-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
270 lines (229 loc) · 9.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
from pprint import pprint
from PIL import Image
import matplotlib.pyplot as plt
from models.resnet import ResNet18
from models.vgg import VGG
from models.densenet import densenet_cifar
from models.wideresnet import WideResNet
from models.googlenet import GoogLeNet
from models.mobilenetv2 import MobileNetV2
cifar10_class = {-1: '', 0: 'airplane', 1: 'car', 2: 'bird', 3: 'cat', 4: 'deer', 5: 'dog', 6: 'frog', 7: 'horse', 8: 'ship', 9: 'truck'}
def infer_poison_name(poison_type, poison_steps, craft_model_loss, craft_model_eps, craft_model_epoch, craft_model_arch, poison_aug):
poison_name = poison_type
if poison_type in ['Adv', 'Hyp']:
poison_name = '{}-{}-{}-e{}-a{}-{}'.format(
poison_type,
poison_steps,
'ST' if craft_model_loss == 'ST' else '{}{:.1f}'.format(craft_model_loss, craft_model_eps*255),
craft_model_epoch,
craft_model_arch,
'w' if poison_aug else 'wo',
)
return poison_name
def infer_exp_name(train_loss, eps, epochs, arch, poison_name, seed=0):
exp_name = '{}-e{}-a{}({}){}'.format(
train_loss if train_loss == 'ST' else '{}{:.1f}'.format(train_loss, eps*255),
epochs,
arch,
poison_name,
seed,
)
return exp_name
def infer_arch(model_path):
for arch in ['MLP', 'VGG16', 'ResNet18']:
if arch in model_path:
return arch
def make_and_restore_cifar_model(arch, resume_path=None):
if arch == 'ResNet18':
model = ResNet18()
elif arch == 'VGG16':
model = VGG('VGG16')
elif arch == 'DenseNet121':
model = densenet_cifar()
elif arch == 'WRN28-10':
model = WideResNet(depth=28, num_classes=10, widen_factor=10)
elif arch == 'GoogLeNet':
model = GoogLeNet()
elif arch == 'MobileNetV2':
model = MobileNetV2()
model = InputNormalize(model, new_mean=(0.4914, 0.4822, 0.4465), new_std=(0.2471, 0.2435, 0.2616))
if resume_path is not None:
print('\n=> Loading checkpoint {}'.format(resume_path))
checkpoint = torch.load(resume_path)
info_keys = ['epoch', 'train_acc', 'cln_val_acc', 'cln_test_acc', 'adv_val_acc', 'adv_test_acc']
info = {k: checkpoint[k] for k in info_keys}
pprint(info)
model.load_state_dict(checkpoint['model'])
model = model.cuda()
return model
class InputNormalize(nn.Module):
def __init__(self, model, new_mean=(0.4914, 0.4822, 0.4465), new_std=(0.2471, 0.2435, 0.2616)):
super(InputNormalize, self).__init__()
new_mean = torch.tensor(new_mean)[..., None, None]
new_std = torch.tensor(new_std)[..., None, None]
self.register_buffer('new_mean', new_mean)
self.register_buffer('new_std', new_std)
self.model = model
def __call__(self, x):
x = (x - self.new_mean) / self.new_std
return self.model(x)
class PoisonDataset(torch.utils.data.Dataset):
def __init__(self, root, transform=None):
self.root = os.path.expanduser(root)
self.transform = transform
self.data, self.targets = torch.load(self.root)
self.data = self.data.permute(0, 2, 3, 1) # convert to HWC
self.data = (self.data * 255).type(torch.uint8)
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
img = Image.fromarray(img.numpy())
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self):
return len(self.data)
def __repr__(self):
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(self.__len__())]
body.append("Root location: {}".format(self.root))
lines = [head] + [" " * 4 + line for line in body]
return '\n'.join(lines)
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def get_axis(axarr, H, W, i, j):
H, W = H - 1, W - 1
if not (H or W):
ax = axarr
elif not (H and W):
ax = axarr[max(i, j)]
else:
ax = axarr[i][j]
return ax
def show_image_row(xlist, ylist=None, fontsize=12, size=(2.5, 2.5), tlist=None, tcolor=None, filename=None):
H, W = len(xlist), len(xlist[0])
fig, axarr = plt.subplots(H, W, figsize=(size[0] * W, size[1] * H))
for w in range(W):
for h in range(H):
ax = get_axis(axarr, H, W, h, w)
ax.imshow(xlist[h][w].permute(1, 2, 0))
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
if ylist and w == 0:
ax.set_ylabel(ylist[h], fontsize=fontsize)
if tlist:
if tcolor:
ax.set_title(tlist[h][w], fontsize=fontsize, color=tcolor[h][w])
else:
ax.set_title(tlist[h][w], fontsize=fontsize)
if filename is not None:
plt.savefig(filename, bbox_inches='tight')
# plt.show()
class AverageMeter(object):
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy_top1(logits, target):
pred = logits.argmax(dim=1, keepdim=True)
correct = pred.eq(target.view_as(pred)).sum().item()
return correct * 100. / target.size(0)
def accuracy(output, target, topk=(1,), exact=False):
"""
Computes the top-k accuracy for the specified values of k
Args:
output (ch.tensor) : model output (N, classes) or (N, attributes)
for sigmoid/multitask binary classification
target (ch.tensor) : correct labels (N,) [multiclass] or (N,
attributes) [multitask binary]
topk (tuple) : for each item "k" in this tuple, this method
will return the top-k accuracy
exact (bool) : whether to return aggregate statistics (if
False) or per-example correctness (if True)
Returns:
A list of top-k accuracies.
"""
with torch.no_grad():
# Binary Classification
if len(target.shape) > 1:
assert output.shape == target.shape, \
"Detected binary classification but output shape != target shape"
return [torch.round(torch.sigmoid(output)).eq(torch.round(target)).float().mean()], [-1.0]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
res_exact = []
for k in topk:
correct_k = correct[:k].view(-1).float()
ck_sum = correct_k.sum(0, keepdim=True)
res.append(ck_sum.mul_(100.0 / batch_size))
res_exact.append(correct_k)
if not exact:
return res
else:
return res_exact
class RandomTransform(torch.nn.Module):
"""Crop the given batch of tensors at a random location.
Code derived from https://github.com/lhfowl/adversarial_poisons/blob/153f96a7670a85261b4602da76366d94bbc1f1a2/village/materials/diff_data_augmentation.py
As discussed in https://discuss.pytorch.org/t/cropping-a-minibatch-of-images-each-image-a-bit-differently/12247/5
"""
def __init__(self, source_size, target_size, shift=8, fliplr=True, flipud=False, mode='bilinear', align=True):
"""Args: source and target size."""
super().__init__()
self.grid = self.build_grid(source_size, target_size)
self.delta = torch.linspace(0, 1, source_size)[shift]
self.fliplr = fliplr
self.flipud = flipud
self.mode = mode
self.align = True
@staticmethod
def build_grid(source_size, target_size):
"""https://discuss.pytorch.org/t/cropping-a-minibatch-of-images-each-image-a-bit-differently/12247/5."""
k = float(target_size) / float(source_size)
direct = torch.linspace(-1, k, target_size).unsqueeze(0).repeat(target_size, 1).unsqueeze(-1)
full = torch.cat([direct, direct.transpose(1, 0)], dim=2).unsqueeze(0)
return full
def random_crop_grid(self, x, randgen=None):
"""https://discuss.pytorch.org/t/cropping-a-minibatch-of-images-each-image-a-bit-differently/12247/5."""
grid = self.grid.repeat(x.size(0), 1, 1, 1).clone().detach()
grid = grid.to(device=x.device, dtype=x.dtype)
if randgen is None:
randgen = torch.rand(x.shape[0], 4, device=x.device, dtype=x.dtype)
# Add random shifts by x
x_shift = (randgen[:, 0] - 0.5) * 2 * self.delta
grid[:, :, :, 0] = grid[:, :, :, 0] + x_shift.unsqueeze(-1).unsqueeze(-1).expand(-1, grid.size(1), grid.size(2))
# Add random shifts by y
y_shift = (randgen[:, 1] - 0.5) * 2 * self.delta
grid[:, :, :, 1] = grid[:, :, :, 1] + y_shift.unsqueeze(-1).unsqueeze(-1).expand(-1, grid.size(1), grid.size(2))
if self.fliplr:
grid[randgen[:, 2] > 0.5, :, :, 0] *= -1
if self.flipud:
grid[randgen[:, 3] > 0.5, :, :, 1] *= -1
return grid
def forward(self, x, randgen=None):
# Make a random shift grid for each batch
grid_shifted = self.random_crop_grid(x, randgen)
# Sample using grid sample
return F.grid_sample(x, grid_shifted, align_corners=self.align, mode=self.mode)