forked from parallelcc/Template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.cpp
614 lines (572 loc) · 21.6 KB
/
geometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
* 二维ACM计算几何模板
* 注意变量类型更改和EPS
*/
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0);
//点
class point {
public:
double x, y;
point(){};
point(double x, double y) : x(x), y(y){};
static int xmult(const point &ps, const point &pe, const point &po) {
return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
}
//相对原点的差乘结果,参数:点[_Off]
//即由原点和这两个点组成的平行四边形面积
double operator*(const point &_Off) const {
return x * _Off.y - y * _Off.x;
}
//相对偏移
point operator-(const point &_Off) const {
return point(x - _Off.x, y - _Off.y);
}
//点位置相同(double类型)
bool operator==(const point &_Off) const {
return fabs(_Off.x - x) < eps && fabs(_Off.y - y) < eps;
}
//点位置不同(double类型)
bool operator!=(const point &_Off) const {
return ((*this) == _Off) == false;
}
//两点间距离的平方
double dis2(const point &_Off) const {
return (x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y);
}
//两点间距离
double dis(const point &_Off) const {
return sqrt((x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y));
}
};
//两点表示的向量
class pVector {
public:
point s, e; //两点表示,起点[s],终点[e]
double a, b, c; //一般式,ax+by+c=0
pVector() {}
pVector(const point &s, const point &e) : s(s), e(e) {}
//向量与点的叉乘,参数:点[_Off]
//[点相对向量位置判断]
double operator*(const point &_Off) const {
return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y);
}
//向量与向量的叉乘,参数:向量[_Off]
double operator*(const pVector &_Off) const {
return (e.x - s.x) * (_Off.e.y - _Off.s.y) - (e.y - s.y) * (_Off.e.x - _Off.s.x);
}
//从两点表示转换为一般表示
bool pton() {
a = s.y - e.y;
b = e.x - s.x;
c = s.x * e.y - s.y * e.x;
return true;
}
//-----------点和直线(向量)-----------
//点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
//参数:点[_Off],向量[_Ori]
friend bool operator<(const point &_Off, const pVector &_Ori) {
return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x) < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
}
//点在直线上,参数:点[_Off]
bool lhas(const point &_Off) const {
return fabs((*this) * _Off) < eps;
}
//点在线段上,参数:点[_Off]
bool shas(const point &_Off) const {
return lhas(_Off) && _Off.x - min(s.x, e.x) > -eps && _Off.x - max(s.x, e.x) < eps && _Off.y - min(s.y, e.y) > -eps && _Off.y - max(s.y, e.y) < eps;
}
//点到直线/线段的距离
//参数: 点[_Off], 是否是线段[isSegment](默认为直线)
double dis(const point &_Off, bool isSegment = false) {
//化为一般式
pton();
//到直线垂足的距离
double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
//如果是线段判断垂足
if (isSegment) {
double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / (a * a + b * b);
double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
double xb = max(s.x, e.x);
double yb = max(s.y, e.y);
double xs = s.x + e.x - xb;
double ys = s.y + e.y - yb;
if (xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
td = min(_Off.dis(s), _Off.dis(e));
}
return fabs(td);
}
//关于直线对称的点
point mirror(const point &_Off) const {
//注意先转为一般式
point ret;
double d = a * a + b * b;
ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
return ret;
}
//计算两点的中垂线
static pVector ppline(const point &_a, const point &_b) {
pVector ret;
ret.s.x = (_a.x + _b.x) / 2;
ret.s.y = (_a.y + _b.y) / 2;
//一般式
ret.a = _b.x - _a.x;
ret.b = _b.y - _a.y;
ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
//两点式
if (fabs(ret.a) > eps) {
ret.e.y = 0.0;
ret.e.x = -ret.c / ret.a;
if (ret.e == ret.s) {
ret.e.y = 1e10;
ret.e.x = -(ret.c - ret.b * ret.e.y) / ret.a;
}
} else {
ret.e.x = 0.0;
ret.e.y = -ret.c / ret.b;
if (ret.e == ret.s) {
ret.e.x = 1e10;
ret.e.y = -(ret.c - ret.a * ret.e.x) / ret.b;
}
}
return ret;
}
//------------直线和直线(向量)-------------
//直线重合,参数:直线向量[_Off]
bool equal(const pVector &_Off) const {
return lhas(_Off.e) && lhas(_Off.s);
}
//直线平行,参数:直线向量[_Off]
bool parallel(const pVector &_Off) const {
return fabs((*this) * _Off) < eps;
}
//两直线交点,参数:目标直线[_Off]
point crossLPt(pVector _Off) {
//注意先判断平行和重合
point ret = s;
double t = ((s.x - _Off.s.x) * (_Off.s.y - _Off.e.y) - (s.y - _Off.s.y) * (_Off.s.x - _Off.e.x)) / ((s.x - e.x) * (_Off.s.y - _Off.e.y) - (s.y - e.y) * (_Off.s.x - _Off.e.x));
ret.x += (e.x - s.x) * t;
ret.y += (e.y - s.y) * t;
return ret;
}
//------------线段和直线(向量)----------
//线段和直线交
//参数:线段[_Off]
bool crossSL(const pVector &_Off) const {
double rs = (*this) * _Off.s;
double re = (*this) * _Off.e;
return rs * re < eps;
}
//------------线段和线段(向量)----------
//判断线段是否相交(注意添加eps),参数:线段[_Off]
bool isCrossSS(const pVector &_Off) const {
//1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
//2.跨立试验(等于0时端点重合)
return (
(max(s.x, e.x) >= min(_Off.s.x, _Off.e.x)) &&
(max(_Off.s.x, _Off.e.x) >= min(s.x, e.x)) &&
(max(s.y, e.y) >= min(_Off.s.y, _Off.e.y)) &&
(max(_Off.s.y, _Off.e.y) >= min(s.y, e.y)) &&
((pVector(_Off.s, s) * _Off) * (_Off * pVector(_Off.s, e)) >= 0.0) &&
((pVector(s, _Off.s) * (*this)) * ((*this) * pVector(s, _Off.e)) >= 0.0));
}
};
class polygon {
public:
const static long maxpn = 100;
point pt[maxpn]; //点(顺时针或逆时针)
long n; //点的个数
point &operator[](int _p) {
return pt[_p];
}
//求多边形面积,多边形内点必须顺时针或逆时针
double area() const {
double ans = 0.0;
int i;
for (i = 0; i < n; i++) {
int nt = (i + 1) % n;
ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
}
return fabs(ans / 2.0);
}
//求多边形重心,多边形内点必须顺时针或逆时针
point gravity() const {
point ans;
ans.x = ans.y = 0.0;
int i;
double area = 0.0;
for (i = 0; i < n; i++) {
int nt = (i + 1) % n;
double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
area += tp;
ans.x += tp * (pt[i].x + pt[nt].x);
ans.y += tp * (pt[i].y + pt[nt].y);
}
ans.x /= 3 * area;
ans.y /= 3 * area;
return ans;
}
//判断点在凸多边形内,参数:点[_Off]
bool chas(const point &_Off) const {
double tp = 0, np;
int i;
for (i = 0; i < n; i++) {
np = pVector(pt[i], pt[(i + 1) % n]) * _Off;
if (tp * np < -eps)
return false;
tp = (fabs(np) > eps) ? np : tp;
}
return true;
}
//判断点是否在任意多边形内[射线法],O(n)
bool ahas(const point &_Off) const {
int ret = 0;
double infv = 1e-10; //坐标系最大范围
pVector l = pVector(_Off, point(-infv, _Off.y));
for (int i = 0; i < n; i++) {
pVector ln = pVector(pt[i], pt[(i + 1) % n]);
if (fabs(ln.s.y - ln.e.y) > eps) {
point tp = (ln.s.y > ln.e.y) ? ln.s : ln.e;
if (fabs(tp.y - _Off.y) < eps && tp.x < _Off.x + eps)
ret++;
} else if (ln.isCrossSS(l))
ret++;
}
return (ret % 2 == 1);
}
//凸多边形被直线分割,参数:直线[_Off]
polygon split(pVector _Off) {
//注意确保多边形能被分割
polygon ret;
point spt[2];
double tp = 0.0, np;
bool flag = true;
int i, pn = 0, spn = 0;
for (i = 0; i < n; i++) {
if (flag)
pt[pn++] = pt[i];
else
ret.pt[ret.n++] = pt[i];
np = _Off * pt[(i + 1) % n];
if (tp * np < -eps) {
flag = !flag;
spt[spn++] = _Off.crossLPt(pVector(pt[i], pt[(i + 1) % n]));
}
tp = (fabs(np) > eps) ? np : tp;
}
ret.pt[ret.n++] = spt[0];
ret.pt[ret.n++] = spt[1];
n = pn;
return ret;
}
//-------------凸包-------------
//Graham扫描法,复杂度O(nlg(n)),结果为逆时针
static bool graham_cmp(const point &l, const point &r) //凸包排序函数
{
return l.y < r.y || (l.y == r.y && l.x < r.x);
}
polygon &graham(point _p[], int _n) {
int i, len;
sort(_p, _p + _n, polygon::graham_cmp);
n = 1;
pt[0] = _p[0], pt[1] = _p[1];
for (i = 2; i < _n; i++) {
while (n && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0)
n--;
pt[++n] = _p[i];
}
len = n;
pt[++n] = _p[_n - 2];
for (i = _n - 3; i >= 0; i--) {
while (n != len && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0)
n--;
pt[++n] = _p[i];
}
return (*this);
}
//凸包旋转卡壳(注意点必须顺时针或逆时针排列)
//返回值凸包直径的平方(最远两点距离的平方)
double rotating_calipers() {
int i = 1;
double ret = 0.0;
pt[n] = pt[0];
for (int j = 0; j < n; j++) {
while (fabs(point::xmult(pt[j], pt[j + 1], pt[i + 1])) > fabs(point::xmult(pt[j], pt[j + 1], pt[i])) + eps)
i = (i + 1) % n;
//pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
ret = max(ret, max(pt[i].dis(pt[j]), pt[i + 1].dis(pt[j + 1])));
}
return ret;
}
//凸包旋转卡壳(注意点必须逆时针排列)
//返回值两凸包的最短距离
double rotating_calipers(polygon &_Off) {
int i = 0;
double ret = 1e10; //inf
pt[n] = pt[0];
_Off.pt[_Off.n] = _Off.pt[0];
//注意凸包必须逆时针排列且pt[0]是左下角点的位置
while (_Off.pt[i + 1].y > _Off.pt[i].y)
i = (i + 1) % _Off.n;
for (int j = 0; j < n; j++) {
double tp;
//逆时针时为 >,顺时针则相反
while ((tp = point::xmult(pt[j], pt[j + 1], _Off.pt[i + 1]) - point::xmult(pt[j], pt[j + 1], _Off.pt[i])) > eps)
i = (i + 1) % _Off.n;
//(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
ret = min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i], true));
ret = min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));
if (tp > -eps) //如果不考虑TLE问题最好不要加这个判断
{
ret = min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));
ret = min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));
}
}
return ret;
}
//-----------半平面交-------------
//复杂度:O(nlog2(n))
//半平面计算极角函数[如果考虑效率可以用成员变量记录]
static double hpc_pa(const pVector &_Off) {
return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x);
}
//半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边]
static bool hpc_cmp(const pVector &l, const pVector &r) {
double lp = hpc_pa(l), rp = hpc_pa(r);
if (fabs(lp - rp) > eps)
return lp < rp;
return point::xmult(l.s, r.e, r.s) < 0.0;
}
//用于计算的双端队列
pVector dequeue[maxpn];
//获取半平面交的多边形(多边形的核)
//参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
//函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
polygon &halfPanelCross(pVector _Off[], int ln) {
int i, tn;
n = 0;
sort(_Off, _Off + ln, hpc_cmp);
//平面在向量左边的筛选
for (i = tn = 1; i < ln; i++)
if (fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps)
_Off[tn++] = _Off[i];
ln = tn;
int bot = 0, top = 1;
dequeue[0] = _Off[0];
dequeue[1] = _Off[1];
for (i = 2; i < ln; i++) {
if (dequeue[top].parallel(dequeue[top - 1]) ||
dequeue[bot].parallel(dequeue[bot + 1]))
return (*this);
while (bot < top &&
point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), _Off[i].e, _Off[i].s) > eps)
top--;
while (bot < top &&
point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), _Off[i].e, _Off[i].s) > eps)
bot++;
dequeue[++top] = _Off[i];
}
while (bot < top &&
point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), dequeue[bot].e, dequeue[bot].s) > eps)
top--;
while (bot < top &&
point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), dequeue[top].e, dequeue[top].s) > eps)
bot++;
//计算交点(注意不同直线形成的交点可能重合)
if (top <= bot + 1)
return (*this);
for (i = bot; i < top; i++)
pt[n++] = dequeue[i].crossLPt(dequeue[i + 1]);
if (bot < top + 1)
pt[n++] = dequeue[bot].crossLPt(dequeue[top]);
return (*this);
}
};
class circle {
public:
point c; //圆心
double r; //半径
double db, de; //圆弧度数起点, 圆弧度数终点(逆时针0-360)
//-------圆---------
//判断圆在多边形内
bool inside(const polygon &_Off) const {
if (_Off.ahas(c) == false)
return false;
for (int i = 0; i < _Off.n; i++) {
pVector l = pVector(_Off.pt[i], _Off.pt[(i + 1) % _Off.n]);
if (l.dis(c, true) < r - eps)
return false;
}
return true;
}
//判断多边形在圆内(线段和折线类似)
bool has(const polygon &_Off) const {
for (int i = 0; i < _Off.n; i++)
if (_Off.pt[i].dis2(c) > r * r - eps)
return false;
return true;
}
//-------圆弧-------
//圆被其他圆截得的圆弧,参数:圆[_Off]
circle operator-(circle &_Off) const {
//注意圆必须相交,圆心不能重合
double d2 = c.dis2(_Off.c);
double d = c.dis(_Off.c);
double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
point py = _Off.c - c;
double oans = atan2(py.y, py.x);
circle res;
res.c = c;
res.r = r;
res.db = oans + ans;
res.de = oans - ans + 2 * PI;
return res;
}
//圆被其他圆截得的圆弧,参数:圆[_Off]
circle operator+(circle &_Off) const {
//注意圆必须相交,圆心不能重合
double d2 = c.dis2(_Off.c);
double d = c.dis(_Off.c);
double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
point py = _Off.c - c;
double oans = atan2(py.y, py.x);
circle res;
res.c = c;
res.r = r;
res.db = oans - ans;
res.de = oans + ans;
return res;
}
//过圆外一点的两条切线
//参数:点[_Off](必须在圆外),返回:两条切线(切线的s点为_Off,e点为切点)
pair<pVector, pVector> tangent(const point &_Off) const {
double d = c.dis(_Off);
//计算角度偏移的方式
double angp = acos(r / d), ango = atan2(_Off.y - c.y, _Off.x - c.x);
point pl = point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
pr = point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp));
return make_pair(pVector(_Off, pl), pVector(_Off, pr));
}
//计算直线和圆的两个交点
//参数:直线[_Off](两点式),返回两个交点,注意直线必须和圆有两个交点
pair<point, point> cross(pVector _Off) const {
_Off.pton();
//到直线垂足的距离
double td = fabs(_Off.a * c.x + _Off.b * c.y + _Off.c) / sqrt(_Off.a * _Off.a + _Off.b * _Off.b);
if (fabs(td) < eps) {
double ango = atan2(_Off.s.y - c.y, _Off.s.x - c.x);
return make_pair(point(c.x + r * cos(ango), c.y + r * sin(ango)),
point(c.x + r * cos(ango + PI), c.y + r * sin(ango + PI)));
} else {
//计算垂足坐标
double xp = (_Off.b * _Off.b * c.x - _Off.a * _Off.b * c.y - _Off.a * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b);
double yp = (-_Off.a * _Off.b * c.x + _Off.a * _Off.a * c.y - _Off.b * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b);
double ango = atan2(yp - c.y, xp - c.x);
double angp = acos(td / r);
return make_pair(point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp)));
}
}
double crossArea(const circle &_Off) { // 相交面积
double d = c.dis(_Off.c);
if (d >= (r + _Off.r)) //两圆相离
return 0;
if ((r - _Off.r) >= d) //两圆内含,this大
return PI * _Off.r * _Off.r;
if ((_Off.r - r) >= d) //两圆内含,_Off大
return PI * r * r;
double an1 = acos((r * r + d * d - _Off.r * _Off.r) / (2 * r * d));
double an2 = acos((_Off.r * _Off.r + d * d - r * r) / (2 * _Off.r * d));
double s1_tri = 0.5 * r * r * sin(an1 * 2);
double s2_tri = 0.5 * _Off.r * _Off.r * sin(an2 * 2);
double s1_ = r * r * an1;
double s2_ = _Off.r * _Off.r * an2;
return (s1_ - s1_tri) + (s2_ - s2_tri);
}
};
class triangle {
public:
point a, b, c; //顶点
triangle() {}
triangle(point a, point b, point c) : a(a), b(b), c(c) {}
//计算三角形面积
double area() {
return fabs(point::xmult(a, b, c)) / 2.0;
}
//计算三角形外心
//返回:外接圆圆心
point circumcenter() {
double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
double d = a1 * b2 - a2 * b1;
return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
}
//计算三角形内心
//返回:内接圆圆心
point incenter() {
pVector u, v;
double m, n;
u.s = a;
m = atan2(b.y - a.y, b.x - a.x);
n = atan2(c.y - a.y, c.x - a.x);
u.e.x = u.s.x + cos((m + n) / 2);
u.e.y = u.s.y + sin((m + n) / 2);
v.s = b;
m = atan2(a.y - b.y, a.x - b.x);
n = atan2(c.y - b.y, c.x - b.x);
v.e.x = v.s.x + cos((m + n) / 2);
v.e.y = v.s.y + sin((m + n) / 2);
return u.crossLPt(v);
}
//计算三角形垂心
//返回:高的交点
point perpencenter() {
pVector u, v;
u.s = c;
u.e.x = u.s.x - a.y + b.y;
u.e.y = u.s.y + a.x - b.x;
v.s = b;
v.e.x = v.s.x - a.y + c.y;
v.e.y = v.s.y + a.x - c.x;
return u.crossLPt(v);
}
//计算三角形重心
//返回:重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter() {
pVector u, v;
u.s.x = (a.x + b.x) / 2;
u.s.y = (a.y + b.y) / 2;
u.e = c;
v.s.x = (a.x + c.x) / 2;
v.s.y = (a.y + c.y) / 2;
v.e = b;
return u.crossLPt(v);
}
//计算三角形费马点
//返回:到三角形三顶点距离之和最小的点
point fermentpoint() {
point u, v;
double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
int i, j, k;
u.x = (a.x + b.x + c.x) / 3;
u.y = (a.y + b.y + c.y) / 3;
while (step > eps) {
for (k = 0; k < 10; step /= 2, k++) {
for (i = -1; i <= 1; i++) {
for (j = -1; j <= 1; j++) {
v.x = u.x + step * i;
v.y = u.y + step * j;
if (u.dis(a) + u.dis(b) + u.dis(c) > v.dis(a) + v.dis(b) + v.dis(c))
u = v;
}
}
}
}
return u;
}
};