diff --git a/adalflow/CHANGELOG.md b/adalflow/CHANGELOG.md index df1140ce..e5b806f8 100644 --- a/adalflow/CHANGELOG.md +++ b/adalflow/CHANGELOG.md @@ -1,16 +1,4 @@ -## [0.2.7] - 2024-09-23 -### Improved -- Better diagnose report for `Trainer.diagnose`. -- Multi-hop RAG with handling of Cycle. - -## [0.2.7] - TO Be Released -### Added -- `Memory` is completed with `call` and `add_dialog_turn` methods. -- Integrated `LanceDB` in the `Retriever` -### Improved -- `BedrockAPIClient` added more details on setup, yet it is still in experimental stage. -- `AzureAPIClient` added more details on setup, yet it is still in experimental stage. ## [0.2.6] - 2024-11-25 ### Improved - Add default `max_tokens=512` to the `AnthropicAPIClient` to avoid the error when the user does not provide the `max_tokens` in the prompt. diff --git a/adalflow/adalflow/__init__.py b/adalflow/adalflow/__init__.py index 4c9b45ba..fa4cd930 100644 --- a/adalflow/adalflow/__init__.py +++ b/adalflow/adalflow/__init__.py @@ -1,7 +1,7 @@ __version__ = "0.2.6" from adalflow.core.component import Component, fun_to_component -from adalflow.core.container import Sequential, ComponentList +from adalflow.core.container import Sequential from adalflow.core.base_data_class import DataClass, DataClassFormatType, required_field from adalflow.optim.grad_component import GradComponent @@ -63,10 +63,6 @@ BedrockAPIClient, ) -# data pipeline -from adalflow.components.data_process.text_splitter import TextSplitter -from adalflow.components.data_process.data_components import ToEmbeddings - __all__ = [ "Component", "fun_to_component", @@ -76,10 +72,7 @@ "required_field", # Container "Sequential", - "ComponentList", - # Grad Component "GradComponent", - # Functional Component "ModelClient", "Generator", "Embedder", @@ -106,9 +99,6 @@ "JsonOutputParser", "ListOutputParser", "DataClassParser", - # Data Pipeline - "TextSplitter", - "ToEmbeddings", # Types "GeneratorOutput", "EmbedderOutput", diff --git a/adalflow/adalflow/components/model_client/bedrock_client.py b/adalflow/adalflow/components/model_client/bedrock_client.py index b10098bb..d25b48bc 100644 --- a/adalflow/adalflow/components/model_client/bedrock_client.py +++ b/adalflow/adalflow/components/model_client/bedrock_client.py @@ -39,10 +39,6 @@ def get_first_message_content(completion: Dict) -> str: class BedrockAPIClient(ModelClient): __doc__ = r"""A component wrapper for the Bedrock API client. - Note: - - This api is in experimental and is not fully tested and validated yet. - Support: 1. AWS Titan 2. Claude diff --git a/adalflow/adalflow/core/__init__.py b/adalflow/adalflow/core/__init__.py index a4a67c6a..38472520 100644 --- a/adalflow/adalflow/core/__init__.py +++ b/adalflow/adalflow/core/__init__.py @@ -1,7 +1,7 @@ from .base_data_class import DataClass, required_field, DataClassFormatType from .component import Component, FunComponent, fun_to_component -from .container import Sequential, ComponentList +from .container import Sequential from .db import LocalDB from .default_prompt_template import DEFAULT_ADALFLOW_SYSTEM_PROMPT from .embedder import Embedder, BatchEmbedder @@ -50,7 +50,6 @@ "LocalDB", "Component", "Sequential", - "ComponentList", "FunComponent", "fun_to_component", "DataClass", diff --git a/adalflow/adalflow/core/base_data_class.py b/adalflow/adalflow/core/base_data_class.py index 1a379724..daac546d 100644 --- a/adalflow/adalflow/core/base_data_class.py +++ b/adalflow/adalflow/core/base_data_class.py @@ -356,6 +356,8 @@ class TrecDataList(DataClass): return dict(ordered_dict) + return ordered_dict + @classmethod def from_dict(cls, data: Dict[str, Any]) -> "DataClass": """Create a dataclass instance from a dictionary. diff --git a/adalflow/adalflow/core/component.py b/adalflow/adalflow/core/component.py index d0dd6631..28bb794e 100644 --- a/adalflow/adalflow/core/component.py +++ b/adalflow/adalflow/core/component.py @@ -167,7 +167,6 @@ def use_teacher(self, mode: bool = True): component.use_teacher(mode) return self - # TODO: reassese trace, it should be turned on maybe all the time def trace(self, mode: bool = True): r"""Sets the component in tracing mode.This signal will be used in forward and backward to accumulate input and output.""" if not isinstance(mode, bool): diff --git a/adalflow/adalflow/core/container.py b/adalflow/adalflow/core/container.py index a941adb1..bb2a1a54 100644 --- a/adalflow/adalflow/core/container.py +++ b/adalflow/adalflow/core/container.py @@ -1,63 +1,14 @@ -""" -Container component for composing multiple components, such as Sequential -and ComponentList. - -This design draws inspiration from PyTorch’s modular -container patterns, including `nn.Sequential` and `nn.ModuleList`. The -`Container` component allows for grouping several components into one, enabling -flexible and reusable model architectures. - -Design Motivation: -------------------- -This implementation follows the same principles as PyTorch’s component-based -design, encouraging modularity, reusability, and extensibility. The `Container` -component provides an easy way to manage multiple layers or other components, -while ensuring that their parameters are properly registered and updated during -training. - -Credits: ---------- -The design of this component takes inspiration from the PyTorch project -(https://pytorch.org). PyTorch is an open-source deep learning framework, -licensed under a BSD-style license. Although this code is not part of the -official PyTorch library, it mirrors the same design principles. - -For more details on PyTorch’s licensing, refer to: -https://github.com/pytorch/pytorch/blob/main/LICENSE - -Usage Example: --------------- - class MyModule(nn.Module): - def __init__(self): - super().__init__() - - self.model = nn.Sequential( - nn.Conv2d(1,20,5), - nn.ReLU(), - nn.Conv2d(20,64,5), - nn.ReLU() - ) - self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) - - def forward(self, x): - # ModuleList can act as an iterable, or be indexed using ints - for i, l in enumerate(self.linears): - x = self.linears[i // 2](x) + l(x) - return x - -""" - -from collections import OrderedDict, abc as container_abcs +"""Container component for composing multiple components, such as Sequential.""" + +from collections import OrderedDict import operator -from itertools import islice, chain -from typing import TypeVar, Dict, Union, Iterable, Iterator, Any, overload, Optional +from itertools import islice +from typing import TypeVar, Dict, Union, Iterable, Iterator, Any, overload from adalflow.core.component import Component T = TypeVar("T", bound=Component) -__all__ = ["Sequential", "ComponentList"] - class Sequential(Component): __doc__ = r"""A sequential container. @@ -360,177 +311,3 @@ def extend(self, components: Iterable[Component]) -> "Sequential": for component in components: self.append(component) return self - - -def _addindent(s_: str, numSpaces: int): - s = s_.split("\n") - # don't do anything for single-line stuff - if len(s) == 1: - return s_ - first = s.pop(0) - s = [(numSpaces * " ") + line for line in s] - s = "\n".join(s) - s = first + "\n" + s - return s - - -class ComponentList(Component): - __doc__ = r"""Holds subcomponents in a list. - - :class:`adalflow.core.ComponentList` can be indexed like a regular Python list, but - the components it holds are properly registered, and will be visible by all - :class:`adalflow.core.Component` methods. - - Args: - components (iterable, optional): an iterable of components to add - - Examples: - - .. code-block:: python - - # Example of how to use ComponentList - class MyComponents(Component): - def __init__(self): - super().__init__() - self.llms = ComponentList([adal.Generator() for i in range(10)]) - - def forward(self, x): - for layer in self.layers: - x = layer(x) - return x - """ - _components: Dict[str, Component] = OrderedDict() - - def __init__(self, components: Optional[Iterable[Component]] = None) -> None: - super().__init__() - if components is not None: - self += components - - def _get_abs_string_index(self, idx): - """Get the absolute index as a string.""" - idx = operator.index(idx) - if not (-len(self) <= idx < len(self)): - raise IndexError(f"index {idx} is out of range") - if idx < 0: - idx += len(self) - return str(idx) - - def __getitem__(self, idx: Union[int, slice]) -> Union[Component, "ComponentList"]: - """Retrieve a component or a slice of components.""" - if isinstance(idx, slice): - return self.__class__(list(self._components.values())[idx]) - else: - return self._components[self._get_abs_string_index(idx)] - - def __setitem__(self, idx: int, component: Component) -> None: - """Set a component at the given index.""" - idx = self._get_abs_string_index(idx) - return setattr(self, str(idx), component) - - def __delitem__(self, idx: Union[int, slice]) -> None: - """Delete a component or a slice of components.""" - if isinstance(idx, slice): - for k in range(len(self._components))[idx]: - delattr(self, str(k)) - else: - delattr(self, self._get_abs_string_index(idx)) - # To preserve numbering, self._components is being reconstructed with modules after deletion - str_indices = [str(i) for i in range(len(self._components))] - self._components = OrderedDict( - list(zip(str_indices, self._components.values())) - ) - - def __len__(self) -> int: - """Return the number of components.""" - return len(self._components) - - def __iter__(self) -> Iterator[Component]: - """Iterate over the components.""" - return iter(self._components.values()) - - def __iadd__(self, components: Iterable[Component]) -> "ComponentList": - """Add multiple components using the `+=` operator.""" - - return self.extend(components) - - def __add__(self, other: Iterable[Component]) -> "ComponentList": - """Concatenate two ComponentLists.""" - - combined = ComponentList() - for i, component in enumerate(chain(self, other)): - combined.add_component(str(i), component) - return combined - - def __repr__(self): - """Return a custom repr for ModuleList that compresses repeated module representations.""" - list_of_reprs = [repr(item) for item in self] - if len(list_of_reprs) == 0: - return self._get_name() + "()" - - start_end_indices = [[0, 0]] - repeated_blocks = [list_of_reprs[0]] - for i, r in enumerate(list_of_reprs[1:], 1): - if r == repeated_blocks[-1]: - start_end_indices[-1][1] += 1 - continue - - start_end_indices.append([i, i]) - repeated_blocks.append(r) - - lines = [] - main_str = self._get_name() + "(" - for (start_id, end_id), b in zip(start_end_indices, repeated_blocks): - local_repr = f"({start_id}): {b}" # default repr - - if start_id != end_id: - n = end_id - start_id + 1 - local_repr = f"({start_id}-{end_id}): {n} x {b}" - - local_repr = _addindent(local_repr, 2) - lines.append(local_repr) - - main_str += "\n " + "\n ".join(lines) + "\n" - main_str += ")" - return main_str - - def __dir__(self): - keys = super().__dir__() - keys = [key for key in keys if not key.isdigit()] - return keys - - def insert(self, index: int, component: Component) -> None: - """Insert a component at the specified index.""" - for i in range(len(self._components), index, -1): - self._components[str(i)] = self._components[str(i - 1)] - self._components[str(index)] = component - - def pop(self, index: Union[int, slice]) -> Component: - """Remove and return a component at the given index.""" - component = self[index] - del self[index] - return component - - def append(self, component: Component) -> "ComponentList": - """Append a component to the list.""" - # self._components[str(len(self))] = component - self.add_component(str(len(self)), component) - return self - - def extend(self, components: Iterable[Component]) -> "ComponentList": - """Extend the list by appending multiple components.""" - # for component in components: - # self.append(component) - # return self - - if not isinstance(components, container_abcs.Iterable): - raise TypeError( - "ModuleList.extend should be called with an " - "iterable, but got " + type(components).__name__ - ) - offset = len(self) - for i, component in enumerate(components): - self.add_component(str(offset + i), component) - return self - - -# TODO: need to do the same to ParameterList and ParameterDict, ModuleDict diff --git a/adalflow/adalflow/core/generator.py b/adalflow/adalflow/core/generator.py index baedd8fb..dd0ff5f6 100644 --- a/adalflow/adalflow/core/generator.py +++ b/adalflow/adalflow/core/generator.py @@ -4,7 +4,6 @@ import json import re -import os from pathlib import Path from typing import Any, Dict, Optional, Union, Callable, Tuple, List @@ -37,7 +36,7 @@ FEEDBACK_ENGINE_TEMPLATE, LLM_CONVERSATION_TEMPLATE, VARIABLE_AND_PEERS_INFO, - # CONVERSATION_START_INSTRUCTION_BASE, + CONVERSATION_START_INSTRUCTION_BASE, CONVERSATION_START_INSTRUCTION_CHAIN, OBJECTIVE_INSTRUCTION_BASE, OBJECTIVE_INSTRUCTION_CHAIN, @@ -48,8 +47,6 @@ log = logging.getLogger(__name__) -DEBUG_MODE = os.environ.get("DEBUG_MODE", False) - PromptArgType = Dict[str, Union[str, Parameter]] @@ -67,7 +64,7 @@ class Generator(GradComponent, CachedEngine, CallbackManager): Args: model_client (ModelClient): The model client to use for the generator. model_kwargs (Dict[str, Any], optional): The model kwargs to pass to the model client. Defaults to {}. Please refer to :ref:`ModelClient` for the details on how to set the model_kwargs for your specific model if it is from our library. - template (Optional[str], optional): The template for the prompt. Defaults to :ref:`DEFAULT_ADALFLOW_SYSTEM_PROMPT`. + template (Optional[str], optional): The template for the prompt. Defaults to :ref:`DEFAULT_LIGHTRAG_SYSTEM_PROMPT`. prompt_kwargs (Optional[Dict], optional): The preset prompt kwargs to fill in the variables in the prompt. Defaults to None. output_processors (Optional[Component], optional): The output processors after model call. It can be a single component or a chained component via ``Sequential``. Defaults to None. trainable_params (Optional[List[str]], optional): The list of trainable parameters. Defaults to []. @@ -81,9 +78,7 @@ class Generator(GradComponent, CachedEngine, CallbackManager): model_client: ModelClient # for better type checking _use_cache: bool = False - _kwargs: Dict[str, Any] = ( - {} - ) # to create teacher generator from student TODO: might reaccess this + _kwargs: Dict[str, Any] = {} def __init__( self, @@ -101,7 +96,7 @@ def __init__( cache_path: Optional[str] = None, use_cache: bool = False, ) -> None: - r"""The default prompt is set to the DEFAULT_ADALFLOW_SYSTEM_PROMPT. It has the following variables: + r"""The default prompt is set to the DEFAULT_LIGHTRAG_SYSTEM_PROMPT. It has the following variables: - task_desc_str - tools_str - example_str @@ -150,8 +145,8 @@ def __init__( # to support better testing on the parts beside of the model call self.mock_output: bool = False self.mock_output_data: str = "mock data" - # self.data_map_func: Callable = None - # self.set_data_map_func() + self.data_map_func: Callable = None + self.set_data_map_func() self._use_cache = use_cache self._kwargs = { @@ -165,9 +160,6 @@ def __init__( "use_cache": use_cache, } self._teacher: Optional["Generator"] = None - self._trace_api_kwargs: Dict[str, Any] = ( - {} - ) # used by dynamic computation graph and backpropagation def set_cache_path(self, cache_path: str, model_client: object, model: str): """Set the cache path for the generator.""" @@ -381,7 +373,7 @@ def create_demo_data_instance( from adalflow.core.base_data_class import DynamicDataClassFactory # map the input fields - demo_data = {"id": id, "score": None} # add score to trace the prediction score + demo_data = {"id": id} demo_data_class_output_mapping, output_fields = self._get_default_mapping( output ) @@ -417,17 +409,17 @@ def set_teacher_generator(self, teacher: "Generator" = None): print(f"Teacher generator set: {self._teacher}, teacher {teacher}") log.debug(f"Teacher generator set: {self._teacher}") - # def set_data_map_func(self, map_func: Callable = None): - # def default_map_func(data: "GeneratorOutputType") -> str: - # return ( - # data.data - # if data.data - # else self.failure_message_to_backward_engine(data) - # ) + def set_data_map_func(self, map_func: Callable = None): + def default_map_func(data: "GeneratorOutputType") -> str: + return ( + data.data + if data.data + else self.failure_message_to_backward_engine(data) + ) - # self.data_map_func = map_func or default_map_func + self.data_map_func = map_func or default_map_func - # log.debug(f"Data map function set: {self.data_map_func}") + log.debug(f"Data map function set: {self.data_map_func}") # TODO: limit to only one demo parameter. @staticmethod @@ -439,41 +431,14 @@ def find_demo_parameter(prompt_kwargs: Dict) -> Optional[Parameter]: return p return None + # NOTE: when training is true, forward will be called in __call__ instead of call def forward( self, - prompt_kwargs: Optional[ - Dict[str, Union[str, Parameter]] - ] = {}, # the input need to be passed to the prompt + prompt_kwargs: Optional[Dict] = {}, # the input need to be passed to the prompt model_kwargs: Optional[Dict] = {}, id: Optional[str] = None, ) -> "Parameter": - r"""Customized forward pass on top of the GradComponent forward method.""" - # 1. convert prompt_kwargs to parameter if it is not - for k, v in prompt_kwargs.items(): - if not isinstance(v, Parameter): - prompt_kwargs[k] = Parameter( - data=v, - name=f"{self.name}_{k}", - requires_opt=True, - param_type=ParameterType.INPUT, - data_id=id, - ) - - # 2. call the model - unwrapped_prompt_kwargs: Dict[str, Any] = {} - for k, v in prompt_kwargs.items(): - if isinstance(v, Parameter): - if v.param_type == ParameterType.INPUT: - v.data_id = id - unwrapped_prompt_kwargs[k] = v.map_to_successor(self) - else: - unwrapped_prompt_kwargs[k] = v - if DEBUG_MODE: - print( - f"unwrapped_prompt_kwargs: {unwrapped_prompt_kwargs}, model_kwargs: {model_kwargs}" - ) - print(f"prompt template: {self.template}") - + # 1. call the model output: GeneratorOutputType = None input_args = {} if self.mock_output: @@ -481,36 +446,35 @@ def forward( else: if self.teacher_mode and not isinstance(self, BackwardEngine): if not self._teacher: - if DEBUG_MODE: - print( - f"unwrapped_prompt_kwargs: {unwrapped_prompt_kwargs}, model_kwargs: {model_kwargs}" - ) - print(f"names: {self.name}") + print( + f"prompt_kwargs: {prompt_kwargs}, model_kwargs: {model_kwargs}" + ) + print(f"names: {self.name}") raise ValueError("Teacher generator is not set.") log.info(f"Using teacher: {self._teacher}") input_args = { "prompt_kwargs": compose_model_kwargs( - self._teacher.prompt_kwargs, unwrapped_prompt_kwargs + self._teacher.prompt_kwargs, prompt_kwargs ), "model_kwargs": compose_model_kwargs( self._teacher.model_kwargs, model_kwargs ), } - output = self._teacher.call(**input_args, id=id) + output = self._teacher.call(prompt_kwargs, model_kwargs) else: input_args = { "prompt_kwargs": compose_model_kwargs( - self.prompt_kwargs, unwrapped_prompt_kwargs + self.prompt_kwargs, prompt_kwargs ), "model_kwargs": compose_model_kwargs( self.model_kwargs, model_kwargs ), } - output = self.call(**input_args, id=id) + output = self.call(prompt_kwargs, model_kwargs) # 2. Generate a Parameter object from the output combined_prompt_kwargs = compose_model_kwargs(self.prompt_kwargs, prompt_kwargs) - # if self.data_map_func is None: - # self.set_data_map_func() + if self.data_map_func is None: + self.set_data_map_func() predecessors = [ p for p in combined_prompt_kwargs.values() if isinstance(p, Parameter) @@ -530,8 +494,6 @@ def forward( ) response.set_predecessors(predecessors) response.trace_forward_pass(input_args=input_args, full_response=output) - # *** special to the generator *** - response.trace_api_kwargs(api_kwargs=self._trace_api_kwargs) # attach the demo to the demo parameter # if self.tracing: demo_param = self.find_demo_parameter(combined_prompt_kwargs) @@ -547,14 +509,12 @@ def forward( output, id=id, ) - demo_param.add_dataclass_to_trace(demo, is_teacher=self.teacher_mode) + demo_param.add_to_trace(demo, is_teacher=self.teacher_mode) else: log.debug( "No demo parameter found in the prompt_kwargs. You can not trace the demo data." ) - # **** end of the special to the generator **** - if not self.backward_engine: # self.set_backward_engine() log.debug(f"Backward engine: {self.backward_engine}") @@ -587,26 +547,26 @@ def backward( id: Optional[str] = None, # the id of the input ) -> Parameter: - log.info(f"Generator: Backward: {response.name}") + log.info(f"Generator: Backward: {response}") children_params = response.predecessors - is_intermediate_node = True + is_chain = True if response.get_gradient_and_context_text().strip() == "": log.info(f"Generator: Backward: No gradient found for {response}.") # backward score to the demo parameter for pred in children_params: - # if pred.requires_opt: - pred.set_score(response._score) - log.debug( - f"backpropagate the score {response._score} to {pred.name}, is_teacher: {self.teacher_mode}" - ) - if pred.param_type == ParameterType.DEMOS: - # Accumulate the score to the demo - pred.add_score_to_trace( - trace_id=id, score=response._score, is_teacher=self.teacher_mode + if pred.requires_opt: + pred.set_score(response._score) + log.debug( + f"backpropagate the score {response._score} to {pred.name}, is_teacher: {self.teacher_mode}" ) - log.debug(f"Pred: {pred.name}, traces: {pred._traces}") + if pred.param_type == ParameterType.DEMOS: + # Accumulate the score to the demo + pred.add_score_to_trace( + trace_id=id, score=response._score, is_teacher=self.teacher_mode + ) + log.debug(f"Pred: {pred.name}, traces: {pred._traces}") # 1.backward for text-gradients if backward_engine: @@ -627,7 +587,7 @@ def backward( template=template, backward_engine=backward_engine, prompt_str=prompt_str, - is_intermediate_node=is_intermediate_node, + is_chain=is_chain, ) else: log.debug("Backward engine is not set for the generator. No text gradient.") @@ -640,17 +600,14 @@ def _backward_through_one_predecessor( template: str, backward_engine: "BackwardEngine", prompt_str: str, - is_intermediate_node: bool = False, + is_chain: bool = False, ): - """Creating gradient/textual feedback for prompt type parameters.""" if not pred.requires_opt: log.debug( f"Generator: Skipping {pred} as it does not require optimization." ) return - log.debug( - f"Generator: Backward through {pred}, is_intermediate_node: {is_intermediate_node}" - ) + log.debug(f"Generator: Backward through {pred}, is_chain: {is_chain}") if pred.check_if_already_computed_gradient_respect_to(response.id): log.debug( @@ -669,8 +626,7 @@ def _backward_through_one_predecessor( } conversation_prompt_kwargs = { - # "variable_name": pred.name, - # "variable_desc": pred.role_desc, + "variable_name": pred.name, "input_value": input_prompt_kwargs, "llm_output": response.data, } @@ -687,9 +643,9 @@ def _backward_through_one_predecessor( template=VARIABLE_AND_PEERS_INFO, )() - conv_ins_template = None # CONVERSATION_START_INSTRUCTION_BASE + conv_ins_template = CONVERSATION_START_INSTRUCTION_BASE obj_ins_template = OBJECTIVE_INSTRUCTION_BASE - if is_intermediate_node: # TODO: this will always be true + if is_chain: conv_ins_template = CONVERSATION_START_INSTRUCTION_CHAIN obj_ins_template = OBJECTIVE_INSTRUCTION_CHAIN @@ -705,9 +661,7 @@ def _backward_through_one_predecessor( template=obj_ins_template, prompt_kwargs={ "response_desc": response.role_desc, - "response_gradient": response.get_gradient_and_context_text( - skip_correct_sample=True - ), + "response_gradient": response.get_gradient_and_context_text(), "instruction_to_backward_engine": pred.instruction_to_backward_engine, }, )() @@ -719,16 +673,11 @@ def _backward_through_one_predecessor( gradient_output: GeneratorOutput = None if response._score is not None and float(response._score) > 0.9: log.debug(f"EvalFnToTextLoss: Skipping {pred} as the score is high enough.") - # TODO: plus score descriptions - manual_response = f"You get score: {response._score}." + manual_response = f"You get a high score: {response._score}." gradient_output = GeneratorOutput( data=manual_response, raw_response=manual_response ) else: - # manual_response = f"You get score: {response._score}." - # gradient_output = GeneratorOutput( - # data=manual_response, raw_response=manual_response - # ) gradient_output: GeneratorOutput = backward_engine( prompt_kwargs=backward_engine_prompt_kwargs @@ -762,7 +711,7 @@ def _backward_through_one_predecessor( pred.gradients_context[var_gradient] = GradientContext( context=conversation_str, response_desc=response.role_desc, - variable_desc=pred.role_desc, # parameter_desc + variable_desc=pred.role_desc, ) def _run_callbacks( @@ -814,7 +763,6 @@ def call( log.debug(f"model_kwargs: {model_kwargs}") api_kwargs = self._pre_call(prompt_kwargs, model_kwargs) - log.debug(f"api_kwargs: {api_kwargs}") output: GeneratorOutputType = None # call the model client @@ -848,7 +796,6 @@ def call( ) log.info(f"output: {output}") - self._trace_api_kwargs = api_kwargs # tracing return output # TODO: training is not supported in async call yet @@ -894,7 +841,6 @@ async def acall( prompt_kwargs=prompt_kwargs, model_kwargs=model_kwargs, ) - self._trace_api_kwargs = api_kwargs # tracing return output def __call__(self, *args, **kwargs) -> Union[GeneratorOutputType, Any]: @@ -934,10 +880,6 @@ def failure_message_to_backward_engine( return response_value -from adalflow.tracing.decorators import trace_generator_states - - -@trace_generator_states() class BackwardEngine(Generator): # it is a generator with defaule template __doc__ = """The backward engine is a Generator with a default template for the backward pass. @@ -948,18 +890,10 @@ def __init__(self, **kwargs): if kwargs is None: kwargs = {} kwargs["template"] = FEEDBACK_ENGINE_TEMPLATE - super().__init__(**kwargs) self.name = "BackwardEngine" self.teacher_mode = False - def call(self, **kwargs) -> GeneratorOutputType: - r"""Catch the rate limit error and raise it.""" - output = super().call(**kwargs) - if output and output.error is not None and "429" in output.error: - raise ValueError(f"Error in the backward engine: {output.error}") - return output - @staticmethod def failure_message_to_optimizer( gradient_response: GeneratorOutput, diff --git a/adalflow/adalflow/core/prompt_builder.py b/adalflow/adalflow/core/prompt_builder.py index 0d998b63..eca45557 100644 --- a/adalflow/adalflow/core/prompt_builder.py +++ b/adalflow/adalflow/core/prompt_builder.py @@ -1,4 +1,4 @@ -"""Class prompt builder for AdalFlow system prompt.""" +"""Class prompt builder for LightRAG system prompt.""" from typing import Dict, Any, Optional, List, TypeVar import logging @@ -20,10 +20,10 @@ class Prompt(Component): __doc__ = r"""Renders a text string(prompt) from a Jinja2 template string. - In default, we use the :ref:`DEFAULT_ADALFLOW_SYSTEM_PROMPT` as the template. + In default, we use the :ref:`DEFAULT_LIGHTRAG_SYSTEM_PROMPT` as the template. Args: - template (str, optional): The Jinja2 template string. Defaults to DEFAULT_ADALFLOW_SYSTEM_PROMPT. + template (str, optional): The Jinja2 template string. Defaults to DEFAULT_LIGHTRAG_SYSTEM_PROMPT. preset_prompt_kwargs (Optional[Dict], optional): The preset prompt kwargs to fill in the variables in the prompt. Defaults to {}. Examples: diff --git a/adalflow/adalflow/core/retriever.py b/adalflow/adalflow/core/retriever.py index fb65a298..bcde901f 100644 --- a/adalflow/adalflow/core/retriever.py +++ b/adalflow/adalflow/core/retriever.py @@ -83,7 +83,6 @@ def call( self, input: RetrieverQueriesType, top_k: Optional[int] = None, - id: str = None, # for tracing, diagnosing, and training **kwargs, ) -> RetrieverOutputType: raise NotImplementedError("retrieve is not implemented") @@ -92,7 +91,6 @@ async def acall( self, input: RetrieverQueriesType, top_k: Optional[int] = None, - id: str = None, # for tracing, diagnosing, and training **kwargs, ) -> RetrieverOutputType: raise NotImplementedError("Async retrieve is not implemented") @@ -104,7 +102,6 @@ def forward( top_k: Optional[ int ] = None, # TODO: top_k can be trained in the future if its formulated as a parameter - id: str = None, # for tracing, diagnosing, and training **kwargs, ) -> Parameter: r"""Customized forward on top of the GradComponent forward method. @@ -126,8 +123,6 @@ def forward( requires_opt=True, param_type=ParameterType.HYPERPARAM, ) - if input is None: - raise ValueError("Input cannot be empty") response = super().forward(input, top_k=top_k, **kwargs) response.param_type = ( ParameterType.RETRIEVER_OUTPUT @@ -140,24 +135,6 @@ def backward( id: Optional[str] = None, backward_engine: Optional["Generator"] = None, ): - r"""Backward the response to pass the score to predecessors. - Function as a relay component""" - log.info(f"Retriever backward: {response.name}") - children_params = response.predecessors - - # is_chain = True - if response.get_gradient_and_context_text().strip() == "": - log.info(f"Generator: Backward: No gradient found for {response}.") - - for pred in children_params: - pred.set_score(response._score) - from adalflow.utils.logger import printc - - printc( - f"Retriever: Backward: {pred.name} set_score: {response._score}, {response.name}", - "blue", - ) - if pred.param_type == ParameterType.DEMOS: - pred.add_score_to_trace( - trace_id=id, score=response._score, is_teacher=self.teacher_mode - ) + r"""Backward the response to pass the score to predecessors""" + log.info(f"Retriever backward: {response}") + pass diff --git a/adalflow/adalflow/core/string_parser.py b/adalflow/adalflow/core/string_parser.py index 3001b512..246ec176 100644 --- a/adalflow/adalflow/core/string_parser.py +++ b/adalflow/adalflow/core/string_parser.py @@ -214,7 +214,6 @@ def call(self, input: str) -> JSON_PARSER_OUTPUT_TYPE: YAML_PARSER_OUTPUT_TYPE = JSON_PARSER_OUTPUT_TYPE -# TODO: yaml parser needs to be more robust, currently json works way better than yaml class YamlParser(Parser): __doc__ = r"""To extract YAML strings from text and parse them into a YAML object. diff --git a/adalflow/adalflow/eval/answer_match_acc.py b/adalflow/adalflow/eval/answer_match_acc.py index b45e61c1..7a9fa8f7 100644 --- a/adalflow/adalflow/eval/answer_match_acc.py +++ b/adalflow/adalflow/eval/answer_match_acc.py @@ -29,27 +29,8 @@ class AnswerMatchAcc(BaseEvaluator): [1.0, 1.0, 1.0] """ - def __init__( - self, - type: Literal[ - "exact_match", "fuzzy_match", "rouge_score", "bleu_score", "bert_score" - ] = "exact_match", - ): + def __init__(self, type: Literal["exact_match", "fuzzy_match"] = "exact_match"): self.type = type - if self.type == "bert_score": - from torchmetrics.text.bert import BERTScore - - self.bertscore = BERTScore() - - elif self.type == "rouge_score": - from torchmetrics.text.rouge import ROUGEScore - - self.rougescore = ROUGEScore() - - elif self.type == "bleu_score": - from torchmetrics.text.bleu import BLEUScore - - self.bleuscore = BLEUScore() def compute_single_item( self, @@ -86,37 +67,6 @@ def compute_single_item( y = y.lower() y_gt = y_gt.lower() return 1.0 if y_gt in y else 0.0 - elif self.type == "bert_score": - from torchmetrics.text.bert import BERTScore - - self.bertscore = BERTScore() - score = self.bertscore([y], [y_gt]) - # get the data from the tensor - print(f"y: {[y]}, y_gt: {[y_gt]}, type: {type(y)}, type_gt: {type(y_gt)}") - print(score) - single_score = score["precision"].item() - return single_score - elif self.type == "rouge_score": - from torchmetrics.text.rouge import ROUGEScore - - self.rougescore = ROUGEScore() - score = self.rougescore([y], [y_gt]) - # get the data from the tensor - print(f"y: {[y]}, y_gt: {[y_gt]}, type: {type(y)}, type_gt: {type(y_gt)}") - print(score) - single_score = score["rouge1_precision"].item() - return single_score - elif self.type == "bleu_score": - from torchmetrics.text.bleu import BLEUScore - - self.bleuscore = BLEUScore() - score = self.bleuscore([y], [y_gt]) - # get the data from the tensor - print(f"y: {[y]}, y_gt: {[y_gt]}, type: {type(y)}, type_gt: {type(y_gt)}") - print(score) - single_score = score.item() - return single_score - else: raise NotImplementedError diff --git a/adalflow/adalflow/optim/few_shot/bootstrap_optimizer.py b/adalflow/adalflow/optim/few_shot/bootstrap_optimizer.py index a78c1ec6..c61c3649 100644 --- a/adalflow/adalflow/optim/few_shot/bootstrap_optimizer.py +++ b/adalflow/adalflow/optim/few_shot/bootstrap_optimizer.py @@ -52,9 +52,7 @@ def __init__( for param in params if param.requires_opt and param.param_type == ParameterType.DEMOS ] - log.info(f"BootstrapFewShot: {[p.name for p in self.params]}") - - print(f"BootstrapFewShot: {[p.name for p in self.params]}") + log.info(f"BootstrapFewShot: {self.params}") self._raw_shots = raw_shots self._bootstrap_shots = bootstrap_shots @@ -66,11 +64,7 @@ def __init__( exclude_input_fields_from_bootstrap_demos ) - # TODO: use the scores from the backward engine (optionally) on the demo parameters - # needs to make a decision on which - # this score does not make sense for multiple demo parameters def add_scores(self, ids: List[str], scores: List[float], is_teacher: bool = True): - r"""Add scores for each demo via _teacher_scores or _student_scores.""" if len(ids) != len(scores): raise ValueError( f"ids and scores must have the same length, got ids: {ids}, scores: {scores}" @@ -120,16 +114,10 @@ def sample( weighted: bool = True, ): r"""Performs weighted sampling, ensure the score is in range [0, 1]. The higher score means better accuracy.""" - # 1. sample from augmented demos (from teacher) + # 1. sample from augmented demos # set weights to be score # add 1 to all score to avoid negative weights augmented_options = list(augmented_demos.values()) - - # get the teacher scores length and the augmented demos length - len_teacher_scores = len(self._teacher_scores) - len_augmented_options = len(augmented_options) - print(f"len_teacher_scores: {len_teacher_scores}") - print(f"len_augmented_options: {len_augmented_options}") weights = None if weighted: weights: List[float] = [] @@ -235,11 +223,6 @@ def propose(self): if demo_param.requires_opt: augmented_demos = demo_param._traces demos = demo_param._student_traces - - if len(augmented_demos) != len(demos): - log.warning( - f"augmented and raw demos must have the same length, got {len(augmented_demos)} and {len(demos)} \n {augmented_demos} \n and student demos {demos}" - ) try: sampled_augmented_demos, sampled_raw_demos = self.sample( augmented_demos=augmented_demos, diff --git a/adalflow/adalflow/optim/function.py b/adalflow/adalflow/optim/function.py index 314fd124..6391b68e 100644 --- a/adalflow/adalflow/optim/function.py +++ b/adalflow/adalflow/optim/function.py @@ -1,5 +1,3 @@ -"""Inspired by TextGrad: Automatic differentiation via "text" """ - from typing import TYPE_CHECKING, Callable diff --git a/adalflow/adalflow/optim/grad_component.py b/adalflow/adalflow/optim/grad_component.py index b73e536e..016c08db 100644 --- a/adalflow/adalflow/optim/grad_component.py +++ b/adalflow/adalflow/optim/grad_component.py @@ -57,6 +57,9 @@ def forward(self, *args, **kwargs) -> "Parameter": 1. for all args and kwargs, if it is a `Parameter` object, it will be tracked as `Predecessor`. 2. Trace input_args and full_response in the parameter object. 3. Return the parameter object. + + TODO: all Gradcomponent should not allow args but only kwargs. + For now, just check if id is in kwargs. """ from adalflow.optim.parameter import Parameter @@ -82,13 +85,9 @@ def forward(self, *args, **kwargs) -> "Parameter": for v in input_args.values(): if isinstance(v, Parameter): predecessors.append(v) - if v.param_type == ParameterType.INPUT: - v.data_id = kwargs.get("id", None) for v in kwargs.values(): if isinstance(v, Parameter): predecessors.append(v) - if v.param_type == ParameterType.INPUT: - v.data_id = kwargs.get("id", None) # 2. unwrap the parameter object to take only the data, successor_map_fn: lambda x: x.data in default # unwrap args @@ -134,28 +133,6 @@ def forward(self, *args, **kwargs) -> "Parameter": ) return response - def backward(self, *, response: "Parameter", id: str = None, **kwargs): - """Backward pass of the function. In default, it will pass all the scores to the predecessors. - - Note: backward is mainly used internally and better to only allow kwargs as the input. - - Subclass should implement this method if you need additional backward logic. - """ - log.info(f"GradComponent backward: {response.name}") - children_params = response.predecessors - - if response.get_gradient_and_context_text().strip() == "": - log.info(f"Generator: Backward: No gradient found for {response}.") - - for pred in children_params: - pred.set_score(response._score) - from adalflow.utils.logger import printc - - printc( - f"Retriever: Backward: {pred.name} set_score: {response._score}, {response.name}", - "blue", - ) - if pred.param_type == ParameterType.DEMOS: - pred.add_score_to_trace( - trace_id=id, score=response._score, is_teacher=self.teacher_mode - ) + def backward(self, *args, **kwargs): + pass + # raise NotImplementedError("backward method is not implemented") diff --git a/adalflow/adalflow/optim/loss_component.py b/adalflow/adalflow/optim/loss_component.py index e53ac609..93520de4 100644 --- a/adalflow/adalflow/optim/loss_component.py +++ b/adalflow/adalflow/optim/loss_component.py @@ -10,11 +10,7 @@ class LossComponent(Component): - __doc__ = """A base class to define a loss component. - - Loss component is to compute the textual gradients/feedback for each of its predecessors using another LLM as the backward engine. - - Each precessor should have basic information that is passed to its next component to inform its type such as retriever or generator and its role description. + __doc__ = """A base class to define interfaces for an auto-grad component/operator. Compared with `Component`, `GradComponent` defines three important interfaces: - `forward`: the forward pass of the function, returns a `Parameter` object that can be traced and backpropagated. diff --git a/adalflow/adalflow/optim/optimizer.py b/adalflow/adalflow/optim/optimizer.py index 943e04e5..c6fad814 100644 --- a/adalflow/adalflow/optim/optimizer.py +++ b/adalflow/adalflow/optim/optimizer.py @@ -1,12 +1,12 @@ """Base Classes for AdalFlow Optimizers, including Optimizer, TextOptimizer, and DemoOptimizer.""" -from typing import Dict, Any, Union, Iterable, Sequence, List +from typing_extensions import TypeAlias +from typing import Dict, Any, Union, Iterable, Sequence from adalflow.optim.parameter import Parameter from adalflow.core.base_data_class import DataClass - -ParamsT = Union[Iterable[Parameter], Iterable[Dict[str, Any]]] +ParamsT: TypeAlias = Union[Iterable[Parameter], Iterable[Dict[str, Any]]] class Optimizer: @@ -85,7 +85,3 @@ def config_shots(self, *args, **kwargs): def set_dataset(self, dataset: Sequence[DataClass]): r"""Set the dataset for the optimizer.""" self.dataset = dataset - - def add_scores(self, ids: List[str], scores: List[float], *args, **kwargs): - r"""Add scores to the optimizer.""" - raise NotImplementedError("add_scores method is not implemented") diff --git a/adalflow/adalflow/optim/parameter.py b/adalflow/adalflow/optim/parameter.py index 5b60995c..85fe25ea 100644 --- a/adalflow/adalflow/optim/parameter.py +++ b/adalflow/adalflow/optim/parameter.py @@ -11,19 +11,14 @@ Optional, Literal, Callable, - TYPE_CHECKING, ) -from pyvis.network import Network from collections import defaultdict import logging -import os from dataclasses import dataclass, field import uuid from adalflow.optim.types import ParameterType from adalflow.core.base_data_class import DataClass -if TYPE_CHECKING: - from adalflow.optim.text_grad.tgd_optimizer import TGDData, TGDOptimizerTrace T = TypeVar("T") # covariant set to False to allow for in-place updates @@ -46,39 +41,7 @@ class GradientContext: ) -@dataclass -class ComponentTrace: - input_args: Dict[str, Any] = field( - metadata={"desc": "The input arguments of the GradComponent forward"}, - default=None, - ) - full_response: object = field( - metadata={"desc": "The full response of the GradComponent output"}, default=None - ) - api_kwargs: Dict[str, Any] = field( - metadata={ - "desc": "The api_kwargs for components like Generator and Retriever that pass to the model client" - }, - default=None, - ) - - -# TODO: use this to better trace the score -@dataclass -class ScoreTrace: - score: float = field(metadata={"desc": "The score of the data point"}, default=None) - eval_comp_id: str = field( - metadata={"desc": "The id of the evaluation component"}, default=None - ) - eval_comp_name: str = field( - metadata={"desc": "The name of the evaluation component"}, default=None - ) - - COMBINED_GRADIENTS_TEMPLATE = r""" -{% if combined_gradients %} -Batch size: {{ combined_gradients|length }} -{% endif %} {% for g in combined_gradients %} {% set gradient = g[0] %} {% set gradient_context = g[1] %} @@ -131,9 +94,6 @@ class Parameter(Generic[T]): name: str = None # Name of the parameter, easier to read for humans role_desc: str = "" # Description of the role of the parameter data: T = None # Data of the parameter - data_id: str = ( - None # Id of the data from the training set, used only for input_type - ) param_type: ParameterType proposing: bool = False # State of the parameter @@ -153,15 +113,11 @@ class Parameter(Generic[T]): False # Disable the backward engine for the parameter ) - component_trace: ComponentTrace = None # Trace of the component - tgd_optimizer_trace: "TGDOptimizerTrace" = None # Trace of the TGD optimizer - def __init__( self, *, id: Optional[str] = None, data: T = None, # for generator output, the data will be set up as raw_response - data_id: str = None, # for tracing the data item in the training/val/test set requires_opt: bool = True, role_desc: str = "", param_type: ParameterType = ParameterType.NONE, @@ -176,7 +132,6 @@ def __init__( successor_map_fn: Optional[Dict[str, Callable]] = None, ): self.id = id or str(uuid.uuid4()) - self.data_id = data_id self.name = name self.role_desc = role_desc @@ -211,13 +166,10 @@ def __init__( self.instruction_to_backward_engine: str = instruction_to_backward_engine # here are used for demo parameter, filled by generator.forward - self._traces: Dict[str, DataClass] = {} # id to data items (DynamicDataClass) - self._student_traces: Dict[str, DataClass] = {} # id - - self._score: float = ( - score # end to end evaluation score, TODO: might have multiple scores if using multiple eval fns # score is set in the gradients in the backward pass - ) + self._traces: Dict[str, DataClass] = {} # id of the data points + self._score: float = score # end to end evaluation score + self._student_traces: Dict[str, DataClass] = {} # id self._demos: List[DataClass] = ( [] ) # used for the optimizer to save the proposed demos @@ -226,7 +178,6 @@ def __init__( self.from_response_id = from_response_id # for gradient parameter self.successor_map_fn = successor_map_fn or {} - self.component_trace = ComponentTrace() def map_to_successor(self, successor: object) -> T: """Apply the map function to the successor based on the successor's id.""" @@ -287,48 +238,19 @@ def set_peers(self, peers: List["Parameter"] = None): ) self.peers = set(peers) - ############################################################################################################# - # Trace the tgd optimizer data - ############################################################################################################ - def trace_optimizer(self, api_kwargs: Dict[str, Any], response: "TGDData"): - from adalflow.optim.text_grad.tgd_optimizer import TGDOptimizerTrace - - self.tgd_optimizer_trace = TGDOptimizerTrace( - api_kwargs=api_kwargs, output=response - ) - - ############################################################################################################ - # Trace component, include trace_forward_pass & trace_api_kwargs for now - ############################################################################################################ def trace_forward_pass(self, input_args: Dict[str, Any], full_response: object): r"""Trace the forward pass of the parameter.""" self.input_args = input_args self.full_response = full_response - # TODO: remove the input_args and full_response to use component_trace - self.component_trace.input_args = input_args - self.component_trace.full_response = full_response - - def trace_api_kwargs(self, api_kwargs: Dict[str, Any]): - r"""Trace the api_kwargs for components like Generator and Retriever that pass to the model client.""" - self.component_trace.api_kwargs = api_kwargs def set_eval_fn_input(self, eval_input: object): r"""Set the input for the eval_fn.""" self.eval_input = eval_input - ################################################################################################################### - # Used for demo optimizer (forward and backward pass) to accumlate the traces on both score and DynamicDataClass - ################################################################################################################### def set_score(self, score: float): - r"""Set the score of the parameter in the backward pass - For intermediate nodes, there is only one score per each eval fn behind this node. - For leaf nodes, like DEMO or PROMPT, it will have [batch_size] of scores. - - But this score is only used to relay the score to the demo parametr. - """ self._score = score - def add_dataclass_to_trace(self, trace: DataClass, is_teacher: bool = True): + def add_to_trace(self, trace: DataClass, is_teacher: bool = True): r"""Called by the generator.forward to add a trace to the parameter. It is important to allow updating to the trace, as this will give different sampling weight. @@ -351,12 +273,7 @@ def add_score_to_trace(self, trace_id: str, score: float, is_teacher: bool = Tru raise ValueError( f"Trace with id {trace_id} does not exist. Current traces: {target.keys()}" ) - - setattr(target[trace_id], "score", score) - - from adalflow.utils.logger import printc - - printc(f"Adding score {score} to trace {trace_id}", "magenta") + target[trace_id].score = score ############################################################################################################ # Used for optimizer to propose new data @@ -432,13 +349,10 @@ def get_gradients_names(self) -> str: names = ", ".join(names) return names - def get_gradient_and_context_text(self, skip_correct_sample: bool = False) -> str: + def get_gradient_and_context_text(self) -> str: """Aggregates and returns: 1. the gradients 2. the context text for which the gradients are computed - - Sort the gradients from the lowest score to the highest score. - Highlight the gradients with the lowest score to the optimizer. """ from adalflow.core.prompt_builder import Prompt @@ -448,26 +362,13 @@ def get_gradient_and_context_text(self, skip_correct_sample: bool = False) -> st # sore gradients by the _score from low to high self.gradients = sorted( - self.gradients, key=lambda x: x._score if x._score is not None else 1 + self.gradients, key=lambda x: x._score if x._score else 1 ) - # print the score for the sorted gradients - lowest_score_gradients = [] - for i, g in enumerate(self.gradients): - if skip_correct_sample: - if g._score > 0.5: - continue - lowest_score_gradients.append(g) - print(f"{i} Score: {g._score} for {g.name}, {type(g._score)}") - - gradient_context_combined = list( - zip( - lowest_score_gradients, - [self.gradients_context[g] for g in lowest_score_gradients], - ) + + gradient_context_combined = zip( + self.gradients, + [self.gradients_context[g] for g in self.gradients], ) - # set all gradients value to None - # for g in self.gradients: - # g.data = None gradient_context_combined_str = Prompt( template=COMBINED_GRADIENTS_TEMPLATE, @@ -515,28 +416,9 @@ def build_graph(node: "Parameter"): build_graph(root) return nodes, edges - def report_cycle(cycle_nodes: List["Parameter"]): - """ - Report the detected cycle and provide guidance to the user on how to avoid it. - """ - cycle_names = [node.name for node in cycle_nodes] - log.warning(f"Cycle detected: {' -> '.join(cycle_names)}") - print(f"Cycle detected in the graph: {' -> '.join(cycle_names)}") - - # Provide guidance on how to avoid the cycle - print("To avoid the cycle, consider the following strategies:") - print("- Modify the graph structure to remove cyclic dependencies.") - print( - "- Check the relationships between these nodes to ensure no feedback loops." - ) - def backward( self, - ): - """ - Apply backward pass for for all nodes in the graph by reversing the topological order. - """ - # engine should be the llm or customized backwards function to pass feedback + ): # engine should be the llm or customized backwards function to pass feedback # topological sort of all the predecessors of the current parameter in the graph log.debug(f"Backward pass for {self.data}, backward function: {self.grad_fn}") @@ -559,166 +441,19 @@ def build_topo(node: Parameter): if not node.requires_opt: log.debug(f"Skipping {node.name} as it does not require optimization") continue + node.gradients = _check_and_reduce_gradients(node) log.debug(f"v: {node.data}, grad_fn: {node.grad_fn}, {node.get_grad_fn()}") if node.get_grad_fn() is not None: # gradient function takes in the engine log.debug(f"Calling gradient function for {node.name}") node.grad_fn() - # def backward( - # self, - # ): # engine should be the llm or customized backwards function to pass feedback - - # # topological sort of all the predecessors of the current parameter in the graph - # log.debug(f"Backward pass for {self.data}, backward function: {self.grad_fn}") - # topo: List[Parameter] = [] - # visited = set() - # in_stack = set() # Nodes currently being visited to detect cycles - # cycle_detected = False # Flag to check if any cycle was detected - - # def build_topo(node: Parameter, stack: Set[Parameter] = set()): - # nonlocal cycle_detected - - # if stack is None: - # stack = [] - - # # If the node is already in the stack, we have detected a cycle - # if node in in_stack: - # cycle_detected = True - # cycle_nodes = stack + [node] # The cycle includes the current path - # self.report_cycle(cycle_nodes) - # return False # Stop further processing due to cycle - # if node in visited: - # return - # visited.add(node) - # in_stack.add(node) - # stack.append(node) - # for pred in node.predecessors: - # build_topo(pred) - # topo.append(node) - # stack.pop() # Backtrack, remove the node from the current path - - # in_stack.remove(node) # Remove from the stack after processing - # return True - - # # build_topo(self) - # if not build_topo(self): - # log.error("Cycle detected, stopping backward pass.") - # return # Stop the backward pass due to cycle detection - # # backpropagation - - # self.gradients = set() - # for node in reversed(topo): - # if not node.requires_opt: - # log.debug(f"Skipping {node.name} as it does not require optimization") - # continue - # node.gradients = _check_and_reduce_gradients(node) - # log.debug(f"v: {node.data}, grad_fn: {node.grad_fn}, {node.get_grad_fn()}") - # if node.get_grad_fn() is not None: # gradient function takes in the engine - # log.debug(f"Calling gradient function for {node.name}") - # node.grad_fn() - - def draw_interactive_html_graph( - self, - filepath: Optional[str] = None, - nodes: List["Parameter"] = None, - edges: List[Tuple["Parameter", "Parameter"]] = None, - ) -> Dict[str, Any]: - """ - Generate an interactive graph with pyvis and save as an HTML file. - - Args: - nodes (list): A list of Parameter objects. - edges (list): A list of edges as tuples (source, target). - filepath (str, optional): Path to save the graph file. Defaults to None. - - Returns: - dict: A dictionary containing the graph file path. - """ - from jinja2 import Template - - # Define the output file path - output_file = "interactive_graph.html" - final_file = filepath + "_" + output_file if filepath else output_file - - # Create a pyvis Network instance - net = Network(height="750px", width="100%", directed=True) - - # Add nodes to the graph - node_ids = set() - for node in nodes: - label = ( - f"Name: {node.name}
" - f"Role: {node.role_desc.capitalize()}
" - f"Value: {node.data}
" - f"Data ID: {node.data_id}
" - ) - if node.proposing: - label += "Proposing: Yes
" - label += f"Previous Value: {node.previous_data}
" - if node.requires_opt: - label += "Requires Optimization: Yes
" - if node.param_type: - label += f"Type: {node.param_type}
" - if node.gradients: - label += f"Gradients: {node.get_gradients_names()}
" - - net.add_node( - node.id, - label=node.name, - title=label, - color="lightblue" if node.proposing else "orange", - ) - node_ids.add(node.id) - - # Add edges to the graph - for source, target in edges: - if source.id in node_ids and target.id in node_ids: - net.add_edge(source.id, target.id) - else: - print( - f"Skipping edge from {source.name} to {target.name} as one of the nodes does not exist." - ) - - # Enable physics for better layout - net.toggle_physics(True) - net.template = Template( - """ - - - - - - - -
- - - - """ - ) - - # Save the graph as an HTML file - - net.show(final_file) - print(f"Interactive graph saved to {final_file}") - - return {"graph_path": final_file} - def draw_graph( self, add_grads: bool = True, - full_trace: bool = False, format: Literal["png", "svg"] = "png", rankdir: Literal["LR", "TB"] = "TB", filepath: Optional[str] = None, - ) -> Dict[str, Any]: + ): """Draw the graph of the parameter and its gradients. Args: @@ -726,10 +461,10 @@ def draw_graph( format (str, optional): The format of the output file. Defaults to "png". rankdir (str, optional): The direction of the graph. Defaults to "TB". filepath (str, optional): The path to save the graph. Defaults to None. - full_trace (bool, optional): Whether to include more detailed trace such as api_kwargs. Defaults to False. """ from adalflow.utils import save_json from adalflow.utils.global_config import get_adalflow_default_root_path + import os try: from graphviz import Digraph @@ -803,8 +538,6 @@ def wrap_and_escape(text, width=40): f"Role: {wrap_and_escape(n.role_desc.capitalize())}" f"Value: {wrap_and_escape(n.data)}" ) - if n.data_id is not None: - node_label += f"Data ID: {wrap_and_escape(n.data_id)}" if n.proposing: node_label += f"Proposing{{'Yes'}}" node_label += f"Previous Value: {wrap_and_escape(n.previous_data)}" @@ -812,12 +545,6 @@ def wrap_and_escape(text, width=40): node_label += f"Requires Optimization: {{'Yes'}}" if n.param_type: node_label += f"Type: {wrap_and_escape(n.param_type.name)}" - if full_trace and n.component_trace.api_kwargs is not None: - node_label += f" API kwargs: {wrap_and_escape(str(n.component_trace.api_kwargs))}" - - # show the score for intermediate nodes - if n._score is not None and len(n.predecessors) > 0: - node_label += f"Score: {str(n._score)}" if add_grads: node_label += f"Gradients: {wrap_and_escape(n.get_gradients_names())}" # add a list of each gradient with short value @@ -835,8 +562,6 @@ def wrap_and_escape(text, width=40): if len(n._traces.values()) > 0: node_label += f"Traces: keys: {wrap_and_escape(str(n._traces.keys()))}" node_label += f"Traces: values: {wrap_and_escape(str(n._traces.values()))}" - if n.tgd_optimizer_trace is not None: - node_label += f"TGD Optimizer Trace: {wrap_and_escape(str(n.tgd_optimizer_trace))}" node_label += "" # check if the name exists in dot @@ -866,7 +591,6 @@ def wrap_and_escape(text, width=40): # raise ImportError( # "Please install matplotlib using 'pip install matplotlib' to use this feature" # ) from e - # ) from e # from io import BytesIO # import numpy as np @@ -899,17 +623,11 @@ def wrap_and_escape(text, width=40): # save_json(prompts, filename) # save root node to_dict to json save_json(self.to_dict(), f"{filepath}_root.json") - - # draw interactive graph - self.draw_interactive_html_graph( - filepath=filepath, nodes=[n for n in nodes], edges=edges - ) - return {"graph_path": filepath, "root_path": f"{filepath}_root.json"} + return dot def to_dict(self): return { "name": self.name, - "id": self.id, "role_desc": self.role_desc, "data": str(self.data), "requires_opt": self.requires_opt, @@ -964,3 +682,20 @@ def from_dict(cls, data: dict): def __repr__(self): return f"Parameter(name={self.name}, requires_opt={self.requires_opt}, param_type={self.param_type}, role_desc={self.role_desc}, data={self.data}, predecessors={self.predecessors}, gradients={self.gradients},\ raw_response={self.raw_response}, input_args={self.input_args}, traces={self._traces})" + + +def _check_and_reduce_gradients(variable: Parameter) -> Set[Parameter]: + + if variable.get_gradient_and_context_text() == "": + log.debug(f"No gradients detected for {variable.data}") + return variable.gradients + if len(variable.gradients) == 1: + log.debug(f"Only one gradient, no need to reduce: {variable.gradients}") + return variable.gradients + else: + log.debug( + f"Multiple gradients detected for {variable.data}. But we are not reducting them." + ) + return variable.gradients + + # TODO: Implement the reduction logic later diff --git a/adalflow/adalflow/optim/text_grad/backend_engine_prompt.py b/adalflow/adalflow/optim/text_grad/backend_engine_prompt.py index a5f3ddb1..e3b60862 100644 --- a/adalflow/adalflow/optim/text_grad/backend_engine_prompt.py +++ b/adalflow/adalflow/optim/text_grad/backend_engine_prompt.py @@ -11,96 +11,31 @@ FEEDBACK_ENGINE_TEMPLATE = r""" You are the feedback engine in an optimization system. -Your task is to provide intelligent and creative feedback for the target variable enclosed in tags, -so that the optimizer can optimize this variable to improve the objective enclosed in tags. - +Your role: Provide intelligent and creative feedback for the variable enclosed in tags, based on the objective specified in tags. 1. Focus on the downstream OBJECTIVE without proposing new versions of the variable. 2. Feedback examples: "Since language models have the X failure mode...", "Adding X can fix this error because...", "Removing X can improve the objective function because...", "Changing X to Y would fix the mistake..." 3. Consider the variable in the context of its peers if provided. - Remember: -Be specific, concise, critical, and direct. +Be concise, critical, and direct. {{conversation_sec}} {{objective_instruction_sec}} """ -############################################## -# Loss Component -############################################## - - -# Objective instruction for LLM as gradComponent with user custom instruction - -# OBJECTIVE_INSTRUCTION_BASE = r""" -# Our only goal is to improve the above metric, and nothing else. -# {% if instruction_to_backward_engine %} -# Note: {{instruction_to_backward_engine}} -# {% endif %} -# """ - -OBJECTIVE_INSTRUCTION_BASE = r""" -Your only goal is to clearly states how it obtained the "". -Especially when the score is low. -Be CONCISE. -Be specific on why it has a low score. -e.g. "The retrieved context is not enough to answer the question so the problem relies on the retrieval part." -""" - - -### Variable to get feedback on, often it is pred in the loss component -LOSS_CONVERSATION_START_INSTRUCTION_STRING_FN = r""" -TARGET VARIABLE: - {{variable_name}} - {{variable_desc}} - {{variable_value}} -{{conversation_str}} -""" - -### Loss/Score Information ### -LOSS_CONVERSATION_TEMPLATE_STRING = r""" -The variable is passed to the eval function and compared with a target/ground truth value. - -: {{eval_fn_desc}} -: {{input_str}} -: {{response_value}} -{% if metadata %} -Note: {{metadata}} -{% endif %}""" - - -############################################## -# LLM as gradComponent -############################################## -# When the parameter has a gradient, it is the continuation of the backpropagation chain, a layer in the models -CONVERSATION_START_INSTRUCTION_CHAIN = r""" -{{variable_and_peers_info}} - -Here is a conversation with the language model (LM): -{{conversation_str}} -""" - -OBJECTIVE_INSTRUCTION_CHAIN = r""" -This conversation is part of a larger system. The was later used as {{response_desc}}. - -Your goal is to give feedback to the variable to guide the LLM_OUTPUT according to feedback: {{response_gradient}} -{% if instruction_to_backward_engine %} -Note: {{instruction_to_backward_engine}} -{% endif %} -""" ### Backward engine: user prompt # First part to provide context of LLM as gradComponent -# The target variable is used as either input or a task instruction to a language model (LM): -# replace the "The target variable is used as either input or a task instruction to a language model (LM):" with the {{variable_desc}} -# NAME: {{variable_name}} -# Description: {{variable_desc}} LLM_CONVERSATION_TEMPLATE = r""" +NAME: {{variable_name}} +The target variable is used as either input or a task instruction to a language model (LM): + LM_INPUT: {{input_value}} LM_OUTPUT: {{llm_output}}""" +# only passing variable (dict) and peers as parameters +# shared between the VARIABLE_AND_PEERS_INFO = r""" {{variable.name}} @@ -127,11 +62,37 @@ {% endif %} """ +# When the parameter has no gradient, it is the start of the backpropagation chain, used as a loss function +CONVERSATION_START_INSTRUCTION_BASE = r""" +{{variable_and_peers_info}} + +Here is an evaluation of the variable using a language model: +{{conversation_str}} +""" -# # When the parameter has no gradient, it is the start of the backpropagation chain, used as a loss function -# CONVERSATION_START_INSTRUCTION_BASE = r""" -# {{variable_and_peers_info}} +# When the parameter has a gradient, it is the continuation of the backpropagation chain, a layer in the models +CONVERSATION_START_INSTRUCTION_CHAIN = r""" +{{variable_and_peers_info}} + +Here is a conversation with a language model (LM): +{{conversation_str}} +""" + +# Objective instruction for LLM as gradComponent with user custom instruction -# Here is an evaluation of the variable using a language model: -# {{conversation_str}} -# """ +OBJECTIVE_INSTRUCTION_BASE = r""" +Our only goal is to improve the above metric, and nothing else. +{% if instruction_to_backward_engine %} +Note: {{instruction_to_backward_engine}} +{% endif %} +""" + + +OBJECTIVE_INSTRUCTION_CHAIN = r""" +This conversation is part of a larger system. The was later used as {{response_desc}}. + +Your goal is to give feedback to the variable with the LLM_OUTPUT: {{response_gradient}} +{% if instruction_to_backward_engine %} +Note: {{instruction_to_backward_engine}} +{% endif %} +""" diff --git a/adalflow/adalflow/optim/text_grad/llm_text_loss.py b/adalflow/adalflow/optim/text_grad/llm_text_loss.py index d34373e1..46cf7a0f 100644 --- a/adalflow/adalflow/optim/text_grad/llm_text_loss.py +++ b/adalflow/adalflow/optim/text_grad/llm_text_loss.py @@ -1,6 +1,4 @@ -"""Implementation of TextGrad: Automatic “Differentiation” via Text. -This code is not used as we treat the non-optimizable version of LLM judge as a form of eval_fn. -We use class EvalFnToTextLoss instead as of today 12/9/2024""" +"""Implementation of TextGrad: Automatic “Differentiation” via Text""" from typing import Union, TYPE_CHECKING diff --git a/adalflow/adalflow/optim/text_grad/ops.py b/adalflow/adalflow/optim/text_grad/ops.py index ddce60dc..da2b438f 100644 --- a/adalflow/adalflow/optim/text_grad/ops.py +++ b/adalflow/adalflow/optim/text_grad/ops.py @@ -76,11 +76,8 @@ def forward(self, params: List[Parameter]) -> Parameter: def backward(self, summation: Parameter): """ - Computes gradients for the predecessors of the sum operation. - There is no gradient computation for the sum operation itself. - It is a simple way to combine multiple losses for convenience. - - sum.backward() => [loss1.backward(), loss2.backward(), ...] + Performs the backward pass of the sum operation. + This is simply an idempotent operation, where we make a gradient with the combined feedback and add it to the predecessors'grads. :param summation: The parameter representing the sum. :type summation: Parameter diff --git a/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py b/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py index 89ebd471..c8654d4a 100644 --- a/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py +++ b/adalflow/adalflow/optim/text_grad/text_loss_with_eval_fn.py @@ -16,25 +16,20 @@ from adalflow.core.prompt_builder import Prompt from adalflow.eval.base import BaseEvaluator -from adalflow.optim.text_grad.backend_engine_prompt import ( - LOSS_CONVERSATION_TEMPLATE_STRING, - LOSS_CONVERSATION_START_INSTRUCTION_STRING_FN, - OBJECTIVE_INSTRUCTION_BASE, -) log = logging.getLogger(__name__) ### Loss/Score Information ### -# LOSS_CONVERSATION_TEMPLATE_STRING = r""" -# The variable is passed to the eval function and compared with a target/ground truth value. +CONVERSATION_TEMPLATE_STRING = r""" +The variable is passed to the eval function and compared with a target/ground truth value. -# : {{eval_fn_desc}} -# : {{input_str}} -# : {{response_value}} -# {% if metadata %} -# Note: {{metadata}} -# {% endif %}""" +: {{eval_fn_desc}} +: {{input_str}} +: {{response_value}} +{% if metadata %} +Note: {{metadata}} +{% endif %}""" # Does not have gradient on the output, the loss function of the backpropagation chain @@ -46,22 +41,22 @@ # Has the gradient on the output, the layer in the backpropagation chain # Conversation will be provided differently. -# ### Variable Information ### -# CONVERSATION_START_INSTRUCTION_STRING_FN = r""" -# TARGET VARIABLE: -# {{variable_name}} -# {{variable_desc}} -# {{variable_value}} -# {{conversation_str}} -# """ +### Variable Information ### +CONVERSATION_START_INSTRUCTION_STRING_FN = r""" +TARGET VARIABLE: +: {{variable_name}} + {{variable_desc}} + {{variable_value}} +{{conversation_str}} +""" # Third part of the user prompt -# OBJECTIVE_INSTRUCTION_BASE = r""" -# Your only goal is to clearly states how it obtained the "". -# Especially when the score is low. -# Be CONCISE. -# If you have enough context, add a more specific feedback on how it failed. -# """ +OBJECTIVE_INSTRUCTION_BASE = r""" +Your only goal is to clearly states how it obtained the "". +Especially when the score is low. +Be CONCISE. +If you have enough context, add a more specific feedback on how it failed. +""" OBJECTIVE_INSTRUCTION_CHAIN = r"""This conversation is part of a larger system. The was later used as "{{response_name}}: {{response_desc}}". @@ -211,7 +206,7 @@ def _backward_through_one_predecessor( response: Parameter, eval_fn_desc: str, backward_engine: "BackwardEngine", - is_intermediate_node: bool = False, # if the node is an intermediate node in the backpropagation chain + is_chain: bool = False, metadata: Dict[str, str] = None, ): if not pred.requires_opt: @@ -219,9 +214,7 @@ def _backward_through_one_predecessor( f"EvalFnToTextLoss: Skipping {pred} as it does not require optimization." ) return - log.debug( - f"EvalFnToTextLoss: Backward through {pred}, is_intermediate_node: {is_intermediate_node}" - ) + log.debug(f"EvalFnToTextLoss: Backward through {pred}, is_chain: {is_chain}") if pred.check_if_already_computed_gradient_respect_to(response.id): log.info( @@ -244,7 +237,7 @@ def _backward_through_one_predecessor( # response information conversation_str = Prompt( - LOSS_CONVERSATION_TEMPLATE_STRING, + CONVERSATION_TEMPLATE_STRING, prompt_kwargs={ "input_str": inputs_string, "eval_fn_desc": eval_fn_desc, @@ -253,10 +246,10 @@ def _backward_through_one_predecessor( }, )() - conv_ins_template = LOSS_CONVERSATION_START_INSTRUCTION_STRING_FN + conv_ins_template = CONVERSATION_START_INSTRUCTION_STRING_FN obj_ins_template = OBJECTIVE_INSTRUCTION_BASE - if is_intermediate_node: + if is_chain: # conv_ins_template = CONVERSATION_START_INSTRUCTION_STRING_FN_CHAIN obj_ins_template = OBJECTIVE_INSTRUCTION_CHAIN @@ -322,7 +315,6 @@ def _backward_through_one_predecessor( ) # backward the end to end score - # TODO: not really useful pred.set_score(response.data) print(f"setting pred name {pred.name} score to {response.data}") @@ -343,11 +335,11 @@ def backward( """ log.info(f"EvalFnToTextLoss: Backward: {response}") children_params = response.predecessors - is_intermediate_node = False + is_chain = True response_gradient_context = response.get_gradient_and_context_text().strip() - if response_gradient_context != "": - log.info("EvalFnToTextLoss is an intermediate node.") - is_intermediate_node = True + if response_gradient_context == "": + log.info(f"EvalFnToTextLoss: Backward: No gradient found for {response}.") + is_chain = False log.info(f"response_gradient_context: {response_gradient_context}") # go through all child parameters @@ -372,27 +364,17 @@ def backward( response, eval_fn_desc, backward_engine, - is_intermediate_node, + is_chain, metadata, ) # backward for the score for the demo for pred in children_params: - # if not pred.requires_opt: - # log.debug( - # f"EvalFnToTextLoss: Skipping {pred} as it does not require optimization." - # ) - # continue - if not isinstance(response.data, float): - raise TypeError( - f"EvalFnToTextLoss: response.data must be a float. Got {type(response.data)}." + if not pred.requires_opt: + log.debug( + f"EvalFnToTextLoss: Skipping {pred} as it does not require optimization." ) - pred._score = response.data - from adalflow.utils.logger import printc - - printc( - f"EvalFnToTextLoss: {pred.name} set_score: {response.data}, {response.name}", - "blue", - ) + continue + pred._score = float(response.data) log.info(f"setting pred name {pred.name} score to {response.data}") diff --git a/adalflow/adalflow/optim/text_grad/tgd_optimizer.py b/adalflow/adalflow/optim/text_grad/tgd_optimizer.py index 219c299a..f2d5b918 100644 --- a/adalflow/adalflow/optim/text_grad/tgd_optimizer.py +++ b/adalflow/adalflow/optim/text_grad/tgd_optimizer.py @@ -6,19 +6,18 @@ Source code: https://github.com/google-deepmind/opro """ -from typing import List, Dict, TYPE_CHECKING, Optional, Any +from typing import List, Dict, TYPE_CHECKING, Optional from collections import defaultdict import logging import re from dataclasses import field, dataclass + from adalflow.optim.optimizer import TextOptimizer, ParamsT from adalflow.optim.text_grad.backend_engine_prompt import VARIABLE_AND_PEERS_INFO from adalflow.optim.parameter import Parameter from adalflow.core.base_data_class import DataClass -from adalflow.tracing.decorators import trace_generator_states - if TYPE_CHECKING: from adalflow.core import ModelClient @@ -27,6 +26,34 @@ log = logging.getLogger(__name__) +# Tips: +# 1. Eliminate unnecessary words or phrases. +# 2. Add new elements to address specific feedback. +# 3. Be creative and present the variable differently. +OPTIMIZER_SYSTEM_PROMPT = r""" +You are part of an optimization system that refines existing variable values based on feedback. + +Your task: Propose a new variable value in response to the feedback. +1. Address the concerns raised in the feedback while preserving positive aspects. +2. Observe past performance patterns when provided and to keep the good quality. +3. Consider the variable in the context of its peers if provided. + FYI: + - If a peer will be optimized itself, do not overlap with its scope. + - Otherwise, you can overlap if it is necessary to address the feedback. + +Output: +Provide only the new variable value between {{new_variable_start_tag}} and {{new_variable_end_tag}} tags. + +Tips: +1. Eliminate unnecessary words or phrases. +2. Add new elements to address specific feedback. +3. Be creative and present the variable differently. +{% if instruction_to_optimizer %} +4. {{instruction_to_optimizer}} +{% endif %} +""" + + @dataclass class HistoryPrompt(DataClass): id: str @@ -34,24 +61,16 @@ class HistoryPrompt(DataClass): eval_score: float -#################################################################################################### -# Textual Gradient Descent Optimizer -#################################################################################################### -# {% if failed_proposals %} -# Here are the past failed proposals: -# {% for failed_proposal in failed_proposals %} -# {{loop.index}}. {{failed_proposal}} -# {% endfor %} -# {% endif %} TEXT_GRAD_DESC_TEMPLATE = r""" {{optimizer_system_prompt}} - -{# OPRO past history #} +{#Variable and feedback#} +{{variable_and_peers_info}} +{# ORPO past history #} {% if past_history %} -Here are the best past iterations of this variable along with the validation score. +Here are the past iterations of this variable along with the validation score. {% for history in past_history %} {{loop.index}}. {{history}} {% endfor %} @@ -81,41 +100,9 @@ class HistoryPrompt(DataClass): You must base on the following examples when modifying the {{variable_desc}}: {{in_context_examples}} {% endif %} -YOU MUST ENSURE the new variable shares the same intent as the original variable. -You can either rephrase the initial variable, or add more specific instructions based on the feedback. -You can not change the variable to only fit on one sample if the batch size is larger than 1. """ -# optimizer system prompt - -# Tips: -# 1. Eliminate unnecessary words or phrases. -# 2. Add new elements to address specific feedback. -# 3. Be creative and present the variable differently. -# Provide only the new variable value between {{new_variable_start_tag}} and {{new_variable_end_tag}} tags. -OPTIMIZER_SYSTEM_PROMPT = r""" -You are part of an optimization system that refines existing variable based on feedback generated on a batch of input data. - -1. Address the concerns raised in the feedback while preserving positive aspects. -3. Observe past performance patterns when provided and to keep the good quality. -4. Consider the variable in the context of its peers if provided. - FYI: - - If a peer will be optimized itself, do not overlap with its scope. - - Otherwise, you can overlap if it is necessary to address the feedback. - -{{output_format_str}} - - -Tips: -1. Eliminate unnecessary words or phrases. -2. Add new elements to address specific feedback. -3. Be creative and present the variable differently. -{% if instruction_to_optimizer %} -4. {{instruction_to_optimizer}} -{% endif %} -""" - @dataclass class Instruction(DataClass): @@ -132,25 +119,6 @@ class Instruction(DataClass): ) -@dataclass -class TGDData(DataClass): - reasoning: str = field(metadata={"desc": "Why the variable is proposed this way"}) - proposed_variable: str = field(metadata={"desc": "The proposed variable"}) - - -@dataclass -class TGDOptimizerTrace: - api_kwargs: Dict[str, Any] = field( - metadata={ - "desc": "The api_kwargs for components like Generator and Retriever that pass to the model client" - }, - default=None, - ) - output: TGDData = field( - metadata={"desc": "The output of the TGD optimizer"}, default=None - ) - - new_variable_tags = ["", ""] @@ -166,7 +134,6 @@ def extract_new_variable(text: str) -> str: return matches[0].strip() -@trace_generator_states() class TGDOptimizer(TextOptimizer): __doc__ = """Textual Gradient Descent(LLM) optimizer for text-based variables.""" @@ -174,7 +141,6 @@ class TGDOptimizer(TextOptimizer): params: ParamsT constraints: List[str] params_history: Dict[str, List[HistoryPrompt]] = {} # id to history - # failed_proposals: Dict[str, List[HistoryPrompt]] = {} # only need the value def __init__( self, @@ -187,25 +153,18 @@ def __init__( in_context_examples: List[str] = None, # TODO: in-context examples num_gradient_memory: int = 0, # TODO: gradient memory and momentum, for now it is not useful max_past_history: int = 3, - # max_failed_proposals: int = 3, ): from adalflow.core.generator import Generator from adalflow.core import Prompt - from adalflow.components.output_parsers.dataclass_parser import DataClassParser super().__init__() self.params = params self.constraints = constraints or [] - self.data_class = TGDData - self.output_parser = DataClassParser( - data_class=self.data_class, return_data_class=True, format_type="json" - ) self.optimizer_system_prompt = Prompt( template=optimizer_system_prompt, prompt_kwargs={ - # "new_variable_start_tag": new_variable_tags[0], - # "new_variable_end_tag": new_variable_tags[1], - "output_format_str": self.output_parser.get_output_format_str(), + "new_variable_start_tag": new_variable_tags[0], + "new_variable_end_tag": new_variable_tags[1], }, ) self.variable_and_peers_info = Prompt( @@ -218,21 +177,17 @@ def __init__( self.num_gradient_memory = num_gradient_memory self.gradient_memory_dict = defaultdict(list) # id to num_gradient_memory self.do_gradient_memory = self.num_gradient_memory > 0 - self.llm_optimizer = Generator( model_client=model_client, model_kwargs=model_kwargs, template=TEXT_GRAD_DESC_TEMPLATE, - output_processors=self.output_parser, ) self.max_past_history = max_past_history - # self.max_failed_proposals = max_failed_proposals # initate the past history for each parameter for param in self.params: self.params_history[param.id] = [] - # self.failed_proposals[param.id] = [] @property def constraint_text(self): @@ -287,40 +242,6 @@ def render_history(self, param_id: str) -> List[str]: history.to_yaml(exclude=["id"]) for history in self.params_history[param_id] ] - # def add_failed_proposal(self): - # """Save a copy of the current value of the parameter in the failed proposals.""" - # for param in self.params: - # failed_proposal = HistoryPrompt( - # id=param.id, - # value=param.data, - # eval_score=None, - # ) - # self.failed_proposals[param.id].append(failed_proposal) - # if len(self.failed_proposals[param.id]) > self.max_failed_proposals: - # for _ in range( - # len(self.failed_proposals[param.id]) - self.max_failed_proposals - # ): - # self.failed_proposals[param.id].pop() - # # if param_id not in self.failed_proposals: - # # self.failed_proposals[param_id] = [] - # # failed_proposal = HistoryPrompt( - # # id=param_id, - # # value=value, - # # eval_score=None, - # # ) - # # self.failed_proposals[param_id].append(failed_proposal) - # # if len(self.failed_proposals[param_id]) > self.max_failed_proposals: - # # for _ in range(len(self.failed_proposals[param_id]) - self.max_failed_proposals): - # # self.failed_proposals[param_id].pop() - - # def render_failed_proposals(self, param_id: str) -> List[str]: - # if param_id not in self.failed_proposals: - # return [] - # return [ - # history.to_yaml(exclude=["id", "eval_score"]) - # for history in self.failed_proposals[param_id] - # ] - # TODO: optimize with adalflow template for better readability def get_gradient_memory_text(self, param: Parameter) -> str: grad_memory = "" @@ -339,9 +260,7 @@ def _get_user_prompt_kwargs(self, param: Parameter) -> Dict[str, str]: user_prompt_kwargs = { "variable_and_peers_info": variable_and_peer_info, - "variable_grad": param.get_gradient_and_context_text( - skip_correct_sample=True - ), + "variable_grad": param.get_gradient_and_context_text(), # constraints "constraint_text": self.constraint_text if self.do_constrained else None, # in-context examples @@ -360,12 +279,6 @@ def _get_user_prompt_kwargs(self, param: Parameter) -> Dict[str, str]: "past_history": ( self.render_history(param.id) if self.max_past_history else None ), - # failed proposals - # "failed_proposals": ( - # self.render_failed_proposals(param.id) - # if self.max_failed_proposals - # else None - # ), } return user_prompt_kwargs @@ -373,7 +286,7 @@ def _get_user_prompt_kwargs(self, param: Parameter) -> Dict[str, str]: # TODO: better way to update the gradient memory def update_gradient_memory(self, param: Parameter): self.gradient_memory_dict[param.id].append( - {"value": param.get_gradient_and_context_text(skip_correct_sample=True)} + {"value": param.get_gradient_and_context_text()} ) def zero_grad(self): @@ -386,8 +299,6 @@ def propose(self): if self.proposing: raise ValueError("Already proposing a value.") - print("Proposing a new value.") - # no cache so that new proposal can be made no_cache = True # print("Proposing a new value.") @@ -416,22 +327,12 @@ def propose(self): ) prompt_str = self.llm_optimizer.get_prompt(**prompt_kwargs) log.debug(f"TGD LLM optimizer prompt: {prompt_str}") - proposed_data: TGDData = ( - response.data - if response.data - else TGDData( - reasoning="No reasoning", proposed_variable=response.raw_response - ) - ) + proposed_data = response.data log.info(f"Response from the optimizer: {response}") # extract the improved variable from the response # TODO: make it more robust - # improved_variable = extract_new_variable(proposed_data) - improved_variable = proposed_data.proposed_variable + improved_variable = extract_new_variable(proposed_data) param.propose_data(improved_variable) - param.trace_optimizer(api_kwargs=prompt_str, response=response) - print(f"prompt_str: {prompt_str}") - print(f"response: {response}") if self.do_gradient_memory: self.update_gradient_memory(param) self.proposing = True @@ -444,7 +345,6 @@ def revert(self): if not param.requires_opt: continue param.revert_data() - param.trace_optimizer(api_kwargs=None, response=None) self.proposing = False def step(self): diff --git a/adalflow/adalflow/optim/trainer/adal.py b/adalflow/adalflow/optim/trainer/adal.py index cea31760..f9bcfc10 100644 --- a/adalflow/adalflow/optim/trainer/adal.py +++ b/adalflow/adalflow/optim/trainer/adal.py @@ -249,18 +249,13 @@ def evaluate_samples( ) for future in concurrent.futures.as_completed(futures): - try: - i = futures[future] - acc_list[i] = ( - future.result() - ) # Place the result in the correct position - progress_bar.update( - 1 - ) # Update progress bar after each result is collected - except Exception as e: - - progress_bar.close() - raise ValueError(f"Exception in task {i}: {e}") + i = futures[future] + acc_list[i] = ( + future.result() + ) # Place the result in the correct position + progress_bar.update( + 1 + ) # Update progress bar after each result is collected avg_score = float(np.mean(np.array(acc_list))) return EvaluationResult(avg_score=avg_score, per_item_scores=acc_list) @@ -399,11 +394,6 @@ def train_step(self, batch, batch_idx, num_workers: int = 2) -> List: samples[i] = sample # Keep the sample order aligned # check the ordering - if isinstance(y_pred, Parameter): - raise ValueError(f"y_pred_{i} is a Parameter, {y_pred}") - - print(f"y_pred: {y_pred})") - assert ( y_pred.id == sample.id ), f"ID mismatch: {y_pred.id} != {sample.id}, type: {type(y_pred)}" @@ -479,13 +469,14 @@ def validation_step(self, batch, batch_idx, num_workers: int = 2) -> List: """ # TODO: let use decide which mode to be self.task.eval() - self.task.use_teacher(mode=False) # ensure the teacher is not used completed_y_preds, completed_samples, index_to_score = self.pred_step( batch, batch_idx, num_workers, running_eval=True, min_score=minimum_score ) if index_to_score: # compute score from index_to_score - + print( + f"completed_samples: {len(completed_samples)}, len: {len(list(index_to_score.values()))}" + ) avg_score = np.mean(list(index_to_score.values())).item() acc_list = [None] * len(index_to_score) for i, score in index_to_score.items(): @@ -607,9 +598,7 @@ def configure_backward_engine_helper( if self.loss_fn: self.loss_fn.set_backward_engine(self.backward_engine) - def configure_callbacks( - self, save_dir: Optional[str] = "traces", *args, **kwargs - ) -> List[str]: + def configure_callbacks(self, save_dir: Optional[str] = "traces", *args, **kwargs): """In default we config the failure generator callback. User can overwrite this method to add more callbacks.""" from adalflow.utils.global_config import get_adalflow_default_root_path import os @@ -617,7 +606,7 @@ def configure_callbacks( if not save_dir: save_dir = "traces" save_dir = os.path.join(get_adalflow_default_root_path(), save_dir) - log.debug(f"Saving traces to {save_dir}") + print(f"Saving traces to {save_dir}") return self._auto_generator_callbacks(save_dir) def run_one_task_sample(self, sample: Any) -> Any: @@ -651,10 +640,9 @@ def _find_all_generators(self) -> List[Tuple[str, "Generator"]]: for name, comp in self.task.named_components(): if isinstance(comp, Generator): all_generators.append((name, comp)) - log.debug(f"all_generators: {all_generators}") return all_generators - def _auto_generator_callbacks(self, save_dir: str = "traces") -> List[str]: + def _auto_generator_callbacks(self, save_dir: str = "traces"): r"""Automatically generate callbacks.""" from adalflow.core.types import GeneratorOutput from adalflow.tracing.generator_call_logger import ( @@ -664,7 +652,7 @@ def _auto_generator_callbacks(self, save_dir: str = "traces") -> List[str]: all_generators = self._find_all_generators() - log.debug(f"all_generators: {all_generators}") + print(f"all_generators: {all_generators}") def _on_completion_callback( output: GeneratorOutput, @@ -684,10 +672,9 @@ def _on_completion_callback( # Register the callback for each generator file_paths = [] - call_logger = GeneratorCallLogger(save_dir=save_dir) for name, generator in all_generators: - - # call_logger.reset() + call_logger = GeneratorCallLogger(save_dir=save_dir) + call_logger.reset() call_logger.register_generator(name) logger_call = partial(call_logger.log_call, name) generator.register_callback( @@ -695,7 +682,10 @@ def _on_completion_callback( ) file_path = call_logger.get_log_location(name) file_paths.append(file_path) - log.debug(f"Registered callback for {name}, file path: {file_path}") + print( + f"Registered callback for {name}, file path: {file_path}", + end="\n", + ) return file_paths def configure_demo_optimizer_helper(self) -> List[DemoOptimizer]: diff --git a/adalflow/adalflow/optim/trainer/trainer.py b/adalflow/adalflow/optim/trainer/trainer.py index 91a2fd16..ae17b064 100644 --- a/adalflow/adalflow/optim/trainer/trainer.py +++ b/adalflow/adalflow/optim/trainer/trainer.py @@ -27,11 +27,11 @@ from adalflow.utils import save_json, load_json from adalflow.utils.cache import hash_text_sha1 from adalflow.utils.data import DataLoader -from adalflow.utils.logger import printc + from adalflow.optim.types import TrainerValidateStats -logger = logging.getLogger(__name__) +log = logging.getLogger(__name__) class Trainer(Component): @@ -91,10 +91,9 @@ class Trainer(Component): batch_val_score_threshold: Optional[float] = ( 1.0 # when acc_score >= this threshold, skip this batch ) - max_error_samples: Optional[int] = 2 - max_correct_samples: Optional[int] = 2 + max_error_samples: Optional[int] = 8 + max_correct_samples: Optional[int] = 8 debug: bool = False - sequential_order: List[str] = ["text", "demo"] def __init__( self, @@ -106,8 +105,8 @@ def __init__( num_workers: int = 4, ckpt_path: str = None, batch_val_score_threshold: Optional[float] = 1.0, - max_error_samples: Optional[int] = 2, - max_correct_samples: Optional[int] = 2, + max_error_samples: Optional[int] = 4, + max_correct_samples: Optional[int] = 4, max_proposals_per_step: int = 5, train_loader: Optional[Any] = None, train_dataset: Optional[Any] = None, @@ -120,7 +119,6 @@ def __init__( exclude_input_fields_from_bootstrap_demos: bool = False, debug: bool = False, save_traces: bool = False, # save traces in the few-shto demos - sequential_order: List[str] = ["text", "demo"], *args, **kwargs, ) -> None: @@ -163,7 +161,6 @@ def __init__( self.exclude_input_fields_from_bootstrap_demos = ( exclude_input_fields_from_bootstrap_demos ) - self.sequential_order = sequential_order # TODO: need to support checkpoint resume too! def diagnose(self, dataset: Any, split: str = "train"): @@ -191,8 +188,7 @@ def diagnose(self, dataset: Any, split: str = "train"): trainer_state = self.gather_trainer_states() self.prep_ckpt_file_path(trainer_state) save_path = os.path.join(self.ckpt_path, f"diagnose_{split}") - logger.debug(f"Save diagnose to {save_path}") - # One generator will be one file, all stats are in logger_metadata.json + print(f"Save diagnose to {save_path}") log_paths = self.adaltask.configure_callbacks(save_dir=save_path) # 2. evaluate acc = self.adaltask.validation_step(dataset, 0, self.num_workers) @@ -210,18 +206,15 @@ def diagnose(self, dataset: Any, split: str = "train"): raise ValueError( "dataset should have an attribute id for tracking the samples" ) - logger.debug(f"sorted_indices: {sorted_indices}") - + print(f"sorted_indices: {sorted_indices}") sorted_scores = [acc_per_item_scores[i] for i in sorted_indices] - logger.debug(f"sorted_scores: {sorted_scores}") + print(f"sorted_scores: {sorted_scores}") sorted_dataset = [dataset[i] for i in sorted_indices] - paths: Dict[str, List[str]] = {"Log": log_paths, "Diagnose": [], "Stats": []} - # reorder the samples based on the score for log_path in log_paths: file_name = os.path.basename(log_path) - logger.debug(f"Loading log file: {file_name}") + print(f"Loading log file: {file_name}") logs = load_jsonl(log_path) try: logs_dict = {log["output"]["id"]: log for log in logs} @@ -239,7 +232,6 @@ def diagnose(self, dataset: Any, split: str = "train"): diagnose_file = os.path.join(log_dir, diagnose_filename) diagnose_items = [] - stats_list: List[Dict] = [] for i, log in enumerate(sorted_logs): if log["score"] < 0.5: diagnose_item = { @@ -260,68 +252,16 @@ def diagnose(self, dataset: Any, split: str = "train"): "total_error_samples": len(diagnose_items), "avg_score": acc_score, } - stat_path = os.path.join(log_dir, "stats.json") - save_json(stats, stat_path) - logger.debug(f"Total error samples: {len(diagnose_items)}") - logger.debug(f"Saved diagnose to {diagnose_file}") - paths["Diagnose"].append(diagnose_file) - paths["Stats"].append(stat_path) - stats_list.append(stats) - - self.diagnose_report( - split=split, - acc_score=acc_score, - stats_list=stats_list, - log_paths=paths, - ) + save_json(stats, os.path.join(log_dir, "stats.json")) + print(f"Total error samples: {len(diagnose_items)}") + print(f"Saved diagnose to {diagnose_file}") - def diagnose_report( - self, - split: str, - acc_score: Optional[float] = None, - stats_list: Optional[List[Dict]] = None, - log_paths: Optional[Dict[str, List[str]]] = None, - ): - import colorama - from colorama import Fore - - # Initialize colorama - colorama.init(autoreset=True) - print(Fore.CYAN + "\n================== DIAGNOSE REPORT ==================\n") - - print(Fore.GREEN + f"✔ Split: {split}") - - # Check the accuracy score - if acc_score is not None: - print(Fore.GREEN + f"✔ Overall accuracy score: {acc_score:.2f}") - else: - print(Fore.RED + "✘ Accuracy score not provided or calculated.") - - # List the overall stats - if stats_list is not None and len(stats_list) > 0: - print(Fore.GREEN + "✔ Overall stats:") - for idx, item in enumerate(stats_list): - print(Fore.YELLOW + f" - {idx + 1}: {item}") - - # Check for log paths - if log_paths is not None: - for key, paths in log_paths.items(): - if len(paths) > 0: - print(Fore.GREEN + f"✔ {key} paths:") - for idx, path in enumerate(paths): - print(Fore.YELLOW + f" - {key} {idx + 1}: {path}") - - else: - print(Fore.RED + "✘ No log paths available.") - - # General summary - print(Fore.GREEN + "\n✔ Diagnose report completed successfully!") - print(Fore.CYAN + "\n=====================================================\n") + return acc_score, acc_per_item_scores, log_paths def debug_report( self, - text_grad_debug_path: Optional[Dict[str, object]] = None, - few_shot_demo_debug_path: Optional[Dict[str, object]] = None, + text_grad_debug_path: Optional[str] = None, + few_shot_demo_debug_path: Optional[str] = None, ): import colorama from colorama import Fore @@ -333,7 +273,7 @@ def debug_report( if text_grad_debug_path: print(Fore.GREEN + f"✔ Text grad debug path: {text_grad_debug_path}") else: - print(Fore.CYAN + "✘ Text grad debugging was not run.") + print(Fore.RED + "✘ Text grad debugging was not run.") if few_shot_demo_debug_path: print( @@ -364,12 +304,9 @@ def fit( resume_from_ckpt: Optional[ str ] = None, # TODO: have a more comprehensive ckpt loading in the future - ) -> Tuple[str, TrainerResult]: + ): r""" train_loader: An iterable or collection of iterables specifying training samples. - - Returns: - Tuple[str, TrainerResult]: Checkpoint file and the TrainerResult object """ start_time = time.time() @@ -497,7 +434,7 @@ def fit( train_loader, train_dataset, val_dataset, test_dataset ) self.debug_report(text_grad_debug_path, few_shot_demo_debug_path) - return self.ckpt_file, trainer_results + return ########Run text_optimizers and demo optimizers in sequential order ######## if ( @@ -506,6 +443,7 @@ def fit( and len(self.text_optimizers) > 0 ): if self.strategy == "random": + self._fit_text_grad_demo_mix_random( train_loader, train_dataset, @@ -527,67 +465,41 @@ def fit( raise ValueError(f"Strategy {self.strategy} not supported") else: # sequential, text first and demo second - - def run_text_optimizers(starting_step: int, trainer_results: TrainerResult): - if len(self.text_optimizers) > 0: - if self.strategy == "random": - trainer_results = self._fit_text_grad_random( - train_loader, - val_dataset, - test_dataset, - trainer_results, - starting_step=starting_step, - ) - starting_step += self.max_steps - elif self.strategy == "constrained": - trainer_results = self._fit_text_grad_constraint( - train_loader, - val_dataset, - test_dataset, - trainer_results=trainer_results, - starting_step=starting_step, - ) - starting_step += self.max_steps - else: - raise ValueError(f"Strategy {self.strategy} not supported") - - def run_demo_optimizers(starting_step: int, trainer_results: TrainerResult): - if len(self.demo_optimizers) > 0: - self.adaltask.configure_teacher_generator() - self._fit_demos_random( + if len(self.text_optimizers) > 0: + if self.strategy == "random": + trainer_results = self._fit_text_grad_random( + train_loader, + val_dataset, + test_dataset, + trainer_results, + starting_step=starting_step, + ) + starting_step += self.max_steps + elif self.strategy == "constrained": + trainer_results = self._fit_text_grad_constraint( train_loader, - train_dataset, val_dataset, test_dataset, trainer_results=trainer_results, starting_step=starting_step, ) - - if self.sequential_order == ["text", "demo"]: - run_text_optimizers(starting_step, trainer_results) - run_demo_optimizers(starting_step, trainer_results) - else: - run_demo_optimizers(starting_step, trainer_results) - run_text_optimizers(starting_step, trainer_results) - # if len(self.text_optimizers) > 0: - # run_text_optimizers(starting_step, trainer_results) - - # if len(self.demo_optimizers) > 0: - # run_demo_optimizers(starting_step, trainer_results) - # self.adaltask.configure_teacher_generator() # attemp to use the newest teacher as - # self._fit_demos_random( - # train_loader, - # train_dataset, - # val_dataset, - # test_dataset, - # trainer_results=trainer_results, - # starting_step=starting_step, - # ) + starting_step += self.max_steps + else: + raise ValueError(f"Strategy {self.strategy} not supported") + if len(self.demo_optimizers) > 0: + self.adaltask.configure_teacher_generator() # attemp to use the newest teacher as + self._fit_demos_random( + train_loader, + train_dataset, + val_dataset, + test_dataset, + trainer_results=trainer_results, + starting_step=starting_step, + ) end_time = time.time() print(f"Training time: {end_time - start_time}s") print(f"ckpt_file: {self.ckpt_file}") - return self.ckpt_file, trainer_results @staticmethod def _estimate_num_epochs(train_loader: Any, max_steps: int): @@ -670,7 +582,7 @@ def prep_ckpt_file_path(self, trainer_state: Dict[str, Any] = None): self.ckpt_path = os.path.join( default_root_path, "ckpt", self.adaltask.__class__.__name__ ) - logger.debug(f"Checkpoint path: {self.ckpt_path}") + print(f"Checkpoint path: {self.ckpt_path}") os.makedirs(self.ckpt_path, exist_ok=True) # list all existing checkpoints with the same file name prefix hash_key = ( @@ -715,9 +627,7 @@ def _pre_fit(self, val_dataset: Any, test_dataset: Any) -> TrainerResult: def _fit_demos_one_step_for_debug( self, train_loader, train_dataset: Any, val_dataset: Any, test_dataset: Any - ) -> Dict[str, object]: - """Trace both the teacher and the student demos with scores and for sampling. - For demos: we need to run both the teacher mode and the student mode.""" + ) -> str: # get_logger(level="DEBUG") print("Fitting using Random Demo Optimizer") @@ -749,7 +659,7 @@ def _fit_demos_one_step_for_debug( f"Expected 2 traces, got {len(demo_params[0]._traces)}, traces: {demo_params[0]._traces}" ) - # print(f"Teacher y_preds: {y_preds[0].to_dict()}") + print(f"Teacher y_preds: {y_preds[0].to_dict()}") y_preds_outputs = [p.full_response for p in y_preds] @@ -766,7 +676,7 @@ def _fit_demos_one_step_for_debug( losses: List[Parameter] = self.adaltask.loss_step( batch, y_preds, 0, self.num_workers ) - # print(f"Losses: {losses[0].to_dict()}") + print(f"Losses: {losses[0].to_dict()}") self._demo_optimizers_add_scores( [sample.id for sample in batch], batch_per_item_scores, is_teacher=True ) @@ -778,21 +688,17 @@ def _fit_demos_one_step_for_debug( print(f"Graph saved to {graph_path}") - # check the score of one param + # check the score for key, val in demo_params[0]._traces.items(): - print(f"param: {key}, {demo_params[0].name}, val: {val}") + print(f"param: {key}, val: {val}") score = val.score if score is None: raise ValueError("Score is None") print(f"param: {key}, score: {score}") - # print(f"Loss after backward: {losses[0].to_dict()}") + print(f"Loss after backward: {losses[0].to_dict()}") # tracking the bootstrap so we wont repeat the same samples - # 2. run student mode - - demo_debug_result_path = None - for batch_idx, batch in enumerate(train_loader): print(f"Training step: {batch_idx}") if batch_idx > 0: @@ -811,51 +717,43 @@ def _fit_demos_one_step_for_debug( ) # for loss in losses_student: # loss.backward() - # Check the eval result y_preds_outputs = [p.full_response for p in y_preds_student] eval_result = self.adaltask.evaluate_samples(batch, y_preds_outputs) print(f"Eval result: {eval_result.avg_score}") - # eval_score_per_item = eval_result.per_item_scores - - # bootstrap a batch - # batch_for_teacher = [] - # losses_teacher = [] - - # for i, (sample, item_score) in enumerate(zip(batch, eval_score_per_item)): - - # # use teacher - # if sample.id in pred_teacher: - # continue - # # if item_score < 0.5: - # pred_teacher.add(sample.id) - # batch_for_teacher.append(sample) - # # run teacher, use teachers's output instead of the initial output (bootstrap) - # if len(batch_for_teacher) > 0: - # print(f"Using teacher for {len(batch_for_teacher)} samples") - # self.adaltask.use_teacher() - # y_preds_teacher = self.adaltask.train_step( - # batch_for_teacher, batch_idx, self.num_workers - # ) - # losses_teacher: List[Parameter] = self.adaltask.loss_step( # noqa F841 - # batch_for_teacher, y_preds_teacher, batch_idx, self.num_workers - # ) - # self._demo_optimizers_add_scores( - # [sample.id for sample in batch_for_teacher], - # eval_score_per_item, - # is_teacher=True, - # ) - - # loss_students backward - for loss in losses_student: - loss.backward() + eval_score_per_item = eval_result.per_item_scores + + # bootstrap + batch_for_teacher = [] + losses_teacher = [] + + for i, (sample, item_score) in enumerate(zip(batch, eval_score_per_item)): + # use teacher + if sample.id in pred_teacher: + continue + # if item_score < 0.5: + batch_for_teacher.append(sample) + pred_teacher.add(sample.id) + # run teacher, use teachers's output instead of the initial output (bootstrap) + if len(batch_for_teacher) > 0: + print(f"Using teacher for {len(batch_for_teacher)} samples") + self.adaltask.use_teacher() + y_preds_teacher = self.adaltask.train_step( + batch_for_teacher, batch_idx, self.num_workers + ) + losses_teacher: List[Parameter] = self.adaltask.loss_step( # noqa F841 + batch_for_teacher, y_preds_teacher, batch_idx, self.num_workers + ) + self._demo_optimizers_add_scores( + [sample.id for sample in batch_for_teacher], + eval_score_per_item, + is_teacher=True, + ) # propose self._demo_optimizers_propose() graph_path = os.path.join(debug_path, "student_graph") - demo_debug_result_path = losses_student[0].draw_graph( - filepath=graph_path - ) # noqa F841 + losses_student[0].draw_graph(filepath=graph_path) # test step self._demo_optimizers_step() @@ -867,13 +765,11 @@ def _fit_demos_one_step_for_debug( opt_params = [] for opt in self.demo_optimizers: opt_params.extend(opt.params) - # print(f"Opt params: {opt_params}") + print(f"Opt params: {opt_params}") for name, param in self.adaltask.named_parameters(): if param.param_type == ParameterType.DEMOS: - print( - f"Demo param: {name}, value: {param.data}, param: {param.name}" - ) + print(f"Demo param: {name}, value: {param.data}, param: {param}") if param.data is None: raise ValueError("Demo param data is None") @@ -886,12 +782,10 @@ def _fit_demos_one_step_for_debug( if len(param._demos) == 0: raise ValueError(f"No demos found, param: {param}") - return demo_debug_result_path + return debug_path - def _fit_text_grads_one_step_for_debug(self, train_loader: Any) -> Dict[str, str]: - printc( - "Debugging fitting one step with batch size 2 for text optimizer", "blue" - ) + def _fit_text_grads_one_step_for_debug(self, train_loader: Any) -> str: + print("Debugging fitting one step with batch size 2 for text optimizer") self.prep_ckpt_file_path() debug_path = os.path.join(self.ckpt_path, "debug_text_grads") @@ -902,13 +796,10 @@ def _fit_text_grads_one_step_for_debug(self, train_loader: Any) -> Dict[str, str self.adaltask.train() # this will turn everything to train mode correct_loss = None failed_loss = None - all_losses = [] - printc("Finding one successful and one failed loss", "blue") + print("Finding one successful and one failed loss") for batch in train_loader: y_preds = self.adaltask.train_step(batch, 0, self.num_workers) losses = self.adaltask.loss_step(batch, y_preds, 0, self.num_workers) - # Collect all losses - all_losses.extend(losses) for loss in losses: if loss.data > 0.5: correct_loss = loss @@ -917,27 +808,13 @@ def _fit_text_grads_one_step_for_debug(self, train_loader: Any) -> Dict[str, str if correct_loss is not None and failed_loss is not None: print("Found correct and failed loss") break - - # Handle case where one or both losses are None - if correct_loss is None or failed_loss is None: - if not all_losses: - raise ValueError("No losses found in the dataset.") - - # Sort all_losses by their data values - all_losses.sort(key=lambda x: x.data, reverse=True) # Highest to lowest - - # Assign first and last loss in sorted list - correct_loss = all_losses[0] - failed_loss = all_losses[-1] - print("Assigned correct_loss and failed_loss from sorted losses.") - total_loss = sum_ops([correct_loss, failed_loss]) total_loss.backward() # test optimizer self._propose_text_optimizers() - debug_files = total_loss.draw_graph(filepath=debug_path, full_trace=True) - return debug_files + total_loss.draw_graph(filepath=debug_path) + return debug_path def _set_demo_optimizers_dataset(self, train_dataset: Any): # init the dataset @@ -952,7 +829,6 @@ def _demo_optimizers_add_scores( self, ids: List[str], scores: List[float], is_teacher: bool = True ): for opt in self.demo_optimizers: - # opt = cast(DemoOptimizer, opt) opt.add_scores(ids, scores, is_teacher) def _demo_optimizers_revert(self): @@ -982,10 +858,6 @@ def _propose_text_optimizers(self): for text_optimizer in self.text_optimizers: text_optimizer.propose() - # def _add_failed_proposals_text_optimizers(self): - # for opt in self.text_optimizers: - # opt.add_failed_proposal() - def _get_trainable_text_params(self): params = [] for opt in self.text_optimizers: @@ -1027,7 +899,7 @@ def _fit_text_grad_demo_mix_constrained( ): from adalflow.optim.parameter import Parameter - logger.info("Fitting using Textual Gradient Descent") + log.info("Fitting using Textual Gradient Descent") trainer_results = ( self._pre_fit(val_dataset, test_dataset) if trainer_results is None @@ -1063,7 +935,7 @@ def _fit_text_grad_demo_mix_constrained( ) # moving batch all_samples.extend(batch) - all_losses.extend(losses) # student losses + all_losses.extend(losses) # extract the non-parameter y_preds all_y_preds.extend( [y.full_response for y in y_preds if isinstance(y, Parameter)] @@ -1121,7 +993,6 @@ def _fit_text_grad_demo_mix_constrained( print( "No proposal can improve the subset and full set, go to next step" ) - # self._add_failed_proposals_text_optimizers() self._add_one_step_in_trainer_results( trainer_results, @@ -1130,7 +1001,6 @@ def _fit_text_grad_demo_mix_constrained( trainer_results.prompts[-1], total_steps, ) - continue # set the batch size to the size of the validation set @@ -1195,7 +1065,7 @@ def _fit_text_grad_demo_mix_random( train_results: TrainerResult = None, starting_step: int = 0, ): - logger.info("Fitting using Textual Gradient Descent") + log.info("Fitting using Textual Gradient Descent") trainer_results = ( self._pre_fit(val_dataset, test_dataset) @@ -1337,7 +1207,7 @@ def _fit_demos_random( trainer_results: TrainerResult, starting_step: int, ): - logger.info("Fitting using Random Demo Optimizer") + log.info("Fitting using Random Demo Optimizer") # self.adaltask.train() trainer_results = ( self._pre_fit(val_dataset, test_dataset) @@ -1380,7 +1250,7 @@ def _fit_demos_random( loss.backward_engine_disabled = ( True # temporary disable the backward engine ) - loss.backward() # TODO: ensure no gradients in the backward, disable backward engine, trace the score to each class instead + loss.backward() # TODO: ensure no gradients in the backward, disable backward engine # Trace the teacher run self.adaltask.use_teacher(True) self.adaltask.train() @@ -1527,7 +1397,7 @@ def _fit_text_grad_random( trainer_results: TrainerResult = None, starting_step: int = 0, ) -> TrainerResult: - logger.info("Fitting using Textual Gradient Descent") + log.info("Fitting using Textual Gradient Descent") trainer_results = ( self._pre_fit(val_dataset, test_dataset) if trainer_results is None @@ -1571,13 +1441,13 @@ def _fit_text_grad_random( minimum_score=last_val_score, ) val_score = val_output.avg_score + self._add_history_text_optimizers(val_score) if val_score > last_val_score: - print(f"Optimizer step: {val_score} > {last_val_score}") # self.optimizer.step() self._step_text_optimizers() - self._add_history_text_optimizers(val_score) # track top performor + # test the model test_output = self.adaltask.validation_step( test_dataset, total_steps, self.num_workers @@ -1591,9 +1461,6 @@ def _fit_text_grad_random( total_steps, ) else: - # if val_score < last_val_score: - # self._add_failed_proposals_text_optimizers() # track failed proposals - print(f"Optimizer revert: {val_score} <= {last_val_score}") # self.optimizer.revert() self._revert_text_optimizers() @@ -1739,9 +1606,6 @@ def _text_grad_constraint_propose_step( all_y_preds, include_demo_optimizers: bool = False, ): - """Handles both the mixed training and the separate training. - When include_demo_optimizers is True, the demo optimizers are included in the training - """ # comptute moving batch acc from adalflow.optim.parameter import Parameter @@ -1813,7 +1677,6 @@ def _text_grad_constraint_propose_step( print( f"Fail subset check, try next proposal: {val_score} <= {subset_score}" ) - # self._add_failed_proposals_text_optimizers() self._track_effectiveness("subset", False) self._revert_text_optimizers() if include_demo_optimizers: @@ -1833,7 +1696,6 @@ def _text_grad_constraint_propose_step( f"Fail full check, try next proposal: {new_move_batch_score} < {move_batch_score}" ) self._track_effectiveness("fullset", False) - # self._add_failed_proposals_text_optimizers() self._revert_text_optimizers() if include_demo_optimizers: self._demo_optimizers_revert() @@ -1879,7 +1741,7 @@ def _fit_text_grad_constraint( ) -> TrainerResult: from adalflow.optim.parameter import Parameter - logger.info("Fitting using Textual Gradient Descent with constraints") + log.info("Fitting using Textual Gradient Descent with constraints") trainer_results = ( self._pre_fit(val_dataset, test_dataset) if trainer_results is None @@ -1951,13 +1813,11 @@ def _fit_text_grad_constraint( minimum_score=last_val_score, ) val_score = val_output.avg_score + self._add_history_text_optimizers(val_score) if val_score > last_val_score: print(f"Optimizer step: {val_score} > {last_val_score}") # self.optimizer.step() - self._add_history_text_optimizers( - val_score - ) # track top performor self._step_text_optimizers() # save the score @@ -1989,7 +1849,6 @@ def _fit_text_grad_constraint( else: print(f"Optimizer revert: {val_score} <= {last_val_score}") self._revert_text_optimizers() - # self._add_failed_proposals_text_optimizers() # track failed proposals self._track_effectiveness("valset", False) self._add_one_step_in_trainer_results( trainer_results, diff --git a/adalflow/poetry.lock b/adalflow/poetry.lock index 92d3c9cb..bac6b6cc 100644 --- a/adalflow/poetry.lock +++ b/adalflow/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand. [[package]] name = "absl-py" @@ -192,21 +192,6 @@ doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21)"] trio = ["trio (>=0.26.1)"] -[[package]] -name = "asttokens" -version = "3.0.0" -description = "Annotate AST trees with source code positions" -optional = false -python-versions = ">=3.8" -files = [ - {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, - {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, -] - -[package.extras] -astroid = ["astroid (>=2,<4)"] -test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] - [[package]] name = "async-timeout" version = "5.0.1" @@ -287,17 +272,17 @@ files = [ [[package]] name = "boto3" -version = "1.35.80" +version = "1.35.77" description = "The AWS SDK for Python" optional = true python-versions = ">=3.8" files = [ - {file = "boto3-1.35.80-py3-none-any.whl", hash = "sha256:21a3b18c3a7fd20e463708fe3fa035983105dc7f3a1c274e1903e1583ab91159"}, - {file = "boto3-1.35.80.tar.gz", hash = "sha256:50dae461ab5fbedfb81b690895d48a918fed0d5fdff37be1c4232770c0dc9712"}, + {file = "boto3-1.35.77-py3-none-any.whl", hash = "sha256:a09871805f8e462349a1c33c23eb413668df0bf68424e61d53518e1a7d883b2f"}, + {file = "boto3-1.35.77.tar.gz", hash = "sha256:cc819cdbccbc2d0dc185f1dcfe74cf3809489c4cae63c2e5d6a557aa0c5ab928"}, ] [package.dependencies] -botocore = ">=1.35.80,<1.36.0" +botocore = ">=1.35.77,<1.36.0" jmespath = ">=0.7.1,<2.0.0" s3transfer = ">=0.10.0,<0.11.0" @@ -306,13 +291,13 @@ crt = ["botocore[crt] (>=1.21.0,<2.0a0)"] [[package]] name = "botocore" -version = "1.35.80" +version = "1.35.77" description = "Low-level, data-driven core of boto 3." optional = false python-versions = ">=3.8" files = [ - {file = "botocore-1.35.80-py3-none-any.whl", hash = "sha256:36e589dccb62380abd628b08fecfa2f7c89b99f41ec9fc42c467c94008c0be4a"}, - {file = "botocore-1.35.80.tar.gz", hash = "sha256:b8dfceca58891cb2711bd6455ec4f7159051f3796e0f64adef9bb334f19d8a92"}, + {file = "botocore-1.35.77-py3-none-any.whl", hash = "sha256:3faa27d65841499762228902d7e215fa99a4c2fdc76c9113e1c3f339bdf685b8"}, + {file = "botocore-1.35.77.tar.gz", hash = "sha256:17b778016644e9342ca3ff2f430c1d1db0c6126e9b41a57cff52ac58e7a455e0"}, ] [package.dependencies] @@ -883,20 +868,6 @@ files = [ [package.extras] test = ["pytest (>=6)"] -[[package]] -name = "executing" -version = "2.1.0" -description = "Get the currently executing AST node of a frame, and other information" -optional = false -python-versions = ">=3.8" -files = [ - {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, - {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, -] - -[package.extras] -tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] - [[package]] name = "faiss-cpu" version = "1.9.0.post1" @@ -1000,61 +971,61 @@ typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "fonttools" -version = "4.55.3" +version = "4.55.2" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0"}, - {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f"}, - {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841"}, - {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674"}, - {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276"}, - {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5"}, - {file = "fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261"}, - {file = "fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5"}, - {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e"}, - {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b"}, - {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90"}, - {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0"}, - {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b"}, - {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765"}, - {file = "fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f"}, - {file = "fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72"}, - {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35"}, - {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c"}, - {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7"}, - {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314"}, - {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427"}, - {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a"}, - {file = "fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07"}, - {file = "fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54"}, - {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29"}, - {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4"}, - {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca"}, - {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b"}, - {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048"}, - {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe"}, - {file = "fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628"}, - {file = "fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b"}, - {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:caf8230f3e10f8f5d7593eb6d252a37caf58c480b19a17e250a63dad63834cf3"}, - {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b586ab5b15b6097f2fb71cafa3c98edfd0dba1ad8027229e7b1e204a58b0e09d"}, - {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8c2794ded89399cc2169c4d0bf7941247b8d5932b2659e09834adfbb01589aa"}, - {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf4fe7c124aa3f4e4c1940880156e13f2f4d98170d35c749e6b4f119a872551e"}, - {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:86721fbc389ef5cc1e2f477019e5069e8e4421e8d9576e9c26f840dbb04678de"}, - {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:89bdc5d88bdeec1b15af790810e267e8332d92561dce4f0748c2b95c9bdf3926"}, - {file = "fonttools-4.55.3-cp38-cp38-win32.whl", hash = "sha256:bc5dbb4685e51235ef487e4bd501ddfc49be5aede5e40f4cefcccabc6e60fb4b"}, - {file = "fonttools-4.55.3-cp38-cp38-win_amd64.whl", hash = "sha256:cd70de1a52a8ee2d1877b6293af8a2484ac82514f10b1c67c1c5762d38073e56"}, - {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bdcc9f04b36c6c20978d3f060e5323a43f6222accc4e7fcbef3f428e216d96af"}, - {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c3ca99e0d460eff46e033cd3992a969658c3169ffcd533e0a39c63a38beb6831"}, - {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22f38464daa6cdb7b6aebd14ab06609328fe1e9705bb0fcc7d1e69de7109ee02"}, - {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed63959d00b61959b035c7d47f9313c2c1ece090ff63afea702fe86de00dbed4"}, - {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5e8d657cd7326eeaba27de2740e847c6b39dde2f8d7cd7cc56f6aad404ddf0bd"}, - {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:fb594b5a99943042c702c550d5494bdd7577f6ef19b0bc73877c948a63184a32"}, - {file = "fonttools-4.55.3-cp39-cp39-win32.whl", hash = "sha256:dc5294a3d5c84226e3dbba1b6f61d7ad813a8c0238fceea4e09aa04848c3d851"}, - {file = "fonttools-4.55.3-cp39-cp39-win_amd64.whl", hash = "sha256:aedbeb1db64496d098e6be92b2e63b5fac4e53b1b92032dfc6988e1ea9134a4d"}, - {file = "fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977"}, - {file = "fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45"}, + {file = "fonttools-4.55.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:bef0f8603834643b1a6419d57902f18e7d950ec1a998fb70410635c598dc1a1e"}, + {file = "fonttools-4.55.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:944228b86d472612d3b48bcc83b31c25c2271e63fdc74539adfcfa7a96d487fb"}, + {file = "fonttools-4.55.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f0e55f5da594b85f269cfbecd2f6bd3e07d0abba68870bc3f34854de4fa4678"}, + {file = "fonttools-4.55.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b1a6e576db0c83c1b91925bf1363478c4bb968dbe8433147332fb5782ce6190"}, + {file = "fonttools-4.55.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:616368b15716781bc84df5c2191dc0540137aaef56c2771eb4b89b90933f347a"}, + {file = "fonttools-4.55.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7bbae4f3915225c2c37670da68e2bf18a21206060ad31dfb95fec91ef641caa7"}, + {file = "fonttools-4.55.2-cp310-cp310-win32.whl", hash = "sha256:8b02b10648d69d67a7eb055f4d3eedf4a85deb22fb7a19fbd9acbae7c7538199"}, + {file = "fonttools-4.55.2-cp310-cp310-win_amd64.whl", hash = "sha256:bbea0ab841113ac8e8edde067e099b7288ffc6ac2dded538b131c2c0595d5f77"}, + {file = "fonttools-4.55.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d34525e8141286fa976e14806639d32294bfb38d28bbdb5f6be9f46a1cd695a6"}, + {file = "fonttools-4.55.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0ecd1c2b1c2ec46bb73685bc5473c72e16ed0930ef79bc2919ccadc43a99fb16"}, + {file = "fonttools-4.55.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9008438ad59e5a8e403a62fbefef2b2ff377eb3857d90a3f2a5f4d674ff441b2"}, + {file = "fonttools-4.55.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:131591ac8d7a47043aaf29581aba755ae151d46e49d2bf49608601efd71e8b4d"}, + {file = "fonttools-4.55.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4c83381c3e3e3d9caa25527c4300543578341f21aae89e4fbbb4debdda8d82a2"}, + {file = "fonttools-4.55.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:42aca564b575252fd9954ed0d91d97a24de24289a16ce8ff74ed0bdf5ecebf11"}, + {file = "fonttools-4.55.2-cp311-cp311-win32.whl", hash = "sha256:c6457f650ebe15baa17fc06e256227f0a47f46f80f27ec5a0b00160de8dc2c13"}, + {file = "fonttools-4.55.2-cp311-cp311-win_amd64.whl", hash = "sha256:5cfa67414d7414442a5635ff634384101c54f53bb7b0e04aa6a61b013fcce194"}, + {file = "fonttools-4.55.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:18f082445b8fe5e91c53e6184f4c1c73f3f965c8bcc614c6cd6effd573ce6c1a"}, + {file = "fonttools-4.55.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:27c0f91adbbd706e8acd1db73e3e510118e62d0ffb651864567dccc5b2339f90"}, + {file = "fonttools-4.55.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d8ccce035320d63dba0c35f52499322f5531dbe85bba1514c7cea26297e4c54"}, + {file = "fonttools-4.55.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96e126df9615df214ec7f04bebcf60076297fbc10b75c777ce58b702d7708ffb"}, + {file = "fonttools-4.55.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:508ebb42956a7a931c4092dfa2d9b4ffd4f94cea09b8211199090d2bd082506b"}, + {file = "fonttools-4.55.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c1b9de46ef7b683d50400abf9f1578eaceee271ff51c36bf4b7366f2be29f498"}, + {file = "fonttools-4.55.2-cp312-cp312-win32.whl", hash = "sha256:2df61d9fc15199cc86dad29f64dd686874a3a52dda0c2d8597d21f509f95c332"}, + {file = "fonttools-4.55.2-cp312-cp312-win_amd64.whl", hash = "sha256:d337ec087da8216a828574aa0525d869df0a2ac217a2efc1890974ddd1fbc5b9"}, + {file = "fonttools-4.55.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:10aff204e2edee1d312fa595c06f201adf8d528a3b659cfb34cd47eceaaa6a26"}, + {file = "fonttools-4.55.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:09fe922a3eff181fd07dd724cdb441fb6b9fc355fd1c0f1aa79aca60faf1fbdd"}, + {file = "fonttools-4.55.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:487e1e8b524143a799bda0169c48b44a23a6027c1bb1957d5a172a7d3a1dd704"}, + {file = "fonttools-4.55.2-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b1726872e09268bbedb14dc02e58b7ea31ecdd1204c6073eda4911746b44797"}, + {file = "fonttools-4.55.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6fc88cfb58b0cd7b48718c3e61dd0d0a3ee8e2c86b973342967ce09fbf1db6d4"}, + {file = "fonttools-4.55.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e857fe1859901ad8c5cab32e0eebc920adb09f413d2d73b74b677cf47b28590c"}, + {file = "fonttools-4.55.2-cp313-cp313-win32.whl", hash = "sha256:81ccd2b3a420b8050c7d9db3be0555d71662973b3ef2a1d921a2880b58957db8"}, + {file = "fonttools-4.55.2-cp313-cp313-win_amd64.whl", hash = "sha256:d559eb1744c7dcfa90ae60cb1a4b3595e898e48f4198738c321468c01180cd83"}, + {file = "fonttools-4.55.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6b5917ef79cac8300b88fd6113003fd01bbbbea2ea060a27b95d8f77cb4c65c2"}, + {file = "fonttools-4.55.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:663eba5615d6abaaf616432354eb7ce951d518e43404371bcc2b0694ef21e8d6"}, + {file = "fonttools-4.55.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:803d5cef5fc47f44f5084d154aa3d6f069bb1b60e32390c225f897fa19b0f939"}, + {file = "fonttools-4.55.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8bc5f100de0173cc39102c0399bd6c3bd544bbdf224957933f10ee442d43cddd"}, + {file = "fonttools-4.55.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3d9bbc1e380fdaf04ad9eabd8e3e6a4301eaf3487940893e9fd98537ea2e283b"}, + {file = "fonttools-4.55.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:42a9afedff07b6f75aa0f39b5e49922ac764580ef3efce035ca30284b2ee65c8"}, + {file = "fonttools-4.55.2-cp38-cp38-win32.whl", hash = "sha256:f1c76f423f1a241df08f87614364dff6e0b7ce23c962c1b74bd995ec7c0dad13"}, + {file = "fonttools-4.55.2-cp38-cp38-win_amd64.whl", hash = "sha256:25062b6ca03464dd5179fc2040fb19e03391b7cc49b9cc4f879312e638605c5c"}, + {file = "fonttools-4.55.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d1100d8e665fe386a79cab59446992de881ea74d0d6c191bb988642692aa2421"}, + {file = "fonttools-4.55.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dbdc251c5e472e5ae6bc816f9b82718b8e93ff7992e7331d6cf3562b96aa268e"}, + {file = "fonttools-4.55.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0bf24d2b02dbc9376d795a63062632ff73e3e9e60c0229373f500aed7e86dd7"}, + {file = "fonttools-4.55.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4ff250ed4ff05015dfd9cf2adf7570c7a383ca80f4d9732ac484a5ed0d8453c"}, + {file = "fonttools-4.55.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:44cf2a98aa661dbdeb8c03f5e405b074e2935196780bb729888639f5276067d9"}, + {file = "fonttools-4.55.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22ef222740eb89d189bf0612eb98fbae592c61d7efeac51bfbc2a1592d469557"}, + {file = "fonttools-4.55.2-cp39-cp39-win32.whl", hash = "sha256:93f439ca27e55f585e7aaa04a74990acd983b5f2245e41d6b79f0a8b44e684d8"}, + {file = "fonttools-4.55.2-cp39-cp39-win_amd64.whl", hash = "sha256:627cf10d6f5af5bec6324c18a2670f134c29e1b7dce3fb62e8ef88baa6cba7a9"}, + {file = "fonttools-4.55.2-py3-none-any.whl", hash = "sha256:8e2d89fbe9b08d96e22c7a81ec04a4e8d8439c31223e2dc6f2f9fc8ff14bdf9f"}, + {file = "fonttools-4.55.2.tar.gz", hash = "sha256:45947e7b3f9673f91df125d375eb57b9a23f2a603f438a1aebf3171bffa7a205"}, ] [package.extras] @@ -1268,13 +1239,13 @@ grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"] [[package]] name = "google-api-python-client" -version = "2.155.0" +version = "2.154.0" description = "Google API Client Library for Python" optional = false python-versions = ">=3.7" files = [ - {file = "google_api_python_client-2.155.0-py2.py3-none-any.whl", hash = "sha256:83fe9b5aa4160899079d7c93a37be306546a17e6686e2549bcc9584f1a229747"}, - {file = "google_api_python_client-2.155.0.tar.gz", hash = "sha256:25529f89f0d13abcf3c05c089c423fb2858ac16e0b3727543393468d0d7af67c"}, + {file = "google_api_python_client-2.154.0-py2.py3-none-any.whl", hash = "sha256:a521bbbb2ec0ba9d6f307cdd64ed6e21eeac372d1bd7493a4ab5022941f784ad"}, + {file = "google_api_python_client-2.154.0.tar.gz", hash = "sha256:1b420062e03bfcaa1c79e2e00a612d29a6a934151ceb3d272fe150a656dc8f17"}, ] [package.dependencies] @@ -1286,13 +1257,13 @@ uritemplate = ">=3.0.1,<5" [[package]] name = "google-auth" -version = "2.37.0" +version = "2.36.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google_auth-2.37.0-py2.py3-none-any.whl", hash = "sha256:42664f18290a6be591be5329a96fe30184be1a1badb7292a7f686a9659de9ca0"}, - {file = "google_auth-2.37.0.tar.gz", hash = "sha256:0054623abf1f9c83492c63d3f47e77f0a544caa3d40b2d98e099a611c2dd5d00"}, + {file = "google_auth-2.36.0-py2.py3-none-any.whl", hash = "sha256:51a15d47028b66fd36e5c64a82d2d57480075bccc7da37cde257fc94177a61fb"}, + {file = "google_auth-2.36.0.tar.gz", hash = "sha256:545e9618f2df0bcbb7dcbc45a546485b1212624716975a1ea5ae8149ce769ab1"}, ] [package.dependencies] @@ -1303,7 +1274,6 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] enterprise-cert = ["cryptography", "pyopenssl"] -pyjwt = ["cryptography (>=38.0.3)", "pyjwt (>=2.0)"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] @@ -1767,62 +1737,6 @@ files = [ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] -[[package]] -name = "ipython" -version = "8.18.1" -description = "IPython: Productive Interactive Computing" -optional = false -python-versions = ">=3.9" -files = [ - {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, - {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -decorator = "*" -exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} -jedi = ">=0.16" -matplotlib-inline = "*" -pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -prompt-toolkit = ">=3.0.41,<3.1.0" -pygments = ">=2.4.0" -stack-data = "*" -traitlets = ">=5" -typing-extensions = {version = "*", markers = "python_version < \"3.10\""} - -[package.extras] -all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] -black = ["black"] -doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] -kernel = ["ipykernel"] -nbconvert = ["nbconvert"] -nbformat = ["nbformat"] -notebook = ["ipywidgets", "notebook"] -parallel = ["ipyparallel"] -qtconsole = ["qtconsole"] -test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] - -[[package]] -name = "jedi" -version = "0.19.2" -description = "An autocompletion tool for Python that can be used for text editors." -optional = false -python-versions = ">=3.6" -files = [ - {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, - {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, -] - -[package.dependencies] -parso = ">=0.8.4,<0.9.0" - -[package.extras] -docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] - [[package]] name = "jinja2" version = "3.1.4" @@ -1950,24 +1864,6 @@ files = [ [package.dependencies] attrs = ">=19.2.0" -[[package]] -name = "jsonpickle" -version = "4.0.0" -description = "jsonpickle encodes/decodes any Python object to/from JSON" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jsonpickle-4.0.0-py3-none-any.whl", hash = "sha256:53730b9e094bc41f540bfdd25eaf6e6cf43811590e9e1477abcec44b866ddcd9"}, - {file = "jsonpickle-4.0.0.tar.gz", hash = "sha256:fc670852b204d77601b08f8f9333149ac37ab6d3fe4e6ed3b578427291f63736"}, -] - -[package.extras] -cov = ["pytest-cov"] -dev = ["black", "pyupgrade"] -docs = ["furo", "rst.linker (>=1.9)", "sphinx (>=3.5)"] -packaging = ["build", "setuptools (>=61.2)", "setuptools-scm[toml] (>=6.0)", "twine"] -testing = ["PyYAML", "atheris (>=2.3.0,<2.4.0)", "bson", "ecdsa", "feedparser", "gmpy2", "numpy", "pandas", "pymongo", "pytest (>=6.0,!=8.1.*)", "pytest-benchmark", "pytest-benchmark[histogram]", "pytest-checkdocs (>=1.2.3)", "pytest-enabler (>=1.0.1)", "pytest-ruff (>=0.2.1)", "scikit-learn", "scipy", "scipy (>=1.9.3)", "simplejson", "sqlalchemy", "ujson"] - [[package]] name = "kiwisolver" version = "1.4.7" @@ -2277,20 +2173,6 @@ python-dateutil = ">=2.7" [package.extras] dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6,!=2.13.3)", "setuptools (>=64)", "setuptools_scm (>=7)"] -[[package]] -name = "matplotlib-inline" -version = "0.1.7" -description = "Inline Matplotlib backend for Jupyter" -optional = false -python-versions = ">=3.8" -files = [ - {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, - {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, -] - -[package.dependencies] -traitlets = "*" - [[package]] name = "mpmath" version = "1.3.0" @@ -2790,13 +2672,13 @@ httpx = ">=0.27.0,<0.28.0" [[package]] name = "openai" -version = "1.57.3" +version = "1.57.1" description = "The official Python library for the openai API" optional = false python-versions = ">=3.8" files = [ - {file = "openai-1.57.3-py3-none-any.whl", hash = "sha256:c4034a5676eb252ef2e0ed1f46d040ca3bdde24bb61b432f50bb0b38d0cf9ecf"}, - {file = "openai-1.57.3.tar.gz", hash = "sha256:2c98ca6532b30d8bc5029974d2fcbd793b650009c2b014f47ffd4f9fdfc1f9eb"}, + {file = "openai-1.57.1-py3-none-any.whl", hash = "sha256:3865686c927e93492d1145938d4a24b634951531c4b2769d43ca5dbd4b25d8fd"}, + {file = "openai-1.57.1.tar.gz", hash = "sha256:a95f22e04ab3df26e64a15d958342265e802314131275908b3b3e36f8c5d4377"}, ] [package.dependencies] @@ -2934,35 +2816,6 @@ files = [ [package.extras] dev = ["jinja2"] -[[package]] -name = "parso" -version = "0.8.4" -description = "A Python Parser" -optional = false -python-versions = ">=3.6" -files = [ - {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, - {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, -] - -[package.extras] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["docopt", "pytest"] - -[[package]] -name = "pexpect" -version = "4.9.0" -description = "Pexpect allows easy control of interactive console applications." -optional = false -python-versions = "*" -files = [ - {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, - {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, -] - -[package.dependencies] -ptyprocess = ">=0.5" - [[package]] name = "pgvector" version = "0.3.6" @@ -3137,20 +2990,6 @@ nodeenv = ">=0.11.1" pyyaml = ">=5.1" virtualenv = ">=20.10.0" -[[package]] -name = "prompt-toolkit" -version = "3.0.48" -description = "Library for building powerful interactive command lines in Python" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, - {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, -] - -[package.dependencies] -wcwidth = "*" - [[package]] name = "propcache" version = "0.2.1" @@ -3279,31 +3118,6 @@ files = [ {file = "protobuf-4.25.5.tar.gz", hash = "sha256:7f8249476b4a9473645db7f8ab42b02fe1488cbe5fb72fddd445e0665afd8584"}, ] -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -optional = false -python-versions = "*" -files = [ - {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, - {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, -] - -[[package]] -name = "pure-eval" -version = "0.2.3" -description = "Safely evaluate AST nodes without side effects" -optional = false -python-versions = "*" -files = [ - {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, - {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, -] - -[package.extras] -tests = ["pytest"] - [[package]] name = "py" version = "1.11.0" @@ -3537,20 +3351,6 @@ files = [ [package.dependencies] typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" -[[package]] -name = "pygments" -version = "2.18.0" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, -] - -[package.extras] -windows-terminal = ["colorama (>=0.4.6)"] - [[package]] name = "pyjwt" version = "2.10.1" @@ -3687,22 +3487,6 @@ files = [ {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] -[[package]] -name = "pyvis" -version = "0.3.2" -description = "A Python network graph visualization library" -optional = false -python-versions = ">3.6" -files = [ - {file = "pyvis-0.3.2-py3-none-any.whl", hash = "sha256:5720c4ca8161dc5d9ab352015723abb7a8bb8fb443edeb07f7a322db34a97555"}, -] - -[package.dependencies] -ipython = ">=5.3.0" -jinja2 = ">=2.9.6" -jsonpickle = ">=1.4.1" -networkx = ">=1.11" - [[package]] name = "pywin32" version = "308" @@ -4124,25 +3908,6 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] pymysql = ["pymysql"] sqlcipher = ["sqlcipher3_binary"] -[[package]] -name = "stack-data" -version = "0.6.3" -description = "Extract data from python stack frames and tracebacks for informative displays" -optional = false -python-versions = "*" -files = [ - {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, - {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, -] - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - [[package]] name = "sympy" version = "1.13.1" @@ -4408,21 +4173,6 @@ notebook = ["ipywidgets (>=6)"] slack = ["slack-sdk"] telegram = ["requests"] -[[package]] -name = "traitlets" -version = "5.14.3" -description = "Traitlets Python configuration system" -optional = false -python-versions = ">=3.8" -files = [ - {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, - {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, -] - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] - [[package]] name = "triton" version = "3.1.0" @@ -4595,17 +4345,6 @@ platformdirs = ">=3.9.1,<5" docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2,!=7.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] -[[package]] -name = "wcwidth" -version = "0.2.13" -description = "Measures the displayed width of unicode strings in a terminal" -optional = false -python-versions = "*" -files = [ - {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, - {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, -] - [[package]] name = "werkzeug" version = "3.1.3" @@ -4889,4 +4628,4 @@ torch = ["torch"] [metadata] lock-version = "2.0" python-versions = ">=3.9, <4.0" -content-hash = "86d5f192585121c048dae33edff42527cf40f8a0398e1c3e5b60c1c8ab0af363" +content-hash = "a32560a472d4f6230349b9c13273f2462d0bdd560600f051f220a4cb41eeed7f" diff --git a/adalflow/pyproject.toml b/adalflow/pyproject.toml index 08947d81..bf6c9c48 100644 --- a/adalflow/pyproject.toml +++ b/adalflow/pyproject.toml @@ -96,7 +96,6 @@ tensorboardx = "^2.6.2.2" matplotlib = "^3.9.1" azure-identity = "^1.18.0" azure-core = "^1.31.0" -pyvis = "^0.3.2" [tool.poetry.group.extra.dependencies] @@ -128,10 +127,6 @@ datasets = ["datasets"] name = "nvidia-pypi" priority = "supplemental" url = "https://pypi.nvidia.com" -# [[tool.poetry.source]] -# name = "nvidia-pypi" -# priority = "supplemental" -# url = "https://pypi.nvidia.com" [build-system] diff --git a/adalflow/tests/test_componentlist.py b/adalflow/tests/test_componentlist.py deleted file mode 100644 index ee0bef56..00000000 --- a/adalflow/tests/test_componentlist.py +++ /dev/null @@ -1,127 +0,0 @@ -import unittest - -# Assuming `Component` and `ComponentList` are defined in a module named `adalflow.core` -from adalflow.core import Component, ComponentList - - -class MockComponent(Component): - """A mock component used for testing purposes.""" - - def __init__(self, value): - super().__init__() - self.value = value - - def __repr__(self): - return f"MockComponent({self.value})" - - -class TestComponentList(unittest.TestCase): - def setUp(self): - """Create some mock components for testing.""" - self.c1 = MockComponent(1) - self.c2 = MockComponent(2) - self.c3 = MockComponent(3) - - def test_initialization(self): - """Test that ComponentList initializes correctly with components.""" - cl = ComponentList([self.c1, self.c2]) - self.assertEqual(len(cl), 2) - self.assertIs(cl[0], self.c1) - self.assertIs(cl[1], self.c2) - - def test_append(self): - """Test appending a new component to the list.""" - cl = ComponentList([self.c1]) - cl.append(self.c2) - self.assertEqual(len(cl), 2) - self.assertIs(cl[1], self.c2) - - def test_extend(self): - """Test extending the list with multiple components.""" - cl = ComponentList([self.c1]) - cl.extend([self.c2, self.c3]) - self.assertEqual(len(cl), 3) - self.assertIs(cl[1], self.c2) - self.assertIs(cl[2], self.c3) - - def test_indexing(self): - """Test retrieving components by index.""" - cl = ComponentList([self.c1, self.c2, self.c3]) - self.assertIs(cl[0], self.c1) - self.assertIs(cl[2], self.c3) - - def test_slicing(self): - """Test slicing the list of components.""" - cl = ComponentList([self.c1, self.c2, self.c3]) - sliced = cl[1:] - self.assertEqual(len(sliced), 2) - self.assertIs(sliced[0], self.c2) - self.assertIs(sliced[1], self.c3) - - def test_insert(self): - """Test inserting a component at a specific index.""" - cl = ComponentList([self.c1, self.c3]) - cl.insert(1, self.c2) - self.assertEqual(len(cl), 3) - self.assertIs(cl[1], self.c2) - - def test_pop(self): - """Test removing and returning a component.""" - cl = ComponentList([self.c1, self.c2, self.c3]) - component = cl.pop(1) - self.assertIs(component, self.c2) - self.assertEqual(len(cl), 2) - - def test_delitem(self): - """Test deleting components by index and slice.""" - cl = ComponentList([self.c1, self.c2, self.c3]) - del cl[1] - self.assertEqual(len(cl), 2) - self.assertIs(cl[0], self.c1) - self.assertIs(cl[1], self.c3) - - cl = ComponentList([self.c1, self.c2, self.c3]) - del cl[1:] - self.assertEqual(len(cl), 1) - self.assertIs(cl[0], self.c1) - - def test_add(self): - """Test adding two ComponentLists.""" - cl1 = ComponentList([self.c1]) - cl2 = ComponentList([self.c2, self.c3]) - cl3 = cl1 + cl2 - self.assertEqual(len(cl3), 3) - self.assertIs(cl3[0], self.c1) - self.assertIs(cl3[1], self.c2) - self.assertIs(cl3[2], self.c3) - - def test_iadd(self): - """Test adding components using the += operator.""" - cl = ComponentList([self.c1]) - cl += [self.c2, self.c3] - self.assertEqual(len(cl), 3) - self.assertIs(cl[1], self.c2) - self.assertIs(cl[2], self.c3) - - def test_repr(self): - """Test the custom __repr__ implementation.""" - cl = ComponentList([MockComponent(1), MockComponent(1), MockComponent(2)]) - expected = ( - "ComponentList(\n (0-1): 2 x MockComponent(1)\n (2): MockComponent(2)\n)" - ) - self.assertEqual(repr(cl), expected) - - def test_len(self): - """Test the length of the ComponentList.""" - cl = ComponentList([self.c1, self.c2]) - self.assertEqual(len(cl), 2) - - def test_iter(self): - """Test iterating over the components.""" - cl = ComponentList([self.c1, self.c2, self.c3]) - components = list(iter(cl)) - self.assertEqual(components, [self.c1, self.c2, self.c3]) - - -if __name__ == "__main__": - unittest.main() diff --git a/adalflow/tests/test_parameter_text_grad.py b/adalflow/tests/test_parameter_text_grad.py index 91cf4dc9..f3ea2c1c 100644 --- a/adalflow/tests/test_parameter_text_grad.py +++ b/adalflow/tests/test_parameter_text_grad.py @@ -29,9 +29,7 @@ def setUp(self): ) def test_get_gradient_text(self): - expected_output = """Batch size: 1 - -1. + expected_output = """1. Conversation context Gradient 2""" @@ -81,7 +79,7 @@ def test_update_prompt(self): result = tgd.llm_optimizer.get_prompt(**user_prompt_kwargs) # Check if each variable value is in the generated output - # self.assertIn("Role description", result) + self.assertIn("Role description", result) # self.assertIn("short value", result) self.assertIn("gradient and context text", result) # self.assertIn("", result) diff --git a/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py b/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py deleted file mode 100644 index cebcfdf2..00000000 --- a/benchmarks/hotpot_qa/adal_exp/build_multi_hop_rag.py +++ /dev/null @@ -1,534 +0,0 @@ -"""We will use dspy's retriever to keep that the same and only use our generator and optimizer""" - -import dspy -from typing import List -from dataclasses import dataclass, field - -import adalflow as adal -from adalflow.optim.parameter import Parameter, ParameterType - - -from adalflow.core.retriever import Retriever - -from benchmarks.hotpot_qa.adal_exp.build_vanilla_rag import DspyRetriever -from adalflow.utils.logger import printc - -colbertv2_wiki17_abstracts = dspy.ColBERTv2( - url="http://20.102.90.50:2017/wiki17_abstracts" -) - -dspy.settings.configure(rm=colbertv2_wiki17_abstracts) - - -# task pipeline - - -# dspy format -# Follow the following format. -# Context: may contain relevant facts -# Question: ${question} -# Reasoning: Let's think step by step in order to ${produce the query}. We ... -# Query: ${query} -@dataclass -class QueryRewritterData(adal.DataClass): - reasoning: str = field( - metadata={"desc": "The reasoning to produce the query"}, - ) - query: str = field( - metadata={"desc": "The query you produced"}, - ) - - __output_fields__ = ["reasoning", "query"] - - -query_template = """ -{{task_desc_str}} - -{{output_format_str}} -{# Few shot demos #} -{% if few_shot_demos is not none %} -Here are some examples: -{{few_shot_demos}} -{% endif %} - - -Context: {{context}} -Question: {{question}} - -""" - - -class DeduplicateList(adal.GradComponent): - def __init__(self): - super().__init__() - - def call(self, exisiting_list: List[str], new_list: List[str]) -> List[str]: - - seen = set() - return [x for x in exisiting_list + new_list if not (x in seen or seen.add(x))] - - def backward(self, *args, **kwargs): - - printc(f"DeduplicateList backward: {args}", "yellow") - return super().backward(*args, **kwargs) - - -# User customize an auto-grad operator -# Need this to be a GradComponent - - -# NOTE: deprecated -class MultiHopRetriever(adal.Retriever): - def __init__(self, model_client, model_kwargs, passages_per_hop=3, max_hops=2): - super().__init__() - - self.passages_per_hop = passages_per_hop - self.max_hops = max_hops - - self.data_parser = adal.DataClassParser( - data_class=QueryRewritterData, return_data_class=True, format_type="json" - ) - - # Grad Component - self.query_generators: List[adal.Generator] = [] - for i in range(self.max_hops): - self.query_generators.append( - adal.Generator( - name=f"query_generator_{i}", - model_client=model_client, - model_kwargs=model_kwargs, - prompt_kwargs={ - "few_shot_demos": Parameter( - name="few_shot_demos_1", - data=None, - role_desc="To provide few shot demos to the language model", - requires_opt=True, - param_type=ParameterType.DEMOS, - ), - "task_desc_str": Parameter( - name="task_desc_str", - data="""Write a simple search query that will help answer a complex question. - -You will receive a context(may contain relevant facts) and a question. -Think step by step.""", - role_desc="Task description for the language model", - requires_opt=True, - param_type=ParameterType.PROMPT, - ), - "output_format_str": self.data_parser.get_output_format_str(), - }, - template=query_template, - output_processors=self.data_parser, - use_cache=True, - ) - ) - self.retriever = DspyRetriever(top_k=passages_per_hop) - self.deduplicater = DeduplicateList() - - @staticmethod - def context_to_str(context: List[str]) -> str: - return "\n".join(context) - - @staticmethod - def deduplicate(seq: list[str]) -> list[str]: - """ - Source: https://stackoverflow.com/a/480227/1493011 - """ - - seen = set() - return [x for x in seq if not (x in seen or seen.add(x))] - - def call(self, *, question: str, id: str = None) -> adal.RetrieverOutput: - context = [] - print(f"question: {question}") - for i in range(self.max_hops): - gen_out = self.query_generators[i]( - prompt_kwargs={ - "context": self.context_to_str(context), - "question": question, - }, - id=id, - ) - - query = gen_out.data.query if gen_out.data and gen_out.data.query else None - - print(f"query {i}: {query}") - - retrieve_out = self.retriever.call(input=query) - passages = retrieve_out[0].documents - context = self.deduplicate(context + passages) - out = [adal.RetrieverOutput(documents=context, query=query, doc_indices=[])] - return out - - def forward(self, *, question: str, id: str = None) -> adal.Parameter: - # assemble the foundamental building blocks - context = [] - print(f"question: {question}") - # 1. make question a parameter as generator does not have it yet - # can create the parameter at the leaf, but not the intermediate nodes - question_param = adal.Parameter( - name="question", - data=question, - role_desc="The question to be answered", - requires_opt=True, - param_type=ParameterType.INPUT, - ) - context_param = adal.Parameter( - name="context", - data=context, - role_desc="The context to be used for the query", - requires_opt=True, - param_type=ParameterType.INPUT, - ) - context_param.add_successor_map_fn( - successor=self.query_generators[0], - map_fn=lambda x: self.context_to_str(x.data), - ) - - for i in range(self.max_hops): - - gen_out = self.query_generators[i].forward( - prompt_kwargs={ - "context": context_param, - "question": question_param, - }, - id=id, - ) - - success_map_fn = lambda x: ( # noqa E731 - x.full_response.data.query - if x.full_response - and x.full_response.data - and x.full_response.data.query - else None - ) - print(f"query {i}: {success_map_fn(gen_out)}") - - gen_out.add_successor_map_fn( - successor=self.retriever, map_fn=success_map_fn - ) - - retrieve_out = self.retriever.forward(input=gen_out) - - def retrieve_out_map_fn(x: adal.Parameter): - return x.data[0].documents if x.data and x.data[0].documents else [] - - print(f"retrieve_out: {retrieve_out}") - - retrieve_out.add_successor_map_fn( - successor=self.deduplicater, map_fn=retrieve_out_map_fn - ) - - context_param = self.deduplicater.forward( - exisiting_list=context_param, new_list=retrieve_out - ) - - context_param.param_type = ParameterType.RETRIEVER_OUTPUT - - return context_param - - -class MultiHopRetriever2(adal.Retriever): - def __init__(self, model_client, model_kwargs, passages_per_hop=3, max_hops=2): - super().__init__() - - self.passages_per_hop = passages_per_hop - self.max_hops = max_hops - - self.data_parser = adal.DataClassParser( - data_class=QueryRewritterData, return_data_class=True, format_type="json" - ) - - # Grad Component - # self.query_generators: List[adal.Generator] = [] - self.query_generators: adal.ComponentList[adal.Generator] = adal.ComponentList() - self.retrievers: List[Retriever] = [] - self.deduplicaters: List[adal.GradComponent] = [] - for i in range(self.max_hops): - self.query_generators.append( - adal.Generator( - name=f"query_generator_{i}", - model_client=model_client, - model_kwargs=model_kwargs, - prompt_kwargs={ - "few_shot_demos": Parameter( - name=f"few_shot_demos_{i}", - data=None, - role_desc="To provide few shot demos to the language model", - requires_opt=True, - param_type=ParameterType.DEMOS, - ), - "task_desc_str": Parameter( - name="task_desc_str", - data="""Write a simple search query that will help answer a complex question. - -You will receive a context(may contain relevant facts) and a question. -Think step by step.""", - role_desc="Task description for the language model", - requires_opt=True, - param_type=ParameterType.PROMPT, - ), - "output_format_str": self.data_parser.get_output_format_str(), - }, - template=query_template, - output_processors=self.data_parser, - use_cache=True, - ) - ) - self.retrievers.append(DspyRetriever(top_k=passages_per_hop)) - self.deduplicaters.append(DeduplicateList()) - - @staticmethod - def context_to_str(context: List[str]) -> str: - return "\n".join(context) - - @staticmethod - def deduplicate(seq: list[str]) -> list[str]: - """ - Source: https://stackoverflow.com/a/480227/1493011 - """ - - seen = set() - return [x for x in seq if not (x in seen or seen.add(x))] - - # def call(self, *, question: str, id: str = None) -> adal.RetrieverOutput: - # context = [] - # print(f"question: {question}") - # for i in range(self.max_hops): - # gen_out = self.query_generators[i]( - # prompt_kwargs={ - # "context": self.context_to_str(context), - # "question": question, - # }, - # id=id, - # ) - - # query = gen_out.data.query if gen_out.data and gen_out.data.query else None - - # print(f"query {i}: {query}") - - # retrieve_out = self.retrievers[i].call(input=query) - # passages = retrieve_out[0].documents - # context = self.deduplicate(context + passages) - # out = [adal.RetrieverOutput(documents=context, query=query, doc_indices=[])] - # return out - - # TODO: simplify and avoid the need where users need to write two methods (call and forward) - def call(self, *, input: str, id: str = None) -> List[adal.RetrieverOutput]: - # assemble the foundamental building blocks - printc(f"question: {input}", "yellow") - out = self.forward(input=input, id=id) - - if not isinstance(out, adal.Parameter): - raise ValueError("The output should be a parameter") - - return out.data # or full response its up to users - - def forward(self, *, input: str, id: str = None) -> adal.Parameter: - # assemble the foundamental building blocks - printc(f"question: {input}", "yellow") - context = [] - - queries: List[str] = [] - - for i in range(self.max_hops): - - gen_out = self.query_generators[i].forward( - prompt_kwargs={ - "context": context, # can be a list or a parameter - "question": adal.Parameter( - name="question", - data=input, - role_desc="The question to be answered", - requires_opt=False, - param_type=ParameterType.INPUT, - ), - }, - id=id, - ) - - success_map_fn = lambda x: ( # noqa E731 - x.full_response.data.query - if x.full_response - and x.full_response.data - and x.full_response.data.query - else ( - x.full_response.raw_response - if x.full_response and x.full_response.raw_response - else None - ) - ) - print(f"query {i}: {success_map_fn(gen_out)}") - - queries.append(success_map_fn(gen_out)) - - gen_out.add_successor_map_fn( - successor=self.retrievers[i], map_fn=success_map_fn - ) - - if success_map_fn(gen_out) is None: - raise ValueError(f"The query is None, please check the generator {i}") - - retrieve_out = self.retrievers[i].forward(input=gen_out, id=id) - - def retrieve_out_map_fn(x: adal.Parameter): - return x.data[0].documents if x.data and x.data[0].documents else [] - - # print(f"retrieve_out: {retrieve_out}") - - retrieve_out.add_successor_map_fn( - successor=self.deduplicaters[i], map_fn=retrieve_out_map_fn - ) - - context = self.deduplicaters[i].forward( - exisiting_list=context, new_list=retrieve_out - ) - - context.param_type = ParameterType.RETRIEVER_OUTPUT - - def context_to_retrover_output(x): - return [ - adal.RetrieverOutput( - documents=x.data, query=[input] + queries, doc_indices=[] - ) - ] - - context.data = context_to_retrover_output(context) - - printc(f"MultiHopRetriever2 grad fn: {context.grad_fn}", "yellow") - - return context - - def backward(self, *args, **kwargs): - - printc(f"MultiHopRetriever2 backward: {args}", "yellow") - super().backward(*args, **kwargs) - return - - -from benchmarks.hotpot_qa.adal_exp.build_vanilla_rag import VanillaRAG - - -class MultiHopRAG(VanillaRAG): - def __init__( - self, passages_per_hop=3, max_hops=2, model_client=None, model_kwargs=None - ): - super().__init__( - passages_per_hop=passages_per_hop, - model_client=model_client, - model_kwargs=model_kwargs, - ) - self.retriever = MultiHopRetriever2( - model_client=model_client, - model_kwargs=model_kwargs, - passages_per_hop=passages_per_hop, - max_hops=max_hops, - ) - - -def test_multi_hop_retriever(): - - from use_cases.config import ( - gpt_3_model, - ) - - multi_hop_retriever = MultiHopRetriever( - **gpt_3_model, - passages_per_hop=3, - max_hops=2, - ) - - question = "How many storeys are in the castle that David Gregory inherited?" - - # eval mode - output = multi_hop_retriever.call(question=question, id="1") - print(output) - - # train mode - multi_hop_retriever.train() - output = multi_hop_retriever.forward(question=question, id="1") - print(output) - output.draw_graph() - - -def test_multi_hop_retriever2(): - - from use_cases.config import ( - gpt_3_model, - ) - - multi_hop_retriever = MultiHopRetriever2( - **gpt_3_model, - passages_per_hop=3, - max_hops=2, - ) - - question = "How many storeys are in the castle that David Gregory inherited?" - - # eval mode - # output = multi_hop_retriever.call(question=question, id="1") - # print(output) - - # train mode - multi_hop_retriever.train() - output = multi_hop_retriever.forward(input=question, id="1") - # print(output) - output.draw_graph(full_trace=True) - - # multi_hop_retriever.eval() - # output = multi_hop_retriever.call(input=question, id="1") - # print(output) - - -def test_multi_hop_rag(): - - from use_cases.config import ( - gpt_3_model, - ) - - adal.get_logger(level="DEBUG") - - task = MultiHopRAG( - **gpt_3_model, - passages_per_hop=3, - max_hops=2, - ) - print(f"task: {task}") - - for name, comp in task.named_components(): - - if isinstance(comp, adal.Generator): - print(f"name: {name}") - print(f"comp: {comp }") - return - - # test the retriever - - question = "How many storeys are in the castle that David Gregory inherited?" - - task.train() - - # id = "1" - - # retriever_out = task.retriever(input=question, id=id) - - # print(f"retriever_out: {retriever_out}") - - # test the forward function - generator_out = task.forward(question=question, id="1") - print(f"generator_out: {generator_out}") - - generator_out.draw_graph() - - # task.eval() - # generator_out = task.call(question=question, id="1") - # print(f"generator_out: {generator_out}") - - -if __name__ == "__main__": - ### Try the minimum effort to test on any task - - # get_logger(level="DEBUG") - # test_multi_hop_retriever() - # test_multi_hop_retriever2() - test_multi_hop_rag() diff --git a/benchmarks/hotpot_qa/adal_exp/build_vanilla_rag.py b/benchmarks/hotpot_qa/adal_exp/build_vanilla_rag.py index 3eae0598..7e66ca9b 100644 --- a/benchmarks/hotpot_qa/adal_exp/build_vanilla_rag.py +++ b/benchmarks/hotpot_qa/adal_exp/build_vanilla_rag.py @@ -108,15 +108,10 @@ def __init__(self, top_k: int = 3): self.top_k = top_k self.dspy_retriever = dspy.Retrieve(k=top_k) - def call( - self, input: str, top_k: Optional[int] = None, id: str = None - ) -> List[RetrieverOutput]: + def call(self, input: str, top_k: Optional[int] = None) -> List[RetrieverOutput]: k = top_k or self.top_k - if not input: - raise ValueError(f"Input cannot be empty, top_k: {k}") - output = self.dspy_retriever(query_or_queries=input, k=k) # print(f"dsy_retriever output: {output}") final_output: List[RetrieverOutput] = [] @@ -157,7 +152,7 @@ def __init__(self, passages_per_hop=3, model_client=None, model_kwargs=None): data=task_desc_str, role_desc="Task description for the language model", param_type=adal.ParameterType.PROMPT, - requires_opt=True, + requires_opt=False, ), "few_shot_demos": adal.Parameter( data=None, @@ -185,7 +180,7 @@ def call(self, question: str, id: str = None) -> adal.GeneratorOutput: "This component is not supposed to be called in training mode" ) - retriever_out = self.retriever.call(input=question, id=id) + retriever_out = self.retriever.call(input=question) successor_map_fn = lambda x: ( # noqa E731 "\n\n".join(x[0].documents) if x and x[0] and x[0].documents else "" @@ -206,21 +201,11 @@ def call(self, question: str, id: str = None) -> adal.GeneratorOutput: # print(f"retriever_out: {retriever_out}") return output - # def call(self, *, question: str, id: str = None) -> adal.GeneratorOutput: - # self.train() - # out = self.forward(question=question, id=id) - # if not isinstance(out, adal.Parameter): - # raise ValueError( - # "This output should be a Parameter, please check the forward function" - # ) - # self.eval() - # return out.data - # TODO: add id in the retriever output def forward(self, question: str, id: str = None) -> adal.Parameter: if not self.training: raise ValueError("This component is not supposed to be called in eval mode") - retriever_out = self.retriever.forward(input=question, id=id) + retriever_out = self.retriever.forward(input=question) successor_map_fn = lambda x: ( # noqa E731 "\n\n".join(x.data[0].documents) if x.data and x.data[0] and x.data[0].documents @@ -296,9 +281,9 @@ def test_vailla_rag(): generator_out.draw_graph() - # task.eval() - # generator_out = task.call(question=question, id="1") - # print(f"generator_out: {generator_out}") + task.eval() + generator_out = task.call(question=question, id="1") + print(f"generator_out: {generator_out}") if __name__ == "__main__": diff --git a/benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py b/benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py deleted file mode 100644 index d80e6336..00000000 --- a/benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py +++ /dev/null @@ -1,183 +0,0 @@ -from typing import Any, Callable, Dict, Tuple - -import adalflow as adal -from adalflow.eval.answer_match_acc import AnswerMatchAcc -from adalflow.datasets.types import HotPotQAData - -from benchmarks.hotpot_qa._adal_train import load_datasets -from benchmarks.hotpot_qa.adal_exp.build_multi_hop_rag import MultiHopRAG -from use_cases.config import gpt_3_model, gpt_4o_model - - -# TODO: look more into the loss function -# TODO: test LLM judge too. -class MultiHopRAGAdal(adal.AdalComponent): - def __init__( - self, - model_client: adal.ModelClient, - model_kwargs: Dict, - backward_engine_model_config: Dict | None = None, - teacher_model_config: Dict | None = None, - text_optimizer_model_config: Dict | None = None, - ): - task = MultiHopRAG( - model_client=model_client, - model_kwargs=model_kwargs, - passages_per_hop=3, - max_hops=2, - ) - eval_fn = AnswerMatchAcc(type="fuzzy_match").compute_single_item - loss_fn = adal.EvalFnToTextLoss( - eval_fn=eval_fn, eval_fn_desc="fuzzy_match: 1 if str(y) in str(y_gt) else 0" - ) - super().__init__( - task=task, - eval_fn=eval_fn, - loss_fn=loss_fn, - backward_engine_model_config=backward_engine_model_config, - teacher_model_config=teacher_model_config, - text_optimizer_model_config=text_optimizer_model_config, - ) - - # tell the trainer how to call the task - def prepare_task(self, sample: HotPotQAData) -> Tuple[Callable[..., Any], Dict]: - if self.task.training: - return self.task.forward, {"question": sample.question, "id": sample.id} - else: - return self.task.call, {"question": sample.question, "id": sample.id} - - # TODO: use two map fn to make the cde even simpler - - # eval mode: get the generator output, directly engage with the eval_fn - def prepare_eval(self, sample: HotPotQAData, y_pred: adal.GeneratorOutput) -> float: - y_label = "" - if y_pred and y_pred.data and y_pred.data.answer: - y_label = y_pred.data.answer - return self.eval_fn, {"y": y_label, "y_gt": sample.answer} - - # train mode: get the loss and get the data from the full_response - def prepare_loss(self, sample: HotPotQAData, pred: adal.Parameter): - # prepare gt parameter - y_gt = adal.Parameter( - name="y_gt", - data=sample.answer, - eval_input=sample.answer, - requires_opt=False, - ) - - # pred's full_response is the output of the task pipeline which is GeneratorOutput - pred.eval_input = ( - pred.full_response.data.answer - if pred.full_response - and pred.full_response.data - and pred.full_response.data.answer - else "" - ) - return self.loss_fn, {"kwargs": {"y": pred, "y_gt": y_gt}} - - -# Note: diagnose is quite helpful, it helps you to quickly check if the evalfunction is the right metrics -# i checked the eval which does fuzzy match, and found some yes and Yes are not matched, then converted both strings to lower and -# the performances have gone up from 0.15 to 0.4 -def train_diagnose( - model_client: adal.ModelClient, - model_kwargs: Dict, -) -> Dict: - - trainset, valset, testset = load_datasets() - - adal_component = MultiHopRAGAdal( - model_client, - model_kwargs, - backward_engine_model_config=gpt_4o_model, - teacher_model_config=gpt_3_model, - text_optimizer_model_config=gpt_3_model, - ) - trainer = adal.Trainer(adaltask=adal_component) - trainer.diagnose(dataset=trainset, split="train") - # trainer.diagnose(dataset=valset, split="val") - # trainer.diagnose(dataset=testset, split="test") - - -def train( - train_batch_size=4, # larger batch size is not that effective, probably because of llm's lost in the middle - raw_shots: int = 0, - bootstrap_shots: int = 4, - max_steps=1, - num_workers=4, - strategy="constrained", - optimization_order="sequential", - debug=False, - resume_from_ckpt=None, - exclude_input_fields_from_bootstrap_demos=True, -): - adal_component = MultiHopRAGAdal( - **gpt_3_model, - teacher_model_config=gpt_3_model, - text_optimizer_model_config=gpt_4o_model, # gpt3.5 is not enough to be used as a good optimizer, it struggles for long contenxt - backward_engine_model_config=gpt_4o_model, - ) - print(adal_component) - trainer = adal.Trainer( - train_batch_size=train_batch_size, - adaltask=adal_component, - strategy=strategy, - max_steps=max_steps, - num_workers=num_workers, - raw_shots=raw_shots, - bootstrap_shots=bootstrap_shots, - debug=debug, - weighted_sampling=True, - optimization_order=optimization_order, - exclude_input_fields_from_bootstrap_demos=exclude_input_fields_from_bootstrap_demos, - sequential_order=["text", "demo"], - ) - print(trainer) - - train_dataset, val_dataset, test_dataset = load_datasets() - trainer.fit( - train_dataset=train_dataset, - val_dataset=val_dataset, - test_dataset=test_dataset, - resume_from_ckpt=resume_from_ckpt, - ) - - -if __name__ == "__main__": - from use_cases.config import gpt_3_model - - log = adal.get_logger(level="DEBUG", enable_console=False) - - adal.setup_env() - - # task = MultiHopRAGAdal(**gpt_3_model) - # print(task) - - # train_diagnose(**gpt_3_model) - - # train: 0.15 before the evaluator converted to lower and 0.4 after the conversion - train( - debug=False, - max_steps=12, - # resume_from_ckpt="/Users/liyin/.adalflow/ckpt/ValinaRAGAdal/random_max_steps_12_7c091_run_1.json", - ) - - # notes for debug: if have nontype, delete all model cache and try again - # raise ValueError(ValueError: score must be provided for each demo, - - # 12/11/2024 - # demo only: /Users/liyin/Documents/test/LightRAG/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_8cdfc_run_9.json - - # why text grad did not improve in the rag case? Do we need to improve the meta prompt? - # /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_2686e_run_1.json - # 0.58 -> 0.68 on the test split - # 0.72 text grad /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_c1660_run_1.json - # try cycle next - # 0.66 /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_1d189_run_1.json - # no gradients 1021s (/Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_68e7e_run_1.json) -> 0.64 -> 0.68, pass 10/10+28 - # no gradient but scores (positive & negative) /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_83871_run_1.json 0.64->0.66, test 0.64 -> 0.66 - # no gradient but only negative score - # no gradient but score + teacher demonstration. - # feedback while seeing the gt + y - # only negative feedback /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_f5506_run_1.json 0.62 -> 0.7 - # /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/constrained_max_steps_12_b4aa5_run_1.json 0.74 pass rate 8 32 diff --git a/benchmarks/hotpot_qa/adal_exp/train_vanilla.py b/benchmarks/hotpot_qa/adal_exp/train_vanilla.py index fc14e161..b6cfe9e6 100644 --- a/benchmarks/hotpot_qa/adal_exp/train_vanilla.py +++ b/benchmarks/hotpot_qa/adal_exp/train_vanilla.py @@ -4,7 +4,7 @@ from adalflow.eval.answer_match_acc import AnswerMatchAcc from adalflow.datasets.types import HotPotQAData -from benchmarks.hotpot_qa._adal_train import load_datasets +from benchmarks.hotpot_qa.adal_train import load_datasets from benchmarks.hotpot_qa.adal_exp.build_vanilla_rag import VanillaRAG from use_cases.config import gpt_3_model, gpt_4o_model diff --git a/benchmarks/hotpot_qa/_adal_train.py b/benchmarks/hotpot_qa/adal_train.py similarity index 99% rename from benchmarks/hotpot_qa/_adal_train.py rename to benchmarks/hotpot_qa/adal_train.py index e397cf0f..4162bc98 100644 --- a/benchmarks/hotpot_qa/_adal_train.py +++ b/benchmarks/hotpot_qa/adal_train.py @@ -1,4 +1,3 @@ -"deprecated" """We will use dspy's retriever to keep that the same and only use our generator and optimizer""" import dspy @@ -23,9 +22,9 @@ def load_datasets(): - trainset = HotPotQA(split="train", size=20) # 20 - valset = HotPotQA(split="val", size=50) # 50 - testset = HotPotQA(split="test", size=50) # to keep the same as the dspy #50 + trainset = HotPotQA(split="train", size=20) + valset = HotPotQA(split="val", size=50) + testset = HotPotQA(split="test", size=50) # to keep the same as the dspy print(f"trainset, valset: {len(trainset)}, {len(valset)}, example: {trainset[0]}") return trainset, valset, testset diff --git a/docs/source/tutorials/auto_text_grad.rst b/docs/source/tutorials/auto_text_grad.rst index 438da80d..ea4294f7 100644 --- a/docs/source/tutorials/auto_text_grad.rst +++ b/docs/source/tutorials/auto_text_grad.rst @@ -139,13 +139,6 @@ We currently have the following operators: - forward will be able to track the predecessors to form a DAG of parameters, this will always be helpful. - # a forward will -10/27 - -**Score for weighted sampling in few-shot demo** - -Backpropagation is also used in few-shot demo especially at passing the score backward to predecessors and accumulate to the demo parameter. - - Generator Adaptation ~~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/source/tutorials/generator.rst b/docs/source/tutorials/generator.rst index 214886cb..a170a8de 100644 --- a/docs/source/tutorials/generator.rst +++ b/docs/source/tutorials/generator.rst @@ -119,10 +119,10 @@ The minimum setup to initiate a generator in the code: .. code-block:: python - import adalflow as adal + from adalflow.core import Generator from adalflow.components.model_client import GroqAPIClient - generator = adal.Generator( + generator = Generator( model_client=GroqAPIClient(), model_kwargs={"model": "llama3-8b-8192"}, ) diff --git a/docs/source/tutorials/trainer.rst b/docs/source/tutorials/trainer.rst index fd70778c..a8b1d750 100644 --- a/docs/source/tutorials/trainer.rst +++ b/docs/source/tutorials/trainer.rst @@ -3,62 +3,3 @@ Trainer ================ Coming soon! - -Diagnose mode - -A pipeline can consist of multiple generators or retrievers. Each - - -Computation graph -------------------- -We design two types of graphs: - -1. with a simple node-graph with consistent naming of each generator(component_name or automated name by the recursive tracing (need to be consistent eventually)) [Call it thumbnail] or a better name. -2. with details for debugging and building the pipeline. - -EvalFunction + Score(s) ------------------------- -Currently we can assume we only support one eval_score, but eventually we need to suppport two scores, such as in the case of the multi-hop RAG. -The last llm call will have one score, and the previous two generators can potentially have two scores. One is from the last score, and the second will be from the output of the multi-hop retriever. - -So, we need to assign a unique and global component id/name. [Score, component_id, component_name] - -Observability ------------------------- -Building blocks include: `GeneratorCallLogger`, `RetrieverCallLogger`, `LossCallLogger` where each only traces a single component. - -In `AdalComponnet`, `configure_callbacks` we need both `_auto_generator_callbacks` and `_auto_retriever_callbacks` to be able to trace the call of each component. - -..code-block:: python - - for name, generator in all_generators: - call_logger = GeneratorCallLogger(save_dir=save_dir) - call_logger.reset() - call_logger.register_generator(name) - logger_call = partial(call_logger.log_call, name) - generator.register_callback( - "on_complete", partial(_on_completion_callback, logger_call=logger_call) - ) - file_path = call_logger.get_log_location(name) - file_paths.append(file_path) - log.debug(f"Registered callback for {name}, file path: {file_path}") - - -so when tracing, the `logger_metadata.json` will look like this: - -.. code-block:: json - - { - "retriever.query_generators.0": "/Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/diagnose_train/retriever.query_generators.0_call.jsonl", - "retriever.query_generators.1": "/Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/diagnose_train/retriever.query_generators.1_call.jsonl", - "llm": "/Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/diagnose_train/llm_call.jsonl" - } - -TODO: -- [ ] support multiple eval scores. -- [ ] logger meta data - - { - "llm": "/Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/diagnose_train/llm_call.jsonl" -} -- [ ] retriever log: call_logger = GeneratorCallLogger(save_dir=save_dir) diff --git a/docs/source/use_cases/multi_hop_rag_opt.rst b/docs/source/use_cases/multi_hop_rag_opt.rst deleted file mode 100644 index b5752d28..00000000 --- a/docs/source/use_cases/multi_hop_rag_opt.rst +++ /dev/null @@ -1,86 +0,0 @@ -Multi-hop RAG Optimization -============================ - - -question: How many storeys are in the castle that David Gregory inherited? - -query 0: Number of storeys in the castle inherited by David Gregory - -Add context from retriever -> query generator - - -query 1: Kinnairdy Castle storeys OR floors OR levels - -So eventually the multi-hop RAG with the multi-hop retriever that combines the advanced Generator to transform the query into multiple querires (similar to REACT agent design) -. By knowing the castle name from the first query and retrieval (not seen from the question itself), the second time it will be able to retrieve the right context the second time. -Of course, we can even let the LLM workflow decide to stop the retrieval once it has obtained enough information. - - -When multi-hop is not enabled, the vanilla rag failed to give the answer. -When it is enabled, the answer is correct. - -resoning: - -David Gregory inherited Kinnairdy Castle, which is a tower house having five storeys and a garret, located two miles south of Aberchirder, Aberdeenshire, Scotland. - -answr: Kinnairdy Castle has five storeys." - -Other logs: - ------------------ - -1. fix the dspy code at `.venv/lib/python3.12/site-packages/dsp/modules/colbertv2.py` - -.. code-block::python - - from tenacity import retry, stop_after_attempt, wait_exponential - - - @CacheMemory.cache - @retry( - stop=stop_after_attempt(5), - wait=wait_exponential(multiplier=1, min=2, max=10), - reraise=True, - ) - def colbertv2_get_request_v2(url: str, query: str, k: int): - assert k <= 100, "Only k <= 100 is supported for the hosted ColBERTv2 server." - - payload = {"query": query, "k": k} - - try: - res = requests.get(url, params=payload, timeout=10) - res.raise_for_status() - response_json = res.json() - - # Check for an error in the response. - if response_json.get("error"): - raise ConnectionError(f"Error from server: {response_json['message']}") - - # If we get a valid 'topk' response, return immediately. - if "topk" in response_json: - topk = response_json["topk"][:k] - return [{**d, "long_text": d["text"]} for d in topk] - - except requests.exceptions.Timeout: - raise TimeoutError("The request timed out. Please try again.") - except requests.exceptions.RequestException as e: - raise ConnectionError(f"Request failed: {e}") - - raise KeyError("'topk' key not found in the response.") - -2. If error in diagnose similar to - - ..code-block:: python - - Error loading jsonl file /Users/liyin/.adalflow/ckpt/MultiHopRAGAdal/diagnose_train/llm_call.jsonl: line contains invalid json: unexpected content after document: line 1 column 8568 (char 8567) (line 62) - Traceback (most recent call last): - File "/Users/liyin/Documents/test/LightRAG/benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py", line 153, in - train_diagnose(**gpt_3_model) - File "/Users/liyin/Documents/test/LightRAG/benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py", line 97, in train_diagnose - trainer.diagnose(dataset=trainset, split="train") - File "/Users/liyin/Documents/test/LightRAG/adalflow/adalflow/optim/trainer/trainer.py", line 228, in diagnose - sorted_logs = [logs_dict[id] for id in sorted_ids] - ~~~~~~~~~^^^^ - KeyError: '5a8b57f25542995d1e6f1371' - -You can go to the `llm_call.jsonl` file and clean all content of the file. Then rerun the training script. diff --git a/docs/source/use_cases/rag_documents.rst b/docs/source/use_cases/rag_documents.rst new file mode 100644 index 00000000..26c8a430 --- /dev/null +++ b/docs/source/use_cases/rag_documents.rst @@ -0,0 +1,322 @@ +.. raw:: html + + + +RAG for documents +============================= + +Overview +-------- + +This implementation showcases an end-to-end RAG system capable of handling large-scale text files and +generating context-aware responses. It is both modular and extensible, making it adaptable to various +use cases and LLM APIs. + +**Imports** + +- **SentenceTransformer**: Used for creating dense vector embeddings for textual data. +- **FAISS**: Provides efficient similarity search using vector indexing. +- **tiktoken**: ensures that the text preprocessing aligns with the tokenization requirements of the underlying language models, making the pipeline robust and efficient. +- **GroqAPIClient and OpenAIClient**: Custom classes for interacting with different LLM providers. +- **ModelType**: Enum for specifying the model type. + +.. code-block:: python + + import os + import tiktoken + from typing import List, Dict, Tuple + import numpy as np + from sentence_transformers import SentenceTransformer + from faiss import IndexFlatL2 + + from adalflow.components.model_client import GroqAPIClient, OpenAIClient + from adalflow.core.types import ModelType + from adalflow.utils import setup_env + +The ``AdalflowRAGPipeline`` class sets up the Retrieval-Augmented Generation (RAG) pipeline. Its ``__init__`` method initializes key components: + +- An embedding model (``all-MiniLM-L6-v2``) is loaded using ``SentenceTransformer`` to convert text into dense vector embeddings with a dimensionality of 384. +- A FAISS index (``IndexFlatL2``) is created for similarity-based document retrieval. +- Parameters such as ``top_k_retrieval`` (number of documents to retrieve) and ``max_context_tokens`` (limit on token count in the context) are configured. +- A tokenizer (``tiktoken``) ensures precise token counting, crucial for handling large language models (LLMs). + +The method also initializes storage for documents, their embeddings, and associated metadata for efficient management and retrieval. + +The ``AdalflowRAGPipeline`` class provides a flexible pipeline for Retrieval-Augmented Generation (RAG), +initializing with parameters such as the embedding model (``all-MiniLM-L6-v2`` by default), vector dimension, +top-k retrieval count, and token limits for context. It utilizes a tokenizer for token counting, a +SentenceTransformer for embeddings, and a FAISS index for similarity searches, while also maintaining +document data and metadata. The ``load_text_file`` method processes large text files into manageable chunks +by splitting the content into fixed line groups, facilitating easier embedding and storage. To handle +multiple files, ``add_documents_from_directory`` iterates over text files in a directory, embeds the content, +and stores them in the FAISS index along with metadata. Token counting is achieved via the ``count_tokens`` +method, leveraging a tokenizer to precisely determine the number of tokens in a given text. The +``retrieve_and_truncate_context`` method fetches the most relevant documents from the FAISS index based on +query embeddings, truncating the context to adhere to token limits. Finally, the ``generate_response`` method +constructs a comprehensive prompt by combining the retrieved context and query, invokes the provided model +client for a response, and parses the results into a readable format. This pipeline demonstrates seamless +integration of text retrieval and generation to handle large-scale document queries effectively. + + +.. code-block:: python + + class AdalflowRAGPipeline: + def __init__(self, + model_client=None, + model_kwargs=None, + embedding_model='all-MiniLM-L6-v2', + vector_dim=384, + top_k_retrieval=3, + max_context_tokens=800): + """ + Initialize RAG Pipeline for handling large text files + + Args: + embedding_model (str): Sentence transformer model for embeddings + vector_dim (int): Dimension of embedding vectors + top_k_retrieval (int): Number of documents to retrieve + max_context_tokens (int): Maximum tokens to send to LLM + """ + # Initialize model client for generation + self.model_client = model_client + + # Initialize tokenizer for precise token counting + self.tokenizer = tiktoken.get_encoding("cl100k_base") + + # Initialize embedding model + self.embedding_model = SentenceTransformer(embedding_model) + + # Initialize FAISS index for vector similarity search + self.index = IndexFlatL2(vector_dim) + + # Store document texts, embeddings, and metadata + self.documents = [] + self.document_embeddings = [] + self.document_metadata = [] + + # Retrieval and context management parameters + self.top_k_retrieval = top_k_retrieval + self.max_context_tokens = max_context_tokens + + # Model generation parameters + self.model_kwargs = model_kwargs + + def load_text_file(self, file_path: str) -> List[str]: + """ + Load a large text file and split into manageable chunks + + Args: + file_path (str): Path to the text file + + Returns: + List[str]: List of document chunks + """ + with open(file_path, 'r', encoding='utf-8') as file: + # Read entire file + content = file.read() + + # Split content into chunks (e.g., 10 lines per chunk) + lines = content.split('\n') + chunks = [] + chunk_size = 10 # Adjust based on your file structure + + for i in range(0, len(lines), chunk_size): + chunk = '\n'.join(lines[i:i+chunk_size]) + chunks.append(chunk) + + return chunks + + def add_documents_from_directory(self, directory_path: str): + """ + Add documents from all text files in a directory + + Args: + directory_path (str): Path to directory containing text files + """ + for filename in os.listdir(directory_path): + if filename.endswith('.txt'): + file_path = os.path.join(directory_path, filename) + document_chunks = self.load_text_file(file_path) + + for chunk in document_chunks: + # Embed document chunk + embedding = self.embedding_model.encode(chunk) + + # Add to index and document store + self.index.add(np.array([embedding])) + self.documents.append(chunk) + self.document_embeddings.append(embedding) + self.document_metadata.append({ + 'filename': filename, + 'chunk_index': len(self.document_metadata) + }) + + def count_tokens(self, text: str) -> int: + """ + Count tokens in a given text + + Args: + text (str): Input text + + Returns: + int: Number of tokens + """ + return len(self.tokenizer.encode(text)) + + def retrieve_and_truncate_context(self, query: str) -> str: + """ + Retrieve relevant documents and truncate to fit token limit + + Args: + query (str): Input query + + Returns: + str: Concatenated context within token limit + """ + # Retrieve relevant documents + query_embedding = self.embedding_model.encode(query) + distances, indices = self.index.search( + np.array([query_embedding]), + self.top_k_retrieval + ) + + # Collect and truncate context + context = [] + current_tokens = 0 + + for idx in indices[0]: + doc = self.documents[idx] + doc_tokens = self.count_tokens(doc) + + # Check if adding this document would exceed token limit + if current_tokens + doc_tokens <= self.max_context_tokens: + context.append(doc) + current_tokens += doc_tokens + else: + break + + return "\n\n".join(context) + + def generate_response(self, query: str) -> str: + """ + Generate a response using retrieval-augmented generation + + Args: + query (str): User's input query + + Returns: + str: Generated response incorporating retrieved context + """ + # Retrieve and truncate context + retrieved_context = self.retrieve_and_truncate_context(query) + + # Construct context-aware prompt + full_prompt = f""" + Context Documents: + {retrieved_context} + + Query: {query} + + Generate a comprehensive response that: + 1. Directly answers the query + 2. Incorporates relevant information from the context documents + 3. Provides clear and concise information + """ + + # Prepare API arguments + api_kwargs = self.model_client.convert_inputs_to_api_kwargs( + input=full_prompt, + model_kwargs=self.model_kwargs, + model_type=ModelType.LLM + ) + + # Call API and parse response + response = self.model_client.call( + api_kwargs=api_kwargs, + model_type=ModelType.LLM + ) + response_text = self.model_client.parse_chat_completion(response) + + return response_text + +The ``run_rag_pipeline`` function demonstrates how to use the ``AdalflowRAGPipeline``. It initializes the pipeline, +adds documents from a directory, and generates responses for a list of user queries. The function is generic +and can accommodate various LLM API clients, such as GroqAPIClient or OpenAIClient, highlighting the pipeline's +flexibility and modularity. + + +.. code-block:: python + + def run_rag_pipeline(model_client, model_kwargs, documents, queries): + + # Example usage of RAG pipeline + rag_pipeline = AdalflowRAGPipeline( + model_client=model_client, + model_kwargs=model_kwargs, + top_k_retrieval=1, # Retrieve top 1 most relevant chunks + max_context_tokens=800 # Limit context to 1500 tokens + ) + + # Add documents from a directory of text files + rag_pipeline.add_documents_from_directory(documents) + + # Generate responses + for query in queries: + print(f"\nQuery: {query}") + response = rag_pipeline.generate_response(query) + print(f"Response: {response}") + + +This block provides an example of running the pipeline with different models and queries. It specifies: + +- The document directory containing the text files. +- Example queries about topics such as the "Crystal Cavern" and "rare trees in Elmsworth." +- Configuration for Groq and OpenAI model parameters, including the model type, temperature, and token limits. + +.. code-block:: python + + documents = '../../tutorials/assets/documents' + + queries = [ + "What year was the Crystal Cavern discovered?", + "What is the name of the rare tree in Elmsworth?", + "What local legend claim that Lunaflits surrounds?" + ] + + groq_model_kwargs = { + "model": "llama-3.2-1b-preview", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + openai_model_kwargs = { + "model": "gpt-3.5-turbo", + "temperature": 0.1, + "max_tokens": 800, + } + # Below example shows that adalflow can be used in a genric manner for any api provider + # without worrying about prompt and parsing results + run_rag_pipeline(GroqAPIClient(), groq_model_kwargs, documents, queries) + run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries) + +The example emphasizes that ``AdalflowRAGPipeline`` can interact seamlessly with multiple API providers, +enabling integration with diverse LLMs without modifying the core logic for prompt construction or +response parsing. + + +.. admonition:: API reference + :class: highlight + + - :class:`utils.setup_env` + - :class:`core.types.ModelType` + - :class:`components.model_client.OpenAIClient` + - :class:`components.model_client.GroqAPIClient` diff --git a/docs/source/use_cases/rag_vanilla.rst b/docs/source/use_cases/rag_vanilla.rst new file mode 100644 index 00000000..1a80bbbf --- /dev/null +++ b/docs/source/use_cases/rag_vanilla.rst @@ -0,0 +1,263 @@ +.. raw:: html + + + +RAG Vanilla +============================= + +Overview +-------- + +The **RAG Vanilla** implementation is a Retrieval-Augmented Generation pipeline that integrates document +retrieval with natural language generation. This approach allows users to retrieve contextually relevant +documents from a knowledge base and generate informative responses. The code leverages components such as +sentence embeddings, FAISS indexing, and a large language model (LLM) API client. + + +**Imports** + +- **SentenceTransformer**: Used for creating dense vector embeddings for textual data. +- **FAISS**: Provides efficient similarity search using vector indexing. +- **GroqAPIClient and OpenAIClient**: Custom classes for interacting with different LLM providers. +- **ModelType**: Enum for specifying the model type. + +.. code-block:: python + + import os + from typing import List, Dict + import numpy as np + from sentence_transformers import SentenceTransformer + from faiss import IndexFlatL2 + + from adalflow.components.model_client import GroqAPIClient, OpenAIClient + from adalflow.core.types import ModelType + from adalflow.utils import setup_env + + +**Pipeline Initialization** + +- **Model Client**: Abstracts the API calls to the chosen LLM provider. +- **Embedding Model**: Defaulted to ``all-MiniLM-L6-v2``, generates 384-dimensional embeddings. +- **Vector Dimension**: Dimensionality of the embedding vectors generated by the embedding model ``all-MiniLM-L6-v2``. +- **Top K Retrieval**: Specifies the number of most relevant documents to retrieve. + +The ``add_documents()`` function encodes the documents into embeddings and stores them in the FAISS index. It +uses the SentenceTransformer model to generate vector representations of the text. These embeddings are then +added to the FAISS index for efficient similarity search and are also stored in a list for later retrieval. + +The ``retrieve_relevant_docs()`` function takes a query string as input and retrieves the top k documents +that are most relevant to the query based on their similarity. The query is first encoded into an embedding, +and then the FAISS index is used to perform a similarity search to identify the documents that are closest +in meaning to the query. + +The ``generate_response()`` function constructs a context-aware prompt by combining the retrieved documents +with the user's query. It then calls the model_client to generate a response from the language model. The +conversation history is also maintained, logging each query and its corresponding response for future +reference and context. + + +.. code-block:: python + + class AdalflowRAGPipeline: + def __init__(self, + model_client = None, + model_kwargs = None, + embedding_model='all-MiniLM-L6-v2', + vector_dim=384, + top_k_retrieval=1): + """ + Initialize RAG Pipeline with embedding and retrieval components + + Args: + embedding_model (str): Sentence transformer model for embeddings + vector_dim (int): Dimension of embedding vectors + top_k_retrieval (int): Number of documents to retrieve + """ + # Initialize model client for generation + self.model_client = model_client + + # Initialize embedding model + self.embedding_model = SentenceTransformer(embedding_model) + + # Initialize FAISS index for vector similarity search + self.index = IndexFlatL2(vector_dim) + + # Store document texts and their embeddings + self.documents = [] + self.document_embeddings = [] + + # Retrieval parameters + self.top_k_retrieval = top_k_retrieval + + # Conversation history and context + self.conversation_history = "" + self.model_kwargs = model_kwargs + + def add_documents(self, documents: List[str]): + """ + Add documents to the RAG pipeline's knowledge base + + Args: + documents (List[str]): List of document texts to add + """ + for doc in documents: + # Embed document + embedding = self.embedding_model.encode(doc) + + # Add to index and document store + self.index.add(np.array([embedding])) + self.documents.append(doc) + self.document_embeddings.append(embedding) + + def retrieve_relevant_docs(self, query: str) -> List[str]: + """ + Retrieve most relevant documents for a given query + + Args: + query (str): Input query to find relevant documents + + Returns: + List[str]: Top k most relevant documents + """ + # Embed query + query_embedding = self.embedding_model.encode(query) + + # Perform similarity search + distances, indices = self.index.search( + np.array([query_embedding]), + self.top_k_retrieval + ) + + # Retrieve and return top documents + return [self.documents[i] for i in indices[0]] + + def generate_response(self, query: str) -> str: + """ + Generate a response using retrieval-augmented generation + + Args: + query (str): User's input query + + Returns: + str: Generated response incorporating retrieved context + """ + # Retrieve relevant documents + retrieved_docs = self.retrieve_relevant_docs(query) + + # Construct context-aware prompt + context = "\n\n".join([f"Context Document: {doc}" for doc in retrieved_docs]) + full_prompt = f""" + Context: + {context} + + Query: {query} + + Generate a comprehensive and informative response that: + 1. Uses the provided context documents + 2. Directly answers the query + 3. Incorporates relevant information from the context + """ + + # Prepare API arguments + api_kwargs = self.model_client.convert_inputs_to_api_kwargs( + input=full_prompt, + model_kwargs=self.model_kwargs, + model_type=ModelType.LLM + ) + + # Call API and parse response + response = self.model_client.call( + api_kwargs=api_kwargs, + model_type=ModelType.LLM + ) + response_text = self.model_client.parse_chat_completion(response) + + # Update conversation history + self.conversation_history += f"\nQuery: {query}\nResponse: {response_text}" + + return response_text + +**Running the Pipeline** + +- **Pipeline Workflow**: + 1. Initializes the ``AdalflowRAGPipeline``. + 2. Adds documents to the knowledge base. + 3. Processes each query to retrieve documents and generate responses. + + +.. code-block:: python + + def run_rag_pipeline(model_client, model_kwargs, documents, queries): + rag_pipeline = AdalflowRAGPipeline(model_client=model_client, model_kwargs=model_kwargs) + + rag_pipeline.add_documents(documents) + + # Generate responses + for query in queries: + print(f"\nQuery: {query}") + response = rag_pipeline.generate_response(query) + print(f"Response: {response}") + +- **Documents**: Serve as the knowledge base for validation. +- **Queries**: Designed to test retrieval and generation specific to document content. + +.. code-block:: python + + # ajithvcoder's statements are added so that we can validate that the LLM is generating from these lines only + documents = [ + "ajithvcoder is a good person whom the world knows as Ajith Kumar, ajithvcoder is his nick name that AjithKumar gave himself", + "The Eiffel Tower is a famous landmark in Paris, built in 1889 for the World's Fair.", + "ajithvcoder likes Hyderabadi panner dum briyani much.", + "The Louvre Museum in Paris is the world's largest art museum, housing thousands of works of art.", + "ajithvcoder has a engineering degree and he graduated on May, 2016." + ] + + # Questions related to ajithvcoder's are added so that we can validate + # that the LLM is generating from above given lines only + queries = [ + "Does Ajith Kumar has any nick name ?", + "What is the ajithvcoder's favourite food?", + "When did ajithvcoder graduated ?" + ] + +**API Integration** + +- **Generic API Client**: Demonstrates flexibility in using different LLM APIs like Groq and OpenAI without altering the core pipeline logic. + +.. code-block:: python + + groq_model_kwargs = { + "model": "llama-3.2-1b-preview", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + openai_model_kwargs = { + "model": "gpt-3.5-turbo", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + # Below example shows that adalflow can be used in a genric manner for any api provider + # without worrying about prompt and parsing results + model_client = GroqAPIClient() + run_rag_pipeline(model_client, groq_model_kwargs, documents, queries) + run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries) + + +.. admonition:: API reference + :class: highlight + + - :class:`utils.setup_env` + - :class:`core.types.ModelType` + - :class:`components.model_client.OpenAIClient` + - :class:`components.model_client.GroqAPIClient` diff --git a/notebooks/adalflow_colab_template.ipynb b/notebooks/adalflow_colab_template.ipynb index 39715816..bcb5d294 100644 --- a/notebooks/adalflow_colab_template.ipynb +++ b/notebooks/adalflow_colab_template.ipynb @@ -54,6 +54,9 @@ "from IPython.display import clear_output\n", "\n", "!pip install -U adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", "\n", "clear_output()" ] diff --git a/notebooks/qas/adalflow_object_count_auto_optimization.ipynb b/notebooks/qas/adalflow_object_count_auto_optimization.ipynb index 9308ea7f..453a22c9 100644 --- a/notebooks/qas/adalflow_object_count_auto_optimization.ipynb +++ b/notebooks/qas/adalflow_object_count_auto_optimization.ipynb @@ -58,7 +58,9 @@ "from IPython.display import clear_output\n", "\n", "!pip install -U adalflow[openai,groq,datasets]\n", - "\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", "clear_output()" ] }, diff --git a/notebooks/tutorials/adalflow_classification_optimization.ipynb b/notebooks/tutorials/adalflow_classification_optimization.ipynb index c6bddc7e..e914003e 100644 --- a/notebooks/tutorials/adalflow_classification_optimization.ipynb +++ b/notebooks/tutorials/adalflow_classification_optimization.ipynb @@ -1,461 +1,466 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# 🤗 Welcome to AdalFlow!\n", - "## The PyTorch library to auto-optimize any LLM task pipelines\n", - "\n", - "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", - "\n", - "\n", - "# Quick Links\n", - "\n", - "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", - "\n", - "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", - "\n", - "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", - "\n", - "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", - "\n", - "## 📖 Outline\n", - "\n", - "This is the code for a classification optimization tutorial ![image.png]()\n" - ], - "metadata": { - "id": "xHF95Kr4CzGq" - } - }, - { - "cell_type": "markdown", - "source": [ - "\n", - "# Installation\n", - "\n", - "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq` from the extra packages.\n", - "\n", - " ```bash\n", - " pip install adalflow[openai,groq]\n", - " ```\n", - "2. Setup `openai` and `groq` API key in the environment variables\n", - "\n", - "You can choose to use different client. You can import the model client you prefer. We support `Anthropic`, `Cohere`, `Google`, `GROQ`, `OpenAI`, `Transformer` and more in development. We will use OpenAI here as an example.Please refer to our [full installation guide](https://adalflow.sylph.ai/get_started/installation.html)" - ], - "metadata": { - "id": "Kof5M6DRaKhh" - } - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "id": "tAp3eDjOCma1" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai] # also install the package for the model client you'll use\n", - "!pip install datasets\n", - "clear_output()" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Set Environment Variables\n", - "\n", - "Run the following code and pass your api key.\n", - "\n", - "Note: for normal `.py` projects, follow our [official installation guide](https://lightrag.sylph.ai/get_started/installation.html).\n", - "\n", - "*Go to [OpenAI](https://platform.openai.com/docs/introduction) to get API keys if you don't already have.*" - ], - "metadata": { - "id": "KapUyHMM07pJ" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "xHF95Kr4CzGq" + }, + "source": [ + "# 🤗 Welcome to AdalFlow!\n", + "## The PyTorch library to auto-optimize any LLM task pipelines\n", + "\n", + "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", + "\n", + "\n", + "# Quick Links\n", + "\n", + "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", + "\n", + "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", + "\n", + "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", + "\n", + "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", + "\n", + "## 📖 Outline\n", + "\n", + "This is the code for a classification optimization tutorial ![image.png]()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kof5M6DRaKhh" + }, + "source": [ + "\n", + "# Installation\n", + "\n", + "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq` from the extra packages.\n", + "\n", + " ```bash\n", + " pip install adalflow[openai,groq]\n", + " ```\n", + "2. Setup `openai` and `groq` API key in the environment variables\n", + "\n", + "You can choose to use different client. You can import the model client you prefer. We support `Anthropic`, `Cohere`, `Google`, `GROQ`, `OpenAI`, `Transformer` and more in development. We will use OpenAI here as an example.Please refer to our [full installation guide](https://adalflow.sylph.ai/get_started/installation.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "tAp3eDjOCma1" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai] # also install the package for the model client you'll use\n", + "!pip install datasets\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "clear_output()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KapUyHMM07pJ" + }, + "source": [ + "## Set Environment Variables\n", + "\n", + "Run the following code and pass your api key.\n", + "\n", + "Note: for normal `.py` projects, follow our [official installation guide](https://lightrag.sylph.ai/get_started/installation.html).\n", + "\n", + "*Go to [OpenAI](https://platform.openai.com/docs/introduction) to get API keys if you don't already have.*" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ONfzF9Puzdd_", + "outputId": "e5c3cfc5-69cb-448a-c248-a8cebda5ba71" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "\n", + "print(\"API keys have been set.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "id": "ZZIEtZYHNVjo" + }, + "outputs": [], + "source": [ + "from dataclasses import dataclass, field\n", + "from typing import List, Dict, Union, Optional, Tuple, Any, Callable\n", + "from datasets import load_dataset\n", + "from adalflow.components.model_client import OpenAIClient\n", + "import adalflow as adal\n", + "from adalflow.core.component import Component\n", + "from adalflow.datasets.types import TrecData\n", + "from adalflow.eval.answer_match_acc import AnswerMatchAcc\n", + "\n", + "\n", + "_COARSE_LABELS = [\n", + " \"ABBR\",\n", + " \"DESC\",\n", + " \"ENTY\",\n", + " \"HUM\",\n", + " \"LOC\",\n", + " \"NUM\"\n", + "]\n", + "\n", + "_COARSE_LABELS_DESC = [\n", + " \"Abbreviation: Questions about abbreviations and their meanings\",\n", + " \"Description: Questions seeking descriptions of people, things, or concepts\",\n", + " \"Entity: Questions about entities (e.g., animals, colors, inventions)\",\n", + " \"Human: Questions about people or organizations\",\n", + " \"Location: Questions about places, cities, countries\",\n", + " \"Numeric: Questions seeking numeric answers (e.g., dates, amounts, distances)\"\n", + "]\n", + "\n", + "\n", + "template = r\"\"\"\n", + " {{system_prompt}}\n", + " {% if output_format_str is not none %}\n", + " {{output_format_str}}\n", + " {% endif %}\n", + " {% if few_shot_demos is not none %}\n", + " Here are some examples:\n", + " {{few_shot_demos}}\n", + " {% endif %}\n", + " \n", + " \n", + " {{input_str}}\n", + " \n", + " \"\"\"\n", + "\n", + "task_desc_template = r\"\"\"You are a classifier. Given a question, you need to classify it into one of the following classes:\n", + " Format: class_index. class_name, class_description\n", + " {% if classes %}\n", + " {% for class in classes %}\n", + " {{loop.index-1}}. {{class.label}}, {{class.desc}}\n", + " {% endfor %}\n", + " {% endif %}\n", + " - Do not try to answer the question:\n", + " \"\"\"\n", + "\n", + "@dataclass\n", + "class TRECExtendedData(TrecData):\n", + " rationale: str = field(\n", + " metadata={\n", + " \"desc\": \"Your step-by-step reasoning to classify the question to class_name\"\n", + " },\n", + " default=None,\n", + " )\n", + " __input_fields__ = [\"question\"]\n", + " __output_fields__ = [\"rationale\", \"class_name\"] # it is important to have the rationale before the class_name" + ] }, - "id": "ONfzF9Puzdd_", - "outputId": "e5c3cfc5-69cb-448a-c248-a8cebda5ba71" - }, - "execution_count": 43, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Please enter your OpenAI API key: ··········\n", - "API keys have been set.\n" - ] + "cell_type": "code", + "execution_count": 50, + "metadata": { + "id": "3Q3H9XC4Ncfi" + }, + "outputs": [], + "source": [ + "class TRECClassifierStructuredOutput(adal.Component):\n", + "\n", + " def __init__(self, model_client: adal.ModelClient, model_kwargs: Dict):\n", + " super().__init__()\n", + "\n", + " label_desc = [\n", + " {\"label\": label, \"desc\": desc}\n", + " for label, desc in zip(_COARSE_LABELS, _COARSE_LABELS_DESC)\n", + " ]\n", + "\n", + " task_desc_str = adal.Prompt(\n", + " template=task_desc_template, prompt_kwargs={\"classes\": label_desc}\n", + " )()\n", + "\n", + " self.data_class = TRECExtendedData\n", + " self.data_class.set_task_desc(task_desc_str)\n", + "\n", + " self.parser = adal.DataClassParser(\n", + " data_class=self.data_class, return_data_class=True, format_type=\"yaml\"\n", + " )\n", + "\n", + " prompt_kwargs = {\n", + " \"system_prompt\": adal.Parameter(\n", + " data=self.parser.get_task_desc_str(),\n", + " role_desc=\"Task description\",\n", + " requires_opt=True,\n", + " param_type=adal.ParameterType.PROMPT,\n", + " ),\n", + " \"output_format_str\": adal.Parameter(\n", + " data=self.parser.get_output_format_str(),\n", + " role_desc=\"Output format requirements\",\n", + " requires_opt=False,\n", + " param_type=adal.ParameterType.PROMPT,\n", + " ),\n", + " \"few_shot_demos\": adal.Parameter(\n", + " data=None,\n", + " requires_opt=True,\n", + " role_desc=\"Few shot examples to help the model\",\n", + " param_type=adal.ParameterType.DEMOS,\n", + " ),\n", + " }\n", + "\n", + " self.llm = adal.Generator(\n", + " model_client=model_client,\n", + " model_kwargs=model_kwargs,\n", + " prompt_kwargs=prompt_kwargs,\n", + " template=template,\n", + " output_processors=self.parser,\n", + " use_cache=True,\n", + " )\n", + "\n", + " def _prepare_input(self, question: str):\n", + " input_data = self.data_class(question=question)\n", + " input_str = self.parser.get_input_str(input_data)\n", + " prompt_kwargs = {\n", + " \"input_str\": adal.Parameter(\n", + " data=input_str, requires_opt=False, role_desc=\"input to the LLM\"\n", + " )\n", + " }\n", + " return prompt_kwargs\n", + "\n", + " def call(\n", + " self, question: str, id: Optional[str] = None\n", + " ) -> Union[adal.GeneratorOutput, adal.Parameter]:\n", + " prompt_kwargs = self._prepare_input(question)\n", + " output = self.llm(prompt_kwargs=prompt_kwargs, id=id)\n", + " return output" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "id": "HpkQYsh2NevT" + }, + "outputs": [], + "source": [ + "class TrecClassifierAdal(adal.AdalComponent):\n", + " def __init__(\n", + " self,\n", + " model_client: adal.ModelClient,\n", + " model_kwargs: Dict,\n", + " teacher_model_config: Dict,\n", + " backward_engine_model_config: Dict,\n", + " text_optimizer_model_config: Dict,\n", + " ):\n", + " task = TRECClassifierStructuredOutput(model_client, model_kwargs)\n", + " eval_fn = AnswerMatchAcc(type=\"exact_match\").compute_single_item\n", + " loss_fn = adal.EvalFnToTextLoss(\n", + " eval_fn=eval_fn,\n", + " eval_fn_desc=\"exact_match: 1 if str(y) == str(y_gt) else 0\",\n", + " )\n", + " super().__init__(\n", + " task=task,\n", + " eval_fn=eval_fn,\n", + " loss_fn=loss_fn,\n", + " backward_engine_model_config=backward_engine_model_config,\n", + " text_optimizer_model_config=text_optimizer_model_config,\n", + " teacher_model_config=teacher_model_config,\n", + " )\n", + "\n", + " def prepare_task(self, sample: TRECExtendedData):\n", + " return self.task.call, {\"question\": sample.question, \"id\": sample.id}\n", + "\n", + " def prepare_eval(\n", + " self, sample: TRECExtendedData, y_pred: adal.GeneratorOutput\n", + " ) -> float:\n", + " y_label = -1\n", + " if y_pred and y_pred.data is not None and y_pred.data.class_name is not None:\n", + " y_label = y_pred.data.class_name\n", + " return self.eval_fn, {\"y\": y_label, \"y_gt\": sample.class_name}\n", + "\n", + " def prepare_loss(\n", + " self, sample: TRECExtendedData, y_pred: adal.Parameter, *args, **kwargs\n", + " ) -> Tuple[Callable[..., Any], Dict]:\n", + " full_response = y_pred.full_response\n", + " y_label = -1\n", + " if (\n", + " full_response\n", + " and full_response.data is not None\n", + " and full_response.data.class_name is not None\n", + " ):\n", + " y_label = full_response.data.class_name\n", + "\n", + " y_pred.eval_input = y_label\n", + " y_gt = adal.Parameter(\n", + " name=\"y_gt\",\n", + " data=sample.class_name,\n", + " eval_input=sample.class_name,\n", + " requires_opt=False,\n", + " )\n", + " return self.loss_fn, {\"kwargs\": {\"y\": y_pred, \"y_gt\": y_gt}}" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "PEj6xiZ5dVaj" + }, + "outputs": [], + "source": [ + "def train(\n", + " model_client: adal.ModelClient,\n", + " model_kwargs: Dict,\n", + " train_batch_size=4,\n", + " raw_shots: int = 0,\n", + " bootstrap_shots: int = 1,\n", + " max_steps=12,\n", + " num_workers=4,\n", + " strategy=\"constrained\",\n", + " optimization_order=\"sequential\",\n", + " debug=False,\n", + "):\n", + " print(\"Starting training process...\")\n", + "\n", + " # Define the model configuration for all components\n", + " gpt_4o_model = {\n", + " \"model\": \"gpt-4-turbo-preview\",\n", + " \"temperature\": 0,\n", + " \"max_tokens\": 1000,\n", + " \"top_p\": 1,\n", + " \"frequency_penalty\": 0,\n", + " \"presence_penalty\": 0\n", + " }\n", + " print(f\"Component model configuration: {gpt_4o_model}\")\n", + "\n", + " try:\n", + " print(\"Initializing ADAL component...\")\n", + " adal_component = TrecClassifierAdal(\n", + " model_client=model_client,\n", + " model_kwargs=model_kwargs,\n", + " text_optimizer_model_config=gpt_4o_model,\n", + " backward_engine_model_config=gpt_4o_model,\n", + " teacher_model_config=gpt_4o_model,\n", + " )\n", + " print(\"ADAL component initialized successfully\")\n", + "\n", + " print(\"Initializing trainer...\")\n", + " trainer = adal.Trainer(\n", + " train_batch_size=train_batch_size,\n", + " adaltask=adal_component,\n", + " strategy=strategy,\n", + " max_steps=max_steps,\n", + " num_workers=num_workers,\n", + " raw_shots=raw_shots,\n", + " bootstrap_shots=bootstrap_shots,\n", + " debug=debug,\n", + " weighted_sampling=True,\n", + " optimization_order=optimization_order,\n", + " exclude_input_fields_from_bootstrap_demos=True,\n", + " )\n", + " print(\"Trainer initialized successfully\")\n", + "\n", + " print(\"Loading datasets...\")\n", + " train_dataset, val_dataset, test_dataset = load_datasets()\n", + " print(f\"Datasets loaded - Train size: {len(train_dataset)}, Val size: {len(val_dataset)}, Test size: {len(test_dataset)}\")\n", + "\n", + " print(\"Starting model training...\")\n", + " trainer.fit(\n", + " train_dataset=train_dataset,\n", + " val_dataset=test_dataset,\n", + " debug=debug,\n", + " )\n", + " print(\"Training completed successfully\")\n", + "\n", + " except Exception as e:\n", + " print(f\"Error occurred: {str(e)}\")\n", + " raise" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "GnlZBQOMEj6E" + }, + "outputs": [], + "source": [ + "from adalflow.components.model_client.openai_client import OpenAIClient\n", + "\n", + "\n", + "gpt_4o_model = {\n", + " \"model_client\": OpenAIClient(),\n", + " \"model_kwargs\": {\n", + " \"model\": \"gpt-4o-mini\",\n", + " \"max_tokens\": 2000,\n", + "\n", + " },\n", + "}\n", + "\n", + "\n", + "train(\n", + " model_client=OpenAIClient(),\n", + " model_kwargs=gpt_4o_model,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AmkbyxmuruUu" + }, + "source": [ + "# Issues and feedback\n", + "\n", + "If you encounter any issues, please report them here: [GitHub Issues](https://github.com/SylphAI-Inc/LightRAG/issues).\n", + "\n", + "For feedback, you can use either the [GitHub discussions](https://github.com/SylphAI-Inc/LightRAG/discussions) or [Discord](https://discord.gg/ezzszrRZvT)." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] - }, - { - "cell_type": "code", - "source": [ - "from dataclasses import dataclass, field\n", - "from typing import List, Dict, Union, Optional, Tuple, Any, Callable\n", - "from datasets import load_dataset\n", - "from adalflow.components.model_client import OpenAIClient\n", - "import adalflow as adal\n", - "from adalflow.core.component import Component\n", - "from adalflow.datasets.types import TrecData\n", - "from adalflow.eval.answer_match_acc import AnswerMatchAcc\n", - "\n", - "\n", - "_COARSE_LABELS = [\"ABBR\", \"DESC\", \"ENTY\", \"HUM\", \"LOC\", \"NUM\"]\n", - "\n", - "_COARSE_LABELS_DESC = [\n", - " \"Abbreviation: Questions about abbreviations and their meanings\",\n", - " \"Description: Questions seeking descriptions of people, things, or concepts\",\n", - " \"Entity: Questions about entities (e.g., animals, colors, inventions)\",\n", - " \"Human: Questions about people or organizations\",\n", - " \"Location: Questions about places, cities, countries\",\n", - " \"Numeric: Questions seeking numeric answers (e.g., dates, amounts, distances)\",\n", - "]\n", - "\n", - "\n", - "template = r\"\"\"\n", - " {{system_prompt}}\n", - " {% if output_format_str is not none %}\n", - " {{output_format_str}}\n", - " {% endif %}\n", - " {% if few_shot_demos is not none %}\n", - " Here are some examples:\n", - " {{few_shot_demos}}\n", - " {% endif %}\n", - " \n", - " \n", - " {{input_str}}\n", - " \n", - " \"\"\"\n", - "\n", - "task_desc_template = r\"\"\"You are a classifier. Given a question, you need to classify it into one of the following classes:\n", - " Format: class_index. class_name, class_description\n", - " {% if classes %}\n", - " {% for class in classes %}\n", - " {{loop.index-1}}. {{class.label}}, {{class.desc}}\n", - " {% endfor %}\n", - " {% endif %}\n", - " - Do not try to answer the question:\n", - " \"\"\"\n", - "\n", - "\n", - "@dataclass\n", - "class TRECExtendedData(TrecData):\n", - " rationale: str = field(\n", - " metadata={\n", - " \"desc\": \"Your step-by-step reasoning to classify the question to class_name\"\n", - " },\n", - " default=None,\n", - " )\n", - " __input_fields__ = [\"question\"]\n", - " __output_fields__ = [\n", - " \"rationale\",\n", - " \"class_name\",\n", - " ] # it is important to have the rationale before the class_name" - ], - "metadata": { - "id": "ZZIEtZYHNVjo" - }, - "execution_count": 49, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "class TRECClassifierStructuredOutput(adal.Component):\n", - "\n", - " def __init__(self, model_client: adal.ModelClient, model_kwargs: Dict):\n", - " super().__init__()\n", - "\n", - " label_desc = [\n", - " {\"label\": label, \"desc\": desc}\n", - " for label, desc in zip(_COARSE_LABELS, _COARSE_LABELS_DESC)\n", - " ]\n", - "\n", - " task_desc_str = adal.Prompt(\n", - " template=task_desc_template, prompt_kwargs={\"classes\": label_desc}\n", - " )()\n", - "\n", - " self.data_class = TRECExtendedData\n", - " self.data_class.set_task_desc(task_desc_str)\n", - "\n", - " self.parser = adal.DataClassParser(\n", - " data_class=self.data_class, return_data_class=True, format_type=\"yaml\"\n", - " )\n", - "\n", - " prompt_kwargs = {\n", - " \"system_prompt\": adal.Parameter(\n", - " data=self.parser.get_task_desc_str(),\n", - " role_desc=\"Task description\",\n", - " requires_opt=True,\n", - " param_type=adal.ParameterType.PROMPT,\n", - " ),\n", - " \"output_format_str\": adal.Parameter(\n", - " data=self.parser.get_output_format_str(),\n", - " role_desc=\"Output format requirements\",\n", - " requires_opt=False,\n", - " param_type=adal.ParameterType.PROMPT,\n", - " ),\n", - " \"few_shot_demos\": adal.Parameter(\n", - " data=None,\n", - " requires_opt=True,\n", - " role_desc=\"Few shot examples to help the model\",\n", - " param_type=adal.ParameterType.DEMOS,\n", - " ),\n", - " }\n", - "\n", - " self.llm = adal.Generator(\n", - " model_client=model_client,\n", - " model_kwargs=model_kwargs,\n", - " prompt_kwargs=prompt_kwargs,\n", - " template=template,\n", - " output_processors=self.parser,\n", - " use_cache=True,\n", - " )\n", - "\n", - " def _prepare_input(self, question: str):\n", - " input_data = self.data_class(question=question)\n", - " input_str = self.parser.get_input_str(input_data)\n", - " prompt_kwargs = {\n", - " \"input_str\": adal.Parameter(\n", - " data=input_str, requires_opt=False, role_desc=\"input to the LLM\"\n", - " )\n", - " }\n", - " return prompt_kwargs\n", - "\n", - " def call(\n", - " self, question: str, id: Optional[str] = None\n", - " ) -> Union[adal.GeneratorOutput, adal.Parameter]:\n", - " prompt_kwargs = self._prepare_input(question)\n", - " output = self.llm(prompt_kwargs=prompt_kwargs, id=id)\n", - " return output" - ], - "metadata": { - "id": "3Q3H9XC4Ncfi" - }, - "execution_count": 50, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "class TrecClassifierAdal(adal.AdalComponent):\n", - " def __init__(\n", - " self,\n", - " model_client: adal.ModelClient,\n", - " model_kwargs: Dict,\n", - " teacher_model_config: Dict,\n", - " backward_engine_model_config: Dict,\n", - " text_optimizer_model_config: Dict,\n", - " ):\n", - " task = TRECClassifierStructuredOutput(model_client, model_kwargs)\n", - " eval_fn = AnswerMatchAcc(type=\"exact_match\").compute_single_item\n", - " loss_fn = adal.EvalFnToTextLoss(\n", - " eval_fn=eval_fn,\n", - " eval_fn_desc=\"exact_match: 1 if str(y) == str(y_gt) else 0\",\n", - " )\n", - " super().__init__(\n", - " task=task,\n", - " eval_fn=eval_fn,\n", - " loss_fn=loss_fn,\n", - " backward_engine_model_config=backward_engine_model_config,\n", - " text_optimizer_model_config=text_optimizer_model_config,\n", - " teacher_model_config=teacher_model_config,\n", - " )\n", - "\n", - " def prepare_task(self, sample: TRECExtendedData):\n", - " return self.task.call, {\"question\": sample.question, \"id\": sample.id}\n", - "\n", - " def prepare_eval(\n", - " self, sample: TRECExtendedData, y_pred: adal.GeneratorOutput\n", - " ) -> float:\n", - " y_label = -1\n", - " if y_pred and y_pred.data is not None and y_pred.data.class_name is not None:\n", - " y_label = y_pred.data.class_name\n", - " return self.eval_fn, {\"y\": y_label, \"y_gt\": sample.class_name}\n", - "\n", - " def prepare_loss(\n", - " self, sample: TRECExtendedData, y_pred: adal.Parameter, *args, **kwargs\n", - " ) -> Tuple[Callable[..., Any], Dict]:\n", - " full_response = y_pred.full_response\n", - " y_label = -1\n", - " if (\n", - " full_response\n", - " and full_response.data is not None\n", - " and full_response.data.class_name is not None\n", - " ):\n", - " y_label = full_response.data.class_name\n", - "\n", - " y_pred.eval_input = y_label\n", - " y_gt = adal.Parameter(\n", - " name=\"y_gt\",\n", - " data=sample.class_name,\n", - " eval_input=sample.class_name,\n", - " requires_opt=False,\n", - " )\n", - " return self.loss_fn, {\"kwargs\": {\"y\": y_pred, \"y_gt\": y_gt}}" - ], - "metadata": { - "id": "HpkQYsh2NevT" - }, - "execution_count": 51, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "def train(\n", - " model_client: adal.ModelClient,\n", - " model_kwargs: Dict,\n", - " train_batch_size=4,\n", - " raw_shots: int = 0,\n", - " bootstrap_shots: int = 1,\n", - " max_steps=12,\n", - " num_workers=4,\n", - " strategy=\"constrained\",\n", - " optimization_order=\"sequential\",\n", - " debug=False,\n", - "):\n", - " print(\"Starting training process...\")\n", - "\n", - " # Define the model configuration for all components\n", - " gpt_4o_model = {\n", - " \"model\": \"gpt-4-turbo-preview\",\n", - " \"temperature\": 0,\n", - " \"max_tokens\": 1000,\n", - " \"top_p\": 1,\n", - " \"frequency_penalty\": 0,\n", - " \"presence_penalty\": 0,\n", - " }\n", - " print(f\"Component model configuration: {gpt_4o_model}\")\n", - "\n", - " try:\n", - " print(\"Initializing ADAL component...\")\n", - " adal_component = TrecClassifierAdal(\n", - " model_client=model_client,\n", - " model_kwargs=model_kwargs,\n", - " text_optimizer_model_config=gpt_4o_model,\n", - " backward_engine_model_config=gpt_4o_model,\n", - " teacher_model_config=gpt_4o_model,\n", - " )\n", - " print(\"ADAL component initialized successfully\")\n", - "\n", - " print(\"Initializing trainer...\")\n", - " trainer = adal.Trainer(\n", - " train_batch_size=train_batch_size,\n", - " adaltask=adal_component,\n", - " strategy=strategy,\n", - " max_steps=max_steps,\n", - " num_workers=num_workers,\n", - " raw_shots=raw_shots,\n", - " bootstrap_shots=bootstrap_shots,\n", - " debug=debug,\n", - " weighted_sampling=True,\n", - " optimization_order=optimization_order,\n", - " exclude_input_fields_from_bootstrap_demos=True,\n", - " )\n", - " print(\"Trainer initialized successfully\")\n", - "\n", - " print(\"Loading datasets...\")\n", - " train_dataset, val_dataset, test_dataset = load_datasets()\n", - " print(\n", - " f\"Datasets loaded - Train size: {len(train_dataset)}, Val size: {len(val_dataset)}, Test size: {len(test_dataset)}\"\n", - " )\n", - "\n", - " print(\"Starting model training...\")\n", - " trainer.fit(\n", - " train_dataset=train_dataset,\n", - " val_dataset=test_dataset,\n", - " debug=debug,\n", - " )\n", - " print(\"Training completed successfully\")\n", - "\n", - " except Exception as e:\n", - " print(f\"Error occurred: {str(e)}\")\n", - " raise" - ], - "metadata": { - "id": "PEj6xiZ5dVaj" - }, - "execution_count": 52, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.components.model_client.openai_client import OpenAIClient\n", - "\n", - "\n", - "gpt_4o_model = {\n", - " \"model_client\": OpenAIClient(),\n", - " \"model_kwargs\": {\n", - " \"model\": \"gpt-4o-mini\",\n", - " \"max_tokens\": 2000,\n", - " },\n", - "}\n", - "\n", - "\n", - "train(\n", - " model_client=OpenAIClient(),\n", - " model_kwargs=gpt_4o_model,\n", - ")" - ], - "metadata": { - "id": "GnlZBQOMEj6E", - "collapsed": true - }, - "execution_count": null, - "outputs": [] }, - { - "cell_type": "markdown", - "source": [ - "# Issues and feedback\n", - "\n", - "If you encounter any issues, please report them here: [GitHub Issues](https://github.com/SylphAI-Inc/LightRAG/issues).\n", - "\n", - "For feedback, you can use either the [GitHub discussions](https://github.com/SylphAI-Inc/LightRAG/discussions) or [Discord](https://discord.gg/ezzszrRZvT)." - ], - "metadata": { - "id": "AmkbyxmuruUu" - } - } - ] + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/notebooks/tutorials/adalflow_component.ipynb b/notebooks/tutorials/adalflow_component.ipynb index 8523a629..80d5e3b2 100644 --- a/notebooks/tutorials/adalflow_component.ipynb +++ b/notebooks/tutorials/adalflow_component.ipynb @@ -1,48 +1,986 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 🤗 Welcome to AdalFlow!\n", - "## The library to build & auto-optimize any LLM task pipelines\n", - "\n", - "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", - "\n", - "\n", - "# Quick Links\n", - "\n", - "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", - "\n", - "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", - "\n", - "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", - "\n", - "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", - "\n", - "# Author\n", - "\n", - "This notebook was created by community contributor [Ajith](https://github.com/ajithvcoder).\n", - "\n", - "# Outline\n", - "\n", - "This is a quick introduction of what AdalFlow is capable of. We will cover:\n", - "\n", - "* How to use `DataClass` with `DataClassParser`.\n", - "* How to do nested dataclass, we will test both one and two levels of nesting.\n", - "\n", - "**Next: Try our [auto-optimization](https://colab.research.google.com/drive/1n3mHUWekTEYHiBdYBTw43TKlPN41A9za?usp=sharing)**\n", - "\n", - "\n", - "# Installation\n", - "\n", - "1. Use `pip` to install the `adalflow` Python package. We will need `openai` and `groq`from the extra packages.\n", - "\n", - " ```bash\n", - " pip install adalflow[openai,groq]\n", - " ```\n", - "2. Setup `openai` and `groq` API key in the environment variables" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 🤗 Welcome to AdalFlow!\n", + "## The library to build & auto-optimize any LLM task pipelines\n", + "\n", + "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", + "\n", + "\n", + "# Quick Links\n", + "\n", + "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", + "\n", + "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", + "\n", + "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", + "\n", + "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", + "\n", + "# Author\n", + "\n", + "This notebook was created by community contributor [Ajith](https://github.com/ajithvcoder).\n", + "\n", + "# Outline\n", + "\n", + "This is a quick introduction of what AdalFlow is capable of. We will cover:\n", + "\n", + "* How to use `DataClass` with `DataClassParser`.\n", + "* How to do nested dataclass, we will test both one and two levels of nesting.\n", + "\n", + "**Next: Try our [auto-optimization](https://colab.research.google.com/drive/1n3mHUWekTEYHiBdYBTw43TKlPN41A9za?usp=sharing)**\n", + "\n", + "\n", + "# Installation\n", + "\n", + "1. Use `pip` to install the `adalflow` Python package. We will need `openai` and `groq`from the extra packages.\n", + "\n", + " ```bash\n", + " pip install adalflow[openai,groq]\n", + " ```\n", + "2. Setup `openai` and `groq` API key in the environment variables" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "Ab_OmE6XTl4h" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai,groq,datasets]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "clear_output()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "PbAIsBeeTQUk" + }, + "outputs": [], + "source": [ + "import re\n", + "from adalflow.core import Component, Generator\n", + "from adalflow.components.model_client import OpenAIClient\n", + "from adalflow.components.model_client import GroqAPIClient\n", + "from adalflow.utils import setup_env # make sure you have a .env file with OPENAI_API_KEY and GROQ_API_KEY" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kRymwpwHTQUm", + "outputId": "6a992f52-1661-4002-ef74-ed26938c6baa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "from getpass import getpass\n", + "import os\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "\n", + "print(\"API keys have been set.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "czGDvnVUTQUm" + }, + "outputs": [], + "source": [ + "template_doc = r\"\"\" You are a doctor User: {{input_str}}\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PPs3gHqeTQUn" + }, + "source": [ + "Let's turn on the library log to help with debugging." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "98QNsOcSTQUn", + "outputId": "d63cba1b-6087-4b04-bb2b-0a9d9d4500a5" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from adalflow.utils import get_logger\n", + "get_logger()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "b3ey1lozTQUo" + }, + "outputs": [], + "source": [ + "#Toy example\n", + "\n", + "class DocQA(Component):\n", + " def __init__(self):\n", + " super(DocQA, self).__init__()\n", + " self.doc = Generator(\n", + " template=template_doc,\n", + " model_client=OpenAIClient(),\n", + " model_kwargs={\"model\": \"gpt-3.5-turbo\"},\n", + " )\n", + "\n", + " def call(self, query: str) -> str:\n", + " return self.doc(prompt_kwargs={\"input_str\": query}).data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TZAHSrbUTQUo", + "outputId": "66e81fb3-17f9-4570-dbbd-681cad1afc65" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:40:52 - prompt_builder - INFO - [prompt_builder.py:65:__init__] - Prompt has variables: ['input_str']\n", + "2024-11-11 17:40:52 - generator - INFO - [generator.py:144:__init__] - Generator Generator initialized.\n" + ] + } + ], + "source": [ + "doc = DocQA()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "f-y6l44PTQUp", + "outputId": "e24aabd5-d758-4700-fa0d-46b66a88c412" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'type': 'DocQA', 'data': {'_components': {'_ordered_dict': True, 'data': [('doc', {'type': 'Generator', 'data': {'model_str': 'OpenAIClient_gpt-3_5-turbo', 'cache_path': PosixPath('/root/.adalflow/cache_OpenAIClient_gpt-3_5-turbo.db'), 'callbacks': {'on_success': [], 'on_failure': [], 'on_complete': []}, 'cache': , '_components': {'_ordered_dict': True, 'data': [('prompt', {'type': 'Prompt', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'Prompt', '_init_args': {'template': None, 'prompt_kwargs': {}}, 'template': ' You are a doctor User: {{input_str}}', 'prompt_variables': ['input_str'], 'prompt_kwargs': {}}}), ('model_client', {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}})]}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'Generator', '_init_args': {'model_client': None, 'model_kwargs': {}, 'template': None, 'prompt_kwargs': {}, 'output_processors': None, 'name': None, 'cache_path': None, 'use_cache': False}, 'backward_engine': None, 'template': ' You are a doctor User: {{input_str}}', 'prompt_kwargs': {}, 'model_kwargs': {'model': 'gpt-3.5-turbo'}, 'output_processors': None, 'mock_output': False, 'mock_output_data': 'mock data', 'data_map_func': .default_map_func at 0x7b8d471c97e0>, '_use_cache': False, '_kwargs': {'model_client': {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}}, 'model_kwargs': {'model': 'gpt-3.5-turbo'}, 'template': ' You are a doctor User: {{input_str}}', 'prompt_kwargs': {}, 'output_processors': None, 'name': None, 'cache_path': None, 'use_cache': False}, '_teacher': None}})]}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'DocQA', '_init_args': {}}}\n" + ] + }, + { + "data": { + "text/plain": [ + "{'_components': OrderedDict([('doc',\n", + " Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo'}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str'])\n", + " (model_client): OpenAIClient()\n", + " ))]),\n", + " '_parameters': OrderedDict(),\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'DocQA',\n", + " '_init_args': {}}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# states\n", + "states = doc.to_dict()\n", + "print(states)\n", + "doc.__dict__" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z_sH59_bTQUp" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "P81kIS2qTQUp", + "outputId": "d8e0e398-d704-4a85-8692-66a8c570b910" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:40:58 - component - INFO - [component.py:350:_restore_value] - Restoring class using from_dict Generator, {'type': 'Generator', 'data': {'model_str': 'OpenAIClient_gpt-3_5-turbo', 'cache_path': PosixPath('/root/.adalflow/cache_OpenAIClient_gpt-3_5-turbo.db'), 'callbacks': {'on_success': [], 'on_failure': [], 'on_complete': []}, 'cache': , '_components': {'_ordered_dict': True, 'data': [('prompt', {'type': 'Prompt', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'Prompt', '_init_args': {'template': None, 'prompt_kwargs': {}}, 'template': ' You are a doctor User: {{input_str}}', 'prompt_variables': ['input_str'], 'prompt_kwargs': {}}}), ('model_client', {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}})]}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'Generator', '_init_args': {'model_client': None, 'model_kwargs': {}, 'template': None, 'prompt_kwargs': {}, 'output_processors': None, 'name': None, 'cache_path': None, 'use_cache': False}, 'backward_engine': None, 'template': ' You are a doctor User: {{input_str}}', 'prompt_kwargs': {}, 'model_kwargs': {'model': 'gpt-3.5-turbo'}, 'output_processors': None, 'mock_output': False, 'mock_output_data': 'mock data', 'data_map_func': .default_map_func at 0x7b8d471c97e0>, '_use_cache': False, '_kwargs': {'model_client': {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}}, 'model_kwargs': {'model': 'gpt-3.5-turbo'}, 'template': ' You are a doctor User: {{input_str}}', 'prompt_kwargs': {}, 'output_processors': None, 'name': None, 'cache_path': None, 'use_cache': False}, '_teacher': None}}\n", + "2024-11-11 17:40:58 - component - INFO - [component.py:350:_restore_value] - Restoring class using from_dict Prompt, {'type': 'Prompt', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'Prompt', '_init_args': {'template': None, 'prompt_kwargs': {}}, 'template': ' You are a doctor User: {{input_str}}', 'prompt_variables': ['input_str'], 'prompt_kwargs': {}}}\n", + "2024-11-11 17:40:58 - component - INFO - [component.py:350:_restore_value] - Restoring class using from_dict OpenAIClient, {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}}\n", + "2024-11-11 17:40:58 - component - INFO - [component.py:350:_restore_value] - Restoring class using from_dict OpenAIClient, {'type': 'OpenAIClient', 'data': {'_components': {'_ordered_dict': True, 'data': []}, '_parameters': {'_ordered_dict': True, 'data': []}, 'training': False, 'teacher_mode': False, 'tracing': False, 'name': 'OpenAIClient', '_init_args': {'api_key': None, 'chat_completion_parser': None, 'input_type': 'text'}, '_api_key': None, 'chat_completion_parser': , '_input_type': 'text'}}\n" + ] + }, + { + "data": { + "text/plain": [ + "{'_components': OrderedDict([('doc',\n", + " Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo'}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str'])\n", + " (model_client): OpenAIClient()\n", + " ))]),\n", + " '_parameters': OrderedDict(),\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'DocQA',\n", + " '_init_args': {}}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# restore the states\n", + "doc2 = DocQA.from_dict(states)\n", + "# print(doc2.call(\"What is the capital of France?\"))\n", + "doc2.__dict__\n", + "# doc2.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "198xYpLGTQUp", + "outputId": "ffd33d12-6db0-45c2-dfb1-3d57460ad4c9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'type': 'DocQA',\n", + " 'data': {'_components': {'_ordered_dict': True,\n", + " 'data': [('doc',\n", + " {'type': 'Generator',\n", + " 'data': {'model_str': 'OpenAIClient_gpt-3_5-turbo',\n", + " 'cache_path': PosixPath('/root/.adalflow/cache_OpenAIClient_gpt-3_5-turbo.db'),\n", + " 'callbacks': {'on_success': [], 'on_failure': [], 'on_complete': []},\n", + " 'cache': ,\n", + " '_components': {'_ordered_dict': True,\n", + " 'data': [('prompt',\n", + " {'type': 'Prompt',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'Prompt',\n", + " '_init_args': {'template': None, 'prompt_kwargs': {}},\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_variables': ['input_str'],\n", + " 'prompt_kwargs': {}}}),\n", + " ('model_client',\n", + " {'type': 'OpenAIClient',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'OpenAIClient',\n", + " '_init_args': {'api_key': None,\n", + " 'chat_completion_parser': None,\n", + " 'input_type': 'text'},\n", + " '_api_key': None,\n", + " 'chat_completion_parser': str>,\n", + " '_input_type': 'text'}})]},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'Generator',\n", + " '_init_args': {'model_client': None,\n", + " 'model_kwargs': {},\n", + " 'template': None,\n", + " 'prompt_kwargs': {},\n", + " 'output_processors': None,\n", + " 'name': None,\n", + " 'cache_path': None,\n", + " 'use_cache': False},\n", + " 'backward_engine': None,\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_kwargs': {},\n", + " 'model_kwargs': {'model': 'gpt-3.5-turbo'},\n", + " 'output_processors': None,\n", + " 'mock_output': False,\n", + " 'mock_output_data': 'mock data',\n", + " 'data_map_func': .default_map_func(data: 'GeneratorOutputType') -> str>,\n", + " '_use_cache': False,\n", + " '_kwargs': {'model_client': {'type': 'OpenAIClient',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'OpenAIClient',\n", + " '_init_args': {'api_key': None,\n", + " 'chat_completion_parser': None,\n", + " 'input_type': 'text'},\n", + " '_api_key': None,\n", + " 'chat_completion_parser': str>,\n", + " '_input_type': 'text'}},\n", + " 'model_kwargs': {'model': 'gpt-3.5-turbo'},\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_kwargs': {},\n", + " 'output_processors': None,\n", + " 'name': None,\n", + " 'cache_path': None,\n", + " 'use_cache': False},\n", + " '_teacher': None}})]},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'DocQA',\n", + " '_init_args': {}}}" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "doc2.to_dict() == doc.to_dict()\n", + "doc2.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ulb1OWxxTQUq", + "outputId": "99972fcd-ed52-43b4-e461-a76c19bd9522" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:41:29 - openai_client - INFO - [openai_client.py:279:call] - api_kwargs: {'model': 'gpt-3.5-turbo', 'messages': [{'role': 'system', 'content': ' You are a doctor User: What is the best treatment for headache?'}]}\n", + "2024-11-11 17:41:30 - _client - INFO - [_client.py:1038:_send_single_request] - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "2024-11-11 17:41:30 - generator - INFO - [generator.py:798:call] - output: GeneratorOutput(id=None, data='As a doctor, the best treatment for a headache depends on the underlying cause of the headache. In general, for tension headaches or migraines, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help alleviate symptoms. It is also important to rest in a quiet, dark room and stay hydrated. If headaches are frequent or severe, it is important to consult with a healthcare provider for further evaluation and treatment options.', error=None, usage=CompletionUsage(completion_tokens=92, prompt_tokens=27, total_tokens=119), raw_response='As a doctor, the best treatment for a headache depends on the underlying cause of the headache. In general, for tension headaches or migraines, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help alleviate symptoms. It is also important to rest in a quiet, dark room and stay hydrated. If headaches are frequent or severe, it is important to consult with a healthcare provider for further evaluation and treatment options.', metadata=None)\n", + "As a doctor, the best treatment for a headache depends on the underlying cause of the headache. In general, for tension headaches or migraines, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help alleviate symptoms. It is also important to rest in a quiet, dark room and stay hydrated. If headaches are frequent or severe, it is important to consult with a healthcare provider for further evaluation and treatment options.\n" + ] + } + ], + "source": [ + "print(doc(\"What is the best treatment for headache?\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "POVal8CgTQUq", + "outputId": "2fadb1d6-b858-4964-9045-8ea7454178e3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:41:35 - openai_client - INFO - [openai_client.py:279:call] - api_kwargs: {'model': 'gpt-3.5-turbo', 'messages': [{'role': 'system', 'content': ' You are a doctor User: What is the best treatment for headache?'}]}\n", + "2024-11-11 17:41:36 - _client - INFO - [_client.py:1038:_send_single_request] - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "2024-11-11 17:41:36 - generator - INFO - [generator.py:798:call] - output: GeneratorOutput(id=None, data='As a doctor, the best treatment for a headache will depend on the underlying cause of the headache. In general, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help relieve mild to moderate headaches. It is also important to stay hydrated, get adequate rest, manage stress, and practice good posture. If the headache persists or is severe, it is important to see a healthcare provider for further evaluation and treatment.', error=None, usage=CompletionUsage(completion_tokens=92, prompt_tokens=27, total_tokens=119), raw_response='As a doctor, the best treatment for a headache will depend on the underlying cause of the headache. In general, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help relieve mild to moderate headaches. It is also important to stay hydrated, get adequate rest, manage stress, and practice good posture. If the headache persists or is severe, it is important to see a healthcare provider for further evaluation and treatment.', metadata=None)\n", + "As a doctor, the best treatment for a headache will depend on the underlying cause of the headache. In general, over-the-counter pain medications such as acetaminophen, ibuprofen, or aspirin can help relieve mild to moderate headaches. It is also important to stay hydrated, get adequate rest, manage stress, and practice good posture. If the headache persists or is severe, it is important to see a healthcare provider for further evaluation and treatment.\n" + ] + } + ], + "source": [ + "print(doc2(\"What is the best treatment for headache?\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R5gTO1-8TQUr" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jhgSpKrMTQUr", + "outputId": "15615bf7-2b72-4ac7-d1fe-f436a7304734" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('', DocQA(\n", + " (doc): Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo'}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str'])\n", + " (model_client): OpenAIClient()\n", + " )\n", + "))\n", + "('doc', Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo'}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str'])\n", + " (model_client): OpenAIClient()\n", + "))\n", + "('doc.prompt', Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str']))\n", + "('doc.model_client', OpenAIClient())\n" + ] + } + ], + "source": [ + "# list other subcomponents\n", + "\n", + "for subcomponent in doc.named_components():\n", + " print(subcomponent)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XjIHAY6bTQUr" + }, + "source": [ + "Let's add a parameter" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "vxgjAUiFTQUr" + }, + "outputs": [], + "source": [ + "from adalflow.optim.parameter import Parameter\n", + "\n", + "doc.register_parameter(\"demo\", param=Parameter(data=\"demo\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "86C-h1e1TQUr", + "outputId": "57cab4d0-eddf-433d-e364-5d7f07072fbf" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('demo', Parameter(name=param_313f196d-3c48-4eb3-8138-b7bd74298fbd, requires_opt=True, param_type=none (), role_desc=, data=demo, predecessors=set(), gradients=[], raw_response=None, input_args=None, traces={}))\n" + ] + } + ], + "source": [ + "# list all parameters\n", + "for param in doc.named_parameters():\n", + " print(param)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_s2MPukiTQUr", + "outputId": "b51c7d09-fb52-42d9-b2d5-4f44f5d22dc9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'type': 'DocQA',\n", + " 'data': {'_components': {'_ordered_dict': True,\n", + " 'data': [('doc',\n", + " {'type': 'Generator',\n", + " 'data': {'model_str': 'OpenAIClient_gpt-3_5-turbo',\n", + " 'cache_path': PosixPath('/root/.adalflow/cache_OpenAIClient_gpt-3_5-turbo.db'),\n", + " 'callbacks': {'on_success': [], 'on_failure': [], 'on_complete': []},\n", + " 'cache': ,\n", + " '_components': {'_ordered_dict': True,\n", + " 'data': [('prompt',\n", + " {'type': 'Prompt',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'Prompt',\n", + " '_init_args': {'template': None, 'prompt_kwargs': {}},\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_variables': ['input_str'],\n", + " 'prompt_kwargs': {}}}),\n", + " ('model_client',\n", + " {'type': 'OpenAIClient',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'OpenAIClient',\n", + " '_init_args': {'api_key': None,\n", + " 'chat_completion_parser': None,\n", + " 'input_type': 'text'},\n", + " '_api_key': None,\n", + " 'chat_completion_parser': str>,\n", + " '_input_type': 'text'}})]},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'Generator',\n", + " '_init_args': {'model_client': None,\n", + " 'model_kwargs': {},\n", + " 'template': None,\n", + " 'prompt_kwargs': {},\n", + " 'output_processors': None,\n", + " 'name': None,\n", + " 'cache_path': None,\n", + " 'use_cache': False},\n", + " 'backward_engine': None,\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_kwargs': {},\n", + " 'model_kwargs': {'model': 'gpt-3.5-turbo'},\n", + " 'output_processors': None,\n", + " 'mock_output': False,\n", + " 'mock_output_data': 'mock data',\n", + " 'data_map_func': .default_map_func(data: 'GeneratorOutputType') -> str>,\n", + " '_use_cache': False,\n", + " '_kwargs': {'model_client': {'type': 'OpenAIClient',\n", + " 'data': {'_components': {'_ordered_dict': True, 'data': []},\n", + " '_parameters': {'_ordered_dict': True, 'data': []},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'OpenAIClient',\n", + " '_init_args': {'api_key': None,\n", + " 'chat_completion_parser': None,\n", + " 'input_type': 'text'},\n", + " '_api_key': None,\n", + " 'chat_completion_parser': str>,\n", + " '_input_type': 'text'}},\n", + " 'model_kwargs': {'model': 'gpt-3.5-turbo'},\n", + " 'template': ' You are a doctor User: {{input_str}}',\n", + " 'prompt_kwargs': {},\n", + " 'output_processors': None,\n", + " 'name': None,\n", + " 'cache_path': None,\n", + " 'use_cache': False},\n", + " '_teacher': None}})]},\n", + " '_parameters': {'_ordered_dict': True,\n", + " 'data': [('demo',\n", + " {'name': 'param_313f196d-3c48-4eb3-8138-b7bd74298fbd',\n", + " 'role_desc': '',\n", + " 'data': 'demo',\n", + " 'requires_opt': True,\n", + " 'param_type': 'none ()',\n", + " 'predecessors': [],\n", + " 'gradients': [],\n", + " 'previous_data': None,\n", + " 'gradients_context': [],\n", + " 'grad_fn': 'None',\n", + " 'gradient_prompt': 'None',\n", + " 'raw_response': None,\n", + " 'score': None,\n", + " 'traces': {},\n", + " 'input_args': None,\n", + " 'demos': []})]},\n", + " 'training': False,\n", + " 'teacher_mode': False,\n", + " 'tracing': False,\n", + " 'name': 'DocQA',\n", + " '_init_args': {}}}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "doc.to_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "mcIO1DuVTQUr" + }, + "outputs": [], + "source": [ + "from adalflow.utils.file_io import save_json\n", + "\n", + "save_json(doc.to_dict(), \"doc.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0vvO0nogTQUr", + "outputId": "59131d9e-a996-4c8b-f32c-9a6a623d3db6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('demo',\n", + " Parameter(name=param_313f196d-3c48-4eb3-8138-b7bd74298fbd, requires_opt=True, param_type=none (), role_desc=, data=demo, predecessors=set(), gradients=[], raw_response=None, input_args=None, traces={}))])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "doc.state_dict()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 125 + }, + "id": "uroqi93tTQUs", + "outputId": "8a3e4ecc-1368-475b-dc4d-2ff38821b8ac" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:42:18 - openai_client - INFO - [openai_client.py:279:call] - api_kwargs: {'model': 'gpt-3.5-turbo', 'messages': [{'role': 'system', 'content': ' You are a doctor User: What is the best treatment for a cold?'}]}\n", + "2024-11-11 17:42:19 - _client - INFO - [_client.py:1038:_send_single_request] - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "2024-11-11 17:42:19 - generator - INFO - [generator.py:798:call] - output: GeneratorOutput(id=None, data='As a doctor, I recommend getting plenty of rest, staying hydrated, and taking over-the-counter medications like ibuprofen or acetaminophen to help relieve symptoms such as fever and congestion. Additionally, you can try using saline nasal sprays or lozenges to help soothe a sore throat. If your symptoms persist or worsen, it is best to consult with a healthcare provider for further evaluation and treatment.', error=None, usage=CompletionUsage(completion_tokens=85, prompt_tokens=28, total_tokens=113), raw_response='As a doctor, I recommend getting plenty of rest, staying hydrated, and taking over-the-counter medications like ibuprofen or acetaminophen to help relieve symptoms such as fever and congestion. Additionally, you can try using saline nasal sprays or lozenges to help soothe a sore throat. If your symptoms persist or worsen, it is best to consult with a healthcare provider for further evaluation and treatment.', metadata=None)\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'As a doctor, I recommend getting plenty of rest, staying hydrated, and taking over-the-counter medications like ibuprofen or acetaminophen to help relieve symptoms such as fever and congestion. Additionally, you can try using saline nasal sprays or lozenges to help soothe a sore throat. If your symptoms persist or worsen, it is best to consult with a healthcare provider for further evaluation and treatment.'" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "doc.call(\"What is the best treatment for a cold?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mYSDr462TQUs", + "outputId": "82414c82-8feb-4667-90ed-91c594cc6a73" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n", + "\n" + ] + } + ], + "source": [ + "from adalflow.core.component import FunComponent\n", + "\n", + "def add_one(x):\n", + " return x + 1\n", + "\n", + "fun_component = FunComponent(add_one)\n", + "print(fun_component(1))\n", + "print(type(fun_component))\n", + "\n", + "# output:\n", + "# 2\n", + "# " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3MW1tpzRTQUs", + "outputId": "351b8922-1423-434a-f470-ff435a1962d2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n", + "\n" + ] + } + ], + "source": [ + "from adalflow.core.component import fun_to_component\n", + "\n", + "fun_component = fun_to_component(add_one)\n", + "print(fun_component(1))\n", + "print(type(fun_component))\n", + "\n", + "# output:\n", + "# 2\n", + "# " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dxAoGrnQTQUs", + "outputId": "38c462a3-5abf-41f4-9231-746c8d0ffcb3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n", + "\n" + ] + } + ], + "source": [ + "# use it as a decorator\n", + "@fun_to_component\n", + "def add_one(x):\n", + " return x + 1\n", + "\n", + "print(add_one(1))\n", + "print(type(add_one))\n", + "\n", + "# output:\n", + "# 2\n", + "# " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7BvJEP_mTQUs", + "outputId": "066281b8-a650-4c48-c786-312022198015" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-11 17:42:39 - openai_client - INFO - [openai_client.py:279:call] - api_kwargs: {'model': 'gpt-3.5-turbo', 'messages': [{'role': 'system', 'content': ' You are a doctor User: What is the best treatment for headache?Please be concise and only list the top treatments.'}]}\n", + "2024-11-11 17:42:40 - _client - INFO - [_client.py:1038:_send_single_request] - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "2024-11-11 17:42:40 - generator - INFO - [generator.py:798:call] - output: GeneratorOutput(id=None, data='The top treatments for headache are rest, hydration, over-the-counter pain relievers such as ibuprofen or acetaminophen, and relaxation techniques such as deep breathing or meditation.', error=None, usage=CompletionUsage(completion_tokens=37, prompt_tokens=37, total_tokens=74), raw_response='The top treatments for headache are rest, hydration, over-the-counter pain relievers such as ibuprofen or acetaminophen, and relaxation techniques such as deep breathing or meditation.', metadata=None)\n", + "The top treatments for headache are rest, hydration, over-the-counter pain relievers such as ibuprofen or acetaminophen, and relaxation techniques such as deep breathing or meditation.\n" + ] + } + ], + "source": [ + "from adalflow.core import Sequential\n", + "\n", + "@fun_to_component\n", + "def enhance_query(query:str) -> str:\n", + " return query + \"Please be concise and only list the top treatments.\"\n", + "\n", + "seq = Sequential(enhance_query, doc)\n", + "\n", + "query = \"What is the best treatment for headache?\"\n", + "print(seq(query))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aoZ2w8RUTQUt", + "outputId": "115d0ccf-33d1-4464-a951-cf9f5476284b" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Sequential(\n", + " (0): EnhanceQueryComponent(fun_name=enhance_query)\n", + " (1): DocQA(\n", + " (doc): Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo'}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(template: You are a doctor User: {{input_str}}, prompt_variables: ['input_str'])\n", + " (model_client): OpenAIClient()\n", + " )\n", + " )\n", + ")" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "seq" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F-ffAlC6TQUt" + }, + "source": [ + "# TODO: LLM for single choices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Issues and feedback\n", + "\n", + "If you encounter any issues, please report them here: [GitHub Issues](https://github.com/SylphAI-Inc/LightRAG/issues).\n", + "\n", + "For feedback, you can use either the [GitHub discussions](https://github.com/SylphAI-Inc/LightRAG/discussions) or [Discord](https://discord.gg/ezzszrRZvT)." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } }, { "cell_type": "code", diff --git a/notebooks/tutorials/adalflow_dataclasses.ipynb b/notebooks/tutorials/adalflow_dataclasses.ipynb index 7ae08f63..cc2abb2f 100644 --- a/notebooks/tutorials/adalflow_dataclasses.ipynb +++ b/notebooks/tutorials/adalflow_dataclasses.ipynb @@ -78,7 +78,9 @@ "from IPython.display import clear_output\n", "\n", "!pip install -U adalflow[openai,groq]\n", - "\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", "clear_output()" ] }, diff --git a/notebooks/tutorials/adalflow_function_calls.ipynb b/notebooks/tutorials/adalflow_function_calls.ipynb index 6fba3594..5a7e3d8b 100644 --- a/notebooks/tutorials/adalflow_function_calls.ipynb +++ b/notebooks/tutorials/adalflow_function_calls.ipynb @@ -1,74 +1,25 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Function calls\n", - "\n", - "Tools are means LLM can use to interact with the world beyond of its internal knowledge. Technically speaking, retrievers are tools to help LLM to get more relevant context, and memory is a tool for LLM to carry out a conversation. Deciding when, which, and how to use a tool, and even to creating a tool is an agentic behavior: Function calls is a process of showing LLM a list of funciton definitions and prompt it to choose one or few of them. Many places use tools and function calls interchangably.\n", - "\n", - "In this notebook we will covert function calls, including:\n", - "\n", - "- Function call walkthrough\n", - "\n", - "- Overall design\n", - "\n", - "- Function call in action\n", - "\n", - "It follows the tutorial here: https://adalflow.sylph.ai/tutorials/tool_helper.html#" - ], - "metadata": { - "id": "lLGpv1fLLIjF" - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "sfKEfaYC3Go7" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai,groq,faiss-cpu]\n", - "\n", - "clear_output()" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "os.environ[\"GROQ_API_KEY\"] = groq_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "lLGpv1fLLIjF" + }, + "source": [ + "# Function calls\n", + "\n", + "Tools are means LLM can use to interact with the world beyond of its internal knowledge. Technically speaking, retrievers are tools to help LLM to get more relevant context, and memory is a tool for LLM to carry out a conversation. Deciding when, which, and how to use a tool, and even to creating a tool is an agentic behavior: Function calls is a process of showing LLM a list of funciton definitions and prompt it to choose one or few of them. Many places use tools and function calls interchangably.\n", + "\n", + "In this notebook we will covert function calls, including:\n", + "\n", + "- Function call walkthrough\n", + "\n", + "- Overall design\n", + "\n", + "- Function call in action\n", + "\n", + "It follows the tutorial here: https://adalflow.sylph.ai/tutorials/tool_helper.html#" + ] }, "id": "-4c_AGBt3PlR", "outputId": "21a26437-9f95-4478-84e9-ba4369956b6f" @@ -76,661 +27,718 @@ "execution_count": 2, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Please enter your OpenAI API key: ··········\n", - "Please enter your GROQ API key: ··········\n", - "API keys have been set.\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from dataclasses import dataclass\n", - "from typing import List\n", - "import numpy as np\n", - "import time\n", - "import asyncio\n", - "\n", - "\n", - "def multiply(a: int, b: int) -> int:\n", - " \"\"\"Multiply two numbers.\"\"\"\n", - " time.sleep(1)\n", - " return a * b\n", - "\n", - "\n", - "def add(a: int, b: int) -> int:\n", - " \"\"\"Add two numbers.\"\"\"\n", - " time.sleep(1)\n", - " return a + b\n", - "\n", - "\n", - "async def divide(a: float, b: float) -> float:\n", - " \"\"\"Divide two numbers.\"\"\"\n", - " await asyncio.sleep(1)\n", - " return float(a) / b\n", - "\n", - "\n", - "async def search(query: str) -> List[str]:\n", - " \"\"\"Search for query and return a list of results.\"\"\"\n", - " await asyncio.sleep(1)\n", - " return [\"result1\" + query, \"result2\" + query]\n", - "\n", - "\n", - "def numpy_sum(arr: np.ndarray) -> float:\n", - " \"\"\"Sum the elements of an array.\"\"\"\n", - " return np.sum(arr)\n", - "\n", - "\n", - "x = 2\n", - "\n", - "\n", - "@dataclass\n", - "class Point:\n", - " x: int\n", - " y: int\n", - "\n", - "\n", - "def add_points(p1: Point, p2: Point) -> Point:\n", - " return Point(p1.x + p2.x, p1.y + p2.y)" - ], - "metadata": { - "id": "GMKuuP7xR9Nt" - }, - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## Function Tool" - ], - "metadata": { - "id": "jCA7HMjtT16P" - } - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.func_tool import FunctionTool\n", - "\n", - "functions = [multiply, add, divide, search, numpy_sum, add_points]\n", - "tools = [FunctionTool(fn=fn) for fn in functions]\n", - "for tool in tools:\n", - " print(tool)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "sfKEfaYC3Go7" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "clear_output()\n" + ] }, - "id": "fgOEoLoDSBqh", - "outputId": "7e636e2c-9a5d-44f1-f0fe-fe8a6bea474d" - }, - "execution_count": 5, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))\n", - "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))\n", - "FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']}))\n", - "FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']}))\n", - "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']}))\n", - "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "print(tools[-2].definition.to_dict())" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-4c_AGBt3PlR", + "outputId": "21a26437-9f95-4478-84e9-ba4369956b6f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "Please enter your GROQ API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "os.environ['GROQ_API_KEY'] = groq_api_key\n", + "\n", + "print(\"API keys have been set.\")\n" + ] }, - "id": "CYJaHFhGSEzH", - "outputId": "9ab36c6c-7509-4e7f-ce85-11dae889c8c2" - }, - "execution_count": 6, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "{'func_name': 'numpy_sum', 'func_desc': 'numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', 'func_parameters': {'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']}}\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "context_map = {tool.definition.func_name: tool for tool in tools}" - ], - "metadata": { - "id": "_O4bQgXrSKb6" - }, - "execution_count": 7, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "function_name = \"add\"\n", - "function_to_call = context_map[function_name]\n", - "function_args = {\"a\": 1, \"b\": 2}\n", - "function_response = function_to_call.call(**function_args)" - ], - "metadata": { - "id": "-RgWWMdISL1u" - }, - "execution_count": 8, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.tool_manager import ToolManager\n", - "\n", - "tool_manager = ToolManager(tools=functions)\n", - "print(tool_manager)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "GMKuuP7xR9Nt" + }, + "outputs": [], + "source": [ + "from dataclasses import dataclass\n", + "from typing import List\n", + "import numpy as np\n", + "import time\n", + "import asyncio\n", + "\n", + "\n", + "\n", + "def multiply(a: int, b: int) -> int:\n", + " \"\"\"Multiply two numbers.\"\"\"\n", + " time.sleep(1)\n", + " return a * b\n", + "\n", + "\n", + "def add(a: int, b: int) -> int:\n", + " \"\"\"Add two numbers.\"\"\"\n", + " time.sleep(1)\n", + " return a + b\n", + "\n", + "\n", + "async def divide(a: float, b: float) -> float:\n", + " \"\"\"Divide two numbers.\"\"\"\n", + " await asyncio.sleep(1)\n", + " return float(a) / b\n", + "\n", + "\n", + "async def search(query: str) -> List[str]:\n", + " \"\"\"Search for query and return a list of results.\"\"\"\n", + " await asyncio.sleep(1)\n", + " return [\"result1\" + query, \"result2\" + query]\n", + "\n", + "\n", + "def numpy_sum(arr: np.ndarray) -> float:\n", + " \"\"\"Sum the elements of an array.\"\"\"\n", + " return np.sum(arr)\n", + "\n", + "\n", + "x = 2\n", + "\n", + "@dataclass\n", + "class Point:\n", + " x: int\n", + " y: int\n", + "\n", + "\n", + "def add_points(p1: Point, p2: Point) -> Point:\n", + " return Point(p1.x + p2.x, p1.y + p2.y)" + ] }, - "id": "6CT7Tez1SOai", - "outputId": "e486d882-9179-4db3-f077-6adfc9fc6579" - }, - "execution_count": 9, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "ToolManager(Tools: [FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))], Additional Context: {})\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## ToolManager" - ], - "metadata": { - "id": "jzFqNnN_T-cu" - } - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.tool_manager import ToolManager\n", - "\n", - "tool_manager = ToolManager(tools=functions)\n", - "print(tool_manager)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "jCA7HMjtT16P" + }, + "source": [ + "## Function Tool" + ] }, - "id": "JX7MibWiUF3U", - "outputId": "20707186-5ec3-49a4-d553-c3160c3daa84" - }, - "execution_count": 10, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "ToolManager(Tools: [FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))], Additional Context: {})\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Function Call end-to-end" - ], - "metadata": { - "id": "9Bw2fs--UKX7" - } - }, - { - "cell_type": "code", - "source": [ - "template = r\"\"\"You have these tools available:\n", - "{% if tools %}\n", - "\n", - "{% for tool in tools %}\n", - "{{ loop.index }}.\n", - "{{tool}}\n", - "------------------------\n", - "{% endfor %}\n", - "\n", - "{% endif %}\n", - "\n", - "{{output_format_str}}\n", - "\n", - "\n", - "User: {{input_str}}\n", - "You:\n", - "\"\"\"" - ], - "metadata": { - "id": "TywPQMIVUOqh" - }, - "execution_count": 11, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.prompt_builder import Prompt\n", - "\n", - "prompt = Prompt(template=template)\n", - "small_tool_manager = ToolManager(tools=tools[:2])\n", - "\n", - "renered_prompt = prompt(tools=small_tool_manager.yaml_definitions)\n", - "print(renered_prompt)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fgOEoLoDSBqh", + "outputId": "7e636e2c-9a5d-44f1-f0fe-fe8a6bea474d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))\n", + "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']}))\n", + "FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']}))\n", + "FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']}))\n", + "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']}))\n", + "FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))\n" + ] + } + ], + "source": [ + "from adalflow.core.func_tool import FunctionTool\n", + "\n", + "functions =[multiply, add, divide, search, numpy_sum, add_points]\n", + "tools = [\n", + " FunctionTool(fn=fn) for fn in functions\n", + "]\n", + "for tool in tools:\n", + " print(tool)" + ] }, - "id": "-vMajeXoUQ5A", - "outputId": "ca68601b-e9c8-41c3-a6fa-777f225e68e3" - }, - "execution_count": 12, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "You have these tools available:\n", - "\n", - "1.\n", - "func_name: multiply\n", - "func_desc: 'multiply(a: int, b: int) -> int\n", - "\n", - " Multiply two numbers.'\n", - "func_parameters:\n", - " type: object\n", - " properties:\n", - " a:\n", - " type: int\n", - " b:\n", - " type: int\n", - " required:\n", - " - a\n", - " - b\n", - "------------------------\n", - "2.\n", - "func_name: add\n", - "func_desc: 'add(a: int, b: int) -> int\n", - "\n", - " Add two numbers.'\n", - "func_parameters:\n", - " type: object\n", - " properties:\n", - " a:\n", - " type: int\n", - " b:\n", - " type: int\n", - " required:\n", - " - a\n", - " - b\n", - "------------------------\n", - "\n", - "\n", - "None\n", - "\n", - "\n", - "User: None\n", - "You:\n", - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.types import Function\n", - "\n", - "output_data_class = Function\n", - "output_format_str = output_data_class.to_json_signature(exclude=[\"thought\", \"args\"])\n", - "\n", - "renered_prompt = prompt(output_format_str=output_format_str)\n", - "print(renered_prompt)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "CYJaHFhGSEzH", + "outputId": "9ab36c6c-7509-4e7f-ce85-11dae889c8c2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'func_name': 'numpy_sum', 'func_desc': 'numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', 'func_parameters': {'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']}}\n" + ] + } + ], + "source": [ + "print(tools[-2].definition.to_dict())" + ] }, - "id": "V9-90IFRUUNT", - "outputId": "ed2f829e-c656-43c6-a454-8a7c32d5dafe" - }, - "execution_count": 13, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "You have these tools available:\n", - "\n", - "{\n", - " \"name\": \"The name of the function (str) (optional)\",\n", - " \"kwargs\": \"The keyword arguments of the function (Optional[Dict[str, object]]) (optional)\"\n", - "}\n", - "\n", - "\n", - "User: None\n", - "You:\n", - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.types import FunctionExpression\n", - "\n", - "output_data_class = FunctionExpression\n", - "output_format_str = output_data_class.to_json_signature(exclude=[\"thought\"])\n", - "print(prompt(output_format_str=output_format_str))" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "_O4bQgXrSKb6" + }, + "outputs": [], + "source": [ + "context_map = {tool.definition.func_name: tool for tool in tools}" + ] }, - "id": "p3kPMhWaUYT1", - "outputId": "a3de7117-c3eb-404e-e2e7-8a5187b32f6b" - }, - "execution_count": 14, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "You have these tools available:\n", - "\n", - "{\n", - " \"action\": \"FuncName() Valid function call expression. Example: \\\"FuncName(a=1, b=2)\\\" Follow the data type specified in the function parameters.e.g. for Type object with x,y properties, use \\\"ObjectType(x=1, y=2) (str) (required)\"\n", - "}\n", - "\n", - "\n", - "User: None\n", - "You:\n", - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.components.output_parsers import JsonOutputParser\n", - "\n", - "func_parser = JsonOutputParser(data_class=Function, exclude_fields=[\"thought\", \"args\"])\n", - "instructions = func_parser.format_instructions()\n", - "print(instructions)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "-RgWWMdISL1u" + }, + "outputs": [], + "source": [ + "function_name = \"add\"\n", + "function_to_call = context_map[function_name]\n", + "function_args = {\"a\": 1, \"b\": 2}\n", + "function_response = function_to_call.call(**function_args)" + ] }, - "id": "MvGyoUmMUatR", - "outputId": "e819866b-f6e3-4c88-f9f1-22d725a28865" - }, - "execution_count": 17, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Your output should be formatted as a standard JSON instance with the following schema:\n", - "```\n", - "{\n", - " \"name\": \"The name of the function (str) (optional)\",\n", - " \"kwargs\": \"The keyword arguments of the function (Optional[Dict[str, object]]) (optional)\"\n", - "}\n", - "```\n", - "-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!\n", - "-Use double quotes for the keys and string values.\n", - "-DO NOT mistaken the \"properties\" and \"type\" in the schema as the actual fields in the JSON output.\n", - "-Follow the JSON formatting conventions.\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Function Output Format" - ], - "metadata": { - "id": "9W7DiGcpUme5" - } - }, - { - "cell_type": "code", - "source": [ - "from adalflow.core.generator import Generator\n", - "from adalflow.core.types import ModelClientType\n", - "\n", - "model_kwargs = {\"model\": \"gpt-4o-mini\"}\n", - "prompt_kwargs = {\n", - " \"tools\": tool_manager.yaml_definitions,\n", - " \"output_format_str\": func_parser.format_instructions(),\n", - "}\n", - "generator = Generator(\n", - " model_client=ModelClientType.OPENAI(),\n", - " model_kwargs=model_kwargs,\n", - " template=template,\n", - " prompt_kwargs=prompt_kwargs,\n", - " output_processors=func_parser,\n", - ")" - ], - "metadata": { - "id": "z5tNhoruUp6o" - }, - "execution_count": 20, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "queries = [\n", - " \"add 2 and 3\",\n", - " \"search for something\",\n", - " \"add points (1, 2) and (3, 4)\",\n", - " \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\",\n", - " \"multiply 2 with local variable x\",\n", - " \"divide 2 by 3\",\n", - " \"Add 5 to variable y\",\n", - "]\n", - "\n", - "for idx, query in enumerate(queries):\n", - " prompt_kwargs = {\"input_str\": query}\n", - " print(f\"\\n{idx} Query: {query}\")\n", - " print(f\"{'-'*50}\")\n", - " try:\n", - " result = generator(prompt_kwargs=prompt_kwargs)\n", - " # print(f\"LLM raw output: {result.raw_response}\")\n", - " func = Function.from_dict(result.data)\n", - " print(f\"Function: {func}\")\n", - " func_output = tool_manager.execute_func(func)\n", - " print(f\"Function output: {func_output}\")\n", - " except Exception as e:\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6CT7Tez1SOai", + "outputId": "e486d882-9179-4db3-f077-6adfc9fc6579" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ToolManager(Tools: [FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))], Additional Context: {})\n" + ] + } + ], + "source": [ + "from adalflow.core.tool_manager import ToolManager\n", + "\n", + "tool_manager = ToolManager(tools=functions)\n", + "print(tool_manager)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jzFqNnN_T-cu" + }, + "source": [ + "## ToolManager" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JX7MibWiUF3U", + "outputId": "20707186-5ec3-49a4-d553-c3160c3daa84" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ToolManager(Tools: [FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='multiply', func_desc='multiply(a: int, b: int) -> int\\nMultiply two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add', func_desc='add(a: int, b: int) -> int\\nAdd two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'int'}, 'b': {'type': 'int'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='divide', func_desc='divide(a: float, b: float) -> float\\nDivide two numbers.', func_parameters={'type': 'object', 'properties': {'a': {'type': 'float'}, 'b': {'type': 'float'}}, 'required': ['a', 'b']})), FunctionTool(fn: , async: True, definition: FunctionDefinition(func_name='search', func_desc='search(query: str) -> List[str]\\nSearch for query and return a list of results.', func_parameters={'type': 'object', 'properties': {'query': {'type': 'str'}}, 'required': ['query']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='numpy_sum', func_desc='numpy_sum(arr: numpy.ndarray) -> float\\nSum the elements of an array.', func_parameters={'type': 'object', 'properties': {'arr': {'type': 'ndarray'}}, 'required': ['arr']})), FunctionTool(fn: , async: False, definition: FunctionDefinition(func_name='add_points', func_desc='add_points(p1: __main__.Point, p2: __main__.Point) -> __main__.Point\\nNone', func_parameters={'type': 'object', 'properties': {'p1': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}, 'p2': {'type': \"{'type': 'Point', 'properties': {'x': {'type': 'int'}, 'y': {'type': 'int'}}, 'required': ['x', 'y']}\"}}, 'required': ['p1', 'p2']}))], Additional Context: {})\n" + ] + } + ], + "source": [ + "from adalflow.core.tool_manager import ToolManager\n", + "\n", + "tool_manager = ToolManager(tools=functions)\n", + "print(tool_manager)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9Bw2fs--UKX7" + }, + "source": [ + "## Function Call end-to-end" + ] }, - "id": "9DCukn1SUs_x", - "outputId": "dcfd952c-0699-4d79-ee6d-a59373e3c75d" - }, - "execution_count": 21, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "0 Query: add 2 and 3\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='add', args=[], kwargs={'a': 2, 'b': 3})\n", - "Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 2, 'b': 3}), parsed_input=None, output=5, error=None)\n", - "\n", - "1 Query: search for something\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='search', args=[], kwargs={'query': 'something'})\n", - "Function output: FunctionOutput(name='search', input=Function(thought=None, name='search', args=(), kwargs={'query': 'something'}), parsed_input=None, output=['result1something', 'result2something'], error=None)\n", - "\n", - "2 Query: add points (1, 2) and (3, 4)\n", - "--------------------------------------------------\n" - ] + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "TywPQMIVUOqh" + }, + "outputs": [], + "source": [ + "template = r\"\"\"You have these tools available:\n", + "{% if tools %}\n", + "\n", + "{% for tool in tools %}\n", + "{{ loop.index }}.\n", + "{{tool}}\n", + "------------------------\n", + "{% endfor %}\n", + "\n", + "{% endif %}\n", + "\n", + "{{output_format_str}}\n", + "\n", + "\n", + "User: {{input_str}}\n", + "You:\n", + "\"\"\"" + ] }, { - "output_type": "stream", - "name": "stderr", - "text": [ - "ERROR:adalflow.core.func_tool:Error at calling : 'dict' object has no attribute 'x'\n" - ] + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-vMajeXoUQ5A", + "outputId": "ca68601b-e9c8-41c3-a6fa-777f225e68e3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have these tools available:\n", + "\n", + "1.\n", + "func_name: multiply\n", + "func_desc: 'multiply(a: int, b: int) -> int\n", + "\n", + " Multiply two numbers.'\n", + "func_parameters:\n", + " type: object\n", + " properties:\n", + " a:\n", + " type: int\n", + " b:\n", + " type: int\n", + " required:\n", + " - a\n", + " - b\n", + "------------------------\n", + "2.\n", + "func_name: add\n", + "func_desc: 'add(a: int, b: int) -> int\n", + "\n", + " Add two numbers.'\n", + "func_parameters:\n", + " type: object\n", + " properties:\n", + " a:\n", + " type: int\n", + " b:\n", + " type: int\n", + " required:\n", + " - a\n", + " - b\n", + "------------------------\n", + "\n", + "\n", + "None\n", + "\n", + "\n", + "User: None\n", + "You:\n", + "\n" + ] + } + ], + "source": [ + "from adalflow.core.prompt_builder import Prompt\n", + "\n", + "prompt = Prompt(template=template)\n", + "small_tool_manager = ToolManager(tools=tools[:2])\n", + "\n", + "renered_prompt = prompt(tools=small_tool_manager.yaml_definitions)\n", + "print(renered_prompt)" + ] }, { - "output_type": "stream", - "name": "stdout", - "text": [ - "Function: Function(thought=None, name='add_points', args=[], kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}})\n", - "Function output: FunctionOutput(name='add_points', input=Function(thought=None, name='add_points', args=(), kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}}), parsed_input=None, output=None, error=\"'dict' object has no attribute 'x'\")\n", - "\n", - "3 Query: sum numpy array with arr = np.array([[1, 2], [3, 4]])\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='numpy_sum', args=[], kwargs={'arr': [[1, 2], [3, 4]]})\n", - "Function output: FunctionOutput(name='numpy_sum', input=Function(thought=None, name='numpy_sum', args=(), kwargs={'arr': [[1, 2], [3, 4]]}), parsed_input=None, output=10, error=None)\n", - "\n", - "4 Query: multiply 2 with local variable x\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='multiply', args=[], kwargs={'a': 2, 'b': 'x'})\n", - "Function output: FunctionOutput(name='multiply', input=Function(thought=None, name='multiply', args=(), kwargs={'a': 2, 'b': 'x'}), parsed_input=None, output='xx', error=None)\n", - "\n", - "5 Query: divide 2 by 3\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='divide', args=[], kwargs={'a': 2.0, 'b': 3.0})\n", - "Function output: FunctionOutput(name='divide', input=Function(thought=None, name='divide', args=(), kwargs={'a': 2.0, 'b': 3.0}), parsed_input=None, output=0.6666666666666666, error=None)\n", - "\n", - "6 Query: Add 5 to variable y\n", - "--------------------------------------------------\n", - "Function: Function(thought=None, name='add', args=[], kwargs={'a': 5, 'b': 'y'})\n" - ] + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "V9-90IFRUUNT", + "outputId": "ed2f829e-c656-43c6-a454-8a7c32d5dafe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have these tools available:\n", + "\n", + "{\n", + " \"name\": \"The name of the function (str) (optional)\",\n", + " \"kwargs\": \"The keyword arguments of the function (Optional[Dict[str, object]]) (optional)\"\n", + "}\n", + "\n", + "\n", + "User: None\n", + "You:\n", + "\n" + ] + } + ], + "source": [ + "from adalflow.core.types import Function\n", + "\n", + "output_data_class = Function\n", + "output_format_str = output_data_class.to_json_signature(exclude=[\"thought\", \"args\"])\n", + "\n", + "renered_prompt= prompt(output_format_str=output_format_str)\n", + "print(renered_prompt)" + ] }, { - "output_type": "stream", - "name": "stderr", - "text": [ - "ERROR:adalflow.core.func_tool:Error at calling : unsupported operand type(s) for +: 'int' and 'str'\n" - ] + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p3kPMhWaUYT1", + "outputId": "a3de7117-c3eb-404e-e2e7-8a5187b32f6b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have these tools available:\n", + "\n", + "{\n", + " \"action\": \"FuncName() Valid function call expression. Example: \\\"FuncName(a=1, b=2)\\\" Follow the data type specified in the function parameters.e.g. for Type object with x,y properties, use \\\"ObjectType(x=1, y=2) (str) (required)\"\n", + "}\n", + "\n", + "\n", + "User: None\n", + "You:\n", + "\n" + ] + } + ], + "source": [ + "from adalflow.core.types import FunctionExpression\n", + "\n", + "output_data_class = FunctionExpression\n", + "output_format_str = output_data_class.to_json_signature(exclude=[\"thought\"])\n", + "print(prompt(output_format_str=output_format_str))" + ] }, { - "output_type": "stream", - "name": "stdout", - "text": [ - "Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 5, 'b': 'y'}), parsed_input=None, output=None, error=\"unsupported operand type(s) for +: 'int' and 'str'\")\n" - ] + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MvGyoUmMUatR", + "outputId": "e819866b-f6e3-4c88-f9f1-22d725a28865" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Your output should be formatted as a standard JSON instance with the following schema:\n", + "```\n", + "{\n", + " \"name\": \"The name of the function (str) (optional)\",\n", + " \"kwargs\": \"The keyword arguments of the function (Optional[Dict[str, object]]) (optional)\"\n", + "}\n", + "```\n", + "-Make sure to always enclose the JSON output in triple backticks (```). Please do not add anything other than valid JSON output!\n", + "-Use double quotes for the keys and string values.\n", + "-DO NOT mistaken the \"properties\" and \"type\" in the schema as the actual fields in the JSON output.\n", + "-Follow the JSON formatting conventions.\n" + ] + } + ], + "source": [ + "from adalflow.components.output_parsers import JsonOutputParser\n", + "\n", + "func_parser = JsonOutputParser(data_class=Function, exclude_fields=[\"thought\", \"args\"])\n", + "instructions = func_parser.format_instructions()\n", + "print(instructions)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9W7DiGcpUme5" + }, + "source": [ + "## Function Output Format" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "z5tNhoruUp6o" + }, + "outputs": [], + "source": [ + "from adalflow.core.generator import Generator\n", + "from adalflow.core.types import ModelClientType\n", + "\n", + "model_kwargs = {\"model\": \"gpt-4o-mini\"}\n", + "prompt_kwargs = {\n", + " \"tools\": tool_manager.yaml_definitions,\n", + " \"output_format_str\": func_parser.format_instructions(),\n", + "}\n", + "generator = Generator(\n", + " model_client=ModelClientType.OPENAI(),\n", + " model_kwargs=model_kwargs,\n", + " template=template,\n", + " prompt_kwargs=prompt_kwargs,\n", + " output_processors=func_parser,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9DCukn1SUs_x", + "outputId": "dcfd952c-0699-4d79-ee6d-a59373e3c75d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "0 Query: add 2 and 3\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='add', args=[], kwargs={'a': 2, 'b': 3})\n", + "Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 2, 'b': 3}), parsed_input=None, output=5, error=None)\n", + "\n", + "1 Query: search for something\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='search', args=[], kwargs={'query': 'something'})\n", + "Function output: FunctionOutput(name='search', input=Function(thought=None, name='search', args=(), kwargs={'query': 'something'}), parsed_input=None, output=['result1something', 'result2something'], error=None)\n", + "\n", + "2 Query: add points (1, 2) and (3, 4)\n", + "--------------------------------------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:adalflow.core.func_tool:Error at calling : 'dict' object has no attribute 'x'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Function: Function(thought=None, name='add_points', args=[], kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}})\n", + "Function output: FunctionOutput(name='add_points', input=Function(thought=None, name='add_points', args=(), kwargs={'p1': {'x': 1, 'y': 2}, 'p2': {'x': 3, 'y': 4}}), parsed_input=None, output=None, error=\"'dict' object has no attribute 'x'\")\n", + "\n", + "3 Query: sum numpy array with arr = np.array([[1, 2], [3, 4]])\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='numpy_sum', args=[], kwargs={'arr': [[1, 2], [3, 4]]})\n", + "Function output: FunctionOutput(name='numpy_sum', input=Function(thought=None, name='numpy_sum', args=(), kwargs={'arr': [[1, 2], [3, 4]]}), parsed_input=None, output=10, error=None)\n", + "\n", + "4 Query: multiply 2 with local variable x\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='multiply', args=[], kwargs={'a': 2, 'b': 'x'})\n", + "Function output: FunctionOutput(name='multiply', input=Function(thought=None, name='multiply', args=(), kwargs={'a': 2, 'b': 'x'}), parsed_input=None, output='xx', error=None)\n", + "\n", + "5 Query: divide 2 by 3\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='divide', args=[], kwargs={'a': 2.0, 'b': 3.0})\n", + "Function output: FunctionOutput(name='divide', input=Function(thought=None, name='divide', args=(), kwargs={'a': 2.0, 'b': 3.0}), parsed_input=None, output=0.6666666666666666, error=None)\n", + "\n", + "6 Query: Add 5 to variable y\n", + "--------------------------------------------------\n", + "Function: Function(thought=None, name='add', args=[], kwargs={'a': 5, 'b': 'y'})\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ERROR:adalflow.core.func_tool:Error at calling : unsupported operand type(s) for +: 'int' and 'str'\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Function output: FunctionOutput(name='add', input=Function(thought=None, name='add', args=(), kwargs={'a': 5, 'b': 'y'}), parsed_input=None, output=None, error=\"unsupported operand type(s) for +: 'int' and 'str'\")\n" + ] + } + ], + "source": [ + "queries = [\n", + " \"add 2 and 3\",\n", + " \"search for something\",\n", + " \"add points (1, 2) and (3, 4)\",\n", + " \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\",\n", + " \"multiply 2 with local variable x\",\n", + " \"divide 2 by 3\",\n", + " \"Add 5 to variable y\",\n", + "]\n", + "\n", + "for idx, query in enumerate(queries):\n", + " prompt_kwargs = {\"input_str\": query}\n", + " print(f\"\\n{idx} Query: {query}\")\n", + " print(f\"{'-'*50}\")\n", + " try:\n", + " result = generator(prompt_kwargs=prompt_kwargs)\n", + " # print(f\"LLM raw output: {result.raw_response}\")\n", + " func = Function.from_dict(result.data)\n", + " print(f\"Function: {func}\")\n", + " func_output = tool_manager.execute_func(func)\n", + " print(f\"Function output: {func_output}\")\n", + " except Exception as e:\n", + " print(\n", + " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O-sBTPATUwsD" + }, + "source": [ + "## FunctionExpression Output Format" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "TVRZ44N1UyWg" + }, + "outputs": [], + "source": [ + "tool_manager = ToolManager(\n", + " tools=functions,\n", + " additional_context={\"x\": x, \"y\": 0, \"np.array\": np.array, \"np\": np},\n", + ")\n", + "func_parser = JsonOutputParser(data_class=FunctionExpression)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "9h47p4XpU2BC" + }, + "outputs": [], + "source": [ + "context = r\"\"\"\n", + "Your function expression also have access to these context:\n", + "{{context_str}}\n", + "\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "n9Qq7wcOU4X9" + }, + "outputs": [], + "source": [ + "async def run_async_function_call(self, generator, tool_manager):\n", + " answers = []\n", + " start_time = time.time()\n", + " tasks = []\n", + " for idx, query in enumerate(queries):\n", + " tasks.append(self.process_query(idx, query, generator, tool_manager))\n", + "\n", + " results = await asyncio.gather(*tasks)\n", + " answers.extend(results)\n", + " end_time = time.time()\n", + " print(f\"Total time taken: {end_time - start_time :.2f} seconds\")\n", + " return answers\n", + "\n", + "async def process_query(self, idx, query, generator, tool_manager: ToolManager):\n", + " print(f\"\\n{idx} Query: {query}\")\n", + " print(f\"{'-'*50}\")\n", + " try:\n", + " result = generator(prompt_kwargs={\"input_str\": query})\n", + " func_expr = FunctionExpression.from_dict(result.data)\n", + " print(f\"Function_expr: {func_expr}\")\n", + " func = tool_manager.parse_func_expr(func_expr)\n", + " func_output = await tool_manager.execute_func_async(func)\n", + " print(f\"Function output: {func_output}\")\n", + " return func_output\n", + " except Exception as e:\n", + " print(\n", + " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", + " )\n", + " return None" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## FunctionExpression Output Format" - ], - "metadata": { - "id": "O-sBTPATUwsD" - } - }, - { - "cell_type": "code", - "source": [ - "tool_manager = ToolManager(\n", - " tools=functions,\n", - " additional_context={\"x\": x, \"y\": 0, \"np.array\": np.array, \"np\": np},\n", - ")\n", - "func_parser = JsonOutputParser(data_class=FunctionExpression)" - ], - "metadata": { - "id": "TVRZ44N1UyWg" - }, - "execution_count": 22, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "context = r\"\"\"\n", - "Your function expression also have access to these context:\n", - "{{context_str}}\n", - "\n", - "\"\"\"" - ], - "metadata": { - "id": "9h47p4XpU2BC" - }, - "execution_count": 23, - "outputs": [] }, - { - "cell_type": "code", - "source": [ - "async def run_async_function_call(self, generator, tool_manager):\n", - " answers = []\n", - " start_time = time.time()\n", - " tasks = []\n", - " for idx, query in enumerate(queries):\n", - " tasks.append(self.process_query(idx, query, generator, tool_manager))\n", - "\n", - " results = await asyncio.gather(*tasks)\n", - " answers.extend(results)\n", - " end_time = time.time()\n", - " print(f\"Total time taken: {end_time - start_time :.2f} seconds\")\n", - " return answers\n", - "\n", - "\n", - "async def process_query(self, idx, query, generator, tool_manager: ToolManager):\n", - " print(f\"\\n{idx} Query: {query}\")\n", - " print(f\"{'-'*50}\")\n", - " try:\n", - " result = generator(prompt_kwargs={\"input_str\": query})\n", - " func_expr = FunctionExpression.from_dict(result.data)\n", - " print(f\"Function_expr: {func_expr}\")\n", - " func = tool_manager.parse_func_expr(func_expr)\n", - " func_output = await tool_manager.execute_func_async(func)\n", - " print(f\"Function output: {func_output}\")\n", - " return func_output\n", - " except Exception as e:\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )\n", - " return None" - ], - "metadata": { - "id": "n9Qq7wcOU4X9" - }, - "execution_count": 24, - "outputs": [] - } - ] + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/notebooks/tutorials/adalflow_logger.ipynb b/notebooks/tutorials/adalflow_logger.ipynb index ae5a7d83..479c2ee8 100644 --- a/notebooks/tutorials/adalflow_logger.ipynb +++ b/notebooks/tutorials/adalflow_logger.ipynb @@ -1,70 +1,21 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Adalflow RAG Playbook example\n", - "\n", - "There are different patterns to build a RAG:\n", - "\n", - "- RAG with separate data process pipeline and a RAG task pipeline. This fits into a scenario where there is lots of data in production database, and we preprocess the data to embeddings and then we build a RAG task pipeline that retrieves context in multiple stages.\n", - "\n", - "- RAG with dynamic data access and caching the embedding dynamically in a local storage.\n", - "\n", - "Here we will have have a look at an example with a local DB using FAISS" - ], - "metadata": { - "id": "lLGpv1fLLIjF" - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "sfKEfaYC3Go7" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai,groq,faiss-cpu]\n", - "\n", - "clear_output()" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "os.environ[\"GROQ_API_KEY\"] = groq_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "lLGpv1fLLIjF" + }, + "source": [ + "# Adalflow RAG Playbook example\n", + "\n", + "There are different patterns to build a RAG:\n", + "\n", + "- RAG with separate data process pipeline and a RAG task pipeline. This fits into a scenario where there is lots of data in production database, and we preprocess the data to embeddings and then we build a RAG task pipeline that retrieves context in multiple stages.\n", + "\n", + "- RAG with dynamic data access and caching the embedding dynamically in a local storage.\n", + "\n", + "Here we will have have a look at an example with a local DB using FAISS" + ] }, "id": "-4c_AGBt3PlR", "outputId": "275b050a-ce64-4b40-a5f9-4ccc12d92add" @@ -72,175 +23,227 @@ "execution_count": 2, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Please enter your OpenAI API key: ··········\n", - "Please enter your GROQ API key: ··········\n", - "API keys have been set.\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Design\n", - "\n", - "Some libraries may use hooks [2] and callbacks [3] [4], or advanced web-based debugging tools [5] [6] [7]. Hooks and callbacks are conceptually similar in that they both allow users to execute custom code at specific points during the execution of a program. Both provide mechanisms to inject additional behavior in response to certain events or conditions, without modifying the core logic. PyTorch defines, registers, and executes hooks mainly in its base classes like nn.Module and Tensor, without polluting the functional and user-facing APIs.\n", - "\n", - "At this point, our objectives are:\n", - "\n", - "1. Maximize debugging capabilities via the simple logging module to keep the source code clean.\n", - "\n", - "2. Additionally, as we can’t always control the outputs of generators, we will provide customized logger and tracers(drop-in decorators) for them, for which we will explain in Tracing. This will not break the first objective.\n", - "\n", - "In the future, when we have more complex requirements from users, we will consider adding hooks/callbacks but we will do it in a way to keep the functional and user-facing APIs clean." - ], - "metadata": { - "id": "4NztjiLR_EQE" - } - }, - { - "cell_type": "code", - "source": [ - "import logging\n", - "\n", - "log = logging.getLogger(__name__)" - ], - "metadata": { - "id": "d2H1vYoC_F-g" - }, - "execution_count": 3, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.utils.logger import get_logger\n", - "\n", - "\n", - "root_logger = get_logger()" - ], - "metadata": { - "id": "e2GxAapG_TJH" - }, - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "from adalflow.utils.logger import printc\n", - "\n", - "printc(\"All logging examples are done. Feeling green!\", color=\"green\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "sfKEfaYC3Go7" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "clear_output()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-4c_AGBt3PlR", + "outputId": "275b050a-ce64-4b40-a5f9-4ccc12d92add" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "Please enter your GROQ API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "os.environ['GROQ_API_KEY'] = groq_api_key\n", + "\n", + "print(\"API keys have been set.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4NztjiLR_EQE" + }, + "source": [ + "## Design\n", + "\n", + "Some libraries may use hooks [2] and callbacks [3] [4], or advanced web-based debugging tools [5] [6] [7]. Hooks and callbacks are conceptually similar in that they both allow users to execute custom code at specific points during the execution of a program. Both provide mechanisms to inject additional behavior in response to certain events or conditions, without modifying the core logic. PyTorch defines, registers, and executes hooks mainly in its base classes like nn.Module and Tensor, without polluting the functional and user-facing APIs.\n", + "\n", + "At this point, our objectives are:\n", + "\n", + "1. Maximize debugging capabilities via the simple logging module to keep the source code clean.\n", + "\n", + "2. Additionally, as we can’t always control the outputs of generators, we will provide customized logger and tracers(drop-in decorators) for them, for which we will explain in Tracing. This will not break the first objective.\n", + "\n", + "In the future, when we have more complex requirements from users, we will consider adding hooks/callbacks but we will do it in a way to keep the functional and user-facing APIs clean." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "d2H1vYoC_F-g" + }, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "log = logging.getLogger(__name__)" + ] }, - "id": "Yk4oiBFE_asG", - "outputId": "470e30dc-1b31-40c1-9e48-30754ae54b45" - }, - "execution_count": 5, - "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[32m2024-11-28 13:39:41 - [:3:] - All logging examples are done. Feeling green!\u001b[0m\n" - ] + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "e2GxAapG_TJH" + }, + "outputs": [], + "source": [ + "from adalflow.utils.logger import get_logger\n", + "\n", + "\n", + "root_logger = get_logger()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Yk4oiBFE_asG", + "outputId": "470e30dc-1b31-40c1-9e48-30754ae54b45" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32m2024-11-28 13:39:41 - [:3:] - All logging examples are done. Feeling green!\u001b[0m\n" + ] + } + ], + "source": [ + "from adalflow.utils.logger import printc\n", + "\n", + "printc(\"All logging examples are done. Feeling green!\", color=\"green\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "B8lmlT_9_nVP" + }, + "source": [ + "Set up all logs in one file\n", + "\n", + "Assume your source code is at src/task.py. You can log simply by:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "o_Ru1myM_c-J" + }, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "log = logging.getLogger(__name__)\n", + "\n", + "class Task:\n", + " def __init__(self):\n", + " log.info(\"This is a user program child logger\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "o7YPjEZk_ehg", + "outputId": "ad0f58e9-6f5c-4d00-e737-2fa1ad5ebd85" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-11-28 13:39:46 - - INFO - [:9:] - This is the log in the main file\n" + ] + } + ], + "source": [ + "import logging\n", + "from adalflow.utils.logger import get_logger\n", + "\n", + "root_logger = get_logger(level=\"DEBUG\", save_dir=\"./logs\") # log to ./logs/lib.log\n", + "\n", + "# run code from the library components such as generator\n", + "# ....\n", + "\n", + "root_logger.info(\"This is the log in the main file\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Db1_Ob3X_gpe" + }, + "source": [ + "Separate library and application logs" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "rQWuFnUc_gNm" + }, + "outputs": [], + "source": [ + "from adalflow.utils.logger import get_logger\n", + "\n", + "app_logger = get_logger(name=\"my_app\", level=\"DEBUG\", save_dir=\"./logs\") # log to ./logs/my_app.log\n", + "\n", + "class Task:\n", + " def __init__(self):\n", + " app_logger.info(\"This is a user program child logger\")" + ] } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Set up all logs in one file\n", - "\n", - "Assume your source code is at src/task.py. You can log simply by:" - ], - "metadata": { - "id": "B8lmlT_9_nVP" - } - }, - { - "cell_type": "code", - "source": [ - "import logging\n", - "\n", - "log = logging.getLogger(__name__)\n", - "\n", - "\n", - "class Task:\n", - " def __init__(self):\n", - " log.info(\"This is a user program child logger\")" - ], - "metadata": { - "id": "o_Ru1myM_c-J" - }, - "execution_count": 6, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import logging\n", - "from adalflow.utils.logger import get_logger\n", - "\n", - "root_logger = get_logger(level=\"DEBUG\", save_dir=\"./logs\") # log to ./logs/lib.log\n", - "\n", - "# run code from the library components such as generator\n", - "# ....\n", - "\n", - "root_logger.info(\"This is the log in the main file\")" - ], - "metadata": { + ], + "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "provenance": [] }, - "id": "o7YPjEZk_ehg", - "outputId": "ad0f58e9-6f5c-4d00-e737-2fa1ad5ebd85" - }, - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2024-11-28 13:39:46 - - INFO - [:9:] - This is the log in the main file\n" - ] + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] }, - { - "cell_type": "markdown", - "source": [ - "Separate library and application logs" - ], - "metadata": { - "id": "Db1_Ob3X_gpe" - } - }, - { - "cell_type": "code", - "source": [ - "from adalflow.utils.logger import get_logger\n", - "\n", - "app_logger = get_logger(\n", - " name=\"my_app\", level=\"DEBUG\", save_dir=\"./logs\"\n", - ") # log to ./logs/my_app.log\n", - "\n", - "\n", - "class Task:\n", - " def __init__(self):\n", - " app_logger.info(\"This is a user program child logger\")" - ], - "metadata": { - "id": "rQWuFnUc_gNm" - }, - "execution_count": 8, - "outputs": [] - } - ] + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/notebooks/tutorials/adalflow_modelclient.ipynb b/notebooks/tutorials/adalflow_modelclient.ipynb index 1674c69a..884086db 100644 --- a/notebooks/tutorials/adalflow_modelclient.ipynb +++ b/notebooks/tutorials/adalflow_modelclient.ipynb @@ -83,7 +83,9 @@ "from IPython.display import clear_output\n", "\n", "!pip install -U adalflow[openai,groq,faiss-cpu]\n", - "\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", "clear_output()" ] }, diff --git a/notebooks/tutorials/adalflow_rag_documents.ipynb b/notebooks/tutorials/adalflow_rag_documents.ipynb new file mode 100644 index 00000000..373f6bae --- /dev/null +++ b/notebooks/tutorials/adalflow_rag_documents.ipynb @@ -0,0 +1,443 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 🤗 Welcome to AdalFlow!\n", + "## The PyTorch library to auto-optimize any LLM task pipelines\n", + "\n", + "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", + "\n", + "\n", + "# Quick Links\n", + "\n", + "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", + "\n", + "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", + "\n", + "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", + "\n", + "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", + "\n", + "# Author\n", + "This notebook was created by community contributor [Ajith](https://github.com/ajithvcoder/).\n", + "\n", + "# Outline\n", + "\n", + "This is a quick introduction of what AdalFlow is capable of. We will cover:\n", + "\n", + "* How to use adalflow for rag with documents\n", + "\n", + "Adalflow can be used in a genric manner for any api provider without worrying much about prompt, \n", + "model args and parsing results\n", + "\n", + "**Next: Try our [adalflow-text-splitter](\"https://colab.research.google.com/github.com/SylphAI-Inc/AdalFlow/blob/main/notebooks/tutorials/adalflow_text_splitter.ipynb\")**\n", + "\n", + "\n", + "# Installation\n", + "\n", + "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq`, and `faiss`(cpu version) from the extra packages.\n", + "\n", + " ```bash\n", + " pip install torch --index-url https://download.pytorch.org/whl/cpu\n", + " pip install sentence-transformers==3.3.1\n", + " pip install adalflow[openai,groq,faiss-cpu]\n", + " ```\n", + "2. Setup `openai` and `groq` API key in the environment variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set Environment Variables\n", + "\n", + "Note: Enter your api keys in below cell #todo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting .env\n" + ] + } + ], + "source": [ + "%%writefile .env\n", + "\n", + "OPENAI_API_KEY=\"PASTE-OPENAI_API_KEY_HERE\"\n", + "GROQ_API_KEY=\"PASTE-GROQ_API_KEY-HERE\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from adalflow.utils import setup_env\n", + "\n", + "# Load environment variables - Make sure to have OPENAI_API_KEY in .env file and .env is present in current folder\n", + "setup_env(\".env\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/workspace/ajithdev/AdalFlow/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "import tiktoken\n", + "from typing import List, Dict, Tuple\n", + "import numpy as np\n", + "from sentence_transformers import SentenceTransformer\n", + "from faiss import IndexFlatL2\n", + "\n", + "from adalflow.components.model_client import GroqAPIClient, OpenAIClient\n", + "from adalflow.core.types import ModelType\n", + "from adalflow.utils import setup_env" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AdalflowRAGPipeline` is a class that implements a Retrieval-Augmented Generation (RAG) pipeline with adalflow using documents. It has:\n", + "\n", + "- Efficient RAG Pipeline for handling large text files, embedding, and retrieval.\n", + "- Supports token management and context truncation for LLM integration.\n", + "- Generates accurate responses using retrieval-augmented generation (RAG)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class AdalflowRAGPipeline:\n", + " def __init__(self,\n", + " model_client=None,\n", + " model_kwargs=None,\n", + " embedding_model='all-MiniLM-L6-v2', \n", + " vector_dim=384, \n", + " top_k_retrieval=3,\n", + " max_context_tokens=800):\n", + " \"\"\"\n", + " Initialize RAG Pipeline for handling large text files\n", + " \n", + " Args:\n", + " embedding_model (str): Sentence transformer model for embeddings\n", + " vector_dim (int): Dimension of embedding vectors\n", + " top_k_retrieval (int): Number of documents to retrieve\n", + " max_context_tokens (int): Maximum tokens to send to LLM\n", + " \"\"\"\n", + " # Initialize model client for generation\n", + " self.model_client = model_client\n", + " \n", + " # Initialize tokenizer for precise token counting\n", + " self.tokenizer = tiktoken.get_encoding(\"cl100k_base\")\n", + " \n", + " # Initialize embedding model\n", + " self.embedding_model = SentenceTransformer(embedding_model)\n", + " \n", + " # Initialize FAISS index for vector similarity search\n", + " self.index = IndexFlatL2(vector_dim)\n", + " \n", + " # Store document texts, embeddings, and metadata\n", + " self.documents = []\n", + " self.document_embeddings = []\n", + " self.document_metadata = []\n", + " \n", + " # Retrieval and context management parameters\n", + " self.top_k_retrieval = top_k_retrieval\n", + " self.max_context_tokens = max_context_tokens\n", + " \n", + " # Model generation parameters\n", + " self.model_kwargs = model_kwargs\n", + "\n", + " def load_text_file(self, file_path: str) -> List[str]:\n", + " \"\"\"\n", + " Load a large text file and split into manageable chunks\n", + " \n", + " Args:\n", + " file_path (str): Path to the text file\n", + " \n", + " Returns:\n", + " List[str]: List of document chunks\n", + " \"\"\"\n", + " with open(file_path, 'r', encoding='utf-8') as file:\n", + " # Read entire file\n", + " content = file.read()\n", + " \n", + " # Split content into chunks (e.g., 10 lines per chunk)\n", + " lines = content.split('\\n')\n", + " chunks = []\n", + " chunk_size = 10 # Adjust based on your file structure\n", + " \n", + " for i in range(0, len(lines), chunk_size):\n", + " chunk = '\\n'.join(lines[i:i+chunk_size])\n", + " chunks.append(chunk)\n", + " \n", + " return chunks\n", + "\n", + " def add_documents_from_directory(self, directory_path: str):\n", + " \"\"\"\n", + " Add documents from all text files in a directory\n", + " \n", + " Args:\n", + " directory_path (str): Path to directory containing text files\n", + " \"\"\"\n", + " for filename in os.listdir(directory_path):\n", + " if filename.endswith('.txt'):\n", + " file_path = os.path.join(directory_path, filename)\n", + " document_chunks = self.load_text_file(file_path)\n", + " \n", + " for chunk in document_chunks:\n", + " # Embed document chunk\n", + " embedding = self.embedding_model.encode(chunk)\n", + " \n", + " # Add to index and document store\n", + " self.index.add(np.array([embedding]))\n", + " self.documents.append(chunk)\n", + " self.document_embeddings.append(embedding)\n", + " self.document_metadata.append({\n", + " 'filename': filename,\n", + " 'chunk_index': len(self.document_metadata)\n", + " })\n", + "\n", + " def count_tokens(self, text: str) -> int:\n", + " \"\"\"\n", + " Count tokens in a given text\n", + " \n", + " Args:\n", + " text (str): Input text\n", + " \n", + " Returns:\n", + " int: Number of tokens\n", + " \"\"\"\n", + " return len(self.tokenizer.encode(text))\n", + "\n", + " def retrieve_and_truncate_context(self, query: str) -> str:\n", + " \"\"\"\n", + " Retrieve relevant documents and truncate to fit token limit\n", + " \n", + " Args:\n", + " query (str): Input query\n", + " \n", + " Returns:\n", + " str: Concatenated context within token limit\n", + " \"\"\"\n", + " # Retrieve relevant documents\n", + " query_embedding = self.embedding_model.encode(query)\n", + " distances, indices = self.index.search(\n", + " np.array([query_embedding]), \n", + " self.top_k_retrieval\n", + " )\n", + " \n", + " # Collect and truncate context\n", + " context = []\n", + " current_tokens = 0\n", + " \n", + " for idx in indices[0]:\n", + " doc = self.documents[idx]\n", + " doc_tokens = self.count_tokens(doc)\n", + " \n", + " # Check if adding this document would exceed token limit\n", + " if current_tokens + doc_tokens <= self.max_context_tokens:\n", + " context.append(doc)\n", + " current_tokens += doc_tokens\n", + " else:\n", + " break\n", + " \n", + " return \"\\n\\n\".join(context)\n", + "\n", + " def generate_response(self, query: str) -> str:\n", + " \"\"\"\n", + " Generate a response using retrieval-augmented generation\n", + " \n", + " Args:\n", + " query (str): User's input query\n", + " \n", + " Returns:\n", + " str: Generated response incorporating retrieved context\n", + " \"\"\"\n", + " # Retrieve and truncate context\n", + " retrieved_context = self.retrieve_and_truncate_context(query)\n", + " \n", + " # Construct context-aware prompt\n", + " full_prompt = f\"\"\"\n", + " Context Documents:\n", + " {retrieved_context}\n", + " \n", + " Query: {query}\n", + " \n", + " Generate a comprehensive response that:\n", + " 1. Directly answers the query\n", + " 2. Incorporates relevant information from the context documents\n", + " 3. Provides clear and concise information\n", + " \"\"\"\n", + " \n", + " # Prepare API arguments\n", + " api_kwargs = self.model_client.convert_inputs_to_api_kwargs(\n", + " input=full_prompt,\n", + " model_kwargs=self.model_kwargs,\n", + " model_type=ModelType.LLM\n", + " )\n", + " \n", + " # Call API and parse response\n", + " response = self.model_client.call(\n", + " api_kwargs=api_kwargs, \n", + " model_type=ModelType.LLM\n", + " )\n", + " response_text = self.model_client.parse_chat_completion(response)\n", + " \n", + " return response_text\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`run_rag_pipeline` demonstrates how to use the AdalflowRAGPipeline to handle retrieval-augmented generation. It initializes the pipeline with specified retrieval and context token limits, loads documents from a directory, and processes a list of queries. For each query, the function retrieves relevant context, generates a response using the pipeline, and prints the results." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def run_rag_pipeline(model_client, model_kwargs, documents, queries):\n", + "\n", + " # Example usage of RAG pipeline\n", + " rag_pipeline = AdalflowRAGPipeline(\n", + " model_client=model_client,\n", + " model_kwargs=model_kwargs,\n", + " top_k_retrieval=1, # Retrieve top 1 most relevant chunks\n", + " max_context_tokens=800 # Limit context to 1500 tokens\n", + " )\n", + "\n", + " # Add documents from a directory of text files\n", + " rag_pipeline.add_documents_from_directory(documents)\n", + " \n", + " # Generate responses\n", + " for query in queries:\n", + " print(f\"\\nQuery: {query}\")\n", + " response = rag_pipeline.generate_response(query)\n", + " print(f\"Response: {response}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Query: What year was the Crystal Cavern discovered?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=14, prompt_tokens=203, total_tokens=217), raw_response='The Crystal Cavern was discovered in 1987 by divers.', metadata=None)\n", + "\n", + "Query: What is the name of the rare tree in Elmsworth?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=17, prompt_tokens=212, total_tokens=229), raw_response='The rare tree in Elmsworth is known as the \"Moonshade Willow\".', metadata=None)\n", + "\n", + "Query: What local legend claim that Lunaflits surrounds?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=19, prompt_tokens=206, total_tokens=225), raw_response='Local legend claims that Lunaflits are guardians of ancient treasure buried deep within the canyon.', metadata=None)\n", + "\n", + "Query: What year was the Crystal Cavern discovered?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=107, prompt_tokens=184, total_tokens=291), raw_response='The Crystal Cavern was discovered by divers in the year 1987 beneath the icy waters of Lake Aurora. The cavern is known for its shimmering quartz formations that refract sunlight into a spectrum of colors, and it is believed to have served as a sanctuary for an ancient civilization that revered the crystals as conduits to the spirit world. Artifacts recovered from the cavern are carved with intricate symbols, indicating a deep connection to celestial events. However, accessing the cavern is dangerous due to the freezing temperatures and strong currents of the lake.', metadata=None)\n", + "\n", + "Query: What is the name of the rare tree in Elmsworth?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=104, prompt_tokens=193, total_tokens=297), raw_response='The rare tree in Elmsworth is called the \"Moonshade Willow.\" It blooms once every seven years, emitting a soft glow from its blossoms. Villagers believe that meditating under its branches brings vivid dreams of the future. The tree\\'s bark contains a secret resin used in ancient healing rituals. Elders claim that the Moonshade Willow was a gift from a goddess to protect the village. Researchers have found that the tree can only thrive in Elmsworth\\'s unique soil, making it impossible to cultivate elsewhere.', metadata=None)\n", + "\n", + "Query: What local legend claim that Lunaflits surrounds?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=100, prompt_tokens=187, total_tokens=287), raw_response='Local legends claim that Lunaflits, the glowing insects found in the remote desert canyon, are believed to be guardians of ancient treasure buried deep within the canyon. These creatures emit a constant, soothing green light that illuminates the canyon at night, and their rhythmic light pulses form intricate patterns, suggesting a form of communication among them. The ethereal glow created by the Lunaflits and the rare moss reflecting their light have contributed to the mystical reputation of these insects as protectors of hidden riches.', metadata=None)\n" + ] + } + ], + "source": [ + "# setup_env()\n", + "\n", + "documents = '../../tutorials/assets/documents'\n", + "\n", + "queries = [\n", + " \"What year was the Crystal Cavern discovered?\",\n", + " \"What is the name of the rare tree in Elmsworth?\",\n", + " \"What local legend claim that Lunaflits surrounds?\"\n", + "]\n", + "\n", + "groq_model_kwargs = {\n", + " \"model\": \"llama-3.2-1b-preview\", # Use 16k model for larger context\n", + " \"temperature\": 0.1,\n", + " \"max_tokens\": 800,\n", + "}\n", + "\n", + "openai_model_kwargs = {\n", + " \"model\": \"gpt-3.5-turbo\",\n", + " \"temperature\": 0.1,\n", + " \"max_tokens\": 800,\n", + "}\n", + "# Below example shows that adalflow can be used in a genric manner for any api provider\n", + "# without worrying about prompt and parsing results\n", + "run_rag_pipeline(GroqAPIClient(), groq_model_kwargs, documents, queries)\n", + "run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/tutorials/adalflow_rag_optimization.ipynb b/notebooks/tutorials/adalflow_rag_optimization.ipynb index 34d208bf..b9365680 100644 --- a/notebooks/tutorials/adalflow_rag_optimization.ipynb +++ b/notebooks/tutorials/adalflow_rag_optimization.ipynb @@ -1,123 +1,43 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# 🤗 Welcome to AdalFlow!\n", - "## The PyTorch library to auto-optimize any LLM task pipelines\n", - "\n", - "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", - "\n", - "\n", - "# Quick Links\n", - "\n", - "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", - "\n", - "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", - "\n", - "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", - "\n", - "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", - "\n", - "## 📖 Outline\n", - "\n", - "In this tutorial, we will cover the auto-optimization of a standard RAG:\n", - "\n", - "- Introducing HotPotQA dataset and HotPotQAData class.\n", - "\n", - "- Convert Dspy’s Retriever to AdalFlow’s Retriever to easy comparison.\n", - "\n", - "- Build the standard RAG with Retriever and Generator components.\n", - "\n", - "- Learn how to connect the output-input between components to enable auto-text-grad optimization." - ], - "metadata": { - "id": "xHF95Kr4CzGq" - } - }, - { - "cell_type": "markdown", - "source": [ - "\n", - "# Installation\n", - "\n", - "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq` from the extra packages.\n", - "\n", - " ```bash\n", - " pip install adalflow[openai,groq]\n", - " ```\n", - "2. Setup `openai` and `groq` API key in the environment variables\n", - "\n", - "You can choose to use different client. You can import the model client you prefer. We support `Anthropic`, `Cohere`, `Google`, `GROQ`, `OpenAI`, `Transformer` and more in development. We will use OpenAI here as an example.Please refer to our [full installation guide](https://adalflow.sylph.ai/get_started/installation.html)" - ], - "metadata": { - "id": "Kof5M6DRaKhh" - } - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "tAp3eDjOCma1" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai] # also install the package for the model client you'll use\n", - "!pip install dspy\n", - "!pip install datasets\n", - "clear_output()" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Set Environment Variables\n", - "\n", - "Run the following code and pass your api key.\n", - "\n", - "Note: for normal `.py` projects, follow our [official installation guide](https://lightrag.sylph.ai/get_started/installation.html).\n", - "\n", - "*Go to [OpenAI](https://platform.openai.com/docs/introduction) to get API keys if you don't already have.*" - ], - "metadata": { - "id": "KapUyHMM07pJ" - } - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "xHF95Kr4CzGq" + }, + "metadata": { + "id": "xHF95Kr4CzGq" + }, + "source": [ + "# 🤗 Welcome to AdalFlow!\n", + "## The PyTorch library to auto-optimize any LLM task pipelines\n", + "\n", + "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", + "\n", + "\n", + "# Quick Links\n", + "\n", + "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", + "\n", + "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", + "\n", + "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", + "\n", + "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", + "\n", + "## 📖 Outline\n", + "\n", + "In this tutorial, we will cover the auto-optimization of a standard RAG:\n", + "\n", + "- Introducing HotPotQA dataset and HotPotQAData class.\n", + "\n", + "- Convert Dspy’s Retriever to AdalFlow’s Retriever to easy comparison.\n", + "\n", + "- Build the standard RAG with Retriever and Generator components.\n", + "\n", + "- Learn how to connect the output-input between components to enable auto-text-grad optimization." + ] + ] }, "id": "ONfzF9Puzdd_", "outputId": "5fc0cd30-9ae7-443a-c06c-31e9edeafd69" @@ -125,6 +45,540 @@ "execution_count": 3, "outputs": [ { +<<<<<<< HEAD + "cell_type": "markdown", + "metadata": { + "id": "Kof5M6DRaKhh" + }, + "metadata": { + "id": "Kof5M6DRaKhh" + }, + "source": [ + "\n", + "# Installation\n", + "\n", + "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq` from the extra packages.\n", + "\n", + " ```bash\n", + " pip install adalflow[openai,groq]\n", + " ```\n", + "2. Setup `openai` and `groq` API key in the environment variables\n", + "\n", + "You can choose to use different client. You can import the model client you prefer. We support `Anthropic`, `Cohere`, `Google`, `GROQ`, `OpenAI`, `Transformer` and more in development. We will use OpenAI here as an example.Please refer to our [full installation guide](https://adalflow.sylph.ai/get_started/installation.html)" + ] + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "tAp3eDjOCma1" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai] # also install the package for the model client you'll use\n", + "!pip install dspy\n", + "!pip install datasets\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "clear_output()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KapUyHMM07pJ" + }, + "metadata": { + "id": "KapUyHMM07pJ" + }, + "source": [ + "## Set Environment Variables\n", + "\n", + "Run the following code and pass your api key.\n", + "\n", + "Note: for normal `.py` projects, follow our [official installation guide](https://lightrag.sylph.ai/get_started/installation.html).\n", + "\n", + "*Go to [OpenAI](https://platform.openai.com/docs/introduction) to get API keys if you don't already have.*" + ] + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ONfzF9Puzdd_", + "outputId": "5fc0cd30-9ae7-443a-c06c-31e9edeafd69" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ONfzF9Puzdd_", + "outputId": "5fc0cd30-9ae7-443a-c06c-31e9edeafd69" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "\n", + "print(\"API keys have been set.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "aE3I05BqOmd7" + }, + "outputs": [], + "execution_count": 20, + "metadata": { + "id": "aE3I05BqOmd7" + }, + "outputs": [], + "source": [ + "import dspy\n", + "import re\n", + "from typing import List, Union, Optional, Dict, Callable, Any, Tuple\n", + "from dataclasses import dataclass, field\n", + "import adalflow as adal\n", + "from adalflow.optim.parameter import Parameter, ParameterType\n", + "from adalflow.datasets.hotpot_qa import HotPotQA, HotPotQAData\n", + "from adalflow.datasets.types import Example\n", + "from adalflow.core.types import RetrieverOutput\n", + "from adalflow.core import Component, Generator\n", + "from adalflow.core.retriever import Retriever\n", + "from adalflow.core.component import fun_to_component\n", + "from adalflow.components.model_client.openai_client import OpenAIClient" + ] + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cqUUoua9fUxQ" + }, + "outputs": [], + "execution_count": null, + "metadata": { + "id": "cqUUoua9fUxQ" + }, + "outputs": [], + "source": [ + "\n", + "gpt_4o_model = {\n", + " \"model_client\": OpenAIClient(),\n", + " \"model_kwargs\": {\n", + " \"model\": \"gpt-4o-mini\",\n", + " \"max_tokens\": 2000,\n", + " },\n", + "}\n", + "\n", + "gpt_3_model = {\n", + " \"model_client\": OpenAIClient(),\n", + " \"model_kwargs\": {\n", + " \"model\": \"gpt-3.5-turbo\",\n", + " \"max_tokens\": 2000,\n", + " },\n", + "}" + ] + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0irHeHUkOmL8", + "outputId": "61f778a2-9ec1-4fda-daa2-bcc7f31baa78" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HotPotQAData(id='5a8b57f25542995d1e6f1371', question='Were Scott Derrickson and Ed Wood of the same nationality?', answer='yes', gold_titles=\"{'Scott Derrickson', 'Ed Wood'}\") \n" + ] + }, + { + "data": { + "text/plain": [ + "HotPotQAData(id='5a8b57f25542995d1e6f1371', question='Were Scott Derrickson and Ed Wood of the same nationality?', answer='yes', gold_titles=\"{'Scott Derrickson', 'Ed Wood'}\")" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0irHeHUkOmL8", + "outputId": "61f778a2-9ec1-4fda-daa2-bcc7f31baa78" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HotPotQAData(id='5a8b57f25542995d1e6f1371', question='Were Scott Derrickson and Ed Wood of the same nationality?', answer='yes', gold_titles=\"{'Scott Derrickson', 'Ed Wood'}\") \n" + ] + }, + { + "data": { + "text/plain": [ + "HotPotQAData(id='5a8b57f25542995d1e6f1371', question='Were Scott Derrickson and Ed Wood of the same nationality?', answer='yes', gold_titles=\"{'Scott Derrickson', 'Ed Wood'}\")" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def load_datasets():\n", + "\n", + " trainset = HotPotQA(split=\"train\", size=20)\n", + " valset = HotPotQA(split=\"val\", size=50)\n", + " testset = HotPotQA(split=\"test\", size=50)\n", + " print(f\"trainset, valset: {len(trainset)}, {len(valset)}, example: {trainset[0]}\")\n", + " return trainset, valset, testset\n", + "\n", + "\n", + "@dataclass\n", + "class AnswerData(adal.DataClass):\n", + " reasoning: str = field(\n", + " metadata={\"desc\": \"The reasoning to produce the answer\"},\n", + " )\n", + " answer: str = field(\n", + " metadata={\"desc\": \"The answer you produced\"},\n", + " )\n", + "\n", + " __output_fields__ = [\"reasoning\", \"answer\"]\n", + "\n", + "\n", + "dataset = HotPotQA(split=\"train\", size=20)\n", + "print(dataset[0], type(dataset[0]))\n", + "\n", + "HotPotQAData(id='5a8b57f25542995d1e6f1371', question='Were Scott Derrickson and Ed Wood of the same nationality?', answer='yes', gold_titles=\"{'Scott Derrickson', 'Ed Wood'}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "ZZIEtZYHNVjo" + }, + "outputs": [], + "execution_count": 23, + "metadata": { + "id": "ZZIEtZYHNVjo" + }, + "outputs": [], + "source": [ + "class DspyRetriever(adal.Retriever):\n", + " def __init__(self, top_k: int = 3):\n", + " super().__init__()\n", + " self.top_k = top_k\n", + " self.dspy_retriever = dspy.Retrieve(k=top_k)\n", + "\n", + " def call(self, input: str, top_k: Optional[int] = None) -> List[adal.RetrieverOutput]:\n", + "\n", + " k = top_k or self.top_k\n", + "\n", + " output = self.dspy_retriever(query_or_queries=input, k=k)\n", + " final_output: List[RetrieverOutput] = []\n", + " documents = output.passages\n", + "\n", + " final_output.append(\n", + " RetrieverOutput(\n", + " query=input,\n", + " documents=documents,\n", + " doc_indices=[],\n", + " )\n", + " )\n", + " return final_output\n", + "\n", + "def test_retriever():\n", + " question = \"How many storeys are in the castle that David Gregory inherited?\"\n", + " retriever = DspyRetriever(top_k=3)\n", + " retriever_out = retriever(input=question)\n", + " print(f\"retriever_out: {retriever_out}\")\n", + "\n", + "\n", + "def call(\n", + " self, question: str, id: Optional[str] = None\n", + " ) -> Union[adal.GeneratorOutput, adal.Parameter]:\n", + " prompt_kwargs = self._prepare_input(question)\n", + " output = self.llm(prompt_kwargs=prompt_kwargs, id=id)\n", + " return output\n", + "\n", + "\n", + "def call(self, question: str, id: str = None) -> adal.GeneratorOutput:\n", + " if self.training:\n", + " raise ValueError(\n", + " \"This component is not supposed to be called in training mode\"\n", + " )\n", + "\n", + " retriever_out = self.retriever.call(input=question)\n", + "\n", + " successor_map_fn = lambda x: ( # noqa E731\n", + " \"\\n\\n\".join(x[0].documents) if x and x[0] and x[0].documents else \"\"\n", + " )\n", + " retrieved_context = successor_map_fn(retriever_out)\n", + "\n", + " prompt_kwargs = {\n", + " \"context\": retrieved_context,\n", + " \"question\": question,\n", + " }\n", + "\n", + " output = self.llm.call(\n", + " prompt_kwargs=prompt_kwargs,\n", + " id=id,\n", + " )\n", + " return output\n", + "\n", + "\n", + "def forward(self, question: str, id: str = None) -> adal.Parameter:\n", + " if not self.training:\n", + " raise ValueError(\"This component is not supposed to be called in eval mode\")\n", + " retriever_out = self.retriever.forward(input=question)\n", + " successor_map_fn = lambda x: ( # noqa E731\n", + " \"\\n\\n\".join(x.data[0].documents)\n", + " if x.data and x.data[0] and x.data[0].documents\n", + " else \"\"\n", + " )\n", + " retriever_out.add_successor_map_fn(successor=self.llm, map_fn=successor_map_fn)\n", + " generator_out = self.llm.forward(\n", + " prompt_kwargs={\"question\": question, \"context\": retriever_out}, id=id\n", + " )\n", + " return generator_out\n", + "\n", + "\n", + "def bicall(\n", + " self, question: str, id: str = None\n", + ") -> Union[adal.GeneratorOutput, adal.Parameter]:\n", + " \"\"\"You can also combine both the forward and call in the same function.\n", + " Supports both training and eval mode by using __call__ for GradComponents\n", + " like Retriever and Generator\n", + " \"\"\"\n", + " retriever_out = self.retriever(input=question)\n", + " if isinstance(retriever_out, adal.Parameter):\n", + " successor_map_fn = lambda x: ( # noqa E731\n", + " \"\\n\\n\".join(x.data[0].documents)\n", + " if x.data and x.data[0] and x.data[0].documents\n", + " else \"\"\n", + " )\n", + " retriever_out.add_successor_map_fn(\n", + " successor=self.llm, map_fn=successor_map_fn\n", + " )\n", + " else:\n", + " successor_map_fn = lambda x: ( # noqa E731\n", + " \"\\n\\n\".join(x[0].documents) if x and x[0] and x[0].documents else \"\"\n", + " )\n", + " retrieved_context = successor_map_fn(retriever_out)\n", + " prompt_kwargs = {\n", + " \"context\": retrieved_context,\n", + " \"question\": question,\n", + " }\n", + " output = self.llm(prompt_kwargs=prompt_kwargs, id=id)\n", + " return output\n", + "\n", + "task_desc_str = r\"\"\"Answer questions with short factoid answers.\n", + "\n", + "You will receive context(may contain relevant facts) and a question.\n", + "Think step by step.\"\"\"\n", + "\n", + "\n", + "class VanillaRAG(adal.GradComponent):\n", + " def __init__(self, passages_per_hop=3, model_client=None, model_kwargs=None):\n", + " super().__init__()\n", + "\n", + " self.passages_per_hop = passages_per_hop\n", + "\n", + " self.retriever = DspyRetriever(top_k=passages_per_hop)\n", + " self.llm_parser = adal.DataClassParser(\n", + " data_class=AnswerData, return_data_class=True, format_type=\"json\"\n", + " )\n", + " self.llm = Generator(\n", + " model_client=model_client,\n", + " model_kwargs=model_kwargs,\n", + " prompt_kwargs={\n", + " \"task_desc_str\": adal.Parameter(\n", + " data=task_desc_str,\n", + " role_desc=\"Task description for the language model\",\n", + " param_type=adal.ParameterType.PROMPT,\n", + " ),\n", + " \"few_shot_demos\": adal.Parameter(\n", + " data=None,\n", + " requires_opt=True,\n", + " role_desc=\"To provide few shot demos to the language model\",\n", + " param_type=adal.ParameterType.DEMOS,\n", + " ),\n", + " \"output_format_str\": self.llm_parser.get_output_format_str(),\n", + " },\n", + " template=answer_template,\n", + " output_processors=self.llm_parser,\n", + " use_cache=True,\n", + " )\n", + "\n", + "\n", + "class VallinaRAGAdal(adal.AdalComponent):\n", + " def __init__(\n", + " self,\n", + " model_client: adal.ModelClient,\n", + " model_kwargs: Dict,\n", + " backward_engine_model_config: Dict | None = None,\n", + " teacher_model_config: Dict | None = None,\n", + " text_optimizer_model_config: Dict | None = None,\n", + " ):\n", + " task = VanillaRAG(\n", + " model_client=model_client,\n", + " model_kwargs=model_kwargs,\n", + " passages_per_hop=3,\n", + " )\n", + " eval_fn = AnswerMatchAcc(type=\"fuzzy_match\").compute_single_item\n", + " loss_fn = adal.EvalFnToTextLoss(\n", + " eval_fn=eval_fn, eval_fn_desc=\"fuzzy_match: 1 if str(y) in str(y_gt) else 0\"\n", + " )\n", + " super().__init__(\n", + " task=task,\n", + " eval_fn=eval_fn,\n", + " loss_fn=loss_fn,\n", + " backward_engine_model_config=backward_engine_model_config,\n", + " teacher_model_config=teacher_model_config,\n", + " text_optimizer_model_config=text_optimizer_model_config,\n", + " )\n", + "\n", + " # tell the trainer how to call the task\n", + " def prepare_task(self, sample: HotPotQAData) -> Tuple[Callable[..., Any], Dict]:\n", + " if self.task.training:\n", + " return self.task.forward, {\"question\": sample.question, \"id\": sample.id}\n", + " else:\n", + " return self.task.call, {\"question\": sample.question, \"id\": sample.id}\n", + "\n", + "\n", + " # eval mode: get the generator output, directly engage with the eval_fn\n", + " def prepare_eval(self, sample: HotPotQAData, y_pred: adal.GeneratorOutput) -> float:\n", + " y_label = \"\"\n", + " if y_pred and y_pred.data and y_pred.data.answer:\n", + " y_label = y_pred.data.answer\n", + " return self.eval_fn, {\"y\": y_label, \"y_gt\": sample.answer}\n", + "\n", + "\n", + " # train mode: get the loss and get the data from the full_response\n", + " def prepare_loss(self, sample: HotPotQAData, pred: adal.Parameter):\n", + " # prepare gt parameter\n", + " y_gt = adal.Parameter(\n", + " name=\"y_gt\",\n", + " data=sample.answer,\n", + " eval_input=sample.answer,\n", + " requires_opt=False,\n", + " )\n", + "\n", + " # pred's full_response is the output of the task pipeline which is GeneratorOutput\n", + " pred.eval_input = (\n", + " pred.full_response.data.answer\n", + " if pred.full_response\n", + " and pred.full_response.data\n", + " and pred.full_response.data.answer\n", + " else \"\"\n", + " )\n", + " return self.loss_fn, {\"kwargs\": {\"y\": pred, \"y_gt\": y_gt}}\n", + "\n", + "def train_diagnose(\n", + " model_client: adal.ModelClient,\n", + " model_kwargs: Dict,\n", + ") -> Dict:\n", + "\n", + " trainset, valset, testset = load_datasets()\n", + "\n", + " adal_component = VallinaRAGAdal(\n", + " model_client,\n", + " model_kwargs,\n", + " backward_engine_model_config=gpt_4o_model,\n", + " teacher_model_config=gpt_3_model,\n", + " text_optimizer_model_config=gpt_3_model,\n", + " )\n", + " trainer = adal.Trainer(adaltask=adal_component)\n", + " trainer.diagnose(dataset=trainset, split=\"train\")\n", + " # trainer.diagnose(dataset=valset, split=\"val\")\n", + " # trainer.diagnose(dataset=testset, split=\"test\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AmkbyxmuruUu" + }, + "source": [ + "# Issues and feedback\n", + "\n", + "If you encounter any issues, please report them here: [GitHub Issues](https://github.com/SylphAI-Inc/LightRAG/issues).\n", + "\n", + "For feedback, you can use either the [GitHub discussions](https://github.com/SylphAI-Inc/LightRAG/discussions) or [Discord](https://discord.gg/ezzszrRZvT)." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +======= "output_type": "stream", "name": "stdout", "text": [ @@ -495,4 +949,5 @@ } } ] +>>>>>>> origin/main } diff --git a/notebooks/tutorials/adalflow_rag_playbook.ipynb b/notebooks/tutorials/adalflow_rag_playbook.ipynb index 308ade6e..f4388a75 100644 --- a/notebooks/tutorials/adalflow_rag_playbook.ipynb +++ b/notebooks/tutorials/adalflow_rag_playbook.ipynb @@ -1,70 +1,21 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Adalflow RAG Playbook example\n", - "\n", - "There are different patterns to build a RAG:\n", - "\n", - "- RAG with separate data process pipeline and a RAG task pipeline. This fits into a scenario where there is lots of data in production database, and we preprocess the data to embeddings and then we build a RAG task pipeline that retrieves context in multiple stages.\n", - "\n", - "- RAG with dynamic data access and caching the embedding dynamically in a local storage.\n", - "\n", - "Here we will have have a look at an example with a local DB using FAISS" - ], - "metadata": { - "id": "lLGpv1fLLIjF" - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "sfKEfaYC3Go7" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai,groq,faiss-cpu]\n", - "\n", - "clear_output()" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "os.environ[\"GROQ_API_KEY\"] = groq_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "lLGpv1fLLIjF" + }, + "source": [ + "# Adalflow RAG Playbook example\n", + "\n", + "There are different patterns to build a RAG:\n", + "\n", + "- RAG with separate data process pipeline and a RAG task pipeline. This fits into a scenario where there is lots of data in production database, and we preprocess the data to embeddings and then we build a RAG task pipeline that retrieves context in multiple stages.\n", + "\n", + "- RAG with dynamic data access and caching the embedding dynamically in a local storage.\n", + "\n", + "Here we will have have a look at an example with a local DB using FAISS" + ] }, "id": "-4c_AGBt3PlR", "outputId": "a36f157b-0b18-4f3d-d5a8-09aa94743922" @@ -72,455 +23,508 @@ "execution_count": 2, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Please enter your OpenAI API key: ··········\n", - "Please enter your GROQ API key: ··········\n", - "API keys have been set.\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from typing import Any, List, Optional\n", - "import os\n", - "from adalflow.core import Component, Generator, Embedder, Sequential\n", - "from adalflow.core.types import Document, ModelClientType\n", - "from adalflow.core.string_parser import JsonParser\n", - "from adalflow.core.db import LocalDB\n", - "from adalflow.utils import setup_env\n", - "from adalflow.components.retriever.faiss_retriever import FAISSRetriever\n", - "from adalflow.components.data_process import (\n", - " RetrieverOutputToContextStr,\n", - " ToEmbeddings,\n", - " TextSplitter,\n", - ")\n", - "from adalflow.utils.global_config import get_adalflow_default_root_path" - ], - "metadata": { - "id": "V9LsGDnm3RbV" - }, - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "configs = {\n", - " \"embedder\": {\n", - " \"batch_size\": 100,\n", - " \"model_kwargs\": {\n", - " \"model\": \"text-embedding-3-small\",\n", - " \"dimensions\": 256,\n", - " \"encoding_format\": \"float\",\n", - " },\n", - " },\n", - " \"retriever\": {\n", - " \"top_k\": 5,\n", - " },\n", - " \"generator\": {\n", - " \"model_client\": ModelClientType.OPENAI(),\n", - " \"model_kwargs\": {\n", - " \"model\": \"gpt-3.5-turbo\",\n", - " \"temperature\": 0.3,\n", - " \"stream\": False,\n", - " },\n", - " },\n", - " \"text_splitter\": {\n", - " \"split_by\": \"word\",\n", - " \"chunk_size\": 400,\n", - " \"chunk_overlap\": 200,\n", - " },\n", - "}" - ], - "metadata": { - "id": "kWGTZxrw3Tli" - }, - "execution_count": 5, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "def prepare_data_pipeline():\n", - " splitter = TextSplitter(**configs[\"text_splitter\"])\n", - " embedder = Embedder(\n", - " model_client=ModelClientType.OPENAI(),\n", - " model_kwargs=configs[\"embedder\"][\"model_kwargs\"],\n", - " )\n", - " embedder_transformer = ToEmbeddings(\n", - " embedder=embedder, batch_size=configs[\"embedder\"][\"batch_size\"]\n", - " )\n", - " data_transformer = Sequential(splitter, embedder_transformer)\n", - " return data_transformer\n", - "\n", - "\n", - "def prepare_database_with_index(\n", - " docs: List[Document],\n", - " index_file: str = \"index.faiss\",\n", - " index_path: Optional[str] = None,\n", - "):\n", - " index_path = index_path or get_adalflow_default_root_path()\n", - " index_path = os.path.join(index_path, index_file)\n", - " if os.path.exists(index_path):\n", - " return None\n", - " db = LocalDB()\n", - " db.load(docs)\n", - " data_transformer = prepare_data_pipeline()\n", - " db.transform(data_transformer, key=\"data_transformer\")\n", - " db.save_state(index_path)" - ], - "metadata": { - "id": "1QE0PCKs4BLz" - }, - "execution_count": 6, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "RAG_PROMPT_TEMPLATE = r\"\"\"\n", - "{{task_desc}}\n", - "\n", - "\n", - "{{input_str}}\n", - "{{context_str}}\n", - "\n", - "\"\"\"\n", - "\n", - "rag_prompt_task_desc = r\"\"\"\n", - "You are a helpful assistant.\n", - "\n", - "Your task is to answer the query that may or may not come with context information.\n", - "When context is provided, you should stick to the context and less on your prior knowledge to answer the query.\n", - "\n", - "Output JSON format:\n", - "{\n", - " \"answer\": \"The answer to the query\",\n", - "}\"\"\"\n", - "\n", - "\n", - "class RAG(Component):\n", - " def __init__(\n", - " self,\n", - " index_file: str = \"index.faiss\",\n", - " index_path: Optional[str] = None,\n", - " configs: dict = configs,\n", - " ):\n", - " super().__init__()\n", - "\n", - " index_path = index_path or get_adalflow_default_root_path()\n", - " index_path = os.path.join(index_path, index_file)\n", - " self.index_path = index_path\n", - "\n", - " if not os.path.exists(index_path):\n", - " self.db = LocalDB()\n", - " self.register_data_transformer()\n", - " self.transformed_docs = []\n", - " else:\n", - " self.db = LocalDB.load_state(index_path)\n", - " self.transformed_docs = self.db.get_transformed_data(\"data_transformer\")\n", - "\n", - " embedder = Embedder(\n", - " model_client=ModelClientType.OPENAI(),\n", - " model_kwargs=configs[\"embedder\"][\"model_kwargs\"],\n", - " )\n", - "\n", - " self.retriever = FAISSRetriever(\n", - " **configs[\"retriever\"],\n", - " embedder=embedder,\n", - " documents=self.transformed_docs,\n", - " document_map_func=lambda doc: doc.vector,\n", - " )\n", - " self.retriever_output_processors = RetrieverOutputToContextStr(deduplicate=True)\n", - "\n", - " self.generator = Generator(\n", - " **configs[\"generator\"],\n", - " prompt_kwargs={\"task_desc_str\": rag_prompt_task_desc},\n", - " output_processors=JsonParser(),\n", - " )\n", - "\n", - " def register_data_transformer(self):\n", - " if \"data_transformer\" not in self.db.get_transformer_keys():\n", - " data_transformer = prepare_data_pipeline()\n", - " self.db.register_transformer(data_transformer, key=\"data_transformer\")\n", - " print(\"Data transformer registered\")\n", - "\n", - " def add_documents(self, docs: List[Document]):\n", - " self.db.extend(docs, apply_transformer=True)\n", - " self.db.save_state(self.index_path)\n", - "\n", - " def get_transformed_docs(self, filter_func=None):\n", - " return self.db.get_transformed_data(\"data_transformer\", filter_func)\n", - "\n", - " def prepare_retriever(self, filter_func=None):\n", - " self.transformed_docs = self.get_transformed_docs(filter_func)\n", - " self.retriever.build_index_from_documents(\n", - " self.transformed_docs, document_map_func=lambda doc: doc.vector\n", - " )\n", - "\n", - " def generate(self, query: str, context: Optional[str] = None) -> Any:\n", - " if not self.generator:\n", - " raise ValueError(\"Generator is not set\")\n", - " prompt_kwargs = {\"context_str\": context, \"input_str\": query}\n", - " response = self.generator(prompt_kwargs=prompt_kwargs)\n", - " return response, context\n", - "\n", - " def call(self, query: str, verbose: bool = False) -> Any:\n", - " retrieved_documents = self.retriever(query)\n", - " for i, retriever_output in enumerate(retrieved_documents):\n", - " retrieved_documents[i].documents = [\n", - " self.transformed_docs[doc_index]\n", - " for doc_index in retriever_output.doc_indices\n", - " ]\n", - " if verbose:\n", - " print(f\"retrieved_documents: \\n {retrieved_documents}\")\n", - "\n", - " context_str = self.retriever_output_processors(retrieved_documents)\n", - " if verbose:\n", - " print(f\"context_str: \\n {context_str}\")\n", - "\n", - " return self.generate(query, context=context_str)" - ], - "metadata": { - "id": "6Mu1HXhy4DIG" - }, - "execution_count": 7, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# Prepare initial documents\n", - "doc1 = Document(\n", - " meta_data={\"title\": \"Li Yin's profile\"},\n", - " text=\"My name is Li Yin, I love rock climbing\" + \"lots of nonsense text\" * 500,\n", - " id=\"doc1\",\n", - ")\n", - "doc2 = Document(\n", - " meta_data={\"title\": \"Interviewing Li Yin\"},\n", - " text=\"lots of more nonsense text\" * 250\n", - " + \"Li Yin is an AI researcher and a software engineer\"\n", - " + \"lots of more nonsense text\" * 250,\n", - " id=\"doc2\",\n", - ")\n", - "\n", - "# Prepare the database (only runs once)\n", - "prepare_database_with_index([doc1, doc2], index_file=\"index.faiss\")\n", - "\n", - "# Initialize RAG\n", - "rag = RAG(index_file=\"index.faiss\")\n", - "print(rag)\n", - "\n", - "# Query the RAG system\n", - "query = \"What is Li Yin's hobby and profession?\"\n", - "response = rag.call(query)\n", - "print(f\"Response: {response}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "sfKEfaYC3Go7" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "\n", + "clear_output()\n" + ] }, - "id": "sPnx4PY34D1j", - "outputId": "f66d6f1a-70bf-40e9-a160-591fcfdcbed3" - }, - "execution_count": 8, - "outputs": [ { - "output_type": "stream", - "name": "stderr", - "text": [ - "Splitting Documents in Batches: 100%|██████████| 1/1 [00:00<00:00, 109.58it/s]\n", - "Batch embedding documents: 100%|██████████| 1/1 [00:01<00:00, 1.33s/it]\n", - "Adding embeddings to documents from batch: 1it [00:00, 6462.72it/s]\n" - ] + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-4c_AGBt3PlR", + "outputId": "a36f157b-0b18-4f3d-d5a8-09aa94743922" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "Please enter your GROQ API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "os.environ['GROQ_API_KEY'] = groq_api_key\n", + "\n", + "print(\"API keys have been set.\")\n" + ] }, { - "output_type": "stream", - "name": "stdout", - "text": [ - "Saved the state of the DB to /root/.adalflow/index.faiss\n", - "RAG(\n", - " (db): LocalDB(name='LocalDB', items=[Document(id=doc1, text='My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...', meta_data={'title': \"Li Yin's profile\"}, vector=[], parent_doc_id=None, order=None, score=None), Document(id=doc2, text='lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...', meta_data={'title': 'Interviewing Li Yin'}, vector=[], parent_doc_id=None, order=None, score=None)], transformed_items={'data_transformer': [Document(id=59f7f6ad-eb4c-4fdb-8d04-6dba1ee439bc, text='My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=0, score=None), Document(id=2486725e-47ff-4978-84fc-7937778b0e45, text='textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nons...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=1, score=None), Document(id=96993047-4cff-436d-b8ac-e02da4ae7fec, text='nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlot...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=2, score=None), Document(id=77742f90-0c0c-4143-802d-3557577d4935, text='of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense text...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=3, score=None), Document(id=81ba770e-c5f2-4dc5-98fc-349ab9143ef9, text='textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nons...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=4, score=None), Document(id=dff6f5e3-5929-4e3c-ba5f-79f5116c1fa3, text='nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlot...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=5, score=None), Document(id=1e7888e2-0783-40b2-ab85-067e3ba71fad, text='of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense text...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=6, score=None), Document(id=2deb945f-dfb9-46d3-a60b-dae77e2f5fd8, text='lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=0, score=None), Document(id=3d9c21aa-d583-47fe-b143-710b4bc4a8b2, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=1, score=None), Document(id=a318ffea-2542-4493-ab2d-03d10a94e860, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=2, score=None), Document(id=b5c05820-7545-43a8-a4a3-691c5ccc79d1, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=3, score=None), Document(id=a739cd3e-8826-4e74-afa9-499498115621, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=4, score=None), Document(id=7153cde2-b6ee-4485-91e9-9de2f4bd45ab, text='textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsens...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=5, score=None), Document(id=c3f3ed48-acc2-41b5-b4ac-a6107b651789, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=6, score=None), Document(id=7bfd84e6-0025-4cfa-8c0a-63c9de9a8d4a, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=7, score=None), Document(id=8bece98d-65f0-4dd1-9407-d1c54413bef4, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=8, score=None), Document(id=cf9ab236-af73-4af6-9302-b3c7ffdd9ca7, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=9, score=None)]}, transformer_setups={'data_transformer': Sequential(\n", - " (0): TextSplitter(split_by=word, chunk_size=400, chunk_overlap=200)\n", - " (1): ToEmbeddings(\n", - " batch_size=100\n", - " (embedder): Embedder(\n", - " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", - " (model_client): OpenAIClient()\n", - " )\n", - " (batch_embedder): BatchEmbedder(\n", - " (embedder): Embedder(\n", - " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", - " (model_client): OpenAIClient()\n", - " )\n", - " )\n", - " )\n", - " )}, mapper_setups={}, index_path='/root/.adalflow/index.faiss')\n", - " (retriever): FAISSRetriever(\n", - " top_k=5, metric=prob, dimensions=256, total_documents=17\n", - " (embedder): Embedder(\n", - " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", - " (model_client): OpenAIClient()\n", - " )\n", - " )\n", - " (retriever_output_processors): RetrieverOutputToContextStr(deduplicate=True)\n", - " (generator): Generator(\n", - " model_kwargs={'model': 'gpt-3.5-turbo', 'temperature': 0.3, 'stream': False}, trainable_prompt_kwargs=[]\n", - " (prompt): Prompt(\n", - " template: \n", - " {# task desc #}\n", - " {% if task_desc_str %}\n", - " {{task_desc_str}}\n", - " {% else %}\n", - " You are a helpful assistant.\n", - " {% endif %}\n", - " {#input format#}\n", - " {% if input_format_str %}\n", - " \n", - " {{input_format_str}}\n", - " \n", - " {% endif %}\n", - " {# output format #}\n", - " {% if output_format_str %}\n", - " \n", - " {{output_format_str}}\n", - " \n", - " {% endif %}\n", - " {# tools #}\n", - " {% if tools_str %}\n", - " \n", - " {{tools_str}}\n", - " \n", - " {% endif %}\n", - " {# example #}\n", - " {% if examples_str %}\n", - " \n", - " {{examples_str}}\n", - " \n", - " {% endif %}\n", - " {# chat history #}\n", - " {% if chat_history_str %}\n", - " \n", - " {{chat_history_str}}\n", - " \n", - " {% endif %}\n", - " {#contex#}\n", - " {% if context_str %}\n", - " \n", - " {{context_str}}\n", - " \n", - " {% endif %}\n", - " \n", - " \n", - " {% if input_str %}\n", - " {{input_str}}\n", - " {% endif %}\n", - " \n", - " {# steps #}\n", - " {% if steps_str %}\n", - " \n", - " {{steps_str}}\n", - " \n", - " {% endif %}\n", - " , prompt_kwargs: {'task_desc_str': '\\nYou are a helpful assistant.\\n\\nYour task is to answer the query that may or may not come with context information.\\nWhen context is provided, you should stick to the context and less on your prior knowledge to answer the query.\\n\\nOutput JSON format:\\n{\\n \"answer\": \"The answer to the query\",\\n}'}, prompt_variables: ['examples_str', 'context_str', 'chat_history_str', 'tools_str', 'task_desc_str', 'input_str', 'input_format_str', 'output_format_str', 'steps_str']\n", - " )\n", - " (model_client): OpenAIClient()\n", - " (output_processors): JsonParser()\n", - " )\n", - ")\n", - "Response: (GeneratorOutput(id=None, data={'answer': \"Li Yin's hobby is rock climbing and profession is an AI researcher and a software engineer.\"}, error=None, usage=CompletionUsage(completion_tokens=25, prompt_tokens=2713, total_tokens=2738), raw_response='{\\n \"answer\": \"Li Yin\\'s hobby is rock climbing and profession is an AI researcher and a software engineer.\"\\n}', metadata=None), ' My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense ')\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Add more documents at runtime\n", - "doc3 = Document(\n", - " meta_data={\"title\": \"Apple's profile\"},\n", - " text=\"Apple is a cute dog with black and tan fur\" + \"lots of nonsense text\" * 500,\n", - " id=\"doc3\",\n", - ")\n", - "doc4 = Document(\n", - " meta_data={\"title\": \"Apple's characteristics\"},\n", - " text=\"lots of more nonsense text\" * 250\n", - " + \"Apple is energetic, loves to play with her monkey toy\"\n", - " + \"lots of more nonsense text\" * 250,\n", - " id=\"doc4\",\n", - ")\n", - "\n", - "rag.add_documents([doc3, doc4])\n", - "rag.prepare_retriever()\n", - "\n", - "# Test a new query\n", - "query = \"What is Apple's favorite toy?\"\n", - "response = rag.call(query)\n", - "print(f\"Response: {response}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "V9LsGDnm3RbV" + }, + "outputs": [], + "source": [ + "from typing import Any, List, Optional\n", + "import os\n", + "from adalflow.core import Component, Generator, Embedder, Sequential\n", + "from adalflow.core.types import Document, ModelClientType\n", + "from adalflow.core.string_parser import JsonParser\n", + "from adalflow.core.db import LocalDB\n", + "from adalflow.utils import setup_env\n", + "from adalflow.components.retriever.faiss_retriever import FAISSRetriever\n", + "from adalflow.components.data_process import (\n", + " RetrieverOutputToContextStr,\n", + " ToEmbeddings,\n", + " TextSplitter,\n", + ")\n", + "from adalflow.utils.global_config import get_adalflow_default_root_path\n" + ] }, - "id": "bcC1-dCheVEC", - "outputId": "133bab3f-ff2e-40db-99dc-71d64af6283f" - }, - "execution_count": 9, - "outputs": [ { - "output_type": "stream", - "name": "stderr", - "text": [ - "Splitting Documents in Batches: 100%|██████████| 1/1 [00:00<00:00, 114.76it/s]\n", - "Batch embedding documents: 100%|██████████| 1/1 [00:00<00:00, 1.35it/s]\n", - "Adding embeddings to documents from batch: 1it [00:00, 1915.21it/s]\n" - ] + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "kWGTZxrw3Tli" + }, + "outputs": [], + "source": [ + "configs = {\n", + " \"embedder\": {\n", + " \"batch_size\": 100,\n", + " \"model_kwargs\": {\n", + " \"model\": \"text-embedding-3-small\",\n", + " \"dimensions\": 256,\n", + " \"encoding_format\": \"float\",\n", + " },\n", + " },\n", + " \"retriever\": {\n", + " \"top_k\": 5,\n", + " },\n", + " \"generator\": {\n", + " \"model_client\": ModelClientType.OPENAI(),\n", + " \"model_kwargs\": {\n", + " \"model\": \"gpt-3.5-turbo\",\n", + " \"temperature\": 0.3,\n", + " \"stream\": False,\n", + " },\n", + " },\n", + " \"text_splitter\": {\n", + " \"split_by\": \"word\",\n", + " \"chunk_size\": 400,\n", + " \"chunk_overlap\": 200,\n", + " },\n", + "}\n" + ] }, { - "output_type": "stream", - "name": "stdout", - "text": [ - "Saved the state of the DB to /root/.adalflow/index.faiss\n", - "Response: (GeneratorOutput(id=None, data={'answer': \"Apple's favorite toy is her monkey toy.\"}, error=None, usage=CompletionUsage(completion_tokens=16, prompt_tokens=2647, total_tokens=2663), raw_response='{\\n \"answer\": \"Apple\\'s favorite toy is her monkey toy.\"\\n}', metadata=None), ' Apple is a cute dog with black and tan furlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots textApple is energetic, loves to play with her monkey toylots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textApple is energetic, loves to play with her monkey toylots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more ')\n" - ] + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "1QE0PCKs4BLz" + }, + "outputs": [], + "source": [ + "def prepare_data_pipeline():\n", + " splitter = TextSplitter(**configs[\"text_splitter\"])\n", + " embedder = Embedder(\n", + " model_client=ModelClientType.OPENAI(),\n", + " model_kwargs=configs[\"embedder\"][\"model_kwargs\"],\n", + " )\n", + " embedder_transformer = ToEmbeddings(\n", + " embedder=embedder, batch_size=configs[\"embedder\"][\"batch_size\"]\n", + " )\n", + " data_transformer = Sequential(splitter, embedder_transformer)\n", + " return data_transformer\n", + "\n", + "def prepare_database_with_index(\n", + " docs: List[Document],\n", + " index_file: str = \"index.faiss\",\n", + " index_path: Optional[str] = None,\n", + "):\n", + " index_path = index_path or get_adalflow_default_root_path()\n", + " index_path = os.path.join(index_path, index_file)\n", + " if os.path.exists(index_path):\n", + " return None\n", + " db = LocalDB()\n", + " db.load(docs)\n", + " data_transformer = prepare_data_pipeline()\n", + " db.transform(data_transformer, key=\"data_transformer\")\n", + " db.save_state(index_path)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "6Mu1HXhy4DIG" + }, + "outputs": [], + "source": [ + "RAG_PROMPT_TEMPLATE = r\"\"\"\n", + "{{task_desc}}\n", + "\n", + "\n", + "{{input_str}}\n", + "{{context_str}}\n", + "\n", + "\"\"\"\n", + "\n", + "rag_prompt_task_desc = r\"\"\"\n", + "You are a helpful assistant.\n", + "\n", + "Your task is to answer the query that may or may not come with context information.\n", + "When context is provided, you should stick to the context and less on your prior knowledge to answer the query.\n", + "\n", + "Output JSON format:\n", + "{\n", + " \"answer\": \"The answer to the query\",\n", + "}\"\"\"\n", + "\n", + "class RAG(Component):\n", + " def __init__(\n", + " self,\n", + " index_file: str = \"index.faiss\",\n", + " index_path: Optional[str] = None,\n", + " configs: dict = configs,\n", + " ):\n", + " super().__init__()\n", + "\n", + " index_path = index_path or get_adalflow_default_root_path()\n", + " index_path = os.path.join(index_path, index_file)\n", + " self.index_path = index_path\n", + "\n", + " if not os.path.exists(index_path):\n", + " self.db = LocalDB()\n", + " self.register_data_transformer()\n", + " self.transformed_docs = []\n", + " else:\n", + " self.db = LocalDB.load_state(index_path)\n", + " self.transformed_docs = self.db.get_transformed_data(\"data_transformer\")\n", + "\n", + " embedder = Embedder(\n", + " model_client=ModelClientType.OPENAI(),\n", + " model_kwargs=configs[\"embedder\"][\"model_kwargs\"],\n", + " )\n", + "\n", + " self.retriever = FAISSRetriever(\n", + " **configs[\"retriever\"],\n", + " embedder=embedder,\n", + " documents=self.transformed_docs,\n", + " document_map_func=lambda doc: doc.vector,\n", + " )\n", + " self.retriever_output_processors = RetrieverOutputToContextStr(deduplicate=True)\n", + "\n", + " self.generator = Generator(\n", + " **configs[\"generator\"],\n", + " prompt_kwargs={\"task_desc_str\": rag_prompt_task_desc},\n", + " output_processors=JsonParser(),\n", + " )\n", + "\n", + " def register_data_transformer(self):\n", + " if \"data_transformer\" not in self.db.get_transformer_keys():\n", + " data_transformer = prepare_data_pipeline()\n", + " self.db.register_transformer(data_transformer, key=\"data_transformer\")\n", + " print(\"Data transformer registered\")\n", + "\n", + " def add_documents(self, docs: List[Document]):\n", + " self.db.extend(docs, apply_transformer=True)\n", + " self.db.save_state(self.index_path)\n", + "\n", + " def get_transformed_docs(self, filter_func=None):\n", + " return self.db.get_transformed_data(\"data_transformer\", filter_func)\n", + "\n", + " def prepare_retriever(self, filter_func=None):\n", + " self.transformed_docs = self.get_transformed_docs(filter_func)\n", + " self.retriever.build_index_from_documents(\n", + " self.transformed_docs, document_map_func=lambda doc: doc.vector\n", + " )\n", + "\n", + " def generate(self, query: str, context: Optional[str] = None) -> Any:\n", + " if not self.generator:\n", + " raise ValueError(\"Generator is not set\")\n", + " prompt_kwargs = {\"context_str\": context, \"input_str\": query}\n", + " response = self.generator(prompt_kwargs=prompt_kwargs)\n", + " return response, context\n", + "\n", + " def call(self, query: str, verbose: bool = False) -> Any:\n", + " retrieved_documents = self.retriever(query)\n", + " for i, retriever_output in enumerate(retrieved_documents):\n", + " retrieved_documents[i].documents = [\n", + " self.transformed_docs[doc_index]\n", + " for doc_index in retriever_output.doc_indices\n", + " ]\n", + " if verbose:\n", + " print(f\"retrieved_documents: \\n {retrieved_documents}\")\n", + "\n", + " context_str = self.retriever_output_processors(retrieved_documents)\n", + " if verbose:\n", + " print(f\"context_str: \\n {context_str}\")\n", + "\n", + " return self.generate(query, context=context_str)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sPnx4PY34D1j", + "outputId": "f66d6f1a-70bf-40e9-a160-591fcfdcbed3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Splitting Documents in Batches: 100%|██████████| 1/1 [00:00<00:00, 109.58it/s]\n", + "Batch embedding documents: 100%|██████████| 1/1 [00:01<00:00, 1.33s/it]\n", + "Adding embeddings to documents from batch: 1it [00:00, 6462.72it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved the state of the DB to /root/.adalflow/index.faiss\n", + "RAG(\n", + " (db): LocalDB(name='LocalDB', items=[Document(id=doc1, text='My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...', meta_data={'title': \"Li Yin's profile\"}, vector=[], parent_doc_id=None, order=None, score=None), Document(id=doc2, text='lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...', meta_data={'title': 'Interviewing Li Yin'}, vector=[], parent_doc_id=None, order=None, score=None)], transformed_items={'data_transformer': [Document(id=59f7f6ad-eb4c-4fdb-8d04-6dba1ee439bc, text='My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=0, score=None), Document(id=2486725e-47ff-4978-84fc-7937778b0e45, text='textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nons...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=1, score=None), Document(id=96993047-4cff-436d-b8ac-e02da4ae7fec, text='nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlot...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=2, score=None), Document(id=77742f90-0c0c-4143-802d-3557577d4935, text='of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense text...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=3, score=None), Document(id=81ba770e-c5f2-4dc5-98fc-349ab9143ef9, text='textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nons...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=4, score=None), Document(id=dff6f5e3-5929-4e3c-ba5f-79f5116c1fa3, text='nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlot...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=5, score=None), Document(id=1e7888e2-0783-40b2-ab85-067e3ba71fad, text='of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense text...', meta_data={'title': \"Li Yin's profile\"}, vector='len: 256', parent_doc_id=doc1, order=6, score=None), Document(id=2deb945f-dfb9-46d3-a60b-dae77e2f5fd8, text='lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=0, score=None), Document(id=3d9c21aa-d583-47fe-b143-710b4bc4a8b2, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=1, score=None), Document(id=a318ffea-2542-4493-ab2d-03d10a94e860, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=2, score=None), Document(id=b5c05820-7545-43a8-a4a3-691c5ccc79d1, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=3, score=None), Document(id=a739cd3e-8826-4e74-afa9-499498115621, text='textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonse...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=4, score=None), Document(id=7153cde2-b6ee-4485-91e9-9de2f4bd45ab, text='textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsens...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=5, score=None), Document(id=c3f3ed48-acc2-41b5-b4ac-a6107b651789, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=6, score=None), Document(id=7bfd84e6-0025-4cfa-8c0a-63c9de9a8d4a, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=7, score=None), Document(id=8bece98d-65f0-4dd1-9407-d1c54413bef4, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=8, score=None), Document(id=cf9ab236-af73-4af6-9302-b3c7ffdd9ca7, text='nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of m...', meta_data={'title': 'Interviewing Li Yin'}, vector='len: 256', parent_doc_id=doc2, order=9, score=None)]}, transformer_setups={'data_transformer': Sequential(\n", + " (0): TextSplitter(split_by=word, chunk_size=400, chunk_overlap=200)\n", + " (1): ToEmbeddings(\n", + " batch_size=100\n", + " (embedder): Embedder(\n", + " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", + " (model_client): OpenAIClient()\n", + " )\n", + " (batch_embedder): BatchEmbedder(\n", + " (embedder): Embedder(\n", + " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", + " (model_client): OpenAIClient()\n", + " )\n", + " )\n", + " )\n", + " )}, mapper_setups={}, index_path='/root/.adalflow/index.faiss')\n", + " (retriever): FAISSRetriever(\n", + " top_k=5, metric=prob, dimensions=256, total_documents=17\n", + " (embedder): Embedder(\n", + " model_kwargs={'model': 'text-embedding-3-small', 'dimensions': 256, 'encoding_format': 'float'}, \n", + " (model_client): OpenAIClient()\n", + " )\n", + " )\n", + " (retriever_output_processors): RetrieverOutputToContextStr(deduplicate=True)\n", + " (generator): Generator(\n", + " model_kwargs={'model': 'gpt-3.5-turbo', 'temperature': 0.3, 'stream': False}, trainable_prompt_kwargs=[]\n", + " (prompt): Prompt(\n", + " template: \n", + " {# task desc #}\n", + " {% if task_desc_str %}\n", + " {{task_desc_str}}\n", + " {% else %}\n", + " You are a helpful assistant.\n", + " {% endif %}\n", + " {#input format#}\n", + " {% if input_format_str %}\n", + " \n", + " {{input_format_str}}\n", + " \n", + " {% endif %}\n", + " {# output format #}\n", + " {% if output_format_str %}\n", + " \n", + " {{output_format_str}}\n", + " \n", + " {% endif %}\n", + " {# tools #}\n", + " {% if tools_str %}\n", + " \n", + " {{tools_str}}\n", + " \n", + " {% endif %}\n", + " {# example #}\n", + " {% if examples_str %}\n", + " \n", + " {{examples_str}}\n", + " \n", + " {% endif %}\n", + " {# chat history #}\n", + " {% if chat_history_str %}\n", + " \n", + " {{chat_history_str}}\n", + " \n", + " {% endif %}\n", + " {#contex#}\n", + " {% if context_str %}\n", + " \n", + " {{context_str}}\n", + " \n", + " {% endif %}\n", + " \n", + " \n", + " {% if input_str %}\n", + " {{input_str}}\n", + " {% endif %}\n", + " \n", + " {# steps #}\n", + " {% if steps_str %}\n", + " \n", + " {{steps_str}}\n", + " \n", + " {% endif %}\n", + " , prompt_kwargs: {'task_desc_str': '\\nYou are a helpful assistant.\\n\\nYour task is to answer the query that may or may not come with context information.\\nWhen context is provided, you should stick to the context and less on your prior knowledge to answer the query.\\n\\nOutput JSON format:\\n{\\n \"answer\": \"The answer to the query\",\\n}'}, prompt_variables: ['examples_str', 'context_str', 'chat_history_str', 'tools_str', 'task_desc_str', 'input_str', 'input_format_str', 'output_format_str', 'steps_str']\n", + " )\n", + " (model_client): OpenAIClient()\n", + " (output_processors): JsonParser()\n", + " )\n", + ")\n", + "Response: (GeneratorOutput(id=None, data={'answer': \"Li Yin's hobby is rock climbing and profession is an AI researcher and a software engineer.\"}, error=None, usage=CompletionUsage(completion_tokens=25, prompt_tokens=2713, total_tokens=2738), raw_response='{\\n \"answer\": \"Li Yin\\'s hobby is rock climbing and profession is an AI researcher and a software engineer.\"\\n}', metadata=None), ' My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense ')\n" + ] + } + ], + "source": [ + "# Prepare initial documents\n", + "doc1 = Document(\n", + " meta_data={\"title\": \"Li Yin's profile\"},\n", + " text=\"My name is Li Yin, I love rock climbing\" + \"lots of nonsense text\" * 500,\n", + " id=\"doc1\",\n", + ")\n", + "doc2 = Document(\n", + " meta_data={\"title\": \"Interviewing Li Yin\"},\n", + " text=\"lots of more nonsense text\" * 250\n", + " + \"Li Yin is an AI researcher and a software engineer\"\n", + " + \"lots of more nonsense text\" * 250,\n", + " id=\"doc2\",\n", + ")\n", + "\n", + "# Prepare the database (only runs once)\n", + "prepare_database_with_index([doc1, doc2], index_file=\"index.faiss\")\n", + "\n", + "# Initialize RAG\n", + "rag = RAG(index_file=\"index.faiss\")\n", + "print(rag)\n", + "\n", + "# Query the RAG system\n", + "query = \"What is Li Yin's hobby and profession?\"\n", + "response = rag.call(query)\n", + "print(f\"Response: {response}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bcC1-dCheVEC", + "outputId": "133bab3f-ff2e-40db-99dc-71d64af6283f" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Splitting Documents in Batches: 100%|██████████| 1/1 [00:00<00:00, 114.76it/s]\n", + "Batch embedding documents: 100%|██████████| 1/1 [00:00<00:00, 1.35it/s]\n", + "Adding embeddings to documents from batch: 1it [00:00, 1915.21it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved the state of the DB to /root/.adalflow/index.faiss\n", + "Response: (GeneratorOutput(id=None, data={'answer': \"Apple's favorite toy is her monkey toy.\"}, error=None, usage=CompletionUsage(completion_tokens=16, prompt_tokens=2647, total_tokens=2663), raw_response='{\\n \"answer\": \"Apple\\'s favorite toy is her monkey toy.\"\\n}', metadata=None), ' Apple is a cute dog with black and tan furlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots of nonsense textlots textApple is energetic, loves to play with her monkey toylots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textApple is energetic, loves to play with her monkey toylots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more textLi Yin is an AI researcher and a software engineerlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more ')\n" + ] + } + ], + "source": [ + "# Add more documents at runtime\n", + "doc3 = Document(\n", + " meta_data={\"title\": \"Apple's profile\"},\n", + " text=\"Apple is a cute dog with black and tan fur\" + \"lots of nonsense text\" * 500,\n", + " id=\"doc3\",\n", + ")\n", + "doc4 = Document(\n", + " meta_data={\"title\": \"Apple's characteristics\"},\n", + " text=\"lots of more nonsense text\" * 250\n", + " + \"Apple is energetic, loves to play with her monkey toy\"\n", + " + \"lots of more nonsense text\" * 250,\n", + " id=\"doc4\",\n", + ")\n", + "\n", + "rag.add_documents([doc3, doc4])\n", + "rag.prepare_retriever()\n", + "\n", + "# Test a new query\n", + "query = \"What is Apple's favorite toy?\"\n", + "response = rag.call(query)\n", + "print(f\"Response: {response}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "o9TzVv5GeZZ2", + "outputId": "bde56355-186c-4013-d702-b4530f82881b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All documents in the database:\n", + "ID: doc1, Title: Li Yin's profile, Text: My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...\n", + "ID: doc2, Title: Interviewing Li Yin, Text: lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...\n", + "ID: doc3, Title: Apple's profile, Text: Apple is a cute dog with black and tan furlots of nonsense textlots of nonsense textlots of nonsense...\n", + "ID: doc4, Title: Apple's characteristics, Text: lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...\n" + ] + } + ], + "source": [ + "# View all documents in the database\n", + "print(\"All documents in the database:\")\n", + "for item in rag.db.items:\n", + " print(f\"ID: {item.id}, Title: {item.meta_data['title']}, Text: {item.text[:100]}...\")\n" + ] } - ] - }, - { - "cell_type": "code", - "source": [ - "# View all documents in the database\n", - "print(\"All documents in the database:\")\n", - "for item in rag.db.items:\n", - " print(\n", - " f\"ID: {item.id}, Title: {item.meta_data['title']}, Text: {item.text[:100]}...\"\n", - " )" - ], - "metadata": { + ], + "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "provenance": [] }, - "id": "o9TzVv5GeZZ2", - "outputId": "bde56355-186c-4013-d702-b4530f82881b" - }, - "execution_count": 10, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "All documents in the database:\n", - "ID: doc1, Title: Li Yin's profile, Text: My name is Li Yin, I love rock climbinglots of nonsense textlots of nonsense textlots of nonsense te...\n", - "ID: doc2, Title: Interviewing Li Yin, Text: lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...\n", - "ID: doc3, Title: Apple's profile, Text: Apple is a cute dog with black and tan furlots of nonsense textlots of nonsense textlots of nonsense...\n", - "ID: doc4, Title: Apple's characteristics, Text: lots of more nonsense textlots of more nonsense textlots of more nonsense textlots of more nonsense ...\n" - ] + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] - } - ] + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/notebooks/tutorials/adalflow_rag_vanilla.ipynb b/notebooks/tutorials/adalflow_rag_vanilla.ipynb new file mode 100644 index 00000000..7fdb1738 --- /dev/null +++ b/notebooks/tutorials/adalflow_rag_vanilla.ipynb @@ -0,0 +1,378 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 🤗 Welcome to AdalFlow!\n", + "## The PyTorch library to auto-optimize any LLM task pipelines\n", + "\n", + "Thanks for trying us out, we're here to provide you with the best LLM application development experience you can dream of 😊 any questions or concerns you may have, [come talk to us on discord,](https://discord.gg/ezzszrRZvT) we're always here to help! ⭐ Star us on Github ⭐\n", + "\n", + "\n", + "# Quick Links\n", + "\n", + "Github repo: https://github.com/SylphAI-Inc/AdalFlow\n", + "\n", + "Full Tutorials: https://adalflow.sylph.ai/index.html#.\n", + "\n", + "Deep dive on each API: check out the [developer notes](https://adalflow.sylph.ai/tutorials/index.html).\n", + "\n", + "Common use cases along with the auto-optimization: check out [Use cases](https://adalflow.sylph.ai/use_cases/index.html).\n", + "\n", + "# Author\n", + "This notebook was created by community contributor [Ajith](https://github.com/ajithvcoder/).\n", + "\n", + "# Outline\n", + "\n", + "This is a quick introduction of what AdalFlow is capable of. We will cover:\n", + "\n", + "* How to use adalflow for rag\n", + "\n", + "Adalflow can be used in a genric manner for any api provider without worrying much about prompt, \n", + "model args and parsing results\n", + "\n", + "**Next: Try our [adalflow-rag-for-documents](\"https://colab.research.google.com/github.com/SylphAI-Inc/AdalFlow/blob/main/notebooks/tutorials/adalflow_rag_documents.ipynb\")**\n", + "\n", + "\n", + "# Installation\n", + "\n", + "1. Use `pip` to install the `adalflow` Python package. We will need `openai`, `groq`, and `faiss`(cpu version) from the extra packages.\n", + "\n", + " ```bash\n", + " pip install torch --index-url https://download.pytorch.org/whl/cpu\n", + " pip install sentence-transformers==3.3.1\n", + " pip install adalflow[openai,groq,faiss-cpu]\n", + " ```\n", + "2. Setup `openai` and `groq` API key in the environment variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set Environment Variables\n", + "\n", + "Note: Enter your api keys in below cell #todo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting .env\n" + ] + } + ], + "source": [ + "%%writefile .env\n", + "\n", + "OPENAI_API_KEY=\"PASTE-OPENAI_API_KEY_HERE\"\n", + "GROQ_API_KEY=\"PASTE-GROQ_API_KEY-HERE\"" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from adalflow.utils import setup_env\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "# Load environment variables - Make sure to have OPENAI_API_KEY in .env file and .env is present in current folder\n", + "setup_env(\".env\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/workspace/ajithdev/AdalFlow/.venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "from typing import List, Dict\n", + "import numpy as np\n", + "from sentence_transformers import SentenceTransformer\n", + "from faiss import IndexFlatL2\n", + "\n", + "from adalflow.components.model_client import GroqAPIClient, OpenAIClient\n", + "from adalflow.core.types import ModelType\n", + "from adalflow.utils import setup_env" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AdalflowRAGPipeline` is a class that implements a Retrieval-Augmented Generation (RAG) pipeline with adalflow. It integrates:\n", + "\n", + "- Embedding models (e.g., Sentence Transformers) for document and query embeddings.\n", + "- FAISS for vector similarity search.\n", + "- A LLM client to generate context-aware responses using retrieved documents." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "class AdalflowRAGPipeline:\n", + " def __init__(self, \n", + " model_client = None,\n", + " model_kwargs = None,\n", + " embedding_model='all-MiniLM-L6-v2', \n", + " vector_dim=384, \n", + " top_k_retrieval=1):\n", + " \"\"\" \n", + " Initialize RAG Pipeline with embedding and retrieval components\n", + " \n", + " Args:\n", + " embedding_model (str): Sentence transformer model for embeddings\n", + " vector_dim (int): Dimension of embedding vectors\n", + " top_k_retrieval (int): Number of documents to retrieve\n", + " \"\"\"\n", + " # Initialize model client for generation\n", + " self.model_client = model_client\n", + " \n", + " # Initialize embedding model\n", + " self.embedding_model = SentenceTransformer(embedding_model)\n", + " \n", + " # Initialize FAISS index for vector similarity search\n", + " self.index = IndexFlatL2(vector_dim)\n", + " \n", + " # Store document texts and their embeddings\n", + " self.documents = []\n", + " self.document_embeddings = []\n", + " \n", + " # Retrieval parameters\n", + " self.top_k_retrieval = top_k_retrieval\n", + " \n", + " # Conversation history and context\n", + " self.conversation_history = \"\"\n", + " self.model_kwargs = model_kwargs\n", + "\n", + " def add_documents(self, documents: List[str]):\n", + " \"\"\"\n", + " Add documents to the RAG pipeline's knowledge base\n", + " \n", + " Args:\n", + " documents (List[str]): List of document texts to add\n", + " \"\"\"\n", + " for doc in documents:\n", + " # Embed document\n", + " embedding = self.embedding_model.encode(doc)\n", + " \n", + " # Add to index and document store\n", + " self.index.add(np.array([embedding]))\n", + " self.documents.append(doc)\n", + " self.document_embeddings.append(embedding)\n", + "\n", + " def retrieve_relevant_docs(self, query: str) -> List[str]:\n", + " \"\"\"\n", + " Retrieve most relevant documents for a given query\n", + " \n", + " Args:\n", + " query (str): Input query to find relevant documents\n", + " \n", + " Returns:\n", + " List[str]: Top k most relevant documents\n", + " \"\"\"\n", + " # Embed query\n", + " query_embedding = self.embedding_model.encode(query)\n", + " \n", + " # Perform similarity search\n", + " distances, indices = self.index.search(\n", + " np.array([query_embedding]), \n", + " self.top_k_retrieval\n", + " )\n", + " \n", + " # Retrieve and return top documents\n", + " return [self.documents[i] for i in indices[0]]\n", + "\n", + " def generate_response(self, query: str) -> str:\n", + " \"\"\"\n", + " Generate a response using retrieval-augmented generation\n", + " \n", + " Args:\n", + " query (str): User's input query\n", + " \n", + " Returns:\n", + " str: Generated response incorporating retrieved context\n", + " \"\"\"\n", + " # Retrieve relevant documents\n", + " retrieved_docs = self.retrieve_relevant_docs(query)\n", + " \n", + " # Construct context-aware prompt\n", + " context = \"\\n\\n\".join([f\"Context Document: {doc}\" for doc in retrieved_docs])\n", + " full_prompt = f\"\"\"\n", + " Context:\n", + " {context}\n", + " \n", + " Query: {query}\n", + " \n", + " Generate a comprehensive and informative response that:\n", + " 1. Uses the provided context documents\n", + " 2. Directly answers the query\n", + " 3. Incorporates relevant information from the context\n", + " \"\"\"\n", + " \n", + " # Prepare API arguments\n", + " api_kwargs = self.model_client.convert_inputs_to_api_kwargs(\n", + " input=full_prompt,\n", + " model_kwargs=self.model_kwargs,\n", + " model_type=ModelType.LLM\n", + " )\n", + " \n", + " # Call API and parse response\n", + " response = self.model_client.call(\n", + " api_kwargs=api_kwargs, \n", + " model_type=ModelType.LLM\n", + " )\n", + " response_text = self.model_client.parse_chat_completion(response)\n", + " \n", + " # Update conversation history\n", + " self.conversation_history += f\"\\nQuery: {query}\\nResponse: {response_text}\"\n", + " \n", + " return response_text\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `run_rag_pipeline` function demonstrates how to use the AdalflowRAGPipeline for embedding documents, retrieving relevant context, and generating responses:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def run_rag_pipeline(model_client, model_kwargs, documents, queries):\n", + " rag_pipeline = AdalflowRAGPipeline(model_client=model_client, model_kwargs=model_kwargs)\n", + "\n", + " rag_pipeline.add_documents(documents)\n", + "\n", + " # Generate responses\n", + " for query in queries:\n", + " print(f\"\\nQuery: {query}\")\n", + " response = rag_pipeline.generate_response(query)\n", + " print(f\"Response: {response}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Query: Does Ajith Kumar has any nick name ?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=78, prompt_tokens=122, total_tokens=200), raw_response='Based on the provided context documents, Ajith Kumar, also known as Ajithvcoder, has a nickname that he has given himself. According to the context, Ajithvcoder is his nickname that he has chosen for himself.\\n\\nTherefore, the answer to the query is:\\n\\nYes, Ajith Kumar has a nickname that he has given himself, which is Ajithvcoder.', metadata=None)\n", + "\n", + "Query: What is the ajithvcoder's favourite food?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=67, prompt_tokens=109, total_tokens=176), raw_response='Based on the provided context document, I can confidently answer the query as follows:\\n\\nAjithvcoder\\'s favourite food is Hyderabadi Panner Dum Briyani.\\n\\nThis answer is directly supported by the context document, which states: \"ajithvcoder likes Hyderabadi panner dum briyani much.\"', metadata=None)\n", + "\n", + "Query: When did ajithvcoder graduated ?\n", + "Response: GeneratorOutput(id=None, data=None, error=None, usage=CompletionUsage(completion_tokens=57, prompt_tokens=107, total_tokens=164), raw_response=\"Based on the provided context documents, we can determine that Ajith V.Coder graduated on May 2016.\\n\\nHere's a comprehensive and informative response that directly answers the query:\\n\\nAjith V.Coder graduated on May 2016, which is mentioned in the context document.\", metadata=None)\n" + ] + } + ], + "source": [ + "# setup_env()\n", + "\n", + "# ajithvcoder's statements are added so that we can validate that the LLM is generating from these lines only\n", + "documents = [\n", + " \"ajithvcoder is a good person whom the world knows as Ajith Kumar, ajithvcoder is his nick name that AjithKumar gave himself\",\n", + " \"The Eiffel Tower is a famous landmark in Paris, built in 1889 for the World's Fair.\",\n", + " \"ajithvcoder likes Hyderabadi panner dum briyani much.\",\n", + " \"The Louvre Museum in Paris is the world's largest art museum, housing thousands of works of art.\",\n", + " \"ajithvcoder has a engineering degree and he graduated on May, 2016.\"\n", + "]\n", + "\n", + "# Questions related to ajithvcoder's are added so that we can validate\n", + "# that the LLM is generating from above given lines only\n", + "queries = [\n", + " \"Does Ajith Kumar has any nick name ?\",\n", + " \"What is the ajithvcoder's favourite food?\",\n", + " \"When did ajithvcoder graduated ?\"\n", + "]\n", + "\n", + "groq_model_kwargs = {\n", + " \"model\": \"llama-3.2-1b-preview\", # Use 16k model for larger context\n", + " \"temperature\": 0.1,\n", + " \"max_tokens\": 800,\n", + "}\n", + "\n", + "openai_model_kwargs = {\n", + " \"model\": \"gpt-3.5-turbo\", # Use 16k model for larger context\n", + " \"temperature\": 0.1,\n", + " \"max_tokens\": 800,\n", + "}\n", + "\n", + "# Below example shows that adalflow can be used in a genric manner for any api provider\n", + "# without worrying about prompt and parsing results\n", + "model_client = GroqAPIClient()\n", + "run_rag_pipeline(model_client, groq_model_kwargs, documents, queries)\n", + "run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/tutorials/adalflow_text_splitter.ipynb b/notebooks/tutorials/adalflow_text_splitter.ipynb index 4008f45a..82e5dae7 100644 --- a/notebooks/tutorials/adalflow_text_splitter.ipynb +++ b/notebooks/tutorials/adalflow_text_splitter.ipynb @@ -8,7 +8,10 @@ }, "outputs": [], "source": [ - "!pip install adalflow[openai,groq,faiss-cpu]" + "!pip install adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1" ] }, { diff --git a/notebooks/tutorials/adalflow_tracing.ipynb b/notebooks/tutorials/adalflow_tracing.ipynb index ef3d2b25..1f527b57 100644 --- a/notebooks/tutorials/adalflow_tracing.ipynb +++ b/notebooks/tutorials/adalflow_tracing.ipynb @@ -1,66 +1,17 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Tracing\n", - "\n", - "In particular, we provide two tracing methods to help you develop and improve the Generator:\n", - "\n", - "1. Trace the history change(states) on prompt during your development process. Developers typically go through a long process of prompt optimization and it is frustrating to lose track of the prompt changes when your current change actually makes the performance much worse.\n" - ], - "metadata": { - "id": "lLGpv1fLLIjF" - } - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "sfKEfaYC3Go7" - }, - "outputs": [], - "source": [ - "from IPython.display import clear_output\n", - "\n", - "!pip install -U adalflow[openai,groq,faiss-cpu]\n", - "\n", - "clear_output()" - ] - }, - { - "cell_type": "code", - "source": [ - "import os\n", - "from getpass import getpass\n", - "\n", - "# Prompt user to enter their API keys securely\n", - "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", - "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", - "\n", - "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", - "os.environ[\"GROQ_API_KEY\"] = groq_api_key\n", - "\n", - "print(\"API keys have been set.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "lLGpv1fLLIjF" + }, + "source": [ + "# Tracing\n", + "\n", + "In particular, we provide two tracing methods to help you develop and improve the Generator:\n", + "\n", + "1. Trace the history change(states) on prompt during your development process. Developers typically go through a long process of prompt optimization and it is frustrating to lose track of the prompt changes when your current change actually makes the performance much worse.\n" + ] }, "id": "-4c_AGBt3PlR", "outputId": "85aba038-ee9c-463d-bdbd-027cbfff0094" @@ -68,117 +19,173 @@ "execution_count": 2, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Please enter your OpenAI API key: ··········\n", - "Please enter your GROQ API key: ··········\n", - "API keys have been set.\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "sfKEfaYC3Go7" + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "\n", + "!pip install -U adalflow[openai,groq,faiss-cpu]\n", + "!pip uninstall httpx anyio -y\n", + "!pip install \"anyio>=3.1.0,<4.0\"\n", + "!pip install httpx==0.24.1\n", + "\n", + "clear_output()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-4c_AGBt3PlR", + "outputId": "85aba038-ee9c-463d-bdbd-027cbfff0094" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Please enter your OpenAI API key: ··········\n", + "Please enter your GROQ API key: ··········\n", + "API keys have been set.\n" + ] + } + ], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "# Prompt user to enter their API keys securely\n", + "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", + "groq_api_key = getpass(\"Please enter your GROQ API key: \")\n", + "\n", + "# Set environment variables\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", + "os.environ['GROQ_API_KEY'] = groq_api_key\n", + "\n", + "print(\"API keys have been set.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yWi2uEiE6UIf" + }, + "source": [ + "We created a GeneratorStateLogger to handle the logging and saving into json files. To further simplify developers’s process, we provides a class decorator trace_generator_states where a single line of code can be added to any of your task component. It will automatically track any attributes of type Generator." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "qk9pkcCVzdek" + }, + "outputs": [], + "source": [ + "from adalflow.tracing import trace_generator_states\n", + "from adalflow.core import Component, Generator\n", + "import adalflow as adal\n", + "from adalflow.components.model_client import OpenAIClient\n", + "\n", + "template_doc = r\"\"\" You are a doctor User: {{input_str}}\"\"\"\n", + "\n", + "@trace_generator_states()\n", + "class DocQA(adal.Component):\n", + " def __init__(self):\n", + " super(DocQA, self).__init__()\n", + " self.generator = Generator(\n", + " template=template_doc,\n", + " model_client=OpenAIClient(),\n", + " model_kwargs={\"model\": \"gpt-4o-mini\"},\n", + " )\n", + "\n", + " def call(self, query: str) -> str:\n", + " return self.doc(prompt_kwargs={\"input_str\": query}).data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LAZUSnYn-lnI" + }, + "source": [ + "Here is the folder structer of where the trace is generated as a .json file and also an example output below" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cVofNXVW-EMo" + }, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dPd9i6_t7ERJ" + }, + "outputs": [], + "source": [ + "'''\n", + " {\n", + " \"doc\": [\n", + " {\n", + " \"prompt_states\": {\n", + " \"type\": \"Prompt\",\n", + " \"data\": {\n", + " \"_components\": {\n", + " \"_ordered_dict\": true,\n", + " \"data\": []\n", + " },\n", + " \"_parameters\": {\n", + " \"_ordered_dict\": true,\n", + " \"data\": []\n", + " },\n", + " \"training\": false,\n", + " \"teacher_mode\": false,\n", + " \"tracing\": false,\n", + " \"name\": \"Prompt\",\n", + " \"_init_args\": {\n", + " \"template\": null,\n", + " \"prompt_kwargs\": {}\n", + " },\n", + " \"template\": \" You are a doctor User: {{input_str}}\",\n", + " \"prompt_variables\": [\n", + " \"input_str\"\n", + " ],\n", + " \"prompt_kwargs\": {}\n", + " }\n", + " },\n", + " \"time_stamp\": \"2024-11-29T12:36:33.302956\"\n", + " }\n", + " ]\n", + "}\n", + "'''" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] - }, - { - "cell_type": "markdown", - "source": [ - "We created a GeneratorStateLogger to handle the logging and saving into json files. To further simplify developers’s process, we provides a class decorator trace_generator_states where a single line of code can be added to any of your task component. It will automatically track any attributes of type Generator." - ], - "metadata": { - "id": "yWi2uEiE6UIf" - } - }, - { - "cell_type": "code", - "source": [ - "from adalflow.tracing import trace_generator_states\n", - "from adalflow.core import Component, Generator\n", - "import adalflow as adal\n", - "from adalflow.components.model_client import OpenAIClient\n", - "\n", - "template_doc = r\"\"\" You are a doctor User: {{input_str}}\"\"\"\n", - "\n", - "\n", - "@trace_generator_states()\n", - "class DocQA(adal.Component):\n", - " def __init__(self):\n", - " super(DocQA, self).__init__()\n", - " self.generator = Generator(\n", - " template=template_doc,\n", - " model_client=OpenAIClient(),\n", - " model_kwargs={\"model\": \"gpt-4o-mini\"},\n", - " )\n", - "\n", - " def call(self, query: str) -> str:\n", - " return self.doc(prompt_kwargs={\"input_str\": query}).data" - ], - "metadata": { - "id": "qk9pkcCVzdek" - }, - "execution_count": 13, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Here is the folder structer of where the trace is generated as a .json file and also an example output below" - ], - "metadata": { - "id": "LAZUSnYn-lnI" - } - }, - { - "cell_type": "markdown", - "source": [ - "![image.png]()" - ], - "metadata": { - "id": "cVofNXVW-EMo" - } }, - { - "cell_type": "code", - "source": [ - "\"\"\"\n", - " {\n", - " \"doc\": [\n", - " {\n", - " \"prompt_states\": {\n", - " \"type\": \"Prompt\",\n", - " \"data\": {\n", - " \"_components\": {\n", - " \"_ordered_dict\": true,\n", - " \"data\": []\n", - " },\n", - " \"_parameters\": {\n", - " \"_ordered_dict\": true,\n", - " \"data\": []\n", - " },\n", - " \"training\": false,\n", - " \"teacher_mode\": false,\n", - " \"tracing\": false,\n", - " \"name\": \"Prompt\",\n", - " \"_init_args\": {\n", - " \"template\": null,\n", - " \"prompt_kwargs\": {}\n", - " },\n", - " \"template\": \" You are a doctor User: {{input_str}}\",\n", - " \"prompt_variables\": [\n", - " \"input_str\"\n", - " ],\n", - " \"prompt_kwargs\": {}\n", - " }\n", - " },\n", - " \"time_stamp\": \"2024-11-29T12:36:33.302956\"\n", - " }\n", - " ]\n", - "}\n", - "\"\"\"" - ], - "metadata": { - "id": "dPd9i6_t7ERJ" - }, - "execution_count": null, - "outputs": [] - } - ] + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/poetry.lock b/poetry.lock index 6116b161..edc2b949 100644 --- a/poetry.lock +++ b/poetry.lock @@ -44,7 +44,7 @@ testing = ["bitsandbytes", "datasets", "diffusers", "evaluate", "parameterized", [[package]] name = "adalflow" -version = "0.2.6" +version = "0.2.5" description = "The Library to Build and Auto-optimize LLM Applications" optional = false python-versions = ">=3.9, <4.0" @@ -67,8 +67,6 @@ tqdm = "^4.66.4" [package.extras] anthropic = ["anthropic (>=0.31.1,<0.32.0)"] -azure = ["azure-core (>=1.24.0,<2.0.0)", "azure-identity (>=1.12.0,<2.0.0)"] -bedrock = ["boto3 (>=1.35.19,<2.0.0)"] cohere = ["cohere (>=5.5.8,<6.0.0)"] datasets = [] faiss-cpu = ["faiss-cpu (>=1.8.0,<2.0.0)"] @@ -505,12 +503,10 @@ files = [ [package.dependencies] click = ">=8.0.0" -ipython = {version = ">=7.8.0", optional = true, markers = "extra == \"jupyter\""} mypy-extensions = ">=0.4.3" packaging = ">=22.0" pathspec = ">=0.9.0" platformdirs = ">=2" -tokenize-rt = {version = ">=3.2.0", optional = true, markers = "extra == \"jupyter\""} [package.extras] colorama = ["colorama (>=0.4.3)"] @@ -2254,6 +2250,22 @@ files = [ [package.dependencies] jsonpointer = ">=1.9" +[[package]] +name = "jsonpickle" +version = "3.2.2" +description = "Python library for serializing arbitrary object graphs into JSON" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jsonpickle-3.2.2-py3-none-any.whl", hash = "sha256:87cd82d237fd72c5a34970e7222dddc0accc13fddf49af84111887ed9a9445aa"}, + {file = "jsonpickle-3.2.2.tar.gz", hash = "sha256:d425fd2b8afe9f5d7d57205153403fbf897782204437882a477e8eed60930f8c"}, +] + +[package.extras] +docs = ["furo", "rst.linker (>=1.9)", "sphinx"] +packaging = ["build", "twine"] +testing = ["bson", "ecdsa", "feedparser", "gmpy2", "numpy", "pandas", "pymongo", "pytest (>=3.5,!=3.7.3)", "pytest-benchmark", "pytest-benchmark[histogram]", "pytest-checkdocs (>=1.2.3)", "pytest-cov", "pytest-enabler (>=1.0.1)", "pytest-ruff (>=0.2.1)", "scikit-learn", "scipy", "scipy (>=1.9.3)", "simplejson", "sqlalchemy", "ujson"] + [[package]] name = "jsonpointer" version = "3.0.0" @@ -4444,6 +4456,22 @@ files = [ {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, ] +[[package]] +name = "pyvis" +version = "0.3.2" +description = "A Python network graph visualization library" +optional = false +python-versions = ">3.6" +files = [ + {file = "pyvis-0.3.2-py3-none-any.whl", hash = "sha256:5720c4ca8161dc5d9ab352015723abb7a8bb8fb443edeb07f7a322db34a97555"}, +] + +[package.dependencies] +ipython = ">=5.3.0" +jinja2 = ">=2.9.6" +jsonpickle = ">=1.4.1" +networkx = ">=1.11" + [[package]] name = "pywin32" version = "306" @@ -5572,17 +5600,6 @@ webencodings = ">=0.4" doc = ["sphinx", "sphinx_rtd_theme"] test = ["pytest", "ruff"] -[[package]] -name = "tokenize-rt" -version = "6.1.0" -description = "A wrapper around the stdlib `tokenize` which roundtrips." -optional = false -python-versions = ">=3.9" -files = [ - {file = "tokenize_rt-6.1.0-py2.py3-none-any.whl", hash = "sha256:d706141cdec4aa5f358945abe36b911b8cbdc844545da99e811250c0cee9b6fc"}, - {file = "tokenize_rt-6.1.0.tar.gz", hash = "sha256:e8ee836616c0877ab7c7b54776d2fefcc3bde714449a206762425ae114b53c86"}, -] - [[package]] name = "tokenizers" version = "0.19.1" @@ -6445,4 +6462,4 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" python-versions = ">=3.11, <4.0" -content-hash = "1fdfe039ade0d41d28cab1d52f8f9fddcb23599178d433e31702386b2b1c5b2e" +content-hash = "df5b3eaad85fc2f943506d095b2e3f7094982d55d461f40a7be13d9bb742fc6f" diff --git a/pyproject.toml b/pyproject.toml index e174e616..c064d819 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -18,7 +18,6 @@ packages = [ python = ">=3.11, <4.0" adalflow = { path = "adalflow", develop = true } openai = "^1.34.0" -black = { extras = ["jupyter"], version = "^24.10.0" } [tool.poetry.group.dev.dependencies] @@ -34,6 +33,7 @@ pgvector = "^0.2.5" cohere = "^5.5.8" pydot = "^2.0.0" matplotlib = "^3.9.0" +pyvis = "^0.3.2" ollama = "^0.2.1" torch = ">=2.0, <3.0" textgrad = "^0.1.4" diff --git a/tutorials/adalflow_rag_documents.py b/tutorials/adalflow_rag_documents.py new file mode 100644 index 00000000..e1807b2d --- /dev/null +++ b/tutorials/adalflow_rag_documents.py @@ -0,0 +1,248 @@ +import os +import tiktoken +from typing import List +import numpy as np +from sentence_transformers import SentenceTransformer +from faiss import IndexFlatL2 + +from adalflow.components.model_client import GroqAPIClient, OpenAIClient +from adalflow.core.types import ModelType +from adalflow.utils import setup_env + +""" +pip install torch --index-url https://download.pytorch.org/whl/cpu +pip install sentence-transformers==3.3.1 +pip install faiss-cpu==1.9.0.post1 +""" + + +class AdalflowRAGPipeline: + def __init__( + self, + model_client=None, + model_kwargs=None, + embedding_model="all-MiniLM-L6-v2", + vector_dim=384, + top_k_retrieval=3, + max_context_tokens=800, + ): + """ + Initialize RAG Pipeline for handling large text files + + Args: + embedding_model (str): Sentence transformer model for embeddings + vector_dim (int): Dimension of embedding vectors + top_k_retrieval (int): Number of documents to retrieve + max_context_tokens (int): Maximum tokens to send to LLM + """ + # Initialize model client for generation + self.model_client = model_client + + # Initialize tokenizer for precise token counting + self.tokenizer = tiktoken.get_encoding("cl100k_base") + + # Initialize embedding model + self.embedding_model = SentenceTransformer(embedding_model) + + # Initialize FAISS index for vector similarity search + self.index = IndexFlatL2(vector_dim) + + # Store document texts, embeddings, and metadata + self.documents = [] + self.document_embeddings = [] + self.document_metadata = [] + + # Retrieval and context management parameters + self.top_k_retrieval = top_k_retrieval + self.max_context_tokens = max_context_tokens + + # Model generation parameters + self.model_kwargs = model_kwargs + + def load_text_file(self, file_path: str) -> List[str]: + """ + Load a large text file and split into manageable chunks + + Args: + file_path (str): Path to the text file + + Returns: + List[str]: List of document chunks + """ + with open(file_path, "r", encoding="utf-8") as file: + # Read entire file + content = file.read() + + # Split content into chunks (e.g., 10 lines per chunk) + lines = content.split("\n") + chunks = [] + chunk_size = 10 # Adjust based on your file structure + + for i in range(0, len(lines), chunk_size): + chunk = "\n".join(lines[i : i + chunk_size]) + chunks.append(chunk) + + return chunks + + def add_documents_from_directory(self, directory_path: str): + """ + Add documents from all text files in a directory + + Args: + directory_path (str): Path to directory containing text files + """ + for filename in os.listdir(directory_path): + if filename.endswith(".txt"): + file_path = os.path.join(directory_path, filename) + document_chunks = self.load_text_file(file_path) + + for chunk in document_chunks: + # Embed document chunk + embedding = self.embedding_model.encode(chunk) + + # Add to index and document store + self.index.add(np.array([embedding])) + self.documents.append(chunk) + self.document_embeddings.append(embedding) + self.document_metadata.append( + { + "filename": filename, + "chunk_index": len(self.document_metadata), + } + ) + + def count_tokens(self, text: str) -> int: + """ + Count tokens in a given text + + Args: + text (str): Input text + + Returns: + int: Number of tokens + """ + return len(self.tokenizer.encode(text)) + + def retrieve_and_truncate_context(self, query: str) -> str: + """ + Retrieve relevant documents and truncate to fit token limit + + Args: + query (str): Input query + + Returns: + str: Concatenated context within token limit + """ + # Retrieve relevant documents + query_embedding = self.embedding_model.encode(query) + distances, indices = self.index.search( + np.array([query_embedding]), self.top_k_retrieval + ) + + # Collect and truncate context + context = [] + current_tokens = 0 + + for idx in indices[0]: + doc = self.documents[idx] + doc_tokens = self.count_tokens(doc) + + # Check if adding this document would exceed token limit + if current_tokens + doc_tokens <= self.max_context_tokens: + context.append(doc) + current_tokens += doc_tokens + else: + break + + return "\n\n".join(context) + + def generate_response(self, query: str) -> str: + """ + Generate a response using retrieval-augmented generation + + Args: + query (str): User's input query + + Returns: + str: Generated response incorporating retrieved context + """ + # Retrieve and truncate context + retrieved_context = self.retrieve_and_truncate_context(query) + + # Construct context-aware prompt + full_prompt = f""" + Context Documents: + {retrieved_context} + + Query: {query} + + Generate a comprehensive response that: + 1. Directly answers the query + 2. Incorporates relevant information from the context documents + 3. Provides clear and concise information + """ + + # Prepare API arguments + api_kwargs = self.model_client.convert_inputs_to_api_kwargs( + input=full_prompt, model_kwargs=self.model_kwargs, model_type=ModelType.LLM + ) + + # Call API and parse response + response = self.model_client.call( + api_kwargs=api_kwargs, model_type=ModelType.LLM + ) + response_text = self.model_client.parse_chat_completion(response) + + return response_text + + +def run_rag_pipeline(model_client, model_kwargs, documents, queries): + + # Example usage of RAG pipeline + rag_pipeline = AdalflowRAGPipeline( + model_client=model_client, + model_kwargs=model_kwargs, + top_k_retrieval=2, # Retrieve top 3 most relevant chunks + max_context_tokens=800, # Limit context to 1500 tokens + ) + + # Add documents from a directory of text files + rag_pipeline.add_documents_from_directory(documents) + + # Generate responses + for query in queries: + print(f"\nQuery: {query}") + response = rag_pipeline.generate_response(query) + print(f"Response: {response}") + + +def main(): + setup_env() + + documents = "./tutorials/assets/documents" + + queries = [ + "What year was the Crystal Cavern discovered?", + "What is the name of the rare tree in Elmsworth?", + "What local legend claim that Lunaflits surrounds?", + ] + + groq_model_kwargs = { + "model": "llama-3.2-1b-preview", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + openai_model_kwargs = { + "model": "gpt-3.5-turbo", + "temperature": 0.1, + "max_tokens": 800, + } + # Below example shows that adalflow can be used in a genric manner for any api provider + # without worrying about prompt and parsing results + run_rag_pipeline(GroqAPIClient(), groq_model_kwargs, documents, queries) + run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries) + + +if __name__ == "__main__": + main() diff --git a/tutorials/adalflow_rag_vanilla.py b/tutorials/adalflow_rag_vanilla.py new file mode 100644 index 00000000..36af7997 --- /dev/null +++ b/tutorials/adalflow_rag_vanilla.py @@ -0,0 +1,188 @@ +from typing import List +import numpy as np +from sentence_transformers import SentenceTransformer +from faiss import IndexFlatL2 + +from adalflow.components.model_client import GroqAPIClient, OpenAIClient +from adalflow.core.types import ModelType +from adalflow.utils import setup_env + +""" +pip install torch --index-url https://download.pytorch.org/whl/cpu +pip install sentence-transformers==3.3.1 +pip install faiss-cpu==1.9.0.post1 +""" + + +class AdalflowRAGPipeline: + def __init__( + self, + model_client=None, + model_kwargs=None, + embedding_model="all-MiniLM-L6-v2", + vector_dim=384, + top_k_retrieval=1, + ): + """ + Initialize RAG Pipeline with embedding and retrieval components + + Args: + embedding_model (str): Sentence transformer model for embeddings + vector_dim (int): Dimension of embedding vectors + top_k_retrieval (int): Number of documents to retrieve + """ + # Initialize model client for generation + self.model_client = model_client + + # Initialize embedding model + self.embedding_model = SentenceTransformer(embedding_model) + + # Initialize FAISS index for vector similarity search + self.index = IndexFlatL2(vector_dim) + + # Store document texts and their embeddings + self.documents = [] + self.document_embeddings = [] + + # Retrieval parameters + self.top_k_retrieval = top_k_retrieval + + # Conversation history and context + self.conversation_history = "" + self.model_kwargs = model_kwargs + + def add_documents(self, documents: List[str]): + """ + Add documents to the RAG pipeline's knowledge base + + Args: + documents (List[str]): List of document texts to add + """ + for doc in documents: + # Embed document + embedding = self.embedding_model.encode(doc) + + # Add to index and document store + self.index.add(np.array([embedding])) + self.documents.append(doc) + self.document_embeddings.append(embedding) + + def retrieve_relevant_docs(self, query: str) -> List[str]: + """ + Retrieve most relevant documents for a given query + + Args: + query (str): Input query to find relevant documents + + Returns: + List[str]: Top k most relevant documents + """ + # Embed query + query_embedding = self.embedding_model.encode(query) + + # Perform similarity search + distances, indices = self.index.search( + np.array([query_embedding]), self.top_k_retrieval + ) + + # Retrieve and return top documents + return [self.documents[i] for i in indices[0]] + + def generate_response(self, query: str) -> str: + """ + Generate a response using retrieval-augmented generation + + Args: + query (str): User's input query + + Returns: + str: Generated response incorporating retrieved context + """ + # Retrieve relevant documents + retrieved_docs = self.retrieve_relevant_docs(query) + + # Construct context-aware prompt + context = "\n\n".join([f"Context Document: {doc}" for doc in retrieved_docs]) + full_prompt = f""" + Context: + {context} + + Query: {query} + + Generate a comprehensive and informative response that: + 1. Uses the provided context documents + 2. Directly answers the query + 3. Incorporates relevant information from the context + """ + + # Prepare API arguments + api_kwargs = self.model_client.convert_inputs_to_api_kwargs( + input=full_prompt, model_kwargs=self.model_kwargs, model_type=ModelType.LLM + ) + + # Call API and parse response + response = self.model_client.call( + api_kwargs=api_kwargs, model_type=ModelType.LLM + ) + response_text = self.model_client.parse_chat_completion(response) + + # Update conversation history + self.conversation_history += f"\nQuery: {query}\nResponse: {response_text}" + + return response_text + + +def run_rag_pipeline(model_client, model_kwargs, documents, queries): + rag_pipeline = AdalflowRAGPipeline( + model_client=model_client, model_kwargs=model_kwargs + ) + + rag_pipeline.add_documents(documents) + + # Generate responses + for query in queries: + print(f"\nQuery: {query}") + response = rag_pipeline.generate_response(query) + print(f"Response: {response}") + + +def main(): + setup_env() + + # ajithvcoder's statements are added so that we can validate that the LLM is generating from these lines only + documents = [ + "ajithvcoder is a good person whom the world knows as Ajith Kumar, ajithvcoder is his nick name that AjithKumar gave himself", + "The Eiffel Tower is a famous landmark in Paris, built in 1889 for the World's Fair.", + "ajithvcoder likes Hyderabadi panner dum briyani much.", + "The Louvre Museum in Paris is the world's largest art museum, housing thousands of works of art.", + "ajithvcoder has a engineering degree and he graduated on May, 2016.", + ] + + # Questions related to ajithvcoder's are added so that we can validate + # that the LLM is generating from above given lines only + queries = [ + "Does Ajith Kumar has any nick name ?", + "What is the ajithvcoder's favourite food?", + "When did ajithvcoder graduated ?", + ] + + groq_model_kwargs = { + "model": "llama-3.2-1b-preview", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + openai_model_kwargs = { + "model": "gpt-3.5-turbo", # Use 16k model for larger context + "temperature": 0.1, + "max_tokens": 800, + } + + # Below example shows that adalflow can be used in a genric manner for any api provider + # without worrying about prompt and parsing results + run_rag_pipeline(GroqAPIClient(), groq_model_kwargs, documents, queries) + run_rag_pipeline(OpenAIClient(), openai_model_kwargs, documents, queries) + + +if __name__ == "__main__": + main() diff --git a/tutorials/assets/documents/The Bioluminescent Guardians of the Desert Canyon.txt b/tutorials/assets/documents/The Bioluminescent Guardians of the Desert Canyon.txt new file mode 100644 index 00000000..324f4b41 --- /dev/null +++ b/tutorials/assets/documents/The Bioluminescent Guardians of the Desert Canyon.txt @@ -0,0 +1,6 @@ +In a remote desert canyon, scientists discovered a colony of glowing insects called "Lunaflits." These +creatures produce bioluminescence to attract mates and ward off predators. Unlike fireflies, Lunaflits +emit a constant, soothing green light that illuminates the canyon at night. The canyon walls are covered +with a rare moss that reflects their light, creating an ethereal glow. Researchers have found that Lunaflits +communicate through rhythmic light pulses, forming intricate patterns. Local legends claim these insects +are guardians of ancient treasure buried deep within the canyon. diff --git a/tutorials/assets/documents/The Enigmatic Crystal Cavern of Lake Aurora.txt b/tutorials/assets/documents/The Enigmatic Crystal Cavern of Lake Aurora.txt new file mode 100644 index 00000000..0b4929ab --- /dev/null +++ b/tutorials/assets/documents/The Enigmatic Crystal Cavern of Lake Aurora.txt @@ -0,0 +1,6 @@ +Hidden beneath the icy waters of Lake Aurora lies the Crystal Cavern, a natural wonder discovered by divers +in 1987. The cavern is adorned with shimmering quartz formations that refract sunlight into a spectrum of +colors. It is said that the cavern once served as a sanctuary for an ancient civilization that revered the +crystals as conduits to the spirit world. Explorers have recovered artifacts carved with intricate symbols, +suggesting a deep connection to celestial events. However, accessing the cavern is perilous due to the lake's +freezing temperatures and strong currents. diff --git a/tutorials/assets/documents/The Legend of the Moonshade Willow.txt b/tutorials/assets/documents/The Legend of the Moonshade Willow.txt new file mode 100644 index 00000000..36e342b3 --- /dev/null +++ b/tutorials/assets/documents/The Legend of the Moonshade Willow.txt @@ -0,0 +1,6 @@ +In the mystical village of Elmsworth, a rare tree known as the "Moonshade Willow" blooms once every seven +years. Its blossoms emit a soft glow, and villagers believe that meditating under its branches brings vivid +dreams of the future. The tree's bark is said to contain a secret resin used in ancient healing rituals. Elders +claim the Moonshade Willow was a gift from a goddess to protect the village. Despite its sacred status, +researchers have discovered that the tree thrives only in Elmsworth's unique soil, making it impossible to +cultivate elsewhere. diff --git a/tutorials/rag/config.py b/tutorials/rag/config.py deleted file mode 100644 index 2a6d383f..00000000 --- a/tutorials/rag/config.py +++ /dev/null @@ -1,23 +0,0 @@ -configs = { - "embedder": { - "batch_size": 100, - "model_kwargs": { - "model": "text-embedding-3-small", - "dimensions": 256, - "encoding_format": "float", - }, - }, - "retriever": { - "top_k": 2, - }, - "generator": { - "model": "gpt-3.5-turbo", - "temperature": 0.3, - "stream": False, - }, - "text_splitter": { - "split_by": "word", - "chunk_size": 400, - "chunk_overlap": 200, - }, -} diff --git a/tutorials/rag/rag.py b/tutorials/rag/rag.py deleted file mode 100644 index ab248879..00000000 --- a/tutorials/rag/rag.py +++ /dev/null @@ -1,105 +0,0 @@ -from typing import Optional, Any, List - -import adalflow as adal -from adalflow.core.db import LocalDB - -from adalflow.core.types import ModelClientType - -from adalflow.core.string_parser import JsonParser -from adalflow.components.retriever.faiss_retriever import FAISSRetriever -from adalflow.components.data_process import ( - RetrieverOutputToContextStr, - ToEmbeddings, - TextSplitter, -) - -from adalflow.components.model_client import OpenAIClient - -from tutorials.rag.config import configs - - -def prepare_data_pipeline(): - splitter = TextSplitter(**configs["text_splitter"]) - embedder = adal.Embedder( - model_client=ModelClientType.OPENAI(), - model_kwargs=configs["embedder"]["model_kwargs"], - ) - embedder_transformer = ToEmbeddings( - embedder=embedder, batch_size=configs["embedder"]["batch_size"] - ) - data_transformer = adal.Sequential( - splitter, embedder_transformer - ) # sequential will chain together splitter and embedder - return data_transformer - - -rag_prompt_task_desc = r""" -You are a helpful assistant. - -Your task is to answer the query that may or may not come with context information. -When context is provided, you should stick to the context and less on your prior knowledge to answer the query. - -Output JSON format: -{ - "answer": "The answer to the query", -}""" - - -class RAG(adal.Component): - - def __init__(self, index_path: str = "index.faiss"): - super().__init__() - - self.db = LocalDB.load_state(index_path) - - self.transformed_docs: List[adal.Document] = self.db.get_transformed_data( - "data_transformer" - ) - embedder = adal.Embedder( - model_client=ModelClientType.OPENAI(), - model_kwargs=configs["embedder"]["model_kwargs"], - ) - # map the documents to embeddings - self.retriever = FAISSRetriever( - **configs["retriever"], - embedder=embedder, - documents=self.transformed_docs, - document_map_func=lambda doc: doc.vector, - ) - self.retriever_output_processors = RetrieverOutputToContextStr(deduplicate=True) - - self.generator = adal.Generator( - prompt_kwargs={ - "task_desc_str": rag_prompt_task_desc, - }, - model_client=OpenAIClient(), - model_kwargs=configs["generator"], - output_processors=JsonParser(), - ) - - def generate(self, query: str, context: Optional[str] = None) -> Any: - if not self.generator: - raise ValueError("Generator is not set") - - prompt_kwargs = { - "context_str": context, - "input_str": query, - } - response = self.generator(prompt_kwargs=prompt_kwargs) - return response - - def call(self, query: str) -> Any: - retrieved_documents = self.retriever(query) - # fill in the document - for i, retriever_output in enumerate(retrieved_documents): - retrieved_documents[i].documents = [ - self.transformed_docs[doc_index] - for doc_index in retriever_output.doc_indices - ] - - print(f"retrieved_documents: \n {retrieved_documents}\n") - context_str = self.retriever_output_processors(retrieved_documents) - - print(f"context_str: \n {context_str}\n") - - return self.generate(query, context=context_str), retrieved_documents diff --git a/tutorials/tools.ipynb b/tutorials/tools.ipynb index 092ef764..c32b9420 100644 --- a/tutorials/tools.ipynb +++ b/tutorials/tools.ipynb @@ -20,7 +20,6 @@ "\n", "client = OpenAI()\n", "\n", - "\n", "# Example dummy function hard coded to return the same weather\n", "# In production, this could be your backend API or an external API\n", "def get_current_weather(location, unit=\"fahrenheit\"):\n", @@ -28,23 +27,15 @@ " if \"tokyo\" in location.lower():\n", " return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": unit})\n", " elif \"san francisco\" in location.lower():\n", - " return json.dumps(\n", - " {\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit}\n", - " )\n", + " return json.dumps({\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit})\n", " elif \"paris\" in location.lower():\n", " return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": unit})\n", " else:\n", " return json.dumps({\"location\": location, \"temperature\": \"unknown\"})\n", "\n", - "\n", "def run_conversation():\n", " # Step 1: send the conversation and available functions to the model\n", - " messages = [\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": \"What's the weather like in San Francisco, Tokyo, and Paris?\",\n", - " }\n", - " ]\n", + " messages = [{\"role\": \"user\", \"content\": \"What's the weather like in San Francisco, Tokyo, and Paris?\"}]\n", " tools = [\n", " {\n", " \"type\": \"function\",\n", @@ -104,8 +95,6 @@ " messages=messages,\n", " ) # get a new response from the model where it can see the function response\n", " return second_response\n", - "\n", - "\n", "print(run_conversation())" ] }, @@ -121,19 +110,16 @@ "import time\n", "import asyncio\n", "\n", - "\n", "def multiply(a: int, b: int) -> int:\n", " \"\"\"Multiply two numbers.\"\"\"\n", " time.sleep(1)\n", " return a * b\n", "\n", - "\n", "def add(a: int, b: int) -> int:\n", " \"\"\"Add two numbers.\"\"\"\n", " time.sleep(1)\n", " return a + b\n", "\n", - "\n", "async def divide(a: float, b: float) -> float:\n", " \"\"\"Divide two numbers.\"\"\"\n", " await asyncio.sleep(1)\n", @@ -150,20 +136,15 @@ " \"\"\"Sum the elements of an array.\"\"\"\n", " return np.sum(arr)\n", "\n", - "\n", "x = 2\n", - "\n", - "\n", "@dataclass\n", "class Point:\n", " x: int\n", " y: int\n", "\n", - "\n", "def add_points(p1: Point, p2: Point) -> Point:\n", " return Point(p1.x + p2.x, p1.y + p2.y)\n", "\n", - "\n", "all_functions = [multiply, add, divide, search, numpy_sum, add_points]\n", "\n", "all_functions_dict = {f.__name__: f for f in all_functions}" @@ -192,8 +173,10 @@ "\n", "from adalflow.core.func_tool import FunctionTool\n", "\n", - "functions = [multiply, add, divide, search, numpy_sum, add_points]\n", - "tools = [FunctionTool(fn=fn) for fn in functions]\n", + "functions =[multiply, add, divide, search, numpy_sum, add_points]\n", + "tools = [\n", + " FunctionTool(fn=fn) for fn in functions\n", + "]\n", "for tool in tools:\n", " print(tool)" ] @@ -205,7 +188,7 @@ "outputs": [], "source": [ "# create a context map\n", - "context_map = {tool.definition.func_name: tool for tool in tools}" + "context_map = {tool.definition.func_name: tool for tool in tools}\n" ] }, { @@ -312,7 +295,7 @@ } ], "source": [ - "# execute get_current_weather using function call\n", + "# execute get_current_weather using function call \n", "\n", "ft.call(**{\"location\": \"San Francisco\", \"unit\": \"celsius\"})" ] @@ -361,7 +344,8 @@ "print(tools[2].execute(**{\"a\": 10, \"b\": 2}))\n", "\n", "display(await tools[2].acall(**{\"a\": 10, \"b\": 2}))\n", - "display(await tools[2].execute(**{\"a\": 10, \"b\": 2}))" + "display(await tools[2].execute(**{\"a\": 10, \"b\": 2}))\n", + "\n" ] }, { @@ -458,38 +442,34 @@ } ], "source": [ - "# call all the above functions\n", + "# call all the above functions \n", "import nest_asyncio\n", "\n", "nest_asyncio.apply()\n", "\n", "\n", + "\n", "async def async_function_1():\n", " await asyncio.sleep(1)\n", " return \"Function 1 completed\"\n", "\n", - "\n", "def sync_function_1():\n", " time.sleep(1)\n", " return \"Function 1 completed\"\n", "\n", - "\n", "async def async_function_2():\n", " await asyncio.sleep(2)\n", " return \"Function 2 completed\"\n", "\n", - "\n", "def sync_function_2():\n", " time.sleep(2)\n", " return \"Function 2 completed\"\n", "\n", - "\n", "async_tool_1 = FunctionTool(async_function_1)\n", "sync_tool_1 = FunctionTool(sync_function_2)\n", "async_tool_2 = FunctionTool(async_function_2)\n", "sync_tool_2 = FunctionTool(sync_function_2)\n", "\n", - "\n", "def run_sync_and_async_mix_without_wait():\n", " # both sync and async tool can use execute\n", " # sync tool can also use call\n", @@ -504,7 +484,6 @@ " print(f\"run_sync_and_async_mix_without_wait time: {end_time - start_time}\")\n", " return results\n", "\n", - "\n", "async def run_sync_and_async_mix():\n", " # both sync and async tool can use execute&to_thread\n", " # async tool can also use acall without to_thread\n", @@ -513,13 +492,13 @@ " results = await asyncio.gather(\n", " async_tool_1.execute(),\n", " sync_tool_1.execute(),\n", + " \n", " async_tool_2.acall(),\n", " )\n", " end_time = time.time()\n", " print(f\"run_sync_and_async_mix time: {end_time - start_time}\")\n", " return results\n", "\n", - "\n", "# Execute functions\n", "results_without_wait = run_sync_and_async_mix_without_wait()\n", "display(results_without_wait)\n", @@ -696,7 +675,7 @@ "small_tool_manager = ToolManager(tools=tools[:2])\n", "\n", "renered_prompt = prompt(tools=tool_manager.yaml_definitions)\n", - "print(renered_prompt)" + "print(renered_prompt)\n" ] }, { @@ -724,16 +703,16 @@ } ], "source": [ - "# let's render the output format using Function class\n", + "# let's render the output format using Function class \n", "\n", "from adalflow.core.types import Function\n", "\n", "\n", - "output_data_class = Function\n", + "output_data_class = Function \n", "output_format_str = output_data_class.to_json_signature(exclude=[\"thought\"])\n", "\n", - "renered_prompt = prompt(output_format_str=output_format_str)\n", - "print(renered_prompt)" + "renered_prompt= prompt(output_format_str=output_format_str)\n", + "print(renered_prompt)\n" ] }, { @@ -797,7 +776,7 @@ "\n", "func_parser = JsonOutputParser(data_class=Function)\n", "instructions = func_parser.format_instructions(exclude=[\"thought\"])\n", - "print(instructions)" + "print(instructions)\n" ] }, { @@ -865,7 +844,9 @@ "model_kwargs = {\"model\": \"gpt-3.5-turbo\"}\n", "prompt_kwargs = {\n", " \"tools\": tool_manager.yaml_definitions,\n", - " \"output_format_str\": func_parser.format_instructions(exclude=[\"thought\", \"args\"]),\n", + " \"output_format_str\": func_parser.format_instructions(\n", + " exclude=[\"thought\", \"args\"]\n", + " ),\n", "}\n", "generator = Generator(\n", " model_client=ModelClientType.OPENAI(),\n", @@ -906,14 +887,14 @@ "source": [ "# call queries\n", "queries = [\n", - " \"add 2 and 3\",\n", - " \"search for something\",\n", - " \"add points (1, 2) and (3, 4)\",\n", - " \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\",\n", - " \"multiply 2 with local variable x\",\n", - " \"divide 2 by 3\",\n", - " \"Add 5 to variable y\",\n", - "]" + " \"add 2 and 3\",\n", + " \"search for something\",\n", + " \"add points (1, 2) and (3, 4)\",\n", + " \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\",\n", + " \"multiply 2 with local variable x\",\n", + " \"divide 2 by 3\",\n", + " \"Add 5 to variable y\",\n", + " ]" ] }, { @@ -1065,6 +1046,7 @@ } ], "source": [ + "\n", "for idx, query in enumerate(queries):\n", " prompt_kwargs = {\"input_str\": query}\n", " print(f\"\\n{idx} Query: {query}\")\n", @@ -1074,12 +1056,10 @@ " # print(f\"LLM raw output: {result.raw_response}\")\n", " func = Function.from_dict(result.data)\n", " print(f\"Function: {func}\")\n", - " func_output = tool_manager.execute_func(func)\n", + " func_output= tool_manager.execute_func(func)\n", " display(f\"Function output: {func_output}\")\n", " except Exception as e:\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )" + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")" ] }, { @@ -1120,7 +1100,7 @@ } ], "source": [ - "# let's use FunctionExpression to call the function instead\n", + "# let's use FunctionExpression to call the function instead \n", "\n", "from adalflow.core.types import FunctionExpression\n", "\n", @@ -1129,9 +1109,7 @@ "print(output_format_str)\n", "\n", "# lets' add one example to be more robust that they should call it with function call expression\n", - "example = FunctionExpression.from_function(\n", - " thought=None, func=add_points, **{\"p1\": Point(1, 2), \"p2\": Point(3, 4)}\n", - ")\n", + "example = FunctionExpression.from_function(thought=None, func=add_points, **{\"p1\": Point(1, 2), \"p2\": Point(3, 4)})\n", "print(example)" ] }, @@ -1280,15 +1258,15 @@ "instructions = parser.format_instructions(exclude=[\"thought\"])\n", "\n", "prompt_kwargs = {\n", - " \"tools\": [tool.definition.to_yaml() for tool in tools],\n", - " \"output_format_str\": parser.format_instructions(exclude=[\"thought\"]),\n", - "}\n", + " \"tools\": [tool.definition.to_yaml() for tool in tools],\n", + " \"output_format_str\": parser.format_instructions(exclude=[\"thought\"]),\n", + " }\n", "generator = Generator(\n", " model_client=ModelClientType.OPENAI(),\n", " model_kwargs=model_kwargs,\n", " template=template,\n", " prompt_kwargs=prompt_kwargs,\n", - " output_processors=parser,\n", + " output_processors=parser\n", ")\n", "\n", "generator.print_prompt(**prompt_kwargs)" @@ -1313,65 +1291,67 @@ "\n", "# Define a list of safe built-ins\n", "SAFE_BUILTINS = {\n", - " \"abs\": abs,\n", - " \"all\": all,\n", - " \"any\": any,\n", - " \"bin\": bin,\n", - " \"bool\": bool,\n", - " \"bytearray\": bytearray,\n", - " \"bytes\": bytes,\n", - " \"callable\": callable,\n", - " \"chr\": chr,\n", - " \"complex\": complex,\n", - " \"dict\": dict,\n", - " \"divmod\": divmod,\n", - " \"enumerate\": enumerate,\n", - " \"filter\": filter,\n", - " \"float\": float,\n", - " \"format\": format,\n", - " \"frozenset\": frozenset,\n", - " \"getattr\": getattr,\n", - " \"hasattr\": hasattr,\n", - " \"hash\": hash,\n", - " \"hex\": hex,\n", - " \"int\": int,\n", - " \"isinstance\": isinstance,\n", - " \"issubclass\": issubclass,\n", - " \"iter\": iter,\n", - " \"len\": len,\n", - " \"list\": list,\n", - " \"map\": map,\n", - " \"max\": max,\n", - " \"min\": min,\n", - " \"next\": next,\n", - " \"object\": object,\n", - " \"oct\": oct,\n", - " \"ord\": ord,\n", - " \"pow\": pow,\n", - " \"range\": range,\n", - " \"repr\": repr,\n", - " \"reversed\": reversed,\n", - " \"round\": round,\n", - " \"set\": set,\n", - " \"slice\": slice,\n", - " \"sorted\": sorted,\n", - " \"str\": str,\n", - " \"sum\": sum,\n", - " \"tuple\": tuple,\n", - " \"type\": type,\n", - " \"zip\": zip,\n", + " 'abs': abs,\n", + " 'all': all,\n", + " 'any': any,\n", + " 'bin': bin,\n", + " 'bool': bool,\n", + " 'bytearray': bytearray,\n", + " 'bytes': bytes,\n", + " 'callable': callable,\n", + " 'chr': chr,\n", + " 'complex': complex,\n", + " 'dict': dict,\n", + " 'divmod': divmod,\n", + " 'enumerate': enumerate,\n", + " 'filter': filter,\n", + " 'float': float,\n", + " 'format': format,\n", + " 'frozenset': frozenset,\n", + " 'getattr': getattr,\n", + " 'hasattr': hasattr,\n", + " 'hash': hash,\n", + " 'hex': hex,\n", + " 'int': int,\n", + " 'isinstance': isinstance,\n", + " 'issubclass': issubclass,\n", + " 'iter': iter,\n", + " 'len': len,\n", + " 'list': list,\n", + " 'map': map,\n", + " 'max': max,\n", + " 'min': min,\n", + " 'next': next,\n", + " 'object': object,\n", + " 'oct': oct,\n", + " 'ord': ord,\n", + " 'pow': pow,\n", + " 'range': range,\n", + " 'repr': repr,\n", + " 'reversed': reversed,\n", + " 'round': round,\n", + " 'set': set,\n", + " 'slice': slice,\n", + " 'sorted': sorted,\n", + " 'str': str,\n", + " 'sum': sum,\n", + " 'tuple': tuple,\n", + " 'type': type,\n", + " 'zip': zip,\n", "}\n", "\n", - "\n", "# Define a context manager to limit execution time\n", "# Create a sandbox execution function\n", "def sandbox_exec(code, context=SAFE_BUILTINS, timeout=5):\n", "\n", " try:\n", - " compiled_code = compile(code, \"\", \"exec\")\n", + " compiled_code = compile(code, '', 'exec')\n", "\n", " # Result dictionary to store execution results\n", - " result = {\"output\": None, \"error\": None}\n", + " result = {\n", + " \"output\" : None,\n", + " \"error\" : None\n", + " }\n", "\n", " # Define a target function for the thread\n", " def target():\n", @@ -1380,6 +1360,7 @@ " exec(compiled_code, context, result)\n", " except Exception as e:\n", " result[\"error\"] = e\n", + " \n", "\n", " # Create a thread to execute the code\n", " thread = threading.Thread(target=target)\n", @@ -1396,7 +1377,6 @@ "\n", " return result\n", "\n", - "\n", "# Example usage\n", "code = \"\"\"\n", "def add(a, b+5):\n", @@ -1411,7 +1391,7 @@ "except TimeoutError as e:\n", " print(e)\n", "except Exception as e:\n", - " print(\"Sandbox error:\", e)" + " print(\"Sandbox error:\", e)\n" ] }, { @@ -1530,23 +1510,23 @@ } ], "source": [ - "# run the generator but we will use FunctionTool.parse_function_call_expr and have a context map\n", + "# run the generator but we will use FunctionTool.parse_function_call_expr and have a context map \n", "\n", "all_functions_dict.update(\n", " {\n", - " \"Point\": Point,\n", - " # support numpy\n", - " \"np\": np,\n", - " \"np.ndarray\": np.ndarray,\n", - " \"array\": np.array,\n", - " \"arr\": arr,\n", - " \"np.array\": np.array,\n", - " \"x\": x,\n", + " \"Point\": Point,\n", + " # support numpy\n", + " \"np\": np,\n", + " \"np.ndarray\": np.ndarray,\n", + " \"array\": np.array,\n", + " \"arr\": arr,\n", + " \"np.array\": np.array,\n", + " \"x\": x\n", " }\n", ")\n", - "y = 4\n", + "y=4\n", "print(all_functions_dict)\n", - "for query in queries + [\"Add 5 to variable y\"]:\n", + "for query in queries+[\"Add 5 to variable y\"]:\n", "\n", " try:\n", " print(f\"Query: {query}\")\n", @@ -1557,14 +1537,10 @@ " func_expr = FunctionExpression.from_dict(result.data)\n", "\n", " print(func_expr)\n", - " assert isinstance(\n", - " func_expr, FunctionExpression\n", - " ), f\"Expected FunctionExpression, got {type(result.data)}\"\n", + " assert isinstance(func_expr, FunctionExpression), f\"Expected FunctionExpression, got {type(result.data)}\"\n", "\n", " # more secure way to handle function call\n", - " func: Function = FunctionTool.parse_function_call_expr(\n", - " expr=func_expr.action, context_map=all_functions_dict\n", - " )\n", + " func: Function = FunctionTool.parse_function_call_expr(expr=func_expr.action, context_map=all_functions_dict)\n", " print(func)\n", " fun_output = all_functions_dict[func.name](*func.args, **func.kwargs)\n", " print(\"func output:\", fun_output)\n", @@ -1582,24 +1558,18 @@ " print(\"sandbox output:\", result)\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )\n", + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")\n", " try:\n", " fun_output = eval(func_expr.action)\n", " print(\"func output:\", fun_output)\n", "\n", - " # sandbox_exec\n", + " #sandbox_exec\n", " action = \"output=\" + func_expr.action\n", - " result = sandbox_exec(\n", - " action, context={**SAFE_BUILTINS, **all_functions_dict}\n", - " )\n", + " result = sandbox_exec(action, context={**SAFE_BUILTINS, **all_functions_dict})\n", " print(\"sandbox output:\", result)\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )" + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")" ] }, { @@ -1806,27 +1776,20 @@ } ], "source": [ - "queries = [\n", - " \"add 2 and 3\",\n", - " \"search for something\",\n", - " \"add points (1, 2) and (3, 4)\",\n", - " \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\",\n", - " \"multiply 2 with local variable x\",\n", - " \"divide 2 by 3\",\n", - "]\n", + "queries = [\"add 2 and 3\", \"search for something\", \"add points (1, 2) and (3, 4)\", \"sum numpy array with arr = np.array([[1, 2], [3, 4]])\", \"multiply 2 with local variable x\", \"divide 2 by 3\"]\n", "\n", - "from adalflow.core.string_parser import JsonParser # improve a list of json\n", + "from adalflow.core.string_parser import JsonParser # improve a list of json\n", "\n", "preset_prompt_kwargs = {\n", - " \"tools\": [tool.definition.to_yaml() for tool in tools],\n", - " \"output_format_str\": parser.format_instructions(exclude=[\"thought\"]),\n", - "}\n", + " \"tools\": [tool.definition.to_yaml() for tool in tools],\n", + " \"output_format_str\": parser.format_instructions(exclude=[\"thought\"])\n", + " }\n", "multi_call_gen = Generator(\n", " model_client=ModelClientType.OPENAI(),\n", " model_kwargs=model_kwargs,\n", " template=multple_function_call_template,\n", " prompt_kwargs=preset_prompt_kwargs,\n", - " output_processors=JsonParser(),\n", + " output_processors=JsonParser()\n", ")\n", "print(multi_call_gen)\n", "multi_call_gen.print_prompt()" @@ -1919,12 +1882,8 @@ } ], "source": [ - "def execute_function_by_parsing(\n", - " func_expr: FunctionExpression, all_functions_dict: Dict[str, Any]\n", - ") -> Any:\n", - " func: Function = FunctionTool.parse_function_call_expr(\n", - " expr=func_expr.action, context_map=all_functions_dict\n", - " )\n", + "def execute_function_by_parsing(func_expr: FunctionExpression, all_functions_dict: Dict[str, Any]) -> Any:\n", + " func: Function = FunctionTool.parse_function_call_expr(expr=func_expr.action, context_map=all_functions_dict)\n", " print(func)\n", " fun_output = all_functions_dict[func.name](*func.args, **func.kwargs)\n", " print(\"func output:\", fun_output)\n", @@ -1941,10 +1900,7 @@ " print(\"func output:\", fun_output)\n", " return fun_output\n", "\n", - "\n", - "def execute_function_by_sandbox(\n", - " func_expr: FunctionExpression, all_functions_dict: Dict[str, Any]\n", - ") -> Any:\n", + "def execute_function_by_sandbox(func_expr: FunctionExpression, all_functions_dict: Dict[str, Any]) -> Any:\n", " # sandbox_exec\n", " action = \"output=\" + func_expr.action\n", " result = sandbox_exec(action, context={**SAFE_BUILTINS, **all_functions_dict})\n", @@ -1953,8 +1909,10 @@ " return result\n", "\n", "\n", + "\n", + "\n", "for i in range(0, len(queries), 2):\n", - " query = \" and \".join(queries[i : i + 2])\n", + " query = \" and \".join(queries[i:i+2])\n", " print(f\"Query: {query}\\n_________________________\\n\")\n", " prompt_kwargs = {\"input_str\": query}\n", " result = multi_call_gen(prompt_kwargs=prompt_kwargs)\n", @@ -1967,46 +1925,32 @@ " print(func_exprs)\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to parse the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )\n", + " print(f\"Failed to parse the function for query: {query}, func: {result.data}, error: {e}\")\n", " continue\n", " try:\n", - " func_outputs_1 = [\n", - " execute_function_by_parsing(func_expr, all_functions_dict)\n", - " for func_expr in func_exprs\n", - " ]\n", + " func_outputs_1 = [execute_function_by_parsing(func_expr, all_functions_dict) for func_expr in func_exprs]\n", " print(f\"fun_output by parsing: {func_outputs_1}\\n_________________________\\n\")\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )\n", + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")\n", "\n", " try:\n", "\n", - " func_outputs_2 = [\n", - " execute_function_by_eval(func_expr) for func_expr in func_exprs\n", - " ]\n", + " func_outputs_2 = [execute_function_by_eval(func_expr) for func_expr in func_exprs]\n", " print(f\"fun_output by eval: {func_outputs_2}\\n_________________________\\n\")\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )\n", + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")\n", "\n", " try:\n", "\n", - " func_outputs_3 = [\n", - " execute_function_by_sandbox(func_expr, all_functions_dict)\n", - " for func_expr in func_exprs\n", - " ]\n", + " func_outputs_3 = [execute_function_by_sandbox(func_expr, all_functions_dict) for func_expr in func_exprs]\n", " print(f\"fun_output by sandbox: {func_outputs_3}\\n_________________________\\n\")\n", " except Exception as e:\n", " print(e)\n", - " print(\n", - " f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\"\n", - " )" + " print(f\"Failed to execute the function for query: {query}, func: {result.data}, error: {e}\")\n", + "\n", + " \n" ] }, { @@ -2031,7 +1975,6 @@ "\n", "client = OpenAI()\n", "\n", - "\n", "# Example dummy function hard coded to return the same weather\n", "# In production, this could be your backend API or an external API\n", "def get_current_weather(location, unit=\"fahrenheit\"):\n", @@ -2039,23 +1982,15 @@ " if \"tokyo\" in location.lower():\n", " return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": unit})\n", " elif \"san francisco\" in location.lower():\n", - " return json.dumps(\n", - " {\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit}\n", - " )\n", + " return json.dumps({\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit})\n", " elif \"paris\" in location.lower():\n", " return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": unit})\n", " else:\n", " return json.dumps({\"location\": location, \"temperature\": \"unknown\"})\n", "\n", - "\n", "def run_conversation():\n", " # Step 1: send the conversation and available functions to the model\n", - " messages = [\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": \"What's the weather like in San Francisco, Tokyo, and Paris in celsius?\",\n", - " }\n", - " ]\n", + " messages = [{\"role\": \"user\", \"content\": \"What's the weather like in San Francisco, Tokyo, and Paris in celsius?\"}]\n", " tools = [\n", " {\n", " \"type\": \"function\",\n", @@ -2099,13 +2034,11 @@ " for tool_call in tool_calls:\n", " function_name = tool_call.function.name\n", " function_to_call = available_functions[function_name]\n", - " function_args = json.loads(\n", - " tool_call.function.arguments\n", - " ) # use json.loads to convert a string to a dictionary\n", + " function_args = json.loads(tool_call.function.arguments)# use json.loads to convert a string to a dictionary\n", " # function_response = function_to_call(\n", " # location=function_args.get(\"location\"),\n", " # unit=function_args.get(\"unit\"),\n", - " # )\n", + " # ) \n", " # you have to exactly know the arguments, this does not make sense. How would i know its arguments. **function_args (makes more sense)\n", " function_response = function_to_call(**function_args)\n", " messages.append(\n", @@ -2121,8 +2054,6 @@ " messages=messages,\n", " ) # get a new response from the model where it can see the function response\n", " return second_response\n", - "\n", - "\n", "print(run_conversation())" ] }, @@ -2178,17 +2109,18 @@ "outputs": [], "source": [ "def get_current_weather(location: str, unit: str = \"fahrenheit\"):\n", - " \"\"\"Get the current weather in a given location\"\"\"\n", - " if \"tokyo\" in location.lower():\n", - " return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": unit})\n", - " elif \"san francisco\" in location.lower():\n", - " return json.dumps(\n", - " {\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit}\n", - " )\n", - " elif \"paris\" in location.lower():\n", - " return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": unit})\n", - " else:\n", - " return json.dumps({\"location\": location, \"temperature\": \"unknown\"})" + " \"\"\"Get the current weather in a given location\"\"\"\n", + " if \"tokyo\" in location.lower():\n", + " return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": unit})\n", + " elif \"san francisco\" in location.lower():\n", + " return json.dumps(\n", + " {\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": unit}\n", + " )\n", + " elif \"paris\" in location.lower():\n", + " return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": unit})\n", + " else:\n", + " return json.dumps({\"location\": location, \"temperature\": \"unknown\"})\n", + "\n" ] }, { @@ -2202,29 +2134,21 @@ "from adalflow.core.base_data_class import DataClass\n", "from dataclasses import dataclass, field\n", "\n", - "\n", "@dataclass\n", "class Weather(DataClass):\n", - " location: str = field(\n", - " metadata={\"description\": \"The city and state, e.g. San Francisco, CA\"}\n", - " )\n", + " location: str = field(metadata={\"description\": \"The city and state, e.g. San Francisco, CA\"})\n", " unit: str = field(metadata={\"enum\": [\"celsius\", \"fahrenheit\"]})\n", "\n", - "\n", "def get_current_weather_2(weather: Weather):\n", " \"\"\"Get the current weather in a given location\"\"\"\n", " if \"tokyo\" in weather.location.lower():\n", - " return json.dumps(\n", - " {\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": weather.unit}\n", - " )\n", + " return json.dumps({\"location\": \"Tokyo\", \"temperature\": \"10\", \"unit\": weather.unit})\n", " elif \"san francisco\" in weather.location.lower():\n", " return json.dumps(\n", " {\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": weather.unit}\n", " )\n", " elif \"paris\" in weather.location.lower():\n", - " return json.dumps(\n", - " {\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": weather.unit}\n", - " )\n", + " return json.dumps({\"location\": \"Paris\", \"temperature\": \"22\", \"unit\": weather.unit})\n", " else:\n", " return json.dumps({\"location\": weather.location, \"temperature\": \"unknown\"})" ] @@ -2287,7 +2211,8 @@ "\n", "tool_2 = FunctionTool.from_defaults(fn=get_current_weather_2)\n", "\n", - "print(tool_2.metadata.to_json())" + "print(tool_2.metadata.to_json())\n", + "\n" ] }, { @@ -2304,23 +2229,38 @@ "metadata": {}, "outputs": [], "source": [ - "adalflow_fn_schema = {\n", - " \"type\": \"object\",\n", - " \"properties\": {\n", - " \"weather\": {\n", - " \"type\": \"Weather\",\n", - " \"desc\": \"The city and state, e.g. San Francisco, CA\",\n", - " \"enum\": [\"celsius\", \"fahrenheit\"],\n", - " }\n", - " },\n", - " \"required\": [\"weather\"],\n", - " \"definitions\": {\n", - " \"weather\": {\n", - " \"type\": \"object\",\n", - " \"properties\": {\"location\": {\"type\": \"str\"}, \"unit\": {\"type\": \"str\"}},\n", - " \"required\": [\"location\", \"unit\"],\n", + "adalflow_fn_schema ={\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"weather\": {\n", + " \"type\": \"Weather\",\n", + " \"desc\": \"The city and state, e.g. San Francisco, CA\",\n", + " \"enum\": [\n", + " \"celsius\",\n", + " \"fahrenheit\"\n", + " ]\n", + " }\n", + " },\n", + " \"required\": [\n", + " \"weather\"\n", + " ],\n", + " \"definitions\": {\n", + " \"weather\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"location\": {\n", + " \"type\": \"str\"\n", + " },\n", + " \"unit\": {\n", + " \"type\": \"str\"\n", + " }\n", + " },\n", + " \"required\": [\n", + " \"location\",\n", + " \"unit\"\n", + " ]\n", + " }\n", " }\n", - " },\n", "}" ] }, @@ -2393,7 +2333,7 @@ } ], "source": [ - "# prepare function tool\n", + "# prepare function tool \n", "weather_tool = FunctionTool.from_defaults(fn=_get_current_weather)\n", "print(weather_tool)" ] @@ -2455,7 +2395,7 @@ } ], "source": [ - "# prepare a minimal function calling template\n", + "# prepare a minimal function calling template \n", "template = r\"\"\"You have these tools available:\n", " \n", " {% for tool in tools %}\n", @@ -2494,13 +2434,11 @@ "\n", "model_kwargs = {\"model\": \"gpt-3.5-turbo\", \"temperature\": 0.3, \"stream\": False}\n", "\n", - "\n", "@dataclass\n", "class Function(DataClass):\n", " name: str = field(metadata={\"desc\": \"The name of the function\"})\n", " args: Dict[str, Any] = field(metadata={\"desc\": \"The arguments of the function\"})\n", "\n", - "\n", "generator = Generator(\n", " model_client=ModelClientType.OPENAI(),\n", " model_kwargs=model_kwargs,\n", @@ -2597,7 +2535,9 @@ "source": [ "# call the function\n", "\n", - "function_map = {\"_get_current_weather\": weather_tool}\n", + "function_map = {\n", + " \"_get_current_weather\": weather_tool\n", + "}\n", "\n", "function_name = structured_output.name\n", "function_args = structured_output.args\n", @@ -2755,30 +2695,22 @@ "from dataclasses import dataclass, field\n", "from typing import Any, Dict\n", "\n", - "\n", "@dataclass\n", "class Address:\n", " street: str\n", " city: str\n", " zipcode: str\n", "\n", - "\n", "@dataclass\n", "class Person:\n", " name: str\n", " age: int\n", " address: Address\n", "\n", - "\n", "# Example instance of the nested dataclasses\n", - "person = Person(\n", - " name=\"John Doe\",\n", - " age=30,\n", - " address=Address(street=\"123 Main St\", city=\"Anytown\", zipcode=\"12345\"),\n", - ")\n", + "person = Person(name=\"John Doe\", age=30, address=Address(street=\"123 Main St\", city=\"Anytown\", zipcode=\"12345\"))\n", "print(person)\n", "\n", - "\n", "def to_dict(obj: Any) -> Dict[str, Any]:\n", " if hasattr(obj, \"__dataclass_fields__\"):\n", " return {key: to_dict(value) for key, value in obj.__dict__.items()}\n", @@ -2789,7 +2721,6 @@ " else:\n", " return obj\n", "\n", - "\n", "# Convert the person instance to a dictionary\n", "person_dict = to_dict(person)\n", "print(person_dict)" @@ -2810,31 +2741,20 @@ ], "source": [ "from typing import List\n", - "\n", - "\n", "@dataclass\n", "class Address:\n", " street: str\n", " city: str\n", " zipcode: str\n", "\n", - "\n", "@dataclass\n", "class Person:\n", " name: str\n", " age: int\n", " addresses: List[Address]\n", "\n", - "\n", "# Example instance of the nested dataclasses\n", - "person = Person(\n", - " name=\"John Doe\",\n", - " age=30,\n", - " addresses=[\n", - " Address(street=\"123 Main St\", city=\"Anytown\", zipcode=\"12345\"),\n", - " Address(street=\"456 Elm St\", city=\"Othertown\", zipcode=\"67890\"),\n", - " ],\n", - ")\n", + "person = Person(name=\"John Doe\", age=30, addresses=[Address(street=\"123 Main St\", city=\"Anytown\", zipcode=\"12345\"), Address(street=\"456 Elm St\", city=\"Othertown\", zipcode=\"67890\")])\n", "print(person)" ] }, @@ -2875,8 +2795,6 @@ ], "source": [ "from typing import List, Dict, Optional\n", - "\n", - "\n", "def dataclass_obj_to_dict(\n", " obj: Any, exclude: Optional[Dict[str, List[str]]] = None, parent_key: str = \"\"\n", ") -> Dict[str, Any]:\n", @@ -2933,30 +2851,24 @@ " else:\n", " return obj\n", "\n", - "\n", "from dataclasses import dataclass\n", "from typing import List\n", "\n", - "\n", "@dataclass\n", "class TrecData:\n", " question: str\n", " label: int\n", "\n", - "\n", "@dataclass\n", "class TrecDataList:\n", "\n", " data: List[TrecData]\n", " name: str\n", "\n", - "\n", "trec_data = TrecData(question=\"What is the capital of France?\", label=0)\n", "trec_data_list = TrecDataList(data=[trec_data], name=\"trec_data_list\")\n", "\n", - "dataclass_obj_to_dict(\n", - " trec_data_list, exclude={\"TrecData\": [\"label\"], \"TrecDataList\": [\"name\"]}\n", - ")" + "dataclass_obj_to_dict(trec_data_list, exclude={\"TrecData\": [\"label\"], \"TrecDataList\": [\"name\"]})" ] }, { @@ -2966,24 +2878,14 @@ "outputs": [], "source": [ "from typing import Type\n", - "\n", - "\n", "def dataclass_obj_from_dict(cls: Type[Any], data: Dict[str, Any]) -> Any:\n", " if hasattr(cls, \"__dataclass_fields__\"):\n", " fieldtypes = {f.name: f.type for f in cls.__dataclass_fields__.values()}\n", - " return cls(\n", - " **{\n", - " key: dataclass_obj_from_dict(fieldtypes[key], value)\n", - " for key, value in data.items()\n", - " }\n", - " )\n", + " return cls(**{key: dataclass_obj_from_dict(fieldtypes[key], value) for key, value in data.items()})\n", " elif isinstance(data, list):\n", " return [dataclass_obj_from_dict(cls.__args__[0], item) for item in data]\n", " elif isinstance(data, dict):\n", - " return {\n", - " key: dataclass_obj_from_dict(cls.__args__[1], value)\n", - " for key, value in data.items()\n", - " }\n", + " return {key: dataclass_obj_from_dict(cls.__args__[1], value) for key, value in data.items()}\n", " else:\n", " return data" ] @@ -3031,12 +2933,7 @@ } ], "source": [ - "dataclass_obj_from_dict(\n", - " TrecDataList,\n", - " dataclass_obj_to_dict(\n", - " trec_data_list, exclude={\"TrecData\": [\"label\"], \"TrecDataList\": [\"name\"]}\n", - " ),\n", - ")" + "dataclass_obj_from_dict(TrecDataList, dataclass_obj_to_dict(trec_data_list, exclude={\"TrecData\": [\"label\"], \"TrecDataList\": [\"name\"]}))" ] } ], diff --git a/use_cases/config.py b/use_cases/config.py index 895ed097..6eb5b3ed 100644 --- a/use_cases/config.py +++ b/use_cases/config.py @@ -41,7 +41,7 @@ gpt_4o_model = { "model_client": OpenAIClient(), "model_kwargs": { - "model": "gpt-4o-mini", + "model": "gpt-4o", "temperature": 1, "top_p": 0.99, "max_tokens": 1000, diff --git a/use_cases/question_answering/bbh/object_count/task.py b/use_cases/question_answering/bbh/object_count/task.py index 6f5571f8..5aebb47b 100644 --- a/use_cases/question_answering/bbh/object_count/task.py +++ b/use_cases/question_answering/bbh/object_count/task.py @@ -40,7 +40,7 @@ def __init__(self, model_client: adal.ModelClient, model_kwargs: Dict): few_shot_demos = adal.Parameter( data=None, role_desc="To provide few shot demos to the language model", - requires_opt=False, + requires_opt=True, param_type=ParameterType.DEMOS, ) @@ -60,14 +60,6 @@ def call( self, question: str, id: str = None ) -> Union[adal.GeneratorOutput, adal.Parameter]: output = self.llm_counter(prompt_kwargs={"input_str": question}, id=id) - print(f"output: {output}, training: {self.training}") - if self.training: - if output.full_response.error and "429" in output.full_response.error: - raise ValueError("Rate limit exceeded") - else: - if output.error and "429" in output.error: - print("rate limit exceeded:") - raise ValueError("Rate limit exceeded") return output diff --git a/use_cases/question_answering/bbh/object_count/train_new.py b/use_cases/question_answering/bbh/object_count/train_new.py index 48309aa7..280f7c1a 100644 --- a/use_cases/question_answering/bbh/object_count/train_new.py +++ b/use_cases/question_answering/bbh/object_count/train_new.py @@ -130,36 +130,22 @@ def train( print(trainer) train_dataset, val_dataset, test_dataset = load_datasets() - ckpt, _ = trainer.fit( + trainer.fit( train_dataset=train_dataset, val_dataset=val_dataset, test_dataset=test_dataset, resume_from_ckpt=resume_from_ckpt, ) - return ckpt if __name__ == "__main__": - import sys - import json - ckpt = train( - debug=False, + train( + debug=True, max_steps=12, strategy="constrained", exclude_input_fields_from_bootstrap_demos=True, ) - print(f"ckpt: {ckpt}") - # Save ckpt to a file passed as an argument - if len(sys.argv) > 1: # Check if a file path is provided - with open(sys.argv[1], "w") as f: - json.dump({"ckpt": ckpt}, f) # train_diagnose(**gpt_3_model) - # train_diagnose_teacher(**gpt_4o_model) # 4omini works well as an optimizer too - # /Users/liyin/.adalflow/ckpt/ObjectCountAdalComponent/constrained_max_steps_12_49c63_run_1.json - # 0.72 -> 0.9 val - # 0.79 -> 0.92 test - # 0.86->0.94 val, 0.79 -> 0.93 with only negative gradients /Users/liyin/.adalflow/ckpt/ObjectCountAdalComponent/constrained_max_steps_12_7a649_run_1.json - - # without gradients -> 0.9 on tests + # train_diagnose_teacher(**gpt_4o_model) diff --git a/use_cases/question_answering/bbh/word_sorting/diagnose.py b/use_cases/question_answering/bbh/word_sorting/diagnose.py index af2243ef..2faa9e76 100644 --- a/use_cases/question_answering/bbh/word_sorting/diagnose.py +++ b/use_cases/question_answering/bbh/word_sorting/diagnose.py @@ -38,34 +38,34 @@ def __init__( # eval_fn = lambda question, gt_answer, pred_answer: 1 super().__init__(task=task, eval_fn=eval_fn) - def prepare_task(self, sample: Example): + def handle_one_task_sample(self, sample: Example): return self.task.call, {"question": sample.question, "id": sample.id} - def prepare_eval(self, sample: Example, y_pred: adal.GeneratorOutput) -> float: + def evaluate_one_sample( + self, sample: Example, y_pred: adal.GeneratorOutput + ) -> float: y_label = "" if ( y_pred is not None and y_pred.data is not None ): # if y_pred and y_pred.data: might introduce bug when the data is 0 y_label = y_pred.data - return self.eval_fn, { - "question": sample.question, - "gt_answer": sample.answer, - "pred_answer": y_label, - } + return self.eval_fn( + question=sample.question, gt_answer=sample.answer, pred_answer=y_label + ) def evaluate_one_sample(): - trainset, valset, testset = load_datasets(task_name="word_sorting") + trainset, valset, testset = load_datasets(task_name="BBH_word_sorting") adal_component = WordSortingAdalComponent( **gpt_3_model, llm_judge_model_config=gpt_3_model ) example = trainset[1] - call, kwargs = adal_component.prepare_task(example) + call, kwargs = adal_component.handle_one_task_sample(example) output = call(**kwargs) print(f"output: {output}") print(f"trainset[0]: {example}") - score = adal_component.prepare_eval(example, output) + score = adal_component.evaluate_one_sample(example, output) print(score) @@ -74,7 +74,7 @@ def diagnose( model_kwargs: Dict, ) -> Dict: - trainset, valset, testset = load_datasets(task_name="word_sorting") + trainset, valset, testset = load_datasets(task_name="BBH_word_sorting") adal_component = WordSortingAdalComponent( model_client, model_kwargs, llm_judge_model_config=gpt_3_model ) @@ -91,4 +91,3 @@ def diagnose( # evaluate_one_sample() diagnose(**gpt_3_model) - # 0.88 train, 0.84 test, 0.72 val diff --git a/use_cases/question_answering/bbh/word_sorting/task.py b/use_cases/question_answering/bbh/word_sorting/task.py index 0d1d487e..ace7d1e6 100644 --- a/use_cases/question_answering/bbh/word_sorting/task.py +++ b/use_cases/question_answering/bbh/word_sorting/task.py @@ -69,7 +69,9 @@ def test_word_sorting_task(): task_pipeline = QuestionAnswerTaskPipeline(**gpt_3_model) print(task_pipeline) - train_dataset, val_dataset, test_dataset = load_datasets(task_name="word_sorting") + train_dataset, val_dataset, test_dataset = load_datasets( + task_name="BBH_word_sorting" + ) example = train_dataset[0] question = example.question diff --git a/use_cases/question_answering/bbh/word_sorting/train.py b/use_cases/question_answering/bbh/word_sorting/train.py index 12518206..4d1af9e3 100644 --- a/use_cases/question_answering/bbh/word_sorting/train.py +++ b/use_cases/question_answering/bbh/word_sorting/train.py @@ -52,23 +52,23 @@ def __init__( text_optimizer_model_config=text_optimizer_model_config, ) - def prepare_task(self, sample: Example): + def handle_one_task_sample(self, sample: Example): return self.task.call, {"question": sample.question, "id": sample.id} - def prepare_eval(self, sample: Example, y_pred: adal.GeneratorOutput) -> float: + def evaluate_one_sample( + self, sample: Example, y_pred: adal.GeneratorOutput + ) -> float: y_label = "" if ( y_pred is not None and y_pred.data is not None ): # if y_pred and y_pred.data: might introduce bug when the data is 0 y_label = y_pred.data - return self.eval_fn, { - "question": sample.question, - "gt_answer": sample.answer, - "pred_answer": y_label, - } + return self.eval_fn( + question=sample.question, gt_answer=sample.answer, pred_answer=y_label + ) - def prepare_loss(self, sample: Example, pred: adal.Parameter): + def handle_one_loss_sample(self, sample: Example, pred: adal.Parameter): # prepare gt parameter y_gt = adal.Parameter( name="y_gt", @@ -92,6 +92,19 @@ def prepare_loss(self, sample: Example, pred: adal.Parameter): } } + # def configure_backward_engine(self): + # super().configure_backward_engine_helper(**self.backward_engine_model_config) + + # def configure_teacher_generator(self): + # super().configure_teacher_generator_helper(**self.teacher_model_config) + + # def configure_optimizers( + # self, + # ): # TODO: train the text optimizer and the demo optimizer at the same time + # to = super().configure_text_optimizer_helper(**self.text_optimizer_model_config) + # do = super().configure_demo_optimizer_helper() + # return to + do + def train( train_batch_size=4, # larger batch size is not that effective, probably because of llm's lost in the middle @@ -128,7 +141,9 @@ def train( ) print(trainer) - train_dataset, val_dataset, test_dataset = load_datasets(task_name="word_sorting") + train_dataset, val_dataset, test_dataset = load_datasets( + task_name="BBH_word_sorting" + ) for dataset in [train_dataset, val_dataset, test_dataset]: for example in dataset: example.question = example.question.replace( diff --git a/use_cases/question_answering/bbh/word_sorting/train_paper.py b/use_cases/question_answering/bbh/word_sorting/train_paper.py index 2c4b0e15..00a84830 100644 --- a/use_cases/question_answering/bbh/word_sorting/train_paper.py +++ b/use_cases/question_answering/bbh/word_sorting/train_paper.py @@ -42,6 +42,7 @@ def __init__( eval_fn=eval_fn, eval_fn_desc="exact_match: 1 if str(y) == str(y_gt) else 0", ) + # eval_fn = lambda question, gt_answer, pred_answer: 1 super().__init__( task=task, eval_fn=eval_fn, @@ -51,23 +52,23 @@ def __init__( text_optimizer_model_config=text_optimizer_model_config, ) - def prepare_task(self, sample: Example): + def handle_one_task_sample(self, sample: Example): return self.task.call, {"question": sample.question, "id": sample.id} - def prepare_eval(self, sample: Example, y_pred: adal.GeneratorOutput) -> float: + def evaluate_one_sample( + self, sample: Example, y_pred: adal.GeneratorOutput + ) -> float: y_label = "" if ( y_pred is not None and y_pred.data is not None ): # if y_pred and y_pred.data: might introduce bug when the data is 0 y_label = y_pred.data - return self.eval_fn, { - "question": sample.question, - "gt_answer": sample.answer, - "pred_answer": y_label, - } + return self.eval_fn( + question=sample.question, gt_answer=sample.answer, pred_answer=y_label + ) - def prepare_loss(self, sample: Example, pred: adal.Parameter): + def handle_one_loss_sample(self, sample: Example, pred: adal.Parameter): # prepare gt parameter y_gt = adal.Parameter( name="y_gt", @@ -91,6 +92,19 @@ def prepare_loss(self, sample: Example, pred: adal.Parameter): } } + # def configure_backward_engine(self): + # super().configure_backward_engine_helper(**self.backward_engine_model_config) + + # def configure_teacher_generator(self): + # super().configure_teacher_generator_helper(**self.teacher_model_config) + + # def configure_optimizers( + # self, + # ): # TODO: train the text optimizer and the demo optimizer at the same time + # to = super().configure_text_optimizer_helper(**self.text_optimizer_model_config) + # do = super().configure_demo_optimizer_helper() + # return to + do + def train( train_batch_size=4, # larger batch size is not that effective, probably because of llm's lost in the middle @@ -127,7 +141,9 @@ def train( ) print(trainer) - train_dataset, val_dataset, test_dataset = load_datasets(task_name="word_sorting") + train_dataset, val_dataset, test_dataset = load_datasets( + task_name="BBH_word_sorting" + ) trainer.fit( train_dataset=train_dataset, val_dataset=val_dataset, diff --git a/use_cases/question_answering/chatbot.ipynb b/use_cases/question_answering/chatbot.ipynb index 7ed71347..3db858a4 100644 --- a/use_cases/question_answering/chatbot.ipynb +++ b/use_cases/question_answering/chatbot.ipynb @@ -21,7 +21,6 @@ "outputs": [], "source": [ "from IPython.display import clear_output\n", - "\n", "!pip install -U adalflow[openai,groq,faiss-cpu]\n", "clear_output()" ] @@ -38,9 +37,7 @@ "from adalflow.core.component import Component\n", "from adalflow.core.generator import Generator\n", "from adalflow.components.memory.memory import Memory\n", - "from adalflow.components.model_client import (\n", - " OpenAIClient,\n", - ") # Here, we use the OpenAIClient as an example, but you can use any other clients (with the corresponding API Key as needed), such as AnthropicAPIClient" + "from adalflow.components.model_client import OpenAIClient # Here, we use the OpenAIClient as an example, but you can use any other clients (with the corresponding API Key as needed), such as AnthropicAPIClient" ] }, { @@ -52,7 +49,7 @@ "# Prompt user to enter their API keys securely\n", "openai_api_key = getpass(\"Please enter your OpenAI API key: \")\n", "# Set environment variables\n", - "os.environ[\"OPENAI_API_KEY\"] = openai_api_key\n", + "os.environ['OPENAI_API_KEY'] = openai_api_key\n", "# Replace with your OpenAI API Key, or you can put it in a .env file" ] }, @@ -67,10 +64,11 @@ " def __init__(self):\n", " super().__init__()\n", " self.generator = Generator(\n", - " model_client=OpenAIClient(), model_kwargs={\"model\": \"gpt-4o-mini\"}\n", + " model_client=OpenAIClient(),\n", + " model_kwargs={'model': 'gpt-4o-mini'}\n", " )\n", - " self.chat_history = Memory() # Memory to store the chat history\n", - "\n", + " self.chat_history = Memory() # Memory to store the chat history\n", + " \n", " def call(self) -> str:\n", " print(\"Welcome to the ChatBot. Type anything to chat. Type 'exit' to end.\")\n", " while True:\n", @@ -92,7 +90,6 @@ " )\n", " print(f\"ChatBot: {response}\")\n", "\n", - "\n", "chatbot = ChatBot()\n", "print(chatbot)" ] diff --git a/use_cases/text_grad_2.0_train.py b/use_cases/text_grad_2.0_train.py deleted file mode 100644 index 37ff320d..00000000 --- a/use_cases/text_grad_2.0_train.py +++ /dev/null @@ -1,58 +0,0 @@ -import subprocess -import tempfile -import json - -# List of experiments to run -object_count = "use_cases/question_answering/bbh/object_count/train_new.py" -hotpot_qa_multi_hop_rag = "benchmarks/hotpot_qa/adal_exp/train_multi_hop_rag.py" - -ckpt_values = [] -experiments = [ - object_count, - # hotpot_qa_multi_hop_rag, -] - -# Optional: Arguments for each experiment (if needed) -experiment_args = { - object_count: "", - # hotpot_qa_multi_hop_rag: "", -} -ckpt_values = {} - - -def run_experiment(script, args): - try: - # Use a temporary file to store the ckpt - with tempfile.NamedTemporaryFile(suffix=".json", delete=False) as temp_file: - temp_path = temp_file.name - - print(f"Running {script} with args: {args}") - subprocess.run( - f"python {script} {temp_path} {args}", - check=True, - shell=True, - text=True, - ) - - # Read the ckpt value from the temporary file - with open(temp_path, "r") as f: - data = json.load(f) - ckpt = data.get("ckpt") - print(f"Checkpoint from {script}: {ckpt}") - return ckpt - - except subprocess.CalledProcessError as e: - print(f"Experiment {script} failed with error: {e}") - return None - - -if __name__ == "__main__": - for experiment in experiments: - args = experiment_args.get(experiment, "") - ckpt = run_experiment(experiment, args) - if ckpt: - ckpt_values[experiment] = ckpt - - print("\nAll Checkpoints:") - for experiment, ckpt in ckpt_values.items(): - print(f"{experiment}: {ckpt}")