-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
69 lines (52 loc) · 1.85 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
from dataclasses import dataclass
import json
import numpy as np
import pandas as pd
import sys
from laser_dbn.model import DynamicBayesianNetworkAD
@dataclass
class CustomParameters:
timesteps: int = 2
n_bins: int = 10
random_state: int = 42
class AlgorithmArgs(argparse.Namespace):
@property
def ts(self) -> np.ndarray:
return self.df.iloc[:, 1:-1].values
@property
def df(self) -> pd.DataFrame:
return pd.read_csv(self.dataInput)
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(
filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def train(args: AlgorithmArgs):
data = args.ts
model = DynamicBayesianNetworkAD(timesteps=args.customParameters.timesteps,
discretizer_n_bins=args.customParameters.n_bins)
model.fit(data)
model.save(args.modelOutput)
def execute(args: AlgorithmArgs):
data = args.ts
model = DynamicBayesianNetworkAD.load(args.modelInput)
scores = model.predict(data)
scores.tofile(args.dataOutput, sep="\n")
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
if __name__ == "__main__":
args = AlgorithmArgs.from_sys_args()
set_random_state(args)
if args.executionType == "train":
train(args)
elif args.executionType == "execute":
execute(args)
else:
raise ValueError(f"No executionType '{args.executionType}' available! Choose either 'train' or 'execute'.")