-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshadow.cu
342 lines (282 loc) · 7.97 KB
/
shadow.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#include "shadow.h"
#include <assert.h>
MARK *h_ground_shadow;
MARK *d_ground_shadow;
MARK *h_smoothed_shadow;
MARK *d_smoothed_shadow;
const unsigned GroundDim = SCENESIZE * 2/ SpaceGranularity;
void reset_ground_shadow()
{
assert(h_ground_shadow);
assert(d_ground_shadow);
assert(h_smoothed_shadow);
assert(d_smoothed_shadow);
memset(h_ground_shadow, 0, sizeof(MARK) * GroundDim * GroundDim);
cudaMemset(d_ground_shadow, 0, sizeof(MARK) * GroundDim * GroundDim);
memset(h_smoothed_shadow, 0, sizeof(MARK) * pow(SCENESIZE * 2 / SMOOTH_GRAN, 2) );
cudaMemset(d_smoothed_shadow, 0, sizeof(MARK) * pow(SCENESIZE * 2 / SMOOTH_GRAN, 2));
}
///
__device__
int MAX_X_INX = (SCENESIZE * 2) / SpaceGranularity - 1;
__device__
int MAX_Y_INX = (DOMAIN_HEIGHT - SCENEHEIGHT) / SpaceGranularity - 1;
__device__
int MAX_Z_INX = (SCENESIZE * 2) / SpaceGranularity - 1;
__device__
bool isOver(int x, int y, int z)
{
if( (x < 0 || y < 0 || z < 0) ||
(x > MAX_X_INX || y > MAX_Y_INX || z > MAX_Z_INX) )
{
return true;
}
return false;
}
///
__device__
Cell* getCell( unsigned xi, unsigned yi, unsigned zi)
{
// haha...
return _mat + xi * Y_Dim * Z_Dim + yi * Z_Dim + zi;
}
///
/// This piece of code is from Dr. Benes
/// Some changes are made.
///
__device__
float dda_ray_casting(int fromInx[3], int toInx[3])
{
float fShadowValue = 0;
int deltaX = toInx[0] - fromInx[0];
int deltaY = toInx[1] - fromInx[1];
int deltaZ = toInx[2] - fromInx[2];
if ( abs(deltaX) >= abs(deltaY) &&
abs(deltaX) >= abs(deltaZ) ) // delta X
{
double my = deltaY * 1.f / deltaX;
double mz = deltaZ * 1.f / deltaX;
double y = fromInx[1];
double z = fromInx[2];
for (int i = fromInx[0]; i < toInx[0]; i++)
{
// check inx bounds
if(isOver(i, (int)y, (int)z))
{
return fShadowValue;
}
fShadowValue += 1 - getCell(i, (int)y, (int)z)->fIllum;
y += my;
z += mz;
}
}
else if( abs(deltaY) >= abs(deltaX) &&
abs(deltaY) >= abs(deltaZ) ) //delta Y
{
double mx = deltaX * 1.f / deltaY;
double mz = deltaZ * 1.f / deltaY;
double x = fromInx[0];
double z = fromInx[2];
for (int j = fromInx[1]; j < toInx[1]; j++)
{
// check inx bounds
if(isOver((int)x, j, (int)z))
{
return fShadowValue;
}
fShadowValue += 1 - getCell((int)x, j, (int)z)->fIllum;
x += mx;
z += mz;
}
}
else // delta Z
{
double mx = deltaX * 1.f / deltaZ;
double my = deltaY * 1.f / deltaZ;
double x = fromInx[0];
double y = fromInx[1];
for (int k = fromInx[2]; k < toInx[2]; k++)
{
// check inx bounds
if(isOver((int)x, (int)y, k))
{
return fShadowValue;
}
fShadowValue += 1 - getCell((int)x, (int)y, k)->fIllum;
x += mx;
y += my;
}
}
return 0;
}
__device__
void getCurrentGroundCellInx( unsigned *pxi, unsigned *pyi)
{
unsigned nAbsTid = blockIdx.x * blockDim.x + threadIdx.x;
*pxi = nAbsTid % (unsigned)(SCENESIZE * 2 / SpaceGranularity);
*pyi = nAbsTid / (SCENESIZE * 2 / SpaceGranularity);
}
__device__
void getCurrentSmoothedInx( unsigned *pxi, unsigned *pyi)
{
unsigned nAbsTid = blockIdx.x * blockDim.x + threadIdx.x;
*pxi = nAbsTid % (unsigned)(SCENESIZE * 2 / SMOOTH_GRAN);
*pyi = nAbsTid / (SCENESIZE * 2 / SMOOTH_GRAN);
}
// Kernel for calculating the shadow
//
__global__
void gpu_calc_shadow( MARK *pBuf, struct Cell *mat)
{
//
_mat = mat;
//
unsigned xi = 0, zi = 0;
getCurrentGroundCellInx(&xi, &zi);
if( (xi + 1) > GroundDim || (zi + 1) > GroundDim )
{
return;
}
// Get From-Cell index
int fromInx[3] = {xi, 0, zi};
int nVerticalCount = (DOMAIN_HEIGHT - SCENEHEIGHT) / SpaceGranularity;
int nHorizontalCount = (SCENESIZE * 2) / SpaceGranularity;
// View Vec
float sun_vec[3] = SUN_VEC;
float view_vec[3] = { -sun_vec[0], -sun_vec[1], -sun_vec[2] };
//assert(view_vec[1] >= 0);
// Call To-Cell index
int toInx[3] = {0};
toInx[1] = nVerticalCount - 1;
// WARNING: the X\Z index may be over the available cube.
// this will be checked in the dda_ray_casting()
//
toInx[0] = xi + (nVerticalCount - 1) * (view_vec[0] * 1.f / view_vec[1]);
toInx[2] = zi + (nVerticalCount - 1) * (view_vec[2] * 1.f / view_vec[1]);
// Go casting !
float fShadowValue = dda_ray_casting(fromInx, toInx);
*(pBuf + zi * nHorizontalCount + xi) = fShadowValue;
}
__global__
void gpu_smooth_shadow( MARK *pBuf, MARK *pSmoothedShadow)
{
// Get cell inx first
unsigned xi = 0, zi = 0;
getCurrentSmoothedInx(&xi, &zi);
const int nSmoothedSize = (SCENESIZE * 2)/ SMOOTH_GRAN;
if( (xi + 1) > nSmoothedSize || (zi + 1) > nSmoothedSize)
{
return;
}
const int nHorizontalCount = (SCENESIZE * 2) / SpaceGranularity;
int xi_in_ori = xi * SMOOTH_GRAN / SpaceGranularity;
int zi_in_ori = zi * SMOOTH_GRAN / SpaceGranularity;
float deltaX = xi * SMOOTH_GRAN - xi_in_ori * SpaceGranularity;
float deltaZ = zi * SMOOTH_GRAN - zi_in_ori * SpaceGranularity;
// Bi-Linear Interpolation
// --------
// | 1 | 2 |
// --------
// | 3 | 4 |
// --------
float fUpLeft = 0, fUpRight = 0, fDownLeft = 0, fDownRight = 0;
int iFieldNum = 0;
/// TODO: Yes these if() are stupid enough for CUDA
/// there's a better way actually
///
if( deltaZ <= (SpaceGranularity / 2))
{
if( deltaX <= (SpaceGranularity / 2)) // Field 1
{
iFieldNum = 1;
if(xi_in_ori > 0 && zi_in_ori > 0)
{
fUpLeft = *(pBuf + (zi_in_ori - 1) * nHorizontalCount + xi_in_ori - 1);
}
if(zi_in_ori > 0)
{
fUpRight = *(pBuf + (zi_in_ori - 1) * nHorizontalCount + xi_in_ori);
}
if(xi_in_ori > 0)
{
fDownLeft =*(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori - 1);
}
fDownRight = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori);
}
else // Field 2
{
iFieldNum = 2;
if(zi_in_ori > 0)
{
fUpLeft = *(pBuf + (zi_in_ori - 1) * nHorizontalCount + xi_in_ori);
}
if(zi_in_ori > 0 && xi_in_ori < nHorizontalCount)
{
fUpRight = *(pBuf + (zi_in_ori - 1) * nHorizontalCount + xi_in_ori + 1);
}
fDownLeft = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori);
if(xi_in_ori < nHorizontalCount)
{
fDownRight = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori + 1);
}
}
}
else
{
if( deltaX <= (SpaceGranularity / 2) ) // Field 3
{
iFieldNum = 3;
if(xi_in_ori > 0)
{
fUpLeft = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori - 1);
}
fUpRight = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori);
if(xi_in_ori > 0 && zi_in_ori < nHorizontalCount)
{
fDownLeft = *(pBuf + (zi_in_ori + 1) * nHorizontalCount + xi_in_ori - 1);
}
if(zi_in_ori < nHorizontalCount)
{
fDownRight = *(pBuf + (zi_in_ori + 1) * nHorizontalCount + xi_in_ori);
}
}
else // Field 4
{
iFieldNum = 4;
fUpLeft = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori);
if(xi_in_ori < nHorizontalCount)
{
fUpRight = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori + 1);
}
if(zi_in_ori < nHorizontalCount)
{
fDownLeft = *(pBuf + (zi_in_ori + 1) * nHorizontalCount + xi_in_ori);
}
if(xi_in_ori < nHorizontalCount && zi_in_ori < nHorizontalCount)
{
fDownRight = *(pBuf + (zi_in_ori + 1) * nHorizontalCount + xi_in_ori + 1);
}
}
}
// All ZERO?
const float EP = 0.005;
if( abs(fUpLeft) < EP &&
abs(fDownRight) < EP &&
abs(fDownLeft) < EP &&
abs(fUpRight) < EP )
{
*(pSmoothedShadow + zi * nSmoothedSize + xi) = 0;
return;
}
// Bi-Linear Interpolation
const float HalfOriCellSize = (SpaceGranularity / 2);
float fValue = 0;
float ratioX = deltaX > HalfOriCellSize ?
(deltaX - HalfOriCellSize) / SpaceGranularity : ( (deltaX + HalfOriCellSize) / SpaceGranularity );
float ratioZ = deltaZ > HalfOriCellSize ?
(deltaZ - HalfOriCellSize) / SpaceGranularity : ( (deltaZ + HalfOriCellSize) / SpaceGranularity );
fValue = (1 - ratioX) * ( (1 - ratioZ) * fUpLeft + ratioZ * fDownLeft) +
ratioX * ( (1 - ratioZ) * fUpRight + ratioZ * fDownRight) ;
*(pSmoothedShadow + zi * nSmoothedSize + xi) = fValue;
//*(pSmoothedShadow + zi * nSmoothedSize + xi) = *(pBuf + zi_in_ori * nHorizontalCount + xi_in_ori);
}