-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
53 lines (50 loc) · 1.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from embedding import get_embedding_function
from langchain_community.vectorstores.chroma import Chroma
CHROMA_PATH = "chroma"
def split_documents(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 800,
chunk_overlap = 80,
length_function = len,
is_separator_regex=False,
)
return text_splitter.split_documents(documents)
loader = PyPDFLoader("data\policy-booklet-0923.pdf")
pages = loader.load_and_split()
chunks = split_documents(pages)
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
chunk.metadata["id"] = chunk_id
embedding_function = get_embedding_function()
db = Chroma(
persist_directory=CHROMA_PATH,
embedding_function=embedding_function
)
existing_items = db.get(include=[])
existing_ids = set(existing_items["ids"])
print(f"Number of existing documents in DB: {len(existing_ids)}")
new_chunks = []
for chunk in chunks:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
if len(new_chunks):
print(f"Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
else:
print("No new documents to add")