-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
88 lines (76 loc) · 2.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/python
# -*- coding: latin-1 -*-
import collections
import os
import urllib2
from itertools import chain
flatten = lambda lst: list(chain.from_iterable(lst))
setify = lambda row: set(list(row))
def load_or_run(runner, loader, *fpaths):
if all(os.path.exists(fpath) for fpath in fpaths):
if len(fpaths) > 1:
return tuple(loader(fpath) for fpath in fpaths)
return loader(fpaths[0])
else:
return runner(*fpaths)
def download_file_unicode(path):
resp = urllib2.urlopen(path)
encoding = resp.headers.getparam('charset')
return unicode(resp.read(), encoding)
def lower_case(word):
"""this function takes in a marked yoruba word and returns the lower case version"""
result = ""
marked_capital_letters = {
"À":"à", "Á":"á", "É":"é", "È":"è","Ẹ":"ẹ",
"Ì":"ì", "Í":"í", "Ó":"ó", "Ò":"ò", "Ṣ":"ṣ",
"Ọ":"ọ", "Ú":"ú", "Ù":"ù"
}
for letter in word:
if letter in marked_capital_letters.keys():
result += marked_capital_letters[letter]
else:
#print letter
result += letter.lower()
return result
def sentencifier(input_filepath, output_filepath):
#takes a file and makes a new file with just one sentence per line
with open(input_filepath, "r") as f:
sents = nltk.tokenize.sent_tokenize(f.read())
with open (output_filepath, "w+") as o:
for line in sents:
o.writeline(line)
def get_all_pairs(words):
#TODO(timifasubaa):rename to get_semantic_bigram_pairs
#given a sentence, return all the pairs of words in the sentence
result = []
def all_pairs_helper(left_word, remaining_words):
for right_word in remaining_words:
result.append([left_word, right_word])
for i in range(len(words)):
all_pairs_helper(words[i],words[i+1:])
return result
assert get_all_pairs(["a", "b", "c"]) == [['a', 'b'], ['a', 'c'], ['b', 'c']]
def line_cleaner(line):
#This function removes unnecessary embellishments so out bigram model is more effective.
result = []
bad_chars = [".", ",", ":"]
for word in line:
word = lower_case(word.translate(None, '.,:;-()\'\"\"'))
result.append(word)
return result
def get_bigram_pairs(sentence):
#returns a counter containing bigram frequencies.
bigram = collections.Counter()
for i in range(len(sentence)-1):
bigram[(sentence[i], sentence[i+1])] += 1
return bigram
def get_yoruba_dictionary():
#load the words in the dictionary into a set
yoruba_words = set()
filename = "data/dictionary.txt"#replace with the name of your dictionary of yoruba words.
file = open(filename, "r")
for line in file:
#print line
item = unicodedata.normalize('NFD', line.strip().decode("utf-8"))
yoruba_words.add(item)
return yoruba_words