEMA6Nu3L4cccgi33347AP369aNPnz707t2btm3bsmTJEt577z2qV6++5RzPPvssBx98MB07dqRjx460bt2asWPHRvJ6ypqtC1wafEuKXk4OXH/91tB74EB49FFDb0nlRLVq8MwzYdHLSZPgoYeirkiSJEkq0WLxeDwedRFRS09PJyUlhbS0NGrUqBF1OSXGihVv8dVXp1G1amsOP3xm1OVIKseysqBXL3j++bD/0ENw3XWRliRJ0Xj8cbj6akhKCvPAW7SIuiJJkiSpWOU1y/Xzkdqp5OTNHd/f4/sjkqKydi106xZC74oV4bnnDL0llWNXXhkWN1i/Hi6+GDZtiroiSZIkqUQy+NZOJSXtA1QgJ2cdWVk/RV2OpHJoxQo48USYMAGqVIE33oDzz4+6KkmKUCwGo0dDSgp89hncc0/UFUmSJEklksG3diohoRJJSU0BXOBSUrH78Uc4+miYNg1q1YKJE6FTp6irkqQSYO+94eGHw/bgwTBjRrT1SJIkSSWQwbd2KTl5PyCMO5Gk4jJnDnToAN98A3vtBR9/DO3aRV2VJJUgF10E3bvDxo3Qsyds2BB1RZIkSVKJYvCtXapSZfOcbzu+JRWPzz+Ho46CRYtg//1hyhQ46KCoq5KkEiYWCwtd7rknfPUVDBoUdUWSJElSiWLwrV3ausClwbekojdxIhx/PCxfDm3bwuTJ0KRJ1FVJUglVty488UTYHj4cPvkk2nokSZKkEsTgW7vkqBNJxeWll6BLF8jICAtafvBBaGSUJO1C9+7Qowfk5MDFF8PatVFXVPji8dDd/te/wqZNUVcjSZKkUsLgW7u0teP7e+LxnIirkVQWffcdnHkmnHMOZGXBH/8Ib70F1atHXZkklRIPPRQWRJg7F267LepqCt/gwXD11dCnDxx7LCxcGHVFkiRJKgUMvrVLSUlNgQrk5GSyYcNPUZcjqQxZtgyuuQYOPBBefRUSEqBvX/jHPyAxMerqJKkUqVkTnnoqbD/8MPzrX9HWU5geeigE3wBVqsDUqdCmDbzySrR1SZKk7WRlLWPlyvdZtOg+5sy5gh9+GMLy5f9k/fqFxOPxqMtTOVQx6gJUsiUkVCI5eR8yM78nM3MuSUl7R12SpFJu3Tp44AG45x5YsyYcO+20sH/ggdHWJkmlVseOcNVVYSTIpZfCrFmQkhJ1Vbtn7Fi44YawPWQIXHghnHcefPYZnHVW6AIfMQKSk6OtU5KkciYnZxOZmXPIyJi55bZ27Uyyspbu9DkVK9akatXWVKuWSrVqqVStmkrVqgdRoYJ/j6voxOK+5UJ6ejopKSmkpaVRo0aNqMspcWbN6szKle+y//6jaNjw8qjLkVRKZWfDmDEwcCAsWRKOHXYY3HcfHHdcpKVJUtmQkQGpqTB/PlxyydYu8NLon/8Mc7Cys8OIk/vvh1gMNm6EP/85LOYJcPDB8MIL0LJltPVKklSGrVkznbS0j7YJub8mHt+wg0fGSE7ej2rVUklOPoANGxaRkTGTdev+Szy+o3U6EqhS5YAtQXhKSntSUo4mFosV9UtSKZfXLNfgG4Pv3zN37vUsWfIwjRrdQrNmw6MuR1IpE4/DhAnQrx989VU41rQpDB0K554bRpxIkgrJxx+HOdjxeAiPu3aNuqL8+/BD6NQJNmwIC3Y+9dT2f1lMmAA9e4a5WcnJYcTLpZeGcFySJBWKdevmMH/+/7F8+Wvb3VehQrUddHC3omLFats9Nicni3XrvtmuQ3zjxuXbPXbvvfvQrNkIYjF/UdTO5TXLddSJftfWBS7nRlyJpNJmxgy45RaYODHs16wZGvWuvdY53pJUJI4+Gm66KXyc5vLLYfZsqFMn6qry7osvoFu3EHqffjo8+eSO3yE95RSYORN69Ah/yfzpT+Hr44+X/hEvkiRFLCtrGT/8MJiffnoCyAYSqF27M9WrH7Yl6E5K2ifP4XRCQuUtz9ssHo+TlfXzNmH4F/z663h+/PFBNm5czgEHPEVCQqWieYEqN+z4xo7v37NixTt89dWpVK3aisMP/yrqciSVAkuWQP/+YTxrPA6VK4ewe8AAqF076uokqYxbvz7Mkvrvf+Hss8MokNLQCf3ttyG4X74cjj8e3n4bkpJ2/ZycnDD25M9/DmNR9t03rJJ8+OHFU3MZEI9nk5n5PevWfUf16oeRmNgw6pIklTBZWctYtux5fvnlWbKyllK1aqstHb5hpEVzEhLsqywLsrPX8eOPD7Bo0T1kZ4cFmWrX7kKzZvdQtepBRX79pUvHMWfOJcTjm6hduzMHHfQSFSpULfLrqvRx1Ek+GHzv2rp13/PZZ81JSEji6KPX+nETSbs0Y0ZoxFu2LOyffz7cdRfss0+0dUlSufLFF3DkkbBpU/jozd13l+zZUosWQYcO8OOP0LYtfPABVK+e9+d/8kn4C2fhQqhYEYYNg759S/ZrjsCmTelkZMxi7dptP2o+m5ycdUD42Pr++z9OvXoXRlyppKhlZ69nxYo3+OWXMaxY8Q6h63fHEhKSqFq11ZYgPITiralUqWbxFazdEo9ns3TpGBYsGEhWVliQqVq1Q2nW7D5q1Tq+WGtZseJtvv76j+TkZFKjRjsOPvhNKlWye0q5GXzng8H3ruXkbOLjj5OJxzdx5JGLSEpqFHVJkkqoKVOgSxdIS4PWrcMn1G26k6SI/PWvYWFIgLPOCh/DSU6OtqYdWbYsdHp/9x20aBHmlBdkPMvq1WHkycsvh/1OnWDIEDjooJL5uvNo06YM1q//AYBYrMKWG1QgFkvYZjv3fRs3Lss1RzUjYybr1y/Y4TUSEpKpVGlPNmxYBED9+r1o3nykXXbSNuLxHFav/pAVK96kTp0zqFnzmKhLKnTxeJz09KksXTqGZcteIDs7bct91asfTr16PalWrTVr187+3/9bZpGRMWvLm2e/lZjYmGrVUqlfvxd77nlmcb0M5dPKlROYN+8W1q4Nn/BPTGzCvvsOpW7d8yJrfExLm8pXX3Vh06bVVKlyEKmpE0hM3KvY64jHc/jll+dYs2YajRsPIDGxfrHXoB0z+M4Hg+/fN21aczIzvyc19V/UqnVC1OVIKoHefRfOPBMyM+Goo+DNNx2zKkmRGzcOLrsMsrJCB/jrr0PdulFXtVVaWhhrMn06NG4c3kHde++Cny8eh1GjQuC/fn04VqEC7L8/pKbmvjVoUKJGwGRnZ7Ju3TesXfs1a9fOZu3ar1m37ustoXdhSUzcO1dXZhhTsB8ACxfeyQ8//AXIITn5AA466IVc81il8mjt2m/45Zex/PLLODZsWAxALFaJli3HUrfuuRFXVzgyM+fzyy9jWbp0LOvXz9tyPDGxEfXq9aBevR5Urdpih8+Nx3PIzJyX6022jIyZW95I26x+/Uto3vxh31ArQdasmcH8+f1Ytep9ACpWrEnjxgPYa69rqVDhd0aNFYOMjNnMmnUKWVk/kZjYmNTU96lSZf9iu/7KlROZP/8WMjJmAJCUtC+pqe+TnLxvsdWgnTP4zgeD7983a9aprFz5Dvvv/wQNG14RdTmSSpgXXgjri23cCJ07w/jxUKVK1FVJkgCYNAm6d4dVq8LcqbffDp3VUcvMDF3ZH30Ee+4JkyeHgHoHNv/KEstrUD17Ntx6K0ybBitW7PgxdepsH4a3aBEWpijCQDwnJ4t16+ZsCbjXrQtfMzPnAzk7fE7FirWIxSoQj+cQj2cD2cTj2f/b3nws9691sVhlqlY9KNcc3mrVWlOp0h67rG/16kn8978XkpW1hFgskf32G0HDhr3z/mevMm/jxhWkpX3y/+zdd3xb1dnA8Z+Wl7yX7HiveCRx7DiDvQuUlj2SAAl7lPJCSyFAoWWvMFoKLWWDCQTKHqWMlhYII8uO7cR7Ox7yHpK1733/uI7JjmXLlp2c7+fj1pbuPfeRiSTrOec8D/v697ovAQE5BASkT05QHma3d9PZ+SZGYyFDQxtHb9doQggImD1ym4qMjKeJi7vOe4GOk1Lbv47+/v9hNL7GwMC60fs0mkCios7DYFhJaOix417x63D0YTaX0tPzCS0tjwMy/v6Z5OSsJSgo30OPRHCXy2XGZCqjre0ZjMbXABmVyoe4uOtJSrpj2pUUsVgaKS09GYulBp0uktzczwgKKpjUa5pMpdTVraKv73MANJpgtNoQbLYWfHxiyM39nMDA3EmN4UB2PIdNphKCgw87JCsziMS3G0Ti+8Bqam6ktfUvJCTcTFrao94ORxCEaeT55+Gaa5RFdkuXQmGhkjMQBEEQppGqKjjtNKivh9BQeP99OO4478XjcCjbhD75BIKD4X//g/y9J0KcThPFxYdjs7USHb0Mg2ElwcFLxpaIlWVoa4OSkl2/qquVxpgHolId+Cs8XKnvtXMCffZs0Giw242jqx93rIYcHq5Elp17vZxWG4FePwc9Keh7g9DXg75kAF3rkDKzvHTpPrdTybK8SyJcpdKNu9mc3d5NVdVl9PR8AkBk5FlkZr447RIiwtRSmt79mebmh0eb3rlHTWzs5SQn34uvb6zH45soSbLR0/MJHR2F9PZ+utPzVENExGkYDCuJiPglarWOmpobaGv7GwBJSXeRnHzXtJ0ccjoHMZvLdnstKtutPImasLCTiIlZSWTkWR5fld3X9z8qKi4emVDzITX1EeLjb5y2v7ODgSzL2GwtO/03L8VkKsFiqWHnidLo6GWkpDyIv//0bchkt3dSWvpzTKYiNJpA5s79cFIqEdhsrTQ0/IGOjldQJgS0zJp1HUlJf0CWHZSWnorZXIpGE8K8eZ8QGnqUx2PYmwP158jMfJHY2MunJJbpRCS+3SAS3we2ffvT1Nb+HxERZzJv3gfeDkcQhGli9WplQR3AtdfC008rO8oFQRCEaairC848U2kEqdMpjRhWrpz6OCQJLrlEKcPi5weffw7H7LtWbl3dKlpadl144e+fgcGwEoPhYvz9k92PwWKBbdv2TIgPDBz43L2QNDCcAOZ0MKWBKUONabYaR9DeE9waTchOCe5g9I0jCe6iBlTbyvcdh7+/Uq/9ssuUiYtJbN4pyzKtrU9RV3cLsmzH1zeB7Ow3puyDvjB97K3pnZ9fGjrd2Gvxy7JttFyAWh1AQsLNJCTcjFbrRhPbSaDUtP4Ro1Gpae109o3eFxhYQEzMSqKjl+HjE73HeU1N99LYeDcAs2b9moyMv3itHrISk4TV2uhWbX+9PndkdfeF+PrOmtT4HI4eKiuvoKfnQwDCw08jK+sVfHyiJjz2jom/8U72TSfjSdFJkpXh4fLdJjdKd/n3vDMfnxiCgpaQlHQHwcEzoyGT0znI1q1n09//FSqVD9nZrxMdfZ7Hxm5uXs327U8gSRYAoqLOIyXloV12qTgc/WzdejoDA+tQq/2YM+cdIiJ+4ZEYYEfZoPrRSYodz+N9lTxTmsrOIz7+txgMyz0Wx0whEt9uEInvA+vp+Yyysp8TEDCHxYu3ejscQRC8TJbh9tvhkUeUn2+/HR54YFqVShUEQRD2xmJRks5vv638fNddype7L+CSpJRQKSyEjz4Cs3ns58qyUnNcq4UPPlC6Iu+DybSVzZvzkWUnKSkPMjxcQVfXu7usVAwJOZaYmJVERZ2HVuve3/JO59BOHzC3YB2qRpZcgPL7+Ol/VUrcqPjpN6V8Z7e0YpYakNV7SXJL4L8dAushsBb0Q1EEBszDt2kYVXnFvhPcGg2kp0NOjtKc088P3ngDyst/OiY5GS69VPlKSnLrcbtjaKiI8vKlWCy1gJrk5HtISrp9pImmcLBTmt6twmwuBZRmhUrTu+VuJ3kHBr6jru4WBgd/AECnM5CcfDexsVd6JWFpNldQUXERJlPx6G0+PnEYDBcTE7MCvX7OAcdobf0rNTX/B8hERS0lO7sQtXpqtz5Kko3W1r/R3PwQDkfXXo/x8Ynbpa6/Xj+fgICMKX8ey7JMW9sz1NbehCzb8PGJITt7DWFhJ45rvJ3rr7tcw2RmPk9U1NkejnryKO9BZbtNVpQhSW68p+6HSqUlICB7t5JX8/eYyJkpJMlGeflFdHe/C6iYPfsZZs26ZgLjOWhvf57GxrtHnzvBwUeQlvYYISGH7/Ucl2uY8vKlIzuiNGRlvUxMzIpxx6CMaWH79idpaXkUp7N3r8fs2p8j12vP4elEJL7dIBLfB2ax1LF+fTpqtR9HH2326ky2IAje5XLBddcpvcNASX6vWuXdmARBEAQ3SBLccQc8/LDy84oVSt0qX98Dn1tZqSS716yBlpbxx+DnBy++CBdeuM9DZFliy5ZjGRhYR2TkWcyd+z6glD7p7n6Pjo5C+vu/YseWbbXaj8jIszEYVhIWdtIuiTRZlrFaG/bY8m211o//MexGowlCr88lUJ9LoCWWwEYt+uJ+NMUVymry5ua9naQkuOfMUb52JLpnz97zv4csw4YN8PLLsHYtDA4qt6tUcMIJyirwc85RVoV7mNM5RE3NdRiNawAIDT2e7Ow1k75CVPCeyWp6J8syXV3vUl9/22gTxYCALFJTHyEi4vQpKX0hyzLt7S9SW3sDkmRBrQ4gKurckdeO491OJBmNb1JZuRJZdhCS222oAAAgAElEQVQWdjJz5ryLVhs4SdH/RJZlOjvfoqHh96Oruves7Z9LYOD8A9b2n2omUxnl5csYHi4HVCQm3kpy8r2o1boDnmu3d+1Uf33THvfPmvVr0tIemxbNGXdQ3oOadilVobwH1R345DHSaiP2mNzQ67NRq8fw3j6DyLKL6upf097+LADJyfeRlHSHW68dsizT3f0B9fW3YbFUA8pOstTUR4iMPOuAY0mSg6qqK0ZqpEN6+p+Jj79xHI9FwmhcQ0PDnTs1zvUdfQ7/9DyeN+2ew9OBSHy7QSS+D0ySnHz7rT+y7OSww5rw80v0dkiCIHiB3a7sin/rLeVz9rPPwlVXeTsqQRAEYVyefx5+9StlRvPYY+G995R61bvr7oY331QS3ht/avJGSIhSc/rii5XVx+4ICVFqe+9He/vLVFVdjlodwOLFFXv9+9NqbcFofB2j8VWGhytHb/fxiSEqaimy7BhNdO+rJvHOKyEDArJQqXQoyXTlY5LycWnHR6bdb1cSgoGBufj5Je9/cUhfH5SWKqu2w8OVJPfeEtxjMTys1Gl/+WX4z39+uj0kBJYtg8svh0WLPL4Vq6OjkOrq65AkMzpdJFlZrxIRcZpHr7E7SXKiUmlELeApYrW20NBw505N73Q7Nb3zXOJFkuy0tT1LY+M9OJ1KA9qQkGNIS3tsUksvOJ0DVFVdQ1fXWwCEhZ1EVtZr+PrGTGjc3t4v2Lr1bCRpmKCgxcyb9098fMZeCsZd/f3fUFd382jjTR+fWFJS7sNgWDHlK87Hy+Uaprb2ptEEZlDQYnJy1uLvn7rHsfuqv65SaQkP/zkGwwqGhjaOlsXS63PJyXkLvd4zjZxlWaa393OMxkIkyerWuQ5HNyZTKS7X3nf4+PjMGklw5o6+F+l07q3IVqk0aLWhh8zrpCzLNDb+kaam+wHltUOrDR3z+TbbdkymIgB0uiiSk+8iNvbqMU28/BSDRF3d79i+/c8AJCbeQUrKfWP+b9Db+yV1dbdgNpcA4OubQErKA0RHLz8oSvZMBZH4doNIfI/N+vWzsVhqmD//3+PeiiQIwsw1PAznnQf/+pdSGnbNGrjgAm9HJQiCIEzIF18oL+5DQ5CZCf/8J6Slgc2mfF9YqPy/c6SMh0ajNFlcuRJOP11ZuT0JHI4e1q/PxOnsITV1NYmJt+z3eFmWGRrajNFYiNH4xmgibWd7roRUVkPO+FVUjY3w6qtKEryp6afbw8OVcjJjpVYrSfNHH93vecPDVZSXLxut1+ypEgqyLGO3t+2lGWg14eEnM2/eJ4f0lu7J5nQO0Nz8MNu3/3k0sac0vXtgr4nIyb+u55vtDQ5uoLx82cjqaA2pqQ+QkHCLx3YzDw6up7T0NJzOXgICssjN/QI/vwSPjL2D2VxBff1t9PR8BIBGE0hCwioSEm7yeEPKqdLV9S5VVVfidPaj0QQxe/azGAzL91t/PShoIQbDij3qr/f0fEZl5Uocji7U6gAyMp4mJubSCSWEh4aKqKtbRX//fw588H6oVDoCAnJ2e73M9UiN80PV9u1/obbW/ZXWoOwSi4+/icTEW90uk7aDLMs0Nz9EQ8MdAMTGXsPs2X/d73uVyVRKXd0q+vo+B5SeH0lJvycu7oZptUthJhCJbzeIxPfYlJb+gt7eT5k9++8TqqMkCMLM098Pv/wlfPedsoP6vffg1FO9HZUgCILgEWVlSp3tlhaIjISzzoJ331VWKO9QUKAku5ctg+jJrw1aVXU17e3Po9fPpaCgyK1VWJJkp7f3M3p6PkarDdspGZvp1jgzjiTB//6nJMDfeQes7q1KHHXmmUoplf2UTHG5rNTX30pr69OAtMf9SsOtubvUlNXrc9HpQkdCtWE2l+9SdsZkKtnrhMUOqakPk5h46/gek7BPkuSkre0ZmpruxeHoBnasvH6U4ODFUxbHnivNfYiLu56EhFsmvBpbliVaWh6noeH3yLITP79ksrPXEhJymGeC34nZXEFp6cnYbNvx9U0gN/cLj6w6ttk6aGy8m/b2FwAXoGHWrKtJTr4LHx/DhMf3Nqu1mYqKixgYWAdARMQvGR6uHOktoPD1jcdguBiDYQV6fc4+x7LZ2qmoWDGaqI6OvpDZs59xO7lpsTTS0HAnnZ2vA8rk6axZ1xAQsO9r741GE0hgYC4BAVkzZjX+TDI4uHF0InaslJ0CJ+PrG+eRGNranqO6+lqUWv/nkZ29Zo8SMzZbKw0Nf6Cj4xV27KaZNes6kpLunNTdIQczkfh2g0h8j01NzW9obX2S+PjfkZ7+mLfDEQRhinR2wimnwJYtyg7qf/4TjjzS21EJgiAIHtXWpqzgLir66ba4OKWMyYoVSt3pKTIw8APFxUcAkJf3LaGhR03ZtQ8aQ0PKSnB3lJTAlVcqq/2POUZpWhoSst9TnM7BkcZspWNqzObrm4RGE4jFUjVaqmBXGgICMndZPW6xVFFb+xtUKh0LFvxIUNAC9x6XsE+7Jxunutb23uxeWxzUhIefgsGwgsjIM9FoAtwaz243UlFxyejqyqio85k9+7nRSZjJYLU2U1JyMhZLFVptBLm5n457EsHlMtPS8jjNzatHn1cREWeSmvqwx8p4TBeS5KSp6X6amu5jx4SaWq0nKupcYmJWEhp63Jh3fciyi+bm1TQ0/AFw4eeXRk7OmwQHLzzguQ5HL01ND9La+hSybAcgOvoiUlLux98/eZyPTjjYdXa+Q0XFRciynbCwk5gz53202kCczkGamx9h+/Y/IUkWQHkdSk19CH//NC9HPbOJxLcbROJ7bJSO1dcTEXEG8+Z96O1wBEGYAg6H0i9r3Tplgd8XX8D8+d6OShAEQZgUZjPcfLOS+LzoIjjuOKW0yRSSJCebNy/EbC4hJuYysrJemtLrH/K+/hrOOENpnJmXB599Bgb3VpPKsoTFUrdTIlz5stl2be6582r8n2qs5+yx1VuWZbZtO5fu7vcJCMiioGCz28lPYU9dXR9QVXU5TmcfGk0QqamPEBt71bSpLdvb+zmNjfcyOPj96G0aTRBRUecTE7OSkJCjD1iipLf3SyoqVuBwGFGr/UhPf5LY2KumJKlvt3dTVnYaQ0MbUav1zJ37PuHhPxvz+ZLkpKPjFRob/4jd3g4oNbDT0h4lNPSYyQp7Wujv/5aOjpcIDT2RqKizJ1TCZWDge8rLl2OzNaNS6UhNfZj4+N/s9d+Oy2WltfUpmpsfxOnsByA09ATS0lYTFFQw7hiEQ0dv77/ZuvUsJMlMUNAioqMvpLn5QRyOLgBCQo4a6WOwxMuRHhxE4tsNIvE9Nr29n1NaeioBATksXrzN2+EIgjAFbroJ/vQnCAqC9eshO9vbEQmCIIydyVRKZeUl2O3GPRJs/v6zp02CR/hJS8ufqKu7Ca02nMWLq8T2X28oLlbqmXV2KvXev/gCUide49nh6BtpMmpGr5+Hr2/8mBOQdns3mzbNw27vIC7uejIynppwPIcqpUzNLSNlaiAoaBE5OW9Oah3viRgersFoXIPRWIjV2jh6u69vEjExKzAYVhAQMHuXcyTJQWPjH2lufgSQCQiYw5w5b6HXT93OFQCn08S2befstHrdnYT7T2kaP79UUlMfIirq/EOmeaEnORx9VFVdSXf3ewCEh59GVtYro7W1ZVnCaHydhoY7Ryfo9Pp5pKauJjz8FPE7F9wyOLhhpNb/T6W7/P1nk5r6CJGRZ4p/Tx4kEt9uEInvsbFY6lm/Pg2Vypdjjhn2WBMQQRCmp3/8A5YuVb5/7z04+2zvxiMIguCO/v51lJX9EpdrYK/3q1S+o40Od06K63RhUxypsIPVup2NG7NxuUzMnv0cs2Zd5e2QDl21tXDyydDQADEx8PnnkJvr1ZB2LMIBmDfvUyIifu7VeGai4eEqtm1bitlcAkBCws2kpDwwI+oOy7LEwMB3I40O/4HLNTh6X1DQEmJiVhIdvRSnc4iKiuUMDv4IKM3m0tOf8NouAUmyUVV1JUbjGrfP1WrDSUr6A3Fxv9qjXrDgHlmWaWv7O7W1v0WWbfj4xJKd/Tqy7KCubtXoc8LXN57k5PuIiVkhmukK42Y2V1BW9gtcLjPJyXeN7KY5iHuMeIlIfLtBJL7HRpKcfPttALLs4LDDGvHzS/J2SIIgTJLycli8WNn1fuut8PDD3o5IEARh7Lq7P6a8/AIkyUpIyFGkpDyA2Vy+U9mF0v3UIE4gMDCfhIRbpk1t6R3NGvv6/k1MzOUEBeV5O6RJsW3b+XR1vUNw8OHk568Tiyy8rb1dWfldWqrU+v74Yzj6aK+GVFNzA62tT+HjE8PChaWjKzYPRpLkoKPjZczmciIiTiMs7MQJJeI6Ol6luvrXSJIZnS6KrKxXZ+zkgctloafnYzo6Cunt/Qyl2SOoVDrUal9cLhMaTQiZmc8THX2+d4Md4XD0IssOt87RasNmxKTETGIylVJevozh4YpdbtdogklK+j1xcTeg0ey7sa8gjJUkOVCp1GICZRKJxLcbROJ77Navz8RiqSY390vCw0/ydjiCIEyCwUEl6V1VBccfr+xw1opqAIIgzBAdHa9SWXkF4CIi4pfk5Ly1x0o/pQZx/S71h5UaxE07HaUmOflukpJ+75UPLbIsMzS0gY6O1+jsfHN0y6xWG0Z+/jr0+pwpj2ky9fR8RlnZzwENCxduJjBQNJSYFvr7laan69aBn5+yHez0070WjstlYfPmhQwPlxMZeRZz5rx30G0bl2WZ7u4PqK+/DYulevR2H59ZGAwXYTCsJDBw7pjHczqHqKm5bnTFcWjoCWRnr8HXN9bjsXuD3W7EaFyL0ViIyVQMQHDwYWRnrxWNCIW9crnM1NTcSEfHi6hUOuLifk1i4h2itJYgzDAi8e0Gkfgeu9LSX9Lb+08yMp4hLu5ab4cjCIKHyTKcfz68+y7ExUFRkdLUUhAEYSZoaXmcurqbATAYVpKZ+YJbW0udzgFMplLa25/HaHwNgNDQ40aSRHGTEvPuLJbGkXq2r+2W9IpBownBYqnC1zee/Pzv8fNLmJKYJpvLZWHjxnlYrXXEx/+W9PQnvB2SsLPhYaX22SefKM1OX3wRLrnEa+EMDW2hqGgxsuwgM/MFYmOv8FosnjYw8AN1dbcwOPgdADpdFOHhP6en5xOczt7R4wID8zEYVmIwLMfHZ9/NR4eGiigvX4rFUgtoSEm5h8TE2w7aFYgmUxnDw1VERp4pygoIBzQ4uAEfnxj8/BK9HYogCOMgEt9uEInvsaut/S3bt/+Z+PibSE9/3NvhCILgYY8/DjffDDodfPMNHHaYtyMSBEE4MFmWqa+/nZaWRwCIj/8daWmrJ1Qqo6OjkOrq65AkM1ptBNnZrxIR8QtPhbwLh6Ofrq63MRpfY2Dg29Hb1Wp/IiPPISZmBaGhJ+JyDVBcfDTDwxUEBGSRn78OnS5iUmKaSg0Nd9HUdC8+PnEsXlyBVhvk7ZCE3TkccOWVUFio/Pzoo8ofDF7S3Pwo9fWrUKv1LFxYTEBAhtdi8YTh4VoaGm6nq+sdQHnux8ffRGLiKrTaYCTJTk/PpxiNhfT0fLJTyQwN4eGnEBOzkoiIM0ZLNMiyTGvrX6iruwVZduDrm0BOzlpCQo700iMUBEEQBM8SiW83iMT32LW2/pWamuuJiDidefM+8nY4giB40Ndfw4kngssFf/0rXHedtyMSBEE4MElyUl19DR0dLwGQmvowCQmrPFL+YHi4mvLyZaPb5+Pjf0tq6kMeaTImSQ56ez/DaHyN7u6PkGXbyD0qQkNPICZmBZGR5+yRBLZaWyguPgKbbTtBQUvIy/sPGo1+wvF4y/BwNRs3zkOW7eTkvE109HneDknYF0mCVauUWXJQvn/4YfBCqRFZdlFSchL9/f8jKGgx+fnrZuQKX7u9m6am+2hre2Ykma0iJuYykpPvwc8vfq/nOBw9dHa+RUdHIUND60dv12iCiY6+gKio82ltfZqeno8BiIw8m8zMF9DpwqfiIQmCIAjClBCJbzeIxPfY9fZ+QWnpKfj7p7N4cfVBV1NPEA5Vra2wYAF0dsLFFysLusTTWxCE6c7lslJRsZzu7g8ANZmZz3m87IEk2airu5XW1icBCAwsICfnTQIC0t0eS6nbvRmjsZDOzrU4HN2j9wUEzCEmZgXR0RftM+G1g9lcTnHx0TidvYSHn8rcuR/NyKSfLMuUlp5MX9+/CQ8/lXnzPhV/W84Eq1crna8BLr8c7r4b4uOn/A8Hq7WZjRtzcbkGSEq6i5SUu6f0+hPhclnYvv1JmpsfwuUaBCA8/FRSU1cTGDhvzOMMD1fR0fEaRuNr2GzNu9ynUvmSnv4Es2b9SjyvBEEQhIOOSHy7QSS+x85u7+KHHxKQZRs5OW8RHX2Bt0MSBGGC7HalieX330NuLvzwAwQEHPg8QRAEb3I6BygrO5OBga9RqXzJyXmTqKizJu163d0fUVl5GU5nLxpNILNn/x2D4aIxnWu1tmA0vo7RWMjwcMXo7TqdAYPhQgyGFQQG5rmVnBoY+JGSkhORpGGioy8iO7twQqVdvMFofJOKiuWo1X4sWrQVf/80b4ckjNVLL8FVVymrwAHCw5U/IubP/+krJ0dpiDmJjMa1VFRcCGjIz/+WkJDDJ/V6EyXLEkbjGhoa7sRmawEgMDCP1NRHCQ8/aULj9vd/g9FYSFfX2/j6JpKT84ZoEisIgiActETi2w0i8e2ehoa7aWq6Bx+fWSxeXDlj6zDKssTQ0Eb0+nloNCLLJxy6brwR/vIXCAmBTZsg3f1FjIIw7bW2/m30NT8wcD56/Xx8fCK9HZYwTna7kdLSUzGZtqDRBDF37keEhR036de1WrdTUXERAwPfABATcynp6U+h1QbucazTaaK7+z06Ogrp7/8KUP7kVqv9iIw8C4NhJWFhP0Ot1o47np6ef7F16xnIspP4+N+Slvb4jFnZ6XQOsGFDFnZ7B8nJ95Kc/AdvhyS46+OP4c47Yds2pU7a7jQayMraNRk+fz7ExHg0jPLyi+jsfAM/vzQWLix2+7PJ8HA1RuPruFyDzJp13aTUC5dlmb6+L6mvvxWTaQsAvr4JpKTcj8FwsUcnrWTZBahm3ESYIAiCILhDJL7dIBLf7nG5LGzcOBertZ74+N+Rnv6Yt0NymyzLVFVdSUfHS/j7Z5CT8xZBQfneDksQptzatXDhhcr3H34IZ5zh3XgEYTIMD1exYUPWHrf7+MQRGJhHYOD8ka88/P3TUKk0XohSGCuLpZ6SkpOxWuvQ6aLJzf1sSt/DZdlFU9P9NDbeC0j4+2eSk/MmQUF5yLKLvr6vRlZdvockDY+eFxJyLDExK4iKOg+tNsRj8XR0rKGycgWg1DdPTLzVY2NPppqaG2lt/Qv+/hksWlTmkbrpgpdYrVBRASUlu3719u79+MxMePFFONIzjRYdjn42bZqPzdZMTMwVZGW9MIZzeunsfAujsZDBwR93ukfDrFlXk5T0R3x9PZOgHxzcRH39bfT3/0e5giaYpKTfExd3w2gzSkEQBEEQ3CMS324QiW/39fR8SlnZLwANCxduITBwrrdDGjNZlqmru4Xt2x8fvU2l8iEt7THi4q6fMSulBGGitm6FJUtgeBh+/3t44AFvRyQIk2NHgk2vz8XfPx2TaQtWa/1ej1WrAwgMzEWvVxLh0dFL0enCpjjiQ4PLNUxPz6e7JIcPRJLsNDb+Abu9Az+/ZHJzv5iU1Zlj0d//DeXlF2K3t6JS+RAdvZy+vi+x29tGj/H3z8BgWInBcDH+/smTFktLy5+oq7sJgMzMF4mNvXzSrjVRTucAfX3/Zdu2cwGJ3NwvJ1TiQZimZFlpILJ7MrymRimPotHAvfcqtcI1E59s7O//mi1bjgdk5sx5j6ios/c4RpLs9Pb+i46OQnp6Ph5pJgmgITz8FAB6ez8FlPeChISbSEi4Ba12fJ8Ph4draWi4k66utwDl80Zc3HUkJt4hdhwJgiAIwgSJxLcbROJ7fLZuPZvu7g8ICTmGvLz/zZiEcVPTQzQ0/B6A9PQn6ev7ip6eDwGIjDyLzMwXRddz4aA3MACLF0N1NZx0Enz2mUc+dwrCtON0mvjhhzhcrkFycz8bTW44nYOYTKWYzSWYTFswmUowm8uQJOsu5/v7z6agYINHV+gKYDKVUF6+jOHhynGdr9fPJTf3c3x9Z3k4Mvc4HD1UVl5GT8/Ho7dptWFERy/HYFhBcPCSKfv7qK7uNlpaHgHUzJ37PpGR3t3CI8sSVmsDJlPJ6JfZXILV2jh6THT0MnJy1novSGHq9ffD9dfD668rP594Irz2GsTGTnjoHc8BrTaCRYvK8PWNHWkouwmjsRCjcS1OZ8/o8YGBeRgMK4mOXj66uru//xvq628dXQWu00WSlHQns2ZdO+ZdCXa7kcbGe2lvfw5ZdgIqDIaLSU6+d1InwARBEAThUCIS324Qie/xsVqb2LAhG0mykJVVSEzMCm+HdEBtbc9SXX0tAGlpT5CQ8FtkWaa19Wnq6m5Glu0jzWDWEhJyhJejFYTJIctw7rnw/vuQkABFRRApFh7tlyzLM2ZyT9hVa+vfqan5Ff7+6SxeXLXfmqeS5MRiqRlJ0m3BaCzEbm8nMvIs5sx5V9RL9QBZlmlre4ba2puQZRs6nYHAwDy3xvD3TyEl5cFpsxJfeUzPMjCwjqioc4mIOM0rZTuUMm5X0NHxMmq1H7m5XxAaevSUXNvlMmMylY1MJO1Icpficpn2eryvbwIhIUeTnv6kWPl6KJJlePVV+PWvlW1nUVFQWAinnjqhYSXJTlHREkymLYSFnURo6AkjDWV/mmDz8YnBYLh4pKFs7j7Ck+nu/oD6+tuxWKoA8PNLJjn5PgyGC/f5XuB0DtHS8hgtLY8jSWYAwsN/TmrqQ6LJpCAIgiB4mEh8u0Ekvsdvx+ppnS6axYur0OlCvR3SPnV2vkV5+XJAJjHxDlJT79/l/qGhIsrLl2Kx1AIaUlLuIzHxVpHoEA46q1crO4t9fODbb5WV3/tjNK6lquoKMjKentbb5ydDb++XVFdfi79/Brm5/xS1n2cYWZbZtCkXs3kraWl/IiHhN26dPzi4geLio5FlOykpD5KUdPskRXpocDh6qaq6ku7u9wEID/8FWVmviMSnB0mSk23bzqGn52M0mhDy87/ZZ3LPE2RZoqXlMRoa/ogs2/a4X6XyQa+fO1pHXykhlCt21gmKykpYtkwpgQJw881K3TUfn3EPaTaXs3lzwS67d9RqfyIjzyYmZiWhoSeOuaGsJDnp6HiZxsa7sNvbAdDr55Oa+jDh4aeMTohLkp22tmdparoPh6MLgKCgRaSmPkJY2PHjfiyCIAiCIOybSHy7QSS+x0+S7GzcmIvFUkVc3PVkZDzl7ZD2qqfnM7ZuPQNZdjBr1rVkZPxtr6s3nc4hqqt/RWensv0yLOxnZGe/ho+PYapDFoRJ8corcMUVSnnNv/8drrlm/8c7nUOsX5+Ow9GJWu3PwoXFBARkTkms3iRJDhob/0hz8yOA8jaZlfUKMTGXeDcwwS39/d+wZcuxqNUBHH5467gmZ9vanqe6+mpAPVIq5WeeD/QQMDDwHeXly7HZWlCpdKSmriY+/kaxk2ISuFzDlJaewsDAOnx8YsnP/w5//xSPX8duN1JRsZK+vi8ARlbvz98lyR0QkIlarfP4tYWDiNUKt9wCTz+t/LxoEbz5JqSmjnvI9vaXqK7+FSEhR2AwrCQq6txx1+kG5Tm1ffuTNDc/gss1AEBo6PGkpj6ExVJPQ8Odo30j/P0zSEl5kKioc8XrmyAIgiBMIpH4doNIfE9MX99/KCk5CVBTULCRoKAF3g5pFwMD31NSchKSZCE6ehnZ2Wv2u2pTlmU6Ol6hpuZ6JGkYnc5AdvZrItkhzHiPPgqrVinfX3st/O1vcKDPZA0Nd9PUdM/oz0FBi8nP/27Mq6VmIoulkYqK5aP1PQMD8zGZivH1TWDx4io0Gn8vRzh9uVwWmpsfQqXyISnpDq9/6N+27QK6ut4mNvYqMjOfG/c4lZVX0tHxIlptBAsXbsbPL8mDUR7Y7rWSh4criIg4fUaUGJNlF83ND9PQcBfgwt8/nZycNwkKKvB2aAc1h6OPLVuOwWzeir9/Bjk5az36O+/t/TcVFRfjcBhRq/1IT3+S2NirvP6cF2awDz6Ayy+Hvj4IDobnnoOlS70d1S4cjh6amh6itfUpZNm+y306nYHk5LuJjb1CTPYIgiAIwhQQiW83iMT3xG3btoyurrcIClrCggXfT5vyICZTKVu2HIvT2U94+KnMnfshavXYtk+azRWUly/FbC4DVCQm3kZy8r0HdcJPODjJslLa5NFHlZ9vvlkpd3Kg/ITN1s769RlIkpm0tD/R2Hg3LtcAycn3kZx85+QH7gWdne9QVXUlLtcAGk0ImZnPExFxOhs2zMZmayE19RESE1d5O8xpyWzexrZtSxke3gbg9d+VzdbGjz8mIctOFi7cMqH6qi6XlS1bjmZoaBOBgQXk569Do/HzYLQ7X2vstZKzs9/AYFg+KXF4gs3WRkXFCvr7vwLAYLiYjIy/odUGeTmyQ4PN1kZR0RHYbE0AREdfRErK/RNqrqfshrmL5uaHAZmAgDnk5LxJYOBczwQtHNqam+Gii2DdOuXnK6+EJ5+EgADvxrUbq7WJhoa7MBoL0WgCSUy8lfj436DR6L0dmiAIgiAcMkTi2w0i8T1xNlsrGzZk4XKZyMx8gdjYK7wdEhZLHUVFR+JwGAkOPpL5879Ao3HvD2eXy0Jd3U20tf0dgODgI8jJWYufX+JkhCwIHud0wtVXw8svKz+vXq3sKB6LqqpraW9/dmRC6wc6O9+gouJiVCotCxasn3a7OybC5bJQW/tb2tufBSAoaAk5OWtHywN0dBRSWXkJGk0Ihx1Wh04X4c1wpxVZlmlvf5GkNjEAACAASURBVJ7a2t8gSRY0mmBcrkFAzfz5XxIWdoJX4tqxWyEk5Cjy87+d8HhWaxObNhXgdPYQE3M5mZkveGR1q8lUQnf3x6OJbqXPxJ5/mim1kucQGDgfl8tEV9c7qFQ65s37hPDwkyccx+6s1iaGhooICMgiIGC22/Xte3r+RWXlShyObtRqPbNn/42YmJUej1PYP5utlfr62zAa1wDKv6P4+BtITPy9281Bld0wFzI4+AMAsbFXk57+J7f/thKE/XI64d574f77lZn77Gx46y2YN8/bke3Bam1Gowme1j2OBEEQBOFgJRLfbhCJb89oaXmCurrfodVGsGRJlVcTQzZbG8XFR2G1NqDX55KX9/WE/ijt7Hx7ZBXoIFptGHl534jVTcK0Z7HA8uXw4YegVsMLL8Bll43tXLO5ko0b5wIu8vK+JjT0GGRZprz8Arq63iEgIIeCgs2Ttup1KpnN2ygvX4bZvBVgp90dP21VlmUXmzYVYDaXEB9/E+npj3sr3GnF4einuvpqurreBiAs7BSyswupq1uF0fgqOl0UBQVF+PnFT2lckmTnxx+TsNs7yMl5k+hoz2yX7+39N6WlpwASs2c/y6xZV497rN1LgOzMxydmpAngjlrJubvUSpZliYqKi+jsfBO1Wk9e3lcEBx+gS60beno+Y9u2c5GkYQDUaj/0+rl7xLS391VJslNf/3u2b1eeI4GBeeTkvHlI9AaYzoaGiqiru2V09b1WG0ZS0h+Ii7sOtdr3gOd3db1LZeUVI7thgsnMfIHo6PMnO2zhUPbf/yqrv9vbwc9PKX2yYvqXdxIEQRAEYWqIxLcbROLbMyTJwebNCzCbtxIbezWZmc96JQ6Ho5fi4mMYHt6Gn18a+fnr8PWNmfC4FksD27adj8m0Gb0+l4KCDWP6sCgI3jAwAGecAd98A76+ymKpM88c+/lbt55Nd/cHREScwbx5H47ebrd3s3HjXBwOI/HxvyM9/bFJiH7sJMkx7lqaykrlF6mtvQFJshywnn9v7+eUlp6KSuXD4sVVEyoXcDAYGPiRiorlWK2NqFRaUlIeIiHhJlQqNS7XMEVFR2A2lxAcfBh5eV+PucyUJ3R2vkV5+TJ8fGI47LAmj167qelhGhpuR6XyIT//23ElnK3W7VRWrqC//38AhIf/nNDQE0aTyj4+0QccQ5LslJX9gr6+f6PVRrBgwXceSS4bjW9QWXkJsuzE1zcJh6MbSTLv9Vhf38RdGhn6+sZSW/sbhoY2ARAX93+kpq4+KCbIDgayLNPb+y/q6laNliTy80shNfUhoqIu2OsOht13vu2+G0YQJlVXF1x6KXz6KWi18MMPsHCht6MSBEEQBGEaEIlvN4jEt+f093/Lli3HACoWLPjRoyvQxsLpNFFa+jMGB3/Ex2cW+fnrPPrhzG43snHjPByOLhISbiEtbbXHxhYET+nogFNPhZISpT/URx/BsceO/fyBge8oLj4KULNoURl6fc4u93d3f8LWracDKvLy/ktoqBuDe4DTOUhX1zt0dBQyMPA1Ol30Lsm3wMD5BARk7Tch7nQOUFV1NV1d/wAgLOxksrML8fEx7PMcWZYpLT2Zvr5/Ex19ETk5azz+2GYCWZZoaXmUhoY7kWUnfn6p5OSs3eP13mKpY9OmAlyuAeLiricj46kpi7G4+GgGBtaRlPRHUlLuOfAJbpBlmW3bzqW7+318feMpKNg8pkT1Dl1dH1BVdQVOZy8aTSAZGX/FYFgxrrIpTucQJSUnMDS0CV/fRBYs+B5f3zi3x9lh+/a/UFt7IwDR0cvJynoFlUqLxVI3Umv8p7rjNlvzPsfRasPJynqJyEg3ZtuEKSNJTozGV2lo+AN2ezsAQUGLSEt7jNDQY0aPM5vLR3qd7Hs3jCBMOkmCCy6Ad9+F2bOhqAj0opa2IAiCIBzqROLbDSLx7VkVFZdgNBYSGLiAgoINbtcFHS9JslFWdjp9fV+i1YaTn/8Nev0cj1+nu/sjtm49E1Axf/5XhIUd5/FrCMJ41dfDySdDXR0YDPDZZ5CXN/bzZVmmuPhIBgd/IDb2KjIzn9vrcVVVV9He/gJ+fsksXFiCVju5r52S5KSv798YjYV0d7+PJFn3e7xKpSMgIGc0Ib4jKe7jE8ng4HrKy5djtTaMrFR+gISEm8fUlHdoqIjNmwsAKCjYfFDVOR8Lu91IRcUK+vq+BCAqaimZmc+i1Ybs9fifJkkgO3sNBsNFkx6jyVTKpk3zUam0HHZYE76+szx+DadzkM2bF2OxVBEaehy5uV8esPGxsnL2Ztra/gZAYGABOTlrCQjImFAsdnsXxcVHYrHUoNfPJS/vG7drN8uyTGPjH2lquh9QVmqnp/95v88Jh6MPs7l0NBFuMpUwPFxJSMiRZGa+gJ9fwoQelzD5XC4zLS1P0NKyerR5akTEGaSmPsLAwLqddsNEj+yG8XwteUEYk95eyM2F1lalccmz3tlVKgiCIAjC9CES324QiW/PstuNrF+fics1QEbGX4mLu27SrynLLsrLl9PV9fZIvdP/EBy8ZNKutyPp5+ubwMKFpaKpjTAtlJbCKacoK75TUuDLLyEtzb0xurreZ9u2c1CrA1iypGafSUOnc4hNm3KxWhuJibmCrKwXPPAI9mQyldLRUUhn5+vY7R2jtwcEZGEwrCQq6jyczr7RxJuyIrV0pLninnx8ZuFwdI6sVE4mJ+dNt18ryssvprPzdUJDT2T+/C890uBwJujt/YKKipU4HEbUan8yMp4iJubyAz7+hoY/0NR0P2q1PwsW/EhgYO6kxllVdQ3t7c8RFXU+c+b8Y9KuYzaXU1S0BJfLRELCzaSlPbrPY02mrVRULB9dOZuQcAspKfd7rASLxdJIcfER2O3thIQcRW7uF2g0/mM6V5ZdVFf/erSxa3LyfSQl3TGuf9eyLB8yz4eDid1upLHxbtrankepN69iR4PVsLCfkZVV6JGScYIwIV99BSedpDS8fP99OOssb0ckCIIgCIIXicS3G0Ti2/NaW/9KTc31aLWhLF5c5dY2cHfJskx19bW0tz+HSqVj3rx/7rNGr6c4nSY2bcrDaq07pEseCNPHt9/C6acrtb1zc5WV3rGx7o0hSQ42bpyLxVJNUtKdpKTct9/j+/u/YcuW4wCZuXM/IjLy9HHHvzObrYPOzjfo6CjEbC4ZvV2rjcBguBCDYSVBQQX7TLDJsozV2rhHaQartX70mKio85k9+7lxTVpZLI1s2JCJLNvJzf2M8PBT3H+QM4gkOWho+AMtLY8AoNfPIyfnzT1K4OyLLLsoLT2Nvr4v8PdPZ8GCjZM2Wehw9PPDD3FI0vBoU9bJ1Nn5DuXlSoO/nJx/7NHsT5Zl2tr+Tl3dTUiSdaSOfOGkrJw1mUopLj4Gl2uAiIgzmDPn3QOuQpckGxUVF9PV9Q6gIiPjb8TFXevx2ISZwWyupL7+Nnp6PnR7N4wgTIlVq+DRRyEiAsrK3P9DRxAEQRCEg4ZIfLtBJL49T5ZdbN68GJOpCIPhErKzX5m0a9XX30lz8wOAaiTxcN6kXWtnAwM/jtRBdpGdvRaDYdmUXFeYGWRZpqfnY2y2tt3v2e/ParU/0dHLxrxaE+Djj5Xyl1YrHHWU8nPoOPKKra3PUFNzHTpdFEuW1I6pfEld3S20tDyGThfNokVb8fGJcv/CKHWju7repaPjZXp7PwckAFQqHyIiTicmZiXh4adOaIWs0zk4suJWTXDwkgmtTK2t/R3btz+BXp/LwoVFU1bSaSLs9k56e/+Fy7X3RoV7J9PR8RpDQ+sBmDXrV6SlPe7Wv08Ah6OHTZsWYLM1ExFxJnPnvjcpybSWlj9TV/db9Pq5LFxYOiWrj+vqVtHS8ihqtZ6Cgg2jEwIORw9VVVfS3f0BoDSwzMp6ZVIngvv7v6Gk5GRk2UZMzOVkZr6wz9+B0znE1q1n09//H1QqHdnZr++RuBcOTUNDRajV/uj12d4ORRB2ZbPB4YdDcbFS1+1f/wK1mJgRBEEQhEORSHy7QSS+J8fg4HqKig4HZPLyviU09CiPX2P79ieprf0NALNnP8usWVd7/Br709BwF01N96LVhrJwYamoaSqMamt7gerqq8Z1rsGwguzswjEdu2YNXHopuFzwy1/CW29BQID713Q6h1i/Ph2Ho5P09KeIj79+TOe5XFY2b17I8PA2IiPPYc6cd9xKNsqyTG/vZ9TX377L6u7g4MMxGFYSHX0BOl24249nsjkcvaxfn4bT2U9W1ivExFzi7ZD2yuWy0tPzMUZjIb29nyHLznGNo9WGkpn5AlFR5447lsHBTRQXH4ks20lJeYikpNvGPdbeyLLEhg1ZWCw1ZGQ8M2UrlyXJSWnpyfT3/xd//9kUFGxkaKiIioqLsdtbUal0pKauJj7+hilZOdvd/SFbt54DSCQm3k5q6oN7HGO3d1FWdhpDQ5tQq/XMnfsB4eEnTXpsgiAIE1ZRAQsWKLP9f/oT/OY33o5IEARBEAQvEIlvN4jE9+Spqrqa9vbn0evnUVBQdMBt1+7o6FhDZeUKAFJS7icp6Q6PjT1WkuSguPhIhoY2Ehp6wki9X7Hy5FBnsTSwaVMuLpeJkJBj0eki9nHk7gliie7uDwGJOXPeIyrq7P1eZ906OP54cDrhkkvg+edBpxtfzA0Nd9PUdA/+/uksWrTNrZXVQ0PFFBUtRpadZGW9RkzMxWM6b3BwA/X1t9Lf/z8ANJoQ4uKuJybmkgk3/JsKzc2rqa+/FV/fBBYvrnJ7FfRkkWWZwcHvR2qjv4XLNTB6X2BgAX5+yW6Np9NFkJh4O/7+7p23N21tz1NdfTWgZv78LwgLO3HCY+7Q2/s5paWnotEEc/jhrWi1gR4b+0Ds9k42by7AZttOQEAOw8MVgIy/fyY5OWsJCsqfslhg14m39PQ/Ex9/4+h9VmsTJSUnY7FUo9NFMm/epwQHL5rS+ARBECbkmWfguuvAxwc2blRqvAmCIAiCcEgRiW83iMT35HE4eli/PhOns4fY2KvJyPgLarXvhMft6fmUrVvPRJadxMXdSHr6n7zWUGt4uJpNm/KRpGHS0p4gIeG3XolDmB5kWWLLlhMYGPiakJCjycv7r1tlMOrrb6e5+WF0uqiR0iF7L4vQ0aEseGpvh6VL4Y03xr/b12brYP36dCTJTE7O2+MqF9TYeD+NjX9Aowlh0aKy/e5+GB6uor7+Drq73wVApfIlLu56kpJu388kwfTjclnYsCETm62F1NRHSExc5dV4LJY6jMY1dHQU7lLP3Nc3HoNhBQbDCq+XLpBlmaqqK+joeBmdLpKCgiKP7ZQpKzuDnp6PiYu7gYyMJz0ypjsGBzdQXHw0smwHICbmCjIynkSj0U95LABNTQ/Q0HAnANnZb2AwLMds3kZJySnY7a34+iaSm/s5en2WV+ITBEEYN1mGM86ATz6BuXNhwwbwnx6Tz4IgCIIgTA2R+HaDSHxPro6O16isXAlAYGAe2dlrJ/RBe2Dge0pKTkKSLBgMF5OV9arXV1m3tT1LdfW1qFS+FBRsJDBwnlfjEbxnR41htVrPokWl+PununW+JNnYvHkRZnPZPkuHOBxw0knwzTeQkwPr10PgBBa3Vlf/ira2vxMUtIQFC34Y1ySSJDlHdj9sIDT0RObP/2KP56XN1k5j4z20t78AuAAVMTGXkJx8D35+ieN/AF7U0fEqlZWXotGEcNhhdVOeuHc4+unq+gcdHYUMDn43ertGE0hU1HkYDCsIDT3O66+RO3O5LBQXH4nJVExQ0BLy87+e8ISoxdLA+vVpgMzixZUEBGR6Jlg3dXa+RUvLEyQk3ER09FKvxLCDLMvU1t5Ia+tTqFQ6UlIepLn5QZzOPgICcsjN/Rw/v3ivxigIgjBunZ3KSm+jEW64AZ6c+glPQRAEQRC8Z6y53OnzSVg4aMXErGDevE/Q6SIxmbaweXMBbW0vMJ45F5NpK2Vlv0CSLISHn0Zm5kvTIqETG3s1ERG/RJZtVFRchCTZpvT6PT2fsm3b+fT2fjml1xV2ZTZX0tBwOwDp6Y+7nfQGUKt9ycoqRKXS0t39Hkbj63scc9ttStI7KAjee29iSe/h4Sra2p4HIC1t9bh3TqjVWrKzC1Gr/env/w+trX8bvc/pHKC+/g7Wr0+jvf1ZwEVExOksXFhKVtbLMzbpDWAwXIxen4vLNUBT0561lCeLw9FLZeVlfP99DNXV14wkvdWEhZ1MdvYajjiig6yslwkLO2FavEbuTKPxZ86cd9FqwxgaWk9t7cR3ybS1/R2QCQv7mdeS3gDR0UspKFjv9aQ3gEqlIj39z0RFLUWWHdTX34LT2Udw8GHk538jkt6CIMxs0dHw8svK93/5C3z2mXfjEQRBEARhWppen4aFg1ZExC9YuLCUsLCTkKRhqquvorz8AhyOvjGPYbE0Ulp6Ck5nP8HBRzBnztuo1eMsaOxhKpWKzMwX0OmiMJvLRreXTwWbrYPy8gvp6nqH0tKTKSn5GUNDm6fs+oJCkpxUVq5EkqyEhZ1CbOz4G60GBeWRlHQXADU112O1bh+97+234YknlO9feQUyJ5jjq6+/nR2J6NDQYyY0VkBAJqmpq0fGXYXJVEpLyxP8+GMqzc0PIkkWgoMPJy/vG+bN+4jAwLkTC34aUKk0pKUpj7m19WkslsZJv2Z//zds2jSfjo5XkGUbev1cUlMf5fDDW5g//3MMhou8Vl5jrPz9U8jOfh1Q0db2DB0dY2vmujcul4X29hcBiIv7tYciPDioVGqys18lLExpXBkWdgrz5/97RpUUEgRB2Kef/xz+7/+U7y+9FLq6vBqOIAiCIAjTjyh1gih1MpVkWaKl5TEaGu5Alp34+iaSnf06oaFH7fc8u72T4uIjsVhq0evnkpf3DTpd2BRFPXbd3R+xdeuZgIr5878iLOy4Sb9mRcUKjMY1+PjE4XB0IssOAKKjl5GScj/+/mmTHoPwU41rrTaURYu24usbN6HxlNIhRzA0tJGwsFPIzf0XlZUqFi0CsxlWrYJHHplYzAMD31FcfBSgZtGiMvT6nIkNiPIcLy09hb6+f6M071TeYgICsklNfYiIiDO8Vo9/ssiyTEnJz+jv/w/R0ReRk7NmUq4jSU6amu6lqekBQMLfP4OsrFcIDj58xv5OdzRVVav9yMv7ZlxNFtvbX6Gq6jJ8fRM57LB6t2rqHyokycHQ0GaCghZ6tMm0IAiC11kssGgRbNsGp58OH34IM/Q9URAEQRCEsROlToRpSaVSk5i4ivz87/HzS8Nma2bLlmNpbLwHSXLu9Rync5DS0lOxWGrx80smN/fzaZn0BoiMPIPY2KsAmcrKlTgc/ZN6vf7+rzEa1wAq5s79gMWLqzAYLgZUdHa+yYYNWdTU/B92e+ekxnGoGxraQlPTPQCkpz814aQ3KKVDsrIKUav96Ov7nJqalznnHCXpffzx8MADExtflmXq6pRmjLGxV3gk6Q3Kczwz8yU0mhBAxscnjszMF1i4sJTIyDNnbIJ2f1Qq1eiq787O1xkaKvL4NSyWRrZsOZampvsAiZiYyygoKCIk5IgZ/TtNTv4j4eGnIklWiooOp7r6Oux2o1tjtLX9FYBZs34lkt77oFbrCAk5TCS9BUE4+Pj7Kx2+fXzg44/h2We9HZEgCIIgCNOISHwLXhEcvIiFC4sxGFYCEo2Nd1NScjxWa/Mux7lcVrZuPROTqRidLprc3C/w9Z3lnaDHKC3tCfz907HZWqipmbxt95LkoLpaGX/WrGsIDl44Uj7gNQoKiggPPxVZdtLa+jTr16fR2HgvTqdp3NeTZRdWawuy7PLUQzgoSJKNysoVyLKTyMhzMBgu8tjYen0WKSkPIctwzTWhVFZCXBysXQvaCeavurs/YHDwe9Rqf5KT7/ZIvDv4+SWQn/81WVmvsGRJDbGxVxz0CbegoAVER18IQF3dqnH1MNiXzs5/sGlTHoOD36PRBJOdvZasrJfQaidQ3H2aUEpxvEFExBmAi7a2Z1i/Pp3GxvtxucwHPH9wcANDQ5tQqXyJjb1i8gMWBEEQpp/cXHj4YeX7m26CykrvxiMIgiAIwrQhSp0gSp14m9H4BtXV1+JyDaHVhjJ79vNER5+HJDkpL7+A7u730WiCyMv7mqCgfG+HOyYDAz+OlJBwkZ29FoNhmcev0dz8GPX1t6DTRbJ4cRU6Xfgex/T1fUV9/a0MDW0CQKeLJjn5LmJjr9pvfXS7vROzuQyTqQyzuQyzuRSzeRuSZCEs7BTmzfsQtdrX449pJqqru42WlkfQ6aJYtGgbPj5RHh1fliVuvvkZnnji12i1Dr7+Ws0RR0xsVaskOdi4cS4WSzVJSXeSknKfh6I9tFksDWzYkIUs28nN/Yzw8FMmNJ7LZaam5gY6Ol4CIDj4MLKz38DfP8UT4U47/f1fU1d3C0NDGwHw8ZlFSsq9xMRcus+V3BUVKzEaX8NgWEl29qtTGa4gCIIwnUgS/8/efcfXeP5/HH+d7EgQCUmoHWJk2aPUqE2Nolbt1VJf1YWfTjVqtFRVqVJ71R5Ve1PEioTYOySRCNnJOTn374+rVmvkJCc5wef5eJxHnfvc93V9jkdx8j7X/blo2hS2boWKFeHgQbUKXAghhBAvpfRmuRJ8I8F3TpCUdInTpzsTF3cYgIIF+6FpaYSH/45OZ4+//6Zs6ZdtTpcvf83Vq99iY+NClSoncXAoYraxk5NvcPhwWYzGBMqU+Z2CBXs99VxN07h9ewWXL48gKekCAI6OpShRYgxubi1ISDj9T7j9MOjW65/dGqVAgXcoX37JK99W4N69Axw//gZgxMdnNQUKtDH7HHv2wJtvaqSl6Rg8+AM+/bQkRYp8kqkxw8JmcP78AGxtC1C9+gVsbOTvPXO5cOETbtyYhJOTP1WqHMvwn5G4uOOcPt2ZpKSzgI6iRUdQvPjXOWZD36yiaUYiI//g8uX/Izn5CsA/m3dOwNW16WNtXVJTb/P334XRtFQqVTqcof7gQgghXiI3b6rV39HR5tkMRQghhBA5lgTfJpDgO2cwGvVcufI1166N4/6GeGCFj8/KLAkUs5rRqOf48VrExQXi4lIPf/8tZgutTp3qwO3by8mTpxYVK+5Bp3t+1yKjUc+tW7O4cmUkev3zeujqcHT0wsnJ78HD2dmf5OTLBAe3RNP0FCzYD2/vX1/o/sKZkZaWwJEjFUhKupBlq01v3oRKlSAiAtq2Pc+gQd5YWdlTpcqxDPfkjo09THBwS/T6SEqVmkrhwoPMXPWrTa+P5uBBL9LS7uHm9hZ58ryOk5MvTk5+ODgUfe6fVU0zcuPGFC5dGo6mpWJn9xrlyi184b74yyyjMYWwsGlcvToagyEGABeXBnh5TXxw58/Vq99x+fIIcueuSuXKhy1ZrhBCiJxizRp4+221wWWVKqZtdFmuHPz4I7i4ZF19QgghhDALCb5NIMF3zhITs4PQ0K6kpt6iTJlZL3Tf1sTEcxw5UgmjMQEPj66ULTsvXSH1s9y5s4WTJ5sA1lSpcgxnZ3+TrjcY4rlxYzLXr08gLS0eW9sCODn54+zs90jQXR5ra6cnXh8ZuYLTpzsCRooW/T9Klhybqffzojp//n+Ehf2MvX1hqlQJxtbWvD8k6fVqE8v9+8HPDw4c0Lh0qQV37vyFs3NlKlX626QvUpKSLnHp0ghu314GgKNjGapWPYmVldwGbG7Xr//IxYsf/ee4tbXzPyG47z9/ztSv7ezcAUhNjeDMmZ7cubMJgPz521CmzCxsbd2ytf6cRK+P4dq1sdy48ROalgro8PDoSvHiIzlxoh4pKdcoW3Yunp49LF2qEEKInOK992DmzIxd+9ZbsHYtWMlWWEIIIUROJsG3CST4znkMhnj0+kgcHUtaupRMi47+i+DglkAaRYp8ipfXxAyPZTSmEBjoR1LSeQoXHkKpUpMzPFZaWiJpafEPQjdT3Lz5G+fO9QfAy+v7TLfeeNHExGwnKKghAP7+m3F1bWz2OYYMgSlTIE8eOHIESpeGlJSbBAb6YjDEULz4SIoX/+q54+j10Vy9OpqwsGlomh7Q4enZgxIlxmJvX9DsdQslJmYnsbEHSUgIISEhhMTE0H9+///L1tYdJydfEhJOoddHYGXlgJfXZAoVeu+VvaPi35KSrnD58udERi7+54gVYMTGxo2aNW9gbe1gyfKEEELkJAYD7NwJKSnpvyYmBvr1U9eMGgVffJF19QkhhBAi0yT4NoEE3yKrhYfP58wZtSKxZMmJFC36aYbGuXJlNFeufImdXUGqVTtj0d7M166N59Kl4QDP7TP+MjEY7hEY6EdKynUKFRqAt/cvZp9j6VLo3Fn9es0aaN364WsREUsIDe2CTmdDpUoHyZ278hPHSEtLJixsKlevjiEt7R4A+fI1xstrAs7OAWavWTyb0agnKen8P0F48INAPCnpIg9bO6l+1uXKLcHZ2ddyxeZgsbFHuHTpM+7e3QVAkSLD8PIaZ9mihBBCvBx+/x369FHtUf76C5pkbpNqIYQQQmQdCb5NIMG3yA7Xrk3k0qWhAJQtOx9Pz24mXZ+UdJnAwPIYjcmUK7cYD4/OWVFmummaxqVLQ7l+/Xte5F7spjpzphfh4XNxcPCiatWgp7aEyahTp6B6dUhIgP/7Pxj7r04ymqZx+nQHbt9eQa5cPlSufOSx1a6aZiQiYjGXL39OSso1AJyc/PHympglK9NF5qSlJf6zwWwIkIa7exesrR0tXVaOpmkad+78RWzsQYoUGYqNjbOlSxJCCPGyuN8mxdUVjh6F4sUtXZEQQgghnkCCbxNI8C2yg6ZpXLz4CTduTEans8HXdz1ubk3TfX1wcCuio9fj4lKfgIDtOaIFgqZpnD3bl/Dw39Hp7PD330S+fPUtXVaWiYpaR0hIa0BHxYp7yZu3llnHj42FqlXh6nrE+QAAIABJREFU3Dlo0AA2bwZr6/+el5oaRWCgD3p9JEWKfIaX1wRA9ce/ePEz4uOPAWBn9xolSozG07MbOt0TBhJCCCGEEA+lpMAbb0BgoNphfN8+cJQvpIUQQoicJr1ZruzaIUQ20el0eHl9j7t7FzTNwKlT7YiNPZSua6Oi1hMdvR6dzpbSpafliNAb1Hvy9v6V/PnfRtNSCQlpRWzsEUuXlSVSU6M4e7YfAEWKfGr20PvuXWjRQoXehQvDkiVPDr0B7OzyU6bMbwBcv/49t27N4eTJFgQFNSA+/hjW1rkpUWIM1aufo2DBnhJ6CyGEEEKkh709rFgB+fPDsWPwwQcg68SEEEKIF5YE30JkI53OirJl55AvX2OMxkROnmxBYuLZZ16TlpbIhQuDAShc+GOcnMplR6npZmVlQ7lyi3FxeZO0tHiCg5uRkHDG0mWZlcEQz5kzPdDrI8mVy4fixb816/i3bkGdOmpRUd68sHo1FCjw7Gvy52+Fp2dPQOPs2d7cubMRnc6GQoU+oHr1CxQrNgJr61xmrVMIIYQQ4qVXtKjacMXKCubMgd9+s3RFQgghhMggCb6FyGZWVnb4+Kwkd+4qGAzRBAU1ISXl5lPPv3btO5KTr2BvX4Tixb/MxkrTz9raAV/fNeTOXQW9PoqTJxuTnHzd0mWZRVzcCY4erfxPsGxLuXLzH+upnVkXLkCtWhAcDJ6esGcPVKmSvmtLlfoRB4fiAOTP35aqVU/h7f0zdnbuZqtPCCGEEOKV06DBw41W/vc/OHzYsvUIIYQQIkOkxzfS41tYRmpqJMeP1yYp6TxOTn5UqLAHW1uXx85JTDxHYKAfmpaKj88qChR420LVpk9qatQ/7+ksuXKVpUKFvdjZ5bd0WRmiaRphYdO4ePETNC0VO7vXKF9+MS4udcw2x/Hj0LQpREaClxds2QIlS5o2hl5/B70+mly5SputLiGEEEKIV56mQbt26la8woVV65Pn3ZInhBBCiGwhPb6FyOHs7Nzx99+MnZ0nCQnBhIS0Ii0t6cHrmqZx/vwgNC0VV9dm5M/fxoLVpo+dXX4CArZib1+ExMQzBAc3w2CIs3RZJtProwkJeZsLF/6HpqXi5taKqlWDzBp6794N9eqp0LtCBdXmxNTQG8DW1lVCbyGEEEIIc9PpYO5c8PaGGzegUycwGCxdlRBCCCFMIMG3EBbk6FgCP7+/sLbOw717ewkNfRdNSwPg9u0VxMRsRaezp3TpqTlmQ8vncXAoQkDAVmxt8xMXd4SQkDakpIRbuqx0u3t3L0eOVCA6ei06nR2lSv2Er+8abG3dzDbHmjXQpAnExkLdurBrl2pzIoQQQgghcpA8edSKbycn2LEDvvjC0hUJIYQQwgQSfAthYblzV8DXV4WsUVGrOXduIAZDHBcufARA0aLDcXT0snCVpsmVqwz+/puwtnbm7t0d/P13YYKD2xAVtR6jMWeulNG0NK5cGcWJE/VISbmBo6M3lSodpHDh/5n1S4fff1d3zaakQOvWsGmT2tBSCCGEEELkQOXLqw9wAOPHw6pVlq1HCCGEEOkmPb6RHt8iZ4iMXMHp0x0AjVy5ypOYeBoHh5JUrRqCtbWjpcvLkHv3/ubixc+Ijd3/4JidXUE8PXtRsGDvHBPop6SEERralbt3dwHg4dGD0qV/xsbG2WxzaBpMmADDh6vnvXvDr7+CjY3ZphBCCCGEEFnlk09g0iTInVttdlm2rKUrEkIIIV5Z6c1yJfhGgm+Rc4SFTef8+YEPnvv5/YmbW3MLVmQeCQmh3Lo1m4iIeej1UQ+Ou7jUp2DBPuTP39Zi4X5U1AbOnOmJwRCNlZUT3t7T8fTsZtY5jEYYOhR++EE9HzoUxo1TrSOFEEIIIcQLwGCAhg3VRi3lysGhQyoEF0IIIUS2k+DbBBJ8i5zk8uVvuHp1JO7unShffomlyzErozGV6Oj13Lo1izt3NgPqrx8bGxc8PLri6dmH3LkrZFMtKVy6NJwbN34EwNm5IuXLLyVXLm+zzqPXQ79+MG+eej5xInz6qVmnEEIIIYQQ2SEiAipVgps34Z13YNkyWckghBBCWIAE3yaQ4FvkNElJV3BwKIpO9/K24U9OvkZ4+Fxu3ZpNSsq1B8ednStTpMjHeHh0ybK5k5KucOpUO+LjjwFQuPAQSpYch5WVvVnnSUyEjh1hwwawtobZs6FHD7NOIYQQQgghstPff6vdyfV6ePtttUO5ldXjD53u6cdMDcqLFFEfIG1ts+b9mMpggC1bVLsXU6OEatWgRYusqUsIIcQrRYJvE0jwLYTlaFoaMTHbuXVrNlFRq9E0PQBlysyhYMGeZp9Pr4/h2LEaJCWdw8bGjbJl55A/f0uzz3P+PPTqBfv3g4MD/PEHtDT/NEIIIYQQIrtNmwaDBmXffG+9pVaX58qVfXP+28mT6hbGRYvUyveM6t5d/f45m28vHSGEEK8eCb5NIMG3EDlDamoUV6+OJCzsZ3Q6WypU2EnevLXMNr7RaCA4uBkxMduwty9KxYr7cHAoYrbxAaKi4NtvYfp0tSAmb15Yvx7eeMOs0wghhBBCCEvRNFi3Dk6cUL82Gh8+nvfcFAaDCpuTk6F2bfWh0sUla97Tk0REwOLFqoagoIfHCxRQYbwpQXxsrArNjUbw9oalS6FiRfPXLIQQ4pUgwbcJJPgWIufQNCOnTnUgKmoltrYFqFTpMI6Oxc0y9vnz/yMs7GesrJyoVGk/zs4BZhkXICkJfvoJxo5Vn+sBmjWDyZOhTBmzTSOEEEIIIV4l+/apkPnePfDzg82boWDBrJsvOVkF7PPmwaZNkJamjtvZqdsXu3dXH3Iz0nplzx549124cUON9/33auW89EkXQghhIgm+TSDBtxA5S1paAsePv0F8/HGcnPyoWPEANjaZux0yLGwG588PAMDHZzUFCrQxR6kYjWrxyuefw/Xr6liFCupzfIMGZplCCCGEEEK8yk6ehCZNIDwciheHrVuhVCnzja9pcPAgzJ+vVmLfvfvwterVVY/xjh3B1TXzc0VHQ+/easU8QKtW8Pvv4OaW+bGFEEK8MtKb5b68O+cJIV5Y1tZO+PquxdbWg4SEYEJDu6JpJt4a+oiYmB2cP6/6MJYoMcZsoff27VClilr4cv06FC6sFsccPSqhtxBCCCGEMBN/fzhwALy84MoVqFULjh/P/LhGIyxYAGXLwuuvw4wZKvQuUgRGjIDQUBWIDxhgntAbVMC9Zo26VdLOTgXgFSqo1eBCCCGEmUnwLYTIkRwciuDntxadzp7o6LVcvvx5hsZJTLzAqVPtgTTc3d+laNH/y3Rtp06pDekbNlQ/c+TJA999B+fOqRDcSv5mFUIIIYQQ5lSihNo1vUIFiIyEevVg166Mj7d1K1SurD68njsHTk7q19u2qXB9zBgViGcFnQ7+9z8Vqnt7q9Yn9eurjXLut1YRQgghzEDiGSFEjpUnT3XKlp0NwLVr4wgPX2jS9Xr9XUJCWmIwxJA7dzXKlJmFLhM9BG/dgv791aKbjRvBxkZ9Zr9wAYYPB0fHDA8thBBCCCHEs3l4qLC7bl21qUzTpmr1tCmCglTblMaN1eacefPC+PGqjcq8eeq2xexaxVGxorpVsnt3tfr866/V/GFh2TO/EEKIl54E30KIHM3D4+Eq7bNn+3Lv3sF0XWc0Gjh9uhOJiWewty+Mr+8arK0dMlTD6dMwdCiULg2//aY+l7dtq47/9JPa2F4IIYQQQogslzev2nSydWtISYF27WD27Odfd+2a6tVdsSJs2aI2p/zoI7h4UX3Qdc7cfjoZ5uysAvd589Sq8927ISAANmywTD1CCCFeKhJ8CyFyvBIlRuPm1hpNSyEkpA3Jydeee82lS58RE7MZKytHfH3XYm9f0KQ5b9+GqVOhalXw8YGJEyEhAWrUgH37YOVKFYQLIYQQQgiRrRwcYMUKtUmk0Qh9+6pV25r233Pv3oVhw1RLkfnz1TmdO8OZMzBpUs7ZVLJ7dzh2TAXz0dHQsiUMGaLCfSGEECKDJPgWQuR4Op0V5cotxMnJH70+gpCQ1qSlJTx4PToxGuMjm1/evDmLGzd+BKBs2fnkzl0pXfMkJ6ufIVq1gkKFYPBgOHJEtTRp1QrWrlX7CtWqZd73J4QQQgghhElsbGDWLBVqg+q799lnKggHFRhPnqw2xJwwQT2vVw8CA2HxYihZ0mKlP5W3N/z9N3z4oXo+ZYpagbJ8+ZNDfSGEEOI5dJom/4LExsaSN29e7t27R548eSxdjhDiKZKTr3L0aDX0+kjy52+Lj89y/ji1nG6ru1G/RH02dtlIXOw+goIaomkGihcfSfHiXz1zTE1Tn6/nz4dly9SimPuqVlWLTzp2lHYmQgghhBAih/rhB/j0U/Xr7t1VD+/PP1ebVAKUL6/C7+bN1caSL4L169XmOuHh6nmNGvD997ICRQghBJD+LFeCbyT4FuJFcu/eAU6cqI+mpXLXqTedtywm2ZAMwFe1P6KR/XwMhmgKFOhI+fJLnrqZ5aVLsHChCrwvXnx4vHBh6NZNPcqVy453JIQQQgghRCbNmwd9+kBa2sNjBQvCqFGqt7eNjeVqy6j4eBV2T5wIiYnq2Ntvw7hxanW4EEKIV5YE3yaQ4FuIF0t4+Dz2BvVkwDGITgVvN2/ORZ/DWgdTAqBG4SpUqLAba+tcT7x+0iT45JOHz52coH17tUCmXr3s28heCCGEEEIIs1m/Xt2qaGOjWqAMGaI+6L7obt2Cr79Wm3gajWBtDe+9p465u1u6OiGEEBYgwbcJJPgW4sWSqE+kxgwvgu+EUzyXjj09tvL++u5svHGTgg7WnHg/GPe8T16uffSoulPSYIAGDaBnT7Vw5GX4mUAIIYQQQrzibt8Ge3t4GX+uPX1aBfobNqjnuXOr5x99BLmevODFrDQNgoLU/C1aqI04hRBCWER6s1xZ1yiEeKFomkbvtb0JvhOOi50tY3w1LoU2Y0CxmxR00HErOY0h20bxpO/0kpPVqm6DATp0gG3boGtXCb2FEEIIIcRLokCBlzP0BtWrfP162LkTKleGuDj44gvV9mTOnMfbvJjTzZuq5UpAgAq7v/wSateGTZuyZj4hhBBmI8G3EOKFMnrPaJadWoaNlQ0rOqymlJsPmqbH2QZmNRuJtc6aJSFLWHBywX+u/fJLtVDEwwOmTbNA8UIIIYQQQojMqVcPDh+GRYugWDEIC4PevVUovX49JCRkfo7ERFi8GJo2hSJF4LPPIDgY7OygTBn1esuW6hwhhBA5lrQ6QVqdCPGiWHl6Je2Xtwdg5lsz6Ve5H0lJlzl//n+4ubXgtdcGMGbPGL7Y+QXOds4cf+84pVxLAbBvH9Spo+5QXLdOfU4VQgghhBBCvMCSk+Hnn2HMGLh7Vx3T6aB0abVC+9FH4cLqtacxGmHPHpg/H5YvV5tr3lerlrp19J131O2iPXvCkiXqtSlTYPDgLHuLQggh/kt6fJtAgm8hcr7jt45Te05tEvWJfFj9Q35s+uMTz0szptFgfgN2X91NlUJV2N97P6lJdgQEwKVL0KsX/P57NhcvhBBCCCGEyDp37sDYsbBwIUREPPmcfPn+G4aXLw9Xr6qwe+FCuHbt4fklSqiwu2tXKFXq8bGMRrV56NSp6vkXX8C33z47WBdCCGE2EnybQIJvIXK2W3G3qDarGjdib9DEqwkbumzAxsrmqedfv3edgBkBxCTHMKzWMGJXjWP6dChaVN2hKH/MhRBCCCGEeElFRKhNKB99nDmjNvr5N2vrx3uD580LHTuqwPv1158dZGsajB4NX32lnr/3nuqnaG1t3vcjhBDiPyT4NoEE30LkXMmGZOrNrcehsEOUcSvDwb4HcXFwee51q0JX0e6PdnChMSzcDMD27fDmm1ldsRBCCCGEECJHSUlRm/0EBcHJkw8D8ehoFVQ3a6bC7pYtwcHBtLFnzICBA1UQ3r69Wjlub58170MIIQSQ/iz36UsmhRAWcSfpDrOPzaZtubZ4uXpZuhyL0jSNvuv6cijsEPkc8rG+8/p0hd4Abcu1pYf3h8z74VMA+g5I4s03HbOyXCGEEEIIIUROZG+vNr+sWPHhMU2DW7fA0VG1Qcmo998HNzd4911YsQJiYmD1asidO/N1Z4WYmIfhf3g4NGkCb7wBVlaWrkwIIcxOgm8hcpAbsTdovKAxoVGh/HbsN4IHBGNv8+quFhi/fzyLghdhrbNmRYcVlHYrbdL1qX9+D3E24HqOsGoj0LTl6KTvnhBCCCGEEEKng0KFzDPWO++o8LxNG3Wbaf368NdfUKCAecbPCKMRLlz47yr3R/uYA3z3HRQrBt26qYe3t2XqFUKILCCtTpBWJyJnOBd9jkYLGnHt3sMPIqPqj+KLOl9YsCrLWXtmLW8vexsNjV+a/8KAqgNMun71amjbFqysNKz61MXw2l6mNZ/GwKoDs6hiIYQQQgghxCstMBCaN4eoKBUgb9miQuWsFhf3eLgdFKQ2N0pMfPL5xYqBv7/qab5uHcTGPnytRg3V9qVjR3B1zfrahRAiA6THtwkk+BaWduzWMZoubMrtxNuUdi1Nn4p9GL59OA42DpweeJoS+UpYusRsdTLiJK/Pfp0EfQIfVP2An5v/bNL1kZHg6wu3b8Pw4eDZegpDNg/BwcaBwH6B+Lr7ZlHlQgghhBBCiFfamTPQuDFcvw6vvQabN4OPj3nG1jS4cuW/m3deuvTk8x0c1A9GAQEPH/7+4PJI+8ikJBV+z5+var2/2aetLbz1lgrBmzcHOzvzvAchhDADCb5NIMG3sKRdV3bRakkr4lLjqOhZkU1dN1EgVwEazG/Azis7aendknWd11m6zGwTmRBJ1d+qcu3eNRqWbMhf7/6FjVX6uzJpGrRrp1Z8+/mpRRd2dhotFrfgrwt/4evuy+G+h3G0lX7fQgghhBBCiCxw44YKv0NDVQuUP/+EmjVNGyMxUa3afnQl98mTj6/OflShQo8H3AEBULo02JjQ4TY8HJYsgQUL4Pjxh8fd3KBTJxWCV62q2sQIIYQFvRTB9zfffMPIkSMfO+bh4UF4eDigNr4bOXIkM2fOJCYmhurVqzNt2jR8TPw2VYJvYSlrzqyh04pOpKSlULdYXdZ1Xkcee/X/YOjtUAJmBKA36lnbaS2tyrSycLVZI9mQzInwExy5eYTAm4HsvLyT67HXKe1amkN9D5HP0bSNZhYuVK3pbGxU6F2hgjoemRCJ/3R/IhIiMrSKXAghhBBCCCHSLTparZg+eFD9cGJK1qBpcPeu+u+/2dlB+fL/XcWdP7/5agcVui9YoH7AunXr4fEyZVQA3rUrFC1q3jmFECKdXprge8WKFWzbtu3BMWtrawr8s0HE+PHjGTNmDHPnzsXb25vRo0ezZ88ezp49S24TdlCW4FtYwpzjc+i7vi9GzUibsm1Y0m4JDjYOj50zfNtwxu8fT7G8xTj9wWly2eayULXmoU/TExIZ8iDkPnLzCMGRwRiMhsfOy58rP/t67aNM/jImjX/jhrqT7949GDUKvvhXe/TNFzbTdFFTANZ1WkfLMi0z9X6EEEIIIYQQ4qkSEqBDB9i4MWPXu7v/dxV32bKqDUl2SUtTG3YuWACrVj3eN7xePRWCt2tnWrAvhBCZ9NIE32vWrOHEiRP/eU3TNAoVKsSQIUMYNmwYACkpKXh4eDB+/Hjee++9p46bkpJCSkrKg+exsbEUKVJEgu8cQtM0Np7fyKWYS7xf5X1srbPxH/Vs8sOBH/h066cA9KrQi5ktZz6xnUdCagLlppXjeux1Pn/jc0a/OTq7S82U+NR4VoeuJvBmIIE3AzkRfoJkQ/J/znN3cqdqoapUKVSFqoWqUrtobfI65DVpLk2Dpk3V/jFVq8KBA0++q++TzZ8w6eAk3BzdONzvMCXzlczo2xNCCCGEEEKIZ9M01YM7NdW06/LlA0/PrKkpo+LiVPg9fz7s3PlwRbqjI7z9tgrBGzQwrb2KEEJkwEsTfE+cOJG8efNib29P9erVGTt2LCVLluTSpUt4eXlx7NgxKlas+OCa1q1b4+Liwrx585457r9bqAASfOcAB28c5LOtn7Hv2j4ABlcbzJRmUyxclflomsaI7SMYt38cAJ/W/JQJjSage0aPtFWhq2j3RzvsrO0IHhCMt5t3dpWbKdfvXafpoqacvn36seN57fM+CLirvqbC7iJ5ijzz9yA9ZsyAAQPU/i3Hj6uFEE+SYkih5uyaHA8/jouDC7NazqJd+XaZmlsIIYQQQgghXinXrsGiRSoEP3Pm4fGCBaFLFxWC+/tbrj4hxEvtpQi+//rrLxITE/H29iYiIoLRo0dz5swZTp06xdmzZ6lVqxZhYWEUKlTowTX9+/fn6tWrbN68+anjyorvnOdc9DlGbB/BytCVADjYODxYGbyo7SK6+HWxZHlmkWZM4/0N7zPr+CwAxjccz9BaQ597naZpNF/cnE0XNtGoZCM2d92c6ZA4q52KPEWThU0IiwvD09mTTj6dqPpaVaoWqoqXqxdWOiuzznfxorrrLyEBJk+GIUOeff71e9d5Z/k7HAo7BMCAKgP4ofEPsuGlEEIIIYQQQphC0+DIERWAL1miepvfFxCgAvAePdQGmUIIYSYvRfD9bwkJCXh5eTF06FBq1KhBrVq1uHnzJgULFnxwTr9+/bh+/TqbNm1K97jS49tyIuIj+Hb3t8w8NhOD0YCVzoqeAT0ZWX8kvx75ldF7R+No48jBvgfx93hxvy1OMaTQZVUXVoWuwkpnxa9v/UrfSn3Tff2FOxfw/cWXlLQU/mj/B+/4vJOF1WbO3qt7abW0FXeT71I2f1k2d91M0bxZt+mJwQD168O+fVC3LuzYAVbpyNX1aXq+3Pkl4/ePB8DP3Y9l7ZdRrkC5LKtVCCGEEEIIIV5aqamwaRPMmwfr14Ner457eKge4Y0aWbY+IcRLI71ZrnmXXWYxJycn/Pz8OH/+PJ7/9LoKDw9/7JzIyEg8PDwsUZ4wQXxqPN/u/pZSU0vxy5FfMBgNtCjdgqD3g5jdejaF8xTmm3rf0MSrCUmGJNoua8vd5LuWLjtD4lLiaLG4BatCV2Fnbcfyd5abFHoDlHItxfDawwH4aPNHxKXEZUWpmbY6dDWNFjTibvJdahauyb5e+7I09A4PV5+d9u0DZ2eYMyd9oTeArbUt4xqOY3PXzbg7uRMcGUzlmZWZfWw2L9D3gUIIIYQQQgiRM9jZQatWsHKl+mFt+nTVgzIiAho3huHDH4bhQgiRDV6o4DslJYXQ0FAKFixIiRIl8PT0ZOvWrQ9eT01NZffu3bz++usWrFI8i8FoYObRmZSeWpqvd31NfGo8VQpVYWePnWzosgFfd98H51pbWbO43WKKuxTnYsxFuq7qilEzWrB60yXqE2m4oCHbL2/H2c6Zv979i7bl2mZorGG1hlEyX0nC4sL4dve3Zq4082YcmUH75e1JSUuhVZlWbOu+DbdcWXc72+7dULEi7NoFTk6qvVyJEqaP09irMUHvB9GoZCOSDEn0Xd+XLqu6cC/5ntlrFkIIIYQQQohXgqsrvP8+HDum/gswfjzUqQOXL1u2NiHEKyNHB9+ffvopu3fv5vLlyxw6dIj27dsTGxtLjx490Ol0DBkyhLFjx7J69WpCQkLo2bMnuXLlokuXF78f9MtG0zTWnlmL33Q/3tvwHuHx4ZRwKcHSdks51PcQ9YrXe+J1ro6urOqwCgcbB/48/yejdo/K3sIzQdM03tvwHofDDuPm6MbOHjt5s8SbGR7P0daRqc2mAvDjoR85FXnKXKVmiqZpfLXzKwb8OQCjZqRfpX6s7LCSXLa5smQ+oxG++w7efFMtIvDxUS3lWrXK+Jiezp5s6rqJcQ3GYa2zZmnIUirNrERgWKD5ChdCCCGEEEKIV42jo1r5vWIFuLjAwYNQoQIsX27pyoQQr4AcHXzfuHGDzp07U6ZMGdq2bYudnR0HDx6kWLFiAAwdOpQhQ4YwcOBAqlSpQlhYGFu2bCF37twWrlw86vq969SZW4c2y9pwJuoMbo5uTGk6hTODztDRt+NzNzqsWLAiM1rMAGDk7pFsPL8xO8rOtGmB01h4ciHWOmtWdlhJlUJVMj1m89LNaVO2DQajgYEbB2a4JYdRM7L+7HqWBC8hNiU2w/UYjAb6re/HqD3qC4mv637Nr2/9io2VTYbHfJY7d1TAPWKECsC7dYNDh9Tdc5llpbNiWO1h7O21l2J5i3Ep5hKv//46Pxz44YW700AIIYQQQgghcpR27eDECahZE2JjoUMH6N8fEhMtXZkQ4iX2Qm1umVVkc8uso2kajRc2ZtulbTjYOPBxjY8ZWmsoeR3ymjzWwD8HMv3IdFwcXDjS7wherl5ZULF57L+2n3rz6mEwGpjUeBIf1fzIbGNfvXuVctPKkWRIYn6b+XQL6JbuazVNY8vFLQzbNoygiCAAHG0caV22NV39utLYqzG21rbpGitRn0jHFR3ZcG4DVjorpreYTv/K/TP0ntIjMBDeeQeuXgV7e5g6Ffr2BZ3O/HPdTb5Lv/X9WHF6BQDNSjVjbpu5uDu5m38yIYQQQgghhHhV6PXwzTfqNl5Ng/LlYdky8PV97qVCCHFferNcCb6R4DsrLQtZRqeVnbC3tufE+ycomz/jS3NT01KpO7cuB28cJMAjgAN9DmRZO43MCI8Pp9KvlbgVf4uOPh1Z0m4JOjOns9/t/Y4RO0bg7uTO2UFncXFwee41gWGBDN8+nB2XdwCQxz4Pns6enIs+9+Cc/Lny08mnE139u1LttWpPrTsqMYqWS1py8MZBHGwcWNpuKa3LtjbPm/sXTYNp0+Djj9VnJC8vdVdcxYpZMt0j82r8duw3Ptz0IcmGZDydPVnUdlGm2tUIIYQQQgghhAC2b4euXVX/SgcH+PFHtQI8K1Y2CSGs/IcTAAAgAElEQVReOhJ8m0CC76wRmxJL2Z/Lciv+Ft/U/Yav632d6THDYsOoNLMSkQmRdPXvyvw2880eKmeGPk1Pg/kN2HttLz4FfDjY9yDOds5mnyc1LRX/6f6cjT7LoKqDmNp86lPPPR99ni92fsEfp/4AwM7ajkFVBzHijRG4Orpy9NZRFp5cyNKQpUQkRDy4rpRrKbr6deVd/3cp5VrqwfErd6/QdGFTzkafJZ9DPtZ3Xk+torXM/h4B4uKgXz+1AADg7bdhzhzIa/oNAxkWEhlCxxUdOX37NDZWNhzofYCqr1XNvgKEEEIIIYQQ4mUUGQk9e8Jff6nn7drBrFmqF7gQQjyDBN8mkOA7a3y8+WMmH5yMVz4vQgaG4GDjYJZxd1/ZTYP5DUjT0pjabCqDqg0yy7jmMGTTEKYcmkIe+zwE9gvE2807y+bafmk7DRc0xEpnRWC/QCoVrPTY6+Hx4YzaPYqZx2ZiMBrQoaNbQDe+rfctxVyK/Wc8g9HA9kvbWRi8kFWhq0jUP+y1VqNwDbr6dcXH3YcuK7twK/4WRfIUYVPXTZQvUD5L3l9wMLRvD+fOgY0NTJgAQ4ZYZgFAoj6RTis6sf7cesrmL8ux/sdwtHXM/kKEEEIIIYQQ4mViNMLkyTB8OBgMUKwYLFmieoELIcRTSPBtAgm+ze9kxEkq/VqJNC2Nv979i6almpp1/Ml/T+bjLR9jY2XDrh67smzFsSmWBC+hy6ouAKzpuCbLWn88qvPKziwNWUr116pzoM8BrHRWxKbE8sOBH/jh7x9I0CcAalPM7xp8h7+Hf7rGjU+NZ82ZNSw8uZCtl7b+Z3NHX3df/nr3LwrnKWz29wQwbx4MGABJSVC4sFrx/frrWTJVukUnRuM73Zfw+HA+rvExPzT5wbIFodqx9FjTgyM3jzCs1jC6+nfF2sra0mUJIYQQQgghhGkCA6FTJ7h0ST23fuTnmkdXP/17JdT95yVLwq+/Qp06WVunECJHkODbBBJ8m5dRM1JnTh32X99Pu3LtWNFhhdnn0DSNzis7s+zUMgo6F+Ro/6MUzF3Q7POkV3BEMDVm1yBRn8iI2iMY02BMtsx7M+4mZX8uS1xqHNOaTyPNmMaoPaO4nXgbgGqvVWN8w/HUK14vw3OEx4ezNGQpC08u5Oito9QpVoc1HdeQzzGfWd6DpsGVKxAUpB5//w2bN6vXmjSBhQshf36zTJVpf577k7eWvIUOHTt77KRu8boWreeXwF/4YOMHD54HeAQwsdFEGnk1smBVQgghhBBCCJEBsbEwcCAsWpSx662s4Ouv4fPPHw/OhRAvHQm+TSDBt3nNPTGXXmt74WTrROgHoRTJWyRL5olPjafGrBqcun2K2kVrs6P7DmytbbNkrme5m3yXqr9V5cKdCzT2aszGLhuzddXt/dXvj/J282bsm2NpW66tWXugh8eH4+7kjpXOKkPXJyZCSMjDkDsoCE6eVJ9vHqXTwciR6vOKVcamyjJ91/Vl9vHZFHcpzsn3T5LbPrdF6rhw5wIBMwJI1CfStlxbtl/azr2UewA09mrMxEYT073CXwghhBBCCCFyjDt3ICVF/frRyOppv9br1Q+Q8+ap53XrqvD8tdeyvlYhhEVI8G0CCb7N507SHcr8XIaoxCgmNJzAZ7U+y9L5zkefp8pvVYhNiWVwtcFMaTYlS+f7N6NmpM3SNqw/t55ieYtxtP9R3HK5ZWsNBqOByjMrczLiJJ7OnnxT9xt6V+xtkS8B/u3yZVi6FE6cUCH3+fOqhdu/2dqCjw8EBIC/PzRooH6dE8WmxOI/3Z+r967Sv1J/fm35a7bXkGZMo87cOhy4foD6xeuzrfs2YpJiGL1nNNMCp6E36tGho0eFHoyqPyrLWtIIIYQQQgghRI6xYIHqmZmQAG5uMHcuvPWWpasSQmQBCb5NIMG3+QzYMIAZR2dQvkB5Trx3IlvC13Vn19F6qeqnvfDthbzr/26Wz3nf6D2j+XLnl9hb27O/934qF6qcbXM/KiI+gp1XdtLSuyVOdk4WqeFRsbEwZgz8+COkpj7+mru7CrUffZQtq8LvF8WuK7uoP68+ABu7bKRZ6WbZOv+E/RMYtm0Yue1yEzwg+LHNSi/eucjnOz5n2allADjaOPJRjY8YVnsYeezl7zchhBBCCCHES+zcOdUr/Phx9XzIEBg3DuztLVuXEMKsJPg2gQTf5hEYFkj1WdXR0NjVY1e29j/+YscXjNk7BntrezZ33Zwtc2+6sInmi5qjoTG71Wx6V+yd5XPmdAYDzJ4NX34Jt1WbcerVg2bNHobcnp4WLdFshmwawpRDUyjoXJCQgSG4Orpmy7whkSFUnlmZ1LTUZ/5/d+jGIT7b+hl7r+0FoECuAnxd92v6V+6fI+4GEEIIIYQQQogskZICw4erlVgAlSqpW5FLl7ZsXUIIs5Hg2wQSfGdemjGN6rOqc/TWUbr6d2XB2wuyff52f7Rj7dm15LHPw64eu6hYsGKWzXc55jKVZ1YmJjnGYu0ucpotW+CTT1QPb4AyZeD776FFi/9uvP0ySNInUfHXipyNPksXvy4sapvBDVhMkJqWSo1ZNTgefpy3vN9iXad1z+zhrmka686uY9i2YZyNPgtAadfSjGs4jrfLvm3W/u9CCCGEEEIIkaOsXw+9ekF0NDg7w/Tp0LWrpasSQphBerPcHLZtnHhRzTw6k6O3jpLHPg8TG03M9vmtraxZ0m4JdYvVJTYllqaLmnI++nyWzJWkT6LdH+2ISY6h2mvV+KnZT1kyz4siNFSF202aqNDb1RV++gmCg1U7tZc1W3W0dWRem3lY6axYHLyYFadXZPmcY/aM4Xj4cVwdXZn51sznBtc6nY7WZVsTPCCYX5r/gruTO+fvnKfdH+3ovqZ7ltcrhBBCCCGEEBbTsqXacKpOHYiPh27doGdP9evniYhQq7u+/15d5+8PLi7Qpg2sWvVw882X3cmT8OmnaqNQKyvTHjY2akVchw4werT6IuLatcc3JhUii8mKb2TFd2ZFJkRS5ucy3E2+y9RmUxlUbZDFarmXfI/68+pzPPw4xfIWY3/v/byWx3w7OWuaRu91vZl7Yi4FchXgaP+jFMlbxGzjv0iiotTG2dOnQ1qa+jdt0CDV5sQ1e7p+5Aj32+y4ObpxauApPJw9smSewLBAas6uSZqWxrL2y+jg08HkMeJS4ph4YCLf7fsOg9HA9u7bebPEm1lQrRBCCCGEEELkEGlpKnj99lswGsHbG5YtgwoVQK+HM2cgKEg9Tp5U/42IePaY+fJBx47QvTvUqPFyrfgKD4fFi2H+fPV7YW758qkvEh7d+MvHBxwczD+XeGlJqxMTSPCdOT3X9GRe0DwqelYksF8g1lbWFq0nMiGS2r/X5vyd8/gU8GFPrz1m6b+saRoT9k9g+PbhWOms2Npt6ysZGqamws8/w6hRcPeuOtaqFUycqD4/vGpS01Kp9ls1giKCaFWmFWs6rjF7C5EkfRKVZ1YmNCqUjj4dWdp+aabG+9/G//Fz4M9ULliZw/0OY6WTm3+EEEIIIYQQL7k9e6BLFwgLAzs7KFcOTp9W4fe/6XSqJ/j9YNbfHzw8YPVqWLBAjXFfqVJqVXjXrlCypOl1RUc/DN5DQiBXrofz+vqCo2PG33N6JSbC2rXqvW3erL4gAPX71LKlen/Vq5sW8KemqlvE77+3oCD1JYPB8N9zra3V6vBatWDsWMif3zzvS7y0JPg2gQTfGbf36l7qzK2DDh1/9/mb6oWrW7okAK7cvUKt32txM+4mNQrXYFu3bTjZOWV4vKjEKPqs68O6s+sAGN9wPENrDTVXuS8ETYN169RdThcuqGMBATBpErz56uX/jzkZcZIqM6ugN+qZ03oOPSv0NOv4n2z+hEkHJ+Hp7EnIgBDccrllarzIhEhK/VSKuNQ4lrRbQiffTmaqVAghhBBCCCFysOho1fd7/fqHx/LkefIKZKenZAhpabBrl1oRvXIlJCQ8fO2NN1RI/M47qjXKv687f/7xIDgo6PEQ/d+srNQKs0drCwiAQoUyv8rcaIS9e9X7WL4c4uIevlazplrN3qGDeW/pTklRXzb8e4V9dPTDc8qUUW1mihY137zipSPBtwkk+M4YfZqeSjMrERIZQr9K/ZjZcqalS3rMqchTvDHnDWKSY2ji1YR1nddhZ21n8jhbL26l+5ruhMeHY2dtx7gG4xhSY8grtTFgfDwMGAALF6rnHh4wZoxqj2Zt2QX+Oca4feP4v+3/Rx77PAQPCKZoXvP8I73n6h7qza2HhsaGzhto4d3CLOOO3jOaL3d+SQmXEoR+EIq9jb1ZxhWm0zSN8PhwrHRWWdYqRwghhBBCCPEPTYOtWyEpSYXIxYplPEROSFCrwOfPh23bHvavtreH1q1VgHz6tOo1HhKi5nySEiUeriyPj38YDEdFPfl8N7eHYb2fn1olbopTp9Tq7qtXHx4rXlyF9t26qdXu2UXT4OZNOHpU9U+9fh0KF1bhd7ly2VeHeKFI8G0CCb4z5ocDP/Dp1k9xc3Tj7KCzmV6FmhUO3jhIg/kNSNQn0tGnI4vaLkp3K5YUQwqf7/icH/7+AYBy+cuxuN1iKnhWyMqSc5ygIPUl77lzKuT+7DMYMQJy57Z0ZTmLwWjgjTlvqP/nSjRgS7ctmW4hEpcSR8CMAC7fvUyfin2Y1WqWmaqFhNQESk8tza34W0xuMpkhNYaYbWzxdHeT73Iq8hTBkcGERIYQEhlCcGQwd5LuADD2zbEMrz38lfpiTQghhBBCiJdCWNjD3tghIU8+J1cuFVQ/usLc31+tOv83TVP9tv+9QvzsWbV63Bzy5FE/8HfrBrVrqxXmlnT9OjRpolqkuLrCxo2qxYoQ/yLBtwkk+DbdjdgblJtWjvjUeGa1nEWfSn0sXdJTbb6wmZZLWqI36hlYZSA/N//5uaHSmagzdF7ZmRPhJwAYUGUA3zf+nly2Jn6L+gLTNJg5Ez78UN2N9NprsHSp+rdQPNm56HNUmFGBJEMSPzf7mQ+qfZCp8d7f8D6/Hv2VYnmLcXLASfLYm/fvp1nHZtFvfT/cHN24MPgCLg4uz79IpEuyIZnQ26EPgu37Iff12OtPPN9KZ4VRU330BlcbzOSmk6X3uhBCCCGEEC8iTVMB9YIFcPkylC//MOT28sr8bdPJyWrF9v1WIaGhT+5T/iyurqodS6tW2dND3BTR0dC8ORw+rNrNrFoFjRtbuiqRw0jwbQIJvk3XYXkHlp9eTs3CNdnXe1+OD2iWhiyly8ouaGh8VecrRtYf+cTzNE1j5tGZfLT5I5IMSbg5uvF7699pVaZVNldsWbGx0L+/2uga1L858+bJ/hLpMfXQVAZvGoyjjSNB7wdR2i1jt4hturCJZouaAbCj+w7ql6hvzjIBtUrdf7o/oVGhDK81nO8afme2sUfuGsm+6/uY2GjiK3eXxK4ru2i9tDWxKbFPfL1IniL4efjhW8AXX3df/Dz8KJu/LDOOzOCjzR8B0Mm3E/PazMtQeyYhhBBCCCGEeKHFx0O7dqrdia2tWkXfSfamEg9J8G0CCb5Ns+XiFposbIKVzoqj/Y++MKHW9MDpDNw4EIApTacwuPrgx16PSoyi77q+rD27FoBGJRsxr808CuYumO21WtKxY+pOp4sXwcYGvvsOPv7Y8nc8vSiMmpFGCxqx4/IOahauyd5ee9PdXue+mKQYfKf7cjPuJoOrDWZKsylZVC2sP7ueVktb4WDjwLlB5yiSt0imx/zt6G/039AfADtrO8Y3HM+H1T98Jdp3GIwG/Kb7cSbqDPkc8uHv4a/CbXc/fN1V0J3XIe9Tr18cvJiea3qiN+ppWLIhqzqsIre99BUSQgghhBBCvGJSU9UGm8uWqR7sU6fCB5m7q1q8PCT4NoEE3+mnT9Pj84sP5++cz/JALiuM2j2Kr3Z9BcDCtxfyrv+7AGy7tI3uq7tzK/4Wtla2jGuoNrDM6SvZzUnTYNo0+OQT9e9L0aKqtUnNmpau7MVz7d41fH/xJS41jrbl2tKoZCMCPALw8/DD2c75udd3XdWVRcGL8Hbz5vh7x7O0xY6madSdW5e91/bSq0Ivfm/9e6bGOxx2mDfmvEFqWirl8pcjNCoUgGalmjGn9ZyXfvPGmUdn8t6G93BzdOPi4IvPDLmfZsvFLbRd1pYEfQKVC1Zm47sbcXdyz4JqX0xGzcji4MUcunGIkfVH4upoxl3mhRBCCCGEEDlHWprqvzptmnr+9dfq8QosqhLPJsG3CST4Tr9DNw5RY3YNXBxcuPLhlQyFOpakaRpDNg3hp8M/YWNlwx/t/+DA9QN8//f3AJTNX5bFbRdTsWBFC1eave7ehT59VOssUG2+5sxRbb9Exsw9MZdea3s9dkyHjlKupQjwDCDA45+HZwBF8hR5sBp65emVtF/eHiudFft776dG4RpZXuv9P9c6dAS9H4Sfh1+GxolMiKTyzMrciL1Bm7JtWNlhJTOOzOCTLZ+QbEjGw8mDeW3m0aRUEzO/g5whITWBUlNLER4f/sS7SkwRGBZI88XNiUqMopRrKbZ03UKJfCXMWO2LadulbXy29bMH+y8MqT6EyU0nW7gqIYQQQgghRJbRNPj2W/jmG/V84ED46afM90oXLzQJvk0gwXf6LQhaQPc13alXvB47e+y0dDkZYtSMdF/dnUXBix47/l7l95jUZNIrtYElqP0iOnaEK1dU66yJE2HwYPkC1Ry2XNzC9kvbCYoIIigiiPD48Ceed78lRoBHAItDFhOVGMWI2iMY02BMttV6v29/89LN+bPLnyZfbzAaaLygMTuv7MTbzZvAfoEPNuMMiQyh88rOhESqnc0/rvExYxuMxd7G3qzvwdLu31FSMl9JQj8IzXR/7nPR52iysAlX7l7B09mTTe9uIsAzwEzVvliCI4IZum0omy5sAsDBxoFkQzJ57fMS9nEYTnZOFq5QCCGEEEIIkaV++QUGDVJBeMeOqu+3XTbsiXTxotqktEEDCUpykPRmua9OHwdhFhfuXACgVL5SFq4k46x0VsxpPYfmpZsD4OroyuqOq5nx1oxXKvTWNJg0CWrVUqF3iRKwf7+6i0j+LjePxl6NGd9oPJu6buLWJ7eI+DSCLV23MLHRRLr6d8XX3RcbKxtikmPYfXU3Px3+iajEKPw9/Pmq7lfZWuvYBmOxsbJh4/mN7Li8w+TrR2wfwc4rO3GydWJ1x9UPQm8AX3dfDvc9zAdVVT+2SQcnUXN2Tc5GnTVb/ZYWmRDJhAMTABj75lizbErp7ebN/t778ffwJzw+nDpz67Dryq5Mj/siCYsNo8/aPlT4tQKbLmzCxsqGwdUGc3XIVUq5luJeyr3/fIkphBBCCCGEeAkNHAhLlqgVe8uWwVtvqU0ws0JMDPz6K9SuDaVKQaNGapWgeOHIim9kxbcpuqzswpKQJYxvOJ6htYZaupxMSTYks+7sOuoUq4Ons6ely8k2ej1s3KjuDNrxT77Zrh3MmgUuLpat7VWUYkjh9O3TalV4eBA3428yqv4ovN28s72W/238Hz8H/kzlgpU53O9wunvcLz+1nA4rOgDwR/s/eMfnnaeeu/7senqt7UV0UjS5bHMxpekU+lTs88JvfDlo4yCmBU6jSqEqHOp7yKz7A9xNvkvrpa3Zc3UPdtZ2LG67mHbl25lt/JwoNiWWCfsnMOnvSSQZkgB4p/w7jG0wllKu6ovXyX9P5uMtH+Pn7kfQ+0Ev/P9DQgghhBBCiHTYsgXatoWEBKhaVQUc+fNnfly9HjZtUivJ161Tm589ys4OjhwBv4y1BhXmJa1OTCDBd/pV/a0qR24eYVWHVbxd7m1LlyNMcPYs/P47zJsHERHqmJ0dTJ4MAwbIKm+hVi17/eRFfGo8S9otoZNvp+dec/r2aar9Vo0EfQKfvf4ZExpNeO41N+Nu0n11d7Zf3g5A+/LtmfnWTPI55sv0e7CEc9Hn8PnFB4PRwI7uO6hfor7Z50g2JPPuqndZFboKHTp+afEL71d53+zzWJo+Tc9vx37jm13fcDvxNgC1itTi+8bf/6fffUxSDK9Neo0kQxJ7eu7hjWJvWKJkIYQQQgghRHY7dAhatIDoaMiVC/z9ISBAPfz91SN37uePo2lw9CgsWKBWk9++/fA1Pz/o0QM6d4b33oMNG6BiRTh4MHtarIhnkuDbBBJ8p4+maeQbn497Kfc4+f7JDG+AJ7JPQgIsXw6zZ8O+fQ+Pu7urv7/791d37Qhx3+g9o/ly55eUcClB6Aehz+zDfS/5HtVmVeNc9DnqF6/Plm5bsLGySdc8Rs3I9we+5/Mdn2MwGiiSpwiL2i56IcPL9n+0Z2XoSlqUbsGGLhuybJ40YxoD/xzIzGMzAfim7jd8Vferl2Kls6ZprD27lmHbhnEu+hwApV1LM77heNqUbfPU99hvXT9mHZ9FR5+OLG2/NDtLFkIIIYQQQlhSaCi0bKl6cD9JyZIPw/D7j+LF1aq/69dh0SK1ujs09OE1Hh7w7rvQvbs6/77wcPDxgTt34Msv1WabwqIk+DaBBN/pE5UYRYGJBQBIGJHwSvXDfpFomtqwcvZsWLoU4uLUcSsraN4c+vRRX4za2lq2TpEzJaQmUHpqaW7F3+LHJj/yYY0Pn3ieUTPS7o92rDmzhsJ5CnO0/1HcndxNni8wLJAuq7pw4c4FrHRWDKgygL6V+lLBs0Jm30q2OHjjIDVn18RKZ0XQ+0H4uvv+P3v3HRXF+bZx/Ls0QUBBFOy9K6w9GnvXaOwNBfKqsSQaTdFo1JiY/KyJpseSGA02ULFXLNHYkqjRpYii2FE6Si+7O+8fm2xCRAVcWMv9OYcDDDPP3LtnXeSaZ+6nUM+nKApzjs5hztE5AAxtMJS3W77NSxVeemYD8DvJdxi2eRjHbh4DoEzxMnzc4WPGNBmDteWj36jOR52n8fLGWFlYcfPtm5RzLFcUJQshhBBCCCGeBjodXL4MGk3Oj8jI3PcvUcIQfgcHG8ITAFtb6NfPEHZ37QpWD5nMtXGjYVFNS0s4dcrQZkWYjQTf+SDBd96cunWKl396mYolKnLrnVvmLkf8R1yc4e6clSshNPSf7TVqGMLu116D8uXNV594dvxw9gfG7hqLi50LVyZdwcn2webv84/NZ8bhGdhY2nBs5DFaVGhR4PMlZybz1t63+Fnzs3Gbu6s7PmofhrsPp7zj0/nCVRSFdqvbcfzmcUY1GsXKviuL7NxLTy9lwp4JKBh+hdcqVQtvD2+81d5UdapaZHU8qXsZ92i7qi0hMSHYWdnxbqt3eb/1+zkWR32cNj+14cStE3zc/mM+6vBRIVYrhBBCCCGEeCbExUFQUM4wPDTU0Mf7b+3bg7c3DBoEJUvmbVxPT8MMw7p14c8/wc6ucOoXjyXBdz5I8J03vhpfXtv2Gh2rduTwa4fNXY74S2YmzJxpWKzy7/dwOzvDe/fo0dCunfTvFvmj1WvxWOpBWFwY01tPZ36X+Tl+fiDiAD3W9UCv6FnRewVjmo4xyXkDIwL58c8f2X5pO1k6w0IiFioLulbvio/ah351+z3RnSZRKVEERQdhZ2VHm8ptnniG9I5LO+jr1xc7KzvC3wqnYomKTzRefp28dZJlZ5YREBZAWnaacXu7Ku3w8fBhUP1BlLTN43/gzCA9O51ua7tx/OZxyjqU5djIY8aFK/PDL8QPzwBPyjmU48bbNx47S1wIIYQQQgjxAsrOhosXDTPEGzeGatXyP0Z8PDRsaGh98u67sHix6esUeSLBdz5I8J03s3+Zzae/fsqYJmNY8eoKc5cjgCtXYNgww1oMAM2aGcJuT8+8X7AUIjd/h7q2VrZcfuuyMdS9fu86zVY0Iz49ntGNR/Njnx9Nfu7E9EQ2XdiEr8aXE7dOGLc72DgwuP5gfNQ+tKvSDguVRa7HZ+uyuRh3EU20Bk2UxvA5WkNMaoxxn3FNx/HdK99haWFZoBq1ei3uS925GHeRD9p8wLzO8wo0jimkZKWwJWwLvhpfDl87bJwFbmtlS7+6/fDx8KFrja557r9eFLR6LQM3DmTHpR2UKFaCYyOP4eHmUaCxsnRZVP6iMtGp0fgP8mdIgyEmrlYIIYQQQggh/rJ7N/TubZhh+MsvhpnjoshJ8J0PEnznjWeAJ34hfizqsoipraeau5wX3rp1MH48pKSAiwusWmVY10EIU1AUhfar23Ps5jFGNhrJT31/Ij07nTar2vDn3T9pVr4Zx0Yew9bKtlDruJJwhbVBa/HV+HLt3jXj9solK+Pl7sXgBoNJSE/IEXBfiL1gnDH+bypU1ChVg4iECBQUBtYbyLoB6x65gOfDrDi7gnG7xuFi50LEpIinZmb1rfu3WBe8Dl+NL2Fx/yzS4mbvxgj3EXh5eFHNOX8zG+ys7Ar0HD2MoiiM2TmGledWUsyyGIHegbSr0u6Jxvz7wmy7Ku04+n9HTVSpEEIIIYQQQuTi9dcNfWarVjW0VHF0NE8d9+8bFnAr/uKtwSfBdz5I8J03zVY04+zds2wdupV+dfuZu5wXVkoKvPUWrF5t+L5dO0MIXrFouyyIF8Dvt3+n5cqWqFChGa/hi9++YNX5VZQuXpqzY89SuWTlIqtFURRO3DqBr8aXjaEbuZ95/5H7O9o44uHmgdpNjbqsGrWbmoauDbG3sWfzhc2M2DKCLF0Wnap1YtvQbTgWy/t/VFKzUqn5TU2iUqIeuQCoOSmKwtm7Z/HV+LIhZANxaXEFHsvWypZPO37Ku63efegs+/yYeWgm847Pw0JlQcCQAJP8PolMiqTKl1XQKTqCxgfh7ub+xGMKIYQQQgghRK6SksDDA27cgLFjYfnywj2fVmto0RIcbAja//64ccOw6ObgwYV7/qeQBN/5IMH34ymKgtNCJ5Iykwh+I5iGrg3NXdIL6fx5Q2uTS5fAwgJmz7+LptoAACAASURBVIZZswyLCgtRGAZvGszmC5upWKIit5NuY6GyINArkM7VO5utpvTsdHaG78RX48vBqwepUKKCIeD+V8hdxanKI0PaQ1cP0c+/HylZKTQt15Q9I/bgau+ap/N/evRTZh+ZTXXn6oRNCMPG0sZUD61QZOuy2XdlH75Bvuy8tJNMXWaBxulRswc/9/s5z89Tbr7+/Wsm7zNcKDBlf3j457U6ruk4lvVeZrJxhRBCCCGEEOIBv/wCnToZvt6zB3r2NM24sbE5w+2gIMPCnJkP+Ttu/nyYPt00536GSPCdDxJ8P15saiyunxvCjrQZadhZy8q1RUlR4LvvYMoUw3tdhQqwfr1htrcQhely/GXqf18frV4LwILOC5jWZpqZq/qHoigFXqTyzJ0z9FzXk7i0OGq71CbQK5AqTlUeeUxMagw1vq5BSlYKfgP9GNpwaIHObS46vQ69os/z/goKq8+vZvK+yWRoMyjrUJa1/dcW6MKHX4gfwwOGo6DwacdPmdVuVr7HeJSj14/S4ecOFLcuTuS7kTjZOpl0/LwIjQllXfA63mj2BpVKViry8z/MqVun+O70d7zT8h2alm9q7nKEEEIIIYR4Prz9Nnz1FZQrByEhUKpUwcY5dgwWLYIzZwwLZ+bG3h7c3Q0zzf/92dm54PU/wyT4zgcJvh/v5K2TtP6pNZVKVOLmOzfNXc4LJSEBRo2C7dsN37/6qqGft4uLeesSL47Jeyfz9R9fM6DeADYP3lzgoPlpFB4fTtc1Xbl5/yblHcsT6BVIA9cGD91/4p6JfHf6O5qVb8bvr/9uktYfz4KQmBCGbh7KhdgLqFAxo+0MPu7wcZ4XzDwQcYBe63uRrc9mYvOJfN3za5O/jhRFwX2pO6GxoWZpQRMWG0bbVW2JT4+ngmMF9nvtf+Rrqaicu3uO9qvbk5yVjL21PVuHbqVrja7mLksIIYQQQohnX1oaNG4M4eEwfLihD21+XLoE06b9E/iAYdHMGjUMwfa/P6pVM9z6L4C8Z7nyjIk8uRx/GYBaLrXMXMmL5fhxaNTI8B5oY2O4kLh9u4Teomh93u1zAr0C8Rvo91yF3gC1XWpzctRJ6pepz53kO7Rd1ZZTt07luu/l+MssP2vo3baoy6IXJvQGaOjakNNjTjOmyRgUFOYem0uH1R24ef/xF0JPR56mv39/svXZDGkwhK96flUoryOVSsWE5hMA+P7M9/ma2f6kbt2/Rbe13YhPj8dCZUFkciRtV7Xl5K2TRVZDbiISIui5rqcx9E7NTqXX+l5sDN1o1rqEEEIIIYR4LhQvDr6+hkB6/XrYvDlvx0VHw5tvQoMGhpDH0hLGj4fffoPkZEM/74AA+Ogj6N/fEIRL6F0g8qyJPLmScAWAms41zVzJi0Gng08/hfbt4dYtqFXL8P43aZLh4p8QRcna0pquNbpibWlt7lIKRYUSFTg28hitKrYiMSORzr6d2Xt57wP7zTg8A61eS69avehYraMZKjWv4tbFWfHqCvwH+VOiWAlO3DqBepmarWFbH3pMeHw4r6x/hdTsVDpX64xvP99CvWDgrfamRLEShMeHc/DqwUI7z7/FpcXRbW03bifdpm7puoRNCKNlxZYkZiTSxbcLu8J3FUkd/xWdEk33td2JTo1G7abm2uRrDK4/mGx9NsM2D2Pp6aVmqUsIIYQQQojnyksv/dNje/x4Q6j9MKmphrCnZk1YutQQ/vTpY1i0culSw1j29kVT9wtCgm+RJ5cTZMZ3UdDrDesjdOliWLhSrwcfHzh71nD3jBCicJSyK8UB7wP0rNmTdG06ffz6sC7on9vUfrv9G5svbMZCZcGCLgvMWKn5DWkwhPPjztOiQgvuZdxjwMYBTNg9gQxtRo797iTfoduabsSlxdG0XFO2Dt1KMatihVqbg40Dr6lfA+C7098V6rkAUrJS6LW+FxfjLlKxREX2e+2ntkttDnof5JVar5CuTaefXz9Wn19d6LX8W1JmEj3X9SQiMYJqTtXYO2IvZezLsGHgBsY3HY+Cwpt73uSTo58gHe+EEEIIIYR4Qh99BGo1xMfD2LGGhdr+TaeDlSuhdm1D2JOSAs2bw5Ejhhnf9eqZpewXgQTfIk+MwXcpCb4Lw8WLMGMGVK1qWBT4yBHDRb6ffzZ8ODqau0Ihnn/2NvZsH7ad4e7D0eq1eG314uvfv0ZRFN4/8D4A/6f+Pxq6NjRzpeZXzbkax0ce5/2XDc/L92e+56UfXyIsNgyAexn36LG2Bzfu36BmqZrsGbEHx2JF80b2ZvM3Adh5aSfX710vtPNkajMZ4D+APyL/wMXOhUCvQCqXrAwYXkvbhm7DR+2DTtExcvtIFh5fWCQhc6Y2k35+/TgXdY4yxcsQ6B1IOcdyAFhaWPJ9r++Z3W42AB8d+YhJeycVaVsYIYQQQgghnjs2NoaWJ9bWsGOH4WswBOB79hhC8ddfhzt3DL26N2ww3Nbfvr15634BSPAtHktRlH9anZSSViemEhcH334LLVoYLu7Nn29oa+LkZLhAeO6cYba3EKLoWFtas6b/Gia1mATA5H2T6evXl2M3j2FrZcucjnPMXOHTw9rSmoVdF7JvxD5c7V0Jig6i2Q/NWHF2BX029CE4JpiyDmUJ9ArE1d61yOqqW7ouXap3QUFh2ZllhXIOnV6HzzYfDlw9gL21PXtG7KFemZyzNKwtrVnddzVTX54KwPRD03kv8L1CDZl1eh1eW7345fovONg4sHfE3gd+b6tUKuZ0nMPXPb4G4NvT3+K1xYssXVah1SWEEEIIIcRzz8MD5vz19+KkSbBrl+F2/l69IDQUnJ1hyRIIC4Nhw6RndxFRKXKPa55XAn1RxaTG4Pa5GypUpM1Mw9bK1twlPbMyMw3vfWvWwO7doNUatltZQc+ehqC7d2+wladYCLNSFIV5x+Yx65dZxm0ftPmAeZ3nmbGqp1dUShTeW71z9NUuUawEv/7fr6jLqou8nm0Xt9Hfvz8udi7cfve2SX9vKYrChD0TWHpmKdYW1uwevpuuNbo+8pjFJxcz5cAUAIa7D2dV31XYWNqYrKb/1mVjacOe4XvoXL3zI4/ZELwBn20+aPVautfoTsCQAOxtpKegEEIIIYQQBaLVQtu2htncf7OxMQThM2YYwm9hEnnNcuXygnisy/GGNieVSlaS0LsAFAVOnYI33oBy5WDQIEMLJ60WmjaFr76CyEjD3TCDBknoLcTTQKVSMbPdTJb1WoYKFWUdyjKt9TRzl/XUKutQlv1e+5nfeT6WKkuKWRZjx7AdZgm9AXrX7k3lkpWJT4/HP8TfpGN/fORjlp5ZigoVawesfWzoDfDey++xpv8arCysWB+8nj4b+pCSlWLSuj799dN/6uq/9rGhN4Cnuyc7PXdS3Lo4+yP209m3M/Fp8SatSwghhBBCiBeGlZWhX+3fC1QOHw6XLsFnn0nobSYy4xuZ8f04q8+vZuT2kXSu1pmDPgcff4AwCg0FLy84f/6fbRUqGLZ5e0ODBuarTQiRN1cTr1LcujhlHcqau5RnQkRCBCqViurO1c1ax/xj85lxeAbNyzfnjzF/mGTMb37/hkn7DG1wvn/le95o/ka+jt97eS+DNg0iLTuN5uWbs3v4bsrYl3niupadWcYbuw21fPfKd8Y+53n12+3f6LW+FwnpCdQrXY9A70AqlqiY5+PTstMIjg7mUvwlmpVvRv0y9fN1fvH0UBSFfVf24VjMkTaV25i7HCGEEEKIZ9O1a5CdbVjMUhSKvGa5EnwjwffjzDo8i7nH5jKu6TiW9S6cfqnPG0WBVatg4kRIT4fixWHgQEMrk44dwdLS3BUKIcTzLTY1lopfVCRLl8Xvr/9Oiwotnmi8DcEbGL5lOABzOsxhdvvZBRrn99u/02t9L+LT46ntUptAr0CqOFUpcF0BFwIYvGkwCgoftvuQTzp+UqBxLsReoNuabkQmR1KpRCUCvQOpW7pujn0UReF20m000Ro0URrD52gNl+Mvo2D476SVhRXzOs3jvZffw0IlNxY+S47fPM6UwCn8Hvk7AO+0fIf5nedTzKqYmSsTQgghhBAiJwm+80GC70cbunkoG0M38nnXz3nv5ffMXc5TLznZ0NZk3TrD9926GXp6uxbd2m5CCCEAn60+rAlag4/ah5/7/VzgcfZd2cerG15Fq9cysflEvu75NSqVqsDjXYy7SLc13biVdIvyjuXZO2IvHm4e+R7nyPUjdF/bnSxdFmObjGVZ72VPVNeNezfotrYb4fHhuNi58MOrP5CYkUhQdJAx7E7MSMz1WDd7N8o5luN8lOEWp+41uuPb37dIFzYVBXMp7hLTD01n28VtANha2ZKhzQCgSbkm+A30o5ZLLXOWKIQQQgghRA4SfOeDBN+P1mR5E85FnWP7sO30qdPH3OU81TQaGDIEwsMNs7o//RSmTZPFeoUQwhx+v/07LVe2pJhlMW69c6tAbUVO3TpFlzVdSMtOw7OhJ2sHrDXJTObbSbfpsbYHobGhAFR1qoraTY2HmwdqNzXqsmqqO1d/6LnOR52n/er2JGUmMaDeADYO2oilxZPfThSbGssr61/hzJ0zuf7cysKKuqXrGmr8q061mxo3BzcUReHHP39k0r5JZGgzKOtQljX919ClepcnrkuYXkxqDB8f+ZgVZ1egU3RYqCx4vfHrfNzhY07fOc3I7SNJSE/AwcaBpb2W4uXhZe6ShRBCCCGEACT4zhcJvh9OURRKLihJclYyoW+GSt/Oh1AUWL4c3n4bMjOhYkXYsAHaSHtMIYQwG0VRaPFjC87cOcP8zvOZ3mZ6vo4PjQml7aq2JGYk0r1Gd3Z47sDG0sZk9SWmJzIsYBiBEYG5/tzBxgF3V/ccAbO7mzvRKdG0/qk10anRtK/Snn1e+0y6+HRyZjJjdo7h6I2j1CtdL8f565ep/9jWF6ExoQzdPJTQ2FBUqJjeZjpzOszB2tLaZDWKgkvLTmPJqSUsPLHQuMjqq7VfZUGXBTn+n3c76TYjtozg1xu/AvCa+jW+feVbHGwczFK3EEIIIYQQf5PgOx8k+H646JRoyi4uiwoVaTPTTPqH9fPi/n0YMwY2bTJ837s3rF4NLi5mLUsIIQT/LNBcpWQVIiZFPHJWdHJmsrGtx/mo82y/tJ2Y1BhaVmzJQe+D2NvYF0qNCekJhvP+1Tc7KDqIkJgQMnWZD+yrQoWdtR1p2Wmo3dQc/b+jlLQtWSh1PYm07DTe3f8uy88uB6BVxVasH7ieqk5VzVvYC0yn1/Gz5mc+/OVD7iTfAaBZ+WZ81vUzOlTt8NBj/vfr//jk10/QK3pqu9TGf5A/jco2KsLKhRBCCCGEyEmC73yQ4Pvhjt88TttVbalSsgrX375u7nKeOmfOwNChcPUqWFnBwoXwzjvwBC1WhRBCmFB6djoVv6hIQnqCsWWXoijcSrrF+ajzaKI0nI82fI5IjHjg+Ppl6nNs5DFK2ZUq0rq1ei3h8eE5FpHURGm4m3IXgGpO1Tgx6gTlHMsVaV35tSl0E2N2juF+5n1KFivJyj4rGVh/oLnLeqEoisL+iP28f+B9gmOCAUNrnXmd5jG04dA8te45ev0oI7aMIDI5EhtLGxZ3W8yE5hOeqKe8EEIIIYQQBSXBdz5I8P1wq86tYtSOUXSp3oUD3gfMXc5TQ1Hg669h6lTIzoYqVcDfH156ydyVCSGE+K9pB6ax6OQiarvUprxj+Ucu0ljBsQLqsmoauTVCXVZNr1q9Cm2md0HEpsZyIfYCDV0b4lL82bi16FriNTwDPPk98ncAxjcdz5LuS7CztjNzZc+/sNgwJu2bxMGrBwFwtnVmVrtZTGg+4bEta/4rLi2OkdtHsit8FwB96/RlZZ+Vz8zrUAghhBBCPD8k+M4HCb4fbuahmcw7Po/xTceztPdSc5fzVEhIgJEjYccOw/f9+8PKleDsbN66hBBC5O76vetU/6o6Cv/8l8fKwor6ZerTqGyjHAs1li5e2oyVPr+yddnM/mU2C04sAKCha0P8B/nL2iGF6Oj1o/Tx60NSZhI2lja81eItZrSd8UR3LyiKwjd/fMPUA1PJ0mVRsURF1g9YT9sqbU1YuRBCCCGEEI+W1yzXqghrEs+gywmXAajlUsvMlTwdTp2CYcPg5k2wsYHFi2HCBGltIoQQT7OqTlVZO2Atf97907BYZFk19UrXy/eMV1Fw1pbWzO8yn47VOuK91ZuQmBCarWjGlz2+pEv1Lvkaq0zxMjgWcyykSgtGp9eRlJmEs93TcRV8+8XtDN08lExdJm0qt8G3ny/VnKs98bgqlYpJL02iTeU2DNs8jMsJl+nwcwc+av8R09tMN+nir0IIIYQQQjwpmfGNzPh+lMbLG3M+6jw7hu3g1Tqvmrscs9HrYdEimDULdDqoUQM2boQmTcxdmRBCCPFsiUqJwmerDweuFqyFWnHr4qztv5b+9fqbuLKCCYsNY1jAMIKjg+lYrSM+Hj4MqDfAbOH8T+d+YszOMegVPX3q9MFvoF+htJVJzkxmwp4JrAlaA4C1hTX1ytSTuyjEc0+r17Lq3CrmH59Pdefq/NT3JyqXrGzusoQQQogXirQ6yQcJvnOnKAolFpQgJSuFC29eoF6ZeuYuySyio8HbGw789ff5sGGwfDnIS0UIIYQoGL2i5/OTn7P41GLSstPyfJxOryNdm46FyoIVvVcwusnoQqzy0RRFYdX5Vby1960HHkNx6+IMqDcAHw8fOlXrhKWFZZHUs+jEIqYfmg7AyEYjWfHqCqwsCvcGT1+NL1MCpxCbFpvrz8s7ls8RhKvd1NRyqVXodQlhaoqisO3iNj449AGX4i8ZtzvZOvHDqz8wqP4gM1YnhBBCvFgk+M4HCb5zF5USRbnF5bBQWZA2I+2FvCX84EHw8jKE33Z28M03MGqUtDYRQgghzEGr1zJ+13hWnlsJwPzO85nWehqqIv7FnJSZxPhd49kQsgGALtW7ML/zfPZf2Y9vkC/h8eHGfcs7lsfL3QtvtTcNXRsWSj16Rc/UwKks+W0JANNaT2N+5/lF9rwoisKN+zfQRGnQRP/1EaUhIjEi1/1trWxpXak1q/quolLJSkVSo3hxnLh5gtlHZvNyxZfxVntT26X2E4/5641fmXZwGr/d/g0AFzsXpr48la0XtxoX7h3deDRf9fjqqVoQWQghhHheSfCdDxJ85+7YjWO0W92Oqk5VuTb5mrnLKVJaLcyeDQsWgKJAgwbg72/4LIQQQgjzURSFGYdmGBfKfLflu3zW7TMsVBZFcv7TkacZFjCMq4lXsVRZ8r9O/+P91u8bz68oCn9E/oGvxpcNIRtIzEg0Htu4bGN81D54NvTEzcHNJPVk67J5fefr+Gp8Afi86+e89/J7Jhn7SSVnJhMcE5wjEA+ODiY1OxWAV2q9wi7PXUV+4UI8v27dv0WTFU2IS4szbmtZsSU+Hj4MbTg034u7hsSE8MGhD9gVvgsw3M3xbst3mfLyFEraliRbl82co3OYd2weCgq1XWqzYeAGmpSTfohCCCFEYZLgOx8k+M7dT+d+YvSO0XSt3pVA70Bzl1Nkbt4ET084edLw/dix8MUXULy4eesSQgghxD+WnFrCe4GGgNdH7cOPr/6ItaV1oZ1Pr+j54tQXTD80Ha1eS5WSVdgwcAOtKrV66DGZ2kz2XN6Db5Avu8N3k63PBsBSZUmPmj3w9vCmT50+Be7BnZadxpBNQ9h9eTeWKkt+6vsTPmqfAo1VVPSKnj8i/6D96vZk6bIIGBLAgHoDzF2WeA5kajNpv7o9v0f+jrurO5VKVmL/lf3oFB1g6EP/ap1X8fHwoWetno9cjPXm/ZvM/mU2vhpfFBQsVZaMbTqWD9t9SDnHcg/sf+T6Eby2eBGZHIm1hTULuizg7ZZvF9kFOSGEEOJFI8F3PkjwnbsZh2Yw//h83mj2Bt/3+t7c5RSJbdsMrUwSEw09vH/4AYYMMXdVQgghhMiNr8aXUdtHoVN09K7dG/9B/hS3Nv2V6pjUGP5v2/+x98peAAbWG8iPfX7EydYpz2PEpcXhH+KPb5Avf0T+YdxeolgJBtcfjLeHN22rtM1zUJaYnkjvDb05eeskdlZ2bBq8iV61e+XvgZnRh4c/5H/H/kfFEhUJmxCGg42DuUsSz7gJuyfw/ZnvcbZ15uzYs1RzrkZUShQbgjfgG+TL+ajzxn1d7FwY1nAYPmofmpdvbrzrID4tnvnH5/PtH9+SqcsEYHD9wfyv0/8e2zIlPi2e13e+zraL2wDoUbMHq/uuNtndHUIIIYT4hwTf+SDBd+4GbxrM5gubWdJtCe+0esfc5RSqjAyYOhW+/dbwffPm4OcH1aubty4hhBBCPNrOSzsZsnkIGdoMWldqzU7PnTjbOZts/MPXDuO1xYu7KXextbLly+5fMrbp2Cdqz3Ex7iJrNGtYG7yWm/dvGrdXKVkFLw8vvD28qVO6zkOPj0yKpMe6HoTEhOBk68Quz120rty6wPWYQ3p2Og2+b8C1e9eY0moKn3X7zNwliWfYGs0afLb5oELF7uG76Vmr5wP7BEUHsUazhnXB67ibcte4vY5LHXzUhmMXnljI/cz7AHSo2oGFXRbSokKLPNehKArLzy7nnf3vkKHNwNXelZ/7/UyPmj2e/EEKIYQQwkiC73yQ4Dt3jZY1QhOtYafnTnrX7m3ucgpNeDgMHQrn/5oEMmUKzJ0LNg+/+1EIIYQQT5HjN4/Te31v7mfex93VnX1e+yjvWP6JxtTqtcw5Moe5x+aioFCvdD38B/nj7uZuoqoNbT+O3TjGmqA1bLqwiaTMJOPPmpdvjreHN8MaDqOMfRnj9vD4cLqt6caN+zco71ie/V77C23RzMK25/Ieeq3vhaXKknPjzpn0uRUvDk2UhlYrW5GuTeej9h/xcYePH7m/Tq/j0LVD+Gp82RK2hXRteo6fq93ULOiygO41uhf4AldoTCieAZ4ExwQD8PZLb7OgywKKWRUr0HhCCCGEyEmC73yQ4PtBiqLgON+R1OxUwiaEUbd0XXOXVCjWrIE33oDUVChdGn7+GV55xdxVCSGEECK/gqKD6LG2B3dT7lLVqSoHvA9Qs1TNAo118/5NhgcM58StEwCMaTKGL3t8WShtVP6Wnp3Ojks7WBO0hn1X9hn7EltZWNGzZk+8Pbwp71iefv79iEuLo1apWgR6B1LVqWqh1VQUBm4cyJawLbSu1JpfR/4qPZFFvtzLuEezFc2ISIygR80e7B6+O1+voeTMZALCAlgTtIbkzGQmvzQZT3dPk7wOM7QZvH/gfb754xsAGpVtxIaBG57bv6uEEEKIoiTBdz5I8P2gu8l3Kb+kPBYqC9Jnpj9y8ZdnUWoqTJwIq1cbvu/QAdatg/JPNjlMCCGEEGZ0LfEaXdd0JSIxAld7V/aN2Efjco0feYyiKEQmR6KJ0qCJ1hAUHcT+iP3cy7hHiWIlWNF7BUMbDi2iR2AQkxrDhuANrAlaw9m7Zx/4edNyTdkzYg+u9q5FWldhuHX/FvW+q0dqdior+6xkVONR5i5JPCP0ip5+fv3YGb6Tqk5VOTv2LKXsSpm7rAfsCt/FyO0jiUuLw87Kjo87fMyklyZha2Vr7tKEEEKIZ5YE3/kgwfeDfr3xK+1Xt6eaUzWuTr5q7nJMKjjYsGDlxYtgYQEffQQzZ4KlpbkrE0IIIcSTik6Jpse6HpyPOo+jjSM7PHfQoWoHADK1mVyIvYAmWmMMujXRGhLSEx4Yp0WFFmwYuIHqzuZd8CMsNow1QWtYG7SWW0m36FytM1uHbsWxmKNZ6zKlxScXM+XAFFzsXLg08RIuxV3MXZJ4Bsw7No+Zh2dSzLIYJ0efpEm5JuYu6aHuJt/FZ5sPB68eBKByycrM7TSX4e7D5S4HIYQQogAk+M4HCb4f9NO5nxi9YzTdanRjv9d+c5djEooCP/wAkycbFrMsXx7Wr4f27c1dmRBCCCFM6X7Gffr69eXojaMUsyxG37p9uRB7gYtxF9HqtQ/sb6mypG7puqjLqlG7qWlctjEdqnbA2tLaDNXnTq/oCY8Pp1apWlhaPF9X67N12TRd0ZTgmGBGNx7Nj31+NHdJ4il3IOIA3dd2R0F5Zu4U0Ct6fDW+zDo8i8jkSACalGvCZ10/o1O1TiY5R2xqLFsvbqVSiUq5LvAphBBCPC8k+M4HCb4f9MHBD1hwYgFvNnuT73p9Z+5ynlhSEowdC/7+hu979jT08y5T5tHHCSGEEOLZlKHNYNjmYWy/tD3HdmdbZ2PArXZToy6rpn6Z+tJ2wMxO3DxBm1VtDF+POsHLlV42c0XiaXXz/k2aLG9CfHo8rzd+nR/6/GDukvIlLTuNL3/7kgXHF5CclQxAz5o9WdR1UYEWqs3UZrIrfBe+Qb7subzHeHFvXNNxfNH9C+ys7UxavxBCCPE0kOA7HyT4ftCgjYMICAvgi+5f8HbLt81dzhM5exaGDoWICLCygvnz4d13DW1OhBBCCPH80uq1rDq3ipjUGGPYXbFERVQqlblLE7l4fcfrrDy3Eg83D86OPYuVhZW5SxJPmUxtJm1XteX0ndM0LdeU46OOP7MXrWJTY/nk6CcsO7sMrV6LhcqCkY1G8knHTyjv+OiFhxRF4bfbv+Gr8cU/1J/EjETjz+qVrsfFuIsoKDR0bYjfQD8auDYo7IcjhBBCFCkJvvNBgu8HqZepCYoOYpfnLnrV7mXucgpEUeCbb2DKFMjOhipVwM8PWrY0d2VCCCGEEOK/4tLiqPNtHRLSE1jcbTHvtnrX3CWJp8z4XeNZfnY5pexK8efYP6niVMXcJT2x8PhwPjj0AVvCtgBQ3Lo477V6j6kvT32gl/+1xGusDVqLb5AvVxKuGLdXcKyAt4c33mpv6pepz4GIA3hv9SY6NRo7Kzu+7vk1oxuPlot+QgghnhsSfOeDBN854JRmJQAAIABJREFUKYqCw3wH0rLTuDjhInVK1zF3SfmWkACjRsH2v+5u7t8fVq4EZ2fz1iWEEEIIIR5u5Z8reX3n6zjYOBA2IYyKJSqauyTxlFh9fjUjt49EhYq9I/bSvWZ3c5dkUidunmDqgamcun0KADd7Nz7u8DGD6w9m68WtrAlaw683fjXub29tz8D6A/Hx8KFD1Q4P9P6PTonGZ5sPgRGBAAxpMIQVvVdQ0rZk0T0oIYQQopBI8J0PEnzndCf5DhWWVMBCZUH6zHRsLG3MXVK+nDwJnp5w8ybY2MDixTBhAsgEByGEEEKIp5te0dN2VVtO3jrJwHoD2Txks7lLEk8gPTudkJgQNNEaNFEaNNEa0rLTaOja0NhjX+2mxqW4yyPHOR91nlYrW5GhzeCTDp/wYfsPi+gRFC1FUdgStoXph6bnmNH9NxUqOlfvjI+HD/3r9cfBxuGR4+kVPZ+f/JyZh2ei1Wup5lQNv0F+tKjQorAeghBCCFEkJPjOBwm+czp6/Sgdfu5AdefqREyKMHc5eabXw2efwcyZoNNBzZqwcSM0bmzuyoQQQgghRF4FRQfRZHkTdIqOPcP30LNWT3OXJB5DURQikyMJig4yBtyaaA3h8eHoFf1jj6/gWCHHorMebh7UdqmNpYUliemJNF3RlGv3rtGrVi92eO7AQvV8L9aTpcti+ZnlzDk6h/j0eOqXqc9r6tcY7j68QHdB/Hb7NzwDPLl+7zpWFlbM6zSP915+77l/HoUQQjy/JPjOBwm+c/r7FtPuNbqzz2ufucvJk6wsGDAAdu82fO/pCcuXg6Pjo48TQgghhBBPnymBU1h8ajHVnasT8kYIdtZ2eT5WURSCooPYe2UvzrbOqMuqcXd1x97GvhArfvFcTbzK96e/58+7fxIUHUR8enyu+5UpXiZHqO1g42AIyP8Kx68mXs31OFsrWxq6NiRLl0VQdBDVnatzZswZnO1enN6FqVmpxKXFUblk5Sfuz30v4x5jd45l04VNAHSv0R3f/r642ruaolSzy9Zlsz9iPxfjLjK26VhKFJO/64UQ4nmW1yxXlkoXD7iccBmAmqVqmrmSvJs71xB629kZFrQcNUpamwghhBBCPKs+7vAxfiF+XE28yvzj8/mk4yePPSYiIYINIRtYH7yesLiwHD9ToaJmqZo5Alh1WTWVSlSSBf8KYEPwBsbtGkdyVrJxm6XKkjql6+R4ftVuaso6lH3gOe5fr7/x66TMJIKjg3O0QwmOCSYtO40zd84AhhA8YEjACxV6A9jb2Jvsgo2TrRP+g/zp8mcXJu+bzP6I/aiXqVnbfy2dq3c2yTmKmqIonIs6h6/Gl/XB64lNiwVg6Zml+A30o3mF5mauUAghhLnJjG9kxvd/Ddw4kC1hW/iy+5dMbjnZ3OU81pkz0LKlob2Jvz8MGWLuioQQQgghxJMKuBDAoE2DsLG0IfiNYGq71H5gnzvJd/AP8WdDyAZO3zlt3F7MshjdanQjS5eFJlpDVEpUrudwtnXGw83DGNTWLV0XKwvD3CBFUVBQcnz9959O//7a2c6ZOi51sLa0NunjfxqlZqUyae8kfjr/EwAvV3qZ0Y1Ho3ZT08C1AbZWtiY5j06vIyIxAk2UhguxF2hftT0dqnYwydgCQmJCGLp5KBdiL6BCxQdtPmBOxznG1/7T7nbSbdYFrcM3yJcLsReM213tXbG2sCYyORIrCysWdF7AO63eMXtLF72iJyQmhCxdVr6Oq1yy8nMzI/9pdDf5LiWKlZC7gYR4Rkmrk3yQ4Dsnj6UeBMcEs3v4bl6p9Yq5y3mkjAxo0gTCwmDoUPDzM3dFQgghhBDCFBRFodf6Xuy9spfO1TpzwPsAKpWKhPQEAi4EsCFkA0euHzGG0xYqC7pU74JnQ0/61+1PSduSxrFiUmNy9J7WRGkIiwtDq9eapFYbSxvjgo2NyjaiUdlGeLh54GTrZJLxnwZB0UEM3TyUi3EXUaFiVrtZzG4/+5kJS0VOadlpvL3vbX748wfAcBFj/YD1VHGqYubKcpeSlcLWsK34Bvly6Ooh4797Wytb+tbpi4/ah241upGSlcLrO14nICwAgJ41e7K632qzBcj3M+7Tz78fR64fyfex1hbWTGwxkVntZlHKrpTpi3tB6fQ65h+fz0dHPsLZ1pnZ7Wczvtl4bCxtzF2aECIfJPjOBwm+/6EoCvbz7EnXpnNp4qVcZ9Y8Td5/37CgpZsbhIaCy6MXhBdCCCGEEM+Qq4lXafB9AzK0GbzX6j3C48PZd2Uf2fps4z4vV3oZz4aeDK4/GDcHtzyPnanNJCwuLEcgfjXxKoqiGFtzqFChUqlQ8df3//kaIColiqTMpFzPUdWpao4wXO2mpqpT1WeqvYqiKCw9s5R3979Lpi6Tcg7lWDdgHR2rdTR3acIENoZuZMzOMSRlJuFk68TKPisZUG+AucsCDAHlketH8A3yJeBCAKnZqcaftavSDh8PHwbVH5TjIhcYXrMrzq7g7f1vk6HNoJxDOdYOWEunap2KtP7olGh6rOvB+ajz2FrZ5it81+q13Em+Axja1MxsO5OJLSaa7K6KF9Wd5DuM2DLigQsRNUvVZEHnBQyoN+CZen8W4kUmwXc+SPD9j8ikSCp+URFLlSXpM9Of6ls2T5yAtm1BUWD7dujTx9wVCSGEEEIIU/vfr//jw18+zLHNw82D4Q2HM7ThUKo6VTVPYX9RFIXr965zPuq84SP6PJooDTfu38h1/5LFStLQtSENyjQwfHY1fH4aWxokpicyesdotl7cCsArtV5hdd/VlLEvY+bKhCldS7zGsIBh/BH5BwBvNHuDxd0W52tRWVPS6rWs/HMlc4/N5VbSLeP2mqVq4uPhg5eHF9Wcqz12nODoYIZuHkpYXFiRt3S5mniVbmu6EZEYgau9K/tG7KNxucb5GiMwIpCpB6YSFB0EQJWSVZjbaS6e7p5mb99SmPxD/Pnp/E8MbzgcLw8vLC0sTTLu7vDd/N/2/yMuLQ57a3u+feVbMrWZzD4ym5jUGMBwIXVxt8W0rNjSJOcUQhQeCb7zQYLvfxy5foSOP3ekhnMNrky6Yu5yHio1FRo1gitX4LXXYPVqc1ckhBBCCCEKQ6Y2k17rexGZHMmgeoPwdPekfpn65i7rsRLTE41tVc5HG0Lx0JjQHLPV/6108dL/hOH/CsXN1eLgxM0TDN8ynJv3b2JtYc3CLguZ3HLycx24vciyddnMOjyLRScXAeDu6o7/IH/qlalXZDUoisKu8F1MOzjNuECtk60TwxoMw0ftQ8uKLfM9G9ccLV2CooPovrY7USlRVHOqRqB3IDVL1SzQWDq9jjVBa5h1eBaRyZEANC3XlM+6fvbc3XWRkpXCpL2TWHV+lXGbu6s7C7sspEfNHgWeiZ2ly+KDgx+w5LclADQq2wj/Qf7Gu9uTM5NZdGIRi08tJl2bDsDg+oOZ33k+NUrVeMJHJYQoLBJ854ME3//48c8fGbNzDD1q9mDviL3mLueh3noLvv0WKlaE4GBwen7aJwohhBBCiOdUli6Li3EXCYkJITQmlJBYw+eriVeNPYv/q5xDOWq71MbG0uaBFiz//vq/7VicbJ1oXLYxTco1oVHZRg+0g3gYnV7HwhMLmf3LbHSKjhrONfAb5Eez8s1M8AyIp93+K/vx2eZDTGoMdlZ2fNPzG0Y1HlXo7R9OR55m6oGpHL1xFAAXOxdmt5/NuKbjKGZV7InH9w/xZ+yusYXe0uXYjWO8uuFV7mfex8PNg30j9lHOsdwTj5uWncaXv33JguMLSM5KBqBXrV4s7LKQBq4Nnnh8czt39xzDAoYRHh+OhcqCYQ2HsTt8N/cz7wPQsWpHFnVdlO/3oSsJVxi2eRhn754FYFKLSSzquijX11RkUiQf/vIhq8+vRkHB2sKaCc0nMKvdLFyKS09VIZ42EnzngwTf/5h2YBqLTi5iYvOJfPPKN+YuJ1eHDkGXLoav9++Hbt3MW48QQgghhBBPIi07jbDYMEMgHhtKaGwoITEh3Lx/02TnqOFcgyblmhg/Gpdt/EDLkrvJd/Ha6sXha4cBGO4+nKW9llKi2Iv9N9KLJiolCp+tPhy4egCAoQ2Gsrz38jxfPMmPa4nXmHF4Bn4hfoBhscq3X3qb6W2mm/x8VxOv4hngWWgtXXZe2smQzUPI0GbQpnIbdnruNPkCt7GpsXxy9BOWnV2GVq/FQmXBqEaj+KTjJyYJ2Iuaoih89ftXTDs4jSxdFhUcK7BuwDraV21PQnoC847N45s/viFLlwUYXotzO83N00zs9cHrGbdrHClZKZSyK8WqvqvoU+fx/VE1URreP/g+gRGBgOGug1ltZzGxxUSTXIQRQpiGBN/5IMH3Pwb4D2Drxa181eMrJr00ydzlPCApCdzd4eZNGD8eli41d0VCCCGEEEIUjqTMJC7EXuBa4jV0ig4wBEV/zw7/++u//6T7+2sFhbvJdzkXdY4/7/750H7jlUpUonG5xjQp2wQ3Bzdm/zKb2LRYilsX57tXvuM19Wuy0NsLSq/o+ezEZ8w8PBOdoqOaUzX8BvnRokILk4yfkJ7A3F/n8u3pb8nSZaFChbfam087fkrlkpVNco7cZOmymHV4Fp+d/AwwtNJYP3A9DV0bPtG4P5//mdE7RqNTdPSu3Rv/Qf4Uty5uipJzFR4fzgeHPmBL2BYAilsXZ0qrKYxtOpbyjuWfiX+3MakxjNw+kj2X9wDQt05fVvZZ+cDs6hv3bvDhLx+yNmitcSb2+Gbj+bDdh7muN5Calcpbe98ytkxpW7kt6weup2KJivmq77891qs6VWVep3n0qdMHexv7gjxk8QKJS4tDr+ifyvU7nhcSfOeDBN//8FjqQXBMMHuG76FnrZ7mLucBr78OK1dCtWoQFAQODuauSAghhBBCiKdbfFq8MQT/+3N4fHiu+3q4eeA/yJ+6pesWcZXiaXTq1ik8Azy5cf8GVhZWzOs0j/defq/Avd4ztBl8+8e3zD02l3sZ9wDoUr0Li7osyvfij09i/5X9eG/1JjYtFoD2Vdrjo/ZhUP1B+b7DYfHJxUw5MAUAH7UPP776I9aW1iavOTcnbp5g6oGpnLp9yrjNxc4FdVk1ajfDh4ebB/XL1H+qZisfvHoQ763eRKVEUcyyGEu6L+GNZm88MrDXRGmYdnAa+yP2A+Bo48i01tN4u+XbxiBaE6Vh6OahXIq/hIXKgg/bfcisdrMKvKCpTq/DV+PLrF9mcSf5DmBoL1WzVE3UZdV4uHrg4Wb4qOpU9Zm44CAK3y/XfqGvX18ytBlMbDGRWe1mmW29jueZBN/5IMG3gV7R4zDPgXRtOuETw6nlUsvcJeWwZw/06gUqFRw5Au3ambsiIYQQQgghnk1JmUloojTGIDwsLoz2VdrzScdPsLWyNXd54ilyL+MeY3eOZdOFTQB0r9Ed3/6++ZrJqFf0+IX4MePQDOMdCO6u7izquojuNbqbJTCMSoli3K5x7Ly003gXha2VLf3r9sdH7UOX6l0eGZgqisL0g9ONC4K+1+o9FnVdVOQLwCqKwpawLcw7Pg9NlMZ4d8i/WVlYUbd0XWMY/ncw7ubgVqS1Zuuy+fCXD1l0YhEKCvXL1MdvoB/ubu55HuPQ1UO8f/B9/rz7J2BYB+HjDh+TpctiSuAUMnWZlHcsz7oB6+hQtYNJ6k7NSuWL377g+9Pfczflbq77ONo4GkNwDzcP1G5qGro2xLGYo0lqEM+GLWFb8AzwNLbnAUO7nJltZzKxxUT5/WpCEnzngwTfBreTblPpi0pYqixJn5leZFep8yIhARo2hLt34Z13YMkSc1ckhBBCCCGEEC8GRVH44c8fmLxvMhnaDIpbF8/XzOgsXRYJ6QkAlHcsz/86/g8ftQ+WFpaFVXKe3bx/k3VB6/AN8uVi3EXj9rIOZRnhPgIftQ8ebh45jtHqtYzbOY6fzv8EwMIuC5n68lSzz/jN0GYQGhOKJlqDJkpj+BytMc6u/6/yjuUZWG8gPmofmpZrWqj1RyREMHzLcGOP9XFNx7Gk+5ICtYTRK3r8Q/yZeXgm1+5dy/Gz3rV7s6rvKkoXL22Suv8rOiWa4JhgNFEagmKCCIoO4kLshRxB579Vd67+wAUHmR1uGrGpsby5500iEiJwd3PPcZdDbm1wCtsPZ39g/O7x6BU9/ev2Z1TjUcw4NIPgmGAAqpSswtxOc/F09yzyC2TPIwm+80GCb4Nfrv1CJ99O1CxVk8tvXTZ3OTmMGAHr10OdOnDuHNiZZv0RIYQQQgghhBB5FBITwrDNwwiNDc33sQ42DkxvPZ13Wr1TqP2vC0pRFM7cOYOvxpcNIRuIT483/kztpsZH7cNw9+E42TrhGeDJtovbsFBZ8MOrPzCq8SgzVv5oiqJwO+n2A2H45fjLxpnuAHVL18XHwwcvDy8qlaxk0hrWB69n/K7xJGcl42TrxI+v/sjA+gOfeNxMbSbLzizj018/JSkzic+6fsaklyYVeaicrcsmPD4cTbSGoOgg40dkcmSu+5coVsI4K/zvoNbdzf2p/HfxtLpx7wbd1nZ7aNuucg7ljBca/n6u65SuU+C2N4+iKAoLji9gxuEZALze+HWW9V6GpYVlru1ympZrymddP6NjtY4mr+VFIsF3PkjwbfDD2R8Yu2ssPWv2ZM+IPeYuxyggAAYNAgsLOHkSXnrJ3BUJIYQQQgghxItJq9dyMe4iOv2DLTUepapTVUraliykqkwrS5fFviv78NX4sjN8p3E2r4XKgoolKnLz/k2KWRbDb5Af/er2M3O1BZOalcqxm8dYE7SGrWFbSdemA4Ye1h2rdcTHw4cB9QYUqFVHli6Li3EX0URp2HV5FxtDNwLQpnIb1g1YZ/IFTNOy00jLTiu0Wd4FFZcWR1B0UI4LDg+bHa5CRS2XWoYWNPb5a0FjobIwHuvh5vHM/DsrqNCYULqv7U5kciSVS1Zmfuf5XEm4YrzwcCXhSq7HFbMsRv0y9WlUthE+ah+TtMLRK3qmBE7hi9++AOCDNh8wt9PcBy6+pGWn8cWpL1h4YiHJWckA9KrVi0VdF1G/TP0nruNFJMF3PkjwbfD+gff57ORnvNXiLb7u+bW5ywEgJgYaNIC4OJgxA+bONXdFQgghhBBCCCFeFAnpCWwM3Yivxte4iKSjjSM7PHeYrIe0uSVlJhFwIQDfIF+OXD9i3F7cujgD6g3A28ObztU659qaJi4tLkewq4kyhLvZ+mzjPqZYaPJ5ka3LNlwU+M8M/JjUGJOdo6pT1RwzytVl1VR3rv5ctNc4desUvdb3IjEjkfpl6hPoFUiFEhVy7JOSlUJwdLDhosNfz29QdBApWSk59nvS4Dlbl83oHaNZE7QGgCXdlvBOq3ceeUxMagyfHP2E5WeXo9VrsVBZMLrxaOZ0mEM5x3IFquNFJcF3PkjwbdDfvz/bLm7j6x5f89ZLb5m7HBTFMNN7yxZwd4fTp6HY07MQtRBCCCGEEEKIF8jl+MvsCt9Fj5o9qFemnrnLKRQ37t1gbdBafIN8c7SRKO9YnhHuI1C7qQ09rv8KE/9u3/Bf/27n4eXhRcuKLYvqITyTolKiDH3Do4OMM4LzKlObyYW4C2iiNNxKupXrPg42Dri7uhuD8JYVW9KobCNTlF5k9l7ey6BNg0jLTqNVxVbsGr6LUnal8nSsXtFz/d51NFEa9kfsZ+W5lU8UPKdlpzFk0xB2X96NpcqSn/r+hI/aJ8/Hh8eH88GhD9gStgUwXGSa0moKoxqPonLJytIDPg8k+M4HCb4N3Je6ExITwt4Re+lRs4e5y2HdOvDyAisrQ+jd6Nl6TxZCCCGEEEIIIZ5JiqLwR+Qf+Gp88Qv1My5OmpsazjWM/ZT/DlarlKwi4Z0ZJKQnPNBeJTQmlExd5gP7PkutNtYFreP/tv8fWr2WnjV7smnwJuxt7As83n+DZ3tre6a8PIUpL0/Bwcbhkccmpify6oZXOXHrBHZWdmwavIletXsVqI4TN08w5cAUfrv9m3FbyWIl/5mx/9e/qwauDaQH/H9I8J0PEnwbrn7Zz7MnQ5vB5bcuU7NUTbPWExkJDRvCvXvw6acwa5ZZyxFCCCGEEEIIIV5ImdpM9lzew7rgdUSlRNHQtaExlHN3dS9QH3BRdLR6rWHxzb/C8PNR5zl07dAz02rj69+/ZvK+yQCMcB/Bqr6rsLa0NsnY/w2e3ezdmNNhDqObjM61Lc+d5Dv0WNuD4JhgnGyd2OW5i9aVWz9RDYqiEBAWwMITC9FEaXK0CfqbhcqCWqVqoS6rxsPVwxiIVyxR8YW9wCTBdz5I8A237t+i8peVsbKwIn1muln7bt28aWhxcvo0NGsGp04ZZn0LIYQQQgghhBBCiCfzsFYbU1tPfeyM56KiKAof/vIhc48ZFnub/NJklnRfYvJe5X8Hz9MPTiciMQKAeqXrsbDLQnrX7m0Mlq8kXKHrmq5cv3edcg7l2O+1H3c3d5PW8u+FYf/dNz82LTbX/Z1tnZnbaS5vNH/DpHU8CyT4zgcJvuHwtcN09u1MrVK1CH8r/PEHFJLt22HkSEhMBCcnOHEC6j/9d90IIYQQQgghhBBCPFPyO+O5qOj0Ot7c/SYr/lwBwNxOc/mgzQeFOrs5S5fFsjPL+OToJ8SnxwPQvkp7Pu/2OZYqS3qs60FMagw1S9Uk0CuQas7VCq2Wf1MUhejU6BxheFB0EGGxYegUHWv7r2WEx4giqeVpIsF3PkjwDSvOrmDcrnG8UusVdg/fXeTnz8yEadPgq68M3zdvDv7+UK1o3keEEEIIIYQQQgghXjh5nfFcVDK1mYzYMoKAsAAsVBYs7bWUsU3HFtn572fcZ8HxBXz5+5dkaDMAsLWyJUObQeOyjdk7Yi9uDm5FVs/DZGozuRB7gcolK+NS3MXc5RS5vGa5pr0/QDyzLsdfBqCmc9H39o6IgNat/wm9330Xjh+X0FsIIYQQQgghhBCiMKlUKgbVH8SFCf/f3r0HRXXefxz/LLuwQIT1yiIRKORiUCICVjRYNWkkv0STsZOLUYN2ptMmHW/EJvWaBhMr1UwyaUJFbTupY0M1k8ZOMo20tFIMMUaHileiiTHiDVGju4IKkT2/P6g73WoiRuDA2fdrZoc9z57lfM8M3+P64eE5e/Xr//u1ekX0UvWpaj209iHdvfpubTu6rcNq8TZ69UDxA/pz9Z8VZg/TW4+81aGhtyS5wl0quLdA+6bv05S0KbLJpouXLmr0d0arbGpZpwi9JcnpcCq9b3pQht7Xg+AbkqRPv2wJvm/rdVuHHvett6SMDKmyUurZU3rvPenll6WwsA4tAwAAAAAAIGiF2cM0M2umDsw8oLnZcxXuCFf5oXIN/d1QTfzzRFUeq1TjpcZ2OXazr1l76vbo7tV3a+PBjeoW1k0bJm/QwwMebpfjtUaCK0Grx6/W9ie363cP/k4bJm+QK9xlWj34dljqRCx1Ikmpy1O15+QelUwu0X233tfux7twoWVm94oVLdvZ2dKf/iTFx7f7oQEAAAAAAPANajw1eq7sOa3ZsUaGWqJDR4hDKb1TlBabpjT3fx6xaYq5KabV39fb6NXOEzsD1qzeXbdb5786L0nqE9lHGyZvUGZcZrucF6yBNb6vQ7AH3z7Dp5uW3KSLly7qsxmf6Zaet7Tr8T75RJowQdq5U7LZpHnzpEWLJId5900AAAAAAADA/9h+fLvyy/O16dAmnb149qr7xHaLDQjC09xpur3X7TrsPRwQcO+o3aGDZw9e9XtEOCI0rN8wrRi3Qrf3ur09TwkWQPB9HYI9+K7x1Cjx1UQ5Qhy6sOBCu965d80a6ac/lRoapJiYlu2cnHY7HAAAAAAAAG6QYRhXDbI/+/Iz/4zw1uoX3e+KoPzWnrfKHmJvp+phNa3NcpljC3325WeSpOQeye0Wejc0SNOnS3/4Q8v23XdLb74p9e3bLocDAAAAAABAG7HZbEpwJSjBlaAH+z/oH69vqtfuut0BgfjOEztV31Qvp92pgTEDleZO0yD3IP9XbsiIjkLwDX16+j83tuzZPje2/PBD6cc/lqqrpZAQ6fnnpQULJDu/yAMAAAAAAOiyuoV107B+wzSs3zD/mM/w6UT9CfWO7K1Qe6iJ1SHYEXxDn37ZEnzf2vPWNv2++/dLc+dK69e3bPftKxUXS6NHt+lhAAAAAAAA0EmE2ELUN4o/8Yf5QswuAOa7HHy31YzvkyelGTOkgQNbQu+QkJYZ3zt2EHoDAAAAAAAAaH/M+IZ/je/bet1Y8H3hgvTqq9KvfiV5vS1jY8dKS5e2hOAAAAAAAAAA0BEIvoOcz/DpwJcHJH37pU58PmnNGmnhQunIkZaxjAzppZeke+5pq0oBAAAAAAAAoHUIvoPcYc9hNTY3KjQkVAmuhOt+/z/+IT37rFRV1bKdkCAtWSJNnNiyxAkAAAAAAAAAdDSC7yB3eZmT5B7JcoS0/sdh1y7p5z+XSkpatl0uaf58aeZMKTy8PSoFAAAAAAAAgNaxzJzc5cuXKykpSeHh4crMzNQHH3xgdkldgv/GltdY3/vsWam8XHrtNenxx6XBg1tC79BQadYs6cCBliCc0BsAAAAAAACA2Swx43vdunXKy8vT8uXLlZ2drZUrV+r+++/X3r17lZBw/ct3BJNPT7cE37f2aFnf2+eTDh6UduxoWb5kx46Wx6FDV7730UelggLplls6smIAAAAAAAAA+GY2wzAMs4u4UVlZWcrIyFBRUZF/LCUlRePHj1dBQcE13+/1euVyueTxeBQdHd2epXYqhiGNXPyMKrZ6NTJ8hi4du1M7d0r19VffPzFRSktrme09dqw0dGjH1gsAAAAAAAAguLU2y+3yM76bmppUWVmpuXPnBozn5ORo8+bNV31PY2OjGhsb/dter7dda+zMPlo2X6rvqU3/NeZ0SgNl9TXyAAAO3UlEQVQHtgTcaWktj0GDpB49TCsTAAAAAAAAAFqtywffp06dUnNzs9xud8C42+1WbW3tVd9TUFCgRYsWdUR5nZrNJvVL+0SnvzQ06d5UjcxyafBgqX9/ydHlfzIAAAAAAAAABCvLxJs2my1g2zCMK8YumzdvnmbPnu3f9nq9io+Pb9f6OqsvKu4yuwQAAAAAAAAAaFNdPvju3bu37Hb7FbO76+rqrpgFfpnT6ZTT6eyI8gAAAAAAAAAAHSzE7AJuVFhYmDIzM1VaWhowXlpaqrvuYjYzAAAAAAAAAASbLj/jW5Jmz56t3NxcDRkyRMOHD9eqVatUU1Ojp556yuzSAAAAAAAAAAAdzBLB94QJE3T69Gm98MILOn78uFJTU/X+++8rMTHR7NIAAAAAAAAAAB3MZhiGYXYRZvN6vXK5XPJ4PIqOjja7HAAAAAAAAADAVbQ2y+3ya3wDAAAAAAAAAPDfCL4BAAAAAAAAAJZC8A0AAAAAAAAAsBSCbwAAAAAAAACApRB8AwAAAAAAAAAsheAbAAAAAAAAAGApBN8AAAAAAAAAAEsh+AYAAAAAAAAAWArBNwAAAAAAAADAUgi+AQAAAAAAAACWQvANAAAAAAAAALAUgm8AAAAAAAAAgKUQfAMAAAAAAAAALIXgGwAAAAAAAABgKQTfAAAAAAAAAABLIfgGAAAAAAAAAFgKwTcAAAAAAAAAwFIIvgEAAAAAAAAAlkLwDQAAAAAAAACwFIJvAAAAAAAAAIClEHwDAAAAAAAAACyF4BsAAAAAAAAAYCkE3wAAAAAAAAAASyH4BgAAAAAAAABYCsE3AAAAAAAAAMBSCL4BAAAAAAAAAJZC8A0AAAAAAAAAsBSH2QV0BoZhSJK8Xq/JlQAAAAAAAAAAvs7lDPdypvt1CL4lnTt3TpIUHx9vciUAAAAAAAAAgGs5d+6cXC7X175uM64VjQcBn8+nY8eOKSoqSjabzexyOpTX61V8fLwOHz6s6Ohos8sB0AHoeyC40PNA8KHvgeBD3wPBJdh73jAMnTt3TnFxcQoJ+fqVvJnxLSkkJET9+vUzuwxTRUdHB2WjAMGMvgeCCz0PBB/6Hgg+9D0QXIK5579ppvdl3NwSAAAAAAAAAGApBN8AAAAAAAAAAEux5+fn55tdBMxlt9s1evRoORysfAMEC/oeCC70PBB86Hsg+ND3QHCh56+Nm1sCAAAAAAAAACyFpU4AAAAAAAAAAJZC8A0AAAAAAAAAsBSCbwAAAAAAAACApRB8AwAAAAAAAAAsheA7yC1fvlxJSUkKDw9XZmamPvjgA7NLAtAGCgoK9N3vfldRUVGKiYnR+PHjtW/fvoB9GhsbNWPGDPXu3Vs33XSTHnroIR05csSkigG0pYKCAtlsNuXl5fnH6HnAeo4ePaonnnhCvXr1UmRkpAYPHqzKykr/64ZhKD8/X3FxcYqIiNDo0aO1Z88eEysGcCMuXbqkhQsXKikpSREREUpOTtYLL7wgn8/n34e+B7q2TZs26cEHH1RcXJxsNpv+8pe/BLzemh4/c+aMcnNz5XK55HK5lJubq7Nnz3bkaXQaBN9BbN26dcrLy9OCBQu0fft2fe9739P999+vmpoas0sDcIPKy8s1bdo0bdmyRaWlpbp06ZJycnLU0NDg3ycvL0/r16/X2rVrVVFRofr6eo0bN07Nzc0mVg7gRm3btk2rVq3SoEGDAsbpecBazpw5o+zsbIWGhmrDhg3au3evXn75ZXXv3t2/z7Jly/TKK6+osLBQ27ZtU2xsrMaMGaNz586ZWDmAb2vp0qVasWKFCgsLVV1drWXLlumll17S66+/7t+Hvge6toaGBqWlpamwsPCqr7emxydNmqSqqiqVlJSopKREVVVVys3N7ahT6FRshmEYZhcBc2RlZSkjI0NFRUX+sZSUFI0fP14FBQUmVgagrZ08eVIxMTEqLy/XyJEj5fF41KdPH61Zs0YTJkyQJB07dkzx8fF6//33dd9995lcMYBvo76+XhkZGVq+fLkWL16swYMH69VXX6XnAQuaO3euPvzww6/9i03DMBQXF6e8vDzNmTNHUstffrjdbi1dulRPPvlkR5YLoA2MGzdObrdbv//97/1jDz/8sCIjI7VmzRr6HrAYm82m9evXa/z48ZJa9297dXW1BgwYoC1btigrK0uStGXLFg0fPlyffPKJ+vfvb9r5mIEZ30GqqalJlZWVysnJCRjPycnR5s2bTaoKQHvxeDySpJ49e0qSKisr9dVXXwVcA+Li4pSamso1AOjCpk2bprFjx+ree+8NGKfnAet59913NWTIED366KOKiYlRenq6fvvb3/pfP3jwoGprawP63ul0atSoUfQ90EWNGDFC//znP7V//35J0o4dO1RRUaEHHnhAEn0PWF1revyjjz6Sy+Xyh96SNGzYMLlcrqC8DjjMLgDmOHXqlJqbm+V2uwPG3W63amtrTaoKQHswDEOzZ8/WiBEjlJqaKkmqra1VWFiYevToEbAv1wCg61q7dq3+/e9/a9u2bVe8Rs8D1vP555+rqKhIs2fP1vz587V161bNnDlTTqdTU6ZM8ff21T7vHzp0yIySAdygOXPmyOPx6I477pDdbldzc7N++ctfauLEiZJE3wMW15oer62tVUxMzBXvjYmJCcrP/QTfQc5mswVsG4ZxxRiArm369OnauXOnKioqrrkv1wCgazp8+LBmzZqlv//97woPD2/1++h5oOvy+XwaMmSIlixZIklKT0/Xnj17VFRUpClTpvj34/M+YB3r1q3TH//4RxUXF2vgwIGqqqpSXl6e4uLiNHXqVP9+9D1gbdfq8av1e7BeB1jqJEj17t1bdrv9it/21NXVXfGbIwBd14wZM/Tuu++qrKxM/fr184/HxsaqqalJZ86cCdifawDQNVVWVqqurk6ZmZlyOBxyOBwqLy/Xa6+9JofDIbfbTc8DFtO3b18NGDAgYCwlJcV/o/rY2FhJ4vM+YCHPPvus5s6dq8cff1x33nmncnNz9fTTT/vv0UXfA9bWmh6PjY3ViRMnrnjvyZMng/I6QPAdpMLCwpSZmanS0tKA8dLSUt11110mVQWgrRiGoenTp+udd97Rxo0blZSUFPB6ZmamQkNDA64Bx48f1+7du7kGAF3Q97//fe3atUtVVVX+x5AhQzR58mT/c3oesJbs7Gzt27cvYGz//v1KTEyUJCUlJSk2Njag75uamlReXk7fA13U+fPnFRISGOPY7Xb5fD5J9D1gda3p8eHDh8vj8Wjr1q3+fT7++GN5PJ6gvA7Y8/Pz880uAuaIjo7Wc889p5tvvlnh4eFasmSJysrK9MYbb6h79+5mlwfgBkybNk1vvvmm3n77bcXFxam+vl719fWy2+0KDQ1VeHi4jh07psLCQqWlpcnj8eipp55SVFSUli5desUHagCdm9PpVExMTMCjuLhYycnJmjJlCj0PWFBCQoIWLVokh8Ohvn37qqSkRPn5+XrxxRc1aNAg2Ww2NTc3q6CgQP3791dzc7N+9rOf6ejRo1q1apWcTqfZpwDgOlVXV2v16tXq37+/wsLCVFZWpvnz52vSpEkaM2YMfQ9YQH19vfbu3ava2lqtXLlSWVlZioiIUFNTk7p3737NHu/Tp48+/vhjFRcXKz09XUeOHNFPfvITDR06VDNmzDD79DqegaD2m9/8xkhMTDTCwsKMjIwMo7y83OySALQBSVd9vPHGG/59Lly4YEyfPt3o2bOnERERYYwbN86oqakxr2gAbWrUqFHGrFmz/Nv0PGA97733npGammo4nU7jjjvuMFatWhXwus/nM55//nkjNjbWcDqdxsiRI41du3aZVC2AG+X1eo1Zs2YZCQkJRnh4uJGcnGwsWLDAaGxs9O9D3wNdW1lZ2VX/Lz916lTDMFrX46dPnzYmT55sREVFGVFRUcbkyZONM2fOmHA25rMZhmGYlLkDAAAAAAAAANDm+LtWAAAAAAAAAIClEHwDAAAAAAAAACyF4BsAAAAAAAAAYCkE3wAAAAAAAAAASyH4BgAAAAAAAABYCsE3AAAAAAAAAMBSCL4BAAAAAAAAAJZC8A0AAAAAAAAAsBSCbwAAAKCL+uKLL2Sz2VRVVWV2KQAAAECnQvANAAAAdEI2m+0bHz/84Q8VHx+v48ePKzU11exyAQAAgE7FZhiGYXYRAAAAAALV1tb6n69bt06/+MUvtG/fPv9YRESEXC6XGaUBAAAAnR4zvgEAAIBOKDY21v9wuVyy2WxXjP3vUif/+te/ZLPZ9Le//U3p6emKiIjQPffco7q6Om3YsEEpKSmKjo7WxIkTdf78ef+xDMPQsmXLlJycrIiICKWlpentt98269QBAACAG+YwuwAAAAAAbSs/P1+FhYWKjIzUY489pscee0xOp1PFxcWqr6/XD37wA73++uuaM2eOJGnhwoV65513VFRUpNtuu02bNm3SE088oT59+mjUqFEmnw0AAABw/Qi+AQAAAItZvHixsrOzJUk/+tGPNG/ePB04cEDJycmSpEceeURlZWWaM2eOGhoa9Morr2jjxo0aPny4JCk5OVkVFRVauXIlwTcAAAC6JIJvAAAAwGIGDRrkf+52uxUZGekPvS+Pbd26VZK0d+9eXbx4UWPGjAn4Hk1NTUpPT++YggEAAIA2RvANAAAAWExoaKj/uc1mC9i+PObz+STJ//Wvf/2rbr755oD9nE5nO1cKAAAAtA+CbwAAACCIDRgwQE6nUzU1NSxrAgAAAMsg+AYAAACCWFRUlJ555hk9/fTT8vl8GjFihLxerzZv3qxu3bpp6tSpZpcIAAAAXDeCbwAAACDIvfjii4qJiVFBQYE+//xzde/eXRkZGZo/f77ZpQEAAADfis0wDMPsIgAAAAAAAAAAaCshZhcAAAAAAAAAAEBbIvgGAAAAAAAAAFgKwTcAAAAAAAAAwFIIvgEAAAAAAAAAlkLwDQAAAAAAAACwFIJvAAAAAAAAAIClEHwDAAAAAAAAACyF4BsAAAAAAAAAYCkE3wAAAAAAAAAASyH4BgAAAAAAAABYCsE3AAAAAAAAAMBS/h9qhDDUj2EAhAAAAABJRU5ErkJggg==\n", "text/plain": [ "
                                        " ] @@ -7616,7 +10903,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/examples/ResultsManagement/basic-results-management.ipynb b/examples/ResultsManagement/basic-results-management.ipynb new file mode 100644 index 000000000..87efc3d13 --- /dev/null +++ b/examples/ResultsManagement/basic-results-management.ipynb @@ -0,0 +1,5494 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic Results Management" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "import numpy\n", + "import matplotlib.pyplot as plt\n", + "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../../')))\n", + "import gillespy2.core.gillespySolver\n", + "import gillespy2\n", + "from gillespy2.core.gillespyError import SolverError, DirectoryError, BuildError, ExecutionError\n", + "from gillespy2.solvers.numpy.basic_tau_hybrid_solver import BasicTauHybridSolver" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Instantiation\n", + "\n", + "Model must include rates, species, and reactions" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import gillespy2\n", + "class MichaelisMenten(gillespy2.Model):\n", + " def __init__(self, parameter_values=None):\n", + " #initialize Model\n", + " gillespy2.Model.__init__(self, name=\"Michaelis_Menten\")\n", + " \n", + " #parameters\n", + " rate1 = gillespy2.Parameter(name='rate1', expression= 0.0017)\n", + " rate2 = gillespy2.Parameter(name='rate2', expression= 0.5)\n", + " rate3 = gillespy2.Parameter(name='rate3', expression = 0.1)\n", + " self.add_parameter([rate1,rate2,rate3])\n", + " \n", + " #Species\n", + " A = gillespy2.Species(name='A', initial_value=301)\n", + " B = gillespy2.Species(name='B', initial_value=120)\n", + " C = gillespy2.Species(name='C', initial_value=0)\n", + " D = gillespy2.Species(name='D', initial_value=0)\n", + " self.add_species([A, B, C, D])\n", + " \n", + " #reactions\n", + " r1 = gillespy2.Reaction(name=\"r1\",reactants={A:1,B:1}, products={C:1},\n", + " rate=rate1)\n", + " \n", + " r2 = gillespy2.Reaction(name=\"r2\",reactants={C:1}, products={A:1,B:1},\n", + " rate=rate2)\n", + " \n", + " r3 = gillespy2.Reaction(name=\"r3\",reactants={C:1}, products={B:1,D:1},\n", + " rate=rate3)\n", + " self.add_reaction([r1,r2,r3])\n", + " self.timespan(numpy.linspace(0,100,101))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "model = MichaelisMenten()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating A Results Object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Results object using model.run():" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.85 s, sys: 11.3 ms, total: 7.86 s\n", + "Wall time: 7.86 s\n" + ] + } + ], + "source": [ + "%time results = model.run(solver=BasicTauHybridSolver(),number_of_trajectories=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create a Results object using Results.average_ensemble() and Results.stddev_ensemble() methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "results_avg = results.average_ensemble()\n", + "results_stddev = results.stddev_ensemble()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accessing Data In A Results Object\n", + "\n", + "Trajectory data is stored in Results.data, a list of Trajectory objects. Attributes of the first Trajectory can be accessed directly, but a warning will occur if there are more than one Trajectory objects in the list." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BasicTauHybridSolver\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/jdreeve/Projects/GillesPy2/gillespy2/core/results.py:133: UserWarning: Results is of type list. Use results[i]['species'] instead of results['species'] \n", + " warnings.warn(\"Results is of type list. Use results[i]['species'] instead of results['species'] \")\n" + ] + } + ], + "source": [ + "import warnings\n", + "print(results.solver_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combining Results Objects\n", + "\n", + "If two Results objects are created from equivalent models, their Trajectory lists can be combined using the + operator." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 5.02 s, sys: 3.95 ms, total: 5.03 s\n", + "Wall time: 5.03 s\n", + "Number of trajectories in results3: 5\n" + ] + } + ], + "source": [ + "%time results2 = model.run(solver=BasicTauHybridSolver(),number_of_trajectories=2)\n", + "results3 = results + results2\n", + "print(\"Number of trajectories in results3: \",len(results3.data))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Displaying Results\n", + "\n", + "Results objects offer methods for displaying results and standard deviation range using matplotlib and plotplotly." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "linkText": "Export to plot.ly", + "plotlyServerURL": "https://plot.ly", + "showLink": false + }, + "data": [ + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 267, + 249, + 237, + 229.99847418498177, + 232.98805557091544, + 229.8265910832853, + 236.5452948510298, + 232.5452948510298, + 222.52785548051068, + 213.52785548051068, + 208.52785548051068, + 207.52785548051068, + 206.52785548051068, + 200.49716832322406, + 200.39166172165423, + 199.3191532719558, + 200.19217787542712, + 186.19217787542712, + 187.1277648491088, + 189.9959535540759, + 177.9959535540759, + 175.92093789089768, + 177.92093789089768, + 168.92093789089768, + 163.92093789089768, + 160.89328572138973, + 165.89328572138973, + 159.88297327973066, + 151.88297327973066, + 145.88297327973066, + 139.91755636742644, + 139.91755636742644, + 128.9755952322856, + 129.9755952322856, + 130.9755952322856, + 130.9755952322856, + 130.9755952322856, + 122.9707935982804, + 120.9707935982804, + 114.00141429808829, + 115.00141429808829, + 116.94266746515152, + 109.94266746515152, + 106.94266746515152, + 105.94266746515152, + 98.94266746515152, + 96.98953991267597, + 90.98953991267597, + 89.12441904989612, + 93.99474142313746, + 91.99474142313746, + 95.99474142313746, + 86.99474142313746, + 82.99474142313746, + 89, + 85, + 82, + 77.00701141192927, + 74.00236085785077, + 70.02338176521664, + 76, + 72, + 73, + 69, + 72, + 68, + 67, + 62, + 60, + 57, + 59, + 62, + 61, + 57.980426162420116, + 56, + 53.99840427644256, + 49, + 51, + 50, + 50, + 45, + 44, + 41, + 42, + 44, + 35, + 36.03101757851412, + 35, + 32, + 36, + 36, + 30, + 30, + 31, + 32.01450146747232, + 33, + 30, + 30, + 33, + 29 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 88, + 73, + 71, + 67.04485160642425, + 74.99594670119774, + 74.9382643221452, + 84.71649834705617, + 85.71649834705617, + 79.70591135042321, + 71, + 73, + 78, + 79, + 74.00872815041056, + 75.97744244251375, + 75.98011987803105, + 80.91679846277202, + 72, + 78.96725237557271, + 82.87412459553661, + 74, + 75.00826814493706, + 80, + 77, + 77, + 75.0193128375904, + 84, + 82.99330197645777, + 77, + 73, + 70.08274162645365, + 76, + 69.11100580467665, + 72, + 77, + 77, + 80, + 76.07837494112891, + 76, + 75.11791127059621, + 77, + 82.97011973946404, + 79, + 79, + 80, + 75, + 75.1080271252122, + 70, + 73.21871059588989, + 79.01194311538413, + 78, + 85, + 78, + 78, + 87, + 85, + 84, + 80.0550519923936, + 80.02287920427011, + 77.04919161530941, + 85, + 82, + 84, + 85, + 88, + 85, + 86, + 83, + 81, + 79, + 83, + 86, + 87, + 85.99398712539664, + 87.99398712539664, + 85.99394449228559, + 84.99394449228559, + 89.99394449228559, + 89.99394449228559, + 91.99394449228559, + 88.99394449228559, + 87.99394449228559, + 86.99394449228559, + 88, + 91, + 83, + 85.06568074210382, + 85, + 82, + 87, + 90, + 84, + 84, + 85, + 86.03690657480597, + 87.03690657480597, + 85, + 85, + 89, + 88 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 32, + 47, + 49, + 52.95514839357575, + 44.004053298802255, + 44.05768237905254, + 34.221765975089035, + 33, + 39.01058699663298, + 47, + 45, + 40, + 39, + 43.991271849589445, + 41.02255755748624, + 40.01988012196894, + 34.08320153722796, + 42, + 35.03274762442727, + 31.093127780036102, + 39, + 37.99173185506295, + 32, + 35, + 35, + 36.9806871624096, + 27, + 28.00669802354223, + 33, + 37, + 39.91725837354634, + 33, + 39.88899419532335, + 36, + 31, + 31, + 28, + 31.921625058871083, + 31, + 31.882088729403783, + 29, + 23.029880260535958, + 26, + 26, + 25, + 30, + 29.89197287478779, + 34, + 30.7812894041101, + 23.98805688461588, + 24, + 17, + 24, + 24, + 15, + 17, + 18, + 21.944948007606396, + 20.977120795729892, + 22.950808384690585, + 14, + 17, + 15, + 14, + 11, + 14, + 13, + 16, + 18, + 20, + 16, + 13, + 12, + 13.006012874603359, + 11, + 13.000042633111047, + 14, + 9, + 9, + 7, + 10, + 11, + 12, + 10, + 7, + 15, + 12.93431925789618, + 12, + 15, + 10, + 7, + 13, + 13, + 12, + 10.963093425194046, + 9, + 11, + 11, + 7, + 8 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 2, + 5, + 15, + 18.046377421442482, + 23.052742736706538, + 26.156524845284114, + 29.216055102450593, + 34.216055102450596, + 38.22290747633674, + 39.22290747633674, + 46.22290747633674, + 52.22290747633674, + 54.22290747633674, + 55.26232278403392, + 57.34527182811752, + 59.397900155847026, + 64.44167401514775, + 70.44167401514775, + 76.47333941703882, + 77.5120229320356, + 81.5120229320356, + 84.59530674015087, + 87.59530674015087, + 93.59530674015087, + 98.59530674015087, + 99.64227174724923, + 103.64227174724923, + 108.64588616536604, + 111.64588616536604, + 113.64588616536604, + 116.69404470412391, + 122.69404470412391, + 126.74701164394139, + 128.7470116439414, + 132.7470116439414, + 132.7470116439414, + 135.7470116439414, + 139.8301882190755, + 141.8301882190755, + 147.9174787898638, + 148.9174787898638, + 152.9463453622646, + 156.9463453622646, + 159.9463453622646, + 161.9463453622646, + 163.9463453622646, + 166.00750003995236, + 167.00750003995236, + 171.10179158594616, + 172.11899327819282, + 173.11899327819282, + 176.11899327819282, + 178.11899327819282, + 182.11899327819282, + 184.11899327819282, + 186.11899327819282, + 188.11899327819282, + 189.16703385865716, + 192.18755220507649, + 193.21336205516926, + 195.21336205516926, + 196.21336205516926, + 197.21336205516926, + 202.21336205516926, + 202.21336205516926, + 203.21336205516926, + 205.21336205516926, + 207.21336205516926, + 207.21336205516926, + 208.21336205516926, + 210.21336205516926, + 210.21336205516926, + 212.21336205516926, + 214.22692301814578, + 217.22692301814578, + 217.2284761085922, + 220.2284761085922, + 223.2284761085922, + 224.2284761085922, + 226.2284761085922, + 228.2284761085922, + 228.2284761085922, + 230.2284761085922, + 231.2284761085922, + 232.2284761085922, + 233.2284761085922, + 234.2631392721819, + 235.2631392721819, + 235.2631392721819, + 236.2631392721819, + 239.2631392721819, + 239.2631392721819, + 239.2631392721819, + 239.2631392721819, + 239.28554437951553, + 239.28554437951553, + 240.28554437951553, + 240.28554437951553, + 241.28554437951553, + 244.28554437951553 + ] + }, + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 258.7481537751248, + 244.6961475337927, + 238.6961475337927, + 235.66520045663484, + 238.66520045663484, + 226.65752288325504, + 222.66247980077796, + 223.62333613292694, + 216.62334893470432, + 212.62440372216446, + 212.5848411875504, + 217.5848411875504, + 215.49887521827466, + 206.48891269547204, + 199.4654040146811, + 195.45251372127484, + 193.4494980141646, + 191.4375806774865, + 186.3801814580514, + 175.40201549400933, + 179.40201549400933, + 174.38324226433343, + 163.43869158559465, + 165.43869158559465, + 163.43869158559465, + 163.43869158559465, + 163.43869158559465, + 169.41742133366853, + 147.41742133366853, + 150.41742133366853, + 155.33450637481803, + 153.33450637481803, + 143.33450637481803, + 137.39163381618258, + 141.39163381618258, + 141.39163381618258, + 137.37468485762304, + 135.37468485762304, + 129.37468485762304, + 126.37468485762304, + 124.37592052863347, + 120.39741121973417, + 120.39741121973417, + 123.39741121973417, + 121.39741121973417, + 115.39741121973417, + 118.36866211842934, + 116.36866211842934, + 112.3666659635735, + 117.3432318980881, + 105.3432318980881, + 98.3432318980881, + 100.34130631178897, + 94.36062755989323, + 101.29054409578839, + 98.29054409578839, + 96.29054409578839, + 92.29054409578839, + 86.31817007528686, + 81.31817007528686, + 82.03129617485145, + 86.03129617485145, + 88.03129617485145, + 82.03129617485145, + 83.03129617485145, + 84.03129617485145, + 82.03129617485145, + 82.9681009996104, + 82.9681009996104, + 81.9681009996104, + 81.9681009996104, + 80.94948247149622, + 79.92765094021206, + 73.92765094021206, + 78.92765094021206, + 77.92765094021206, + 74.92765094021206, + 72.92765094021206, + 68.92765094021206, + 63, + 62, + 62.9833319219462, + 57.00620351191647, + 58, + 54, + 53.02394210701018, + 54, + 59, + 58, + 55, + 55, + 54, + 54, + 53, + 53, + 53, + 49, + 47, + 44, + 39 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 79.7481537751248, + 68.04104746014691, + 65, + 69.0155463776909, + 74, + 66.07952002482483, + 65.07830128814832, + 70.99670958290436, + 65.00176347321997, + 63.00428539713042, + 67.0471838548975, + 77, + 79.93467677854726, + 72.93075098934034, + 68.02122349019119, + 67.02356358055648, + 67.00411338371428, + 70.99690060285913, + 69.00641700057416, + 64.1147812550619, + 72, + 69.99876255378564, + 63.16508976627802, + 66, + 67, + 71, + 73, + 80.98248713417763, + 62, + 69, + 75.94637361531201, + 77.94637361531201, + 67, + 62.11069673687285, + 68, + 73, + 72.99454134754184, + 71.99454134754184, + 67, + 67, + 67.00505190111234, + 66.06201757834435, + 68, + 72, + 72, + 67, + 70.03318916110413, + 71, + 72.99958837873668, + 79.98063453212984, + 68, + 65, + 70.027819368215, + 66.03934718674874, + 72.97540178949163, + 71.97540178949163, + 70, + 69, + 67.0624317320062, + 65, + 68.08486202116664, + 74, + 76, + 70, + 72, + 75, + 74, + 75.95754416132354, + 75.95754416132354, + 74, + 75, + 74.98814001288385, + 72.98933276363343, + 69, + 75, + 76, + 75, + 74, + 72, + 67, + 71, + 72.01396935080732, + 67.01103509161837, + 70, + 70, + 69.05580384367697, + 72, + 78, + 77, + 74, + 74, + 73, + 74, + 76, + 76, + 76, + 73, + 71, + 71, + 67 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 40.251846224875194, + 50.95895253985308, + 53, + 48.9844536223091, + 43, + 50.92047997517516, + 50.92169871185167, + 44.003290417095634, + 48.998236526780026, + 49.995714602869576, + 44.95281614510252, + 34, + 31.065323221452736, + 38.003925789206924, + 41.97877650980882, + 41.976436419443516, + 40.99588661628571, + 36.003099397140886, + 36.99358299942585, + 40.885218744938086, + 32, + 34.001237446214354, + 39.834910233721985, + 36, + 35, + 31, + 29, + 21.01751286582238, + 39, + 32, + 25.053626384687984, + 23, + 33, + 37.88930326312715, + 31, + 26, + 26.005458652458152, + 27, + 31, + 31, + 30.994948098887665, + 30.937982421655654, + 28, + 24, + 24, + 29, + 25.966810838895867, + 24, + 22.000411621263325, + 15.018953846606845, + 26, + 29, + 23.972180631785, + 26.960652813251254, + 19.024598210508362, + 20, + 21, + 22, + 23.937568267993804, + 25, + 21.915137978833357, + 15, + 13, + 19, + 17, + 14, + 15, + 13.042455838676442, + 13, + 14, + 13, + 13.011859987116145, + 14.01066723636657, + 17, + 11, + 10, + 11, + 12, + 14, + 19, + 15, + 13.986030649192692, + 17.98896490838162, + 14, + 14, + 14.944196156323024, + 11, + 5, + 6, + 9, + 9, + 10, + 9, + 7, + 7, + 7, + 10, + 12, + 12, + 16 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 2, + 5.093053701479013, + 8, + 15.04649345484875, + 17.04649345484875, + 21.133691053053393, + 24.20703542367881, + 29.242888674434184, + 31.244639345876752, + 33.24786995554704, + 37.33461634505855, + 42.33461634505855, + 47.35525909288155, + 49.36129582647726, + 52.40602799745936, + 55.4424818714221, + 57.449610962246624, + 63.45842890178382, + 67.52224512179306, + 73.61519234089701, + 77.61519234089701, + 80.63272812435852, + 85.74236856937536, + 86.74236856937536, + 89.74236856937536, + 93.74236856937536, + 95.74236856937536, + 97.74612595547912, + 101.74612595547912, + 105.74612595547912, + 107.77541452964161, + 111.77541452964161, + 111.77541452964161, + 112.82898382514992, + 114.82898382514992, + 119.82898382514992, + 123.84047413125131, + 124.84047413125131, + 126.84047413125131, + 129.8404741312513, + 131.84429036135322, + 134.88481724859685, + 136.88481724859685, + 137.88481724859685, + 139.88481724859685, + 140.88481724859685, + 140.9467555110058, + 143.9467555110058, + 149.9483400445983, + 151.95282026347687, + 152.95282026347687, + 156.95282026347687, + 159.98256521799098, + 162.00259115663545, + 162.04807641023191, + 164.04807641023191, + 165.04807641023191, + 168.04807641023191, + 172.08288216273965, + 175.08288216273965, + 177.13644800905485, + 179.13644800905485, + 179.13644800905485, + 179.13644800905485, + 180.13644800905485, + 182.13644800905485, + 183.13644800905485, + 184.15718734561946, + 184.15718734561946, + 184.15718734561946, + 185.15718734561946, + 186.1639458866175, + 186.1751101815351, + 189.1751101815351, + 190.1751101815351, + 192.1751101815351, + 194.1751101815351, + 195.1751101815351, + 197.1751101815351, + 197.1751101815351, + 202.1751101815351, + 202.20574761039623, + 202.21057919009814, + 204.21057919009814, + 208.21057919009814, + 208.24244092676494, + 210.24244092676494, + 211.24244092676494, + 211.24244092676494, + 211.24244092676494, + 211.24244092676494, + 211.24244092676494, + 212.24244092676494, + 215.24244092676494, + 215.24244092676494, + 215.24244092676494, + 216.24244092676494, + 216.24244092676494, + 219.24244092676494, + 220.24244092676494 + ] + }, + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 268, + 258.72377470330196, + 239.72377470330196, + 234.7231126792906, + 237.7231126792906, + 232.61587398895188, + 230.5495862197807, + 225.48004082242917, + 219.46949846540267, + 204.51339953148394, + 201.51339953148394, + 206.51339953148394, + 209.46522765583416, + 198.4543007589594, + 190.4543007589594, + 190.4543007589594, + 191.4543007589594, + 189.42269830286568, + 190.42269830286568, + 181.42269830286568, + 161.4416048260938, + 154.5458973488543, + 156.5458973488543, + 157.5458973488543, + 156.5458973488543, + 157.5458973488543, + 154.5458973488543, + 154.5458973488543, + 149.5458973488543, + 151.46854427010837, + 141.46854427010837, + 138.46219277426476, + 142.46219277426476, + 137.43096190820944, + 138.43096190820944, + 127.43096190820944, + 125.40484044156987, + 120.40484044156987, + 119.40484044156987, + 113.41774384661754, + 114.41774384661754, + 111.41774384661754, + 109.41774384661754, + 106.40204189689098, + 99.40204189689098, + 104.39421461444051, + 100.39421461444051, + 100.39421461444051, + 96.38033604749413, + 97.38033604749413, + 93.38033604749413, + 84, + 83.06456110356551, + 88, + 82.0276123190191, + 82.0276123190191, + 80.98797739746368, + 74, + 73.0017327916101, + 72.99596385247322, + 70.97119244148823, + 63.997394043872006, + 60, + 60.969078640376836, + 66, + 61.98518182243109, + 55.03057758007544, + 56.98383708883037, + 56, + 56, + 59, + 57, + 55, + 51, + 50, + 47, + 49, + 46, + 46, + 42, + 42, + 40, + 42, + 42, + 39, + 44, + 41, + 42, + 41, + 39, + 41, + 39, + 40, + 35.00361575423554, + 34, + 33, + 37, + 31.99210469709752, + 30, + 29 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 88, + 81.78760536772445, + 66, + 68.00112566672911, + 75, + 73.96268772728969, + 73.97435371072352, + 70.0128515464565, + 67.02496298270769, + 59.08264729340866, + 62, + 75, + 79.96603612218546, + 71.00188618463021, + 67, + 73, + 78, + 79.97862783520658, + 84.97862783520658, + 78.97862783520658, + 63.03478348533838, + 60.16740741483057, + 66, + 74, + 75, + 80, + 79, + 85, + 81, + 85.93893811137069, + 81.93893811137069, + 79.93647172883698, + 85.93647172883698, + 83.91577654904049, + 85.91577654904049, + 75, + 78.0083350228766, + 76, + 77, + 75.06817089819228, + 81, + 82, + 81, + 80.00388848973958, + 76, + 82.9962267028083, + 80.9962267028083, + 80, + 79.01789176866983, + 85, + 82, + 74, + 74.1204212307055, + 81, + 77.09286181047379, + 82, + 81.99319949907495, + 78, + 78.00769102074594, + 81.00045967680494, + 80.01087768104078, + 79.02718458209253, + 77, + 81.00102749190557, + 87.00102749190557, + 82.99156488187415, + 77.06835360826818, + 79.01590278746829, + 80.01590278746829, + 80.01590278746829, + 83.01590278746829, + 82.01590278746829, + 83.01590278746829, + 80, + 82, + 80, + 83, + 80, + 82, + 79, + 80, + 78, + 81, + 82, + 80, + 86, + 83, + 86, + 85, + 83, + 85, + 83, + 85, + 81.01055805153233, + 82.01055805153233, + 84.01055805153233, + 89.01055805153233, + 84.0080984119921, + 84.0080984119921, + 83.0080984119921 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 32, + 38.21239463227554, + 53, + 50.998874333270884, + 43, + 44.03731227271031, + 43.02564628927647, + 45.987148453543504, + 47.9750370172923, + 54.91735270659134, + 51, + 38, + 33.03396387781454, + 40.998113815369784, + 44, + 38, + 33, + 31.021372164793416, + 26, + 32, + 46.965216514661634, + 48.83259258516943, + 42, + 34, + 33, + 28, + 29, + 23, + 27, + 22.0610618886293, + 26, + 28.002466382533715, + 22, + 24.02069517979649, + 22, + 32, + 28.99166497712341, + 30, + 29, + 30.931829101807725, + 24, + 23, + 24, + 24.996111510260434, + 28, + 21.0037732971917, + 23, + 23, + 23.982108231330162, + 17, + 20, + 28, + 27.879578769294497, + 20, + 23.90713818952621, + 18, + 18.006800500925056, + 21, + 20.99230897925406, + 16.999540323195063, + 16.989581995764144, + 16.983693098948258, + 18, + 13.998972508094424, + 7, + 11.009462610031429, + 16.923211273605972, + 13.98409721253171, + 12, + 12, + 9, + 10, + 9, + 12, + 10, + 12, + 9, + 12, + 10, + 13, + 12, + 14, + 11, + 10, + 12, + 6, + 9, + 6, + 7, + 9, + 7, + 9, + 7, + 10.989441948467682, + 9, + 7, + 2, + 7.00245963954022, + 7, + 8 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1, + 4.06383066442251, + 8, + 15.00178769074047, + 19.00178769074047, + 23.071714108368894, + 26.112355588263576, + 28.194752532071604, + 31.23025787180579, + 38.26900409913318, + 44.26900409913318, + 52.26900409913318, + 54.283212096968384, + 57.29602517847337, + 61.29602517847337, + 67.29602517847337, + 71.29602517847337, + 75.30625546977367, + 79.30625546977367, + 82.30625546977367, + 87.32213243188394, + 91.385247323954, + 95.385247323954, + 102.385247323954, + 104.385247323954, + 108.385247323954, + 110.385247323954, + 116.385247323954, + 117.385247323954, + 120.40153851407067, + 126.40153851407067, + 127.40542362738059, + 129.40542362738057, + 132.4159593136394, + 133.4159593136394, + 134.4159593136394, + 139.45041580315555, + 142.45041580315555, + 144.45041580315555, + 148.5056832963002, + 153.5056832963002, + 157.5056832963002, + 158.5056832963002, + 160.52527373576632, + 163.52527373576632, + 165.52932772102508, + 167.52932772102508, + 167.52932772102508, + 170.5610980566413, + 175.5610980566413, + 176.5610980566413, + 177.5610980566413, + 178.61695818378132, + 180.61695818378132, + 182.68220767523604, + 187.68220767523604, + 188.71504209586638, + 191.71504209586638, + 192.72100032500222, + 195.7254961493339, + 196.7606855645548, + 201.77959842173453, + 202.77959842173453, + 205.8115472732633, + 205.8115472732633, + 205.8169028408008, + 205.8631139871194, + 205.8951796857573, + 206.8951796857573, + 206.8951796857573, + 206.8951796857573, + 207.8951796857573, + 210.8951796857573, + 211.8951796857573, + 214.8951796857573, + 215.8951796857573, + 216.8951796857573, + 216.8951796857573, + 218.8951796857573, + 219.8951796857573, + 220.8951796857573, + 220.8951796857573, + 221.8951796857573, + 222.8951796857573, + 223.8951796857573, + 224.8951796857573, + 224.8951796857573, + 226.8951796857573, + 226.8951796857573, + 226.8951796857573, + 226.8951796857573, + 226.8951796857573, + 227.8951796857573, + 228.90212198305412, + 230.90212198305412, + 233.90212198305412, + 234.90212198305412, + 234.9075576464164, + 235.9075576464164, + 235.9075576464164 + ] + }, + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 271, + 256, + 242, + 236.99707532773573, + 239.99707532773573, + 220.99226868945905, + 223.99226868945905, + 210.99226868945905, + 204.99226868945905, + 203.97917371253715, + 201.96675756255917, + 203.96675756255917, + 192.96675756255917, + 194.96675756255917, + 188.96675756255917, + 186.84996346834333, + 189.69168543421296, + 185.68404265863978, + 176.65921843605858, + 171.65921843605858, + 168.6984028197436, + 178.5743818557719, + 177.56374080846945, + 170.56374080846945, + 166.56374080846945, + 164.56374080846945, + 160.5435480664774, + 157.5435480664774, + 150.57320548871334, + 157.57320548871334, + 147.5788270573976, + 144.5788270573976, + 148.5788270573976, + 141.55637858321901, + 140.55637858321901, + 131.55637858321901, + 117.75874498580541, + 120.81936375533182, + 122.81936375533182, + 120.81768497304027, + 118.81768497304027, + 116.8117265208203, + 110.81073847398672, + 115.81073847398672, + 109.81073847398672, + 96.81073847398672, + 100.81073847398672, + 94.81073847398672, + 87.81073847398672, + 86.81073847398672, + 81, + 80.04175741682967, + 84, + 82, + 75, + 73, + 67, + 69.9696485215563, + 66.9696485215563, + 67.9696485215563, + 60, + 58, + 58, + 57, + 57.00010844277223, + 56.98511031854498, + 54, + 61, + 57, + 54, + 54, + 52, + 49, + 44, + 41, + 42, + 46, + 45, + 45.965346378334345, + 45, + 43, + 40, + 41, + 37, + 38, + 36, + 39, + 38, + 36, + 35.9983489338615, + 36, + 35, + 31, + 31, + 31, + 28, + 31, + 29, + 23, + 25 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 90, + 81, + 71, + 71.99992151390983, + 79, + 68.03913344126644, + 77, + 70, + 68, + 70.10059608190824, + 72.01118277764903, + 77, + 70, + 74, + 74, + 76.97867584575808, + 82.8749011766273, + 78.99652031820811, + 73.03708340976071, + 69, + 68.11101330547922, + 78.93451815016549, + 80.99297956823655, + 74, + 72, + 73, + 72.0689230779921, + 70, + 68.07637270822961, + 78, + 70.0264266086413, + 70, + 79, + 75.01075211885278, + 79, + 74, + 63.30630178563344, + 67.10884368104053, + 77, + 79.99927397230508, + 80.99927397230508, + 77.99931894616839, + 76.00081835790353, + 83, + 83, + 72, + 77, + 75, + 72, + 72, + 69, + 73.07295192138932, + 78, + 78, + 80, + 83, + 78, + 83.00690651708432, + 82.00690651708432, + 85.00690651708432, + 79, + 78, + 78, + 79, + 81.00031032573388, + 84.00365730798424, + 85, + 92, + 89, + 86, + 89, + 87, + 86, + 82, + 82, + 84, + 89, + 88, + 88.97533013439042, + 88.97533013439042, + 87.97533013439042, + 85.97533013439042, + 86.97533013439042, + 83, + 85, + 84, + 88, + 87, + 85, + 86.00381935387817, + 88.00381935387817, + 88.00381935387817, + 86.00381935387817, + 86.00381935387817, + 87.00381935387817, + 85, + 90, + 89, + 84, + 88 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 30, + 39, + 49, + 48.000078486090175, + 40, + 50.960866558733564, + 41, + 48, + 50, + 47.899403918091764, + 44.988817222350974, + 39, + 46, + 42, + 42, + 39.02132415424192, + 33.10377466913076, + 36.00347968179188, + 40.962916590239274, + 44, + 44.88898669452078, + 33.065481849834505, + 30.00702043176346, + 36, + 38, + 37, + 37.9310769220079, + 39, + 40.92362729177038, + 30, + 37.9735733913587, + 37, + 28, + 31.989247881147215, + 27, + 32, + 42.69369821436657, + 37.89115631895948, + 27, + 24.00072602769492, + 23, + 25.000681053831613, + 25.99918164209648, + 18, + 18, + 29, + 24, + 26, + 29, + 29, + 32, + 27.92704807861068, + 22, + 22, + 20, + 17, + 22, + 16.99309348291568, + 17, + 14, + 20, + 21, + 21, + 20, + 17.99968967426612, + 13.99665301774964, + 12, + 5, + 8, + 11, + 8, + 10, + 11, + 15, + 15, + 13, + 8, + 9, + 8.024669865609575, + 8, + 9, + 11, + 10, + 13, + 11, + 12, + 8, + 9, + 11, + 9.996180646121832, + 7, + 7, + 9, + 9, + 8, + 10, + 5, + 6, + 11, + 7 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 0, + 6, + 10, + 16.00284618617409, + 21.00284618617409, + 29.046786265717188, + 35.04678626571719, + 41.04678626571719, + 45.04678626571719, + 48.16047732454734, + 52.184076252174364, + 55.184076252174364, + 59.184076252174364, + 61.184076252174364, + 67.18407625217436, + 72.27954619214829, + 75.3340495571479, + 76.3382126509292, + 80.40012028327111, + 81.40012028327111, + 83.47194920506531, + 84.5304883192025, + 88.5341089347415, + 89.5341089347415, + 91.5341089347415, + 94.5341089347415, + 97.62322475472564, + 98.62322475472564, + 103.66994004071933, + 106.66994004071933, + 108.69074508067636, + 111.69074508067636, + 116.69074508067636, + 119.7239456737077, + 124.7239456737077, + 128.7239456737077, + 131.8278810567547, + 132.87610596826883, + 140.87610596826883, + 145.87705872286546, + 148.87705872286546, + 148.88233612125384, + 153.88414252599097, + 155.88414252599097, + 161.88414252599097, + 163.88414252599097, + 164.88414252599097, + 168.88414252599097, + 172.88414252599097, + 173.88414252599097, + 175.88414252599097, + 180.91533703055063, + 181.91533703055063, + 183.91533703055063, + 192.91533703055063, + 197.91533703055063, + 198.91533703055063, + 200.95259502607868, + 202.95259502607868, + 204.95259502607868, + 205.95259502607868, + 206.95259502607868, + 206.95259502607868, + 208.95259502607868, + 210.95279690904033, + 213.97103357274574, + 216.97103357274574, + 216.97103357274574, + 217.97103357274574, + 217.97103357274574, + 220.97103357274574, + 220.97103357274574, + 222.97103357274574, + 223.97103357274574, + 226.97103357274574, + 227.97103357274574, + 228.97103357274574, + 228.97103357274574, + 228.98101732880184, + 228.98101732880184, + 229.98101732880184, + 230.98101732880184, + 230.98101732880184, + 231.98101732880184, + 232.98101732880184, + 233.98101732880184, + 234.98101732880184, + 234.98101732880184, + 234.98101732880184, + 235.98648774881852, + 236.98648774881852, + 237.98648774881852, + 239.98648774881852, + 239.98648774881852, + 240.98648774881852, + 241.98648774881852, + 243.98648774881852, + 244.98648774881852, + 245.98648774881852, + 247.98648774881852 + ] + }, + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 260, + 243, + 228.0352438563183, + 225.05231163411378, + 231.8970714155697, + 213.09080950081687, + 217.05111682962695, + 220.05111682962695, + 209.03625302860794, + 211.03625302860794, + 199.02029320735366, + 199.89142526840692, + 194.85189911283726, + 194.83448714113436, + 193.83448714113436, + 183.77162935039192, + 173.77162935039192, + 179.77162935039192, + 168.77162935039192, + 167.77162935039192, + 164.77162935039192, + 154.76625260041547, + 151.751097629156, + 151.74664530046675, + 150.74664530046675, + 146.74664530046675, + 140.72982906335145, + 137.72982906335145, + 138.72982906335145, + 129.72953815305786, + 132.72953815305786, + 127.72953815305786, + 121.75145909808404, + 118.75145909808404, + 123.75145909808404, + 115.75145909808404, + 109.75145909808404, + 120.6878839926538, + 115.6878839926538, + 113.67442330755846, + 109.67442330755846, + 102.67442330755846, + 103.67442330755846, + 101.67442330755846, + 101.67442330755846, + 98.67442330755846, + 87.67442330755846, + 91.02068908017148, + 93.02068908017148, + 92.02068908017148, + 88.02068908017148, + 89.98870907692302, + 89.91885758622992, + 85.91885758622992, + 84.91885758622992, + 82.9447801760462, + 76, + 77, + 75, + 76, + 76, + 74, + 72, + 69, + 64, + 66, + 68.97436492842297, + 70.97436492842297, + 59, + 61.00062315842923, + 65, + 59.9987994617127, + 60.9603380017639, + 59, + 56.963698762161606, + 55.963698762161606, + 49, + 45, + 41, + 45, + 50, + 44.99253696312903, + 47, + 46, + 42, + 41, + 41, + 41, + 40, + 42, + 38, + 36, + 40, + 40, + 37, + 39, + 35, + 30, + 32, + 31 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 80, + 71, + 64.11333621588528, + 65.0819847771144, + 74.93326466919096, + 59.358213121035, + 69.04114451790015, + 76, + 70.01037334513275, + 77, + 72.99983980241346, + 76.93199257713997, + 72.99441402055716, + 73.99392308307053, + 77, + 72.00576123276164, + 68, + 82, + 74, + 76, + 78, + 72.02539346886954, + 72.05567371322881, + 74.00111193485687, + 76, + 74, + 77.99382514080115, + 75, + 79, + 73.00318367067185, + 78, + 74, + 71.07216655772514, + 71, + 80, + 74, + 72, + 83.95308516376541, + 80.95308516376541, + 80.94644336412917, + 78, + 75, + 80, + 78, + 79, + 77, + 70, + 76.07612680433628, + 79, + 78, + 77, + 80.99627989788867, + 81.96716402640826, + 78, + 80, + 80.98827515127091, + 76, + 79, + 79, + 82, + 83, + 81, + 82, + 79, + 76, + 79, + 83.98779629174587, + 86.98779629174587, + 76, + 80.01990539799596, + 85.01990539799596, + 81.02091233502202, + 83.00071864712321, + 85.00071864712321, + 84.97638149293925, + 84.97638149293925, + 81.97638149293925, + 78, + 76, + 81, + 87, + 83.99807337520261, + 86.99807337520261, + 85.99807337520261, + 81.99807337520261, + 81, + 82, + 83, + 82, + 85, + 83, + 81, + 86, + 86, + 83, + 86, + 85, + 81, + 83, + 82 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 40, + 49, + 55.88666378411472, + 53.918015222885614, + 43.06673533080904, + 57.641786878965, + 46.958855482099835, + 39, + 44.98962665486725, + 37, + 41.00016019758653, + 36.06800742286003, + 39.00558597944285, + 37.006076916929466, + 33, + 37.99423876723834, + 41, + 27, + 35, + 33, + 31, + 36.97460653113045, + 35.94432628677119, + 32.998888065143156, + 30, + 32, + 28.00617485919884, + 30, + 26, + 31.996816329328148, + 26, + 30, + 32.92783344227487, + 32, + 23, + 29, + 31, + 19.0469148362346, + 22, + 22.00664179963624, + 24, + 27, + 22, + 24, + 23, + 25, + 32, + 25.92387319566371, + 22, + 23, + 24, + 20.003720102111334, + 18.03283597359173, + 21, + 19, + 18.01172484872909, + 22, + 19, + 19, + 16, + 15, + 17, + 16, + 19, + 22, + 19, + 14.012203708254132, + 11, + 21, + 16.980094602004034, + 11, + 14.99899306297393, + 12.020193687898812, + 10, + 10.02433715418395, + 10, + 13, + 16, + 18, + 13, + 7, + 10.001926624797392, + 7, + 8, + 12, + 12, + 11, + 10, + 11, + 8, + 10, + 12, + 7, + 7, + 10, + 7, + 8, + 12, + 10, + 11 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1, + 9, + 17.078092359566995, + 21.143009358885898, + 24.23151424662091, + 28.395989282408735, + 34.47682647149884, + 38.47682647149884, + 43.5020636176506, + 48.5020636176506, + 56.517863241318366, + 60.57872375740509, + 62.61266393353192, + 64.62399898830535, + 69.62399898830535, + 74.69261801180946, + 80.69261801180946, + 88.69261801180946, + 91.69261801180946, + 94.69261801180946, + 99.69261801180946, + 103.72338823065546, + 106.79421691514374, + 108.79978117868983, + 111.79978117868983, + 113.79978117868983, + 123.81042255660628, + 124.81042255660628, + 127.81042255660628, + 130.8138971375717, + 132.8138971375717, + 133.8138971375717, + 136.86414275027064, + 139.86414275027064, + 143.86414275027064, + 145.86414275027064, + 149.86414275027064, + 150.88080301946633, + 152.88080301946633, + 154.88762190492542, + 156.88762190492542, + 160.88762190492542, + 164.88762190492542, + 164.88762190492542, + 165.88762190492542, + 166.88762190492542, + 170.88762190492542, + 172.94305962909021, + 173.94305962909021, + 173.94305962909021, + 176.94305962909021, + 178.97131953022733, + 181.0083350473287, + 182.0083350473287, + 185.0083350473287, + 187.05183002255342, + 189.05183002255342, + 191.05183002255342, + 193.05183002255342, + 195.05183002255342, + 196.05183002255342, + 196.05183002255342, + 199.05183002255342, + 199.05183002255342, + 201.05183002255342, + 202.05183002255342, + 204.0652613858763, + 205.0652613858763, + 206.0652613858763, + 208.08454362544305, + 209.08454362544305, + 210.0867511007564, + 210.10621941109366, + 213.10621941109366, + 215.1181834947481, + 216.1181834947481, + 219.1181834947481, + 220.1181834947481, + 222.1181834947481, + 223.1181834947481, + 224.1181834947481, + 226.1237199068217, + 226.1237199068217, + 226.1237199068217, + 226.1237199068217, + 227.1237199068217, + 228.1237199068217, + 229.1237199068217, + 229.1237199068217, + 230.1237199068217, + 232.1237199068217, + 232.1237199068217, + 233.1237199068217, + 233.1237199068217, + 233.1237199068217, + 234.1237199068217, + 237.1237199068217, + 238.1237199068217, + 238.1237199068217, + 238.1237199068217 + ] + } + ], + "layout": { + "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Michaelis_Menten - BasicTauHybridSolver" + }, + "xaxis": { + "title": { + "text": "Time (s)" + } + }, + "yaxis": { + "title": { + "text": "Species Population" + } + } + } + }, + "text/html": [ + "
                                        \n", + " \n", + " \n", + "
                                        \n", + " \n", + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results3.plotplotly()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3wUxf8/8Nel3F16LoWQQAihSwvSNICGEnoLUkUQVERAKYofBb5SFBEQkCIKSBWIUgxFuoCAVOlNuoRAIAlJSEIS0jO/P/Lb9S5XcqlHeT0fjzyU2zKzuzNze++dnVEIIQSIiIiIiIiIiIiIiJ4TVpbOABERERERERERERFRSWLgm4iIiIiIiIiIiIieKwx8ExEREREREREREdFzhYFvIiIiIiIiIiIiInquMPBNRERERERERERERM8VBr6JiIiIiIiIiIiI6LnCwDcRERERERERERERPVcY+CYiIiIiIiIiIiKi5woD30RERERERERERET0XGHgm4ioDCkUCigUChw8eLBE9rdq1SooFApUrly5RPZXlgYPHgyFQoHBgwcXahnRi+jOnTty+3Hnzh1LZ4cAzJs3DwqFAg0aNCjVdBITE+Vrf/78+TLfvrQ8rfmip8+YMWOgUCgQEhJi6awYxfJs+etk6fSJiOjpxMA3EZEBU6ZMkX/AKBQKrFu3rsBtOnfurLMNg1PPtsqVK8vXUqPRID093eT60dHRsLGxkbdp2bJl2WTUTImJiZgyZQqmTJmCxMRES2fHoqQHK4b+HB0dUadOHQwfPhyXL1+2dFZLRcuWLY0ef0F/T8vDqAYNGpgd4JAC1AqF4oUv+8bcunULY8eORcOGDeHq6gqlUglvb280aNAAffv2xcKFC3HlyhVLZ/OFde7cOQwfPhx169aFs7MzVCoVKlasiEaNGuHtt9/GsmXLEB4errfd7t27MWXKFLPuYchytIPm2n8qlQqenp6oVasWevfujZkzZyIiIsLS2S1zJ06cwJQpU7B48WJLZ6VUbNmyxeD1t7W1hYeHB1577TXMmDEDSUlJls4qEdEzycbSGSAiehasXLkS/fr1M7r8wYMH2LNnT4H7qVmzJgDA3t6+xPL2PPL29kbNmjXh7e1t6awAyPtRunnzZrz55ptG1/n555+Rk5NThrkqnMTERHz55ZcA8gK/rq6uFs6R5VlZWcHT01P+d05ODuLj43HlyhVcuXIFS5cuxZIlS/Dee+9ZMJd5bG1t5fbD1ta2WPtyc3ODl5eX3ueZmZlISEgAAGg0GiiVSr11XFxcipU2FZ61tbV87dVqdYnvf/HixRg9ejQyMzPlz1xcXJCcnIzo6GhcuHABGzZsQEBAwAvbk9WSJk2ahGnTpiE3N1f+zNXVFfHx8bh//z7Onj2LNWvWoHv37tiyZYvOtrt378b8+fPRvXt3k/cw9PRwcnKS7xFzc3ORlJSEuLg4XL9+Hb/99hvGjx+PkJAQ/PDDD0/NPZLEy8sLNWvWRMWKFUt0vydOnMCXX36JgIAADBs2rMzTL0vu7u6wsckL0aSlpSE+Ph5HjhzBkSNHsHDhQuzbtw+1atWycC6JiJ4t7PFNRGSCh4cHHBwcsG/fPty7d8/oeqtXr0ZOTk6BQ45cu3YN165dQ9OmTUs4p8+X6dOn49q1a5g+fbqlsyJf05UrV5pcb9WqVTrr09PP19cX0dHR8l9sbCwyMjKwa9cuVKlSBTk5ORgxYsRT8fZGhQoV5PajQoUKxdrXpk2bdI5b+tu0aVOB68yfP7+4h0KF5OTkJF/7kg54/Pnnnxg+fDgyMzPRtGlTbNu2DampqUhMTERKSgqioqLw22+/oX///qUSdCfTVqxYgalTpyI3Nxft2rXDwYMHkZ6ejoSEBKSlpSEiIgJr1qxBt27d5GAZPdu++uorub19+PAhMjIyEBMTg61bt6JHjx4AgM2bN6NevXpP3VsY48ePx7Vr17Bw4cIXMv2SsG/fPvn6JyUlIT4+HtOmTYOVlRXu37+Pvn376jwEIyKigjHwTURkgoODA3r16oXc3Fz8/PPPRteTgqJPyzAAVHJ69uwJBwcH7N+/H3fv3jW4zrFjx3Dt2jX4+/vj9ddfL+McUkmytbVFhw4d5PqemZmJXbt2WThXRKVjzpw5AAB/f38cPHgQXbp00XkjqXz58ujZsydCQ0Nx4MABS2XzhSVdn8DAQOzevRtBQUFQqVTy8kqVKmHAgAHYunUr1qxZY6lsUikrV64cunXrhk2bNmHbtm2ws7NDfHw8OnfujCdPnlg6e1SK3NzcMGHCBIwZMwYAcPHiRZw+fdrCuSIierYw8E1EVIB33nkHQF6PXiGE3vIjR47gxo0bqFKlSoFBT3Mmt/zjjz/Qr18/+Pn5wc7ODm5ubqhfvz5GjhyJ48ePm9z/mTNn0KdPH3h7e0OlUqFKlSr45JNP5OEL8svKysLevXsxatQoNG7cGN7e3lAqlShXrhzat2+PX3/91eAx57dlyxaEhITAx8cHSqUSGo0Gr7/+OhYvXoysrKwCt8+voMktN2zYgI4dO8LLywu2trZwdXVF9erV0a1bN/zwww8FjsddGI6Ojujdu7fJhx8rVqzQyXdB0tPTsWDBAgQFBcHDwwNKpRLly5dHSEgIdu/ebXQ77fKTnJyML774ArVq1YKdnR3c3d3RpUsX/P3333rbtWzZEv7+/vK//f39dcaRNDQeeU5ODlatWoX27dvDy8sLSqUSnp6eaN++PdatW2e0XEhjo69atQqZmZmYNWsWAgIC4ODgABcXF7Ru3drkMT4ttCcsTElJ0VuelpaG33//He+//z4aNGgAT09PqFQq+Pj4ICQkpMBg+bVr1zB06FDUqFED9vb2sLOzg6+vL1599VVMmDAB165d01nfnMktc3NzsWHDBoSEhKBChQry+LCNGjXCuHHjSnzM8kuXLuGbb75Bq1at4O/vD7VaDRcXFzRu3BhTp041Op62uZPASeN4z5s3r0TzLZkxYwYUCgV8fX1NDlOUmZkJDw+PAvOybds2BAcHw8PDA/b29ggICMDs2bONtoH5J2ILDQ1Fq1at4OHhASsrKzktc85XbGwsRo0ahcqVK0OtVqNChQp466238M8//5g8B9L+2rZtCzs7O5Prmlp+7949jB49GrVq1YK9vT2cnJwQEBCAL774Ao8ePTK53/wmTZoEhUKBqlWrmlwvKytLvi6GenhmZWVhyZIlaNOmDTw9PaFUKuHl5YXOnTvrDQmizdXVFQqFAlu2bEFCQgLGjRuHl156CQ4ODmU6TnxWVhauXr0KAOjatWuB3y3a1+f8+fNQKBTyGxpbt27VGz9Y+xw8evQIa9asQd++fVGnTh24urpCrVbD398fb7/9Ns6dO2c03fzleMeOHWjbti3c3d1hZ2eHevXqYebMmQXeC2zatAktW7aEi4sLnJyc0LBhQyxYsKDAIcRKMu/G6qCkqPWsJHXu3BkLFiwAkPe9sGjRIqPrXrlyBcOGDUONGjXg4OAABwcH1K1bF5999hmio6P11n/99dehUCjw7rvvmszDmTNn5HKk/b1ianLJlJQUhIWFYfDgwahfvz48PDzksep79+5t8L5Yavs+/vhjAMCFCxf0yrH2NTJncsvjx4+jf//+8PX1hUqlgpubm3y/mp2dbXCb/BMZHzt2DCEhIfDy8oJKpUL16tUxYcIEg/cKJaVDhw7y/xsrb0X9TgZ02720tDRMnToVderUgb29PTQaDdq3b2/ytwsAJCUlYdy4cahevTrUajW8vLzQvXt3HDt2TC8NY3bt2oXevXujYsWKUKlUcHV1RbNmzTB//vwSvbcnoheMICIiPZMnTxYAhJ+fn8jNzRVVq1YVAMShQ4f01n333XcFAPHVV1+JAwcOCAACgAgPD9dbV1p24MABvWWpqamid+/e8joAhJOTk1CpVPK/AwICdLZZuXKlnM/Q0FBha2srAAgXFxdhZWUlb1enTh2RnJysl6Z2fgEIlUolHB0ddT7r3bu3yMnJMXiekpOTRZcuXXTWd3Z2FgqFQv53YGCgePTokd62gwYNEgDEoEGDCrVMOt/Sn6Ojo7C3t9f5zNC5Lyw/Pz8BQEyePFkcOnRIABBVqlQRubm5OuulpqYKJycnoVAoxJ07d+S8BwUFGdzvjRs3RPXq1eW8KhQK4eLiopP/4cOHG9xWWv7LL7+IatWqCQBCrVbrHL+tra3YvXu3znY9evQQHh4e8joeHh7Cy8tL/uvRo4fO+tHR0eKVV17RyVP+PHbr1k1kZGQYPW/ff/+9vA9bW1udcqVQKMTy5csLcTVKlnSN/Pz8jK5z5MgROb9bt27VWy7VPenPzs5OrxyOHTvW4L7/+OMPnXpta2srXF1ddbadPHmyzjbh4eEmy3dsbKx4/fXX9a6Z1CYAEN27dzd5XrTbA0NtVH7aZcLKykrvGKpUqSLu3Lmjt11CQoK8zrlz54zuPyAgQAAQc+fONbqsoGMSQoi5c+fK6SUkJMifx8TECKVSKQCIbdu2Gd3+119/letafHy83n4DAgLEtGnT5LLt6uoqrK2t5TRbtGhhsP0dPXq0fAxSu6ZQKIRGoxHW1tbycRd0vq5evSrKly8vr6NWq4WTk5NcLsPCwoxu7+PjIwCITp06FXgejdmxY4dwcHDQaZPt7Ozkf3t5eYkzZ87obWfsuG7evCl/fuTIEaPpbtmyRa4/sbGxOssiIiJEvXr1TLazb731lsjOztbbr7TewoULRaVKleTvRmdnZ70yVJoyMzPlvI4YMaJQ216+fFl4eXnJbZJKpdJp8728vMSuXbvk9aWyqH3vod122NjYiJUrVxpMS7sc/9///Z9OPdDep6m6qp1+/jrUqVMnMXLkSKP7KKm8m6qDQhSvnhVEuy4Yau/yy87Olr9r69WrZ3Cd2bNn69wHqtVqne8dd3d3vfq1dOlS+Rw+efLEaPpjxowRAESDBg10Ptc+n/lpt8MAhIODg1Cr1TqfffXVVzrbJCUlCS8vL/k829jY6JXjn376yaz0hRBiypQpOum5uroKGxsb+d+vvPKKiIuLM5r3gIAAsXjxYrlsurq66tzvNmnSxOB9UUE2b95cYNnZs2ePvM7SpUsNrlPU72TtbZcvXy63nSqVSqdtt7a2Fhs3bjS4/d27d4W/v7/OfY20T2traxEaGir/e/PmzXrbp6WliX79+unVZe0y3KBBAxEdHW3mWSUi+g8D30REBmgHvoUQYurUqQLQD8SmpKQIR0dHYWVlJe7evVuswHefPn3km9XPP/9c3Lt3TwghRG5uroiMjBShoaFi2LBhOttIwTd7e3uhUqnEkCFDxN27d4UQeQHZhQsXyj8AJ06cqJfmiRMnRP/+/cWOHTtEdHS0HNSNj48X8+fPl3/oz58/3+B5CgkJEQBEtWrVxC+//CIeP34shMi7gd26dauoUqWKACBCQkL0ti1K4Pvw4cPyOZo5c6ZOECouLk7s2bNHDBo0SNy/f99gfgtDO/AthJADzfmv3apVqwQAERwcrJN3Q4HvhIQEUblyZQFAtG7dWvz1118iPT1dCCFEYmKi+O677+QA8bx58/S2l8qPRqMRtWvXFn/++afIyckRubm54uTJk6JmzZpyuc3/sKKgwKkkIyNDNGnSRAAQDRs2FDt27BCpqalCiLzy/vPPP4ty5coJAGLMmDFGz5tGoxEVKlQQW7ZsEZmZmUIIIa5duyZeffVVOTiWmJhoNB+lyVTgOzMzU+zZs0e+3rVr1xZZWVl6623evFkMHTpUHDhwQOeH8oMHD8SXX34p1ztDQXNp3+3atROXLl2SP09LSxOXLl0SU6ZMEStWrNDZxtT1y8rKEs2bN5d/qM6cOVM8fPhQCJEXIAkPDxdLliwR48ePN3leChv47tq1q1iyZIkIDw+Xr3FaWprYuXOnHJhu1aqV3nZPS+BbCCH/0O7WrZvR7Vu3bi0AiAEDBhjcr/TjfPDgweLBgwdCiLy68t1338kBknfeeUdvv1KQRvoO+eqrr+SHhE+ePJG/A0ydr/T0dFGrVi0B5AWYf//9d7nunz17VjRu3Fgn+JF/e6kNVygUYsmSJQYDwaZcv35dDq42bNhQnDp1SgiR9721d+9euT3w8fHRCyiZOq7AwEABQHzwwQdG0+7Zs6fBa5eamipq164tAIhmzZqJvXv3irS0NCGEEI8fPxaLFy8WGo1GABBTpkzR268UnHF0dBR+fn5i586d8nm5ffu2XNbLQoMGDeR6vWXLFr0HrwUpKBAomTVrlvj888/F6dOn5e/x3Nxccf36dfH+++8LAEKpVIobN24YTUMKFn/99ddyOU5ISBAff/yxfJ3DwsL0tv/555/l5YMHDxZRUVFCiLwH67NmzRLW1tZyGTZ0HCWR94LqYHHrWUEKG/gWQoihQ4fKdTd/3ZLuS+zs7MTkyZNFZGSkEEKInJwccfHiRdG5c2cBQHh6euo8NEpKSpKD0b/++qvBdLOzs4WXl5cAIL777judZabK25o1a8SHH34oDh8+rNMZ4u7du2LcuHFygPPgwYN622oHnk0pKH3pHPfv31++tmlpaWLJkiXycXfo0MFo+s7OzsLa2lqMGjVKp5zOnDlTzv+cOXNM5tEQcwLf2vVo//79Btcp6neyEP+1exqNRlSpUkXs2rVLZGdni9zcXHHhwgV5ew8PD/m+VZKTkyOaNWsmn6PQ0FA5/X///Vd06dJFODg4yA+aDQW+pfsyX19fsWLFCvn+MD09XezevVu89NJLAoBo2bKleSeViEgLA99ERAbkD3zfvXtXWFlZCQcHB52eeytWrBAARNu2bYUQosiB73379snLfvzxR7Pzqd3r1FAAWQghPvnkEzk4XVgbN24UAETVqlX1lm3fvl0AEOXLl5d/VOV37949ubdI/pv5ogS+Z86cKQcMS1v+wPfXX38tAIi3335bZz2pl21oaKhO3g0Fvj/99FM56G0omCqEEJs2bZJ/XORfR7rWnp6eIiYmRm/bixcvyuvk78llbuB74cKFAsh7S0AKIuR3+vRpoVAohFKp1MuHdN5UKpW4evWq3rYPHz6Uf2CuXbvWaD5Kk3SNrKysdHqOeXh4yL23PD09xQcffKDzcKUwZs2aJQCINm3a6HweExMjXwcpSGoOU9dv2bJlcgBkx44dRcqvEIUPfJsSFxcnPzjTDu4LUbKBb0M9WfP/Sb0FDQW+Dx48KIC8HmmG2rGbN2/KZeKvv/7SWaYdUO/atavBY5g9e7Z8ba5fv66zTLunav6ejuaeryVLlshl+eTJkwa39fb2Nrr9mTNndHpdenh4iJ49e4rp06eLP/74w2gbIJEeHPj4+BjsCX39+nV5///3f/9n9nEtWrRIDsLkD7JI20q9V3/77TedZVJb3bRpUzngnd+ff/4pBzzz98aXAkBqtdpgsLQsbdu2TadHaYUKFUT//v3FnDlzxKFDh0z2yhXC/MB3Qd566y0BGH6LRbscGwvatmnTRgAQvXr10vk8Oztb+Pr6mqxDM2bMkPdflOMwN++m6mBx61lBihL4/uGHH+RtpAdOQuQFYqUHO4YeNAiRF6hs2bKlzj2OpG/fvgKA6Nixo8Ftd+7cKbeZ+XvfFqe8SW8L9OzZU29ZcQPfWVlZcjnr1KmTwQdIq1evls/n3r17DaYPQIwePdpg2tIbA40bNy7oUPWYCnzHx8eLb775Rg6s+/v7F/oBpRCmv5OF+K/dc3Z2FhEREXrL79y5I+dh+/btOsu2bdsm59/Q21NZWVmicePG8jr5A99Hjx6V2/tbt24ZzH9sbKxwc3MrkfsTInrxcIxvIiIz+Pr6Ijg4GKmpqdiwYYP8uTSpZUHjIRZEGiO6Tp06GD58eJH28cUXXxj8vHv37gCAW7duFXoSpM6dOwMA/v33X0RFReksW7ZsGQBg4MCBqFChgsHtK1asiFatWgEA9uzZU6i0DXF1dQWQN85mQeN+lrRBgwbBysoKv/32G5KTkwHknZfDhw/DxcUFb7zxhsnthRDydR47dixsbGwMrhcSEgJnZ2fExcXhzJkzBtcZOnQoypUrp/d5vXr15LG8L168aPaxaZOu64gRI+Dk5GRwnUaNGqFOnTrIzMw0OuFdr169UKtWLb3PPT09ERgYWKw8lpTc3FzExMTIf3FxcfLY5cnJyUhKSkJsbGyR9i3VnePHj+uUVScnJ1hZ5d1+5a9TRSWVq06dOqFTp04lss/icnd3x6uvvgogbx6E0pKRkaFzDQ39SfXVkKCgINSuXRs5OTnyedS2bNkyCCHw0ksv4bXXXjO6n0mTJhn8fOTIkdBoNBBCYP369QbXUavV8sRlhbVu3ToAQMeOHdGkSRO95a6urib33bBhQ+zfvx/169cHAMTFxSEsLAzjx49Hu3btoNFo0LZtW4Ptd2ZmpjxW6+jRo+X2WVuNGjXw9ttvAwB+/fVXs4+rb9++UCqVSEhIwPbt2/WWb9iwARkZGdBoNOjSpYvOMqkNGz16NNRqtcH9t2rVChUrVkRKSgqOHj1qcJ2ePXuievXqZue5NHTp0gVbt26V2/X79+/jl19+wdixYxEUFASNRoMePXoYnNuhJEntmam6rNFoMGLECIPLunXrBkC/zT969Cju3bsHwHgdGjNmjMGyZS5z8l5QHSxuPSsNbm5u8v9rj6MfFhaGhIQEVK9e3eh9iZWVFQYMGABA/95s4MCBAPLmm4mJidHbVppEtV27dvDy8ireQWgx5zoV1bFjx+RyNnnyZIPj5Q8cOBA1atQAYLytUigUmDBhgsFl0r12ce9rgoODUb58eZQvXx4uLi5wd3fHhAkTkJubCzc3N6xfvx7W1taF3q+538kDBw5EpUqV9D738/NDQEAAAP1j3LhxIwAgICBArz0GABsbG4wfP95omkuXLgWQd99obG4HDw8P+f6mJH5PENGLhYFvIiIzSZNcSsGRW7du4fDhw3B1dTU5kY45pIlfunbtWqTt3dzcUK1aNYPLfHx85P83NMllcnIyZs2ahaCgIJQrVw5KpVKeNMje3l5e7/79+zrbSTfOP/30k3yTbuhv3759AICIiIgiHZu24OBgqNVqnDt3Dq+99hqWL1+O8PDwYu/XHBUrVkTbtm3x5MkTOYC1cuVKCCHw5ptvGg2wSK5cuSL/OB08eLDR8+Xt7S1PkGTsnL3yyitG05Gud2EnlAPyyoL0g2bixIkmr+v169ctkseS5OfnB5H39pv8l5KSgmPHjsmTeL766qtGJ5WNiYnB5MmTERgYCHd3d9jY2Mh1p3bt2gCAJ0+e6NQ7Ozs7tGnTBkDeZFWTJk3C33//jczMzCIdQ3Z2Nk6dOgWg6O1HcYSFheGNN95A5cqVYW9vrzPp2B9//AEAiIyMLLX0u3fvrncN8//NnTvX5D4++OADAMDy5cuRm5srf56VlYVVq1YByHvYZIyzszMaNWpkcJlSqUTz5s0BAKdPnza4Tv369Y0+ZCqItM/WrVsbXcfUMgBo1qwZzp8/j6NHj2LixIlo27YtPD09AeRNcrtv3z506NABo0eP1tnu8uXL8mRjwcHBRvfftm1bAMDt27eNTrScn3ZAWwq0aZM+69OnD1Qqlfz5gwcP5MlfR40aZbINkyb3M9aGSdfN0rp27YqbN29i7969+N///oegoCC4uLgAyHvws2XLFjRr1gxz5swpVjrXrl3D6NGj0aBBA7i4uMDa2lquy/379wdgui6//PLLUCqVBpcZa/Ol8muqDqlUqgKvRXHzXlAdLIl6VtKkh7T5Sfdmd+/eNVn+P/30UwD65V+a0DonJ0cvAJycnIytW7cCgPxAqzAiIyMxYcIENG3aFG5ubjrfmc2aNQOQ971qbJLJotIuZ4YeXEiktspYW+3v72+w0wHwXxnPzMxEampqkfMaHx8vP7R9/Pix/HmzZs1w48YNk/kHiv+dXJR7t7NnzwLIe5BsjKFJ1CVSmV23bp3JMrtp0yYAJfN7goheLIa7mxERkZ4ePXpAo9Hg6NGjuHHjBn7++WcAQP/+/QsMehZE+gHu5+dXpO1N/WDT7lmclZWls+zGjRto06aNzk2wvb09XF1d5V6pUo8f7Rv5rKwsxMXFAcibxT0pKanAPBa2t7khVapUwbJlyzBs2DAcP35cDkh6enqiVatW6N+/P7p162awN09JePfdd7Fnzx6sXLkS7777LlavXi1/XpAHDx7I/29uL2Jj58yc653/WpsjOjpaDvyZG5QuyzyWL1/e4Od9+/bF/PnzC7UvYxwcHBAYGIiwsDAEBgbi1KlTGDhwIG7cuCHXCSCvJ3enTp2QmJgof+bo6Cj/0MzJyZHrSGpqKjw8POT1li1bhm7duuHChQuYOnUqpk6dCqVSiSZNmqB79+547733dHrzmRIfHy+fx6K2H0WRmZmJXr16Ydu2bfJntra2cHNzg62tLQAgMTERGRkZxQoClIW3334b48ePR0REBP744w906NABAPD7778jJiYGarXaZJDHx8fHZJsjvRHz8OFDg8uNBVIKkpGRIfdmN/bWDZD30K4gUuBJCj4BeQ93N2zYgG+//RZJSUlYsGABmjRpIvcU1T4ec9N/+PAhNBpNgfkB8q7Lpk2bsHPnTsTHx8Pd3R0AEB4eLvfSzn9dtB/QxsfHm5WOsTasqNcFyOu9/NNPPxlcduPGDTg7Oxdqf9bW1ggODpYfMAghcPnyZYSGhmLevHnIyMjAp59+iqZNm5p8M8GY1atXY8iQITptsouLi3xvk5GRgcTERJN1uShtvlSGCqpDpspwSeTd1LUuyXpWkrQfIkl1A/jvXkN6G6Yg+cu/jY0N3nzzTcybNw9r1qzR6ckeFhaGJ0+ewNnZWe7hbK59+/YhJCRE5zo4OTnBzs4OCoUC2dnZcp1NTU2VH+6UhMKWM2NtdVHvtQvj3LlzaNCgAYC8N3D++usvfPbZZzh27BjGjBmD1atXGzyGkvpOLko9lu5ptTva5Ofm5ga1Wi0/LNUmldnk5GSTb2hJSuL3BBG9WNjjm4jITCqVCm+++SaAvJ6BUtBT6gleHNJNbGkFbI155513EBkZicqVK2Pjxo2Ij49HamoqHj58iOjoaJ0ggnbvIkGsV/cAACAASURBVO2hG9atW1dgj0shhNxzsrjeeustREREYPHixejbty98fX0RGxuLDRs2ICQkBEFBQTq9ZEpS9+7d4ebmhmPHjmHhwoW4d+8e6tSpU2APHED3nEVHR5t1zgYPHlwqx2FOHk+cOGFWHqdMmVJm+TM2lIU5D14Ky9raWq7b//77L06ePCkvy87OxptvvonExEQ0aNAAO3fuxOPHj5GcnIyYmBhER0fjxIkT8vr5e+ZVqlQJZ8+exe7duzFq1Cg0atQIubm5OHr0KD777DNUq1YNf/75Z6HzXJbtx/z587Ft2zYolUpMnz4dt2/fRkZGBuLj4xEdHY3o6Gi595yxnolPC1dXV/Tr1w8AdIKV2q9fm3oQUdzzXpTX1gHd81oa175atWqYMGEC9u7dKwc8pGFE8jM3/cLks1OnTvDw8EBWVpY81AQArF27FkIIVK1aVSdQD+i2YdeuXTOrDTM2REVRrwsAPH782Gh7pf1WQVEpFArUq1cPM2bM0OmVu3z58kLv6969e/jggw+QlZWFzp074+jRo0hPT0diYqJcl6XrXlp1uajlt6Tybupal3Y9K6oLFy4AyMuTNBQO8F8d6Nevn1nlX/vhrUQa7uTs2bP4559/5M+lNy169+4NOzs7s/OampqKt956C6mpqQgMDMS+ffuQkpIi15Po6Gid4SssXc6eluvs4eGBN954A/v374eLiwvWrl1r9CG/Jb+Tpf0VdN6MpSuV2cWLF5tVZqUhtoiIzMXANxFRIUiBsHnz5iEyMhJ169ZF48aNi71fqSer9Ip2Wbh37548xMqvv/5qMLgj9UTPT61Wy71xLl26VLoZNcDNzQ0ffPAB1q1bh7t37+LWrVsYN24cFAoFDh8+XGrBWO2HH//73/8AmP/gQ7u3siXOmTm0x+t8GvNY2g9V8tPuQa09pM7x48cREREBa2trbN++HR07dtTrJWWs7kisrKzQvn17zJ8/H6dPn8ajR48QGhqKSpUqISEhAf379zdr+BN3d3e5N1dZth9SIPLjjz/GuHHj4O/vr/ej19g50O4ZZ6j3l6Q0HmgYM2zYMADAtm3bEB0djYiICOzduxfAf0OhGHP//n2TgQTpAWJxehAbolar5XJn6tX1/MNUFVaTJk3w8ssvA4A8xBGgezzS+LmGaOdNGkLFHLa2tujbty8A3eFO1q5dC+C/4Jy2p6WdnTdvntH2qjjjVRvSo0cP+VpoXx9zbdmyBenp6ahYsSI2b96MZs2a6QwfAxTcnhWVlG9z61B+ZZH3sqpnhZGTkyMHiuvXr69z7ybVgeKU/4YNG6Ju3boA/qt7kZGROHjwIADDdc+UP//8Ew8fPoRarcaOHTvQpk0bODg46KxTWmUMML+cSde3MO1UWfDz88PkyZMB5L1NYqhHenG+k4tLOr/abzbm9+jRI2RkZBhcVhJllojIFAa+iYgKoXHjxqhXr54ckCrupJYSqdea9iuKpU07UCEFNfKTxuc2RBpzc+PGjSXSg604qlatiunTp8tjeUoBq9IgXfPMzEzY2NiY/QOwbt268uvt2r0Xy4r2MB3GfvhpNBp5bGpL5PFpox3k0P6RLtUdT09Po6++m6o7hjg5OaF///5yj82YmBizfgTa2NigadOmACzTfhhrO2JjY+Ueifk5ODjIwXpjAdOYmJgyHcezSZMmaNSoEbKzs7Fy5Up5vO+XXnoJLVq0MLnt48eP5TFO88vMzJQfMJbEQ9L8pH0am2QWQJHeHsjP0dERAHSCinXr1pWHk9i/f7/RbaW6ULVqVbOHOZFIQ5n8/fffuHHjhvxfwHDwrXLlynKdfJHaMKl9yh/0ldp9U8E+qQ7WrVtXrpf5FbY9M5dUfk3VoYyMDKMTkJZV3suqnplr5cqVcvuY/80w6d7sn3/+weXLl4uchlS/QkNDkZubK//Xz88Pr7/+eqH2JV2nypUrG20DTF0nc8qxKdrlTJoTw1QezHmLr6wNHz4c5cuXR3JyMr7++mu95cX5Ti6uhg0bAoD8YMQQU8ukMrt58+Yiz3dCRGQKA99ERIU0c+ZMjB07FmPHjpXHOi2u9957D0DeD5VFixaVyD4Loj1+oqGbYWM31xJpsrcbN25g1qxZJtNKTU0tkZtZY71FJNKrt8V5Rb0gDRs2xJdffomxY8di7ty5ZvfitLGxkYPmP//8szyZjzElPfGj9piyhl5tlkjXdf/+/QUGjiw9OWVpEkLoDCGgPfGaVHekoQvyi4yMxIIFCwzut6B6oP36uLnlWGo/du7ciZ07d5q1TXFJ58DYD+kvvvjC6DinCoUC9evXB5A3Zqwh33zzTZkPkSL1+l62bJk8ibGpSS21GWsrf/zxR7me9OnTpwRyqUvqEb1r1y6cOXNGb3lSUpLJ8e/37dunMzyIIbdu3ZKD91KAA8ibuLNHjx4A8l6zN9Su/Pvvv/KwYNLbMoXRtGlT1KxZE0Bez1Op92mLFi1QpUoVg9u8//77AIBNmzZh165dJvf/tLdh2sM/GHP48GH5jRTt6wP81+6bavOlunzlyhWDkwoeOXKk1B6qNW/eXB5X2Vgd+v77741OilpWeS9uPStJO3fuxKhRowDkTbaY/42UPn36yG8VfPjhhwV+5xg7twMGDICVlRUiIyNx4MABue4NHDiw0EOBSNfpzp07Boeiu3nzptFhlADzyrEpzZs3h6+vLwDgyy+/NPjd8ssvv8hvTBSlrSptarUan3zyCYC8IbnyPzQuzndycfXq1UtO29A9SHZ2NmbOnGl0e+l79sGDB3LPdmPS09ORlpZWjNwS0YuIgW8iokLq2LEjZs+ejdmzZ5fY65CtWrWSx5j96KOPMH78eLm3qRACDx48wLJly+QAV0moXbs2KlWqBCCvF7P2j7njx4+jZcuWRn8QAXnjXUtBj3HjxmH48OFyTzwgL8D3999/4/PPP4efn5/RyYIK46OPPkKfPn0QFhams7+UlBQsXrxYDrB06tSp2GmZMmnSJMyePRsfffRRobabOHEiqlatiuzsbHTo0AHfffedzkSXSUlJ2L17NwYNGlSkCcpMcXV1lXtCrly50mCQAMgL/r3yyisA8n7gfvHFFzo/sJ48eYKDBw/io48+QtWqVUs0j0+L8PBwDB06VO6h1LdvX52e3S1atICDgwOEEOjTp49c7qXXz1u2bGk0MHDs2DHUr18fc+fOxdWrV+W3JYQQOHbsGIYPHw4gb5KtevXqmZXfgQMHokWLFhBCoGfPnpg1a5Y8sWZOTg7u3LmDuXPn4vPPPy/S+TBEmgBy7ty5CA0NlX9QR0ZG4v3338dPP/2kM+FaflJgYePGjZg1a5Y82VZ0dDTGjBmDH3/8sdATABZX//794eLigtu3b+P+/fsFTmopcXJywu+//44hQ4bIr5I/efIE8+fPl4dEGjRokBzALUmDBg1CjRo1kJOTg65du2LHjh1ymTp//jzatWtnciKzYcOGoXr16pg0aRJOnDih83AxNjYWP/zwA4KCgpCRkQGFQiEHXiRTpkyBvb09Hjx4gODgYPl7RAiB/fv3o23btkhLS4OPj4/RsbQLIvU8XbNmDdavX6/zmSFjx45FvXr1IIRAjx49MG3aNERFRcnLk5OTsW/fPgwdOhQBAQFFylNZ6dy5M+rWrYuZM2fi3LlzcrsthMD9+/cxY8YMdO3aFUBeYGzEiBE620vDVZw6dQrnz583mIZUl+/evYt3331XfpiXnp6O1atXo0uXLiU+PIvE2toaX331FYC8YUuGDBmiM6H2d999h3HjxhlNv6zyXtx6VlxxcXHYtm0bevbsiS5duiAtLQ0eHh7YuXOn3ljbLi4umDdvHgDgr7/+QlBQEA4cOKBTdm7duoWFCxeiQYMGCA0NNZimj48PWrduDSDvHk8a67uww5wAQOvWraFUKpGeno6+ffvKD2qys7OxdetWtGrVSu9tBW1SOb57965ZD4Pys7a2xjfffAMg78HBwIED5Xvs9PR0LFu2DEOGDAGQV6batGlT6DTKwvDhw6HRaJCRkYFp06bpLCvud3JxdO7cGa+++iqAvHl41q9fL6cfHh6Onj174p9//oFSqTS4fVBQkDxs4IwZMzBo0CCdseWzsrJw5swZTJw4Ef7+/vj3339L5TiI6DkmiIhIz+TJkwUA4efnV6jtDhw4IAAIACI8PFxvubTswIEDestSU1PFG2+8Ia8DQDg7OwuVSiX/OyAgQGeblStXFpjP8PBwo3natm2bsLGxkZfb29sLe3t7+f/37dtXYJ779eunk2cHBweh0WiElZWVzueRkZE62w4aNEgAEIMGDdLbr7Fl0ufSn6Ojo3B1ddX5rEWLFiIlJcXo+TCXn5+fACAmT55cqO2kPAYFBRlcfvv2bREQEKCTZ1dXV+Hs7KzzWbVq1fS2NXUtJEFBQUbzPXXqVHkfKpVK+Pr6Cj8/P9G3b1+d9WJjY0Xr1q31yqKrq6tQKBTyZzY2NnppSOdt5cqVBZ4jQ9e+LEjpW1lZCS8vL50/JycnneNu2bKlePz4sd4+Fi1apFcW1Wq1ACA8PDzE77//brDeabcRAIStra1wd3fXqYfOzs7ir7/+0knPVD0WIu+avfbaa/I6CoVCuLq6CltbW/mz7t27mzwv2nkzVcaEECI6Olq+1gCEtbW1Tl38/PPPRffu3QUAMXr0aL3t09PTRZMmTXTyq9Fo5H0tWbJEridz587V215aVtAxCSHE3Llz5XQSEhJMrvvRRx/J6w4YMMCs/QYEBIhp06bpHIf29QwMDDRYhkaPHm3WMSQkJMj7OnfunN7yy5cvi3Llysnr2NnZyeXYzs5OhIWFGd2+Vq1aOuVRKjdSWdbe54oVKwzmb/v27fL3BgDh5OSk8+9y5cqJ06dPF/q4JBERETrtjkqlKvA63r9/XwQGBuocg4uLi3BxcdHZl4eHh962Li4uAoDYvHmzyTTKQv7rYGVlJTQajVAqlTqfazQasWvXLr3tU1NTha+vr7yeu7u78PPzE35+fmLPnj3yeh988IHeuZLKcO3atcXy5cvlz/Mzpxxv3rzZ6PZC6Na7/HWoU6dOYuTIkUbTKO28S4pTzwqiXRecnJzk7yNPT0+de0CpDPTs2VNERUWZ3OeiRYt0yon0XZO/7CxcuNDoPlavXq2z7iuvvGIyTVPnc/r06Tr7cnJykvPi4+MjfvvtN5PtdKNGjXSusVSOly9fblb6Qvx3b69db7S/I1955RURFxent512W2/MuXPnzP6eyU+qH+aUHekYbG1txe3bt+XPi/udbE67Z2r7O3fu6KSvVCrl9G1sbMS6devk+1xDbVVGRoYYMmSIzvWxt7cXbm5uwtraWufzy5cvmzxHRET5scc3EdFTwt7eHmFhYdi+fTt69OgBHx8fpKenw9HREfXr18eoUaPw008/lWiaXbp0wV9//YXOnTvD1dUV2dnZ8PDwwDvvvIOzZ88W2OvF3t4ev/76Kw4cOICBAweiSpUqyM3NRUpKCsqVK4fWrVvj22+/xc2bN42OhVwYEydOxIIFC9CjRw/UqlULNjY2clpt27bFihUrcPDgQb1Jk54m/v7+OH36tNwbzdvbWx4Kxt/fHz169MCKFStw/PjxEk97woQJmD9/Pho3bgxbW1tERkYiIiJCb8IjDw8P7Nu3D1u3bkWvXr3g6+uLjIwMpKWloUKFCujYsSMWLlxYppMplobc3Fx5uBLpLzMzExUrVkT37t2xfv16/Pnnn3oTVwJ5PWV37NiBli1bwtHREdnZ2ahQoQJGjhyJCxcuGO2t3aRJE2zYsAHDhw9Ho0aN4OHhgaSkJKjVajRo0ACfffYZrl69Wuge/x4eHjh48CDWrl2Ljh07wtPTE6mpqdBoNGjUqBHGjRsn93grCV5eXjh58iSGDx8OX19fWFlZwdbWFu3atcPWrVsxY8YMk9urVCrs378fEyZMQLVq1WBrawtra2t06dIFhw4dMnuIkZLWu3dv+f8LmtRS24QJE+SeiwqFAjY2NnJP3YMHDxosQyWlTp06uHjxIj788ENUqlQJOTk5cHR0xJtvvolTp07JvTYNOXPmDLZs2YJRo0ahefPmKFeuHFJTU5Gbm4ty5crh9ddfx5QpU3D9+nWjE/l27twZV69exciRI1G9enVkZWVBoVCgbt26mDBhAq5cuaIzVFBhVapUCUFBQfK/u3XrVmAvXh8fHxw5cgTr169HSEgIfHx8kJaWhvT0dFSqVAldu3bFkiVLijUGclmIiorCL7/8gqFDh6Jp06bQaDRITk6GQqGAt7c3goODMWvWLNy8eVPu8anN3t4ehw4dwttvv41KlSrh8ePHiIiIQEREBJ48eSKvt2jRIixZsgQNGzaEWq1GTk4OXnrpJUyZMgWnTp3Sm/i6pH3//ffYsGEDXnvtNTg6OiIzMxP16tXDvHnz8Pvvv+vMUZFfWeW9OPWsMJKTk+Xvo6SkJDg5OaFmzZro1asXZs6cifDwcPz22286E7kaMmzYMNy8eROfffYZXn75Zdjb2yMxMRH29vZo1KgRPv74Yxw6dEh+y8iQN954Qx7fH4BZb8AYM27cOGzcuBHNmzeHvb09srOzUblyZYwdOxYXLlwo8A2yXbt2YcSIEahatSrS09Plcmxo6BRjpkyZgqNHj6Jfv36oUKECUlJS4ODggBYtWuDHH3/E4cOHS61XdEkZNWoUHB0dkZWVhalTp8qfF/c7ubj8/Pxw/vx5/O9//5OvpVKpREhICI4cOYJevXohJSUFAAy230qlEkuXLsXx48fxzjvvoFq1agDy6oOHhweCgoIwbdo0/PPPP6hTp06pHgsRPX8UQpTxAIpERERERE+hiRMn4uuvv8ZLL72EK1euWDo7REREz7xTp06hadOmUCgUSExMLPOhzIjoxcYe30RERET0wpPGegVgshckERERmW/69OkAgMDAQAa9iajMMfBNRERERC+07OxsfPbZZ4iOjoa7uzsGDx5s6SwRERE9E06fPo0RI0bg+PHj8kSvQghcunQJffr0webNmwHkDXlDRFTWbCydASIiIiIiS1ixYgW++uorxMXFyT/WZ86cWapjchMRET1PUlJSsGjRIixatAhA3jje0twwkkmTJqFr166WyiIRvcAY+CYioufSvXv30KRJk0Jt4+vri1OnTpVSjojoaSNN9qdSqVCnTh2MHTvW6CSOREREpK9evXqYPn069u/fj5s3byI2NhZCCPj5+aF58+YYMWIEmjdvbulsEtELipNbEhHRc+nOnTvw9/cv1DZ+fn64c+dO6WSIiIiIiIiIiMoMA99ERERERERERERE9FzhUCcAcnNz8eDBAzg5OUGhUFg6O0RERERERERERERkgBACycnJ8PHxgZWVldH1GPgG8ODBA/j6+lo6G0RERERERERERERkhnv37qFixYpGlzPwDcDJyQlA3slydna2cG6IiIiIiIiIiIiIyJDHjx/D19dXjukaw8A3IA9v4uzszMA3ERERERERERER0VOuoCGrjQ+CQkRERERERERERET0DGLgm4iIiIiIiIiIiIieKwx8ExEREREREREREdFzhWN8ExERERERERERET3lhBDIzs5GTk6OpbNSqqytrWFjY1PgGN4FYeCbiIiIiIiIiIiI6CmWmZmJqKgoPHnyxNJZKRP29vbw9vaGUqks8j4Y+CYiIiIiIiIiIiJ6SuXm5iI8PBzW1tbw8fGBUqksdm/op5UQApmZmYiNjUV4eDiqV68OK6uijdbNwDcRERERERERERHRUyozMxO5ubnw9fWFvb29pbNT6uzs7GBra4uIiAhkZmZCrVYXaT+c3JKIiIiIiIiIiIjoKVfUns/PopI41hfnbBERERERERERERHRC4GBbyIiIiIiIiIiIiJ6rjDwTURERERERERERETPFQa+iYiIiIiIiIiIiKjUHDt2DNbW1ujQoUOZpcnANxERERERERERERGVmhUrVmDkyJE4cuQI7t69WyZp2pRJKkRERERERERERERUIoQQSMvKKfN07WytoVAoCrVNamoqNmzYgFOnTiE6OhqrVq3CpEmTSimH/2Hgm4iIiIiIiIiIiOgZkpaVg9qT9pR5ule+ag97ZeFCyuvXr0fNmjVRs2ZNDBgwACNHjsTEiRMLHUAvLA51QkRERERERERERESlYvny5RgwYAAAoEOHDkhJScH+/ftLPV32+CYiIiIiIiIiIiJ6htjZWuPKV+0tkm5hXL9+HSdPnsSmTZsAADY2Nujbty9WrFiB4ODg0siijIFvIiIiIiIiIiIiomeIQqEo9JAjlrB8+XJkZ2ejQoUK8mdCCNja2iIhIQEajabU0uZQJ0RERERERERERERUorKzs7F69WrMmTMH58+fl/8uXLgAPz8/hIaGlmr6T/9jASIiIiIiIiIiIiJ6pmzfvh0JCQl477334OLiorOsV69eWL58OT766KNSS589vomIiIiIiIiIiIioRC1fvhzBwcF6QW8A6NmzJ86fP4+zZ8+WWvrs8U1EREREREREREREJWrbtm1GlzVs2BBCiFJNnz2+iYiIiIiIiIiIiOi5wsA3ERERERERERERET1XGPgmIiIiIiIiIiIioucKA99ERERERERERERE9Fxh4JuIiIiIiIiIiIiInisMfBMRERERERERERHRc4WBbyIiIiIiIiIiIiJ6rjDwTURERERERERERETPFYsGvhctWoT69evD2dkZzs7OCAwMxK5du+TlGRkZGDlyJDw8PODg4IBu3bohMjJSZx93795F165d4eDgAA8PD4waNQqZmZllfSjPrNN3HmHDqXtIzci2dFaIiIiIiIiIiIiISoRFA98VK1bEjBkzcPr0aZw+fRqtW7dG9+7d8c8//wAAxowZg82bN2PdunU4cuQIUlJS0KVLF+Tk5AAAcnJy0LlzZ6SmpuLIkSNYt24dwsLCMHbsWEse1jPl/Z9P4rOwizj+T7ils0JERERERERERERUIiwa+O7atSs6deqEGjVqoEaNGpg2bRocHR1x4sQJJCUlYfny5ZgzZw6Cg4Px8ssvY+3atbh06RL27dsHAPjjjz9w5coVrF27Fi+//DKCg4MxZ84cLF26FI8fP7bkoT0z1JlJAIBD565ZOCdERERERERERET0PBk8eDAUCoX85+7ujg4dOuDixYulnvZTM8Z3Tk4O1q1bh9TUVAQGBuLMmTPIyspCu3bt5HV8fHxQt25dHDt2DABw/Phx1K1bFz4+PvI67du3R0ZGBs6cOWM0rYyMDDx+/Fjn70XlqRYAgPC4VAvnhIiIiIiIiIiIiJ43HTp0QFRUFKKiorB//37Y2NigS5cupZ6uTamnUIBLly4hMDAQ6enpcHR0xObNm1G7dm2cP38eSqUSGo1GZ30vLy9ER0cDAKKjo+Hl5aWzXKPRQKlUyusYMn36dHz55ZclfzDPoIrOtriYCkQ/EZbOChEREREREREREZlDCCDrSdmna2sPKBSF2kSlUqF8+fIAgPLly+Pzzz/H66+/jtjYWHh6epZGLgE8BYHvmjVr4vz580hMTERYWBgGDRqEQ4cOGV1fCAGF1slVGDjR+dfJb/z48fjkk0/kfz9+/Bi+vr5FPIJnW3VvFyAqA4+ybAo8b0RERERERERERPQUyHoCfONT8HolbcIDQOlQ5M1TUlIQGhqKatWqwd3dvQQzps/igW+lUolq1aoBABo3boxTp05h/vz56Nu3LzIzM5GQkKDT6/vhw4do1qwZgLwnBH///bfO/hISEpCVlaXXE1ybSqWCSqUqhaN59jSsVgE4extJuSokp6TA2cnJ0lkiIiIiIiIiIiKi58T27dvh6OgIAEhNTYW3tze2b98OK6vSHYXb4oHv/IQQyMjIQKNGjWBra4u9e/eiT58+AICoqChcvnwZ3377LQAgMDAQ06ZNQ1RUFLy9vQHkTXipUqnQqFEjix3Ds6R+1QpQ4BZyYI2LN++iRcM6ls4SERERERERERERmWJrn9f72hLpFlKrVq2waNEiAMCjR4/w448/omPHjjh58iT8/PxKOocyiwa+J0yYgI4dO8LX1xfJyclYt24dDh48iN27d8PFxQXvvfcexo4dC3d3d7i5ueHTTz9FvXr1EBwcDABo164dateujYEDB2LWrFl49OgRPv30U7z//vtwdna25KE9M1ydneCsyESSUOPcrfsMfBMRERERERERET3tFIpiDTlSlhwcHOQRPwCgUaNGcHFxwdKlS/H111+XWroWDXzHxMRg4MCBiIqKgouLC+rXr4/du3ejbdu2AIC5c+fCxsYGffr0QVpaGtq0aYNVq1bB2toaAGBtbY0dO3ZgxIgRaN68Oezs7NC/f3/Mnj3bkof1TFEoFPBzt8PFOAE4GR8ehoiIiIiIiIiIiKi4FAoFrKyskJaWVqrpWDTwvXz5cpPL1Wo1vv/+e3z//fdG16lUqRK2b99e0ll7obxa2x8X/7qNmNIta0RERERERERERPSCycjIQHR0NIC8+RkXLlyIlJQUdO3atVTTferG+KayV8Uj77WIO/FPIISAQqGwcI6IiIiIiIiIiIjoebB79255fkYnJyfUqlULGzduRMuWLUs1XQa+Cd6OeUPH/HMvDsnJyRwfnYiIiIiIiIiIiIpt1apVWLVqlUXStrJIqvRUUWclAQASMhW4HXHPwrkhIiIiIiIiIiIiKh4Gvgn+3h5QIhuAApfuxFg6O0RERERERERERETFwsA3QaPRwFmRDgC4Fhlv4dwQERERERERERERFQ8D3wRbW1u42WYDAO48SrNwboiIiIiIiIiIiIiKh4FvAgB4O+YVhZgnQHZ2toVzQ0RERERERERERFR0DHwTAKCymx0AIClXhbi4OAvnhoiIiIiIiIiIiKjoGPgmAEA1L2cAQJJQIyoqysK5ISIiIiIiIiIiIio6Br4JABDUtSDV9wAAIABJREFU8CUAQCZsUM63ioVzQ0RERERERERERFR0DHwTAKBSBW/4uKgBAHfiOcElERERERERERERPbsY+CaZv4cDAOB2XCqEEBbODREREREREREREVHRMPBNMjfbbADAvr8vIjMz08K5ISIiIiIiIiIiomdddHQ0Ro4ciSpVqkClUsHX1xddu3bF/v37SzVdm1LdOz1T0mLCAbghPC4VMTExqFSpkqWzRERERERERERERM+oO3fuoHnz5nB1dcW3336L+vXrIysrC3v27MGHH36Ia9eulVraDHyTrJJGDSQASULNwDcREREREREREdFTSgiBtOyyn6fPzsYOCoXC7PVHjBgBhUKBkydPwsHBQf68Tp06ePfdd0sjizIGvklWzcsJuJ2DZKFCVMxDS2eHiIiIiIiIiIiIDEjLTsMrv7xS5un+3f9v2Nvam7Xuo0ePsHv3bkybNk0n6C1xdXUt6ezp4BjfJKtSXgNr5CIXVrj5IN7S2SEiIiIiIiIiIqJn1K1btyCEQK1atSySPnt8k8zdzQ3OirtIEPa4HZsKIUShXl0gIiIiIiIiIiKi0mdnY4e/+/9tkXTNJYQAAIvFFxn4JplGo4GLIh0Jwh6x6QqkpKTAycnJ0tkiIiIiIiIiIiIiLQqFwuwhRyylevXqUCgUuHr1KkJCQso8fQ51QjJXV1c4W6UDAJJyVYiLi7NwjoiIiIiIiIiIiOhZ5Obmhvbt2+OHH35Aamqq3vLExMRSTZ+Bb5LZ2Nig7asBAABHn2qoWLGihXNEREREREREREREz6off/wROTk5aNq0KcLCwnDz5k1cvXoVCxYsQGBgYKmmzcA36WherzoA4G5COnJyciycGyIiIiIiIiIiInpW+fv74+zZs2jVqhXGjh2LunXrom3btti/fz8WLVpUqmlzjG/SUbWcIwAgNiUTKelZUKvVFs4RERERERERERERPau8vb2xcOFCLFy4sEzTZY9v0pGVmgRnZd7//7RuK3Jzcy2bISIiIiIiIiIiIqJCYuCbdERFRcEuOxkAcO1+AhISEiycIyIiIiIiIiIiIqLCYeCbdGg0Gjgr0gEAj4UaMTExFs4RERERERERERERUeEw8E06NBoNXP5/4DtJqPDw4UML54iIiIiIiIiIiIiocBj4Jh329vZwV+YAAJJy1Qx8ExERERERERER0TOHgW/SoVAoUMlVBSBvqJOHD2MtnCMiIiIiIiIiIiKiwmHgm/RU9nSCAgLZsEZkfDKys7MtnSUiIiIiIiIiIiIiszHwTXo83FzhpMgAAKQrXZCUlGThHBERERERERERERGZj4Fv0tOkSRPU9vUAANRvHgxnZ2cL54iIiIiIiIiIiIjIfAx8kx43Nze8VNENAHAn/gmEEBbOEREREREREREREZH5GPgmg6p6OgIAwuOfIDc318K5ISIiIiIiIiIiomfN4MGDoVAooFAoYGtrCy8vL7Rt2xYrVqwo9ZgjA99kUGZ8JADgcsRDrF69mr2+iYiIiIiIiIiIqNA6dOiAqKgo3LlzB7t27UKrVq0wevRodOnSBdnZ2aWWrk2p7ZmeaQ+unQNQFYlZ1oh8EI309HTY2dlZOltEREREREREREQvPCEERFpamaersLODQqEo1DYqlQrly5cHAFSoUAENGzbEq6++ijZt2mDVqlUYMmRIaWSVgW8yrIK7M2zjcpAFayQLFR4+fAg/Pz9LZ4uIiIiIiIiIiOiFJ9LScL1hozJPt+bZM1DY2xd7P61bt0ZAQAA2bdpUaoFvDnVCBrm5aeCiSAcAJP0/9u48Oq7yTvf9d9eouVQaSpI12bIlGWvA2BiPAQOGENsEB0JwoIHO4UBOB9IrPazbp++9fc/pvt3J7azVw0nOOpk4gTZJCDOYMDgBM9oYPCBPkjXZsizJmqUqjTXtff+QXVjxDLbKtp7PWrUk1X73rt9rhGQ/+63fayXQ1dUV54pERERERERERETkSjF37lxaWlou2vW14ltOyev1kmZroTeajN9MoLu7O94liYiIiIiIiIiICBMtR8p37YzL614olmWdd9uU86HgW07J6/XiMQ4AEyu+e3p64lyRiIiIiIiIiIiIABiGcUFajsRTXV0ds2bNumjXV6sTOSWv10vasVYngWPBt2maca5KRERERERERERELnebN29m79693HXXXRftNbTiW04pIyMDj+2z4DszM5NQKERCQkKcKxMREREREREREZHLRTAYpLOzk2g0SldXF2+++SY/+MEPWLt2LQ888MBFe10F33JKiYmJPPbgPWz8+T7GLQdfuePrOBz6dhEREREREREREZFz9+abb5KXl4fD4cDr9XL11Vfzox/9iAcffBCb7eI1JFGSKadkGAals4rITWukMxCkpW+UrLQL17xeRERERERERERErmxPPvkkTz75ZFxeWz2+5bQMw2Bm5kST/EN9o0QikThXJCIiIiIiIiIiInJ2Cr7ltFpbW3GNDwDw0ttb+dWvfhXnikRERERERERERETOTsG3nFZXVxfjva0AdI8Z9Pb2YppmnKsSEREREREREREROTMF33JaXq8XjzEOwBAJhMNh+vv741yViIiIiIiIiIiIyJkp+JbTOjH4DpgJmNbEKnARERERERERERGZWpZlxbuEKXMh5qrgW04rPT2dZCOEHZMoBiOWi+7u7niXJSIiIiIiIiIiMm04nU4ARkdH41zJ1Dk+1+Nz/zwcF6oYufLY7Xa86R5Su4IMWon4rQQF3yIiIiIiIiIiIlPIbreTnp4ey+WSkpIwDCPOVV0clmUxOjpKd3c36enp2O32z30tBd9yRl6vF0/3eCz47unpiXdJIiIiIiIiIiIi00pubi7AtFmUmp6eHpvz56XgW87I6/XisXWDCeGEDPLzXZimic2mLjkiIiIiIiIiIiJTwTAM8vLy8Pl8hMPheJdzUTmdzi+00vs4Bd9yRjfeeCN9njb2vHEQV2YBX/7yNdOqkb6IiIiIiIiIiMilwm63X5BQeDrQsl05o9TUVOblZwJwuH8MANM041mSiIiIiIiIiIiIyBkp+JazKslOAaAzEGRoLMTw8HCcKxIRERERERERERE5PQXfckbRaJSdH71Pkn1ilff3f/w4v/vd7+JclYiIiIiIiIiIiMjpKfiWM7LZbNTU1JBijQIwGHXR29urPt8iIiIiIiIiIiJyyVLwLWdkGAZerxePMQ5AwEogEAgwNjYW58pERERERERERERETk3Bt5yV1+sl7VjwPWpPBaC7uzueJYmIiIiIiIiIiIicloJvOav09HQ8tonge8hIAqCrqyueJYmIiIiIiIiIiIicloJvOasTW530hx1YllZ8i4iIiIiIiIiIyKVLwbecldfrJdUIYmAxHoUxnPT09MS7LBEREREREREREZFTUvAtZ5WRkYHdsEi1hQBIyC5i4cKFWJYV58pERERERERERERETqbgW84qPT2d733ve8wvyQNgZvViSktLiUajca5MRERERERERERE5GQKvuWsbDYbaWlpzMyc2NiypW8MgEgkEs+yRERERERERERERE5Jwbecs8+C71FGRkbYunUrbW1tca5KREREREREREREZDIF33JO6urqaD+wC4BDfaN88MEHfPDBB2zbti3OlYmIiIiIiIiIiIhMpuBbzklfXx9DHc0AtA+MM6+yGoADBw4wPDwcz9JEREREREREREREJlHwLefE6/WSRBiXYRK1LCIJHnJycohGo3z66afxLk9EREREREREREQkRsG3nBOv14thgMceAibanVxzzTUA7Ny5E8uy4lmeiIiIiIiIiIiISIyCbzknGRkZAKRaIwC09I4yd+5c3G43fr+fhoaGeJYnIiIiIiIiIiIiEqPgW85JQkICbrebNCMIQEv/GE6nk8rKSgB27NgRz/JEREREREREREREYhR8yzkxDAOv14vHGAfgUO8oAPPnz8fhcJCYmIhpmvEsUURERERERERERAQAR7wLkMuH1+slo6sNwtDQPUwoYpKRkcGjjz6Ky+UiGo1is+leioiIiIiIiIiIiMSXUko5Z+vWreP//av/Qk6qm+FglHcaegFwuVwARCIRbXIpIiIiIiIiIiIicafgW86Zy+XC6bBze3UOAC/v7px0vLOzkyNHjsSjNBEREREREREREZEYBd9yXmw2G+uuzgXgw6Z+eodDAOzevZsNGzbw1ltvxbM8EREREREREREREQXfcu7GxsZ48cUX2frmS1TnpxK1LH63d2LVd0lJCYZhcOTIETo7O89yJREREREREREREZGLR8G3nDOXy0V9fT1Hjx7ltrkZALyyZyLkTk1NZc6cOQDs2LEjbjWKiIiIiIiIiIiIKPiWc2a32/F4PABcl2vHaTeo7xqhrnMIgPnz5wOwd+9egsFg3OoUERERERERERGR6U3Bt5wXr9cLgDk2xI1lWcBnm1wWFxeTnp5OKBRiz549catRREREREREREREpjcF33Jejgfffr+frx3b5PK1vV2EoyaGYcRWfe/YsQPLsuJWp4iIiIiIiIiIiExfCr7lvBwPvgcHB1k+J4PMZBf9o2E+aOoHoLKyEofDwcjICIFAIJ6lioiIiIiIiIiIyDSl4FvOy4krvh02G2urcgB45Vi7k8TERNavX8+3v/1tEhMT41aniIiIiIiIiIiITF8KvuW8eL1eDMMgNTUVgHXH2p2809DL4GgYgLy8POx2O5FIRO1OREREREREREREZMop+Jbzkpuby/e+9z1uv/12AMpzUpibm0LEtHh9f9eksaZp0tfXF48yRUREREREREREZBpT8C3nxWazxVZ7H3d8k8uXj7U7Aeju7uYXv/gFv/71r7XqW0RERERERERERKaUgm85b4Zh4HA4GBoaIhqNsqYyB4fNYF/HEE09IwCkp6cTDAYZHBykqakpzhWLiIiIiIiIiIjIdKLgWz6Xl19+mZ/+9KccPnyYjGQXX5qTCXy2yaXL5aKiogKA7du3x61OERERERERERERmX4UfMvnkpKSAsCBAweAzza5fHVvJ1FzorXJ/PnzAWhqamJwcDAOVYqIiIiIiIiIiMh0pOBbPpfjq7mbmpqIRCLcUJqJJ9FB91CIjw72A5CZmUlhYSGWZbFjx454lisiIiIiIiIiIiLTiIJv+VyKiopITU0lGAzS0tKCy2FjTWUOAK/s+WyTy+OrvmtqaohEInGpVURERERERERERKYXBd/yuRiGwbx584CT2528daCXofGJkLu0tJSkpCRGRkZobm6OT7EiIiIiIiIiIiIyrSj4ls/txHYn4XCYirxUZmcnEYyYvFnbDYDdbueWW27hT/7kTyguLo5nuSIiIiIiIiIiIjJNKPiWz62goACPx0M4HObQoUMYhsG66olV36/s/qzdSVlZGXl5eZimiWVZ8SpXREREREREREREpgkF3/K5GYbBDTfcwOrVq2OruW+vzsVmwK4jfg73j550TjgcnuoyRUREREREREREZJpR8C1fyDXXXMPVV1+N2+0GwJfqZllJBgAbT1j1PTw8zKZNm3jiiSe06ltEREREREREREQuKgXf8oU5HI5JXx/f5PLlPZ2Yx0Jul8tFXV0dnZ2dHDlyZMprFBERERERERERkelDwbd8YWNjY3zyySe8//77ANxUnkWq28FRf5DtLYPARPBdVlYGwKeffhq3WkVEREREREREROTKp+BbvrChoSHee+89du7cSSgUIsFp57aKbABe2fNZu5PKykoAamtrCYVCcalVRERERERERERErnwKvuULy8nJISMjg0gkQlNTEwDrrs4DYFNtDyOhCACFhYWkpaURCoWoq6uLW70iIiIiIiIiIiJyZVPwLV+YYRix1dwHDhwAYH5BGsUZiYyFo7xV1xsbV1FRAcDu3bvjU6yIiIiIiIiIiIhc8RR8ywVxPNA+dOgQ4+PjGIbBHdXHNrncffSU4/x+/9QXKiIiIiIiIiIiIlc8Bd9yQfh8PrKzszFNM9bu5PZjwffHLYO0D44D4PV6ueqqq1i6dCmWZcWtXhEREREREREREblyxTX4/sEPfsCiRYtITU3F5/Oxbt066uvrJ41ZuXIlhmFMeqxfv37SmIGBAe6//348Hg8ej4f777+fwcHBqZyK8Nlq7uPtTvLTE1g8Mx2AV0/Y5HLt2rWsWLECt9s99UWKiIiIiIiIiIjIFS+uwfd7773Ho48+yrZt2/jDH/5AJBLh1ltvZWRkZNK4hx9+mKNHj8YeP/vZzyYdv/fee6mpqeHNN9/kzTffpKamhvvvv38qpyJMBN8Oh4OEhITYau7jm1y+sqfzpBXelmVhmuaU1ykiIiIiIiIiIiJXNsO6hPpN9PT04PP5eO+997j++uuBiRXf8+fP59///d9PeU5dXR3z5s1j27ZtLF68GIBt27axdOlSDhw4QHl5+VlfNxAI4PF48Pv9pKWlXbgJTUPBYJBoNBr7eiQU4fp/2cpYOMqvv7WAawo9AESjUQ4ePMjY2BhLliyJV7kiIiIiIiIiIiJyGTnXLPeS6vF9fLPDjIyMSc//+te/Jisri4qKCv76r/+aoaGh2LGPPvoIj8cTC70BlixZgsfjYevWrad8nWAwSCAQmPSQC8PtdmOzffZtlexy8OV52QC8WPPZJpft7e28/PLLvPvuu4RCoSmvU0RERERERERERK5cl0zwbVkWf/mXf8mKFSuorKyMPX/ffffx9NNP8+677/J3f/d3vPDCC9x5552x452dnfh8vpOu5/P56OzsPOl5mOgtfrwfuMfjobCw8MJPaBqz2+309fUxPj6xoeVd10y0O3ltbxeB8TAAhYWFpKWlEQwGYz3BRURERERERERERC6ESyb4fuyxx9izZw9PP/30pOcffvhhVq1aRWVlJevXr+f555/nrbfeYteuXbExhmGcdD3Lsk75PMDf/u3f4vf7Y48jR45c2MlMc6+++iq//OUvqaurA2BBoYcyXzLjEZNXdk/cjDAMI7YZZk1NTdxqFRERERERERERkSvPJRF8f/e732Xjxo288847FBQUnHHsggULcDqdNDY2ApCbm0tXV9dJ43p6esjJyTnlNdxuN2lpaZMecuHk5uYCUF9fD0yE3OuvzQfg6R3tsU0ujwffLS0tsTY3IiIiIiIiIiIiIl9UXINvy7J47LHHePHFF9m8eTOzZs066zn79+8nHA6TlzfRPmPp0qX4/X4++eST2JiPP/4Yv9/PsmXLLlrtcnrz5s0D4MiRIwwPDwNwe1UOyS47LX1jbDs0AIDX66WgoADLsrTqW0RERERERERERC6YuAbfjz76KL/61a/4zW9+Q2pqKp2dnXR2djI2NgZAc3Mz//AP/8COHTtoaWnh9ddf5+677+aaa65h+fLlAFx11VXcdtttPPzww2zbto1t27bx8MMPs3btWsrLy+M5vWkrPT2d/PyJFd4NDQ0AJLsd3HH1xErwZ3Z2xMYe7+e+Z8+e2EpwERERERERERERkS8irsH3T37yE/x+PytXriQvLy/2eOaZZwBwuVy8/fbbfPnLX6a8vJw///M/59Zbb+Wtt97CbrfHrvPrX/+aqqoqbr31Vm699Vaqq6t56qmn4jUt4bNA+8SNK+9ZOBGGv32gl65AEIDy8nKcTidOpzO2OlxERERERERERETkizAsLbMlEAjg8Xjw+/3q932BBAIB/u3f/g2Ab3/727E/1wee3MWOVj/fuX4mj62caG0zPDxMSkoKDocDl8sVt5pFREREREREREQuZZZl0dvbS3Z2drxLiZtzzXIvic0t5cqTlpZGUVER8Fm7E4BvLppY9f3crg7CUROAlJQUACKRiNqdiIiIiIiIiIiInCAcDtPQ0MCrr77Kv/7rv/KTn/yEQCCAaZrxLu2S5oh3AXLluv766xkdHaW4uDj23M1zs8lMdtEzHGJzfS9fnueLHQsGg4yMjEzrO1YiIiIiIiIiIiKjo6M0NDRQX19Pc3Mz4XA4dszlctHZ2cnMmTPVPeEMFHzLRTN79mwikQihUCj2nMtu4+4Fefz0g8P8dkd7LPiur6/n9ddfp7CwkAceeCBeJYuIiIiIiIiIiMSFaZrYbBMNOmpra3nttddix1JTU5k9ezZz5syhsLAQh0Ox7tnoT0guqhM3IT3u7gUz+PmHh/m4ZZDmnhFmZyfj8/mIRCK0tLTg9/vxeDxxqFZEREREREREROTiiEaj9Pb2MjY2xtjYGKOjo4yNjTE0NERzczOLFi1iwYIFRKNRioqK8Pl8zJkzhzlz5uDz+TAMI95TuKwo+JaLanR0lC1bttDX18cdd9wBQJ4ngZVlWWyu7+WZnR38n7eV4vV6KSgooK2tjZqaGm644YY4Vy4iIiIiIiIiInJm0WiUzs5OBgcH8fv9DA4OMjIyEgu3y8rKWLlyJZZlMTw8zE9/+tPTXqu+vp6qqipgYk+8Bx98cKqmcUVS8C0XlWEYbNu2DcuyGBgYwOv1AvDNa/PZXN/Ly7uP8r2bSkhy2amsrKStrY09e/Zw/fXX6y6WiIiIiIiIiIjEjWVZBAKBSaG23+8nPz+fBQsWxMLsxx9//LTX8Hq9jI2NAWCz2UhMTCQxMZGEhIRJH/Py8pg1a9ZUTW1aUPAtF1VSUhKzZs3i4MGD1NXVsWzZMgCWlngpykiktX+M1/Z1cfeCGZSXl/P222/T39/PkSNHKCoqinP1IiIiIiIiIiIy3YyPj7Nlyxb27dvH4ODgScdHRkaYO3cuAA6HA4/HQ3JyMh6Ph7S0NFJSUmKB9ontfO12O4899tiUzWO6U/AtF93VV1/NwYMHqamp4brrrsPhcGAzDNYvnMEP/9DM0zva+fo1ebhcLsrKyti/fz81NTUKvkVEREREREREZEoEg0Hcbjcw0cHgk08+IRQKYbPZSE1NjYXaaWlp5Obmxs4zDINHHnkkXmXLGSj4louuoqKCt956i6GhIWpra6murgZg3fw8/sc7hzjQOcye9gBXF3iorKxk//791NXVsXr1au1QKyIiIiIiIiIiF4Xf72ffvn3s37+fUCjEI488QjQaxbIsVqxYQXJyMiUlJbhcrniXKp+DUkW56Ox2O0uWLOEPf/gD27dvp6qqCsMwSE908pUKHy/v7uTpHe1cXeChsLCQm266ifLycvX4FhERERERERGRC2p4eJj9+/ezf/9+jhw5EnveMAx6enpi+9MtXLgwXiXKBaLgW6bEwoULef/99+nv76epqYnS0lJgYpPLl3d38sb+bv7m1jl4k1yxHyyRSAS73R7PskVERERERERE5AqxZcsW3n77bSzLij1XWFjI3LlzKSsrIykpKY7VyYWm4FumhNvtZsmSJQwMDJCVlRV7vio/jcoZqezrGOLFT4/y0PLi2LHh4WECgQDZ2dnxKFlERERERERERC4jlmXR19dHW1sbR44coa2tjVWrVjFr1ixM08Tr9WJZFnl5eVx11VWUl5eTkpIS77LlIjGsE29xTFOBQACPx4Pf7yctLS3e5VzRwuEw4XB40nMv1hzl/954gIL0BN787hJshkEoFOK5556jv7+fe++9l8LCwjhVLCIiIiIiIiIil6pAIMDu3btjQffY2Nik40uXLmXFihUARKNRhoaGSE9Pj0epF5zD4ZiW/cfPNcvVim+ZUg6H46Tg+ysVPn74+ybaBsf5sKmf60szYxsJjI+P89RTT/GNb3yDOXPmxKlqERERERERERGJh3A4zODgIAMDA7FHQUEBlZWVWJbF6Ogomzdvjo13OBzk5OSQn5/PjBkzyM/Pjx2z2+1XTOgtZ6fgW6aUYRj09fWxdetWli1bRmZmJolOO1+7Opf/+LiN3+5o5/rSTBITE/nGN77Byy+/zOHDh3n66af52te+RmVlZbynICIiIiIiIiIix4RCIbq7u+ns7KSrq4uuri56e3ux2+3MnTuXNWvWxMa+9tpruFwuEhIScLvdJCQkxD5PT0/H4/EAMDIywrPPPsvAwABDQ0Mnvebw8DAlJSUApKamMm/ePHJzc5kxYwY+n097xgmg4FviYMuWLdTX1+N0OrntttsAuOfafP7j4zbea+yjfXCM/PREXC4Xd955J6+//jr19fW88MILjI6Oct1118V5BiIiIiIiIiIi04tlWfj9fsLhcGw/trGxMX74wx+e9pyxsTFGR0eBiTYjO3bsOO3Y6upq1q5di2VZWJZFa2tr7JjL5SI9PT0Wjp+4itswjEnhushxCr5lyi1fvpz6+npqa2tZsWIFKSkpzMxMYlmJl60HB3hmZwd/efNsYOLtKWvXriUxMZGamhreeOMNTNNkyZIlcZ6FiIiIiIiIiMjlLRqNMj4+jmmapKamxp7ftWsXIyMjjI2NMTY2Rn9/P11dXQSDQUpKSrjnnnswTRPLskhOTgYgOzub7OxsfD4fmZmZAJP6T5umyfLlywkGg6d9HG+Pa7PZWLduHSkpKaSnp5OQkIBhGFP4JyNXAgXfMuUKCwspLCzkyJEj7Ny5kxtuuAGA9dfms/XgAC98epTHbpiFy2EDJn7YrVq1isTERHbv3k1BQQGmaWKz2T7X65umSW1tLTNnziQpKSn2GiIiIiIiIiIiVyLLsmhra2P37t2xDSDHx8cJhUIAFBQU8OCDD8bGvvPOOwwPD590HZvNhmmaRCKR2HMPPfQQbrf7rDU4nU6WLVt2zjWXlpae81iRU1HwLXGxfPlyfvvb31JTU8OSJUtwu92sLMskN81NZyDIprpubq/KjY03DIMVK1awYMECkpKSGB8fJyEh4bwC60gkQk1NDVu3bmVgYIAlS5bwpS99CQC3263+TyIiIiIiIiJyRYpGo/zmN79hfHz8lMcjkUgsBAcoLy8nFArF+nCnpaWRnZ1NZmbmSfnJuYTeIvGg4FvioqysjKysLHp7e9m9ezfXXXcdDpuNuxfM4MfvHuKZHR2Tgu/Z7q+PAAAgAElEQVTjjq/QBqirq2P37t18/etfn/TWmT8WDAbZuXMnH330UexuZWJiIgkJCQA0Nzfz/vvvc//995OWlnaBZyoiIiIiIiIiMnXC4TB1dXU0Nzdzxx13EI1GiUQiVFVVMTIyQllZGSkpKZM2lvzjhYU33XRTnKoXuXAUfEtcGIbBsmXL2LhxIzt37mThwoXY7Xa+fk0eP3m/hV1H/BzoHGZubsopzw+Hw7z++uuMjo6yYcMG7rvvPhITE08a98EHH7B169bYHc3U1FQWLVpEVVUVLpcLy7LYsmULvb29bNy4kfvuu089o0RERERERETksnJ8M8iamhpqa2tjq7crKiooKCgAYOXKlXGsUGTqqbGxxE1VVRUzZsxg4cKFmKYJQHaqm1VzJ3YG/u3O9tOe63Q6WbduHQkJCbS3t/PEE08QCAQmjbEsi8HBQcbHx8nIyOC2227j4YcfZuHChbEV4oZhsHr1aux2O83NzWfcXVhERERERERE5FIyNDTEe++9x49//GOefPJJampqCIVCeDweli1bRnp6erxLlIvAHBlh7JNPiPb3x7uUS5phWZYV7yLiLRAI4PF48Pv9anUxxSzLYnx8nBO/Dbe3DPDghhoSnXY2fXcJWSmnb2PS29vLc889x/DwMB6Ph5kzZ7Jo0SJ8Ph/hcBi/309nZyelpaVn7Ae+Y8cO3nnnHZxOJ4888ghZWVkXdJ4iIiIiIiIiIp9XNBqlr6+Prq4u0tLSKC4uxrIsWlpa2LBhAwAul4vy8nIqKyvJz8/XO9qvEJZpEmk5THDv3onHnj2EDx4E08T3/X8i8847413ilDvXLFetTiSuDMPA6XRO2kDh2uJ0Sn3JNHaPcO8vd/K/vlnNnOzkU56flZXFvffey3PPPcfAwAC7d+9mbGyMO+64AwCPx4PH4zlrHQsXLqS5uZnW1lZeeuklHnroofPaOFNERERERERE5EKIRqO0trbS2dlJd3c3nZ2d9PT0EI1GgYl30Ofk5GCaJj6fj3nz5jFr1ixKS0txOp1xrl6+qGggQGjfPoJ79xHcs4fQvn2YQ0MnjbPn5WGFw3Go8PKhFd9oxXe8RaNRdu/eTWtrK7feeisAB3tH+LOn93BkYJwUt51/+3oly2dnnPYaIyMjbNq0CbvdzqJFi5gxY8ZZX3dX6yC/3dnBn1xXQHV+GoFAgCeeeIJQKMTKlSu54YYbLtgcRUREREREROTKZFkWIyMj9PX10d/fH/uYkZHBqlWrYuM2bNgQC6//WG5uLl/5ylewLItgMMg///M/nzTG6XSSnZ3NnDlzWLx48UWbj0wdKxolfPAgwT0Tq7lDe/cSPnTopHFGghvXVfNwV1fjrqrEVVWFIzsbh8MRa+c7nWjFt1w2RkdHee211zBNk4qKCvLz8ynJSua3Dy3ku8/sY9cRP//lN3v4v75Syvpr8095jeTkZO48x7d2hCIm//O9Q/xyayumBbVHh9j4Z9eRlpbGqlWreP311+nv78c0Ta36FhEREREREREAxsbGCAaDsb7ZkUiEX/7yl/T19U16J/txs2fPZnR0NPZ1a2vraYNvYNLY4uJiXC4X2dnZ+Hw+srOz8Xg8al9ymYsODBxrVzIRcgf378c64b/7cY7CQtxVVbirqnBVV+GaMwdDq/nPm4JvibvU1FSqq6upqalh+/bt5OdPhNveJBe/vH8+/+139byyp5N/eL2B5t4R/ubWOTg+ZyDd0DXM37xcS33XCAAOm8HB3lE21/eyam428+bNIz09nfz8fMLhMG63+4LNU0REREREREQubZZl0dDQwODgIIODg/j9/tjnY2NjlJSUsH79eizLwjRN/H5/LPT2eDykp6fj9XrJyMggJydn0rXXrl3L6RovJCUlTfr6G9/4xsWZoEwZKxwm1Ng0EXAfe0SOHDlpnJGUhLuiAtex1dzuqirsXm8cKr7yKPiWS8KyZcuoqamhsbEx9nYgAJfDxvfvmMusrCT+ffNBfv1JO639Y/zLXRWkuM/92zdqWjy57Qg/eucg4aiFN8nJ368tZ297gF9saeUXHx7m5vIsDMOIBe/RaJRoNIrdbr8ocxYRERERERGRqTU0NERHRwf9/f2xYDslJYU1a9ZgWRaWZbFx48ZJq69PND4+TviEvspf/epXSUxMJD09HYfjzDlFWVnZBZ2LxIcVjWIODWH6/ZiDfqL+wYnP/QGifj+mf5Bw80FCdbVY48GTznfOmoXr2Gpud3UVzpISDGVPF4WCb7kkZGdnU1ZWRkNDA9u3b+fLX/5y7JhhGDyyopiZmYn815fq+KCpn3t/uYuffLOK/PTEs167bWCMv32ljp2tfgBWlmby97eXk53iZn6Bhw0ft7G3Y4jthwe5buZnd9SGh4d58cUXWbZsGSUlJRd+0iIiIiIiIiIyJV566SVaWloIBAInHfN6vYyNjcW+njVrFuFwmLS0NDweD2lpaaSlpZGenn5SP+XCwsKLXrtMPcs0CR2oZ+zDDwjt20908Fi4HQhgBgJwjlsm2lJTcVVWftabu7ISu/YXnDIKvuWSsXz5choaGti/fz/Lly8nJSVl0vFbr/Ixw5PAo7/dS1PPCPc8vpP/eU8V8ws9p7yeZVm8WNPJDzY1MhqKkuSy87dfnsOd8/NiPbGyUlzcOT+Pp3e08/iW1knB9yeffEJzczPd3d382Z/9GYmJZw/ZRURERERERGTqmaZJT08P7e3ttLe3Mz4+zte//nVM08Q0TXp7ewkEAhiGQWZmJllZWbFg+3jP7uNWr14dp1lIPJkjI4xv+5jRDz9kfMuHRHv7zjjeSE7G5vFg93iwHXsc/9wxYwbu6iocxcUY2j8ubhR8yyWjsLCQgoIC2tra+PTTT/nSl7500pjKGWk8858X8p3f7uVA5zB/uqGGf/zqXNZWTe6b1TcS4v95tZ53GnoBWFDo4QfrrqLQe3J4/a2lhTy7s4MPm/upPTrEvLxUAFasWEFzczODg4O88cYb57x5poiIiIiIiIh8PiMjI4yPjxMKhQiHwyd9XLhwYWwx26effkpraysDAwN0dHRMakFiGAZ+vz+2QnvFihUYhkFubu5Jq7Zl+gq3tjL2wYeMffgh4zt3QiQSO2YkJpKwZDGJ1y3G7svG5knH5kmLhdvabPLSp+BbLhmGYbB8+XI+/PBDCgoKTjsuNy2Bp/70Gv7mpTo21/fyf7xUS0vfKI/eMBPDMHi7vof/9mo9/aNhnHaDP185iz9dWoTdduqdjwu8idxW4eO1fV08vqWVf/16BQAul4vVq1fz9NNPs3fvXsrLy6moqLgocxcRERERERG5UlmWxcjICENDQyc9xsbGuPvuu2PjXnnlFRobG097rblz5+I8FjgeOnSIvXv3xo45nU7y8vLIy8sjNzcX2wkrbYuLiy/S7ORyYoXDjO/aFQu7I62tk447CgtJXLGCxC+tIGHBAgzdJLmsKfiWS0p5eTmlpaUEgyc3/z9RssvBj75Ryb+9fZD/vbWV//V+Cy19o7gcNl7e3QlAmS+Zf/7aPMpzUk57nUAgQG9vL/95eRGv7evi93XdtPTNYmbmxG7K+fn5LF68mG3btvHaa69RWFhI2ll6MR3f2fn4ppgNDQ189NFH3HLLLcyYMeN8/jhERERERERELgumaTI4OEhPTw+Dg4MsXrwYmPg38jPPPEN9ff1pzx0cHMTtdgOQnJyMy+XC6XSe8hEOh2OBdmlpKV6vl6SkJPLy8sjIyJgUdsv0Zo6MEGpqItzQQKihkVBDA+HGRqzx8c8GORwkLFgQC7udukFyRVHwLZcUwzCw2+3YbDaCwSCGYZx2V2SbYfBXq2YzMzORv3+tgdf3d09cA3hoWRGPrZyFy3H6X3hdXV1s2LABt9vNd77zHa6fk8H7Tf088dER/n5teWzcsmXLOHjwIN3d3WzcuJH77rsv9rYqmPgl3t3dzeHDh2ltbeXw4cNce+21LFu2DNM0SU9Pp6WlhV/84hdce+213HTTTeoXLiIiIiIiIpe1Q4cO0dLSQm9vL729vfT19RGNRmPHy8vLcbvdWJZFQkICMBFqp6SkkJKSEvs8NTV10r+xb7nlFm655ZZzqmH27NnMnj37wk5MLjuWZRE9epRQQ8NEuH0s5I60tZ1yvD0rk4TlK0hasYKExddhSzn9gkm5vCn4lkuSw+Hgd7/7Hf39/Xz1q1894yrru66ZQaE3kb98fj/Jbgffv2MuC4vSTzl2dHSUjz76iBtuuAGfz0dKSgrDw8McPHiQh1cU835TPy/vPspjN8wkO3XibrPdbmfNmjVs2LCB3t5ehoaGSExMZPv27bGwe/zEu4XA4cOHWbRoEQA2m42rrrqKuro6duzYQW1tLatWrWL+/PmTfrmLiIiIiIiIXCrC4TA9PT10d3fT09NDT08Pd911Fy6XC9M02bdvH7t27Zp0jsPhwOv1kpmZSTAYjPXSXrlyJTfffHPsndEi58scGyPa2Umku5toVxeRri6iXd2EDx0i1NiINTx8yvPs2dk4y8pwlZXiKivDVVqGY6Y2nJwuFHzLJWlkZITm5mbGx8fZsGEDa9asYdasWacdf91ML5v/YhkOm4HtNGGy3+/nueeeY2BggHA4zJo1a6iqquKjjz6irq6OO+4oY0Ghh11H/Gz4uI2/WvXZXeOsrCzuvPNOZsyYEesl9u6778Y2znA6ncyYMSO2QWdubm7s3KSkJNauXUt1dTVvvfUWfX19bNy4kU8//ZTVq1dPGisiIiIiIiISL7W1tezZs4fu7m4GBgZOOt7e3h77N2xBQQGRSISMjAwyMzPJyMjA4/GccoGXNpOUM7GiUSJHjxJpayPa1U2ku4toZ1cs5I52dWEODZ35Ig4HzpKSWMDtLJ0Iu+1e79RMQi5JhmVZVryLiLdAIIDH48Hv95+1f7NMnYGBAZ599lk6Oyd6di9btoylS5d+rn5dPT09PP/88wwPD5OWlsb69evJzc2lq6uLn/3sZ9jtdh599FE+OjzEd367l2SXnbe/t5S0hNPv0Pvhhx/idrspKCjA5/Od053raDTKzp072bp1K+FwmJkzZ/LAAw9o5beIiIiIiIhcFKZpMjw8TCAQIBAI4Pf7Yx+7u7u5++67ycrKwjRNtm3bxubNm2PnJiUlkZmZSVZWFllZWZSWlpKcnBzH2cjlyrIsoj09RA4fJtx6hEjrYcKHWwm3tk60JIlEznoNIyUZhy8Hu8+HIzcHuy8HR0HBRNA9ayaG8/QZzpXK4XBMyxtL55rlasW3XLK8Xi8PPfQQb7zxBrt27WLr1q10dHSwZs0akpKSzvk6bW1tvPjiiwSDQbKysli/fj0ZGRkYhkFOTg5ZWVn09vbS0NDA9ZWVlPqSaewe4ent7Xz7SzNPe90VK1ac95zsdjvXXXcdV111Fe+++y5Lly5lbGwMl8uFZVk4HA6F4CIiIiIiInLOIpEIXV1dDA4OxsLta6+9lszMTCzL4uOPP+b3v//9ac9vb28nNTUVgKKiIm6++WaysrLIzMxUyC3nzQqFCB88OLGp5OHWiYC79QiR1lassbHTn+hy4czPx56bGwu17Tk+HDk52HNycPh86sUt503Bt1zSHA4Ht99+O4WFhbz22mu0tLTw/PPPc//9959TQNzU1MSrr75KJBIhPz+fe+65J/YLHSY206yurmbz5s3U1tZSVVXFQ8uK+K8v1/HUx208uKSQBOeF70GWmprK7bffHvs6FAqxefNment7Wb16NT6f74K/poiIiIiIiFwZ2tvb2bVrFx0dHXR3d2Oa5qTjubm5JCUlxTaWtNlssY0kU1NTSUlJIS0tjczMzEntN7Ozs8nOzp7q6chlKtrXd2xDyUbCDQ2EGhsIt7RAJHrqE+x2HDNm4CwuwlFUjLOoEEdxMc7CIuy5Oeq7LRecgm+5LMyfP5+8vDyee+45rr/++nMKvUOhEJs2bSISiTB79mzuuusuEhMTTxpXVVXF5s2bOXr0KMFgkNWVPn787iHaB8d5qaaTby7KvxhTmmRsbIw9e/YQDof52c9+xuLFi1m5cuW0fLuKiIiIiIiITLQo6e3tpaOjg46ODqqrq8nPz8c0Tfr7+ydtLJmUlITX640F22lpaRzvbDtnzhz+4i/+4nO1DRWxLAtrfJxIW9sJAXcjocZGzL6+U55jS0vDWVqKc9ZMnEXFOIoKcRYX45gxY1q2I5H4UY9v1OP7cmKaJqZpEgqFAOjo6CArK+u0AXF7ezu1tbWsXr06tinlqTQ0NODz+WLX+c32Nv7xjUby0xN447HFOKbgLwh+v5/NmzfT1NQETPzl5N5771XrExERERERkWlgZGSEuro6enp66Ozs5OjRo4TD4djxFStWsHTpUgCGh4fZtWsXOTk55OXlkZqaqn87yhlZwSDBAwcI7d1LuLUVa3z82COIFQxijo9jBYMTz8U+Thw/LcPAUVQ0saFkaRnOYxtL2nNy9P04RdTj+8xZroJvFHxfjkzTpLOzk//4j/8gNTWVO+64I9a/bGBggIyMjNjY42/rOpvx8fHY28PGwlFu+R8f0T8a5odfm8faqpyLNpc/1tTUxMaNG4lGo3zta1+jurp6yl5bRERERERELg7LshgeHqanp4fe3l56enooLi6moqICy7Lo6uri5z//+aRznE4nOTk55ObmMmfOHAoLC+NUvVxOLMsievQowT17CO7dS3DvXkIH6s9pA8nTMVKScc2ZCLadZaW4SktxzpmD7RTvrJepo+Bbm1vKFchms2GaJi6Xi76+Pp566iluueUWDh06RHNzM+vXryc3Nxe3233Ob+dyOByEQiFM0yTRaedPFhfwo3cO8fiWw6yp9E3Z3co5c+awZMkStmzZwqZNm5g9e7Y2FBEREREREbkMjYyM8Pbbb8eC7vHx8UnHg8EgJSUlAKSkpFBSUkJmZiZZWVnk5uaSkZGhFiVyVubYGKHa2omQe88egnv3nbINiS0jA3d1Fa7SUoykZAy3G1tCAkaCG8PtxkhIwHAf+zoh4bPjbjdGcrJWcctlR8G3XLYKCgp45JFHeOGFFzh8+DCvv/46MBGKDw4OMnPmzPP6odzY2Mg777zDnDlzWLFiBd+8Np/Ht7TS0D3C+4193FCWdbGmcpLFixdTX1+P3++nvb2dsrKyKXttEREREREROTfhcJju7u5JjxkzZnDjjTdimiaGYfDpp5/GxhuGQXp6OpmZmWRmZk5awW2327nrrrviMQ25xFmhEJGeHqKdXUS7u4h0dR/72EWkvYNwczNE/2hDSYcdV/lc3NVVuKuqcFVVTfTYVngt04iCb7mspaam8sADD7B582a2bNmC0+lk3bp1XHXVVef9wzwajdLT00MoFGL58uV4Ep3cs3AGT3x0hF9saZ3S4Ntut7NmzRrcbjcejwfLsvTLSURERERE5BIQjUZ5/vnn6e7upr+//6TjwWAw1osbYOXKlaSmppKRkUFGRgYOh6KYK5llWUR7egg3NhLp7j7fkzH9fqJd3US6uoh2dRHp7sY8xffZH7Pn5OCuqpwIuaurcZWXY0tI+JyzkEuFaZqxd3309/ezfft2BgcHGRwc5JZbbtFCybPQT1u57NlsNlatWkVlZSVOp5OMjIzPFRKXl5fjdDrx+/10dHSQn5/Pg0sK+dUnbew64mdn6yALi9IvwgxOzefzxT4PBoMk6BeWiIiIiIjIlAqHwzQ1NTEyMsLChQuJRqOYpklbWxvDw8MAJCUlkZWVRXZ2NllZWeTkTN4jatGiRfEoXaaAFQoRPnSIUEMDoYZGwg0NhBobMAf9F/y1DLcbu8+HPceHw5eDPScHR44Pe04OrrlzceRM3d5kcmGZpklHRwd9fX0MDg7i9/tj4faSJUu47rrrAIhEIuzZsyd23uDgYLxKvmwo+JYrRm5u7hc63+l0MnfuXPbu3UtdXR35+fn4Ut2suzqX53Yd5X9vaZ3S4PtELS0t9PX1sXz58ri8voiIiIiIyHQRjUZpbm5m37591NfXEwqFcLvdlJWVxVZr33zzzbhcLrKzs7Un0zQR7e8/FnA3EG5onPjYcggi0ZMH22w4i4txFBTAefZot6WlYvcdC7V9Phy5udh9Pmwej94JfgXq6urihRdeYGRk5JTHTwy3vV4vy5cvx+v14vV6yc7Oxul0TlWplyUF3yInqK6uZu/evRw4cIAbb7wRu93Ot5YW8fyuo7zb2EdD1zBlOSnnfD3LsmjuHcWb5CQz+fPtstvd3c0zzzyDYRjMmjWLGTNmfK7riIiIiIiIyOm1trby6aefcuDAgUmbUKamplJeXk4kEokF32ovcOWyIhHCra0Tq7frjwXdjQ1Ee0/eLBLAlpqKs6wMV1kprtIynGWlOEtK1GZETmlkZIShoaHY4s2MjAxCoRCJiYnk5eWRnp4eC7YzMjLwer24XC4MwyApKYlVq1bFeQaXFwXfIicoKSkhOTmZkZERDh8+TElJCTMzk7h1Xjabant4fGsrP/zavDNeo38kxNaDA2xp7mfLwX56h0O47Da+e+Ms/nRJIXbb+d2h9fl8zJ07lwMHDvDKK6/wyCOPYLfbv8g0RUREREREpj3TNIGJ9pmWZdHY2EhNTQ0AycnJlJeXM3fuXGZoQ8Arljk0RKihkVBjw0TQ3dBIuLkZKxg8ebBh4CgsxFVWOhF0l06E3fbcXH1/yBmFw2Gam5vZv38/hw4dIiMjg29961sYhoHT6eS+++4jLy8Pp9Op76ULTMG3yAlsNhsVFRV88skn1NbWUlJSAsDDy4vZVNvDG/u6+fOVsyjwJsbOiZgme9oCfNjcz4fN/ezvGMI64ZoOm0EoavIvbzXzh7oe/umrc5mdfX5vhbvppptoaWmhu7ubrVu38qUvfelCTFdEREREROSKNjw8zMGDBwkEAgwNDcUegUCA4eFh7rzzTkpLS4lEIpSVlTE8PMzcuXPJz8+PbSgnlzfLsoj29hJpbSV8+DCRwxMfQ01NRDs6TnmOkZiIq7QUZ1kprrIyXGXlOOfMxpaUNMXVy+XKsiza29vZv38/9fX1BE+4meJyuQiHw6SkpGC32ykuLo5jpVc2Bd8if+Tqq69maGiIioqK2HPz8lJZXuJly8EBntx2hP+0rGhiRXdzPx8dHGAoGJl0jfKcFFbMzmDF7AyuKfTw2r4u/r9NTexpD3DXz3fw2MqZ/OnSQhzn+Bep5ORkbrzxRt544w3ef/995s2bR2Zm5gWdt4iIiIiIyOXINE127dpFbW0tgUCAZcuWMX/+fCzLoqenh5deeum05x44cIBZs2YBkJmZyS233DJVZcsFFg0EiBw+TLj1CJHWw4QPt058bD2CNTp62vPsubnHwu1jK7nLynEU5GPoxocwEWAfX4U9MDBAe3s70WiUaDRKJBLBNE0ikQjRaJSKigqysrIA2Lx5M7t27YpdJy0tjYqKCqqrq/H5fLqxNkUMy7Kssw+7sgUCATweD36/n7S0tHiXI5cA0zQn9XQD+PjQAN96qgYD+OP/aTyJDpaXZLB89sTDl+o+6ZpdgSD/7XcHeL+pH4CqGan841evotR3bqu/Lcvi2WefpbW1leLiYh588EG9BUZERERERKa15uZmfv/739Pd3R17bsmSJbF3yQYCAd544w1SU1NJSUk55UMB1OXHikQI1dczvn07459sJ3TgAOYJmwCexGbDMWMGjuJinEVFE4/ZJThLS7F7PFNXuFzSLMtiYGCAtrY2jhw5QltbG+vWrSMnJweAPXv2sGnTptOef8cdd8T6/x86dIhXXnmF8vJyqqurKSkpwWazKce5QM41y1XwjYJvObWxsTFO/N/Dsiz+5IldfNoWwGZAdX4aK44F3ZUz0s6pd7dlWWzc08UPNjUSGI/gtBs8esMs/tOyc1v9PTAwwJNPPkkkEuGb3/ymNlQREREREZFpqbe3lz/84Q80NDQAkJCQwOLFi8nNzSUjI4OUlJQ4VygXkmWahJuaJ4Lu7dsZ37UTa3jkpHH27GwcxUU4i4pxFhfhKCrGWVSIo6AAw+mMQ+VyqRseHqahoSEWdo/+0bsDbrrpJhYuXAhAS0sLO3bswG63Y7fbcTgcsc/tdjtVVVWxkNyyLCzLIiEhQWH3RaDg+zwo+JZT6ejoYO/evSxYsIDk5IlV2QOjIfZ3DFGVn4Yn8fP/0uweCvLff1fPu40Tu0JX5KXy/TvmUuo7+1/OampqSEhIYO7cuSQmJuoHqIiIiIiITCuWZfH444/T0dGBzWbjmmuuYenSpSQmJp79ZLksWJZFpKWF8R07JoLuHTswB/2TxhgpKSRcu5CERYtwXz0f58xi9eCWMwoGg/T19ZGYmIjX6wXg8OHDPPvss7ExdrudvLw8CgsLKS4upqioSOH1JUjB93lQ8C2n8vOf/5yjR49y8803s2DBggt+fcuyeHVvF99/c2L1t8Nm8J0bZvLQsiKc9nN7q53T6cSpu9YiIiIiInKFM00T0zSx2+1Eo1GamprYvn07K1eu1P5HV4Do4CChhgbCDY0E62oJbt9BtLd30hgjMRH3NdeQsGgRCYsW4Sovw7Db41SxXMpCoRDNzc0MDAwwMDDA4OAgAwMDjI2NAbBw4UJuuukmAMLhMC+//HIs6C4oKMDlcinovsSda5arzS1FTqO6upqjR49SW1t7UYJvwzD4anUuS2d5+e+vNfBOQy8/eucQbx3o4Z++ehXlOWdf/R0IBBgfHyc/P/+C1yciIiIiInIpaGpqYtOmTVRUVLB48WIsy6KoqIiioqJ4lybnyYpGibS2EmponAi6GxsINTQSPaFHe4zLRcLVV+NedO3Equ5589SuZJqLRqOMjo7GHiMjIwQCgf+fvfuOj+pM7/7/mT6jgvqMekEVIZoAYRA2NmBjG1xjMGHttR1v7LW9m2y2JNlNnifZJJtNtvzy5Nms43WJ/bh3L6YaY2ywDRYSxRXWV/4AACAASURBVAIkNAKhLo0KqtPL+f0hOEZGAoEBIbjer9e8RjrnPqN7EJLOfOc6101PTw+JiYlqS5JgMMj69etHfIzw8HA0Gg1arRadTofJZOLb3/62BN1XKAm+hRhFUVERW7Zsoa2tjZ6eHvUymAstIdLEf91bxPqDDn6xqZaqtkFWPlPBP92Wz50zkkY9zuFw8Pbbb6PT6Xj88ccxm80XZX5CCCGEEEIIMR46OzvZsmULR44cAWDfvn3Mnj0bnVT5XvYUr5dARwfB9nZ8R+vUgNt/9AiKxzviMfrUFAy5uRjz8jEXz8I0fToak+kSz1yMF6fTSWtrqxpou1wu4uPjmTlzJjBUxf2f//mfox7v8XjU4NtsNpOVlUVERAQxMTHExsYSGxtLXFyc2rZEgu6rgwTfQowiIiKCrKws6urqqK6uZsGCBRfta2k0Gm6blsg1WTH8fIOdbTVd/HyDnRkpUWTFj9yjLDY2FoPBQF9fHx999BHLly+/aPMTQgghhBBCiEshGAzS0tLCgQMH2LNnD4qioNVqKS4uZv78+RJ6XwZCHg/Bjg6CDgcBx4n7DgdBRwfBjqFtoZ6eUY/XmM0YcnIw5uVhzMvFkJeHMScHrSxIetUJBoNUV1dTXV1NQ0MDX+/GnJ2drQbfBoMBvV5PMBgkLCxMvU2aNImYmBiSkpIwGAxotVo0Gg3333+/hNtCenyD9PgWo9u/fz9r164lNjaWP/uzP7skvzQVReHPX/mSnXU9TE+ZxMsPzUKvHbnnd319PW+99RYADz30kFzqJ4QQQgghhJhQTvbu1uuH6vLKysrYvHmzuj8nJ4frr7/+ol2BK4YLud0EOzsJtLcPhdvtJ0LtdsdQBXeH47RFJkejMZvQWW0YMjKGwu28XIx5eehTU6U391VMURQ1WwkGgzz55JN4PB4A4uPjiYqKIjw8nPDwcKxWK4WFhWqFtsfjwWKxoD2RkUiwffWSHt9CXABTpkxhw4YNHD9+HIfDQWJi4kX/mhqNhn++rYA7nyqnsqWf/9nZxCMLM0Ycm5mZSVFREQcPHmTdunV897vflQoIIYQQQgghxGVLURQcDgf19fUcO3aMhoYGli5dyowZMwgGgyQlJWGxWEhPT2fGjBlkZIz8WkicP0VR8B0+jGfXrqGA29FBwOE4x1DbjC7Rht6WiM5qRW+zorPa0NmsQ9tsVrSTJkkwKYCh/3PNzc1UVVXhcDjUamydTsfcuXMJhUJMmzaNhIQENdQeSYRcFSDOkQTfQpyByWQiLy+Puro6+vr6LknwDZAUZeZnN+fy07XV/Ncnx7guJ46CxJF/wV9//fXU1dXR1dXFxx9/zNKlSy/JHIUQQgghhBBiLLxeL5WVlWrY7Xa7h+1vaGigsLAQgLi4OJ544gkJTC+CQEcHzo2bcG7YgP/o0VHHnRZqJ9rQWW0n7q3oExPRRETI90ickaIodHZ2UlVVxeHDhxkYGFD3tba2kpqaik6n4/rrrz9j2C3ENyHBtxBnccstt4zLwge3T7fx4eFOttV08dO1VbzxnTkYdaf/MbBYLCxdupT333+fnTt3kp+fT1pa2iWdqxBCCCGEEEKMJhgMsnHjRvVzg8FAamoq6enppKenY7Va1X0Spl5YIbcb17aPcW5Yj6dsN5zsdms0YiktxZg9GZ0tcahi22ZDZ7OhjYyU74M4Z6e2MKmvr+ejjz7i+PHj6v6ThYVFRUVkZmai1+vl/5m46CT4FuIsIiIiCAaDeL0jrzx9sWg0Gv5xeT77mvqocTj57+31/OXiySOOzc/Pp7CwEK1WS1RU1CWdpxBCCCGEEELAV+0M9u3bh8fj4e677yYQCAAwY8YMIiMjSU9PJzExUVo0XkRKMIinYg/OjRtwbf0I5ZQKe9OsWYQvv5XwG29EGxk5jrMUE5WiKPT29tLR0UFnZ6d6v3DhQqZOnQqATqfj+PHj6HQ6Jk+eTFFREfn5+RiNRgm7xSUli1sii1uKs1MUBZfLRV9fH9HR0WM+pqOjg7q6OiIjI5k6dep5/YL/oKqDv3r7EFoNvPJQMTNSRw62Q6GQenmQ0WhUF4cRQgghhBBCiItpcHCQL7/8kv3799PV1aVuf/TRR+U19iXkrzvG4Ib1ODduIuhwqNv1qamEr1hO+K23YkhNHccZiktNURR8Ph8ejwePx4PX6yUyMlJdLNbj8VBTU8PJaFBRlGE3m82mXlHe1dXFBx98QGdnJ36//7SvNWfOHG644QYA/H4/jY2NZGVlER4eLmG3uOBkcUshLqD+/n5eeOEFXC4Xjz/+OAaDYcRxoVCIlpYWamtrqa2tpb+/HxhamTg/P3/U485kWaGV5UVdbDjo4Kdrq3nnkblYDKdXR5zaE8vr9dLf309sbOw5fz0hhBBCCCGEGIuGhgZ27dqF3W5XgzODwUBeXh7Tpk0jUiqKL4rQ4CD+xiYCjQ34GxsJNDTiq63Ff+SIOkYbGUnYTTcRvmI5punTJXgcB4qiEAqFhm3TaDTqa/eR9p/c5vf70ev1mEwmYCigbmtrw+/34/f7CQQCw+7T09PVhWA7OztZu3atGnZ/vd51/vz5LFy4EACXy8WWLVtGfQ6zZ89Wg2+TyURrayswVNEdHx+P1WrFZrORmJiIzWbDbDaj0WgICwtj2rRp5/tPJ8QFI8G3EGMwadIkQqEQPp+Puro68vPzTxuzbds2qqurcblc6ja9Xk9cXBzLli07r9D7pL+7JZfd9T3Ud7v5z211/O2y3FHHut1uNmzYgMPh4LHHHpNVj4UQQgghhBDn7GS7x6/foqOjsVqt6sJ1NTU1ACQnJzNt2jTy8/PVsE6cv5DHQ6C5mUBDI/6mRvwNjQQaG/E3NhLq7h75IL0OS+lCwlcsJ2zhQjTyfbjk+vr6OHz4MG1tbbS2tuJ0OoftX7x4MbNnzwagpaWF1157bdTHWrRoESUlJQD09PTw9ttvjzpWo9GowbdOp6Onp2fYfp1Oh9lsxmw2qz+fGo0Go9FITk6Ouq7ZyTdITn5ss9nUbZMmTeKOO+7AarWSkJAgPbrFhCDBtxBjoNFoKCoqYufOnVRVVZGVlUVTUxPZ2dnqmIGBAVwuF2azmezsbPLz88nNzVX/qJx8N7asrAyn08l111035nYk0RYD/3RbAY+9VsmLZc0szo+nJDNmxLEGg0Gdy7p161i9erX8MRJCCCGEEEIM4/F4qK6upra2loKCAqZPn662a3z22WfV3txfN3/+fK6//nqCwSA5OTmUlJRQVFREXFzcJX4GV5ZgTw+ePXvwlJfjKa8g0NDw1UKUI9DGxWFIS0OfkYEhPQ19ejrm4mJ0MSO/ThQXlqIo9PX10draSlxcHDabDRgKvnfs2HFBvkYwGFQ/NpvNWK1WDAYDer0eg8Ew7OPk5GR0Oh0ajYa4uDjuu+8+LBaLejMYDGql+an5gMVi4Vvf+taY5zRz5swL8tyEuFSkxzfS41uMjcPh4KmnnlIvTQoGgzz88MNqO5G2tjYCgQBZWVkYDIYRw+bjx4/z+9//nlAoREJCArfddts5nSD+w/rDvLW3jeQoM2u/O5dw08jBucPh4OWXXyYUCnH77bcza9as83vSQgghhBBCiCtGIBDAbrdz8OBB7Ha7GqyVlJSwaNEiAHp7e3nmmWfUYwwGA0ajUb0VFhYyZ86ccZn/lSQ0MIBn7z48FRV4ysvx2+2njdFGRqLPSMeQlj50n56OPn0o6NbKlb2XlN/vp62tTa3kbm1tVa/2nj17NosXLwbA5/OxceNGUlJSSEtLw2q1DssG9Hq9WgB38qryrzs55tQKbEAK2oQ4xVizXAm+keBbjN1TTz2F48QiIdHR0SxbtozJkyeP+EdpNDU1Naxduxa3241er2fJkiVMmzZtTMc6vQHu/EM5Lb0eVhYn8fMVBaOOLSsrY8eOHRiNRh599FHp9y2EEEIIIcRVyu/3s3HjRqqrq/F6ver2uLg4CgoKmDx5MomJicBQGDc4OKgG3aeuJSTOX8jtxrt/vxp0+6qq4Wv9nQ052ZjnzsU8dy6m6dPRxsRI2DlOFEVR/+0HBwd5+umnh1Vgw9A6WzabjcLCQkpKStBqtWi12jFnA0KI8yfB9zmQ4FuMVXd3N3a7nfT0dBITE9HpTl9kciz6+/t57733qK+vByAvL49ly5ZhNpvPeuzu+h4efHE/AP/9p9NZlDtyxXgoFOL111+npaWFtLQ0HnzwQTlpFUIIIYQQ4iqgKAq9vb3ExMSgKArBYJCnnnqK7u5uIiMjmTJlClOmTCEhIUECuotA8fvxHzuGz24fuh2qwnvgAHytfYw+LU0Nus1zZqOTdjHjxuv10tLSQlNTE01NTUyaNInbb78dGPp5euqpp1AUhZSUFLWaOzk5GaPRKD9DQowDCb7PgQTfYjwoisLnn3/Oxx9/TCgUIiYmhoceemhMYfq/fVDLi2XNJEQYWftYCdGWkRfO7O3t5YUXXsDv97N48WKuvfbaC/00hBBCCCGEEJcBr9dLd3c3NTU1HDhwAKfTyV/8xV+g1WpRFIW6ujqMRiMpKSkS1F1AwZ4efHY7frsdn7126ONjx04LuQF0NhvmkpNB9xz0J6rsxfioq6ujoaGB5uZmHA4Hp8ZjFouFJ554Ao1Gg06nw+12ExkZqVZ0CyHG11izXFncUohxotFoWLhwIZmZmbzzzjvMmjVrzBXkP1g8mU+PHOdYt4tfbKrl13cXjjguOjqaJUuW8MUXX5CcnDzsci0hhBBCCCHExKEoCgMDA4SFhak9gisrK9m9ezfHjx/H7XYPG28wGGhrayM5ORmAyZMnX/I5X2lCLhfuzz/HV12Nz16L324n2NU14lhNRDjG3DyMeXkY8vMwF89Gn5Yqr8cusvb2dnp7e3G5XLjd7mH3gUCA++67Tx27a9cuWltb1c+joqJIS0sjIyODzMxMLBaL2rbEZDKNx9MRQnxDEnwLMc5SU1N57LHH0Gg0+P1+ADo6OrBYLERGRo54jNmg41/vKOBbz+9lw0EHSwviWVZoHXFsUVERBQUFGAwGfD6f/MEWQgghhBDiMubxeHA4HHR2dtLV1UVPT496CwQCPPDAA6SkpKAoCoODg7S0tKjHhoWFkZiYyJQpU8jJycFoNI7jM7kyKMEgnoo9ODesx/XRNpSvvcEAoE9NHQq483Ix5g2F3bqkJAm5L7JAIEBLSwsZGRnqts8//5y6urozHnPyjaOCggLi4+NJT08nKyuL6Oho6c8txBVGgm8hLgMnT0h1Oh39/f2sXbsWg8HAfffdp/5R/roZqVF8pzSDpz9r4Ocb7MxOjyY+4vQTW41Gg8Ew1AolGAwyMDAwaqAuhBBCCCGEuDTcbjcdHR10dnaSm5tLVFQUiqKwb98+tmzZMuIxGo2G3t5erNahopfMzEzuuOMOoqOjiY6OlqD7AvLV1eHcsAHnxk0EHQ51uz41FfO8eRjzcjHk5WHMyUEbHj6OM736+Hw+9u/fT0VFBS6Xi+985ztER0cDYLVa8fl8hIWFYbFYCAsLIzw8nPDwcMLCwjCZTOpr7NLSUlkHS4grnATfQlxGTv7R9fl89Pb28sknn7B06dJRxz++KJPttV3UOJz8w/oa/uveolHfnVYUhT179vDZZ5+xZs0aMjMzL8ZTEEIIIYQQQnxNX18fdrudrq4uOjs76ejowOl0qvtvu+02pkyZgqIoREdHM2nSJOLj44mNjSUmJkYNtiMjI4e1Rzy5XVwYwZ4enB98gHP9BnxVVep2bWQkYctuImL5CozTp0lF8DhxuVzs3buXvXv34vV6AYiMjKS/vx+r1YpWq+Wmm26S748QQiWLWyKLW4rLT21tLa+++ioAd911Fzk5OaOOPdw+yKpnKwiEFL63KJPHF2WNOnbz5s0cOHCASZMm8dhjj2E2my/43IUQQgghhLgauN1u2traGBgYoL+/n4GBAQYHB9WPlyxZQlFREYqicOTIEV5//fXTHmPSpEnExcVRXFwsPbjHieL14vr0U5zrN+De+TkEgkM79DospQsJX7GcsGuvRSPV9OPG7Xbz+eefc+DAAQInFg2NjY1l3rx5zJw5E4PBIGG3EFcZWdxSiAksNzeXa665hi+++IJNmzbx4IMPjtqepCAxgp/cmMMvP6jlv7bXE1LgiUWZI/7hX7x4MY2NjfT19bFp0ybuuuuui/1UhBBCCCGEuCIoikIwGESv16MoCk1NTbz22mujju/q6sLj8QAQERFBdnY2sbGxxMXFER8fT1xcnLQmGQfB48fx2e1Dt5oaPJ99TmhgQN1vnDqV8OXLCV92E7qYmHGcqThJq9VSVVVFIBAgMTGRa665hsLCQrWlpxBCjEYqvpGKb3F5CgaDPPfcc7S1tZGWlsaqVavO2H/suZ2N/HbrUQAeuzaD712fNWL43dzcrJ6gr1y5ksLCwovzBIQQQgghhLgC9PX1sX//fvbv309xcTHz5s0jEAjQ3d3N2rVriYiIGPEWExODxWIZ7+lftRS/H39DAz67Hb+9duj+SC3Bru7TxupsNsJvvZWI5csxTB79Clpx8SmKQmtrK3a7neuvv159TXvw4EGioqLIyckZ1u5HCHF1GmuWK8E3EnyLy1d3dzdPP/00Pp+PRYsWUVJScsbxL+xq5FcfDoXfjyzM4C9vGDn83r59O7t378ZoNLJ06VLmzJlzUS4Nq6+vp6amBpPJNGxRkfDwcBISEi741xNCCCGEEOJCCAQCHD58mP3793P06FF1e2JiIvfff/84zkyMxt/Sgnv7dnw1dvy1dnxH68DvP32gRoM+PR1jXi7G3DxMM2dgKi5GI4scjhun00ljYyMNDQ00NDTQ398PwKpVq8jIyECv16PX62UhSiGESlqdCHEFiIuL49Zbb6WyspKioqKzjn9wfjpajYZ/23KEpz9rIBRS+Kslk08LtUtLS2lra6OpqYlNmzaRnp6OzWa7YPNWFIW1a9fy5ZdfjrjfaDTy13/91+q8Nm7cSHd3txqOp6WlMW3atAs2HyGEEEIIIcZq69at7N27F7fbrW5LT0+nqKiIvLy8cZyZ+DpFUfDu20//K6/g3r4dQqFh+zXh4RhzczDk5mHMy8OYl4shJwetVOJfFurr6/nkk0/o7Owctl2n01FYWEhcXBwWi0X6dwshzpsE30Jc5mbMmEFRUZG6avXZfPuaNDQaDb/8oJZndzYSVBR+vDR72MmCXq9n1apV7N+/H7fbTWRkJD6fT+2RdiFOLCIiItBoNEyZMgWDwYDL5cLlcuF2uzEYDMOeT3NzMw6HQ/28vLyc8PBwWeBHCCGEEEJcdC6Xi7CwMABCoRC9vb3qOXJRURFFRUVER0eP8yzFqRS/H+eWDxl49VV81dXqdvPcuZhmzRoKuPPy0CcnSyX3ZSAYDNLe3k5DQwOpqamkp6cDQwVRJ0PvhIQEMjMzycrKIjMzE7PZLIG3EOIbk1YnSKsTMTEEAgF8Ph+NjY2kpaWd9STg1fJm/mVTLQAPXJPGX9+YfdZjurq62LBhA7feeisZGRljnpuiKNjtdiIiIkhMTMTn8+Hz+ejp6cFqtZ71+ObmZgYGBnC5XBw7doxjx44RHx/Pd7/7XenfJoQQQgghLiiXy0V9fb166+zs5Dvf+Q5xcXGEQiE6OjpwOp1kZGRIa4XLTLCnh8F33mXgzTcJdnUBoDGZCF++nMg1f4pRCmcuOkVR8Pv9+Hw+PB4PXq8Xk8lEfHw8AH6/n507d+LxePD5fLhcLtrb2/H5fABMnz6dZcuWAUNvNNXW1jJ58mQmTZokQbcQYsyk1YkQVxi9Xs/69ev58ssvuemmm5gxY8YZx6+Zm4pWo+GfNtr5f180EVIU/vamnDOeTHz66ad0dHTwwgsvMGvWLG688cazLsjT1dXFBx98wJEjR0hMTOS+++5Do9FgMBjGFHoDpKamqh9PnTqVZ599lq6uLsrKyliwYMGYHkMIIYQQQojRdHV1UVFRQX19/bArDU+qra0lJiYGYMznsOLS8dcdo//VV3Fu2IBy4spRXXw8katWEfEnd6M78b0TYxcIBGhpaVHD65PFSyc/Tk5OVttPejweXnzxRXV/6GstZQoLC1m+fDkwdPXw7t27T/t6ZrOZjIwMMjMzMRgM6HQ6NBoNs2bNuvhPVghx1ZLgW4gJ5ORJ+LZt20hJSVHfVR/N6jkpaDUa/nFDDS+VNRNSFH62LHfU8PuWW25h+/btVFZWsm/fPux2OzfffDNTp0497Riv18uOHTv44osvCIVC6HQ6MjIyCAaD6PXn/6vFbDZz3XXXsWXLFgYHB1EURd75F0IIIYQQY+b1emlsbCQyMpLExEQURWFgYICysjJ1TFxcHOnp6aSlpZGWlqa2OhGXD0VR8OzaRf8rr+LZtUvdbiwoIPJb3yL8phvRnGjVKM5dfX0977333qj7A4GAGnzr9Xr6+vqG7ddoNJhMJkwmE2azWd1mMBgoKSnBaDSq+2w2G0lJSWrYLYQQl4q0OkFanYiJQ1EUXnnlFY4ePUp8fDz33Xef2pf7TN7Z18r/XleDAvzpnBT+/pbRw28Yaj3ywQcfcPz4cQByc3NZvnw5UVFRKIpCZWUlW7duZXBwEIDs7GxuuOEGtUrmQjzP48ePExcXh8FgGNNzFEIIIYQQVx+3201bWxvt7e3qraurC0VR1CsYFUUhGAyybds2NegODw8f76mLUQQ6O3Ft3szgH9fiP3ZsaKNGg+X665m0Zg2m4lkSnp6nUCiktu9RFIWNGzfS39+PyWRSg+qT91arVV3MVaPR0Nraqu6zWCwYjUY0Go36vZDviRDiUhprlivBNxJ8i4llcHCQp556CqfTycyZM7nxxhvHdNx7+9v4+/cPowD3zk7mf92ah/YMJyeBQICysjLKysoIBoMsXbqUBQsWUFNTwxtvvAFAdHQ0S5YsueiLUMpK3kIIIYQQVzdFUejv78fn85GQkAAMhd6/+tWvRhwfFRXF1KlTKS0tvZTTFOcp5Hbj3r6dwfUb8HzxBZxopaEJCyPijjuI/NPVGE5pjyjOjaIofPnll5SXl/Otb31LvcLBaDRKFbYQYkKSHt9CXKEiIiK48847eeWVV9i/fz8ZGRnqO/FnctfMJLQaDT9bW80be1oJKQr/sDx/1PBbr9dTWlpKQUEBe/bsYcaMGXg8HjIzM0lPTyczM5PZs2d/o7YmY9HV1cX+/ftZsWKFLC4khBBCCHEVcblclJWV0dTURHt7O263m6ysLFavXk0oFEJRFHVBPKvVis1mU+8jIiLGe/riLJRQCO++fQyu34Br61YUp1PdZ5oxg/DlywlfdhPayMhxnOXE19nZyZYtW2htbQVg3759XHfddWrFthBCXMmk4hup+BYT04cffsjOnTsxm8088sgjmEymMR33fmU7P1tbTUiBu2Ym8o/L8zHozi1QvlR9twOBAH/4wx9wuVzcfPPNzJs376J/TSGEEEIIMb78fj9ffPEFn3/+Od4TCxkCaLVaUlNTuffee9VtgUDgohdiiAvL39CAc8MGBjdsJNjWpm7XJScTsfxWwpcvx5CePo4zvDL4fD527dpFRUUFoVAIg8HAtddeyzXXXCOtJIUQE55UfAtxhVu8eDGdnZ3MmDFjzKE3wO3TE9FqNPztH6t4b387Tcfd/MfKIuLCjWN+jEtVGaDX65k/fz4fffQRH3/8MVOnTpXqHSGEEEKIK9ybb77JkSNHgKHF3WfOnEliYiJxcXGnhdwSek8Mwd5eXB9+yOD6DfgOHFC3a8LDCb9xKeHLV2CaNRONXOF5QdTV1bF161Z1Qcrc3FyWLVtGbGysVHkLIa4qcpYgxASl0+lYs2YNPp+PQCBwTseumGYjwqTjJ+9WUdHYx6pnK/jdqmkUJl1+lxHOnDmTAwcO0NHRwUcffcQdd9wx3lMSQgghhBAXkKIoKIqCVqslGAxSXFxMZ2cnCxcuZMqUKRLUTUAhlwvvvn14dpfjKS/HV1MDJy8212oxz59PxIrlWK67Dq3FMr6TvQIdOXJErYK88cYbKSwslLaRQoirkrQ6QVqdiIlNURS8Xi9VVVV0dHRQUlKC2Wwe07F1XU6+98YB6rvdmPVa/vn2ApYX2S7yjM9dc3Mzr732GgAPP/wwqbKwjRBCCCHEFaGxsZGtW7eSnZ3NvHnzCJ1Y1DAYDKLT6cZ5dmKsFK8Xb2UlnvJyPOUVeA8dhEBw2BhDXh4RK5YTtmwZ+hMLlIrzFwqFcLlcuFwunE4nsbGxREVFAeDxeKioqGDhwoVYLBZ580gIccUZa5YrwTcSfIuJz+/38/vf/56+vj7MZjPz5s2juLh4TJd+9nv8/OTdKj49chyAhxek84PFk9FpL6+To40bN3Lo0CESExN55JFH5ORNCCGEEGIC6+zs5KOPPqKmpgaAsLAwHn30UWldMkEofj++quoTQXc5ni+/BJ9v2Bh9SgrmuXMwz52Lac4cCbvPQV9fH11dXWi1WrKystTt7733Hj09PbhcLtxu97BjMjIyWLlyJRqNBr1ej8FgkNdMQogrlvT4FuIqotfrWbZsGR999BHd3d1s376dvXv3UlpaytSpU894Wdsks4EnV0/nPz+u49nPG3luZyM1jkF+fXchUZbzW/REURS+bO7nxbJmDrT2c39JKn86N+WcF9E81XXXXUdtbS3t7e1UVlYyY8aM834sIYQQQggxPvr7+/nkk0/Yv3+/umD6tGnTKC0tldD7MqL4fAQ6Owk6Ogg62gk4Ogh2OAg4HAQdHfjr61FcrmHH6OLjMM8tGQq6587BkJIyTrOfmJxOJzU1NVRXV9Pa2goM9bg/Nfju7u6mp6dH/Vyj0WCxWAgLCwNgYGCAhIQEuVpCCCFOkIpvpOJbXDlCoRD79u1j+/btDAwMABAXF8eNN95IWlraWY/feNDB379/GE8gRHqshf+6dxo5CeFj/vq+YIgtifRn3gAAIABJREFUVZ28VNbEgdaBYftyEsL5u5tzmZcVc25P6hT79+8nEAhQXFxMeHi4VDAIIYQQQkwgjY2NvPTSS+r6NLm5uVx77bXExcWN88yuTorfj7eqCu+XXxJsbSPQMRRqBxwOQsePn/V47aRJmOcMVXSb585Fn5Up5+fn4fDhwxw4cICGhgZOjWesVisJCQksX74cjUaDRqPh2LFjaLVaIiIiiIiIICwsDK1Wq+4XQoirhbQ6OQcSfIsrjc/nY/fu3Xz++ed4PB5Wr149puAboKptgO+/eYC2Pi/hRh3/dtcUluSf+bLE404fb+5p5bWKFjoHhy5xNOq0LJ9mJd8awR8+a6DH5Qfg5kIrP7kxm6SosfUhH43RaJSqICGEEEKIy8zg4CAtLS00NzfT3NxMYWEhxcXFhEIhuru7+cMf/kBKSgqLFi0iRSqCLyklGMRXYx9qTVJRgXfvXpSvtcsYxmhEb7Ohs1nRW0/c22zobDb0yckYsrPRyIKJ5ywQCKDT6dSgev369VRXVwOQlJREYWEhU6dOJTo6WsJsIYQYhQTf50CCb3GlcrvdVFVVMWXKFHVbdXU1CQkJxMfHj3rccaePv3r7EOUNvQB8b1Em370uE+3XTrxqHIO8VNbM+gMOfMGhhYjiI4ysmZPCqtnJxIYbAehz+/ndJ8d4vaKFkAIWg5ZHr83kwWvSMOrP72Q5EAigKIq6gIsQQgghhLj0fD4f+/btU4Pu3t7eYfvz8/O5/fbbgaF2eE1NTaSlpUmgdwkoioL/6NGvgu6KPYQGhl+VqY2KwlRcjCErC73Nis5qQ59oQ2e1opXg9YIJhUI0NjZSXV1NbW0tq1evxmq1AtDU1ERzczNFRUUkJCScsU2lEEKIIRJ8nwMJvsWVTlEUAoEAPT09PPvsswQCAaZOnUppaemo/+f9wRD/vuUIr5a3AHBjQQL/emcBZr2OT2q7eLmsmbL6r17YFCVHcv+8VJYVWjGO0sv7cPsg/7LJzt6mPgDSYy38dFkui3LP7fJWh8PBunXrCAsL4+GHH5YTciGEEEKIS8TtdtPf34/NZkNRFHw+H7/61a8IhULqmLi4OJKTk0lKSiI1NVVamVwCiqIQGhgg2N6O98BBNez+essSTUQ45lnFJ9qTzMGQmytV2xeBz+ejpaWFjo4OHA4Hzc3NOJ1OdX9paSmlpaXodDr0er2E3UIIcY4k+D4HEnyLq0Vvby+bN2+mpqYGAJPJxMqVK0lKShr1mHf2tfLzDXYCIYXJ8WH4gyGaejwA6DQalk6J59vz0piZOmlMAbSiKKw/6ODXHx6l60RblBvy4vibm3JJj7WM6XkMDAzw3HPP4ff7uf3225k1a9aYjhNCCCGEEOfO6XRy+PBhqqurOXbsGFarlQceeEANu7dt24bFYiEpKYmkpCRMJtM4z/jK8lWo7RhaYPLkvaODoMOh9uYeqW2JxmzCNHMW5rlDvbiNBQVopF3gBaMoCn19fTgcDiIjI0lOTgaGCnVefPHFYWPNZjP5+fkUFRWRlZWl9uYWQghx7iT4PgcSfIurTVNTExs3bqS9vR2j0cg999xzxh6L+5v6+Iu3DqpB9SSznlXFyayem0LyefbqHvQG+O8d9bxU1kwgpGDUaXl4QRrfWZiBxXD2VcjLysrYsWMH4eHhPPHEE1gsYwvNhRBCCCHE2Q0MDFBdXU11dfVpi+4lJCSwZs0ajEbjOM7wyqAoCqHeXoIdQ4tKDt13EDxlocmgw4Hi8Yzp8bTRURiyc4aC7jlzMRVNRSPfpwvG5/Nx5MgR2tvb6ejooKOjA6/XC0BRURG33HILAMFgkBdffJH4+HhsNhtJSUlkZWVhMBgk7BZCiAtAgu9zIMG3uBr5fD5eeeUVGhsbMRgM3HPPPaSmpo463tHv5ZnPG8i1hnPbtETCjGcPp8fiaKeTf91cy65jPQAkRZn42c25Z11QMxgM8vzzz9PT00NJSYl6kimEEEIIIb65t956i6qqKvVzm81Gfn4+eXl5xMTEjOPMJhYlFCLY7sDfUE+gqelEkN2hVmkHOzpQTgSnZ6ONjh5aWHLYgpO2od7ctkR01gS05m+2gLwYndPp5JlnnsHv9w/brtPpiI+PJzc3l4ULF6LVatWbhNxCCHFxSPB9DiT4Flcrn8/Ha6+9Rn19Pddccw3XXnvtuMxDURS2Hu7i37bU0tY3dOL/F9dn8ei1GWc8WTx27Bhvv/02Go2GRx99FJvNdqmmLIQQQggxofn9fhwOB+3t7bS1tdHa2spdd91FTEwMwWCQ6upqKioqyMvLIy8vTxYUP4OTVdv+hgYCDY34G7+69zc2gc931sfQxsait1rR2YYWlhxaYNKG3pogofY48Xg8tLW1kZWVpW57+eWX8Xg8TJ48Wa3ktlqtUskthBCXmATf50CCb3E18/v97Nu3j6lTp477yZrbH+T/bqvj/5U1A7CyOIn/dWse+jMs9vLHP/6R2tpaYmJiePjhhwkPD79U0xVCCCGEmFDa29vZtWsXbW1tdHV18fWXgqWlpSxYsGCcZjcxKIqC/+hR3J/vxH/kyFAld0MjoYGB0Q8yGDCkpaFPS0OflIjOljhUpW09UbmdkCDtSC4TiqLQ3NxMZWUldrsdRVF47LHH1LaKPp+PyMhIdLoLc/WrEEKI8zPWLFdWtRDiKmcwGCgpKSEYDOL1egkEAnR2dp5xwcuLxWLQ8TfLckmPDeMXm+28tbcNR7+X394zlXDjyL+uFi9eTHt7O/Hx8eh0OhRFGfcAXwghhBBivCiKQlNTE/X19bS3t1NUVERBQQGhUAi3201lZaU6NiwsDKvVis1mw2q1kpaWNo4zv3wpXi+eij24P/0U16efEmxrO32QRoMuMRFDRjqG9Az0p9zrk5LQSFB6WXM6nRw6dIjKykp6enrU7fHx8TidTqKiotDpdISFhY3jLIUQQpwrqfhGKr6FOMnr9fLGG2/Q1NTEnXfeOeyyvkvto5pOfvJOFZ5AiKLkSJ5cPZ34iJErYVwuF1qtFrPZrIbeOp1OFlwSQgghxFVBURRaW1s5ePAghw4dYuCU6uPi4mKWLFkCDFWrVlRUYLPZsNlshIeHS8HAKAIdHbg//Qz3Z5/hKSsbtrikxmTCPHcOppkzMWRkDoXbqanSimSCstvtrFu3jlAoBAwVBk2ZMoWZM2eSnp4u1d1CCHEZkopvIcQ50+l0GAwGAoEA7733HnfeeSeTJ08el7ksyU/g+W/P5PHXD3CwdYA1/7OHp781g8y406ssTq28CIVCrFu3jq6uLlauXCl9v4UQQghxRXO73TzzzDPDqlSNRqPagzg9PX3YdmllMjIlFMJ36BDuTz/F/dln+A7XDNuvs9mwLFyI5dqFmOfORXui9YWYOILBIK2trTQ0NBAbG0thYSEAKSkpACQmJjJjxgymTZtGWFiYvCkkhBBXAKn4Riq+hThVMBjkrbfeoqamBp1Ox+23305OTs55Pdbg4CD9/f0kJSWd94ljfbeLR1+tpKnHTbTFwO9XT2NW2uiLKw0ODvLSSy8xODiIXq/nlltuYdasWXLiKoQQQogrQnd3Nw6Hg8LCQkKhEMFgkGeeeYbe3l6ys7MpKCggKysLvV5qnM4m0NqKZ3c5nvJy3GVlhI4f/2qnRoNp2rShsPu6azHk5sr55ASjKAodHR00NDTQ2NhIc3Mzfr8fgIyMDFatWgWARqNhcHCQuLg4tGdYW0gIIcTlY0IsbvnLX/6Sd999l8OHD2OxWFiwYAH//u//Tn5+vjrG6/Xy4x//mNdeew23282SJUt48sknSU1NVcc0NjbyxBNPsG3bNiwWC2vWrOE3v/nNmNscSPAtxHDBYJB33nmH6upqtFott99+O7m5uWc97tT+2oqi8OSTT+JyuZgzZw433HDDec+n2+nj8dcqOdA6gEmv5dd3F7K0IGHU8S6Xi40bN3Ls2DEApk2bxooVK6T1iRBCCCEmpN7eXg4dOsTBgwdpb2/HYDDwxBNPYDAYgKEwPDIyUs51ziLQ2Ym3ogJPeTme8goCLS3D9msiwrHMX4Dl2oVYSkvRxcSM00zFN6UoCk8//TT9/f3DtoeFhZGRkUF2djYzZsxAq9VK2C2EEBPQhAi+b775ZlavXs3cuXMJBAL83d/9HQcOHKCqqorw8HAAHnvsMdatW8cLL7xAXFwcP/rRjzh+/Dh79uxBp9MRDAaZOXMmCQkJ/Pa3v6W7u5sHHniAu+++m9/97ndjmocE30KcLhQK8c4771BVVYVWq+W2224jLy/vtHH9/f0cO3aMY8eOcfz4cR566CE1/H7nnXeoq6sDYNGiRZSUlJz3fFy+ID959xAf27vRAD+7OZdvlaSOOl5RFMrKyvjss89QFIW4uDhWrVqF1Wo97zkIIYQQQlwqnZ2dHDp0CLvdTtspiylqNBoyMzO58cYbiYoa/So4AcG+PrwVe04E3eX4TxRFqPQ6TFOLMM+dg3nuXEwzZ6I58WaCmBhO9rc/cuQIPT093Hnnneq+t99+m+bmZtLS0sjMzGTy5MkkJiai1Wqlel8IISa4CRF8f11nZydWq5Xt27dz3XXX0dfXR0JCAi+99BL33nsvAK2traSlpbFx40aWLVvGpk2bWLFiBU1NTSQnJwPw+uuv8+CDD9LR0TGmIFuCbyFGFgqFePfdd6mtrWXlypUkJycTCARobm5Ww+7u7u5hxzzwwANYrVZ0Oh0ajYby8nK2bt0KwC233EJRUdF5zycQCvGLTbW8sacVgIfmp/Gjpdloz3Di2tTUxLp163A6ncTExPDEE0/IAjVCCCGEuOycbMFgMBhQFIWdO3eq51AA6enpFBQUkJubO2x9EzFECQTwNzbit9vxVlXhrajAV2OHU1/uajQY8/Mxz52LuWQo6NaeKLgSE0cgEKCxsZHa2lqOHDmCy+VS9z3yyCNERUWh1WpxuVxERERgMBgk6BZCiCvMhFzcsq+vD4DY2FgA9uzZg9/v56abblLHJCcnU1RUxM6dO1m2bBm7du2iqKhIDb0Bli1bhtfrZc+ePSO2V/B6vXi9XvXzr1/+JIQYotVqufvuu+ns7CQyMhKAzz77jPLycnWMRqMhKSmJ7OxscnJySE5OVkNvgNLSUgYHB/niiy/YvHkzYWFh571gpl6r5X/fmkdylJn/2FbH87uaaO/38ss7pmDUj3yJYlpaGg888ACbN2+mpKQEn8+HyWSSSxqFEEIIMe76+/ux2+3Y7XaOHTumFgkEAgEyMzPJzc0lOzubyZMnq1fECgj29+O32/HZ7fjstUMf19WBz3faWMPkyUNB99w5mGbPRidV8hPa3r172bFjh/pGEYDJZGLy5Mnk5eURFRWFxWJBo9FgNpvHcaZCCCEuB5dN8K0oCj/84Q9ZuHChWhHa3t6O0Wgk5mu91Ww2G+3t7eoYm802bH9MTAxGo1Ed83W//OUv+fnPf34RnoUQVx6tVovNZiMYDOL1esnMzKS6upqsrCz1hVhERMQZqyhuuukmnE4nBw4cYO3ataxevZqkpKTzmo9Go+HPF2Zgm2Ti798/zKZDHXQN+vi/q4qIsox8aWp4eDh/8id/Agz9rvF4PNTX12MwGMjJyZEKECGEEEJcEoqi0NbWRk1NDXa7/bTXKw0NDRQUFABDr2lObdtwtQq0tuI9dOirgLvWTrDdMeJYjcWCMTcXQ34e5lmzMM+Zgy4+/hLPWFwo/f39HDlyhMzMTLU4Ljw8HL/fT0REBDk5OepirlLVLYQQYiSXTfD9ve99j8rKSj777LOzjj11AT1gxD9wXx9zqp/+9Kf88Ic/VD/v7+8nLS3tPGYtxNVDp9NhNpvJycnhBz/4wTn1xtNoNNxxxx24XC5cLtcF6Ud5+/REEiKM/OVbBylv6GXN/+zlv+6dRlb82S/97e7u5o9//CN+v5/4+HiuueYapk+fri4QJYQQQghxMQwMDPDMM88M25acnEx2djbZ2dnES0gLDFV0u7Zswbl+A97KyhHH6JKTMeblYszNw5iXhyE3F31qChq5qm/Ca29vp6ysDLvdDgxdQbpgwQIAJk+ezEMPPURKSor06hZCCHFWl0Xw/f3vf5/333+fHTt2kJr61WJ1iYmJ+Hw+enp6hlV9d3R0qH/4EhMTKSsrG/Z4PT09+P3+0yrBTzKZTJhMpovwTIS4smm1WoxG43kdq9PpWLVqFYFA4ILNZ/7kWF56sJjHXqvkWLeLe5+r4Nd3T2VRbtwZjzObzcyYMYPKykq6urpYv34927ZtY86cOZSUlHyjS4kVRaGjowO73U59fT35+fnfaFFPIYQQQkxMx48f5+DBgwwMDHDLLbcQDAYxGAxqderJK+ekX/cQxe/HvXMXzg3rcW3fASdbWWi1GAsKMObnYTgRchtzc9CeaMMnrhzNzc3s2rWL+vp6dVtKSgoxMTEYDAZ0Oh1hYWGyqKsQQogxG9fFLRVF4fvf/z7vvfcen3zyCbm5ucP2n1zc8uWXX2bVqlUAtLW1kZqaetrils3NzWrrhDfeeIMHHnhAFrcU4jLl9/vx+/1UV1eTmZmJxWL5Ro/XNejjB28dZG9THxrgr5ZM5uEF6WetAPF6vRw4cIA9e/aovf51Oh133XUXU6dOPac5tLS08OWXX1JbW0tvb++wfQ8++CAZGRnn9HhCCCGEmHj6+/s5ePAghw4dorV1aDFujUbD448/rgbcZ7oy9WqjKAq+w4dxrl+Pc/MHhHp61H2GnBwibltB2M03o09IGMdZiotNURTeeustGhoagKGfmYKCAkpLS0lOTpafFyGEEKeZEItbPvHEE7z66qusXbuWyMhItcfdyQUpoqKiePjhh/nRj35EXFwcsbGx/PjHP2batGksXboUGOodXFhYyP3338+vf/1rjh8/zo9//GP+/M//XEJsIS5TBoOB3bt3s3XrVlJSUli5cuU3ajMSH2Hkf749k19squWtva38fx/Vcbh9kH++vQCLQTfqcSaTiTlz5lBcXIzdbqeiogKHw0F8fDw+nw+DwYDX68VkMp12wu10OjEYDBiNRhRF4ejRo+qin3q9nvT0dILBIA0NDXz66acSfAshhBBXsJqaGnbu3EljY6O6TaPRkJGRwZQpU9Dr9cO2X+0CHR04N27CuWED/qNH1e3auDjCb7mZiBUrMObljeMMxcV26htAGo2G2NhYmpubKSoqYsGCBSQkJMjPihBCiG9sXCu+R/tD9vzzz/Pggw8C4PF4+MlPfsKrr76K2+1myZIlPPnkk8N6cjc2NvL444+zbds2LBYLa9as4Te/+c2Y25lIxbcQl57D4eD555/H6/WSnZ3NnXfeifYC9GR8vaKFf91cSyCkMCUxgt/dO43kqLGt6K4oCr29vcNaK7377rsMDg4yf/58EhMTsdvt2O12mpubueOOO5gyZQrBYJDu7m4qKirIzs4mPT0do9GI1+uloqJCbZ9y6oteIYQQQkxMiqLQ3t5OZGQkERERKIpCeXk5mzZtAiA1NZWCggLy8vK+Ufu0K0loYACfvRZfrR33jh14ynbDyZehRiNh119PxIrlmK+5Bo2cL13RgsEg1dXVlJWVceutt6pXbTudTnQ6HTExMRJ4CyGEOKuxZrnjGnxfLiT4FmJ8NDQ08PLLLxMIBCgqKuLmm2++ICe6FQ29/OCtgxx3+YkNM/B/VhYxJyP6nB/H5XLx9NNP4z/ZY/JrSkpKWLRo0Zgfz2KxyIm8EEIIMQENDAxw9OhR6urqOHr0KC6Xi6VLlzJ79mxCoRBut5uDBw+Sn59/Vb+eUEIhAs0t+Grt+O32obDbbifY1nbaWNOsWYSvWE740qXSr/sqEAgEOHDgALt371ZbDE6ZMoXbbrtN7d8t58lCCCHGSoLvcyDBtxDj5/Dhw7z55psoisK8efO47rrrLsjjtvR6+P6bBzjcPoheq+FnN+eyek7KOT+O2+2msrKSvXv34na7ycjIIDs7m+zsbCLP4UVaKBRi3759zJ49WxaxEkIIISYAl8vFp59+Sl1dHR0dHcP2GQwGSkpKWLBgwTjNbvwpgQC+Q1X47DX47LX4a2vxHTmC4nKNOF6XaMOYm4dp2jTCbl6GITX1Es9YXGxerxe320109FcFJ++//z4Oh4P+/n5CoRAAYWFhzJ07l7lz5xIWFiaBtxBCiHMmwfc5kOBbiPG1d+9e1q1bB8DixYuZPXv2BXlctz/I379/mE2Hhl6srpqdzM9uzsWoO/eWKoqioCjKebdj2bhxI4cOHWLq1Kncc8895/UYQgghhLh4nE4nXV1dZGRkoCgKHo+H3/72twSDQQASExPJzMwkMzOT5ORkdLrR1xG5Uil+P57yclxbt+L65BNCvX2nDzIaMWZnY8jLw5ibgzEvD0NuLrqoqEs/YXFRtLS00NXVRV9fH729veq9x+MhNjaWhx9+WB374osv4nA4AJg0aRLz5s2juLh4xDV0hBBCiLGaEItbCiEEQHFxMYODg3z88cfD2oo4nU7MZvN5v7C0GHT85u5CpiRG8B8f1fHmnlaOdDj5PyuLiI8wntNjaTSab3RyPmvWLKqqqjh06BAFBQUUFRWd92MJIYQQ4sKqq6vj3XffJSIiggcffFCtTF24cCGTJk0iIyMDi8UyzrMcH4rfj2f3bpwfbsX9ySeETrSpANBGRWGcOhVjXu5QwJ2XhyE9Xfp0XwHcbjfd3d10dXXh9XqZN2+euu/DDz+ks7NzxOP8fr9aLKLRaFiyZIm6eGVUVJS6XQghhLgU5IxECHFZuPbaa8nMzCQ+Pl7d9uKLLzI4OIjJZMJisRAWFqbe4uPjx1QZrtFo+E5pBrnWCH7y7iH2NvWx6tkKfrdqGlOTL10/yaSkJK655hp27drFxo0bycjIOKdWKUIIIYS48EKhEJ988gmffvopAGazGb/fr77pXlJSMp7TGzeK34+nrOyrsHtgQN2njY0lbPENhC1Zinl2sYTcV4iamhqamprUsNt1SssavV7P3Llz1Ssf09PTiYiIICYmhujoaGJiYoiNjSUmJkat5D4Zbufm5o7L8xFCCCFAgm8hxGVCo9GQnp5OKBTC4/GgKAperxcY6hfo9Xrp7e1Vx6ekpAwLvsvLy8nNzR3WU/BUi3LjeOPhOXzvjQMc63Zx3wt7+eGSyayZm4pOe2mqTubPn8/Ro0fp6Ojg/fffZ82aNVLxIoQQQoyT/v5+3nnnHRobGwGYPn06ixcvvipbmAAoPh/uL7440cZkO8rgoLpPGxdH2OLFhC9dgqm4GM1V+m80USmKwuDgIN3d3eqtr6+Pe+65Rz0Xra6upra2dthxkyZNIj4+nvj4eBRFwWAwoNVqufXWW7/x1ZBCCCHEpSA9vpEe30Jcjk721Ha73TidTgYHB3E6neotPDycmTNnoigKlZWVbN68mbCwMO6++26SkpJGfdwBT4C/fq+K7bXdAExLjuQfV+QzJfHSVF93dnby0ksvEQwGWbFixQXrZy6EEEKIsaupqWHt2rW43W6MRiPLli2joKBgvKd1SSmhEP4jR/Ds3o1ndzmevXuHLUypi48nbMkSwpYuwTRzpoTdl7mTfelNJpNamb1nzx6qq6vp7u7G5/Oddsyjjz6qvv6tqqqis7OT+Ph4rFYrVqv1tOptIYQQ4nIhi1ueAwm+hZjY+vv7efXVV3E4HOj1elasWHHGyypDisLbe9v47dajDHgD6DQaHpyfxuOLMrEYLv6Lut27d7N9+3YsFgs/+MEPMBrPrd+4EEIIIc6foig899xztLS0kJiYyIoVK4iJiRnvaV10iqIQaGzEU14+FHZXVJy2OKUuIYGwpUsIW7oU04wZaM5zUW/xzQWDQXw+H16vl0mTJqlh9tGjR2loaMDlcuF0OnG73bhcLlwuF4qi8MgjjxB1YiHR7du3s3v3bmDo6sqTLUkSEhKIj48nNzeXsLAwNdyWgFsIIcREIcH3OZDgW4iJz+v18uabb1JXVwfAkiVLKC4uPuMxnQNefrG5li3VQ4vzpEab+Yfl+ZRmx17UuYZCIbZu3cqsWbNITk7GYDBc1K8nhBBCiK8Eg0EcDgeVlZWUlpZe0a1NAg7HV0F3eQVBh2PYfk1YGObiWZhLSjDPnYshN1fC7ovA4/HQ0dGhLhTp9XqZP38+JpMJgIqKCg4dOoTP51NvgUBAPf7UMHvHjh2UlZWN+rXuv/9+EhMTAejq6qK3t5eEhATi4uIwGAwSbgshhLgiSPB9DiT4FuLKEAwG2bBhA/v27QNg9uzZ3HDDDWc9wd9W08W/bLLT3j/UU/y2aTb+5qYcYsMvTSW22fz/s3ff8VHdd/7vX9NHo957L6CKhGgCTAfTTQmOjVvs2ImTTZzim+zuvbub+P5+97dJdvP7eUvsxI7juGEwBmJjMBgwTch0kASoglBDvZcZacq5f8hMTNwkITGS+DwfDz2Czpk58xmIZ+a853M+X6Ozi0cIIYQQI+/SpUu0tLSQk5NzS6A4EVkrK+neuYveY8ewVVbeulOnwzAlA+P06RhnzMCQkoJKvoAfFSUlJRQXF9PQ0EBHR8fn9j/11FPOtWm+KszWarVs3ryZ4OBgAK5fv05VVRXu7u63/Hh4eGAymdBqtdK9LYQQYsKT4HsIJPgWYuJQFIXjx49z+PBhAB588EEiIiK+9n49fTb+43AFb52uQQF83HT8fFk892WEjPqJQ319PZ6engQGBo7q4wghhBB3G6vVyr59+zh//jww+M8F441itdJ7+DDdO3ZiOXPmrzvUavQpyX8NujMyULu5ua7QCURRFLq6umhoaKCxsZGGhgaWLl2Kp+fAujEnTpwgLy/PeXtvb28CAwMxmUwYDAZmzZqFu7s7KpWK5uZmOjs70ev1GI1G5/8aDAY0Go3zs6iE2UIIIcQACb6HQIJvISaegoIC2tvbmTZt2tDuV9vJLz4opqShB4CZMT78cvX/ML+XAAAgAElEQVQkov1Mo1EmV65cYe/evQQHB/Pkk09O6MuthRBCiDupqamJd999l8bGRgBmzZrFnDlzJtRVVtbaWrp37qT7vfdxtLYObFSrcZszB4+1azHOmI7a884s4H03aGpqoqSkhPr6eurr6zGbzbfsX79+PQkJCcBAY0N1dTWhoaGEhoY6Q24Jr4UQQojbJ8H3EEjwLcTEpCgKfX19OBwOurq6sNlsg1q8ymp38NrJan539Dp9NgcGrZrvz4vhWzmR6DQje7Lc1dXFq6++Sl9fH/PmzWPhwoUjenwhhBDiblReXs4777yD1WrFZDKxatUqYmJiXF3WiFBsNszHj9P17g4sJ0/Cp6dzmoAAPNavw2PdOrShoS6ucnzr6+tzhtvx8fEEBAQAcPnyZfbu3eu8nVqtxt/fn+DgYEJCQkhKSsLPzw+1Wi0BtxBCCDGKJPgeAgm+hZi4FEWhu7ubN954g+7ubtavX094ePig7lvVaua5PSV8UtEGQKSvkfmJAcyO82V6tA/uBu2I1FhUVMQHH3yAWq3miSeeGHR9QgghhPi80tJS3nnnHex2O1FRUaxatQoPDw9Xl3XbbPX1dO/6C91/+Qv2pibnduOsWXh+YyNu99wj87qHQVEUGhsbqa2tpa6ujvr6elpvds8DCxYsYPr06QC0t7eTl5dHWFgY4eHhhISEoNfrJeQWQggh7jAJvodAgm8hJraenh7eeust6urq0Gg0rFq1ikmTJg3qvoqisLuwgV/tL6fdbHVu16pVZIR7MTvOl5w4P9LCPIfdDa4oCrt376akpISAgAC+8Y1v4OPjg8FgGNbxhBBCiLvZ2bNn2bNnD0lJSaxevXpcjxFTFAXLqVN0bd2GOTcXHA4A1L6+eNy3Fo/169FFRrq4yvFFURRsNhu6T78kqK6uZuvWrZ+7nZeXFyEhIaSnp5OUlIRGo5FObiGEEGKMkOB7CCT4FmLi6+/v591336WsrAyA+fPnM3369EGfvHT32ThxtZVPKtr45For1W2WW/a76zXMiPElJ86X2XG+xPqbhnRi1Nvby6uvvkpvby8AixcvZvbs2ahUKlpbWzl+/DheXl54eXnh7e3t/LPRaJQTMCGEEOJTN8eclZeXEx0dPW5Db6Wvj+4PP6Rryxas5Ved2w3TsvHc+A1MCxeg0utdWOH40tXVRWVlJVVVVVRWVpKUlMTixYsBsNls/OEPfyA4OJiwsDBnN7enp6fM5BZCCCHGKAm+h0CCbyHuDg6Hg3379nHmzBkAMjIyWLJkybBOiqvbzHxyrY1PKlo5WdFGh9l2y/4QLwOzYn1ZPyWE6TFfP1ccoLa2lsOHD9Pe3s7ixYtJTk4GBuaU7tq16wvvo9PpSEpKYuPGjXJiJoQQ4q5VVlZGWFgYGo0Gx6dd0eORvaWFru3v0rV9O462gVFrKpMJj7Vr8Ny0CV1srIsrHB8URaG0tNQZdLd9+nd5U1BQEI899hhqtRqNRoNKpXL+rxBCCCHGPgm+h0CCbyHuHoqi8Mknn3DgwAEAMjMzWbp06W0d06EoFNV180lFK3nX2jhf1UG//a8n3femBPKzpQmEeRuHVOfNk6/W1lZKS0vp6uq65cdsNqPT6XjggQeIiIhAp9PJCZsQQoi7zqVLl9i5cyeBgYE88MAD43JUWH9ZGZ1vbaHnww/BOjBaTRMSgteDD+Cxbh1qT08XVzg2ORwOWltbaW5uxmKxkJmZCQx8jnrppZfo7OwEQKVSERISQnR0NLGxsURFRWEwGORzkxBCCDFODTbLHZmV2YQQYpxQqVTMnj2bgIAA9u/fz6xZs277mGqVitQwT1LDPHlyTjQWq53z1R3sv9LEjgs32H+liaOlLTw1N5onZkdi0H59h/lnT8T8/Py+sE6r1YrZbMbT0xObzYaiKNjtdkwm020/JyGEEGI8KCwsZNeuXSiKQmBgoHNu83igOBxY8vLofGsLllOnnNv1aWl4PfwQpkWLUGnldO2zqqurqauro6mpiebmZlpaWrDb7QDo9XqmTJniHE+SlpaGxWIhNjaWmJgY3N3dJegWQggh7jLS8Y10fAtxt7Lb7djtdmy2gTElLS0t+Pv7j+hjlDR08/99WMrZqg4AInyM/P29CSxKChjxk6+6ujq2b9/OsmXLmDp16ogeWwghhBhr8vPzee+991AUhfT0dJYtW4ZaPbyFpu8kh9lMz569dG7Zgu369YGNajWmxYvw2vwQhikZLq3P1W52cTc0NNDW1sbcuXOd+3bs2MG1a9duub1OpyMgIIDAwECWLFniXP9ErVaPi/8/CCGEEGLopONbCCG+hkajQaPRoFarKSws5P333ycnJ4c5c+aMWCg9KdiD1x7L4sPLjfzbgavUtFv44bZLzI334x/uTSAuwH1EHgegqKiIvr4+du/eTWdnJ/Pnz5fOJiGEEBPSxYsXee+994CBNTuWLVs25t/zrFVVdO/YQff7u3F0DHwhrvJwx2PdOrweeABtWJiLK3SN1tZWamtraWhooKGhgaamJqyfjnsByMrKwt194PNSTEwMOp2OoKAggoKCCA4Oxs/PD7VaPeb//YUQQghx50nHN9LxLYSAQ4cOkZubC0BCQgKrVq1Cr9eP6GP09Nt4ObeKVz+pwmpX0KpVPDIzgu/Ni8HDcPvfQyqKQm5uLidPngQG5pevXr16WIt3CiGEEGNVYWEhO3fuBGDKlCksXbp0zIaeitVK79GjdL+7A8vp087t2vBwPB98AI+1a1F7eLiwwjtDURR6e3tpa2ujqamJ1NRU5+esQ4cOcf78+VtufzPcDg4OJicnB29vb2cH91j9txZCCCHEnSOLWw6BBN9CCIALFy6wZ88e7HY7AQEBrF+/Hh8fnxF/nMrWXn69v5wjZS0ABHjoeXZxPGsyglGPwMncxYsXOXjwIIqiEB8fz/333z/iIb4QQgjhKi0tLbz22mskJCSwePHiMRmE2m7U0bVrFz3v/QV788D7PSoVbnPm4PGNjbjNmYNqAn8x3dDQwNWrV2ltbaWtrY22tjb6+vqc+x988EEiIiIAKC4uJj8/n+DgYEJDQwkNDcXf3x+tVjsm/22FEEII4XoSfA+BBN9CiJuqq6vZtm0bPT09uLm5sXbtWqKiokblsY6WtfCr/WVUtpoByIzw4p9WJJES6nnbxy4vL2f37t3YbDZCQkJ49NFHcXNzu+3jCiGEEK6kKAoWi4Xu7m5MJtOYCkYVux3ziRN0v7sD84kT8OlpltrfH4916/Bcvx5tWKiLqxwZiqLQ3NzM9evXneH2woULCQ4OBgaaCQ4ePPi5+3l7e+Pn58ecOXOIjIy8pYt7LP1bCiGEEGJsk+B7CCT4FkJ8VkdHB9u2baOurg61Ws3jjz+On5/fqDxWv83B66eqefFYJWarHRXwgwWxPH1P9G2fANbV1bFz505CQ0PZtGkTBoNhZIoWQggh7iCr1crJkycJCgoiKiqKsXb6Ymtqovu99+jeuQt7fb1zu3HGDDy+sRHT/PmodDoXVjhympubKSkpoaSkhJaWllv2rVixgrS0NADq6+u5ePEifn5++Pv7ExAQgJ+fn/MKNAm5hRBCCHE7JPgeAgm+hRB/y2q18t577+Hm5sbChQtH/fEaOvv494Pl7LnUCMCa9GD+x5rJ6LXq2zpue3s7JpMJvV6PVqtFp9PJyaYQQohxoaWlhbNnz3Lx4kUsFgsajYbHHnsMf39/l9alOBxYy8qwnDmD+dRpLKdOgs0OgNrbG4+1a/DYsAFddLRL6xxp165dY8eOHc7fNRoN0dHRhISE4O/vT3R0ND4+Ps7ubfm8IYQQQojRMtgs9/ZXUxNCiAlIp9OxceNG7HY7VqvVuSgTgMlkGvHHC/Yy8G8bUpkW7cP/3FvG7sIGatst/Nc30/A1DX8+92dnlFutVvbv3098fDwpKSkjUbYQQggxoux2OyUlJZw9e5aKigrndi8vL6ZPnz5qV2B9FUVRsF2/juXMGSxnzmI5exZHR8cttzFkTsFj4zdwX7IY1QS4wqq1tZWSkhJMJhNTpkwBIDIyEqPRSHh4OMnJyUyaNAl3d3cJuIUQQggxZknHN9LxLYT4ajdD761bt9LV1cWGDRsICAgYtcfLu9rKT969TFefjUhfIy8+mEFcgPttH/fKlSvs2bMHgFWrVjFt2rTbPqYQQggxko4cOcLRo0edv8fHx5OZmUlMTAxq9e1dBTUUtht1WE6f/jTsPoO9ufmW/SqTCePULIzTp2OcPRt9fPwdq220tLW1UVxcTElJCU1NTQD4+/vzxBNPADj//g0Gg4TdQgghhHAp6fgWQogRolKpsFqtdHd309HRwVtvvcWaNWuIi4sblcebHe/HW09M5ftvF1DdZuHBV87z/KZUcuJur8tt8uTJ1NTUkJ+fz969e52zUoUQQghXUBSFa9eu4ebmRmhoKDabjUmTJnH27FnS09PJyMjA29v7jtXTd6WI7h3vYjlzBltN7a079XqMU6YMBN3Tp6NPSZ4wc7vPnj3LpUuXnGE3DITc0dHRJCcno9Pp0Gq1EnYLIYQQYtyRjm+k41sIMTg3u76rq6tRqVQsWLCA7OzsUTsRbO3p55l3LnG+ugOtWsU/r0xi09Sw2zqmoijs2bOHoqIivLy8ePrpp3FzcxuhioUQQoivpiiKs7P43LlztLa2kpCQwPr16523cTgcd7S7297aSvvvfkf3X96Dm6dGGg2GtDSM06dhnD4dQ0bGhBhhoigKzc3NBAQEOD+/7N27l8uXL6NWq4mKiiI5OZnk5GQ8PDwk7BZCCCHEmCSLWw6BBN9CiMGy2+188MEHXLx4EYCMjAyWLFmCRqMZlcfrs9n5p/dL2HOpAYDHcyL56eJ4NOrhn4j29fXx2muv0dHRweTJk7n//vvlxFYIIcSoOnXqFNeuXaOmpsa5ZgaAXq8nPT2dhQsX3vH3IsVmo2v7dtpf/D1KdzcAphXL8Vi5EkNmJmr32x8zNhYoikJDQwOlpaWUlpbS1tbGo48+SnBwMAA3btygra2NyZMnS9gthBBCiHFBRp0IIcQo0Gg0rF27lsDAQA4ePEhBQQEOh4MVK1aMyuMZtBp+sz6ZWH83/vvodV79pJrKVjO/WZ+CST+8sN1gMLBmzRq2bNni7LiTed9CCCFul6IotLS0UFNTQ0tLC4sXL0ZRFBwOB8XFxVy/fh0YeC8NCQkhNTWV5ORk9PrhL+I8XJYzZ2j9zb9hvXoVAP3kSfj+/OcYMzPveC2jQVEU6urqnGF3x2cW49RoNDQ1NREWFoZGoyE+Pl7CbiGEEEJMSBJ8CyHEEKlUKmbPnk1AQAB79uxh5syZo/54358fS7S/if/nvWI+LmnmkT+f54UHMgj2Gt5l16Ghodxzzz3k5eUBAyfIctIrhBBiqLq6urh48SJVVVXU1tZiNpud+zIzM53jtNLT04mNjSUsLIygoCC0Wtechtjq6mh7/nl6DxwEQO3jjc/f/QCPdfehGqWrt1yhvLycv/zlL87fdTodsbGxJCcnk5iYiMlkkvd9IYQQQkx4MuoEGXUihBg+m82G3W7HbrcD0N3djYeHx5COYbVaqa6u5tq1a7S0tLBgwQLn5cd/60J1Bz/cVkhrr5UgTz0vPJBBSqjnsGpXFMX5+qfVal3ScSeEEGL8ysvL4+OPP3a+BwJotVqCg4MJCwtj2rRpQ35PHC1KXx8dr79O56uvolj6QK3Gc9MmvJ/+Lpo7uIDmaOnr66O1tZXQ0FBgYE7666+/TkBAAJMnTyYpKQmDwSBhtxBCCCEmBJnxPQQSfAshbpfVaqW8vJwdO3Ywf/58pk6d+qUnl4qi0NraSkVFBRUVFVRXVztDg9TUVBYsWIDJZPrSx6ppM/O9rQVcberFTafmNxtSWDwp8Lafg0qlkoUuhRBCfKWbVwgpisLly5fZsWMH4eHhTJ48mbCwMAIDA0dt3YvhUBQF85EjtP3v/4OtthYAQ3Y2fj/7GfqkRBdXd/u6u7s5d+4cFy9eRK/X853vfAeNRoNKpUKr1aLVaiXsFkIIIcSEI8H3EEjwLYQYCR9++CGnT58GYMqUKSxevPgLT/63b9/unHN6k5eXFzExMWRnZxMQEPC1j9VlsfHTdy9x4lobKuDZJfE8nhM57JPbqqoq9uzZw/Lly0lNTR3WMYQQQkxMiqJQWVlJbm4u0dHRzJw5E5vN5pwjHRYW5uoSv5C1ooLWf/t3LCdPAqAJDsb3xz/GtGzpuA+D29raOH36NJcvX3Z+ee7v78/GjRsJCgpCrVaP++cohBBCCPFlZHFLIYS4w5YvX46XlxcHDx4kPz+ftrY2YmJiqKqqYv369c55pgEBAVRXVxMREUF8fDwJCQnOk1QYuFzZbrdjtVq/dPyIp1HLi5sz+F/7yth69gb/fvAq11t6+eeVSeg06iHXfv36dbq7u9m9ezdhYWH4+voO/y9CCCHEhKAoCqWlpeTm5lJTUwNAfX09WVlZzmB1LIbeju5uOl5+mc633wabHXQ6vB59FO8nHkc9zq9samlpITc3l9LSUue2sLAwcnJySE5OHlPd9kIIIYQQriYd30jHtxBiZJWUlLBz5076+/ud2zZt2kRMTAwqlYq+vj4MBgNGo/ELu7Ha29v54IMPsFqt3H///V/ZsaUoCm+eruHXH5XjUGBmjA/Pb0rD2003pJrtdjtvv/02dXV1RERE8PjjjzuDeCGEEHcXu93OpUuXOHHiBE1NTQBoNBrS09OZPn06Pj4+Lq7wiykOBz1799L+n/+JvbkFALd58/B99qfoIiNdXN3IqK+v54033gAgPj6enJwcYmNj5T1bCCGEEHcVGXUyBBJ8CyFGWn19PXv27EGn0xEfH09KSgre3t6DOjFta2vjhRdewGazsWLFCtLS0r72PkdLm3l25xV6++3E+pt44cF0ov2+fE74F2lvb+e1116jv7+fuXPnsnjx4iHdXwghxMTw2dFder2erKwssrOzcXd3d3FlX66vqIi23/wbffn5AGijovD72f+F25w5Lq7s9jQ2NtLY2HjLZ4FTp06RlJREWFiYjDMRQgghxF1Jgu8hkOBbCDHWnDhxgoMHD2I0Gvn2t7/9lYtd3lTS0M333i6gvrMPbzct/3V/OtOih9aVV1RUxAcffADAI488Qlxc3LDqF0IIMT709fVRVFREUFAQoaGh2O126urq2LZtG9nZ2WRmZmIwGFxd5peyt7fT/rsX6N65ExQFlZsb3k89idfmzai+ZFzYeGA2m8nNzSU/Px+1Ws0TTzyBj48POp1OFqwUQgghxF1Pgu8hkOBbCDHW2O12Xn75ZRoaGkhJSWHVqlWDul9TVx8/2FZI4Y0utGoV/2PNZO6bEjKkx963bx+FhYV4eHjw9NNPj+kOPyGEEENnt9spKyujsLCQ0tJSbDYbaWlprFix4pbbjOV50YrdTvfOnbS/8CKOjg4ATMvvxffHP0YbFOTi6obP4XCQn59Pbm4uFosFgEmTJrFs2TJ8fX0l8BZCCCGEQBa3FEKIcU2j0bBmzRr++Mc/cuXKFVJTU4mJifna+wV6GvjzY1n841+K+KioiX98r4iKll6eWRiLepAny4sWLaK2tpbAwEAcDsdtPhMhhBBjgaIoVFZWUlhYyJUrV5yhKoCfnx8BAQG33H4sh96Wixdp/fVvsJaUAKBLSMDv73+OMTvbxZXdnurqag4dOuScqx4QEMDSpUtJSEiQGd5CCCGEEMMgHd9Ix7cQYuy6OWfVx8eHb33rW+h0g1u00qEo/OfhCl7KrQRgWXIg/7ouGTfd4IIMs9nsXHzTaDQO+YT75luLdKYJIcTY4HA4+N3vfkdraysA7u7uJCcnk5KSQlBQ0Lh4vbY1NdH+H/9Jz969AKg9PfH+3vfw/MZGVNrx3c9jNpv5/e9/j81mw2g0MnfuXGbMmDHo930hhBBCiLuJdHwLIcQEsGjRIoqKilAUhc7OTvz9/Qd1P7VKxY8XxRHj78a/7C7ho6Im6jos/PcD6QR6fP2sVjc3N+efLRYLDocDDw+PW27jcDhQFMXZFVhTU0NeXh5tbW20traiVqtJS0sjOzubkJChjVsRQggxPA6Hg5qaGkpKSrh69SqPP/44arUam81GRkYGLS0tJCcnExkZOW66iO2trXTv3EXHn/+M0tsLKhUe6+7D5wc/QOPr6+ryhu2z42Tc3NyYNWsWXV1dLFq0CE9Pz3HxZYQQQgghxFgmHd9Ix7cQYmxraGjAZDIN+7Lzs5Xt/PCdQjrMNkK8DLz4YAaTgj2+/o4MhN779u2jpaWF7OxsWltbaW9vp7W1lY6ODlavXk16ejqKonD16lW2bdv2hccJCwtj5cqVhIeHD+s5CCGE+HJWq5Vr165RXFxMaWkpvb29zn3r168nISHBhdUNj6Io9J07R9e7O+j9+GOw2QDQp6Xh9/c/x5Ca6uIKh09RFMrKyjhy5AgrV64kIiICAK1Wi06nk8BbCCGEEOJrjGrHt8PhoLy8nMbGxs/Nf503b95wDimEEOJLBAcH43A4bpnHOhTTon3Y+u1svvd2AddbzDz06nn+98ZU5iV+ffe4oijU1dXR3d3NgQMHPre/ubmZ/v5+APz9/Vm0aBE+Pj74+PjQ1dVFQUEBZWVl3Lhxw9lxqNFosNlscvm2EEKMgKKiInbt2oXVanVuMxgMxMXFkZCQQFRUlAurGzp7Rwc9uz+ga+cObNcrndv1aal4fvMB3FcsRzVOOtW/SE1NDSdOnKCqqgqAU6dOERUVhV6vHzcd+EIIIYQQ48WQO75PnjzJ5s2bqays5G/vqlKpsNvtI1rgnSAd30KI8aCvr48zZ86g1WrJyMgY8v07zFZ+vP0Sp663Y9SqefPxqaSEen7t/erq6jh+/Dhubm7OUNvHxwdvb+9BXYrd09NDZWUlKSkpzm3vv/8+nZ2dZGdnk5aWhsHw9eNXhBDibtfW1kZxcTFBQUHExcVht9tpamripZdewtPTk4SEBBISEoiMjBzTi1P+LUVR6MvPp3vHTnoOHIBPv1BVmUy4r1iB58YN6CdPdnGVw3fzqqjTp09TW1sLDCweOmPGDObOnYubm5t0eQshhBBCDMFgs9whB9+ZmZkkJSXx3HPPERoa+rkPad7e3sOr2IUk+BZCjAeFhYXs3LkTvV7PE088gafn14fWf8tqd/B3WwvJvdpKqLeB7U9Ow89dPwrVfrn+/n5eeOEFZ3eiTqcjPT2d7OzsL3xfEUKIu5nD4aCkpIQzZ85QUVEBQFJSEvfdd5/zNk1NTQQEBIy7109HVxfde/bSvXMH1vKrzu26SZPw3LgR9xXLUbu7u7DCkfH+++9TUlICDATeqampzJkzh8DAwHH3byaEEEIIMRaMWvDt7u5Ofn7+uJwV+GUk+BZCjAcOh4M//elP1NbWkpiYyLp164Z1nA6zlW++co6qVjMzY3x4+eEpaO/w5dW9vb1cvnyZ/Px82tranNuTkpK4//77x1WnohBCjIbe3l7Onz/P2bNn6ejoAAauroyMjGTy5MlMmTLFxRUOj+Jw0Hcxn+7du+ndvx/l0zFeKqMB073LB7q7U1PHdSDc39+PWq1Gqx2YKnn58mUOHjxIZmYms2bNwsfHZ1w/PyGEEEIIVxu14HvRokX8/Oc/Z/ny5bdd5FghwbcQYrxoaGjgpZdewuFwsG7dOhITE4d1nLLGHh780zl6++08OjOCf7h3eMe5XYqiUFNTQ35+PqWlpdjtdhYtWsQ999zjknqEEGKsePnll7lx4wYAbm5uZGRkkJmZOS4/q94Mu3sPHqD34CHszc3Ofbr4eDw2bsRj1UrUw7iSaSwxm81cuHCB8+fPM3v2bKZOnQrgXBPJ3d1dAm8hhBBCiBEwaotb/vCHP+TZZ5+lvr6e9PT0zy1ONpy5s0IIIQYnODiYnJwcTpw4waFDh4iOjkavH/qoksQgd/71vmR+tP0Sr5+qISXUk7UZIaNQ8Ve72b0YGRlJRUUFV65cYcqUKTgcDlnkSwhx17Db7Vy5coWkpCR0Oh02m420tDQcDgdZWVlMnjzZ2T08XigOB335+fQePDgQdjc1OfepPDwwLVyIx/p1GKZMGfdhcFdXF2fOnKGgoMA5xqusrIxp06ah0+lQq9Xj/jkKIYQQQoxHQ+74/qIgQqVSoSiKLG4phBB3gNVq5YUXXqC9vZ2pU6eyePHiYR/rvw5f48Xjleg1at58PIu0sLHzGmg0GiX8FkJMaJ2dnZw7d45z587R09PDsmXLnCNMbn5EH0+BqeJw0FdQQO+Bg/QeOoS9sdG5byDsXoBpyRLcZs1C9TfNM+NRUVERJSUlXL161dnVHRQUxKxZs0hLS/tcg5AQQgghhBgZo9bxfXNRHSGEEK6h0+lYvXo1b775Jvn5+cycORMPD49hHevvFsRSVN/NkbIWnnnnEu88OY0Ajzu72OUXURSFffv2ERcXx+TJk11djhBCjJjOzk7Ky8spKyujtLTUGZh6eHjcEnKPl8BbURT6Cy/R89FH9B48+Ddhtzum+QswLf007B7GFUpjgd1up7GxkZqaGrKzs51fylZVVVFWVgZAZGQkOTk5JCUlyToVQgghhBBjxJA7vici6fgWQoxHR48eJSoqiuDg4Ns6TpfFxgOvnKOipZdpUd688kgmOo1rO63z8/P56KOP0Gq1PProo0RGRrq0HiGEGK6bV0UC2Gw2fvWrX91yhWRERARZWVkkJiaOu8C0v7iYtuf/A8vp085tKnd3TPPnY1q6FLec8Rl222w26urqqKmpobq6mhs3bjhHmDz88MOEhoYCUFlZSV1dHQkJCURERMhVSkIIIYQQd8ioLW4JcPXqVZ5//nmKiopQqVQkJyfzox/9iPj4+Nsq2lUk+BZCjFdWq9V5Mm61Wod9WfW15h6++cdz9PTb2Tw9nH9akTSSZQ6Z3W5n165dVFRU4DxfzjUAACAASURBVObmxre//W38/f1dWpMQQgxWW1sb5eXllJeXYzabeeyxx7Db7djtdrZv347FYiE2NpbExESCgoJcXe6Q2erraX/hBXr27AVFAZ0O05LFuC9bNtDZbTC4usRhu3TpEh999NHnxjcajUYiIiKYPXu2M+SW2d1CCCGEEK4xaqNO9u/fz9q1a8nMzGTOnDkoikJeXh6pqans3r2bpUuX3lbhQgghBk+r1eJwOKioqGD37t2sWrWKmJiYIR8nLsCdX69P4QfbCtlyppaUUE82ZIaOfMGDpNFoWLt2LVu3bqWhoYE333yTJ598End3d5fVJIQQX8Zms1FRUeEMu1tbW2/Z39LS4hxJtWHDhnHbGezo6qLjz3+ma8vbKH19AJjuvRefH/wduvBwF1c3PJ2dnQDOEyYfHx/sdjsmk4nIyEiioqKIjo4mJCREgm4hhBBCiHFmyB3fWVlZ3HvvvfzqV7+6Zfs//MM/8NFHH3H+/PkRLfBOkI5vIcR4pigKW7Zsoby8HJVKxYIFC8jOzh7WyfkLRyv476PX0WlUvP5YFlMivEeh4sHr6enhrbfeoqOjg7CwML71rW/JYmFCiDFn69atlJSUOH9Xq9WEh4cTGxtLbGwsgYGB4zowVaxWunbspOOll3C0twNgmDoV35/8GENqqourGzpFUbhx4wbnzp2jtLSUtLQ0li9f7tzX1dVFYGCgBN1CCCGEEGPUqI06MRqNFBYWkpiYeMv20tJSMjIysFgsw6vYhST4FkKMdzabjd27d1NQUABAamoqy5YtQ6sd2oU9DkXhR+9c4lBJM0GeerY/NY1AD9dest7a2spbb72FxWIhKSmJBx54QIIIIYRLORwOHA4HWq0Wu91OaWkpe/bsIT4+nri4OKKiojCM43EfNymKgvnwYdr+87+wVVUBoI2JxveZZ3CbP3/cvRbb7XZKSko4d+4c9fX1zu1xcXFs2rQJnU437uasCyGEEELcjUZt1ElgYCAXL178XPB98eLFcTmjUAghJgKtVsu6desICQnhwIEDXL58mZaWFtatW4enp+egj6NWqfjXdck88Mo5rjX38pPtl/nTo5noXbjYpZ+fHxs2bGDHjh1MnjwZh8MhwYQQwiUURaGoqIjDhw+TkpJCTk4ODoeDqKgovvvd706o16a+wkLa/s/z9F28CIDa1xefp7+Lx7p1qMbhlTcXLlzgk08+oaenBxgYqZWSksKMGTMICwsbt+NnhBBCCCHElxty8P3UU0/xne98h2vXrjF79mxUKhW5ubn8+te/5tlnnx2NGoUQQgyCSqUiJyeHoKAg3n33Xerr63njjTd45JFHhhR+exi0/Pc30/nmH89xvrqDf91Xxi9WTRrFyr9eeHg43/3udzEYDPT19WE0GiWkEELcMYqiUF5ezuHDh6mrqwMgPz+f6dOnO8dhTJTQ21pZSfsLL9J74AAAKqMBz4cexvuxR1F/Oqd8PFAU5ZYvSs1mMz09Pbi7u5OVlcW0adPw8vIad13rQgghhBBi8IY86kRRFJ5//nl++9vfcuPGDQDCwsL42c9+xjPPPDMuPzzKqBMhxETT2trK1q1bCQwMZOXKlcN6bT5a2sz3txaiAL9cNYn7s8NGvtBh6u7uprW1lcmTJ7u6FCHEBHf9+nU+/vhjqqurAdDpdEybNo3p06dPjHEmNht9+QWYc3Mx5+ZivXp1YIdKhfvq1fh8/3tog4NdW+TXcDgctLW10dDQQENDA42NjTQ0NDB37lymTp0KDKwZUVVVRXp6OjqdblyeswghhBBCiAGjNuP7s7q6ugCG1Ek4FknwLYSYiPr7+7Hb7dx8me/v70ej0QypK/EPx6/zH4cr0KpV/L9rJrEmPQSN2rVhQVdXF2+++Sa9vb1s3ryZ+Ph4l9YjhJi4Tpw4wcGDB4GBkVJZWVnMmDEDk8nk4spuj72tDXPeJ5iPH8fyySc4Pv1MD4BajdvsHHx+8AP0SUmuK3IQ2tvb2bt3L42NjVit1s/tT09PZ/ny5Wi1WrRarVwpJIQQQggxQYzajO/PGu+BtxBCTGR6vR4Y6ISzWCzs2bOHvr4+1q5dO+jQ5jtzoymq7+ajoib+7/eKeSWvih8uiGXJ5EDULuqW8/DwICIiguLiYt555x0efvhhIiMjXVKLEGJisdvt9Pb24unpiaIoJCQkcPToUVJTU8nJycFjHI36+CxFUbCWlmI+PtDV3VdYCJ/pfVF7e+M2ezZu98zFmJODxtvbhdV+XmtrKwUFBdTU1BAVFcW8efMAcHNzo7a2FhjoxA8MDCQkJISQkBBCQ0MJCgqS7m4hhBBCiLvYoDq+p06dyqFDh/D19SUrK+srPzyeP39+RAu8E6TjWwgx0TU2NvLKK6/Q39+Pt7c369atG/SCxP02B6+drOaVvCo6LTYAkkM8eGZhHPMS/FwSKNhsNt59912qq6tRq9UsXryYnJwcCTeEEEPmcDi4fv06ly5dori4mPDwcDZt2oTNNvB6Z7FYMBqNLq5y6BSrFcupU/QePoL5xAnsjY237NclJeE2dy5u98zFkJaGaozNKLfZbJSWlpKfn09NTY1ze0REBA8++CAwsLZFWVkZgYGBBAQEoNVq5X1ACCGEEOIuMKKjTp577jl+9rOfYTKZ+OUvf/mVHyh/8YtfDK9iF5LgWwhxN2hoaGDr1q20t7djNBrZvHkz/v7+g75/l8XGn09W89rJanr77QBkRXjxzMI4Zsb6jlbZX6qvr499+/ZRWloKQFxcHOvXrx+3HZlCiDvH4XBQVVXF5cuXKSoqoqenx7nP09OTp556alwuVqn092M+eZLegwfpPXIUpbvbuU9lNGCcMXMg7J47B21IiAsr/WrHjh0jPz8fi8UCDATccXFxpKamEhERgb+/PyqVSkJuIYQQQoi71B2Z8T1RSPAthLhbmM1m3nzzTW7cuIGXlxcPPfTQkIPitt5+XjlRxZYztVhsDgBmxfryo4WxTIm4s5fHK4pCQUEBH3/8MTabjaysLNasWSNhiBDiK23dupWSkhLn725ubiQmJjJ58mQiIyPH1Sxopa9vIOw+cJDeY0dRuv8a4msC/HFbuBDTvPkYp2WjGqOLcdpsNrTav05g3Lt3L5cvX8bLy4v09HSysrLw83PNFUZCCCGEEGLsGbXgOy4ujjNnznyuS7C9vZ2pU6dy7dq14VXsQhJ8CyHuJj09PfzpT3+itbWVwMBAHnzwQQzDCEOauvr4Q24l75y7gc0x8FayINGfHy6MJTnkzq4B0dzczPHjx1m5ciVubm4YDAYJSIQQANTX11NQUMCcOXNwc3PDZrNx5swZjh8/7gy7o6KixlWHt9LXhzkvj96Dh+g9dgzlMx3rmsBATIsXYVq8BEPmlDE3wuSzmpqaKCgo4PLly3zzm98kODjYub2np4fExEQZXyKEEEIIIT5n1IJvtVpNfX3952bDNjQ0EBkZSX9///AqdiEJvoUQd5u2tjbnzO9NmzYRHh4+7GPVtlt48dh13suvx/7pW8q9KYH8YH4s8YHuI1XykCiKQl5eHllZWQQEBLikBiGEazU2NvLxxx87O7uXLVvGlClTALBarahUqlu6jMc6xW7HfOwYPQcOYD52HKW317lPExSEafFiTEuXYMjIQDWGO9btdjslJSVcuHCBGzduOLfPnDmT+fPno9VqJewWQgghhBBfabBZ7qA/7b///vvOP+/fvx/vz6z2brfbOXToELGxscMsVwghxJ3k6+vL5s2b6e/vH/Qil18m3MfI/1w7mSfnRPG7oxXsvdTI/itN7L/SRE6sL/dnh7FoUgA6zZ0LYgoKCsjLy+PMmTMsX778axdmFkJMHG1tbRw5coSCggJgYD50YmLiLVcr6nQ6V5U3LNbKSlp++Rx9+fnObZqQYEyLl+C+ZAn69LQxHXbDwJcNFy5c4Pz583R1dQEDDTUJCQlkZWWRkJCARqOR12ohhBBCCDFiBt3xfXPWoUql4m/votPpiImJ4be//S2rV68e+SpHmXR8CyHuVoqi0NfXh8PhwGw24+bmdtvHLG3o5r+OVPBxSTM33y383fVsyAxh09QwInxv/zG+Tnd3N3v27KGqqgqAlJQU1qxZg9FoHPXHFkK4hqIo7N27l/Pnz+NwDKw/kJSUxNy5c4e0kO9YotjtdL39Nu2/ewGlrw+VuzueG9ZjWrIEfWrqmA+7P8tms/HSSy/R09ODyWRi6tSpZGdn4+3tLWG3EEIIIYQYklEbdRIbG8uZM2cm1KXjEnwLIe5miqJQUVHBjh07mDlzJtOmTRuR49a2m9l+vo6dF+to7h4Yg6UC5sT7cX92GPMT/Ue1C1xRFE6fPk1ubi4OhwNvb2/Wr19PdHT0qD2mEMJ1FEVh27ZtlJSUEBMTwz333ENISIiryxo26/XrA13en3auG2fNxP+f/xltaKiLKxucGzducOXKFRYtWuRsoCksLESlUjFlyhT0er0E3kIIIYQQYlhGLfieiCT4FkLc7U6cOMHBgwcBWLNmDZMnTx6xY1vtDo6UtrDtXC1519qc2wM99GzMCmVjVhjhPqPXiV1XV8cHH3xAe3s7KpWK5cuXM2PGjFF7PIALFy7Q19eH3W7/3I/BYGDBggXO2+7fv5+WlhZMJhMrVqwY1kKjQtyN+vv7OXXqFGlpaXh6etLf309bWxvd3d1ERka6urxhU+x2Ot96i44Xf+/s8vb96U/wWLduzAfFDoeD8vJyzp49S21tLQD33XcfSUlJaDQadDqdMwQXQgghhBBiuEZ8xvdn9fT0cPToUaqqqj63mOUzzzwznEMKIYRwodmzZ9PR0cGZM2fYu3cvJpOJqKioETm2TqNmaXIgS5MDqWo18+75G+zKr6Opu5/fH6/kD8cruSfBj/uzw5mX6Id2hEOR0NBQHn30UQ4ePEhRURG+vr5YrVbUajUFBQUUFxcTHBzs/PHz8/vaYMZut9PS0kJDQwMNDQ0oisKSJUtQFAVFUTh+/DhtbW1feF8vLy9mzZoFDHSoVlZWUldXB4Cfnx/z5s0b0ecvxERjs9k4d+4cx48fp6enh6amJpYvXw4MrF/g6+vr4gqHz1pRQfMvn6O/sBAA46xZ+P/zP435Lu/+/n4uXbrEuXPnaG9vBwbGJKakpBAcHIybm9uYD+2FEEIIIcTEM+SO7wsXLrBy5Up6e3vp6enBz8+P5uZmTCYTQUFBXLt2bbRqHTXS8S2EEAOdetu3b6e4uBi9Xs/mzZsJDAwclcfqtzs4VNzM9vM3OFnx14A43MfIt2dHsT4zBINWM+KP29TUdMtz+vDDD7l06dItt9FqtQQGBhIcHMySJUtwd3cH4OzZs1RVVdHQ0EBzc7NzhjCAwWDghz/8oTPYycvLo6WlBY1Gg0ajQa1WO/9sNBqZOXOm875lZWVUVlZy4cIFfHx8eOaZZyQgEuILtLa2UlJSwqlTp+jo6ADAx8eHuXPnkpyc7OLqbo9it9P55lu0v/gi9Pej8nDH96c/xeO++8b860FLSwtbtmzBYrEAYDQayczMZMaMGfj4+Iz5+oUQQgghxPgzaqNOFixYQFJSEi+++CI+Pj7k5+ej0+l4+OGH+dGPfsSGDRtuu/g7TYJvIYQYYLPZeP3116mursbDw4OHHnpo1F8Xr7f0ftoFXk9brxWAAA8935oVyTezw3A3DOvipEGpr6/nxo0bNDU10dTURHNzM1ar1bn/Jz/5ibNTccuWLVRUVDj36fV6AgICCAwMJDAwkIyMDDSa4YX1/f39vPjii/T39/PII48QFxd3289NiInknXfeoaioyPm7h4cHOTk5pKenD/u/u7HCeq2C5l/+kv5Pv4Qz5uQMdHmPk/nkiqLw9ttv09PTw/Tp08nMzJQObyGEEEIIMapGLfj28fHh1KlTTJo0CR8fHz755BOSk5M5deoUjz32GMXFxbdd/J0mwbcQQvyV2WzmT3/6E83NzaSmprJy5co787hWOzsv1PFKXhX1nX0AeBm1PDwjgodnROBj0o16DYqi0N7eTlNTE52dnbcs9HnlyhU6OzudYbeXl9eIBjsfffQR+fn5pKSksGnTphE7rhDjicVioby8nLKyMlauXIlWq8Vut3PkyBFOnTpFREQEiYmJpKeno9ON/mvCaFJsNjrffJP23//B2eXt99Nncb9v7ZgOjW02G+fPnyczMxO9Xg8MvG94eXmN+38TIYQQQggxPozajG+dTuf8MB4cHExVVRXJycl4e3tTVVU1/IqFEEKMCW5ubjz88MMcOXKE+fPn37nH1Wl4aEYEm7LD2FPYwMsnKrneYuaFY9d59ZNqvpkdxrdyIgnyHL3FH1Uq1ZfOCE5JSRm1xwXIyMggPz+fkpISenp6nCNWhJjoWlpaKC0tpbS0lMrKSm72ZMTFxZGYmAhAdnY206dPnxCLv9o7Ouj96CO6duzEWloKgHH27IEu7+BgF1f31Wpqati/fz+tra10d3ezaNEidDqddHgLIYQQQogxacjBd1ZWFmfPniUpKYmFCxfyL//yLzQ3N/PGG2+Qnp4+GjUKIYS4w7y9vVm7di39/f3Y7XZgoBv6TgQbeo2a9ZmhrM0I4UBxEy/lVlJc382fT1bz1pka1meG8u3ZUUT6uo16LXdSSEgIcXFxBAUFOf/OhZjIrl69yr59+2hubr5lu7+/P/Hx8fj5+Tm3ubmN7//eFasVc14ePbs/oPf4cfh0pJLKwwO/Z5/Ffe2aMR0cWywWjh07Rn5+PgAmk4mIiAiMRuPXLgYshBBCCCGEqwx51MnZs2fp6upi4cKFNDU18dhjj5Gbm0tCQgKvvvoqU6ZMGa1aR42MOhFCiC+mKAoWi4Xjx4/T19fH4sWLXVLD8fJWXsqt5Hz1wIJ2GpWKFWlBPDUnisQgjzte02hTq9UYjUZXlyHEqKqvr+fll18GICIigoSEBOLi4r7wiovxSFEU+ouK6dnzAT0f7sPR3u7cp0tKwmP1KtxXrkTzmYB/rFEUhdLSUg4dOkRPTw8wcHXKkiVL8PDwGNNhvRBCCCGEmLhGbcb3RCTBtxBCfLmamhpeeeUVABYvXszUqVNdVsvZynZeyq0k92qrc9viSQE8NTeajPCJ9fotnZRiolEUhRs3bhAWFobNZsNqtVJVVUVwcPCEGGFyk62xkZ69H9KzZw/Wq1ed29X+/rivWI7H6tXok5JcWOHgnT59mqNHjwLg6+vLihUrSEhIkMBbCCGEEEK4lATfQyDBtxBCfLXjx4/z8ccfo1Kp2LBhA3FxcS6t50pdFy/lVnKgqImbb2I5sb58Z240M2J8xnUo43A4uHbtGt3d3cyePdvV5QgxItra2ti9ezfXr1/nkUceIXiMz7IeKofZTO/hw/R8sAfL6dPgcAzs0OsxLViAx+pVGGfNQqUd8pRBl+ru7ua1115jypQpzJ8/f0J9QSGEEEIIIcavEQ2+s7KyBh0inD9/fvBVjhESfAshxFdTFIX333+fixcvotPp2Lx5M0FBQa4ui2vNPfzxRBUfFDZgcwy8nU0J9+I7c6OZn+SPehwG4LW1tWzZsgWtVstPf/rTcT/bWNzdHA4Hp06d4uOPP8Zms6HVarn33ntHfbHYO8FhNmM+cYLeAwcwH89FsVic+wyZU3BfvRr3pUtRe3q6sMrB6ezspLa2ltraWtRqNYsWLXLuczgcuLu7j+svFIUQQgghxMQy2Cx3UG0n69atG7HChBBCjD8qlYrVq1fT1tZGZWUlO3fu5OGHH8bDw7XzteMC3Plf9yXzd/NjefWTKnZcqCO/tpO/21ZIUpA7T82N5t6UQLTjaGRIWFgY/v7+tLS0UFBQwMyZM11dkhDD0tjYyPvvv09tbS0AUVFRLFu2bFzP8HaYzZjz8uj96ADm48dvCbu14eG4r1yJ++pV6CIjXVjl12ttbaWystIZdnd2dt6yPzo6moSEBAwGg4xcEkIIIYQQ45aMOkE6voUQYrDMZjOvvPIKLS0tBAcH89BDD6HRaFxdllNzdz+vn6zm7bO19PTbAYj0dePJOVHclxGCXjs+ApyzZ89y+PBhgoODefrpp11djhBDlpeXx6FDh3A4HOj1ehYsWEBGRsa47Bp2WCxYTuTRc+DTsNtsdu7ThIXhvmQJpmVL0Scnj8nn19/fT319PaGhoeh0OgAOHz7M2bNnnbdRqVQEBwcTHh5OVFQUMTExeHp6jsnnI4QQQgghxIh2fAshhBAAbm5ubN68mVdffZWsrKwxFXoDBHjo+emSeL49J4q3z9Ty+qkaqtvM/OKDEn53tILHc6LYNDUMk35s1f23UlJSOHbsGA0NDdTW1hIeHu7qkoQYEo1Gg8PhID4+nqVLl+I5DsZ9fJbDYsGSl0fPgYOYjx27NewODf1r2J2SMibD4b6+PsrKyigqKqKqqgqHw8H9999PdHQ0MNDR3dTURGRkpPPHaDSOyecihBBCCCHEcA2541utVn/lh2K73X7bRd1p0vEthBBD09/fj6IoY/41v7ffzrvnb/DqJ9U0dPUB4GnQck+CH/MS/bknwQ9fk97FVX6x3bt3U1xcTFZWFmvXrnV1OUJ8JavVSkdHB/7+/vT392Oz2aioqCA2NnbchKm2pibMJ05gPp6L5dQplN5e5z5NSAjuS5diWroEfWrqmHxONpuNa9euUVRUxNWrV295ffbw8GDRokUkJyej0WhQq9Vf+5leCCGEEEKIsWrUOr537dp1y+9Wq5ULFy7w2muv8dxzzw29UiGEEOOOXq9HURQsFgvd3d3U1taSlJTk6rI+x6TX8OisSB6YFs77BfW8fKKK6jYzey83svdyI2rVwGKY8xL9WZAUQFLQ2FnALSMjg+LiYi5fvsy9996LwWBwdUlCfKHy8nL27NkDwGOPPYZer0elUhEXF+fiyr6a4nDQf+UK5uO5mHNz6S8qumW/JiR4IOxesgR9WtqYeW34Mk1NTbz33nvO3/39/UlJSSE1NZWAgAAJuoUQQgghxF1nxGZ8b9myhW3btt3ygXu8kI5vIYQYnu7ubv74xz/S2dnJxo0biY2NdXVJX8nuUCio7eRIaTPHylsoaei5ZX+Il4H5if7MT/RnZqwvbjrXjURRFIWXX34Zg8HAhg0bCA4OdlktQnyR7u5u9u/fz6VLlwDw9PRkw4YNBAUFubiyL+fo6sJ88iTm3FzMJ/JwtLbesl+fmorb3Lm43TN3zM7sVhSF+vp6ioqK0Gq1zJs3z7n9nXfeISQkhPT0dEJDQ8fcOCohhBBCCCFGwmCz3BELvq9evUpGRgY9PT1ff+MxRoJvIYQYHkVR2LVrF4WFhej1eh566CECAgJcXdag3eiwcKyshWNlLZysaMNiczj3GbRqZsb4MD8xgHmJ/oT7GO94fb29vZhMJtRqNUbjnX98Ib6IoiicP3+egwcPYrFYUKlUTJ06lblz56LXj73RQdbqasxHjtB7/Dh9Fy+C7a8jQFTu7rjNmjUQds+ZjWYMv3719/dz9uxZrly5QltbGwAGg4Hvf//7aLVa549KpRqTgb0QQgghhBAj5Y4G32azmX/8x3/kww8/pKSk5HYPd8dJ8C2EEMNns9l4/fXXqa6uxsvLi4cffhh3d3dXlzVkFqudU9fbOVbWwpGyZuo6+m7ZnxjkzvwEf+Yn+TMlwgutWn1H6zMajajv8GMK8bf6+/t56623qKqqAiAoKIh7772XkJAQF1f2edbKStr/8Ad6938En/m4q42JHgi6587FmJWFSqdzYZWD09PTw44dO2hoaABAq9WSkJBAWloaSUlJzsBbCCGEEP8/e3ceHmV97n/8PUsyM9n3PSQkgWxAwiKBsBlWQYhsQhFFUevRHms9tbW1Pa12sevxHNta4UfdFXBnFQQRwhJ2MGwJJCE7SchCMplsM5OZ5/dHZGoElUAmYblf19XL5plnuWdYZvg899xfIcStwGnBt6+vb5cP1oqiYDKZcHNz45133rkhF+CS4FsIIa5Na2srr7zyCg0NDYSGhrJw4UJcboAw6ZsoikJhbQs7C+rJyq8np8KI/Svvll56LePiOkeijI3zw8fg3OdqNptpbGy87kfJiJufoiisXr2akpISxowZw/Dhw6+7GzLWc+cwrvgXLZ98AvbOb3HoR47EMH4chrHjcOkX2ccVdk9jYyMffPABjY2NGAwGJk6cSFJSEgaDQcJuIYQQQghxS3Ja8P3mm292+VmtVhMYGEhaWhq+vr5XV20fk+BbCCGuXX19Pa+88grt7e3Ex8cza9asmyaUaWyzsqfwAjsL6tldWE9Te4fjMbUKUiO8uX1gZxAeF9izC2TW1taycuVKNBoNP/7xj2/oGwrixlRSUkJgYCB6vR6LxYLJZMJms+Ht7d3XpXXRcf48xldepXndWsc4E8O4cfg89iiuCQl9XN3VMxqNrFy5Eq1Wy8KFCwkJCblp/m4VQgghhBDiavT6jO8bmQTfQgjRM4qLi3nnnXfw9vZm0aJFN+TIk+/SYbdzrKKJnQX17Cyop6Cm69oWYd56Jgzw57ZoH1LCvQj1vrbZ3Ha7nRUrVmAymZg9ezYpKSnXdD4hrlRrayufffYZOTk5JCcnM2PGjL4u6bJsdXUYX38d00cfg8UCgH5UGj6PPYZu8OA+rq5n1NbW4unpiZ+fX1+XIoQQQgghRJ9zavDd0NDAq6++Sl5eHiqVisTERJYuXXrDfhiX4FsIIXpOfn4+AQEBjsUYGxsbcXFxuSlDcIBzjZ0LZO4sqONASSPmryyQCRDsqSMlwouUCC9SI7xJCvVAp9V06xrZ2dns3buXfv36sXTp0p4sX4hL2O12jh07xrZt22htbQVg6NChTJw48boaa2JraKDpzbcwvf8eSnvnTH7dsGH4/OAH6IcN7ePqrk1+fj4qlYoBAwYA4Orqilar7eOqhBBCCCGEuD44LfjeuXMnmZmZeHt7M2LECACOHDlCY2Mjl+HrCwAAIABJREFU69evZ8KECddWeR+Q4FsIIXqW3W7HbDajKArr1q2jsLCQAQMGkJqaSmRk5E37Nf02q40DxQ3sOXuBnAojZ6pbsH3tbVarVpEY4kFqpDcp4V6kRHgT5q371tfEaDSyYsUKAB5//HH8/f27VZfdbqe8vJx+/fqhKMp1FV6K64eiKOTl5bFjxw7q6uoACAgIYOrUqYSHh/dxdf9mN5loevttmlatRvkymHcdPBifHzyGfuTIG/7vl5ycHD777DO0Wi333nsvERERaDTdu1kmhBBCCCHEzcxpwfegQYNIT09n2bJljg/hNpuNH/zgB2RnZ3Py5Mlrq7wPSPAthBA9T1EUOjo6eOutt6ioqHBs9/PzIyUlheTkZAwGw1Wdu6WlhdraWoxGI35+foSEhFyXs69bLTZyq0zkVBg5VtFETkUT9S2WS/YL9HBlTKwfP58Wh5f+8s/jww8/pLi4mNGjRzN16tQrrqG5uZmPPvqI0tJSFi5cSGRkJDqdToI0cYlDhw6xadMmAPR6PaNGjWLYsGHXxe8VxWrFnJND667dtKxfj91kAsA1Ib6zw3vMmBs+8FYUhb1797J3714AhgwZwsyZM6/Lv9uEEEIIIYToS04Lvg0GAzk5OcTHx3fZfubMGVJTU2lra7u6ivuQBN9CCOFclZWVHD58mJMnT2K1WgHQarXcdtttjB079huP6+jooL6+nvr6epKSkhzbL4bAF6nVaoKDgwkLCyM8PJzY2NjrciyAoiica2zn2LkmciqMHK9oIq+6mQ5751tx5pBg/jQ76bLH5ufns27dOtzd3XnyySev6PkVFxfz0Ucf0dLSgouLCzNmzGDgwIFUVlZy4sQJMjMzr4tQU/Qdq9WKi4sLdrud5uZmXnvtNZKSkrjtttvQ6XR9Wputvp627Gza9uyhbf9+lOZ/z9N3iYvF59FHMWRk3PCBN3R+K2Pbtm0cO3YMgPT0dCZOnCh/PoUQQgghhLiMK81yu50KDBs2jLy8vEuC77y8PFJTU7tfqRBCiJteWFgYmZmZTJ06lePHj3PkyBFqamq6dHxbLBZKSkqor6+ntraW2tpaGhoauHh/NioqyjEnPCgoiMbGRry9vamtraWlpYWqqiqqqqrIycnhiSeecJy3oqICnU5HQEBAnwdkKpWKCF8DEb4G7hwUDEC71caesxd48oOTrD9+nmmJQWTEB1xybGxsLG5ubrS2tlJeXk7//v2/8Tp2u53du3eTlZUFdI6ryMzMxN/fH4vFwpo1a2htbcVsNnP33XdLuHYLqqmpYceOHTQ1NbFkyRJsNhtarZaHHnqoz34/KHY7ltNnaNuzm7Y9e7CcyoWv9GeofX0xjB2DW0YGhvHjUd0kI3s6OjrYuHEjBQUFAEyZMoVRo0bJSCIhhBBCCCGuUbc7vt977z2efvppfvjDHzJq1CgA9u/fzz//+U/+9Kc/kZiY6Nh3yJAhPVutk0jHtxBC9C5FUSgvL8fHx8fRuXzixAk+/fTTS/Y1GAwEBgYydepUAgICUKvVqFQqNBoNKpUKu91OY2MjZWVllJWV0dHRwR133OE4/vXXX6eurg6dTkdYWBiRkZEkJyfj4eHRa8/3Sryw7Syv7i0j0MOV9Y+NxNtw6XiD0tJSfH198fX1/cZu3JaWFj7++GOKiooAGDx4MJMmTeoyLqGoqIi1a9dis9kYOHAgCxYskPD7FtHY2EhWVpajs1ilUnHvvfcSEhLSJ/XYW1poP3Cgs6t7zx5sdfVdHndNSMAwbiyGceNwTUq6acLurzpy5Ajbt29Ho9Ewc+ZMUlJS+vwmnRBCCCGEENczp406+a7uE5VKhaIoqFQqbDZbd07dZyT4FkKIvqMoCjabjfXr11NdXU1gYCBBQUEEBwcTHByMl5eXI+zu7jk7Ojp49913qaysdIxYgc73qri4OIYNG0a/fv2c8bS6zdxhY96KwxTVtXLXkBD+ODvxW/c3GAyXfU2OHj3Khg0bcHFxYfLkyQwaNOiyxxcXF7NmzRpsNhsDBgxgwYIF1+V4GNEzmpub2bVrF0eOHMFutwMwYMAAxo4dS0DApd8wcDa7yUTjin9hev99+OqfTYMB/ag0DGPHYhg7Fm1gYK/X1tvsdjtbt25l0KBBDBgwQEJvIYQQQgghvoPTgu/S0tIr3jcqKqo7p+4zEnwLIcT14eKN055ms9moqqqirKyMvLw8x2KbiYmJzJw5s8evd7WOVRhZ/PpR7Aq8/L3B3D7w2wNJNze3Lj8rikJ7ezs7d+4kKSnpOwPN4uJi1q5dS0dHh4TfN7Hy8nLefvttx82fqKgoxo0bR2hoaK/XotjttKzfQMNLL2G/cAEAbUQ4hnHjMIwdi374cFSurr1eV2+yWCycOHGC2NhYfHx8ANBoNLi6ukroLYQQQgghxBVwWvB9M5LgWwghbi1VVVUcPnyYhIQEwsPDAaivr+fAgQOkpqYSGhraZwHU/3xWyGv7yr9x5InJZOLTTz/lwoULPPHEE5jNZrZt28bkyZMd37rqjpKSEtasWUNHRwfjx48nIyOjJ5+OuA5YrVbeeOMNFEVh3LhxfdaYYD5xggt/+SuWU6cA0EZH4ffUT9Cnj74lAt/m5maOHj1KTk4OZrOZYcOGMWnSJLRaLS4uLrfEayCEEEIIIURPcNrilgBnz57lxRdfJC8vD5VKRWJiIj/60Y+IjY296oKFEEKI3hIaGsqsWbO6jETJycnh1KlTnDp1iqCgIFJTU0lMTMS1l7tPH7+9Pzvy6ymub+XPWwv5w11dR54YDAaqq6sdnd05OTmYTCba29uvqns9OjqauXPncvToUYYPH47NZpN53zeB8vJyQkNDURQFq9XK/Pnz+6yj2FZfT8Pf/0HLhg0AqNzd8Xnk+3h+73uoXC6dZX+zqaur4/Dhw+Tm5jrGAPr6+hISEoJOp5M/b0IIIYQQQjhJtzu+t2zZQmZmJqmpqYwZMwZFUdi7dy/Hjh1jw4YNTJkyxVm1Oo10fAshhKioqODgwYPk5eXR0dEBgKurK8nJyQwbNgw/P79eqyWn3Mi9b3SOPFn2vcFM+NrIk+3bt3PkyBHHz35+fmRmZhLYQ/OQLwakEsjdeGw2G1lZWezZs4eRI0cyYcKEPqtFsVoxvfcejStWoDS3AOA+axa+P3wcTR/MFe8LGzduJC8vz/FzeHg4aWlpJCYmylghIYQQQgghrpLTRp0MHTqUadOm8ac//anL9p///Ods3bqVo0ePXl3FfUiCbyGEEBe1trbyxRdfcOTIERoaGgDQ6XQ88sgj6PX6Xqvjr58V8vq+coI8XVn3aNeRJ3V1dbz++utA55zyqVOn9lhnuqIo7Nq1i9raWhYtWoTLLdCRe7NoaGjgo48+4ty5cwCkpKQwZcqUPunybtu/nwt/+SsdJSUAuCYl4ff00+iGDO71WnqT3W5HpVI5XvOdO3dy8OBBBgwYwKhRo4iOjv7OheKFEEIIIYQQ385pwbder+fEiRMMGDCgy/b8/HyGDBlCe3v71VXchyT4FkII8XWKonD27Fmys7OJi4tj6NChvXr9dquNeSsOU1zfyuyUkEtGnhQWFgIQGxvbo8FmY2Mjb7zxBlarlf79+0v4fYM4efIkGzduxGw2o9PpmDZtGvHx8b1eh7Wigob/+z/admQBoPb1xfeHP8Q9cxaqmzTwVRSFlpYW8vPzOXz4MNOmTXPMUW9pacFutxMUFCQzvIUQQgghhOghV5rldvtfIIGBgeTk5FyyPScnh6CgoG6da9euXcyaNYuwsDBUKhVr167t8vgDDzzg6Jq5+L9Ro0Z12cdsNvPDH/6QgIAA3N3dyczMpKKiortPSwghhOhCpVIRFxfHkiVLGDVqlCO0qq2tdXSCO5PeRcPzmQmogLXHqtmZX9fl8bi4OOLi4no8TPPx8WH+/Pm4uLhQXFzMqlWrOH/+fLcXzRS9w2KxsG7dOj766CPMZjPh4eHcf//9vR5621tbaXz5ZSrn390Zems0eC5eTPjaNXjMvuumCr3NZjN79uxhw4YNvPnmm/ztb39j2bJlfP755xiNRo4dO4ZKpcLV1ZWAgACCg4Ml9BZCCCGEEKIPdHu44Pe//30eeeQRioqKSE9PR6VSsWfPHv785z/z1FNPdetcLS0tpKSksHTpUubNm3fZfe644w7H17mBS77K/eSTT7Jhwwbeffdd/P39eeqpp5g5cyZHjhyR2aRCCCGu2cVZ13q9HqPRyJo1a2hra2P69OkMHDjQqddOjfTm/lGRvLG/nGc/OcP6ft546Z3ffR0REcH8+fP58MMPKSkpYfny5fj7+zN48GDGjx8vId51pLm5mdzcXABGjx5Nenp6r47SUDo6aF63nsbly7HX1wOgHzkS36d/imtMTK/V0ZNaW1uprKzkwoULNDQ0cOHCBcLDwxk/fjzQ+XfCvn37uhyjUqnw9/dn2LBhpKamotfr5c+JEEIIIYQQfazbwfevfvUrPD09eeGFF3jmmWcACAsL47nnnuOJJ57o1rmmT5/O9OnTv3UfnU5HSEjIZR8zGo28+uqrvP3220yePBmAd955h8jISLZt28a0adO6VY8QQgjxTS4G4J6enhiNRtatW8eIESMYP368U2+0PpHRn6yCOkrq2/jz1kKez0z87oN6QEREBIsWLWLv3r0UFxdTX1/P2bNnSU9PR6PRoFaraW5uxsPDo1fqEZdSFAV3d3emT5+OXq+nX79+vXrttj17aPzb37EWFQGgjYzE90dPYMjIuOFCX6vVSlZWFhUVFdTV1V3y+Fefj6urK7fddhvu7u4EBATg7++Pn58fLi4uN9zzFkIIIYQQ4mbW7RnfX2UymQDw9PS89kJUKtasWcPs2bMd2x544AHWrl2Lq6srPj4+TJgwgeeff94xUmX79u1MmjSJCxcu4Ovr6zguJSWF2bNn85vf/Oay1zKbzZjNZsfPTU1NREZGyoxvIYQQ38lms7Ft2zb2798PQHh4OLNmzeqR98Jv8kW5kXtfP4oCLFs0hAkD/J12rcsxm80UFhZiMBiI+bKLt7W1lZdffpnQ0FCSk5NJTk7G29u7V+u6FdXX17N161ZGjhxJWFhYn4ygMefl0fB/L2I+fBgAtY833t//Pp7z56O6AebBNzc3U15ejtlsJjU1FegM8pcvX05zczMA/v7+BAYG4ufnR0BAAEFBQYSEhHQZvyeEEEIIIYToG1c647tbHd8HDhxg/fr1WK1WJk+ezNSpU6+50G8zffp07r77bqKioiguLuZXv/oVEydO5MiRI+h0Oqqrq3F1de0SegMEBwdTXV39jef94x//+I2huBBCCPFtNBoN06ZNo1+/fqxdu5Zz587x1ltvMXPmTMeCdj1taKQ3S0ZF8ub+cp7beIZ1j93WKyNPLtLpdCQnJ3fZdnE9jcrKSiorK/nss8+IjIxk0KBBJCUlSSd4D2toaGDXrl0cO3YMRVE4f/48Dz/8cK+ONemoqqLxny/TsmlT5wZXV7wWLcL7waWonXjj51o1NzdTVlZGeXk55eXljhn9BoOBlJQUR5A9fvx4R+e8l5eXhNtCCCGEEELc4K6443vNmjXcfffd6PV6tFotJpOJF154gSeffLJnCrlMx/fXVVVVERUVxbvvvsvcuXNZtWoVS5cu7dK9DTBlyhRiY2NZvnz5Zc8jHd9CCCF6Qn19Pe+//z41NTXExMQwd+5cp4VlbVYbc//fIUovtDEnNaTXRp58m5aWFvLz8zl9+nSXhaVVKhULFy7s9QUWb0ZGo5Fdu3aRk5OD3W4HIDY2lvHjxxMQENArNdhNJoyvv07TqtVgsQDgPn06Pv/5n2jDQnulhqu1Y8cOjh496njtLgoKCiIyMpLbb78dvV6PRqORoFsIIYQQQogbRI93fP/hD3/ggQceYPny5Wi1Wn7/+9/z+9//vseC7ysRGhpKVFQUBQUFAISEhGCxWGhoaOjS9V1TU0N6evo3nken06HT6ZxerxBCiJubv78/Dz/8MNu3b2f48OFODc4MLhqez0zgvje+YE1ONdMSgxjfyyNPvs7d3Z2hQ4cydOhQTCYTZ86c4fTp09TU1BAQEIDZbEar1VJdXY2bm9sl39AS3+7AgQN89tln2Gw2AKKjoxkzZgxhYWG9cn3FasX00UcYV/wLe2MjALoRw/F98kl0SUm9UsO1cnV1xW63ExQURFRUFFFRUfTr1w8PDw8JuoUQQgghhLjJXXHHt5eXF4cPH2bgwIFAZ9e0u7s71dXVPdJxdCUd3/X19YSHh7NixQqWLFmC0WgkMDCQd955hwULFgCdXeERERFs2rTpihe3vNK7BEIIIcQ3sdvtmM1mFEVh9+7dhIWFERMT0+Ph2p+3FPDmgQqCPXWsf2wknvpur1PtdF9f9HLlypVUVlbSv39/hg4dSmJiIlrt9Vf39URRFPLz83n33XeJjIxk7NixRERE9M61bTZaP/+cxpeX0VFWBoA2OhrfH/0Iw/hx121gbDQa2b9/P/Hx8URHRwPQ3t5OQ0MD/fv379WxMEIIIYQQQgjn6fGO7+bmZnx8fBw/63Q6DAYDTU1NVx18Nzc3U1hY6Pi5uLiYnJwc/Pz88PPz47nnnmPevHmEhoZSUlLCL37xCwICApgzZw4A3t7ePPTQQzz11FP4+/vj5+fHT37yEwYPHszkyZOvqiYhhBDiaqjVavR6PTk5OY6FLwMCAhg5ciQJCQloNJoeuc4TE2PIKqin9EIbj793gtExvoR66Qnx0hHirSPES4dO2zPXulpfDb2tViuurq5A5/t8cXExer2eIUOGMGzYMIKDg/uqzOtKW1sbe/fuRa/Xk5aWhsViISIigsWLFxMaGtorYbNitdKyaTPGN96go7QUALWfHz6P/gces2ejuk5vVlwMvE+ePIndbqeuro6oqCi0Wi0+Pj74+fn1dYlCCCGEEEKIPnDFHd9qtZo333wTb29vx7ZFixbx4osvdvlHa2Zm5hVfPCsri4yMjEu233///SxbtozZs2fzxRdf0NjYSGhoKBkZGfzud78jMjLSsW97ezs//elPWbVqFW1tbUyaNImXX365yz7fRTq+hRBC9JT29nZ27tzJ0aNHsXw5D9nLy4vbbruNwYMH4+Jy7YtSHilrZMkbX/BNb+B+bi4Ee+kI8dIT+mUYHuKlJ8xbx+BwL1w0vd/5ajQaOXnyJCdOnMBkMjm2jxw5kunTp/d6PdcLs9nM/v372bdvH2azGVdXV/7jP/4DvV7fazXY29tpXruOprfewvbl4uBqT088Fy3C6757Ubu791ot3fH1wBsgKiqKcePGSYe3EEIIIYQQN7ErzXK7FXx/F5VK5ZhDeSOR4FsIIURPa2tr4+DBgxw8eJDW1lYADAYDixYtwt//2mdz55Qb2V1YT1WTmeomM9VN7VQbzbR32L/1uLhAd/5wVwKDwvrm/c5ut1NaWsrx48cpLCxk5syZJCYm4uLi0mNd8TeCmpoaDh06xPHjxx03SAICAhg7dixxcXG90uFtN5kwffghTStXYb9wAQC1vz9e996L5/x5123gDbB//36ys7O7BN5jx44lJiZGAm8hhBBCCCFucj0efN/MJPgWQgjhLBaLhZycHPbt2wfAQw895AjmOjo6enTWtaIoGNs7qDZ+GYQ3makydv73fJOZ0+ebaWrvQKNSsTQ9kv+cEN2nY1FaW1vR6XSOwLu+vp6wsLCbPgA/ePAgmzdvdvzs7+9Peno68fHxvRJ42xoaaFq1GtN776E0NwOgCQvD+/4leGRmoroOFwBvaWkBOhdUBcjLy2Pjxo0SeAshhBBCCHELkuC7GyT4FkII4Wx2u50LFy7g4eGB3W6no6ODV199lcjISEaOHNkjC0V/l4ZWC3/4tJBPTp4HICbAjeczE0iJ8P6OI52voKCADRs2EB8fz7x5826qELOxsRGbzYafnx92u52amhpeeeUV4uLiSE1NpV+/fr0SeHecP0/TW2/TvOZjlHYzAC79++O1dCnu06ai6oExPD3FbrdTXV1NUVERxcXFVFdXk56ezpgxYxyP19TUEB0dfVP9XhFCCCGEEEJ8Nwm+u0GCbyGEEL3Jbrdz6tQpPv74Y8e2uLg4Ro4cSXh4uNOv//mZWn7zST51zRbUKrh/VCQ/vL0/epe+67QuLi7m448/xm63M2LECGbMmNErYbCzKIpCYWEhhw8fJj8/n/j4eO666y4ufuxqa2vDYDD0Si0dtbUYly+necNG6OgAwDUxEe+HHsRw++2orpPg2GazcebMGYqKiigpKaGtra3L48nJydx5551oNBq0Wq0E3kIIIYQQQtyiJPjuBgm+hRBC9IXy8nKys7M5c+aMY1tERARpaWn079/fqcFvY5uVP28pZN3xzsUMo/0N/H5WAsP6+Tjtmt/l9OnTbNiwAYDx48dfdgHs611LSwtffPEFR44cobGx0bE9Ojq6TzrZ2/bsoe7Xz2L/shbdiOF4P/gg+rS0Pr+xoCgKzc3NeHp6Ap03hF566SXM5s5udJ1OR3R0NLGxsQwYMABvb+8+r1kIIYQQQgjR9yT47gYJvoUQQvSl2tpasrOzOXHihGOxvgceeIDAwECnX3tnfh3PfnKGGpMFFXBfWgQ/mhiDoY+6v48ePcrnn38OwPTp0xk5cmSf1HE1du3axa5duxwLfet0OgYNGkRqaip+fn69WotitdL40ks0vf0OAC7x8fj9/GfoU1J6tY5vUl5ezu7duzGZTDzyyCOOQHvXrl0ADBgwgMjISFxcXCTsFkIIIYQQQnRxpVluz62oJYQQQoirEhgYyOzZs8nIyGDfvn00NjZ2Cb3LysoIDQ3FxQkzmCcMDGB9P2/+vLWQNTnVvHWggh359TyfmcCIqN7v/h42bBhtbW3s3buXzZs34+bmxqBBg3q9jquh0Wiw2WyEhISQmppKQkKCU37Nvov13DnqnnkGy8lTAHh+byG+Tz6JytW112v5uurqanbv3k1JSQkAWq2W5uZmvL290Wq1TJ06VUaYCCGEEEIIIXpEtzu+y8vLUalUREREAHDw4EFWrVpFUlISjzzyiFOKdDbp+BZCCHE9sdvt2O12rFYrJpOJFStWoNPpGDZsGEOHDkWv1zvlursL63l24xmqmzpHTdxzWzj/NSkGd9fevU+uKArbtm0jJyeHQYMGMXfu3Ou269dsNuPq6kpHRwcWi4WysjKioqL6rJ6Wbduo/+3vUJqbUXt64v/sr3GbOLHP6rmorq6OPXv2UFBQAIBarWbIkCGMGzcOX1/f6/bXVwghhBBCCHH9cdqok3HjxvHII49w3333UV1dTXx8PMnJyeTn5/PEE0/w61//+pqL720SfAshhLgeKYpCaWkpa9euxWg0AuDi4kJKSgojRoxwzEbuSab2Dv5nWyEfHK0CINxHz39OiObOQcG4aHqvE9dut5Obm0tycjIajQadTnddhaNWq5VPP/2U0tJSlixZglbbt1+is7e30/C//0vzhx8BoBsyhIA//AFtWGif1gVw/vx53nrrLcfPSUlJTJgwgcDAwOvq11QIIYQQQghxY3Ba8O3r68v+/fuJj4/n73//O++99x7Z2dls3bqVRx99lKKiomsuvrdJ8C2EEOJ6ZrfbOXHiBNnZ2dTW1gKdHbNDhw7l9ttvd8poiL1nL/CrjaepMnZ2f4d663govR9zU0PR98H8b7VajcViuS7ep2tqavjwww8dvxaZmZnEx8f3WT3W4mJqf/4M1i+7qb2WPoDPo4+i6oMxKxfZbDY0ms7fJ4qisHLlSjw8PJgwYQJhYWESeAshhBBCCCGumtOCbw8PD06ePEl0dDSZmZmMGTOGn/3sZ5SVlREfH09bW9s1F9/bJPgWQghxI1AUhfz8fLKzsykvL0ej0bB48WKCg4Odcr0WSwfvHq7kjX3l1LdYAPB3d+H+UZF8b0Q4Hrre6XK22Wxs3ryZc+fO8eCDD+Lt7d0r1/06RVE4cuQIW7ZsoaOjA3d3d2bMmEF0dHSf1APQvGEDF/74J5T2dtS+vgT87rcY0tP7rJ62tjYOHDjA6dOnWbp0KTqdDuh87dzc3CTwFkIIIYQQQlwzpwXfaWlpZGRkcOeddzJ16lT2799PSkoK+/fvZ/78+VRUVFxz8b1Ngm8hhBA3mpMnT6JSqejfv7/Tr9VutbH2WDWvZJdRaWwHwFOnZfHIcO5Li8DXzbmLJra1tbFq1SouXLhAQEAAS5cuxc3NzanXvFwNGzZsIC8vD4D+/fszffp03N3de7WOi+ytrVz4459o+eQTAPS33Yb/73+H9iuLovam9vZ2jhw5wuHDh7FYOm+STJkyheHDh+Pi4iILVgohhBBCCCF6jNOC76ysLObMmUNTUxP3338/r732GgC/+MUvOH36NB9//PG1Vd4HJPgWQghxI1IUBbPZjN1ux2g04uHh4Rgv4QxWm53Np2pYsaeUorpWAAwuau4eFsYDoyMJ8XLOopvQ+V69cuVKmpubCQ8PZ8mSJbi6dg3crVYrDQ0NNDY2YjQau/y3sbGRlJQUpkyZclXXX7NmDcePH0etVjN+/HhGjBjRZ93LljNnqP35M3SUloJajfd/PIL3gw+icuKv/TdpaWnh8OHD5OTkOALvoKAgJkyYQHx8vFN/PwohhBBCCCFuTU4LvqHzK8dNTU34+vo6tpWUlODm5kZQUNDVVdyHJPgWQghxo1IUherqalatWkVwcDCZmZlOX2jRrih8frqOFXtKOVVlAkCrVjE7JYSHxvQjys853dh1dXWsXr2a9vZ2oqKiCA0NJS0tDR8fHxRFYc+ePWzfvv2yx7q5ufHAAw/g5eWFq6trt0JrRVG4cOECa9asYeLEiYSEhPTUU+oWe2srxtdep+ntt8FqRRMURMDzz6MfPqxP6jGbzSxfvtwReAcEBJCens6QIUMk8BZCCCGEEEI4jVOD746ODrKysjgjlMgsAAAgAElEQVR79iz33HMPnp6eVFZW4uXlhYeHxzUV3hck+BZCCHEjKyoqYvXq1XR0dNC/f3/uuusuXHphYUNFUdhb1MCKPaUcKm0EQK2CzCEhPD01Dh9Dz9dQWVnJ+++/j9VqBWDevHnExMQAkJeXx2effYa3tzdeXl6O/178/0FBQahUKlQqFbm5uQwaNMgxg/oiq9VKVVUV586dw2azMXr0aCwWC4qioChKn3R5K4pC65YtNLz4N2w1NQAYxo/H/9lfo/lKE0JvaG5u7vJZ75NPPqGhoYH09HQSExMl8BZCCCGEEEI4ndOC79LSUu644w7Kysowm83k5+cTExPDk08+SXt7O8uXL7/m4nubBN9CCCFudEVFRbz77rtYrVaioqKYM2dOr4TfFx0ta+Rf2WXsLKgHIMjTleczExkT69fj1yovL+fYsWO4u7uTnJzs+LbZlQbTubm5fPLJJ/j6+jJt2jRaW1s5d+4c586d4/z583z1o1FmZibx8fE9/hyulOXMGS785a+Yv/gCAG14OL5P/RjDhAm9GsKfP3+eAwcOUFBQwAMPPIC/vz8Adrsdg8EggbcQQgghhBCi1zgt+J49ezaenp68+uqr+Pv7c+zYMWJiYti5cycPP/wwBQUF11x8b5PgWwghxM2gpKSEVatWYbVa6devH3PmzLlkDrazHasw8ot1pymu75wBfs9t4Tw1ORaDS98HoyaTiaqqKrRaLVu3bsVkMqFSqfj6RyF3d3dCQ0MJDQ0lMTERb2/vXq/V1thI47JlNH/0MdjtqPQ6vB58EO/77kP1tS51Zzp37hz79++nqKjIsS0jI4NRo0ah1Wpl0UohhBBCCCFEr3Na8B0QEEB2djbx8fF4eno6gu+SkhKSkpJobW295uJ7mwTfQgghbhZlZWWsXLkSi8VCREQE8+bN6/Xwu81q44VtZ1l16BwA/f3d+NPsRAaH9817bGVlJdu2beP8+fMAzJkzh/DwcDZv3szZs2cB8PX1ZfTo0URGRuLp6dlnC1cqNhvNH31E48vLsDc1AeA2dSq+T/4IbS/NFlcUheLiYg4ePEh5eTkAKpWKhIQE0tPTCQ8P77PXRwghhBBCCCGuNMvt9upXdrsdm812yfaKigo8PT27ezohhBBC9KB+/fpx7733snLlSqxWK3a7vddrMLho+O/pA8kYGMAv1+dRXN/KPa8d5bHxUTwyLgptL3UJt7e3s3v3bnJycoDO8DYgIABFUTAYDMyZM4cjR46wc+dOGhoayM7OJjMzs89ugrcfOcqFv/4Va34+AC5xcfj97Gn0w4f3ah02m43NmzfT2tqKWq1m0KBBpKenO2akCyGEEEIIIcSNoNsd3wsXLsTb25sVK1bg6enJ8ePHCQwM5K677qJfv368/vrrzqrVaaTjWwghxM2mqqoKg8HQ693eX9fYZuV3m/LZfKpzUcbBYZ78eU4S0f5uTrumoiicPn2aHTt20NLSAkBycjK33347bm6XXreqqooNGzZgNBqZP38+/fv3d1ptl9NRXU3D3/5O65YtAKi9vPB57DE85s1Fpe12j0K31dfXk5eXx5gxYxzB9oEDB2hpaWH06NH4+flJ4C2EEEIIIYS4bjht1EllZSUZGRloNBoKCgoYMWIEBQUFBAQEsGvXLscCUzcSCb6FEELcjBRFwWKxYLPZyM3NpX///hgMhj6p5ZOT5/ntJ/mYzB0YXNT8dEocC4eHOSVQVRSF1atXc+7cOfz8/JgyZQr9+vX71mPa29spKioiKSmpy3mcGfhay8ppXrcO0+rVKO3toFLhMW8uPo89hsbX12nXhc5v8BUVFXH06FFKS0sBmDdvHjExMajVarRaLRqNRgJvIYQQQgghxHXHacE3QFtbG6tXr+bo0aPY7XaGDRvG4sWL++wf09dKgm8hhBA3K0VROHToEJs3byYwMJC5c+f22XtdlbGdX64/zf7iBgDGxfnx+1kJBHpe+2KNNpsNu92Oi4sLALW1tRQUFDBy5Ei0V9E1bTQaWbt2LZMnTyY8PPya67vIbjLR8tlntGzciDnnmGO7LjUVv6d/imtCQo9d63La29s5fvw4OTk5GI1GoHMETGxsLGPHjiUyMlIWrBRCCCGEEEJc15wafN9sJPgWQghxMzt//jxvv/22Y+xHeHg48fHxDBw4sNfX57ArCisPVvC/nxdh7rDjbdDy3J3xTEu6+m+MVVRUsHXrVvr3709GRkaP1LlhwwZOnz6NSqUiLS2N0aNHX1WADp0LVrYfOEDzxo207chCMZs7H1Cr0Y8ahcec2bhNnOj07urGxkbeeOMNrFYrAHq9niFDhjBixAgCAgKku1sIIYQQQghxQ+jR4Hv9+vVMnz4dFxcX1q9f/637ZmZmdr/aPibBtxBCiJtdbW0tGzZsoLy8vMv2iIgIFi5c2OtdvoW1Lfx8bS65Vc0AzE4J4ZfTB+DueuXhcltbGzt37uTEiRMAeHh48NBDD/XIXHOz2cy2bdvIzc0FIDAwkBkzZnRrpJu1qJjmjRto+WQTttpax3aXmBjcZ87E/c4ZaAMDr7nWK6UoCm+++SYAw4cPZ8iQIej1egm8hRBCCCGEEDeUHg2+1Wo11dXVBAUFfes/jFUqFTab7eoq7kMSfAshhLhVGI1GTp06RV5eHhUVFURFRbFgwQLH47m5uYSHh+Pt7e30Wiw2O8t3lbBiTyl2BaL9DfzP3GSSQr+9C11RFE6dOkVWVhZtbW0ADBkyhAkTJqDX63u0xvz8fLZu3UpbWxtqtZoxY8YwcuTIb/w8ZDMaad2yheaNG7GcPOXYrvb2xv2OO3CfNRPXxMReCZvr6+vZtWsXM2bMQKfrHCdjsVjw9PREo9E4/fpCCCGEEEII4Qwy6qQbJPgWQghxK2pqaqK5uRk/Pz/sdjvNzc0sW7YMgNDQUAYOHEh8fLzTQ/DDpY08vSaX6iYzLhoVP50Sx+Lbwi8bDtfX17N582aqqqoACAgIYMqUKURERDitvpaWFrZu3UphYSEAkyZNYtiwYV32UaxWGpcvp+mdlfDlKBG0GgxjxuIxcyaGcWNR9UAn+pXKzc1l69atWK1WUlJSuOOOO9DpdNLdLYQQQgghhLjhSfDdDRJ8CyGEuNUpikJlZSVbtmy5ZBxKamoq48aN6/Fu6q9qbLXyy/Wn2ZFfB0DGwACez0zAx82ly34tLS3861//AmD06NGMGDGiV7qXL3aZnzhxgrvvvrvLvG9LURF1v/xvrGfOAOASH4/HzJm4T78DjZ+f02v7KqvVyvbt2zl+/DgA/fr1Y/bs2fj4+EjoLYQQQgghhLgpOC34fuKJJ4iLi+OJJ57osv2ll16isLCQF1988eoq7kMSfAshhBD/ZjKZHONQysrKAHBzc2Pu3LmEhoY67bqKorDy0Dn++lkhVptCiJeO30yNxNVUSVpammO/oqIigoKC8PDwuOLzFtS0oFGriA10v+YaLwbINpuNL37/PIGbN4PFgtrHG////m/cJk68pmtcrQsXLrBu3Trq6jpvHqSnp3P77bfj4uLyHUcKIYQQQgghxI3DacF3eHg469evZ/jw4V22Hz16lMzMTCoqKq6u4j4kwbcQQghxeUVFRWzatIn29nYeeughx6xoZ8qtMvHMR1/gayomQVOLRqUwf/7d9O8f3a3z1JjMbDhxnvXHqymoaUGrVvG/85OZnHDtC0p21NZy9r/+C31uHgDWwYOJ/utf0Qb13mKVX1VaWsqaNWuwWq24ubkxa9Ys4uPjpctbCCGEEEIIcdO50ixX+42PfIP6+vrLzvr08vJydBgJIYQQ4uYQExPDY489Rm1tLXq9HkVRUBSFY8eOkZyc3OPdxBaLhcbiE2TYvsCqtQBwzubJH7eX8du7Qwjx+vZxK60WG9tO17LheDX7ihuwf3l7XwV02BV+/OEp/rFgEBMGBlx1ja2fb6f++d+jbzRi02o4lpJK4YA4YvfsZurUqVfcid6TAgIC0Ol0hIaGymgTIYQQQgghhOAqOr4HDRrEo48+yuOPP95l+z/+8Q+WLVtGbm5ujxbYG6TjWwghhPhuiqLQ0dFBTk4OmzZtwtvbm0mTJhEbG3vN57bZbBw7dox9+/bR2toKQHBwMC4Rg3jhYDOtFhs+Bhf+cFcCt38ttLYrCgdLGll/vJqtebW0WmyOx4ZFenNXSghTEgL5zaYzbMmtxVWj5p/fG8yY2O7N37a3tHDhf16gZd06AFwT4vH73e/IqasjOzsbm82GXq9n+vTpxMXFXeMr8t1aWlpwd//36JbGxkYCAwNltIkQQgghhBDipua0ju8f//jHPP7449TW1jLxyxmWn3/+OS+88MINOd9bCCGEEFdGpVLh4uKCt7c3np6eGI1GPv74Y+Li4pg0adI13zw+cuQIra2t+Pj4MG7cOMeojtEprfzk41PkVjXzg3dPcF9aBE9NiqW8oY31x6vZcOI81U1mx3kifQ3cNSSYWUNCiPQ1OLb/ZU4SHbZTfH6mjsffO8HyRUNI6+97RbW1HztG/a9+RUfFOVCp8HrgfnwefRSViwtpsbHExMSwadMmampqWLNmDRMnTrxkLFxPys3NZevWrUyZMoXk5GTUajWhoaHS5S2EEEIIIYQQX+p2xzfAsmXLeP7556msrAQgOjqa5557jiVLlvR4gb1BOr6FEEKI7jGbzezcuZMDBw5gt9txcXEhPT2d4cOHo9ForugcVVVVBAcHo1arASgsLMRkMjFkyJBLzmHpsPO/n5/lrQOda4n4GFxobLM6HvfSa7kjOYi7hoSQGuH1jQGwxWbnR++fZGdBPQYXNSsWpzC8n8831qhYrRhfeQXjq6+B3Y4mJISA3/0O/fBhl+xrs9nYuXMnx48f57777sPf3/+KXofusFgs7Nixg+PHjwMQGxvLggULcHFxkdBbCCGEEEIIcUtw2uKWX1VbW4vBYOiTWZY9SYJvIYQQ4uqcP3+eTz75hPLycgDi4+PJzMz81mOamprYtWsXeXl5TJ48maFDh17x9bLy6/jFutM0tlnRqlWMi/Mjc0gItw/0R6e9ssDd3GHj8XdPkF3UgLurhlfuTSEl4tL1S6ylpdT996+wnDoFgPudd+L39E9Re3p+6/lNJhOeX9mnubm5Rz4rlZaWsmXLFoxGIwCjR48mIyNDRpsIIYQQQgghbilODb47OjrIysri7Nmz3HPPPXh6elJZWYmXl9cNGYJL8C2EEEJcPUVRyMnJYdu2bdx1111ERERcdj+LxcLBgwc5dOgQHR0dAIwYMYKMjIxuXa/WZOZASSOjY3zxd3e9qprbrDZ+sPo4B0oa8dRpee2+VJLDOsNqa3ExTatX07JhI4rZjNrTE79f/AL3aVO7fZ3y8nI++OADxowZw8iRI6+qK/tid/2xY8eAzgXFp0+f7hgFI4QQQgghhBC3EqcF36Wlpdxxxx2UlZVhNpvJz88nJiaGJ598kvb2dpYvX37Nxfc2Cb6FEEKIa2exWFCr1VgsFqAzsNXpdCiKQm5uLrt27aK5uRmAiIgIJk6cSHBwcJ/V22qx8cjKYxwtN+Kl0/DWYBvem9fQnp3t2Ec/ciT+v3kO7VXWmZWVxaFDh4DOsSTTp0/HYDB8x1FdVVRUsHr1agBSUlKYMmUKbm5uEnoLIYQQQgghbklOC75nz56Np6cnr776Kv7+/hw7doyYmBh27tzJww8/TEFBwTUX39sk+BZCCCF6js1mo6ioiI8//php06ZRVlbGF198AYC3tzcTJkxg4MCB10VwazI2s+K3rzDi8FaiTec7N6pUGMaPx2vxPeiGD7+mOhVF4cSJE2zbtg2bzYa3tzeZmZmEhIR853Ffve7+/fsJDw+/bl43IYQQQgghhOgrV5rlart74j179pCdnY2ra9evFkdFRXHu3LnuVyqEEEKIm4pGo+H06dO0t7ezYcMGxo0bh06nIy0tjeHDh6PVdvvjR4+z1dVh+uADTB98yPzGRgDaNK7sihvFlJ8/RlDKwB65jkqlYsiQIQQHB7Nu3TqMRiOrVq0iIyOD1NTUy4bYRUVFbN++nXnz5uHr6wvA+PHjr4vXTQghhBBCCCFuFN3+F5Tdbsdms12yvaKiostCTkIIIYS49VgsFrKzszEYDCQnJ3Pq1Cl2797N9OnTSUpK6uvysJw5Q9PKlbR8ugW+nDOuCQnBZf7dPNPcn5xGO6u21/JmZARRfm49dt3g4GCWLFnC5s2bKSwsZNu2bfj4+NC/f3/HPu3t7Wzfvp1TXy6muXfvXjIzM3F1dZUubyGEEEIIIYTopm4H31OmTOHFF19kxYoVQGcnU3NzM88++ywzZszo8QKFEEIIcX2z2+2UlpZy4sQJ8vLyaG9vR61W8+CDDzrme2/evBmNRkN8fHyf1NiWvRfjG29gPnLEsU2XkoLn4ntwu/12VFotL7VYeOCtHAprW1j6Vg5vPzCUcJ/uzeP+Nnq9ntmzZ3Po0CFqamqIjo52PFZYWMjWrVtpaWkBYPjw4UyaNAmdTtdj1xdCCCGEEEKIW0m3Z3xXVlaSkZGBRqOhoKCAESNGUFBQQEBAALt27SIoKMhZtTqNzPgWQgghuu/8+fMcPXqU3Nxcx6KV0HWOt6IobN68mdzcXNRqNTNnzuzV8NtaWkrDCy/QtufLBSs1GtwmT+6c3z1o0CX71zabuf/NLyipbyPCR8+b9w8l1Fvf43VdnOHd1tbG1q1byc/PB8DPz48ZM2YQExMjXd5CCCGEEEIIcRlOW9wSoK2tjdWrV3P06FHsdjvDhg1j8eLFGAw91xXVmyT4FkIIIb6boigoioJarUZRFA4cOMCWLVuAzm7mgQMHkpCQQGRkJGq12nGc3W53hN9xcXHMnj3b6aGuvaUF4yuv0rRyZedIE60Wz4UL8bp3Mdrg4G899nyTmSVvfkF5Q2f4/dp9qUT4OuczzunTp9mwYQMAHh4e3HPPPYSGhjrlWkIIIYQQQghxM3Bq8H2zkeBbCCGE+Gb19fWcPHmSkydPkpaWRkpKCh0dHZhMJrKyskhMTCQ6OhqNRvON57Db7Rw9epTU1FSnLtKoKAotmzbT+Le/YaurA0A/Zgx+P3kKl6ioKz5PpbGdpW99QXlDO0Gerrx6byqxge5XXZfZbKawsJAzZ84QHh5OWlqaY/ubb75Jc3MzNpsNrVbLxIkTSUtL63LzQAghhBBCCCFEJ6cG32fOnOEf//gHeXl5qFQqEhISePzxx0lISLimovuKBN9CCCFEV4qicOrUKfbu3UtVVZVje1RUFAsWLOiR89fW1vboiDRzbh4Nf/kL5uPHAdBGRuL7k6dwGzfuqs5XYzLz0Ds5nK1txdfNhX8tTiEp9MoX8m5vb6ewsJD8/HxKSkoci4MHBASwdOnSLvsajUY+/fRTysrKAIiIiOCuu+4iICDgqmoXQgghhBBCiJuV04LvDz/8kEWLFjFixAhGjx4NwP79+zl06BCrVq3i7rvvvrbK+4AE30IIIcS/GY1GNm3a5Jg7rVKpiI6OJiEhgQEDBlzzgouKopCVlcWRI0eYNWvWNc/8tjU00PjSP2leuxYUBZXBgPfDD+G1eDG4uKBSqVAUhcOHD6MoCiNHjrzicze0Wvj+ymPkVjXjqdPy/+4ZQmqk93cet3HjRs6cOYPdbnds8/f3Z+DAgcTHxxMYGHjJMYqicPz4cXbs2IHVakWr1bJgwQIGDBhwxfUKIYQQQgghxM3uSrPcbn/X+Omnn+aZZ57ht7/9bZftzz77LD/72c9uyOBbCCGEEP+2Zs0aSktLUavVjBo1iqFDh+Lm5taj12hra0NRFMd866sJv5WODkwffEDjsuUoXy6u6T59Oj4/eoIWnY41GzeSlJREQkICJSUlZGVloVKpCAkJoV+/fld0DV83V16/byiPrT7O0XIjD71zjJcWDmJ0jF/XWr5crPKr7HY7/v7+xMfHEx8f/53d2yqVipSUFKKjo9myZQv19fUEBARgs9m+dYyMEEIIIYQQQohLdbvj283NjePHjxMXF9dle0FBASkpKbS2tvZogb1BOr6FEEKITna7nbKyMj7//HOmTJnitFEbdrudTz/9lFOnTqFSqRgzZgyDBw/Gw8Pjio5vO3iQhr/+D9azZwFwiY/H7+mfoh08mMOHD7Nv3z46Ojrw9vbm4YcfRqVSsXnzZk6dOoWbmxv333//FV8LoNVi44n3T7C3qAFXjZr/m59MRnzna1NZWclnn33GzJkz8ff3BzrnoiuKctWvn6IomEwmx+cSjUZDQUEBSUlJMvtbCCGEEEIIcUtz2qiTGTNmcPfdd18ym/L111/n3XffZcuWLVdXcR+S4FsIIcStymazkZ2djaIojB49mo6ODuDyHcw97avhN/x7pMqMGTMu22GuKArte/fRtHIl7fv3A6D28cbnB/+Jx5zZlFVUsG3bNi5cuABAZGQkU6ZMcYTRFouFlStXUldXR2RkJAsWLOhWiGzpsPPUR6f4/EwdWrWKP8waiJexkIMHD6IoCnFxccyZM+daX5bLOnnyJJs3byYsLIzZs2dfdlSKEEIIIYQQQtwKnBZ8L1++nF//+tcsWLCAUaNGAZ0zvj/44AN+85vfEBYW5tg3MzPzKsvvXRJ8CyGEuBWdO3eO9evXU1NTg1qt5sEHH8TX17dXa7Db7Zw6dYoTJ05w7tw5PD09eeSRRxyBtMlkwk2rpXXzZkyrVmMtKuo8UK3Gc/58vB97lDaNhqysLPLy8oDOb6dlZGSQmJh4SXh/4cIF3nrrLaxWK2lpaYwfP75b9Vptdn65/jT7ThYxzrUEX3UbAElJSUycOBGDwXCNr8jl5ebmsm3bNsxmMxqNhvHjx5Oeno5W2+2pdUIIIYQQQghxQ3Na8H2lnVEqlQqbzdadU/cZCb6FEELcSiwWCzt27ODAgQMoioLBYGDixImXDYp7U0NDA0ajkejo6M46a2rY+cwzROedxrW9HQCVuzses2fj+b2FuISHA1BaWsr777+PSqUiNTWVsWPHotfrv/E6p0+fdswWnzt3LrGxsVdco81mY9++fezdtx8VCm2KlpCkUTwyc/RVPusrZzKZ2Lp1K0Vfhv/+/v7MnDnT8XoJIf4/e/cdF9WdPf7/NY2hD71LF3vDBgQVoxI11hhNTGKK6Zu6ffe3+/lmy2c3n2zNphvXzZqymk2iRo1GIvaGHRQBRUERpDPUYer9/UFk48YkosCMep6PRx6EOzP3fQaH4c65554jhBBCCCFuBj023NLhcFxTYEIIIYRwnjNnzrBu3TqMRiPQUak8ceLEbh9eeTX8/f3x9/fHcuoUTR/8i9YNG0j6svVKq5cnp5L64ZiYwYBRo9D5+qL78nExMTHccsstxMfHExYW9p3r9O/fn/Lyco4ePUrLl0Mxr9SxY8fYu3cvKgBDBKsrgzEfbsfuW8oT42J69MSBj48Pd9xxBwUFBWzdupW6ujqWL1/O+PHjmThxYo+tK4QQQgghhBDXoy5XfN+IpOJbCCHEzaCtrY2XX34Zq9WKr68vU6ZMIT4+3tlhAaA4HLTv3UvT+x/QnpPTuV03eDDG8eM56q6n/MKFSx7zxBNP4OPjc1Xr2e12amtrCQ0N7dLjHA4Hq1atYtCgQfTr148lu87x6rYSABan9uGHkxN6pWq+vb2dnTt3kpuby913301cXBxardapFftCCCGEEEII0Ru6vdVJTk4O9fX1TJs2rXPbu+++ywsvvEBraytz5szh1VdfRa/XX3v0vUwS30IIIW5UJpOps+2HzWZj3759GI1Gxo0bh5ubm5OjA8VioWXdepo++ABbaWnHRrUaz0m34nvPveiHDe28b0NDA/n5+eTn59PU1MTkyZMZMWJEt8Rhs9ku2y+7rq6OnJwcMjMzv7Gf9rv7yvi/rGIA5ieHM2NwKO46De46dcdXbcdXvU6NTq3q1uR0Y2MjBoMB6GgzV1hYSFhYGOHh4d22hhBCCCGEEEK4km5PfE+bNo2MjAx++tOfAh2X+iYnJ/Pggw8yYMAA/vjHP/L444/zq1/9qlueQG+SxLcQQogbTXt7O3v27CEnJ4c77riDPn36ODukSyg2G63rP8P49tvYKysBUHl39O/2vftutF8Zlv21xyoKdru92wY7VldXs3btWtLS0hg4cGDnGocOHWLnzp3YbDZSU1NJT0//xn18fLiCF9YX8V0HVWoVlyTD3XVq+vh7cPfICMb1DUR9DUlxo9HIO++8g91uZ8yYMUycOPG6LEgQQgghhBBCiG/T7T2+jx49ym9/+9vO71euXMnYsWNZunQpAH369OGFF164LhPfQgghxI3CYrGQk5PDnj17aP9yIOTx48ddJvGtOBy0bdqEccnb2M6dA0ATFITv/ffjPWc2am/v79yHSqXqtqQ3wKlTp2hoaCArK4vQ0FDUajUbN26kvLwcgNjYWIYNG/at+7gzOQKDh45le87RYrZhstpptzq+/M/emRB3KNBmsdNmsQNWAM7UtrH9VB1xgZ4sGhvFrKFheLppuvw8tFotCQkJFBUVkZOTQ35+PlOnTmXgwIHSAkUIIYQQQghx07niim93d3dOnTrV+cE5PT2dqVOn8stf/hKA0tJShgwZQnNzc89F20Ok4lsIIcT1zmq1cvDgQXbt2kVbWxsAgYGBpKen07dvX6cnPhVFwbR1K8a33sJafBoAtZ8fhsUP4X3nnai/bMfiDA6Hg48++ohz587h6emJxWLBZrOh0+nIyMhg2LBh1/TzUxQFq13BZLVjtjk6vlo7vpqsDnacquPjIxW0mO0A+LprWZAcwT1jIgnz7frPpaSkhM2bN3cOME1ISGD69OkEBARc9XMQQgghhBBCCFfR7a1OYmJieO+99xg/fjwWiwU/Pz/WrVvHpEmTgI7WJxMmTKC+vr57nkEvksS3EEKI6927775LSUnHkEU/Pz9uueUW+vfvj1qtdmpciqLQvmcvxvHcUxoAACAASURBVDfewFJQAIDK2xvD/ffjs/Bu1F5eTo3votbWVt5++21sNhsA0dHRTJ06tbN/do+vb7axOreS93LOU9ZgAkCjUnHbwGDuT+nD0MiuHZ9YrVZycnLYv38/drudgIAAnn76aaefABFCCCGEEEKIa9XtrU6mTp3Kz372M1566SXWrFmDp6cn48aN67w9Ly+PhISEa4taCCGEEFfE4XCgKAoajQa73c7QoUOpra0lLS2NQYMGodF0vVVGd2s/dAjj629gPnoUAJWHBz733IPvovvQuNiJZi8vL6ZNm8a6desASEpK6rWkN4CXXst9Y6JYOCqSbadqeW/fefafNbIhv5oN+dWMiPJlUUofJvcPQnsFJzN0Oh3p6ekMHDiQzZs3YzAYMJlMqNVqVCoVS5cuJSIigvj4eOLj4+XEvxBCCCGEEOKGc8UV3zU1Ndxxxx3s3r0bb29vli9fzty5cztvnzRpEikpKfzud7/rsWB7ilR8CyGEuF6YzWaOHj3K/v37GTVqFCNGjOhMgnfnwMdrivHYMYxvvEl7Tk7HBjc3fBbMx/DQQ2j8/Z0b3Fc0NDRw5swZRo4c2blt//79bN++HY1Gwz333ENYWJjT4jtxoZn3cs7z2fEqbI6Ow7Vwg557R0exYGQE3vor+7dWFAWr1YqbmxsAFRUVfPDBB5fcJzAwsDMJHhsbi7sTW88IIYQQQgghxLfp9lYnFzU2NuLt7f21SrL6+nq8vb07P1RdTyTxLYQQwtXV1dWxf/9+jh49isViATqSlQ899JDLtK+wnimh4dVXMW3f3rFBq8V77hwMDz+MNiTEucF9haIoHD58mB07dmCz2ViwYAGxsbHo9XpUKhUrV67EbDZz++234+UCrVhqWsysPFDOykMVNLR1DMQM89XzxzsGMjLar8v7s9lsVFRUcPbsWc6ePUtlZSVfPRwcN24cEydORKVSYbfbUalUTm+ZI4QQQgghhBAX9Vji+0YkiW8hhBCu6vTp0+zbt4/i4uLObQEBASQnJzNo0CCXOOFsr63FuORtWtasAbsd1Gq8ZszA8Ogj6CIjnR3eJRoaGvj88885f/480NHLe8aMGQQFBXWeQLh4YuFiv29X0W6189nxKt7edZayhnbUKnhqQhyPpcegUV/9yY/29nbKyso6E+G33XYbUVFRqFQqiouL+eyzz4iLiyMxMZHExMRebQEjhBBCCCGEEP9NEt9dIIlvIYQQruqTTz7h+PHjACQkJJCcnExMTIxLVHk72tpoeu99mt59F8XUMZDRI2MC/s88gy4uzsnRXeq/q7x1Oh0ZGRmMHTv2G/uhm81m7HY7FRUVRERE9HLE36zVbOO3G0+yNq8KgDExfrw0dyChvvpu2b+iKJ2vr+zsbA4fPnzJ7UFBQSQmJpKQkEBsbKxLtNcRQgghhBBC3Dwk8d0FN23iW1Hg5CaoPQkjHwT3m+i5CyGEC6qvr2f//v0kJycTEBCAzWajvLycgoICRowYgb+L9MdWbDZa1q6l8a23sNfWAeA2eBD+zz2P+8hkJ0d3eevWraOwsBC4fJX35TgcDtavX8+RI0eYPn06gwYN6q1wr8inuZX8ZsNJTFY7fh46XpzdnwlJQd26hsPhoLKyktLSUkpKSrhw4cIlbVGeeuopAgMDUalUmM1m3NzcXOKkjBBCCCGEEOLGdaW5XCnRuZmpVFhWP4Vbey0VulgixsxydkRCCHFTKisrY+fOnZw6dQroaD2RmZkJQHh4OOHh4c4Mr5OiKJh27cL4t1ewnjkDgDYqEr+nn8ZzyhSXTnjGx8dz+vTp76zy/iq1Wt3Z43vTpk34+/u7VOX37GFhDIvy5Yef5FNQ2cKTK49x/9gofjApATdt9/TkVqvVREREEBERQVpaGu3t7Zw9e5aSkhIaGxvx9PTEZDKhVqtZtWoVJpOJWbNmERwc3C3rCyGEEEIIIcTVkopvbuKKb6D0N0OJdZzlUPSjjFz8J2eHI4QQN5Xm5mY2b95MXl5e57a4uDhGjRpFbGys8wK7DPOJAhpefhnzwYMAqA0GDI88gs/8O1G5QJ/xrzKZTOzdu5eQkBAGDx4MdCTtzWYz/v7+XUrQK4rCypUrOXnyJF5eXixatAgfH5+eCv2qWGwO/px9mvdyOvqWDwz35k93DCI20LPXYnA4HLzxxhuYTCY0Gg0ZGRmkpaXJUEwhhBBCCCFEt5NWJ11wMye+j790G4NN+zjiPZERP1rj7HCEEOKmkZOTw5YtWzoHKQ4ePJixY8cSEBDg5MguZauooOH112nb+HnHBjc3fO++G8PDi1G7WALYZrNx+PBh9u3bh9lsxsvLi0cffRQPDw90Ot1VV6SbzWaWLVtGTU0NoaGhLFy4EJ1O183RX7utRbX8Ym0hRpMVTzcN/296ErOGhvXa+k1NTWRlZVFSUgJAREQEs2fPJiQkpNvWsNlsWK1WPDw8um2fQgghhBBCiOuLJL674GZOfB9+63GSK1dyStOPvv+z39nhCCHETSM7O5tdu3YRHh7OpEmTXKadyUWO5mYal/2DphUrwGoFwGv6dPy+9z20Ea4Vq6IoFBQUsHPnTpqamgAIDg7m1ltvJSkpqVuqjhsaGli6dCkmk4n+/fszY8aMbmntcv78eerr6wkNDSUoKOiKWrB8m6omMz9ZfYIDZ40AzB4axi+n98XLrXe62ymKQn5+Plu2bMFsNqNWqxk/fjzp6enX9Nyampo4cOAAhw4dYtCgQUyfPt2lW+sIIYQQQggheo70+BZXxC1iMFSCn70Gh8MhlyQLIUQPaWhowGq1EhQUhMViYdSoURgMBgYMGOBSCTzFaqX5o49oXPp3HI2NALiPHo3f88+hHzDAydF9XWVlJV988QWVlZUAeHt7M378eIYPH96tVdn+/v7Mnz+f999/n8LCQpKTk4mMjLzm/R44cIDi4mIAtFotoaGhhIeHExERQXh4OD4+Pl16fYT66vnHouEs2VnKGztK+TSvkqPnG/nzvEEMDO/5Cn2VSsXgwYOJjY0lKyuL06dPk5OTw4gRI66quOD8+fPk5ORw4sSJzuOUYcOGYTKZcHNzw2Kx4OHh4VK/Q0IIIYQQQgjXIBXf3NwV3xcKDxC+cjJ21DQ/cxK/QBlGJYQQ3clqtbJz50727NlDcHAw9957r0ueZFQUhbbsbIyvvIrtfEevaF18PH7PPYtHerrLJhYrKir44IMP0Ol0pKSkkJqairu7e4/Fe/jwYXQ6HQkJCVe9D0VROuNrbW3lk08+wWg0Yjabv3bfxYsXExgYCEBLSwtubm64XWFP9YNnjfxk9Qkqm8xo1SpGRhsYFmVgWKQvw6J8CfDq2d7sFyvxtVotSUlJaDQa3NzcUBTlW38HHA4H+fn55OTkUF5e3rk9KiqKkSNHkpiYiFqtRlEUPvroI2w2G9OnT3epwaNCCCGEEEKIniOtTrrgZk58t5tMqF/qgxtWTk75gKRbZjg7JCGEuCEoisKJEyfIysrqbL8RExPDzJkzXa4/sTk3j4a//hXzl0M21YGB+D35BN6zZqHSus7FYTabjdOnT2M0Ghk7dmzn9ry8PPr164efn1+vJOgdDgft7e1dfpzdbmf37t20tLQwffp0ANRqNXq9HkVRqK2tpaysjPLycsrLy2lubuapp57qfE7r16+nsLCQ4OBghg8fztChQ7/z+RrbrPxyXSFbimq/dlsffw+GRfkyPMqXYZEGkkK90Gl69qRMUVERe/fuZc6cOd+YqLZarfztb3+jtbUVjUbDgAEDSE5OJjQ09JL7NTQ0sHz5cqxftuIZMWIEkyZNwsvLq0efgxBCCCGEEMK5JPHdBTdz4hug4ldJRFDFgYTvM3rRr5wdjhBCXPeqq6vZuHEjpaWlAPj6+jJx4kT69u3rUpXT1rIyjK+9RtsXmwFQubvju2gRvg/cj9rT08nRdXA4HJw7d46CggJOnjyJxWJBrVbzve99Dw8PD7Ra7TUNrrxadrud6upqsrOzmTp1Kp7f8fOqqalhw4YNVFdXA3DvvfcSGxuLRqP5xthtNhsqlQqHw4Hdbuf999+/pAJ6+PDhTJo06TuvIFAUheKaVo6ebyL3fBNHzzdyprbta/dz16oZFOHzZUW4geRoA4HdWBWuKAr//Oc/qa2tRaVSkZaWRkZGBrW1teTl5TFp0iQURcFqtXLo0CHa29sZNmzYtyayW1pa2LZtGwUFBR3Pwd2djIwMRo8e7ZJXVgghhBBCCCGunSS+u+BmT3zXLJlD8IWttKT8CO+p/+PscIQQ4rp28uRJVq5ciaIoaLVaxowZw5gxY7q13/S1shuNNP59Gc3//jfYbKBS4T17FoYnn0Qb7Botr2pqasjLy6OwsJC2tv8kaX18fBgwYACpqan4+vo6LbmpKArLli2jvLycqKgoFixYcNnhjQ6Hg0OHDrFz507sdjseHh7cdtttDBkypMuxK4pCY2MjR48eZfv27QDExsYya9Ys9Hp9l/bV1G7lWHkzR883knu+ibzyJprabZfcR6tWMT85gsfHxRDi07X9f5O2tjays7MpLCwEwMPDA5PJBMDcuXNJTEy8qv2eP3+e7OzszhMLISEhLFy4ED8/v26JWwghhBBCCOE6JPHdBTd74pvtf4St/4tt8AK0dy51djRCCHFdM5vNrFq1CrvdzqRJkzAYDM4OqZNisdD84Yc0/n0ZjuZmANxTU/F/7jnckvo6ObpLe18fPnyY7OxsoCM52q9fv86hiWq12iUq52tqali2bBlms5mhQ4eSmZl5SVyNjY1s2LCB81/2TI+Pj2fGjBnd0pKloKCA1atXdw5MvfPOO/HxufrhlQ5FobSujdzzTeSWN3GkrJFT1a0A6LVq7h4VySO3RHdbBfjJkyf54osvaGtrQ6VSkZSUREpKCiEhIVf/HBwOcnNz2bVrF56enjz88MO4u7tL5bcQQgghhBA3GEl8d8FNn/jOXwMfPYA9PBn1Y1tcIpkghBDXI0VRsFgs2GwdlbOu8n6qOBy0ffEFxtdex/Zlqwxd3774P/8cHqmpTo3NZDJx7NgxTpw4wYgRIxg2bBjQMfRx69atDB48mMTERKe0M7kSJ0+eZMWKFQBMmjSJ5ORkoOO18I9//IP6+np0Oh233noro0ePvmxV+NWqqKhgxYoVeHp6snDhwiseenml9pc28MrWEg6XNQLgodOwaGwUD6b2wc/j2q9gMJlMnD59mpiYmGtK2l9uvy0tLQR/efWCWq2msLCQ4cOHd9saQgghhBBCCOeRxHcX3OyJ77aSg3gun4RF5UHjk3kEX0O1lRBC3IwsFgt5eXkMHTq0M+ntKtoPHabh5Zex5OcDoAkOxu9738Nrxu2oujEJ21VNTU0cPHiQvLy8zuGE0dHR3HXXXWg0ms7/XDHZ/d92797N5s2bUalU3HnnncTGxgJQUlLC3r17mTlzJiEhIT3yXBobG7HZbD02MFVRFHafrueVbSUcr+i4SsBbr+HBlD7cn9IHb73rDD/9Jvv372f79u1kZmaS6uQTPUIIIYQQQohrd6W5XNf/tCJ6XL3KH3dUuCkmLhTnERwy2dkhCSHEdUNRFFatWkVRUREXLlxg0qRJzg4JAGtJCQ2vvIrpy17QKk9PfB+4H9/77kPdQ0nSK1FTU8OBAwcoKCjA4XAAEBwcTHJyMgMHDsTDw+O6SHZ/VVpaGtXV1eTl5ZGdnc0DDzyAVqslPj6efv36odX23OHWxVY6NpsNi8XCvn37UBSFlJSUbvk5qlQq0hMDuSUhgK0n63h12xmKqlp5bXsp7+0/z8Np0dwzOgpPN+edRPkudrsdgKysLPR6fWdVvhBCCCGEEOLGJolvgX9wGEZ8CaCR1rNHIE0S30IIcaWys7MpKipCo9HQv39/Z4eDva4O45IltKxeA3Y7aDR4z52D3+OPowkMdHZ4ZGdnU1ZWBnRUeKekpJCUlNStLUB6m0qlYubMmdTV1VFTU0NbWxv+/v64ubn1WhJfq9VSXV3Nzp07AWhoaCAzM7Pbku4qlYpb+wWRkRTIphM1vLathJK6Nv6SfYbl+8p4LD2GBSMj0Gtd798xJSWF9vZ2Dh48yPr169Hr9QwaNMjZYQkhhBBCCCF6mLQ6QVqdKIpC8W+S6aucYZffPNKf/4ezQxJCiOtCbm4ua9asAeD2229n4MCBTovFYTLR9P77NC1/F6WtDQCPCRPwf/YZdHFxTolJURSKi4uJiIjAy8sL6Gj/kZeXR2pqKtHR0TfU4EGLxcKZM2eIi4tDr9c7JYYDBw6wceNGFEUhKiqK2bNn4+np2e3r2BwOPjtWzRs7SihraAcg1EfP4+NiuGNEOG4a1/p3VRSFrKws8vLyUKvV3HXXXSQlJTk7LCGEEEIIIcRVkB7fXXCzJ74Bjrx0OyNMuzioGc3IX35x3V1mLoQQve3cuXO8++672O12UlJSGDdunFPiUOx2Wtato/HNt7DX1ADgNmgQ/s8/j/tI57R0sNlsnDhxggMHDlBfX09qairp6ekA6HQ6tFqt/J3pQcXFxXz00UdYLBb8/PyYN28eAQEBPbKW1e5gTW4lb+4opbLJDECknzvfGx/LzKGhaF3oxIbD4eCzzz6jsLAQrVbLvffe29mPXQghhBBCCHH9uNJcrut8GhFOZTN0VAP62atpaWlxcjRCCOHajEYjH374IXa7nb59+3YmdXuToiiYdu/mwsKF1P/mt9hratBERBD04u8JW/5PpyS9FUXh8OHDLF26lE2bNlFfX49er8fNzQ2dToeHhwc6nU6S3j0sMTGRxYsXYzAYMBqNvP/++5w7d65H1tJp1MxPjmDj02P5+W19CfRyo9zYzi/WFjLrzf18drwKh4vUWKjVaqZPn058fDx2u53a2lqk/kMIIYQQQogbl/T4FgCoQvpDJQTRQFVVFT4+Ps4OSQghXFZFRQXt7e2EhIQwffr0Xk/kWk6fpuFPf6Y9JwcAta8vhkcexmfBAlRubr0ay0Umk4kNGzZw5swZALy9vRk1ahSjRo3C09NTkt29LDQ0lEcffZQVK1ZQXl5OQ0MD0dHRQMfr12azERQU1G1tUPRaDYvGRnFncjgrDpTz993nKK0z8eNVJ1iy8yzPZMQxuX+Q018HGo2GWbNmUVFRQUxMDBaLpVd7sQshhBBCCCF6j7Q6QVqdAOTu3cqwTXMA2DdpNSnjbnVyREII4bpsNhtnzpzB19e3V/9uOJqbMS55m+YPP+wYXKnT4Xv3XfguXozGYOi1OC5n48aNHD9+HK1WS0ZGBqNHj5bqbhdgtVo5ceIEffv27dy2Zs0aTp06BYCnpyfBwcEEBQV1fg0NDb3m3uutZhvv7T/PP/eW0dRuA2BAmDfPZsQxvm+gS70u2ts7epT3VDsYIYQQQgghRPeSHt9dIIlvaG5uxuOVgWitTbQ/uBn32NHODkkIIVyO1WpFrVZjNpt7dV3F4aB17ToaXnsNR309AB4ZE/D/wQ/QRUX1aizfpK2tjXXr1jF58mSioqJcKrEpOvpb2+12FEVh06ZNnD59msbGxq/dT6PR8Pzzz3fb0NGmdivL95axPOc8bRY7AEMjfXk2I47UeH+nv06ampr497//jcPhYPHixTftcaAQQgghhBDXE0l8d4Ekvjsof89EdT4Hy8y3cBu50NnhCCGESzly5Ag7duxg7ty5BAUF9dq65uPHqX/pD1jy8wHQxsYQ8KMf4ZGW1msxXE57ezsnTpwgOfk/vcTd3NzQaqWL2vVAURQsFgtVVVVUVVVRXV1NTU0NKpWK+fPnd94nOzub/v37E3WNJ1ga2iz8Y08ZH+w/T7vNAcCoaANPTYgjNvDy7Va+KSfu467FQ6e5pnguamlpYcWKFRiNRgIDA3nooYfw8vLqln0LIYQQQggheoYkvrtAEt8dlE+fRnXkPaxpP0Q75X+cXoUlhBCu4uzZs7z77rs4HA7S09NJTU3t8TXtdXU0vPoarWvXAqDy8sLvsUfxuftuVDpdj6//bS5cuMDatWtpampi2rRpDBkyBL1e321VwsJ5FEVBURQcDgdHjhxhw4YNqFQq0tPTGTt27DUfG9S0mFm66xwfHirHar+6Q1B3rZrFadE8cks07t2QAG9sbGTFihU0NzcTGhrKgw8+iLu7+7c+xmazUVlZyfnz50lKSsLf3x8Au92OxWLptt7pQgghhBBCiK+TxHcXSOK7Q/WaXxJy9FXOeI7A56GPCA4OdnZIQgjhdA0NDSxduhSTyUS/fv2YOXNmj54YVKxWmj/8N8a3l6C0tALgNXMGfk8/jdbJ78uKonD48GG2bduGw+HAYDAwd+5coqOj5WTpDchisbBu3TqOHz8OQFxcHNOnT++WpO6FxnaW7DrL+mNVWL6sAL8SigL2Lw9dIwzu/CQzgSn9g6/59VdfX8+KFStoa2sjKiqKRYsW4fbloFhFUWhsbOT8+fOcP3+e8vJyLly4gN3e0bolMzOTYcOGAXD8+HE2b97MyJEjSUtLk2HhQgghhBBC9ABJfHeBJL47bP/7L5hw/jUqCaJm3hqGDBni7JCEEMJpHA4HBQUFZGdn09DQQFhYGHfffTe6Hqy2NuXsp+GPf8R65gwAbgMGEPCTn6AfNrTH1rxS7e3tfP75551DEZOSkpg5cybe3t5Ojkz0JEVROHLkCBs3bsRms+Ht7c3MmTOvufXJtcTz+Yka/vhFMZVNHb32U+L8+fltfekbcm0tSqqqqvjwww8xm83079+fefPmodVqKSkp4d133/3a/T08PIiIiGDo0KEkJiYCsHbtWoqKioCOfunDhw/nlltu6awIF0IIIYQQQlw7SXx3gSS+O+z4dDnjjzyLFQ3bb1nB5Cm3OTskIYRwCpvNxptvvkn9l4MkfXx8uO+++3osyWurqKDhry/Tlp0NgNrPD79nnsZ71ixUmu7pZXwtqqqq+PTTT2lsbEStVjNx4kRSU1PRuEBsondUVlby8ccfU1dXh0qlYvLkyQwfPtxp8bRZ7CzbfZZle8qw2B1oVCruGRPJUxNi8XW/+pNT5eXlfPTRRwwfPpxbb70VAJPJxOuvv05wcDDh4eFEREQQHh6On5/f1yrNFUWhpKSEffv2UV5eDoBKpWLIkCGkp6fL1XRCCCGEEEJ0gyvN5coEKtHJI7wftiMadNhprSgCJPEthLh5WCwW3NzcuHg+OCQkBJPJxIgRIxgxYkSP9Oy1NzXRtGwZTSs/BKsVNBp8FszH8PjjaFzoRGxbWxuNjY0YDAbmzJlDTEyMtDa5yYSFhfHYY4+xbt068vPze3XA6+V4uml4ZmI8c4eH81JWMdlFtbyXc571x6r4/q0d2zXqrr9GIyMjmTt3LkVFRTgcHS1Y9Ho9zz777BUNblWpVMTHxxMfH09ZWRn79u2jtLSUvLw8mpqauP/+++V3RwghhBBCiF4iFd9IxfdFp0+fxvu9KYRSxxqv+5j9o9fkw5kQ4oZXX1/P3r17yc3N5ZFHHsHHxwdFUWhpaUGv1/dIaxPFYqH53/+m8e/LcDQ1AeA+Zgz+P/wBbn37dvt6XaUoCjU1NYSEhHRuKygoICkpSXoW3+QURaGyshI/P7/Ok0QmkwkPDw+nxrX7dD0vbjrFmdo2AAaF+/CLqX0Z3sfg1LigYxhsTk4OycnJREdHo9VqMZvNNDQ0EB0d7ezwhBBCCCGEuO5Iq5MukMR3h/r6ei68kskgTrGJCYz/6YdO/yArhBA9pby8nD179lBQUNCZwEtPTyc1NbXH1lQUhbasLIyvvY7tyzYIusQE/J97Dve0NKefbHQ4HBQVFbF//35qamp4+OGH8ff3R6VSodfrUavVTo1PuA5FUbBYLFRVVfHBBx+QkpLCmDFjnPoattod/OtAOa9vL6HF3DF4cvbQMH4wKZ5gH73T4rqc7du3s3//fuLj45kxY4b0ABdCCCGEEKILpNWJ6DI/Pz/yVYGgnCKIeqqrq4mJiXF2WEII0W0URaG4uJg9e/ZQWlrauT0uLo4xY8bQp0+fHlu7/dBhGl5+GUt+PgCaoCAM33sS75kznd7H22q1cuzYMQ4ePEhjYyMAOp2O6upqQkJC0Gq1Tk/KC9dy8WTIqVOnsFgs7Nixg7KyMqZNm4aX17UNmbxaOo2aB1L6cPvgUF7ecoZVRy/waV4lXxTW8INJ8SwcFekyr2OHw4FGo+HMmTO8+eabTJo0qVtPHJjNZlQqFTqdDqvVilarlRNXQgghhBDipiMV30jF91dt+tPD3NbyMWeJovGOFQwdOtTZIQkhRLexWCz89a9/pb29HbVazYABAxg9enSPDpyzlpTQ8MqrmLZvB0Dl6Ynvgw/ge++9qJ18VY3FYuHgwYMcPnwYk8kEgKenJ8nJyYwZMwZvb2+XSRQK16QoCocPH+bzzz/HZrOh0WhISEhg0KBBxMXFOXUAal55E7/beJJjFc0A3Dsmkp9l9r2q3t89oaGhgU2bNlFWVgZAdHQ0s2fPJiAg4Jr2W1hYyMaNG0lKSmLixImYzWa2b9/OmDFjiIiI6I7QhRBCCCGEcCppddIFkvj+j5rcLwhefScOzyCsz51Ar3etS4OFEKKr6urqCAgIQFEUrFYru3fvxmQyMXLkyB59z7fX1WFcsoSW1WvAbgeNBu875uL32GNoAgN7bN2usFgsvPXWW5jNZgwGA2PGjGHEiBG4u7tLwlt0SWVlJZ9++imVlZWd22JjY5k/f74TowKHovDO3jL+vPk0AJP7B/GHuQNx1zn3KouLFEXhyJEj7Nixo7Mye968efTv37/L+2pqamLjxo0UFhYC4O/vzwMPPMC2bds4evQowcHBPPbYY1c0pFMIIYQQQghXJonvLpDE91eYW+DFSABMzxbgESCVQUKI65PRaGTr1q3k5eWxYMGCXmvdpFgsNC5fTtPyd1HaOgbteWRMwP+ZZ9DFxfVKDN+kpqaGwsJC0tPTOxPbIc9vKQAAIABJREFUR48exd3dnSFDhvTIIE9xc6moqCA3N5f8/HxSUlJITk4GoL29ndzcXAYMGOCUY62N+VX8bE0BVrvC8ChfXr97CP6ebr0exzcxGo1s2rSJqqoqFi9eTGBg4BVXyzscDg4cOMCWLVuwWCyo1WpGjx5NamoqOp2OtrY23nnnHdra2rjllluYPHlyDz8bIYQQQgghepYkvrtAEt+XUv48AFVzBe33rkOfOE6q/oQQ15W2tjZ27tzJgQMHsNs7BtylpqaSnp7e42vbKiqo+clPsZw4AYDb4EH4P/c87iOTe3ztb9PS0sKOHTvI/7K/+Pz584mNjUWj0aDT6aT3r+h2drsdm83W+f+5ublkZWUBHS09Bg0aRFJSEm5uvZd8PnjWyNMfHqOp3UZMgAdL7hlGdIDrDPFWFIWGhobOVidarZbS0lISExO/8Xe0rq6OVatWUVFRAUBERASZmZlfa99UVFTE2rVrUalULF68mKioqJ59MkIIIYQQQvQgGW4prkpTUxNWdRCBVLB77T8Z8dDga+41KYQQvcFqtZKTk8OuXbswm81AR4JtwoQJhIWF9fj6pt17qP3lL3E0NqI2GAj42U/xzMx06slDu93OoUOH2LNnD1arFYCkpCQMBgPu7u6S8BY9RqPRdFYsK4qCv78/ffr0oaysjHPnznHu3Dk2b95M3759GT58OBERET3+uzIqxo8PHkrm8X/lcbbexD3/OMQbC4cyNNI1ih5UKtUlx1xFRUWsWrWKyMhIZs+efdlZBG5ubtTX16PX6xk/fjzDhg277M+xX79+DBgwgIKCAtasWcMTTzwhLU+EEEIIIcQNTyq+kYrvr6qpqaHk9TsZw1F2Mwr/Ba8ycOBAZ4clhBDfafny5ZSWlgIQHBzMhAkTiI2N7fFkmmK307j07zQuXQqKgtugQQS/9BLaiPAeXfe7nDlzhi1bttDQ0ABAeHg4U6ZM6ZWfiRDfpL6+ntzcXPLy8jAajZ3bH3/88V47BqtpNvPEijwKKltw16r587xBTOwX1Ctrd0VhYSGbNm3CYrGg0WjIyMggLS2NyspKwsPDsdvtWCwWSktLCQoKwtvb+1v3ZzKZeOedd2htbSU1NZXMzMxeeiZCCCGEEEJ0L2l10gWS+P4Pm81G1v/OZzpbKCSByoy/kJGR4eywhBDiay7++VKpVNjtdo4fP86WLVtIT09n4MCBvZLctTc0UPvL/6F9714AvOffScAPf4iqF9s3XI7D4eCdd96hvr4eT09PMjIySE5OvuKewUL0NEVRKCsr49ChQ1gsFmbOnNl5W2FhIdHR0Xh6evbY+q1mG9//OJ9dp+tRq+CX05K4e1Rkj613tZqbm9m0aRMlJSUA+Pj40NzczLx584iPj+/y/oqLi1m9ejWenp4888wzuLu7d3fIQgghhBBC9DhpdSKuilarpc0rClohiHpyq6qcHZIQQnyNyWRi/fr19OnTh+HDh+NwOEhMTCQuLq7XLt835+dT8+OfYK+sROWuJ+D/+wXeM27vlbUv52JVqEajQa1Wc+utt3L27FkmTJiAp6enVHkLl6JSqYiOjiY6OhqHw4HD4cBqtdLQ0MC6devQaDQMGDCAkSNHEhIS0u3re+m1vH73EH6z4SSfHLnAbzacpKKxnedvjUftQr8rPj4+zJs3j/z8fLZs2UJzczMqlYra2tqrSnwnJiYyefJkkpKS5D1BCCGEEELc8CTxLb5GCUiEVgjASF31BWeHI4QQlygtLWX16tU0NTVx9uxZBg8ejFqtRqVS9UrSW1EUWj75hPo//gmsVrR9+hD8pz/i1rdvj6/9TfGcOHGC7du3M3r0aEaPHg1A3759e63yXYhroVarUavVaDQaHA4H4eHhXLhwgePHj3P8+HH69OnDyJEjSUhI6Na+9DqNmt/M6Ee4r57Xtpfy993nqGwy87+z+uOmcZ3+9yqVisGDBxMbG8vx48eJj4+/ppMBI0aMAP4zgFR6fQshhBBCiBuVHOmKr9EHxWIu06HHCvUlWK1WdDqds8MSQtzk7HY727ZtY9euXQD4+/szY8aMXh3Q6DCZqH/xRVrXfwaAx8SJBP3qBdQ+Pr0Ww1dVVlaSnZ1NRUUFAAUFBYwZMwa9Xi+DK8V1R6VSERUVxaOPPkpZWRn79u2jsLCQsrIyysrKMBgMzJ49m9DQ0G5d83sT4gg3uPPC+iLWH6uiptnM3xYMxtfdtY59vL29SUlJ6dZ9Hjt2jICAAGJiYrp1v0IIIYQQQrgCSXyLrwkIDKSWACKpIlCpo7q6mshI1+t7KYS4edTX1/PJJ590JniHDBnCrbfeilsv9tK2njtHzY9+jLW4GDQa/J55Gt9Fi5xSUW2xWNi6dSt5eXkA6HQ6UlNTSUtLQ6/X93o8QnSnr7ZBMRqN7N+/nyNHjmAymfD39++RNecODyfER89zHx0np9TIon8e4Tcz+jE00veGvWoiNzeXrKws/Pz8ePLJJ3v1/VQIIYQQQojeIIlv8TUBAQGdie8YTzPt7e3ODkkIcRNra2vj7bffxmw2o9frue222+jXr1/vxrB1K7UvvIDS0oo6MJDg/3sR95EjezWGi2pra1m7di11dXUADBw4kEmTJuHv73/DJujEzcvPz4/MzEwyMjKoqKjA3d0dh8OBoihkZWWRlJREXFxct6x1S0IA7z04gif+lcep6lYW/uMwsYEezBoaxswhYUT63ViDIPv378/evXsxGo1kZWUxY8YMZ4ckhBBCCCFEt1IpiqI4Owhnu9JJoDcLs9mMdcv/4Z3zF2yD7sQ+6w2pIBRCOI3D4SArK4uKigqmT5/eq+/TjuZmjEuX0vz+BwDohw8n6KX/Qxsc3Gsx/LfKykr+9a9/4eHhwYwZM2RInbjp2O12jh07xqeffgp0DGzMyMjotmrwisZ2/rblDJsLazBZHZ3bR8f4MWtoGLcNDMZbf2PUjpSWlvLRRx8BcN9995GQkODkiIQQQgghhPhuV5rLlcQ3kvi+HPvxNWg+fgB72HAsD3yOh4eHs0MSQtxEzp49i5eXF35+flgsFux2OyqVqtf6VjtMJppXrqTp3fdwNDYC4HPfvfg/8wwqJ8w8UBTlkuR2cXEx0dHRGAwGSXqLm5LJZGL79u0cOHAAh8OBRqNh1KhRpKSkdFvLjlazjS8Ka/g0t5L9pUYuHjDrtWom9Qti1tAw0hL80V7n/fSzsrLIzc3F19eXJ598Enf3G6uyXQghhBBC3HiuNJfr1CP1HTt2MHPmTCIiIlCpVKxZs+aS2xVF4Ve/+hURERF4eHiQkZFBfn7+JfdpaGhg0aJFGAwGDAYDixYtwmg09ubTuCGpgpMAUNcXY7fZkPMjQojeYLfb2bJlC8uXL2fVqlWYTCYANBpNryS9FbOZpg/+RfnMWRhffQ1HYyPa2FiC//pXAn7wA6ckvaurq1m+fDlVVVVAR//jwYMH4+fnJ0lvcdPy8PBg6tSpPP7448TFxWG328nJyWHZsmWcOHGiW45bvPRa5gwL5537R7D5uVS+f2s88UGemG0ONuRX88SKPCb+dS8vZRVTUNl83R4rZWRkYDAYaGpqYtOmTc4ORwghhBBCiG7j1MR3a2srw4YN47XXXrvs7X/4wx/4y1/+wmuvvcaBAwcICwtjypQpNDc3d97nnnvu4ejRo3z++ed8/vnnHD16lEWLFvXWU7hh5ZU140CNytLCsr/97pKfuRBC9IT6+nreeecddu7ciaIoBAYG4nA4vvuB3UCxWmn++GPKZ8+h4c9/xlFfjzYqksDf/IaIj/6N54TxvRLHJTEpCrm5ubz//vvU1NSwbds2NBoN7u7uvVb5LoSrCwkJYdGiRSxYsAA/Pz9aWlrIycnp9iR0uMGdR9NjWPfkGP79yEjuHROJv6eOulYLy/eVMe/tg8xdcoD3csowmqzdunZPc3NzY9q0aQAcPXq08ySbEEIIIYQQ1zuXaXWiUqlYvXo1c+bMATo+8EdERPD888/z05/+FOjoPR0aGspLL73E448/TkFBAQMHDmTfvn2MHTsWgH379pGamkphYeEVDz+TVidft3r1asbnPk8gRpZzJ6n3/JSkpCRnhyWEuAE5HA7279/P1q1bsVgs6PV6MjMz6d+/f4+vrdhstG7YgPHtpdgrKgDQhIVieOQRvGfOdEqFN3T8vcvKyqKwsBCA+Ph4Zs2aha+vr1R5C/ENbDYbu3fvJjQ0lOjo6M5tFosFT0/Pbl/Panewq7ieT/Mq2XqyFqu945DaTaNmyoAg5o2IYEysH+rr5Hd27969hIWFkZCQgF6vl/caIYQQQgjhsq40l+uyk3lKSkqorKwkMzOzc5ter2fChAns2bOHxx9/nL1792IwGDqT3gApKSkYDAb27NnzjYlvs9mM2Wzu/L6pqannnsh1KiAggFoCCMRIEPVUV1dL4lsI0e1aWlr417/+xYULFwCIiopi+vTpGAyGHl1XcThoy8rCuORtbGfPAqAJCsR38cP43DEXVTf1CL4aVVVVrF27FqPRiEqlYvz48YwbNw6NRuO0mIS4Hmi1WiZMmICiKNhsNqxWK4cOHSInJ4dx48YxfPjwbk3m6jRqJvYLYmK/IBpNVjYcr+ajIxUUVrbw2fFqPjteTR9/d+4YHs7c4eGE+Lj2oPDU1FSg42Sk3W5HrVbL1SVCCCGEEOK65rKJ78rKSgBCQ0Mv2R4aGsrZL5MUlZWVhISEfO2xISEhnY+/nBdffJFf//rX3Rjtjedi4rsfZwiinvNy2asQogdcHJx78cTm0KFDe7TKUFEUTFu3YnzrLazFpwFQ+xnwffBBfObPR+3kQb5VVVV88MEH2O12fHx8mD17NvHx8VJ5KUQXqFQqdDodGo2GM2fOYDab2bx5M8XFxUybNg1vb+9uX9PgoWPh6EgWjo7kxIVmPj5SwfpjVZQ1tPO3rSW8uq2ECX0DmTcigvF9A1x+IGZJSQkbNmxg6tSpV3wFpRBCCCGEEK7GZRPfF/33h31FUS7ZdrlkwH/f57/9/Oc/5wc/+EHn901NTfTp06cbor1x+Pv7c4YAAIJo4HB1tZMjEkLcKE6ePElsbCxqtRqLxcLtt9+OTqfrkWTUV7UfOkzDyy9j+XJIssrbG9/7F+G7cCFqL68eXftKhYSE0KdPHzQaDbNmzcLHx0eS3kJcJbVazUMPPUROTg5btmyhtLSUd955h8zMzB5N5g4M9+H/hffjx1MS2XSimo8PX+BwWSNbT9ax9WQdwd5uzBkWxrwREUQHOPdk2zfJycnBaDSycuVK+vbty7Rp0/D393d2WEIIIYQQQnSJyya+w8LCgI6q7vDw8M7t1dXVnVXgYWFhlx3AU1NT87VK8a/S6/Xo9a59uamzXaz4Bgiinrq6Oux2u1xqL4S4ao2NjWzcuJGioiJSUlIYN24cQI8nU6xnSmh45RVMO3YAoPLwwOeee/BddB8aJ891sFqtHDlyhIEDB+Lt7Y1KpWLOnDl4e3vL+60Q3UCtVpOamkpCQgKrVq3qbCU0aNAgJk2a1KPHgx46DXOGhTNnWDhnaltZdeQCa3IrqWmxsHT3OZbuPse4xAC+f2sC/cN69sRfV82YMYO9e/dy8OBBTp06RUlJCenp6dxyyy1otS778UEIIYQQQohLuOx1lnFxcYSFhfHFF190brNYLGzfvp20tDSgoxdhY2Mj+/fv77xPTk4OjY2NnfcRV8fDw4MW946TDwaaUdtM1NbWOjkqIcT1yOFwsG/fPl5//XWKiopQq9W9UsVsr62l7ne/p+KuuzqS3hoN3nfOI3Ltp/g/9T2nJr1tNhuHDh3i7bffZvv27eTk5ACg0Wjw9fWVpLcQ3SwkJIRHH3208/iwsLCwV2e8xAd58aMpiWz5fhp/mz+YcYkBqICdxfXMe/sAP19TQEVje6/F813c3NyYMGECDzzwAH369MFms7Ft2zbefPNNSkpKnB2eEEIIIYQQV8SpJRstLS0UFxd3fl9SUsLRo0cJCAggOjqa559/nt///vf07duXvn378vvf/x5PT0/uueceAAYMGMDUqVN59NFHWbJkCQCPPfYYM2bMkH6E10ilUuEREElrhQdemBjexxu73e7ssIQQ15mKigrWr1/fObwyMjKSzMxMgoKCemxNh8lE03vv0bT8XRSTCQCPCRPwf/YZdHFxPbbulbDb7Rw7doy9e/fS0tICgMFgICIiAr1eLwlvIXqQRqNhypQpJCUlUV1dTXBwcOdt39Umr7u4adRMGRDMlAHBnKs38crWM2zIr+bTvEo25ldz35hIHk2PweCh65b1FEXBYneg117de0tQUBB33XUXBQUFbNu2jfr6empqaoiJiZHBl0IIIYQQwuWpFEVRnLX4tm3bmDhx4te2P/DAA/zzn/9EURR+/etfs2TJEhoaGhg7diyvv/46gwcP7rxvfX09zz77LGvXrgVg1qxZvPbaa/j5+V1xHE1NTRgMBhobG/F18mXvrqSlpQX3FXegLc/BPON1VEMX4Obm5uywhBDXiSNHjrBu3ToURemV4ZWKzUbL2rU0vvUW9to6ANwGD8L/uedxH5ncI2t2RX5+Prt376axsREAHx8f0tLSSE5OlvdWIZzAZrNhsVi4cOEC2dnZTJs2jcDAwF6P41h5E3/efJr9Z40A+LpreWJcDPeMjsJN2/Xkst2hcKSskayCGjYX1mBss/KHOwYyuX/wdz/4W5jNZo4dO8bIkSM7B4gajUYCAgLkpJ0QQgghhOhVV5rLdWri21VI4vub2VY/hTb3fayp38c+4We4u7s7OyQhxHVAURTq6+tZsmQJiYmJTJw4Ea8eGiCpKAqmXbswvvIq1tOnAdBGRuL39NN4Zk5xmeGQW7Zs4dChQ3h5eZGamsqoUaNwc3NzmfiEuBnZ7XbeeecdysvL0Wq1TJgwgREjRvT676WiKOworufPm09TXNMKQKSfO89OjOP2waGovyMeq93BgVIjWYU1ZBfWUtdqueR2rVrFKwsGk5HUfVfbWCwWli1bhru7O7fffjuxsbHdtm8hhBBCCCG+jSS+u0AS39/MtvNltNkvYOs3k/pJfyE4OFiSNEKIyzKbzRQVFTFkyBDMZjMOh4Pm5mZ8fHx6bs0TBTS8/DLmgwcBUPv6YnjkEXwWzEflxCpqRVEoKirC39+/c9hya2srBQUFjB49Gnd3d3kvFcJFNDU1sWbNms7e1XFxcUydOhVv794fOGl3KKzJreTVbWeobu5IXg8I8+ZHkxNIjQ+45L4Wm4M9Z+rJKqhh68laGk22ztt83bXc2i+IKf2DWX+8io351eg0Kl67awjjErunqv3ChQt88sknmL5sKRUREUFiYiKJiYlERkZKKxQhhBBCCNFjJPHdBZL4vrzGxkaOr/4Lt5S+TLUqmDdZxI9//GM8PT2dHZoQwsWcPn2atWvX0tTUxPz583u88s/e2IjxlVdpWb26Y4NOh+/dd+P78GKnDq1sbW2lqKiI3NxcamtriY2NZf78+Z1tATQajSS8hXBBiqKQk5NDdnY2NpsNDw8PZsyY4bQqZpPVzns551m66yytlo4ZK+kJATydEUdVk5msghq2n6qlxfyf+SsBnjom9Q8ic0AIY2L90Gk6Es9Wu4MfrzpBVkENbho1bywcQtp/JdGvOk6TiZ07d5Kbm3vJdnd3d+68804SEhK6ZR0hhBBCCCG+6kpzuU4dbilcm1qt5mBpM7cAAUo9KhxUVVUR5+ThcEII12E2m9m0aRNHjhwBOgY16nTdM5TtchRFoXXjRhr+/BccDQ0AeE6biv9TT6GNiOixdb+NxWLh5MmTFBQUcPbsWS6eT3ZzcyMyMhKdTodWq5WEtxAuTKVSkZKSQnx8PKtWraKqqopVq1axcOFCwsPDez0eD52Gx9JjuHNEOG/tPMvKg+XsOl3PrtP1l9wvxMeNyf2DyRwQzMhoPzTqr7/P6DRq/nDHQKwf5bP1ZC1PrzzGW/cMZUys/7XH6eFBZmYmaWlplJSUUFpaSmlpKe3t7Xh5edHe3o5Wq+XEiRNUVFSQmJhITExMj/6dEEIIIYQQ4iKp+EYqvr+Joii8+Lv/5ce2v6LDzissZszUu0hJSXF2aEIIF1BcXMy6detoamoCIDk5mXHjxvXYoEbruTLqX3yR9pwcAHRxcQT84he4J4/okfWu1Icffsi5c+c6vw8LC2PgwIEMHz4cb29vSXgLcZ2x2+188skn2O12Zs6c6RItO87Vm/jb1jP8/+y9d3wU953//5xtWkmo7KoioQ4SkpCoAtkIkGnGOBQ7brHjuIQUJ77L3eV7LVdyLcn97ncpd76vcymOHew4GAMuYGwwYNMFQgIkQEKgjupKq7K72j7z/WOlMTJgmoQQfJ6Pxzx2dmZ2Pp+Z3fnszOvz/rzeH57uJDHSyLJBsTt/UvhV/b+H8Phk/nRjJfvOWwnWa/jVk9OZk3LtyeCvFVmWsVgsqs0TwObNm6mrqwNAp9ORnJxMZmYms2fPRqcbnTgcu93OoUOHSEhIIDc3V7TFAoFAIBAIBHcQwurkOhDC95X55S9/yUMd/0k8XbzJWkJnPsyaNWvGuloCgWCM+fjjjzl06BAQiPJ+4IEHSEpKGpWyFI+HvvXr6fvtK+DxgMFA5Lp1hD/zNaRbGDUoyzIXLlygqqqKBQsWqLZPx48fp6ysjJycHPLy8oiJibkthDKBQHDjyLKMz+fD5wv4ZiuKclsIpx6fjF4r3XBd3D4/L26o5GBdDyEGLb95ajozkyJGuJaXcv78eWpra6mvr8dms6nL4+LiePTRR4mKGhnf8SHq6+vZvHkzDkcgUWhMTAzFxcVkZ2ffFt+jQCAQCAQCgeDmEFYnghHBbDbT1WEmni6isdJksYx1lQQCwRijKIoayTfaUd6usnKsP/4x3sGkc8bCeZj/5m/RJ4+OyH45Ojs7OX36NNXV1djtdiAg1syYMQNJkpg9ezaFhYVotdpbVieBQDC6aDQaDAYDOp0Op9PJjh07iIqKoqCgYEzrZdDdXKdakE7LS4/n8Z0NlZTU9/DNP5zkladnkJ84uoEfQ0kvFUWhu7ub+vp6jhw5QkdHB++88w7PP//8iHUYHjp0iI8//hgAk8nEwMAAFouFt99+m8LCQu6///4RKUcgEAgEAoFAcPsjhG/BF2IymegmkAApGitlFguyLItoRoHgLsPlctHd3U1CQgJut5uMjAyeffZZYmJiRqU8f28vPf/13zjeew8AjdmM+ft/QciKFbcsWs9ms7Fv3z7OnDmjLgsKCiIrK4vExESCgoLQaDQielAguIPRaDQ0NzdTWVkJgNfr5Z577hnX171Rr+X/PpHHt9+soLSxl2+8cZLfPT2D3ISwUS9bkiSio6OJjo4mOzubHTt2UFxcjNvtVtvUm2Uo4icvL48lS5bg9/s5duwY5eXlTJ06FZfLhcFgwO/3i/wLAoFAIBAIBHc4wuoEYXXyRRw7dozGbT/ly2yniURelR7nxRdfHPEhqQKB4PalqamJzZs34/P5eO6551SLj9FAURQcH3xAz89+jtzbC8CEhx8m8k//BO0tbJ+dTie//vWv8Xg8AGRmZpKXl8eUKVMwGAxCKBEI7iIURWHfvn18+umnABQUFLBo0aJx3w44PD6+9YcKypv7CDfqePVrM8iOH33x+4s4deoUKSkpw/zBrwWPx4Ner8fn8+H1emlra7skKanH4xk2Omnnzp10dXVx3333kZ6ePu6/T4FAIBAIBIK7CWF1IhgRTCYTZYMR33G6fgpmFYgHA4HgLqK8vJwPPvgAWZaJjIzEbrePmvDtbWzE+uOf4CotBUCfkYH5736AccaMUSnviwgODiYrKwur1crSpUtJSUkRbZ9AcJciSRKLFi3CYDCwc+dOSktL8Xg8LFu2bFy3C6EGHb96Mp91b5zkZEs/X3/9JK99bQaZcRPGpD4XLlzgo48+QqvVcv/99zN79uyrnl9FUdi/fz+lpaU888wz6v/T50VvYJjo7Xa7qaqqwuPx8MYbb5CUlMR9991HWlrayB6UQCAQCAQCgWBMERHfiIjvL8Lv9+N19GL8WToAAy+eQhceN2p+vgKB4PZAlmV27NjB0aNHAcjKymLFihWjcu0rsoztrbfo+a//Bo8HKSiIiG9+g/CvfvWWJa9sa2tj7969LF++HLM50Nnn9/sJCQkR3t0CgUClvLycrVu3ApCTk8MDDzww7u3fbC4f6944QWWrDXOInteemcnkmNBbXo+BgQG2b99O/WBOh5ycHFatWoXRaLzs9g6Hg3feeYfa2loAFi1axNy5c6+5PLvdztGjRzlx4gR+vx+AlJQU7rvvPlJSUm7yaAQCgUAgEAgEo8m1arlC+EYI31fD7/cj/Vcemv4WXE++B8mFV3wIEQgE4x+n08nbb7+tig9FRUUUFhaOSmSjz2Kh+4f/hKukBBhMXvmDH6CfNGnEy7ocNpuN/fv3c/r0aSBgabJ27VoMBoPw7xYIBJelsrKSd955B0mSePLJJy8bXTze6HN6+fobJzjTZicq1MD6Z2aSFj16tlZXQlEUSktL2b9/vzrS6JFHHiExMXHYdo2NjWzevBmbzYZOp2PZsmVMmzbthsq02WwcOXKEiooKVQBftWoVs2bNuunjEQgEAoFAIBCMDkL4vg6E8P3FKIqC/Ps1aBv2Yl/8E9oTljN58uSxrpZAIBglduzYQUlJCXq9ngcffJApU6aMSjkDu/fQ/aN/Q+7tQwoKwvTnf8aERx+9JWKz1+ultLSUo0eP4vV6AcjNzWXx4sWYTCYheAsEgi+kuroal8tFZmbmWFdlxOgd8PLc6yc422EnWK/hS3nxPFmQSNYYWJ+0traybds2+vr60Gg0LF++nHnz5qEoCgcPHmTPnj0oioLZbGb16tUjkmi5v7+fkpISzp49y7p16wgNDUWv12O1WpkwYQLBwcEjcGQCgUCV1syQAAAgAElEQVQgEAgEgpFACN/XgRC+v5iSkhLCDvwbufb9HGI2uzTF/M3f/I2wOxEI7kAURcHhcPD+++8zf/78ERETPo/scGD9z5/ieO89AAxTpxL9b/+GPv3WeKvW1NSwZ88ebDYbAAkJCSxbtkz4eAsEgutCURTcbjeyLNPX10dwcPC4vzeyOjx8Z0MlFS396rJZSRE8WZDI0uwYDNpbZ+vicrnYsWMHNTU1LFu2jMLCQo4cOcLOnTsByM7OZvny5SN+zr1eL/qLbLbefPNNOjs7mTFjBvPmzRMJ3gUCgUAgEAhuA0RyS8GIYbVa6bYbyAVitf0oskJHRwdJSUljXTWBQDACKIrC2bNnyczMxOPxoNFoWLt27aiU5T5ZQdc//D2+Cy0gSYQ/+wyR3/72LfPyBujp6cFmsxEeHk5xcTH5+fnCx1sgEFw3kiQRFBSExWJhw4YNGI1G5syZQ3p6+riNDjaHGvjj87Moa+rjzdIWdlVbKG/uo7y5j6hQA4/OmshjsxOIDx99yzuj0cjq1aupr68nLS0Nl8tFXl4eJ0+eZMaMGeTl5Y1KZ+XForfL5cLtdqujhEpLS8nMzKSwsJDU1FTRWSoQCAQCgUBwmyMivhER31ejpKSEsx/9hmfYRL8ump/7v8aDDz7InDlzxrpqAoHgJvF6vWzdupXKykqKioq45557RqUcxeul77ev0PfKKyDLaOPjif7Xf8U4e/Q9VHt7e3G5XMTHxwPg8/k4ceIEBQUFGI1GIVwIBIKborW1lTfeeAOn0wkEBPHExEQyMjKYPHmymjB3PNJpc/N2eSsby1qx2D0AaCWJxVnRPDEngcK0W28NJcvyLU0oqigKjY2NlJWVUVdXpy6Pi4tjyZIlo2YHJhAIBNfDxW2joij09PQQFhY2rDNPIBBcP7Isc/LkSdra2sjKyiI9PV08P94miIhvwYhhNpvpIvDQFubrRouPjo6OMa6VQCC4WWw2Gxs2bKC1tRVJkkYtaa23qYmuv/8HPKdOARC6ciXmv/4rNGFho1LeEC6Xi5KSEsrLyzGZTDzzzDNoNBqCg4NZsGCBuGERCAQjQkJCAt/4xjc4duwY586dw2KxcOHCBS5cuMDevXtZuXIlubm5Y13NGyI2LIjvLkrjm0Up7D7bxYbSFo429vJxtYWPqy2kR4fwxJxE1uTHE2a8NY8Vt1L0hkBHRmpqKqmpqVitVsrKyjh9+jQdHR04HA78fr9IhiwQCG45Ho+HhoYGamtrqa2tZfr06dxzzz3IsozD4eCll14CIDg4mLCwMHUKDw8nJSWF9PT0MT4CgeD2p729nc2bN9PV1QVAaWkpMTExFBYWkpeXJzqWxglC+BZcFbPZjJ1QXBgw4sFML52dnWNdLYFAcBO0tLSwYcMG7Ha7Opw8JSVlRMtQFAX7u+/S858/RXE60YSFYf7B3xJ6//0jWs7n8fv9nDhxgkOHDuFyuQAIDQ3F5/MREREhxAmBQDDimEwmli1bxrJly7BarZw9e5aamhqam5tJTk5Wtzt16hQNDQ1MnjyZtLQ0goKCxrDW145eq2FFTiwrcmI51+lgw7EW3qtop65rgB9/dI6f765jWkIYqVHBpJhDSI0KITUqmEmm4FvqCz7amM1mli1bRlFREWfOnGHy5Mm43W4kSaK7u5uoqKhxa3MjEAhubxRFob29XRW6m5qakGVZXX/+/Hlmz54NBKIgdTodPp8Pp9OJ0+kc9vxeUFDApEmT0Gg0yLLM1q1byc/PZ/LkySN+n9zd3U1VVRVGo5H09PRxPQrqTsLtdlNaWsr06dMJG+VgpPHMhAkT6O/vJzg4mNTUVM6fP4/FYmHr1q3s2rWLJ598kkmTJo11NQVXQVidIKxOrobP5+NHP/oRX1feZBLtbORLnNPn8OKLLxIRETHW1RMIBNeBoiicPHmSbdu24ff7iYqK4qGHHsJkMo1oOf6eHrr/9V9xfroXgKA5c4j+l39GN2g3MhooisL58+fZu3cvPT09AERFRXHfffcxdepU4eMtEAhuOW63G61Wi9/vx+/38/bbb9PQ0AAEIpdTU1OZNWvWuPSLdrh9vF/RwZvHLlBrGbjsNlpJIiHSSGpUcEAMN4eQMjgfHx6EZpwd85Xo7+/n9ddfx2Aw8MQTTxAXFzfWVRLchtjtdqqrq8nMzBTPnIJr4uJkuz6fj//4j//A6/Wq6yMiItQRKcnJycNGbw4lYLbZbNjtdnWy2WykpaWpNk1VVVVs27YNCHTuFRQUMGPGjJsaCerxeDhz5gzHjx+nqalp2Lr8/HzWrl077v7zxjsul4uOjg5SUlJQFAWfz8evfvUr+vr6mDNnDkVFRYSGho51NcectrY2zpw5Q3FxMT6fD7/fT3NzM7GxsQQFBeFyuaisrKS8vByPx8MLL7xAcHAwOp0Ot9s9aiOoh3C73bS1tdHa2kpbWxtr1qxRR53djdfUtWq5QvhGCN/Xwi9+8QuKe99iBmc4Fv4AH9iyKSws5P5RjtwUCAQji9fr5Wc/+xkul4uMjAwefPDBEY04VDwebBs30veb3yLbbKDTEfnidwn/6leRRnl4emNjIxs3bgQgJCSEoqIi5syZI4agCQSC2wJFUWhqaqK6upqamhqsVqu6zmw2M3PmTGbOnDnuHlwURaGq3c55i4PG7gEarE4augdo6Hbi9Pqv+LmwIB0P5sXy2KxEpsZPuIU1HnksFgvvvPMOfX196PV61qxZM27tbQQjj9frpaSkhAMHDuDxeDAajaxatYqcnJyxrprgNsDv99Pb20t3dzdWq3XYpNFo+Pa3v612nm7btg2Px0NqaippaWlERkbe9H9GX18f5eXlVFZW4na7gUCS3xkzZjB37lyio6Ova38+n4+f//znDAwEOkQlSSIlJQWfz0draysLFy5k7ty5aDQaHA4HmzdvJiMjg/T0dJKSkm4oUGVI0hpv/5+jjcfjoaamhtOnT3Pu3Dm0Wi0vvvgiWq0WWZb5+OOPqaioAALf+dy5c5k/f/5dOXLJarXyySefcGrQmvORRx4hLS3titvLsozValWvD0VReO211wgJCaGwsJCsrKwRsWbr7u6mtraW1tZWWltbsVgsw9Y//fTTxMfHo9PpMBgMN13eeEMI39eBEL6vzvr160lreZcF7t3Y01dyIv27zJgxg5CQkFvutSgQCK4NRVGora2lpqaGFStWIMsyXq+Xffv2odFouPfee0fsBlFRFAZ276b3v/8b34UWAPSZmUT/yz9jyMwckTIuh8/nQ6fTqXV4++23SUhIYP78+YSEhIgbYIFAcNvS2dnJsWPHOHnyJB6Ph+TkZB5//PGxrtaIoSgKFrtHFcEbugdotAbmm3uc+OTPHkGmJ4bz+JwEVuTEYtSPz9E5TqeT999/X41unD9/PosXLxb3yQIqKyvZsmULAEFBQaq4OHPmTFasWHFXihV3Gz6fj97eXqxWKzabTbUkURSF9evXqyOBLscLL7zAhAmj3zk4FKVdXl5Od3e3uvzFF18kKirqip9zOBzU1taSn5+PLMv4fD62bNlCR0cHeXl55ObmqlYaHo8HRVHUoJtTp07x4YcfqvvS6/Wq/3hycjJxcXHqfX5DQwPnz59nYGAAp9N5yeu6deuIjY1Fo9HgcrnQarV35bXl9Xo5f/48p06doqamBp/Pp64zm82sXbtW/T4VRaG+vp6DBw/S3t4OBNqowsJCCgsLRz16+XbAbrezd+9eysvLVeug7OxsioqKiIyMvOb9WCwW1q9fr+4jIiKCuXPnkpmZiaIohIeHq797u91OZ2en2qEly7I67/V6yc7OZsKECSiKwv79+/nkk0+GlRUWFkZ8fDzx8fHk5OQQHh4uhG8hfF8dIXxfHVmW8Va+S9A7z+GPy8f9zA4AtFrtuPGnFAjuFmw2G8ePH+f48eP09vYC8MQTT5CUlDQq5bkrK+n5+c9xnzgJgDY6msjvfIfQVV9CGiV7EafTyZEjR6iurubZZ59Vb8x0Oh16vV4I3gKBYNzgcrk4fvw4ZrNZbaftdjsff/wxM2fOJCUl5Y5r03yyzLHGPjaWtbKr2qKK4OFGHWumx/PYrAQyYsbfkGtZltm3bx+lpaUApKen88gjj9yV0XN3Oy6XC6PRiCzLuN1utmzZQlZWFpmZmRw6dIgjR44AkJqayjPPPDPGtRXcLH6/f1ik8okTJ6irq6O3t5fe3l5sNtuw7b///e+j1WpRFIUdO3ZQVVVFZGQkJpMJk8mkzkdHR9/y9mNodFJ5eTlut5snnngCrVaLTqejoaGBxMREDAYDtbW1HD9+nLNnzyLLMuvWrVOtE10uF0FBQVf973I4HNTX19PQ0EBjY6MaJT7EkJgNcODAAfbt23fFfT3++ONqTo2DBw9y9OhRMjMzmTZtGpMnT75rRoDu37+fPXv2qO8jIyOZOnUqWVlZxMTEXPY7GbKLPHjwoBpR/NRTT5GRkXHH3X8M4fV62b9/PyUlJap9UFpaGgsWLLhhuzK73c7x48c5efIkTqdz2LpHH32UzMFgsMrKSt5///0r7mfNmjVkZWWhKAoXLlygpKREFbrj4+Mv2xEmhG8hfF8VIXxfG+6WSoJ+U4SiD8H5Z+dBkvD5fFitVlJTU8e6egLBXY0sy5w/f57y8nJqamrUIX9BQUHk5uYya9asEffx9rW20fM/LzHwUaAjTDIaCf/a1wj/2tNoQkJGtKwhPB4P5eXlHD16VI2YWrp0KQUFBULwFggE456LR+YcOnQICOQqmDVrFjk5OXfkQ43F7uadE+28Xd5KS69LXV6QEsljsxNYNjUGg258RU1XVVXx0Ucf4fP5mDdvHitWrBjrKgluEX19fezevZuGhga+8Y1vXNG2obGxkQ8//JCVK1eSlpaGwWAYk3sYRVE4evQohw8fJjg4mIkTJ5KQkEBCQgLx8fE3PWJBURT6+/uxWCxYLBZCQkKYPn36CNX+1uP3+2lpaaGhoQGr1aoK2/39/fzVX/0VOp0ORVHYtm2baiExhF6vVwXtpUuXqn7KXq8XnU53W97DXizoDwwM8L//+79oNBqMRuMwMT8+Pp7FixeTmJh4w2UpioLFYqGxsZGGhgY6OjpYu3atmjiwsbGR2tpagoODMRqNhISEYDQaCQ4OJjg4mJCQELWumzZtor6+Xt23wWBg6tSpTJs2jfT09BuyU7FarVRUVNDX10dQUBAhISGEhoYSEhJCSEgIUVFRtyQy/2J8Ph8nTpwgLi6OhIQEfD4fXV1dbNy4kaysLKZOnUpcXNw1/7YURaGmpoaGhgbuv/9+JElCr9fT0tJCQkLCVTsPrFYrzc3NWK1Wuru76e7upq+vj7CwMGJiYigqKiJ+FPM9XY6L26Cenh4KCgqAwG/75Zdfxmq1MnHiRBYuXDgsGfnN4PV6qaqqUoPQtFotDzzwABkZGQDU1dWpI7A1Gg1arVZ91Wq15Ofnq9teK0L4FsL3VRHC97XhcTrQ///JSLIP5wtl2KRw/vjHP+JwOPjOd75zXUNBBALByFJfX8/69evV95MmTSI/P5/MzMwRj3CQbTb6Xn2V/jf/CB4PSBKhX/oSkd/9DrrBqIyRxu/3U1FRwaFDh9RokJiYGIqLi8nKyhKJKwUCwR1FV1cXJSUlVFRUqJFIQUFBTJs2jdjYWKZNm6ZuW1ZWhs1mGzZcdujVYDCMm3wssqJwsNbKW2WtfFrTxZATiilEz0PT43l0dgIp5tHpVB0NOjs7OXToEA8++CBGo3HMhM27kfb2ds6ePcvEiROZPHnyLbGb8Xg8HDhwgMOHD6vWAmvWrFEj/C7HxXZtkiTR0tJyxWi+0WBgYID33nuPmpqaS9ZJksRf/uVfYjQakSSJ5uZmdDodsbGxX3jP5fP5OHr0qCp0WywWPB6Puj4jI4PHHntMTcb25ptvEh4eTnR0NDExMcTExBAREXFbWgTt3buXQ4cODTuei3n++edVC4m6ujosFgsRERHqFBwcPK7bgI6ODrZv305XVxcARqORnJwc8vLy1Kjs2wVFUejs7KSqqorq6uphIr3JZOLFF18c9hvz+/309PSoYu3QNGfOHHJyclRLkD/84Q9XLHPRokUsWLAASZKwWCxs2rRJFcVNJhPZ2dlMmjRpRH4DbrebY8eOUVJSgt1uJzU1lUcffXTY8Y/Ub21gYIBf//rXGAwGFixYQEpKiipsW61WFixYgMlkQlEUDh06xO7du6+4r6effppJkyah0Wg4fvw4R48eJSYmZtj1HxUVdVPPro2NjTQ2NtLV1aVOFyeE/d73vkdQUJD6nXq9XqZMmTKur00QwvfVtFzdLayTYBzT39/P5s2bWStFYqILqfs8oSkLCA0Npbe3lx07dtxRvpQCwe3OUO91eHg4Pp+PuLg4Jk6cSGJiIvn5+V/oxXfDZfp82N95h97//RVyTw8AxoICTH/x5xiyska8vCF8Ph+vvfYaPYNlRkREsHDhQqZPny4Eb4FAcEcSHR3Nl770JZYsWcLx48cpLS2lt7eXsrIyIiIihgnfp06dorOz87L7CQkJGSZ8f344/u2ERpJYMDmKBZOjaO93sfl4G5vK2+iwufnd4WZ+d7iZ9OgQQg1ajHotQToNwXotRr0G49Dr55aFGLTMTo4gMfLWW43Exsaydu1aIHDeXS4XNTU15OXl3Zai3p2Ay+Xik08+obS0VB359vzzz4+Y2HQ5FEXhxIkT7NmzB7vdDgSCDxYvXnzV4fJDojcEIiU3btyIXq9n9erVZI3ifdUQVVVV1NTUoNVqWbhwIeHh4XR0dNDe3o7P50NRFJxOJ5IksWPHDlpaWtBqteo9Z0REBN3d3YSFhbF48WIURUFRFD799NNhQpNGo8FkMhEVFUVGRobaMeBwOKirq7vseYmOjiY3N5eioiIgIL7t3bsXr9d7yeTxeMjJyWHBggVA4Hp79dVXMZvNmM1moqKi1OlaPIsHBgaoq6ujrq6ORYsWERYWht/vR6PR4PF4CA4OJjk5mdjYWCIiIggPDyciIkKN4IaAzVF6evpNfT+3G3FxcTz77LO0tLTgdrtJSUkZ9hu+nZAkibi4OOLi4li0aBGtra1UV1dTXV3NpEmTcLlc6HQ6urq62Lx5Mz09PVwuHjQuLk79HiMiIsjLyyM8PByv13uJz3hISIg6GtVqtaodBEMcPnyY8PBwcnJymD179nUnDYXANVNSUkJpaalaVlhYGOnp6cPE7pFs7/r6+ggODqa/v5+PPvrokvWpqanqdTVk2WYymTCbzZhMJsLDw7HZbHR3d2M2m9Xrv62tTRWmP09YWBhf//rXVSFz7969lJWVDdvm4u/r2WefJSoqClmWqaysvGTboTbIbDbjcrlUgfiLklcK7ixuz5ZKcNthNBppamqiQ4nARBca63nk1IUsXbqU9evXU11dzblz55gyZcpYV1UguOOx2Wxs27aN1tZWnnvuOfVm46mnnhqVBztFUXAeOEDvL/4L7+CwQV1qKqY/+x7Bg5ENo4lOpyMxMRG32838+fOZM2fOXdmjLRAI7j6Cg4O59957KSwspKamhlOnTqmRw0Ntb25uLqmpqZcMlR1K7KXT6fD5fLjdbn7/+98zbdq0274djQ838t1FaXxrQQp7z3WzsayVA+et1HUNXP3Dn0MC5meYeWx2AsWZUejGSHQ+dOgQBw4coKKiQvh+jzCKonDy5El27dqFw+EAIDk5GUVRVKFDp9Nx9OhRjEYj06ZNG5EcRV6vl1dffZW2tjYgIIwVFxffUPSgoihERkZisVjYsGEDBQUFLF++fNSERUVRyMnJob29ndzcXDVi93IR6oqiqPYSLpeL1tZWWltb1fXR0dHcc8896vtZs2ah0+lUsdlkMl22w21I5L84wtZqteLz+WhvbycxMRGXy4UkSTgcDo4ePXrF44mNjVU9dXt7ey+p4xAhISHMnj2bxYsXq8fW2dmpivB1dXXq9wkB4TMvLw+ArKwsEhMTr8s64k5DkiTVemS8IEkSiYmJJCYmct9996kR+z6fD41Gg9VqBQK/x4sFW5PJxMSJE9X9hIaGXrNtVVxcHI8//jgDAwMMDAzQ1tbG+fPn6e/vp6SkhLi4OMxmMxqNRu1Uudpv6sCBA+zdu1cVjqOiopg7dy7Z2dmj2qE9ceJE1q1bR2VlpWo1efF5MpvN6rapqamXtcCNjY29xLqjsLCQjIwMtZNgqA1wuVzYbDacTqca+e1wONSOxcvhdDrV63+o3YiKilI7viIiIm7bTn/BrUFYnSCsTq6Vn/70p8yzfUgRpXhnPod32Y8B2LNnD2VlZZjNZl544YXbtudXILgTOHXqFNu3b8fpdKLValm9ejWTJ08etfJkm43uH/2YgZ07AdBERhL5rW8x4eGHkEYpSUxLSwsHDhxg6dKlauS60+lUPfzu1ocNgUAguFGGhiDv2rULgAkTJlBUVERubu64iT5u63PR0D2Ayyvj8sm4vP7B+cCr0+vHPbjc6ZVxe2W67G6OX+hX9xEbZuDLMyby5VkJJERcPfJzJLnY9zsyMpInnnjihhNoCT5jYGCADRs20NzcDAQiDpcsWXKJ+OLxePjlL3+Jx+NBp9ORk5PDjBkzSE1Nvep9hcvloq2tjba2Njo6OlizZg2SJCHLMps3b6a2tpZ77rlHFXxvFJ/Px759+9RoxZiYGB555JERs5GwWq3s3r2blStX3tC9lKIo9PX1qVHhdrsds9lMTEzMiN2LyrJMX1+fGkk+dI14PB5KSkrQ6/XqNJTQXK/XEx4ert4zejwempqa6OnpwWq1qq9DnSKFhYUsXLgQSZKw2Wy8/PLLl9QjOjqa1NRUcnJyxHV6BzOUyNNsNjNhwoRRfcbw+XzU1dVRU1PD8uXL1U7sI0eOcPr0aXJzc5k2bdqwSPChKG5FUSgrK+ODDz5g4sSJzJs3j8mTJ99xz0SKojAwMIDNZiM6OlptT20227DEpxcftyRJmEymu16DElYnwuP7qgjh+9r43e9+h7npI9ayA3/KAtyPbwQCHlOvvPIKDoeD++67j4ULF45xTQWCO4+BgQG2b9/O6dOngUDP+cqVK4mJiRm1Mt2nT9P1t3+L70IL6LSEP/kUEV9/Hk1Y2KiU19XVxf79+zl//jwAU6dOZdWqVRgMBrRa7R13cycQCAS3EkVROHXqFLt376avrw/4LFfCnZykvNE6wKbyNt450YZ1IGC/oJFgweQoHpuVwMIpUWg1gf+Xoei8qKioUfnP6ezs5N1336Wvrw+9Xs+qVavUaFLBjSHLMr/73e/o7Ozk3nvvZfbs2ZeN7PN4PJw4cYJTp07R3d2tLo+MjGT69OnMmDFDzVfU3t5ObW2tKnYPRYQO8dxzz6nilN1uR6PREDKCSb3r6+vZvn07AwMD6HQ6Vq9efdO/k4qKCj744AM8Hg/5+fnjxvt/JPF4PPT09BAUFKR+121tbbz99tvo9XqSk5NJTU0lJSXllicpFNy9vP7667S3t6vvY2NjycnJobW1lSlTppCfn4/P51MTqyYlJYlnIsElCOFbCN9XRQjf18a7775L14kPWccGFGMkzm+XgSFwk3fmzBk++OADdDod3/3ud0WiS4FgBDl79ixbt27F4XAgSRL33HMPhYWFozZkS5FlbH/4Az0vvQQ+P9qEBGJ+/GOC8kfn4VxRFI4fP84nn3yCLMtIkkReXh4LFy7EbDaLmzuBQCAYQXw+H0eOHGH//v2qR2h6ejoPPfTQuIn+vhE8PpndZy1sLGvlSEMvBnxEaQZIC3aTE+HD6O3HYQ8kQEtMTOTJJ58clXo4nU62bt1KY2MjAPPmzWPZsmUj9p/u9/s5ffo0hw8fprOzE41Gg0ajYebMmarYORS0MmSNc7FFTkZGxqjeY9wsiqJQUVFBVlYWOp0Oj8eD1WpFr9cTdg0d84qi0NbWRmVlJdXV1artQVFRkepT/emnn7J///5hnwsPDycuLo74+Hhyc3OvqaybweFw8OGHH1JfX8+SJUvU78TpdNLT00NCQsI13R+53W62b99ORUUFEPAff/DBB8Uzr0Bwm+B2uzl//jzV1dU0NDQgy7K6LjIyknXr1olnIcFVEcK3SG4pGCFMJhOVxOHQRxPq6kJX9mt89/wZANnZ2Zw8eRK9Xq/6TgkEgpHhzJkzOBwOoqKiWLlyJfHx8aNWlr+nh+4f/hDngYMAhCxZQtQ//sOoRXl7PB527txJVVUVABkZGSxZsoT4+Pi76iavq6uLzs5Opk6dekcLTwKBYOzR6XTMnz+fGTNmsG/fPo4dO0ZISMgd3fa4XC4GBgZ4IDeOB3LjqLPY2PT7XyMpMsjg7wHH4LaSRktCQoL6WUVRaG1tvWah8WoEBwfzyCOPcPDgQUpKSjh27BjTp08f5iV7I/j9fo4dO8bhw4fViH5AFVHcbrfqgepwOC6bUAwC0cYtLS089thjN1Wf0aC1tZXt27fT0tLC3LlzWbRoEcAwj9mrIUkSCQkJJCQksHjxYs6dO0dlZSXZ2dnq+UlISCAzM5P4+Hg1Qd6t9mQPDQ3ly1/+MidOnCAtLU0V6CsqKtixYwchISGkp6czZcoUMjIyhiVWHKKlpUVN3CdJkpov4E6+1gWC8UZQUBC5ubnk5ubidDo5d+4ctbW1hIaGMmfOnLvqeei2w9WHpqcOyVqHpqcefC58OQ+hxOaOdc0E14mI+EZEfF8rlZWVbNmyhUWmDoqtf0AxhOH8VgkEB242PR4Per0eSZIwGo3ipkoguAmGIp/9fj/9/f2Ul5czd+7cUfUvc5WV0fWDv8NvsYDBgPn/fJ8JX/7yqN5wHTlyhH379iFJEvfddx/33nvvbRtlNhp0d3ezd+9eKisrgUACma9+9asjOmRaEGBomOhIJDQTCO4kuru70Wg06rXR09NDeXk5SUlJJCYmXlZQGw+0trZy4sQJWltb6enpITY2lu0K/ZkAACAASURBVGeeeUZd//rrr+N0OlGCTZy16Thh1dAth6AgsTAjkn9ak0/0BAP19fVs2rSJqKgopk+fTm5urppU+mY5d+4cbrebadOmqZ7FN/qf6/f7+Z//+R96e3vVBH5Tp05Vvaj1er1q3+D3+2ltbcXv9yPLsvpqt9s5cuQIq1evJiUlBb1ef1vczzudTnbv3q16X+v1ehYsWMDs2bPHuGa3nqNHj3L48GFVCB9i4sSJTJ48mXnz5hEaGkpVVRWbNm1ClmXCw8N58MEHx11SQoHgjsDdj+TqQwmfBGMtYvvcSN01aDrPoLGcAZ8bf/Ya5EmFY1+3scLjQOoJCNtSTx0aax1ST31A8HZaL/sRf/J8fLO/gX/yMpDG/j8SRMS3sDq5BoTwfW20tLSwYcMGEibG83jv/0XTeRrvnG/hXfxPl2w79AAleigFguvD4/Hw8ccf09/fz9q1a7kVTbTi99P3m9/S99vfgiyjS00l5t//HUPmlFEv2+/388EHHzB79uw7MknLlbBarezbt4+Kigr1O9br9SQmJvLEE0+oCW8EI0N1dTXvv/8+kiSxbt06TCbTWFdJILjtUBQFj8fD5s2bOXfunLo8MjKShIQEEhMTSUxMJCoq6rYQQy+Hoig0NDRw5MgRNdnhEJGRkXz9619X6+7z+YZ1JtdaHGwsb2XDsRa8fgVziJ5/XpVFlLOFTz/9FK834A+u0+mYOnWqGqU9km21xWKho6ODgoKCq+63t7eXY8eOUVxcDIDX66WqqgqXy0Vubi76G0xA/fnzUl5ejiRJY2J/UlFRwYkTJ7hw4YJ6/rOzsykuLh6fHsx+L1JvA0pkCmhvXKAY6rior6+nvr6ezs5OIBDN/r3vfY8JEyYwMDDAr371KyZNmsTy5ctHrLNGIBBcA04r2nM70NV8gKZhH5LsRY5MwZ++FH/GEuSke0A3ytekw4Km8/SgyB14laznkeRLR+fLUVPwTX8a37RHwXgHWtb6XEi9jWistQFR21qH1DMocDs6vvCjcmgciikNxZQOHhvamu1Iij+wLjIN35x1+KY9DoaxDRIQwrcQvq+KEL6vHb/fj9vtRlO3B+Omp1C0BlzfOBjowRxkYGCAffv2ER0dLRJdCgTXwVCCnZ6eHgCefPJJEhMTR7VMX2cnXX/397gHo6hCV6/G/Nd/hWaUhvTKskxlZSXTpk1TH6BvNsptvFFVVcXbb7+tCt4ZGRnMnz9fjfIOCwtTM7i7XK7rGsItGI7X62Xnzp0cO3ZMXZaUlMSzzz572wp34xmPx4NOpxPn9jbC6/VitVqJjY295ja2qqqKmpoaWlpasFgsl6x/4YUXVNGxr6+P4ODg2+Zha9euXRw/fhwIBGHk5OQwdepU4uLirnkkTU2Hnb9+9wxnOwLmJ1+eOZE/X5REY20NJ06cGGYREhMTw2OPPTYio3Tcbje///3v6evrIy8vj1WrVl1WvG5vb+fgwYOcPn0aRVFYsWLFqCXI7O/v55VXXsHn8xETE8PKlStHPBGqoij09PTQ3NxMc3MzxcXFhIaG4vf72bdvn+q1HR0dzZIlS0hOTh7R8m8FUl8zupNvoKvcgOToRI5MxbvwB/izvjQiUZZ2u52GhgZ6e3spKioatjw0NPTq177PjabxABhCkU3pEBpz90Z/3mVIvU1I1vPIcXmB711w4zi60J77EF3NNjSNB1VxFECRtMPf64PxpyzEn74EOWMpSthNWF25+gLRytbzaiS3xnIGyXHp/zeAYoxEjslBjs1B8g6grXoXyTsQWKcz4s9ahW/G15ATZt9cO6AoSH1NaDpPB97qgwNivy5YnVd0xsAyfTBo9DdXnuxD6msetCX5nMDd34LElWVPJdiMbEpHMaUhm9NRTOnIpjSUyDQIGt7JKvW3oCt/Fd3JN5DcAVsxJSgcX/5T+GY/P0wXu5UI4VsI31dFCN/XjizLuFwuUBSCNjyCtvkQvmmP41n5C3Wbqqoqtm3bhk6n4zvf+Y6IrBMIroHGxkb++Mc/4na7CQsLY8WKFSP+cPl5Bvbvp/uHP0Tu7UMKCcH8g79lwsqVo1ae0+lk27ZtNDQ0MHv2bBYvXkxQUNBdYW2iKIoqZvf39/Pyyy+TmJjI/Pnzr+jrumPHDs6cOcPSpUuZO3fuXdMxMJIcPnyYnTt3AjB9+nTOnDmD1+tl8eLFLFiwYIxrN35RFIX29nY6Ozvp7OzEYrHQ2dlJX18fQUFBZGdns2bNmrGu5l1Pd3c3b775JlarlUmTJlFcXEx6evp1tSVOp5Ompiaam5u5cOECDoeD5557Tl2/adMmGhoaiI6OVn3Ch6aQkBCWL1+ubnv06FFsNtuwRIpGoxGj0UhISAhpaWnqtkNt5tXw+/34/X71Ya+xsZF33nmH/Px85syZc8P39R6fzH9/Userh5tRgCSTkZ+syWZmUgStra2cPHmSs2fPEhkZybPPPqvW9dVXX8Xj8ajHdfFkMpnIz89Xy2hra1NtzYamqqoqtaMuNjaWJ554ApPJhM1mw2KxcOjQIWpra9V9pKamcu+9945aJ7miKJw6dYq9e/eq/td5eXksX778hiOufT4fbW1tNDU1ceHCBZqbm3E4HOr6tWvXMmVKYMSZxWKhpaWFxMREoqOjx9f/oN+LtvZjdCdfR1O/VxVdFCR13p8wG2/xPyJPmjs2dVQUNLW7MOz5RzS9DZ8tNkwYFIHSUczpgfnBV4wRY1PXW42igLMbydaGxtaGZGsdnNoCk70DJSQqIJCZBwUzUzpKZGpAxLtNkWxtaJoOom06iKbxAJr+C+o6OSoTf0oRcvJ8/En3QLB4hr8q9g505z5Ee3YbmubDgbwRg8ixufgyH8Sf9SBKWCLaxv1oaz9GU7cHjb192G7k2Gn4M5bgT1+KPHEmaD73bOR1IvU2DEYsD9pyWGsDrwOXz9egIAV+n7EBkVuOyUWJzUEJSxguMLtt6M5sCbRVgyI1gByTHYgCz/0yBF3Df6nHgab9JJrWY2hay9G2ll2xbpetr6RRRXBFO2hLOEyqVC5Z9pmYrYCz57LR7OqnDWGqqK0K2+bA6w1FuXsc6E6/je7Yb9D01A0egxZ/5kp8c76JnDjn+vd5EwjhWwjfV0UI39eOoijqja+mtRzjGw+iSBpcz+1Bic5St3nrrbdobm4mMzOTr3zlK2NZZYHgtufcuXNs3LgRn89HUlISa9euHdUhqYrXS89LL2F74w8AGKZOJfrff4J+FKOo2tvbee+99+jv70ev13P//fczc+bMOz4ytL+/nwMHDtDd3c3jjz+uJv+12+1fKBr4/X42bdpEU1MTEBA31qxZQ2TkHTj8cJQYipjfsmULM2bMIC0tjcrKSj766CPi4+NZt27dXdHpcjPIsozValWH0efk5ACB3+dPfvIT/H7/ZT+XnZ3N6tWr0Wq1SJLE1q1bmThxImlpadcVeSy4cXw+Hy+99BL9/f3DliclJVFcXExaWtoNfQ+yLKMoCrIsMzAwwG9/+1vsdvtltw0PD+db3/qW+v7111+nvb39stsajUb+5E/+RH2/ceNG2tvbMRqNBAcHq+JxYmIiM2fOxOv1UlFRQWlpKbm5ueoIw6HrfqQSEZY29PA371XR1udGI8G6+Sl8Z1EqBq0Gp9OJzWYjNjZW3f4Xv/iFasnxeYZyOAzx8ssvDxN8L2aoozQoKIi1a9eyc+dOdTSYJElMnTqVgoIC4uLiRuQ4r4bT6WT//v2cPHkSCCRjKy4uZu7cuVf8H3e5XHR1dWGxWEhMTCQ2NhZFUThz5gybNm0atq1WqyUuLo7ExERycnKGndPxxueju4fwpy7EN/1p/ClF6I/9Fl3py0jewDOVb8oDeBf+ACVq8q2rp7UWw55/RFu3ByAg4upDkfovDBPvPo8SEvWZKB4WDz5PwEbA5wKfC3zOwHENvpd8roBoN/heiUjCl/0w/pyHA58fKbxOtOd3oju9CU1bOYrW8JmINhhlit6IohuKOjV+FnWqD0byOocL27Y2JL/7hqoihyUME9bU+Yhk0N3iPCMDXWibDqNpOoC28SCantphqxWNDiU8CU1v/fDlSCixufhTivAnz0eeNA+CRifR/XhD6m9BW7Mdbc02NBdKh0US++Py8Wd9CX/mgyjm9MvvQFGQOk+hrd2Ftm43mtbyYftQgs340+5DMYR+JnDbWr+wTkpoLLIpDTkmGzkmByU2Fzl6KhiuYzSSoqBpK0d34nW01e8FrlkGo9OnPoRvxtPI8dMDormiBOrVVo6mtSwgcluqLmk7FI0eOSYbdEGD7UKgbRjWRnxBe3O9KDrjZ51QpjRkc8bg+wwIiRqdkSyKjKZuD/pjv0bbuF9d7J84C9+cb+JPXwJ+t9oWBtrFweP3fjb/2flxgzEy0I6EJwRGAxhNV627EL6F8H1VhPB97ezbt4+ysjJmzZpFQUEBhne/jq5mO77J9+N5+DV1u66uLl577TUUReErX/kKmZmZY1dpgWAMURQFh8PBp59+islkwmw2YzKZMJlMBAUFcebMGTZv3owsy6Snp7N69eob9uW8FlxlZfT89Gd4qqsBCPvKVzB970+RRvGPsrKyko8//hi/309kZCQPP/wwkyZNuqPFL7vdzoEDBzh27JgqDn71q1+9YnT35VAUhePHj7Nv3z68Xi8Gg4Hly5cza9asGzp3Q4KQ0Wi8Y8+90+nk0KFDLFy4EJ/Pd4lH/lD0YnZ2NkFBQSLR5efweDw0NzdTX19PY2MjbW1t6u83NjaW5557DlkOPKC89dZbyLJMTEwM0dHRREdHExUVRV9fHxqNRhWuurq6ePXVV9UyQkJCSElJITU1lbS0tGFRnAMDA3R2dmK327Hb7TgcjmHzS5YsIT09HUVRqK2tZcuWLRgMBgwGA0FBQeq8wWBg5syZagRxf38/FouFlJSUUU0QfDuhKAqnT5+mpKSEpUuXUllZycmTJ9Xvc/Xq1cycOfOG9m2xWCgtLeXkyZNqgr38/HySkpKQZZnTp0/T1dXFpEmTWLZsGWFhAbGkvLwcm82mJlL0+Xy4XC6cTid6vZ6HHnpILWP9+vV0dFzed9NsNjMwMBAYgTj4/vnnnx+1ds3m8vHjj87xXkVAtM+On8D/91AOk2Mu9fO0Wq24XK7LTmFhYRQUFKjb/uEPf2BgYABFUdTOhKF5k8mELMu0tbUBEBwcjCzL5OTkMGfOnDHrBG1ra2PXrl20t7ej1Wr59re/TXR0NHa7naqqKiwWiyp2X9whUlxczLx585Blma6uLt56661hvvFxcXHj+9r0e9HW7kR38o3h0d0h0fjynsCX/xSKKXX4Z+wd6A/+J7qKN5EUGUXS4pvxNN57vw+h0aNXV7cN/eFfoDv2GyTZi6LR4yv4Ft7C7wWG9PvcSH2NnyV4G4wwlXrqL4lSvRkUSYOcsgDftMfwT1kB+huwC1JkNBeOoDu9CW31ViSPbcTqpxYRGoscNhElbCJKWECEUiZMRJkQi+ToGkyCd5GtwqD1wRX3p9EPivEBIf5i2wd1uSrKD4n1RtCFXDQ/tM3g53VGdV9odGjaKwJCd9NBNJaq4eVLGuS4POTkIvwp85ET5wa8iQe60TYfRtN0CG3TATTd5z73OS3yxBnIyffiTy5CicoEv3u4YHdRB8dn804k7+Ay5fKd5VxJjpIk0AV97piDLznmi+0yFKPp+sTea8HVGzg3jQcD56br7LDV/omzPhO7I28giGigC239J2hrd6Ot//SKvyElKOIiG450NVpZMaWPfKeEqw/d6U3oTqxH012jLpZjp6FMiEXTehzJ1XPJx+SwBOSE2Z9NcdO+2MtcUcDvuaSjDL8buOg/fdj/+xWWGyMDIvEYJpuUOs+gL/st2jNbbrjj7HIoOmOg3QmbqIrhSlgCyoSJgfYpPAFdWByGu/C5Rgjf14EQvq+dPXv2sH//fqZPn87y5cuRus9h/F0xkiLjevK9YUP1PvnkE44dO0ZkZCTf/e53x/cNrUBwHXR0dNDV1cXkyZPx+/1cuHCBP/7xj5dsFxISQnBwMD09PWRmZrJy5UpcLhft7e14PB68Xu+wV4/Hw9SpU0lKSgKgtbVVtXEIDQ0dNk2YMIG4uDjVash96hS9L7+Mq+QIAJqICKL+6YeELFo0aufB5/Oxe/duKioqgICX9dq1a8dnQqprRFEUjh49yq5du9To7sTERIqKim7Yl7Snp4cPP/yQlpYWIHAe16xZo4pJl8Pj8WCxWIiJiVF7/3ft2sXBgwcJDw8nOzubnJwckpKSxlQE9/v9VFVVkZWVddMdPo2NjWzZsoX+/n7mzZt3TTkm7harnSshy/KwaM2XXnoJq3V4Bnu9Xk90dDRxcXEsW7bsusuw2+2cPn2apqYmWlpaLomGXbhwIcXFxSiKQmVlJe++++4V93X//ferVhHV1dVs3br1its+8MAD5OfnI0kSdXV1bNy4EYPBQHp6OllZWUyZMoXQ0LFNRDTSyLJMX18fERERuN1uVUQdusZtNhtHjhzh/PnzPP/88wQHB6PX61Vrjqvtu6amhtLSUurq6tTlUVFRzJw5k9zcXAwGA4qi8Otf/3pYpHl6ejozZsxg6tSpX3idDz2SKIrCwMAADocDp9PJwMAATU1Nw5L4QSBZ5dy5c8nNzb0l95g7znTyTx+cpc/pI0in4S+WZPDU3EQ0o9SG+nw+9uzZw8mTJ0lLS+Phhx++LUZJybJMRUUFXq+XgoICtFotFouFV1555ZJtJ0yYQFRUFNOmTVNHjFyrjc0txTuA5OwBr+NSEU65aCi9+j4wL/m9AU/fK0V3T15+1SSWUtdZ9Ht/jK42cD+n6EPxzvsuvoJv3ZgYfCUUGe2ZzRg+/Te1rv70JXgW/8uVI1M/j9uO1FuvRqFKDksggnnIq3eYb+9Fgq66zICm+Qi602+jbSn9rGr6UPxTV+HLfRQ5qfCqwpVkrQ2I3Wc2o+n7LImtHJ6IP/cR/JNXoGi0alTpJZGW3kFB9qJ5dEEoExI+JyrFXV8SUkUBpzVwfnrq0PTUIVnrA689daqP8q1GjsnBn3xvQOxOKrw2uxp7B9ohEbzp0DArnNsdOTI1EPkcm4syFAEdmXztgqjHgeZCCdpBoVvqODU8IhsJeVIB/swv4c9ciRI+glZTsg9NSynahr2gKBdFLKdDsPnWe+8rCpqWo4Eo8LPbhom5is6IHJ+PPHE2csIs5ITZN+dVfifh6EJ34vfoj7+m2r0ERqEED28rh3V6DXbgaIMC7cjQCJRrtIvx3fcP6Bb9n9E8qtsSIXxfB0L4vnZOnDjBe++9R0pKCo899hgAho++j67iTfyJBbiffE9tkD0eD6+88gp2u51FixapWefvNoYePG+HhxXB6NPR0cH69etxOp08/PDDpKen09PTw6lTp+jr66O3t5fe3l7VMgigsLCQ+fPno9FoqKurY/PmzVfc/+LFi5k9ezbAFQX1IRYuXMhMk5neX/4S5969AMgaDd2zZhH2/HNkFRaO0FFfnp6eHtavX4/H42HBggUsWrTojhYZnU4n7777LjU1gciIiRMnUlRUREpKyk0/5MuyTFlZGfv378dgMPDNb36TiIjAg0tvby8dHR3DpiHx8qmnnlKjMCsrK/nwww+H7XfChAmqCJ6cnHzL2im32015eTlHjhyhr6+P+++/n+nTp6PVamlqauLYsWOqOHm1jhJZltm/fz979+5FURQiIyNZtWoV8fFfPIRalmWOHDlCWloa6enX+NA/zvH5fDQ3N9PQ0EBDQwPd3d1873vfQ1EU/H4/27dvp6mpiaSkJJKTk0lMTCQyMnLERCq/3097eztNTU00NTXR2trK2rVr1cjsCxcu8NFHH13SkTc0xcbGqr8Hj8eD3W5XOwUvnrxerxpNDtDS0sJ77713ia3EpEmTyMzMZMaMGV/YkTQe8Hg8bNmyhebmZp566qkvjAj2+XyqUKwoCuvXryckJITi4mJSUlIu+5menh5eeuklVbTMyMhg1qxZJCcnX/L78Hg81NTUcOrUKZqbPxOlgoKCmDt3LosXL75s/S0WCx0dHap3/KpVq4iIiFCv8X379gGBhJKFhYVkZmaq3ti3CovNzd+9X82B2kAbe0+aiR+tmUp8+OjZk1VVVZGamqratzgcDvR6/W01pNnr9bJ161aioqKIiorCbDYTFRWFTqfDbrfT399PX18f/f399Pf3ExoaSmFh4eiNcPN70XRUBoRZVw+SsycQnegcnFff9yK5etQh/TeDEhrzWXR35OWvoy9C03QI/af/grY9YCcjT4jHW/RX+Kc9dqnf73UitZ/EsOvv0bYG/OPlyDQ8S/4FOWPpTe33purUU4/u9Ga0p99G09ekLpfDE/HnfBlf7qPDrV+cVnTV76M9vQlta5m6WDFMCCTjy33kmkTzMUNRwNU7KLZ/zu7B6xxudzAYQT1s24ujqC8r4n8WMSubMwL2JMlF+JPvgZCbH0Eg9TUPRoMfRNN0EMnefollzCWi3ucFPc3lOig/135f3J4rcmAEgs85PIr84nMyeA7U6HK/5/KnXx86KIbnoMTkDFqCZAcipb3OgF3H4LFp2o5f4hUtmycHzmlKUcD/PCTqJs/oOMRpRVe9FRQ/8sRZyLG5oB29Ucp3BIoc+L3qjDfejvvcSPb/x957x0dx5Vnf36oOauWAsoQCEiCQEDlZJAPGxgTb2Mb22OOIx+MwYd+dTc87++zsPrPv7rtxxvaMZ+zBxvZijAPRYMCAMTmLIEAC5ZzVklpSp6r7/FHqQo0EkkAkj87nU+ru6qrqanWFe889v3Oqu1sxtVboGQS01aEs/T3GCT8Y2P2/CzBIfPcDg8R331FSUsKqVavw9/fnxz/+MbIsI7VWYXnvHiS3HceyDzV1Qyc8QZdBQUG88cYbN9XC4U6EzWbjk08+oaqqCkmSMBgMGI1GRo8ezeLFi/XlVq5cqb/n8WeaPHnyXZlcfyNQVZXc3FwkSWLUqFG3e3f6DQ/p3d7eTnR0NI8//ng3FZ1HERwXF4fZbMZqtRIZGamTFNXV1XzzzTd6p9ZsNmMymfTXycnJeoiVRx3usVPpOimlZWSeP4/h0CHtc2WZ4sREzmWk095JHE2fPp2srKwBJQ3q6uoYMmSITqDm5+djNBoZNWrUnafwGmA4nU7effddrFYrc+bMYfz48QP+nRsaGrDZbCQmJiLLMjk5OWzZsqXHZf38/Ljvvvt0qymXy4WqqpSVlZGXl0d+fr5uUwDws5/9jODg4Jv6O7W0tHD06FGOHz+Ow+HQ93PGjBmMHTsWgG+++YZTp07p68TFxTFixAhGjBhBVFSU1/41Nzezfv16SkpKAEhPT2f+/Pl9IoSOHDnC3r17CQwM5NVXXx0wT+C+wuVyed0TCwoKKCws9PI07uptHBwc3E3VKoTA5XLpdhGex+TkZN3G5cKFC1y4cIGWlhbKy8u7+XI/++yzuk+w2+3WfblvBdxut35vvNkQQlBTU0N+fj6FhYVeNhovvvgicXFxSJJEe3s7Pj4+d1WVWktLC2vWrNHtJ5YuXUpqat+8gmtra/n44491C5vk5GTmzJmDyWSitLSUKVOmoCgKLpeLr7/+Gl9fX8aNG6cPvPUGq9VKTk4O586do6WlhSlTpjBv3jyMRiPFxcUcPXqU2tpa3b+6K7qGHFZWVlJYWEh8fLw+mKiqKps2bSI1NZWMjIw+/rd6gFCRGgs7vUpPIrXXoYxehjJ8YY8kmhCCT49X8u/f5GN3qwRZjPzd/cNZNCYS4y0YPNy4cSPl5eVkZWWRmZk5YAOWQghqa2ux2+1a+16SsFgs+gASoCvuJUnSl1FVldbWVoxGo16RpigKf/rTn2htbe1mOQWa1/xjjz02sOeZEEg1Z7WwsQvrkdob+re6bAST/+XfXNL/dCHjur9WI0fjznwaJfX+GyeBhIrhwkZM+/5FVzKr4Wm4sv4SNXykFkpn7kelSls95n3/guHMGiQEwuSH656/wD3x5VvvNX01eBSlOZ9jyN3kZVeixIxHGfGgFpRXsBNJ1SqGhCSjJs/BPfoxlOH3D6wy/m6HELdGFXyrPqe/aG9ArruAXHtOf5QaLl6VEFeD4jTLmitsKdTgBC3kMyELNSHruv3ohRAcPnyYyspKoqKiGDp0KLGxsX92nMggbjIUJ0aDAbPf3S3iuB4MEt/9wCDx3Xc4nU7++7//G7vdztKlSxk5Ugu0NO35Naajv0MNH4n9+V36iJYQghMnTpCRkUFgYOCf1UXe7Xbz4YcfUl5e3u290aNHs2jRIn25//7v/+62jNFo5MknnyQlJeWm7+udApfLxZtvvonNZmPhwoVMmXKbUu6vA7W1tXz44Ye9kt7ffvstJ06cwM/Pj5deemnAQyzdlZVY332Ptq++gk4iw2/BAvxefAGrvz82m43y8nJOnjwJwJgxY7jvvvtuiHgSQlBSUsKxY8coLi72vjaYTBiNxu8t6a0oik46OBwOampqEELcsmCuiooK1q5dy5AhQ4iIiPCaerNxcLvdlJaWkpeXp1cogHbt2bhxIz4+PqSnp5OUlHTDxKSqqmzevJkzZ87oBFtYWBiTJk1i9OjRXveGuro6Ll68SEFBQTeP3+DgYF566SUCAwMpLCzk888/x263YzKZWLBggV5K3xc4nU4+/PBDrFYrGRkZPProozf0HXuDEILq6moKCgooKCigtLSUV199laCgIBRFYd++fRzqHKjqCS+88ALx8fEAZGdn8+2332K323sMmHzppZf0ILmDBw/qSlnQbJESEhJ0VfdAKrrvJrS2tlJQUEBFRQUPPvigrhzeunUrFy9eJCUlhaSkJBISEoiMjLxjq7aqqqpYs2YNra2t+Pn58fDDD+uDo31FS0sLhw8f5uzZs/r56cHLL788IH7SQgjKysoIDg7WSXOPOMIDPz8/wsPD9WtYFpZ01wAAIABJREFUUlLSNZX4OTk5ehXLlClTmDlzZt9+p45G5MpsDJ2hXHLVqR49VdUhw3FNfQNl1CM9EppF9e387YbznK3UiLrYYAvPTInj0fGxBFpuzsCJw+Hgo48+wmq1Atp1dPbs2aSkpFz3edzc3My5c+c4d+6cvl0PkpKSePzxx/XX1wrv7FoNCvD222/T0dGBwWAgMDCQoKAggoODMZvNTJs2DT+/gSErpdZKDOfXYcz53MuLVviGooYkab6vvqHaZAkD3xCERXutvRemPTcH3DlEntuBMfsDTId+i2T3/k2EObDTiiPmst90YLQWhBYQrVkN+ARpZfb7/x3JodkOuUc/imv2Lwc2UHKg4erAUPCN9lsWfYt0hSe0GpmBO/1R3KOWQcDdG4A6iFsMxaVZz9SeR67TJqn2vJdnvRoQ7U10X49X91Wwe/duTpy4XKUgyzIxMTEMHTqU+Ph4EhISvtcVsYO4NRgMtxwkvnvFIPHdP3z77bfs3buXiIgInnvuOa2hbbfi+8dpSI5mHA/+VivL6wG+vr5/Nh3sXbt2sX//fnx8fHjiiSfw9/fH7XajKAomk0k/1lRVpbCwEEVR9PcvXrxIUVERRqORH/7wh99b5bdH4Z2WlqYrF7/66ivOnTsHwPLly+8K5XdfSG9VVdmxYwdnz54FvC1LBgLuujqa/7QS2/r10Okt7Tt7NiGvvop5xPBuy586dYqdO3cihGDkyJEsXbq035/p8Wc+fvw4dXV1gKYCmz59OrNnz8ZoNPaZLGpvb+fixYsEBgYybNiwu+I60dDQwLp160hLSxvQ37I/8IShDWSDub29nd///ve6Ss9sNnuFFyYkJJCUlNSvbQohWL16NQUFBcTHxzN58uQ+ETU2m00niktKSvD39+dHP/oRRqMRq9XKypUrCQsLY/HixbqffX9QUVHBmjVrEEKwbNkyxowZ0+9tXAue47qwsJCCggLa2739PRcuXKgrVYuKiiguLtaD8BwOh1cw3nPPPad/x3379nH48GF9O7IsY7FY8PHxwWKxsGDBAn3wpaqqivLycnx9fYmNjSU0NPSuOL9uB4QQrFq1ivp6bz9Fs9msK4374h1/q5Cbm8u6detwuVyEh4ezbNmyPiuxe0JzczOHDx8mJycHgJEjR5KVlXVd51Zf0NLSwqVLl3Syu79EqBCCAwcO6ANGKSkpLF682Lvjpzg1ssNDcldmI1uLum/LaNEC32ImgGzEePpjnTBUg+JxT3kN95gntRL+LnApKu8fLOXDw+VYOzRC2M9sYNm4GJ6ZEk9C2MBXkiiKwunTpzl48KBumxYfH8+cOXP6FaDs2dbvfvc7vQLHZDIRHBysh23Gx8fzwAMP6Mu/9957eqWQ5/4jSRIBAQHExcWxYMHlqs+6ujp8fX3x9/e/5jXn4MGDJCYm9m/AxtmG4dJWjDlfIJfsuxwmafBBGf6A5hWdNOvuL8O3WzEdfktTO7dW9Tm8UUgyktAGsdTIDJzz/9krh+muQFsdxgvrMRTtQQ1Pw53+GCKy74PbgxhEr2hvQG64iPALR4SlDujAV1dLMbfbzcGDB2ltbaW0tNQr+FeSJH7yk5/oVXqNjY34+fkNuDBqEFqldFfb0dbWVkJDQ4mPjyciIuKOFTj0FYPE9yDx3SsGie/+oaOjg9/85jc4nU6WLVumK5KNR36H+btfowbFYV+xv1uCrxCCyspKUlNT/yw63e3t7axbt44JEyb0myRyu91s2rSJjo4Oli9fTlBQ0Pfqf6aqKjk5Oezdu5eGhgaWLFlCWloaoB0nO3bs4MyZM3cF8d/S0sIf//hH2tvbiYqKYvny5d0aK4qisGXLFvLy8pAkiQceeODGyrK7brupiZZVq2j97HNEZ8fVMnUqIa+9ik8vJF5+fj5btmxh6dKlusduX6CqKseOHePkyZN6481kMpGZmcnUqVMJDw/v1/G6Y8cOjh49qitXExISmD9/vl4yfadBCMHp06fZunUrLpcLPz8/Xn755e9NY6OrHcqlS5e6kbVjxoxhyZIlyLKMqqq64rzrVFpaypEjR3jsscfw8/NDURRqa2txu93ExsZe1365XC6am5u9yu6rq6uJiIi4IeJ///79HDp0CIvFwo9//OMbIg5VVfUKCjx37hxffPGF/r7JZCIxMZHExESSk5OvW23d3NyMw+HQbVBMJtP36h5xO+FR5hcVFVFRUUFlZaVO9EVHR/PCCy9gMBiQZZmDBw8SHBzM0KFDb+i4uR7k5eXx6aefApoqd+nSpXrH+UZht2t+x3dLx/vChQts27YNt9tNeHg4jzzyCCEBFozH38V0+C0kp63bOmpoCmrseNTYiSgx4xERo71JUkerppg99sfLwVR+4bgmv4J73HOaL2wX2F0Km8/W8NGRMgrqtGumBMwdGc5z04YyMWHgbaQcDgdHjhzhxIkTepjyQw89pNtbXQmP6r6oqIhZs2bp+7N9+3asVivp6emMSIrDbJQ1gr8/oX5d4WpHaq3WiFqbtyepJ6wLxYkIiKZVDqagrgObHETy2BlEpIzVQgU7VcteRJSqIJcd1CwxLm7xCgpU4qfiTn8cZeTivgX33a1w2JBsnf9P3fO1+vL/1lZ9+Xj1DcU58+9QMn9wwx7hgxjEIPoGl8vF7t27aWho4Mknn0SWZa/qV1VVaWxspLi4mJKSEux2O4888oi+/urVq6mqqiIiIoLY2FivKqiBusd/XyGEoLW1VSe3LRaLbpfmcrn4zW9+c9V1ExISeOKJJ/TXV4a/3w0YJL4Hie9eMUh89x/79+/H5XIxbty4yxdhVweW97KQbVU47/2VlkbeCSEEX3zxBcXFxTzxxBM6yfl9hRACu93eo69hX+F2u1FVFbPZjCzL+Pj43PXExpWEN2gd6zlz5ngpLVVVZcOGDRQUFGCxWHjxxReJiIi4Xbt9TaiqypYtW6ioqOiR9Ha5XGzcuJGioiJkWWbx4sW6DciNwn7iBHV/+3eonf9Ln7FjCXn9NSyTJvV9G3a71z739Ua/evVqKisr8ff3Z9KkSUycOJGAgIA+HaNWq5WAgAAMBgOqqrJ371727t1LeHg4VqtV78CPHDmS+fPnexGdtxt2u50tW7boisihQ4eyaNGiGwvGs9VgKNyN1F6He+KKO8qrUlVVGhoaaGxspKmpicbGRhITE0lPTwc01fv7779/1fWnTJnC7Nmzb9XuXhcURWH16tXU1NSQnJzMD3/4w+u61hYUFLB9+3bS0tKYMWMGiqLQ0dHBF198QWJiIklJScTGxg6Ws95lUFWV+vp6KioqMJvN+rHvsebyWIMEBQURHx+vV0bExMTc1PuWw+Fg1apVxMTEMHfu3Ktet+WSA8iVx3GPf/57TQhWVVWxfv162mw2MszlLDEfwmzTrOaEJQQ1ZjxK7ETUmPGoMePBt48qdlcHxpy1GI/8Drmlc3s+QbgnvIhr4kvdQuOEEBwsbOLDw2V6ACbA6JgAnp06lAfSIzEbBrYz3drayv79+ykpKeGll17SraM8auympibdyqSlRVOxP/P008T6uZFrc5Bqz2nl/7XnvUIGhWwEo68WTmfy1YLrOh+7zkM2IrXVXCa4r7DmuF4Ik3+nnUcswm8IcvkR5NZK/X01JEkju9Mfva4wye8t3A6ktlqEX3i3CoVBDGIQNw/19fVs3rxZrxp7/PHHGTly5DXbfUIIvcLG5XLx/vvvd6s68yA+Pp6nnnpKf221WgkMDLyr2pWqqtLe3k5bW5v+6Ofnp4fMK4rCRx99pA/AX4m4uDivKuUPPvhAX7ajo8PL/u9KMttTzRoSEkJISAgBAQHU1dVRUVHBuHHj9P6K0+nknXfe8bKjiYmJueOzXwaJ70Hiu1cMEt/XB5fL1c3nz3B6NT7bf4HwDaXjR4c1tUYnvvvuO44ePUp4eDivvvrqXTeK1hfU1NRQXFxMZmbmDZHePeH48ePExcXdlZ7fQgjOnj3bjfCePHkyEyZM6PEi7XQ6+eyzz6iqqvLy9b2TIITA6XTidrtxuVw9fo89e/Zw7NgxjEYjDz/8cL+U1df63JaPP8b61tugKJiGDSP0L36O5Z57bmhwpKmpiXXr1vHAAw94lRw3NTVx8OBB5s6dqwcAlpSUYLPZGDt2bJ/Upm63m9zcXLKzsyksLOSRRx5h+PDhejCnzWYjKiqK1tZWDhw4QE5ODkIIhg8fzlNPPXVHDPqUl5fz5ZdfYrVakSSJrKwspk6d2v9rmaogV2VjKNyJoWAXcm2O/paSkIVj2UdgvnPI72uho6ODS5cueRHjHpXFhAkTGDdu3C0PjbweNDQ08NFHHwFa0GF/7ALq6+v55ptvuHhR85a90ud2EAMEoSLVnNXOmeYShE+w5svb6c+r+feGgufR5HtT/Xrb29s5dOgQFRUV1NbWdrvnjxkzhoceekhXeG3dutWrKiI0NLTHTpSiKNhsNt3uxmN543mMj49n6NChOBwOnE7n1Ts5divm3b/CmLMWADV4KM4lf0CNnTDg/4s7Be1lZ2hf91MSHHkAqP5RuOb8PcroR3oMqewXFBeGC+sxHX4LuTEf0OxR3GOfwT35x4ig7jYd+XVtfHyknE1nqnG4tQGSiAAzT02O44mJsYT6DWwHtevxIIRg7dq1uN1u6ipLiaSBKOqIlRtI8rUR5qxEdnVXwg8UhMmvU7kd6+VHrXrU3AaTrlSmpYLK3GO4GkoIopUwox2zu+d9Ez7BuNOWomQ8jho76c7x5L6LoSgKubm55OXlIcsy/v7++hQVFUV09B3sCX4NqKqKw+Ggo6MDp9Pp9T1Onz5NdXW1Hgjd0dGBEEIPlV+2bJl+fc7Ly6OxsVF/r+sUGRn5Z5VfNYieIYTgzJkz7N69G7fbjb+/vy50ut6qvpKSEqqqqqitraWuro7W1lZSU1N1dbgQgrfffhun08mQIUN0S0JJklAUhSFDhuhCK0VR2LFjB4qidJtMJhOpqal6wPzNgIfMbmtr0+25umLYsGFeOTu//e1v9Uq7K3Elmf3WW295keSyLBMUFERISAixsbF69ocsy/r39WS6dN0/h8OByWRCURQKCgq8qjUBDAYDMTExJCQkkJGRccur/PqCQeJ7kPjuFYPE9/VBCKE3FPSLh+rG8v69yI35uKb/HNfMv9GXt9vtvPfee9jtdhYvXnzbPHFvFtra2vjTn/6E1WodcP/mvLw8Nm3ahNFo5KmnntJHRe8WCCF4//33KS8v75Xw7or29nZWr15NcHAwjz32GAEBAbdoj6+N2tpaDh8+zPz583td1ul0snHjRqZPn64H090IVJuNhl/9I+27dwPgv2gRYf/r75AHgFzcvHkzubm5GI1GFi9eTEpKCsePH+fAgQO43W5mzpzJtGnTMBgMmEymPhG+1dXVnDx5krNnz3o1TKZNm8bMmTOvul59fT379u1j5syZhIeHYzKZcDqdGAyG21J+397erod6BQcHs2jRov75kXY0Yij8FkPhLgxFe5DsTfpbAgk1eixyYz6S04YSPw3HY/8D5muHU96pUFW1W6PytkMIjMffRbI34Zr8ao/K19zcXCIiIggPD8disfS6/x0dHXz33XccO3ZMr5QYP34899xzz11jEXHHw2HDUPIdhoJdGAp3IbXV9nlVYfDpJMY1IlxJzMI9+cc3paLC6XRSVVVFTU0NTU1NNDU1MWLECCZM0EjmxsZGVq5c6bWOJEkEBwdjMpmYNGkSkydP1m1W3nvvvat+Vm/XTgDDxa2Yv/k7TfWJBH5DkNrrEbIR18y/xT3l1Rsngu8kOGyYDv1GO8dVF0I24p78Y1zTfobovI4O2PVIqBgubcN46LcYas5os2QTamIWwhwIRh+E0aLZ/RktCKOFDmHiZKWDg6Vt1NkN2DGjGHyYkJbCwzPGExwee+O/hxDQXo/cVIjUVIS14Dj1F48SSQNDaEKme3dPGMyIISNQI9NRI0ejRqSjRo4Ckz+4O5BcHeDquPy8p3muDlCdCP/Iy+rswBgwB/aLlBZCcOTIEfbt2wdA+ohkHrhnLMb22k67lGpEaDJKyvxuVop3G7z6TbcZTU1NfPrpp16ew10xceJE5s6dC2j9nJUrV3oR435+fvrzyMhIoqKibuXud4PL5WL//v2cP3/ey6bNaDTy85//XP+/r1u3joKCgqtu5xe/+IW+7MaNG/WB7SthsVh4+umnCQsLG8BvMYi7CQ6Hgx07dpCbmwtcth4byOBwIQTt7e04HA4CAwNRVRWbzca77757VYI4LS2NJUuWAFq7/D//8z+vuv2uhDpo+TfR0dH9VpK7XC5KS0spLCzEZDIxZ84c/b2uZLYkSXr+g7+/v05Qe/oO5eXlVxVVmc1mr/OtpqZGFx5YLBaCg4P1Qavr/f+rqqqLGUtLSykrK6OtrU1/f8aMGUyfPv26tn0zMUh8DxLfvWKQ+L5+nDt3jn379jFv3jydBDJc3ILPhhUIky8dLx/2St0+duwYe/bsITAwkDfeeOO2n5zt7e0DErjpdrv5+OOPKS0tJSQkhGeeeWZAVY5ut5uNGzdSWFh415Dfra2t+Pv766GVxcXFVFZW9onw7gqbzYavry8GgwGz2Xzby4xqa2v1UevJkyd73dQ98JRtDXTHxpmfT90v/gp3aSmYTIT91S8IePTRAfscp9PJ5s2bKSwsBLTSfU9ZdEJCAvfddx+xsbF9IrydTicffPAB1dWXE9MDAwPJyMhgzJgx1zVSvn37di5evMjMmTOZMmXKgB4LqqrS2tpKS0uL1zRu3DiioqJQFIWDBw9SVVXFfffd17vPnhCaOrVwF4bC3chVJ/WgKdBUa0ryHJRhc1GS54J/OHLlCXw+ewrJ2YoSPwXHo6vB584Y7LmroSqYd/wNxjOrARD+kTjn/iNK2kNXJWZ6azzm5eWxceNGXbmSkpLCnDlzBju/AwCpsbCzGmInctlhJPVyZZkw+aEkzUKNHovksCF1NIG9EamjSZvsVuho8lqnK9TAWFz3/gPKyCW3VCna2trKmTNndFK8sbHRq7Pa1RLIarXy/vvv4+Pjg9lsxsfHx+v5sGHDrm4X11aHeef/izFvMwBqWCrOhf+FGj4S87a/wpi3CQAlaTaORW+B/51pIdZnCIHh/JeY9vwaua0GAGXYXJxz/wkRplXHVVVVsXnzZhITE0lJSSEhIWFg2p5CIJfsxXToTQxlB29oU4pkgIBoCIpFBHjU0dHeamn/KM2DvKMRuakIqakQubHzsakQqan4msGHwm9IJ7E9upPoTtfC3O6w8MecnBy2b9+OqqosX76cxMRbY2EihKCoqIi6ujrCw8OJiorqNZSzr2hpaaG8vJyKigrKy8tpbGwkMzOT++67bwD2vP9wuVy6SllVVVauXKnbV/r5+elVeG1tbYwYMULPpPEEuV8NXUlym83Ghx9+2I0c9/f3Jy4u7rqzPq6F6upqtmzZQmNjo9d8s9mMr68vL774ou6zfOHCBZqamvD19cXPzw8/Pz9kWcbhcOByuRg9WgvRFEJw6tQpPeuh62Sz2TCbzaxYsUI/ThobGwcDpP/MsH79evLz85FlmZkzZzJz5sxbZj2iqipWq5Xq6mpqamr0Y9+jTh47dqx+LB4+fBhZljEajRgMBn2y2WyEhobqFclWq5X33nsPs9lMUlISKSkpJCcn4+/fsxinubmZwsJCCgsLKS0t1e0qLRYLr7/+uq62rqysxGKxEBAQoJ9vd5xI5irw2D4WFxeTm5vLwoUL9TDusrIy2tvbGT58+G13MxgkvgeJ714xSHxfPzZt2kR2drZ3iYoQ+PzPYgxVJ3GNfx7Xff+iL+92u1m5ciUtLS3ce++9zJo16zbtORw5coRt27YRExPDwoULrztITwjBpk2bOHXqFGazmWeeeYYhQ4YM8N7eXeS3hxQaP348WVlZA7ZdIQSlpaWkpaXdlhtlV9I7MjKS5cuXdxvgqKysZN26dUyaNIlp06YN2Ge3ff01Df/n1wi7HUN0FBH/9m/4DFBAZle4XC7WrFlDTY1GIhgMBubPn8/kyZN7bMipqkp1dTXFxcW0trayYMECVFVFVVVWrVpFTU0NqampjBkzhsTExOtuFCiKwscff0xdXR2gkfL33nsvmZmZPW7TU7Zmt9u9bAIcDgdJSUmEhIQAmsp369at2Gy2Hu2JFi1aRHp6uu7BB70oCBwtGE9+gDF7FbKt2ustNWK0RnSnzEeNnQhyd+JersrG57MnkRwtKLGTcDz+SbcQtUH0A4oL89afYbywHiHJiMBY3adXSZqN875/RYQmdVutoqKChoaGq57DlZWVvPfee4SHh3Pvvff2O8B4EF2gOJHLDmMo2ImhcBdyU6HX22pIMkrKPO28iZ8Gxt4HnXC2aVUVHU1I9iYkaymmI28hN5dpHzn0Hpzzf42IGHWzvlUvu6ipt5qamlAUhZCQEH0w8LrUoEJgOP8F5l3/gGRvQkgG3FNfx3XPX1xWxwqB4cwnmHf9EsltR/hH4Fj0FmrSne3BfzVI1Wcw7/olhopjgOb37Jz7T6ipl8lEz33IY7EG2j0tISGBYcOGkZKSMiDlynLVKaS680huO7jsoNgvP3d3Pnc7ujzvoK3NhrO5hjC1CVnqvSsmkMDkh+Rqu+YyIigOEToMNWwYIjQZNSwFNTID/CPvGluQ4uJimpqaGD9+fL/Wczqd1NXVUV9fT11dHc3NzVgsFoKCgggMDGTo0KE9ts/Lysr47rvvqKqq8prv5+dHVFQUS5Ys6XeonM1mY8+ePZSXl9Pa2n1AYt68eXpFiMPhoL6+ntjY2Jvatq2qquLYsWNUVlayYsUKXTzQ1NREeHg4ZrO5x8/3tH1cLhdNTU20trZis9l0ctzzmJaWppPkNTU1un1YT7iacORGcPLkSXbt2oW/vz8LFiwgMTERX19fneyGAaz8QGtnejJrFEXB7Xbzhz/8AbPZzLhx4xgzZsxdYfU2iBuDx9f7wQcfJCkp6a4gcnuCEEK3+di0aVO3YPuYmBiGDRvGqFGjCA3VMjI2bdpEXl6e13KBgYGkpKSQmprKiBEjvM6/7wtUVcXtduN2u1mzZg3l5eUEBQUxYcIEMjMzb1sI6SDxPUh894pB4vv60djYyNtvv40QgmeffVYvcZNLD2L59FGEbMT+0l5E6GVf43PnzrF161Z8fHz4yU9+ctURxJsJh8PBm2++6XVRHzNmDPfdd1+/faQPHTrEjh07kCSJRx99dEA8nK8Gt9vNhg0bKCoqwmg08oMf/OCmfl5/oSgK33zzDUeOHAFgTlApMzkGZv9OD9Ywr9Jzz7yuHq34BF215Hf37t2cOHGCrKysPtmMXA1Op5OKigrdksEDz3NPySZcJtsdDgebNm26Jumdn5/P5s2bcbvdREdH89RTT/WuShYCqeEihuK9yCX7kevOIwKiEWHDUEOTUQMTqf/8MK2bdwJgmTaV8H/+ZwyhfQzm6ic8/+OuyMjI4OGHH9bDKD3lX55EcofDAWj/v5/+9Kf6Tbe+vh5/f/8Ba/irqsq5c+c4cOCA3pEcMmQIwcHBzJw5k6SkJIQQnDt3ji+//PKq21m8eDEZGRkIIbx83GRZJiAggMDAQH0aOXJk3/ye2+sxHX8P48kPdNWdMPmhJM5EGTYPNWUeIrBvCie56lQn+d2MEjMBx/I1XnkJg+gj3HbMm36MMX87QjbiXPw7lNT7MR75HabDbyIpDoTRgmv6z3BPeQ0Ml4/bVatWAfDCCy8wdOhQ6uvrKS0tZdy4cbhcLhRFobS0lPj4+Nuu8BgwqApSwyXkqpMYKk8iV2UjdQmSAzRS2XtGHzd+RaenayfI1YGkOC5vUTaixk9DSZmPkjJfV+7eMFwdGI++g+nIWxrxK8m4xz+PK+sXfQ86vAMhtVRg3vHXGAo1+ys1MgPHwv9CRI3pefn6PHw2vYJcn4dA0gjyGX9965W/QoDbrg1k9Mfmo70B075/xXh6NRICYfLFNf3nuCe90uOgiNvtpqysjIKCAgoLC2lubvZ6//XXX9eVW7caqhBsOV3O6m+zMdiqiZYaGRtkY+FQhTiDtdPio0rzwu5SxaAGxCBCk3ViW4Qmo4YmawGPd7kNSE9obW2lo6NDb5epqkpjYyP19fVERkbqlTYeW8CrYf78+TqZXllZybZt2wgMDMRms1FfX4/BYCA6Opr29nasVitCCCwWC2+88YbePvz6669pbm4mKipKt/Zob2+noqICX19fxo0bB2jH3ZtvvomiKEiSRFRUlO7PHxISQlhYGAaDASEEp0+fZseOHYSFhZGRkUF6evqAWfupqkpBQQHHjh2joqJCn//oo48yfPjwPtvW9RUekYDb7aa+vl4nyD1Tc3Mzly5dYtmyZQMi3ukayO6xy5k0aRKBgYG3lGwTQlBWVsYnn3yit4mNRiNpaWmMHz/+rvVJH0R31NXV0dDQ4FV5ZTKZvlde76qqUl5ezqVLl7h06ZIuhgJ46KGHGDFiBAD79u3jyJEjxMbGkpqayvDhw4mOjtbV3N93KIrCnj17OHHihF4BajKZyMzMZMKECbrI6lZhkPgeJL57xSDxfWNYt24dZ8+eZfjw4Tz88MP6fJ/Pf4Ch6FvcaQ/hXPoHfb4Qgg8//BBVVXnkkUf655M7QBBCUFNTw+nTp2lvb+fMGc2n0WQyMXPmTKZPn94nG4VLly6xZs0ahBAD7ut9NXQlv00mE6+//vodEbDQ2NjIl19+SWWlRpTMGxlC1sV/QlLd/dqOkGREZDrO2b9ETfKuCDh79izbtm0DYOHChUyZMuW69tWj1rwaRo0a5RUe8i//crlq4Wqkd3Z2Nrt27UIIwbBhw1iyZMlVbz5SSzly8T4MJfswlB64qm+tq12m4kAYHQ3adoaME4TNS4Qhw1BDUxBhyaihwxAhSb2rIPsIm83Gp59+SlZWFi6Xix07dhAdHc3Xle+XAAAgAElEQVSzzz6LxWJh/fr1+vnigY+Pj96huxUj3S6Xi+zsbI4cOaL7hi9cuFBXGhUWFurEt8lk0q0CPNPYsWMZPnw4oA2CNTU1ERAQcF1lzVJrJcaj72A8/T+akg9Qh4zANe0nmp3Cdf4uUvUZLJ89iWRvQokeh2P5pz36Ug/iKnC247P+BQwlexEGHxwP/wk15fJgmdRYiPmbv8VQovnJqkOG47zvX1ET7gFgy5YtnD9/npCQEEaOHMmxY5qq9IUXXvj+2JnYajFUnUSuOolcmY1cfQrJefPC7q4F4R+BMmyeNiXNvqlVDlJzGaY9/4Qx7yvts31DNd/rzKdBvjXlyQMCoWI89TGm736N5LQhDD64sv4f3JNf7Z3EdnVg+vZXmE5pikwldiLOJe8ggq+v8u2acNgu23E0FiI3FXQ+FiI5NCstzRPbF2HyBaMvmDqfm3wRRl/Nl93oizAYMeZu0ixtAPeoR3DN+WWfBxWFEDQ0NOgkuKqqPP300/r7GzduRAhBbGwsEydOvGXl6g63wv8cKefd/aW0OrQ2U9awUP5yfipp0QEgVGhv1NT8gXF3XPixzWbTAwRlWfYaLD5y5Ag2m00PY/U8WiwW/V58rfuuw+Hgk08+oaWlhZSUFOrr62lsbERRFABmzZrF1KlTAa0dunbtWsLDw4mIiCA0NBS73U5LSwutra1MmTKF+Ph46uvryc/P1/3Ee8L8+fOJj4/Xg7dLS0sJDQ1lw4YNugXclYiMjOS5557TX589e5awsDDi4uIwGo3Y7Xb8/Py8+heqqrJ3714OHjyIy6UNbkiSxLBhw8jIyCAlJeW6jkOXy0VOTg4nTpygqUnLFJFlmVGjRjFt2jTi4uJuGzHV2NhIQECAbongaVNmZGT0mYQXQpCdnc3p06d5+umnMZvNyLKsP94uOJ1OTp8+zfHjx6mtvdy2j4mJYe7cuTfF4uVGUVNTQ15eHj4+Pvq5BJpto4dI+3MgMa8Fm81Gbm4u586do7a2FkmSePLJJxk6dCg+Pj7fHwHEVdDS0kJeXh75+fksXLhQ7986HA6MRiMBAQF/1seI0+nkzJkzHD58WK8wkySJqVOn6pksHutXj1WS517omZKSknQxaGlpKR0dHf22TxkkvgeJ714xSHzfGOrq6vj9738PaKRAeHg4AFJNDr4faiWnHc9uQ0RfTgv2+D/LsjwgHtv9hcvl0hqYihMMZqqrq9m1axeVlZXIsswrr7yiK0uuhWPHjvH1118zZswYFixYcMu+h4f8TkpKYsqUKfj4+NzWG05OTg6bN2/WOzOL5s1g9L5XkJvLqAmbgnHqywQYnJ0+rI1a+XlHE1KnN6v++ooSXveIB3Hd+yuvzvjBgwc5cOAAAMuXL2fUqGuXqjscDs6ePUtHRwdZWVl6adK6detoaWnpZm8hhCA5OZl7770X0DolH3zwAUIIwsPDuf/++71IbyEEe/fu5ejRowC6b6PXjaqjEUPpQeTivRhK9iNbi7w/02hBjZ+KkjgTNWY8UnsDHYf2U7tyD0q7G9ksiJ3WSGCsg54gjBZNHTlisRb81I9QxLKyMoqKirxsh7oqaEpKSoiIiND92E6cOMHevXt1ojshIYHIyMjb0uiz2+3k5+cjSRJxcXH6yLrnN76ZHSCpqQjTkbcx5HyuK/GU6LG4p/8MJfX+AQmOk2rPYVn7OFJHE0pUpkZ+34AyVarLxZi7QQs0C4zVKgs6w8gGjGjstJnAaNYV1LccjhZ8vngGQ8UxhMkPx7IPURNndF9OCAwX1mPe/Q9I7fUAuDOewDnn77HL/qxatcqrRD0lJYW5c+fecgVHN3hIMHdHpwJbaPOE2vm681F0mY9AcrQiV5/RiO6qk8gtFd03bfJDjR6LGjMBNXY8algqSFeQLt3uNVe791zRvPS61nZ5Lhs1peotDluUS/Zj3vVL5HqtTFeNzMA5/59R469vQPVWQmosxLztLzGUHwZAiZuM84H/RAwZ3q/tGPK+wrztL5EcLQifIJz3/wdK2pL+75DiRLKWIDcWdnpPFyB5iO62mt7X7yfUyHSc836NOvTG7MQURaGxsVFXh7799tuoqpbFYLFYWLp06S3zmAawtrv4w75iPjlWgVsVSMBDY6P56b3JRAfdeUruyspK9u3bR2lpqT4vKiqKZ599Vn/97rvvdlPZexAcHMyKFSuueZ+22+1s2LCBsrIyr/kmk4nw8HAyMzPJzMzs0/42Nzdz4MABzp8/T3R0NFlZWdhsNlpbW/WMj+bmZqxWq1cFZ25uLps3b9a3Y7FYMJlMqKqK3W7HYrEwdOhQXc19+vRp7HY7HR0d+uQh6p955hkSExP1NrtHGWm32zl79iynT5/2Umb7+/vz8ssv65+Xm5urW7h1tXGz2+3ExMTo9iFd/bh9fHwYP348kydPvqP8pz3+xH/84x9xOp1ERkYyd+7cXq0nW1tb2bZtG8XFxQDce++9umDpTvlunmrRY8eOceHCBVRV5cUXX9StdioqKlAUhejo6NtGVDkcDvbv3092djZCCPz9/Xnttdf09z0WDgaDQfdB93iiBwQE6LkU31e4XC7y8/M5d+4cxcXFen9RlmWGDRvG7Nmzb+sA0u2Cp6rjbvHnvpUQQpCfn8+hQ4coKipi8eLFOk9x5MgR9u7de9V1u2ZanDp1im+++YbAwEDGjRtHZmZmnyrTBonvQeK7VwwS3zeOtWvXkpuby6hRo1i8eLE+37z5NYwX1qMkzcKxfG2P696q8iAhBFu3btXDjQzn12He/le4J67ANevvEEJw/vx5bDYbU6dO1ZUDHR0dV7VjcTgclJSUEBMTc8uUQR50JSdvp8rBZrPx5ptv4nK5iIuLY/GiRYTv+QXGvK9olkN5R/0BaeOmsGDBgt435nYgtdViPP5HjCdXIQkFYbTgnvIarqmvg8kPIQQ7duzgzJkzGI1GfvjDH5KQkOC1GSEElZWVnDhxgpycHFwuF0ajkddee21A1chCCL7++mvOnTsHaCnP06ZN0xoD1lKMZ/4HQ9EepJocpC5Ej5AMqDHjUBNnamR37ERdGSxUlZZVq7D+/h1QVUwjRxLx7/+GKTxAC7TyKOX0cKtCr0ArYbRoPtIjl6AMm3/VcESHw8HevXs5deoUoJW99qXs1OVyYTAYvvfqhqtBqruA6fBbGHI36mGVytB7cE3/KWrirAH3UJXqLmjkd3sDamQG9ifWgm8/FMdCxVCwE+Px9zCU7r/6YuaATiK8S5haQDRqYCz4hoCjBanDqikt7dqjZLcidXheNyHZm7XnqhthMGsBajHjtWM9ejwibNjNJzfbG7B8/hRyzVmETzCOx1dr59e1YLdi+u7/w3T6Y+1/4RuKc87/pihoOuvWryc4OJg5c+bcfFspIcDZimSr1qwNbJ6pRrM7sNVor9tq+11J0+PHISHCR6DGTECJnYAaMwERPqJH7/nvLVQ3xuwPMe3/dySHRs65Ry/DNfuXiMA+WBzdSihOJGsxhvwdmA78p2bXYvLDNet/4R7//HWr1aXmMsybX8NQeRwA19gf4pr7j2C6wqJKqNpx6LnvNBbo6m2pudQrvPdKCL/wTs/plM7HYZpFR2CM9r1cHeDu0GxvOp9LLu01rnZtkMfVgeRqRw1LQRn96HV9X5fLRVVVFRUVFVRUVFBZWYnD4WDRokWkpaVRWVlJdnY2ubm5+joegsMj6rgVKG3s4LffFvL1OU0x6mOUeXZqPCuyEgm03P7zs66ujv3795Ofnw9oyjaLxYKPjw/h4eF6xRxonX2n06mHs3oeKysrCQkJYcwYzZJHURSOHDlCZmZmN5sPt9vNmTNnsNvtREREEBERQXBwcJ9JF5vNxuHDhzl9+rQ+sDF8+HAefPDBHkkCD0ntaddfunSJY8eO0djYqJezd8VTTz2lExYnT55kx44dPe6HLMs89NBDpKamAppVYnFxMQsWLPAie2tra8nOzubs2bNERUXpGUpCCP7jP/7jqt8zMTGR5cuX66+3b99OZGQk48ePvy0io75AURQOHz7Mvn37dIuQESNGMHv27B4HmS9cuMDOnTux2+0YjUZmz57N9OnTb3kfrD+w2WxcunSJtLQ0nTxdt24dBQUFSJJEeHg4MTExxMbGEhMTw5AhQ27qbyWE4OLFi+zatYu2Nk1wlJqaSmRkJDNmzND38aOPPvKyuOiKK0nygoICgoODB3TfPQNeAQEBhIWFERoa6vV4s/3TrxzwiomJISMjg4yMjFtupTOIuw81NTUEBQXp51N2djY7d+5EkiTMZnO3adasWcTExCBJEiUlJWzcuFG/3xgMBkaNGsWECRN0W+GeMEh8DxLfvWKQ+L5xVFVV8e677yJJEitWrNAbK5K1BMufZiKpLuzL13azrnC73WRnZzNixIi++ejeADxe3AaDgR8/ei9D1j2qdawAx5I/oIx6qNs6NTU1rF69msmTJzN79mwsFguKoujkn6cs8XbDbrfz+eefI8syoaGhXo2D0NBQgoKCbtoN2u12c/LkSZqamsjKysJ8+mPM3/wtqmRkpVhOpRTNK6+8op9bfQ3ukupyMe/6e52sUwNjcd37K5SRi1GFYMOGDRQUFGCxWHjxxReJiIjAbrdz5swZTp486dVYCwsLIzMzk7Fjxw74DeH06dPs3LmT+++/n4z0dOTSgxhPvIchf4cX2a2Gj0RJnIGaOAtl6LQePZvV1lbq//c/0PHddwD4L11K2N/+DbLlGkovIZBqzmDM+wpD3lfI1uLLbxktKMlzNBI8ZYFOghcVFbF9+3ZdzZqZmcmcOXNuWxjH3QC5Khvjod9izN+uz1OGzdcI77jJN/Wzpfo8LJ8+htRejxoxWiO//XohYRytGHPWYjyxUj8mhCRranRLaKd3bLVGZDl6VuMNNIRPEGr0OI0IjxmPEjMeAq7egOs3bDVY1i5HbriI8BuC/fFPEVF9D4CVK45j3vHXyHUXAFDip9E+99fIUaNvzvXTYcNQuAvDxa3ItTlItir9ntQbBNJlGx1J7hxQkC4/l6TOSUbQOc9gQo0YhdpJcqvRY+/K4NTrCn/sDe31mPb9/118o/1wTf+Zdm4bLQiDj/b/NvogDBb9ObJpYAe7hIC2OuTGfI1Y7pykxoJOclnRF1USZ+F84D8Gxp5EcWE68O8YD7+NhEANH4lr4svILWXaYKtHwd1p59Tjrpv8O7MpUjofhyHCUlBDk2+7TVNtbS3bt2+ntrZWJz49MJlMzJgxgylTpiDLMrIsk5OTw6ZNm7wCjceMGUNWVtaAeS/3BafLm/mPnQWcKNWu0cG+RmYPH8LUpFCmJIUSF3J7VOAeKyhJksjIyOCee+654f5TTk4OX3/9tW7HMWnSpD5VXl4Ldrudo0ePcvLkSb29npiYyMyZM6+7z9HR0UFjYyNNTU00NjbS2NjI5MmTddvGhoYGysvLsVgsXpOvry8mk0m/drndbv74xz/qWUNpaWnMnz/fK3xTURRsNpve9wBYv349BoMBHx8ffH199W1bLBaCg4OJj48H0NWYd4tIwWazsXv3bk6dOoUQAoPBoIfEe0RIO3fu1AeloqOjWbp0KdHR0XcNASmE0MPfv/76awoKCnq0zfH39+fVV1/Vv1dXodONoqWlhR07dlBUpFWehoaGcv/993ezVPBc+5xOpx5g2t7eTltbm06WT5kyRf8+77zzDu3t7YSGhupez30Na21paaG4uJiamhrmz5+vr7NhwwYuXbrU4zpGo5Gf//zn+rIXL15ECKH3eT3XcoPB0Kd9aGho4Pz58wQFBTF2rFah7nK5WL16NampqWRmZt626tZB3N3wnPdutxtVVXXroN4Cd10uF2fPnuXo0aNenMbQoUNZvnx5j8fiIPE9SHz3ikHie2CwY8cOoqKiSE1N9TqJTTt/ienkStTgBOzPf+NF+O3cuZPs7GySk5O9SiMHGkVFRXz88ccIIZg/+x6m5/wSuT4X4RuK1NGEMPljf/brbmXC+/fv59ChQ4DWEJk3bx7l5eWUlJTwyCOP6KnG1w1XR6e6r6pT0echolpwZzyOmjizT5v57rvvdKuNnjBr1izmzJmDJEm0tbXpvoMhISEEBwf3m/A8deoUISEhxMbG6h590GnN8PEiJMXBPt8H2G0fzcyZM5kzZw4OhwNVVVm3bh0xMTFMnTq1d4WGEBgubsH07T8it5QDoAydjnPer3GEpPLZZ59RXV3N4sWLGT9+PHv37mXPnj2AdvEfMWIEY8eOvemlaNb6aoZU7sZ0YiVy3Xl9vpI0C3f64yiJM3sl+Nx1ddS+/gau/Hwwmwn7m78msItqqk8QAqk25zIJ3lR4+S2DDy0J8/jGOZFzlVqjNTg4mPvvv/+WlnLfNWirw1B5HLnyJHLZIQyVWuCnQEIZuQTXtJ/0i1S9UUgNF7F8+jhSWy1qeBr2Jz4H/+7kt9RUjPHkSoxnP9X9moVPMO6xz+Ce8DwiKL77xp3tGunaWnX5sevkaAafIC2Q1hKMsISAbwjCJwThGwKWEETn5JkvtdcjV2V3TieRa872SJqpgbGdqvDxqAlZqNGZ16UKl5rL8Fm7HNlajBoQg+OJtf22fQBAcWE88SdMB/4dydWBkE0oIx5EHTodZeg0xJARN0Z02q0Y8ndgyNuCofg7r1BHD4RPMCIgqlOBH935PEZ7DOx89Iu49WGEtxltbW266nLZsmX6/K+++ora2lr8/f3x9/fX/fo9z4cOHdrn679UfRrzzl/q6ufeoA9AeMhx05Ve1ZZOj2pf/dHrudEC7Q06uS03FnhV8HT7PJM/6pDhuMc/h5LxRK/HYm1tLcePH6exsZEFCxb0SiTKxXvx2fIGUltdz5/faUvTjdwOSwH/yAGveBko2Gw23nnnHQACAgKIi4sjPj6ehIQEoqOjvQhJDwoLC1mzZo1XGyc2NtbLE/xWQAjBtxcb+K9dBRTWt3u9NzTUopPgU5NCiAi8OYPXNpsNIYQe/m61Wtm3bx/33HOPF1F7IygtLeXAgQOUl5fr8xISEpg8eTLJycm9+oBbrVasVqv++8JlMh00tebMmTPvqPaOzWbjwIEDnD17FiEEsiwzceJEZs+e3a3StOsgzPcZ1dXVbN++neLiYiRJ4vnnnyc8PJxt27Zx9uxZJEninnvuYdasWXc9wSOEoKWlhbKyMr0Kpbq6msjISH7wgx/oy61Zswaz2UxaWhrDhw+/oe9ts9l4//33cbvdTJ06lVmzZt2Q6MXzHTZv3kxxcbE+QAPg5+dHamoqo0eP9qpocDqdlJaWUlxcTElJCY2Njfp7K1as0PvWHq/ktrY2GhoaaGho0AebLBYLzz//vL7eqlWrqKvr+b4VHBzMj370I/312rVraWho0MlxQLdjCgsL48UXX0SSJIxGo26f830/7wZx58Jjm3TkyBHy8vJITU3loYcuizUdDod+Dg8S34PEd68YJL4HDk6n06uTAICjBcuq+cjNZbhHPYJz8e/0zpHVamXlypV6wJCn/G8gYbVaeffdd+no6CA9PZ2H5N2YzqxG+Edgf3Y75q/ewFB2EDV8JPZntnYLDSosLGT37t16OIwHfbWGkBouIZcfRbJVI7dWXi5jb61CsjdddT0hybju/RXuiSt67UwKIaivr9cb/l2nlpYWHnjgAdLT0wEoLi7m888/91rfx8eHoKAggoODmTx5sp7W7HQ6aW1tJSgoCJPJhNPpZMuWLZw5c4aAgACef/75y6VmzjYsH92P3FiANWIqv627B18/P15//XX8/f310rpPP/0UgIiICB544IG+JZ27OjAefQfTkbe08m5Jxj3uOVomvkGV1c6wYcMwGAxYrVbWrVvHmDFjGD16NJZrKaWvE7W1tezevZulS5firzRjzF6F8fTHmlc5IEy+uNMfxz3hRUT4yD5t01VaRu3rr+OuqMAQPoSI3/wGn9Gjb2xHhUCqO99Jgm9GaizgXZ6hWopEQmXykDbuefhlTGE3IczsboPiRK49j+whuiuPIzd7+4kK2YiS/hiuKa8jhgz8daovkBry8fn0MeS2GtQhI7A/+QX4R4AQPVYaqGGpuCeuwJ3++O0PQ1NcSPV5yFXZGKpOIVdnI9XndbNHEP6RKMPmo6TOR0mc1Se/eqkhH5/PnkBurUQNScSx/DNESEKv611zm81lmHb+EmOBd8m68BuCEj+tkwifjohI652ob6vDeOlrTdldesDLpkQNHYYy4kGUpNmIoDiEf9Tt/63uMNhsNo4dO8apU6f09sUzzzyjKzavVY5tNpv52c9+1r8PFALD+S8xZq/S7HsUhzZo43Zodlw9DFYMJIQkI4KHdqqlUzqJ5VREWAoiIKpf5PKePXv0YFaLxcJjjz3Wu9K1rQ7zd/+M1FLuRWyL0GGauvwuGHDJzc2luLiY+++/XycsLl26RFxcHKGhobqvcm8oLS3lyy+/ZPr06Zw5c4asrCzd8sjtdiNJ0i2zWHCrKseKrRwptnKkqImcylaUK7pww8L9mJoUytTkECYnhhDqd2Md4I6ODl0xnZqaypIl1+H/3k9UVVVx/Phx8vLydLJ3yJAhPPPMM5jNZhwOB0ePHvVq53pCrgHGjBnDAw88AGhK2U2bNpGent5NlHMnoa6ujr1791JYqIkVzGYzjzzyCGlpabd5z24PhBDk5uZSU1Ojh9i3tbWxadMm5s2b5+WR/n2DR+Xv5+ene6D/4Q9/0N83Go2kpKQwatQokpOTvYJSr4b6+novq6b8/HwiIiIGXC1vt9u5dOkSubm5FBQU6NY1U6ZM0f3Ajx07xt69e70qbyRJIiYmhqSkJCZMmEBISMg1r9FCCNxuN7Iso6qqbjtZU1NDY2Oj/rkehIaGsmLFCv31Bx98QH19vdcyXQNlMzIy+qwUH8QgbiVaWlqw2+0EBgYihKCpqYlVq1YxcuRIJk6cSFxc3CDxPUh8XxuDxPfAwRP0cmVZllxxHJ9PHkYSCo4Hf4uScdmDbvfu3Zw4cYKoqCheeeWVAb3RuFwu3n//faqrq7XAnQn++G19A4GEffmniKRZYKvF8uEC5LYa3KMfxbnorW4dS0VROHnyJAcPHsTpdDJnzhwmT+7d3sBwcSvmTa9c049VGC1XBM3FIDWXY8zdoH2Hcc/imvfr6+5sesrQPI2jiooKjh07ppPiVzYQHnzwQcaMGYMsyxQVFelEtSdUob29HUmSmDFjBlOnTtV/L/PWn2HM+Qw1IJp35WepaXUze/ZsZs+erS8jhODs2bNs27aNjo4OJEli0qRJZGVl9cnnXWouw7Tn/2DM0zzXhCUU18y/wT32mev2N+0PSkpK2LBhA06nk8ygVh5u/UD/bdWgONzjX8Q99gdg6Xv4nTMvj5o3foLa0IAxPp7I3/8OU3wPqtwbgRBI9bkUHvqKvfktLHV/RRzVWjn/tJ/invyKpjz8c4AQSLYab5K7BzWy5n88EjV2IkrsRNTk2VoI5G2G1Figkd+2ap3YNp76yLvSIPleXJNeRk2afcsDA/sFZxtyzRnkqlPIFUcxFO/zCrgVBrNGMKfch5JyX49ktlR7HstnT2g2MEOG41i+duC8mYXQjo/ivRjKDiFXnuh+nFhCUOKnog6dphHhkekgG5FaKzFc3IohbwtyxVEvgl+NGIUy/EHcIxchwtPuWJXs7YbNZuPo0aOcPn1aJ7yjo6OZMWMGaWlpyLKsD/o2NzfrIXU2m02fjEYjjz32GKDdC3ft2sWkSZNurFpLqFowdlcivJMY1whyu1bN5fGldnu8qrvM0z2t28ESrBHLHoI7JOmyjU0/oCgKubm5hIaGEhurXataW1v57rvvaG5uprKyErPZzKOPPqrbIXzf4HA42LlzJ+fPa9fDpUuXkp6e3qOiu69wu90oiqIT3R6rncOHD5OTk8OsWbMYPnz4LSdJ2hxujpc2c7S46f+yd97xUdx33n9vX/Xeu4SERDOYIsCAKaIZg8EYXLDBBZc4ySV3z9Xc5XJ3yV3u7rk8l9hxHJfYxMbYNNNMN9V0LIpEE0K997Z9d2aeP5YdWFMlFiHwvF+veW2Z2dnfzk75zef3/X6+HC1v43yd6bvlZOkfE8jQxGASQo3Eh1yeQo1EBupR36S9DoeD/Px8jh07hsPhACAhIYGFCxfeltDmCzo6Ojhx4gQFBQXExsby9NNPA+5+/W9/+9trlvf39yc0NJSMjAxGj76zoqf3ioqKCvbt20dTUxNLly4lKiqq1wQ4k8lEQ0ODnA3aV0Q/QRBwOBxIkoRer++1/a8v0djYSGFhIWfPnvUKwjIYDIwbN46HH374up+zWCzs3buXs2fP8uSTT5KRkdFrNaFcLhdlZWVcuHCBgQMHykFOxcXFrF+/ntDQUFJTU0lPTyctLY2AgACf7HOiKCIIgpe1hKdwp4eWlhacTqe8nCiKRERE3FVbUAUFX+KxTzlw4ICc6T5q1CimTJmiCN+K8H1zFOHbd4iiyP79+zl58iTPP/+814VGe+h/0R/4b7etyJId7kJnuC/MH3zwAQ6Hg7lz58reWneKJEmsW7eOwsJC/P39eXHOBCLXPonKYcI8/E0+rUlh4sSJJCcno646jOGLBagkAce0/8I19Pq2KxaLhY6OjtvyBtQUb0O/4VVUogshbhhS1ADEoPjLqeueInKxYAi5VviQJLTH30O3999QISGkTMD+xPt3xSfTE9Xd2dlJV1cXycnJskd7UVERW7du9fIyDwwMZPbs2V43zpozqzBs+QmSSs353P9h9dFq/C9He1+vCrHJZGLbtm1yUcjQ0FBmzJhxy0ruHtSVh9Dv+ifZi1eMHohr8LOIYWmXo9ISfV6g7VzhKbZu34koQYpUxdNsxA87QmIuruFLETJndPs7bfknaPzLnyKZzOiysoj5/dtofFRASxRFTpw4gZ+fnxzt73lfW38K3e5fyOn8Ykgyzkm/QNxN9G4AACAASURBVMiceX+JcJIIllZUtlZU1jZ31P3lR5Xt8mub53X7lXnXs5cwhiHGXy7yFz8CMW6Yz/yPRVGUB3o8x4PT6eTUqVPYbDasVqtcqGnSpEm3LNijaitzi99dtVfar/PDNehpd6ZBTyw++gKCA3XVETQlO9GU7ETdXuE1W4zIuiyC5yEmjEDdUIhh9XOobO3uwp8LP7+19/lt4HA4aGxspKGhgebm5itpui476vrTbuubqsOoa46jcnpbD0j6QKSQJPncJP+02IcQsmYhZD2GFJ5xx2180Kmrq+Pzzz+X06Y9NgVZWVndjrCVJAlJkti1axeHDh3Cz8+PefPmyXYI9zt2u52CggLy8/Pp6uoiLS1NFvt1Oh1arRan08mKFSuoqKhAp9Mxb968PmX54Auqq6vZvHkznZ2dqFQqRo8ezcSJE31yEyhJkpyev2vXLubMmcPq1atpb28H3BYow4YNk0W5kJAQuQCVIAiUlJRcs06VSkVISAiRkZE+EaHarU6+rWjnaHkbR8vaudRkvuGyOo2K2GAj8SEG4q8SxaP91VjrS7lQkC8X1YqKimL8+PGkp6ffE1HIbrdjtVq9Ch3u27cPf39/QkJCCA0NJTQ09IG52ZckiYaGBlkoVKvVHDp0iPj4eBITE30mEHZ0dFBWVkZFRQVVVVWyrQS4+/mLFi26vYzMXuD7YvNyKyRJora2loKCAs6dO4fJZOLxxx8nJycHcN9bdXZ2EhcXR2FhIfv27ZOzIR555BEmTpx4TyKZPddgl8uFw+HAarUSERGh+GUrKPiAqqoqjhw5wrhx44iMjLytQMIHDUX47gaK8O07JEniT3/6EzU1NV6pTQCIAoaVC9BUHUaIGYL9+U2gcXdUDx8+zIEDBwgJCeFHP/qRT0b0RVFk8+bNnDx5kqfnzyVz/5uoGwoREnP5XP8cJWUVREdHy97iumPvot/3SySNHtuijUixPRfgNcXbL4veTre9y6y3exSRrCnejv6rN1E5LYjh/bDP/wQpLK3H7eoJkiRht9vp7OzEarUSGxvr5QenarmE8ZPpqJwWHOP+BnvuTygsLESr1TJy5MibdrAuXLjA5s2bMZlMRERE8OKLL95+R0h0oT31KboD/+0WNa9us1qHFJKMFJbmFsPD06+I4kHx1/4XTstVnsa1Xv7G6q5aTrQHstk5FoBB0gXmqHejGvAEzuGvIMUMvr32fgfLvn00//0/INntGB5+mOj//X+og3wjtHoKedXX12MwGFi6dOm1AxCShObcl+j2/Qq1qR4AIWU8jsn/5rZvuJdIEtg7UJkarlgDmeqvvPY8mhtvmk1xw9Wr1EhROe5I7suTFJZ+x6K/w+GgtLSUmpoa6urqsFgsWK1WOWLu6hRsh8PB7373u2vWkZqayvz58295HKjaKzCsWQSCE9ewF3ENebZbmQZ9HklC1XoJTcnXaEq+Rl191Kuwn2QMBcGBymlBSBiJff6nPR4YrK6upra2lsbGRurr670iquLi4pg/f/71ByMEJ+qGwitCePUx2Z9ZQoWYOBIh8zG32O2LAoQPOIIgyKK2IAj86U9/IjAwkHHjxpGZmXnHlhJdXV2sWLGC+vp6tFots2bNkm297ke6uro4ceIEp06dks8x/v7+jBgxgnHjxsnepB6cTidffPEFpaWl6PV6XnvttVsOst0PCILAoUOHOHr0KJIkERISwuzZs30u1IqiyPvvv09DQwPBwcHMnTuX4uJijh8/fo3F35AhQ5g+fTrgTv9/++23b7jeqwcqwG3PFxIScsdtbzY5OF7RRnGjmZp2G7Ud7qmx03GNRYqH/ppGxuorAVAZAxk/bhyjhg763guO95L6+no+/fRT+bXBYCAiIoKoqCgiIiJIS0u7ZQaHKIo0NDQQERGBXq+XBwIPHjzotVxISAhdXV1IksRf/MVfYDQa0Wg0fPPNN1RVVZGcnExSUhJJSUlKMfR7jCiKlJeXexVcPHLkCN988w0Gg0HO5vXYSt7KJ19BQeH+5q4Ufr9PUITvbqAI377l4sWLfP755+h0Ol5//XWvGytVZw3GZXmobO04R72Jc+LPAbcI9OGHH2I2m5k6dSpjx46943ZIkoTNZqOpqYm4079Fl/8nJL8wTox6i6/2n0Sj0bB48WJKSkooKChg8QsvELT1B2iLtyGGJGFbvB38up8Orbm0A/36pVeJ3m/dUfSxqvEshrWLUXfVIhnDsM/9EDH5zrePT3BaMS5/HHXTOYTkcdgXfiGLygaD4baECqvVys6dO8nJyZEj8Orq6ujq6kKn06HT6dDr9dc8l0/ulhZ0Jz5G1XQWdVsZqrbym3qwSho9UmgKUmAsKkuLW+j+jnB+Ncd4iK2qKQCM1BYxZVQOwtAl1y0seLuYNm6k5Ze/AkHA79FHifz1f6A2GmlqaqKkpITo6GhSUlK6LfS4XC4OHz7MsWPHEEURg8HAo48+ypAhQ258MXSY0R19G+2xP6IS7EgqDa5hS3A+8tc92v+7jbUVde2Jy4UkT6LqqHAL29cphHg9JFRgDHEXXvQLA78wd6FFP8/r8MvzQpGMl+f7R7oLy90BkiTR0tKCy+WSo6KsViu///3vb/iZnJwcHn/8cfnzW7ZswWg04ufnh16v55tvvsHlcjF27FgeeeSR22lEn4zQdzgcqFQq30Yd2NrRlO1zR4OX7pbrIwgp47HPW3ZbvtgOh4Oamhra2tq8UoNXrlxJZWWl17JBQUHExMQwfPhwkpNv0y9cFFA1nkXdXoGQOOqWBW0V3HR0dHD06FEqKip4+eWX5fOezWYjJCTEpx7KDoeD1atXc+nSJQAmTZrEiBEjfLb+3uLAgQMcPXpU9kkNDw9n1KhRDB06FL1ef8PzvcvlYu3atfTv3/+ei/5lZWWUlZURHR1NcnJyj/vf69evp7i4GIBBgwYxY8aMawoD+or29nY+/fRTWltbCQgIYOHChRiNRo4cOUJjY6O8XEZGBrm5uYB7n1uzZs016xJFkZaWFoYNG8aECRMAd1bhO++8g8FgICYmhri4OGJjY4mNjSUoKMgnN7UuUaSh00FFQysXL5ynS9TTpI2itsNGQ7uJAeYCilyRFAsRaNQaJvePZOHD8YxOD7upPYrC3cFqtXLkyBGKi4vp7Ozku7ftY8aMYfLkyahUKiwWC5s2bSIyMpKIiAjMZjOVlZVUVVXhcDhYuHAhaWlpsmh68OBBEhMTSUxMJCEhAaPRiNPppKWlxSva+7PPPqO2ttbre2NiYmQRfMiQIb2yLRSuj8f2YPfu3Rw/fhyn04lOp2PcuHGMGTPmexkBqqCg8P1BEb67gSJ8+xZJknjvvfdoaGi4roCjubgFw/pXALAt/MLtQwucPn2akpISHn30URITE3vcwTebzXLnTRRFNMVbMax7GYDm6e/y/p5ynE4nEydOZPz48bz77rs0Nze7OwjDBrgLNLZXIGRMxf7ksm555Kov7cSw/hW36J09F8fjb/vGcsPUgOHLF9HUn0JS63BM/2+Ewc/c+XrvEN2Ov0d36s9I/hGYX9iBFBgjp9EZjcZu/YeeVGJBENi6dStnzpy54bI/+MEPCAwMBNzZAkVFRfTv359Ro0ahUavcYnZbGerWUlRtZe7nbaWoOipRCY7rf7/O/7L9TLzstW73j+XDI+10WByMHDaYRydPQ3WHqXkdf/6E9suRvgFz5hDxT/+IeNkv9MiRI7KQYTQayczMJDs7223Hc4vvraqqYvv27XK0alZWFlOmTJG3061QtVeg2/tvaC9uATz+6X972T/dR7YxooCqueiyyJ2PuiYfddu1KeAeJGMYUmCMewqKu/w89qrHWKSAKJ/b2lwPl8tFQ0MD1dXV1NTUUFNTg81mIzk5WfYeBdiwYQOBgYEkJSUREhKCv78//v7++Pn5eRXrud6xcerUKTZs2EBERASLFy++b7wsPTddHoHywoUL7Nq1iyeffPK2bKG6jSi4/bbbyxGy59yWP70n2rezsxOAH//4x3Lx22PHjlFXV0dsbCxxcXHExcXJIpNKpUIQBOx2OydPnpSXUeg5TqeT2tpaqqqqqKqqora2Vj7vzZ07l+zsbHQ63V1LgxZFkS1btpCfnw/Aww8/zKRJk/ps2nVHRwdVVVUkJibKdg+nT59mx44dJCYmkpubS05Ozm0PEHiOV09EoEck6S1sNhu7d++Wrc48hISEMHDgwNsb9LuKqqoqNmzYwLRp0xgyZMhd/x9NJhOffPIJTU1N+Pn5sWDBAtnWpLt40v8927+mpoZVq1ZdWyQedzT/I488wtChQwFk79ruDAyJokhZWRmFhYWUlJQgiqK7/s3iK/Z+NqfAtnONrMqv5VR1p/x+UpiRBQ/HM29oHBEBD4atyP2Gy+Wira2N1tZWecrOziYjw22fVVlZycqVK6/7Wb1ez+TJkxk8uPtZii0tLXLfp7q6mo6ODnlecHAwP/rRj1CpVKjVajZu3Chb04SGhhIWFkZYWBihoaFKlHgv4HA4qKqq6nNe7QoKCgp3C0X47gaK8O17zp49y5o1azAYDLz++uvXdHZ02/8W3elPkQKisb60C/wjvVI0elrAxFPM0s/Pj1mzZuHvaMa4bCoqeweOEa/zSX0WNTU1JCYmsnjxYnQ6HYWFhXz55ZcYjUZ3W9uKMC6fjUqw45jwM1yjf3xb360u+dotegsOXP3n4Jj9jm8FOacV/Zafoi3a6H6Z+yOcE/7hnhWv0xR9hWHDqwDYFqzg27YQ8vPzmThxolwRuye4XC65ur3D4cDpdOJ0OuXnAD/5yU9kP8dt27ZRWFgIuCNQHnvsMa/q5V6IAqrOGlRtpajMjUgBUbLQjT7outGzHR0dFBUV3dK25VZIkkT7796i85NPAAhevJjQn/yFLKx9+umnNDU1kZCQQFtbGxbLFe/goUOHMnXq1Buuu729nQ8//FAu4JKXl9fjaD51xTfod/0z6uYLgLsQn2PyLxFTuidGAGBtuyqaOx913UlUDtM1i4lhGYgJl21HIvsjBcYhBUb3iYKbkiSxdu1aKisrZb9hD1qtluTkZJ566ik0Gg0ajeamlehvhxMnTpCent7n/UqdTidVVVWUlJRQVlbG4MGDGTNmDABNTU0sW7YMrVbL7Nmz6dev3z1tq8PhYMWKFTQ1NREQEEBycjITJ04kNDQUtVot/2c3+99Onz7N+vXrMRqNPPPMM0RFRfXiL7j7SJKE1WqVLZEkSWLZsmXYbDYiIiKIjIyUowgjIyN7LGBcvHiRr7766ppjKTk5mXHjxsnFt+42kiRx8OBBdu3ahU6nY8mSJXdW8NKH7fII3Z7JM1gzefJkhg8fDriPv9bWVlJSUnq8vQRBoLGxkZUrVzJmzJgeCWI9YcWKFdTU1ACQnZ1NR0cH9fX1SJLEQw89xLRp0+T27d69m8TERJKTk+UobrPZTGNjI2lpV2zfJEnC39+/10Qei8XC8uXLqaurw2AwMH/+fJ95xguCQHNzM/X19fLU1NSEJElMnz5djq6trq5m5cqVhIWFERUVJR+jkZGR1whe7e3tnDlzhsLCQkymK9fg+Ph4Bg8ezODBg6+77S42mFh1opZNBQ102d1ivFatIi87ioXD48lNVYS1vkRXVxclJSWyKK7X6+WIbl95yYN78McTAADuc5OHd99912sfu5qYmBhef/11ZZ9RUFBQUPAZivDdDRTh2/eIosgf/vAHWlpamDBhgpzyKeO0YPxkJuqWiwjpedjnf+IlOqpUKgwGQ7c6ad8tZvnCc88QtflFNLXfIsQN45t+P2PfgcPo9Xq5Wvp32zp+/HhGjx6NpmAFhm3/B0mlxr5w1S1FP3XJLgzrX74ses/GMfsPdycKVRLRHfwNukP/DwBX5gwcs965rTR/X6Jqr8T456mo7J04c3+EZezf8sEHH2A2m5k+fTq5ubk+69hefYoSRRGn0yl7l3rsJiorK9m9ezc2mw2NRsP48eMZMWJEj9vQ0tJCRESET9oPILlctPzq3zFvdA9ahP7kJwQseg6VSiUPEDQ0NMjRO5IkUV1dzYULF7h48SKPPfYY6enuYrCNjY0UFBSQnZ1NQkKC/Bt37dqFIAhMmDBBjmTtMdfxT3f1m+72l3fZ3DYkThu4rKhcVvd7TvfjlfnW64rcki4AMW4YYsJwhPgRiPEPg1/4nbXXh5hMJqqqquRiQQBffvklJSUl+Pv7k5CQQGJiIikpKcTFxXnb7vgIT4RxX6O9vZ3S0lJKS0upqqryikpMTEzk2WefRa1WIwgC69ato6SkBJVKxZQpUxg2bNg9abMoiqxbt47S0lJ3keMXX+yRaG232/nkk0+ora0lICCAZ5999p4JpS6Xy2tguLW1FUEQ0Ov1GAwG9Hr9Ta+dVquVpqYmmpubaWpqkp+Hh4d7RX4uW7aMpqam667D839f3YbAwED0ej0ul4u6ujo5xX7gwIGyqNrS0sJHH30kZ0WkpqaSmprqU1GmO5w5cwaVSuUlot4rmpubWbNmDV1dXV7vq9VqYmNjGTZsGEOGDPHJAJuHPXv2sH//fgDy8vJ65TitqKhg586dzJo1S/bhttlslJeXExAQQGRkpHwN/Pzzz+XPRUREkJCQwKVLl3A6nSxZsoTw8PBu9xV9hd1u57PPPqOqqors7Gxmz54N4NVH8RVOp5PGxkZCQkLkLC5P1P/10Ol0TJ8+Xb6Oea5hAH5+fgwYMIAhQ4bcOEjgO1gcV6LAC2quRIGnhPtdjgKPJcy/bw/WKvQO5eXltLe309HR4TVZrVb5uqFSqeTBfV9aWSkoKCgofP9QhO9uoAjfdwdPhJy/vz9vvPHGNZ0bVeM5jJ8+5o6snvJLXMOXAm7h6eDBg6jVaqZOnYogCAiCgCiKCIJAWFiYfNPf3t4u3/RXVlZy4MABVCoVCxcuJKPsU3RHf49kCMa6eAdfHSzk/PnzzJw585ro3YKCAtatW4efnx+vvfYaep0O/da/RHtmJZJ/JLYlO5GCrl/dXF26G8O6l9yid9YsHLPfBc3dTRvWnF2LfttfoRIciNGDsM//s7toY28gODCsmIum7iRC/Ajsz37JtydPs2fPHoKDg/nhD394T6JVOzs72bBhA6WlpYBbmJk5c6acGn47eKIAjx49ypw5c8jMzLzjdok2G80/+xnWvftArSbi5z+na9RItm3bRlZW1i3TugVBkFNIAfbt28exY8cACAgIIDs7m4EDBxIdHe37KBprK7oD/4P21J9RSWKPViGGpcsFJIWEEUiR2T0q9Ho3MZlMXLx4kaKiIqqrqwF49dVX5X2npaUFnU5HVFSUzwSnW+FwODh8+DCdnZ1MmTLlrn/f1TidTrq6urDb7bKthyAIvP3223LWBbhTnNPS0sjMzCQ9Pd3L3kgURTZt2sSpU6cAGDVqFBMmTOj1SK/du3eTn5+PVqvlueeeIzU1tcdtsFqtLFu2TBagnn32WYJ8VJD2ZgiCQG1tLeXl5ZSXl+NwOHjllVfk+atWraKiosLrM556CAaDgZdffln+zZ9//rm8j38Xg8HAj3/8Y3kfb2lpwel00tzcTGNjoyyQm0wmMjIyePLJJwH3efOdd97BarUSEhKCyWTyiuju378/c+bMAdwibkdHhyx094XIP08BZ1EUqaurw2g09mhQQ5IkOVPHE50sCAInTpzAZrPJk9VqlZ8nJyfLBW+dTidvvfUW4C6qmpycTEpKCsnJyd22DutOm7dt2yZfUyZOnMjIkSN9+h0VFRVYLBavwUStVnvTfoIkSTQ2NpKfn09FRYWXfzZAZGQk8+bNIy4u7p7uQ06nk3379jFq1Ci5X7pmzRoqKirw8/PDz89PtrryPI4dO1Zu850Uo5Ikia6uLnkAq7m5mebmZlpaWhAEgaefflquT3Dp0iVOnDjBkCFD6Nev3x3ZaJ2v72JVfi1fFTZgdriPc41KRUywgdhgAzHBBmKCrjyPDTYQG2wkMlCPRn3vj3eFe4PdbsfhcMjXzOrqarZt28ZTTz1FfHwv3b8oKCgoKDxw3K6We38YiCrclwwaNIiampob2l5I0QNwTvw5+l3/hG7vLxGSxiBFD6Sjo4OCggIAWTS5mqVLl8p+iqdOnWLfvn1e8ydNmkSqUILuqLvInGPGbyAshVmzkhk8eDBZWVnX3GgMGjSIffv20draysmTJ8nNzcUx9T9QNxSibjqHftMb2J9Zc00Ut7psD4Z1lyO9sx7rFdEbQBg4H3toMoZ1L6FuPIPhk8dwPLkMMW7oXf9u3f7/RFN3EskQgmP2H3AIEkePHgVg7Nix96yISnBwMM8//zz5+fns2LGD6upqurq6blv4liSJ/fv3ywJAe/uNC17eLmJXF41/+VfYT5wAvZ6wX/2Kb7Uavv3sM1lsGTVq1E232XePnfT0dGpra6mursZsNpOfn09+fj79+/dnwoQJ3RL6b4lfOM6p/4Fr6Atoz65xF1PUGpF0RtD6IWmNID/3c1uT6Izu97VGJL/w3imQ2QNMJhNFRUUUFRXJ6boe4uLisNvt6HQ6tFotSUlJvd6+pqYm9u7dK7dnwIABPlmvKIpe0ZEFBQU0NDTQ1dVFZ2cnJpMJq9UKuD1lf/jDHwLu/TA9PR2LxUJGRgaZmZnExMTcULxUq9XMmTOHsLAw9uzZw7Fjx+js7GTmzJm95l3uEc4AZs2adUeiN7gjJV944QU++ugj2traWLVqFc8++6xsD+JL2traKCsro7y8nMrKSq8BB3CntHsEBIPBgL+/P3a7XRacPRZRTqfT6zd7ik2HhIQQFRVFVFQUMTExxMTEEBER4RWp6rFuSE1NlT/vEXdtNhs6nQ5RFLFYLPJnPN6vAQEBJCUlkZKSQlpamizceuo/9CU8GWYNDQ2sXbsWgHnz5t3QukKSJDo7O2lpafESGz0DBd8V+j3H8fXw2JiA+39cvHgxMTExGAyGXhF0VSoVM2bMQKfTcfDgQfbu3YvL5ZJti+4Eh8PBvn37OHXqFDqdjri4OCIiIm5afPPqdnmsy8BtLVJaWkplZSUBAQGMHj26T/gF63Q68vLyvLJ0LBYLoihiNpsxm81eyxsMBq/B7h07dtDR0UFmZib9+vXr1kCaSqUiODiY4OBgOSMM3Of49vZ2r3X169fPZ5ZTObFB/GJWf/56agZbzzSy6kQtZ2q7qO2wUdtx46LUGpWKqCA9MUFuQTwrOoCFwxOIDFQixb8PGAwG+ZiVJIlvvvmGtrY2Pv74Y+bMmdNrVksKCgoKCt9PlIhvlIjvu43NZpMLV12DJGH4cgmakp2I4f2wLdkOOn8v32aPHYTHi3XhwoWy8F1QUEB+fr48PzMzk9wByfj9eSoqSwvOYS/inPpr+et0Ot0NRUZPYbmrI9RVraUYP5mOymHCOepNnBN/Li+vLtuL4csXUQl2XJkzccx5r1dE76tRdVRhWPsC6uYiJI0Bof8sXDlPIqZOuCttUZfswrj2eQDs8z5CyJzJ0aNH2b9/PyEhIbz55pt9wpu4tbWV4uJir460IAg3TKmUJIk9e/bIItnVXqo9xVVbS+P/+WucRUWoAgNQ/+wf2V5TTWtrKwA5OTlMmTJFFqJuB0mSOHbsmJya7inCV1xcLHucvv766/dNUcS7idPpxGKxYLFYMJvNWCwWOVUe3AUYN23aJC8fHx9PdnY2AwYMIDw8vE9Eou7evZtvvvkGnU7H888/f9tp6ddDFEWOHz/OqVOneP311+X3rxctDO5zZXBwMC+++KLX+bcnKfynT59m48aNBAcHs2jRorsiFN+IS5cu0d7ezvjx4332n7a3t/PRRx/R1dVFdHQ0ixYtuuNjzmq1elk27Nixg9OnT8vz/f39SUlJIT09nYyMDEJCQuRlr+7GuVwu7HY7NpsNu92Oy+WSo+k8EaJ+fn5eQrQvkCQJk8lEU1MT/v7+vZod4StMJhMrVqygrq4OjUbDrFmziI+Pp7m5GZVKJQ8AuFwufvvb33Kj7nO/fv2YN2+e/Hr79u1otVqMRqNXFLDRaCQoKIiwsLA+sa327dsni/SjR49m3LhxPW5TVVUVW7dulQdCPHUqevPY7208+4PT6ZRF7+9egyRJYvz48YC7T/KHP/xBHmgE9zW9X79+ZGZm+tRu7W7T2GWnrsNGfaedhk47dZcfGzpt1HfZaex0IFzneDFo1cwfFsdLY5JJCO1bA2IKdxebzcbmzZvlLM0xY8aQl5fXZ4sMKygoKCj0TRSrk26gCN93F0EQsNlsVFdXXz9y0tKM8eM81OYGnA89j3P6/5U/1+2bQVHAsHIhmqpDiNEDKZn0HicKzpGXl0dAQMBNo6hEUWT79u0MGjTI64ZDc3EzhvVuGxaP2Ksu3+cWvV02t8/2nPdAc48EX3sXhk1voin9Wn5L8gvD1X82Qs48xMRRd1YAU3Cgrj+NuvIgum/fR2Vtw/nwKzjzfoXD4eD999/HarUya9YsRowY4YMf5DsEQcDhcNDa2sqqVauYOHEi/fv391pGkiS+/vprObtg6tSpDB06FEmSaG1tpba2Vp6mTJkipw57Uos9leuvTkU379pFy7/+G5LJhDosjIoXl3C4vh5wR0JOmzat29FXoiiyc+dOORti+PDhTJ8+HZ1OR11dHdu3byclJcXLT/9O0qjvB8xmM52dnbIdR1tbG6tXr8ZisVwTIQswYsQIJk2aBLijEdetW0dmZiY5OTl9Ruy+GlEUWb58OWVlZYSFhfHCCy/0KMqxra2NrVu3ypHtP/3pT+UBwMLCQjo6OggJCSE4OJiQkBBCQkIwGo0+FeNKS0sxGo2+zUi4TTy/xZd4CniOGDHi2hoWt4ndbqeoqIizZ89SXV3Nc889Jw/MXLp0ifz8fNLS0ujXrx9xcXF9Qhx90HE4HKxZs4bi4mKv9+Pj41m0aJH8+uOPPwbcvtOeyPno6GjCw8O9Bofut//r4MGDfP31jomxXAAAIABJREFU10RGRrJo0SL0ej1ms5nW1lbZX/pmx5LT6eSbb76RB5GDg4OZOXMm/fv3v++2RW/Q1NTEhQsXuHDhArW1tV7zvjuAcj8jiBKtZgf1nXbqO90i+ZazjbJfuFat4vHBMbz6SAppkQ/u4IiCN6IocuDAATlrND09naeeeqpbASE34kHv/yooKCgouFGE726gCN93F0mS2LFjB0eOHGH8+PHXLXyoLt+PYdUzqJCwz/0QIWtWj75Le/A36A/+D5LOn67nNvPRhv10dHQwfPhwHnvssdsSP64Xoa7b/S/ovn0PyRCMY+LP0e/6uVv07jcdxxPv3zvR24Mkoa47ieb8l2gvbERlvlKQTAyKR8iZiytnHlL0QK8iotdFcKJuKEBdeRBN5SHUNcfchQs964sehO35r0Br4MyZM2zdupWwsDB+8IMf3DObk5shSRIbNmyQoydzcnLIy8vDaDTK+6ZHTPakIHuE7u8WGFy6dKns/Xrw4EEOHTokzzMYDIQFBjLgyFEiv/0WAP3gwej//u/4ZNs2XC4XAwcOZPLkyd1O9Xc4HGzcuJGysjIApkyZwtixY732Z0mSEAQBl8uFKIqUlZWxd+9eJk+eTEpKSre+736goqKCzZs3k52dzeTJkwF3xOa7774rL6PRaAgICMDf3x9/f38yMzMZOnSonEWi0Wj6/I2R2Wzmvffeo6uri6ysLObMmXPbbZYkiYKCAvbs2YPT6USv18vZDPfit0uShMPhQBAEzp07R3h4OLGx16+d0FNMJhPbtm0jLy+P0NBQDAbDXSueZbFY0Gg0Xn7Wt0IURSoqKjh79izFxcVeBUKnTJki/ze+LGCo0D1EUWTbtm0cP34clUpFWFgY8fHxzJo1S858AO6L80dPOH36NAkJCXJ09rlz59i8eTPgtm4JCgqSB8mCg4PJzs4mIiICl8vFJ598QktLCwBDhgxh2rRp+Pv7P5Dbydd0dnZy4cIFioqKqKioYOTIkXJ0uNPpZO/evaSkpKBWq3G5XF5TSkqKXLTXY/HkmRccHExubq5cFLOvIEkSR8vbef9ABUfK2gBQAdMGRPHqIykMiLv79RMU+gYXLlxg27ZtOJ1OwsLCeOWVV+Q6Cd2hs7OTgoICCgsLaWpqIi4ujtzcXIYMGXIXWq2goKCg0BdQhO9uoAjfdxdJkti9ezcHDhwA3FGXEydOvOZGSLf3V+iOvYNkDMX24tdIwdf317wR6spDGFYuQCWJ2Ge9zZbqIAoKCggJCeHVV1+97U6Ux6vR6XReEXIFJ4Yv5qOpOS4v58qYhmPuB3dF9D59+jRGo/Ga6OTbQnShrjyE9vw6NEWbUTm6rsyKyMSVMxchZx5SWNqV5RsKUVceQlN5EHX1MVROb19KyS8MIWksYvIjuAY+BYYrNySVlZVIkuRVuKqvIQgCe/fu5eDBg0iSRGBgIJMmTcLhcFBRUUFRUREzZ87E5XKxY8cO+XNarZbY2Fji4+OJj48nPT1dFtFOnz7N2bNnaW9vx2w2E9TZyZiDhwi97A2uf/ppYv/qL1HpdBQWFhIQEODlw9kdvvrqK86fP49Wq2XOnDkMGjTopkKCIAgsW7ZMLmKXkZHBxIkTCQ8P79H39yVEUeTQoUMcPnwYcA9kzJ49G7VajSRJ1NbWEhgYSGBgoJd1xP0svFRVVbFs2TJEUWTSpEm3lVlhMpnYvn27nEaclJTE7NmziYyMvKfbQpIkSkpKWLFiBVqtltmzZ5ORkeGTdTscDlauXEl9fT2JiYksXrz4rg/GecR8i8VCfn4+o0ePvuEAa1tbG1988QUmk0l+LyIigkGDBjF48GDZ8kKhb+AZ2LgdT+oHDUmScDqdiKLImTNnOHjwIJ2dnde1rZs/f758bdu/fz9nz55l5syZ5OTkfO+2m6+w2Ww4HA4MBgOCIHDp0iXWrVt3w+WnTZvGQw89BEBZWRlr1qzxmm8wGBg3bhxDhw7tk+eY09UdfHCwkt1FzfJ7E/qF89q4FB5O7l6WkChJ1HXYqWix0NBlJynMj/4xgQQZFQu4vkxjYyPr1q0jLi6OuXPn3nadA6fTyZkzZygoKKC8vPya+VOmTGHUqFFoNBq6uro4deoU6enpJCQk3LVBcQUFBQWF3kMRvruBInz3DocPH5ZFxYEDBzJjxgzvDrjgwPDZHDT1pxESR18uJnmdTom9E3VrKaq2UvlR1VqCuuWiOwp78DOcy/yhfJPw3HPP0a9fv9u+AbNarWzZsoWKigpeeeUVWThRddVhvOwdLmRMxf7EB6DteXEll8tFXV0d1dXVVFVVMW3aNNkGID8/n927d5OdnU1eXl7P0/5cNjSlu9GcX4fm0k5UwpUIZiFuGPiFo64+isph8vqYZAxDSBqNmPwIQvJYpMj+N7VLuZtRlb6kqqqK9evXyz7b4O4Ux8TEkJCQQEtLC4cPH5aF7qioqFv+LkmS6Fy/nvb//r9gtyMGBVG3cAG5l33ifUFHRwfr1q1j5syZt12gz2w2s3fvXvLz85EkCbVazbBhwxgzZoxP0kjvBSaTia+++oqqqirAHVE4Y8aM+/b3dIejR4+yY8cOJk2axMMPP3zTZSVJYvny5dTX16PRaJgwYQKPPPJInzlG7XY7q1atorS0FJVKxdSpU2XRpqd4MjuKi4vx8/Nj8eLFPo8mvxGiKPLxxx9TXV3NwIEDmTlzJiqVCpvNRmtrq+yxLYoif/zjHxEEgezsbB566CGSkpL6zP+ioHAjJElCFEW6urpoa2ujvb1dnsaMGSP3nV0uF2q1moCAAEX09hGSJFFXV8e3335LTU2NXGtBq9XKBZiHDBkie9B3dnZy7tw5eZnTp09Tf9lqLTY2lrlz53ariGZvcrHBxAcHK9l6tgHx8t3piOQQXh+fytj0MHmfkiSJVouT8hYL5S1WKloslLdaqGi1UtFixSFcO0CTEGqkf0wg/WMCyY4JJDs2kIRQI2plP+0zWCwWtFoter0etVqNRqO5ZV0Rq9XKb37zGznzKjExkQEDBpCYmEhdXR1JSUmEhIQA7rpQ27dvB9x1TJKTk0lLSyMtLY3Y2Ng+OSikoKCgoHBzFOG7GyjCd+9x6tQpNm7ciCRJ9OvXj9mzZ3sVBVO1lWFcNhWV04xz5A8QE4ajaiu7LHCXuB8tzTdcvxA7lLYnPuXj5SuxWCyMHDlSFiFuF0EQeOutt+js7GTKlCleIpOqtQR19VGEAfO7LXo7HA5qa2tlobuurs4rRX7GjBlyMcbi4mI2bNiAJEkEBAQwY8aMHkcLy9i70BRvRXt+Heryb1BJV75bMoR4C91ROTcVuu12O4Ig4O/vj1qt7rZ1x73EarXy+eef09raSlhYGMOGDSM7O7tH6xLNZlp//Z+Yt2wBwDhyJBG/+iXayynHd4LJZPJKTe5p5GFTUxPbt2+npKTE3UajkSlTpjBgwIA7bmNvUlZWxubNm7Fareh0OmbMmNFno9fuBpIk0dTUdNvp6tXV1ezevZvZs2cTHx/f50QoQRDYtGmTbEGUm5t7RwUo9+7dy/Hjx9FoNDzzzDNkZGT06m8+f/48q1evRpIkBgwYIEdpGo1G3njjDXk/bW1tJSoq6nsZRazw4HL1rYSyX/ctPIWNd+/eTVBQEEuWLOnzg20VrRY+OlTJulP1uC4r4IPig0iN8HeL3C1WuuyuG35eq1aRHO5HVKCeilYr9Z326y4XoNdcEcNj3Y9Z0QEYdX17+3wfkCSJjRs3AvDkk0+i1+upqamhoKCAtrY2nnnmGVwuF4IgsG/fPgwGAzk5ObLIfT0qKio4ffo0lZWVXkVlwd03njFjxh0PwisoKCgo9C6K8N0NFOG7d7lw4QJr1qxBEARSUlJYsGCB142S5swqDFt+ctN1SAHRiGHpSGHpiOHpSOHpiGHpiGEZbNj0FcXFxURGRrJ06dIeFYM7fvw4W7ZsITAwkFdffdVLnO8pxcXFrF+/3us9f39/kpKSSE5OJjMzk4iICFQqFSqViurqatavX+/llzlp0iT0eh9Yq5ib0RZvAZcdIWk0UtSA60fX3wBP8aqJEyfeNLW/r+FwOFi1ahUlJSUMGjSImTNn9nxdFy7Q9Pf/gKuyEtRqQt54nZCXXkLlgxvKM2fOsGPHDmbPnk1mZiZ6vf6O98FLly6xY8cOmpqaeOKJJ8jKygLc5z9Jkm56s3CvsdlsvPfeezgcDqKjo5k7dy6xsbHfS4HF5XLhcDhwOBxotVr52KuoqMBkMjFw4EB5WV/sN3cTSZLYu3cv+/fvB9y2H+PHjyczM7Nb6zl9+rScTTRr1iyGDx9+T/aN06dPX3OOj4yMZMGCBYSHhz+wntAKCgp9n87OTrq6uuQ6JYIgUFpa2q2MyN6mvtPGnw9XsepELVandxS3CogPNZIS7kdqhD8p4f6kRrifx4UY0F7VL223OrnYYKKowcSFBhMX6k1cajLjFK69BTZo1UzpH8mcIbGMzQjzWo9C79HY2Mjy5csRBEEuPu65HwJ4+eWXiYiI6NG6JUmiubmZyspKedJoNLzyyisEBwffMspcQUFBQaHvoAjf3UARvnufsrIyVq5cyZQpU7yEGgAkCd2uf0J7fh1iSIosassid1i6l8f01ZhMJpYvX47ZbGbJkiUkJyf3qH0ul4u33nqLrq4u8vLyGDZsWLfXYbVaMZlMcsEhi8XC8uXLSUhIICUlhZSUFCIjI29awMzpdPL1119z7NgxAEJCQnjiiSeIiYnp0e/yBRaLhffffx+n08m8efPum6IxNpuNFStWUFVVhU6nY+7cuXJqcHeQJImulStp+9/fgtOJJiaGyH//d4wPd38fud66Dx06JBfNHDx4ME888YTPorNEUeT8+fOkpaXJ7+3evZv8/HzCw8NJTU0lNTWVpKQk3wyw+JBz585RU1PDjBkzejSY9SBRU1PD2rVrycrKYsyYMfJAlFarZcmSJfddRPHJkyfZvHkzgiB4+QU3NzfT0NBAWlqaXGjvu1RWVrJ69WpEUWTs2LHk5eXd09994sQJDh06RGpqKkOGDFF8RBUUFPoUoijidDo5dOgQ+/fvJyUlhalTp8qCeF+k1exgQ0E9gijJIndyuBGDtufnVqcgUt5i4UKDiaL6K6J4i9kpLxMRoOfxQdHMHhJLTmzgHV1bJEmivMXKsYo2KlqsTB8QxUOJfTfgoC9QV1fH+vXr5boYWq2WzMxMBg4cKBd69QWiKGKxWLwy6g4cOMCQIUN6zTJNQUFBQaFnKMJ3N1CE73uD2WxGq9V62X34ApvNRk1NzS0LAN6KY8eOsXXrVoKCgli6dGm3IiebmppYt24dgiDwwgsvyBEEHpG7u+0qKytjw4YNOBwOXnrppR5VO/cV+/bt49ixY0RHR/Paa6/dF6KO2WyWPY8NBgPz588nIaF7xVMBhI4OWv71X7Hu3QeA36OPEvGLf0YT2r3iS9ddtyCwc+dOCgsLAbf1w9SpU+/K9vX4tYqiyMaNGzl79qxXqrparSYhIYHU1FRGjhx5T/7jS5cuYTAYSEpKktvk8X38vnPmzBnWrl0LIF+7AB566CGmTZt2Q5G4L2OxWCguLiYjI0P+jz3nGoC4uDgyMjJIT08nOjpaPoeaTCbWrVtHWFgY8+fP7xPnI8+xdL8MPCgoKHz/OHDgAHv37kUQBDQaDbm5ueTm5vbpLKG7jSRJnKszsaGgni1nGmi1XBHBM6MDmDM4hscHxxITfOvBd0mSqGyzcqy8/fLURpPJIc9Xq+D1cSm8MSEVnUbp19wIk8nEt99+S2RkJFlZWb0SlFFUVMTGjRtRqVTk5ub6LttWQUFBQcHnKMJ3N1CE73uHJEk4nU7a29v56quvyMvLIzIyslvrsNlsVFZWEhUVJUes+KLY4tVR31OnTmXo0KG39bmLFy+yZcsWnE4nISEhLFiwwCceu3a7nYaGBq/t097eLhfE7A3MZjMffPABTqeTp5566tpo/T5IR0cHn376KS0tLfj7+7NgwQKio6O7vR7bqVM0/+xnCPUNoNUS9tOfEPTssz4RtxwOB5s2bfIq9pebm9trIq/VaqWkpITS0lJKS0tlITUwMJA33nhD/o3nz5/Hz8+PqKiouzb44vFrzM/PJyAggBdffJHg4GB0Op0iJF7Fli1bOH78OAABAQHMnDmTAQMGPBDbyDMwc+zYMU6dOkVjY6PX/ICAANLT05k0aRIGgwGHw4Gfn9/3PhNAQUFBoTu0tLSwefNmysrKAAgLCyMvL69H2XAPGk5B5GBJKxsLGthd1CwXzFQBo9PCmDMklrycSAL07oECSZKoabdx9LLIfbyi/Rpvcb1GzdDEYPz1GvYWu207BsYF8V/zckiPvHcBLQredHV1sWfPHoqKigAIDg5m5syZPa4HpKCgoKBw91CE726gCN/3FkmSWL16NefPn8doNPLUU08RFxd3w+VFUaSuro7y8nLKy8upq6tDkiTGjh3LI488IlcE9wVHjhxh+/btREVFsWTJkpuKSpIkcfDgQQ4fPgxAcnIy8+fP9/k+JUkSdrud8+fPs2nTJkaPHs2YMWN6JdLRY4sRFxfHK6+80ieiK2+GKIr88Y9/pKmpieDgYBYuXNjtdF5Jkuj6/HPafvtbcAlok5KI/PWvMQzI8UkbPb7jdXV1aLVannjiCQYOHHjPBExJkmhpaeHSpUsIgiDb/EiSxNtvv43d7r6R8/f3JyoqSp5iY2O7PWh1NaIo0tbWxpYtW6ivrwdgxIgRTJ06VYm0uQ6CILB582ZEUWTy5MkEBQU9EKL39Whvb6e4uJji4mLKy8txOp34+/vz5ptvolKp0Ol06HS6e91MBQUFhfsOSZLkuiIeS4kxY8Ywbty4e9yyvkOnzcn2c01sLKgnv7JDft9PpyYvOwqNWsXR8jbqOryFbq1axUOJwYxKDWNUSihDk4Jle5atZxv4180X6bS5MGjV/HVeBs+NTHhgr+P3I6WlpXz99ddyMEhWVhaPPfZYn66Jo6CgoPB9QxG+u4EifN97LBYLn332GbW1tTf0X7ZYLOzcuZOKigpZfPMQHh7OsGHDGDVqlE8jQ51OJ0eOHGHgwIEYjcYbLme329m8eTMlJSUADB8+nOnTp981MUaSJDZv3kx+fj4A0dHRPPbYY7Kf+N3g6kIzCxcuJCfHN8Lv3USSJIqLi/n666958sknu318ixYLLf/2SyyXC+f5T51KxM//CfVVPoC+aOOuXbu4cOECTz31FGlpaX3qxscTfWu1Wvnqq69obGykra3tmuVSU1NZsGCB/Do/Px8/Pz8cDgd2u91rSk5Olr3hTSYTH374IU7nlZRio9HIrFmz7ukAgELfxOl0UlZWhtlsJjs7G41GowyMKCgoKNwhNpuN3bt3U1BQwHPPPXdHA9kPMtVtVjYVNrChoJ7KVqvXPK1axZCEYEamhDIqNZShSSH46W4cINLQaecfN57nUKm7T/VIehj//kQO0UFK9lJfwel0cvjwYY4fP44oisTExPDaa68ptnsKCgoKfQRF+O4GivDdN3A4HHzxxReUlZWhVqsZP348wcHBcmqZKIr8/ve/x263YzQaSUlJIS0tjX79+hEWFnbXOiGSJGGz2bjZoeKJhNZoNEyfPp3hw4f3SqeosLCQLVu2YLPZ0Gg0DB8+nNGjR9+VlP+2tjY+/vhjYmNjeemll/p0tLcgCKjVahwOB4IgIIpit/8PZ3k5TX/9NzhLS0GrIeynP/WZtcl38QjLkZGR94XQ67Hd8UyNjY0kJyczduxYwD1I9c4779zw84MHD2bGjBmA+7j/3e9+J89LTk5mzpw5hIeH3xfbQkFBQUFB4UHBYrGgVqsRRbe1h8lk8ir6p+BGkiQKajrZdq4JvUbFqNQwhiWF4K/vXt9YlCRWHK/hN1+XYHeJBBu1/Mvj/ZkxoPuWfAp3j6amJnbu3MnYsWNJS0tDr9f36fsgBQUFhe8LivDdDRThu+/gcrn48ssvOX/+POAu3Pbqq6/KAlhRURFhYWEkJCSg1Wp7TRhzuVzY7XbMZvN1bwDsdjsbNmxg4sSJpKSk9Kpg19nZyaZNm7h06RLgtqCYOnUqWVlZd7zuxsZGLz/soqIiUlNTu20X0puUlJSwadMmFixY0ON2Wnbtpvlf/gXJbEYTGUHkf/0XxsuWH76grKyMgoICHn/8cTQazQNh1SBJkhwd3tbWxp49ezCbzRgMBnkyGo0YDAZiYmJITU2Vj5O2tjaMRiNGo1Hx8lZQUFBQULiHSJKEy+WitLSU1atXM378eEaMGKFcm+8iJU1m/m79Oc7Vue1mZg+O4R9nZhJsvL/7hg8SkiR5HQMnT56kvLyc/v37k5WVpWgICgoKCvcARfjuBorw3bcQRZHt27dTUlJCUlKS7PGr0WjuWae7paWFtWvXYrVaeeWVV1CpVJSUlJCRkSG3SafT9aoYfzWSJFFUVMTOnTtpbW3l6aefJjk5ucfr6+joYNeuXZSUlLBo0SLi4+NRq9Xo9fo+nd53/vx51q5diyAIDBo0iJkzZ3br85LLRfs7f6Dzz38GwDBsGJH/+Wu0PrSQOXv2LNu2bUMURSZMmMD48ePRarU+W7+CgoKCgoKCwp2yfft2jhw5AkB2djbTp09XrKXuIg5B5I/7y3n/QAWiBLHBBn79RA65aXc32KTD6mR3UTPHK9pJDvdjdGoYA+OD0Gn6bn//XmOz2fjjH//oZdMXGxtLVlYWWVlZxMfHKwNFCgoKCr2AInx3A0X47pt4ds2+0HHw2DFYLBamTp1KVVUVFy5cYOLEiYwcORKDwdAnUt4EQeDixYukpqbK2+/ChQtERUURERFxW5//9ttvOXz4ME6nE7VazZQpUxg1alSfF2dPnTrFxo0bkSSJrKwsOZr6dhFaWmj6h59h//ZbAIKeX0TYj3+MykeR2JIkcezYMfbv3w9ATk4Oc+fOVW4iFRQUFBQUFPocnn7Ljh07EEWRqKgo5s6dS2ho6L1u2gPNqaoO/m79eara3B7iS0Yn8dPJaXJhTF/QbnGyq6iZ7ecaOVLWhkv0lgP89RpGJIeQmxZGbmoY2bGBqPvA/Vhform5mUuXLlFSUkJtba3XvMTERF5++eU+cQ+roKCg8CCjCN/dQBG+FW6HAwcOsGvXLvm1Wq0mLy+P3NzcPhcFLUkSgiDQ2trKhx9+iMvlYujQoYwdOxZ/f//rfqa6upqdO3fS3NwMuDttM2fOJC4urk933CRJ4ujRo2zfvh1w+0dPmzatW/+J/XQBTX/3dwiNjaj8/Ij4xT8TMG2az9ooiiJ79uzhxIkTAIwYMYIZM2b0icESBQUFBQUFBYUbUV5ezpo1azCbzRiNRh5//HHS0tLudbMeaMwOF/+9o4TVJ9yCalKYH7mpofSPCZSnIGP3AlJazQ52FTWz41wjR8raEa6SALKiAxjfL4KqNitHy9vosLq8Phvip2VUShi5aaHkpoaRHunfp+8NehuLxUJpaSklJSWUl5czePBgJk+eLPfz161bR3p6OllZWcrAkYKCgoIPUYTvbqAI3wq3g91u53e/+x1WqxV/f3/mzZvnZXXSF2lvb2fLli0UFxcDYDAYGD16NA8//LBXBPfevXs5fvw4AH5+fkyaNImHH364zwuzLpeLd999l9bWVgCGDx/OpEmTbvs/kSQJ06rVtP7mN+ByoU1NJfp//gdduu9u6FwuF5s3b+bixYsATJo0iXHjxvW5wRIFBQUFBQUFhevR0dHBqlWr5MjW559/nri4uHvcqgefvReb+fmmC7SYndfMSwg1yiJ49uXHxDCjV2R2i9nBzvNN7DjfxPFyb7G7f0wg0wdEMT0nmrTIK0ExoiRR1GDiaFkbR8vbOV7RjsUheH13ZKCe3NRQRqWGMTQxhIwofyUi/DKCIOB0OjEajQBUVFSwatUqeX7//v0ZP348CQkJ96qJCgoKCg8MivDdDRThW+F2KSkp4dy5c4wdO5bw8PA+LXpfTWlpKdu3b6exsRGA0NBQHn30UTIzM1GpVBQUFLB9+3YGDx5MXl4eQUFBffK3OZ1OKisrycjIkIsvff7559TU1DB69GhGjRp12+0WrVZa//0/MG/ZAoB/3hQifvEL1AEBPm1zS0sLy5cvx+VyMWvWLIYNG9Ynt62CgoKCgoKCwo1wuVxs2bIFm83GrFmzlL5ML9Fpc3KotI2iehNFDSYuNJio77Rfd1l/vYas6ACyYgIpb7bwbWU7V7uYDIgLZFpONNNyokiNuH4G6HdxCiLn6ro4clkIP1nVgd0lei0TZNAyJCGIhxJDGJoYzJDEYKUw52W6uro4f/48JSUlVFdXy++np6czfvx4UlJSlGNJQUFBoYcownc3UIRvhe8Doihy8uRJ9uzZg9lsRqPRsHTpUoKDg5EkiebmZpKTk/tc50uSJKqqqjh16hRnz57F4XDwgx/8gMDAQMAdheTv74+uG17czspKmv76b3BeugQaDWE/+QuCFi26a7+9oqICtVpNVlZWn9u+CgoKCgoKCgq3i8vlwul0IkkSdrsdi8VCWNjdLcCo4E271cnFhitCeFGDiUuNFhyCeM2yg+KDmJ4TxdScaJLD/e74u+0ugYLqTo6Ut5Nf0U5hbSdW57Xfmx7pz9DLQvhDSlQ44A6GOXr0KOfOnZNrMS1dulSJ/lZQUFDoIYrw3Q0U4Vvh+4TdbufAgQOIosgjjzyCSqVCr9f3OVuT/8/efcfHUd/5H39t067KatV7W0lWsSwb9yr3juk+qgkYsAklCZfjd0m433FHQgm5X5ILBAihGFNCwDSDwb03uclNtmXZ6sValZV2tdL2md8fwoOFbbBsucnf5+OxD0s7uzOzkrw7857P9/O12Wzs37+f/fv3K61MAEwmE7NnzyYpKem81tuxfDktzz2P3NmJOjKS6N//HsPQIb212zidTjZv3kxSUhL9+/cHQKPREBBQCr1+AAAgAElEQVQQIEJvQRAEQRCueidD708//ZTq6mquu+46cnJyiImJEcc6l4lPkqhodlLa6KDU4iA8SMe03GgSwy487P6x7ZZaOthfa2dfrY19tXZlYs5TnawKn5Ybw9wh8dd0CG6z2di5cyetra3cfvvtaDQadDodTU1NREdHi3aIgiAI50gE3z0ggm/hWiTLMpIkoVarr7iTlNLSUj788EPle51OR3Z2NgMGDCApKem89ldyOrH+4X/oWLoUAP2QIUS98Dza6Ohe2WdJkti/fz9btmzB5XIRHBzMwoULCQwMRKvVXnE/Y0EQBEEQhPPlcrn44IMPurVvCA8PJycnh5ycHKKioi7j3gmXU0uHh/21dvbX2thfaz+tKrwgM4IXbsolIjjgMu7l5SfLsnJ+4HQ6ef311zEajYwbN46BAwdecUVJgiAIVxoRfPeACL4F4fKy2Ww4HA4SEhKQJAmHw8Err7xCXFwcAwYMICsri4CA8z849hw7RvOvf4O3ogJUKkwLFmBa8BCqXjqgrK2tZe3atUoP9ejoaKZNm0ZmZqYIvAVBEARB6JMkSeLw4cMUFxdTVlaGz+dTlg0YMIBZs2Zdxr0TrhQnq8K3lFl5bVMlbp9EdEgAL97Sn1Fm0SYHoLq6mqVLl+JyuQAIDQ1lzJgxDBkypEftHAVBEK4lIvjuARF8C8KlJ8syZWVl7N69m9LSUmJiYvjJT36iLHc6nQQGXtjwTFmWcXz6Ga1//COy240mKoqo55/DMGzYhe4+AA6Hg40bN3L48GEA9Ho9BQUFjBgxQhykCoIgCIJwzXC5XJSUlHDo0CHKy8uZPHkygwcPBqCjo4Pi4mJycnIwmUwXfV9kWcbr9V5Q0YRwcZRaHPzy00OUN3eiAhaOS+WxiWloRXsPPB4P+/btY/fu3XR0dAAQEhLCnDlzyM7Ovsx7JwiCcOURwXcPiOBbEC6dzs5O5aCutbVVuT8lJYWbb74ZvV7fK9uR2ttpefY5OlevBsAwdixRv30GTS9OwFRbW6u0ZBk4cCCTJk3CZDKJKm9BEARBEK5ZTqcTSZLQaDTK5Opr1qwBID4+HrPZTHBwMIGBgRgMBuLj488rpG5sbKSxsRG73U57ezs2m4329nbsdjs+n4+77rpLmRPmZHs/4fJzev38fuUxlhSdAGBIsok/3NqfBJPhMu/ZlcHn81FcXMyOHTuw2+2oVCoef/xxIiIiLveuCYIgXFFE8N0DIvgWhEujsLCQNWvW4Pf7ga4K6QEDBjBo0CAiIyN7bTvuQ4do/s1v8NXWgVZD2OOPEzpvHqpeOOGx2+3d3ie2b99Oeno6aWlpIvAWBEEQBEE4hSzLlJSUsGPHDqqrqznTqef9999P9LdzruzYsYOioiICAwOVYNxgMODxeLDb7dx2220YDF0B6erVq9m3b98Zt6vRaPj5z3+OVqsFYN26dVRWVpKSkkJycjIpKSkXPLJQuDDLDzXyX8tKcLj9hBq0/O6GHKbl9s7cO32B1+tl69ataLVaxo0bR0BAABqNRpxvCIIgfOtcs1ztJdwnQRCuMT6fD5/Ph8FgQJIkjEYjfr+fmJgYBg8eTE5OTq8OQ5UlifYPPqD15ZfB50eTkED0C8+jz8+/4HXb7XbWr19PeXk5DzzwgFLZPWnSJFFBJAiCIAiCcAYqlYrc3Fxyc3Npb2+nuLiYhoYGnE6ncgsKClIe39HRgcPhwOFwnHF9drtdCb5jY2NJTU0lNDQUk8mk3MLCwggKCkKv1yNJEn6/n+rqalpaWmhpaWHv3r1A15wsKSkppKSkkJGRIQLFS2xWXgz5CUae/OwwB+rs/GJJMXcOS+Dfp2Vi0ImJHXU6HRMnTlS+93g8tLS0sGfPHmbMmCEu3AiCIJwjUfGNqPgWhIvBbrfz4YcfkpGRwbhx45AkCUmSsFgsxMXF9frJhb+1lZb/+i+cW7YCEDR1CpH/+Z+ojcYLWq/X62XXrl3s2LEDn8+HSqVixowZDB06VFRdCIIgCIIgXKCTp6OyLONwOGhra1NC8c7OTpxOJwEBAZhMJtLS0ggODkalUim3c9HR0UFFRQWVlZVUVlbS0tKiLDMajTz88MPimO4y8folXl5fwZvbqgHIignmj7flkREdfJn37MoiyzIffPABJ06cICQkhOuvv56cnJzLvVuCIAiXjWh10gMi+BaE3lVbW8tHH32Ew+EgKiqK+++//6KeTLj27KH5qf/A39QEAQFE/NsvCZk794K2KcsypaWlbNiwAbvdDkBSUhIzZswgMTFRnBwJgiAIgiBcpex2uxKEGwwGCgoKgK7jvy1btjBw4MCLMhGnLMviGPIstpZZ+fUXh2np8BKoU/PUzH7cel28+Hmdoq6ujhUrVmC1WgHIz89n1qxZovpbEIRrkgi+e0AE34LQew4ePMjSpUvx+/1ERUVx6623XpQTB6m9nY7Vq+lY9jXub/s7atNSif797wnIyrqgdcuyzGeffUZ5eTnQVQk0adIkBg4ciEYjhl4KgiAIgiD0JSdbouzdu5fly5ej1WoZPnw4I0aMuOC2fLIsU19fz549eygvL2fw4MEUFBSIVnln0ORw85svjrCtvBWA2Xkx3DsyiXiTgcjgADRqEYJ7vV62bdvGrl27kGWZ4OBg5syZI6q/BUG45ojguwdE8C0IF06WZdatW8eWLVsAyMzM5Prrr+/dHt4+H64dO3B8tQznxo3IbnfXArWa4BtuIOL/PIn6lD6RF2LLli3s2rWLESNGMG7cOAwGg6g4EQRBEARB6MMaGhpYvnw51dVdbTeMRiMTJkwgJyfnvI4Djxw5wu7du2loaOh2f0ZGBnPmzOnV4+S+QpJlFm2r5i/rK/BJ30UVWrWKaGMAcUY9saEGYkP1xIfqiQ3VExeqJy7UQFTItROO19fXs2LFCqVtzx133CHCb0EQriki+O4BEXwLwoWRZZlPPvmEw4cPAzBy5EgKCgp6LSj2HDtGx7JldCxfjr/5u56MuowMgufMIXj2LLTR5z8LvCRJ7N+/n9jYWBISErq26fHg9XqJiooSgbcgCIIgCMI1QpZlDh8+zKpVq5R2d4mJiUyePJm4uLgerWvJkiVUVlai0Wjo378/sbGxrF+/Hr/fz9SpUxk8ePDFeAl9wv5aG/+7rpwqq5Omdg/+c4gtNCoVcSY9AxKMDEoM5bokE7nxIei1fXPEps/nY9u2bdTW1nLnnXdiMBhQq9Xs378fk8lEeHg4JpNJjC4QBKFPEsF3D4jgWxAu3Pbt21m7di0zZswgLy/vgtfnb2mhY8VKHMuW4T16VLlfHRZG8KyZBM+ZQ8B5Vt+cqrq6mnXr1tHU1ERcXBzz5s1Dq9Wi0+nEQaIgCIIgCMI1yuPxsG3bNrZt24bX6yU+Pp577rnnrMeejY2NFBUVMXbsWIzfTq5eXV1NXV0dw4YNIzQ0FJVKRU1NDfv27WPy5MmiuOIc+SSJFoeXBruLBrsbi91Nw7c3i93FCbv7rOG4Vq0iNy6E65JNDEoMZVBSKAmmvjWSU5Ik5bzF5XLx8ssvK8tUKpUSgoeHh5Oent7tXE30nRcE4Wolgu8eEMG3IJwfSZJQqVT4fD48Hg9tbW2Eh4ef9/pkWca5eTOOTz7FuX07+P1dC3Q6gsaPJ3jO9QSOGYNKp7vgfbfZbGzcuJGj34bqBoOBcePGMWLECHS9sH5BEARBEATh6mez2Vi9ejWDBg0iMTER6Kq0ValUqFQqysrKKCoqUtqjjBo1SunhfbKQ4vvBoizL+Hw+vF4vXq+Xmpoa0tPTL/lr60v8kkxLh4eK5k7219nZX2tnf60Na6f3tMdGhQQoIfigxFAGJIYSqOsbVeF2u51Vq1Zhs9mw2Wz4T55PfWvIkCHMmDEDlUqF2+3mr3/9KxEREURGRhIZGdnta4PBcJlehSAIwo8TwXcPiOBbEHpu//79bN++nbvuuqtXgmJ3cTGtf/5f3Hv3KvcFDBhAyA1zCJo+HU0vTZDpdrvZuXMnu3fvVk5aBg0axKRJkzAajaLiQRAEQRAEQTiNLMt4PB78fj9btmyhpKQESZKw2WxAV2VtVlYWI0eOJDU19ZxGDnq9Xj755BNKS0sZM2YMY8aMEceivUiWZWrbXF0heJ2NA7V2jjQ4uvUOBzBo1YzvF8n03Ggm9IskWK+9THvcu2RZxuFwYLPZaGtrw2azkZCQgNlsBsBisfDuu++e9fmjRo1i+vTpqFQqvF4vx44dU0JxrbZv/IwEQbh6nWuWK96thCuS3W6noaGBpKQkgnppssLe0NnZSVNTEykpKdfsQaksy6xdu5atW7cCsHv3bkaPHn3e6/PW1dH211foXLkSAJVej/H22wm5+SZ03x6U9aby8nIKCwsBSE5OZvr06SQmJl6zv09BEARBEAThx6lUKvR6PV6vl8OHDyuBt8FgYNCgQQwfPpyIiIgeHVNqNBoiIiIA2LZtG1arlZkzZ4rRh71EpVKRHB5Icnggc/JjAXB5/Rw+0a5Uhe+rtdHY7mHVkSZWHWkiQKNmXGYEM/pHM7FfFEbD1RuZqFQqjEYjRqORpKSk05ZHRUUxf/58WltbsVqttLW1YbVaaW1tpaOjg8DAQJxOJyqVisbGRpYsWQJ0/c1PnDiR4cOHi9aQgiBc8UTFN6Li+0pTUVHBkiVLcDqdAMTGxjJs2DCGDRt2WfdLlmXeeust6urqGDNmDNOmTbus+3M5uN1uPv/8c6U9yKhRoxg3btx5hcZ+ux37W29h/+dH4PWCSkXwnOsJe/RRtLGxvbbPsix3a8EiyzLLli0jNzeXvLw8NJq+MaxREARBEARBuDRcLhc7d+5Er9czcOBADIYL6xm9Z88evvnmGyRJIj4+nptvvpmQkJBe3OMfdi33eZZlmSMNDlYebmTlkSaqrU5lmU6jYmx6BNP7RzMpKwpT4LVzQcLj8SDLMnq9HoD6+nrWrVuH1WrF7XYDEBMTw+zZs0lNTb2cuyoIwjVKtDrpARF8XzlOPegzGAy4XC4ACgoKGDduHGq1GpfLxY4dO0hLSyMlJeWSVUSUlJTw0UcfKd9PmjSJ8ePHX5JtXwkcDgfvvfcejY2NaDQaZs6cSf/+/Xu8Htnjof3jJdjefBPJbgfAMHIk4U/8goDs7F7bX1mWqaioYNOmTXR2dvLQQw8REBCg9FsUgbcgCIIgCIJwpaioqODjjz/G5XJhNBq59dZbiYmJuWjbk2WZ2tpaioqKKCsrIywsDLPZTHp6OomJiddkKwtZlilt7GDVtyF4eXOnskyrVjHKHM6M/jFMyY4iLOjaCcFPJUkS+/fvZ8uWLcq5el5eHnPmzBE9wQVBuKRE8N0DIvi+MmzZsoW1a9cCkJuby4wZM/B4PNTU1BAbG6tU7JaUlPDVV18BoFarSUpKwmw2YzabSUpKuiiBpizLvP7661gsFmJiYmhsbARg7ty53WbF7qu8Xi+LFy+mrq6OoKAgbrnlFhISEnq0DlmW6Vy9mraX/4qvrg4AXWYG4b94AsOY0b1aZXLixAk2btxITU0NAHq9nrlz55KWloZGo7lmK1oEQRAEQRCEK1dzczMffvghVqsVk8nEgw8+eFHObbxeLx988AFNTU1nXJ6dnc2NN97Y69u92hxv+i4EP9bYodyvUakYmmJifL9IJvSLJD0q6Jo7v3A6nWzevJn9+/cTGRnJQw89hF6vv+Z+DoIgXD4i+O4BEXxfGSwWC4sWLWL48OGMGjXqrB+adXV17N+/n+rqatrb27stS0xMZP78+b1+gFhWVsb7779PQEAACxcupKioCIvFwk033URISMhV9QEvSRIul4vAwEBlWOOP7b/VamXx4sV4PB7mzZunXIQ4V669e2n98//iKS4GQBMVhenRRwi54QZUvfi7slqtbN68mdLS0q7taDQMGTKEgoKCq+73JAiCIAiCIFx7nE4nn332GSNGjCAxMRHoCqq1Wu0FHct2dnZ2mzvp448/pr6+nv79+3Pddddht9s5fvw45eXljB07lkGDBgHQ2trKp59+qlSDJyUlXZM9yMubO5Q+4CUNjm7LksMNXSF4ZiTD08LQa6+dkaUWiwW/309CQgIqlQq1Wk1tbS0ZGRmXe9cEQejjRPDdAyL4vny8Xi86nQ6fz4fH4zntgOyHnOzdXF1dTXV1NWVlZUiSxLx580hLS+vV/ZRlmZKSEtrb2xkwYACyLCPLMmq1GpVKdcF9/S6V48ePs2rVKkJDQ7ntttuQZRm3201TUxNZWVlnfZ4kSbS0tCgzgZ8r34kTWP/fH3GuXw+AKjCQ0Pt+Qui996IODLzg13Mqu93OG2+8gSRJAAwYMIAJEyYQGRl5VfxuBEEQBEEQBOEkv9+v9FL+7LPPaGhoID4+nvj4eOLi4oiPj1f6L5+NLMtUVlZSVFREVVUVCxcuVHqHt7W1ERoaSnBwcLdjZUmS8Pv9yj7s3r1bGZULoNVqSU5Oxmw2k5mZiclk6u2XfsWraXWy8VgLm461sKOyFa//u0glUKdmlDmCCd9Wg8eG/vDvqK/ZsWMHmzZtol+/fsyYMYPIyMjLvUuCIPRRIvjuARF8Xx6VlZV88skn3HTTTUo1w0luvxtLp4WE4AS06nPrL1dZWUlYWBjh4eG9HkSfeuD5fbIss2XLFsxm8w+Gx5dTY2Mjq1atoqysDOiaifv+++8nMDCQJUuWUFtby9SpUxkzZky3n5vL5UKv1ysTjfaEt6ICy08fwd/UBGo1ITffTNhPH0YTFdUrr8nv93PixIluM5R/+eWX+Hw+Jk2apFQdCIIgCIIgCMLVSJIk3G43r776Kg6H47TlERERJCcnM3369G73u91uiouL2bt3L62trcr9s2bNYtCgQWi12nMeIetyuTh+/LhSDf79Ebdz587FbDafx6vrGzo8PgorWtl0rIWNx1pobPd0W54TF8KEzK4QPD8xFI26b5+fbN26lcLCQiRJQqPRMGrUKMaPH09AQMBpjz05EtnpdCr/nrxpNBqGDh16GV6BIAhXCxF894AIvi+9oqIivv76ayRJwmw2M3fuXGWZx+/hpxt+yiHrIQLUAZhDzWSFZdEvrF/XzdQPY4DxB9ev0+l6ZQjeyYNNlUqlVBJ/X3FxMcuXL0er1XL33XdfUQd+DoeDDRs2UFRUpFSoDxkyhNGjR2MwGJAkibVr17Jv3z4ABg8ezPXXX49Go6G2tpb333+fqVOn9ngSS09pKZZHHkVqbUWXkUHU718goBeGu8myTENDA4cOHaKkpASn08mCBQsICwtTlgcGBqJWqy94W4IgCIIgCIJwJfB4PNTX11NXV0ddXR319fXYbDagq9Xj3XffrTz2888/p6qqCq/XC0BAQAD5+fkMHz6cmJiYCyoMkSSJpqYmjh07RmlpKQ0NDTz66KNKqLl3717a2tro168fCQkJ19wxuSzLlFgcSjX4/lo7p4Yt4UE6CjK7qsHHZkQQauibLWOsVitr166lsrISgJCQEFJSUhg4cCDZ2dnIskx1dTXvvPPOWdcxatQoJk+efMEtfgRB6LtE8N0DIvi+dCRJYtWqVezYsQOAnJwcZs6c2S2k/kPRH/i07NMfXE98UDyZYZn0M3WF4VlhWSQEJ6BWdR1c1dfXExgYeFoleU/t3buXFStWMHbsWIYNG3bGx/j9fpYuXUpZWRkBAQHMmzeP5OTkC9pub6irq+Pdd9/F4+mqOsjKymL8+PGn9eeWZZmioiLWrVsHQFpaGjNnzuS9996jo6ODjIwMbrnllnM+4HAfPEjj4z9Dam8nICeHmFf+iqaHPcG/r62tjcOHD3P48OFuVStBQUFcf/31ZGZmotVqr7mDa0EQBEEQBOHaI8syDoeDum8njE9LS1MKdl566SUAoqKiGDJkCIMGDSIwMPCihIdutxuNRoPP50OSJN555x1lwsygoCAyMzPJzMwkNTUVrfbcRvH2JdYOD1vKrGw81sKW41ba3T5lmUalYkiKSWmJ0tcmyJRlmbKyMtatW6dcpBk3bhyjR48GoKmpSQm+AwICMBgM3W5TpkxR5mhqbGzEYrEwdOjQizLZ68XidDrZunUrFouFm2++meDg4Mu9S4LQp/SJ4Pu///u/eeaZZ7rdFxsbS0NDA9D1ZvrMM8/w97//ndbWVkaOHMkrr7xCXl5ej7Yjgu9Lw+Vy8emnn3L8+HEAxo4dy+jRo7t9wK+sXsnTO54G4E/j/kSqMZVjbccobSvlmO0Yx9uOc6LzxBnXH6QN4ibzTUzRTGHFihXExsaycOHC8w5D/X4/L7/8MjabjYkTJzJ8+PCzPtbn8/Hpp59SXV2NwWDgvvvuIy4u7ry22xtkWcbj8fC3v/0Ng8HApEmTurUEOZOysjK++uorvF4vGo0Gv99PdHQ0d9999xmHpp2Ja08Rjb/4BXJnJ/pBg4h56S+ojT9cnf9jKioq+OSTT5TvtVot/fr1Iz8/Xwm8+9JBoiAIgiAIgiD01Mnj/6NHjxIUFITZbL6kIaEkSRw+fJiSkhKOHz/erU2kTqcjNzeXGTNmXLL9udJ4/RL7amxsPNbCxuMtlDV1dlveVyfI9Pl8HDlyBI/HQ2JionKO7Pf7cblcGAyGH/w7lWWZDz/8kLq6OiIiIpg6dSo5OTlX9Pmfz+dj586dbN68GZfLhVar5YknnkCn06FWq1m5ciVNTU1Kz/74+HgiIyNFEZcg9FCfCb4/+eQT1qxZo9yn0WiIjo4G4MUXX+S5557jnXfeISsri2effZZNmzZx9OhRjD0I20TwffE5nU4WLVpEU1MTWq2W2bNnk52d3e0xFfYK5q+Zj9PvZH7ufH464KdnXJfdY+e47TjH2o4poXiFvQKP1FXZ/OtBv6ZmRQ1ut5vZs2f/YGD9Q3bv3s3XX39NcHAwCxYs+NHWKR6PhyVLllBfX09QUBD333+/8rd6KdTU1LBr1y5uuOEG/H4/kiRht9sxGo3nfGDQ0NDAP/7xD/x+P2q1moceeuicJ6xxbttG05NPIrvcGIYPJ/rPf0J9jhOVnqqqqgqPx0O/fv2ArglQX331VeLi4hgwYAD9+/cnKKhvVUQIgiAIgiAIQl/h8/moqKigpKSE0tJSHA4Hubm5zJkz53Lv2hWj9tsJMjeecYJMDaPTwynIjGBkWjipERenYv9qIMsy+/btY9u2bXR2dl0sSEpKYvr06VfEKOtTybLMwYMHu1W5R0VFMXjwYK677jrlcYsWLaK5ubnbc3U6HXFxcSQmJjJ9+vRr9vctCD3RZ4LvL774Quk/fCpZlklISOCJJ57gV7/6FdA11Co2NpYXX3yRhx9++Kzrdbvd3a5A2+12kpOTRfB9EUmSxOeff05lZSW33HLLadXQTp+T+WvnU2GvYFjMMF4a/xIa1blf5fZJPhYdWcSbh98kNCCUp+KeYvem3QQGBvL4448T1MMA1ufz8dJLL9He3s6UKVMYMmTIOT3P5XLx0Ucf0djYSGhoKI899tg5V0ufL4vFwoYNGygpKQHo0f5+34YNG9i1axcAc+bMITc395ye17l+PU2//g14vQSOG0fUH15EbTD0aNsej4f169dz4MABIiMjmT9/PiqVCrVajc/nO23GeUEQBEEQBEEQrmySJFFfXw90TcYJ0N7eTm1t7RVfuXupdHr8FFa0svFY8xknyIwxBjAiLZwRqWGMSAsnOdxwzf3cPB4PO3fuZPfu3Ur/+pycHKZOnUpkZORl3ruu1pwff/wxJ050jU4PCQmhoKCA/v37n1bJ3dTUhMViwWKx0NDQQFNTk/KaIiMjWbBgAWq1Go1Gw4EDBwgPDyc5OVlUhAvC95xr8H3FN9o6duwYCQkJ6PV6Ro4cyfPPP096ejoVFRU0NDR0m8Far9czYcIEtm3b9oPB9wsvvHBaCxXh4vJ6vUybNg2Xy0VISEi3ZbIs8/s9v6fCXkGUIYrfjvwtGpUGWZbP+QNdq9YyP3c+m+o3UdpWykr/SrKjsmlubmbdunU9ri7Ys2cP7e3tGI1GBg4cqNxf31HPgeYDTE2eilZ9+n8fg8HAv/zLv/DRRx8xYsSIHm2zpxobG9m4cSOHDx9W7hs4cCBZWVnntb7Kysqzht4NDQ3Exsae8ffRsWIFzf/5NPj9BE2dQtRzz6Hq4cSidXV1fPPNN7S1tQFdV/HVajV6vV58wAuCIAiCIAjCVUqtVistF2VZxu12s2rVKsrLyykpKWHatGmnnR9ea4ICNEzOjmJydhSyLHOkwcGmYy1sr2hlX62NxnYPyw5aWHbQAkBcqJ6RaeEMTwtjZFoYiWGBl/kVXHwBAQGMGzeO6667jq1bt3Lw4EFKSkpIT08nIiLisl8ICAoKorOzk4CAAEaNGsWQIUPOOmI8Ojqa6OhoBgwYAHRdHLJarVgsXb9fv9+P3+/H6XTyzTff4PV6CQwMJDMzk6ysLDIzMzH0sMhMEK5lV3TF9/Lly+ns7CQrKwuLxcKzzz5LSUkJhw4d4ujRo4wdO5a6ujoSEhKU5yxcuJCqqipWrlx51vWKiu9Lx+VyodPpuv28v+/z8s/5/Z7fo1FpeGXCKwyOHsyKFSsoLi4mKCgIo9HY7RYVFUV6evoZ13W09Sjz187HL/t5st+TVK6uRKVSsWDBAuLj489pn71eL3/5y1/o6Ohg+vTpDBo0CIBGZyM/Wf0TWt2t3Gi+kaeGPnXWD1i/36/0KtPpdD/aJqUnfD4fX3zxBYcOHVLuy8nJYfTo0URFRZ33emVZZuvWrahUKsaOHavcX1VVxSeffEJ2djYzZ87sNjGN44ultPzudyDLBM+5nsinn0bVg4lr/H4/W7duZefOnciyjNFo5PrrrycrK+uyH7wIgiAIgiAIgtC7JEli06ZNbN68GUmS0Ov1TJ48mby8PHH8fwYur5/9tXZ2Vrayo7KNA3V2fFL3CCcxzMDw1DBGpoXTLyaY2FA94UE61H3459nc3My+fa58FCwAACAASURBVPuYPHkyarUanU5HbW0tDoeDyMhIIiMj0ev1F237drudXbt2MXHiRPx+Pz6fjxMnTmAymXo82vxsHA4HGzZsoKKiApfLpdyvVqtJSUlh+PDh9O/fv1e2JQhXoz5R8T1r1izl6/z8fEaPHk1GRgaLFy9m1KhRAKd9OJ5LlbBer7+ob4LCdz766CPcbjfTp08nJibmtOUlrSX8ae+fAHhkwCMMjh5MZ2cnZWVlyLJMR0cHHR0dyoSmAKmpqd2C70WLFqHT6TAajeTm5nJv9r28U/IOb1e/zf1Z91NdWs3y5cuV1hk/prq6GqfTiclkUq7CevwefrPtN7S6WwH4suJLEoMTuT/3/jOu49QJOlpbW1m2bBkxMTGkp6djNpsJDDz/q/IajYaOjg4AsrKyGDNmTK/0ElepVIwbN+60+x0OBwBHjhzBZrMpM1Lb//lPWv/wPwCEzL2NiF//GlUPqrNPbQsD0L9/f2bNmiVamgiCIAiCIAhCH6VWq5k4cSI5OTksXbqUhoYGli9fTklJCdOnTxeFaN9j0GkYaQ5npDmcnwFOr5+9NTZ2Vraxs7KV4vp26tpc1LU18MX+786ZdRoVsUY9saF64kINxIWe/FpPrLHr38iQgKs2HI+KimLq1KnK952dnXz++ee0t7cr94WEhBAREUFkZCSJiYkMHTr0grfrcrnYunUrhYWF+Hw+goKClEK5cy20O1chISHMmTNHaRd0/PhxysrKsFqtVFZWkpaWhtfrRaPRYLVaOX78OAaDAb1ej8FgOO1rMZJauFZd0cH39wUHB5Ofn8+xY8e4+eabga4WDKe+wTQ2NhIbG3u5dlE4RWVlJZWVlajV6jMOxWn3tPOb7b/BI3koiC/gnux7gK5hQg899BAlJSUkJSVht9ux2Wy0t7djt9u7hbxer1eZGOLEiROUlpZy0203scG4gcr2Sg4mHCTFkkJeXh6SJJ3TzObp6ek89NBDtLe3K4//874/U2wtxqgzclvGbbxT8g6vFb9GfHA8M1LOPju5LMt89dVX1NbWUlNTw549e1CpVMTHx5ORkUF6ejrJyck/uF8tLS1s2bKFyZMno9fr8fl8TJw4EVmWz3gxoSdcLheFhYWMHTv2rFXpeXl5GI1GvvjiC+rr61m6dCmzXW5sf/0rAKH3ziPsiSd6HFbr9XqMRiPt7e3MmDGD/Px88WEsCIIgCIIgCNeAuLg4FixYwNatW9m4cSMVFRUsWrSIuXPnkpiYeLl374oVqNMwJj2CMeld/dI7PD72VncF4Xuq26htc9Hs8OD1y9S2uahtcwG2M65Lq1YRbzIwJTuKmwbFkR179bacaW9vJy0tjdbWVqxWK52dnTgcDhwOB9XV1VitVuV8U6VS8c477xAQEIBer0eWZSRJQpIkZS65yZMnK+t+++238Xq9yLKMzWZTqq8TExMv+Hz8XJxsF5SUlMTEiRNpbW2lrKyMjIwMvF4vXq+X8vLyH+x6cMsttzBgwABUKhXl5eWsX7+ekJAQUlNTMZvNZ21rKgh9wVUVfLvdbo4cOUJBQQFms5m4uDhWr17N4MGDga4JDzZu3MiLL754mfdUANi4cSPQ1Xf6+1fuZVnmt7t+S31HPfFB8Tw94mnUqu9CT71ez7Bhw84axp7s0BMQEMADDzyAzWbj0KFDlJSUsGbFGv7txn/j59t/zur61fxpzp/IT8jH6/UqH3Q/xO/3YzKZMJlMQFd192fln6FCxW9H/pYx8WPwSB7+UfoPfrfrd8QExjA4evAZ16VSqbjtttuoqamhsrKSqqoqWlpaqK+vp76+ns2bN/PAAw+QlJSESqXC4/Gg0+lQqVRYrVY2bdrEgQMHkGUZrVbLpEmTAHqlwtvv9/Pll19SVVVFW1ubcjHpTFJSUrjnnnt47913CV++HNuhrr7ipoULMT288Jw/JO12OwEBARgMXROyzJw5E41GQ1hYmPigFQRBEARBEIRriFqtpqCgQKn+7ujouCRBYl8SHKBlXGYk4zK/m+DR45doavdgsbuwtLtpsHfdLKf82+Rw45NkalqdvFNYwzuFNWTHhnDzoDhmD4ghOuTqGiEfERHBzJkzle/dbjetra1KEB4aGorP5wO6cqPa2tqzrkuWZTo7O5XvT5w4oTz35LbGjx9PZmbmZTmHDQ8PZ9iwYd3uMxqNZGdnK219PR6P8vXJHORkYN/S0kJdXR0AR48eBSAwMJC0tDTMZjO5ubm90ndflmW8Xq+SbwjC5XJF9/h+8sknueGGG0hJSaGxsZFnn32WjRs3cvDgQVJTU3nxxRd54YUXWLRoEf369eP5559nw4YNHD16FKPReM7bOde+MMK5q6ysZPHixWg0Gh566KHTfq7vH32flw+8jE6t443Jb5AbnovX66WiooJ+/fopVeI9eYP0er288cYbNDU1YTabqc6o5qPjHxEXFMc/pv+DYF0wWq2WgICAMz7f5XLR1taGyWRSgvUj1iMsXL8Qj+RhYd5CHuz/IACSLPHU9qdYX7ee0IBQ3pr8FinGlHPaz/b2dqqqqqisrMRisTB//nzUajVqtZoVK1ZQVlZGbGws5eXlyn6kp6czduxY4uLizvnncTZ+2U9FWwXr1q7DVmFDp9Nx9913/+hBpizLHPk//07wunUAhDz6KJEPPXhO25RlmcOHD7NmzRoyMjKYM2cOKpVKTF4pCIIgCIIgCAKSJNHW1kZgYKBSgVtSUkJubq4IzS4Cn9QVjh860c6ygxbWlzbj9Xede2pUKsZmhHPToDgmZUVh0P34qOmrid/v58SJE7S2tiqh8MmbSqXCaDSSkvLduX15eTnQdaFGq9WSkJBwVZ3D+v1+VCqVss92u53GxkasVis1NTXU1NTg9XqVx8+bNw+z2YxKpcJm6xotEBYW9qPbKSoqwmKx0NbWptw8Hg8mkwmz2cycOXPOaQS+IJyrPtHju7a2lrvuuovm5maio6MZNWoUhYWFpKamAvDv//7vOJ1OHn30UVpbWxk5ciSrVq3qUegtXBwbNmwAunqzf/8PcF/zPl49+CoAv7zul+SG5wKwe/dutmzZQk5ODnPnzu3xAY5Op2Pu3Lm88cYbVFRUMC13GpuDN1PfUc8rB1/hxqAb2bx5M/fcc88ZJ4Hcvn07mzZtYuTIkYwfP55Wdyu/2varrlYsCQXMz52vPFatUvPfI/+bxg2NHLIe4l83/ytvTnmTcH34j+6n0WhkwIABSv/wkyRJoqamRhmSBWA2mxk7duwF9QtrcjZx2HqYYmsxh1oOUdNQQ74ln3BPODIy26O2Y6u0MVOeybCYYWhUp38YybJM65//rITeRUOHknzdICJPe+TpOjs7Wb16NaWlpQC0tbUhSZLo5S0IgiAIgiAIAtAVKkZERChVooWFhaxfv549e/YwZcoUEhISLvcu9ilatZp4k4F4k4GpOdG0Ob2sONTI0v0N7K+zs+m4lU3HrYToNczsH8ONA+MYmmLqE+dvGo1GaR1yLk6dX+xq9P2wOTQ0VMloRowYgd/vp6Ghgerqampra4mOjlaqwzdv3kxRURFhYWGYzWb0er0SasuyzMKFC5ULVUVFRUol+alsNhuVlZX4fD5kWUatVrN3716Cg4NJS0s7Y1tcQehNV3TF96UiKr57V0VFBe+++y4ajYYFCxZ0uxBhdVn5yeqf0ORqYkbKDJ4Z8QwqlQqHw8Gbb76J1+vlhhtuYPDgwef9obpnzx7sdjsjRoxgd+NuHt/0OAB3cie+Sh8ZGRnMmzev23M6Ozv5y1/+gsfj4cYbbySjXwZPbH6CXY27SA5J5p2p7xCiO324j9Vl5cF1D1LfUU9+ZD5/nfBXDJrzf+P2+XzU1dVhsVhITEzscX87p89JSWuJEnIfsh6i0dk1eSQyZNmzyGvNQ4MGv8ZPWUIZBzQHlOdHGaKYnjKdWamzyArLUu5ve/NNbK++BoDq8cfoGD2anJycH/0d1dTU8NVXX9HR0YFarWbs2LEUFBSctYWNIAiCIAiCIAhCUVERK1euxOPxAF3zDo0fP75XWjAIP6yypZMvDzTw5QEL9TaXcn9SmIEbBsYxLScac1Qgeq2o3u3rvvnmG44cOYIkSactU6lU/PKXv1QqyYuKimhvb1faxppMJgIDA2loaMDj8ZCdnQ10Ffy9/PLLeDweVCoVCQkJmM1mzGYzKSkpaLVXdH2ucAU51yxXBN+I4Lu3LV26lH379jF48OBuMy37ZT+/2PQLdjXuIs2YxqKpiwjSBgGwcuVKDhw4QHx8PA8++OAFD4GRJEm5Svn87udZWrGUhMAERpWOQu1Xc8cdd5CTk6M8fs2aNWzdupXo6Gjuu+8+Xjn4Cu8dfY9ATSBvT3mbdNPZr/JW2itZsG4Bdq+dyUmTeW7Uc936lV9ssizzddXX/LP0n5TZypDo/qGkRk26KZ08Ux5BRUF4HV7MZjMzZ84kODiYYmsxy6uWs7pmNXaPXXlepimTmakzmbLTjffPXaF3+JP/Rujdd5/TftXX1/Pxxx/j9XqJjIxU2hb1hSoBQRAEQRAEQRAurvb2dtasWcOBA12FOjqdjtGjRzN06FARjl0Ckiyzp6qNpQcsrDzcSIfHryxTAXEmPWkRQaRGBpIaEURqRCBpkUEkhhnQaa6eViDCD/N4PNTV1VFdXY0kSd2C7cjIyB6f37tcLjZt2kR1dTWtra3dlmk0GgoKCpgwYQLQles0NDQQHh5OYGBgr70moW8QwXcPiOC7d/n9fvbv309iYmK3au/Xi1/n7SNvY9AYWDR1EemhXWFyU1MTixcvRpZl5s2bR0ZGRq/sh8/no6Ojg6JDRfyu9nc0OZsYHziemCMxhIWF8dhjj6HVanE4HLz00kt4vV5uueUWqvRVPFX4FADPj3qeKclTfnRbRU1F/Gzjz/DJPu7NvpfHBz7eK6/hx7h8Lv6w9w98Xfm1cl90YDR5EXkMiBhAbnguuRG5BOuCAairq6OlpYX8/PzTPqC8kpdtJ7axvGo5W05swSt5GX9Q4vFlXUG65Y6J5P3yt8q6oOtDq7m5+bRhYn6/n7feegubzUZqaip33HGH+KASBEEQBEEQBKHHamtrWb58OfX19UBX9ffs2bMv815dW5xeP+uONne1Qqm10+72nfWxGpWKhDCDEoSnRgSSGGYgNlRPXKiesEAx2aHQxW63U11dTVVVFVVVVXR0dDB69GgKCgqUHuN/+9vfADAYDISHh3e7JScnK3OVud1uLBYLTqcTl8uF0+lUvna5XOTl5ZGV1TWq3e/3s3btWoYOHUpk5Lk0cBWuRCL47gERfPcut9uN3+/vdl9hQyFPbH4CGZlnRjzDzNTvZlxesmQJlZWVZGVlcccdd/TaRBE+n4833niDxsZGEsYl8FLtS6hRM6t1FoG2QCZOnMiECRNYuXIlhYWFxMfHM+aGMTyw9gGcfifzsufxs4E/O+ftrahawX/t/C8AfjXkV9yacWuvvI6zqXHU8Ottv+a47Thq1DyU9xA3mG8gJrDrjb+9vZ0VK1ZgNptPm/X5x9g9dnZ/9irm/7cEtQRfD1OxeKoavdbALwb9gtsybqOlpYV//vOfyLLMgw8+eFqwbbFY2Lp1K7feeitBQUG99rqFS6+5uZni4mKuu+66c5rYRBAEQRAEQRB6kyzL7Nu3j/Xr13PrrbcqYZdw6cmyTGunlyqrk8qWTqqsTqqsnVS2OKm2duL0nt4W41R6rborBDfqiQ3tusWHfheMx4bqCQ/SoRbh+DVFlmWsVitqtZrw8K65006cOMHnn39OR0fHGZ8zduxYJk6ciEqlorq6mnffffes6x87dixjxowB4NChQ3zzzTeoVCry8vIoKCgQ7ylXoT4xuaVwdTk5C/f3Q29Lp4WndzyNjMyt6bd2C70rKiqorKxErVYzZcqUXp0dWavVkpeXR2NjI007mpg4ZCIbLBvYF7ePkbaRbN26lYyMDHbv3g3A4JGD+dW2X+H0OxkWM4xHBjzSo+3NTJ1JXUcdfz/0d/6n6H+IC4pjTPyYXns9p9pQt4Hf7vwtHb4OwvXhPDvqWYbFdIXbsixz5MgR1qxZg9vt5sSJE+Tn56PX6895/bq9JWT8+QuQQDVrCoa7skmpWUG1o5o/7v0j/SP6kx2eTVBQEM3NzWzatIkZM2Ygy7Jy9T42NpY777xTDEO8ismyzO7du1m1ahU+n4+BAwfi8/lQq9VUVVXh8/lITU0lICDgcu+qIAiCIAiC0IepVCoGDx5Mfn4+gNL7e+PGjUiSxJgxY3p0viOcP5VKRURwABHBAQxONnVbJssyTQ7Pd4H4t/+esLuw2N20dHhx+ySqrU6qrc6zbsOgVTMsNYwJ/SKZ0C+SpHAxerivU6lUp1Vfx8fH8+ijj+LxeLDZbNhsNmVyTZvNRlRUlPJeoNVqCQsLw2AwKDe9Xk9gYCB6vb7bKPWoqCjS09MpLy+nuLiY4uJisrOzGT9+vJhItw8SFd+Iiu/eIMsyixYtwmq1MmfOHFJSUpRlT21/irW1a8kOy+aNyW+g13x3QFJbW8uaNWtITU1l9uzZvT7kSZIk3n33XaqqqjDGGPk87HPaPG2M9I8kuSaZrKwsamtrCQsPY1/qPjbVbyI2MJbF0xYTrg8/7TUePXqUpqYmRo4cecawT5Zlfrf7d3xd+TVB2iBen/R6t0kiL5RP8vHqwVf5oPQDAAZGDuT50c8THRgNdE3SuXr1akpLSwGIi4tj9uzZPRq+4z54EMtPH0F2OgmaPJmo37+ASqtFlmWeKnyKdbXrMIeaWTx1MU0nmvjwww8BuP322yksLKSgoICEhAR0Ot0VO4mlz+fD7XYTHBz84w++RjkcDr788kuOHTsGQEJCAnfffbfyf/Tjjz+mqqoKtVpNUlISGRkZpKenk5CQ0KsXsARBEARBEATh+2RZprm5mb/97W9IkkRQUBAFBQVnbOkoXDk8PonGdjcN9q6bxe6iod1Ng82N5dv7Wxwevh9SZUQHMSGzKwS/LtkkeogLvcJisVBYWKjkJwAZGRncfvvtorjrKiBanfSACL4vXHl5Oe+99x4ajYaFCxcqs20XtxTz4LoHUaHivWnv0S+s32nPlSQJjUZz0XpAt7e389prr+F0OtEN0PGh40M0Kg0v5r1IQW4BHo+HN4vfZHHZYgLUAfx90t/Jjcjtto6GhgbWrl2r9JXLzMzk5ptvPuNBlVfy8q+b/5VdjbuINkTz1pS3iA2KveDX0exs5j8K/4N9zfsAuDvrbh7Lfwytuqui+vjx46xcuZLOzk7UajWjR49m5MiRPZoo1HP8OJaHFiDZ7RhGjSTmf/8X1Slv+G3uNu5aeRdWt5V7su7h54N+zjfffMOhQ4fQ6XR4vV5MJhMPP/wwBoPhijvotNlsfPbZZ9TV1eH3+8nOzmbWrFmYTKYff/I15OjRo3z55Zd0dnai0WiYMGECQ4YM6fb7XLNmDWVlZdjt9m7P1ev1ZGVlceutF7fVjyAIgiAIgiCUlpaycuVKrFYrANHR0aSmphITE0NqaqpyXipcPTx+icrmTjYdb2HjsRb21djxnxJbGfVaxmZEMDErknEZEUQEi4BSuDAtLS0UFhZy5MgREhMTuffee9FqtaKg6wongu8eEMH3hTlZ7V1TU8OQIUOYMmWKcv8jGx5hb/Nerk+7nqeHP33G56tUqosekh49erSrHzUylYMq2WPbQ254Lm9OfpOdlp38cssvkZH5j2H/wY3mG5XndXR0sHnzZg4ePAh0zSQuSRKZmZnMnj37rG082j3tLFi/gAp7BZmmTF6f9DohuvM/6NrTuIf/W/h/sbqtBGmDeHr400xKmqQst1qtvP3228iyTGRkJLNnzyYuLq5H2/DW1GB58EH8zS0E5OcT+9qrqM/Qm3tz/Wae3PokKlS8NvE1MvQZvPHGG8oFjHvvvZeUlJTLFnrLskxLSws1NTVUV1cTHh7OuHHjkCQJj8fDn/70p27teHQ6HePHj2f06NE9ukjQV61atYrt27cDXScO119/PdHR0Wd8rCzLtLW1KZORVFVV4Xa7MZvN3H777Wg0GrTfjhYQBw2CIAiCIAjCxeD3+yksLGTTpk1K2wOAuXPnYjabAaivr6e2tpbo6Giio6NFIH4VsTm9bC2zsvFYC5uPW2lzepVlKmBgYigT+kUyvl8kuXEhV1zxlXD1aGtrw+v1Kue/brebL7/8klGjRpGVlSX+tq4wIvjuARF8X5iysjLef/99tFotCxYsUA4iTgakerWeJbOWdKt6LiwsBGDo0KGEhIRcksBxxYoV7NixA32knqURS3F4HdyeeTvLq5bT7m3nlvRb+PXQXyuPb2xs5MMPP1QOnnJzc5kyZQper/ec/k5OdJzgwXUP0uJqISM0g3EJ48iPzCc/Mp8w/blNECjJEu8ffZ/XDr6GhESmKZMXRr9AijHltMcWFRVht9sZN25cj/tq+xobaXjgQfz19egyM4l98w00P/Aaf7frdyyrXEZiUCL3SfdRWtI1NEin0/Gzn/0Mo9HYo+2fyclJUiVJUv49+bVKpeoWxtbW1lJVVUVNTQ01NTV0dnYqy2JiYrjvvvuU748fP05ERAR+v581a9ZQW1sLdPX5uvPOO6/5WZ337NnDsmXLGD58eI//liRJwmKxIMuy0hvNZrPx8ccfM2nSJDH0VBAEQRAEQbhoHA4HR44coaGhgcbGRm644Ybvzk03b1bOQQGCgoKUENxkMpGXl6f0CG9tbaWjowOtVtvtptPp0Gq1oljmMvJLMgfr7Gw41lUNftTi6LY8xhjA+MyuEHx0ejjBAZdnvilZlmnp8FJl7USSZAYlmQjQikKgq82WLVuUorDY2FgmTpxIdna2OKe9QojguwdE8H3+ZFnm7bffpra2lqFDhzJ58mSgqxf1PavuobK9kp/k/ITH8h9TnmO323nrrbfw+XzcdtttDBgw4JLsq8/nY8WKFQwfPpz1zet5bvdzyrK8iDz+NvFvBGi+GyZ1sj+4Wq1m2rRppKenK29wkiThcrmQZRmXy3XWNi1HrEd4ZMMjOP3dJ+5IDklmYORA8qO6gnBzqBmNqvsBVLunnWd2PcPm+s0AzE6dza+G/AqD1gB0BfNarZaIiIgL+rn4W1uxLFiIt7wcbXIycW+9iSYq6gef4/A6uGflPcTWxtKvvR9qtZrQ0FCSkpKYOnXqBbcOkSSJ1157jebm5jMuN5lMPP7448r3b7/9NidOnFC+12g0xMXFkZiYqPSfPhNZljl06BAbN25Eo9EoF26upQ8ySZJoa2sjPDwcj8eDz+ejqamp12a1Xr16Nfv2dbXnSU1N/cEKckEQBEEQBEHoLbIsI8sykiRx6NAhjhw5QmNjI62trac99qc//alSvLNu3Tr27Nlz1vU+8MADSrGMx+NBp9NdU+cPV5IGu4tNx7qqwQsrrDi9krJMp1ExPDVMCcLTIk8fzXyh2pxeZQJP5V+rkyprJw73d6OMA3UaRqeHd1WmZ0YSGyomYr0adHR0sHv3bvbu3YvX2zXSICEhgcmTJ3fLh4TLQwTfPSCC7/N3tmrvL8q/4IU9L2AKMPHZ7M+6tflYtmwZR44cITk5mfvuu++SXzH3eDx4vV5+vvnn7LTsJFwfzuKpiwlwB7Bz504mT56sTMrY0dFBWFjYGSdp7OzsZOnSpVitVu65556zTn7Q6GyksKGQA80HONhykMr2ytMeE6wNZkDkAKUiPFAbyDM7n6Guo44AdQD/NvjfuMl8k/LGevToUZYvX47RaGTevHnY7XaOHTuG0WjEZDIRFhZGSEjIj7aXkBwOLD99BM/hw2hiYoh7+220CfGn/bzsdjs2m42Ojg7S0tIIDQ3lq21fUbK1BICssVnMHj5b+TkFBgb26EPAbrdTVFREQUEBPp8Pv9/PokWLlOBbrVaj0WhQqVRoNBqMRmO3Ku5ly5bh8/lITEwkMTGR2NjYHv1dOZ1ObDab0h5Gq9VSWlpK//79+3SLjtbWVj7//HPa2tq4//77MRgMvb4Nn8/H7t272b59Oz6fT+k/P378eDFhiCAIgiAIgnDJeTweGhoasFgsNDQ00NHRwcyZM5Vj023btnH48GF8Pp9yOxl6ATz88MNKbrB+/XoOHz5MWloa6enppKWlXbS5q4Qf5vb52VXZxqbjXUF4TWv34rPUiEClJcqw1DACfmCCTKfXT1unlzanF5vTR5vTS1unF2uHh+pWJ1UtTiqtndicvrOuQwXEmwx4/RJNDk+3ZTlxIcpknfmJoWjUIkC9kjmdTnbt2kVRUZHyXmA2m/n/7L13dBRXmvf/6Sy1QquVQFkISQhJ5CyTjIwwNlnY2B6Dx2OvjWdmd3Z33t2z7/7mPe/svjtxZ2d2gj1rjLHBJhkTDCYHAzbCYAQIgVBGOauVOoeq3x9tlZFFkIRIpj7n1Onq7lu3blVXVVd973O/z4svvvid1gsedGThux/IwvfA+eyzzzh58mSPaG+b20b2/mxa7a38w9h/4Lmk56Ty9fX1fPjhhwC8/PLLxMb2tuy423RHaZ+5coa9rXtZPmI5pqsmzp07hyAIPPbYY2RkZKDVaiWx9UZ0dXWxZs0azGYzycnJLFq0qE9ib4ezg8utl8lvzSe/NZ8rrVd6RYR3E6GP4FcZv2KkcaTU9lOnTknDbeLi4pg6dSq7du3C4XD0WFalUhETE8MzzzwjfVZVVYWPjw9BQUGoBYGmv/07HLm5YDCg//1/ETZuHOC1Gfnoo4/o7OzsYRsCEBQUxMqVK1GpVPz3h//NBeECneGdbJq3iUBtoLRurVZ72/0hCAJnzpzh+PHjOJ1O5s+fL40A6LY0uR9/JHl5eRw6dIjIyEgWLFhARETE7Rd6iBBFkby8PPbv34/T6USr1bJ06dK7ej62t7dz7NgxysrKAAgMDGT+/PmkpKTctXXKyMjIyMjIyMjIDJTrVTZ7IwAAIABJREFUpZJuy0WXyyU957jdbjZs2NBj5KlCoSAiIoKEhAQSEhIIDw+Xo0LvA6IoUtFq40RJCydKWsmt6sAtfPN76rUqMhKMGPVaOmwuOmyur8Vtr8jtcAu3qL0n4QFa4oP1xIX4EhusJy7Yl/gQPTFGH3RqFaIocrXBzMmSVo6XtJJf28n1IpxRr2H618k6HxseTKBP76C7W22nyyPi9AjotSqU8rF2V7FYLJw5c4aLFy+SlpbGU095g/9k8fv+IAvf/UAWvgeOIAhUVlbi7++Pn58fAOsK1vH2lbeJ9Itk67ytkn2IKIps3ryZ2tpa0tLSyM7Ovm83ARcvXuSTTz7B398fURSxWCwAxMfHk5WVxdChQ/vUtqqqKtavX48gCMycOZMpU6b0uy1uwU15Z7kUEZ7fmk+dpY4ZkTP42aSfYdB6bUOcTid79+6ltLQU8Pqjz549mx07dnDt2jVCQ0Px9/eno6ODjo4OBEFg2LBhLF++XFrXX/7yF2w2Gzq7nWlnvyK8thaXWs3xzDmETZ3K4sWLAe9v9Yc//EFKAqnT6TAYDJjNZqxWK9OnT2fatGnYXDZWHVlFlbmKebHz+Pcp/y4JnMOHD2fatGm33Hf79u2jsbERgIiICObOncuQIUNuusy9Ij8/n2PHjuF0OlEoFEycOJE5c+bclYjoe4nb7aa8vJzz589TVFQEQFRUFE8//fQd29P0ldLSUo4ePUpnZycZGRlkZmbKNwoyMjIyMjIyMjIPJW63m8rKSkpKSigrK+th1ejn58cbb7whPVc2NTWh1+vx8/MbtOfgjo4Ozpw5g8lkwmQyoVKp8PPzk9YzbNgwkpOTAe+zu8lkQq/X93uE7sOO2eHmdHkbJ0paOVnaSsu3IrBvhFqpwOCrIUivxuCjIUivwajXEB3kQ1yInvhgPbHBvui1/RvBbrI4+fzrqPRTZSa6HN9EjasUCsbFBBJt9MXm8uBwCd5Xt4DdLWB3ebC7BO/7r+e7BT0FEOirJshX4530Ggw3eG/4+n2EQYdRL4/AHQidnZ0olUrJ8aCtrY1Tp04xe/bsQbMMlbk9svDdD2The+B0JyDsxmQ3kb0/G6vbyv+b8v/Iis2SvisqKmL37t2o1WpWr159X5MIOhwO3n77bcnfLSgoiMzMTEaOHNlv65Vz586xd+9eoGfm8DvBJbjQKL/p6W1vb2fnzp20tLSgUqnIysqSIqMdDgcnTpxg1qxZUkIWQRDo6urC4/FIHuBut5vNmzfje/Eio3JO4+Nw4FapODl7Fp3R0SQkJLBw4UJpndeuXUOv12MwGCTBNzc3l+LiYlasWCGJlZdbL/M3x/4GAYFfTvsloa2hHDp0CK1Wy49//ONeiS4tFgtHjhyRfJ99fHyYNWvWA5f40Gw2c/z4ca5evQp4b1xnzJhBQkLCQ+lRLYoif/rTn2hvbwe89jGPPfYYkydPvufCs8vl4vz584wfPx6NRoNGo8FiseDv79/vxKwyMjIyMjIyMjIyDwptbW2UlJRQWlpKQEAAmZmZQM/AIqVSSUBAAP7+/gQGBuLv709ERAQjRoyQ6un2Jm9vb6e1tZXW1lZMJhOtra2kpKQwefJkaX1r1669aXsmT57MrFmzAK9IvmbNGsD7LODr60tgYCATJkwgJSXlgXoWu5sIosjVejOnyk24PIIkCncLxAZfNUF6DX7am4/+HixcHoGL1R2cKGnlRGkrZc3W2y80SCgVkDkijFVToxkfY3hkfv+7wa5duygpKQFg1KhRzJ49+45zscncHln47gey8N1/Ghsb0Wg0vSJg//P8f/Jx2ceMNI5kXeY6lAqvoCaKIu+99x6tra1MmzaNuXPn3vcLa2NjIwcOHCAuLo5p06ZJonF/EUWR3bt3c/HiRXx8fFi5ciVBQUGD2tadO3dSWlqKn58fS5YsITQ0tN/+yB6TCdNvfoP18BEAFPFxaH76U4LGj8fHx+e2v0dFRQU7d+7E7Xbz5JNPMmrUKOm7/7n8P7x39T0MWgMb527kwPYDNDQ0kJ6eTnZ2do963n//fSorKwEYPXo0M2bMQK8feKIRURQpbCukw9nRr+XUSjXxAfGE+ITcctsrKys5fPiw1EmSkZHB448/jkKhwGw2s3v3boxGI0ajkaCgIGm+L/v0bmE2mykqKqKqqorFixdLQzP37NlDZWUlSUlJjB49+oHpjRYEgQ8//BCXy8WCBQsGpfNIRkZGRkZGRkZG5n7SLV57PB4sFgvr1q3DYrFwIwkmOTm5x+jbP/7xj3g8HgSht+VGSkqKFLAkCAI5OTmEhIQQGhqKKIqYzWYsFgsWi4WoqCji4uIQRZHGxka2bt2K3W7vVWdMTAyZmZkPZYDPd4maNhtflJmwONzoNCp81Ep8NCp8NEp0aiW+GhU6tRIfzdeff/29RqWgy+Gm3eqWbFs6vvYllzzKv+VXfr3veHpkACunRDMvNfyW3ucyN6alpYUvvvhCEr8VCgXjxo3jsccew2g03nft67uKLHz3A1n47h+iKPLuu+9SX1/PggULpJ7pqq4qnjv4HB7Rw5uz3mRi+MQey7W1tfHll18yf/78OxI6H0TcbjfvvfcedXV1DB06lBdffHFQL24Wi4XDhw+TmZmJKIps2bKFcePGMWnSpL4tf/gwpl/9GqG9HVQqDD94GcOrr6K4QdLOG1FSUsKePXvweDwMHz6cZ555BrvdzvHjx5k4cSL+Bn9+cPQHFLcXMyNiBj8d/lPJy/2ll14iPj4e8Pp2l5eXc+TIEZ544gmioqIGtD/AexyebTrLmstruGy6POB6jDojSYYkEoMSSQpKItGQyLDAYT0i7t1uN+fPn6eiooIxY8Z8c8xXVbF169Yb1qvT6Zg9ezZTp04FwG63U1VVRVBQEEFBQYOe2NFkMlFYWEhhYSHV1dXS5ytXrpSSdjocjj55r99r2tra2Lx5MxaLBYVCwdy5c5k6deoD104ZGRkZGRkZGRmZgSKKIh6Ph87OTjo7O+no6JDmw8PDSUtLA7zPfm+99RYAGo2GkJAQgoODCQ0NJTQ0lKFDhxIcHIxSqez3/bIoirjdbkkcLy4ulpLQL1u2jOHDhw/6dss8mJQ0WfjgTDW7LzXi9Hg7WMIDtLwwKZpnx0cSpO+717iMl4aGBr744guuXbsmfZaens6yZcukc9XlcqHpow4jc2tk4bsfyMJ3/ygpKWHTpk2o1Wpee+01ydv7X3L+hc9qP+OxiMf4/fTf33BZpVKJTqf7TgpanZ2dbNq0iczMzDsSdMErtJaVlfUY7gbeSN7NmzfT3t6O0Whk1apVtxRQPSYTpl//GuuRowBoEhMJ+befoxs5ss9tuXr1Knv37kUURZKSksjOzkan07F7924uXLhAaGgo3/ve96i2VfPSkZdwCS5+NvFn6Ep05OXl4evry9SpU5kyZYpkiyOK4h0dA+ebz/P25be52OK1S9EpdcQFxvWrDpvbRq25FoHeURRqhZr4wHiSgpJIMiRJgniwT8/hSmazmWvXrtHR0UF7e7vkr97tGZ+VlcWYMWNQKpVUV1ezadMmaVm9Xi9FiBsMBkaOHEl0dLS3bTYbzc3NuFyuHpPT6cTlcpGUlCSJ2fX19ezatYumpqYebRs6dChJSUmkp6dL3mMPMg6Hg2PHjnH5srcTY+zYsSxYsKDf1kMyMjIyMjIyMjIyDyvdUeIdHd7RrAaDYUACd39ob2/n0qVLTJz4TeBac3MzISEhci6eRwCTxclHuXVsOlcreZ/7qJUsGjOUVVOiSQj1u88tfPioqanh1KlT1NTUkJGRwbRp01AqlVgsFt58802GDh1KdHS0NMlR4QNDFr77gSx89x1RFFm7di11dXVMmjSJ2bNnA5Dfms+rx15FiZIPsz5kuOGbnuLOzk5pv+p0uu+0kCUIAk6n84ZD0vqK1Wpl586d1NXVMX/+fMnL22KxsGXLFkwmEwaDgeeff76Xf/b1WA4dwvTr33ijvNUqDC//AMOrr/Q5yhsgLy+PQ4cOAZCamsqSJUuk3smuri7efvttLBYLKSkpLFiwgA+LPuQv+X9Br9azbuY69m7ei81mQ61W8/rrr99xpH9eSx5rrqzhXNM5ADRKDUsTlvJSykuE+ob2uz672055Zzkl7SWUdJRQ0l5CaUcpZpf5huXjA+L5m7S/ITM685Z/TC6Xi46ODvR6vbTNVVVVfPbZZ3R2dt5weOGTTz7J+PHjUSgUFBYWsn379pvW/+STTzJ27FhvtvKKCrZu3YpCoSAmJoakpCSSkpJueWw8qIiiSG5uLsePH0cURWJiYlixYoXUuSYjIyMjIyMjIyMjc3cQBAGXy0VXVxdr167FYDCQmZkpBef0FVEUaWlp6WGbcu7cOWpqakhISGDYsGEP5bPKdx2nR+DAlSbWf1nN1YZvnodnJAazakoMGQn9F2cFUUT5CAu6LpcLQRAkW92SkhJ27drVq5xerycqKoopU6bIoy76gSx89wNZ+O47TU1N/PWvf+0R7S2KIq8ff528ljwWxi/kZ5N+JpVvbGzkww8/JC0tjfnz5+Pr63sfW39vEEURu91OY2MjDoeDmJiYPi/b2dnJtm3bMJlM6HQ6Fi5cyLBhw7DZbGzZsoWWlhYCAgJ4/vnnMRgMN6yjV5R3UhKh//ZztCkp/dqO9vZ23n33XQRBYMyYMSxcuLBXp0VlZSUbNmxAEAQef/xxxk0Yx+rPVnOp9RITwibwT/H/xKW8S4wdO5a4uP5FZF/PFdMV1lxew5eNXwLeiOzFCYt5KeUlhuiHDLjeGyGKIg3WBkkI7xbFa821iF/nzE41pvLj0T9mQviEAa3DbrdLQxu7o8TT09MZMsS7LdXV1Rw8eBC1Wi0lf9RoNNL71NRUYmNjAW8HRHV1NcOGDbtr51eNuYbP6z7HT+NHuG844fpwwn3D8dfcnUjy8vJy9uzZg9PpJCkpiRdeeOGurOdhRxAErFYrR48eZfbs2Te9JsjIyMjIyMjIyMj0ldLSUj7++GMcDgfgDYCaNWvWLUeROp1OKisrKSsro7y8HIvFwurVqyWBe+PGjdTV1Unlw8LCGD58OMOGDSMyMlKOLH+AEEWR3KoO1n9ZzbGiFroFw8QwPybHB2F3CTjcHmwuAYfLg90tYHcJ2N0e7+vX39tdAm5BJCrIh+Rwf1KG+DFiqD8jhvgTY/R9JAVxURTp6uqivr6e2tpa6uvraWxslEbGL1y4kFGjRqFWq+UI8D4gC9/9QBa++05BQQHbtm0jIiKCF198EYATtSf455x/RqfSse3JbZIQKYoimzZtoq6ujpSUFJ555plH5g+tqqqKDz/8ELVazcqVK/skSJlMJrZt20ZnZycBAQE888wzhISEYLfb+eijj2hsbMTPz4/nn38eo9HYa3lRFLEeOozpN79GaO8YcJT39Vy5coWWlhaysrJuGql/5swZDhw4gEKh4Nlnn0URrODFQy9i99j5x7H/yIqkFQNaN0BhWyHvXHmHL+q/AEClULEgfgEvj3yZCL+IAdc7EMwuM1tKtvBh4YfYPDYAMoZm8OPRP+4xwuG7RHF7MRsKN3C0+ugNLWH0an0PIfzb85F+kfhpBhat3drayv79+1mwYAEhISEPpDf5/cBqtXLq1ClmzZqF2+3m2LFj5ObmotPpmD9/PqNHj5b3k4yMjIyMjIyMzB1hNps5evQoFy96rSU1Gg3Tpk1j4sSJ0nOh2WymuLiY8vJyqqqqJPGuu/zixYtJTExEpVLR0NBASUkJpaWlPQRwgMDAQF577TX5HvYBpLrNxodna9h+oR6r03P7BfqIXqsiOdyPEUO8QnjKEH+Shvjhp1UP2joeFtxuN83NzdTV1TFixAj8/f1RKpW0trYSGhoqRYvL9EYWvvuBLHz3nVOnTnHkyBFGjhzJggULcAtuXjj0ApVdlXw/5fu8MeoNqezly5fZv38/Go2G119/nZCQkPvY8nuL2+1m3bp11NfXEx4ezgsvvHDLBAaNjY18/PHHWK1WjEYjzz77rHQsdu9HvV7Pc889d8P96DGZMP3yV1iPHQNAk5xM6M//b7+jvLuj1bsjhxUKBTqd7pYdFqIosnPnTvLz89Hr9axatYpDTYf47fnfolPq+CDrA+IC+hftXdJewtqCtRyvPQ6AEiXz4+fzg5E/INq/91C7hoYGdDodQUFBg37DJIoiHR0d1NTUoFarCY0LZd3Vdewq34VH9KBEyVPxT/Fa2muDHn1+v7jYcpH1V9eT05AjfTYhbAJalZYmaxNNtia6XF23rUej1JAZncmShCWMDR07oOQ73csolUpaWlqIiop6ZG+KTSYTGzduxGQyMX78eDIzM2lra2Pfvn3SA0RKSgoLFy78ziUQlpGRkZGRkZGRuffU1tb2uNcMCQlh1apVqNVqrl69yqeffiqVNRgMJCYmkpSURHx8/E0DV8xmsySCl5eXExMTw5IlS6TvP/nkE0JCQtDr9T1GvarVagIDAwkO9uZd6n521Wg0qFSqR/YZ4V7QZXfzaX4jzWYHPhoVPmql91WjRNc9r1bio/HO69RKfDUqlAq41mqlqNFMYaOZokYzpU1WKZnm9SiAmGBfksL8iDD4MCRQx9BAHUMCvK/hATq06kcjkNJisfD++++j0+lYvnw5kZGR97tJDySy8N0PZOG77+zZs4fz588zbdo0pk+fzo6yHfzm/G8I0gax/antkvWB3W7n3XffxWq1MmvWLGbNmvXI/RF1dHSwZs0arFYr0dHRJCQkEB4ezpAhQ3qIUhaLhXfffReHw0F4eDjLly/v5Wl8/vx5oqOjCQ8P7/G5KIpYDx7E9NvffhPl/cqrGH7wcr+jvAVB4PDhw1RVVUn+4bcTvbtxuVysXbuWrq4uli5dSmRkJD/5/CecaTzDSONInkl8BrvHjt1t97567Dg8Duzur1+ve291WylqLwJAgYJ5sfN4JfUVYgNib7junJwcTp06BXi9sSIjI4mKimLUqFEDsv4QRZG2tjaqq6uprq6mpqaGri6vyJuYmMjixYtRKpVUdVXx18t/5ViNt7NBp9SxImkFq1JWEaB9+DzrRFEkpyGH9YXryWvJA7wdDnNi5vBSykskByX3KG91W2m2NUtCeJOtqcd8o7WRDmeHVH5Y4DCWJSxjftz8Ae2fsrIyduzYwejRo1m4cCFq9aMVDVBdXc2WLVuwWq0EBgaSnZ1NaKjX114QBM6ePcupU6cQBAE/Pz8WLlzYKzluf3G5XBQWFtLW1kZaWtoj1XkpIyMjIyMjIyPjRRRFLl68yNGjR0lOTuaJJ54AvM/8u3btYvjw4SQnJxMeHt7vfF4ejwer1YpOp8Pj8WAymVi7du1Ny48aNYonn3wS8Nqr/PGPfwS8AVuBgYGMGTOG0aNHPxIWqw8rbkGgotVGUaOZooZvBPHmrxNr3ooQPw1DAnUMCfDxiuJfi+NBvhpJdL9elPfRKPFRq9CoFA+VHtXY2MjOnTvp6upCqVQyZ84cMjIyHqptuBfIwnc/kIXvvmM2m6mtrcXf3x9dgI7sfdmYHKZelhZHjx7l/PnzBAcH8/rrr6PVau9jq+8f165d44MPPuD602zmzJlMmTIF8O7PiooK6uvraW5uJjs7G51Oh9vtRhCEW+43T0sLrb/6FbbPjgNfR3n/28/RDkDs8ng87N+/n6tXrwKwePFixowZ068La1tbG263WxLtG62NvHDohZsmirwdT0Q/wStpr5AQmHDTMteL3iqVqsfwuh//+MfSDc+1a9dwu91ERUXdMhK2o6ODjRs3YrFYenyuVCoJCwtjxYoVvYYa5bfm85dLf+Fii3cYYKA2kB+M/AHZw7PRqh78494tuDlWc4wNhRso6SgBvJHaT8c/zYsjXiTGv+8e9d/mqukqO8t3crDqIHaPN6GnTqUjKyaLZcOXkRqc2ue68vLyOHz4MKIoEh0dzYoVK27pM/hdoqCggJ07d+J2uxkyZAjLli274bY3Njayd+9eWltbAZg/fz6TJ0/u17pEUaS2tpaLFy9y+fJlydtRoVDwyiuvEBUVdecb9C0cDgefffYZDocDURR7TXq9nqeeekoqf+DAAUwmE35+fjz++OMPzP+2KIo9kjnLN6YyMjIyMjIy3yXsdjtutxuVSoVSqUSlUg16pLXVaqWgoICqqiqcTiculwu3243L5cLlcjFixAgyMjIAbwDZW2+91asOtVpNWloaEydOlKLDZR58TBYnhY1mrrVYaexy0NjpnRq+nne4e0eJ9xWlAnRqFb4aJTqNNxo90uBDbLAv8SF64r5+jTT4oFI+GPfwdrudgwcPUlxcDMCwYcNYunSpnBj2OmThux/IwnffEUURm83rb7z2ylreKXiHKL8otj65FY3SG2Hc1NTEhg0bEEWR55577o6jDh926uvrKSoqorGxkebmZubMmUN8fDyCIFBcXMyePXuksiEhIYSFhWE2m/F4PCxfvhwfH58e9YmiiGX/ftp++58InZ2gVmN49RUML/c/yhu8tix79uyhtLQUpVLJggULGDu2/7YU3W1zOBxSRvCvWr5ic/FmVEoVPiofdCodPmqfb+ZVPr3e69Q6Yv1jbxrh3U1HRwfvvfceLpeLWbNmkZGRQV1dHdXV1bS1tUmRCABbtmyhuroaAKPRSFRUFEajkYaGBgIDA5kzZw7gjZz985//jMfjISIigtjYWOLi4oiJiZF+B7vdjiAIXLlyhdTUVJRKJaIo8kX9F/zl0l+o6KoAIEIfwer01WTFZqFUPHhDshweB3sr9rKxaCM1lhrA69m9NGEpzyc/T5hv2G1q6Dtml5n9lfvZUbaD8s5y6fMUYwrLEpYxN3YuevXtrTkqKirYvXs3DoeDwMBAVqxYcdNhX6IoYrFYaGlpobm5mZaWFoKCgpg6darUEbVu3Topy7aPjw8+Pj7odDp0Oh0hISGMHj1aqk8QhHueo0AURU6fPs3hw4cBGD58OAsWLLhlh5jb7ebkyZMUFBTw/e9/n+Dg4D5Hx5eWlnLgwAFJOAev56LRaMRqtfLSSy9JiVYtFssddTxcvz89Hg9vvfUWJpPphmUNBgOvv/669H7Dhg00NDQAEB4eziuvvHLfO1dFUeTQoUNcuHCB559/nrCwMNRqNfv27UOr1ZKenk5MTIwshsvIyMjIyMjI3AHXy1eiKOLxeHC73TgcDsrLyzlz5gxNTU0AZGZmMn78+PvVVJlBRBRFOmxu6jvtXjH8a1G8sctBfYedLoe7R2JNm0vA7vIg9FPt1KgUxBh9iQv+Rgzvfg0PuPc5p0RRJD8/n6NHj+J2u/H19WXx4sWPvMbWjSx89wNZ+O473cJ3q72V7H3Z2Dw2fjH1FzwR843IWF5ezr59+4iNjeXZZ599ZBJa9hVRFDl37hx5eXlMmDCBixcv0tTUhN1u71FOrVb3Evbczc2YfvFLbCdPAqBNSSHk5z9Hm5w0oLY4nU527dpFZWUlKpWKpUuXkpqaekcXdFEUuXz5MgcOHCA7O5uhQ4cOuK7bUVVVRVNTE9OnT+91nHVHi3o8Hg4ePEhFRUUPQa8bg8HAa6+9BtAjicTNPOlEUeTAgQOcPXuWESNG8PTTT0tD+tyCm70Ve3nnyjs025sBiPaL5qn4p3gq7ql7npDz2wiiQEl7CTkNOWwr3Uar3bs/DFoDK5JWsDxxOQbt7ROxDhRRFLnUeokdZTs4WnMUl+ACwE/tx/y4+SwdvpREQ+It62hra2PHjh2YTCY0Gg1LliwhNTVVqn/Pnj2S0P3tcyoyMpLvfe970vvf//73PUYJXE90dDQrV64EvJG7H374IQaDgalTp94zj7XOzk7efPNNnE4nY8eOJTMzs8/XU5vNJo14UKlUlJWVMWLEiB7DT91uN06nE71ejyiKVFRUsGHDBjQaDcnJyT3EWqfTKYnLTqeTt99+m6FDhzJz5kzi4+P7dM0QRZG6ujpyc3MpKytj9erVKBQKBEGgvLyc5uZmFApFr6lbOO6mtLQUq9XK559/jtVqJSkpieeff/6+icoej4dPPvmE/Px8AObOncvYsWOx2Wy89dZbCII3OiUwMJC0tDTS09OJiIiQRXAZGRkZGRkZmUGm+5723LlzzJ07V7p/LS0tpauri7S0tAEHTHg8HkRRfOQsFx9WRFHEJYjYXR4cLgHbdaK4xeGmtt1OpclGRauVSpONKpPtht7j3Rh81XxvUjQvTY0hwOfeHgOtra3Sc256ejrLli2TnyWQhe9+IQvffaOjo4OzZ89iNBr51P4p28u2k2pMZV3mul4nnd1uR6FQYDQa71NrH1y6E4TCN73QoihiNptpbm6mubmZtrY20tPTiY72JnIURRHL3r20/efvELq6QK0m6LXXCHxp1YCivMH7G23fvp26ujo0Gg3Z2dkkJyff8QVUFEW2bt1KUVERAQEBrFq1alAT7VmtVqm+viTf/PaylZWVUlT4kCFDpIju/gzTu3r1Kh9//DGCIDB8+HAWLVrU4wbI7razpWQLGwo3YHF/Y5syIWwCT8c/zePRj/cpwvlOEUWRa53XyG3O5VzTOc43nafT1Sl9H+4bzvdGfI/Fwxbjq763Pnjtjnb2VuxlR/kOasw10ufxAfGkhaSRHpxOanAqiYZE1MqeNxZ2u509e/ZQUVFBaGiolAVeEATeeustOjq+8RY3GAyEhIQQEhJCeHh4D5G8trYWp9OJw+HAbrf3mA8KCpJsQpqbm3n//felOmNiYpg6dSopKSl3tWPP4/FQWFhIS0sLEydOHPC5WVpays6dOyWbFJfLJVmZpKamkpWVJd3IFxYWMnz48Fs+EFy7do0dO3ZIgm5UVBQzZ84kKSnphm10OBxcvnyZc+fOSZHaAIsWLbqjaIW6ujq2bNmCx+MhIyODuXPnDriugeJ0Ovnoo48oKytDqVTy5JNPkpaWBnh/v6qqKq5evUpJSQlfUzpqAAAgAElEQVRO5ze+hcHBwUyfPp1x48bd8zbLyMjIyMjIyDwKiKIoBXqsX7+e5uZmfHx8GD16NOPGjbuh9uNyuTCZTLS3t0tTR0cH7e3tdHZ2kpWVJY0KdbvdmM1mgoKC7vWmydwFPIJIQ6edylYbFSZrD1G8ts2O52vpNNBHzSsZsbwwOQo/7b0TwN1uN2fPnmXixIlotVpJB3mUBXBZ+O4HsvDdN4qLi9m8eTOaIRo+0n+ER/Tw19l/ZXxY7+FDCoUCHx+fR/ok/DaiKHL06FHJk3rKlCnMmDHjtvvI3dSE6T9+ge2LLwDQpqYS8vP/izbx1pGxt8NisbB582asVivPPvssw4YNG7Tfy263884772AymYiNjWX58uX9TnRyI3Jycrhw4QIrVqwgLCysX6L3YFNSUsJHH32E2+0mLi6OJUuW9BILrW4rx2uOs7dyL7lNuYh4L7e+Kl/mRM/hqfinGB82ftCsUERRpMZSw7mmc5LQbXL0tI/Qq/WMCxvHnOg5zIudJ1kU3S8EUSC3KZcd5Ts4UXsCj9gzAlun1DHCOILU4FRSg1NJD04n0i8SURQ5fvw4hYWF/PCHP5TKX7lyBaVSSUhICEajEc0AO4a+TUNDA7m5uRQWFkqCr8FgYPLkyYwfP76XJdFAMZvNdHR0MGTIkB5C6Z3QbWHSbVN1PWFhYbz00kv9Pvc7Ojr46quvuHTpkhQ1P2TIEGbMmMHIkSNRKpW0t7fzxRdfkJ+fL22LSqUiOTmZsWPHEhUVdcfXnIKCAvbu3Qt4hfR7KSRbrVY2bdpEbW0tGo2GRYsWkZBw45wEbreb8vJyCgsLKSsrw+1288QTTzB58mTJJ1MURfk/U0ZGRkZGRkZmkPF4PJw9e5azZ8/S3t4OePWK5ORkgoKCiI+PJzbWa7NZVVXF1q1bb1rXlClTmDlzJuC1Ydy2bRuBgYHExsZKk+zB/N3D6RE4WtjCmyeuUd5iBSBYr+FvpsexYkIkPpo71zr6S/do58TERCZOnHjP1/8gIAvf/UAWvvvGl19+ycGDB7k07BLFYjEzImbwu+m/k74/ffo0RqORESNG4OPjMyhC53cFURTZu3cvubm5QM8El7daxrJ7D6b/+i9Esxk0GoJWv07gypUoBji8yu12o1AopN+ms7MTp9N5V7xnm5qaWLt2LS6Xi6CgIKZPn05KSsqA13P69Gm++Fr8z8zMJCMj477b6Fy7do3NmzfjcrmIioqSkpPeiHpLPfsr97O3cm+PCOcIfQTz4+bzVPxTfU4kKYoiFreFDkcHnc5OyjvLJbG7ydbUo6xOpWNM6BgmhE1gYvhEUowpvSKoHxTaHe3kt+ZzxXSFAlMBBaYCulxdvcoZtAZSg1NJC04jOTCZOEMcQ/RD7knUutls5uLFi1y8eFESkpctW0Z6evodn0NNTU1s2rQJp9PJCy+8MKjJeMxmMwcPHqS8vBy1Wk1SUhLp6enExcXdUbvNZjPnzp3j4sWLuFxe65o33niD8PBwmpubpYRDRqORMWPGkJaWNqgjQAA+//xzrl69SnZ2NtHR0fdEPO7q6mL9+vW0trbi4+NDdnZ2ny1wnE4nZWVlxMbGSsmAS0pKyM3NZfny5fJ9iIyMjIyMjIzMXUAQBIqKivjyyy+pqqqSPp86dSozZswAvM/HH3zwAUFBQdJkNBqlyWDw2kJ6PB5yc3M5cuSIFBTTjdFoJDY2Vk6u+R3EI4jsvdzImycqqG7zPguGB2h5fXo82eMi0KrvnT5RVFTE7t27GTduHAsWLLjv2sj9QBa++4EsfPeNffv28dmFzzgQfQAlSjbO20hCoDe67fqElqtWrWLYsGH3ubUPDh6Ph127dnH58mUAsrKyGDNmzC2XcTc00Pofv8CekwOANj3N6+V9k2jCvlBTU8OBAwdIS0tj2rRpAGg0GtRq9V0TioqLi/nkk0+wWr29ot2+7/1d3/Wi96xZs5g5c+YDc2Gvqqpi06ZNOBwOIiMjeeGFF265faIokt+az6cVn3Kk+kgPK5TRIaOZGzMXpUJJp7OTDqdX2L5+vsPRQZerq1dkdDcapYb04HQmhk9kQvgE0oLT0Krub+K/gSKIAjXmGq6YrkhieHF7seQN/m0CNAGE+4YTrg/v+XrdvL9m4AkZr8flclFYWEhxcTFLly5FqVSi0WgoLi7G19f3hiMovp3QsaSkBJvNJk1fffUVDocDo9FIdnb2oFtFiaJIY2MjRqPxph00A8Vms3H+/HnMZjPz5s1DoVAgiiI5OTlER0ff1cSO3Ul1fXx8UCqV6HS6uy5+u1wuNm3aRGtrK8888wwhISEDrsvj8bB27Vo6Ozvx9fVl0aJFpKSkDGJrZWRkZGRkZGRkrqe+vp7z588jCAIJCQkkJSVJthHXT7fD4XBQWVnJtWvXqKiooLGxUUrA+dJLLxEeHg54gybUarWUg2ewcLvdlJWVUVFRgVqtRq/X4+fnR1RUlHR/Ko8qHHxcHoHdlxp462QF9R0OACIMOn44M55Fo4eiUd19raI78eXIkSPx9fUdsHf9w4wsfPcDWfjuGxs3buRE3QlOh58mxZjC+ifWA94TbvPmzdTW1pKcnMyKFSseGFHyQaCjo4N33nkHm83G008/fVtBw3rsGC0//zmi2QJaLUFvvEHg914YcJS30+nk5MmTXLhwAfDaM7z66qvo9fp78js5HA5Onz7N6dOnmTp16m0j3b/Ngyx6d1NXV8fGjRuZM2cOI0eO7PNydo+dk7Un2Ve5jzMNZxC4eTKNG+Gj8iFQG8hQ/VDGh41nQvgERoeMxkc9OLYbDyJOj5OSjhIKTAVcMV2hqK2IBmsDVre1T8v7qf2I9IskNTiVUSGjSA9JJy4gblDsZjweD2vWrMFsNhMSEoKfn58katvtdtLS0li4cKF3O5xOfvvb3/aqIyoqiqVLlw76TfGjRENDA1FRUYMu7ncjiiJOpxObzYbD4RiU4axtbW18+umnkgf65MmTmTt3rpw8SUZGRkZGRkbmIcJms3Ht2jWqqqokSxTwBhEWFhaSlJTE6NGjiY2NvSMxujv/WmFhIXa7vdf3c+bMYcKECQDU1taybds29Hq9JIzr9XqMRiNjx459JAXTwcLpFvj4Qh1vf15Js9lr7Rhj9OVHs+J5On0IKuW96XBQq9WP5O8oC9/9QBa++8af//xncjw5XDZe5snYJ/m3Kf8GeD119+3bh0aj4bXXXiM0NPQ+t/TBwuPxUF1djdlsvqn/K4AoCHS8vYaOd94BQDtqFKE//79o7iB6vry8nEOHDtHV5bWLGD16NHPnzsXPz++e9/paLBbJx7a7bXl5ecyYMeOmx8z1ovfMmTOZNWvWAyd6d9Od0LXb77i/NNuaOVB5gK+avsJX7YtBayBQG0igNlCaN+gMPd7rVHdH2HtYaGhooLKykjFjxuBWuWmyNdFkbfK+XjffbGum0dp4Q9sU8EaKpwWnkR6SzqiQUaQGpxKo7f9/gcPhkDytu20/ricxMZGlS5cC33QYarVafHx88PHxkexAZLFz4BQUFLB//34SEhJ4/vnnB/V6UVxcTFVVFY899hh349bJ4/Fw4sQJyRJr6NChLF++/I6iyWVkZGRkZGRkZO4f3Qk2169fT21trfS5wWBg1KhRpKen9zmI4vrRo21tbaxduxYAf39/UlJSUKvVWCwWrFYr48ePJz4+HvBa6u3ateuGdQYEBPDUU09JHucyA8Pu8rDlXC1rT1VhsnqfAxNC9bw0NYaJsUHEhfiivIv6iyx8y8L3bZGF79sjCAK/+MUvOBN8hkr/Slanr+blkS/jcDh49913sVgszJw5k9mzZ8vDaPAKGM3NzYSFheFwOG5bXrBYaPk//wfb8RMABLzwAsa//8mAo7xtNhvHjh2joKAA8P6xzp8/n+Tk5Pv++4iiiMvlYt26dTQ2NqJQKEhLS+Oxxx7rcf55PB62bNlCXV3dAy96d9O9bW1tbezfv5+srCw5y/cg43Q6KSwsJC8vj4aGBgICAnjttdekY8PpdN70T9/qttJsa6ais4LLrZfJb82noK0Ah6f3ORofEC8J4ekh6QwLHIZK0be8BQ6Hg/LycpRKpSRq+/j4DPoQtO5koDMjZz6wvu33mvr6erZs2YLb7Wbq1KnMmzdvUOq9ePEiu3fvRhRFFi5ceFetSMrKyti/fz82mw2tVssPf/hDyU9SRkZGRkZGRkbm4aS2tpbc3FyuXLkiJX5XKBSMGTOGuXPn3nAZl8tFaWkply9fRqvVsnjxYum7nJwcYmJiSEhIuKF9abfU53K56OjowGKxYDabpdf8/Hw6Ozt58cUXGTp06F3a6kcLi9PNxrO1rMupotPulj4P9FEzOiqQMdGBjI02MCoqgEAfzaCtVxa+ZeH7tsjC9+1pa2vjT3/6E8cijmHSmfjVtF8xJ3oOx44dIzc3F6PRyOuvv37XhpY/THg8HrZv305JSQnLli0jLi7uluVdVdU0//SnuMrKQKsl5P/7V/y/tkMYKCaTifXr1+PxeJgwYQKPP/74oCeUu1Oampo4duwYRUVFAKhUKsaOHcvUqVOltjocDsrKyhg/fvwDL3p3I4oimzZtorS0FH9/f5599lk5YnMQaG5uJi8vr8eNolKpZNq0aWRkZADec+/tt98mJCSEUaNGkZSUhEZz6xsKt+CmtKOU/NZ8Lrde5nLrZWosNb3KRflF8Wrqq8yLm9dnAfxuIYoib+a/yQdFH0hte3HEizwd//QjPwoA4OrVq3z66acALFy4kPHjxw+4rm6f8iNHjgCQlpbGvHnz7nry5q6uLvbu3UtoaChz585Fp9M9NNdAGRkZGRkZGRmZm+N0Orly5QoXLlygurqa6dOnSzm43G43nZ2dWK1Wrly5QmFhYY9nnx/96Efo9XrUajUqleqOgtpcLhclJSVSZDh4xfmIiAj5vvMO6bK72fhVDV+UmrhS34XD3dvSNCFULwnhY6ICGR7mN2BrFFn4loXv2yIL37dHFEVaW1t5+sDTWD1WNmdtJlQRypo1axBFkWeeeYbU1NT73cz7jiAI7NixgytXrqBSqViyZMkt7U1sp0/T8i//G6GrC1VoKGH/9Tt0o0YNaN3fjnS9fPkyYWFhxMfH3/co71tRXV3N0aNHqaysBLxDtVauXIm/vz8KheKhFHy6urpYv349ra2tqNVqMjIymDhx4l0Xy+4WLS0tNDQ04HA4cDqdOJ1OXC4XTqcTt9vNokWLpLIHDx6kpKQEp9OJSqUiPDycoUOHSlNQUFC/j8cvv/ySzz//XHofFBTEmDFjGDdunHTNFgSBa9eusXHjRqmcTqcjJSWFUaNGMXTo0D6vt83RJong+a35FJgKsHm8WbvjA+J5Ne1VMqMzB8UXvL+4BTe/yv0Vn1Z4hd0ATYBk4RKsC+b55OdZNnzZoCXxfNCwe+wUthWS35qPyW5i5YiVBPsE9yr3xRdfcPr0aZRKJStXruxxQ99XrFYrJ0+e5MyZMwBMmjSJWbNm3bPrqSAICIIgWd84HA4cDocckSMjIyMjIyMj8x2hpaUFjUaDVqtFFEWKiorYvXt3jzKBgYGkp6czZswYwsLCBv1etHvUcmNjI++//z6hoaFkZWURERExqOt5VHF5BIoazeTVdJJX20leTSfVbbZe5fRaFaMiA5ieGMK8kWFEG/ue80kWvmXh+7bIwnffqOusY97OeShRcmLZCbQqrZTB+Mknn3zoxMnBRhAEdu3aRX5+PkqlkiVLljB8+PAblhVFka6NG2n77z+CIKAdNYqw3/0n6rCwfq/X5XKRl5dHTk4O2dnZREVFoVAo0Gq1D43QKooipaWlHD16lMbGRmbOnMnUqVMfStG7G4vFwrZt2yRBPyQkhKysLKKjo+9zy26Nx+OhtbVVykAOsGnTph6edN/mH//xH6Vj7dNPP+Xq1as3Lfu3f/u3+Ph4k282Nzej0+kICAjocQPX2tqKSqWSbGLq6+vZuHEjSUlJjB8/nsTExJse2yaTiQsXLnDp0iU6Ozulz0NCQsjMzLztCIwbYXPb+Lj0YzYUbaDT6a0z0ZDIa2mvMTNy5j0TQu0eOz/78md8Xvc5SpT868R/5YmYJ9h9bTcbizbSaGsEwF/jz/Lhy1mRtOKGovDDgiiKNFgbyG/NlyLyi9qL8Ijf+OgnBCbw1uy3MOqMvZbds2cPRUVF+Pr68uqrrxIc3Pd9cf78eT799FNpiOisWbOYPHny4GzYABAEgY8++oi6ujqysrKYNGnSTY87s9lMU1MTbW1tPSa73U5qaioZGRkP3AggGRkZGRkZGZlHGVEUEQSBzz77jJycHNRqNSNGjGD06NEkJCSgVCrv+jNHUVERO3fulKxax40bx4wZM+RR/XcBk8V5nRDeQX5dF1Znz1xhaREBZI0MY15qOLHBtxbBZeFbFr5viyx8941TVadY/dlqov2j2T5/u/S5RqO5rZ3Adx1RFPnkk0/Iy8tDqVSyaNEikpKSblhWsNsx/ccvsOzbB4DfokWE/Ov/RtHPC5Xb7ebSpUt8+eWXWCwWAFJTU1m8eDEajeaBjvK+GaIoUlhYiMfjITU19aEVvbsRRZG8vDwOHz6M1WoFIDs7+5ajAO41LpeL+vp6ampqqKmpoa6uDpfL1UOgPn36NFVVVej1erRarTTpdDq0Wm2PhIwdHR24XC50Oh0Oh4O6ujrq6uqor6/H5XLx8ssvS+vesmUL1dXV6PV6hgwZQnh4OHV1dVRXVzN69Oge/sxOpxODwdDn47o7AvzChQsUFRXhdrtZtWoVQ4YMAZD8k/vTOWR2mdlSsoVNRZuwuL3n3EjjSFanr2bKkCl39Zzrcnbx01M/Ja8lD51Sx39M+w9mRn6TKd4tuDlYdZANhRuo6KoAQKfUsXDYQr434ntE+kXetbYNFg6Pg6K2Iknozm/Np8Xe0qtciE8Io0JGcbn1Mi32FpIMSbw5+00M2p4+2C6Xi82bN9PY2EhGRsYNvRMFQaCmpoaioiISEhIYNmwYHo+Huro63n//fcLDw5kyZUqfPb3tHjstthai/KIG9XhwOp18+umnlJWVAUgjGbpF7dmzZ+Pn5wfAkSNHyMnJuWld3//+94mNjX0o/yNkZGRkZGRkZL7r2Gw2aeTzvb5f6+rq4uDBg1y5cgXwjsaeM2fOA5Er7LuMRxApa7Zwrqqdw1eb+aqyHeE6pTZlqD/zvhbB40N6B7DIwrcsfN8WWfi+PTk5ORxqPMT2zu1kDMng38f9uxSl6ePj80hfBLsjCy9cuIBCoWDhwoWMGDHihmXdjY00//R/4SwoAJUK40//kYAVK/q1/zweD/n5+Xz55Zd0dXktDgIDA8nIyGD8+PGPfCfEg4jVauXIkSNUV1ezatWqByISv7CwkNzcXBoaGhCEnp5jPj4+LF++nKioKFQqFUqlclCiDARBkKIZBEFg48aN1NbW9lq/QqEgJSWFRYsWodFo7njdNpuN4uJiRowYIa1r3759XLt2jdTUVEaNGkVoaGif6+twdrCpaBNbS7ZKFiijQ0azOn01E8InDLidN6PF1sJPPv8JpR2l+Gv8+d1jv2Nc2LgblhVEgZN1J1l/dT0Fbd7ktiqFiqzYLFaNWEWC4eadLqIoYnFb6HR2SlOXswun4CTSL5IY/xiMOuOgXO87HB2UdpRS1lFGaUcppR2lFLUV4RbdPcqpFCqSg5KlJKOjQkYRoY9AoVBQ0VnBG8ffwOQwkWJM4S8z/0KANqDH8l1dXRQVFTFhwgR0Oh1qtRqn00lZWRnFxcUUFxdLnVJpaWk89dRT0r7o6uq67T2B1W3lUsslLjRf4HzzeQpMBbhFN3EBcSwetpin4p/qFY0+UERRJDc3lxMnTvQ6Z5577jliYmIAuHLlCmfOnMFgMBAUFCS9dgv6jz/+OODttC4tLSUmJgZ//++mNY6MjIyMjIyMjEz/KS0tZd++fbS1tQEwYsQIFi5c+EjrPveSVouTo4UtHLraxJlr7Xiuk21HDPFj3shwslLDSAj1Br7IwrcsfN8WWfi+PW+99RaHPYcpDSxlpu9MokqjyMzMfKh9iwcLj8fDtm3bKC4uZsGCBTeNDLTn5dH8v/4JobUVZZCB0F//Gt8BDJ3funUrVVVVgLcHdtq0aUycOPGhjfJ+lHA6nYiiiMfjwePxcOjQISZNmtQv0bWvdAt3jY2N0jR9+nQp4jkvL49Dhw4B3uMoOjqamJgY4uLiGDp06D0ZTgfefdLQ0EBtbS0NDQ0EBAQwbtw4goOD78r6BUHA5XLxP//zP7S3t0ufR0REkJ6ezsiRI/s8nM9kN/FB0Qd8XPoxTsGbdGZS+CReT3+dUSED8+r/NlVdVfzdyb+j3lpPiE8If5zxR5KCbjya5HpEUSS3OZf1V9dztums9Pn0iOlE+EX0ELe7J7PL3MNG5Eb4qf2ICYghxv/r6ev5WP9YDDpDr/IOj4OKzgpJ4O5+vVEkN4BRZ2RUyChpGmkciY/a56btKe8o543jb9DubCctOI0/zfzTTf3N3W43e/bs4dq1a3g832ynTqcjISGBlJQUEhMTb7n9ZpeZiy0XudB8gQvNFyhsK+y1z5QoEfAK02qFmtnRs1masJTxYeMHxRe+oaGBEydO4HK5CAoKIigoiLS0NIzG/gnsZrOZNWvWoFAomDBhAo899hgBAQG3X1DmpnTnPRBF8YbT9aNWurq6sNlsBAQE4Ovbdw9HGRkZGRkZGZl7gcvl4uTJk+Tk5DB9+nSmTJkCQE1NDZWVlb1GAXdPQUFBj6QIe7dos3aL4M18ea0N93Wh4EnhfmSNDGPRmEhGRA5OsM3DhCx89wNZ+L41oijyy1/+kmMhx2jybWJi60Tiu+LlhJZfIwgCFouFuro6KeLu23Tt3InpV78GtxtNUhJhv/8vNFFRfa4fkGw/Ll++zMmTJ5k6dSqTJk1Cq9XKgvdDhsfj4eTJk5w8eRKlUsmkSZOYNm3aHUfrm0wmrly5QkNDA01NTVIkazdz585l7NixgFd0qaqqIj4+nuDg4HsmdD8ouN1uSkpKuHDhAmVlZdJ5plarmTBhAjNnzrxNDd/QZGvi/avv80n5J1LEcsbQDJ5Pfp4J4RNQKQbWOVjYVsjff/73tDnaiPaP5s8z/zwgy5ICUwEbCjdwvPY4Irf/y9cpdQRqAwnUBhKgDUCpUFJnqaPR2njL5QM1gZIQ7hbclHaUUm2uvqmYHukXyXDDcBINiQw3DCfVmEqkX2S/j8Pi9mJ+dOJHdDo7GR0ymj/O/CN69Y09rN977z1aWlowGAwkJiaSmJgojWy4ER3ODi42X+R883kuNF+gpL1EErW7idBHMC5snDQF64I5XH2YXeW7uNr2jd99tF80ixMW83T804T4hPRrG+8GLS0tHDx4kLq6OgBUKhXjx49n+vTp8r3QdZw9e5b6+nopse/1CX5dLhc/+clPpLLbt2+noKDgpnX98z//s/QguHv3bi5dugRAaGgoMTExxMbGEhMTc9c6/mRkZGRkZGRk+ktLSwt+fn5S7pszZ85w8uTJm5ZfsWIFsbGxAJI1q7+/f48pICAAf39/wsPDZQ/xftBuc3GsqIWDBU2cLv9GBP/7OcP5+6y+WTN+l5CF734gC9+3prOzkz/84Q/sjd6LTW1jdv1sRgaOZPXq1Q+9B/NA6faiTk5OlpI/3LCcy0Xbf/2ero8+AkD/RCYhP/85yj4kFhMEgaKiInJycpgwYYIkWIqiiFKpfOQtZh522tvb2b9/P8XFxQAYDAYyMzNvmBDV6XRiNpvp6urCbDZLU1dXFyNHjpSsdaqqqti6dau0nEKhIDQ0lCFDhjB06FASExMJDQ195ETu29HV1UVeXh4XL16ktbWV6dOnM23aNMArkFssFgyG3tHM36bOUse6gnXsq9wnib1hvmHMi53H/Lj5JBpuHU18PeeazvFPp/4Jq9vKiKAR/GHGH+5YLK3orOBA1QGAb4RtTQCB2kAMWgMB2gACtAH4qG4cYe3wOKg111JtrqbKXEV1VzXVZu/UbGu+6XoDNYFegTsoURK6EwIT8NP43dH2XE9hWyE/PvFjulxdjAsdxx9m/AFfde8o2urqanx9fQkJCbnlOWBxWXj/6vtsLtmMS3D1+C7aP5rxYeMZF+oVuiP8bp7xvqitiE+ufcL+yv1Y3d6OKJVCxczImSxJWMLkIZMHJQp8oIiiSGVlJTk5OVICW5VKxdixY5k9e/YjZ4EiCAKlpaUkJSXhdrsRBIHt27dTUlJy02X+4R/+QcpxsGfPHgoLC6XvFApFj+mHP/yh9HB37NgxCgoKsNlsverU6/X86Ec/kpKQiqIoX7NlZGRkZGRk7iuCIOB2uykrK6OkpASn04nD4cDhcEjzTqeT5cuXS6OMbyeSP/PMM8THxwNQUlLCxYsX8ff3R6/X95qMRuN9iyTvDnh4kBLEd9hcHC9u5WBBE/8yfwQpcsT3TcvJwjey8H07KisrWbt+LbvidgGwsGohE1InkJ2dfZ9bdn8QRVFKHjZmzBiysrJuWM7d9P+z9+bhUVT5/v+rl3R39nT2PRBC2IWQQCAgEDYFZREUwfWqX53RWZwZr+M4z8ydGfX7/Gb86vU6d+bOVWcRYXAcBUH2EQj7HoJACEsI2Uk6S6fTS3qt+v3RpEwLYQ1L8Lzy1FPVVaeqT2+Vc97nc94fE80/fQXX+YiuqBdeIOKZpy/beZVlmVOnTrFr1y5aWloAiI+P58knn1SS8YkO8J1DWVkZGzZsoL29HYC0tDTy8/Pp27cvAPX19fz973/v9vz8/HwlOtnlcrF161aSkpJISkoiISHhliRF6a3IskxtbS1hYWGKOHXixAlWr15NVlYWkyZNuiI7iWprNR+f+phNNZto97Qr+7OjspmRMYPpadOJDe7e3mZz7WZ+te9XeCQPuXG5vDnuzW7tO24XOrwd1MRAlQEAACAASURBVNpqFSFcrVIrkdxxhrib8h083nqc72/7PnavnVHxo3hr/FvdivjdIcsyG6o38Icjf1DsWDLCM/xC9/mI7vjg+KuuW4e3g001m1hZsZJjrceU/UkhSczJnMOMjBkkhiRe9XV7ClmWqampYffu3dTU1KDVannhhReIiopCpVJx4sQJtFotkZGRRERE3JGRObW1taxbt45z584FJCE+efIkbW1tBAUFodPplITendtxcXFKEIAkScp3/Uq/8w6Hg/r6eurq6hTLp5CQECW4QKPRsGLFCux2uxIV3q9fP0Vsv5G43W4cDgcejwev16ssnY9TU1OVdrMsy1gsFqKiom54vQQCgUAgENx+dJUWO7ftdjstLS20t7djtVoDFpvNxrx584iOjgb8eeV27drV7fW7RpJ35qvqFMXDw8MxGo1ERUVhNBoxGK6uD9CVjo4OTCYTjY2NmEwmTCYTra2tyLLMU089dUNsSq8X4fEthO/LIoTvS1NSUsLiDYvZnLyZEEKYWTmTwsLCq7ICuFOQZZktW7awc+dOINA6oivOgwdp+tmrSK2tqMLCiH3jdUKu4P2y2Wxs3LiRiooKwO89O3r0aPLz8wkJCREC5h1Kp2C9b98+ZFlm9OjRTJw4EfDfn9577z10Ol3A1LDOJSUlheTk5B5LQCnw05mEc9OmTezduxfwR8J2/h6vxJbG7XOz69wu1letZ9e5XYoNiho1oxNGMyNjBhNTJgZEJq84s4I3D72JjExhSiG/yf8Nes2dJzLeKI40H+HFHS/i8DoYkzCGN8e9ecXv3wnzCd4ueZsjLf7BytTQVH484seMSxrXo7+rcks5qypWsa5qHTaPTdkfHxzPkOghDIkZwtDooQw0Drxo1PqNpqamhtbWVoYPHw74bbb++Mc/YrN9XVe9Xk9kZCSRkZEkJSUpCTPBb+XUm3J/OBwONm/ezKFDhwD/a5s2bRqDBg26JfXxer1YrVZlkE2WZf7whz/gdDqVMqGhoYwZM4a8vLzr6th9E4fDgV6vR61WI8syhw4dYu3atd2Wf+CBB5S8JmfOnOHTTz9VZguI9rRAIBAIBIJL0SlFduZCMZlM1NXVYbPZsNvtOBwOZe1wOFiwYIEiOl9OJO8aSW4ymWhublaE8c7cKrIsY7PZAnLcrFq1SpmR/U1SUlJ45JFHlMcdHR23TZ4WIXwL4fuyCOH70mzevJllJcvYH7efRG8i42vHs3DhQsVe4duCLMsUFRWxY8cOAKZMmcLIkSMvKNO+ZAlt//0H8PkIys4m7v+9SVA33t9dqaioYO3atTidTkVgKygoIDQ0VIiZ3xIaGho4evQoycnJ9O/fX/ncPR6PYm0jvgs3H5PJxIYNGzh79iwAERERTJo0iezs7Cv+PCwuC5tqN7G+aj1HW44q+4M1wRSmFjIjYwZHW47yfun7ADyQ+QAvj3z5mv3Bv82UNJXwox0/wulzMj5pPL8t+C1B6u4HKswuM/977H9ZVbEKGRmDxsBTg57ikexH0GluXAPS6XWypXYLK8+u5Gjz0Qu8wzUqDZkRmQyJGcKQaL8Y3ieiz023RpFlmc8//xyLxYLVar3A3istLY1HHnlEGXj785//TFBQkOKh3jkwd7shyzIlJSVs2rRJsRsZMmQIEydOJDS052x4rhdZlmlra1Miws+ePYvVagX8Iv2ECRMoKCi4rucwm83s2bOHw4cPM2PGDAYOHIgsy8qMJK1We8Gi0WgoKChQOpVbt27lwIEDgL/zNXr0aMaPH3/bdAgFAoFAIBD0Xr4pkre0tNDY2Ijdbsdut2OxWDCbzZjNZux2O88++6wyC23Xrl3s3r1buZbBYCAiIgKLxYLL5eKHP/yhMpuxMxgiKiqK+Ph4xTI0KSmJ8PBwxe7FbrfzwQcf0K9fPwoKCoiJubX5e4TwLYTvyyKE70vz2Wef8c+6f1IWVUZfa19yW3J58cUXv1XTWWVZZsOGDezfvx+AwsJC8vLyAspINhstv3kNx+bNAITefx/Rr76K+go7fXV1dXz88cfEx8cze/ZskpKShMgpENwmdIpAGzduVGxpLmV1dClqbDVsqNrA+qr11NnrLjj+9KCneW7Ic+L3fx0cNB3kJzt+gktyMSllEv93zP9Fqw60hvBKXlacWcH7pe9j9fiFxHvS7+F7w75HQkjCTa2vw+vghPkEpS2lHGs9Rmlr6UV900O0IQyOHsyQ6CFEG6JR4xebVahQq76xjX+grLOMTqNjZNxIjPrr8/9zu93KdNX29nYMBoMyEG6z2fjTn/4UUN5gMJCZmUlWVhb9+vW7bdpZy5cv59gxv+1MbGws06ZNIzU19RbX6vL4fD7KysrYv38/LS0tFBYWMnbsWLRa7VXfM+rq6tizZw/Hjx9XOpSDBg3i/vvvv6a61dbWsn37dsUv3mAwMG7cuCueJSMQCAQCgUBwPciyjMvlQqvVKiJ5SUkJx44do62tLWAGI/hnNj722GMkJiaiUqlwOp0EBQURHBzcbdCZLMsUFxcrs+JUKhWDBg2ioKDgimwxbwRC+BbC92URwvelkSSJ7//r++xo3MG86HmMlEYya9as2zKC60axZs0aiouLgYtHersrKmj693/HW1kFWi3RP32ZsPnzL9sJtVqtAVNrKisrycrK+lbetASC3oDb7Wbnzp3s2bOHuXPnKl7s14IsyxxpOcL6qvVsrtmMzWPjxyN+zIL+C3qwxncenX7UDQ0N3HXXXd1aPext2MvLu17GLbmZkjqF1/JfU8Tvg6aD/GfJf3Km/Qzg919/KeclRsR+bV1lNpvZunUrUVFRjBgx4qY3ZBsdjZS2lvqXllLKzGU4fc7Ln3gJ1KgZETeCyamTmZgy8Zr8yi+H1Wrl7NmzVFZWUllZGRAhPnz4cGbPnq1Yafh8vpviVf1NZFnm+PHjrFq1inHjxjFy5MheZc8C/tdQXl5ORkaG0mYoLy+nvLyc8ePHEx/f/Wd76tQpdu/eTVVVlbKvT58+jBo1ioyMjOsadJNlmTNnzrBjxw6am5uVaz/xxBNiME8gEAgEAsEto1MUb21tpa2tjYiICOLj4wkKCrqmNsq5c+coKipSkqCrVCqGDBnC2LFjb3qQqBC+hfB9WYTwfWlkWWbeqnmUW8r5z/H/ybikccoI2LeF0tJSPv/8c+655x6GDBkScMy+8V+0vPYackcHmoQE4t78Hfphwy55Pbfbzfbt2zl69ChPPPEEMTExaDQadDrdt+p9FQh6K1arFYPBgMfjAeDIkSNoNBoGDx58Tb9ht8+N1WMlxnDl0+Rqa2txuVykpqbekckGv4nX6+XEiRMcPHiQpiZ/NHR0dDTz5s3rVpTedW4XP931U7yyl3vS7+G7Q7/LH478gc21/pk5EboInh/6PHMy5wTYytTV1fH5558rFhgA3/nOd25pG8Erealor6C0tZSy1jIcXoc/kgUZSZaQ8Ue1SEiB+89vtzpbOW05HXDNodFDKUwtZHLqZJJDk3u8zpIkce7cOSorKzl79iyjRo1iwIABqFQqGhsb+fvf/05GRgapqanKNNKIiIge/z8oyzJHjx5FlmWGDBmC2+0G/J7WISEhPXJ9r+xFluUbao9zuTosXrxY+W1kZ2czfvx40i5itfbhhx9SVVWFWq1m4MCBjBo16pJC+bUgSRLHjx9n165dFBYWMnDgQKVjKWy7BAKBQCAQ3CnU1dVRVFTEmTP+gJqgoCCef/75m9o/E8K3EL4vixC+L43H62HMx2NwS25WzFhBanjqt8qz0efz4XK5LojOlj0ezO/+HuuyZQAYRo0i9rf/H5rLRAXW19ezbt06zGYz4LdNKSgouCVRbwKB4PqQJInW1lbef/99PB4PKSkpTJkyhYSEG2uV0elNDP6Gzg9+8APlHiJJ0h03I+f48eMUFRXhcDgAf4MyKCgIh8NBfHz8JaNJt9Vt49U9r+KTfahQISOjRs28fvN4buhzROoiA8qfPHmSdevW4fV6SUhIIDQ0FK/Xy8MPP6yUOXPmDMnJyb3uf2G9vZ6tdVspqi1Sknh2MiBqAIWphRSmFNInos8Nr8v+/fvZtm3bBfuDg4NJTEyksLDwoqLt5bBYLDQ3N2OxWGhra8NisWAymWhoaMBgMPDMM89cVuw+3nqcFWdWYPVYcfvcuHwu3JL7gm23z41LcuH2uZHxN6f1Gj0RuggidZFE6CICtrvui9BFEKmPJDEkkbCgsKt+nRejoaGBffv2BSRlysjIID09ndGjRxMcHIzH46GiooLKykpyc3MD2jU3Aq/Xi0ajUX6fxcXFnDx5kqlTpyr+4AKBQCAQCAS9nZqaGoqKioiKimLq1KmAvx107NgxkpKSiIuLu2F9NCF8C+H7sgjhu3tMJhOrtq7i9x2/J0gVxGcTPiMxPrFHIqRuZ5xOJ2vWrKGwsPCiwoa3qYnmV36G6/BhACKe+jeinn8e1SXEa5/Px549e9i7dy+yLBMWFsbMmTMZOHCgiHwSCHoxXq+X3bt3s3PnTjweDyqViuHDh3P33Xd3a8NxPRw4cICtW7cCEBYWRmRkZECG8aVLlwL+pIPp6emkpKT0yoaQLMvKvfHMmTOsWLGC8PBwRo4cSW5uLrIss3z5ciZNmnTZgYYttVv4xd5f4JN95MTm8JOcn5AdlX3B8x04cEARY/v168e8efMICQnB6/VH83q9Xmw2G//7v/+rRMvm5OSQmJh4Y96EG0hTRxPb6rZRVFfEIdOhgOSafcL7UJhaSH5CPtGGaCJ1kYTrwns02aosyzQ3N1NdXU1jYyMmk4mWlhYkyV+Pxx57jLS0NFQqFaWlpRw8eFCJCg8LC8NisSji9rx58xT7lJUrV3L06NELnk+r1TJ27Fjy8vK6HWhucbbwp6N/YnXl6h57nVdCSmgK/aP6MyBqANlR2fSP6k98cPw1tw1aWlo4cOAApaWlyvtZUFDAuHHjerLaV40kSXzwwQdKnoS+ffuSlZVFSkoKiYmJ34qZKwKBQCAQCO5svF4vPp8Pn89HXV0dy84HSgYFBZGYmEhycjJJSUkkJyf3WEJ1IXwL4fuyCOG7e44cOcL/bPgfdiXsIsoTxdS6qTz99NPXFIXVW7Db7SxdupSGhgYSExN57LHHAjqfzkMlNP/sFXzNLajCQon9zW8IKSy85DWbm5tZt24djY2NgD951IwZMwgLCxOit0Bwh2CxWNi4cSNlZWUAREZG8sADDxAXF9cj15dlmd27dytZyfPz85k2bZoSUenz+XA4HPz+978POE+lUpGYmEh6ejqZmZm3dQK/Tn/g4uJiUlJSGD9+fMD+rnYJnft9Pp9iXWEymYiLi7voffVYyzFsHhv5CfndJqrZsmULhw4dIicnhxkzZlyQkE+WZerq6lizZo1yPwdISkoiJyeHAQMG9MrZO22uNrbXb2dL7RYONB7AK3svKKNCRXhQOBF6f+RypC6SSH3kBdsxhhgSQhKINcRete2H1+ulpaWFxsZGBg0apLz/mzZtoqSkpNvznn32WcVLce/evRw/fpyIiAgiIiKIjIwkIiKC1NTUbqObvZKXT8s/5YPSD7B77QDcm34vw2OHo9fo0Wl06NS6gG2d5vzjLtuyLGP1WLG4LVhcFtrd7QGLxR24r83VRpu77aJ1itJFkR2VTbYx27+OyiY9PP2qBh/a29spLi7GbDYzdOhQsrOzL3/SDcZms7Fnzx6OHDmiiPKdDB06lPnz5yuPfT5fr/NeFwgEAoFAIAD/gH9lZSU7duygvr5e6a90Zdq0aYwY4c8x5PV6/Ynp1Wq8Xi8ulwun04nL5cLlcpGSkqIECZw9e5ZTp07hcrkYOXIkffr0EcK3EL4vjRC+u2fbtm28f+h9jkQfIdWeytjmsbzyyit3bFSOxWJhyZIltLS0EBISwkMPPRTge9n+j08wv/02+HwEZfUj7q23CEpPv+x19+zZw86dOzEYDEyfPp3hw4ffcVYEAoHAT0VFBV988QUWiwWdTsezzz7bI7NkduzYwd69ewG4++67mTRp0kXvI2azWUksWFVVhcViUY4NGjSI+++/H/g6OV5PRhuA34alubkZnU5HUFAQOp0uYElLS1MEzU6PdFmWOXbsGMXFxbS1+YXA0NBQvvvd76LT6dBqtZe8Z0qSxJkzZ/jkk0/o378/M2bMuCYBWpIkKioqGDJkyCUFt84Em/v37+fEiRP4fD7Ab9MxZ86cXj04bHVb2XluJ1vrtnK67TQWtwWbx3ZN1zLqjcQHx/uXkPiA7bjgOOKD4wnWXt4uxmKxcO7cOSUyvKOjg/DwcEXUHjx48DX/xvY37uftkreptFYCMNA4kH/P+XeGxVw6V0dPYXFZOG05zam2U5w0n+R022kqrZX4ZN8FZfUaPf0j+/NI9iNMSZtyU+p3ozCbzZw8eZKGhgYaGhqwWq3k5OQwdepU1Go1Pp+Pd955h7i4OJKTk5UlPj5eiOECgUAgEAh6FZIk0dTURE1NDbW1tdTV1dHc3MyiRYuUoKTS0lI2bNiglP8mjz76KMnJ/pw8XWcA33vvveTk5Ajh+xJabu8LSxLcVFpbW7EGWQEI94RjNBrv2B9US0sLS5YswWKxEB4ezoIFC4iOjgZA9vkwv/021n98AkDIjHuJ+cUvUHfj7yrLMlarVfnx5efn43K5GDNmDEajUUR5CwR3MJmZmTz33HN89tlnpKSk9Jg1VHy83/qgsLCQcePGdSsEG41GjEYjOTk5yLIcIIT37dtXKdfc3MzKlSsBf5LI1NRUUlJSSE1NJTIystv7lNfrpbm5GZPJpCwLFixQhGaTycSRI0cuei74k0R2Ct87duyguLg44LjBYGD48OGMGjWK0NDQK7pfqtVqHA5/sscTJ05gsVh44IEHLivo22w29u3bx6RJk9BoNGi1WoYNG3bZ51SpVKSnp5Oeno7NZqO4uJji4mI6OjqIjY1Vynk8nguixm93wnXhzMiYwYyMGco+r+RVIpY7o5kD1l22m53NNDmacEkuzC4zZpeZk20nu32+CF0E+Qn5TE6dTEFiAQbthfZAkZGRREZGMnDgwB57nfX2et796l221m0F/CL9C8Ne4P4+96NW3byB6Uh9JHnxeeTF5yn7nD4nZy1nOdl2klNtpzjddprTbafp8HVwrPUYP9/7c2Y1zOKlnJeuaODgajjVdop3Dr+DyWEiLTyNjPAM0sPTSQ9LJz08nbjguB55f4xGI2PGjFEe2+12pZMnSRL19fX4fD5FGD906BDgt3cqLCxkxIgRIoBAIBAIBAJBr0CtVpOQkEBCQgJ5ef42n9PpVBJ+S5KEyWQKELxVKhUGgwG9Xo9erw9IDp6WlqbYaqalpfXKGac3ExHxjYj4vhR/+ctfWOpdSrOhmdFNo5mWOo2FCxfe6mr1OI2NjSxZsgS73Y7RaGTBggXKd0FyOGh+9ed07NgBQNQPf0DEk092K4xUVlaybds23G43Tz/9NBqNBrVajU6nE500geBbhCRJSJKkTGtrb28nKCjouhIitrW1kZSUdM2DZ7IsI8sykiRx9uxZ/vWvf9Hc3HxBubCwMCZNmsSgQYMA/3S6srKyC3yYO3n88ccVn+va2lqqq6txu9243W5cLpey7Xa7WbhwoTJraOPGjYpIHh0dTV5eHsOHDyc4OPiaXmNFRQWffvopTqeTiIgI5s+fHyBEd6W5uZnly5fT3t5Obm4u06ZNQ6fTXfN76/P5OHfuHHFxcUoE+LJly9BoNIwaNYq+ffte96Cn2+2mqqqKyspKNBqNMsgRHR1NeHj4bTOoKssy7e52GjsaMXWYMDlMNHU0+bfPPzZ1mHB4HQHnGTQGxiWNY0rqFAqSCnpc1AVwep18dPIjlp5YiktyoVFpeDDrQZ4d/Czhuhub6PF68Mk+6mx1rKlcw0cnPkJGJiM8g9fzX2eAccB1X9/tc/PXsr/y0YmPLhpt3olBYyAtLM0vhncRxNPD04nQ9VwbujOAoFP47lxcLhfgTww+YcKEHns+gUAgEAgEgluJJEm0tbUpgndnv6SzfX+7tPNvJ4TVyVUghO/ueeutt/hH9D9waVxMqZ/C7PzZTJ48+VZXq8dZvHgxlZWVxMXF8dBDDylRgt6mJppefBH3iZOo9HpiXn+N0PMZer9JY2Mj27Zto6qqCgCdTsfDDz9Meno6Go1G3KgEgm8pnQLO0qVLcbvdzJkz57LJGMEvpG7bto3c3FwlAttgMPT4vcThcFBZWUl1dTU1NTU0NDQgSRIPPvigEiG+b98+tm/frpxjMBiIj48nISGBpKQkMjMzCQsLQ61WX7Z+XZsdnQMDHo+H0NDQHrEwaGpqYtmyZbS1taHT6Zg9e3ZApDtAVVUVK1euxO12YzQaefjhh5WI+p6gczrje++9p7zemJgY8vLyGDx48FVFZXRN8llSUsKmTZsuWk6r1XLvvfcqgxV2ux2z2YzRaCQkJOS2/B9k89g4236WotoittRu4ZzjnHJMr9FTkFjAlLQpjEsaR4j2+mZOyLLMltotvPvVuzR2+P3Z8+LzeGnES2RGZl7XtW82B00H+fW+X9PkbCJIHcT3hn2Phf0XXvNnfLz1OK8feJ2K9goAJqdOZm7mXOrt9VRbq5Wlzl53SVE8KSSJYTHDlKV/VH+06p6LQPJ6vRw+fJhDhw7x+OOPExYWpsyoEIEFAoFAIBAIBN8uhPB9FQjh++K4XC5+8+ZvWJ2+GoC5VXNZOH8hQ4YMucU161k6rQA2b97MlClTMBj806zdp05jevFFfI2NqI1G4t95B/1dF3p+ms1mdu7cyYkTJwB/5ysnJ4cJEybcVhF4AoHg1tHa2sqSJUtoa2tDq9Vyzz33MHjw4G7Le71eVq9eTXl5OTExMTz99NPXHAV9tbjdbmpqakhISECr1SJJEo2NjZw5c4akpCSSkpKIjIy8IpH7VuFwOPjkk0+orq5GpVKxaNEiUlJSADh27BgbN25EkiRSUlICZvj0NG1tbezZs4fDhw8rkf8hISHk5OQwYsSIi9rgyLJMS0sL5eXllJeXM3ToUCXpjdVq5eOPP6Zfv35otVpaW1tpbW2lra0NSZJYsGABGRkZyutcv3494B+I7YwM71zS0tJ61Nv9epFlmRPmE2yu3cyW2i3U2euUY3q1nrFJY5mcOplxSeMICwrr9jo+2YfL51IWp9eJ2WXmg9IPKG7y2+okhiTy4vAXKUwp7JHvcOcsipv5m7C4LLxx8A221/sHpMYmjuU/Rv0H0YboK76Gy+fiz6V/ZunJpUhIGPVGXh75MlNSL+4f7pW8X4vhtq8F8WpbNU0dTReU16v1DIweGCCGxxhiru0Fd6HzvQb/e//ZZ59hNBopLCzsNoGpQCAQCAQCgeDOQgjfV4EQvi+OyWTijb+9QVFiESHeEGbWzuT73/8+MTHX32m5HaipqSE1NRWXy3XBtP2OXbtpeuUVZIcDbZ8+xP/+XYLOJx3oitls5q9//aty/qBBgygsLCQ2Nva2FYQEAsGtoaOjg+XLl3PmzBkAcnNzL5qg0uPxsHLlSsXO4oEHHmDw4MG37J7S2Uzobfe0zsEDp9PJ7NmzAdi1axd79uwBYODAgcydO/emJGvu6OiguLiY/fv3Y7X682bcf//9SnS2JEnU1tZSXl7OmTNnlASfAH379uXBBx9ErVYr1lnfFFh9Ph9ms1mJmpdlma+++ordu3cHJDftSteI/qqqKsrLywOE8bCwsBv2mXdG+ndnASbLMifbTrKldgubazdTa6tVjunUOgYYB+CT/AK30+f8WuT2OfFInm6fV6/W8/jAx3l8wOMX9RLvfO7S0lJlsOKhhx5SxNTdu3dTUlKCz+dTrIwkSVJ+I0899ZRirXPu3DlMJpMy4HClfvVXgyzLLD+znHe/ehe35CZaH82v839NfkL+Zc892nKUNw68oST1nJ42nZdyXiJKH3VNdbF5bBxvPc7RlqMcbTlKaUsp7Z72C8olhSQxNGYow2KGMdA4kGhDNBG6CMKCwtCorn7GR0NDA0uWLAEgKCiIgoICCgoK7th8NJdDlmUcDgfBwcEiCl4gEAgEAsEdjRC+rwIhfHfPJ8c/4Y0DbzA0fCjPGZ9jwoQJPTIV/Vbi8XhYt24dhw8fDhAeOrF+9hmtv3sTfD70eXnEvfX/0HT5XnSddg7w6aefAn6/ybS0tF4nDgkEgpuHJEls2bKFXbt2Af7EJLNnz1Yif91uN8uXL6e2tpagoCDmzZvHgAEDxH3lGpFlGa/Xi9frxWKx8Le//Q23201+fj7Tpk276f/PvF4vpaWlHDt2jNmzZ6PRaPB6vbz33ns4HF/7XWs0GjIyMujfvz8DBgwgKirqmr4Dna+/paWF5uZmZd3a2sqsWbOUNs/OnTuVAYFOgoKCiIiIQKvVMmvWLIxGIwCnTp2ivLwcrVZ70WXw4MHKzKmysjLKyspwuVw4nU7cbreyBnjiiScU2x+3241Wq71ArJNlmdOW034RvGYz1bbqK379OrUOg8aAXqNnRNwIXhj2Asmhyd2Wr6mpoaioiMbGRmXf//k//0d57du3b2ffvn3dnv/kk08SHx9/0bJdo+6NRiMjRozosYj7cks5v9z7S8Wq5LEBj/Hdod8lSH1hYlWn18l7pe/x8amPkZGJMcTwyshXmJgysUfq0okkS1RbqznWeoyjLUc51nKMM5YzyFy826FCRXhQOBG6CCJ0EUTqI5XtrsvAqIEXWNPU1dVRVFTEuXN+q5ywsDAmT57M8OHD7xjxV5KkAJ/PzoTFVqsVm82GzWbDarUqSUK/973vERUVhSzLmEwmnE4nmZmZ4n+JQCAQCASCOwYhfF8FQvjunjf3vcmSE0tYkLWAl3JeumlT7W8Uzc3NfPrpp5hMJlQqFRMmTGD06NEAyJJE27vv0r5kKQChs+4n5he/QBX0dcexrKyMXbt2sWjRIqXDnUzadAAAIABJREFU6vP5CA0NvWM6VwKB4MZTVlameEz379+fuXPn4nQ6+eyzzzh37hw6nY6HHnqIfv369ep77u2CLMu4XC4qKipob29n9OjRt/yeLUmSIsp/8sknNDU1kZmZSXZ2NllZWTf8/+03E52Wl5fT2tpKS0sLbW1tAV7szzzzDNHRfguNHTt2sHfv3m6v21X83bt3LzvOJ4a+GAsXLiQtLQ2ArVu3curUKfLy8hg2bJji3fzNOle0V1DZXolO87WobdCeX2u+Xus0OtSqK/uMzWYz27Zt4/Tp04BfpB47diwpKSmkpqYqdbHZbHR0dChR910j8NVqNXq9HpVKhSzLHD58mBMnTtDa2orFYuGbze3vfOc7SpvzwIEDnDlzJiBZqdFoJCoq6ooHZ5w+J7//6vcsP7McgEHGQbyW/xrp4elKmZKmEt44+IYSQX9fxn38aMSPejQp5aWweWyUtZYpUeEV7RW0u9svSHJ6KVSomNdvHi8MeyHA8kaWZU6ePMn27duVWQ4JCQksWrSIyMjIHn8tNwKTyUR9fT3t7e1YrVasVquybbPZAsTsrVu3snv37m6v9eijj5Kc7B/k+ec//0lVVRXJyclMnDiR/v37i/8rAoFAIBAIej1C+L4KhPDdPc9/+Tw763fy05E/5cGsBwkODr7VVbpmjhw5wpo1a/B4PISEhDBr1izS0/0dQqmjg5Zf/geOLVsAiHzheSKfeUbpGPh8PoqKiigpKQFg7NixTJgwodtp2gKBQHA5TCYTa9as4b777iM8PJw1a9ZQVlaGwWBg4cKFpKenC3GiB5FlGZ/Pd9slG5ZlGYvFQmhoKFqt9raoW2eUuNVqxePxkJ6ejk6nQ5ZlampqqKurw+Px4PV6lXXnMn78eMXuw2Qy0dDQgF6vJzg4GL1ej8FgULaDgoJQqVR4PB7+9Kc/KRYvISEh5ObmMmLECCV6/EZhs9l4//338fl8qFQqhg8fzsSJE5WEstdL5/eua9R9a2sr06dPV8p88cUXnDx58oJzVSoVkZGRPPLII8pge3t7u5JI9mJsq9vGGwffoN3dTog2hJdHvsyklEn8z9H/4dNy/wy1uOA4Xs19lXFJ46779fUEHslDu7v9oovFbVG2mzqaONx8GIBYQyw/GfETJqdODvicvF4vJSUl7Nmzh9DQUJ555hkMBsMNa6v5fD6OHDmiJAWWJIlJkyYp9jjHjh2jtLQ0wBqnc7Hb7Tz66KNERkb6k69u2XJJMXvRokWknrfdq6io4PTp04SFhREaGhqwDgkJUQZMJEli69atfPXVV3i9XsA/IDBhwgQGDRp0W9xvBAKBQCAQCK4FIXxfBUL4vjjr1q3jd82/o1Vu5ef9fs7MYTN7TdRMVzweD+vXr1dE6/T0dO677z7CwvyRQr6WFkw//jHuY6UQFETsr39F6IwZyvlWq5UvvviC+vp6wC96T5o06VvrHykQCHoWr9eL2+3GbrezevVqpk2bRmpqqhAkBN8q3G43hw4dYs+ePbS3+72hdTodI0aMIDc3V/mf3RN807Js7dq12O12pk2bRnJy8k377XVG3Tc2NtLQ0EBLS4sijJvNZjweDxqNhh/96EeKcLtmzRrsdjvz5s27aFQ8QKOjkV/v/zWHmg4BEB4UjtXj95af03cOPxz+w0smCL2dOWg6yG+Lf0uNrQaAgsQCXh758gUWNh0dHVitVmX2gUqlYv/+/YwePbpHgjhkWaasrIzNmzfT2toacOzpp58mLi4OWZbZuXPnFYvZJ06c4OjRo4SFhREeHk5YWFjAdkhIyDV/N+12OwcPHqSkpASPx++DHxcXx9SpU8nOzr6mawoEAoFAIBDcSoTwfRUI4fvivPXOWyw2LgYV3FdzH9959DtKIqzeREVFhZL4qKCggLFjxyodSHdFBaYf/BDfuXOoIyOJe/ttDCNzlHOrq6tZvXo1DocDvV7P/fffz5AhQ4QgJRAIehRJknC5XKjVanQ6nbjHCL61eL1ejh07xq5du2hubgb8iWAnT57cI9c/e/YsO3bsYPbs2URF+RM5SpJEcHDwbZXDRJIkrFYrbW1tJCcnK1HCH374ISaTibS0NObNm9ftILxP9rG4bDF/Pv5nfLKPxJBEfp7388smvnS5XGzatAmPx0P//v3Jysq6KQlgrwaXz8XiE4tZXLYYr+xFr9Hz7JBnWdR/EVq19qLnHDhwgK1btxIcHExhYSG5ubnXHAVuMpn44osvqKurA/wzFAYPHqzMArzrrruUCP1z587R2NgYkJS2czs4OJiEhISb+v52JtotLi7G7XYzY8YMcnNzb6vvvkAgEAgEAsGVIITvq0AI3xfi9Xr56Zs/5cuUL9FKWuZUz+GnL/9UScDWW5BlGY/Hw86dO0lMTKRPnz7KMUdREc2/+jWyzYY2LY34379LUEaGcvz06dOsWrUKWZaJi4tj/vz5xMfHC0FKIBAIBIIbTKdn8+7du5kxY4Yy46y5uRm73U5oaCg6nY6goCB0Ot1lhbuWlha2bt1KRYU/AeSQIUO47777rujc24nq6mqWLVuGy+UiJSWF+fPnX1I4LWst46uWr5jVZxahQZdPpvnpp59SWVmpPNZoNPTp04cBAwbQr1+/G249czVUtlfy2+LfUtLsn9GXFZnFz3J/xrCYYReUraqqYvPmzbS0tAD+aOd7772XzMzMC8peDrPZzB//+EfUajWjRo1i1KhRvW4WoNPp5OjRo4wcOVLxqj99+jRut5u77rqr29kEAoFAIBAIBLcLQvi+CoTwfSFNTU38/MOfszd+L0aXkXmOefzwhz/sFX7WXq+XzZs3M2rUKEJCQpAkKeC4ZLfT+tbb2FetAkA/Yjhxb7+NxmgMKOdyufjoo49ITk7m/vvv79X+5gKBQCAQ9Fa6JgJdsWIFZ86cuaCMRqNBr9fzwgsvKAPUu3fvprGxEfDP/pIkCbVaTU5ODhMnTiQsLKxXDmbX1taydOlSXC4XSUlJPPjggz0mSDc2NrJ69Wqys7M5ffp0gI1HREQEzz333A19z9xuNxaLBZfLhdPpvGAdHx/P0KFDlfKyLLO2ai3vfvUu7e72bpNfgv97dPjwYXbt2oXT6QQgOzube+65R0neejHMZjOnTp1i9OjRiqf96dOnSU5OJjQ0lCprFdXWasCffJPzb4/q/B/4rVY6tzsfe3weXD4XLp8Lp8952W2AIdFDyIvPY5BxULfR7deCz+fjL3/5CxaLBbVaTWJiIqmpqaSmppKWltZjnvc9TWfiYpvNht1uV9bx8fEBwS4CgUAgEAjuPITwfRUI4ftCTp48ya/W/4pSYykZtgwWRS3ikUceuS0bvV1pbW3l008/paGhgeTk5Avq7PzqK1p++Uu8tXWgUhHx5BNEffe7qM5H6lit1oCOsNPpJDIysldFgwkEAoFAcCfi8/lYuXIlNTU1uN1u3G43Pp9POa7T6XjxxReVx9+MXu7Xrx9TpkwhMTHxtm/PXI76+nqWLFmC0+kkISGBhx566JoH6Dsj6DvRaDRKBHNjYyOlpaWUlZWRnp7O1KlTAb+IvG7dOvr06UNWVtYlhff29nbq6+ux2+04HA7sdruy7XK5mDx5shJ5ffz4cdauXdvttaZMmcLIkSMv2G92mfnvr/6btVX+c2MMMbw04qULkl+C3+5j9+7dlJSUIMsyWVlZF23j2u12duzYwYEDB5AkiUcffZTkZL+XuMvnoqi2iM8rPlcSbt5MQrQhDI8dTm58LnlxeWQbs9Gorr2t6vV6OXz4MMXFxYrHflcyMjJ48sknA5K+36i2sSzLuN1ubDZbwBIfH69YLprNZj788EPsdnvAPaCT3Nxcpk6dilqtRqvV4vV6e11UvkAgEAgEgktzpVpuz4UKCO4oWltbsQb5EyGFe8KJi4u77TuJx48fZ9WqVbjdboKDgykoKFDqLHs8WD74AMtf/waShCYxkdjXX8eQ+3Xn6eTJk6xfv54JEyYoUz+NRuNt/7oFAoFAIPg2oNFomD9/Pl1jNrxeLx6PB5fLFSBuybLMmDFjGDhwIB6Ph8TERDIzM3vFzLUrITk5mSeeeIIlS5bQ2NhIdXU1AwYMuOrrFBcXs2PHDhYsWEBycjI6nQ6t9uvuQWJiIomJiUyZMgW3241KpcLr9VJXV0dZWRllZWWo1WrS0tLQarWKoD1t2jRFzK6trb2kmG2325Xt4OBgQkJC0Ov16PV6DAaDsg4JCQkQve12u5Lw0ag38h+j/4OZfWbyu+LfUW2r5ud7f87YxLH826B/Y0j0EILUQcpzTJkyheHDh7Nt2zbuvvtuOjo60Ol0ioi6b98+du3ahdvtBvzCr06no8paxcqKlaytXIvFbQFAo9KQFZmlCM/y+T8g4LvadZ+MjE6tQ6/Rd7sYtIaAx06vk8PNhznUdIh2dzt7Gvawp2EPAGFBYeTE5ZAbl0tefB79IvuhVl35d12r1ZKXl0dubi4Wi4Vz585RX19PfX09JpOJiIgIOjo6lN/PO++8Q0xMDKmpqSQnJxMUFOSPalepiI6OJiEhAfAnmD979iyAchz8v1ubzUZcXBwZ520GzWYzH330ETabDa/Xe0EdR44cSVJSErIs4/P5AgR6nU5HaGgoISEhhIaGEhcXp/jil5aWUlRUxL333sugQYNEu14gEAgEgm8ZIuIbEfF9MdatW8dva3+LWW9mrGks35v+PYYPH36rq3VRPB4PGzdupLi4GIDU1FTuv/9+wsPD/ccrK2n+xS9xHz8OQOh99xH905dRnz8uSRLbt2/nwIEDgL9z88gjjyiNeIFAIBAIBILbkcbGRqqqqgLsP64ESZLYunWr0nYaPXo006dPv+IoXrPZTElJCWVlZUoS0q7cc8893HXXXQDU1dWxfft2QkNDlSUsLIzQ0FAMBgOxsbGEhfltSTrbXd9cdyLLMl6vF7vdzocffkhsbCz33HNPQMS6y+fioxMfsfjEYjySBwCDxsBdsXeRG5dLbnxut1YhmzZt4quvvlJs8hISEigYX8DZoLN8fuZzipuKlbIJwQnMyZzDrL6ziA+Ov6L3rSeQZIlySznFpmKKTcUcajqE3WsPKBOpi2Rk3Ejy4vPIi88jIzzjmtu0Ho8Ht9utvMeNjY189NFH3ZYfPXq0MjPAYrHwxz/+sduyI0eOZNq0aciyjMPh4A9/+INyrFPM7hS0MzMzGTbM798uyzINDQ2EhIQQEhJySU/yjz/+mNraWgCysrKYOXMmxm/YG/YW3G636J8IBAKBQHAeYXVyFQjh+0I+//xzXmt7Da/ay/S66bz89MskJibe6mpdgMViYdmyZZhMJgDy8/MZP348arUaWZaxffYZ5nfeQXa6UEdEEP3zVwmdPl053263s3r1ampqagAYNWoU06ZNE0l9BAKBQCAQ9Ao6E3l7vV4cDgeSJClC8sVwu92sXbuW8vJyACZOnMjdd999zdYVJpOJ8vJyNBqNImrHxMQo0dhdI317ilOnTvHPf/4Tn89HSEgI06dPp3///gFlqqxV/Ln0z+xv3E+buy3g2MWsQrxuLx988AEdHR1ERkYyYPQAjqiOsLZqLWaXGQA1agqSCngg8wHGJo1Fo9IoYnxnksibjVfycqrtlF8IbyrmcNNhOnwdAWXiDHH+13peCE8KTbrm55NlGavVqkSENzU1+aPYzy8DBw5UIvNtNhuff/65EvneWUar1RIaGkrfvn0ZMWKEcqy+vl4Ru3uqLe7xeNi3bx/79u1DkiS0Wi133303BQUFAbMbbjecTiclJSXk5+crEfBr166lrKyM2NhYYmNjiYuLU9bR0dF3zIwWgUAgEAiuBCF8XwVC+L6QBnsD0z6bhho17w9+n5EjRt6WYrDH4+Evf/kLVquV++67T0lk42tupuW11+jYuQsAQ34+Mb/5Ndr4ryNyqqqqWLduHTabjaCgIGbOnMnw4cNFFIVAIBAIBIJehSzLSjCA1+vl4YcfVma+daVTiGxoaECj0XDfffcxYsSIXtn2aWho4PPPP1eCH4YOHcrkyZPR6/UB5SRZoqK9QomQLmkqod0T6GMdFhRGTmwOdxnvQtWhYp99HwdMB5TjcYY4ZvWdxZzMOSSGJNLW1kZVVZWydCbLBJg9e7ZiO1NeXs6XX36piOJd1xqNhjFjxii+1U1NTRw+fBitVnvRJSUl5ZJJODvxSl6Otx6nuKmYg6aDHGk+gltyB5RJCU1RRPDc+FxiDDFX8c73TlpbW/nyyy+prvYnIo2JiWHOnDmkpaXd4poFIssyZWVlbNiwAavVyr333qtEui9btoy6urqLnqfRaHjllVeU/posy73ydy0QCAQCwZUiPL4F18VZi9+PLzUslWFDht1WEREul0tp1Hm9XmbPno1Wq1WimxxFRbS8/gZSWxvodBh/+APCFy5E1SUKwmazsXz5cnw+H9HR0cyfP5+kpCTRQBQIBAKBQNDrUKlUSlJAi8XCxx9/zMMPP0xkZKRSxmq1smzZMtrb2wkODmb+/PlkZmb22rZPYmIizz77LEVFRezevZtjx45RU1PDjBkzAsRMtUpNVmQWWZFZPNz/4Ytahdg8Nnac28GOczuU81SoyE/IZ16/eYxLGqdYoxw7doz169d3W6+uUbculwubzdZt2Y6OryOzzWYzhw93nyhz2rRpVyR8a9Va7oq9i7ti7+KpQU/h8rk42nKUg6aDFJuKKW0tpc5eR93ZOladXQVAZkRmQDS4QWNAp/nag1yn1l3UGqY3ER0dzYIFCygrK6OoqIiWlhYcDsdtJRC3tbWxfv16Tp06BYDRaAz4DS9cuJC2tjZaWloCltbWVkJCQvB4PHg8HtRqNevXryc0NJTJkyffVv04gUAgEAhuNiLiGxHxfTH+fvzv/PbAb7k7+W7eHv82wcHBt7pKANTX17N8+XKGDBnCmDFjAo5Jdjvmt9/GttLfiA/Kzib2jdfRZWVd9Fq7d+/G4XAwZcqUAG9IgUAgEAgEgt5IW1sbixcvpq2tjYiICB5++GGioqIAfwToqlWraG5uZsGCBSQkJNw2gt/1UllZycqVK7FYLPTr14958+Zd8bk+2ccp8ykONvmF4QZHA+MTx5MfnI+z0UllZSV33XWXkuumtbWVv/3tbyQlJdGnTx8yMzNJSEhQkinq9XqCgoKQZZmOjg7a2tqQJAmfz4fX6w3YTk5OVoTNpqYmysrKlIStXq83YBk5cqQSHd7S0oJer7+kpU132D12DjcfVoTwU22nlMSbl0Kj0gQI4Z3bwdpgkkOTSQtPIy0sjfTwdNLC0ggLuvq6dUWWZdo97TQ6GmlxtpARnkFyaPJ1XbMTp9PJ6dOnlUjqoKAgWlpabtlvQpIk9u3bR1FRkSJc5+fnM2bMmCsSrTu/ayEhIYB/NsSSJUsAv0/9vHnziI+/eT70AoFAIBDcDITVyVUghO9AKisr+UXRL/hK/RVTI6bys4KfKdnZbxWyLLNv3z6+/PJLJEkiMjKSp5566uvI7/pzNL7wAt7qalCpiHjiCaKe/y4qnQ7wR3hv2bKF0aNHK17larUavV5/x3T6BAKBQCAQCNrb21m8eDGtra2Eh4ezYMECJVLY4/GgUqnuyPauy+Vi8+bN5OXlKYJw12jezoh4p9OJ0+lEq9USE+O3+JAkiV27duF0Omlra6Ourg6Px6NcOzs7mzlz5qBSqVCr1Xi9XsXD/GYhyzI+nw+n08nSpUsxm82MHz+enJyc6/J2trgsHGo6xEHTQUqaSmhzt+HyuXD5XEpy0GvBqDcqInjnunPRa/S0udswOUw0djRicpgwdZxfumy7fK6Aa45OGM0DmQ8wIXlCj0agt7e389e//hWj0Ujfvn1JTk4mOTmZmJiYm/IZr1ixgqNHjwKQkpLC9OnTiY2Nva5rlpeXs2HDBjo6OtBoNEydOpX8/HzR7xEIBALBHYMQvq8CIXwHcuDAAX5W/DNMwSbymvN4ddarZGdn37L6OBwOVq1apUz769+/P/fcc48She6tr6fhue/gq69Hk5hA7OuvY8jNBfydhNLSUoqKinA6nSQkJPD4449jMBiuOYmTQCAQCAQCwe2M1Wpl8eLFtLS0oNFo+PGPf4xKpUKv19/x7R9JknC73UiSxNq1a6mtrcXtduNyueja7enfvz9z584F/O3Ft99+O+B4SEgIGRkZ9O3bl379+hEVFXVbJA+0Wq18/PHHnDt3DoC4uDimTZtGSkpKjz+XJEu4fW6/EC75xXDl8fnF7rFTa6+l2lpNja2GGmsNra7WS143SB10xaK6UW8kSh9FZXulEpkeY4hhdt/ZzOk757oSdXZSUVHB6tWrcbsDvdB1Oh2JiYmMHz/+guSpPYUsy5w9e5bPPvuMCRMmMGzYsB4Tp202Gxs3bqSiogKAzMxM5s6de1H/f8GdgdlsJjw8XNjbCASCbwVC+L4KhPAdyMaNG/ll7S/p0HZQeK6Q159/PcBf7mZSVVXF8uXLsVqtaDQaJk2aRE5OjtIg9NbX0/Dsc/jOnUOblkbCB+8rCSzb2tr417/+RVVVFeCf6jdz5kzS0tJEtINAIBAIBII7GrvdzuLFi2lqamLBggUMGDDgthBubwayLFNRUcHSpUsvOKbRaDAYDPTp04eZM2cCfo/07du3o1arCQ0NJSMjg8TERNRq9W3ZZpRlmYMHD7JlyxYlseawYcOYMGGCYndxK7F5bNTYagLE8M7HVo9VKRdjiCE+ON6/hPjXCSEJyr7Y4Fj0Gn+y0np7PasqVvHF2S8UYV2FijGJY5jXbx4FiQXXFQVut9s5e/YsjY2NNDQ0YDKZ8Hq9AMydO5eBAwei0Wioqqpi+/btSlR4VFQUer0eg8GAXq9Hp9Nd9jtz4sQJrFYrOTk5itjudrvRnZ+p2pPIsszhw4fZunUrXq+X2NhYnn/++W/NveBOw+1209raqixWq5UZM2YgyzKyLPP3v/+dpqYmJk2axIgRI8TnLBAI7miE8H0VCOE7kMUfL+Yt91sALGxeyKs/fvWW/NPs6Ojgv/7rv3C73RiNRmbNmhVguRIgeqenk/D+e2jj45EkiZKSEnbs2IHH40Gr1TJu3DjGjRunWKMIBAKBQCAQ3On4fD7MZvNNs2y4nZBlmfr6elwuF8HBwQQHB2MwGAKEyd7+nthsNr788kuOHDkCgMFg4NFHH72iJJjXiyzLOBwO7HY7MTExVzSTQJZlLG4LHd4OYoNjCVJffbvcI3nYXr+dlWdWst+0X9kfFxzHnL5zmN13Ngkh12/RKEkSLS0tNDY20rdvXyUf0J49e9i5c2e35z322GP07dsXlUrF8ePH2bdvnyKK6/V6LBYL5eXlaDQannrqKYxG43XX9UpoaWlh7dq1jB8/nqysLHQ6Xa8QRWVZZvPmzSQmJjJ48OBeUeeeZs+ePZw8eVIRur/Jiy++qAyabNy4UbkfxMbGMnXqVLKzs3v9vU4gEAguxpVquWIOjOACzlrOQjDofXpSY1Nv2T9KnU5HYWEhtbW1TJ06NSAKwlNXR+Ozz+FraAgQvQFOnTrFli1bAEhLS2PmzJl3VAIngUAgEAgEgitBo9Fct1dwb0WlUt0Q+4/bibCwMB544AFGjhzJ2rVr0Wq1PS6ker1e1Gq1IjgeP36cQ4cO0draisvl9+DW6XRkZGSQmZlJ//79FTvCb6JSqYjSRxGlj7rm+gSpg5iSOoUpqVOosdWwsmIla86uoamjiT8f/zN/Pf5XxiWPY27fuQwwDiDaEI1GdfX2Pmq1mri4OOLi4gL2Dxo0iPDwcBoaGmhsbMRut+NyuRQrHZVKpUThm0wmampqLnrtrl70N4OYmBgef/xxVCoVkiThdPoTt4aFhZGenn7T6nEpZFmmsrKSyspKJk6ciNfrxWQysWvXLgC2bNlCQUEBI0aMuOOsPBwOB9XV1VRVVVFbW8sTTzyhfFYmk0mZwQz+AS6j0UhUVBRGoxFJkpRjU6ZMISYmhj179tDc3Mw//vEP0tPTmTZtGqmpqTf9ddlsNs6cOUNVVRWTJ0++qd/5S2E2mykrK6OiooLY2NjbZraMQCC4MYiIb0TEd1dkWea5/3qOvdF7iXXG8nLay8o00JtZB1mWcTqdAUmJOvHU1tL43HcuKnp3nr9ixQqysrIYPXr0He9lKRAIBAKBQCD4diNJEu3t7ej1eiWR57/+9S+CgoLQarVoNBplrdFoyMrKUiLDrVYrDQ0NaDQarFZrgJWCxWJh0aJFyiDC4cOH+fLLL5Xn1el0Ad7Yjz32GElJft/tjo4OdDrddbXFvV4vbrf7kqKU2+emqK6IlRUrOdR0KOCYRqUh1hBLfEg8CcEJiqVKV3uVGEPMdSfLlGUZr9eLRqNRBgnMZjMmk0nxmHe5XEiSxMCBAy8Q1K/0ORxeBxa3hXZ3+9drlyVgn9VtpX9Uf54Y+AQh2ou/b+3t7Xz44Ye43W7Gjx/PxIkTb1mfSZZlTp48yc6dO6mrqwPgiSeeICEhAafTyaFDhzh06BAdHR2Af8AnPz+fUaNGodfrb0mdrxe73U5lZSVVVVVUVVVhMpkCji9atEgRquvq6rBYLIrY3d3AUlecTif79++nuLhYseyZOXMmo0aN6vkX0wVJkqitraW8vJzy8nIlF4HRaOTZZ59Fq9Wi1Wqpra0lPj7+lnx+JpOJP/3pTwH7DAYDEydOZNSoUUI7EAh6EcLq5CoQwvfXtLe388zfnuFE1AkyrZn8cswvycvLu2nP39rayooVK5g6dSrxXcTsTvyi93P4GhrRZmT4Re+4OGpqakhJSVEamlqtlqCgIBHlLRAIBAKBQCD41tApwG7atIn9+/d3W27OnDlK8vqysjLWrFnTbdkZM2YwdOhQVCoVFouFxsZGYmNjiYmJQafTUV9fz6lTp6itrWX+/PlK+3vDhg2cPHmSPn36kJmZSd++fS8a8SlJEtXV1VgsFtrb27GKzEIuAAAgAElEQVRYLMpit9vJzs5mzpw5V/T6K9srWVmxkq11W2l0NCIhXfYcNWpiDDFEG6IxaA0YNOeX89t6jf6i+w0aAwONA0kJuzEzC87Zz7Hs1DIOmg7S5mqj3d2OV/Ze8fkJwQn8/+zdeXRb5Z0//rd2eZUXWfK+L3FiJ3Gc4NhxEgeyECAUCBBoGwItLfTQhTL0lM50vl2+bfm2nc6ZX2ESSuG0JNCSGZZAafZ9I5vjxI7j3XG827ItS5Zs7ff3h9DFwnZwEidO7PfrHB3L915Jz5V0Zev9PPfzvDjvRSyJXTJind1ux759+1BZWQkAiImJQVZWltgxMmfOHLGzobu7Gz09PSM6T5RKJSIiIq65lKTb7caFCxdw7NgxGAwGAN7vcLm5uSgoKPCbhNPhcKCiogKnT58Wy32oVCo8/vjjSEpKuqbHv1ncbjf6+voQGhoqBr1Hjx7Fvn37/LaLjIxEfHw8EhISkJycPK6A+8sMDAzg6NGjqKmpwdNPP42wsLAb9h153759OH36tHgmiI9er0deXp74GeJyubBx40axE2jOnDlISUmZ8DI2giCgo6MDVVVVkEqlWLp0KdxuN5xOJ15//XVoNBokJyejurpa7HiIjIzEo48+OmoOQUS3HpY6oWsyODgIW6D39LwQZwiio6Nv2mN7PB5s27YNbW1tOHjwIB599FG/9c6WFnQ988yooffWrVsRHx+PtWvXIiQkZFrWfyMiIiKi6U0ikUChUGDmzJkICgqCy+WC2+2Gy+Xyu67RaMTwS6VSITY2Fi6XC0FBQYiIiIBWqxXD7dDQUHGiz4CAgBHfD+Lj48XRqYIgwO12w+12o7OzEw6HA7W1taitrQUA6HQ6REZGIiwsDMXFxWKbP/jgA7jd7lH3yWq1jnv/k0OT8fzc5/H83Ofh8rjQZ+9D92A3uoc+u3zhumHIAJfggsFmgMFmuPrnGxIUxxRjXcY6zNfNn5BAscnchM3Vm7GzeSfcwsjnRClVQqPUQKPSIFQZilBlqPd3pQahqlAopUq8W/cu2q3t+NGxH2Fp7FL8S96/+NU+V6lUuOeee5Camoo9e/ago6NDHJ0LAMnJyWI5kfPnz+P48eOj779EgieeeAJJSUmQSCTo7+/H0NAQtFrtFQNxg8GAd955ByaTybtPSiXy8vKQn58v1lP322elEvn5+Zg7dy6qqqpw6tQpWK1WhIWFiXM6eTyeSR2t63a70dPTA4PBAIPBgJ6eHnR3d6Ovrw8ejwdf+cpXkJ2dDY/Hg5iYGERFRSEhIUE8fkbb7+sVEhKC1atXo6SkBAEBAeLnwPbt2xEZGYmioqKrGnXt8Xhgt9vR0dGB+vp6LF26FAqFAh6PR1ynVquRkpKC5ORkJCcnj+jsMplMCAwMhNFoREVFBSoqKhASEoLc3FzMnTv3ms6GGN6+lpYWVFVVoaqqCmazGYB3RPeCBQvEjOAb3/iG+P5esGABKioqcOTIEQwODkKlUsHj8TBPIJpCOOIbHPH9RQ9sewANpgb8bNbPcP/s+2/IDOOjOXLkCPbv3w+lUoknn3wSGo1GXOdsafGWN+nqgjw5Cfo/eUNvs9mMLVu2YHBwEDNnzsRDDz3E05OIiIiIiCaZ2+1GW1sb6urq0NDQ4BesRkdHY/369eLv77//PgBAo9EgLCxMvISHhyMwMBAejwdOpxO1tbVQKpVITk6ekDZ6BA+MdiO6h7phtBlhc9u8F5cNdrddvD58uc3tXWd2mFHZVyneV1poGh7LfAwrE1dCLVNfdVuqjFV4q+otHGw7CAHer+gLdAvwSPojiAmKEcNttfzL79vmsuHNqjfxTs07cAtuBMoD8e1Z38Yj6Y+MKOsyMDCAsrIyDA0NwePxwO12Y9myZWIQe/78eVRWVorrfJehoSHY7XY8++yz4sCjI0eO4Pjx45BIJAgPD4dWq4VOp0NUVBT0er04ktbhcOCVV16BIAjIz89HXl6eXwArCAIumS/hrOEs0jRpmKOdA6lE6rfeaDSK5XoEQcDbb78NrVaLhQsXIiwsDCqVCjKZbMJGN7vdbtjtdthsNgwNDaG3txc6nU7sCKqvr8c777wz6m0VCgUWLlyIhQsXTkhbrkdnZye2bNkCAAgKCkJhYSECAgJgs9lgs9kwe/ZscW6Impoa7N+/X1w3vKwRADz44INIT08HAPEMjejo6C8NjX2jsSsrK1FdXS3WxQeAVatWic+Tw+HA4OCg+LzbbDbxut1uR0FBgZhVnDx5EocPH8bg4KB4XwqFQpx7IDMz84o5gc1mQ09Pj9iJJ5PJcP78ecyePRtq9dUfz0Q3g9Pp9CuxNd2w1MlVYPD9OZfHhTveuQNOjxMf3vMh0rRpN6VcSEdHB9544w14PB7xdEofZ/NnI727uiBPTob+T69BHhUFl8uFv//97+js7IROp8OTTz45IaeEERERERHRxLJYLKirq4PZbIZWq0VmZqY4ktx3uZKWlha89dZbEAQBq1evxsyZM29Sy8fWPNCMrXVb8c+mf2LI7a1BHaYMw4NpD2Jt2lpEBVx59KogCDjXcw5/rforTnSdEJcvjV2KDdkbMCti1nW1r8HUgP9X+v9Q3lsOAMgKy8JP8n+C7Ijs67pfwNt2q9WKoKAg8bU7cuQIzp075xdk+kREROCZZ56B2+2GIAjo6uryK5UiCALqTfXY37of+1v3o2mgSbxtTGAMVietxuqk1UgMGTkZZ3t7+6ihs1QqhUqlQmFhIYqLiyGRSGCxWLBr1y6oVCrxAkAMVjMzMzFjxgwA3pHpmzdvhs1mE2tlD1dUVITFixfD4/FgYGAAf/nLXxAZGSmeLeG7hISE3DIlOAVBQG1tLQ4fPoz+/v4R6x944AFkZWVBEARUVVXhH//4x4htgoKCkJycjLy8PLGm/7VyuVxoaGhAZWUlLl26hKeeegparRZyuRw7duzA2bNnx7zts88+C41GA0EQcPDgQZw6dQoqlQrp6enIzMxEUlLSNZfiqampwccff4ygoCDceeedmDt37k0LFz/99FOUlZVh1apVSEtLuymPSbeX3t5eHDx4EDU1NXj00UeRlnZzcrtbDYPvq8Dg+3PN5mbc++G9UElVOPjQQQQH3fiZl311tnp6epCZmYn7779fPGidzS3emt7d3ZAnJyP69T9BptVCEATs3LkTFy5cgFqtxlNPPcVaXEREREREU5TL5cKHH36IixcvAgBKSkpu+GR9X+QLe81mMwYGBhAdHQ2NRoMBxwA+vvQx/rf+f9Ex6B3ZLpfIsTxhOR7LfAzZ4dkj7ud453H8teqvYigtk8iwImEFNszYgFRN6oS12SN48PGlj/Fq+asYcA5ACikeTn8Yz+Q8g2DFxH/XEwQBg4OD6O3tRU9Pj/izr68P99xzD1JSUvy2re2vxb7Wfdjfuh8tlhZxnUKqQG5kLqqN1Rh0fT6KNzcyF6uTVmN5wnJolJ+fIdzV1YVTp06hsbFxxMjk4uJiFBYWAvDWLH/rrbfGbH9BQQGWLl0qjip/4403/NYrFAqoVCqEhYUhOzsbc+fOFfcFwG0TPrndbpw/fx51dXVQKBRQKpVQq9XIyckRR7FbLBb09PRArVb7dRTcqDOsbTab3+jqgwcP4uzZs36PPfxSXFwsllLp7u7G0NAQ4uPjJ6R9ly9fxp49e2A0GgF4z1JZvXo1EhNHdrxcD5fLhcrKSgQHByMlJQUulwsGgwFvvvkmBEFAdnY2Vq1a5Xc2PE0/LpcLg4ODCA0NhSAI6Ovrw6uvvgrAW65n+fLlN61Sw62EwfdVYPD9uV9s+QXe87wHnUSHN5e8OWGnEV7Jzp07cfLkSQQFBeHJJ58UJ1JxNjd7y5t0d0ORkgL9n16D7LPTrsrKyrB3715IJBI8+uijyMrKum3+ySAiIiIioqsnCAJ27dqFkydPAgDmz5+PkpKSCfse4Cvn4RslajQacerUKXHiTbPZ7FeLPDExEY8++qj4+C6PC4fbD+Pdundxvue8uN0c7Rysy1iHxTGLcaj9EN6qegt1pjoA3prda1LW4OtZX0dsUOyE7Mdoem29+OP5P2Jn804AQJQ6Ci/kvYBlccu+9Plzepxot7ajeaAZzQPNaLG0oN/ej6iAKOgCdNAF6rw/A3TQBmihko1dN1oQBFQbq8Wwu83aJq5TSpVYGL0Qd8XfheLYYgQrgmFz2XCo/RB2XN6Bk50nxQlLFVIFFsUswj1J96AopggKqcLvMRwOBxwOh1h32heQWiwWVFdXw263i+slEokYpsbFxYnhpq9u9/Cw9VYoKeARPGIpHrvbLl4cbgcSghOgUd24kNQwZECvrVesLR8oD7xh38MFQbhh921329Fh7UCEOgKhytEzILfbjbKyMhw7dkzsTJk1axby8/P9OnCuhdFoxJkzZ8QyQ3FxcfjqV7/qbZvdjmPHjuHs2bMQBAEKhQJLlixBYWHhpJR19c3dIJPJxAmUP/30U8TFxSEuLo5n3X/BF9+3vpr/4eHhCAsLG3fpnOFnQ9TU1CAxMREPP/yw+DfozJkziIuLQ3R0tNh5Nd0w+L4KDL69BEHAhlc2oExThnhrPP5Q8ocbfgqh2+3Gli1bcPnyZTz88MPiH5ARoffrf4IsMhKA9w/B66+/DpvNhpKSEixZsoShNxERERHRNCAIAo4fP469e/cCALKzs3H33XeLk9Vd7X21tbWhvLwcra2tMJvNWLx4MQoKCgCMPTo4JCQESqUSjz766IjJ+3yq+qrwbt272NuyFy7BWyZDKVXC4fEGaIHyQDyU9hAez3gc2gDtVbf9Wp3qOoXfnv0tWi2tAIBFMYvwYt6L0Afq0TXYhRZLi1/A3TLQgo7BjlEn2hxLuCpcDMJ9obg2QIsGUwMOtB4QR8UDgEqmQlF0Ee6MvxOLYhYhSDH2JI+9tl7sat6FHZd3oLa/VlyuUWqwImEF7km+BzPDZ/p9NxQEAQ6PY9Sg2O62w+ayQSVTie28Umh/tdyCG0abt4Z8r613RJ14m9sGu8vu//tnbfrisuEXp8c55mNKIEFGWAbyo/IxXzcfc6PmXtfI/j5bH84azuJM9xmUdpei2dLst14ukYsTrfrq0GtUn0226lum0iBSHQldgA6R6sgRdeZvFKfHiTZLm/d9/Nl72Xe9a7ALAgTIJDLkRuaiOKYYi2IWISU0ZUS2YLVacfToUZSXf1YyKCsLDz/8sNgJcuLECURHRyM2NvaKoabH40FdXR3OnDmD+vp6cXlISAjmzJmDgoICv46V7u5u7N27F21t3s6hyMhIcVLam+Xy5cvYtWsXkpKSsHTpUng8HrS1teFvf/ubuE14eLgYgsfGxiImJuaaS8zcrhwOBxobG1FTU4Pa2lo89dRTCA0NhcfjwfHjx3HkyBFx24CAADEEDw8Px4IFC8QR/b6w++LFi6iurvY7e0Wj0eCb3/zmqJ0fcrmcwTeD7ytj8O1ltVrx2F8eQ1NIE7L7s/Ha+tfECUNuFEEQMDQ0hKamJnF0uau9A53f/CbcXV1QpKZ6R3p/Fnr79PT04MKFC1i1ahUnsyQiIiIimmbKy8vx0UcfwePxYPny5cjLyxv3bQcHB1FZWYny8nL09fX5rZs7dy5WrFgBwFuS8fTp0wgLCxMn3tRoNJDL5ZBIJPB4PLDb7QCACxcuICMjw2+SRgDoGerB+w3v44OGD9Dv6EeoMhTrMtbhkfRH/Ep1XA+bzYZLly6hvr4eTU1NCA4ORlFRETIzM0cdIGR32/HXqr9ic/VmuAQXlFJvYOIL5UcTIAtAYkgiEkISkBCcgHBVOHptvege6kb3YLf351A37G77l7ZXLVOjOKYYd8bfiaKYIgTIr37EaF1/HXZc3oFdzbvQY+sRl2vVWkglUjE0drgd4mSh4xGmDPMbwa4L1EEfoPdbppar4Rbc6BnqEfd7+HPgu24YMlxVh8G1UEgVUMlUUMlUkEqkMAwZ/NbLJDLMCJ+BfJ03CJ8TOeeKE6SaHWaUGcrEoLvB3OC3XgopwtXhGHAMXPH9MhYppIgMiBzRMaIP1PudNTB8BL/L4/LvGBjWGTB8Ilqj3egXbndaO8UzBEajlqlhc/vXo48JjEFRTBGKY4oxTzfPb6Larq4ulJWVIS4uDrm5uQCA/v5+/PnPfxa3iYyMRGxsLGJjY/1G4wLAe++9h8rKzyfE9dVJT01NHfNMAkEQcPHiRRw8eBCDg4OYO3cu1qxZc8PPPOjr68PevXtRVVUFwBvWfvvb34ZSqURXVxdOnz6Nzs5OsRTMcCtWrEBhYSEkEgmsVisaGxshCAIEQYDH4xGvC4KA9PR0hIWFAfCOjK6vr4dMJkNERAS0Wi00Gs0tO8hxYGAAtbW1qKmpQWNjo9/ZQHfeeSfy8/MBeCcIrqiogMlk8pt81efpp5+GTqeDRCLB0aNHcejQIXFdcHAwsrKykJWVhdjY2DGfCwbfDL6/FINvr5aWFqzfvh696l4sMi7Cf3/vv294qOxyufx6sdw9Pej85tNwtbR4a3r/+fURobePUqm8ppEdRERERER0+6uvr0dFRQVWrlw57nDE4XBg48aNcDq9o2YVCgVmzJiBnJwcaLVahIaGit+BxnOfHo8HZWVl+OSTTxAREYGHHnoI4eHhI7azu+2o669DqiYVgfLAq9jL0QmCgLKyMtTX16OlpQUej3/Al5qairVr117xPi6ZL+G3pb9FWU8ZAG+IGhcUh8SQRG/IHZzgvR6ciEh15Jc+H4IgwOw0jxoCdw91I0IVgWXxy7BQv3DU8HVwcBDt7e3o7u5Gd3c3jEYjwsPDkZiYiOTkZISHh49og1tw43TXaey4vAMH2w6OCDKHk0lkYkiskqmglqmhkqkw5BpC91D3FW87XJA8CDa3bVyhthRSaAO0iFRHIlAe6H1cuVp8fF8b1PJh12VqqOT+bRzrIpP4f1/vtfWitLtUDK5bra1+6+USOXIjczFfNx/5unykhqaisq/Su72hFDXGmhEdBemadHH7PG0eQpQhEAQBdrcdJofJe7F7f5odZr/ffdd9nSTjec4kkCBUGQqXxzXu53ksAbIAsbMmITjB73q4Khwdgx041nEMxzqOobS71C/MV8lUWKBbgEUxi7AoZhH0gfoR99/X14ejR4+is7MTJpNpxPrCwkIsX74cHo8HFRUV2L17N3JzczFnzpxRPyfGYrPZcOLECRQUFCAgIAAKhQJ2ux0BAQETmtkMDQ3h8OHDOHXqFDweDyQSCebMmYOioiIEBY08G8Nms6GzsxMdHR3iz/vvvx/x8fGQSCSorKzEP//5zzEf7+GHH0ZGRgYAoKKiAp988onferlcLk4SW1hYiPj4eAA3tgzOeDQ2NmLLli1+yzQaDdLT05Geno64uLhRXxeHwwGTyYT+/n6YTCaYTCYsWbJE7BzZuXMnLl26hKysLGRmZiIuLm5c+8ngm8H3l2Lw7VVeXo6nzjwFh8yBr7q+ipe+8dIN+zCpqKhAc3MziouLxYPcbTKh61vfgrO+AbLYWES/+Qbk+s//uBw+fBgpKSlISEiYtgc2ERERERF9zlfP2e12w+12Y2BgQBxBCHhrOl++fBmzZs0Sl23btg0DAwOYM2cOcnNzERh4fXWK29rasHXrVgwMDEClUmHNmjXXXQP4iwRBQH9/v19YtnnzZnR1dQHwjjRNT09HRkYGmpqakJGRAe1n8yNZrVYMDQ2Jv3/xfutN9QhSBEEfqB8RpI7G6XTCZDKJdWWVSuVVhW8ulws9PT0wGAyIj48X96m8vBy7du0a83b33nuvWIpztODL6rSiwdQAhUwxIjRWy9QjSmz43jsqlQqCIGDAOeAX1ncNdo0I8IdPtCmTyEatcz58FHOEKuKmlfYYTedgpxiEn+k+g+6h7i+9TVJIkhh0z4uah3DV+APaK/EIHhjtxs+f1zE6SK5UymW019XXcRCiCBkRbo+nw8ZnyDWEM91ncLTjKI51HBsxej5dk47imGIsT1iOjLCMEbcfHBxEZ2eneOno6MDy5cuRlZUFwFvm1ePxTEgZEEEQ8P7778NsNk9Y+ZNLly7hf//3fzE0NAQASElJQUlJifi5MZ4JXL+4zblz51BbWwuJRDLqpaCgADExMQCA1tZWnDt3Dk6nE0ajEUaj0a9D75FHHkF6ejokEgkuXryIffv2ITIyElqtFjqdDnFxcdDr9RPWEeCbRLKlpQUtLS3Q6/WYP38+3G43hoaG8MorryAqKgrp6elIS0uDVqu97vzMbrdDqVRe9f1M13yMwfdVYPDt9cm+T/CT1p8AAH4W9jM8/JWHb8jjmEwmbNq0CXa7XTwFxGO1ous734HjQiVkWi30b74BRUKCeJvz589j9+7dkMlk+Pa3v42oqKhb9pQXIiIiIiK6eXwB5kcffYSmpiY8+OCDsNvtKC8vR0NDAzweD55++mkxYBUEAQEBARNaLmBgYABbt25FW1sbJBIJli5divnz51/Xdxa3243m5mbU19ejoaEBVqsV3/3ud8VyKpWVlRgcHMSMGTMQFRXltz++SeicTid2796N8vJy5OTkYNGiRQgJCbmufb1w4QJ27Njht0wmk4kh+IIFC8TSMwMDAzh+/DiUSiWsVisMBgN6e3vFgGx4mZquri7s2LEDOp0OOp0OkZGRMBgMuHTpEtra2vCtb31LbPvp06dRXl6OpKQkJCYmIjExccz6yl1dXX4jLH2TlZpMJmg0GnzjG98Qtx0YGEBwcPCYr5vFaUHPUA+CFcEIV4ePq6PgViEIAlqtreJo8DPdZ2C0GxEbFCvWBM/X5SMqIGrE7ZqamnD27Fncfffd4sjfoaEh8XWfyDb2O/rRZ+sTy7j4RsirpKqblgEIgoA6Ux2OdxzH0Y6juNB7wW8kfLomHauTVmNV4qoRz9fw+wDGd+YI4D174WLfRZzsOgkIQEJIgnjmxRfrtA8MDGDz5s1i6YyZM2ciOzsbYWFhCAsLQ1BQ0FU/V/39/di4cSM0Gg1KSkrEzrsmcxO2NW7D9svb4RE8mBUxC7mRuciJzMHMiJljTg56vTweD0wmE/r6+tDb24tZs2aJ772jR4/i008/HXEbmUwGvV6P++67TwzUx0sQBDHk9l2GlybR6XTYsGGD+LvNZhv3RJUTxeq0jtpZ9EDaA8iPzb+pbbkVjDfLZZ0IEtX1emcWD3QFIiE64Uu2vjaCIGDbtm2w2+2IiYlBXl4ePDYbun/4QzguVEKq0UC3aaNf6N3e3o59+/YBABYtWsTQm4iIiIiIRBKJRBwRPTQ05DfxGgDExsbC4XCII5NvxHeJkJAQPPnkk/jkk09w/vx5HDx4EAaDAStXrryq8oxOpxNNTU2ora1FQ0ODWEMc8JZlMRgMSEpKgkwmu2KwLpFIoFAoIJPJ4HA4IAgCKioqUFVVhfz8fBQUFIyoR/5FFosF9fX1qKurQ2pqqlizNi0tDWq1Gi6XCy6Xd+JO3yjIoaEhsYyM7z58kwIOFxAQgKioKAQFBUEmk0EqlSIxMRHf+c53RuxTSUkJnE4npFKpOLK/ubkZfX196OvrQ1lZGSQSCfR6PXQ6HaRSqVinHQB27NgBg8HwxSYA8AYnw0ePv/fee7BarUhOThYvwycwDVYEX9dkkZNJIpGII6EfTH1QHOU+VnDpdrtRVVWF06dPo6fHW0f93LlzWLRoEQDg+PHjqKysRG5uLvLy8vzOtLieNoarwidslPn1tCMzLBOZYZl4MvtJ9Nv78WnnpzjYdhDHOo6h3lSPV8pfwX+X/zfm6+fjnqR7UBJX4levfjyfMwOOAZzoOoFjHcfwacen6Hf0j7pdhCrCG4QHf16GaNkjy3D5/GVUnq/ExYsXcfHiRXH7u+++G3fccQckEgmMRiMqKyvFUNwXjHd1daG6uhpLliwRPx8ff/xxREVFwSW4sLt5Nz5s/BBnDWf92nKi6wROdJ0Qf08OSUZOZI73EpGDVE3qhHQISaVShIeHIzw8HGlpaX7rFixYgNTUVDEU7+7uRmdnJ2w2G9rb2wF4R09LpVKUlpaiurparLseGxuLsLAwWK1WGI1GJHyWPQmCgPfeew8DAwPi48hkMkRHRyMuLg7x8fF+nxVXCr27h7rxUeNHaLO2+Zcw8p2pIB951oJKpoJSqkS/o3/UsyG6BrtgdVlHfbys8KxpGXyPF0d8gyO+fX72/s/wgeUD6If0eOPuN8TJJifSp59+it27d0OhUOCJJ55AeEgIDC/+CENHjkASFAT9n16D6rPT1wDvP0pbtmyBxWJBRkYG1q1bx8ksiYiIiIhoBIfDga1bt6KxsRFqtRqzZs3CvHnzEB0dfcMng/MRBAEnT57E7t27IQgC1q5de1VlCEpLS7F//37x98DAQKSnpyMrKwtpaWnXdBo8ADQ3N2PPnj1obfXWfFar1SgsLMTcuXP9gnmj0Yi6ujrU1dWJARLg7Tz42te+BolEArlcDqlUKgbRdrvd7xISEoLQ0FBvzW+zGeXl5WJJEb1ej+joaGg0Gkil0mvuhBgaGkJjYyMaGxvR1NTkN0mpQqHAD37wA/G+d+7cid7eXnGC0i9e5HI5PB4PLBYLNm3a5DcHFeAd6ZmcnCzW7r0S30h7Xzt8be3s7ER4ePgtPVmfj81mw7lz53D27FlYrd6gTaFQIDc3FwsXLoRWq4XL5cKbb74pltoBgPT0dMybNw+JiYm3/D5eD5PDhH0t+7Dj8g6U937eqRMgC0BJfAlWJ63GfN38UcNfQRBwyXxJrCte3lvuV8M8WBGMAn0BAuWBaLG0oHmgGX32vhH34yOBBFqVFiGuEEQ4IxBqCUWQKQiP3f8Y0tPTAQDV1dX4xz/+4Xc7uVwuvk8fffRRJCUlAQBaLC3Y1rgNn1z6RAzhpZBiUewiPJj6ICLVkbjQewEVvRW40HcBrRb/GvIAECgPxMyImciJ8I4IV0gV/hOSDrs+fIJS3weeKicAACAASURBVDq34PYvYyNT+9XFH14H31cnXxugRVxQHAZMA+jq6kJWVpb4Hty2bRvq6ur82qhUKuFwOBAYGIjvf//74qSbe/bsgdVqRVxc3DWVTqnqq8Lf6/6OvS17b9jEtsGK4BGT7y6OX4y8mPFP8DxVsNTJVWDw7fX707/H5oub8UjKI3hp4UsTXiOou7sbr7/+OtxuN1asWIE5ubno+em/Y3DXLkhUKuhefRXq/Hni9m63WzxdMDIyEk899dSoEyoQEREREREB3tPj29vbERUVdc0h8URoaGhAc3MzCgoKRl1vs9nQ0NCA2tpaZGZmijXIzWYz/v73vyMjIwPZ2dni6O6J2A9BEFBdXY29e/eKQXFhYSGKi4shCALeeecddHR0+N0mJiYGmZmZmDFjhjia+lbU39+PS5cuoaenByEhIcjLyxOft+GXL+NyudDS0iKWlxke7Obk5GD16tUAvN9tjxw5AofDAbvd7vfT4/Fg2bJlmD9/PgBvDXjfWQgKhUKsS+z7qdfrb5nvuS6XC6+99ppY5zk4OBj5+fnIz88fUQLG4/GgtrYWp06dwqVLl8TlWq0WBQUFYj32q1FeXo7GxkaYzWa43W4IggCPxyMGk0888QQCAryjqg8cOIDz589DEASxrIhMJoNcLodcLse6devEUejl5eWoqakR1/m283W+FBQUiCP7L1++jMuXL49470ilUsjlcmRmZoq5UaulFTsv78SOyzv8JhKNUkdhVdIqrE5ajfjgeJR2l+JYxzEc7ziOjkH/YywlNEWcQHN25OwRNeEtTosYgrdYWtAy4L3ebGmGxWkZ9XmMCYxBTmQOciNzoXPpMNAwAOuAFSaTyW9E84wZM1BUXIRz1nPY1rANp7pPfb4PAVH4SspXcH/K/aNO7AkA/fZ+XOi9gAt9F3Ch9wIq+yr96uDfTCqZCmmhacgIy0C6Jl386bQ40dbWJtZe7+7uFmuHa7VarFu3DoGB1z7hsFtw41DbIfy99u9+HSF52jwUxhTC6XGOGvCPGv577NAoNYgKiII+UD9i3gBdgA5BipGfFazxzVInNE6XTN4/VqnhqRMy4cJwLpcLH3zwAdxuN1JTUzF79mz0/frXGNy1C5DLEfUfv/cLvQHvH7K2tjYolUqsXbv2lvlngIiIiIiIbk1SqRTx8fGT3QykpaUhNTUVTqcTLpcLFosFTU1NYlh4+fJlMXxxu92YNWsWJBIJIiIi8P3vf/+6RkOPRSKRIDs7G1lZWTh79ixOnDiBefPmiet8dYETEhKQmZmJ7OxshIeH3xajd8PCwsRa4ddDLpcjJSUFKSkpWLFihVjupb6+HpmZmeJ2TqcTjY2NY97P8BI1gYGB0Gq1MBqNcDqdYgDns3jxYixcuBCA94zn6upqaLVahIWFISAg4IZ34BgMBkRFeetUy+VyZGRkoKOjA3fccQdmz54NhUIx6uNLpVLMmDEDM2bMQHd3N06ePImKigpx4tLhnE4n+vv70dfXB6PRKJap6e/vxzPPPCPmDx0dHSNG5w7ndn8+itbj8fiV1fGt943YH97m3t5eNDU1jXm/c+bMEYPv1tZWnDx5csxtg4ODxZAtPjgeT896Gt+c+U1U9FZgx+Ud2NuyFwabAW/XvI23a96GXCKHS3CJt1dKlcjX5Ythd2xQ7JiPBXhH+GaHZyM7PNtv+cDAAM7XnsfZS2fRYGqANcSKXlUvOhwd6Bj0Xva07BEfc4Z+BnJm5mBu2FwkqZLgETzY37MfXz/ydXFUuQQSLIxeiIfSHkJRdJFfCO92u8UOAJ8wVRiKY4tRHFvs3UZw45L5kjgqvK7f+1p+sbzHWJOUqmQqyKXyz8Nh1+dBsS8s9oXEvmU2lw0dgx2wu+24aLyIi8bPS74AQHRgNDI0GUiPSUfGjAwUBRchyBmEcE34l5Z7uhKL04KPL32M/6n7H7EzQy6RY3nCcjyW+diI14smD0d8gyO+fVa/vxqtllZsKtmERYmLJvSPa2dnJ9566y1IJBJs2LABrjfegHnL24BUCu3Lv0HQsBpsgPeP2Pbt21FVVYW1a9eK/wgSERERERHdTmw2GzZv3jxiNHVkZKQ42jsmJuamj6b2jaR1Op1iWZLAwECEhITwu9cofCOL3W63GIirVCqoVCqo1Wrxuu8yfJS5RCKB2+0WQ+Guri4YDAb09PRg6dKlYg3j2tpafPTRR36PK5FIoFaroVarsWTJEjGANxqNqKqqQkBAgLge8AaULpcLMTEx0Gg0AIC+vj7U1NTA5XKJ691uNwwGAzo6OvDEE09Ar9eLtw8MDLymEqNDQ0MoKytDWlqaOBFpY2Mj3n///TFvs2HDBuh0OgDe0da9vb0IDw+HQqGAVCoVa8D76rj72mW1WuFwOMSyO77XxtfZpNfrxWPKN9LXt+++iV99nU/5+fniQLv6+npxBLtvpLnv4vF4cPfdd4uvq+/s9OH1nh1uB451HMOOyztwrOMYXIILugCdGHTP1833qwV+rbZu3Yrm5uYRy50SJySxEujm6FBprMSF3gswOUxXvK9IdSTuT7kf96fcLwbxDocDbW1taG1tRUtLCzo7O/G1r31NfJ9YLBYoFIrrCo8niltwo83ShjpTHer661DfX496U/2I0fU+KpnKr1768J8a5ZXLEbVaWvE/9f+Df1z6hzi6XaPU4KG0h7A2be2Yk53eSBzxzRHfNA7nLpxD60ArIAGk/VJIkib2Hx29Xo8nn3wS/f39cL/7rjf0BhD505+OCL0Bb+/xvffei7y8PKSnp/MfLyIiIiIiui2pVCqkp6ejs7MTUVFRyMrKQnZ2tl8wNxl8gaEvSLye0/2ng+ElL8LDw7FgwYKrur1MJoNer4der0dOTo64fHg5j+DgYGRmZsJgMMBisYidEr6JQ4ePW+zu7saxY8fGfLzVq1f7Bd9Hjx4ds12dnZ2Ii4sbc3T3eAUEBKCoqAjA5wH8uXPnAHiPg4iICPESGRmJyMhIREVFiY+bnT3+UbK+fRuPhIQEcRLDLzNr1iyx9NBofJ1FQ0ND2LZtG9xuNxYsWID8/HwolUooZUosi1+GZfHLYHKYYLKbkBCccE3Pq8fjQVtbm1h65/HHHxcD+vT0dDgcDmRkZCA5ORltbW2orq5Ge3s7EmWJWDdrHQDv+2vXqV3oU/ehxdWCyr5K1Jvq4RbcuEN/Bx5MfRBLYpdALpWjvb0dB08fREtLC7q6uvzebwqFQjwzAACOHDmCCxcuICoqSqyJHRsbe9117AVBgM1mw9DQEAYHB8X3/tDQEJRKpd+ZHW+//Tb6+vogl8sRGRmJiIgILIhYgFVxqxA5OxIStQT1Jm8IXtdfJ163u+3ekNw08uyCEEWIGIQnhCSIgfigcxBb67bicPthCPA+LymhKXgs4zHcnXQ31LKxJ7v84v65XC7Y7Xao1WpxjoW+vj60tbUhICAAISEhCAkJQUBAALOwCcDgmwAA1V3VgARQuBUIwsSVFHE4HFAoFOIkJ8I//gHjptcAAOEv/guCH/iKuG1DQwPOnDmDtWvXivW20tLSeKATEREREdFtSyKR4M4778SSJUsmrF73RLrV2jPdSCQSyGQyyGQypKeni5MSCoIAp9PpF/5FRESIQVlYWBjmzJkjrrPZbOJ9yeVyBAYGiq+tb9vh9a1lMhnUajWys7MRFhY24e8D3z7df//9AICgoKAbUsLnZpNKpVCpVDCZTAgMDERPTw+OHj2Ks2fPoqCgwG/CWI1SA41y/AE94M1QmpqaUF9fj8bGRrHeOuAdPZ+bmwupVIqFCxeiuLhYfD5TU1OxePFimM1mWCwWSKVSeDweDA4OouJwBQAgNDgU69PXIyEvASHhIbAYLEiMTBRLmjQ3N+P06dPi42k0GsTHxyMxMRFJSUlQq9ViR42vVrjBYIDBYBA7OIKDgxEXF4f77rtP7NhramoS36N2u93vZ0hICO68807xMV977TVYLKPXLtdqtX7Bt6+2vt1uh9Vq9RsBHxYWhm9961vIi8pDXlQeKioqoIxXQpOrwZByCG1DbWgZaBHrpzcPNKNrqAsDzgFU9lWisq9yzNeoMLoQj2U8hgJ9wRXfzzU1NSgrKxPb6Guv70yDdevWITExEYD3bIe9e/f63V4ul4sh+KJFi8QyXr5OgZCQkGk50vtqMfgmAEBDXwMAIMQZgpiYmAm5z5aWFrz77rtYvXo1UlNTYdn2EYz/8QcAgObZZxD61a8C8NY/O3DgACoqvB/GpaWlKCoqmtTJaIiIiIiIiCaSLwwjGg+JROIdQaxUipM0DuerRT4eiYmJYsB2s03VcrI6nQ7f+c53UFFRgUOHDsFoNOLAgQM4c+YMCgsLkZOTc8VyMR6PB0ajEUqlUiwL48tQhlOr1UhLS0NGRgYyMjK+dBRwaGio+JwLggCr1YoZM2agoaEBFosF586dE0NqAFizZg1mzJgBAEhOTobJZEJiYiKSk5PFGv+jPd6GDRtgNpvR0tKC5uZmtLa2oqurCxaLBT09PX5ns2zfvh1Wq3XU9mq1Wr/fVSoVLBYLVCoVAgICxEtgYCDCwsL8Og8ffPBByGQy2O129Pb2oqenBz09Pejt7UVkZKR4n4Ig4ODBg7DZbAC8x1ZGRgZWFq9EZObn29lcNrRaW70TiFqaxZ/NA82wu+1YlbgK6zLWISV09OPO1ynge90HBwfR0tIyxisFsR49AISHhyMlJQVDQ0Mwm80YHByEy+WC0WiE0WgU5wEAgLq6OuzatQsAcNddd+GOO+4Y8zGIwTd9psncBMiBUFcowsPDr/v+2tra8M4778But+Ps2bPQ1zeg91e/AgCErv86NN/6FgDvB/uOHTtgMnlrTs2fPx9FRUW3RJ0oIiIiIiIiIqLRSKVSzJkzBzk5OSgrK8Phw4cxMDCA3bt3IyYmBjqdDoIgwGKxiDXdfT97e3vhdrtRWFiI4mLv5JC+Dg6NRoOMjAxkZWUhKSkJcrn8mgYFSiQSREVFYd26dXA6nWhoaEB1dTXq6uowODgIrVYLiUQinnGfnJyM1NTUcd+3RqOBRqMRS/c4HA60trbCbreLI84BIDY2Fna7XayHP/wSGhoqTm4qkUjw5JNPQqlU+u3zWPseFxcnXk9KSvJbN7w+u8PhQHp6Ovr6+tDb2wu73Y7a2lrU1dVh5syZKCoqQlhYGNRyNdI16UjXpI94LEEQrlz7u7UV+/fvR1ZWFgoKCgB4O6e+8pWviHMA+PZ5tHkAZs6ciZkzZ4qP5XQ6YTKZYDabYTKZxHkgfKVSlEolHA6HWPqGxsbJLcHJLQFgzWtr0BTQhDtsd+CNb79xXSOtOzo6sHnzZthsNsTHx+Oe8Aj0/5//A7hcCH7wQUT89N/gdrtx5MgRnDlzBoD3g/3ee+9lPW8iIiIiIiIiuu04nU6cOXMGBoMBy5cvB+CdhPSNN94YdXuFQoG5c+di2bJlYv34wcFBhIaG3tD6/75JQH3h640yPG68VXIej8eDrq4uHDx4ELW1tQDg1/lwtcxmMw4dOoTq6moA3lIvzzzzDAICAq5pgtjx8tX+95XeuVWe35uJk1vSuDmdTvRL+wEAyaHJ13XAdHV1YcuWLbDZbIiNicEqqxX9v/8PAEDgqlWI+NefQCKRYN++fSgvLwcAzJ49GytXrmRPFRERERERERHdlhQKBQoLCyEIghguazQasZxJVFQUoqKioNPpoNfrERERMaLu+c2o2eyrv36j3YphrFQqRUxMDB5//HG0trbi6NGjfhPV9vX1ieVVrsThcODUqVM4ffo0XC4XAG+2VVJSgqCgoBu+7xKJhBMSjxODb0JvXy8GFN6JCbJ1459F+YsMBgM2b96MoaEhxOp0WFFTi4F//hMAEPL4Ywj/4Q8h+ezDdeHChWhpacFdd92F7OzsSZ3NnIiIiIiIiIhoIvjKh8hkMng8Hrz44ovXXK6Ebpz4+Hg89thj8Hg8cDqdcLlc2L59O3p7e7FgwQLk5+ePWoa3ubkZ27dvFyf4jI+Px4oVK5CQkMDX+BbE4JvQPdgNt9QNiSBBTkLONd9PaWkpBgcHEafRoOTwEQyVlQFSKcJffBHOFctxpqxM7EnTaDR45plnOIElEREREREREU05Eonkpo2upmvnKxfidDrhdrvhcDhw7NgxnD17FgUFBZg7d65YhxzwljOxWq3QaDQoKSlBbm4uX+NbGINvgkVlAQAkhiYiLSXtmu5DEASUlJRA1deHuL/8Bc6WVkiCgqB9+Te4qFbjyObNcLlc0Gq1SEtLg1Kp5ChvIiIiIiIiIiKadMHBwXj22WdRWVmJAwcOoK+vDwcPHsSpU6eQnZ2NO++8EwAQERGBhx9+GKmpqaOOCKdbC4NvwiXTJQBAckjyVfdSWSwWBAQEwO12Y/D0acT+f3+E22SCLDoa6l/9X3xUU4PW1lbv/ScnIyYmZtoW3iciIiIiIiIioluTRCJBTk4OZs6cibKyMhw+fBhmsxmlpaWYNWsW9Ho9FAoFZsyYwVzrNsHgm9DY3wgASApNuqoD12Qy4a9//Svi4uKw2OlE369/A7hcUObkoOsbT+Hg4cNwOp1QKBRYtmwZ7rjjDp7+QUREREREREREtyypVIr8/HzMnj0bpaWlaGlpgVwuR0BAAAPv2wyDb8KhikOACnB2Osd9AJvNZrz11lvoNxqRfuIk+srKAACBK1bgZMEdqDp9GgCQkJCANWvWQKvV8sOBiIiIiIiIiIhuCwqFAgsXLsTChQsnuyl0jRh8T3NutxsmmQkAkBSSNK7bWCwWbN68GWaDAUtKzyK60TtiXPP0N6F59lmk19ai7vJlLF26FIWFhRzlTURERERERERERDcVg+9prtXQCpvcBgCYnzr/ittaLBZUVlbi5MmTGGpvx13HjiPMYADkckieew5hG54AAMyYMQPJyckIDw/nKG8iIiIiIiIiIiK66Rh8T3OljaUAALVLjZTYlCtue+DAAZw9exYaYz9WHDmCAKsVQnAQjhUXwzhgxlNWK4KDg6FUKhEYGHgzmk9EREREREREREQ0gnSyGzBRNm7ciJSUFKjVauTn5+PIkSOT3aTbwoWOCwAAjVsDhUIBAPB4PKirq8MHH3yAlsuXYb14Ed1vv4P0nbtw367dWLVzJwKsVtgiIrCjpATt4eHQaDTweDxQq9UsbUJERERERERERESTakqM+N66dSuef/55bNy4EYsWLcKf/vQnrF69GhcvXkRiYuJkN++W1mRuAqRAJCLR1taGyk8/Refhwwhub0dkTw/Mxn5YHA5xe9847q64OBxfWAC3Wo3FixZh8eLFYnBORERERERERERENJkkgiAIk92I61VQUIB58+Zh06ZN4rLs7Gw88MADePnll7/09mazGRqNBiaTCaGhoTeyqbcUQRDwnf+7ErMuKZHe4UZkTy9CLJYR20kCA6GaNQvK3Fwc7urCZaUCdrUaOp0Oa9asQVxcHGt5ExERERERERER0Q033iz3th/x7XA4UFpaipdeeslv+cqVK3H8+PFRb2O322G328XfzWbzDW3jLUsQ8PQHbQiy+fd9mEND0RsZiV5tJAbjE/D1f/0JJJ+VL1Hu2AGdyYSUlBQsWrQISqVyMlpORERERERERERENKbbPvju6emB2+2GXq/3W67X69HZ2TnqbV5++WX84he/uBnNu7VJJOiaHQtFux3OuBQoZs6CfOZMBGi1iA8KQmZgIIKDg6EODBRHdD/00EMc3U1ERERERERERES3tNs++Pb5YhgrCMKYAe1PfvITvPDCC+LvZrMZCQkJN7R9tyKJRIJ7N++d7GYQERERERERERERTajbPvjWarWQyWQjRnd3d3ePGAXuo1KpoFKpbkbziIiIiIiIiIiIiOgmk052A66XUqlEfn4+9uzZ47d8z549KCoqmqRWEREREREREREREdFkue1HfAPACy+8gPXr12P+/PkoLCzE66+/jubmZjz77LOT3TQiIiIiIiIiIiIiusmmRPC9bt069Pb24pe//CU6OjqQk5OD7du3IykpabKbRkREREREREREREQ3mUQQBGGyGzHZzGYzNBoNTCYTQkNDJ7s5RERERERERERERDSK8Wa5t32NbyIiIiIiIiIiIiKi4Rh8ExEREREREREREdGUwuCbiIiIiIiIiIiIiKYUBt9ERERERERERERENKUw+CYiIiIiIiIiIiKiKYXBNxERERERERERERFNKQy+iYiIiIiIiIiIiGhKYfBNRERERERERERERFMKg28iIiIiIiIiIiIimlIYfBMRERERERERERHRlMLgm4iIiIiIiIiIiIimFAbfRERERERERERERDSlMPgmIiIiIiIiIiIioimFwTcRERERERERERERTSkMvomIiIiIiIiIiIhoSmHwTURERERERERERERTCoNvIiIiIiIiIiIiIppSGHwTERERERERERER0ZTC4JuIiIiIiIiIiIiIphQG30REREREREREREQ0pTD4JiIiIiIiIiIiIqIphcE3EREREREREREREU0pDL6JiIiIiIiIiIiIaEph8E1EREREREREREREUwqDbyIiIiIiIiIiIiKaUhh8ExEREREREREREdGUwuCbiIiIiIiIiIiIiKYU+WQ34FYgCAIAwGw2T3JLiIiIiIiIiIiIiGgsvgzXl+mOhcE3gIGBAQBAQkLCJLeEiIiIiIiIiIiIiL7MwMAANBrNmOslwpdF49OAx+NBe3s7QkJCIJFIJrs5N5XZbEZCQgJaWloQGho62c0hopuAxz3R9MJjnmj64XFPNP3wuCeaXqb7MS8IAgYGBhAbGwupdOxK3hzxDUAqlSI+Pn6ymzGpQkNDp+WBQjSd8bgnml54zBNNPzzuiaYfHvdE08t0PuavNNLbh5NbEhEREREREREREdGUwuCbiIiIiIiIiIiIiKYU2c9//vOfT3YjaHLJZDKUlJRALmflG6Lpgsc90fTCY55o+uFxTzT98Lgnml54zH85Tm5JRERERERERERERFMKS50QERERERERERER0ZTC4JuIiIiIiIiIiIiIphQG30REREREREREREQ0pTD4JiIiIiIiIiIiIqIphcH3NLdx40akpKRArVYjPz8fR44cmewmEdEEePnll7FgwQKEhIRAp9PhgQceQE1Njd82drsd3/ve96DVahEUFIT7778fra2tk9RiIppIL7/8MiQSCZ5//nlxGY95oqmnra0NX//61xEZGYnAwEDMnTsXpaWl4npBEPDzn/8csbGxCAgIQElJCSorKyexxUR0PVwuF376058iJSUFAQEBSE1NxS9/+Ut4PB5xGx73RLe3w4cPY82aNYiNjYVEIsG2bdv81o/nGDcajVi/fj00Gg00Gg3Wr1+P/v7+m7kbtwwG39PY1q1b8fzzz+Pf/u3fUFZWhsWLF2P16tVobm6e7KYR0XU6dOgQnnvuOZw4cQJ79uyBy+XCypUrYbVaxW2ef/55fPjhh3j33Xdx9OhRWCwW3HfffXC73ZPYciK6XqdPn8brr7+O2bNn+y3nMU80tRiNRixatAgKhQI7duzAxYsX8Yc//AFhYWHiNr/73e/wn//5n3j11Vdx+vRpREdHY8WKFRgYGJjElhPRtfrtb3+L1157Da+++iqqqqrwu9/9Dr///e/xyiuviNvwuCe6vVmtVsyZMwevvvrqqOvHc4x/9atfxblz57Bz507s3LkT586dw/r162/WLtxSJIIgCJPdCJocBQUFmDdvHjZt2iQuy87OxgMPPICXX355EltGRBPNYDBAp9Ph0KFDWLJkCUwmE6KiorBlyxasW7cOANDe3o6EhARs374dq1atmuQWE9G1sFgsmDdvHjZu3Ihf/epXmDt3Lv7rv/6LxzzRFPTSSy/h2LFjY56xKQgCYmNj8fzzz+PHP/4xAO+ZH3q9Hr/97W/xzDPP3MzmEtEEuO+++6DX6/Hmm2+Ky9auXYvAwEBs2bKFxz3RFCORSPDhhx/igQceADC+v+1VVVWYOXMmTpw4gYKCAgDAiRMnUFhYiOrqamRlZU3a/kwGjviephwOB0pLS7Fy5Uq/5StXrsTx48cnqVVEdKOYTCYAQEREBACgtLQUTqfT7zMgNjYWOTk5/Awguo0999xzuPfee7F8+XK/5Tzmiaaejz/+GPPnz8cjjzwCnU6HvLw8/PnPfxbXX7p0CZ2dnX7HvUqlwtKlS3ncE92miouLsW/fPtTW1gIAzp8/j6NHj+Kee+4BwOOeaKobzzH+6aefQqPRiKE3ACxcuBAajWZafg7IJ7sBNDl6enrgdruh1+v9luv1enR2dk5Sq4joRhAEAS+88AKKi4uRk5MDAOjs7IRSqUR4eLjftvwMILp9vfvuuzh79ixOnz49Yh2PeaKpp7GxEZs2bcILL7yAf/3Xf8WpU6fw/e9/HyqVCk888YR4bI/2//7ly5cno8lEdJ1+/OMfw2QyYcaMGZDJZHC73fj1r3+Nxx9/HAB43BNNceM5xjs7O6HT6UbcVqfTTcv/+xl8T3MSicTvd0EQRiwjotvbd7/7XZSXl+Po0aNfui0/A4huTy0tLfjBD36A3bt3Q61Wj/t2POaJbl8ejwfz58/Hb37zGwBAXl4eKisrsWnTJjzxxBPidvx/n2jq2Lp1K95++2387W9/w6xZs3Du3Dk8//zziI2NxYYNG8TteNwTTW1fdoyPdrxP188BljqZprRaLWQy2Yjenu7u7hE9R0R0+/re976Hjz/+GAcOHEB8fLy4PDo6Gg6HA0aj0W97fgYQ3Z5KS0vR3d2N/Px8yOVyyOVyHDp0CH/84x8hl8uh1+t5zBNNMTExMZg5c6bfsuzsbHGi+ujoaADg//tEU8iPfvQjvPTSS3jssceQm5uL9evX44c//KE4RxePe6KpbTzHeHR0NLq6ukbc1mAwTMvPAQbf05RSqUR+fj727Nnj9vzR2wAACBNJREFUt3zPnj0oKiqapFYR0UQRBAHf/e538cEHH2D//v1ISUnxW5+fnw+FQuH3GdDR0YELFy7wM4DoNnTXXXehoqIC586dEy/z58/H1772NfE6j3miqWXRokWoqanxW1ZbW4ukpCQAQEpKCqKjo/2Oe4fDgUOHDvG4J7pNDQ4OQir1j3FkMhk8Hg8AHvdEU914jvHCwkKYTCacOnVK3ObkyZMwmUzT8nNA9vOf//znk90ImhyhoaH493//d8TFxUGtVuM3v/kNDhw4gL/85S8ICwub7OYR0XV47rnn8M477+C9995DbGwsLBYLLBYLZDIZFAoF1Go12tvb8er/3869hUTZ7XEc/802nUadtMg08gBDZlYmU2KEkSCaFXURhlBWBokYVhYGkkYZBlIXeWEHtIvoRilCCOlghKZFUFeCMeFFMoqSBCaVZgnj2hebPex5O/nuzKl5vx9YOLOeteb5r4EF+uNxXbyo1NRUvXv3TiUlJbLb7Tp37twXv1AD+L1ZrVYtWrTIpzU1NcnhcGjfvn3seSAAxcfH68yZM5ozZ44WL16s+/fvq7q6WjU1NVq9erUsFos8Ho9qa2uVlJQkj8ej8vJyDQ0NqbGxUVar1d9LAPA3vXz5UtevX1dSUpJCQkLU0dGhyspK7d69Wzk5Oex7IACMjY3J5XJpeHhYDQ0NWrdunWw2myYnJxUZGfnDPR4VFaVnz56pqalJTqdTg4ODKi4uVnp6ug4fPuzv5c0+g3+0S5cumYSEBBMSEmLWrFljOjs7/V0SgBkg6avt2rVr3jETExPm0KFDZsGCBcZms5lt27aZgYEB/xUNYEZlZmaasrIy73v2PBB4WltbzapVq4zVajXLly83jY2NPtenpqbM6dOnTUxMjLFarWbjxo2mp6fHT9UC+Fnv3783ZWVlJj4+3sydO9c4HA5TVVVlPn/+7B3Dvgf+bB0dHV/9W76wsNAYM709PjIyYgoKCozdbjd2u90UFBSY0dFRP6zG/yzGGOOnzB0AAAAAAAAAgBnH/7UCAAAAAAAAAAIKwTcAAAAAAAAAIKAQfAMAAAAAAAAAAgrBNwAAAAAAAAAgoBB8AwAAAAAAAAACCsE3AAAAAAAAACCgEHwDAAAAAAAAAAIKwTcAAAAAAAAAIKAQfAMAAAC/EbfbLYvFou7ubr/cv7e3VzExMfrw4cMPx/b09Cg2Nlbj4+OzUBkAAAAwfQTfAAAAwCyxWCzfbfv371dcXJxev36tVatW+aXGqqoqlZaWym63/3BsSkqK0tPTVVdXNwuVAQAAANNnMcYYfxcBAAAA/BMMDw97X9+4cUOnTp1Sb2+vt89msykiIsIfpUmSBgcH5XA41NfXp9jY2GnNaW1tVUlJiQYGBhQUFPSLKwQAAACmhye+AQAAgFkSExPjbREREbJYLF/0/fWok0ePHslisaitrU1Op1M2m01ZWVl68+aN7t27p+TkZM2bN0+7du3Sx48fvfcyxuj8+fNyOByy2WxKTU3VrVu3vlvfzZs3lZqa6hN69/f3a/v27Zo/f77CwsK0cuVK3b1713s9NzdXIyMj6uzsnOFvCwAAAPj/zfF3AQAAAAB+rLq6WhcvXlRoaKjy8/OVn58vq9WqpqYmjY2NaceOHaqvr1dFRYUk6eTJk2ppadGVK1eUmJiorq4u7dmzR1FRUcrMzPzqPbq6upSWlubTV1paqsnJSXV1dSksLEwul0vh4eHe6yEhIUpNTdXjx4+VlZX1674AAAAA4G8g+AYAAAD+AGfPnlVGRoYk6cCBAzpx4oRevXolh8MhSdq5c6c6OjpUUVGh8fFxXbhwQe3t7Vq/fr0kyeFw6MmTJ2poaPhm8O12u7V27VqfvoGBAeXl5SklJcX7OX+1ZMkSud3umVoqAAAA8NMIvgEAAIA/wOrVq72vo6OjFRoa6hNCR0dH6/nz55Ikl8ulT58+KScnx+czJicn5XQ6v3mPiYkJzZ0716fvyJEjOnjwoB48eKDs7Gzl5eX51CL952zy/z1mBQAAAPA3zvgGAAAA/gDBwcHe1xaLxef9f/umpqYkyfvzzp076u7u9jaXy/Xdc74XLlyo0dFRn76ioiL19fVp79696unpUVpamurr633GvH37VlFRUT+1PgAAAGAmEXwDAAAAAWbFihWyWq0aGBjQ0qVLfVpcXNw35zmdTrlcri/64+LiVFJSopaWFpWXl+vq1as+11+8ePHdJ8kBAACA2cZRJwAAAECAsdvtOn78uI4dO6apqSlt2LBB79+/19OnTxUeHq7CwsKvzsvNzVVRUZE8Ho+CgoIkSUePHtWWLVu0bNkyjY6Oqr29XcnJyd45brdbQ0NDys7OnpW1AQAAANNB8A0AAAAEoJqaGi1atEi1tbXq6+tTZGSk1qxZo8rKym/O2bp1q4KDg/Xw4UPl5uZKkjwej0pLSzU4OKh58+Zp8+bNqqur885pbm7Wpk2blJCQ8MvXBAAAAEyXxRhj/F0EAAAAgN/D5cuXdfv2bbW1tf1w7OfPn5WYmKjm5mZlZGTMQnUAAADA9PDENwAAAACv4uJijY6O6sOHD7Lb7d8d29/fr6qqKkJvAAAA/HZ44hsAAAAAAAAAEFD+5e8CAAAAAAAAAACYSQTfAAAAAAAAAICAQvANAAAAAAAAAAgoBN8AAAAAAAAAgIBC8A0AAAAAAAAACCgE3wAAAAAAAACAgELwDQAAAAAAAAAIKATfAAAAAAAAAICAQvANAAAAAAAAAAgo/waFKVwz0vZejwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results3.plot_std_dev_range()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "results.to_csv()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/BasicExamples/to_csv-multi-trajectory.ipynb b/examples/ResultsManagement/to_csv-multi-trajectory.ipynb similarity index 100% rename from examples/BasicExamples/to_csv-multi-trajectory.ipynb rename to examples/ResultsManagement/to_csv-multi-trajectory.ipynb diff --git a/examples/BasicExamples/to_csv-single-trajectory.ipynb b/examples/ResultsManagement/to_csv-single-trajectory.ipynb similarity index 100% rename from examples/BasicExamples/to_csv-single-trajectory.ipynb rename to examples/ResultsManagement/to_csv-single-trajectory.ipynb diff --git a/examples/ResultsManagement/using-pickle.ipynb b/examples/ResultsManagement/using-pickle.ipynb new file mode 100644 index 000000000..5dba752b5 --- /dev/null +++ b/examples/ResultsManagement/using-pickle.ipynb @@ -0,0 +1,3752 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using Pickle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "pickle is a python library module that serializes an object, storing it in a bytes object or binary file that can be unpickled (restored) at another time. Below is a sample use of pickle to save a Results object with its data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "import numpy\n", + "import matplotlib.pyplot as plt\n", + "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../../')))\n", + "import gillespy2.core.gillespySolver\n", + "import gillespy2\n", + "from gillespy2.core.gillespyError import SolverError, DirectoryError, BuildError, ExecutionError\n", + "from gillespy2.solvers.numpy.basic_tau_hybrid_solver import BasicTauHybridSolver" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Instantiation\n", + "\n", + "Model must include rates, species, and reactions" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import gillespy2\n", + "class MichaelisMenten(gillespy2.Model):\n", + " def __init__(self, parameter_values=None):\n", + " #initialize Model\n", + " gillespy2.Model.__init__(self, name=\"Michaelis_Menten\")\n", + " \n", + " #parameters\n", + " rate1 = gillespy2.Parameter(name='rate1', expression= 0.0017)\n", + " rate2 = gillespy2.Parameter(name='rate2', expression= 0.5)\n", + " rate3 = gillespy2.Parameter(name='rate3', expression = 0.1)\n", + " self.add_parameter([rate1,rate2,rate3])\n", + " \n", + " #Species\n", + " A = gillespy2.Species(name='A', initial_value=301)\n", + " B = gillespy2.Species(name='B', initial_value=120)\n", + " C = gillespy2.Species(name='C', initial_value=0)\n", + " D = gillespy2.Species(name='D', initial_value=0)\n", + " self.add_species([A, B, C, D])\n", + " \n", + " #reactions\n", + " r1 = gillespy2.Reaction(name=\"r1\",reactants={A:1,B:1}, products={C:1},\n", + " rate=rate1)\n", + " \n", + " r2 = gillespy2.Reaction(name=\"r2\",reactants={C:1}, products={A:1,B:1},\n", + " rate=rate2)\n", + " \n", + " r3 = gillespy2.Reaction(name=\"r3\",reactants={C:1}, products={B:1,D:1},\n", + " rate=rate3)\n", + " self.add_reaction([r1,r2,r3])\n", + " self.timespan(numpy.linspace(0,100,101))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run Model and plot" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2020-04-18 14:02:51,942 - root - WARNING - Unable to use C++ optimized SSA: argument 'solver=' to run() failed. Reason Given: Error encountered while compiling file:\n", + "Return code: 2.\n", + "Error:\n", + "make: Entering directory '/tmp/tmp7pb6blzi'\n", + "g++ -c -o model.o model.cpp -c -std=c++14 -Wall -O3\n", + "makefile:10: recipe for target 'model.o' failed\n", + "make: Leaving directory '/tmp/tmp7pb6blzi'\n", + "\n", + "make: g++: Command not found\n", + "make: *** [model.o] Error 127\n", + "\n", + ". The performance of this package can be significantly increased if you install/configure GCC on this machine.\n" + ] + } + ], + "source": [ + "model = MichaelisMenten()\n", + "results = model.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hUZfr/8c9MJj2kkQqEQAIEAUEBBWx0AQWBFUFRxN5xfwuuqCu2lQUsu4ti+aoUXXGzICjFJSgoIguCgggIobdAAqGkh9Tz+yPOMUMKCcxkEny/rmuuJXPOc577nJk57nXPPfdjMQzDEAAAAAAAAAAAFwmruwMAAAAAAAAAAMCZSHwDAAAAAAAAAC4qJL4BAAAAAAAAABcVEt8AAAAAAAAAgIsKiW8AAAAAAAAAwEWFxDcAAAAAAAAA4KJC4hsAAAAAAAAAcFEh8Q0AAAAAAAAAuKiQ+AYAAAAAAAAAXFRIfAMAgHrNYrHIYrFo1apVTjnenDlzZLFY1KJFC6ccry7dddddslgsuuuuu2q1DQAudi1atJDFYtGcOXPcHQoAAKgnSHwDAACneOGFF8wktcViUWJi4jnH3HjjjQ5jDhw44PpA4TL2xJPFYlFISIjOnDlT7f5paWmy2WzmmF69etVNoDWUkZGhF154QS+88IIyMjLcHY5b2b9YsVgsatq0qfLy8qrcd9WqVQ36M13+XMs//Pz81LJlS40aNUrLly93ydw5OTmaPn26+vTpo8jISHl5eSk0NFSXXHKJBgwYoBdffFFff/21SkpKKh2fnp6uyZMn65prrlFYWJg8PT0VFham9u3ba8iQIZo2bZrWrl1bo1iefPJJ89zvuOOOGp+DM2MAAAC4EDZ3BwAAAC5Os2fP1q233lrl9qNHj9YoeZSQkCBJ8vPzc1psF6Po6GglJCQoOjra3aFIKksaf/bZZ7rtttuq3OfDDz+sMoFXH2RkZOjFF1+UVJYMDQ4OdnNE9cPRo0c1ffp0Pf300+4OxaWsVqvCw8PNv0+dOqUDBw7owIEDmjdvnu699169//77slgsTplvy5YtGjx4sA4fPmw+5+PjI8MwtHPnTiUnJ+vLL7+UJO3fv7/Cr1ZWrlypkSNH6tSpU+Zz/v7+Kioq0vbt27V9+3YtXbpUkmQYRrWxFBcX61//+pf594IFCzRjxoxzfgacGQMAAMCFouIbAAA4VVhYmPz9/bVixQqHBM7ZPvroI5WUlJyz5UhycrKSk5N15ZVXOjnSi8uUKVOUnJysKVOmuDsU8zWdPXt2tfvZWxI0xLYzv3fTpk1zSG5ejGJiYpSWlmY+8vLy9P3336tr166SpJkzZ+rtt992ylzZ2dm64YYbdPjwYYWFhWn69Ok6fvy48vPzdfr0aWVnZ2v16tV68sknK/1y69ChQxo2bJhOnTqlFi1aaNasWTp9+rRycnKUmZmpjIwMLV++XI8++qhCQkLOGc8XX3yhtLQ0tWvXTn369NGZM2f0ySefVDvG2TEAAABcKBLfAADAqfz9/TVixAiVlpbqww8/rHI/e1KUntQXn5tvvln+/v5auXKlDh06VOk+a9euVXJyslq2bKnrrruujiPE+eratauioqKUmZmpv/3tb+4Op07ZbDZ169ZNX3zxhUJDQyVJM2bMcMqxExMTdeTIEUnSkiVL9PjjjztUm/v7++vaa6/VtGnTdOjQITVr1sxh/P/93/8pJydHXl5e+vbbb3X33Xc7VGcHBQXp+uuv14wZM8x5qjNz5kxJ0p133qk777xTkjRr1qxqxzg7BgAAgAtF4hsAADjd3XffLamsoreyn7OvWbNGu3btUlxc3DmTnjVZ3PLLL7/UrbfeqtjYWPn6+io0NFQdO3bUuHHjtG7dumqPv3HjRo0cOVLR0dHy9vZWXFycxo8fr9OnT1e6f1FRkb766is9/vjj6tq1q6Kjo+Xl5aWIiAgNGDBA//73v2v0E/7PP/9cw4YNU5MmTeTl5aWQkBBdd911evfdd1VUVHTO8Wc71+KW8+bN06BBgxQZGSlPT08FBwerdevWuummm/TWW2+dsx93bQQEBOiWW26p9ssPexLNHve5nDlzRm+88YZ69uypsLAweXl5KSoqSsOGDVNSUlKV48q/f7Kzs/Xss8+qbdu28vX1VePGjTV48GCtX7++wrhevXqpZcuW5t8tW7Z06PdcWT/ykpISzZkzRwMGDDD7M4eHh2vAgAFKTEys8n1RflG+wsJCvfrqq+rUqZP8/f0VFBSkPn36VHuOdcnf31+TJk2SJL311lvV/qqjMuX7f1enqs/92eO3bNmi2267TU2aNJGvr68uueQSvfbaayouLjbH/O9//9OwYcMUHR0tHx8fdejQQW+99dZ5t9qwf9alsl+k5OTk6PTp0/Lz85PFYtG8efOqHT9p0iRZLBbFxcWZMWzevNk8dvfu3asdb7PZZLM5dqy0j7/sssvUvHnzasf7+vpWuz01NVXLli2T1WrVHXfcYX6RtXHjRv38889VjnNWDJmZmXrppZfUuXNnBQYGytfXV61bt9bDDz+sffv2VXvcsy1cuFAWi0VeXl46ceJEtftee+21slgsuu+++yrdfj737F69esliseiFF15QUVGRXn/9dXXt2lXBwcFOXbQZAABUwQAAAHCC559/3pBkxMbGGqWlpUZ8fLwhyfj2228r7HvPPfcYkoyXXnrJ+OabbwxJhiRj//79Ffa1b/vmm28qbMvNzTVuueUWcx9JRqNGjQxvb2/z706dOjmMmT17thnn3LlzDU9PT0OSERQUZFitVnNc+/btjezs7Apzlo9XkuHt7W0EBAQ4PHfLLbcYJSUllV6n7OxsY/DgwQ77BwYGGhaLxfy7R48exqlTpyqMHTt2rCHJGDt2bK222a+3/REQEGD4+fk5PFfZta+t2NhYQ5Lx/PPPG99++60hyYiLizNKS0sd9svNzTUaNWpkWCwW48CBA2bsPXv2rPS4u3btMlq3bm3GarFYjKCgIIf4H3744UrH2rd/8sknRqtWrQxJho+Pj8P5e3p6GklJSQ7jhg8fboSFhZn7hIWFGZGRkeZj+PDhDvunpaUZ3bp1c4jp7Bhvuukmo6CgoMrr9uabb5rH8PT0dHhfWSwWY+bMmbV4NZyr/GtUVFRkXsu77767wr7VfabLb6tOVZ/78uP/+9//Gj4+Pua1Lv8ZuvXWWw3DMIz333/f8PDwqPQ9M3HixGrPNTY2tsr4/vznP5vHOXLkiMO4vn37VjmuuLjYaNq0qSHJmDx5svn8I488Yr7uubm51V6bytxwww2GJKNZs2YVPm+1NWXKFEOS0b9/f/O5O++805BkjBs3zqUxbNu2zWjWrJl5bX18fIxGjRo53G8//fTTSsfaP0ezZ882nysoKDBCQ0MNScaMGTOqnHf//v3m+2fVqlUO2y7knt2zZ0/zvXbVVVcZkgybzWaEhIRU+d81AADgPFR8AwAApytfeXz2z+Nzc3M1b948Wa3WC25zcvfdd2v+/PmyWq2aOHGiDh8+rKysLOXn5yslJUVz585Vjx49Kh2bnp6ue+65R2PHjtWhQ4eUkZGh7OxszZgxQ56envrll1/0yiuvVBjn6+ur0aNHmz1w8/PzlZ2drZMnT2r69OkKDAzU/Pnzq2yBMGbMGC1dulStWrXSJ598oqysLGVmZiovL0+LFi1SXFyc1q1bp3vuueeCro3dmjVrNGvWLFmtVk2bNk0nT55Udna2cnNzdeLECS1fvlxjx46Vl5eXU+azu+6669SqVSvt27dP3377rcO2+fPnKzs7W3379lVsbGy1x8nIyND111+v3bt3q0+fPlq9erXy8/OVkZGhjIwM/f3vf1dAQIDeeecdTZ8+vcrjPProo/Ly8tLXX3+t3Nxc5eTkaMOGDUpISFBRUZEefPBBlZaWmvsvXLhQP/zwg/n3Dz/84NDveeHChea2wsJCDRkyROvXr1fnzp31xRdfKDc3VxkZGcrJydGHH36oiIgILV68WBMnTqwyxueee04pKSn6/PPPlZubq+zsbCUnJ6t79+4yDEN//OMflZmZWe31qgs2m00vv/yypLJe/b/88otb4hg9erSGDh2qgwcPKiMjQ5mZmeaCm4mJiZo6daoeeeQRPfLII0pLS1NGRoZOnTpl3ndeffVV7dq167zmPnDggKSye529ncfDDz8sSfr666+rrEz+73//qyNHjshmszl8xu1rGBQVFenee++tdf90+/iUlBQ98cQTys3NrdX48uz3bHuLE0kaO3asJGnu3LkqKChwSQzZ2dkaMmSIUlJS1LRpU/NzlJWVpc2bN6t79+4qKCjQ7bffXm3leXleXl4aNWqUJDks1nm2jz/+WIZhKDY2tsKvkJxxz37rrbe0ZcsWzZ49W1lZWTp16pROnDihjh071ug8AADAeXJ35h0AAFwcyld8G4ZhHDp0yLBarYa/v79D5fSsWbMcqgnPt+J7xYoV5ra33367xnHaK75VRXW0YRjG+PHjDUlGq1atanxcu/nz5xuSjPj4+Arbli5dakgyoqKijJSUlErHHz582PD39zckGT/99JPDtvOp+J42bZohybj++utrfS61Vb7i2zAM4+WXXzYkGXfeeafDftddd50hyZg7d65D7JVVfD/xxBOGJKNPnz5GUVFRpfMuXLjQrMo+ex/7ax0eHm4cO3aswtgtW7aY+6xZs8Zh2/79+2tUET9jxgzzVwJZWVmV7vPjjz8aFovF8PLyqhCH/bp5e3sbO3bsqDD2+PHjZmXzxx9/XGUcrnT2a1RaWmp06dLFrGQvr64qvvv3719pZfG1115r7nPfffdV2F5cXGy0aNHCkGT89a9/rfJcq6r4PnDggPkZPfsXJZdffrkhyXjqqacqHWuvHP7DH/7g8PyZM2eMDh06mHF7eXkZvXv3NiZOnGjMmzfPOHToUKXHs0tPTzeaNGlijvf39zcGDhxoTJo0yfj8888rfe9Xxv5LjYCAAIfK89LSUiMmJsaQZCQmJrokhqlTp5pV71u3bq2wPSsry3zdbrzxxgrbK6v4NgzDWLdunRnTzp07K507ISHBkGQ8++yzDs9f6D3bXvEtyVi8eHF1pw8AAFyAim8AAOASMTEx6tevn1nhbWdf1PJCK5rtVYnt27c3Ky1r69lnn630+aFDh0qS9uzZo7y8vFod88Ybb5Qk7d27V6mpqQ7bPvjgA0llFYRNmzatdHyzZs3Uu3dvSdLy5ctrNXdl7NWo6enpKikpueDj1cbYsWNltVr16aefKjs7W1LZdfnuu+8UFBSkP/zhD9WONwzDfJ0nTJhQoa+x3bBhwxQYGKgTJ05o48aNle7zwAMPKCIiosLzl156qdnLe8uWLTU+t/Lsr+sjjzyiRo0aVbpPly5d1L59exUWFuqbb76pdJ8RI0aobdu2FZ4PDw83f7lwvjE6m8Vi0dSpUyVJixcv1v/+9786j2HixImV9gq399+WZFaAl+fh4aF+/fpJqt31TE9P16JFi9S/f3+zmnn8+PEO+zz00EOSyu5zZ/d9PnLkiJYtWyZJevDBBx22eXt76+uvv9aoUaNksVjM98m0adM0cuRINW/eXO3atdM///nPSiuuw8LCtGbNGvXv319S2S9rkpKS9Ne//lXDhg1TZGSkunbtqjlz5jj8suFs9kUtR4wYIT8/P/N5i8WiMWPGOOzj7Bj+85//mHN36NChwvZGjRrpySeflCQtW7asxr9+6N69u1q3bi2p8qrvDRs2aOfOnZJknqOds+7Z7du315AhQ2oULwAAcB4S3wAAwGXsi1zak5d79uzRd999p+DgYA0bNuyCjr127VpJOu9kQmhoqFq1alXptiZNmpj/rmyRy+zsbL366qvq2bOnIiIi5OXlZS64Vz5ZdOTIEYdxa9askSS99957ioqKqvKxYsUKSdLBgwfP69zK69evn3x8fPTTTz/p2muv1cyZM7V///4LPm5NNGvWTP3791deXp6Z1Jo9e7YMw9Btt90mHx+fasdv377dbPlw1113VXm9oqOjlZOTI6nqa9atW7cq57G/3rVtLyGVvRfsydNJkyZV+7rak2t1HaOr9OvXz0wgP/XUU3U+v721xtkiIyMllX3G4+Liqt2nqkVspbLXqfyCphERERo2bJh2794ti8WiiRMnOrQDkcrarwQGBurYsWNasmSJw7ZZs2appKRELVu2NJPD5YWHhysxMVH79+/X9OnTNXLkSMXHx5vJ/R07duhPf/qTevTooZMnT1YY37JlS3355Zfavn27pk6dqqFDhzosMrlx40bdfffdGjRoUKWL2WZlZenTTz+VpArnJf3W7mTlypVVvofPN4bCwkLzc2R/T1XGft1KS0u1adOmKvc7mz2hbW9pUp49Gd6tWze1adPGYZuz7tlXX311jWMFAADOQ+IbAAC4zPDhwxUSEqL//e9/2rVrl1ntPXr06HMmPc8lLS1Nks7ZI7oqVVXmSnKoLD67anPXrl1q166dnnzySa1evVrp6eny9PRUeHi4IiMjzYSaJIcet0VFRTpx4oQkKTMzU8eOHavyYU8I1bbavDJxcXH64IMPFBAQoHXr1um+++5TXFycIiIiNGrUKC1atKhCIsiZ7JX9s2fPVmlpqT766COH56tz9OhR89/p6enVXjN7BWlV16wmr/fZr3VNpKWlmXOfOnWq2hjtx6/LGKtK1P3xj3+s1XGqMnXqVFksFq1Zs6ZCotfVqrpe9mt1odfTarWan+nIyEjFxsbqyiuv1GOPPaYffvjBrHgvLyAgQLfffruksmSpXWlpqVkpff/991daqW4XGxurxx9/XP/5z3+0Z88enTx5UnPnzjWroH/66acKFePlXXLJJZo4caI+//xzHTx4UKmpqXr33XfNe+WXX35Z6a9dEhMTlZeXp+bNm6tXr14Vtrdp00bdu3dXaWmp5syZU+X85xPDqVOnzF+kVFVZLZV9mWZ3/PjxamMob8yYMbJYLDpw4ICZzJbKXv/ExERJFZP9zrxnV/ZrEwAA4HokvgEAgMt4e3vrtttuk1T283h70tNeCX4h7Imj6hJIrnD33XcrJSVFLVq00Pz583Xy5Enl5ubq+PHjSktLc6jyLp9QLt9mJDExUYZhnPNxruRSTd1+++06ePCg3n33XY0aNUoxMTFKT0/XvHnzNGzYMPXs2VNZWVlOmetsQ4cOVWhoqNauXasZM2bo8OHDat++va644opzji1/zdLS0mp0zS50wdTaKh/j999/X6MYX3jhhTqLr6pEnbMWyezSpYtuueUWSdIzzzxTbRuNhiYmJsZhQdMDBw5o/fr1evPNN9WlS5cqx9lbL3311VfmIphffvmlDh48KJvNVuv7X0hIiEaPHq3169frkksukSR99tlnNa7+j4qK0oMPPqj169ebCdhZs2ZVeK3siflDhw7JarU6VLvbH99//72k3365UVM1jUGq/p5efltt7v0tWrTQNddcI0nmf4ckKSkpSSdOnJCXl5duvfVWhzHOvGd7eHjUOFYAAOA8JL4BAIBL2ZM8//znP5WSkqIOHTqoa9euF3zcqKgoSTITS3Xh8OHDZouVf//73xoxYoRCQ0Md9rFXop/Nx8dHQUFBkqStW7e6NtBKhIaG6sEHH1RiYqIOHTqkPXv26KmnnpLFYtF3333nsmRs+S8//vznP0uq+Rcf9tdYcs81q4nyFf71MUZXf6kiSZMnT5bNZtO2bdsq7aFcXvlfU1TWbkOS05Ly7nLppZfqqquucqjyfv/99yWVfRFU/n1dG35+frrjjjsklVWQ7969u1bjIyMjzfULTp8+rfT0dHPbtm3btGHDhhof6+DBg1q5cmWt5q8uhtDQUDM5fPjw4SrHl98WHh5eq7ntFd3z588333v29+sNN9xQ4V7u7ns2AAC4cCS+AQCAS3Xt2lWXXnqpCgsLJV34opZ2V111lSTVaXuF8kmXyy+/vNJ97L1eK2Pv8zp//ny3V8bGx8drypQpGj16tKSy6lRXsb/mhYWFstlsFRaQq0qHDh0UGBgoSWY7grpktf72f5Wrqm4NCQlRu3btJLknxvqgVatWuv/++yVJzz33XKWLL9qFhISY/64qwbl+/XrnBugG9qrvWbNm6ciRI+Z96oEHHrig4wYEBJj/9vb2dtp4e4K+c+fOys7OrvZhX5+hqkUuzycGLy8vdezYUZKqTajb769Wq1WdO3eu1bwjR46Uj4+PMjMztWTJEvN/pcp7mkv1654NAABqj8Q3AABwuWnTpmnChAmaMGGCWbF4oe69915J0i+//KJ33nnHKcc8F3v1nyT9/PPPFbZnZ2fr5ZdfrnK8Pem1a9cuvfrqq9XOlZuba35ZcCGqS0JKkq+vryTX/hS/c+fOevHFFzVhwgT94x//qHG/W5vNZibNP/zwQ4fevJVx9sKP9qS7JGVkZFS5n/11Xbly5TmT3/VpcUpneu655+Tv769Dhw7prbfeqnK/Nm3amO+5BQsWVNheWlqqKVOmuCzOunLLLbeocePGOnr0qEaPHq2ioqIqF7WUpA0bNpzzvVFcXKy5c+dKkvz9/ZWQkGBu++677865JkBOTo4WLlwoqWwRyuDgYEllX0h9/PHHksqSwwEBAdU+Ro0aJams3Ur5xUEvJAZJZquRTz/9VNu2bat07CuvvCKprEK7/P24JgIDA81q848++sis/A4NDdWNN95Y6Rh33LMBAIDzkPgGAAAuN2jQIL322mt67bXXav3z9Kr07t3bTJQ89thjevrpp5WSkiKprDr36NGj+uCDD8wEuTO0a9dOzZs3l1RWxbxx40Zz27p169SrVy+HRNDZhg4dquHDh0uSnnrqKT388MPatWuXub2wsFDr16/XxIkTFRsbW6vF26ry2GOPaeTIkVqwYIHD8XJycvTuu++a/W5vuOGGC56rOs8995xee+01PfbYY7UaN2nSJMXHx6u4uFgDBw7U3//+d4cWDZmZmUpKStLYsWN17bXXOjXm4OBgc6G92bNnq7i4uNL9HnroIXXr1k1S2SJ6zz77rEM1c15enlatWqXHHntM8fHxTo2xvoiKitKf/vQnSdX/CsPT01M333yzJOlvf/ub5s2bZyYLd+7cqeHDh1f6pVJD4+3tbfabX716taTqF7WcN2+eYmNjdc8992jp0qU6efKkuS0vL0/Lli1T7969zXYkDz/8sPkFgiRNnz5dzZs317hx47RixQqHnv1ZWVmaN2+errrqKh08eFCSNGHCBHP7okWLzEUc7f3aqzNkyBD5+vqqoKDATMRfaAz2c2rZsqWKioo0aNAgLVu2zKyy3rp1qwYMGKD9+/fLy8ur2i8Yq2P/tUlSUpJmzJghSRo1apS8vLwq3d8d92wAAOBEBgAAgBM8//zzhiQjNja2VuO++eYbQ5Ihydi/f3+F7fZt33zzTYVtubm5xh/+8AdzH0lGYGCg4e3tbf7dqVMnhzGzZ88+Z5z79++vMqYlS5YYNpvN3O7n52f4+fmZ/16xYsU5Y7711lsdYvb39zdCQkIMq9Xq8HxKSorD2LFjxxqSjLFjx1Y4blXb7M/bHwEBAUZwcLDDc9dcc42Rk5NT5fWoqdjYWEOS8fzzz9dqnD3Gnj17Vrp93759RqdOnRxiDg4ONgIDAx2ea9WqVYWx1b0Wdj179qwy7r/+9a/mMby9vY2YmBgjNjbWGDVqlMN+6enpRp8+fSq8F4ODgw2LxWI+Z7PZKsxhv26zZ88+5zWq7LWvC+d6jQzDMDIzM42wsDCHa1DZZ/rw4cNGkyZNzH08PT3N17JRo0bGqlWrqnzdyt8vqlKTz7j9flXZ+djPtbb3srPt3r3bfO1tNpuRmppa5b5PPfWUw3Wz30+CgoIqPD9mzBijsLDQYfzZ9xT7tQwICHB4zmq1Gk8++aRRWlpqjh0wYIAhyejSpUuNz81+373sssucEoPd1q1bjaZNm5r7+vj4OHzOvb29jfnz51caU00+R0VFRUZkZKRDPOvWrav2XC/knl3dvQUAALgeFd8AAKDB8vPz04IFC7R06VINHz5cTZo00ZkzZxQQEKCOHTvq8ccf13vvvefUOQcPHqzVq1frxhtvVHBwsIqLixUWFqa7775bmzZtUt++fc8Z87///W998803GjNmjOLi4lRaWqqcnBxFRESoT58+euWVV7R7926z2vhCTJo0SW+88YaGDx+utm3bymazmXP1799fs2bN0qpVq+Tv73/Bc7lKy5Yt9eOPP+qjjz7S4MGDFR0dbbYVaNmypYYPH65Zs2Zp3bp1Tp/7mWee0fTp09W1a1d5enoqJSVFBw8erLCIaVhYmFasWKFFixZpxIgRiomJUUFBgfLz89W0aVMNGjRIM2bMqNPFWOtaYGCgnnnmmXPu16xZM61fv1733Xef+R4PCAjQnXfeqU2bNqlnz56uDrVOtGrVSpdddpmkcy9q+be//U3ff/+9XnzxRQ0cOFAtWrSQYRjKyclRUFCQOnXqpAcffFBr1qzRRx99JE9PT4fx//rXv/T111/r6aefVt++fdWsWTMVFhbqzJkzCgkJ0RVXXKE//elP+umnnzRt2jSz8vzw4cNmf/+RI0fW+Nzs+27evFmbNm26oBjK69Chg3755Re98MILuuyyy2Sz2VRQUKD4+Hg99NBD+uWXXzRixIgax3k2m81mLrYrSa1bt1b37t2rHVPX92wAAOA8FsOoYqUeAAAAAMB5SUtLU0xMjIqLi7V8+XJdf/317g4JAADgd4WKbwAAAABwsnfffVfFxcVq1apVlYtaAgAAwHVIfAMAAACAE/344496/fXXJUnjx4+vclFLAAAAuA6tTgAAAADACVq0aKGCggKzB/zll1+u9evXV+jJDQAAANcj8Q0AAABJZQvdXXHFFbUaExMTox9++MFFEQENi72yOyoqSgMHDtTUqVMVGRnp5qgAAAB+n2zuDgAAAAD1Q0lJiY4dO1arMT4+Pi6KBmh4qCkCAACoP6j4BgAAAAAAAABcVKj4llRaWqqjR4+qUaNGLDwDAAAAAAAAAPWUYRjKzs5WkyZNZLVaq9yPxLeko0ePKiYmxt1hAAAAAAAAAABq4PDhw2rWrGCkoGkAACAASURBVFmV20l8S2rUqJGksosVGBjo5mgAAAAAAAAAAJXJyspSTEyMmdOtColv/bb6emBgIIlvAAAAAAAAAKjnztWyuuomKAAAAAAAAAAANEAkvgEAAAAAAAAAFxUS3wAAAAAAAACAiwo9vgEAAAAAAACgnjMMQ8XFxSopKXF3KC7l4eEhm812zh7e50LiGwAAAAAAAADqscLCQqWmpiovL8/dodQJPz8/RUdHy8vL67yPQeIbAAAAAAAAAOqp0tJS7d+/Xx4eHmrSpIm8vLwuuBq6vjIMQ4WFhUpPT9f+/fvVunVrWa3n162bxDcAAAAAAAAA1FOFhYUqLS1VTEyM/Pz83B2Oy/n6+srT01MHDx5UYWGhfHx8zus4LG4JAAAAAAAAAPXc+VY+N0TOONffz9UCAAAAAAAAAPwukPgGAAAAAAAAAFxUSHwDAAAAAAAAAC4qJL4BAAAAAAAAAC6zdu1aeXh4aODAgXU2J4lvAAAAAAAAAIDLzJo1S+PGjdOaNWt06NChOpnTViezAAAAAAAAAACcwjAM5ReV1Pm8vp4eslgstRqTm5urefPm6YcfflBaWprmzJmj5557zkUR/obENwAAAAAAAAA0IPlFJWr33PI6n3f7SwPk51W7lPJ//vMfJSQkKCEhQXfccYfGjRunSZMm1TqBXlu0OgEAAAAAAAAAuMTMmTN1xx13SJIGDhyonJwcrVy50uXzUvENAAAAAAAAAA2Ir6eHtr80wC3z1sbOnTu1YcMGLVy4UJJks9k0atQozZo1S/369XNFiCYS3wAAAAAAAADQgFgsllq3HHGHmTNnqri4WE2bNjWfMwxDnp6eOn36tEJCQlw2N61OAAAAAAAAAABOVVxcrI8++kivv/66Nm/ebD5+/vlnxcbGau7cuS6dv/5/LQAAAAAAAAAAaFCWLl2q06dP695771VQUJDDthEjRmjmzJl67LHHXDY/Fd8AAAAAAAAAAKeaOXOm+vXrVyHpLUk333yzNm/erE2bNrlsfiq+AQAAAAAAAABOtWTJkiq3de7cWYZhuHR+Kr4BAAAAAAAAABcVEt8AAAAAAAAAgIsKiW8AAAAAAAAAwEWFxDcAAAAAAAAA4KJC4hsAAAAAAAAAcFEh8Q0AAAAAAAAAuKiQ+AYAAAAAAAAAXFRIfAMAAAAAAAAALipuTXy/88476tixowIDAxUYGKgePXpo2bJl5vaCggKNGzdOYWFh8vf310033aSUlBSHYxw6dEhDhgyRv7+/wsLC9Pjjj6uwsLCuT6VBMgxDPx44pXk/HFZeYbG7wwEAAAAAAAAAp3Br4rtZs2aaOnWqfvzxR/3444/q06ePhg4dql9++UWS9P/+3//TZ599psTERK1Zs0Y5OTkaPHiwSkpKJEklJSW68cYblZubqzVr1igxMVELFizQhAkT3HlaDYbFYtFDH2/Skwu2aM/xHHeHAwAAAAAAAABO4dbE95AhQ3TDDTeoTZs2atOmjSZPnqyAgAB9//33yszM1MyZM/X666+rX79+uvzyy/Xxxx9r69atWrFihSTpyy+/1Pbt2/Xxxx/r8ssvV79+/fT666/r/fffV1ZWljtPrcGID/eXJO1NJ/ENAAAAAAAAwHnuuusuWSwW89G4cWMNHDhQW7Zscfnc9abHd0lJiRITE5Wbm6sePXpo48aNKioq0vXXX2/u06RJE3Xo0EFr166VJK1bt04dOnRQkyZNzH0GDBiggoICbdy4scq5CgoKlJWV5fD4vYqPCJAk7T2e6+ZIAAAAAAAAAFxsBg4cqNTUVKWmpmrlypWy2WwaPHiwy+e1uXyGc9i6dat69OihM2fOKCAgQJ999pnatWunzZs3y8vLSyEhIQ77R0ZGKi0tTZKUlpamyMhIh+0hISHy8vIy96nMlClT9OKLLzr/ZBqg+PBfE99UfAMAAAAAAAANg2FIRXl1P6+nn2Sx1GqIt7e3oqKiJElRUVGaOHGirrvuOqWnpys8PNwVUUqqB4nvhIQEbd68WRkZGVqwYIHGjh2rb7/9tsr9DcOQpdzFtVRyoc/e52xPP/20xo8fb/6dlZWlmJiY8zyDho1WJwAAAAAAAEADU5Qn/a3JufdztmeOSl7+5z08JydHc+fOVatWrdS4cWMnBlaR2xPfXl5eatWqlSSpa9eu+uGHHzR9+nSNGjVKhYWFOn36tEPV9/Hjx3XVVVdJKvuGYP369Q7HO336tIqKiipUgpfn7e0tb29vF5xNw2Ov+D5wIk/FJaWyedSb7jcAAAAAAAAAGrilS5cqIKAsB5mbm6vo6GgtXbpUVqtr85BuT3yfzTAMFRQUqEuXLvL09NRXX32lkSNHSpJSU1O1bds2vfLKK5KkHj16aPLkyUpNTVV0dLSksgUvvb291aVLF7edQ0PSNNhX3jarCopLlXI6Xy3Czv8bGwAAAAAAAAB1wNOvrPraHfPWUu/evfXOO+9Ikk6dOqW3335bgwYN0oYNGxQbG+vsCE1uTXw/88wzGjRokGJiYpSdna3ExEStWrVKSUlJCgoK0r333qsJEyaocePGCg0N1RNPPKFLL71U/fr1kyRdf/31ateuncaMGaNXX31Vp06d0hNPPKH7779fgYGB7jy1BsNqtSguPEA7UrO070QOiW8AAAAAAACgvrNYLqjlSF3y9/c3O35IUpcuXRQUFKT3339fL7/8ssvmdWvi+9ixYxozZoxSU1MVFBSkjh07KikpSf3795ck/eMf/5DNZtPIkSOVn5+vvn37as6cOfLw8JAkeXh46IsvvtAjjzyiq6++Wr6+vho9erRee+01d55WgxMX7q8dqVnaezxXfdq6OxoAAAAAAAAAFyuLxSKr1ar8/HyXzuPWxPfMmTOr3e7j46M333xTb775ZpX7NG/eXEuXLnV2aL8r9j7fLHAJAAAAAAAAwJkKCgqUlpYmqWx9xhkzZignJ0dDhgxx6bz1rsc36l58eNnPIkh8AwAAAAAAAHCmpKQkc33GRo0aqW3btpo/f7569erl0nlJfKNcxXeumyMBAAAAAAAAcLGYM2eO5syZ45a5rW6ZFfVK3K8V36dyC3Uqt9DN0QAAAAAAAADAhSHxDfl52dQ02FeStI92JwAAAAAAAAAaOBLfkPRb1Td9vgEAAAAAAAA0dCS+IYk+3wAAAAAAAAAuHiS+IUmKjyhLfNPqBAAAAAAAAEBDR+IbkqT4MHurEyq+AQAAAAAAADRsJL4h6beK70On8lRQXOLmaAAAAAAAAADg/JH4hiQpopG3ArxtKik1dOhknrvDAQAAAAAAAIDzRuIbkiSLxaL4cHu7E/p8AwAAAAAAAGi4SHzDFB9e1u6EPt8AAAAAAAAAGjIS3zDZ+3zvPU7FNwAAAAAAAIALl5aWpnHjxikuLk7e3t6KiYnRkCFDtHLlSpfOa3Pp0dGg0OoEAAAAAAAAgLMcOHBAV199tYKDg/XKK6+oY8eOKioq0vLly/Xoo48qOTnZZXOT+IapfKsTwzBksVjcHBEAAAAAAACAsxmGofzi/Dqf19fmW6uc4SOPPCKLxaINGzbI39/ffL59+/a65557XBGiicQ3TM0b+8nDalFOQbHSswsUEejj7pAAAAAAAAAAnCW/OF/dPulW5/OuH71efp5+Ndr31KlTSkpK0uTJkx2S3nbBwcHODs8BPb5h8rZ5KCbEV5K0h3YnAAAAAAAAAM7Tnj17ZBiG2rZt65b5qfiGg/jwAB04mae96bm6Kj7M3eEAAAAAAAAAOIuvzVfrR693y7w1ZRiGJLmtnTKJbziIjwjQyuTj2nucim8AAAAAAACgPrJYLDVuOeIurVu3lsVi0Y4dOzRs2LA6n59WJ3AQH17Wb2cvrU4AAAAAAAAAnKfQ0FANGDBAb731lnJzcytsz8jIcOn8JL7hID48QJK0L73imxEAAAAAAAAAaurtt99WSUmJrrzySi1YsEC7d+/Wjh079MYbb6hHjx4unZtWJ3BgT3wfychXXmGx/Lx4iwAAAAAAAACovZYtW2rTpk2aPHmyJkyYoNTUVIWHh6tLly565513XDo3WU04CPH3Uqi/l07lFmpfeq46NA1yd0gAAAAAAAAAGqjo6GjNmDFDM2bMqNN5aXWCCujzDQAAAAAAAKAhI/GNCuztTvbS5xsAAAAAAABAA0TiGxXE/VrxvY+KbwAAAAAAAAANEIlvVEDFNwAAAAAAAICGjMQ3KrAnvvel56i01HBzNAAAAAAAAABQOyS+UUGzEF95eVhVUFyqIxn57g4HAAAAAAAAAGqFxDcqsHlY1SLMT5K0lz7fAAAAAAAAABoYEt+oFH2+AQAAAAAAADRUJL5Rqd8S31R8AwAAAAAAAGhYSHyjUvER/pKkvcdJfAMAAAAAAABoWEh8o1K0OgEAAAAAAABwIe666y5ZLBZZLBZ5enoqMjJS/fv316xZs1RaWurSuUl8o1Itw8oqvk/kFCgzv8jN0QAAAAAAAABoiAYOHKjU1FQdOHBAy5YtU+/evfXHP/5RgwcPVnFxscvmtbnsyGjQGvl4KjLQW8eyCrQvPUeXNw9xd0gAAAAAAAAAJBmGISM/v87ntfj6ymKx1GqMt7e3oqKiJElNmzZV586d1b17d/Xt21dz5szRfffd54pQSXyjavHhATqWVaC96bkkvgEAAAAAAIB6wsjP187OXep83oRNG2Xx87vg4/Tp00edOnXSwoULXZb4ptUJqvRbn28WuAQAAAAAAADgPG3bttWBAwdcdnwqvlGl+PCyPt97j5P4BgAAAAAAAOoLi6+vEjZtdMu8zmIYRq3bptQGiW9UKT6Cim8AAAAAAACgvrFYLE5pOeJOO3bsUMuWLV12fFqdoEr2VicHT+apqKTUzdEAAAAAAAAAuBh8/fXX2rp1q26++WaXzUHFN6oUFegjPy8P5RWW6NCpPDMRDgAAAAAAAAA1UVBQoLS0NJWUlOjYsWNKSkrSlClTNHjwYN15550um5fEN6pktVoUF+6vbUeytPd4DolvAAAAAAAAALWSlJSk6Oho2Ww2hYSEqFOnTnrjjTc0duxYWa2ua0hC4hvVig8P0LYjWdp3ItfdoQAAAAAAAABoQObMmaM5c+a4ZW56fKNacWG/LnB5nAUuAQAAAAAAADQMJL5RrfgIf0nS3nQS3wAAAAAAAAAaBhLfqJa9r/fe9FwZhuHmaAAAAAAAAADg3Eh8o1otw/xlsUiZ+UU6mVvo7nAAAAAAAAAA4JxIfKNaPp4eahbiK4k+3wAAAAAAAIC7/J66MTjjXEl845zKtzsBAAAAAAAAUHc8PT0lSXl5eW6OpO7Yz9V+7ufD5qxgcPGKDw/Qqp3pLHAJAAAAAAAA1DEPDw8FBwfr+PHjkiQ/Pz9ZLBY3R+UahmEoLy9Px48fV3BwsDw8PM77WCS+cU6/VXyT+AYAAAAAAADqWlRUlCSZye+LXXBwsHnO54vEN84pPtxfkrSPVicAAAAAAABAnbNYLIqOjlZERISKiorcHY5LeXp6XlCltx2Jb5xT3K8V34dP5+lMUYl8PC/8jQcAAAAAAACgdjw8PJySFP49YHFLnFNYgJcCfWwyDOnASaq+AQAAAAAAANRvJL5xThaLRfERv/b5Pk7iGwAAAAAAAED9RuIbNcIClwAAAAAAAAAaChLfqBES3wAAAAAAAAAaChLfqJH4cH9JJL4BAAAAAAAA1H8kvlEj5Xt8l5Yabo4GAAAAAAAAAKpG4hs10jzUTzarRflFJUrLOuPucAAAAAAAAACgSiS+USOeHlbFNvaTRLsTAAAAAAAAAPUbiW/UWNyvC1zuS891cyQAAAAAAAAAUDUS36ix+F8T31R8AwAAAAAAAKjPSHyjxuLD/SWR+AYAAAAAAABQv5H4Ro3FR/xa8X2cVicAAAAAAAAA6i8S36ix+LCyxHda1hnlFBS7ORoAAAAAAAAAqByJb9RYkJ+nwgK8JUn7aHcCAAAAAAAAoJ4i8Y1aoc83AAAAAAAAgPqOxDdqhT7fAAAAAAAAAOo7Et+olfjwXxPfVHwDAAAAAAAAqKdIfKNW4n5tdbLrWLYMw3BzNAAAAAAAAABQEYlv1EqHJkHy8rBqb3qulv+S5u5wAAAAAAAAAKACEt+olfBG3nrgujhJ0ktLtiuvsNjNEQEAAAAAAACAIxLfqLVHe7dS02BfHc08ozdW7nF3OAAAAAAAAADggMQ3as3Xy0Mv3NRekvTBd/u053i2myMCAAAAAAAAgN+Q+MZ56d8uUn3bRqi41NCkz39hoUsAAAAAAAAA9QaJb5y3F25qL2+bVev2ndTin4+6OxwAAAAAAAAAkETiGxcgJtRPj/VuJUl6+YsdyjpT5OaIAAAAAAAAAIDENy7QAz3j1DLMX+nZBfrHV7vcHQ4AAAAAAAAAyObuANCweds89OJN7XXnrA36cO0B3dIlRu2aBLo7LAAAAAAAAKBeM0pLlbdhg7JXrFRpbm6txwcNvUn+3bu7ILKLA4lvXLDr2oTrhkuj9N+taZq0aJvmP9hDVqvF3WEBAAAAAAAA9U7B3r3KXLRYmUuWqDg19byP49vxUhLf1SDxDaeYNLidVu1M18aDp/XpphSN7Brj7pAAAAAAAACAeqH49GllffFfZS5apDNbt5rPWwMDFThggLxim9f6mL6dOjkzxIsOiW84RXSQr/7Yt7WmLEvW1GXJur5dpIL9vNwdFgAAAAAAAOAWpYWFyvlmlTIXLVLO6tVScXHZBptNAddeq6ChQxXQu5es3t7uDfQiReIbTnPPNS316cYU7T6eo1eX79Tk4Ze6OyQAAAAAAACgzhiGofzNm5W5aJGyliWpNDPT3ObTvr2Chg5V4I03yNa4sRuj/H0g8Q2n8fSw6q/DOujW977XJxsOaWTXGHWKCXZ3WAAAAAAAAIDTGcXFKty/X2d27lLBzmSdSd6pM8k7VJJ+wtzHFhmpoJuGKOimm+TdurUbo/39IfENp+oe11jDL2+qz346okmLtumzR66WBwtdAgAAAAAAoAEryczUmeSdZoK7IDlZBXv2yCgsrLCvxddXgdf3V9DQofLr1k0WDw83RAwS33C6p29oqxXbj2lLSqb+veGQ7uge6+6QAAAAAAAAgHMySkpUeOiQCnbu1JnkZBUk79SZnTtVnJpa6f5WPz95JyTIu22CfBLayqdtgrwTEmT19a3jyHE2Et9wuohGPppwfRu9sGS7XklK1sAOUQoLoEk/AAAAAAAA6o+SnFwV7Cqf4E5Wwa7dMvLzK93fs2lTebdtKx97orttW3k2ayaL1VrHkaMmSHzDJe7oHqt5P6Zoe2qWpi5L1mu3dHJ3SAAAAAAAAPidKj1zRrlr1+nM9u1mu5Kiw4cr3dfi7S3vNm3KqrfbJJhV3B6BgXUcNS4EiW+4hO3XhS5vfmetPt2YoluviFHXFqHuDgsAAAAAAAC/E4ZhKH/jRmUuWqSspOUqzc6usI8tMtKxTUnbtvKKjaUv90WAxDdcpktsiEZ1jdF/fjysZz/fpqXjrpHNg59+AAAAAAAAwHUKDx5U5qLFyly8WEUpKebztibR8r+ym9mmxDshQbaQEDdGClci8Q2XmjiorZZvT1NyWrbeXrVXj/dt7e6QAAAAAAAAcJEpychQVlKSMhctVv5PP5nPW/391WjgAAUNHSq/rl3px/07QuIbLhXq76VnbrhET366RX//apeig3x0S9cYd4cFAAAAAACABs4oLFTOmjXK/HyRcr75RkZRUdkGq1X+V1+toKFD1ahvH1l9fd0bKNyCxDdcbmTXGO09nqP/W71PTy3cqlB/L/W9JNLdYQEAAAAAAKABKj59Wiff/0CZn32mktOnzee9ExIUNHSoAgffKM+ICDdGiPqAxDfqxMSBbZWeU6CFm47o0U82ae593dQllsUuAQAAAAAAUDOlZ87o1L/+pZP/955Kc3IkSR7hYQoaPERBQ2+ST9u2bo4Q9QmJb9QJq9WiaTd3VEZekb5OPq575vyo+Q/1UJvIRu4ODQAAAAAAAPWYUVqqzMWLlT79DRWnpkqSvC+5ROGPj1PAtdfKYiPFiYro5o464+lh1VujO+vy5sHKzC/SnTM36EhGvrvDAgAAAAAAQD2Vu3at9t88QqlPPa3i1FTZoqPVZNpUtVzwqRr17k3SG1Ui8Y065evloVljr1CriAClZZ3RnTPX61RuobvDAgAAAAAAQD1yZucuHbr/AR26514V7Ngha6NGinhiguKX/VdBQ4fKYiWtierxDkGdC/H30kf3XKnoIB/tTc/VPXN+UF5hsbvDAgAAAAAAgJsVHTumo3/5i/YPH67c776TPD0VcucYxX+5XI3vu09WHx93h4gGgsQ33KJJsK/+de+VCvbz1ObDGXr4400qKil1d1gAAAAAAABwg5KcHB3/5z+1d8BAZS5YKJWWqtHAgYr/YqminnlGtpAQd4eIBsZiGIbh7iDcLSsrS0FBQcrMzFRgYKC7w/ld2XjwtG7/4HudKSrV8Mub6vVbOslqtbg7LAAAAAAAgItCaX6+Cnbt0pnknSrYuVNFaWnuDqlS+Zs3q+TUKUmSb+fOinzyz/K97DI3R4X6qKa5XLq/w626xIbondu76L6PftRnPx1RY38v/eXGS2SxkPwGAAAAAACoKcMwVJyWpjPJySrYubMs0Z2crMKDB6UGUvfq1aKFwieMV6N+/cgN4YKR+Ibb9W4boVdHdNT4eT/rgzX7Fd7IWw/2jHd3WAAAAAAAAPVWaV6esr/6Sme2bzeT3CWZmZXu69G4sXwSEuTdtq28mjeXPOpf92OP4GA16tVLFk9Pd4eCiwSJb9QLf+jcTCdzCjX5vzs0ZVmyGgd4a0SXZu4OCwAAAAAAoF4xiouV8dlnOvHGmypOT3fc6OEh77g4ebdtK5+2CfJukyCftgmyhYe7J1jAjdya+J4yZYoWLlyo5ORk+fr66qqrrtK0adOUkJBg7tOrVy99++23DuNGjRqlxMRE8+/Tp0/r8ccf1+LFiyVJN910k958800FBwfXzYnAKe6/Lk7pOQV6b/U+TVywRSF+nup7SaS7wwIAAAAAAHA7wzCU8+23Sn/9dRXs3iNJ8mzaVI369ZV3Qlmi26tVK1m9vNwcKVA/uHVxy4EDB+rWW2/VFVdcoeLiYv3lL3/R1q1btX37dvn7+0sqS3y3adNGL730kjnO19dXQUFB5t+DBg1SSkqK3nvvPUnSAw88oBYtWmjJkiU1ioPFLeuP0lJDT3z6sxZuOiIfT6s+e+RqXRLNawIAAAAAAH6/8n/5RcdfeVV569dLkqxBQQp7+CGFjB5Nohu/Ow1iccukpCSHv2fPnq2IiAht3LhR1113nfm8n5+foqKiKj3Gjh07lJSUpO+//17dunWTJL3//vvq0aOHdu7c6VA9jvrParVo2s0ddSKnUKt3pWv8vJ+16NGr5WWrf72nAAAAAAAAXKnoyBEd/+d0Zf1a3Gnx9FTImDEKe/ABeZQrCgVQUb3KJmb+2oA/NDTU4fm5c+cqLCxM7du31xNPPKHs7Gxz27p16xQUFGQmvSWpe/fuCgoK0tq1ayudp6CgQFlZWQ4P1B+eHla9fksnhfh5akdqlt5YudvdIQEAAAAAANSZksxMHXv1Ve0ddIOZ9A4cPFhxy5Yp8sk/k/QGaqDeLG5pGIbGjx+va665Rh06dDCfv/3229WyZUtFRUVp27Ztevrpp/Xzzz/rq6++kiSlpaUpIiKiwvEiIiKUlpZW6VxTpkzRiy++6JoTgVOEN/LW5OGX6pG5m/T2qj3qe0mELm8e4u6wAAAAAAAAXKa0sFCnP/lEJ995VyW/Foj6deumiD//Wb4d2rs5OqBhqTeJ78cee0xbtmzRmjVrHJ6///77zX936NBBrVu3VteuXbVp0yZ17txZkmSxWCoczzCMSp+XpKefflrjx483/87KylJMTIwzTgNOdMOl0Rp6WRMt2nxUE+b/rP8+fq18PD3cHRYAAAAAAIBTGYah7GXLdPzv/1BRSookyatVvCKeeEIBPXtWmeMCULV6kfgeN26cFi9erNWrV6tZs2bV7tu5c2d5enpq9+7d6ty5s6KionTs2LEK+6WnpysyMrLSY3h7e8vb29spscO1XrypvdbtPal96bl6JWmnnhvSzt0hAQAAAAAAOE3ejz/q2Cuv6syWLZIkj//P3p3GR1XebRy/ZsnMZJ1ASFgCSNgmIDuyK3VBEUGCqLgr1WpVXBH08bGtbW1rrdhWoSpuaFVEUSQBBG1FRVQWWcJmBsJOAiQBMiHLTCYz53kRn1QrKsEkZ5L8vm9Szrln5prPx2a55pz/ndxKyXfeqcSJE2WxR0R1BzRKps74NgxDd9xxhxYsWKDly5crLS3tRx+zdetWBYNBtW3bVpI0bNgw+Xw+rVmzpmbN6tWr5fP5NHz48HrLjoaRGOPQY5f1kSS99NlufbHziMmJAAAAAAAAfrrArl3aP+UO7b32Ovk3bZIlJkat7rhDXZctU4tJkyi9gZ/IYhiGYdaL33777Zo7d64yMzPl8XhqjrvdbkVHR2vnzp16/fXXddFFF6lVq1batm2b7rvvPkVHR2vt2rWy2arHXowZM0b5+fmaPXu2JOmWW27RaaedpkVfD///MSUlJXK73fL5fEpISKj7N4qf7MEFm/TGmv1KTYzW+/eOVJyTb/4AAAAAAKDxqSoqUuGsWSqe/7YUCkk2mxIvu0zJd0yRPTnZ7HhAxDvZLtfU4vv75hPNmTNHkydP1v79+3Xttddqy5YtKi0tVYcOHTR27Fg9/PDDatmyZc36o0eP6q677lJWVpYkafz48Zo1a5YSExNPKgfFd+QrDVTpwr+v0IFjFbpqcAc9OrGP2ZEAAAAAAABOWri8XEdefllHX3hR4fJySVLcOecoZdp9cnbpYnI6oPFoFMV3pKD4bhxW7Tqiq55fJcOQ5kwepHPSPklhPgAAIABJREFUU8yOBAAAAAAA8IOMUEi+d99V4VMzVVVQIEly9e6tlOnTFDt4sMnpgMbnZLtcU2d8A7UxtHOSbhxRPQf+gXc2qbi80uREAAAAAAAAJ2YYhkpXrNDuCZfo4K9+raqCAkWlpqrdEzPU6c15lN5APWNQMhqV6aM9+thboJ2FZfpN5lY9dVV/syMBAAAAAADUMAxDFevXq3DWLJV/sUqSZHW71erWW9XimqtldThMTgg0DxTfaFRcUTb9dVI/TXzmc2Vl52v06W00tk9bs2MBAAAAAIBmrnL/fvkys+TLylJw3z5JkiUqSi2uu06tfnmLbG63yQmB5oXiG41O3w6JmnJ2Fz21PFe/WrhZg9JaKCXeZXYsAAAAAADQzIRKSlSybJl8mVmqWLeu5rg1JkbxF41Rq1tvk6N9qokJgeaL4huN0h3ndtOHOQXaml+i/12wRc9fP1AWi8XsWAAAAAAAoIkzgkGVrlwpX2aWSpcvl1H59R5kVqtihw+XO2O84s87T9aYGHODAs0cxTcaJYfdqicm9dX4mZ/p318d1tvrDujyMzqYHQsAAAAAADRBhmHIv22bfJmZKlm8RKGjR2vOObt1k3vCBCWMG6eo1ikmpgTwTRTfaLTS2yTo3vO767FlOfr9om0a3rWVUhOjzY4FAAAAAAAauVBpmQLbvfLn5CiQ41X5+nWqzN1Zc96WlCT3uHFyT8iQMz2du9CBCETxjUbtlpGd9a9th7R+X7Hufztbr944RFYrP2wAAAAAAMCPMwxDwbw8BXJy5M/xKuCt/hrcv/87ay1Op+LPO1fujAzFjhghi51aDYhk/D8UjZrNatETk/rpoic/1We5R/Ta6r26flgns2MBAAAAAIAIZITDOr5smcq//PLroturcFnZCdfaW7eWM90jlyddrh7pij3zTNni4xs4MYBTRfGNRi+tVawevChdv8ncqj+995XO6pastFaxZscCAAAAAAARpOrIEeX/z4Mq+/TTbx23REXJ0a1rdcGd7pHTky6np7vsLVqYlBRAXaD4RpNw7ZDT9P7WQ/os94jue2uj5t86XDZGngAAAAAAAEllX3yhvPvvV6iwSBanUy2uvEKuXr3k9HjkTEuTJSrK7IgA6hjFN5oEq9Wiv1zWVxf+bYXW7yvWcyt26bazu5gdCwAAAAAAmMioqlLhzFk68txzkmHI2a2r2j3xhFzdu5sdDUA9s5odAKgrqYnR+s3FPSVJf/vXduUcKjE5EQAAAAAAMEswL097r7teR2bPlgxDiZMmqdNbb1F6A80ExTealMsGtteoHq1VGQpr6pvZqqwKmx0JAAAAAAA0sJIPPtCuSyaqYsMGWePilPr3v6nt738na3S02dEANBCKbzQpFotFf5rYSy1iorTtYIlmLd9hdiQAAAAAANBAwn6/Dv7ud8q7626FS0rk6tNHaQvfVcKFF5odDUADo/hGk5MS79IfJvSWJP3j453K3l9sciIAAAAAAFDfAjt3as+kK1T8xjxJUtIvblKn11+To317k5MBMAPFN5qksX3aanzfdgqFDU19a6P8wZDZkQAAAAAAQD0wDEPF77yj3ZddrsD27bIlJanD888rZdo0WaKizI4HwCQU32iyfp9xulLindpZWKbH3/eaHQcAAAAAANSxkM+n/GnTdfChX8moqFDs8GHqvPBdxZ11ptnRAJjMbnYAoL4kxjj02KV99POX1+qlz3br/J6tNbRzktmxAAAAAABALRmGoar8fPm9XvlzchTI8crvzVFw337JMCSbTcl3362kX9wki5XrPAFQfKOJOyc9RVcO6qB5a/dr2vxsLbtnpOKc/GcPAAAAAECkCvv9CuzIVcCbI3+OV4GcHPm3b1e4pOSE6x2dO6vtH/+gmP79GzgpgEhGA4gm71fjemplbpEOHKvQH5d8pUcn9jY7EgAAAAAAzZ5hGKoqKPx2we31qnLPHil0gr267HY5u3SRK90jZ3ePnOkeudLTZU/i7m4A30XxjSYvzmnX45f11VXPr9Iba/bpgtNb6xxPitmxAAAAAABoNozKSgV27pTf660ZUxLI8Sp07NgJ19tatKgutj3pNQW3s3NnWRyOBk4OoLGi+EazMKxLkm4ckaaXPtutB97epA/uHanEGH5YAgAAAABQ16qOHPnWHO5AjleBXbukqqrvLrZa5UhLk8vjkTM9vfpqbk+67CnJslgsDR8eQJNB8Y1m4/4LPfp4e4F2FZbp4aytevJKZn8BAAAAAHCqjGBQlXv2VI8p+Xpcid+bo1Bh0QnXW+Pjv1NwO7t1ldXlauDkAJoDim80G64om/46qZ8mPv2ZMjfma/TpbXRR77ZmxwIAAAAAIOKFKypUkb3pWwV3Ze5OGZWV311ssSiqY4dvjSlxeTyyt2vHVdwAGgzFN5qVfh0SdfvZXTXro1w99O5mDerUUsnxTrNjAQAAAAAQscpWr1H+/fer6vDh75yzxsTI6fHUzON2pXvk7NZN1thYE5ICwH9QfKPZueu8bvowp0BfHSzRgws26/nrB/KJMwAAAAAA/8WoqlLR08+o6JlnJMOQrVUrRfft+/W4kuoruaPat5fFajU7KgB8B8U3mh2H3aq/Tuqr8bNW6t9fHda8tft11eCOZscCAAAAACBiBA8eVN706ar4cp0kyX3pRLV56CFZY2JMTgYAJ4eP5NAs9WiboHvP7y5J+vXCLfrIW2ByIgAAAAAAIsPxDz/U7gmXqOLLdbLGxqrdjBlq98c/UnoDaFQovtFs3Tqyiy7pn6qqsKHbX1uv9fuOmR0JAAAAAADThAMBHXrkDzow5Q6FfD65evVS2rsL5B431uxoAFBrFN9otqxWi/5yWR/9rHuyKoIh3fjyWuUWHDc7FgAAAAAADS6wa7f2XHGljr3+uiSp5c9/rk5zX5ejI6NBATROFN9o1qJsVj1z7QD165Co4vKgrn9xjfKLK8yOBQAAAABAgzAMQ8XvLtTuyy5TICdHthYt1OG52Wr9wP2yOBxmxwOAU0bxjWYvxmHXnMmD1CU5Vvk+v254aY2KyyvNjgUAAAAAQL0KlZYp/4EHdPDBB2WUlytm6FClLVyouJEjzY4GAD8ZxTcgqUWsQ/+8aYjaJLi0o6BUN73ypSoqQ2bHAgAAAACgXlRs2ardl05USdYiyWZT8j13q+OLLyiqdYrZ0QCgTlgMwzDMDmG2kpISud1u+Xw+JSQkmB0HJtp++Lguf/YL+SqCOjc9RbOvG6goG58PAQAAAADqR7isTP7t2xXweuXPyVEgx6uqY0fr/XWD+QelYFD2tm2V+sQMxQwYUO+vCQB14WS7XIpvUXzj29btPaprXlgtfzCsSwe014zL+8hisZgdCwAAAADQiBmGoWBevgLenOqC27tdfm+Ogvv2SyZVM/Hnj1LbRx6RLTHRlNcHgFNxsl2uvQEzAY3CwNNa6h9XD9Atr67TO+sPqFW8Qw+O6WF2LAAAAABAIxH2+xXYsaPmCm6/t7roDh8/fsL19uRkOdPT5Ur3yOlJV1TbNlI9X4BljY2Ts3s3LvQC0GRRfAMncF6P1vrzxN6a/vYmzf5kl5LjnPrFWZ3NjgUAAAAAiCCGYajq8OGagjuw3St/jleVe/ZI4fB3HxAVJWfnzjUFtyvdI2d6uuwtWzZ4dgBo6ii+ge9x+RkddKSsUn9emqM/LPlKSXEOXdK/vdmxAAAAAAAmCeTmqmLT5q/HlXgVyMlRyOc74Vpby5bVxXZ3j5zpHrnS0+Xs3FkWh6OBUwNA80TxDfyAX47srMLjAb24cremz9+kxBiHzvGwwzUAAAAANCeB3FwVPD5DpZ988t2TNpscaZ3k8qT/p+D2eGRPTmaMCACYiOIb+AEWi0UPXdRDR8sq9e6GPN3+2nrNvXmI+ndsYXY0AAAAAEA9CxYUqGjmLBW/80716BK7XTEDBlQX3J7qgtvZrausTqfZUQEA/4XiG/gRVqtFf7msj46WVeqT7YX6+ctr9ey1AzW0c5LZ0QAAAAAA9SBcVqYjL76kI3PmyKiokCTFn3++kqfeK2damsnpAAAnw2IYhmF2CLOVlJTI7XbL5/MpISHB7DiIUOWVVbr6+dXauL9YVot057nddNd53WSzcusaAAAAADQFRlWVit9+R4WzZilUVCRJiu7bVykP3K+YAQNMTgcAkE6+y6X4FsU3Tl5ZoEoPZ23V2+sOSJIGp7XUk1f2U1t3tMnJAAAAAACnyjAMlX70sQqeeEKVO3dKkqI6dlTK1KmKH30Bs7oBIIJQfNcCxTdqa+GGPD307maVVYaUGBOlGZf11aierc2OBQAAAACopYrNm1Xwl8dVvnatJMmWmKhWt9+uFldeIYvDYXI6AMB/o/iuBYpvnIrdRWW684312pJXIkn6+YhO+p8x6XLabSYnAwAAAAD8ECMUUiB3p47Mnq2S996TJFmcTrW8/nol3XKzbPHxJicEAHwfiu9aoPjGqQpUhfSXZV69uHK3JOn0dgmaeVV/dU6OMzkZAAAAAECSQsePK+D1yp/jVcCbU/11xw4Zfn/1AotF7vHjlXz3XYpq187csACAH0XxXQsU3/iplucc1n1vZetYeVAxDpv+MKGXJg5ob3YsAAAAAGg2jHBYwQMH5M/JUSDHK7/Xq0BOjoJ5eSdcb4mOVuzgwUq++y65evZs4LQAgFNF8V0LFN+oC4d8ft3z5gat2nVUkjRxQKoeyeilWKfd5GQAAAAA0LSEy8oU2LFD/hyv/N7qojuwfbvCZWUnXG9v21Yuj0fOdI9c6elyejxydOwoi41RlQDQ2FB81wLFN+pKKGzoHx/l6u//3q6wIaW1itXMq/qrV6rb7GgAAAAA0OgYhqGq/Hz5vd5vXMmdo+C+/dIJ6gyLwyFn165ypqfLle6R05Mul6e7bImJJqQHANQHiu9aoPhGXVuz+6junrdBB31+OWxWPTy+p64ZcprZsQAAAAAgYoX9fgV25P5nDndOjvzbtytcUnLC9fbk5OqC29O9uuBO98iRliaLnbtuAaApo/iuBYpv1IdjZZW6/51N+te2w7JYpIW3j1DfDlxlAAAAAKB5MwxDVQUF1cX2NzacrNyzRwqHv/sAu13OLl3+cwV3ukdOj0f2pKQGzw4AMB/Fdy1QfKO+GIahe97cqMyN+eqd6tbCKSNks1rMjgUAAAAADaZyzx6Vb9hYXXR/veFkqLj4hGttLVpUz+H2pP9nHnfnzrI4HA2cGgAQqU62y+X+H6AeWSwWPTS2h5Z/VaDNeT7NXbNP1w1l5AkAAACApq3q2DGVvPeefJlZ8m/a9N0FVqscaWlfbzj5n3nc9pRkWSxcLAQA+OkovoF6lhLv0n0XdNdvF23T48tyNKZXG7WKc5odCwAAAADqVLiyUqUffyxfVpZKP1khBYPVJ2w2RffvJ1d6j5qC29mtq6wul7mBAQBNGsU30ACuHXqa3vrygLYdLNGfl+ZoxuV9zY4EAAAAAD+ZYRjyZ2erODNTJe8tVdjnqznn6tlT7gkZShg7lnncAIAGR/ENNAC7zao/XNJLE5/+XG+vO6ArBnXQoE4tzY4FAAAAAKek8kCeShZlybcwU5V799Yct6ekyD3+YiWMHy9X9+4mJgQANHcU30ADGdCxha4c1EHz1u7Xrxdu0eI7z5TdZjU7FgAAAIBmKrBzp4rnv61weXmtHle5e7fK166t+bclOlrx54+SOyNDsUOHymKz1XVUAABqjeIbaED3X5iuZVsPKefQcb38+R794qzOZkcCAAAA0MxUFRaqcOYsFb/9thQOn9qTWCyKGTpE7vEZij//fNniYus2JAAAPxHFN9CAWsY69MCF6XpwwWb9/d87dHHfdmqdwIYuAAAAAOpfuKxMR+a8rCMvvSTj66u84849V9G9e9Xqeaxx8YofdZ6i2ratj5gAANQJim+ggV1xRge9uXa/Nu4v1h+WfKWZV/U3OxIAAACAJsyoqlLxOwtUOGumQoVFkiRX3z5qPX26Ys44w+R0AADUDwYMAw3MarXoDxN6yWqRFmXn67PcIrMjAQAAAGiCDMPQ8Y8+0q4JE3To4YcVKixSVIcOSv3739Rp3jxKbwBAk0bxDZigV6pb1w49TZL0m8wtqqw6xbl6AAAAAHACFZu3aN8Nk3XgtttVmbtTNrdbrf/3QXVZslgJF14oi8VidkQAAOoVo04Ak9x3gUfvbT6onYVlemHlLt1+dlezIwEAAABo5CoP5Knwb39TyZIlkiSLw6GW11+npFtukS0hweR0AAA0HK74Bkzijo7Sg2N6SJJmfpirvOIKkxMBAAAAaKz83u069Mc/adeYMTWltztjvLosfU8p06ZRegMAmh2u+AZMNHFAqt5cu19r9hzV7xdt1ezrmLEHAAAA4ORUFRXJt3ixfJlZCnz1Vc3xmGFD1Xr6dLl69jQxHQAA5qL4BkxksVj0yIReuuipT/X+1sP6yFugczwpZscCAAAAEKHCfr9Kly9XcWamylZ+JoVC1SeiohR/9s+UOOkKxZ45ghneAIBmj+IbMJmnTbxuHNFJz3+6W7/N2qph9yTJFWUzOxYAAACACGGEw6pYv16+zEyVLF2mcGlpzTlX3z5yZ2QoYcwY2Vu0MDElAACRheIbiAB3j+qurOx87T1Srmc/2al7RnU3OxIAAAAAk1Xu3StfZpZ8WVkKHjhQc9zerq3c48fLPT5Dzs5pJiYEACByUXwDESDOadevx/XUHXM36OmPd+qS/qk6LSnW7FjfsiXPp9tfX6+rBnfUbWd3MTsOAAAA0CSFiotVsmyZfJlZqtiwoea4NTZW8ReOljsjQzFnnCGL1WpiSgAAIh/FNxAhxvZuq3ld92tlbpEeztqqOZMHRcxcPn8wpLvnbdC+o+X667+8Gtu7rTomxZgdCwAAAGgSjMpKla5cKd/CTJV+9JGMYLD6hNWq2BEj5M7IUPx558oaHW1uUAAAGhGKbyBCWCwW/S7jdF349xX62Fuo97ce0oW92podS5I0432vdhaWSZKCIUOPf+DVzKv6m5wKAAAAaLwMw5B/y9bqud1Llih07FjNOafHUz23e9xYRaWkmJgSAIDGi+IbiCBdkuN0y8jO+sdHO/Xggs3qlepW+xbmXlm9atcRvfjZbknS9NEezfjAq0XZ+br5rDT1aZ9oajYAAACgsQkePCjfosXyZWaqcufOmuO25FZyj7tY7ozxcqWnm5gQAICmgeIbiDB3nttNn+4o0qYD1TO13/rlMLmibKZkKQ1Uadr8bBmGNOmM9ppyTlftLCjVgg15evS9HM29eUjEjGMBAAAAIpURDMq3ZIl8CzNVvnq1ZBiSJIvTqfhRo+SekKHYYcNksfMnOgAAdYXdMIAI44qy6elrBigxJkqbDvj0u0XbTMvyxyVf6cCxCqUmRuvX43pKkqZe0F0Ou1Vf7Dqij7cXmpYNAAAAaAwqDxzQnmuv1cH/eVDlq1ZJhqGYwYPV9o9/VLfPVir1iRmKO+ssSm8AAOoYxTcQgdq3iNFTV/aXxSK9sWaf3vpyf4Nn+MhboDfW7JMkPX55H8W7omqy/Xx4J0nSn9/LUShsNHg2AAAAoDEoWbpUuydcIn/2JlkTEpR8913q+uG/ddo/X1HipRNli4szOyIAAE0WxTcQoUZ2T9bUUd0lSb9auEVb8nwN9trF5ZV64O1NkqTJwztpeJdW3zp/+9ld5Y6OkvfwcS1Yf6DBcgEAAACNQbiiQgd//Rvl3TtV4dJSRffvr87vLlCr225TVGqq2fEAAGgWKL6BCDblnK46Lz1FlVVh3fraOhWXVzbI6z6ctVUFxwPq3CpWD1z43Y113DFRuuOcrpKkJz7YLn8w1CC5AAAAgEjn375duy+/XMXz50sWi5Ju/aVOe/WfFN4AADQwim8gglmtFv11Uj91bBmjA8cqdM+bGxWu59Ei720+qMyN+bJapBmT+iraceKNNa8bdppSE6N1qMSvlz7bXa+ZAAAAgEhnGIaOzXtTey6fpMrcnbIlt1LHOS8p5Z57mN8NAIAJKL6BCOeOidIz1w6Q027Vx95CPbV8R729VuHxgB56d7Mk6bazu2hAxxbfu9YVZdO00dWjWJ75aKeOljXM1egAAABApAmVlCjvnnt16Le/lREIKHbkWeq8cKFihw41OxoAAM0WxTfQCJzezq0/XtJbkvTkhzv0kbegzl/DMAw9uGCzjpUHld4mXned1+1HH5PRN1U92yboeKBKs5bn1nkmAAAAINJVbNyo3RMu0fH335fsdqXcf786PPus7ElJZkcDAKBZo/gGGonLBrbXNUM6yjCke+Zt1P6j5XX6/O+sz9O/vzqsKFv1eBWn/cQjTr7JarXowYuqZ4C/umpPnWcCAAAAIpURDqvo+ee155prFczPV1SHDur0xlwl3fhzWaz8qQ0AgNn4aQw0Ir+5uKf6dkiUryKo215fV2ebSuYXV+h3WVslSfeM6q6e7RJO+rFndUvWWd1aKRgy9Pj73jrJAwAAAESyqsJC7f/FzSp84q9SKKSEiy5S2rsLFN27t9nRAADA1yi+gUbEabfp6WsGqGWsQ1vySvRw5taf/JzhsKH7396k44Eq9euQqF+O7Fzr5/ifMemyWKSs7HxtOlD8kzMBAAAAkSJ0/LjKv/xSR197XQd//WvtvnySckedr7LPP5fF5VLbP/5B7Z6YIVtcnNlRAQDAN7C1NNDIpCZG66kr++v6l1brzS/3q3/HRF05uOMpP9/rq/dqZW6RXFFWPTGpr+y22n8edno7ty7pl6oFG/L06Hs5mnvzEFksllPOBAAAADQ0IxxW8MAB+XNyFMjxyu/1KpCTo2Be3gnXO9PTlfrEDDm7dGngpAAA4GRQfAON0JndWum+Czx6/H2vfpO1VT3bJahP+8RaP8+eojL96b0cSdIDF6arS/KpX6Uy9YLuWrzpoL7YdUQfby/UOZ6UU34uAAAAoCEEdu+WLytL5atWK+D1Klx+4j1r7G3ayOXxyJmeLle6R05PuhydTmOWNwAAEYziG2ikbvtZF23YV6x/f3VYt722XovvPFMtYh0n/fhQ2NB987NVEQxpWOck3TCs00/K075FjCaP6KTnVuzSY0tzNLJbsmxWrvoGAABAZAkVF6tk6VL5FmaqIjv7W+csDoecXbt+q+B2ebrLllj7i0wAAIC5KL6BRspqteiJSX01ftZK7T1Srilz1+vSAe1P+vHZB4q1bu8xxTnt+stlfWStg5J6ytld9eba/co5dFwL1h/Q5Wd0+MnPCQAAAPxURmWlSj/9VL6FmTr+8cdSMFh9wmZT7IjhShhzkaJ7nS5HWposdv5MBgCgKbAYhmGYHcJsJSUlcrvd8vl8SkhIMDsOUCtfHSzRJU9/Jn8wfEqPf+zS3rpi0KnPCP9vz63YqT+9l6O2bpc+mna2XFG2OntuAAAA4GQZhiH/5s3yLcxUyXvvKVT8n03YnT16yJ0xXu6xY2VPTjYxJQAAqK2T7XL5KBto5Hq0TdCLNwzSnM92qzJUu8+x+rV3a1IdX5V9/bBOeuXzvcorrtCcz/botrPZ7AcAAAANJ5ifL1/WIvkyM1W5e3fNcVtyK7kvHi93xni5PB4TEwIAgIbAFd/iim+gri1Yf0BT38pWvMuuFdPPqdXscQAAAOBkGOGwgvv2yZ/jld+bo8DXX6vyD9assbhcih81Su6MDMUOG8oYEwAAmgCu+AZgmgn9UvX8p7v11cESzfooV78e19PsSAAAAGjEQqVlCmzfroA3R/4crwI5OfLv2CGjvPyE62MGD5Y7I0Pxoy+QLS6ugdMCAIBIQPENoM5ZrRY9OCZd17+0Rv/8Yo/S28Trot5tFevkWw4AAABOTmDXLh2ZPVvlGzYquG/fCddYnE45u3WT09NdLk+6nOkeuTwe2dzuBk4LAAAiDaNOxKgToL5c/9IardheKEmKjrLpwl5tNHFAqoZ3aSWb1WJyOgAAAESiqqIiFc6apeL5b0uhUM1xe0rK18X21wV3erocp53G+BIAAJqZk+1yKb5F8Q3Ul9JAleas3K0FG/K0u6is5njrBKcm9E/VpQPaq3vreBMTAgAAIFKEy8t15OWXdfSFFxX+eoRJ3LnnqsU1V8vVs6fsLVqYnBAAAEQCiu9aoPgG6pdhGNq4v1gL1ucpKztfvopgzbleqQma2L+9xvdrp1ZxThNTAgAAwAxGKKTiBQtU9NRMVRVW3y3o6t1bre+frphBg0xOBwAAIg3Fdy1QfAMNJ1AV0kc5hVqw/oA+8hYoGKr+FmSzWvSz7smaOCBVo3q0livKZnJSAAAA1CfDMFS2YoUKZsxQYEeuJCmqfXsl33uPEsaMkcVqNTkhAACIRBTftUDxDZjjaFmlFm/K1zvr85S9v7jmeGpitObdMlQdWsaYmA4AAAD1pWLrVhU8PkPlq1ZJkqxut1rddqtaXH21rA6HyekAAEAko/iuBYpvwHw7C0v17vo8zV+3X4dLAkprFau3bx2mJMafAAAANBnBvDwVPPmkSrIWSZIsUVFqcd11avXLW2Rzu01OBwAAGgOK71qg+AYix+ESvyY+/bnyiivUp71bc28eqjin3exYAAAAOEWGYci/ZYt8776r4rffkVFZKUlKGDdOyffcI0f7VJMTAgCAxoTiuxYovoHIsquwVJc9+4WOllXqzK6t9NLkQXLYmfEIAADQmATz8+XLWiRfVpYqd+2qOR4zZIhSpk9XdK/TTUwHAAAaK4rvWqD4BiJP9v5iXfX8KpVXhnRx33Z68op+slotZscCAADADwiVlun4Bx/Il5mp8jVrpK//3LS4XIofNUqJEy9RzLBhslj4vQ4AAJyak+1ymR8AICL17ZCoZ68dqJteWatF2flKinXo4Yt78kcSAABAhDFCIZV9sUq+zEwd/9e/ZPj9NediBg+WOyND8aMvkC0uzsSUAACguaH4BhCxRnZP1oyY1qQyAAAgAElEQVTL++rueRv18ud7lBzv1JRzupodCwAAoMkJlZbJCPh/fOE3VBUUyLd4sUoWLVZVQUHNcUenTnJPyJD74osVlcr8bgAAYA6KbwARLaNfqo6UVur3i7fp8fe9Sop16MrBHc2OBQAA0CgZ4bCC+/fLn+NVwJtT/TUnR8H8/J/0vDa3Wwljx8qdMV6uPn24Sw8AAJiO4htAxLvxzDQVlQb09Mc79b/vblbLWIcuOL2N2bEAAAAiWqi0TIHt2/9TcHu9CmzfrnB5eZ08v8XhUNzPRsqdkaG4kSNlcTjq5HkBAADqgqnF96OPPqoFCxYoJydH0dHRGj58uB577DF5PJ6aNYFAQNOmTdMbb7yhiooKnXfeeXr66afVvn37mjX79u3TlClTtHz5ckVHR+vqq6/WjBkz5OAXL6DJmD7ao6LSgN768oDufGODXr1piAantTQ7FgAAQMQwwmGVr/1SvkVZKl+zVsF9+064zuJwyNmtm5zpHrk86V9/9cjmdjdwYgAAgPpjavH9ySefaMqUKRo0aJCqqqr00EMP6YILLtC2bdsUGxsrSbrnnnu0aNEizZs3T0lJSbrvvvs0btw4rVu3TjabTaFQSGPHjlVycrJWrlypI0eO6IYbbpBhGJo5c6aZbw9AHbJYLPrTJb11tCyof391WDe9slZv/XKYerT9/t17AQAAmoPArt3yZWXKl5WlqvyD3zpnT06WMz1drnSPnJ7qr45OnWSxc/MvAABo2iyGYRhmh/h/hYWFSklJ0SeffKKRI0fK5/MpOTlZr776qq644gpJUn5+vjp06KD33ntPo0eP1tKlSzVu3Djt379f7dq1kyTNmzdPkydPVkFBgRISfrwUKykpkdvtls/nO6n1AMzjD4Z03YurtXbPMaXEO/XObcPVoWWM2bEAAAAaVNWxYypZulS+zEz5szfVHLfGxSlhzIWKv2C0XKf3lL0ld8gBAICm5WS73Ij6mN/n80mSWn79y9m6desUDAZ1wQUX1Kxp166devXqpc8//1yjR4/WF198oV69etWU3pI0evRoBQIBrVu3Tuecc853XicQCCgQCNT8u6SkpL7eEoA65oqy6YXrB2nS7C/kPXxcN7y0RvNvHaakOKfZ0QAAAOqVUVmp0hUr5MvM1PGPP5GCweoTNptizxyhxIwMxZ17rqwul7lBAQAAIkDEFN+GYWjq1Kk688wz1atXL0nSoUOH5HA41KJFi2+tbd26tQ4dOlSzpnXr1t8636JFCzkcjpo1/+3RRx/V7373u3p4FwAagjsmSq/cOFiXPvO5dhWV6ecvr9Xcm4cqzhkx39IAAADqhGEY8m/eLN/CTJUsWaLQ1xcLSZKzRw+5M8bLPXas7MnJJqYEAACIPBHTEt1xxx3atGmTVq5c+aNrDcOQxWKp+fc3//f3rfmmBx98UFOnTq35d0lJiTp06HAKqQGYpY3bpX/eNFiXPfO5Nh3w6bbX1unFGwbJYbeaHQ0AAOAnC+blybdokXwLM1W5Z0/NcXtyshIuvljujPFyeTzmBQQAAIhwEVF833nnncrKytKKFSvUvn37muNt2rRRZWWljh079q2rvgsKCjR8+PCaNatXr/7W8x07dkzBYPA7V4L/P6fTKaeTsQhAY9clOU5zfj5YVz+/Sp/uKNK0+dn6+xX9ZLWe+EMvAACASBYqLdXx9z+QLzNT5WvW1By3uFyKP/98uTMyFDtsqCw2m4kpAQAAGgdTL400DEN33HGHFixYoOXLlystLe1b5wcOHKioqCj961//qjl28OBBbdmypab4HjZsmLZs2aKDB/+ze/kHH3wgp9OpgQMHNswbAWCafh0S9ey1A2W3WpSVna/fL96mCNqzFwAA4AcZoZBKP12pvGnTtePMs3TwoYdqSu+YIUPU9k9/UreVK5X6+F8Ud+YISm8AAICTZDFMbIhuv/12zZ07V5mZmfJ84zY9t9ut6OhoSdJtt92mxYsX6+WXX1bLli01bdo0HTlyROvWrZPNZlMoFFK/fv3UunVrPf744zp69KgmT56sCRMmaObMmSeV42R3AgUQuTI35unueRslSdNHezTlnK4mJwIAAPh+fu92+TIzVbJokaoKC2uOO9LS5M7IkPvicYpKTTUxIQAAQGQ62S7X1OL7+2Zwz5kzR5MnT5Yk+f1+TZ8+XXPnzlVFRYXOO+88Pf3009+ayb1v3z7dfvvtWr58uaKjo3X11VdrxowZJz3OhOIbaBpeXLlbjyzeJkl67NLeumJQR5MTAQAA/EdVYaF8S5bIl5mlwFdf1Ry3JSYqYexYuSdkyNWr1/f+nQQAAIBGUnxHCopvoOl4bFmOnvl4p6wW6dlrB+qC09uYHQkAADRjYb9fxz/8UL7MTJV99rkUClWfiIpS/Nlnyz0hQ3FnnSWLw2FuUAAAgEbiZLvciNjcEgDqyv2jPTpSGtBbXx7QnW9s0Ks3DdHgtJZmxwIAAM2IEQ6rYt06FWdm6viy9xUuLa05F923rxIyxithzBjZW7QwMSUAAEDTRvENoEmxWCz60yW9dbSsUv/+qkA3vbJW828dpvQ23M0BAADqV+WePfJlZcmXmaVgXl7N8ah27eSekKGEiy+WMy3NxIQAAADNB6NOxKgToCmqqAzpuhdX68u9x5QS79Q7tw1Xh5YxZscCAABNTKi4WCVLl8q3MFMV2dk1x62xsYofc6ESMzIUPXCgLFariSkBAACaDmZ81wLFN9A0+cqDmjT7C3kPH1fnVrGaf+swJcWd3Ka3AAAAP6Ry/34VPjVTx5ctkxEMVh+02RR75gi5x49X/HnnyepymRsSAACgCaL4rgWKb6DpOuTz69JnPldecYX6tndr7s1DFetkyhMAADg1VceO6cizz+ro3DekrwtvZ48ecmeMl3vsWNmTk01OCAAA0LRRfNcCxTfQtOUWlOryZz/XsfKgzurWSi/eMEgOO7cbAwCAkxcOBHTstddU9OxshY8flyTFDh+u5KlTFd3rdJPTAQAANB8n2+XS/ABo8rqmxGnOzwcrxmHTpzuKNG1+tsLhZv+ZHwAAOAlGOCzfokXaNeYiFTw+Q+Hjx+X0eNThhRfU8aUXKb0BAAAiFPf7A2gW+nVI1DPXDtRNL69VVna+kuIc+s24nrJYLGZHAwAAEaps1SoV/OVx+bdtkyTZW7dW8t13y50xXhabzeR0AAAA+CGMOhGjToDmZOGGPN3z5kZJkqd1vC4ZkKoJ/VLVxs3mUwAAoFpgxw4dnjFDZZ+skCRZY2OVdPPNannD9bJGR5ucDgAAoHljxnctUHwDzcurq/bqkcXbVFkVliRZLNKZXVtp4oBUjT69jWIc3AwDAEBzFDxcoKJZM1X8zgIpHJbsdrWYNEmtptwue1KS2fEAAAAgiu9aofgGmh9fRVBLNx/UgvV5WrPnaM3xGIdNY3q11cQBqRraOUk2K6NQAABoioxwWMF9++TP8crvzVEgx6uyVatkVFRIkuLPP1/JU++VMy3N5KQAAAD4JorvWqD4Bpq3fUfK9e6GPC3YcEB7j5TXHG/rdmlC/1RdOiBVXVPiTUwIAAB+ilBpmQLbtyvgzZE/x6tATo78O3bIKC//ztrovn2V8sD9ihkwwISkAAAA+DEU37VA8Q1AkgzD0Pp9x/T2ujwt2ZSvEn9Vzbk+7d2a2D9VF/dtp6Q4p4kpAQDAjwkVF+vY/Pnyb9osv9er4L59J1xncTjk7NZNznSPXJ50uXr1UnT/fmx+DQAAEMEovmuB4hvAf/MHQ1qeU6AF6w/oY2+hqsLV3yrtVovO9iRr4oD2Ojc9Ra4om8lJAQDA/wsHAjr22usqmj1b4ZKSb52zp6TUFNzOdI9c6elynHaaLHb29gAAAGhMKL5rgeIbwA85UhrQoux8LdiQp00HfDXHE1x2jevbTpcOSNWAji24OgwAAJMY4bBKlrynwr/9TcH8fEmSs3t3uS+5RK50j5wej+wtW5qcEgAAAHWB4rsWKL4BnKwdh49rwYY8LdyQp4M+f83x05JiNLF/e13SP1Udk2JMTAgAQPNStmq1Ch5/XP6tWyVJ9tatlXz33XJnjJfFxp1ZAAAATQ3Fdy1QfAOorVDY0KpdR/TO+gNatuWQyitDNecGd2qpiQNSdVGftkpwRZmYEgCApiuwY4cKZjyh0k8+kSRZY2OVdPPNannD9bJGR5ucDgAAAPWF4rsWKL4B/BTllVV6f+shLVifp5W5Rfr/76pOu1V3nttVd5zbzdyAAAA0IcGCAhXNnKnidxZI4bBkt6vFpElqNeV22ZOSzI4HAACAekbxXQsU3wDqyiGfXws35mnB+gPafrhUkvTUVf01vm87k5MBANC4hcvKdOTFl3RkzhwZFRWSpPjzz1fy1HvlTEszOR0AAAAaCsV3LVB8A6hrhmHoL+979czHOxXjsGnhlBHq3jre7FgAADQ6VceOqWTRYhU995xCRUWSpOi+fZXywP2KGTDA5HQAAABoaCfb5dobMBMANBsWi0XTLvBo8wGfVuYW6dZX1ynzjhGKZ+Y3AAA/yqisVOmKFfJlZur4x59IwaAkKapjR6VMnar40RfIYrGYnBIAAACRjOIbAOqJzWrRk1f208UzV2pXUZmmz9+kZ64dUKd/qJdXVqk0UKWUeFedPScAAGYwDEP+zZvlW5ipkiVLFPL5as45e/RQ4uWXqcVll8nicJiYEgAAAI0FxTcA1KOkOKeevnagJj37hZZtPaTnP92lW0Z2qZPnzi0o1Q0vrdFBX4UmndFBU8/vrpQECnAAQOMSzMuTb9Ei+RZmqnLPnprj9uRkJYy/WO7xGXJ5upsXEAAAAI0SM77FjG8A9e+1VXv1q4VbZLVIr/9iqIZ1SfpJz5e9v1iT56zRsfJgzbHoKJtuHtlZt4zsrDgnn2sCACJXqLRUx9//QL7MTJWvWVNz3BIdrfjzR8k9PkOxw4bKYrOZmBIAAACRiM0ta4HiG0B9MwxD983P1oL1eWoV59DiO89SG/epXZ29ckeRbnn1S5VXhtSnvVv3juqup5bv0IZ9xZKkVnFO3TOqm64c1EF2m7Uu3wYAAD+JEQyqcNY/dPSVV2T4/dUHLRbFDBkid0aG4s8/X7a4WHNDAgAAIKJRfNcCxTeAhlBRGdLEZz7XVwdLNKBjoubdMkwOe+2K6cWb8nXvmxsVDBka0TVJs687Q3FOuwzD0NIth/TYshztPVIuSeqSHKv/GdNDo3qksAEYAMB0lQfylH/ffarIzpYkOTp3ljsjQ+6LxymqXTuT0wEAAKCxoPiuBYpvAA1l75EyjZu5Usf9VZo8vJN+O/70k37sq6v26jeZW2QY0kW92+hvV/ST0/7tW8Arq8J6ffVePfXhjpoxKIPTWuqhi3qob4fEOn0vAACcrJJly3Tw179R+PhxWePj1faR3yt+9Gg+mAUAAECtUXzXAsU3gIb04VeHddMrX0qS/n5FP03on/qD6w3D0FMf5upv/94uSbpmSEf9PqOXbNbvLwtK/EE98/FOvbRytwJVYUnSxX3bafoFHnVMiqmjdwIAwA8L+/06/OifVfzmm5Kk6H791G7GDDna//DPPgAAAOD7UHzXAsU3gIb2xAdezVyeq+gomxZOGSFPm/gTrguHDf1u0Va98sVeSdJd53XTvaO6nfQVcvnFFZrxgVfvbsiTYUhRNouuH9ZJd57bVYkxjjp7PwAA/LfAjh3KmzpVgR25ksWipJtvVvKdd8gSFWV2NAAAADRiFN+1QPENoKGFwoYmz1mjT3cUKa1VrDLvGKEE17eLgMqqsKbNz1ZWdr4k6bcX99TkEWmn9Hpb833689IcfbqjSJKUmhitV28arM7JcT/tjQAA8F8Mw1Dx/Pk6/KdHZfj9srVqpdS/PKbY4cPNjgYAAIAm4GS73NrtqgYAqBM2q0VPXtlfqYnR2l1UpmlvZeubn0OWV1bpF//8UlnZ+bJbLXryyn6nXHpL0unt3Hr1piF65cbBOi0pRnnFFbrs2S+0+YCvLt4OAACSpNDx48qbOlWHfvOwDL9fsWeeqc4L36X0BgAAQIOj+AYAk7SMdejpawbIYbPqg22H9ewnuyRJx8oqdfXzq7Vie6Gio2x64YYzlNGvbmah/qx7st65bbh6pSboaFmlrnzuC32eW1Qnzw0AaN4qsrO1e8IlOr50mWS3K2X6NHV4brbsrVqZHQ0AAADNEMU3AJiob4dE/S7jdEnS4+/naMH6A7p89hfauL9YiTFRev3mITrbk1Knr9kqzqk3bh6qYZ2TVFYZ0uQ5a7V088E6fQ0AQPNhhMM68sIL2nPNtQrm5SkqNVWdXn9NSTfdJIuVPzcAAABgDmZ8ixnfAMxlGIbuf3uT5q87UHOsTYJLr940WN1an3jTy7rgD4Z0z7yNWrb1kKwW6Q8TeuvqIR3r7fUAAE1P5YEDOvTwb1X22WeSpPgxF6rt738vW3z9/fwCAABA88aMbwBoJCwWix6Z0Eunt6v+Zt25Vazevm1YvZbekuSKsukf1wzQVYM7KGxI//vuZs1avkN8HgoA+DGh4mId/vNj2jXmIpV99pksLpfaPPJ7pf71r5TeAAAAiAhc8S2u+AYQGY6UBrRs6yFd1KutWsQ6Gux1DcPQjA+8+sdHOyVJPx/RSb8e21NWq6XBMgAAGodwZaWOvfa6imbPVthXvUFyzLChavPQQ3J27WpyOgAAADQHJ9vlUnyL4hsAJOnFlbv1yOJtkqRL+qfqL5f1UZSNG4MAANVzvEuWvKfCv/9dwbw8SZKzWzel3D9dsWeeKYuFD0sBAADQME62y7U3YCYAQAS76cw0tYyN0vT5m/TuhjwVl1fq6WsGKtphMzsaAMBEZavXqODxx+XfskWSZE9JUfLdd8k9YYIsNn5GAAAAIDJRfAMAalzSv70Sox267fV1+shbqGtfXK0XbzhDiTENN3oFABAZArm5KpjxhEo//liSZI2JUdItN6vl9dfLGhNjbjgAAADgRzDqRIw6AYD/9uWeo7rx5bUq8Vepe+s4/fPGIWrjdpkdCwDQAKoKC1U4c5aK335bCoclm00trpikVlOmyJ6UZHY8AAAANHPM+K4Fim8A+C7voeO6/qXVOlwSUGpitObePESnJcWaHQsAUE8q9+1T8TsLdPTVV2WUl0uS4kadp5Sp98nZOc3kdAAAAEA1iu9aoPgGgBPbf7Rc17+0RruLytS9dZwWThmhGAdTsgCgqQj5fCpZuky+rCxVrF9fc9zVt49a33+/YgYONDEdAAAA8F0U37VA8Q0A36+gxK+xM1eq8HhA4/u205NX9pPFYjE7FgDgFBnBoEo/XSlfZqZKly+XEQxWn7BaFTt8uBInXa7488/nez0AAAAi0sl2uVy2BwD4QSkJLj19zQBd9dwqZWXna0DHRE0ewS3vANCYGIYh/9Zt8mVmqmTJEoWOHq055+zWTe4JE5QwbpyiWqeYmBIAAACoO6dUfIfDYeXm5qqgoEDhcPhb50aOHFknwQAAkWNQp5Z68KIeemTxNv1hyVfqlerWGZ1amh0LAPAjgocOybdokXyZmarM3Vlz3JaUJPe4cXJPyJAzPZ2ruwEAANDk1Lr4XrVqla6++mrt3btX/z0lxWKxKBQK1Vk4AEDkuHFEJ23Yd0yLNx3UlLnrtfjOs5Qc7zQ7FgDga1WFhfLneBXY7q3+mpOjQG6u9PXv7BanU/HnnSt3RoZiR4yQxc7NnwAAAGi6av3b7q233qozzjhDS5YsUdu2bbk6BACaCYvFoscu7SPvoePaUVCqO+au1+u/GCK7zWp2NABoVoxgUIFduxXw5tQU3H6vV6EjR064PuaMM+SekKH40aNli49v4LQAAACAOWq9uWVsbKyys7PVtWvX+srU4NjcEgBOXm5BqTJmrVRZZUi3jOys/72oh9mRAKDJ83u9Ovrqq/Jv3abK3Nz/bEj5TRaLHJ06yZnukcuTXv21Z09FpTC3GwAAAE1HvW1uOWTIEOXm5jap4hsAcPK6psRpxuV9ddvr6/Xcil3q3yFRY3q3NTsWADRJwUOHVPjkU/ItXFgzskSSrHFxcno8cnk81QV3erqc3brJGh1tYloAAAAgctS6+L7zzjt133336dChQ+rdu7eioqK+db5Pnz51Fg4AEJnG9G6rW0Z21nMrdmna/Gx1ax2vrilxZscCgCYjVFqqI8+/oKOvvCLD75ckxV94odzjxsqZnq6o1FRGDgIAAAA/oNajTqzW785ytVgsMgyj0W5uyagTAKi9qlBY17ywWqt3H1XXlDhlThmhWCcbpQHAT2EEgzr21lsq+sfTCh09KkmKHjhQre+f/n/s3Xd0VNXCxuHfmUlvQyqE3nsvglgAASlCAipWVCxgB6UoVuwNURQVFBugyLVB8FoQUJCigEQEFEInhBBCCpPeZs73B97cy4clE2aYhLzPWlmQfebseefetSTzZs/eBHbq5OV0IiIiIiLe57GtTvbv339awURE5OzgY7Xw2jVdGTZrDXvS87j/s63MurqLViCKiFSCaZrkLl/OsRkvUXLwIAB+TZoQM3kSIRddpP+2ioiIiIi4yOXiu1GjRp7IISIi1VB0qD9vXNuVK9/8iX9vPUKXhuHcfH4Tb8cSEalWCn75hfTpL1KYmAiANTKS6LvupNbll2P8v20FRURERESkYir1mfS9e/cyc+ZMduzYgWEYtGnThgkTJtCsWTN35xMRkSquW6MIHr6kDY998TvPfrWDDvVsnNMkwtuxRESqvJKDB0mf8RK5334LgBEQQMSNY4i8+RasIcFeTiciIiIiUr2dumH3P1i2bBlt27Zl48aNdOzYkfbt27NhwwbatWvH8uXLPZFRRESquBt6NyauU13KnCZ3LkwkPafI25FERKqssuxs0p56mr2XDDtRelss2C6/jGbLviFmwgSV3iIiIiIibuDy4ZZdunRh0KBBPPfccyeNT506lW+//ZbEPz6iWZ3ocEsRkdNXUFLGiNfXsetoHuc0juDDsT3xtbr8+1URkbOWs6iIrPkLyHzrLZx5eQAEX3gBMZMmE9CqpZfTiYiIiIhUDxXtcl0uvgMCAti2bRstWrQ4aXzXrl107NiRoqLqt8pPxbeIiHvsO5ZH3GvryCsu4+bzm/DIsLbejiQi4nWm04k9YSnHXnmFsrQ0APzbtKH2lMkE9+7t5XQiIiIiItVLRbtcl5fiRUdHs2XLllPGt2zZQkxMjKvTiYjIWaRpdAgvjuoEwDtr9zP1s60Ulji8nEpExHvy1q1j/6WXceSBByhLS8MnNpa6zz9Hk88+VektIiIiIuJBLh9uOXbsWMaNG8e+ffvo3bs3hmGwdu1ann/+eSZNmuSJjCIiUo0Mbl+HqUNa8/w3O1m06RA/H8zmtWu60LqOPlEjIjVHUVIS6dNfJH/tWgAsoaFE3TqO8Ouuw+Lv7+V0IiIiIiJnP5e3OjFNk5kzZzJjxgxSU1MBqFu3LlOmTGH8+PEYhuGRoJ6krU5ERNxv/Z4M7vnXFtJzi/H3sfDIsLZc27Nhtfx3QkSkokqPHuXYK69iX7wYTBN8fQm/+iqibr8dn/Bwb8cTEREREan2PLbH9//Kzc0FIDQ0tLJTVAkqvkVEPCMzr5hJn/zKqqRjAAxpX4fnLu2ILcjXy8lERNzLkZdH5ty3yZo3D/OPM29CBw8mZuK9+DVs6OV0IiIiIiJnjzNSfJ8tVHyLiHiO02ny7rr9PP/NTkodJvVqBfLq1V3o1kgrH0Wk+jNLS8n++GMyXn8DR1YWAIHdulH7vikEdurk5XQiIiIiImcftxbfXbt2ZeXKlYSHh9OlS5e//Zh6YmJi5RJ7kYpvERHP25pynLs/+oWDmQVYLQYTB7bk9j7NsFi09YmIVD+maZK7YgXHZrxEyYEDAPg1bkzM5EmE9O+vbZ1ERERERDykol1uhQ63jI+Px/+PQ3ji4+P1g7yIiLisY/1a/Pvu83l4yXYStqQyfVkSP+7N5KUrOxETGuDteCIiFVa4ZQtHX5hO4R8LPqwREUTddSfho0Zh+GorJxERERGRqkBbnaAV3yIiZ5Jpmny6OYVHE36jsNRBVIgfM67oTJ+W0d6OJiLyt0oOHiT9pZfJXbYMACMggIgbxxB5881YQ0K8nE5EREREpGaoaJdrcXXipk2bkpmZecr48ePHadq0qavTiYhIDWMYBqO6N+CLu8+ndZ1QMvJKuOHdjTz71Q5Kypzejicicoqy7GzSnn6GvcOGnyi9DQPbZZfSbNk3xEyYoNJbRERERKQKcnnFt8ViIS0tjZiYmJPGjx49SoMGDSgpKXFrwDNBK75FRLyjqNTBM1/tYP6PBwE4t2kk828+B1+ry7+XFRFxO2dREVkLFpD55ls48/IACL7gAmImTyagVUsvpxMRERERqZncusc3wNKlS8v/vmzZMmw2W/n3DoeDlStX0qRJk0rGFRGRmijA18oT8e3p3SyKyZ/8yo/7Mnnmqx1MG97O29FEpAYznU7sS5dy7JVXKTtyBAD/Nm2oPWUywb17ezmdiIiIiIhURIWL7xEjRgAnPqJ+ww03nHTN19eXxo0bM2PGDPemExGRGmFw+zpYDBi3YDPvrTtAl4bhxHWq6+1YIlJDmA4HJQeTKU7aSdHOJPJWraI4KQkAn9hYYu6ZQNjw4RgWfRpFRERERKS6qHDx7XSe2He1SZMmbNq0iaioKI+FEhGRmufidnW4o28z3li1l6mfbaV1nVBa1g71diwROcs4cnMpTkqiaGdSedFdvHs3ZlHRSY+zhIYSdes4wkePxhIQ4KW0IiIiIiJSWRUuvv9j//79nsghIiLCpItb8WvKcdbtyeS2BZtJuOs8QgN8vR1LRKop0zQp+PFHCn7eTFFSEsU7d1J6+PCfPtYICMC/ZUsCWrXCv01rwoYMwSc8/AwnFhERERERd3G5+AbIz89n9erVJCcnn3KY5bwza+AAACAASURBVPjx490STEREah6rxeDVq7owbNZa9mXkM+WTrcwe3RXDMLwdTUSqmcItWzg6/UUKN28+5ZpPbOyJgrt1qxN/tmqNX6OGGFarF5KKiIiIiIgnGKZpmq7c8MsvvzB06FAKCgrIz88nIiKCjIwMgoKCiImJYd++fZ7K6jEVPQlURETOjF+Ss7nizR8pdZg8MKQ1t/Zp5u1IIlJNlBw8SPpLL5O7bBlwYiV32KBBBLRri3+r1gS0aom1Vi0vpxQRERERkcqqaJfr8orve++9l+HDhzN79mxq1arFTz/9hK+vL6NHj2bChAmnFVpERASgS8NwHh3ejkeWbOf5b3bSob6N3s10toSI/LWy7Gwy3phN9qJFUFoKhoHt0pFEjx+Pb+3a3o4nIiIiIiJnmMtH02/ZsoVJkyZhtVqxWq0UFxfToEEDXnjhBR588EFPZBQRkRpodM+GXNq1Hk4Txn/0C2n2on++SURqHGdRERlz57J34MVkL1gApaUEX3ABTZYsoe7TT6v0FhERERGpoVwuvn19fcv3Wq1duzbJyckA2Gy28r+LiIicLsMweHpEB1rXCSUjr4Q7PtxMSZnT27FEpIownU7sCQnsHTKUYzNewpmXh3+bNjR89x0azn2LgFYtvR1RRERERES8yOWtTrp06cLPP/9My5Yt6devH48++igZGRksWLCADh06eCKjiIjUUIF+Vt68rhvDZq0lMfk4z3y1g8fi2nk7loh4Wf769Ryd/iLFO3YAJw6rjJ4wHltcHIbF5XUdIiIiIiJyFnL5ncEzzzxDbGwsAE8++SSRkZHcfvvtpKen89Zbb7k9oIiI1GyNIoOZeWVnAN5ff4Alvxz2ciIR8ZaipF0kjx1H8k03U7xjB5aQEKInTaTZ119Ra8QIld4iIiIiIlLOME3T9HYIb6voSaAiIuI9Ly5L4rXv9xDoa2Xxnb1pXUf/vRapKUqPHuXYq69iX7wEnE7w8SH86quJuuN2fMLDvR1PRERERETOoIp2uS5vdSIiIuIN9w5sya8px1mzO4PbFmxm6d3nExbg6+1YIuJBjrw8Mt9+m6z352EWnTjgNnTQIGIm3otfo0ZeTiciIiIiIlVZhYrvLl26lB9o+U8SExNPK5CIiMifsVoMXrmqC8NnreVAZgGTPv6VN0d3w2Kp2L9PIlJ9mKWlZH/yCRmvvY4jKwuAwC5diLlvCkFdung5nYiIiIiIVAcVKr5HjBjh6RwiIiL/KCLYjzeu7cqoOT+y/PejzPlhL3f0be7tWCLiJqZpkrdyJekvzqDkwAEA/Bo1InryJEIHDKjwQgwRERERERHt8Y32+BYRqW4WbkjmwcXbsBjwzg096Nc6xtuRROQ0FW7ZwtHpL1K4eTMA1vBwou66k/ArrsDw1bZGIiIiIiJyQkW7XMsZzCQiIuIWV5/TgFHd6uM0YdyCn/n31lRvRxKRSipJTiblnns5cNXVFG7ejOHvT+Stt9Js+bdEXHutSm8REREREakUlw+3tFgsf/sxU4fDcVqBRERE/olhGDw1sj0FpQ6+3HqEuz/6heyCUq7rpcPuRLzBmZ9P3g8/UJad7dJ9JXv2kv3JJ1BaCoaBbcQIoieMx7dOHQ8lFRERERGRmsLl4nvx4sUnfV9aWsovv/zCvHnzePzxx90WTERE5O/4+1h59aou1Ar05cMNyTyyZDtZeSWM799c+wCLnAGmw0HBhg3YE5aSs3w5ZkFBpecKPv98YqZMJqBVKzcmFBERERGRmsxte3wvXLiQf/3rXyQkJLhjujNKe3yLiFRfpmny8ordvLpyNwA3nNuIacPbYbGo/BbxhOI9e7AnJGBf+gVlR4+Wj/s2akhAq9YuzWX4+2OLjyfk/PPcHVNERERERM5SFe1yXV7x/Vd69uzJ2LFj3TWdiIhIhRiGwcSBLYkI8uWxL35n3o8HySooZcaoTvj56CgLEXcoy8wk58uvsCckUPTbb+XjlrAwwoYOwRYfT2Dnzvq0hYiIiIiIVBluKb4LCwuZNWsW9evXd8d0IiIiLhtzXhPCg/2Y9PGvfPFrKvbCUuaM7kqQn9t+xytSoziLi8n7/nvsSxLIW7MG/nOOi48PIX36YIuPI6RvXyx+ft4NKiIiIiIi8idcbgPCw8NPWs1jmia5ubkEBQXxwQcfuDWciIiIK+I716NWkB+3LdjMD7uOcc3cDbw3pgfhwSrmRCrKdDrJeGM2WfPm4czNLR8P6NABW3w8YUOH4BMR4cWEIiIiIiIi/8zlPb7nzZt30vcWi4Xo6Gh69uxJeHi4W8OdKdrjW0Tk7JKYnM1N72/ieEEpzWNCWHDzOcTaAr0dS6TKM0tLOfLwI9j/OLPFp04dbHFx2OLj8G/WzMvpREREREREKt7luu1wy+pMxbeIyNln99FcrntnI2k5RdSrFcj8m8+hWXRIhe8vKnWwJz2PnWm5tIgJoVODWh5MK+J9zsJCDt87kbxVq8Bqpc60R6l1+eUYFu2VLyIiIiIiVYdHi+/s7GzeeecdduzYgWEYtGnThhtvvJGIavqxVxXfIiJnp5TsAq5/ZyP7MvKJCPbjvTE9TimwTdPkWG4xvx/JYceRXHYcyWHHkRz2ZeTjcJ74J9LPauH9m3rQu1mUN16GiMc5cnI4dPsdFG7ejOHvT72XXyb0on7ejiUiIiIiInIKjxXfq1evJi4uDpvNRvfu3QHYvHkzx48fZ+nSpfTp0+f0knuBim8RkbNXZl4xN76/ia0pdoL8rDx7aQccTvOPgvtE0Z2ZX/Kn94YH+WIL9OVAZgEh/j4sGteL9vVsZ/gViHhWaXo6h24ZS/GuXVhCQ2kwZzZB3bp5O5aIiIiIiMif8ljx3b59e3r37s3s2bOxWq0AOBwO7rjjDtatW8f27dtPL7kXqPgWETm75RWXceuCn1m3J/NPr1sMaBIVTJvYMNrEhtH2jz9rh/lTXOZkzHsb+WlfFlEh/nx2+7k0igw+w69AxDNKDh4k+aabKT18GGt0FA3ffpuAVq28HUtEREREROQveaz4DgwMZMuWLbT6f2+KkpKS6Ny5M4WFhZVL7EUqvkVEzn7FZQ6mJfzGyp3pNIkMpk1saHnR3bJ2KIF+1r+8N6eolCvf/IkdR3JoFBnEp7f1JjrU/wymF3G/ot9/J3nsOByZmfg2bEjDd97Gr0EDb8cSERERERH5WxXtcn1cnbhr167s2LHjlOJ7x44ddO7c2fWkIiIiZ4C/j5XnLutYqXvDAnyZd1MPLpu9noOZBYx5byOLxvUiNMDXzSlFzoz8jRtJueNOnHl5+LdpQ8O33sQnOtrbsURERERERNzG5eJ7/PjxTJgwgT179tCrVy8AfvrpJ15//XWee+45tm7dWv7Yjh0rVzCIiIhUNTGhASy4qSeXz1nPb6k5jJu/mfdu7EGA71+vFBepinJXrODwxEmYJSUE9ehB/Tdexxoa6u1YIiIiIiIibuXyVicWi+XvJzQMTNPEMAwcDsdphTtTtNWJiIhU1PbDdq5880fySxwM7VCHWVd3xWoxvB1LpEKOf/opRx6dBk4nIf37U++lGVj8tW2PiIiIiIhUHx7b6mT//v2nFUxERKQ6a1/PxlvXd+fG9zbx1bY0IoK382R8ewxD5bdUXaZpkvn22xyb8RIAtssuJfbxxzF8XP5RUEREREREpFpw+d1Oo0aNPJFDRESk2jiveRQvX9mZuz5K5IOfkokK8eeeAS3PaIbCEgdWi4Gfz99/EkvEdDpJn/4iWe+9B0Dk2FuInjhRv6wREREREZGzWqWW+ezdu5eZM2eyY8cODMOgTZs2TJgwgWbNmrk7n4iISJV0ScdYsvLb8UjCb8xcsZuoEH9G9zozvxxOTM5m7LyfcZomd1/UgtG9GqkAlz9llpZy5JFHsS9ZAkDMffcRedONXk4lIiIiIiLieS6/S162bBlt27Zl48aNdOzYkfbt27NhwwbatWvH8uXLPZFRRESkSrru3MaMv6g5AI8kbOfrbUc8/pyrdx3j2rkbyMwvIbuglCf+/TsDXlrNv7em4uKxHXKWcxYWknL3+BOlt9VK7DPPqPQWEREREZEaw+XDLbt06cKgQYN47rnnThqfOnUq3377LYmJiW4NeCbocEsREaks0zR5cPF2PtqYjJ/Vwvs39aB3syiPPFfClsNM+vhXypwmF7aMZlC72sxcsZtjucUAdG5Qi4cuaUOPxhEeeX6pPhw5ORy6/Q4KN2/G8Pen3ssvE3pRP2/HEhEREREROW0V7XJdLr4DAgLYtm0bLVq0OGl8165ddOzYkaKiosol9iIV3yIicjocTpM7P0zkm9/SCPH3YdG4XrSvZ3Prc8xbf4DHvvgN04S4TnV5cVQn/Hws5BeXMXfNPt76YR8FJQ4ALm5bm/uHtKZZdIhbM0j1UJqezqFbxlK8axeW0FAazH6DoO7dvR1LRERERETELSra5bq81Ul0dDRbtmw5ZXzLli3ExMS4NNcPP/zA8OHDqVu3LoZhsOSP/Sf/Y8yYMRiGcdJXr169TnpMcXExd999N1FRUQQHBxMXF0dKSoqrL0tERKTSrBaDmVd1pmeTCPKKyxjz3iZ2Hc11y9ymafLS8l1MW3qi9L7h3EbMvLJz+Z7ewf4+3DOgJaum9OWang2xGPDt70e5+OUfeHjJNjLyit2SQ6qHkoMHOXjNtRTv2oU1OopGC+ar9BYRERERkRrJ5eJ77NixjBs3jueff541a9awdu1annvuOW699VbGjRvn0lz5+fl06tSJ11577S8fM3jwYI4cOVL+9dVXX510/Z577mHx4sUsWrSItWvXkpeXx7Bhw3A4HK6+NBERkUoL8LUy94butIkNIyOvmCGvrDnt4tnhNHkkYTuvrtwNwL0DWvJYXDssFuOUx8aEBvDMyA58e++FDGgTg8Np8sFPyfR54XtmrdxNYYn+XTzbFe3YwYFrR1OakoJvw4Y0XriQgNatvR1LRERERETEK1ze6sQ0TWbOnMmMGTNITU0FoG7dukyZMoXx48djGKe+Ga9QEMNg8eLFjBgxonxszJgxHD9+/JSV4P9ht9uJjo5mwYIFXHnllQCkpqbSoEEDvvrqKwYNGlSh59ZWJyIi4i7Hcot54POtrNiRDkCwn5Xb+jTjlguaEuhnrfA8xWUOJn78K19uPYJhwBPx7bmuV6MK3//j3kye/XoHW1PsANQO82fiwJZc3q0B1j8pzqV6y9+4kZQ77sSZl4d/69Y0nPsWPtHR3o4lIiIiIiLidh7b6sQwDO69915SUlKw2+3Y7XZSUlKYMGFCpUvvv7Nq1SpiYmJo2bIlY8eOJT09vfza5s2bKS0t5eKLLy4fq1u3Lu3bt2f9+vV/OWdxcTE5OTknfYmIiLhDdKg/b9/Qg4/G9qJjfRv5JQ5mLN9F3xe/5+NNh3A4//n3zXnFZdz8/s98ufUIvlaDWVd3can0Bji3WSRL7jiPV67qTP3wQI7mFHP/Z9t44ovfKvvSpIrKXbGCQ7eMxZmXR1D37jRaMF+lt4iIiIiI1HguFd8bNmzgoYce4r777uPbb78lNDSU0NBQT2VjyJAhfPjhh3z33XfMmDGDTZs2cdFFF1FcfOJj42lpafj5+REeHn7SfbVr1yYtLe0v53322Wex2WzlXw0aNPDYaxARkZrpz4rn+z7bytBX1vB9Ujp/9YGrrPwSrp37E2v3ZBDkZ+XdMT0Y1rFupTJYLAbxneuxclIf7h98YsuLDzckcyiroNKvS6qW4599Rsr4CZglJYT070+Dt+di9eDPZiIiIiIiItVFhYvvxYsXc9555/HKK6/w1ltvMWTIEGbOnOnJbFx55ZVccskltG/fnuHDh/P111+za9cuvvzyy7+9zzTNv119/sADD5SvVrfb7Rw6dMjd0UVERE4qnh++pA22QF+SjuZy43ubGP3OBrYftp/0+MPHC7l8znp+TbETHuTLR2N7cUGL01+56+9j5fa+zbigRRRlTpPXv99z2nOK92W+/TZHHnoYnE5sl11K/VdmYgkI8HYsERERERGRKqHCxfczzzxTvuf28ePHefzxx3nqqac8me0UsbGxNGrUiN27TxzyVadOHUpKSsjOzj7pcenp6dSuXfsv5/H39ycsLOykLxEREU/x97FyywVNWT2lL2MvaIKf1cK6PZkMf20tE/+1hcPHC9mTnsvls9ez71g+dW0BfHJbbzo1qOXWHBP6twDg080pWvVdjZmmydEXppP+4gwAIm+5mdinnsLw8fFyMhERERERkaqjwsV3UlIS9913Hz5/vKmaMmUKx48fJyMjw2Ph/r/MzEwOHTpEbGwsAN26dcPX15fly5eXP+bIkSNs376d3r17n7FcIiIiFVEryI+HLmnLykl9iOtUF9OEz385TL8XVzHyjfUcsRfRPCaET2/vTfOYELc/f/fGEZzXPJIyp8kbq/a6fX7xHNM0KU1LI3fVKlInTSbr3XcBiJkyhZjJkz1yzoqIiIiIiEh1VuGlQXl5edSq9d+VZ/7+/gQGBpKTk0NUVFSlnjwvL489e/77cev9+/ezZcsWIiIiiIiI4LHHHuOyyy4jNjaWAwcO8OCDDxIVFcXIkSMBsNls3HzzzUyaNInIyEgiIiKYPHkyHTp0YMCAAZXKJCIi4mkNIoJ49eou3HJBE57+cgcb9mdRUuakU4NavD+mB+HBfh577gn9W7Juz498uvkQd13UnHq1Aj32XFI5zpISSvbsoWhnEsVJO0/8uXMnDvv/bI1jtRL75JPUunSk94KKiIiIiIhUYS59JnbZsmXYbLby751OJytXrmT79u3lY3FxcRWe7+eff6Zfv37l30+cOBGAG264gdmzZ7Nt2zbmz5/P8ePHiY2NpV+/fvzrX/866UDNl19+GR8fH6644goKCwvp378/77//Plar1ZWXJiIicsZ1rF+LReN6sSrpGL8fyWFM78YE+3t2u4pzmkRwbtNIftyXyRvf7+HpkR08+nzy9xw5ORT+uvW/BXfSTor37QeH49QHW634NWlMQKvW1Bp1OcG9ep3xvCIiIiIiItWFYZqmWZEHWiz/vCuKYRg4/uyNWhWXk5ODzWbDbrdrv28RETnr/bQvk6ve+glfq8HqKf2oq1XfZ5RZWkre2rXYE5aS9913mCUlpzzGYrMR0KoV/q1bEdCqNf6tWuHfojkWf38vJBYREREREak6KtrlVnhZmdPpdEswERER8a5eTSPp2SSCDfuzmLN6L0/Et/d2pLOeaZoU/fY79oQEcr78EkdWVvk13wYNCGjXjoDWrfBv1YqA1q3xqVNH+3aLiIiIiIicBs9+nlpERESqpAkDWnDN3A0s2niIO/o2p44twNuRzkqlaWnYv/gCe0ICJXv+e6CoNTIS27Bh2EbE49+6tUpuERERERERN1PxLSIiUgOd2zSScxpHsPHAiVXfj8W183aks4YzP5/cFSuwJySQ/+NP8MeucoafH6ED+mOLjyf4vPMwfPRjmIiIiIiIiKfoHZeIiEgNZBgGEwa04Nq3N7BwYzK3921G7TCt+q4s0+GgYMMG7AlLyVm+HLOgoPxaYPdu2OLjCRs0CKvOEhERERERETkjVHyLiIjUUL2bRdKtUTibD2YzZ/Vepg3Xqm9XFe/Zgz0hAfvSLyg7erR83LdRQ2zx8dji4vCrX9+LCUVERERERGomFd8iIiI1lGEYTOjfguvf3cjCDcnc3qcZMVr1/Y/KsrLI+feX2BMSKPrtt/JxS1gYYUOGYBsRT2Dnztq3W0RERERExItcLr4PHTqEYRjU/2P10saNG1m4cCFt27Zl3Lhxbg8oIiIinnNBiyi6NKzFL8nHefOHfTwyrK23I1VJzuJi8r5fhT0hgbw1a6Cs7MQFHx9CLrwQW3w8If36YvHz825QERERERERASpRfF9zzTWMGzeO6667jrS0NAYOHEi7du344IMPSEtL49FHH/VEThEREfGA/6z6HvPeJj7ccJDb+jQjOtTf27GqBNM0KfzllxP7dn/9Nc6cnPJrAR06nNi3e+gQfCIivJhSRERERERE/ozLxff27ds555xzAPj4449p374969at49tvv+W2225T8S0iIlLN9GkZTacGtfj10HHe+mEvD11Ss1d9lxw6hD1hKfalSylNTi4f94mNxTZ8OLb4OPybNfNiQhEREREREfknLhffpaWl+PufWAm2YsUK4uLiAGjdujVHjhxxbzoRERHxOMMwuKd/C258fxMLfjrIrX2aERVSs1Z9O3JyyPnmG+wJSyncvLl83BIUROigQdji4wk6pweGxeLFlCIiIiIiIlJRLhff7dq1Y86cOVxyySUsX76cJ598EoDU1FQiIyPdHlBEREQ8r2+raDrWt7E1xc7cH/bxwNA23o7kcWZpKXlr12JPWEred99hlpScuGCxEHzuudhGxBPavz+WoCDvBhURERERERGXuVx8P//884wcOZLp06dzww030KlTJwCWLl1avgWKiIiIVC//2ev75nk/M//Hg4y7sCmRZ+Gqb9M0Kfr9d+wJCeT8+0scWVnl1/xbtMA2Ip6wYcPwrV3biylFRERERETkdLlcfPft25eMjAxycnIIDw8vHx83bhxBWhElIiJSbV3UOoYO9WxsO2xn7pr9TB3S2tuR3Kbs2DHsCQnYExIo3r2nfNwaGYlt2DBsI+Lxb90awzC8mFJERERERETcxeXiG06sltq8eTN79+7lmmuuITQ0FD8/PxXfIiIi1ZhhGIzv34Kx839m/o8HGHdhUyKC/bwd67TZv/yStEen4czPB8Dw8yN0QH9s8fEEn3cehk+lfhwSERERERGRKszld3oHDx5k8ODBJCcnU1xczMCBAwkNDeWFF16gqKiIOXPmeCKniIiInAED2sTQrm4Yv6Xm8Paafdw3uPqu+nYWFJD2zDPYP/0MgIC2bal19VWEDRqENSzMy+lERERERETEkyyu3jBhwgS6d+9OdnY2gYGB5eMjR45k5cqVbg0nIiIiZ9Z/Vn0DzFt/gOMFJV5OVDlFSbvYP+qKE6W3YRB1x+00/vhfhI8apdJbRERERESkBnB5xffatWtZt24dfn4nf/S5UaNGHD582G3BRERExDsublubNrFh7DiSwztr9zPp4lbejlRhpmlyfNEijj77HGZJCT7R0dSdPp3gXj29HU1ERERERETOIJdXfDudThwOxynjKSkphIaGuiWUiIiIeI9hGEzo3xyA99cdICu/eqz6dtjtHB4/gbTHn8AsKSG4z4U0SVii0ltERERERKQGcrn4HjhwIDNnziz/3jAM8vLymDZtGkOHDnVrOBEREfGOi9vWoXWdUHKLy7j27Q2k5xZ5O9LfKkj8hX0jR5K7fDn4+hIz9X4azJ6NT0SEt6OJiIiIiIiIFximaZqu3JCamkq/fv2wWq3s3r2b7t27s3v3bqKiovjhhx+IiYnxVFaPycnJwWazYbfbCdO+nyIiIgDsTMth9NsbycgrpmFEEAtuPodGkcHejnUS0+Egc+7bHJs1CxwOfBs2pN6MGQR2aO/taCIiIiIiIuIBFe1yXS6+AQoLC/noo49ITEzE6XTStWtXrr322pMOu6xOVHyLiIj8uYOZ+Yx+ZwOHsgqJCvFn/k3n0LZu1fi3sjQ9ndT776fgx58ACBs2jDqPTcMaEuLlZCIiIiIiIuIpHi2+zzYqvkVERP5aek4R17+7kZ1puYQG+PDODT04p4l3txDJW7OG1Pun4sjKwggMpM4jj2AbOQLDMLyaS0RERERERDzLrcX30qVLGTJkCL6+vixduvRvHxsXF+d6Wi9T8S0iIvL37IWljJ33MxsPZOHvY+H1a7oyoG3tM5rBLCkhb80a7EuWkLt8BQD+rVpR7+WX8G/a9IxmEREREREREe9wa/FtsVhIS0sjJiYGi+Wvz8M0DAOHw1G5xF6k4ltEROSfFZU6uGthIit2pGO1GDx3aQdGdW/g0ec0TZOibduwJywl58svcRw/Xn4t/JpriLn/Piz+/h7NICIiIiIiIlVHRbtcn4pM5nQ6//TvIiIiUnME+FqZM7ob93+2jc8SU5jy6VayC0oYd2Eztz9XaWoq9qVfYE9IoGT//vJxn+howoYPxxYfT0Crlm5/XhERERERETk7VKj4FhEREQHwsVqYfnlHIoJ9mbtmP898tZPM/BKmDm592vtrO/Lyyf32W+wJCRRs2FA+bgQEEDpwILb4eILP7YVhtZ7uyxAREREREZGznMvF9/jx42nevDnjx48/afy1115jz549zJw5023hREREpOqxWAweuqQtkSH+PPf1Tt5cvY+svBKevbQDPta/3hLtz5imScGPP3L888XkrliBWVRUfi2oZ09s8fGEXnwx1pBgd7+Mf3QwM586tgD8fVS0i4iIiIiIVDcV2uP7f9WrV4+lS5fSrVu3k8YTExOJi4sjJSXFrQHPBO3xLSIiUjkfbzrE1M+34jRhYNvazLq6CwG+FSuKHbm5pE2bRs5XX5eP+TVpgi0+HtvwYfjWq+ep2H/LNE1e/DaJ17/fy7lNI1k4tudpr2YXERERERER93DrHt//KzMzE5vNdsp4WFgYGRkZrk4nIiIi1dgVPRpgC/Ll7o9+YfnvR7n+3Y28fUN3wgJ8//a+wq1bOTxxEqUpKeDjQ61Rl1Nr5EgCOnTwasnscJo8vGQbH208BMCP+zJZ9ttRBrev47VMIiIiIiIi4jrXPo8MNG/enG+++eaU8a+//pqmTZu6JZSIiIhUH4Pa1WHejecQ4u/Dxv1ZXDt3A0Wljj99rOl0kvnOOxy45lpKU1LwrVePxh9+QOy0aQR27OjV0ruo1MGdHyby0cZDWAw4p0kEAC98s5NShw73FhERERERqU5cXvE9ceJE7rrrLo4dO8ZFF10EwMqVK5kxY4b29xYREamhzm0WyaJxvbj+3Y1sO2znpeW7eHBom5MeU5aZMXcLLQAAIABJREFUSer9U8lfuxaA0MGDiX3icaxVYJux3KJSxs3fzI/7MvGzWnjlqs6c3yKKvtNXsS8jn0WbDnFdr0bejikiIiIiIiIV5PIe3wCzZ8/m6aefJjU1FYDGjRvz2GOPcf3117s94JmgPb5FRETcY/nvRxk7/2cMAz6+9Vx6ND6xajp//XoO338/jmMZGP7+1H7oQWqNGlUl9s7OyCtmzHsb2X44h2A/K3Ov707v5lEAzFt/gGlLfyMqxI9VU/oR4u/ymgERERERERFxo4p2uZUqvv/j2LFjBAYGEhISUtkpqgQV3yIiIu4z+ZNf+XRzCg0jgvjqjl4UzH2TzLfeAtPEv0Vz6r30Ev4tWng7JgCHsgq47p0NHMgsIDLYj/dvPIcO9f97lklJmZOLX17NgcwCJvRvwb0DW3oxrYiIiIiIiFS0y3V5j2+AsrIyVqxYweeff85/evPU1FTy8vIql1ZERETOGo8Ob0tdWwBFKSkkXnoVmW++CaZJrSuvpPHHH1eZ0jspLZfLZq/nQGYB9WoF8slt555UegP4+ViYMqg1AHPX7CM9t8gbUUVERERERMRFLn9e9+DBgwwePJjk5GSKi4sZOHAgoaGhvPDCCxQVFTFnzhxP5BQREZFqIizAl5l1s2Hhy4SWFuIMDqHB008SNniwt6OV23wwixvf20ROURkta4cw/6ae1LEF/Oljh3aoQ6cGtfj10HFeWbGbp0d2OMNpRURERERExFUur/ieMGEC3bt3Jzs7m8DAwPLxkSNHsnLlSreGExERkerFWVTEkccfJ/TZRwgtLWRneEPuv3gyZp/+3o5W7vud6Vz79gZyisro2rAWH9967l+W3gCGYfDgkBOrvhdtOsTeY/qEm4iIiIiISFXncvG9du1aHn74Yfz8/E4ab9SoEYcPH3ZbMBEREak+SlJSOPbGG+wbNpzjHy0CIOzmm5k1YgrbzRAeX/qblxOesPiXFMbO/5miUid9W0XzwS09qRXk94/39WwayYA2MTicJi98s/MMJBUREREREZHT4fJWJ06nE4fDccp4SkoKoaGhbgklIiIiVZ8jN5fcZcuwL0mg4Oefy8etUVHUfe45Qs4/j+kHsxg150c+/+UwF7erw+D2dbyW9521+3ny378DMKJzXaaP6oSvteJrAO4f3Jrvdqaz7Lej/Hwgi+6NIzwVVURERERERE6Tyyu+Bw4cyMyZM8u/NwyDvLw8pk2bxtChQ90aTkRERKoWs6yMvNWrOTxxErvPv4AjDz9yovQ2DIJ7n0vsc8/SfNk3hJx/HgDdGkUw7sJmADy0eBsZecVnPLPDafLc1zvLS+8bz2vMS1d0dqn0BmhRO5QrujcA4Nmvd5Yf8C0iIiIiIiJVj2G6+K4tNTWVfv36YbVa2b17N927d2f37t1ERUXxww8/EBMT46msHpOTk4PNZsNutxMWFubtOCIiIlWKaZoU79yJfUkC9i+/xJGRUX7Nr3kzbPHx2IYPx7fOn6/mLi5zEDdrHUlHcxncrg6zR3fFMIwzkv2IvZAJi7awcX8WAFMGteKOvs0q/fxHc4roM/17ikqdzBndzasr2EVERERERGqiina5LhffAIWFhXz00UckJibidDrp2rUr11577UmHXVYnKr5FRERO5cjJ4fgnn2JPSKB4167ycWtEBGHDLsEWF09Au7YVKpG3H7Yz4vV1lDlNXr6yEyO71PdkdABW/H6UyZ/+yvGCUoL8rDwzsgMjutQ77XlnfJvErO/20DQqmGX3XujyynERERERERGpPI8W32cbFd8iIiInK0lJIfnmmyk9mAyA4etLSP/+2OLjCDn/fAxfX5fnnLVyNzOW7yI0wIdv772QWJtnfmFeXObgua938t66AwC0rxfGrKu70iQq2C3z5xaV0mf6KrLyS3hqRHtG92rklnlFRERERETkn1W0y63UEqWkpCTuuusu+vfvz4ABA7jrrrvYuXNnpcOKiIhI1VGUtIuDV19D6cFkfOrGUufxx2mxdg31Z75MaL9+lSq9AW7v24xO9W3kFpVx/2fbPLJH9r5jeVz6xvry0vum85rw2e293VZ6A4QG+DKhfwsAZq7YTX5xmdvmFhEREREREfdwufj+9NNPad++PZs3b6ZTp0507NiRxMREOnTowCeffOKJjCIiInKGFCQmcvC66yg7dgz/Fi1o/NEiwq+8AqvNdtpz+1gtzLiiM/4+Fn7YdYyFG5PdkPi/Pk9MYdistfyWmkN4kC/v3NCdR4e3xd/H6tbnAbj6nIY0igwiI6+YuWv2uX1+EREREREROT0ub3XStGlTRo8ezRNPPHHS+LRp01iwYAH79lW/N3/a6kRERARyV63i8D33YhYVEdi1Kw1mv+GWwvv/e3vNPp76cgdBfla+nnABjSJPbzV2fnEZjyRs5/PEwwD0bBLBK1d1oY4twB1x/9KXW49w58JEgvysrJrSl5hQzz6fiIiIiIiIeHCrk7S0NK6//vpTxkePHk1aWpqr04mIiEgVYE9IIOXOuzCLigjp04eG77ztkdIbTmw/0rNJBAUlDqZ8shWHs/Jbnmw/bGfYrLV8nngYiwH3DmjJwrG9PF56AwztUIdODWpRUOLg1ZW7Xb5/T3oeLy3fxYxvk0jPLfJAQhERERERkZrL5eK7b9++rFmz5pTxtWvXcsEFF7gllIiIiJw5me+/T+r9U8HhwBYfR/3XZmEJ9MzBkwAWi8GLozoR7Gdl44Es3l273+U5TNPkvXX7ufSN9ezPyCfWFsBHY3sxYUALrBbDA6lPZRgGDwxpDcBHGw+x91jeP96TlV/CvPUHiH9tLQNeWs2rK3cz67s99J2+ipkrdmm/cBERERERETdxeauTOXPm8Oijj3LFFVfQq1cvAH766Sc++eQTHn/8cerWrVv+2Li4OPem9RBtdSIiIjWRaZoce3kmmW+9BUDEDTcQc/99GJZKnX3tso82JvPA59vw87HwZHw7Av18Knzv0i2prNhxFIABbWoz/fKOhAf7eSrq37pl3iZW7EhncLs6zLmu2ynXi8scfL8znc8SD/P9znTK/ljhbrUY9G0ZTUZ+Cb8eOg5AdKg/Ewe2ZFS3+vhYz8z/DyIiIiIiItVJRbtcl4tvSwXfDBuGgcPhcGVqr1HxLSIiNY3pcJD22OMc/+Ng6uiJE4kcewuGcWZWS8OJ4v3G9zexKulYpe73s1p4cGhrbujd+Izm/v92H81l0MwfcJrw2e3n0q1RBKZp8suh43yemMIXvx7BXlha/vj29cK4tEt94jrXJSrEH9M0+XLbEV74JonkrAIAWsSEMHVIay5qHePV1yYiIiIiIlLVeKz4Phup+BYRkZrEWVxM6uQp5C5fDhYLdR5/jPBRo7ySJT23iGkJv3G8oPSfH/w/wgJ9uPuiFrSv55l9yF019bOtLNp0iC4Na3FRqxg+/+Uw+zPyy6/XDvNnRJd6XNqlPq3qhP7pHMVlDj74KZlZ3+0u/9+jV9MIHhralg71q8brFBERERER8TYV3y5Q8S0iIjWFIy+PlDvvomDDBgxfX+rOeJGwiy/2dqxq72hOEX2mf09RqbN8LNDXypD2dRjZtR69m0VVeO9xe2Epb3y/h/fWH6Ck7MR88Z3rMvniVjSICPJIfhERERERkeqiol1uhTeP3LBhA19//fVJY/Pnz6dJkybExMQwbtw4iouLK59YREREPKosM5Pk62+gYMMGLMHBNJg7V6W3m9QOC2DSwFYYBpzXPJIZozrx88MDeOnKzlzQItqlAzdtgb48MLQN303qw8gu9QBI2JJK/xmreearHdhdXB0vIiIiIiJSE1V4xfeQIUPo27cv999/PwDbtm2ja9eujBkzhjZt2jB9+nRuvfVWHnvsMU/m9Qit+BYRkbNd4ZYtpN4/lZKDB7FGRNBg7lsEtmvn7VhnHdM03b4n9/bDdp75agfr92YCJ4rxhy9pw6juDdz6PCIiIiIiItWB27c6iY2N5YsvvqB79+4APPTQQ6xevZq1a9cC8MknnzBt2jR+//13N8Q/s1R8i4jI2ark4EHSX3qZ3GXLAPCtV4+G77yNX+PG3g0mLjFNk1W7jvHcVztJOpoLwKSBLbnrouY6/FJERERERGqUina5PhWdMDs7m9q1a5d/v3r1agYPHlz+fY8ePTh06FAl44qIiIg7lWVnk/HGbLIXLYLSUjAMbJeOJObee/GJivJ2PHGRYRj0axXDhS2ieXn5Ll77fg8zlu8iM7+ER4e1xeLCVioiIiIiIiI1QYX3+K5duzb79+8HoKSkhMTERM4999zy67m5ufj6+ro/oYiIiFSYs6iIjLlz2TvwYrIXLIDSUoIvuIAmS5ZQ9+mnVXpXc1aLweRBrZg2vC0A768/wL0fbyk/BFNEREREREROqPCK78GDBzN16lSef/55lixZQlBQEBdccEH59a1bt9KsWTOPhBQREZG/Zzqd5HzxBekzX6HsyBEA/Nu0ofaUyQT37u3ldOJuN57XhIhgPyZ9/CsJW1I5XlDK7NFdCfKr8I92IiIiIiIiZ7UKvzt66qmnuPTSS+nTpw8hISHMmzcPPz+/8uvvvvsuF198sUdCioiIyF/LX7+eo9NfpHjHDgB8YmOJnjAeW1wchqXCH+6Saia+cz3CAn25/YPNrN51jNFvb+DdMT2oFeT3zzeLiIiIiIic5Sp8uOV/2O12QkJCsFqtJ41nZWUREhJyUhleXehwSxERqY6KknaR/uKL5K9ZA4AlJITIW8cRcd11WAICvJxOzpTNB7O56f1N2AtLaVk7hPk39aSOTf//i4iIiIjI2amiXa7LxffZSMW3iIhUF6bTScGmnzn+2afk/PtLcDrBx4fwq68m6o7b8QkP93ZE8YJdR3O5/p2NpOUUUa9WIPNvPodm0SHejiUiIiIiIuJ2Kr5doOJbRESquuJ9+7EnJGD/YillqUfKx0MHDybm3nvwa9TIi+mkKkjJLuD6dzayLyOfiGA/3r+xBx3r1/J2LBEREREREbdS8e2CGlt8mybsWgYZSdD9JvAP9XYiERH5H2XZ2eR89RX2hKUUbd1aPm4JDSVs8GBqXTGKwA4dvJhQqprMvGLGvLeJbYftBPtZeev67pzXPMrbsURERERERNxGxbcLamzxDfBiK8hLg5tXQIMe3k4jIlLjOUtKyFu9GntCAnmrf4DS0hMXrFZCzj8f24h4Qvr10x7e8pfyissYN/9n1u/NxM9qYeZVnRnaIdbbsURERERERNyiol2uzxnMJFVRdMsTxXdGkopvEREvMU2Toq1bsSckkPPlVzjs9vJr/m3bUCs+nrBLLsEnSit35Z+F+Pvw3o09uGfRFr7ensadCxN5ekQHrunZ0NvRREREREREzhgV3zVdVCvY/wMcS/J2EhGRGqn0aDqpU++n4Mefysd8YmKwxQ0nLC6OgJYtvZhOqit/HyuvXdOVh5ds56ONyTy4eBuvrNxFm9iw8q+2saE0jgzGx2rxdlwRERERERG3U/Fd00W3OvFnxi7v5hARqYHyVq8mdeoDOLKzMfz9CR10Mbb4eIJ79cKwWr0dT6o5q8XgmZHtiQ715/Xv93A0p5ijOcdYlXSs/DH+PhZa1QmlTZ0w2sSG0vqPUtwW6OvF5CIiIiIiIqdPxXdNF/XHSkKt+BYROWPMkhLSX55J1nvvAeDfujX1XnoJ/6ZNvJxMzjaGYTBxYEvGXtCEpLRcdqTlsuNIDjuO5JCUlktBiYOtKXa2pthPuq9erUD6tY7m4UvaEuCrX8KIiIiIiEj1o+K7potufeLP4wehtAh8dViaiIgnlSQnc3jiJIq2bwcgfPRoYqZMxuLv7+VkcjYLDfCle+MIujeOKB9zOk0OZhWUF+EnvnI5fLyQw8cL+eCnZIL9fXhgSBsvJhcREREREakcFd81XUgMBNigyA6Ze6BOe28nEhE5a9n//SVp06bhzM/HYrNR95mnCe3f39uxpIayWAyaRAXTJCqYoR1iy8ftBaV8vf0IUz/fxls/7GNgm9onFebuUljiYOXOowxoU1urykVERERExO10mlFNZxgnDrgEyNB2JyIinuAsKCD1oYdInTwZZ34+gd260XTJYpXeUiXZgny56pyGXNa1PqYJkz75lYKSMrc+h9NpcvuHm7lr4S9M/WyrW+cWEREREREBFd8CEP2ffb51wKWIiLsVJSWx//JR2D/7HAyDqDvuoNG89/GNjf3nm0W8aFpcW+raAjiYWcCzX+1069yvfre7/JDNJVtSWb83w63zi4iIiIiIqPgWrfgWEfEA0zTJWriQA6OuoGTfPnxiYmj43ntEj78bw0c7jUnVFxbgywuXdwJgwU8HWbP7mFvm/T4pnVdW7gagfb0wAB5N+I2SMqdb5hcREREREQEV3wIQ/UfxrRXfIiJu4bDbOTx+PEefeBKzpITgPhfSZMlignv19HY0EZec3yKK689tBMB9n27FXlh6WvMdyirgnkVbME24tmdDPry5F5HBfuxJz+PddfvdEVlERERERARQ8S0AUX9sdZK5B5wO72YREanmin7/nX0jR5K7fAX4+hIz9X4azJmDT4T7DwcUOROmDmlN48ggjtiLeOKL3ys9T1Gpg9s+2Iy9sJRODWrx6PC22IJ8eWBoGwBeWbGb1OOF7ooNnDhAc+pnW3lw8TY2HcjCNE23zi8iIiIiIlWXim+BWg3BJwAcxZB9wNtpRESqrfwNGzl43fWUpR7Bt1FDGn/0EZFjxmAYhrejiVRakJ8PM67ohMWAzxJT+Pa3tErN82jCdn5LzSEi2I/Z13bF38cKwGVd69GjcTiFpQ6e/Hfli/X/zzRNHlqyjUWbDrFwQzKj5vxIn+mreHn5Lg5m5rvteUREREREpGpS8S1gsUJkixN/P6Z9vkVEKiN3xQoOjR2LMz+foB49aPLppwS2b+ftWCJu0a1RBGMvbArAg4u3kZlX7NL9izYm8/HPKVgMmHV1F+rWCiy/ZhgGT45oj9Vi8PX2NFbvcs9e4h9uSObzxMNYDLikQyzBflaSswp4ZeVu+kxfxeWz17Nww/+xd9fhTd1dAMe/qdNSAUpb3L3AcGe4DHfYYAwdM9iY27sxH2xMGAwZNtyH+3DG8OKuReruTe77x6+lMApN2qSpnM/z9Gnu7c29J20IybnnnnOLiNistW8RQgghhBB5WNR9OLMakk17/ytyBkl8C6VoSrsTGXAphBAmC1+5Ev+x49ASEynYri2l/piFraurtcMSwqzealeZyt4FCY5O5JO/zhjdNuSUfzj/W3sWgLc7VKFZRc/Htqnq48awpmUB+GztGeKTstZ67cStMCasV8d8v1NVpr5QlyOftOPnAc/QsnJRbHRw9GYYH605TYNvdvDaouPsPB9Akl4GbAohhBBCiBQR/jCrLawcBrM7QMhVa0ckTCSJb6F4yoBLIYQwlaZpBM+axb1PPgWDAfe+fSj588/YODpaOzQhzM7J3pbJ/Z/BLqUye53f3QzvExqTyCsLj5OoN9C+ujevPFvhidu+2b4y3m6O3AiJZcaea5mOMyQ6gVcXHSdJr9Gphg+jUyrVnR3s6FmnBH8Ob8g/H7blo+eqUsXblcRkAxtP32PE/KM0/mYnn687y2n/iEwfXwghhMiz9Mk5s+pV03JmXCJ3iw2FhX0g0l8t3zsJM1rCqeXWjUuYRBLfQpGKbyGEMIlmMBA4cRJBP04GoMiokRT78kt0dnZWjkwIy/Et4c4bbVR7tE//OkNAZPwTt9UbNMYtPcGd8DjKFnFWfcJtntzvvqCjHZ90qQ7AtN1XuBUSa3J86pgnuRcRT3lPFyb1q5Vuj31vNydGt6zAljdbsHFsc0Y0L4dnQQdCYhKZd/AG3X7bz/yDN0w+vhBCCJFnhd2A35vAxPKwZyIk5pB5GZF3VTLyx6pw55i1oxF5RWIsLB4AQRfAtTiM2A5lmkNiNKweBX+9CgnR1o5SGEES30J5uOLbyEuXhRAiv9KSkrj30ceEzp0LgNd77+H19tsyxFLkC6+2rkCtku5Exifz3spTT2x58suOS+y7HIyTvQ3Th9TDzck+w313rVWM5hU9SUg28Pn6s0a3U0k1eftF9l8JpoC9LdOH1MM1g2PqdDpqFHfn067VOfRhW+a+1ID21b1V/DsvE5eYtZYrQgghRJ4QcBZmd4TgSyrxt+trmFIPjv8JBiv+Xxl8RbWfuH8K4kJhUT8Ivmy9eETeoE+CFS+B/2FwcofBq6BUQxi6Dlp9CDobOLkIZraCe6esHa3IgE4z9RNFHhQZGYm7uzsRERG4ublZOxzrSE6Ar31AM8D48+BW3NoRCSFEjmSIi+POW+OJ3r0bbG0p9tVXePTqae2whMhWlwOi6DJlP4nJBr7tXZNBDUs/8vOd5wMYMf8oAD8PeIaedUoYve+rQdF0+nkvSXqNmUPq0aGGj1H323b2PqMXqEqvXwfVoXvtzL2XSdYbaPXDbvzD4viqpy+DG5fJ1H6EEEKIPOHWIVjcH+IjwKs6NH4F9v4A4TfVz72qQ/svoGI7yM4ikLsnVBuK2BAoXAEcC8I9P3AvDSO2gVux7Islp9M0iLgN989AQMqXnRO0/R+4l7R2dDmLpqlqbr/F6nf04loo3fjRbW4cgFUjIeou2DpAh6+h4ajMP/9jQuDMKriwQZ1YMlWzcVC9R+aOnYsZm8uVxDeS+H7g17oQehWG/AUVWls7GiGEyHH0kZHcfuVV4o4dQ+foSImffsK1jbxeivzpj33X+GrjeVwcbNnyZktKFXYG4GZIDN2m7CcyPpmhTcowoYevyfueuOUC03ZfpYRHAXaMf5YCDrZP3f56cAzdp+wnKiGZYc3K8lm3Gpl6TKnmHrjOhPXnKFvEmZ1vt8L2KS1ahBBCiDzr0lZYPhSS46BUI3h+GRQopArnjvyhWp7Eh6tty7WE9l9C8WcsH9e1PbD0eZUkLFYbXlil1s/pqHIaXtVh2GYo4GH5WHKapDgIPK+S2w8nuuPTmV/iVgKGrIGiVbI/zpxq+//gwC+gs4WBi6BK5/S3iw1VCfJLm9VylS7Q4zdwLmzccZIT1L8vv6VweSsYkjMfc5cfocHIzN8/l5LEtwkk8Z1iySC4uAk6T4RGL1s7GiGEyFGSAgO5PXIUCZcuYePqSqnpv+Ncr561wxLCavQGjUEzD3H4RigNyxVm6ajGJCQb6P37Qc7fi6RuaQ+Wjm6Cg53pnfViE5NpP3kvd8LjeK11Bd7tWPWp2/aedpAL96OoX6YQS0Y3xt42a938YhKSafrd30TEJTF9cD06+RpXdS6EEELkGX5LVWJP00OlDtBvPjg4P7pNXBjs+xH+nQH6RLWu1gBo8wl4lH58n+Zw9i/VY1mfqJLtAxaBU0oeJ+yGan0SHQClm6ikrn0By8SRU0QHqerke34q0R1yWV3J/182dlC0Knj7gnd1OL5AbVugMLywEkrK5xoO/gbbPla3e0yFOoOfvr2mqef+9k/V89GtBPT5A8o0ffL2/kfBb4mq8E49aQRQ7Bn1b6dwedPj9qoGhfLfFYqS+DaBJL5T7Pgc9v8E9UdA18nWjkYIIXKMxJs3uTViJEn+/tgW9aT0H3/gVEUqI4S4FRJLp1/2Epuo55Mu1Th/L4pVx/3xLOjA+jeaU8w98x82U1uX2Nvq2PJmSyoULfjYNpqmMX65H2tO3MGzoCMbxzbH280pKw/pgUlbLzB111XqlSnEqlee8AFGCCGEyIv+mQpbP1K3aw1QSUDbp8zNCLsJf38Jp1eoZVtHVUzX4m3zVl0fnQsb3gI0qNZdJRntHB/d5v4ZmPscJERAleeg/wKwzYPD5xNj4dBU2P8LJEY9+jPnIirB7VMz5buvmutm55C2TUwILOoLd4+DvQsMXAgV2mTvY8hJ/JbBmtHqdrvPoflbxt/3nh+sGKauNtDZqD7gLd4Gm5QrFsNuwqnlKuEdejXtfq7FoVZ/qD1QJa+FSSTxbQJJfKc4uQT+GgNlW8BLG6wdjRBC5Ajx589za9Ro9MHB2JcuTenZf+BQqpS1wxIix1j0700+XnMGGx0YNLDRwcKRjWhawTNL+9U0jRHzj/L3hUCaV/RkwYiGjw2Q/fOfG/xv7VlsbXQsHtmIRuWLZOmYDwuMjKf597tI1BtY9UoT6pUx8tJVIYQQIqviI1XSzMEle4+rabDzC9ifUgjX+DXo8BXYGHkl1d0TsO1TuLFPLRcoBC3fgwYjHk9QmxrXvh/g76/Ucr2XoMvktMTif904AAt6gT4B6gyB7lOyt/+4JRn0cHKxGjAadU+tK1YbqvdMS3S7+hj3eBOiYNlguLYbbOyh90zw7W3R8M1On6yuSsjK8+vydlgyULUbafwqdPzG9OdLQhRselclt0Hl1Xx7w+lVcHN/2nb2zuqkTe2B6oqFJz2HRYYk8W0CSXynuHMMZrUBFy94VyYhCyFEwvXr3Og/AENUFI5Vq1J61kzsiha1dlhC5CiapjF07hH2XgoC4IPOVRnzbAWz7PtWSCztf9pDQrKB356vQ9daaQMrj90MY+DMf0jSa3zSpRojW2Ti0tAMvLfSj+VH/elYw5sZQ+qbff9CCCHyOYMBwm+k9WK+fwYCTkP4LTU0r3InqD1IDY58uFrXIrHoVTX18flque3/oPl40xOAmgaXt6leyUEX1DrnIuDbVyX7itcxbZ8Gg6o+//d3tdziHdVKJaN9nN8Ay4eoth8t3oG2n5r2OHIaTYMrO9XvNfCsWudeWv2dfPsYf3Liv5ITYM3LcHYNoIPnJqlBjTndwxXvmh6qdVNXJ5RvZVoy2f8ozO8GSbFQsx/0mpn53yWogtKNb0NSzEMrdSrJXXuQitPx8asYhekk8W0CSXynSIiCb1Mm+r5/Q52dFUKIfMoQG8uNAQNIuHyFArVrU+qPWdi6ulo7LCFypPsR8Qyfd4RaJd35tnfNxyqzs+KXHZd8DOQZAAAgAElEQVT5acclvN0c2fl2Kwo62hEcnUDXX/dzPzKe52r6MPX5umY9ZqrLAVG0/2kvOh38/XYrynlmc+WdEEKIvCMxBgLOqcT2g6GDZ9WAxoxkJXFsjKR4WD0Szq9XrRq6/qSqqrNCnwwnF8Hu7yDqbtp6zyrqcdTqD+4lM9hHkuozfnq5Wu70HTR+xfgYjs2D9ePU7dw8y+zeKdVH+tputezkDi3fhQajwN4MLd4MelWtfHS2Wm71ITz7fs6skk+v4v1hrsVUArv2INXL/GmCLqqBqHFhUKEtDFpqnhNMwVdg7Wsqx1azr3HPdWEySXybQBLfD5lcHSLvwPBtULqRtaMRQgir0DSNu++8S+TGjdgW9aTcqlXYe3lZOywh8qX4JD0df97LzZBYRjYvxwedqzJk9mH+uRZChaIurH29OQUdLde7c/i8I/x9IZDBjUvzVc+aFjuOEEKIPEjT4Mgf8O90CLkKpJN+sXUEr6rgXVP1Yvb2Be8a6nO531LVGzgmMG17UxLHxoiPhKXPq/Yktg7QZzZU7571/abSJ6uErd8SuLABkuNTfqCDci0eqoL9T4FJYgwsHwpXtqvBjD2mQe0Bph9/zyTY9ZU6Xp8/VCIytwi/rRK8fksBTf19Go5W/aOdzdyCTdPUSYo936nlBqPUyYLMVD+H31YnK67tgWK1UpLQNbIe35Mq3guVhVNL4fTKRwdG+qQcu2ZfKPifz3IRd9Qg1Eh/KFEPXlwnldi5jCS+TSCJ74f82ROu7VI9sOq+aO1ohBDCKkIXLCTg66/Bzo4y8+fhXE+mnAthTbsvBvLS3CPY2ujo7OvDhlP3cHGwZe3rzajoZdkrMf65GsKgWYdwtLPh4AdtKFIwCz0khRBC5B+xobD2dbi4MW1dQe+0YYOpie4ilZ4+fFGfrD6j+y1NJ3GcxfYJ0UGwqI8azufgCoMWq31aSnwEnFunHstjfY+7pfQ9flZtt3gA+B8GuwLQ/0+o3CFzx9Q02PweHJ6p+li/sDznD3GMj4B9k+HQ76pPOaiK/7afqiSvJf07U/2+0KBGb+g1w7gq6ISolL/tErixn8dO8njXVH/fmv3A1du0mO75qd7x1/eo5SdVvCcnqDY7fkvh0lYwJKn1OlvVLqj2QKjSGZLiYG5n1YqnSCUYvhVczDcnRmQPSXybQBLfD9n8vjob3eR16Pi1taMRQohsF3v8ODdfHArJyXh/+AGFhw61dkhCCGDMgmNsOXv/wfLU5+vSpVYxix9X0zR6TD3AKf8I3mxXiTfbVbb4MYUQQuRyNw/CqpGqatvWAdp9DjX7Q8EszorJKHHsWcm0/Z1cAqFXwdkTBq+C4s9kLT5ThN1U1ex+KTGkci0Gdk4Qdl0lOJ9fkfWr0Q0GWDVc9bG2d4GXNkCJusbfN7UPe8gV1U/akhJj4Nh8iAtVy2WaQ4cvVFVydjm9EtaMUYnjCm2g/4L0T6wY9CknZZapNjnJcWk/K9tCJZlvHYJLW0CfqNbrbFRbkdoDoWoXsC/w5DjCb6uBpqeWYXLFe0wInF2tnl93jqWtd3QDF08IvaaeayO2gUdpo381IueQxLcJJPH9kCOzYeN4qNQBXlhh7WiEECJbJQcHc713H5IDA3F7rjPFf/zRIn2DhRCmuxseR9sf9xCXpGdk83J80jWDvo1mtN7vLm8sOUFhFwcOftAGJ3sThiYJIYTIPwx62Pcj7P5WDVUsUhH6zoFitc1/rCcljk3lXhqGrAHPiuaLzRSapgYM+i2BM6vSWlW4FoPBqzPu02ys5ARY1E9VDTsXUe1d//uY0+3Dfg4So8wTgyk8q0D7CWrAqTU+j1zZCcsGq6GPJeqpExCpVdEBZ9Xf69QKiE4rSqBIpbQ2PA8nk2ND1UkHv6Wqij+Vo5tqq1N7EJRumtZWxdwV78GXU9oGLYOI22qdkzsM22K+55fIdpL4NoEkvh9yYz/M6wIeZeDNU9aORgghso2WnMytYcOJPXIEh4oVKLdsGTYuMshOiJxk3+UgztyJZGSLctjbZqLnZCYl6w20+mE3/mFxfNXTl8GNy2TbsYUQIk9ISBngmJd76EbehdWjVa9sgNrPw3OTLP+YUxPH59eqft2mKOABjV4BN8tfQWWU1FYV/kegwUjzV+ImRMG8rnDvpNp3h68g6FJaojv0Gun3YXeAolXBq5qqRre0kg1UMvhpLXCyg/9RWNRXDX/0rAx1BsPpFXD/dNo2BQqlDF4dpKroM0rSh1xNSUIvhfBbaevdS6se7k4e6uSRJSreDQa4eUD1jfftY5kTUiLbSOLbBJL4fkh0EPxQEdDBR3fBwdnaEQkhRLYImDiJ0DlzsHF2puzKFTiWL2/tkIQQOcjcA9eZsP4c5Txd2DH+WWxt5GoQIYQwSuh1+KOdSjpWfU4lyCq0AVt7a0dmPpe2qtYQcaGqlUbXyaryVeQ80UEwp0NKkjsd6fZhr5i3nq+mCLwAC3urtj2pbOyhSieoNVB1CzCmB/h/GQxw6x9VOX72r8er6q1d8S5yPEl8m0AS3w/RNJhYTp3Re3mvnAETQuQLkVu3cWfcOABK/PILbh0zOTxHCJFnxSQk0/S7v4mIS2LGkHp0rOFj7ZCEECLnS4qD2e0frRAFcCmaUiU6UH3mzK2JreQE2PE5HJqmln1qQd+51msbIowTdgOWDVGtaXx8H010Z7UPe14Uflv1rEdTbUxq9M64x7YpkuLgwkbViiTqHtQfAXWGWL/iXeRokvg2gSS+/2N2R7h9CHr/AbX6WTsaIYSwqIRr17jRtx+G2FgKDx+O93vvWjskIUQONWnrBabuukq9MoVY9UpTa4cjhBA5m6bBX6+C32I1PLH3TLiyQ/Wljg1O265otbS+wG7FrRevqUKuwsphcM9PLTd+VQ2xtHO0ZlRCCJEvGJvLzb7miCL3KFpZfQ++aN04hBDCwgwxMfi/MRZDbCzODRviNf4ta4ckhMjBhjYpi4OtDcduhnHsZqi1wxFCiJzt2FyV9NbZqAGPFdtCp2/h7Qvw/HKo0QtsHSHoPOz4DCZXhz97gt8yNWQwJ/NbBjNaqqR3gcIwaKl6bJL0FkKIHEUS3+JxnlXU9yBJfAsh8i5N07j7ySckXr2KnZcXJSb/iM5OLqcTQjyZl5sTPeuoasRZe69bORohhMjB/I/B5vfV7bafQfln035maw+VO0K/efDOJej2C5RuAmhwbResGQ2TKsGaV3LeZ9KkOBXXmtGQGA1lmsGY/VCls7UjE0IIkQ5JfIvHFU1JfAdfsm4cQghhQWF//knU5i1gZ0eJn3/GztPT2iEJIXKBUS3U4Nut5+5zPTiHVyQKIYQ1xITA8hdBnwhVu0KzcU/etoAH1HsJhm+BsSeh1UdQqBwkxahq8RnPwrF5qm2KtcWFw4LeaVXsrT6EoevBvYS1IxNCCPEEkvgWj/NMaXUSchX0ydaNRQghLCD26FECJk4CwPv993GuW8fKEQkhcotK3q60qeqFpsHs/desHY4QQuQsBj2sGg6R/lCkIvScZvzgysLloNX7MPYEDN8G5VtDchysH6d6acdHWDb2p4kKgHld4dZBcHSHIX9Bqw/AxtZ6MQkhhMiQJL7F49xLgb0zGJIgTC7jFULkLUmBgfi/9Rbo9bh16UKhwS9YOyQhRC6TWvW94qg/IdEJVo5GCCFykF3fwLXd6vPkgIXg5G76PnQ6KN0IBq+GdhPAxg7OroHpzcH/qNlDzlDoNZjTAQJOQ0FvGLbx0dYtQgghcixJfIvH2diAZyV1O6f1VBNCiCzQkpK4M348+qBgHCtVotiXX6AztgpJCCFSNC5fmFol3UlINrDg0E1rhyOEEDnDhU2w7wd1u/sU8KqWtf3Z2EDzN2H4VvAoDeG3YE5H2P8zGAxZj9cY907B7I4QdgMKlVWx+NTMnmMLIYTIMkl8i/SlDrgMlsS3ECJvSAoM5M577xF39Bg2BQtS4tdfsHF2tnZYQohcSKfTPaj6/vOfm8Qn6a0ckRDZSNPgzjHY9B7MbAVnVlk7IpEThFyFNWPU7UZjoGZf8+27ZH14eR9U7wmGZNjxGSzqA9GB5jtGem4cgHldICYQvGuq9iuFy1n2mEIIIcxKEt8ifUVT+nwHyYBLIUTuZoiJIejXKVzt2EkNs9TpKPbtNziWkw8uQojM6+zrQ8lCBQiNSWTVcX9rhyOE5UX4w74fYWpDmNUGDs+Auydg5XBY9wYkxlo7QmEtibFqmGVCBJRqBO2/NP8xCnhAv3nQ7Rewc4Krf8PvzdR3S7iwCRb2hoRIKN0UXtoArt6WOZYQQgiLkcS3SJ9UfAshcjktOZmwpcu40rETwdOmocXFUaB2bcosWohb+/bWDk8IkcvZ2dowork6gfbHvusYDJqVIxLCAhKi4ORimN8NfvKFnV9A8CWVePTtC41fBXRw/E9V/R1w1toR529R9+HIH+pvFh+ZPcfUNNjwJgScARcv6Dcf7BwscyydDuq9BKN3Q9FqqhJ7QW/Y8Tnok8x3nBOLYNlgSI6HKs/BkNUq8S6EECLX0Wmalu/fpUdGRuLu7k5ERARubm7WDidnCLqoqjkcCsKH/sZP4hZCCCvTNI3oXbsJ/PFHEq9eBcC+dGm8xo/HtWMH6ekthDCbmIRkmny7k8j4ZGYMqUfHGj7WDkmIrDPo1XBCv6Vwfj0kx6X9rGwLqD0QqnUHp5TPTdf2wOrREH1fJcQ7fgP1h8vnh+ySGAsXN4HfElX9rKX0vrZzgqpdofYgKN8KbO0sc/zDs2DTO6CzhaHroGxzyxznvxJjYetHcGyuWi7ZAPrMhkJlsrbfA7/A9v+p28+8AN1+tdzvTgghRKYZm8u1auJ77969TJo0iWPHjnHv3j3WrFlDz549H/xc0zQmTJjAzJkzCQsLo1GjRkydOpUaNWo82CYsLIyxY8eybt06ALp3786UKVPw8DD+jKwkvtOhT4KvfVQPtbfOgntJa0ckhBAZijt9msCJk4g9cgQAWw8PPF99lUIDB6BzsFD1kRAiX5u45QLTdl/lmVIefNGjRsZ3eEhlb1ec7G0tFJkQJgo8ryqFT6+AqHtp64tUVMnumv2fnFSMCVb9na9sV8vVukP3X6FAIcvHnR8ZDHDroEp2n10LiVFpPyvZQFV7P3zlrosX1Oqv/o7mHMx4+wjM7QyGJOjwFTR9w3z7NtbZNbBunGqz4ugOXSdDtW5g52jafjQNtn8KB6eo5aZjof0XcgJHCCFyqFyR+N68eTMHDhygbt269OnT57HE9/fff8/XX3/NvHnzqFy5Ml999RV79+7l4sWLuLq6AtC5c2f8/f2ZOXMmAKNHj6Zs2bKsX7/e6Dgk8f0EvzVQlzIOXg0V21o7GiGEeKLE27cJ+ulnIjdtAkDn6EjhF1+kyOhR2Kb8fyGEEJYQGBlP8+93kag3mHzf4u5OLB/ThJKFZNCusKKwG6qFycNDKgsUAt8+qlq4RD3jkn8GAxyaptpOGJLAvTT0nQ2lGloq8vwn+AqcWgp+yyDiVtp6j9Lqb1VrABSpoJK4d0+oqv0zKyE2JG1bb9+UExn9wDULV6lEB8HMZyHyDlTvoVqcWCtJHHYDVo6AO0fVso0deFZWj9W7Bvj4quGUT+rRrU+G9WPh5CK13P4LaDYuW0IXQgiRObki8f0wnU73SOJb0zSKFy/Om2++yfvvvw9AQkIC3t7efP/997z88sucP3+e6tWrc+jQIRo1agTAoUOHaNKkCRcuXKBKlSpGHVsS30+w9AW4sAE6fQeNX7F2NEII8Rh9eDjBv08ndPFiSEoCnQ737t0pOm4s9sWLWzs8IUQ+MX3PVRYeuokp76oj45KISkimfFEXVo5pSmEXuSpFZLPYUDWs8vBM0CcCOtXP+JnnoVKHzPdpvnNcDbwMu67aX7T5GJq9BTYyXipTYkPh7GqVxPY/krbe0Q1q9FQJ71KNn/z71SfBlR2qOvzi5pS/NaCzgfKt1f2rdgEHE07A6ZNhYS+4vlclmEf9DY5WLjTQJ8Hu71SP8/jw9LdxKaqS4amJcB9fddJg9WjVLkZnq65UqDM4e2MXQghhslyf+L527RoVKlTg+PHj1KlT58F2PXr0wMPDg/nz5zNnzhzGjx9PePij/7F5eHjw008/MWzYsHSPlZCQQEJCwoPlyMhISpUqJYnv/9r5hXozXG8YdPvZ2tEIIcQjYv49jP8bb2CIVMObXJo2weudd3CqXt3KkQkhcoyEKFg+FOIjUhIdvuoyf+8aVk/S3I+Ip8/vB7kTHkftku4sHtUYF8d80kf25GKVbK3QVlWeelaydkT5S1I8HJkFeyepfxugekC3/xKK1TLPMeIjYeN41TYldf+9Zj654taawm7Arm/VcEbPyo8mRV2LWa+K2aBXvab/naEq6EElZiu2U/9uqnQG+wKm7TMuTLUG8VsKt/9NW2/vDM5FjN+PPhGiA8DeBUbvgqLGFZxlC01TVej3z0DA6ZTvZyDkKvCU1IetI/SbB1Wfy65IhRBCZIGxie8c++76/v37AHh7P/rmyNvbm5s3bz7YxsvL67H7enl5Pbh/er799lsmTJhgxmjzKM+UNzDBl6wbhxBC/EfS3bvcGTcOQ2QkjpUq4fXeu7g0by6DK4UQjzo4Ba7uVLdTL4FPVahsymXwvmlJ8UJlsy3J5ePuxPzhDek3/SB+/hGMWXiM2UMb4GCXx6tiE6Jhy4eqIvPuCdj3A5SorxJ5vn3AubC1I8y7DAbVzuTvLyA8pU2GVw3o8IU6CWHO576TG/SepSqKN72jhmVObwa9pqvEbU7wWMU7KkF6dnXaNgUKp70+pL5WFK1qev9oUyUnwJqXVZIawKeWqsyu2RcKPv7512gFCqnBo/WHq0TwqWUqCR5+EyJiTduXjR30+C1nJb1BPY/dS6qvKp3S1ifGqD72AWfSkuEBZyEhUvUGH7QEyjazXtxCCCEsIscmvlP9N4mhadoj69JLcvx3m//68MMPGT9+/IPl1Ipv8R9FK6vvQRefvp0QQmQjQ2Ii/uPeRB8ejlP16pRZshgbRwt/ABVC5D5R99OGlLV4BzRDWsIj6q6q8gy7odq6pXJwVdXgxetA87csXp1a0asgc15qwPOz/mXf5WDeXenHT/2fwcYmD5/EO7FQJb3dS4NXVbiyU52UuHNUJcQrd1RJ8EodM99qQzzu+j7Y9gncO6mWXYtBm09UMtXGQgNWdTqo84IatrhymPr3t7APNBqj2igWKmuZ42YkKV4lu/f98GjFe71h6jUh9XUi+BLEhap2Htf3pt3/4f7RNXqZv0I4IRqWvaBOFtjYq5MFNfua9xigeoG3/ghafagSwslxpt3ftTi4FTN/XJbi4AIl66uvVJoGEbdVCxRTq+eFEELkCjk28e3jowZt3L9/n2LF0v5DDQwMfFAF7uPjQ0BAwGP3DQoKeqxS/GGOjo44SpIkY54pie/YYIgJARcTLn8TQggLCfjmG+JPn8bW3Z0Sv/4qSW8hRPp2fwtJsSrp1uaTR6tZY0Mfrfq7fxqCLkBiFNw+pL7uHodhWyzel7hO6UL8PrguI+cfZe3JuxRxceTTrtXy5hUs+mQ4NFXdbv4mNBgBUQFq+J7fUrh/Sp2IuLAhc8MVxeMCL8COz+DSFrXs4ArNx0Hj10zr6ZwVRSvDyJ0q8X5kFvw7XX2VaaaGMdboCU7ulo8jteJ95xdpgyFTK97Tq0JPilevC/dPP/R6cVolywPPqa/Ty6Hui9Dpe/P8PmNCYFFf9fpj7wIDFkDFtlnf79PodOCdT9vE6XSqx7cQQog8K8cmvsuVK4ePjw/bt29/0OM7MTGRPXv28P333wPQpEkTIiIiOHz4MA0bqmnh//77LxERETRt2tRqsecZDi7gXkqdBQ++CC7yOxVCWFf4mr8IX7oMdDqK/zAJh5IlrB2SECInCroIxxeo2+2/eDxp6lwYyrVUX6n0SRB8WSVfN4xX/W/9FmfLkLNWVbz4oV9t3lx2kjkHrlPU1ZFXWlWw+HGz3fm1qsWGcxE1QBFUVX2T19RXwFmVAD+1HKLvqyF1R/6AIhVVFXiZ5mogn7F0OvVe1tUndyfONU09L5PiTbiPXv0uTyxQVzvY2KmK5mffh4JFLRfrk9g7QZcf1NDMQ1Ph2h64eUB9bX5PDdWsPQgqtAFbC3xEvb4Xtn1qWsW7vRMUf0Z9pdI0iPBXifCru1Tl+PE/4da/0G+uumIks8Jvw8LeqtK8QGF4YcWj1clCCCGEMJlVh1tGR0dz5coVAOrUqcPkyZNp3bo1hQsXpnTp0nz//fd8++23zJ07l0qVKvHNN9+we/duLl68iKurGkjUuXNn7t69y4wZMwAYPXo0ZcqUYf369UbHYWxD9HxpQW/VG7Prz1A//WGhQgiRHeLPn+fGwEFoCQl4vvE6RV97zdohCSFyqiXPw8WNUKULDFps+v0P/ArbP1UJ2tePZlvf6T/2XeOrjecBmNi3Fv3r56FWfJoGM1upxGOrD6HVB0/e1qBXbR5OLYPz61XlflY4F3losGlKn2bPKrmjlYo+GZa/qJ7PmVW1K7SbAJ4VzRdXVkXcUdXSfktVVXUql6JQsz/UHqD6Wmf1hEXgBTUg8vJWtWzuivdre2D1aHWixs4JOn6j+mebGnfQRVjQSw1ldCsBQ9bkvN7ZQgghRA5ibC7Xqonv3bt307p168fWDx06lHnz5qFpGhMmTGDGjBmEhYXRqFEjpk6diq+v74NtQ0NDGTt2LOvWrQOge/fu/Pbbb3h4eBgdhyS+n2LLh3BoGjR+FTp9a+1ohBD5lD4igut9+pLk74/Lsy0p9fvv6CzcfkAIkUvd/AfmdlKVwa8eylzySJ8E01tA0HlVJdvtZ/PH+QTfbb7A9D1XsbXRMWNwPdpVt2yf8WxzYz/M66KSg2+dBRdP4+6XEKWS36eWpQ1kNJYhWVXnaobHf2Zjr54bDw839alpfFzZQdNg7etwciHYOqhhfabwKA3PfgBlmlgmPnPQNHUyxG8ZnF6hWiym8qquKv1r9je9l3TUfdj1TVrFu85WFfE8+4H5K95jgmHNGLiyXS1X6w7df1Xteozhf1S1N4kLU60mh6wx/W8thBBC5DO5IvGdU0ji+ymOzYP149Sk9yGrM9xcCCHMTTMY8H/lVaL37MG+ZEnKrVyBrQknN4XIlOArsHqkSmC0GJ/x9iJn0DSY3R78j0C9l6DbL5nfV2qiFh2M2qn6TGcDTdN4d+UpVh7zx9HOhkUjG1G/bPZUnFvUov6q6rb+COg6OfuOmxirTmDcP6NaqaT2ak6ISH/7AoVUktkUPjWh5+9Q0Cvr8T5sx+ew/yeVtB2w0PxDFHMafZIaduq3BC5uBn2CWq+zAWdP06qo48LT7l+1K7T7HDwrmTviNAaDKhba8TkYktTw1r6zoVTDp9/vyk5YNgSSYtRrzPMrZK6SEEIIYQRJfJtAEt9PkVo15V4K3jpj7WiEEPlQ0LRpBP86BZ2jI2WXLMapej4dwCSyT0I0/NFOJcvQwUsboGxza0cljHFuHSwfAvbOMPaE6u2cFatHq0rjYs/AqL+f3AvYzJL1Bl5ecIydFwJxc7JjxZimVPFxzZZjW0TgBZjWCNDBG8egiJX7l2uammHz8HDTgDMQei3z+yxcXlXqFiprnhj/mQZbP1S3u/8GdYeYZ7+5RVw4nPtLtUK59U/m9lGiPnT4Knsr3u8cg5XDIeyGOmHR5mNo9lb6Q3LPrILVL6tEefnW6uSGY8Hsi1UIIYTIxSTxbQJJfD9FbChMLKduf3hH3owJIbJV9L793B49GjSNYt98g0fvXtYOSeR1mgarRqiERCqP0vDKQXDMxYnHnCgqQFV21uwH7mYYVKtPgqmNIPQqtHxPJZzMEeNv9SEhErr8CA1GZn2fRopL1DN49r8cuxmGt5sjq15pSslCZuhJbA1rX4MTC1Xl7cBF1o7myRKiIfxm+q1RniQ+Ev4ao9qwFPRRV0hmZcAhqOGeq0ep223/By3eztr+crvIuxAbYtp97JzUUFRrDDWNj4QNb8GZlWq5fCvoNVMNck11eBZsehfQoEZv6DUjd/ScF0IIIXIISXybQBLfGZhYQfXbG70bitexdjRCiHwi0f8ON/r0QR8RgUf//hT7YoK1QxL5waHpsOV9sLGDQUth43iV0Ko7VPVsFeaRFKdaktw/DYXKwYhtWW8TcXgWbHpHtUQYd9J8Jyr+nQGb3wMnd3j9mPn7Az9FeGwi/Wf8w6WAaMoXdWHlmKYUdsllybGo+/BzTdAnwojtGbd+yI0i78HC3hB4Tj1PBi3LfJXxlR2weIDqT97oFTVjxxrJW5E1mgYnF6nkdlKsGtrZa7pqH7n7O9jzndquwUjoPDHbriYRQggh8gpjc7kyGUxkLHUoVNAl68YhhMg3DAkJ3Bk3Dn1EBE6+vnh//JG1QxL5wa1DsC2lSrjDV1CpPfSYppaPz4fL260XW3aLj1BDAS1B02DDeJX0Bgi7Dgv7qCrJzEqIgj3fq9utPjBvdX79EeBTS/1Odnxmvv0awcPZgfnDG1Lc3YlrQTEMm3eEmITkbI0hyw7PVEnvUo0eJL2T9QZuBMdYOTAzcisGwzZBqcbqebKgJ1zcYvp+/I/BshdV0tu3L3T8RpLeuZVOB3UGq8Ihb1+ICVKvc3M6pSW9W30Iz/0gSW8hhBDCgiTxLTLmWVl9D75o3TiEEPlGwFdfE3/2LLYeHpT85WdsHB2tHZLI66ICYPlQlXCq0RsajVHry7WAxq+q22tfVy3A8roLm+CX2urrwibz7//YXPBbrAbWdftVVWjfPwXLXoDkhMzt8+AUlVgqXEENtTQnWzvokjKM8eQidYIkGxVzL8CfIxri4WyP3+1w+k3/h6tB0dkaQ6YlRMOR2ep20zcAMBg0hs8/SqsfdvPWspNE57ZE/pMUKKR6fFfqCBKiavUAACAASURBVMnxsPR5OLnE+PsHXYJFfdWQwwpt1LDM9PpCi9ylaBUYuSOtTdLtQ4BOJbxbfSAnNoQQQggLk3dTImMPKr4l8S2EsLzwVasIX7ECdDqK//AD9iXM0PtXiKfRJ8HKYRB9H4pWhe5THk1GtP0fFKmkfr75PevFaWnJCbD5fVg6COLC1EmAlcPUoGtz8T+mjgHQ9jOoNxQGrwSHgnB9rxomadCbts+o+3Dwt5R9/g9s7c0Xb6pSDaDui+r2xrdBn73J2operswb1pDCLg6cuxdJtyn7WXXMQhX55nRiIcSHqxMSVZ4DYMGhm+y9FATAmhN36PrrPs7cibBmlObj4Kx6mNcaCJpe9f5OfW4+TeRd1SolLhSK14X+C6Tfc15iX0DNCBiwEMq2gH7zoOEoa0clhBBC5AuS+BYZe1DxLa1OhBCWFXf2LPcnfAFA0XFjKdi8mZUjEvnCjs/h5gFwcFWJif8OcrYvoAaP6Wzg9Ao4+5dVwrSo4CvwRzv4d7pabvxaWuXqkgEQcC7rx4gJgeUvqrYXVbtCs3FqffE66vduYw/n/lKJcVNG0Oz+TlXJlqgP1XtkPc4nafu5quoNOKPad2SzZ0p5sHlcC5pWKEJsop63V/jl7IppfTIcmqpuN3kNbGy5FhTNt5vPA/BikzIUd3fiRkgsvaYdYM7+6+SJ0UO29qpau8nrannbx+o15kmPLS5MtcCIuK2GMb6wQobJ51XVusFLG6BGT2tHIoQQQuQbkvgWGUut+A69pqrihBDCAvTh4dwZOw4tMZGCrVtTZPRoa4ck8oOzf8E/KRWZPaeCZ6X0tytZD5qPV7c3vAXRgdkTX3Y4uQRmtFTtRpyLwPPLodM3qiqxZEPVs3hhbzXkM7MMelg1HCL9VXKv57RHq+ortIbeMwAdHJkFeycZt9+gS3D8T3W7w5eWbRvgUgTafa5u7/pGDTTMZt5uTiwY0Yh3OlTG1kaXsyumz69VzxnnIvDM8+gNGm+v8CM+yUCzikX4vFsNNo1rQcca3iTpNb7YcI6R848SGpNo7cizzsZGzQlom9ITfv9PsH7s41cKJMbC4oFqKKZrMRi8Glw8sz9eIYQQQog8SqflidKKrDF2Emi+pWnwbUlIjIbXDqclwoUQwkz0ERHcGf82MQcOYF+6NOVWrsBWXo+fTNPAb2lKr1AT2Dqq1hLeNSwTV24TdBFmtVH/vzUdqxKnT5OcqLYPOK3aNgxcnLVEq6aB3xIIvw01ekHRypnfV2YkRMHGd+DUUrVctgX0ngluxdO2iQ2FuZ0h6IJq9zJ8q0oAm2rnF7DvR7B3hlF/g1e19Lf7d0ZaO5muP0P9YU/f79IX4MIG9fcYZEI/5cwyGGB2e7hzFHz7QN85mdtPfITqfV2gEDzzQqbaWhy9EcrYJSe4GxGPva2ODzpXY3izsuhyQs9gTYOZreDeSTXAr9UHTNt9hYlbLuLqaMeWt1pSwqNAyqYaCw/d5MuN50lMNuDt5sgvA+vQuHwmnmc50bH5sOFN0AzqSoc+s8HeSSXBl70Al7aAkzsM2yyvzUIIIYQQRjI2lyuJbyTxbZSZreDuCdVzsHp3a0cjhMgjDImJhC1cRPCMGRgiItA5OVF26RKcqla1dmg525HZsHF85u7r5A7DtoB3dfPGlNskRMGstmpwc9kWMOQvNcQwI/fPqP8TDUmqncEzz2fu+LGhsO4NlbRNVaIe1B6khmtmJrlsirsnYeVwCL2qWri0+ghajAcb28e3jbgDszuoau0S9eDFdaa1YriwSfUNB5X0q9n36dvv/BL2/aDi6jf/ye87bh2COR3Vdq8eyr4T83dPwqzWKpH54loo38r4++qT4Ohc2PMdxIaodYXLq8rg6j1MPpESHpvI+6tOsfVsAABtq3oxqV9tCrtYuT/0jf0wrwvYOcFbZ7kQ5UC3KftJ0mtM6luLfvVLPXaX8/cieX3xca4GxWCjgzfaVOKNNhWxs80DF6ieXw8rR4A+Qb3eDFwEWz6CkwvV72jIGijT1NpRCiGEEELkGpL4NoEkvo2w+mVVEdbmE2j5rrWjEULkcprBQOSmzQT99BNJd+4A4FipEt6ffoJLw4ZWji6H8z8KczqpxGvt51XSzFgXN8Hd4+qS+hHbwKO05eLMyTQNVryk+km7FoOX90JBL+Pvv28y7JwAjm7wykHweDyJ91S3DqkkWKS/6mtdpgncOKCG4YFaV6kD1B4IlTuCnaNp+38aTVN9vLf/T/XadisBff7IOOkWdFElmePCoEJbGLTUuCrlkKvqREFCJDQaA52/Ny7G9ePg+Hx1lcKQ1VC2+ePbzO4A/oeh7lDo/mvG+zWnje+oliyelWHMgYx/F5qmkp87PlcnG0ANfEyIhBg16JGSDVV7jNKNTAolvYrpnwfUoUkFK1ZML+oPl7dC/eEkdvqRHlMPcP5eJO2qeTHrxfpPrEqPTUzm83VnWX5UDe5sWK4wvwx8hmLuBbIzesu4vg+WDILEKNX+JTZEnbQZsAiqPmft6IQQQgghchVJfJtAEt9G2Pejuky5Zn/oM8va0QghcrGYw4cJnDiJ+DNnALDz8qLouLG49+yJzjadalORJiZY9WKOvKOGZPVfYFqFqLnaVuR2/0yFrR+BjR28tMnkRCP6ZJjbCfyPqGrfwWtUT9+MGPSwfzLs+lYluQuXV60yiteB6CA4s1K1Prnnl3YfJw/VUqP2IChZP2utVWJCYO2rqrUCQJUu0OM3cC5s3P1vH4E/u0NSrHo/0GvG0x93YqxqCxJwBko1gqEbjG/poU+GFUNVRbyjGwzbBD41035+bh0sH6Jap7xxHNyKGbdfc4kLh9/qq6R1289UtfyT3D4M2z6B2/+qZZei0OoDlbBPjoeDU9RXUqz6ebVu0G4CFKlgUkjn7kby+pLjXAuKQZdSMT3WGhXTgRdgWiNAB28c48djyUz5+wqFnO3Z+lZLvFydMtzF2pN3+HjNGaITkvFwtmdS39q0r+5t+dgt7e5JNcgyNlgtd58CdV+0bkxCCCGEELmQJL5NIIlvI5zfoPoQ+tSCMfusHY0QIhdKuHKFwB8nE71rFwA2zs4UGTWSwkOHYuPsbOXocgGDHhb0gut7VNJ61N/glIn/s7LatiK3u3EA5ndTiefOE6HRy5nbT/AVmN4ckuPguR+g4ainbx95D9aMhut71XLN/tB1Mji6Pr5twDl1ldWp5RD10ADFwhVUFXitAVCojGnx3tgPq0aq/dk6QsevocFI0xPpl7fDkoFgSIbGr6n9pLcPTYM1L8OpZeDiparqTU1OJ8XBgt5w6yAU9FYnagqXU+1CpjWGkCvQ8j1o87Fp+zWXk0vgrzEq+f7a4ccr/0Ouqgrv8+vUsl0BaPoGNBv7+N898h7s/gZOLFQtVGzsoP5wePZ9k4YdPlYxXbYwPw98huIe2VgxvfZ1OLEAqnblZLOp9Pn9IHqDxtTn69KllvHPgZshMbyx5ASn/NXgzpealuWDzlVxss/lJ0hDrsK2T6FS+4x72AshhBBCiHRJ4tsEkvg2QvBlVdlkVwA+umtcZZsQQgDJQUEETfmN8JUr1WA4W1sKDeiP56uvYudpfEIn39sxQVUL27vAqJ1PHg5ojMy2rcjtou6rivnoAPDtq1p8ZKWCOnUQo70zjNn/5Ardy9tVEjg2RG3b5UdVwZ3RsQ16daLDb6lqk5FaEQzgYOLJisRo9b1IJeg399HqaVP5LVWPB6Dd59D8rce3OTwLNr0DOlsYuu7xViXGigtXvaIDzqgK+eHb4Pxa2Pg2OHvCuJPpnzzIDpoGc59TifmqXVXfZlCV9Xu+h6Oz1QkCnY0aYNn644yT/wHnYMdncHmbWnZwheZvQuNXwcH4E4T/rZie2KcWHWr4ZPKBmiDqPvxcE/SJJAzdTOfViVwLiqF77eL8OqiOybtLTDYwaesFZu27DkAVb1c+7lKNlpWLmjtyIYQQQgiRi0ji2wSS+DaCPhm+9lE9ZcedMr3STAiR7xhiYgiZO4+QOXPQYlXCrmC7tniNfxvH8uWsHF0uc2EjLE0Zoth3jmp9kVWmtq3I7fRJMK8r3D4EXtVh5A5wcMnaPg0GWNBDVXGXagTDNj86HDI5UfUC/+c3texdUyWdPSuZfqyEKJX89luaUjWeibdvz7wAz03K+uMG1Zpj2yfqdo+pUGdw2s9uH1EtdQxJqmd10zeydqzIezCnA4TfgmK1IfKuajFiTKW9pQWchekt1BUE/ReoKvT9P6ne3QAV20P7L0wfJnttD2z/NK3tjVsJlTivPTD9AaTpuBGsKqZP38nGiumdX6j2eKUa8YXXz8w5cB0vV0e2vdUSD+fMn1zbdTGQt5f7ERqTCECLSp582Lka1YvL+3YhhBBCiPxIEt8mkMS3kaY2hqDz8MJKdXmmEEKkIzk4mIj1GwiZMxt9kOpj6lS7Ft7vvotz/fpWji4Xeng4YONXodO35tu3sW0r8oItH8Khaapf9Khd4FnRPPsNvw3TmqiBde0mqOpcgNBrsHI43D2hlhu+rBKg9hn3N85QTAgkRJh2H3sXcDVzj+Rtn8LBX1VV98BFUKWz6lU+oyVE3YXqPaDffPM8p4KvqOR3bIhaLlxetRextc/6vrNq68dpJzdS+dSCDl+qHvCZZTCovu87v4CI22qdd01oPwEqtjVqF/+tmK5ezI0pz9ehQlELtDdKiIafakB8OBef/Z2OW90BmPtSA1pXNWF47BOExSTy264r/PnPDZL0Gjod9K5Tknc6Vs4bwy+FEEIIIYTRJPFtAkl8G2n5i3BuLXT4Gpq+bu1ohBA5iCE+nui//yZ87Vpi9h8AvR4A+1Kl8Hp7PK4dO6LLqwlVS0qMgT/aQeA5KN0Ehq43f6LPmLYVud2VHWqgHMCAhWp4oDmdWAhrXwNbBxi9R/291r+pkuFOHtBzGlTtYt5j5gSaBn+9Cn6Lwc4JBq+G3d/CjX3gWVn1oTdnG5I7x1XVflKMSqjX6Gm+fWdFQhT81kD1T3cvBW0+hZr9zHcFRVI8HJ4Be39MO+FRoY06kWJky5pdFwJ5e4WqmHZ2sOXLHr70qVfSPPGlOjQdtryPoVB5WsVN5FZ4IgMblOK7PrXMephbIbFM3HqBDadU/3tHOxtGNC/HmFYVcHPKASdChBBCCCGExUni2wSS+DbS31/D3olq+nz3KdaORggBEB2oKkuLVoEChbL10JrBQNzx40SsXUvk5i0YoqMf/Mypdi08evXGo3cvdA75oHe0JWgarB4Np5er4YBj9oGrhXr0Pq1tRW4XFwbTmqoK5AajoMsP5j+GpsGSQXBps0p0x4er9aWbqD7i7mZOMOYk+iRY+gJc3qp6WWsGVV0+epd6XTK3gLOqnUi17jnr6oSQq6q6v2pX81T1pyc2FPb+AIdnqjYy6FSv+DafgHuJDO8eEBnPm0tP8s81VTXfq04JvuzpS0FHu6zHpk+GKXUg/BZrSrzNW1frUbJQAba82dI8+0/HiVthfLvpAodvhAJQ2MWBcW0r8Xyj0tjb5uG2TUIIIYQQQhLfppDEt5FOr4RVI6BUYxix1drRCCESolWLhYhbatmtJPj4grdvyveaULic0f1gjZV44wYR69YRsXYdSXfuPFhvV7wY7t274969h/TwNodHhgOuh7LNLHu89NpW5AWrX4ZTS1VrjDH7zdPfOj1RATCtMcSFAjp49j1o+R7YWibpl6MkxsKfPcD/sFruOxd8e1s3prws9Lpqf3J2tVq2c1JtkJq/CU7uT72r3qAxbdcVftpxCYMGZYs489vzdfEt8fT7ZejMalg5jETHQtSKmEw8jiwZ1ZgmFYpkbb8Z0DSN7ecC+G7LBa4FxQBQztOF9zpWoZOvj1xpJIQQQgiRR0ni2wSS+DbSvVMwo4WqKn3ves6qtBIiP9r+PzjwC9jYp1T/pcPeGbyqpSTDa6rv3jXAybTXOn14OJFbthDx11riTp58sN7GxQXXTh1x79ED5/r10eXl4YjZ6fZhmPtcynDAbGov9d+2FS+ug9KNLH9cSzq/HpYNVpXIw7ZY/vFc3weHfofGY6BcS8seK6eJDVW9rkvUtf7AyfzC/5i6UuPWQbXsXASe/QDqD8uwJdKRG6GMXXKCexHx2Nvq+LBzNYY1K5u5RLGmwazWcPcEs2z683VsT4Y3K8f/upk40DMLkvQGlh65zS87LhEcrQZg1itTiI+eq0q9MoWzLQ4hhBBCCJE9JPFtAkl8GykpDr4uBmjwzhUoWNTaEQmRfwWeh+nN1VDCQcugTBMIOAcBZ+D+afU94Bwkx6V//+J11CXyvn3AxfOJh0kOCyN42u+EL12KlpSSXLexwaVZM9x79MC1bRtsCshQMbOKDkwZDngPqveEfvOy70Tjw20rnDxg+BZ14iQ3ig5SFdixwdDsTTUQUIi8RtPg4mbY8RkEX1LrCleAdp9l2A4mPDaRd1eeYvu5AADaVvViUr/aFHYxoT1VQjTs/wn2/UCizoHGcb/iUbQYm8a2wMnevFcbGSM6IZmZe64yc9814pMMADQpX4TedUvQuWYxi7VdEUIIIYQQ2UsS3yaQxLcJfq4F4TfhpY1Qtrm1oxEif9I0NeDt5n6o8hwMWpL+dga96v+dmgi/f0Z9j0xrT4KNHVTqALUHQuVOYOeo7hofT+iCBYTMmPmgd7djlSq49+iBW9cu2Ht5WfpR5k/6ZFjQ03LDAY3xcNsK1+IwYht4lMreGLJK01Sl94UN4FUdRu9+8NwWIk/SJ8Px+Wq4aEyQWleqEbT/8qlXOmiaxoJDN/lqw3kS9Qa83Rz5ZWAdGpfPoEWJPhlOLoRd30C0SpxPT+7GRP0gVr/ajGdKeZjrkWVKQGQ8k7ddYsWx2xhSPuk42dvQqYYPveuWpFlFT2xt5MpFIYQQQojcShLfJpDEtwkW9YPL26DLZGgwwtrRCJE/nVoOq0eBXQF47V8oVMa0+0cHwtk14LdEDWNL5eSBVr0XEcGlCVqwnuR79wFwrFYN73ffwaVpUzM+CJGu1PY1DgVV0tsSwwGNERsKczpB8EUoUgkGLASvqtaJJTP8lsGa0erEzqi/oVhta0ckRPZIiIIDv8I/v0FSrFpXtSs0GKna7zxh5sPZuxG8seQE14JisNFB++re6Vdsaxo1Yv6hW+BMiiXeACDYvjgTkwewPK4+r7euxDsdrfS6lQ7/sFj+OnGH1cfvcC045sF6bzdHej5Tgt51S1LFJ5tPLgohhBBCiCyTxLcJJPFtgq0fqw9TjcZA5++tHY0Q+U98BEypDzGB0OZTaPlO1vYXeEEN/ju1nJhLQQScdCchXPWGtSvkgtcbr+A2cJj07s4O59bB8iHqdr/5UKOndeOJ8IfZHdQVAjobqPsitPoIXL2tG1dGIu6ooa8JEdD6E3j2XWtHJET2i7wHu7+BEwtBUy0/cC0OtfqrK3zSaWEUk5DMZ+vOsvKYf7q79NVd42O7xTSxPQdAmFaQKcm9WKhvRyL2VCvmxtrXmuFgl/P+v9A0DT//CFYf92ed313CY9PmYtQo7kbvuiXpXrs4RV3lyhAhhBBCiNxAEt8mkMS3CY7/CevegPKt4cW/rB2NEPnP5vfh3+lQpCK8ctAs7RviL14kcNIkYvYfAMDGXsOzehSFKkVjYweUbqoSJbUH5s92EYHn1QkH7xqWaTuSFA93jsLigZAYBU1eh45fm/84mRF2E7Z+pFqGANi7QNM31JdjQevGlh5Ng4W94erfULwujNgOttLTV+Rjgefh8Cw4swriw9PWF3tGvab79n1sZsv+y8FcDIh6sFww7g71rv5GxfubAUi2ceBcqUH4lR1Bor1632xno6OTrw/ebk6Wf0xZlJhsYNfFQFYf9+fvC4Ek6dVHIVsbHS0redKnXkk61fDBzjbnJfCFEEIIIYQiiW8TSOLbBLcPw+z24OCachl+ZWtHJET+ce8UzHxWVe8N+QsqtM7S7pICAgj65Vci1qxRCUN7ewoNGojniKHY3d+vWqFc2w2k/DdRppnqJ+7knuWHkmv4H4M5HdQQUYBCZcHbV335pHwvVNa44ZOapnrh3j8DAafTeq4HXwZNr7Yp0wxeXJfzkrU3D8K2T1WCHqCgN7T6EOoMyVmxHpkNG8eDnRO8vE/+jxIiVXICXNoKfkvV8NrU1zSdLVRqnzLnoTPYP5S4jguDfT/CvzNAn6jW1RoAbT4Bj9LZ/xgsICwmkQ2n77H6uD8nbqWdGKjoVZAPO1elTVUvdNk1XFgIIYQQQhhNEt8mkMS3CfTJKgl05xi4l4L/s3ff4U3WbRvHv0m6N5QuCpRd9lSWoAwFHICAA1FkiANwbx8fx+ueuBBFRFBUHAwRFBBxIFPZmzILLd0t3TO53z9uLPKI2EDbtOX8HEePNneS330FaGjPXLl+45ZBYKSrqxKp+RwO+GiAueFg66Fw7ayzXsqek0Pa9A9J//hjjIICAPwHDiT0/vvwaPA/YUZmPGz/Cla+bnYjh7eFm+aD33mwuWVxPrzfC9L2mTO3i3JOfzsPf7Mb/M8gPLyt2ZGfGXdiU9G/bC6al3r6NbxrQ1QPuOqNqvtnaxiw6xv48WnIOGweC2kBl/4fNB9QtvC/IqUfhPd6QnEuDHgBuk9ybT0iVVVumtkBvnUOHNt08rhnILQZaobb8Ztg5asnu8QbXWxulFm3g2tqrgQHU3JYsDmeT9fFknFiFEq3xrX5zxUtaVfPtZt1ioiIiMipFHw7QcG3k3JTzQAubT+EtIRxS8C7lqurEqnZNs2Gb+80A9g7/4CAuk7d3TAMCrZvJ/ObhWR+9x2OzEwAvDt3Juzhh/Bu/y+b/yVshU+HQ24K1GoEoxZA7UZn+2iqh6WPwbqp4B8BE9eawe+fAfafgXbKnpOdkGVhsZqheGnHeFvzs3+E64Pjsiopgg0z4NeXzY5QgIa94LJnILKTa2py2GHWlXBkLUT1hNGLQHPpRf5dyl6zC3zbl+Y8//8V0tL83m52WfV5jjpHmfnFTP1lPzNXH6aoxJyPPrh9XR4aEE392j4urk5EREREQMG3UxR8n4XjR8xNz7IToH43MwTz0C8DIhUiLx2mXAB5adD/OXO+chkVHztG5reLyFy4kKJDh0qPezRsSOiDD+DXr1/Z38addgBmD4Xjseaoi5vmm6FtTXToN/j4KvPrG+eaoc/p2IvNUSX/29mdmwyeAaeORAlvY4ZINeW5Mv84rJoM694He6F5rM010O9JqBVVubWseQd++K/5wtCE1eb4GREpO4cDDv9mBuC7FprPX70fhQ43Vq1xRpUo/ng+ry/by4It8RgGeNisjO4RxZ19mhHo4+7q8kRERETOawq+naDg+ywl7YSZl5ubvjUfCNd/dt7+ciTyNzkpZigY0QHaXXdunXKL7oWNM83Q9I7fwHbmX7jtOTlkL/uBzIULyfv999LjFi8v/C+7jMDBg/Ht3g2L21l8v2YnwuxhkLzTfFv8yC8hqrvz61RlhdkwtQdkHoHOY2DQW86vUZBlboR5PnRIHj8KPz0H274wL9s8zDEjvR+rnM1Qk3fDtEvM8H3QW+bfmYicPYdD75j4ix3xmby4ZDer96cBEOjtzl19mzKqexSebjYXVyciIiJyflLw7QQF3+cgdi3MvhpKCqDDTTBkyvkR9IicycFfYP5t5kaGAK2HwaA3z25TyPiNML0fYMCY76HhRae9mWG3k7tmLZkLF5L944+ls7uxWPDp0oXAIUPw798fm5/vWT2kU+RnwOcj4Og6cxPBaz+G6IHnvm5V8e1dsOkTCIoyu4c9/V1dUfWQsNXcAPPQr+bliA5wzUcQ3KTizmkvhg8vhYQt0PQyuPFr/R8kIuXOMAx+iUnhpe/3sDcpG4B6tbx5aEA0g9rVxWrV846IiIhIZVLw7QQF3+doz/fw5U1g2KHnfXDp066uSMQ17CXwywvw22TAMIPTrHhwlJhfXzMT6nUu+3oOO0zva4Z67UbAsGl/u0lRbCwZX35F1qJFlKSklB73aNSIwKuvJnDQVbjXdW4eeJkU5cHXY2DfMrDYYMi70OGG8j9PZYv5AT6/FrDAmMXQsKerK6peDAP2fGe+eJCfbo4eueoN810PFeGXl+CXF8ErCCaug4CIijmPiAhgdxjM3XiU13+IITnbHPHUvl4gT1zVigsa1nZxdSIiIiLnDwXfTlDwXQ7+3HgPYMCL0H2ia+sRqWzHj8C88XB0vXm58xjzeyF5F8wda15vdTPnH3e/q2xvI/99Onz/oDlS5K4N4BdaepVhGBz/+muSXnixtLvbFhREwJVXEnj1ELzatCn77O6zZS82A86tc8zL/Z+HHndW7DkrUl46TO0OOYnQbRIMfMHVFVVfmfEw/1aIXW1e7nAjXP4KePqV3zmObTa7vR0lMHwGtL2m/NYWETmDvKISZvx2iPd/PUBukR03q4U5t3XjQoXfIiIiIpVCwbcTFHyXk99ehxXPmF8Pm15xHX4iVc2ub80XfgoyzQ3BBr8NrYeevD7/OCy6B3Z9Y15u0g+GTgO/kH9eMycFpnQ217ziNehya+lV9uxsEp58kuwlSwHw6dKF2mNG49ezJxYPj4p4hP/M4YDlT8DaKeblnvdBv6eq57iJubfAjrlQpzncvhLcvV1dUfXmsMPKV+HXl8FwQHAzc/RJRLtzX7u4AD64BFL2QKsh5rid6vhvTkSqtZTsQh6bv40fdycT4u/Jd3f1JDTAy9VliYiIiNR4Zc1ytXONlJ+e90PXCebX30yA/T+6th6RilacD4vvh69GmQF15AXm5pN/Db0BvIPg2lnmxntuXnBgBbx/ERz4+Z/XXv6kuWZEe7hgXOnh/K1bOTR0mBl6u7kR+tCDNJg1E/++fSs/9Aazc73/cydHHK16w+wCt5dUfi3nYucCM/S22GDo+wq9y4PVBr0fhdGLwb8upO0zO7TXRGIqQAAAIABJREFUf2CORDkbeenwxwyYOdAMvX1D4Mo3FHqLiEuE+Hvy9g0daR7mR0p2IXd+vpliu8PVZVW43MIS5m2M48YP19H6yaV89cdRV5ckIiIiclrq+EYd3+XK4TDf3r5jLrj7wuhFzs00FqkuUvbC12Mhead5+aJ7oe9/weZ+5vsl7zbvl7IbsECv+6H3Y6feL3atGexhgfE/Qr0LMBwO0mfOJPmNN6GkBPfISCInv453+/YV9Qidt+kTs7PdcECLq8zxE+7VoPMtOwmmdjNnUl/8MPR93NUV1Tx56fDNRIhZYl6OvtLcDNmnDGMBSorMF1K3zoGYpWAvMo/bPOD6z6B5/4qrW0SkDA6m5DB4ympyCksY37MR/72qlatLKnd2h8GaA6nM3xTP0h2J5BfbS6+zWuC9mzozoHW4CysUERGR84lGnThBwXc5KymCOdfDgZ/Auzbc8gPUaebqqkTKh2HA5k9hycNQnGd2nA6dBk37lX2NojxY9h/YONO8XK8LXDMDghqYndLTLjYD9U6jYfDblKSmcuzRx8hdtQoA/8sHEvHMM9j8/SvgAZ6j3Yth7jiwF0LdTtDyKghrC+FtwD+i6nXmGgbMucEMZMPbwfgV4OaCzvnzgWHA+mnmaBx7EQTUg+EfQlT309/22GbY+oX5Qmpe2snrQltD+xHQ9lptZikiVcbSHYnc8elGAKaM7MhV7SpgY2kXiEnKZt6mOL7ZHE9SVmHp8UZ1fBnWMZLDaXnM2xSHh5uV2eO60LVxsAurFRERkfOFgm8nKPiuAIU58PEgOLYJAuub4XdAzfgFQM5jBVmw+D4ziANo3McMvf3Dzm69nQvg23ugMBO8AmHwO5AZZ4bi3rXhro3kbtlD/MOPYE9NxeLlRdjj/yHommsqfuPKc3HoNzNMLso+9bh3bTMA/zMID2sDIdHg5umaOsF8EWPhJLN7+LZfIKy162o5XyRsNd/1kH4ALFbzHQ+9HjBHo2TGwbavzMA7de/J+/iGmvtGtB8B4W1dV7uIyBm8uGQ30349iI+HjW/vvIimoVXwBeoySM0p5Nstx5i/OY4d8VmlxwO93Rncvi7DOkXSoX4QFouFEruDCZ9tYvmuJPy93Pjq9u60jNDvUyIiIlKxFHw7QcF3BclNhY8GQNp+CG0FN86FwEhXVyVVXdoBs5O6qoVb8RvNTuaMw+Yc6H5PQI97zBnX5yLjsLmpYvwG87LVHRzFGJe/QcrqTNKmTwfDwLNZUyInT8azWTV590T6Qdi1EBJ3QNIOSN0Hhv3vt7O6mZtJhrUxw3DfUOfOY3WDhj3PrvP3+BGY2sMM6C992tyYUypHYTZ8/5A5vgSgQQ+wuZkvmnDixxI3L2hxJbS/wXyRyebmsnJFRMqixO5g1IzfWXswjSYhviy8syd+nuf+3JWZX8z6g2l0bRRMoM+/jFQ7SwXFdlbsTmb+pjh+iUnB7jCfi91tFvpEhzKsUz36tAjB08122vvePON3fj+cToi/J/Mn9KB+bZ8KqVNEREQEFHw7RcF3BTp+BGb0h+wEs7OvcR+zY6/FleDh6+rqpKpJPwjv9YTiXOg2CS59yrXdwGDOrV/3Lvz4NDhKILCBOZakfpfyO4e9GH5+3twYEijy78ixPyLI37IFgKAR1xP26KNYvarBvOx/Upxvbkb4ZxCeuAOStpsbeJ6r0ueWG048t5Thl22HA2YPgUMrzVEz45aaHcdSubbMge8eML/n/xTV0/x/otVg850QIiLVSGpOIVe9vYrErAKuaBvOuyM7ndO7tP44nM49czZzLLMAD5uVS1uFMrRjPXpHh+BuO7cX3w3DYENsBvM3xbN42zGyC05uTN2+fhDDO0VyVbu61Pb99xFgmfnFXD9tLXsSs2lUx5ev7+hOHT8X/wwnIiIiNZaCbyco+K5gyXtg8b1wZO3JYx5+0GqIGW5E9Tz3rlmp/hx2mHkFHF138lhEB7jmIwhu4pqaclLgmwmwf7l5ueVgcxyJd1DFnO/Az2TNeY+Ebw7iyMnF6u9PxLPPEjBwQMWcz9UMwxxtURqE7zA7gZ2Rn27Ogv6Thx+0uvrEc8tF//zcsv4DWPIQuPvAHatc929MIHU/rHwFgptCu+uhVpSrKxIROScbYzMY8cFaiu0Gj1/Rklsvbuz0GnaHwdSf9/PGjzE4DPDxsJFXdPKdU7V9PUrHjrSNDHQqXI9Ny2X+pngWbI7nSHpe6fHIIG+u7liXYZ3q0STEz+mak7IKGDZ1DfHH82kbGcic27qVS8e7iIiIyP9S8O0EBd+VJP0gbP0Stn1hjnf4U0A9aH89tBsBIc1dVp642Oq3zU3vPPyh/7Ow4v8gP8MMMq96w5zvW5kO/grzb4OcRHPkwsCXoPOYCtucsejIEZInv0H20qUAeLdvT93XX8ejnsYD/au0AyfmQs+B47EnjwfWPzEX+oZTN9hN3Q/v94SSfLjiNehya+XXLCIiNdonaw/z5MKd2KwWPhvflW5ObPqYlFXAvV9sYe1Bc2PfoR0jefbqNhxJy2P+pji+2XKM1JyTG002DfVjWKdIru4QSd0g79OumZlXzHfbE5i/KY4NsRmlx309bFzRNoJhnerRtVFtrNZz+znnYEoO17y/lvTcIno2rcNHYy7Ew00NLiIiIlK+FHw7QcF3JTMMOLreDKl2LDA39vtT3U5mSNVmOPhqV/jzRvJumHYx2IvMjupON0NmPMy/FWJXm7fpcCNc/gp4Ot+B5BR7CfzyIvz2OmBASAu4ZiaEtaqQ05VkZJD63ntkzPkCiovBYiF4/HhC7r4Li3vFzPGssQwDjqwzn1t2fnPqc0tkZ/O5pdXV8MUNEPcHNLoERn2jd5yIiEi5MwyD+7/ayoLN8dTx8+S7u3sSFvDvI8t+3pPMA19vJT23CB8PG88OacPwzvVOuU2J3cFv+1OZvymeH3YmUljiAMzX5ns0CWZYx3oMbBOOh5uVlTEpzN8Uz/LdSRSduJ3VAj2bhTC8UyT9W4Xj7VG+o762Hj3ODdPXkVdkZ1D7urx1fYdzDtRFRERE/krBtxMUfLtQcQHELIGtX8C+5Sc3v7O6QfQVZpetNsSs2ezF8GE/SNgKzQbAyC9PdlU77LDyVfj1ZTAcENzMHH0S0a5iajl+FOaNPzlupdNo899gWWZGO8lRUED67NmkfTAdR7Y53sO3Vy9CH3wAr+jocj/feeefnluwAAZ4BsCENRBU35VViohIDZZfZGfo1NXsScymc1Qt5tza7R+7n4tKHLyydA8frjoEQKuIAN4Z2fFfR45kFRSzdHsi8zbFsf5Qeulxb3cb3h420nOLSo+1CPdneKd6DOlQl9AyhPDn4rd9KYyb9QfFdoMxPRry1KBW5zTrXEREROSvFHw7QcF3FZGTAjvmmt2aCVvNY961YMhUaHGFa2uTivPzi/DrS+bf9cR14B/+99scXgXzboXsY2DzhAHPw4Xjy3fsyO5FsHCSudmiZwAMegvaDCu/9U8wHA6yFi0i+c23KElIAMCzZUvCHnoQ3x49yv18wumfW4ZMhY43urYuERGp8Q6n5jJoyiqyC0oY06MhTw9u/bfbxKblcteczWyLM9+pNKZHQx69vAVe7s51Yh9Nz+ObzfHM3xzPoVRz0+A6fp5c3cGc292qbuX+nrNwSzz3fGFu1P3QgGgm9WlaqecXERGRmkvBtxMUfFdBidvh27tOblrX9Q647Blw0+7wLmMYELMMIjuBX2j5rHlsM0zvZ3bjXvOROeLmn+SmwcKJEGPOwKbFVeZYFJ/a51ZDcQH88F/4Y7p5ObKzWUuthue27mnkrl1L0quvUrhrNwBu4eGE3HsPgYMHY9G4jcqRvBvy0qHhRa6uREREzhPLdyVx6ycbAHhrRAeGdDj5bsaFW+J5fMEOcgpLCPJx55Xh7ejf+jRNAE4wDINtcZnkFdm5sGEt3Gyu+xlj5upD/N+iXQC8NKwtI7o0cFktIiIiUnMo+HaCgu8qqqTI3OBw7RTzcng7c9ZyHXWLuMTmT82OaP8IuGn+uc+8Li6ADy6BlD3QeihcO+vf72MYsH6auQmmvcjcGHX4hxDV/exqSImBuWMhaYd5+aJ7oO8TYCvf2doFMTEkv/YauSt/A8Dq50fwbbdR++ZRWL0q9q3GIiIi4nqvLtvDuz8fwNvdxsI7L6JeLW+e/nYnX22IA6BLw9q8OaLDP25OWZ29snQPU385gNUC793UmQHnGOyLiIiIKPh2goLvKi7mB/jmDshLA3dfuPJ16HCDq6s6vzgcMLUrpMaYl72CYORX0KDr2a/5w39hzTvgGwqT1jvXuX1sC8wdB+kHwGKF3v+BLuMx5zeX0Z7F8P1DUJwHviEw9H1oeqnTD+NMipOSSHnnHTLnLzD/DN3cqDViBHUmTsCt9jl2qouIiEi1YXcYjP7od1btT6VhsA82q4UDKblYLHBX32bc3bepSzuzK5JhGDw6bztfbjiKh5uV2eO60LWxNrEXERGRs6fg2wkKvquBrASYfyscNjtmaXe9GYB7+ru2rvPF3iUwZ4Q5+zokGuL+ADdvuO4TaN7f+fVi18DMKwADbvgSogc6v0Zhthlcb53j/H3/qnFvGPoB+Ied2zr/I2/jRo7eehuOvDwA/Pv3J/T++/Bo2LBczyMiIiLVQ1pOIYPeWcWxzAIAwgI8efP6jnRvUvND4BK7gzs+3cSPu5Pw93Jj5pgLuaChmgBERETk7JQ1y62ZbQVS8wREwM0Loc9/zQ7fbV/CtIvNzl+peGveMT93HgM3fwtNL4OSfPjiBtj2lXNrFebANxMAAzredHahN5gvegx9H65+39wY01nuPtDvSbhpQbmH3gV7Yzg6YSKOvDy82rYl6vPPqff2Wwq9RUREzmPBfp5Mvakz4QFeDGwdzpJ7Lj4vQm8AN5uVKSM70qVRbbILSrhpxnp+2pPk6rJERESkhlPHN+r4rnZi18K88ZAVB1Z36P+sufmlxYkxF1J2cRvhw75gdYN7t0NAXbAXwzcTYfuJ0HvgS9BtQtnWW3wfbPgIAuvDhDXgVQ7fcw6HuUGmMyxWsNrO/dz/ozg+nsM3jKQkORnvTp1oMONDrN41b16niIiInB3DMLCcpz+35hfZmfT5Jn7ak4zNauG1a9sxtGM9V5clIiIi1Yw6vqXmiuoOd/wGLa4CRzEsfdQcw5Gb5urKaqY1b5uf215rht5gbv44dBp0PRF2L30UVjxrbj55Jvt/NENvgCHvlk/oDWC1mjU581EBoXdJejpHbhlPSXIyns2aUn/quwq9RURE5BTna+gN4O1hY9qozgzrGIndYXDfl1uZseqQq8sSERGRGkod36jju9oyDPjjQ1j2ONgLwT8CetwFNo+yr2GxQu3GEN4WfOtUXK3VVfoheKcTGA64YzWEtzn1esOA316Dn54zL3ceA1dOPn2onJ8BU3tA9jHocjtc8UqFl1+ZHLm5xI4ZS8H27bhFRNBwzue4h4e7uiwRERGRKsfhMHj++92loffE3k14aED0ef2igIiIiJRdWbNct0qsSaR8WSzQ5VZo0A2+Hgtp+2DZf85+Pb9wM9gNaw1hbc2vg5uB7Tz+Nln3nhl6N+n399AbzL+Dix8Cnzrw3f2wcRbkpcPwD8HN89TbLnnUDL1rN4FLn66E4iuPUVRE3N33ULB9O7agIBrM+FCht4iIiMg/sFot/PfKltT29eDVZXuZ+ssBMvKKeO7qttisCr9FRESkfKjjG3V81whFufDb65C6z7n72Yshda/Z2cxpvhVsnhDa4mQQHtbG/Hw2mylWN3np8EZrKM6DUd9Akz5nvv2uhebsdXsRNLoYRnxubkAJsHsRfHmT2WE/7geof2HF119JDIeDYw89TNZ332Hx9iZq1ky827d3dVkiIiIi1cKc34/w+ILtOAwY2DqcN0d0wMu9/EfSiYiISM1R1ixXwTcKvgUozIHkXZC4HZJ2QtIO83NRzulvH1Dv1CA8rI05MqUC5ka7zMpXzREm4W3h9t/KtnnowV/hi5Hmn1tEB7hxrnl8ajfIS4We98OlT1Vs3ZXIMAySXnyRjE9mg5sb9d+bil+vXq4uS0RERKRaWbojgbvnbKHI7qB742A+uLkz/l7uri5LREREqigF305Q8C2n5XDA8cOQuMMMwhN3QNJ2OH7k9Ld394HQlifC8Lbm57DW5beBY2UqLoA320JuMgybDu2uK/t94zfBZ9dAXhoEN4WgKDiwwvzzuPWnv49AqcZSP5hOyuTJANR99RUCBw1ycUUiIiIi1dOaA6nc9slGcgpLaBMZwKyxXajjV3N+bhQREZHyo+DbCQq+xSkFmWY3+J9BeOIOSN4NJfmnv31QFLQZBn2fBKu1cms9Wxs/hkV3m53t92wBm5MdN6n7YfbVkHnUvGx1h9t+Nl8QqCGOz5tHwuP/BSD00UcIHjPGtQWJiIiIVHM74jMZ/dHvpOUW0aiOL5+M60L92j6uLktERESqGAXfTlDwLefMYYe0AyeD8D87xLOPnbxNl9vh8pfLNjLElRwOmNoVUmOg//PQ486zWyfrGMweCil7oN+T0OuB8q3ThbJ/+om4O+8Ch4PgW8cT+kDNeWwiIiIirnQwJYdRM34n/ng+of6ezL6lK9Hh/q4uS0RERKoQBd9OUPAtFSYvHXbOh+9OBKN9n4CLH3RtTf9m71KYcz14BsB9O89tVEtRnrl5aESHqh/4l1Hexo0cGXcLRmEhgUOHEvHC81hqyGMTERERqQqSsgq4ecbv7E3KJsDLjacHt6ZD/SAaBvtitZbfz10Oh8HhtFz2JGZTbHfQp0UoAZotLiIiUuUp+HaCgm+pcOveg6WPml8Pehs6j3ZtPWcy8wqIXQ097ob+z7q6miqlYG8MsaNG4cjKwq93b+pNeQeLm5uryxIRERGpcTLzihn38R9sjM0oPebtbiM63J+WEQG0ijA/R4f7l2kjzJzCEvYkZLE7IYtdCdnsTshib2I2+cX20tt4ulm5rFUYwzvVo1ezOrjZqsmYQhERkfOMgm8nKPiWSvHj/8GqyWCxwvWfQosrXV3R38VthA/7gtUN7t0OAXVdXVGVURwfz+EbRlKSnIx3p040mPEhVm9vV5clIiIiUmPlF9l588cY1h1MY29SNgXFjtPern5tb1qGB9AywvxoWMeHw6l57E7IYk9iFrsTsjmSnnfa+3q6WYkO9yevyM7+5JzS43X8PBjSIZKhHSNpXTdA7/ATERGpQhR8O0HBt1QKw4Bv74TNn4KbF4xaAFE9XF3Vqb4eAzsXQPsbYOj7rq6myihJTyd25I0UHT6MZ7OmRM2ejS0oyNVliYiIiJw37A6DQ6m57D7RtW1+ZJOYVVDmNcIDvGh5olO8xYmu8YbBvrjZrBiGwY74LOZtimPR1mOk5RaV3i86zJ9hnSK5umMkYQFeFfHwRERExAkKvp2g4Fsqjb0EvhoFe78Hz0AY+z2Et3F1Vab0Q/BOJzAccMfqqlOXizlyc4kdM5aC7dtxi4ig4ZzPcQ8Pd3VZIiIiIgJk5BadGF9iBuG7E7I4mp5H/do+JzrA/Wl1Iuiu7etRpjWL7Q5WxqQwf1M8y3clUWQ3O82tFrioaR2GdYpkQOtwfDw08k5ERMQVFHw7QcG3VKrifJg9FI6sBb9wuOUHqBXl6qrg+4fh92nQpB+Mmu/qaqoEo6iIoxMmkrt6NbagIKI+/wzPxo1dXZaIiIiIVJLMvGK+257A/E1xbPjLvHFfDxsT+zRlUp+mLqxORETk/FTWLFe7dYhUNndvuGEOhLaCnET4dBjkprq2prx02Dzb/LrHXa6tpYowHA6O/edxclevxuLtTf1p7yv0FhERETnPBPq4M7JrA+ZO6MGvD/Xmnn7NaFDbh9wiO68u28uK3UmuLlFERET+gYJvEVfwrgU3zYPABpC2Hz67BgqzXVfPhhlQnAfhbaFxb9fVUUUYhkHyyy+TtXgxuLlR7+238G7f3tVliYiIiIgLRQX7ct9lzfn1od6Mu6gRAI/O307GX+aBi4iISNWh4FvEVQLqmiNFvGvDsc3w5SgoccEPzcUFsP4D8+sed4N2rCdt+oekf/wJAHVffAG/Xr1cXJGIiIiIVBUWi4WHB0bTNNSPlOxCnli4w9UliYiIyGko+BZxpTrN4Ma54O4LB3+GbyaAw1G5NWz7EnKTISASWg+t3HNXQcfnzSdl8mQAQh99hMBBg1xckYiIiIhUNV7uNiZf1x6b1cLibQks2nrM1SWJiIjI/1DwLeJq9TrD9bPB6gY75sKyx6Cy9px1OGDtFPPrbhPA5l45562isn/6mYQnnwQgePwtBI8Z49qCRERERKTKalcvqHRzyycW7iA5q8DFFYmIiMhfKfgWqQqa9oOr3ze/Xv8+/PZ65Zx33w+QGgOeAdBpdOWcs4rK27iR+PvuA7udwKFDCXngAVeXJCIiIiJV3F19m9K6bgDH84p5dP52jMpqYBEREZF/peBbpKpody0MfMn8+qdnYfH9cGxLxXZ/r3nb/Nx5DHgFVNx5qriCmBiOTpiIUViIX+/eRDz7DBbNOhcRERGRf+FuszL5ug542Kz8tCeZrzfEubokEREROUHBt0hV0m0C9Lzf/HrDDPjgEpjaHVa9CVnlPDcwbiPErjZHrHS9o3zXrkaK4+M5Ov5WHFlZeHfsSOQbk7G4ubm6LBERERGpJqLD/Xmgf3MAnlm8i6PpeS6uSEREREDBt0jV0+9JuHEetB4GNk9I2Q0/PgWTW8EnQ2DrF1CYc/brF2bDkfVmVzlA22shMLJ8aq9mSjIyODL+VkqSk/Fs1pT6703F6u3t6rJEREREpJoZ36sxF0TVIqewhIfnbsPh0MgTERERV7MYGkJGVlYWgYGBZGZmEhBw/o57kCoo/zjsWmiG3UfWnDzu7gutBkP7EdCwF1htf7+vYcDxWEjcAUk7IHE7JO2EjEOn3u6O1RDepmIfRxXkyM0lduw4CrZtwy0igoZzPsc9PNzVZYmIiIhINXU4NZfL3/qN/GI7Tw1qxdiLGrm6JBERkRqprFmugm8UfEs1kX4Itn0FW+ecGl4HREK766BxH/P4n0F30k4ozDr9Wv4RENYGWl5lzvc+zxhFRRydOIncVauwBQYSNedzPBs3dnVZIiIiIlLNzV57mCcW7sTTzcr39/SiSYjfWa9VbHdwJD3P6S1/ooJ9cLdVrTd35xaWYLNa8HI/TcOOiIiIkxR8O0HBt1QrhgFHf4dtX8COeVCQ+c+3tbpDSAuzozuszYnPbcE3uPLqrWIMh4NjjzxK1qJFWLy9iZo1E+/27V1dloiIiIjUAIZhcPNHv/PbvlQ61A9i7h3dcXMyhHY4DL7deoxXl+0l/ni+0zXUq+XNrLFdaBp69qF7efrjcDrjP96AwzC4s09TRvdoqABcRETOiYJvJyj4lmqruAD2LYMtc8wu7+AmJwLutubnOs3BzcPVVVYZhmGQ/NLLpH/8Mbi5UX/qu/hdfLGryxIRERGRGuTY8XwGvLmS7IISHhoQzaQ+Tct83zUHUnnh+93siDffuenlbnUqJC4otlNQ7KCWjzuzxnahff0gp+svTyt2JzHxs00UljhKj0UGefPggOYMaR+J1WpxYXUiIlJdKfh2goJvkfND6vTppLw+GYC6r7xM4ODBLq5IRERERGqieRvjeODrrbjbLCyc1JNWdc/8e2ZMUjYvLdnDT3uSAfDzdGNC7yaMu6gR3h5lD77TcgoZO+sPtsVl4uNh44NRF9CzWZ1zeixna97GOB6etw27w6Bvi1AGtgnnjeUxJGQWANAmMoD/XN6SHk1dU5+IiFRfCr6doOBbpOY7Pm8+CY8/DkDoI48QPHaMawsSERERkRrLMAxum72R5buSaBHuz8I7L8LT7e8BdnJWAZOXx/DVhqM4DHCzWrixawPu7teMYD/Pszp3TmEJd8zeyKr9qbjbLLx5fUeubBdxrg/JKR/+dpDnvtsNwLBOkbw8vB3uNisFxXZmrDrEe78cIKewBIA+0SE8dkVLmof5V2qNIiJSfSn4doKCb5GaLfunn4m76y6w2wkefwuhDz7o6pJEREREpIZLyS5kwJsrSc8tYlKfJjw0oEXpdbmFJUxbeZDpKw+SX2wHYGDrcB4eGE3jc9gQ80+FJXbu/3Ir321PwGKBZ4a0YVS3qHNe998YhsEry/by3i8HABjfsxH/uaLl30aapOUU8s5P+/l0XSwlDgOrBa7tXJ/7+zcnLMCrwusUEZHqTcG3ExR8i9RceZs2cWTsOIzCQgKvvpqIF1/AYtEsQRERERGpeEu2JzDhs01YLTB3Qg/aRQby5YajvLF8H6k5hQB0ahDEf65oyQUNa5frue0OgycX7uCz9UcAuO/S5tzdr2mF/SxcYnfw+IIdfLnhKACPDGzBHZc0PuP5DqXm8srSPSzZkQiAt7uNW3s14rZLmuDn6VYhdYqISPWn4NsJCr5FaqaCmBhibxqFIysLv0suod6Ud7C4u7u6LBERERE5j9z7xWa+2XKMBrV9cLdZOJCSC0DDYB8eGdiCgW3CKyyMNgyDN37cx9sr9gEwunsUTw1qXe6bShYU27l7zmZ+2JWE1QIvDmvL9Rc2KPP9N8am8/x3u9l05DgAdfw8uOfS5txwYX3cbNZyrVVERKo/Bd9OUPAtUvMUx8dz+IaRlCQn492xIw0+moHV29vVZYmIiIjIeSYzr5j+b/5KUpbZ4V3b14O7+zZlZNcoPNwqJ9SdtfoQTy/aBcDg9nV57dr25Xbu7IJibv1kA+sOpuPhZuXtER0Z2Cbc6XUMw2DpjkReXrqHw2l5APRoEswHN1+g7m8RETmFgm8nKPgWqVlKMjKIHXkjRYcO4dG0CQ0//RRbUJCryxIRERGR89T6g2n836Jd9I4O4Y7eTQjwqvx3IS7cEs8DX22lxGFwcfMQ3r+pEz4e5xYop2QBYMeUAAAgAElEQVQXMmbm7+w8loWfpxvTb76A7k2Cz2nNYruDz9cf4ZWle8gtstM2MpCZYy+kzllu9ikiIjWPgm8nKPgWqTkcubnEjh1HwbZtuEVE0HDO57iHO99xIiIiIiJS0/yyN5kJn24iv9hOxwZBzBxzIUE+Hme11tH0PEbNWM/htDyCfT34eFwX2kQGllut2+KOM2bmH6TnFtG4ji+f3NKFerV8ym19ERGpvsqa5WpYlojUGEZxMXH33EvBtm3YAgNp8OF0hd4iIiIiIif0jg7ls1u7EuTjzuYjx7n2/bUkZOY7vc6exCyGv7eGw2l51KvlzdwJPco19AZoVy+IuXd0JzLIm4OpuQx/bw0xSdnleg4REanZ1PGNOr5FagLD4eDYI4+StWgRFm9vombNxLt9e1eXJSIiIiJS5exLymbUjN9JzCogMsibwR3qlvm+DsNgzvojZBWUEB3mzye3dCEswKvCak3MLODmj9YTk5RDoLc7H425kM5RtSrsfOVtW9xxlu9KosThXPQSEejFFW0jNOJFROQ0NOrECQq+Rao3wzBIfull0j/+GNzcqD/1XfwuvtjVZYmIiIiIVFlxGXncPON3DqbmntX9L4iqxYzRFxLoU/Hzyo/nFTFu1h9sOnIcL3cr793UmT7RoRV+3nNxND2PV5btZdHWY2e9hs1qoXfzEIZ1qke/lqF4udvKsUIRkepLwbcTFHyLVF+GYZD24YekvD4ZgLovv0TgkCEurkpEREREpOpLzy3i03WxZOYXO3W/sABPRnVriLdH5QWxeUUlTPxsE7/sTcHNauG1a9tzdcfISjt/WR3PK2LKT/v5ZG0sRXYHFgtc3iaciEDvMq9hGLDxSAZbjx4vPebv5cZV7SIY1qkeF0TVwmKxVET5Z6jJICGzAF9PNwK9K39zVhGRv1Lw7QQF3yLVT3FSMlmLF5O5cCGFMTEAhD78MMHjxrq4MhERERERqQjFdgcPfr2VhVvMLuqnBrVi7EWNXFyVqaDYzuy1sbzz0z6yCkoA6Nm0Do9d0YLWdc9u/vn+5BwWbI5jwaZ4jmUWlB5vUNuHoR0jGdYpkqhg33Kp/68Kiu3sS8phd0IWuxKy2J2QxZ7EbDLzi/GwWXn8ypbc3D2q0sN3EZE/Kfh2goJvkerBkZdH9ooVZH6zkNy1a8HhAMDi4UHwHbcTMnGiiysUEREREZGK5HAYPLN4F7PWHAbgrr5Nuf+y5i4LYR0Og0XbjvHqsr3EZZgbhbYI9+exK1pycbM65VKXw2Gw/lA68zfF8f32BHKL7KXXXRBVi6GdIrmqbV2nx84YhkFKduGJcDub3SdC7oOpudhPM5PcYjG70QEuaxXGK8PbUcvX45wem4jI2VDw7QQF3yJVl+FwkPf7H2QuXEj2smU48vJKr/Pu3JnAwYMJGDgAW2D57iIvIiIiIiJVk2EYvPvzfl77wXzn58iuDXh2SBts1soNv9ceSOOF73ezPT4TMEfAPNA/muGd6lVYLflFdn7Ylci8TfGs2pfCn/m0h81KiL9zG2HmFZWQkXf6MTe1fNxpGRFAi/AAWkb40zIigKahfnzx+xFe+H4PRXYHEYFevDWiI10a1T7XhyUi4hQF305Q8C1S9RQePEjmwm/J/PZbShISSo+7169P4JAhBA4ehEeDBi6sUEREREREXOmz9bH895sdGAZc0TacN67vgKdbxc8d35eUzUtL9rBiTzIAfp5u3HFJY27p2bhS554nZRWwcEs88zbGszcp+6zWsFqgUR1fWkYE0DIigFYnPocFeP5jt/qO+EzunrOZg6m5WC1w76XNmdSnaaW/8CAi5y8F305Q8C3VWZG9iJVxK9mbsZcG/g2Irh1No8BGuFur54Yj2StWkDrtAwq2bSs9ZvX3J+Dyywm8egjeHTtqlpyIiIiIiADw/fYE7v1iC0V2B90bB/P4lS1pXTeg3H9nMAyDXQlZzF4by1cbjuIwwM1qYWTXBtzdrxl1/Jzrti7v2g6l5pJ9YrZ4WbnbrDSq43tWYX1uYQlPLNzB/E3xAHRrXJs3r+9IeKCX02uJiDhLwbcTFHxLdWMYBttSt7HowCKWHFpCVlHWKde7W91pEtSE5rWaE10rmuja0UTXiibIK8hFFZdN4YEDHBw02JzdbbPh16sXgVcPwa9PH6yervtBUkREREREqq7V+1O57ZMNpbOvo8P8GdYpkqs7RhIWcG5B7J9d1fM3xbMn8WRX9YDWYTwysAWNQ/zOaf3qbt7GOJ5YuIO8Iju1fNx5/br29G0R5uqyRKSGU/DtBAXfUl3E58Sz6MAiFh9cTGxWbOnxUJ9QukV042j2UWIyYsgtzj3t/UN9Qk8Jwi8Iv4A63nUqq/x/dXTSneSsWIHvRRdR95WXcQsOdnVJIiIiIiJSDexOyGLKT/tZviuJIrsDMMd4XNS0DsM71aN/6zB8PNzKtNaZ5mhf2iqUsRc14sKGmmv9p4MpOdw1ZzM7j5kNWbf0bMTDA6MrZewMmH9fOYUlTs84F5HqS8G3ExR8S1WWXZTN8tjlfHvgWzYmbSw97u3mzaUNLmVQk0F0Ce+CzWr+UOEwHMTnxBOTHsPejL3sTd/L3oy9xOfE/23tIM8gvhv2HQEerv93n7dhA7E3jQKbjcaLvsWzcWNXlyQiIiIiItVMZl4x321PYP6mODbEZpQe9/WwcXnbCIZ1iqRbo2Cs/zOP2uEwWHcojfmb4lmyPaG0exzggqhaDOtUjyvbRhDoUz1HSla0whI7Ly3Zw8zVhwFoGxnIOzd0pGEd3wo97897k3nwq63kF9v5ZtJFNA/zr9DziUjVoODbCQq+paopcZSw9thaFh1YxE9Hf6LQXgiABQtdIrowuMlgLm1wKT7uPmVeM6coh33H95UG4T8f+Zm0gjTu63wf49qMq6iHUiaGYRA74gbyt24l6Prrifi/p11aj4iIiIiIVH+xabks2GyOKTmSnld6vG6gF1d3jGRYp3oALNgcx4JN8RzLLCi9Tf3a3gzrWI+hHSMrPLytSZbvSuKhuVs5nleMr4eN54e25eqOkeV+nqISB6/9sJcPVh4sPdavRSgzxlxY7ucSkapHwbcTFHxLVbIleQsP/PIAyfnJpccaBzZmcJPBXNn4SsJ9w8vlPAv2LeDJNU8S6h3K0uFLcbe5rnMha9kPxN9zDxZvb5osW4p7aKjLahERERERkZrFMAw2xmYwb1M8i7cd+8dNIP293LiqXV2Gd4qkc1Stct8g83yRkJnPPV9s4fdD6QBc2TaCRy9vQf3aZW/cOpMjaXncNWcTW+MyARjWMZKFW49hdxh8cVs3ujXWyEyRmk7BtxMUfEtVsT9jP6OXjiarKItanrW4ovEVDGoyiFa1W5X7D11F9iIGzhtISn4Kz/d8nsFNBpfr+mVlFBdz8KpBFMXGUmfiRELuvssldYiIiIiISM1XUGxnxe5kFmyO45e9KRhA7+YhDOtUj34tQ/Fyr5y51DWd3WHwzk/7eHvFPhyGOR/95u5R3Nm3KUE+Hme97rdbj/Gf+dvJKSwh0NudV65px4DW4TzxzQ5mr4ulfb1Avpl0kV60EKnhFHw7QcG3VAUJOQnctOQmkvOSaRfSjumXTXdqlMnZ+HD7h7y16S2a1WrGvEHzXPLDQfrnn5P0zLPYgoNpsmwZNj+9jVBERERERCpeZn4xAIHemttdUXYey+TF7/ewan8qAAFebtzZtyk3d2/o1IsMeUUl/N+3u/hyw1EALmxYizdHdCQyyBuAlOxCer/6M7lFdqaM7MhV7eqW/4MRkSqjrFmutRJrEpF/kFGQwe0/3k5yXjKNAxvzbt93Kzz0Brgu+jp83HzYl7GPNcfWVPj5/pc9J5fUKe8CUGfSRIXeIiIiIiJSaQK93RV6V7DWdQOZfUsXPh7XhRbh/mQVlPDC93vo9/qvLNwSj8Px772YexKzGDxlNV9uOIrFAnf3bcqcW7uVht4AIf6e3HZxEwBeXbaXohJHhT0mEak+FHyLuFhecR53rriTQ5mHCPMJY9pl0wjyCqqUcwd4BDCs2TAAZu2cVSnn/Kv0j2ZgT0/HIyqKWtdeW+nnFxERERERkYplsVi4pHkI393di1euaUdYgCfxx8054EPeXc2aA6mnvZ9hGMxeF8vgKavZn5xDqL8nn43vyv39o3Gz/T3OGt+rEXX8PIlNy+Pz9bEV/bBEpBpQ8C3iQsWOYh749QG2pW4j0DOQaZdNK7fNK8tqVKtR2Cw21iWsY3fa7ko7b3FyMmkzZwEQcv/9WNzVaSEiIiIiIlJT2awWrrugPr882IcH+zfHz9ON7fGZjJy+nnGz/iAmKbv0tpl5xUz4dBNPfLODohIHfaJDWHJPL3o0qfOP6/t6unHfZc0AePun/WQXFFf4YxKRqk3Bt4iLOAwHT65+klXxq/CyeTGl7xSaBDWp9Drq+tWlf8P+AHy86+NKO2/qlHcx8vPxbt8e//6XVdp5RURERERExHW8PWzc2bcZvzzUm1HdorBZLfy0J5mBb67k0Xnb+HFXEle8/RtLdybibrPw3ytbMmP0hQT7ef7r2tdfUJ/GIb6k5xYx7deDlfBoRKQqq9LB99NPP43FYjnlIzz8ZDesYRg8/fTT1K1bF29vb3r37s3OnTtdWLFI2U3eMJnFBxdjs9h4vffrdAjt4LJaRrceDcDSQ0tJzE2s8PMVHjjA8blzAQh9+CHtuC0iIiIiInKeqePnybNXt+GH+y5mQOswHAZ88cdRxn+ygfjj+UQF+zBvQg/G92qM1Vq23xndbFYeGdgCgA9XHSQxs6AiH4KIVHFVOvgGaN26NQkJCaUf27dvL73ulVdeYfLkyUyZMoU//viD8PBwLrvsMrKzs8+woojrzdwxs7S7+pmLnuHiehe7tJ7Wwa3pEt4Fu2Fn9q7ZFX6+5MlvgMOBX79++HTuXOHnExERERERkaqpSYgf00ZdwNd3dKdjA3O/qyEd6rL4rp60q+f8/lf9W4VxQVQtCoodvPljTHmXKyLVSJUPvt3c3AgPDy/9CAkJAcxu7zfffJPHH3+cYcOG0aZNGz7++GPy8vL4/PPPz7hmYWEhWVlZp3yIVJaF+xcyeeNkAB7o/ACDmwx2cUWmMa3HADA3Zi5ZRRX3PZG3YQM5K1aAzUboA/dX2HlERERERESk+riwYW3mT+jBhv9eylsjOuLvdXb7QFksFh67wuz6/mrD0VNmh4vI+aXKB9/79u2jbt26NGrUiBEjRnDwoDmj6dChQyQmJtK/f//S23p6enLJJZewZs2aM6754osvEhgYWPpRv379Cn0MIn9aGbeSp9Y8BZhB85g2Y1xb0F/0jOxJk8Am5JXkMS9mXoWcwzAMkl99DYCg4cPxbNy4Qs4jIiIiIiIi1Y/FYqFOGWZ5/5vOUbUZ2DochwEvL9lTDpWJSHVUpYPvrl278sknn7Bs2TKmT59OYmIiPXr0IC0tjcREcw5xWFjYKfcJCwsrve6fPPbYY2RmZpZ+HD16tMIeg8iftiRv4YFfHsBu2BncZDD3db7P1SWdwmKxlM76/nT3pxTby38H7OwflpO/dSsWb2/q3Dmp3NcXERERERERAXh4YDQ2q4UVe5JZdzDN1eWIiAtU6eD78ssvZ/jw4bRt25ZLL72U7777DoCPP/649Db/uymeYRj/ulGep6cnAQEBp3yIVKT9GfuZtGISBfYCekX24ukeT2O1VL1vvysbX0mIdwjJecksObykXNc2iotJnvw6AMFjx+AeGlqu64uIiIiIiIj8qXGIHzd0Md/h/+KSPRiG4eKKRKSyVb3k7Qx8fX1p27Yt+/btIzw8HOBv3d3Jycl/6wIXcaWEnARu//F2soqyaBfSjtcueQ1369nNKqtoHjYPRrYcCcCsnbPK9QeDjK++ojj2CLbatak97pZyW1dERERERETkdO7p1xwfDxtbjx7n++1nng4gIjVPtQq+CwsL2b17NxERETRq1Ijw8HCWL19een1RURG//vorPXr0cGGVcj6zO+wcyjzE0sNLeXvT20xaMYnrFl9Hcl4yjQMb827fd/Fx93F1mWd0bfNr8XbzZl/GPtYcO/O8/DMxDIP3tr7H0IVD2Ra7ntR3pwJQZ9JEbH6+5VWuiIiIiIiIyGmF+Hty+8VNAHhl2R6KShwurkhEKpObqws4kwcffJBBgwbRoEEDkpOTee6558jKymL06NFYLBbuvfdeXnjhBZo1a0azZs144YUX8PHxYeTIka4uXc4DOUU5xGTEsDdjL3vT9xKTEcP+4/vJL8n/220j/SKZdtk0gryCXFCpcwI9AxnebDif7v6UWTtncVHkRU6vUeIo4bl1zzFvn7lJ5s8v3UP/9Ew8oqKodd115V2yiIiIiIiIyGmN79WI2etiiU3L4/P1sYy5qJGrSxKRSlKlg++4uDhuuOEGUlNTCQkJoVu3bqxbt46oqCgAHn74YfLz85k4cSIZGRl07dqVH374AX9/fxdXLjWJw3AQnxNPTPrJkHtvxl7ic+JPe3svmxfNajWjea3mRNeOJrpWNK2CW+Hl5lXJlZ+9m1rdxJw9c1iXsI7dabtpGdyyzPcttBfyyMpHWHFkBVaLlfqFfly8Kh2AkPvuw+JeNce8iIiIiIiISM3j6+nGfZc14/EFO3j7p/0M71wPfy/9XipyPrAYmu5PVlYWgYGBZGZmaqPL81xecR77ju8r7eD+8yO3OPe0tw/zCSsNt5vXbk50rWga+DfAZrVVcuXl7+FfH2bJ4SVc2fhKXur1Upnuk1OUw90/380fiX/gbnXnlYtfIeSdeXgs/oWYuhDyyYf0qOd8B7mIiIiIiIjI2SqxO+j/5koOpuRyZ5+mPDgg2tUlicg5KGuWq+AbBd81xaHMQxzJOuLUfYodxRw4foC9GWbQfSTrCAZ//5Zwt7rTNKjpKV3czWs1rxajS87WzrSdjFg8ApvFxtLhSwn3DT/j7VPzU5n440R2p+/G192Xt/u8Tfu8YA4OGgwOB0/eZCM9OowFQxYQ4KHvMxEREREREak8y3YmcvvsjXi5W/n1oT6EBVSfd2WLyKnKmuVW6VEnImVR4ijhva3vMX3b9NOG1s6q413nlA7u6FrRRAVG4W49v94K1Tq4NV3Cu/B74u/M3jWbhy586B9vG5cdx+3Lb+dI9hFqe9XmvUvfo5m9DkfvuxUcDrz7XEJ+6ziSs2J5af1LvNDrhUp8JCIiIiIiInK+698qjAuiarEhNoM3lsfw0vB2ri5JRCqYOr5Rx3d1lpCTwCO/PcLm5M0ARNeKdiqgtlqsNAhocErQHewdXFHlVjsr41YyacUkfNx8WH7t8tN2asdkxHDH8jtIyU8p3cQzIgOO3DKe4rg4bHXq0PDzz9jllc7opaNxGA7e7P0m/aL6ueARiYiIiIiIyPlqY2w6w99bi9UCy+69mGZh2iNOpDpSx7fUeCtiV/DkmifJKsrC192Xp7o/xeWNLnd1WTVKr8heNAlswoHMA8yLmcfYNmNPuX5z8mYmrZhEdlE2TYOaMu2yaQTEpnH41tuwp6biXr8+DT6agUf9+nSgAWNbj2XGjhk8s+4ZOoR20IsMIiIiIiIiUmk6R9VmYOtwlu5MZOBbv2GzWsp8X3erhV7NQhjWKZLe0aF4uFkrsFIRKQ/6LpVqp9BeyPPrnufeX+4lqyiLNsFt+HrQ1wq9K4DFYmF069EAfLr7U4rtxaXXrYxbyW0/3EZ2UTYdQzsya+AsfHccJnbUzdhTU/Fs0YKGn3+GR/36pfeZ2GEizWo1I70gnefWPYfecCIiIiIiIiKV6ZHLW+Dn6YbdYVBU4ijzR26RnaU7E7lt9ka6vvAjTy3cwf+zd9/RUVXr/8ffM+kQ0mlJaAkQehXpVUFAEikKonTwghSRqlIU6V0EAbEACl4vKC0JhiJIk957QhICSSghvU89vz/yM/f6lZJJm5TntdZdrDtzzt7PQDLOfM4+z74SmSjfa4UowqTVCdLqpDgJTwpn2tFphCSEADC8/nAmNJ2AlUXp6r9dmLQGLd13dOdJxhMWtFuAn7cfAWEBzP5zNgbFQAfPDizvuBz90ZNET5qMotVi91Jzqqxbh8VTfp9ux99m4N6B6I16FrZbiK+3b57qi82IZeP1jcRlxJl0nr2VPYPrDaa6Y/U8zS+EEEIIIYQQonhJ1+pJTNe9+MD/EZeqJeDqA3ZdiuZJiib7ce/yZenbzJPeTT3wcLLL71KFEE+R0yxXgm8k+C4OFEVhd+huFp1dRIY+AxdbFxa0W0A7j3bmLq1U+O7ad3x58UtqOdeit3dvlp1fBoCvly+ft/2ctF0BPJw9G4xG7Lt0wWPlCtS2z94h+5ur37Dm0hrKWZVj5xs7qVS2Uq7qOvngJDOOzyAu07TQ+y92lnbMajULP2+/XJ0vhBBCCCGEEKJ00RuM/BkWx86LUey/8YhMnREAlQpae7nSp6kHPRpWxt5GugsLUVAk+DaBBN9FW6o2lXmn5/Hb3d8AaFm5JYvaLaJ8mfJmrqz0SNIk0fXXrmToM7IfG1JvCFNemkLC9xuJWb4CAMe+fak893NUls//D7zeqGdI0BCuxV6jrXtb1r+6HpUq573VdEYday+tZeP1jSgo1HSqSZ+afUwa44/IPzj36ByQFeDPbDWTslZlc3y+EEIIIYQQQojSLSVTR9D1R+y8GMXp8Pjsx22t1HSvX4m3XqpCG29Xk76rCiFeTIJvE0jwXXTdiL3BtGPTiEyJxEJlwfim4xnRYARqlbSnL2xLzi5h662tAExsNpER9UfwZPkK4jduBMBl5AgqTJ2a4/+ghyeF0z+gPxqDhtmtZtPfp3+OzotOjWb6selcfXIVgP61+zOtxTRsLZ+9wvxpDEYD3137jnVX1mFUjFRzqMbSDkup51rPpHGEEEIIIYQQQoiohHT2XH7AjgtRhMemZT/eysuFGT3r0sjTyYzVCVGySPBtAgm+ix6jYmTLzS2surgKvVGPe1l3lnRYQpMKTcxdWqkVlxHHgjML6FylM72q9eDhrNkk7d4NQIVpU3EdOdLkMbfc3MLSc0uxs7Rjh+8OqjhUee7xByIOMOfkHFJ0KZSzKsfnbT+na7WuuXo9f7n4+CIfHf+IR2mPsFJbMbn5ZN6t+65ckRdCCCGEEEIIYTJFUbgSlcSvFyLZfj4KrT6rFYpfY3emveZDFZcyZq5QiOJPgm8TSPBddMRnxhN0N4g9oXu4FX8LgK7VuvJZ689wtHE0c3UCwJiZSfSkyaT+8QdYWFB57lyc+vXN3ViKkZH7R3L+8XmaVWjGxtc2YqG2+MdxmfpMlp5byi8hvwDQuHxjlnRYgoe9R55ey1+SNEl8+uenHI48DEAnz07MbTsXZ1vnfBlfmN9f7y0BYQEkahJZ9+o6vBy9zF2WEEIIIYQQogSLTsxgxf5gdl6KBsDaQs3QNtUY37kWjmWszFydEMWXBN8mkODbvDQGDUcjjxIQFsCJ6BPoFT0ANhY2TG8xnbdqvyWrb4sIQ3IykWPHknH+AiobGzy+WEm5Ll3yNGZUShT9/PuRrk9n6ktTGVp/6N+eD00IZdqxaYQmhqJCxciGIxnbZCxW6vz9kKAoCv8J/g/Lzy1Ha9RSoUwFFrdfTItKLfJ1HlF4nvXeAtDAtQFbem7BUi0bzgghhBBCCCEK1vXoJBYF3eLP0DgAHO2smNClJoNbV8PG8p+Lv4QQzyfBtwkk+C58iqJw5ckV/MP82RexjxRtSvZz9V3r4+vtS48aPXCxdTFjleJ/6aKjiRw3Hs3t26jt7amyfh1lWuRPKLwjZAdzTs3BWm3Ndt/teDt5oygKO+/sZPHZxWQaMnG1dWVR+0W0dm+dL3M+S3B8MFOPTiUiOQK1Ss3oRqMZ3Wj0U1eii6JHURQuP7lMQFjAP95bGrg24LXqr/HNtW9I0aYwvsl4RjcebcZqhRBCCCGEEKWFoigcCXnC4t9uE/w463uKp7Md017zwbeRO2q1LPgTIqck+DaBBN+FJzIlksDwQALCAohMicx+vGKZivh6++Lr5YuXk7QfKGqS9x/g4ezZGJOTsXBzo+p332Jbp06+ja8oCmMPjeVE9Anqudbj61e/ZsGZBeyP2A9AG/c2LGi3ADc7t3yb83nSdeksPLOQPWF7AGhesTmL2y+mUtlKhTK/MF1kSiSBYYEEhL/4vSUgLIAZJ2ZgqbLk514/U8cl/36WhRBCCCGEEOJ5DEaFXy9EsuJACDEpGgAaeToyo2ddWnm5mrk6IYoHCb5NIMF3wdIZdQSEBbAndA8XYy5mP25naUfXal3x8/ajRaUWqFVqM1YpnsaYmcnjJUtI/Pk/ANg2aoTHyhVYe3rm+1wx6TH02dOHZG0ydpZ2ZOgzsFRZMqHZBIbVH2aWn4/A8EDmnZpHuj4dRxtH5redT6cqnQpsvgx9BjfjbtK0QtNS9fugKAqP0x8TkhBCmi7txSf8j0RNIvvu7vvbe0sZyzJ0rdYVX2/fp763KIrCpCOTOHT/EDWdarKt1zasLazz5bUI0xkVI2cfnaVquaq427ubuxwhhBBCCCEKRbpWz/fH7/L10TDStAYAXq1bAd/G7gXe7tXd0Zbm1ZylrawotiT4NoEE3wXHYDQw7dg0Dt47CIAKFa0qt8LX25dXqr5CGSvZzbio0oSFET1pMpqQEABcR42k/MSJqKwKbgOO38J/46PjHwHgYe/B0g5LaVS+UYHNlxP3ku8x7ei07M1WB9UdxKTmk/I9KL0Vd4vpx6YTkRzB0HpDmdpiar6OX1RoDBrCEsMIjg8mJCGE4ISsP5M0SXkaV61SZ7+3dKnS5YXvLXEZcfT170t8ZjwjG4zkw+Yf5ml+kTuxGbHMPDGTkw9OAtCiUgt8vXzpWq0r9tb2Zq5OCCGEEEKIgvckRcOXh0L4+WwkBmPhRXQj29VgZs+60mJFFEsSfJtAgu+CoQa3C3EAACAASURBVCgKC84sYFvwNqzUVoxtMhZfL18qlq1o7tLEcyiKQtLOnTyavwAlIwMLV1fcFy/Gvn27Qpl74/WNxGfGM7rxaBysi8bvo9agZdXFVWy5uQWAui51WdphKdUdq+d5bEVR+Pftf7Pi/Ap0Rh0AFioLtvXaho+LT57HN6fYjFiC44MJTgjODrrvJt3FoBj+cayFyoIajjVM7utvobKgtXtretboafJ7y6F7h/jwyIeoVWp+6P4DTSo0Mel8kTenHpzik+OfEJcZh6XaEr3xv5uP2lrY0qVqF3y9fWlVuZVsQiqEEEIIIUq80JhU1h0J5WFiZoHOYzAqnI2IB6BvUw+WvNkIK4vSc8exKBkk+DaBBN8FY/3l9ay7sg4VKpZ3XE636t3MXZJ4AUNqKo8+m0Py3r0AlG3TGvclS7AsX97MlRUNx6KOMfPETBI1idhZ2jG71Wx8vX1zPV5iZiKzT87mSOQRADp5dgLgSNQRmlZoyubum4tly5M0XRrTj03nWNSxpz7vaOOIj7MPtZ1r4+Pig4+zD15OXthY2BRypTDj+AwCwgOoWq4qv/j+InehFAKdUce6y+v4/tr3KCjUdKrJsg7LKGNVhr3he/EP8yciOSL7eDc7N16v8Tq+3r7F/mKQEEIIIYQQRcGOC1FM33EVg1GhS50KrH2nGXbWFuYuS4gck+DbBBJ857/twduZd3oeALNazmJAnQFmrki8SMa1a0RPnoIuMhIsLCg/cSKuo0aiUhe/4LUgPU57zCcnPuHco3MA+Hn7MbPlTJMD0wuPL/DRsY94nP4YK7UVU16awjt13uFx+mP8dvuRoc9gXtt59K7ZuyBeRoGJz4zn/d/f52bcTVSoqOZQLTvc9nHJCrsrlqlYZHrJJWuT6bOnDzHpMQysM5AZLWeYu6QSLTo1mo+OfcSVJ1cA6F+7P9NaTMPW0jb7GEVRuBF3A/8wf4LuBpGoScx+zsfZB19vX173er3QNrsVQgghhBCiJDp06zFjf7qIRm+keTVnNg5tgWOZgmttKkR+kuDbBBJ856+D9w4y5cgUFBTGNB7DuCbjzF2SeA7FaCR+8w/ErFwJej1W7u64r1hOmaZNzV1akWUwGvj22resv7Ieo2KkukN1lnZYSl3Xuvly7qbrm1h5YSUuti749/bH0caxIF9OvnmQ+oDRB0cTkRyBs40z619dT323+uYu64VORp9k9O+jAfi227e0qtzKzBWVTAfvHeSzPz8jRZdCOatyzGkz54V3AukMOo5HHycgLIAjUUey26GoVWrae7Tns9afUb6M3JEihBBCCCFEbpyLiGfk5nMkZ+rxqViOH0e+TEUH2xefKISZSfBtAgm+88/Zh2cZ8/sYdEYdb9V+i9mtZheZlZ3in/RxcTz45BPSjh0HoFy3blSePw8L+T3IkWet2n7Wz3xOV4vrjDre8n+LsKQwBvgMYFarWQX+WvIqNCGU0b+PJiY9hsplK/NN12/ypQd6YZl/ej7bgrdRqWwldvrtpJx1OXOXVGJk6jNZdm4Z20O2A9CofCOWdliKh72HSeMkaZLYH7Ef/zD/7BXjrSq3YkPXDcWyJZAQQgghhBBFwa2HyQzdeJaYFA2eznZsGdmSGm5lzV2WEM8lwbcJJPjOH7fibjF8/3DSdGm8WvVVlndcjoVaekQVNYqioH/8mIyLF3m8aDH6J09Q2dhQ8ZNPcBrQXy5UmCgxM5FPT37KH5F/ANCpSifmtZmHk63T344ztT/4uUfnGLF/BCpU/Pz6z0V65fTlmMuMOzSOZG0y3o7ebOi6odhtYpuuS6effz+iUqPoXbM389rOM3dJJUJYYhhTj04lNDEUFSpGNBjBuKbjsFLn7RbKG3E3GBY0jExDJjNbzuTtOm/nU8VCCCGEEEKUPpHx6Qz+/gwRcem42VuzefjLNPDI/Z3HSek6LtyPp04lB9yd7PKxUiGySPBtAgm+8y4yOZLBQYOJy4yjRaUWrH91vVk2qhN/Z9Ro0ISGorkdTGbwbTTBIWhu38aQlJR9jLW3Nx4rV2LrU9uMlRZviqLw8+2fWX5+OTqjjoplKrK4/WJeqvQSWoOWVRdXseXmFgDqutRlaYelOVoN/fHxj9kbvpcGrg3Y2nNrkbyQdCL6BJOPTCZDn0Gj8o1Y98q6YtOa5f+6+Pgiw/YNQ0FhTZc1dKrSydwlFVuKorDzzk4Wn11MpiETV1tXFrZfSBv3Nvk2x0+3fmLx2cXYWdrxq++vVHWomm9jCyGEEEIIUdo8SdEwbNNZbjxIxt7Gkm+GNKeNd8731dEZjBwNfsLOS1H8fjMGrcGISgVtvF3p29ST7g0qUdbGsgBfgShNJPg2gQTfeRObEcuQoCFEpkTi4+zDpu6bpE2AGeifPCHzdjCa4NvZf2rC74LB8M+DLSyw8fKibPv2lJ8wHrWdXIHND7fjbzPt6DQikiNQq9QMqz+M0w9PczPuJgCD6g5iUvNJWFtY52i82IxYfHf5kqpLZXar2fT36V+Q5Ztsb/heZp2YhV7R09ajLSs7rjR5k8+iZsX5FWy+sRlXW1d2vbELZ1tnc5dU7KRoU5h7ai77IvYB0Ma9DQvaLcj3zSiNipH3DrzH2UdnaVK+CZu7by6SF4eEEEIIIYQoLpIzdbz3w3nO3I3H2kLN6oFN6d6g0jOPVxSFa9FJ7LwYTcCVB8SlabOfc3e05UFSZvb/t7OyoHuDSvRt5kEbbzcs1MXnbnNFUeTu+CJGgm8TSPCde6naVEbsH8Gt+Ft42HuwpccW2WiskClaLQ9nf0rSnj1Pfd7C0RGbOnWwreODjU/Wn9Y1a6K2zln4KkyTrktnwZkF+If5Zz/mZOPEvLbzcrWC+K9VrQ7WDgT0CcDF1iUfq829v+oC6FGjBwvaLsDKovjvAK4xaBgQMICwpDC6VevG8o7L5QNODhkVI3vD97L60moepT3CUmXJhGYTGFZ/WIH14I5Ojaaffz/SdGlMaj6JEQ1GFMg8QgghhBBClBaZOgMf/HyJAzcfo1bBwj4Nefvlv99d+SAxg92Xo9l5MZrQmNTsx93sbejdxJ0+zTyoV9mBqIQMdl+KZuelaO7GpmUfV9HBht5NPejXzJPaFYvuwkmt3siMXdc4ePMx83s3wLexu7lLEv+fBN8mkOA7d7QGLe///j5nH53FxdaFLT22yK3mhcyYnk7UBxNJO3ECVCqsq1fHpo4Ptj51sv6sUwfLihUluDODgLAAlpxbQl2XusxrO49KZZ99lfx59EY9A/cO5Hb87SLRe1pRFNZeXsuGqxsAeKfOO3z08kclanPBG3E3GLR3EHpFz9IOS+lRo4e5SyryTj88zcrzK7kVfwsAD3sPlnZYSqPyjQp87p13dvLZyc+wUluxrdc2ajnXKvA5hRBCCCGEKMn0BiMzd11n2/lIAKZ392Fo6+rsu/6InZeiOBkWx19poo2lmm71s1Zyt6/phqXFP78bKorC5chEdl6Mxv/KA5IydNnPNfBwoG9TT/yauONmX3Ra5qZp9IzZeoHjd2IBUKngc7/6DGld3byFCUCCb5NI8G06g9HAtGPTOHjvIGUsy7Cp+ybqudYzd1mlij4hgcgxY8i8chWVnR2ea9Zg366tucsS/8OoGPMlEL4cc5nBQYMB+LHHjzSt0DTPY+aGwWhgwZkF/BLyCwDjmoxjdKPRJfLCyvrL61l3ZR0O1g7semMXFcpUeO7xOqOOiKQIQhJCCE4I5l7SPSqVrYSPiw8+zj54O3lja2lbSNUXnpCEEFZeWMmf0X8CYG9lz8iGIxlUd1ChvV5FURh/eDzHoo5R16UuP/X8qUTcfSBEYTMqRi48vsD+iP04WDswuN5gafckhBBClGKKorB0fzDrj4QBYG2pRqs3Zj/fsoYLfZt50KNhZRxsc/75W6M38MftJ+y8GMUfwTHoDFmxpIVaRfOqzthZm9a+sHEVJ8Z19sbGMv/aHiakaRm++RyXIxOxs7Kgk095gq4/AmDiK7X48NVaJfJ7cHEiwbcJJPg2jaIoLDizgG3B27BSW7Hu1XW0qtzK3GWVKrqHD7k/6j20YWFYODpS5ZsN2DVubO6yRAH67ORn7Lyzk9rOtdnWaxuW6sLdFERr0PLx8Y85eO8gKlTMajWryPUcz086o45Bvw3iZtxN2nm0Y90r67I/2CRpkgiODyY4IZjg+GBCEkIISwxDa9Q+czy1Sk11h+r4OPtQ26U2Ps4++Lj4UN6ufLH8wPQ47TFrL69lT9gejIoRS5UlA+oMYHSj0WYJyp6kP6H3nt4ka5MZ03gM45qMK/QahCiu7ibdJSAsgMDwQB6mPcx+3N7KnlENR/Fu3XdL5IU7IYQQQuTMd8fDmb83687OGm5l6dvUg95NPajikvf9neLTtARefcCOi9FciUzM9Tj13R1YM7ApXuXt81zTg8QMhmw8S2hMKk5lrNg0rAVNqjjx5aE7rPr9DgCDW1Vjjl/9YtWnvKSR4NsEEnybZv2V9ay7vA4VKpZ1XMZr1V8zd0mliiY8nPsjR6F/+BDLSpWo+v132Hh7m7ssUcASMhPw3e1LkiaJj1p8xKB6gwpt7pj0GGacmMGZh2ewVFuyuP3iUvF7H5oQyoDAAWiNWnrW6EmqLpXg+GAepz9+6vFlLMtQ27k2Pi4+VHeozsO0hwQnBBMSH0KCJuGp5zjbOGcH4c0rNqdzlc5FOghP06Wx8fpGfrzxI5mGrI1qulbryofNPjR7q6ugu0FMPzYdC5UFW3tupYFbA7PWI0RRlpiZSFBEEAFhAVyLvZb9uL2VPV2rdeVW/C1ux98GoFLZSkxoOoFeXr1KVFsrIYQQQuTcpfsJqFQqGns6Ftj3lbAnqVyJTMSUlDJVo+fLQ3eIT9NSxtqCeW80oF9zz1zXEBqTypDvz/AgKZPKjrZsGfkyNSv8twf5llMRfOp/A0WBXo0qs7J/E6wt5fOROUjwbQIJvnMuMiWSnjt7AjCz5UzervO2mSsqXTKuXSPyvX9hSEzEukYNqn7/HVbusrlCafFLyC/MPTWXslZlCegdUKAbyabr0jl0/xCB4YGcfngao2LEztKOLzt/SWv31gU2b1Gz+fpmVlxY8Y/HPew9skNuH+es/3mU83hqKKQoCk8ynmSvEg+Jz2qHEpEcgVEx/u3YCU0n8K9G/yqw15NbOqOOHSE7WH9lPfGZ8QA0Kd+EKS9NoUmFJmau7r+mHp3K/oj9eDl6sa3XNlmlKsT/0Bq0HI86jn+YP8eij6E36gGwUFnQ1qMtvt6+dPLshK2lLUbFSGB4IGsureFRWtZtvXVc6jC5+eRS9d8AIYQQQhR9j5Mz+fA/lzkVHgdA36YezO3dAHsb0+6SvhyZyPBNZ0lI1+FVvixbRrbEw8nuH8cFXHnA5O2X0RkU2tdy4+tBzSlr4lwi7yT4NoEE3zl3IOIAU45OoZ5rPbb12mbuckqV1D//JGrCByjp6dg2bEiVbzZg6Sy9N0sTo2Jk0G+DuBZ7jZ41erKkw5J8H//co3P4h/nz+73fSdenZz/XrEIzpr88nfqu9fN1zqLOYDSw9vJa4jPjs0PuWs61KGed953HM/WZhCWGEZwQzMXHF9kTtgcVKr7u+jVt3NvkQ/V5pygKhyMPs+rCKiKSIwCo5lCNSc0m0aVqlyK3Oj0hM4E+e/oQlxnHkHpDmNZimrlLEsKsFEXhWuw1/MP82RexjyRNUvZzdV3q4uvtS48aPXCzc3vq+Zn6TH669RPfXfuOVF0qAG092jKp2SR8XHwK5TUIIYQQQryIwaiw7o9Qvvg9BKOS1ZJlzcCmNPBwzNH5x+88YfSWC6RrDTT2dGTT8JdxKWv9zOOPhTxhzNacHy/ynwTfJpDgO+e+vvI1ay+vxc/bjwXtFpi7nFIjOSiI6OkfgU5H2Tat8Vi9Bgv7suYuS5jBjbgbDAwciILC992+5+XKL+d5zPCk8Oz+rn+t7AOoUq4Kvt6+9PLqRZVyVfI8j3i+OSfnsOPODpxsnNjeazuV7SubtR6jYmTWiVkEhAcAWW1Z3m/yPm/WfhMrddHdPPJI5BEmHJ6AChUbX9vIS5VeMndJQpjFxccXWXF+BVdjr2Y/VsGuAq97v46vly+1nGvleKyEzAQ2XN3Attvb0Ct6VKh4o+YbjG8ynoplKxZE+UIIIYQQJjsXEc/Eny/xICkTaws1H/eow/C21Z+7YCfw6gMmbctawd2uphtfD26eo9Xi/7tC3Lt8WX58xgpxUTAk+DaBBN85N/3YdILuBvFhsw8Z2XCkucspFRJ+/plHc+eBolCue3fcly5BbS1XEkuz+afnsy14G16OXvzq+ytWFqaHkAmZCQTdzervej3uevbj5azL0b16d/y8/WhcvnGRW9FbkmkMGoYEDeFm3E0auDbghx4/YG1hnt91RVFYcm4JP936CUuVJcMbDGdEgxHYW+d9s5jCMPvP2ewO3Y2HvQc7/HZQ1kouFIrS427SXVZdWMXhyMMA2FrY8mq1V/H19qVlpZZYqC1yPfb95PusuriKg/cOZo89uN7gYvX+IIQQQoiSLTFdy/Rfr3LgZtbeTK/WrcDSNxs/dUX2ltP3+HTPdRQFXm9YmZUDGmNjmfPPSqExKQz+/iwPn9ETXBQcCb5NIMF3zr0V8Ba342+zuvNqOlftbO5ySjRFUYhdt47YNV8B4DTwbSrNmoXKIvdfWEXJkKRJwm+3H/GZ8UxqPokRDUY893iD0UBkSiTBCcEExwdzM/4mZx6cQa9k9Xe1VFnSzqMdvt6+dKzSERsLm8J4GeIpolOjGRA4gCRNEm/VfotPW39qljq+u/YdX178EoBF7RfRy6uXWerIrVRtKn39+/Iw7aFZ/x6FKEyxGbF8feVrfg35FYNiwEJlQd9afRnbZOwzW5nk1pUnV1hxfgWXYi4B4GLrwuL2i6X/txBCCCGKBEVR2HL6HvP33kKrN1LJwZZVbzehlZdr9vOrD2W1RgEY1Koqn/s1wEJt+sKvB4kZDP7+DGFP0nAqY8WmYS1oWlXa0hY0Cb5NIMF3zhgVIy1/akmmIZPAPoFUc6hm7pJKLMVo5PGChST89BMAbuPG4TZ+nKy+Fdn2hO5h1p+zsLO0w7+3P5XKVgIgTZdGSELI3zZSvJN4hwx9xj/GqOdaDz9vP7pX746rnWthvwTxDCeiTzD297EoKMxrO4/eNXsX6vw77+zks5OfATC9xXQG1xtcqPPnlzMPzzDqwCgA1r+6nnYe7cxckRAFI0OfwY83fmTj9Y3ZezN08uzEpOaT8HLyKrB5FUXh8P3DfHHxC+4l38PT3pPAPoF5WlEuhBBCCJGfbj5IZvzPFwl/koZaBRO61GJ8l5rMD7zJD6fuATDxlVp8+GqtPOUt8Wlahm8+x5XIRMpYW/D1oOZ0qF0+v16GeAoJvk0gwXfORKVE0WNnD6zUVpx99yyWatm1tiAYMzJ4OGs2yXv3gkpFxZkzcRn0rrnLEkWMoigM2zeMizEXaeTWiPJlyhMcH0xUatRTj7e1sKWmU018XHyo7VyblpVb4u3kXchVi5xaf2U96y6vw8bChq09t1LHpU6hzPvH/T/48MiHGBUjIxqMYFLzSYUyb0FZdGYR/779byrYVWDnGztxtMnZ5ja5la5L59TDU7Rxb4OdZenq76coCucfn8fT3tPs/elLC4PRwJ6wPay9tJaYjBgAGrg2YPJLk2lRqUWh1ZGuS+e1Ha+RqElkRccVdKverdDmFkIIIYR4kXStns/23OCXC1nflcuXs+FJigaVCub41mdom+r5Mk+aRs+YrRc4ficWKwsV4zvXwqVswe+N9HINV3wqlb72KhJ8m0CC75w5FnWMcYfGUdOpJrve2GXuckocxWAgadcunqxegz4mBiwtcV+8GMder5u7NFFEhSSE0D+gPwbF8LfHK5apiI+LDz7OPtR2qU1t59pUK1dNVuEVI0bFyPhD4zkefRwPew+29dpW4KHthccXGH1wNBqDht41ezO3zdxif5dJhj6DtwLe4l7yPV73ep3F7RcX2FxGxciI/SO48PgC3o7eLOu4zKTNA4u7v9rjONo4sr3Xdtzt3c1dUomlKAonok+w8sJKQhNDAfCw92Bis4m8Vv011Cp1odf01aWv2HB1Aw3dGvJTz5+K/XuHEEIIIUqe3ZeimbnrGmlaA5ZqFSv6N+aNJh75OodGb2Dy9ivsvfowX8d9nnm9GzC4VenryCDBtwkk+M6ZH278wPLzy+lWrRsrOq0wdzklhqIopB0/Tsyy5Wju3AHAysODyvPmUrZNGzNXJ4q6wPBAzj86j7eTd1bQ7VwbJ1snc5cl8kGSJokBgQOITo2mvUd7vnrlqwILtEISQhi2bxgp2hQ6enZkVedVJeaunssxlxm6byhGxcjKTivpWq1rgczz440fWXZ+Wfb/t7GwYXqL6bxV+60SHwL+b3scgPqu9fmhxw8Fsl+AUTFiUAxYqQt+9YwpFEXBqBgL/ALjzbibrLywkjMPzwDgYO3Avxr9i4F1BpptM1zI6i/+2q+voTVq2dx9M80rNjdbLUIIIYQQzxIRm8bGP+/So0FlWnsXTLtPg1Hh+xPhXLqfWCDj/19vv1yVjqWwrYoE3yaQ4DtnPjv5GTvv7GRM4zGMazLO3OWUCBk3bhCzfDnpp04DoHZ0xG3MGJzffQe1tfm+wAohioZbcbcYHDQYjUHDuCbjGNN4TL7P8SD1AYN/G0xMRgxNKzRlQ9cNJa5Nx6oLq/j++vc42ziz3Xd7dk/8/BKeGM5bAW+hNWqZ2GwiFx5f4ET0CQC6VuvKnDZzcLAumZ8v/rc9zpu13+TgvYMkaZLoV6sfc9rMyde5MvQZjDs0jtvxt/nP6/+hqkPVfB0/txRF4aNjH3E48jDv1HmHUY1G5fu/98PUh6y5tIbA8EAUFKzUVrxb911GNRxV4HeD5NTnpz7n15Bf6VSlE2u6rDF3OUIIIYQQogTLaZZb+PdCimIrPDEcAC/HgtsoqbTQPXhA9PTpRPR7k/RTp1FZWeEyfDg1D+zHdfgwCb2FEADUda3LrFazAFh3eV12mJpf4jPjGX1wNDEZMdR0qsmaLmtKXOgNMLbJWOq41CFBk8CUo1PQGXT5NrbeqGfGiRlojVraerRlZIORrH1lLVNfmoqlypKD9w7ylv9bXHlyJd/mLCouPL7AtGPTMCpGetfszaetPmVp+6WoULHjzg523cm/tmg6o44pR6Zw7tE5UrQprLq4Kt/GzqtD9w8RFBGExqBh041N9NzZky03t+TLz1myNpmVF1bSa1cvAsIDUFDoWaMnAX0CmPLSlCITegMMqTcEgCORR7ibdNfM1QghhBBCCCErvgFZ8Z0TiqLQ7j/tSNYm86vvr/i4+Ji7pGLJkJxM3DffEP/jFhStFgCH11+n/KQPsfb0NHN1Qoiiau6pufwS8guONo5s67UND/u896JL16Uzcv9Irsddp1LZSmzpsSXfV0IXJZHJkQwIHECKLoW3fd5mZquZ+TLu11e+Zu3ltZSzLscuv11ULFsx+7nrsdeZdnQaUalRWKgsmNB0AsMbDM91y5p0XTqH7h/iQMQBkrXJJp1rZ2XH8PrDaVm5Za7m/r+e1x5nw5UNfHX5K6zV1mzpuYV6rvXyNJeiKMz6cxb+Yf7YWNigM+owKka29txK4/KN8+Pl5Fq6Lp039rzBo7RHdK/endDE0Oy+2572ntl9t01td6Mz6NgWvI0NVzeQqMm6TbZFpRZMaT6F+m718/115JcJhydwJPJIgaz4F0IIIYQQ4i/S6sQEEny/WGxGLJ23d0aFirPvnsXW0tbcJRUrilZLws8/E7tuPYakJADKvPwyFaZNw65hAzNXJ4Qo6rQGLUODhnI97jr1XOvxY48f89Q/WWfQMf7weE4+OImTjRM/9PihVNzNczTyKOMPjwdgUftF9PLqlafxbsXd4p2976BX9Cxuv5jXvf65GXGqNpW5p+YSFBEEQOvKrVnYfiFudm45msNgNHD20VkCwgL4/f7vZOgzcl2vChWjGo5ibJOxeerh/qL2OEbFyAeHP+Bo1NF82Zx15fmVbLqxCQuVBV92/pJD9w+xK3QXzSo0Y3P3zWbtob7ywko2Xd+Eh70Hu97YhZXaij2he1h7eS1PMp4A0NCtIVNempKjvteKorD/3n6+vPAlUalRAHg7ejP5pcm092hf5PvFX3x8kaH7hmKttmb/m/tz/HMuhBBCCCGEKST4NoEE3y927tE5Ruwfgae9J0H9gsxdTrGhKAop+/YRs/ILdJGRAFh7e1Nh6hTsO3Uq8l9ghRBFx8PUh/QP7E+iJjFPqymNipGPj39M0N0g7Czt+K7bdzQq3yh/iy3C1lxawzdXv8HWwpatPbfm+g4mrUHLgMABhCaG0rVaV1Z0XPHM93RFUdgdupuFZxaSacjExdaFRe0W0cbj2RsYhyWG4R/mT2B4IDHpMdmPVy1XlV7evajlVMukek9En2DHnR0ANK3QlCXtl1DZvrJJY0BWe5yhQUOJSI6gplNNNnff/NRQO0mTxNuBbxOVGkU7j3asfWVtrla6/7WxNsC8tvPoXbM3j9Ie0WtXLzQGDas7r6Zz1c4mj5sfwhLDeNP/TfSKnjVd1tCpSqfs59J16fxw8wc2Xd+UfbGic5XOfNj8w2deZLr4+CIrzq/gauxVANzs3BjXZBy9a/YuNpvNKorCoN8GcTX2KqMbjWZ80/HmLqnIMRgNHIk6Qn3X+iX6LhshhBBCiIIkwbcJJPh+sW23tzH/zHw6eHZg7StrzV1OsZB+4QKPly4l80rWF1iL8m6UnzABp759UVkWjy+wQoii5eSDk4w5OAYFhc/bfE7fWn1NOl9RFJaeW8rWW1uxVFmy5pU1tPNoV0DVFk0Go4Gxh8Zy8sFJqparys+9fs7VRoRfXPiCjdc34mLrwq43duFi6/LCc8ITCs4FsQAAIABJREFUw5l6bCp3Eu4AMKLBCMY3HY+V2grICpWD7gbhH+bPzbib2ec5WDvQo0YPfL19aeTWKNcXTfdF7OPzk5+TqkulnHU55rWZxyvVXsnx+aa2x7kdf5tBvw1CY9AwtvFY3m/yvkn1BoQFMOPEDAAmNZ/EiAYjsp/78uKXfHftO2o41mCn385CD4YVRWHkgZGce3SOTp6dWPPK0zdzjM2IZf3l9ey4swODYsBCZUG/Wv14v8n72auh7ybdZdWFVRyOPAyAnWVWW5qh9YdSxqpMob2m/HIg4gBTjmb1Hz/Q70CxfA0FRWvQ8vHxjzl47yCutq5s6bGFKg5VzF2WEEIIIUSxI8G3CST4frFFZxbx79v/Zlj9YUx5aYq5yynSNOF3iVm5gtTfDwGgKlMG1xEjsjatLFvWzNUJIYq7b65+w5pLa7BWW7P+1fVUdaia43P9w/xZcykroMuPVh/FVUJmAgMCB/Aw7SGdq3RmVedVJq1GvhxzmaH7hmJUjHzZ+Uu6VO2S43Mz9ZksP7+cbcHbAGjk1ogBdQZwMOIgJ6JPoFf0AFiqLGnv2R4/bz86eHbA2iJ/Nj2OSoli+rHpXIu9BsAAnwFMazHtha1zctsexz/Mn5knZqJCxdpX1tLes32O6jwedZwPDn+AXtEzuN5gpr007W+Bf4o2hZ47e5KoSeSz1p/xZu03czRuftkbvpePj3+MjYUNu9/YjWe55+/TEZ4YzhcXv+BI5BEAyliWYViDYcRlxPFryK8YFANqlZq+tfoytvFYypcpXwivomAYjAZ67epFVGoUM1rOYGCdgeYuqUhI06Ux8fBEzjw6k/2Yp70nW3pukZYwQgghhBAmkuDbBBJ8v9h7B97j9MPTzG0zlz61+pi7nCJJHxfHk6++InH7L2AwgFqN05tv4jZ+HFYVKpi7PCFECWFUjEw8PJEjUUdyPca0l6YxpP6Q/CuqGLoee50hQUPQGXVMbDaRUQ1H5ei8dF06bwa8SWRKJH7efixotyBX8/9+73c+PfkpKdqUvz3ewLUBvt6+dK/RPUeryHNDZ9Sx5tIaNl3fBEBt59os67AML6enB9l5bY8z79Q8todsx8HagW29tr0wJL7y5ArvHXiPDH0Gr3u9zsJ2C596YWLrza0sObcENzs39vbZW2gri1O0Kfjt9iM2I5bxTcYzuvHoHJ977tE5Vp5fyfW46397vJNnJyY1n/TMf4Pi5ufbP7PwzEI87T0J7BOIhdrC3CWZVVxGHGMPjeVm3E3KWJbhs9afsfrSaqJTo6njUodNr23C3tre3GUKIYQQQhQbEnybQILvF3tl+yvEZMSwpccWmlRoYu5yihRjRgbxmzcT9+13GNPTAbDv3JkKU6dg4+1t5uqEECVRsjaZSX9M4lLMJZPOs7awZnj94SYFdSXZLyG/MPfUXNQqNRu6bqBV5VYvPGfB6QX8J/g/VCxTkZ1v7MxVm5S/PEh9wOw/ZxOdGp3VysTLt1CDzz+j/2TGiRnEZ8ZjZ2nHJy9/Qu+avf+2sjo/2uNoDVqG7RvGtdhr1HWpy5aeW565wjw8MZwh+4aQpEmirXtb1nRZg5WF1VOP1Rl0+O32Iyo1yuQAOi+WnF3C1ltbqeZQjZ1+O01ejW9UjOyP2M/6K+txsHZgYrOJtKjUooCqNY90XTrddnQjSZPEio4r6Fa9m7lLMpsHqQ8YfXA0EckRONs4s/7V9dR3q8/95PsMDhpMfGY8L1d6mXWvrsvTpsVCCCGEEKWJBN8mkOD7+VK0KbT5OWsDrj8H/pmnL/kliWIwkLR7N0++XI0+JmvjMdsGDagwbRplW75s5uqEEEK8iKIofHryU3aH7sbZxpntvtuf27P61INT/OvgvwDY0HUDbdyfvTllcfEk/QmfnPiEMw+z2i/0qNGDT1t9mr369Ltr3/HlxS8BWNhuIb7evrma51HaI/oH9CdBk0DfWn35vM3nTz1mcNBgHqU9oqFbQ77r9t0LV3EH3Q1i+rHplLEsw299f8PVzjVX9eVUcHww/QP7Y1SMbHh1w3M3KC3tvrr0FRuubqChW0N+6vlTqdzQOzQhlNEHRxOTEUPlspX5pus3VHesnv38zbibjNg/gjRdGl2rdWVZh2WlfnW8EEIIIURO5DTLzXlDS1Fq3U26C4CbnZuE3mQFJanHj3O3T18ezpyFPiYGKw8P3Jcvp/r2bRJ6CyFEMaFSqZjZciZ1XeqSoElg8pHJaA3apx6bok1h9p+zgay+2CUh9AYoX6Y833T9honNJmKhsiDobhD9A/tzI/YGu+7syg69p740NdehN0ClspVY2nEpapWanXd2siNkx9+eT9IkMebgGB6lPaK6Q3XWvrI2R61LXqv+GvVd65OuT+frK1/nur6cMCpG5p+ej1Ex0rVaVwm9X+DtOm9jrbbmWuw1k+9OKQn+2gsgJiOGmk412dJjy99Cb4B6rvX4svOXWKmtOHjvIAvPLETWJAkhhBBC5B8JvsULhSeFA+DtKG07NGFhRI4cSeR7/0ITEoLa0ZEKH32EV9BvOPZ6HZVafqWEEKI4sbW0ZUWnFThYO3At9hpLzy196nGLzy7mcfpjqpSrwuTmkwu5yoKlVqkZ1XAUm7tvxr2sO5EpkQwKGsTnp7JWZQ9vMJyh9YfmeZ5WlVsxoekEABaeWciN2BsAZOgzGH9oPGFJYVQoU4ENXTfgbOuc49r/+vf4NeRX7iXfy3Odz7IndA+Xn1zGztKO6S2mF9g8JYWbnVv2xZJNNzaZuZrCdTzqOO8deI9kbTKNyzdmc/fNVCxb8anHtqzckkXtF6FCxfaQ7QV+AUeYT5Imid2hu4nPjDd3KUIIIUSpISmdeKG/gu8ajjXMXIl5pZ8/T8TbA0k7eQqVlRUuw4dTc/8+XIcPQ21tWn9PIYQQRUeVclWyg6dtwdvwD/P/2/OH7x/GP8wfFSoWtFtQaJsoFrYmFZqw3Xc7Xat1RW/UY1AM+Hn7ManZpHybY0SDEXSq0gmtUcvkI5OJzYhl6tGpXH5ymXLW5fj61a9xt3c3acyXK79Me4/26BV99gr1/JakSeKLC18AMLbx2Oe2xBH/9dcFkyORR7LvICzpAsMD+eDwB2QaMmnn0Y5vun6Do43jc895rfprzGg5A4B1V9axPXh7YZQqCtHlmMu8FfAWs/+czbt73yUyOdLcJQkhhBClggTf4oXuJmZ9USnMDbeKmpTDf3B/5CiMKSnYNW+OV9BvVPxoOhZOTuYuTQghRD7o4NmBMY3HADD31FyC44MBiM+Mz175PKz+MJpWaGq2GguDo40jKzquYHH7xUxsNpE5bebka29mtUrNgnYLqFquKg/SHvDG7jc4FnUMGwsb1r6yllrOtXI17ofNP0SFioP3DnL1ydV8q/cvqy+uJkGTQE2nmrxb7918H7+kquFYg05VOgHw480fzVtMIfjp1k98cvwT9IqenjV6srrL6hxfKHu7ztvZ70HzT8/n4L2DBVmqKCQGo4Fvr37LsH3DeJj2EICo1CgGBw3mdvxtM1cnhBBClHwSfIsX+mvFt5dj6Qy+E3fuImrCBBSNBvsuXaj6/XdYe3qauywhhBD5bEzjMbT1aIvGoOHDPz4kSZPE/NPzic+Mp6ZTTcY1HWfuEguFSqXida/XGdVwFFZqq3wf38HagZWdVmJrYUuyNhkLlQXLOy7P00WF2s61eaPmGwCsOL8iX/skX4+9zi8hvwAwo+WMAvk7KcmG1R8GgH+oP7EZseYtpoAoisLqi6tZfHYxAO/WfZdF7ReZ/LMytvFY3qz9JgoKHx37iLMPzxZEuaKQPEl/wuiDo1l9aTUGxUDPGj0J6B2Aj7MPcZlxDN83nPOPzpu7TCGEEKJEk+BbPJfGoCEqNQooncF33Pff83DGDDAYcOzTB8/VX6K2tTV3WUIIIQqAWqVmSfsleNh7EJUaxaDfBnHw3kEsVZYsaLcAGwsbc5dYYvi4+LC4/WK8HL2Y325+9qrgvBjXZBw2FjZcjLnIkcgjeR4PslZrzj89HwWFXl69aFGpRb6MW5o0q9CMRm6N0Bq1/Of2f8xdTr4zGA3MOz2Pb699C8CEphP4qMVHqFWmf81SqVTMajmLV6u+is6o44M/PuBW3K38LlkUguNRx3kz4E3OPDqDnaUd89rOY3H7xVR3rM7G7htpXrE5qbpURh8czeH7h81drhBCCFFiqRTZOpzk5GQcHR1JSkrCwcHB3OUUKSEJIfTz70c5q3L8OfDPfL3duShTFIWY5cuJ/34jAC4jRlBh2tRS8/qFEKI0uxl3k8G/DUZr1AIwtslY3m/8vpmrEjmx6sIqvr/+PV6OXuzw24Gl2jJP4227vY35Z+Zjb2VPQJ8A3Ozc8qnS0uVAxAGmHJ2Co40jB988iJ2lnblLArI+7z1Ke0RwQjDB8cEEJwQTlRKFQs6/HqXp0ohMiUSFilmtZtHfp3+e69IYNIw5OIbzj8/jauvKlh5bqOJQJc/jFjcp2hQORBxgX8Q+EjWJJp1rrbbG19uXfrX7FepdGjqDjtWXVrP5xmYg626UZR2X/WMBUaY+k2nHpnEk8ghqlZo5refQp1afQqtTCCGEKO5ymuVK8I0E38+zL2If045Oo1H5RvzU8ydzl1MoFL2eh59+RtLOnQBUmDYV15EjzVyVEEKIwrTrzi4+PfkpDd0a8kOPH6S9RTGRok2h586eJGoS+az1Z7xZ+81cjxWXEYfvbl9StCl8/PLHvFtXenvnlsFooNeuXkSlRjGj5QwG1hlY6DVoDBpCE0MJiQ/5W9Cdok3J89hWaisWt19Mt+rd8qHSLCnaFIbvG05wQjBVylXhxx4/looLLzqjjlMPTuEf5s8f9//IvgCZW9UdqvNh8w/pUqVLgS9giUyJZPrR6VyPuw7A2z5vM7XF1GfeLaQ36vn81OfsDt0NwOTmkxneYHiB1iiEEEKUFBJ8m0CC72dbf3k9666so3fN3sxrO8/c5RQ4Y2Ym0ZOnkHr4MKjVVJ43D6d+fc1dlhBCCDMITQilsn1lylqVNXcpwgRbbm5h6bmllLcrT2CfwBxvLvh/zToxiz1he6jjUoefX/85z6vHS7ufb//MwjML8bT3JLBPIBZqixyfm65L53DkYR6kPjBpTr1RT0RSBMEJwdxLvodBMfzjGEuVJTWcauDj7IOPsw81HGuY/G/t7eRNpbKVTDonJ56kP2Fw0GCiU6PxcfYxOVh3t3ene/XuRf5nV1EUbsffxj/Mn9/u/kZ8Znz2c96O3vjV9MPH2cekMcOTwvn26rckaBKArJY7U16aQqPyjfK19r8E3Q3i81Ofk6ZLw8Hagblt5vJKtVdeeJ6iKHxx4Qs23dgEZPXEn9x8stxlKoQQQryABN8mkOD72aYdnca+iH2lYgWCISWFqPfHkn7+PCprazy+WEm5V178gVUIIYQQRYfWoMVvtx/RqdGMbzKe0Y1HmzzGpZhLDAkaAsCWHltoUqFJfpdZ6qTr0um2oxtJmiRWdlpJ12pdn3u8wWjgzKMzBIYF8vv938nQZ+S5BicbJ3ycfajtUjsr6HbxwcvRC2sL6zyPXVDuJ99ncNDgv4XBpqjuUJ1JzSfRuUrnIhemPk57zN67ewkICyA0MTT7cRdbF3rW6Imvty91Xermuu4UbQobr29ky80taAwaAF6r/hoTm07Mt9Yx6bp0lpxbws47WXeKNq3QlCXtl1DZvrJJ42y6vomVF1YC8Ib3G8xpM6fIX7AQQgghzEmCbxNI8P1s/fz7EZIQwlddvqJjlY7mLqfA6J884f57/0Jz+zZqe3s8162l7Msvm7ssIYQQQuRC0N0gph+bThnLMvzW9zdc7VxzfK7OoOPtvW8TkhBC31p9+bzN5wVYaeny1aWv2HB1A43cGrG159anBpqhCaH4h/uzN2wvMRkx2Y9Xc6hG84rNUZHzEFSlUuFh70Ft56ygu0KZCkUu/M2Ju0l32Ra8jUx9Zo7PMSpGjkQe+duK56kvTaVh+YYFVWaOZOgz+P3e7wSEBXD64ensfurWams6V+2Mn7cfrd1b52t7qUdpj1hzaQ0BYQEoKFiqLXnb521GNxqNk61TrsZUFIVb8bf45PgnhCeFo0LFe43e4/3G7+c6sN4dups5J+dgUAx08uzEso7LsLW0zdVYQgghREknwbcJJPh+OoPRwMs/vYzWqOW3Pr+V2E11tPfvc3/kKHSRkVi4uVH122+wrVvX3GUJIYQQIpeMipGBewdyM+4mA+sMZEbLGU89LkmTREhCSHa/5+D4YMISw9AatTjaOBLQOwBnW+dCrr7kis2I5bVfX0Nr1PJD9x9oVrEZkNVPPehuEP5h/tyKv5V9vIO1Az1q9MDX25dGbo2KZWhtTk9b8dy9enc+aPYBVcoV/uf6yzGX+ejYRzxI+2/LmmYVmuHr7Uu36t1wsC7Y72HB8cGsvLCSkw9OAlDOqhyjGo3i3brvPrMPN2T1hw9LDCM4Pjjr/SIh688kTRIA5e3Ks6j9IlpWbpnnGv+4/wfTjk1DY9DQrEIz1ryypsD/XoQQQojiSIJvE0jw/XSRyZH03NUTa7U1Z989a1IvxuIi8/Zt7o96D0NsLFaenlTd+D3WVauauywhhBBC5NHZh2cZeWAklipLdr6R1YYgOCH4b5sbPk5//NRzy1mXY17bebxSVVqe5bc5J+ew484O2nu0x6+mHwFhAfwZ/Wd2/21LlSXtPdvj5+1HB88ORboNSXHxKO0RX136Cv8w/3xb8WwKo2Jk4/WNfHXpKwyKgYplKtKvdj96efUySwB/MvokKy6sICQhBIDKZSszoekEXvd6nfjM+L9dCAtJCOFu0t2n9oe3UFnQqUonPm39KS62LvlW3/lH5/ng8Aek6FLwcfbh665fl4qNTYUQQghTSPBtAgm+n+5o5FHGHx5Pbefa7PDbYe5y8l3mzZvcGzoMY0oKNj4+VPn2G6wqVDB3WUIIIYTIJ+///j4nok8895jsVhguPtkbHHqU80CtUhdSlaXL3aS7+O32+8fjDd0a4uvtS/fq3WWVfQF52orn9xq9xzt133nuiue8iM2I5ZPjn3D64WkAetboyexWs7G3ti+Q+XLKYDQQEB7AmktriEnPaqljZ2n3zF7yDtYO2e8Rf71feDt5F9jfW3B8MGN+H0NsRizuZd0ZXG8wPWr0MKltU05EJkcSGB7IkagjaPQak851t3dndqvZJvczN7dMfSahiaHZFzjuJNyhhmMNpr40NdebIQshhCh8EnybQILvp9t4fSNfXPiC7tW7s6zjMnOXk6+MGg13+/ZDGxaGXbNmVPl6PRbyby+EEEKUKCEJIQwMHIjWqMXWwpZazrX+FnLXcq5FOety5i6z1Plr8/RKZSvh6+VLL+9eeDl6mbusUuP/rnh2L+vOhGYT6FmjZ75e8DkRfYKZJ2YSnxmPnaUdM1rO4A3vN4pUy5oMfQZbb27l++vfk6ZLQ4WKag7V/nshzCUr6K5YpmKh1x2ZEsm/DvyLqNQoIGuFeVuPtvh6+9K5Sudch+7J2mT2R+wnICyASzGX8lRjfdf6/NDjhwK7AJAXiqLwOP3xP9pZ3U+5j1Ex/uP4Bq4NWPfqOrnwJoQQxYQE3yaQ4PvpZp2YxZ6wPYxtPJb3m7xv7nLy1eMlS4nftAkLNze8AvyxdJYPOEIIIURJFJ0ajdagpWq5qiWybVtxpDFoiEqJooZjDVlZbyYGo4HA8EDWXFqT3fKnrktdRjceTQePDlhZ5H5zSZ1Bx+pLq9l8YzMAtZ1rs6zjsiJ9cSNZm8yD1AdUc6iG3f9r787jqizz/4+/D4cdWVVAFBFQcd/TXDLNLRfIps1K26ZFM800c2vRNlPbJg2Xvk0zX8tyvm0DpabmPuYymqWpWCAiIqKCbMp67t8f/DoN4wZ64MDh9Xw8eCjXvX1u9TrR+1znczt72Lscq9yiXH2b9K3iE+P185mfrePeLt4a3GywYiJj1Dmw81VD+WJLsbaf2K64xDhtOr5JRZYiSZKTyUk3NrpRwyOGK9gzuMJ1FZQWaOa2mcouzNYdLe7Q7F6zr+n+bO3XrF/11W9fWYPu3/uw/7cA9wDrQ28bezdW7L5YnSs8p2Y+zbRs0LJat4odAOoigu9KIPi+tPu/vV8/n/lZC25eoFub3Wrvcmzm/L//rWNjHpAMQ01iY+V9S397lwQAAABUu4KSAn186GP9z/7/UX5xviTJz81Ptza7VTGRMWrXoF2lVjofzz2u5zY/pwNnD0iSRkWN0rM3PFsjVwTXNkezjyo+MV7fJH2jk/knreNN6jVRdGS0oiOiFerzR890wzB0KPOQ4hPjteroKmUWZFq3Nfdrrtsib9OwiGEK9Ly2Vo/bT2zX2PVjZcjQy71e1u0tbr/2m7tOhmHo08Of6s1/v6liS7F13GwyK9w3XC38W1hX8Ef5R6mBR4Ny/66TziXp8XWP69T5UwryDNKyQcsU4Vdz36gBABB8VwrB98UMw1CvT3sprzhPX8R8oZb+Le1dkk1Y8vOVNPJ2FR8/Lt8//Ukhr79m75IAAAAAu8osyNTffvmb4hPjdebCGet4M59miomM0YiIEVddBbvm6BrN+WGO8orz5OPqo5d7vawBYTwg1tYshkV7Tu1RXGKc1iav1fmS89ZtnQM7a0TECOUW5So+MV6J2YnWbQHuARoeMVwxkTGK8o+ySeuWpT8t1aJ9i+Tq5Krlw5arTf02133OyjpXcE4vbn9RG49vlCT1btxbQ8KGqGVASzX3a17hN13S89P1+LrHdTT7qHzdfBU7IFYdGnaoytIBANeB4LsSCL4vlnE+QwP+b4CcTE7aff9uuZpd7V2STZx8abbOrVwp55BGioiLk7mefR+sAwAAANQUJZYS7Ty5U3GJcdqQskEFpQXWbd2Duys6MlqDwgbJy8XLOn6h5ILm7ZqnL379QlJZ+Drvpnm0i6gGF0ouaEPKBsUnxuuHkz9c1Lvazeym/qH9FR0ZrV4hveTs5GzT61sMiyZumKjNqZvVuF5jrRyxUr5uvja9xpXsObVH07ZM06nzp+Ti5KIp3abovlb3XXOof67gnJ78/kntP7NfHs4eerffu+rVuJeNqwYA2ALBdyUQfF9sx8kdemztYwrzCdM3t39j73JsIm/rNh1/7DFJUtO/fSSvG2+0c0UAAABAzZRXlKd1x9bpm6RvtCt9l3Xc3eyuW5reopjIGNX3qK9pW6YpKTtJJpn0WIfHNK7jOJsHrLi60+dPa9XRVfou+Tt5OHtoeMRwDQobVOUP8M0pytE98fcoNS9VfRr30fsD3q/y3v2lllJ9sP8DLf5psSyGRWE+YZrfd75NVpyfLz6vZzY9o+1p2+Xs5Ky5febq1nDHafsJAI6C4LsSCL4vtuLQCs3dNVf9Qvtp4S0L7V3OdSvNzlZSdIxKMjLkP3q0gp+fZe+SAAAAgFohLS9N3yZ9q7jEOCXnJF+0vaFHQ829aa56NOpR/cXB7g5nHtboVaNVWFqoJzs+qXGdxlXZtU7ln9KMbTO0O323JCk6IlqzbpxV7lMI16u4tFgzt83UmuQ1MsmkmT1malSrUTY7PwDg+lU0y+Ux6rikpOwkSarRT1+vjPTXXlNJRoZcw8IUOGWyvcsBAAAAao2QeiF6rMNjihsZpxXDVmhU1Cj5uflJkvo07qPPYz4n9K7DWgW00os9X5QkLf5psbambq2S62xJ3aI74+/U7vTd8nD20Gt9XtPrN71u09BbklzMLnrjpjc0KmqUDBl6bedrit0XK9YMAkDtw2fQcElHs49KcozgO2ftWuXExUtOTgqZ94acPDzsXRIAAABQ65hMJrVv2F7tG7bXczc8p2M5xxTpF2mTByWidouJjNFPGT/pH0f+oelbp2vliJVq4t3EJucuKi3Su3vf1fKDyyWVBe0L+i5QM99mNjn/pZidzJrZY6YC3AMU+1OsFv+0WJkFmZrRfYbMTuYquy4AwLZY8Y1LcpQV3yVnzyr9pdmSpPqPPiqPTp3sWxAAAADgAFzMLmru35zQG1bTuk9T+wbtlVOUo8mbJquwtPC6z5mSk6Ixq8dYQ+/7W9+vT4Z9UqWh9+9MJpPGdRqnWT1mySSTVias1PSt01VcWlzl1wYA2AbBNy6SU5SjMxfOSJLCfcPtXM21MwxDJ196SaVZWXKLilKDp8bbuyQAAAAAcEiuZle93e9t+bv561DmIb2+8/VrPpdhGPom6RvdFX+XDp49KF83X73X/z1N7z5drmZXG1Z9daNajdL8vvPl7OSsNclrNP778TpffL5aawAAXBuCb1wk6VzZau9Az0DVc61n52quXU5cnPLWfy+5uJS1OHGt3h+QAAAAAKAuCfYK1vyb58vJ5KQvf/1SXxz5olLHp+amaslPSzTiqxGasXWGzpecV5fALvo8+nP1b9q/iqq+ulvDb9X7t7wvD2cP/XDyB92/6n79lvWb3eoBAFQMwTcu4gj9vYtPnlT6q69JkhqOf1LurVrZuSIAAAAAcHw3NrpREzpPkCS9vvN1/XLmlyvun1uUqy+OfKGH1jykoV8O1fv73ldKboo8nD30ZMcn9eGQDxXsFVwdpV9Rr8a99OHgD1Xfvb5+O/eb7v32Xn1x5AseegkANRgPt8RFant/b8MwdHLW87Lk5sq9QwfVf/RRe5cEAAAAAHXGI+0e0U+nf9Km45s0edNkrRyxUn7uftbtJZYSbU/brvjEeG08vtHaD9wkk3o06qGYyBgNaDpAni6e9rqFS2rfsL0+j/lcM7fO1A8nf9DsH2brh5M/6KWeL8nb1dve5QEA/gvBNy5S24Pvc599pvzt22Vyc1PIG3NlcuafOQAAAABUFyeTk17r85ru/eZepeSmaPrW6Xp/wPv69dyvikuM06qkVTpbcNa6f4RvhGIiYzQ8YniNWN19JQ08GmjJoCX62y9/08I0l37ZAAAgAElEQVS9C/Vd8nc6cOaA5vedrw4NO9i7PADAfzAZfC5HOTk58vX1VXZ2tnx8fOxdjt0N/WKoUvNS9dchf9UNwTfYu5xKKUpJUdJtI2VcuKCgmTMU8MAD9i4JAAAAAOqkhMwEjV41WgWlBQr0DFTG+QzrNn83fw2LGKboyGi1CWgjk8lkx0qvzc+nf9ZzW57TibwTcjY5a2KXiXqw7YNyMtFVtiYrtZTqs4TPVGIpUUv/looKiFKAe4C9y6qxLIZFX/76pQwZGhw2WL5uvja/RkFJgTalbtKZ82c0NHyo6nvUt/k14FgqmuUSfIvg+z8VlBSo+yfdZcjQxrs3qoFHA3uXVGFGaamOjXlAF/bulWf37mr6t49kcuIHDgAAAACwl/jEeM3cNlOS5OLkov6h/RUdGa3ejXvLxcnFztVdv5yiHM3ZPkdrj62VJPUO6a1X+7xaq/5fui4xDEMv73hZnx/5vNx4Q4+GahnQUlH+UWVfAVEK8wmTs1Pd/gR5saVYs7fPVlxinKSyOdwvtJ+iI6LVp3EfuZivfQ4bhqG9GXsVnxivtclrlVucK0nycvHSI+0e0Zg2Y+Th7GGT+4DjIfiuBILvPxzOPKy74u+Sj6uPto3aVqvedT/74V+VsWCBnLy8FP7Pf8q1SWN7lwQAAAAAdd53yd8pvzhfA5oOqJLVovZmGIa++PULvbHrDRWWFqq+e33NvWmueob0rLbrJ55LVF5xXqWO83H1UYRfzWpxWlxarJTcFEX4RlRJHrHox0Va+vNSOZmcdFPjm3Q0+6iO5x6XoYujMVcnV0X6RSoqoCwMb+7fXO5md5vX9N/CfcNrxDwpKCnQs5uf1ebUzTKbzGrm00yJ2YnW7X5ufhoaPlQxkTFqW79thf++UnJSFJ8Ur/jEeJ3IO2Edb+TVSN6u3jqSdUSSFOgZqKc6PaWYyBiZncw2uSeLYVFydrKa+jSt829q1HYE35VA8P2HVUmrNG3rNHVq2EnLhy23dzkVYlgsyvz7/yrjrbekkhI1evUV+d15p73LAgAAAADUIb9l/aapW6bqt3O/ySST/tz+z3qy05NVtrI9LS9N3yR9o/jEeCXnJF/TOe5ocYdeuPEFmwWL18IwDB04c0BxiXFanbxa2YXZGh4xXK/0fsWmf3afHv5Ur+98XZL0wo0v6O6ouyVJ54vP60jWER3JOqKEzAQlZCXoSNYRXSi5YLNrV0ZNWPGcU5SjCd9P0N6MvXIzu+nNm99Uv9B+SshMUHxivL49+q3OXDhj3T/cN7ysT3/4cDWq1+ii82UXZuu75O8Unxivfaf3Wcc9nT01uNlgxUTGqGtQV0nS6qOr9d7e95SWnyZJauHfQlO6TlHvxr2v+X6Ss5MVnxSvbxK/UVp+mno06qHYAbFyNbte8zlhXwTflUDw/Yff3/38U4s/aU6vOfYu56pKMjOVNmOG8jdvkST53hajRm+8UatWqgMAAAAAHMOFkgtasHuB/u/I/0mSOjbsqHl956lxPdt8IjmvKE/rjq1TfFK8dqfvto67m90V6BlYqXOl5qXKYlg0sOlAvdH3DbmZ3WxSY0VdLbjv07iP3rr5LXm6eF73tdYkr9Fzm5+TIUNPdnpS4zqOu+L+FsOi1NxUJWQlWMPwYznHVGopve5arqSgpEAZF8p64VfFiueKOH3+tJ5Y/4R+zfpV3i7eWjhgoTWU/l2JpUQ7Tu5QXGKcNqZsVEFpgSTJJJO6B3fXiMgR6h/aX3tP7VV8Urw2Hd+kYkuxpLKH3/YM6amYiBj1b9r/kuF+YWmhPj30qZbtX6bcorIWKD0b9dTkbpPVKqBVhe7jXME5rUleo/jEeP185ueLtg8KG6QFfRfY9U0fXDuC70og+P7D5E2Tte7YOj3b7Vk92PZBe5dzRfk7dipt6lSVnD4tk6urgmZMl9+oUYTeAAAAAAC7+i75O83ZPke5xbnydPZU56DO19w/usRSop0ndyouMU4bUjaUCxlvCL5B0ZHRGhQ2SF4uXpWqcf2x9Xpuy3MqthSre3B3/aX/X1TPtV6l77UyrhTcDwgboJiIGBVZijR181QVlBaoY8OOen/A+9fV+mPHyR0at36cSiwluifqHs3qMavG5gYWw1IlK54rKiUnRY+ve1wn8k6ogUcDLRm4RFEBUVc85nJ/p/+tpX9LxUTGaFj4MDX0bFihes4VnNOy/cv06eFPVWIpkUkmRUdGa0LnCQr2Cr5o/+LSYm05sUXxifHanLpZJZYSSZLZZC4L2yNj5OnsqUmbJtWKfw+4PILvSiD4/sPt/7xdv537TbEDYnVTk5vsXc4lGSUlOhMbqzOLl0iGIdfISDV++y25R135xRgAAAAAgOpyIu+EntvynH4+ffFqUzezW1n/6P8fhLf0b6mW/i3LBby/t5VYdXSVTl84bR1v5tNMtzW/7bJtJSpj58mdmrhhos6XnFfrgNZaPHCx6nvUv65z/rfLBfeS1D24+yWD+30Z+/Tk908qtyhXzf2aa8nAJQryCqr0tQ+ePaiH1zys8yXna9UKX1useK6sw5mHNXbdWJ0tOKtQ71AtHbRUod6hlTrHf6/ib+DRQMPDhys6MvqqAfqVpOam6r2972l18mpJZfNndOvR+nP7P6ueSz1rq5w1yWt0rvCc9bhWAa0UHRGtYRHDyj1wtrKfAEDNQ/BdCQTfZUosJbrhkxtUYinRmjvW2OyjWLZUnJamE1Of04U9eyRJvnfeoeCZM+Xkef0ffQIAAAAAwJZKLaU6cPZAWbuMCvSPbuTVSFH+UTqZf1IJWQnW8Wt9kGBF/HL2Fz25/kllFmQqzCdMSwcttUkekFmQqb//8nfFJ8ZfFNzHRMZoeMRwhdQLuezxv2b9qrHrxirjQoZCvEK0dNBSNfNtVuHrp+SkaMzqMcosyFSP4B6KHVj7ejpnF2Zr2c9lK56LLcVXXfF8rXan79bEDROVV5ynKP8oLRm0pFxQXFmGYejU+VNq4NHApg+R3H96v97a85b2nCrLhPzc/OTn5leuVU4DjwYaETFCIyJGXDFsX3FohebumiupfM/362UxLPrq16+UV5ynIc2G2PTvCX8g+K4Egu8yydnJiv46Wh7OHtpx3w45mZzsXVI5uevXK23W87JkZ8vJy0vBL8+R7/Dh9i4LAAAAAIAKu1T/6COZR6ytLX7n7OSsfk36KToyWjc1vkku5qp5SKZUlgc8se4JpeWnKdAjUEsGLVEL/xbXdK6CkgJ9fOhjfbj/Q+UV50m69uD+RN4JPbHuCR3LOaYA9wDFDoxV2/ptr3rc6fOnNWb1GJ3IO6HWAa311yF/rfI2LlXpSiuevV29r+vc36d8r+c2P6ciS5G6BnXVwlsWXvc5q5JhGNp0fJPe2fuOjmYflfRHq5zoiGj1aNSjwmH7wh8XatnPy+RkctJbN7+lgWEDr6u2MxfO6Pltz+tfaf+SVNaOqEejHoqJjNGApgNs0q8eZQi+K4Hgu8yGlA16euPTah3QWv+I/oe9y7GyFBYqY/4CZX3yiSTJvX17NX7rTbk2bWrnygAAAAAAsI2cohwdyTyihKyEsiCv6QD5uftV2/VP5Z/S2PVj9du53+Tt6q3YAbHqFNipwseXWkr1TdI3WvjjQp06f0qS1DqgtZ7o8IT6Nul7zcH92QtnNW79OB3KPCQvFy/9pf9f1KNRj8vun1uUq4fXPKyErASFeofqf4f+73WtXq5JDpw5oDf//Wa5Fc9jO47V4LDBauDRoNKfBPjq1680+4fZshgW9QvtpwV9F8jd2b0qSre5EkuJvk/5XsWWYvUP7V/pHvdSWYg+54c5+uLXL+Ti5KKlg5bqhuAbrqmeH9J+0IytM3S24KzczG5qFdBKP53+ybrdw9lDg8IGKToyWjcE3VArWu7UZATflUDwXeZ/9v+P/rL3LxoWPkzz+s6zdzmSpMKkJJ2YPEWFhw9LkgIeeUSBk56WybV2fTwJAAAAAICaLrswW099/5T2nd4nd7O73ur3lvo26XvV47anbdfb/37b2p6lkVcjTeg8QcMjhtvk0+R5RXl6euPT2pW+Sy5OLprXd54GhQ26aL/C0kKNXTdW/z71b9V3r6/lQ5cr1KdyfaprukuteJakAPcAtfRvWa5vfIRvxGXfcPjrgb/qnT3vSJJGNh+pl3q+ZNO2JLVFiaVEUzZN0YbjG1TPpZ4+uvWjSvVRL7YUK3ZfrD7c/6EMGWru11wL+i5Qc//mSs1NtfY8T8lNsR4T5Bmk4RHDFRMZo0i/yKq4LYdH8F0JBN9lZm2bpbjEOD3V6Sk90fEJu9ZiGIayv/pa6a+8IuPCBZn9/RUy7w3V63v1/+ACAAAAAIBrc6HkgiZvmqxtJ7bJ2eSsV/q8ohERIy65b0Jmgt7e87a2p22XJHm7eOuxDo/pvtb3yc3sZtO6CksLNX3LdK1PWS8nk5NeuPEF3dnyTuv2Ukupnt38rNanrJeXi5c+GvKRWtdvbdMaapISS4m+/PVLrTi0QkdzjspiWC7ax9nJWZG+kdYg/PdfPzrwkf72y98kSQ+3e1jPdHnGpn3ja5vC0kI9se4J7Tm1p+wNk2HLK/RgzxN5JzRtyzTryu67Wt6lqTdMlYezR7n9DMPQT6d/UnxivFYnr7Y+sFSS2tRvo5jIGN3a7FabP1jWkRF8VwLBd5l7v7lXB84e0Nv93r7kO6fVpTQvX+lz5ignPl6S5HnjjQqZP08ugYF2qwkAAAAAgLqi2FKsF/71gr5N+laSNO2GaRrdZrR1e3p+uhb9uEhxiXEyZMjZyVmjokbpiQ5PVGl7llJLqV7Z8Yq++PULSdLEzhP1aPtHJUkv73hZnx/5XC5OLloycIm6N+peZXXUNBdKLijxXKK1Z3xCZtlDVH/vsX45U7pO0UPtHqqeImu4nKIcPbzmYR3JOlKhFjnrjq3TS/96SbnFufJ28dZLvV7SkGZDrnqdotIibUndorjEOG1N3aoSo0SSZDaZr6kP/ZSuU3R7i9srfVxtR/BdCQTfZe8+9fy0p/KL8/X1bV/b7aMWFw78ohNTJqv4WIpkNqvhhAmq/9ijMpnpfQQAAAAAQHWxGBYt2L1AHx/6WJL0WPvH9HC7h/XRgY+0/OByFZQWSJJubXarJnaZWKEVsrZgGIYW/rhQH+z/QJI0uvVoebl4aenPS2WSSW/e/KYGNxtcLbXUZIZhKC0/rdwDVBOyEnQ897hcnVz1Qs8XNLL5SHuXWaNU5KGoBSUFWrB7gf5xpOzZeB0adtD8vvPVuF7jSl8vsyBTa46uUXxivA6cPXBNNT/f43nd0+qeazq2NiP4rgSC77J3awd9Pkhmk1m7799dpU+LvhTDMJT5978r4623peJiOYc0UuM335Rnly7VWgcAAAAAAChjGIY+2P+BFv64UJLkbna3Bt5dArtoSrcp6tCwg11qW35wuebvnl9u7IUbX9DdUXfbpZ7a4nzxeUmSp4unnSupmY7lHNMDqx9QZkGmegT3UOzAWLmay54zl3guUc9ufla/nftNJpn0SLtHNL7zeLk4XX+Glp6fbv27qYz6HvXl6+Z73devbSqa5da9rvW4pKTsJElSqHdotYfeJZmZOjljpvI2b5YkeQ8aqEavviqzb92buAAAAAAA1BQmk0mPd3hc/u7+enXHqyooLVAzn2Z6pusz6h/a3659oce0GSM/Nz+9+K8XVWKUaFzHcYTeFUDgfWVhPmGKHRirR9Y8op3pOzVj6wzN7ztfX//2td7Y9YYKSgtU372+Xr/pdfUK6WWz6wZ7BdvsXPgDwTckyfok4AjfiGq9bv7OXUqbOlUlGRkyuboqaMZ0+Y0aVacfqgAAAAAAQE1yV8u7FOEboVP5pzSo2SCbrHC1hejIaEX4RigtP00Dmw60dzlwEG3rt9W7/d/Vk98/qbXH1urIP48oOSdZktQrpJde6/PaFft/o+Yg+Iakso9rSFKEX/UE30ZJic7ExurM4iWSYcg1IkKN33lb7lFR1XJ9AAAAAABQcV2Dutq7hEtq26Ct2jZoa+8y4GB6hvTU3D5z9dyW55Sckyxnk7MmdJmgh9o+JCeTk73LQwURfEPSH61OqmPFd/HJkzrx7FRd2LNHkuR7x58UPGuWnDz5uA0AAAAAAADs79bwW1VsKdaqo6s0tuNYdWzY0d4loZIIviGp+lqd5H7/vdJmzpIlO1tOXl4Knj1bvtEjqvSaAAAAAAAAQGVFR0YrOjLa3mXgGhF8Q+cKzimzIFOSFO4bXiXXsBQWKmP+AmV98okkyb1tWzV++y25hoVVyfUAAAAAAAAA1F0E37C2OQn2Cq6Sp/teOPCLTj7/vAoPH5YkBTz8sAKfmSSTq6vNrwUAAAAAAAAABN+osv7eRakndPqdd5Tz7beSJLO/v0LemKt6N99s0+sAAAAAAAAAwH8i+IbNg+/S7GydWbJUWR9/LKO4WJLke1uMGk6eIpegQJtcAwAAAAAAAAAuh+AbfwTfftcXfFuKipT1yQqdWbJEluxsSZJnzxsVNHWq3Nu0ue46AQAAAAAAAKAiCL6ho+eOSrr2Fd+GxaKcVat1+p13VHzihCTJrUULBU59Vl433SSTyWSzWgEAAAAAAADgagi+67jzxeeVlp8m6dqC7/xdu5Sx4E0V7N8vSXJu2FANn54o39tvl8lstmmtAAAAAAAAAFARBN91XHJOsiTJ381f/u7+FT6uMDFRGW++pbyNGyVJTp6eqv/Yowp48EE5eXpWRakAAAAAAAAAUCFO9i7AVmJjYxUeHi53d3d17dpVW7dutXdJtcLv/b3DfcOvuF9pXp7O792rzBUrdGLqc0qKua0s9Dab5XfvKEWu/U4Nxo0j9AYAAAAAAABgdw6x4nvlypWaNGmSYmNj1bt3by1dulRDhw7VwYMH1bRpU3uXV6MlnSv/YEvDMFScmqqCw4dVeDhBBQllvxanpl50bL0BAxQ4ZbLcIq7voZgAAAAAAAAAYEsmwzAMexdxvXr06KEuXbpo8eLF1rHWrVtr5MiRmjt37lWPz8nJka+vr7Kzs+Xj41OVpdYohmFo7kePKOPnXbpdnRSWIRUmJMiSn3/J/Z2DguTWKkruUa1Ur18/eXbpXM0VAwAAAAAAAKjLKprl1voV30VFRdqzZ4+mT59ebnzw4MHavn37JY8pLCxUYWGh9fucnJwqrbEmG/T+btXLt0jaqwv/f8zk4iLXFs3lHtVK7q2i5BZV9uXsX/Ee4AAAAAAAAABgL7U++D5z5oxKS0sVFBRUbjwoKEjp6emXPGbu3LmaM2dOdZRX42W0DVZa1jm17zlC9dt3LQu5w8NlcnGxd2kAAAAAAAAAcE1qffD9O5PJVO57wzAuGvvdjBkzNHnyZOv3OTk5Cg0NrdL6aiKTyaTh/7ve3mUAAAAAAAAAgE3V+uC7QYMGMpvNF63uzsjIuGgV+O/c3Nzk5uZWHeUBAAAAAAAAAKqZk70LuF6urq7q2rWr1q1bV2583bp16tWrl52qAgAAAAAAAADYS61f8S1JkydP1pgxY9StWzf17NlTy5YtU0pKisaOHWvv0gAAAAAAAAAA1cwhgu977rlHZ8+e1csvv6yTJ0+qXbt2WrVqlcLCwuxdGgAAAAAAAACgmpkMwzDsXYS95eTkyNfXV9nZ2fLx8bF3OQAAAAAAAACAS6hollvre3wDAAAAAAAAAPCfCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FCc7V1ATWAYhiQpJyfHzpUAAAAAAAAAAC7n9wz390z3cgi+JeXm5kqSQkND7VwJAAAAAAAAAOBqcnNz5evre9ntJuNq0XgdYLFYlJaWJm9vb5lMJnuXU61ycnIUGhqq48ePy8fHx97lAKgGzHugbmHOA3UP8x6oe5j3QN1S1+e8YRjKzc1VSEiInJwu38mbFd+SnJyc1KRJE3uXYVc+Pj51cqIAdRnzHqhbmPNA3cO8B+oe5j1Qt9TlOX+lld6/4+GWAAAAAAAAAACHQvANAAAAAAAAAHAo5tmzZ8+2dxGwL7PZrH79+snZmc43QF3BvAfqFuY8UPcw74G6h3kP1C3M+avj4ZYAAAAAAAAAAIdCqxMAAAAAAAAAgEMh+AYAAAAAAAAAOBSCbwAAAAAAAACAQyH4BgAAAAAAAAA4FILvOi42Nlbh4eFyd3dX165dtXXrVnuXBMAG5s6dqxtuuEHe3t4KDAzUyJEjlZCQUG6fwsJCTZgwQQ0aNJCXl5diYmKUmppqp4oB2NLcuXNlMpk0adIk6xhzHnA8J06c0OjRo1W/fn15enqqU6dO2rNnj3W7YRiaPXu2QkJC5OHhoX79+umXX36xY8UArkdJSYmef/55hYeHy8PDQxEREXr55ZdlsVis+zDvgdpty5Ytio6OVkhIiEwmk77++uty2ysyx7OysjRmzBj5+vrK19dXY8aM0blz56rzNmoMgu86bOXKlZo0aZJmzZqlH3/8UTfddJOGDh2qlJQUe5cG4Dpt3rxZ48eP144dO7Ru3TqVlJRo8ODBys/Pt+4zadIkffXVV/rss8+0bds25eXlacSIESotLbVj5QCu1+7du7Vs2TJ16NCh3DhzHnAsWVlZ6t27t1xcXLR69WodPHhQb731lvz8/Kz7zJ8/X2+//bYWLVqk3bt3Kzg4WIMGDVJubq4dKwdwrebNm6clS5Zo0aJFOnTokObPn68FCxZo4cKF1n2Y90Dtlp+fr44dO2rRokWX3F6ROX7fffdp3759WrNmjdasWaN9+/ZpzJgx1XULNYrJMAzD3kXAPnr06KEuXbpo8eLF1rHWrVtr5MiRmjt3rh0rA2Brp0+fVmBgoDZv3qy+ffsqOztbDRs21PLly3XPPfdIktLS0hQaGqpVq1ZpyJAhdq4YwLXIy8tTly5dFBsbq1dffVWdOnXSu+++y5wHHND06dP1r3/967Kf2DQMQyEhIZo0aZKmTZsmqeyTH0FBQZo3b56eeOKJ6iwXgA2MGDFCQUFB+vDDD61jd9xxhzw9PbV8+XLmPeBgTCaTvvrqK40cOVJSxf7bfujQIbVp00Y7duxQjx49JEk7duxQz549dfjwYUVFRdntfuyBFd91VFFRkfbs2aPBgweXGx88eLC2b99up6oAVJXs7GxJUkBAgCRpz549Ki4uLvcaEBISonbt2vEaANRi48eP1/DhwzVw4MBy48x5wPHExcWpW7duuuuuuxQYGKjOnTvrgw8+sG4/evSo0tPTy817Nzc33Xzzzcx7oJbq06ePvv/+ex05ckSS9NNPP2nbtm0aNmyYJOY94OgqMsd/+OEH+fr6WkNvSbrxxhvl6+tbJ18HnO1dAOzjzJkzKi0tVVBQULnxoKAgpaen26kqAFXBMAxNnjxZffr0Ubt27SRJ6enpcnV1lb+/f7l9eQ0Aaq/PPvtMe/fu1e7duy/axpwHHE9SUpIWL16syZMna+bMmdq1a5cmTpwoNzc3PfDAA9a5famf948dO2aPkgFcp2nTpik7O1utWrWS2WxWaWmpXnvtNd17772SxLwHHFxF5nh6eroCAwMvOjYwMLBO/txP8F3HmUymct8bhnHRGIDa7amnntLPP/+sbdu2XXVfXgOA2un48eN6+umntXbtWrm7u1f4OOY8UHtZLBZ169ZNr7/+uiSpc+fO+uWXX7R48WI98MAD1v34eR9wHCtXrtTHH3+sFStWqG3bttq3b58mTZqkkJAQPfjgg9b9mPeAY7vaHL/UfK+rrwO0OqmjGjRoILPZfNG7PRkZGRe9cwSg9powYYLi4uK0ceNGNWnSxDoeHBysoqIiZWVllduf1wCgdtqzZ48yMjLUtWtXOTs7y9nZWZs3b9Z7770nZ2dnBQUFMecBB9OoUSO1adOm3Fjr1q2tD6oPDg6WJH7eBxzI1KlTNX36dI0aNUrt27fXmDFj9Mwzz1if0cW8BxxbReZ4cHCwTp06ddGxp0+frpOvAwTfdZSrq6u6du2qdevWlRtft26devXqZaeqANiKYRh66qmn9OWXX2rDhg0KDw8vt71r165ycXEp9xpw8uRJHThwgNcAoBYaMGCA9u/fr3379lm/unXrpvvvv9/6e+Y84Fh69+6thISEcmNHjhxRWFiYJCk8PFzBwcHl5n1RUZE2b97MvAdqqfPnz8vJqXyMYzabZbFYJDHvAUdXkTnes2dPZWdna9euXdZ9du7cqezs7Dr5OmCePXv2bHsXAfvw8fHRCy+8oMaNG8vd3V2vv/66Nm7cqI8++kh+fn72Lg/AdRg/frw++eQTff755woJCVFeXp7y8vJkNpvl4uIid3d3paWladGiRerYsaOys7M1duxYeXt7a968eRf9QA2gZnNzc1NgYGC5rxUrVigiIkIPPPAAcx5wQE2bNtWcOXPk7OysRo0aac2aNZo9e7ZeeeUVdejQQSaTSaWlpZo7d66ioqJUWlqqKVOm6MSJE1q2bJnc3NzsfQsAKunQoUP6+9//rqioKLm6umrjxo2aOXOm7rvvPg0aNIh5DziAvLw8HTx4UOnp6Vq6dKl69OghDw8PFRUVyc/P76pzvGHDhtq5c6dWrFihzp07KzU1VbLaUTwAAAY4SURBVI8//ri6d++uCRMm2Pv2qp+BOu399983wsLCDFdXV6NLly7G5s2b7V0SABuQdMmvjz76yLrPhQsXjKeeesoICAgwPDw8jBEjRhgpKSn2KxqATd18883G008/bf2eOQ84nvj4eKNdu3aGm5ub0apVK2PZsmXltlssFuOll14ygoODDTc3N6Nv377G/v377VQtgOuVk5NjPP3000bTpk0Nd3d3IyIiwpg1a5ZRWFho3Yd5D9RuGzduvOT/yz/44IOGYVRsjp89e9a4//77DW9vb8Pb29u4//77jaysLDvcjf2ZDMMw7JS5AwAAAAAAAABgc3yuFQAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAqEGSk5NlMpm0b98+u1w/ISFBwcHBys3Nveq++/fvV5MmTZSfn18NlQEAAAAVR/ANAAAAVBOTyXTFr4ceekihoaE6efKk2rVrZ5caZ82apfHjx8vb2/uq+7Zv317du3fXO++8Uw2VAQAAABVnMgzDsHcRAAAAQF2Qnp5u/f3KlSv14osvKiEhwTrm4eEhX19fe5QmSUpNTVVERISSkpLUpEmTCh0THx+vsWPHKiUlRWazuYorBAAAACqGFd8AAABANQkODrZ++fr6ymQyXTT2361ONm3aJJPJpO+++06dO3eWh4eHbrnlFmVkZGj16tVq3bq1fHx8dO+99+r8+fPWaxmGofnz5ysiIkIeHh7q2LGjPv/88yvW949//EMdO3YsF3ofO3ZM0dHR8vf3l5eXl9q2batVq1ZZtw8ZMkRnz57V5s2bbfynBQAAAFw7Z3sXAAAAAODqZs+erUWLFsnT01N333237r77brm5uWnFihXKy8vT7bffroULF2ratGmSpOeff15ffvmlFi9erBYtWmjLli0aPXq0GjZsqJtvvvmS19iyZYu6detWbmz8+PEqKirSli1b5OXlpYMHD6pevXrW7a6ururYsaO2bt2qW265per+AAAAAIBKIPgGAAAAaoFXX31VvXv3liT9+c9/1owZM5SYmKiIiAhJ0p133qmNGzdq2rRpys/P19tvv60NGzaoZ8+ekqSIiAht27ZNS5cuvWzwnZycrK5du5YbS0lJ0R133KH27dtbz/PfGjdurOTkZFvdKgAAAHDdCL4BAACAWqBDhw7W3wcFBcnT07NcCB0UFKRdu3ZJkg4ePKiCggINGjSo3DmKiorUuXPny17jwoULcnd3Lzc2ceJEjRs3TmvXrtXAgQN1xx13lKtFKutN/p9tVgAAAAB7o8c3AAAAUAu4uLhYf28ymcp9//uYxWKRJOuv3377rfbt22f9Onjw4BX7fDdo0EBZWVnlxh599FElJSVpzJgx2r9/v7p166aFCxeW2yczM1MNGza8rvsDAAAAbIngGwAAAHAwbdq0kZubm1JSUtS8efNyX6GhoZc9rnPnzjp48OBF46GhoRo7dqy+/PJLTZkyRR988EG57QcOHLjiSnIAAACgutHqBAAAAHAw3t7eevbZZ/XMM8/IYrGoT58+ysnJ0fbt21WvXj09+OCDlzxuyJAhevTRR1VaWiqz2SxJmjRpkoYOHaqWLVsqKytLGzZsUOvWra3HJCcn68SJExo4cGC13BsAAABQEQTfAAAAgAN65ZVXFBgYqLlz5yopKUl+fn7q0qWLZs6cedljhg0bJhcXF61fv15DhgyRJJWWlmr8+PFKTU2Vj4+Pbr31Vr3zzjvWYz799FMNHjxYYWFhVX5PAAAAQEWZDMMw7F0EAAAAgJohNjZW//znP/Xdd99ddd/CwkK1aNFCn376qXr37l0N1QEAAAAVw4pvAAAAAFaPP/64srKylJubK29v7yvue+zYMc2aNYvQGwAAADUOK74BAAAAAAAAAA7Fyd4FAAAAAAAAAABgSwTfAAAAAAAAAACHQvANAAAAAAAAAHAoBN8AAAAAAAAAAIdC8A0AAAAAAAAAcCgE3wAAAAAAAAAAh0LwDQAAAAAAAABwKATfAAAAAAAAAACHQvANAAAAAAAAAHAo/w9F9suG8tCXXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "linkText": "Export to plot.ly", + "plotlyServerURL": "https://plot.ly", + "showLink": false + }, + "data": [ + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 266, + 257, + 251, + 243, + 235, + 229, + 225, + 216, + 209, + 209, + 217, + 207, + 205, + 199, + 193, + 191, + 189, + 182, + 187, + 184, + 179, + 172, + 168, + 161, + 156, + 157, + 151, + 148, + 153, + 150, + 139, + 134, + 126, + 126, + 130, + 135, + 125, + 127, + 124, + 119, + 118, + 110, + 117, + 108, + 115, + 113, + 101, + 101, + 95, + 91, + 87, + 87, + 95, + 91, + 88, + 86, + 83, + 76, + 80, + 78, + 80, + 82, + 76, + 71, + 70, + 71, + 69, + 61, + 64, + 64, + 59, + 59, + 64, + 61, + 56, + 54, + 56, + 59, + 59, + 57, + 57, + 58, + 54, + 51, + 55, + 45, + 45, + 43, + 40, + 40, + 40, + 35, + 37, + 35, + 35, + 31, + 36, + 31, + 31, + 31 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 86, + 80, + 78, + 74, + 74, + 73, + 72, + 66, + 64, + 65, + 77, + 72, + 80, + 76, + 76, + 80, + 84, + 80, + 89, + 88, + 86, + 81, + 80, + 80, + 78, + 86, + 85, + 86, + 93, + 93, + 87, + 84, + 80, + 82, + 90, + 97, + 89, + 93, + 91, + 91, + 95, + 89, + 96, + 90, + 100, + 99, + 90, + 93, + 90, + 87, + 85, + 88, + 100, + 98, + 98, + 97, + 97, + 92, + 98, + 98, + 101, + 103, + 99, + 97, + 97, + 100, + 99, + 95, + 100, + 102, + 100, + 100, + 107, + 105, + 101, + 100, + 105, + 109, + 110, + 108, + 108, + 113, + 110, + 108, + 113, + 107, + 108, + 108, + 108, + 111, + 112, + 107, + 109, + 107, + 110, + 108, + 114, + 110, + 112, + 112 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 34, + 40, + 42, + 46, + 46, + 47, + 48, + 54, + 56, + 55, + 43, + 48, + 40, + 44, + 44, + 40, + 36, + 40, + 31, + 32, + 34, + 39, + 40, + 40, + 42, + 34, + 35, + 34, + 27, + 27, + 33, + 36, + 40, + 38, + 30, + 23, + 31, + 27, + 29, + 29, + 25, + 31, + 24, + 30, + 20, + 21, + 30, + 27, + 30, + 33, + 35, + 32, + 20, + 22, + 22, + 23, + 23, + 28, + 22, + 22, + 19, + 17, + 21, + 23, + 23, + 20, + 21, + 25, + 20, + 18, + 20, + 20, + 13, + 15, + 19, + 20, + 15, + 11, + 10, + 12, + 12, + 7, + 10, + 12, + 7, + 13, + 12, + 12, + 12, + 9, + 8, + 13, + 11, + 13, + 10, + 12, + 6, + 10, + 8, + 8 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1, + 4, + 8, + 12, + 20, + 25, + 28, + 31, + 36, + 37, + 41, + 46, + 56, + 58, + 64, + 70, + 76, + 79, + 83, + 85, + 88, + 90, + 93, + 100, + 103, + 110, + 115, + 119, + 121, + 124, + 129, + 131, + 135, + 137, + 141, + 143, + 145, + 147, + 148, + 153, + 158, + 160, + 160, + 163, + 166, + 167, + 170, + 173, + 176, + 177, + 179, + 182, + 186, + 188, + 191, + 192, + 195, + 197, + 199, + 201, + 202, + 202, + 204, + 207, + 208, + 210, + 211, + 215, + 217, + 219, + 222, + 222, + 224, + 225, + 226, + 227, + 230, + 231, + 232, + 232, + 232, + 236, + 237, + 238, + 239, + 243, + 244, + 246, + 249, + 252, + 253, + 253, + 253, + 253, + 256, + 258, + 259, + 260, + 262, + 262 + ] + } + ], + "layout": { + "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Michaelis_Menten - NumPySSASolver" + }, + "xaxis": { + "title": { + "text": "Time (s)" + } + }, + "yaxis": { + "title": { + "text": "Species Population" + } + } + } + }, + "text/html": [ + "
                                        \n", + " \n", + " \n", + "
                                        \n", + " \n", + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results.plotplotly()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using Pickle\n", + "\n", + "Commented lines will create and load from binary files instead of a bytes object." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "results_pickled = pickle.dumps(results)\n", + "#pickle.dump(results,open(\"filename.p\", \"wb\" ) )\n", + "results_unpickled = pickle.loads(results_pickled)\n", + "#results_unpickled = pickle.load(open(\"filename.p\", \"rb\" ) )" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAANcCAYAAACQR7nLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hUZfr/8c9MJj2kkQqEQAIEAUEBBWx0AQWBFUFRxN5xfwuuqCu2lQUsu4ti+aoUXXGzICjFJSgoIguCgggIobdAAqGkh9Tz+yPOMUMKCcxkEny/rmuuJXPOc577nJk57nXPPfdjMQzDEAAAAAAAAAAAFwmruwMAAAAAAAAAAMCZSHwDAAAAAAAAAC4qJL4BAAAAAAAAABcVEt8AAAAAAAAAgIsKiW8AAAAAAAAAwEWFxDcAAAAAAAAA4KJC4hsAAAAAAAAAcFEh8Q0AAAAAAAAAuKiQ+AYAAAAAAAAAXFRIfAMAgHrNYrHIYrFo1apVTjnenDlzZLFY1KJFC6ccry7dddddslgsuuuuu2q1DQAudi1atJDFYtGcOXPcHQoAAKgnSHwDAACneOGFF8wktcViUWJi4jnH3HjjjQ5jDhw44PpA4TL2xJPFYlFISIjOnDlT7f5paWmy2WzmmF69etVNoDWUkZGhF154QS+88IIyMjLcHY5b2b9YsVgsatq0qfLy8qrcd9WqVQ36M13+XMs//Pz81LJlS40aNUrLly93ydw5OTmaPn26+vTpo8jISHl5eSk0NFSXXHKJBgwYoBdffFFff/21SkpKKh2fnp6uyZMn65prrlFYWJg8PT0VFham9u3ba8iQIZo2bZrWrl1bo1iefPJJ89zvuOOOGp+DM2MAAAC4EDZ3BwAAAC5Os2fP1q233lrl9qNHj9YoeZSQkCBJ8vPzc1psF6Po6GglJCQoOjra3aFIKksaf/bZZ7rtttuq3OfDDz+sMoFXH2RkZOjFF1+UVJYMDQ4OdnNE9cPRo0c1ffp0Pf300+4OxaWsVqvCw8PNv0+dOqUDBw7owIEDmjdvnu699169//77slgsTplvy5YtGjx4sA4fPmw+5+PjI8MwtHPnTiUnJ+vLL7+UJO3fv7/Cr1ZWrlypkSNH6tSpU+Zz/v7+Kioq0vbt27V9+3YtXbpUkmQYRrWxFBcX61//+pf594IFCzRjxoxzfgacGQMAAMCFouIbAAA4VVhYmPz9/bVixQqHBM7ZPvroI5WUlJyz5UhycrKSk5N15ZVXOjnSi8uUKVOUnJysKVOmuDsU8zWdPXt2tfvZWxI0xLYzv3fTpk1zSG5ejGJiYpSWlmY+8vLy9P3336tr166SpJkzZ+rtt992ylzZ2dm64YYbdPjwYYWFhWn69Ok6fvy48vPzdfr0aWVnZ2v16tV68sknK/1y69ChQxo2bJhOnTqlFi1aaNasWTp9+rRycnKUmZmpjIwMLV++XI8++qhCQkLOGc8XX3yhtLQ0tWvXTn369NGZM2f0ySefVDvG2TEAAABcKBLfAADAqfz9/TVixAiVlpbqww8/rHI/e1KUntQXn5tvvln+/v5auXKlDh06VOk+a9euVXJyslq2bKnrrruujiPE+eratauioqKUmZmpv/3tb+4Op07ZbDZ169ZNX3zxhUJDQyVJM2bMcMqxExMTdeTIEUnSkiVL9PjjjztUm/v7++vaa6/VtGnTdOjQITVr1sxh/P/93/8pJydHXl5e+vbbb3X33Xc7VGcHBQXp+uuv14wZM8x5qjNz5kxJ0p133qk777xTkjRr1qxqxzg7BgAAgAtF4hsAADjd3XffLamsoreyn7OvWbNGu3btUlxc3DmTnjVZ3PLLL7/UrbfeqtjYWPn6+io0NFQdO3bUuHHjtG7dumqPv3HjRo0cOVLR0dHy9vZWXFycxo8fr9OnT1e6f1FRkb766is9/vjj6tq1q6Kjo+Xl5aWIiAgNGDBA//73v2v0E/7PP/9cw4YNU5MmTeTl5aWQkBBdd911evfdd1VUVHTO8Wc71+KW8+bN06BBgxQZGSlPT08FBwerdevWuummm/TWW2+dsx93bQQEBOiWW26p9ssPexLNHve5nDlzRm+88YZ69uypsLAweXl5KSoqSsOGDVNSUlKV48q/f7Kzs/Xss8+qbdu28vX1VePGjTV48GCtX7++wrhevXqpZcuW5t8tW7Z06PdcWT/ykpISzZkzRwMGDDD7M4eHh2vAgAFKTEys8n1RflG+wsJCvfrqq+rUqZP8/f0VFBSkPn36VHuOdcnf31+TJk2SJL311lvV/qqjMuX7f1enqs/92eO3bNmi2267TU2aNJGvr68uueQSvfbaayouLjbH/O9//9OwYcMUHR0tHx8fdejQQW+99dZ5t9qwf9alsl+k5OTk6PTp0/Lz85PFYtG8efOqHT9p0iRZLBbFxcWZMWzevNk8dvfu3asdb7PZZLM5dqy0j7/sssvUvHnzasf7+vpWuz01NVXLli2T1WrVHXfcYX6RtXHjRv38889VjnNWDJmZmXrppZfUuXNnBQYGytfXV61bt9bDDz+sffv2VXvcsy1cuFAWi0VeXl46ceJEtftee+21slgsuu+++yrdfj737F69esliseiFF15QUVGRXn/9dXXt2lXBwcFOXbQZAABUwQAAAHCC559/3pBkxMbGGqWlpUZ8fLwhyfj2228r7HvPPfcYkoyXXnrJ+OabbwxJhiRj//79Ffa1b/vmm28qbMvNzTVuueUWcx9JRqNGjQxvb2/z706dOjmMmT17thnn3LlzDU9PT0OSERQUZFitVnNc+/btjezs7Apzlo9XkuHt7W0EBAQ4PHfLLbcYJSUllV6n7OxsY/DgwQ77BwYGGhaLxfy7R48exqlTpyqMHTt2rCHJGDt2bK222a+3/REQEGD4+fk5PFfZta+t2NhYQ5Lx/PPPG99++60hyYiLizNKS0sd9svNzTUaNWpkWCwW48CBA2bsPXv2rPS4u3btMlq3bm3GarFYjKCgIIf4H3744UrH2rd/8sknRqtWrQxJho+Pj8P5e3p6GklJSQ7jhg8fboSFhZn7hIWFGZGRkeZj+PDhDvunpaUZ3bp1c4jp7Bhvuukmo6CgoMrr9uabb5rH8PT0dHhfWSwWY+bMmbV4NZyr/GtUVFRkXsu77767wr7VfabLb6tOVZ/78uP/+9//Gj4+Pua1Lv8ZuvXWWw3DMIz333/f8PDwqPQ9M3HixGrPNTY2tsr4/vznP5vHOXLkiMO4vn37VjmuuLjYaNq0qSHJmDx5svn8I488Yr7uubm51V6bytxwww2GJKNZs2YVPm+1NWXKFEOS0b9/f/O5O++805BkjBs3zqUxbNu2zWjWrJl5bX18fIxGjRo53G8//fTTSsfaP0ezZ882nysoKDBCQ0MNScaMGTOqnHf//v3m+2fVqlUO2y7knt2zZ0/zvXbVVVcZkgybzWaEhIRU+d81AADgPFR8AwAApytfeXz2z+Nzc3M1b948Wa3WC25zcvfdd2v+/PmyWq2aOHGiDh8+rKysLOXn5yslJUVz585Vjx49Kh2bnp6ue+65R2PHjtWhQ4eUkZGh7OxszZgxQ56envrll1/0yiuvVBjn6+ur0aNHmz1w8/PzlZ2drZMnT2r69OkKDAzU/Pnzq2yBMGbMGC1dulStWrXSJ598oqysLGVmZiovL0+LFi1SXFyc1q1bp3vuueeCro3dmjVrNGvWLFmtVk2bNk0nT55Udna2cnNzdeLECS1fvlxjx46Vl5eXU+azu+6669SqVSvt27dP3377rcO2+fPnKzs7W3379lVsbGy1x8nIyND111+v3bt3q0+fPlq9erXy8/OVkZGhjIwM/f3vf1dAQIDeeecdTZ8+vcrjPProo/Ly8tLXX3+t3Nxc5eTkaMOGDUpISFBRUZEefPBBlZaWmvsvXLhQP/zwg/n3Dz/84NDveeHChea2wsJCDRkyROvXr1fnzp31xRdfKDc3VxkZGcrJydGHH36oiIgILV68WBMnTqwyxueee04pKSn6/PPPlZubq+zsbCUnJ6t79+4yDEN//OMflZmZWe31qgs2m00vv/yypLJe/b/88otb4hg9erSGDh2qgwcPKiMjQ5mZmeaCm4mJiZo6daoeeeQRPfLII0pLS1NGRoZOnTpl3ndeffVV7dq167zmPnDggKSye529ncfDDz8sSfr666+rrEz+73//qyNHjshmszl8xu1rGBQVFenee++tdf90+/iUlBQ98cQTys3NrdX48uz3bHuLE0kaO3asJGnu3LkqKChwSQzZ2dkaMmSIUlJS1LRpU/NzlJWVpc2bN6t79+4qKCjQ7bffXm3leXleXl4aNWqUJDks1nm2jz/+WIZhKDY2tsKvkJxxz37rrbe0ZcsWzZ49W1lZWTp16pROnDihjh071ug8AADAeXJ35h0AAFwcyld8G4ZhHDp0yLBarYa/v79D5fSsWbMcqgnPt+J7xYoV5ra33367xnHaK75VRXW0YRjG+PHjDUlGq1atanxcu/nz5xuSjPj4+Arbli5dakgyoqKijJSUlErHHz582PD39zckGT/99JPDtvOp+J42bZohybj++utrfS61Vb7i2zAM4+WXXzYkGXfeeafDftddd50hyZg7d65D7JVVfD/xxBOGJKNPnz5GUVFRpfMuXLjQrMo+ex/7ax0eHm4cO3aswtgtW7aY+6xZs8Zh2/79+2tUET9jxgzzVwJZWVmV7vPjjz8aFovF8PLyqhCH/bp5e3sbO3bsqDD2+PHjZmXzxx9/XGUcrnT2a1RaWmp06dLFrGQvr64qvvv3719pZfG1115r7nPfffdV2F5cXGy0aNHCkGT89a9/rfJcq6r4PnDggPkZPfsXJZdffrkhyXjqqacqHWuvHP7DH/7g8PyZM2eMDh06mHF7eXkZvXv3NiZOnGjMmzfPOHToUKXHs0tPTzeaNGlijvf39zcGDhxoTJo0yfj8888rfe9Xxv5LjYCAAIfK89LSUiMmJsaQZCQmJrokhqlTp5pV71u3bq2wPSsry3zdbrzxxgrbK6v4NgzDWLdunRnTzp07K507ISHBkGQ8++yzDs9f6D3bXvEtyVi8eHF1pw8AAFyAim8AAOASMTEx6tevn1nhbWdf1PJCK5rtVYnt27c3Ky1r69lnn630+aFDh0qS9uzZo7y8vFod88Ybb5Qk7d27V6mpqQ7bPvjgA0llFYRNmzatdHyzZs3Uu3dvSdLy5ctrNXdl7NWo6enpKikpueDj1cbYsWNltVr16aefKjs7W1LZdfnuu+8UFBSkP/zhD9WONwzDfJ0nTJhQoa+x3bBhwxQYGKgTJ05o48aNle7zwAMPKCIiosLzl156qdnLe8uWLTU+t/Lsr+sjjzyiRo0aVbpPly5d1L59exUWFuqbb76pdJ8RI0aobdu2FZ4PDw83f7lwvjE6m8Vi0dSpUyVJixcv1v/+9786j2HixImV9gq399+WZFaAl+fh4aF+/fpJqt31TE9P16JFi9S/f3+zmnn8+PEO+zz00EOSyu5zZ/d9PnLkiJYtWyZJevDBBx22eXt76+uvv9aoUaNksVjM98m0adM0cuRINW/eXO3atdM///nPSiuuw8LCtGbNGvXv319S2S9rkpKS9Ne//lXDhg1TZGSkunbtqjlz5jj8suFs9kUtR4wYIT8/P/N5i8WiMWPGOOzj7Bj+85//mHN36NChwvZGjRrpySeflCQtW7asxr9+6N69u1q3bi2p8qrvDRs2aOfOnZJknqOds+7Z7du315AhQ2oULwAAcB4S3wAAwGXsi1zak5d79uzRd999p+DgYA0bNuyCjr127VpJOu9kQmhoqFq1alXptiZNmpj/rmyRy+zsbL366qvq2bOnIiIi5OXlZS64Vz5ZdOTIEYdxa9askSS99957ioqKqvKxYsUKSdLBgwfP69zK69evn3x8fPTTTz/p2muv1cyZM7V///4LPm5NNGvWTP3791deXp6Z1Jo9e7YMw9Btt90mHx+fasdv377dbPlw1113VXm9oqOjlZOTI6nqa9atW7cq57G/3rVtLyGVvRfsydNJkyZV+7rak2t1HaOr9OvXz0wgP/XUU3U+v721xtkiIyMllX3G4+Liqt2nqkVspbLXqfyCphERERo2bJh2794ti8WiiRMnOrQDkcrarwQGBurYsWNasmSJw7ZZs2appKRELVu2NJPD5YWHhysxMVH79+/X9OnTNXLkSMXHx5vJ/R07duhPf/qTevTooZMnT1YY37JlS3355Zfavn27pk6dqqFDhzosMrlx40bdfffdGjRoUKWL2WZlZenTTz+VpArnJf3W7mTlypVVvofPN4bCwkLzc2R/T1XGft1KS0u1adOmKvc7mz2hbW9pUp49Gd6tWze1adPGYZuz7tlXX311jWMFAADOQ+IbAAC4zPDhwxUSEqL//e9/2rVrl1ntPXr06HMmPc8lLS1Nks7ZI7oqVVXmSnKoLD67anPXrl1q166dnnzySa1evVrp6eny9PRUeHi4IiMjzYSaJIcet0VFRTpx4oQkKTMzU8eOHavyYU8I1bbavDJxcXH64IMPFBAQoHXr1um+++5TXFycIiIiNGrUKC1atKhCIsiZ7JX9s2fPVmlpqT766COH56tz9OhR89/p6enVXjN7BWlV16wmr/fZr3VNpKWlmXOfOnWq2hjtx6/LGKtK1P3xj3+s1XGqMnXqVFksFq1Zs6ZCotfVqrpe9mt1odfTarWan+nIyEjFxsbqyiuv1GOPPaYffvjBrHgvLyAgQLfffruksmSpXWlpqVkpff/991daqW4XGxurxx9/XP/5z3+0Z88enTx5UnPnzjWroH/66acKFePlXXLJJZo4caI+//xzHTx4UKmpqXr33XfNe+WXX35Z6a9dEhMTlZeXp+bNm6tXr14Vtrdp00bdu3dXaWmp5syZU+X85xPDqVOnzF+kVFVZLZV9mWZ3/PjxamMob8yYMbJYLDpw4ICZzJbKXv/ExERJFZP9zrxnV/ZrEwAA4HokvgEAgMt4e3vrtttuk1T283h70tNeCX4h7Imj6hJIrnD33XcrJSVFLVq00Pz583Xy5Enl5ubq+PHjSktLc6jyLp9QLt9mJDExUYZhnPNxruRSTd1+++06ePCg3n33XY0aNUoxMTFKT0/XvHnzNGzYMPXs2VNZWVlOmetsQ4cOVWhoqNauXasZM2bo8OHDat++va644opzji1/zdLS0mp0zS50wdTaKh/j999/X6MYX3jhhTqLr6pEnbMWyezSpYtuueUWSdIzzzxTbRuNhiYmJsZhQdMDBw5o/fr1evPNN9WlS5cqx9lbL3311VfmIphffvmlDh48KJvNVuv7X0hIiEaPHq3169frkksukSR99tlnNa7+j4qK0oMPPqj169ebCdhZs2ZVeK3siflDhw7JarU6VLvbH99//72k3365UVM1jUGq/p5efltt7v0tWrTQNddcI0nmf4ckKSkpSSdOnJCXl5duvfVWhzHOvGd7eHjUOFYAAOA8JL4BAIBL2ZM8//znP5WSkqIOHTqoa9euF3zcqKgoSTITS3Xh8OHDZouVf//73xoxYoRCQ0Md9rFXop/Nx8dHQUFBkqStW7e6NtBKhIaG6sEHH1RiYqIOHTqkPXv26KmnnpLFYtF3333nsmRs+S8//vznP0uq+Rcf9tdYcs81q4nyFf71MUZXf6kiSZMnT5bNZtO2bdsq7aFcXvlfU1TWbkOS05Ly7nLppZfqqquucqjyfv/99yWVfRFU/n1dG35+frrjjjsklVWQ7969u1bjIyMjzfULTp8+rfT0dHPbtm3btGHDhhof6+DBg1q5cmWt5q8uhtDQUDM5fPjw4SrHl98WHh5eq7ntFd3z588333v29+sNN9xQ4V7u7ns2AAC4cCS+AQCAS3Xt2lWXXnqpCgsLJV34opZ2V111lSTVaXuF8kmXyy+/vNJ97L1eK2Pv8zp//ny3V8bGx8drypQpGj16tKSy6lRXsb/mhYWFstlsFRaQq0qHDh0UGBgoSWY7grpktf72f5Wrqm4NCQlRu3btJLknxvqgVatWuv/++yVJzz33XKWLL9qFhISY/64qwbl+/XrnBugG9qrvWbNm6ciRI+Z96oEHHrig4wYEBJj/9vb2dtp4e4K+c+fOys7OrvZhX5+hqkUuzycGLy8vdezYUZKqTajb769Wq1WdO3eu1bwjR46Uj4+PMjMztWTJEvN/pcp7mkv1654NAABqj8Q3AABwuWnTpmnChAmaMGGCWbF4oe69915J0i+//KJ33nnHKcc8F3v1nyT9/PPPFbZnZ2fr5ZdfrnK8Pem1a9cuvfrqq9XOlZuba35ZcCGqS0JKkq+vryTX/hS/c+fOevHFFzVhwgT94x//qHG/W5vNZibNP/zwQ4fevJVx9sKP9qS7JGVkZFS5n/11Xbly5TmT3/VpcUpneu655+Tv769Dhw7prbfeqnK/Nm3amO+5BQsWVNheWlqqKVOmuCzOunLLLbeocePGOnr0qEaPHq2ioqIqF7WUpA0bNpzzvVFcXKy5c+dKkvz9/ZWQkGBu++677865JkBOTo4WLlwoqWwRyuDgYEllX0h9/PHHksqSwwEBAdU+Ro0aJams3Ur5xUEvJAZJZquRTz/9VNu2bat07CuvvCKprEK7/P24JgIDA81q848++sis/A4NDdWNN95Y6Rh33LMBAIDzkPgGAAAuN2jQIL322mt67bXXav3z9Kr07t3bTJQ89thjevrpp5WSkiKprDr36NGj+uCDD8wEuTO0a9dOzZs3l1RWxbxx40Zz27p169SrVy+HRNDZhg4dquHDh0uSnnrqKT388MPatWuXub2wsFDr16/XxIkTFRsbW6vF26ry2GOPaeTIkVqwYIHD8XJycvTuu++a/W5vuOGGC56rOs8995xee+01PfbYY7UaN2nSJMXHx6u4uFgDBw7U3//+d4cWDZmZmUpKStLYsWN17bXXOjXm4OBgc6G92bNnq7i4uNL9HnroIXXr1k1S2SJ6zz77rEM1c15enlatWqXHHntM8fHxTo2xvoiKitKf/vQnSdX/CsPT01M333yzJOlvf/ub5s2bZyYLd+7cqeHDh1f6pVJD4+3tbfabX716taTqF7WcN2+eYmNjdc8992jp0qU6efKkuS0vL0/Lli1T7969zXYkDz/8sPkFgiRNnz5dzZs317hx47RixQqHnv1ZWVmaN2+errrqKh08eFCSNGHCBHP7okWLzEUc7f3aqzNkyBD5+vqqoKDATMRfaAz2c2rZsqWKioo0aNAgLVu2zKyy3rp1qwYMGKD9+/fLy8ur2i8Yq2P/tUlSUpJmzJghSRo1apS8vLwq3d8d92wAAOBEBgAAgBM8//zzhiQjNja2VuO++eYbQ5Ihydi/f3+F7fZt33zzTYVtubm5xh/+8AdzH0lGYGCg4e3tbf7dqVMnhzGzZ88+Z5z79++vMqYlS5YYNpvN3O7n52f4+fmZ/16xYsU5Y7711lsdYvb39zdCQkIMq9Xq8HxKSorD2LFjxxqSjLFjx1Y4blXb7M/bHwEBAUZwcLDDc9dcc42Rk5NT5fWoqdjYWEOS8fzzz9dqnD3Gnj17Vrp93759RqdOnRxiDg4ONgIDAx2ea9WqVYWx1b0Wdj179qwy7r/+9a/mMby9vY2YmBgjNjbWGDVqlMN+6enpRp8+fSq8F4ODgw2LxWI+Z7PZKsxhv26zZ88+5zWq7LWvC+d6jQzDMDIzM42wsDCHa1DZZ/rw4cNGkyZNzH08PT3N17JRo0bGqlWrqnzdyt8vqlKTz7j9flXZ+djPtbb3srPt3r3bfO1tNpuRmppa5b5PPfWUw3Wz30+CgoIqPD9mzBijsLDQYfzZ9xT7tQwICHB4zmq1Gk8++aRRWlpqjh0wYIAhyejSpUuNz81+373sssucEoPd1q1bjaZNm5r7+vj4OHzOvb29jfnz51caU00+R0VFRUZkZKRDPOvWrav2XC/knl3dvQUAALgeFd8AAKDB8vPz04IFC7R06VINHz5cTZo00ZkzZxQQEKCOHTvq8ccf13vvvefUOQcPHqzVq1frxhtvVHBwsIqLixUWFqa7775bmzZtUt++fc8Z87///W998803GjNmjOLi4lRaWqqcnBxFRESoT58+euWVV7R7926z2vhCTJo0SW+88YaGDx+utm3bymazmXP1799fs2bN0qpVq+Tv73/Bc7lKy5Yt9eOPP+qjjz7S4MGDFR0dbbYVaNmypYYPH65Zs2Zp3bp1Tp/7mWee0fTp09W1a1d5enoqJSVFBw8erLCIaVhYmFasWKFFixZpxIgRiomJUUFBgfLz89W0aVMNGjRIM2bMqNPFWOtaYGCgnnnmmXPu16xZM61fv1733Xef+R4PCAjQnXfeqU2bNqlnz56uDrVOtGrVSpdddpmkcy9q+be//U3ff/+9XnzxRQ0cOFAtWrSQYRjKyclRUFCQOnXqpAcffFBr1qzRRx99JE9PT4fx//rXv/T111/r6aefVt++fdWsWTMVFhbqzJkzCgkJ0RVXXKE//elP+umnnzRt2jSz8vzw4cNmf/+RI0fW+Nzs+27evFmbNm26oBjK69Chg3755Re98MILuuyyy2Sz2VRQUKD4+Hg99NBD+uWXXzRixIgax3k2m81mLrYrSa1bt1b37t2rHVPX92wAAOA8FsOoYqUeAAAAAMB5SUtLU0xMjIqLi7V8+XJdf/317g4JAADgd4WKbwAAAABwsnfffVfFxcVq1apVlYtaAgAAwHVIfAMAAACAE/344496/fXXJUnjx4+vclFLAAAAuA6tTgAAAADACVq0aKGCggKzB/zll1+u9evXV+jJDQAAANcj8Q0AAABJZQvdXXHFFbUaExMTox9++MFFEQENi72yOyoqSgMHDtTUqVMVGRnp5qgAAAB+n2zuDgAAAAD1Q0lJiY4dO1arMT4+Pi6KBmh4qCkCAACoP6j4BgAAAAAAAABcVKj4llRaWqqjR4+qUaNGLDwDAAAAAAAAAPWUYRjKzs5WkyZNZLVaq9yPxLeko0ePKiYmxt1hAAAAAAAAAABq4PDhw2rWrGCkoGkAACAASURBVFmV20l8S2rUqJGksosVGBjo5mgAAAAAAAAAAJXJyspSTEyMmdOtColv/bb6emBgIIlvAAAAAAAAAKjnztWyuuomKAAAAAAAAAAANEAkvgEAAAAAAAAAFxUS3wAAAAAAAACAiwo9vgEAAAAAAACgnjMMQ8XFxSopKXF3KC7l4eEhm812zh7e50LiGwAAAAAAAADqscLCQqWmpiovL8/dodQJPz8/RUdHy8vL67yPQeIbAAAAAAAAAOqp0tJS7d+/Xx4eHmrSpIm8vLwuuBq6vjIMQ4WFhUpPT9f+/fvVunVrWa3n162bxDcAAAAAAAAA1FOFhYUqLS1VTEyM/Pz83B2Oy/n6+srT01MHDx5UYWGhfHx8zus4LG4JAAAAAAAAAPXc+VY+N0TOONffz9UCAAAAAAAAAPwukPgGAAAAAAAAAFxUSHwDAAAAAAAAAC4qJL4BAAAAAAAAAC6zdu1aeXh4aODAgXU2J4lvAAAAAAAAAIDLzJo1S+PGjdOaNWt06NChOpnTViezAAAAAAAAAACcwjAM5ReV1Pm8vp4eslgstRqTm5urefPm6YcfflBaWprmzJmj5557zkUR/obENwAAAAAAAAA0IPlFJWr33PI6n3f7SwPk51W7lPJ//vMfJSQkKCEhQXfccYfGjRunSZMm1TqBXlu0OgEAAAAAAAAAuMTMmTN1xx13SJIGDhyonJwcrVy50uXzUvENAAAAAAAAAA2Ir6eHtr80wC3z1sbOnTu1YcMGLVy4UJJks9k0atQozZo1S/369XNFiCYS3wAAAAAAAADQgFgsllq3HHGHmTNnqri4WE2bNjWfMwxDnp6eOn36tEJCQlw2N61OAAAAAAAAAABOVVxcrI8++kivv/66Nm/ebD5+/vlnxcbGau7cuS6dv/5/LQAAAAAAAAAAaFCWLl2q06dP695771VQUJDDthEjRmjmzJl67LHHXDY/Fd8AAAAAAAAAAKeaOXOm+vXrVyHpLUk333yzNm/erE2bNrlsfiq+AQAAAAAAAABOtWTJkiq3de7cWYZhuHR+Kr4BAAAAAAAAABcVEt8AAAAAAAAAgIsKiW8AAAAAAAAAwEWFxDcAAAAAAAAA4KJC4hsAAAAAAAAAcFEh8Q0AAAAAAAAAuKiQ+AYAAAAAAAAAXFRIfAMAAAAAAAAALipuTXy/88476tixowIDAxUYGKgePXpo2bJl5vaCggKNGzdOYWFh8vf310033aSUlBSHYxw6dEhDhgyRv7+/wsLC9Pjjj6uwsLCuT6VBMgxDPx44pXk/HFZeYbG7wwEAAAAAAAAAp3Br4rtZs2aaOnWqfvzxR/3444/q06ePhg4dql9++UWS9P/+3//TZ599psTERK1Zs0Y5OTkaPHiwSkpKJEklJSW68cYblZubqzVr1igxMVELFizQhAkT3HlaDYbFYtFDH2/Skwu2aM/xHHeHAwAAAAAAAABO4dbE95AhQ3TDDTeoTZs2atOmjSZPnqyAgAB9//33yszM1MyZM/X666+rX79+uvzyy/Xxxx9r69atWrFihSTpyy+/1Pbt2/Xxxx/r8ssvV79+/fT666/r/fffV1ZWljtPrcGID/eXJO1NJ/ENAAAAAAAAwHnuuusuWSwW89G4cWMNHDhQW7Zscfnc9abHd0lJiRITE5Wbm6sePXpo48aNKioq0vXXX2/u06RJE3Xo0EFr166VJK1bt04dOnRQkyZNzH0GDBiggoICbdy4scq5CgoKlJWV5fD4vYqPCJAk7T2e6+ZIAAAAAAAAAFxsBg4cqNTUVKWmpmrlypWy2WwaPHiwy+e1uXyGc9i6dat69OihM2fOKCAgQJ999pnatWunzZs3y8vLSyEhIQ77R0ZGKi0tTZKUlpamyMhIh+0hISHy8vIy96nMlClT9OKLLzr/ZBqg+PBfE99UfAMAAAAAAAANg2FIRXl1P6+nn2Sx1GqIt7e3oqKiJElRUVGaOHGirrvuOqWnpys8PNwVUUqqB4nvhIQEbd68WRkZGVqwYIHGjh2rb7/9tsr9DcOQpdzFtVRyoc/e52xPP/20xo8fb/6dlZWlmJiY8zyDho1WJwAAAAAAAEADU5Qn/a3JufdztmeOSl7+5z08JydHc+fOVatWrdS4cWMnBlaR2xPfXl5eatWqlSSpa9eu+uGHHzR9+nSNGjVKhYWFOn36tEPV9/Hjx3XVVVdJKvuGYP369Q7HO336tIqKiipUgpfn7e0tb29vF5xNw2Ov+D5wIk/FJaWyedSb7jcAAAAAAAAAGrilS5cqIKAsB5mbm6vo6GgtXbpUVqtr85BuT3yfzTAMFRQUqEuXLvL09NRXX32lkSNHSpJSU1O1bds2vfLKK5KkHj16aPLkyUpNTVV0dLSksgUvvb291aVLF7edQ0PSNNhX3jarCopLlXI6Xy3Czv8bGwAAAAAAAAB1wNOvrPraHfPWUu/evfXOO+9Ikk6dOqW3335bgwYN0oYNGxQbG+vsCE1uTXw/88wzGjRokGJiYpSdna3ExEStWrVKSUlJCgoK0r333qsJEyaocePGCg0N1RNPPKFLL71U/fr1kyRdf/31ateuncaMGaNXX31Vp06d0hNPPKH7779fgYGB7jy1BsNqtSguPEA7UrO070QOiW8AAAAAAACgvrNYLqjlSF3y9/c3O35IUpcuXRQUFKT3339fL7/8ssvmdWvi+9ixYxozZoxSU1MVFBSkjh07KikpSf3795ck/eMf/5DNZtPIkSOVn5+vvn37as6cOfLw8JAkeXh46IsvvtAjjzyiq6++Wr6+vho9erRee+01d55WgxMX7q8dqVnaezxXfdq6OxoAAAAAAAAAFyuLxSKr1ar8/HyXzuPWxPfMmTOr3e7j46M333xTb775ZpX7NG/eXEuXLnV2aL8r9j7fLHAJAAAAAAAAwJkKCgqUlpYmqWx9xhkzZignJ0dDhgxx6bz1rsc36l58eNnPIkh8AwAAAAAAAHCmpKQkc33GRo0aqW3btpo/f7569erl0nlJfKNcxXeumyMBAAAAAAAAcLGYM2eO5syZ45a5rW6ZFfVK3K8V36dyC3Uqt9DN0QAAAAAAAADAhSHxDfl52dQ02FeStI92JwAAAAAAAAAaOBLfkPRb1Td9vgEAAAAAAAA0dCS+IYk+3wAAAAAAAAAuHiS+IUmKjyhLfNPqBAAAAAAAAEBDR+IbkqT4MHurEyq+AQAAAAAAADRsJL4h6beK70On8lRQXOLmaAAAAAAAAADg/JH4hiQpopG3ArxtKik1dOhknrvDAQAAAAAAAIDzRuIbkiSLxaL4cHu7E/p8AwAAAAAAAGi4SHzDFB9e1u6EPt8AAAAAAAAAGjIS3zDZ+3zvPU7FNwAAAAAAAIALl5aWpnHjxikuLk7e3t6KiYnRkCFDtHLlSpfOa3Pp0dGg0OoEAAAAAAAAgLMcOHBAV199tYKDg/XKK6+oY8eOKioq0vLly/Xoo48qOTnZZXOT+IapfKsTwzBksVjcHBEAAAAAAACAsxmGofzi/Dqf19fmW6uc4SOPPCKLxaINGzbI39/ffL59+/a65557XBGiicQ3TM0b+8nDalFOQbHSswsUEejj7pAAAAAAAAAAnCW/OF/dPulW5/OuH71efp5+Ndr31KlTSkpK0uTJkx2S3nbBwcHODs8BPb5h8rZ5KCbEV5K0h3YnAAAAAAAAAM7Tnj17ZBiG2rZt65b5qfiGg/jwAB04mae96bm6Kj7M3eEAAAAAAAAAOIuvzVfrR693y7w1ZRiGJLmtnTKJbziIjwjQyuTj2nucim8AAAAAAACgPrJYLDVuOeIurVu3lsVi0Y4dOzRs2LA6n59WJ3AQH17Wb2cvrU4AAAAAAAAAnKfQ0FANGDBAb731lnJzcytsz8jIcOn8JL7hID48QJK0L73imxEAAAAAAAAAaurtt99WSUmJrrzySi1YsEC7d+/Wjh079MYbb6hHjx4unZtWJ3BgT3wfychXXmGx/Lx4iwAAAAAAAACovZYtW2rTpk2aPHmyJkyYoNTUVIWHh6tLly565513XDo3WU04CPH3Uqi/l07lFmpfeq46NA1yd0gAAAAAAAAAGqjo6GjNmDFDM2bMqNN5aXWCCujzDQAAAAAAAKAhI/GNCuztTvbS5xsAAAAAAABAA0TiGxXE/VrxvY+KbwAAAAAAAAANEIlvVEDFNwAAAAAAAICGjMQ3KrAnvvel56i01HBzNAAAAAAAAABQOyS+UUGzEF95eVhVUFyqIxn57g4HAAAAAAAAAGqFxDcqsHlY1SLMT5K0lz7fAAAAAAAAABoYEt+oFH2+AQAAAAAAADRUJL5Rqd8S31R8AwAAAAAAAGhYSHyjUvER/pKkvcdJfAMAAAAAAABoWEh8o1K0OgEAAAAAAABwIe666y5ZLBZZLBZ5enoqMjJS/fv316xZs1RaWurSuUl8o1Itw8oqvk/kFCgzv8jN0QAAAAAAAABoiAYOHKjU1FQdOHBAy5YtU+/evfXHP/5RgwcPVnFxscvmtbnsyGjQGvl4KjLQW8eyCrQvPUeXNw9xd0gAAAAAAAAAJBmGISM/v87ntfj6ymKx1GqMt7e3oqKiJElNmzZV586d1b17d/Xt21dz5szRfffd54pQSXyjavHhATqWVaC96bkkvgEAAAAAAIB6wsjP187OXep83oRNG2Xx87vg4/Tp00edOnXSwoULXZb4ptUJqvRbn28WuAQAAAAAAADgPG3bttWBAwdcdnwqvlGl+PCyPt97j5P4BgAAAAAAAOoLi6+vEjZtdMu8zmIYRq3bptQGiW9UKT6Cim8AAAAAAACgvrFYLE5pOeJOO3bsUMuWLV12fFqdoEr2VicHT+apqKTUzdEAAAAAAAAAuBh8/fXX2rp1q26++WaXzUHFN6oUFegjPy8P5RWW6NCpPDMRDgAAAAAAAAA1UVBQoLS0NJWUlOjYsWNKSkrSlClTNHjwYN15550um5fEN6pktVoUF+6vbUeytPd4DolvAAAAAAAAALWSlJSk6Oho2Ww2hYSEqFOnTnrjjTc0duxYWa2ua0hC4hvVig8P0LYjWdp3ItfdoQAAAAAAAABoQObMmaM5c+a4ZW56fKNacWG/LnB5nAUuAQAAAAAAADQMJL5RrfgIf0nS3nQS3wAAAAAAAAAaBhLfqJa9r/fe9FwZhuHmaAAAAAAAAADg3Eh8o1otw/xlsUiZ+UU6mVvo7nAAAAAAAAAA4JxIfKNaPp4eahbiK4k+3wAAAAAAAIC7/J66MTjjXEl845zKtzsBAAAAAAAAUHc8PT0lSXl5eW6OpO7Yz9V+7ufD5qxgcPGKDw/Qqp3pLHAJAAAAAAAA1DEPDw8FBwfr+PHjkiQ/Pz9ZLBY3R+UahmEoLy9Px48fV3BwsDw8PM77WCS+cU6/VXyT+AYAAAAAAADqWlRUlCSZye+LXXBwsHnO54vEN84pPtxfkrSPVicAAAAAAABAnbNYLIqOjlZERISKiorcHY5LeXp6XlCltx2Jb5xT3K8V34dP5+lMUYl8PC/8jQcAAAAAAACgdjw8PJySFP49YHFLnFNYgJcCfWwyDOnASaq+AQAAAAAAANRvJL5xThaLRfERv/b5Pk7iGwAAAAAAAED9RuIbNcIClwAAAAAAAAAaChLfqBES3wAAAAAAAAAaChLfqJH4cH9JJL4BAAAAAAAA1H8kvlEj5Xt8l5Yabo4GAAAAAAAAAKpG4hs10jzUTzarRflFJUrLOuPucAAAAAAAAACgSiS+USOeHlbFNvaTRLsTAAAAAAAAAPUbiW/UWNyvC1zuS891cyQAAAAAAAAAUDUS36ix+F8T31R8AwAAAAAAAKjPSHyjxuLD/SWR+AYAAAAAAABQv5H4Ro3FR/xa8X2cVicAAAAAAAAA6i8S36ix+LCyxHda1hnlFBS7ORoAAAAAAAAAqByJb9RYkJ+nwgK8JUn7aHcCAAAAAAAAoJ4i8Y1aoc83AAAAAAAAgPqOxDdqhT7fAAAAAAAAAOo7Et+olfjwXxPfVHwDAAAAAAAAqKdIfKNW4n5tdbLrWLYMw3BzNAAAAAAAAABQEYlv1EqHJkHy8rBqb3qulv+S5u5wAAAAAAAAAKACEt+olfBG3nrgujhJ0ktLtiuvsNjNEQEAAAAAAACAIxLfqLVHe7dS02BfHc08ozdW7nF3OAAAAAAAAADggMQ3as3Xy0Mv3NRekvTBd/u053i2myMCAAAAAAAAgN+Q+MZ56d8uUn3bRqi41NCkz39hoUsAAAAAAAAA9QaJb5y3F25qL2+bVev2ndTin4+6OxwAAAAAAAAAkETiGxcgJtRPj/VuJUl6+YsdyjpT5OaIAAAAAAAAAIDENy7QAz3j1DLMX+nZBfrHV7vcHQ4AAAAAAAAAyObuANCweds89OJN7XXnrA36cO0B3dIlRu2aBLo7LAAAAAAAAKBeM0pLlbdhg7JXrFRpbm6txwcNvUn+3bu7ILKLA4lvXLDr2oTrhkuj9N+taZq0aJvmP9hDVqvF3WEBAAAAAAAA9U7B3r3KXLRYmUuWqDg19byP49vxUhLf1SDxDaeYNLidVu1M18aDp/XpphSN7Brj7pAAAAAAAACAeqH49GllffFfZS5apDNbt5rPWwMDFThggLxim9f6mL6dOjkzxIsOiW84RXSQr/7Yt7WmLEvW1GXJur5dpIL9vNwdFgAAAAAAAOAWpYWFyvlmlTIXLVLO6tVScXHZBptNAddeq6ChQxXQu5es3t7uDfQiReIbTnPPNS316cYU7T6eo1eX79Tk4Ze6OyQAAAAAAACgzhiGofzNm5W5aJGyliWpNDPT3ObTvr2Chg5V4I03yNa4sRuj/H0g8Q2n8fSw6q/DOujW977XJxsOaWTXGHWKCXZ3WAAAAAAAAIDTGcXFKty/X2d27lLBzmSdSd6pM8k7VJJ+wtzHFhmpoJuGKOimm+TdurUbo/39IfENp+oe11jDL2+qz346okmLtumzR66WBwtdAgAAAAAAoAEryczUmeSdZoK7IDlZBXv2yCgsrLCvxddXgdf3V9DQofLr1k0WDw83RAwS33C6p29oqxXbj2lLSqb+veGQ7uge6+6QAAAAAAAAgHMySkpUeOiQCnbu1JnkZBUk79SZnTtVnJpa6f5WPz95JyTIu22CfBLayqdtgrwTEmT19a3jyHE2Et9wuohGPppwfRu9sGS7XklK1sAOUQoLoEk/AAAAAAAA6o+SnFwV7Cqf4E5Wwa7dMvLzK93fs2lTebdtKx97orttW3k2ayaL1VrHkaMmSHzDJe7oHqt5P6Zoe2qWpi5L1mu3dHJ3SAAAAAAAAPidKj1zRrlr1+nM9u1mu5Kiw4cr3dfi7S3vNm3KqrfbJJhV3B6BgXUcNS4EiW+4hO3XhS5vfmetPt2YoluviFHXFqHuDgsAAAAAAAC/E4ZhKH/jRmUuWqSspOUqzc6usI8tMtKxTUnbtvKKjaUv90WAxDdcpktsiEZ1jdF/fjysZz/fpqXjrpHNg59+AAAAAAAAwHUKDx5U5qLFyly8WEUpKebztibR8r+ym9mmxDshQbaQEDdGClci8Q2XmjiorZZvT1NyWrbeXrVXj/dt7e6QAAAAAAAAcJEpychQVlKSMhctVv5PP5nPW/391WjgAAUNHSq/rl3px/07QuIbLhXq76VnbrhET366RX//apeig3x0S9cYd4cFAAAAAACABs4oLFTOmjXK/HyRcr75RkZRUdkGq1X+V1+toKFD1ahvH1l9fd0bKNyCxDdcbmTXGO09nqP/W71PTy3cqlB/L/W9JNLdYQEAAAAAAKABKj59Wiff/0CZn32mktOnzee9ExIUNHSoAgffKM+ICDdGiPqAxDfqxMSBbZWeU6CFm47o0U82ae593dQllsUuAQAAAAAAUDOlZ87o1L/+pZP/955Kc3IkSR7hYQoaPERBQ2+ST9u2bo4Q9QmJb9QJq9WiaTd3VEZekb5OPq575vyo+Q/1UJvIRu4ODQAAAAAAAPWYUVqqzMWLlT79DRWnpkqSvC+5ROGPj1PAtdfKYiPFiYro5o464+lh1VujO+vy5sHKzC/SnTM36EhGvrvDAgAAAAAAQD2Vu3at9t88QqlPPa3i1FTZoqPVZNpUtVzwqRr17k3SG1Ui8Y065evloVljr1CriAClZZ3RnTPX61RuobvDAgAAAAAAQD1yZucuHbr/AR26514V7Ngha6NGinhiguKX/VdBQ4fKYiWtierxDkGdC/H30kf3XKnoIB/tTc/VPXN+UF5hsbvDAgAAAAAAgJsVHTumo3/5i/YPH67c776TPD0VcucYxX+5XI3vu09WHx93h4gGgsQ33KJJsK/+de+VCvbz1ObDGXr4400qKil1d1gAAAAAAABwg5KcHB3/5z+1d8BAZS5YKJWWqtHAgYr/YqminnlGtpAQd4eIBsZiGIbh7iDcLSsrS0FBQcrMzFRgYKC7w/ld2XjwtG7/4HudKSrV8Mub6vVbOslqtbg7LAAAAAAAgItCaX6+Cnbt0pnknSrYuVNFaWnuDqlS+Zs3q+TUKUmSb+fOinzyz/K97DI3R4X6qKa5XLq/w626xIbondu76L6PftRnPx1RY38v/eXGS2SxkPwGAAAAAACoKcMwVJyWpjPJySrYubMs0Z2crMKDB6UGUvfq1aKFwieMV6N+/cgN4YKR+Ibb9W4boVdHdNT4eT/rgzX7Fd7IWw/2jHd3WAAAAAAAAPVWaV6esr/6Sme2bzeT3CWZmZXu69G4sXwSEuTdtq28mjeXPOpf92OP4GA16tVLFk9Pd4eCiwSJb9QLf+jcTCdzCjX5vzs0ZVmyGgd4a0SXZu4OCwAAAAAAoF4xiouV8dlnOvHGmypOT3fc6OEh77g4ebdtK5+2CfJukyCftgmyhYe7J1jAjdya+J4yZYoWLlyo5ORk+fr66qqrrtK0adOUkJBg7tOrVy99++23DuNGjRqlxMRE8+/Tp0/r8ccf1+LFiyVJN910k958800FBwfXzYnAKe6/Lk7pOQV6b/U+TVywRSF+nup7SaS7wwIAAAAAAHA7wzCU8+23Sn/9dRXs3iNJ8mzaVI369ZV3Qlmi26tVK1m9vNwcKVA/uHVxy4EDB+rWW2/VFVdcoeLiYv3lL3/R1q1btX37dvn7+0sqS3y3adNGL730kjnO19dXQUFB5t+DBg1SSkqK3nvvPUnSAw88oBYtWmjJkiU1ioPFLeuP0lJDT3z6sxZuOiIfT6s+e+RqXRLNawIAAAAAAH6/8n/5RcdfeVV569dLkqxBQQp7+CGFjB5Nohu/Ow1iccukpCSHv2fPnq2IiAht3LhR1113nfm8n5+foqKiKj3Gjh07lJSUpO+//17dunWTJL3//vvq0aOHdu7c6VA9jvrParVo2s0ddSKnUKt3pWv8vJ+16NGr5WWrf72nAAAAAAAAXKnoyBEd/+d0Zf1a3Gnx9FTImDEKe/ABeZQrCgVQUb3KJmb+2oA/NDTU4fm5c+cqLCxM7du31xNPPKHs7Gxz27p16xQUFGQmvSWpe/fuCgoK0tq1ayudp6CgQFlZWQ4P1B+eHla9fksnhfh5akdqlt5YudvdIQEAAAAAANSZksxMHXv1Ve0ddIOZ9A4cPFhxy5Yp8sk/k/QGaqDeLG5pGIbGjx+va665Rh06dDCfv/3229WyZUtFRUVp27Ztevrpp/Xzzz/rq6++kiSlpaUpIiKiwvEiIiKUlpZW6VxTpkzRiy++6JoTgVOEN/LW5OGX6pG5m/T2qj3qe0mELm8e4u6wAAAAAAAAXKa0sFCnP/lEJ995VyW/Foj6deumiD//Wb4d2rs5OqBhqTeJ78cee0xbtmzRmjVrHJ6///77zX936NBBrVu3VteuXbVp0yZ17txZkmSxWCoczzCMSp+XpKefflrjx483/87KylJMTIwzTgNOdMOl0Rp6WRMt2nxUE+b/rP8+fq18PD3cHRYAAAAAAIBTGYah7GXLdPzv/1BRSookyatVvCKeeEIBPXtWmeMCULV6kfgeN26cFi9erNWrV6tZs2bV7tu5c2d5enpq9+7d6ty5s6KionTs2LEK+6WnpysyMrLSY3h7e8vb29spscO1XrypvdbtPal96bl6JWmnnhvSzt0hAQAAAAAAOE3ejz/q2Cuv6syWLZIkj//P3p3GR1XebRy/ZsnMZJ1ASFgCSNgmIDuyK3VBEUGCqLgr1WpVXBH08bGtbW1rrdhWoSpuaFVEUSQBBG1FRVQWWcJmBsJOAiQBMiHLTCYz53kRn1QrKsEkZ5L8vm9Szrln5prPx2a55pz/ndxKyXfeqcSJE2WxR0R1BzRKps74NgxDd9xxhxYsWKDly5crLS3tRx+zdetWBYNBtW3bVpI0bNgw+Xw+rVmzpmbN6tWr5fP5NHz48HrLjoaRGOPQY5f1kSS99NlufbHziMmJAAAAAAAAfrrArl3aP+UO7b32Ovk3bZIlJkat7rhDXZctU4tJkyi9gZ/IYhiGYdaL33777Zo7d64yMzPl8XhqjrvdbkVHR2vnzp16/fXXddFFF6lVq1batm2b7rvvPkVHR2vt2rWy2arHXowZM0b5+fmaPXu2JOmWW27RaaedpkVfD///MSUlJXK73fL5fEpISKj7N4qf7MEFm/TGmv1KTYzW+/eOVJyTb/4AAAAAAKDxqSoqUuGsWSqe/7YUCkk2mxIvu0zJd0yRPTnZ7HhAxDvZLtfU4vv75hPNmTNHkydP1v79+3Xttddqy5YtKi0tVYcOHTR27Fg9/PDDatmyZc36o0eP6q677lJWVpYkafz48Zo1a5YSExNPKgfFd+QrDVTpwr+v0IFjFbpqcAc9OrGP2ZEAAAAAAABOWri8XEdefllHX3hR4fJySVLcOecoZdp9cnbpYnI6oPFoFMV3pKD4bhxW7Tqiq55fJcOQ5kwepHPSPklhPgAAIABJREFUU8yOBAAAAAAA8IOMUEi+d99V4VMzVVVQIEly9e6tlOnTFDt4sMnpgMbnZLtcU2d8A7UxtHOSbhxRPQf+gXc2qbi80uREAAAAAAAAJ2YYhkpXrNDuCZfo4K9+raqCAkWlpqrdEzPU6c15lN5APWNQMhqV6aM9+thboJ2FZfpN5lY9dVV/syMBAAAAAADUMAxDFevXq3DWLJV/sUqSZHW71erWW9XimqtldThMTgg0DxTfaFRcUTb9dVI/TXzmc2Vl52v06W00tk9bs2MBAAAAAIBmrnL/fvkys+TLylJw3z5JkiUqSi2uu06tfnmLbG63yQmB5oXiG41O3w6JmnJ2Fz21PFe/WrhZg9JaKCXeZXYsAAAAAADQzIRKSlSybJl8mVmqWLeu5rg1JkbxF41Rq1tvk6N9qokJgeaL4huN0h3ndtOHOQXaml+i/12wRc9fP1AWi8XsWAAAAAAAoIkzgkGVrlwpX2aWSpcvl1H59R5kVqtihw+XO2O84s87T9aYGHODAs0cxTcaJYfdqicm9dX4mZ/p318d1tvrDujyMzqYHQsAAAAAADRBhmHIv22bfJmZKlm8RKGjR2vOObt1k3vCBCWMG6eo1ikmpgTwTRTfaLTS2yTo3vO767FlOfr9om0a3rWVUhOjzY4FAAAAAAAauVBpmQLbvfLn5CiQ41X5+nWqzN1Zc96WlCT3uHFyT8iQMz2du9CBCETxjUbtlpGd9a9th7R+X7Hufztbr944RFYrP2wAAAAAAMCPMwxDwbw8BXJy5M/xKuCt/hrcv/87ay1Op+LPO1fujAzFjhghi51aDYhk/D8UjZrNatETk/rpoic/1We5R/Ta6r26flgns2MBAAAAAIAIZITDOr5smcq//PLroturcFnZCdfaW7eWM90jlyddrh7pij3zTNni4xs4MYBTRfGNRi+tVawevChdv8ncqj+995XO6pastFaxZscCAAAAAAARpOrIEeX/z4Mq+/TTbx23REXJ0a1rdcGd7pHTky6np7vsLVqYlBRAXaD4RpNw7ZDT9P7WQ/os94jue2uj5t86XDZGngAAAAAAAEllX3yhvPvvV6iwSBanUy2uvEKuXr3k9HjkTEuTJSrK7IgA6hjFN5oEq9Wiv1zWVxf+bYXW7yvWcyt26bazu5gdCwAAAAAAmMioqlLhzFk68txzkmHI2a2r2j3xhFzdu5sdDUA9s5odAKgrqYnR+s3FPSVJf/vXduUcKjE5EQAAAAAAMEswL097r7teR2bPlgxDiZMmqdNbb1F6A80ExTealMsGtteoHq1VGQpr6pvZqqwKmx0JAAAAAAA0sJIPPtCuSyaqYsMGWePilPr3v6nt738na3S02dEANBCKbzQpFotFf5rYSy1iorTtYIlmLd9hdiQAAAAAANBAwn6/Dv7ud8q7626FS0rk6tNHaQvfVcKFF5odDUADo/hGk5MS79IfJvSWJP3j453K3l9sciIAAAAAAFDfAjt3as+kK1T8xjxJUtIvblKn11+To317k5MBMAPFN5qksX3aanzfdgqFDU19a6P8wZDZkQAAAAAAQD0wDEPF77yj3ZddrsD27bIlJanD888rZdo0WaKizI4HwCQU32iyfp9xulLindpZWKbH3/eaHQcAAAAAANSxkM+n/GnTdfChX8moqFDs8GHqvPBdxZ11ptnRAJjMbnYAoL4kxjj02KV99POX1+qlz3br/J6tNbRzktmxAAAAAABALRmGoar8fPm9XvlzchTI8crvzVFw337JMCSbTcl3362kX9wki5XrPAFQfKOJOyc9RVcO6qB5a/dr2vxsLbtnpOKc/GcPAAAAAECkCvv9CuzIVcCbI3+OV4GcHPm3b1e4pOSE6x2dO6vtH/+gmP79GzgpgEhGA4gm71fjemplbpEOHKvQH5d8pUcn9jY7EgAAAAAAzZ5hGKoqKPx2we31qnLPHil0gr267HY5u3SRK90jZ3ePnOkeudLTZU/i7m4A30XxjSYvzmnX45f11VXPr9Iba/bpgtNb6xxPitmxAAAAAABoNozKSgV27pTf660ZUxLI8Sp07NgJ19tatKgutj3pNQW3s3NnWRyOBk4OoLGi+EazMKxLkm4ckaaXPtutB97epA/uHanEGH5YAgAAAABQ16qOHPnWHO5AjleBXbukqqrvLrZa5UhLk8vjkTM9vfpqbk+67CnJslgsDR8eQJNB8Y1m4/4LPfp4e4F2FZbp4aytevJKZn8BAAAAAHCqjGBQlXv2VI8p+Xpcid+bo1Bh0QnXW+Pjv1NwO7t1ldXlauDkAJoDim80G64om/46qZ8mPv2ZMjfma/TpbXRR77ZmxwIAAAAAIOKFKypUkb3pWwV3Ze5OGZWV311ssSiqY4dvjSlxeTyyt2vHVdwAGgzFN5qVfh0SdfvZXTXro1w99O5mDerUUsnxTrNjAQAAAAAQscpWr1H+/fer6vDh75yzxsTI6fHUzON2pXvk7NZN1thYE5ICwH9QfKPZueu8bvowp0BfHSzRgws26/nrB/KJMwAAAAAA/8WoqlLR08+o6JlnJMOQrVUrRfft+/W4kuoruaPat5fFajU7KgB8B8U3mh2H3aq/Tuqr8bNW6t9fHda8tft11eCOZscCAAAAACBiBA8eVN706ar4cp0kyX3pRLV56CFZY2JMTgYAJ4eP5NAs9WiboHvP7y5J+vXCLfrIW2ByIgAAAAAAIsPxDz/U7gmXqOLLdbLGxqrdjBlq98c/UnoDaFQovtFs3Tqyiy7pn6qqsKHbX1uv9fuOmR0JAAAAAADThAMBHXrkDzow5Q6FfD65evVS2rsL5B431uxoAFBrFN9otqxWi/5yWR/9rHuyKoIh3fjyWuUWHDc7FgAAAAAADS6wa7f2XHGljr3+uiSp5c9/rk5zX5ejI6NBATROFN9o1qJsVj1z7QD165Co4vKgrn9xjfKLK8yOBQAAAABAgzAMQ8XvLtTuyy5TICdHthYt1OG52Wr9wP2yOBxmxwOAU0bxjWYvxmHXnMmD1CU5Vvk+v254aY2KyyvNjgUAAAAAQL0KlZYp/4EHdPDBB2WUlytm6FClLVyouJEjzY4GAD8ZxTcgqUWsQ/+8aYjaJLi0o6BUN73ypSoqQ2bHAgAAAACgXlRs2ardl05USdYiyWZT8j13q+OLLyiqdYrZ0QCgTlgMwzDMDmG2kpISud1u+Xw+JSQkmB0HJtp++Lguf/YL+SqCOjc9RbOvG6goG58PAQAAAADqR7isTP7t2xXweuXPyVEgx6uqY0fr/XWD+QelYFD2tm2V+sQMxQwYUO+vCQB14WS7XIpvUXzj29btPaprXlgtfzCsSwe014zL+8hisZgdCwAAAADQiBmGoWBevgLenOqC27tdfm+Ogvv2SyZVM/Hnj1LbRx6RLTHRlNcHgFNxsl2uvQEzAY3CwNNa6h9XD9Atr67TO+sPqFW8Qw+O6WF2LAAAAABAIxH2+xXYsaPmCm6/t7roDh8/fsL19uRkOdPT5Ur3yOlJV1TbNlI9X4BljY2Ts3s3LvQC0GRRfAMncF6P1vrzxN6a/vYmzf5kl5LjnPrFWZ3NjgUAAAAAiCCGYajq8OGagjuw3St/jleVe/ZI4fB3HxAVJWfnzjUFtyvdI2d6uuwtWzZ4dgBo6ii+ge9x+RkddKSsUn9emqM/LPlKSXEOXdK/vdmxAAAAAAAmCeTmqmLT5q/HlXgVyMlRyOc74Vpby5bVxXZ3j5zpHrnS0+Xs3FkWh6OBUwNA80TxDfyAX47srMLjAb24cremz9+kxBiHzvGwwzUAAAAANCeB3FwVPD5DpZ988t2TNpscaZ3k8qT/p+D2eGRPTmaMCACYiOIb+AEWi0UPXdRDR8sq9e6GPN3+2nrNvXmI+ndsYXY0AAAAAEA9CxYUqGjmLBW/80716BK7XTEDBlQX3J7qgtvZrausTqfZUQEA/4XiG/gRVqtFf7msj46WVeqT7YX6+ctr9ey1AzW0c5LZ0QAAAAAA9SBcVqYjL76kI3PmyKiokCTFn3++kqfeK2damsnpAAAnw2IYhmF2CLOVlJTI7XbL5/MpISHB7DiIUOWVVbr6+dXauL9YVot057nddNd53WSzcusaAAAAADQFRlWVit9+R4WzZilUVCRJiu7bVykP3K+YAQNMTgcAkE6+y6X4FsU3Tl5ZoEoPZ23V2+sOSJIGp7XUk1f2U1t3tMnJAAAAAACnyjAMlX70sQqeeEKVO3dKkqI6dlTK1KmKH30Bs7oBIIJQfNcCxTdqa+GGPD307maVVYaUGBOlGZf11aierc2OBQAAAACopYrNm1Xwl8dVvnatJMmWmKhWt9+uFldeIYvDYXI6AMB/o/iuBYpvnIrdRWW684312pJXIkn6+YhO+p8x6XLabSYnAwAAAAD8ECMUUiB3p47Mnq2S996TJFmcTrW8/nol3XKzbPHxJicEAHwfiu9aoPjGqQpUhfSXZV69uHK3JOn0dgmaeVV/dU6OMzkZAAAAAECSQsePK+D1yp/jVcCbU/11xw4Zfn/1AotF7vHjlXz3XYpq187csACAH0XxXQsU3/iplucc1n1vZetYeVAxDpv+MKGXJg5ob3YsAAAAAGg2jHBYwQMH5M/JUSDHK7/Xq0BOjoJ5eSdcb4mOVuzgwUq++y65evZs4LQAgFNF8V0LFN+oC4d8ft3z5gat2nVUkjRxQKoeyeilWKfd5GQAAAAA0LSEy8oU2LFD/hyv/N7qojuwfbvCZWUnXG9v21Yuj0fOdI9c6elyejxydOwoi41RlQDQ2FB81wLFN+pKKGzoHx/l6u//3q6wIaW1itXMq/qrV6rb7GgAAAAA0OgYhqGq/Hz5vd5vXMmdo+C+/dIJ6gyLwyFn165ypqfLle6R05Mul6e7bImJJqQHANQHiu9aoPhGXVuz+6junrdBB31+OWxWPTy+p64ZcprZsQAAAAAgYoX9fgV25P5nDndOjvzbtytcUnLC9fbk5OqC29O9uuBO98iRliaLnbtuAaApo/iuBYpv1IdjZZW6/51N+te2w7JYpIW3j1DfDlxlAAAAAKB5MwxDVQUF1cX2NzacrNyzRwqHv/sAu13OLl3+cwV3ukdOj0f2pKQGzw4AMB/Fdy1QfKO+GIahe97cqMyN+eqd6tbCKSNks1rMjgUAAAAADaZyzx6Vb9hYXXR/veFkqLj4hGttLVpUz+H2pP9nHnfnzrI4HA2cGgAQqU62y+X+H6AeWSwWPTS2h5Z/VaDNeT7NXbNP1w1l5AkAAACApq3q2DGVvPeefJlZ8m/a9N0FVqscaWlfbzj5n3nc9pRkWSxcLAQA+OkovoF6lhLv0n0XdNdvF23T48tyNKZXG7WKc5odCwAAAADqVLiyUqUffyxfVpZKP1khBYPVJ2w2RffvJ1d6j5qC29mtq6wul7mBAQBNGsU30ACuHXqa3vrygLYdLNGfl+ZoxuV9zY4EAAAAAD+ZYRjyZ2erODNTJe8tVdjnqznn6tlT7gkZShg7lnncAIAGR/ENNAC7zao/XNJLE5/+XG+vO6ArBnXQoE4tzY4FAAAAAKek8kCeShZlybcwU5V799Yct6ekyD3+YiWMHy9X9+4mJgQANHcU30ADGdCxha4c1EHz1u7Xrxdu0eI7z5TdZjU7FgAAAIBmKrBzp4rnv61weXmtHle5e7fK166t+bclOlrx54+SOyNDsUOHymKz1XVUAABqjeIbaED3X5iuZVsPKefQcb38+R794qzOZkcCAAAA0MxUFRaqcOYsFb/9thQOn9qTWCyKGTpE7vEZij//fNniYus2JAAAPxHFN9CAWsY69MCF6XpwwWb9/d87dHHfdmqdwIYuAAAAAOpfuKxMR+a8rCMvvSTj66u84849V9G9e9Xqeaxx8YofdZ6i2ratj5gAANQJim+ggV1xRge9uXa/Nu4v1h+WfKWZV/U3OxIAAACAJsyoqlLxOwtUOGumQoVFkiRX3z5qPX26Ys44w+R0AADUDwYMAw3MarXoDxN6yWqRFmXn67PcIrMjAQAAAGiCDMPQ8Y8+0q4JE3To4YcVKixSVIcOSv3739Rp3jxKbwBAk0bxDZigV6pb1w49TZL0m8wtqqw6xbl6AAAAAHACFZu3aN8Nk3XgtttVmbtTNrdbrf/3QXVZslgJF14oi8VidkQAAOoVo04Ak9x3gUfvbT6onYVlemHlLt1+dlezIwEAAABo5CoP5Knwb39TyZIlkiSLw6GW11+npFtukS0hweR0AAA0HK74Bkzijo7Sg2N6SJJmfpirvOIKkxMBAAAAaKz83u069Mc/adeYMTWltztjvLosfU8p06ZRegMAmh2u+AZMNHFAqt5cu19r9hzV7xdt1ezrmLEHAAAA4ORUFRXJt3ixfJlZCnz1Vc3xmGFD1Xr6dLl69jQxHQAA5qL4BkxksVj0yIReuuipT/X+1sP6yFugczwpZscCAAAAEKHCfr9Kly9XcWamylZ+JoVC1SeiohR/9s+UOOkKxZ45ghneAIBmj+IbMJmnTbxuHNFJz3+6W7/N2qph9yTJFWUzOxYAAACACGGEw6pYv16+zEyVLF2mcGlpzTlX3z5yZ2QoYcwY2Vu0MDElAACRheIbiAB3j+qurOx87T1Srmc/2al7RnU3OxIAAAAAk1Xu3StfZpZ8WVkKHjhQc9zerq3c48fLPT5Dzs5pJiYEACByUXwDESDOadevx/XUHXM36OmPd+qS/qk6LSnW7FjfsiXPp9tfX6+rBnfUbWd3MTsOAAAA0CSFiotVsmyZfJlZqtiwoea4NTZW8ReOljsjQzFnnCGL1WpiSgAAIh/FNxAhxvZuq3ld92tlbpEeztqqOZMHRcxcPn8wpLvnbdC+o+X667+8Gtu7rTomxZgdCwAAAGgSjMpKla5cKd/CTJV+9JGMYLD6hNWq2BEj5M7IUPx558oaHW1uUAAAGhGKbyBCWCwW/S7jdF349xX62Fuo97ce0oW92podS5I0432vdhaWSZKCIUOPf+DVzKv6m5wKAAAAaLwMw5B/y9bqud1Llih07FjNOafHUz23e9xYRaWkmJgSAIDGi+IbiCBdkuN0y8jO+sdHO/Xggs3qlepW+xbmXlm9atcRvfjZbknS9NEezfjAq0XZ+br5rDT1aZ9oajYAAACgsQkePCjfosXyZWaqcufOmuO25FZyj7tY7ozxcqWnm5gQAICmgeIbiDB3nttNn+4o0qYD1TO13/rlMLmibKZkKQ1Uadr8bBmGNOmM9ppyTlftLCjVgg15evS9HM29eUjEjGMBAAAAIpURDMq3ZIl8CzNVvnq1ZBiSJIvTqfhRo+SekKHYYcNksfMnOgAAdYXdMIAI44qy6elrBigxJkqbDvj0u0XbTMvyxyVf6cCxCqUmRuvX43pKkqZe0F0Ou1Vf7Dqij7cXmpYNAAAAaAwqDxzQnmuv1cH/eVDlq1ZJhqGYwYPV9o9/VLfPVir1iRmKO+ssSm8AAOoYxTcQgdq3iNFTV/aXxSK9sWaf3vpyf4Nn+MhboDfW7JMkPX55H8W7omqy/Xx4J0nSn9/LUShsNHg2AAAAoDEoWbpUuydcIn/2JlkTEpR8913q+uG/ddo/X1HipRNli4szOyIAAE0WxTcQoUZ2T9bUUd0lSb9auEVb8nwN9trF5ZV64O1NkqTJwztpeJdW3zp/+9ld5Y6OkvfwcS1Yf6DBcgEAAACNQbiiQgd//Rvl3TtV4dJSRffvr87vLlCr225TVGqq2fEAAGgWKL6BCDblnK46Lz1FlVVh3fraOhWXVzbI6z6ctVUFxwPq3CpWD1z43Y113DFRuuOcrpKkJz7YLn8w1CC5AAAAgEjn375duy+/XMXz50sWi5Ju/aVOe/WfFN4AADQwim8gglmtFv11Uj91bBmjA8cqdM+bGxWu59Ei720+qMyN+bJapBmT+iraceKNNa8bdppSE6N1qMSvlz7bXa+ZAAAAgEhnGIaOzXtTey6fpMrcnbIlt1LHOS8p5Z57mN8NAIAJKL6BCOeOidIz1w6Q027Vx95CPbV8R729VuHxgB56d7Mk6bazu2hAxxbfu9YVZdO00dWjWJ75aKeOljXM1egAAABApAmVlCjvnnt16Le/lREIKHbkWeq8cKFihw41OxoAAM0WxTfQCJzezq0/XtJbkvTkhzv0kbegzl/DMAw9uGCzjpUHld4mXned1+1HH5PRN1U92yboeKBKs5bn1nkmAAAAINJVbNyo3RMu0fH335fsdqXcf786PPus7ElJZkcDAKBZo/gGGonLBrbXNUM6yjCke+Zt1P6j5XX6/O+sz9O/vzqsKFv1eBWn/cQjTr7JarXowYuqZ4C/umpPnWcCAAAAIpURDqvo+ee155prFczPV1SHDur0xlwl3fhzWaz8qQ0AgNn4aQw0Ir+5uKf6dkiUryKo215fV2ebSuYXV+h3WVslSfeM6q6e7RJO+rFndUvWWd1aKRgy9Pj73jrJAwAAAESyqsJC7f/FzSp84q9SKKSEiy5S2rsLFN27t9nRAADA1yi+gUbEabfp6WsGqGWsQ1vySvRw5taf/JzhsKH7396k44Eq9euQqF+O7Fzr5/ifMemyWKSs7HxtOlD8kzMBAAAAkSJ0/LjKv/xSR197XQd//WvtvnySckedr7LPP5fF5VLbP/5B7Z6YIVtcnNlRAQDAN7C1NNDIpCZG66kr++v6l1brzS/3q3/HRF05uOMpP9/rq/dqZW6RXFFWPTGpr+y22n8edno7ty7pl6oFG/L06Hs5mnvzEFksllPOBAAAADQ0IxxW8MAB+XNyFMjxyu/1KpCTo2Be3gnXO9PTlfrEDDm7dGngpAAA4GRQfAON0JndWum+Czx6/H2vfpO1VT3bJahP+8RaP8+eojL96b0cSdIDF6arS/KpX6Uy9YLuWrzpoL7YdUQfby/UOZ6UU34uAAAAoCEEdu+WLytL5atWK+D1Klx+4j1r7G3ayOXxyJmeLle6R05PuhydTmOWNwAAEYziG2ikbvtZF23YV6x/f3VYt722XovvPFMtYh0n/fhQ2NB987NVEQxpWOck3TCs00/K075FjCaP6KTnVuzSY0tzNLJbsmxWrvoGAABAZAkVF6tk6VL5FmaqIjv7W+csDoecXbt+q+B2ebrLllj7i0wAAIC5KL6BRspqteiJSX01ftZK7T1Srilz1+vSAe1P+vHZB4q1bu8xxTnt+stlfWStg5J6ytld9eba/co5dFwL1h/Q5Wd0+MnPCQAAAPxURmWlSj/9VL6FmTr+8cdSMFh9wmZT7IjhShhzkaJ7nS5HWposdv5MBgCgKbAYhmGYHcJsJSUlcrvd8vl8SkhIMDsOUCtfHSzRJU9/Jn8wfEqPf+zS3rpi0KnPCP9vz63YqT+9l6O2bpc+mna2XFG2OntuAAAA4GQZhiH/5s3yLcxUyXvvKVT8n03YnT16yJ0xXu6xY2VPTjYxJQAAqK2T7XL5KBto5Hq0TdCLNwzSnM92qzJUu8+x+rV3a1IdX5V9/bBOeuXzvcorrtCcz/botrPZ7AcAAAANJ5ifL1/WIvkyM1W5e3fNcVtyK7kvHi93xni5PB4TEwIAgIbAFd/iim+gri1Yf0BT38pWvMuuFdPPqdXscQAAAOBkGOGwgvv2yZ/jld+bo8DXX6vyD9assbhcih81Su6MDMUOG8oYEwAAmgCu+AZgmgn9UvX8p7v11cESzfooV78e19PsSAAAAGjEQqVlCmzfroA3R/4crwI5OfLv2CGjvPyE62MGD5Y7I0Pxoy+QLS6ugdMCAIBIQPENoM5ZrRY9OCZd17+0Rv/8Yo/S28Trot5tFevkWw4AAABOTmDXLh2ZPVvlGzYquG/fCddYnE45u3WT09NdLk+6nOkeuTwe2dzuBk4LAAAiDaNOxKgToL5c/9IardheKEmKjrLpwl5tNHFAqoZ3aSWb1WJyOgAAAESiqqIiFc6apeL5b0uhUM1xe0rK18X21wV3erocp53G+BIAAJqZk+1yKb5F8Q3Ul9JAleas3K0FG/K0u6is5njrBKcm9E/VpQPaq3vreBMTAgAAIFKEy8t15OWXdfSFFxX+eoRJ3LnnqsU1V8vVs6fsLVqYnBAAAEQCiu9aoPgG6pdhGNq4v1gL1ucpKztfvopgzbleqQma2L+9xvdrp1ZxThNTAgAAwAxGKKTiBQtU9NRMVRVW3y3o6t1bre+frphBg0xOBwAAIg3Fdy1QfAMNJ1AV0kc5hVqw/oA+8hYoGKr+FmSzWvSz7smaOCBVo3q0livKZnJSAAAA1CfDMFS2YoUKZsxQYEeuJCmqfXsl33uPEsaMkcVqNTkhAACIRBTftUDxDZjjaFmlFm/K1zvr85S9v7jmeGpitObdMlQdWsaYmA4AAAD1pWLrVhU8PkPlq1ZJkqxut1rddqtaXH21rA6HyekAAEAko/iuBYpvwHw7C0v17vo8zV+3X4dLAkprFau3bx2mJMafAAAANBnBvDwVPPmkSrIWSZIsUVFqcd11avXLW2Rzu01OBwAAGgOK71qg+AYix+ESvyY+/bnyiivUp71bc28eqjin3exYAAAAOEWGYci/ZYt8776r4rffkVFZKUlKGDdOyffcI0f7VJMTAgCAxoTiuxYovoHIsquwVJc9+4WOllXqzK6t9NLkQXLYmfEIAADQmATz8+XLWiRfVpYqd+2qOR4zZIhSpk9XdK/TTUwHAAAaK4rvWqD4BiJP9v5iXfX8KpVXhnRx33Z68op+slotZscCAADADwiVlun4Bx/Il5mp8jVrpK//3LS4XIofNUqJEy9RzLBhslj4vQ4AAJyak+1ymR8AICL17ZCoZ68dqJteWatF2flKinXo4Yt78kcSAABAhDFCIZV9sUq+zEwd/9e/ZPj9NediBg+WOyND8aMvkC0uzsSUAACguaH4BhCxRnZP1oyY1qQyAAAgAElEQVTL++rueRv18ud7lBzv1JRzupodCwAAoMkJlZbJCPh/fOE3VBUUyLd4sUoWLVZVQUHNcUenTnJPyJD74osVlcr8bgAAYA6KbwARLaNfqo6UVur3i7fp8fe9Sop16MrBHc2OBQAA0CgZ4bCC+/fLn+NVwJtT/TUnR8H8/J/0vDa3Wwljx8qdMV6uPn24Sw8AAJiO4htAxLvxzDQVlQb09Mc79b/vblbLWIcuOL2N2bEAAAAiWqi0TIHt2/9TcHu9CmzfrnB5eZ08v8XhUNzPRsqdkaG4kSNlcTjq5HkBAADqgqnF96OPPqoFCxYoJydH0dHRGj58uB577DF5PJ6aNYFAQNOmTdMbb7yhiooKnXfeeXr66afVvn37mjX79u3TlClTtHz5ckVHR+vqq6/WjBkz5OAXL6DJmD7ao6LSgN768oDufGODXr1piAantTQ7FgAAQMQwwmGVr/1SvkVZKl+zVsF9+064zuJwyNmtm5zpHrk86V9/9cjmdjdwYgAAgPpjavH9ySefaMqUKRo0aJCqqqr00EMP6YILLtC2bdsUGxsrSbrnnnu0aNEizZs3T0lJSbrvvvs0btw4rVu3TjabTaFQSGPHjlVycrJWrlypI0eO6IYbbpBhGJo5c6aZbw9AHbJYLPrTJb11tCyof391WDe9slZv/XKYerT9/t17AQAAmoPArt3yZWXKl5WlqvyD3zpnT06WMz1drnSPnJ7qr45OnWSxc/MvAABo2iyGYRhmh/h/hYWFSklJ0SeffKKRI0fK5/MpOTlZr776qq644gpJUn5+vjp06KD33ntPo0eP1tKlSzVu3Djt379f7dq1kyTNmzdPkydPVkFBgRISfrwUKykpkdvtls/nO6n1AMzjD4Z03YurtXbPMaXEO/XObcPVoWWM2bEAAAAaVNWxYypZulS+zEz5szfVHLfGxSlhzIWKv2C0XKf3lL0ld8gBAICm5WS73Ij6mN/n80mSWn79y9m6desUDAZ1wQUX1Kxp166devXqpc8//1yjR4/WF198oV69etWU3pI0evRoBQIBrVu3Tuecc853XicQCCgQCNT8u6SkpL7eEoA65oqy6YXrB2nS7C/kPXxcN7y0RvNvHaakOKfZ0QAAAOqVUVmp0hUr5MvM1PGPP5GCweoTNptizxyhxIwMxZ17rqwul7lBAQAAIkDEFN+GYWjq1Kk688wz1atXL0nSoUOH5HA41KJFi2+tbd26tQ4dOlSzpnXr1t8636JFCzkcjpo1/+3RRx/V7373u3p4FwAagjsmSq/cOFiXPvO5dhWV6ecvr9Xcm4cqzhkx39IAAADqhGEY8m/eLN/CTJUsWaLQ1xcLSZKzRw+5M8bLPXas7MnJJqYEAACIPBHTEt1xxx3atGmTVq5c+aNrDcOQxWKp+fc3//f3rfmmBx98UFOnTq35d0lJiTp06HAKqQGYpY3bpX/eNFiXPfO5Nh3w6bbX1unFGwbJYbeaHQ0AAOAnC+blybdokXwLM1W5Z0/NcXtyshIuvljujPFyeTzmBQQAAIhwEVF833nnncrKytKKFSvUvn37muNt2rRRZWWljh079q2rvgsKCjR8+PCaNatXr/7W8x07dkzBYPA7V4L/P6fTKaeTsQhAY9clOU5zfj5YVz+/Sp/uKNK0+dn6+xX9ZLWe+EMvAACASBYqLdXx9z+QLzNT5WvW1By3uFyKP/98uTMyFDtsqCw2m4kpAQAAGgdTL400DEN33HGHFixYoOXLlystLe1b5wcOHKioqCj961//qjl28OBBbdmypab4HjZsmLZs2aKDB/+ze/kHH3wgp9OpgQMHNswbAWCafh0S9ey1A2W3WpSVna/fL96mCNqzFwAA4AcZoZBKP12pvGnTtePMs3TwoYdqSu+YIUPU9k9/UreVK5X6+F8Ud+YISm8AAICTZDFMbIhuv/12zZ07V5mZmfJ84zY9t9ut6OhoSdJtt92mxYsX6+WXX1bLli01bdo0HTlyROvWrZPNZlMoFFK/fv3UunVrPf744zp69KgmT56sCRMmaObMmSeV42R3AgUQuTI35unueRslSdNHezTlnK4mJwIAAPh+fu92+TIzVbJokaoKC2uOO9LS5M7IkPvicYpKTTUxIQAAQGQ62S7X1OL7+2Zwz5kzR5MnT5Yk+f1+TZ8+XXPnzlVFRYXOO+88Pf3009+ayb1v3z7dfvvtWr58uaKjo3X11VdrxowZJz3OhOIbaBpeXLlbjyzeJkl67NLeumJQR5MTAQAA/EdVYaF8S5bIl5mlwFdf1Ry3JSYqYexYuSdkyNWr1/f+nQQAAIBGUnxHCopvoOl4bFmOnvl4p6wW6dlrB+qC09uYHQkAADRjYb9fxz/8UL7MTJV99rkUClWfiIpS/Nlnyz0hQ3FnnSWLw2FuUAAAgEbiZLvciNjcEgDqyv2jPTpSGtBbXx7QnW9s0Ks3DdHgtJZmxwIAAM2IEQ6rYt06FWdm6viy9xUuLa05F923rxIyxithzBjZW7QwMSUAAEDTRvENoEmxWCz60yW9dbSsUv/+qkA3vbJW828dpvQ23M0BAADqV+WePfJlZcmXmaVgXl7N8ah27eSekKGEiy+WMy3NxIQAAADNB6NOxKgToCmqqAzpuhdX68u9x5QS79Q7tw1Xh5YxZscCAABNTKi4WCVLl8q3MFMV2dk1x62xsYofc6ESMzIUPXCgLFariSkBAACaDmZ81wLFN9A0+cqDmjT7C3kPH1fnVrGaf+swJcWd3Ka3AAAAP6Ry/34VPjVTx5ctkxEMVh+02RR75gi5x49X/HnnyepymRsSAACgCaL4rgWKb6DpOuTz69JnPldecYX6tndr7s1DFetkyhMAADg1VceO6cizz+ro3DekrwtvZ48ecmeMl3vsWNmTk01OCAAA0LRRfNcCxTfQtOUWlOryZz/XsfKgzurWSi/eMEgOO7cbAwCAkxcOBHTstddU9OxshY8flyTFDh+u5KlTFd3rdJPTAQAANB8n2+XS/ABo8rqmxGnOzwcrxmHTpzuKNG1+tsLhZv+ZHwAAOAlGOCzfokXaNeYiFTw+Q+Hjx+X0eNThhRfU8aUXKb0BAAAiFPf7A2gW+nVI1DPXDtRNL69VVna+kuIc+s24nrJYLGZHAwAAEaps1SoV/OVx+bdtkyTZW7dW8t13y50xXhabzeR0AAAA+CGMOhGjToDmZOGGPN3z5kZJkqd1vC4ZkKoJ/VLVxs3mUwAAoFpgxw4dnjFDZZ+skCRZY2OVdPPNannD9bJGR5ucDgAAoHljxnctUHwDzcurq/bqkcXbVFkVliRZLNKZXVtp4oBUjT69jWIc3AwDAEBzFDxcoKJZM1X8zgIpHJbsdrWYNEmtptwue1KS2fEAAAAgiu9aofgGmh9fRVBLNx/UgvV5WrPnaM3xGIdNY3q11cQBqRraOUk2K6NQAABoioxwWMF9++TP8crvzVEgx6uyVatkVFRIkuLPP1/JU++VMy3N5KQAAAD4JorvWqD4Bpq3fUfK9e6GPC3YcEB7j5TXHG/rdmlC/1RdOiBVXVPiTUwIAAB+ilBpmQLbtyvgzZE/x6tATo78O3bIKC//ztrovn2V8sD9ihkwwISkAAAA+DEU37VA8Q1AkgzD0Pp9x/T2ujwt2ZSvEn9Vzbk+7d2a2D9VF/dtp6Q4p4kpAQDAjwkVF+vY/Pnyb9osv9er4L59J1xncTjk7NZNznSPXJ50uXr1UnT/fmx+DQAAEMEovmuB4hvAf/MHQ1qeU6AF6w/oY2+hqsLV3yrtVovO9iRr4oD2Ojc9Ra4om8lJAQDA/wsHAjr22usqmj1b4ZKSb52zp6TUFNzOdI9c6elynHaaLHb29gAAAGhMKL5rgeIbwA85UhrQoux8LdiQp00HfDXHE1x2jevbTpcOSNWAji24OgwAAJMY4bBKlrynwr/9TcH8fEmSs3t3uS+5RK50j5wej+wtW5qcEgAAAHWB4rsWKL4BnKwdh49rwYY8LdyQp4M+f83x05JiNLF/e13SP1Udk2JMTAgAQPNStmq1Ch5/XP6tWyVJ9tatlXz33XJnjJfFxp1ZAAAATQ3Fdy1QfAOorVDY0KpdR/TO+gNatuWQyitDNecGd2qpiQNSdVGftkpwRZmYEgCApiuwY4cKZjyh0k8+kSRZY2OVdPPNannD9bJGR5ucDgAAAPWF4rsWKL4B/BTllVV6f+shLVifp5W5Rfr/76pOu1V3nttVd5zbzdyAAAA0IcGCAhXNnKnidxZI4bBkt6vFpElqNeV22ZOSzI4HAACAekbxXQsU3wDqyiGfXws35mnB+gPafrhUkvTUVf01vm87k5MBANC4hcvKdOTFl3RkzhwZFRWSpPjzz1fy1HvlTEszOR0AAAAaCsV3LVB8A6hrhmHoL+979czHOxXjsGnhlBHq3jre7FgAADQ6VceOqWTRYhU995xCRUWSpOi+fZXywP2KGTDA5HQAAABoaCfb5dobMBMANBsWi0XTLvBo8wGfVuYW6dZX1ynzjhGKZ+Y3AAA/yqisVOmKFfJlZur4x59IwaAkKapjR6VMnar40RfIYrGYnBIAAACRjOIbAOqJzWrRk1f208UzV2pXUZmmz9+kZ64dUKd/qJdXVqk0UKWUeFedPScAAGYwDEP+zZvlW5ipkiVLFPL5as45e/RQ4uWXqcVll8nicJiYEgAAAI0FxTcA1KOkOKeevnagJj37hZZtPaTnP92lW0Z2qZPnzi0o1Q0vrdFBX4UmndFBU8/vrpQECnAAQOMSzMuTb9Ei+RZmqnLPnprj9uRkJYy/WO7xGXJ5upsXEAAAAI0SM77FjG8A9e+1VXv1q4VbZLVIr/9iqIZ1SfpJz5e9v1iT56zRsfJgzbHoKJtuHtlZt4zsrDgnn2sCACJXqLRUx9//QL7MTJWvWVNz3BIdrfjzR8k9PkOxw4bKYrOZmBIAAACRiM0ta4HiG0B9MwxD983P1oL1eWoV59DiO89SG/epXZ29ckeRbnn1S5VXhtSnvVv3juqup5bv0IZ9xZKkVnFO3TOqm64c1EF2m7Uu3wYAAD+JEQyqcNY/dPSVV2T4/dUHLRbFDBkid0aG4s8/X7a4WHNDAgAAIKJRfNcCxTeAhlBRGdLEZz7XVwdLNKBjoubdMkwOe+2K6cWb8nXvmxsVDBka0TVJs687Q3FOuwzD0NIth/TYshztPVIuSeqSHKv/GdNDo3qksAEYAMB0lQfylH/ffarIzpYkOTp3ljsjQ+6LxymqXTuT0wEAAKCxoPiuBYpvAA1l75EyjZu5Usf9VZo8vJN+O/70k37sq6v26jeZW2QY0kW92+hvV/ST0/7tW8Arq8J6ffVePfXhjpoxKIPTWuqhi3qob4fEOn0vAACcrJJly3Tw179R+PhxWePj1faR3yt+9Gg+mAUAAECtUXzXAsU3gIb04VeHddMrX0qS/n5FP03on/qD6w3D0FMf5upv/94uSbpmSEf9PqOXbNbvLwtK/EE98/FOvbRytwJVYUnSxX3bafoFHnVMiqmjdwIAwA8L+/06/OifVfzmm5Kk6H791G7GDDna//DPPgAAAOD7UHzXAsU3gIb2xAdezVyeq+gomxZOGSFPm/gTrguHDf1u0Va98sVeSdJd53XTvaO6nfQVcvnFFZrxgVfvbsiTYUhRNouuH9ZJd57bVYkxjjp7PwAA/LfAjh3KmzpVgR25ksWipJtvVvKdd8gSFWV2NAAAADRiFN+1QPENoKGFwoYmz1mjT3cUKa1VrDLvGKEE17eLgMqqsKbNz1ZWdr4k6bcX99TkEWmn9Hpb833689IcfbqjSJKUmhitV28arM7JcT/tjQAA8F8Mw1Dx/Pk6/KdHZfj9srVqpdS/PKbY4cPNjgYAAIAm4GS73NrtqgYAqBM2q0VPXtlfqYnR2l1UpmlvZeubn0OWV1bpF//8UlnZ+bJbLXryyn6nXHpL0unt3Hr1piF65cbBOi0pRnnFFbrs2S+0+YCvLt4OAACSpNDx48qbOlWHfvOwDL9fsWeeqc4L36X0BgAAQIOj+AYAk7SMdejpawbIYbPqg22H9ewnuyRJx8oqdfXzq7Vie6Gio2x64YYzlNGvbmah/qx7st65bbh6pSboaFmlrnzuC32eW1Qnzw0AaN4qsrO1e8IlOr50mWS3K2X6NHV4brbsrVqZHQ0AAADNEMU3AJiob4dE/S7jdEnS4+/naMH6A7p89hfauL9YiTFRev3mITrbk1Knr9kqzqk3bh6qYZ2TVFYZ0uQ5a7V088E6fQ0AQPNhhMM68sIL2nPNtQrm5SkqNVWdXn9NSTfdJIuVPzcAAABgDmZ8ixnfAMxlGIbuf3uT5q87UHOsTYJLr940WN1an3jTy7rgD4Z0z7yNWrb1kKwW6Q8TeuvqIR3r7fUAAE1P5YEDOvTwb1X22WeSpPgxF6rt738vW3z9/fwCAABA88aMbwBoJCwWix6Z0Eunt6v+Zt25Vazevm1YvZbekuSKsukf1wzQVYM7KGxI//vuZs1avkN8HgoA+DGh4mId/vNj2jXmIpV99pksLpfaPPJ7pf71r5TeAAAAiAhc8S2u+AYQGY6UBrRs6yFd1KutWsQ6Gux1DcPQjA+8+sdHOyVJPx/RSb8e21NWq6XBMgAAGodwZaWOvfa6imbPVthXvUFyzLChavPQQ3J27WpyOgAAADQHJ9vlUnyL4hsAJOnFlbv1yOJtkqRL+qfqL5f1UZSNG4MAANVzvEuWvKfCv/9dwbw8SZKzWzel3D9dsWeeKYuFD0sBAADQME62y7U3YCYAQAS76cw0tYyN0vT5m/TuhjwVl1fq6WsGKtphMzsaAMBEZavXqODxx+XfskWSZE9JUfLdd8k9YYIsNn5GAAAAIDJRfAMAalzSv70Sox267fV1+shbqGtfXK0XbzhDiTENN3oFABAZArm5KpjxhEo//liSZI2JUdItN6vl9dfLGhNjbjgAAADgRzDqRIw6AYD/9uWeo7rx5bUq8Vepe+s4/fPGIWrjdpkdCwDQAKoKC1U4c5aK335bCoclm00trpikVlOmyJ6UZHY8AAAANHPM+K4Fim8A+C7voeO6/qXVOlwSUGpitObePESnJcWaHQsAUE8q9+1T8TsLdPTVV2WUl0uS4kadp5Sp98nZOc3kdAAAAEA1iu9aoPgGgBPbf7Rc17+0RruLytS9dZwWThmhGAdTsgCgqQj5fCpZuky+rCxVrF9fc9zVt49a33+/YgYONDEdAAAA8F0U37VA8Q0A36+gxK+xM1eq8HhA4/u205NX9pPFYjE7FgDgFBnBoEo/XSlfZqZKly+XEQxWn7BaFTt8uBInXa7488/nez0AAAAi0sl2uVy2BwD4QSkJLj19zQBd9dwqZWXna0DHRE0ewS3vANCYGIYh/9Zt8mVmqmTJEoWOHq055+zWTe4JE5QwbpyiWqeYmBIAAACoO6dUfIfDYeXm5qqgoEDhcPhb50aOHFknwQAAkWNQp5Z68KIeemTxNv1hyVfqlerWGZ1amh0LAPAjgocOybdokXyZmarM3Vlz3JaUJPe4cXJPyJAzPZ2ruwEAANDk1Lr4XrVqla6++mrt3btX/z0lxWKxKBQK1Vk4AEDkuHFEJ23Yd0yLNx3UlLnrtfjOs5Qc7zQ7FgDga1WFhfLneBXY7q3+mpOjQG6u9PXv7BanU/HnnSt3RoZiR4yQxc7NnwAAAGi6av3b7q233qozzjhDS5YsUdu2bbk6BACaCYvFoscu7SPvoePaUVCqO+au1+u/GCK7zWp2NABoVoxgUIFduxXw5tQU3H6vV6EjR064PuaMM+SekKH40aNli49v4LQAAACAOWq9uWVsbKyys7PVtWvX+srU4NjcEgBOXm5BqTJmrVRZZUi3jOys/72oh9mRAKDJ83u9Ovrqq/Jv3abK3Nz/bEj5TRaLHJ06yZnukcuTXv21Z09FpTC3GwAAAE1HvW1uOWTIEOXm5jap4hsAcPK6psRpxuV9ddvr6/Xcil3q3yFRY3q3NTsWADRJwUOHVPjkU/ItXFgzskSSrHFxcno8cnk81QV3erqc3brJGh1tYloAAAAgctS6+L7zzjt133336dChQ+rdu7eioqK+db5Pnz51Fg4AEJnG9G6rW0Z21nMrdmna/Gx1ax2vrilxZscCgCYjVFqqI8+/oKOvvCLD75ckxV94odzjxsqZnq6o1FRGDgIAAAA/oNajTqzW785ytVgsMgyj0W5uyagTAKi9qlBY17ywWqt3H1XXlDhlThmhWCcbpQHAT2EEgzr21lsq+sfTCh09KkmKHjhQre+f/n/s3Xd0VNXCxuHfmUlvQyqE3nsvglgAASlCAipWVCxgB6UoVuwNURQVFBugyLVB8FoQUJCigEQEFEInhBBCCpPeZs73B97cy4clE2aYhLzPWlmQfebseefetSTzZs/eBHbq5OV0IiIiIiLe57GtTvbv339awURE5OzgY7Xw2jVdGTZrDXvS87j/s63MurqLViCKiFSCaZrkLl/OsRkvUXLwIAB+TZoQM3kSIRddpP+2ioiIiIi4yOXiu1GjRp7IISIi1VB0qD9vXNuVK9/8iX9vPUKXhuHcfH4Tb8cSEalWCn75hfTpL1KYmAiANTKS6LvupNbll2P8v20FRURERESkYir1mfS9e/cyc+ZMduzYgWEYtGnThgkTJtCsWTN35xMRkSquW6MIHr6kDY998TvPfrWDDvVsnNMkwtuxRESqvJKDB0mf8RK5334LgBEQQMSNY4i8+RasIcFeTiciIiIiUr2dumH3P1i2bBlt27Zl48aNdOzYkfbt27NhwwbatWvH8uXLPZFRRESquBt6NyauU13KnCZ3LkwkPafI25FERKqssuxs0p56mr2XDDtRelss2C6/jGbLviFmwgSV3iIiIiIibuDy4ZZdunRh0KBBPPfccyeNT506lW+//ZbEPz6iWZ3ocEsRkdNXUFLGiNfXsetoHuc0juDDsT3xtbr8+1URkbOWs6iIrPkLyHzrLZx5eQAEX3gBMZMmE9CqpZfTiYiIiIhUDxXtcl0uvgMCAti2bRstWrQ4aXzXrl107NiRoqLqt8pPxbeIiHvsO5ZH3GvryCsu4+bzm/DIsLbejiQi4nWm04k9YSnHXnmFsrQ0APzbtKH2lMkE9+7t5XQiIiIiItVLRbtcl5fiRUdHs2XLllPGt2zZQkxMjKvTiYjIWaRpdAgvjuoEwDtr9zP1s60Ulji8nEpExHvy1q1j/6WXceSBByhLS8MnNpa6zz9Hk88+VektIiIiIuJBLh9uOXbsWMaNG8e+ffvo3bs3hmGwdu1ann/+eSZNmuSJjCIiUo0Mbl+HqUNa8/w3O1m06RA/H8zmtWu60LqOPlEjIjVHUVIS6dNfJH/tWgAsoaFE3TqO8Ouuw+Lv7+V0IiIiIiJnP5e3OjFNk5kzZzJjxgxSU1MBqFu3LlOmTGH8+PEYhuGRoJ6krU5ERNxv/Z4M7vnXFtJzi/H3sfDIsLZc27Nhtfx3QkSkokqPHuXYK69iX7wYTBN8fQm/+iqibr8dn/Bwb8cTEREREan2PLbH9//Kzc0FIDQ0tLJTVAkqvkVEPCMzr5hJn/zKqqRjAAxpX4fnLu2ILcjXy8lERNzLkZdH5ty3yZo3D/OPM29CBw8mZuK9+DVs6OV0IiIiIiJnjzNSfJ8tVHyLiHiO02ny7rr9PP/NTkodJvVqBfLq1V3o1kgrH0Wk+jNLS8n++GMyXn8DR1YWAIHdulH7vikEdurk5XQiIiIiImcftxbfXbt2ZeXKlYSHh9OlS5e//Zh6YmJi5RJ7kYpvERHP25pynLs/+oWDmQVYLQYTB7bk9j7NsFi09YmIVD+maZK7YgXHZrxEyYEDAPg1bkzM5EmE9O+vbZ1ERERERDykol1uhQ63jI+Px/+PQ3ji4+P1g7yIiLisY/1a/Pvu83l4yXYStqQyfVkSP+7N5KUrOxETGuDteCIiFVa4ZQtHX5hO4R8LPqwREUTddSfho0Zh+GorJxERERGRqkBbnaAV3yIiZ5Jpmny6OYVHE36jsNRBVIgfM67oTJ+W0d6OJiLyt0oOHiT9pZfJXbYMACMggIgbxxB5881YQ0K8nE5EREREpGaoaJdrcXXipk2bkpmZecr48ePHadq0qavTiYhIDWMYBqO6N+CLu8+ndZ1QMvJKuOHdjTz71Q5Kypzejicicoqy7GzSnn6GvcOGnyi9DQPbZZfSbNk3xEyYoNJbRERERKQKcnnFt8ViIS0tjZiYmJPGjx49SoMGDSgpKXFrwDNBK75FRLyjqNTBM1/tYP6PBwE4t2kk828+B1+ry7+XFRFxO2dREVkLFpD55ls48/IACL7gAmImTyagVUsvpxMRERERqZncusc3wNKlS8v/vmzZMmw2W/n3DoeDlStX0qRJk0rGFRGRmijA18oT8e3p3SyKyZ/8yo/7Mnnmqx1MG97O29FEpAYznU7sS5dy7JVXKTtyBAD/Nm2oPWUywb17ezmdiIiIiIhURIWL7xEjRgAnPqJ+ww03nHTN19eXxo0bM2PGDPemExGRGmFw+zpYDBi3YDPvrTtAl4bhxHWq6+1YIlJDmA4HJQeTKU7aSdHOJPJWraI4KQkAn9hYYu6ZQNjw4RgWfRpFRERERKS6qHDx7XSe2He1SZMmbNq0iaioKI+FEhGRmufidnW4o28z3li1l6mfbaV1nVBa1g71diwROcs4cnMpTkqiaGdSedFdvHs3ZlHRSY+zhIYSdes4wkePxhIQ4KW0IiIiIiJSWRUuvv9j//79nsghIiLCpItb8WvKcdbtyeS2BZtJuOs8QgN8vR1LRKop0zQp+PFHCn7eTFFSEsU7d1J6+PCfPtYICMC/ZUsCWrXCv01rwoYMwSc8/AwnFhERERERd3G5+AbIz89n9erVJCcnn3KY5bwza+AAACAASURBVPjx490STEREah6rxeDVq7owbNZa9mXkM+WTrcwe3RXDMLwdTUSqmcItWzg6/UUKN28+5ZpPbOyJgrt1qxN/tmqNX6OGGFarF5KKiIiIiIgnGKZpmq7c8MsvvzB06FAKCgrIz88nIiKCjIwMgoKCiImJYd++fZ7K6jEVPQlURETOjF+Ss7nizR8pdZg8MKQ1t/Zp5u1IIlJNlBw8SPpLL5O7bBlwYiV32KBBBLRri3+r1gS0aom1Vi0vpxQRERERkcqqaJfr8orve++9l+HDhzN79mxq1arFTz/9hK+vL6NHj2bChAmnFVpERASgS8NwHh3ejkeWbOf5b3bSob6N3s10toSI/LWy7Gwy3phN9qJFUFoKhoHt0pFEjx+Pb+3a3o4nIiIiIiJnmMtH02/ZsoVJkyZhtVqxWq0UFxfToEEDXnjhBR588EFPZBQRkRpodM+GXNq1Hk4Txn/0C2n2on++SURqHGdRERlz57J34MVkL1gApaUEX3ABTZYsoe7TT6v0FhERERGpoVwuvn19fcv3Wq1duzbJyckA2Gy28r+LiIicLsMweHpEB1rXCSUjr4Q7PtxMSZnT27FEpIownU7sCQnsHTKUYzNewpmXh3+bNjR89x0azn2LgFYtvR1RRERERES8yOWtTrp06cLPP/9My5Yt6devH48++igZGRksWLCADh06eCKjiIjUUIF+Vt68rhvDZq0lMfk4z3y1g8fi2nk7loh4Wf769Ryd/iLFO3YAJw6rjJ4wHltcHIbF5XUdIiIiIiJyFnL5ncEzzzxDbGwsAE8++SSRkZHcfvvtpKen89Zbb7k9oIiI1GyNIoOZeWVnAN5ff4Alvxz2ciIR8ZaipF0kjx1H8k03U7xjB5aQEKInTaTZ119Ra8QIld4iIiIiIlLOME3T9HYIb6voSaAiIuI9Ly5L4rXv9xDoa2Xxnb1pXUf/vRapKUqPHuXYq69iX7wEnE7w8SH86quJuuN2fMLDvR1PRERERETOoIp2uS5vdSIiIuIN9w5sya8px1mzO4PbFmxm6d3nExbg6+1YIuJBjrw8Mt9+m6z352EWnTjgNnTQIGIm3otfo0ZeTiciIiIiIlVZhYrvLl26lB9o+U8SExNPK5CIiMifsVoMXrmqC8NnreVAZgGTPv6VN0d3w2Kp2L9PIlJ9mKWlZH/yCRmvvY4jKwuAwC5diLlvCkFdung5nYiIiIiIVAcVKr5HjBjh6RwiIiL/KCLYjzeu7cqoOT+y/PejzPlhL3f0be7tWCLiJqZpkrdyJekvzqDkwAEA/Bo1InryJEIHDKjwQgwRERERERHt8Y32+BYRqW4WbkjmwcXbsBjwzg096Nc6xtuRROQ0FW7ZwtHpL1K4eTMA1vBwou66k/ArrsDw1bZGIiIiIiJyQkW7XMsZzCQiIuIWV5/TgFHd6uM0YdyCn/n31lRvRxKRSipJTiblnns5cNXVFG7ejOHvT+Stt9Js+bdEXHutSm8REREREakUlw+3tFgsf/sxU4fDcVqBRERE/olhGDw1sj0FpQ6+3HqEuz/6heyCUq7rpcPuRLzBmZ9P3g8/UJad7dJ9JXv2kv3JJ1BaCoaBbcQIoieMx7dOHQ8lFRERERGRmsLl4nvx4sUnfV9aWsovv/zCvHnzePzxx90WTERE5O/4+1h59aou1Ar05cMNyTyyZDtZeSWM799c+wCLnAGmw0HBhg3YE5aSs3w5ZkFBpecKPv98YqZMJqBVKzcmFBERERGRmsxte3wvXLiQf/3rXyQkJLhjujNKe3yLiFRfpmny8ordvLpyNwA3nNuIacPbYbGo/BbxhOI9e7AnJGBf+gVlR4+Wj/s2akhAq9YuzWX4+2OLjyfk/PPcHVNERERERM5SFe1yXV7x/Vd69uzJ2LFj3TWdiIhIhRiGwcSBLYkI8uWxL35n3o8HySooZcaoTvj56CgLEXcoy8wk58uvsCckUPTbb+XjlrAwwoYOwRYfT2Dnzvq0hYiIiIiIVBluKb4LCwuZNWsW9evXd8d0IiIiLhtzXhPCg/2Y9PGvfPFrKvbCUuaM7kqQn9t+xytSoziLi8n7/nvsSxLIW7MG/nOOi48PIX36YIuPI6RvXyx+ft4NKiIiIiIi8idcbgPCw8NPWs1jmia5ubkEBQXxwQcfuDWciIiIK+I716NWkB+3LdjMD7uOcc3cDbw3pgfhwSrmRCrKdDrJeGM2WfPm4czNLR8P6NABW3w8YUOH4BMR4cWEIiIiIiIi/8zlPb7nzZt30vcWi4Xo6Gh69uxJeHi4W8OdKdrjW0Tk7JKYnM1N72/ieEEpzWNCWHDzOcTaAr0dS6TKM0tLOfLwI9j/OLPFp04dbHFx2OLj8G/WzMvpREREREREKt7luu1wy+pMxbeIyNln99FcrntnI2k5RdSrFcj8m8+hWXRIhe8vKnWwJz2PnWm5tIgJoVODWh5MK+J9zsJCDt87kbxVq8Bqpc60R6l1+eUYFu2VLyIiIiIiVYdHi+/s7GzeeecdduzYgWEYtGnThhtvvJGIavqxVxXfIiJnp5TsAq5/ZyP7MvKJCPbjvTE9TimwTdPkWG4xvx/JYceRXHYcyWHHkRz2ZeTjcJ74J9LPauH9m3rQu1mUN16GiMc5cnI4dPsdFG7ejOHvT72XXyb0on7ejiUiIiIiInIKjxXfq1evJi4uDpvNRvfu3QHYvHkzx48fZ+nSpfTp0+f0knuBim8RkbNXZl4xN76/ia0pdoL8rDx7aQccTvOPgvtE0Z2ZX/Kn94YH+WIL9OVAZgEh/j4sGteL9vVsZ/gViHhWaXo6h24ZS/GuXVhCQ2kwZzZB3bp5O5aIiIiIiMif8ljx3b59e3r37s3s2bOxWq0AOBwO7rjjDtatW8f27dtPL7kXqPgWETm75RWXceuCn1m3J/NPr1sMaBIVTJvYMNrEhtH2jz9rh/lTXOZkzHsb+WlfFlEh/nx2+7k0igw+w69AxDNKDh4k+aabKT18GGt0FA3ffpuAVq28HUtEREREROQveaz4DgwMZMuWLbT6f2+KkpKS6Ny5M4WFhZVL7EUqvkVEzn7FZQ6mJfzGyp3pNIkMpk1saHnR3bJ2KIF+1r+8N6eolCvf/IkdR3JoFBnEp7f1JjrU/wymF3G/ot9/J3nsOByZmfg2bEjDd97Gr0EDb8cSERERERH5WxXtcn1cnbhr167s2LHjlOJ7x44ddO7c2fWkIiIiZ4C/j5XnLutYqXvDAnyZd1MPLpu9noOZBYx5byOLxvUiNMDXzSlFzoz8jRtJueNOnHl5+LdpQ8O33sQnOtrbsURERERERNzG5eJ7/PjxTJgwgT179tCrVy8AfvrpJ15//XWee+45tm7dWv7Yjh0rVzCIiIhUNTGhASy4qSeXz1nPb6k5jJu/mfdu7EGA71+vFBepinJXrODwxEmYJSUE9ehB/Tdexxoa6u1YIiIiIiIibuXyVicWi+XvJzQMTNPEMAwcDsdphTtTtNWJiIhU1PbDdq5880fySxwM7VCHWVd3xWoxvB1LpEKOf/opRx6dBk4nIf37U++lGVj8tW2PiIiIiIhUHx7b6mT//v2nFUxERKQ6a1/PxlvXd+fG9zbx1bY0IoK382R8ewxD5bdUXaZpkvn22xyb8RIAtssuJfbxxzF8XP5RUEREREREpFpw+d1Oo0aNPJFDRESk2jiveRQvX9mZuz5K5IOfkokK8eeeAS3PaIbCEgdWi4Gfz99/EkvEdDpJn/4iWe+9B0Dk2FuInjhRv6wREREREZGzWqWW+ezdu5eZM2eyY8cODMOgTZs2TJgwgWbNmrk7n4iISJV0ScdYsvLb8UjCb8xcsZuoEH9G9zozvxxOTM5m7LyfcZomd1/UgtG9GqkAlz9llpZy5JFHsS9ZAkDMffcRedONXk4lIiIiIiLieS6/S162bBlt27Zl48aNdOzYkfbt27NhwwbatWvH8uXLPZFRRESkSrru3MaMv6g5AI8kbOfrbUc8/pyrdx3j2rkbyMwvIbuglCf+/TsDXlrNv7em4uKxHXKWcxYWknL3+BOlt9VK7DPPqPQWEREREZEaw+XDLbt06cKgQYN47rnnThqfOnUq3377LYmJiW4NeCbocEsREaks0zR5cPF2PtqYjJ/Vwvs39aB3syiPPFfClsNM+vhXypwmF7aMZlC72sxcsZtjucUAdG5Qi4cuaUOPxhEeeX6pPhw5ORy6/Q4KN2/G8Pen3ssvE3pRP2/HEhEREREROW0V7XJdLr4DAgLYtm0bLVq0OGl8165ddOzYkaKiosol9iIV3yIicjocTpM7P0zkm9/SCPH3YdG4XrSvZ3Prc8xbf4DHvvgN04S4TnV5cVQn/Hws5BeXMXfNPt76YR8FJQ4ALm5bm/uHtKZZdIhbM0j1UJqezqFbxlK8axeW0FAazH6DoO7dvR1LRERERETELSra5bq81Ul0dDRbtmw5ZXzLli3ExMS4NNcPP/zA8OHDqVu3LoZhsOSP/Sf/Y8yYMRiGcdJXr169TnpMcXExd999N1FRUQQHBxMXF0dKSoqrL0tERKTSrBaDmVd1pmeTCPKKyxjz3iZ2Hc11y9ymafLS8l1MW3qi9L7h3EbMvLJz+Z7ewf4+3DOgJaum9OWang2xGPDt70e5+OUfeHjJNjLyit2SQ6qHkoMHOXjNtRTv2oU1OopGC+ar9BYRERERkRrJ5eJ77NixjBs3jueff541a9awdu1annvuOW699VbGjRvn0lz5+fl06tSJ11577S8fM3jwYI4cOVL+9dVXX510/Z577mHx4sUsWrSItWvXkpeXx7Bhw3A4HK6+NBERkUoL8LUy94butIkNIyOvmCGvrDnt4tnhNHkkYTuvrtwNwL0DWvJYXDssFuOUx8aEBvDMyA58e++FDGgTg8Np8sFPyfR54XtmrdxNYYn+XTzbFe3YwYFrR1OakoJvw4Y0XriQgNatvR1LRERERETEK1ze6sQ0TWbOnMmMGTNITU0FoG7dukyZMoXx48djGKe+Ga9QEMNg8eLFjBgxonxszJgxHD9+/JSV4P9ht9uJjo5mwYIFXHnllQCkpqbSoEEDvvrqKwYNGlSh59ZWJyIi4i7Hcot54POtrNiRDkCwn5Xb+jTjlguaEuhnrfA8xWUOJn78K19uPYJhwBPx7bmuV6MK3//j3kye/XoHW1PsANQO82fiwJZc3q0B1j8pzqV6y9+4kZQ77sSZl4d/69Y0nPsWPtHR3o4lIiIiIiLidh7b6sQwDO69915SUlKw2+3Y7XZSUlKYMGFCpUvvv7Nq1SpiYmJo2bIlY8eOJT09vfza5s2bKS0t5eKLLy4fq1u3Lu3bt2f9+vV/OWdxcTE5OTknfYmIiLhDdKg/b9/Qg4/G9qJjfRv5JQ5mLN9F3xe/5+NNh3A4//n3zXnFZdz8/s98ufUIvlaDWVd3can0Bji3WSRL7jiPV67qTP3wQI7mFHP/Z9t44ovfKvvSpIrKXbGCQ7eMxZmXR1D37jRaMF+lt4iIiIiI1HguFd8bNmzgoYce4r777uPbb78lNDSU0NBQT2VjyJAhfPjhh3z33XfMmDGDTZs2cdFFF1FcfOJj42lpafj5+REeHn7SfbVr1yYtLe0v53322Wex2WzlXw0aNPDYaxARkZrpz4rn+z7bytBX1vB9Ujp/9YGrrPwSrp37E2v3ZBDkZ+XdMT0Y1rFupTJYLAbxneuxclIf7h98YsuLDzckcyiroNKvS6qW4599Rsr4CZglJYT070+Dt+di9eDPZiIiIiIiItVFhYvvxYsXc9555/HKK6/w1ltvMWTIEGbOnOnJbFx55ZVccskltG/fnuHDh/P111+za9cuvvzyy7+9zzTNv119/sADD5SvVrfb7Rw6dMjd0UVERE4qnh++pA22QF+SjuZy43ubGP3OBrYftp/0+MPHC7l8znp+TbETHuTLR2N7cUGL01+56+9j5fa+zbigRRRlTpPXv99z2nOK92W+/TZHHnoYnE5sl11K/VdmYgkI8HYsERERERGRKqHCxfczzzxTvuf28ePHefzxx3nqqac8me0UsbGxNGrUiN27TxzyVadOHUpKSsjOzj7pcenp6dSuXfsv5/H39ycsLOykLxEREU/x97FyywVNWT2lL2MvaIKf1cK6PZkMf20tE/+1hcPHC9mTnsvls9ez71g+dW0BfHJbbzo1qOXWHBP6twDg080pWvVdjZmmydEXppP+4gwAIm+5mdinnsLw8fFyMhERERERkaqjwsV3UlIS9913Hz5/vKmaMmUKx48fJyMjw2Ph/r/MzEwOHTpEbGwsAN26dcPX15fly5eXP+bIkSNs376d3r17n7FcIiIiFVEryI+HLmnLykl9iOtUF9OEz385TL8XVzHyjfUcsRfRPCaET2/vTfOYELc/f/fGEZzXPJIyp8kbq/a6fX7xHNM0KU1LI3fVKlInTSbr3XcBiJkyhZjJkz1yzoqIiIiIiEh1VuGlQXl5edSq9d+VZ/7+/gQGBpKTk0NUVFSlnjwvL489e/77cev9+/ezZcsWIiIiiIiI4LHHHuOyyy4jNjaWAwcO8OCDDxIVFcXIkSMBsNls3HzzzUyaNInIyEgiIiKYPHkyHTp0YMCAAZXKJCIi4mkNIoJ49eou3HJBE57+cgcb9mdRUuakU4NavD+mB+HBfh577gn9W7Juz498uvkQd13UnHq1Aj32XFI5zpISSvbsoWhnEsVJO0/8uXMnDvv/bI1jtRL75JPUunSk94KKiIiIiIhUYS59JnbZsmXYbLby751OJytXrmT79u3lY3FxcRWe7+eff6Zfv37l30+cOBGAG264gdmzZ7Nt2zbmz5/P8ePHiY2NpV+/fvzrX/866UDNl19+GR8fH6644goKCwvp378/77//Plar1ZWXJiIicsZ1rF+LReN6sSrpGL8fyWFM78YE+3t2u4pzmkRwbtNIftyXyRvf7+HpkR08+nzy9xw5ORT+uvW/BXfSTor37QeH49QHW634NWlMQKvW1Bp1OcG9ep3xvCIiIiIiItWFYZqmWZEHWiz/vCuKYRg4/uyNWhWXk5ODzWbDbrdrv28RETnr/bQvk6ve+glfq8HqKf2oq1XfZ5RZWkre2rXYE5aS9913mCUlpzzGYrMR0KoV/q1bEdCqNf6tWuHfojkWf38vJBYREREREak6KtrlVnhZmdPpdEswERER8a5eTSPp2SSCDfuzmLN6L0/Et/d2pLOeaZoU/fY79oQEcr78EkdWVvk13wYNCGjXjoDWrfBv1YqA1q3xqVNH+3aLiIiIiIicBs9+nlpERESqpAkDWnDN3A0s2niIO/o2p44twNuRzkqlaWnYv/gCe0ICJXv+e6CoNTIS27Bh2EbE49+6tUpuERERERERN1PxLSIiUgOd2zSScxpHsPHAiVXfj8W183aks4YzP5/cFSuwJySQ/+NP8MeucoafH6ED+mOLjyf4vPMwfPRjmIiIiIiIiKfoHZeIiEgNZBgGEwa04Nq3N7BwYzK3921G7TCt+q4s0+GgYMMG7AlLyVm+HLOgoPxaYPdu2OLjCRs0CKvOEhERERERETkjVHyLiIjUUL2bRdKtUTibD2YzZ/Vepg3Xqm9XFe/Zgz0hAfvSLyg7erR83LdRQ2zx8dji4vCrX9+LCUVERERERGomFd8iIiI1lGEYTOjfguvf3cjCDcnc3qcZMVr1/Y/KsrLI+feX2BMSKPrtt/JxS1gYYUOGYBsRT2Dnztq3W0RERERExItcLr4PHTqEYRjU/2P10saNG1m4cCFt27Zl3Lhxbg8oIiIinnNBiyi6NKzFL8nHefOHfTwyrK23I1VJzuJi8r5fhT0hgbw1a6Cs7MQFHx9CLrwQW3w8If36YvHz825QERERERERASpRfF9zzTWMGzeO6667jrS0NAYOHEi7du344IMPSEtL49FHH/VEThEREfGA/6z6HvPeJj7ccJDb+jQjOtTf27GqBNM0KfzllxP7dn/9Nc6cnPJrAR06nNi3e+gQfCIivJhSRERERERE/ozLxff27ds555xzAPj4449p374969at49tvv+W2225T8S0iIlLN9GkZTacGtfj10HHe+mEvD11Ss1d9lxw6hD1hKfalSylNTi4f94mNxTZ8OLb4OPybNfNiQhEREREREfknLhffpaWl+PufWAm2YsUK4uLiAGjdujVHjhxxbzoRERHxOMMwuKd/C258fxMLfjrIrX2aERVSs1Z9O3JyyPnmG+wJSyncvLl83BIUROigQdji4wk6pweGxeLFlCIiIiIiIlJRLhff7dq1Y86cOVxyySUsX76cJ598EoDU1FQiIyPdHlBEREQ8r2+raDrWt7E1xc7cH/bxwNA23o7kcWZpKXlr12JPWEred99hlpScuGCxEHzuudhGxBPavz+WoCDvBhURERERERGXuVx8P//884wcOZLp06dzww030KlTJwCWLl1avgWKiIiIVC//2ev75nk/M//Hg4y7sCmRZ+Gqb9M0Kfr9d+wJCeT8+0scWVnl1/xbtMA2Ip6wYcPwrV3biylFRERERETkdLlcfPft25eMjAxycnIIDw8vHx83bhxBWhElIiJSbV3UOoYO9WxsO2xn7pr9TB3S2tuR3Kbs2DHsCQnYExIo3r2nfNwaGYlt2DBsI+Lxb90awzC8mFJERERERETcxeXiG06sltq8eTN79+7lmmuuITQ0FD8/PxXfIiIi1ZhhGIzv34Kx839m/o8HGHdhUyKC/bwd67TZv/yStEen4czPB8Dw8yN0QH9s8fEEn3cehk+lfhwSERERERGRKszld3oHDx5k8ODBJCcnU1xczMCBAwkNDeWFF16gqKiIOXPmeCKniIiInAED2sTQrm4Yv6Xm8Paafdw3uPqu+nYWFJD2zDPYP/0MgIC2bal19VWEDRqENSzMy+lERERERETEkyyu3jBhwgS6d+9OdnY2gYGB5eMjR45k5cqVbg0nIiIiZ9Z/Vn0DzFt/gOMFJV5OVDlFSbvYP+qKE6W3YRB1x+00/vhfhI8apdJbRERERESkBnB5xffatWtZt24dfn4nf/S5UaNGHD582G3BRERExDsublubNrFh7DiSwztr9zPp4lbejlRhpmlyfNEijj77HGZJCT7R0dSdPp3gXj29HU1ERERERETOIJdXfDudThwOxynjKSkphIaGuiWUiIiIeI9hGEzo3xyA99cdICu/eqz6dtjtHB4/gbTHn8AsKSG4z4U0SVii0ltERERERKQGcrn4HjhwIDNnziz/3jAM8vLymDZtGkOHDnVrOBEREfGOi9vWoXWdUHKLy7j27Q2k5xZ5O9LfKkj8hX0jR5K7fDn4+hIz9X4azJ6NT0SEt6OJiIiIiIiIFximaZqu3JCamkq/fv2wWq3s3r2b7t27s3v3bqKiovjhhx+IiYnxVFaPycnJwWazYbfbCdO+nyIiIgDsTMth9NsbycgrpmFEEAtuPodGkcHejnUS0+Egc+7bHJs1CxwOfBs2pN6MGQR2aO/taCIiIiIiIuIBFe1yXS6+AQoLC/noo49ITEzE6XTStWtXrr322pMOu6xOVHyLiIj8uYOZ+Yx+ZwOHsgqJCvFn/k3n0LZu1fi3sjQ9ndT776fgx58ACBs2jDqPTcMaEuLlZCIiIiIiIuIpHi2+zzYqvkVERP5aek4R17+7kZ1puYQG+PDODT04p4l3txDJW7OG1Pun4sjKwggMpM4jj2AbOQLDMLyaS0RERERERDzLrcX30qVLGTJkCL6+vixduvRvHxsXF+d6Wi9T8S0iIvL37IWljJ33MxsPZOHvY+H1a7oyoG3tM5rBLCkhb80a7EuWkLt8BQD+rVpR7+WX8G/a9IxmEREREREREe9wa/FtsVhIS0sjJiYGi+Wvz8M0DAOHw1G5xF6k4ltEROSfFZU6uGthIit2pGO1GDx3aQdGdW/g0ec0TZOibduwJywl58svcRw/Xn4t/JpriLn/Piz+/h7NICIiIiIiIlVHRbtcn4pM5nQ6//TvIiIiUnME+FqZM7ob93+2jc8SU5jy6VayC0oYd2Eztz9XaWoq9qVfYE9IoGT//vJxn+howoYPxxYfT0Crlm5/XhERERERETk7VKj4FhEREQHwsVqYfnlHIoJ9mbtmP898tZPM/BKmDm592vtrO/Lyyf32W+wJCRRs2FA+bgQEEDpwILb4eILP7YVhtZ7uyxAREREREZGznMvF9/jx42nevDnjx48/afy1115jz549zJw5023hREREpOqxWAweuqQtkSH+PPf1Tt5cvY+svBKevbQDPta/3hLtz5imScGPP3L888XkrliBWVRUfi2oZ09s8fGEXnwx1pBgd7+Mf3QwM586tgD8fVS0i4iIiIiIVDcV2uP7f9WrV4+lS5fSrVu3k8YTExOJi4sjJSXFrQHPBO3xLSIiUjkfbzrE1M+34jRhYNvazLq6CwG+FSuKHbm5pE2bRs5XX5eP+TVpgi0+HtvwYfjWq+ep2H/LNE1e/DaJ17/fy7lNI1k4tudpr2YXERERERER93DrHt//KzMzE5vNdsp4WFgYGRkZrk4nIiIi1dgVPRpgC/Ll7o9+YfnvR7n+3Y28fUN3wgJ8//a+wq1bOTxxEqUpKeDjQ61Rl1Nr5EgCOnTwasnscJo8vGQbH208BMCP+zJZ9ttRBrev47VMIiIiIiIi4jrXPo8MNG/enG+++eaU8a+//pqmTZu6JZSIiIhUH4Pa1WHejecQ4u/Dxv1ZXDt3A0Wljj99rOl0kvnOOxy45lpKU1LwrVePxh9+QOy0aQR27OjV0ruo1MGdHyby0cZDWAw4p0kEAC98s5NShw73FhERERERqU5cXvE9ceJE7rrrLo4dO8ZFF10EwMqVK5kxY4b29xYREamhzm0WyaJxvbj+3Y1sO2znpeW7eHBom5MeU5aZMXcLLQAAIABJREFUSer9U8lfuxaA0MGDiX3icaxVYJux3KJSxs3fzI/7MvGzWnjlqs6c3yKKvtNXsS8jn0WbDnFdr0bejikiIiIiIiIV5PIe3wCzZ8/m6aefJjU1FYDGjRvz2GOPcf3117s94JmgPb5FRETcY/nvRxk7/2cMAz6+9Vx6ND6xajp//XoO338/jmMZGP7+1H7oQWqNGlUl9s7OyCtmzHsb2X44h2A/K3Ov707v5lEAzFt/gGlLfyMqxI9VU/oR4u/ymgERERERERFxo4p2uZUqvv/j2LFjBAYGEhISUtkpqgQV3yIiIu4z+ZNf+XRzCg0jgvjqjl4UzH2TzLfeAtPEv0Vz6r30Ev4tWng7JgCHsgq47p0NHMgsIDLYj/dvPIcO9f97lklJmZOLX17NgcwCJvRvwb0DW3oxrYiIiIiIiFS0y3V5j2+AsrIyVqxYweeff85/evPU1FTy8vIql1ZERETOGo8Ob0tdWwBFKSkkXnoVmW++CaZJrSuvpPHHH1eZ0jspLZfLZq/nQGYB9WoF8slt555UegP4+ViYMqg1AHPX7CM9t8gbUUVERERERMRFLn9e9+DBgwwePJjk5GSKi4sZOHAgoaGhvPDCCxQVFTFnzhxP5BQREZFqIizAl5l1s2Hhy4SWFuIMDqHB008SNniwt6OV23wwixvf20ROURkta4cw/6ae1LEF/Oljh3aoQ6cGtfj10HFeWbGbp0d2OMNpRURERERExFUur/ieMGEC3bt3Jzs7m8DAwPLxkSNHsnLlSreGExERkerFWVTEkccfJ/TZRwgtLWRneEPuv3gyZp/+3o5W7vud6Vz79gZyisro2rAWH9967l+W3gCGYfDgkBOrvhdtOsTeY/qEm4iIiIiISFXncvG9du1aHn74Yfz8/E4ab9SoEYcPH3ZbMBEREak+SlJSOPbGG+wbNpzjHy0CIOzmm5k1YgrbzRAeX/qblxOesPiXFMbO/5miUid9W0XzwS09qRXk94/39WwayYA2MTicJi98s/MMJBUREREREZHT4fJWJ06nE4fDccp4SkoKoaGhbgklIiIiVZ8jN5fcZcuwL0mg4Oefy8etUVHUfe45Qs4/j+kHsxg150c+/+UwF7erw+D2dbyW9521+3ny378DMKJzXaaP6oSvteJrAO4f3Jrvdqaz7Lej/Hwgi+6NIzwVVURERERERE6Tyyu+Bw4cyMyZM8u/NwyDvLw8pk2bxtChQ90aTkRERKoWs6yMvNWrOTxxErvPv4AjDz9yovQ2DIJ7n0vsc8/SfNk3hJx/HgDdGkUw7sJmADy0eBsZecVnPLPDafLc1zvLS+8bz2vMS1d0dqn0BmhRO5QrujcA4Nmvd5Yf8C0iIiIiIiJVj2G6+K4tNTWVfv36YbVa2b17N927d2f37t1ERUXxww8/EBMT46msHpOTk4PNZsNutxMWFubtOCIiIlWKaZoU79yJfUkC9i+/xJGRUX7Nr3kzbPHx2IYPx7fOn6/mLi5zEDdrHUlHcxncrg6zR3fFMIwzkv2IvZAJi7awcX8WAFMGteKOvs0q/fxHc4roM/17ikqdzBndzasr2EVERERERGqiina5LhffAIWFhXz00UckJibidDrp2rUr11577UmHXVYnKr5FRERO5cjJ4fgnn2JPSKB4167ycWtEBGHDLsEWF09Au7YVKpG3H7Yz4vV1lDlNXr6yEyO71PdkdABW/H6UyZ/+yvGCUoL8rDwzsgMjutQ77XlnfJvErO/20DQqmGX3XujyynERERERERGpPI8W32cbFd8iIiInK0lJIfnmmyk9mAyA4etLSP/+2OLjCDn/fAxfX5fnnLVyNzOW7yI0wIdv772QWJtnfmFeXObgua938t66AwC0rxfGrKu70iQq2C3z5xaV0mf6KrLyS3hqRHtG92rklnlFRERERETkn1W0y63UEqWkpCTuuusu+vfvz4ABA7jrrrvYuXNnpcOKiIhI1VGUtIuDV19D6cFkfOrGUufxx2mxdg31Z75MaL9+lSq9AW7v24xO9W3kFpVx/2fbPLJH9r5jeVz6xvry0vum85rw2e293VZ6A4QG+DKhfwsAZq7YTX5xmdvmFhEREREREfdwufj+9NNPad++PZs3b6ZTp0507NiRxMREOnTowCeffOKJjCIiInKGFCQmcvC66yg7dgz/Fi1o/NEiwq+8AqvNdtpz+1gtzLiiM/4+Fn7YdYyFG5PdkPi/Pk9MYdistfyWmkN4kC/v3NCdR4e3xd/H6tbnAbj6nIY0igwiI6+YuWv2uX1+EREREREROT0ub3XStGlTRo8ezRNPPHHS+LRp01iwYAH79lW/N3/a6kRERARyV63i8D33YhYVEdi1Kw1mv+GWwvv/e3vNPp76cgdBfla+nnABjSJPbzV2fnEZjyRs5/PEwwD0bBLBK1d1oY4twB1x/9KXW49w58JEgvysrJrSl5hQzz6fiIiIiIiIeHCrk7S0NK6//vpTxkePHk1aWpqr04mIiEgVYE9IIOXOuzCLigjp04eG77ztkdIbTmw/0rNJBAUlDqZ8shWHs/Jbnmw/bGfYrLV8nngYiwH3DmjJwrG9PF56AwztUIdODWpRUOLg1ZW7Xb5/T3oeLy3fxYxvk0jPLfJAQhERERERkZrL5eK7b9++rFmz5pTxtWvXcsEFF7gllIiIiJw5me+/T+r9U8HhwBYfR/3XZmEJ9MzBkwAWi8GLozoR7Gdl44Es3l273+U5TNPkvXX7ufSN9ezPyCfWFsBHY3sxYUALrBbDA6lPZRgGDwxpDcBHGw+x91jeP96TlV/CvPUHiH9tLQNeWs2rK3cz67s99J2+ipkrdmm/cBERERERETdxeauTOXPm8Oijj3LFFVfQq1cvAH766Sc++eQTHn/8cerWrVv+2Li4OPem9RBtdSIiIjWRaZoce3kmmW+9BUDEDTcQc/99GJZKnX3tso82JvPA59vw87HwZHw7Av18Knzv0i2prNhxFIABbWoz/fKOhAf7eSrq37pl3iZW7EhncLs6zLmu2ynXi8scfL8znc8SD/P9znTK/ljhbrUY9G0ZTUZ+Cb8eOg5AdKg/Ewe2ZFS3+vhYz8z/DyIiIiIiItVJRbtcl4tvSwXfDBuGgcPhcGVqr1HxLSIiNY3pcJD22OMc/+Ng6uiJE4kcewuGcWZWS8OJ4v3G9zexKulYpe73s1p4cGhrbujd+Izm/v92H81l0MwfcJrw2e3n0q1RBKZp8suh43yemMIXvx7BXlha/vj29cK4tEt94jrXJSrEH9M0+XLbEV74JonkrAIAWsSEMHVIay5qHePV1yYiIiIiIlLVeKz4Phup+BYRkZrEWVxM6uQp5C5fDhYLdR5/jPBRo7ySJT23iGkJv3G8oPSfH/w/wgJ9uPuiFrSv55l9yF019bOtLNp0iC4Na3FRqxg+/+Uw+zPyy6/XDvNnRJd6XNqlPq3qhP7pHMVlDj74KZlZ3+0u/9+jV9MIHhralg71q8brFBERERER8TYV3y5Q8S0iIjWFIy+PlDvvomDDBgxfX+rOeJGwiy/2dqxq72hOEX2mf09RqbN8LNDXypD2dRjZtR69m0VVeO9xe2Epb3y/h/fWH6Ck7MR88Z3rMvniVjSICPJIfhERERERkeqiol1uhTeP3LBhA19//fVJY/Pnz6dJkybExMQwbtw4iouLK59YREREPKosM5Pk62+gYMMGLMHBNJg7V6W3m9QOC2DSwFYYBpzXPJIZozrx88MDeOnKzlzQItqlAzdtgb48MLQN303qw8gu9QBI2JJK/xmreearHdhdXB0vIiIiIiJSE1V4xfeQIUPo27cv999/PwDbtm2ja9eujBkzhjZt2jB9+nRuvfVWHnvsMU/m9Qit+BYRkbNd4ZYtpN4/lZKDB7FGRNBg7lsEtmvn7VhnHdM03b4n9/bDdp75agfr92YCJ4rxhy9pw6juDdz6PCIiIiIiItWB27c6iY2N5YsvvqB79+4APPTQQ6xevZq1a9cC8MknnzBt2jR+//13N8Q/s1R8i4jI2ark4EHSX3qZ3GXLAPCtV4+G77yNX+PG3g0mLjFNk1W7jvHcVztJOpoLwKSBLbnrouY6/FJERERERGqUina5PhWdMDs7m9q1a5d/v3r1agYPHlz+fY8ePTh06FAl44qIiIg7lWVnk/HGbLIXLYLSUjAMbJeOJObee/GJivJ2PHGRYRj0axXDhS2ieXn5Ll77fg8zlu8iM7+ER4e1xeLCVioiIiIiIiI1QYX3+K5duzb79+8HoKSkhMTERM4999zy67m5ufj6+ro/oYiIiFSYs6iIjLlz2TvwYrIXLIDSUoIvuIAmS5ZQ9+mnVXpXc1aLweRBrZg2vC0A768/wL0fbyk/BFNEREREREROqPCK78GDBzN16lSef/55lixZQlBQEBdccEH59a1bt9KsWTOPhBQREZG/Zzqd5HzxBekzX6HsyBEA/Nu0ofaUyQT37u3ldOJuN57XhIhgPyZ9/CsJW1I5XlDK7NFdCfKr8I92IiIiIiIiZ7UKvzt66qmnuPTSS+nTpw8hISHMmzcPPz+/8uvvvvsuF198sUdCioiIyF/LX7+eo9NfpHjHDgB8YmOJnjAeW1wchqXCH+6Saia+cz3CAn25/YPNrN51jNFvb+DdMT2oFeT3zzeLiIiIiIic5Sp8uOV/2O12QkJCsFqtJ41nZWUREhJyUhleXehwSxERqY6KknaR/uKL5K9ZA4AlJITIW8cRcd11WAICvJxOzpTNB7O56f1N2AtLaVk7hPk39aSOTf//i4iIiIjI2amiXa7LxffZSMW3iIhUF6bTScGmnzn+2afk/PtLcDrBx4fwq68m6o7b8QkP93ZE8YJdR3O5/p2NpOUUUa9WIPNvPodm0SHejiUiIiIiIuJ2Kr5doOJbRESquuJ9+7EnJGD/YillqUfKx0MHDybm3nvwa9TIi+mkKkjJLuD6dzayLyOfiGA/3r+xBx3r1/J2LBEREREREbdS8e2CGlt8mybsWgYZSdD9JvAP9XYiERH5H2XZ2eR89RX2hKUUbd1aPm4JDSVs8GBqXTGKwA4dvJhQqprMvGLGvLeJbYftBPtZeev67pzXPMrbsURERERERNxGxbcLamzxDfBiK8hLg5tXQIMe3k4jIlLjOUtKyFu9GntCAnmrf4DS0hMXrFZCzj8f24h4Qvr10x7e8pfyissYN/9n1u/NxM9qYeZVnRnaIdbbsURERERERNyiol2uzxnMJFVRdMsTxXdGkopvEREvMU2Toq1bsSckkPPlVzjs9vJr/m3bUCs+nrBLLsEnSit35Z+F+Pvw3o09uGfRFr7ensadCxN5ekQHrunZ0NvRREREREREzhgV3zVdVCvY/wMcS/J2EhGRGqn0aDqpU++n4Mefysd8YmKwxQ0nLC6OgJYtvZhOqit/HyuvXdOVh5ds56ONyTy4eBuvrNxFm9iw8q+2saE0jgzGx2rxdlwRERERERG3U/Fd00W3OvFnxi7v5hARqYHyVq8mdeoDOLKzMfz9CR10Mbb4eIJ79cKwWr0dT6o5q8XgmZHtiQ715/Xv93A0p5ijOcdYlXSs/DH+PhZa1QmlTZ0w2sSG0vqPUtwW6OvF5CIiIiIiIqdPxXdNF/XHSkKt+BYROWPMkhLSX55J1nvvAeDfujX1XnoJ/6ZNvJxMzjaGYTBxYEvGXtCEpLRcdqTlsuNIDjuO5JCUlktBiYOtKXa2pthPuq9erUD6tY7m4UvaEuCrX8KIiIiIiEj1o+K7potufeLP4wehtAh8dViaiIgnlSQnc3jiJIq2bwcgfPRoYqZMxuLv7+VkcjYLDfCle+MIujeOKB9zOk0OZhWUF+EnvnI5fLyQw8cL+eCnZIL9fXhgSBsvJhcREREREakcFd81XUgMBNigyA6Ze6BOe28nEhE5a9n//SVp06bhzM/HYrNR95mnCe3f39uxpIayWAyaRAXTJCqYoR1iy8ftBaV8vf0IUz/fxls/7GNgm9onFebuUljiYOXOowxoU1urykVERERExO10mlFNZxgnDrgEyNB2JyIinuAsKCD1oYdInTwZZ34+gd260XTJYpXeUiXZgny56pyGXNa1PqYJkz75lYKSMrc+h9NpcvuHm7lr4S9M/WyrW+cWEREREREBFd8CEP2ffb51wKWIiLsVJSWx//JR2D/7HAyDqDvuoNG89/GNjf3nm0W8aFpcW+raAjiYWcCzX+1069yvfre7/JDNJVtSWb83w63zi4iIiIiIqPgWrfgWEfEA0zTJWriQA6OuoGTfPnxiYmj43ntEj78bw0c7jUnVFxbgywuXdwJgwU8HWbP7mFvm/T4pnVdW7gagfb0wAB5N+I2SMqdb5hcREREREQEV3wIQ/UfxrRXfIiJu4bDbOTx+PEefeBKzpITgPhfSZMlignv19HY0EZec3yKK689tBMB9n27FXlh6WvMdyirgnkVbME24tmdDPry5F5HBfuxJz+PddfvdEVlERERERARQ8S0AUX9sdZK5B5wO72YREanmin7/nX0jR5K7fAX4+hIz9X4azJmDT4T7DwcUOROmDmlN48ggjtiLeOKL3ys9T1Gpg9s+2Iy9sJRODWrx6PC22IJ8eWBoGwBeWbGb1OOF7ooNnDhAc+pnW3lw8TY2HcjCNE23zi8iIiIiIlWXim+BWg3BJwAcxZB9wNtpRESqrfwNGzl43fWUpR7Bt1FDGn/0EZFjxmAYhrejiVRakJ8PM67ohMWAzxJT+Pa3tErN82jCdn5LzSEi2I/Z13bF38cKwGVd69GjcTiFpQ6e/Hfli/X/zzRNHlqyjUWbDrFwQzKj5vxIn+mreHn5Lg5m5rvteUREREREpGpS8S1gsUJkixN/P6Z9vkVEKiN3xQoOjR2LMz+foB49aPLppwS2b+ftWCJu0a1RBGMvbArAg4u3kZlX7NL9izYm8/HPKVgMmHV1F+rWCiy/ZhgGT45oj9Vi8PX2NFbvcs9e4h9uSObzxMNYDLikQyzBflaSswp4ZeVu+kxfxeWz17Nww/+xd9fhTd1dAMe/qdNSAUpb3L3AcGe4DHfYYAwdM9iY27sxH2xMGAwZNtyH+3DG8OKuReruTe77x6+lMApN2qSpnM/z9Gnu7c29J20IybnnnnOLiNistW8RQgghhBB5WNR9OLMakk17/ytyBkl8C6VoSrsTGXAphBAmC1+5Ev+x49ASEynYri2l/piFraurtcMSwqzealeZyt4FCY5O5JO/zhjdNuSUfzj/W3sWgLc7VKFZRc/Htqnq48awpmUB+GztGeKTstZ67cStMCasV8d8v1NVpr5QlyOftOPnAc/QsnJRbHRw9GYYH605TYNvdvDaouPsPB9Akl4GbAohhBBCiBQR/jCrLawcBrM7QMhVa0ckTCSJb6F4yoBLIYQwlaZpBM+axb1PPgWDAfe+fSj588/YODpaOzQhzM7J3pbJ/Z/BLqUye53f3QzvExqTyCsLj5OoN9C+ujevPFvhidu+2b4y3m6O3AiJZcaea5mOMyQ6gVcXHSdJr9Gphg+jUyrVnR3s6FmnBH8Ob8g/H7blo+eqUsXblcRkAxtP32PE/KM0/mYnn687y2n/iEwfXwghhMiz9Mk5s+pV03JmXCJ3iw2FhX0g0l8t3zsJM1rCqeXWjUuYRBLfQpGKbyGEMIlmMBA4cRJBP04GoMiokRT78kt0dnZWjkwIy/Et4c4bbVR7tE//OkNAZPwTt9UbNMYtPcGd8DjKFnFWfcJtntzvvqCjHZ90qQ7AtN1XuBUSa3J86pgnuRcRT3lPFyb1q5Vuj31vNydGt6zAljdbsHFsc0Y0L4dnQQdCYhKZd/AG3X7bz/yDN0w+vhBCCJFnhd2A35vAxPKwZyIk5pB5GZF3VTLyx6pw55i1oxF5RWIsLB4AQRfAtTiM2A5lmkNiNKweBX+9CgnR1o5SGEES30J5uOLbyEuXhRAiv9KSkrj30ceEzp0LgNd77+H19tsyxFLkC6+2rkCtku5Exifz3spTT2x58suOS+y7HIyTvQ3Th9TDzck+w313rVWM5hU9SUg28Pn6s0a3U0k1eftF9l8JpoC9LdOH1MM1g2PqdDpqFHfn067VOfRhW+a+1ID21b1V/DsvE5eYtZYrQgghRJ4QcBZmd4TgSyrxt+trmFIPjv8JBiv+Xxl8RbWfuH8K4kJhUT8Ivmy9eETeoE+CFS+B/2FwcofBq6BUQxi6Dlp9CDobOLkIZraCe6esHa3IgE4z9RNFHhQZGYm7uzsRERG4ublZOxzrSE6Ar31AM8D48+BW3NoRCSFEjmSIi+POW+OJ3r0bbG0p9tVXePTqae2whMhWlwOi6DJlP4nJBr7tXZNBDUs/8vOd5wMYMf8oAD8PeIaedUoYve+rQdF0+nkvSXqNmUPq0aGGj1H323b2PqMXqEqvXwfVoXvtzL2XSdYbaPXDbvzD4viqpy+DG5fJ1H6EEEKIPOHWIVjcH+IjwKs6NH4F9v4A4TfVz72qQ/svoGI7yM4ikLsnVBuK2BAoXAEcC8I9P3AvDSO2gVux7Islp9M0iLgN989AQMqXnRO0/R+4l7R2dDmLpqlqbr/F6nf04loo3fjRbW4cgFUjIeou2DpAh6+h4ajMP/9jQuDMKriwQZ1YMlWzcVC9R+aOnYsZm8uVxDeS+H7g17oQehWG/AUVWls7GiGEyHH0kZHcfuVV4o4dQ+foSImffsK1jbxeivzpj33X+GrjeVwcbNnyZktKFXYG4GZIDN2m7CcyPpmhTcowoYevyfueuOUC03ZfpYRHAXaMf5YCDrZP3f56cAzdp+wnKiGZYc3K8lm3Gpl6TKnmHrjOhPXnKFvEmZ1vt8L2KS1ahBBCiDzr0lZYPhSS46BUI3h+GRQopArnjvyhWp7Eh6tty7WE9l9C8WcsH9e1PbD0eZUkLFYbXlil1s/pqHIaXtVh2GYo4GH5WHKapDgIPK+S2w8nuuPTmV/iVgKGrIGiVbI/zpxq+//gwC+gs4WBi6BK5/S3iw1VCfJLm9VylS7Q4zdwLmzccZIT1L8vv6VweSsYkjMfc5cfocHIzN8/l5LEtwkk8Z1iySC4uAk6T4RGL1s7GiGEyFGSAgO5PXIUCZcuYePqSqnpv+Ncr561wxLCavQGjUEzD3H4RigNyxVm6ajGJCQb6P37Qc7fi6RuaQ+Wjm6Cg53pnfViE5NpP3kvd8LjeK11Bd7tWPWp2/aedpAL96OoX6YQS0Y3xt42a938YhKSafrd30TEJTF9cD06+RpXdS6EEELkGX5LVWJP00OlDtBvPjg4P7pNXBjs+xH+nQH6RLWu1gBo8wl4lH58n+Zw9i/VY1mfqJLtAxaBU0oeJ+yGan0SHQClm6ikrn0By8SRU0QHqerke34q0R1yWV3J/182dlC0Knj7gnd1OL5AbVugMLywEkrK5xoO/gbbPla3e0yFOoOfvr2mqef+9k/V89GtBPT5A8o0ffL2/kfBb4mq8E49aQRQ7Bn1b6dwedPj9qoGhfLfFYqS+DaBJL5T7Pgc9v8E9UdA18nWjkYIIXKMxJs3uTViJEn+/tgW9aT0H3/gVEUqI4S4FRJLp1/2Epuo55Mu1Th/L4pVx/3xLOjA+jeaU8w98x82U1uX2Nvq2PJmSyoULfjYNpqmMX65H2tO3MGzoCMbxzbH280pKw/pgUlbLzB111XqlSnEqlee8AFGCCGEyIv+mQpbP1K3aw1QSUDbp8zNCLsJf38Jp1eoZVtHVUzX4m3zVl0fnQsb3gI0qNZdJRntHB/d5v4ZmPscJERAleeg/wKwzYPD5xNj4dBU2P8LJEY9+jPnIirB7VMz5buvmutm55C2TUwILOoLd4+DvQsMXAgV2mTvY8hJ/JbBmtHqdrvPoflbxt/3nh+sGKauNtDZqD7gLd4Gm5QrFsNuwqnlKuEdejXtfq7FoVZ/qD1QJa+FSSTxbQJJfKc4uQT+GgNlW8BLG6wdjRBC5Ajx589za9Ro9MHB2JcuTenZf+BQqpS1wxIix1j0700+XnMGGx0YNLDRwcKRjWhawTNL+9U0jRHzj/L3hUCaV/RkwYiGjw2Q/fOfG/xv7VlsbXQsHtmIRuWLZOmYDwuMjKf597tI1BtY9UoT6pUx8tJVIYQQIqviI1XSzMEle4+rabDzC9ifUgjX+DXo8BXYGHkl1d0TsO1TuLFPLRcoBC3fgwYjHk9QmxrXvh/g76/Ucr2XoMvktMTif904AAt6gT4B6gyB7lOyt/+4JRn0cHKxGjAadU+tK1YbqvdMS3S7+hj3eBOiYNlguLYbbOyh90zw7W3R8M1On6yuSsjK8+vydlgyULUbafwqdPzG9OdLQhRselclt0Hl1Xx7w+lVcHN/2nb2zuqkTe2B6oqFJz2HRYYk8W0CSXynuHMMZrUBFy94VyYhCyFEwvXr3Og/AENUFI5Vq1J61kzsiha1dlhC5CiapjF07hH2XgoC4IPOVRnzbAWz7PtWSCztf9pDQrKB356vQ9daaQMrj90MY+DMf0jSa3zSpRojW2Ti0tAMvLfSj+VH/elYw5sZQ+qbff9CCCHyOYMBwm+k9WK+fwYCTkP4LTU0r3InqD1IDY58uFrXIrHoVTX18flque3/oPl40xOAmgaXt6leyUEX1DrnIuDbVyX7itcxbZ8Gg6o+//d3tdziHdVKJaN9nN8Ay4eoth8t3oG2n5r2OHIaTYMrO9XvNfCsWudeWv2dfPsYf3Liv5ITYM3LcHYNoIPnJqlBjTndwxXvmh6qdVNXJ5RvZVoy2f8ozO8GSbFQsx/0mpn53yWogtKNb0NSzEMrdSrJXXuQitPx8asYhekk8W0CSXynSIiCb1Mm+r5/Q52dFUKIfMoQG8uNAQNIuHyFArVrU+qPWdi6ulo7LCFypPsR8Qyfd4RaJd35tnfNxyqzs+KXHZd8DOQZAAAgAElEQVT5acclvN0c2fl2Kwo62hEcnUDXX/dzPzKe52r6MPX5umY9ZqrLAVG0/2kvOh38/XYrynlmc+WdEEKIvCMxBgLOqcT2g6GDZ9WAxoxkJXFsjKR4WD0Szq9XrRq6/qSqqrNCnwwnF8Hu7yDqbtp6zyrqcdTqD+4lM9hHkuozfnq5Wu70HTR+xfgYjs2D9ePU7dw8y+zeKdVH+tputezkDi3fhQajwN4MLd4MelWtfHS2Wm71ITz7fs6skk+v4v1hrsVUArv2INXL/GmCLqqBqHFhUKEtDFpqnhNMwVdg7Wsqx1azr3HPdWEySXybQBLfD5lcHSLvwPBtULqRtaMRQgir0DSNu++8S+TGjdgW9aTcqlXYe3lZOywh8qX4JD0df97LzZBYRjYvxwedqzJk9mH+uRZChaIurH29OQUdLde7c/i8I/x9IZDBjUvzVc+aFjuOEEKIPEjT4Mgf8O90CLkKpJN+sXUEr6rgXVP1Yvb2Be8a6nO531LVGzgmMG17UxLHxoiPhKXPq/Yktg7QZzZU7571/abSJ6uErd8SuLABkuNTfqCDci0eqoL9T4FJYgwsHwpXtqvBjD2mQe0Bph9/zyTY9ZU6Xp8/VCIytwi/rRK8fksBTf19Go5W/aOdzdyCTdPUSYo936nlBqPUyYLMVD+H31YnK67tgWK1UpLQNbIe35Mq3guVhVNL4fTKRwdG+qQcu2ZfKPifz3IRd9Qg1Eh/KFEPXlwnldi5jCS+TSCJ74f82ROu7VI9sOq+aO1ohBDCKkIXLCTg66/Bzo4y8+fhXE+mnAthTbsvBvLS3CPY2ujo7OvDhlP3cHGwZe3rzajoZdkrMf65GsKgWYdwtLPh4AdtKFIwCz0khRBC5B+xobD2dbi4MW1dQe+0YYOpie4ilZ4+fFGfrD6j+y1NJ3GcxfYJ0UGwqI8azufgCoMWq31aSnwEnFunHstjfY+7pfQ9flZtt3gA+B8GuwLQ/0+o3CFzx9Q02PweHJ6p+li/sDznD3GMj4B9k+HQ76pPOaiK/7afqiSvJf07U/2+0KBGb+g1w7gq6ISolL/tErixn8dO8njXVH/fmv3A1du0mO75qd7x1/eo5SdVvCcnqDY7fkvh0lYwJKn1OlvVLqj2QKjSGZLiYG5n1YqnSCUYvhVczDcnRmQPSXybQBLfD9n8vjob3eR16Pi1taMRQohsF3v8ODdfHArJyXh/+AGFhw61dkhCCGDMgmNsOXv/wfLU5+vSpVYxix9X0zR6TD3AKf8I3mxXiTfbVbb4MYUQQuRyNw/CqpGqatvWAdp9DjX7Q8EszorJKHHsWcm0/Z1cAqFXwdkTBq+C4s9kLT5ThN1U1ex+KTGkci0Gdk4Qdl0lOJ9fkfWr0Q0GWDVc9bG2d4GXNkCJusbfN7UPe8gV1U/akhJj4Nh8iAtVy2WaQ4cvVFVydjm9EtaMUYnjCm2g/4L0T6wY9CknZZapNjnJcWk/K9tCJZlvHYJLW0CfqNbrbFRbkdoDoWoXsC/w5DjCb6uBpqeWYXLFe0wInF2tnl93jqWtd3QDF08IvaaeayO2gUdpo381IueQxLcJJPH9kCOzYeN4qNQBXlhh7WiEECJbJQcHc713H5IDA3F7rjPFf/zRIn2DhRCmuxseR9sf9xCXpGdk83J80jWDvo1mtN7vLm8sOUFhFwcOftAGJ3sThiYJIYTIPwx62Pcj7P5WDVUsUhH6zoFitc1/rCcljk3lXhqGrAHPiuaLzRSapgYM+i2BM6vSWlW4FoPBqzPu02ys5ARY1E9VDTsXUe1d//uY0+3Dfg4So8wTgyk8q0D7CWrAqTU+j1zZCcsGq6GPJeqpExCpVdEBZ9Xf69QKiE4rSqBIpbQ2PA8nk2ND1UkHv6Wqij+Vo5tqq1N7EJRumtZWxdwV78GXU9oGLYOI22qdkzsM22K+55fIdpL4NoEkvh9yYz/M6wIeZeDNU9aORgghso2WnMytYcOJPXIEh4oVKLdsGTYuMshOiJxk3+UgztyJZGSLctjbZqLnZCYl6w20+mE3/mFxfNXTl8GNy2TbsYUQIk9ISBngmJd76EbehdWjVa9sgNrPw3OTLP+YUxPH59eqft2mKOABjV4BN8tfQWWU1FYV/kegwUjzV+ImRMG8rnDvpNp3h68g6FJaojv0Gun3YXeAolXBq5qqRre0kg1UMvhpLXCyg/9RWNRXDX/0rAx1BsPpFXD/dNo2BQqlDF4dpKroM0rSh1xNSUIvhfBbaevdS6se7k4e6uSRJSreDQa4eUD1jfftY5kTUiLbSOLbBJL4fkh0EPxQEdDBR3fBwdnaEQkhRLYImDiJ0DlzsHF2puzKFTiWL2/tkIQQOcjcA9eZsP4c5Txd2DH+WWxt5GoQIYQwSuh1+KOdSjpWfU4lyCq0AVt7a0dmPpe2qtYQcaGqlUbXyaryVeQ80UEwp0NKkjsd6fZhr5i3nq+mCLwAC3urtj2pbOyhSieoNVB1CzCmB/h/GQxw6x9VOX72r8er6q1d8S5yPEl8m0AS3w/RNJhYTp3Re3mvnAETQuQLkVu3cWfcOABK/PILbh0zOTxHCJFnxSQk0/S7v4mIS2LGkHp0rOFj7ZCEECLnS4qD2e0frRAFcCmaUiU6UH3mzK2JreQE2PE5HJqmln1qQd+51msbIowTdgOWDVGtaXx8H010Z7UPe14Uflv1rEdTbUxq9M64x7YpkuLgwkbViiTqHtQfAXWGWL/iXeRokvg2gSS+/2N2R7h9CHr/AbX6WTsaIYSwqIRr17jRtx+G2FgKDx+O93vvWjskIUQONWnrBabuukq9MoVY9UpTa4cjhBA5m6bBX6+C32I1PLH3TLiyQ/Wljg1O265otbS+wG7FrRevqUKuwsphcM9PLTd+VQ2xtHO0ZlRCCJEvGJvLzb7miCL3KFpZfQ++aN04hBDCwgwxMfi/MRZDbCzODRviNf4ta4ckhMjBhjYpi4OtDcduhnHsZqi1wxFCiJzt2FyV9NbZqAGPFdtCp2/h7Qvw/HKo0QtsHSHoPOz4DCZXhz97gt8yNWQwJ/NbBjNaqqR3gcIwaKl6bJL0FkKIHEUS3+JxnlXU9yBJfAsh8i5N07j7ySckXr2KnZcXJSb/iM5OLqcTQjyZl5sTPeuoasRZe69bORohhMjB/I/B5vfV7bafQfln035maw+VO0K/efDOJej2C5RuAmhwbResGQ2TKsGaV3LeZ9KkOBXXmtGQGA1lmsGY/VCls7UjE0IIkQ5JfIvHFU1JfAdfsm4cQghhQWF//knU5i1gZ0eJn3/GztPT2iEJIXKBUS3U4Nut5+5zPTiHVyQKIYQ1xITA8hdBnwhVu0KzcU/etoAH1HsJhm+BsSeh1UdQqBwkxahq8RnPwrF5qm2KtcWFw4LeaVXsrT6EoevBvYS1IxNCCPEEkvgWj/NMaXUSchX0ydaNRQghLCD26FECJk4CwPv993GuW8fKEQkhcotK3q60qeqFpsHs/desHY4QQuQsBj2sGg6R/lCkIvScZvzgysLloNX7MPYEDN8G5VtDchysH6d6acdHWDb2p4kKgHld4dZBcHSHIX9Bqw/AxtZ6MQkhhMiQJL7F49xLgb0zGJIgTC7jFULkLUmBgfi/9Rbo9bh16UKhwS9YOyQhRC6TWvW94qg/IdEJVo5GCCFykF3fwLXd6vPkgIXg5G76PnQ6KN0IBq+GdhPAxg7OroHpzcH/qNlDzlDoNZjTAQJOQ0FvGLbx0dYtQgghcixJfIvH2diAZyV1O6f1VBNCiCzQkpK4M348+qBgHCtVotiXX6AztgpJCCFSNC5fmFol3UlINrDg0E1rhyOEEDnDhU2w7wd1u/sU8KqWtf3Z2EDzN2H4VvAoDeG3YE5H2P8zGAxZj9cY907B7I4QdgMKlVWx+NTMnmMLIYTIMkl8i/SlDrgMlsS3ECJvSAoM5M577xF39Bg2BQtS4tdfsHF2tnZYQohcSKfTPaj6/vOfm8Qn6a0ckRDZSNPgzjHY9B7MbAVnVlk7IpEThFyFNWPU7UZjoGZf8+27ZH14eR9U7wmGZNjxGSzqA9GB5jtGem4cgHldICYQvGuq9iuFy1n2mEIIIcxKEt8ifUVT+nwHyYBLIUTuZoiJIejXKVzt2EkNs9TpKPbtNziWkw8uQojM6+zrQ8lCBQiNSWTVcX9rhyOE5UX4w74fYWpDmNUGDs+Auydg5XBY9wYkxlo7QmEtibFqmGVCBJRqBO2/NP8xCnhAv3nQ7Rewc4Krf8PvzdR3S7iwCRb2hoRIKN0UXtoArt6WOZYQQgiLkcS3SJ9UfAshcjktOZmwpcu40rETwdOmocXFUaB2bcosWohb+/bWDk8IkcvZ2dowork6gfbHvusYDJqVIxLCAhKi4ORimN8NfvKFnV9A8CWVePTtC41fBXRw/E9V/R1w1toR529R9+HIH+pvFh+ZPcfUNNjwJgScARcv6Dcf7BwscyydDuq9BKN3Q9FqqhJ7QW/Y8Tnok8x3nBOLYNlgSI6HKs/BkNUq8S6EECLX0Wmalu/fpUdGRuLu7k5ERARubm7WDidnCLqoqjkcCsKH/sZP4hZCCCvTNI3oXbsJ/PFHEq9eBcC+dGm8xo/HtWMH6ekthDCbmIRkmny7k8j4ZGYMqUfHGj7WDkmIrDPo1XBCv6Vwfj0kx6X9rGwLqD0QqnUHp5TPTdf2wOrREH1fJcQ7fgP1h8vnh+ySGAsXN4HfElX9rKX0vrZzgqpdofYgKN8KbO0sc/zDs2DTO6CzhaHroGxzyxznvxJjYetHcGyuWi7ZAPrMhkJlsrbfA7/A9v+p28+8AN1+tdzvTgghRKYZm8u1auJ77969TJo0iWPHjnHv3j3WrFlDz549H/xc0zQmTJjAzJkzCQsLo1GjRkydOpUaNWo82CYsLIyxY8eybt06ALp3786UKVPw8DD+jKwkvtOhT4KvfVQPtbfOgntJa0ckhBAZijt9msCJk4g9cgQAWw8PPF99lUIDB6BzsFD1kRAiX5u45QLTdl/lmVIefNGjRsZ3eEhlb1ec7G0tFJkQJgo8ryqFT6+AqHtp64tUVMnumv2fnFSMCVb9na9sV8vVukP3X6FAIcvHnR8ZDHDroEp2n10LiVFpPyvZQFV7P3zlrosX1Oqv/o7mHMx4+wjM7QyGJOjwFTR9w3z7NtbZNbBunGqz4ugOXSdDtW5g52jafjQNtn8KB6eo5aZjof0XcgJHCCFyqFyR+N68eTMHDhygbt269OnT57HE9/fff8/XX3/NvHnzqFy5Ml999RV79+7l4sWLuLq6AtC5c2f8/f2ZOXMmAKNHj6Zs2bKsX7/e6Dgk8f0EvzVQlzIOXg0V21o7GiGEeKLE27cJ+ulnIjdtAkDn6EjhF1+kyOhR2Kb8fyGEEJYQGBlP8+93kag3mHzf4u5OLB/ThJKFZNCusKKwG6qFycNDKgsUAt8+qlq4RD3jkn8GAxyaptpOGJLAvTT0nQ2lGloq8vwn+AqcWgp+yyDiVtp6j9Lqb1VrABSpoJK4d0+oqv0zKyE2JG1bb9+UExn9wDULV6lEB8HMZyHyDlTvoVqcWCtJHHYDVo6AO0fVso0deFZWj9W7Bvj4quGUT+rRrU+G9WPh5CK13P4LaDYuW0IXQgiRObki8f0wnU73SOJb0zSKFy/Om2++yfvvvw9AQkIC3t7efP/997z88sucP3+e6tWrc+jQIRo1agTAoUOHaNKkCRcuXKBKlSpGHVsS30+w9AW4sAE6fQeNX7F2NEII8Rh9eDjBv08ndPFiSEoCnQ737t0pOm4s9sWLWzs8IUQ+MX3PVRYeuokp76oj45KISkimfFEXVo5pSmEXuSpFZLPYUDWs8vBM0CcCOtXP+JnnoVKHzPdpvnNcDbwMu67aX7T5GJq9BTYyXipTYkPh7GqVxPY/krbe0Q1q9FQJ71KNn/z71SfBlR2qOvzi5pS/NaCzgfKt1f2rdgEHE07A6ZNhYS+4vlclmEf9DY5WLjTQJ8Hu71SP8/jw9LdxKaqS4amJcB9fddJg9WjVLkZnq65UqDM4e2MXQghhslyf+L527RoVKlTg+PHj1KlT58F2PXr0wMPDg/nz5zNnzhzGjx9PePij/7F5eHjw008/MWzYsHSPlZCQQEJCwoPlyMhISpUqJYnv/9r5hXozXG8YdPvZ2tEIIcQjYv49jP8bb2CIVMObXJo2weudd3CqXt3KkQkhcoyEKFg+FOIjUhIdvuoyf+8aVk/S3I+Ip8/vB7kTHkftku4sHtUYF8d80kf25GKVbK3QVlWeelaydkT5S1I8HJkFeyepfxugekC3/xKK1TLPMeIjYeN41TYldf+9Zj654taawm7Arm/VcEbPyo8mRV2LWa+K2aBXvab/naEq6EElZiu2U/9uqnQG+wKm7TMuTLUG8VsKt/9NW2/vDM5FjN+PPhGiA8DeBUbvgqLGFZxlC01TVej3z0DA6ZTvZyDkKvCU1IetI/SbB1Wfy65IhRBCZIGxie8c++76/v37AHh7P/rmyNvbm5s3bz7YxsvL67H7enl5Pbh/er799lsmTJhgxmjzKM+UNzDBl6wbhxBC/EfS3bvcGTcOQ2QkjpUq4fXeu7g0by6DK4UQjzo4Ba7uVLdTL4FPVahsymXwvmlJ8UJlsy3J5ePuxPzhDek3/SB+/hGMWXiM2UMb4GCXx6tiE6Jhy4eqIvPuCdj3A5SorxJ5vn3AubC1I8y7DAbVzuTvLyA8pU2GVw3o8IU6CWHO576TG/SepSqKN72jhmVObwa9pqvEbU7wWMU7KkF6dnXaNgUKp70+pL5WFK1qev9oUyUnwJqXVZIawKeWqsyu2RcKPv7512gFCqnBo/WHq0TwqWUqCR5+EyJiTduXjR30+C1nJb1BPY/dS6qvKp3S1ifGqD72AWfSkuEBZyEhUvUGH7QEyjazXtxCCCEsIscmvlP9N4mhadoj69JLcvx3m//68MMPGT9+/IPl1Ipv8R9FK6vvQRefvp0QQmQjQ2Ii/uPeRB8ejlP16pRZshgbRwt/ABVC5D5R99OGlLV4BzRDWsIj6q6q8gy7odq6pXJwVdXgxetA87csXp1a0asgc15qwPOz/mXf5WDeXenHT/2fwcYmD5/EO7FQJb3dS4NXVbiyU52UuHNUJcQrd1RJ8EodM99qQzzu+j7Y9gncO6mWXYtBm09UMtXGQgNWdTqo84IatrhymPr3t7APNBqj2igWKmuZ42YkKV4lu/f98GjFe71h6jUh9XUi+BLEhap2Htf3pt3/4f7RNXqZv0I4IRqWvaBOFtjYq5MFNfua9xigeoG3/ghafagSwslxpt3ftTi4FTN/XJbi4AIl66uvVJoGEbdVCxRTq+eFEELkCjk28e3jowZt3L9/n2LF0v5DDQwMfFAF7uPjQ0BAwGP3DQoKeqxS/GGOjo44SpIkY54pie/YYIgJARcTLn8TQggLCfjmG+JPn8bW3Z0Sv/4qSW8hRPp2fwtJsSrp1uaTR6tZY0Mfrfq7fxqCLkBiFNw+pL7uHodhWyzel7hO6UL8PrguI+cfZe3JuxRxceTTrtXy5hUs+mQ4NFXdbv4mNBgBUQFq+J7fUrh/Sp2IuLAhc8MVxeMCL8COz+DSFrXs4ArNx0Hj10zr6ZwVRSvDyJ0q8X5kFvw7XX2VaaaGMdboCU7ulo8jteJ95xdpgyFTK97Tq0JPilevC/dPP/R6cVolywPPqa/Ty6Hui9Dpe/P8PmNCYFFf9fpj7wIDFkDFtlnf79PodOCdT9vE6XSqx7cQQog8K8cmvsuVK4ePjw/bt29/0OM7MTGRPXv28P333wPQpEkTIiIiOHz4MA0bqmnh//77LxERETRt2tRqsecZDi7gXkqdBQ++CC7yOxVCWFf4mr8IX7oMdDqK/zAJh5IlrB2SECInCroIxxeo2+2/eDxp6lwYyrVUX6n0SRB8WSVfN4xX/W/9FmfLkLNWVbz4oV9t3lx2kjkHrlPU1ZFXWlWw+HGz3fm1qsWGcxE1QBFUVX2T19RXwFmVAD+1HKLvqyF1R/6AIhVVFXiZ5mogn7F0OvVe1tUndyfONU09L5PiTbiPXv0uTyxQVzvY2KmK5mffh4JFLRfrk9g7QZcf1NDMQ1Ph2h64eUB9bX5PDdWsPQgqtAFbC3xEvb4Xtn1qWsW7vRMUf0Z9pdI0iPBXifCru1Tl+PE/4da/0G+uumIks8Jvw8LeqtK8QGF4YcWj1clCCCGEMJlVh1tGR0dz5coVAOrUqcPkyZNp3bo1hQsXpnTp0nz//fd8++23zJ07l0qVKvHNN9+we/duLl68iKurGkjUuXNn7t69y4wZMwAYPXo0ZcqUYf369UbHYWxD9HxpQW/VG7Prz1A//WGhQgiRHeLPn+fGwEFoCQl4vvE6RV97zdohCSFyqiXPw8WNUKULDFps+v0P/ArbP1UJ2tePZlvf6T/2XeOrjecBmNi3Fv3r56FWfJoGM1upxGOrD6HVB0/e1qBXbR5OLYPz61XlflY4F3losGlKn2bPKrmjlYo+GZa/qJ7PmVW1K7SbAJ4VzRdXVkXcUdXSfktVVXUql6JQsz/UHqD6Wmf1hEXgBTUg8vJWtWzuivdre2D1aHWixs4JOn6j+mebGnfQRVjQSw1ldCsBQ9bkvN7ZQgghRA5ibC7Xqonv3bt307p168fWDx06lHnz5qFpGhMmTGDGjBmEhYXRqFEjpk6diq+v74NtQ0NDGTt2LOvWrQOge/fu/Pbbb3h4eBgdhyS+n2LLh3BoGjR+FTp9a+1ohBD5lD4igut9+pLk74/Lsy0p9fvv6CzcfkAIkUvd/AfmdlKVwa8eylzySJ8E01tA0HlVJdvtZ/PH+QTfbb7A9D1XsbXRMWNwPdpVt2yf8WxzYz/M66KSg2+dBRdP4+6XEKWS36eWpQ1kNJYhWVXnaobHf2Zjr54bDw839alpfFzZQdNg7etwciHYOqhhfabwKA3PfgBlmlgmPnPQNHUyxG8ZnF6hWiym8qquKv1r9je9l3TUfdj1TVrFu85WFfE8+4H5K95jgmHNGLiyXS1X6w7df1Xteozhf1S1N4kLU60mh6wx/W8thBBC5DO5IvGdU0ji+ymOzYP149Sk9yGrM9xcCCHMTTMY8H/lVaL37MG+ZEnKrVyBrQknN4XIlOArsHqkSmC0GJ/x9iJn0DSY3R78j0C9l6DbL5nfV2qiFh2M2qn6TGcDTdN4d+UpVh7zx9HOhkUjG1G/bPZUnFvUov6q6rb+COg6OfuOmxirTmDcP6NaqaT2ak6ISH/7AoVUktkUPjWh5+9Q0Cvr8T5sx+ew/yeVtB2w0PxDFHMafZIaduq3BC5uBn2CWq+zAWdP06qo48LT7l+1K7T7HDwrmTviNAaDKhba8TkYktTw1r6zoVTDp9/vyk5YNgSSYtRrzPMrZK6SEEIIYQRJfJtAEt9PkVo15V4K3jpj7WiEEPlQ0LRpBP86BZ2jI2WXLMapej4dwCSyT0I0/NFOJcvQwUsboGxza0cljHFuHSwfAvbOMPaE6u2cFatHq0rjYs/AqL+f3AvYzJL1Bl5ecIydFwJxc7JjxZimVPFxzZZjW0TgBZjWCNDBG8egiJX7l2uammHz8HDTgDMQei3z+yxcXlXqFiprnhj/mQZbP1S3u/8GdYeYZ7+5RVw4nPtLtUK59U/m9lGiPnT4Knsr3u8cg5XDIeyGOmHR5mNo9lb6Q3LPrILVL6tEefnW6uSGY8Hsi1UIIYTIxSTxbQJJfD9FbChMLKduf3hH3owJIbJV9L793B49GjSNYt98g0fvXtYOSeR1mgarRqiERCqP0vDKQXDMxYnHnCgqQFV21uwH7mYYVKtPgqmNIPQqtHxPJZzMEeNv9SEhErr8CA1GZn2fRopL1DN49r8cuxmGt5sjq15pSslCZuhJbA1rX4MTC1Xl7cBF1o7myRKiIfxm+q1RniQ+Ev4ao9qwFPRRV0hmZcAhqOGeq0ep223/By3eztr+crvIuxAbYtp97JzUUFRrDDWNj4QNb8GZlWq5fCvoNVMNck11eBZsehfQoEZv6DUjd/ScF0IIIXIISXybQBLfGZhYQfXbG70bitexdjRCiHwi0f8ON/r0QR8RgUf//hT7YoK1QxL5waHpsOV9sLGDQUth43iV0Ko7VPVsFeaRFKdaktw/DYXKwYhtWW8TcXgWbHpHtUQYd9J8Jyr+nQGb3wMnd3j9mPn7Az9FeGwi/Wf8w6WAaMoXdWHlmKYUdsllybGo+/BzTdAnwojtGbd+yI0i78HC3hB4Tj1PBi3LfJXxlR2weIDqT97oFTVjxxrJW5E1mgYnF6nkdlKsGtrZa7pqH7n7O9jzndquwUjoPDHbriYRQggh8gpjc7kyGUxkLHUoVNAl68YhhMg3DAkJ3Bk3Dn1EBE6+vnh//JG1QxL5wa1DsC2lSrjDV1CpPfSYppaPz4fL260XW3aLj1BDAS1B02DDeJX0Bgi7Dgv7qCrJzEqIgj3fq9utPjBvdX79EeBTS/1Odnxmvv0awcPZgfnDG1Lc3YlrQTEMm3eEmITkbI0hyw7PVEnvUo0eJL2T9QZuBMdYOTAzcisGwzZBqcbqebKgJ1zcYvp+/I/BshdV0tu3L3T8RpLeuZVOB3UGq8Ihb1+ICVKvc3M6pSW9W30Iz/0gSW8hhBDCgiTxLTLmWVl9D75o3TiEEPlGwFdfE3/2LLYeHpT85WdsHB2tHZLI66ICYPlQlXCq0RsajVHry7WAxq+q22tfVy3A8roLm+CX2urrwibz7//YXPBbrAbWdftVVWjfPwXLXoDkhMzt8+AUlVgqXEENtTQnWzvokjKM8eQidYIkGxVzL8CfIxri4WyP3+1w+k3/h6tB0dkaQ6YlRMOR2ep20zcAMBg0hs8/SqsfdvPWspNE57ZE/pMUKKR6fFfqCBKiavUAACAASURBVMnxsPR5OLnE+PsHXYJFfdWQwwpt1LDM9PpCi9ylaBUYuSOtTdLtQ4BOJbxbfSAnNoQQQggLk3dTImMPKr4l8S2EsLzwVasIX7ECdDqK//AD9iXM0PtXiKfRJ8HKYRB9H4pWhe5THk1GtP0fFKmkfr75PevFaWnJCbD5fVg6COLC1EmAlcPUoGtz8T+mjgHQ9jOoNxQGrwSHgnB9rxomadCbts+o+3Dwt5R9/g9s7c0Xb6pSDaDui+r2xrdBn73J2operswb1pDCLg6cuxdJtyn7WXXMQhX55nRiIcSHqxMSVZ4DYMGhm+y9FATAmhN36PrrPs7cibBmlObj4Kx6mNcaCJpe9f5OfW4+TeRd1SolLhSK14X+C6Tfc15iX0DNCBiwEMq2gH7zoOEoa0clhBBC5AuS+BYZe1DxLa1OhBCWFXf2LPcnfAFA0XFjKdi8mZUjEvnCjs/h5gFwcFWJif8OcrYvoAaP6Wzg9Ao4+5dVwrSo4CvwRzv4d7pabvxaWuXqkgEQcC7rx4gJgeUvqrYXVbtCs3FqffE66vduYw/n/lKJcVNG0Oz+TlXJlqgP1XtkPc4nafu5quoNOKPad2SzZ0p5sHlcC5pWKEJsop63V/jl7IppfTIcmqpuN3kNbGy5FhTNt5vPA/BikzIUd3fiRkgsvaYdYM7+6+SJ0UO29qpau8nrannbx+o15kmPLS5MtcCIuK2GMb6wQobJ51XVusFLG6BGT2tHIoQQQuQbkvgWGUut+A69pqrihBDCAvTh4dwZOw4tMZGCrVtTZPRoa4ck8oOzf8E/KRWZPaeCZ6X0tytZD5qPV7c3vAXRgdkTX3Y4uQRmtFTtRpyLwPPLodM3qiqxZEPVs3hhbzXkM7MMelg1HCL9VXKv57RHq+ortIbeMwAdHJkFeycZt9+gS3D8T3W7w5eWbRvgUgTafa5u7/pGDTTMZt5uTiwY0Yh3OlTG1kaXsyumz69VzxnnIvDM8+gNGm+v8CM+yUCzikX4vFsNNo1rQcca3iTpNb7YcI6R848SGpNo7cizzsZGzQlom9ITfv9PsH7s41cKJMbC4oFqKKZrMRi8Glw8sz9eIYQQQog8SqflidKKrDF2Emi+pWnwbUlIjIbXDqclwoUQwkz0ERHcGf82MQcOYF+6NOVWrsBWXo+fTNPAb2lKr1AT2Dqq1hLeNSwTV24TdBFmtVH/vzUdqxKnT5OcqLYPOK3aNgxcnLVEq6aB3xIIvw01ekHRypnfV2YkRMHGd+DUUrVctgX0ngluxdO2iQ2FuZ0h6IJq9zJ8q0oAm2rnF7DvR7B3hlF/g1e19Lf7d0ZaO5muP0P9YU/f79IX4MIG9fcYZEI/5cwyGGB2e7hzFHz7QN85mdtPfITqfV2gEDzzQqbaWhy9EcrYJSe4GxGPva2ODzpXY3izsuhyQs9gTYOZreDeSTXAr9UHTNt9hYlbLuLqaMeWt1pSwqNAyqYaCw/d5MuN50lMNuDt5sgvA+vQuHwmnmc50bH5sOFN0AzqSoc+s8HeSSXBl70Al7aAkzsM2yyvzUIIIYQQRjI2lyuJbyTxbZSZreDuCdVzsHp3a0cjhMgjDImJhC1cRPCMGRgiItA5OVF26RKcqla1dmg525HZsHF85u7r5A7DtoB3dfPGlNskRMGstmpwc9kWMOQvNcQwI/fPqP8TDUmqncEzz2fu+LGhsO4NlbRNVaIe1B6khmtmJrlsirsnYeVwCL2qWri0+ghajAcb28e3jbgDszuoau0S9eDFdaa1YriwSfUNB5X0q9n36dvv/BL2/aDi6jf/ye87bh2COR3Vdq8eyr4T83dPwqzWKpH54loo38r4++qT4Ohc2PMdxIaodYXLq8rg6j1MPpESHpvI+6tOsfVsAABtq3oxqV9tCrtYuT/0jf0wrwvYOcFbZ7kQ5UC3KftJ0mtM6luLfvVLPXaX8/cieX3xca4GxWCjgzfaVOKNNhWxs80DF6ieXw8rR4A+Qb3eDFwEWz6CkwvV72jIGijT1NpRCiGEEELkGpL4NoEkvo2w+mVVEdbmE2j5rrWjEULkcprBQOSmzQT99BNJd+4A4FipEt6ffoJLw4ZWji6H8z8KczqpxGvt51XSzFgXN8Hd4+qS+hHbwKO05eLMyTQNVryk+km7FoOX90JBL+Pvv28y7JwAjm7wykHweDyJ91S3DqkkWKS/6mtdpgncOKCG4YFaV6kD1B4IlTuCnaNp+38aTVN9vLf/T/XadisBff7IOOkWdFElmePCoEJbGLTUuCrlkKvqREFCJDQaA52/Ny7G9ePg+Hx1lcKQ1VC2+ePbzO4A/oeh7lDo/mvG+zWnje+oliyelWHMgYx/F5qmkp87PlcnG0ANfEyIhBg16JGSDVV7jNKNTAolvYrpnwfUoUkFK1ZML+oPl7dC/eEkdvqRHlMPcP5eJO2qeTHrxfpPrEqPTUzm83VnWX5UDe5sWK4wvwx8hmLuBbIzesu4vg+WDILEKNX+JTZEnbQZsAiqPmft6IQQQgghchVJfJtAEt9G2Pejuky5Zn/oM8va0QghcrGYw4cJnDiJ+DNnALDz8qLouLG49+yJzjadalORJiZY9WKOvKOGZPVfYFqFqLnaVuR2/0yFrR+BjR28tMnkRCP6ZJjbCfyPqGrfwWtUT9+MGPSwfzLs+lYluQuXV60yiteB6CA4s1K1Prnnl3YfJw/VUqP2IChZP2utVWJCYO2rqrUCQJUu0OM3cC5s3P1vH4E/u0NSrHo/0GvG0x93YqxqCxJwBko1gqEbjG/poU+GFUNVRbyjGwzbBD41035+bh0sH6Jap7xxHNyKGbdfc4kLh9/qq6R1289UtfyT3D4M2z6B2/+qZZei0OoDlbBPjoeDU9RXUqz6ebVu0G4CFKlgUkjn7kby+pLjXAuKQZdSMT3WGhXTgRdgWiNAB28c48djyUz5+wqFnO3Z+lZLvFydMtzF2pN3+HjNGaITkvFwtmdS39q0r+5t+dgt7e5JNcgyNlgtd58CdV+0bkxCCCGEELmQJL5NIIlvI5zfoPoQ+tSCMfusHY0QIhdKuHKFwB8nE71rFwA2zs4UGTWSwkOHYuPsbOXocgGDHhb0gut7VNJ61N/glIn/s7LatiK3u3EA5ndTiefOE6HRy5nbT/AVmN4ckuPguR+g4ainbx95D9aMhut71XLN/tB1Mji6Pr5twDl1ldWp5RD10ADFwhVUFXitAVCojGnx3tgPq0aq/dk6QsevocFI0xPpl7fDkoFgSIbGr6n9pLcPTYM1L8OpZeDiparqTU1OJ8XBgt5w6yAU9FYnagqXU+1CpjWGkCvQ8j1o87Fp+zWXk0vgrzEq+f7a4ccr/0Ouqgrv8+vUsl0BaPoGNBv7+N898h7s/gZOLFQtVGzsoP5wePZ9k4YdPlYxXbYwPw98huIe2VgxvfZ1OLEAqnblZLOp9Pn9IHqDxtTn69KllvHPgZshMbyx5ASn/NXgzpealuWDzlVxss/lJ0hDrsK2T6FS+4x72AshhBBCiHRJ4tsEkvg2QvBlVdlkVwA+umtcZZsQQgDJQUEETfmN8JUr1WA4W1sKDeiP56uvYudpfEIn39sxQVUL27vAqJ1PHg5ojMy2rcjtou6rivnoAPDtq1p8ZKWCOnUQo70zjNn/5Ardy9tVEjg2RG3b5UdVwZ3RsQ16daLDb6lqk5FaEQzgYOLJisRo9b1IJeg399HqaVP5LVWPB6Dd59D8rce3OTwLNr0DOlsYuu7xViXGigtXvaIDzqgK+eHb4Pxa2Pg2OHvCuJPpnzzIDpoGc59TifmqXVXfZlCV9Xu+h6Oz1QkCnY0aYNn644yT/wHnYMdncHmbWnZwheZvQuNXwcH4E4T/rZie2KcWHWr4ZPKBmiDqPvxcE/SJJAzdTOfViVwLiqF77eL8OqiOybtLTDYwaesFZu27DkAVb1c+7lKNlpWLmjtyIYQQQgiRi0ji2wSS+DaCPhm+9lE9ZcedMr3STAiR7xhiYgiZO4+QOXPQYlXCrmC7tniNfxvH8uWsHF0uc2EjLE0Zoth3jmp9kVWmtq3I7fRJMK8r3D4EXtVh5A5wcMnaPg0GWNBDVXGXagTDNj86HDI5UfUC/+c3texdUyWdPSuZfqyEKJX89luaUjWeibdvz7wAz03K+uMG1Zpj2yfqdo+pUGdw2s9uH1EtdQxJqmd10zeydqzIezCnA4TfgmK1IfKuajFiTKW9pQWchekt1BUE/ReoKvT9P6ne3QAV20P7L0wfJnttD2z/NK3tjVsJlTivPTD9AaTpuBGsKqZP38nGiumdX6j2eKUa8YXXz8w5cB0vV0e2vdUSD+fMn1zbdTGQt5f7ERqTCECLSp582Lka1YvL+3YhhBBCiPxIEt8mkMS3kaY2hqDz8MJKdXmmEEKkIzk4mIj1GwiZMxt9kOpj6lS7Ft7vvotz/fpWji4Xeng4YONXodO35tu3sW0r8oItH8Khaapf9Khd4FnRPPsNvw3TmqiBde0mqOpcgNBrsHI43D2hlhu+rBKg9hn3N85QTAgkRJh2H3sXcDVzj+Rtn8LBX1VV98BFUKWz6lU+oyVE3YXqPaDffPM8p4KvqOR3bIhaLlxetRextc/6vrNq68dpJzdS+dSCDl+qHvCZZTCovu87v4CI22qdd01oPwEqtjVqF/+tmK5ezI0pz9ehQlELtDdKiIafakB8OBef/Z2OW90BmPtSA1pXNWF47BOExSTy264r/PnPDZL0Gjod9K5Tknc6Vs4bwy+FEEIIIYTRJPFtAkl8G2n5i3BuLXT4Gpq+bu1ohBA5iCE+nui//yZ87Vpi9h8AvR4A+1Kl8Hp7PK4dO6LLqwlVS0qMgT/aQeA5KN0Ehq43f6LPmLYVud2VHWqgHMCAhWp4oDmdWAhrXwNbBxi9R/291r+pkuFOHtBzGlTtYt5j5gSaBn+9Cn6Lwc4JBq+G3d/CjX3gWVn1oTdnG5I7x1XVflKMSqjX6Gm+fWdFQhT81kD1T3cvBW0+hZr9zHcFRVI8HJ4Be39MO+FRoY06kWJky5pdFwJ5e4WqmHZ2sOXLHr70qVfSPPGlOjQdtryPoVB5WsVN5FZ4IgMblOK7PrXMephbIbFM3HqBDadU/3tHOxtGNC/HmFYVcHPKASdChBBCCCGExUni2wSS+DbS31/D3olq+nz3KdaORggBEB2oKkuLVoEChbL10JrBQNzx40SsXUvk5i0YoqMf/Mypdi08evXGo3cvdA75oHe0JWgarB4Np5er4YBj9oGrhXr0Pq1tRW4XFwbTmqoK5AajoMsP5j+GpsGSQXBps0p0x4er9aWbqD7i7mZOMOYk+iRY+gJc3qp6WWsGVV0+epd6XTK3gLOqnUi17jnr6oSQq6q6v2pX81T1pyc2FPb+AIdnqjYy6FSv+DafgHuJDO8eEBnPm0tP8s81VTXfq04JvuzpS0FHu6zHpk+GKXUg/BZrSrzNW1frUbJQAba82dI8+0/HiVthfLvpAodvhAJQ2MWBcW0r8Xyj0tjb5uG2TUIIIYQQQhLfppDEt5FOr4RVI6BUYxix1drRCCESolWLhYhbatmtJPj4grdvyveaULic0f1gjZV44wYR69YRsXYdSXfuPFhvV7wY7t274969h/TwNodHhgOuh7LNLHu89NpW5AWrX4ZTS1VrjDH7zdPfOj1RATCtMcSFAjp49j1o+R7YWibpl6MkxsKfPcD/sFruOxd8e1s3prws9Lpqf3J2tVq2c1JtkJq/CU7uT72r3qAxbdcVftpxCYMGZYs489vzdfEt8fT7ZejMalg5jETHQtSKmEw8jiwZ1ZgmFYpkbb8Z0DSN7ecC+G7LBa4FxQBQztOF9zpWoZOvj1xpJIQQQgiRR0ni2wSS+DbSvVMwo4WqKn3ves6qtBIiP9r+PzjwC9jYp1T/pcPeGbyqpSTDa6rv3jXAybTXOn14OJFbthDx11riTp58sN7GxQXXTh1x79ED5/r10eXl4YjZ6fZhmPtcynDAbGov9d+2FS+ug9KNLH9cSzq/HpYNVpXIw7ZY/vFc3weHfofGY6BcS8seK6eJDVW9rkvUtf7AyfzC/5i6UuPWQbXsXASe/QDqD8uwJdKRG6GMXXKCexHx2Nvq+LBzNYY1K5u5RLGmwazWcPcEs2z683VsT4Y3K8f/upk40DMLkvQGlh65zS87LhEcrQZg1itTiI+eq0q9MoWzLQ4hhBBCCJE9JPFtAkl8GykpDr4uBmjwzhUoWNTaEQmRfwWeh+nN1VDCQcugTBMIOAcBZ+D+afU94Bwkx6V//+J11CXyvn3AxfOJh0kOCyN42u+EL12KlpSSXLexwaVZM9x79MC1bRtsCshQMbOKDkwZDngPqveEfvOy70Tjw20rnDxg+BZ14iQ3ig5SFdixwdDsTTUQUIi8RtPg4mbY8RkEX1LrCleAdp9l2A4mPDaRd1eeYvu5AADaVvViUr/aFHYxoT1VQjTs/wn2/UCizoHGcb/iUbQYm8a2wMnevFcbGSM6IZmZe64yc9814pMMADQpX4TedUvQuWYxi7VdEUIIIYQQ2UsS3yaQxLcJfq4F4TfhpY1Qtrm1oxEif9I0NeDt5n6o8hwMWpL+dga96v+dmgi/f0Z9j0xrT4KNHVTqALUHQuVOYOeo7hofT+iCBYTMmPmgd7djlSq49+iBW9cu2Ht5WfpR5k/6ZFjQ03LDAY3xcNsK1+IwYht4lMreGLJK01Sl94UN4FUdRu9+8NwWIk/SJ8Px+Wq4aEyQWleqEbT/8qlXOmiaxoJDN/lqw3kS9Qa83Rz5ZWAdGpfPoEWJPhlOLoRd30C0SpxPT+7GRP0gVr/ajGdKeZjrkWVKQGQ8k7ddYsWx2xhSPuk42dvQqYYPveuWpFlFT2xt5MpFIYQQQojcShLfJpDEtwkW9YPL26DLZGgwwtrRCJE/nVoOq0eBXQF47V8oVMa0+0cHwtk14LdEDWNL5eSBVr0XEcGlCVqwnuR79wFwrFYN73ffwaVpUzM+CJGu1PY1DgVV0tsSwwGNERsKczpB8EUoUgkGLASvqtaJJTP8lsGa0erEzqi/oVhta0ckRPZIiIIDv8I/v0FSrFpXtSs0GKna7zxh5sPZuxG8seQE14JisNFB++re6Vdsaxo1Yv6hW+BMiiXeACDYvjgTkwewPK4+r7euxDsdrfS6lQ7/sFj+OnGH1cfvcC045sF6bzdHej5Tgt51S1LFJ5tPLgohhBBCiCyTxLcJJPFtgq0fqw9TjcZA5++tHY0Q+U98BEypDzGB0OZTaPlO1vYXeEEN/ju1nJhLQQScdCchXPWGtSvkgtcbr+A2cJj07s4O59bB8iHqdr/5UKOndeOJ8IfZHdQVAjobqPsitPoIXL2tG1dGIu6ooa8JEdD6E3j2XWtHJET2i7wHu7+BEwtBUy0/cC0OtfqrK3zSaWEUk5DMZ+vOsvKYf7q79NVd42O7xTSxPQdAmFaQKcm9WKhvRyL2VCvmxtrXmuFgl/P+v9A0DT//CFYf92ed313CY9PmYtQo7kbvuiXpXrs4RV3lyhAhhBBCiNxAEt8mkMS3CY7/CevegPKt4cW/rB2NEPnP5vfh3+lQpCK8ctAs7RviL14kcNIkYvYfAMDGXsOzehSFKkVjYweUbqoSJbUH5s92EYHn1QkH7xqWaTuSFA93jsLigZAYBU1eh45fm/84mRF2E7Z+pFqGANi7QNM31JdjQevGlh5Ng4W94erfULwujNgOttLTV+Rjgefh8Cw4swriw9PWF3tGvab79n1sZsv+y8FcDIh6sFww7g71rv5GxfubAUi2ceBcqUH4lR1Bor1632xno6OTrw/ebk6Wf0xZlJhsYNfFQFYf9+fvC4Ek6dVHIVsbHS0redKnXkk61fDBzjbnJfCFEEIIIYQiiW8TSOLbBLcPw+z24OCachl+ZWtHJET+ce8UzHxWVe8N+QsqtM7S7pICAgj65Vci1qxRCUN7ewoNGojniKHY3d+vWqFc2w2k/DdRppnqJ+7knuWHkmv4H4M5HdQQUYBCZcHbV335pHwvVNa44ZOapnrh3j8DAafTeq4HXwZNr7Yp0wxeXJfzkrU3D8K2T1WCHqCgN7T6EOoMyVmxHpkNG8eDnRO8vE/+jxIiVXICXNoKfkvV8NrU1zSdLVRqnzLnoTPYP5S4jguDfT/CvzNAn6jW1RoAbT4Bj9LZ/xgsICwmkQ2n77H6uD8nbqWdGKjoVZAPO1elTVUvdNk1XFgIIYQQQhhNEt8mkMS3CfTJKgl05xi4l4L/s3ff4U3WbRvHv0m6N5QuCpRd9lSWoAwFHICAA1FkiANwbx8fx+ueuBBFRFBUHAwRFBBxIFPZmzILLd0t3TO53z9uLPKI2EDbtOX8HEePNneS330FaGjPXLl+45ZBYKSrqxKp+RwO+GiAueFg66Fw7ayzXsqek0Pa9A9J//hjjIICAPwHDiT0/vvwaPA/YUZmPGz/Cla+bnYjh7eFm+aD33mwuWVxPrzfC9L2mTO3i3JOfzsPf7Mb/M8gPLyt2ZGfGXdiU9G/bC6al3r6NbxrQ1QPuOqNqvtnaxiw6xv48WnIOGweC2kBl/4fNB9QtvC/IqUfhPd6QnEuDHgBuk9ybT0iVVVumtkBvnUOHNt08rhnILQZaobb8Ztg5asnu8QbXWxulFm3g2tqrgQHU3JYsDmeT9fFknFiFEq3xrX5zxUtaVfPtZt1ioiIiMipFHw7QcG3k3JTzQAubT+EtIRxS8C7lqurEqnZNs2Gb+80A9g7/4CAuk7d3TAMCrZvJ/ObhWR+9x2OzEwAvDt3Juzhh/Bu/y+b/yVshU+HQ24K1GoEoxZA7UZn+2iqh6WPwbqp4B8BE9eawe+fAfafgXbKnpOdkGVhsZqheGnHeFvzs3+E64Pjsiopgg0z4NeXzY5QgIa94LJnILKTa2py2GHWlXBkLUT1hNGLQHPpRf5dyl6zC3zbl+Y8//8V0tL83m52WfV5jjpHmfnFTP1lPzNXH6aoxJyPPrh9XR4aEE392j4urk5EREREQMG3UxR8n4XjR8xNz7IToH43MwTz0C8DIhUiLx2mXAB5adD/OXO+chkVHztG5reLyFy4kKJDh0qPezRsSOiDD+DXr1/Z38addgBmD4Xjseaoi5vmm6FtTXToN/j4KvPrG+eaoc/p2IvNUSX/29mdmwyeAaeORAlvY4ZINeW5Mv84rJoM694He6F5rM010O9JqBVVubWseQd++K/5wtCE1eb4GREpO4cDDv9mBuC7FprPX70fhQ43Vq1xRpUo/ng+ry/by4It8RgGeNisjO4RxZ19mhHo4+7q8kRERETOawq+naDg+ywl7YSZl5ubvjUfCNd/dt7+ciTyNzkpZigY0QHaXXdunXKL7oWNM83Q9I7fwHbmX7jtOTlkL/uBzIULyfv999LjFi8v/C+7jMDBg/Ht3g2L21l8v2YnwuxhkLzTfFv8yC8hqrvz61RlhdkwtQdkHoHOY2DQW86vUZBlboR5PnRIHj8KPz0H274wL9s8zDEjvR+rnM1Qk3fDtEvM8H3QW+bfmYicPYdD75j4ix3xmby4ZDer96cBEOjtzl19mzKqexSebjYXVyciIiJyflLw7QQF3+cgdi3MvhpKCqDDTTBkyvkR9IicycFfYP5t5kaGAK2HwaA3z25TyPiNML0fYMCY76HhRae9mWG3k7tmLZkLF5L944+ls7uxWPDp0oXAIUPw798fm5/vWT2kU+RnwOcj4Og6cxPBaz+G6IHnvm5V8e1dsOkTCIoyu4c9/V1dUfWQsNXcAPPQr+bliA5wzUcQ3KTizmkvhg8vhYQt0PQyuPFr/R8kIuXOMAx+iUnhpe/3sDcpG4B6tbx5aEA0g9rVxWrV846IiIhIZVLw7QQF3+doz/fw5U1g2KHnfXDp066uSMQ17CXwywvw22TAMIPTrHhwlJhfXzMT6nUu+3oOO0zva4Z67UbAsGl/u0lRbCwZX35F1qJFlKSklB73aNSIwKuvJnDQVbjXdW4eeJkU5cHXY2DfMrDYYMi70OGG8j9PZYv5AT6/FrDAmMXQsKerK6peDAP2fGe+eJCfbo4eueoN810PFeGXl+CXF8ErCCaug4CIijmPiAhgdxjM3XiU13+IITnbHPHUvl4gT1zVigsa1nZxdSIiIiLnDwXfTlDwXQ7+3HgPYMCL0H2ia+sRqWzHj8C88XB0vXm58xjzeyF5F8wda15vdTPnH3e/q2xvI/99Onz/oDlS5K4N4BdaepVhGBz/+muSXnixtLvbFhREwJVXEnj1ELzatCn77O6zZS82A86tc8zL/Z+HHndW7DkrUl46TO0OOYnQbRIMfMHVFVVfmfEw/1aIXW1e7nAjXP4KePqV3zmObTa7vR0lMHwGtL2m/NYWETmDvKISZvx2iPd/PUBukR03q4U5t3XjQoXfIiIiIpVCwbcTFHyXk99ehxXPmF8Pm15xHX4iVc2ub80XfgoyzQ3BBr8NrYeevD7/OCy6B3Z9Y15u0g+GTgO/kH9eMycFpnQ217ziNehya+lV9uxsEp58kuwlSwHw6dKF2mNG49ezJxYPj4p4hP/M4YDlT8DaKeblnvdBv6eq57iJubfAjrlQpzncvhLcvV1dUfXmsMPKV+HXl8FwQHAzc/RJRLtzX7u4AD64BFL2QKsh5rid6vhvTkSqtZTsQh6bv40fdycT4u/Jd3f1JDTAy9VliYiIiNR4Zc1ytXONlJ+e90PXCebX30yA/T+6th6RilacD4vvh69GmQF15AXm5pN/Db0BvIPg2lnmxntuXnBgBbx/ERz4+Z/XXv6kuWZEe7hgXOnh/K1bOTR0mBl6u7kR+tCDNJg1E/++fSs/9Aazc73/cydHHK16w+wCt5dUfi3nYucCM/S22GDo+wq9y4PVBr0fhdGLwb8upO0zO7TXRGIqQAAAIABJREFUf2CORDkbeenwxwyYOdAMvX1D4Mo3FHqLiEuE+Hvy9g0daR7mR0p2IXd+vpliu8PVZVW43MIS5m2M48YP19H6yaV89cdRV5ckIiIiclrq+EYd3+XK4TDf3r5jLrj7wuhFzs00FqkuUvbC12Mhead5+aJ7oe9/weZ+5vsl7zbvl7IbsECv+6H3Y6feL3atGexhgfE/Qr0LMBwO0mfOJPmNN6GkBPfISCInv453+/YV9Qidt+kTs7PdcECLq8zxE+7VoPMtOwmmdjNnUl/8MPR93NUV1Tx56fDNRIhZYl6OvtLcDNmnDGMBSorMF1K3zoGYpWAvMo/bPOD6z6B5/4qrW0SkDA6m5DB4ympyCksY37MR/72qlatLKnd2h8GaA6nM3xTP0h2J5BfbS6+zWuC9mzozoHW4CysUERGR84lGnThBwXc5KymCOdfDgZ/Auzbc8gPUaebqqkTKh2HA5k9hycNQnGd2nA6dBk37lX2NojxY9h/YONO8XK8LXDMDghqYndLTLjYD9U6jYfDblKSmcuzRx8hdtQoA/8sHEvHMM9j8/SvgAZ6j3Yth7jiwF0LdTtDyKghrC+FtwD+i6nXmGgbMucEMZMPbwfgV4OaCzvnzgWHA+mnmaBx7EQTUg+EfQlT309/22GbY+oX5Qmpe2snrQltD+xHQ9lptZikiVcbSHYnc8elGAKaM7MhV7SpgY2kXiEnKZt6mOL7ZHE9SVmHp8UZ1fBnWMZLDaXnM2xSHh5uV2eO60LVxsAurFRERkfOFgm8nKPiuAIU58PEgOLYJAuub4XdAzfgFQM5jBVmw+D4ziANo3McMvf3Dzm69nQvg23ugMBO8AmHwO5AZZ4bi3rXhro3kbtlD/MOPYE9NxeLlRdjj/yHommsqfuPKc3HoNzNMLso+9bh3bTMA/zMID2sDIdHg5umaOsF8EWPhJLN7+LZfIKy162o5XyRsNd/1kH4ALFbzHQ+9HjBHo2TGwbavzMA7de/J+/iGmvtGtB8B4W1dV7uIyBm8uGQ30349iI+HjW/vvIimoVXwBeoySM0p5Nstx5i/OY4d8VmlxwO93Rncvi7DOkXSoX4QFouFEruDCZ9tYvmuJPy93Pjq9u60jNDvUyIiIlKxFHw7QcF3BclNhY8GQNp+CG0FN86FwEhXVyVVXdoBs5O6qoVb8RvNTuaMw+Yc6H5PQI97zBnX5yLjsLmpYvwG87LVHRzFGJe/QcrqTNKmTwfDwLNZUyInT8azWTV590T6Qdi1EBJ3QNIOSN0Hhv3vt7O6mZtJhrUxw3DfUOfOY3WDhj3PrvP3+BGY2sMM6C992tyYUypHYTZ8/5A5vgSgQQ+wuZkvmnDixxI3L2hxJbS/wXyRyebmsnJFRMqixO5g1IzfWXswjSYhviy8syd+nuf+3JWZX8z6g2l0bRRMoM+/jFQ7SwXFdlbsTmb+pjh+iUnB7jCfi91tFvpEhzKsUz36tAjB08122vvePON3fj+cToi/J/Mn9KB+bZ8KqVNEREQEFHw7RcF3BTp+BGb0h+wEs7OvcR+zY6/FleDh6+rqpKpJPwjv9YTiXOg2CS59yrXdwGDOrV/3Lvz4NDhKILCBOZakfpfyO4e9GH5+3twYEijy78ixPyLI37IFgKAR1xP26KNYvarBvOx/Upxvbkb4ZxCeuAOStpsbeJ6r0ueWG048t5Thl22HA2YPgUMrzVEz45aaHcdSubbMge8eML/n/xTV0/x/otVg850QIiLVSGpOIVe9vYrErAKuaBvOuyM7ndO7tP44nM49czZzLLMAD5uVS1uFMrRjPXpHh+BuO7cX3w3DYENsBvM3xbN42zGyC05uTN2+fhDDO0VyVbu61Pb99xFgmfnFXD9tLXsSs2lUx5ev7+hOHT8X/wwnIiIiNZaCbyco+K5gyXtg8b1wZO3JYx5+0GqIGW5E9Tz3rlmp/hx2mHkFHF138lhEB7jmIwhu4pqaclLgmwmwf7l5ueVgcxyJd1DFnO/Az2TNeY+Ebw7iyMnF6u9PxLPPEjBwQMWcz9UMwxxtURqE7zA7gZ2Rn27Ogv6Thx+0uvrEc8tF//zcsv4DWPIQuPvAHatc929MIHU/rHwFgptCu+uhVpSrKxIROScbYzMY8cFaiu0Gj1/Rklsvbuz0GnaHwdSf9/PGjzE4DPDxsJFXdPKdU7V9PUrHjrSNDHQqXI9Ny2X+pngWbI7nSHpe6fHIIG+u7liXYZ3q0STEz+mak7IKGDZ1DfHH82kbGcic27qVS8e7iIiIyP9S8O0EBd+VJP0gbP0Stn1hjnf4U0A9aH89tBsBIc1dVp642Oq3zU3vPPyh/7Ow4v8gP8MMMq96w5zvW5kO/grzb4OcRHPkwsCXoPOYCtucsejIEZInv0H20qUAeLdvT93XX8ejnsYD/au0AyfmQs+B47EnjwfWPzEX+oZTN9hN3Q/v94SSfLjiNehya+XXLCIiNdonaw/z5MKd2KwWPhvflW5ObPqYlFXAvV9sYe1Bc2PfoR0jefbqNhxJy2P+pji+2XKM1JyTG002DfVjWKdIru4QSd0g79OumZlXzHfbE5i/KY4NsRmlx309bFzRNoJhnerRtVFtrNZz+znnYEoO17y/lvTcIno2rcNHYy7Ew00NLiIiIlK+FHw7QcF3JTMMOLreDKl2LDA39vtT3U5mSNVmOPhqV/jzRvJumHYx2IvMjupON0NmPMy/FWJXm7fpcCNc/gp4Ot+B5BR7CfzyIvz2OmBASAu4ZiaEtaqQ05VkZJD63ntkzPkCiovBYiF4/HhC7r4Li3vFzPGssQwDjqwzn1t2fnPqc0tkZ/O5pdXV8MUNEPcHNLoERn2jd5yIiEi5MwyD+7/ayoLN8dTx8+S7u3sSFvDvI8t+3pPMA19vJT23CB8PG88OacPwzvVOuU2J3cFv+1OZvymeH3YmUljiAMzX5ns0CWZYx3oMbBOOh5uVlTEpzN8Uz/LdSRSduJ3VAj2bhTC8UyT9W4Xj7VG+o762Hj3ODdPXkVdkZ1D7urx1fYdzDtRFRERE/krBtxMUfLtQcQHELIGtX8C+5Sc3v7O6QfQVZpetNsSs2ezF8GE/SNgKzQbAyC9PdlU77LDyVfj1ZTAcENzMHH0S0a5iajl+FOaNPzlupdNo899gWWZGO8lRUED67NmkfTAdR7Y53sO3Vy9CH3wAr+jocj/feeefnluwAAZ4BsCENRBU35VViohIDZZfZGfo1NXsScymc1Qt5tza7R+7n4tKHLyydA8frjoEQKuIAN4Z2fFfR45kFRSzdHsi8zbFsf5Qeulxb3cb3h420nOLSo+1CPdneKd6DOlQl9AyhPDn4rd9KYyb9QfFdoMxPRry1KBW5zTrXEREROSvFHw7QcF3FZGTAjvmmt2aCVvNY961YMhUaHGFa2uTivPzi/DrS+bf9cR14B/+99scXgXzboXsY2DzhAHPw4Xjy3fsyO5FsHCSudmiZwAMegvaDCu/9U8wHA6yFi0i+c23KElIAMCzZUvCHnoQ3x49yv18wumfW4ZMhY43urYuERGp8Q6n5jJoyiqyC0oY06MhTw9u/bfbxKblcteczWyLM9+pNKZHQx69vAVe7s51Yh9Nz+ObzfHM3xzPoVRz0+A6fp5c3cGc292qbuX+nrNwSzz3fGFu1P3QgGgm9WlaqecXERGRmkvBtxMUfFdBidvh27tOblrX9Q647Blw0+7wLmMYELMMIjuBX2j5rHlsM0zvZ3bjXvOROeLmn+SmwcKJEGPOwKbFVeZYFJ/a51ZDcQH88F/4Y7p5ObKzWUuthue27mnkrl1L0quvUrhrNwBu4eGE3HsPgYMHY9G4jcqRvBvy0qHhRa6uREREzhPLdyVx6ycbAHhrRAeGdDj5bsaFW+J5fMEOcgpLCPJx55Xh7ejf+jRNAE4wDINtcZnkFdm5sGEt3Gyu+xlj5upD/N+iXQC8NKwtI7o0cFktIiIiUnMo+HaCgu8qqqTI3OBw7RTzcng7c9ZyHXWLuMTmT82OaP8IuGn+uc+8Li6ADy6BlD3QeihcO+vf72MYsH6auQmmvcjcGHX4hxDV/exqSImBuWMhaYd5+aJ7oO8TYCvf2doFMTEkv/YauSt/A8Dq50fwbbdR++ZRWL0q9q3GIiIi4nqvLtvDuz8fwNvdxsI7L6JeLW+e/nYnX22IA6BLw9q8OaLDP25OWZ29snQPU385gNUC793UmQHnGOyLiIiIKPh2goLvKi7mB/jmDshLA3dfuPJ16HCDq6s6vzgcMLUrpMaYl72CYORX0KDr2a/5w39hzTvgGwqT1jvXuX1sC8wdB+kHwGKF3v+BLuMx5zeX0Z7F8P1DUJwHviEw9H1oeqnTD+NMipOSSHnnHTLnLzD/DN3cqDViBHUmTsCt9jl2qouIiEi1YXcYjP7od1btT6VhsA82q4UDKblYLHBX32bc3bepSzuzK5JhGDw6bztfbjiKh5uV2eO60LWxNrEXERGRs6fg2wkKvquBrASYfyscNjtmaXe9GYB7+ru2rvPF3iUwZ4Q5+zokGuL+ADdvuO4TaN7f+fVi18DMKwADbvgSogc6v0Zhthlcb53j/H3/qnFvGPoB+Ied2zr/I2/jRo7eehuOvDwA/Pv3J/T++/Bo2LBczyMiIiLVQ1pOIYPeWcWxzAIAwgI8efP6jnRvUvND4BK7gzs+3cSPu5Pw93Jj5pgLuaChmgBERETk7JQ1y62ZbQVS8wREwM0Loc9/zQ7fbV/CtIvNzl+peGveMT93HgM3fwtNL4OSfPjiBtj2lXNrFebANxMAAzredHahN5gvegx9H65+39wY01nuPtDvSbhpQbmH3gV7Yzg6YSKOvDy82rYl6vPPqff2Wwq9RUREzmPBfp5Mvakz4QFeDGwdzpJ7Lj4vQm8AN5uVKSM70qVRbbILSrhpxnp+2pPk6rJERESkhlPHN+r4rnZi18K88ZAVB1Z36P+sufmlxYkxF1J2cRvhw75gdYN7t0NAXbAXwzcTYfuJ0HvgS9BtQtnWW3wfbPgIAuvDhDXgVQ7fcw6HuUGmMyxWsNrO/dz/ozg+nsM3jKQkORnvTp1oMONDrN41b16niIiInB3DMLCcpz+35hfZmfT5Jn7ak4zNauG1a9sxtGM9V5clIiIi1Yw6vqXmiuoOd/wGLa4CRzEsfdQcw5Gb5urKaqY1b5uf215rht5gbv44dBp0PRF2L30UVjxrbj55Jvt/NENvgCHvlk/oDWC1mjU581EBoXdJejpHbhlPSXIyns2aUn/quwq9RURE5BTna+gN4O1hY9qozgzrGIndYXDfl1uZseqQq8sSERGRGkod36jju9oyDPjjQ1j2ONgLwT8CetwFNo+yr2GxQu3GEN4WfOtUXK3VVfoheKcTGA64YzWEtzn1esOA316Dn54zL3ceA1dOPn2onJ8BU3tA9jHocjtc8UqFl1+ZHLm5xI4ZS8H27bhFRNBwzue4h4e7uiwRERGRKsfhMHj++92loffE3k14aED0ef2igIiIiJRdWbNct0qsSaR8WSzQ5VZo0A2+Hgtp+2DZf85+Pb9wM9gNaw1hbc2vg5uB7Tz+Nln3nhl6N+n399AbzL+Dix8Cnzrw3f2wcRbkpcPwD8HN89TbLnnUDL1rN4FLn66E4iuPUVRE3N33ULB9O7agIBrM+FCht4iIiMg/sFot/PfKltT29eDVZXuZ+ssBMvKKeO7qttisCr9FRESkfKjjG3V81whFufDb65C6z7n72Yshda/Z2cxpvhVsnhDa4mQQHtbG/Hw2mylWN3np8EZrKM6DUd9Akz5nvv2uhebsdXsRNLoYRnxubkAJsHsRfHmT2WE/7geof2HF119JDIeDYw89TNZ332Hx9iZq1ky827d3dVkiIiIi1cKc34/w+ILtOAwY2DqcN0d0wMu9/EfSiYiISM1R1ixXwTcKvgUozIHkXZC4HZJ2QtIO83NRzulvH1Dv1CA8rI05MqUC5ka7zMpXzREm4W3h9t/KtnnowV/hi5Hmn1tEB7hxrnl8ajfIS4We98OlT1Vs3ZXIMAySXnyRjE9mg5sb9d+bil+vXq4uS0RERKRaWbojgbvnbKHI7qB742A+uLkz/l7uri5LREREqigF305Q8C2n5XDA8cOQuMMMwhN3QNJ2OH7k9Ld394HQlifC8Lbm57DW5beBY2UqLoA320JuMgybDu2uK/t94zfBZ9dAXhoEN4WgKDiwwvzzuPWnv49AqcZSP5hOyuTJANR99RUCBw1ycUUiIiIi1dOaA6nc9slGcgpLaBMZwKyxXajjV3N+bhQREZHyo+DbCQq+xSkFmWY3+J9BeOIOSN4NJfmnv31QFLQZBn2fBKu1cms9Wxs/hkV3m53t92wBm5MdN6n7YfbVkHnUvGx1h9t+Nl8QqCGOz5tHwuP/BSD00UcIHjPGtQWJiIiIVHM74jMZ/dHvpOUW0aiOL5+M60L92j6uLktERESqGAXfTlDwLefMYYe0AyeD8D87xLOPnbxNl9vh8pfLNjLElRwOmNoVUmOg//PQ486zWyfrGMweCil7oN+T0OuB8q3ThbJ/+om4O+8Ch4PgW8cT+kDNeWwiIiIirnQwJYdRM34n/ng+of6ezL6lK9Hh/q4uS0RERKoQBd9OUPAtFSYvHXbOh+9OBKN9n4CLH3RtTf9m71KYcz14BsB9O89tVEtRnrl5aESHqh/4l1Hexo0cGXcLRmEhgUOHEvHC81hqyGMTERERqQqSsgq4ecbv7E3KJsDLjacHt6ZD/SAaBvtitZbfz10Oh8HhtFz2JGZTbHfQp0UoAZotLiIiUuUp+HaCgm+pcOveg6WPml8Pehs6j3ZtPWcy8wqIXQ097ob+z7q6miqlYG8MsaNG4cjKwq93b+pNeQeLm5uryxIRERGpcTLzihn38R9sjM0oPebtbiM63J+WEQG0ijA/R4f7l2kjzJzCEvYkZLE7IYtdCdnsTshib2I2+cX20tt4ulm5rFUYwzvVo1ezOrjZqsmYQhERkfOMgm8nKPiWSvHj/8GqyWCxwvWfQosrXV3R38VthA/7gtUN7t0OAXVdXVGVURwfz+EbRlKSnIx3p040mPEhVm9vV5clIiIiUmPlF9l588cY1h1MY29SNgXFjtPern5tb1qGB9AywvxoWMeHw6l57E7IYk9iFrsTsjmSnnfa+3q6WYkO9yevyM7+5JzS43X8PBjSIZKhHSNpXTdA7/ATERGpQhR8O0HBt1QKw4Bv74TNn4KbF4xaAFE9XF3Vqb4eAzsXQPsbYOj7rq6myihJTyd25I0UHT6MZ7OmRM2ejS0oyNVliYiIiJw37A6DQ6m57D7RtW1+ZJOYVVDmNcIDvGh5olO8xYmu8YbBvrjZrBiGwY74LOZtimPR1mOk5RaV3i86zJ9hnSK5umMkYQFeFfHwRERExAkKvp2g4Fsqjb0EvhoFe78Hz0AY+z2Et3F1Vab0Q/BOJzAccMfqqlOXizlyc4kdM5aC7dtxi4ig4ZzPcQ8Pd3VZIiIiIgJk5BadGF9iBuG7E7I4mp5H/do+JzrA/Wl1Iuiu7etRpjWL7Q5WxqQwf1M8y3clUWQ3O82tFrioaR2GdYpkQOtwfDw08k5ERMQVFHw7QcG3VKrifJg9FI6sBb9wuOUHqBXl6qrg+4fh92nQpB+Mmu/qaqoEo6iIoxMmkrt6NbagIKI+/wzPxo1dXZaIiIiIVJLMvGK+257A/E1xbPjLvHFfDxsT+zRlUp+mLqxORETk/FTWLFe7dYhUNndvuGEOhLaCnET4dBjkprq2prx02Dzb/LrHXa6tpYowHA6O/edxclevxuLtTf1p7yv0FhERETnPBPq4M7JrA+ZO6MGvD/Xmnn7NaFDbh9wiO68u28uK3UmuLlFERET+gYJvEVfwrgU3zYPABpC2Hz67BgqzXVfPhhlQnAfhbaFxb9fVUUUYhkHyyy+TtXgxuLlR7+238G7f3tVliYiIiIgLRQX7ct9lzfn1od6Mu6gRAI/O307GX+aBi4iISNWh4FvEVQLqmiNFvGvDsc3w5SgoccEPzcUFsP4D8+sed4N2rCdt+oekf/wJAHVffAG/Xr1cXJGIiIiIVBUWi4WHB0bTNNSPlOxCnli4w9UliYiIyGko+BZxpTrN4Ma54O4LB3+GbyaAw1G5NWz7EnKTISASWg+t3HNXQcfnzSdl8mQAQh99hMBBg1xckYiIiIhUNV7uNiZf1x6b1cLibQks2nrM1SWJiIjI/1DwLeJq9TrD9bPB6gY75sKyx6Cy9px1OGDtFPPrbhPA5l45562isn/6mYQnnwQgePwtBI8Z49qCRERERKTKalcvqHRzyycW7iA5q8DFFYmIiMhfKfgWqQqa9oOr3ze/Xv8+/PZ65Zx33w+QGgOeAdBpdOWcs4rK27iR+PvuA7udwKFDCXngAVeXJCIiIiJV3F19m9K6bgDH84p5dP52jMpqYBEREZF/peBbpKpody0MfMn8+qdnYfH9cGxLxXZ/r3nb/Nx5DHgFVNx5qriCmBiOTpiIUViIX+/eRDz7DBbNOhcRERGRf+FuszL5ug542Kz8tCeZrzfEubokEREROUHBt0hV0m0C9Lzf/HrDDPjgEpjaHVa9CVnlPDcwbiPErjZHrHS9o3zXrkaK4+M5Ov5WHFlZeHfsSOQbk7G4ubm6LBERERGpJqLD/Xmgf3MAnlm8i6PpeS6uSEREREDBt0jV0+9JuHEetB4GNk9I2Q0/PgWTW8EnQ2DrF1CYc/brF2bDkfVmVzlA22shMLJ8aq9mSjIyODL+VkqSk/Fs1pT6703F6u3t6rJEREREpJoZ36sxF0TVIqewhIfnbsPh0MgTERERV7MYGkJGVlYWgYGBZGZmEhBw/o57kCoo/zjsWmiG3UfWnDzu7gutBkP7EdCwF1htf7+vYcDxWEjcAUk7IHE7JO2EjEOn3u6O1RDepmIfRxXkyM0lduw4CrZtwy0igoZzPsc9PNzVZYmIiIhINXU4NZfL3/qN/GI7Tw1qxdiLGrm6JBERkRqprFmugm8UfEs1kX4Itn0FW+ecGl4HREK766BxH/P4n0F30k4ozDr9Wv4RENYGWl5lzvc+zxhFRRydOIncVauwBQYSNedzPBs3dnVZIiIiIlLNzV57mCcW7sTTzcr39/SiSYjfWa9VbHdwJD3P6S1/ooJ9cLdVrTd35xaWYLNa8HI/TcOOiIiIkxR8O0HBt1QrhgFHf4dtX8COeVCQ+c+3tbpDSAuzozuszYnPbcE3uPLqrWIMh4NjjzxK1qJFWLy9iZo1E+/27V1dloiIiIjUAIZhcPNHv/PbvlQ61A9i7h3dcXMyhHY4DL7deoxXl+0l/ni+0zXUq+XNrLFdaBp69qF7efrjcDrjP96AwzC4s09TRvdoqABcRETOiYJvJyj4lmqruAD2LYMtc8wu7+AmJwLutubnOs3BzcPVVVYZhmGQ/NLLpH/8Mbi5UX/qu/hdfLGryxIRERGRGuTY8XwGvLmS7IISHhoQzaQ+Tct83zUHUnnh+93siDffuenlbnUqJC4otlNQ7KCWjzuzxnahff0gp+svTyt2JzHxs00UljhKj0UGefPggOYMaR+J1WpxYXUiIlJdKfh2goJvkfND6vTppLw+GYC6r7xM4ODBLq5IRERERGqieRvjeODrrbjbLCyc1JNWdc/8e2ZMUjYvLdnDT3uSAfDzdGNC7yaMu6gR3h5lD77TcgoZO+sPtsVl4uNh44NRF9CzWZ1zeixna97GOB6etw27w6Bvi1AGtgnnjeUxJGQWANAmMoD/XN6SHk1dU5+IiFRfCr6doOBbpOY7Pm8+CY8/DkDoI48QPHaMawsSERERkRrLMAxum72R5buSaBHuz8I7L8LT7e8BdnJWAZOXx/DVhqM4DHCzWrixawPu7teMYD/Pszp3TmEJd8zeyKr9qbjbLLx5fUeubBdxrg/JKR/+dpDnvtsNwLBOkbw8vB3uNisFxXZmrDrEe78cIKewBIA+0SE8dkVLmof5V2qNIiJSfSn4doKCb5GaLfunn4m76y6w2wkefwuhDz7o6pJEREREpIZLyS5kwJsrSc8tYlKfJjw0oEXpdbmFJUxbeZDpKw+SX2wHYGDrcB4eGE3jc9gQ80+FJXbu/3Ir321PwGKBZ4a0YVS3qHNe998YhsEry/by3i8HABjfsxH/uaLl30aapOUU8s5P+/l0XSwlDgOrBa7tXJ/7+zcnLMCrwusUEZHqTcG3ExR8i9RceZs2cWTsOIzCQgKvvpqIF1/AYtEsQRERERGpeEu2JzDhs01YLTB3Qg/aRQby5YajvLF8H6k5hQB0ahDEf65oyQUNa5frue0OgycX7uCz9UcAuO/S5tzdr2mF/SxcYnfw+IIdfLnhKACPDGzBHZc0PuP5DqXm8srSPSzZkQiAt7uNW3s14rZLmuDn6VYhdYqISPWn4NsJCr5FaqaCmBhibxqFIysLv0suod6Ud7C4u7u6LBERERE5j9z7xWa+2XKMBrV9cLdZOJCSC0DDYB8eGdiCgW3CKyyMNgyDN37cx9sr9gEwunsUTw1qXe6bShYU27l7zmZ+2JWE1QIvDmvL9Rc2KPP9N8am8/x3u9l05DgAdfw8uOfS5txwYX3cbNZyrVVERKo/Bd9OUPAtUvMUx8dz+IaRlCQn492xIw0+moHV29vVZYmIiIjIeSYzr5j+b/5KUpbZ4V3b14O7+zZlZNcoPNwqJ9SdtfoQTy/aBcDg9nV57dr25Xbu7IJibv1kA+sOpuPhZuXtER0Z2Cbc6XUMw2DpjkReXrqHw2l5APRoEswHN1+g7m8RETmFgm8nKPgWqVlKMjKIHXkjRYcO4dG0CQ0//RRbUJCryxIRERGR89T6g2n836Jd9I4O4Y7eTQjwqvx3IS7cEs8DX22lxGFwcfMQ3r+pEz4e5xYop2QBYMeUAAAgAElEQVQXMmbm7+w8loWfpxvTb76A7k2Cz2nNYruDz9cf4ZWle8gtstM2MpCZYy+kzllu9ikiIjWPgm8nKPgWqTkcubnEjh1HwbZtuEVE0HDO57iHO99xIiIiIiJS0/yyN5kJn24iv9hOxwZBzBxzIUE+Hme11tH0PEbNWM/htDyCfT34eFwX2kQGllut2+KOM2bmH6TnFtG4ji+f3NKFerV8ym19ERGpvsqa5WpYlojUGEZxMXH33EvBtm3YAgNp8OF0hd4iIiIiIif0jg7ls1u7EuTjzuYjx7n2/bUkZOY7vc6exCyGv7eGw2l51KvlzdwJPco19AZoVy+IuXd0JzLIm4OpuQx/bw0xSdnleg4REanZ1PGNOr5FagLD4eDYI4+StWgRFm9vombNxLt9e1eXJSIiIiJS5exLymbUjN9JzCogMsibwR3qlvm+DsNgzvojZBWUEB3mzye3dCEswKvCak3MLODmj9YTk5RDoLc7H425kM5RtSrsfOVtW9xxlu9KosThXPQSEejFFW0jNOJFROQ0NOrECQq+Rao3wzBIfull0j/+GNzcqD/1XfwuvtjVZYmIiIiIVFlxGXncPON3DqbmntX9L4iqxYzRFxLoU/Hzyo/nFTFu1h9sOnIcL3cr793UmT7RoRV+3nNxND2PV5btZdHWY2e9hs1qoXfzEIZ1qke/lqF4udvKsUIRkepLwbcTFHyLVF+GYZD24YekvD4ZgLovv0TgkCEurkpEREREpOpLzy3i03WxZOYXO3W/sABPRnVriLdH5QWxeUUlTPxsE7/sTcHNauG1a9tzdcfISjt/WR3PK2LKT/v5ZG0sRXYHFgtc3iaciEDvMq9hGLDxSAZbjx4vPebv5cZV7SIY1qkeF0TVwmKxVET5Z6jJICGzAF9PNwK9K39zVhGRv1Lw7QQF3yLVT3FSMlmLF5O5cCGFMTEAhD78MMHjxrq4MhERERERqQjFdgcPfr2VhVvMLuqnBrVi7EWNXFyVqaDYzuy1sbzz0z6yCkoA6Nm0Do9d0YLWdc9u/vn+5BwWbI5jwaZ4jmUWlB5vUNuHoR0jGdYpkqhg33Kp/68Kiu3sS8phd0IWuxKy2J2QxZ7EbDLzi/GwWXn8ypbc3D2q0sN3EZE/Kfh2goJvkerBkZdH9ooVZH6zkNy1a8HhAMDi4UHwHbcTMnGiiysUEREREZGK5HAYPLN4F7PWHAbgrr5Nuf+y5i4LYR0Og0XbjvHqsr3EZZgbhbYI9+exK1pycbM65VKXw2Gw/lA68zfF8f32BHKL7KXXXRBVi6GdIrmqbV2nx84YhkFKduGJcDub3SdC7oOpudhPM5PcYjG70QEuaxXGK8PbUcvX45wem4jI2VDw7QQF3yJVl+FwkPf7H2QuXEj2smU48vJKr/Pu3JnAwYMJGDgAW2D57iIvIiIiIiJVk2EYvPvzfl77wXzn58iuDXh2SBts1soNv9ceSOOF73ezPT4TMEfAPNA/muGd6lVYLflFdn7Ylci8TfGs2pfCn/m0h81KiL9zG2HmFZWQkXf6MTe1fNxpGRFAi/AAWkb40zIigKahfnzx+xFe+H4PRXYHEYFevDWiI10a1T7XhyUi4hQF305Q8C1S9RQePEjmwm/J/PZbShISSo+7169P4JAhBA4ehEeDBi6sUEREREREXOmz9bH895sdGAZc0TacN67vgKdbxc8d35eUzUtL9rBiTzIAfp5u3HFJY27p2bhS554nZRWwcEs88zbGszcp+6zWsFqgUR1fWkYE0DIigFYnPocFeP5jt/qO+EzunrOZg6m5WC1w76XNmdSnaaW/8CAi5y8F305Q8C3VWZG9iJVxK9mbsZcG/g2Irh1No8BGuFur54Yj2StWkDrtAwq2bSs9ZvX3J+Dyywm8egjeHTtqlpyIiIiIiADw/fYE7v1iC0V2B90bB/P4lS1pXTeg3H9nMAyDXQlZzF4by1cbjuIwwM1qYWTXBtzdrxl1/Jzrti7v2g6l5pJ9YrZ4WbnbrDSq43tWYX1uYQlPLNzB/E3xAHRrXJs3r+9IeKCX02uJiDhLwbcTFHxLdWMYBttSt7HowCKWHFpCVlHWKde7W91pEtSE5rWaE10rmuja0UTXiibIK8hFFZdN4YEDHBw02JzdbbPh16sXgVcPwa9PH6yervtBUkREREREqq7V+1O57ZMNpbOvo8P8GdYpkqs7RhIWcG5B7J9d1fM3xbMn8WRX9YDWYTwysAWNQ/zOaf3qbt7GOJ5YuIO8Iju1fNx5/br29G0R5uqyRKSGU/DtBAXfUl3E58Sz6MAiFh9cTGxWbOnxUJ9QukV042j2UWIyYsgtzj3t/UN9Qk8Jwi8Iv4A63nUqq/x/dXTSneSsWIHvRRdR95WXcQsOdnVJIiIiIiJSDexOyGLKT/tZviuJIrsDMMd4XNS0DsM71aN/6zB8PNzKtNaZ5mhf2iqUsRc14sKGmmv9p4MpOdw1ZzM7j5kNWbf0bMTDA6MrZewMmH9fOYUlTs84F5HqS8G3ExR8S1WWXZTN8tjlfHvgWzYmbSw97u3mzaUNLmVQk0F0Ce+CzWr+UOEwHMTnxBOTHsPejL3sTd/L3oy9xOfE/23tIM8gvhv2HQEerv93n7dhA7E3jQKbjcaLvsWzcWNXlyQiIiIiItVMZl4x321PYP6mODbEZpQe9/WwcXnbCIZ1iqRbo2Cs/zOP2uEwWHcojfmb4lmyPaG0exzggqhaDOtUjyvbRhDoUz1HSla0whI7Ly3Zw8zVhwFoGxnIOzd0pGEd3wo97897k3nwq63kF9v5ZtJFNA/zr9DziUjVoODbCQq+paopcZSw9thaFh1YxE9Hf6LQXgiABQtdIrowuMlgLm1wKT7uPmVeM6coh33H95UG4T8f+Zm0gjTu63wf49qMq6iHUiaGYRA74gbyt24l6Prrifi/p11aj4iIiIiIVH+xabks2GyOKTmSnld6vG6gF1d3jGRYp3oALNgcx4JN8RzLLCi9Tf3a3gzrWI+hHSMrPLytSZbvSuKhuVs5nleMr4eN54e25eqOkeV+nqISB6/9sJcPVh4sPdavRSgzxlxY7ucSkapHwbcTFHxLVbIleQsP/PIAyfnJpccaBzZmcJPBXNn4SsJ9w8vlPAv2LeDJNU8S6h3K0uFLcbe5rnMha9kPxN9zDxZvb5osW4p7aKjLahERERERkZrFMAw2xmYwb1M8i7cd+8dNIP293LiqXV2Gd4qkc1Stct8g83yRkJnPPV9s4fdD6QBc2TaCRy9vQf3aZW/cOpMjaXncNWcTW+MyARjWMZKFW49hdxh8cVs3ujXWyEyRmk7BtxMUfEtVsT9jP6OXjiarKItanrW4ovEVDGoyiFa1W5X7D11F9iIGzhtISn4Kz/d8nsFNBpfr+mVlFBdz8KpBFMXGUmfiRELuvssldYiIiIiISM1XUGxnxe5kFmyO45e9KRhA7+YhDOtUj34tQ/Fyr5y51DWd3WHwzk/7eHvFPhyGOR/95u5R3Nm3KUE+Hme97rdbj/Gf+dvJKSwh0NudV65px4DW4TzxzQ5mr4ulfb1Avpl0kV60EKnhFHw7QcG3VAUJOQnctOQmkvOSaRfSjumXTXdqlMnZ+HD7h7y16S2a1WrGvEHzXPLDQfrnn5P0zLPYgoNpsmwZNj+9jVBERERERCpeZn4xAIHemttdUXYey+TF7/ewan8qAAFebtzZtyk3d2/o1IsMeUUl/N+3u/hyw1EALmxYizdHdCQyyBuAlOxCer/6M7lFdqaM7MhV7eqW/4MRkSqjrFmutRJrEpF/kFGQwe0/3k5yXjKNAxvzbt93Kzz0Brgu+jp83HzYl7GPNcfWVPj5/pc9J5fUKe8CUGfSRIXeIiIiIiJSaQK93RV6V7DWdQOZfUsXPh7XhRbh/mQVlPDC93vo9/qvLNwSj8Px772YexKzGDxlNV9uOIrFAnf3bcqcW7uVht4AIf6e3HZxEwBeXbaXohJHhT0mEak+FHyLuFhecR53rriTQ5mHCPMJY9pl0wjyCqqUcwd4BDCs2TAAZu2cVSnn/Kv0j2ZgT0/HIyqKWtdeW+nnFxERERERkYplsVi4pHkI393di1euaUdYgCfxx8054EPeXc2aA6mnvZ9hGMxeF8vgKavZn5xDqL8nn43vyv39o3Gz/T3OGt+rEXX8PIlNy+Pz9bEV/bBEpBpQ8C3iQsWOYh749QG2pW4j0DOQaZdNK7fNK8tqVKtR2Cw21iWsY3fa7ko7b3FyMmkzZwEQcv/9WNzVaSEiIiIiIlJT2awWrrugPr882IcH+zfHz9ON7fGZjJy+nnGz/iAmKbv0tpl5xUz4dBNPfLODohIHfaJDWHJPL3o0qfOP6/t6unHfZc0AePun/WQXFFf4YxKRqk3Bt4iLOAwHT65+klXxq/CyeTGl7xSaBDWp9Drq+tWlf8P+AHy86+NKO2/qlHcx8vPxbt8e//6XVdp5RURERERExHW8PWzc2bcZvzzUm1HdorBZLfy0J5mBb67k0Xnb+HFXEle8/RtLdybibrPw3ytbMmP0hQT7ef7r2tdfUJ/GIb6k5xYx7deDlfBoRKQqq9LB99NPP43FYjnlIzz8ZDesYRg8/fTT1K1bF29vb3r37s3OnTtdWLFI2U3eMJnFBxdjs9h4vffrdAjt4LJaRrceDcDSQ0tJzE2s8PMVHjjA8blzAQh9+CHtuC0iIiIiInKeqePnybNXt+GH+y5mQOswHAZ88cdRxn+ygfjj+UQF+zBvQg/G92qM1Vq23xndbFYeGdgCgA9XHSQxs6AiH4KIVHFVOvgGaN26NQkJCaUf27dvL73ulVdeYfLkyUyZMoU//viD8PBwLrvsMrKzs8+woojrzdwxs7S7+pmLnuHiehe7tJ7Wwa3pEt4Fu2Fn9q7ZFX6+5MlvgMOBX79++HTuXOHnExERERERkaqpSYgf00ZdwNd3dKdjA3O/qyEd6rL4rp60q+f8/lf9W4VxQVQtCoodvPljTHmXKyLVSJUPvt3c3AgPDy/9CAkJAcxu7zfffJPHH3+cYcOG0aZNGz7++GPy8vL4/PPPz7hmYWEhWVlZp3yIVJaF+xcyeeNkAB7o/ACDmwx2cUWmMa3HADA3Zi5ZRRX3PZG3YQM5K1aAzUboA/dX2HlERERERESk+riwYW3mT+jBhv9eylsjOuLvdXb7QFksFh67wuz6/mrD0VNmh4vI+aXKB9/79u2jbt26NGrUiBEjRnDwoDmj6dChQyQmJtK/f//S23p6enLJJZewZs2aM6754osvEhgYWPpRv379Cn0MIn9aGbeSp9Y8BZhB85g2Y1xb0F/0jOxJk8Am5JXkMS9mXoWcwzAMkl99DYCg4cPxbNy4Qs4jIiIiIiIi1Y/FYqFOGWZ5/5vOUbUZ2DochwEvL9lTDpWJSHVUpYPvrl278sknn7Bs2TKmT59OYmIiPXr0IC0tjcREcw5xWFjYKfcJCwsrve6fPPbYY2RmZpZ+HD16tMIeg8iftiRv4YFfHsBu2BncZDD3db7P1SWdwmKxlM76/nT3pxTby38H7OwflpO/dSsWb2/q3Dmp3NcXERERERERAXh4YDQ2q4UVe5JZdzDN1eWIiAtU6eD78ssvZ/jw4bRt25ZLL72U7777DoCPP/649Db/uymeYRj/ulGep6cnAQEBp3yIVKT9GfuZtGISBfYCekX24ukeT2O1VL1vvysbX0mIdwjJecksObykXNc2iotJnvw6AMFjx+AeGlqu64uIiIiIiIj8qXGIHzd0Md/h/+KSPRiG4eKKRKSyVb3k7Qx8fX1p27Yt+/btIzw8HOBv3d3Jycl/6wIXcaWEnARu//F2soqyaBfSjtcueQ1369nNKqtoHjYPRrYcCcCsnbPK9QeDjK++ojj2CLbatak97pZyW1dERERERETkdO7p1xwfDxtbjx7n++1nng4gIjVPtQq+CwsL2b17NxERETRq1Ijw8HCWL19een1RURG//vorPXr0cGGVcj6zO+wcyjzE0sNLeXvT20xaMYnrFl9Hcl4yjQMb827fd/Fx93F1mWd0bfNr8XbzZl/GPtYcO/O8/DMxDIP3tr7H0IVD2Ra7ntR3pwJQZ9JEbH6+5VWuiIiIiIiIyGmF+Hty+8VNAHhl2R6KShwurkhEKpObqws4kwcffJBBgwbRoEEDkpOTee6558jKymL06NFYLBbuvfdeXnjhBZo1a0azZs144YUX8PHxYeTIka4uXc4DOUU5xGTEsDdjL3vT9xKTEcP+4/vJL8n/220j/SKZdtk0gryCXFCpcwI9AxnebDif7v6UWTtncVHkRU6vUeIo4bl1zzFvn7lJ5s8v3UP/9Ew8oqKodd115V2yiIiIiIiIyGmN79WI2etiiU3L4/P1sYy5qJGrSxKRSlKlg++4uDhuuOEGUlNTCQkJoVu3bqxbt46oqCgAHn74YfLz85k4cSIZGRl07dqVH374AX9/fxdXLjWJw3AQnxNPTPrJkHtvxl7ic+JPe3svmxfNajWjea3mRNeOJrpWNK2CW+Hl5lXJlZ+9m1rdxJw9c1iXsI7dabtpGdyyzPcttBfyyMpHWHFkBVaLlfqFfly8Kh2AkPvuw+JeNce8iIiIiIiISM3j6+nGfZc14/EFO3j7p/0M71wPfy/9XipyPrAYmu5PVlYWgYGBZGZmaqPL81xecR77ju8r7eD+8yO3OPe0tw/zCSsNt5vXbk50rWga+DfAZrVVcuXl7+FfH2bJ4SVc2fhKXur1Upnuk1OUw90/380fiX/gbnXnlYtfIeSdeXgs/oWYuhDyyYf0qOd8B7mIiIiIiIjI2SqxO+j/5koOpuRyZ5+mPDgg2tUlicg5KGuWq+AbBd81xaHMQxzJOuLUfYodxRw4foC9GWbQfSTrCAZ//5Zwt7rTNKjpKV3czWs1rxajS87WzrSdjFg8ApvFxtLhSwn3DT/j7VPzU5n440R2p+/G192Xt/u8Tfu8YA4OGgwOB0/eZCM9OowFQxYQ4KHvMxEREREREak8y3YmcvvsjXi5W/n1oT6EBVSfd2WLyKnKmuVW6VEnImVR4ijhva3vMX3b9NOG1s6q413nlA7u6FrRRAVG4W49v94K1Tq4NV3Cu/B74u/M3jWbhy586B9vG5cdx+3Lb+dI9hFqe9XmvUvfo5m9DkfvuxUcDrz7XEJ+6ziSs2J5af1LvNDrhUp8JCIiIiIiInK+698qjAuiarEhNoM3lsfw0vB2ri5JRCqYOr5Rx3d1lpCTwCO/PcLm5M0ARNeKdiqgtlqsNAhocErQHewdXFHlVjsr41YyacUkfNx8WH7t8tN2asdkxHDH8jtIyU8p3cQzIgOO3DKe4rg4bHXq0PDzz9jllc7opaNxGA7e7P0m/aL6ueARiYiIiIiIyPlqY2w6w99bi9UCy+69mGZh2iNOpDpSx7fUeCtiV/DkmifJKsrC192Xp7o/xeWNLnd1WTVKr8heNAlswoHMA8yLmcfYNmNPuX5z8mYmrZhEdlE2TYOaMu2yaQTEpnH41tuwp6biXr8+DT6agUf9+nSgAWNbj2XGjhk8s+4ZOoR20IsMIiIiIiIiUmk6R9VmYOtwlu5MZOBbv2GzWsp8X3erhV7NQhjWKZLe0aF4uFkrsFIRKQ/6LpVqp9BeyPPrnufeX+4lqyiLNsFt+HrQ1wq9K4DFYmF069EAfLr7U4rtxaXXrYxbyW0/3EZ2UTYdQzsya+AsfHccJnbUzdhTU/Fs0YKGn3+GR/36pfeZ2GEizWo1I70gnefWPYfecCIiIiIiIiKV6ZHLW+Dn6YbdYVBU4ijzR26RnaU7E7lt9ka6vvAjTy3cwf+zd9/RUVXr/8ffM+kQ0mlJaAkQehXpVUFAEikKonTwghSRqlIU6V0EAbEACl4vKC0JhiJIk957QhICSSghvU89vz/yM/f6lZJJm5TntdZdrDtzzt7PQDLOfM4+z74SmSjfa4UowqTVCdLqpDgJTwpn2tFphCSEADC8/nAmNJ2AlUXp6r9dmLQGLd13dOdJxhMWtFuAn7cfAWEBzP5zNgbFQAfPDizvuBz90ZNET5qMotVi91Jzqqxbh8VTfp9ux99m4N6B6I16FrZbiK+3b57qi82IZeP1jcRlxJl0nr2VPYPrDaa6Y/U8zS+EEEIIIYQQonhJ1+pJTNe9+MD/EZeqJeDqA3ZdiuZJiib7ce/yZenbzJPeTT3wcLLL71KFEE+R0yxXgm8k+C4OFEVhd+huFp1dRIY+AxdbFxa0W0A7j3bmLq1U+O7ad3x58UtqOdeit3dvlp1fBoCvly+ft/2ctF0BPJw9G4xG7Lt0wWPlCtS2z94h+5ur37Dm0hrKWZVj5xs7qVS2Uq7qOvngJDOOzyAu07TQ+y92lnbMajULP2+/XJ0vhBBCCCGEEKJ00RuM/BkWx86LUey/8YhMnREAlQpae7nSp6kHPRpWxt5GugsLUVAk+DaBBN9FW6o2lXmn5/Hb3d8AaFm5JYvaLaJ8mfJmrqz0SNIk0fXXrmToM7IfG1JvCFNemkLC9xuJWb4CAMe+fak893NUls//D7zeqGdI0BCuxV6jrXtb1r+6HpUq573VdEYday+tZeP1jSgo1HSqSZ+afUwa44/IPzj36ByQFeDPbDWTslZlc3y+EEIIIYQQQojSLSVTR9D1R+y8GMXp8Pjsx22t1HSvX4m3XqpCG29Xk76rCiFeTIJvE0jwXXTdiL3BtGPTiEyJxEJlwfim4xnRYARqlbSnL2xLzi5h662tAExsNpER9UfwZPkK4jduBMBl5AgqTJ2a4/+ghyeF0z+gPxqDhtmtZtPfp3+OzotOjWb6selcfXIVgP61+zOtxTRsLZ+9wvxpDEYD3137jnVX1mFUjFRzqMbSDkup51rPpHGEEEIIIYQQQoiohHT2XH7AjgtRhMemZT/eysuFGT3r0sjTyYzVCVGySPBtAgm+ix6jYmTLzS2surgKvVGPe1l3lnRYQpMKTcxdWqkVlxHHgjML6FylM72q9eDhrNkk7d4NQIVpU3EdOdLkMbfc3MLSc0uxs7Rjh+8OqjhUee7xByIOMOfkHFJ0KZSzKsfnbT+na7WuuXo9f7n4+CIfHf+IR2mPsFJbMbn5ZN6t+65ckRdCCCGEEEIIYTJFUbgSlcSvFyLZfj4KrT6rFYpfY3emveZDFZcyZq5QiOJPgm8TSPBddMRnxhN0N4g9oXu4FX8LgK7VuvJZ689wtHE0c3UCwJiZSfSkyaT+8QdYWFB57lyc+vXN3ViKkZH7R3L+8XmaVWjGxtc2YqG2+MdxmfpMlp5byi8hvwDQuHxjlnRYgoe9R55ey1+SNEl8+uenHI48DEAnz07MbTsXZ1vnfBlfmN9f7y0BYQEkahJZ9+o6vBy9zF2WEEIIIYQQogSLTsxgxf5gdl6KBsDaQs3QNtUY37kWjmWszFydEMWXBN8mkODbvDQGDUcjjxIQFsCJ6BPoFT0ANhY2TG8xnbdqvyWrb4sIQ3IykWPHknH+AiobGzy+WEm5Ll3yNGZUShT9/PuRrk9n6ktTGVp/6N+eD00IZdqxaYQmhqJCxciGIxnbZCxW6vz9kKAoCv8J/g/Lzy1Ha9RSoUwFFrdfTItKLfJ1HlF4nvXeAtDAtQFbem7BUi0bzgghhBBCCCEK1vXoJBYF3eLP0DgAHO2smNClJoNbV8PG8p+Lv4QQzyfBtwkk+C58iqJw5ckV/MP82RexjxRtSvZz9V3r4+vtS48aPXCxdTFjleJ/6aKjiRw3Hs3t26jt7amyfh1lWuRPKLwjZAdzTs3BWm3Ndt/teDt5oygKO+/sZPHZxWQaMnG1dWVR+0W0dm+dL3M+S3B8MFOPTiUiOQK1Ss3oRqMZ3Wj0U1eii6JHURQuP7lMQFjAP95bGrg24LXqr/HNtW9I0aYwvsl4RjcebcZqhRBCCCGEEKWFoigcCXnC4t9uE/w463uKp7Md017zwbeRO2q1LPgTIqck+DaBBN+FJzIlksDwQALCAohMicx+vGKZivh6++Lr5YuXk7QfKGqS9x/g4ezZGJOTsXBzo+p332Jbp06+ja8oCmMPjeVE9Anqudbj61e/ZsGZBeyP2A9AG/c2LGi3ADc7t3yb83nSdeksPLOQPWF7AGhesTmL2y+mUtlKhTK/MF1kSiSBYYEEhL/4vSUgLIAZJ2ZgqbLk514/U8cl/36WhRBCCCGEEOJ5DEaFXy9EsuJACDEpGgAaeToyo2ddWnm5mrk6IYoHCb5NIMF3wdIZdQSEBbAndA8XYy5mP25naUfXal3x8/ajRaUWqFVqM1YpnsaYmcnjJUtI/Pk/ANg2aoTHyhVYe3rm+1wx6TH02dOHZG0ydpZ2ZOgzsFRZMqHZBIbVH2aWn4/A8EDmnZpHuj4dRxtH5redT6cqnQpsvgx9BjfjbtK0QtNS9fugKAqP0x8TkhBCmi7txSf8j0RNIvvu7vvbe0sZyzJ0rdYVX2/fp763KIrCpCOTOHT/EDWdarKt1zasLazz5bUI0xkVI2cfnaVquaq427ubuxwhhBBCCCEKRbpWz/fH7/L10TDStAYAXq1bAd/G7gXe7tXd0Zbm1ZylrawotiT4NoEE3wXHYDQw7dg0Dt47CIAKFa0qt8LX25dXqr5CGSvZzbio0oSFET1pMpqQEABcR42k/MSJqKwKbgOO38J/46PjHwHgYe/B0g5LaVS+UYHNlxP3ku8x7ei07M1WB9UdxKTmk/I9KL0Vd4vpx6YTkRzB0HpDmdpiar6OX1RoDBrCEsMIjg8mJCGE4ISsP5M0SXkaV61SZ7+3dKnS5YXvLXEZcfT170t8ZjwjG4zkw+Yf5ml+kTuxGbHMPDGTkw9OAtCiUgt8vXzpWq0r9tb2Zq5OCCGEEEKIgvckRcOXh0L4+WwkBmPhRXQj29VgZs+60mJFFEsSfJtAgu+CoQa3C3EAACAASURBVCgKC84sYFvwNqzUVoxtMhZfL18qlq1o7tLEcyiKQtLOnTyavwAlIwMLV1fcFy/Gvn27Qpl74/WNxGfGM7rxaBysi8bvo9agZdXFVWy5uQWAui51WdphKdUdq+d5bEVR+Pftf7Pi/Ap0Rh0AFioLtvXaho+LT57HN6fYjFiC44MJTgjODrrvJt3FoBj+cayFyoIajjVM7utvobKgtXtretboafJ7y6F7h/jwyIeoVWp+6P4DTSo0Mel8kTenHpzik+OfEJcZh6XaEr3xv5uP2lrY0qVqF3y9fWlVuZVsQiqEEEIIIUq80JhU1h0J5WFiZoHOYzAqnI2IB6BvUw+WvNkIK4vSc8exKBkk+DaBBN8FY/3l9ay7sg4VKpZ3XE636t3MXZJ4AUNqKo8+m0Py3r0AlG3TGvclS7AsX97MlRUNx6KOMfPETBI1idhZ2jG71Wx8vX1zPV5iZiKzT87mSOQRADp5dgLgSNQRmlZoyubum4tly5M0XRrTj03nWNSxpz7vaOOIj7MPtZ1r4+Pig4+zD15OXthY2BRypTDj+AwCwgOoWq4qv/j+InehFAKdUce6y+v4/tr3KCjUdKrJsg7LKGNVhr3he/EP8yciOSL7eDc7N16v8Tq+3r7F/mKQEEIIIYQQRcGOC1FM33EVg1GhS50KrH2nGXbWFuYuS4gck+DbBBJ857/twduZd3oeALNazmJAnQFmrki8SMa1a0RPnoIuMhIsLCg/cSKuo0aiUhe/4LUgPU57zCcnPuHco3MA+Hn7MbPlTJMD0wuPL/DRsY94nP4YK7UVU16awjt13uFx+mP8dvuRoc9gXtt59K7ZuyBeRoGJz4zn/d/f52bcTVSoqOZQLTvc9nHJCrsrlqlYZHrJJWuT6bOnDzHpMQysM5AZLWeYu6QSLTo1mo+OfcSVJ1cA6F+7P9NaTMPW0jb7GEVRuBF3A/8wf4LuBpGoScx+zsfZB19vX173er3QNrsVQgghhBCiJDp06zFjf7qIRm+keTVnNg5tgWOZgmttKkR+kuDbBBJ856+D9w4y5cgUFBTGNB7DuCbjzF2SeA7FaCR+8w/ErFwJej1W7u64r1hOmaZNzV1akWUwGvj22resv7Ieo2KkukN1lnZYSl3Xuvly7qbrm1h5YSUuti749/bH0caxIF9OvnmQ+oDRB0cTkRyBs40z619dT323+uYu64VORp9k9O+jAfi227e0qtzKzBWVTAfvHeSzPz8jRZdCOatyzGkz54V3AukMOo5HHycgLIAjUUey26GoVWrae7Tns9afUb6M3JEihBBCCCFEbpyLiGfk5nMkZ+rxqViOH0e+TEUH2xefKISZSfBtAgm+88/Zh2cZ8/sYdEYdb9V+i9mtZheZlZ3in/RxcTz45BPSjh0HoFy3blSePw8L+T3IkWet2n7Wz3xOV4vrjDre8n+LsKQwBvgMYFarWQX+WvIqNCGU0b+PJiY9hsplK/NN12/ypQd6YZl/ej7bgrdRqWwldvrtpJx1OXOXVGJk6jNZdm4Z20O2A9CofCOWdliKh72HSeMkaZLYH7Ef/zD/7BXjrSq3YkPXDcWyJZAQQgghhBBFwa2HyQzdeJaYFA2eznZsGdmSGm5lzV2WEM8lwbcJJPjOH7fibjF8/3DSdGm8WvVVlndcjoVaekQVNYqioH/8mIyLF3m8aDH6J09Q2dhQ8ZNPcBrQXy5UmCgxM5FPT37KH5F/ANCpSifmtZmHk63T344ztT/4uUfnGLF/BCpU/Pz6z0V65fTlmMuMOzSOZG0y3o7ebOi6odhtYpuuS6effz+iUqPoXbM389rOM3dJJUJYYhhTj04lNDEUFSpGNBjBuKbjsFLn7RbKG3E3GBY0jExDJjNbzuTtOm/nU8VCCCGEEEKUPpHx6Qz+/gwRcem42VuzefjLNPDI/Z3HSek6LtyPp04lB9yd7PKxUiGySPBtAgm+8y4yOZLBQYOJy4yjRaUWrH91vVk2qhN/Z9Ro0ISGorkdTGbwbTTBIWhu38aQlJR9jLW3Nx4rV2LrU9uMlRZviqLw8+2fWX5+OTqjjoplKrK4/WJeqvQSWoOWVRdXseXmFgDqutRlaYelOVoN/fHxj9kbvpcGrg3Y2nNrkbyQdCL6BJOPTCZDn0Gj8o1Y98q6YtOa5f+6+Pgiw/YNQ0FhTZc1dKrSydwlFVuKorDzzk4Wn11MpiETV1tXFrZfSBv3Nvk2x0+3fmLx2cXYWdrxq++vVHWomm9jCyGEEEIIUdo8SdEwbNNZbjxIxt7Gkm+GNKeNd8731dEZjBwNfsLOS1H8fjMGrcGISgVtvF3p29ST7g0qUdbGsgBfgShNJPg2gQTfeRObEcuQoCFEpkTi4+zDpu6bpE2AGeifPCHzdjCa4NvZf2rC74LB8M+DLSyw8fKibPv2lJ8wHrWdXIHND7fjbzPt6DQikiNQq9QMqz+M0w9PczPuJgCD6g5iUvNJWFtY52i82IxYfHf5kqpLZXar2fT36V+Q5Ztsb/heZp2YhV7R09ajLSs7rjR5k8+iZsX5FWy+sRlXW1d2vbELZ1tnc5dU7KRoU5h7ai77IvYB0Ma9DQvaLcj3zSiNipH3DrzH2UdnaVK+CZu7by6SF4eEEEIIIYQoLpIzdbz3w3nO3I3H2kLN6oFN6d6g0jOPVxSFa9FJ7LwYTcCVB8SlabOfc3e05UFSZvb/t7OyoHuDSvRt5kEbbzcs1MXnbnNFUeTu+CJGgm8TSPCde6naVEbsH8Gt+Ft42HuwpccW2WiskClaLQ9nf0rSnj1Pfd7C0RGbOnWwreODjU/Wn9Y1a6K2zln4KkyTrktnwZkF+If5Zz/mZOPEvLbzcrWC+K9VrQ7WDgT0CcDF1iUfq829v+oC6FGjBwvaLsDKovjvAK4xaBgQMICwpDC6VevG8o7L5QNODhkVI3vD97L60moepT3CUmXJhGYTGFZ/WIH14I5Ojaaffz/SdGlMaj6JEQ1GFMg8QgghhBBClBaZOgMf/HyJAzcfo1bBwj4Nefvlv99d+SAxg92Xo9l5MZrQmNTsx93sbejdxJ0+zTyoV9mBqIQMdl+KZuelaO7GpmUfV9HBht5NPejXzJPaFYvuwkmt3siMXdc4ePMx83s3wLexu7lLEv+fBN8mkOA7d7QGLe///j5nH53FxdaFLT22yK3mhcyYnk7UBxNJO3ECVCqsq1fHpo4Ptj51sv6sUwfLihUluDODgLAAlpxbQl2XusxrO49KZZ99lfx59EY9A/cO5Hb87SLRe1pRFNZeXsuGqxsAeKfOO3z08kclanPBG3E3GLR3EHpFz9IOS+lRo4e5SyryTj88zcrzK7kVfwsAD3sPlnZYSqPyjQp87p13dvLZyc+wUluxrdc2ajnXKvA5hRBCCCGEKMn0BiMzd11n2/lIAKZ392Fo6+rsu/6InZeiOBkWx19poo2lmm71s1Zyt6/phqXFP78bKorC5chEdl6Mxv/KA5IydNnPNfBwoG9TT/yauONmX3Ra5qZp9IzZeoHjd2IBUKngc7/6DGld3byFCUCCb5NI8G06g9HAtGPTOHjvIGUsy7Cp+ybqudYzd1mlij4hgcgxY8i8chWVnR2ea9Zg366tucsS/8OoGPMlEL4cc5nBQYMB+LHHjzSt0DTPY+aGwWhgwZkF/BLyCwDjmoxjdKPRJfLCyvrL61l3ZR0O1g7semMXFcpUeO7xOqOOiKQIQhJCCE4I5l7SPSqVrYSPiw8+zj54O3lja2lbSNUXnpCEEFZeWMmf0X8CYG9lz8iGIxlUd1ChvV5FURh/eDzHoo5R16UuP/X8qUTcfSBEYTMqRi48vsD+iP04WDswuN5gafckhBBClGKKorB0fzDrj4QBYG2pRqs3Zj/fsoYLfZt50KNhZRxsc/75W6M38MftJ+y8GMUfwTHoDFmxpIVaRfOqzthZm9a+sHEVJ8Z19sbGMv/aHiakaRm++RyXIxOxs7Kgk095gq4/AmDiK7X48NVaJfJ7cHEiwbcJJPg2jaIoLDizgG3B27BSW7Hu1XW0qtzK3GWVKrqHD7k/6j20YWFYODpS5ZsN2DVubO6yRAH67ORn7Lyzk9rOtdnWaxuW6sLdFERr0PLx8Y85eO8gKlTMajWryPUcz086o45Bvw3iZtxN2nm0Y90r67I/2CRpkgiODyY4IZjg+GBCEkIISwxDa9Q+czy1Sk11h+r4OPtQ26U2Ps4++Lj4UN6ufLH8wPQ47TFrL69lT9gejIoRS5UlA+oMYHSj0WYJyp6kP6H3nt4ka5MZ03gM45qMK/QahCiu7ibdJSAsgMDwQB6mPcx+3N7KnlENR/Fu3XdL5IU7IYQQQuTMd8fDmb83687OGm5l6dvUg95NPajikvf9neLTtARefcCOi9FciUzM9Tj13R1YM7ApXuXt81zTg8QMhmw8S2hMKk5lrNg0rAVNqjjx5aE7rPr9DgCDW1Vjjl/9YtWnvKSR4NsEEnybZv2V9ay7vA4VKpZ1XMZr1V8zd0mliiY8nPsjR6F/+BDLSpWo+v132Hh7m7ssUcASMhPw3e1LkiaJj1p8xKB6gwpt7pj0GGacmMGZh2ewVFuyuP3iUvF7H5oQyoDAAWiNWnrW6EmqLpXg+GAepz9+6vFlLMtQ27k2Pi4+VHeozsO0hwQnBBMSH0KCJuGp5zjbOGcH4c0rNqdzlc5FOghP06Wx8fpGfrzxI5mGrI1qulbryofNPjR7q6ugu0FMPzYdC5UFW3tupYFbA7PWI0RRlpiZSFBEEAFhAVyLvZb9uL2VPV2rdeVW/C1ux98GoFLZSkxoOoFeXr1KVFsrIYQQQuTcpfsJqFQqGns6Ftj3lbAnqVyJTMSUlDJVo+fLQ3eIT9NSxtqCeW80oF9zz1zXEBqTypDvz/AgKZPKjrZsGfkyNSv8twf5llMRfOp/A0WBXo0qs7J/E6wt5fOROUjwbQIJvnMuMiWSnjt7AjCz5UzervO2mSsqXTKuXSPyvX9hSEzEukYNqn7/HVbusrlCafFLyC/MPTWXslZlCegdUKAbyabr0jl0/xCB4YGcfngao2LEztKOLzt/SWv31gU2b1Gz+fpmVlxY8Y/HPew9skNuH+es/3mU83hqKKQoCk8ynmSvEg+Jz2qHEpEcgVEx/u3YCU0n8K9G/yqw15NbOqOOHSE7WH9lPfGZ8QA0Kd+EKS9NoUmFJmau7r+mHp3K/oj9eDl6sa3XNlmlKsT/0Bq0HI86jn+YP8eij6E36gGwUFnQ1qMtvt6+dPLshK2lLUbFSGB4IGsureFRWtZtvXVc6jC5+eRS9d8AIYQQQhR9j5Mz+fA/lzkVHgdA36YezO3dAHsb0+6SvhyZyPBNZ0lI1+FVvixbRrbEw8nuH8cFXHnA5O2X0RkU2tdy4+tBzSlr4lwi7yT4NoEE3zl3IOIAU45OoZ5rPbb12mbuckqV1D//JGrCByjp6dg2bEiVbzZg6Sy9N0sTo2Jk0G+DuBZ7jZ41erKkw5J8H//co3P4h/nz+73fSdenZz/XrEIzpr88nfqu9fN1zqLOYDSw9vJa4jPjs0PuWs61KGed953HM/WZhCWGEZwQzMXHF9kTtgcVKr7u+jVt3NvkQ/V5pygKhyMPs+rCKiKSIwCo5lCNSc0m0aVqlyK3Oj0hM4E+e/oQlxnHkHpDmNZimrlLEsKsFEXhWuw1/MP82RexjyRNUvZzdV3q4uvtS48aPXCzc3vq+Zn6TH669RPfXfuOVF0qAG092jKp2SR8XHwK5TUIIYQQQryIwaiw7o9Qvvg9BKOS1ZJlzcCmNPBwzNH5x+88YfSWC6RrDTT2dGTT8JdxKWv9zOOPhTxhzNacHy/ynwTfJpDgO+e+vvI1ay+vxc/bjwXtFpi7nFIjOSiI6OkfgU5H2Tat8Vi9Bgv7suYuS5jBjbgbDAwciILC992+5+XKL+d5zPCk8Oz+rn+t7AOoUq4Kvt6+9PLqRZVyVfI8j3i+OSfnsOPODpxsnNjeazuV7SubtR6jYmTWiVkEhAcAWW1Z3m/yPm/WfhMrddHdPPJI5BEmHJ6AChUbX9vIS5VeMndJQpjFxccXWXF+BVdjr2Y/VsGuAq97v46vly+1nGvleKyEzAQ2XN3Attvb0Ct6VKh4o+YbjG8ynoplKxZE+UIIIYQQJjsXEc/Eny/xICkTaws1H/eow/C21Z+7YCfw6gMmbctawd2uphtfD26eo9Xi/7tC3Lt8WX58xgpxUTAk+DaBBN85N/3YdILuBvFhsw8Z2XCkucspFRJ+/plHc+eBolCue3fcly5BbS1XEkuz+afnsy14G16OXvzq+ytWFqaHkAmZCQTdzervej3uevbj5azL0b16d/y8/WhcvnGRW9FbkmkMGoYEDeFm3E0auDbghx4/YG1hnt91RVFYcm4JP936CUuVJcMbDGdEgxHYW+d9s5jCMPvP2ewO3Y2HvQc7/HZQ1kouFIrS427SXVZdWMXhyMMA2FrY8mq1V/H19qVlpZZYqC1yPfb95PusuriKg/cOZo89uN7gYvX+IIQQQoiSLTFdy/Rfr3LgZtbeTK/WrcDSNxs/dUX2ltP3+HTPdRQFXm9YmZUDGmNjmfPPSqExKQz+/iwPn9ETXBQcCb5NIMF3zr0V8Ba342+zuvNqOlftbO5ySjRFUYhdt47YNV8B4DTwbSrNmoXKIvdfWEXJkKRJwm+3H/GZ8UxqPokRDUY893iD0UBkSiTBCcEExwdzM/4mZx6cQa9k9Xe1VFnSzqMdvt6+dKzSERsLm8J4GeIpolOjGRA4gCRNEm/VfotPW39qljq+u/YdX178EoBF7RfRy6uXWerIrVRtKn39+/Iw7aFZ/x6FKEyxGbF8feVrfg35FYNiwEJlQd9afRnbZOwzW5nk1pUnV1hxfgWXYi4B4GLrwuL2i6X/txBCCCGKBEVR2HL6HvP33kKrN1LJwZZVbzehlZdr9vOrD2W1RgEY1Koqn/s1wEJt+sKvB4kZDP7+DGFP0nAqY8WmYS1oWlXa0hY0Cb5NIMF3zhgVIy1/akmmIZPAPoFUc6hm7pJKLMVo5PGChST89BMAbuPG4TZ+nKy+Fdn2hO5h1p+zsLO0w7+3P5XKVgIgTZdGSELI3zZSvJN4hwx9xj/GqOdaDz9vP7pX746rnWthvwTxDCeiTzD297EoKMxrO4/eNXsX6vw77+zks5OfATC9xXQG1xtcqPPnlzMPzzDqwCgA1r+6nnYe7cxckRAFI0OfwY83fmTj9Y3ZezN08uzEpOaT8HLyKrB5FUXh8P3DfHHxC+4l38PT3pPAPoF5WlEuhBBCCJGfbj5IZvzPFwl/koZaBRO61GJ8l5rMD7zJD6fuATDxlVp8+GqtPOUt8Wlahm8+x5XIRMpYW/D1oOZ0qF0+v16GeAoJvk0gwXfORKVE0WNnD6zUVpx99yyWatm1tiAYMzJ4OGs2yXv3gkpFxZkzcRn0rrnLEkWMoigM2zeMizEXaeTWiPJlyhMcH0xUatRTj7e1sKWmU018XHyo7VyblpVb4u3kXchVi5xaf2U96y6vw8bChq09t1LHpU6hzPvH/T/48MiHGBUjIxqMYFLzSYUyb0FZdGYR/779byrYVWDnGztxtMnZ5ja5la5L59TDU7Rxb4OdZenq76coCucfn8fT3tPs/elLC4PRwJ6wPay9tJaYjBgAGrg2YPJLk2lRqUWh1ZGuS+e1Ha+RqElkRccVdKverdDmFkIIIYR4kXStns/23OCXC1nflcuXs+FJigaVCub41mdom+r5Mk+aRs+YrRc4ficWKwsV4zvXwqVswe+N9HINV3wqlb72KhJ8m0CC75w5FnWMcYfGUdOpJrve2GXuckocxWAgadcunqxegz4mBiwtcV+8GMder5u7NFFEhSSE0D+gPwbF8LfHK5apiI+LDz7OPtR2qU1t59pUK1dNVuEVI0bFyPhD4zkefRwPew+29dpW4KHthccXGH1wNBqDht41ezO3zdxif5dJhj6DtwLe4l7yPV73ep3F7RcX2FxGxciI/SO48PgC3o7eLOu4zKTNA4u7v9rjONo4sr3Xdtzt3c1dUomlKAonok+w8sJKQhNDAfCw92Bis4m8Vv011Cp1odf01aWv2HB1Aw3dGvJTz5+K/XuHEEIIIUqe3ZeimbnrGmlaA5ZqFSv6N+aNJh75OodGb2Dy9ivsvfowX8d9nnm9GzC4VenryCDBtwkk+M6ZH278wPLzy+lWrRsrOq0wdzklhqIopB0/Tsyy5Wju3AHAysODyvPmUrZNGzNXJ4q6wPBAzj86j7eTd1bQ7VwbJ1snc5cl8kGSJokBgQOITo2mvUd7vnrlqwILtEISQhi2bxgp2hQ6enZkVedVJeaunssxlxm6byhGxcjKTivpWq1rgczz440fWXZ+Wfb/t7GwYXqL6bxV+60SHwL+b3scgPqu9fmhxw8Fsl+AUTFiUAxYqQt+9YwpFEXBqBgL/ALjzbibrLywkjMPzwDgYO3Avxr9i4F1BpptM1zI6i/+2q+voTVq2dx9M80rNjdbLUIIIYQQzxIRm8bGP+/So0FlWnsXTLtPg1Hh+xPhXLqfWCDj/19vv1yVjqWwrYoE3yaQ4DtnPjv5GTvv7GRM4zGMazLO3OWUCBk3bhCzfDnpp04DoHZ0xG3MGJzffQe1tfm+wAohioZbcbcYHDQYjUHDuCbjGNN4TL7P8SD1AYN/G0xMRgxNKzRlQ9cNJa5Nx6oLq/j++vc42ziz3Xd7dk/8/BKeGM5bAW+hNWqZ2GwiFx5f4ET0CQC6VuvKnDZzcLAumZ8v/rc9zpu13+TgvYMkaZLoV6sfc9rMyde5MvQZjDs0jtvxt/nP6/+hqkPVfB0/txRF4aNjH3E48jDv1HmHUY1G5fu/98PUh6y5tIbA8EAUFKzUVrxb911GNRxV4HeD5NTnpz7n15Bf6VSlE2u6rDF3OUIIIYQQogTLaZZb+PdCimIrPDEcAC/HgtsoqbTQPXhA9PTpRPR7k/RTp1FZWeEyfDg1D+zHdfgwCb2FEADUda3LrFazAFh3eV12mJpf4jPjGX1wNDEZMdR0qsmaLmtKXOgNMLbJWOq41CFBk8CUo1PQGXT5NrbeqGfGiRlojVraerRlZIORrH1lLVNfmoqlypKD9w7ylv9bXHlyJd/mLCouPL7AtGPTMCpGetfszaetPmVp+6WoULHjzg523cm/tmg6o44pR6Zw7tE5UrQprLq4Kt/GzqtD9w8RFBGExqBh041N9NzZky03t+TLz1myNpmVF1bSa1cvAsIDUFDoWaMnAX0CmPLSlCITegMMqTcEgCORR7ibdNfM1QghhBBCCCErvgFZ8Z0TiqLQ7j/tSNYm86vvr/i4+Ji7pGLJkJxM3DffEP/jFhStFgCH11+n/KQPsfb0NHN1Qoiiau6pufwS8guONo5s67UND/u896JL16Uzcv9Irsddp1LZSmzpsSXfV0IXJZHJkQwIHECKLoW3fd5mZquZ+TLu11e+Zu3ltZSzLscuv11ULFsx+7nrsdeZdnQaUalRWKgsmNB0AsMbDM91y5p0XTqH7h/iQMQBkrXJJp1rZ2XH8PrDaVm5Za7m/r+e1x5nw5UNfHX5K6zV1mzpuYV6rvXyNJeiKMz6cxb+Yf7YWNigM+owKka29txK4/KN8+Pl5Fq6Lp039rzBo7RHdK/endDE0Oy+2572ntl9t01td6Mz6NgWvI0NVzeQqMm6TbZFpRZMaT6F+m718/115JcJhydwJPJIgaz4F0IIIYQQ4i/S6sQEEny/WGxGLJ23d0aFirPvnsXW0tbcJRUrilZLws8/E7tuPYakJADKvPwyFaZNw65hAzNXJ4Qo6rQGLUODhnI97jr1XOvxY48f89Q/WWfQMf7weE4+OImTjRM/9PihVNzNczTyKOMPjwdgUftF9PLqlafxbsXd4p2976BX9Cxuv5jXvf65GXGqNpW5p+YSFBEEQOvKrVnYfiFudm45msNgNHD20VkCwgL4/f7vZOgzcl2vChWjGo5ibJOxeerh/qL2OEbFyAeHP+Bo1NF82Zx15fmVbLqxCQuVBV92/pJD9w+xK3QXzSo0Y3P3zWbtob7ywko2Xd+Eh70Hu97YhZXaij2he1h7eS1PMp4A0NCtIVNempKjvteKorD/3n6+vPAlUalRAHg7ejP5pcm092hf5PvFX3x8kaH7hmKttmb/m/tz/HMuhBBCCCGEKST4NoEE3y927tE5Ruwfgae9J0H9gsxdTrGhKAop+/YRs/ILdJGRAFh7e1Nh6hTsO3Uq8l9ghRBFx8PUh/QP7E+iJjFPqymNipGPj39M0N0g7Czt+K7bdzQq3yh/iy3C1lxawzdXv8HWwpatPbfm+g4mrUHLgMABhCaG0rVaV1Z0XPHM93RFUdgdupuFZxaSacjExdaFRe0W0cbj2RsYhyWG4R/mT2B4IDHpMdmPVy1XlV7evajlVMukek9En2DHnR0ANK3QlCXtl1DZvrJJY0BWe5yhQUOJSI6gplNNNnff/NRQO0mTxNuBbxOVGkU7j3asfWVtrla6/7WxNsC8tvPoXbM3j9Ie0WtXLzQGDas7r6Zz1c4mj5sfwhLDeNP/TfSKnjVd1tCpSqfs59J16fxw8wc2Xd+UfbGic5XOfNj8w2deZLr4+CIrzq/gauxVANzs3BjXZBy9a/YuNpvNKorCoN8GcTX2KqMbjWZ80/HmLqnIMRgNHIk6Qn3X+iX6LhshhBBCiIIkwbcJJPh+sW23tzH/zHw6eHZg7StrzV1OsZB+4QKPly4l80rWF1iL8m6UnzABp759UVkWjy+wQoii5eSDk4w5OAYFhc/bfE7fWn1NOl9RFJaeW8rWW1uxVFmy5pU1tPNoV0DVFk0Go4Gxh8Zy8sFJqparys+9fs7VRoRfXPiCjdc34mLrwq43duFi6/LCc8ITCs4FsQAAIABJREFUw5l6bCp3Eu4AMKLBCMY3HY+V2grICpWD7gbhH+bPzbib2ec5WDvQo0YPfL19aeTWKNcXTfdF7OPzk5+TqkulnHU55rWZxyvVXsnx+aa2x7kdf5tBvw1CY9AwtvFY3m/yvkn1BoQFMOPEDAAmNZ/EiAYjsp/78uKXfHftO2o41mCn385CD4YVRWHkgZGce3SOTp6dWPPK0zdzjM2IZf3l9ey4swODYsBCZUG/Wv14v8n72auh7ybdZdWFVRyOPAyAnWVWW5qh9YdSxqpMob2m/HIg4gBTjmb1Hz/Q70CxfA0FRWvQ8vHxjzl47yCutq5s6bGFKg5VzF2WEEIIIUSxI8G3CST4frFFZxbx79v/Zlj9YUx5aYq5yynSNOF3iVm5gtTfDwGgKlMG1xEjsjatLFvWzNUJIYq7b65+w5pLa7BWW7P+1fVUdaia43P9w/xZcykroMuPVh/FVUJmAgMCB/Aw7SGdq3RmVedVJq1GvhxzmaH7hmJUjHzZ+Uu6VO2S43Mz9ZksP7+cbcHbAGjk1ogBdQZwMOIgJ6JPoFf0AFiqLGnv2R4/bz86eHbA2iJ/Nj2OSoli+rHpXIu9BsAAnwFMazHtha1zctsexz/Mn5knZqJCxdpX1tLes32O6jwedZwPDn+AXtEzuN5gpr007W+Bf4o2hZ47e5KoSeSz1p/xZu03czRuftkbvpePj3+MjYUNu9/YjWe55+/TEZ4YzhcXv+BI5BEAyliWYViDYcRlxPFryK8YFANqlZq+tfoytvFYypcpXwivomAYjAZ67epFVGoUM1rOYGCdgeYuqUhI06Ux8fBEzjw6k/2Yp70nW3pukZYwQgghhBAmkuDbBBJ8v9h7B97j9MPTzG0zlz61+pi7nCJJHxfHk6++InH7L2AwgFqN05tv4jZ+HFYVKpi7PCFECWFUjEw8PJEjUUdyPca0l6YxpP6Q/CuqGLoee50hQUPQGXVMbDaRUQ1H5ei8dF06bwa8SWRKJH7efixotyBX8/9+73c+PfkpKdqUvz3ewLUBvt6+dK/RPUeryHNDZ9Sx5tIaNl3fBEBt59os67AML6enB9l5bY8z79Q8todsx8HagW29tr0wJL7y5ArvHXiPDH0Gr3u9zsJ2C596YWLrza0sObcENzs39vbZW2gri1O0Kfjt9iM2I5bxTcYzuvHoHJ977tE5Vp5fyfW46397vJNnJyY1n/TMf4Pi5ufbP7PwzEI87T0J7BOIhdrC3CWZVVxGHGMPjeVm3E3KWJbhs9afsfrSaqJTo6njUodNr23C3tre3GUKIYQQQhQbEnybQILvF3tl+yvEZMSwpccWmlRoYu5yihRjRgbxmzcT9+13GNPTAbDv3JkKU6dg4+1t5uqEECVRsjaZSX9M4lLMJZPOs7awZnj94SYFdSXZLyG/MPfUXNQqNRu6bqBV5VYvPGfB6QX8J/g/VCxTkZ1v7MxVm5S/PEh9wOw/ZxOdGp3VysTLt1CDzz+j/2TGiRnEZ8ZjZ2nHJy9/Qu+avf+2sjo/2uNoDVqG7RvGtdhr1HWpy5aeW565wjw8MZwh+4aQpEmirXtb1nRZg5WF1VOP1Rl0+O32Iyo1yuQAOi+WnF3C1ltbqeZQjZ1+O01ejW9UjOyP2M/6K+txsHZgYrOJtKjUooCqNY90XTrddnQjSZPEio4r6Fa9m7lLMpsHqQ8YfXA0EckRONs4s/7V9dR3q8/95PsMDhpMfGY8L1d6mXWvrsvTpsVCCCGEEKWJBN8mkOD7+VK0KbT5OWsDrj8H/pmnL/kliWIwkLR7N0++XI0+JmvjMdsGDagwbRplW75s5uqEEEK8iKIofHryU3aH7sbZxpntvtuf27P61INT/OvgvwDY0HUDbdyfvTllcfEk/QmfnPiEMw+z2i/0qNGDT1t9mr369Ltr3/HlxS8BWNhuIb7evrma51HaI/oH9CdBk0DfWn35vM3nTz1mcNBgHqU9oqFbQ77r9t0LV3EH3Q1i+rHplLEsw299f8PVzjVX9eVUcHww/QP7Y1SMbHh1w3M3KC3tvrr0FRuubqChW0N+6vlTqdzQOzQhlNEHRxOTEUPlspX5pus3VHesnv38zbibjNg/gjRdGl2rdWVZh2WlfnW8EEIIIURO5DTLzXlDS1Fq3U26C4CbnZuE3mQFJanHj3O3T18ezpyFPiYGKw8P3Jcvp/r2bRJ6CyFEMaFSqZjZciZ1XeqSoElg8pHJaA3apx6bok1h9p+zgay+2CUh9AYoX6Y833T9honNJmKhsiDobhD9A/tzI/YGu+7syg69p740NdehN0ClspVY2nEpapWanXd2siNkx9+eT9IkMebgGB6lPaK6Q3XWvrI2R61LXqv+GvVd65OuT+frK1/nur6cMCpG5p+ej1Ex0rVaVwm9X+DtOm9jrbbmWuw1k+9OKQn+2gsgJiOGmk412dJjy99Cb4B6rvX4svOXWKmtOHjvIAvPLETWJAkhhBBC5B8JvsULhSeFA+DtKG07NGFhRI4cSeR7/0ITEoLa0ZEKH32EV9BvOPZ6HZVafqWEEKI4sbW0ZUWnFThYO3At9hpLzy196nGLzy7mcfpjqpSrwuTmkwu5yoKlVqkZ1XAUm7tvxr2sO5EpkQwKGsTnp7JWZQ9vMJyh9YfmeZ5WlVsxoekEABaeWciN2BsAZOgzGH9oPGFJYVQoU4ENXTfgbOuc49r/+vf4NeRX7iXfy3Odz7IndA+Xn1zGztKO6S2mF9g8JYWbnVv2xZJNNzaZuZrCdTzqOO8deI9kbTKNyzdmc/fNVCxb8anHtqzckkXtF6FCxfaQ7QV+AUeYT5Imid2hu4nPjDd3KUIIIUSpISmdeKG/gu8ajjXMXIl5pZ8/T8TbA0k7eQqVlRUuw4dTc/8+XIcPQ21tWn9PIYQQRUeVclWyg6dtwdvwD/P/2/OH7x/GP8wfFSoWtFtQaJsoFrYmFZqw3Xc7Xat1RW/UY1AM+Hn7ManZpHybY0SDEXSq0gmtUcvkI5OJzYhl6tGpXH5ymXLW5fj61a9xt3c3acyXK79Me4/26BV99gr1/JakSeKLC18AMLbx2Oe2xBH/9dcFkyORR7LvICzpAsMD+eDwB2QaMmnn0Y5vun6Do43jc895rfprzGg5A4B1V9axPXh7YZQqCtHlmMu8FfAWs/+czbt73yUyOdLcJQkhhBClggTf4oXuJmZ9USnMDbeKmpTDf3B/5CiMKSnYNW+OV9BvVPxoOhZOTuYuTQghRD7o4NmBMY3HADD31FyC44MBiM+Mz175PKz+MJpWaGq2GguDo40jKzquYHH7xUxsNpE5bebka29mtUrNgnYLqFquKg/SHvDG7jc4FnUMGwsb1r6yllrOtXI17ofNP0SFioP3DnL1ydV8q/cvqy+uJkGTQE2nmrxb7918H7+kquFYg05VOgHw480fzVtMIfjp1k98cvwT9IqenjV6srrL6hxfKHu7ztvZ70HzT8/n4L2DBVmqKCQGo4Fvr37LsH3DeJj2EICo1CgGBw3mdvxtM1cnhBBClHwSfIsX+mvFt5dj6Qy+E3fuImrCBBSNBvsuXaj6/XdYe3qauywhhBD5bEzjMbT1aIvGoOHDPz4kSZPE/NPzic+Mp6ZTTcY1HWfuEguFSqXida/XGdVwFFZqq3wf38HagZWdVmJrYUuyNhkLlQXLOy7P00WF2s61eaPmGwCsOL8iX/skX4+9zi8hvwAwo+WMAvk7KcmG1R8GgH+oP7EZseYtpoAoisLqi6tZfHYxAO/WfZdF7ReZ/LMytvFY3qz9JgoKHx37iLMPzxZEuaKQPEl/wuiDo1l9aTUGxUDPGj0J6B2Aj7MPcZlxDN83nPOPzpu7TCGEEKJEk+BbPJfGoCEqNQooncF33Pff83DGDDAYcOzTB8/VX6K2tTV3WUIIIQqAWqVmSfsleNh7EJUaxaDfBnHw3kEsVZYsaLcAGwsbc5dYYvi4+LC4/WK8HL2Y325+9qrgvBjXZBw2FjZcjLnIkcgjeR4PslZrzj89HwWFXl69aFGpRb6MW5o0q9CMRm6N0Bq1/Of2f8xdTr4zGA3MOz2Pb699C8CEphP4qMVHqFWmf81SqVTMajmLV6u+is6o44M/PuBW3K38LlkUguNRx3kz4E3OPDqDnaUd89rOY3H7xVR3rM7G7htpXrE5qbpURh8czeH7h81drhBCCFFiqRTZOpzk5GQcHR1JSkrCwcHB3OUUKSEJIfTz70c5q3L8OfDPfL3duShTFIWY5cuJ/34jAC4jRlBh2tRS8/qFEKI0uxl3k8G/DUZr1AIwtslY3m/8vpmrEjmx6sIqvr/+PV6OXuzw24Gl2jJP4227vY35Z+Zjb2VPQJ8A3Ozc8qnS0uVAxAGmHJ2Co40jB988iJ2lnblLArI+7z1Ke0RwQjDB8cEEJwQTlRKFQs6/HqXp0ohMiUSFilmtZtHfp3+e69IYNIw5OIbzj8/jauvKlh5bqOJQJc/jFjcp2hQORBxgX8Q+EjWJJp1rrbbG19uXfrX7FepdGjqDjtWXVrP5xmYg626UZR2X/WMBUaY+k2nHpnEk8ghqlZo5refQp1afQqtTCCGEKO5ymuVK8I0E38+zL2If045Oo1H5RvzU8ydzl1MoFL2eh59+RtLOnQBUmDYV15EjzVyVEEKIwrTrzi4+PfkpDd0a8kOPH6S9RTGRok2h586eJGoS+az1Z7xZ+81cjxWXEYfvbl9StCl8/PLHvFtXenvnlsFooNeuXkSlRjGj5QwG1hlY6DVoDBpCE0MJiQ/5W9Cdok3J89hWaisWt19Mt+rd8qHSLCnaFIbvG05wQjBVylXhxx4/looLLzqjjlMPTuEf5s8f9//IvgCZW9UdqvNh8w/pUqVLgS9giUyJZPrR6VyPuw7A2z5vM7XF1GfeLaQ36vn81OfsDt0NwOTmkxneYHiB1iiEEEKUFBJ8m0CC72dbf3k9666so3fN3sxrO8/c5RQ4Y2Ym0ZOnkHr4MKjVVJ43D6d+fc1dlhBCCDMITQilsn1lylqVNXcpwgRbbm5h6bmllLcrT2CfwBxvLvh/zToxiz1he6jjUoefX/85z6vHS7ufb//MwjML8bT3JLBPIBZqixyfm65L53DkYR6kPjBpTr1RT0RSBMEJwdxLvodBMfzjGEuVJTWcauDj7IOPsw81HGuY/G/t7eRNpbKVTDonJ56kP2Fw0GCiU6PxcfYxOVh3t3ene/XuRf5nV1EUbsffxj/Mn9/u/kZ8Znz2c96O3vjV9MPH2cekMcOTwvn26rckaBKArJY7U16aQqPyjfK19r8E3Q3i81Ofk6ZLw8Hagblt5vJKtVdeeJ6iKHxx4Qs23dgEZPXEn9x8stxlKoQQQryABN8mkOD72aYdnca+iH2lYgWCISWFqPfHkn7+PCprazy+WEm5V178gVUIIYQQRYfWoMVvtx/RqdGMbzKe0Y1HmzzGpZhLDAkaAsCWHltoUqFJfpdZ6qTr0um2oxtJmiRWdlpJ12pdn3u8wWjgzKMzBIYF8vv938nQZ+S5BicbJ3ycfajtUjsr6HbxwcvRC2sL6zyPXVDuJ99ncNDgv4XBpqjuUJ1JzSfRuUrnIhemPk57zN67ewkICyA0MTT7cRdbF3rW6Imvty91Xermuu4UbQobr29ky80taAwaAF6r/hoTm07Mt9Yx6bp0lpxbws47WXeKNq3QlCXtl1DZvrJJ42y6vomVF1YC8Ib3G8xpM6fIX7AQQgghzEmCbxNI8P1s/fz7EZIQwlddvqJjlY7mLqfA6J884f57/0Jz+zZqe3s8162l7Msvm7ssIYQQQuRC0N0gph+bThnLMvzW9zdc7VxzfK7OoOPtvW8TkhBC31p9+bzN5wVYaeny1aWv2HB1A43cGrG159anBpqhCaH4h/uzN2wvMRkx2Y9Xc6hG84rNUZHzEFSlUuFh70Ft56ygu0KZCkUu/M2Ju0l32Ra8jUx9Zo7PMSpGjkQe+duK56kvTaVh+YYFVWaOZOgz+P3e7wSEBXD64ensfurWams6V+2Mn7cfrd1b52t7qUdpj1hzaQ0BYQEoKFiqLXnb521GNxqNk61TrsZUFIVb8bf45PgnhCeFo0LFe43e4/3G7+c6sN4dups5J+dgUAx08uzEso7LsLW0zdVYQgghREknwbcJJPh+OoPRwMs/vYzWqOW3Pr+V2E11tPfvc3/kKHSRkVi4uVH122+wrVvX3GUJIYQQIpeMipGBewdyM+4mA+sMZEbLGU89LkmTREhCSHa/5+D4YMISw9AatTjaOBLQOwBnW+dCrr7kis2I5bVfX0Nr1PJD9x9oVrEZkNVPPehuEP5h/tyKv5V9vIO1Az1q9MDX25dGbo2KZWhtTk9b8dy9enc+aPYBVcoV/uf6yzGX+ejYRzxI+2/LmmYVmuHr7Uu36t1wsC7Y72HB8cGsvLCSkw9OAlDOqhyjGo3i3brvPrMPN2T1hw9LDCM4Pjjr/SIh688kTRIA5e3Ks6j9IlpWbpnnGv+4/wfTjk1DY9DQrEIz1ryypsD/XoQQQojiSIJvE0jw/XSRyZH03NUTa7U1Z989a1IvxuIi8/Zt7o96D0NsLFaenlTd+D3WVauauywhhBBC5NHZh2cZeWAklipLdr6R1YYgOCH4b5sbPk5//NRzy1mXY17bebxSVVqe5bc5J+ew484O2nu0x6+mHwFhAfwZ/Wd2/21LlSXtPdvj5+1HB88ORboNSXHxKO0RX136Cv8w/3xb8WwKo2Jk4/WNfHXpKwyKgYplKtKvdj96efUySwB/MvokKy6sICQhBIDKZSszoekEXvd6nfjM+L9dCAtJCOFu0t2n9oe3UFnQqUonPm39KS62LvlW3/lH5/ng8Aek6FLwcfbh665fl4qNTYUQQghTSPBtAgm+n+5o5FHGHx5Pbefa7PDbYe5y8l3mzZvcGzoMY0oKNj4+VPn2G6wqVDB3WUIIIYTIJ+///j4nok8895jsVhguPtkbHHqU80CtUhdSlaXL3aS7+O32+8fjDd0a4uvtS/fq3WWVfQF52orn9xq9xzt133nuiue8iM2I5ZPjn3D64WkAetboyexWs7G3ti+Q+XLKYDQQEB7AmktriEnPaqljZ2n3zF7yDtYO2e8Rf71feDt5F9jfW3B8MGN+H0NsRizuZd0ZXG8wPWr0MKltU05EJkcSGB7IkagjaPQak851t3dndqvZJvczN7dMfSahiaHZFzjuJNyhhmMNpr40NdebIQshhCh8EnybQILvp9t4fSNfXPiC7tW7s6zjMnOXk6+MGg13+/ZDGxaGXbNmVPl6PRbyby+EEEKUKCEJIQwMHIjWqMXWwpZazrX+FnLXcq5FOety5i6z1Plr8/RKZSvh6+VLL+9eeDl6mbusUuP/rnh2L+vOhGYT6FmjZ75e8DkRfYKZJ2YSnxmPnaUdM1rO4A3vN4pUy5oMfQZbb27l++vfk6ZLQ4WKag7V/nshzCUr6K5YpmKh1x2ZEsm/DvyLqNQoIGuFeVuPtvh6+9K5Sudch+7J2mT2R+wnICyASzGX8lRjfdf6/NDjhwK7AJAXiqLwOP3xP9pZ3U+5j1Ex/uP4Bq4NWPfqOrnwJoQQxYQE3yaQ4PvpZp2YxZ6wPYxtPJb3m7xv7nLy1eMlS4nftAkLNze8AvyxdJYPOEIIIURJFJ0ajdagpWq5qiWybVtxpDFoiEqJooZjDVlZbyYGo4HA8EDWXFqT3fKnrktdRjceTQePDlhZ5H5zSZ1Bx+pLq9l8YzMAtZ1rs6zjsiJ9cSNZm8yD1AdUc6iG3f9r787jqizz/4+/D4cdWVVAFBFQcd/TXDLNLRfIps1K26ZFM800c2vRNlPbJg2Xvk0zX8tyvm0DpabmPuYymqWpWCAiIqKCbMp67t8f/DoN4wZ64MDh9Xw8eCjXvX1u9TrR+1znczt72Lscq9yiXH2b9K3iE+P185mfrePeLt4a3GywYiJj1Dmw81VD+WJLsbaf2K64xDhtOr5JRZYiSZKTyUk3NrpRwyOGK9gzuMJ1FZQWaOa2mcouzNYdLe7Q7F6zr+n+bO3XrF/11W9fWYPu3/uw/7cA9wDrQ28bezdW7L5YnSs8p2Y+zbRs0LJat4odAOoigu9KIPi+tPu/vV8/n/lZC25eoFub3Wrvcmzm/L//rWNjHpAMQ01iY+V9S397lwQAAABUu4KSAn186GP9z/7/UX5xviTJz81Ptza7VTGRMWrXoF2lVjofzz2u5zY/pwNnD0iSRkWN0rM3PFsjVwTXNkezjyo+MV7fJH2jk/knreNN6jVRdGS0oiOiFerzR890wzB0KPOQ4hPjteroKmUWZFq3Nfdrrtsib9OwiGEK9Ly2Vo/bT2zX2PVjZcjQy71e1u0tbr/2m7tOhmHo08Of6s1/v6liS7F13GwyK9w3XC38W1hX8Ef5R6mBR4Ny/66TziXp8XWP69T5UwryDNKyQcsU4Vdz36gBABB8VwrB98UMw1CvT3sprzhPX8R8oZb+Le1dkk1Y8vOVNPJ2FR8/Lt8//Ukhr79m75IAAAAAu8osyNTffvmb4hPjdebCGet4M59miomM0YiIEVddBbvm6BrN+WGO8orz5OPqo5d7vawBYTwg1tYshkV7Tu1RXGKc1iav1fmS89ZtnQM7a0TECOUW5So+MV6J2YnWbQHuARoeMVwxkTGK8o+ySeuWpT8t1aJ9i+Tq5Krlw5arTf02133OyjpXcE4vbn9RG49vlCT1btxbQ8KGqGVASzX3a17hN13S89P1+LrHdTT7qHzdfBU7IFYdGnaoytIBANeB4LsSCL4vlnE+QwP+b4CcTE7aff9uuZpd7V2STZx8abbOrVwp55BGioiLk7mefR+sAwAAANQUJZYS7Ty5U3GJcdqQskEFpQXWbd2Duys6MlqDwgbJy8XLOn6h5ILm7ZqnL379QlJZ+Drvpnm0i6gGF0ouaEPKBsUnxuuHkz9c1Lvazeym/qH9FR0ZrV4hveTs5GzT61sMiyZumKjNqZvVuF5jrRyxUr5uvja9xpXsObVH07ZM06nzp+Ti5KIp3abovlb3XXOof67gnJ78/kntP7NfHs4eerffu+rVuJeNqwYA2ALBdyUQfF9sx8kdemztYwrzCdM3t39j73JsIm/rNh1/7DFJUtO/fSSvG2+0c0UAAABAzZRXlKd1x9bpm6RvtCt9l3Xc3eyuW5reopjIGNX3qK9pW6YpKTtJJpn0WIfHNK7jOJsHrLi60+dPa9XRVfou+Tt5OHtoeMRwDQobVOUP8M0pytE98fcoNS9VfRr30fsD3q/y3v2lllJ9sP8DLf5psSyGRWE+YZrfd75NVpyfLz6vZzY9o+1p2+Xs5Ky5febq1nDHafsJAI6C4LsSCL4vtuLQCs3dNVf9Qvtp4S0L7V3OdSvNzlZSdIxKMjLkP3q0gp+fZe+SAAAAgFohLS9N3yZ9q7jEOCXnJF+0vaFHQ829aa56NOpR/cXB7g5nHtboVaNVWFqoJzs+qXGdxlXZtU7ln9KMbTO0O323JCk6IlqzbpxV7lMI16u4tFgzt83UmuQ1MsmkmT1malSrUTY7PwDg+lU0y+Ux6rikpOwkSarRT1+vjPTXXlNJRoZcw8IUOGWyvcsBAAAAao2QeiF6rMNjihsZpxXDVmhU1Cj5uflJkvo07qPPYz4n9K7DWgW00os9X5QkLf5psbambq2S62xJ3aI74+/U7vTd8nD20Gt9XtPrN71u09BbklzMLnrjpjc0KmqUDBl6bedrit0XK9YMAkDtw2fQcElHs49KcozgO2ftWuXExUtOTgqZ94acPDzsXRIAAABQ65hMJrVv2F7tG7bXczc8p2M5xxTpF2mTByWidouJjNFPGT/pH0f+oelbp2vliJVq4t3EJucuKi3Su3vf1fKDyyWVBe0L+i5QM99mNjn/pZidzJrZY6YC3AMU+1OsFv+0WJkFmZrRfYbMTuYquy4AwLZY8Y1LcpQV3yVnzyr9pdmSpPqPPiqPTp3sWxAAAADgAFzMLmru35zQG1bTuk9T+wbtlVOUo8mbJquwtPC6z5mSk6Ixq8dYQ+/7W9+vT4Z9UqWh9+9MJpPGdRqnWT1mySSTVias1PSt01VcWlzl1wYA2AbBNy6SU5SjMxfOSJLCfcPtXM21MwxDJ196SaVZWXKLilKDp8bbuyQAAAAAcEiuZle93e9t+bv561DmIb2+8/VrPpdhGPom6RvdFX+XDp49KF83X73X/z1N7z5drmZXG1Z9daNajdL8vvPl7OSsNclrNP778TpffL5aawAAXBuCb1wk6VzZau9Az0DVc61n52quXU5cnPLWfy+5uJS1OHGt3h+QAAAAAKAuCfYK1vyb58vJ5KQvf/1SXxz5olLHp+amaslPSzTiqxGasXWGzpecV5fALvo8+nP1b9q/iqq+ulvDb9X7t7wvD2cP/XDyB92/6n79lvWb3eoBAFQMwTcu4gj9vYtPnlT6q69JkhqOf1LurVrZuSIAAAAAcHw3NrpREzpPkCS9vvN1/XLmlyvun1uUqy+OfKGH1jykoV8O1fv73ldKboo8nD30ZMcn9eGQDxXsFVwdpV9Rr8a99OHgD1Xfvb5+O/eb7v32Xn1x5AseegkANRgPt8RFant/b8MwdHLW87Lk5sq9QwfVf/RRe5cEAAAAAHXGI+0e0U+nf9Km45s0edNkrRyxUn7uftbtJZYSbU/brvjEeG08vtHaD9wkk3o06qGYyBgNaDpAni6e9rqFS2rfsL0+j/lcM7fO1A8nf9DsH2brh5M/6KWeL8nb1dve5QEA/gvBNy5S24Pvc599pvzt22Vyc1PIG3NlcuafOQAAAABUFyeTk17r85ru/eZepeSmaPrW6Xp/wPv69dyvikuM06qkVTpbcNa6f4RvhGIiYzQ8YniNWN19JQ08GmjJoCX62y9/08I0l37ZAAAgAElEQVS9C/Vd8nc6cOaA5vedrw4NO9i7PADAfzAZfC5HOTk58vX1VXZ2tnx8fOxdjt0N/WKoUvNS9dchf9UNwTfYu5xKKUpJUdJtI2VcuKCgmTMU8MAD9i4JAAAAAOqkhMwEjV41WgWlBQr0DFTG+QzrNn83fw2LGKboyGi1CWgjk8lkx0qvzc+nf9ZzW57TibwTcjY5a2KXiXqw7YNyMtFVtiYrtZTqs4TPVGIpUUv/looKiFKAe4C9y6qxLIZFX/76pQwZGhw2WL5uvja/RkFJgTalbtKZ82c0NHyo6nvUt/k14FgqmuUSfIvg+z8VlBSo+yfdZcjQxrs3qoFHA3uXVGFGaamOjXlAF/bulWf37mr6t49kcuIHDgAAAACwl/jEeM3cNlOS5OLkov6h/RUdGa3ejXvLxcnFztVdv5yiHM3ZPkdrj62VJPUO6a1X+7xaq/5fui4xDEMv73hZnx/5vNx4Q4+GahnQUlH+UWVfAVEK8wmTs1Pd/gR5saVYs7fPVlxinKSyOdwvtJ+iI6LVp3EfuZivfQ4bhqG9GXsVnxivtclrlVucK0nycvHSI+0e0Zg2Y+Th7GGT+4DjIfiuBILvPxzOPKy74u+Sj6uPto3aVqvedT/74V+VsWCBnLy8FP7Pf8q1SWN7lwQAAAAAdd53yd8pvzhfA5oOqJLVovZmGIa++PULvbHrDRWWFqq+e33NvWmueob0rLbrJ55LVF5xXqWO83H1UYRfzWpxWlxarJTcFEX4RlRJHrHox0Va+vNSOZmcdFPjm3Q0+6iO5x6XoYujMVcnV0X6RSoqoCwMb+7fXO5md5vX9N/CfcNrxDwpKCnQs5uf1ebUzTKbzGrm00yJ2YnW7X5ufhoaPlQxkTFqW79thf++UnJSFJ8Ur/jEeJ3IO2Edb+TVSN6u3jqSdUSSFOgZqKc6PaWYyBiZncw2uSeLYVFydrKa+jSt829q1HYE35VA8P2HVUmrNG3rNHVq2EnLhy23dzkVYlgsyvz7/yrjrbekkhI1evUV+d15p73LAgAAAADUIb9l/aapW6bqt3O/ySST/tz+z3qy05NVtrI9LS9N3yR9o/jEeCXnJF/TOe5ocYdeuPEFmwWL18IwDB04c0BxiXFanbxa2YXZGh4xXK/0fsWmf3afHv5Ur+98XZL0wo0v6O6ouyVJ54vP60jWER3JOqKEzAQlZCXoSNYRXSi5YLNrV0ZNWPGcU5SjCd9P0N6MvXIzu+nNm99Uv9B+SshMUHxivL49+q3OXDhj3T/cN7ysT3/4cDWq1+ii82UXZuu75O8Unxivfaf3Wcc9nT01uNlgxUTGqGtQV0nS6qOr9d7e95SWnyZJauHfQlO6TlHvxr2v+X6Ss5MVnxSvbxK/UVp+mno06qHYAbFyNbte8zlhXwTflUDw/Yff3/38U4s/aU6vOfYu56pKMjOVNmOG8jdvkST53hajRm+8UatWqgMAAAAAHMOFkgtasHuB/u/I/0mSOjbsqHl956lxPdt8IjmvKE/rjq1TfFK8dqfvto67m90V6BlYqXOl5qXKYlg0sOlAvdH3DbmZ3WxSY0VdLbjv07iP3rr5LXm6eF73tdYkr9Fzm5+TIUNPdnpS4zqOu+L+FsOi1NxUJWQlWMPwYznHVGopve5arqSgpEAZF8p64VfFiueKOH3+tJ5Y/4R+zfpV3i7eWjhgoTWU/l2JpUQ7Tu5QXGKcNqZsVEFpgSTJJJO6B3fXiMgR6h/aX3tP7VV8Urw2Hd+kYkuxpLKH3/YM6amYiBj1b9r/kuF+YWmhPj30qZbtX6bcorIWKD0b9dTkbpPVKqBVhe7jXME5rUleo/jEeP185ueLtg8KG6QFfRfY9U0fXDuC70og+P7D5E2Tte7YOj3b7Vk92PZBe5dzRfk7dipt6lSVnD4tk6urgmZMl9+oUYTeAAAAAAC7+i75O83ZPke5xbnydPZU56DO19w/usRSop0ndyouMU4bUjaUCxlvCL5B0ZHRGhQ2SF4uXpWqcf2x9Xpuy3MqthSre3B3/aX/X1TPtV6l77UyrhTcDwgboJiIGBVZijR181QVlBaoY8OOen/A+9fV+mPHyR0at36cSiwluifqHs3qMavG5gYWw1IlK54rKiUnRY+ve1wn8k6ogUcDLRm4RFEBUVc85nJ/p/+tpX9LxUTGaFj4MDX0bFihes4VnNOy/cv06eFPVWIpkUkmRUdGa0LnCQr2Cr5o/+LSYm05sUXxifHanLpZJZYSSZLZZC4L2yNj5OnsqUmbJtWKfw+4PILvSiD4/sPt/7xdv537TbEDYnVTk5vsXc4lGSUlOhMbqzOLl0iGIdfISDV++y25R135xRgAAAAAgOpyIu+EntvynH4+ffFqUzezW1n/6P8fhLf0b6mW/i3LBby/t5VYdXSVTl84bR1v5tNMtzW/7bJtJSpj58mdmrhhos6XnFfrgNZaPHCx6nvUv65z/rfLBfeS1D24+yWD+30Z+/Tk908qtyhXzf2aa8nAJQryCqr0tQ+ePaiH1zys8yXna9UKX1useK6sw5mHNXbdWJ0tOKtQ71AtHbRUod6hlTrHf6/ib+DRQMPDhys6MvqqAfqVpOam6r2972l18mpJZfNndOvR+nP7P6ueSz1rq5w1yWt0rvCc9bhWAa0UHRGtYRHDyj1wtrKfAEDNQ/BdCQTfZUosJbrhkxtUYinRmjvW2OyjWLZUnJamE1Of04U9eyRJvnfeoeCZM+Xkef0ffQIAAAAAwJZKLaU6cPZAWbuMCvSPbuTVSFH+UTqZf1IJWQnW8Wt9kGBF/HL2Fz25/kllFmQqzCdMSwcttUkekFmQqb//8nfFJ8ZfFNzHRMZoeMRwhdQLuezxv2b9qrHrxirjQoZCvEK0dNBSNfNtVuHrp+SkaMzqMcosyFSP4B6KHVj7ejpnF2Zr2c9lK56LLcVXXfF8rXan79bEDROVV5ynKP8oLRm0pFxQXFmGYejU+VNq4NHApg+R3H96v97a85b2nCrLhPzc/OTn5leuVU4DjwYaETFCIyJGXDFsX3FohebumiupfM/362UxLPrq16+UV5ynIc2G2PTvCX8g+K4Egu8yydnJiv46Wh7OHtpx3w45mZzsXVI5uevXK23W87JkZ8vJy0vBL8+R7/Dh9i4LAAAAAIAKu1T/6COZR6ytLX7n7OSsfk36KToyWjc1vkku5qp5SKZUlgc8se4JpeWnKdAjUEsGLVEL/xbXdK6CkgJ9fOhjfbj/Q+UV50m69uD+RN4JPbHuCR3LOaYA9wDFDoxV2/ptr3rc6fOnNWb1GJ3IO6HWAa311yF/rfI2LlXpSiuevV29r+vc36d8r+c2P6ciS5G6BnXVwlsWXvc5q5JhGNp0fJPe2fuOjmYflfRHq5zoiGj1aNSjwmH7wh8XatnPy+RkctJbN7+lgWEDr6u2MxfO6Pltz+tfaf+SVNaOqEejHoqJjNGApgNs0q8eZQi+K4Hgu8yGlA16euPTah3QWv+I/oe9y7GyFBYqY/4CZX3yiSTJvX17NX7rTbk2bWrnygAAAAAAsI2cohwdyTyihKyEsiCv6QD5uftV2/VP5Z/S2PVj9du53+Tt6q3YAbHqFNipwseXWkr1TdI3WvjjQp06f0qS1DqgtZ7o8IT6Nul7zcH92QtnNW79OB3KPCQvFy/9pf9f1KNRj8vun1uUq4fXPKyErASFeofqf4f+73WtXq5JDpw5oDf//Wa5Fc9jO47V4LDBauDRoNKfBPjq1680+4fZshgW9QvtpwV9F8jd2b0qSre5EkuJvk/5XsWWYvUP7V/pHvdSWYg+54c5+uLXL+Ti5KKlg5bqhuAbrqmeH9J+0IytM3S24KzczG5qFdBKP53+ybrdw9lDg8IGKToyWjcE3VArWu7UZATflUDwXeZ/9v+P/rL3LxoWPkzz+s6zdzmSpMKkJJ2YPEWFhw9LkgIeeUSBk56WybV2fTwJAAAAAICaLrswW099/5T2nd4nd7O73ur3lvo26XvV47anbdfb/37b2p6lkVcjTeg8QcMjhtvk0+R5RXl6euPT2pW+Sy5OLprXd54GhQ26aL/C0kKNXTdW/z71b9V3r6/lQ5cr1KdyfaprukuteJakAPcAtfRvWa5vfIRvxGXfcPjrgb/qnT3vSJJGNh+pl3q+ZNO2JLVFiaVEUzZN0YbjG1TPpZ4+uvWjSvVRL7YUK3ZfrD7c/6EMGWru11wL+i5Qc//mSs1NtfY8T8lNsR4T5Bmk4RHDFRMZo0i/yKq4LYdH8F0JBN9lZm2bpbjEOD3V6Sk90fEJu9ZiGIayv/pa6a+8IuPCBZn9/RUy7w3V63v1/+ACAAAAAIBrc6HkgiZvmqxtJ7bJ2eSsV/q8ohERIy65b0Jmgt7e87a2p22XJHm7eOuxDo/pvtb3yc3sZtO6CksLNX3LdK1PWS8nk5NeuPEF3dnyTuv2Ukupnt38rNanrJeXi5c+GvKRWtdvbdMaapISS4m+/PVLrTi0QkdzjspiWC7ax9nJWZG+kdYg/PdfPzrwkf72y98kSQ+3e1jPdHnGpn3ja5vC0kI9se4J7Tm1p+wNk2HLK/RgzxN5JzRtyzTryu67Wt6lqTdMlYezR7n9DMPQT6d/UnxivFYnr7Y+sFSS2tRvo5jIGN3a7FabP1jWkRF8VwLBd5l7v7lXB84e0Nv93r7kO6fVpTQvX+lz5ignPl6S5HnjjQqZP08ugYF2qwkAAAAAgLqi2FKsF/71gr5N+laSNO2GaRrdZrR1e3p+uhb9uEhxiXEyZMjZyVmjokbpiQ5PVGl7llJLqV7Z8Yq++PULSdLEzhP1aPtHJUkv73hZnx/5XC5OLloycIm6N+peZXXUNBdKLijxXKK1Z3xCZtlDVH/vsX45U7pO0UPtHqqeImu4nKIcPbzmYR3JOlKhFjnrjq3TS/96SbnFufJ28dZLvV7SkGZDrnqdotIibUndorjEOG1N3aoSo0SSZDaZr6kP/ZSuU3R7i9srfVxtR/BdCQTfZe8+9fy0p/KL8/X1bV/b7aMWFw78ohNTJqv4WIpkNqvhhAmq/9ijMpnpfQQAAAAAQHWxGBYt2L1AHx/6WJL0WPvH9HC7h/XRgY+0/OByFZQWSJJubXarJnaZWKEVsrZgGIYW/rhQH+z/QJI0uvVoebl4aenPS2WSSW/e/KYGNxtcLbXUZIZhKC0/rdwDVBOyEnQ897hcnVz1Qs8XNLL5SHuXWaNU5KGoBSUFWrB7gf5xpOzZeB0adtD8vvPVuF7jSl8vsyBTa46uUXxivA6cPXBNNT/f43nd0+qeazq2NiP4rgSC77J3awd9Pkhmk1m7799dpU+LvhTDMJT5978r4623peJiOYc0UuM335Rnly7VWgcAAAAAAChjGIY+2P+BFv64UJLkbna3Bt5dArtoSrcp6tCwg11qW35wuebvnl9u7IUbX9DdUXfbpZ7a4nzxeUmSp4unnSupmY7lHNMDqx9QZkGmegT3UOzAWLmay54zl3guUc9ufla/nftNJpn0SLtHNL7zeLk4XX+Glp6fbv27qYz6HvXl6+Z73devbSqa5da9rvW4pKTsJElSqHdotYfeJZmZOjljpvI2b5YkeQ8aqEavviqzb92buAAAAAAA1BQmk0mPd3hc/u7+enXHqyooLVAzn2Z6pusz6h/a3659oce0GSM/Nz+9+K8XVWKUaFzHcYTeFUDgfWVhPmGKHRirR9Y8op3pOzVj6wzN7ztfX//2td7Y9YYKSgtU372+Xr/pdfUK6WWz6wZ7BdvsXPgDwTckyfok4AjfiGq9bv7OXUqbOlUlGRkyuboqaMZ0+Y0aVacfqgAAAAAAQE1yV8u7FOEboVP5pzSo2SCbrHC1hejIaEX4RigtP00Dmw60dzlwEG3rt9W7/d/Vk98/qbXH1urIP48oOSdZktQrpJde6/PaFft/o+Yg+Iakso9rSFKEX/UE30ZJic7ExurM4iWSYcg1IkKN33lb7lFR1XJ9AAAAAABQcV2Dutq7hEtq26Ct2jZoa+8y4GB6hvTU3D5z9dyW55Sckyxnk7MmdJmgh9o+JCeTk73LQwURfEPSH61OqmPFd/HJkzrx7FRd2LNHkuR7x58UPGuWnDz5uA0AAAAAAADs79bwW1VsKdaqo6s0tuNYdWzY0d4loZIIviGp+lqd5H7/vdJmzpIlO1tOXl4Knj1bvtEjqvSaAAAAAAAAQGVFR0YrOjLa3mXgGhF8Q+cKzimzIFOSFO4bXiXXsBQWKmP+AmV98okkyb1tWzV++y25hoVVyfUAAAAAAAAA1F0E37C2OQn2Cq6Sp/teOPCLTj7/vAoPH5YkBTz8sAKfmSSTq6vNrwUAAAAAAAAABN+osv7eRakndPqdd5Tz7beSJLO/v0LemKt6N99s0+sAAAAAAAAAwH8i+IbNg+/S7GydWbJUWR9/LKO4WJLke1uMGk6eIpegQJtcAwAAAAAAAAAuh+AbfwTfftcXfFuKipT1yQqdWbJEluxsSZJnzxsVNHWq3Nu0ue46AQAAAAAAAKAiCL6ho+eOSrr2Fd+GxaKcVat1+p13VHzihCTJrUULBU59Vl433SSTyWSzWgEAAAAAAADgagi+67jzxeeVlp8m6dqC7/xdu5Sx4E0V7N8vSXJu2FANn54o39tvl8lstmmtAAAAAAAAAFARBN91XHJOsiTJ381f/u7+FT6uMDFRGW++pbyNGyVJTp6eqv/Yowp48EE5eXpWRakAAAAAAAAAUCFO9i7AVmJjYxUeHi53d3d17dpVW7dutXdJtcLv/b3DfcOvuF9pXp7O792rzBUrdGLqc0qKua0s9Dab5XfvKEWu/U4Nxo0j9AYAAAAAAABgdw6x4nvlypWaNGmSYmNj1bt3by1dulRDhw7VwYMH1bRpU3uXV6MlnSv/YEvDMFScmqqCw4dVeDhBBQllvxanpl50bL0BAxQ4ZbLcIq7voZgAAAAAAAAAYEsmwzAMexdxvXr06KEuXbpo8eLF1rHWrVtr5MiRmjt37lWPz8nJka+vr7Kzs+Xj41OVpdYohmFo7kePKOPnXbpdnRSWIRUmJMiSn3/J/Z2DguTWKkruUa1Ur18/eXbpXM0VAwAAAAAAAKjLKprl1voV30VFRdqzZ4+mT59ebnzw4MHavn37JY8pLCxUYWGh9fucnJwqrbEmG/T+btXLt0jaqwv/f8zk4iLXFs3lHtVK7q2i5BZV9uXsX/Ee4AAAAAAAAABgL7U++D5z5oxKS0sVFBRUbjwoKEjp6emXPGbu3LmaM2dOdZRX42W0DVZa1jm17zlC9dt3LQu5w8NlcnGxd2kAAAAAAAAAcE1qffD9O5PJVO57wzAuGvvdjBkzNHnyZOv3OTk5Cg0NrdL6aiKTyaTh/7ve3mUAAAAAAAAAgE3V+uC7QYMGMpvNF63uzsjIuGgV+O/c3Nzk5uZWHeUBAAAAAAAAAKqZk70LuF6urq7q2rWr1q1bV2583bp16tWrl52qAgAAAAAAAADYS61f8S1JkydP1pgxY9StWzf17NlTy5YtU0pKisaOHWvv0gAAAAAAAAAA1cwhgu977rlHZ8+e1csvv6yTJ0+qXbt2WrVqlcLCwuxdGgAAAAAAAACgmpkMwzDsXYS95eTkyNfXV9nZ2fLx8bF3OQAAAAAAAACAS6hollvre3wDAAAAAAAAAPCfCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FCc7V1ATWAYhiQpJyfHzpUAAAAAAAAAAC7n9wz390z3cgi+JeXm5kqSQkND7VwJAAAAAAAAAOBqcnNz5evre9ntJuNq0XgdYLFYlJaWJm9vb5lMJnuXU61ycnIUGhqq48ePy8fHx97lAKgGzHugbmHOA3UP8x6oe5j3QN1S1+e8YRjKzc1VSEiInJwu38mbFd+SnJyc1KRJE3uXYVc+Pj51cqIAdRnzHqhbmPNA3cO8B+oe5j1Qt9TlOX+lld6/4+GWAAAAAAAAAACHQvANAAAAAAAAAHAo5tmzZ8+2dxGwL7PZrH79+snZmc43QF3BvAfqFuY8UPcw74G6h3kP1C3M+avj4ZYAAAAAAAAAAIdCqxMAAAAAAAAAgEMh+AYAAAAAAAAAOBSCbwAAAAAAAACAQyH4BgAAAAAAAAA4FILvOi42Nlbh4eFyd3dX165dtXXrVnuXBMAG5s6dqxtuuEHe3t4KDAzUyJEjlZCQUG6fwsJCTZgwQQ0aNJCXl5diYmKUmppqp4oB2NLcuXNlMpk0adIk6xhzHnA8J06c0OjRo1W/fn15enqqU6dO2rNnj3W7YRiaPXu2QkJC5OHhoX79+umXX36xY8UArkdJSYmef/55hYeHy8PDQxEREXr55ZdlsVis+zDvgdpty5Ytio6OVkhIiEwmk77++uty2ysyx7OysjRmzBj5+vrK19dXY8aM0blz56rzNmoMgu86bOXKlZo0aZJmzZqlH3/8UTfddJOGDh2qlJQUe5cG4Dpt3rxZ48eP144dO7Ru3TqVlJRo8ODBys/Pt+4zadIkffXVV/rss8+0bds25eXlacSIESotLbVj5QCu1+7du7Vs2TJ16NCh3DhzHnAsWVlZ6t27t1xcXLR69WodPHhQb731lvz8/Kz7zJ8/X2+//bYWLVqk3bt3Kzg4WIMGDVJubq4dKwdwrebNm6clS5Zo0aJFOnTokObPn68FCxZo4cKF1n2Y90Dtlp+fr44dO2rRokWX3F6ROX7fffdp3759WrNmjdasWaN9+/ZpzJgx1XULNYrJMAzD3kXAPnr06KEuXbpo8eLF1rHWrVtr5MiRmjt3rh0rA2Brp0+fVmBgoDZv3qy+ffsqOztbDRs21PLly3XPPfdIktLS0hQaGqpVq1ZpyJAhdq4YwLXIy8tTly5dFBsbq1dffVWdOnXSu+++y5wHHND06dP1r3/967Kf2DQMQyEhIZo0aZKmTZsmqeyTH0FBQZo3b56eeOKJ6iwXgA2MGDFCQUFB+vDDD61jd9xxhzw9PbV8+XLmPeBgTCaTvvrqK40cOVJSxf7bfujQIbVp00Y7duxQjx49JEk7duxQz549dfjwYUVFRdntfuyBFd91VFFRkfbs2aPBgweXGx88eLC2b99up6oAVJXs7GxJUkBAgCRpz549Ki4uLvcaEBISonbt2vEaANRi48eP1/DhwzVw4MBy48x5wPHExcWpW7duuuuuuxQYGKjOnTvrgw8+sG4/evSo0tPTy817Nzc33Xzzzcx7oJbq06ePvv/+ex05ckSS9NNPP2nbtm0aNmyYJOY94OgqMsd/+OEH+fr6WkNvSbrxxhvl6+tbJ18HnO1dAOzjzJkzKi0tVVBQULnxoKAgpaen26kqAFXBMAxNnjxZffr0Ubt27SRJ6enpcnV1lb+/f7l9eQ0Aaq/PPvtMe/fu1e7duy/axpwHHE9SUpIWL16syZMna+bMmdq1a5cmTpwoNzc3PfDAA9a5famf948dO2aPkgFcp2nTpik7O1utWrWS2WxWaWmpXnvtNd17772SxLwHHFxF5nh6eroCAwMvOjYwMLBO/txP8F3HmUymct8bhnHRGIDa7amnntLPP/+sbdu2XXVfXgOA2un48eN6+umntXbtWrm7u1f4OOY8UHtZLBZ169ZNr7/+uiSpc+fO+uWXX7R48WI98MAD1v34eR9wHCtXrtTHH3+sFStWqG3bttq3b58mTZqkkJAQPfjgg9b9mPeAY7vaHL/UfK+rrwO0OqmjGjRoILPZfNG7PRkZGRe9cwSg9powYYLi4uK0ceNGNWnSxDoeHBysoqIiZWVllduf1wCgdtqzZ48yMjLUtWtXOTs7y9nZWZs3b9Z7770nZ2dnBQUFMecBB9OoUSO1adOm3Fjr1q2tD6oPDg6WJH7eBxzI1KlTNX36dI0aNUrt27fXmDFj9Mwzz1if0cW8BxxbReZ4cHCwTp06ddGxp0+frpOvAwTfdZSrq6u6du2qdevWlRtft26devXqZaeqANiKYRh66qmn9OWXX2rDhg0KDw8vt71r165ycXEp9xpw8uRJHThwgNcAoBYaMGCA9u/fr3379lm/unXrpvvvv9/6e+Y84Fh69+6thISEcmNHjhxRWFiYJCk8PFzBwcHl5n1RUZE2b97MvAdqqfPnz8vJqXyMYzabZbFYJDHvAUdXkTnes2dPZWdna9euXdZ9du7cqezs7Dr5OmCePXv2bHsXAfvw8fHRCy+8oMaNG8vd3V2vv/66Nm7cqI8++kh+fn72Lg/AdRg/frw++eQTff755woJCVFeXp7y8vJkNpvl4uIid3d3paWladGiRerYsaOys7M1duxYeXt7a968eRf9QA2gZnNzc1NgYGC5rxUrVigiIkIPPPAAcx5wQE2bNtWcOXPk7OysRo0aac2aNZo9e7ZeeeUVdejQQSaTSaWlpZo7d66ioqJUWlqqKVOm6MSJE1q2bJnc3NzsfQsAKunQoUP6+9//rqioKLm6umrjxo2aOXOm7rvvPg0aNIh5DziAvLw8HTx4UOnp6Vq6dKl69OghDw8PFRUVyc/P76pzvGHDhtq5c6dWrFihzp07KzU1VbLaUTwAAAY4SURBVI8//ri6d++uCRMm2Pv2qp+BOu399983wsLCDFdXV6NLly7G5s2b7V0SABuQdMmvjz76yLrPhQsXjKeeesoICAgwPDw8jBEjRhgpKSn2KxqATd18883G008/bf2eOQ84nvj4eKNdu3aGm5ub0apVK2PZsmXltlssFuOll14ygoODDTc3N6Nv377G/v377VQtgOuVk5NjPP3000bTpk0Nd3d3IyIiwpg1a5ZRWFho3Yd5D9RuGzduvOT/yz/44IOGYVRsjp89e9a4//77DW9vb8Pb29u4//77jaysLDvcjf2ZDMMw7JS5AwAAAAAAAABgc3yuFQAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAAAAAAOBQCL4BAAAAAAAAAA6F4BsAAAAAAAAA4FAIvgEAAAAAAAAADoXgGwAAAAAAAADgUAi+AQAAAAAAAAAOheAbAAAAqEGSk5NlMpm0b98+u1w/ISFBwcHBys3Nveq++/fvV5MmTZSfn18NlQEAAAAVR/ANAAAAVBOTyXTFr4ceekihoaE6efKk2rVrZ5caZ82apfHjx8vb2/uq+7Zv317du3fXO++8Uw2VAQAAABVnMgzDsHcRAAAAQF2Qnp5u/f3KlSv14osvKiEhwTrm4eEhX19fe5QmSUpNTVVERISSkpLUpEmTCh0THx+vsWPHKiUlRWazuYorBAAAACqGFd8AAABANQkODrZ++fr6ymQyXTT2361ONm3aJJPJpO+++06dO3eWh4eHbrnlFmVkZGj16tVq3bq1fHx8dO+99+r8+fPWaxmGofnz5ysiIkIeHh7q2LGjPv/88yvW949//EMdO3YsF3ofO3ZM0dHR8vf3l5eXl9q2batVq1ZZtw8ZMkRnz57V5s2bbfynBQAAAFw7Z3sXAAAAAODqZs+erUWLFsnT01N333237r77brm5uWnFihXKy8vT7bffroULF2ratGmSpOeff15ffvmlFi9erBYtWmjLli0aPXq0GjZsqJtvvvmS19iyZYu6detWbmz8+PEqKirSli1b5OXlpYMHD6pevXrW7a6ururYsaO2bt2qW265per+AAAAAIBKIPgGAAAAaoFXX31VvXv3liT9+c9/1owZM5SYmKiIiAhJ0p133qmNGzdq2rRpys/P19tvv60NGzaoZ8+ekqSIiAht27ZNS5cuvWzwnZycrK5du5YbS0lJ0R133KH27dtbz/PfGjdurOTkZFvdKgAAAHDdCL4BAACAWqBDhw7W3wcFBcnT07NcCB0UFKRdu3ZJkg4ePKiCggINGjSo3DmKiorUuXPny17jwoULcnd3Lzc2ceJEjRs3TmvXrtXAgQN1xx13lKtFKutN/p9tVgAAAAB7o8c3AAAAUAu4uLhYf28ymcp9//uYxWKRJOuv3377rfbt22f9Onjw4BX7fDdo0EBZWVnlxh599FElJSVpzJgx2r9/v7p166aFCxeW2yczM1MNGza8rvsDAAAAbIngGwAAAHAwbdq0kZubm1JSUtS8efNyX6GhoZc9rnPnzjp48OBF46GhoRo7dqy+/PJLTZkyRR988EG57QcOHLjiSnIAAACgutHqBAAAAHAw3t7eevbZZ/XMM8/IYrGoT58+ysnJ0fbt21WvXj09+OCDlzxuyJAhevTRR1VaWiqz2SxJmjRpkoYOHaqWLVsqKytLGzZsUOvWra3HJCcn68SJExo4cGC13BsAAABQEQTfAAAAgAN65ZVXFBgYqLlz5yopKUl+fn7q0qWLZs6cedljhg0bJhcXF61fv15DhgyRJJWWlmr8+PFKTU2Vj4+Pbr31Vr3zzjvWYz799FMNHjxYYWFhVX5PAAAAQEWZDMMw7F0EAAAAgJohNjZW//znP/Xdd99ddd/CwkK1aNFCn376qXr37l0N1QEAAAAVw4pvAAAAAFaPP/64srKylJubK29v7yvue+zYMc2aNYvQGwAAADUOK74BAAAAAAAAAA7Fyd4FAAAAAAAAAABgSwTfAAAAAAAAAACHQvANAAAAAAAAAHAoBN8AAAAAAAAAAIdC8A0AAAAAAAAAcCgE3wAAAAAAAAAAh0LwDQAAAAAAAABwKATfAAAAAAAAAACHQvANAAAAAAAAAHAo/w9F9suG8tCXXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results_unpickled.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "linkText": "Export to plot.ly", + "plotlyServerURL": "https://plot.ly", + "showLink": false + }, + "data": [ + { + "line": { + "color": "#1f77b4" + }, + "mode": "lines", + "name": "A", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 301, + 266, + 257, + 251, + 243, + 235, + 229, + 225, + 216, + 209, + 209, + 217, + 207, + 205, + 199, + 193, + 191, + 189, + 182, + 187, + 184, + 179, + 172, + 168, + 161, + 156, + 157, + 151, + 148, + 153, + 150, + 139, + 134, + 126, + 126, + 130, + 135, + 125, + 127, + 124, + 119, + 118, + 110, + 117, + 108, + 115, + 113, + 101, + 101, + 95, + 91, + 87, + 87, + 95, + 91, + 88, + 86, + 83, + 76, + 80, + 78, + 80, + 82, + 76, + 71, + 70, + 71, + 69, + 61, + 64, + 64, + 59, + 59, + 64, + 61, + 56, + 54, + 56, + 59, + 59, + 57, + 57, + 58, + 54, + 51, + 55, + 45, + 45, + 43, + 40, + 40, + 40, + 35, + 37, + 35, + 35, + 31, + 36, + 31, + 31, + 31 + ] + }, + { + "line": { + "color": "#ff7f0e" + }, + "mode": "lines", + "name": "B", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 120, + 86, + 80, + 78, + 74, + 74, + 73, + 72, + 66, + 64, + 65, + 77, + 72, + 80, + 76, + 76, + 80, + 84, + 80, + 89, + 88, + 86, + 81, + 80, + 80, + 78, + 86, + 85, + 86, + 93, + 93, + 87, + 84, + 80, + 82, + 90, + 97, + 89, + 93, + 91, + 91, + 95, + 89, + 96, + 90, + 100, + 99, + 90, + 93, + 90, + 87, + 85, + 88, + 100, + 98, + 98, + 97, + 97, + 92, + 98, + 98, + 101, + 103, + 99, + 97, + 97, + 100, + 99, + 95, + 100, + 102, + 100, + 100, + 107, + 105, + 101, + 100, + 105, + 109, + 110, + 108, + 108, + 113, + 110, + 108, + 113, + 107, + 108, + 108, + 108, + 111, + 112, + 107, + 109, + 107, + 110, + 108, + 114, + 110, + 112, + 112 + ] + }, + { + "line": { + "color": "#2ca02c" + }, + "mode": "lines", + "name": "C", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 34, + 40, + 42, + 46, + 46, + 47, + 48, + 54, + 56, + 55, + 43, + 48, + 40, + 44, + 44, + 40, + 36, + 40, + 31, + 32, + 34, + 39, + 40, + 40, + 42, + 34, + 35, + 34, + 27, + 27, + 33, + 36, + 40, + 38, + 30, + 23, + 31, + 27, + 29, + 29, + 25, + 31, + 24, + 30, + 20, + 21, + 30, + 27, + 30, + 33, + 35, + 32, + 20, + 22, + 22, + 23, + 23, + 28, + 22, + 22, + 19, + 17, + 21, + 23, + 23, + 20, + 21, + 25, + 20, + 18, + 20, + 20, + 13, + 15, + 19, + 20, + 15, + 11, + 10, + 12, + 12, + 7, + 10, + 12, + 7, + 13, + 12, + 12, + 12, + 9, + 8, + 13, + 11, + 13, + 10, + 12, + 6, + 10, + 8, + 8 + ] + }, + { + "line": { + "color": "#d62728" + }, + "mode": "lines", + "name": "D", + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100 + ], + "y": [ + 0, + 1, + 4, + 8, + 12, + 20, + 25, + 28, + 31, + 36, + 37, + 41, + 46, + 56, + 58, + 64, + 70, + 76, + 79, + 83, + 85, + 88, + 90, + 93, + 100, + 103, + 110, + 115, + 119, + 121, + 124, + 129, + 131, + 135, + 137, + 141, + 143, + 145, + 147, + 148, + 153, + 158, + 160, + 160, + 163, + 166, + 167, + 170, + 173, + 176, + 177, + 179, + 182, + 186, + 188, + 191, + 192, + 195, + 197, + 199, + 201, + 202, + 202, + 204, + 207, + 208, + 210, + 211, + 215, + 217, + 219, + 222, + 222, + 224, + 225, + 226, + 227, + 230, + 231, + 232, + 232, + 232, + 236, + 237, + 238, + 239, + 243, + 244, + 246, + 249, + 252, + 253, + 253, + 253, + 253, + 256, + 258, + 259, + 260, + 262, + 262 + ] + } + ], + "layout": { + "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Michaelis_Menten - NumPySSASolver" + }, + "xaxis": { + "title": { + "text": "Time (s)" + } + }, + "yaxis": { + "title": { + "text": "Species Population" + } + } + } + }, + "text/html": [ + "
                                        \n", + " \n", + " \n", + "
                                        \n", + " \n", + "
                                        " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results_unpickled.plotplotly()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/gillespy2-UML-class-model.pyns b/gillespy2-UML-class-model.pyns index b7e0b1ebc..44c8191f7 100644 --- a/gillespy2-UML-class-model.pyns +++ b/gillespy2-UML-class-model.pyns @@ -1,51 +1,32 @@ -# PynSource Version 1.2 -{'type':'meta', 'info1':'Lorem ipsum dolor sit amet, consectetur adipiscing elit is latin. Comments are saved.'} -{'type':'umlshape', 'id':'Model', 'x':209, 'y':473, 'width':227, 'height':576, 'attrs': 'reserved_names|units|volume|listOfRateRules|namespace|name|tspan|annotation|listOfReactions|listOfParameters|listOfSpecies|special_characters', 'meths': 'validate_reactants_and_products|get_all_parameters|add_rate_rule|delete_parameter|run|resolve_parameters|serialize|get_all_species|get_species|delete_all_parameters|get_all_reactions|sanitized_parameter_names|set_units|add_species|sanitized_species_names|add_parameter|delete_all_reactions|delete_species|timespan|update_namespace|delete_reaction|delete_all_species|set_parameter|get_reaction|__init__|get_parameter|add_reaction|problem_with_name'} -{'type':'umlshape', 'id':'Species', 'x':16, 'y':212, 'width':192, 'height':134, 'attrs': 'mode|name|initial_value|allow_negative_populations', 'meths': '__str__|__init__'} -{'type':'umlshape', 'id':'Parameter', 'x':339, 'y':247, 'width':108, 'height':134, 'attrs': 'name|expression|value', 'meths': '__init__|evaluate|set_expression'} -{'type':'umlshape', 'id':'RateRule', 'x':239, 'y':251, 'width':80, 'height':108, 'attrs': 'expression|species|name', 'meths': '__init__'} -{'type':'umlshape', 'id':'Reaction', 'x':475, 'y':240, 'width':213, 'height':277, 'attrs': 'name|annotation|massaction|marate|propensity_function|ode_propensity_function|reactants|products|type', 'meths': '__init__|verify|create_mass_action|setType|addReactant|addProduct|Annotate|sanitized_propensity_function'} -{'type':'umlshape', 'id':'StochMLDocument', 'x':334, 'y':30, 'width':150, 'height':160, 'attrs': 'annotation|document', 'meths': 'reaction_to_element|to_string|__init__|species_to_element|to_model|parameter_to_element'} -{'type':'umlshape', 'id':'object', 'x':292, 'y':390, 'width':58, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'eTree.Element', 'x':22, 'y':18, 'width':114, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'np.int', 'x':121, 'y':129, 'width':58, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'np.float', 'x':26, 'y':130, 'width':74, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'OrderedDict', 'x':165, 'y':395, 'width':98, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'ModelError', 'x':770, 'y':219, 'width':90, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'SpeciesError', 'x':948, 'y':245, 'width':106, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'ReactionError', 'x':920, 'y':186, 'width':114, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'ParameterError', 'x':951, 'y':290, 'width':122, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'SolverError', 'x':706, 'y':269, 'width':98, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'DirectoryError', 'x':543, 'y':129, 'width':122, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'BuildError', 'x':669, 'y':122, 'width':90, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'ExecutionError', 'x':549, 'y':171, 'width':122, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'SimulationError', 'x':809, 'y':148, 'width':130, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'StochMLImportError', 'x':564, 'y':60, 'width':154, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'InvalidStochMLError', 'x':813, 'y':96, 'width':162, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'InvalidModelError', 'x':809, 'y':52, 'width':146, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'Exception', 'x':724, 'y':17, 'width':82, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'GillesPySolver', 'x':334, 'y':1128, 'width':122, 'height':82, 'attrs': 'name', 'meths': 'run'} -{'type':'umlshape', 'id':'Results', 'x':165, 'y':1150, 'width':87, 'height':147, 'attrs': 'model|solver_name|data', 'meths': 'plot|__init__|__getitem__|plotplotly'} -{'type':'umlshape', 'id':'EnsembleResults', 'x':545, 'y':1143, 'width':178, 'height':160, 'attrs': 'data', 'meths': 'average_ensemble|__init__|plotplotly_std_dev_range|plotplotly|stddev_ensemble|plot_std_dev_range|plot'} -{'type':'umlshape', 'id':'UserList', 'x':598, 'y':1047, 'width':74, 'height':26, 'attrs': '', 'meths': ''} -{'type':'umlshape', 'id':'UserDict', 'x':172, 'y':1066, 'width':74, 'height':26, 'attrs': '', 'meths': ''} -{'type':'edge', 'id':'Model_to_object', 'source':'Model', 'target':'object', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'Species_to_RateRule', 'source':'Species', 'target':'RateRule', 'uml_edge_type': 'composition'} -{'type':'edge', 'id':'eTree.Element_to_StochMLDocument', 'source':'eTree.Element', 'target':'StochMLDocument', 'uml_edge_type': 'composition'} -{'type':'edge', 'id':'np.int_to_Species', 'source':'np.int', 'target':'Species', 'uml_edge_type': 'composition'} -{'type':'edge', 'id':'np.float_to_Species', 'source':'np.float', 'target':'Species', 'uml_edge_type': 'composition'} -{'type':'edge', 'id':'OrderedDict_to_Model', 'source':'OrderedDict', 'target':'Model', 'uml_edge_type': 'composition'} -{'type':'edge', 'id':'SpeciesError_to_ModelError', 'source':'SpeciesError', 'target':'ModelError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'BuildError_to_SolverError', 'source':'BuildError', 'target':'SolverError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'StochMLImportError_to_SimulationError', 'source':'StochMLImportError', 'target':'SimulationError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'InvalidModelError_to_SimulationError', 'source':'InvalidModelError', 'target':'SimulationError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'ExecutionError_to_SolverError', 'source':'ExecutionError', 'target':'SolverError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'SimulationError_to_Exception', 'source':'SimulationError', 'target':'Exception', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'SolverError_to_Exception', 'source':'SolverError', 'target':'Exception', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'ParameterError_to_ModelError', 'source':'ParameterError', 'target':'ModelError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'InvalidStochMLError_to_SimulationError', 'source':'InvalidStochMLError', 'target':'SimulationError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'DirectoryError_to_SolverError', 'source':'DirectoryError', 'target':'SolverError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'ReactionError_to_ModelError', 'source':'ReactionError', 'target':'ModelError', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'ModelError_to_Exception', 'source':'ModelError', 'target':'Exception', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'EnsembleResults_to_UserList', 'source':'EnsembleResults', 'target':'UserList', 'uml_edge_type': 'generalisation'} -{'type':'edge', 'id':'Results_to_UserDict', 'source':'Results', 'target':'UserDict', 'uml_edge_type': 'generalisation'} +# PynSource Version 1.2 +{'type':'meta', 'info1':'Lorem ipsum dolor sit amet, consectetur adipiscing elit is latin. Comments are saved.'} +{'type':'umlshape', 'id':'SortableObject', 'x':184, 'y':78, 'width':150, 'height':194, 'attrs': '_hash', 'meths': '__ne__|__ge__|__cmp__|__eq__|__gt__|__hash__|__lt__|__le__'} +{'type':'umlshape', 'id':'Model', 'x':248, 'y':405, 'width':227, 'height':884, 'attrs': '_listOfAssignmentRules|_listOfFunctionDefinitions|reserved_names|_listOfRateRules|listOfParameters|listOfReactions|units|listOfEvents|annotation|namespace|name|_listOfSpecies|volume|special_characters|_listOfReactions|tspan|listOfSpecies|_listOfEvents|listOfFunctionDefinitions|listOfRateRules|_listOfParameters|listOfAssignmentRules', 'meths': '__str__|get_all_species|decorate|delete_all_species|get_all_parameters|run|update_namespace|add_event|delete_species|add_reaction|sanitized_species_names|get_parameter|delete_parameter|__init__|get_all_reactions|sanitized_parameter_names|add_assignment_rule|get_reaction|timespan|set_parameter|set_units|add_species|resolve_parameters|get_species|add_function_definition|delete_all_parameters|serialize|problem_with_name|validate_reactants_and_products|delete_reaction|add_parameter|delete_all_reactions|add_rate_rule'} +{'type':'umlshape', 'id':'Species', 'x':47, 'y':473, 'width':192, 'height':209, 'attrs': 'boundary_condition|initial_value|name|mode|switch_min|switch_tol|constant|allow_negative_populations', 'meths': '__str__|__init__'} +{'type':'umlshape', 'id':'Parameter', 'x':504, 'y':403, 'width':108, 'height':164, 'attrs': 'value|expression|name', 'meths': 'set_expression|evaluate|__str__|__init__'} +{'type':'umlshape', 'id':'FunctionDefinition', 'x':5, 'y':277, 'width':190, 'height':119, 'attrs': 'function|name', 'meths': 'sanitized_function|__init__'} +{'type':'umlshape', 'id':'AssignmentRule', 'x':635, 'y':456, 'width':150, 'height':149, 'attrs': 'variable|formula|name', 'meths': 'sanitized_formula|__str__|__init__'} +{'type':'umlshape', 'id':'RateRule', 'x':351, 'y':237, 'width':129, 'height':149, 'attrs': 'variable|formula|name', 'meths': 'sanitized_formula|__str__|__init__'} +{'type':'umlshape', 'id':'Reaction', 'x':489, 'y':672, 'width':259, 'height':227, 'attrs': 'name|ode_propensity_function|marate|products|reactants|propensity_function|type|massaction|annotation', 'meths': 'Annotate|__str__|sanitized_propensity_function|__customPropParser|setType|verify|addReactant|addProduct|__init__|__create_mass_action'} +{'type':'umlshape', 'id':'ExpressionParser', 'x':535, 'y':281, 'width':170, 'height':79, 'attrs': '', 'meths': 'visit_Name|visit_BinOp'} +{'type':'umlshape', 'id':'StochMLDocument', 'x':868, 'y':260, 'width':164, 'height':179, 'attrs': 'document|annotation', 'meths': '__reaction_to_element|__parameter_to_element|to_string|to_model|__species_to_element|__init__'} +{'type':'umlshape', 'id':'ast.NodeVisitor', 'x':10, 'y':732, 'width':160, 'height':29, 'attrs': '', 'meths': ''} +{'type':'umlshape', 'id':'ast.NodeTransformer', 'x':638, 'y':383, 'width':200, 'height':29, 'attrs': '', 'meths': ''} +{'type':'umlshape', 'id':'eTree.Element', 'x':711, 'y':235, 'width':140, 'height':29, 'attrs': '', 'meths': ''} +{'type':'umlshape', 'id':'OrderedDict', 'x':207, 'y':328, 'width':120, 'height':29, 'attrs': '', 'meths': ''} +{'type':'umlshape', 'id':'Trajectory', 'x':413, 'y':1363, 'width':110, 'height':164, 'attrs': 'model|rc|solver_name|data|status', 'meths': '__getitem__|__init__'} +{'type':'umlshape', 'id':'Results', 'x':201, 'y':1362, 'width':178, 'height':284, 'attrs': 'data', 'meths': '__add__|plot_std_dev_range|_validate_solver|__getitem__|average_ensemble|_validate_model|_validate_title|plotplotly_std_dev_range|plotplotly|plot|__init__|to_csv|__getattribute__|stddev_ensemble'} +{'type':'umlshape', 'id':'UserDict', 'x':402, 'y':1295, 'width':90, 'height':29, 'attrs': '', 'meths': ''} +{'type':'umlshape', 'id':'UserList', 'x':224, 'y':1295, 'width':90, 'height':29, 'attrs': '', 'meths': ''} +{'type':'edge', 'id':'AssignmentRule_to_SortableObject', 'source':'AssignmentRule', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'Parameter_to_SortableObject', 'source':'Parameter', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'RateRule_to_SortableObject', 'source':'RateRule', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'FunctionDefinition_to_SortableObject', 'source':'FunctionDefinition', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'Model_to_SortableObject', 'source':'Model', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'ExpressionParser_to_ast.NodeTransformer', 'source':'ExpressionParser', 'target':'ast.NodeTransformer', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'Species_to_SortableObject', 'source':'Species', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'Reaction_to_SortableObject', 'source':'Reaction', 'target':'SortableObject', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'eTree.Element_to_StochMLDocument', 'source':'eTree.Element', 'target':'StochMLDocument', 'uml_edge_type': 'composition'} +{'type':'edge', 'id':'OrderedDict_to_Model', 'source':'OrderedDict', 'target':'Model', 'uml_edge_type': 'composition'} +{'type':'edge', 'id':'Trajectory_to_UserDict', 'source':'Trajectory', 'target':'UserDict', 'uml_edge_type': 'generalisation'} +{'type':'edge', 'id':'Results_to_UserList', 'source':'Results', 'target':'UserList', 'uml_edge_type': 'generalisation'} diff --git a/gillespy2/__version__.py b/gillespy2/__version__.py index 3c148bfcc..11eebcc54 100644 --- a/gillespy2/__version__.py +++ b/gillespy2/__version__.py @@ -5,7 +5,7 @@ # @website https://github.com/GillesPy2/GillesPy2 # ============================================================================= -__version__ = '1.3.4' +__version__ = '1.4.0' __title__ = 'GillesPy2' __description__ = 'Python interface for Gillespie-style biochemical simulations' __url__ = 'https://github.com/GillesPy2/GillesPy2' diff --git a/gillespy2/core/gillespy2.py b/gillespy2/core/gillespy2.py index 48000419a..5992c6c67 100644 --- a/gillespy2/core/gillespy2.py +++ b/gillespy2/core/gillespy2.py @@ -4,12 +4,13 @@ """ from __future__ import division +import ast import signal, os import numpy as np import uuid from contextlib import contextmanager from collections import OrderedDict -from gillespy2.core.results import Results,EnsembleResults +from gillespy2.core.results import Trajectory,Results from gillespy2.core.events import * from gillespy2.core.gillespySolver import GillesPySolver from gillespy2.core.gillespyError import * @@ -53,8 +54,7 @@ class SortableObject(object): """Base class for GillesPy2 objects that are sortable.""" def __eq__(self, other): - return (isinstance(other, self.__class__) - and ordered(self) == ordered(other)) + return str(self)==str(other) def __ne__(self, other): return not self.__eq__(other) @@ -189,27 +189,27 @@ def decorate(header): print_string = self.name if len(self.listOfSpecies): print_string += decorate('Species') - for s in self.listOfSpecies.values(): + for s in sorted(self.listOfSpecies.values()): print_string += '\n' + str(s) if len(self.listOfParameters): print_string += decorate('Parameters') - for p in self.listOfParameters.values(): + for p in sorted(self.listOfParameters.values()): print_string += '\n' + str(p) if len(self.listOfReactions): print_string += decorate('Reactions') - for r in self.listOfReactions.values(): + for r in sorted(self.listOfReactions.values()): print_string += '\n' + str(r) if len(self.listOfEvents): print_string += decorate('Events') - for e in self.listOfEvents.values(): + for e in sorted(self.listOfEvents.values()): print_string += '\n' + str(e) if len(self.listOfAssignmentRules): print_string += decorate('Assignment Rules') - for ar in self.listOfAssignmentRules.values(): + for ar in sorted(self.listOfAssignmentRules.values()): print_string += '\n' + str(ar) if len(self.listOfRateRules): print_string += decorate('Rate Rules') - for rr in self.listOfRateRules.values(): + for rr in sorted(self.listOfRateRules.values()): print_string += '\n' + str(rr) return print_string @@ -489,14 +489,26 @@ def add_rate_rule(self, rate_rules): self.add_rate_rule(rr) else: try: - if rate_rules.formula == '': raise ModelError('Invalid Rate Rule. Expression must be a non-empty string value') + if len(self.listOfAssignmentRules) != 0: + for i in self.listOfAssignmentRules.values(): + if rate_rules.variable == i.variable: + raise ModelError("Duplicate variable in rate_rules AND assignment_rules: {0}". + format(rate_rules.variable)) + for i in self.listOfRateRules.values(): + if rate_rules.variable == i.variable: + raise ModelError("Duplicate variable in rate_rules: {0}".format(rate_rules.variable)) + if rate_rules.name in self.listOfRateRules: + raise ModelError("Duplicate name of rate_rule: {0}".format(rate_rules.name)) + if rate_rules.formula == '': + raise ModelError('Invalid Rate Rule. Expression must be a non-empty string value') if rate_rules.variable == None: raise ModelError('A GillesPy2 Rate Rule must be associated with a valid variable') - self.listOfRateRules[rate_rules.variable] = rate_rules + + self.listOfRateRules[rate_rules.name] = rate_rules sanitized_rate_rule = RateRule(name = 'RR{}'.format(len(self._listOfRateRules))) sanitized_rate_rule.formula = rate_rules.sanitized_formula(self._listOfSpecies, self._listOfParameters) - self._listOfRateRules[rate_rules.variable] = sanitized_rate_rule + self._listOfRateRules[rate_rules.name] = sanitized_rate_rule except Exception as e: raise ParameterError("Error using {} as a Rate Rule. Reason given: {}".format(rate_rules, e)) return rate_rules @@ -549,7 +561,24 @@ def add_assignment_rule(self, assignment_rules): self.add_assignment_rule(ar) else: try: - self.listOfAssignmentRules[assignment_rules.variable] = assignment_rules + if len(self.listOfRateRules) != 0: + for i in self.listOfRateRules.values(): + if assignment_rules.variable == i.variable: + raise ModelError("Duplicate variable in rate_rules AND assignment_rules: {0}". + format(assignment_rules.variable)) + for i in self.listOfAssignmentRules.values(): + if assignment_rules.variable == i.variable: + raise ModelError("Duplicate variable in assignment_rules: {0}" + .format(assignment_rules.variable)) + if assignment_rules.name in self.listOfAssignmentRules: + raise ModelError("Duplicate name in assignment_rules: {0}".format(assignment_rules.name)) + if assignment_rules.formula == '': + raise ModelError('Invalid Assignment Rule. Expression must be a non-empty string value') + if assignment_rules.variable == None: + raise ModelError('A GillesPy2 Rate Rule must be associated with a valid variable') + + + self.listOfAssignmentRules[assignment_rules.name] = assignment_rules except Exception as e: raise ParameterError("Error using {} as a Assignment Rule. Reason given: ".format(assignment_rules, e)) @@ -574,19 +603,167 @@ def timespan(self, time_span): raise InvalidModelError("StochKit only supports uniform timespans") def get_reaction(self, rname): + """ + + :param rname: name of reaction to return + :return: Reaction object + """ return self.listOfReactions[rname] def get_all_reactions(self): + """ + :return: dict of all Reaction objects + """ return self.listOfReactions def delete_reaction(self, obj): + """ + :param obj: Name of Reaction to be removed + """ self.listOfReactions.pop(obj) self._listOfReactions.pop(obj) def delete_all_reactions(self): + """ + Clears all reactions in model + """ self.listOfReactions.clear() self._listOfReactions.clear() + def get_event(self,ename): + """ + :param ename: Name of Event to get + :return: Event object + """ + return self.listOfEvents[ename] + + def get_all_events(self): + """ + :return: dict of all Event objects + """ + return self.listOfEvents + + def delete_event(self,ename): + """ + Removes specified Event from model + :param ename: Name of Event to be removed + """ + self.listOfEvents.pop(ename) + self._listOfEvents.pop(ename) + + def delete_all_events(self): + """ + Clears models events + """ + self.listOfEvents.clear() + self._listOfEvents.clear() + + def get_rate_rule(self,rname): + """ + :param rname: Name of Rate Rule to get + :return: RateRule object + """ + return self.listOfRateRules[rname] + + def get_all_rate_rules(self): + """ + :return: dict of all Rate Rule objects + """ + return self.listOfRateRules + + def delete_rate_rule(self,rname): + """ + Removes specified Rate Rule from model + :param rname: Name of Rate Rule to be removed + """ + self.listOfRateRules.pop(rname) + self._listOfRateRules.pop(rname) + + def delete_all_rate_rules(self): + """ + Clears all of models Rate Rules + """ + self.listOfRateRules.clear() + self._listOfRateRules.clear() + + def get_assignment_rule(self,aname): + """ + :param aname: Name of Assignment Rule to get + :return: Assignment Rule object + """ + return self.listOfAssignmentRules[aname] + + def get_all_assignment_rules(self): + """ + :return: dict of models Assignment Rules + """ + return self.listOfAssignmentRules + + def delete_assignment_rule(self,aname): + """ + Removes an assignment rule from a model + :param aname: Name of AssignmentRule object to be removed from model + """ + self.listOfAssignmentRules.pop(aname) + self._listOfAssignmentRules.pop(aname) + + def delete_all_assignment_rules(self): + """ + Clears all assignment rules from model + """ + self.listOfAssignmentRules.clear() + self._listOfAssignmentRules.clear() + + def get_function_definition(self,fname): + """ + :param fname: name of Function to get + :return: FunctionDefinition object + """ + return self.listOfFunctionDefinitions[fname] + + def get_all_function_definitions(self): + """ + :return: Dict of models function definitions + """ + return self.listOfFunctionDefinitions + + def delete_function_definition(self,fname): + """ + Removes specified Function Definition from model + :param fname: Name of Function Definition to be removed + """ + self.listOfFunctionDefinitions.pop(fname) + self._listOfFunctionDefinitions.pop(fname) + + def delete_all_function_definitions(self): + """ + Clears all Function Definitions from a model + """ + self.listOfFunctionDefinitions.clear() + self._listOfFunctionDefinitions.clear() + + def get_element(self, ename): + """ + get element specified by name + :param ename: name of element to search for + :return:value of element, or 'element not found' + """ + if ename in self.listOfReactions: + return self.get_reaction(ename) + if ename in self.listOfSpecies: + return self.get_species(ename) + if ename in self.listOfParameters: + return self.get_parameter(ename) + if ename in self.listOfEvents: + return self.get_event(ename) + if ename in self.listOfRateRules: + return self.get_rate_rule(ename) + if ename in self.listOfAssignmentRules: + return self.get_assignment_rule(ename) + if ename in self.listOfFunctionDefinitions: + return self.get_function_definition(ename) + return 'Element not found!' + def run(self, solver=None, timeout=0, **solver_args): """ Function calling simulation of the model. There are a number of @@ -595,10 +772,9 @@ def run(self, solver=None, timeout=0, **solver_args): Return ---------- - If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is True and - number_of_trajectories is 1, returns a results object that inherits UserDict and supports plotting functions. - If show_labels is False and number_of_trajectories is greater than 1, returns an ensemble_results object that - inherits UserList and contains results objects and supports ensemble graphing. + If show_labels is False, returns a numpy array of arrays of species population data. If show_labels is + True,returns a Results object that inherits UserList and contains one or more Trajectory objects that + inherit UserDict. Results object supports graphing and csv export. Attributes ---------- @@ -632,18 +808,19 @@ def run(self, solver=None, timeout=0, **solver_args): if hasattr(solver_results[0], 'shape'): return solver_results - if len(solver_results) == 1: - return Results(data=solver_results[0], model=self, - solver_name=solver.name, rc=rc) + if len(solver_results) is 1: + results_list = [] + results_list.append(Trajectory(data=solver_results[0], model=self, + solver_name=solver.name, rc=rc)) + return Results(results_list) - elif len(solver_results) > 1: + if len(solver_results) > 1: results_list = [] for i in range(0,solver_args.get('number_of_trajectories')): - results_list.append(Results(data=solver_results[i],model=self,solver_name=solver.name, + results_list.append(Trajectory(data=solver_results[i],model=self,solver_name=solver.name, rc=rc)) - return EnsembleResults(results_list) - elif hasattr(solver_results, 'shape'): - return solver_results + return Results(results_list) + else: raise ValueError("number_of_trajectories must be non-negative and non-zero") @@ -997,6 +1174,91 @@ def __init__(self, name="", reactants={}, products={}, else: self.type = "customized" + def __customPropParser(): + pow_func = ast.parse("pow", mode="eval").body + class ExpressionParser(ast.NodeTransformer): + def visit_BinOp(self, node): + node.left = self.visit(node.left) + node.right = self.visit(node.right) + if isinstance(node.op, (ast.BitXor, ast.Pow)): + # ast.Call calls defined function, args include which nodes + # are effected by function call + call = ast.Call(func=pow_func, + args=[node.left, node.right], + keywords=[]) + # Copy_location copies lineno and coloffset attributes + # from old node to new node. ast.copy_location(new_node,old_node) + call = ast.copy_location(call, node) + # Return changed node + return call + # No modification to node, classes extending NodeTransformer methods + # Always return node or value + else: + return node + def visit_Name(self, node): + #Visits Name nodes, if the name nodes "id" value is 'e', replace with numerical constant + if node.id == 'e': + nameToConstant = ast.copy_location(ast.Num(float(np.e), ctx=node.ctx), node) + return nameToConstant + return node + + expr = self.propensity_function + expr = expr.replace('^', '**') + expr = ast.parse(expr, mode='eval') + expr = ExpressionParser().visit(expr) + + class ToString(ast.NodeVisitor): + def __init__(self): + self.string = '' + def _string_changer(self, addition): + self.string += addition + def visit_BinOp(self, node): + self._string_changer('(') + self.visit(node.left) + self.visit(node.op) + self.visit(node.right) + self._string_changer(')') + def visit_Name(self, node): + self._string_changer(node.id) + self.generic_visit(node) + def visit_Num(self, node): + self._string_changer(str(node.n)) + self.generic_visit(node) + def visit_Call(self, node): + self._string_changer(node.func.id + '(') + counter = 0 + for arg in node.args: + self.visit(arg) + if counter == 0: + self._string_changer(',') + counter += 1 + self._string_changer(')') + def visit_Add(self, node): + self._string_changer('+') + self.generic_visit(node) + def visit_Div(self, node): + self._string_changer('/') + self.generic_visit(node) + def visit_Mult(self, node): + self._string_changer('*') + self.generic_visit(node) + def visit_UnaryOp(self, node): + self._string_changer('(') + self.visit_Usub(node) + self._string_changer(')') + def visit_Sub(self, node): + self._string_changer('-') + self.generic_visit(node) + def visit_Usub(self, node): + self._string_changer('-') + self.generic_visit(node) + + newFunc = ToString() + newFunc.visit(expr) + return newFunc.string + + self.propensity_function = __customPropParser() + def __str__(self): print_string = self.name if len(self.reactants): diff --git a/gillespy2/core/gillespyError.py b/gillespy2/core/gillespyError.py index 89adf4492..c78cce2e2 100644 --- a/gillespy2/core/gillespyError.py +++ b/gillespy2/core/gillespyError.py @@ -52,3 +52,10 @@ class SimulationTimeoutError(SimulationError): class EventError(ModelError): pass + +#Results errors +class ResultsError(Exception): + pass + +class ValidationError(ResultsError): + pass diff --git a/gillespy2/core/results.py b/gillespy2/core/results.py index 7359d3994..3d76f95fc 100644 --- a/gillespy2/core/results.py +++ b/gillespy2/core/results.py @@ -1,11 +1,11 @@ import warnings -import csv -import os from datetime import datetime +from gillespy2.core.gillespyError import * +import pickle from collections import UserDict,UserList -# List of 50 hex color values used for ploting graphs +# List of 50 hex color values used for plotting graphs common_rgb_values = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#ff0000', '#00ff00', '#0000ff', '#ffff00', '#00ffff', '#ff00ff', '#800000', '#808000', '#008000', '#800080', '#008080', '#000080', '#ff9999', '#ffcc99', @@ -16,7 +16,6 @@ def _plot_iterate(self, show_labels = True, included_species_list = []): import matplotlib.pyplot as plt - for i,species in enumerate(self.data): if species != 'time': @@ -32,9 +31,9 @@ def _plot_iterate(self, show_labels = True, included_species_list = []): plt.plot(self.data['time'], self.data[species], label=label,color = line_color) -def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict= None, included_species_list= []): +def _plotplotly_iterate(trajectory, show_labels = True, trace_list = None, line_dict= None, included_species_list= []): ''' - Helper method for Results and Ensemble .plotplotly() method + Helper method for Results .plotplotly() method ''' if trace_list is None: @@ -42,7 +41,7 @@ def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict import plotly.graph_objs as go - for i,species in enumerate(result.data): + for i,species in enumerate(trajectory.data): if species != 'time': if species not in included_species_list and included_species_list: @@ -57,8 +56,8 @@ def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict if show_labels: trace_list.append( go.Scatter( - x=result.data['time'], - y=result.data[species], + x=trajectory.data['time'], + y=trajectory.data[species], mode='lines', name=species, line = line_dict @@ -67,8 +66,8 @@ def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict else: trace_list.append( go.Scatter( - x=result.data['time'], - y=result.data[species], + x=trajectory.data['time'], + y=trajectory.data[species], mode='lines', name=species, line=line_dict, @@ -78,13 +77,21 @@ def _plotplotly_iterate(result, show_labels = True, trace_list = None, line_dict return trace_list -class Results(UserDict): - """ Results Dict created by a gillespy2 solver with single trajectory, extends the UserDict object. +class Trajectory(UserDict): + """ Trajectory Dict created by a gillespy2 solver containing single trajectory, extends the UserDict object. Attributes ---------- - data : UserList - A list of Results that are created by solvers with multiple trajectories + data : UserDict + A dictionary of trajectory values created by a solver + model : string + The name of the model used to create the trajectory + solver_name : string + The name of the solver used to create the trajectory + rc : int + The solver's status return code. + status : string + The solver status (e.g. 'Success', 'Timed Out') """ def __init__(self,data,model = None,solver_name = "Undefined solver name", rc=0): @@ -97,10 +104,9 @@ def __init__(self,data,model = None,solver_name = "Undefined solver name", rc=0) status_list = {0: 'Success', 33: 'Timed Out'} self.status = status_list[rc] - def __getitem__(self, key): - if type(key) is type(1): - warnings.warn("Results is of type dictionary. Use results['species'] instead of results[0]['species'] ") + if type(key) is int: + warnings.warn("Trajectory is of type dictionary. Use trajectory['species'] instead of trajectory[0]['species'] ") return self if key in self.data: return self.data[key] @@ -108,154 +114,87 @@ def __getitem__(self, key): return self.__class__.__missing__(self, key) raise KeyError(key) - def to_csv(self, path=None, nametag=None, stamp=None): - """ outputs the Results to one or more .csv files in a new directory. - Attributes - ---------- - nametag: allows the user to optionally "tag" the directory and included files. Defaults to the model name. - path: path to the location for the new directory and included files. Defaults to model location. - stamp: allows the user to optionally identify the directory (not included files). Defaults to timestamp. - """ - if stamp is None: - now = datetime.now() - stamp=datetime.timestamp(now) - if nametag is None: - identifier = (self.model.name + " - " + self.solver_name) - else: - identifier = nametag - if isinstance(self.data,dict): #if only one trajectory - if path is None: - directory = os.path.join(".",str(identifier)+str(stamp)) - else: - directory = os.path.join(path,str(identifier)+str(stamp)) - os.mkdir(directory) - filename = os.path.join(directory,identifier+".csv") - field_names = [] - for species in self.data: #build the header - field_names.append(species) - with open(filename, 'w', newline = '') as csv_file: - csv_writer = csv.writer(csv_file) - csv_writer.writerow(field_names) #write the header - for n,time in enumerate(self.data['time']):#write all lines of the CSV file - this_line=[] - for species in self.data: #build one line of the CSV file - this_line.append(self.data[species][n]) - csv_writer.writerow(this_line) #write one line of the CSV file - - - - def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", title = None, style="default", - show_legend=True, included_species_list=[],save_png=False,figsize = (18,10)): - """ Plots the Results using matplotlib. +class Results(UserList): + """ List of Trajectory objects created by a gillespy2 solver, extends the UserList object. - Attributes + Attributes ---------- - xaxis_label : str - the label for the x-axis - yaxis_label : str - the label for the y-axis - title : str - the title of the graph - show_legend : bool - whether or not to display a legend which lists species - included_species_list : list - A list of strings describing which species to include. By default displays all species. - save_png : bool or str - Should the graph be saved as a png file. If True, File name is title of graph. If a string is given, file - is named after that string. - figsize : tuple - the size of the graph. A tuple of the form (width,height). Is (18,10) by default. - + data : UserList + A list of Trajectory objects """ - import matplotlib.pyplot as plt - - try: - plt.style.use(style) - except: - warnings.warn("Invalid matplotlib style. Try using one of the following {}".format(plt.style.available)) - plt.style.use("default") - - if title is None: - title = (self.model.name + " - " + self.solver_name) - - plt.figure(figsize=figsize) - plt.title(title,fontsize=18) - plt.xlabel(xaxis_label) - plt.ylabel(yaxis_label) - - _plot_iterate(self, included_species_list=included_species_list) - - plt.plot([0], [11]) - - if show_legend: - plt.legend(loc='best') - - if isinstance(save_png, str): - plt.savefig(save_png) - - elif save_png: - plt.savefig(title) + def __init__(self,data): + self.data = data - def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, - included_species_list=[], return_plotly_figure = False): - """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook. + def __getattribute__(self,key): + if key == 'model' or key == 'solver_name' or key == 'rc'or key == 'status': + if len(self.data)>1: + warnings.warn("Results is of type list. Use results[i]['model'] instead of results['model'] ") + return(getattr(Results.__getattribute__(self,key='data')[0],key)) + else: + return UserList.__getattribute__(self,key) - Attributes - ---------- - xaxis_label : str - the label for the x-axis - yaxis_label : str - the label for the y-axis - title : str - the title of the graph - show_legend : bool - whether or not to display a legend which lists species - included_species_list : list - A list of strings describing which species to include. By default displays all species. - return_plotly_figure : bool - whether or not to return a figure dictionary of data(graph object traces) and layout options - which may be edited by the user. + def __getitem__(self, key): + if key == 'data': + return UserList.__getitem__(self,key) + if type(key) is str and key != 'data': + if len(self.data)>1: + warnings.warn("Results is of type list. Use results[i]['model'] instead of results['model'] ") + return self.data[0][key] + else: + return(UserList.__getitem__(self,key)) + raise KeyError(key) - """ + def __add__(self, other): + combined_data = Results(data=(self.data + other.data)) + consistent_solver = combined_data._validate_solver() + consistent_model = combined_data._validate_model() - from plotly.offline import init_notebook_mode, iplot - import plotly.graph_objs as go + if consistent_solver is False: + warnings.warn("Results objects contain Trajectory objects from multiple solvers.") - init_notebook_mode(connected=True) + consistent_model = combined_data._validate_model() - if title is None: - title = (self.model.name + " - " + self.solver_name) + if consistent_model is False: + raise ValidationError('Results objects contain Trajectory objects from multiple models.') - trace_list = _plotplotly_iterate(self, included_species_list = included_species_list,show_labels=True) + combined_data = self.data + other.data + return Results(data=combined_data) - layout = go.Layout( - showlegend=show_legend, - title= title, - xaxis=dict( - title=xaxis_label), - yaxis=dict( - title=yaxis_label) - ) - fig = dict(data = trace_list,layout=layout) - - if return_plotly_figure: - return fig + def _validate_model(self, reference = None): + is_valid = True + if reference is not None: + reference_model = reference else: - iplot(fig) - -class EnsembleResults(UserList): - """ List of Results Dicts created by a gillespy2 solver with multiple trajectories, extends the UserList object. - - Attributes - ---------- - data : UserList - A list of Results - """ - - def __init__(self,data): - self.data = data + reference_model = self.data[0].model + for trajectory in self.data: + if trajectory.model != reference_model: + is_valid = False + return is_valid + + def _validate_solver(self, reference = None): + is_valid = True + if reference is not None: + reference_solver = reference + else: + reference_solver = self.data[0].solver_name + for trajectory in self.data: + if trajectory.solver_name != reference_solver: + is_valid = False + return is_valid + + def _validate_title(self): + if self._validate_model(): + title_model = self.data[0].model.name + else: + title_model = 'Multiple Models' + if self._validate_solver(): + title_solver = self.data[0].solver_name + else: + title_solver = 'Multiple Solvers' + title = (title_model + " - " + title_solver) + return title def to_csv(self, path=None, nametag=None, stamp=None): """ outputs the Results to one or more .csv files in a new directory. @@ -266,11 +205,14 @@ def to_csv(self, path=None, nametag=None, stamp=None): path: the location for the new directory and included files. Defaults to model location. stamp: Allows the user to optionally "tag" the directory (not included files). Default is timestamp. """ + import csv + import os + if stamp is None: now = datetime.now() stamp=datetime.timestamp(now) if nametag is None: - identifier = (self[0].model.name + " - " + self[0].solver_name) + identifier = self._validate_title() else: identifier = nametag if path is None: @@ -294,12 +236,13 @@ def to_csv(self, path=None, nametag=None, stamp=None): this_line.append(trajectory[species][n]) csv_writer.writerow(this_line) #write one line of the CSV file - def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", style="default", title = None, + def plot(self, index = None, xaxis_label ="Time (s)", yaxis_label ="Species Population", style="default", title = None, show_legend=True, multiple_graphs = False, included_species_list=[],save_png=False,figsize = (18,10)): """ Plots the Results using matplotlib. Attributes ---------- + index : if not none, the index of the Trajectory to be plotted xaxis_label : str the label for the x-axis yaxis_label : str @@ -321,20 +264,26 @@ def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", style """ import matplotlib.pyplot as plt - results_list = self.data + from collections import Iterable + trajectory_list = [] + if isinstance(index,Iterable): + for i in index: + trajectory_list.append(self.data[i]) + elif isinstance(index,int): + trajectory_list.append(self.data[index]) + else: + trajectory_list = self.data if title is None: - if isinstance(self[0].model.name, str): - title = (self[0].model.name + " - " + self[0].solver_name) - else: title='' + title=self._validate_title() - if len(results_list) < 2: + if len(trajectory_list) < 2: multiple_graphs = False if multiple_graphs: - for i,result in enumerate(results_list): - + for i,trajectory in enumerate(trajectory_list): + result = Results(data=[trajectory]) if isinstance(save_png, str): result.plot(xaxis_label=xaxis_label, yaxis_label=yaxis_label, title=title + " " + str(i + 1), style=style, included_species_list=included_species_list,save_png=save_png + str(i + 1),figsize=figsize) @@ -354,12 +303,12 @@ def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", style plt.xlabel(xaxis_label) plt.ylabel(yaxis_label) - for i,result in enumerate(results_list): + for i,trajectory in enumerate(trajectory_list): if i > 0: - _plot_iterate(result, included_species_list=included_species_list,show_labels=False) + _plot_iterate(trajectory, included_species_list=included_species_list,show_labels=False) else: - _plot_iterate(result, included_species_list=included_species_list) + _plot_iterate(trajectory, included_species_list=included_species_list) if show_legend: plt.legend(loc='best') @@ -371,12 +320,13 @@ def plot(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", style elif save_png: plt.savefig(title) - def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, + def plotplotly(self, index = None, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, multiple_graphs = False, included_species_list=[],return_plotly_figure=False): """ Plots the Results using plotly. Can only be viewed in a Jupyter Notebook. Attributes ---------- + index : if not none, the index of the Trajectory to be plotted xaxis_label : str the label for the x-axis yaxis_label : str @@ -397,15 +347,24 @@ def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", init_notebook_mode(connected=True) - results_list = self.data - number_of_trajectories =len(results_list) + from collections import Iterable + trajectory_list = [] + if isinstance(index,Iterable): + for i in index: + trajectory_list.append(self.data[i]) + elif isinstance(index,int): + trajectory_list.append(self.data[index]) + else: + trajectory_list = self.data + + number_of_trajectories =len(trajectory_list) if title is None: - title = (self[0].model.name + " - " + self[0].solver_name) + title=self._validate_title() fig = dict(data=[], layout=[]) - if len(results_list) < 2: + if len(trajectory_list) < 2: multiple_graphs = False if multiple_graphs: @@ -415,12 +374,12 @@ def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", fig = tools.make_subplots(print_grid=False,rows=int(number_of_trajectories/2) + int(number_of_trajectories%2), cols = 2) - for i, result in enumerate(results_list): + for i, trajectory in enumerate(trajectory_list): if i > 0: - trace_list = _plotplotly_iterate(result, trace_list=[], included_species_list= included_species_list, + trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list= included_species_list, show_labels=False) else: - trace_list = _plotplotly_iterate(result, trace_list=[], included_species_list=included_species_list) + trace_list = _plotplotly_iterate(trajectory, trace_list=[], included_species_list=included_species_list) for k in range(0,len(trace_list)): if i%2 == 0: @@ -429,19 +388,19 @@ def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", fig.append_trace(trace_list[k], int(i/2) + 1, 2) fig['layout'].update(autosize=True, - height=400*len(results_list), + height=400*len(trajectory_list), showlegend=show_legend,title =title) else: trace_list = [] - for i,result in enumerate(results_list): + for i,trajectory in enumerate(trajectory_list): if i > 0: - trace_list = _plotplotly_iterate(result, trace_list=trace_list,included_species_list= included_species_list, + trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list,included_species_list= included_species_list, show_labels = False) else: - trace_list = _plotplotly_iterate(result, trace_list=trace_list,included_species_list= included_species_list) + trace_list = _plotplotly_iterate(trajectory, trace_list=trace_list,included_species_list= included_species_list) layout = go.Layout( showlegend=show_legend, @@ -463,40 +422,42 @@ def plotplotly(self, xaxis_label = "Time (s)", yaxis_label="Species Population", def average_ensemble(self): """ - Generate a single Results dictionary that is made of the means of all trajectories' outputs - :return: the Results dictionary + Generate a single Results object with a Trajectory that is made of the means of all trajectories' outputs + :return: the Results object """ - results_list = self.data - number_of_trajectories = len(results_list) + trajectory_list = self.data + number_of_trajectories = len(trajectory_list) - output = Results(data={},model=results_list[0].model,solver_name=results_list[0].solver_name) + output_trajectory = Trajectory(data={},model=trajectory_list[0].model,solver_name=trajectory_list[0].solver_name) - for species in results_list[0]: #Initialize the output to be the same size as the inputs - output[species] = [0]*len(results_list[0][species]) + for species in trajectory_list[0]: #Initialize the output to be the same size as the inputs + output_trajectory[species] = [0]*len(trajectory_list[0][species]) - output['time'] = results_list[0]['time'] + output_trajectory['time'] = trajectory_list[0]['time'] - for i in range(0,number_of_trajectories): #Add every value of every Results Dict into one output Results - results_dict = results_list[i] - for species in results_dict: + for i in range(0,number_of_trajectories): #Add every value of every Trajectory Dict into one output Trajectory + trajectory_dict = trajectory_list[i] + for species in trajectory_dict: if species == 'time': continue - for k in range(0,len(output[species])): - output[species][k] += results_dict[species][k] + for k in range(0,len(output_trajectory[species])): + output_trajectory[species][k] += trajectory_dict[species][k] - for species in output: #Divide for mean of every value in output Results + for species in output_trajectory: #Divide for mean of every value in output Trajectory if species == 'time': continue - for i in range(0,len(output[species])): - output[species][i] /= number_of_trajectories + for i in range(0,len(output_trajectory[species])): + output_trajectory[species][i] /= number_of_trajectories + + output_results = Results(data=[output_trajectory]) #package output_trajectory in a Results object - return output + return output_results def stddev_ensemble(self,ddof = 0): """ - Generate a single Results dictionary that is made of the sample standard deviations of all trajectories' - outputs. + Generate a single Results object with a Trajectory that is made of the sample standard deviations of all + trajectories' outputs. Attributes ---------- @@ -505,49 +466,50 @@ def stddev_ensemble(self,ddof = 0): the number of trajectories. Sample standard deviation uses ddof of 1. Defaults to population standard deviation where ddof is 0. - :return: the Results dictionary + :return: the Results object """ from math import sqrt - results_list = self.data - number_of_trajectories = len(results_list) + trajectory_list = self.data + number_of_trajectories = len(trajectory_list) if ddof == number_of_trajectories: warnings.warn("ddof must be less than the number of trajectories. Using ddof of 0") ddof = 0 - average_list = self.average_ensemble() + average_list = self.average_ensemble().data[0] - output = Results(data={}, model=results_list[0].model, solver_name=results_list[0].solver_name) + output_trajectory = Trajectory(data={}, model=trajectory_list[0].model, solver_name=trajectory_list[0].solver_name) - for species in results_list[0]: #Initialize the output to be the same size as the inputs - output[species] = [0]*len(results_list[0][species]) + for species in trajectory_list[0]: #Initialize the output to be the same size as the inputs + output_trajectory[species] = [0]*len(trajectory_list[0][species]) - output['time'] = results_list[0]['time'] + output_trajectory['time'] = trajectory_list[0]['time'] for i in range(0,number_of_trajectories): - results_dict = results_list[i] - for species in results_dict: + trajectory_dict = trajectory_list[i] + for species in trajectory_dict: if species == 'time': continue - for k in range(0,len(output[species])): - output[species][k] += (results_dict[species][k] - average_list[species][k])\ - *(results_dict[species][k] - average_list[species][k]) + for k in range(0,len(output_trajectory['time'])): + output_trajectory[species][k] += (trajectory_dict[species][k] - average_list[species][k])\ + *(trajectory_dict[species][k] - average_list[species][k]) - for species in output: #Divide for mean of every value in output Results + for species in output_trajectory: #Divide for mean of every value in output Trajectory if species == 'time': continue - for i in range(0,len(output[species])): - output[species][i] /= (number_of_trajectories - ddof) - output[species][i] = sqrt(output[species][i]) + for i in range(0,len(output_trajectory[species])): + output_trajectory[species][i] /= (number_of_trajectories - ddof) + output_trajectory[species][i] = sqrt(output_trajectory[species][i]) - return output + output_results = Results(data=[output_trajectory]) #package output_trajectory in a Results object + return output_results def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Species Population", title = None, show_legend=True, included_species_list = [],return_plotly_figure=False,ddof = 0): """ - Plot a plotly graph depicting standard deviation and the mean graph of an ensemble_results object + Plot a plotly graph depicting standard deviation and the mean graph of a results object Attributes ---------- @@ -571,8 +533,8 @@ def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Specie """ - average_result = self.average_ensemble() - stddev_result = self.stddev_ensemble(ddof= ddof) + average_trajectory = self.average_ensemble().data[0] + stddev_trajectory = self.stddev_ensemble(ddof= ddof).data[0] from plotly.offline import init_notebook_mode, iplot import plotly.graph_objs as go @@ -580,23 +542,23 @@ def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Specie init_notebook_mode(connected=True) if title is None: - title = (average_result.model.name + " - " + average_result.solver_name + " - Standard Deviation Range") + title = (self._validate_title() + " - Standard Deviation Range") trace_list=[] - for species in average_result: + for species in average_trajectory: if species != 'time': if species not in included_species_list and included_species_list: continue upper_bound = [] - for i in range(0, len(average_result[species])): - upper_bound.append(average_result[species][i] + stddev_result[species][i]) + for i in range(0, len(average_trajectory[species])): + upper_bound.append(average_trajectory[species][i] + stddev_trajectory[species][i]) trace_list.append( go.Scatter( name=species+ ' Upper Bound', - x=average_result['time'], + x=average_trajectory['time'], y = upper_bound, mode='lines', marker=dict(color="#444"), @@ -607,8 +569,8 @@ def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Specie ) trace_list.append( go.Scatter( - x=average_result['time'], - y=average_result[species], + x=average_trajectory['time'], + y=average_trajectory[species], name=species, fillcolor='rgba(68, 68, 68, 0.2)', fill='tonexty' @@ -616,13 +578,13 @@ def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Specie ) lower_bound = [] - for i in range(0, len(average_result[species])): - lower_bound.append(average_result[species][i] - stddev_result[species][i]) + for i in range(0, len(average_trajectory[species])): + lower_bound.append(average_trajectory[species][i] - stddev_trajectory[species][i]) trace_list.append( go.Scatter( name=species + ' Lower Bound', - x=average_result['time'], + x=average_trajectory['time'], y= lower_bound, mode='lines', marker=dict(color="#444"), @@ -651,7 +613,7 @@ def plotplotly_std_dev_range(self, xaxis_label = "Time (s)", yaxis_label="Specie def plot_std_dev_range(self, xaxis_label ="Time (s)", yaxis_label ="Species Population", title = None, style="default", show_legend=True, included_species_list=[],ddof=0,save_png = False,figsize = (18,10)): """ - Plot a matplotlib graph depicting standard deviation and the mean graph of an ensemble_results object + Plot a matplotlib graph depicting standard deviation and the mean graph of a results object Attributes ---------- @@ -677,8 +639,8 @@ def plot_std_dev_range(self, xaxis_label ="Time (s)", yaxis_label ="Species Popu """ - average_result = self.average_ensemble() - stddev_result = self.stddev_ensemble(ddof=ddof) + average_result = self.average_ensemble().data[0] + stddev_trajectory = self.stddev_ensemble(ddof=ddof).data[0] import matplotlib.pyplot as plt @@ -697,15 +659,15 @@ def plot_std_dev_range(self, xaxis_label ="Time (s)", yaxis_label ="Species Popu if species not in included_species_list and included_species_list: continue - lowerBound = [a-b for a,b in zip(average_result[species], stddev_result[species])] - upperBound = [a+b for a,b in zip(average_result[species], stddev_result[species])] + lowerBound = [a-b for a,b in zip(average_result[species], stddev_trajectory[species])] + upperBound = [a+b for a,b in zip(average_result[species], stddev_trajectory[species])] plt.fill_between(average_result['time'], lowerBound, upperBound,color='whitesmoke') plt.plot(average_result['time'],lowerBound,upperBound,color='grey',linestyle='dashed') plt.plot(average_result['time'],average_result[species],label=species) if title is None: - title = (average_result.model.name + " - " + average_result.solver_name + " - Standard Deviation Range") + title = (self._validate_title() + " - Standard Deviation Range") plt.title(title, fontsize=18) plt.xlabel(xaxis_label) diff --git a/gillespy2/sbml/SBMLimport.py b/gillespy2/sbml/SBMLimport.py index 10a7cb482..280c59e09 100644 --- a/gillespy2/sbml/SBMLimport.py +++ b/gillespy2/sbml/SBMLimport.py @@ -347,6 +347,8 @@ def __resolve_evals(gillespy_model, init_state): def convert(filename, model_name=None, gillespy_model=None): sbml_model, errors = __read_sbml_model(filename) + if sbml_model is None: + return None, errors if model_name is None: model_name = sbml_model.getName() if gillespy_model is None: diff --git a/gillespy2/solvers/cpp/__init__.py b/gillespy2/solvers/cpp/__init__.py index a9b422460..f6feb0551 100644 --- a/gillespy2/solvers/cpp/__init__.py +++ b/gillespy2/solvers/cpp/__init__.py @@ -1,4 +1,5 @@ from gillespy2.solvers.cpp.ssa_c_solver import SSACSolver +from gillespy2.solvers.cpp.variable_ssa_c_solver import VariableSSACSolver from gillespy2.core import log def check_cpp_support(): diff --git a/gillespy2/solvers/cpp/c_base/VariableSimulationTemplate.cpp b/gillespy2/solvers/cpp/c_base/VariableSimulationTemplate.cpp new file mode 100644 index 000000000..6cfa397cb --- /dev/null +++ b/gillespy2/solvers/cpp/c_base/VariableSimulationTemplate.cpp @@ -0,0 +1,88 @@ +#include +#include +#include +#include +#include +#include +#include "model.h" +#include "ssa.h" +using namespace Gillespy; + +//Default values, replaced with command line args +unsigned int number_trajectories = 0; +unsigned int number_timesteps = 0; +int random_seed = 0; +double end_time = 0; +bool seed_time = true; + +//Default constants +__DEFINE_VARIABLES__ + +class PropensityFunction : public IPropensityFunction{ +public: + double evaluate(unsigned int reaction_number, unsigned int* S){ + switch(reaction_number){ +__DEFINE_PROPENSITY__ + + default: //Error + return -1; + } + } +}; + +int main(int argc, char* argv[]){ + //Parse command line arguments + std :: string arg; + for(int i = 1; i < argc - 1; i++){ + arg = argv[i]; + if(argc > i+1 && arg.size() > 1 && arg[0] == '-'){ + std :: stringstream arg_stream(argv[i+1]); + switch(arg[1]){ + case 'i': + for(int j = 0; j < int(sizeof(populations)); j++){ + arg_stream >> populations[j]; + } + break; + case 'p': +__DEFINE_PARAMETER_UPDATES__ + break; + case 's': + arg_stream >> random_seed; + seed_time = false; + break; + case 'e': + arg_stream >> end_time; + break; + case 't': + if(arg[2] == 'r'){ + arg_stream >> number_trajectories; + }else if(arg[2] == 'i'){ + arg_stream >> number_timesteps; + } + break; + } + } + } + + std :: vector species_names(s_names, s_names + sizeof(s_names)/sizeof(std :: string)); + std :: vector species_populations(populations, populations + sizeof(populations)/sizeof(populations[0])); + std :: vector reaction_names(r_names, r_names + sizeof(r_names)/sizeof(std :: string)); + + Model model(species_names, species_populations, reaction_names); + + //Begin reaction species changes +__DEFINE_REACTIONS_ + //End reaction species changes + model.update_affected_reactions(); + + if(seed_time){ + random_seed = time(NULL); + } + IPropensityFunction *propFun = new PropensityFunction(); + Simulation simulation(&model, number_trajectories, number_timesteps, end_time, propFun, random_seed); + ssa_direct(&simulation); + //std :: cout << simulation << std :: endl; + simulation.output_results_buffer(std :: cout); + delete propFun; + return 0; +} diff --git a/gillespy2/solvers/cpp/variable_ssa_c_solver.py b/gillespy2/solvers/cpp/variable_ssa_c_solver.py new file mode 100644 index 000000000..6c4640a23 --- /dev/null +++ b/gillespy2/solvers/cpp/variable_ssa_c_solver.py @@ -0,0 +1,285 @@ +import gillespy2 +from gillespy2.core import Model, Reaction, gillespyError, GillesPySolver, log +import signal, time #for solver timeout implementation +import os #for getting directories for C++ files +import shutil #for deleting/copying files +import subprocess #For calling make and executing c solver +import inspect #for finding the Gillespy2 module path +import tempfile #for temporary directories +import numpy as np + +GILLESPY_PATH = os.path.dirname(inspect.getfile(gillespy2)) +GILLESPY_C_DIRECTORY = os.path.join(GILLESPY_PATH, 'solvers/cpp/c_base') + + +def _copy_files(destination): + src_files = os.listdir(GILLESPY_C_DIRECTORY) + for src_file in src_files: + src_file = os.path.join(GILLESPY_C_DIRECTORY, src_file) + if os.path.isfile(src_file): + shutil.copy(src_file, destination) + + +def _write_variables(outfile, model, reactions, species, parameters, parameter_mappings): + outfile.write("double V = {};\n".format(model.volume)) + outfile.write("std :: string s_names[] = {"); + if len(species) > 0: + #Write model species names. + for i in range(len(species)-1): + outfile.write('"{}", '.format(species[i])) + outfile.write('"{}"'.format(species[-1])) + outfile.write("};\nunsigned int populations[] = {") + #Write initial populations. + for i in range(len(species)-1): + outfile.write('{}, '.format(int(model.listOfSpecies[species[i]].initial_value))) + outfile.write('{}'.format(int(model.listOfSpecies[species[-1]].initial_value))) + outfile.write("};\n") + if len(reactions) > 0: + #Write reaction names + outfile.write("std :: string r_names[] = {") + for i in range(len(reactions)-1): + outfile.write('"{}", '.format(reactions[i])) + outfile.write('"{}"'.format(reactions[-1])) + outfile.write("};\n") + for param in parameters: + if param != 'vol': + outfile.write("double {0} = {1};\n".format(parameter_mappings[param], model.listOfParameters[param].value)) + +def _update_parameters(outfile, model, parameters, parameter_mappings): + for param in parameters: + if param != 'vol': + outfile.write(' arg_stream >> {};\n'.format(parameter_mappings[param])) + else: + outfile.write(' arg_stream >> V;\n') + +def _write_propensity(outfile, model, species_mappings, parameter_mappings, reactions): + for i in range(len(reactions)): + # Write switch statement case for reaction + outfile.write(""" + case {0}: + return {1}; + """.format(i, model.listOfReactions[reactions[i]].sanitized_propensity_function(species_mappings, parameter_mappings))) + + +def _write_reactions(outfile, model, reactions, species): + for i in range(len(reactions)): + reaction = model.listOfReactions[reactions[i]] + for j in range(len(species)): + change = (reaction.products.get(model.listOfSpecies[species[j]], 0)) - (reaction.reactants.get(model.listOfSpecies[species[j]], 0)) + if change != 0: + outfile.write("model.reactions[{0}].species_change[{1}] = {2};\n".format(i, j, change)) + + +def _parse_output(results, number_of_trajectories, number_timesteps, number_species): + trajectory_base = np.empty((number_of_trajectories, number_timesteps, number_species+1)) + for timestep in range(number_timesteps): + values = results[timestep].split(" ") + trajectory_base[:, timestep, 0] = float(values[0]) + index = 1 + for trajectory in range(number_of_trajectories): + for species in range(number_species): + trajectory_base[trajectory, timestep, 1 + species] = float(values[index+species]) + index += number_species + return trajectory_base + + +def _parse_binary_output(results_buffer, number_of_trajectories, number_timesteps, number_species): + trajectory_base = np.empty((number_of_trajectories, number_timesteps, number_species+1)) + step_size = number_species * number_of_trajectories + 1 #1 for timestep + data = np.frombuffer(results_buffer, dtype=np.float64) + assert(len(data) == (number_of_trajectories*number_timesteps*number_species + number_timesteps)) + for timestep in range(number_timesteps): + index = step_size * timestep + trajectory_base[:, timestep, 0] = data[index] + index += 1 + for trajectory in range(number_of_trajectories): + for species in range(number_species): + trajectory_base[trajectory, timestep, 1 + species] = data[index + species] + index += number_species + return trajectory_base + + +class VariableSSACSolver(GillesPySolver): + name = "VariableSSACSolver" + def __init__(self, model=None, output_directory=None, delete_directory=True): + super(VariableSSACSolver, self).__init__() + self.__compiled = False + self.delete_directory = False + self.model = model + if self.model is not None: + # Create constant, ordered lists for reactions/species/ + self.species_mappings = self.model.sanitized_species_names() + self.species = list(self.species_mappings.keys()) + self.parameter_mappings = self.model.sanitized_parameter_names() + self.parameters = list(self.parameter_mappings.keys()) + self.reactions = list(self.model.listOfReactions.keys()) + + if isinstance(output_directory, str): + output_directory = os.path.abspath(output_directory) + + if isinstance(output_directory, str): + if not os.path.isfile(output_directory): + self.output_directory = output_directory + self.delete_directory = delete_directory + if not os.path.isdir(output_directory): + os.makedirs(self.output_directory) + else: + raise gillespyError.DirectoryError("File exists with the same path as directory.") + else: + self.temporary_directory = tempfile.TemporaryDirectory() + self.output_directory = self.temporary_directory.name + + if not os.path.isdir(self.output_directory): + raise gillespyError.DirectoryError("Errors encountered while setting up directory for Solver C++ files.") + _copy_files(self.output_directory) + self.__write_template() + self.__compile() + + def __del__(self): + if self.delete_directory and os.path.isdir(self.output_directory): + shutil.rmtree(self.output_directory) + + def __write_template(self, template_file='VariableSimulationTemplate.cpp'): + # Open up template file for reading. + with open(os.path.join(self.output_directory, template_file), 'r') as template: + # Write simulation C++ file. + template_keyword = "__DEFINE_" + # Use same lists of model's species and reactions to maintain order + with open(os.path.join(self.output_directory, 'UserSimulation.cpp'), 'w') as outfile: + for line in template: + if line.startswith(template_keyword): + line = line[len(template_keyword):] + if line.startswith("VARIABLES"): + _write_variables(outfile, self.model, self.reactions, self.species, self.parameters, self.parameter_mappings) + if line.startswith("PROPENSITY"): + _write_propensity(outfile, self.model, self.species_mappings, self.parameter_mappings, self.reactions) + if line.startswith("REACTIONS"): + _write_reactions(outfile, self.model, self.reactions, self.species) + if line.startswith("PARAMETER_UPDATES"): + _update_parameters(outfile, self.model, self.parameters, self.parameter_mappings) + else: + outfile.write(line) + + def __compile(self): + # Use makefile. + cleaned = subprocess.run(["make", "-C", self.output_directory, 'cleanSimulation'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + built = subprocess.run(["make", "-C", self.output_directory, 'UserSimulation'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) + if built.returncode == 0: + self.__compiled = True + else: + raise gillespyError.BuildError("Error encountered while compiling file:\nReturn code: {0}.\nError:\n{1}\n{2}\n".format(built.returncode, built.stdout.decode('utf-8'),built.stderr.decode('utf-8'))) + + def run(self=None, model=None, t=20, number_of_trajectories=1, timeout=0, + increment=0.05, seed=None, debug=False, profile=False, show_labels=True, + variables={}, **kwargs): + + if self is None or self.model is None: + self = VariableSSACSolver(model) + if len(kwargs) > 0: + for key in kwargs: + log.warning('Unsupported keyword argument to {0} solver: {1}'.format(self.name, key)) + + unsupported_sbml_features = { + 'Rate Rules': len(model.listOfRateRules), + 'Assignment Rules': len(model.listOfAssignmentRules), + 'Events': len(model.listOfEvents), + 'Function Definitions': len(model.listOfFunctionDefinitions) + } + detected_features = [] + for feature, count in unsupported_sbml_features.items(): + if count: + detected_features.append(feature) + + if len(detected_features): + raise gillespyError.ModelError( + 'Could not run Model. SBML Feature: {} not supported by SSACSolver.'.format(detected_features)) + + if not isinstance(variables, dict): + raise gillespyError.SimulationError( + 'argument to variables must be a dictionary.') + for v in variables.keys(): + if v not in self.species+self.parameters: + raise gillespyError.SimulationError('Argument to variable "{}" \ +is not a valid variable. Variables must be model species or parameters.'.format(v)) + + if self.__compiled: + populations = '' + parameter_values = '' + # Update Species Initial Values + for i in range(len(self.species)-1): + if self.species[i] in variables: + populations += '{} '.format(int(variables[self.species[i]])) + else: + populations += '{} '.format(int(model.listOfSpecies[self.species[i]].initial_value)) + if self.species[-1] in variables: + populations += '{}'.format(int(variables[self.species[-1]])) + else: + populations += '{}'.format(int(model.listOfSpecies[self.species[-1]].initial_value)) + # Update Parameter Values + for i in range(len(self.parameters)-1): + if self.parameters[i] in variables: + parameter_values += '{} '.format(variables[self.parameters[i]]) + else: + if self.parameters[i] == 'vol': + parameter_values +='{} '.format(model.volume) + else: + parameter_values +='{} '.format(model.listOfParameters[self.parameters[i]].expression) + if self.parameters[-1] in variables: + parameter_values += '{}'.format(variables[self.parameters[-1]]) + else: + if self.parameters[i] == 'vol': + parameter_values += '{}'.format(model.volume) + else: + parameter_values += '{}'.format(model.listOfParameters[self.parameters[-1]].expression) + self.simulation_data = None + number_timesteps = int(round(t/increment + 1)) + # Execute simulation. + args = [os.path.join(self.output_directory, 'UserSimulation'), + '-trajectories', str(number_of_trajectories), + '-timesteps', str(number_timesteps), + '-end', str(t), + '-initial_values', populations, + '-parameters', parameter_values] + if seed is not None: + if isinstance(seed, int): + args.append('-seed') + args.append(str(seed)) + else: + seed_int = int(seed) + if seed_int > 0: + args.append('-seed') + args.append(str(seed_int)) + else: + raise ModelError("seed must be a positive integer") + + #begin subprocess c simulation with timeout (default timeout=0 will not timeout) + with subprocess.Popen(args, stdout=subprocess.PIPE, preexec_fn=os.setsid) as simulation: + return_code = 0 + try: + if timeout > 0: + stdout, stderr = simulation.communicate(timeout=timeout) + else: + stdout, stderr = simulation.communicate() + return_code = simulation.wait() + except subprocess.TimeoutExpired: + os.killpg(simulation.pid, signal.SIGINT) #send signal to the process group + stdout, stderr = simulation.communicate() + return_code = 33 + + # Parse/return results. + if return_code in [0, 33]: + trajectory_base = _parse_binary_output(stdout, number_of_trajectories, number_timesteps, len(self.species)) + # Format results + if show_labels: + self.simulation_data = [] + for trajectory in range(number_of_trajectories): + data = {'time': trajectory_base[trajectory, :, 0]} + for i in range(len(self.species)): + data[self.species[i]] = trajectory_base[trajectory, :, i+1] + self.simulation_data.append(data) + else: + self.simulation_data = trajectory_base + else: + raise gillespyError.ExecutionError("Error encountered while running simulation C++ file:\nReturn code: {0}.\nError:\n{1}\n".format(simulation.returncode, simulation.stderr)) + return self.simulation_data, return_code + diff --git a/gillespy2/solvers/numpy/basic_ode_solver.py b/gillespy2/solvers/numpy/basic_ode_solver.py index 9dc1fd436..3ebf75527 100644 --- a/gillespy2/solvers/numpy/basic_ode_solver.py +++ b/gillespy2/solvers/numpy/basic_ode_solver.py @@ -79,7 +79,9 @@ def run(self, model, t=20, number_of_trajectories=1, increment=0.05, sim_thread = Thread(target=self.___run, args=(model,), kwargs={'t':t, 'number_of_trajectories':number_of_trajectories, 'increment':increment, 'show_labels':show_labels, - 'timeout':timeout}) + 'timeout':timeout, + 'integrator':integrator, + 'integrator_options':integrator_options}) try: sim_thread.start() sim_thread.join(timeout=timeout) diff --git a/gillespy2/solvers/numpy/basic_tau_hybrid_solver.py b/gillespy2/solvers/numpy/basic_tau_hybrid_solver.py index 41075117f..ffbc44d2b 100644 --- a/gillespy2/solvers/numpy/basic_tau_hybrid_solver.py +++ b/gillespy2/solvers/numpy/basic_tau_hybrid_solver.py @@ -175,14 +175,14 @@ def __calculate_statistics(self, *switch_args): model.listOfSpecies.items() if value.mode == 'dynamic'} for r, rxn in model.listOfReactions.items(): - for reactant in rxn.reactants: - if reactant.mode == 'dynamic': - mn[reactant.name] -= (tau_step * propensities[r] * rxn.reactants[reactant]) - sd[reactant.name] += (tau_step * propensities[r] * rxn.reactants[reactant]**2) - for product in rxn.products: - if product.mode == 'dynamic': - mn[product.name] += (tau_step * propensities[r] * rxn.products[product]) - sd[product.name] += (tau_step * propensities[r] * rxn.products[product]**2) + for reactant in rxn.reactants: + if reactant.mode == 'dynamic': + mn[reactant.name] -= (tau_step * propensities[r] * rxn.reactants[reactant]) + sd[reactant.name] += (tau_step * propensities[r] * rxn.reactants[reactant]**2) + for product in rxn.products: + if product.mode == 'dynamic': + mn[product.name] += (tau_step * propensities[r] * rxn.products[product]) + sd[product.name] += (tau_step * propensities[r] * rxn.products[product]**2) # Get coefficient of variance for each dynamic species for species in mn: @@ -196,7 +196,6 @@ def __calculate_statistics(self, *switch_args): det_spec[species] = CV[species] < sref.switch_tol else: det_spec[species] = mn[species] > sref.switch_min - return sd, CV @staticmethod @@ -912,7 +911,6 @@ def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None # One-time compilations to reduce time spent with eval compiled_reactions, compiled_rate_rules, compiled_inactive_reactions, compiled_propensities = self.__compile_all(model) - all_compiled = OrderedDict() all_compiled['rxns'] = compiled_reactions all_compiled['inactive_rxns'] = compiled_inactive_reactions @@ -954,16 +952,16 @@ def __run(self, model, t=20, number_of_trajectories=1, increment=0.05, seed=None model, propensities, curr_state, curr_time, save_times[0]] tau_step = save_times[-1]-curr_time if pure_ode else Tau.select(*tau_args) + # Process switching if used + if not pure_stochastic and not pure_ode: + switch_args = [model, propensities, curr_state, tau_step, det_spec] + sd, CV = self.__calculate_statistics(*switch_args) + # Calculate sd and CV for hybrid switching and flag deterministic reactions if pure_stochastic: deterministic_reactions = frozenset() # Empty if non-det else: deterministic_reactions = self.__flag_det_reactions(model, det_spec, det_rxn, dependencies) - - # Process switching if used - if not pure_stochastic and not pure_ode: - switch_args = [model, propensities, curr_state, tau_step, det_spec] - sd, CV = self.__calculate_statistics(*switch_args) if debug: print('mean: {0}'.format(mu_i)) diff --git a/test/run_tests.py b/test/run_tests.py index a6e870081..218461ea7 100644 --- a/test/run_tests.py +++ b/test/run_tests.py @@ -24,11 +24,13 @@ import test_hybrid_solver import test_simple_model import test_ssa_c_solver + import test_variable_ssa_c_solver import test_SBML import test_example_models import test_all_solvers import test_sys_init import test_results + import test_propensity_parser modules = [ test_empty_model, @@ -37,11 +39,13 @@ test_hybrid_solver, test_simple_model, test_ssa_c_solver, + test_variable_ssa_c_solver, test_SBML, test_example_models, test_all_solvers, test_sys_init, - test_results + test_results, + test_propensity_parser ] for module in modules: diff --git a/test/test_all_solvers.py b/test/test_all_solvers.py index 4a48ac046..d56eedded 100644 --- a/test/test_all_solvers.py +++ b/test/test_all_solvers.py @@ -3,8 +3,9 @@ import gillespy2 from example_models import Example, Oregonator -from gillespy2.core.results import EnsembleResults, Results +from gillespy2.core.results import Results, Trajectory from gillespy2.solvers.cpp.ssa_c_solver import SSACSolver +from gillespy2.solvers.cpp.variable_ssa_c_solver import VariableSSACSolver from gillespy2.solvers.numpy.basic_ode_solver import BasicODESolver from gillespy2.solvers.numpy.ssa_solver import NumPySSASolver from gillespy2.solvers.numpy.basic_tau_leaping_solver import BasicTauLeapingSolver @@ -13,7 +14,8 @@ class TestAllSolvers(unittest.TestCase): - solvers = [SSACSolver, BasicODESolver, NumPySSASolver, BasicTauLeapingSolver, BasicTauHybridSolver] + solvers = [SSACSolver, VariableSSACSolver, BasicODESolver, + NumPySSASolver, BasicTauLeapingSolver, BasicTauHybridSolver] model = Example() for sp in model.listOfSpecies.values(): @@ -44,11 +46,10 @@ def test_return_type_show_labels(self): self.assertTrue(isinstance(self.labeled_results[solver]['Sp'], np.ndarray)) self.assertTrue(isinstance(self.labeled_results[solver]['Sp'][0], np.float)) - with self.assertWarns(Warning): - self.assertTrue(isinstance(self.labeled_results[solver][0], Results)) + self.assertTrue(isinstance(self.labeled_results[solver][0], Trajectory)) - self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver], EnsembleResults)) - self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver][0], Results)) + self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver], Results)) + self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver][0], Trajectory)) self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver][0]['Sp'], np.ndarray)) self.assertTrue(isinstance(self.labeled_results_more_trajectories[solver][0]['Sp'][0], np.float)) diff --git a/test/test_model.py b/test/test_model.py index f4d2b9877..ecd811c0f 100644 --- a/test/test_model.py +++ b/test/test_model.py @@ -6,6 +6,38 @@ class TestModel(unittest.TestCase): + def test_model_reflexivity(self): + model = Model() + assert model==model + + def test_model_inequality(self): + model1 = Model() + model2 = Model() + param1 = Parameter('A', expression=0) + param2 = Parameter('B', expression=1) + model1.add_parameter(param1) + model2.add_parameter(param2) + assert model1 != model2 + + def test_model_equality(self): + model1 = Model() + model2 = Model() + param1 = Parameter('A', expression=0) + model1.add_parameter(param1) + model2.add_parameter(param1) + assert model1 == model2 + + def test_model_reordered_equality(self): + model1 = Model() + model2 = Model() + param1 = Parameter('A', expression=0) + param2 = Parameter('B', expression=1) + model1.add_parameter(param1) + model1.add_parameter(param2) + model2.add_parameter(param2) + model2.add_parameter(param1) + assert model1 == model2 + def test_uniform_timespan(self): model = Model() model.timespan(np.linspace(0, 1, 100)) @@ -41,13 +73,13 @@ def test_no_reaction_name(self): model.add_reaction([reaction1, reaction2]) - def test_int_type_mismatch(self): - model = Model() - y1 = np.int64(5) - y2 = np.int32(5) - species1 = Species('A', initial_value=y1) - species2 = Species('B', initial_value=y2) - model.add_species([species1, species2]) +# def test_int_type_mismatch(self): +# model = Model() +# y1 = np.int64(5) +# y2 = np.int32(5) +# species1 = Species('A', initial_value=y1) +# species2 = Species('B', initial_value=y2) +# model.add_species([species1, species2]) def test_duplicate_reaction_name(self): model = Model() diff --git a/test/test_propensity_parser.py b/test/test_propensity_parser.py new file mode 100644 index 000000000..3f3c991b4 --- /dev/null +++ b/test/test_propensity_parser.py @@ -0,0 +1,36 @@ +import unittest +from gillespy2.core import Reaction + +r1 = Reaction(name='r1', propensity_function="5*x^2+e*b+6") +r2 = Reaction(name='r2', propensity_function="5*x**2+e*b+6") + +r3 = Reaction(name='r3', propensity_function="1*alpha/2+5^beta") +r4 = Reaction(name='r4', propensity_function="1*alpha/2+5**beta") + +r5 = Reaction(name='r5', propensity_function="2.78*x+3^(4*x)") +r6 = Reaction(name='r6', propensity_function="2.78*x+3**(4*x)") + +r7 = Reaction(name='r7', propensity_function="(alpha/beta + delta**gamma)/(atlas-zeta)") +r8 = Reaction(name='r8', propensity_function="(alpha/beta + delta^gamma)/(atlas-zeta)") + +r9 = Reaction(name='r9', propensity_function="-5*-x^2") +r10 = Reaction(name='r10', propensity_function="-5*-x**2") + + + +class TestPropensityFunctions(unittest.TestCase): + def test_propensity_functions(self): + self.assertEqual(r1.propensity_function,"(((5*pow(x,2))+(2.718281828459045*b))+6)",msg="Has incorrect expression") + self.assertEqual(r2.propensity_function,"(((5*pow(x,2))+(2.718281828459045*b))+6)",msg="Has incorrect expression") + + self.assertEqual(r3.propensity_function,"(((1*alpha)/2)+pow(5,beta))",msg="Has incorrect expression") + self.assertEqual(r4.propensity_function,"(((1*alpha)/2)+pow(5,beta))",msg="Has incorrect expression") + + self.assertEqual(r5.propensity_function,"((2.78*x)+pow(3,(4*x)))",msg="Has incorrect expression") + self.assertEqual(r6.propensity_function,"((2.78*x)+pow(3,(4*x)))",msg="Has incorrect expression") + + self.assertEqual(r7.propensity_function,"(((alpha/beta)+pow(delta,gamma))/(atlas-zeta))",msg="Has incorrect expression") + self.assertEqual(r8.propensity_function,"(((alpha/beta)+pow(delta,gamma))/(atlas-zeta))",msg="Has incorrect expression") + + self.assertEqual(r9.propensity_function,"((-5)*(-pow(x,2)))",msg="Has incorrect expression") + self.assertEqual(r10.propensity_function,"((-5)*(-pow(x,2)))",msg="Has incorrect expression") diff --git a/test/test_results.py b/test/test_results.py index f1572b690..a0ac60ae1 100644 --- a/test/test_results.py +++ b/test/test_results.py @@ -1,10 +1,36 @@ import unittest import os import tempfile -from gillespy2.core import Model, Species, Reaction, Parameter, Results, EnsembleResults +from gillespy2.core import Model, Species, Reaction, Parameter +from gillespy2.core.results import Results, Trajectory class TestResults(unittest.TestCase): - + + def test_pickle_stable_plot_iterate(self): + from unittest import mock + from gillespy2.core.results import _plot_iterate + trajectory = Trajectory(data={'time':[0.],'foo':[1.]}, model=Model('test_model')) + import pickle + trajectory_unpickled = pickle.loads(pickle.dumps(trajectory)) + import matplotlib + with mock.patch('matplotlib.pyplot.plot') as mock_method_before_pickle: + _plot_iterate(trajectory) + with mock.patch('matplotlib.pyplot.plot') as mock_method_after_pickle: + _plot_iterate(trajectory_unpickled) + assert mock_method_before_pickle.call_args_list == mock_method_after_pickle.call_args_list + + def test_pickle_stable_plotplotly_iterate(self): + from unittest import mock + from gillespy2.core.results import _plotplotly_iterate + trajectory = Trajectory(data={'time':[0.],'foo':[1.]}, model=Model('test_model')) + import pickle + trajectory_unpickled = pickle.loads(pickle.dumps(trajectory)) + with mock.patch('plotly.graph_objs.Scatter') as mock_method_before_pickle: + _plotplotly_iterate(trajectory) + with mock.patch('plotly.graph_objs.Scatter') as mock_method_after_pickle: + _plotplotly_iterate(trajectory_unpickled) + assert mock_method_before_pickle.call_args_list == mock_method_after_pickle.call_args_list + def test_to_csv_single_result_no_data(self): result = Results(data=None) test_nametag = "test_nametag" @@ -17,7 +43,7 @@ def test_to_csv_single_result_no_data(self): def test_to_csv_single_result_directory_exists(self): test_data = {'time':[0]} - result = Results(data=test_data) + result = Results(data=[test_data]) test_nametag = "test_nametag" test_stamp = "test_stamp" @@ -28,18 +54,18 @@ def test_to_csv_single_result_directory_exists(self): def test_to_csv_single_result_file_exists(self): test_data = {'time':[0]} - result = Results(data=test_data) + result = Results(data=[test_data]) test_nametag = "test_nametag" test_stamp = "test_stamp" with tempfile.TemporaryDirectory() as tempdir: result.to_csv(stamp = test_stamp, nametag = test_nametag, path=tempdir) - test_path = tempdir+"/"+test_nametag+test_stamp+"/"+test_nametag+".csv" + test_path = tempdir+"/"+test_nametag+test_stamp+"/"+test_nametag+"0.csv" assert os.path.isfile(test_path) def test_to_csv_single_result_no_stamp(self): test_data = {'time':[0]} - result = Results(data=test_data) + result = Results(data=[test_data]) test_nametag = "test_nametag" with tempfile.TemporaryDirectory() as tempdir: @@ -47,9 +73,9 @@ def test_to_csv_single_result_no_stamp(self): assert len(os.listdir(tempdir)) is not 0 def test_to_csv_single_result_no_nametag(self): - test_data = {'time':[0]} test_model = Model('test_model') - result = Results(data=test_data,model=test_model) + test_data = Trajectory(data={'time':[0]},model=test_model) + result = Results(data=[test_data]) result.solver_name = 'test_solver' test_stamp = "test_stamp" @@ -58,8 +84,8 @@ def test_to_csv_single_result_no_nametag(self): assert len(os.listdir(tempdir)) is not 0 def test_to_csv_single_result_no_path(self): - test_data = {'time':[0]} - result = Results(data=test_data) + test_data = Trajectory({'time':[0]},model=Model('test_model'),solver_name='test_solver_name') + result = Results(data=[test_data]) test_nametag = "test_nametag" test_stamp = "test_stamp" @@ -68,80 +94,6 @@ def test_to_csv_single_result_no_path(self): result.to_csv(stamp=test_stamp, nametag=test_nametag) assert len(os.listdir(tempdir)) is not 0 - def test_to_csv_ensemble_result_no_data(self): - result = EnsembleResults(data=None) - test_nametag = "test_nametag" - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - result.to_csv(stamp = test_stamp, nametag = test_nametag, path=tempdir) - test_path = tempdir+"/"+test_nametag+test_stamp - assert not os.path.isdir(test_path) - - def test_to_csv_ensemble_result_directory_exists(self): - test_data = {'time':[0]} - result = EnsembleResults([test_data]) - test_nametag = "test_nametag" - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - result.to_csv(stamp = test_stamp, nametag = test_nametag, path=tempdir) - test_path = tempdir+"/"+test_nametag+test_stamp - assert os.path.isdir(test_path) - - def test_to_csv_ensemble_result_create_one_file(self): - test_data = {'time':[0]} - result = EnsembleResults(data=[test_data]) - test_nametag = "test_nametag" - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - result.to_csv(stamp = test_stamp, nametag = test_nametag, path=tempdir) - test_path = tempdir+"/"+test_nametag+test_stamp+"/"+test_nametag+"0.csv" - assert os.path.isfile(test_path) - - def test_to_csv_ensemble_result_create_multiple_files(self): - test_data = {'time':[0]} - result = EnsembleResults(data=[test_data,test_data]) - test_nametag = "test_nametag" - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - result.to_csv(stamp = test_stamp, nametag = test_nametag, path=tempdir) - test_path = tempdir+"/"+test_nametag+test_stamp+"/"+test_nametag+"0.csv" - assert os.path.isfile(test_path) - - def test_to_csv_ensemble_result_no_stamp(self): - test_data = {'time':[0]} - result = EnsembleResults(data=[test_data,test_data]) - test_nametag = "test_nametag" - - with tempfile.TemporaryDirectory() as tempdir: - result.to_csv(nametag=test_nametag, path=tempdir) - assert len(os.listdir(tempdir)) is not 0 - - def test_to_csv_ensemble_result_no_nametag(self): - test_data = {'time':[0]} - test_model = Model('test_model') - result = Results(data=test_data,model=test_model) - ensemble_result = EnsembleResults(data=[result,result]) - result.solver_name = 'test_solver' - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - ensemble_result.to_csv(stamp=test_stamp, path=tempdir,nametag=None) - assert len(os.listdir(tempdir)) is not 0 - - def test_to_csv_ensemble_result_no_path(self): - test_data = {'time':[0]} - result = EnsembleResults(data=[test_data,test_data]) - test_nametag = "test_nametag" - test_stamp = "test_stamp" - - with tempfile.TemporaryDirectory() as tempdir: - os.chdir(tempdir) - result.to_csv(stamp=test_stamp, nametag=test_nametag) - assert len(os.listdir(tempdir)) is not 0 if __name__ == '__main__': unittest.main() diff --git a/test/test_simple_model.py b/test/test_simple_model.py index bc1d7a0ff..89b76ca94 100644 --- a/test/test_simple_model.py +++ b/test/test_simple_model.py @@ -57,14 +57,14 @@ def test_addingMultipleSameSpecies_ThrowsError(self): def test_addingSameParameter_ThrowsError(self): k1 = Parameter(name='k1', expression=0) - with self.assertRaises(ParameterError) as ex: + with self.assertRaises(ModelError) as ex: self.model.add_parameter(k1) self.assertIn('Name "{}" is unavailable. A parameter with that name exists.'.format(k1.name), str(ex.exception)) def test_addingMultipleSameParameter_ThrowsError(self): k1 = Parameter(name='k1', expression=0) k2 = Parameter(name='k2', expression=0) - with self.assertRaises(ParameterError) as ex: + with self.assertRaises(ModelError) as ex: self.model.add_parameter([k1, k2]) self.assertIn('Name "{}" is unavailable. A parameter with that name exists.'.format(k1.name), str(ex.exception)) @@ -154,8 +154,8 @@ def test_model_parameters_correct(self): def test_model_has_rate_rules(self): rate_rules = self.model.listOfRateRules - self.assertEqual(rate_rules['B'].variable, 'B', msg='Has incorrect species') - self.assertEqual(rate_rules['B'].formula, 'cos(t)', msg='{0} has incorrect type'.format(rate_rules)) + self.assertEqual(rate_rules['Brate'].variable, 'B', msg='Has incorrect species') + self.assertEqual(rate_rules['Brate'].formula, 'cos(t)', msg='{0} has incorrect type'.format(rate_rules)) def test_get_reaction(self): reaction = self.model.get_reaction('r1') @@ -191,7 +191,7 @@ def test_model_has_reactions_correct(self): # Check r1 name & propensity function is set self.assertEqual(reactions['r1'].name, 'r1', msg='Has incorrect expression') - self.assertEqual(reactions['r1'].propensity_function, 'k1*B', msg='Has incorrect expression') + self.assertEqual(reactions['r1'].propensity_function, '(k1*B)', msg='Has incorrect expression') # Check r1 reactants are set self.assertEqual(reactants_r1[species_A], 1, msg='Has incorrect number of reactants') diff --git a/test/test_variable_ssa_c_solver.py b/test/test_variable_ssa_c_solver.py new file mode 100644 index 000000000..f26306371 --- /dev/null +++ b/test/test_variable_ssa_c_solver.py @@ -0,0 +1,56 @@ +import unittest +import tempfile +from gillespy2.core.gillespyError import DirectoryError, SimulationError +from example_models import Example +from gillespy2.solvers.cpp.variable_ssa_c_solver import VariableSSACSolver + + +class TestVariableSSACSolver(unittest.TestCase): + def test_create(self): + model = Example() + solver = VariableSSACSolver(model) + + def test_file_with_directory_name_exists(self): + with self.assertRaises(DirectoryError): + temp = tempfile.NamedTemporaryFile() + model = Example() + solver = VariableSSACSolver(model, temp.name) + + def test_run_example_precompiled(self): + model = Example() + solver = VariableSSACSolver(model) + results = model.run(solver=solver) + + def test_change_species(self): + model = Example() + initial_value = model.listOfSpecies['Sp'].initial_value + solver = VariableSSACSolver(model) + results = model.run(solver=solver, variables={'Sp':3}) + with self.subTest(msg='Test changed species simulation'): + self.assertEqual(results['Sp'][0], 3) + with self.subTest(msg='Test changed species model integrity'): + self.assertEqual(model.listOfSpecies['Sp'].initial_value, initial_value) + + def test_change_parameter(self): + model = Example() + initial_expression = model.listOfParameters['k1'].expression + solver = VariableSSACSolver(model) + results = model.run(solver=solver, variables={'k1':0}) + with self.subTest(msg='Test changed parameter simulation'): + self.assertEqual(results['Sp'][-1], results['Sp'][0]) + with self.subTest(msg='Test changed parameter model integrity'): + self.assertEqual(model.listOfParameters['k1'].expression, initial_expression) + + def test_invalid_variable(self): + model = Example() + solver = VariableSSACSolver(model) + with self.assertRaises(SimulationError): + results = model.run(solver=solver, variables={'foobar':0}) + + def test_run_example(self): + model = Example() + results = model.run(solver=VariableSSACSolver) + + +if __name__ == '__main__': + unittest.main()
                                            gillespy2.core.results
                                            - gillespy2.example_models -
                                            @@ -185,47 +180,47 @@

                                        Python Module Index

                                            - gillespy2.solvers.cpp.ssa_c_solver + gillespy2.solvers.cpp.example_models
                                            - gillespy2.solvers.cython + gillespy2.solvers.cpp.ssa_c_solver
                                            - gillespy2.solvers.cython.cython_ssa_solver + gillespy2.solvers.cpp.variable_ssa_c_solver
                                            - gillespy2.solvers.numpy + gillespy2.solvers.cython
                                            - gillespy2.solvers.numpy.basic_ode_solver + gillespy2.solvers.cython.cython_ssa_solver
                                            - gillespy2.solvers.numpy.basic_tau_hybrid_solver + gillespy2.solvers.numpy
                                            - gillespy2.solvers.numpy.basic_tau_hybrid_v2 + gillespy2.solvers.numpy.basic_ode_solver
                                            - gillespy2.solvers.numpy.basic_tau_leaping_solver + gillespy2.solvers.numpy.basic_tau_hybrid_solver
                                            - gillespy2.solvers.numpy.just_in_cases + gillespy2.solvers.numpy.basic_tau_leaping_solver