-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_loader.py
140 lines (118 loc) · 4.67 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from asyncio import proactor_events
import copy
import random
from itertools import combinations_with_replacement
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import pandas as pd
import json
import csv
import sys
from pathlib import Path
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import wasserstein_distance
from sklearn.cluster import KMeans
from torch.utils.data import DataLoader, Dataset
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import MessagePassing, GCNConv
from torch_geometric.utils import add_self_loops, degree, from_scipy_sparse_matrix
from sklearn.metrics import f1_score, accuracy_score, recall_score, precision_score
from torch.nn.parameter import Parameter
# import csrgraph as cg
from ast import literal_eval
import warnings
import time
import gc
from dataset import PlanetoidData # Code in the outermost folder
import tqdm
import argparse
import pickle
import gzip
warnings.filterwarnings('ignore')
json_path='./' # public
# json_path = '/home/syf/workspace/jupyters/configs/'
def load_data_ranked(name):
'''
Load data for Cora, Cornell, Pubmed and Citeseer
'''
datasets = json.load(
open(json_path + "dataset.json"))
dataset_run = datasets[name]["dataset"]
dataset_path = datasets[name]["dataset_path"][0]
# dataset_path = "dataset" / Path(dataset_path)
val_size = datasets[name]["val_size"]
dataset = PlanetoidData(
dataset_str=dataset_run, dataset_path=dataset_path, val_size=val_size
)
# adj = dataset._sparse_data["sparse_adj"]
features = dataset._sparse_data["features"]
labels = dataset._dense_data["y_all"]
# n_nodes, n_feats = features.shape[0], features.shape[1]
num_classes = labels.shape[-1]
# G = cg.csrgraph(adj, threads=0)
# G.set_threads(0) # number of threads to use. 0 is full use
# edge = nx.from_scipy_sparse_matrix(adj) # indices + edge_weight
X = torch.tensor(features.todense(), dtype=torch.float)
label = torch.tensor(np.argmax(labels, 1), dtype=torch.long)
return (X, label, num_classes, datasets)
def get_order(ratio: list, masked_index: torch.Tensor, total_node_num: int, seed: int = 1234567):
'''
work for "get_whole_mask"
'''
random.seed(seed)
masked_node_num = len(masked_index)
shuffle_criterion = list(range(masked_node_num))
random.shuffle(shuffle_criterion)
# train_val_test_list=[int(i) for i in ratio.split('-')]
train_val_test_list = ratio
tvt_sum = sum(train_val_test_list)
tvt_ratio_list = [i / tvt_sum for i in train_val_test_list]
train_end_index = int(tvt_ratio_list[0] * masked_node_num)
val_end_index = train_end_index + int(tvt_ratio_list[1] * masked_node_num)
train_mask_index = shuffle_criterion[:train_end_index]
val_mask_index = shuffle_criterion[train_end_index:val_end_index]
test_mask_index = shuffle_criterion[val_end_index:]
train_mask = torch.zeros(total_node_num, dtype=torch.bool)
train_mask[masked_index[train_mask_index]] = True
val_mask = torch.zeros(total_node_num, dtype=torch.bool)
val_mask[masked_index[val_mask_index]] = True
test_mask = torch.zeros(total_node_num, dtype=torch.bool)
test_mask[masked_index[test_mask_index]] = True
return (train_mask, val_mask, test_mask)
def get_whole_mask(y, ratio: list = [48, 32, 20], seed: int = 1234567):
'''
work for "load_data", random_spilt at [48, 32, 20] ratio
'''
y_have_label_mask = y != -1
total_node_num = len(y)
y_index_tensor = torch.tensor(list(range(total_node_num)), dtype=int)
masked_index = y_index_tensor[y_have_label_mask]
while True:
(train_mask, val_mask, test_mask) = get_order(
ratio, masked_index, total_node_num, seed)
# if check_train_containing(train_mask,y):
return (train_mask, val_mask, test_mask)
# else:
# seed+=1
def load_data(dataset_name, round, data_root="./other_data"):
'''
Load data for Nba, Electronics, Bgp
'''
numpy_x = np.load(data_root + '/' + dataset_name + '/x.npy')
x = torch.from_numpy(numpy_x).to(torch.float)
numpy_y = np.load(data_root + '/' + dataset_name + '/y.npy')
y = torch.from_numpy(numpy_y).to(torch.long)
# numpy_edge_index = np.load(data_root+'/'+dataset_name+'/edge_index.npy')
# edge_index = torch.from_numpy(numpy_edge_index).to(torch.long)
(train_mask, val_mask, test_mask) = get_whole_mask(y, seed=round + 1)
lbl_set = []
for lbl in y:
if lbl not in lbl_set:
lbl_set.append(lbl)
num_classes = len(lbl_set)
return x, y, num_classes, train_mask, val_mask, test_mask