-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBracket Sequences II.cpp
91 lines (74 loc) · 1.92 KB
/
Bracket Sequences II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll modular_exponent(ll base, ll pow, ll mod) {
if (pow == 0)
return 1;
ll x = modular_exponent(base, pow / 2, mod);
if (pow % 2 == 0)
return (x * x) % mod;
else
return ((x * x) % mod * base) % mod;
}
void compute_factorial_with_modular_inverse(ll mod, vector<ll> &factorials,
vector<ll> &factorials_mod_inv) {
factorials[0] = 1;
int n = factorials.size() - 1;
for (int i = 1; i <= n; i++) {
factorials[i] = factorials[i - 1] * i % mod;
}
factorials_mod_inv[n] = modular_exponent(factorials[n], mod - 2, mod);
for (int i = n - 1; i >= 0; i--) {
factorials_mod_inv[i] = factorials_mod_inv[i + 1] * (i + 1) % mod;
}
}
int main() {
ll mod = 1e9 + 7;
vector<ll> factorials(2000001);
vector<ll> factorials_mod_inv(2000001);
compute_factorial_with_modular_inverse(mod, factorials, factorials_mod_inv);
ll n, ans, len;
string s;
cin >> n >> s;
len = n - s.length();
if (n % 2 == 1) {
cout << 0;
return 0;
}
int l = 0, r = 0;
for (ll i = 0; i < s.size(); i++) {
if (s[i] == '(') {
l++;
} else {
r++;
}
if (r > l) {
cout << 0;
return 0;
}
}
if (l == r && l + r == n || r == 0 && l == n / 2) {
cout << 1;
return 0;
}
n /= 2;
ll left_div_factor1 = n - l;
ll left_div_factor2 = n - r;
ll right_div_factor1 = n - l - 1;
ll right_div_factor2 = n - r - 1;
if (left_div_factor1 < 0 || right_div_factor1 < 0 || left_div_factor2 < 0 ||
right_div_factor2 < 0) {
cout << 0;
return 0;
}
ll a1, a2;
a1 = factorials[len];
a1 = a1 * factorials_mod_inv[n - l] % mod;
a1 = a1 * factorials_mod_inv[n - r] % mod;
a2 = factorials[len];
a2 = a2 * factorials_mod_inv[n - l - 1] % mod;
a2 = a2 * factorials_mod_inv[n - r + 1] % mod;
ans = (a1 - a2 + mod) % mod;
cout << ans << endl;
return 0;
}