Skip to content

Latest commit

 

History

History
276 lines (205 loc) · 10.2 KB

README.md

File metadata and controls

276 lines (205 loc) · 10.2 KB

THU模式识别2021春 -- Jittor 医学图像分割

模型列表

本仓库收录了课程作业中同学们采用jittor框架实现的如下模型:

  • UNet
  • SegNet
  • DeepLab V2
  • DANet
  • EANet
  • HarDNet及其改动HarDNet_alter
  • PSPNet
  • OCNet
  • OCRNet
  • DLinkNet
  • AttentionUNet
  • UNet++
  • UNet+++
  • DenseUNet
  • TernausNet
  • CSNet
  • SCSENet
  • U2Net
  • U2Net-small(轻量化的U2Net)
  • Multi-ResUNet
  • R2 UNet
  • R2 Attention UNet
  • LightNet
  • OneNet(轻量化的UNet)
  • CENet
  • LRF-EANet
  • SimpleUNet
  • SETR

课程同学提出的优秀方案

增加小模型的鲁棒性

成员:汪元标,黄翰,李响,郑勋

  • Spatial Transformer Network(STN)

    通过对图片做自适应的仿射变换提高模型的鲁棒性

    其中Localization Network采用了多层卷积block的结构,输出通道数分别为8, 16, 32, 64,每个block包括一个3x3的二维卷积,BatchNorm层以及ReLU激活函数,最后经过一个Adaptive Average Pool层实现对多尺寸的支持,参见 advance/stn.py

  • 对比学习自监督预训练

    为了学习CT图像的Latent Feature,采用了对比学习的算法,使用了InfoNCE作为损失函数,采用Memory Bank来采样负例。

  • 数据增强

    采取了颜色空间的变换,包含亮度、对比度、色相、色调的随机变换。

  • 效果

    经过改动后的UNet有很好的鲁棒性。即使是智能手机拍摄的照片也可以很好地识别

  • demo

    • 参见清华云盘链接

    • 用法

      > export FLASK_APP='app.py'
      > python -m flask run -p [PORT]

轻量化模型

游嘉诚

为了降低参数量,考虑使用组卷积(group conv),然而组卷积限制了通道之间的信息交流。传统channel shuffle 限制了各 group 信息交流的表达力,同时内存访问连续性差或MACS大。于是提出了领域通道平移(channel shift),即通道顺序平移0.5*group,保证各组只与邻域交流,也许可能使得关系密切的组也许会趋向聚在一起。网络开始使用$4\times4$卷积核和stride=4进行四倍下采样,最终使用转置卷积ConvTranspose进行4倍上采样。类似densenet思想,网络将特征图进行通道拼接后进行转置卷积上采样。

二、数据

腰椎骨松质分割数据集

协和医院和中山医院分别提供了腰椎数据集,经过同学们的标注,从协和数据集中划分出了训练集、验证集和测试集。

协和数据集选择并标注了腰椎3,腰椎4的CT片,其中:

  • 训练集:包含85人共计1442张腰椎CT片

  • 验证集:包含31人共计549张腰椎CT片

  • 测试集:包含36人共计615张腰椎CT片

下图展示了协和数据集的样例

中山数据集被用于测试模型的跨数据集泛化性能,中山数据集包含大图和小图两种类型,选择并标注了腰椎1,腰椎2的CT片。其中:

  • 大图:包含134人共计858张腰椎CT片

  • 小图:包含134人共计868张腰椎CT片

下图分别是中山数据集的大图和小图样例

胰腺分割数据集

胰腺分割数据集包含

  • 训练集:包含8人共计1720张CT片

  • 验证集:包含2人共计424张CT片

  • 测试集:包含2人共计401张CT片

下载地址

清华云盘 数据下载成功后将压缩包解压为 ./data 文件夹即可。

运行方法

  1. 配置相应环境,安装Jittor最新版本

  2. 下载数据集

  3. 下载一些模型必须的ImageNet预训练权重,并解压至model/目录下.

  4. 如想要使用训练好的模型参数,可在这里下载胰腺数据上训练完成的模型参数,也可以先下载可视化结果先观察模型效果。

  5. 运行训练/测试/可视化

usage: run.py [-h]
              [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
              [--pretrain] [--checkpoint CHECKPOINT] --dataset
              {xh,xh_hard,zs_big,zs_small,pancreas} --mode
              {train,test,predict,debug} [--load LOAD] [--aug] [--cuda]
              [--stn] [-o {Adam,SGD}] [-e EPOCHS] [-b BATCH_SIZE] [-l LR]
              [-c CLASS_NUM] [--loss LOSS] [-w BCE_WEIGHT] [-r RESULT_DIR]
              [--poly]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose the model
  --pretrain            whether to use pretrained weights
  --checkpoint CHECKPOINT
                        the location of the pretrained weights
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        choose a dataset
  --mode {train,test,predict,debug}
                        select a mode
  --load LOAD           the location of the model weights for testing
  --aug                 whether to use color augmentation
  --cuda                whether to use CUDA acceleration
  --stn                 whether to use spatial transformer network
  -o {Adam,SGD}, --optimizer {Adam,SGD}
                        select an optimizer
  -e EPOCHS, --epochs EPOCHS
                        num of training epochs
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        batch size for training
  -l LR, --learning-rate LR
                        learning rate
  -c CLASS_NUM, --class-num CLASS_NUM
                        pixel-wise classes
  --loss LOSS           Choose from 'ce', 'iou', 'dice', 'focal', if CE loss
                        is selected, you should use a `weight` parameter
  -w BCE_WEIGHT         use this weight if BCE loss is selected; if w is
                        given, then the weights for positive and negative
                        classes will be w and 2.0 - w respectively
  -r RESULT_DIR, --resultdir RESULT_DIR
                        test result output directory
  --poly                whether to use polynomial learning rate scheduler
  1. 运行对比学习预训练
usage: run_ssl.py [-h]
                  [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
                  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                  [--save SAVE] [-e EPOCHS] [-c CLASS_NUM] [-b BATCH_SIZE]
                  [--channel EMBEDDING_CHANNEL] [--layer LAYER] [--lr LR]
                  [--pretrain]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose a model network
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        select a dataset
  --save SAVE           model weights save path
  -e EPOCHS, --epochs EPOCHS
                        number of training epochs
  -c CLASS_NUM, --class-num CLASS_NUM
                        class number
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        training batch size
  --channel EMBEDDING_CHANNEL
                        number of channels of embedded feature maps
  --layer LAYER         layer to extract features from
  --lr LR               learning rate
  --pretrain

运行示例 参见train.sh, batch_test.sh, pretrain.sh

四、实验结果

胰腺分割数据集

各模型均采用相同超参数,学习率为3e-4,迭代次数50次,以权重为[0.8, 0.2]的交叉熵损失函数进行训练,参见train.sh中dataset为pancreas的部分。结果如下:

Model Dice mIoU
UNet 0.7292 0.6477
SegNet 0.6291 0.5726
DeepLab 0.8306 0.7467
DANet 0.7787 0.6928
EANet 0.6753 0.6055
HarDNet 0.7491 0.6654
HarDNet_alter 0.7779 0.6920
PSPNet 0.7772 0.6914
OCNet 0.7789 0.6930
OCRNet 0.7034 0.6272
DLinkNet 0.4995 0.4989
AttentionUNet 0.7691 0.6836
UNet++ 0.8282 0.7439
UNet+++ 0.7892 0.7030
DenseUNet 0.8053 0.7194
TernausNet 0.6752 0.6055
CSNet 0.4994 0.4989
SCSENet 0.4994 0.4989
U2Net 0.8143 0.7289
U2Net-Small 0.8338 0.7502
Multi-ResUnet 0.7230 0.6427
R2UNet 0.8289 0.7447
R2AttentionUNet 0.8084 0.7227
LightNet 0.8006 0.7145
OneNet 0.7754 0.6896
CENet 0.7583 0.6735
LRF-EANet 0.6942 0.6197
SimpleUNet 0.7395 0.6569
SETR 0.4994 0.4989
UNet-SSL 0.8026 0.7165
UNet-STN-SSL 0.7926 0.7063
UNet-Aug-STN-SSL 0.6938 0.6192

腰椎骨松质分割数据集

  1. 协和数据集

    下表展示了三种模型使用不同损失函数及加权组合的结果

    mIoU CE IoU Dice Focal 0.8CE+0.2IoU 0.5CE+0.5IoU 0.2CE+0.8IoU 0.5CE+0.5Dice
    UNet 95.49 95.56 95.41 95.43 95.48 95.25 95.42 95.17
    HRnet 95.22 95.23 N/A N/A
    SETR 87.59 87.81 85.92 83.85 88.34 83.94 87.52 87.78
  2. 中山数据集

    下表记录了协和数据集上训练的OneNet模型在中山数据集上的表现