-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdifferential_preserver_test.py
420 lines (334 loc) · 20 KB
/
differential_preserver_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from spark_privacy_preserver.differential_privacy import DPLib
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, DoubleType
import unittest
from random import random, randint, choice
import json
import sys
import contextlib
import io
import time
class DPLibTestCase(unittest.TestCase):
def test_init(self):
for case in epsilon_true:
dp = DPLib(global_epsilon=case, global_delta=0.5)
self.assertEqual(dp._DPLib__epsilon, case, msg='testing method: `init`, case: `epsilon_true` failed')
del dp
for case in epsilon_false:
try:
DPLib(global_epsilon=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Epsilon must be non-negative'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')))
continue
for case in delta_true:
dp = DPLib(global_epsilon=0.1, global_delta=case)
self.assertEqual(dp._DPLib__delta, case, msg='testing method: `init`, case: `delta_true` failed')
del dp
for case in delta_false:
try:
DPLib(global_epsilon=0, global_delta=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Delta must be in range [0, 1]'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')),
msg='testing method: `init`, case: `delta_false` failed')
continue
dp = DPLib(sdf=sdf_true)
self.assertEqual(dp.sdf, sdf_true, msg='testing method: `init`, case: `sdf_true` failed')
del dp
for case in sdf_false:
try:
DPLib(sdf=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertEqual(first=(str(exc_type), str(exc_msg)),
second=("<class 'TypeError'>", 'Given sdf is not a Spark DataFrame'),
msg='testing method: `init`, case: `sdf_false` failed')
continue
def test_set_global_epsilon_delta(self):
for case in epsilon_true:
dp = DPLib()
dp.set_global_epsilon_delta(epsilon=case, delta=0.5)
self.assertEqual(dp._DPLib__epsilon, case,
msg='testing method: `set_global_epsilon_delta`, case: `epsilon_true` failed')
del dp
for case in epsilon_false:
try:
dp = DPLib()
dp.set_global_epsilon_delta(epsilon=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Epsilon must be non-negative'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')),
msg='testing method: `set_global_epsilon_delta`, case: `epsilon_false` failed')
del dp
continue
for case in delta_true:
dp = DPLib(global_epsilon=0.1, global_delta=case)
self.assertEqual(dp._DPLib__delta, case,
msg='testing method: `set_global_epsilon_delta`, case: `delta_true` failed')
del dp
for case in delta_false:
try:
DPLib(global_epsilon=0, global_delta=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Delta must be in range [0, 1]'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')),
msg='testing method: `set_global_delta, case: `delta_false` failed')
continue
def test_set_global_sensitivity(self):
for case in sensitivity_true:
dp = DPLib()
dp.set_global_sensitivity(case)
self.assertEqual(dp._DPLib__sensitivity, case,
msg='testing method: `set_global_sensitivity`, case: `sensitivity_true` failed')
del dp
for case in sensitivity_false:
try:
dp = DPLib()
dp.set_global_sensitivity(case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Sensitivity must be numeric'),
("<class 'ValueError'>", 'Sensitivity must be strictly positive')),
msg='testing method: `set_global_sensitivity`, case: `sensitivity_false` failed')
del dp
continue
def test_set_sdf(self):
dp = DPLib(sdf=sdf_true)
self.assertEqual(dp.sdf, sdf_true, msg='testing method: `set_sdf`, case: `delta_true` failed')
del dp
for case in sdf_false:
try:
DPLib(sdf=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertEqual(first=(str(exc_type), str(exc_msg)),
second=("<class 'TypeError'>", 'Given sdf is not a Spark DataFrame'),
msg='testing method: `set_sdf`, case: `sdf_false` failed')
continue
def test_set_column(self):
dp = DPLib()
with self.assertRaises(ValueError) as cm:
dp.set_column(column_name='n', category='numeric')
self.assertEqual(str(cm.exception), 'Add an eligible Spark DataFrame before adding columns',
msg='testing method: `set_column`, case: `add_sdf_false` failed')
dp.set_sdf(sdf_true)
column_name_false = [12, 2 + 4j, dp, sdf_true, 'string', 'column1']
for case in column_name_false:
with self.assertRaises(ValueError) as cm:
dp.set_column(column_name=case, category='numeric')
self.assertEqual(str(cm.exception), 'Cannot find column in given DataFrame',
msg='testing method: `set_column`, case: `column_name_false` failed')
category_false = column_name_false + ['n', 'b', 'number', 'bool', 'integer']
for case in category_false:
with self.assertRaises(ValueError) as cm:
dp.set_column(column_name='n', category=case)
self.assertEqual(str(cm.exception), 'category must be either `numeric` or `boolean`',
msg='testing method: `set_column`, case: `category_false` failed')
with self.assertRaises(ValueError) as cm:
dp.set_column(column_name='n', category='numeric')
self.assertEqual(str(cm.exception), 'Epsilon must be set',
msg='testing method: `set_column`, case: `epsilon=None_false` failed')
for case in [val for val in epsilon_false if val is not None]:
try:
dp.set_column(column_name='n', category='numeric', epsilon=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Epsilon must be non-negative'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')),
msg='testing method: `set_column`, case: `epsilon_false` failed')
continue
for case in delta_false:
try:
dp.set_column(column_name='n', category='numeric', epsilon=0, delta=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Epsilon and delta must be numeric'),
("<class 'ValueError'>", 'Delta must be in range [0, 1]'),
("<class 'ValueError'>", 'Epsilon and Delta cannot both be zero')),
msg='testing method: `set_column`, case: `delta_false` failed')
continue
for case in sensitivity_false:
try:
dp.set_column(column_name='n', category='numeric', epsilon=0.00001, sensitivity=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Sensitivity must be numeric'),
("<class 'ValueError'>", 'Sensitivity must be strictly positive')),
msg='testing method: `set_column`, case: `sensitivity_false` failed')
continue
for case in range(len(lower_bound_false)):
try:
dp.set_column(column_name='n', category='numeric', epsilon=0.00001, sensitivity=10,
lower_bound=lower_bound_false[case], upper_bound=upper_bound_false[case])
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Bounds must be numeric'),
("<class 'ValueError'>", 'Lower bound must not be greater than upper bound')),
msg='testing method: `set_column`, case: `bound_false` failed')
continue
for case in round_false:
try:
dp.set_column(column_name='n', category='numeric', epsilon=0.00001, sensitivity=10,
round=case)
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertEqual(first=(str(exc_type), str(exc_msg)),
second=("<class 'TypeError'>", 'round must be positive integer'),
msg='testing method: `set_column`, case: `round_false` failed')
continue
for case in range(len(label1_false)):
try:
dp.set_column(column_name='b', category='boolean', epsilon=0.00001,
label1=label1_false[case], label2=label2_false[case])
except Exception:
exc_type, exc_msg, traceback = sys.exc_info()
self.assertIn(member=(str(exc_type), str(exc_msg)),
container=(("<class 'TypeError'>", 'Labels must be strings.'),
("<class 'ValueError'>", 'Labels must be non-empty strings'),
("<class 'ValueError'>", 'Labels must not match')),
msg='testing method: `set_column`, case: `label_false` failed')
continue
for case in label_sdf_false:
dp.set_sdf(case)
with self.assertRaises(ValueError) as cm:
dp.set_column(column_name='b', category='boolean', epsilon=0.00001,
label1='yes', label2='no')
self.assertEqual(str(cm.exception), 'Labels in column `b` does not match with labels entered',
msg='testing method: `set_column`, case: `label_sdf_false` failed')
continue
del dp
dp = DPLib(global_epsilon=0.00001, sdf=set_column_sdf)
dp.set_global_sensitivity(sensitivity=10)
dp.set_column(column_name='n', category='numeric')
dp.set_column(column_name='rn', category='numeric',
lower_bound=round(20000), upper_bound=round(80000),
round=2)
dp.set_column(column_name='b', category='boolean',
label1='yes', label2='no')
self.assertDictEqual(dp._DPLib__columns, set_column_true,
msg='testing method: `set_column`, case: `set_column_true` failed')
del dp
def test_drop_column(self):
dp = DPLib(global_epsilon=0.00001, sdf=sdf_true)
dp.set_global_sensitivity(sensitivity=10)
dp.set_column(column_name='n', category='numeric')
dp.set_column(column_name='rn', category='numeric',
lower_bound=round(20000), upper_bound=round(80000),
round=2)
dp.set_column(column_name='b', category='boolean',
label1='yes', label2='no')
dp.drop_column('n')
self.assertDictEqual(dp._DPLib__columns, drop_column_true,
msg='testing method: `drop_column`, case: `drop_column_true` failed')
dp.drop_column('*')
self.assertDictEqual(dp._DPLib__columns, {},
msg='testing method: `drop_column`, case: `drop_column_all` failed')
del dp
def test_get_config(self):
dp = DPLib(global_epsilon=0.00001, sdf=sdf_true)
dp.set_global_sensitivity(sensitivity=10)
dp.set_column(column_name='n', category='numeric')
dp.set_column(column_name='rn', category='numeric',
lower_bound=round(20000), upper_bound=round(80000),
round=2)
dp.set_column(column_name='b', category='boolean',
label1='yes', label2='no')
io_Obj = io.StringIO()
with contextlib.redirect_stdout(io_Obj):
dp.get_config()
config_str = io_Obj.getvalue()
self.assertEqual(config_str, get_config_true,
msg='testing method: `get_config`, case: `get_config_true` failed')
def test_execute(self):
dp = DPLib(global_epsilon=0.00001, sdf=sdf_true)
dp.set_global_sensitivity(sensitivity=10)
with self.assertRaises(ValueError) as cm:
dp.execute()
self.assertEqual(str(cm.exception), 'No columns added for execution',
msg='testing method: `execute`, case: `execute_false` failed')
del dp
def test_execution_speed(self):
dp = DPLib(global_epsilon=0.00001, sdf=set_column_sdf)
dp.set_global_sensitivity(sensitivity=10)
dp.set_column(column_name='n', category='numeric')
dp.set_column(column_name='rn', category='numeric',
lower_bound=round(20000), upper_bound=round(80000),
round=2)
dp.set_column(column_name='b', category='boolean',
label1='yes', label2='no')
start_time = time.time_ns()
dp.execute()
finish_time = time.time_ns()
self.assertLessEqual((finish_time - start_time) / set_column_sdf.count(), 2000,
msg='testing execution speed, test: failed')
del dp
if __name__ == '__main__':
def generate_rand_tuple(num_range=100000, choice_list=('yes', 'no')):
number_1 = randint(0, num_range) + random()
number_2 = randint(0, num_range) + random()
string = choice(choice_list)
return number_1, number_2, string
spark = SparkSession.builder \
.master('local') \
.appName('differential_privacy') \
.config('spark.some.config.option', 'some-value') \
.getOrCreate()
spark.conf.set('spark.sql.execution.arrow.enabled', 'true')
schema = StructType([
StructField('n', DoubleType()),
StructField('rn', DoubleType()),
StructField('b', StringType())
])
epsilon_true = [0, 0.00000001, 1000, 100000.000001, float('inf')]
epsilon_false = [0, -4, -5.5, float('-inf'), 3 + 6j, -4j, 'string', None]
delta_true = [0.0000000000000000001, 0.9999999999999999, 0, 1]
delta_false = [0, -0.00000001, 1.000000000000001, -4, 'string', None]
sdf_true = spark.createDataFrame(data=[generate_rand_tuple() for _ in range(10)], schema=schema)
sdf_false = [[1, 2, 3], (1, 2, 3), 'string', 5.7, 4 + 6j, sdf_true.rdd]
sensitivity_true = [0.0000000000000000001, float('inf')]
sensitivity_false = [0, -1.5, 3 - 5j, float('-inf'), 'string', None]
lower_bound_false = [4 - 2j, 200, float('inf'), 45, 'string', spark]
upper_bound_false = [4 + 2j, 199.9999999999999999, float('inf'), -45, 'string', spark]
round_false = [0.0000000000000000001, 20.001, -5, -0.9999, float('inf')]
label1_false = ['yes', 'no', 1, sdf_true, float('inf'), '']
label2_false = ['yes', 'no', -3, sdf_true.rdd, float('-inf'), '']
label_sdf_false = [spark.createDataFrame(
data=[generate_rand_tuple(choice_list=('male', 'female', 'undefined')) for _ in range(100)], schema=schema),
spark.createDataFrame(
data=[generate_rand_tuple(choice_list=('yes', 'no', 'can\'t say for sure', 'I don\'t know'))
for _ in range(100)], schema=schema),
spark.createDataFrame(data=[generate_rand_tuple(choice_list=('1', 'no')) for _ in range(100)],
schema=schema),
spark.createDataFrame(data=[generate_rand_tuple(choice_list=('yes', '2')) for _ in range(100)],
schema=schema)]
set_column_sdf = spark.createDataFrame(data=[generate_rand_tuple() for _ in range(100000)], schema=schema)
set_column_true = json.loads('{"n": {"category": "numeric", "epsilon": 1e-05, "delta": 0.0, "sensitivity": 10.0, '
'"lower_bound": -Infinity, "upper_bound": Infinity}, "rn": {"category": "numeric", '
'"epsilon": 1e-05, "delta": 0.0, "sensitivity": 10.0, "lower_bound": 20000, '
'"upper_bound": 80000, "round": 2}, "b": {"category": "boolean", "epsilon": 1e-05, '
'"delta": 0.0, "label1": "yes", "label2": "no"}}')
drop_column_true = json.loads('{"rn": {"category": "numeric", "epsilon": 1e-05, "delta": 0.0, "sensitivity": '
'10.0, "lower_bound": 20000, "upper_bound": 80000, "round": 2}, "b": {"category": '
'"boolean", "epsilon": 1e-05, "delta": 0.0, "label1": "yes", "label2": "no"}}')
get_config_true = 'Global parameters\n-----------------\n\nEpsilon 1e-05\nDelta 0.0\nSensitivity 10.0\n\n\nColumn specific parameters\n--------------------------\n\n| Column name | Column category | Epsilon | Delta | Sensitivity | Lower bound | Upper bound | Round | Label 1 | Label 2 |\n|---------------|-------------------|-----------|---------|---------------|---------------|---------------|---------|-----------|-----------|\n| n | numeric | 1e-05 | 0.0 | 10.0 | -inf | inf | -- | -- | -- |\n| rn | numeric | 1e-05 | 0.0 | 10.0 | 20000 | 80000 | 2 | -- | -- |\n| b | boolean | 1e-05 | 0.0 | -- | -- | -- | -- | yes | no |\n'
unittest.main()
spark.stop()