-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cnn.py
executable file
·256 lines (211 loc) · 7.96 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python
import os
import glob
import lycon
import cv2
import pandas as pd
import tarfile
import shutil
import datetime
import numpy as np
import math
import pickle
import read_settings
import datasets
import models
import matplotlib.pyplot as plt
import tensorflow as tf
#gpus = tf.config.experimental.list_physical_devices('GPU')
#tf.config.experimental.set_memory_growth(gpus[0], True)
#tf.config.experimental.set_virtual_device_configuration(gpus[0],
# [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=20480)])
#################################### Settings ####################################
## Read settings
global_settings = read_settings.check_global()
cnn_settings = read_settings.check_cnn()
# Input data
instrument = global_settings['input_data']['instrument']
data_dir = os.path.join('data', instrument)
frac = global_settings['input_data']['frac']
# Random state
random_state = global_settings['random_state']
# CNN settings
batch_size = cnn_settings['data']['batch_size']
px_del = cnn_settings['data']['px_del']
preserve_size = cnn_settings['data']['preserve_size']
augment = cnn_settings['data']['augment']
use_weights = cnn_settings['data']['use_weights']
weights = cnn_settings['data']['weights']
fc_layers_nb = cnn_settings['architecture']['fc_layers_nb']
fc_layers_size = cnn_settings['architecture']['fc_layers_size']
fc_layers_dropout = cnn_settings['architecture']['fc_layers_dropout']
classif_layer_dropout = cnn_settings['architecture']['classif_layer_dropout']
train_fe = cnn_settings['architecture']['train_fe']
lr_method = cnn_settings['compilation']['lr_method']
initial_lr = cnn_settings['compilation']['initial_lr']
decay_rate = cnn_settings['compilation']['decay_rate']
loss = cnn_settings['compilation']['loss']
resume = cnn_settings['training']['resume']
epochs = cnn_settings['training']['epochs']
workers = cnn_settings['training']['workers']
## Output
# Generate output directory pattern
if use_weights: # if using weigths
output_dir_patt = os.path.join('output', '_'.join(['cnn', 'w', instrument]))
else: # if not using weigths
output_dir_patt = os.path.join('output', '_'.join(['cnn', 'nw', instrument]))
# Look for previous outputs with same pattern
prev_output = glob.glob(output_dir_patt + '*')
prev_output.sort()
# Case of not resuming from previous CNN training
if not resume:
# If an previous output exists, make a tar.gz archive
if prev_output:
prev_output = prev_output[0]
with tarfile.open(prev_output + '.tar.gz', 'w:gz') as tar:
tar.add(prev_output, arcname=os.path.basename(prev_output))
tar.close()
# Delete directory with old output
shutil.rmtree(prev_output)
# Check if a directory exists for old outputs
old_output_dir = os.path.join('output', 'old')
# If it does not exist, create it
if not os.path.exists(old_output_dir):
os.makedirs(old_output_dir)
# Move tar.gz file with old outputs
shutil.move(prev_output + '.tar.gz', os.path.join(old_output_dir, os.path.basename(prev_output) + '.tar.gz'))
# Create a new output directory
output_dir = '_'.join([output_dir_patt, datetime.datetime.now().strftime('%Y%m%d-%H%M%S-%f')])
print(f'Creating new output directory {output_dir}')
os.mkdir(output_dir)
# Case of resuming from previous CNN training
else:
# Check that settings are similar as previous ones
read_settings.check_previous_cnn_settings(global_settings, cnn_settings, prev_output)
# Look for saved model in most recent output
saved_models = glob.glob(os.path.join(prev_output[-1], 'model.last.epoch.*.hdf5'))
saved_models.sort()
# Case of an existing previous output to resume from
if len(saved_models) > 0:
# Set output dir to the most recent previous output
output_dir = prev_output[-1]
# Choose most recent model
saved_model = saved_models[-1]
print(f'Resuming training from {output_dir}, found saved model {os.path.basename(saved_model)}')
# Case of no existing previous output to resume from
else:
# Create a new output directory
output_dir = '_'.join([output_dir_patt, datetime.datetime.now().strftime('%Y%m%d-%H%M%S-%f')])
print(f'No previous training to resume from, creating new output directory {output_dir}')
os.mkdir(output_dir)
# Write settings to output directory
read_settings.write_cnn_settings(global_settings, cnn_settings, output_dir)
##################################################################################
## Read data for CNN
df_train, df_valid, df_test, df_classes, df_comp = datasets.read_data_cnn(
path=os.path.join(data_dir, '_'.join([instrument, 'data.csv'])),
frac=frac,
random_state=random_state
)
# Write dataset composition to output_dir
df_comp.to_csv(os.path.join(output_dir, 'df_comp.csv'), index=True)
# Number of plankton classes to predict
nb_classes = len(df_classes)
# Generate class weights
class_weights = None
if use_weights:
class_counts = df_train.groupby('classif_id').size()
count_max = 0
class_weights = {}
for idx in class_counts.items():
count_max = (idx[1], count_max) [idx[1] < count_max]
for i,idx in enumerate(class_counts.items()):
if weights == 'i_f': # Weights computed with inverse frequency
class_weights.update({i : count_max / idx[1]})
elif weights == 'sqrt_i_f': # # Weights computed with square root of inverse frequency
class_weights.update({i : math.sqrt(count_max / idx[1])})
## Generate batches
train_batches = datasets.DataGenerator(
df=df_train,
classes=df_classes.classif_id.tolist(),
data_dir=data_dir,
batch_size=batch_size,
augment=augment,
px_del=px_del,
random_state=random_state
)
valid_batches = datasets.DataGenerator(
df=df_valid,
classes=df_classes.classif_id.tolist(),
data_dir=data_dir,
batch_size=batch_size,
augment=False, # do not augment or shuffle validation data
shuffle=False,
px_del=px_del,
random_state=random_state
)
test_batches = datasets.DataGenerator(
df=df_test,
classes=df_classes.classif_id.tolist(),
data_dir=data_dir,
batch_size=batch_size,
augment=False, # do not augment or shuffle test data
shuffle=False,
px_del=px_del,
random_state=random_state
)
for image_batch, label_batch in train_batches:
print('Image batch shape: ', image_batch.shape)
print('Label batch shape: ', label_batch.shape)
break
## Case of not resuming from previous training
if not resume:
## Generate CNN
my_cnn = models.create_cnn(
fc_layers_nb,
fc_layers_dropout,
fc_layers_size,
classif_layer_dropout,
classif_layer_size=nb_classes,
train_fe=train_fe,
glimpse=True
)
## Compile CNN
my_cnn = models.compile_cnn(
my_cnn,
lr_method=lr_method,
initial_lr=initial_lr,
steps_per_epoch=len(train_batches),
decay_rate=decay_rate,
loss=loss
)
# Set firts epoch to 0
initial_epoch = 0
# Declare no previous training history
prev_history = None
## Case of resuming from previous training
else:
my_cnn, initial_epoch, prev_history = models.load_cnn(saved_model, glimpse = True)
## Train CNN
history, best_epoch = models.train_cnn(
model=my_cnn,
prev_history=prev_history,
train_batches=train_batches,
valid_batches=valid_batches,
batch_size=batch_size,
initial_epoch=initial_epoch,
epochs=epochs+initial_epoch,
class_weights=class_weights,
output_dir=output_dir,
workers=workers,
)
## Predict test batches and evaluate CNN
models.predict_evaluate_cnn(
model=my_cnn,
best_epoch=best_epoch,
batches=test_batches,
true_classes = np.array(df_test.classif_id.tolist()),
df_classes=df_classes,
output_dir=output_dir,
workers=workers,
)