-
Notifications
You must be signed in to change notification settings - Fork 5
/
clean_chart.py
300 lines (239 loc) · 11.1 KB
/
clean_chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from PIL import Image, ImageDraw, ImageStat
import numpy as np
import cv2
def polygon2bbox(polygon_dic):
x_coords = []
y_coords = []
for item in polygon_dic.keys():
if "x" in item:
x_coords.append(polygon_dic[item])
elif "y" in item:
y_coords.append(polygon_dic[item])
x0 = min(x_coords)
y0 = min(y_coords)
x1 = max(x_coords)
y1 = max(y_coords)
return (x0, y0, x1, y1)
def get_legend_boxes(annot):
# ============================================================
# This is used to extract the text bbox and text role from task3 field in gt
text_role_dic_id = {}
id_text_bb_dic = {}
#Used role is what role you would like to extract,
#if you only want to process the legend area, then legend_label & legend_title is enough
for role in ['legend_label', 'legend_title']:
text_role_dic_id[role] = []
text_block_list = annot["task3"]["input"]["task2_output"]["text_blocks"]
for item in text_block_list:
item_id = item["id"]
if "polygon" in item:
polygon_dic = item["polygon"]
# Convert the polygon to the bbox
(bbo_x0, bbox_y0, bbo_x1, bbo_y1) = polygon2bbox(polygon_dic)
# id_text_bb_dic[item_id] = [x0, y0, x1, y1]
poly_x0,poly_x1,poly_x2,poly_x3,poly_y0,poly_y1,poly_y2,poly_y3 = polygon_dic.values()
id_text_bb_dic[item_id] = {"bbox":[bbo_x0, bbox_y0, bbo_x1, bbo_y1], "polygon":[poly_x0,poly_x1,poly_x2,poly_x3,poly_y0,poly_y1,poly_y2,poly_y3]}
else:
# Handle cleaning of adobe synth data
id_text_bb_dic[item_id] = {"bbox":[item['bb']['x0'], item['bb']['y0'],
item['bb']['x0']+item['bb']['width']-1, item['bb']['y0']+item['bb']['height']-1]}
text_role_list = annot["task3"]["output"]["text_roles"]
for item in text_role_list:
role = item["role"]
item_id = item["id"]
# if role in used_role:
if role not in text_role_dic_id.keys():
text_role_dic_id[role] = []
text_role_dic_id[role].append(item_id)
# ============================================================
# ============================================================
# Handle the legend patch and generate the legend area bbox
legend_area_bb_list = []
legend_patch_list = []
for item in annot["task5"]["output"]["legend_pairs"]:
x0 = item["bb"]["x0"]
y0 = item["bb"]["y0"]
x1 = x0 + item["bb"]["width"]
y1 = y0 + item["bb"]["height"]
legend_patch_list.append({"bbox":[x0,y0,x1,y1]})
for legend_id in text_role_dic_id["legend_title"] + text_role_dic_id["legend_label"]:
legend_area_bb_list.append(id_text_bb_dic[legend_id])
for bbox_item in legend_patch_list:
legend_area_bb_list.append(bbox_item)
return legend_area_bb_list
def get_plot_area(annot):
plot_area = annot['task6']['input']['task4_output']['_plot_bb']
img_plot_area = {key: max(value, 0) for key, value in plot_area.items()}
return img_plot_area
def get_legend_area(bbox_item_list):
if bbox_item_list == [] or {}:
return ()
bbox_list = []
# print(bbox_item_list)
for bbox_item in bbox_item_list:
# print(bbox_item["bbox"])
bbox_list.append(bbox_item["bbox"])
x0 = sorted(bbox_list, key = lambda i:i[0])[0][0]
y0 = sorted(bbox_list, key = lambda i:i[1])[0][1]
x1 = sorted(bbox_list, key = lambda i:i[2])[-1][2]
y1 = sorted(bbox_list, key = lambda i:i[3])[-1][3]
# color = (random.random()*255,random.random()*255,random.random()*255)
# cv2.rectangle(img,(int(x0),int(y0)),(int(x1),int(y1)),color,2)
# cv2.putText(img, bbox_name, (int(x0),int(y0)), cv2.FONT_HERSHEY_PLAIN, 1.2, color, 1, cv2.LINE_AA)
return (x0,y0,x1,y1)
def crop_to_plot_area(img, annot, crop_margin=1):
plot_area = get_plot_area(annot)
# print('crop_margin:', crop_margin)
plot_x = plot_area['x0'] + crop_margin; plot_y = plot_area['y0'] + crop_margin;
plot_w = plot_area['width'] - 2*crop_margin; plot_h = plot_area['height'] - 2*crop_margin
# print(img.shape)
# print(plot_area)
# print(plot_x, plot_y, plot_w, plot_h)
# crop out so we only have the plot area
cropped_img = img[plot_y:plot_y+plot_h, plot_x:plot_x+plot_w].copy()
# print(cropped_img.shape)
return cropped_img, (plot_x, plot_y)
def clean_nonline_elements(img, annot, legend_margin=1):
im = Image.fromarray(img)
js_obj = annot
imd = ImageDraw.Draw(im)
if js_obj['task6']['input']['task4_output'] is not None:
plot_bb = js_obj['task6']['input']['task4_output']['_plot_bb']
ploth, plotw , x0, y0 = plot_bb['height'], plot_bb['width'], plot_bb['x0'], plot_bb['y0']
ctp = js_obj['task6']['input']['task1_output']['chart_type']
tb = js_obj['task6']['input']['task2_output']['text_blocks']
legend_boxes = get_legend_boxes(annot=js_obj)
# lp = js_obj['task6']['input']['task5_output']['legend_pairs']
ln_data = js_obj['task6']['output']['visual elements']['lines']
x_axis = js_obj['task6']['input']['task4_output']['axes']['x-axis']
y_axis = js_obj['task6']['input']['task4_output']['axes']['y-axis']
for pt in x_axis :
x_, y_ = pt['tick_pt']['x'], pt['tick_pt']['y']
shape = [(x_, y_), (x_+2, y_+5)]
# print('axis tb', [(x_, y_), (x_+2, y_+5)])
cl = ImageStat.Stat(im).median
imd.rectangle(shape, fill =tuple(cl),outline=None)
for pt in y_axis :
x_, y_ = pt['tick_pt']['x'], pt['tick_pt']['y']
shape = [(x_, y_), (x_+5, y_+2)]
# print('axis tb', [(x_, y_), (x_+2, y_+5)])
cl = ImageStat.Stat(im).median
imd.rectangle(shape, fill =tuple(cl),outline=None)
## remove text box
for bx in tb :
poly = bx['polygon'] if 'polygon' in bx else bx['bb']
# print(poly)
# Handle adobe synth format..
if 'height' in poly:
x_min = poly['x0']
x_max = poly['x0'] + poly['width'] - 1
y_min = poly['y0']
y_max = poly['y0'] + poly['height'] - 1
else:
x_min = min(int(poly['x0']), int(poly['x1']), int(poly['x2']), int(poly['x3']))
x_max = max(int(poly['x0']), int(poly['x1']), int(poly['x2']), int(poly['x3']))
y_min = min(int(poly['y0']), int(poly['y1']), int(poly['y2']), int(poly['y3']))
y_max = max(int(poly['y0']), int(poly['y1']), int(poly['y2']), int(poly['y3']))
# print(x_min,x_max, y_min,y_max)
# img_[y_min:y_max, x_min :x_max, :] = 255
shape = [(x_min, y_min), (x_max, y_max)]
# print('removed tb', [(x_min, y_min), (x_max, y_max)])
cl = ImageStat.Stat(im).median
imd.rectangle(shape, fill =tuple(cl),outline=None)
## remove legend
if legend_boxes:
x_min, y_min, x_max, y_max = get_legend_area(legend_boxes)
x_min -= legend_margin; y_min -= legend_margin
x_max += legend_margin; y_max += legend_margin
shape = [(x_min, y_min), (x_max, y_max)]
# print('removed leg', [(x_min, y_min), (x_max, y_max)])
cl = ImageStat.Stat(im).median
imd.rectangle(shape, fill = tuple(cl),outline=None)
# imd.rectangle(shape, fill=(0,0,0),outline=None)
# print('crop', (x0, y0, x0+plotw, y0+ploth))
# im = im.crop((x0, y0, x0+plotw, y0+ploth))
return np.array(im)
return img
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# (Borrowed from imutils)initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image, dim, interpolation=inter)
# return the resized image
return resized
def _get_interpolation(inter_string):
# In case it's already an interpolation code..
if isinstance(inter_string, int):
return inter_string
inter_string = inter_string.lower().strip()
inter_methods = {'area':cv2.INTER_AREA,
'linear':cv2.INTER_LINEAR,
'cubic':cv2.INTER_CUBIC,
'nearest':cv2.INTER_NEAREST}
if inter_string not in inter_methods:
raise Exception("Unknown Interpolation Method: '{}'".format(inter_string))
return inter_methods[inter_string]
def padd_square(img, desired_size, padd_color=255):
"""
resize and square padd
img: np.array of image shaped (h,w,c)
desired_size: int size of the image after resize and padding
"""
if padd_color==255 and img.ndim == 3:
padd_color = [255, 255, 255]
size = img.shape[:2]
delta_w = desired_size - size[1]
delta_h = desired_size - size[0]
top, bottom = delta_h//2, delta_h-(delta_h//2)
left, right = delta_w//2, delta_w-(delta_w//2)
new_img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=padd_color)
return new_img, (left, top)
def get_clean_input(img, annot, crop_to_plot=True, remove_text_legend=True, legend_margin=1, crop_margin=1, max_size=512, padd=True):
"""
img: rgb image of line chart
annot: json obj of PMC groundtruth
max_size: resize max dimension of input to this size (maintaining aspect ratio)
padd: whether to square padd the image after resizing
crop_to_plot: whether to crop the chart image to plot area based on annotation provided
remove_text_legend: whether to remove the text and legend boxes from chart image based on annotation provided
returns: rgb image of cleaned line chart with plot area cropped
"""
clean_img = img if not remove_text_legend else clean_nonline_elements(img, annot, legend_margin)
if crop_to_plot:
clean_img, (tx_crop, ty_crop)= crop_to_plot_area(clean_img, annot, crop_margin)
else:
tx_crop, ty_crop = 0,0
sx, sy= 1,1
tx_padd, ty_padd = 0,0
h_cropped, w_cropped = clean_img.shape[:2]
if max_size:
if clean_img.shape[0] > clean_img.shape[1]:
clean_img = resize(clean_img, height=max_size)
else:
clean_img = resize(clean_img, width=max_size)
sx, sy = float(clean_img.shape[1])/w_cropped, float(clean_img.shape[0])/h_cropped
if padd:
clean_img, (tx_padd, ty_padd) = padd_square(clean_img, max_size)
transformation = (sx, sy, tx_crop, ty_crop, tx_padd, ty_padd)
return clean_img, transformation
# with open(annot_path, 'r') as f:
# annot = json.load(f)