-
Notifications
You must be signed in to change notification settings - Fork 0
/
stream.py
74 lines (47 loc) · 1.77 KB
/
stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
response=requests.get('https://api.themoviedb.org/3/movie/{}?api_key=27d3aadd2350167b44cb4e1f0b4d0622&language=en-US'.format(movie_id))
data=response.json()
return "https://image.tmdb.org/t/p/w500/" + data['poster_path']
def recommend(movie):
movie_index=movies[movies['title']==movie].index[0]
distances=similarity[movie_index]
movies_list=sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:6]
recommended_movies=[]
recommended_movies_poster=[]
for i in movies_list:
movie_id=movies.iloc[i[0]].movie_id
#fetching movie poster from api
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_poster.append(fetch_poster(movie_id))
return recommended_movies,recommended_movies_poster
#loading movies dictionary from pickle library
movies_dict=pickle.load(open('movie_dict.pkl','rb'))
#creating new data frame from movies dictionary
movies=pd.DataFrame(movies_dict)
similarity=pickle.load(open('similarity.pkl','rb'))
st.title("Movie recommender")
movie_name=st.selectbox('enter movie name',
movies['title'].values
)
if st.button('Recommend'):
names,poster=recommend(movie_name)
col1,col2,col3,col4,col5=st.beta_columns(5)
with col1:
st.text(names[0])
st.image(poster[0])
with col2:
st.text(names[1])
st.image(poster[1])
with col3:
st.text(names[2])
st.image(poster[2])
with col4:
st.text(names[3])
st.image(poster[3])
with col5:
st.text(names[4])
st.image(poster[4])