-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun.py
257 lines (209 loc) · 12.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File name: run.py
Author: locke
Date created: 2018/10/5 下午2:37
"""
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import division
from __future__ import print_function
import time
import argparse
import gc
import random
import math
import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from utils import *
from models import *
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--file_dir", type=str, default="data/DBP15K/zh_en", required=False, help="input dataset file directory, ('data/DBP15K/zh_en', 'data/DWY100K/dbp_wd')")
parser.add_argument("--rate", type=float, default=0.3, help="training set rate")
parser.add_argument("--save", default="", help="the output dictionary of the model and embedding. (should be created manually)")
parser.add_argument("--cuda", action="store_true", default=True, help="whether to use cuda or not")
parser.add_argument("--seed", type=int, default=2018, help="random seed")
parser.add_argument("--epochs", type=int, default=1000, help="number of epochs to train")
parser.add_argument("--check_point", type=int, default=100, help="check point")
parser.add_argument("--hidden_units", type=str, default="128,128,128", help="hidden units in each hidden layer(including in_dim and out_dim), splitted with comma")
parser.add_argument("--heads", type=str, default="2,2", help="heads in each gat layer, splitted with comma")
parser.add_argument("--instance_normalization", action="store_true", default=False, help="enable instance normalization")
parser.add_argument("--lr", type=float, default=0.005, help="initial learning rate")
parser.add_argument("--weight_decay", type=float, default=0, help="weight decay (L2 loss on parameters)")
parser.add_argument("--dropout", type=float, default=0.0, help="dropout rate for layers")
parser.add_argument("--attn_dropout", type=float, default=0.0, help="dropout rate for gat layers")
parser.add_argument("--dist", type=int, default=2, help="L1 distance or L2 distance. ('1', '2')")
parser.add_argument("--margin_CG", type=int, default=3, help="margin for cross-graph model")
parser.add_argument("--margin_KE", type=int, default=3, help="margin for knowledge embedding model")
parser.add_argument("--k_CG", type=int, default=25, help="negtive sampling number for cross-graph model")
parser.add_argument("--k_KE", type=int, default=2, help="negtive sampling number for knowledge embedding model")
parser.add_argument("--update_num", type=int, default=5, help="number of epoch for updating negtive samples")
parser.add_argument("--wo_K", action="store_true", default=False, help="baseline w/o Knowledge embedding model")
parser.add_argument("--wo_NNS", action="store_true", default=False, help="baseline w/o NNS")
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda and torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda and torch.cuda.is_available() else "cpu")
K_CG = args.k_CG
K_KE = args.k_KE
# Load data
lang_list = [1, 2]
ent2id_dict, ills, triples, r_hs, r_ts, ids = read_raw_data(args.file_dir, lang_list)
np.random.shuffle(ills)
train_ill = np.array(ills[:int(len(ills) // 1 * args.rate)], dtype=np.int32)
test_ill = np.array(ills[int(len(ills) // 1 * args.rate):], dtype=np.int32)
test_left = torch.LongTensor(test_ill[:, 0].squeeze()).to(device)
test_right = torch.LongTensor(test_ill[:, 1].squeeze()).to(device)
ENT_NUM = len(ent2id_dict)
REL_NUM = len(r_hs)
print("-----dataset summary-----")
print("dataset:\t", args.file_dir)
print("triple num:\t", len(triples))
print("entity num:\t", ENT_NUM)
print("relation num:\t", REL_NUM)
print("train ill num:\t", train_ill.shape[0], "\ttest ill num:\t", test_ill.shape[0])
print("-------------------------")
input_dim = int(args.hidden_units.strip().split(",")[0])
entity_emb = nn.Embedding(ENT_NUM, input_dim)
nn.init.normal_(entity_emb.weight, std=1.0 / math.sqrt(ENT_NUM))
entity_emb.requires_grad = True
entity_emb = entity_emb.to(device)
relation_emb = nn.Embedding(REL_NUM, input_dim)
nn.init.xavier_uniform_(relation_emb.weight)
relation_emb.requires_grad = True
relation_emb = relation_emb.to(device)
input_idx = torch.LongTensor(np.arange(ENT_NUM)).to(device)
adj = get_adjr(ENT_NUM, triples, norm=True)
adj = adj.to(device)
# Set model
n_units = [int(x) for x in args.hidden_units.strip().split(",")]
n_heads = [int(x) for x in args.heads.strip().split(",")]
cross_graph_model = GAT(n_units=n_units, n_heads=n_heads, dropout=args.dropout, attn_dropout=args.attn_dropout, instance_normalization=args.instance_normalization, diag=True).to(device)
params = [{"params": filter(lambda p: p.requires_grad, list(cross_graph_model.parameters()) + [entity_emb.weight, relation_emb.weight])}]
optimizer = optim.Adagrad(params, lr=args.lr, weight_decay=args.weight_decay)
print(cross_graph_model)
print(optimizer)
# Train
print("training...")
t_total = time.time()
epoch_KE, epoch_CG = 0, 0
for epoch in range(args.epochs):
t_epoch = time.time()
cross_graph_model.train()
optimizer.zero_grad()
attention_enhanced_emb = cross_graph_model(entity_emb(input_idx), adj)
if args.wo_K:
print("w\\o K")
if args.wo_K or epoch % 2 == 0:
if epoch_CG == 0:
train_left = torch.LongTensor((np.ones((train_ill.shape[0], K_CG)) * (train_ill[:, 0].reshape((train_ill.shape[0], 1)))).reshape((train_ill.shape[0] * K_CG,))).to(device)
train_right = torch.LongTensor((np.ones((train_ill.shape[0], K_CG)) * (train_ill[:, 1].reshape((train_ill.shape[0], 1)))).reshape((train_ill.shape[0] * K_CG,))).to(device)
print("\ttrain pos/neg_pairs shape: {}".format(train_left.shape))
if epoch_CG % args.update_num == 0:
if args.wo_NNS:
print("w\\o NNS")
if args.wo_NNS or epoch_CG == 0:
neg_left = torch.LongTensor(np.random.choice(ENT_NUM, train_ill.shape[0] * K_CG)).to(device)
neg_right = torch.LongTensor(np.random.choice(ENT_NUM, train_ill.shape[0] * K_CG)).to(device)
else:
with torch.no_grad():
neg_left, neg_right = nearest_neighbor_sampling(attention_enhanced_emb.cpu(), torch.LongTensor(train_ill[:, 0]), torch.LongTensor(train_ill[:, 1]), K_CG)
neg_left, neg_right = neg_left.to(device), neg_right.to(device)
epoch_CG += 1
# Cross-graph model alignment loss
loss_CG = F.triplet_margin_loss(torch.cat((attention_enhanced_emb[train_left], attention_enhanced_emb[train_right]), dim=0),
torch.cat((attention_enhanced_emb[train_right], attention_enhanced_emb[train_left]), dim=0),
torch.cat((attention_enhanced_emb[neg_left], attention_enhanced_emb[neg_right]), dim=0),
margin=args.margin_CG, p=args.dist)
loss_CG.backward()
print("loss_CG in epoch {:d}: {:f}, time: {:.4f} s".format(epoch, loss_CG.item(), time.time() - t_epoch))
else:
if epoch_KE == 0:
true_triples = torch.cat(tuple([torch.LongTensor(triples) for _ in range(K_KE)]), dim=0).to(device)
print("\ttrain pos/neg_triples shape: {}".format(true_triples.shape))
if epoch_KE % args.update_num == 0:
neg_triples = torch.cat(tuple([torch.LongTensor(multi_typed_sampling(triples, triples, r_hs, r_ts, ids, x)) for x in range(K_KE)]), dim=0).to(device)
epoch_KE += 1
# Knowledge embedding model loss
X_1 = F.normalize(attention_enhanced_emb[true_triples[:, 0]] + relation_emb(true_triples[:, 1]) - attention_enhanced_emb[true_triples[:, 2]], p=args.dist)
X_2 = F.normalize(attention_enhanced_emb[neg_triples[:, 0]] + relation_emb(neg_triples[:, 1]) - attention_enhanced_emb[neg_triples[:, 2]], p=args.dist)
Y = torch.ones(X_1.size(0), 1).to(device)
loss_KE = F.margin_ranking_loss(X_1.sum(1).view(-1, 1), X_2.sum(1).view(-1, 1), Y, args.margin_KE)
loss_KE.backward()
print("loss_KE in epoch {:d}: {:f}, time: {:.4f} s".format(epoch, loss_KE, time.time() - t_epoch))
optimizer.step()
# Test
if (epoch + 1) % args.check_point == 0:
print("\nepoch {:d}, checkpoint!".format(epoch))
with torch.no_grad():
t_test = time.time()
cross_graph_model.eval()
attention_enhanced_emb = cross_graph_model(entity_emb(input_idx), adj)
top_k = [1, 5, 10, 50, 100]
if "100" in args.file_dir:
Lvec = attention_enhanced_emb[test_left].cpu().data.numpy()
Rvec = attention_enhanced_emb[test_right].cpu().data.numpy()
acc_l2r, mean_l2r, mrr_l2r, acc_r2l, mean_r2l, mrr_r2l = multi_get_hits(Lvec, Rvec, top_k=top_k)
del attention_enhanced_emb
gc.collect()
else:
acc_l2r = np.zeros((len(top_k)), dtype=np.float32)
acc_r2l = np.zeros((len(top_k)), dtype=np.float32)
test_total, test_loss, mean_l2r, mean_r2l, mrr_l2r, mrr_r2l = 0, 0., 0., 0., 0., 0.
if args.dist == 2:
distance = pairwise_distances(attention_enhanced_emb[test_left], attention_enhanced_emb[test_right])
elif args.dist == 1:
distance = torch.FloatTensor(scipy.spatial.distance.cdist(attention_enhanced_emb[test_left].cpu().data.numpy(), attention_enhanced_emb[test_right].cpu().data.numpy(), metric="cityblock"))
else:
raise NotImplementedError
for idx in range(test_left.shape[0]):
values, indices = torch.sort(distance[idx, :], descending=False)
rank = (indices == idx).nonzero().squeeze().item()
mean_l2r += (rank + 1)
mrr_l2r += 1.0 / (rank + 1)
for i in range(len(top_k)):
if rank < top_k[i]:
acc_l2r[i] += 1
for idx in range(test_right.shape[0]):
_, indices = torch.sort(distance[:, idx], descending=False)
rank = (indices == idx).nonzero().squeeze().item()
mean_r2l += (rank + 1)
mrr_r2l += 1.0 / (rank + 1)
for i in range(len(top_k)):
if rank < top_k[i]:
acc_r2l[i] += 1
mean_l2r /= test_left.size(0)
mean_r2l /= test_right.size(0)
mrr_l2r /= test_left.size(0)
mrr_r2l /= test_right.size(0)
for i in range(len(top_k)):
acc_l2r[i] = round(acc_l2r[i] / test_left.size(0), 4)
acc_r2l[i] = round(acc_r2l[i] / test_right.size(0), 4)
del distance, attention_enhanced_emb
gc.collect()
print("l2r: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s ".format(top_k, acc_l2r, mean_l2r, mrr_l2r, time.time() - t_test))
print("r2l: acc of top {} = {}, mr = {:.3f}, mrr = {:.3f}, time = {:.4f} s \n".format(top_k, acc_r2l, mean_r2l, mrr_r2l, time.time() - t_test))
if args.cuda and torch.cuda.is_available():
torch.cuda.empty_cache()
print("optimization finished!")
print("total time elapsed: {:.4f} s".format(time.time() - t_total))
if args.save != "":
time_str = time.strftime("%Y%m%d-%H%M", time.gmtime())
torch.save(cross_graph_model, args.save + "/%s_model.pkl" % (time_str))
with torch.no_grad():
cross_graph_model.eval()
attention_enhanced_emb = cross_graph_model(entity_emb(input_idx), adj)
np.save(args.save + "/%s_ent_vec.npy" % (time_str), attention_enhanced_emb.cpu().detach().numpy())
np.save(args.save + "/%s_rel_vec.npy" % (time_str), relation_emb.weight.cpu().detach().numpy())
print("model and embeddings saved!")
if __name__ == "__main__":
main()