-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_fast.py
371 lines (308 loc) · 17.2 KB
/
main_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import argparse
import random
import time
import numpy as np
import torchvision.transforms as transforms
import clip
from data.datasets import input_dataset_clip
from hoc import *
import global_var
# Options ----------------------------------------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument("--pre_type", type=str, default='CLIP') # image, cifar
parser.add_argument('--noise_rate', type=float, help='corruption rate, should be less than 1', default=0.6)
parser.add_argument('--noise_type', type=str, default='manual') # manual
parser.add_argument('--dataset', type=str, help='cifar10, cifar100', default='cifar10')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--G', type=int, default=10, help='num of rounds (parameter G in Algorithm 1)')
parser.add_argument('--k', type=int, default=10, help='knn')
parser.add_argument('--cnt', type=int, default=15000, help='num of examples in each round')
parser.add_argument('--max_iter', type=int, default=400, help='num of iterations to get a T')
parser.add_argument("--local", default=False, action='store_true')
parser.add_argument('--loss', type=str, help='ce, fw', default='fw')
parser.add_argument('--label_file_path', type=str, help='the path of noisy labels',
default='./data/noise_label_human.pt')
parser.add_argument('--num_epoch', type=int, default=1, help='num of epochs')
parser.add_argument('--min_similarity', type=float, help='min_similarity', default=0.0)
parser.add_argument('--Tii_offset', type=float, help='Tii_offset', default=1.0)
parser.add_argument('--num_classes', type=int, default=10, help='num of classes')
parser.add_argument('--method', type=str, help='mv or rank1', default='rank1')
def set_model_min(config):
# use resnet18 (pretrained with CIFAR-10). Only for the minimum implementation of HOC
print(f'Use model {config.pre_type}')
if config.pre_type == 'CLIP':
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device, jit=False) # RN50, RN101, RN50x4, ViT-B/32
return model, preprocess
else:
if config.pre_type == 'image18':
model = res_image.resnet18(pretrained=True)
elif config.pre_type == 'image34':
model = res_image.resnet34(pretrained=True)
elif config.pre_type == 'image50':
model = res_image.resnet50(pretrained=True)
else:
RuntimeError('Undefined pretrained model.')
for param in model.parameters():
param.requires_grad = False
if 'image' in config.pre_type:
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, config.num_classes)
model.to(config.device)
return model, None
def data_transform(record, noise_or_not, sel_noisy):
# assert noise_or_not is not None
total_len = sum([len(a) for a in record])
origin_trans = torch.zeros(total_len, record[0][0]['feature'].shape[0])
origin_label = torch.zeros(total_len).long()
noise_or_not_reorder = np.empty(total_len, dtype=bool)
index_rec = np.zeros(total_len, dtype=int)
cnt, lb = 0, 0
sel_noisy = np.array(sel_noisy)
noisy_prior = np.zeros(len(record))
for item in record:
for i in item:
# if i['index'] not in sel_noisy:
origin_trans[cnt] = i['feature']
origin_label[cnt] = lb
noise_or_not_reorder[cnt] = noise_or_not[i['index']] if noise_or_not is not None else False
index_rec[cnt] = i['index']
cnt += 1 - np.sum(sel_noisy == i['index'].item())
# print(cnt)
noisy_prior[lb] = cnt - np.sum(noisy_prior)
lb += 1
data_set = {'feature': origin_trans[:cnt], 'noisy_label': origin_label[:cnt],
'noise_or_not': noise_or_not_reorder[:cnt], 'index': index_rec[:cnt]}
return data_set, noisy_prior / cnt
def get_knn_acc_all_class(args, data_set, k=10, noise_prior=None, sel_noisy=None, thre_noise_rate=0.5, thre_true=None):
# Build Feature Clusters --------------------------------------
KINDS = args.num_classes
all_point_cnt = data_set['feature'].shape[0]
# global
sample = np.random.choice(np.arange(data_set['feature'].shape[0]), all_point_cnt, replace=False)
# final_feat, noisy_label = get_feat_clusters(data_set, sample)
final_feat = data_set['feature'][sample]
noisy_label = data_set['noisy_label'][sample]
noise_or_not_sample = data_set['noise_or_not'][sample]
sel_idx = data_set['index'][sample]
knn_labels_cnt = count_knn_distribution(args, final_feat, noisy_label, all_point_cnt, k=k, norm='l2')
method = 'ce'
# time_score = time.time()
score = get_score(knn_labels_cnt, noisy_label, k=k, method=method, prior=noise_prior) # method = ['cores', 'peer']
# print(f'time for get_score is {time.time()-time_score}')
score_np = score.cpu().numpy()
if args.method == 'mv':
# test majority voting
print(f'Use MV')
label_pred = np.argmax(knn_labels_cnt, axis=1).reshape(-1)
sel_noisy += (sel_idx[label_pred != noisy_label]).tolist()
elif args.method == 'rank1':
print(f'Use rank1')
print(f'Tii offset is {args.Tii_offset}')
# fig=plt.figure(figsize=(15,4))
for sel_class in range(KINDS):
thre_noise_rate_per_class = 1 - min(args.Tii_offset * thre_noise_rate[sel_class][sel_class], 1.0)
if thre_noise_rate_per_class >= 1.0:
thre_noise_rate_per_class = 0.95
elif thre_noise_rate_per_class <= 0.0:
thre_noise_rate_per_class = 0.05
sel_labels = (noisy_label.cpu().numpy() == sel_class)
thre = np.percentile(score_np[sel_labels], 100 * (1 - thre_noise_rate_per_class))
indicator_all_tail = (score_np >= thre) * (sel_labels)
sel_noisy += sel_idx[indicator_all_tail].tolist()
else:
raise NameError('Undefined method')
return sel_noisy
# plot_score(score, name = f'{args.noise_type}_{args.noise_rate}_{k}_{method}', noise_or_not_sample = noise_or_not_sample, thre_noise_rate = thre_noise_rate, sel_class = sel_class)
# method = 'avg'
# score = get_score(knn_labels_cnt, noisy_label, k = k, method = method, prior = noise_prior) # method = ['cores', 'peer']
# plot_score(score, name = f'{args.noise_type}_{args.noise_rate}_{k}_{method}', noise_or_not_sample = noise_or_not_sample)
# method = 'new'
# score = get_score(knn_labels_cnt, noisy_label, k = k, method = method, prior = noise_prior) # method = ['cores', 'peer']
# plot_score(score, name = f'{args.noise_type}_{args.noise_rate}_{k}_{method}', noise_or_not_sample = noise_or_not_sample)
# exit()
def get_T_global_min_new(args, data_set, max_step=501, T0=None, p0=None, lr=0.1, NumTest=50, all_point_cnt=15000):
# Build Feature Clusters --------------------------------------
KINDS = args.num_classes
# NumTest = 50
all_point_cnt = args.cnt
print(f'Use {all_point_cnt} in each round. Total rounds {NumTest}.')
p_estimate = [[] for _ in range(3)]
p_estimate[0] = torch.zeros(KINDS)
p_estimate[1] = torch.zeros(KINDS, KINDS)
p_estimate[2] = torch.zeros(KINDS, KINDS, KINDS)
# p_estimate_rec = torch.zeros(NumTest, 3)
for idx in range(NumTest):
# print(idx, flush=True)
# global
sample = np.random.choice(range(data_set['feature'].shape[0]), all_point_cnt, replace=False)
# final_feat, noisy_label = get_feat_clusters(data_set, sample)
final_feat = data_set['feature'][sample]
noisy_label = data_set['noisy_label'][sample]
cnt_y_3 = count_y(KINDS, final_feat, noisy_label, all_point_cnt)
for i in range(3):
cnt_y_3[i] /= all_point_cnt
p_estimate[i] = p_estimate[i] + cnt_y_3[i] if idx != 0 else cnt_y_3[i]
for j in range(3):
p_estimate[j] = p_estimate[j] / NumTest
args.device = set_device()
loss_min, E_calc, P_calc, _ = calc_func(KINDS, p_estimate, False, args.device, max_step, T0, p0, lr=lr)
E_calc = E_calc.cpu().numpy()
P_calc = P_calc.cpu().numpy()
return E_calc, P_calc
# def error(T, T_true):
# error = np.sum(np.abs(T - T_true)) / np.sum(np.abs(T_true))
# return error
def noniterate_detection(config, record, train_dataset, sel_noisy=[]):
T_given_noisy_true = None
T_given_noisy = None
# non-iterate
# sel_noisy = []
data_set, noisy_prior = data_transform(record, train_dataset.noise_or_not, sel_noisy)
# print(data_set['noisy_label'])
if config.method == 'rank1':
T_init = global_var.get_value('T_init')
p_init = global_var.get_value('p_init')
# print(f'T_init is {T_init}')
T, p = get_T_global_min_new(config, data_set=data_set, max_step=config.max_iter if T_init is None else 20,
lr=0.1 if T_init is None else 0.01, NumTest=config.G, T0=T_init, p0=p_init)
T_given_noisy = T * p / noisy_prior
print("T given noisy:")
print(np.round(T_given_noisy, 2))
# add randomness
for i in range(T.shape[0]):
T_given_noisy[i][i] += np.random.uniform(low=-0.05, high=0.05)
sel_noisy = get_knn_acc_all_class(config, data_set, k=config.k, noise_prior=noisy_prior, sel_noisy=sel_noisy,
thre_noise_rate=T_given_noisy, thre_true=T_given_noisy_true)
sel_noisy = np.array(sel_noisy)
sel_clean = np.array(list(set(data_set['index'].tolist()) ^ set(sel_noisy)))
noisy_in_sel_noisy = np.sum(train_dataset.noise_or_not[sel_noisy]) / sel_noisy.shape[0]
precision_noisy = noisy_in_sel_noisy
recall_noisy = np.sum(train_dataset.noise_or_not[sel_noisy]) / np.sum(train_dataset.noise_or_not)
print(f'[noisy] precision: {precision_noisy}')
print(f'[noisy] recall: {recall_noisy}')
print(f'[noisy] F1-score: {2.0 * precision_noisy * recall_noisy / (precision_noisy + recall_noisy)}')
return sel_noisy, sel_clean, data_set['index']
if __name__ == "__main__":
# Setup ------------------------------------------------------------------------
torch.multiprocessing.set_sharing_strategy('file_system')
config = parser.parse_args()
config.device = set_device()
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
model_pre, preprocess = set_model_min(config)
if config.noise_type in ['clean', 'worst', 'aggre', 'rand1', 'rand2', 'rand3', 'clean100', 'noisy100']:
noise_type_map = {'clean': 'clean_label', 'worst': 'worse_label', 'aggre': 'aggre_label',
'rand1': 'random_label1', 'rand2': 'random_label2', 'rand3': 'random_label3',
'clean100': 'clean_label', 'noisy100': 'noisy_label'}
config.noise_type = noise_type_map[config.noise_type]
# set transforms
if config.dataset in ['cifar10', 'cifar100']:
crop = transforms.RandomCrop(32, padding=4)
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
elif config.dataset in ['stl10']:
crop = transforms.RandomCrop(96, padding=12)
normalize = transforms.Normalize((0.44671097, 0.4398105, 0.4066468), (0.2603405, 0.25657743, 0.27126738))
else:
raise NameError('Undefined dataset')
if config.pre_type == "CLIP":
preprocess_rand = transforms.Compose([crop,
transforms.RandomHorizontalFlip(),
preprocess])
elif 'image' in config.pre_type:
preprocess_rand = transforms.Compose([crop,
transforms.RandomHorizontalFlip(),
transforms.Resize(224),
transforms.ToTensor(),
normalize])
else: # cifar pretrain
preprocess_rand = transforms.Compose([crop,
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
# load dataset
train_dataset, _, num_classes, num_training_samples, _ = input_dataset_clip(config.dataset, config.noise_type,
config.noise_rate,
transform=preprocess_rand,
noise_file=config.label_file_path)
config.num_classes = num_classes
config.num_training_samples = num_training_samples
print(f'num_training_samples is {num_training_samples}')
sel_noisy_rec = []
# for config.cnt in [5000, 15000, 50000]:
for loop_i in range(1):
train_dataloader_EF = torch.utils.data.DataLoader(train_dataset,
batch_size=256,
shuffle=True,
num_workers=4,
drop_last=False)
model_pre.eval()
sel_clean_rec = np.zeros((config.num_epoch, num_training_samples))
sel_times_rec = np.zeros(num_training_samples)
global_var._init()
global_var.set_value('T_init', None)
global_var.set_value('p_init', None)
for epoch in range(config.num_epoch):
print(f'Epoch {epoch}')
record = [[] for _ in range(config.num_classes)]
for i_batch, (feature, label, index) in enumerate(train_dataloader_EF):
feature = feature.to(config.device)
label = label.to(config.device)
with torch.no_grad():
if config.pre_type == "CLIP":
extracted_feature = model_pre.encode_image(feature)
elif 'ssl' in config.pre_type:
extracted_feature, _ = model_pre(feature)
else:
extracted_feature, _ = model_pre(feature)
for i in range(extracted_feature.shape[0]):
record[label[i]].append({'feature': extracted_feature[i].detach().cpu(), 'index': index[i]})
if i_batch > 200:
break
time1 = time.time()
if config.method == 'both':
# rank1 + mv
config.method = 'rank1'
sel_noisy, sel_clean, sel_idx = noniterate_detection(config, record, train_dataset,
sel_noisy=sel_noisy_rec.copy())
sel_clean_rec[epoch][np.array(sel_clean)] += 0.5
sel_times_rec[np.array(sel_idx)] += 0.5
config.method = 'mv'
sel_noisy, sel_clean, sel_idx = noniterate_detection(config, record, train_dataset,
sel_noisy=sel_noisy_rec.copy())
sel_clean_rec[epoch][np.array(sel_clean)] += 0.5
config.method = 'both'
sel_times_rec[np.array(sel_idx)] += 0.5
else:
# use one method
sel_noisy, sel_clean, sel_idx = noniterate_detection(config, record, train_dataset,
sel_noisy=sel_noisy_rec.copy())
if config.num_epoch > 1:
sel_clean_rec[epoch][np.array(sel_clean)] = 1
sel_times_rec[np.array(sel_idx)] += 1
print(f'Time for one detection is {time.time() - time1}')
# config.method = 'rank1'
if epoch % 1 == 0:
# config.method = 'mv'
aa = np.sum(sel_clean_rec[:epoch + 1], 0) / sel_times_rec
nan_flag = np.isnan(aa)
aa[nan_flag] = 0
# aa += 0.1
sel_clean_summary = np.round(aa).astype(bool)
sel_noisy_summary = np.round(1.0 - aa).astype(bool)
sel_noisy_summary[nan_flag] = False
print(
f'We find {sel_clean_summary.shape[0] - np.sum(sel_clean_summary) - np.sum(nan_flag * 1)} corrupted instances from {sel_clean_summary.shape[0] - np.sum(nan_flag * 1)} instances')
# noisy
noisy_in_sel_noisy = np.sum(train_dataset.noise_or_not[sel_noisy_summary]) / np.sum(sel_noisy_summary)
precision_noisy = noisy_in_sel_noisy
recall_noisy = np.sum(train_dataset.noise_or_not[sel_noisy_summary]) / np.sum(
train_dataset.noise_or_not[(1 - nan_flag).astype(bool)])
print(f'[Epoch {epoch + 1}] precision noisy: {precision_noisy}')
print(f'[Epoch {epoch + 1}] recall noisy: {recall_noisy}')
print(
f'[Epoch {epoch + 1}] F1-score noisy: {2.0 * precision_noisy * recall_noisy / (precision_noisy + recall_noisy)}')
torch.save(sel_clean_rec,
f'result_{config.pre_type}_{config.method}_{config.dataset}_{config.noise_type}_e{config.num_epoch}_k{config.k}.pt')