-
Notifications
You must be signed in to change notification settings - Fork 1
/
bts.py
307 lines (256 loc) · 15.6 KB
/
bts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from collections import namedtuple
import math
import torch
import torch.nn as nn
import torch.nn.functional as torch_nn_func
# This sets the batch norm layers in pytorch as if {'is_training': False, 'scale': True} in tensorflow
def bn_init_as_tf(m):
if isinstance(m, nn.BatchNorm2d):
m.track_running_stats = True # These two lines enable using stats (moving mean and var) loaded from pretrained model
m.eval() # or zero mean and variance of one if the batch norm layer has no pretrained values
m.affine = True
m.requires_grad = True
def weights_init_xavier(m):
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
class silog_loss(nn.Module):
def __init__(self, variance_focus):
super(silog_loss, self).__init__()
self.variance_focus = variance_focus
def forward(self, depth_est, depth_gt, mask):
d = torch.log(depth_est[mask]) - torch.log(depth_gt[mask])
return torch.sqrt((d ** 2).mean() - self.variance_focus * (d.mean() ** 2)) * 10.0
class atrous_conv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation, apply_bn_first=True):
super(atrous_conv, self).__init__()
self.atrous_conv = torch.nn.Sequential()
if apply_bn_first:
self.atrous_conv.add_module('first_bn', nn.BatchNorm2d(in_channels, momentum=0.01, affine=True, track_running_stats=True, eps=1.1e-5))
self.atrous_conv.add_module('aconv_sequence', nn.Sequential(nn.ReLU(),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels*2, bias=False, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(out_channels*2, momentum=0.01, affine=True, track_running_stats=True),
nn.ReLU(),
nn.Conv2d(in_channels=out_channels * 2, out_channels=out_channels, bias=False, kernel_size=3, stride=1,
padding=(dilation, dilation), dilation=dilation)))
def forward(self, x):
return self.atrous_conv.forward(x)
class upconv(nn.Module):
def __init__(self, in_channels, out_channels, ratio=2):
super(upconv, self).__init__()
self.elu = nn.ELU()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, bias=False, kernel_size=3, stride=1, padding=1)
self.ratio = ratio
def forward(self, x):
up_x = torch_nn_func.interpolate(x, scale_factor=self.ratio, mode='nearest')
out = self.conv(up_x)
out = self.elu(out)
return out
class reduction_1x1(nn.Sequential):
def __init__(self, num_in_filters, num_out_filters, max_depth, is_final=False):
super(reduction_1x1, self).__init__()
self.max_depth = max_depth
self.is_final = is_final
self.sigmoid = nn.Sigmoid()
self.reduc = torch.nn.Sequential()
while num_out_filters >= 4:
if num_out_filters < 8:
if self.is_final:
self.reduc.add_module('final', torch.nn.Sequential(nn.Conv2d(num_in_filters, out_channels=1, bias=False,
kernel_size=1, stride=1, padding=0),
nn.Sigmoid()))
else:
self.reduc.add_module('plane_params', torch.nn.Conv2d(num_in_filters, out_channels=3, bias=False,
kernel_size=1, stride=1, padding=0))
break
else:
self.reduc.add_module('inter_{}_{}'.format(num_in_filters, num_out_filters),
torch.nn.Sequential(nn.Conv2d(in_channels=num_in_filters, out_channels=num_out_filters,
bias=False, kernel_size=1, stride=1, padding=0),
nn.ELU()))
num_in_filters = num_out_filters
num_out_filters = num_out_filters // 2
def forward(self, net):
net = self.reduc.forward(net)
if not self.is_final:
theta = self.sigmoid(net[:, 0, :, :]) * math.pi / 3
phi = self.sigmoid(net[:, 1, :, :]) * math.pi * 2
dist = self.sigmoid(net[:, 2, :, :]) * self.max_depth
n1 = torch.mul(torch.sin(theta), torch.cos(phi)).unsqueeze(1)
n2 = torch.mul(torch.sin(theta), torch.sin(phi)).unsqueeze(1)
n3 = torch.cos(theta).unsqueeze(1)
n4 = dist.unsqueeze(1)
net = torch.cat([n1, n2, n3, n4], dim=1)
return net
class local_planar_guidance(nn.Module):
def __init__(self, upratio):
super(local_planar_guidance, self).__init__()
self.upratio = upratio
self.u = torch.arange(self.upratio).reshape([1, 1, self.upratio]).float()
self.v = torch.arange(int(self.upratio)).reshape([1, self.upratio, 1]).float()
self.upratio = float(upratio)
def forward(self, plane_eq, focal):
plane_eq_expanded = torch.repeat_interleave(plane_eq, int(self.upratio), 2)
plane_eq_expanded = torch.repeat_interleave(plane_eq_expanded, int(self.upratio), 3)
n1 = plane_eq_expanded[:, 0, :, :]
n2 = plane_eq_expanded[:, 1, :, :]
n3 = plane_eq_expanded[:, 2, :, :]
n4 = plane_eq_expanded[:, 3, :, :]
u = self.u.repeat(plane_eq.size(0), plane_eq.size(2) * int(self.upratio), plane_eq.size(3)).cuda()
u = (u - (self.upratio - 1) * 0.5) / self.upratio
v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), plane_eq.size(3) * int(self.upratio)).cuda()
v = (v - (self.upratio - 1) * 0.5) / self.upratio
return n4 / (n1 * u + n2 * v + n3)
class bts(nn.Module):
def __init__(self, params, feat_out_channels, num_features=512):
super(bts, self).__init__()
self.params = params
self.upconv5 = upconv(feat_out_channels[4], num_features)
self.bn5 = nn.BatchNorm2d(num_features, momentum=0.01, affine=True, eps=1.1e-5)
self.conv5 = torch.nn.Sequential(nn.Conv2d(num_features + feat_out_channels[3], num_features, 3, 1, 1, bias=False),
nn.ELU())
self.upconv4 = upconv(num_features, num_features // 2)
self.bn4 = nn.BatchNorm2d(num_features // 2, momentum=0.01, affine=True, eps=1.1e-5)
self.conv4 = torch.nn.Sequential(nn.Conv2d(num_features // 2 + feat_out_channels[2], num_features // 2, 3, 1, 1, bias=False),
nn.ELU())
self.bn4_2 = nn.BatchNorm2d(num_features // 2, momentum=0.01, affine=True, eps=1.1e-5)
self.daspp_3 = atrous_conv(num_features // 2, num_features // 4, 3, apply_bn_first=False)
self.daspp_6 = atrous_conv(num_features // 2 + num_features // 4 + feat_out_channels[2], num_features // 4, 6)
self.daspp_12 = atrous_conv(num_features + feat_out_channels[2], num_features // 4, 12)
self.daspp_18 = atrous_conv(num_features + num_features // 4 + feat_out_channels[2], num_features // 4, 18)
self.daspp_24 = atrous_conv(num_features + num_features // 2 + feat_out_channels[2], num_features // 4, 24)
self.daspp_conv = torch.nn.Sequential(nn.Conv2d(num_features + num_features // 2 + num_features // 4, num_features // 4, 3, 1, 1, bias=False),
nn.ELU())
self.reduc8x8 = reduction_1x1(num_features // 4, num_features // 4, self.params.max_depth)
self.lpg8x8 = local_planar_guidance(8)
self.upconv3 = upconv(num_features // 4, num_features // 4)
self.bn3 = nn.BatchNorm2d(num_features // 4, momentum=0.01, affine=True, eps=1.1e-5)
self.conv3 = torch.nn.Sequential(nn.Conv2d(num_features // 4 + feat_out_channels[1] + 1, num_features // 4, 3, 1, 1, bias=False),
nn.ELU())
self.reduc4x4 = reduction_1x1(num_features // 4, num_features // 8, self.params.max_depth)
self.lpg4x4 = local_planar_guidance(4)
self.upconv2 = upconv(num_features // 4, num_features // 8)
self.bn2 = nn.BatchNorm2d(num_features // 8, momentum=0.01, affine=True, eps=1.1e-5)
self.conv2 = torch.nn.Sequential(nn.Conv2d(num_features // 8 + feat_out_channels[0] + 1, num_features // 8, 3, 1, 1, bias=False),
nn.ELU())
self.reduc2x2 = reduction_1x1(num_features // 8, num_features // 16, self.params.max_depth)
self.lpg2x2 = local_planar_guidance(2)
self.upconv1 = upconv(num_features // 8, num_features // 16)
self.reduc1x1 = reduction_1x1(num_features // 16, num_features // 32, self.params.max_depth, is_final=True)
self.conv1 = torch.nn.Sequential(nn.Conv2d(num_features // 16 + 4, num_features // 16, 3, 1, 1, bias=False),
nn.ELU())
self.get_depth = torch.nn.Sequential(nn.Conv2d(num_features // 16, 1, 3, 1, 1, bias=False),
nn.Sigmoid())
def forward(self, features, focal):
skip0, skip1, skip2, skip3 = features[1], features[2], features[3], features[4]
dense_features = torch.nn.ReLU()(features[5])
upconv5 = self.upconv5(dense_features) # H/16
upconv5 = self.bn5(upconv5)
concat5 = torch.cat([upconv5, skip3], dim=1)
iconv5 = self.conv5(concat5)
upconv4 = self.upconv4(iconv5) # H/8
upconv4 = self.bn4(upconv4)
concat4 = torch.cat([upconv4, skip2], dim=1)
iconv4 = self.conv4(concat4)
iconv4 = self.bn4_2(iconv4)
daspp_3 = self.daspp_3(iconv4)
concat4_2 = torch.cat([concat4, daspp_3], dim=1)
daspp_6 = self.daspp_6(concat4_2)
concat4_3 = torch.cat([concat4_2, daspp_6], dim=1)
daspp_12 = self.daspp_12(concat4_3)
concat4_4 = torch.cat([concat4_3, daspp_12], dim=1)
daspp_18 = self.daspp_18(concat4_4)
concat4_5 = torch.cat([concat4_4, daspp_18], dim=1)
daspp_24 = self.daspp_24(concat4_5)
concat4_daspp = torch.cat([iconv4, daspp_3, daspp_6, daspp_12, daspp_18, daspp_24], dim=1)
daspp_feat = self.daspp_conv(concat4_daspp)
reduc8x8 = self.reduc8x8(daspp_feat)
plane_normal_8x8 = reduc8x8[:, :3, :, :]
plane_normal_8x8 = torch_nn_func.normalize(plane_normal_8x8, 2, 1)
plane_dist_8x8 = reduc8x8[:, 3, :, :]
plane_eq_8x8 = torch.cat([plane_normal_8x8, plane_dist_8x8.unsqueeze(1)], 1)
depth_8x8 = self.lpg8x8(plane_eq_8x8, focal)
depth_8x8_scaled = depth_8x8.unsqueeze(1) / self.params.max_depth
depth_8x8_scaled_ds = torch_nn_func.interpolate(depth_8x8_scaled, scale_factor=0.25, mode='nearest')
upconv3 = self.upconv3(daspp_feat) # H/4
upconv3 = self.bn3(upconv3)
concat3 = torch.cat([upconv3, skip1, depth_8x8_scaled_ds], dim=1)
iconv3 = self.conv3(concat3)
reduc4x4 = self.reduc4x4(iconv3)
plane_normal_4x4 = reduc4x4[:, :3, :, :]
plane_normal_4x4 = torch_nn_func.normalize(plane_normal_4x4, 2, 1)
plane_dist_4x4 = reduc4x4[:, 3, :, :]
plane_eq_4x4 = torch.cat([plane_normal_4x4, plane_dist_4x4.unsqueeze(1)], 1)
depth_4x4 = self.lpg4x4(plane_eq_4x4, focal)
depth_4x4_scaled = depth_4x4.unsqueeze(1) / self.params.max_depth
depth_4x4_scaled_ds = torch_nn_func.interpolate(depth_4x4_scaled, scale_factor=0.5, mode='nearest')
upconv2 = self.upconv2(iconv3) # H/2
upconv2 = self.bn2(upconv2)
concat2 = torch.cat([upconv2, skip0, depth_4x4_scaled_ds], dim=1)
iconv2 = self.conv2(concat2)
reduc2x2 = self.reduc2x2(iconv2)
plane_normal_2x2 = reduc2x2[:, :3, :, :]
plane_normal_2x2 = torch_nn_func.normalize(plane_normal_2x2, 2, 1)
plane_dist_2x2 = reduc2x2[:, 3, :, :]
plane_eq_2x2 = torch.cat([plane_normal_2x2, plane_dist_2x2.unsqueeze(1)], 1)
depth_2x2 = self.lpg2x2(plane_eq_2x2, focal)
depth_2x2_scaled = depth_2x2.unsqueeze(1) / self.params.max_depth
upconv1 = self.upconv1(iconv2)
reduc1x1 = self.reduc1x1(upconv1)
concat1 = torch.cat([upconv1, reduc1x1, depth_2x2_scaled, depth_4x4_scaled, depth_8x8_scaled], dim=1)
iconv1 = self.conv1(concat1)
final_depth = self.params.max_depth * self.get_depth(iconv1)
if self.params.dataset == 'argo':
final_depth = final_depth * focal.view(-1, 1, 1, 1).float() / 1401.2168
return depth_8x8_scaled, depth_4x4_scaled, depth_2x2_scaled, reduc1x1, final_depth
class encoder(nn.Module):
def __init__(self, params):
super(encoder, self).__init__()
self.params = params
import torchvision.models as models
if params.encoder == 'densenet121_bts':
self.base_model = models.densenet121(pretrained=True).features
self.feat_names = ['relu0', 'pool0', 'transition1', 'transition2', 'norm5']
self.feat_out_channels = [64, 64, 128, 256, 1024]
elif params.encoder == 'densenet161_bts':
self.base_model = models.densenet161(pretrained=True).features
self.feat_names = ['relu0', 'pool0', 'transition1', 'transition2', 'norm5']
self.feat_out_channels = [96, 96, 192, 384, 2208]
elif params.encoder == 'resnet50_bts':
self.base_model = models.resnet50(pretrained=True)
self.feat_names = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
self.feat_out_channels = [64, 256, 512, 1024, 2048]
elif params.encoder == 'resnet101_bts':
self.base_model = models.resnet101(pretrained=True)
self.feat_names = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
self.feat_out_channels = [64, 256, 512, 1024, 2048]
elif params.encoder == 'resnext50_bts':
self.base_model = models.resnext50_32x4d(pretrained=True)
self.feat_names = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
self.feat_out_channels = [64, 256, 512, 1024, 2048]
elif params.encoder == 'resnext101_bts':
self.base_model = models.resnext101_32x8d(pretrained=True)
self.feat_names = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
self.feat_out_channels = [64, 256, 512, 1024, 2048]
else:
print('Not supported encoder: {}'.format(params.encoder))
def forward(self, x):
features = [x]
skip_feat = [x]
for k, v in self.base_model._modules.items():
if 'fc' in k or 'avgpool' in k:
continue
feature = v(features[-1])
features.append(feature)
if any(x in k for x in self.feat_names):
skip_feat.append(feature)
return skip_feat
class BtsModel(nn.Module):
def __init__(self, params):
super(BtsModel, self).__init__()
self.encoder = encoder(params)
self.decoder = bts(params, self.encoder.feat_out_channels, params.bts_size)
def forward(self, x, focal):
skip_feat = self.encoder(x)
return self.decoder(skip_feat, focal)