-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
251 lines (212 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding=utf-8
import argparse
import logging
import os, langid, datetime, re
from copy import deepcopy
import numpy as np
import pandas as pd
from numba import Object
from tqdm import tqdm
from bertopic import BERTopic
from flair.embeddings import TransformerDocumentEmbeddings
INPUT_PATH = os.path.dirname(os.path.realpath(__file__)) + '/dataset/'
MODEL_PATH = os.path.dirname(os.path.realpath(__file__)) + '/model/'
OUTPUT_PATH = os.path.dirname(os.path.realpath(__file__)) + '/output/'
TMP_PATH = os.path.dirname(os.path.realpath(__file__)) + '/tmp/'
BAN_WORD_PATH = os.path.dirname(os.path.realpath(__file__)) + '/model/english_dictionary.txt'
for path in [INPUT_PATH, MODEL_PATH, OUTPUT_PATH]:
if not os.path.exists(path):
os.makedirs(path)
class EssayTopicPredictModel(Object):
"""
@:param Turing's Cat
@:keyword Essay Topic Predict
@:date: 2022/05/26
"""
def __init__(self,):
super().__init__()
self.finalkey = None
self.VISUAL_MODEL = False
self.SAVE_MODEL = False
self.SAVE_JSON = True
self.THRESHOLD = 8
self.config = {
"load_data_batch": 1e6,
"content_types": ['weibo', 'wenzhang', 'yangshi', 'daily'],
"day_period": 3,
"spec_delete_list": [' ', 'http', 'www', 'rt', 'media', 'class', 'jpg', 'com', 'twimg', 'image','png'],
}
self.items_dict["weibo"] = []
self.items_dict["wenzhang"] = []
self.items_dict["yangshi"] = []
self.items_dict["daily"] = []
self.n_gram_range = (2, 2)
self.min_topic_size = 10
self.diversity = 0.1
self.num_scores = 50000
def word2VecGaussianModel(self):
pass # todo
def BERTopicModel(self):
"""
BERT tokenize and Clustering with DBSCAN
:return: model saver
"""
model_version = OUTPUT_PATH + "TopicModel" + "_range" + str(self.n_gram_range[0]) + "_min_size" \
+ str(self.min_topic_size) + "_diversity" + str(self.diversity)
roberta = TransformerDocumentEmbeddings('hfl/chinese-roberta-wwm-ext')
if roberta:
model = BERTopic(embedding_model=roberta, verbose=True, low_memory=True, n_gram_range=self.n_gram_range,
min_topic_size=self.min_topic_size, diversity=self.diversity)
else:
model = BERTopic(embedding_model="all-MiniLM-L6-v2", language="english", calculate_probabilities=True,
n_gram_range=self.n_gram_range, nr_topics='auto', min_topic_size=self.min_topic_size,
diversity=self.diversity, verbose=True) # embedding can be any language
if len(self.dataset) < 100:
raise Exception(f"Too less feeds are fetched ({len(self.dataset)}<100), please set a longer day period.")
f"model has been load through hugging face, then start training in{model_version}..."
topics, probabilities = model.fit_transform(self.dataset)
f"{topics=}" \
f"{probabilities=}"
topic_count = deepcopy(list(model.topic_sizes.values())[:])
topic_names = deepcopy(list(model.topic_names.values())[:])
result = pd.DataFrame(zip(topic_names, topic_count))
result.to_csv("topic_result.csv", encoding='utf_8_sig', mode='w', index=False, sep=',', header=False)
del topic_count[-1]
# print(f"{first_Topic=}")
if self.VISUAL_MODEL:
fig_name = datetime.datetime.now().strftime('%Y%m%d')
# there is a bug in the following fuction located in "python3.8/site-packages/bertopic/plotting/_topics.py" line 49.
# need to change to "topics = sorted(topic_model.get_topic_freq().Topic.to_list()[0:top_n_topics])"
fig1 = model.visualize_topics(top_n_topics=None, width=700, height=700)
fig1.write_html(OUTPUT_PATH + f"{fig_name}_topic.html")
fig2 = model.visualize_barchart(top_n_topics=None, width=400, height=400)
fig2.write_html(OUTPUT_PATH + f"{fig_name}_word_score.html")
fig3 = model.visualize_term_rank() # .visualize_distribution(probabilities[200], min_probability=0.015)
fig3.write_html(OUTPUT_PATH + f"{fig_name}_3.html")
if self.SAVE_MODEL:
model.save(model_version)
return topic_names
@staticmethod
def saveFile(path, filename, data):
if not os.path.exists(path):
os.makedirs(path)
dataframe = pd.DataFrame(data)
dataframe.to_csv(path + filename + ".csv", encoding='utf_8_sig', mode='w', index=False, sep=',', header=False)
"""创建停用词列表"""
def stopwordslist(self):
stopwords = [line.strip() for line in open('./stopwords.txt', encoding='UTF-8').readlines()]
return stopwords
def wordTokenPreprocessor(self):
"""
# 1.stripped emoji, URLs/HTML tags, and common English ”stopwords”
# 2.lowercase,tokenized duplication-reduce and stemming/Lemmatization
# 3.filter infrequent words less than 5 time in the entire corpus and short documents
"""
global local_cache
combined_data = pd.DataFrame()
step = 0
local_cache = False
try:
for root, dirs, files in os.walk(TMP_PATH):
for file in files:
filename = os.path.join(root, file)
if os.path.isfile(filename):
combined_data = pd.read_csv(filename, encoding='utf_8_sig', sep=',')
combined_data = combined_data.sample(n=20000, replace=False, weights=None, axis=0)
local_cache = True
break
# self._fetch_nft_scores(self.num_scores)
if local_cache is not True:
for content_type in self.config["content_types"]:
combined_data = combined_data.append(self.items_dict.get(content_type), ignore_index=True)
combined_data.drop_duplicates(keep='last')
combined_data.dropna()
self.finalkey = []
bar = tqdm(combined_data.index,
desc=f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Word tokenisation",
total=len(combined_data),
ncols=150)
for idx in bar:
list_value = combined_data.loc[idx].values.tolist()
if len(str(list_value[0])) < self.THRESHOLD: continue
sentence = list_value[0]
if sentence is None:
continue
# 0. Check language (only consider English in the first version)
lan_identify, _ = langid.classify(sentence) # identify language the sentence is.
if lan_identify != self.lan_candidates[0]: # en
continue
# 1. Remove other special characters such as emojis, picture links, website external links and account addresses
if 'http' in sentence:
self._remove_after(sentence, 'http')
regwords = re.sub(r'<.*?>|\\[.*?\\]|\b0\S*?\w\b|http|com', "", sentence)
stopwords = '|'.join(self.stopwordslist())
sentence = re.sub(stopwords, "", regwords)
if (len(sentence)) <= 2:
continue
self.dataset.append(sentence)
except Exception as e:
logging.Logger.info("catch error: ", e)
finally:
if local_cache is not True:
self.saveFile(TMP_PATH, "processed_data", self.dataset)
print("final dataset has been saved, with %d" % len(self.dataset))
self.dataset = [str(x) for x in self.dataset]
def jsonSummaryCheck(self, dict_path):
if self.json_dict:
try:
self._json_summary_check(dict_path)
except Exception as e:
raise f'summary check failed {e}.'
else:
print('blank json dict')
def datePreprocess(self, data_path):
for root, dirs, files in os.walk(data_path):
bar = tqdm(files,
total=len(files),
desc=f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Process daily, yangshi, weibo",
ncols=150)
for file in bar:
try:
filename = os.path.join(root, file)
"""处理数据"""
if file.startswith("weibo"):
dataset = pd.read_csv(filename, encoding="utf-8", header=None)
dataset = list(set([x[0] for x in np.array(dataset).tolist()]))
self.items_dict["weibo"].extend(dataset)
elif file.startswith("202"):
f = open(filename, "r", encoding="utf-8")
dataset = f.readlines()
if "责编" not in dataset:
self.items_dict["wenzhang"].extend(dataset)
elif file.startswith("yangshi"):
dataset = pd.read_csv(filename, encoding="utf-8")
dataset["concat"] = dataset["title"] + "。" + dataset["brief"]
dataset = list(set(np.array(dataset["concat"]).tolist()))
self.items_dict["yangshi"].extend(dataset)
elif file.startswith("daily"):
dataset = pd.read_csv(filename, encoding="utf-8")
dataset["concat"] = dataset.iloc[:, 1] + "。" + dataset.iloc[:, 6]
dataset = list(set(np.array(dataset["concat"]).tolist()))
self.items_dict["daily"] = dataset
except Exception as e:
print("logging error as %s" % e)
self.PAST_TIME = self._get_past_time()
def test():
# from sklearn.datasets import fetch_20newsgroups
# docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data']
newDataHandler = EssayTopicPredictModel()
newDataHandler.datePreprocess(INPUT_PATH)
newDataHandler.wordTokenPreprocessor()
newDataHandler.BERTopicModel()
print(f"[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] finished")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--online', default=False, type=str, required=False, help='open trigger')
parser.add_argument('--visualize', default=False, type=str, required=False, help='visual trigger')
args = parser.parse_args()
print('args:\n' + args.__repr__())
if args.online:
pass
else:
test()