-
Notifications
You must be signed in to change notification settings - Fork 0
/
year2020_day17_puzzle.html
491 lines (369 loc) · 10.2 KB
/
year2020_day17_puzzle.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta charset="utf-8"/>
<title>Day 17 - Advent of Code 2020</title>
<link rel="stylesheet" type="text/css" href="/static/style.css?31"/>
<link rel="stylesheet alternate" type="text/css" href="/static/highcontrast.css?1" title="High Contrast"/>
<link rel="shortcut icon" href="/favicon.png"/>
<script>window.addEventListener('click', function(e,s,r){if(e.target.nodeName==='CODE'&&e.detail===3){s=window.getSelection();s.removeAllRanges();r=document.createRange();r.selectNodeContents(e.target);s.addRange(r);}});</script>
</head><!--
Oh, hello! Funny seeing you here.
I appreciate your enthusiasm, but you aren't going to find much down here.
There certainly aren't clues to any of the puzzles. The best surprises don't
even appear in the source until you unlock them for real.
Please be careful with automated requests; I'm not a massive company, and I can
only take so much traffic. Please be considerate so that everyone gets to play.
If you're curious about how Advent of Code works, it's running on some custom
Perl code. Other than a few integrations (auth, analytics, social media), I
built the whole thing myself, including the design, animations, prose, and all
of the puzzles.
The puzzles are most of the work; preparing a new calendar and a new set of
puzzles each year takes all of my free time for 4-5 months. A lot of effort
went into building this thing - I hope you're enjoying playing it as much as I
enjoyed making it for you!
If you'd like to hang out, I'm @[email protected] on Mastodon and
@ericwastl on Twitter.
- Eric Wastl
-->
<body>
<div id="sidebar">
</div><!--/sidebar-->
<main>
<style>article *[title]{border-bottom:1px dotted #ffff66;}</style><article class="day-desc"><h2>--- Day 17: Conway Cubes ---</h2><p>As your flight slowly drifts through the sky, the Elves at the Mythical Information Bureau at the North Pole contact you. They'd like some help debugging a malfunctioning experimental energy source aboard one of their super-secret imaging satellites.</p>
<p>The experimental energy source is based on cutting-edge technology: a set of <span title="Rest in peace, Conway.">Conway</span> Cubes contained in a pocket dimension! When you hear it's having problems, you can't help but agree to take a look.</p>
<p>The pocket dimension contains an infinite 3-dimensional grid. At every integer 3-dimensional coordinate (<code>x,y,z</code>), there exists a single cube which is either <em>active</em> or <em>inactive</em>.</p>
<p>In the initial state of the pocket dimension, almost all cubes start <em>inactive</em>. The only exception to this is a small flat region of cubes (your puzzle input); the cubes in this region start in the specified <em>active</em> (<code>#</code>) or <em>inactive</em> (<code>.</code>) state.</p>
<p>The energy source then proceeds to boot up by executing six <em>cycles</em>.</p>
<p>Each cube only ever considers its <em>neighbors</em>: any of the 26 other cubes where any of their coordinates differ by at most <code>1</code>. For example, given the cube at <code>x=1,y=2,z=3</code>, its neighbors include the cube at <code>x=2,y=2,z=2</code>, the cube at <code>x=0,y=2,z=3</code>, and so on.</p>
<p>During a cycle, <em>all</em> cubes <em>simultaneously</em> change their state according to the following rules:</p>
<ul>
<li>If a cube is <em>active</em> and <em>exactly <code>2</code> or <code>3</code></em> of its neighbors are also active, the cube remains <em>active</em>. Otherwise, the cube becomes <em>inactive</em>.</li>
<li>If a cube is <em>inactive</em> but <em>exactly <code>3</code></em> of its neighbors are active, the cube becomes <em>active</em>. Otherwise, the cube remains <em>inactive</em>.</li>
</ul>
<p>The engineers responsible for this experimental energy source would like you to simulate the pocket dimension and determine what the configuration of cubes should be at the end of the six-cycle boot process.</p>
<p>For example, consider the following initial state:</p>
<pre><code>.#.
..#
###
</code></pre>
<p>Even though the pocket dimension is 3-dimensional, this initial state represents a small 2-dimensional slice of it. (In particular, this initial state defines a 3x3x1 region of the 3-dimensional space.)</p>
<p>Simulating a few cycles from this initial state produces the following configurations, where the result of each cycle is shown layer-by-layer at each given <code>z</code> coordinate (and the frame of view follows the active cells in each cycle):</p>
<pre><code>Before any cycles:
z=0
.#.
..#
###
After 1 cycle:
z=-1
#..
..#
.#.
z=0
#.#
.##
.#.
z=1
#..
..#
.#.
After 2 cycles:
z=-2
.....
.....
..#..
.....
.....
z=-1
..#..
.#..#
....#
.#...
.....
z=0
##...
##...
#....
....#
.###.
z=1
..#..
.#..#
....#
.#...
.....
z=2
.....
.....
..#..
.....
.....
After 3 cycles:
z=-2
.......
.......
..##...
..###..
.......
.......
.......
z=-1
..#....
...#...
#......
.....##
.#...#.
..#.#..
...#...
z=0
...#...
.......
#......
.......
.....##
.##.#..
...#...
z=1
..#....
...#...
#......
.....##
.#...#.
..#.#..
...#...
z=2
.......
.......
..##...
..###..
.......
.......
.......
</code></pre>
<p>After the full six-cycle boot process completes, <em><code>112</code></em> cubes are left in the <em>active</em> state.</p>
<p>Starting with your given initial configuration, simulate six cycles. <em>How many cubes are left in the active state after the sixth cycle?</em></p>
</article>
<p>Your puzzle answer was <code>372</code>.</p><article class="day-desc"><h2 id="part2">--- Part Two ---</h2><p>For some reason, your simulated results don't match what the experimental energy source engineers expected. Apparently, the pocket dimension actually has <em>four spatial dimensions</em>, not three.</p>
<p>The pocket dimension contains an infinite 4-dimensional grid. At every integer 4-dimensional coordinate (<code>x,y,z,w</code>), there exists a single cube (really, a <em>hypercube</em>) which is still either <em>active</em> or <em>inactive</em>.</p>
<p>Each cube only ever considers its <em>neighbors</em>: any of the 80 other cubes where any of their coordinates differ by at most <code>1</code>. For example, given the cube at <code>x=1,y=2,z=3,w=4</code>, its neighbors include the cube at <code>x=2,y=2,z=3,w=3</code>, the cube at <code>x=0,y=2,z=3,w=4</code>, and so on.</p>
<p>The initial state of the pocket dimension still consists of a small flat region of cubes. Furthermore, the same rules for cycle updating still apply: during each cycle, consider the <em>number of active neighbors</em> of each cube.</p>
<p>For example, consider the same initial state as in the example above. Even though the pocket dimension is 4-dimensional, this initial state represents a small 2-dimensional slice of it. (In particular, this initial state defines a 3x3x1x1 region of the 4-dimensional space.)</p>
<p>Simulating a few cycles from this initial state produces the following configurations, where the result of each cycle is shown layer-by-layer at each given <code>z</code> and <code>w</code> coordinate:</p>
<pre><code>Before any cycles:
z=0, w=0
.#.
..#
###
After 1 cycle:
z=-1, w=-1
#..
..#
.#.
z=0, w=-1
#..
..#
.#.
z=1, w=-1
#..
..#
.#.
z=-1, w=0
#..
..#
.#.
z=0, w=0
#.#
.##
.#.
z=1, w=0
#..
..#
.#.
z=-1, w=1
#..
..#
.#.
z=0, w=1
#..
..#
.#.
z=1, w=1
#..
..#
.#.
After 2 cycles:
z=-2, w=-2
.....
.....
..#..
.....
.....
z=-1, w=-2
.....
.....
.....
.....
.....
z=0, w=-2
###..
##.##
#...#
.#..#
.###.
z=1, w=-2
.....
.....
.....
.....
.....
z=2, w=-2
.....
.....
..#..
.....
.....
z=-2, w=-1
.....
.....
.....
.....
.....
z=-1, w=-1
.....
.....
.....
.....
.....
z=0, w=-1
.....
.....
.....
.....
.....
z=1, w=-1
.....
.....
.....
.....
.....
z=2, w=-1
.....
.....
.....
.....
.....
z=-2, w=0
###..
##.##
#...#
.#..#
.###.
z=-1, w=0
.....
.....
.....
.....
.....
z=0, w=0
.....
.....
.....
.....
.....
z=1, w=0
.....
.....
.....
.....
.....
z=2, w=0
###..
##.##
#...#
.#..#
.###.
z=-2, w=1
.....
.....
.....
.....
.....
z=-1, w=1
.....
.....
.....
.....
.....
z=0, w=1
.....
.....
.....
.....
.....
z=1, w=1
.....
.....
.....
.....
.....
z=2, w=1
.....
.....
.....
.....
.....
z=-2, w=2
.....
.....
..#..
.....
.....
z=-1, w=2
.....
.....
.....
.....
.....
z=0, w=2
###..
##.##
#...#
.#..#
.###.
z=1, w=2
.....
.....
.....
.....
.....
z=2, w=2
.....
.....
..#..
.....
.....
</code></pre>
<p>After the full six-cycle boot process completes, <em><code>848</code></em> cubes are left in the <em>active</em> state.</p>
<p>Starting with your given initial configuration, simulate six cycles in a 4-dimensional space. <em>How many cubes are left in the active state after the sixth cycle?</em></p>
</article>
<p>Your puzzle answer was <code>1896</code>.</p><p class="day-success">Both parts of this puzzle are complete! They provide two gold stars: **</p>
<p>At this point, all that is left is for you to <a href="/2020">admire your Advent calendar</a>.</p>
<p>If you still want to see it, you can <a href="17/input" target="_blank">get your puzzle input</a>.</p>
<p>You can also <span class="share">[Share<span class="share-content">on
<a href="https://twitter.com/intent/tweet?text=I%27ve+completed+%22Conway+Cubes%22+%2D+Day+17+%2D+Advent+of+Code+2020&url=https%3A%2F%2Fadventofcode%2Ecom%2F2020%2Fday%2F17&related=ericwastl&hashtags=AdventOfCode" target="_blank">Twitter</a>
<a href="javascript:void(0);" onclick="var ms; try{ms=localStorage.getItem('mastodon.server')}finally{} if(typeof ms!=='string')ms=''; ms=prompt('Mastodon Server?',ms); if(typeof ms==='string' && ms.length){this.href='https://'+ms+'/share?text=I%27ve+completed+%22Conway+Cubes%22+%2D+Day+17+%2D+Advent+of+Code+2020+%23AdventOfCode+https%3A%2F%2Fadventofcode%2Ecom%2F2020%2Fday%2F17';try{localStorage.setItem('mastodon.server',ms);}finally{}}else{return false;}" target="_blank">Mastodon</a
></span>]</span> this puzzle.</p>
</main>
<!-- ga -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-69522494-1', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<!-- /ga -->
</body>
</html>