forked from DrewNF/Tensorflow_Object_Tracking_Video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_script.py
executable file
·200 lines (186 loc) · 9.84 KB
/
eval_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import frame as fm
import multiclass_rectangle
import Utils
import progressbar
import os
import vid_classes
from xml.etree import ElementTree
import utils_image
def parse_XML_to_data(xml_list_video):
frames_list=[]
video_list=[]
# image_multi_class= None
# rectangle_multi = None
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
for i in progress(range(0, len(xml_list_video))):
# print "Iterating on Video:"+ str(xml_list_video[i][0][0])
for j in range(0, len(xml_list_video[i])):
# print "Iterating on Frame:"+ str(xml_list_video[i][j][0])
with open(xml_list_video[i][j][0], 'rt') as f:
tree = ElementTree.parse(f)
for obj in tree.findall('object'):
name = obj.find('name').text
class_code= name
name = vid_classes.code_to_class_string(name)
if name in ["nothing"]:
continue
else:
#The files with the original data path are made in both: multiclass e single class
jump=0
image_multi_class= fm.Frame_Info()
image_multi_class.frame= xml_list_video[i][j][1]
# print image_multi_class.frame
rectangle_multi= multiclass_rectangle.Rectangle_Multiclass()
for node in tree.iter():
tag=str(node.tag)
if tag in ['name']:
if str(vid_classes.code_to_class_string(str(node.text))) in ["nothing"]:
jump = 1
else :
jump=0
rectangle_multi.label_chall=int(vid_classes.class_string_to_comp_code(str(vid_classes.code_to_class_string(str(node.text)))))
# print rectangle_multi.label_chall
rectangle_multi.label_code=str(node.text)
rectangle_multi.label=vid_classes.code_to_class_string(str(node.text))
if tag in ["xmax"]:
if jump == 0:
rectangle_multi.x2=float(node.text)
if tag in ["xmin"]:
if jump == 0:
rectangle_multi.x1=float(node.text)
if tag in ["ymax"]:
if jump == 0:
rectangle_multi.y2=float(node.text)
if tag in ["ymin"]:
if jump == 0:
rectangle_multi.y1=float(node.text)
image_multi_class.append_rect(rectangle_multi)
if jump == 0:
image_multi_class.append_labeled_rect(rectangle_multi)
break
frames_list.append(image_multi_class)
video_list.append(frames_list)
# frames_list=None
# frames_list=[]
return video_list
def read_xml_files(filename , data_folder):
xml_list_video = []
video_frame =[]
with open(filename) as f:
video=None
for line in f:
file, idx = line.strip().split(' ')
# new_file='ILSVRC2016_'+file.split('_')[1]+'_'+file.split('_')[2]
# #file.replace('ILSVRC2015','ILSVRC2016')
# file=new_file
# print 'File name:%s'%file
if video is None:
video_frame.append((data_folder + file + '.xml',idx))
video=file.split('/')[0]
else:
if video==file.split('/')[0]:
video_frame.append((data_folder + file + '.xml',idx))
else :
xml_list_video.append(video_frame)
video_frame = []
video_frame.append((data_folder + file + '.xml',idx))
video=file.split('/')[0]
xml_list_video.append(video_frame)
return xml_list_video
def val_to_data(source):
text_lines=[]
frames_list=[]
frame = None
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
with open(source, 'r') as s:
for line in s:
id_frame, id_class, conf, xmin, ymin, xmax, ymax = line.strip().split(' ')
text_lines.append((id_frame, id_class, conf, xmin, ymin, xmax, ymax))
for i in range(0, len(text_lines)):
if frame is None:
frame = fm.Frame_Info()
frame.frame= text_lines[i][0]
rect= multiclass_rectangle.Rectangle_Multiclass()
# Not all the inserted values are really used
rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
frame.append_labeled_rect(rect)
else :
if frame.frame == text_lines[i][0]:
rect= multiclass_rectangle.Rectangle_Multiclass()
# Not all the inserted values are really used
rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
frame.append_labeled_rect(rect)
else :
frames_list.append(frame)
frame = fm.Frame_Info()
frame.frame= text_lines[i][0]
rect= multiclass_rectangle.Rectangle_Multiclass()
# Not all the inserted values are really used
rect.load_labeled_rect(0, text_lines[i][2], text_lines[i][2], text_lines[i][3], text_lines[i][4], text_lines[i][5], text_lines[i][6], text_lines[i][1], text_lines[i][1], text_lines[i][1])
frame.append_labeled_rect(rect)
frames_list.append(frame)
return frames_list
def parse_video_to_framelist(video_list):
frames_list=[]
for video in video_list:
for frame in video:
frames_list.append(frame)
return frames_list
def save_best_overlap(val_bbox, output_bbox):
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
count_best_bbox=0
len_val_bbox=len(val_bbox)
len_output_bbox=len(output_bbox)
count_missing_boxes=0
with open("best_overlap.txt", 'a') as d:
for i in progress(range(0, len(val_bbox))):
for rect in val_bbox[i].rects:
if(len(output_bbox[i].rects)>0):
selected=multiclass_rectangle.pop_max_overlap(output_bbox[i].rects,rect)
count_best_bbox=count_best_bbox+1
d.write(str(val_bbox[i].frame)+' '+str(rect.label_chall)+ ' 0.5 '+str(selected.x1)+' '+str(selected.y1)+' '+str(selected.x2)+' '+str(selected.y2) + os.linesep)
else:
count_missing_boxes=count_missing_boxes+1
print "Total Frame Number: "+ str(len_val_bbox)
print "Total Output Bounding Boxes: "+ str(len_output_bbox)
print "Total Best Bounding Boxes: "+ str(count_best_bbox)
print "Total Missing Bounding Boxes: "+ str(count_missing_boxes)
print "Total False Positive Bounding Boxes: "+ str(len_output_bbox-count_best_bbox)
print "BBox/Frame Number: "+ str(float(count_best_bbox)/float(len_val_bbox))
print "Missing BBox/Frame Number: "+ str(float(float(count_missing_boxes)/float(len_val_bbox)))
print "False Positive BBox/Frame Number: "+ str(float(float(len_output_bbox-count_best_bbox)/float(len_val_bbox)))
def save_best_iou(val_bbox, output_bbox):
progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()])
count_best_bbox=0
len_val_bbox=len(val_bbox)
len_output_bbox=len(output_bbox)
count_missing_boxes=0
with open("best_iou.txt", 'a') as d:
for i in progress(range(0, len(val_bbox))):
for rect in val_bbox[i].rects:
if(len(output_bbox[i].rects)>0):
selected=multiclass_rectangle.pop_max_iou(output_bbox[i].rects,rect)
count_best_bbox=count_best_bbox+1
d.write(str(val_bbox[i].frame)+' '+str(rect.label_chall)+ ' 0.5 '+str(selected.x1)+' '+str(selected.y1)+' '+str(selected.x2)+' '+str(selected.y2) + os.linesep)
else:
count_missing_boxes=count_missing_boxes+1
print "Total Frame Number: "+ str(len_val_bbox)
print "Total Output Bounding Boxes: "+ str(len_output_bbox)
print "Total Best Bounding Boxes: "+ str(count_best_bbox)
print "Total Missing Bounding Boxes: "+ str(count_missing_boxes)
print "Total False Positive Bounding Boxes: "+ str(len_output_bbox-count_best_bbox)
print "BBox/Frame Number: "+ str(float(count_best_bbox)/float(len_val_bbox))
print "Missing BBox/Frame Number: "+ str(float(float(count_missing_boxes)/float(len_val_bbox)))
print "False Positive BBox/Frame Number: "+ str(float(float(len_output_bbox-count_best_bbox)/float(len_val_bbox)))
def main():
xml_file_list = read_xml_files('val.txt', 'val/')
parsed_xml=parse_XML_to_data(xml_file_list)
parsed_frames=parse_video_to_framelist(parsed_xml)
# for xml in parsed_xml:
# for frame in xml:
# print frame
val_video_info = val_to_data('output.txt')
# print val_video_info
save_best_iou(val_video_info,parsed_frames)
if __name__ == '__main__':
main()