-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
33 lines (26 loc) · 1.13 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
import argparse
from embedding import get_embedding_function
CHROMA_PATH = "chroma"
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
def query_bot(query_text: str):
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH,
embedding_function=embedding_function)
results = db.similarity_search_with_score(query_text, k=5)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
model = Ollama(model = "mistral")
response_text = model.invoke(prompt)
sources = [doc.metadata.get("id", None) for doc, _score in results]
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
return response_text