forked from crankyoldgit/IRremoteESP8266
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRremoteESP8266.cpp
1856 lines (1698 loc) · 54.4 KB
/
IRremoteESP8266.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***************************************************
* IRremote for ESP8266
*
* Based on the IRremote library for Arduino by Ken Shirriff
* Version 0.11 August, 2009
* Copyright 2009 Ken Shirriff
* For details, see
* http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Modified by Paul Stoffregen <[email protected]> to support other boards and
* timers
* Modified by Mitra Ardron <[email protected]>
* Added Sanyo and Mitsubishi controllers
* Modified Sony to spot the repeat codes that some Sony's send
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by
* http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and
* other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
* Whynter A/C ARC-110WD added by Francesco Meschia
* Global Cache IR format sender added by Hisham Khalifa
* (http://www.hishamkhalifa.com)
* Coolix A/C / heatpump added by bakrus
* Denon: sendDenon, decodeDenon added by Massimiliano Pinto
* (from https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Denon.cpp)
* Kelvinator A/C and Sherwood added by crankyoldgit
* Mitsubishi A/C added by crankyoldgit
* (derived from https://github.com/r45635/HVAC-IR-Control)
*
* Updated by markszabo (https://github.com/markszabo/IRremoteESP8266) for
* sending IR code on ESP8266
* Updated by Sebastien Warin (http://sebastien.warin.fr) for receiving IR code
* on ESP8266
*
* GPL license, all text above must be included in any redistribution
****************************************************/
#include "IRremoteESP8266.h"
#include "IRremoteInt.h"
#include "IRDaikinESP.h"
#include "IRKelvinator.h"
#include "IRMitsubishiAC.h"
// IRtimer ---------------------------------------------------------------------
// This class performs a simple time in useconds since instantiated.
// Handles when the system timer wraps around (once).
IRtimer::IRtimer() {
reset();
}
void ICACHE_FLASH_ATTR IRtimer::reset() {
start = micros();
}
uint32_t ICACHE_FLASH_ATTR IRtimer::elapsed() {
uint32_t now = micros();
if (start <= now) // Check if the system timer has wrapped.
return (now - start); // No wrap.
else
return (0xFFFFFFFF - start + now); // Has wrapped.
}
// IRsend ----------------------------------------------------------------------
IRsend::IRsend(int IRsendPin) {
IRpin = IRsendPin;
}
void ICACHE_FLASH_ATTR IRsend::begin() {
pinMode(IRpin, OUTPUT);
ledOff(); // Turn off the IR LED just to be safe.
}
// Generic method for sending data that is common to most protocols.
// Default to transmitting the Most Significant Bit (MSB) first.
void ICACHE_FLASH_ATTR IRsend::sendData(uint16_t onemark, uint32_t onespace,
uint16_t zeromark, uint32_t zerospace,
uint32_t data, uint8_t nbits,
bool MSBfirst) {
if (MSBfirst) // Send the MSB first.
for (uint32_t mask = 1UL << (nbits - 1); mask; mask >>= 1)
if (data & mask) { // 1
mark(onemark);
space(onespace);
} else { // 0
mark(zeromark);
space(zerospace);
}
else { // Send the Least Significant Bit (LSB) first / MSB last.
for (uint8_t bit = 0; bit < nbits; bit++, data >>= 1)
if (data & 1) { // 1
mark(onemark);
space(onespace);
} else { // 0
mark(zeromark);
space(zerospace);
}
}
}
void ICACHE_FLASH_ATTR IRsend::sendCOOLIX(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(38);
// Header
mark(COOLIX_HDR_MARK);
space(COOLIX_HDR_SPACE);
// Data
// Sending 3 bytes of data. Each byte first being sent straight, then followed
// by an inverted version.
unsigned long COOLIXmask;
bool invert = 0; // Initializing
for (int j = 0; j < COOLIX_NBYTES * 2; j++) {
for (int i = nbits; i > nbits-8; i--) {
// Type cast necessary to perform correct for the one byte above 16bit
COOLIXmask = (unsigned long) 1 << (i-1);
if (data & COOLIXmask) { // 1
mark(COOLIX_BIT_MARK);
space(COOLIX_ONE_SPACE);
} else { // 0
mark(COOLIX_BIT_MARK);
space(COOLIX_ZERO_SPACE);
}
}
// Inverts all of the data each time we need to send an inverted byte
data ^= 0xFFFFFFFF;
invert = !invert;
// Subtract 8 from nbits each time we switch to a new byte.
nbits -= invert ? 0 : 8;
}
// Footer
mark(COOLIX_BIT_MARK);
space(COOLIX_ZERO_SPACE); // Stop bit (0)
space(COOLIX_HDR_SPACE); // Pause before repeating
}
void ICACHE_FLASH_ATTR IRsend::sendNEC (unsigned long data, int nbits,
unsigned int repeat) {
// Details about timings can be found at:
// http://www.sbprojects.com/knowledge/ir/nec.php
// Set IR carrier frequency
enableIROut(38);
IRtimer usecs = IRtimer();
// Header
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
// Data
sendData(NEC_BIT_MARK, NEC_ONE_SPACE, NEC_BIT_MARK, NEC_ZERO_SPACE,
data, nbits, true);
// Footer
mark(NEC_BIT_MARK);
// Gap to next command.
space(max(0, NEC_MIN_COMMAND_LENGTH - usecs.elapsed()));
// Optional command repeat sequence.
for (unsigned int i = 0; i < repeat; i++) {
usecs.reset();
mark(NEC_HDR_MARK);
space(NEC_RPT_SPACE);
mark(NEC_BIT_MARK);
// Gap till next command.
space(max(0, NEC_MIN_COMMAND_LENGTH - usecs.elapsed()));
}
}
void ICACHE_FLASH_ATTR IRsend::sendLG (unsigned long data, int nbits,
unsigned int repeat) {
// Args:
// data: The contents of the command you want to send.
// nbits: The bit size of the command being sent.
// repeat: The number of times you want the command to be repeated.
// Set IR carrier frequency
enableIROut(38);
// We always send a command, even for repeat=0, hence '<= repeat'.
for (unsigned int i = 0; i <= repeat; i++) {
// Header
mark(LG_HDR_MARK);
space(LG_HDR_SPACE);
// Data
sendData(LG_BIT_MARK, LG_ONE_SPACE, LG_BIT_MARK, LG_ZERO_SPACE,
data, nbits, true);
// Footer
mark(LG_BIT_MARK);
space(LG_RPT_LENGTH);
}
}
void ICACHE_FLASH_ATTR IRsend::sendWhynter(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(38);
// Header
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
mark(WHYNTER_HDR_MARK);
space(WHYNTER_HDR_SPACE);
// Data
sendData(WHYNTER_ONE_MARK, WHYNTER_ONE_SPACE, WHYNTER_ZERO_MARK,
WHYNTER_ZERO_SPACE, data, nbits, true);
// Footer
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
}
void ICACHE_FLASH_ATTR IRsend::sendSony(unsigned long data, int nbits,
unsigned int repeat) {
// Send an IR command to a compatible Sony device.
//
// Args:
// data: IR command to be sent.
// nbits: Nr. of bits of the IR command to be sent.
// repeat: Nr. of additional times the IR command is to be sent.
//
// sendSony() should typically be called with repeat=2 as Sony devices
// expect the code to be sent at least 3 times.
//
// Timings and details are taken from:
// http://www.sbprojects.com/knowledge/ir/sirc.php
enableIROut(40); // Sony devices use a 40kHz IR carrier frequency.
IRtimer usecs = IRtimer();
for (uint16_t i = 0; i <= repeat; i++) { // Typically loop 3 or more times.
usecs.reset();
// Header
mark(SONY_HDR_MARK);
space(SONY_HDR_SPACE);
// Data
sendData(SONY_ONE_MARK, SONY_HDR_SPACE, SONY_ZERO_MARK, SONY_HDR_SPACE,
data, nbits, true);
// Footer
// The Sony protocol requires us to wait 45ms from start of a code to the
// start of the next one. A 10ms minimum gap is also required.
space(max(10000, 45000 - usecs.elapsed()));
}
// A space() is always performed last, so no need to turn off the LED.
}
void ICACHE_FLASH_ATTR IRsend::sendRaw(unsigned int buf[], int len, int hz) {
// Set IR carrier frequency
enableIROut(hz);
for (int i = 0; i < len; i++) {
if (i & 1) { // Odd bit.
space(buf[i]);
} else { // Even bit.
mark(buf[i]);
}
}
ledOff();
}
// Global Cache format w/o emitter ID or request ID. Starts from hertz,
// followed by number of times to emit (count),
// followed by offset for repeats, followed by code as units of periodic time.
void ICACHE_FLASH_ATTR IRsend::sendGC(unsigned int buf[], int len) {
int khz = buf[0]/1000; // GC data starts with frequency in Hz.
enableIROut(khz);
int periodic_time = 1000/khz;
int count = buf[1]; // Max 50 as per GC.
// Data
for (int i = 0; i < count; i++) {
// Account for offset if we're repeating, otherwise start at index 3.
int j = i > 0 ? buf[2] + 2 : 3;
for (; j < len; j++) {
// Convert periodic units to microseconds. Minimum is 80 for actual GC
// units.
int microseconds = buf[j] * periodic_time;
if (j & 1) { // Odd bit.
// Our codes start at an odd index (not even as with sendRaw).
mark(microseconds);
} else { // Even bit.
space(microseconds);
}
}
}
// Footer
ledOff();
}
// Note: first bit must be a one (start bit)
void ICACHE_FLASH_ATTR IRsend::sendRC5(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(36);
// Header
mark(RC5_T1); // First start bit
space(RC5_T1); // Second start bit
mark(RC5_T1); // Second start bit
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) { // 1
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else { // 0
mark(RC5_T1);
space(RC5_T1);
}
}
// Footer
ledOff();
}
// Caller needs to take care of flipping the toggle bit
void ICACHE_FLASH_ATTR IRsend::sendRC6(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(36);
// Header
mark(RC6_HDR_MARK);
space(RC6_HDR_SPACE);
mark(RC6_T1); // Start bit
space(RC6_T1);
int t;
// Data
for (unsigned long i = 0, mask = 1UL << (nbits - 1); mask; i++, mask >>= 1) {
// The fourth bit we send is a "double width trailer bit".
if (i == 3) {
// double-wide trailer bit
t = 2 * RC6_T1;
} else {
t = RC6_T1;
}
if (data & mask) { // 1
mark(t);
space(t);
} else { // 0
space(t);
mark(t);
}
}
// Footer
ledOff();
}
// Send a Philips RC-MM packet.
// Based on http://www.sbprojects.com/knowledge/ir/rcmm.php
// Args:
// data: The data we want to send. MSB first.
// nbits: The number of bits of data to send. (Typically 12, 24, or 32[Nokia])
// Status: ALPHA (untested and unconfirmed.)
void ICACHE_FLASH_ATTR IRsend::sendRCMM(uint32_t data, uint8_t nbits) {
// Set IR carrier frequency
enableIROut(36);
IRtimer usecs = IRtimer();
// Header
mark(RCMM_HDR_MARK);
space(RCMM_HDR_SPACE);
// Data
uint32_t mask = B11 << (nbits - 2);
// RC-MM sends data 2 bits at a time.
for (uint8_t i = nbits; i > 0; i -= 2) {
mark(RCMM_BIT_MARK);
// Grab the next Most Significant Bits to send.
switch ((data & mask) >> (i - 2)) {
case B00: space(RCMM_BIT_SPACE_0); break;
case B01: space(RCMM_BIT_SPACE_1); break;
case B10: space(RCMM_BIT_SPACE_2); break;
case B11: space(RCMM_BIT_SPACE_3); break;
}
mask >>= 2;
}
// Footer
mark(RCMM_BIT_MARK);
// Protocol requires us to wait at least RCMM_RPT_LENGTH usecs from the start
// or RCMM_MIN_GAP usecs.
space(max(RCMM_RPT_LENGTH - usecs.elapsed(), RCMM_MIN_GAP));
}
void ICACHE_FLASH_ATTR IRsend::sendPanasonic(unsigned int address,
unsigned long data) {
// Set IR carrier frequency
enableIROut(37);
// Header
mark(PANASONIC_HDR_MARK);
space(PANASONIC_HDR_SPACE);
// Address (16 bits)
sendData(PANASONIC_BIT_MARK, PANASONIC_ONE_SPACE,
PANASONIC_BIT_MARK, PANASONIC_ZERO_SPACE,
address, 16, true);
// Data (32 bits)
sendData(PANASONIC_BIT_MARK, PANASONIC_ONE_SPACE,
PANASONIC_BIT_MARK, PANASONIC_ZERO_SPACE,
data, 32, true);
// Footer
mark(PANASONIC_BIT_MARK);
ledOff();
}
void ICACHE_FLASH_ATTR IRsend::sendJVC(unsigned long data, int nbits,
unsigned int repeat) {
// Args:
// data: The contents of the command you want to send.
// nbits: The bit size of the command being sent.
// repeat: The number of times you want the command to be repeated.
//
// Based on information at: http://www.sbprojects.com/knowledge/ir/jvc.php
// Set IR carrier frequency
enableIROut(38);
IRtimer usecs = IRtimer();
// Header
mark(JVC_HDR_MARK);
space(JVC_HDR_SPACE);
// We always send the data & footer at least once, hence '<= repeat'.
for (unsigned int i = 0; i <= repeat; i++) {
// Data
sendData(JVC_BIT_MARK, JVC_ONE_SPACE, JVC_BIT_MARK, JVC_ZERO_SPACE,
data, nbits, true);
// Footer
mark(JVC_BIT_MARK);
// Wait till the end of the repeat time window before we send another code.
space(max(0, JVC_RPT_LENGTH - usecs.elapsed()));
usecs.reset();
}
// No need to turn off the LED as we will always end with a space().
}
void ICACHE_FLASH_ATTR IRsend::sendSAMSUNG(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(38);
// Header
mark(SAMSUNG_HDR_MARK);
space(SAMSUNG_HDR_SPACE);
// Data
sendData(SAMSUNG_BIT_MARK, SAMSUNG_ONE_SPACE, SAMSUNG_BIT_MARK,
SAMSUNG_ZERO_SPACE, data, nbits, true);
// Footer
mark(SAMSUNG_BIT_MARK);
ledOff();
}
// Denon, from https://github.com/z3t0/Arduino-IRremote/blob/master/ir_Denon.cpp
void ICACHE_FLASH_ATTR IRsend::sendDenon (unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(38);
// Header
mark(DENON_HDR_MARK);
space(DENON_HDR_SPACE);
// Data
sendData(DENON_BIT_MARK, DENON_ONE_SPACE, DENON_BIT_MARK, DENON_ZERO_SPACE,
data, nbits, true);
// Footer
mark(DENON_BIT_MARK);
ledOff();
}
// Gree protocol compatible heat pump carrying the "Ultimate" brand name.
// Added by Ville Skyttä (scop)
// Ref:
// https://github.com/ToniA/arduino-heatpumpir/blob/master/GreeHeatpumpIR.cpp
void ICACHE_FLASH_ATTR IRsend::sendGree(unsigned char data[]) {
uint8_t i = 0;
// Set IR carrier frequency
enableIROut(38);
// Header #1
mark(GREE_HDR_MARK);
space(GREE_HDR_SPACE);
// Data #1
for (; i < 4; i++)
sendData(GREE_BIT_MARK, GREE_ONE_SPACE, GREE_BIT_MARK, GREE_ZERO_SPACE,
data[i], 8, false);
// Footer #2 (010)
sendData(GREE_BIT_MARK, GREE_ONE_SPACE, GREE_BIT_MARK, GREE_ZERO_SPACE,
0x2, 3);
// Header #2
mark(GREE_BIT_MARK);
space(GREE_MSG_SPACE);
// Data #2
for (; i < GREE_STATE_LENGTH; i++)
sendData(GREE_BIT_MARK, GREE_ONE_SPACE, GREE_BIT_MARK, GREE_ZERO_SPACE,
data[i], 8, false);
// Footer #2
mark(GREE_BIT_MARK);
space(GREE_MSG_SPACE);
}
void ICACHE_FLASH_ATTR IRsend::mark(unsigned int usec) {
// Sends an IR mark for the specified number of microseconds.
// The mark output is modulated at the PWM frequency.
IRtimer usecTimer = IRtimer();
while (usecTimer.elapsed() < usec) {
digitalWrite(IRpin, HIGH);
delayMicroseconds(halfPeriodicTime);
digitalWrite(IRpin, LOW);
// e.g. 38 kHz -> T = 26.31 microsec (periodic time), half of it is 13
delayMicroseconds(halfPeriodicTime);
}
}
void ICACHE_FLASH_ATTR IRsend::ledOff() {
digitalWrite(IRpin, LOW);
}
/* Leave pin off for time (given in microseconds) */
void ICACHE_FLASH_ATTR IRsend::space(unsigned long time) {
// Sends an IR space for the specified number of microseconds.
// A space is no output, so the PWM output is disabled.
ledOff();
if (time == 0) return;
if (time <= 16383) // delayMicroseconds is only accurate to 16383us.
delayMicroseconds(time);
else {
// Invoke a delay(), where possible, to avoid triggering the WDT.
delay(time / 1000UL); // Delay for as many whole ms as we can.
delayMicroseconds((int) time % 1000UL); // Delay the remaining sub-msecond.
}
}
void ICACHE_FLASH_ATTR IRsend::enableIROut(int khz) {
// Enables IR output.
// The khz value controls the modulation frequency in kilohertz.
// T = 1/f but we need T/2 in microsecond and f is in kHz
halfPeriodicTime = 500/khz;
}
/* Sharp and DISH support by Todd Treece
( http://unionbridge.org/design/ircommand )
The Dish send function needs to be repeated 4 times, and the Sharp function
has the necessary repeat built in because of the need to invert the signal.
Sharp protocol documentation:
http://www.sbprojects.com/knowledge/ir/sharp.htm
Here are the LIRC files that I found that seem to match the remote codes
from the oscilloscope:
Sharp LCD TV:
http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
DISH NETWORK (echostar 301):
http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
For the DISH codes, only send the last for characters of the hex.
i.e. use 0x1C10 instead of 0x0000000000001C10 which is listed in the
linked LIRC file.
*/
void ICACHE_FLASH_ATTR IRsend::sendSharpRaw(unsigned long data, int nbits) {
// Set IR carrier frequency
enableIROut(38);
// Sending codes in bursts of 3 (normal, inverted, normal) makes transmission
// much more reliable. That's the exact behaviour of CD-S6470 remote control.
for (int n = 0; n < 3; n++) {
// Data
sendData(SHARP_BIT_MARK, SHARP_ONE_SPACE, SHARP_BIT_MARK, SHARP_ZERO_SPACE,
data, nbits, true);
// Footer
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE + 40000);
data = data ^ SHARP_TOGGLE_MASK;
}
}
// Sharp send compatible with data obtained through decodeSharp
void ICACHE_FLASH_ATTR IRsend::sendSharp(unsigned int address,
unsigned int command) {
sendSharpRaw((address << 10) | (command << 2) | 2, 15);
}
// Send an IR command to a DISH device.
// Note: Typically a DISH device needs to get a command a total of at least 4
// times to accept it.
// Args:
// data: The contents of the command you want to send.
// nbits: The bit size of the command being sent.
// repeat: The number of times you want the command to be repeated.
void ICACHE_FLASH_ATTR IRsend::sendDISH(unsigned long data, int nbits,
unsigned int repeat) {
// Set IR carrier frequency
enableIROut(56);
// We always send a command, even for repeat=0, hence '<= repeat'.
for (unsigned int i = 0; i <= repeat; i++) {
// Header
mark(DISH_HDR_MARK);
space(DISH_HDR_SPACE);
// Data
sendData(DISH_BIT_MARK, DISH_ONE_SPACE, DISH_BIT_MARK, DISH_ZERO_SPACE,
data, nbits, true);
// Footer
space(DISH_RPT_SPACE);
}
}
// From https://github.com/mharizanov/Daikin-AC-remote-control-over-the-Internet/tree/master/IRremote
void ICACHE_FLASH_ATTR IRsend::sendDaikin(unsigned char data[]) {
// Args:
// data: An array of DAIKIN_COMMAND_LENGTH bytes containing the IR command.
// Set IR carrier frequency
enableIROut(38);
// Header #1
mark(DAIKIN_HDR_MARK);
space(DAIKIN_HDR_SPACE);
// Data #1
for (uint8_t i = 0; i < 8; i++)
sendData(DAIKIN_ONE_MARK, DAIKIN_ONE_SPACE, DAIKIN_ZERO_MARK,
DAIKIN_ZERO_SPACE, data[i], 8, false);
// Footer #1
mark(DAIKIN_ONE_MARK);
space(DAIKIN_ZERO_SPACE + 29000);
// Header #2
mark(DAIKIN_HDR_MARK);
space(DAIKIN_HDR_SPACE);
// Data #2
for (uint8_t i = 8; i < DAIKIN_COMMAND_LENGTH; i++)
sendData(DAIKIN_ONE_MARK, DAIKIN_ONE_SPACE, DAIKIN_ZERO_MARK,
DAIKIN_ZERO_SPACE, data[i], 8, false);
// Footer #2
mark(DAIKIN_ONE_MARK);
space(DAIKIN_ZERO_SPACE);
}
void ICACHE_FLASH_ATTR IRsend::sendKelvinator(unsigned char data[]) {
uint8_t i = 0;
// Set IR carrier frequency
enableIROut(38);
// Header #1
mark(KELVINATOR_HDR_MARK);
space(KELVINATOR_HDR_SPACE);
// Data (command)
// Send the first command data (4 bytes)
for (; i < 4; i++)
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, data[i], 8, false);
// Send Footer for the command data (3 bits (B010))
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, KELVINATOR_CMD_FOOTER, 3, false);
// Send an interdata gap.
mark(KELVINATOR_BIT_MARK);
space(KELVINATOR_GAP_SPACE);
// Data (options)
// Send the 1st option chunk of data (4 bytes).
for (; i < 8; i++)
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, data[i], 8, false);
// Send a double data gap to signify we are starting a new command sequence.
mark(KELVINATOR_BIT_MARK);
space(KELVINATOR_GAP_SPACE * 2);
// Header #2
mark(KELVINATOR_HDR_MARK);
space(KELVINATOR_HDR_SPACE);
// Data (command)
// Send the 2nd command data (4 bytes).
// Basically an almost identical repeat of the earlier command data.
for (; i < 12; i++)
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, data[i], 8, false);
// Send Footer for the command data (3 bits (B010))
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, KELVINATOR_CMD_FOOTER, 3, false);
// Send an interdata gap.
mark(KELVINATOR_BIT_MARK);
space(KELVINATOR_GAP_SPACE);
// Data (options)
// Send the 2nd option chunk of data (4 bytes).
// Unlike the commands, definitely not a repeat of the earlier option data.
for (; i < KELVINATOR_STATE_LENGTH; i++)
sendData(KELVINATOR_BIT_MARK, KELVINATOR_ONE_SPACE, KELVINATOR_BIT_MARK,
KELVINATOR_ZERO_SPACE, data[i], 8, false);
// Footer
mark(KELVINATOR_BIT_MARK);
ledOff();
}
void ICACHE_FLASH_ATTR IRsend::sendSherwood(unsigned long data, int nbits,
unsigned int repeat) {
// Sherwood remote codes appear to be NEC codes with a manditory repeat code.
// i.e. repeat should be >= 1.
sendNEC(data, nbits, max(1, repeat));
}
void ICACHE_FLASH_ATTR IRsend::sendMitsubishiAC(unsigned char data[]) {
// Set IR carrier frequency
enableIROut(38);
// Mitsubishi AC remote sends the packet twice.
for (uint8_t count = 0; count < 2; count++) {
// Header
mark(MITSUBISHI_AC_HDR_MARK);
space(MITSUBISHI_AC_HDR_SPACE);
// Data
for (uint8_t i = 0; i < MITSUBISHI_AC_STATE_LENGTH; i++)
sendData(MITSUBISHI_AC_BIT_MARK, MITSUBISHI_AC_ONE_SPACE,
MITSUBISHI_AC_BIT_MARK, MITSUBISHI_AC_ZERO_SPACE,
data[i], 8, false);
// Footer
mark(MITSUBISHI_AC_RPT_MARK);
space(MITSUBISHI_AC_RPT_SPACE);
}
// A space() is always performed last, so no need to turn off the LED.
}
// ---------------------------------------------------------------
//IRRecv------------------------------------------------------
extern "C" {
#include "user_interface.h"
#include "gpio.h"
}
static ETSTimer timer;
volatile irparams_t irparams;
static void ICACHE_RAM_ATTR read_timeout(void *arg __attribute__((unused))) {
os_intr_lock();
if (irparams.rawlen)
irparams.rcvstate = STATE_STOP;
os_intr_unlock();
}
static void ICACHE_RAM_ATTR gpio_intr() {
uint32_t now = system_get_time();
uint32_t gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
static uint32_t start = 0;
os_timer_disarm(&timer);
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status);
// Grab a local copy of rawlen to reduce instructions used in IRAM.
// This is an ugly premature optimisation code-wise, but we do everything we
// can to save IRAM.
// It seems referencing the value via the structure uses more instructions.
// Less instructions means faster and less IRAM used.
// N.B. It saves about 13 bytes of IRAM.
uint16_t rawlen = irparams.rawlen;
if (rawlen >= RAWBUF) {
irparams.overflow = true;
irparams.rcvstate = STATE_STOP;
}
if (irparams.rcvstate == STATE_STOP)
return;
if (irparams.rcvstate == STATE_IDLE) {
irparams.rcvstate = STATE_MARK;
irparams.rawbuf[rawlen] = 1;
} else {
if (now < start)
irparams.rawbuf[rawlen] = (0xFFFFFFFF - start + now) / USECPERTICK + 1;
else
irparams.rawbuf[rawlen] = (now - start) / USECPERTICK + 1;
}
irparams.rawlen++;
start = now;
#define ONCE 0
os_timer_arm(&timer, 15, ONCE);
}
IRrecv::IRrecv(int recvpin) {
irparams.recvpin = recvpin;
}
// initialization
void ICACHE_FLASH_ATTR IRrecv::enableIRIn() {
// initialize state machine variables
resume();
// Initialize timer
os_timer_disarm(&timer);
os_timer_setfn(&timer, (os_timer_func_t *)read_timeout, NULL);
// Attach Interrupt
attachInterrupt(irparams.recvpin, gpio_intr, CHANGE);
}
void ICACHE_FLASH_ATTR IRrecv::disableIRIn() {
os_timer_disarm(&timer);
detachInterrupt(irparams.recvpin);
}
void ICACHE_FLASH_ATTR IRrecv::resume() {
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
irparams.overflow = false;
}
// Make a copy of the interrupt state/data.
// Needed because irparams is marked as volatile, thus memcpy() isn't allowed.
// Only call this when you know the interrupt handlers won't modify anything.
// i.e. In STATE_STOP.
//
// Args:
// dest: Pointer to an irparams_t structure to copy to.
void ICACHE_FLASH_ATTR IRrecv::copyIrParams(irparams_t *dest) {
// Typecast src and dest addresses to (char *)
char *csrc = (char *)&irparams;
char *cdest = (char *)dest;
// Copy contents of src[] to dest[]
for (int i=0; i<sizeof(irparams_t); i++)
cdest[i] = csrc[i];
}
// Decodes the received IR message.
// If the interrupt state is saved, we will immediately resume waiting
// for the next IR message to avoid missing messages.
// Note: There is a trade-off here. Saving the state means less time lost until
// we can receiving the next message vs. using more RAM. Choose appropriately.
//
// Args:
// results: A pointer to where the decoded IR message will be stored.
// save: A pointer to an irparams_t instance in which to save
// the interrupt's memory/state. NULL means don't save it.
// Returns:
// A boolean indicating if an IR message is ready or not.
bool ICACHE_FLASH_ATTR IRrecv::decode(decode_results *results,
irparams_t *save) {
// Proceed only if an IR message been received.
if (irparams.rcvstate != STATE_STOP) {
return false;
}
bool resumed = false; // Flag indicating if we have resumed.
if (save == NULL) {
// We haven't been asked to copy it so use the existing memory.
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
results->overflow = irparams.overflow;
} else {
copyIrParams(save); // Duplicate the interrupt's memory.
resume(); // It's now safe to rearm. The IR message won't be overridden.
resumed = true;
// Point the results at the saved copy.
results->rawbuf = save->rawbuf;
results->rawlen = save->rawlen;
results->overflow = save->overflow;
}
#ifdef DEBUG
Serial.println("Attempting NEC decode");
#endif
if (decodeNEC(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting Sony decode");
#endif
if (decodeSony(results)) {
return true;
}
/*
#ifdef DEBUG
Serial.println("Attempting Sanyo decode");
#endif
if (decodeSanyo(results)) {
return true;
}*/
#ifdef DEBUG
Serial.println("Attempting Mitsubishi decode");
#endif
if (decodeMitsubishi(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting RC5 decode");
#endif
if (decodeRC5(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting RC6 decode");
#endif
if (decodeRC6(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting RC-MM decode");
#endif
if (decodeRCMM(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting Panasonic decode");
#endif
if (decodePanasonic(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting LG decode");
#endif
if (decodeLG(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting JVC decode");
#endif
if (decodeJVC(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting SAMSUNG decode");
#endif
if (decodeSAMSUNG(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting Whynter decode");
#endif
if (decodeWhynter(results)) {
return true;
}
#ifdef DEBUG
Serial.println("Attempting Denon decode");
#endif
if (decodeDenon(results)) {
return true;
}
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) {
return true;
}
// Throw away and start over
if (!resumed) // Check if we have already resumed.
resume();
return false;
}
// Calculate the lower bound of the nr. of ticks.
//
// Args:
// usecs: Nr. of uSeconds.
// tolerance: Percent as an integer. e.g. 10 is 10%
// Returns:
// Nr. of ticks.
uint32_t IRrecv::ticksLow(uint32_t usecs, uint8_t tolerance) {
// max() used to ensure the result can't drop below 0 before the cast.
return((uint32_t) max(usecs * (1.0 - tolerance/100.)/USECPERTICK, 0));
}
// Calculate the upper bound of the nr. of ticks.
//
// Args:
// usecs: Nr. of uSeconds.
// tolerance: Percent as an integer. e.g. 10 is 10%
// Returns:
// Nr. of ticks.
uint32_t IRrecv::ticksHigh(uint32_t usecs, uint8_t tolerance) {
return((uint32_t) usecs * (1.0 + tolerance/100.)/USECPERTICK + 1);
}
// Check if we match a pulse(measured_ticks) with the desired_us within
// +/-tolerance percent.
//
// Args:
// measured_ticks: The recorded period of the signal pulse.
// desired_us: The expected period (in useconds) we are matching against.
// tolerance: A percentage expressed as an integer. e.g. 10 is 10%.
//
// Returns:
// Boolean: true if it matches, false if it doesn't.
bool ICACHE_FLASH_ATTR IRrecv::match(uint32_t measured_ticks,
uint32_t desired_us,
uint8_t tolerance) {
#ifdef DEBUG
Serial.print("Matching: ");
Serial.print(ticksLow(desired_us, tolerance), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(ticksHigh(desired_us, tolerance), DEC);
#endif
return (measured_ticks >= ticksLow(desired_us, tolerance) &&
measured_ticks <= ticksHigh(desired_us, tolerance));
}
// Check if we match a mark signal(measured_ticks) with the desired_us within
// +/-tolerance percent, after an expected is excess is added.
//
// Args:
// measured_ticks: The recorded period of the signal pulse.
// desired_us: The expected period (in useconds) we are matching against.
// tolerance: A percentage expressed as an integer. e.g. 10 is 10%.
// excess: Nr. of useconds.
//
// Returns:
// Boolean: true if it matches, false if it doesn't.