-
Notifications
You must be signed in to change notification settings - Fork 2
/
generate_graspness.py
120 lines (106 loc) · 6.69 KB
/
generate_graspness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import os
from PIL import Image
import scipy.io as scio
import sys
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(ROOT_DIR)
from utils.data_utils import get_workspace_mask, CameraInfo, create_point_cloud_from_depth_image
from knn.knn_modules import knn
import torch
from graspnetAPI.utils.xmlhandler import xmlReader
from graspnetAPI.utils.utils import get_obj_pose_list, transform_points
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', default='/media/randy/299D817A2D97AD94/xxw/graspnet_dataset')
parser.add_argument('--camera_type', default='realsense', help='Camera split [realsense/kinect]')
if __name__ == '__main__':
cfgs = parser.parse_args()
dataset_root = cfgs.dataset_root # set dataset root
camera_type = cfgs.camera_type # kinect / realsense
save_path_root = os.path.join(dataset_root, 'graspness')
num_views, num_angles, num_depths = 300, 12, 4
fric_coef_thresh = 0.8
point_grasp_num = num_views * num_angles * num_depths
for scene_id in range(3,100):
save_path = os.path.join(save_path_root, 'scene_' + str(scene_id).zfill(4), camera_type)
if not os.path.exists(save_path):
os.makedirs(save_path)
labels = np.load(
os.path.join(dataset_root, 'collision_label', 'scene_' + str(scene_id).zfill(4), 'collision_labels.npz'))
collision_dump = []
for j in range(len(labels)):
collision_dump.append(labels['arr_{}'.format(j)])
for ann_id in range(256):
# get scene point cloud
print('generating scene: {} ann: {}'.format(scene_id, ann_id))
depth = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'depth', str(ann_id).zfill(4) + '.png')))
seg = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'label', str(ann_id).zfill(4) + '.png')))
meta = scio.loadmat(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'meta', str(ann_id).zfill(4) + '.mat'))
intrinsic = meta['intrinsic_matrix']
factor_depth = meta['factor_depth']
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2],
factor_depth)
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
# remove outlier and get objectness label
depth_mask = (depth > 0)
camera_poses = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'camera_poses.npy'))
camera_pose = camera_poses[ann_id]
align_mat = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'cam0_wrt_table.npy'))
trans = np.dot(align_mat, camera_pose)
workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
mask = (depth_mask & workspace_mask)
cloud_masked = cloud[mask]
objectness_label = seg[mask]
# get scene object and grasp info
scene_reader = xmlReader(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
camera_type, 'annotations', '%04d.xml' % ann_id))
pose_vectors = scene_reader.getposevectorlist()
obj_list, pose_list = get_obj_pose_list(camera_pose, pose_vectors)
grasp_labels = {}
for i in obj_list:
file = np.load(os.path.join(dataset_root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3))),allow_pickle=True)
grasp_labels[i] = (file['points'].astype(np.float32), file['offsets'].astype(np.float32),
file['scores'].astype(np.float32))
grasp_points = []
grasp_points_graspness = []
for i, (obj_idx, trans_) in enumerate(zip(obj_list, pose_list)):
sampled_points, offsets, fric_coefs = grasp_labels[obj_idx]
collision = collision_dump[i] # Npoints * num_views * num_angles * num_depths
num_points = sampled_points.shape[0]
valid_grasp_mask = ((fric_coefs <= fric_coef_thresh) & (fric_coefs > 0) & ~collision)
valid_grasp_mask = valid_grasp_mask.reshape(num_points, -1)
graspness = np.sum(valid_grasp_mask, axis=1) / point_grasp_num
target_points = transform_points(sampled_points, trans_)
target_points = transform_points(target_points, np.linalg.inv(camera_pose)) # fix bug
grasp_points.append(target_points)
grasp_points_graspness.append(graspness.reshape(num_points, 1))
grasp_points = np.vstack(grasp_points)
grasp_points_graspness = np.vstack(grasp_points_graspness)
grasp_points = torch.from_numpy(grasp_points).cuda()
grasp_points_graspness = torch.from_numpy(grasp_points_graspness).cuda()
grasp_points = grasp_points.transpose(0, 1).contiguous().unsqueeze(0)
masked_points_num = cloud_masked.shape[0]
cloud_masked_graspness = np.zeros((masked_points_num, 1))
part_num = int(masked_points_num / 10000)
for i in range(1, part_num + 2): # lack of cuda memory
if i == part_num + 1:
cloud_masked_partial = cloud_masked[10000 * part_num:]
if len(cloud_masked_partial) == 0:
break
else:
cloud_masked_partial = cloud_masked[10000 * (i - 1):(i * 10000)]
cloud_masked_partial = torch.from_numpy(cloud_masked_partial).cuda()
cloud_masked_partial = cloud_masked_partial.transpose(0, 1).contiguous().unsqueeze(0)
nn_inds = knn(grasp_points, cloud_masked_partial, k=1).squeeze() - 1
cloud_masked_graspness[10000 * (i - 1):(i * 10000)] = torch.index_select(
grasp_points_graspness, 0, nn_inds).cpu().numpy()
max_graspness = np.max(cloud_masked_graspness)
min_graspness = np.min(cloud_masked_graspness)
cloud_masked_graspness = (cloud_masked_graspness - min_graspness) / (max_graspness - min_graspness)
np.save(os.path.join(save_path, str(ann_id).zfill(4) + '.npy'), cloud_masked_graspness)