Skip to content

Latest commit

 

History

History
117 lines (88 loc) · 5.27 KB

README.md

File metadata and controls

117 lines (88 loc) · 5.27 KB

A. Demultiplexing skim-sequencing (skim-seq) data into individual samples

demultiplexNextera.pl file.R1.fastq file.R2.fastq i1.fastq i2.fastq barcode.txt

Files:

  1. Read 1 fastq file: file.R1.fastq
  2. Read 2 fastq file: file.R2.fastq
  3. i7 barcode fastq file: i1.fastq
  4. i5 barcode fastq file: i2.fastq
  5. Barcode file: barcode.txt

Barcode file (tab separated without header):

Sample1 TTCCTCCT_AAGACTGG
Sample2 AACCACTC_AAGACTGG

B. Variant calling

1. Discovering variants between the two parents

The whole genome sequecning (WGS) of two parents (Landmark and Stanley) were aligned to the reference genome using Hisat2:

hisat2-2.1.0/hisat2 -p 10 -x 170831_Landmark_pseudomolecules_v1 -1 Landmark.R1.fq -2 Landmark.R2.fq --no-spliced-alignment --no-unal -S Landmark.sam
hisat2-2.1.0/hisat2 -p 10 -x 170831_Landmark_pseudomolecules_v1 -1 Stanley.R1.fq -2 Stanley.R2.fq --no-spliced-alignment --no-unal -S Stanley.sam

Retriving concordant unique reads:

cat <(samtools view -H Landmark.sam) <(awk '/YT:Z:CP/ && /NH:i:1/' Landmark.sam) | samtools sort -o Landmark.s.bam
samtools index -c Landmark.s.bam
cat <(samtools view -H Stanley.sam) <(awk '/YT:Z:CP/ && /NH:i:1/' Stanley.sam) | samtools sort -o Stanley.s.bam
samtools index -c Stanley.s.bam

Variant calling:

bcftools1.10.2/bin/bcftools mpileup --annotate AD,DP,INFO/AD --skip-indels -f 170831_Landmark_pseudomolecules_v1.fasta -b bamFilesList.txt -B | bcftools1.10.2/bin/bcftools call -m --variants-only  --skip-variants indels --output-type v -o LandmarkStanley.vcf --group-samples -

2. Genotyping of variants identified between parents in a doubled haploid population.

The SNP positions are listed in a file which is used in BCFtools:

grep -v '^#' LandmarkStanley.vcf | awk '{print $1"\t"$2"\t"$4","$5}' | bgzip -c > parentSNP_positions.tsv.gz && tabix -s1 -b2 -e2 parentSNP_positions.tsv.gz

Remove adapters:

fastp -i sample.R1.fq -I sample.R2.fq -o sample.fp.R1.fq.gz -O sample.fp.R2.fq.gz --thread=5 --html=sample.html --json=sample.json --detect_adapter_for_pe --qualified_quality_phred=10 --length_required=150

The adapter trimmed reads from the doubled haploid lines were aligned to the reference genome using Hisat2 and filtered to recover unique concordant reads as parent. The 48 sorted bam file names are listed in bamFile_list.txt per line and used for genotyping using BCFtools:

bcftools1.10.2/bin/bcftools mpileup -T parentSNP_positions.tsv.gz --annotate AD,DP,INFO/AD --skip-indels -f 170831_Landmark_pseudomolecules_v1.fasta -b bamFile_list.txt -B | bcftools1.10.2/bin/bcftools call -m --constrain alleles -T parentSNP_positions.tsv.gz --variants-only --skip-variants indels --output-type v -o StanMarkDH.vcf --group-samples -

C. Introgression mapping

1. Hisat2 alignment:

We used a combined reference genome of recipient (wheat) and donor (barley) species to map introgression lines. Two genomes were concatenated and all chromosomes names in the combined reference were maintained unique. The demultiplexed and fastp trimmed pair-end reads were mapped using Hisat2 to obtain sequence alignment map (sam) file and log file.

hisat2-2.1.0/hisat2 -p 12 -x /hisat-index/wheat-barley-combined-ref -1 sample1_R1.fq -2 sample1_R2.fq -S sample1.sam --no-spliced-alignment --no-unal &> sample1.log

2. Retriving concordant unique reads & read count:

we retrived concordant unique reads and computed total reads per Mb bin for all chromosomes:

grep -v "^@" sample1.sam | grep YT:Z:CP | grep NH:i:1 | cut -f 3,4 | sort -k1,1 -k2,2n | awk '{print $1 "\t" int($2 / 1000000) * 1000000}' | uniq -c >	sample1.txt

3. Read count normalization:

readarray array < all.sample.txt # list of all text files 
name=$(echo ${array[$SLURM_ARRAY_TASK_ID]} | sed s'/.txt/_coverage.txt/')
sum=$(awk '{s+=$1; n++} END { if (n > 0) print s/NR; }' ${array[$SLURM_ARRAY_TASK_ID]})
awk -v SUM="$sum" 'BEGIN{OFS="\t"} {$4=$1/SUM}{print}' ${array[$SLURM_ARRAY_TASK_ID]} > $name # read normalization

4. Add sample name into output file:

awk -v NAME="$name" 'BEGIN{OFS="\t"}{$5=NAME} {print}' sample1_coverage.txt > sample1.added.name.newcol.txt

5. Remove reads mapped in unknown chromosomes:

sed '/chrUn/d'  sample1.added.name.newcol.txt > sample1.added.name.newcol.noUn.txt #chrUn indicates unknown chromosomes

6. Select chromosomes for plotting and visualization:

grep chr(#to be plotted) sample1.added.name.newcol.noUn.txt  > sample1.added.name.newcol.noUn.with.required.chromosomes.txt

D. Aneuploidy mapping

1. Hisat2 alignment:

Mapping aneuploidy in breeding lines using read depth information require reference genome of the mother species. For wheat monosomics group 5D, the demultiplexed and adapter trimmed sequences were aligned to the Chines Spring reference genome (v1)

hisat2-2.1.0/hisat2 -p 12 -x CS_refseqv1 -1 sample5Dmono_R1.fq.gz -2 sample5Dmono_R2.fq.gz -S sample5Dmono.sam --no-spliced-alignment --no-unal &> sample5Dmono.log

We followed steps 2-6 of section C (Introgression mapping) in further steps to obtain read count graphs of aneuploid stocks

2. Read count table:

Mean read count per chromosome arm in wheat monosomics group 5D was computed using the script;

sbatch Read_Count_Per_Chromosome_Arm.sh