-
Notifications
You must be signed in to change notification settings - Fork 9
/
test_sphere.m
114 lines (106 loc) · 5.22 KB
/
test_sphere.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
%{
* Copyright (C) 2013-2025, The Regents of The University of Michigan.
* All rights reserved.
* This software was developed in the Biped Lab (https://www.biped.solutions/)
* under the direction of Jessy Grizzle, [email protected]. This software may
* be available under alternative licensing terms; contact the address above.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The views and conclusions contained in the software and documentation are those
* of the authors and should not be interpreted as representing official policies,
* either expressed or implied, of the Regents of The University of Michigan.
*
* AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)
* WEBSITE: https://www.brucerobot.com/
%}
clc, clear
point = [0 2 3];
division = 4;
object.size = 5;
% t_returnTransformFromUnitGrid(point, division, object)
% function [] = t_returnTransformFromUnitGrid(point, division, object)
cla
point_unit = point ./ object.size;
%
%
% R = 2;
% [Y,Z] = meshgrid(-0.5:1/division:0.5);
% X = sqrt(R.^2 - Z.^2 - Y.^2);
% % Z(imag(Z) ~= 0) = 0;
% mesh(X, Z, Y);
% % [x, y, z] = sphere(division);
% % x = 0.5 * x;
% % y = 0.5 * y;
% % z = 0.5 * z;
% % x = x()
% % surf(x,y,z)
[x, y, z] = sphere(division); %# Makes a 21-by-21 point sphere
x = x(division:end,:); %# Keep top 11 x points
y = y(division:end,:); %# Keep top 11 y points
z = z(division:end,:); %# Keep top 11 z points
z = z - z(1,1); % move to (x, y, 0)
r = 2; %# A radius value
a = gradient(z);
hs = surf(r.*x,r.*y,r.*z, 'AlphaData',a, 'FaceAlpha','flat',...
'FaceColor','blue'); %# Plot the surface
% hs.AlphaData = 0.5;
% hs2 = surf(r.*x,r.*y,r.*z); %# Plot the surface
direction = [0 0 1]; % Specify Direction
rotate(hs, direction, 180/division) % Rotate The Object (Hemisphere) in ‘Direction’ By 90°
% rotate(hs2, direction, 45) % Rotate The Object (Hemisphere) in ‘Direction’ By 90°
% rotate(hs2, [0 1 0], 90) % Rotate The Object (Hemisphere) in ‘Direction’ By 90°
axis equal; %# Make the scaling on the x, y, and z axes equal
grid on
plane(division).vertices = [];
point_xy = [point_unit(3), point_unit(2), point_unit(1)]
XData = hs.XData;
YData = hs.YData;
ZData = hs.ZData;
%%
for i = 1:division
i
% j = mod(j, 4);
plane(i).object_vertices.x = [0 XData(1, i), XData(1, i+1)];
plane(i).object_vertices.y = [0 YData(1, i), YData(1, i+1)];
plane(i).object_vertices.z = [ZData(2,i) ZData(1, i), ZData(1, i+1)];
plane(i).triangle.x = [0 XData(1, i), XData(1, i+1)];
plane(i).triangle.y = [0 YData(1, i), YData(1, i+1)];
plane(i).triangle.z = [0 ZData(1, i), ZData(1, i+1)];
[plane(i).normal, plane(i).centroid, plane(i).R] = computePlaneReturnR(plane(i));
scatter3(plane(i).triangle.x, plane(i).triangle.y, plane(i).triangle.z, 'y', 'fill')
plane(i).angle_sum = computeAngleSum(plane(i).triangle, point_xy);
plane(i).status = 0;
if abs(plane(i).angle_sum - 2*pi) < 1e-5
plane(i).status = 1;
interior = point;
end
end
% scatter3(plane(1).object_vertices.x, plane(1).object_vertices.y, plane(1).object_vertices.z, 'o')
% scatter3(plane(2).object_vertices.x, plane(2).object_vertices.y, plane(2).object_vertices.z, 'd')
% scatter3(plane(3).object_vertices.x, plane(3).object_vertices.y, plane(3).object_vertices.z, '*')
% scatter3(plane(4).object_vertices.x, plane(4).object_vertices.y, plane(4).object_vertices.z, 'x')
[select_angle, which_polygon] = min(abs([plane(:).angle_sum]- 2*pi))
% H = eye(4);
% H(1:3,1:3) = (plane(which_polygon).R)';
% new_point = H * makeColumn([point_unit 1]);
[new_point, ~, intersect] = findIntersectionOfPlaneAndLine(plane(which_polygon), ...
point_xy(1:3), point_xy + [0 0 1])
scatter3(new_point(1), new_point(2), new_point(3), 'r', 'fill')
scatter3(point_xy(1), point_xy(2), point_xy(3), 'g', 'fill')
disp("done")
% end