-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualisation.py
95 lines (81 loc) · 3.02 KB
/
visualisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import plotly.graph_objects as go
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
# This class exists to write methods for
# taking in a given converted file format
# and turn in into something we can actually see
def pointsTo3DSkeleton(skeletalPoints):
# Looping for all of our points and separtaitng them
# by their Axis ->
# Extract x, y, z coordinates if skeletalPoints is a dictionary
try:
x_coords = [point['x'] for point in skeletalPoints]
y_coords = [point['y'] for point in skeletalPoints]
z_coords = [point['z'] for point in skeletalPoints]
except KeyError:
print("Error: Expected dictionary with 'x', 'y', 'z' keys.")
# Create a scatter plot for the points
fig = go.Figure(data=[go.Scatter3d(
x=x_coords, y=y_coords, z=z_coords,
mode='markers',
marker=dict(size=5, color='blue')
)])
# Define the connections (using index pairs) based on skeleton structure
# Example: [(0,1), (1,2), ...] - this should be customized to your skeleton
'''/
Neck (0) → Left Shoulder (11) → Left Elbow (13) → Left Wrist (15)
Neck (0) → Right Shoulder (12) → Right Elbow (14) → Right Wrist (16)
Left Hip (23) → Left Knee (25) → Left Ankle (27)
Right Hip (24) → Right Knee (26) → Right Ankle (28)'''
connections = [
(11, 13), (13, 15), # Example connections
(12,14), (14, 16),
(23, 25) , (25,27), (23,24), (11,12), (11,24) ,(12,23),
(24,26),(26,28)
# Continue with other connections based on your skeleton
]
# Add lines for each connection
for start, end in connections:
fig.add_trace(go.Scatter3d(
x=[x_coords[start], x_coords[end]],
y=[y_coords[start], y_coords[end]],
z=[z_coords[start], z_coords[end]],
mode='lines',
line=dict(color='gray', width=2)
))
# Set axis labels and show the plot
fig.update_layout(scene=dict(
xaxis_title='X',
yaxis_title='Y',
zaxis_title='Z',
camera = dict(
eye=dict(x=1.5, y=1.5, z=0) # Modify 'z' for zoom level as needed
)
))
fig.show()
def showAudioFrames(spectrumData , sampleRate):
# Plot the spectrogram
plt.figure(figsize=(10, 6))
# Creating our Graph
librosa.display.specshow(
librosa.amplitude_to_db(spectrumData, ref=np.max),
sr=sampleRate,
hop_length=512,
x_axis="time",
y_axis="log"
)
# Defining our graph attributes ->
plt.colorbar(format="%+2.0f dB")
plt.title("Spectrogram")
plt.xlabel("Time (s)")
plt.ylabel("Frequency (Hz)")
plt.tight_layout()
# Save the plot as an image or HTML file
plt.savefig("spectrogram.png")
plt.show()
#Defining our test file
#testPath = "/Users/teaguesangster/Code/Python/CS450/DataSetup/VideoFrames/Only Girl Rihanna/frame_0751.png"
# Running our test to get our data from one of our file paths
#pointsTo3DSkeleton(convertFrameIntoPose(testPath))