-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
47 lines (45 loc) · 2.73 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
'''
@Author: zhansu
@Date: 2020-01-20 14:10:46
@LastEditTime : 2020-01-20 15:46:54
@LastEditors : Please set LastEditors
@Description: In User Settings Edit
@FilePath: /CIKM2018_QMWFLM/config.py
'''
from tensorflow import flags
# Model Hyperparameters
flags.DEFINE_integer("embedding_dim",300, "Dimensionality of character embedding (default: 128)")
flags.DEFINE_string("filter_sizes", "1,2,3,5", "Comma-separated filter sizes (default: '3,4,5')")
flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
flags.DEFINE_float("dropout_keep_prob", 1, "Dropout keep probability (default: 0.5)")
flags.DEFINE_float("l2_reg_lambda", 0.000001, "L2 regularizaion lambda (default: 0.0)")
flags.DEFINE_float("learning_rate", 1e-3, "learn rate( default: 0.0)")
flags.DEFINE_integer("max_len_left", 40, "max document length of left input")
flags.DEFINE_integer("max_len_right", 40, "max document length of right input")
flags.DEFINE_string("loss","pair_wise","loss function (default:point_wise)")
flags.DEFINE_integer('extend_feature_dim',10,'overlap_feature_dim')
# Training parameters
flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
flags.DEFINE_boolean("trainable", False, "is embedding trainable? (default: False)")
flags.DEFINE_integer("num_epochs", 20, "Number of training epochs (default: 200)")
flags.DEFINE_integer("evaluate_every", 500, "Evaluate model on dev set after this many steps (default: 100)")
flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)")
flags.DEFINE_boolean('overlap_needed',False,"is overlap used")
flags.DEFINE_boolean('position_needed',False,'is position embedding used')
flags.DEFINE_boolean('dns','False','whether use dns or not')
flags.DEFINE_string('data','wiki','data set')
flags.DEFINE_string('pooling','product','max pooling or attentive pooling')
flags.DEFINE_float('sample_train',1,'sampe my train data')
flags.DEFINE_boolean('fresh',True,'wheather recalculate the embedding or overlap default is True')
flags.DEFINE_boolean('clean',True,'whether we clean the data')
flags.DEFINE_string('conv','wide','wide conv or narrow')
flags.DEFINE_integer('gpu',0,'gpu number')
flags.DEFINE_float('margin',0.05,'margin loss')
# Misc Parameters
flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
#data_help parameters
flags.DEFINE_boolean('isEnglish',True,'whether is data is english')
flags.DEFINE_string('en_embedding_file','embedding/aquaint+wiki.txt.gz.ndim=50.bin','english embedding')
flags.DEFINE_string('ch_embedding_file','embedding/','chinese embedding')
flags.DEFINE_string('ch_stopwords','model/chStopWordsSimple.txt','chinese stopwords')