-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmain.py
105 lines (93 loc) · 5.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import os
from emotic import Emotic
from train import train_emotic
from test import test_emotic
from inference import inference_emotic
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='gpu id')
parser.add_argument('--mode', type=str, default='train_test', choices=['train', 'test', 'train_test', 'inference'])
parser.add_argument('--data_path', type=str, help='Path to preprocessed data npy files/ csv files')
parser.add_argument('--experiment_path', type=str, required=True, help='Path to save experiment files (results, models, logs)')
parser.add_argument('--model_dir_name', type=str, default='models', help='Name of the directory to save models')
parser.add_argument('--result_dir_name', type=str, default='results', help='Name of the directory to save results(predictions, labels mat files)')
parser.add_argument('--log_dir_name', type=str, default='logs', help='Name of the directory to save logs (train, val)')
parser.add_argument('--inference_file', type=str, help='Text file containing image context paths and bounding box')
parser.add_argument('--context_model', type=str, default='resnet18', choices=['resnet18', 'resnet50'], help='context model type')
parser.add_argument('--body_model', type=str, default='resnet18', choices=['resnet18', 'resnet50'], help='body model type')
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--cat_loss_weight', type=float, default=0.5, help='weight for discrete loss')
parser.add_argument('--cont_loss_weight', type=float, default=0.5, help='weight fot continuous loss')
parser.add_argument('--continuous_loss_type', type=str, default='Smooth L1', choices=['L2', 'Smooth L1'], help='type of continuous loss')
parser.add_argument('--discrete_loss_weight_type', type=str, default='dynamic', choices=['dynamic', 'mean', 'static'], help='weight policy for discrete loss')
parser.add_argument('--epochs', type=int, default=15)
parser.add_argument('--batch_size', type=int, default=52) # use batch size = double(categorical emotion classes)
# Generate args
args = parser.parse_args()
return args
def check_paths(args):
''' Check (create if they don't exist) experiment directories.
:param args: Runtime arguments as passed by the user.
:return: List containing result_dir_path, model_dir_path, train_log_dir_path, val_log_dir_path.
'''
folders= [args.result_dir_name, args.model_dir_name]
paths = list()
for folder in folders:
folder_path = os.path.join(args.experiment_path, folder)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
paths.append(folder_path)
log_folders = ['train', 'val']
for folder in log_folders:
folder_path = os.path.join(args.experiment_path, args.log_dir_name, folder)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
paths.append(folder_path)
return paths
if __name__ == '__main__':
args = parse_args()
print ('mode ', args.mode)
result_path, model_path, train_log_path, val_log_path = check_paths(args)
cat = ['Affection', 'Anger', 'Annoyance', 'Anticipation', 'Aversion', 'Confidence', 'Disapproval', 'Disconnection', \
'Disquietment', 'Doubt/Confusion', 'Embarrassment', 'Engagement', 'Esteem', 'Excitement', 'Fatigue', 'Fear','Happiness', \
'Pain', 'Peace', 'Pleasure', 'Sadness', 'Sensitivity', 'Suffering', 'Surprise', 'Sympathy', 'Yearning']
cat2ind = {}
ind2cat = {}
for idx, emotion in enumerate(cat):
cat2ind[emotion] = idx
ind2cat[idx] = emotion
vad = ['Valence', 'Arousal', 'Dominance']
ind2vad = {}
for idx, continuous in enumerate(vad):
ind2vad[idx] = continuous
context_mean = [0.4690646, 0.4407227, 0.40508908]
context_std = [0.2514227, 0.24312855, 0.24266963]
body_mean = [0.43832874, 0.3964344, 0.3706214]
body_std = [0.24784276, 0.23621225, 0.2323653]
context_norm = [context_mean, context_std]
body_norm = [body_mean, body_std]
if args.mode == 'train':
if args.data_path is None:
raise ValueError('Data path not provided. Please pass a valid data path for training')
with open(os.path.join(args.experiment_path, 'config.txt'), 'w') as f:
print(args, file=f)
train_emotic(result_path, model_path, train_log_path, val_log_path, ind2cat, ind2vad, context_norm, body_norm, args)
elif args.mode == 'test':
if args.data_path is None:
raise ValueError('Data path not provided. Please pass a valid data path for testing')
test_emotic(result_path, model_path, ind2cat, ind2vad, context_norm, body_norm, args)
elif args.mode == 'train_test':
if args.data_path is None:
raise ValueError('Data path not provided. Please pass a valid data path for training and testing')
with open(os.path.join(args.experiment_path, 'config.txt'), 'w') as f:
print(args, file=f)
train_emotic(result_path, model_path, train_log_path, val_log_path, ind2cat, ind2vad, context_norm, body_norm, args)
test_emotic(result_path, model_path, ind2cat, ind2vad, context_norm, body_norm, args)
elif args.mode == 'inference':
if args.inference_file is None:
raise ValueError('Inference file not provided. Please pass a valid inference file for inference')
inference_emotic(args.inference_file, model_path, result_path, context_norm, body_norm, ind2cat, ind2vad, args)
else:
raise ValueError('Unknown mode')