-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathGBMF.py
287 lines (260 loc) · 9.9 KB
/
GBMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
from typing import Tuple, Dict, Any, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from librecframework.argument.manager import HyperparamManager
from librecframework.pipeline import DefaultLeaveOneOutPipeline
from librecframework.data import DatasetFuncs
from librecframework.data.dataset import TrainDataset, LeaveOneOutTestDataset
import librecframework.data.functional as fdf
from librecframework.model import EmbeddingBasedModel
from librecframework.loss import BPRLoss
class GBMF(EmbeddingBasedModel):
def __init__(self, info, dataset: TrainDataset):
super().__init__(info, dataset, create_embeddings=True)
self._bpr_loss = BPRLoss('none')
self.alpha = info.alpha
self.eps = 1e-8
def load_pretrain(self, pretrain_info: Dict[str, Any]) -> None:
path = pretrain_info['MF']
pretrain = torch.load(path, map_location='cpu')
self.ps_feature.data = pretrain['ps_feature']
self.qs_feature.data = pretrain['qs_feature']
def propagate(self) -> Tuple[torch.Tensor, torch.Tensor]:
return self.ps_feature, self.qs_feature
def _forward(
self,
ps: torch.Tensor,
qs: torch.Tensor,
participants_or_friends: torch.Tensor,
propagate_result: Optional[Tuple[torch.Tensor, torch.Tensor]] = None):
if propagate_result is not None:
ps_feature, qs_feature = propagate_result
else:
ps_feature, qs_feature = self.propagate()
ps = torch.cat((ps, participants_or_friends), dim=1)
ps_embeddings = ps_feature[ps]
qs_embeddings = qs_feature[qs]
score = torch.matmul(ps_embeddings, qs_embeddings.transpose(1, 2))
# [B, ?, #qs]
initiators, participants = torch.split(
score, (1, participants_or_friends.shape[1]), dim=1)
return {
'initiators': initiators,
'participants': participants
}, [ps_embeddings, qs_embeddings]
def forward(
self,
ps: torch.Tensor,
qs: torch.Tensor,
participants_or_friends: torch.Tensor,
masks: torch.Tensor,
is_valid: torch.Tensor,
propagate_result: Optional[Tuple[torch.Tensor, torch.Tensor]] = None):
if propagate_result is not None:
ps_feature, qs_feature = propagate_result
else:
ps_feature, qs_feature = self.propagate()
# size batch template
counter = masks.sum(1)
indice = []
results = {
# [B, 1, #qs]
'initiators': [],
# [B, ?, #qs]
'participants': []
}
L2 = []
for n in range(counter.min(), counter.max() + 1):
index = torch.where(counter == n)[0]
if len(index) <= 0:
continue
indice.append(index)
# ============ DO BATCH =============
result, embedding = self._forward(
ps[index],
qs[index],
participants_or_friends[index, :n],
(ps_feature, qs_feature)
)
result['participants'] = F.pad(
result['participants'], (0, 0, 0, masks.shape[1] - n))
for k in results.keys():
v = result.pop(k)
results[k].append(v)
L2 += embedding
# ============ DO BATCH =============
indice = torch.cat(indice, dim=0)
sorted_order = torch.sort(indice)[1]
for k, v in results.items():
v = torch.cat(v, dim=0)
v = v[sorted_order]
results[k] = v
# ============ AFTER ============
if not self.training:
masks = masks.float()
# [B, #qs]
initiator_score = results['initiators'].squeeze(1)
friend_size = masks.sum(1, keepdim=True)
# [B, #fs, #qs]
friend_score = results['participants'] * masks.unsqueeze(2)
friend_score = torch.sum(
friend_score, dim=1) / (friend_size+self.eps)
results = (1 - self.alpha) * initiator_score + self.alpha * friend_score
# ============ AFTER ============
return results, (masks, is_valid), L2
def calculate_loss(
self,
modelout,
batch_size: int) -> torch.Tensor:
results, (masks, is_valid), tensors = modelout
masks = masks.float()
B, P, Q = results['participants'].shape
initiator_loss = self._bpr_loss(
results['initiators'].squeeze(1)).mean()
valid_result = results['participants'][is_valid]
valid_masks = masks[is_valid]
valid_loss = self._bpr_loss(
valid_result.view(-1, Q)).view_as(valid_masks)
valid_loss = valid_loss * valid_masks
valid_loss = valid_loss.sum(1) / (valid_masks.sum(1) + self.eps)
valid_loss = valid_loss.sum()
loss = initiator_loss + valid_loss / is_valid.shape[0]
if tensors is not None:
loss = loss + self._L2(*tensors, batch_size=batch_size)
return loss
def before_evaluate(self):
return self.propagate()
def evaluate(
self,
before: Tuple[torch.Tensor, torch.Tensor],
ps: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
MODEL = GBMF
def hyperparameter() -> HyperparamManager:
hpm = HyperparamManager('Hyperparameter Arguments',
None, f'{MODEL.__name__}Info')
hpm.register(
'embedding_size',
['-EB', '--embedding-size'],
dtype=int,
validator=lambda x: x > 0,
helpstr='model embedding size',
default=32
)
hpm.register(
'lr',
multi=True,
dtype=float,
validator=lambda x: x > 0,
helpstr='learning rate'
)
hpm.register(
'L2',
['--L2'],
multi=True,
dtype=float,
validator=lambda x: x >= 0,
helpstr='model L2 normalization'
)
hpm.register(
'alpha',
['-A', '--alpha'],
multi=True,
dtype=float,
validator=lambda x: 1 >= x >= 0,
helpstr='model (0) initiator and friend (1) weight'
)
return hpm
def get_participant_list_mask(self: TrainDataset) -> None:
self.max_friend = max(map(len, self.friend_dict.values()))
self.max_participant = max(map(len, self.records)) - 2
self.max_len = max(self.max_friend, self.max_participant)
self.participant_list = np.zeros(
(len(self.records), self.max_len), dtype=np.int32)
self.participant_mask = np.zeros(
(len(self.records), self.max_len), dtype=np.int32)
for i, record in enumerate(self.records):
initiator, others = record[0], record[2:]
mask = np.zeros([self.max_len], dtype=np.int32)
if len(others) > 0:
length = len(others)
self.participant_list[i, :length] = others
else:
length = len(self.friend_dict[initiator])
friends = list(self.friend_dict[initiator])
self.participant_list[i, :length] = friends
self.participant_mask[i, :length] = 1
def get_participant_list_mask_for_test(self: TrainDataset) -> None:
self.max_len = max(map(len, self.friend_dict.values()))
self.participant_list = np.zeros(
(len(self.records), self.max_len), dtype=np.int32)
self.participant_mask = np.zeros(
(len(self.records), self.max_len), dtype=np.int32)
for i, record in enumerate(self.records):
initiator = record[0]
mask = np.zeros([self.max_len], dtype=np.int32)
length = len(self.friend_dict[initiator])
friends = list(self.friend_dict[initiator])
self.participant_list[i, :length] = friends
self.participant_mask[i, :length] = 1
def train_getitem(self: TrainDataset, index: int):
p, q_pos = self.pos_pairs[index]
neg_q = self.neg_qs[index][self.epoch]
participant_or_friend = self.participant_list[index]
mask = self.participant_mask[index]
is_valid = len(self.records[index]) > 2
return {
'ps': torch.LongTensor([p]),
'qs': torch.LongTensor([q_pos, neg_q]),
'participants_or_friends': torch.LongTensor(participant_or_friend),
'masks': torch.LongTensor(mask),
'is_valid': is_valid
}
def test_getitem(self: LeaveOneOutTestDataset, index: int):
p, q_pos = self.pos_pairs[index]
neg_qs = self.neg_qs[index]
participant_or_friend = self.participant_list[index]
mask = self.participant_mask[index]
gt = torch.zeros(len(neg_qs)+1, dtype=torch.float)
gt[-1] = 1
return {
'ps': torch.LongTensor([p]),
'qs': torch.LongTensor(np.r_[neg_qs, q_pos]),
'participants_or_friends': torch.LongTensor(participant_or_friend),
'masks': torch.LongTensor(mask),
'is_valid': True
}, {'train_mask': 0, 'ground_truth': gt}
if __name__ == "__main__":
pipeline = DefaultLeaveOneOutPipeline(
description=MODEL.__name__,
supported_datasets=['BeiBei'],
train_funcs=DatasetFuncs(
record=fdf.modify_nothing,
postinit=get_participant_list_mask,
sample=fdf.itemrec_sample,
getitem=train_getitem,
length=fdf.default_train_length
),
test_funcs=DatasetFuncs(
record=fdf.modify_nothing,
postinit=get_participant_list_mask_for_test,
sample=None,
getitem=test_getitem,
length=fdf.default_leave_one_out_test_length
),
hyperparam_manager=hyperparameter(),
other_arg_path='config/config.json',
pretrain_path='config/pretrain.json',
sample_tag='default',
pin_memory=True,
min_memory=6,
test_batch_size=128)
pipeline.parse_args()
pipeline.before_running()
pipeline.during_running(MODEL, {})
pipeline.after_running()