-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
47 lines (38 loc) · 1.57 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import torch as th
import open3d as o3d
from main import BaseTrainer
from octmae.utils.misc import fetch_data, unnormalize_pts
from octmae.utils.config import parse_config
from octmae.nets.utils import get_xyz_from_octree
def main():
config = parse_config()
config.update_octree = True
print('Loading a model...')
model = BaseTrainer.load_from_checkpoint(config.checkpoint, config=config, strict=False)
model.cuda()
model.eval()
print('Fetching data...')
batch = fetch_data(config.img_path, config.depth_path, config.mask_path, config.camera_info_path, config, 1.0)
grid_res = 1 << config.min_lod
with th.no_grad():
print('Running inference...')
output = model.model(batch)
octrees_out = output['octrees_out']
z_min = batch[-2][0]
pcd = get_xyz_from_octree(octrees_out, config.max_lod, True)
pcd = unnormalize_pts(pcd, z_min, config.grid_size, grid_res)
normals = octrees_out.normals[config.max_lod]
sdf = octrees_out.features[config.max_lod][:, :1]
pcd = pcd.cpu().numpy()
normals = normals.cpu().numpy()
sdf = sdf.cpu().numpy()
pcd = pcd - normals * sdf
pcd_sdf_vis = o3d.geometry.PointCloud()
pcd_sdf_vis.points = o3d.utility.Vector3dVector(pcd)
pcd_sdf_vis.normals = o3d.utility.Vector3dVector(normals)
pcd_sdf_vis.colors = o3d.utility.Vector3dVector(((normals + 1) / 2))
o3d.io.write_point_cloud(os.path.join('demo', 'output.pts'), pcd_sdf_vis)
print('saved!')
if __name__ == '__main__':
main()