-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
127 lines (116 loc) · 4.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
from importlib import import_module
from utils import Flags, print_arguments
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_type",
type=str,
default="all",
help="""
학습 방식 설정
- 'all':
Main 모델(Pix2Pix) 학습 후 Postprocessing 모델(HINet) 학습
Postprocessing 모델(HINet)의 경우 다음의 두 단계로 구성
- Phase 1. Input: 주어진 데이터 input, Label: 주어진 데이터 label
- Phase 2. Input: Main 모델(Pix2Pix) output, Label: 주어진 데이터 label
- 'pix2pix': Pix2Pix 모델 개별 학습
- 'hinet': HINet 모델 개별 학습
""",
)
parser.add_argument(
"--config_pix2pix",
type=str,
default="./configs/Pix2Pix.yaml",
help="Pix2Pix 모델 configuration 파일 경로",
)
parser.add_argument(
"--config_hinet_phase1",
type=str,
default="./configs/HINet_phase1.yaml",
help="HINet 모델(phase1) configuration 파일 경로",
)
parser.add_argument(
"--config_hinet_phase2",
type=str,
default="./configs/HINet_phase2.yaml",
help="HINet 모델(phase2) configuration 파일 경로",
)
args = parser.parse_args()
# exception
if args.train_type not in ["pix2pix", "hinet", "all"]:
raise ValueError("Choose 'train_type' one of 'all', 'pix2pix', 'hinet'")
if not os.path.isfile(args.config_pix2pix):
raise ValueError(f"There's no file '{args.config_pix2pix}'")
if not os.path.isfile(args.config_hinet_phase1):
raise ValueError(f"There's no file '{args.config_hinet_phase1}'")
if not os.path.isfile(args.config_hinet_phase2):
raise ValueError(f"There's no file '{args.config_hinet_phase2}'")
# train
if args.train_type == "all": # train all necessary models
pix2pix_args = Flags(args.config_pix2pix).get()
hinet_phase1_args = Flags(args.config_hinet_phase1).get()
hinet_phase2_args = Flags(args.config_hinet_phase2).get()
if pix2pix_args.network.name != "pix2pix":
raise ValueError(
"Network work name is not equal to 'pix2pix'. check configuration file."
)
if hinet_phase1_args.network.name != "hinet":
raise ValueError(
"Network work name is not equal to 'hinet'. check configuration file."
)
if hinet_phase2_args.network.name != "hinet":
raise ValueError(
"Network work name is not equal to 'hinet'. check configuration file."
)
# train Pix2Pix
train_module = getattr(
import_module(f"train_modules.train_{pix2pix_args.network.name}"), "train"
)
print("<<< All Train I. Train Pix2Pix >>>")
print_arguments(pix2pix_args)
train_module(pix2pix_args)
# train HINet
train_module = getattr(
import_module(f"train_modules.train_{hinet_phase1_args.network.name}"),
"train",
)
# phase 1
# input: origin input image
# label: origin label image
print("<<< All Train II. Train HINet(Phase 1) >>>")
print_arguments(hinet_phase1_args)
train_module(hinet_phase1_args, phase=1)
# phase 2
# input: main model(pix2pix) output image
# label: origin label image
print("<<< All Train III. Train HINet(Phase 2) >>>")
print_arguments(hinet_phase2_args)
train_module(hinet_phase2_args, phase=2)
# train pix2pix in single
elif args.train_type == "pix2pix":
args = Flags(args.config_pix2pix).get()
if args.network.name != "pix2pix":
raise ValueError(
"Network work name is not equal to 'pix2pix'. Check configuration file."
)
train_module = getattr(
import_module(f"train_modules.train_{args.network.name}"), "train"
)
print("<<< Train Pix2Pix in Single >>>")
print_arguments(args)
train_module(args)
# train hinet in single
elif args.train_type == "hinet":
args = Flags(args.config_hinet_phase1).get()
if args.network.name != "hinet":
raise ValueError(
"Network work name is not equal to 'hinet'. heck configuration file."
)
train_module = getattr(
import_module(f"train_modules.train_{args.network.name}"), "train"
)
print("<<< Train HINet in Single >>>")
print_arguments(args)
train_module(args, phase=1)