-
Notifications
You must be signed in to change notification settings - Fork 1
/
distributed_sampler_no_evenly_divisible.py
72 lines (60 loc) · 2.6 KB
/
distributed_sampler_no_evenly_divisible.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import math
import torch
from torch.utils.data import Sampler
import torch.distributed as dist
class DistributedSamplerNoEvenlyDivisible(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
shuffle (optional): If true (default), sampler will shuffle the indices
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
num_samples = int(math.floor(len(self.dataset) * 1.0 / self.num_replicas))
rest = len(self.dataset) - num_samples * self.num_replicas
if self.rank < rest:
num_samples += 1
self.num_samples = num_samples
self.total_size = len(dataset)
# self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
if self.shuffle:
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
# indices += indices[:(self.total_size - len(indices))]
# assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
self.num_samples = len(indices)
# assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch