-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_util_test.py
259 lines (231 loc) · 11.5 KB
/
eval_util_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_util."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import six
from six.moves import range
import tensorflow as tf
from object_detection import eval_util
from object_detection.core import standard_fields as fields
from object_detection.protos import eval_pb2
from object_detection.utils import test_case
class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
def _get_categories_list(self):
return [{'id': 1, 'name': 'person'},
{'id': 2, 'name': 'dog'},
{'id': 3, 'name': 'cat'}]
def _make_evaluation_dict(self,
resized_groundtruth_masks=False,
batch_size=1,
max_gt_boxes=None,
scale_to_absolute=False):
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
if batch_size == 1:
key = tf.constant('image1')
else:
key = tf.constant([str(i) for i in range(batch_size)])
detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
multiples=[batch_size, 1, 1])
detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
multiples=[batch_size, 1, 1, 1])
num_detections = tf.ones([batch_size])
groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
groundtruth_classes = tf.constant([1])
groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
if resized_groundtruth_masks:
groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
if batch_size > 1:
groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
multiples=[batch_size, 1, 1])
groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
multiples=[batch_size, 1])
groundtruth_instance_masks = tf.tile(
tf.expand_dims(groundtruth_instance_masks, 0),
multiples=[batch_size, 1, 1, 1])
detections = {
detection_fields.detection_boxes: detection_boxes,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
detection_fields.num_detections: num_detections
}
groundtruth = {
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
}
if batch_size > 1:
return eval_util.result_dict_for_batched_example(
image, key, detections, groundtruth,
scale_to_absolute=scale_to_absolute,
max_gt_boxes=max_gt_boxes)
else:
return eval_util.result_dict_for_single_example(
image, key, detections, groundtruth,
scale_to_absolute=scale_to_absolute)
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
max_gt_boxes=None,
scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['coco_detection_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op = metric_ops['DetectionBoxes_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertNotIn('DetectionMasks_Precision/mAP', metrics)
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
def test_get_eval_metric_ops_for_coco_detections_and_masks(
self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'coco_mask_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
_, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op_boxes)
sess.run(update_op_masks)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'coco_mask_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute,
resized_groundtruth_masks=True)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
_, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op_boxes)
sess.run(update_op_masks)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['unsupported_metric'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict()
with self.assertRaises(ValueError):
eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
def test_get_eval_metric_ops_for_evaluators(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend([
'coco_detection_metrics', 'coco_mask_metrics',
'precision_at_recall_detection_metrics'
])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
self.assertTrue(evaluator_options['coco_detection_metrics']
['include_metrics_per_category'])
self.assertTrue(
evaluator_options['coco_mask_metrics']['include_metrics_per_category'])
self.assertAlmostEqual(
evaluator_options['precision_at_recall_detection_metrics']
['recall_lower_bound'], eval_config.recall_lower_bound)
self.assertAlmostEqual(
evaluator_options['precision_at_recall_detection_metrics']
['recall_upper_bound'], eval_config.recall_upper_bound)
def test_get_evaluator_with_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
evaluator = eval_util.get_evaluators(eval_config, categories,
evaluator_options)
self.assertTrue(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
eval_config.recall_lower_bound)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
eval_config.recall_upper_bound)
def test_get_evaluator_with_no_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Even though we are setting eval_config.include_metrics_per_category = True
# and bounds on recall, these options are never passed into the
# DetectionEvaluator constructor (via `evaluator_options`).
self.assertFalse(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)
if __name__ == '__main__':
tf.test.main()