forked from MikhailStartsev/sp_tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loaders.py
208 lines (179 loc) · 10.3 KB
/
data_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import numpy as np
from functools import wraps
from collections import OrderedDict
import inspect
from arff_helper import ArffHelper
import util
EM_VALUE_MAPPING_DEFAULT = {
0: 'UNKNOWN',
1: 'FIX',
2: 'SACCADE',
3: 'SP',
4: 'NOISE',
10: 'PSO',
11: 'BLINK'
}
def write_arff_result(func):
@wraps(func)
def wrapper(*args, **kwargs):
output_arff_fname = inspect.getcallargs(func, *args, **kwargs).get('output_arff_fname', None)
arff_obj = func(*args, **kwargs)
if output_arff_fname is not None:
with open(output_arff_fname, 'w') as arff_out:
ArffHelper.dump(arff_obj, arff_out)
return arff_obj
return wrapper
def load_ARFF_as_arff_object(fname, eye_movement_type_attribute=None, eye_movement_type_mapping_dict=None):
"""
Load data from ARFF file format (with %@METADATA comments possible, see [1]).
We expect and verify that the arff file in question has the columns 'time', 'x' and 'y'
(for the timestamp, x and y position of the gaze point, respectively).
[1] http://ieeexplore.ieee.org/abstract/document/7851169/
:param fname: name of the .arff file
:param eye_movement_type_attribute: the attribute that should be treated as an indication
of eye movement type, optional;
should be either a string (name of the attribute), or True, in which case
it is substituted by the 'EYE_MOVEMENT_TYPE' string
:param eye_movement_type_mapping_dict: a dictionary that is used to convert values in column
@eye_movement_type_attribute to values in the following set:
['UNKNOWN', 'FIX', 'SACCADE', 'SP', 'NOISE', 'BLINK', 'NOISE_CLUSTER']
(as defined by recording_processor.py)
:return: an arff object
"""
# EM_VALUE_MAPPING_DEFAULT is the inverse of the dictionary used in evaluation.py.
# It can be used (with @eye_movement_type_mapping_dict='default'), for instance, to load the files where
# different eye movements are labelled by numerical values rather than by categorical (i.e. strings), due to
# arff file implementation in the framework that produced the labels, or some other reason.
# These values correspond to the ones used in our hand-labelling tool [1].
arff_obj = ArffHelper.load(open(fname))
# validate that we have all the essential data
assert all([attr in arff_obj['data'].dtype.names for attr in ['time', 'x', 'y']]), \
'File {} must contain at least "time", "x" and "y" columns'.format(fname)
if eye_movement_type_attribute is not None:
from recording_processor import EM_TYPE_ARFF_DATA_TYPE, EM_TYPE_ATTRIBUTE_NAME
if eye_movement_type_attribute is True:
eye_movement_type_attribute = EM_TYPE_ATTRIBUTE_NAME
assert eye_movement_type_attribute in arff_obj['data'].dtype.names, \
'Attribute {} is not present in the arff structure from file {}'.format(eye_movement_type_attribute,
fname)
# add the dedicated eye movement type column
arff_obj = util.add_eye_movement_attribute(arff_obj)
if eye_movement_type_mapping_dict is None:
# Check if the column is not yet of the right format.
# Only need to do this if the attribute is numerical, not categorical!
if arff_obj['data'][eye_movement_type_attribute].dtype.type is not np.string_:
correct_flag = all([item in EM_TYPE_ARFF_DATA_TYPE
for item in arff_obj['data'][eye_movement_type_attribute]])
else: # nothing to do here, already a categorical attribute
correct_flag = True
if correct_flag:
# already the perfect values in the respective column, just put the same values in the special column
arff_obj['data']['EYE_MOVEMENT_TYPE'] = arff_obj['data'][eye_movement_type_attribute]
return arff_obj
else:
# if None, act as 'default', if needed
eye_movement_type_mapping_dict = EM_VALUE_MAPPING_DEFAULT
elif eye_movement_type_mapping_dict == 'default':
eye_movement_type_mapping_dict = EM_VALUE_MAPPING_DEFAULT
assert isinstance(eye_movement_type_mapping_dict, dict), 'Argument @eye_movement_type_mapping_dict must be ' \
'either a dict, or None, or a string "default"'
assert all([v in EM_TYPE_ARFF_DATA_TYPE for v in eye_movement_type_mapping_dict.values()]), \
'All the values of the provided dictionary must be one of the following: {}'.format(EM_TYPE_ARFF_DATA_TYPE)
# now map using the dictionary
original_values = arff_obj['data'][eye_movement_type_attribute]
mapped_values = [eye_movement_type_mapping_dict[item] for item in original_values]
arff_obj['data']['EYE_MOVEMENT_TYPE'] = mapped_values
arff_obj['metadata']['filename'] = fname
return arff_obj
@write_arff_result
def load_DSF_coord_as_arff_object(fname, output_arff_fname=None):
"""
Load data from the given input .coord file and return an arff object.
This is a "model" function for writing new data adapters. To create a similarly-functioning method,
one would need to parse the file under @fname to extract an an arff object (dictionary with special keys)
ofr the following structure:
arff_obj = {
'relation': 'gaze_recording',
'description': '',
'data': [],
'metadata': {},
'attributes': [('time', 'INTEGER'),
('x', 'NUMERIC'),
('y', 'NUMERIC'),
('confidence', 'NUMERIC')]},
and fill in its fields.
'data' should first contain a numpy list of lists (the latter lists should be of the same length as 'attributes'.
'description' is just a string that gets put into the beginning of the file.
'metadata' is a dictionary, where the following keys are needed later on:
- "width_px", "height_px" - pixel dimensions of the video
- "width_mm", "height_mm" - physical dimensions of the video (in millimeters)
- "distance_mm" - distance between the observer's eyes and the monitor (in millimeters)
'attributes' (if additional ones are required) is a list of tuples, each tuple consisting of 2 elements:
- attribute name
- attribute type, can be INTEGER (=int64), NUMERIC (=float32), REAL (=double), or a list of strings, which
means it is a categorical attribute and only these values are accepted.
After 'data' is filled with appropriate lists of values, call
>> arff_obj = ArffHelper.convert_data_to_structured_array(arff_obj)
to (unsurprisingly) convert the data in @arff_obj['data'] into a structured numpy array for easier data access.
:param fname: name of .coord file.
:param output_arff_fname: if desired, this function can also convert the input .coord file into an .arff file,
that can be further used within this framework as well.
:return: an arff object with keywords:
"@RELATION, @DESCRIPTION, @DATA, @METADATA, @ATTRIBUTES".
"""
load_DSF_coord_as_arff_object.COMMENT_PREFIX = '#'
# the 'gaze ... ...' line has this many "fields" (defines the video resolution)
load_DSF_coord_as_arff_object.GAZE_FORMAT_FIELD_COUNT = 3
# Samples are in lines that look like <timestamp> <x> <y> <confidence>.
# In case of binocular tracking, these are the mean coordinates of the two eyes anyway.
load_DSF_coord_as_arff_object.GAZE_SAMPLE_FIELDS = 4
if not os.path.isfile(fname):
raise ValueError("No such .coord file named '{}' or incorrect input format of file name".format(fname))
arff_obj = {
'relation': 'gaze_recording',
'description': [],
'data': [],
'metadata': OrderedDict(),
'attributes': [('time', 'INTEGER'),
('x', 'NUMERIC'),
('y', 'NUMERIC'),
('confidence', 'NUMERIC')]}
description = []
for line in open(fname):
line = line.rstrip('\n ')
if line.startswith(load_DSF_coord_as_arff_object.COMMENT_PREFIX):
description.append(line[len(load_DSF_coord_as_arff_object.COMMENT_PREFIX):])
continue
try:
ll = line.split()
# cut out the first needed values (t, x, y, confidence), even if binocular tracking .coord file
ll = map(float, ll)[:load_DSF_coord_as_arff_object.GAZE_SAMPLE_FIELDS]
arff_obj['data'].append(ll)
except ValueError:
if line.startswith('gaze'):
words = line.split()
# This line should the following format:
# gaze <video width in pixels> <video height in px>
if len(words) == load_DSF_coord_as_arff_object.GAZE_FORMAT_FIELD_COUNT:
arff_obj['metadata']['width_px'] = float(words[1])
arff_obj['metadata']['height_px'] = float(words[2])
else:
raise ValueError("Incorrect gaze data format in file {}. "
"Correct format should be 'gaze <width_in_pixels> <height_in_pixels>'".
format(fname))
elif line.startswith('geometry'):
words = line.split()
# This line should the following format:
# geometry <property_name_1> <value in meters> <property_name_2> <value in meters> ...
# So we deem every second field as property name or value in meters, respectively.
# We convert the values to mm.
for i in xrange(1, len(words), 2):
key_mm = '{}_mm'.format(words[i])
value_mm = float(words[i + 1]) * 1e3
arff_obj['metadata'][key_mm] = value_mm
continue
arff_obj['metadata']['filename'] = fname
arff_obj['description'] = '\n'.join(description)
arff_obj = ArffHelper.convert_data_to_structured_array(arff_obj)
return arff_obj