-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
40 lines (29 loc) · 1.06 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision.models import wide_resnet50_2, Wide_ResNet50_2_Weights
from PIL import Image
from sklearn.cluster import KMeans
import cv2
import numpy as np
def preprocess(filename):
input_image = Image.open(filename)
weights = Wide_ResNet50_2_Weights.IMAGENET1K_V2
preprocess = weights.transforms()
input_tensor = preprocess(input_image)
print(f"input tensor shape: {input_tensor.shape}")
input_batch = input_tensor.unsqueeze(0)
return input_batch
def extract_features(model, input, num_layers=6):
# Select the 6th layer
model = nn.Sequential(*list(model.children())[:num_layers])
# Set the model to evaluation mode
model.eval()
with torch.no_grad():
features = model(input)
return features.squeeze()
# Perform k-means clustering on the extracted features
def k_means_clustering(features, num_clusters):
kmeans = KMeans(n_clusters=num_clusters, init='k-means++')
labels = kmeans.fit_predict(features)
return labels