-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (137 loc) · 6.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import torch as th
from torch import optim
import torch.nn.functional as F
import lightning.pytorch as pl
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
from torchmetrics.functional.classification import binary_f1_score, binary_accuracy, binary_recall, binary_precision
import webdataset as wds
from octmae.nets import OctMAE
from octmae.utils.config import parse_config
from octmae.utils.misc import make_sample_wrapper, decode_depth
th.set_float32_matmul_precision('medium')
th.backends.cuda.matmul.allow_tf32 = True
INTRINSICS_K = {
'mirage': [[572.41136339, 0., 325.2611084], [0., 573.57043286, 242.04899588], [0., 0., 1.]],
'ycb_video': [[1066.778, 0.0, 312.9869], [0.0, 1067.487, 241.3109], [0.0, 0.0, 1.0]],
'hope': [[1390.53, 0.0, 964.957], [0.0, 1386.99, 522.586], [0.0, 0.0, 1.0]],
'hb': [[537.4799, 0.0, 318.8965], [0.0, 536.1447, 238.3781], [0.0, 0.0, 1.0]],
}
class BaseTrainer(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.model_name = config.model_name
self.model = OctMAE(config)
def forward(self, batch):
output = self.model(batch)
occs = output['occs']
gt_occs = output['gt_occs']
loss_occ = 0
acc, rec, pre, f1 = 0.0, 0.0, 0.0, 0.0
for occ, gt_occ in zip(occs, gt_occs):
loss_occ += F.cross_entropy(occ, gt_occ)
preds = occ.argmax(1).long()
acc += binary_accuracy(preds, gt_occ.long())
rec += binary_recall(preds, gt_occ.long())
pre += binary_precision(preds, gt_occ.long())
f1 += binary_f1_score(preds, gt_occ.long())
acc /= len(occs)
rec /= len(occs)
pre /= len(occs)
f1 /= len(occs)
loss_dict = {'loss_occ': loss_occ}
stats_dict = {'acc': acc, 'rec': rec, 'pre': pre, 'f1': f1}
if 'signal' in output:
signal = output['signal']
gt_signal = output['gt_signal']
loss_nrm = th.mean(th.sum((gt_signal[:, :3] - signal[:, :3])**2, dim=1))
loss_sdf = th.mean((gt_signal[:, 3:] - signal[:, 3:])**2) # this is a hyperparameter
loss_dict['loss_nrm'] = loss_nrm
loss_dict['loss_sdf'] = loss_sdf
return loss_dict, stats_dict
def training_step(self, batch, batch_idx):
loss_dict, stats_dict = self(batch)
loss = 0.0
for name, value in loss_dict.items():
loss += value
self.log(f"train_{name}", value, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True)
for name, value in stats_dict.items():
self.log(f"train_{name}", value, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True )
self.log(f"train_loss", loss, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True)
return loss
def validation_step(self, batch, batch_idx):
loss_dict, stats_dict = self(batch)
loss = 0.0
for name, value in loss_dict.items():
loss += value
self.log(f"valid_{name}", value, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True)
for name, value in stats_dict.items():
self.log(f"valid_{name}", value, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True)
self.log(f"valid_loss", loss, on_step=True, prog_bar=True, sync_dist=True, rank_zero_only=True)
return loss
def configure_optimizers(self):
if self.config.optimizer == 'Adam':
optimizer = optim.Adam(self.parameters(), lr=self.config.lr)
elif self.config.optimizer == 'AdamW':
optimizer = optim.AdamW(self.parameters(), lr=self.config.lr, weight_decay=self.config.weight_decay)
else:
raise Exception(f'{self.config.optimizer} is not supported!')
scheduler = th.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=120000, power=0.9)
return [optimizer], [{'scheduler': scheduler, 'interval': 'step', 'frequency': 1}]
def train_dataloader(self):
url = f'pipe:s5cmd cat {self.config.train_dataset_url}'
batch_size = self.config.batch_size
num_workers = self.config.num_workers
max_epochs = self.config.max_epochs
dataset_size = self.config.train_dataset_size
iter_per_epoch = dataset_size // (batch_size * self.trainer.num_devices)
dataset = (
wds.WebDataset(url, nodesplitter=wds.split_by_node, handler=wds.warn_and_continue, shardshuffle=True)
.decode(decode_depth, 'pil')
.map(make_sample_wrapper(self.config, K=INTRINSICS_K[self.config.train_dataset_name]), handler=wds.warn_and_continue)
.batched(batch_size, partial=True)
)
dataloader = (
wds.WebLoader(dataset, batch_size=None, shuffle=False, num_workers=num_workers, pin_memory=False)
.repeat(max_epochs)
.with_epoch(iter_per_epoch)
.with_length(iter_per_epoch)
)
return dataloader
def val_dataloader(self):
url = f'pipe:s5cmd cat {self.config.val_dataset_url}'
dataset_size = self.config.val_dataset_size
dataset = (
wds.WebDataset(url, nodesplitter=wds.split_by_node, handler=wds.warn_and_continue, shardshuffle=False)
.decode(decode_depth, 'pil')
.map(make_sample_wrapper(self.config, K=INTRINSICS_K[self.config.train_dataset_name]), handler=wds.warn_and_continue)
.batched(1)
)
dataloader = (
wds.WebLoader(dataset, batch_size=None, shuffle=False, num_workers=0, pin_memory=False)
.with_epoch(dataset_size // (self.trainer.num_devices))
.with_length(dataset_size // (self.trainer.num_devices))
)
return dataloader
def main():
config = parse_config()
model = BaseTrainer(config)
# Store configurations in WandB
checkpoint_path = os.path.join('checkpoints', config.project_name, config.run_name)
callbacks = [ModelCheckpoint(dirpath=checkpoint_path, save_top_k=-1, save_on_train_epoch_end=True, every_n_train_steps=5000)]
logger = WandbLogger(project=config.project_name, name=config.run_name, log_model=True)
lr_monitor = LearningRateMonitor(logging_interval='step')
callbacks.append(lr_monitor)
trainer = pl.Trainer(max_epochs=config.max_epochs,
logger=logger,
log_every_n_steps=config.log_every_n_steps,
strategy='ddp_find_unused_parameters_true',
gradient_clip_val=0.5,
callbacks=callbacks)
if trainer.global_rank == 0:
logger.experiment.config.update(config)
trainer.fit(model=model, ckpt_path=config.checkpoint)
if __name__ == '__main__':
main()