forked from MarcSchotman/4cams-calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
513 lines (377 loc) · 15.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import numpy as np
import csv, os
import cv2 as cv
import time
import pptk
import requests
def download_file_from_google_drive(id, destination):
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params = { 'id' : id }, stream = True)
token = get_confirm_token(response)
if token:
params = { 'id' : id, 'confirm' : token }
response = session.get(URL, params = params, stream = True)
save_response_content(response, destination)
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination):
CHUNK_SIZE = 32768
with open(destination, "wb") as f:
for chunk in response.iter_content(CHUNK_SIZE):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
def download_model_weights():
print("Downloading model weights from Marc Schotman's Google Drive! This might take a minute.")
file_id = '1-Ngc8lqEdw4P4ZTEWKHW_dGw_jvajR09'
destination = 'Data/NNModel/latest_model.ckpt.data-00000-of-00001'
print("\tDownloading latest_model.ckpt.data-00000-of-00001...")
download_file_from_google_drive(file_id, destination)
destination = 'Data/NNModel/latest_model.ckpt.index'
file_id = "188TpeiPmXV2_S9296Ac1A_6QvY6IZw8E"
print("\tDownloading latest_model.ckpt.index...")
download_file_from_google_drive(file_id, destination)
file_id = "1Z9YaZ2P95r2LSBywQeaIXesk-2FQ0TYf"
destination = 'Data/NNModel/latest_model.ckpt.meta'
print("\tDownloading latest_model.ckpt.meta...")
download_file_from_google_drive(file_id, destination)
def points_side2side(input_ply):
(r,c) = input_ply.shape
if r ==3:
points = np.ones((4,c))
points[0:3, :] = input_ply
elif c==3:
points = np.ones((4,r))
points[0:3,:] = np.transpose(input_ply)
else:
points=input_ply
number_squares = 6
size_squares= 0.042
thickness_plate = 0.005
#ASSUMES SIZE AND NUMBER OF SQUARES
#DURING NORMAL CALIBRATION
R = np.array([[-1,0,0],
[0,1,0],
[0,0,-1]])
translation_volans_asus = np.array([number_squares*size_squares,0,thickness_plate])
H = np.zeros((4,4))
H[0:3,0:3] = R
H[0:3,3] = translation_volans_asus
H[3,3] = 1
points = np.matmul(H,points)
points = points[0:3,:]
return np.transpose(points)
def make_color_array(len_plot_points, color):
color_array = np.zeros((len_plot_points,3))
R,G,B = color
color_array[:,0] = R; color_array[:,1] = G; color_array[:,2] = B
return color_array
def timer():
now = time.localtime(time.time())
return '%sm:%ss'%(now[4], now[5])
def make_list(extrinsics):
list_extr = re.split(',', str(extrinsics), 7) # string converted into list
del list_extr[6]
# supress the string parts of the list
list_extr=[i.split(': ', 1)[1] for i in list_extr]
return list_extr
def draw(img, corners, imgpts):
corner = tuple(corners[0].ravel())
img = cv.line(img, corner, tuple(imgpts[0].ravel()), (0,255,0), 5)
img = cv.line(img, corner, tuple(imgpts[1].ravel()), (0,0,255), 5)
img = cv.line(img, corner, tuple(imgpts[2].ravel()), (255,0,0), 5)
return img
def get_color_intr_depth2color_extr(path_bag):
# read the file .bag # https://github.com/IntelRealSense/librealsense/issues/314
no_frames_cnt = 0
while True:
pipeline = rs.pipeline()
cfg = rs.config()
cfg.enable_device_from_file(path_bag)
pipe_profile = pipeline.start(cfg)
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
if not depth_frame.get_data() or not color_frame.get_data():
no_frames_cnt+=1
if no_frames_cnt < 50:
continue
else:
raise Exception("ERROR in `get_color_intr_depth2color_extr()`: Could not find BOTH a color and depth frame....")
# Get the Intrinsics & Extrinsics
color_intrin = color_frame.profile.as_video_stream_profile().intrinsics
depth_to_color_extrin = depth_frame.profile.get_extrinsics_to(color_frame.profile)
trans_depth2color = np.zeros((4,4))
trans_depth2color[0:3,0:3] = np.reshape(depth_to_color_extrin.rotation, (3,3))
trans_depth2color[0:3,3] = depth_to_color_extrin.translation
trans_depth2color[3,3] = 1
pipeline.stop()
break
color_intrin = make_list(color_intrin)
# intrinisic matrices
color_intrin = make_intrinsic_matrix(color_intrin)
return color_intrin, trans_depth2color
def get_values_from_csv(path):
return np.loadtxt(path, delimiter =';', usecols=[0,1,2,3,4,5])
# build the intrinsic matrix associated to val_intr, which is : [width, height, ppx, ppy, fx, fy]
def make_intrinsic_matrix(val_intr):
intr_arr= np.zeros((3,3))
intr_arr[0,0] = val_intr[4]
intr_arr[1,1] = val_intr[5]
intr_arr[0,2] = val_intr[2]
intr_arr[1,2] = val_intr[3]
intr_arr[2,2] = 1
return intr_arr
def remove_outliers(points, labels = 1, max_std = 3):
(r,c) = points.shape
if r == 3:
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
elif c == 3:
X = points[:,0]
Y = points[:,1]
Z = points[:,2]
x_mean = np.mean(X)
x_std = np.std(X)
y_mean = np.mean(Y)
y_std = np.std(Y)
z_mean = np.mean(Z)
z_std = np.std(Z)
#Outliers defined as being further then 3 times std from the mean
x_outliers1 = np.array([X > x_mean + max_std*x_std], dtype = np.bool)
x_outliers2 = np.array([X < x_mean - max_std*x_std], dtype = np.bool)
y_outliers1 = np.array([Y > y_mean + max_std*y_std], dtype = np.bool)
y_outliers2 = np.array([Y < y_mean - max_std*y_std], dtype = np.bool)
z_outliers1 = np.array([Z > z_mean + max_std*z_std], dtype = np.bool)
z_outliers2 = np.array([Z < z_mean - max_std*z_std], dtype = np.bool)
#gets indices where any of the booleans x_outliers1 ... z_outliers2 are True
indices_to_delete = np.where(np.logical_or.reduce((x_outliers1, x_outliers2, y_outliers1, y_outliers2, z_outliers1, z_outliers2)))
if c == 3:
points_out = np.delete(points,indices_to_delete, axis = 0)
elif r == 3:
points_out = np.delete(points,indices_to_delete, axis = 1)
if not isinstance(labels, int):
labels_out = np.delete(labels, indices_to_delete, axis = 0)
return points_out, labels_out
def load_PLY(path_ply):
if not path_ply.endswith(".ply") or not path_ply.endswith(".npy"):
if os.path.isfile(path_ply+".npy"):
path_ply = path_ply + ".npy"
elif os.path.isfile(path_ply+".ply"):
path_ply = path_ply + ".ply"
else:
raise Exception("ERROR in `load_PLY()`: PLY file not found.. PLY_path=%s"%path_ply)
# path_ply = path_ply + ".ply"
if path_ply.endswith(".npy"):
points = np.load(path_ply)
if points.shape[1] == 3:
points = points.T
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
else:
raise Exception("ERROR in `load_PLY()`: ply_path given is not found using extensions '.ply' and '.npy'... Given: %s"%path_ply)
return X, Y, Z
def load_NPY(path_npy):
points = np.load(path_npy)
if points.shape[1] == 3:
points = points.T
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
return X, Y, Z
# return the mean of the values contained in a list
def mean_list(list_el):
return np.sum(list_el)/len(list_el)
# concatenate lists of X, Y, Z with a list of 1
def concatenate_XYZ1(X_list, Y_list, Z_list):
conc_XYZ = np.ones((4, len(X_list)))
conc_XYZ[0, :] = X_list
conc_XYZ[1, :] = Y_list
conc_XYZ[2, :] = Z_list
return conc_XYZ
# extraction of the 3 first lines in a matrix
def extr_XYZ(proj):
return proj[0, :], proj[1, :], proj[2, :]
def make_plot(plot_points,colors, point_size = 0.0005):
#label colors should be raning from 0 to 1.
v = pptk.viewer(plot_points)
v.attributes(colors)
v.set(point_size=point_size)
def remove_mean(plot_points):
new_points = np.zeros(np.shape(plot_points))
new_points[:,0] = plot_points[:,0] - sum(plot_points[:,0])/len(plot_points[:,0])
new_points[:,1] = plot_points[:,1] - sum(plot_points[:,1])/len(plot_points[:,1])
new_points[:,2] = plot_points[:,2] - sum(plot_points[:,2])/len(plot_points[:,2])
return new_points
def crop_sides_x(plot_points, percentage, crop_direction = None, labels = None):
#needs a Nx3 matrix
min_x = min(plot_points[:,0])
max_x = max(plot_points[:,0])
L = max_x - min_x
#cut percentage/2 from both sides
crop_distance = (L*percentage/100) / 2
if crop_direction == None:
indices_too_low_x = np.ma.where(plot_points[:,0]<(min_x+crop_distance))
indices_too_high_x = np.ma.where(plot_points[:,0]>(max_x-crop_distance))
indices_to_delete = tuple(indices_too_low_x[0]) + tuple(indices_too_high_x[0])
elif crop_direction == 'Left' or crop_direction == 'left':
indices_too_low_x = np.ma.where(plot_points[:,0]<(min_x+crop_distance*2))
indices_to_delete = tuple(indices_too_low_x[0])
elif crop_direction == "Right" or crop_direction =='right':
indices_too_high_x = np.ma.where(plot_points[:,0]>(max_x-crop_distance*2))
indices_to_delete = tuple(indices_too_high_x[0])
else:
raise Exception("ERROR in crop_sides_x(): crop_direction should be either 'left' or 'right' ")
plot_points = np.delete(plot_points, indices_to_delete, axis = 0)
if labels is not None:
labels = np.delete(labels, indices_to_delete, axis = 0)
return plot_points, labels
def crop_sides(plot_points, percentage, XYorZ, crop_direction = 'both', labels = None):
#needs a Nx3 matrix
if XYorZ == 'x' or XYorZ == 'X':
col = 0
elif XYorZ == 'y' or XYorZ == 'Y':
col = 1
elif XYorZ == 'z' or XYorZ == 'Z':
col = 2
else:
raise Exception("ERROR in crop_sides_XYorZ(): XYorZ must be X, Y or Z ")
min_XYorZ = min(plot_points[:,col])
max_XYorZ = max(plot_points[:,col])
L = max_XYorZ - min_XYorZ
#cut percentage/2 from both sides
crop_distance = (L*percentage/100) / 2
if crop_direction =='both':
indices_too_low_XYorZ = np.ma.where(plot_points[:,col]<(min_XYorZ+crop_distance))
indices_too_high_XYorZ = np.ma.where(plot_points[:,col]>(max_XYorZ-crop_distance))
indices_to_delete = tuple(indices_too_low_XYorZ[0]) + tuple(indices_too_high_XYorZ[0])
elif crop_direction == 'Left' or crop_direction == 'left':
indices_too_low_XYorZ = np.ma.where(plot_points[:,col]<(min_XYorZ+crop_distance*2))
indices_to_delete = tuple(indices_too_low_XYorZ[0])
elif crop_direction == "Right" or crop_direction =='right':
indices_too_high_XYorZ = np.ma.where(plot_points[:,col]>(max_XYorZ-crop_distance*2))
indices_to_delete = tuple(indices_too_high_XYorZ[0])
else:
raise Exception("ERROR in crop_sides_XYorZ(): crop_direction should be either 'left' or 'right' ")
plot_points = np.delete(plot_points, indices_to_delete, axis = 0)
if labels is not None:
labels = np.delete(labels, indices_to_delete, axis = 0)
return plot_points, labels
def print_some(points):
(r,c) = points.shape
if r == 3:
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
elif c == 3:
X = points[:,0]
Y = points[:,1]
Z = points[:,2]
x_max = np.max(X)
x_min = np.min(X)
y_max = np.max(Y)
y_min = np.min(Y)
z_max = np.max(Z)
z_min = np.min(Z)
print("X: ",x_min, x_max)
print("Y: ",y_min, y_max)
print("Z: ",z_min, z_max)
def crop_default(points, cam):
##################################
#############DEFAULTS#############
##################################
if cam =="left" or cam == "Left":
#############LEFT CAM#############
min_x = -0.4; max_x = 0.8
min_y = -0.4; max_y = 0.6
min_z = -0.6; max_z = 0.2
if cam =="right" or cam == "Right":
#############LEFT CAM#############
min_x = -0.6; max_x = 0.4
min_y = -0.4; max_y = 0.6
min_z = -0.6; max_z = 0.2
(r,c) = points.shape
if r == 3:
X = points[0,:]
Y = points[1,:]
Z = points[2,:]
elif c == 3:
X = points[:,0]
Y = points[:,1]
Z = points[:,2]
#Outliers defined as being further then 3 times std from the mean
x_outliers1 = np.array([X > max_x], dtype = np.bool)
x_outliers2 = np.array([X < min_x], dtype = np.bool)
y_outliers1 = np.array([Y > max_y], dtype = np.bool)
y_outliers2 = np.array([Y < min_y], dtype = np.bool)
z_outliers1 = np.array([Z > max_z], dtype = np.bool)
z_outliers2 = np.array([Z < min_z], dtype = np.bool)
#gets indices where any of the booleans x_outliers1 ... z_outliers2 are True
indices_to_delete = np.where(np.logical_or.reduce((x_outliers1, x_outliers2, y_outliers1, y_outliers2, z_outliers1, z_outliers2)))
if c == 3:
points_out = np.delete(points,indices_to_delete, axis = 0)
elif r == 3:
points_out = np.delete(points,indices_to_delete, axis = 1)
return points_out
def get_label_info(csv_path):
"""
Retrieve the class names and label values for the selected dataset.
Must be in CSV format!
# Arguments
csv_path: The file path of the class dictionairy
# Returns
Two lists: one for the class names and the other for the label values
"""
if not os.path.isfile(csv_path):
raise Exception("ERROR in get_label_info: class_dict was not found...\nGiven:%s"%(csv_path))
filename, file_extension = os.path.splitext(csv_path)
if not file_extension == ".csv":
return ValueError("ERROR in get_label_info: File is not a CSV!")
csv_path = os.path.abspath(csv_path)
class_names = []
label_values = []
with open(csv_path, 'r') as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
header = next(file_reader)
for row in file_reader:
class_names.append(row[0])
label_values.append([int(row[1]), int(row[2]), int(row[3])])
# print(class_dict)
return np.array(label_values)
def get_average_label(labels, label_values, weight_void = 1):
labels_to_use = labels.astype(int)
labels_to_use = labels_to_use.tolist()
average_label = None
count = 0
for label in label_values :
label = label.tolist()
current_count = labels_to_use.count(label)
#counts void labels as less important if a smaller weight is given
if (label == [0,0,0]):
current_count = 0 #current_count * weight_void
if current_count > count:
average_label = label
count = current_count
if count == 0:
average_label = [0,0,0]
return average_label
def convert_label_to_one_hot(label, class_dict):
class_dict = os.path.abspath(class_dict)
label_values = get_label_info(class_dict)
# return label_out
semantic_map = []
for colour in label_values:
# colour_map = np.full((label.shape[0], label.shape[1], label.shape[2]), colour, dtype=int)
equality = np.equal(label, colour)
class_map = np.all(equality, axis = -1)
semantic_map.append(class_map)
semantic_map = np.stack(semantic_map, axis=-1)
# print("Time 2 = ", time.time() - st)
return semantic_map.astype(float)
def add_labels2points(points, labels):
return np.concatenate((points,labels), axis=1)