diff --git a/docs/src/mathematical-formulation.md b/docs/src/mathematical-formulation.md index fe010df2..349ccb6a 100644 --- a/docs/src/mathematical-formulation.md +++ b/docs/src/mathematical-formulation.md @@ -5,23 +5,24 @@ The full mathematical formulation is also freely available in the [preprint](htt ## [Sets](@id math-sets) -NOTE: Asset types are mutually exclusive. Name|Description|Elements - ---|---|---: + ---|---|--- $\mathcal{A}$ | Energy assets | $a \in \mathcal{A}$ -$\mathcal{A}_c$ | Consumer energy assets | $\mathcal{A}_c \subseteq \mathcal{A}$ -$\mathcal{A}_p$ | Producer energy assets | $\mathcal{A}_p \subseteq \mathcal{A}$ -$\mathcal{A}_s$ | Storage energy assets | $\mathcal{A}_s \subseteq \mathcal{A}$ -$\mathcal{A}_h$ | Hub energy assets (e.g., transshipment) | $\mathcal{A}_h \subseteq \mathcal{A}$ -$\mathcal{A}_{cv}$ | Conversion energy assets | $\mathcal{A}_{cv}\subseteq \mathcal{A}$ -$\mathcal{A}_i$ | Energy assets with investment method | $\mathcal{A}_i \subseteq \mathcal{A}$ +$\mathcal{A}_c$ | Consumer energy assets | $\mathcal{A}_c \subseteq \mathcal{A}$ +$\mathcal{A}_p$ | Producer energy assets | $\mathcal{A}_p \subseteq \mathcal{A}$ +$\mathcal{A}_s$ | Storage energy assets | $\mathcal{A}_s \subseteq \mathcal{A}$ +$\mathcal{A}_h$ | Hub energy assets (e.g., transshipment) | $\mathcal{A}_h \subseteq \mathcal{A}$ +$\mathcal{A}_{cv}$ | Conversion energy assets | $\mathcal{A}_{cv} \subseteq \mathcal{A}$ +$\mathcal{A}_i$ | Energy assets with investment method | $\mathcal{A}_i \subseteq \mathcal{A}$ $\mathcal{F}$ | Flow connections between two assets | $f \in \mathcal{F}$ -$\mathcal{F}_t$ | Transport flow between two assets | $\mathcal{F}_t \subseteq \mathcal{F}$ -$\mathcal{F}_i$ | Transport flow with investment method | $\mathcal{F}_i \subseteq \mathcal{F}_t$ -$\mathcal{F}_{in}(a)$ | Set of flows going into asset $a$ | $\mathcal{F}_{in}(a) \subseteq \mathcal{F}$ +$\mathcal{F}_t$ | Transport flow between two assets | $\mathcal{F}_t \subseteq \mathcal{F}$ +$\mathcal{F}_i$ | Transport flow with investment method | $\mathcal{F}_i \subseteq \mathcal{F}_t$ +$\mathcal{F}_{in}(a)$ | Set of flows going into asset $a$ | $\mathcal{F}_{in}(a) \subseteq \mathcal{F}$ $\mathcal{F}_{out}(a)$ | Set of flows going out of asset $a$ | $\mathcal{F}_{out}(a) \subseteq \mathcal{F}$ $\mathcal{RP}$ | Representative periods | $rp \in \mathcal{RP}$ -$\mathcal{K}$ | Time steps within the $rp$ | $k \in \mathcal{K}$ +$\mathcal{K}$ | Time steps within the $rp$ | $k \in \mathcal{K}$ + +NOTE: Asset types are mutually exclusive. ## [Parameters](@id math-parameters) @@ -81,7 +82,8 @@ flows\_variable\_cost &= \sum_{f \in \mathcal{F}} \sum_{rp \in \mathcal{RP}} \su ```math \begin{aligned} -\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \left\{\begin{array}{l} = \\ \geqslant \\ \leqslant \end{array}\right\} p^{profile}_{a,rp,k} \cdot p^{peak\_demand}_{a} \quad \forall a \in \mathcal{A}_c, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \left\{\begin{array}{l} = \\ \geqslant \\ \leqslant \end{array}\right\} p^{profile}_{a,rp,k} \cdot p^{peak\_demand}_{a} \quad +\\ \\ \forall a \in \mathcal{A}_c, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -89,7 +91,8 @@ flows\_variable\_cost &= \sum_{f \in \mathcal{F}} \sum_{rp \in \mathcal{RP}} \su ```math \begin{aligned} -s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} \frac{1}{p^{eff}_f} \cdot v^{flow}_{f,rp,k} \quad \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot v^{flow}_{f,rp,k} - \sum_{f \in \mathcal{F}_{out}(a)} \frac{1}{p^{eff}_f} \cdot v^{flow}_{f,rp,k} \quad +\\ \\ \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -97,7 +100,8 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f ```math \begin{aligned} -\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} = \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \quad \forall a \in \mathcal{A}_h, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} = \sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \quad +\\ \\ \forall a \in \mathcal{A}_h, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -105,7 +109,8 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f ```math \begin{aligned} -\sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot {v^{flow}_{f,rp,k}} = \sum_{f \in \mathcal{F}_{out}(a)} \frac{v^{flow}_{f,rp,k}}{p^{eff}_f} \quad \forall a \in \mathcal{A}_{cv}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +\sum_{f \in \mathcal{F}_{in}(a)} p^{eff}_f \cdot {v^{flow}_{f,rp,k}} = \sum_{f \in \mathcal{F}_{out}(a)} \frac{v^{flow}_{f,rp,k}}{p^{eff}_f} \quad +\\ \\ \forall a \in \mathcal{A}_{cv}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -115,7 +120,8 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f ```math \begin{aligned} -\sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \in \mathcal{A}_{cv} \cup \mathcal{A_{s}} \cup \mathcal{A_{p}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +\sum_{f \in \mathcal{F}_{out}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad +\\ \\ \forall a \in \mathcal{A}_{cv} \cup \mathcal{A_{s}} \cup \mathcal{A_{p}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -123,7 +129,8 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f ```math \begin{aligned} -\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \in \mathcal{A_{s}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +\sum_{f \in \mathcal{F}_{in}(a)} v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad +\\ \\ \forall a \in \mathcal{A_{s}}, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -131,7 +138,8 @@ s_{a,rp,k}^{level} = s_{a,rp,k-1}^{level} + p_{a,rp,k}^{inflow} + \cdot \sum_{f ```math \begin{aligned} -v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \forall a \notin \mathcal{A}_h \cup \mathcal{A}_c, \forall f \in \mathcal{F}_{out}(a) \& \notin \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +v^{flow}_{f,rp,k} \leq p^{profile}_{a,rp,k} \cdot \left(p^{init\_capacity}_{a} + p^{unit\_capacity}_a \cdot v^{investment}_a \right) \quad \\ \\ \forall a \notin \mathcal{A}_h \cup \mathcal{A}_c, +\forall f \in \mathcal{F}_{out}(a) \& \notin \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -147,7 +155,8 @@ v^{flow}_{f,rp,k} \geq 0 \quad \forall f \notin \mathcal{F}_t, \forall rp \in \m ```math \begin{aligned} -v^{flow}_{f,rp,k} \leq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{export\_capacity}_f \cdot v^{investment}_f \right) \quad \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +v^{flow}_{f,rp,k} \leq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{export\_capacity}_f \cdot v^{investment}_f \right) \quad +\\ \\ \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -155,7 +164,8 @@ v^{flow}_{f,rp,k} \leq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + ```math \begin{aligned} -v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{import\_capacity}_f \cdot v^{investment}_f \right) \quad \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + p^{import\_capacity}_f \cdot v^{investment}_f \right) \quad +\\ \\ \forall f \in \mathcal{F}_t, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} \end{aligned} ``` @@ -164,5 +174,6 @@ v^{flow}_{f,rp,k} \geq p^{profile}_{f,rp,k} \cdot \left(p^{init\_capacity}_{f} + #### Upper and Lower Bound Constraints for Storage Level ```math -0 \leq s_{a,rp,k}^{level} \leq p^{init\_storage\_capacity}_{a} + p^{ene\_to\_pow\_ratio}_a \cdot p^{unit\_capacity}_a \cdot v^{investment}_a \quad \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} +0 \leq s_{a,rp,k}^{level} \leq p^{init\_storage\_capacity}_{a} + p^{ene\_to\_pow\_ratio}_a \cdot p^{unit\_capacity}_a \cdot v^{investment}_a \quad +\\ \\ \forall a \in \mathcal{A}_s, \forall rp \in \mathcal{RP},\forall k \in \mathcal{K} ```