-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_solve_results.py
325 lines (294 loc) · 10.2 KB
/
plot_solve_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from glob import glob
import os
from collections import OrderedDict
from typing import Dict, List, Tuple
import numpy as np
import matplotlib.pyplot as plt
import pltpublish as pub
import csv
from colorama import Fore as F
from plot_helper import (
plot_y_wrt_x,
make_plot_wrapper,
plot_dist,
plot_rank_by,
)
def load_data(
dataset_name: str, output_folder: str, verbose: bool = False
) -> Tuple[Dict[str, Dict[int, List]], float]:
# Dict[name, Dict[seed, data]]
methods = {}
timeout = 1e99
all_search = set()
all_solver = set()
summary = {}
max_len = 0
for file in glob(os.path.join(output_folder, "*.csv")):
filename = os.path.relpath(file, output_folder)
if verbose:
print("found csv file:", file)
# filename should be {dataset_name}_seed_{seed}_{name}.csv
if not filename.startswith(dataset_name):
if verbose:
print(f"\tskipped: does not start with {dataset_name}")
continue
name = filename[len(dataset_name) : -4]
seed_text = "_seed_"
if seed_text not in name:
seed_text = "_uniform_"
if seed_text not in name:
if verbose:
print(f"\tskipped: does not contain _seed_ nor _uniform_")
continue
search = name[1 : name.index(seed_text)].replace("_", " ")
all_search.add(search)
name = name[name.index(seed_text) + len(seed_text) :]
seed = int(name[: name.index("_")]) if "seed" in seed_text else 0
solver = name
if "_" in solver:
solver = solver[solver.index("_") + 1 :].replace("_", " ")
all_solver.add(solver)
name = search + " " + solver
if name not in methods:
methods[name] = {}
if seed in methods[name]:
print(f"Warning: duplicate seed {seed} for method {name}!")
continue
# Load data from the file
trace = []
with open(os.path.join(output_folder, filename), "r") as fd:
reader = csv.reader(fd)
trace = [tuple(row) for row in reader]
# Pop columns names
columns = {name: ind for ind, name in enumerate(trace.pop(0))}
indices = [
columns["solution"],
columns["time"],
columns["programs"],
columns.get("merged", -1),
columns.get("restarts", -1),
]
data = [tuple(row[k] if k >= 0 else 0 for k in indices) for row in trace]
# Type conversion (success, time, num_of_programs)
trace = [
(
len(row[0]) > 1,
float(row[1]),
int(row[2]),
int(row[3]),
int(row[4]),
)
for row in data
]
for x in trace:
if x[0] == 0:
timeout = min(x[1], timeout)
if len(trace) == 0:
if verbose:
print(f"\tskipped: no data")
continue
# Save data for method
methods[name][seed] = trace
# Save summary data
if seed not in summary:
summary[seed] = {}
solved = sum(x[0] for x in trace)
summary[seed][name] = (solved, len(trace))
max_len = max(max_len, len(trace))
if verbose:
print(
f"{name} (seed={seed}) solved",
solved,
"/",
len(trace),
)
to_replace = ""
if len(all_search) == 1 and len(all_solver) > 1:
search = list(all_search)[0]
to_replace = search
methods = {
k.replace(search, "").strip(" ").capitalize(): v for k, v in methods.items()
}
elif len(all_solver) == 1 and len(all_search) > 1:
solver = list(all_solver)[0]
to_replace = solver
methods = {
k.replace(solver, "").strip(" ").capitalize(): v for k, v in methods.items()
}
for seed in sorted(summary):
finished = sum(
1 for solved, total in summary[seed].values() if total == max_len
)
print(f"seed {F.LIGHTBLUE_EX}{seed}{F.RESET} ({finished}/{len(summary[seed])})")
for name, (solved, total) in sorted(summary[seed].items()):
if len(to_replace) > 0:
name = name.replace(to_replace, "").strip()
print(
f"\t{F.GREEN}{name}{F.RESET} solved {F.YELLOW}{solved}{F.RESET}/{total} ({F.YELLOW}{solved/total:.1%}{F.RESET}) tasks"
)
return methods, timeout
def make_filter_wrapper(func, *args) -> None:
def f(task_index: int, methods: Dict[str, Dict[int, List]], timeout: float) -> bool:
return func(task_index, methods, timeout, *args)
return f
def timeout_filter(
task_index: int,
methods: Dict[str, Dict[int, List]],
timeout: float,
nbr_timeouts: int,
) -> bool:
timeouts = 0
for method, seeds_dico in methods.items():
if nbr_timeouts == -1:
nbr_timeouts = len(methods) * len(seeds_dico)
for seed, data in seeds_dico.items():
if task_index >= len(data):
nbr_timeouts -= 1
continue
timeouts += 1 - data[task_index][0]
if timeouts > nbr_timeouts:
return False
return True
def time_filter(
task_index: int,
methods: Dict[str, Dict[int, List]],
timeout: float,
ratio: float,
aggregator,
) -> bool:
all_times = []
for method, seeds_dico in methods.items():
for seed, data in seeds_dico.items():
all_times.append(data[task_index][1])
return aggregator(all_times) >= ratio * timeout
def reverse_filter(func):
def f(
task_index: int, methods: Dict[str, Dict[int, List]], timeout: float, *args
) -> bool:
return not func(task_index, methods, timeout, *args)
return f
__FILTERS__ = {
"timeouts.none": make_filter_wrapper(timeout_filter, 1),
"solve>=1": make_filter_wrapper(timeout_filter, -1),
}
for ratio in [0.25, 0.5, 0.75]:
for name, aggr in [
("fastest", np.min),
("mean", np.mean),
("median", np.median),
("slowest", np.max),
]:
__FILTERS__[f"time.{name}>={ratio:.0%}"] = make_filter_wrapper(
time_filter, ratio, aggr
)
for key in list(__FILTERS__.keys()):
__FILTERS__[f"not.{key}"] = reverse_filter(__FILTERS__[key])
def filter(
methods: Dict[str, Dict[int, List]], filter_name: str, timeout: float
) -> Dict[str, Dict[int, List]]:
fun = __FILTERS__[filter_name]
task_len = len(list(list(methods.values())[0].values())[0])
should_keep = [fun(i, methods, timeout) for i in range(task_len)]
return {
m: {
s: [x for i, x in enumerate(data) if should_keep[i]]
for s, data in val.items()
if len(data) == task_len
}
for m, val in methods.items()
}
__DATA__ = {
"tasks": (0, "Tasks completed"),
"time": (1, "Time (in s)"),
"programs": (2, "Programs Enumerated"),
"merges": (3, "Programs Merged"),
"restarts": (4, "Restarts"),
}
# Generate all possible combinations
__PLOTS__ = {}
for ydata in list(__DATA__.keys()):
for xdata in list(__DATA__.keys()):
if xdata == ydata:
continue
__PLOTS__[f"{ydata}_wrt_{xdata}"] = make_plot_wrapper(
plot_y_wrt_x,
__DATA__[xdata],
__DATA__[ydata],
hline_at_length=ydata == "tasks",
vline_at_length=xdata == "tasks",
)
if ydata != "tasks":
__PLOTS__[f"rank_by_{ydata}"] = make_plot_wrapper(
plot_rank_by, __DATA__[ydata], maximize=ydata == "tasks"
)
__PLOTS__[f"dist_{ydata}_by_task"] = make_plot_wrapper(
plot_dist, __DATA__[ydata], "tasks"
)
if __name__ == "__main__":
import argparse
import sys
parser = argparse.ArgumentParser(description="Plot results")
parser.add_argument(
"-d",
"--dataset",
type=str,
default="dataset.pickle",
help="dataset (default: dataset.pickle)",
)
parser.add_argument(
"--folder",
type=str,
default="./",
help="folder in which to look for CSV files (default: './')",
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
default=False,
help="verbose mode",
)
parser.add_argument(
"--filter",
type=str,
nargs="*",
choices=list(__FILTERS__.keys()),
help="filter tasks (keep data based on the filter)",
)
parser.add_argument("plots", nargs="+", choices=list(__PLOTS__.keys()))
parameters = parser.parse_args()
dataset_file: str = parameters.dataset
output_folder: str = parameters.folder
verbose: bool = parameters.verbose
plots: List[str] = parameters.plots
filters: List[str] = parameters.filter or []
# Initial Setup
start_index = (
0
if not os.path.sep in dataset_file
else (len(dataset_file) - dataset_file[::-1].index(os.path.sep))
)
dataset_name = dataset_file[start_index : dataset_file.index(".", start_index)]
# Load data
pub.setup()
methods, timeout = load_data(dataset_name, output_folder, verbose)
# Check we have at least one file
if len(methods) == 0:
print(f"{F.RED}Error: no performance file was found!{F.RESET}", file=sys.stderr)
sys.exit(1)
for filter_name in filters:
methods = filter(methods, filter_name, timeout)
# Check we did not remove everything
task_len = len(list(list(methods.values())[0].values())[0])
if task_len == 0:
print(f"{F.RED}Error: filters left no tasks!{F.RESET}", file=sys.stderr)
sys.exit(1)
# Order by name so that it is always the same color for the same methods if diff. DSL
ordered_methods = OrderedDict()
for met in sorted(methods.keys()):
ordered_methods[met] = methods[met]
# Plotting
for count, to_plot in enumerate(plots):
ax = plt.subplot(1, len(plots), count + 1)
__PLOTS__[to_plot](ax, ordered_methods)
plt.show()